ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΜΕΛΕΤΗΣ ΠΛΟΙΟΥ & ΘΑΛΑΣΣΙΩΝ ΜΕΤΑΦΟΡΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

"Μελέτη και Σχεδίαση Πλοίου Μεταφοράς Υγροποιημένου Φυσικού Αερίου"

Χρήστος Γεωργίου

<u>Επιβλέπων:</u>

Απόστολος Δ. Παπανικολάου

Αθήνα, Ιούλιος 2015

ΠΕΡΙΕΧΟΜΕΝΑ

ПЕ	ΡΙΛΗΨ	лн	8
AB	STRAC	тт	8
EIΣ	ΞΑΓΩΓΗ	Η - ΠΡΟΛΟΓΟΣ	9
1	Γενι	κά Εισαγωγικά Στοιχεία	10
	1.1	Υγροποιημένο Φυσικό αέριο (ΥΦΑ)	10
	1.2	Περιγραφή αλυσίδας YΦA (LNG Process Chain)	11
	1.2.	1 Φάση Αναζήτησης / Εξόρυξης / παραγωγής	11
	1.2.	2 Φάση Υγροποίησης	11
	1.2.	3 Μεταφορά LNG	12
	1.2.	4 Αποθήκευση	13
	1.3	Ιστορική αναδρομή	14
	1.4	Κανονισμοί σχετικά με τα πλοία μεταφοράς ΥΦΑ	18
	1.5	Συστήματα Δεξαμενών	20
	1.5.	1 Δεξαμενές Τύπου ¨Α¨	20
	1.5.	2 Δεξαμενές Τύπου ¨Β¨	21
	1.5.	3 Δεξαμενές Τύπου ¨C¨	24
	1.5.	4 Δεξαμενές μεμβρανικού τύπου (GTT technology)	25
	1.5.	5 Άλλες σχεδιάσεις	28
	1.6	Αγορά LNG	30
	1.6.	1 Πλεονεκτήματα μεταφοράς ΥΦΑ με πλοίο συγκριτικά με μεταφορά ΦΑ με αγω	γούς31
	1.6.	2 Κόστη	32
	1.6.	3 Χώρες Εισαγωγής και Εξαγωγής	34
2	ПРС	DMEΛETH LNG CARRIER 170.000 m ³	39
	2.1	Επιλογή όμοιων πλοίων	39
	2.2	Επιλογή κύριων διαστάσεων	41
	2.2.	1 Συντελεστής μέσης τομής (C_{M})	44
	2.2.	2 Πρισματικός συντελεστής (C _P)	44
	2.2.	3 Συντελεστής ισάλου επιφάνειας (C _{wP})	45
	2.2.	4 Αποτελέσματα	45
	2.3	Πρώτη προσέγγιση ισχύος προωστήριας εγκατάστασης	46
	2.3.	1 Ισχύς πρόωσης	46
	2.3.	2 Επιλογή κύριας μηχανής	46
		2	

2.4 Y	πολογισμός βάρους Lightship	48
2.4.1	Ανάλυση Βαρών Πατρικού Πλοίου	48
2.4.2	Συγκεντρωτικά αποτελέσματα, βάρος LS, συντελεστής διόρθωσης	69
2.4.3	Υπολογισμός βαρών για το υπό μελέτη πλοίο	70
2.4.4	Συγκεντρωτικά αποτελέσματα, βάρος LS, συντελεστής διόρθωσης	80
2.4.5	Έλεγχος βαρών Δ $_{\scriptscriptstyle B}$ με Δ $_{\scriptscriptstyle \Gamma}$ για το υπό μελέτη πλοίο	80
2.5 A	νάλυση DWT για το υπό μελέτη πλοίο	81
2.5.1	Βάρος Καυσίμων	81
2.5.2	Βάρος ελαφρού καυσίμου (W _{DO})	82
2.5.3	Βάρος λιπαντικών (W _{LO})	83
2.5.4	Βάρος νερού (W _{FW})	83
2.5.5	Βάρος Εφοδίων-τροφίμων (W _{PR})	84
2.5.6	Βάρος Επιβατών και αποσκευών (W _P και W _{CR})	84
2.5.7	Σταθερά βάρη (Const.)	84
2.5.8	Βάρος ωφέλιμου φορτίου (W _{PL})	86
2.6 K	αθορισμός κατασκευαστικών νομέων, κύριων φρακτών και διπυθμένου	87
2.6.1	Ανάλυση Επιμέρους Μηκών L _i	87
2.6.2	Έλεγχος απόστασης φρακτής σύγκρουσης	87
2.6.3	Υπολογισμός ύψους διπυθμένου	88
2.6.4	Υπολογισμός απόστασης διπλών τοιχωμάτων	88
2.6.5	Υπολογισμός όγκου κυτών (V _{cargo})	89
2.6.6	Υπολογισμός ελάχιστου έρματος	89
2.7 É	λεγχος Ευστάθειας	91
2.7.1	Πατρικό - Αναχώρηση	91
2.7.2	Υπό μελέτη πλοίο – Αναχώρηση	95
2.7.3	Πατρικό - Άφιξη	99
2.7.4	Υπό μελέτη πλοίο – Άφιξη	103
2.8 Ff	ραμμή Φόρτωσης	106
3 ΤΕΛΙΚΗ	Η ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ	109
3.1 Σχ	χεδίαση Ναυπηγικών Γραμμών	109
3.2 Δ	ιαμερισματοποίηση	110
3.3 Y	δροστατικά και Υδροδυναμικά Χαρακτηριστικά	110

	3.3.	1 Κατάσταση πλήρους φόρτωσης - Αναχώρηση (FLD)111
	3.3.2	2 Κατάσταση πλήρους φόρτωσης - Άφιξη (FLA)	
	3.3.3	.3 Κατάσταση πλήρους ερματισμού - Αναχώρηση (ΒΙ	D)121
	3.3.4	.4 Κατάσταση πλήρους ερματισμού - Άφιξη (ΒΑ)	
	3.4	Κλίμακα DWT	
	3.5	Υδροστατικά (Hydrostatics)	
	3.6	Καμπύλες Ευστάθιας (Cross Curves)	
	3.7	Κατακλύσιμα Μήκη (Floodable Lenght)	
4	KAT	ΑΜΕΤΡΗΣΗ	
	4.1	Ολική Χωρητικότητα (Gross Tonnage – GT)	
	4.2	Καθαρή Χωρητικότητα	
5	ΥПО	ΟΛΟΓΙΣΜΟΣ ΑΝΤΟΧΗΣ ΜΕΣΗΣ ΤΟΜΗΣ ΒΑΣΗ ΚΑΝΟΝΙΣΜΩ	2N142
	5.1	Γενικά Χαρακτηριστικά	
	5.2	Ελάχιστη απαιτούμενη ροπή αντίστασης	
	5.3	Ελάχιστη απαιτούμενη ροπή αδράνειας	144
	5.4	Διαστασιολόγηση στοιχείων διαμήκους αντοχής Μέση	ς Τομής144
	5.4.	1 Ελάσματα	
	5.4.2	2 Ενισχυτικά	
	5.5	Υπολογισμός ροπής αντίστασης και αδράνειας Μέσης ⁻	Τομής165
6	EKTI	ΊΜΗΣΗ ΚΟΣΤΟΥΣ ΚΤΗΣΗΣ, ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΚΑΙ ΝΑΥΛΟΥ	
	6.1	Κόστος Κτήσεως Πλοίου	
	6.1.	1 Κόστος Μεταλλικής Κατασκευής	
	6.1.2	2 Κόστος Ενδιαιτήσεως & Εξοπλισμού	
	6.1.	3 Κόστος Μηχανολογικής Εγκατάστασης	
	6.2	ΚΟΣΤΟΣ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ:	
	6.2.	1 Κόστος Heavy Fuel Oil	
	6.2.2	2 Κόστος Diesel Oil	
	6.2.3	3 Κόστος Lub Oil	
	6.2.4	.4 Κόστος Fresh Water	
	6.2.	.5 Κόστος Τροφοδοσίας	
	6.2.	.6 Κόστος Μισθοδοσίας	
	6.2.	.7 Κόστος Συντηρήσεως & Επισκευών	

	6.2.8	3 Κόστος Ασφαλίσεως	
	6.2.9	Έξοδα Λιμένων	177
	6.2.10	Γενικά Έξοδα	178
	6.3 EAA	ΧΙΣΤΟΣ ΑΠΑΙΤΟΥΜΕΝΟΣ ΝΑΥΛΟΣ	180
7	ΣΥΜΠΕΡ	ΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ	181
8	ΠΑΡΑΡΤΙ	-1MA	184
9	ΒΙΒΛΙΟΓΙ	ναφια	200

Στην Οικογένεια μου

Ευχαριστίες

Θα ήθελα να απευθύνω θερμές ευχαριστίες στον κ. Απόστολο Παπανικολάου, στην κ. Ελευθερία Ηλιοπούλου και στον κ. Γεώργιο Παπατζανάκη, για την πολύτιμη καθοδήγηση τους και τη συμβολή τους στην ολοκλήρωση αυτής της Διπλωματικής Εργασίας. Ευχαριστώ, την "Maran Gas" για την προμήθεια των απαραίτητων σχεδίων και ευχαριστώ επίσης, τον κ. Σταύρο Νιώτη και τον κ. Περικλή Σκαβάρα που ήταν πάντα πρόθυμοι να βοηθήσουν.

ΠΕΡΙΛΗΨΗ

Η παρούσα Διπλωματική Εργασία πραγματοποιήθηκε στο Εθνικό Μετσόβιο Πολυτεχνείο (Ε.Μ.Π.), στο τμήμα Ναυπηγών Μηχανολόγων Μηχανικών και συγκεκριμένα στον Τομέα Μελέτης Πλοίου & Θαλάσσιων Μεταφορών, κατά το έτος 2014-2015. Αντικείμενο αυτής της εργασίας, είναι η προμελέτη ενός πλοίου μεταφοράς Υγροποιημένου Φυσικού Αερίου μέσω κατάλληλης μεθοδολογίας. Η προμελέτη βασίζεται σε πατρικό πλοίο^ί και ικανοποιεί τις απαιτήσεις του πλοιοκτήτη και τους σχετικούς κανονισμούς. Στα πλαίσια της μελέτης, χρησιμοποιείται το σχεδιαστικό και υπολογιστικό πρόγραμμα AVEVA, από όπου εξάγονται οι διάφορες καταστάσεις φόρτωσης και τα τελικά χαρακτηριστικά του πλοίου.

ABSTRACT

The present Diploma Thesis takes place at Naval Architecture and Marine Engineering Department (Ship Design Laboratory) of National Technical University of Athens (N.T.U.A.). The objective of this Thesis is the Preliminary Design of a Liquefied Natural Gas Carrier throughout a specific methodology. The Design is based on a reference Ship and takes into account the Ship Owner's demands and the satisfaction of certain Rules and Regulations. The relevant Loading Conditions and the characteristics of the ship are extracted by the designing Program AVEVA.

ⁱ Πατρικό πλοίο: "Woodside Rogers" της "MARAN GAS"

ΕΙΣΑΓΩΓΗ - ΠΡΟΛΟΓΟΣ

Η κλιματική αλλαγή, στις μέρες μας, αποτελεί ένα σημαντικό πρόβλημα παγκόσμιας κλίμακας. Τα αέρια του θερμοκηπίου, όπως το διοξείδιο του άνθρακα, CO₂, που εκπέμπονται από τις διάφορες βιομηχανίες επιβαρύνουν το φαινόμενο του θερμοκηπίου. Επιπλέον οι ατμοσφαιρικοί ρύποι όπως το διοξείδιο του θείου, SO₂, τα οξείδια του αζώτου, NOx, τα αιωρούμενα σωματίδια (PM), και οι πτητικές οργανικές ενώσεις (VOCS), επηρεάζουν αρνητικά τόσο το περιβάλλον όσο και την υγεία του ανθρώπου.

Η κάλυψη των ενεργειακών αναγκών με πιο οικολογικά καύσιμα αποτελεί πλέον, μια από τις μεγαλύτερες προκλήσεις για την ανθρωπότητα. Το ενδιαφέρον για το Φυσικό Αέριο (ΦΑ) αναζωπυρώθηκε τα τελευταία χρόνια καθώς πρόκειται για πιο οικολογικό καύσιμο και με μεγαλύτερη θερμογόνο δύναμη σε σχέση με άλλα συμβατικά καύσιμα (γαιάνθρακας, πετρέλαιο). Έτσι, αποτελεί σήμερα, μια βιώσιμη λύση για τη μείωση των εκπομπών ρύπων.

Συγκεκριμένα, στη ναυτιλία, έχουν θεσπιστεί κανονισμοί από τον ΙΜΟ¹ στο Πλαίσιο της Δ.Σ MARPOL VI^{II} για να επιτευχθεί μείωση των εκπομπών αερίων του θερμοκηπίου (GHG^{III}) που προέρχονται από τον τομέα αυτό, ενώ ήδη εφαρμόζονται σταδιακά οι απαιτήσεις για τον περιορισμό εκπομπών από τα πλοία ως προς SOx (low sulphur fuel) και NOx^{iv} (Tier II & III standards).¹

Στην παρούσα Διπλωματική Εργασία, με βάση τα προηγούμενα, κρίνεται σκόπιμο να μελετηθεί και να σχεδιαστεί ένα πλοίο μεταφοράς Υγροποιημένου Φυσικού Αερίου (LNG Carrier^v). Η μελέτη και η σχεδίαση θα γίνει μέσω κατάλληλων σχεδιαστικών πακέτων^{νi} και σύμφωνα με τις απαιτήσεις των κανονισμών.

Αναλυτικότερα:

- Στο Κεφάλαιο 1, παρουσιάζονται κάποια εισαγωγικά στοιχεία σχετικά με το Φυσικό Αέριο και τον συγκεκριμένο τύπο πλοίου που πρόκειται να μελετηθεί.
- Στο Κεφάλαιο 2, παρουσιάζεται η προκαταρκτική μελέτη του υπό σχεδίαση πλοίου, απ' όπου προκύπτουν οι κύριες διαστάσεις με βάση τις προδιαγραφές του πλοιοκτήτη.
- Στο Κεφάλαιο 3, πραγματοποιείται μοντελοποίηση του πλοίου μέσω του AVEVA και από εκεί εξάγονται οι καταστάσεις φόρτωσης, η κλίμακα DWT, τα υδροστατικά, οι καμπύλες ευστάθειας και τα κατακλύσιμα μήκη.
- Στο κεφάλαιο 4, γίνεται η καταμέτρηση του πλοίου με βάση τη Διεθνή Σύμβαση Καταμέτρησης.
- Στο κεφάλαιο 5, αναλύεται ο υπολογισμός αντοχής μέσης τομής του υπό μελέτη πλοίου, βάση κανονισμών και σχεδιάζεται στο AUTOCAD η μέση τομή.
- Στο Κεφάλαιο 6, γίνεται μια εκτίμηση του κόστους κτήσης και λειτουργίας καθώς και ο ελάχιστος απαιτούμενος ναύλος.

Τέλος, με βάση όσα αναλύθηκαν, εξάγονται κάποια σημαντικά συμπεράσματα.

ⁱ IMO: International Maritime Organization

["] Σχετικό άρθρο παρατίθεται στο Παράρτημα 8.1

GHG: Greenhouse Gas

^{iv} NOx - SOx: Nitrogen Oxides – Sulphur Oxides

^v Liquefied Natural Gas Carrier

^{vi} AVEVA, AUTOCAD

1 Γενικά Εισαγωγικά Στοιχεία

1.1 Υγροποιημένο Φυσικό αέριο (ΥΦΑ)

Το φυσικό αέριο (ΦΑ) είναι ένα καύσιμο που δημιουργείται στο υπέδαφος, σε υπόγειες κοιλότητες. Σχηματίστηκε με τρόπο παρόμοιο με τον σχηματισμό του πετρελαίου, δηλαδή από την βραδεία αποσύνθεση φυτικής και ζωικής ύλης που υπήρχε παγιδευμένη κάτω από στερεά πετρώματα (υπό μεγάλη πίεση) για πολλά εκατομμύρια έτη. Συνήθως συνυπάρχει με νερό (δύο φάσεις) ή είναι συνδεδεμένο με αργό πετρέλαιο και νερό (τρεις φάσεις).

Η σύσταση του περιλαμβάνει κυρίως μεθάνιο (CH₄), έναν άχρωμο και άοσμο υδρογονάνθρακα. Εκτός από το μεθάνιο περιέχει επίσης και άλλους υδρογονάνθρακες σε μικρότερες ποσότητες (προπάνιο (C₃H₈), βουτάνιο (C₄H₁₀), αιθάνιο (C₂H₆)), καθώς και ορισμένες ουσίες σε πολύ μικρά ποσοστά όπως το διοξείδιο του άνθρακα (CO₂), το άζωτο (N₂), το υδρόθειο (H₂S), το νερό (H₂O), τα στερεά σωματίδια κ.α. Η σύσταση του φυσικού αερίου διαφέρει ανάλογα με την πηγή. Αξιοσημείωτο είναι το γεγονός ότι, απουσιάζει τελείως από τη σύσταση του το μονοξείδιο του άνθρακα το οποίο είναι τοξικό.²

Το φυσικό αέριο σε ατμοσφαιρική πίεση υγροποιείται σε μια θερμοκρασία κοντά στους -162°C. Ο κύριος λόγος για την υγροποίηση του φυσικού αερίου είναι η κατά 600 φορές μείωση του όγκου του, λόγω της αλλαγής φάσης (αέριο σε υγρό). Με αυτό τον τρόπο γίνεται πιο εύκολη η αποθήκευση του και η μεταφορά του, σε ειδικές κρυογενικές δεξαμενές. Το βάρος του υγροποιημένου φυσικού αερίου προσδιορίζεται στο μισό του βάρους του νερού.

Σε τυχόν περίπτωση αστοχίας ή ατυχήματος και διαρροής του προϊόντος δεν υπάρχει κίνδυνος από απότομη εκτόνωση, καθόσον τουλάχιστον το προϊόν βρίσκεται υπό ατμοσφαιρική πίεση. Στο προϊόν δίδεται συνήθως χαρακτηριστική οσμή για σκοπούς ασφαλείας, ώστε να γίνεται αντιληπτό σε περιπτώσεις διαρροής. Υπάρχουν βέβαια άλλοι κίνδυνοι όπως η ανάφλεξη και πρόκληση πυρκαγιάς με ύπαρξη ελεγχόμενου περιβάλλοντος. Τα όρια αναφλεξιμότητας για το φυσικό αέριο είναι 5-15 % αέριο/αέρα.

Σημαντικές θεωρούνται οι θετικές περιβαλλοντικές επιπτώσεις του ΥΦΑ. Το φυσικό αέριο, ως καύσιμο, έχει δύο ιδιαίτερα σημαντικά πλεονεκτήματα σε σχέση με το πετρέλαιο ντίζελ και το μαζούτ. Παρουσιάζει αυξημένο βαθμό απόδοσης κατά την καύση του, συνεπώς επιτυγχάνεται ανάλογη εξοικονόμηση ενέργειας κατά την παραγωγή της θερμικής ενέργειας. Επίσης, οι εκπομπές αερίων ρύπων που προκύπτουν κατά την καύση του είναι σημαντικά χαμηλότερες από αυτές που προκύπτουν κατά την καύση του μαζούτ. Συγκεκριμένα, μειώνει τις εκπομπές διοξειδίου του άνθρακα (CO₂) περίπου 25-30%, τις εκπομπές οξειδίων του θείου (SOx) σχεδόν στο μηδέν και τις εκπομπές οξειδίων του αζώτου (NOx) περισσότερο από 80%.²

Οι πιο διαδεδομένες χρήσεις του είναι:

- Στη Ναυτιλία: Με αφορμή τους κανονισμούς της MARPOL VI. Χρήση κινητήρων καυσίμου LNG και κινητήρων διπλής καύσης για LNG Carriers. Οι τελευταίοι, χρησιμοποιούν τα εξατμιζόμενα αέρια (boil–off) από τις δεξαμενές φορτίου σαν καύσιμο σε συνδυασμό με το ντίζελ. (Το φαινόμενο boil - off θα περιγραφεί στην Παρ. 1.2.31.2.3)

- Στη Βιομηχανία: Καύσιμο που ενισχύει σημαντικά την ανταγωνιστικότητα.

- Οικιακή χρήση: Θέρμανση, ζεστό νερό, κλιματισμός.

- Επιχειρήσεις: Πηγή ενέργειας για εστιατόρια, φούρνους, εργαστήρια, βιοτεχνίες.

- Στην ηλεκτροδότηση: Για καθαρή και αποδοτική παραγωγή ηλεκτρικής ενέργειας.

- Στην αυτοκίνηση: Για κίνηση οχημάτων δημόσιας και ιδιωτικής χρήσης.

- Στη Γεωργία: Σε θερμοκήπια ως πηγή θέρμανσης.

 - Εναλλακτική, καθαρότερη από τα άλλα συμβατικά καύσιμα, υποστηρικτική πηγή ενέργειας για τις ανανεώσιμες πηγές ενέργειας.

1.2 Περιγραφή αλυσίδας ΥΦΑ (LNG Process Chain)

Η έννοια της Υγροποίησης περιγράφει τη διαδικασία της ψύξης του Φυσικού Αερίου σε -162°C και της μετατροπής του σε υγρή μορφή για να μπορεί να μεταφερθεί οικονομικά δια θαλάσσης. Από το 1964, η εξαγωγή, παραγωγή, μεταφορά, εισαγωγή και διανομή του ΥΦΑ ακολουθεί μια σειρά διαδικασιών που απεικονίζονται στην Εικόνα 1.2:1.

Εικόνα 1.2:1 Η αλυσίδα ΥΦΑ (Πηγή: The International Group of LNG Importers, 2009)

1.2.1 Φάση Αναζήτησης / Εξόρυξης / παραγωγής

Στο αρχικό στάδιο της διαδικασίας, όπως είναι προφανές, γίνεται αναζήτηση των φυσικών πόρων από όπου προέρχεται το φυσικό αέριο, από ειδικούς, οι οποίοι αναλύουν τη γεωλογική δομή του εδάφους (π.χ. με σεισμική ανάλυση). Πολλές φορές η ανακάλυψη των πηγών φυσικού αερίου γίνεται κατά την αναζήτηση νέων πηγών πετρελαίου. Γεώτρηση αναλαμβάνεται όταν υπάρχει μια υψηλή πιθανότητα ανακάλυψης αερίου (ή πετρελαίου). Αν η πηγή είναι βιώσιμη (μετά από μια σειρά δοκιμών, μετρήσεων και πρόσθετες γεωτρήσεις), μπορεί να γίνει Εξόρυξη και Παραγωγή.³

Το φυσικό αέριο που εξάγεται από το έδαφος ονομάζεται "FEED". Αυτό περιέχει και πετρέλαιο το οποίο είναι άχρηστο και στέλνεται για καύση. Η τελική ποσότητα είναι ικανή για χρησιμοποίηση του ως YΦA.

Πριν καταναλωθεί το ακατέργαστο φυσικό αέριο πρέπει να καθαριστεί. Όπως ειπώθηκε και στην παράγραφο 1.1, συνυπάρχει με μια ποικιλία από άλλες ενώσεις και αέρια όπως αιθάνιο (C_2H_6) , προπάνιο (C_3H_8) , βουτάνιο (C_4H_{10}) , υδρόθειο (H_2S) , διοξείδιο του άνθρακα (CO_2) , ήλιο (He) και άζωτο (N_2) , καθώς και πετρέλαιο και νερό (H_2O) , τα οποία πρέπει να διαχωριστούν κατά τη διάρκεια της παραγωγής πριν από την υγροποίηση.⁴

1.2.2 Φάση Υγροποίησης

Το Επόμενο στάδιο μετά την εξόρυξη, είναι αυτό της επεξεργασίας για υγροποίηση. Συγκεκριμένα το φυσικό αέριο που εξάγεται φιλτράρεται και καθαρίζεται σε ειδικές μονάδες προκειμένου να πληροί τις προδιαγραφές των περιοχών εισαγωγής. Οι μονάδες υγροποίησης συχνά αποτελούνται από αρκετές εγκαταστάσεις σε παράλληλη διάταξη με σκοπό το διαχωρισμό και την αφαίρεση των διαφόρων ξένων ουσιών του φυσικού αερίου πριν την υγροποίηση.

Εικόνα 1.2:2 Διαδικασία αφαίρεσης ενώσεων που βρίσκονται στο αέριο καθώς βγαίνει από το έδαφος, πριν την υγροποίηση (Πηγή: The international group of Ing importers, 2009)

Πιο συγκεκριμένα, το διοξείδιο του άνθρακα και το νερό εξάγονται στο προηγούμενο στάδιο της υγροποίησης, γιατί προκαλούν βλάβη στις εγκαταστάσεις υγροποίησης με κατάψυξη. Οι βαρύτεροι υδρογονάνθρακες από το μεθάνιο διαχωρίζονται και πωλούνται ως πρώτες ύλες στη βιομηχανία πετροχημικών ή σαν καύσιμο.

Μετά την επεξεργασία το φυσικό αέριο υποβάλλεται σε υγροποίηση στο εσωτερικό της εγκατάστασης. Έτσι, στο παρόν στάδιο, μετατρέπεται σε υγρή μορφή και αποτελείται σχεδόν εξ ολοκλήρου από μεθάνιο. Για να αποκτήσει τη μέγιστη μείωση όγκου, το αέριο υγροποιείται μέσω της εφαρμογής της τεχνολογίας ψύξης που καθιστά δυνατή την ψύξη του αερίου σε θερμοκρασία περίπου -162 °C.

1.2.3 Μεταφορά LNG

Αν και η απαιτούμενη ενέργεια για την υγροποίηση του φυσικού αερίου είναι ουσιαστική, το πλεονέκτημα του όγκου καθιστά οικονομικά βιώσιμη την υγροποίηση. Για τη μεταφορά του ΥΦΑ σε μεγάλες αποστάσεις, προτιμάται διά θαλάσσης, με εξειδικευμένα LNG Carriers, όπου έχουν σχεδιαστεί ειδικά για να περιέχουν το φορτίο κοντά σε ατμοσφαιρική πίεση και σε θερμοκρασία περίπου -162 °C. Πλοία μεταφοράς LNG είναι ένα συνδυασμός συμβατικού τύπου πλοίου με εξειδικευμένα υλικά και προηγμένα συστήματα για κρυογονική διαχείριση φορτίων. Οι δεξαμενές αποτελούνται από στρώματα ειδικής μόνωσης που απομονώνουν το φορτίο του υγροποιημένου φυσικού αερίου από τη γάστρα του πλοίου και είναι σχεδιασμένα σύμφωνα με τους Διεθνείς Κώδικες Αερίου. Επιπλέον, αυτό το σύστημα μόνωσης περιορίζει το ποσό του ΥΦΑ, το οποίο μπορεί να εξατμίζεται κατά τη διάρκεια των ταξιδιών (boil-off).

Στις μέρες μας, για μεταφορά μεγάλων ποσοτήτων ΥΦΑ, έχουν επικρατήσει τρεις τύποι πλοίων με βάση το σύστημα δεξαμενών τους:

- Πλοία με Σφαιρικές δεξαμενές (Kvaerner-Moss System)
- Πλοία με πρισματικές δεξαμενές (IHI SPB)
- Πλοία με μεμβρανικές δεξαμενές (GTT technology)

Σε επόμενη παράγραφο θα περιγραφούν αναλυτικά όλοι οι τύποι των δεξαμενών για πλοία μεταφοράς ΥΦΑ σύμφωνα με την κατάταξη του ΙΜΟ'.

¹ IMO: International Maritime Organization

Εξατμιζόμενα Αέρια / Boil-Off Gas (BOG)⁵

Το φαινόμενο αυτό συναντάται κατά την αποθήκευση του ΥΦΑ σε δεξαμενές. Το ΥΦΑ όπως αναφέρθηκε ψύχεται στους -162 °C σε ατμοσφαιρική πίεση για να υγροποιηθεί. Οι δεξαμενές έχουν ως στόχο να διατηρήσουν την χαμηλή θερμοκρασία του LNG με τις λιγότερες δυνατές απώλειες. Όμως η μεταφορά θερμότητας από το περιβάλλον είναι σχεδόν αναπόφευκτη.

Γνωρίζοντας τα πιο κάτω:

- Αν ο όγκος είναι σταθερός \rightarrow αύξηση της πίεσης στη δεξαμενή αποθήκευσης.
- Αν η πίεση είναι σταθερή → το υγρό ανεβάζει θερμοκρασία και μετατρέπεται σε αέριο. Οπότε για να διατηρηθεί η πίεση μέσα στη δεξαμενή το αέριο απελευθερώνεται εκτός δεξαμενής, αφού υπό αέρια μορφή το ΦΑ καταλαμβάνει περισσότερο χώρο.

Στην περίπτωση των δεξαμενών ΥΦΑ, μας ενδιαφέρει να έχουμε σταθερή πίεση, οπότε το εξατμιζόμενο αέριο διοχετεύεται με κατάλληλες διατάξεις, είτε προς επανυγροποίηση για επαναποθήκευση στις δεξαμενές, είτε για τη χρήση του ως καυσίμου. Για να χρησιμοποιηθεί όμως ως καύσιμο θα πρέπει να θερμανθεί στους 20°C. Σε ένα τυπικό ταξίδι, εκτιμείται ότι περίπου το 0,1% - 0,25% του φορτίου ΥΦΑ εξατμίζεται κάθε μέρα, ανάλογα με την αποτελεσματικότητα της μόνωσης και την τραχύτητα του ταξίδιού. Έτσι, σε ένα ταξίδι, 20 ημερών μπορεί να εξατμιστεί από το 2% - 6% του συνολικού όγκου του ΥΦΑ.

1.2.4 Αποθήκευση

Όταν το LNG φτάσει στους τερματικούς σταθμούς, μεταφέρεται σε ειδικές μονωμένες δεξαμενές αποθήκευσης. Οι δεξαμενές αυτές μπορεί να είναι πάνω ή κάτω από το έδαφος και διατηρούν το υγρό σε χαμηλή θερμοκρασία για να ελαχιστοποιηθεί το ποσοστό της εξάτμισης.

Το υγροποιημένο φυσικό αέριο χαρακτηρίζεται ως κρυογονικό και διατηρείται στην υγρή του κατάσταση σε πολύ χαμηλές θερμοκρασίες. Η θερμοκρασία στο εσωτερικό της δεξαμενής θα παραμείνει σταθερή, αν η πίεση παραμείνει σταθερή, επιτρέποντας το εξατμισμένο φυσικό αέριο να απελευθερώνεται από τη δεξαμενή.

Το υγροποιημένο φυσικό αέριο θερμαίνεται στο σημείο που μπορεί να μετατραπεί στην αέρια κατάσταση για να μπορεί να χρησιμοποιηθεί. Αυτό επιτυγχάνεται χρησιμοποιώντας μια διαδικασία απενεργοποίησης με εναλλάκτες θερμότητας.

Τέλος, συστήματα διανομής παραλαμβάνουν το αέριο από περιφερειακά κέντρα ανεφοδιασμού και το μεταφέρουν στους χρήστες. Οι τελικοί χρήστες, μπορεί να είναι μονάδες παραγωγής ηλεκτρικής ενέργειας (30% της παγκόσμιας χρήσης για το 2009), βιομηχανίες πλαστικών και λιπασμάτων (27%) και των κατοίκων για εμπορική χρήση (21%) (ΕΙΑ, 2010). Τα συστήματα αποτελούνται από δίκτυα υψηλής πίεσης, μέσης πίεσης και χαμηλής πίεσης.⁶

1.3 Ιστορική αναδρομή⁷

Τον Ιανουάριο του 1959 το "Methane Pioneer", ένα ανακατασκευασμένο φορτηγό του Β'Παγκοσμίου Πολέμου (Liberty freighter), που είχε πέντε πρισματικές δεξαμενές, μετέφερε υγροποιημένο φορτίο φυσικού αερίου από το Lake Charles, USA, στο Canvey Island, UK. Το συγκεκριμένο γεγονός έδειξε ότι η μεταφορά μεγάλων ποσοτήτων YΦA με ασφάλεια σε ολόκληρο τον ωκεανό ήταν δυνατή.

Εικόνα 1.3:1 "Methane Pioneer" 1959 (Πηγή:Marineinsight)

Η βιομηχανία LNG ξεκίνησε το 1964 με τις πρώτες αποστολές από την Αλγερία στο Ηνωμένο Βασίλειο. Μέχρι τα τέλη της δεκαετίας του 1990, τα χρόνια που μεσολάβησαν, το διεθνές εμπόριο υγροποιημένου φυσικού αερίου αυξήθηκε κατά 50 φορές, η παραγωγική ικανότητα αυξήθηκε κατά 10 φορές και η μεταφορική ικανότητα των πλοίων έχει αυξηθεί 5 φορές. Οι πρώτες δεξαμενές μεταφοράς φυσικού αερίου που χρησιμοποιούνται σε μια συνεχή τακτική για το εμπόριο στις Ηνωμένες Πολιτείες ήταν ο σχεδιασμός μεμβρανικού τύπου δεξαμενών. Το 1965 η "Phillips Petroleum" επικοινώνησε με το Λιμενικό Σώμα σχετικά με μια πρόταση που είχε από την "Tokyo Gas" για την μεταφορά ΥΦΑ από την Αλάσκα. Οι αποστολές θα γινόντουσαν σε δεξαμενές που είχαν σχεδιαστεί από την "Worms and Co., Paris, France". Αυτός ο σχεδιασμός έγινε αργότερα γνωστός ως "Gaz Transport design". Αρχικά, τα πλοία μεταφοράς ΥΦΑ είχαν οραματιστεί να έχουν χωρητικότητα 34.000 κυβικών μέτρων, αλλά τελικά κατασκευάζονται πλοία 71.500 κυβικών μέτρων, το "Artic Tokyo" και το "Polar Alaska".

Η Höegh κατασκεύασε το πρώτο πλοίο μεταφοράς LNG στον κόσμο, με σφαιρικές δεξαμενές (Moss spherical cargo containment system), το 1973. Το "Norman Lady" παραδόθηκε το Νοέμβριο του 1973, από το ναυπηγείο Rosenberg στη Νορβηγία. Η Νορβηγικός όμιλος Leif Höegh & Co διαδραμάτισε ενεργό ρόλο στην ανάπτυξη αυτού του συστήματος.⁸

Εικόνα 1.3:2 "Norman Lady " (Πηγή: Shipspotting.com)

Η πρώτη παράδοση πλοίου μεταφοράς LNG από την μεγάλη κατασκευαστική εταιρία Hyundai, έγινε στις αρχές του 1990, η οποία είχε αποκτήσει διαδοχικά και σχετικά γρήγορα κατασκευαστική ικανότητα για σκάφη μέχρι 138,000 κυβικά μέτρα, καθιστώντας το ναυπηγείο της, το πρώτο στον κόσμο που διατίθεται για την κατασκευή τόσο Moss-type όσο και Membrane-type LNG carriers, λαμβάνοντας συνεχώς αυξανόμενες παραγγελίες για πλοία μεγάλης χωρητικότητας. Οι παραγγελίες αυτές περιλαμβάνουν τα νέα Membrane-type LNG carriers τα οποία έχουν 280m μήκος, 43m πλάτος και 26m κοίλο. Αποτελούνται από τέσσερις ανεξάρτητες δεξαμενές φορτίου, με μόνωση από πάνελ πολυουρεθάνης, και αποτελούσαν τα μεγαλύτερα του είδους για την εποχή εκείνη. Από την πρώτη παράδοση των πλοίων μεταφοράς LNG πίσω στις αρχές της δεκαετίας του 1990, ανταποκρινόμενη στην αυξανόμενη ζήτηση, η οποία απαιτεί καθαρές πηγές ενέργειας, η Hyundai έχει διαδραματίσει ηγετικό ρόλο στην κατασκευή των LNG carriers.

Το 1999, η κατασκευαστική εταιρία Samsung Heavy Ind. (SHI) κατασκευάζει με επιτυχία το μεγαλύτερο Membrane-type LNG carrier στον κόσμο. Ελαφρύτερο και πιο γρήγορο από τα υπάρχοντα πλοία LNG, είχε μια τιμή που ισοδυναμούσε με 10 φορτηγά πλοία (\$ 220 εκ.). Οι κύριες διαστάσεις του συγκεκριμένου πλοίου ήταν 278.8m μήκος, 42.6m πλάτος και 26m κοίλο. Μπορούσε να μεταφέρει 138,378 κυβικά μέτρα ΥΦΑ. Ζύγιζε 13% λιγότερο από το πρότυπο μεμβρανικού τύπου. Έχουν καταφέρει να μειώσουν το πάχος της μόνωσης της δεξαμενής του φορτίου στα 250 mm από τα 530 mm, με εξελιγμένες τεχνολογικές μεθόδους . Η SHI χρησιμοποιεί Κορεάτικα ανοξείδωτα υλικά που είναι πιο ανθεκτικά από το κράμα νικελίου-χάλυβα και ελαχιστοποιεί τις περιοχές συγκόλλησης προκειμένου να μειωθεί το κόστος λειτουργίας και κατασκευής.

Στις 2 Οκτώβρη 2003, το "Energy Frontier", ένα πλοίο μεταφοράς LNG το οποίο ανήκει στην "Tokyo Gas" μετέφερε περίπου 67,000 τόνους LNG στο Τόκιο από τη Μαλαισία. Το πλοίο αυτό είναι Moss-type carrier, με τέσσερις σφαιρικές δεξαμενές. Σχεδιάστηκε με τις ίδιες κύριες διαστάσεις ενός συμβατικού πλοίου μεταφοράς LNG, αλλά με 10,000 κυβικά μέτρα μεγαλύτερη χωρητικότητα φορτίου, η οποία συνολικά έφτανε τα 145,000 m³, ήταν το μεγαλύτερο τότε LNG carrier στον κόσμο. Η χωρητικότητα του σε LNG, ισοδυναμεί με βάρος περίπου 67,000 τόνων, και όταν αυτή η ποσότητα αεριοποιηθεί εκ νέου παράγει περίπου 87 εκ. m³ φυσικού αερίου. Αυτό είναι ισοδύναμο με την ποσότητα του αερίου που χρησιμοποιείται από 200,000 νοικοκυριά κάθε χρόνο.

Αρχικά, κυριάρχησαν οι ατμοστρόβιλοι ως μέσο πρόωσης για τα πλοία μεταφοράς LNG, με εμφανή την αξιοπιστία τους και την ευκολία με την οποία μπορούν να κάψουν το εξατμιζόμενο αέριο (boil-off gas) από τις δεξαμενές φορτίου ενώ το πλοίο είναι εν πλω. Ωστόσο, η χαμηλή αποδοτικότητα των καυσίμων των ατμοστροβίλων ενθάρρυνε την στροφή σε κινητήρες ντίζελ. Ως αποτέλεσμα τόσο της αύξησης της αποδοτικότητας των καυσίμων όσο και της αύξησης της χωρητικότητας σε φορτίο, τα

πλοία μεταφοράς LNG με κινητήρες διπλής καύσης (dual-fuel engines) θα παραδίδουν τελικά περισσότερο φυσικό αέριο στον τερματικό σταθμό, ακόμη και όταν το φυσικό αέριο χρησιμοποιείται ως καύσιμο σε όλο το ταξίδι. Αυτός ο τύπος του κινητήρα υπόσχεται μεγάλα οφέλη για τις επιχειρήσεις ΥΦΑ, συμπεριλαμβανομένων και της μεγαλύτερης χωρητικότητας φορτίου, χαμηλότερης κατανάλωσης καυσίμου, μεγαλύτερης ευελιξίας στη λειτουργία και χαμηλότερες εκπομπές ρύπων.

Η παραγγελία, το φθινόπωρο του 2003, για ένα LNG carrier 153,000 m³ από την Gaz de France στο Chantiers de l'Atlantique έκανε πραγματικότητα το προαναφερθέν. Το πλοίο, που ήταν για παράδοση το 2005, θα ήταν εφοδιασμένο με κινητήρα διπλής καύσης και ηλεκτρική πρόωση. Το σύστημα θα αποτελείτο από τέσσερις κινητήρες διπλής καύσης (τρεις 12-κύλινδροι και ένας 6-κύλινδρος Wärtsilä 50DF), δίνοντας μια συνδυασμένη απόδοση 39,9 MW. Το πλοίο αυτό ήταν το μεγαλύτερο πλοίο μεταφοράς LNG εν υπηρεσία.

Η "Mitsubishi Heavy Industries" στο Ναγκασάκι στην Ιαπωνία, καθώς και στην Κορέα η "Daewoo Shipbuilding & Marine Engineering", η "Samsung Shipbuilding" και η "Hyundai Heavy Industries" έχουν επικεντρωθεί στην κατασκευή των πλοίων μεταφοράς ΥΦΑ με μεμβρανικού τύπου δεξαμενές φορτίου. Άλλοι κατασκευαστές στην Ασία με κατασκευαστική ικανότητα τέτοιων πλοίων είναι η "Kawasaki Heavy Industries" και η "Mitsui Shipbuilding"

Τα νέα δεδομένα και οι ανάγκες της αγοράς οδήγησαν σε ναυπηγήσεις μεγαλύτερων πλοίων. Η Qatargas υπήρξε πρωτοπόρος στην ανάπτυξη δύο νέων κατηγοριών LNG Carriers. Το Q-Flex και το Q-Max με χωρητικότητα φορτίου 210,000 και 266,000 κυβικά μέτρα αντίστοιχα.

Αυτά τα νέα πλοία έχουν πολλά καινοτόμα χαρακτηριστικά για να μεγιστοποιήσουν τις παραδόσεις εμπορευμάτων και να διασφαλιστούν τα υψηλότερα επίπεδα ασφάλειας και αξιοπιστίας, μερικά από τα οποία περιλαμβάνουν:

- Διπλούς Κινητήρες και άξονες για να εξασφαλίζεται η μέγιστη δυνατή ασφάλεια της πρόωσης και της αξιοπιστίας, και διπλά πηδάλια για να εξασφαλιστεί ευελιξία και η ασφάλεια της ναυσιπλοΐας.
- Κινητήρες ντίζελ με 30% χαμηλότερες συνολικές εκπομπές σε σύγκριση με παραδοσιακά υπάρχοντα πλοία μεταφοράς ΥΦΑ.
- Μονάδες υγροποίησης θα επιστρέφουν τα εξατμιζόμενα αέρια στις δεξαμενές φορτίου και, ως εκ τούτου μεγιστοποιείται η παράδοση του φορτίου στο λιμένα εκφόρτωσης.

Τα πλοία αυτά κατασκευάζονται σε ναυπηγεία της Νότιας Κορέας. Στην "Hyundai Heavy Industries" (HHI), στην "Samsung Heavy Industries" (SHI) και στην "Daewoo Shipbuilding & Marine Engineering" (DSME).⁹

Εικόνα 1.3:3 A Q-Flex and three Q-Max LNG Carriers at SHI shipyard on Geoje (Πηγή: Qatargas)

Εικόνα 1.3:4 Σύγκριση Conventional με Q-Flex LNG Carrier (Πηγή: Qatargas)

1.4 Κανονισμοί σχετικά με τα πλοία μεταφοράς ΥΦΑ¹⁰

Ο κώδικας IGCⁱ προβλέπει ένα σύνολο απαιτήσεων ασφαλείας που σχετίζονται με το σχεδιασμό, την κατασκευή, τον εξοπλισμό και τη λειτουργία των πλοίων που μεταφέρουν υγροποιημένα αέρια. Ορισμένα από τα περιεχόμενα αυτού του κώδικα θα περιγραφούν στη συνέχεια.

Ο κώδικας IGC καθορίζει την ικανότητα επιβίωσης του πλοίου και τη θέση των δεξαμενών φορτίου. Ανάλογα με τον τύπο του φορτίου, ορίζεται η ελάχιστη απόσταση των δεξαμενών του φορτίου από το εξωτερικό περίβλημα του πλοίου, για την αποφυγή διαρροής του φορτίου σε περίπτωση επαφής, σύγκρουσης ή προσάραξης. Έτσι, καθορίζονται 4 διαφορετικές προδιαγραφές πλοίων σύμφωνα με τον Πίνακας 1.4:1. Τα πλοία μεταφοράς ΥΦΑ, απαιτείται να είναι τύπου 2G και να έχουν διπλά τοιχώματα και πυθμένα.

¹IGC: International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk

	Categories of ship standards according to the IGC Code				
Chin	Intended cargo	Location of cargo tanks – minimal distance inboard			
Туре		From the side shell plating	From the bottom shell plating		
3G	A type 3G ship is a gas carrier intended to carry products which require moderate preventive measures to prelude the escape of such cargo.	Nowhere less than 0.76 meters.	B/15 or 2 meters from the moulded line at centreline and nowhere less than 0.76 meters		
2PG	A type 2PG ship is a gas carrier \leq 150 meters in length intended to transport products which require significant preventive measures to prelude the escape of such cargo, and where the products are carried in independent type C tanks.	Nowhere less than 0.76 meters.	B/15 or 2 meters from the moulded line at centreline and nowhere less than 0.76 meters		
2G	A type 2G ship is a gas carrier intended to transport products which require significant preventive measures to prelude escape of such cargo.	Nowhere less than 0.76 meters.	B/15 or 2 meters from the moulded line at centreline and nowhere less than 0.76 meters		
1G	A type 1G ship is a gas carrier intended to transport products which require maximum preventive measures to prelude escape of such cargo.	B/5 or 11.5 meters, and nowhere less than 0.76 meters.	B/15 or 2 meters from the moulded line at centerline and nowhere less than 0.76 meters		

Πίνακας 1.4:1 Κατηγορίες σύμφωνα με τον IGC

Ο Κώδικας IGC, απαιτεί απομόνωση των δεξαμενών φορτίου και των συστημάτων σωληνώσεων από άλλους χώρους του πλοίου, όπως τους χώρους μηχανοστασίου, τους χώρους ενδιαιτήσεως και τους σταθμούς ελέγχου (control stations), και καθορίζει τα πρότυπα για τον εν λόγω διαχωρισμό. Επιπλέον, καθορίζει τα πρότυπα για τα δωμάτια ελέγχου φορτίου και για τα δωμάτια αντλιοστασίων, καθώς και κανόνες για την πρόσβαση στους χώρους φορτίου. Υπάρχουν επίσης απαιτήσεις για τα συστήματα ανίχνευσης διαρροών και για τις διαδικασίες φόρτωσης και εκφόρτωσης.

Υπάρχουν σύμφωνα με τον κώδικα διάφοροι τύποι δεξαμενών φορτίου για τα πλοία μεταφοράς ΥΦΑ. (Παράγραφος. 1.5)

Ειδικός εξοπλισμός ασφαλείας απαιτείται από τον εν λόγο κώδικα, για τα πλοία μεταφοράς YΦΑ. Στον εξοπλισμό περιλαμβάνονται συστήματα εντοπισμού θέσης, ανίχνευσης ταχύτητας προσέγγισης από άλλα πλοία, σύστημα διακοπής λειτουργίας έκτακτης ανάγκης (ESDⁱ), σύστημα απασφάλισης έκτακτης ανάγκης (ERSⁱⁱ). Επιπλέον, υπάρχουν συστήματα ανίχνευσης ατμού και φωτιάς, συστήματα πυρόσβεσης (ξηρή χημική σκόνη) και συστήματα ελέγχου της θερμοκρασίας. Τέλος, ο κώδικας περιέχει απαιτήσεις που σχετίζονται με την λειτουργία του πλοίου, π.χ. καθορίζει τα όρια φόρτωσης των δεξαμενών, τη χρήση του εξατμιζόμενου φορτίου ως καύσιμο, καθώς και απαιτήσεις για την επιθεώρηση και την πιστοποίηση.

Εκτός από τους κανονισμούς, κώδικες, συστάσεις σχετικά με τα πλοία μεταφοράς ΥΦΑ που εκδόθηκαν από τον ΙΜΟ, υπάρχει μια σειρά από άλλες διεθνείς συστάσεις και κατευθυντήριες γραμμές για τα εν λόγω πλοία, π.χ. πρότυπα που εκδίδονται από τον SIGTTO^{III}. Αναμφίβολα, αυτό το εκτεταμένο

¹ESD: Emergency Shutdown Systems

^{II} ERS: Emergency Release System

^{III} SIGTTO: The Society of International Gas Tanker & Terminal Operators

σύνολο κανόνων και κατευθυντήριων γραμμών συμβάλλει στο υψηλό επίπεδο ασφάλειας των πλοίων μεταφοράς ΥΦΑ.

1.5 Συστήματα Δεξαμενών

Σύμφωνα με τον IMOⁱ τα συστήματα των δεξαμενών για τα πλοία μεταφοράς YΦA χωρίζονται σε δυο μεγάλες κατηγορίες. Τις αυτόνομες δεξαμενές (Independent Tanks) και τις δεξαμενές μεμβρανικού τύπου (Integrated Tanks). Τις αυτόνομες δεξαμενές, αποτελούν 3 υποκατηγορίες, οι οποίες είναι, οι δεξαμενές τύπου Α, τύπου Β και τύπου C. Στις επόμενες παραγράφους, θα γίνει ανάλυση για την κάθε κατηγορία και τις υποκατηγορίες της.

Κατά τη διάρκεια της ιστορίας των LNG Carriers, υπήρξαν πολλές προσπάθειες, νέα σχέδια και ιδέες για τον τρόπο και το σχεδιασμό της μεταφοράς υγροποιημένου φυσικού αερίου. Αλλά κατά τα τελευταία δεκαπέντε χρόνια, έχουν επικρατήσει δύο κύριοι τύποι πλοίων μεταφοράς LNG. Αυτά που έχουν μεμβρανικού τύπου δεξαμενές και αυτά που έχουν σφαιρικές (Moss–type) δεξαμενές. Από τα δυο τελευταία υπάρχει μια τάση προτίμησης για τα συστήματα μεμβρανικού τύπου λόγω της καλύτερης εκμετάλλευσης του χώρου της γάστρας και λόγω του χώρου που προσφέρουν στο κατάστρωμα. Επίσης τα συστήματα αυτά είν00,αι πιο οικονομικά στην κατασκευή τους και πιο οικονομικά σχετικά με τα διόδια διέλευσης από το κανάλι του Σουέζ σε σύγκριση με τα Moss-type.

1.5.1 Δεξαμενές Τύπου "Α" 11

Οι δεξαμενές αυτού του τύπου είναι πρισματικές και υποστηρίζονται σε μπλοκ μόνωσης που φέρουν συνήθως ξύλινες βάσεις-σφήνες. Λόγω του ότι η δεξαμενή είναι αυτό-στηριζόμενη απαιτεί εσωτερική ενίσχυση. Φέρει επίσης, anti-roll τάκους (chocks) που βρίσκονται στην κορυφή, στον κενό χώρο της δεξαμενής και anti-floating chocks που βρίσκονται μέσα στον κενό χώρο συνήθως λίγο πάνω από το διπύθμενο. Οι δεξαμενές χωρίζονται συνήθως από μια κεντρική διαμήκη φρακτή. Λόγω της φρακτής αυτής και σε συνδυασμό με τη διαμόρφωση του ανωτέρου τμήματος της δεξαμενής, οι ελεύθερες επιφάνειες στις δεξαμενές μειώνονται και επομένως δεν έχουμε μεγάλες φορτίσεις λόγω του φαινομένου ¨sloshing¨. Σε αυτό το σύστημα ο κενός χώρος που υπάρχει ανάμεσα στην δεξαμενή και στο εσωτερικό της γάστρας του πλοίου είναι συνήθως γεμάτο με αδρανές αέριο ή άζωτο. Το υλικό για αυτές τις δεξαμενές φορτίου πρέπει να είναι είτε 9% νικέλιο – χάλυβας, είτε αλουμίνιο. Προκειμένου να εξασφαλιστεί η ασφάλεια, σε πιθανή περίπτωση διαρροής της δεξαμενής φορτίου, απαιτείται ένα δευτερεύον φράγμα. Αυτό το δευτερεύον φράγμα είναι γνωστό ως ¨secondary barrier¨ και είναι χαρακτηριστικό όλων των πλοίων τύπου "Α". Ο κώδικας IGC προβλέπει ότι ένα δευτερεύον φράγμα πρέπει να είναι σε θέση να συγκρατήσει την διαρροή της δεξαμενής για μια περίοδο 15 ημερών. Η μέγιστη επιτρεπόμενη πίεση για το σύστημα αυτό είναι 0. 7 bar. Αυτό σημαίνει ότι το φορτίο πρέπει να είναι σε πλήρη ψύξη, σε ατμοσφαιρική πίεση (συνήθως κάτω 0.25 bar).

Δεν υπάρχει αυτή τη στιγμή κάποιο LNG Carrier με αυτό τον τύπο συστήματος. Όμως, υπάρχουν κάποια έργα από εταιρίες, όπως η Torgy, που είναι υπό ανάπτυξη.¹²

Η "Torgy" υποστηρίζει ότι με το συγκεκριμένο σύστημα μπορείς να κερδίσεις έως και 30% περισσότερο χώρο σε σχέση με ένα Type C. (Εικόνα 1.5:1)

¹ IMO: International Maritime Organization

Εικόνα 1.5:1 Σύγκριση Type A - Type C (Πηγή: Torgy)

Η δεξαμενή αποτελείται από ένα περίβλημα από ανοξείδωτο χάλυβα, που υποστηρίζεται εντός της γάστρας του πλοίου από στηρίγματα ανοξείδωτου χάλυβα. Τα εσωτερικά τοιχώματα του χώρου μονώνονται με πάνελ μόνωσης υψηλής θερμικής απόδοσης. Επίσης το "secondary barrier" σχηματίζει πλήρη επιφάνεια γύρω από την δεξαμενή, έτσι ώστε να εμποδίσει τυχόν διαρροή προς τη μεταλλική κατασκευή του πλοίου. (Εικόνα 1.5:2)

Εικόνα 1.5:2 **Type" A" Projects from "Torgy" (Πηγή: Torgy)**

1.5.2 Δεξαμενές Τύπου "Β"

1.5.2.1 Σφαιρικές δεξαμενές (Kvaerner-Moss System)

Το πρώτο LNG carrier με σφαιρικές δεξαμενές, ήταν το "Norman Lady" (87,600m³). Προτού κατασκευαστεί το συγκεκριμένο πλοίο, πέρασε μια σειρά δοκιμών, αναλύσεων και μελετών. Οι μελέτες περιλάμβαναν: ¹³

- Δυναμικές φορτίσεις του πλοίου κατά τη διάρκεια της πλεύσης του με ειδική αναφορά σε καμπτικές ροπές και διατμητικές δυνάμεις
- Ειδική αναφορά έγινε επίσης και στο "equatorial ring", το οποίο παραλαμβάνει τα μεγαλύτερα φορτία αφού η σφαιρική δεξαμενή στηρίζεται σε αυτόν το δακτύλιο
- Θερμικές καταπονήσεις της κατασκευής με ειδική ανάλυση του "equatorial ring"
- Ανάλυση της δεξαμενής αποθήκευσης και της μόνωσης της.
- "Κόπωση" των δεξαμενών φορτίου / υλικά τα οποία έχουν σχεδιαστεί για 9% νικέλιο-χάλυβα.

Αν και τα πρώτα LNG carriers είχαν δεξαμενές αποθήκευσης από 9% νικέλιο-χάλυβα, η τεχνολογία αντικαταστάθηκε γρήγορα από τις δεξαμενές αλουμινίου. Οι δεξαμενές αποθήκευσης Αλουμινίου αποδείχθηκαν να είναι περισσότερο ανθεκτικές σε μηχανική καταπόνηση και ήταν πιο εύκολο να επεξεργαστούν για να αποκτήσουν την συγκεκριμένη μορφή.

Το κύριο χαρακτηριστικό των σφαιρικών δεξαμενών είναι το "equatorial ring", στο οποίο στηρίζεται η δεξαμενή μέσω μιας μεγάλης κυκλικής διάταξης που μεταβιβάζει το βάρος της δεξαμενής στην κατασκευή του πλοίου. Οι μεγαλύτερες μηχανικές και θερμικές καταπονήσεις είναι ακριβώς στο σημείο αυτό. Αυτό το τμήμα της δομής του πλοίου πρέπει να είναι σε θέση να απορροφήσει, αφενός, τις παραμορφώσεις της γάστρας του πλοίου, και αφετέρου τις θερμικές και μηχανικές καταπονήσεις της δεξαμενής. Έτσι, αυτή η διάταξη επιτρέπει στην δεξαμενή να διαστέλλεται ή να συστέλλεται ανάλογα με την θερμοκρασία του περιβάλλοντος. Κατά την διάρκεια τέτοιας διεργασίας, η δεξαμενή μπορεί να διασταλεί ή να συσταλεί κατά περίπου 60cm. Γι' αυτό το λόγο, όλες οι σωληνώσεις που καταλήγουν στην δεξαμενή προέρχονται από την πάνω πλευρά της και συνδέονται στην κεντρική γραμμή μέσω ελαστικών διατάξεων

Στο εσωτερικό κάθε δεξαμενής, υπάρχουν μια σειρά από κεφαλές ψεκασμού. Αυτές οι κεφαλές εφαρμόζονται γύρω από τον δακτύλιο και χρησιμοποιούνται για τον ψεκασμό του LNG στα τοιχώματα της δεξαμενής, ώστε να "πέσει" η θερμοκρασία. Η διάρκεια της ψύξης είναι περίπου 36 ώρες, οπότε η ψύξη των δεξαμενών γίνεται πριν την άφιξη στο λιμάνι και κατά αυτόν τον τρόπο εξοικονομείται πολύτιμος χρόνος.

Αυτές οι δεξαμενές έχουν μόνωση, η οποία περιορίζει το φαινόμενο της εξάτμισης του φορτίου ("boil-off") στο 0,10% V/day.. Η μόνωση αποτελείται από πολλά διαφορετικά στρώματα, με υλικά να είναι συνήθως υαλοβάμβακας, αλουμίνιο και διάφορα αφρώδη υλικά. Η περιοχή στην οποία βρίσκεται η δεξαμενή είναι συνήθως αδρανής. Όπως και για τον τύπο "A", η μέγιστη κατασκευαστική πίεση είναι 0.7 bar. Οι δεξαμενές όμως έχουν συνήθως πίεση γύρω στα 0.22 bar.¹⁴

Λόγω του ιδιαίτερου σχεδιασμού των δεξαμενών δεν απαιτείται πλήρες "secondary barrier". Αντί αυτού, εκμεταλλευόμενοι την σφαιρική μορφή της δεξαμενής, χρησιμοποιείται μια διάταξη στο κάτω μέρος της δεξαμενής που συλλέγει τυχόν διαρροή υγρού φορτίου (Drip tray). (Εικόνα 1.5:3)¹⁵

Εικόνα 1.5:3 Moss-type tank / drip tray

Μέχρι το 2000, το 54% του συνόλου των πλοίων μεταφοράς LNG ήταν Moss-type, κυρίως επειδή ιαπωνικά ναυπηγεία είχαν άδεια για την κατασκευή μόνο αυτού του τύπου πλοίων.

1.5.2.2 Πρισματικές δεξαμενές (IHI SPB)¹⁶

Η "Ishikawajima-Harima Heavy Industries", IHI, έχει αναπτύξει το σύστημα "SPB". Μόνο δύο σκάφη έχουν επί του παρόντος το σύστημα αυτό. Αξιοσημείωτο είναι το γεγονός ότι δεν αναφέρθηκαν προβλήματα μέχρι στιγμής.

Αποτελείται από ενισχυμένα ελάσματα κράματος αλουμινίου ή 9% Νικέλιο - χάλυβα και καλύπτονται από μονωτικό αφρό πολυουρεθάνης (PUF). Η όλη κατασκευή υποστηρίζεται σε τάκους από ειδικά ενισχυμένο κόντρα πλακέ (plywood). Η δεξαμενή υποδιαιρείται από μια κεντρική διαμήκη φρακτή και 4 οριζόντια διαχωριστικά τοιχώματα παφλασμού (swash bulkheads - horizontal girders). Έτσι, στο εσωτερικό της δεξαμενής το υγρό φορτίο ακολουθεί τις κινήσεις του πλοίου, εξαλείφοντας κάθε πιθανότητα συντονισμού. Ως εκ τούτου, δεν αναπτύσσονται φορτία λόγω φαινομένου "sloshing" και επομένως κάθε κατάσταση φόρτωσης είναι δυνατή. Αυτό κάνει την SPB κατάλληλη για FPSO, FSRU κ.λπ. όπου οι δεξαμενές είναι σχεδόν πάντα μισογεμάτες.

Τα διάφορα στοιχεία στο εσωτερικό της δεξαμενής είναι κατασκευασμένα έτσι ώστε να είναι εργονομικά. Η αντλία που χρησιμοποιείται για την εκφόρτωση του υγρού φορτίου λόγω της θέσης της εξασφαλίζει την πλήρη εκκένωση του φορτίου αν αυτό είναι απαραίτητο. Από την άλλη, η γραμμή πλήρωσης είναι διατεταγμένη έτσι ώστε η φόρτωση να είναι αποτελεσματική. Τα οριζόντια "girders" χρησιμοποιούνται ως πλατφόρμα για την επιθεώρηση. (Εικόνα 1.5:4) Η συγκεκριμένη εταιρία υποστηρίζει ότι στον δεξαμενισμό, η επιθεώρηση των δεξαμενών πραγματοποιείται σε μισή μέρα.

Εικόνα 1.5:4 Εσωτερικό της δεξαμενής SPB (Πηγή: IHI)

1.5.3 Δεξαμενές Τύπου "C⁻¹⁷

Ο τύπος αυτής της δεξαμενής συναντάται συνήθως σε μικρό-μεσαίου μεγέθους πλοία. Οι δεξαμενές βρίσκονται υπό συνδυασμένη πίεση και ψύξη και μπορούν να τοποθετηθούν επάνω, κάτω ή εν μέρει κάτω από το κατάστρωμα. Δεξαμενές τύπου "λοβού" (Εικόνα 1.5:5) χρησιμοποιούνται συνήθως στο πρωραίο τμήμα του πλοίου, για να γίνει καλή εκμετάλλευση του χώρου, λόγω της μορφής της γάστρας στο μέρος αυτό.

30,000 m³ LNG Carrier with IMO Type C Tanks

Εικόνα 1.5:5 LNG Carrier with IMO Bilobe Type C Tanks (Πηγή: TGE)

Χαρακτηριστικά παραδείγματα LNG carriers με κυλινδρικές δεξαμενές, τύπου C, είναι το "Coral Energy" και "Coral Methane" (semi-pressurized ships) (Εικόνα 1.5:6), τα οποία είναι μικρής χωρητικότητας. Τα πλοία αυτά έχουν ευέλικτα και βελτιωμένα λειτουργικά συστήματα διαχείρισης του φορτίου. Συνήθως, για πλοία μεταφοράς LNG από 30.000 m³ και πάνω χρησιμοποιούνται "bilobe" δεξαμενές φορτίου.

Αυτή τη στιγμή, δύο LNG carriers των 30.000 m³ και 28.000 m³ αντίστοιχα, είναι υπό κατασκευή σε ναυπηγεία της Κίνας με βάση αυτή την τεχνολογία.

Επίσης, μικρό-μεσαίες πλωτές μονάδες αποθήκευσης ΥΦΑ (FSRU/FPSO)ⁱ φέρουν σύστημα δεξαμενής τύπου C. Τυπικές μονάδες με αυτό το σύστημα είναι της εταιρίας "TGE Marine Gas Engineering" όπως φαίνονται στην *Εικόνα 1.5:7*. Τα πλεονεκτήματα αυτών των μονάδων ποικίλουν και μερικά από αυτά είναι:

- Προσιτές για μεσαίου μεγέθους Ενεργειακά κέντρα
- Κατασκευαστική πίεση περίπου 4 bar
- Δεν αντιμετωπίζουν πρόβλημα σχετικά με φορτία λόγω sloshing
- Δεν απαιτούν "secondary barrier"
- Μπορούν να κατασκευαστούν σε εργαστήρια έξω από το ναυπηγείο, μειώνοντας το κόστος μεταφοράς και τον χρόνο κατασκευής

Εικόνα 1.5:6 "CORAL METHANE" & "CORAL ENERGY" with Type C Tanks

ⁱFPSO: Floating Production Storage and Offloading, FSRU: Floating Storage and Regasification Unit

Εικόνα 1.5:7 Floating Unit with Type C Tanks (Πηγή:TGE)

1.5.4 Δεξαμενές μεμβρανικού τύπου (GTT technology)¹⁸

Τα Membrane-type LNG Carriers αναπτύχθηκαν κατά τη διάρκεια της δεκαετίας του 1960. Οι δεξαμενές αυτού του τύπου είναι ενσωματωμένες στη γάστρα του πλοίου και δεν είναι ανεξάρτητες όπως οι προηγούμενες που έχουν περιγραφεί. Τα συστήματα της τεχνολογίας αυτής έχουν τα χαρακτηριστικά ενός ¨σάντουιτς¨ υλικού. Η μέγιστη κατασκευαστική τους πίεση είναι περίπου 0.7 bar.

Η Τεχνολογία GTT αντιπροσωπεύει δύο συστήματα Membrane-type για τα LNG Carriers και πρόσφατα, μετά την ένωση της Gaz Transport και της Tehnigaz το 1994, προέκυψε ένα τρίτο σύστημα.

Τα δυο βασικά συστήματα της τεχνολογίας GTT είναι το Mark III και το No. 96. Το τρίτο είναι ένας συνδυασμός των δυο προηγούμενων, και ονομάζεται CSI (Combine System One).

1.5.4.1 No. 96 System - (Gaz Transport System)

Primary & Secondary Invar Membranes

Η κύρια (primary) και η δευτερεύουσα (secondary) μεμβράνη είναι ίσου πάχους σε αυτό το σύστημα και είναι κατασκευασμένες από υλικό INVAR. Κάθε μεμβράνη είναι μόνο 0,7 χιλιοστά πάχος. Το Invar είναι ένα κράμα που περιέχει 36% νικέλιο και χάλυβα. Η κύρια μεμβράνη είναι σε επαφή με το φορτίο ενώ η δευτερεύουσα εξασφαλίζει 100% στεγανότητα σε περίπτωση διαρροής της πρώτης. Το Invar κατανέμεται ομοιόμορφα κατά μήκος των τοιχωμάτων της δεξαμενής και υποστηρίζεται από τα κύρια και δευτερογενή στρώματα μόνωσης (Primary & Secondary Thermal Insulation). Το τυπικό μέγεθος των φύλλων είναι 3m x 1m.

Primary & Secondary Thermal Insulation

Τα στρώματα της μόνωσης αποτελούνται από προκατασκευασμένα πάνελ (plywood), σε διαστασιολογημένα κουτιά τα οποία γεμίζονται με διογκωμένο περλίτη. Ο περλίτης προέρχεται από επεξεργασία ηφαιστειακών πετρωμάτων και έχει καλά χαρακτηριστικά μόνωσης που δεν αλλάζουν με την πάροδο του χρόνου. Το τυπικό μέγεθος των κουτιών είναι 1m x 1.2m. Το πάχος του κύριου στρώματος είναι από 170 χιλιοστά έως 250 χιλιοστά, ανάλογα με τον βαθμό του boil-off που απαιτείται. Το τυπικό πάχος του δευτερεύοντος στρώματος είναι 300 mm. Το κύριο και το δευτερεύον στρώμα στερεώνονται με τη βοήθεια ζευκτών (Couplers). Η σύζευξη του δευτερεύοντος στρώματος μόνωσης με την εσωτερική πλευρά της γάστρας επιτυγχάνεται με την έγχυση ρητίνης ανάμεσα στα δυο. Ο σκοπός της ρητίνης είναι διπλός αφού εξασφαλίζει και ομοιόμορφη κατανομή των φορτίων στη γάστρα του πλοίου.

Εικόνα 1.5:8 GTT No. 96 System(Πηγή:GTT)

Εικόνα 1.5:9 Εσωτερικό δεξαμενής GTT No. 96 (Πηγή:GTT)

1.5.4.2 Mark III System - (Technigaz System)

Primary Stainless Steel

Η κύρια μεμβράνη είναι κατασκευασμένη από κυματοειδές ανοξείδωτο χάλυβα 304 L, πάχους 1,2 mm. Είναι σε επαφή με το φορτίο και υποστηρίζεται από το σύστημα μόνωσης. Το τυπικό μέγεθος των φύλλων αυτής της μεμβράνης είναι 3m x 1m.

Secondary Triplex

Η δευτερεύουσα μεμβράνη είναι ένα σύνθετο υλικό το οποίο αποτελείται από ένα λεπτό φύλλο αλουμινίου μεταξύ δύο στρώσεων υαλοβάμβακα και ρητίνης. Είναι τοποθετημένο ενδιάμεσα στα δυο στρώματα μόνωσης.

Insulation

Ως μονωτικό υλικό για τα πλοία αυτά είναι ο αφρός πολυουρεθάνης, ο οποίος είναι ενισχυμένος με ίνες γυαλιού. Το τυπικό μέγεθος των προκατασκευασμένων πάνελ είναι 3 m x 1 m. Το πάχος της μόνωσης είναι από 250 χιλιοστά έως 350 χιλιοστά, ανάλογα με τον βαθμό του boil-off που απαιτείται. Όπως και στο σύστημα No. 96, η σύζευξη του στρώματος της μόνωσης με την εσωτερική πλευρά του κύτους επιτυγχάνεται με την έγχυση ρητίνης ανάμεσα στα δυο.

Και στα δυο πιο πάνω συστήματα μεμβράνης το Boil-off Rate (B.O.R.) στο 0,15% V/day είναι εγγυημένο, αν και στην πραγματικότητα η ποσότητα του είναι πολύ μικρότερη.

Εικόνα 1.5:10 GTT Mark III System (Πηγή: GTT)

1.5.4.3 CS1 System (Combined System One)

Το σύστημα αυτό έχει συγχωνέψει τα καλύτερα υλικά από τα συστήματα Mark III και No. 96. Η κύρια μεμβράνη, η οποία είναι σε επαφή με το φορτίο, είναι κατασκευασμένη από Invar, με πάχος 0,7 χιλιοστά, ενώ η δευτερεύουσα αποτελείται από Triplex. Από την άλλη, η κύρια και δευτερεύουσα μόνωση αποτελούνται από πάνελ αφρού πολυουρεθάνης.

Τρία πλοία, από ένα ναυπηγείο, έχουν κατασκευαστεί με την τεχνολογία CS1. Τα υπόλοιπα ναυπηγεία έχουν αποφασίσει να διατηρήσουν την παραγωγή του Mark III και No. 96.

Εικόνα 1.5:11 GTT CS1 System (Πηγή: GTT)

1.5.4.4 Παραλλαγές συστημάτων Νο. 96 και Mark III

Για βελτίωση του boil-off rate (BOR) η GTT έχει δημιουργήσει κάποιες παραλλαγές των συστημάτων No. 96 και Mark III. Τα συστήματα αυτά είναι:

- Το No. 96 GW, το οποίο είναι παραλλαγή του No. 96, και στη θέση του περλίτη τοποθετείται υαλοβάμβακας (Glass-wool). Το σύστημα αυτό υπόσχεται B.O.R. 0.125%-0.13% V/day.
- Το Νο. 96 L03, το οποίο είναι επίσης παραλλαγή του Νο. 96. Χρησιμοποιείται επίσης υαλοβάμβακας αλλά και πολυουρεθάνη (PUF), με υποσχόμενο B.O.R. μεταξύ 0.105% και 0.11% V/day.
- Το Mark III Flex, το οποίο αποτελεί παραλλαγή του Mark III. Στο σύστημα αυτό η πυκνότητα του PUF είναι αυξημένη με στόχο να φτάσει ένα B.O.R. 0.1% V/day.

Στα πιο πάνω συστήματα μπορούν να γίνουν τροποποιήσεις, σχετικά με υλικά και τις διαστάσεις, από τον πλοιοκτήτη και το ναυπηγείο με στόχο καλύτερο B.O.R.

1.5.5 Άλλες σχεδιάσεις

1.5.5.1 Prism/Pyramid Tanks¹⁹

Η "ConocoPhillips Marine" πήρε έγκριση από τον ABSⁱ για τον σχεδιασμό των συγκεκριμένων δεξαμενών. Το βασικό χαρακτηριστικό της δεξαμενής πυραμίδας είναι το γεγονός ότι μειώνει τις ελεύθερες επιφάνειες. Η μείωση των ελεύθερων επιφανειών που προκύπτει είναι σημαντική, διότι, η πίεση λόγω της κίνησης του κρυογονικού υγρού φορτίου στο εσωτερικό των δεξαμενών είναι ένας από τους πιο κρίσιμους παράγοντες κατά το σχεδιασμό των συστημάτων δεξαμενών μειώνει και το boil-off.

Επίσης, χάρη στη μορφή των δεξαμενών αυτών αυξάνεται η χωρητικότητα του φορτίου κατά περίπου 12% σε σχέση με ένα συμβατικό μεμβρανικού τύπου LNG Carrier.

Εικόνα 1.5:12 Σύγκριση "Συμβατικής Μεμβρανικής δεξαμενής" με "Pyramid" Δεξαμενή

ⁱ ABS: American Bureau of Shipping

1.5.5.2 Spherical Tank with a Continuous Integrated Tank Cover - "SAYAENDO"²⁰

Η ΜΗΙ παρέδωσε ένα LNGC 155,000m³ και το ονόμασε "SAYAENDO", που στα ιαπωνικά σημαίνει μπιζέλι, και προέρχεται από την χαρακτηριστική εμφάνιση του σκάφους, ένα ενιαίο κέλυφος που περιβάλει τις σφαιρικές δεξαμενές που εξέχουν από το κύριο κατάστρωμα.

Τα πλεονεκτήματα αυτής της σχεδίασης είναι:

- Καλύτερη αεροδυναμική → Μικρότερη αντίσταση ανέμου → Χαμηλότερη κατανάλωση
- Αύξηση της χωρητικότητας κατά 8000m³ για το ίδιο πλάτος αφού στις δεξαμενές φορτίου προστέθηκε κατακόρυφα κυλινδρικός τομέας στο κέντρο τους
- Μείωση του βάρους της μεταλλικής κατασκευής, αφού το κέλυφος συνεισφέρει στην αντοχή του πλοίου
- Μείωση της συντήρησης στους χώρους κάτω από το κέλυφος
- Καλύτερη συντήρηση και διαρρύθμιση των διατάξεων που στηρίζουν τις σωληνώσεις, τους διαδρόμους, τα ηλεκτρικά καλώδια κ.λπ. στο πάνω μέρος των δεξαμενών φορτίων.

Εικόνα 1.5:14 "SAYAENDO" (Πηγή: Ship-Technology)

1.6 Αγορά LNG

Λαμβάνοντας υπόψη την ευκολία χρήσης και τη φιλικότητα του προς το περιβάλλον, το Φυσικό Αέριο γίνεται γρήγορα μία από τις πιο ελκυστικές πηγές ενέργειας στον κόσμο. Σύμφωνα με την έκθεση από την ElAⁱ (The International Energy Outlook 2013), η συνολική κατανάλωση φυσικού αερίου σε όλο τον κόσμο αναμένεται να αυξηθεί κατά 67%, από περίπου 115 tcfⁱⁱ το 2010 σε 193 tcf το 2040. Παρόλο που η παγκόσμια οικονομική ύφεση επιβράδυνε τη ζήτηση κατά το 2009, η οικονομία φαίνεται να ανάκαμψε γρήγορα. Η κατανάλωση φυσικού αερίου, που παρουσιάζεται από την ElA, αναμένεται να έχει 1% αύξηση στο παγκόσμιο μερίδιο το 2040. Το Διάγραμμα 1:1, δείχνει τις προοπτικές για την παγκόσμια κατανάλωση ενέργειας για κάθε καύσιμο. Μείωση παρατηρείται στα άλλα ορυκτά καύσιμα και αύξηση σε ανανεώσιμες και πυρηνικές πηγές ενέργειας.^{21 22}

Τα πιο κάτω διαγράμματα δείχνουν τον ρυθμό ανάπτυξης του εμπορίου και της ζήτησης του YΦΑ. Είναι προφανές ότι το εμπόριο και η ζήτηση YΦΑ αναπτύσσεται με πιο γρήγορους ρυθμούς έναντι των άλλων και κερδίζει συνεχώς έδαφος στην παγκόσμια αγορά.

¹ EIA: Energy Information Administration

[&]quot; tcf: Trillion cubic feet

ⁱⁱⁱ Quadrillion BTU (British Thermal Unit): energy measure for entire economies

Διάγραμμα 1:3 Ρυθμός ανάπτυξης Ενεργειακής ζήτησης ανά πηγή καυσίμου(Πηγή: Clarksons 2012)

Σήμερα, η μεταφορά του φυσικού αερίου γίνεται κυρίως μέσω αγωγών και πλοίων μεταφοράς YΦΑ. Οι περισσότεροι ειδικοί δείχνουν ότι η ναυτιλία είναι πιο ανταγωνιστική σε περιπτώσεις όπου η μεταφορά με αγωγούς, δεν είναι εφικτή, λόγω γεωγραφικών περιορισμών ή λόγω μεγάλων αποστάσεων μεταξύ των σχετιζόμενων σταθμών.

1.6.1 Πλεονεκτήματα μεταφοράς ΥΦΑ με πλοίο συγκριτικά με την μεταφορά ΦΑ με αγωγούς²²

Οι παραγωγοί φυσικού αερίου πρέπει να εξετάσουν ποια μέθοδο μεταφοράς θα χρησιμοποιήσουν για την παράδοση του προϊόντος στις αγορές. Με την Ναυτιλία ή με αγωγούς (LNG shipping or through pipelines). Για αυτή την επιλογή υπάρχει αξιοσημείωτη διαφορά στο κόστος ανάλογα με την απόσταση, από την παραγωγή στην αγορά. Έρευνα από την ENI¹ δείχνει ότι ένα "LNG project", κατά μήκος της αλυσίδας, από την παραγωγή στην αγορά, έχει μεν υψηλό όριο κόστους, αλλά η απόσταση του από την αγορά δεν είναι τόσο κρίσιμη παράμετρος όσο είναι στην περίπτωση της μεταφοράς του προϊόντος με αγωγό. Το κόστος ενός αγωγού φυσικού αερίου είναι ισχυρά εξαρτημένο

¹ ENI: "Ente Nazionale Idrocarburi" An Italian multinational oil and gas company

με την απόσταση. Το Διάγραμμα 1:4 αποδεικνύει ότι η ναυτιλία (LNG) είναι πιο ανταγωνιστική από τους αγωγούς σε μεγάλες αποστάσεις.

Διάγραμμα 1:4 Σύγκριση κόστους μεταφοράς με αγωγούς και μεταφοράς με πλοία ΥΦΑ (Πηγή: ENI)

Ωστόσο, το κόστος δεν είναι ο μόνος καθοριστικός παράγοντας για την επιλογή μεταξύ των αγωγών και της ναυτιλίας. Οι αγωγοί μπορεί να χρειαστεί να διασχίσουν πολλές χώρες, ενώ το εμπόριο δια θαλάσσης περιλαμβάνει συνήθως μια διαδρομή από το λιμάνι φόρτωσης στο λιμάνι εκφόρτωσης (end-to-end route). Στην περίπτωση της ναυτιλίας η απουσία διαπραγματεύσεων διέλευσης και συνθηκών (και ενδεχομένως υψηλό κόστος διέλευσης) απλοποιεί τα διαδικαστικά και η ανάπτυξη του έργου είναι ταχύτερη. Σημαντικό παράγοντα, αποτελούν και τα θέματα "Ασφάλειας", τα οποία έχουν πολλές πτυχές. Για ένα εκτεταμένο σύστημα αγωγών που διέρχεται από πολλές χώρες το θέμα της ασφάλειας είναι προφανές, αφού οι αγωγοί είναι "εκτεθειμένοι". Από την άλλη, το "LNG shipping" δεν διατρέχει τόσο μεγάλο κίνδυνο, όσο αφορά το συγκεκριμένο ζήτημα. Ακόμα, σχετικά με την ασφάλεια, το "LNG shipping" έχει πολύ καλό ιστορικό και ακόμα η επίδραση ενός θαλάσσιου ατυχήματος στη θάλασσα δεν θα ήταν καταστροφική και θα είχε μόνο περιορισμένες περιβαλλοντικές επιπτώσεις.

Μία άλλη πτυχή της "ασφάλειας", είναι η ευελιξία που προσφέρει το "LNG shipping" σε προμηθευτές και εισαγωγείς. Συγκεκριμένα, εάν μια αγορά δεν μπορεί να παραλάβει ένα φορτίο, το πλοίο μπορεί να απευθυνθεί σε άλλη αγορά. Ακόμη, εάν ένας προμηθευτής αντιμετωπίζει ένα πρόβλημα, το φορτίο μπορεί να διοχετευθεί στην αγορά από έναν άλλο προμηθευτή. Επιπλέον, η ευελιξία αυτή ενθαρρύνει επίσης τους πωλητές φυσικού αερίου να κάνουν "αρμπιτράζ" εμπορίου εκμεταλλευόμενοι μια διαφορά τιμών μεταξύ των αγορών για να μεγιστοποιήσουν το κέρδος τους. Ως εκ τούτου, μπορεί να συναχθεί το συμπέρασμα ότι η ευελιξία που προσφέρει το εμπόριο ΥΦΑ και οι ευκαιρίες "αρμπιτράζ" είναι μεταξύ των μεγαλύτερων πλεονεκτημάτων του "LNG shipping" έναντι των αγωγών.

1.6.2 Κόστη

Η βιομηχανία ΥΦΑ αναπτυσσόταν με αργούς ρυθμούς κατά το δεύτερο ήμισυ του περασμένου αιώνα. Αυτό οφειλόταν κυρίως στο ότι οι περισσότεροι σταθμοί επεξεργασίας ΦΑ βρίσκονταν σε απομακρυσμένες περιοχές που δεν εξυπηρετούνταν από τους αγωγούς, και το γεγονός ότι το κόστος της επεξεργασίας και της μεταφοράς του υγροποιημένου φυσικού αερίου ήταν μεγάλο, δεν ευνόησε τις τότε συνθήκες. Η κατασκευή ενός σταθμού επεξεργασίας ΦΑ κοστίζει 1,5 δις. δολάρια τουλάχιστον ανά 1 mmtpaⁱ, ενός τερματικού σταθμού 1 δις. δολάρια ανά 1 bcf/dⁱⁱ και ενός πλοίου μεταφοράς LNG περίπου 200 εκ. δολάρια.

Στις αρχές της δεκαετίας του 2000, οι τιμές για την κατασκευή σταθμών υγροποιημένου φυσικού αερίου, τερματικών σταθμών και πλοίων μειώθηκαν, αφού εμφανίστηκαν νέες τεχνολογίες και περισσότεροι επένδυσαν στο LNG.²³

Η βασική τιμή για ένα 125,000 m³ LNG carrier, κατασκευασμένο σε ευρωπαϊκά και ιαπωνικά ναυπηγεία ήταν 250 εκ. δολάρια. Όταν τα κορεατικά και τα κινεζικά ναυπηγεία εισήλθαν στην αγορά, ο αυξημένος ανταγωνισμός μείωσε τα περιθώρια κέρδους και το κόστος για το συγκεκριμένο πλοίο μειώθηκε στο 60%. Περεταίρω μείωση σημειώθηκε λόγω της υποτίμησης των νομισμάτων των μεγαλύτερων ναυπηγείων του κόσμου: το Ιαπωνικό ¨γιεν¨ και το ¨γουόν¨ της Κορέας. Στο Διάγραμμα 1:5.**Error! Reference source not found.** φαίνονται τα διάφορα ναυπηγεία που κατασκευάζουν LNG Carriers.^{22 23}

Διάγραμμα 1:5 LNG Carriers delivered and orderbook by yard (Πηγή: Clarksons 2013)

Επιπλέον, με την αύξηση του μεγέθους του πλοίου (από 138,000 m³ σε 260,000 m³) και τις τεχνολογικές εξελίξεις στα συστήματα πρόωσης, το μοναδιαίο κόστος μεταφοράς έχει μειωθεί σημαντικά. Από την άλλη, τα τελευταία χρόνια, η μείωση αυτή έρχεται αντιμέτωπη με το αυξημένο κόστος των υλικών.

Η παραγωγή φυσικού αερίου, όπως διαπιστώνεται, είναι μια δραστηριότητα έντασης κεφαλαίου που απαιτεί μεγάλες επενδύσεις. Ωστόσο, το ποσό της επένδυσης ποικίλει ανάλογα με τα χαρακτηριστικά των επιμέρους στοιχείων που αποτελούν την αλυσίδα ΥΦΑ. Συνήθως η παραγωγή φυσικού αερίου, συμπεριλαμβανομένης της επεξεργασίας του φυσικού αερίου και των συνεργαζόμενων αγωγών αποτελεί το 15 - 20% του συνολικού κόστους της αλυσίδας LNG. Η μονάδα υγροποίησης αποτελεί τη μεγαλύτερη συνιστώσα του κόστους στην αλυσίδα (30 - 45%). Η μεταφορά του ΥΦΑ αποτελεί το 10 - 30% του συνολικού κόστους και τελευταίο μέρος της αλυσίδας, που είναι ο τερματικός σταθμός (αποθήκευση, αεριοποίηση και διανομή) αποτελεί το 15 - 25% του συνολικού κόστους.²²

^{&#}x27;mmtpa: Million metric tonne per annum

ⁱⁱ Bcf/d: Billion cubic feet per day

1.6.2.1 Επιπτώσεις της τεχνολογίας για μείωση του κόστους

Τα έργα (projects) που αφορούν το υγροποιημένο φυσικό αέριο, όπως ειπώθηκε, είναι υψηλής εντάσεως κεφαλαίου, αφού τα περισσότερα από αυτά κοστίζουν πολλά δισεκατομμύρια δολάρια. Ωστόσο, οι οικονομίες κλίμακας είναι σημαντικές. Η μείωση του κόστους ανά μονάδα υγροποίησης δεν επιτυγχάνεται μόνο με την αύξηση του μεγέθους του τρένου παραγωγής που την αποτελεί (από 3,5 mmtpa στο 2005 σε 7,8 mmtpa -Έργα στο Κατάρ- στο 2010), αλλά και με τη δημιουργία νέων τρένων παραγωγής. Προσθέτοντας ένα δεύτερο τρένο η μονάδα μπορεί να μειώσει το μοναδιαίο της κόστος μέχρι και 20-30%. Ωστόσο, η τεχνολογική πρόοδος κατά τη διάρκεια των τελευταίων τεσσάρων δεκαετιών οδήγησε σε απότομη μείωση του κόστους των επενδύσεων και του κόστους λειτουργίας των εγκαταστάσεων υγροποίησης. Το μέσο κόστος ανά μονάδα για ένα εργοστάσιο υγροποίησης μειώθηκε από \$350 ptoacⁱ στα μέσα της δεκαετίας του 1990 σε περίπου \$200 το 2010 (Διάγραμμα 1:6).

Διάγραμμα 1:6 Μείωση κόστους σε νέα έργα ΥΦΑ (LNG projects) (Πηγή: ΙΕΑⁱⁱ)

Το κόστος μεταφοράς είναι σε μεγάλο βαθμό συνάρτηση της απόστασης μεταξύ των σταθμών υγροποίησης και των τερματικών σταθμών. Χρησιμοποιώντας ένα μεγαλύτερο αριθμό μικρότερων LNG Carriers προσφέρεται προφανώς μεγαλύτερη ευελιξία και μειώνονται οι απαιτήσεις αποθήκευσης, αλλά αυξάνεται το μοναδιαίο κόστος αποστολής. Τα μεγαλύτερα LNG Carriers σήμερα, έχουν μέγιστη χωρητικότητα 220,000 - 266,000 m³.

Το κόστος των τερματικών σταθμών εξαρτάται από την τοποθεσία (κόστος εργατικών, κόστος γης, κτλ), και την χωρητικότητα αποθήκευσης. Δεξαμενές με χωρητικότητα περίπου 480,000 m³ είναι σήμερα το βέλτιστο μέγεθος.^{22 24}

1.6.3 Χώρες Εισαγωγής και Εξαγωγής ^{25 26}

Οι χώρες που εισάγουν LNG μπορούν να χωριστούν σε δύο αγορές: τη λεκάνη του Ατλαντικού και τη λεκάνη του Ειρηνικού. Η λεκάνη του Ειρηνικού περιλαμβάνει τις χώρες κατά μήκος του Ειρηνικού και τη Νότια Ασία (συμπεριλαμβανομένης της Ινδίας). Η λεκάνη του Ατλαντικού καλύπτει την Ευρώπη, τη Βόρεια και τη Δυτική Αφρική και τις ακτές του Ατλαντικού της Αμερικανικής ηπείρου.

Η Ιαπωνία, με 26 τερματικούς σταθμούς, παραμένει ο μεγαλύτερος εισαγωγέας υγροποιημένου φυσικού αερίου στον κόσμο. Η Ιαπωνία (93 bcm) μαζί με τη Νότια Κορέα (44 bcmⁱⁱⁱ) και

¹ Ptoac: Per tonne of annual capacity

ⁱⁱ IEA: International Energy Agency

[&]quot; Billion cubic meters

τη Ταϊβάν (15 bcm), αντιπροσώπευαν το 51% των παγκόσμιων εισαγωγών υγροποιημένου φυσικού αερίου για το 2010. Ωστόσο, τα τελευταία χρόνια στη Κίνα και στην Ινδία αναπτύσσονται υποδομές για εισαγωγή YΦΑ. Στην Ευρώπη ο όγκος των εισαγωγών YΦΑ αυξάνεται με αργούς ρυθμούς διότι το σύστημα χερσαίων αγωγών ΦΑ είναι υπό ανάπτυξη και ολοένα μεγαλώνει η τροφοδότηση της Ευρώπης μέσω αγωγών. Από την άλλη, η Βόρεια Αμερική βιώνει μια μείωση των εισαγωγών της από το 2007 καθώς οι ΗΠΑ έχουν αυξήσει σημαντικά τη δική της παραγωγή κατά τα τελευταία χρόνια, μέσα από την εξερεύνηση του μη συμβατικού φυσικού αερίου (σχιστολιθικού φυσικού αερίου). (βλ. Διάγραμμα 1:9) Οι κύριοι παραγωγοί και εξαγωγείς ΥΦΑ βρίσκονται επίσης στην περιοχή της Ασίας-Ειρηνικού, συμπεριλαμβανομένης της Ινδονησίας, της Μαλαισίας, της Αυστραλίας και το Μπρουνέι. Ωστόσο, τα τελευταία δέκα χρόνια ο συνολικός όγκος των εξαγωγών από την περιοχή αυτή παρέμεινε σχετικά σταθερός. Η Ινδονησία και η Μαλαισία χάνουν σταδιακά τη θέση τους, λόγω της μείωσης των κοιτασμάτων τους, και δίνουν χώρο σε νέους ανταγωνιστές. Εν τω μεταξύ, οι χώρες της Μέσης Ανατολής, όπως το Κατάρ, το Ομάν και τα ΗΑΕ γίνονται όλο και πιο ανταγωνιστικές. Η Αφρική (Νιγηρία, Αλγερία και Αίγυπτος) και η Αμερική (Τρινιντάντ και Τομπάγκο) έχουν επίσης επεκτείνει τις ικανότητες των εξαγωγών τους κατά τα τελευταία χρόνια.

Διάγραμμα 1:7 Εισαγωγείς ΥΦΑ (Πηγή: BP Statistical Review of World Energy 2010)

Διάγραμμα 1:8 Εξαγωγείς ΥΦΑ (Πηγή: BP Statistical Review of World Energy 2010)

Διάγραμμα 1:9 Εμπόριο LNG 2014 vs 2013 (Πηγή: BG Group)

Τα πρώτα ¨σήματα¨ για τις προοπτικές της αγοράς φάνηκαν το 2011 μετά από τον καταστροφικό σεισμό στην Ιαπωνία καθώς η χώρα έκλεισε τα πυρηνικά εργοστάσια που παρήγαγαν το 30% των ενεργειακών αναγκών της και προχώρησε σε μεγάλες εισαγωγές φυσικού αερίου για την κάλυψη αυτών των αναγκών.²⁷

Τότε ήταν που οι Spot ναύλοι αυξήθηκαν στα υψηλότερα ιστορικά ρεκόρ τους, περίπου 150,000 δολάρια την ημέρα. (Διάγραμμα 1:11) Αυτό προσέλκυσε νέες επενδύσεις σ΄ αυτή την αγορά. Στο Διάγραμμα 1:10, φαίνονται τα πλοία που είναι για παράδοση σε κάθε έτος. Οι νέες παραγγελίες αριθμούν αυτή την στιγμή τις 144 (Εικόνα 1.6:1).

Διάγραμμα 1:10 LNG Carriers για παράδοση μέχρι το 2020 (Πηγή: Clarksons Aug. 2014)
Fleet Summary						
June 2015	No.	Gas Capacity				
Live Fleet	405	59,819k				
Order Book	144	3,655k				
Lay Up	6	766k				

Εικόνα 1.6:1 Παγκόσμιος στόλος LNG Carriers June 2015 (Πηγή: lloydslistintelligence)

Πρόσφατα η Ιαπωνία ανακοίνωσε επίσημα ότι οι πυρηνικοί αντιδραστήρες θα ξεκινήσουν να λειτουργούν ξανά, άμεσα. Το γεγονός αυτό θα οδηγήσει σε σημαντική μείωση των εισαγωγών της Ιαπωνίας.²⁸

Επίσης, ορισμένες χώρες (π.χ. Ινδία, Κίνα) πιθανότατα να κάνουν εισαγωγές όσο οι τιμές είναι ανταγωνιστικές σε σχέση με άλλα ενεργειακά προϊόντα και όπως αναφέρθηκε προηγουμένως, οι ΗΠΑ, έχουν ήδη καταφέρει να καλύψουν μεγάλο μέρος των αναγκών τους μέσω της παραγωγής σχιστολιθικού φυσικού αερίου, ενώ από την άλλη η Ευρώπη εξετάζει πιθανή εξόρυξη φυσικού αερίου από συμβατικές και μη συμβατικές πηγές στα εδάφη της σε συνδυασμό με την επέκταση των χερσαίων αγωγών Φ.Α.²⁹

Τα προηγούμενα σε συνδυασμό με τις νέες παραδόσεις πλοίων οδήγησαν σε "υπερπροσφορά" της αγοράς των LNG Carriers με αποτέλεσμα τα ναύλα να πέσουν ακόμη περισσότερο αυτή την περίοδο (term charter rates 12 mths+ below 40,000 USD/day, Διάγραμμα 1:11). (Σημείωση: οι παραγγελίες νέων πλοίων είχαν προγραμματιστεί για 60,000-70,000 USD/day). Ο αντίκτυπος, με βάση τις προβλέψεις από τον ναυλομεσιτικό οίκο "Clarksons", που θα έχει η υπερπροσφορά των πλοίων αποτυπώνεται και στο Διάγραμμα 1:12.³⁰

Διάγραμμα 1:11 Ναύλοι πλοίων μεταφοράς ΥΦΑ (Πηγή: RS Platou Monthly (April2015))

Διάγραμμα 1:12 Στόλος LNG Carrier & Utilisation Rate (Πηγή: Clarksons 2013)

Πολλές νέες παραγγελίες βέβαια βασίζονται στην εξαγωγή μεγάλων ποσοτήτων ΥΦΑ από την Αμερική, ιδίως από το 2018, και στη ζήτηση ΥΦΑ από αναπτυσσόμενες χώρες όπως η Κίνα, η Νότια Κορέα, η Βραζιλία και το Μεξικό.

Για τα επόμενα 2-3 χρόνια τα ναύλα πιθανόν να παραμείνουν σε χαμηλά επίπεδα για τα εν λόγω πλοία αφού θα υπάρξουν παραδόσεις σε μια περίοδο που το εμπόριο του ΥΦΑ περνά μια σχετικά υποτονική περίοδο (όχι όσο είχε προβλεφθεί), αφού ο παγκόσμιος χάρτης εμπορίου φυσικού αερίου περνά μια μεταβατική φάση. Το μόνο βέβαιο είναι ότι θα υπάρξει ανάγκη για αύξηση της χωρητικότητας του στόλου των LNG Carriers στο μέλλον, αφού η παγκόσμια εξαγωγή και ζήτηση σε ΦΑ αυξάνεται. Έτσι, με βάση τα προηγούμενα το εμπόριο του ΥΦΑ θα αποτελέσει πρόκληση για τις νέες επενδύσεις στον τομέα αυτό.

2 ΠΡΟΜΕΛΕΤΗ LNG CARRIER 170.000 m³

2.1 Επιλογή όμοιων πλοίων

Για την επιλογή των κύριων διαστάσεων του πλοίου είναι απαραίτητο να βρεθούν όμοια πλοία από κάποια βάση δεδομένων. Αρχικά διατίθενται λίστα πλοίων LNG Carrier, το πλήθος των οποίων ανέρχεται σε 293 πλοία. Σε αυτά περιλαμβάνονται πλοία με σφαιρικές δεξαμενές τύπου Moss και με πρισματικού τύπου μεμβρανικές δεξαμενές. Πλοία με δεξαμενές τύπου Moss απορρίπτονται. Ακόμη, αδελφά πλοία και πλοία που έχουν ελλειπή στοιχεία απορρίπτονται. Απορρίπτονται επίσης πλοία τα οποία έχουν ατμοστρόβιλο για πρόωση.

Τελικά η επιλογή των ομοίων πλοίων έγινε με βάση το DWT (± 10%), τον όγκο κυτών V_{liquid} (± 10%) και την ταχύτητα Vs (± 1.5 knot). Αποκλείστηκαν όσα πλοία είχαν μεγάλες αποκλίσεις από τα όρια αυτά όπως επίσης και από το προκαθορισμένο πλάτος. Τελικά επιλέχθηκαν 6 όμοια πλοία, τα στοιχεία των οποίων φαίνονται στον παρακάτω πίνακα. Το πατρικό πλοίο είναι το Woodside Rogers.

	Όνομα Σκάφουα	S	Provalys	Gaslog Savannah	British Sapphire	Maersk Meridian	Clearsky	Abdelkader	Woodside Rogers
	L _{BP}	m	289.6	285.1	288.43	286.17	298	298.43	294.2
	L _{OA}	m	274.1	274	275	275	279	285	283.2
άστ.	В	m	43.35	43.4	44.24	43.4	45.8	46	44
ונק או	D	m	26.25	26	26	26.6	26	26.8	26
Kúp	т	m	11.6	12.1	12.2	12.12	11.6	11.93	11.5
	DWT	t	74300	82291	84455	81929	96100	91305	79087.1
Βάρη	Δ	t	106500	113591	116204	113609	130957	125563	111629.0
_	LS	t	32200	31300	31749	31680	34857	34258	32541.9
Ογκοι	Vliquid	m ³	153500	155000	155000	163285	171800	173870	159800.0
	V _{service}	kn	19.5	19.5	21	19.5	19.5	19.5	19.9
Ιρόωση	P _B	HP	33915	37335	39900	39900	37100	33914	34200
	Fn		0.19	0.19	0.21	0.19	0.19	0.19	0.19
	ТҮРЕ	-	Diesel- Electric						

	DWT/A	-	0.698	0.724	0.727	0.721	0.734	0.727	0.708
	$L_{BP}/\Delta^{1/3}$	$m/t^{\frac{1}{3}}$	5.783	5.658	5.635	5.678	5.494	5.691	5.882
	L _{BP} /B	-	6.323	6.313	6.216	6.336	6.092	6.196	6.436
ίες	L _{BP} /L _{OA}	-	0.946	0.961	0.953	0.961	0.936	0.955	0.963
αλογί	L _{BP} /D	-	10.442	10.538	10.577	10.338	10.731	10.634	10.892
- Ave	B/T	-	3.737	3.587	3.626	3.581	3.948	3.856	3.826
ιόγοι	D/T	-	2.263	2.149	2.131	2.195	2.241	2.246	2.261
	W _{LS}	t/m³	0.1032	0.1012	0.1004	0.0998	0.1049	0.0975	0.1004
	C _B	-	0.751	0.767	0.761	0.764	-	0.781	0.757
	C _N	$\frac{t^{\frac{2}{3}} \cdot kn^3}{kW}$	491.223	465.819	552.712	435.919	515.406	548.234	534.217

Πίνακας 2.1:1 Χαρακτηριστικά επιλεγμένων όμοιων πλοίων

Οι προδιαγραφές για το υπό σχεδίαση πλοίο:

ΠΡΟΔΙΑΓΡΑΦΕΣ					
DWT(tn) 85000					
V _{liquid} (m ³)	170000				
T _{max} (m)	12				
B _{max} (m)	46				
Vs(kn)	19				

Πίνακας 2.1:2 Προδιαγραφές υπό μελέτη πλοίου

Για τα πλοία αυτά υπολογίστηκαν οι λόγοι L/B, L/D, B/T, D/T, DWT/Δ και οι συντελεστές C_B , w_{LS} και ο αριθμός Froude. Κατόπιν προσδιορίστηκαν οι μέγιστες, οι ελάχιστες και οι μέσες τιμές του δείγματος των πλοίων για τα ανωτέρω στοιχεία:

	Average	Average Min		
Fn	Fn 0.379		0.404	
DWT/Δ	DWT/Δ 0.720		0.734	
L _{BP} /Δ ^{1/3} 5.689		5.494	5.882	
L _{вр} / В 6.273		6.092	6.436	
L _{BP} /L _{OA}	L _{BP} /L _{OA} 0.954		0.963	
L _{BP} /D	10.593	10.338	10.892	
B/T 3.737		3.581	3.948	
D/T	2.212	2.131	2.263	

W _{LS}	0.101	0.098	0.105	
C _B	С _в 0.764		0.781	
C _N	506.219	435.919	552.712	

Πίνακας 2.1:3 Λόγοι κύριων διαστάσεων και χαρακτηριστικά όμοιων πλοίων

2.2 Επιλογή κύριων διαστάσεων

Αρχικά παρατίθενται σε πινακοποιημένη μορφή οι μέσοι όροι που προκύπτουν από τα όμοια πλοία για τα στοιχεία που μας ενδιαφέρουν:

ΟΜΟΙΑ ΠΛΟΙΑ				
DWT/Δ	0.720			
$L_{BP}/\Delta^{1/3}$	5.689			
L _{BP} /B	6.273			
L _{BP} / L _{OA}	0.954			
L _{BP} /D	10.593			
B/T	3.737			
D/T	2.212			
WLS	0.101			
Св	0.764			

Πίνακας 2.2:1 Χαρακτηριστικά όμοιων πλοίων

Με τη χρήση της *εξίσωσης της μελέτης* η διαδικασία επιλογής ξεκινά με τον προσδιορισμό του εκτοπίσματος από τον λόγο DWT/Δ:

$$\frac{DWT}{\Delta} = 0.7199 \implies \Delta = \frac{85000}{0.7199} = 118067.1 \text{ tn}$$

Ύστερα προκύπτει το πλάτος από την εξίσωση της μελέτης:

$$B = \sqrt[3]{\frac{\Delta \cdot B/T}{c \cdot \gamma \cdot L/B \cdot c_B}} = 44.74 \ m$$

Ακολούθως από τους λόγους L/B, B/T, L/D και D/T, προκύπτουν το μήκος L, το βύθισμα T και το κοίλο D,

$$\frac{L}{B} = 6.27 \implies L = 280.67 m$$
$$\frac{B}{T} = 3.74 \implies T = 11.97 m$$

$$\frac{L}{D} = 10.59 \Longrightarrow D1 = 26.50 m$$
$$\frac{D}{T} = 2.21 \Longrightarrow D2 = 26.48 m$$
$$\rightarrow \frac{D1 + D2}{2} = 26.49 m$$

Για να γίνει ο έλεγχος του γεωμετρικού εκτοπίσματος σε σχέση με το εκτόπισμα βαρών πρέπει να πραγματοποιηθεί μία πρόχειρη εκτίμηση του βάρους του άφορτου σκάφους. Η εκτίμηση αυτή θα γίνει με βάση το συντελεστή w_{LS} που προέκυψε από τα όμοια πλοία.

$$LS = w_{LS} \cdot L_{BP} \cdot B \cdot D = 0.101 \cdot 280.67 \cdot 44.74 \cdot 26.49 \rightarrow LS = 33621.2 [t]$$

Σε αυτό το βάρος θα προστεθεί το DWT από τις απαιτήσεις του πλοιοκτήτη και έτσι θα έχουμε μία προκαταρκτική εκτίμηση του εκτοπίσματος βαρών:

$$\Delta_B = LS + DWT = 33621.2 + 85000 \rightarrow \Delta_B = 118621.2 [t]$$

Το γεωμετρικό εκτόπισμα του πλοίου είναι:

$$\Delta_{\Gamma} = C_B \cdot \gamma \cdot L_{BP} \cdot B \cdot T \cdot c = 0.764 \cdot 1.025 \cdot 280.67 \cdot 44.74 \cdot 11.97 \cdot 1.0035$$
$$\to \Delta_{\Gamma} = 118067.1[t]$$

Η διαφορά του Δ_B με το Δ_Γ είναι:

$$\frac{\Delta_{\Gamma} - \Delta_{B}}{\Delta_{\Gamma}}\% = \frac{118067.1 - 118621.2}{118067.1} = -0.47\%$$

Παρατηρούμε ότι δεν ικανοποιείται ο έλεγχος για απόκλιση θετική και μικρότερη του 0.5%.

Με χρήση **μέσων όρων** η διαδικασία επιλογής των κύριων διαστάσεων ξεκινά θέτοντας τους περιορισμούς που δίδονται από τον πλοιοκτήτη (Β_{ΜΑΧ} και Τ_{ΜΑΧ}) και ακολούθως υπολογίζονται τα μεγέθη βάσει των μέσων όρων των λόγων που εξάχθηκαν από τα όμοια πλοία όπως προηγουμένως.

$$\frac{L}{B} = 6.27 \implies L = 288.57 m$$
$$\frac{L}{D} = 10.59 \implies D1 = 27.24 m$$
$$\frac{D}{T} = 2.21 \implies D2 = 26.55 m$$
$$\Rightarrow \frac{D1 + D2}{2} = 26.89 m$$

Το γεωμετρικό εκτόπισμα που προκύπτει με αυτά τα δεδομένα είναι:

$$\begin{split} \Delta_{\Gamma} &= C_B \cdot \gamma \cdot L_{BP} \cdot B \cdot T \cdot c = 0.764 \cdot 1.025 \cdot 288.57 \cdot 46 \cdot 12 \cdot 1.0035 \\ &\rightarrow \Delta_{\Gamma} = 125101.5[t] \end{split}$$

Υπολογισμός βάρους άφορτου σκάφους μέσω του συντελεστή βάρους ομοίων πλοίων.

$$LS = w_{LS} \cdot L_{BP} \cdot B \cdot D = 0.101 \cdot 288.57 \cdot 46 \cdot 26.89 \rightarrow LS = 36082.1 \ [t]$$

Σε αυτό το βάρος θα προστεθεί το DWT και έτσι θα έχουμε,

$$\Delta_B = LS + DWT = 36082.1 + 85000 \rightarrow \Delta_B = 121082.1 [t]$$

Η διαφορά του Δ_B με το Δ_Γ είναι:

$$\frac{\Delta_{\Gamma} - \Delta_{B}}{\Delta_{\Gamma}}\% = \frac{125101.5 - 121082.1}{125101.5} = 3.21\%$$

Παρατηρούμε ότι, ούτε με αυτή τη μέθοδο ικανοποιείται ο έλεγχος για απόκλιση θετική και μικρότερη του 0.5%.

Τελικά, επιλέγονται οι κύριες διαστάσεις έπειτα από δοκιμές,με σκοπό να ικανοποιούνται όλες οι απαιτήσεις.

L = 283.2 m B=46m T=11.7m D=26m C_B =0.758 W_{LS} = 0.099

Τελικός έλεγχος $\Delta_{\rm B}, \Delta_{\Gamma}$

 $W_{LS} = W_{LS} \cdot L_{BP} \cdot B \cdot D = 0.099 \cdot 283.2 \cdot 46 \cdot 26 \rightarrow LS = 33532.0 [t]$

$$\Delta_B = LS + DWT = 33532.0 + 85000 \rightarrow \Delta_B = 118532.0[t]$$

Το γεωμετρικό εκτόπισμα του πλοίου είναι:

$$\begin{split} \Delta_{\Gamma} &= C_B \cdot \gamma \cdot L_{BP} \cdot B \cdot T \cdot c = 0.758 \cdot 1.025 \cdot 283.2 \cdot 46 \cdot 11.7 \cdot 1.0035 \\ &\rightarrow \Delta_{\Gamma} = 118835.8[t] \end{split}$$

Η διαφορά του Δ_B με το Δ_Γ είναι:

$$\frac{\varDelta_{\Gamma}-\varDelta_{B}}{\varDelta_{\Gamma}}\%=\frac{118835.8-118532}{118835.8}=0.256~\%<0.50\%$$

Άρα αποδεκτή τιμή και τελικά
$$DWT = \Delta_{\Gamma}$$
 - $L.S = 85304 \ tn$

2.2.1 Συντελεστής μέσης τομής (C_M)

Για τον υπολογισμό του C_M χρησιμοποιήθηκαν τρείς τύποι συναρτήσει του C_B:

V. Lammeren	$0.9 + 0.1 \cdot C_B$
H. Kerlen	$1.006 - 0.0056 \cdot C_B^{-3.56}$
	1
пзуа	$1 + (1 - C_B)^{3.5}$

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα:

Τύπος	Υπολογισμός
V. Lammeren	0.976
H. Kerlen	0.991
HSVA	0.993

Όπως φαίνεται, οι τύποι Η. Kerlen και HSVA είναι πολύ κοντά μεταξύ τους ενώ ο V. Lammeren διαφέρει αρκετά. Συνεπώς ο συντελεστής μέσης τομής θα υπολογιστεί ως ο μέσος όρος των δύο αυτών τύπων:

$$C_M = 0.992$$

2.2.2 Πρισματικός συντελεστής (C_P)

Ο πρισματικός συντελεστής υπολογίζεται ως εξής:

$$C_P = \frac{C_B}{C_M} = \frac{0.758}{0.992} \to C_P = 0.764$$

2.2.3 Συντελεστής ισάλου επιφάνειας (Cwp)

Ο συντελεστής ισάλου επιφάνειας υπολογίστηκε ως ο μέσος όρος των δύο παρακάτω εμπειρικών τύπων:

$$C_{WL} = 0.7 \cdot C_P + 0.3 = 0.7 \cdot 0.764 + 0.3 \rightarrow C_{WL} = 0.835$$

$$C_{WL} = \frac{1 + 2 \cdot C_B}{3} = \frac{1 + 2 \cdot 0.758}{3} \rightarrow C_{WL} = 0.839$$

Συνεπώς ,

$$C_{WL} = 0.837$$

2.2.4 Αποτελέσματα

Υπό Ν				
	L _{OA}	[m]	294.20	
ιάσει	L _{BP}	[m]	283.20	
Διασι	В	[m]	46.00	
ύριες	D	[m]	26.00	
ž	Т	[m]	11.70	
	L _{BP} /B	-	6.157	
	L _{BP} /D	-	10.892	
ب ب	B/T	-	3.932	
λογίε	D/T	-	2.222	
- Ανα	DWT/A	-	0.715	
- ηογό	C _B	-	0.758	
<	C _M	-	0.992	
	C _P	-	0.764	
	C _{WL}	-	0.837	
	P [Kw		34200	
	ΔΓ	[t]	118836	

Πίνακας 2.2:2 Χαρακτηριστικά υπό μελέτη πλοίου

Παρατηρώ ότι οι τιμές του πιο πάνω πίνακα είναι μέσα στα όρια των αναμενόμενων τιμών που προκύπτουν από τα όμοια πλοία.

2.3 Πρώτη προσέγγιση ισχύος προωστήριας εγκατάστασης

Σε αυτό το σημείο υπολογίζεται η ισχύς της προωστήριας εγκατάστασης και επιλέγεται η κύρια μηχανή του πλοίου. Για τον υπολογισμό της ισχύος πρόωσης χρησιμοποιήθηκε ο συντελεστής ναυαρχείου.

2.3.1 Ισχύς πρόωσης

Συντελεστής Ναυαρχείου

Ο Συντελεστής ναυαρχείου για το υπό μελέτη πλοίο παίρνεται ίσος με τον μέσο όρο των συντελεστών ναυαρχείου των όμοιων πλοίων, οπότε $C_N^{ave} = 506.2 t^{\frac{2}{3}} \cdot \frac{kn^3}{HP}$. Η ισχύς για το νέο πλοίο υπολογίζεται ως εξής:

$$C_N = \frac{\Delta^{2/3} \cdot V_S^3}{P_B} \to P_B = \frac{\Delta^{2/3} \cdot V_S^3}{C_N} = \frac{118836^{2/3} \cdot 19^3}{506.2} \to P_B = 32751 \ [kW]$$

2.3.2 Επιλογή κύριας μηχανής

Επιλέγονται 4 sets μηχανής διπλής καύσης, όμοια με το πατρικό, Wärtsilä 9L50DF X 4 sets, η οποία λειτουργεί είτε με φυσικό αέριο(natural gas) είτε με βαρύ ή ελαφρύ πετρέλαιο (Heavy Fuel Oil, Light Fuel Oil). Μπορεί να πραγματοποιηθεί αλλαγή καυσίμου καθώς η μηχανή είναι σε λειτουργία. Επίσης είναι σχεδιασμένη να αποδίδει την ίδια ισχύ χωρίς να επηρεάζεται από το καύσιμο που χρησιμοποιείται. Όταν λειτουργεί με φυσικό αέριο οι εκπομπές ρύπων είναι σημαντικά μειωμένες. Συγκεκριμένα τα NOx (nitrogen oxide) είναι τουλάχιστον 85% πιο κάτω από αυτά που επιτρέπει ο IMO και οι εκπομπές CO2 είναι περίπου 25% λιγότερα από αυτά των συμβατικών ναυτικών κινητήρων που χρησιμοποιούν πετρέλαιο για καύση. Επιπλέον τα SOx, (sulphur oxide) και οι λοιπές εκπομπές είναι αμελητέες. Παρακάτω δίνονται τα χαρακτηριστικά της μηχανής:

Εικόνα 2.3:1 Κύρια μηχανή, Wärtsilä 9L50DF (Πηγή: Wärtsilä)

Wärtsilä 50DF			IMO Tier III	
Cylinder bore	500 mm	Fuel specification:		
Piston stroke	580 mm	Fuel oil	700 cSt/50oC	
Cylinder output	950, 975 kW/cyl		7200 sR1/100 F	
Speed	500, 514 rpm	ISO 8217, ISO-F-DMX, DMA & DM		
Mean effective pressure	20.0 bar	BSEC 7110) kJ/kWh at ISO cond.	
Piston speed	9.7, 9.9 m/s			

Rated power								
Engine type	Engine kW (50Hz)	Gen. kW (50Hz)		Engine kW	(60Hz)	Gen.	Gen. kW (60Hz)	
6L50DF	5 700	5 500		5 850		5 650		
8L50DF	7 600	73	30	7 800		7 530		
9L50DF	8 550	8 2	50	8 775		8 470		
12V50DF	11 400	11 (000	11 70	0	11 290		
16V50DF	15 200	14 6	670	15 60	0		15 050	
18V50DF	17 100	16 5	16 500 17 550		16 940			
Generator output based on a generator efficiency of 96.50 %								
Dimensions ((mm) and weights (tonnes)						
Engine type	e A	в	С	D		F	Weight	
6L50DF	8 115	3 580	3 270	4 000	1 -	455	96	
8L50DF	10 230	3 920	3 360	4 000	1 -	455	128	
9L50DF	11 140	3 920	3 505	i 4 000	1.	455	148	
12V50DF	10 410	4 055	3 810	3 600	1	500	175	
16V50DF	13 085	4 400	4 730	3 600	1	500	220	
18V50DF	14 180	4 400	4 7 30	3 600	1	500	240	
			که آ					

Εικόνα 2.3:2 Χαρακτηριστικά κύριας μηχανής, Wärtsilä 9L50DF (Πηγή: Wärtsilä)

47

2.4 Υπολογισμός βάρους Lightship

2.4.1 Ανάλυση Βαρών Πατρικού Πλοίου

Για το προϋπολογισμό του βάρους του πλήρως εξοπλισμένου αλλά άφορτου πλοίου (LS) θα χρησιμοποιηθούν διάφορες προσεγγιστικές μέθοδοι για τις οποίες θα πρέπει να χωρίσουμε το LS σε τρεις ομάδες βαρών:

- Βάρος μηχανολογικής εγκατάστασης (W_M)
- Βάρος ενδιαίτησης και εξοπλισμού (Wot)
- Βάρος μεταλλικής κατασκευής (W_{st})

Αφού υπολογιστούν και οι τρεις ομάδες βαρών θα προστεθούν και το άθροισμά τους θα μας δώσει το LS σύμφωνα με την εξίσωση:

$$LS = W_M + W_{OT} + W_{ST}$$

Επειδή δεν έχουμε τις ομάδες βαρών για το πατρικό πλοίο ("Woodside Rogers") παρά μόνο το συνολικό LS, θα εκτιμήσουμε με τις κατάλληλες μεθόδους τις ομάδες βαρών, θα τις αθροίσουμε και θα συγκρίνουμε το αποτέλεσμα με το πραγματικό LS πατρικού πλοίου. Αυτό θα μας δώσει την δυνατότητα να εξάγουμε ένα συντελεστή διόρθωσης, τον οποίο θα εφαρμόσουμε στην ίδια ακριβώς διαδικασία για το υπό μελέτη πλοίο ώστε να έχουμε σχεδόν εξαλείψει το σφάλμα της διαδικασίας που θα ακολουθήσουμε.

Είναι σημαντικό να τονισθεί ότι λόγω έλλειψης στοιχείων για μεθόδους μελέτης και σχεδίασης LNG Carriers, γίνεται θεώρηση ότι το εν λόγω πλοίο προσεγγίζεται σε ικανοποιητικό βαθμό από ένα δεξαμενόπλοιο χαμηλού συντελεστή γάστρας στο οποίο προστίθενται τα παρελκόμενα των δεξαμενών φορτίου LNG (ενισχυτικά, μονώσεις, πύργος αντλιών κτλ).

2.4.1.1 Βάρος Μεταλλικής Κατασκευής (W_{st})

• Μέθοδος Watson

Σύμφωνα με την μέθοδο Watson του βιβλίου [1a]ⁱ, σελ. 219, το W_{st} υπολογίζεται από την εξίσωση κατά Lloyd's Register:

$$E_N = L(B+T) + 0.8 L (D-T) + 0.85 \sum_{i=1}^{N_1} h_{1i} L_{1i} + 0.75 \sum_{i=1}^{N_2} h_{2i} L_{2i}$$

όπου: N₁, h_{1i}, I_{1i}: αριθμός, ύψος και μήκος των υπερστεγασμάτων,

 N_2 , h_{2i} , I_{2i} : αριθμός, ύψος και μήκος των υπερκατασκευών.

Έχοντας προμηθευτεί το σχέδιο γενικής διάταξης του πατρικού πλοίου, γίνεται η αναγωγή στην κλίμακα μέσω του προγράμματος "Autocad". Παρατηρείται ότι δεν υπάρχουν χώροι που μπορούν να χαρακτηρισθούν ως υπερκατασκευές (Bss≥0.92B).

[΄] Βιβλίο [1a]: «Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης», Α. Παπανικολάου, Τεύχος 1

Έτσι οι χώροι που υπάρχουν, χαρακτηρίζονται ως υπερστεγάσματα και διαχωρίζονται στους χώρους οι οποίοι διακρίνονται στην εικόνα 3 και στον πίνακα 6. Ως χώρος "*cargo space above the main deck*" που αναφέρεται στον Πίνακας 2.4:1, θεωρείται ο χώρος πάνω από το ανώτερο κατάστρωμα (upper deck στα 26m) ο οποίος χρησιμοποιείται σαν χώρος φορτίου, αφού η μελέτη που γίνεται βασίζεται σε δεξαμενόπλοια και επομένως δεν συμπεριλαμβάνεται ο χώρος αυτός στη συγκεκριμένη μέθοδο.

Εικόνα 2.4:1 Υπερστεγάσματα πατρικού πλοίου

Οπότε έχουμε τον εξής πίνακα στον οποίο θα υπολογιστούν τα δύο αθροίσματα της παραπάνω εξίσωσης.

Υπερστεγ	h1i (m)	l1i (m)	h1i x l1i					
DECKS								
UPPER	3.483	18.3	63.74					
А	3.2	18.4	58.88					
В	3	18.3	54.90					
С	3	18.3	54.90					
D	3	18.3	54.90					
NAV. BRI.	3	19.4	58.20					

Engine Casin				
UPPER	3.546	15.23	54.01	
А	4.45	15.23	67.77	
В	4.8	15.23	73.10	
С	4	15.23	60.92	
D	5.051	13.865	70.03	
	In Cargo	Space		
Cargo comp. room	5.7	27.7	157.89	
Cargo gear locker	4	13.6	54.4	
Dry powder st.	3.2	10.5	33.6	
Cargo space above main deck	6.675	200	1335	
			2252.24	$=\sum_{i=1}^{N1}h_{1i}L_{1i}$
Υπερκατασκευές	h2i (m)	l2i (m)	h x l	
	0	0	0	$=\sum_{i=1}^{N^2}h_{2i}L_{2i}$

Πίνακας 2.4:1 Διαστάσεις υπερστεγασμάτων πατρικού πλοίου

Οπότε η εξίσωση γράφεται:

$$E_N = 283.2 \cdot (44 + 11.5) + 0.8 \cdot 283.2 \cdot (26 - 11.5) + 0.85 \cdot 2252.24 + 0.75 \cdot 0$$
$$\rightarrow E_N = 20917$$

Ακολούθως μέσω της μεθοδολογίας Watson (Διάγραμμα 2:1) και με δεδομένο δείκτη εξοπλισμού E_N προσδιορίζεται ο αριθμός $W_{ST}^* = 23000 t$. Σε αυτό το νούμερο πρέπει να ελέγξουμε αν θα υπάρξει διόρθωση λόγω του C_B . Υπολογίζουμε το C_B στο 80% του D σύμφωνα με την εξίσωση:

$$C_{B1}^* = C_{B1} + \frac{(1 - C_{B1})(0.8 \cdot D - T)}{3T}$$

Διάγραμμα 2:1 Υπολογισμός του W_{sT*} βάσει του δείκτη εξοπλισμού Ε_Ν της μεθόδου Watson (Πηγή: Παπανικολάου 2009)

Όπου,

$$C_{B1} = C_B \left(\frac{D}{T}\right)^{\left(\frac{C_{WL}}{C_B} - 1\right)} = 0.757 \left(\frac{26}{11.5}\right)^{\left(\frac{0.853}{0.757} - 1\right)} = 0.840$$

Άρα,

$$C_{B1}^* = 0.840 + \frac{(1 - 0.840)(0.8 \cdot 26 - 11.5)}{3 \cdot 11.5} \rightarrow C_{B1}^* = 0.883 \neq 0.700$$

Άρα θα πρέπει θα διορθώσουμε την τιμή του W^*_{ST} που βρήκαμε από το διάγραμμα σύμφωνα με την εξίσωση:

$$W'_{ST} = W^*_{ST} \cdot (1 + 0.05(C^*_{B1} - 0.7)) = 23000 \cdot (1 + 0.05 \cdot (0.883 - 0.7)) \rightarrow$$
$$\rightarrow W'_{ST} = 23210 \ [t]$$

Επειδή στο πατρικό πλοίο χρησιμοποιείται χάλυβας υψηλής αντοχής την παραπάνω εκτίμηση θα την μειώσουμε κατά 5% έως 7% (επιλέγω 6%). Έτσι έχουμε:

$$W_{ST} = 21818 [t]$$

Μέθοδοι Schneekluth και Müller-Koster

Η μέθοδος Schneekluth που περιγράφεται στο βιβλίο [1a], σελ. 228, εκτιμά το βάρος της μεταλλικής κατασκευής χωρίς το βάρος των υπερκατασκευών (W_{st}'). Για να υπολογίσουμε το βάρος των υπερκατασκευών (W_{ss}) θα χρησιμοποιήσουμε την μέθοδο Müller- Koster (σελ.235).

Στη μέθοδο Schneekluth υπολογίζουμε πρώτα τον όγκο κάτωθεν του ανώτερου καταστρώματος σύμφωνα με την εξίσωση:

$$\nabla_U = \nabla_D + \nabla_S + \nabla_b + \nabla_H$$

όπου ∇_{U} , Ο όγκος κάτωθεν του ανώτερου καταστρώματος

 $\nabla_{\rm D}$, Ο όγκος έως το κοίλο, $\nabla_D = L \cdot B \cdot D \cdot C_{BD}$

 $\nabla_{\rm S}$, Αύξηση όγκου λόγω σιμότητας, $\nabla_{\rm S} = L_{\rm S} \cdot B \cdot (S_F + S_A) \cdot C_2$

 $\nabla_{\mathbf{b}}$, Αύξηση όγκου λόγω κυρτότητας καταστρώματος, $\nabla_{b} = L \cdot B \cdot b \cdot C_{3}$

 $abla_{ extsf{H}}$, Αύξηση όγκου λόγω στομίων κυτών, , $abla_{H} = \sum_{i}^{N} l_{Hi} b_{Hi} h_{Li}$

Στον όγκο ∇_U θα προστεθεί ο όγκος των κυτών πάνω από το ανώτερο κατάστρωμα, $\nabla_{UP,Cargo}$, και θα αφαιρεθεί ο όγκος, $\nabla_{Stern \ Shape}$, λόγω διαμόρφωσης του πρυμναίου τμήματος του πλοίου. Αυτό οφείλεται, όπως αναφέρθηκε προηγουμένως, στο γεγονός ότι οι μεθόδοι που χρησιμοποιούνται είναι για δεξαμενόπλοια και όχι για πλοία LNG.

Άρα τελικά ο ζητούμενος όγκος θα είναι:

$$V_V = V_U + V_{UP.Cargo-} V_{Stern Shape}$$

Ο όγκος έως το κοίλο (∇_{D})

Επιλέγουμε συντελεστή C₁ = 0.25 αφού το πατρικό έχει μικρό άνοιγμα νομέων, οπότε έχουμε:

$$C_{BD} = C_B + C_1 \frac{D-T}{T} (1 - C_B) = 0.757 + 0.25 \frac{26 - 11.5}{11.5} (1 - 0.757) \rightarrow C_{BD} = 0.834$$

 $\nabla_D = L \cdot B \cdot D \cdot C_{BD} = 283.2 \cdot 44 \cdot 26 \cdot 0.834 \rightarrow \nabla_D = 270146 \ [m^3]$

Αύξηση όγκου λόγω σιμότητας (∇_s)
Ο συντελεστής C₂ υπολογίζεται από την εξίσωση:

$$C_2 = \frac{C_{BD}^{2/3}}{6} = \frac{0.834^{2/3}}{6} \to C_2 = 0.148$$

Επιπλέον από τα σχέδια βρίσκουμε ότι L_S = 32.7 m, S_F = 0.314 m, S_A = 0 m , οπότε έχουμε:

$$\nabla_{S} = L_{S} \cdot B \cdot (S_{F} + S_{A}) \cdot C_{2} = 32.7 \cdot 44 \cdot (0.314 + 0) \cdot 0.148 \rightarrow \nabla_{S} = 66.7 \ [m^{3}]$$

• Αύξηση όγκου λόγω κυρτότητας καταστρώματος ($\nabla_{\rm b}$)

Ο συντελεστής C3 υπολογίζεται από την εξίσωση:

$$C_3 = 0.7 \cdot C_{BD} = 0.7 \cdot 0.834 \rightarrow C_3 = 0.584$$

Η κυρτότητα του καταστρώματος από τα σχέδια είναι ίση με b = 450 mm(camber). Συνεπώς έχουμε:

$$\nabla_{b} = L \cdot B \cdot b \cdot C_{3} = 283.2 \cdot 44 \cdot 0.45 \cdot 0.584 \rightarrow \nabla_{b} = 3273 \ m^{3}$$

Αύξηση όγκου λόγω στομίων κυτών (∇_H)

Δεν υπάρχουν στόμια, συνεπώς,

$$\nabla_H = 0 \ [m^3]$$

Οπότε ο όγκος κάτωθεν του ανωτέρου καταστρώματος (∇_{U}) είναι:

$$V_U = V_D + V_S + V_h + V_H = 270146 + 66.7 + 3273 + 0 \rightarrow V_U = 273485 m^3$$

• Αύξηση όγκου λόγω όγκου κυτών πάνω από το ανώτερο κατάστρωμα ($\nabla_{\text{UP. Cargo}}$)

$$V_{UP.Cargo} = V_{UP.Cargo1} + V_{UP.Cargo2}$$

Για τον προσδιορισμό του $\nabla_{UP. \ Cargo}$, ανατρέχουμε στο σχέδιο γενικής διάταξης και στο σχέδιο μέσης τομής από όπου γίνεται η λήψη των απαιτούμενων διαστάσεων. Ουσιαστικά η γεωμετρία δεν αλλάζει για τις τρεις πρώτες δεξαμενές φορτίου (No 4,3 και 2) και προσδιορίζεται ο όγκος ως το εμβαδό άνωθεν του ανώτατου συνεχούς καταστρώματος πολλαπλασιασμένο με το μήκος των τριών δεξαμενών και των στεγανών διαχωριστικών χώρων (cofferdams) , $\nabla_{UP. \ Cargo1}$. Πιο συγκεκριμένα οι τρεις πρώτες δεξαμενές εκτείνονται από τον νομέα 67 μέχρι τον 116. Η ισαπόσταση μεταξύ των νομέων για τη δεξαμενή 4 είναι 3.44m ενώ για το 3 και 2 είναι 3.36m. Το πρώτο cofferdam είναι 2.4m ενώ τα άλλα 2.8m. Κατά συνέπεια το ζητούμενο μήκος είναι 163.2m. Το εμβαδό που αναφέρθηκε είναι, με μια καλή προσέγγιση, ένα τραπέζιο.

Η δεξαμενή Νο.1, βλέπουμε ότι εκτείνεται από τον νομέα 116 έως τον 126 με ισαπόσταση 3.36m. Το τελευταίο cofferdam το οποίο θα συμπεριληφθεί στο ζητούμενο μήκος είναι 2.8m. Κατά συνέπεια το μήκος για τον υπολογισμό του $\nabla_{\rm UP.\ Cargo\ 2}$ είναι 36.4m. Επειδή όμως αλλάζει το πλάτος κατά το μήκος της δεξαμενής αυτής και δεν έχουμε στοιχεία για τα πλάτη πέραν την μέσης τομής, αναγκαζόμαστε να πάρουμε διαστάσεις πλάτους από το σχέδιο γενικής διάταξης. Τελικά ο όγκος πάνω από το κατάστρωμα της δεξαμενής Νο.1, $\nabla_{\rm UP.\ Cargo\ 2}$, προσδιορίζεται υπολογίζοντας τον μέσο όρο των δυο εγκάρσιων επιφανειών που βρίσκονται στην αρχή και στο τέλος της συγκεκριμένης δεξαμενής επί το μήκος της δεξαμενής. Συγκεκριμένα η εγκάρσια επιφάνεια στην αρχή της δεξαμενής είναι αυτή στο νομέα 116 και η άλλη στο νομέα 127.

Ο όγκος αυτός προκύπτει:

$$V_{UP.Cargo} = V_{UP.Cargo1} + V_{UP.Cargo2}$$

$$\nabla_{UP.Cargo1} = l_1 \cdot A_1 = 163.2 \cdot (37.2 + 27.55) \cdot \left(\frac{32.8 - 26.125}{2}\right) = 35268 \, m^3$$
$$\nabla_{UP.Cargo2} = l_2 \cdot \frac{A_1 + A_2}{2} = 36.4 \cdot \left[A_1 + (7.5 + 17.24) \cdot \left(\frac{32.8 - 26.125}{2}\right)\right] = 5436 \, m^3$$

Τελικά,

$$V_{UP,Cargo} = 40704 \ m^3$$

Εικόνα 2.4:2 Διαμόρφωση πρύμναίου τμήματος

Για τον προσδιορισμό του $V_{stern Shape}$, ανατρέχουμε στο σχέδιο γενικής διάταξης από όπου υπολογίζουμε το εγκάρσιο εμβαδό του πρυμναίου τμήματος που θέλουμε να αφαιρέσουμε από τον όγκο κάτωθεν του κυρίου καταστρώματος, V_U . Ο όγκος αυτός θα είναι το εμβαδό, 575.15 m², το οποίο υπολογίστηκε με τη βοήθεια της εντολής "Area" του "Autocad", επί το ύψος, 5.215 m.

Εικόνα 2.4:3 Υπολογισμός ζητούμενου εγκάρσιου εμβαδού πρυμναίου τμήματος

2015

$$V_{Stern Shape} = Area \cdot h = 575.15 \cdot 5.215 = 2963.2 m^3$$

Τελικά,

$$\nabla_{V} = \nabla_{D} + \nabla_{S} + \nabla_{b} + \nabla_{H} + \nabla_{UP.Cargo} - \nabla_{Stern Shape} = 311225.9 \, m^{3}$$

To W_{ST} , $\mathbf{x}\omega \mathbf{pig}$ tig uperkataskeuég dídetai apó tov pio kátu túpo,

$$\begin{split} W_{\text{ST}}' = \nabla_{\text{V}} \times C_{\text{ST}}' \times |1+0.033(\text{L/D-12})| \times |1+0.06 \text{ (n-D/D}_0)| \times |1+0.05(1.85\text{-B/D})| \times |1+0.2 \times (1/2) \times (1/2$$

Όμως ο συντελεστής C_{st} 'δίδεται από την εξίσωση

 $C'_{St} = [0.112 + L[m] \cdot 10^{-4}] \cdot (0.95 \div 1.05)$ για περιοχή μηκών 150÷ 350 m. Οπότε με γραμμική παρεμβολή λαμβάνεται :

 $C'_{St} = [0.112 + 283.2 \cdot 10^{-4}] \cdot (1.0166) = 0.1408 [\text{tn/m3}]$

Οπότε αντικαθιστώντας έχουμε:

 W_{ST} = 311225.9 [m³] × 0.1408 [tn/m³]×1+0.033((283.2/26)-12)|×1+0.06 (1-(26/4))| ×|1+0.05·(1.85-44/26)|×|1+0.2(11.5/26-0.85)|×|0.92+(1-0.834)²|×|1+0.75·0.834·(0.992-0.98) | = 24990 t

Επειδή το πατρικό πλοίο έχει βολβοειδή πλώρη θα προσαυξήσουμε το Wst' κατά 0.55% (0.4%-0,7%)(αφού η συγκεκριμένη μέθοδος αναφέρεται σε πλοία χωρίς βολβό). Οπότε,

$$W_{ST}' = 25127 t$$

Για το βάρος των υπερκατασκευών (Wss) θα ακολουθήσουμε την μέθοδο Müller-Koster. Με τη μέθοδο αυτή, υπολογίζονται τα βάρη όλων των, υπερκείμενων του κυρίου καταστρώματος, κατασκευών. Η μέθοδος διακρίνει τις κατασκευές σε δύο κατηγορίες, τις υπερκατασκευές και τα υπερστεγάσματα.

Σύμφωνα με τους κανονισμούς της γραμμής φόρτωσης, υπερκατασκευές, θεωρούνται κατασκευές επί του κύριου καταστρώματος με απόσταση πλαγίων τοιχωμάτων από τα πλευρά του πλοίου μικρότερη ή ίση του 4% του πλάτους, Β. Υπερστεγάσματα θεωρούνται όλες οι υπόλοιπες κατασκευές. Υπερκατασκευές όμως δεν υπάρχουν στο συγκεκριμένο πλοίο όπως διαπιστώθηκε και προηγουμένως.

Συγκεκριμένα, αναλύονται τα πατώματα των χώρων των υπερστεγασμάτων που αναφέρθηκαν στην μέθοδο Watson (χώροι ενδιαίτησης-Β και χώροι αποθήκης εφοδίωνκαπνοδόχου-Α). Έτσι σύμφωνα με την θεώρηση της μεθόδου αυτής, προσδιορίζονται κάθε φορά τα εμβαδά της επιφάνειας του δαπέδου Α₀ και της οροφής Α₀, συμπεριλαμβανόμενων των διαδρόμων για την τελευταία. Ύστερα με τον λόγο Α₀/Α₀, επιλέγεται για κάθε επίπεδο ο αντίστοιχος συντελεστής βάσει του ακόλουθου πίνακα:

Θέση	т	п	ш	w	Orangeloro
A _o /A _u	1	п	m	IV	σιακιστηριο
1.0	57	55	52	53	40
1.25	64	63	59	60	45
1.5	71	70	65	66	50
1.75	78	77	72	73	55
2.0	86	84	78	80	60
2.25	93	91	85	86	65
2.5	100	98	91	93	70

Πίνακας 2.4:2 Συντελεστές υπερστεγασμάτων κατά Schneekluth (Πηγή: Παπανικολάου 2009)

Στην συγκεκριμένη περίπτωση, για τον χώρο B, υπάρχουν έξι καταστρώματα και γίνεται η παραδοχή ότι το 2ο και 3ο λαμβάνουν την τιμή για το πάτωμα II, το 4ο για το III, το 5ο για το IV και το 6ο για το Οιακιστήριο.

Για τους λοιπούς χώρους περί της καπνοδόχου, επειδή δεν είναι χώροι ενδιαίτησης αλλά βοηθητικοί μηχανημάτων, εκλέγεται για όλα τα καταστρώματα ως συντελεστής, αυτός του Οιακιστηρίου.

Τα αποτελέσματα ακολουθούν:

Για τα συγκεκριμένα στεγάσματα, το βάρος δίνεται από τη σχέση:

$$W_{DH} = C_{DH} \cdot A_m \cdot h \cdot k_1 \cdot k_2 \cdot k_3$$

όπου: C_{DH}: ο ογκομετρικός συντελεστής βάρους σύμφωνα με τον πίνακα 2.13 του βιβλίου [1a], σελ.238,

 $A_{m} = 0.5 \times (A_{O} + A_{U})$

h: ύψος στεγάσματος

b: πλάτος ενδιαιτήσεων

k₁ = 1 + 0.02 (h - 2.6)

k₂= 1 + 0.05 (4.5 - I₁ / I_{DH}) όπου I_{DH}: μήκος στεγάσματος.

- k_{3} :διόρθωση για μήκος πλοίου σημαντικά διάφορου του κανονικού $L_{PP}{=}150m$ δηλ. δ $L_{PP}{=}\pm30~m$
- 0.95 για L_{pp}= 100m και 1.1 για L_{pp}= 230m. Επομένως με γραμμ. παρεμβολή για L=283.2 k_3=1.161.
- Α₀: εμβαδό ανοικτών και κλειστών χώρων, υπεράνω του στεγάσματος
- Αυ: εμβαδό κλειστών χώρων στεγάσματος

	BI	BII	BIII	BIV	BV	BVI	AI	All	AIII	AIV	AV
A _o (m ²)	633.58	652.88	626.36	599.61	643.51	296.74	531.73	463.58	408.64	370.58	139.84
A _u (m ²)	561.73	562.76	565.98	558.68	561.45	254.82	492.18	463.58	321.52	293.96	139.84
A₀/A∪	1.13	1.16	1.11	1.07	1.15	1.16	1.08	1.00	1.27	1.26	1.00
1	57	55	55	52	53	40	40	40	40	40	40
1.25	64	63	63	59	60	45	45	45	45	45	45
С _{DH} (t/m ³)	60.58	60.12	58.41	54.05	57.09	43.29	41.61	40.00	45.42	45.21	40.00
A _m	597.66	607.82	596.17	579.15	602.48	275.78	511.96	463.58	365.08	332.27	139.84
h _{DH} (m)	3.483	3.2	3	3	3	3	3.546	4.45	4.8	4	5.051
Kı	1.018	1.012	1.008	1.008	1.008	1.008	1.019	1.037	1.044	1.028	1.049
K ₂	1	1	1	1	1	1	1	1	1	1	1
K ₃	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
W _{DH} (t)	149.10	137.49	122.35	109.98	120.85	41.94	89.41	99.41	96.54	71.77	34.43
										W _{DH}	1073t

Πίνακας 2.4:3 Υπολογισμός υπερστεγασμάτων πατρικού πλοίου κατά Schneekluth (Πηγή: Παπανικολάου 2009)

Επειδή στο πατρικό πλοίο χρησιμοποιείται χάλυβας υψηλής αντοχής θα μειώσουμε κατά 6% την εκτίμηση για το W'_{ST} .

Το συνολικό βάρος της μεταλλικής κατασκευής προκύπτει:

 $W'_{STtotal} = 0.94 \cdot (W'_{ST} + W_{SS}) = 0.94 \cdot 25127 + 1073 \rightarrow W'_{STtotal} = 24629 [t]$

57

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Watson	21818
Schneekluth & Müller-Koster	24629

Το W_{st} θα υπολογιστεί ως ο μέσος όρος των 2 μεθόδων.

$$W_{ST} = 23223 [t]$$

2.4.1.2 Βάρος ενδιαίτησης και εξοπλισμού (W_{ot})

Βάρος μόνωσης δεξαμενών

Όπως προαναφέρθηκε, γίνεται η παραδοχή ότι το LNG Carrier προσεγγίζεται σαν ένα δεξαμενόπλοιο στο οποίο προστίθεται το βάρος της ενίσχυσης και της μόνωσης των δεξαμενών φορτίου. Οπότε στην περίπτωση αυτή, θα υπολογιστεί το βάρος της ενδιαίτησης και εξοπλισμού με τις τυπικές μεθόδους και στη συνέχεια θα προστεθεί το βάρος της ενίσχυσης και της μόνωσης των δεξαμενών φορτίου, καθώς και οι διάφορες αντλίες που βρίσκονται στις δεξαμενές φορτίου (pump towers).

Το πατρικό πλοίο διαθέτει δεξαμενές μεμβρανικού τύπου της *GTT*, οι οποίες αποτελούνται από δυο στρώματα πανομοιότυπων μεταλλικών μεμβρανών υλικού Invar (primary και secondary barriers) και από τρία ανεξάρτητα στρώματα μόνωσης (insulation layers) συνολικού πάχους 530mm. Για το συγκεκριμένο πλοίο, έπειτα από μελέτη του ναυπηγείου για μείωση του ημερήσιου Boil-off rate (~στο 0.1%), αποφασίστηκε να χρησιμοποιηθούν τα εξής στρώματα μόνωσης: ένα στρώμα 92mm και ένα 230mm τα οποία αποτελούνται από plywood και υαλοβάμβακα (glasswool), και ένα στρώμα 208mm το οποίο αποτελείται από plywood και πολυουρεθάνη (PUF). Τα στρώματα από invar έχουν πάχος 0.7mm και τοποθετούνται, το πρώτο να είναι σε επαφή με το φορτίο και το δεύτερο στα 300 χιλιοστά από τη γάστρα.

Εικόνα 2.4:4 Εσωτερικό δεξαμενής LNG Carrier (Πηγή: gcaptain)

Για τον υπολογισμό του βάρους των μεταλλικών μεμβρανών λαμβάνεται υπόψη η σύσταση των υλικών τους και οι διαστάσεις τους. Το Invar όπως έχει αναφερθεί, είναι ένα κράμα νικελίου-χάλυβα το οποίο έχει πολύ χαμηλό συντελεστή θερμικής διαστολής και χρησιμοποιείται λόγω των πολύ χαμηλών θερμοκρασιών του φορτίου LNG (-162°C). Η πρώτη στρώση (primary membrane) είναι σε επαφή με το φορτίο ενώ η δεύτερη (secondary membrane) εξασφαλίζει στεγανότητα σε περίπτωση διαρροής. Το ειδικό βάρος του συγκεκριμένου υλικού είναι 8.1tn/m³.

Έτσι, από το σχέδιο της μέσης τομής είναι δυνατό, επειδή είναι πολύ μικρό το πάχος να θεωρηθεί ότι το μήκος της περιφέρειας αυτής της επιφάνειας, πολλαπλασιασμένο με το πάχος δίνει την επιφάνεια της ενίσχυσης. Αν πολλαπλασιαστεί επί το μήκος της δεξαμενής που λαμβάνεται από το σχέδιο γενικής διάταξης, προσδιορίζεται ο όγκος της μιας μεμβράνης της ενίσχυσης (V_{lenght} (m³)=Perimeter(m) x Length(m) x 0.0007(m)). Επίσης, υπολογίζονται στην αρχή και στο τέλος της δεξαμενής οι εγκάρσιες επιφάνειες και κατά συνέπεια ο όγκος (V_{closings}(m³)=Area(m²) x 0.0007(m)), ο οποίος πολλαπλασιαζόμενος με το ειδικό βάρος του Invar, δίνει το βάρος της μεταλλικής αυτής ενίσχυσης (Mass(tn)=V(m³)x γ(tn/m³)).

Αυτά ισχύουν για τις δεξαμενές Νο.4,3 και 2 που έχουν ίδια γεωμετρία και διαφέρουν μόνο ως προς το μήκος τους. Για την δεξαμενή Νο. 1 υπολογίζουμε τα αντίστοιχα μεγέθη που μας ενδιαφέρουν στο τέλος και στην αρχή της δεξαμενής (δηλ. στο

frame 116 και 126 αντίστοιχα). Τα μεγέθη του frame 116 είναι όμοια με αυτά των άλλων δεξαμενών που έχουν ήδη υπολογιστεί. Αυτά του frame 126 υπολογίζονται από το σχέδιο γενικής διάταξης. Ακολούθως, λόγω της γραμμικότητας που ακολουθεί το πάχος της δεξαμενής Νο. 1 κατά το μήκος, για να υπολογίσουμε τον όγκο V_{length} παίρνουμε τον μέσο όρο των περιμέτρων στην αρχή και στο τέλος της δεξαμενής και τον πολλαπλασιάζουμε επί το μήκος και το πάχος .

Tank No. 4	Perimeter (m)	Area (m²)	V _{closings} (m ³)	V _{Lenght} (m³)	V (m³)	γ (tn/m³)	Mass (tn)
Secondary Barrier (invar)	116.36	988.13	1.38	4.20	5.59	8.10	45.25
Primary Barrier (invar)	114.83	952.85	1.33	4.15	5.48	8.10	44.40
Tanks No.2,3	Perimeter (m)	Area (m²)	V _{closings} (m ³)	V _{Lenght} (m³)	V (m³)	γ (tn/m³)	Mass (tn)
Secondary Barrier (invar)	116.36	988.13	1.38	4.11	5.49	8.10	88.91
Primary Barrier (invar)	114.83	952.85	1.33	4.05	5.39	8.10	87.24
Tank No.1	Perimeter at frame 126 (m)	Area at frame 126 (m²)	V _{closings} (m ³)	V _{Lenght} (m³)	V (m³)	γ (tn/m³)	Mass (tn)
Secondary Barrier (invar)	79.38	473.47	1.02	2.30	3.33	8.10	26.93
Primary Barrier (invar)	77.85	431.16	0.97	2.27	3.23	8.10	26.20
						Invar _{total}	318.94

Πίνακας 2.4:4 Υπολογισμός βάρους μεταλλικής ενίσχυσης δεξαμενών φορτίου

Μήκος tank No. 4	51.6 m
Μήκος tank No.3,2	50.4 m
Μήκος tank No. 1	33.6 m

Ομοίως, υπολογίζουμε το βάρος των μονώσεων που αποτελούνται από plywoodglasswool-PUF. Το plywood είναι από σημύδα (birch) και έχει ειδικό βάρος 735 kg/m³. Η πολυουρεθάνη έχει ειδικό βάρος 130 kg/m³, ενώ ο υαλοβάμβακας 35 kg/m^{3 i}. Εδώ αξίζει να σημειωθεί ότι η μόνωση δεν είναι ομοιόμορφη παντού, αλλά υπάρχουν περιοχές που είναι πιο ενισχυμένες (Reinforced και ultra-Reinforced Areas). Η ανάλυση για την εύρεση των ποσοστών της κάθε περιοχής στο σύνολο του συστήματος έγινε με μοντελοποίηση της εικόνας 7 με τη βοήθεια του "Autocad".

^Ι Πληροφορίες από το Ναυπηγείο

Εικόνα 2.4:5 Περιοχές του συστήματος μόνωσης του πατρικού πλοίου με επιπλέον ενίσχυση

Standard areas	63%
Reinforced areas	25%
Ultra-Reinforced areas	12%

Πίνακας 2.4:5 Ποσοστό κάθε περιοχής στο σύνολο του συστήματος μόνωσης

Για να υπολογίσουμε όμως το ειδικό βάρος της κάθε μιας από τις τρείς στρώσεις μόνωσης η οποία αποτελείται από δυο υλικά κάθε φορά (είτε plywood-glasswool είτε plywood-PUF), χρειάζεται να μοντελοποιήσουμε τα "κουτιά" (boxes) ώστε να δούμε σε ποια αναλογία βρίσκεται το καθένα από τα δυο υλικά στη κάθε στρώση. Τα κουτιά διαφέρουν από περιοχή σε περιοχή και έτσι πρέπει να γίνει μοντελοποίηση για όλες τις στρώσεις σε όλες τις περιοχές (Πίνακας 2.4:6).

Εικόνα 2.4:6 Δομή «κουτιών» της primary insulation layer και στις τρεις περιοχές (standard, Reinforced, Ultra-Reinforced Areas) (Πηγή: GTT)

Εικόνα 2.4:7 Δομή «κουτιών» της secondary insulation layer και στις τρεις περιοχές (standard, Reinforced, Ultra-Reinforced Areas) (Πηγή: GTT)

Εικόνα 2.4:8 Διάταξη συστήματος της GTT (Πηγή: GTT)

In St	andard Are	as	In Reinforced Areas			In Ultra-Reinforced Arec		
sec	ondary bo	x	secondary box secondary box			(
layer 7	τάχους 0.20)8m	layer 7	τάχους 0.20)8m	layer πάχους 0.208m)8m
plywood	20.70%	255.24	plywood	22.10%	263.71	plywood	22.50%	266.13
PUF	79.30%	kg/m ³	PUF	77.900%	kg/m ³	PUF	77.500%	kg/m ³
layer 7	τάχους 0.09	∂2m	layer ت	τάχους 0.09	92m	layer πάχους 0.092m		92m
plywood	22%	189.0	plywood	23%	198.8	plywood	24%	201.6
Glasswool	78%	kg/m ³	Glasswool	77%	kg/m ³	Glasswool	76%	kg/m ³
рг	rimary box		рі	primary box		рі	rimary box	
plywood	21.90%	188.3	plywood	26.40%	219.8	plywood	28.70%	235.9
Glasswool	78.10%	kg/m ³	Glasswool	73.60%	kg/m ³	Glasswool	71.30%	kg/m ³

Πίνακας 2.4:6 Ειδικό βάρος της κάθε στρώσης σε κάθε περιοχή

Λαμβάνοντας υπόψη τα προηγούμενα θα υπολογιστούν τα βάρη της κάθε στρώσης σε όλες τις δεξαμενές. Συγκεκριμένα για τις δεξαμενές No. 4,3 και 2 η διαδικασία είναι όμοια με την διαδικασία που ακολουθήθηκε και στον υπολογισμό της μεταλλικής μόνωσης, μόνο που επειδή εδώ το πάχος της μόνωσης είναι σημαντικό βρίσκουμε την εγκάρσια επιφάνεια που μας ενδιαφέρει κάθε φορά, με την εντολή "Area" του "Autocad".

Tank No. 4	Area (m²)	V _{closings} (m ³)	V _{Lenght} (m ³)	V (m³)	γ (tn/m³)	Mass (tn)
Layer 0.208m	24.45	385.29	1261.62	1646.91	0.259	425.99
Layer 0.092m	10.83	170.42	558.83	729.25	0.193	140.72
Layer 0.23m	26.59	426.04	1372.04	1798.09	0.202	363.01
Tanks No.2,3	Area (m²)	V _{closings} (m ³)	V _{Lenght} (m ³)	V (m³)	γ (tn/m³)	Mass (tn)
<i>Tanks No.2,3</i> Layer 0.208m	Area (m²) 24.45	V _{closings} (m ³) 385.29	V _{Lenght} (m ³) 1232.28	V (m³) 1617.57	γ (tn/m³) 0.259	Mass (tn) 836.80
<i>Tanks No.2,3</i> Layer 0.208m Layer 0.092m	Area (m²) 24.45 10.83	V _{closings} (m ³) 385.29 170.42	V _{Lenght} (m ³) 1232.28 545.83	V (m³) 1617.57 716.25	γ (tn/m³) 0.259 0.193	Mass (tn) 836.80 276.42

Πίνακας 2.4:7 Υπολογισμός βάρους σύνθετης μόνωσης δεξαμενών No. 4,3,2

Αναλυτικά, το ειδικό βάρος, γ, προκύπτει π.χ για το layer 0.208m :

 $\gamma_{layer \ 0.208m} = [255.24 \text{ kg/m}^3 \cdot 63\%] + [263.71 \text{ kg/m}^3 \cdot 25\%] +$

+[266.13 kg/m³ · 12%]

 $\gamma_{layer 0.208m} = 259 \, \text{kg/m}^3$

Τελικά προκύπτει για τη δεξαμενή Νο.1,

	Tank No. 1	Area (m²)	V _{closings} (m ³)	
	Layer 0.208m	24.45	192.65	
Frame 116	Layer 0.092m	10.83	85.21	
	Layer 0.23m	26.59	213.02	

	Layer 0.208m	16.71	89.68
Frame 126	Layer 0.092m	7.46	39.67
	ply 0.23m	18.08	99.17

Tank No. 1	V _{Lenght} (m ³)	V (m³)	γ (tn/m³)	Mass (tn)
Layer 0.208m	691.49	973.81	0.259	251.89
Layer 0.092m	307.27	432.15	0.193	83.39
Layer 0.23m	750.46	1062.64	0.202	214.53

Πίνακας 2.4:8 Υπολογισμός βάρους σύνθετης μόνωσης δεξαμενής Νο. 1

Το συνολικό βάρος για τις τρεις σύνθετες στρώσεις μόνωσης είναι Insulation TOTAL = 3305.9 t

Άρα το συνολικό βάρος μόνωσης-ενίσχυσης θα είναι Invartotal + Insulation Total =3624.8 t

Στο βάρος αυτό θα προστεθεί και το βάρος των πύργων αντλιών (pump towers). Ο κάθε πύργος ζυγίζει περίπου 40 tn. Υπάρχει ένας πύργος σε κάθε δεξαμενή.

Συμπερασματικά, το βάρος της πρόσθετης ενδιαίτησης εξοπλισμού λόγω των δεξαμενών φορτίου θα είναι:

$$\mathbf{Tanks}_{TOTAL} = 3784.8 \ tn = \mathbf{W}_{\mathbf{0T}}^*$$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με τη μεθοδο συντελεστών

Στη μέθοδο αυτή του βιβλίου [1a], σελ.256, το W_{ot} χωρίζεται σε υποομάδες για τις οποίες δίνεται το ειδικό βάρος. Το άθροισμα των ειδικών βαρών των υποομάδων δίνει το συνολικό ειδικό βάρος (w_{ot}) του W_{ot} . Πολλαπλασιάζοντας με LBD το συνολικό ειδικό βάρος (w_{ot}) του W_{ot} . Παρουσιάζεται ο Πίνακας 2.4:9 με τις υποομάδες και τα ειδικά βάρη τους.

Ομάδα	kg/m ³
I	0.5
II ₁	0
ll ₂	1
111	1
IV	2.5
V	1.5
VI	0
VII	0.3
VIII ₁	0
VIII ₂	1.5
IX	1
W _{OT}	9.3

Πίνακας 2.4:9 Τυπικοί συντελεστές ομάδων βαρών για δεξαμενόπλοιο (Πηγή: Παπανικολάου 2009)

Συνεπώς το Wot του πατρικού υπολογίζεται από την εξίσωση:

$$W_{OT} = w_{OT} \cdot L \cdot B \cdot D + W_{OT}^* = 9.3 \cdot 283.2 \cdot 44 \cdot 26 + 3784.8 \rightarrow W_{OT} = 6797.8 \ [t]$$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με Προσεγγιστικούς τύπους
Από το βιβλίο [1a], σελ. 257, ισχύει η εξίσωση:

$$W_{OT} = K_{OT} \cdot L \cdot B$$

Ο K_{ot} είναι ένας συντελεστής του οποίου η τιμή δίδεται $0.17 t/m^2$ για δεξαμενόπλοια μήκους 300 m και $0.180 t/m^2$ για δεξαμενόπλοια μήκους 150 m. Επομένως με γραμμ. παρεμβολή για μήκος 283.2 m η τιμή του συντελεστή προκύπτει $K_{oT} = 0.182 t/m^2$, οπότε η παραπάνω εξίσωση γίνεται:

$$W_{OT} = K_{OT} \cdot L \cdot B + W_{OT}^* = 0.182 \cdot 283.2 \cdot 44 + 3784.8 \rightarrow W_{OT} = 6056.7[t]$$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με τη μεθοδο Schneekluth

Σε αυτή τη μέθοδο του βιβλίου [1a], σελ.263, χωρίζεται το βάρος ενδιαίτησης και εξοπλισμού σε 4 υποομάδες: Ι. Καλύμματα στομίων κυτών, ΙΙ. Φορτοεκφορτωτικά μέσα, ΙΙΙ. Ενδιαίτηση και ΙV. Λοιπά βάρη. Ι. Καλύμματα στομίων κυτών: Δεν υπάρχουν στόμια. Επομένως,

$$W_I = 0 [t]$$

II. **Φορτοεκφορτωτικά μέσα**: Η ομάδα αυτή περιλαμβάνει φορτωτήρες, βαρούλκα φορτωτήρων και γερανούς.

Το πατρικό πλοίο διαθέτει δυο περιστρεφόμενους ελαφρούς φορτωτήρες των 3tn ακτίνας 16.5 m, ένα 5tn με ακτίνα 8m και δυο 10tn ακτίνας 24m. Για τους γερανούς 3tn και 5tn το βάρος προκύπτει από τον Πίνακας 2.4:10, ενώ για τους δυο των 10tn από τον Πίνακας 2.4:11, με γραμμική παρεμβολή.

Μέγιστος βάρος ανύψωσης (tn)	Μέγιστος άνοιγμα (m)	Ύψος κατασκευής (m)	Βάρος γερανού (tn)
3	16.5	4	10
5	8	3.5	10
10	24	8	25.2

Μέγιστο βάρος ανύψωσης [t]	Μέγιστο άνοιγμα [m]	Ύψος κατασκευής [m]	Βάρος γερανού [t]
1	10	3,7	10
2	10	3.7 ÷ 4.3	$7 \div 11$
	14	4.3 ÷5.0	8 ÷ 13
3	10	3.7 ÷4.5	8 ÷ 11
	16	4.3 ÷ 5.0	10 ÷ 15
5	10	3.7 ÷5.1	10 ÷ 15
	16	4.7 ÷ 6.3	13 ÷ 16
7.5	14.5	5.9	20
	16	6.5	21

Για τους φορτωτήρες έχουμε τα ακόλουθα χαρακτηριστικά:

Πίνακας 2.4:10 Ενδεικτικά βά	ρη φορτοεκφορτωτικών	(Πηγή: Παπανικολάου 2009)
------------------------------	----------------------	---------------------------

Max. load (t)	Weight (t) at max. working radius				
	15 m	20 m	25 m	30 m	
10	18	22	26		
15	24	28	34		
20		32	38	45	
25		38	44	54	
30		42	48	57	
35		46	52	63	

Πίνακας 2.4:11 Ενδεικτικά βάρη φορτοεκφορτωτικών (Πηγή: Schneekluth & Bertram 1998)

Επομένως, το βάρος των φορτοεκφορτωτικών μέσων προκύπτει:

$$W_{II} = 80.4 [t]$$

III. Ενδιαίτηση: Η ομάδα αυτή αφορά το χώρο ενδιαίτησης του πληρώματος. Όλα τα βάρη, που περιλαμβάνονται στην ομάδα αυτή, μπορούν να υπολογισθούν μέσω του αντίστοιχου όγκου ενδιαίτησης.

Στον ακόλουθο πίνακα δίνονται οι κατασκευαστικές λεπτομέρειες των υπερστεγασμάτων ενδιαίτησης του πατρικού πλοίου:

Υπερστεγάσματα	h (m)	l (m)	b (m)	V (m³)
UPPER	3.48	18.30	30.75	1959.97
Α	3.20	18.40	30.75	1810.56
В	3.00	18.30	30.75	1688.18
С	3.00	18.30	30.75	1688.18
D	3.00	18.30	30.75	1688.18
NAV.BRI.	3.00	AREA =	275.78	827.34
Σύνολο				9662.40

Πίνακας 2.4:12 Διαστάσεις υπερστεγασμάτων χώρων ενδιαίτησης

Για δεξαμενόπλοια το ογκομετρικό βάρος λαμβάνεται ίσο με 70 kp/m^3 (βιβλίο [1a], σελ. 267).

Επομένως το βάρος των ενδιαιτήσεων υπολογίζεται ως εξής:

$$W_{III} = 70 \cdot 9662.4 \cdot 9.81 = 6635170 \ [N] = 677 \ [t]$$

ΙV. Λοιπά βάρη: Στην ομάδα αυτή ανήκουν άγκυρες, εγκατάσταση πηδαλίου, συστήματα πυρόσβεσης-πυρασφάλειας κλπ. Θα χρησιμοποιηθεί ο ακόλουθος προσεγγιστικός τύπος (σελ. 268):

$$W_{IV} = (L \cdot B \cdot D)^{2/3} \cdot C_1, \circ \pi o v \ C_1 = 0.18 \div 0.26$$

Επομένως για το πατρικό πλοίο υπολογίζουμε:

$$W_{IV} = (283.2 \cdot 44 \cdot 26)^{2/3} \cdot 0.22 = 1037.8 [t]$$

Τελικά το συνολικό βάρος εξοπλισμού κατά Schneekluth για το πατρικό πλοίο υπολογίζεται ως:

$$W_{OT} = W_I + W_{II} + W_{III} + W_{IV} + W_{OT}^* = 0 + 80.4 + 677 + 1037.8 + 3784.8 = 5579.6 [t]$$

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Συντελεστές	6798
Προσεγγιστικοί Τύποι	6057
Ομάδες βαρών Schneekluth	5580

Το Wot θα υπολογιστεί από το μέσο όρο των τριών μεθόδων.

$$W_{OT} = 6145 [t]$$

2.4.1.3 Βάρος Μηχανολογικής Εγκατάστασης (W_M)

Διαγράμματα

Από το διάγραμμα στο βιβλίο [1b]ⁱ, σ. 90, θα βρούμε ένα ειδικό βάρος της μηχανολογικής εγκατάστασης με βάση την ισχύ πρόωσης για δεξαμενόπλοια με μεσόστροφες μηχανές. Έτσι για ισχύ πρόωσης $P_B = 45862.2 \ [HP]$ βρίσκουμε ειδικό βάρος ίσο με $w_M = 60 \ Kg/HP$. Οπότε το W_M υπολογίζεται ως εξής:

$$W_M = \frac{W_M \cdot P_B}{1000} = \frac{60 \cdot 45862.2}{1000} \Longrightarrow W_M = 2752 \ [t]$$

Τυποι Watson – Gilfillan

Η μέθοδος αυτή παρουσιάζεται στο βιβλίο [1a], «Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης», Α. Παπανικολάου, Τεύχος 1, σ. 272, σύμφωνα με την εξίσωση:

$$W_M = C_{MD} \cdot P_B^{0.89}$$

Επιλέγουμε την τιμή του συντελεστή $C_{MD} = 0.21 =$ (μεσόστροφες diesel) και η ισχύς του πατρικού είναι $P_B = 34200 \ [kW]$, συνεπώς η παραπάνω εξίσωση γίνεται:

$$W_M = 0.21 \cdot 34200^{0.89} \Longrightarrow W_M = 2278 [t]$$

ⁱ Βιβλίο [1b]: «Μελέτη και Εξοπλισμός Πλοίου Ι, Συλλογή Βοηθημάτων», Α. Παπανικολάου, Κ. Αναστασόπουλος

Εμπειρικοί Συντελεστές

Στη μέθοδο με τους εμπειρικούς συντελεστές του βιβλίου [1b], σελ.88, το βάρος της μηχανολογικής εγκατάστασης υποδιαιρείται σε τρείς υποομάδες W_{MR} , W_{MS} , W_{MM} , το άθροισμα των οποίων μας δίνει το βάρος της μηχανολογικής εγκατάστασης. Ακόμα η μέθοδος με τους συντελεστές απαιτεί να γνωρίζουμε την ισχύ στον άξονα του πλοίου (SHP). Έτσι υποθέτουμε ένα συντελεστή $\eta_M = 0.98$ ώστε να την υπολογίσουμε:

$$SHP = \eta_M \cdot P_B = 0.98 \cdot 45862.2 \Rightarrow SHP = 44945 [HP]$$

Για την κάθε υποομάδα ισχύει:

- $W_{MR} = w_1 \cdot LBD$
- $W_{MS} = W_3 \cdot SHP$
- $W_{MM} = w_4 \cdot SHP$

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα:

W ₁	4	kp/m ³	\rightarrow	W _{MR}	1295923	kp	\rightarrow	1296	t
W ₃	4	kp/SHP	\rightarrow	W _{MS}	179779.8	kp	\rightarrow	179.8	t
W ₄	22.5	kp/SHP	\rightarrow	W _{MM}	1011262	kp	\rightarrow	1011	t

Τελικά από τον πίνακα προκύπτει:

$$W_M = W_{MM} + W_{MS} + W_{MR} \to W_M = 2487 [t]$$

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Διαγράμματα	2752
Watson – Gilfillan	2278
Συντελεστές	2487

Όπως φαίνεται, τα αποτελέσματα των 3 μεθόδων ισαπέχουν μεταξύ τους επομένως το W_M θα υπολογιστεί ως ο μέσος όρος όλων των μεθόδων.

$$W_M = 2505 [t]$$

2.4.2 Συγκεντρωτικά αποτελέσματα, βάρος LS, συντελεστής διόρθωσης.

Τα αποτελέσματα της όλης διαδικασίας για το πατρικό πλοίο συνοψίζονται στον παρακάτω πίνακα:

Ομάδα Βάρους	Εκτίμηση (t)	%
W _M	2505	8
W _{ot}	6145	19
W _{ST}	23223	73
LS	31873	100

Σύμφωνα με το Booklet του πατρικού πλοίου το πραγματικό LS είναι 32541.9 t. Έτσι μπορούμε να βγάλουμε τον συντελεστή διόρθωσης της όλης διαδικασίας:

$$\lambda_{LS} = \frac{LS_{Calc}}{LS_{Real}} = \frac{31873}{32541.9} \rightarrow \lambda_{LS} = 0.9795$$

<u>Σημείωση:</u> Στο σημείο αυτό παρατηρούμε ότι το βάρος της ενδιαίτησης και εξοπλισμού, W_{ot}, στο σύνολο του άφορτου σκάφους διακατέχει μεγάλο ποσοστό σε σχέση με ένα απλό δεξαμενόπλοιο. Το γεγονός αυτό οφείλεται προφανώς στο έξτρα βάρος για την μόνωση και ενίσχυση των δεξαμενών φορτίου.

2.4.3 Υπολογισμός βαρών για το υπό μελέτη πλοίο

Για το υπό μελέτη πλοίο θα ακολουθήσουμε ακριβώς την ίδια διαδικασία και θα λάβουμε υπ' όψιν μόνο τις μεθόδους που χρησιμοποιήθηκαν για το πατρικό πλοίο. Στο τέλος της διαδικασίας βάσει του συντελεστή διόρθωσης θα βρεθεί το βάρος του υπο μελέτη πλοίου.

2.4.3.1 Βάρος Μεταλλικής Κατασκευής (W_{st})

• Μέθοδος Watson

Σύμφωνα με την μέθοδο Watson του βιβλίου [1a], σελ. 219, το W_{st} υπολογίζεται από την εξίσωση κατά Lloyd's Register:

$$E_N = L(B+T) + 0.8 L (D-T) + 0.85 \sum_{i=1}^{N_1} h_{1i} L_{1i} + 0.75 \sum_{i=1}^{N_2} h_{2i} L_{2i}$$

όπου: N₁, h_{1i}, I_{1i}: αριθμός, ύψος και μήκος των υπερστεγασμάτων,

 N_2 , h_{2i} , I_{2i} : αριθμός, ύψος και μήκος των υπερκατασκευών.

Έχοντας προμηθευτεί το σχέδιο γενικής διάταξης του πατρικού πλοίου, γίνεται η αναγωγή στην κλίμακα μέσω του προγράμματος "Autocad". Παρατηρείται ότι δεν υπάρχουν χώροι που μπορούν να χαρακτηρισθούν ως υπερκατασκευές (Bss≥0.92B).

Για τη μέθοδο Watson θα χρησιμοποιηθούν ως υπερστεγάσματα, τα υπερστεγάσματα του πατρικού πλοίου.

Οπότε έχουμε τον εξής πίνακα στον οποίο θα υπολογιστούν τα δύο αθροίσματα της παραπάνω εξίσωσης.

Υπερστεγ	h1i (m)	l1i (m)	h1i x l1i		
	DECKS				
UPPER	3.483	18.3	63.74		
А	3.2	18.4	58.88		
В	3	18.3	54.90		
С	3	18.3	54.90		
D	3	18.3	54.90		
NAV. BRI.	3	19.4	58.20		
Engine Cas	cofferda, sing	ım, Emerg	. gen. r. etc.		
UPPER	3.546	15.23	54.01		
А	4.45	15.23	67.77		
В	4.8	15.23	73.10		
С	4	15.23	60.92		
D	5.051	13.865	70.03		
	In Cargo	Space			
Cargo comp. room	5.7	27.7	157.89		
Cargo gear locker	4	13.6	54.4		
Dry powder st.	3.2	10.5	33.6		
Cargo space above main deck	6.675	200	1335		
			2252.24	$=\sum_{i=1}^{N1}h_{1i}L_{1i}$	
Υπερκατασκευές	h2i (m)	l2i (m)	hxl		
	0	0	0	$=\sum_{i=1}^{N^2}h_{2i}L_{2i}$	

Πίνακας 2.4:13 Διαστάσεις υπερστεγμασμάτων πατρικού πλοίου

Οπότε η εξίσωση γράφεται:

$$E_N = 283.2 \cdot (46 + 11.7) + 0.8 \cdot 283.2 \cdot (26 - 11.7) + 0.85 \cdot 2252.24 + 0.75 \cdot 0 \rightarrow$$
$$E_N = 21495$$

Ακολούθως μέσω του Διάγραμμα 2:2 της μεθοδολογίας Watson και με δεδομένο δείκτη εξοπλισμού E_N προσδιορίζεται ο αριθμός $W_{ST}^* = 23500 t$. Σε αυτό το νούμερο πρέπει να ελέγξουμε αν θα υπάρξει διόρθωση λόγω του C_B . Υπολογίζουμε το C_B στο 80% του D σύμφωνα με την εξίσωση:

$$C_{B1}^* = C_{B1} + \frac{(1 - C_{B1})(0.8 \cdot D - T)}{3T}$$

Διάγραμμα 2:2 Υπολογισμός του Wsτ∗ βάσει του δείκτη εξοπλισμού Ε_Ν της μεθόδου Watson (Πηγή: Παπανικολάου 2009)

Όπου,

$$C_{B1} = C_B \left(\frac{D}{T}\right)^{\left(\frac{C_{WL}}{C_B} - 1\right)} = 0.758 \left(\frac{26}{11.7}\right)^{\left(\frac{0.837}{0.758} - 1\right)} = 0.824$$

Άρα,

$$C_{B1}^* = 0.824 + \frac{(1 - 0.824)(0.8 \cdot 26 - 11.7)}{3 \cdot 11.7} \rightarrow C_{B1}^* = 0.869 \neq 0.700$$

Άρα θα πρέπει θα διορθώσουμε την τιμή του W^*_{ST} που βρήκαμε από το διάγραμμα σύμφωνα με την εξίσωση:

$$W'_{ST} = W^*_{ST} \cdot (1 + 0.05(C^*_{B1} - 0.7)) = 23500 \cdot (1 + 0.05 \cdot (0.869 - 0.7)) \rightarrow 0.000$$

$$\rightarrow W'_{ST} = 23699 \ [t]$$

Επειδή στο πλοίο θα χρησιμοποιηθεί χάλυβας υψηλής αντοχής την παραπάνω εκτίμηση θα την μειώσουμε κατά 5% έως 7% (επιλέγω 6%). Έτσι έχουμε:

$$W_{ST} = 22277 [t]$$
• Μέθοδοι Schneekluth και Müller-Koster

Η μέθοδος Schneekluth που περιγράφεται στο βιβλίο [1a], σελ. 228, εκτιμά το βάρος της μεταλλικής κατασκευής χωρίς το βάρος των υπερκατασκευών (W_{st}'). Για να υπολογίσουμε το βάρος των υπερκατασκευών (W_{ss}) θα χρησιμοποιήσουμε την μέθοδο Müller- Koster (σελ.235).

Στη μέθοδο Schneekluth υπολογίζουμε πρώτα τον όγκο κάτωθεν του ανώτερου καταστρώματος σύμφωνα με την εξίσωση:

$$\nabla_U = \nabla_D + \nabla_S + \nabla_b + \nabla_H$$

όπου $\nabla_{\rm U}$, Ο όγκος κάτωθεν του ανώτερου καταστρώματος

 $\nabla_{\rm D}$, Ο όγκος έως το κοίλο, $\nabla_{D} = L \cdot B \cdot D \cdot C_{BD}$

 ∇_{s} , Αύξηση όγκου λόγω σιμότητας, $\nabla_{s} = L_{s} \cdot B \cdot (S_{F} + S_{A}) \cdot C_{2}$

 $\nabla_{\mathbf{b}}$, Αύξηση όγκου λόγω κυρτότητας καταστρώματος, $\nabla_{b} = L \cdot B \cdot b \cdot C_{3}$

 $abla_{ extsf{H}}$, Αύξηση όγκου λόγω στομίων κυτών, , $abla_{H} = \sum_{i}^{N} l_{Hi} b_{Hi} h_{Li}$

Στον όγκο ∇_U θα προστεθεί ο όγκος των κυτών πάνω από το ανώτερο κατάστρωμα, $\nabla_{UP.Cargo}$, και θα αφαιρεθεί ο όγκος, $\nabla_{Stern \ Shape}$, λόγω διαμόρφωσης του πρυμναίου τμήματος του πλοίου. Αυτό οφείλεται, όπως αναφέρθηκε προηγουμένως, στο γεγονός ότι οι μεθόδοι που χρησιμοποιούνται είναι για δεξαμενόπλοια και όχι για πλοία LNG.

Άρα τελικά ο ζητούμενος όγκος θα είναι:

$$V_V = V_U + V_{UP.Cargo-} V_{Stern Shape}$$

Ο όγκος έως το κοίλο ($\nabla_{\rm D}$)

Επιλέγουμε συντελεστή C_1 = 0.25 αφού το πατρικό έχει μικρό άνοιγμα νομέων, οπότε έχουμε:

$$C_{BD} = C_B + C_1 \frac{D - T}{T} (1 - C_B) = 0.758 + 0.25 \frac{26 - 11.7}{11.7} (1 - 0.758) \rightarrow C_{BD} = 0.832$$

 $\nabla_D = L \cdot B \cdot D \cdot C_{BD} = 283.2 \cdot 46 \cdot 26 \cdot 0.832 \rightarrow \nabla_D = 281786 \ [m^3]$

• Αύξηση όγκου λόγω σιμότητας (∇_s)

Θεωρούμε ότι η σιμότητα που υπάρχει στο πατρικό είναι αμελητέα επομένως το υπο μελέτη δεν θα έχει σιμότητα.

$$\nabla_S = 0 \ [m^3]$$

• Αύξηση όγκου λόγω κυρτότητας καταστρώματος ($\nabla_{\rm b}$)

Ο συντελεστής C₃ υπολογίζεται από την εξίσωση:

 $C_3 = 0.7 \cdot C_{BD} = 0.7 \cdot 0.832 \rightarrow C_3 = 0.582$

Η κυρτότητα του καταστρώματος θα είναι όμοια με του πατρικού, b = 450 mm. Συνεπώς έχουμε:

 $\nabla_b = L \cdot B \cdot b \cdot C_3 = 283.2 \cdot 46 \cdot 0.45 \cdot 0.582 \rightarrow \nabla_b = 3414 \ m^3$

Αύξηση όγκου λόγω στομίων κυτών (∇_H)

Δεν θα υπάρχουν στόμια, συνεπώς,

$$\nabla_H = 0 [m^3]$$

Οπότε ο όγκος κάτωθεν του κυρίου καταστρώματος ($abla_{U}$) είναι:

$$\nabla_{U} = \nabla_{D} + \nabla_{S} + \nabla_{b} + \nabla_{H} = 281786 + 0 + 3414 + 0 \rightarrow \nabla_{U} = 285200 \, m^{3}$$

• Αύξηση όγκου λόγω όγκου κυτών πάνω από το ανώτερο κατάστρωμα ($\nabla_{UP. Cargo}$)

$$V_{UP.Cargo} = V_{UP.Cargo1} + V_{UP.Cargo2}$$

Εφόσον το υπό μελέτη πλοίο διαφέρει μόνο ως προς το πλάτος, όσον αφορά τις κύριες διαστάσεις σε σχέση με το πατρικό και θεωρώντας ότι τα διπλά τοιχώματα θα έχουν το ίδιο πλάτος με του πατρικού, για τον υπολογισμό του $V_{UP.Cargo}$ γίνεται προσαύξηση κατά 2m στην κάθε διάσταση που αφορά το πλάτος.

Ο όγκος αυτός προκύπτει:

$$V_{UP.Cargo} = V_{UP.Cargo1} + V_{UP.Cargo2}$$

$$V_{UP.Cargo1} = l_1 \cdot A_1 = 163.2 \cdot (37.2 + 2 + 27.55 + 2) \cdot \left(\frac{32.8 - 26.125}{2}\right) = 37447 \ m^3$$

$$V_{UP.Cargo2} = l_2 \cdot \frac{A_1 + A_2}{2} = 36.4 \cdot \left[A_1 + (7.5 + 2 + 17.24 + 2) \cdot \left(\frac{32.8 - 26.125}{2}\right) \right]$$

= 5922 m³

Τελικά,

$$V_{UP.Cargo} = 43369 \, m^3$$

• Μείωση όγκου λόγω διαμόρφωσης πρύμνης ($abla_{stern shape}$)

Για τον προσδιορισμό του $V_{stern shape}$, του υπό μελέτη πλοίου παίρνουμε τον όγκο που υπολογίστηκε για το πατρικό, και το πολλαπλασιάζουμε με τον συντελεστή πλάτους.

 $V_{Stern Shape} = Area \cdot h = 575.15 \cdot (46/44) \cdot 5.215 = 3098 \, m^3$

Τελικά,

$$V_V = V_D + V_S + V_b + V_H + V_{UP.Cargo} - V_{Stern Shape} = 325470 m^3$$

To W_{ST} , $\mathbf{x}\omega\rho i \mathbf{c}$ tic uperkataskeuéc dídetai anó tov pio kátu túpo,

$$\begin{split} W_{\text{ST}} &= \nabla_{\text{V}} \times C_{\text{ST}} \times |1+0.033(\text{L/D-12})| \times |1+0.06 \text{ (n-D/D}_0)| \times |1+0.05(1.85\text{-B/D})| \times |1+0.2 \text{ (T/D}-0.85)| \times |0.92 + (1 - C_{\text{BD}})^2| \times |1+0.75 \text{ C}_{\text{BD}}(\text{C}_{\text{M}}\text{-}0.98)| \end{split}$$

Όμως ο συντελεστής C_{st} 'δίδεται από την εξίσωση $C'_{St} = [0.112 + L[m] \cdot 10^{-4}] \cdot (0.95 \div 1.05)$ για περιοχή μηκών 150÷ 350 m. Οπότε με γραμμική παρεμβολή λαμβάνεται :

$$C'_{St} = [0.112 + 283.2 \cdot 10^{-4}] \cdot (1.0166) = 1.1408 [\text{tn/m3}]$$

Οπότε αντικαθιστώντας έχουμε:

$$\begin{split} W_{\text{ST}}' &= 325470 \text{ [m}^3 \text{]} \times 0.1408 \text{ [tn/m}^3 \text{]} \times \text{]} 1+0.033((283.2/26)-12) \text{]} \times \text{]} 1+0.06 (1-(26/4)) \text{]} \times \\ &| 1+0.05 \cdot (1.85-46/26) \text{]} \times \text{]} 1+0.2((11.7/26)-0.85) \text{]} \times \text{]} 0.92+(1-0.832)^2 \text{]} \times \text{]} 1+0.75 \cdot 0.832 \cdot \\ &(0.992-0.98) \text{]} = 26103 \text{ t} \end{split}$$

Επειδή το υπό μελέτη πλοίο θα έχει βολβοειδή πλώρη θα προσαυξήσουμε το W_{st} ΄ κατά 0.55% (0.4%-0,7%)(αφού η συγκεκριμένη μέθοδος αναφέρεται σε πλοία χωρίς βολβό). Οπότε,

$$W_{ST}' = 26247 t.$$

Για το βάρος των υπερκατασκευών (W_{ss}) θα ακολουθήσουμε την μέθοδο Müller-Koster. Με τη μέθοδο αυτή, υπολογίζονται τα βάρη όλων των, υπερκείμενων του κυρίου καταστρώματος, κατασκευών. Η μέθοδος διακρίνει τις κατασκευές σε δύο κατηγορίες, τις υπερκατασκευές και τα υπερστεγάσματα.

Το υπό μελέτη πλοίο θα έχει ακριβώς τα ίδια υπερστεγάσματα. Συνεπώς το W_{ss} θα είναι ίδιο με του πατρικού:

$$W_{SS} = 424 t$$

Παρόμοια με το πατρικό πλοίο υποθέτουμε ότι θα χρησιμοποιηθεί χάλυβας υψηλής αντοχής. Επομένως θα μειώσουμε κατά 6% την εκτίμηση για το W'_{ST} . Συνεπώς έχουμε:

Το συνολικό βάρος της μεταλλικής κατασκευής προκύπτει:

$$W'_{STtotal} = 0.94 \cdot (W'_{ST} + W_{SS}) = 0.94 \cdot (26247 + 1073) \rightarrow W'_{STtotal} = 25681[t]$$

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Watson	22277
Schneekluth & Müller-Koster	25681

Το W_{st} θα υπολογιστεί ως ο μέσος όρος των 2 μεθόδων.

$$W_{ST} = 23979 [t]$$

2.4.3.2 Βάρος ενδιαίτησης και εξοπλισμού (W_{ot})

Βάρος μόνωσης-ενίσχυσης δεξαμενών

Το βάρος μόνωσης-ενίσχυσης των δεξαμενών για το υπό μελέτη πλοίο θα προσεγγισθεί από αυτό που υπολογίστηκε αναλυτικά στο πατρικό βάσει ενός συντελεστή διαστάσεων. Όπως προαναφέρθηκε το υπό μελέτη πλοίο διαφέρει από το πατρικό μόνο ως προς το πλάτος όσον αφορά τις κύριες διαστάσεις. Επομένως βάσει του συντελεστή πλάτους το ζητούμενο βάρος για το υπό μελέτη πλοίο προκύπτει:

 $W_{OT}^* = (Invar_{TOTAL} + Insulation_{TOTAL}) \cdot (B_{\nu\pi\sigma \ \mu\epsilon\lambda} / B_{\pi\alpha\tau\rho}) + W_{pump \ towers}$

 $\Rightarrow W_{0T}^* = 3949.6 \text{ tn}$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με τη μεθοδο συντελεστών

Στη μέθοδο αυτή του βιβλίου [1a], σελ.256, το W_{OT} χωρίζεται σε υποομάδες για τις οποίες δίνεται το ειδικό βάρος. Το άθροισμα των ειδικών βαρών των υποομάδων δίνει το συνολικό ειδικό βάρος (w_{OT}) του W_{OT} . Πολλαπλασιάζοντας με LBD το συνολικό ειδικό βάρος (w_{OT}) έχουμε μία εκτίμηση για το W_{OT} . Παρουσιάζεται ο Πίνακας 2.4:14 πάλι, με τις υποομάδες και τα ειδικά βάρη τους.

Ομάδα	kg/m ³
I	0.5
II ₁	0
ll ₂	1
111	1
IV	2.5
V	1.5
VI	0
VII	0.3
VIII ₁	0
VIII ₂	1.5
IX	1
W _{OT}	9.3

Πίνακας 2.4:14 Τυπικοί συντελεστές ομάδων βαρών για δεξαμενόπλοιο (Πηγή: Παπανικολάου 2009)

Συνεπώς το Wot του πατρικού υπολογίζεται από την εξίσωση:

$$W_{OT} = w_{OT} \cdot L \cdot B \cdot D + W_{OT}^* = 9.3 \cdot 283.2 \cdot 46 \cdot 26 + 3949.6 \rightarrow W_{OT} = 7099.6 \ [t]$$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με Προσεγγιστικούς τύπους

Από το βιβλίο [1a], σελ. 257, ισχύει η εξίσωση:

$$W_{OT} = K_{OT} \cdot L \cdot B$$

Ο K_{ot} είναι ένας συντελεστής του οποίου η τιμή δίδεται $0.17 t/m^2$ για δεξαμενόπλοια μήκους 300 m και $0.180 t/m^2$ για δεξαμενόπλοια μήκους 150 m. Επομένως με γραμμ. παρεμβολή για μήκος 283.2 m η τιμή του συντελεστή προκύπτει $K_{oT} = 0.182 t/m^2$, οπότε η παραπάνω εξίσωση γίνεται:

$$W_{OT} = K_{OT} \cdot L \cdot B + W_{OT}^* = 0.182 \cdot 283.2 \cdot 46 + 3949.6 \rightarrow W_{OT} = 6324.7[t]$$

Υπολογισμός βάρους ενδιαίτησης και εξοπλισμού με τη μεθοδο Schneekluth

Σε αυτή τη μέθοδο του βιβλίου [1a], σελ.263, χωρίζεται το βάρος ενδιαίτησης και εξοπλισμού σε 4 υποομάδες: Ι. Καλύμματα στομίων κυτών, ΙΙ. Φορτοεκφορτωτικά μέσα, ΙΙΙ. Ενδιαίτηση και ΙV. Λοιπά βάρη.

Ι. Καλύμματα στομίων κυτών: Δεν θα υπάρχουν στόμια. Επομένως,

 $W_I = 0 [t]$

II. Φορτοεκφορτωτικά μέσα: Η ομάδα αυτή περιλαμβάνει φορτωτήρες, βαρούλκα φορτωτήρων και γερανούς. Όμοια με το πατρικό πλοίο θεωρούμε ότι το πλοίο θα διαθέτει δυο περιστρεφόμενους ελαφρούς φορτωτήρες των 3tn ακτίνας 16.5 m, ένα 5tn με ακτίνα 8m και δυο 10tn ακτίνας 24m.

Επομένως, το βάρος των φορτοεκφορτωτικών θα είναι:

$$W_{II} = 80.4 [t]$$

III. **Ενδιαίτηση**: Οι κατασκευαστικές λεπτομέρειες των υπερστεγασμάτων του πλοίου θεωρούνται ίδιες με αυτές του πατρικού. Επομένως το βάρος των ενδιαιτήσεων ισούται με:

$$W_{III} = 677 t$$

IV. Λοιπά βάρη: Στην ομάδα αυτή ανήκουν άγκυρες, εγκατάσταση πηδαλίου, συστήματα πυρόσβεσης-πυρασφάλειας κλπ. Θα χρησιμοποιηθεί ο ακόλουθος προσεγγιστικός τύπος (σελ. 268):

$$W_{IV} = (L \cdot B \cdot D)^{2/3} \cdot C_1$$
, $\delta \pi o v C_1 = 0.18 \div 0.26$

Επομένως για το υπό μελέτη πλοίο υπολογίζουμε:

$$W_{IV} = (283.2 \cdot 46 \cdot 26)^{2/3} \cdot 0.22 = 1069 [t]$$

Τελικά το συνολικό βάρος εξοπλισμού κατά Schneekluth για το πατρικό πλοίο υπολογίζεται ως:

$$W_{OT} = W_I + W_{II} + W_{III} + W_{IV} + W_{OT}^* = 0 + 80.4 + 677 + 1069 + 3949.6 = 5775.6 [t]$$

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Συντελεστές	7100
Προσεγγιστικοί Τύποι	6325
Ομάδες βαρών Schneekluth	5776

Το W_{ot} θα υπολογιστεί από το μέσο όρο των τριών μεθόδων.

$$W_{OT} = 6400 [t]$$

2.4.3.3 Βάρος Μηχανολογικής Εγκατάστασης (W_M)

Διαγράμματα

Από το διάγραμμα στο βιβλίο [1b], σ. 90, θα βρούμε ένα ειδικό βάρος της μηχανολογικής εγκατάστασης με βάση την ισχύ πρόωσης για δεξαμενόπλοια με μεσόστροφες μηχανές. Έτσι για ισχύ πρόωσης $P_B = 45862.2$ [HP] βρίσκουμε ειδικό βάρος ίσο με $w_M = 60 \ Kg/HP$. Οπότε το W_M υπολογίζεται ως εξής:

$$W_M = \frac{W_M \cdot P_B}{1000} = \frac{60 \cdot 45862.2}{1000} \Longrightarrow W_M = 2752 \ [t]$$

Τυποι Watson – Gilfillan

Η μέθοδος αυτή παρουσιάζεται στο βιβλίο [1a], σ. 272, σύμφωνα με την εξίσωση:

$$W_M = C_{MD} \cdot P_B^{0.89}$$

Επιλέγουμε την τιμή του συντελεστή $C_{MD} = 0.21 =$ (μεσόστροφες diesel) και η ισχύς του υπό μελέτη πλοίου είναι $P_B = 34200 \ [kW]$, συνεπώς η παραπάνω εξίσωση γίνεται:

$$W_M = 0.21 \cdot 34200^{0.89} \Longrightarrow W_M = 2278 [t]$$

Εμπειρικοί Συντελεστές

Στη μέθοδο με τους εμπειρικούς συντελεστές του βιβλίου [1b], σελ.88, το βάρος της μηχανολογικής εγκατάστασης υποδιαιρείται σε τρείς υποομάδες W_{MR} , W_{MS} , W_{MM} , το άθροισμα των οποίων μας δίνει το βάρος της μηχανολογικής εγκατάστασης. Ακόμα η μέθοδος με τους συντελεστές απαιτεί να γνωρίζουμε την ισχύ στον άξονα του πλοίου (SHP). Έτσι υποθέτουμε ένα συντελεστή $\eta_M = 0.98$ ώστε να την υπολογίσουμε:

$$SHP = \eta_M \cdot P_B = 0.98 \cdot 45862.2 \Rightarrow SHP = 44945 [HP]$$

Για την κάθε υποομάδα ισχύει:

- $W_{MR} = w_1 \cdot LBD$
- $W_{MS} = W_3 \cdot SHP$
- $W_{MM} = w_4 \cdot SHP$

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα:

w ₁	4	kp/m ³	\rightarrow	W _{MR}	1354829	kp	\rightarrow	1354.8	t
W ₃	4	kp/SHP	\rightarrow	W _{MS}	179779.8	kp	\rightarrow	179.8	t
W ₄	22.5	kp/SHP	\rightarrow	W _{MM}	1011262	kp	\rightarrow	1011.3	t

Τελικά από τον πίνακα προκύπτει:

$$W_M = W_{MM} + W_{MS} + W_{MR} \rightarrow W_M = 2545.9 \ [t]$$
79

Συγκεντρωτικός πίνακας

Στον πίνακα παρατίθενται τα αποτελέσματα από τις μεθόδους που χρησιμοποιήθηκαν:

Μέθοδος	Εκτίμηση (t)
Διαγράμματα	2752
Watson – Gilfillan	2278
Συντελεστές	2546

Όπως φαίνεται, τα αποτελέσματα των 3 μεθόδων ισαπέχουν μεταξύ τους επομένως το W_M θα υπολογιστεί ως ο μέσος όρος όλων των μεθόδων.

$$W_M = 2525 [t]$$

2.4.4 Συγκεντρωτικά αποτελέσματα, βάρος LS, συντελεστής διόρθωσης.

Τα αποτελέσματα της όλης διαδικασίας για το πατρικό πλοίο συνοψίζονται στον παρακάτω πίνακα:

Ομάδα Βάρους	Εκτίμηση (t)	%
W _M	2525	8
W _{ot}	6400	19
W _{ST}	23979	73
LS	32904	100

Το LS που υπολογίστηκε στο παραπάνω πίνακα θα το διαιρέσουμε με τον συντελεστή διόρθωσης που έχουμε από το πατρικό, έτσι έχουμε:

$$LS_{\tau\varepsilon\lambda} = \frac{LS_{Calc}}{\lambda_{LS}} = \frac{32904}{0.9795} \rightarrow LS_{\tau\varepsilon\lambda} = 33594 \ t$$

2.4.5 Έλεγχος βαρών Δ_B με Δ_r για το υπό μελέτη πλοίο

Σε αυτό το στάδιο της μελέτης θα γίνει ο έλεγχος του $\Delta_{\rm B}$ με το $\Delta_{\rm F}$. Θα πρέπει πρώτα να ισχύει ότι $\Delta_{\Gamma} \ge \Delta_{B}$ και η διαφορά τους να μην είναι μεγαλύτερη από 0.5 %. Έτσι έχουμε:

• $\Delta_B = LS + DWT = 33594 + 85000 \rightarrow \Delta_B = 118594 t$

• Από αρχικούς υπολογισμούς έχουμε: $\Delta_{\Gamma} = 118836 t$

Σύμφωνα με τα παραπάνω ισχύει ότι $\Delta_{\Gamma} > \Delta_{B}$ και επιπλέον:

$$\frac{\Delta_{\Gamma} - \Delta_{B}}{\Delta_{\Gamma}}\% = \frac{118836 - 118594}{118836} = 0.20\% < 0.50\%$$

Η απόκλιση κατά 0.20% είναι μέσα στα πλαίσια που έχουν οριστεί και έτσι μπορούμε να προχωρήσουμε.

Επίσης το καινούριο DWT που προκύπτει από την αναλυτική εκτίμηση του LS και το γεωμετρικό εκτόπισμα Δ_Γ υπολογίζεται από την ακόλουθη εξίσωση:

 $DWT_{NEW} = \Delta_{\Gamma} - LS = 118836 - 33594 \rightarrow DWT_{NEW} = 85242 [t]$

2.5 Ανάλυση DWT για το υπό μελέτη πλοίο

Το DWT περιλαμβάνει: το ωφέλιμο φορτίο, τα καύσιμα, το φρέσκο νερό, το ψυκτικό νερό, το τροφοδοτικό νερό, το θαλάσσιο έρμα, λοιπά εφόδια εργαλεία και ανταλλακτικά, τα τρόφιμα, το πλήρωμα και τυχόν επιβάτες με αποσκευές.

Συνοπτικά :

$$DWT = PL + W_F + W_{PR} + W_{FW} + DWT_{Const}$$

PL	\rightarrow	το βάρος του ωφέλιμου φορτίου (PayLoad)
W _F	\rightarrow	το βάρος των καυσίμων
W_{PR}	\rightarrow	το βάρος των εφοδίων
W_{FW}	\rightarrow	το βάρος του νερού
DWT _{Const.}	\rightarrow	σταθερά βάρη

2.5.1 Βάρος Καυσίμων

Το βάρος των καυσίμων, ισούται με:

$$W_F = W_{FO} + W_{DO} + W_{LO}$$

όπου: W_{FO}: το βάρος του καυσίμου Fuel Oil

W_{DO}: το βάρος του καυσίμου Diesel για τις ηλεκτρογεννήτριες

WLO: το βάρος των λιπαντικών

Χρόνος ταξιδιού (t₁)

Ο χρόνος του ταξιδιού μπορεί να υπολογιστεί από την εξίσωση:

$$t_1 = \frac{W_{FO}}{P_B \cdot b_1 \cdot C \cdot 10^{-6}}$$

όπου $P_B \rightarrow \eta$ ισχύς του πλοίου, σε kW

b₁ → η κατανάλωση της κύριας μηχανής που είναι ίση με 189 gr/kWh(από κατασκευαστή)

C → συντελεστής εφεδρείας που παίρνεται ίσος με 1.2

Από το capacity plan του πατρικού πλοίου προκύπτει ότι το βάρος των δεξαμενών καυσίμου(HFOT) στο 98% πλήρωσης τους, είναι 4856.6 t. Επομένως για το υπό μελέτη πλοίο θα ισχύει:

$$W_{FO} = 4856.6 \cdot \lambda_{LBD} \rightarrow W_{FO} = 5077.4 [t]$$

Όπου το λ_{LBD} εμπεριέχει τους επιμέρους συντελεστές (μήκους, πλάτους, ύψους) και αφορά την αναγωγή του βάρους των δεξαμενών του πατρικού, στο υπό μελέτη πλοίο με βάσει τις διαστάσεις τους.

Γνωρίζοντας την ισχύ του υπό μελέτη πλοίου $P_B = 34200 \ kW$ και αντικαθιστώντας έχουμε:

$$t_1 = \frac{5077.4}{34200 \cdot 189 \cdot 1.2 \cdot 10^{-6}} = 655 \ [hr]$$

Η ακτίνα ενέργειας υπολογίζεται από την εξίσωση:

$$R = t_1 \cdot V_S$$

Αντικαθιστώντας λοιπόν τα χαρακτηριστικά του πατρικού στην παραπάνω εξίσωση έχουμε:

$$R = 655 \cdot 19 \rightarrow R = 12437 \ [sm]$$

2.5.2 Βάρος ελαφρού καυσίμου (WDO)

Για να υπολογιστεί το βάρος ελαφρού καυσίμου χρειάζεται να υπολογίσουμε την ισχύ P_Gη οποία δίδεται σύμφωνα με την παρακάτω εξίσωση:

$$P_G = (100 + 0.55 \cdot MCR^{0.7}) \cdot 1.3 = 1197 \, kW$$

$$W_{DO} = P_G \cdot b_2 \cdot t_2 \cdot C \cdot 10^{-6} \cdot \eta_E$$

όπου $b_2 \rightarrow \eta$ κατανάλωση των ηλεκτρογεννητριών που είναι ίση με 190 gr/kW·h

- $t_2 \rightarrow$ ο χρόνος λειτουργίας των ηλεκτρογεννητριών, που υπολογίζεται ως 1.2·t1 και είναι ίσος με 786 h
- $\eta_E \rightarrow \sigma$ υντελεστής απωλειών ηλεκτρογεννητριών, ίσος με 0.83
- $\mathsf{C} \to \sigma$ υντελεστής εφεδρείας που παίρνεται ίσος με 1.2

Αντικαθιστώντας όλα τα παραπάνω στην εξίσωση έχουμε:

$$W_{DO} = \frac{1197 \cdot 190 \cdot 786 \cdot 1.2 \cdot 10^{-6}}{0.83} \to W_{DO} = 258.3 t$$

Απορρίπτουμε την πιο πάνω τιμή διότι θεωρείται μικρή σε σχέση με το πατρικό και επιλέγω τελικά το βάρος των καυσίμων βάσει του συντελεστή λ_{LBD} .

$$W_{DO} = W_{DO \pi \alpha \tau \rho \iota \kappa \circ} \cdot \lambda_{LBD} = 594 t$$

2.5.3 Βάρος λιπαντικών (WLO)

Το WLO μπορεί να υπολογιστεί από την εξίσωση:

$$W_{LO} = 0.04 \cdot (W_{FO} + W_{DO}) = 0.04 \cdot (5077.4 + 594) \rightarrow W_{LO} = 160.1 t$$

Απορρίπτεται επίσης, διότι διαφέρει κατά πολύ απ το πατρικό και επιλέγεται νέο βάρος για τα λιπαντικά καύσιμα βάσει του συντελεστή λ_{LBD} .

$$W_{LO} = W_{LO \pi \alpha \tau \rho \iota \kappa \circ} \cdot \lambda_{LBD} = 231 t$$

2.5.4 Βάρος νερού (W_{FW})

Στο πατρικό πλοίο ο αριθμός μελών πληρώματος είναι 45 άτομα. Ο αριθμός αυτός θα διατηρηθεί και στο υπό μελέτη πλοίο.

Για το **φρέσκο νερό** διακρίνουμε τις εξής ποιότητες και αντίστοιχες ενδεικτικές τιμές για το ειδικό βάρος από τις σημειώσεις του μαθήματος Μελέτης Πλοίου 1.

Πόσιμο νερό: 15 kg / ανθρωποημέρα Νερό καθαριότητας: 200 kg / ανθρωποημέρα, για ενδιαιτήσεις με λουτήρες

Πόσιμο νερό

$$W_{DW} = \frac{15 \cdot Crew \cdot days}{1000} = \frac{15 \cdot 45 \cdot 28}{1000} = 18 t$$

Νερό καθαριότητας

$$W_{CleanW} = \frac{200 \cdot Crew \cdot days}{1000} = \frac{200 \cdot 45 \cdot 28}{1000} = 252 t$$

Επομένως το συνολικό βάρος για το Fresh Water είναι το ακόλουθο:

$$W_{FW} = W_{DW} + W_{CleanW} = 18 + 252 = 270 t$$

Όμως το πατρικό πλοίο διαθέτει 422.2 t φρέσκο νερό. Η διαφορά είναι σημαντική. Επομένως το νέο βάρος για το υπο μελέτη πλοίο θα υπολογιστεί πάλι βάσει του λ_{LBD}.

$$W_{FW} = W_{FW \pi \alpha \tau
ho \iota \kappa \circ} \cdot \lambda_{LBD} = 441 t$$

2.5.5 Βάρος Εφοδίων-τροφίμων (W_{PR})

Υπολογίζεται περίπου 12kg/ανθρωποημέρα.

$$W_{PR} = \frac{12 \cdot Crew \cdot days}{1000} = \frac{45 \cdot 45 \cdot 28}{1000} = 14.7 t$$

2.5.6 Βάρος Επιβατών και αποσκευών (W_P και W_{CR})

Επιβάτες: 75 kg/ μέλος πληρώματος

Αποσκευές: 60 kg/μέλος πληρώματος

$$W_{PR} = \frac{135 \cdot Crew}{1000} = \frac{135 \cdot 45}{1000} = 6.1 t$$

2.5.7 Σταθερά βάρη (Const.)

Στην κατηγορία DWT const λαμβάνουμε την ακόλουθη ανάλυση για το πατρικό πλοίο:

DWT const.	m(tn)	LCG	tm	KG	tm	FSM
Crew-effects	5.85	44.40	260	35.53	208	0.00
stores	119.31	102.94	12281.89	26.39	3148.59	0.00
provisions	5.67	41.20	234	27.90	158	0.00
water&oil in ER	450.33	32.98	14849.63	4.55	2050.35	1143.00
water&oil in hull	83.07	129.78	10781.07	6.00	498.17	2.00
Spare anchor	13.35	239.20	3193.32	30.00	400.50	0.00
	<u>686.86</u>	61.12	41982.45	9.79	6724.38	1145.00

Πίνακας 2.5:1 Ανάλυση αποτελούμενων βαρών DWTconst.πατρικούπλοίου

Σε αυτήν την κατάσταση μεταβάλλονται μόνο τα βάρη για πλήρωμα και αποσκευές και για προμήθειες, τα οποία έχουμε υπολογίσει προηγουμένως, και εισάγονται τα νέα. Τελικά το βάρος αυτής της κατηγορίας θα είναι ίσο με **686.9 t.**

DWT const.	m(tn)	LCG	t m	KG	t m	FSM
Crew-effects	6.08	44.40	269.73	35.53	215.84	0.00
stores	119.31	102.94	12281.89	26.39	3148.59	0.00
provisions	14.73	41.20	606.80	27.90	410.92	0.00
water&oil in ER	450.33	32.98	14849.63	4.55	2050.35	1143.00
water&oil in hull	83.07	129.78	10781.07	6.00	498.17	2.00
Spare anchor	13.35	239.20	3193.32	30.00	400.50	0.00
	<u>686.86</u>	61.12	41982.45	9.79	6724.38	1145.00

Πίνακας 2.5:2 Ανάλυση αποτελούμενων βαρών DWTconst νέου πλοίου

Για τον υπολογισμό των νέων LCG,KG διατηρήθηκαν οι λόγοι LCG/L και KG/D από το πατρικό σκάφος και εισήχθησαν στο νέο πλοίο.

85

Συμπερασματικά τα στοιχεία για το υπό σχεδίαση πλοίο θα είναι σε πινακοποιημένη μορφή:

ΠΡΟΜΕΛΕΤΗ				
L (m)	283.2			
B (m)	46			
T (m)	11.7			
D (m)	26			
Св	0.758			
C _{WL}	0.837			
CP	0.764			
См	0.992			
Δ(t)	118836			
DWT(t)	85242			
WLS (t)	33594			
P _B (KW)	34200			
P _B (PS)	44945			
b(m)	0.45			
S _f (m)	0			
S₄(m)	0			
R (s.m)	12437			
W _{FO} (t)	5077.4			
W _{DO} (t)	594			
W _{LO} (t)	231			
W _{FW} (t)	441			
W _{PR} (t)	14.7			
W _{CR}	6.1			
DWT _{const}	686.9			
В	0			

Πίνακας 2.5:3 Στοιχεία ανάλυσης προμελέτης πλοίου

2.5.8 Βάρος ωφέλιμου φορτίου (W_{PL})

Το DWT που έχει το υπό μελέτη πλοίο βρίσκεται από την εξίσωση:

$$DWT = \varDelta - LS = 118836 - 33594 \rightarrow DWT = 85242 \ t$$

Συνεπώς το βάρος του ωφέλιμου φορτίου είναι:

$$PL = DWT - W_{FO} - W_{DO} - W_{LO} - W_{FW} - DWT_{Const} =$$

= 85242 - 5077.4 - 594 - 231 - 441 - 686.9 \rightarrow

PL = 78211 t

2.6 Καθορισμός κατασκευαστικών νομέων, κύριων φρακτών και διπυθμένου

2.6.1 Ανάλυση Επιμέρους Μηκών L_i

Για την ανάλυση μηκών καταφεύγουμε το σχέδιο γενικής διάταξης, όπου δίνονται τα μήκη των ισαποστάσεων κατασκευαστικών νομέων και κατά συνέπεια εξάγεται για κάθε τμήμα το μήκος του και το σύνολο των νομέων που καταλαμβάνει.

	Νομείς	Αριθμός Νομέων	Ισαπόσταση Νομέων	Li	Li _{πατρικό}	%L вр	L i υπο μελέτη	
La	A.P-15	15	0.8	12	12	0.042	12	
Ler	15-67	52	0.8	41.6	41.6	0.147	41.6	
	68-83	15	3.44	51.6		0.705		
	84-99	15	3.36	50.4				
	100-115	15	3.36	50.4				
Lcargo	116-126	10	3.36	33.6	199.6		199.6	
	67-68	1	2.4	2.4				
	83-84, 99-100, 115-116, 126-127	4	2.8	11.2				
LF	127-164.5	37.5	0.8	30	30	0.106	30	
				283.2	283.2	1	283.2	

Πίνακας 2.6:1 Υπολογισμός επιμέρους μηκών για το υπό μελέτη πλοίου

Επειδή το υπό μελέτη πλοίο θα έχει ακριβώς το ίδιο μήκος με το πατρικό η διαμερισματοποίηση των χώρων του θα είναι η ίδια με του πατρικού.

2.6.2 Έλεγχος απόστασης φρακτής σύγκρουσης

Για υπο μελέτη πλοίο από τον πιο πάνω πίνακα ισχύουν τα εξής:

- L_A = 12 m.
- L_{ER} = 41.6 m.
- L_c = 199.6 m
- L_F = 30 m

Σύμφωνα με την Διεθνή Σύμβαση για την Ασφάλεια της Ζωής Στη Θάλασσα SOLAS (Safety of Life at Sea, Ch. II-1, Part B, Reg. 11) τα όρια για την πρωραία φρακτή σύγκρουσης, αν το πλοίο έχει βολβό, είναι:

 $X_r = \min(0.5 \cdot L_{BULB}, 0.015 \cdot L_{BP}, 3) = \min(0.5 \cdot 6.4 = 3.2, 0.015 \cdot 283.2, 3) = 3 m$

$$L_{Fmin} = \min(0.05 \cdot L_{BP}, 10) - X_r = \min(0.05 \cdot 283.2, 10) - 3 = 10 m$$

$$L_{Fmax} = 0.08 \cdot L_{BP} - X_r = 0.08 \cdot 283.2 - 3 = 19.7 \, m$$

$$10 < L_F < 19.7$$

Στο υπό μελέτη πλοίο η πρωραία φρακτή σύγκρουσης τοποθετήθηκε στα 10.6 m. Έτσι η πρωραία φράκτη σύγκρουσης είναι μέσα στα επιτρεπτά πλαίσια.

2.6.3 Υπολογισμός ύψους διπυθμένου

Το ελάχιστο ύψος του διπυθμένου δίνεται από τους πιο κάτω κανονισμούς:

 $\begin{array}{ll} \underline{ABS:} & h_{DB} \geq \left(32 \cdot B + 190 \cdot \sqrt{T}\right) \cdot 0.001 = \left(32 \cdot 46 + 190 \cdot \sqrt{11.7}\right) \cdot 0.001 \rightarrow h_{DB} = \\ \underline{2.12} \ m & \\ \underline{LR:} & h_{DB} \geq \left(28 \cdot B + 205 \cdot \sqrt{T}\right) \cdot 0.001 = \left(28 \cdot 46 + 205 \cdot 11.7\right) \cdot 0.001 \rightarrow h_{DB} = \\ \underline{1.99} \ m & \\ \underline{DNV:} & h_{DB} \geq \left(250 + 20 \cdot B + 50 \cdot T\right) \cdot 0.001 = \left(250 \cdot 20 \cdot 46 + 50 \cdot 11.7\right) \cdot 0.001 \rightarrow \\ \underline{h_{DB}} = 1.76 \ m & \\ \underline{Tankers} > 5000 \ t \ DWT: & h_{DB} = \left(B/15, 2\right) \geq 1 \rightarrow h_{DB} = 3.07 \ m & \\ \end{array}$

Τελικά το ύψος του διπυθμένου λαμβάνεται ίσο με του πατρικού,

$$h_{DB} = 3.2 m$$

2.6.4 Υπολογισμός απόστασης διπλών τοιχωμάτων

Η ελάχιστη απόσταση των διπλών τοιχωμάτων δίνεται από τον πιο κάτω κανονισμό:

<u>Tankers > 5000 t DWT</u>: $w = \min(0.5 + DWT/2000, 2) \ge 1 \rightarrow h_{DB} = 2 m$

Τελικά η απόσταση των διπλών τοιχωμάτων λαμβάνεται ίση με,

w = 2.25 m

2.6.5 Υπολογισμός όγκου κυτών (V_{cargo})

Για να υπολογίσουμε τον όγκο θα χρησιμοποιήσουμε ένα κυβικό συντελεστή με τα στοιχεία του πατρικού, τον οποίο θα εφαρμόσουμε στη συνέχεια στο υπό μελέτη πλοίο.

Για το πατρικό πλοίο

Έχουμε την παρακάτω εξίσωση:

$$c_{vcargo} = \frac{V_{cargo}}{L_c \cdot B_c \cdot D_c} = \frac{V_{cargo}}{L_c \cdot (B - 2w) \cdot (D - h_{DB})} = \frac{159847.1}{199.6 \cdot (44 - 2 \cdot 2.511) \cdot (26 - 3.2)}$$

Το $V_{cargo} = 159847.1 \, m^3$ σύμφωνα με το capacity plan του πατρικού πλοίου.

$$c_{vcargo} = 0.901$$

Για το υπό μελέτη πλοίο

Έχοντας τον κυβικό συντελεστή από το πατρικό πλοίο θα λύσουμε την παραπάνω εξίσωση ως προς V_{cargo}. Άρα:

$$V_{cargo} = c_{vcargo} \cdot (L_c \cdot B_c \cdot D_c) = c_{vcargo} \cdot (L_c \cdot [B - 2w] \cdot [D - h_{DB}]) \rightarrow$$

 $\rightarrow 0.901 \cdot (199.6 \cdot [44 - 2 \cdot 2.25] \cdot [26 - 3.2]) \rightarrow V_{cargo} = 170190 \ m^3 > 170000 \ m^3$

$$V_{carao}^{98\%} = 166786m^3$$

Συνεπώς τον υπολογισμό του γ_{ΗΟΜ} έχουμε:

$$\gamma_{HOM} = \frac{PL}{V_{cargo}} = \frac{78211}{166786} \to \gamma_{HOM} = 0.469 \ t/m^3$$

2.6.6 Υπολογισμός ελάχιστου έρματος

Για να υπολογίσουμε το ελάχιστο έρμα που απαιτείται θα υπολογίσουμε ένα κυβικό συντελεστή από το πατρικό πλοίο τον οποίο θα εφαρμόσουμε στο πλοίο μας.

Για το πατρικό

Από τα σχέδια του πατρικού έχουμε ότι $V_{WB} = 52073.8 m^3$ (οι δεξαμενές οι οποίες είναι εκτός των ορίων του φορτίου, Lcargo είναι εκτός), και $V_{cargo} = 159847.1 m^3$

$$V_{cargo} = \frac{V_{cargo} + V_{WB}}{L_c \cdot B \cdot D} = \frac{159847.1 + 52073.8}{119.6 \cdot 44 \cdot 26} \rightarrow \lambda_{WB} = 0.928$$

Για υπο μελέτη πλοίο

Θα χρησιμοποιήσουμε τον παραπάνω συντελεστή για να υπολογίσουμε τον όγκο του έρματος για το υπό μελέτη πλοίο. Από προηγούμενους υπολογισμούς έχουμε:

$$V_{cargo} = 170179 \, m^3$$

Έχοντας το κυβικό συντελεστή από το πατρικό θα λύσουμε την παραπάνω εξίσωση ως V_{WB}:

$$V_{cargo} + V_{WB} = \lambda_{WB} \cdot (L_{cargo} \cdot B \cdot D) \rightarrow$$
$$\rightarrow V_{WB} = \lambda_{WB} \cdot (L_{cargo} \cdot B \cdot D) - V_{cargo} \rightarrow$$
$$\rightarrow V_{WB} = 0.928 \cdot 199.6 \cdot 46 \cdot 26 - 170179 \rightarrow$$
$$\rightarrow V_{WB} = 51364 m^{3}$$

Οπότε για το υπό μελέτη πλοίο θα γίνει έλεγχος της επάρκειας της χωρητικότητας των δεξαμενών έρματος. Τα ελάχιστα επιτρεπόμενα βυθίσματα στην κατάσταση ερματισμού υπολογίζονται στον πίνακα που ακολουθεί:

$T_A \ge$	$D_{\epsilon\lambda}$	8.6	8.6	m
<i>t</i> ≤	$0.015 \cdot L_{BP}$	0.015 · 283.2	4.248	m
$T_m \ge$	$2 + 0.02 \cdot L_{BP}$	$2 + 0.02 \cdot 283.2$	7.664	m

Από τον παραπάνω πίνακα προκύπτει το βύθισμα στην κατάσταση ερματισμού:

$$T_B = T_m = 7.664 m$$

Το C_B για αυτό το βύθισμα υπολογίζεται από την εξίσωση (σελ.146,147 βιβλίο [1b]):

$$C_{BB} = C_B \cdot \left(\frac{T_m}{T}\right)^{\frac{C_{wl}}{C_{b-1}}} = 0.758 \cdot \left(\frac{7.664}{11.7}\right)^{\frac{0.837}{0.758-1}} \to C_{BB} = 0.725$$

Το εκτόπισμα το πλοίου θα είναι:

-

 $\varDelta_{WB} = c\gamma \cdot L \cdot B \cdot T_B \cdot C_{BB} = 1.0035 \cdot 1.025 \cdot 283.2 \cdot 46 \cdot 7.664 \cdot 0.725 \rightarrow \varDelta_{WB} = 74495 \ t$

Από την εξίσωση των βαρών του πλοίου για την κατάσταση ερματισμού Arrival, στην οποία προκύπτει το ελάχιστο βύθισμα, υπολογίζουμε το ελάχιστο απαιτούμενο βάρος έρματος:

$$\begin{split} WB_{req} &= \Delta_{WB} - LS - DWT_{const} - 0.1 \cdot (W_{FO} + W_{DO} + W_{LO} + W_{FW}) \rightarrow \\ \rightarrow WB_{req} &= 74495 - 33594 - 686.9 - 0.1 \cdot (5077.4 + 594 + 231 + 441) \rightarrow \\ \rightarrow WB_{req} &= 39579 \ t \rightarrow V_{WB_{req}} = 38613 \ m^3 \end{split}$$

Έχουμε ότι το υπο μελέτη πλοίο διαθέτει δεξαμενές έρματος χωρητικότητας 51364 m³. Επομένως η απαίτηση καλύπτεται.

2.7 Έλεγχος Ευστάθειας

2.7.1 Πατρικό - Αναχώρηση

CONDITION 10 HOMO.LOAD MAX.BUNKER COND. (S.G.=0.46)

WEIGHT ITEMS				FILL. (%)	S.G	WEIGH (Mi	HT P)	L	.с. (М	G 1)	V.C.G (M)	T.C.((M)	F.S.M (MT-M)
NO.1 CARGO TANK				98.50	0.4600	9937	4	231	. 69	1 1	6.005	0.000	4037
NO.2 CARGO TANK				98.50	0.4600	20663	1	188	. 80	0 1	6.251	0.000	19920
NO.3 CARGO TANK				98.50	0.4600	20666	1	135	. 60	0 1	6.251	0.000	19923
NO.4 CARGO TANK				98.50	0.4600	21160	. 0	81	. 80	0 1	6.251	0.000	20399
TOTAL LIQUIFIED NA	TURA	L G	AS			72426	7	148	.24	4 1	6.217	0.000	64279
FWD DEEP W.B.TK(P)				22.61	1.0250	268	. 0	260	.36	7 :	2.116	3.559	9 133
FWD DEEP W.B.TK(S)				22.61	1.0250	268	. 0	260	. 36	7 :	2.116	-3.559	9 133
TOTAL WATER BALLAS	т					536	0	260	. 36	7	2.116	0.000	266
FRESH WATER						422	.1	8	.97	1 1	8.879	0.000	386
HEAVY FUEL OIL						4856	7	192	14	3 14	4.587	0.593	3 3802
DIESEL OIL						561	5	48	.79	1 1	8.460	-4.450	47
LUBRICATING OIL						221	4	30	.04	4 23	2.826	-2.995	5 128
DEADWEIGHT CONSTAN	T					677	6	61	. 39	4 9	9.539	0.000	1145
TOTAL DEADWEIGHT						79702	1	149	.16	8 1	6.014	-0.004	70053
LIGHT SHIP						32541	. 9	122	.73	3 1	6.527	-0.178	3
TOTAL DISPLACEMENT						112244	0	141	.50	4 1	6.163	-0.054	70053
BOUIV. DRAFT (BXT)	_	11	.556 M		:		М. Т	.c.			=	1953.43	MT-M
MEAN DRAFT (EXT)	=	11	.554 M		:		T.P	. C			=	109.19	MT/CM
AFT. DRAFT (EXT)	=	11	.554 M		:		K.M	.т.			=	20.213	M
FORE DRAFT (EXT)	=	11	.554 M		:		V.C	.G.			=	16.163	М
TRIM	=	0	.000 M		:		UNC	ORREO	CTE	DGM	=	4.050	М
DISPLACEMENT	=	112	2244 M	r	:		GGo				=	0.624	M
L.C.G.	=	141	.504 M		:		COR	RECTI	BD (GM (G	= (Mo	3.426	М
L.C.B.	=	141	.504 M		:		PRO	PELL	BR	IMME	R. =	132.9	8
L.C.F.	=	133	917 M		:		BLI	ND DI	IST.	ANCE	=	361.3	M
HEEL	=	-(0.93 DI	G									
HEEL ANG. (DEG) =	ο.	000	5.00	0 10.00	0 15.000	20.000	30	.000	40	.000	50.00	0 60.000	0
GE VALUE (M) =	-0.	056	0.24	9 0.59	0.981	1.439	9 2	.496	3	.126	2.86	4 2.283	3
GE AREA (M*RAD) =	0.	000	0.00	8 0.04	5 0.114	0.219	9 0	.562	1	.065	1.59	7 2.048	3

Πίνακας 2.7:1 Κατάσταση φόρτωσης αναχώρησης πατρικού πλοίου

	Weight(tn)	LCG(m)	KG(m)	MI (t∙m)	Mt (t·m)	FSM(m⁴)	LCG/L	KG/D
L.S	32541.90	122.73	16.53	3993965.01	537819.98	-	0.43	0.64
CARGO 98.5% (Payload)	72426.72	148.24	16.22	10736511.5	1174562.03	64279.0	0.52	0.62
W.B.T	536.00	260.37	2.12	139556.71	1134.18	266.00	0.92	0.08
F.W. TANKS	422.10	8.97	18.88	3786.66	7968.83	386.00	0.03	0.73
F.O.TANKS	4856.70	192.14	14.59	933180.91	70844.68	3802.00	0.68	0.56
D.O.TANKS	561.50	48.79	18.46	27396.15	10365.29	47.00	0.17	0.71

91

LUB.OIL.T.	221.40	30.04	22.83	6651.74	5053.68	128.00	0.11	0.88
DWT CONST.	677.60	61.39	9.54	41600.57	6463.63	1145.00	0.22	0.37
Δ	112244	141.50	16.16	15882649.3	1814212.29	70053.0	-	-

Πίνακας 2.7:2 Ανάλυση Εκτοπίσματος πατρικού πλοίου FLD

LS	Weight(tn)	KG/D	KG(m)	Mt (t∙m)	LCG/L	LCG(m)	MI (t∙m)
Wst	23710.28	0.64	16.64	394539.07	0.48	135.94	3223080.74
Woт	6273.59	0.90	23.40	146801.99	0.42	118.94	746205.80
Wм	2558.03	0.55	14.30	36579.83	LCGM=LA+0.5LER	32.80	83903.38
	32541.90		17.76	577920.89		124.55	4053189.92
		Πραγματικό	16.53		Πραγματικό	122.73	
ΔΙΟΡΘΩΣΗ		λ _{κg}	1.075		λ _{LCG}	1.015	

Πίνακας 2.7:3 Ανάλυση διορθωτικών συντελεστών του lightship(λ_{κG},λ_{LCG}) πατρικού πλοίου

Να σημειωθεί ότι ως κέντρο βάρους κατά το διάμηκες για το μηχανοστάσιο ελήφθη το $LCG_M=L_A+0.5L_{ER}=32.8m$.

CARGO (Payload)	V ^{100%} (m ³)	V ^{98.5%} (m ³)	W(tn) SG=0.46	LCG(m) from AP	KG(m) from BL	MI (t∙m)	Mt (t∙m)	FSM
No.1 CargoTank	21932.1	21603.12	9937.4	231.66	16.01	2302096.1	159048.6	4037.0
No.2 CargoTank	45603.9	44919.84	20663.1	188.80	16.25	3901198.4	335796.5	19920.0
No.3 CargoTank	45610.5	44926.34	20666.1	135.60	16.25	2802325.5	335845.1	19923.0
No.4 CargoTank	46700.6	46000.09	21160.0	81.80	16.25	1730891.4	343871.8	20399.0
Payload TOTAL	159847.1	157449.4	72426.7	148.24	16.22	10736512	1174562	64279.0

Πίνακας 2.7:4 Ανάλυση Payload πατρικού πλοίου FLD

Από τα παραπάνω θα χρησιμοποιήσουμε το πραγματικό KG, LCG του Payload και θα τα συγκρίνουμε με τα αποτελέσματα εμπειρικών τύπων (ABS), ώστε να βγάλουμε ένα συντελεστή διόρθωσης τον οποίο θα χρησιμοποιήσουμε για τον υπό μελέτη πλοίο. Έτσι έχουμε:

• KG του payload

Το KG του payload δίνεται από την εξίσωση:

$$KG_{PL} = h_{DB} + 0.54 \cdot (D - h_{DB})$$

όπου h_{DB} → το ύψος του διπυθμένου, για το πατρικό είναι ίσο με 1.65 [m].

Αντικαθιστώντας έχουμε:

$$KG_{PL}^{calc} = 3.2 + 0.54 \cdot (26 - 3.2) \rightarrow KG_{PL}^{calc} = 15.512 \ [m]$$

Οπότε προκύπτει ο συντελεστής διόρθωσης:

$$\lambda_{KG_{PL}} = \frac{KG_{PL}^{calc}}{KG_{PL}^{real}} = \frac{15.12}{16.22} \rightarrow \lambda_{KG_{PL}} = 0.957$$

• LCG του payload

Το LCG του payload δίνεται από την εξίσωση:

$$LCG_{PL} = L_A + L_{ER} + 0.485 \cdot L_{cargo}$$

όπου $L_A \rightarrow \eta$ πρυμναία φρακτή, για το πατρικό είναι 12 [m] $L_{ER} \rightarrow$ το μήκος του μηχανοστασίου, για το πατρικό είναι 41.6[m] $L_{cargo} \rightarrow$ το μήκος των κυτών, για το πατρικό είναι 199.6 [m]

Αντικαθιστώντας έχουμε:

 $LCG_{PL}^{calc} = 12 + 41.6 + 0.485 \cdot 199.6 \rightarrow LCG_{PL}^{calc} = 150.406 \ [m]$

Οπότε προκύπτει ο συντελεστής διόρθωσης:

$$\lambda_{LCG} = \frac{LCG_{PL}^{calc}}{LCG_{PL}^{real}} = \frac{150.406}{148.24} \rightarrow \lambda_{LCG} = 1.015$$

2.7.1.1 Υπολογισμός GM

Για την κατάσταση Full Load Departure έχουμε τα ακόλουθα στοιχεία:

	Αποτέλεσμα
Βύθισμα (m)	11.5
Συντελεστής C _w	0.853
Συντελεστής C _M	0.992
Συντελεστής C _B	0.757

Υπολογισμός ΚΒ

Από το βιβλίο [1a] σελ. 302 χρησιμοποιούμε τους προσεγγιστικούς τύπους:

Schneekluth
$$T \cdot (0.9 - 0.3 \cdot C_M - 0.1 \cdot C_B)$$
Normand I $T \cdot (0.9 - 0.36 \cdot C_M)$ Normand II $T \cdot \left(\frac{5}{6} - \frac{C_B}{3 \cdot C_{WL}}\right)$

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα.

Προσεγγια	στικό ΚΒ	
Schneekluth	6.058	[m]
Normand I	6.245	[m]
Normand II	6.181	[m]
Μέσο ΚΒ	6.161	[m]

Υπολογισμός ΒΜ

• Προσεγγιστικοί τύποι

Αυτοί οι τύποι είναι της μορφής $BM = C_1 \frac{B^2}{12 \cdot T \cdot C_B}$, όπου C_1 συντελεστής ανάλογα με τον τύπο που θέλουμε. Επομένως υπολογίζουμε

$$\frac{B^2}{12 \cdot T \cdot C_B} = \frac{44^2}{12 \cdot 11.5 \cdot 0.757} = 18.52$$

	Εξισώσεις C ₁
Normand	$0.096 + 0.89 \cdot C_{WL}^2$
Schneekluth	$C_{WL}^{1.8}$
Bauer	$0.0372 \cdot (2 \cdot C_{WL} + 1)^3$
Dudszus-Danckwardt	$0.13 \cdot C_{WL} + 0.87 \cdot C_{WL}^2 + 0.005$
Murray	$0.5 (3C_{WL} - 1)$

Προσεγγιστικό ΒΜ						
Normand	13.780	[m]				
Schneekluth	13.920	[m]				
Bauer	13.660	[m]				
Dudszus-Danckwardt	13.879	[m]				
Murray	14.445	[m]				
Μέσο ΒΜ	13.937	[m]				

Από τα παραπάνω το ΚΜ υπολογίζεται:

$$KM = KB + BM = 6.161 + 13.937 \rightarrow KM = 20.098 [m]$$

	KM [m]
Υπολογισθέν	20.098
Πραγματικό	20.213
Συντελεστής διόρθωσης λ	0.994

2.7.2 Υπό μελέτη πλοίο – Αναχώρηση

Για να υπολογίσουμε τα KG και LCG των ομάδων βαρών του DWT του υπό μελέτη πλοίου έχουμε εξάγει από το πατρικό συντελεστές KG/D και LCG/L_{BP}. Παίρνοντας τους ίδιους συντελεστές για κάθε ομάδα θα υπολογίσουμε το KG και το LCG για κάθε ομάδα βάρους. Επειδή όμως οι διαστάσεις μήκους και ύψους του υπό μελέτη παραμένουν ίδιες με του πατρικό τα KG και LCG του υπό μελέτη σε σχέση με το πατρικό δεν αλλάζουν.

Τα KG και LCG του Payload επίσης δεν αλλάζουν, όμως για λόγους πληρότητας της διαδικασίας θα υπολογιστούν αναλυτικά, βάσει των συντελεστών διόρθωσης που εξάχθηκαν προηγουμένως.

Εξαίρεση αποτελεί ο υπολογισμός του KG και LCG του Lightship.

• KG Payload

 $KG_{PL}^{calc} = h_{DB} + 0.54 \cdot (D - h_{DB}) = 3.2 + 0.54 \cdot (26 - 3.2) \rightarrow KG_{PL}^{calc} = 15.512 [m]$ Εφαρμόζουμε τον συντελεστή διόρθωσης από το πατρικό για αυτή την εξίσωση:

$$KG_{PL}^{CORR} = \frac{KG_{PL}^{calc}}{\lambda_{KG}} = \frac{15.512}{0.957} \rightarrow KG_{PL}^{CORR} = 16.22 \ [m]$$

• LCG Payload

$$LCG_{PL} = L_A + L_{ER} + 0.485 \cdot L_{cargo}$$

Αντικαθιστώντας από προηγούμενους υπολογισμούς έχουμε:

 $LCG_{PL}^{calc} = 12 + 41.6 + 0.485 \cdot 199.6 \rightarrow LCG_{PL}^{calc} = 150.406 \ [m]$

Οπότε προκύπτει ο συντελεστής διόρθωσης:

$$LCG_{PL}^{CORR} = \frac{LCG_{PL}^{calc}}{\lambda_{LCG}} = \frac{150.406}{1.015} \rightarrow LCG_{PL}^{CORR} = 148.24 \ [m]$$

	Weight(tn)	LCG(m)	KG(m)	MI (t∙m)	Mt (t∙m)	LCG/L	KG/D
L.S	33594.08	122.89	16.54	4128503.5	555709.13	0.43	0.64
CARGO 98.5% (Payload)	78210.54	148.24	16.22	11593903.1	1268359.7	0.52	0.62
W.B.T	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.W. TANKS	441.39	8.97	18.88	3959.72	8333.02	0.03	0.73
F.O.TANKS	5077.35	192.14	14.59	975578.13	74063.37	0.68	0.56
D.O.TANKS	594.13	48.79	18.46	28988.29	10967.67	0.17	0.71
LUB.OIL.T.	231.46	30.04	22.83	6954.09	5283.39	0.11	0.88
DWT CONST.	686.86	61.12	9.79	41982.45	6724.38	0.22	0.38
Δ	118835.83	141.20	16.24	16779869.3	1929440.7	-	-

	,	,	12 0	,		, <u>,</u>	`
$\Sigma \Pi \Pi$	τα παραπανω	ποοκυπτει ο	ακολουθος	πινακας	νια το υπα	η πελέτη	πλοιο.
200000000	ta napana va	<i>hponontet</i> o	anonooog	nevanas	y cu co 0/c	penetry	70,000.

Πίνακας 2.7:5 Ανάλυση Εκτοπίσματος υπο μελέτη πλοίου FLD

L.S	Weight(tn)	KG/D	KG(m)	Mt (t∙m)	LCG/L	LCG(m)	MI (t∙m)
Wst	24481.82	0.64	16.64	407377.43	0.48	135.94	3327960.23
Wот	6534.19	0.90	23.40	152899.95	0.42	118.94	777202.23
Wм	2578.08	0.55	14.30	36866.50	LCGM=LA+0.5LER	32.80	84560.92
	33594.08		17.78	597143.88		124.72	4189723.39
		λ _{kg}	1.075		λ_{LCG}	1.015	
ΔΙΟΡΘΩΣΗ			16.54			122.89	

Πίνακας 2.7:6 Ανάλυση του lightship του υπο μελέτη πλοίου βάσει των διορθωτικών συντελεστών (λ_{KG},λ_{LCG})

2.7.2.1 Υπολογισμός GM

Για την κατάσταση Full Load Departure έχουμε τα ακόλουθα στοιχεία:

	Αποτέλεσμα
Βύθισμα	11.70
Συντελεστής C _w	0.837
Συντελεστής C _M	0.992
Συντελεστής C _B	0.758

Τα αποτελέσματα του παραπάνω πίνακα χρησιμοποιούνται στον υπολογισμό του KB και του BM.

Υπολογισμός ΚΒ

Από το βιβλίο [1a] σελ. 302, χρησιμοποιούμε τους προσεγγιστικούς τύπους:

Schneekluth $T \cdot (0.9 - 0.3 \cdot C_M - 0.1 \cdot C_B)$ Normand I $T \cdot (0.9 - 0.36 \cdot C_M)$ Normand II $T \cdot \left(\frac{5}{6} - \frac{C_B}{3 \cdot C_{WL}}\right)$

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα.

Προσεγγιστικό ΚΒ					
Schneekluth	6.161	[m]			
Normand I	6.352	[m]			
Normand II	6.217	[m]			
Μέσο ΚΒ	6.243	[m]			

Υπολογισμός ΒΜ

Προσεγγιστικοί τύποι (σελ. 302 [1a])

Αυτοί οι τύποι είναι της μορφής $BM = C_1 \frac{B^2}{12 \cdot T \cdot C_B}$, όπου C₁ συντελεστής ανάλογα με τον τύπο που θέλουμε. Επομένως υπολογίζουμε

$$\frac{B^2}{12 \cdot T \cdot C_B} = \frac{46^2}{12 \cdot 11.7 \cdot 0.758} = 19.88$$

	Εξισώσεις <i>C</i> ₁
Normand	$0.096 + 0.89 \cdot C_{WL}^2$
Schneekluth	$C_{WL}^{1.8}$
Bauer	$0.0372 \cdot (2 \cdot C_{WL} + 1)^3$
Dudszus-Danckwardt	$0.13 \cdot C_{WL} + 0.87 \cdot C_{WL}^2 + 0.005$
Murray	$0.5 (3C_{WL} - 1)$

Προσεγγιστικό ΒΜ						
Normand	14.299	[m]				
Schneekluth	14.427	[m]				
Bauer	14.134	[m]				
Dudszus-Danckwardt	14.374	[m]				
Murray	15.015	[m]				
Μέσο ΒΜ	14.450	[m]				

Από τα παραπάνω το υπολογισθέν ΚΜ είναι:

$$KM = KB + BM = 6.243 + 14.450 \rightarrow KM = 20.693 [m]$$

Το διορθωμένο ΚΜ του πλοίου θα είναι:

$$KM_{CORR} = \frac{KM_{calc}}{\lambda_{KM}} = \frac{20.693}{0.994} \rightarrow KM_{CORR} = 20.811 \ [m]$$

Όμως επειδή οι δεξαμενές είναι γεμάτες στο 98.5%, υπάρχει επίδραση ελεύθερων επιφανειών. Κατά αυτόν τον τρόπο, ανατρέχοντας στον πίνακα της αναχώρησης του πλοίου για το πατρικό πλοίο, δίδεται η ροπή για την ελεύθερη επιφάνεια όλων των δεξαμενών ίση με 70053.0 tm.

Με αναγωγή στο νέο πλοίο με τους λόγους λL,λB προκύπτει η ροπή για το νέο πλοίο:

$$\begin{aligned} M' &= M_{\pi\alpha\tau\rho\kappa\dot{o}} \cdot \lambda_L \cdot \lambda_B^3 \\ \delta KG &= \frac{M'}{\Delta} = 0.67m \\ KG_{CORR} &= KG' + \delta KG = 16.24 + 0.67 = 16.91m \end{aligned}$$

$$GM_{CORR} = KM_{CORR} - KG_{CORR} = 3.9 m$$

2.7.3 Πατρικό - Άφιξη

Σε αυτή την κατάσταση φόρτωσης θεωρούμε ότι έχει απομείνει το 10% των αναλωσίμων.

Από το Stability Booklet του πατρικού πλοίου προκύπτει ο παρακάτω πίνακας.

CONDITION 6 HOMO.D	B SI	GN L	OAD A	RR.COND	. (S.G	.=0.	46)					
WEIGHT ITEMS				FILL. (%)		S.G	WEIGH (MT	т : ')	L.C.G (M)	₹ V.C.G (M)	T.C. (M	G F.S.M) (MT-M)
NO.1 CARGO TANK				96.37	0.4	600	9722	5 23	1.726	15,715	0.00	5753
NO.2 CARGO TANK				96.37	0.4	600	20216.	3 18	8.800	15.960	0.00	25014
NO.3 CARGO TANK				96.37	0.4	600	20219.	2 13	5.600	15.960	0.00	25018
NO.4 CARGO TANK				96.37	0.4	600	20702.	5 8:	1.800	15.960	0.00	25616
TOTAL LIQUIFIED NA	TUR	AL G	AS				70860.	5 14	8.249	15.926	0.00	0 81401
FWD DEEP W.B.TK(P)				66.04	1.0	250	783.	0 26	0.365	7.829	6.21	1 266
FWD DEEP W.B.TK(S)				66.04	1.0	250	783.	0 26	0.365	7.829	-6.21	1 266
TOTAL WATER BALLAS	т						1566.	0 26	0.365	7.829	0.00	533
FRESH WATER							42.	2	8.984	16.618	-0.05	7 386
HEAVY FUEL OIL							495.	6 19:	1.644	7.262	0.57	9 3802
DIESEL OIL							57.	3 4	8.406	13.892	-4.45	0 47
LUBRICATING OIL							22.	6 3	0.044	21.422	-2.99	5 128
DEADWEIGHT CONSTAN	т						677.	6 6	1.394	9.539	0.00	0 1145
TOTAL DEADWEIGHT							73721.	8 14	9.930	15.638	-0.00	1 87442
LIGHT SHIP							32541.	9 12:	2.733	16.527	-0.17	в
TOTAL DISPLACEMENT						:	106263.	7 14:	1.601	15.910	-0.05	5 87442
BQUIV. DRAFT(BXT)	=	11	.006	====== М		:		M.T.C.		=	1900.96	MT-M
MEAN DRAFT (EXT)	=	11	.001	M		:		T.P.C		=	108.14	MT/CM
AFT. DRAFT (EXT)	=	11	.085	M		:		К.М.Т.		=	20.574	M
FORE DRAFT (EXT)	=	10	.916	M		:		V.C.G.		=	15.910	M
TRIM	=	0	.170	M		:		UNCORRI	CTED)GM =	4.664	M
DISPLACEMENT	=	10	6264	MT		:		GGo		=	0.823	M
L.C.G.	=	141	.601	M		:		CORREC	TED G	™ (GoM) =	3.841	M
L.C.B.	=	141	. 593	M		:		PROPEL	LER I	MMBR. =	127.5	8
L.C.F.	=	135	.072	М		:		BLIND I	DISTA	NCE =	377.5	M
HEEL	=	-	0.84	DEG								
HEEL ANG. (DEG) =	0	.000	5.0	00 10.0	00 15	. 000	20.000	30.00	0 40.	000 50.0	00 60.00	0
GE VALUE (M) =	-0	.046	0.2	81 0.6	35 1	047	1.528	2.58	33.	201 2.9	55 2.33	5
GE AREA (M*RAD) =	0	.000	0.0	10 0.0	49 0	.122	0.234	0.59	4 1.	110 1.6	57 2.12	1

Πίνακας 2.7:7 Κατάσταση φόρτωσης άφιξης πατρικού πλοίου

	Weight(tn)	LCG(m)	KG(m)	MI (t∙m)	Mt (t∙m)	FSM(m⁴)	LCG/L	KG/D
L.S	32541.90	122.73	16.53	3993965.01	537819.98	-	0.43	0.64
CARGO 96.37% (Payload)	70860.54	148.25	15.93	10504992.7	1128552.18	81401.0	0.52	0.61
W.B.T	1566.00	260.37	7.83	407731.59	12260.21	533.00	0.92	0.30
F.W. TANKS	42.20	8.98	16.62	379.12	701.28	386.00	0.03	0.64
F.O.TANKS	495.60	191.64	7.26	94978.77	3599.05	3802.00	0.68	0.28

D.O.TANKS	57.30	48.41	13.89	2773.66	796.01	47.00	0.17	0.53
LUB.OIL.T.	22.60	30.04	21.42	678.99	484.14	128.00	0.11	0.82
DWT CONST.	677.60	61.39	9.54	41600.57	6463.63	1145.00	0.22	0.37
Δ	106263.74	141.60	15.91	15047100.4	1690676.48	87442.0	-	-

Πίνακας 2.7:8 Ανάλυση Εκτοπίσματος πατρικού πλοίου FLA

To Payload λόγω εξάτμισης του φορτίου (BOG) μεταβάλλεται από 98.5% σε 96.37% πλήρωσης δεξαμενών. Οπότε θα ακολουθήσει νέα ανάλυση, αλλά με όμοιο τρόπο:

CARGO (Payload)	V ^{100%} (m ³)	v ^{96.37%} (m ³)	W(tn) SG=0.46	LCG(m) from AP	KG(m) from BL	MI (t∙m)	Mt (t∙m)	FSM
No.1 CargoTank	21932.10	21135.96	9722.54	231.73	15.72	2252966.18	152789.8	5753.00
No.2 CargoTank	45603.90	43948.48	20216.3	188.80	15.96	3816837.45	322652.2	25014.0
No.3 CargoTank	45610.50	43954.84	20219.2	135.60	15.96	2741727.03	322698.8	25018.0
No.4 CargoTank	46700.60	45005.37	20702.5	81.80	15.96	1693462.00	330411.4	25616.0
Payload TOTAL	159847.10	154044.7	70860.5	148.25	15.93	10504992.7	112855	81401.0

Πίνακας 2.7:9 Ανάλυση Payload πατρικού πλοίου FLA

Επειδή, όπως αναφέρθηκε και προηγουμένως οι διαστάσεις μήκους και ύψους δεν αλλάζουν από το πατρικό σε σχέση με το υπό μελέτη, δεν χρειάζεται να γίνει ανάλυση μέσω εμπειρικών τύπων για το Payload ώστε να εξάγουμε διορθωτικούς συντελεστές. Η ανάλυση αυτή έγινε στην κατάσταση αναχώρησης για σκοπούς πληρότητας. Οπότε για το υπό μελέτη πλοίο στην κατάσταση αναχώρησης τα KG και LCG του Payload θα είναι τα ίδια με του πατρικού.

To **Lightship** παραμένει το ίδιο και κατά συνέπεια οι διορθωτικοί συντελεστές του πατρικού σε σχέση με το υπό μελέτη θα είναι οι ίδιοι (λκG=1.075 και λιcG=1.015).

2.7.3.1 Υπολογισμός GM

Για να υπολογίσουμε τα KB και BM σε αυτή την κατάσταση φόρτωσης πρέπει να υπολογίσουμε το βύθισμα και τους συντελεστές μορφής σύμφωνα με τις παρακάτω εξισώσεις, όπου (0) η Full Load Departure και (1) η Full Load Arrival:

Bύθισμα $T_{1} = T_{0} \left(\frac{\Delta_{1}}{\Delta_{0}}\right)^{\frac{C_{B_{0}}}{C_{WL_{0}}}}$ $C_{WL} \qquad C_{WL_{1}} = C_{WL_{0}} \left(\frac{T_{1}}{T_{0}}\right)^{\frac{C_{WL_{0}}}{C_{B_{0}}}-1}$ $C_{M} \qquad C_{M_{1}} = \frac{\left(C_{M_{0}}-1\right) \cdot T_{0} + T_{1}}{T_{1}}$ $C_{B} \qquad C_{B_{1}} = C_{B_{0}} \left(\frac{T_{1}}{T_{0}}\right)^{\frac{C_{WL_{0}}}{C_{B_{0}}}-1}$

Για τα αποτελέσματα του παρακάτω πίνακα χρησιμοποιήθηκαν τα εξής νούμερα: $T_0 = 11.5 \ [m], \Delta_0 = 111629 \ [t], \Delta_1 = 106263.7 \ [t], C_{B0} = 0.757, C_{WL0} = 0.853$

	Αποτέλεσμα
Βύθισμα	11.008
Συντελεστής C _w	0.848
Συντελεστής C _M	0.991
Συντελεστής C _B	0.753

Υπολογισμός ΚΒ

Από το βιβλίο [1a] σελ. 302 χρησιμοποιούμε τους προσεγγιστικούς τύπους:

Schneekluth
$$T \cdot (0.9 - 0.3 \cdot C_M - 0.1 \cdot C_B)$$

Normand I $T \cdot (0.9 - 0.36 \cdot C_M)$
Normand II $T \cdot \left(\frac{5}{6} - \frac{C_B}{3 \cdot C_{WL}}\right)$

Προσεγγιστικό ΚΒ					
Schneekluth	5.805	[m]			
Normand I	5.980	[m]			
Normand II	5.916	[m]			
Μέσο ΚΒ	5.900	[m]			

Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα.

Υπολογισμός ΒΜ

• Προσεγγιστικοί τύποι

Αυτοί οι τύποι είναι της μορφής $BM = C_1 \frac{B^2}{12 \cdot T \cdot C_B}$, όπου C₁ συντελεστής ανάλογα με τον τύπο που θέλουμε. Επομένως υπολογίζουμε

$$\frac{B^2}{12 \cdot T \cdot C_B} = \frac{44^2}{12 \cdot 11.008 \cdot 0.753} = 19.46$$

	Εξισώσεις \mathcal{C}_{1}
Normand	$0.096 + 0.89 \cdot C_{WL}^2$
Schneekluth	$C_{WL}^{1.8}$
Bauer	$0.0372 \cdot (2 \cdot C_{WL} + 1)^3$
Dudszus-Danckwardt	$0.13 \cdot C_{WL} + 0.87 \cdot C_{WL}^2 + 0.005$
Murray	$0.5 (3C_{WL} - 1)$

Προσεγγιστικό ΒΜ				
Normand	14.336	[m]		
Schneekluth	14.477	[m]		
Bauer	14.201	[m]		
Dudszus-Danckwardt	14.432	[m]		
Murray	15.037	[m]		
Μέσο ΒΜ	14.497	[m]		

Από τα παραπάνω το ΚΜ υπολογίζεται:

$$KM = KB + BM = 5.90 + 14.497 \rightarrow KM = 20.397 [m]$$

	KM [m]
Υπολογισθέν	20.397
Πραγματικό	20.574
Συντελεστής διόρθωσης λ	0.991

	Weight(tn)	LCG(m)	KG(m)	MI (t∙m)	Mt (t∙m)	LCG/L	KG/D
L.S	33594.08	122.89	16.54	4128503.47	555709.13	0.43	0.64
CARGO 96.37% (Payload)	76519.29	148.25	15.93	11343895.77	1218675.61	0.52	0.61
W.B.T	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F.W. TANKS	44.14	8.98	16.62	396.55	733.50	0.03	0.64
F.O.TANKS	507.74	191.64	7.26	97304.45	3687.17	0.68	0.28
D.O.TANKS	59.41	48.41	13.89	2875.95	825.37	0.17	0.53
LUB.OIL.T.	23.15	30.04	21.42	695.41	495.84	0.11	0.82
DWT CONST.	686.86	61.12	9.79	41982.45	6724.38	0.22	0.38
Δ	111434.67	140.13	16.03	15615654.05	1786851.00	-	-

2.7.4 Υπό μελέτη πλοίο – Άφιξη

Πίνακας 2.7:10 Κατάσταση φόρτωσης άφιξης υπό μελέτη πλοίου

<u>Σημείωση</u>: Το Payload είναι στο 96.37% της πλήρωσης του, για την συγκεκριμένη κατάσταση φόρτωσης.

L.S	Weight(tn)	KG/D	KG(m)	Mt (t∙m)	LCG/L	LCG(m)	Ml (t∙m)
Wst	24481.82	0.64	16.64	407377.43	0.48	135.94	3327960.23
Wот	6534.19	0.90	23.40	152899.95	0.42	118.94	777202.23
₩м	2578.08	0.55	14.30	36866.50	LCGM=LA+0.5LER	32.80	84560.92
	33594.08		17.78	597143.88		124.72	4189723.39
		λ _{kg}	1.075		λ _{ιcg}	1.015	
ΔΙΟΡΘΩΣΗ			16.54			122.89	

Πίνακας 2.7:11 Ανάλυση του lightship του υπό μελέτη πλοίου βάσει των διορθωτικών συντελεστών (λ_{KG},λ_{LCG})

2.7.4.1 Υπολογισμός GM

Για να υπολογίσουμε τα KB και BM σε αυτή την κατάσταση φόρτωσης πρέπει να υπολογίσουμε το βύθισμα και τους συντελεστές μορφής σύμφωνα με τις παρακάτω εξισώσεις, όπου (0) η Full Load Departure και (1) η Full Load Arrival:

Βύθισμα
$$T_{1} = T_{0} \left(\frac{\Delta_{1}}{\Delta_{0}}\right)^{\frac{C_{B_{0}}}{C_{WL_{0}}}}$$

$$C_{WL} \qquad C_{WL_{1}} = C_{WL_{0}} \left(\frac{T_{1}}{T_{0}}\right)^{\frac{C_{WL_{0}}}{C_{B_{0}}}-1}$$

$$C_{M} \qquad C_{M_{1}} = \frac{(C_{M_{0}}-1) \cdot T_{0} + T_{1}}{T_{1}}$$

$$C_{B} \qquad C_{B_{1}} = C_{B_{0}} \left(\frac{T_{1}}{T_{0}}\right)^{\frac{C_{WL_{0}}}{C_{B_{0}}}-1}$$

Για τα αποτελέσματα του παρακάτω πίνακα χρησιμοποιήθηκαν τα εξής νούμερα: $T_0 = 11.7 \ [m], \Delta_0 = 118835.8 \ [t], \Delta_1 = 11434.7 \ [t], C_{B0} = 0.758, C_{WL0} = 0.837$

	Αποτέλεσμα
Βύθισμα	11.038
Συντελεστής C _w	0.832
Συντελεστής C _M	0.992
Συντελεστής C _B	0.753

Υπολογισμός ΚΒ

Από το βιβλίο [1a] σελ. 302 χρησιμοποιούμε τους προσεγγιστικούς τύπους:

Schneekluth
$$T \cdot (0.9 - 0.3 \cdot C_M - 0.1 \cdot C_B)$$

Normand I $T \cdot (0.9 - 0.36 \cdot C_M)$
Normand II $T \cdot \left(\frac{5}{6} - \frac{C_B}{3 \cdot C_{WL}}\right)$

/		,	,
Ια αποτελεσματα	φαινονται στον	παρακατω	πινακα
1 a ano concopara	quitor tut o to t	rapanata	/

Προσεγγιστικό ΚΒ			
Schneekluth	5.819	[m]	
Normand I	5.994	[m]	
Normand II	5.865	[m]	
Μέσο ΚΒ	5.893	[m]	

Υπολογισμός ΒΜ

Προσεγγιστικοί τύποι (σελ. 302 [1a])

Αυτοί οι τύποι είναι της μορφής $BM = C_1 \frac{B^2}{12 \cdot T \cdot C_B}$, όπου C₁ συντελεστής ανάλογα με τον τύπο που θέλουμε. Επομένως υπολογίζουμε

$$\frac{B^2}{12 \cdot T \cdot C_B} = \frac{46^2}{12 \cdot 11.038 \cdot 0.753} = 21.2$$

	-
FEIGUAGEIC	C
Γζισωσειζ	U 1

Normand	$0.096 + 0.89 \cdot C_{WL}^2$
Schneekluth	$C_{WL}^{1.8}$
Bauer	$0.0372 \cdot (2 \cdot C_{WL} + 1)^3$
Dudszus-Danckwardt	$0.13 \cdot C_{WL} + 0.87 \cdot C_{WL}^2 + 0.005$
Murray	$0.5 (3C_{WL} - 1)$

Προσεγγιστικό ΒΜ				
Normand	15.090	[m]		
Schneekluth	15.218	[m]		
Bauer	14.903	[m]		
Dudszus-Danckwardt	15.159	[m]		
Murray	15.851	[m]		
Μέσο ΒΜ	15.244	[m]		

Από τα παραπάνω το υπολογισθέν ΚΜ είναι:

$$KM = KB + BM = 5.893 + 15.244 \rightarrow KM = 21.137 [m]$$

Το διορθωμένο ΚΜ του πλοίου θα είναι:

$$KM_{CORR} = \frac{KM_{calc}}{\lambda_{KM}} = \frac{21.137}{0.991} \rightarrow KM_{CORR} = 21.321 \ [m]$$

Όμως επειδή οι δεξαμενές είναι γεμάτες στο 96.37 %, υπάρχει επίδραση ελεύθερων επιφανειών. Κατά αυτόν τον τρόπο, ανατρέχοντας στον πίνακα της αναχώρησης του πλοίου για το πατρικό πλοίο, δίδεται η ροπή για την ελεύθερη επιφάνεια όλων των δεξαμενών ίση με 87442 tm.

Με αναγωγή στο νέο πλοίο με τους λόγους λL,λB προκύπτει η ροπή για το νέο πλοίο:

$$M' = M_{\pi\alpha\tau\rho\iota\kappa\dot{o}} \cdot \lambda_L \cdot \lambda_B^3$$

$$\delta KG = \frac{M'}{\Lambda} = 0.897m$$

$$KG_{CORR} = KG' + \delta KG = 16.03 + 0.897 = 16.93m$$

$$GM_{CORR} = KM_{CORR} - KG_{CORR} = 4.39 m$$

2.8 Γραμμή Φόρτωσης

Τα κύρια χαρακτηριστικά του πλοίου που χρειάζονται για τη γραμμή φόρτωσης είναι:

L _{BP}	283.2	[m]
В	46	[m]
Т	11.7	[m]
D	20.8	[m]
C _B	0.758	-
C _{WL}	0.837	-

Θεωρούμε ότι το πάχος του ελάσματος του πρυμναίου καταστρώματος είναι ίσο με $t = 18 \ [mm]$

Πλευρικό Ύψος D_F θεωρούμε το ύψος στην πρύμνη όπου είναι χαμηλότερο από το κύριο κατάστρωμα

 $D_F = D + t = 20800 + 0.018 \rightarrow D_F = 20818 \ [mm]$

Βύθισμα στο 0.85D

 $T_{0.85D} = 0.85D = 0.85 \cdot 20.8 \rightarrow T_{0.85D} = 17.68 \ [m]$

• Συντελεστής γάστρας στο 0.85D

$$C_{B_{0.85D}} = C_{B_0} \left(\frac{T_1}{T_0}\right)^{\frac{C_{WL_0}}{C_{B_0}} - 1} \to 0.758 \left(\frac{17.68}{11.7}\right)^{\frac{0.837}{0.758} - 1} \to C_{B_{0.85D}} = 0.791$$

Βασικό Ύψος Εξάλων (BYE)
 Το πλοίο είναι Τύπου Α και έτσι από τον πίνακα Ι του βιβλίου [1b] σελ. Δ-14, βρίσκουμε με γραμμική παρεμβολή για μήκος 283.2 m ότι:

$$BYE = 3190.08 \ [mm]$$

- Διόρθωση μήκους
 Δεν έχουμε διότι $L_{\Gamma \Phi} > 100 \ m.$
- Διόρθωση C_B
 Αφού έχουμε C_{B0.85D} > 0.68 τότε ισχύει:

$$\Upsilon E^{5} = \left(\frac{C_{B0.85D} + 0.68}{1.36}\right) = \left(\frac{0.791 + 0.68}{1.36}\right) \to \Upsilon E^{5} = 1.082[mm]$$

• Διόρθωση πλευρικού ύψους Έχουμε $\frac{L_{\Gamma\Phi}}{15} = m$, δηλαδή $D_F > \frac{L_{\Gamma\Phi}}{15}$. Επιπλέον $L_{\Gamma\Phi} > 120 m$ άρα R = 250 [mm], οπότε έχουμε:

$$\Upsilon E^{6} = \left(D_{F} - \frac{L_{\Gamma \Phi}}{15}\right) \cdot R = \left(20.818 - \frac{283.2}{15}\right) \cdot 250 \to \Upsilon E^{6} = 484.5 \ [mm]$$

- Διόρθωση υπερκατασκευών δεν έχουμε αφού δεν υπάρχουν υπερκατασκευές.
- Διόρθωση σιμότητας
 Για την διόρθωση της σιμότητας υπολογίζουμε το μέτρο της κανονικής σιμότητας:

$$M_N = 12.5063 \cdot \left(\frac{L_{\Gamma\Phi}}{3} + 10\right) = 12.5063 \cdot \left(\frac{283.2}{3} + 10\right) \to M_N = 1305.7[mm]$$

Εφόσον το υπό μελέτη πλοίο δεν έχει σιμότητα τότε: $M_S^* = 0$ Οπότε η διόρθωση για την σιμότητα βρίσκεται:

$$YE^8 = (M_N - M_S^*) \cdot \left(0.75 - \frac{S}{2 \cdot L_{\Gamma\Phi}}\right) \rightarrow$$

$$\rightarrow (1305.7 - 0) \cdot \left(0.75 - \frac{0}{2 \cdot 283.2}\right) \rightarrow \Upsilon E^8 = 979.2 \ [mm]$$

Τελικό Ύψος εξάλων
 Το τελικό ύψος εξάλων του υπό μελέτη πλοίου ισούται με:

$$YE_{TEA} = BYE \cdot YE^5 + YE^6 + YE^7 + YE^8 = 4914.7 \ [mm]$$

- Μέγιστο έμφορτο βύθισμα
 $T_{\Gamma \Phi} = D_F \Upsilon E_{TEA} = (20818 4914.7)[mm] → T_{\Gamma \Phi} = 15.90 [m]$ $T_{\Gamma \Phi} > 11.7 m → αποδεκτό$
- Ελάχιστο ύψος πλώρας Το ελάχιστο ύψος πλώρας (ΕΥΠ) δίνεται από την εξίσωση, όπου $L_{\Gamma \phi} = L_{BP}$:

$$\begin{split} EY\Pi &= 7000 \cdot \frac{1.36}{C_{B_{0.85D}} + 0.68} \ [mm], \ L \geq 250m \\ &= 7000 \cdot \frac{1.36}{0.791 + 0.68} \rightarrow \\ &\to EY\Pi = 6470.8 \ [mm] = 6.47 \ [m] \end{split}$$

• Πραγματικό ύψος πλώρας

 $\Pi \Upsilon \Pi = D_f - T = 20.818 - 11.7 \rightarrow \Pi \Upsilon \Pi = 9.12 \ [m] > E \Upsilon \Pi$

Ο έλεγχος της γραμμής φόρτωσης πραγματοποιήθηκε με επιτυχία, όπως και ο έλεγχος για το ύψος της πλώρης.

Η χάραξη των γραμμών φόρτωσης, γίνεται σύμφωνα τον διεθνή κανονισμό της LoadLine Convention.
3 ΤΕΛΙΚΗ ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

Αφού επιλεγούν τα κύρια χαρακτηριστικά του πλοίου όπως αυτά υπολογίστηκαν στο Κεφάλαιο 2, πραγματοποιείται μοντελοποίηση και σχεδίαση του υπο μελέτη πλοίου με τη βοήθεια του προγράμματος AVEVA και Autocad με σκοπό να εξαχθούν χρήσιμα δεδομένα. Στα Παραρτήματα παρατίθενται σχετικά σχέδια.

3.1 Σχεδίαση Ναυπηγικών Γραμμών

Με χρήση του υποπρογράμματος Lines του AVEVA, οι γραμμές προσαρμόστηκαν κατάλληλα στο υπό μελέτη πλοίο, με αναφορά το πατρικό (FOS, FOB, stem-stern profile, transom, άξονας έλικας). Ακολούθως πραγματοποιείται εξομάλυνση για να επιτευχθεί το απαιτούμενο αποτέλεσμα διατηρώντας το C_B και στο τέλος εισάγονται και οι διαμήκεις τομές (buttocks).

Εικόνα 3.1:1 Μορφή ισάλων και νομέων υπό μελέτη πλοίου

Εικόνα 3.1:2 Τελικό 3D σχέδιο των ναυπηγικών γραμμών

3.2 Διαμερισματοποίηση

Επόμενο βήμα είναι η διαμερισματοποίηση του υπό μελέτη πλοίου με χρήση του υποπρογράμματος Surface & Compartment του AVEVA και του τελικού σχεδίου των ναυπηγικών γραμμών. Συγκεκριμένα, ορίζονται βοηθητικές επιφάνειες ώστε να διαχωριστούν και να σχεδιαστούν τελικά όλες οι δεξαμενές του πλοίου (cargo, ballast, fuel oil, lube oil diesel oil, freshwater tank, etc.). Οι διαστάσεις των δεξαμενών προσαρμόζονται με βάση το πατρικό πλοίο. Στην Εικόνα *3.2*:*1* φαίνεται η διαμερισματοποίηση του πλοίου.

Εικόνα 3.2:1 Τελική διαμερισματοποίηση υπό μελέτη πλοίου- 3D

3.3 Υδροστατικά και Υδροδυναμικά Χαρακτηριστικά

Στη συνέχεια, το αρχείο της διαμερισματοποίησης του υπό μελέτη πλοίου, εισάγεται στο υποπρόγραμμα Hydrostatics & Hydrodynamics του AVEVA. Στο υποπρόγραμμα αυτό ορίζονται τα διάφορα χαρακτηριστικά του υπό μελέτη πλοίου και κατηγοριοποιούνται οι δεξαμενές που το αποτελούν με σκοπό να εξαχθούν οι καταστάσεις φόρτωσης, με όλες τις πληροφορίες που μας ενδιαφέρουν (Full Load Departure, Full Load Arrival, Ballast Departure, Ballast Arrival). Επίσης, από το πρόγραμμα θα εξαχθούν τα υδροστατικά, οι καμπύλες ευστάθειας, τα κατακλύσιμα μήκη και η DWT Scale.

3.3.1 Κατάσταση πλήρους φόρτωσης - Αναχώρηση (FLD)

Key	Name	Density
		(t/m3)
	WB	1.0250
	FW	1.0000
	HFO	0.9800
	DO	0.8500
	LO	0.9000
	CARGO	0.4670

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
		00000	/0 1011	(t/m3)	(t)	(m)	(m)	(m)	(t-m)
WATER BALLAST				、 /	()		~ /		~ /
E/R W.B.T(P)	44-67	WB	100.0	1.025	679.8	46.47	-21.68	15.97	0.0
ER/W.B.T(S)	44-67	WB	100.0	1.025	679.8	46.47	21.68	15.97	0.0
Total WATER BALLAST					1359.6	46.47	0.00	15.97	0.0
FRESH WATER							1		
D.W.TK(S)	9-15	FW	100.0	1.000	65.0	9.40	12.25	18.50	0.0
F.W.TK(P)	7-15	FW	100.0	1.000	218.0	9.01	-14.48	18.63	0.0
F.W.TK(S)	7-15	FW	100.0	1.000	153.0	8.85	15.42	18.68	0.0
Total FRESH WATER					436.0	9.01	0.00	18.63	0.0
HEAVY FUEL OIL									
H.F.O.SERV(S)	44-48	HFO	98.0	0.980	116.5	36.80	18.49	20.65	16.6
H.F.O.SETT(S)	48-52	HFO	98.0	0.980	116.5	40.00	18.49	20.66	16.6
H.F.O.T(S)	44-67	HFO	98.0	0.980	426.3	43.05	18.87	16.62	62.2
H.F.O SERV(P)	44-48	HFO	98.0	0.980	116.5	36.80	-18.49	20.65	16.6
H.F.O_SETT(P)	48-52	HFO	98.0	0.980	116.5	40.00	-18.49	20.66	16.6
L.S.H.F.O.T(P)	44-67	HFO	98.0	0.980	608.8	44.78	-18.65	15.46	62.2
NO.1 FWD H.F.O.T(C)	135-147	HFO	98.0	0.980	1785.3	263.89	0.00	12.41	944.6
NO.2 FWD H.F.O.T(C):	127-135	HFO	98.0	0.980	1825.8	256.25	0.00	12.41	2101.5
Total HEAVY FUEL OIL					5112.2	196.10	-0.65	13.88	3236.9
DIESEL OIL									
M.D.O.SERV(S)	55-59	DO	98.0	0.850	79.2	45.60	18.15	20.41	8.1
M.D.O.STOR(S)	55-67	DO	98.0	0.850	316.7	49.58	18.15	16.59	16.3
M.G.O SERV(P)	55-59	DO	98.0	0.850	79.2	45.60	-18.15	20.41	8.1
M.G.O STOR(P)	59-67	DO	98.0	0.850	158.3	50.40	-18.15	20.41	16.3
Total DIESEL OIL					633.4	48.79	4.54	18.50	48.8
LUB. OIL									
G/E L.O.SETT.T(P)	34-39	LO	98.0	0.900	69.1	29.20	-18.95	22.96	35.3

									1
Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
G/E L.O.STOR.T(P)	39-43	LO	98.0	0.900	55.3	32.80	-18.95	22.96	28.2
G/E L.OIL.SETT.T(S)	34-39	LO	98.0	0.900	69.1	29.20	18.95	22.96	35.3
G/E L.OIL.STR.T(S)	39-43	LO	98.0	0.900	55.3	32.80	18.95	22.96	28.2
PRO M.L.O STR.T(S)	30-32	LO	98.0	0.900	27.7	24.80	18.95	22.96	14.1
R/G L.OIL.STR.T(S)	32-34	LO	98.0	0.900	27.7	26.40	18.95	22.96	14.1
Total LUB. OIL					304.2	29.85	3.45	22.96	155.2
CARGO	·				·				
CARGO TANK NO.1	116-126	CARGO	98.5	0.467	10731.7	231.73	0.00	16.11	4956.7
CARGO TANK NO.2	100-115	CARGO	98.5	0.467	22319.1	188.80	0.00	16.37	24754.8
CARGO TANK NO.3	84-99	CARGO	98.5	0.467	22319.1	135.60	0.00	16.37	24754.8
CARGO TANK NO.4	68-83	CARGO	98.5	0.467	22850.5	81.80	0.00	16.37	25344.2
Total CARGO					78220.4	148.25	0.00	16.33	79810.5
DWT CONST.	-				· ·				
DWT CONST.					686.9	61.12	0.00	9.79	0.0
Total DWT CONST.					686.9	61.12	0.00	9.79	0.0
Lightweight					33594.1	122.89	0.00	16.54	0.0
Deadweight					86752.5	146.95	0.01	16.18	83251.6
Total Displacement					120346.6	140.23	0.01	16.28	83251.6
Buoyancy					120340.4	140.23	0.02	6.22	1792976.7
Total Buoyancy					120340.4	140.23	0.02	6.22	1792976.7

Πίνακας 3.3:1 Ανάλυση Εκτοπίσματος Κατάστασης Πλήρους Φόρτωσης - Αναχώριση (FLD)

Draft at LCF	11.852	metres
Draft aft at marks	11.843	metres
Draft fwd at marks	11.862	metres
Draft at AP	11.843	metres
Draft at FP	11.862	metres
Mean draft at midships	11.853	metres

Density of water	1.0286	tonnes/cu.m
Heel to starboard	0.07	degrees
Trim	No trim	
KG	16.282	metres
FSC	0.692	metres
KGf	16.974	metres
GMt	4.144	metres
BMt	14.899	metres
BMl	477.680	metres
Waterplane area	11067.58	sq.metres

Density of water	1.0286	tonnes/cu.m
LCG	140.231	metres
LCB	140.231	metres
TCB	0.018	metres
LCF	133.612	metres
TCF	0.018	metres
TPC	113.840	tonnes/cm
MTC	2029.810	tonnes-m/cm
Shell thickness	0.000	mm

Πίνακας 3.3:2 Βυθίσματα και Υδροστατικά Κατάστασης Πλήρους Φόρτωσης - Αναχώριση (FLD)

Διάγραμμα 3:1 Καμπύλη Μοχλοβραχίονα Επαναναφοράς Κατάστασης Πλήρους Φόρτωσης -Αναχώριση (FLD)

Heel to Stbd	GΖ	Slope	Trim	WLrad	Freeboard	Wind
(deg)	(m)	(m/rad)	(m)	(m)	(m)	(m)
0.00	-0.0051	4.1436	0.019	11.853	14.60[0]	0.0000
5.00	0.3600	4.2637	0.056	11.799	12.55[0]	0.0000
10.00	0.7451	4.6253	0.168	11.635	10.42[0]	0.0000
15.00	1.1724	5.2695	0.356	11.361	8.23[0]	0.0000
20.00	1.6661	6.1912	0.608	10.977	6.01[0]	0.0000
25.00	2.2334	6.8104	0.913	10.474	3.78[0]	0.0000
30.00	2.8050	6.1546	1.255	9.812	1.59[0]	0.0000
35.00	3.2602	4.6025	1.610	8.932	-0.46[0]	0.0000
40.00	3.6085	3.6661	1.928	7.828	-2.35[0]	0.0000
45.00	3.9098	3.4935	2.147	6.516	-4.08[0]	0.0000
50.00	4.1910	2.3500	2.286	5.023	-5.64[0]	0.0000
55.00	4.2663	-0.4427	2.459	3.474	-7.14[0]	0.0000

Righting Lever (GZ) Curve

Πίνακας 3.3:3 Στοιχεία Μοχλοβραχίονα Επαναναφοράς Κατάστασης Πλήρους Φόρτωσης -Αναχώριση (FLD)

Property	Value	Units
Length WL	291.696	metres
Profile area above WL	0.000	sq.metres
Area to leeward (Area b)	1.90821	m-radians
Area to windward (Area a)	0.00000	m-radians
GZc	0.000	metres
Gust angle	0.070	degrees
Rollback angle	18.901	degrees
Steady state angle	0.070	degrees
Max. angle to leeward	50.000	degrees
B/d'	3.881	
X1	0.800	
Cb	0.757	
Ar	0.000	
К	1.000	
Og	5.120	metres
r	0.989	
Т	15.223	seconds

Πίνακας 3.3:4 IMO Wind Heeling Κατάστασης Πλήρους Φόρτωσης - Αναχώριση (FLD)

#	Criterion	Actual	Critical
		Value	Value
1	Area under GZ curve up to 30 degrees > 0.055	0.660	0.055
2	Area under GZ curve from 30 to 40 deg. or downflood > 0.03	0.566	0.030
3	Area under GZ curve up to 40 deg. or downflood > 0.09	1.226	0.090
4	Initial GM to be at least 0.15 metres	Not Appl	0.150
5	GZ to be at least 0.20m at an angle $>$ 30 degrees	4.270	0.200
6	Max GZ to be at an angle > 30 degrees	54.057	30.000
7	IMO Weather Criterion (Maximum Initial Angle Of Heel)	0.070	16.000
8	IMO Weather Criterion (Areas)	Indeterm.	1.000

Πίνακας 3.3:5 Εφαρμογή Κριτηρίου ΙΜΟ 749 Άθικτης Ευστάθειας Κατάστασης Πλήρους Φόρτωσης -Αναχώριση (FLD)

Condition complies with the regulations

Διάγραμμα 3:2 Διαμήκης Αντοχή Κατάστασης Πλήρους Φόρτωσης - Αναχώριση (FLD)

Distance		Shearing	% of Max	Bending	% of Max
from Origin		Force	allowed	Moment	allowed
(m)		(kN)		(kNm)	
0.00	#0	0.0		0.0	
19.86		25154.7		314837.2	
53.62		0.0		803286.7	
56.00	#68	-8023.8		793896.4	
67.53		0.0		752489.5	
107.60	#83	12149.0		1035383.6	
161.95		0.0		1231015.6	
202.75		-9280.9		907267.2	
216.80	#116	-19452.5		768105.5	
253.20	#127	-19400.3		125533.7	
268.15		0.0		-4987.2	
273.64		0.0		-4017.2	
276.12		-230.3		-4313.7	
278.83		0.0		-4678.9	
283.20		1131.5		-2680.2	
Maximum BM					
160.80				1231252.4	
Maximum SF					
19.86		25154.7			

Πίνακας 3.3:6 Στοιχεία Διατμητικών Δυνάμεων και Καμπτικών Ροπών Κατάστασης Πλήρους Φόρτωσης - Αναχώριση (FLD)

115

3.3.2 Κατάσταση πλήρους φόρτωσης - Άφιξη (FLA)

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
FRESH WATER		1							
D.W.TK(S)	9-15	FW	10.0	1.000	6.5	9.40	12.25	16.25	6.8
F.W.TK(P)	7-15	FW	10.0	1.000	21.8	9.08	-13.93	16.30	125.1
F.W.TK(S)	7-15	FW	10.0	1.000	15.3	8.90	14.86	16.33	56.7
Total FRESH WATER					43.6	9.07	0.08	16.30	188.6
HEAVY FUEL OIL									
H.F.O.SERV(S)	44-48	HFO	10.0	0.980	11.9	36.80	18.49	16.47	16.6
H.F.O.SETT(S)	48-52	HFO	10.0	0.980	11.9	40.00	18.49	16.48	16.6
H.F.O.T(S)	44-67	HFO	10.0	0.980	43.5	41.06	18.76	10.53	60.7
H.F.O SERV(P)	44-48	HFO	10.0	0.980	11.9	36.80	-18.49	16.47	16.6
H.F.O SETT(P)	48-52	HFO	10.0	0.980	11.9	40.00	-18.49	16.48	16.6
L.S.H.F.O.T(P)	44-67	HFO	10.0	0.980	62.1	44.40	-18.49	10.43	95.4
NO.1 FWD H.F.O.T(C)	135-147	HFO	10.0	0.980	182.2	263.89	0.00	4.14	944.6
NO.2 FWD H.F.O.T(C)	127-135	HFO	10.0	0.980	186.3	256.25	0.00	4.14	2101.5
Total HEAVY FUEL OIL					521.7	195.89	-0.64	6.55	3268.6
DIESEL OIL									
M.D.O.SERV(S)	55-59	DO	10.0	0.850	8.1	45.60	18.15	16.45	8.1
M.D.O.STOR(S)	55-67	DO	10.0	0.850	32.3	48.80	18.15	10.60	24.4
M.G.O SERV(P)	55-59	DO	10.0	0.850	8.1	45.60	-18.15	16.45	8.1
M.G.O STOR(P)	59-67	DO	10.0	0.850	16.2	50.40	-18.15	16.45	16.3
Total DIESEL OIL					64.7	48.40	4.54	13.53	56.9
LUB. OIL		1							
G/E L.O.SETT.T(P)	34-39	LO	10.0	0.900	7.1	29.20	-18.95	21.20	35.3
G/E L.O.STOR.T(P)	39-43	LO	10.0	0.900	5.6	32.80	-18.95	21.20	28.2
G/E L.OIL.SETT.T(S)	34-39	LO	10.0	0.900	7.1	29.20	18.95	21.20	35.3
G/E L.OIL.STR.T(S)	39-43	LO	10.0	0.900	5.6	32.80	18.95	21.20	28.2
PRO M.L.O STR.T(S)	30-32	LO	10.0	0.900	2.8	24.80	18.95	21.20	14.1
R/G L.OIL.STR.T(S)	32-34	LO	10.0	0.900	2.8	26.40	18.95	21.20	14.1
Total LUB. OIL					31.0	29.85	3.45	21.20	155.2
CARGO									
CARGO TANK NO.1	116-126	CARGO	96.4	0.467	10499.6	231.75	0.00	15.82	6881.2
CARGO TANK NO.2	100-115	CARGO	96.4	0.467	21836.3	188.80	0.00	16.08	30582.2
CARGO TANK NO.3	84-99	CARGO	96.4	0.467	21836.3	135.60	0.00	16.08	30582.3
CARGO TANK NO.4	68-83	CARGO	96.4	0.467	22356.2	81.80	0.00	16.08	31310.4
Total CARGO					76528.4	148.26	0.00	16.04	99356.1
DWT CONST.									

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
DWT CONST.					686.9	61.12	0.00	9.79	0.0
Total DWT CONST.					686.9	61.12	0.00	9.79	0.0
Lightweight					33594.1	122.89	0.00	16.54	0.0
Deadweight					77876.3	147.60	0.00	15.93	103025.5
Total Displacement					111470.3	140.15	0.00	16.11	103025.5
Buoyancy					111470.4	140.14	0.00	5.80	1770255.5
Total Buoyancy					111470.4	140.14	0.00	5.80	1770255.5

Πίνακας 3.3:7 Ανάλυση Εκτοπίσματος Κατάστασης Πλήρους Φόρτωσης - Άφιξη (FLA)

Draft at LCF	11.068	metres
Draft aft at marks	11.212	metres
Draft fwd at marks	10.908	metres
Draft at AP	11.212	metres
Draft at FP	10.908	metres
Mean draft at midships	11.060	metres

Density of water	1.0286	tonnes/cu.m
Heel	No heel	
Trim by the stern	0.304	metres
KG	16.111	metres
FSC	0.924	metres
KGf	17.035	metres
GMt	4.647	metres
BMt	15.881	metres
BMl	498.863	metres
Waterplane area	10938.91	sq.metres
LCG	140.152	metres
LCB	140.140	metres
TCB	0.000	metres
LCF	134.615	metres
TCF	0.000	metres
TPC	112.516	tonnes/cm
MTC	1963.575	tonnes-m/cm
Shell thickness	0.000	mm

Πίνακας 3.3:8 Βυθίσματα και Υδροστατικά Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

Διάγραμμα 3:3 Καμπύλη Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

Heel to Stbd	GZ	Slope	Trim	WLrad	Freeboard	Wind
(deg)	(m)	(m/rad)	(m)	(m)	(m)	(m)
0.00	-0.0006	4.6471	-0.304	11.060	15.39[0]	0.0000
5.00	0.4082	4.7665	-0.260	11.008	13.34[0]	0.0000
10.00	0.8374	5.1470	-0.130	10.851	11.20[0]	0.0000
15.00	1.3106	5.8189	0.083	10.589	9.01[0]	0.0000
20.00	1.8503	6.6737	0.363	10.220	6.77[0]	0.0000
25.00	2.4397	6.8378	0.700	9.728	4.52[0]	0.0000
30.00	2.9751	5.3326	1.077	9.062	2.34[0]	0.0000
35.00	3.3529	3.7141	1.465	8.171	0.30[0]	0.0000
40.00	3.6247	2.8384	1.825	7.064	-1.59[0]	0.0000
45.00	3.8518	2.6323	2.101	5.758	-3.32[0]	0.0000
50.00	4.0971	2.7170	2.252	4.265	-4.88[0]	0.0000
55.00	4.2238	0.0930	2.439	2.675	-6.34[0]	0.0000

Πίνακας 3.3:9 Στοιχεία Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

Property	Value	Units
Length WL	291.696	metres
Profile area above WL	0.000	sq.metres
Area to leeward (Area b)	1.98207	m-radians
Area to windward (Area a)	0.00000	m-radians
GZc	-0.001	metres
Gust angle	0.000	degrees
Rollback angle	20.036	degrees
Steady state angle	0.000	degrees
Max. angle to leeward	49.992	degrees
B/d'	4.159	
X1	0.800	
Cb	0.751	

Property	Value	Units
Ar	0.000	
Κ	1.000	
Og	5.975	metres
r	1.054	
Т	14.648	seconds

Πίνακας 3.3:10 IMO Wind Heeling Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

_			
#	Criterion	Actual	Critical
		Value	Value
1	Area under GZ curve up to 30 degrees > 0.055	0.727	0.055
2	Area under GZ curve from 30 to 40 deg. or downflood > 0.03	0.582	0.030
3	Area under GZ curve up to 40 deg. or downflood > 0.09	1.309	0.090
4	Initial GM to be at least 0.15 metres	4.647	0.150
5	GZ to be at least 0.20m at an angle $>$ 30 degrees	4.224	0.200
6	Max GZ to be at an angle > 30 degrees	55.000	30.000
7	IMO Weather Criterion (Maximum Initial Angle Of Heel)	0.000	16.000
8	IMO Weather Criterion (Areas)	Indeterm.	1.000
_ /		/ .	,

IMO 749 Intact Stabilty Criteria non - passenger

Πίνακας 3.3:11 Εφαρμογή Κριτηρίου ΙΜΟ 749 Άθικτης Ευστάθειας Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

Condition complies with the regulations

Διάγραμμα 3:4 Διαμήκης Αντοχή Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

Distance		Shearing	% of Max	Bending	% of Max
from Origin		Force	allowed	Moment	allowed
(m)		(kN)		(kNm)	
0.00	#0	0.0		0.0	
22.66		24170.8		357878.7	
43.94		0.0		697432.2	
56.00	#68	-31652.5		517718.1	
98.42		0.0		-60105.1	
108.93		0.0		-37538.0	
115.40		-13542.3		-93350.8	
145.22		0.0		-282353.9	
160.80	#99	5967.8		-232626.2	
163.68		0.0		-220841.3	
167.97		-7647.3		-242653.3	
192.88		0.0		-330420.1	
214.00	#115	8806.2		-243435 3	
216.46		0.0		-233098.2	
217.75		-2659.1		-234105.4	
223 52	#118	0.0		-240142.7	
250.40	#126	12195.9		-80014.0	
269.13		0.0		-1087.9	
276.12		-533.4		-3730.5	
279.46		0.0		-4518.3	
283.20		1113.9		-2723.1	
Maximum BM				_,,1	
44.00				697592.6	
Maximum SF					
56.00		-31652.5			

Πίνακας 3.3:12 Στοιχεία Διατμητικών Δυνάμεων και Καμπτικών Ροπών Κατάστασης Πλήρους Φόρτωσης – Άφιξη (FLA)

2015

3.3.3 Κατάσταση πλήρους ερματισμού - Αναχώρηση (BD)

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
WATER BALLAST									
W.B.T.NO.1(P)	115-127	WB	100.0	1.025	5726.1	233.41	-14.65	13.24	0.0
W.B.T.NO.1(S)	115-127	WB	100.0	1.025	5726.1	233.41	14.65	13.24	0.0
W.B.T.NO.2(P)	99-115	WB	100.0	1.025	7553.0	186.87	-16.97	8.61	0.0
W.B.T.NO.2(S)	99-115	WB	100.0	1.025	7553.0	186.87	16.97	8.61	0.0
W.B.T.NO.3(P)	83-99	WB	100.0	1.025	7770.0	134.20	-17.09	8.43	0.0
W.B.T.NO.3(S)	83-99	WB	100.0	1.025	7770.0	134.20	17.09	8.43	0.0
W.B.T.NO.4(P)	67-83	WB	100.0	1.025	7545.4	81.43	-16.98	8.74	0.0
W.B.T.NO.4(S)	67-83	WB	100.0	1.025	7545.4	81.43	16.98	8.74	0.0
Total WATER BALLAST					57189.0	154.05	0.00	9.52	0.0
FRESH WATER									
D.W.TK(S)	9-15	FW	100.0	1.000	65.0	9.40	12.25	18.50	0.0
F.W.TK(P)	7-15	FW	100.0	1.000	218.0	9.01	-14.48	18.63	0.0
F.W.TK(S)	7-15	FW	100.0	1.000	153.0	8.85	15.42	18.68	0.0
Total FRESH WATER					436.0	9.01	0.00	18.63	0.0
HEAVY FUEL OIL									
H.F.O.SERV(S)	44-48	HFO	98.0	0.980	116.5	36.80	18.49	20.65	16.6
H.F.O.SETT(S)	48-52	HFO	98.0	0.980	116.5	40.00	18.49	20.66	16.6
H.F.O.T(S)	44-67	HFO	98.0	0.980	426.3	43.05	18.87	16.62	62.2
H.F.O SERV(P)	44-48	HFO	98.0	0.980	116.5	36.80	-18.49	20.65	16.6
H.F.O SETT(P)	48-52	HFO	98.0	0.980	116.5	40.00	-18.49	20.66	16.6
L.S.H.F.O.T(P)	44-67	HFO	98.0	0.980	608.8	44.78	-18.65	15.46	62.2
NO.1 FWD H.F.O.T(C)	135-147	HFO	98.0	0.980	1785.3	263.89	0.00	12.41	944.6
NO.2 FWD H.F.O.T(C)	127-135	HFO	98.0	0.980	1825.8	256.25	0.00	12.41	2101.5
Total HEAVY FUEL					5112.2	196 10	-0.65	13.88	3236 9
OIL					0112.2	170.10	0.02	15.00	52000
DIESEL OIL			1						
M.D.O.SERV(S)	55-59	DO	98.0	0.850	79.2	45.60	18.15	20.41	8.1
M.D.O.STOR(S)	55-67	DO	98.0	0.850	316.7	49.58	18.15	16.59	16.3
M.G.O SERV(P)	55-59	DO	98.0	0.850	79.2	45.60	-18.15	20.41	8.1
M.G.O STOR(P)	59-67	DO	98.0	0.850	158.3	50.40	-18.15	20.41	16.3
Total DIESEL OIL					633.4	48.79	4.54	18.50	48.8
LUB. OIL			1						
G/E L.O.SETT.T(P)	34-39	LO	98.0	0.900	69.1	29.20	-18.95	22.96	35.3
G/E L.O.STOR.T(P)	39-43	LO	98.0	0.900	55.3	32.80	-18.95	22.96	28.2
G/E L.OIL.SETT.T(S)	34-39	LO	98.0	0.900	69.1	29.20	18.95	22.96	35.3
G/E L.OIL.STR.T(S)	39-43	LO	98.0	0.900	55.3	32.80	18.95	22.96	28.2

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
PRO M.L.O STR.T(S)	30-32	LO	98.0	0.900	27.7	24.80	18.95	22.96	14.1
R/G L.OIL.STR.T(S)	32-34	LO	98.0	0.900	27.7	26.40	18.95	22.96	14.1
Total LUB. OIL					304.2	29.85	3.45	22.96	155.2
CARGO					· · ·				
CARGO TANK NO.1	116-126	CARGO	0.3	0.467	34.9	232.04	0.00	3.79	12849.2
CARGO TANK NO.2	100-115	CARGO	0.3	0.467	74.8	188.80	0.00	3.79	41413.6
CARGO TANK NO.3	84-99	CARGO	0.3	0.467	74.8	135.60	0.00	3.79	41413.6
CARGO TANK NO.4	68-83	CARGO	6.2	0.467	1440.6	81.80	0.00	4.75	74591.1
Total CARGO					1625.1	92.42	0.00	4.64	170267.5
DWT CONST.					· · ·				
DWT CONST.					686.9	61.12	0.00	9.79	0.0
Total DWT CONST.					686.9	61.12	0.00	9.79	0.0
Lightweight					33594.1	122.89	0.00	16.54	0.0
Deadweight					65986.7	152.28	0.01	9.95	173708.7
Total Displacement					99580.8	142.37	0.01	12.17	173708.7
Buoyancy					99576.4	142.39	0.01	5.24	1725174.7
Total Buoyancy			-		99576.4	142.39	0.01	5.24	1725174.7

Πίνακας 3.3:13 Ανάλυση Εκτοπίσματο	ς Κατάστασης Πλήρους Ερματισμού -	- Αναχώρηση (BD)
------------------------------------	-----------------------------------	------------------

Draft at LCF	9.999	metres
Draft aft at marks	9.704	metres
Draft fwd at marks	10.314	metres
Draft at AP	9.704	metres
Draft at FP	10.314	metres
Mean draft at midships	10.009	metres

Density of water	1.0286	tonnes/cu.m
Heel to starboard	0.04	degrees
Trim by the bow	0.609	metres
KG	12.173	metres
FSC	1.744	metres
KGf	13.918	metres
GMt	8.643	metres
BMt	17.325	metres

122

2015

Density of water	1.0286	tonnes/cu.m
BMl	521.404	metres
Waterplane area	10681.07	sq.metres
LCG	142.368	metres
LCB	142.387	metres
TCB	0.012	metres
LCF	137.161	metres
TCF	0.009	metres
TPC	109.864	tonnes/cm
MTC	1833.318	tonnes-m/cm
Shell thickness	0.000	mm

Πίνακας 3.3:14 Βυθίσματα και Υδροστατικά Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)

Διάγραμμα 3:5 Καμπύλη Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)

Heel to Stbd	GZ	Slope	Trim	WLrad	Freeboard	Wind
(deg)	(m)	(m/rad)	(m)	(m)	(m)	(m)
0.00	-0.0061	8.6437	0.610	10.009	16.44[0]	0.0000
5.00	0.7515	8.7663	0.657	9.960	14.39[0]	0.0000
10.00	1.5302	9.1573	0.796	9.811	12.24[0]	0.0000
15.00	2.3519	9.7887	1.011	9.563	10.03[0]	0.0000
20.00	3.2253	10.2337	1.296	9.210	7.78[0]	0.0000
25.00	4.0864	9.4124	1.644	8.720	5.53[0]	0.0000
30.00	4.7827	6.8849	2.042	8.030	3.38[0]	0.0000
35.00	5.2878	5.1349	2.443	7.120	1.35[0]	0.0000
40.00	5.6775	4.1773	2.812	6.007	-0.53[0]	0.0000
45.00	6.0179	3.8951	3.110	4.706	-2.27[0]	0.0000
50.00	6.3664	4.2485	3.300	3.225	-3.84[0]	0.0000
55.00	6.6878	2.7749	3.504	1.598	-5.27[0]	0.0000

Πίνακας 3.3:15 **Στοιχεία Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)**

Property	Value	Units
Length WL	291.696	metres
Profile area above WL	0.000	sq.metres
Area to leeward (Area b)	3.22217	m-radians
Area to windward (Area a)	0.00000	m-radians
GZc	0.000	metres
Gust angle	0.041	degrees
Rollback angle	22.882	degrees
Steady state angle	0.041	degrees
Max. angle to leeward	50.000	degrees
B/d'	4.596	
X1	0.800	
Cb	0.741	
Ar	0.000	
K	1.000	
Og	3.909	metres
r	0.964	
Т	11.055	seconds

Πίνακας 3.3:16 IMO Wind Heeling Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)

#	Criterion	Actual	Critical
		Value	Value
1	Area under GZ curve up to 30 degrees > 0.055	1.252	0.055
2	Area under GZ curve from 30 to 40 deg. or downflood > 0.03	0.920	0.030
3	Area under GZ curve up to 40 deg. or downflood > 0.09	2.172	0.090
4	Initial GM to be at least 0.15 metres	8.643	0.150
5	GZ to be at least 0.20m at an angle $>$ 30 degrees	6.688	0.200
6	Max GZ to be at an angle > 30 degrees	55.000	30.000
7	IMO Weather Criterion (Maximum Initial Angle Of Heel)	0.041	16.000
8	IMO Weather Criterion (Areas)	Indeterm.	1.000

Πίνακας 3.3:17 Εφαρμογή Κριτηρίου ΙΜΟ 749 Άθικτης Ευστάθειας Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)

Condition complies with the regulations

Διάγραμμα 3:6 Διαμήκης Αντοχή Κατάστασης Πλήρους Ερματισμού – Αναχώρηση (BD)

Distance		Shearing	% of Max	Bending	% of Max
from Origin		Force	allowed	Moment	allowed
(m)		(kN)		(kNm)	
0.00	#0	0.0		0.0	
31.20	#39	34459.0		727972.9	
38.40	#48	33367.1		970137.7	
80.62		23364.9		2032071.7	
152.16		0.0		3159778.9	
222.88		-49085.3		1415280.9	
272.31		-753.1		-122.9	
279.57		0.0		-4252.5	
283.20		1128.5		-2639.3	
Maximum BM					
150.82				3159959.4	
Maximum SF					
222.88		-49085.3			

Πίνακας 3.3:18 **Στοιχεία Διατμητικών Δυνάμεων και Καμπτικών Ροπών Κατάστασης Πλήρους Ερματισμού** – Αναχώρηση (BD)

3.3.4 Κατάσταση πλήρους ερματισμού - Άφιξη (ΒΑ)

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
				(t/m3)	(t)	(m)	(m)	(m)	(t-m)
WATER BALLAST									
W.B.T.NO.1(P)	115-127	WB	100.0	1.025	5726.1	233.41	-14.65	13.24	0.0
W.B.T.NO.1(S)	115-127	WB	100.0	1.025	5726.1	233.41	14.65	13.24	0.0
W.B.T.NO.2(P)	99-115	WB	100.0	1.025	7553.0	186.87	-16.97	8.61	0.0
W.B.T.NO.2(S)	99-115	WB	100.0	1.025	7553.0	186.87	16.97	8.61	0.0
W.B.T.NO.3(P)	83-99	WB	100.0	1.025	7770.0	134.20	-17.09	8.43	0.0
W.B.T.NO.3(S)	83-99	WB	100.0	1.025	7770.0	134.20	17.09	8.43	0.0
W.B.T.NO.4(P)	67-83	WB	100.0	1.025	7545.4	81.43	-16.98	8.74	0.0
W.B.T.NO.4(S)	67-83	WB	100.0	1.025	7545.4	81.43	16.98	8.74	0.0
Total WATER					57180 0	154.05	0.00	9.52	0.0
BALLAST					5/10/.0	134.03	0.00	1.54	0.0
FRESH WATER									
D.W.TK(S)	9-15	FW	10.0	1.000	6.5	9.40	12.25	16.25	6.8
F.W.TK(P)	7-15	FW	10.0	1.000	21.8	9.08	-13.93	16.30	125.1
F.W.TK(S)	7-15	FW	10.0	1.000	15.3	8.90	14.86	16.33	56.7
Total FRESH WATER					43.6	9.07	0.08	16.30	188.6
HEAVY FUEL OIL									
H.F.O.SERV(S)	44-48	HFO	10.0	0.980	11.9	36.80	18.49	16.47	16.6
H.F.O.SETT(S)	48-52	HFO	10.0	0.980	11.9	40.00	18.49	16.48	16.6
H.F.O.T(S)	44-67	HFO	10.0	0.980	43.5	41.06	18.76	10.53	60.7
H.F.O SERV(P)	44-48	HFO	10.0	0.980	11.9	36.80	-18.49	16.47	16.6
H.F.O SETT(P)	48-52	HFO	10.0	0.980	11.9	40.00	-18.49	16.48	16.6
L.S.H.F.O.T(P)	44-67	HFO	10.0	0.980	62.1	44.40	-18.49	10.43	95.4
NO.1 FWD H.F.O.T(C)	135-147	HFO	10.0	0.980	182.2	263.89	0.00	4.14	944.6
NO.2 FWD H.F.O.T(C)	127-135	HFO	10.0	0.980	186.3	256.25	0.00	4.14	2101.5
Total HEAVY FUEL					521 7	195 89	-0 64	6 55	3268 6
OIL					0210	170.07	0.04	0.00	0200.0
DIESEL OIL									
M.D.O.SERV(S)	55-59	DO	10.0	0.850	8.1	45.60	18.15	16.45	8.1
M.D.O.STOR(S)	55-67	DO	10.0	0.850	32.3	48.80	18.15	10.60	24.4
M.G.O SERV(P)	55-59	DO	10.0	0.850	8.1	45.60	-18.15	16.45	8.1
M.G.O STOR(P)	59-67	DO	10.0	0.850	16.2	50.40	-18.15	16.45	16.3
Total DIESEL OIL					64.7	48.40	4.54	13.53	56.9
LUB. OIL					1 1		1		
G/E L.O.SETT.T(P)	34-39	LO	10.0	0.900	7.1	29.20	-18.95	21.20	35.3
G/E L.O.STOR.T(P)	39-43	LO	10.0	0.900	5.6	32.80	-18.95	21.20	28.2
G/E L.OIL.SETT.T(S)	34-39	LO	10.0	0.900	7.1	29.20	18.95	21.20	35.3
G/E L.OIL.STR.T(S)	39-43	LO	10.0	0.900	5.6	32.80	18.95	21.20	28.2
PRO M.L.O STR.T(S)	30-32	LO	10.0	0.900	2.8	24.80	18.95	21.20	14.1

2015

Title	Frames	Cargo	% full	SG	Weight	LCG	TCG	VCG	FSM
		U		(t/m3)	(t)	(m)	(m)	(m)	(t-m)
R/G L.OIL.STR.T(S)	32-34	LO	10.0	0.900	2.8	26.40	18.95	21.20	14.1
Total LUB. OIL					31.0	29.85	3.45	21.20	155.2
DWT CONST.									·
DWT CONST.					686.9	61.12	0.00	9.79	0.0
Total DWT CONST.					686.9	61.12	0.00	9.79	0.0
Lightweight					33594.1	122.89	0.00	16.54	0.0
Deadweight					58536.8	153.05	0.00	9.51	3669.5
Total Displacement					92130.8	142.05	0.00	12.08	3669.5
Buoyancy					92131.0	142.06	0.00	4.88	1703567.9
Total Buoyancy					92131.0	142.06	0.00	4.88	1703567.9

Πίνακας 3.3:19 Ανάλυση Εκτοπίσματος Κατάστασης Πλήρους Ερματισμού – Άφιξη (ΒΑ)

Draft at LCF	9.320	metres
Draft aft at marks	9.201	metres
Draft fwd at marks	9.445	metres
Draft at AP	9.201	metres
Draft at FP	9.445	metres
Mean draft at midships	9.323	metres

Density of water	1.0286	tonnes/cu.m
Heel	No heel	
Trim by the bow	0.244	metres
KG	12.076	metres
FSC	0.040	metres
KGf	12.116	metres
GMt	11.253	metres
BMt	18.491	metres
BMl	552.836	metres
Waterplane area	10595.77	sq.metres
LCG	142.050	metres
LCB	142.056	metres
TCB	0.000	metres
LCF	137.998	metres
TCF	0.000	metres
TPC	108.987	tonnes/cm
MTC	1798.493	tonnes-m/cm
Shell thickness	0.000	mm

Πίνακας 3.3:20 **Βυθίσματα και Υδροστατικά Κατάστασης Πλήρους Ερματισμού – Άφιξη (BA)**

Διάγραμμα 3:7 Καμπύλη Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Ερματισμού – Άφιξη (BA)

Heel to Stbd	GZ	Slope	Trim	WLrad	Freeboard	Wind
(deg)	(m)	(m/rad)	(m)	(m)	(m)	(m)
0.00	-0.0008	11.2529	0.244	9.323	17.13[0]	0.0000
5.00	0.9846	11.3782	0.294	9.276	15.07[0]	0.0000
10.00	1.9910	11.7690	0.440	9.133	12.92[0]	0.0000
15.00	3.0385	12.3447	0.668	8.896	10.70[0]	0.0000
20.00	4.1166	12.3406	0.968	8.550	8.44[0]	0.0000
25.00	5.1231	10.4758	1.337	8.055	6.20[0]	0.0000
30.00	5.8933	7.6766	1.754	7.346	4.06[0]	0.0000
35.00	6.4626	5.8552	2.173	6.424	2.05[0]	0.0000
40.00	6.9096	4.8021	2.560	5.309	0.17[0]	0.0000
45.00	7.2983	4.4154	2.890	4.014	-1.57[0]	0.0000
50.00	7.6800	4.6072	3.143	2.546	-3.16[0]	0.0000
55.00	8.0798	4.1155	3.338	0.913	-4.58[0]	0.0000

Πίνακας 3.3:21 Στοιχεία Μοχλοβραχίονα Επαναφοράς Κατάστασης Πλήρους Ερματισμού – Άφιξη (ΒΑ)

Property	Value	Units
Length WL	291.696	metres
Profile area above WL	0.000	sq.metres
Area to leeward (Area b)	3.98856	m-radians
Area to windward (Area a)	0.00000	m-radians
GZc	-0.001	metres
Gust angle	0.000	degrees
Rollback angle	23.481	degrees
Steady state angle	0.000	degrees
Max. angle to leeward	49.996	degrees
B/d'	4.934	
X1	0.800	
Cb	0.736	

Property	Value	Units
Ar	0.000	
Κ	1.000	
Og	2.793	metres
r	0.910	
Т	9.902	seconds

Πίνακας 3.3:22 Εφαρμογή Κριτηρίου IMO Wind Heeling Κατάστασης Πλήρους Ερματισμού – Άφιξη (BA)

#	Criterion	Actual	Critical
		Value	Value
1	Area under GZ curve up to 30 degrees > 0.055	1.591	0.055
2	Area under GZ curve from 30 to 40 deg. or downflood > 0.03	1.124	0.030
3	Area under GZ curve up to 40 deg. or downflood > 0.09	2.715	0.090
4	Initial GM to be at least 0.15 metres	11.253	0.150
5	GZ to be at least 0.20m at an angle $>$ 30 degrees	8.080	0.200
6	Max GZ to be at an angle > 30 degrees	55.000	30.000
7	IMO Weather Criterion (Maximum Initial Angle Of Heel)	0.000	16.000
8	IMO Weather Criterion (Areas)	Indeterm.	1.000
٦ίν	ακας 3.3:23 Εφαρμογή Κριτηρίου ΙΜΟ 749 Άθικτης Ευστάθειας Κατάστασης Πλή	ρους Ερματισ	μού – Άφιξr

(BA)

Condition complies with the regulations

Διάγραμμα 3:8 Διαμήκης Αντοχή Κατάστασης Πλήρους Ερματισμού – Άφιξη (BA)

Distance		Shearing	% of Max	Bending	% of Max		
from Origin		Force	allowed	Moment	allowed		
(m)		(kN)		(kNm)			
0.00	#0	0.0		0.0			
28.32		31739.8		567774.8			
82.62		6959.7		1334433.0			
141.61		0.0		1608388.5			
217.75		-28960.2		623567.6			
250.95		0.0		3702.3			
253.20	#127	3240.0		6010.0			
259.89		0.0		15444.7			
272.31		-1343.2		2652.2			
280.13		0.0		-3949.1			
283.20		1082.2		-2581.1			
Maximum BM	Maximum BM						
140.85				1608461.2			
Maximum SF							
28.32		31739.8					

Πίνακας 3.3:24 Στοιχεία Διατμητικών Δυνάμεων και Καμπτικών Ροπών Κατάστασης Πλήρους Ερματισμού – Άφιξη (BA)

3.4 Κλίμακα DWT

Draft	Displt	Displt	Deadweight	Deadweight	Free-	TPI	MCT
	Salt water	Fresh water	Salt water	Fresh water	board		
(m)	(t)	(t)	(t)	(t)	(m)	(t/cm)	(t-m/cm)
4.00	36411.31	35399.33	2817.31	1805.33	22.00	100.181	1458.92
4.50	41446.77	40294.84	7852.77	6700.84	21.50	101.218	1494.82
5.00	46530.61	45237.39	12936.61	11643.39	21.00	102.114	1525.87
5.50	51657.03	50221.33	18063.03	16627.33	20.50	102.936	1554.77
6.00	56823.31	55244.02	23229.31	21650.02	20.00	103.697	1582.42
6.50	62026.72	60302.81	28432.72	26708.81	19.50	104.449	1610.83
7.00	67268.83	65399.23	33674.83	31805.23	19.00	105.240	1642.15
7.50	72550.75	70534.35	38956.75	36940.35	18.50	106.041	1674.79
8.00	77873.57	75709.24	44279.57	42115.24	18.00	106.877	1709.55
8.50	83238.81	80925.36	49644.81	47331.36	17.50	107.733	1745.91
9.00	88646.80	86183.04	55052.80	52589.04	17.00	108.587	1782.55
9.50	94097.28	91482.03	60503.28	57888.03	16.50	109.428	1818.80
10.00	99589.38	96821.50	65995.38	63227.50	16.00	110.255	1854.32
10.50	105124.80	102203.07	71530.80	68609.07	15.50	111.199	1898.10
11.00	110710.50	107633.53	77116.50	74039.53	15.00	112.202	1947.05
11.50	116343.99	113110.44	82749.99	79516.44	14.50	113.154	1994.50
12.00	122026.49	118635.01	88432.49	85041.01	14.00	114.144	2045.73
12.50	127758.30	124207.51	94164.30	90613.51	13.50	115.126	2097.90
13.00	133537.83	129826.42	99943.83	96232.42	13.00	116.025	2146.37
13.50	139357.83	135484.66	105763.83	101890.66	12.50	116.755	2184.98
14.00	145211.88	141176.01	111617.88	107582.01	12.00	117.396	2218.93
14.50	151096.40	146896.98	117502.40	113302.98	11.50	117.977	2249.54
15.00	157008.74	152645.00	123414.74	119051.00	11.00	118.509	2277.71
15.50	162946.48	158417.71	129352.48	124823.71	10.50	118.993	2303.54
16.00	168907.53	164213.09	135313.43	130618.99	10.45	119.445	2327.94
16.50	174890.69	170029.96	141296.59	136435.86	9.95	119.882	2351.67
17.00	180895.63	175868.00	147301.53	142273.90	9.45	120.311	2375.10
17.50	186921.31	181726.21	153327.21	148132.11	8.95	120.712	2397.34
18.00	192966.35	187603.24	159372.25	154009.14	8.45	121.087	2418.43
18.50	199029.87	193498.24	165435.77	159904.14	7.95	121.452	2439.30
19.00	205111.60	199410.94	171517.50	165816.84	7.45	121.821	2460.34
19.50	211211.91	205341.71	177617.81	171747.61	6.95	122.189	2481.40
20.00	217330.34	211290.09	183736.24	177695.99	6.45	122.546	2502.06
20.50	223466.25	217255.46	189872.15	183661.36	5.95	122.888	2522.32
21.00	229618.92	223237.13	196024.82	189643.03	5.45	123.215	2541.93

Πίνακας 3.4:1 **Στοιχεία Κλίμακας DWT**

3.5 Υδροστατικά (Hydrostatics)

Draft	Displt	LCB	VCB	WPA	LCF	KML	KMT	WSA	TPC	MTC
(m)	(t)	(m)	(m)	(m^2)	(m)	(m)	(m)	(m^2)	(t/cm)	(t-
										m/cm)
4.00	36411.31	142.868	2.095	9739.70	142.507	1136.818	43.024	10866.93	100.18	1458.92
5.00	46530.61	142.749	2.618	9927.56	142.121	931.311	35.728	11524.72	102.11	1525.87
6.00	56823.31	142.594	3.140	10081.48	141.627	791.797	30.985	12175.75	103.70	1582.42
7.00	67268.83	142.384	3.662	10231.54	140.828	695.004	27.740	12828.02	105.24	1642.15
8.00	77873.57	142.095	4.185	10390.62	139.659	625.893	25.457	13496.06	106.88	1709.55
9.00	88646.80	141.717	4.710	10556.92	138.301	574.182	23.818	14179.22	108.59	1782.55
10.00	99589.38	141.258	5.236	10719.04	136.716	532.546	22.611	14878.54	110.25	1854.32
11.00	110710.50	140.713	5.765	10908.33	134.979	503.824	21.713	15595.54	112.20	1947.05
11.70	118611.05	140.294	6.137	11039.66	133.844	487.260	21.214	16089.19	113.55	2015.06
12.00	122026.49	140.107	6.297	11097.20	133.352	481.072	21.029	16299.58	114.14	2045.73
13.00	133537.83	139.460	6.832	11280.00	131.959	462.022	20.516	16991.77	116.02	2146.37
14.00	145211.88	138.825	7.368	11413.29	131.249	440.116	20.136	17646.03	117.40	2218.93
15.00	157008.74	138.242	7.904	11521.55	130.913	418.739	19.868	18284.13	118.51	2277.71
16.00	168907.53	137.720	8.439	11612.57	130.779	398.756	19.685	18914.73	119.45	2327.94
17.00	180895.63	137.260	8.973	11696.70	130.824	380.805	19.584	19543.37	120.31	2375.10
18.00	192966.35	136.863	9.507	11772.17	131.002	364.439	19.542	20170.79	121.09	2418.43
19.00	205111.60	136.523	10.039	11843.52	131.267	349.742	19.557	20799.17	121.82	2460.34
20.00	217330.34	136.238	10.571	11913.98	131.664	336.611	19.624	21429.78	122.55	2502.06
21.00	229618.92	136.005	11.103	11979.06	132.091	324.611	19.728	22061.36	123.22	2541.93

Draft	BML	BMT	CB	СМ	CP	CW	TCF
(m)	(m)	(m)					(m)
4.00	1134.723	40.929	0.679	0.976	0.696	0.748	0.000
5.00	928.692	33.109	0.695	0.981	0.708	0.762	0.000
6.00	788.656	27.845	0.707	0.984	0.718	0.774	0.000
7.00	691.341	24.078	0.717	0.987	0.727	0.785	0.000
8.00	621.707	21.271	0.726	0.988	0.735	0.798	0.000
9.00	569.472	19.108	0.735	0.990	0.743	0.810	0.000
10.00	527.309	17.374	0.743	0.991	0.750	0.823	0.000
11.00	498.059	15.948	0.751	0.991	0.758	0.837	0.000
11.70	481.122	15.077	0.757	0.992	0.763	0.847	0.000
12.00	474.775	14.732	0.759	0.992	0.765	0.852	0.000
13.00	455.190	13.685	0.767	0.993	0.772	0.866	0.000
14.00	432.748	12.768	0.774	0.993	0.779	0.876	0.000
15.00	410.835	11.964	0.781	0.994	0.786	0.884	0.000
16.00	390.317	11.246	0.788	0.994	0.793	0.891	0.000
17.00	371.832	10.610	0.794	0.994	0.799	0.898	0.000
18.00	354.933	10.035	0.800	0.995	0.804	0.904	0.000
19.00	339.703	9.518	0.806	0.995	0.810	0.909	0.000
20.00	326.040	9.053	0.811	0.995	0.815	0.915	0.000
21.00	313.508	8.625	0.816	0.996	0.820	0.920	0.000
	Πίνακα	ς 3.5:1 Υδ	ροστατι	κά Στοιχ	εία Πλοί	ου	

3.6 Καμπύλες Ευστάθιας (Cross Curves)

KN's in metres

Heel	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
Displ.									
10000.000	0.000	13.225	16.049	16.787	16.584	15.770	14.579	13.366	13.256
20000.000	0.000	10.320	14.155	15.720	16.202	16.046	15.539	15.126	16.219
30000.000	0.000	8.398	12.741	14.885	15.901	16.247	16.259	16.461	17.702
40000.000	0.000	6.971	11.673	14.177	15.638	16.407	16.854	17.573	18.399
50000.000	0.000	5.995	10.812	13.601	15.393	16.540	17.373	18.371	18.758
60000.000	0.000	5.315	10.087	13.129	15.181	16.647	17.843	18.882	18.950
70000.000	0.000	4.825	9.459	12.731	15.006	16.743	18.254	19.183	19.046
80000.000	0.000	4.467	8.912	12.390	14.865	16.833	18.561	19.353	19.084
90000.000	0.000	4.202	8.455	12.092	14.752	16.924	18.758	19.434	19.084
100000.000	0.000	4.003	8.086	11.828	14.665	17.016	18.855	19.454	19.057
110000.000	0.000	3.852	7.790	11.591	14.598	17.108	18.879	19.429	19.012
120000.000	0.000	3.736	7.554	11.376	14.544	17.181	18.853	19.368	18.952
130000.000	0.000	3.646	7.370	11.181	14.499	17.215	18.789	19.281	18.881

Πίνακας 3.6:1 Μεταβολή ΚΝ για διάφορα Εκτοπίσματα και Γωνίες Κλίσης

3.7 Κατακλύσιμα Μήκη (Floodable Lenght)

Mean draft	11.700	metres
Trim over LBP	0.000	metres
Subdivision displacement	118654.027	tonnes
Water density	1.029	tonnes/cu.m
L.C.B. from origin	140.275	metres
Criterion of Service	0.000	
Subdivision Factor	1.000	
Margin Line below Deck	76.000	mm

L AFT = 95%

Lost	LCB of FL	Floodable	Centre of FL	Mean	Trim
buoyancy	from Origin	Length	from Origin	draft	by head
cu.metres	metres	metres	metres	metres	metres
		24.000	12.000		

E/R = 85%

Lost	LCB of FL	Floodable	Centre of FL	Mean	Trim
buoyancy	from Origin	Length	from Origin	draft	by head
cu.metres	metres	metres	metres	metres	metres
		24.000	12.000		
57490.11	43.421	79.529	39.765	15.573	-21.511
62047.05	54.063	79.599	52.298	16.008	-20.647
		80.061	53.600		

CARGO = 95%

Lost	LCB of FL	Floodable	Centre of FL	Mean	Trim
buoyancy	from Origin	Length	from Origin	draft	by head
cu.metres	metres	metres	metres	metres	metres
		70.091	53.600		
63548.18	57.017	70.640	56.190	16.159	-20.346
68748.44	65.384	75.011	65.253	16.632	-19.405
73840.64	72.859	79.794	73.295	17.120	-18.435
79380.38	79.556	85.347	80.399	17.622	-17.437
84762.21	85.560	90.655	86.719	18.138	-16.412
90600.12	90.960	96.329	92.341	18.665	-15.362
96312.61	95.846	101.554	97.389	19.205	-14.289
102378.83	100.295	107.005	101.862	19.755	-13.194

Lost	LCB of FL	Floodable	Centre of FL	Mean	Trim
buoyancy	from Origin	Length	from Origin	draft	by head
cu.metres	metres	metres	metres	metres	metres
108447.66	104.371	111.842	106.035	20.316	-12.079
114611.20	108.125	116.511	109.787	20.885	-10.946
120947.78	111.594	121.082	113.164	21.463	-9.797
127557.21	114.810	125.466	116.304	22.047	-8.633
134229.28	117.804	129.729	119.100	22.638	-7.455
140753.97	120.603	133.369	121.743	23.235	-6.267
147829.74	123.230	137.262	124.180	23.836	-5.069
154596.54	125.699	140.582	126.431	24.440	-3.863
161829.04	128.031	144.087	128.520	25.047	-2.652
168970.56	130.240	147.273	130.468	25.656	-1.436
176221.35	132.234	150.310	132.201	26.265	-0.218
171319.95	133.754	148.505	133.442	25.874	1.000
163427.81	135.622	145.147	135.054	25.265	2.216
155448.49	137.787	141.363	137.018	24.658	3.429
147461.17	140.170	137.380	139.163	24.052	4.637
139342.12	142.800	132.827	141.633	23.450	5.838
131560.75	145.708	128.404	144.315	22.852	7.030
123830.08	148.926	123.559	147.375	22.259	8.212
116271.69	152.493	118.344	150.876	21.672	9.381
108705.89	156.451	112.576	154.855	21.091	10.536
101488.85	160.843	106.628	159.347	20.519	11.675
94206.58	165.706	100.609	164.132	19.955	12.797
87246.66	171.054	94.128	169.630	19.401	13.899
80654.12	176.930	87.712	175.679	18.858	14.980
74415.38	183.345	81.438	182.301	18.325	16.038
68224.54	190.413	75.073	189.637	17.805	17.072
62350.36	198.298	69.099	197.944	17.299	18.080
56957.95	207.157	64.109	207.447	16.805	19.061
51734.65	217.259	60.990	218.359	16.327	20.012
46540.02	228.866	60.577	232.023	15.864	20.933
43095.86	239.250	71.545	247.427	15.417	21.822

L FORW = 95%

Lost	LCB of FL	Floodable	Centre of FL	Mean	Trim
buoyancy	from Origin	Length	from Origin	draft	by head
cu.metres	metres	metres	metres	metres	metres
		0.000	253.200		

Πίνακας 3.7:1 **Στοιχεία Κατακλύσιμων Μηκών**

Διάγραμμα 3:9 **Καμπύλη Κατακλύσιμων Μηκών**

4 ΚΑΤΑΜΕΤΡΗΣΗ

Με την εφαρμογή της Διεθνούς σύμβασης καταμέτρησης προσδιορίζεται η Ολική και η Καθαρή Χωρητικότητα.

4.1 Ολική Χωρητικότητα (Gross Tonnage – GT)

Σύμφωνα με τους Διεθνείς Κανονισμούς Καταμέτρησης, η ολική χωρητικότητα (**Gross Tonnage**) δίνεται από τη σχέση:

$$GT = K_1 \times V_{TOTAL}$$

όπου $K_1 = 0.20 + 0.02 \cdot \log_{10} V_{TOTAL}$

 $V_{\rm total} \rightarrow O$ συνολικός όγκος όλων των κλειστών χώρων του πλοίου, σε m³ (μέχρι την εσωτερική όψη του ελάσματος)

Από το AVEVA – Surface/Compartment προκύπτει ο συνολικός όγκος, V_D , μέχρι και το ανώτερο έλασμα του Trunk Space.

$$V_D = 323552 m^3$$
$$V_{TOTAL} = V_D + V_{SS}$$

 $V_{ss} \rightarrow O$ όγκος των υπερστεγασμάτων, σε m³

Πιο κάτω υπολογίζεται το εμβαδόν και ο όγκος των υπερστεγασμάτων, σύμφωνα με το σχέδιο Γενικής Διάταξης.

Χώροι Ενδιαίτησης		Χώροι Καπνοδόχου		
DECK	Επιφάνεια	Όγκος	Επιφάνεια	Όγκος
	m²	m³	m²	m³
UPPER	558.3	1944.5	492.3	1723.1
A DECK	534.6	1710.7	440.5	1960.2
B DECK	534.5	1603.5	344.5	1653.6
C DECK	532.1	1596.3	324.8	1234.2
D DECK.	534.6	1603.8	135.7	678.5
NAV. DECK.	240.6	721.8	-	-
SUM	2934.7	9180.7	1737.8	7249.6
TOTAL	= 9180.7 + 7249.6 = 16430		16430	

Πίνακας 4.1:1 Ανάλυση όγκου υπερστεγασμάτων

Χώροι στο Αν. κατάστρωμα		
	Επιφάνεια	Όγκος
	m²	m³
Dry Powder Station & Companion way	42.8	149.8
Cargo Gear Locker & Dry Powder Station	64.32	276.576
Elec. Motor Room & Cargo Comp. Room	447.12	2682.72
TOTAL	554.24	3109.096

Πίνακας 4.1:2 Ανάλυση όγκου υπερστεγασμάτων στον χώρο του αν. καταστρώματος

 $\Rightarrow V_{SS} = 19539.4 m^3$

Άρα,

$$V_{TOTAL} = V_D + V_{SS} \rightarrow$$
$$V_{TOTAL} = 323552 + 19539.4 \rightarrow$$
$$V_{TOTAL} = 343091.4 m^3$$

Από τα παραπάνω προκύπτει ότι $K_1 = 0.2 + 0.02 \cdot \log_{10}(V_{TOTAL}) = 0.3107$. Έτσι η ολική χωρητικότητα του πλοίου είναι ίση με:

$$GT = K_1 \cdot V = 0.3107 \cdot 343091.4 \rightarrow GT = 106601 \, GRT$$

4.2 Καθαρή Χωρητικότητα

Σύμφωνα με τους Διεθνείς Κανονισμούς Καταμέτρησης, η καθαρή χωρητικότητα (Net Tonnage) δίνεται από τη σχέση:

$$\mathbf{NT} = \mathbf{K}_2 \cdot \mathbf{V}_C \cdot \left(\frac{4\mathrm{T}}{3\mathrm{D}}\right)^2 + \mathbf{K}_3 \cdot \left(\mathrm{N}_1 + \frac{\mathrm{N}_2}{10}\right)$$

Όπου $V_c \rightarrow 0$ συνολικός όγκος των κοιτών φορτίου, σε m³

$$K_2 = 0.2 + 0.02 \cdot \log_{10} V_C$$
$$K_3 = 1.25 \cdot \frac{GT + 10000}{10000}$$

 $N_1 = 0 \rightarrow 0$ αριθμός των επιβατών σε κοιτώνες με όχι περισσότερες από 8 κλίνες,

 N_2 =0 → ο αριθμός των λοιπών επιβατών.

Από το τρισδιάστατο μοντέλο του πλοίου στο AVEVA-Calc μπορούμε να υπολογίσουμε τους όγκους των κοιτών. Αυτοί οι όγκοι φαίνονται στον παρακάτω πίνακα.

Compartment	Frames	Volume
	#	(m^3)
CARGO TANK NO.1	116-126	23685.18
CARGO TANK NO.2	100-115	49259.09
CARGO TANK NO.3	84-99	49259.09
CARGO TANK NO.4	68-83	50431.98
Total		172635.4

Πίνακας 4.2:1 **Όγκος Δεξαμενών φορτίου σύμφωνα με το AVEVA**

Ο όγκος φορτίου του πλοίου είναι:

$$V_C = 172635.4 m^3$$

Επιπλέον

$$K_2 = 0.20 + 0.02 \cdot \log_{10} V_C = 0.20 + 0.02 \cdot \log_{10} 172635.4 \rightarrow K_2 = 0.3047$$
$$K_3 = 1.25 \cdot \frac{\text{GT} + 10000}{10000} = 1.25 \cdot \frac{106601.3 + 10000}{10000} \rightarrow K_3 = 14.575$$

Οπότε:

NT=0.3047.172635.5.
$$\left(\frac{4.11.7}{3.26}\right)^2$$
 +14.575. $\left(0+\frac{0}{10}\right) \rightarrow$ NT=18939.4 GRT

Για να είναι αποδεκτή η παραπάνω τιμή της καθαρής χωρητικότητας, θα πρέπει να ισχύουν οι τρεις παρακάτω προϋποθέσεις:

α) Ο παράγοντας $\left(\frac{4\cdot T}{3\cdot D}\right)^2$ δεν πρέπει να λαμβάνεται μεγαλύτερος από τη μονάδα. Για το υπό μελέτη πλοίο, ισχύει ότι:

$$\left(\frac{4 \cdot T}{3 \cdot D}\right)^2 = \left(\frac{4 \cdot 11.7}{3 \cdot 26}\right)^2 = 0.36 < 1$$

επομένως λαμβάνεται ίσος με αυτήν την τιμή.

β) Ο όρος $K_2 \cdot V_C \cdot \left(\frac{4T}{3D}\right)^2$ δεν πρέπει να λαμβάνεται μικρότερος από 0.25·GT. Για το υπό μελέτη πλοίο, ισχύει ότι:

$$K_2 \cdot V_C \cdot \left(\frac{4T}{3D}\right)^2 = 18939.4 < 0.25 \cdot GT = 26650.3$$

επομένως ο όρος αυτός λαμβάνεται ίσος με την τιμή 26650.3 .

γ) Η καθαρή χωρητικότητα δεν πρέπει να είναι μικρότερη από το 30% της ολικής χωρητικότητας:

 $NT = 26650.3 < 31980.4 = 0.30 \cdot GT \Longrightarrow$

Τελικά, NT = 31980.4 RT

Συνοψίζοντας έχουμε:

REGISTERED TONNAGE INTERNATIONAL RULES		
GROSS TONNAGE	106601.3	RT
NET TONNAGE	31980.4	RT

5 ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΤΟΧΗΣ ΜΕΣΗΣ ΤΟΜΗΣ ΒΑΣΗ ΚΑΝΟΝΙΣΜΩΝ

Στο σημείο αυτό μελετάται η σχεδίαση της Μέσης Τομής του υπό μελέτη και σχεδίαση πλοίου. Συγκεκριμένα, υπολογίζονται αναλυτικά τα κατασκευαστικά στοιχεία (ελάσματα και ενισχυτικά) που συμβάλουν στη διαμήκη αντοχή της Μέσης Τομής. Έχοντας υπολογίσει τα κατασκευαστικά στοιχεία, γίνεται έλεγχος αντοχής της διατομής της Μέσης Τομής ούτως ώστε να πληρούνται οι ελάχιστες απαιτήσεις ροπής αδράνειας και αντίστασης, όπως αυτές ορίζονται από τους σχετικούς κανονισμούς.

Τέλος, αναπτύσσεται το κατασκευαστικό σχέδιο της Μέσης Τομής του υπό μελέτη και σχεδίαση πλοίου, σε κατάλληλο σχεδιαστικό πακέτο. (Παράρτημα 8.2)

5.1 Γενικά Χαρακτηριστικά

Όλοι οι υπολογισμοί γίνονται σύμφωνα με τους κανονισμούς του IACS, Common Structural Rules (CSR)ⁱ στους οποίους θα αναφερόμαστε κατά κανόνα από εδώ και πέρα.

Γενικά, η μελέτη και η σχεδίαση της Μέσης Τομής του πλοίου βασίστηκε σε μεγάλο βαθμό και στο Σχέδιο Μέσης Τομής (Midship Section) του πατρικού πλοίου, ούτως ώστε να έχουν καλυφθεί εκ των προτέρων οι υπόλοιπες απαιτήσεις πλην της διαστασιολόγησης.

Οι κανονισμοί ([2]) αφορούν δεξαμενόπλοια διπλών τοιχωμάτων με μήκος μεγαλύτερο των 150 m και υπογραφή συμβολαίου κατασκευής μετά την 1ⁿ Απριλίου 2006 ([2], Section 1:Introduction) και τέθηκαν σε ισχύ από την 1ⁿ Ιουλίου 2012 ([2], Foreword).

Αρχικά, αναφορικά με το πατρικό πλοίο, λαμβάνουμε το βύθισμα ενίσχυσης (scantling draught) του υπό μελέτη και σχεδίαση πλοίου ίσο με 12.7 m ($T_{scant.} = 12.7 m$). Ως μήκος υπολογισμών βάση των κανονισμών (rule length - L_R) ([2], Section 4:Basic Information), λαμβάνεται το μήκος από την πρυμναία κάθετο (F.P.) μέχρι το ακραίο πρωραίο σημείο της ισάλου που αντιστοιχεί στο βύθισμα ενίσχυσης (scantling draught). Αυτό το μήκος δε πρέπει να είναι μικρότερο από το 96% και δεν πρέπει να είναι μεγαλύτερο του 97% του μήκους της ισάλου που αντιστοιχεί στο βύθισμα θέρους, το οποίο είναι $L_{ILLC} = 282.42 m$, όπως μετρήθηκε από το σχεδιαστικό πακέτο AVEVA-Calc.

 $0.96 \cdot L_{ILLC} = 271.13m < L_R = 273.95 \ m \le 0.97 \cdot L_{ILLC} = 273.95 \ m$

Όσον αφορά τα υλικά κατασκευής της Μέσης Τομής, έχουμε τον απλό ναυπηγικό χάλυβας (Grade A, normal strength hull structure steel) με όριο διαρροής $\sigma_y = 235 \ N/mm^2$, ενώ σε κάποιες περιοχές χρησιμοποιείται και χάλυβας υψηλής αντοχής (Grade AH, high tensile steel) με όριο διαρροής $\sigma_y = 315 \ N/mm^2$ ([2], Section 6:Materials and Welding).

¹([2]): International Association of Classification Societies (IACS), Common Structural Rules (CSR)

5.2 Ελάχιστη απαιτούμενη ροπή αντίστασης

Η ελάχιστη απαιτούμενη ροπή αντίστασης πυθμένα και καταστρώματος της Μέσης Τομής περί τον ουδέτερο άξονα της διατομής, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements), δίνεται από τη σχέση:

$$Z_{min} = 0.9 \cdot k \cdot C_{wv} \cdot L^2 \cdot B \cdot (C_B + 0.7) \cdot 10^{-6} m^3$$

όπου: k συντελεστής χάλυβα υψηλότερης αντοχής, όπως ορίζεται στον πίνακα 6.1.1 των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding) και φαίνεται παρακάτω

 C_{wc} συντελεστής κυματισμών, όπως ορίζεται στον πίνακα 8.1.2 των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8: Scantling Requirements) και φαίνεται παρακάτω

Table 6.1.1 Values of <i>k</i>			
Specified minimum yield stress, N/mm ²	k		
235	1.00		
265	0.93		
315	0.78		
340	0.74		
355	0.72		
390	0.68		
Note			
 Intermediate values are to be calculated by linear interpolation. 			

Πίνακας 5.2:1 *k*, συντελεστής χάλυβα υψηλότερης αντοχής (Πηγή: Πίνακας 6.1.1- Section 6:Materials and Welding, CSR)

Table 8.1.2Wave Coefficient Cwv		
rule length C _{wv}		
$150 \leq L \leq 300$	$10.75 - [(300 - L) / 100]^{3/2}$	
300 < L < 350	10.75	
$350 \leq L \leq 500$	$10.75 - [(L - 350) / 150]^{3/2}$	

Πίνακας 5.2:2 Cwc συντελεστής κυματισμών (Πηγή: Πίνακας 8.1.2- Section 8: Scantling Requirements, CSR)

Το μήκος υπολογισμών του υπό μελέτη και σχεδίαση πλοίου είναι $L_R = 273.95 m$, οπότε ο συντελεστής κυματισμών δίνεται από την πρώτη σχέση του πίνακα 8.1.2 και είναι:

$$C_{wv} = 10.75 - \left(\frac{300 - L}{100}\right)^{3/2} = 10.75 - \left(\frac{300 - 273.95}{100}\right)^{3/2} \implies C_{wv} = 10.617$$

Θεωρώντας σε πρώτο στάδιο ως υλικό κατασκευής εξ' ολοκλήρου της Μέσης Τομής τον απλό ναυπηγικό χάλυβα (Grade A), που είναι και η δυσμενέστερη τιμή, ο συντελεστής χάλυβα λαμβάνει από τον πίνακα 6.1.1 την τιμή της μονάδας και είναι k = 1.

Αντικαθιστώντας στη σχέση υπολογισμού της ελάχιστης ροπής αντίστασης έχουμε:

$$Z_{min} = 0.9 \cdot k \cdot C_{wv} \cdot L^2 \cdot B \cdot (C_B + 0.7) \cdot 10^{-6} m^3$$
$$= 0.9 \cdot 1 \cdot 10.617 \cdot 273.95^2 \cdot 46 \cdot (0.758 + 0.7) \cdot 10^{-6} m^3$$
$$\implies Z_{min} = 48.095 m^3$$

5.3 Ελάχιστη απαιτούμενη ροπή αδράνειας

Η ελάχιστη απαιτούμενη ροπή αδράνειας της Μέσης Τομής περί τον ουδέτερο άξονα της διατομής, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements), δίνεται από τη σχέση:

$$I_{min} = 2.7 \cdot C_{wc} \cdot L^3 \cdot B \cdot (C_B + 0.7) \cdot 10^{-8} m^4$$

όπου: C_{wv} συντελεστής κυματισμών, όπως ορίστηκε στην προηγούμενη παράγραφο.

Αντικαθιστώντας στη σχέση υπολογισμού της ελάχιστης ροπής αδράνειας έχουμε:

$$I_{min} = 2.7 \cdot C_{wc} \cdot L^3 \cdot B \cdot (C_B + 0.7) \cdot 10^{-8} m^4$$

= 2.7 \cdot 10.617 \cdot 273.95^3 \cdot 46 \cdot (0.758 + 0.7) \cdot 10^{-8} m^4
 $\implies I_{min} = 395.27 m^4$

5.4 Διαστασιολόγηση στοιχείων διαμήκους αντοχής Μέσης Τομής

Ο υπολογισμός των κύριων στοιχείων διαμήκους αντοχής της Μέσης Τομής του υπό μελέτη και σχεδίαση πλοίου επιμερίζεται στη διαστασιολόγηση των κατασκευαστικών στοιχείων, ελασμάτων και ενισχυτικών, των παρακάτω περιοχών:

- Πυθμένας Διπύθμενο (Bottom Double Bottom)
- Πλευρά (Side shell)
- Κατάστρωμα (Deck) | Inner Deck, Upper Deck, Trunk Deck
- Διαμήκεις Φρακτές (Longitudinal Bulkheads)

Το ελάχιστο καθαρό πάχος των κύριων ελασμάτων και κύριων διαμήκων ενισχυτικών δε πρέπει να είναι μικρότερο από τις τιμές που δίνονται στους πίνακες 8.2.1 και 8.2.2 των

ⁱ Οι πίνακες/σχήματα που θα αναφερθούν στο συγκεκριμένο κεφάλαιο (5.4) παρουσιάζονται στο παράρτημα, 8.2.
κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements) και παρατίθενται ακολούθως.

Table 8.2.1					
M	Table 8.2.1				
IVII	Minimum Net Thickness for Flating and Local Support Members				
	111 (ne Cargo Tank Region	Net Thisles on		
	Scantling	; Location	(mm)		
Keel plating		Keel plating	6.5+0.03L ₂		
	Shen	Bottom shell/bilge/side shell	4.5+0.03L ₂		
	Upper Deck		4.5+0.02L ₂		
Plating		Hull internal tank boundaries	4.5+0.02L ₂		
	Other structure	Non-tight bulkheads, bulkheads between dry spaces and other plates in general	4.5+0.01L2		
Local Local support members on tight boundaries support Local support members on other structure		3.5+0.015L ₂			
		2.5+0.015L ₂			
Tripping brackets 5.0+0.015L ₂					
Where: L ₂ rule length, L, as defined in Section 4/1.1.1.1, but need not be taken greater than 300m					

Πίνακας 5.4:1 Το ελάχιστο καθαρό πάχος των κύριων ελασμάτων (Πηγή: Πίνακας 8.2.1- Section 8: Scantling Requirements, CSR)

Table 8.2.2 Minimum Net Thickness for Primary Support Membe in Cargo Tank Region	ers	
Scantling Location	Net Thickness (mm)	
Double bottom centreline girder	5.5+0.025L2	
Other double bottom girders	5.5+0.02L ₂	
Double bottom floors, web plates of side transverses and stringers in double hull	5.0+0.015L ₂	
Web and flanges of vertical web frames on longitudinal bulkheads, horizontal stringers on transverse bulkhead, deck transverses (above and below upper deck) and cross ties.		
Where: L ₂ rule length, L, as defined in <i>Section 4/1.1.1.1</i> , but need not be taken gr	eater than 300m	

5.4.1 Ελάσματα

Για τους υπολογισμούς των ελασμάτων που αναφέρονται στη συγκεκριμένη παράγραφο ισχύουν οι εξής σχέσεις:

$$t_{net} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}}$$
$$a_p = \min\left(1.2 - \frac{s}{2,100 \cdot l_p}, 1\right)$$

με s την ισαπόσταση των ενισχυτικών σε mm και l_p το μήκος του ελάσματος ως η απόσταση ανάμεσα στην κύρια εγκάρσια ενίσχυσή του σε m ([2], Section 4:Basic Information/2.2)

 $\sigma_{yd} = 235$ το ελάχιστο όριο διαρροής του ναυπηγικού χάλυβα (Grade A) ή $\sigma_{yd} = 315$ του Grade AH σε N/mm²

 $C_{\alpha} = C_{\alpha-max} = 1$ συντελεστής επιτρεπόμενης καμπτικής καταπόνησης, για κριτήρια φόρτισης σχεδίασης AC2 και ελάσματα που αποτελούν εξωτερικό όριο και ελάσματα που αποτελούν υδατοστεγές όριο, όπως ορίζεται στον πίνακα 8.2.4

P, η πίεση σχεδίασης υπολογισμένη στο σημείο φόρτισης, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 3:Rule Application/5.1), για τη δυσμενέστερη κατάσταση φόρτισης σχεδίασης σε kN/m² και είναι το άθροισμα μιας υδροστατικής συνιστώσας και μιας δυναμικής λόγω κυματισμών, ή είναι η πίεση του φορτίου για την κατάσταση πλήρους φόρτωσης ([2], Section 8:Scantling Requirements), όπως ορίζεται από τον πίνακα 8.2.7

(α) Για βυθισμένα εξωτερικά ελάσματα ισχύει:

$$P = P_{hys} + P_{wv-dyn}$$

με $P_{hys} = \rho \cdot g \cdot (T_{sc} - z)$, $P_{wv-dyn} = P_{ctr} + (|y|/0.5B_{local}) \cdot (P_{bildge} - P_{ctr})$ για την περιοχή ανάμεσα στο διαμήκη άξονα συμμετρίας και την ακμή του ελάσματος υδρορροής ([2], Section 7:Loads/6.3.5) και για $|y| = 0.5B_{local}$ είναι η δυσμενέστερη φόρτιση από τη δυναμική πίεση λόγω κυματισμών, η οποία τότε γράφεται

$$P_{wv-dyn} = P_{bildge}$$

 $\mu \epsilon P_{bildge} = f_{bildge} \cdot P_{ex-max}$

με $f_{bildge} = 1$ για τη δυσμενέστερη κατάσταση φόρτισης, όπως φαίνεται στους πίνακες 7.6.4 και 7.6.5 ([2], Section 7:Loads/6.5.1)

και $P_{ex-max} = P_{ex-dyn}$ σε kN/m² για περιοχές κάτω από την ίσαλο επιφάνεια ([2], Section 7:Loads/3.5.2.2) με $P_{ex-dyn} = max\{P_1, P_2\}$ ([2], Section 7:Loads/3.5.2.1)

$$P_{1}[kN/m^{2}] = 2 \cdot f_{prob} \cdot f_{nl-P1}$$
$$\cdot \left[\left(P_{11} + \frac{135 \cdot B_{local}}{4 \cdot (B+75)} - 1.2 \cdot (T_{LC} - z) \right) \cdot f_{1} + \frac{135 \cdot B_{local}}{4 \cdot (B+75)} \cdot f_{2} \right]$$

και

$$\begin{split} P_2[kN/m^2] &= 26 \cdot f_{prob} \cdot f_{nl-P2} \\ \cdot \left[\begin{pmatrix} \frac{B_{local}}{8} \cdot \theta + f_T \cdot C_B \cdot \frac{0.25 \cdot B_{local} + 0.8 \cdot C_{wv}}{14} \cdot \left(0.7 + \frac{2 \cdot z}{T_{LC}}\right) \right) \cdot f_1 \\ &+ \left(\frac{B_{local}}{8} \cdot \theta + f_T \cdot C_B \cdot \frac{0.25 \cdot B_{local}}{14} \cdot \left(0.7 + \frac{2 \cdot z}{T_{LC}}\right) \right) \cdot f_2 \end{split} \end{split}$$

όπου $f_{prob} = 1$, $f_{nl-P1} = 0.9$, $f_{nl-P2} = 0.65$ για εκτίμηση αντοχής ([2], Section 7:Loads/3.5.2.2) $P_{11} = (3 \cdot f_s + 0.8) \cdot C_{wv}$, με $f_s = C_B$, για 0.2L < x < 0.7L

και συντελεστή κύματος,

$$C_{wv} = 10.617$$

 B_{local} το τοπικό πλάτος της ισάλου για το βύθισμα υπολογισμών

 T_{LC} το βύθισμα σχεδίασης και υπολογισμού αντοχής μέσης τομής

 $f_1 = f_{lng} - (f_{lng}/f_V)f_2 + f_2 = 1$ με $f_{lng} = 0.7$ για 0.2L < x < 0.7L, $f_V = 1$ για εκτίμηση αντοχής ([2], Section 7:Loads/3.5.2.2) και

 $f_2 = f_V \cdot [(4|y|/B_{local}) - 1] = 1$ για $|y| = 0.5 \cdot B_{local}$ που αποτελεί τη δυσμενέστερη περίπτωση

 $θ = [50/(B + 75)](1.25 - 0.025 \cdot U_{roll}) \cdot f_{bk}$ η γωνία διατοιχισμού σε rads ([2], Section 7:Loads/3.2.2.2), με $U_{roll} = 2.3 \cdot r_{roll-gyr}/\sqrt{GM}$ ([2], Section 7:Loads/3.2.2.1), με $r_{roll-gyr} = 0.35B$ και GM = 0.12B, όπως ορίζονται στον πίνακα 7.3.1 ([2],Section 7:Loads/3.1.3.1), και $f_{bk} = 1$ για πλοία με έλασμα υδρορροής.

 $f_T = T_{LC}/T_{sc}$ ο λόγος βυθίσματος σχεδίασης προς βύθισμα ενίσχυσης

(β) Για τα εσωτερικά ελάσματα των δεξαμενών ισχύει:

$$P = P_{in} = max\{P_{in-test}, P_{in-tk} + P_{valve}\},\$$

για συνδυασμό στατικών και δυναμικών φορτίσεων, όπως ορίζεται στον πίνακα 7.6.1 ([2], Section 7:Loads/6.2.1.1) και για δεξαμενές φορτίου

με $P_{valve} = 25 \ kN/m^2$, κατ' ελάχιστον ([2], Section 7:Loads/2.2.3.3)

με $P_{in-test} = \rho \cdot g \cdot z_{test}$ ([2], Section 7:Loads/2.2.3.5) με $z_{test} = z_{tk-max} + 2.4$, $\rho = 1.025 t/m^3$ για εκτίμηση αντοχής και g= 9.81 m/sec² η επιτάχυνση της βαρύτητας

με $P_{in-tk} = \rho \cdot g \cdot z_{tk}$, όπως ορίζεται στους κανονισμούς ([2], Section 7:Loads/2.2.3.1), με $\rho = 1.025 \ t/m^3$ για εκτίμηση αντοχής, g= $9.81 \ m/sec^2$ η επιτάχυνση της βαρύτητας και $z_{tk} = D + camber - h_{DB}$, η κατακόρυφη απόσταση από το σημείο υπολογισμού της πίεσης και το υψηλότερο σημείο της δεξαμενής

(γ) Για τα ελάσματα του καταστρώματος ισχύει:

$$P = P_{wdk-dyn}$$

με $P_{wdk-dyn} = max\{P_{wdk-dyn1}, P_{wdk-dyn2}\} > 34$ ([2], Section 7:Loads/6.3.6.2), για συνδυασμό στατικών και δυναμικών φορτίσεων, όπως ορίζεται στον πίνακα 7.6.1 ([2], Section 7:Loads/6.2.1.1) και για το κατάστρωμα

αφού

$$P_{wdk-dyn1}[kN/m^2] = f_{1-dk} \cdot \left(f_{op} \cdot P_{1-WL} - 10 \cdot z_{dk-T}\right)$$

και

$$P_{wdk-dyn2}[kN/m^2] = 0.8 \cdot f_{2-dk} \cdot (P_{2-WL} - 10 \cdot z_{dk-T})$$

όπου $f_{1-dk} = 0.8 + L/750$,

 $f_{2-dk} = 0.5 + |y|/B_{wdk} = 1$, για $|y| = 0.5 \cdot B_{wdk}$ που αποτελεί τη δυσμενέστερη περίπτωση

 $z_{dk-T} = D - T_d$ η απόσταση από το κατάστρωμα μέχρι την ίσαλο επιφάνεια για την κατάσταση πλήρους φόρτωσης

 $f_{op} = 1$, για 0.2L < x που αντιστοιχεί στην περιοχή της μέσης τομής και

$$P_{1-WL} = P_1[kN/m^2] = 2 \cdot f_{prob} \cdot f_{nl-P1}$$
$$\cdot \left[\left(P_{11} + \frac{135 \cdot B_{local}}{4 \cdot (B+75)} - 1.2 \cdot (T_{LC} - z) \right) \cdot f_1 + \frac{135 \cdot B_{local}}{4 \cdot (B+75)} \cdot f_2 \right]$$

και

$$P_{2-WL} = P_2[kN/m^2] = 26 \cdot f_{prob} \cdot f_{nl-P2}$$
$$\cdot \left[\left(\frac{B_{local}}{8} \cdot \theta + f_T \cdot C_B \cdot \frac{0.25 \cdot B_{local} + 0.8 \cdot C_{wv}}{14} \cdot \left(0.7 + \frac{2 \cdot z}{T_{LC}} \right) \right) \cdot f_1 \right] \\ + \left(\frac{B_{local}}{8} \cdot \theta + f_T \cdot C_B \cdot \frac{0.25 \cdot B_{local}}{14} \cdot \left(0.7 + \frac{2 \cdot z}{T_{LC}} \right) \right) \cdot f_2 \right]$$

όπου

 $f_{prob} = 1$, $f_{nl-P1} = 0.9$, $f_{nl-P2} = 0.65$ για εκτίμηση αντοχής ([2], Section 7:Loads/3.5.2.2)

 $P_{11} = (3 \cdot f_s + 0.8) \cdot C_{wv}$ με $f_s = C_B$, για 0.2L < x < 0.7L

 B_{local} το τοπικό πλάτος της ισάλου για το βύθισμα υπολογισμών

T_{LC} το βύθισμα σχεδίασης και υπολογισμού αντοχής μέσης τομής

z = Dη απόσταση του καταστρώματος από το επίπεδο της τρόπιδας σε m

 $f_1 = f_{lng} - (f_{lng}/f_V)f_2 + f_2 = 1$ με $f_{lng} = 0.7$ για 0.2L < x < 0.7L, $f_V = 1$ για εκτίμηση αντοχής ([2], Section 7:Loads/3.5.2.2) και $f_2 = f_V \cdot [(4|y|/B_{local}) - 1] = 1$ για $|y| = 0.5 \cdot B_{local}$ που αποτελεί τη δυσμενέστερη περίπτωση

 $θ = [50/(B + 75)](1.25 - 0.025 \cdot U_{roll}) \cdot f_{bk}$ η γωνία διατοιχισμού σε rads ([2], Section 7:Loads/3.2.2.2), με $U_{roll} = 2.3 \cdot r_{roll-gyr}/\sqrt{GM}$ ([2], Section 7:Loads/3.2.2.1), με $r_{roll-gyr} = 0.35B$ και GM = 0.12B, όπως ορίζονται στον πίνακα 7.3.1 ([2], Section 7:Loads/3.1.3.1), και $f_{bk} = 1$ για πλοία με έλασμα υδρορροής

 $f_T = T_{LC}/T_{sc}$ ο λόγος βυθίσματος σχεδίασης προς βύθισμα ενίσχυσης

5.4.1.1 Έλασμα τρόπιδας (Keel plate)

Το έλασμα της τρόπιδας πρέπει να εκτείνεται καθ' όλο το επίπεδο τμήμα του πυθμένα και το ελάχιστο πλάτος των ελασμάτων της τρόπιδας, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.2.1.1), δίνεται από τη σχέση:

$$b_{min,kl} \ [mm] = 800 + 5 \cdot L_R = 800 + 5 \cdot 273.95 \implies b_{min,kl} = 2170 \ mm$$

Το ελάχιστο καθαρό πάχος του ελάσματος τρόπιδας, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR)([2], Section 8:Scantling Requirements/2.2.1.2), όπως ορίζονται στον πίνακα 8.2.4 που παρατίθεται στο Παράρτημα. (βλ. Παράγραφο 5.4.1.α)

$$a_p = 1$$
, $\sigma_{yd} = 235 N/mm^2$, $s = 815 mm$, $l_p = 3.36 m$, $C_{\alpha} = C_{\alpha-max} = 1$
 $B_{local} = 46 m$, $T_{LC} = 11.7 m$, $\theta = 0.354 rad$

$$P_{hys} = 127.70 \ kN/m^2$$
, үна $T_{sc} = 12.7 \ m$ кан $z = 0$ кан $P_1 = 75.45 \ kN/m^2$, $P_2 = 87.33 \ kN/m^2$, $P_{11} = 32.64$

$$P_{ex-dyn} = max\{P_1, P_2\} = 87.33 \ kN/m^2$$

$$P_{ex-max} = P_{ex-dyn}$$

$$P_{bildge} = f_{bildge} \cdot P_{ex-max} = 87.33 \ kN/m^2$$

$$P_{wv-dyn} = P_{bildge}$$

$$P = P_{hvs} + P_{wv-dyn} = (127.7 + 87.33) \ kN/m^2 \implies P = 215.03 \ kN/m^2$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος της τρόπιδας, έχουμε:

$$t_{net,kl} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 12.32 \ mm < 6.5 + 0.03 \cdot L_2 = 14.72 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος της τρόπιδας αυτό που δίνεται από τον πίνακα 8.2.1 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1, που παρατίθεται στο Παράρτημα και είναι 3 mm, τελικά το ελάχιστο πάχος της τρόπιδας είναι:

$$t_{min,kl} = t_{net,kl} + t_{cor,kl} = 14.72 \text{ mm} + 3 \text{ mm} = 17.72 \text{ mm} \implies t_{min,kl} = 18 \text{ mm}$$

Με βάση και τα στοιχεία διαστασιολόγησης της μέσης τομής του πατρικού, τελικά επιλέγουμε πάχος ελάσματος τρόπιδας, για το υπό μελέτη και σχεδίαση πλοίο ίσο με:

$$t_{kl} = 20 mm$$

5.4.1.2 Έλασμα πυθμένα (Bottom plate)

Το ελάχιστο καθαρό πάχος του ελάσματος πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.2.2), όπως ορίζονται στον πίνακα 8.2.4 (βλ. Παράγραφο 5.4.1.α)

$$a_p = 1$$
, $\sigma_{yd} = 315 \text{ N/mm}^2$, $s = 810 \text{ mm}$, $l_p = 3.36 \text{ m}$, $C_a = C_{a-max} = 1$
 $B_{local} = 46 \text{ m}$, $T_{LC} = 11.7 \text{ m}$, $\theta = 0.354 \text{ rad}$

$$P_{hys} = 127.70 \ kN/m^2$$
, үна $T_{sc} = 12.7 \ m$ кан $z = 0$ кан $P_1 = 75.45 \ kN/m^2$, $P_2 = 87.33 \ kN/m^2$, $P_{11} = 32.64$

$$\begin{split} P_{ex-dyn} &= max\{P_1,P_2\} = 87.33 \ kN/m^2 \\ P_{ex-max} &= P_{ex-dyn} \\ P_{bildge} &= f_{bildge} \cdot P_{ex-max} = 87.33 \ kN/m^2 \\ P_{wv-dyn} &= P_{bildge} \\ P &= P_{hys} + P_{wv-dyn} = (127.7 + 87.33) \ kN/m^2 \implies P = 215.03 \ kN/m^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος του πυθμένα, έχουμε:

$$t_{net,bot} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 10.6 \ mm < 4.5 + 0.03 \cdot L_2 = 12.72 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος του πυθμένα αυτό που δίνεται από τον πίνακα 8.2.1 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, τελικά το ελάχιστο πάχος του πυθμένα είναι:

$$t_{min,bot} = t_{net,bot} + t_{cor,bot} = 12.72 mm + 3 mm = 15.72 mm \implies t_{min,bot} = 16 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης της μέσης τομής του πατρικού, τελικά επιλέγουμε πάχος ελάσματος πυθμένα, για το υπό μελέτη και σχεδίαση πλοίο ίσο με:

$$t_{bot} = 17 mm$$

5.4.1.3 Έλασμα εσωτερικού πυθμένα (Inner Bottom plate)

Το ελάχιστο καθαρό πάχος του ελάσματος εσωτερικού πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.4.1.1), όπως ορίζονται στον πίνακα 8.2.4 (βλ. Παράγραφο 5.4.1.β)

$$a_p = 1$$
, $\sigma_{yd} = 235 \text{ N/mm}^2$, $s = 810 \text{ mm}$, $l_p = 3.36 \text{ m}$, $C_{\alpha} = C_{\alpha-max} = 1$
 $B_{local} = 46 \text{ m}$, $T_{LC} = 11.7 \text{ m}$, $\theta = 0.354 \text{ rad}$

$$P_{in-tk} = \rho \cdot g \cdot z_{tk} = 233.78 \ kN/m^2$$
, $z_{tk} = D + camber - h_{DB} = 23.25 \ m$

$$\begin{split} P_{in-test} &= \rho \cdot g \cdot z_{test} = 257.92 \ kN/m^2, z_{test} = z_{tk-max} + 2.4 = 25.65 \ m \\ P_{in} &= max\{P_{in-test}, P_{in-tk} + P_{valve}\}, \\ P_{valve} &= 25 \ kN/m^2 \\ P &= P_{in} = max\{257.92, 233.78\} \ kN/m^2 \implies P = 257.92 \ kN/m^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος του εσωτερικού πυθμένα, έχουμε:

$$t_{net,in-bot} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 13.41 \ mm > 4.5 + 0.02 \cdot L_2$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος εσωτερικού πυθμένα, αυτό που δίνεται από τον πίνακα 8.2.4 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 4 mm, τελικά το ελάχιστο πάχος των ελασμάτων του εσωτερικού πυθμένα είναι:

$$t_{min,in-bot} = t_{net,in-bot} + t_{cor,in-bot} = 13.41 mm + 4 mm = 17.41 mm$$
$$\implies t_{min,in-bot} = 18 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος ελασμάτων εσωτερικού πυθμένα, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$t_{in-bot} = 19 mm$$

5.4.1.4 Έλασμα υδρορροής (Bildge plate)

Το ελάχιστο πάχος του ελάσματος υδρορροής, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.2.3), δε πρέπει να είναι μικρότερο από το πάχος του παράπλευρου ελάσματος πυθμένα ή πλευράς, όποιο είναι μεγαλύτερο, ενώ για έλασμα υδρορροής χωρίς διαμήκη ενίσχυση, το ελάχιστο καθαρό πάχος δίνεται από τη σχέση:

$$t_{net,bl} [mm] = \frac{\sqrt[3]{r^2 \cdot S_t \cdot P_{ex}}}{100}$$
$$t_{net,bl} = 16.92 mm$$

όπου: r η αποτελεσματική ακτίνα της υδρορροής και είναι $r = r_0 + 0.5 \cdot (a + b) = 3056 + 0.5 \cdot (450 + 160) = 3361 mm$

με *r*, *a* και *b*, όπως φαίνονται στο ακόλουθο σχήμα 8.2.1 και ορίζονται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.2.3.2)

Εικόνα 5.4:1 Έλασμα υδρορροής (Πηγή: Σχήμα 8.2.1- Section 8:Scantling Requirements/2.2.3.2, CSR)

 $S_t = 3.36 m$ η ισαπόσταση των εγκάρσιων ενισχυτικών σε m | TYP TRANS. WEB, (είναι το Frame Spacing) και φαίνεται στο Σχέδιο Γενικής Διάταξης (General Arrangement Plan)

 P_{ex} η εξωτερική πίεση σχεδίασης για τα κριτήρια αποδοχής 1 ([2], Section8:Scantling Requirements, Table 8.2.7), δηλαδή η υδροστατική, υπολογισμένη στην κατώτερη ακμή του ελάσματος υδρορροής σε kN/m², όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Loads/2.2.2) και είναι:

$$P_{ex} \equiv P_{hys} = \rho \cdot g \cdot (T_{sc} - z)$$
$$P_{ex} = 127.7 \, kN/m^2$$

Στο ελάχιστο καθαρό πάχος του ελάσματος υδρορροής απαιτείται να προσθέσουμε το περιθώριο διάβρωσης, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, οπότε το ελάχιστο πάχος του ελάσματος υδρορροής είναι:

$$t_{min,bl} = t_{net,bl} + t_{cor,bl} = 16.92 \ mm + 3 \ mm > 4.5 + 0.03 \cdot L_2$$

 $t_{bl} = 20 \ mm$

5.4.1.5 Έλασμα πλευράς (Side shell plate)

Το ελάχιστο πάχος του ελάσματος πλευράς, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section

8:Scantling Requirements/2.2.4.2), στην περιοχή που ορίζεται στο σχήμα 8.2.2, που παρατίθεται παρακάτω και δίνεται από τη σχέση:

Εικόνα 5.4:2 Έλασμα πλευράς (Πηγή: Σχήμα 8.2.2 - Section 8:Scantling Requirements/2.2.4.2, CSR)

$$t_{net,side} \ [mm] = 26 \cdot \left(\frac{s}{1000} + 0.7\right) \cdot \left(\frac{B \cdot T_{sc}}{\sigma_{yd}^2}\right)^{0.25}$$

$$s = 822 mm, B = 46 m, T_{sc} = 12.7 m, \sigma_{vd} = 235 N/mm^2$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος πλευράς, έχουμε:

$$t_{net,side} \ [mm] = 26 \cdot \left(\frac{s}{1000} + 0.7\right) \cdot \left(\frac{B \cdot T_{sc}}{\sigma_{yd}^2}\right)^{0.25} = 12.7 \ mm < 4.5 + 0.03 \cdot L_2 = 12.72 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος πλευράς, αυτό που δίνεται από τον πίνακα 8.2.1 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 που είναι 3.5 mm, τελικά το ελάχιστο πάχος πλευράς είναι:

 $t_{min,side} = t_{net,side} + t_{cor,side} = 12.72 mm + 3.5 mm = 16.22 mm$ $\implies t_{min,side} = 17 mm$

5.4.1.6 Έλασμα ζωστήρα (Sheer strake)

Το ελάχιστο πάχος του ελάσματος ζωστήρα, όπως ορίζεται από τους ενοποιημένους κατασκευαστικούς κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.2.5.1), υπόκειται στις ίδιες απαιτήσεις με το έλασμα πλευράς, οπότε επιλέγουμε το ίδιο πάχος ελάσματος ζωστήρα:

$$t_{strake} = 17 mm$$

5.4.1.7 Έλασμα πλευρικής διαμήκους φρακτής (Side longitudinal bulkhead plate)

Οι διαμήκεις φρακτές πρέπει να είναι γενικά επίπεδες και να φέρουν διαμήκη ενίσχυση ([2], Section 8:Scantling Requirements/2.5.1.1), ενώ το ελάχιστο καθαρό πάχος της πλευρικής διαμήκους φρακτής, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του

IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.5.2.1), όπως ορίζονται στον πίνακα 8.2.4 που παρατίθεται στο Παράρτημα. (βλ. Παράγραφο 5.4.1.β)

$$a_p = 1$$
, $\sigma_{yd} = 235 \text{ N/mm}^2$, $s = 822 \text{ mm}$, $l_p = 3.36 \text{ m}$, $C_{\alpha} = C_{\alpha-max} = 1$
 $B_{local} = 46 \text{ m}$, $T_{LC} = 11.7 \text{ m}$, $\theta = 0.354 \text{ rad}$

$$\begin{split} P_{in-tk} &= \rho \cdot g \cdot z_{tk} = 192.56 \ kN/m^2, \ z_{tk} = D + camber - h_{Hopper} = 19.15 \ m \\ P_{in-test} &= \rho \cdot g \cdot z_{test} = 216.69 \ kN/m^2, \ z_{test} = z_{tk-max} + 2.4 = 21.55 \ m \\ P_{in} &= max\{P_{in-test}, P_{in-tk} + P_{valve}\}, \\ P_{valve} &= 25 \ kN/m^2 \\ P &= P_{in} = max\{216.69, 192.56\} \ kN/m^2 \implies P = 216.69 \ kN/m^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος της πλευρικής διαμήκους φρακτής, έχουμε:

$$t_{net,side-lng} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 12.47 \ mm > 4.5 + 0.02 \cdot L_2 = 9.98 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος της πλευρικής διαμήκους φρακτής, αυτό που δίνεται από τον πίνακα 8.2.4 και προσθέτοντας το μέγιστο περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 4 mm, τελικά το ελάχιστο πάχος του ελάσματος της πλευρικής διαμήκους φρακτής είναι:

$$t_{min,side-lng} = t_{net,side-lng} + t_{cor-max,side-lng} = 12.47 mm + 4 mm = 16.47 mm$$
$$\implies t_{min,side-lng} = 16.5 mm$$

5.4.1.8 Έλασμα καταστρώματος (Upper – Inner Deck plate)

Το ελάχιστο καθαρό πάχος του ελάσματος καταστρώματος, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.4.1.1), όπως ορίζονται στον πίνακα 8.2.4 (βλ. Παράγραφο 5.4.1.γ)

$$a_p = 1$$
, $\sigma_{yd} = 235 \text{ N/mm}^2$, $s = 850 \text{ mm}$, $l_p = 3.36 \text{ m}$, $C_{\alpha} = C_{\alpha-max} = 1$
 $B_{local} = 46 \text{ m}$, $T_{LC} = 11.7 \text{ m}$, $T_{sc} = 12.7 \text{ m}$ каг $z = D = 26 \text{ m}$

$$P_{11} = 32.64, \ z_{dk-T} = D - T_d = 14.3 \ m, \theta = 0.354 \ rad$$

 $P_{1-WL} = 131.61 \ kN/m^2 \ \kappaau \ P_{2-WL} = P_2[kN/m^2] = 196.03 \ kN/m^2$

$$\begin{split} P_{wdk-dyn1}[kN/m^2] &= -13.27 \ kN/m^2 \\ P_{wdk-dyn2}[kN/m^2] &= 42.42 kN/m^2 \\ & & \\ \delta\pi o \upsilon \qquad f_{1-dk} = 1.17 \ \kappa \alpha \iota \ f_{2-dk} = 1 \ , \\ P_{wdk-dyn} &= max\{P_{wdk-dyn1}, P_{wdk-dyn2}\} > 34 = 42.42 \ kN/m^2 \end{split}$$

$$P = P_{wdk-dyn} = 42.42 \ kN/m^2$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος του καταστρώματος, έχουμε:

$$t_{net,deck} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 5.71 \ mm < 4.5 + 0.02 \cdot L_2 = 9.98 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος εσωτερικού πυθμένα, αυτό που δίνεται από τον πίνακα 8.2.1 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 4 mm, τελικά το ελάχιστο πάχος των ελασμάτων του καταστρώματος είναι:

$$t_{min,deck} = t_{net,deck} + t_{cor,deck} = 9.98 mm + 4 mm = 13.98 mm$$
$$\implies t_{min,deck} = 14 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος ελασμάτων καταστρώματος, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$t_{inner\,deck} = t_{upper\,deck} = 16 \, mm$

Για το Trunk deck επιλέγουμε, όμοια με το πατρικό, πάχος ελάσματος 30.5 mm, που αντιστοιχεί περίπου στο διπλάσιο του Upper Deck ,

$$t_{trunk \ deck} = 30.5 \ mm.$$

5.4.1.9 Hopper plating

Το έλασμα του hopper πρέπει να στηρίζεται από σταθμίδες (οριζόντια και κατακόρυφη) στα άκρα του ([2], Section 8:Scantling Requirements/2.5.3.1), ενώ το ελάχιστο καθαρό πάχος του ελάσματος του hopper, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR), όπως ορίζονται στον πίνακα 8.2.4 (βλ. Παράγραφο 5.4.1.β)

$$a_p = 1$$
, $\sigma_{yd} = 235 \frac{N}{mm^2}$, $l_p = 3.36 \text{ m}$, $s = 830 \text{ mm}$, $C_{\alpha} = C_{\alpha-max} = 1$
 $B_{local} = 46 \text{ m}$, $T_{LC} = 11.7 \text{ m}$

$$\begin{split} P_{in-tk} &= \rho \cdot g \cdot z_{tk} = 233.78 \ kN/m^2, \ z_{tk} = D + camber - h_{DB} = 23.25 \ m \\ P_{in-test} &= \rho \cdot g \cdot z_{test} = 257.92 \ kN/m^2, \ z_{test} = z_{tk-max} + 2.4 = 25.65 \ m \\ P_{in} &= max\{P_{in-test}, P_{in-tk} + P_{valve}\}, \\ P_{valve} &= 25 \ kN/m^2 \\ P &= P_{in} = max\{257.92, 233.78\} \ kN/m^2 \implies P = 257.92 \ kN/m^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του ελάσματος του hopper, έχουμε:

$$t_{net,hopper} \ [mm] = 0.0158 \cdot a_p \cdot s \cdot \sqrt{\frac{|P|}{C_a \cdot \sigma_{yd}}} = 13.74 \ mm > 4.5 + 0.02 \cdot L_2 = 9.98 \ mm$$

Οπότε θεωρούμε ελάχιστο καθαρό πάχος του ελάσματος του hopper, αυτό που δίνεται από τον πίνακα 8.2.4 και προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, τελικά το ελάχιστο πάχος του ελάσματος του hopper είναι:

$$t_{min,hopper} = t_{net,hopper} + t_{cor,hopper} = 13.74 mm + 3 mm = 16.74 mm$$

 $\implies t_{min,in-bot} = 17 mm$

Με βάση και τα στοιχεία διαστασιολόγησης της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος ελάσματος hopper, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$t_{hopper} = 19 mm$$

5.4.2 Ενισχυτικά

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.6και γενικά δίνεται από τη σχέση:

$$t_{w-net,bot} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}}$$

όπου:

 $f_{shr} = 0.7$ ο παράγοντας κατανομής της διατμητικής δύναμης για κατακόρυφα ενισχυτικά και $f_{shr} = 0.5$ για οριζόντια ενισχυτικά.

P η πίεση σχεδίασης υπολογισμένη στο σημείο φόρτισης, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 3:Rule

Application/5.1), για τη δυσμενέστερη κατάσταση φόρτισης σχεδίασης σε kN/m², ίση με την τιμή που υπολογίστηκε για τη διαστασιολόγηση του αντίστοιχου ελάσματος

s η ισαπόσταση των ενισχυτικών σε mm ([2], Section 4:Basic Information/2.2)

 $l_{shr} = l - s/2000 = 2.95 m$ το ενεργό άνοιγμα διάτμησης σε m ([2], Section 4:Basic Information/2.1.2), με l = 3.36 m το μήκος του ενισχυτικού ανάμεσα στα κύριους κατασκευαστικούς νομείς στην περιοχή της μέσης τομής

 $d_{shr} = (h_{stf} + t_{p-net}) \cdot \sin \varphi_w$ το ενεργό βάθος διάτμησης του ενισχυτικού σε mm ([2], Section 4:Basic Information/2.4.2.2)

 $h_{stf} = h_{web} + t_{flange}$ το ύψος του ενισχυτικού σε mm συμπεριλαμβανομένης και της φλάντζας για ενισχυτικά διατομής Τ, όπως φαίνεται στο σχήμα 4.2.12 ([2], Section 4:Basic Information/2.4.1.2),

 t_{p-net} το καθαρό πάχος του ελάσματος που είναι τοποθετημένο το ενισχυτικό σε mm και φ_w η γωνία που σχηματίζει ο κορμός του ενισχυτικού και με το έλασμα

 $C_s = 0.9$ συντελεστής επιτρεπόμενης διατμητικής καταπόνησης, για κριτήρια φόρτισης σχεδίασης AC2

$$\tau_{vd} = \sigma_{vd} / \sqrt{3}$$

Στο ελάχιστο καθαρό πάχος προστίθεται το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1.

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.5 και γενικά δίνεται από τη σχέση:

$$Z_{net,stf-bot} [cm^3] = \frac{|P| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot C_s \cdot \sigma_{vd}}$$

όπου: $f_{bdg} = 10$ ο παράγοντας καμπτικής ροπής για κατακόρυφα ενισχυτικά και $f_{bdg} = 12$ για οριζόντια ενισχυτικά.

 l_{bdg} το ενεργό άνοιγμα κάμψης σε m ([2], Section 4:Basic Information/2.1.1), ίσο με το μήκος του ενισχυτικού ανάμεσα στα κύριους κατασκευαστικούς νομείς στην περιοχή της μέσης τομής

 $C_s = C_{s-max} = 0.9$ συντελεστής επιτρεπόμενης καμπτικής καταπόνησης, για κριτήρια φόρτισης σχεδίασης AC2 και ενισχυτικά υδατοστεγούς ορίου.

5.4.2.1 Διαμήκη ενισχυτικά πυθμένα (Bottom longitudinal stiffeners)

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών του πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2)

$$f_{shr} = 0.7, P = 215.03 \ kN/m^2, s = 810 \ mm$$

$$l_{shr} = 2.955 m, \ l = 3.36 m$$

 $d_{shr} = 482 \ mm$, $h_{stf} = 468 \ mm$, $t_{p-net} = 14 \ mm$, $\varphi_w = 90^{\circ}$

$$au_{vd} = \sigma_{vd}/\sqrt{3} = 162.94 \ N/mm^2$$
 , $\sigma_{vd} = 235 \ N/mm^2$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του πυθμένα, έχουμε:

$$t_{w-net,bot} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}} = 5.1 \ mm$$

Προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών του πυθμένα είναι:

$$t_{min,w-bot} = t_{w-net,bot} + t_{cor,w-bot} = 5.1 mm + 3 mm = 8.1 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών του πυθμένα, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-bot} = 12 mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών του πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.5 (βλ. Παράγραφο 5.4.2)

$$f_{bdg} = 10, l_{bdg} = 3.36$$
 , $\sigma_{yd} = 235 \ N/mm^2$, $C_s = 0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του πυθμένα, έχουμε:

$$Z_{min,net,stf-bot} [cm^3] = \frac{|P| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot c_s \cdot \sigma_{yd}} = 929.7 \ cm^3$$

Τα ενισχυτικά διατομής Τ (450x12,150x15) χάλυβα (Grade "A") που έχουν επιλεγεί στον πυθμένα θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

$$Z_{(450x12,150x15)} = 1,032 \ cm^3 > 929.7 \ cm^3 = Z_{min,net,stf-bot}$$

5.4.2.2 Διαμήκη ενισχυτικά εσωτερικού πυθμένα (Inner bottom longitudinal stiffeners)

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2)

$$\begin{split} f_{shr} &= 0.7, P = 257.92 \ kN/m^2, s = 810 \ mm \\ l_{shr} &= 2.955 \ m, \ l = 3.36 \ m \\ d_{shr} &= 645 \ mm \ , \ h_{stf} = 630 \ mm, \ t_{p-net} = 15mm \ , \ \ \varphi_w = 90^\circ \\ \tau_{yd} &= \sigma_{yd}/\sqrt{3} = 162.94 \ N/mm^2 \ , \ \sigma_{yd} = 235 \ N/mm^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, έχουμε:

$$t_{w-net,inner\ bot}\ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{vd}} = 6.1\ mm$$

Προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών του εσωτερικού πυθμένα είναι:

$$t_{min,w-stif inner bot} = t_{w-net,inner bot} + t_{cor,w-inner bot} = 6.1 mm + 3 mm = 9.1 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-inner\ bot} = 12\ mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.5 (βλ. Παράγραφο 5.4.2):

$$f_{bdg} = 10, l_{bdg} = 3.36$$
, $\sigma_{vd} = 235 N/mm^2$, $C_s = 0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, έχουμε:

$$Z_{min,net,stf-inner\ bot}\ [cm^3] = \frac{|P| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot C_s \cdot \sigma_{yd}} = 1115.2\ cm^3$$

Τα ενισχυτικά διατομής Τ (450x12,150x18) χάλυβα (Grade "A") που έχουν επιλεγεί στον εσωτερικό πυθμένα θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

$$Z_{(450x12,150x18)} = 1150.1cm^3 > 1115.2 \ cm^3 = Z_{min,net,stf-inner \ bot}$$

5.4.2.3 Διαμήκη ενισχυτικά πλευράς (Side shell longitudinal stiffeners)

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών της πλευράς, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2)

$$\begin{split} f_{shr} &= 0.5, P = 197.32 \ kN/m^2, s = 822 \ mm \\ l_{shr} &= 2.949m, \ l = 3.36 \ m \\ d_{shr} &= 428.5 \ mm \ , \ h_{stf} = 415 \ mm, \ t_{p-net} = 13.5 \ mm \ , \ \varphi_w = 90^\circ \\ \tau_{yd} &= \sigma_{yd}/\sqrt{3} = 162.94 \ N/mm^2 \ , \ \sigma_{yd} = 235 \ N/mm^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών της πλευράς, έχουμε:

$$t_{w-net,side} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}} = 3.8 \ mm$$

Προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 3 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών της πλευράς είναι:

$$t_{min,w-side} = t_{w-net,side} + t_{cor,w-side} = 3.8 mm + 3 mm = 6.8 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών της πλευράς, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-side} = 12 mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών της πλευράς, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.5 (βλ. Παράγραφο 5.4.2):

$$f_{bdg}=12, l_{bdg}=3.36$$
 , $\sigma_{yd}=235\,N/mm^2$, $\mathcal{C}_{s}=0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών της πλευράς, έχουμε:

$$Z_{net,stf-side} \ [cm^3] = \frac{|P| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot c_s \cdot \sigma_{yd}} = 721.5 \ cm^3$$

Τα ενισχυτικά διατομής T (400x12,150x15) χάλυβα (Grade "A") που έχουν επιλεγεί στην πλευρά θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

$$Z_{(400x12,150x15)} = 873.8cm^3 > 721.5 cm^3 = Z_{min,net,stf-side}$$

5.4.2.4 Διαμήκη ενισχυτικά καταστρώματος (Deck longitudinal stiffeners)

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών του καταστρώματος, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2)

 $f_{shr} = 0.7, P = 42.42 \ kN/m^2, s = 850 \ mm$ $l_{shr} = 2.935m, \ l = 3.36 \ m$ $d_{shr} = 274 \ mm, \ h_{stf} = 262 \ mm, t_{p-net} = 12 \ mm, \ \varphi_w = 90^\circ$ $\tau_{vd} = \sigma_{vd}/\sqrt{3} = 162.94 \ N/mm^2, \ \sigma_{vd} = 235 \ N/mm^2$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του καταστρώματος, έχουμε:

$$t_{w-net,deck} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}} = 1.8 \ mm$$

Προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 4 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών του καταστρώματος είναι:

$$t_{min,w-deck} = t_{w-net,deck} + t_{cor,w-deck} = 1.8 mm + 4 mm = 5.8 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών του καταστρώματος, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-deck} = 12 mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών του καταστρώματος, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.3.2.1), όπως ορίζονται στον πίνακα 8.2.5 (βλ. Παράγραφο 5.4.2)

$$f_{bdg} = 10, l_{bdg} = 3.36$$
 , $\sigma_{yd} = 235 N/mm^2$, $C_s = 0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του καταστρώματος, έχουμε:

$$Z_{min,net,stf-deck} \left[cm^3 \right] = \frac{\left| P \right| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot C_s \cdot \sigma_{yd}} = 192.5 \ cm^3$$

Τα ενισχυτικά διατομής Τ (250x12,100x12) (Grade "A") που έχουν επιλεγεί στο κατάστρωμα θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

 $Z_{(250x12,100x12)} = 304.8 \ cm^3 > 192.5 \ cm^3 = Z_{min,net,stf-in-bot}$

5.4.2.5 Διαμήκη ενισχυτικά πλευρικής διαμήκους φρακτής (Side longitudinal bulkhead stiffeners)

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.5.5.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2)

$$\begin{split} f_{shr} &= 0.5, P = 216.69 \ kN/m^2, s = 822 \ mm \\ l_{shr} &= 2.949m, \ l = 3.36 \ m \\ d_{shr} &= 427.5 \ mm \ , \ h_{stf} = 415 \ mm, \ t_{p-net} = 12.5 \ mm \ , \ \ \varphi_w = 90^\circ \\ \tau_{yd} &= \sigma_{yd}/\sqrt{3} = 162.94 \ N/mm^2 \ , \ \sigma_{yd} = 235 \ N/mm^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής, έχουμε:

$$t_{w-net,side-lng} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}} = 4.2 \ mm$$

Προσθέτοντας το μέγιστο περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 και είναι 4 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής είναι:

$$t_{min,w-side-lng} = t_{w-net,side-lng} + t_{cor,w-side-lng} = 4.2 mm + 4 mm = 8.2 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-side-lng} = 12 mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.5.5.1), όπως ορίζονται στον πίνακα 8.2.5 (βλ. Παράγραφο 5.4.2)

$$f_{bdg} = 12, l_{bdg} = 3.36$$
, $\sigma_{vd} = 235 N/mm^2, C_s = 0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών της πλευρικής διαμήκους φρακτής, έχουμε:

$$Z_{net,stf-side-lng} \left[cm^3 \right] = \frac{\left| P \right| \cdot s \cdot l_{bdg}^2}{f_{bdg} \cdot C_s \cdot \sigma_{yd}} = 792.3 \ cm^3$$

Τα ενισχυτικά διατομής Τ (400x12,150x15) απλού ναυπηγικού χάλυβα που έχουν επιλεγεί στην πλευρική διαμήκη φρακτή θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

$$Z_{(400x12,150x15)} = 873.8 \ cm^3 > 792.3 \ cm^3 = Z_{net,stf-side-lng}$$

5.4.2.6 Hopper longitudinal stiffeners

Το ελάχιστο καθαρό πάχος του κορμού (web) των διαμήκων ενισχυτικών του hopper, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.5.5.1), όπως ορίζονται στον πίνακα 8.2.6 (βλ. Παράγραφο 5.4.2).

$$\begin{split} f_{shr} &= 0.6, P = 257.92 \ kN/m^2, s = 830 \ mm \\ l_{shr} &= 2.945m, \ l = 3.36 \ m \\ d_{shr} &= 481 \ mm \ , \ h_{stf} = 465 \ mm, \ t_{p-net} = 16 \ mm \ , \ \ \varphi_w = 90^\circ \\ \tau_{yd} &= \sigma_{yd}/\sqrt{3} = 162.94 \ N/mm^2 \ , \ \sigma_{yd} = 235 \ N/mm^2 \end{split}$$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του hopper, έχουμε:

$$t_{w-net,hopper} \ [mm] = \frac{f_{shr} \cdot |P| \cdot s \cdot l_{shr}}{d_{shr} \cdot C_t \cdot \tau_{yd}} = 5.4 \ mm$$

Προσθέτοντας το περιθώριο διάβρωσης που απαιτείται, όπως ορίζεται από τους κανονισμούς του IACS, Common Structural Rules (CSR) ([2], Section 6:Materials and Welding), στον πίνακα 6.3.1 που είναι 3 mm, τελικά το ελάχιστο πάχος του κορμού των διαμήκων ενισχυτικών του hopper είναι:

$$t_{min,w-hopper} = t_{w-net,hopper} + t_{cor,w-hopper} = 5.4 mm + 3 mm = 8.4 mm$$

Με βάση και τα στοιχεία διαστασιολόγησης των ενισχυτικών της μέσης τομής του πατρικού πλοίου, τελικά επιλέγουμε πάχος κορμού των διαμήκων ενισχυτικών του hopper, για το υπό μελέτη και σχεδίαση πλοίο, ίσο με:

$$\Rightarrow t_{w-hopper} = 12 mm$$

Η ελάχιστη ροπή αντίστασης των διαμήκων ενισχυτικών του εσωτερικού πυθμένα, πρέπει να ικανοποιεί τις απαιτήσεις των κανονισμών του IACS, Common Structural Rules (CSR) ([2], Section 8:Scantling Requirements/2.5.5.1), όπως ορίζονται στον πίνακα 8.2.5.(βλ. Παράγραφο 5.4.2).

$$f_{bdg} = 12$$
, $l_{bdg} = 3.36$, $\sigma_{yd} = 235 N/mm^2$, $C_s = 0.9$

Αντικαθιστώντας στην αρχική σχέση για το ελάχιστο καθαρό πάχος του κορμού των διαμήκων ενισχυτικών του πυθμένα, έχουμε:

$$Z_{min,net,stf-hopper} [cm^{3}] = \frac{|P| \cdot s \cdot l_{bdg}^{2}}{f_{bdg} \cdot C_{s} \cdot \sigma_{yd}} = 952.2cm^{3}$$

Τα ενισχυτικά διατομής Τ (450x12,150x15) χάλυβα (Grade "A") που έχουν επιλεγεί στο hopper θεωρούνται αποδεκτά, αφού έχουν ροπή αντίστασης μεγαλύτερη από την ελάχιστη απαιτούμενη:

$$Z_{(450x12,150x15)} = 1031.5 \ cm^3 > 952.2 \ cm^3 = Z_{min,net,stf-hopper}$$

5.5 Υπολογισμός ροπής αντίστασης και αδράνειας Μέσης Τομής

Η απόσταση του ουδέτερου άξονα προκύπτει από τη σχέση:

$$y_{NA} = \frac{\sum A \cdot y_{BL}}{\sum A}$$

Η ροπή αδράνειας της διατομής, ως προς τον ουδέτερο άξονα της, προκύπτει από τη σχέση:

$$I_{NA} = \sum I = \sum (i + A \cdot y_{NA}^2)$$

Η ροπή αντίστασης του πυθμένα και του καταστρώματος, αντίστοιχα, προκύπτουν από τις σχέσεις:

$$SM_B = \frac{I_{NA}}{y_{NA}}$$

$$SM_D = \frac{I_{NA}}{D - y_{NA}}$$

Χαρακτηριστικά διατομής			
Ουδέτερος άξονας	z _{NA} (m) =	15.49	
Ροπή αδράνειας	I (m ⁴) =	1185.9	
Ροπή αντίστασης			
Ροπή αντ	ίστασης		
Ροπή αντ Κατάστρωμα	ίστασης SM _D (m³) =	68.5	

Πίνακας 5.5:1 Χαρακτηριστικά διατομής και ροπή αντίστασης μέσης τομής

Οι τιμές αυτές είναι αποδεκτές καθώς όπως υπολογίστηκε στην αρχή έχουμε ελάχιστες απαιτήσεις:

$$Z_{min} = 48.1 \, m^3 < SM_D = 68.5 \, m^3 < SM_B = 76.6 \, m^3$$
$$I_{min} = 395.3 \, m^4 < I = 1185.9 \, m^4$$

Στο Παράρτημα 8.3 παρατίθενται οι πίνακες των αναλυτικών υπολογισμών των χαρακτηριστικών διατομής και το σχέδιο Μέσης Τομής του υπό μελέτη πλοίου.

6 ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΚΤΗΣΗΣ, ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΚΑΙ ΝΑΥΛΟΥ ³¹

Στο κεφάλαιο αυτό θα γίνει ένας προκαταρτικός υπολογισμός του συνολικού κόστους κτήσεως και εκμετάλλευσης του υπό μελέτη πλοίου. Στη συνέχεια υπολογίζεται ο ελάχιστος απαιτούμενος ναύλος, για την οικονομική βιωσιμότητα του πλοίου, που προκύπτει με βάση το παραπάνω συνολικό κόστος.

6.1 Κόστος Κτήσεως Πλοίου:

Το συνολικό κόστος κατασκευής του πλοίου αναλύεται στα κόστη των τριών κύριων κατασκευαστικών μονάδων που το αποτελούν, όπως φαίνεται και στην Εικόνα 6.1:1. Κάθε μια από τις επιμέρους αυτές κατηγορίες αναλύεται σε κόστος υλικών και κόστος εργατικών.

Εικόνα 6.1:1 Συνολικό κόστος κατασκευής

6.1.1 Κόστος Μεταλλικής Κατασκευής:

Το κόστος μεταλλικής κατασκευής αναλύεται από το κόστος των υλικών και το εργατικό κόστος.

Το κόστος των υλικών υπολογίζεται για τιμή χάλυβα 800 \$/t και φύρα της τάξης 16%. Επομένως, προκύπτει:

$$C_M = 1.16 \cdot 700 \ / t \ \cdot W_{st} = 19879221.6 \$$

 $W_{st} = 24481.8 \ t$

Οι εργατοώρες που απαιτούνται για τη μεταλλική κατασκευή, υπολογίζονται προσεγγιστικά κατά Benford:

$$MHS_{st} = 141.2 \cdot W_{st}^{0.9} \rightarrow$$

$$MHS_{st} = 1258327.6 h$$

Το εργατικό κόστος, θεωρώντας κατά μέσο όρο κόστος εργατοώρας ίσο με 40 \$, προκύπτει:

$$C_W = 40\$ \cdot MHS_{st} = 5033102.6\$$$

Αναλυτικά, το συνολικό κόστος μεταλλικής κατασκευής, θα είναι:

ΚΟΣΤΟΣ ΜΕΤΑΛΛΙΚΗΣ ΚΑΤΑΣΚΕΥΗΣ			W _{st} = 24481.8 tons
	κοστος (\$)	ΠΟΣΟΣΤΑ (%)	ΚΟΣΤΟΣ ΑΝΑ ΤΟΝΟ (\$/t)
ΕΡΓΑΤΙΚΑ	50333102.3	71.7	2055.9
ΥΛΙΚΑ	19879221.6	28.3	812.0
ΣΥΝΟΛΟ	70212323.9	100	2867.9

Πίνακας 6.1:1 Κόστος Μεταλλικής Κατασκευής

Διάγραμμα 6:1 **Κόστος Μεταλλικής Κατασκευής**

6.1.2 Κόστος Ενδιαιτήσεως & Εξοπλισμού:

Το κόστος ενδιαίτησης και εξοπλισμού του πλοίου αποτελείται από το κόστος των υλικών και το εργατικό κόστος. Λόγω της ιδιαιτερότητας του τύπου του πλοίου, θα υπολογίσουμε το βάρος του υλικού Invar που χρησιμοποιείται στην μόνωση των δεξαμενών αναλυτικά, ενώ για το υπόλοιπο βάρος θα χρησιμοποιηθεί εμπειρική σχέση.

Το κόστος ανά τόνο του υλικού Invar είναι 13000 \$/t. 32

Επομένως, το συνολικό κόστος για το Invar θα είναι:

 $C_{Invar} = 13000 \cdot W_{Invar} = 4146220$ \$

 $W_{Invar} = 318.9 t$

Το κόστος των υλικών για τα υπόλοιπα υπολογίζεται προσεγγιστικά από τη σχέση:

 $C_{Other outf.} = 6000 \cdot W_{Other outf.}^{0.95} = 24095591.2 \$$ $W_{Other outf.} = 6215.3 t$

 $C_{Outf. Mat.} = C_{Other outf.} + C_{Invar} = 28241811.2$ \$

Από εμπειρικές σχέσεις, προκύπτει ότι το κόστος τον υλικών ενδιαιτήσεως και εξοπλισμού αποτελεί το 82 % του συνολικού κόστους. Επομένως, το συνολικό κόστος υπολογίζεται:

$$C_{Tot.} = C_{Outf. Mat.} / 0.82 = 34441233.2$$

Άρα, το εργατικό κόστος προκύπτει:

$$C_W = 6199422.0$$
 \$

Επομένως, το συνολικό κόστος ενδιαίτησης και εξοπλισμού θα είναι:

ΚΟΣΤΟΣ ΕΝΔΙΑΙΤΗΣΗΣ ΚΑΙ ΕΞΟΠΛΙΣΜΟΥ			W _{st} = 24481.8 tons
	κοστος (\$)	ΠΟΣΟΣΤΑ (%)	ΚΟΣΤΟΣ ΑΝΑ ΤΟΝΟ (\$/t)
ΕΡΓΑΤΙΚΑ	6199422	18	948.8
ΥΛΙΚΑ	28241811.2	82	4322.2
ΣΥΝΟΛΟ	34441233.2	100	5271

Πίνακας 6.1:2 Κόστος Ενδιαίτησης και Εξοπλισμού

Διάγραμμα 6:2 Κόστος Ενδιαίτησης και Εξοπλισμού

6.1.3 Κόστος Μηχανολογικής Εγκατάστασης:

Το κόστος της μηχανολογικής εγκατάστασης του πλοίου αποτελείται από το κόστος των υλικών και το εργατικό κόστος.

Το κόστος των υλικών μιας μηχανολογικής εγκατάστασης είναι κατά κύριο λόγο ανάλογο της συνολικής ισχύος των μηχανών και μπορεί να προσεγγιστεί από την σχέση:

$$C_M = K_M \cdot BHP^{0.82}$$

 $K_M = 2000 \$ είναι το κόστος της συνολικής μηχανολογικής εγκατάστασης ανά εγκατ
εστημένο ίππο

$$BHP = 45845.1 PS$$

Επομένως, το κόστος των υλικών προκύπτει:

$$C_M = 13282817.1$$
 \$

Από εμπειρικές σχέσεις, προκύπτει ότι το κόστος τον υλικών της μηχανολογικής εγκατάστασης αποτελεί το 85% του συνολικού κόστους. Επομένως, το συνολικό κόστος υπολογίζεται:

$$C_{TOT} = \frac{C_M}{0.85} = 15626843.7 \,$$

Άρα, το εργατικό κόστος προκύπτει:

$$C_W = 2344026.6$$
 \$

ΚΟΣΤΟΣ ΜΗΧΑΝΟΛΟΓΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ			
	κοστος (\$)	ΠΟΣΟΣΤΑ (%)	ΚΟΣΤΟΣ ΑΝΑ ΤΟΝΟ (\$/t)
ΕΡΓΑΤΙΚΑ	2344026.6	15	60.1
ΥΛΙΚΑ	13282817.1	85	340
ΣΥΝΟΛΟ	15626843.7	100	400.5

Αναλυτικά, το συνολικό κόστος μηχανολογικής εγκαταστάσεως θα είναι:

Πίνακας 6.1:3 Κόστος Μηχανολογικής Εγκατάστασης

Διάγραμμα 6:3 **Κόστος Μηχανολογικής Εγκατάστασης**

6.1.4 Συνολικό Κόστος Υλικών:

Το συνολικό κόστος υλικών για την κατασκευή του πλοίου φαίνεται στον πίνακα:

ΣΥΝΟΛΙΚΟ ΚΟΣΤΟΣ ΥΛΙΚΩΝ					
ΚΟΣΤΟΣ ΑΝΑ ΚΟΣΤΟΣ(\$) ΠΟΣΟΣΤΑ(%) ΤΟΝΟ(\$/kW)					
ΜΕΤΑΛΛΙΚΗ ΚΑΤΑΣΚΕΥΗ 19879221.6 32% 812.0					
ΕΝΔΙΑΙΤΗΣΗ ΚΑΙ ΕΞΟΠΛΙΣΜΟΣ	28241811.2	46%	4322.2		
ΜΗΧΑΝΟΛΟΓΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ 13282817.1 22% 290					
ΣΥΝΟΛΟ 61403849.9 100%					

Πίνακας 6.1:4 Συνολικό Κόστος Υλικών

Διάγραμμα 6:4 **Συνολικό Κόστος Υλικών**

6.1.5 Συνολικό Κόστος Εργατικών:

Το συνολικό κόστος εργατικών για την κατασκευή του πλοίου είναι αντίστοιχα:

ΣΥΝΟΛΙΚΟ ΚΟΣΤΟΣ ΕΡΓΑΤΙΚΩΝ				
ΚΟΣΤΟΣ ΑΝΑ ΚΟΣΤΟΣ(\$) ΠΟΣΟΣΤΑ(%) ΤΟΝΟ(\$/kW)				
ΜΕΤΑΛΛΙΚΗ ΚΑΤΑΣΚΕΥΗ 50333102.3 85.5% 2055.9				
ΕΝΔΙΑΙΤΗΣΗ ΚΑΙ ΕΞΟΠΛΙΣΜΟΣ	6199422.1	10.5%	948.8	
ΜΗΧΑΝΟΛΟΓΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ 2344026.6 4% 51.1				
ΣΥΝΟΛΟ 58876551.0 100%				

Πίνακας 6.1:5 **Συνολικό Κόστος Εργατικών**

6.1.6 Συνολικό Κόστος Κτήσεως Πλοίου:

ΣΥΝΟΛΙΚΟ ΚΟΣΤΟΣ ΚΤΗΣΕΩΣ				
ΚΟΣΤΟΣ ΑΝΑ ΚΟΣΤΟΣ(\$) ΠΟΣΟΣΤΑ(%) ΤΟΝΟ(\$/kW)				
ΜΕΤΑΛΛΙΚΗ ΚΑΤΑΣΚΕΥΗ 70212323.9 58.4% 2867.9				
ΕΝΔΙΑΙΤΗΣΗ ΚΑΙ ΕΞΟΠΛΙΣΜΟΣ	5270.9			
ΜΗΧΑΝΟΛΟΓΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ 15626843.7 13.0% 340.9				
ΣΥΝΟΛΟ 120280400.8 100%				

Το συνολικό κόστος κτήσεως του πλοίου προκύπτει:

Πίνακας 6.1:6 Συνολικό Κόστος Κτήσεως

Διάγραμμα 6:6 **Συνολικό Κόστος Κτήσεως**

Είτε,

ΣΥΝΟΛΙΚΟ ΚΟΣΤΟΣ ΚΤΗΣΕΩΣ ΠΛΟΙΟΥ			
κοστος (\$) Ποσοστα (%)			
ΥΛΙΚΑ	61403849.9	51.1%	
ΕΡΓΑΤΙΚΑ	EPFATIKA 58876550.8 48.9%		
ΣΥΝΟΛΟ 120280400.8 100%			

Πίνακας 6.1:7 **Συνολικό Κόστος Κτήσεως**

Διάγραμμα 6:7 Συνολικό Κόστος Κτήσεως

6.2 ΚΟΣΤΟΣ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ:

Το συνολικό κόστος εκμετάλλευσης του υπό σχεδίαση πλοίου αποτελείται από επιμέρους κόστη, τα οποία μπορούν να χωριστούν στις εξής κατηγορίες:

- Κόστος Heavy Fuel Oil
- Κόστος Diesel Oil
- Κόστος Lubricating Oil
- Κόστος Fresh Water
- Κόστος Τροφοδοσίας
- Κόστος Μισθοδοσίας
- Κόστος Συντηρήσεως & Επισκευών
- Κόστος Ασφάλισης
- Λιμενικά έξοδα
- Γενικά έξοδα

Για να υπολογίσουμε το κόστος εκμετάλλευσης του πλοίου, θα θεωρήσουμε ότι το πλοίο προορίζεται για να καλύψει τις ανάγκες μιας συγκεκριμένης γραμμής μεταφοράς από κάποιο λιμάνι αφετηρίας σε κάποιο λιμάνι προορισμού, τα οποία απέχουν μεταξύ τους απόσταση ίση με την ακτίνα ενεργείας του πλοίου. Επίσης, θα θεωρήσουμε ότι τα ταξίδια κατά τη διάρκεια του έτους είναι συνεχή. Για κάθε ένα κυκλικό ταξίδι, θεωρούμε συνολικό χρόνο φορτοεκφόρτωσης 18 ώρες.

Ο αριθμός ημερών ανά κυκλικό ταξίδι θα είναι:

$$D = 2 \frac{R}{V} + 18 = 55.3 \text{ days}$$
$$R = 122437 \text{ sm.} \qquad V = 19 \text{ km}$$

Υπό την προϋπόθεση ότι 15 ημέρες ανά έτος διατίθενται για επισκευές, ο αριθμός των κυκλικών ταξιδιών ανά έτος είναι:

$$N = \frac{365 \, days - 15 days}{55.3 \, days} = 6.3 \, trips/year$$

Ο χρόνος εν πλω ανά έτος υπολογίζεται, λοιπόν,

Sea time =
$$365 - 15 - \frac{18}{24} \cdot N = 345.3$$
 days

Για τον υπολογισμό του ετήσιου κόστους των αναλωσίμων του πλοίου (HFO, DO, LO & FW), πέρα από τα παραπάνω, χρειαζόμαστε και τις ποσότητες που καταναλώνονται σε κάθε ταξίδι. Με βάση, λοιπόν, τα δεδομένα από το Loading Manual του πλοίου για τις καταστάσεις Departure και Arrival, προκύπτουν τα εξής:

ΣΥΝΟΛΙΚΗ ΚΑΤΑΝΑΛΩΣΗ ΑΝΑΛΩΣΙΜΩΝ ΑΝΑ ΜΟΝΟ ΤΑΞΙΔΙ (απλή μετάβαση)				
	DEPARTURE (tons) ARRIVAL (tons) ΚΑΤΑΝΑΛΩΣΗ (tons)			
FUEL OIL	5112.2	521.7	4590.5	
DIESEL OIL	633.4	64.7	568.7	
LUB OIL	304.2	31.0	273.2	
FRESH WATER	436.0	43.6	392.4	

Πίνακας 6.2:1 Συνολική Κατανάλωση αναλωσίμων ανά μονό ταξίδι (απλή μετάβαση)

	ΚΑΤΑΝΑΛΩΣΗ (tons)
FUEL OIL	9181.0
DIESEL OIL	1137.4
LUB OIL	546.4
FRESH WATER	784.8

Οπότε, στο σύνολο ενός κυκλικού ταξιδιού καταναλώνονται:

Πίνακας 6.2:2 Συνολική Κατανάλωση αναλωσίμων ανά ταξίδι

Με βάση τα παραπάνω και τις ισχύουσες τιμές της αγοράς καυσίμων, προκύπτουν:

6.2.1 Κόστος Heavy Fuel Oil: ³³

Για κόστος 350 \$/t καυσίμου το συνολικό ετήσιο κόστος θα είναι:

$$C_{FO} = 9181.0 \ \frac{tons}{trip} \cdot 350 \ \frac{\$}{ton} \cdot 6.3 \ \frac{trips}{year} = 20338303.5 \frac{\$}{year}$$

6.2.2 Κόστος Diesel Oil:

Για κόστος 600 \$/ton καυσίμου, το συνολικό ετήσιο κόστος θα είναι:

$$C_{DO} = 1137.4 \ \frac{tons}{trip} \cdot 600 \frac{\$}{ton} \cdot 6.3 \frac{trips}{year} = 4319377.5 \ \frac{\$}{year}$$

6.2.3 Κόστος Lub Oil:

Για κόστος 1200 \$/ton λιπαντικού, το συνολικό ετήσιο κόστος θα είναι:

$$C_{LO} = 546.4 \ \frac{tons}{trip} \cdot 1200 \frac{\$}{ton} \cdot 6.3 \frac{trips}{year} = 4150005.1 \ \frac{\$}{year}$$

6.2.4 Κόστος Fresh Water:

Για κόστος 0.5 \$/ton νερού, το συνολικό ετήσιο κόστος θα είναι:

$$C_{FW} = 784.8 \frac{tons}{trip} \cdot 0.5 \frac{\$}{ton} \cdot 6.3 \frac{trips}{year} = 2483.6 \frac{\$}{year}$$

Για τα υπόλοιπα κόστη έχουμε:

6.2.5 Κόστος Τροφοδοσίας:

Για πλήρωμα 45 ατόμων και κόστος τροφοδοσίας κατά μέσο όρο ίσο με 20 \$/άτομο/ημέρα, το συνολικό ετήσιο κόστος τροφοδοσίας προκύπτει:

$$C_{FS} = 45 \ persons \ \cdot \frac{20 \ \$}{person \cdot day} \ \cdot \ 365 \frac{days}{year} = 328500 \ \frac{\$}{year}$$

6.2.6 Κόστος Μισθοδοσίας:

Για πλήρωμα 45 ατόμων και κόστος μισθοδοσίας κατά μέσο όρο ίσο με 3000\$/άτομο/μήνα, το συνολικό ετήσιο (+2μήνες δώρο) κόστος μισθοδοσίας προκύπτει:

$$C_{PR} = 45 \ people \cdot \frac{3000 \ \$}{person \cdot month} \cdot \frac{14 \ months}{year} = 1890000 \ \frac{\$}{year}$$

6.2.7 Κόστος Συντηρήσεως & Επισκευών:

Οι δαπάνες συντηρήσεως και επισκευών της μεταλλικής κατασκευής δίνονται από την παρακάτω εμπειρική σχέση:

$$C_{R+M,ST} = 25000 \cdot \left(\frac{L_{BP} \times B \times D}{10^5}\right)^{2/3} = 606602.2 \frac{\$}{year}$$

όπου, L_{BP}, B, D: οι κύριες διαστάσεις του υπό μελέτη πλοίου

Οι δαπάνες συντηρήσεως & επισκευών της μηχανολογικής εγκατάστασης δίνονται από την παρακάτω εμπειρική σχέση:

$$C_{R+M,M} = 13.6 \cdot SHP = 617258.4 \frac{\$}{year}$$

όπου, SHP: η ισχύς της κύριας μηχανής

Συνεπώς οι συνολικές ετήσιες δαπάνες συντηρήσεως & επισκευών θα είναι:

$$C_{R+M} = C_{R+M,ST} + C_{R+M,M} = 1223869.6 \frac{\$}{\text{vear}}$$

6.2.8 Κόστος Ασφαλίσεως:

Το κόστος ασφαλίσεως για 45 άτομα πλήρωμα και για GT = 106601.3 RT δίνεται από τη σχέση:

$$C_{IN} = 1925 \cdot \left(N_{CREW} + \frac{GT}{1000} \right) = 291832.5 \frac{\$}{year}$$

6.2.9 Έξοδα Λιμένων:

Τα έξοδα για κάθε προσέγγιση σε λιμένα δίδονται από την εξής σχέση:

$$600 + 50 \cdot \left(\frac{L_{BP} \times B \times D}{10^5}\right) = 6576.1 \frac{\$}{single trip}$$

Εφόσον το πλοίο κάνει 6.3 ταξίδια/έτος, το συνολικό ετήσιο κόστος για ελλιμενισμό θα είναι:

$$C_{Port} = 6576.1 \frac{\$}{singletrip} \cdot 2 \cdot 6.3 \frac{trips}{year} = 83244.1 \frac{\$}{year}$$

6.2.10 Γενικά Έξοδα:

Τα γενικά έξοδα ανά έτος δίδονται από τον παρακάτω εμπειρικό τύπο:

$$C_{G} = 6500 + 70 \cdot \left(\frac{L_{BP} \times B \times D}{100}\right) = 243595.0 \frac{\$}{year}$$

όπου, L_{BP}, B, D: οι κύριες διαστάσεις του υπό μελέτη πλοίου

Συνεπώς το συνολικό κόστος εκμετάλλευσης του πλοίου ανά έτος θα είναι το άθροισμα των επιμέρους εξόδων, όπως αυτά υπολογίστηκαν σε κάθε μια απ' τις παραπάνω κατηγορίες. Επομένως, έχουμε:

ΣΥΝΟΛΙΚΟ ΕΤΗΣΙΟ ΚΟΣΤΟΣ ΕΚΜΕΤΑΛΛΕΥΣΗΣ		
	κοστος (\$)	ΠΟΣΟΣΤΑ (%)
FUEL OIL	20338303.5	61.87
DIESEL OIL	4319377.5	13.14
LUB OIL	4150005.1	12.63
FRESH WATER	2483.6	0.01
ΤΡΟΦΟΔΟΣΙΑ	328500.0	1.00
ΜΙΣΘΟΔΟΣΙΑ	1890000.0	5.75
ΣΥΝΤΗΡΗΣΗ ΚΑΙ ΕΠΙΣΚΕΥΗ	1223860.6	3.72
ΑΣΦΑΛΙΣΗ	291832.5	0.89
ΛΙΜΕΝΕΣ	83244.1	0.25
ΓΕΝΙΚΑ	243595.0	0.74
ΣΥΝΟΛΟ	32871202.0	100

Πίνακας 6.2:3 Συνολικό ετήσιο κόστος εκμετάλλευσης Πλοίου

Διάγραμμα 6.8 **Συνολικό ετήσιο κόστος εκμετάλλευσης Πλοίου**

Συνοπτικά κόστος κτήσης και το κόστος εκμετάλλευσης του πλοίου είναι:

Κόστος Κτήσης & Εκμετάλλευσης		
120280400.8 \$		
32871202.0 \$		

Πίνακας 6.2:4 Κόστος Κτήσης και Κόστος Εκμετάλλευσης

6.3 ΕΛΑΧΙΣΤΟΣ ΑΠΑΙΤΟΥΜΕΝΟΣ ΝΑΥΛΟΣ

Για τον υπολογισμό του Ελάχιστου Απαιτούμενου Ναύλου που θα καθιστά το υπό σχεδίαση πλοίο οικονομικά βιώσιμο, θεωρούμε τα εξής:

- Ύψος δανείου: 60% του κόστους κτήσης του πλοίου με τόκο 8%
 $K_{\Delta} = 60\% \cdot C_T = 72167240.5$ \$
- Κεφάλαιο πλοιοκτήτη:

$$K_{II} = 40\% \cdot C_T = 48112160.3$$

- Διάρκεια εκμετάλλευσης πλοίου: 20 χρόνια
- Προσδοκώμενη απόδοση επενδεδυμένου κεφαλαίου: 12%
- Αξία πλοίου στο τέλος της διάρκειας ζωής του: 2.5% της αρχικής τιμής

$$\Pi_{20} = 2,5\% \cdot C_T = 14433648.1$$

Ο υπολογισμός του ελάχιστου απαιτούμενου ναύλου, F γίνεται με το μηδενισμό της εξίσωσης της Καθαρής Παρούσας Αξίας (Κ.Π.Α.) του πλοίου για την αναμενόμενη διάρκεια ζωής του.

Η Κ.Π.Α. δίνεται από τον γενικό τύπο:

$$K.\Pi.A. = \sum \left(\frac{E\Sigma_t - E\Xi_t}{(1+t)^t}\right)$$

Με βάση τα παραπάνω, προκύπτει:

$$K.\Pi.A = -K_{\Pi} + \Pi_{20}/(1+i)^{20} + (F \cdot \sum PayLoad - E_A - \Delta) \cdot \sum_{N=1}^{20} (1+i)^{-N}$$

Όπου, ΕΛ = 32871202 \$, τα ετήσια λειτουργικά έξοδα,

 $\sum PayLoad = 495081.5 \frac{tons}{year}$, το ετήσιο μεταφερόμενο φορτίο,

$$\Delta = K\Delta \cdot \frac{r(1+r)^N}{(1+r)^{N-1}} = 7350494.7 \$, η σταθερή καθ΄όλη τη διάρκεια ζωής του πλοίου δόση του δανείου,$$

$$\sum_{N=1}^{20} (1+i)^{-N} = 7.469$$

Αντικαθιστώντας τα παραπάνω και λύνοντας την εξίσωση για Κ.Π.Α. = 0 προκύπτει ο ελάχιστος απαιτούμενος ναύλος για να είναι το πλοίο οικονομικά βιώσιμο:

$$F = 78.7$$
\$/ton
7 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ

Η μελέτη και η σχεδίαση ενός LNG Carrier είναι ενδιαφέρουσα, όχι μόνο λόγω της ανάγκης για αύξηση του στόλου των πλοίων αυτών, αλλά και λόγω της ιδιαιτερότηταςπολυπλοκότητας τους. Επομένως, υπάρχουν πολλοί τομείς που χρήζουν περαιτέρω διερεύνησης και ανάλυσης στα LNG Carriers. Στην παρούσα διπλωματική εργασία παρουσιάζεται η μελέτη και η σχεδίαση του πλοίου με βάση τα εργαλεία που παρέχει η σχολή.

- Η προμελέτη έγινε στηριζόμενη στις μεθόδους που αναφέρονται στο βιβλίο «Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης», Α. Παπανικολάου, Τεύχος 1, προσαρμοσμένες κατάλληλα. Παρ'όλ'αυτά, το βάρος του πατρικού πλοίου προσεγγίστηκε σε αρκετά καλό βαθμό με τις δεδομένες μεθόδους, με αποτέλεσμα ο συντελεστής διόρθωσης βάρους που προέκυψε, να είναι σχετικά μικρός.
- Το βάρος της μόνωσης των δεξαμενών υπολογίστηκε αναλυτικά όπως αναπτύχθηκε στο Κεφάλαιο 2.4.1.2, βασισμένο σε στοιχεία (πάχος κάθε στρώσης μόνωσης, ειδικό βάρος κάθε υλικού που χρησιμοποιείται) από Ναυπηγείο της Ν. Κορέας το οποίο κατασκευάζει τον συγκεκριμένο τύπο πλοίου. Το συνολικό βάρος της μόνωσης με τα pump towers, υπολογίζεται από το ναυπηγείο κοντά στους 3600-3700 τόνους. Το βάρος (3784 τόνους) που υπολογίστηκε στα πλαίσια της διπλωματικής εργασίας αποτελεί μια καλή προσέγγιση.
- Τα υδροστατικά και υδροδυναμικά χαρακτηριστικά που προέκυψαν στο υπό μελέτη πλοίο, όπως υπολογίστηκαν στο AVEVA, συγκρινόμενα με αυτά του πατρικού πλοίου, είναι πολύ ικανοποιητικά. (Πίνακας 6.3:1)
- Η μελέτη της αντοχής της μέσης τομής έγινε με βάση τους κανονισμούς CSR του IACS για δεξαμενόπλοια. Δεν έχουν αναπτυχθεί ακόμη κανονισμοί από τον IACS για LNG carriers. Η προσέγγιση που έγινε στα πλαίσια της διπλωματικής ήταν ουσιαστική, αφού η διαφορά στις διαστάσεις των ελασμάτων & ενισχυτικών δεν έχουν μεγάλη διαφορά με αυτές του πατρικού. Υπάρχουν όμως, αναγνωρισμένοι νηογνώμονες που χρησιμοποιούν ειδικά σχεδιαστικά πακέτα με πεπερασμένα στοιχεία για την ανάλυση της αντοχής της μέσης τομής. Έτσι, κρίνεται σκόπιμο να μελετηθεί το πεδίο αυτό περαιτέρω, με στόχο την βελτιστοποίηση του βάρους της κατασκευής και των υλικών.
- Όσο αφορά την τεχνοοικονομική μελέτη του υπό μελέτη πλοίου, με βάση τις εμπειρικές μεθόδους που ήταν διαθέσιμες, διαπιστώνεται ότι υπάρχει μεγάλη απόκλιση από το πραγματικό κόστος κτήσης ενός LNG Carrier, το οποίο εκτιμάται κοντά στα 200 εκ. δολάρια. Επομένως, θα ήταν ενδιαφέρον να γίνει μια πλήρης μελέτη, με σκοπό την προσέγγιση του πραγματικού κόστους κτήσης και λειτουργίας του πλοίου.

			Woodside Rogers	Υπό σχεδίαση
		m	20/1 2	20/1 2
	LBP		294.2	294.2
αστ.	L _{OA}	т	283.2	283.2
ες Δι	В	т	44	46
Κύρι	D	т	26	26
	Т	т	11.5	11.7
	DWT	t	79087.1	85017.0
βάρη	Δ	t	111629.0	118611.0
	LS	t	32541.9	33594.0
Ογκοι	Vliquid	m^3	159800.0	170046.0
	V _{service}	kn	19.9	19
aŋ	P _B	HP	34200	34200
Ιρόω	Fn	-	0.38	0.36
	ТҮРЕ	-	Diesel- Electric	Diesel- Electric
	DWT/A	-	0.708	0.717
	$L_{BP}/\Delta^{1/3}$	$m/t^{\frac{1}{3}}$	5.882	5.764
εč	L _{BP} /B	-	6.436	6.157
ιλογί	L_{BP}/L_{OA}	-	0.963	0.963
- Ava	L _{BP} /D	-	10.892	10.892
όγοι	B/T	-	3.826	3.932
<	D/T	-	2.261	2.222
	W _{LS}	t/m3	0.1004	0.0992
	C _N	-	534.217	481.155

	C _w	$\frac{t^{\frac{2}{3}} \cdot kn^{3}}{kW}$	0.853	0.847
	См	kn	0.992	0.992
ιικά	C _P	-	0.766	0.763
որվր	Св	-	0.757	0.757
ρακτ	TPC	t/cm	109.08	113.55
ά Χα	MTC	t m /cm	1948.0	2015.1
αμικ	КМТ	т	20.250	21.214
οδυν	LCF	т	134.04	133.84
Υδρ	LCB	т	141.50	140.23
- ικά	LCG	т	141.50	140.23
οτατ	KG	т	16.16	16.97
γδρο	КВ	т	6.030	6.137
	WPA	m^2	10642.0	11039.7
	WSA	m^2	15633.0	16089.2
	GM	т	3.426	4.144
	GT	RT	103925	106601.3
	NT	RT	31178	31980.4

Πίνακας 6.3:1 Σύγκριση χαρακτηριστικών πατρικού πλοίου και υπό σχεδίαση

8 ΠΑΡΑΡΤΗΜΑ

8.1 Prevention of Air Pollution from Ships

Although air pollution from ships does not have the direct cause and effect associated with, for example, an oil spill incident, it causes a cumulative effect that contributes to the overall air quality problems encountered by populations in many areas, and also affects the natural environment, such as tough acid rain.

MARPOL Annex VI, first adopted in 1997, limits the main air pollutants contained in ships exhaust gas, including sulphur oxides (SOx) and nitrous oxides (NOx), and prohibits deliberate emissions of ozone depleting substances (ODS). MARPOL Annex VI also regulates shipboard incineration, and the emissions of volatile organic compounds (VOC) from tankers.

Following entry into force of MARPOL Annex VI on 19 May 2005, the Marine Environment Protection Committee (MEPC), at its 53rd session (July 2005), agreed to revise MARPOL Annex VI with the aim of significantly strengthening the emission limits in light of technological improvements and implementation experience. As a result of three years examination, MEPC 58 (October 2008) adopted the revised MARPOL Annex VI and the associated NOx Technical Code 2008, which entered into force on 1 July 2010.

Revised MARPOL Annex VI

The main changes to MARPOL Annex VI are a progressive reduction globally in emissions of SOx, NOx and particulate matter and the introduction of emission control areas (ECAs) to reduce emissions of those air pollutants further in designated sea areas.

Under the revised MARPOL Annex VI, the global sulphur cap will be reduced from current 3.50% to 0.50%, effective from 1 January 2020, subject to a feasibility review to be completed no later than 2018. The limits applicable in ECAs for SOx and particulate matter were reduced to 0.10%, from 1 January 2015.

Progressive reductions in NOx emissions from marine diesel engines installed on ships are also included, with a "Tier II" emission limit for engines installed on a ship constructed on or after 1 January 2011; and a more stringent "Tier III" emission limit for engines installed on a ship constructed on or after 1 January 2016 operating in ECAs (North American Emission Control Area and the U.S. Caribbean Sea Emission Control Area). Marine diesel engines installed on a ship constructed on or after 1 January 1990 but prior to 1 January 2000 are required to comply with "Tier I" emission limits, if an approved method for that engine has been certified by an Administration.

The revised NOx Technical Code 2008 includes a new chapter based on the agreed approach for regulation of existing (pre-2000) engines established in MARPOL Annex VI, provisions for a direct measurement and monitoring method, a certification procedure for existing engines and test cycles to be applied to Tier II and Tier III engines.

MEPC 66 (April 2014) adopted amendments to regulation 13 of MARPOL Annex VI regarding the effective date of NOx Tier III standards.

The amendments provide for the Tier III NOx standards to be applied to a marine diesel engine that is installed on a ship constructed on or after 1 January 2016 and which operates in the North American Emission Control Area or the U.S. Caribbean Sea Emission Control Area that are designated for the control of NOx emissions.

In addition, the Tier III requirements would apply to installed marine diesel engines when operated in other emission control areas which might be designated in the future for Tier III NOx control. Tier III would apply to ships constructed on or after the date of adoption by the Marine Environment Protection Committee of such an emission control area, or a later date as may be specified in the amendment designating the NOx Tier III emission control area.

Further, the Tier III requirements do not apply to a marine diesel engine installed on a ship constructed prior to 1 January 2021 of less than 500 gross tonnage, of 24 m or over in length, which has been specifically designed and is used solely, for recreational purposes.

The amendments are expected to enter into force on 1 September 2015.

Revisions to the regulations for ozone-depleting substances, volatile organic compounds, shipboard incineration, reception facilities and fuel oil quality were also made with regulations on fuel oil availability added.

The revised measures are expected to have a significant beneficial impact on the atmospheric environment and on human health, particularly for those people living in port cities and coastal communities.³⁴

Sulphur limits for fuel in SECA	% m/m
Before 1 July 2010	1.50
Between 1 July 2010 and 1 January 2015	1.00
After 1 January 2015	0.10

Πίνακας 8.1:1 Sulphur limits for fuel in SECA (Πηγή: Wikipedia)

Sulphur limits in other sea areas	% m/m
before 1 January 2012	4.50
between 1 January 2012 and 1 January 2020	3.50
After 1 January 2020	0.50

Πίνακας 8.1:2 Sulphur limits in other sea areas (Πηγή: Wikipedia)

Εικόνα 8.1:1 Παγκόσμιος Χάρτης για τις περιοχές SECA (Πηγή: Maritime Cyprus)

8.2 Πίνακες από IACS, CSR

	Table 8.2.4								
Thickness Requirements for Plating									
The minime in Table 8.2.	The minimum net thickness, t_{nstr} is to be taken as the greatest value for all applicable design load sets, as given in Table 8.2.7, and given by:								
$t_{net} = 0.0158$	$t_{net} = 0.0158 a_p s \sqrt{\frac{ z }{C_a \sigma_{yd}}} \qquad \text{mm}$								
Where:									
Р	P design pressure for the design load set being considered and calculated at the load calculation point defined in Section 3/5.1, in kN/m ²								
α _p	correction facto	or for the panel aspect	ratio						
	$= 1.2 - \frac{s}{2100 l_p}$	but is not to be take	en as greater than 1.0						
s	as defined in S	ection 4/2.2, in mm							
1 _p	length of plate are fitted, in m	panel, to be taken as t	he spacing of primary support	t members	, S, unless	carlings			
σ_{yd}	specified minin	num yield stress of the	e material, in N/mm²						
C.	permissible be	nding stress coefficien	t for the design load set being	considered	đ				
	$= \beta_a - a_a \frac{\left \sigma_{hg}\right }{\sigma_{yd}} \text{but not to be taken greater than } C_{a \to max}$								
	Acceptance Criteria Set	Struc	tural Member	βa	α_a	C _{a-max}			
		Longitudinal	Longitudinally stiffened plating	0.9	0.5	0.8			
	AC1 Strength Members		Transversely or vertically stiffened plating	0.9	1.0	0.8			
		Other members	1	0.8	0	0.8			
		Longitudinal	Longitudinally stiffened plating	1.05	0.5	0.95			
	AC2	Strength Members	Transversely or vertically stiffened plating	1.05	1.0	0.95			
		Other members, incl plating	uding watertight boundary	1.0	0	1.0			
σ_{hg}	hull girder ben calculation poi	nding stress for the des int defined in <i>Section 3/</i>	ign load set being considered a 5.1.2	and calcula	ated at the	load			
	$= \left(\frac{(z - z_{NA-net50})M_{v-total}}{I_{v-net50}} - \frac{yM_{h-total}}{I_{h-net50}}\right) 10^{-3} \text{ N/mm}^2$								
M _{o-total} design vertical bending moment at the longitudinal position under consideration for the design load set being considered, in kNm. The still water bending moment, M _{supprint} , is to be taken with the same sign as the simultaneously acting wave bending moment, M _{supprint} , see Table 7.6.1									
Mh-total	Mh-total design horizontal bending moment at the longitudinal position under consideration for the								
	design load set being considered, in kNm								
Iv-net50	net vertical hu defined in Sect	11 girder moment of ine ion 4/2.6.1, in m ⁴	ertia, at the longitudinal position	on being co	onsidered	, as			
Ih-net50	net horizontal defined in Sect	hull girder moment of ion 4/2.6.2, in m ⁴	inertia, at the longitudinal pos	ition being	g consider	red, as			
у	transverse coo	rdinate of load calculat	tion point, in m						
z	vertical coordi	nate of the load calcula	ation point under consideration	n, in m					
Z _{NA-nat} 50	distance from	the baseline to the hori	zontal neutral axis, as defined	in Section	4/2.6.1, in	m			

Πίνακας 8.2:1 Απαιτήσεις πάχους ελασμάτων (Πηγή: Πίνακας 8.2.4 - Section 8: Scantling Requirements, CSR)

	Table 8.2.7 Design Load Sets for Plating and Local Support Members								
Structura	ıl Member	Design Load Set (1, 2, 3)	Load Component	Draught	Comment	Diagrammatic Representation			
		1	Pex	T_{sc}					
Ko Botton	eel, n Shell, Igo	2	P _{ex}	T_{sc}	Sea pressure only				
Side	Shell,	7	$P_{in} - P_{ex}$	T_{bal}	Net pressure difference				
Sheer strake		8	$P_{in} - P_{ex}$	0.25T _{sc}	pressure and sea pressure				
	In way	1	P _{ex}	T_{sc}	Green sea pressure only or other loads on deck				
	tanks	3	Pin	$0.6T_{sc}$					
		4	P_{in}	-	Cargo pressure only				
		11	P _{in-flood}	-					
Deck In of ta	In way	1	Pex	T _{sc}	Green sea pressure only or other loads on deck				
	of other tanks	5	P_{in}	T_{bal}					
		6	P_{in}	$0.25T_{sc}$	Water ballast or other liquid pressure only				
		11	P _{in-flood}	-					
		9	P_{dk}	T_{bal}	Distributed or concentrated loads				
	Any location	10	P_{dk}	-	only. Simultaneously occurring green sea pressure may be ignored				
		3	P_{in}	0.6T _{sc}					
Inner	Bottom,	4	P _{in}	-	Cargo pressure only				
Inne	r hull,	5	Pin	T _{bal}					
порр	er side	6	P _{in}	0.25T _≪	Water ballast or other liquid pressure only				
		11	$P_{in-flood}$	-					
T an aite din al		3	P _{in}	0.6T _{sc}	Pressure from one side only. Full cargo tank with adjacent cargo tank				
Longitudinai Bulkhead, Centreline Bulkhead	4	Pin	-	empty. Two cases are to be					
	11	P _{in-flood}	-	evaluated: 1. Inner empty, outer full 2. Inner full, outer empty					

Πίνακας 8.2:2 Φορτίσεις ελασμάτων (Πηγή: Πίνακας 8.2.7 - Section 8: Scantling Requirements, CSR)

	Table 7.6.1								
	Design Load Combinations								
Loa	Design Load Combination	s	S + D	А					
M_{v-t}	otal	M _{sw-harb}	Mow-sea + Mwv	-					
M_{h-t}	otal	-	M_h	-					
Q		Qsw-harb	Qow-see + Qwv	-					
	Weather Deck	-	$P_{wdk-dyn}$	-					
Pex	Hull envelope	P_{hys}	$P_{hys} + P_{wv-dyn}$	-					
	Ballast tanks (BWE with sequential filling method)	the greater of a) $P_{in-tast}$ b) $P_{in-air} + P_{drop}$	P_{in-ik} + P_{in-dyn}	$P_{in-flood}$					
	Ballast tanks (BWE with flow- through method)	the greater of a) $P_{in-tast}$ b) $P_{in-air} + P_{drop}$	$P_{in-air} + P_{drop} + P_{in-dyn}$	$P_{in-flood}$					
Pin	Cargo tanks including cargo tanks designed for filling with water ballast	the greater of a) $P_{in-toot}$ b) $P_{in-tk} + P_{value}$	P_{in-ik} + P_{in-dyn}	-					
	Other tanks with liquid filling	the greater of a) $P_{in-tast}$ $P_{in-tk}+P_{in-dyn}$ b) P_{in-air}		$P_{in-flood}$					
	Watertight boundaries	-	-	$P_{in-flood}$					
D	Internal decks for dry spaces	Pstat	$P_{stat} + P_{dk-dyn}$	-					
I dk	Decks for heavy units	Fstat	Fstat + Fdk-dyn	-					

Πίνακας 8.2:3 Συνδυασμός φορτίσεων (Πηγή: Πίνακας 7.6.1 - Section 7:Loads/6.2.1.1, CSR)

Corrosion Addition, t _{corr} , for Typical Structural Elements Within the Cargo Tank Kegion Corrosion Category of contents Corrosion Corrosion Internal members and plate boundary between spaces with the same category of contents Within 3m below top of tank (0) 4.5 In and between ballast water tanks Face plate of PSM Within 3m below top of tank (0) 4.0 In and between ballast water tanks Other members Within 3m below top of tank (0) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (0) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (0) 4.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.5 Exposed to atmosphere on both sides Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, sterring gars space, etc. 1.5 Plate boundary between spaces having a different category Within 3m below top of tank (0) 4.0 Inner bottom plating 4.0 1.5 Boundary between b		Ta	ble 6.3.1					
Category of contentsCorrosion Addition $A_{err, in num}$ Internal members and plate boundary between spaces with the same category of contentsFace plate of PSMWithin 3m below top of tank (i)4.5In and between ballast water tanksFace plate of PSMWithin 3m below top of tank (ii)4.04.0DemonstrationDemonstrationElsewhere3.03.0Stiffeners on boundaries to heated cargo tanksWithin 3m below top of tank (ii)4.0In and between cargo oil tanksFace plate of PSMWithin 3m below top of tank (iii)4.0Exposed to atmosphere on both sidesSupport members on deck2.52.5In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.2.0In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.2.0In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.2.0In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.3.0In and between void spacesSpace not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.3.0In and between void spaceSpace not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.3.0In and between void spaceSpace not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. <t< td=""><td>Corrosion Addition, t</td><td>_{corr}, for Typical Stru</td><td>ctural Elements Within the Cargo Ta</td><td>ank Region</td></t<>	Corrosion Addition, t	_{corr} , for Typical Stru	ctural Elements Within the Cargo Ta	ank Region				
Category of contents Patternal members and plate boundary between spaces with the same category of contents In and between ballast water tanks Face plate of PSM Within 3m below top of tank (0) 4.5 En and between ballast water tanks Other members Within 3m below top of tank (0) 4.0 Elsewhere 3.0 Stiffeners on boundaries to heated cargo tanks Within 3m below top of tank (0) 4.0 In and between cargo oit tanks Face plate of PSM Within 3m below top of tank (0) 4.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between ballast tank and cargo oil tank Wether deck plating 4.0 Inner bottom plating 4.0 1.5 Boundary between ballast tank and tanophere or sea Wether deck plating 4.0 Inner bottom plating 4.0 1.5 Boundary between ballast tank and cargo oil tank Wether deck plating 3.0 <td< td=""><td>Catagory of contents</td><td></td><td></td><td>Corrosion</td></td<>	Catagory of contents			Corrosion				
Internal members and plate boundary between spaces with the same category of contents In and between ballast water tanks Face plate of PSM Within 3m below top of tank (i) 4.5 In and between ballast water tanks Other members Within 3m below top of tank (i) 4.0 Stiffeners on boundaries to heated cargo tanks Within 3m below top of tank (ii) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (ii) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (ii) 4.0 In and between void spaces Support members on deck 2.5 2.5 Exposed to atmosphere on both sides Support members on deck 2.0 2.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between void spaces Spaces not normally accessed, excess only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between void spaces Spaces not normally accessed, excess only via bolted manhole openings, pipe tunnels, etc. 2.0 Plate boundary between ballast tank and cargo oil tank Mathin 3m below top of tank (ii) 4.0 Elsewhere 3.0 Inner	Category of contents			terr in mm				
In and between ballast water tanks Face plate of PSM Within 3m below top of tank (i) 4.5 In and between cargo oil tanks Other members Within 3m below top of tank (ii) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (ii) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (ii) 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank (ii) 4.0 Exposed to atmosphere on both sides Support members on deck 2.5 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 Plate boundary between spaces having a different category Within 3m below top of tank (ii) 4.0 Esewhere 3.5 3.5 3.5 Boundary between ballast tank and taroophere or sea Wather deck plating 4.0 Boundary between ballast tank and void or dry space Wather deck plating 4.0 Boundary between cargo tank and void or dry space Within 3m below top of tank (ii) 3.0 Boundary between cargo tank and void or dry space Within 3m below top of tank (ii) 3.0	Internal members and plate boundary between spaces with the same category of cont							
In and between ballast water tanksCiter members Deter membersElsewhere3.5In and between cargo oil tanksStiffeners on boundaries to heated cargo tanksWithin 3m below top of tank (i)4.0In and between cargo oil tanksFace plate of PSMWithin 3m below top of tank (ii)4.0In and between cargo oil tanksFace plate of PSMWithin 3m below top of tank (ii)4.0Cher membersDifferere3.53.5Other membersWithin 3m below top of tank (ii)4.0LanksOther members on deck2.5Exposed to atmosphere on both sidesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.2.0In and between dry spacesInternals of deckhouses, machinery space, pump room, store rooms, sterring gear space, etc.1.5Plate boundary between ballast tank and cargo oil tankWeather deck plating Heated cargo tankWithin 3m below top of tank (ii)4.0Boundary between ballast tank and void or dry spaceWeather deck plating Elsewhere4.04.0Boundary between ballast tank and void or dry spaceWeather deck plating Elsewhere4.03.0Boundary between cargo tank and void or dry spaceWithin 3m below top of tank (ii)3.03.5Boundary between cargo tank and void or dry spaceWeather deck plating Elsewhere4.03.0Boundary between cargo tank and void or dry spaceWithin 3m below top of tank (ii)3.03.0Boundary between cargo <br< td=""><td colspan="6">Face plate of PSM Within 3m below top of tank⁽¹⁾</td></br<>	Face plate of PSM Within 3m below top of tank ⁽¹⁾							
In and between ballast water tanks Other members Within 3m below top of tank ⁽¹⁾ 4.0 Stiffeners on boundaries to heated cargo tanks Within 3m below top of tank ⁽¹⁾ 4.5 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank ⁽¹⁾ 4.0 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank ⁽¹⁾ 4.0 Cher members Within 3m below top of tank ⁽¹⁾ 4.0 Exposed to atmosphere on both sides Support members on deck 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between ballast tank and cargo oil tank Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void or dry space Within 3m below top of tank ⁽¹⁾ <td< td=""><td rowspan="2"></td><td>race place of rossi</td><td>Elsewhere</td><td>3.5</td></td<>		race place of rossi	Elsewhere	3.5				
In and between ballast water tanks In and between cargo of tanks Stiffeners on boundaries to heated cargo tanks Within 3m below top of tank ⁽¹⁾ 4.5 In and between cargo of tanks Face plate of PSM Within 3m below top of tank ⁽¹⁾ 4.0 Exposed to atmosphere on both sides Other members on deck 2.5 In and between void spaces Support members on deck 2.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between spaces having a different tank and cargo oil tank Within 3m below top of tank ⁽¹⁾ 4.0 Heated cargo tank Within 3m below top of tank ⁽¹⁾ 4.5 Boundary between ballast tank and tamosphere or sea Weather deck plating 4.0 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Boundary between ballast tank and atmosphere or sea Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between ballast tank and torio dry space Weather deck plating 4.0 Boundary between ballast tank and torio dry space Within 3m below top of tank ⁽¹⁾ 3.0			Within 3m below top of tank (1)	4.0				
Stiffeners on boundaries to heated cargo tanks Within 3m below top of tank ⁽¹⁾ 4.5 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank ⁽¹⁾ 4.0 Exposed to atmosphere on both sides Other members Within 3m below top of tank ⁽¹⁾ 4.0 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.5 In and between dry spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between spaces having a different category Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and cargo oil tank Weather deck plating 4.0 4.0 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 3.5 Boundary between ballast tank and oid or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.5 Boundary between cargo tank and woid or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between cargo tank and woid spaces Weather deck plating 4.0 4.0<	In and between ballast	Other members	Elsewhere	3.0				
boundaries to heated cargo tarks Elsewhere 3.5 In and between cargo oil tanks Face plate of PSM Within 3m below top of tank ⁽¹⁾ 4.0 Exposed to atmosphere on both sides Other members Within 3m below top of tank ⁽¹⁾ 4.0 In and between void spaces Support members on deck 2.5 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between spaces having a different category Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and cargo oil tank Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 3.5 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.5 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾	water taiks	Stiffeners on	Within 3m below top of tank (1)	4.5				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		boundaries to heated cargo tanks	Elsewhere	3.5				
In and between cargo oil tanks Pace plate of PSM Elsewhere 3.5 Exposed to atmosphere on both sides Support members on deck 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between ballast tank and cargo oil tank Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and atmosphere or space Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0		E 11 (DCM	Within 3m below top of tank (1)	4.0				
tanks Other members Within 3m below top of tank (i) 4.0 Exposed to atmosphere on both sides Support members on deck 2.5 In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between spaces having a different category Within 3m below top of tank (ii) 4.0 Boundary between ballast tank and cargo oil tank Heated cargo tank Within 3m below top of tank (ii) 4.0 Boundary between ballast tank and tamosphere or sea Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 3.0 3.0 Boundary between ballast tank and void or dry space Within 3m below top of tank (ii) 3.0 3.0 3.0 Boundary between cargo tank and void or dry space Weather deck plating 4.0 3.0 3.0 Bounda	In and between cargo oil	Face plate of PSM	Elsewhere	3.5				
Other membersElsewhere2.5Exposed to atmosphere on both sidesSupport members on deck2.5In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc.2.0In and between dry spacesInternals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc.1.5Plate boundary between spaces having a different categoryWithin 3m below top of tank (i)4.0Inner bottom plating4.0Inner bottom plating4.0Boundary between ballast tank and cargo oil tankWeather deck plating4.0Boundary between ballast tank and atmosphere or seaWeather deck plating4.0Boundary between ballast tank and atmosphereWeather deck plating4.0Boundary between ballast tank and twoid or dry spaceWithin 3m below top of tank (i)3.5Boundary between ballast tank and void or dry spaceWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo	tanks	01 1	Within 3m below top of tank (1)	4.0				
Exposed to atmosphere on both sidesSupport members on deck2.5In and between void spacesSpaces not normally accessed, e.g. access only via bolted manhole openings, pipe turnels, etc.2.0In and between dry spacesInternals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc.1.5Plate boundary between spaces having a different categoryWithin 3m below top of tank (!)4.0Boundary between ballast tank and cargo oil tankUnheated cargo tankWithin 3m below top of tank (!)4.5Boundary between ballast tank and atmosphere or seaWeather deck plating4.04.0Boundary between ballast tank and void or dry spaceWeather deck plating4.0Boundary between ballast tank and void or dry spaceWithin 3m below top of tank (!)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank (!)3.0Boundary between ballast tank and void or dry spaceWithin 3m below top of tank (!)3.0Boundary between cargo tank and void or dry spaceWithin 3m below top of tank (!)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank (!)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (!)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (!)3.0Boundary between cargo tank and void spacesElsewhere2.5Boundary between cargo tank and void spacesWithin 3m below top of tank (!)3.0Boundary b		Other members	Elsewhere	2.5				
In and between void spaces Spaces not normally accessed, e.g. access only via bolted manhole openings, pipe tunnels, etc. 2.0 In and between dry spaces Internals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc. 1.5 Plate boundary between spaces having a different category Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and cargo oil tank Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.5 Boundary between ballast tank and tamosphere or sea Weather deck plating 4.0 4.0 Boundary between ballast tank and void or dry space Weather deck plating 4.0 3.0 Boundary between ballast tank and tamosphere or sea Weather deck plating 4.0 3.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between cargo tank and droid spaces Within 3m below top of tank ⁽¹⁾ 3.0 3.0 <td>Exposed to atmosphere on both sides</td> <td>Support members on de</td> <td>2.5</td>	Exposed to atmosphere on both sides	Support members on de	2.5					
In and between dry spacesInternals of deckhouses, machinery spaces, pump room, store rooms, steering gear space, etc.1.5Plate boundary between spaces having a different categoryBoundary between ballast tank and cargo oil tankUnheated cargo tankWithin 3m below top of tank (i)4.0Heated cargo tank tank and cargo oil tankInner bottom plating4.0Boundary between ballast tank and atmosphere or seaWithin 3m below top of tank (i)4.5Boundary between ballast tank and atmosphere or seaWeather deck plating Elsewhere4.0Boundary between ballast tank and void or dry spaceWithin 3m below top of tank (i)3.5Boundary between cargo tank and atmosphereWithin 3m below top of tank (i)3.0Boundary between cargo tank and void or dry spaceWithin 3m below top of tank (i)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesElsewhere2.5Boundary between cargo tank and dry spacesElsewhere3.0Boundary between cargo tank and dry spacesElsewhere3.0 <td>In and between void spaces</td> <td>Spaces not normally acc openings, pipe tunnels,</td> <td>2.0</td>	In and between void spaces	Spaces not normally acc openings, pipe tunnels,	2.0					
Plate boundary between spaces having a different category Plate boundary between spaces having a different category Boundary between ballast tank and cargo oil tank Unheated cargo tank Within 3m below top of tank ⁽¹⁾ 4.0 Boundary between ballast tank and cargo oil tank Heated cargo tank Within 3m below top of tank ⁽¹⁾ 4.5 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.5 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Elsewhere 2.5 Boundary between cargo tank and dry spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5	In and between dry spaces	Internals of deckhouses rooms, steering gear sp	1.5					
Boundary between ballast tank and cargo oil tankUnheated cargo tankWithin 3m below top of tank (i)4.0Boundary between ballast tank and tamosphere or seaHeated cargo tankWithin 3m below top of tank (i)4.5Boundary between ballast tank and atmosphere or seaWeather deck plating4.0Boundary between ballast tank and void or dry spaceWithin 3m below top of tank (i)3.5Boundary between cargo tank and atmosphereWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (Plate boundary between	n spaces having a diffe	rent category	1				
Boundary between ballast tank and cargo oil tankUnheated cargo tankInner bottom plating4.0Boundary between ballast tank and atmosphere or seaHeated cargo tankWithin 3m below top of tank (1)4.5Boundary between ballast tank and atmosphere or seaWeather deck plating4.0Boundary between ballast tank and void or dry spaceWeather deck plating4.0Boundary between cargo tank and atmosphereWithin 3m below top of tank (1)3.5Boundary between cargo tank and void or dry spaceWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesElsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Bisewhere2.52.0			Within 3m below top of tank (1)	4.0				
Boundary between ballast tank and cargo oil tank Elsewhere 3.0 Boundary between ballast tank and cargo oil tank Heated cargo tank Within 3m below top of tank (i) 4.5 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.5 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and dry spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 3.0 Boundary between cargo tank and dry spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.0 3.0		Unheated cargo tank	Inner bottom plating	4.0				
tank and cargo oil tankHeated cargo tankWithin 3m below top of tank (1)4.5Heated cargo tankInner bottom plating4.5Boundary between ballast tank and atmosphere or seaWeather deck plating4.0Other members(2)Within 3m below top of tank (1)3.5Boundary between ballast tank and void or dry spaceWithin 3m below top of tank(1)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank(1)3.0Boundary between cargo tank and atmosphereWeather deck plating4.0Boundary between cargo tank and atmosphereWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesElsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.53.03.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.03.0	Boundary between ballast		Elsewhere	3.0				
Heated cargo tankInner bottom plating4.5Boundary between ballast tank and atmosphere or seaWeather deck plating4.0Other members(2)Within 3m below top of tank (1)3.5Boundary between ballast tank and void or dry spaceWithin 3m below top of tank(1)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank(1)3.0Boundary between cargo tank and atmosphereWithin 3m below top of tank(1)3.0Boundary between cargo tank and atmosphereWeather deck plating4.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.52.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.53.0	tank and cargo oil tank		Within 3m below top of tank (1)	4.5				
Elsewhere 3.5 Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Other members ⁽²⁾ Within 3m below top of tank ⁽¹⁾ 3.5 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Weather deck plating 4.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 2.5		Heated cargo tank	Inner bottom plating	4.5				
Boundary between ballast tank and atmosphere or sea Weather deck plating 4.0 Other members ⁽²⁾ Within 3m below top of tank ⁽¹⁾ 3.5 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and atmosphere Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Weather deck plating 4.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and dry spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 2.5 Boundary between cargo Elsewhere 2.5 Boundary between cargo Elsewhere 2.0			Elsewhere	3.5				
tank and atmosphere or sea Other members ⁽²⁾ Within 3m below top of tank ⁽¹⁾ 3.5 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 3.0 Boundary between cargo tank and atmosphere Weather deck plating 2.5 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 3.0 3.0 Elsewhere 2.5 3.0 Elsewhere 2.5 3.0 Elsewhere 2.5 3.0	Boundary between ballast	Weather deck plating		4.0				
sea Other members ⁽¹⁾ Elsewhere 3.0 Boundary between ballast tank and void or dry space Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and atmosphere Elsewhere 2.5 Boundary between cargo tank and void spaces Weather deck plating 4.0 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and void spaces Elsewhere 2.5 Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 3.0 Boundary between cargo Within 3m below top of tank ⁽¹⁾ 3.0 Elsewhere 2.5 3.0	tank and atmosphere or	01	Within 3m below top of tank (1)	3.5				
Boundary between ballast tank and void or dry spaceWithin 3m below top of tank(1)3.0Elsewhere2.5Boundary between cargo tank and atmosphereWeather deck plating4.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Elsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0	sea	Other members	Elsewhere	3.0				
tank and void or dry spaceElsewhere2.5Boundary between cargo tank and atmosphereWeather deck plating4.0Boundary between cargo tank and void spacesWithin 3m below top of tank (1)3.0Boundary between cargo tank and void spacesElsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.52.5	Boundary between ballast	Within 3m below top of	f tank ⁽¹⁾	3.0				
Boundary between cargo tank and atmosphereWeather deck plating4.0Boundary between cargo tank and void spacesWithin 3m below top of tank (i)3.0Elsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (i)3.0Elsewhere2.5Boundary between cargo tank and dry spacesElsewhere2.0	tank and void or dry space	Elsewhere		2.5				
Boundary between cargo tank and void spaces Within 3m below top of tank ⁽¹⁾ 3.0 Boundary between cargo tank and dry spaces Elsewhere 2.5 Boundary between cargo tank and dry spaces Within 3m below top of tank ⁽¹⁾ 3.0	Boundary between cargo tank and atmosphere	Weather deck plating	4.0					
tank and void spacesElsewhere2.5Boundary between cargo tank and dry spacesWithin 3m below top of tank (1)3.0Elsewhere2.0	Boundary between cargo	Within 3m below top of	f tank (1)	3.0				
Boundary between cargo Within 3m below top of tank ⁽¹⁾ 3.0 tank and dry spaces Elsewhere 2.0	tank and void spaces	Elsewhere		2.5				
tank and dry spaces Elsewhere 2.0	Boundary between cargo	Within 3m below top of	f tank (1)	3.0				
	tank and dry spaces	Elsewhere		2.0				

Note

1. Only applicable to cargo and ballast tanks with weather deck as the tank top

2. 0.5mm to be added for side plating in the quay contact region defined in Section 8/Figure 8.2.2

3. Heated cargo oil tanks are defined as cargo tanks arranged with any form of heating capability

Πίνακας 8.2:4 Πρόσθετο πάχος λόγω διάβρωσης (Πηγή: Πίνακας 6.3.1 - Section 6: Materials and Welding, CSR)

	Table 8.2.6								
	Web Thickness Requirements for Stiffeners								
The minimum	The minimum net web thickness, t_{w-net} , is to be taken as the greatest value calculated for all applicable design								
load sets, as g	iven in Table 8.2.7, and given by:								
$t_{w-net} = \frac{f_{sh}}{d_{sh}}$	$\frac{r P sl_{shr}}{r}C_t\tau_{yd} \qquad mm$								
Where:									
P	design pressure for the design load set being considered and calculated at the load calculation								
	point defined in Section 3/5.1, in kN/m ²								
fshr	shear force distribution factor:								
	for continuous stiffeners and where end connections are fitted consistent with idealisation of								
	= 0.5 for horizontal stiffeners								
	= 0.7 for vertical stiffeners								
	for stiffeners with reduced end fixity, see Sub-section 7								
d _{shr}	as defined in Section 4/2.4.2.2, in mm								
Ct	permissible shear stress coefficient for the design load set being considered, to be taken as:								
	= 0.75 for acceptance criteria set AC1								
	= 0.90 for acceptance criteria set AC2								
s	as defined in Section 4/2.2, in mm								
l _{shr}	effective shear span, in m, see Section 4/2.1.2								
$ au_{yd}$	$=\frac{\sigma_{yd}}{\sqrt{3}}$ N/mm ²								
σ_{yd}	specified minimum yield stress of the material, in N/mm²								

Πίνακας 8.2:5 Απαιτήσεις πάχους κορμού ενισχυτικών (Πηγή: Πίνακας 8.2.6 - Section 8: Scantling Requirements, CSR)

Εικόνα 8.2:1 Διαστάσεις ενισχυτικού (Πηγή: Πίνακας 4.2.12 - Section 4: Basic Information/2.4.1.2)

	Sec	tion M	odul	Table 8.2.5 us Requirement	s for S	tiffeners			
The minimum net section modulus, Z_{netr} is to be taken as the greatest value calculated for all applicable design load sets as given in Table 8.2.7 and given by									
P sl _{bdg}	2 cm ³	,							
$Z_{nat} = \frac{f_{bdg} C_s 0}{f_{bdg} C_s 0}$	$Z_{net} = \frac{1}{f_{bde}} C_s \sigma_{ud} \qquad \text{Cm}^3$								
Where:	-								
Р	design pressure for the design load set being considered and calculated at the load calculation point defined in <i>Section 3/5.2,</i> in kN/m ²								
fbdg	bending momen	t factor:							
	for continuous s stiffener as havir	tiffeners ng as fixe	and v ed end	vhere end connection ls:	ns are fi	tted consist	ent with ide	ealisation of the	
	= 12 for 1	norizonta	al stiff	eners					
	= 10 for v for stiffeners wit	vertical s h reduce	tiffene ed end	ers Efixity see Sub-section	n 7				
Inde	effective bending	e span, in	n m. a	s defined in Section 4	4/2.1.1				
s	as defined in Sec	tion 4/2.2	2, in n	บบา	,				
σ_{yd}	specified minim	um yield	l stres	s of the material, see	also Sec	tion 3/5.2.6.	5, in N/mr	n²	
C,	permissible bend	ling stre	ss coe	fficient for the desig	n load s	et being cor	nsidered, to	be taken as:	
	Sign of Hull G Bending Stres	irder s, σ _{hg}	Sid	e Pressure Acting On		Accepta	ance Criteri	ia	
	Tension (+v	re)		Stiffener side		C _s =	$\beta_{g} - a_{g} \frac{\sigma_{hg}}{\sigma_{hg}}$		
	Compression	(-ve)		Plate side	but r	iot to be tak	en greater f	than C _{o-max}	
	Tension (+v	Tension (+ve) Plate side C = C							
l	Compression (-ve) Stiffener side								
1									
	Acceptance Criteria Set	Structu	ural N	lember		βs	α,	Cs-max	
	AC1	Longit	udina	l strength member		0.85	1.0	0.75	
		Transv	erse o	r vertical member		0.75	0	0.75	
	AC2	Longit	udina	i strength member		1.0	1.0	0.9	
	ACZ	Watert	ioht h	oundary Stiffeners		0.9	0	0.9	
σ_{hg}	hull girder bend	ling stres	s for	the design load set be	eing con	sidered and	calculated	at the	
	$= \left(\frac{(z - z_{NA-not50})}{I}\right)$) M _{v-total}	$-\frac{yM}{t}$	$\left(\frac{h-total}{10^{-3}}\right)$ N/mm	1 ²				
M	design senticell	:0	1 _h -	not50 /		ل نحم محمد ا	anakian fan	the design	
IVIU-total	load set being c	onsidere	d, in k	Nm.	sidon d	nder consid	eration for	the design	
	$M_{v-total}$ is to be calculated in accordance with <i>Table 7.6.1</i> using the permissible hogging or								
	sagging still wa	ter bendi	ing m	oment, M _{sw-perm} , to be	e taken a	is:			
	Stiffener I	ocation		Pressure actin	A OD	A _{sw-perm}	ecoure activ	ng on	
				Plate Side	e		Stiffener S	ide	
	Above Neu	tral Axis	3	Sagging SW	BM	I	Hogging SW	VBM	
	Below Neu	tral Axis	;	Hogging SW	BM		Sagging SW	/BM	
M _{h-total}	design horizont load set being c	al bendii onsidere	ng mo d, see	ment at longitudinal Table 7.6.1, in kNm	position	n under con	sideration f	or the design	
Iv-net50	net vertical hull defined in Sectio	girder 11 m 4/2.6.1	nomer , in m	nt of inertia, at the lor 4	ngitudin	al position	being consi	dered, as	
Ih-not50	net horizontal h defined in Sectio	ull girde m 4/2.6.2	r mon , in n	nent of inertia, at the 1 ⁴	longitu	dinal positio	on being co	nsidered, as	
у	transverse coord	linate of	the re	ference point define	d in Sect	ion 3/5.2.2.5	, in m		
Ζ	vertical coordin	ate of the	e refer	ence point defined in	n Section	3/5.2.2.5, in	m		
Z _{NA-nat50}	distance from the baseline to the horizontal neutral axis, as defined in Section 4/2.6.1, in m								

Πίνακας 8.2:6 Απαιτήσεις ροπής αντίστασης για ενισχυτικά (Πηγή: Πίνακας 8.2.5 - Section 8: Scantling Requirements, CSR)

Stiffeners Bottom											
web	1-23	40	0.450	12.000	2,160.00	0.2250	486.00	0.004	15.266	50.337	50.341
flange	1-23	40	0.150	15.000	900.00	0.4575	411.75	0.000	15.033	20.340	20.340
Stif. Inner Bottom											
web	1-17	28	0.450	12.000	1,512.00	2.8750	4,347.00	0.003	12.616	24.065	24.067
flange	1-17	28	0.150	18.000	756.00	2.6410	1,996.60	0.000	12.850	12.483	12.483

8.3	Πίνακες αναλυτικώ	ν υπολογισμώ\	ν διατομής κα	ι Σχέδιο Μέσης Τομής
-----	-------------------	---------------	---------------	----------------------

	Item	n	b [m]	t [mm]	A [cm ²]	у _{в∟} [m]	A∙y _{BL} [m∙cm²]	i [m⁴]	у _{№А} [m]	A·y _{NA} ⁻ [m⁴]	l [m⁴]
	Bottom	1	39.888	17.00	6,780.96	0.0085	57.64	0.000	15.482	162.540	162.540
	Inner Bottom	1	27.760	19.00	5,274.40	3.2095	16,928.19	0.000	12.281	79.553	79.553
	Bilge(p)	1	3.056	20.00	611.20	1.30	792.73	4.788	14.194	12.313	17.102
	Bilge(s)	1	3.056	20.00	611.20	1.30	792.73	4.788	14.194	12.313	17.102
	Side Shell (p)	1	22.944	17.00	3,900.48	14.53	56,666.17	17.111	0.963	0.362	17.473
	Side Shell (s)	1	22.944	17.00	3,900.48	14.53	56,666.17	17.111	0.963	0.362	17.473
	Hopper (p)	1	7.770	19.00	1,476.30	5.25	7,750.58	0.394	10.241	15.482	15.876
	Hopper (s)	1	7.770	19.00	1,476.30	5.25	7,750.58	0.394	10.241	15.482	15.876
	Upper Deck (p)	1	6.560	16.00	1,049.60	26.053	27,345.23	0.000	10.562	11.709	11.709
	Upper Deck (s)	1	6.560	16.00	1,049.60	26.053	27,345.23	0.000	10.562	11.709	11.709
	Inner Deck (p)	1	11.540	16.00	1,846.40	31.030	57,293.79	0.000	15.539	44.585	44.585
g	Inner Deck (s)	1	11.540	16.00	1,846.40	31.030	57,293.79	0.000	15.539	44.585	44.585
Platin	Inclined Inner Deck (p)	1	6.940	16.00	1,110.40	28.580	31,735.23	0.315	13.089	19.024	19.339
	Inclined Inner Deck (s)	1	6.940	16.00	1,110.40	28.580	31,735.23	0.315	13.089	19.024	19.339
	Top Side (p)	1	5.720	16.00	915.20	24.100	22,056.32	0.176	8.609	6.783	6.960
	Top Side (s)	1	5.720	16.00	915.20	24.100	22,056.32	0.176	8.609	6.783	6.960
	Trunk Deck (p)	1	14.775	30.50	4,506.38	32.800	147,809.10	0.000	17.309	135.016	135.016
	Trunk Deck (s)	1	14.775	30.50	4,506.38	32.800	147,809.10	0.000	17.309	135.016	135.016
	Inclined Trunk Deck (p)	1	8.280	30.50	2,525.40	29.430	74,322.52	1.167	13.939	49.069	50.236
	Inclined Trunk Deck (s)	1	8.280	30.50	2,525.40	29.430	74,322.52	1.167	13.939	49.069	50.236
	Side Lng Bhd (p)	1	14.800	16.50	2,442.00	14.690	35,872.98	4.457	0.801	0.157	4.614
	Side Lng Bhd (s)	1	14.800	16.50	2,442.00	14.690	35,872.98	4.457	0.801	0.157	4.614

	ltem		n	b [m]	t [mm]	A [cm ²]	у _{в∟} [m]	A∙y _{BL} [m∙cm²]	i [m ⁴]	у _{NA} [m]	A·y _{NA} ² [m ⁴]	I [m⁴]
	web	18	2	0.450	12.0	108.00	3.5260	380.81	0.000026	11.965	1.546	1.546
	flange	18	2	0.150	15.0	45.00	3.3350	150.08	0.000003	12.156	0.665	0.665
	web	19	2	0.450	12.0	108.00	3.9640	428.11	0.000026	11.527	1.435	1.435
	flange	19	2	0.150	15.0	45.00	3.7720	169.74	0.000003	11.719	0.618	0.618
	web	20	2	0.450	12.0	108.00	4.4010	475.31	0.000026	11.090	1.328	1.328
	flange	20	2	0.150	15.0	45.00	4.2090	189.41	0.000003	11.282	0.573	0.573
er	web	21	2	0.450	12.0	108.00	4.8380	522.50	0.000026	10.653	1.226	1.226
ddo	flange	21	2	0.150	15.0	45.00	4.6470	209.12	0.000003	10.844	0.529	0.529
Ĭ.	web	22	2	0.450	12.0	108.00	5.2750	569.70	0.000026	10.216	1.127	1.127
Stil	flange	22	2	0.150	15.0	45.00	5.0840	228.78	0.000003	10.407	0.487	0.487
	web	23	2	0.450	12.0	108.00	5.7130	617.00	0.000026	9.778	1.033	1.033
	flange	23	2	0.150	15.0	45.00	5.5210	248.45	0.000003	9.970	0.447	0.447
	web	24	2	0.450	12.0	108.00	6.1490	664.09	0.000026	9.342	0.942	0.943
	flange	24	2	0.150	15.0	45.00	5.9590	268.16	0.000003	9.532	0.409	0.409
	web	25	2	0.450	12.0	108.00	6.5870	711.40	0.000026	8.904	0.856	0.856
	flange	25	2	0.150	15.0	45.00	6.3960	287.82	0.000003	9.095	0.372	0.372

	ltem		n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m·cm²]	i [m⁴]	У№ [m]	A∙y _{NA} ² [m ⁴]	I [m⁴]
	web	20	2	0.400	12.0	96.00	2.7640	265.34	0.00000	12.727	1.555	1.555
	flange	20	2	0.150	15.0	45.00	2.7640	124.38	0.00001	12.727	0.729	0.729
	web	21	2	0.400	12.0	96.00	3.4540	331.58	0.00000	12.037	1.391	1.391
	flange	21	2	0.150	15.0	45.00	3.4540	155.43	0.00001	12.037	0.652	0.652
	web	22	2	0.400	12.0	96.00	4.1440	397.82	0.00000	11.347	1.236	1.236
	flange	22	2	0.150	15.0	45.00	4.1440	186.48	0.00001	11.347	0.579	0.579
llə	web	23	2	1.100	12.0	264.00	4.8340	1,276.18	0.00000	10.657	2.998	2.998
e Sh	flange	23	2	0.150	12.0	36.00	4.8340	174.024	0.00001	10.657	0.409	0.409
s Side	web	24	2	0.400	12.0	96.00	5.6560	542.98	0.00000	9.835	0.929	0.929
lers	flange	24	2	0.150	15.0	45.00	5.6560	254.52	0.00001	9.835	0.435	0.435
iffir	web	25	2	0.400	12.0	96.00	7.3000	700.80	0.00000	8.191	0.644	0.644
St	flange	25	2	0.150	15.0	45.00	7.3000	328.5	0.00001	8.191	0.302	0.302
	web	27	2	0.400	12.0	96.00	8.1220	779.71	0.00000	7.369	0.521	0.521
	flange	27	2	0.150	15.0	45.00	8.1220	365.49	0.00001	7.369	0.244	0.244
	web	28	2	0.400	12.0	96.00	8.9440	858.62	0.00000	6.547	0.411	0.411
	flange	28	2	0.150	15.0	45.00	8.9440	402.48	0.00001	6.547	0.193	0.193
	web	29	2	0.400	12.0	96.00	9.7660	937.54	0.00000	5.725	0.315	0.315

flange	29	2	0.150	15.0	45.00	9.7660	439.47	0.00001	5.725	0.147	0.147
web	30	2	0.400	12.0	96.00	10.5880	1,016.45	0.00000	4.903	0.231	0.231
flange	30	2	0.150	15.0	45.00	10.5880	476.46	0.00001	4.903	0.108	0.108
web	31	2	0.400	12.0	96.00	11.4100	1,095.36	0.00000	4.081	0.160	0.160
flange	31	2	0.150	15.0	45.00	11.4100	513.45	0.00001	4.081	0.075	0.075
web	32	2	0.400	12.0	96.00	13.0540	1,253.18	0.00000	2.437	0.057	0.057
flange	32	2	0.150	15.0	45.00	13.0540	587.43	0.00001	2.437	0.027	0.027
web	33	2	0.400	12.0	96.00	13.8760	1,332.10	0.00000	1.615	0.025	0.025
flange	33	2	0.150	15.0	45.00	13.8760	624.42	0.00001	1.615	0.012	0.012
web	34	2	0.400	12.0	96.00	14.6980	1,411.01	0.00000	0.793	0.006	0.006
flange	34	2	0.150	15.0	45.00	14.6980	661.41	0.00001	0.793	0.003	0.003
web	36	2	0.400	12.0	96.00	15.5200	1,489.92	0.00000	0.029	0.000	0.000
flange	36	2	0.150	15.0	45.00	15.5200	698.4	0.00001	0.029	0.000	0.000
web	37	2	0.400	12.0	96.00	16.3420	1,568.83	0.00000	0.851	0.007	0.007
flange	37	2	0.150	15.0	45.00	16.3420	735.39	0.00001	0.851	0.003	0.003
web	38	2	0.400	12.0	96.00	17.1640	1,647.74	0.00000	1.673	0.027	0.027
flange	38	2	0.150	15.0	45.00	17.1640	772.38	0.00001	1.673	0.013	0.013
web	39	2	0.400	12.0	96.00	17.9860	1,726.66	0.00000	2.495	0.060	0.060
flange	39	2	0.150	15.0	45.00	17.9860	809.37	0.00001	2.495	0.028	0.028
web	40	2	0.400	12.0	96.00	18.8080	1,805.57	0.00000	3.317	0.106	0.106
flange	40	2	0.150	15.0	45.00	18.8080	846.36	0.00001	3.317	0.050	0.050
web	41	2	0.400	12.0	96.00	20.4520	1,963.39	0.00000	4.961	0.236	0.236
flange	41	2	0.150	15.0	45.00	20.4520	920.34	0.00001	4.961	0.111	0.111
web	42	2	0.400	12.0	96.00	21.2740	2,042.30	0.00000	5.783	0.321	0.321
flange	42	2	0.150	15.0	45.00	21.2740	957.33	0.00001	5.783	0.151	0.151
web	43	2	0.400	12.0	96.00	22.0960	2,121.22	0.00000	6.605	0.419	0.419
flange	43	2	0.150	15.0	45.00	22.0960	994.32	0.00001	6.605	0.196	0.196
web	45	2	0.400	12.0	96.00	22.9180	2,200.13	0.00000	7.427	0.530	0.530
flange	45	2	0.150	15.0	45.00	22.9180	1031.31	0.00001	7.427	0.248	0.248
web	46	2	0.400	12.0	96.00	23.7400	2,279.04	0.00000	8.249	0.653	0.653
flange	46	2	0.150	15.0	45.00	23.7400	1068.3	0.00001	8.249	0.306	0.306
web	47	2	0.400	12.0	96.00	24.5620	2,357.95	0.00000	9.071	0.790	0.790
flange	47	2	0.150	15.0	45.00	24.5620	1105.29	0.00001	9.071	0.370	0.370
web	48	2	0.400	12.0	96.00	25.3840	2,436.86	0.00000	9.893	0.940	0.940
flange	48	2	0.150	15.0	45.00	25.3840	1142.28	0.00001	9.893	0.440	0.440

	ltem		n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m·cm²]	i [m⁴]	У№ [m]	A·y _{NA} ² [m ⁴]	I [m⁴]
	web	22	2	0.250	12.0	60.00	25.2280	1,513.68	0.000008	9.737	0.569	0.569
	flange	22	2	0.100	12.0	24.00	25.3170	607.61	0.000001	9.826	0.232	0.232
de	web	23	2	0.250	12.0	60.00	24.6170	1,477.02	0.000008	9.126	0.500	0.500
p Si	flange	23	2	0.100	12.0	24.00	24.7050	592.92	0.000001	9.214	0.204	0.204
10 1	web	24	2	0.250	12.0	60.00	24.0050	1,440.30	0.000008	8.514	0.435	0.435
Stif	flange	24	2	0.100	12.0	24.00	24.0940	578.26	0.000001	8.603	0.178	0.178
	web	25	2	0.250	12.0	60.00	23.3940	1,403.64	0.000008	7.903	0.375	0.375
	flange	25	2	0.100	12.0	24.00	23.4820	563.57	0.000001	7.991	0.153	0.153
	web	26	2	0.250	12.0	60.00	22.7820	1,366.92	0.000008	7.291	0.319	0.319
	flange	26	2	0.100	12.0	24.00	22.8700	548.88	0.000001	7.379	0.131	0.131

Stiffeners Upper Deck														
web	27-33	12	0.250	12.0	36.00	25.8690	931.28	0.0002	10.378	0.388	0.388			
flange	27-33	12	0.100	12.0	14.40	25.8690	372.51	0.0000	10.378	0.155	0.155			
Stiffeners Inner Deck														
web	1-13	26	0.250	12.0	78.00	33.1750	2,587.65	0.0004	17.684	2.439	2.440			
flange	1-13	26	0.100	12.0	31.20	32.9670	1,028.57	0.0000	17.476	0.953	0.953			
Stiffeners Trunk Deck														
web	1-17	32	0.250	12.0	96.00	33.1750	3,184.80	0.0005	17.684	3.002	3.003			
flange	1-17	32	0.100	12.0	38.40	32.9670	1,265.93	0.0000	17.476	1.173	1.173			

	Item		n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m·cm²]	i [m⁴]	У№ [m]	A∙y _{NA} ² [m ⁴]	I [m⁴]
	web	27	2	0.400	12.0	96.00	8.1220	779.71	0.00000	7.369	0.521	0.521
hd.	flange	27	2	0.150	15.0	45.00	8.1220	365.49	0.00001	7.369	0.244	0.244
9. B	web	28	2	0.400	12.0	96.00	8.9440	858.62	0.00000	6.547	0.411	0.411
Γυ	flange	28	2	0.150	15.0	45.00	8.9440	402.48	0.00001	6.547	0.193	0.193
Inl	web	29	2	0.400	12.0	96.00	9.7660	937.54	0.00000	5.725	0.315	0.315
erł	flange	29	2	0.150	15.0	45.00	9.7660	439.47	0.00001	5.725	0.147	0.147
lnn	web	30	2	0.400	12.0	96.00	10.5880	1,016.45	0.00000	4.903	0.231	0.231
ers	flange	30	2	0.150	15.0	45.00	10.5880	476.46	0.00001	4.903	0.108	0.108
fen	web	31	2	0.400	12.0	96.00	11.4100	1,095.36	0.00000	4.081	0.160	0.160
Stil	flange	31	2	0.150	15.0	45.00	11.4100	513.45	0.00001	4.081	0.075	0.075
	web	32	2	0.400	12.0	96.00	13.0540	1,253.18	0.00000	2.437	0.057	0.057

flange	32	2	0.150	15.0	45.00	13.0540	587.43	0.00001	2.437	0.027	0.027
web	33	2	0.400	12.0	96.00	13.8760	1,332.10	0.00000	1.615	0.025	0.025
flange	33	2	0.150	15.0	45.00	13.8760	624.42	0.00001	1.615	0.012	0.012
web	34	2	0.400	12.0	96.00	14.6980	1,411.01	0.00000	0.793	0.006	0.006
flange	34	2	0.150	15.0	45.00	14.6980	661.41	0.00001	0.793	0.003	0.003
web	36	2	0.400	12.0	96.00	15.5200	1,489.92	0.00000	0.029	0.000	0.000
flange	36	2	0.150	15.0	45.00	15.5200	698.4	0.00001	0.029	0.000	0.000
web	37	2	0.400	12.0	96.00	16.3420	1,568.83	0.00000	0.851	0.007	0.007
flange	37	2	0.150	15.0	45.00	16.3420	735.39	0.00001	0.851	0.003	0.003
web	38	2	0.400	12.0	96.00	17.1640	1,647.74	0.00000	1.673	0.027	0.027
flange	38	2	0.150	15.0	45.00	17.1640	772.38	0.00001	1.673	0.013	0.013
web	39	2	0.400	12.0	96.00	17.9860	1,726.66	0.00000	2.495	0.060	0.060
flange	39	2	0.150	15.0	45.00	17.9860	809.37	0.00001	2.495	0.028	0.028
web	40	2	0.400	12.0	96.00	18.8080	1,805.57	0.00000	3.317	0.106	0.106
flange	40	2	0.150	15.0	45.00	18.8080	846.36	0.00001	3.317	0.050	0.050
web	41	2	0.400	12.0	96.00	20.4520	1,963.39	0.00000	4.961	0.236	0.236
flange	41	2	0.150	15.0	45.00	20.4520	920.34	0.00001	4.961	0.111	0.111
web	42	2	0.400	12.0	96.00	21.2740	2,042.30	0.00000	5.783	0.321	0.321
flange	42	2	0.150	15.0	45.00	21.2740	957.33	0.00001	5.783	0.151	0.151
web	43	2	0.400	12.0	96.00	22.0960	2,121.22	0.00000	6.605	0.419	0.419
flange	43	2	0.150	15.0	45.00	22.0960	994.32	0.00001	6.605	0.196	0.196

	ltem		n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m∙cm²]	i [m⁴]	У№ [m]	A∙y _{NA} ² [m⁴]	I [m⁴]
	web	15	2	0.250	12.0	60.00	30.5070	1,830.42	0.000008	15.016	1.353	1.353
	flange	15	2	0.100	12.0	24.00	30.5950	734.28	0.000001	15.104	0.548	0.548
	web	16	2	0.250	12.0	60.00	29.8950	1,793.70	0.000008	14.404	1.245	1.245
×	flange	16	2	0.100	12.0	24.00	29.9840	719.62	0.000001	14.493	0.504	0.504
Dec	web	17	2	0.250	12.0	60.00	29.2840	1,757.04	0.000008	13.793	1.142	1.142
er.	flange	17	2	0.100	12.0	24.00	29.3720	704.93	0.000001	13.881	0.462	0.462
lnn	web	18	2	0.250	12.0	60.00	28.6720	1,720.32	0.000008	13.181	1.042	1.042
Icl.	flange	18	2	0.100	12.0	24.00	28.7600	690.24	0.000001	13.269	0.423	0.423
<u> </u>	web	19	2	0.250	12.0	60.00	28.0600	1,683.60	0.000008	12.569	0.948	0.948
	flange	19	2	0.100	12.0	24.00	28.1490	675.58	0.000001	12.658	0.385	0.385
	web	20	2	0.250	12.0	60.00	27.4490	1,646.94	0.000008	11.958	0.858	0.858
	flange	20	2	0.100	12.0	24.00	27.5370	660.89	0.000001	12.046	0.348	0.348
	web	21	2	0.250	12.0	60.00	26.8370	1,610.22	0.000008	11.346	0.772	0.772
	flange	21	2	0.100	12.0	24.00	26.9260	646.22	0.000001	11.435	0.314	0.314

	ltem		n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m·cm²]	i [m⁴]	у _{NA} [m]	A∙y _{NA} ² [m⁴]	I [m⁴]
	web	18	2	0.250	12.0	60.00	32.0360	1,922.16	0.000005	16.545	1.642	1.642
	flange	18	2	0.100	12.0	24.00	31.9630	767.11	0.000000	16.472	0.651	0.651
	web	19	2	0.250	12.0	60.00	31.3450	1,880.70	0.000005	15.854	1.508	1.508
	flange	19	2	0.100	12.0	24.00	31.2730	750.55	0.000000	15.782	0.598	0.598
	web	20	2	0.250	12.0	60.00	30.6540	1,839.24	0.000005	15.163	1.380	1.380
×	flange	20	2	0.100	12.0	24.00	30.5820	733.97	0.000000	15.091	0.547	0.547
Dec	web	21	2	0.250	12.0	60.00	29.9630	1,797.78	0.000005	14.472	1.257	1.257
ъk.	flange	21	2	0.100	12.0	24.00	29.8910	717.38	0.000000	14.400	0.498	0.498
Lru	web	22	2	0.250	12.0	60.00	29.2720	1,756.32	0.000005	13.781	1.140	1.140
	flange	22	2	0.100	12.0	24.00	29.1990	700.78	0.000000	13.708	0.451	0.451
<u> </u>	web	23	2	0.250	12.0	60.00	28.5810	1,714.86	0.000005	13.090	1.028	1.028
	flange	23	2	0.100	12.0	24.00	28.5080	684.19	0.000000	13.017	0.407	0.407
	web	24	2	0.250	12.0	60.00	27.8910	1,673.46	0.000005	12.400	0.923	0.923
	flange	24	2	0.100	12.0	24.00	27.8180	667.63	0.000000	12.327	0.365	0.365
	web	25	2	0.250	12.0	60.00	27.1990	1,631.94	0.000005	11.708	0.822	0.823
	flange	25	2	0.100	12.0	24.00	27.1270	651.05	0.000000	11.636	0.325	0.325
	web	26	2	0.250	12.0	60.00	26.5090	1,590.54	0.000005	11.018	0.728	0.728
	flange	26	2	0.100	12.0	24.00	26.4360	634.46	0.000000	10.945	0.288	0.288

ers		No.	n	b [m]	t [mm]	A [cm ²]	У _{вL} [m]	A∙y _{BL} [m∙cm²]	i [m⁴]	У _{NA} [m]	A·y _{NA} ² [m ⁴]	I [m⁴]
ing	Str. No 1	L44	2	2.508	12.0	601.92	22.082	13,291.60	0.0000007	6.591	2.615	2.615
Str	Str. No 2	L35	2	2.508	12.0	601.92	14.690	8,842.20	0.0000007	0.801	0.039	0.039
	Str. No 3	L26	2	2.508	13.5	677.16	7.292	4,937.85	0.0000010	8.199	4.552	4.552
	web	L44	2	0.150	12.0	36.00	22.007	792.25	0.00001	6.516	0.153	0.153
stiff. tring	web	L35	2	0.150	12.0	36.00	14.615	526.14	0.00001	0.876	0.003	0.003
s St	web	L26	2	0.150	12.0	36.00	7.217	259.81	0.00001	8.274	0.246	0.246

	No.	n	b [m]	t [mm]	A [cm ²]	y _{BL} [m]	A∙y _{BL} [m∙cm²]	i [m⁴]	У _{NA} [m]	A∙y _{NA} ² [m ⁴]	I [m ⁴]
S	CL Girder	1	3.200	17.0	544.00	1.600	870.40	0.0464	13.891	10.497	10.543
rde	L3	2	3.200	21.0	1,344.00	1.600	2,150.40	0.1147	13.891	25.933	26.048
Girc	L10	2	3.200	14.5	928.00	1.600	1,484.80	0.0792	13.891	17.906	17.985
	L17	2	3.200	16.0	1,024.00	1.600	1,638.40	0.0874	13.891	19.758	19.846
	L14 Inner D.	3	1.762	13.5	713.61	31.9190	22,777.72	0.0185	16.428	19.259	19.278

Stiff. Girders	web	CL Girder	2	0.150	12.0	36.00	0.8000	28.80	0.0000000	14.691	0.777	0.777
	web	CL Girder	2	0.150	12.0	36.00	1.6000	57.6	0.0000000	13.891	0.695	0.695
	web	CL Girder	2	0.150	12.0	36.00	2.4000	86.40	0.0000000	13.091	0.617	0.617
	web	L3	2	0.275	20.0	110.00	0.8000	88	0.0000004	14.691	2.374	2.374
	web	L3	2	0.275	20.0	110.00	1.6000	176.00	0.0000004	13.891	2.122	2.122
	web	L3	2	0.275	20.0	110.00	2.4000	264	0.0000004	13.091	1.885	1.885
	web	L10	2	0.175	12.0	42.00	0.8000	33.60	0.0000001	14.691	0.906	0.906
	web	L10	2	0.175	12.0	42.00	1.6000	67.2	0.0000001	13.891	0.810	0.810
	web	L10	2	0.175	12.0	42.00	2.4000	100.80	0.0000001	13.091	0.720	0.720
	web	L17	2	0.175	12.0	42.00	0.8000	33.6	0.0000001	14.691	0.906	0.906
	web	L17	2	0.175	12.0	42.00	1.6000	67.20	0.0000001	13.891	0.810	0.810
	web	L17	2	0.175	12.0	42.00	2.4000	100.8	0.0000001	13.091	0.720	0.720
	web	L14 Inner D.	3	0.175	12.0	63.00	31.9190	2,010.90	0.0000001	16.428	1.700	1.700

Πίνακας 8.3:1 Πίνακες αναλυτικών υπολογισμών στοιχείων διατομής Μέσης Τομής

Εικόνα 8.3:1 **Σχέδιο Μέσης Τομής υπό μελέτη πλοίου**

9 ΒΙΒΛΙΟΓΡΑΦΙΑ

<u> Βιβλία - Αναφορές</u>

- «Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης» Τεύχος 1, Απόστολου Δ. Παπανικολάου, Εκδόσεις Συμεών, Αθήνα 2009
- «Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης» Τεύχος 2, Απόστολου Δ. Παπανικολάου, Εκδόσεις Συμεών, Αθήνα 2009³¹
- «Μελέτη και Εξοπλισμός Πλοίου Ι Συλλογή Βοηθημάτων» Απόστολου Δ. Παπανικολάου, Κ. Αναστασόπουλος, Πανεπιστημιακές Εκδόσεις, Αθήνα 2007
- «Μελέτη και Εξοπλισμός Πλοίου ΙΙ Γενική Διάταξη, Ενδιαίτηση και Εξοπλισμός» Απόστολου
 Δ. Παπανικολάου, Κ. Αναστασόπουλος, Πανεπιστημιακές Εκδόσεις, Αθήνα 2004
- «Ship Design and Construction, Volume II, Chapter 32: Liquefied Gas Carriers» Thomas Lamb, SNAME, New Jersey 2004
- «MARPOL Annex VI & NTC 2008, 2013 EDITION» International Maritime Organization, 2013
- «Common Structural Rules for Double Hull Oil Tankers» International Association of Classification Societies, July 2012

<u>Επιστημονικά Άρθρα</u>

- «Statistical analysis of ship accidents that occurred in the period 1990-2012 and assessment of safety level of ship types» Papanikolaou A., Bitha K., Eliopoulou E. and Ventikos N.P, Proc. of the Maritime Technology and Engineering Conference (MARTECH), pp 227-233, ISBN 978-1-138-02727-5, 15 - Lisboa, Portugal, 17 October 2014
- «Formal Safety Assessment of Liquefied Natural Gas Carriers» IMO, MSC 83/INF.3, Denmark, 3 July 2007
- «Innovative Design for Spherical Tank LNG Carrier with a Continuous Integrated Tank Cover» Koichi Sato, MHI, Nagasaki, Japan, 2014
- «MMA 167 Marine Structural Engineering, Assignment 1, LNG Carriers», Hale Saglam, Ulrikke Brandt, Britta Wodecki, November 2012

<u>Διαδικτυακές Πηγές</u>

- ¹http://www.elint.org.gr/activities/lectures/lectures-2013/196-the-lng-as-a-maritime-fuelenvironmental-challenges-and-perspectives.html
- ² http://www.igi-poseidon.com/greece/focusGAS.asp
 http://www.mcit.gov.cy/mcit/mcit.nsf/All/9D5E3FD949F00E74C2257B2000475670?OpenDocument
- ³ http://www.gasinfocus.com/en/focus/the-lng-supply-chain/
- ⁴ The international group of lng importers 2009
- ⁵ http://www.unece.org/fileadmin/DAM/trans/doc/2011/wp29grpe/LNG_TF-02-06e.pdf
 https://en.wikipedia.org/
- ⁶ http://www.chemeng.ntua.gr/courses/pngtech/news_files/
 http://kireas.org/lng_gen.htm

http://www.gasinfocus.com/en/focus/the-Ing-supply-chain/

- ⁷ http://www.globalsecurity.org/military/systems/ship/tanker-lng-history.htm
- ⁸ https://en.wikipedia.org/wiki/Leif_H%C3%B6egh_%26_Co
- ⁹http://higherlogicdownload.s3.amazonaws.com/SNAME/1dcdb863-8881-4263-af8d-530101f64412/UploadedFiles/c3352777fcaa4c4daa8f125c0a7c03e9.pdf
- ¹⁰ AnnexI-II Formal Safety Assessment of LNG Carriers
- ¹¹ http://www.liquefiedgascarrier.com/cargo-containment-systems.html
 http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%20Repository/
- ¹²/Torgy LNG Client Presentation V5.pdf
- ¹³ http://www.pomorskodobro.com/en/types-of-lng-carriers.html
 http://www.liquefiedgascarrier.com/moss-rosenberg-containment-system.html
- ¹⁴https://en.wikipedia.org/
- ¹⁵ http://www.liquefiedgascarrier.com/cargo-containment-systems.html
- ¹⁶ http://www.ihi.co.jp/offshore/
- ¹⁷ http://www.liquefiedgascarrier.com/semi-pressurized-ships.html http://www.eagle.org/eagleExternalPortalWEB/ShowProperty http://www.tge-marine.com/37-0-Small-Scale-LNG.html
- ¹⁸ http://www.gtt.fr/
- ¹⁹ http://www.marinelog.com/DOCS/NEWSMMV/MMVmar14a.html
 http://www.intertanko.com/upload/presentations/LNG_NobleP.pdf
 https://www.eagle.org/eagleExternalPortalWEB
- ²⁰ https://yellowdragonblogdotcom.files.wordpress.com/2014/12/8-8-henry_chung.pdf
 http://www.ship-technology.com/projects/sayaendo-series-lng-carriers/
- ²¹http://instituteforenergyresearch.org/analysis/eia-outlook-fossil-fuels-continue-to-dominateworld-energy-supply/
- ²²http://www.lngbunkering.org/sites/default/files/2010
- ²³ https://en.wikipedia.org/wiki/Liquefied_natural_gas
- ²⁴ Pacific Energy Summit Working Papers
- ²⁵ http://www.gasinfocus.com/en/focus/the-lng-supply-chain/
- ²⁶ http://www.bg-group.com/480/about-us/lng/global-lng-market-outlook-2014-15/
- ²⁷ http://economictimes.indiatimes.com/news/international/business/japan-lng-imports-to-fall-alittle-in-2015-government-official/articleshow/45206694.cms
- ²⁸ http://economictimes.indiatimes.com/news/international/business/japan-lng-imports-to-fall-alittle-in-2015-government-official/articleshow/45206694.cms

- ²⁹ http://www.newsbomb.gr/oikonomia/energeia-periballon/story/525332/sxistolithiko-aerio-posallazei-to-paixnidi-stin-energeia
- ³⁰ http://www.timera-energy.com/collapse-in-lng-charter-rates-continues/
 http://www.zougla.gr/money/article/sxistoli8iko-aerio-i-energiaki-epanastasi-stis-ipa-me-eliniki-ipografi
- ³² http://www.re-steel.com/wp-content/uploads/2013/09/Invar-Truths-2.0-SAMPE-2013-Final.pdf
- ³³ http://www.bunkerindex.com/
 http://www.bunkerworld.com/prices/
- ³⁴http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx

Διπλωματικές Εργασίες

- «Μελέτη και Σχεδίαση Πλοίου Μεταφοράς Υγροποιημένου Φυσικού Αερίου» Μεταπτυχιακή
 Εργασία, Περικλής Σκαβάρας, Αθήνα, 2014
- «Η Τεχνολογική Εξέλιξη των Πλοίων Μεταφοράς ΥΦΑ» Μεταπτυχιακή Εργασία, Τσαλικίδη Ιωάννα,
 Αθήνα, 2009

<u>Προγράμματα</u>

- AVEVA
- AUTOCAD