ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ
ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ»

ΕΠΙΔΡΑΣΗ ΤΗΣ ΚΛΙΜΑΤΙΚΗΣ
ΑΔΛΑΓΗΣ ΣΤΗ ΣΤΡΑΤΗΓΙΚΗ
ΠΡΟΣΤΑΣΙΑΣ ΤΗΣ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ

Χρήστος Ε. Χατζόπουλος

Αθήνα, Ιούνιος 2015

Επιβλέπων: Καθηγητής Κ. Μέμος
ΕΥΧΑΡΙΣΤΙΕΣ

Κατόπιν της ολοκλήρωσης της μεταπτυχιακής μου εργασίας, θα ήθελα να ευχαριστήσω όλους αυτούς που συνέδραμαν στην προσπάθεια αυτή, χωρίς τη βοήθεια των οποίων, η αποπεράτωσή της θα ήταν από πολύ δύσκολη έως αδύνατη.

Αρχικά οφείλω να ευχαριστήσω θερμά τον καθηγητή μου κ. Κωνσταντίνο Μέμο, που ανέλαβε την επίβλεψη της παρούσας εργασίας. Οι κατευθυντήριες γραμμές που μου παρείχε, η εμπιστοσύνη που μου έδειξε και η διαλλακτικότητα του στη συνεργασία μαζί μου, ήταν μείζονος σημασίας για την εκπόνηση της μεταπτυχιακής μου εργασίας.

Επιπρόσθετα, θα ήθελα να ευχαριστήσω το σύνολο των καθηγητών του μεταπτυχιακού προγράμματος για τη μεταλαμπάδευση των γνώσεων τους και για το ερέθισμα που μου προκάλεσαν για προσωπική έρευνα προς αναζήτηση περαιτέρω πληροφοριών.

Επίσης, πρέπει να ευχαριστήσω το ΔΠΜΣ «Επιστήμη και Τεχνολογία Υδατικών Πόρων» στο σύνολο του, που μου έδωσε την ευκαιρία να συνεχίσω τις σπουδές μου σε πολύ υψηλό επίπεδο πάνω στο επιστημονικό αντικείμενο που με ενδιαφέρει.

Θα ήταν μεγάλη παράλειψη να μην αναφερθώ στους γονείς μου, που με στηρίζουν υλικά και ψυχολογικά όλα αυτά τα χρόνια και είναι ακούραστοι συνοδοιπόροι στις αποφάσεις και στην πορεία μου.

Τέλος, ευχαριστώ τους φίλους μου για την αμέριστη συμπαράστασή τους, τον Γιάννη που μου άφησε το PC και την Αναστασία για τη συνεχή της παρακίνηση.
ΠΕΡΙΕΧΟΜΕΝΑ
Ευχαριστίες .. iii
Περιεχόμενα .. iii
Περιλήψη .. iii
Abstract .. iii

1 Κλιματική Αλλαγή .. 1
 1.1 Εισαγωγή .. 1
 1.2 Κλιματικά Μοντέλα .. 4
 1.3 Προβλέψεις Μελλοντικού Κλίματος ... 6
 1.4 Αβεβαιότητα στις Κλιματικές Προβλέψεις ... 7
 1.5 Ανασκόπηση Ακραίων Καιρικών Φαινομένων ... 8

2 Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική .. 15
 2.1 Το Δίλημμα της Κλιματικής Αλλαγής για τους Μηχανικούς 15
 2.2 Αβεβαιότητα και Στατιστικές Μέθοδοι για την Αξιολόγηση του Κινδύνου 16
 2.2.1 Η Μέθοδος της Παρατήρησης (The Observational Method) 17
 2.2.2 Προγραμματισμός και Σχεδιασμός Έργων με βάση το Ρίσκο 19
 2.2.3 Μέθοδοι Αξιολόγησης των Κλιματικών Επιπτώσεων .. 20
 2.3 Διαχείριση Ρίσκου (Risk Management) .. 22
 2.3.1 Προγραμματισμός και Τεχνικές Αξιολόγησης .. 22
 2.3.2 Ευελιξία και Προσαρμοστικότητα Τεχνικού Σχεδιασμού (flexible & adaptive
technical design, engineering) ... 23
 2.3.3 Επικοινωνία του Ρίσκου (Risk Communication) .. 25
 2.4 Τεχνικά Πρότυπα και Κανονισμοί .. 25
 2.5 Κατευθυντήριες Αρχές για την Προσαρμοστικότητα των Κατασκευών 27

3 Διαχείριση Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή 29
 3.1 Η Σημασία της Παράκτιας Ζώνης και ο Κίνδυνος της Κλιματικής Αλλαγής 29
 3.2 Επιδράσεις της Κλιματικής Αλλαγής στην Παράκτια Ζώνη 31
 3.3 Το Μέλλον των Ερευνών στην Παράκτια Ζώνη ... 34
 3.3.1 Μακροπρόθεσμη Παράκτια Εξέλιξη λόγω Φυσικών και Ανθρωπογενών
 Διεργασιών .. 35
 3.3.2 Ακραία Φαινόμενα: Πλημμύρες, Διάβρωση και επακόλουθη Ανάκαμψη 39
 3.3.2.1 Κυματική Διάδοση και Πλημμύρες .. 42
 3.3.2.2 Μορφολογική Εξέλιξη και Μεταφορά Ιζημάτων ... 44

iii
3.3.2.3 Επιπρόσθετες Παρατηρήσεις: Υποδομές, Παράκτια Συστήματα και Κλιματική Αλλαγή .. 45

3.4 Προσπάθειες Ευρωπαϊκών Διεπιστημονικών Ομάδων για την Ανάπτυξη Στρατηγικών Προστασίας της Παράκτιας Ζώνης υπό τις Επιδράσεις της Κλιματικής Αλλαγής ... 49

3.4.1 PEARL(Preparing for Extreme And Rare events in coastAL regions) 49
3.4.2 RISC-KIT (Resilience Increasing Strategies for Coasts – ToolK!t) 51
3.4.3 DELTAWERKEN (Ολλανδία) .. 53

4 Προστασία Παράκτιας Ζώνης .. 57
4.1 Οι νέες Προκλήσεις που αντιμετωπίζουν οι Μηχανικοί στην Προστασία της Παράκτιας Ζώνης .. 57
4.1.1 Η Πολιτική των Η.Π.Α. .. 59
4.2 Επιδράσεις της Κλιματικής Αλλαγής στις Παραμέτρους Σχεδιασμού Έργων Παράκτιας Προστασίας .. 60
4.3 Μέτρα Προστασίας κατά της Διάβρωσης ... 63
4.4 Παράκτια Έργα Προστασίας .. 64
4.4.1 Συμβατικά Έργα Προστασίας .. 65
4.4.1.1 Θωράκιση Μετώπου της Ακτής .. 66
4.4.1.2 Έργα σε Απόσταση από την Ακτογραμμή .. 67
4.4.1.3 Έργα Κάθετα στην Ακτή – Πρόβολοι .. 68
4.4.1.4 Ήπια Τεχνικά Μέτρα – Περιβαλλοντικός Σχεδιασμός 69
4.4.1.5 Τεχνητή Αναπλήρωση Ακτής .. 70
4.4.1.6 Εγκατάσταση Πυθμενικών Προβόλων .. 71
4.4.1.7 Κυματοθραύστες Χαμηλής Στέψης .. 72
4.4.1.8 Τεχνητή Φυτοκάλυψη .. 74
4.4.1.9 Πλωτοί Κυματοθραύστες ... 74

5 Συμπεράσματα .. 75

Βιβλιογραφία .. 79
ΠΕΡΙΛΗΨΗ

Οι Πολιτικοί Μηχανικοί είναι υπεύθυνοι για τον προγραμματισμό, το σχεδιασμό, τη λειτουργία και τη συντήρηση των υποδομών. Οι υποδομές σχεδιάζονται με την προοπτική να είναι λειτουργικές, ανθεκτικές και ασφαλείς για 50 έως και πάνω από 100 έτη. Οι υποδομές εκτίθενται και είναι δυνητικά ευάλωτες σε ακραία καιρικά και κλιματικά φαινόμενα, όπως οι ξηρασίες, πλημμύρες, κύματα καύσωνα, ισχυροί άνεμοι, μετεωρολογικές παλίρροιες, πυρκαγιές κ.α.. Οι Τεχνικές Πρακτικές και τα Τεχνικά Πρότυπα προορίζονται να παρέχουν αποδεκτά χαμηλή επικινδυνότητα στη λειτουργικότητα, την ανθεκτικότητα και την ασφάλεια των υποδομών για όλη τη διάρκεια ζωής τους.

Οι επιστήμονες που ερευνούν το κλίμα έχουν φτάσει στο σχέδον ομόφωνο πόρισμα ότι το κλίμα έχει αλλάξει κατά το παρελθόν και θα συνεχίσει να αλλάξει στο μέλλον. Παρά το γεγονός ότι οι φυσικοί παράγοντες επηρεάζουν ακόμη το κλίμα, οι ανθρώπινες δραστηριότητες αποτελούν τον πλέον κυρίαρχο παράγοντα της κλιματικής αλλαγής. Τα ακόλουθα χαρακτηριστικά του μελλοντικού κλίματος έγιναν αποδεκτά από τη συντριπτική πλειοψηφία των επιστημόνων που σχολούνται με το κλίμα: σημαντική αύξηση της θερμοκρασίας, συσχετισμένες αυξήσεις των ατμοσφαιρικών υδρατμών, αυξήσεις στις ακραίες βροχοπτώσεις και στην έντασή τους και παγκόσμια ανάδοση της στάθμης της θάλασσας.

Τα κλιματικά μοντέλα παγκόσμιου συστήματος (GCMs), είναι τα κύρια εργαλεία που χρησιμοποιούν οι επιστήμονες για να ποσοτικοποιήσουν τις προβλέψεις του κλίματος σε παγκόσμια και τοπική κλίμακα. Τα κλιματικά μοντέλα προβάλουν συστηματικές αλλαγές στις κλιματικές και καιρικές συνθήκες.

Οι κλιματικές προβλέψεις εισαγάγουν πρόσθετη αβεβαιότητα, πέραν αυτής που μπορεί να εκτιμηθεί από παρελθοντικές παρατηρήσεις. Η Τεχνική Σχεδίαση ασχολείται κυρίως με τις ακραίες καιρικές και καιρικές συνθήκες, αλλά οι προβλέψεις των μελλοντικών καιρικών γεγονότων και της συχνότητας εμφάνισης τους ενέχουν ακόμη μεγαλύτερη αβεβαιότητα. Τα μοντέλα GCM τείνουν να υποεκτιμούν τα ακραία καιρικά φαινόμενα και, επίσης, αποδίδουν καλύτερα σε μικρότερη χωρική και μεγαλύτερη χρονική κλίμακα.

Ο μακρόβιος χαρακτήρας των υποδομών επιτάσσει οι κλιματικές συνθήκες του μέλλοντος να λαμβάνονται υπόψη στον προγραμματισμό και το σχεδιασμό υποδομών. Ωστόσο, ενώ η επιστημονική κοινότητα συμφωνεί ότι το κλίμα άλλαξε, υπάρχει σημαντική αβεβαιότητα σχετικά με την τοποθεσία, το χρόνο έμφασις των κλιματικών αλλαγών κατά τη διάρκεια ζωής μίας υποδομής. Η απαίτηση ότι οι υποδομές πρέπει να ανταποκρίνονται στις μελλοντικές ανάγκες και στην αβεβαιότητα των
μελλοντικών κλιματικών συνθηκών, οδηγεί σε δίλημμα τους μηχανικούς. Αυτό το δίλημμα είναι το χάσμα ανάμεσα στην επιστήμη του κλίματος και την Τεχνική Πρακτική και οφείλεται να γεφυρωθεί.

Αυτό το χάσμα μπορεί να γεφυρωθεί με το χαρακτηρισμό και την ποσοτικοποίηση της αβεβαιότητας των μελλοντικών κλιματικών συνθηκών και κατόπιν να λαμβάνεται υπόψιν κατά τον προγραμματισμό και το σχεδιασμό. Η ανάλυση και η διαχείριση ρίσκου είναι η κύρια προσέγγιση των μηχανικών για την αντιμετώπιση της μελλοντικής αβεβαιότητας. Τα Τεχνικά Πρότυπα βασίζονται στην υποτιθέμενη στασιμότητα των ακραίων και κλιματικών συνθηκών — ότι οι συχνότητες και οι εντάσεις των ακραίων φαινόμενων που παρατηρήθηκαν κατά το παρελθόν, αντιπροσωπεύουν επαρκώς αυτά που θα συμβουλευόμενο στο μέλλον. Αυτή η υπόθεση δεν μπορεί να είναι έγκυρη σύμφωνα με την κλιματική αλλαγή. Οι μηχανικοί προσπαθούν να προσαρμόσουν τον σχεδιασμό στις μελλοντικές κλιματικές συνθήκες, στον καιρό, στα ακραία καιρικά φαινόμενα και στις κοινωνικές ανάγκες για υποδομές. Ωστόσο, θα υπάρξει μία «ανταλλαγή» μεταξύ του κόστους αύξησης της αξιοπιστίας και ασφάλειας των υποδομών και του δυνητικού κόστους μίας πιθανής μελλοντικής αστοχίας.

Οι παράκτιες περιοχές είναι ζωτικής σημασίας για την οικονομία, την ασφάλεια, το εμπόριο και την αναψυχή. Η παράκτια ζώνη είναι ζωτικής σημασίας για την οικονομία, την ασφάλεια, το εμπόριο και την αναψυχή. Η παράκτια ζώνη είναι δυναμικά εξελισσόμενη, συχνά πυκνοκατοικημένη και βρίσκεται υπό τη διαρκή απειλή της ανόδου της θάλασσας, των ακραίων καιρικών φαινόμενων, των μελλοντικών και κλιματικών και καιρικών φαινόμενων — ότι οι συχνότητες και οι εντάσεις των ακραίων φαινόμενων που παρατηρήθηκαν κατά το παρελθόν, αντιπροσωπεύουν επαρκώς αυτά που θα συμβουλευόμενο στο μέλλον. Αυτή η υπόθεση δεν μπορεί να είναι έγκυρη σύμφωνα με την κλιματική αλλαγή. Οι μηχανικοί προσπαθούν να προσαρμόσουν τον σχεδιασμό στις μελλοντικές κλιματικές συνθήκες, στον καιρό, στα ακραία καιρικά φαινόμενα και στις κοινωνικές ανάγκες για υποδομές. Ωστόσο, θα υπάρξει μία «ανταλλαγή» μεταξύ του κόστους αύξησης της αξιοπιστίας και ασφάλειας των υποδομών και του δυνητικού κόστους μίας πιθανής μελλοντικής αστοχίας.

Κατά τη διάρκεια των τελευταίων δεκαετιών, η κατανόηση των παράκτιων διαδικασιών έχει βελτιωθεί. Ωστόσο, οι κοινωνικές ανάγκες μεγαλώνουν με την αύξηση της παράκτιας αστικοποίησης και τις απειλές της μελλοντικής κλιματικής αλλαγής, με σημαντικές επιστημονικές προκλήσεις να παραμένουν. Για την αντιμετώπιση αυτών των προκλήσεων, μέλη της ακαδημαϊκής κοινότητας, μηχανικοί και μέλη δημόσιων φορέων πρέπει να εργαστούν από κοινού, ώστε να διασφαλιστεί η παράκτια ανθεκτικότητα. Πρέπει να δοθεί βάση σε δύο κύριους τομείς έρευνας:

1. Η μακροπρόθεσμη παράκτια εξέλιξη που οφείλεται σε ψυχικές και ανθρωπογενείς διεργασίες. Καθώς η παγκόσμια κλιματική αλλαγή μεταβάλει το ρυθμό ανόδου της θαλάσσιας στάθμης (και πιθανώς τον τρόπο εμφάνισης και καταγίδωσης), με την ταυτόχρονη αύξηση της
παράκτιας αστικοποίησης κατά τις επόμενες δεκαετίες, η κατανόηση της εξέλιξης της παράκτιας ζώνης είναι κρίσιμη. Ο εμπλουτισμός των γνώσεων πάνω στις μακροπρόθεσμες οικολογικές, κοινωνικές και μορφολογικές διεργασίες θα οδηγήσει σε βελτιωμένες προσομοιώσεις των παράκτιων αλλαγών. Αυτό θα επιτρέψει την εύρεση προληπτικών λύσεων για την αύξηση της ανθεκτικότητας των ακτών και την καλύτερη καθοδήγηση για τη μείωση της παράκτιας ευπάθειας.

2. Ακραία φαινόμενα: πλημμύρες, διάβρωση και επακόλουθη ανάκαμψη.
Τα παράκτια ακραία συμβάντα που συνδέονται με οικονομικές απώλειες, έχουν αυξηθεί σημαντικά. Επιπρόσθετα, η κλιματική αλλαγή μπορεί να προκαλέσει αύξηση των παράκτιων ακραίων φαινομένων και η άνοδος της στάθμης της θάλασσας θα μπορούσε να αυξήσει τη συχνότητα εμφάνισής τους. Η αντιμετώπιση αυτού τού θέματος με έρευνα θα βοηθήσει στην καλύτερη κατανόηση των φυσικών διεργασιών κατά τη διάρκεια των ακραίων φαινομένων, οδηγώντας σε βελτιωμένα μοντέλα πλημμυρών, διάβρωσης και αποκατάστασης. Το επακόλουθο κοινωνικό όφελος θα είναι ανθεκτικότερες παράκτιες κοινότητες.

Οι Πολιτικοί Μηχανικοί αντιμετωπίζουν νέες προκλήσεις στην προστασία της παράκτιας ζώνης. Λόγω της ανόδου της στάθμης της θάλασσας και των ακραίων μετεωρολογικών συμβάντων, τα παράκτια έργα θα εκτεθούν σε μεγαλύτερα κύματα, τα οποία με τη σειρά τους θα οδηγήσουν σε μεγαλύτερη υπερπήδηση, χερσαία μετάδοση και διείσδυση στα λιμάνια. Ως εκ τούτου, ο σχεδιασμός, η λειτουργικότητα και η ασφάλεια αυτών των δομών πρέπει να συμβάλλουν στην ανθεκτικότητα και σεβασμό στα παράκτια οικοσυστήματα. Οι «σκληρές» δομές ως μέτρα προστασίας, συχνά επιφέρουν οικολογικές απώλειες(π.χ. διάβρωση κατάντη ακτών από κυματοθραύστες). Προτείνεται πιο φιλικά προς το περιβάλλον μέτρα προστασίας που μπορούν να επιφέρουν την ανθεκτικότητα της παράκτιας ζώνης χωρίς οικολογικές απώλειες.

Τα επιβαλλόμενα μέτρα προστασίας των παράκτιων περιοχών πρέπει να λαμβάνονται με βάση μία οικολογική προσέγγιση και σεβασμό στα παράκτια οικοσυστήματα. Οι «σκληρές» δομές ως μέτρα προστασίας, συχνά επιφέρουν οικολογικές απώλειες(π.χ. διάβρωση κατάντη ακτών από κυματοθραύστες). Προτείνονται πιο φιλικά προς το περιβάλλον μέτρα προστασίας που μπορούν να επιφέρουν την ανθεκτικότητα της παράκτιας ζώνης χωρίς οικολογικές απώλειες. Ωστόσο, αποτελεί απόφαση των διαχειριστών της παράκτιας ζώνης η κατασκευή ή όχι σκληρών δομών, ανάλογα των αποτελεσμάτων της ανάλυσης ρίσκου που έχει προηγηθεί σε κάθε περίπτωση.
ABSTRACT

Civil engineers are responsible for the planning, design, construction, operation and maintenance of infrastructures. They are expected to remain functional, durable and safe for long service lives, typically 50 to more than 100 years. They are exposed to, and potentially vulnerable to, the effects and extremes of climate and weather, such as droughts, floods, heat waves, high winds, storm surges, fires etc.. Engineering practices and standards are intended to provide acceptably low risks of failures regarding functionality, durability and safety over the service lives of infrastructure systems and facilities.

Climate scientists have reached near-unanimous consensus that climate has changed in the past and will continue to change in the future. Although natural factors still affect climate, human activities are now the dominant agents of change. The following characteristics of future climate are accepted by the vast majority of climate scientists: substantial increases in temperature, related increases in atmospheric water vapor, increases in extreme precipitation and intensity, and global sea-level rise.

Global climate models (GCMs) are the primary tools that climate scientists use to make quantitative projections of future global and regional climate. Climate models project systematic changes in climate and weather conditions.

Climate projections introduce additional climatic uncertainty beyond those that can be estimated from observations of the past. Engineering design is primarily concerned with climate and weather extremes, but the projection of future extreme events and their frequency of occurrence have even greater uncertainty. GCMs tend to underestimate climate extremes and perform better at lower spatial resolution and over longer time scales.

The long-lived nature of infrastructure suggests that the climate of the future should be taken into account when planning and designing new infrastructure. However, even though the scientific community agrees that climate is changing, there is significant uncertainty about the location, timing and magnitude of the changes over the lifetime of infrastructure. The requirement that engineering infrastructure meets future needs and the uncertainty of future climate leads to a dilemma for engineers. This dilemma is the gap between climate science and engineering practice that must be bridged.

This gap can be bridged by characterizing and quantifying (to the degree possible) uncertainty in future climate and then taking such findings into consideration when planning and designing. Risk analysis and management is the primary approach engineers take to deal with future uncertainty. Engineering practices and standards are typically based on assumed stationarity of extremes of climate and weather – that the frequencies and
intensities of extremes observed in the past adequately represent those that will occur in the future. This assumption may not be valid under a changing climate. Engineers can attempt to make plans and designs adaptable to a range of future conditions of climate, weather, extreme events and societal needs for infrastructure. However, there will be a tradeoff between the cost of increasing system reliability and the potential cost and consequences of future failure.

Nearshore regions are vital to the economy, security, commerce, and recreation. The nearshore is dynamically evolving, is often densely populated, and is under increasing threat from sea level rise, long-term erosion, extreme storms, and anthropogenic influences. Long-term erosion threatens communities, infrastructure, ecosystems, and habitat. Extreme storms can cause major economic damage. Nearshore processes, the complex interactions between water, sediment, biota, and humans, must be understood and predicted to manage this often highly developed yet vulnerable nearshore environment.

Over the past decades, the understanding of nearshore processes has improved. However, societal needs are growing with increased coastal urbanization and threats of future climate change, and significant scientific challenges remain. To address these challenges, members of academia, engineers, and public agencies should work together, so as to ensure coastal resilience. Consideration should be given on two research themes:

1. **Long-term coastal evolution due to natural and anthropogenic processes:** As global climate change alters the rates of sea level rise and potentially storm patterns and coastal urbanization increases over the coming decades, an understanding of coastal evolution is critical. Improved knowledge of long-term morphological, ecological, and societal processes and their interactions will result in an improved ability to simulate coastal change. This will enable proactive solutions for resilient coasts and better guidance for reducing coastal vulnerability.

2. **Extreme Events: Flooding, erosion, and the subsequent recovery:** Hurricane Sandy caused flooding and erosion along hundreds of miles of shoreline, flooded New York City, and impacted communities and infrastructure. Coastal extreme event related economic losses have increased substantially. Furthermore, climate change may cause an increase in coastal extreme events and rising sea levels could increase the occurrence of extreme events. Addressing this research theme will result in an improved understanding of the physical processes during extreme events, leading to improved models of flooding, erosion, and recovery. The resulting societal benefit will be more resilient coastal communities.
Civil Engineers face new challenges while trying to protect the coastal zone. Due to sea level rise and extreme meteorological events, the coastal structures will be exposed to larger waves, which in turn will lead to greater overtopping, transmission and greater penetration into a harbor. Hence, the design, functionality and safety of such structures have to be re-evaluated under climate change. Civil Engineers need the help of advanced mathematical models, in order to confront the problems in coastal zone. Using these models, the stability, functionality and safety of nearshore structures will be ensured. By applying such models into new design, structures will acquire geometric characteristics that will ensure functionality and resilience of nearshore structures. Nearshore protection should be designed with an ecological approach, with respect to the nearby ecosystems. Hard structures often cause ecological losses (eg. erosion of nearby shores of a breakwater). Eco-friendly solutions are recommended, that can offer coastal resilience without ecological losses. However, it is coastal managers’ call whether to imply hard structures or not, given the risk analysis results of each situation.
1 ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ

1.1 Εισαγωγή

Οι παρατηρούμενες -σε όρους στατιστικής- αλλαγές του κλίματος προέρχονται από τη μεταβλητότητα της ίδιας της φύσης τόσο σε χωρικό όσο και σε χρονολογικό επίπεδο (Διάγραμμα 1.1). Οι βραχυπρόθεσμες μεταβολές (από εποχικές έως διαχρονικές σε δεκαετή κλίμακα) σχετίζονται με την κυκλική μεταβλητότητα του καιρού μέσα στα ατμοσφαιρικά και θαλάσσια συστήματα και λαμβάνουν χώρα στα ηπειρωτικά. Εξ ορισμού, η κλιματική αλλαγή παράγει ενδείξεις που είναι ανιχνεύσιμες σε παγκόσμια κλίμακα και εξακολουθεί να υφίσταται σε βάθος δεκαετιών (τουλάχιστον 30 έτη διάρκειας).

Στην πιο πρόσφατη συνολική εκτίμηση της (2013), η Διακυβερνητική Επιτροπή για την Κλιματική Αλλαγή (Intergovernmental Panel on Climate Change –IPCC-) συμπέρανε ότι: η υπερθέρμανση του κλιματικού συστήματος είναι αδιαμφισβήτητη, και από το 1950, πολλές από τις παρατηρούμενες αλλαγές είναι άνευ προηγούμενου επί σειράς δεκαετιών έως χιλιετιών . Η ατμόσφαιρα και οι ωκεανοί έχουν θερμανθεί, οι ποσότητες του χιονιού και του πάγου έχουν μειωθεί εντούτους ισχυρεύει, το επίπεδο της θάλασσας έχει ανεβεί και η συγκέντρωση των «αερίων του θερμοκηπίου» έχει αυξηθεί. Η Υπηρεσία Εθνικής Αξιολόγησης του Κλίματος των Η.Π.Α. (National Climate Assessment –NCA-, Melillo et al., 2014) κατέληξε σε παρόμοιο συμπέρασμα: τα στοιχεία για την κλιματική αλλαγή αφθονούν, από την κορυφή της ατμόσφαιρας ως τα
Κεφάλαιο 1: Κλιματική Αλλαγή

βάθη των ωκεανών. Επιστήμονες και μηχανικοί από όλο τον κόσμο έχουν σχολαστικά συλλέξει αυτά τα στοιχεία, χρησιμοποιώντας δορυφόρους, δίκτυα, μετεωρολογικά μπαλόνια, θερμόμετρα, σημαδούρες και άλλα συστήματα παρατήρησης. Αποδεικτικά στοιχεία της κλιματικής αλλαγής είναι, επίσης, ορατά στη συμπεριφορά διαφόρων ειδών έμβιων οργανισμών και στη λειτουργία των οικοσυστημάτων. Στο σύνολό τους, αυτά τα στοιχεία αφηγούνται μια ξεκάθαρη ιστορία: ο πλανήτης θερμαίνεται, και κατά τον τελευταίο μισό αιώνα, αυτή η αύξηση της θερμοκρασίας έχει προκληθεί κυρίως από την ανθρώπινη δραστηριότητα.

Διάγραμμα 1.1 Αλλαγές της θερμοκρασιακής κατανομής ανάμεσα στο τωρινό και μελλοντικό κλίμα (IPCC, 2012). a) απλή μεταφορά όλης της κατανομής προς θερμότερο κλίμα, b) αύξηση της θερμοκρασίας χωρίς αλλαγή του μέσου όρου, c) αλλαγή του σχήματος της κατανομής με αυξημένη ασυμμετρία προς το ζεστότερο κομμάτι της κατανομής
Είναι εμφανής η ανθρώπινη επιρροή στη κλιματική αλλαγή. Όπως επισημαίνει η NCA, η θέρμανση του παγκόσμιου κλίματος δεν πρόκειται να είναι ομοιόμορφη ή ομαλή με την πάροδο του χρόνου, λόγω του ότι ο ανθρωπογενής παράγοντας υπερέχει αυτού της φυσικής διακύμανσης του κλίματος. Οι βραχυπρόθεσμες διακυμάνσεις στην συνολικά μακροπρόθεσμη ανοδική τάση της θερμοκρασίας είναι φυσικές και αναμενόμενες. Τα πράγματα περιπλέκονται λόγω της αλληλεπίδρασης της φυσικής μεταβλητότητας με την επιρροή του ανθρώπινου παράγοντα. Ένα παράδειγμα τέτοιων αλληλεπιδράσεων είναι οι βροχοπτώσεις. Ξανά, επισημαίνει η NCA: «Ενώ έχουν εντοπιστεί σημαντικές νέες τάσεις στην μέση βροχόπτωση, το κλάσμα αυτών των τάσεων που οφείλονται στην ανθρώπινη δραστηριότητα είναι δύσκολο να ποσοτικοποιηθεί σε τοπικές κλίμακες, επειδή το φάσμα της φυσικής μεταβλητότητας της βροχόπτωσης είναι μεγάλο» (Mellilo et al, 2014). Παγκοσμίως, τα κλιματικά μοντέλα υποτιμούν συστηματικά το μέγεθος των αλλαγών, όσον αφορά στην ένταση των κατακρημνίσεων κατά τον τελευταίο αιώνα (Krakauer and Fekete, 2014). Έτσι, έχουν παρατηρηθεί και καταγραφεί περιπτώσεις πολλών ακραίων καιρικών φαινομένων, η πρόβλεψη των οποίων είναι εξαιρετικά πολύπλοκη (Διάγραμμα 1.2).

Διάγραμμα 1.2 Ακραίες τιμές καιρικών φαινομένων στις Η.Π.Α. για τις τελευταίες δεκαετίες (Kunkel et al, 2013)

Παρά τις εν λόγω δυσκολίες, οι σύγχρονοι μελετητές μηχανικοί και κατασκευαστές αντιμετωπίζουν την όλη και αυξανόμενη απαίτηση να
κατανοήσουν και να ενσωματώσουν τις καιρικές και κλιματικές αλλαγές στις μελέτες και κατασκευές τους. Αυτή η ανάγκη οδηγεί σε προσπάθειες ποσοτικής προσομοίωσης των κλιματικών διαδικασιών μέσα από αριθμητικά μοντέλα. Τα κλιματικά μοντέλα συνδυάζουν επιστημονική γνώση από διάφορους κλάδους όπως: επιστήμης για την ατμόσφαιρα και κρυόσφαιρα, ωκεανογραφία, υδρολογία, μοντελοποίηση οικοσυστημάτων κ.α. ώστε να προσομοιώσουν το παρελθόν, το παρόν και το μέλλον του κλίματος. Πρόκειται για τα καλύτερα εργαλεία που διατίθενται ώστε να παραχθούν ποσοτικοποιημένες προβολές των παγκόσμιων κλιματικών συνθηκών κάτω από την επίδραση του ανθρώπου. Ωστόσο, η αξία τους σε επίπεδο εφαρμογής είναι πεδίο έντονης συζήτησης και αμφισβήτησης.

1.2 Κλιματικά Μοντέλα

Υπάρχουν δύο κύριες κατηγορίες κλιματικών μοντέλων, τα Μοντέλα Γήινου Συστήματος (Earth System Models – ESMs) και τα Κλιματικά Μοντέλα Παγκόσμιου Συστήματος (Global Climate Models – GCMs). Τα ESMs περιλαμβάνουν όλα τα χαρακτηριστικά των GCMs και επίσης προσομοιώνουν τον κύκλο του άνθρακα καθώς και άλλους χημικούς και βιολογικούς κύκλους που είναι αναγκαίοι για να προσδιοριστεί η μελλοντική συγκέντρωση αερίων του θερμοκηπίου στην ατμόσφαιρα. Επειδή τα μοντέλα αυτά είναι πρόσφατα, τα αποτελέσματα τους δεν έχουν εκτιμηθεί ενδελεχώς από αρμόδιους ερευνητές και, ως εκ τούτου, δε χαίρουν απόλυτης εμπιστοσύνης.

Τα μοντέλα GCM κατά κόρον χρησιμοποιούνται για να καθορίζουν τις κλιματικές επιπτώσεις και τυπικά αποτελούνται από τέσσερα κύρια μέρη: ατμόσφαιρα, ωκεανούς, επιφάνεια εδάφους και πάγο της θάλασσας (Climate Change Science Program, 2008). Τα μοντέλα αυτά επιλύουν εξισώσεις θερμοδυναμικής και μηχανικής ρευστών για διάφορες μεταβλητές που μπορεί να ενδιαφέρουν. Οι μεταβλητές που περιγράφουν την κατάσταση της ατμόσφαιρας περιλαμβάνουν θερμοκρασία, πίεση, υγρασία, ανέμους, νερό και πάγο συμπυκνωμένο στα σύννεφα. Οι μεταβλητές αυτές ορίζονται τυπικά για ένα χωρικό πλέγμα. Η χωρική ανάλυση για μοντέλα του CMIP5 (Coupled Model Intercomparison Project Phase 5) κυμαίνεται από 0,5° έως 4° για τον
ατμοσφαιρικό παράγοντα και από 0,2° έως 2° για τον ωκεάνιο (μία μοίρα γεωγραφικού πλάτους αντιστοιχεί σε περίπου 69 μίλια ή 111 χιλιόμετρα) (Taylor et al., 2012). Διεργασίες που λαμβάνουν χώρα σε πολύ μικρές περιοχές ή σε πολύ μικρό χρονικό διάστημα ώστε να επιλυθούν στο πλέγμα του μοντέλου, παραμετροποιούνται σύμφωνα με μέσους όρους. Αυτές οι διεργασίες περιλαμβάνουν: σχηματισμό των νεφελωμάτων, διάλυση, μεταγωγή και ταραχώδεις διαδικασίες κοντά στη γήινη επιφάνεια. Τα τοπογραφικά χαρακτηριστικά, που ενδεχομένως να επηρεάζουν τοπικά τον καιρό και το κλίμα, δεν εκπροσωπούνται ικανοποιητικά στις χονδροειδείς κλίμακες των GCMs.

Εικόνα 1.1 Σχηματική Λειτουργία GCMs
(Πηγή: http://www.ipccdata.org/guidelines/pages/gcm_guide.html)

Τα μοντέλα GCM χρησιμοποιούν ως δεδομένα εισόδου παραδοχές σχετικά με τις μελλοντικές εκπομπές αερίων του θερμοκηπίου. Οι εκπομπές μετασχηματίζονται σε ατμοσφαιρικές συγκεντρώσεις των αερίων του θερμοκηπίου χρησιμοποιώντας τη μοντελοποίηση IAM (Integrated
Κεφάλαιο 1: Κλιματική Αλλαγή

Assessment Models), με εξαιρετικά απλοποιημένες παραστάσεις σχετικά τη ρευστοδυναμική της ατμόσφαιρας και των ωκεανών. Τα μοντέλα GCM χρησιμοποιούν ως δεδομένα εισόδου αυτές τις συγκεντρώσεις των αερίων του θερμοκηπίου και, κατόπιν, προσομοιάζουν τις επιπτώσεις τους στο κλίμα. Οι μελλοντικές εκπομπές των αερίων του θερμοκηπίου εξαρτώνται από τις μελλοντικές συνθήκες και τις καινοτομίες των νέων τεχνολογιών. Ωστόσο, αυτοί οι παράγοντες είναι δύσκολο να προβλεφθούν και οι εν λόγω προβλέψεις είναι πολύ επισφαλείς. Η IPCC έχει αναπτύξει σενάρια ώστε να συμπεριλάβει ένα μεγάλο εύρος των παραγόντων (οικονομικοί, δημογραφικοί, τεχνολογικοί παράγοντες) που πρόκειται να καθορίσουν τις μελλοντικές εκπομπές των αερίων του θερμοκηπίου, χωρίς ωστόσο να υπολογίσει πιθανότητες για αυτά τα σενάρια (Nakicenovic et al., 2000). Σημειώνεται ότι, τα τελευταία χρόνια, οι πραγματικές εκπομπές είναι ίσες ή και έχουν υπερβεί τα πιο ακραία σενάρια που είχαν χρησιμοποιηθεί σε προηγούμενες εκθέσεις της IPCC (Peters et al., 2013). Η πιο πρόσφατη γενιά κλιματικών σεναρίων δεν ξεκινά με καινοτομίες, αλλά βασίζεται σε χρονικά εξαρτώμενες τιμές συγκεντρώσεων των αερίων του θερμοκηπίου στο μέλλον.

1.3 Προβλέψεις Μελλοντικού Κλίματος

Μία κλιματική πρόβλεψη συνήθως βασίζεται στα αποτελέσματα από ένα μοντέλο GCM, με συγκεκριμένη διαμόρφωση που προκύπτει από ένα μοναδικό σενάριο. Επειδή τα μοντέλα διαμορφώνονται από σενάρια και όχι από παρατηρήσεις, δεν αναμένεται να αποδώσουν ακριβώς την κλιματική κατάσταση που προϋπήρχε ή θα υπάρξει. Έτσι, μία πρόβλεψη αντιπροσωπεύει ένα πιθανό μέλλον, αλλά ένα μέλλον που είναι στατιστικά αντιπροσωπευτικό και για άλλα κάτω από τις ίδιες κλιματικές επιδράσεις. Τα αποτελέσματα των μοντέλων GCM αποτελούνται από τιμές δεκάδων μεταβλητών που περιγράφουν τις συνθήκες στην ατμόσφαιρα και την επιφάνεια του εδάφους, αλλά συχνά μόνο ένα υποσύνολο αυτών των μεταβλητών (κυρίως οι κατακρημνίσεις και η θερμοκρασία) χρησιμοποιείται για την εκτίμηση των μελλοντικών επιπτώσεων στο δομημένο και φυσικό περιβάλλον. Τα μοντέλα GCM κρίνονται πιο ικανά στην προσομοίωση της
Κεφάλαιο 1: Κλιματική Αλλαγή

θερμοκρασίας, παρά στην προσομοίωση κατακρημνίσεων. Επίσης, προσομοιώνουν καλύτερα διαδικασίες που λαμβάνουν χώρα σε μεγάλες γεωγραφικά περιοχές και για μεγάλη χρονική διάρκεια. Ακόμη, είναι πιο κατάλληλα για πρόβλεψη μέσων όρων τιμών για θερμοκρασία και κατακρημνίσεις, παρά για τη διασπορά τους (Randal et al., 2007/ Barsugli et al., 2009/ Flato et al. 2013).

1.4 Αβεβαιότητα στις Κλιματικές Προβλέψεις

Υπάρχουν πολλές πηγές αβεβαιότητας στις κλιματικές προβλέψεις. Η IPCC καταγράφει στην παρακάτω λίστα τρεις κύριους λόγους αβεβαιότητας στις κλιματικές προβλέψεις:

- Φυσική μεταβλητότητα του κλίματος
- Αβεβαιότητα στην απόκριση των κλιματικών μοντέλων, ή ευαισθησία, σε ανθρωπογενειακές και φυσικές ωθήσεις
- Μη καίρια προβλέψη των μελλοντικών εκκρίσεων αερίων θερμοκηπίου και άλλων φυσικών και ανθρωπογενών παραγόντων που επηρεάζουν το κλίμα

Η αβεβαιότητα στην επιλογή σωστών παραμέτρων στα κλιματικά μοντέλα είναι πρόδηλο ότι μειώνει την αποτελεσματικότητα της απόδοσής τους. Η αβεβαιότητα των εν λόγω παραμέτρων περιλαμβάνει την αβεβαιότητα στην σωστή απόδοση των φυσικών διεργασιών, όπως π.χ. οι επερχόμενες επιδράσεις των σχηματισμών των νεφελωμάτων και η τοπογραφία του εδάφους σε κλίμακα αρκετά μικρότερη από αυτή που χρησιμοποιείται στα κλιματικά μοντέλα. Μερικά παραδείγματα περίπλοκων και μη γραμμικών αναδράσεων (Feedbacks) είναι:

- βιογεωγραφικές διεργασίες όπως αλλαγές στην κατανομή και σύνθεση της βλάστησης
- αλλαγές στις χρήσεις γης από τον άνθρωπο
- επερχόμενες επιδράσεις στη θερμοκρασία και αλλατότητα των ωκεανών από τον κύκλο κίνησης του νερού στα βαθιά

Η επιστημονική ομάδα του Barsugli (Barsugli et al., 2009) αποφαίνεται: «Οι προσομοιώσεις των κλιματικών μοντέλων έχουν γενικά βελτιωθεί από τις
κεφάλαιο 1: κλιματική αλλαγή

αρχές της δεκαετίας του 1990 στον τρόπο που προσομοιώνουν το μέσο κλίμα και τους εποχικούς κύκλους. Παρά την καλύτερη απόδοση των κλιματικών μοντέλων τις δύο τελευταίες δεκαετίες, το εύρος στη διαφορά των προβλέψεων ανάμεσα σε διαφορετικά κλιματικά μοντέλα δεν έχει μειωθεί αισθητά. Η πραγματική αβεβαιότητα της παγκόσμιας και τοπικής κλιματικής αλλαγής (όπως τουλάχιστον την καταλαβαίνουν οι επιστήμονες) είναι μεγαλύτερη από το εύρος προσομοίωσης της σύγχρονης γενιάς μοντέλων.

Από στατιστικής απόψεως, η κύρια πηγή αβεβαιότητας είναι η μεταβλητή των φυσικών διεργασιών και η λανθασμένη προσέγγιση τους μέσω των μεθόδων της κλασικής στατιστικής. Το κλίμα όπως αποδεικνύεται από όλες τις παλαιοκλιματικές μελέτες δεν ήταν ποτέ σταθερό, αλλά μεταβλάβηκε σε όλες τις χρονικές κλίμακες κατά τη διάρκεια όλης της ιστορίας του πλανήτη. Επομένως, η χρήση ντετερμιστικών προσεγγίσεων για το χαρακτηρισμό του κλίματος, ναι είναι βολική για την εισαγωγή των δεδομένων στα μοντέλα πρόβλεψης της κλιματικής αλλαγής, αλλά δεν περιλαμβάνει την πολυπλοκότητα του κλιματικού συστήματος. Επίσης, ούτε οι προγνώσεις βάσει σεναρίων, έστω και αν στηρίζονται στα πιο σύγχρονα κλιματικά μοντέλα, προβλέπουν τη φυσική μεταβλητότητα του παρελθόντος στο σύνολο της. Λόγω της συσχέτισης της κλιματικής μεταβλητότητας με την αβεβαιότητα, η αβεβαιότητα των προβλέψεων προέρχεται από τις παρατηρήσεις του παρελθόντος.

1.5 Ανασκόπηση Ακραίων Καιρικών Φαινομένων

Οι μελέτες των μηχανικών έχουν ως πρώτο μέλημα την αντιμετώπιση ακραίων φαινομένων. Η IPCC (2007a) ορίζει ως ακραίο καιρικό φαινόμενο «ένα φαινόμενο που είναι σπάνιο για ένα συγκεκριμένο τόπο και για μία συγκεκριμένη χρονική στιγμή μέσα στο έτος». Τα ακραία καιρικά φαινόμενα ποικίλουν από τόπο σε τόπο. Ένα ακραίο καιρικό φαινόμενο αποτελεί μία σύνθεση ακραίων καιρικών φαινομένων όπως η ξηρασία ή οι ισχυρές βροχοπτώσεις, που έχουν διάρκεια στο χρόνο, για παράδειγμα διάρκεια μίας ολόκληρης εποχής. Οι επιστήμονες που ασχολούνται με το κλίμα και οι Πολιτικοί Μηχανικοί δε συμφωνούν ως προς το πόσο ασυνήθιστο πρέπει να είναι ένα συμβάν ώστε να μελετηθεί ως ακραίο. Η IPCC αναφέρει ότι «Ένα
Κεφάλαιο 1: Κλιματική Αλλαγή

ακραίο καιρικό φαινόμενο θα έπρεπε κανονικά να είναι τόσο σπάνιο όσο και σπανιότερο από το 10° ή το 90° εκατοστημόριο της παρατηρούμενης συνάρτησης πυκνότητας πιθανότητας. Ωστόσο, σε όρους μηχανικών, το «σπάνιο» συχνά ορίζεται στα πλαίσια της αποδεκτής συχνότητας για αστοχία. Τα μεγάλα φράγματα σχεδιάζονται για ακραία φαινόμενα με μέση συχνότητα επανεμφάνισης τα 10.000 χρόνια. Η διαχείριση ρίσκου για τις πλημμύρες δίνει έμφαση σε φαινόμενα με συχνότητα επανεμφάνισης από 100 έως 500 χρόνια. Ο σχεδιασμός μεταφορών και ο σχεδιασμός συλλογής των ομβρίων ασχολούνται με φαινόμενα που συμβαίνουν συχνότερα και πλησιάζουν τον ορισμό της IPCC (Bonnin et al., 2011).

Η IPCC πρόσφατα(2012) εξέδωσε μία αναφορά με τον τίτλο SREX(Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation), για τη διαχείριση κινδύνου όσον αφορά στα ακραία καιρικά φαινόμενα και τις καταστροφές που προκαλούν.

Στον Πίνακα 1.1 παρουσιάζεται μία περίληψη των παρατηρούμενων και εν συνεχεία (λόγω των παρατηρούμενων) των προβλεπόμενων αλλαγών στις φυσικές επιδράσεις που θα μπορούσαν να πλήξουν τις υποδομές σε παγκόσμια κλίμακα. Τα πιθανοτικά επίπεδα που αναφέρονται, βασίζονται στην υποκειμενική κρίση εμπειρογνωμόνων.

Παρακάτω αναλύεται ο Πίνακας 1.1:

- Η βεβαιότητα στις παρατηρούμενες αλλαγές στα ακραία φαινόμενα εξαρτάται από την ποιότητα και την ποσότητα των δεδομένων αλλά και τη διαθεσιμότητα των μελετών για ανάλυση αυτών, που διαφέρουν από περιοχή σε περιοχή και για διαφορετικά ακραία φαινόμενα. Εκχώρηση της τιμής «χαμηλή βεβαιότητα» σε παρατηρούμενες αλλαγές σε ένα συγκεκριμένο ακραίο φαινόμενο, δε συνιστά ούτε και αποκλείει την πιθανότητα αλλαγών στο εν λόγω ακραίο φαινόμενο.

- Για κάθε δεδομένη εκτίμηση, το επίπεδο βεβαιότητας χαρακτηρίζεται ως μεσαίο, χαμηλό ή υψηλό.
• Όταν εμφανίζεται υψηλή βεβαιότητα στην εμφάνιση ενός φαινομένου, αναφέρεται και το ποσοστό εμφάνισής του (σχεδόν βέβαιο για 99-100%, πολύ πιθανό για 90-100%, πιθανότατο για 66-100%, περισσότερο πιθανό για 50-100 %, εξίσου πιθανό με το απίθανο για 33-66%, απίθανο για 0-33%, πολύ απίθανο για 0-10%, και εξαιρετικά απίθανο για 0-1%). Σε λίγες περιπτώσεις, για τις οποίες υπάρχει υψηλή βεβαιότητα (π.χ. με βάση την φυσική κατανόηση), αλλά για τις οποίες δεν υπάρχουν επαρκείς προβλέψεις των κλιματικών μοντέλων για να παρέχουν μια πιο λεπτομερή εκτίμηση κινδύνου (όπως «πιθανόν»), παρέχεται μόνο η εκτίμηση της βεβαιότητας.

• Για τις εκτιμήσεις με μέση βεβαιότητα, παρέχεται μία κατεύθυνση αλλαγής, χωρίς ωστόσο να προσδιορίζεται η πιθανότητα.

• Για τις εκτιμήσεις με χαμηλή βεβαιότητα, δεν παρέχεται καμία κατεύθυνση αλλαγής.

Πίνακας 1.1 Περίληψη παρατηρούμενων και προβλεπόμενων αλλαγών που μπορεί να επηρεάσουν τις μελέτες των μηχανικών σε παγκόσμιο επίπεδο (Πηγή: Modified from Table 3-1, IPCC 2012: SREX)

<table>
<thead>
<tr>
<th>Καιρικές και Κλιματικές Μεταβλητές</th>
<th>Παρατηρούμενες Αλλαγές</th>
<th>Προβλεπόμενες Αλλαγές</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία</td>
<td>Πολύ πιθανή μείωση του αριθμού των ασυνήθιστα κρύους μερών και νυχτών σε παγκόσμια κλίμακα. Πολύ πιθανή αύξηση του αριθμού των ασυνήθιστα ζεστών ημερών και νυχτών σε παγκόσμια κλίμακα. Μεσαία βεβαιότητα στην αύξηση της διάρκειας ώρας και των αριθμού των θερμών περιόδων. Επίσης, μεσαία βεβαιότητα για κύματα θερμότητας σε πολλές περιοχές. Η χαμηλή ή μέτρια βεβαιότητα για την τάση ακραίων θερμοκρασιών σε ορισμένες περιοχές οφείλεται στην έλλειψη παρατηρήσεων.</td>
<td>Πιθανή αύξηση στη συχνότητα των έντονων βροχοπτώσεων ή αύξηση στη συνολική ποσότητα της συνολικής βροχής από δυνατές βροχοπτώσεις πάνω από πολλές περιοχές του πλανήτη, ιδίως στα υψηλά γεωγραφικά πλάτη και στις τροπικές περιοχές, ενώ το χειμώνα στα βόρεια και μέσα γεωγραφικά πλάτη.</td>
</tr>
<tr>
<td>Κατακρημνίσεις</td>
<td>Πιθανή σημαντική αύξηση του αριθμού των έντονων βροχοπτώσεων (π.χ. 95ο εκατοστημόριο) σε περιοσσότερες περιοχές σε σχέση με αυτές που ισόως υπάρχουν σημαντικές μειώσεις. Παρατηρείται ισχυρή διαφοροποίηση από περιοχή σε περιοχή.</td>
<td>Μικρή βεβαιότητα στις προβλέψεις για ακραίους ανέμους (με εξαίρεση τους ακραίους ανέμους που σχετίζονται με τροπικούς κυκλώνες).</td>
</tr>
<tr>
<td>Κεφάλαιο 1: Κλιματική Αλλαγή</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Παρατηρούμενες Αλλαγές</td>
<td>Προβλεπόμενες Αλλαγές</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Ανεμοί</td>
<td>Χαμηλή βεβαιότητα για τις τάσεις λόγω ανεπάρκειας δεδομένων.</td>
<td>Χαμηλή βεβαιότητα λόγω ανεπάρκειας δεδομένων.</td>
</tr>
<tr>
<td>Μουσώνες</td>
<td>Χαμηλή βεβαιότητα για τις τάσεις λόγω ανεπάρκειας δεδομένων.</td>
<td>Η ανθρωπογενής επίδραση στις τάσεις του θόρυβου Ατλαντικού χαρακτηρίζεται εξίσου πιθανή όσο απίθανη.</td>
</tr>
<tr>
<td>Ελ Νίντο</td>
<td>Μέτρια βεβαιότητα από τις παρελθοντικές τάσεις προς πιο συχνή εμφάνιση του φαινομένου σε περιοχές του Ευρησιοκόκκου Ωκεανού κοντά στον Ισημερινό. Ανεπαρκείς ενδείξεις για πιο συγκεκριμένες δηλώσεις.</td>
<td>Ανεπαρκείς ενδείξεις για πιο συγκεκριμένες δηλώσεις.</td>
</tr>
<tr>
<td>Τροπικοί Κυκλώνες</td>
<td>Χαμηλή βεβαιότητα στις μακροχρόνιες παρατηρούμενες αυξήσεις (π.χ. 40 χρόνια ή περισσότερο) που είναι ισχυρές, λαμβάνοντας υπόψη τις παρελθοντικές μεταβολές στη συνολική της αποδοτικότητα των παρατηρήσεων.</td>
<td>Μέτρια βεβαιότητα στην προβλεπόμενη αύξηση της διάρκειας και της έντασης της ξηρασίας σε ορισμένες περιοχές του κόσμου, συμπεριλαμβανομένης της Νότιας Ευρώπης, της Μεσογείου, της Κεντρικής Ευρώπης, της Βόρειας και Κεντρικής Αμερικής, του Μεξικού, της Βορειοανατολικής Βραζιλίας και της Νότιας Αφρικής. Συνεπεία χαμηλή βεβαιότητα λόγω ανεπαρκούς συμφωνίας μεταξύ των διαφόρων προβλέψεων.</td>
</tr>
</tbody>
</table>

Φαινόμενα συσχετιζόμενα με Καιρικά και Κλιματικά Ακρότατα
Κεφάλαιο 1: Κλιματική Αλλαγή

<table>
<thead>
<tr>
<th>Σημείωση</th>
<th>Παρατηρούμενες Αλλαγές</th>
<th>Προβλεπόμενες Αλλαγές</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξηρασίες</td>
<td>Μέτρια βεβαιότητα ότι ορισμένες περιοχές του κόσμου έχουν διορθώσει πιο έντονη και πιο μακροπεριόδου ξηρασία, ιδίως στη Νότια Ευρώπη και τη Δυτική Αφρική. Επίσης, εντοπίζονται και αντίθετες τάσεις.</td>
<td>Χαμηλή βεβαιότητα στις παγκόσμιες προβλέψεις των αλλαγών για συχνότερη εμφάνιση πλημμύρων λόγω ανεπαρκών αποδεικτικών στοιχείων. Μεσαία βεβαιότητα (με βάση τη φυσική αιτιολόγηση) για τις προβλεπόμενες αυξήσεις των ισχυρών βροχοπτώσεων που δημιουργούν τοπικές πλημμύρες σε ορισμένες περιοχές λεκάνες απορροής. Πολύ πιθανή η πρόωρη εμφάνιση ροών αιχμής στα ποτάμια την άνοιξη από το λιώσιμο του χιονιού και τους παγετώνες.</td>
</tr>
<tr>
<td>Πλημμύρες</td>
<td>Τα διαθέσιμα στοιχεία είναι περιορισμένα για τις ισχυρές παγκόσμιες αλλαγές σε συχνότητα και ένταση σε τοπική κλίμακα. Επιπρόσθετα, υπάρχει μικρή βεβαιότητα και για την τάξη της παγκόσμιας κλίμακας, λόγω ασυμφωνίας μοντέλων. Συνολικά έχουμε μικρή βεβαιότητα. Υψηλή βεβαιότητα στην τάση για πρόωρη εμφάνιση των ακριτών της άνοιξης για ροές ποταμών που προφοροδοτούνται από το λιώσιμο του χιονιού και τους παγετώνες.</td>
<td>Είναι πολύ πιθανή η συμβολή της ανόδου της Μ.Σ.Θ. στις ανοδικές τάσεις της ακραίας παράκτιας υψηλής στάθμης υδάτων. Υψηλή βεβαιότητα ότι οι περιοχές που πλήττονται σήμερα από διάβρωση και πλημμύρες θα συνεχίσουν, λόγω της ολοένα και αυξανόμενης Μ.Σ.Θ., με την απουσία αλλαγών άλλων συμβαλλόμενων παραγόντων που θα απέτρεψαν αυτό το φαινόμενο.</td>
</tr>
</tbody>
</table>

Επιπτώσεις στο Φυσικό Περιβάλλον

12
Κεφάλαιο 1: Κλιματική Αλλαγή

<table>
<thead>
<tr>
<th>Παρατηρούμενες Αλλαγές</th>
<th>Προβλεπόμενες Αλλαγές</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ακραίο επίπεδο στάθμης της θάλασσας και Παράκτιες Επιπτώσεις</td>
<td>Ψηλή βεβαιότητα ότι οι αλλαγές στην παγκόσμια ατμοσφαιρική κουτσούρα θα επηρεάσουν τα κοινωνικά συστήματα σε πολλές περιοχές. Ψηλή βεβαιότητα ότι οι αλλαγές στις θερμοκρασίες και στα κύματα κάλυψης θα επηρεάσουν τις ζωνές της θάλασσας και της εδάφους.</td>
</tr>
<tr>
<td>Άλλες Επιπτώσεις (Καταλισθήσεις και Ψυχρές Περιοχές)</td>
<td>Χαμηλή βεβαιότητα στις παγκόσμιες χρονικές συγκρούσεις για μεγάλες καταλισθήσεις σε ορισμένες περιοχές. Ψηλή αυξημένη της της των παγετώνων με πιθανές προκύπτουσες φυσικές επιπτώσεις.</td>
</tr>
</tbody>
</table>

Αποτελεί κεντρική πρόκληση η κατανόηση του πώς τα καιρικά φαινόμενα, που σχετίζονται με τις πρακτικές του Πολιτικού Μηχανικού, μπορεί να αλλάξουν σε όρους συχνότητας, διάρκειας και έντασης λόγω κλιματικής αλλαγής. Ενώ έχουν γίνει διάφορες προσεγγίσεις για τη μετατροπή των αποτελεσμάτων των μοντέλων GCM σε κλίμακες που να παρουσιάζουν ενδιαφέρον στην πρακτική του Πολιτικού Μηχανικού, μετατρέποντας τις πληροφορίες αυτές στην κλίμακα των έργων, έχει αποδειχθεί ότι δε στέφθηκαν με επιτυχία. Το 2012, η έκθεση του Εθνικού Συμβουλίου Έρευνας (National Research Council-NRC-) των Η.Π.Α. πρότεινε μία Εθνική Στρατηγική για την προώθηση των κλιματικών μοντέλων, ώστε οι Ηνωμένες Πολιτείες να γαλουχήσουν μία ενοποιημένη
προσπάθεια μοντελοποίησης για τον καιρό και το κλίμα, με στόχο την καλύτερη αξιοποίηση των συνεργειών μεταξύ της πρόγνωσης του καιρού, της αφομοίωσης των παρατηρούμενων δεδομένων και της διαμόρφωσης των κλιματικών μοντέλων. Μία τέτοια προσπάθεια, κατάλληλα δομημένη, θα μπορούσε να παράσχει πολύτιμες πληροφορίες στους σχεδιαστές και κατασκευαστές μηχανικούς.
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

15

2 ΕΝΣΩΜΑΤΩΣΗ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΟΥ ΚΛΙΜΑΤΟΣ ΨΗΝ ΤΕΧΝΙΚΗ ΠΡΑΚΤΙΚΗ

Αυτό το κεφάλαιο παρέχει μία ανασκόπηση από τεχνικές πρακτικές και συζητήσεις για το πώς οι μηχανικοί μπορούν να λάβουν υπόψη την κλιματική αλλαγή στο σχεδιασμό των έργων, δεδομένης της αβεβαιότητας του μέλλοντος.

2.1 Το Δίλημμα της Κλιματικής Αλλαγής για τους Μηχανικούς

Οι μηχανικοί κατασκευάζουν υποδομές που πρόκειται να «ζήσουν» για πολλά χρόνια. Τα στοιχεία περί κλιματικής αλλαγής που έχουν οι σύγχρονοι μηχανικοί στα χέρια τους, τους συμβουλεύουν να σχεδιάσουν νέες υποδομές που θα μπορούν να ανταπεξέλθουν στη μελλοντική κλιματική κατάσταση. Οι μακροπρόθεσμες απαιτήσεις για τη χρήση των υποδομών αναγκάζουν τους μηχανικούς να συμπεριλάβουν τις προβλεπόμενες επιπτώσεις της κλιματικής αλλαγής στις σχεδίες τους. Ωστόσο, αν και η πλειοψηφία της επιστημονικής κοινότητας συμφωνεί ότι το κλίμα αλλάζει, υπάρχει σημαντική αβεβαιότητα ως προς τις χωρικές και χρονικές κατανομές των αλλαγών αυτών κατά τη διάρκεια της ζωής των έργων. Η ταυτόχρονη απαίτηση των υποδομών να ανταποκρίνονται στις μελλοντικές ανάγκες, καθώς και η αβεβαιότητα των μελλοντικών κλιματικών συνθηκών οδηγούν την τεχνική πρακτική σε δίλημμα.

Τα σχέδια, οι οικοδομικοί κανονισμοί και οι τεχνικές απαιτήσεις που οφείλουν να τηρούνται στα έργα υποδομών πρέπει να μπορούν να προσαρμοστούν ώστε να «φιλοξενήσουν» μια σειρά από πιθανές διαφοροποιημένες μελλοντικές κλιματικές συνθήκες. Οι δευτερεύουσες επιπτώσεις της κλιματικής αλλαγής, όπως οι αλλαγές στις χρήσεις γης, η διαθέσιμης των φυσικών πόρων και τα δημογραφικά στοιχεία του πληθυσμού θα είναι εξίσου αβεβαιές και θα απαιτούν ευελιξία των μελετητών ως προς την πολιτική και σχεδιασμό των κατασκευών. Οι ισχύοντες κανονισμοί, πρότυπα, κώδικες και νομικές διατάξεις που διέπουν το σχεδιασμό των υποδομών τίθενται πλέον υπό καθοδηγήσεις από την πολιτική προσαρμοστικότητας των νέων σχεδίων. Επιπλέον, διάφορα ενδιαφερόμενα μέρη μπορούν να εκμεταλλευτούν τις αβεβαιότητες που
συνδέονται με την κλιματική αλλαγή και να υποστηρίζουν μόνο τη θέση που
προτιμούν. Η ενσωμάτωση της κλιματικής αλλαγής στην Τεχνική Πρακτική θα
απαιτήσει τεχνική κρίση για την εξισορρόπηση του κόστους με τις πιθανές
συνέπειες αστοχίας.

2.2 Αβεβαιότητα και Στατιστικές Μέθοδοι για την
Αξιολόγηση του Κινδύνου

Η Τεχνική Πρακτική αναγνωρίζει και λαμβάνει υπόψιν τις αβεβαιότητες των
μελλοντικών συνθηκών. Η αβεβαιότητα μπορεί να οριστεί χονδροειδώς ως η
ανεπάρκεια σε πληροφορίες και γνώσεις. Οι μηχανικοί έχουν αναπτύξει
eιδικές μεθόδους για να υπολογίζουν την αβεβαιότητα. Τέτοιες μέθοδοι
περιλαμβάνονται στην πρόληψη μίας πλημμύρας ή στον υπολογισμό της
tαχύτητας ενός ανέμου συγκεκριμένης φοράς κ.α.. Κατόπιν, λαμβάνονται
eιδικές δικλείδες ασφαλείας, όπως το προτεινόμενο ύψος εξάλων έργων μέσω
της χρησιμοποίησης στατιστικών και πιθανολογικών μεθόδων. Οι μηχανικοί
χρησιμοποιούν στατιστικές μεθόδους για να ποσοτικοποιήσουν την
αβεβαιότητα των εμπειρικών πιθανοτήτων κατανομών που χρησιμοποιούνται
στο σχεδιασμό των έργων. Το σφάλμα της δειγματοληψίας είναι σχετικά
eύκολο να ποσοτικοποιηθεί με στατιστικές μεθόδους, όπως είναι τα
dιαστήματα εμπιστοσύνης.

Ωστόσο, υπάρχουν και άλλες πηγές αβεβαιότητας που είναι δύσκολο να
ποσοτικοποιηθούν, όπως η αβεβαιότητα των μοντέλων. Το
χρησιμοποιούμενα στατιστικά μοντέλα ενδέχεται να μην είναι
αντιπροσωπευτικά των μελλοντικών υδρολογικών συμβάντων. Η υπόθεση
tης στασιμότητας συνεπάγεται ότι οι στατιστικές ιδιότητες των υδρολογικών
μεταβλητών σε μελλοντικές χρονικές περιόδους θα είναι παρόμοιες με
προηγούμενες χρονικές περιόδους. Πρόσφατες έρευνες σημειώνουν ότι η
ενδεχόμενη αλλαγή του κλίματος υπονομεύει αυτή την υπόθεση (Milly et al.
2008). Ακόμη και χωρίς την κλιματική αλλαγή, το κλίμα, λόγω φυσικής
ποικιλομορφίας, αλλάζει μέσα σε δεκαετίες ή και πολύ μεγαλύτερες χρονικές
κλίμακες και τα παρατηρούμενα ακρότατα δίνονται για ένα σχετικά μικρό
χρονικό διάστημα, σε σχέση με το δυναμικό εύρος μεταβλητότητας του.
Υπάρχουν, επίσης, πολλαπλές άλλες πηγές αβεβαιότητας και αλλαγής:
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

- Αλλαγές στη ζήτηση για υποδομές
- Αλλαγές στις χρήσεις γης
- Αστικοποίηση
- Αύξηση του δημογραφικού πληθυσμού
- Αλλαγές του τρόπου οικονομικής ανάπτυξης ευπαθών περιοχών όπως κατακλυζόμενες εκτάσεις, έρημοι, διαβρώμενες ακτές και σεισμογενείς περιοχές.

Ο πληθυσμός και η οικιστική ανάπτυξη μπορεί να εξαντλήσουν τους φυσικούς πόρους (π.χ. υπεράντληση των υπόγειων υδάτων, αποψίλωση και διαμόρφωση των ακτών). Επιπρόσθετα, τόσο η κοινωνία όσο και οι μηχανικοί ανησυχούν ολοένα και περισσότερο για το φυσικό περιβάλλον και λαμβάνουν μέτρα για την προστασία του. Τέλος, οι αλλαγές στα οικοσυστήματα και στη σύνθεση των ειδών που διαβιούν σε αυτά είναι ιδιαίτερα αβέβαιες.

2.2.1 Η Μέθοδος της Παρατήρησης (The Observational Method)

Οι Γεωτεχνικοί Μηχανικοί έχουν αντιμετωπίσει την αβεβαιότητα με τη μέθοδο της παρατήρησης (Observational Method) που αρχικά προτάθηκε από τον Karl Terzaghi και εν συνεχεία συζητήθηκε με την έρευνα του Ralph B. Peck (1969). Μπορεί να είναι δυνατόν, να χρησιμοποιηθεί μία τροποποιημένη έκδοση της μεθόδου της παρατήρησης, για να συμπεριλάβει την εγγενή αβεβαιότητα της πρόβλεψης της μελλοντικής κλιματικής αλλαγής. Χρησιμοποιώντας την μέθοδο της παρατήρησης, οι αρχικές δαπάνες των υποδομών μειώνονται κατά το σχεδιασμό, με βάση τις πιο πιθανές παρά τις πιο αντίξοες συνθήκες. Η αβεβαιότητα των διαθέσιμων πληροφοριών αυξάνεται κατά τη διάρκεια της κλιματικής αλλαγής, από τις παρατηρήσεις των επιδόσεων της ίδιας της υποδομής (στην προκειμένη περίπτωση, οι αλλαγές των επιδόσεων είναι σε μέσω κλιματικής αλλαγής).

Τα συγκεκριμένα βήματα για την εφαρμογή της μεθόδου της παρατήρησης στην κλιματική αλλαγή, είναι αυτά που ακολουθούν:
• Ο σχεδιασμός των έργων βασίζεται στις πιο πιθανές μελλοντικές κλιματικές συνθήκες, παρά στις πιο ανεπιθύμητες. Προσδιορίζονται οι πιο δυσμενείς αποκλίσεις από τις πιο πιθανές κλιματικές συνθήκες.
• Τα απαραίτητα μέτρα και οι τροποποιήσεις στο σχεδιασμό λαμβάνονται (εκ των προτέρων) για κάθε προβλέψιμη αρνητική αλλαγή του κλίματος.
• Η απόδοση του έργου παρατηρείται με την πάροδο του χρόνου και αξιολογείται η απόκριση του σχεδιασμού για αλλαγές που παρατηρούνται. Οι παρατηρήσεις αυτές οφείλονται να είναι αξιόπιστες, να αποκαλύπτουν σημαντικά φαινόμενα και να αναφέρονται ταχύτατα ώστε να ενθαρρύνεται η άμεση δράση.
• Ο σχεδιασμός και οι κατασκευαστικές τροποποιήσεις (που προσδιορίστηκαν στα προηγούμενα βήματα) μπορούν αν υλοποιηθούν σε συνάρτηση με τις παρατηρημένες αλλαγές.

Το σοβαρότερο σφάλμα στην εφαρμογή της μεθόδου της παρατήρησης είναι η αδυναμία επιλογής κατάλληλης πορείας δράσης για όλες τις προβλέψιμες αποκλίσεις των αρχικών παραδοχών σχεδιασμού, που αποκαλύπτονται από την παρατήρηση. Η μέθοδος της παρατήρησης δεν πρέπει να χρησιμοποιείται, εκτός εάν ο μηχανικός έχει προεπιλέξει μία πορεία δράσης για κάθε δυσμενή κατάσταση που ενδέχεται να φανεί μέσω των παρατηρήσεων. Ο μηχανικός οφείλει να επινοήσει λύσεις εκ των προτέρων, για όλα τα προβλήματα που μπορεί να προκύψουν υπό τις δυσμενέστερες δυνατές συνθήκες. Σύμφωνα με την αρχική φιλοσοφία της μεθόδου της παρατήρησης, εάν ο μηχανικός δεν μπορεί να λύσει αυτά τα υποτιθέμενα προβλήματα (ακόμα και αν η πιθανότητα εμφάνισης τους είναι πολύ χαμηλή), τότε καθίσταται αναγκαίο να βασιστεί ολόκληρος ο σχεδιασμός στις λιγότερο ευνοϊκές συνθήκες. Η μέθοδος της παρατήρησης συχνά αποφέρει τη μέγιστη οικονομία και τη διασφάλιση της ασφάλειας, εφόσον οι μελέτες μπορούν να τροποποιούνται ενώ προχωρεί η κατασκευή. Η πιθανότητα «προοδευτικής αστοχίας» μπορεί να εισαγάγει ένα πολύ σημαντικό στοιχείο αβεβαιότητας, όπως και η εμφάνιση ενός ακραίου κλιματικού συμβάντος.
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

2.2.2 Προγραμματισμός και Σχεδιασμός Έργων με βάση το Ρίσκο

1) Τι μπορεί να συμβεί ?(π.χ. τι μπορεί να πάει λάθος)
2) Πόσο πιθανόν είναι αυτό να συμβεί?
3) Εάν όντως συμβεί, ποιες είναι οι επιπτώσεις?

Η εκτίμηση ρίσκου εντοπίζει συστηματικά τα πιθανά αβέβαια γεγονότα ή κινδύνους, προσδιορίζει τις συνέπειες σε περίπτωση που λάβει χώρα το συμβάν και εκτιμά την πιθανότητα εμφάνισής του.
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

2.2.3 Μέθοδοι Αξιολόγησης των Κλιματικών Επιπτώσεων

Ένα από τα πρώτα βήματα στην αξιολόγηση του ρίσκου είναι η ταυτοποίηση του. Έχουν παρουσιαστεί πολλές μελέτες για την πιθανή επίδραση της κλιματικής αλλαγής στην τρωτότητα των ανθρώπινων και φυσικών συστημάτων. Οι εκτιμήσεις των επιπτώσεων αξιολογούν τις πιθανές επιπτώσεις της κλιματικής αλλαγής στα φυσικά και ανθρώπινα συστήματα. Οι εκτιμήσεις του κατά πόσον είναι ευάλωτο ένα ανθρώπινο ή φυσικό σύστημα, αναφέρονται στον βαθμό που μπορεί ή αδυνατεί το σύστημα να αντιμετωπίσει τις αρνητικές επιπτώσεις της κλιματικής αλλαγής. Η τρωτότητα (vulnerability) ενός συστήματος είναι συνάρτηση του χαρακτήρα, της έντασης και του ρυθμού της κλιματικής αλλαγής. Με την αξιολόγηση αυτής, γίνεται αντιληπτή η ευαισθησία του συστήματος και η προσαρμοστική του ικανότητα (IPCC,
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

2007b). Οι μηχανικοί, λοιπόν, επιφορτίζονται με την ανάπτυξη συστημάτων που είναι λιγότερο επιρρεπτή σε δυσμενείς κλιματικές επιπτώσεις.

Οι αξιολογήσεις τρωτότητας μπορεί να είναι "top-down", τη στιγμή που οι προβλέψεις των μοντέλων GCM υποβαθμίζουν την κλίμακα (downscaling) σε τοπική ή περιφερειακή και χρησιμοποιούνται για τον προσδιορισμό των επιπτώσεων στο σύστημα. Εναλλακτικά, υπάρχει και η "bottom-up" προσέγγιση της τρωτότητας (Διάγραμμα 2.2), κατά την εκτίμηση της οποίας καθορίζονται τα κατώτατα όρια όπου το σύστημα αστοχεί και, εν συνεχεία, η βασιμότητα του εν λόγω ορίου υπέρβασης αξιολογείται σύμφωνα με τα διαθέσιμα αποδεικτικά στοιχεία (Dessai και Hulme, 2004). Η bottom-up προσέγγιση μοιάζει περισσότερο στην παραδοσιακή ανάλυση των τρόπων αστοχίας που χρησιμοποιείται από τους μηχανικούς και οι συνέπειες της αξιολογούνται σε πρώτη φάση. Η top-down προσέγγιση λαμβάνει υπόψιν ένα περιορισμένο αριθμό σεναρίων από τις κλιματικές προβλέψεις.

Διάγραμμα 2.2 Σύγκριση της top-down με την bottom-up προσέγγιση ως προς την προσαρμοστικότητα στην κλιματική αλλαγή (Πηγή: IPCC)

Εκτός από την αξιολόγηση του τι μπορεί να συμβεί μαζί με τις πιθανές συνέπειες του, η αξιολόγηση ρίσκου περιλαμβάνει επίσης μία εκτίμηση της πιθανότητας να λάβει χώρα ένα συμβάν. Με την αβεβαιότητα της κλιματικής αλλαγής, είναι προβληματικό να εκτιμηθούν οι πιθανότητες των μελλοντικών
κλιματικών συνθηκών, ιδιαίτερα τα ακραία καιρικά φαινόμενα. Οι πιθανότητες που βασίζονται στη στατιστική ανάλυση των παρατηρούμενων γεγονότων του παρελθόντος, δεν μπορούν πλέον να είναι ενδεικτικές για τις μελλοντικές συνθήκες. Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο, τα κλιματικά μοντέλα προβάλουν μόνο ένα υποσύνολο του εύρους των πιθανών μελλοντικών κλιματικών συνθηκών (Stainforth, 2010). Μία άλλη δυνατή προσέγγιση είναι οι πιθανότητες να βασίζονται στην υποκειμενική κρίση εμπειρογνωμόνων. Η IPCC βασίζεται στην κρίση εμπειρογνωμόνων για να δημιουργήσει διαστήματα εμπιστοσύνης στις παρατηρούμενες και προβλεπόμενες κλιματικές αλλαγές. Για παράδειγμα, υπάρχει υψηλή βεβαιότητα ότι η θερμοκρασία και η μέση στάθμη της θάλασσας θα αυξηθούν, αν και η ένταση και ο ρυθμός των φαινομένων αυτών είναι αβέβαια. Από την άλλη πλευρά, μερικές προβλέψεις για κατακρημνίσεις σε περιφερειακό επίπεδο, ενέχουν αβεβαιότητα τόσο ως προς την ένταση όσο και ως προς την κατεύθυνσις τους. Εάν οι διαθέσιμες πληροφορίες χαίρουν μεγάλης εμπιστοσύνης, μπορούν να δοθούν υποκειμενικές εκτιμήσεις με περισσότερη σιγουριά.

2.3 Διαχείριση Ρίσκου (Risk Management)

Η διαχείριση ρίσκου χρησιμοποιεί της πληροφορίες από την αξιολόγηση ρίσκου για να προβεί σε αποφάσεις που είτε θα αποδέχονται τον κίνδυνο είτε θα τον μειώνουν. Η διαχείριση ρίσκου πρέπει να δίνει έμφαση στην πιθανή εμφάνιση μελλοντικών δυσμενών συνθηκών μαζί με τις συνέπειες τους, λαμβάνοντας υπόψιν την αξιοπιστία των διαθέσιμων πληροφοριών. Εν συνεχεία, πρέπει να προκύπτει το μελλοντικό ρίσκο με το κόστος που προκύπτει από τα λαμβανόμενα μέτρα μείωσης των κινδύνων. Γενικά, υπάρχει μία αντίστροφη σχέση μεταξύ των ρίσκων και την ελαχιστοποίηση του κόστους των έργων.

2.3.1 Προγραμματισμός και Τεχνικές Αξιολόγησης

Η Ανάλυση Κόστους – Οφέλους (ςυντομογραφία ΑΚΟ, Benefit-Cost Analysis) χρησιμοποιείται συχνά για να αξιολογήσει τα υπέρ και κατά μεταξύ διαφορετικών σχεδιασμών. Ωστόσο, η ΑΚΟ απαιτεί μία κατανομή πιθανοτήτων των μελλοντικών συνθηκών για να υπολογίσει τα αναμενόμενα μελλοντικά οφέλη και κόστος του έργου. Η εκτίμηση της κατανομής πιθανοτήτων ενέχει μεγαλύτερη αβεβαιότητα με την αλλαγή του κλίματος και οι μελετητές οφείλουν να την συμπεριλάβουν στην ΑΚΟ. Θα πρέπει να εξετάζονται και περαιτέρω κριτήρια απόφασης, όπως η επιλογή εναλλακτικών
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

λύσεων. Οι λύσεις αυτές θα παρέχουν ευελιξία στο να πραγματοποιήσουν αλλαγές θα που μπορούν να ανταπεξέλθουν σε ένα επιρρακτής εύρος πιθανών μελλοντικών συνθηκών.

Μια προσέγγιση που μπορεί να είναι χρήσιμη στις οικονομικά αποδοτικές αποφάσεις, είναι η εισαγωγή του όρου του οριακού κόστους. Όταν σχεδιάζεται ένα έργο με συγκεκριμένα χαρακτηριστικά, μπορούν να προσδιοριστούν τα οριακά εξόδα και οριακά πλεονεκτήματα του κάθε χαρακτηριστικού του ξεχωριστά. Κατά τη διεξαγωγή της ανάλυσης ευαισθησίας (sensitivity analysis), οι μελετητές μπορούν να αξιολογήσουν το πρόσθετο οριακό κόστος της επίτευξης του στόχου μείωσης των κινδύνων, για ολοένα και πιο δυσμενείς οριακά μελλοντικές συνθήκες. Στα έργα προστίθενται χαρακτηριστικά που μείωνουν τους κινδύνους αστοχίας αρκεί, το οριακό όφελος αυτών να υπερβαίνει το οριακό κόστος. Οι μελετητές μπορούν να αξιολογήσουν κατά πόσον είναι οικονομικώς αποδοτικό να λαμβάνουν πρόσθετα μέτρα που αποδίδουν καλύτερα κάτω από ένα ευρύ φάσμα μελλοντικών συνθηκών.

2.3.2 Ευελιξία και Προσαρμοστικότητα Τεχνικού Σχεδιασμού (flexible & adaptive engineering)

Οι μηχανικοί δε θα είναι σε θέση να προβλέψουν κάθε πιθανή κατάσταση για το μέλλον των υποδομών και των συστημάτων. Εκτός, λοιπόν, από την πρόβλεψη πιθανών μελλοντικών συνθηκών, ο σχεδιασμός πρέπει να χαρακτηρίζεται από ευελιξία. Ο ευέλικτος σχεδιασμός περιλαμβάνει την ικανότητα αλλαγής μεγέθους ή/και λειτουργίας της κατασκευής στο μέλλον. Επιπρόσθετα, ο ευέλικτος σχεδιασμός περιλαμβάνει εφεδρικά συστήματα για την προστασία από αστοχίες (de Neufville and Scholtes, 2011).

Χρησιμοποιώντας ένα πλαίσιο διαχείρισης ρίσκου, θα πρέπει να διασφαλίζεται ότι το σύστημα μπορεί να ενημερώνεται με την πάροδο του χρόνου καθώς αλλάζουν οι συνθήκες. Ένα τέτοιο πλαίσιο περιλαμβάνει ένα πρόγραμμα παρακολούθησης για την αξιολόγηση της απόδοσης του συστήματος με την πάροδο του χρόνου και ευελιξία στο να κάνει τις απαιτούμενες αλλαγές. Ένα πρόγραμμα διαχείρισης ρίσκου της κλιματικής αλλαγής μπορεί να ενσωματωθεί στο πρόγραμμα διαχείρισης περιουσιακών
κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

Στοιχείων ενός οργανισμού. Ένας σύστημα διαχείρισης περιουσιακών στοιχείων είναι μία στρατηγική και συστηματική διαδικασία λειτουργίας, συντήρησης, αναβάθμισης και επέκτασης περιουσιακών στοιχείων καθ’ όλο τον κύκλο ζωής τους. Τα προγράμματα διαχείρισης περιουσιακών στοιχείων συνήθως συλλέγουν δεδομένα απόδοσης κατά τη διάρκεια ζωής ενός συστήματος, τα οποία μπορούν να χρησιμοποιηθούν για την αξιολόγηση της απόδοσης του συστήματος σύμφωνα με τις νέες και μεταβαλλόμενες συνθήκες. Ωστόσο, τα κίνητρα περί του κόστους ανάμεσα σε ιδιοκτήτες, χρηματοδότες, σχεδιαστές και χρήστες είναι συνήθως μη ευθυγραμμισμένα, κάνοντας μία προσέγγιση διαχείρισης περιουσιακών στοιχείων πρόκληση για διάφορες επενδύσεις ιδιωτικών και δημόσιων υποδομών.

Το τρίτπυχο “long life, loose fit, low energy”, που εκφράστηκε από τον Alex Gordon (πρόεδρο του Βασιλικού Ινστιτούτου Βρετανών Αρχιτεκτόνων) τη δεκαετία του 1970, παρουσιάζει ένα χρήσιμο οδηγό σχεδιασμού:

- **Long life**: Η μεγάλη διάρκεια ζωής συμβάλει στην αειφορία και τη μείωση εκπομπών αερίων του θερμοκηπίου μέσω της διατήρησης των πρώτων υλών και της εξοικονόμησης ενέργειας που απαιτείται για αφαίρεσίς και αντικαταστάσεις. Η μεγάλη διάρκεια ζωής μίας κατασκευής ενισχύεται με τη θωράκισή της απέναντι σε πυρκαγιές και πλημμύρες και, εν γένει, με το να απαρτίζεται από μέλη ανθεκτικά σε ακραίες θερμοκρασίες, ανέμους και υετούς. Ωστόσο, έργα οικονομικότερα και σχεδιασμένα για μικρότερους κύκλους ζωής, προσφέρουν την ευκαιρία για την απόκτηση καλύτερης γνώσης των κλιματικών και ακραίων καιρικών φαινομένων κατά τον σχεδιασμό μελλοντικών έργων προς αντικατάστασή τους.

- **Loose fit**: Μία «χαλαρότερη» κατασκευή σημαίνει να γίνονται υποδομές με προσαρμοστικότητα σε συνθήκες που δεν μπορούσαν να προβλεφθούν κατά τον αρχικό σχεδιασμό.

- **Low energy**: Η χαμηλότερη κατανάλωση ενέργειας τόσο κατά τη φάση αρχικής κατασκευής, όσο και κατά τη φάση λειτουργίας, παρέχει οικονομικά αλλά και περιβαλλοντικά οφέλη λόγω μείωσης των εκπομπών αερίων του θερμοκηπίου (Gordon, 1972).
2.3.3 Επικοινωνία του Ρίσκου (Risk Communication)
Η κοινοποίηση των ρίσκων είναι μία επαναληπτική διαδικασία για την ανταλλαγή πληροφοριών και απόψεων μεταξύ των ενεργείων μηχανικών, των συμμετέχοντων σε ένα έργο και των φορέων λήψης αποφάσεων (Ayyub, 2014). Μεταξύ των ενδιαφερόμενων συγκαταλέγονται άτομα και θεσμικά όργανα, που επηρεάζονται από τα αποτελέσματα της διαδικασίας προγραμματισμού και σχεδιασμού των έργων ή και εκείνα που κατέχουν ρόλο στην υλοποίηση των σχεδίων. Η κοινοποίηση των ρίσκων είναι απαραίτητη για την αποτελεσματική λήψη αποφάσεων και η διαδικασία της επικοινωνίας πρέπει να αποφανθεί κατά πόσο η λήψη ενός ρίσκου είναι αποδεκτή. Ένα ρίσκο θεωρείται αποδεκτό εάν τη πιθανότητα εμφάνισης μίας δυσμενούς κατάστασης είναι μικρή και οι επιπτώσεις της ελάχιστες. Κατά την επικοινωνία του ρίσκου πρέπει να διενεργούνται συζητήσεις περί της αβεβαιότητας των μελλοντικών κλιματικών συνθηκών και να ενημερώνονται όλα τα ενδιαφερόμενα μέρη, μαζί με τους φορείς λήψης αποφάσεων. Πρέπει να κοινοποιείται προς όλους, ότι οι πιθανές συνέπειες των μελλοντικών γεγονότων δεν μπορούν να προβλεφθούν με ακρίβεια. Συνολικά, για την ανάληψη ενός ρίσκου, απαιτείται να σταθμισθούν οι κίνδυνοι, το κόστος, τα οφέλη και οι κοινωνικές αξίες πριν ληφθεί μία τελική απόφαση.

2.4 Τεχνικά Πρότυπα και Κανονισμοί
Οι μελέτες των Πολιτικών Μηχανικών διέπονται από πρότυπα κατά το σχεδιασμό κτηριακών και υδραυλικών εγκαταστάσεων, όπως π.χ. είναι ο σχεδιασμός πλημμύρας για συγκεκριμένη περίοδο επαναφοράς. Τα πρότυπα αυτά πρέπει να εξελιχθούν ώστε να λαμβάνεται υπόψη η αβεβαιότητα της κλιματικής αλλαγής. Τα Τεχνικά Πρότυπα, γενικά, αναπτύσσονται μέσω μιας διαδικασίας συναίνεσης ανάμεσα στους κατασκευαστές, τους χρήστες και τις ρυθμιστικές αρχές. Πώς μπορεί η κλιματική πληροφορία να χρησιμοποιηθεί αποτελεσματικά ώστε να αναθεωρηθούν τα Τεχνικά Πρότυπα; Θα υπάρξει μία εξισορρόπηση μεταξύ του ασφαλούς σχεδιασμού για ένα μεγαλύτερο εύρος αβεβαιοτήτων γεγονότων και της ταυτόχρονης ελαχιστοποίησης του κόστους των έργων. Η ανάπτυξη νέων Τεχνικών Προτύπων θα μπορούσε να προκύψει μέσα από μία διαδικασία διαχείρισης ρίσκου, σταθμίζοντας τις ενδεχόμενες συνέπειες μίας αστοχίας με το κόστος των προληπτικών μέτρων.
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική

Οι αποφάσεις που καθορίζουν τον προγραμματισμό, το σχεδιασμό, την κατασκευή, τη λειτουργία, την συντήρηση, την ανακαίνιση και αφαίρεση των υποδομών, διέπονται και καθοδηγούνται από Τεχνικά Πρότυπα και Πρακτικές που έχει υιοθετήσει η κοινότητα των μηχανικών. Οι «κοινότητες των υποδομών» εκτείνονται πέρα από τους μηχανικούς και περιλαμβάνουν τους ιδιοκτήτες, τους προμηθευτές πρώτων υλών, τους δημόσιους υπάλληλους τις ρυθμιστικές αρχές και άλλους ενδιαφερόμενους. Όλοι οι προαναφερόμενοι έχουν λόγο στην ανάπτυξη και εφαρμογή των Τεχνικών Προτύπων. Οι μηχανικοί οφείλουν να συνεργαστούν με ειδικούς επιστήμονες του κλίματος για να αναπτύξουν καινοτόμα Τεχνικά Πρότυπα και κανονισμούς. Παρακάτω δίνονται προτάσεις για την συμμετοχή όλων των ενδιαφερόμενων μερών:

- Η διαδικασία για την ανάπτυξη νέων προτύπων και κωδίκων απαιτεί τη συμμετοχή όλων των ενδιαφερόμενων μερών.
- Η υιοθέτηση νέων προτύπων και κωδίκων είναι μία δημόσια πολιτική διαδικασία όπου όλοι οι ενδιαφερόμενοι μπορούν να παρουσιάσουν τις ανησυχίες τους για την ασφάλεια, την υγεία, το οικονομικό κόστος, το κοινωνικό κόστος και τα οφέλη.
- Οι μηχανικοί, οι μετεωρολόγοι και οι επιστήμονες του κλίματος πρέπει να αποδείξουν επιστημονικά και τεχνικά άριστα, σε όλη τη λογική κινούνται οι νέοι κανονισμοί και οι κώδικες για την πρόληψη του κινδύνου.
- Οι μηχανικοί μαζί με κοινωνιολόγους οφείλουν να καθορίσουν τις οικονομικές και κοινωνικές δαπάνες, που απαιτούνται για την εφαρμογή των νέων κανονισμών.
2.5 Κατευθυντήριες Αρχές για την Προσαρμοστικότητα των Κατασκευών

Η FICCATF (Federal Interagency Climate Change Adaptation Task Force) εξέδωσε το 2011 των παρακάτω κατάλογο αρχών για την προσαρμοστικότητα των κατασκευών:

- Υιοθέτηση ολοκληρωμένων προσεγγίσεων
- Προτεραιότητα στο πιο ευάλωτο, δηλαδή να δίνεται προτεραιότητα σε ανθρώπους, τόπους και υποδομές που είναι πιο ευάλωτοι στις κλιματικές επιπτώσεις
- Χρησιμοποίηση της καλύτερης επιστημονικής γνώσης: η προσαρμοστικότητα θα πρέπει να στηρίζεται στην καλύτερη διαθέσιμη επιστημονική κατανόηση της κλιματικής αλλαγής, με τους πιθανούς κινδύνους και τις επιπτώσεις
- Ισχυρες σχέσεις συνεργασίας και συντονισμός μεταξύ πολλών δημόσιων και ιδιωτικών φορέων, με σύγκλιση απόψεων ως προς το επιθυμητό αποτέλεσμα
- Εφαρμογή μεθόδων και εργαλείων διαχείρισης ρύπου, για την επίρρεψη των αναγκών και αξιολόγηση των επιλογών
- Προσέγγιση με σεβασμό στα οικοσυστήματα, στρατηγικές για την αύξηση της προσαρμοστικότητας και βιωσιμότητας τους
- Συνεχής αξιολόγηση και έλεγχος επιδόσεων, εάν τα προσαρμοστικά σχέδια πιάνουν τους επιθυμητούς στόχους
Κεφάλαιο 2: Ενσωμάτωση της Επιστήμης του Κλίματος στην Τεχνική Πρακτική
3 ΔΙΑΧΕΙΡΙΣΗ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ ΛΑΜΒΑΝΟΝΤΑΣ ΥΠΟΨΙΝ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ

3.1 Η Σημασία της Παράκτιας Ζώνης και ο Κίνδυνος της Κλιματικής Αλλαγής

Πάνω από ένα δίσεκατομμύριο άνθρωποι υπολογίζεται ότι κατοικούν σε ακτίνα 100 χιλιομέτρων από κάποια ακτή, 800 εκατομμύρια εκ των οποίων ζουν σε υψόμετρο έως και δέκα μέτρα από την επιφάνεια της θάλασσας (Small and Nichols, 2003/ Mc Granahan et al. 2007). Τα τελευταία 50 χρόνια ο πληθυσμός που ζει σε παράκτιες κοινότητες στην Ευρωπαϊκή Ένωση έχει υπερδιπλασιαστεί, φτάνοντας τα 70.000.000 (το 16% του συνολικού πληθυσμού της γης). Οι παράκτιες περιοχές φιλοξενούν υποδομές για εμπόριο (ψαρότοποι, υδατοκαλλιέργειες, λιμάνια κ.α.), υποδομές για στρατιωτικούς σκοπούς και υποστηρίζουν μία μεγάλη γκάμα τομέων της οικονομίας συμπεριλαμβανομένης της ναυτιλίας και του τουρισμού.

Η παράκτια ζώνη είναι η μεταβατική ζώνη από την ξηρά προς τη θάλασσα, συμπεριλαμβανομένης της υφαλοκρηπίδας (Εικόνα 3.1). Αποτελείται από παράκτιες πεδιάδες, υγροτόπους, εκβολές ποταμών, απόκρημνες ακτές, παραλίες, αμμόλοφους, τη ζώνη θραύσης των κυμάτων και την υφαλοκρηπίδα. Οι περιοχές αυτές είναι συχνά πυκνοκατοικημένες, δυναμικά μεταβαλλόμενες και αντιμετωπίζουν πολλές προκλήσεις που επηρεάζονται άμεσα από τις φυσικές διεργασίες που λαμβάνουν χώρα από την παράκτια ζώνη.

Η όλο και αυξανόμενη ανθρώπινη ανάπτυξη σε συνδυασμό με την παγκόσμια κλιματική αλλαγή θέτουν σε κίνδυνο τις παράκτιες υποδομές, την οικονομία, την ασφάλεια και την ανθρώπινη υγεία. Ακραία φαινόμενα καταγίδας όπως οι καταστροφικοί τυφώνες Katrina και Sandy, κατάφεραν να προκαλέσουν υλικές ζημιές δισεκατομμυρίων δολαρίων μαζί με απώλειες πολλών ανθρώπων ζωών. Ακόμη, η υποβάθμιση της ποιότητας του νερού στα οικοσυστήματα κατά μήκος των ακτών επηρεάζει άμεσα την ανθρώπινη υγεία.

Καθώς η παγκόσμια θάλασσα ανεβαίνει και οι σφοδρές καταγίδες εμφανίζονται συχνότερα και με μεγαλύτερη ένταση, οι παράκτιες κοινότητες καλούνται να είναι σε θέση να συγκρατήσουν τα υψηλά επίπεδα
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

του ύδατος και τα μεγάλα κύματα. Η μακροχρόνια διάβρωση θα απειλήσει κοινότητες, υποδομές, πολύτιμους πολιτιστικούς πόρους και βιότοπους εξαιτίας της κλιματικής αλλαγής και της περιορισμένης διαθεσιμότητας ιζημάτων (NCA, 2014). Για τη διαχείριση αυτού του εξαιρετικά ευάλωτου περιβάλλοντος, πρέπει οι παράκτιες φυσικές διαδικασίες και η πολύπλοκη αλληλεπίδραση μεταξύ νερού, ιζημάτων, έμβιων οργανισμών και κοινωνικών διεργασιών να γίνουν κατανοητές και να προβλέπονται με ορθό τρόπο.

Εικόνα 3.2 Εξιδανικευμένο προφίλ παράκτιας περιοχής συμπεριλαμβανομένων των: ζώνη θραύσης, παραλία, αμμόλοφοι, εκβολές, υγρότοποι, πόλη σε παράκτια πεδιάδα (Πηγή: Nearshore Processes Community)

Τις τελευταίες τρεις δεκαετίες έχει σημειωθεί πρόοδος στην κατανόηση των πολύπλοκων αλληλεπιδράσεων μεταξύ των υδροδυναμικών φορτίων, της μεταφοράς φερτών υλών και των μορφολογικών διαδικασιών. Ωστόσο, οι κοινωνικές ανάγκες αυξάνονται με την αύξηση της παράκτιας αστικοποίησης.
και την ταυτόχρονη μελλοντική αλλαγή του κλίματος. Τόσο στην Ευρωπαϊκή Ένωση όσο και στις Η.Π.Α., έχουν συσταθεί αρκετές υπηρεσίες υπεύθυνες για την αντιμετώπιση καταστάσεων έκτακτης ανάγκης, για την προστασία των ακτών, για διαχείριση πόρων, για έρευνα και μελλοντική πρόβλεψη της κατάστασης των παράκτιων περιοχών.

3.2 Επιδράσεις της Κλιματικής Αλλαγής στην Παράκτια Ζώνη

Οι πιο ευάλωτες περιοχές, ως προς την κλιματική αλλαγή, είναι οι παράκτιες περιοχές χαμηλού υψομέτρου και με ήπια κλίση δαφών. Λόγω της παγκόσμιας αύξησης της μέσης στάθμης της θάλασσας, συνδυασμένη με έντονες μετεωρολογικές παλίρροιες και ισχυρά ακραία καιρικά φαινόμενα, οι παράκτιες περιοχές υπόκεινται στον κίνδυνο διαβρώσεων. Οι διαβρώσεις σε κάθε παράκτια περιοχή και ο κατακλυσμός των ακτών λόγω της ανόδου της στάθμης της θάλασσας μπορούν να οδηγήσουν σε πιθανή διαχωριστική οπισθοχώρηση των ακτών. Σύμφωνα με το νόμο του Bruun η ανόδος της στάθμης της θάλασσας για «Χ» εκατοστά προκαλεί ανάλογη οπισθοχώρηση της ακτής για «Χ» μέτρα. Οτσόσο, ο εν λόγω νόμος με τις επακόλουθες προβλέψεις ενέχουν μεγάλη αβεβαιότητα.

Οι παράκτιες διαβρώσεις προκύπτουν από τη συνισταμένη διαφόρων κλιμακικών δυνάμεων όπως οι άνεμοι, η θερμοκρασία, η στάθμη της θάλασσας και οι τοπικές κατακρημνίσεις σε κάθε περιοχή. Η μεταβολή της θάλασσας στάθμης επηρεάζει τα κυματικά χαρακτηριστικά (χαρακτηριστικό ύψος κύματος, περίοδος, κατεύθυνση), με συνέπεια να μεταβάλει την ιζηματομεταφορά προς την ακτή, τόσο στο μέγεθος, όσο και στο πλήθος των ιζημάτων. Τα κύματα καταγίδαν με την ορμή τους, «ξεπλένουν» την ακτή και μεταφέρουν την άμμο στα ανοιχτά, διαβρώνοντας έτσι την παραλία. Κάποιες ποσότητες αυτών των μεταφερόμενων ιζημάτων τοποθετούνται σε υποθαλάσσιους αναβαθμούς, ενώ άλλες μεταφέρονται στα βαθειά χωρίς προοπτική επαναφοράς τους στην ακτή (Εικόνα 3.2). Ακόμη, άστοχες ανθρωπογενείς παρεμβάσεις (υλοποίησεις σκληρών παράκτιων έργων) για προστασία των παράκτιων περιοχών επιδεινώνουν την κατάσταση παρακείμενων ακτών. Με την άνοδο της μέσης στάθμης της θάλασσας και την
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψη την Κλιματική Αλλαγή

ταυτόχρονη εμφάνιση ισχυρών καταιγίδων, τα επίπεδα του νερού ανυψώνονται όλο και γρηγορότερα, με αποτέλεσμα όλο και ορμητικότερα παράκτια ρεύματα και ακολούθως ταχύτερη απώλεια εδαφών της παράκτιας ζώνης.

Εικόνα 3.2 «Ξέπλυμα» (wave swash) της ακτής από τα κύματα και μεταφορά ιζήματος στα βαθιά (Πηγή: http://thebritishgeographer.weebly.com/coastal-processes.html)

Η τρωτότητα των παράκτιων περιοχών αυξάνεται με τη δράση των κυματικών καταιγίδων, αλλά όπως προαναφέρθηκε είναι σε άμεση συνάρτηση με το τοπογραφικό υψόμετρο, την κλίση της ακτής και τη λιθολογική της σύσταση. Αναφορικά με τις κυματικές καταιγίδες, πιο καταστροφικές θεωρούνται οι χειμερινές και οι τυφώνες. Το είδος των πετρωμάτων και η στρωματογραφία κάθε παράκτιας περιοχής, καθορίζουν το ρυθμό διάβρωσης υπό την κυματική δράση. Για αργιλικά μαλακά εδάφη, οι ρυθμοί διάβρωσης είναι υψηλοί, εν αντιθέσει με σκληρά ασβεστολιθικά εδάφη, που είναι πολύ χαμηλότεροι. Οι δελταϊκές περιοχές χαρακτηρίζονται ως περιοχές υψηλής τρωτότητας, βρίσκονται σε χαμηλά υψόμετρα και δέχονται εναποθέσεις χαλαρών και μη συνεκτικών ιζημάτων. Αντίθετα, οι βραχώδεις παράκτιες περιοχές χαρακτηρίζονται από χαμηλή τρωτότητα, καθώς αποτελούνται από σκληρά αλπικά πετρώματα.

Μελέτες, συνδέουν την υπερθέρμανση του πλανήτη και τις εκπομπές αερίων του θερμοκηπίου με τις ισχυρές βροχοπτώσεις και τις πλημμύρες. Έρευνες δείχνουν ότι η πιθανότητα ακραίας βροχόπτωσης σε μια οποιαδήποτε ημέρα, αυξήθηκε κατά 7%, κατά το τελευταίο μισό του 20ου αιώνα. Ακόμη, διαπιστώνεται ότι η κλιματική αλλαγή έχει σχεδόν διπλασιάσει τον κίνδυνο εμφάνισης υπερβολικής υγρασίας, που προκαλεί πλημμύρες. Τα παραπάνω,
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψη την Κλιματική Αλλαγή

σε συνδυασμό με ακραία καιρικά φαινόμενα και την αυξημένη στάθμη της θάλασσας, καθιστούν τις παράκτιες περιοχές ευάλωτες και σε πλημμύρες.

Πέραν των πλημμυρών και διαβρώσεων, η κλιματική άλλη επηρεάζει και τα κατολισθητικά φαινόμενα μίας περιοχής. Οι κατολισθήσεις οφείλονται κατά κύριο λόγο σε φυσικές διεργασίες, ωστόσο επηρεάζονται αρκετά από τις ανθρώπινες παρεμβάσεις. Η συσχέτιση του φαινομένου των κατολισθήσεων με την ποσότητα της βροχόπτωσης, καθιστά τις κατολισθήσεις εξαρτώμενες από το εκάστοτε κλιματικό καθεστώς της περιοχής και, επομένως, ευπαθείς σε πιθανές αλλαγές του. Ωστόσο, οι μελλοντικές προβλέψεις του φαινομένου, δεν ακολουθούν τις προβλέψεις των κατακρημνίσεων παγκοσμίως, εξαιτίας της μεγαλύτερης συσχέτισης των κατολισθήσεων με τα τοπικά χαρακτηριστικά της εκάστοτε περιοχής μελέτης (σύσταση πετρωμάτων, τοπογραφία της περιοχής).

Παρακάτω στον Πίνακα 3.1, δίνονται οι τρεις κύριοι κλιματικοί παράγοντες που επιδρούν στην τρωτότητα των παράκτιων ζώνων.

Πίνακας 3.1 Κύριες κλιματικές μεταβλητές με επιπτώσεις στην παράκτια ζώνη

<table>
<thead>
<tr>
<th>Κλιματικές μεταβλητές</th>
<th>Αναμενόμενες αλλαγές μέχρι το 2100</th>
<th>Επιπτώσεις στην παράκτια ζώνη</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΕΣΗ ΣΤΑΘΜΗ ΤΗΣ ΘΑΛΑΣΣΑΣ</td>
<td>Προβλέπεται άνοδος της μέσης στάθμης της θάλασσας της τάξεως των 0.2 – 0.85 cm παγκοσμίως μέχρι το 2100, ανεξάρτητα της ενεργού τεκτονικής κάθε περιοχής και τη λιθολογικής σύστασης.</td>
<td>Προκαλεί διάβρωση της παράκτιας ζώνης με μεγάλη πιθανότητα πλημμύρας. Η διάβρωση είναι πιο έντονη σε μαλακά αργιλικά εδάφη και σε δέλτα ποταμών, σε αντίθεση με τα ασβεστολιθικά εδάφη που είναι πιο σκληρά.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

3.3 Το Μέλλον των Ερευνών στην Παράκτια Ζώνη

Οι έρευνες, που αφορούν στην παράκτια ζώνη, συνδυάζουν τις κοινωνικές ανάγκες με τις επιστημονικές προκλήσεις. Οι έρευνες αφορούν στη σύζευξη και ανατροφοδότηση μεταξύ των τομέων της υδροδυναμικής, της μορφοδυναμικής, των ανθρωπογενών αλληλεπιδράσεων καθώς και μεταξύ των μετεωρολογικών, γεωλογικών, υδρολογικών και βιολογικών διεργασιών. Για παράδειγμα, οι παράκτιες διεργασίες μπορούν να περιλαμβάνουν αναταράξεις, ωκεάνια κύματα, ρεύματα, άνοδο της στάθμης λόγω παλίρροιας, πλημμύρες και ιζηματομεταφορά (Διάγραμμα 3.1). Επιπρόσθετα, οι διαδικασίες αυτές και η αλληλεπίδραση τους συμβαίνουν σε ποικίλες χωρικές και χρονικές κλίμακες (από δευτερόλεπτα έως δεκαετίες και από εκατοστά σε 100 km -βλ. Διάγραμμα 3.1-). Επιπλέον, οι άνθρωποι μεταβάλουν την παράκτια ζώνη μέσω της οικιστικής ανάπτυξης και των υποδομών, επηρεάζοντας την υδροδυναμική, τη μορφοδυναμική και τα παράκτια

<table>
<thead>
<tr>
<th>Κλιματικές μεταβλητές</th>
<th>Αναμενόμενες αλλαγές μέχρι το 2100</th>
<th>Επιπτώσεις στην παράκτια ζώνη</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΕΤΕΩΡΟΛΟΓΙΚΗ ΠΑΛΙΡΡΟΙΑ</td>
<td>Χαμηλή βεβαιότητα στις προβλέψεις λόγω της έλλειψης στοιχείων, διότι είναι συνδυασμός πολλών παραγόντων, κυρίως της πίεσης και των ανέμων. Επομένως, η δράση της ακολουθεί τις προβλέψεις των χαρακτηριστικών των κυμάτων (προβλέπεται άνοδος κατά 40% του Hs), της ανόδου της θερμοκρασίας και των ανέμων.</td>
<td>Οι επιπτώσεις στην παράκτια ζώνη κυμαίνονται από μικρές έως ολέθριες, ειδικά όταν η μετεωρολογική παλίρροια συνδυάζεται με την αστρονομική. Μπορεί να προκαλέσει τροποποίηση της μορφολογίας του εδάφους, είτε με τοποθέτηση ή απομάκρυνση του ιζήματος. Επίσης, μπορεί να προκαλέσει αλλοίωση του παράκτιου περιβάλλοντος και σε ακραίες περιπτώσεις καταστροφή καλλιεργειών, δασών ή και οικοτόπων.</td>
</tr>
<tr>
<td>ΑΝΕΜΟΙ</td>
<td>Χαμηλή βεβαιότητα στις προβλέψεις λόγω της έλλειψης στοιχείων (εξαιρούνται οι άνεμοι που σχετίζονται με τους τροπικούς κυκλώνες).</td>
<td>Σε συνδυασμό με την άνοδο της Μ.Σ.Θ και της μετεωρολογικής παλίρροιας, ευθύνονται για τη δημιουργία μεγάλων κυμάτων που έχουν ολέθριες επιπτώσεις για την παράκτια ζώνη.</td>
</tr>
</tbody>
</table>
κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

οικοσυστήματα. Λόγω αυτού του μεγάλου φάσματος διεργασιών και κλιμάκων, η παράκτια ζώνη καθίσταται πολύπλοκη για να μελετηθεί. Παρακάτω παρουσιάζονται οι κύριοι (2) τομείς που παρουσιάζουν ερευνητικό ενδιαφέρον και είναι καθοριστικοί στην ολοκληρωμένη διαχείριση της παράκτιας ζώνης.

Διάγραμμα 3.1 Εννοιολογική αναπαράσταση των υδροδυναμικών διεργασιών και μορφολογική εξέλιξη των ακτών. Η αριστερή πλευρά του διαγράμματος δείχνει παραδείγματα θαλάσσιων διεργασιών, που προκαλούν αλλαγές στα μορφολογικά χαρακτηριστικά που φαίνονται δεξιά. Με κόκκινη σκίαση, φαίνονται οι χρονικές κλίμακες πάνω από τις οποίες οι άνθρωποι επηρεάζουν τόσο τις διαδικασίες όσο και τα χαρακτηριστικά του παράκτιου περιβάλλοντος. (Πηγή: Nearshore Processes Community)

3.3.1 Μακροπρόθεσμη Παράκτια Εξέλιξη λόγω Φυσικών και Ανθρωπογενών Διεργασιών

Η μακροχρόνια διάβρωση, τόσο λόγω της κλιματικής αλλαγής, όσο και της περιορισμένης διαθέσιμης ιζημάτων (NCA, 2014), απειλεί τις ανθρώπινες υποδομές, τα πολιτιστικά τοπία και τα παράκτια οικοσυστήματα. Οι μακροχρόνιες παράκτιες μεταβολές είναι αθροιστικό αποτέλεσμα βραχυπρόθεσμων διαδικασιών, όπως οι κυματικές δράσεις και η άνοδος της θαλάσσιας στάθμης λόγω καταιγίδας (με επακόλουθη διάβρωση ή προσαύξηση της ακτής). Οι μακροπρόθεσμες αλλαγές στις ακτές μπορεί να έχουν μεγάλη χωρική μεταβλητότητα, λόγω της πολυπλοκότητας των διεργασιών σε συγκεκριμένα τμήματα της ακτογραμμής. Για παράδειγμα, σε μία ακτή που διαβρώνεται, μπορεί λίγα χιλιόμετρα μακριά της να εμφανίζεται συσσώρευση ιζήματος και κατ’ επέκταση προέλαση της ακτής. Επιπρόσθετα,
οι ανθρωπογενείς δραστηριότητες μπορεί να αλλάξουν τις φυσικές διεργασίες. Η αλληλεπίδραση διπλής κατεύθυνσης και ανατροφοδότηση μεταξύ των φυσικών δράσεων που λαμβάνουν χώρα στην ακτογραμμή και των ανθρώπινων δραστηριοτήτων, καθιστά το παράκτιο σύστημα «συζευγμένο». Η κατανόηση των μελλοντικών, παράκτιων συνθηκών και η ακριβής πρόβλεψη των αλλαγών για μεγάλες χρονικές κλίμακες, είναι απαραίτητες προϋποθέσεις για τη βιωσιμότητα των ακτών (National Research Council, 2014).

Η μακροπρόθεσμη αλλαγή των ακτών, που επηρεάζεται χρονικά και χωρικά από πλήθος μεταβλητών διαδικασιών με πολύπλοκες και μη γραμμικές αναδράσεις, είναι δύσκολο να προβλεφθεί. Για παράδειγμα, η μακροπρόθεσμη διαφοροποίηση των ακτών μπορεί να εξαρτάται από την επίδραση πολλών ανθρωπογενείς και φυσικές διαδικασιών, καθιστώντας το παράκτιο σύστημα «συζευγμένο». Η κατανόηση των μελλοντικών, παράκτιων συνθηκών και η ακριβής πρόβλεψη των αλλαγών για μεγάλες χρονικές κλίμακες, είναι απαραίτητες προϋποθέσεις για τη βιωσιμότητα των ακτών (National Research Council, 2014).

Για να βελτιωθούν οι μακροχρόνιες προβλέψεις της παράκτιας αλλαγής, απαιτείται γνώση των οικονομικών και κοινωνικών διαδικασιών, που ζευγαρώνουν τις ανθρώπινες παρεμβάσεις με τις φυσικές διεργασίες. Οι φυσικές και ανθρωπογενείς διαδικασίες συνεπάγονται σε ανθρώπινες παρεμβάσεις με τις φυσικές διεργασίες. Ωστόσο, η κατανόηση των ανθρώπινων δραστηριοτήτων και η πρόβλεψή τους για τις φυσικές διαδικασίες είναι δύσκολο να προβλεφθούν. Η εξέλιξη των ακτών μπορεί να επηρεάσει την ακτογραμμή μπροστά στις ανθρώπινες παρεμβάσεις με τις φυσικές διαδικασίες. Οι φυσικές και ανθρωπογενείς διαδικασίες είναι δύσκολο να προβλεφθούν. Η εξέλιξη των ακτών μπορεί να επηρεάσει την ακτογραμμή μπροστά στις ανθρώπινες παρεμβάσεις με τις φυσικές διαδικασίες. Οι φυσικές και ανθρωπογενείς διαδικασίες είναι δύσκολο να προβλεφθούν. Η εξέλιξη των ακτών μπορεί να επηρεάσει την ακτογραμμή μπροστά στις ανθρώπινες παρεμβάσεις με τις φυσικές διαδικασίες. Οι φυσικές και ανθρωπογενείς διαδικασίες είναι δύσκολο να προβλεφθούν.
κατανόηση τόσο των οικονομικών κινήτρων, πριν την υιοθέτηση οποιασδήποτε στρατηγικής, όσο και την κατανόηση της δυναμικής σχέσης μεταξύ επεμβάσεων και φυσικών διεργασιών. Οι έρευνες πάνω σε ευρύ φάσμα συζευγμένων παράκτιων και οικονομικών συστημάτων είναι ελάχιστες. Ο συνδυασμός νέων τεχνικών παρατήρησης και μοντελοποίησης, θα αποφέρει πρόοδο προς την καλύτερη κατανόηση της σύζευξης μεταξύ ανθρωπίνων επεμβάσεων και φυσικών διεργασιών (McNamara and Werner, 2008a).

Εικόνα 3.3 Παράδειγμα μακροχρόνιας αλλαγής της ακτογραμμής κατά μήκος του νησιού Hatteras, Η.Π.Α. (Πηγή: NCA)

Ο απώτερος στόχος της έρευνας πάνω στις μακροχρόνιες αλλαγές στην παράκτια ζώνη, είναι η ανάπτυξη ακριβών και αξιόπιστων προβλέψεων των φυσικών διεργασιών και ανθρώπινων επεμβάσεων για πολλαπλές χρονικές κλίμακες. Για να επιτευχθεί αυτός ο στόχος, στους έρευνητές πρέπει να τεθούν οι παρακάτω ερωτήσεις:

η συζευγμένης παράκτιας και οικονομικής συστημάτων είναι ελάχιστες. Ο συνδυασμός νέων τεχνικών παρατήρησης και μοντελοποίησης, θα αποφέρει πρόοδο προς την καλύτερη κατανόηση της σύζευξης μεταξύ ανθρωπίνων επεμβάσεων και φυσικών διεργασιών (McNamara and Werner, 2008a).

Εικόνα 3.3 Παράδειγμα μακροχρόνιας αλλαγής της ακτογραμμής κατά μήκος του νησιού Hatteras, Η.Π.Α. (Πηγή: NCA)

Ο απώτερος στόχος της έρευνας πάνω στις μακροχρόνιες αλλαγές στην παράκτια ζώνη, είναι η ανάπτυξη ακριβών και αξιόπιστων προβλέψεων των φυσικών διεργασιών και ανθρώπινων επεμβάσεων για πολλαπλές χρονικές κλίμακες. Για να επιτευχθεί αυτός ο στόχος, στους έρευνητές πρέπει να τεθούν οι παρακάτω ερωτήσεις:
1. Ποιοι είναι οι σημαντικότεροι παράγοντες που επηρεάζουν την διαθεσιμότητα των ιζημάτων και πώς μπορούν τα μοντέλα να ποσοτικοποιήσουν τους γεωλογικούς περιορισμούς και τις οικολογικές διεργασίες?

2. Ποια είναι η αλληλεπίδραση και η ανάδραση μεταξύ βραχυπρόθεσμων διεργασιών (όπως οι καταιγίδες) και μακροπρόθεσμων διαδικασιών (όπως η άνοδος της στάθμης της θάλασσας)?

3. Πώς μπορούν να προκύψουν μοντέλα μακροπρόθεσμης εξέλιξης της ακτογραμμής από μοντέλα βραχυπρόθεσμων διαδικασιών?

4. Πώς μπορούν να προκύψουν μοντέλα μακροπρόθεσμης δυναμικής και ποιοι είναι ο αντίκτυπος στη δυναμική των παράκτιων συστημάτων και στη βιωσιμότητά τους;

Με την αλλαγή του παγκόσμιου κλίματος, που προκαλεί άνοδο της μέσης στάθμης θάλασσας και αλλάζει το μοτίβο των καταιγίδων για τις επόμενες δεκαετίες, είναι πολύ σημαντικό να καταλάβουμε πώς θα ανταποκριθεί και θα εξελιχθεί η ακτογραμμή υπό αυτές τις δράσεις. Οι παράκτιες πυκνοκατοικημένες περιοχές είναι πιο επιρρεπείς και ευάλωτες ως προς την κλιματική αλλαγή, σε σχέση με αυτές της ενδοχώρας, όπως εξάλλου αποδείχτηκε από τις πρόσφατες καταστροφές από τους τυφώνες Katrina και Sandy. Η καλύτερη γνώση των μακροχρόνιων μορφολογικών και κοινωνικών διεργασιών θα βοηθήσει στην ορθή λήψη αποφάσεων ως προς την κλιματική αλλαγή, σε σχέση με αυτές της ενδοχώρας, όπως εξάλλου αποδείχθηκε από τις πρόσφατες καταστροφές από τους τυφώνες Katrina και Sandy. Η καλύτερη γνώση των μακροχρόνιων μορφολογικών και κοινωνικών διεργασιών θα βοηθήσει στην ορθή λήψη αποφάσεων ως προς το κοινωνικο-οικονομικό κόστος και τα πλεονεκτήματα εναλλακτικών δράσεων των μηχανικών για αντιμετώπιση της μακροχρόνιας διάβρωσης. Η περαιτέρω ικανότητα μακροπρόθεσμης πρόβλεψης θα συνδράμει σε:

Προληπτικές λύσεις για τη βιωσιμότητα των ακτών: Αντί για εφαρμογή «αντιδραστικής γεωμηχανικής» πάνω στην ακτή (Smith et al., 2014), οι εκάστοτε διαχειριστές των παράκτιων ζωνών πρέπει να καθορίζουν τη βέλτιστη προστασία της ακτής, βασιζόμενοι σε εκτιμήσεις των πιθανών μακροχρόνιων διεργασιών θα βοηθήσει στην ορθή λήψη αποφάσεων ως προς το κοινωνικο-οικονομικό κόστος και τα πλεονεκτήματα εναλλακτικών δράσεων των μηχανικών για αντιμετώπιση της μακροχρόνιας διάβρωσης. Η περαιτέρω ικανότητα μακροπρόθεσμης πρόβλεψης θα συνδράμει σε:
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

διάβρωση. Τέτοια μέτρα είναι σαφώς προτιμότερα από μελλοντικές ανακατασκευές υποδομών που αστόχησαν.

Kalύτερη καθοδήγηση για μείωση της παράκτιας τρωτότητας: Μία καλύτερη επιστημονική προσέγγιση στη μορφοδυναμική απόκριση της ακτής, που θα εμπεριέχει τη συζευγμένη σχέση μεταξύ φυσικών διεργασιών και ανθρωπικών επεμβάσεων και θα αντικατοπτρίζει τη χωρική μεταβλητότητα των παράκτιων αποκρίσεων, θα καταστήσει δυνατό στις κοινότητες να προβλέπουν τα μελλοντικά κόστη και οφέλη της παράκτιας προστασίας. Βασιζόμενες στα σχετικά κόστη και πλεονεκτήματα, οι παράκτιες κοινότητες μπορούν να ποσοτικοποιήσουν και να μετριάσουν την τρωτότητα τους ως προς τους παράκτιους κινδύνους.

3.3.2 Ακραία Φαινόμενα: Πλημμύρες, Διάβρωση και επακόλουθη Ανάκαμψη

Ενώ η διαδρομή του τυφώνα Sandy και η πιθανότητα για πλημμύρα είχαν προβλεφθεί λίγες μέρες πριν αυτός φτάσει στην ξηρά, οι παράκτιες κοινότητες δεν ήταν προετοιμασμένες για τις ακραίες ζημιές που προκλήθηκαν κατά μήκος της ακτογραμμής (Εικόνα 3.4). Τα ακραία φαινόμενα, εξ ορισμού, συμβαίνουν σπάνια. Οι δυνατοί άνεμοι, τα υψηλά επίπεδα του νερού, τα κύματα και τα ισχυρά ρεύματα κατά τη διάρκεια του Sandy ήταν όλα ακραία, όπως και οι επακόλουθες καταστροφές. Ο τυφώνας Sandy προκάλεσε πλημμύρες και διαβρώσεις κατά μήκος εκατοντάδων μέτρων ακτογραμμής, προκάλεσε ζημιές σε κτίρια, πλημμύρησε την πόλη της Νέας Υόρκης, δημιούργησε νέες εισόδους νερού στην ηπειρωτική χώρα και έσπειρε τον άλληρο στις μεταφορές και σε υποδομές δημόσιας ωφέλειας. Όπως τα tsunamis, έτσι και οι ακραίες καταιγίδες μπορούν να προκαλέσουν έντονες παράκτιες πλημμύρες και ταχείες μορφολογικές μεταβολές στην παράκτια ζώνη, αποτελώντας σημαντικό κίνδυνο για την κοινωνία (Sallenger et al., 2004, 2005, 2006, 2007). Χρειάζονται βελτιωμένα μοντέλα που θα μπορούν να προβλέψουν στους πολίτες ακριβείς και έγκαιρες προειδοποιήσεις για τη σοβαρότητα μίας επικείμενης ακραίας κατάστασης.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

Εικόνα 3.4 Φωτογραφίες από (αριστερά) τον τυφώνα Sandy που πλημμύρισε την Atlantic City, New Jersey και (δεξιά) από την καταιγίδα El Nino που πλημμύρισε το Del Mar, California.

Οι οικονομικές απώλειες που σχετίζονται με τις παράκτιες καταιγίδες έχουν αυξηθεί σημαντικά, κυρίως λόγω αύξησης του πληθυσμού σε ευάλωτες παράκτιες περιοχές (NRC, 2014). Οι παράκτιες πλημμύρες κατά τη διάρκεια των ακραίων καταιγίδων μπορεί να επιδεινωθούν από την άνοδο της στάθμης της θάλασσας και, λόγω του ολοένα και αυξανόμενου παράκτιου πληθυσμού, οι επιπτώσεις των πλημμυρών στις υποδομές των μεταφορών θα μπορούσαν να αποτελέσουν μία από τις μεγαλύτερες απειλές της κλιματικής αλλαγής (FitzGerald et al., 2007; Emanuel, 2013; Grinstead and Moore, 2013). Το ύψος κύματος και η μετεωρολογική παλίρροια (storm surge) που σχετίζονται με την πιθανότητα πλημμύρας, επηρεάζονται από το μέγεθος της καταιγίδας και την μέγιστη ταχύτητα του ανέμου. Λόγω παράκτιας αστικοποίησης, αλλάζει το ειδικό βάρος των επιπτώσεων των μετεωρολογικών παλιρροιών και νέες περιοχές θα γίνουν ευάλωτες σε πλημμύρες (Bilskie et al., 2014). Γίνεται κατανοητό ότι οι χάρτες παράκτιων πλημμυρών πρέπει να γίνουν πιο αξιόπιστοι, καθώς τα έξοδα από τις ζημιές των πλημμυρών θα μπορούσαν έτσι να μειωθούν.

Έχει σημειωθεί μεγάλη πρόοδος στην κατανόηση των διεργασιών των κυμάτων, των ρευμάτων, της θαλάσσιας διείσδυσης, της μεταφοράς ιζημάτων και του ανέμου που συνδυάζονται και προκαλούν πλημμύρες στις παραλίες και μορφολογικές αλλαγές στις παράκτιες περιοχές και κοινότητες. Οι επιπτώσεις των καταιγίδων εξαρτώνται από τη στιγμή εμφάνισής τους, τη
κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

χρονική διάρκεια, την ένταση και την τοποθεσία τους (Georgas et al., 2014). Επιπρόσθετα, οι αλληλεπιδράσεις μεταξύ παλιρροιακών ρευμάτων, ανεμογενών ρευμάτων και κυματογενών ροών με την ταυτόχρονη υψηλή στάθμη νερού, ενισχύουν τις δράσεις που πλήττουν την παραλία και αυξάνουν τη μεταφορά ιζημάτων και ρύπων (Mulligan et al. 2008). Πρόσφατας έρευνες δείχνουν ότι τα μακρά κύματα (Chen et al., 2014) και οι άνεμοι (Soomere et al., 2013) μπορεί να επιδεινώσουν τις μετεωρολογικές παλίρροιες και να ανεβάσουν επιπλέον τη στάθμη των υδάτων. Οι μελέτες των συνεπειών των δυνατών ανέμων, των μεγάλων κυμάτων, της ισχυρής μεταφοράς ιζημάτων, των μεγάλων βαθυμετρικών αλλαγών και των αλληλεπιδράσεων μεταξύ υδατών ενισχύουν την κατανόηση μας γύρω από τα ακραία φαινόμενα.

Λόγω πρακτικών δυσκολιών, υπάρχουν λίγες παρατηρήσεις πάνω στις διαδικασίες που λαμβάνουν χώρα κατά διάρκεια ακραίων καταιγίδων. Παρά το γεγονός ότι τα κύματα έχουν μετρηθεί από την υφαλοκρηπίδα και οι άνεμοι και τα επίπεδα των υδάτων έχουν μετρηθεί κατά μήκος της ακτής, υπάρχουν ελάχιστες παρατηρήσεις για την κυματική αναρρίχηση, την επιφανειακή απορροή, τη μεταφορά ιζημάτων, τη βαθυμετρική εξέλιξη και τη διαδικασία κατανόησης των εν λόγω διαδικασιών, κατά τη διάρκεια ακραίων καταιγίδων. Επιπρόσθετα, στάντια βρίσκονται παρατηρήσεις των φυσικών διεργασιών που οδηγούν στην ανάκαμψη του τοπίου μετά από μία ακραία καταιγίδα, συμπεριλαμβανομένης της αναδόμησης της παραλίας και του φυσικού κλεισίματος των υδάτινων παραβάσεων στην ενδοχώρα. Οι παράκτιες παρατηρήσεις των εν λόγω διαδικασιών, κατά τη διάρκεια ακραίων καταιγίδων, μπορούν να αποσπάταις στην κατανόηση της κυματικής αναρρίχησης και στην κατανόηση των μορφολογικών αλλαγών που προκύπτουν από κύματα tsunamis. Παρακάτω, αναφέρονται οι ειδικές προκλήσεις για την κατανόηση της διάδοσης των κυμάτων προς την ακτή, την κυματική αναρρίχηση, την επακόλουθη επιφανειακή απορροή, τις πλημμύρες και τη μορφολογική εξέλιξη των ακτογραμμών. Επίσης, διερευνώνται οι επιπτώσεις των υποδομών στην κυματική αναρρίχηση και στην κατανόηση των μορφολογικών αλλαγών που προκύπτουν από κύματα tsunamis. Παρακάτω, αναφέρονται οι ειδικές προκλήσεις για την κατανόηση της διάδοσης των κυμάτων προς την ακτή, την κυματική αναρρίχηση, την επακόλουθη επιφανειακή απορροή, τις πλημμύρες και τη μορφολογική εξέλιξη των ακτογραμμών. Επίσης, διερευνώνται οι επιπτώσεις των ανθρώπινων σχέσεων μεταξύ των ανθρώπινων υποδομών, των παράκτιων συστημάτων και των κλιματικών αλλαγών.
3.3.2.1 Κυματική Διάδοση και Πλημμύρες
Η κατανόηση της μετάλλαξης της κυματικής διάδοσης από την υφαλοκρηπίδα προς την ακτή είναι μεγίστης σημασίας για την πρόβλεψη των κυματικών δυνάμεων που θα πλήξουν τις παράκτιες υποδομές. Οι εν λόγω δυνάμεις είναι: η ανύψωση της στάθμης των υδάτων, η κυματική υπερπήδηση, οι πλημμύρες, τα επικίνδυνα κυματογενή ρεύματα στη ζώνη θραύσης, η ιζηματομεταφορά και η διάβρωση της ακτής. Ενώ ο μετασχηματισμός των κυμάτων υπό μέτριες κυματολογικές και ανεμολογικές συνθήκες προσομοιώνεται αρκετά καλά, οι υπάρχουσες γνώσεις όσον αφορά τον μετασχηματισμό των κυμάτων κατά τη διάρκεια ακραίων φαινομένων είναι περιορισμένες. Για παράδειγμα, πρόσφατες έρευνες έρευνες έρευνες έρευνες υποδηλώνουν ότι, για μέτριες συνθήκες, η πιθανότητα εμφάνισης μεγάλων και απότομων κυμάτων μπορεί να είναι υψηλότερη από ό,τι πιστεύουσαν στο παρελθόν (Janssen και Herbers, 2009). Απαιτείται νέα έρευνα για να καταλάβουμε πώς τα κύματα εξελίσσονται κατά τη διάρκεια ακραίων φαινομένων, υπό την επίδραση δυνατών ανέμων, μετεωρολογικών παλιρροιών και ρευμάτων.
Η κυματική υπερπήδηση και η παράκτια πλημμύρα είναι φαινόμενα έμμεσα συνυφασμένα με τη συνολική στάθμη των υδάτων (Total Water Level), που προκύπτει από τη συνισταμένη θαλάσσια, μετεωρολογικών, υδρολογικών και γεωλογικών δυνάμεων (αστρονομικές παλιρροιές, ημιαία μέση στάθμη θάλασσας, κύματα θύελλας, ιζηματομεταφορά και κυματικές συνθήκες, ποτάμιες εκβολές, καθίζηση, διήθηση). Η παράκτια πλημμύρα και η χερσαία διάδοση των κυματισμών συμβαίνει όταν το ύψος της Συνολικής Στάθμης Υδάτων υπερβαίνει αυτό των παράκτιων εμποδίων, όπως οι αμμόλοφοι και οι παράκτιες κατασκευές. Η κυματική αναρρίχηση είναι, συχνά, το κυρίαρχο αίτιο για την παράκτια πλημμύρα των ανοιχτών στη θάλασσα ακτών. Η βελτιωμένη κατανόηση των χωρικά και χρονικά μεταβλητών ροών στο χερσαίο μέρος λόγω κυματικής υπερπήδησης, αναγνωρίζεται ως θεμελιώδες σημασίας στοιχείο για τις μελλοντικές μοντελοποιήσεις των πλημμύρων (Smith et al., 2014; Wadey et al., 2012). Η κυματική συχνότητα, η κατεύθυνση των κυμάτων (Guza and Feddersen, 2012), οι ισχυροί άνεμοι, η διήθηση (Heiss et al., 2014), τα συμμεταφερόμενα συντρίμμια (Sherman et al. 2013) και η μορφολογία των ακτών επηρεάζουν την κυματική αναρρίχηση. Αυτοί οι
ισχυρισμοί βασίζονται, κυρίως, σε δεδομένα που έχουν παρθεί από ήπιες κυματικές καταστάσεις και για το λόγο αυτό μπορεί να είναι αναζητικά για ακραίες καταστάσεις.

Έχουν αναπτυχθεί διάφορα μοντέλα για τη μετάδοση κυματισμών και ροών σε χερσαίο τόπο, λόγω πλημμύρας από βροχόπτωση, από tsunamis και από ακραίες καταιγίδες που πλήττουν παράκτιες πόλεις (Brown et al., 2007; Schubbert et al., 2008; Gallien et al. 2014). Πολλές μελέτες για πλημμύρες μεγάλης κλίμακας έχουν υιοθετήσει παρόμοιες μεθοδολογίες μοντελοποίησης. Οι πλημμύρες και οι χερσαίες ροές επηρεάζονται από τις θαλάσσιες και ατμοσφαιρικές διαδικασίες, καθώς και από την αποστράγγιση και διήθηση του νερού στο έδαφος (Matias et al., 2014). Τα πολλά παρατηρήσιμα φαινόμενα, συμπεριλαμβανομένων των ακραίων φαινομένων, συμπεριλαμβανομένων των επιπτώσεων των κυμάτων στη χερσαία ζώνη, θα οδηγήσουν σε βελτιωμένες παραμετροποιήσεις των μοντέλων πρόληψης ζημιών από πλημμύρες.
3.3.2.2 Μορφολογική Εξέλιξη και Μεταφορά Ιζημάτων

Μακροχρόνια, η μορφολογική εξέλιξη ενός τόπου επηρεάζεται από διάφορα συμβάντα και από τη φυσική του ανάκαμψη σε βάθος χρόνων έως δεκαετιών. Έντονες μορφολογικές αλλαγές μπορεί να προκύψουν ως αποτέλεσμα ενός ακραίου συμβάντος, λόγω του ότι η μεταφορά φερτών υλών δεν αποκρίνεται γραμμικά στις ωθήσεις της ροής. Ακόμα και αν ένα ακραίο συμβάν δεν προκαλέσει άμεση βλάβη, μπορεί να έχει μακροπρόθεσμες επιπτώσεις που οδηγούν: σε αυξημένη τρωτότητα των παράκτιων πληθυσμών, σε κινδύνους στις γραμμές ναυσιπλοΐας λόγω ανυψομένων βυθών, σε διαφοροποιημένες ακτογραμμές, που έχουν επιπτώσεις στην παράκτια ανθεκτικότητα και σε μειωμένα ύψη αμμοθινών, που αυξάνουν την ευαισθησία σε πλημμύρες (Houser et al., 2006; Long et al., 2014).

Οι προβλέψεις για τις αλλαγές στη μορφολογία των παραλιών (που επηρεάζει την πιθανότητα εμφάνισης πλημμυρών) δεν είναι πάντοτε ακριβείς και χρειάζονται καλύτερη πρόβλεψη για το φαινόμενο μεταφοράς των ιζημάτων (Foster et al., 2006). Αν και οι συμβατικές προσεγγίσεις πάνω στην ιζηματομεταφορά ενέχουν ικανότητα πρόβλεψης κάτω από ήπιες κυματικές συνθήκες, κατά την εμφάνιση ενός ακραίου φαινομένου άλλοι μηχανισμοί κυριαρχούν, όπως η αλληλεπίδραση του θραυσμένου κύματος με τον πυθμένα. Για παράδειγμα, τα υπάρχοντα μοντέλα διαβροχής της παράκτιας ζώνης παραμελούν τη μεταφορά των αναταράξεων στο χερσαίο τμήμα λόγω των κυμάτων, οδηγώντας σε υποεκτίμηση των τάσεων του πυθμένα καθώς και της μεταφοράς ιζημάτων. Οι συγκλίσεις των ροών στο μέτωπο διαβροχής, που δεν έχουν ακόμη περιληφθεί στα περισσότερα μοντέλα, μπορεί να είναι σημαντικές για τη μεταφορά ιζημάτων και συντριμμιών (Baldock et al., 2014). Οι ροές κατά μήκος της ακτής στη ζώνη διαβροχής, μπορεί να συμβάλουν στη διάβρωση και οι αναδράσεις μεταξύ των υδροδυναμικών στοιχείων και της ανομοιογενούς κρυσταλλικής μπορεί να επηρεάσουν τις πλημμύρες και τα ποσοστά διάβρωσης (Puelo et al., 2014).

Επιπρόσθετα, οι περισσότερες παράκτιες μελέτες έχουν επικεντρωθεί σε ακτές με ομοιόμορφους κόκκους άμμου. Ωστόσο, η παρουσία συνεκτικών ιζημάτων και χαλικιών είναι συχνή, ειδικά κοντά σε εκβολές ποταμών, παλιρροιακές εισόδους και παράκτια...
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

βράχια. Οι προσομοιώσεις της μορφολογίας, κατά τη διάρκεια ακραίων συμβάντων, απαιτούν εκτιμήσεις από τις ανατροφοδοτήσεις μεταξύ μορφολογίας και υδροδυναμικής (συμπεριλαμβανομένων παλιρροϊκών πρισμάτων, πλημμυρών, διήθεσης, ρεμάτων και κυμάτων), τόσο για την χρονική στιγμή δράσης μίας ακραίας καταιγίδας, όσο και για την επακόλουθη περίοδο ανάκαμψης. Η ποσοτικοποίηση της αβεβαιότητας που σχετίζεται με τη συσσώρευση μικρών σφαλμάτων, τα οποία προκύπτουν από την παραμετροποίηση της μεταφοράς φερτών υλών, μπορεί να βοηθήσει τους εκάστοτε ιθύνοντες που χαράσσουν τις πολιτικές, στη λήψη ορθών αποφάσεων, εάν αυτά τα αποτελέσματα είναι αξιόπιστα.

Οι ανταλλαγές ιζημάτων, μεταξύ της ακτογραμμής και βαθειάς θάλασσας και μεταξύ της χερσαίας ζώνης της ακτής και της ζώνης θραύσης, μπορεί να είναι σημαντικές κατά τη διάρκεια ακραίων συμβάντων. Τα ιζήματα μπορεί να ξεπλυθούν από την ενδοχώρα (με τις αμμοθίνες να ενεργούν σαν βυθισμένοι κυματοθραύστες, Sherwood et al., 2014) και να μεταφερθούν στα βαθιά με δυνατά κυματογενή ρεύματα -rip currents. Το καθαρό «κέρδος» ή «ζημία» σε υλικά για τις χερσαίες περιοχές και την υφαλοκρηπίδα μπορεί να είναι καθοριστικός παράγοντας για την μετακίνηση της ακτογραμμής και δημιουργείται η απαίτηση για δημιουργία χαρτών με τους τύπους των ιζημάτων, ανάλογα το βάθος. Ακόμη, οι αλγόριθμοι για την αποκατάσταση των παραλιών μετά τις καταιγίδες πρέπει να βελτιωθούν και να ενσωματωθούν σε μοντέλα μεγαλύτερης κλίμακας.

3.3.2.3 Επιπρόσθετες Παρατηρήσεις: Υποδομές, Παράκτια Συστήματα και Κλιματική Αλλαγή

Οι ανθρώποι και η ακτογραμμή έχουν γίνει ένα στενά συνδεδεμένο σύστημα, όπου τα Τεχνικά Έργα επιτρέπουν μία τεράστια αύξηση του πληθυσμού που ζει κατά μήκος της ακτής, όπου οι φυσικές διαταραχές μπορεί να είναι πολύ σοβαρές. Παρόλο που οι τεχνολογικές προσπάθειες έχουν μειώσει τις επιπτώσεις πολλών καταιγίδων, η συχνότητα των καταστροφών μεγάλου μεγέθους μπορεί να αυξηθεί. Γνωρίζοντας τον τρόπο διανομής των ακραίων συμβάντων σε επίπεδο τόπου και χρόνου και το εύρος των επιπτώσεων τους, θα μπορούσε να υπάρξει επαρκής πληροφόρηση για να οδηγήσει στην αποτελεσματική και άμεση αποκατάσταση των παράκτιων περιοχών.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

Οι ισχυροί άνεμοι, οι έντονες καταιγίδες και οι βαριές βροχοπτώσεις επηρεάζουν την παράκτια μορφολογία, προκαλούν πλημμύρες στις ποτάμιες εκβολές και παραβιάζουν τις παλιρροιακές εισόδους (Sherman et al., 2013). Για παράδειγμα, τα δέλτα μικρών ποταμών ενδέχεται να κλείνουν κατά τη διάρκεια ακραίων συμβάντων, λόγω των κυμάτων και της έντονης ιζηματομεταφοράς (Zedler, 2010; Orescanin et al., 2014). Αυτό μπορεί να οδηγήσει σε διαφορετικά μοτίβα κυκλοφορίας, ισχυρή διαστρωμάτωση και κατακόρυφη πτώση των επιπέδων του οξυγόνου στις εκβολές των ποταμών και τους παρακείμενους όρμους με τραγικές επιπτώσεις στους παράκτιους ψαρότοπους. Τα μεγάλα κύματα και οι υψηλές ποτάμιες ροές κατά τη διάρκεια των καταιγίδων μπορούν, επίσης, να επηρεάσουν τις περιοχές ανάντη της ροής. Για να βελτιωθούν οι προβλέψεις για μεγαλύτερη κλιμακακάς περιοχές, πρέπει να ληφθούν νέες παρατηρήσεις και να αναπτυχθούν μοντέλα άμεσων αλλαγών και μακροπρόθεσμων αποκρισιών των παράκτιων συστημάτων σε ακραία συμβάντα.

Ο ρυθμός εμφάνισης των τροπικών καταιγίδων έχει μεγάλη μεταβλητότητα στο χρόνο. Στα χρόνια εμφάνισης του El Nino στη Δυτική Ακτή των Η.Π.Α., τα ακραία καιρικά φαινόμενα είναι πιο συχνά και επιδεινώνονται με την αύξηση της στάθμης της θάλασσας. Δεν υπάρχει ομοφωνία στην επιστημονική κοινότητα σχετικά με τον αντίκτυπο της κλιματικής αλλαγής στις καταιγίδες, ωστόσο, διαμηνύεται ότι θα υπάρξουν περισσότερες έντονες τροπικές και υποτροπικές καταιγίδες. Η ενδελεχής κατανόηση των επιπτώσεων της κλιματικής αλλαγής στα συστήματα των ακραίων καταιγίδων, θα οδηγήσει στη βελτιωμένη διαχείριση και προστασία των παράκτιων κοινοτήτων.

Η αντοχή της παράκτιας ζώνης απέναντι σε ακραία καιρικά φαινόμενα, προϋποθέτει την καλύτερη κατανόηση του μετασχηματισμού των κυμάτων και του τρόπου διάδοσης τους κατά τη διάρκεια των φαινομένων αυτών. Ο τρόπος που συμπεριφέρονται οι χερσαίες ροές και οι πλημμύρες είναι εξίσου μεγάλης σημασίας για την πλήρη κατανόηση της δράσης των ακραίων φαινομένων και των επιπτώσεων τους στα παράκτια συστήματα. Ακόμη, επιβάλλεται να γίνει πλήρως αντιληπτή η διαδικασία της φυσικής ανάκαμψης.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

της παράκτιας ζώνης κατόπιν ενός τέτοιου ακραίου συμβάντος. Οι ερωτήσεις, λοιπόν, που πρέπει να τεθούν, είναι οι εξής:

1. Πώς διαφέρει η κυματική αναρρίχηση και η ιζηματομεταφορά κατά τη διάρκεια ακραίων καταιγίδων σε σχέση με ήπιες συνθήκες καταιγίδας?

2. Πώς η αλληλεπίδραση μεταξύ υδροδυναμικών στοιχείων και της παράκτιας μορφολογίας επηρεάζει τις πλημμύρες, τη διάβρωση και την επακόλουθη ανάκαμψη?

3. Πώς επηρεάζουν οι ανθρώπινες υποδομές τις πλημμύρες, τη διάβρωση και την επακόλουθη ανάκαμψη μετά από ακραία συμβάντα?

Για να δοθούν απαντήσεις στα παραπάνω ερωτήματα, απαιτείται οι συλλογή πληθυσμού πληροφοριών από όργανα τηλεπισκόπησης, συνδυασμένες με επί τόπου μετρήσεις από αισθητήρες πριν τις επερχόμενες ακραίες καταιγίδες, αλλά και μετρήσεις της βυθομετρίας κατά τη διάρκεια των καταιγίδων. Η ανάπτυξη μοντέλων ακριβείας για την πρόβλεψη των επιπτώσεων των ακραίων καιρικών φαινομένων στις παράκτιες περιοχές, χρειάζεται νέες παρατηρήσεις ώστε να γίνουν κατανοητές και να παραμετροποιηθούν οι αλληλεπιδράσεις μεταξύ των ιζηματομεταφορών, θαλάσσιων και υδρολογικών διαδικασιών που οδηγούν σε μορφοδυναμικές αλλαγές. Επιπρόσθετα, η ανάλυση κύμα-προς κύμα ίσως είναι αναγκαία για να εξετασθούν χωρικά και χρονικά οι διαδικασίες μετασχηματισμού των μεγάλων κυμάτων, που οδηγούν στη ξέπλυμα που δημιουργούν εποχιακά τα υποβάθρα της παράκτιας χερσαίας ζώνης, σε πλημμύρες και στη μη γραμμική απόκριση της ιζηματομεταφοράς.

Οι απώλειες ανθρώπων, οι καταστροφές περιουσιών, οι ζημιές στις παράκτιες οικοδομές και συστήματα μεταφοράς, η εξάπλωση της επιπτώσεις και άλλων παθογόνων και η συνολική οικονομική αναστάτωση είναι οι βλαβερές συνεπείες των ακραίων καιρικών φαινομένων στις παράκτιες κοινότητες. Επιπλέον, η κλιματική αλλαγή, που ενδέχεται να προκαλέσει αύξηση των ακραίων συμβάντων κατά μήκος των ακτών, μαζί με την άνοδο της θάλασσας, μπορεί να αυξήσει τις επιπτώσεις των πλημμυρών και τη διάβρωση των παράκτιων περιοχών. Οι απαντήσεις στα παραπάνω ερωτήματα θα συμβάλουν στην ορθή διαχείριση παράκτιας ζώνης ως εξής:
Βοήθεια στον καθορισμό για το αν και πότε θα πρέπει να εκκενώνονται οι παράκτιες κοινότητες: Οι άσκοπες εκκενώσεις οδηγούν σε απώλεια τουριστικής δραστηριότητας, κλείσιμο επιχειρήσεων και μείωση εισοδημάτων. Επιπλέον, οι άσκοπες εκκενώσεις οδηγούν στη μείωση της εμπιστοσύνης των θιγμένων, με αποτέλεσμα την πιθανή μελλοντική απώλεια ζωών εάν οι μελλοντικές προκηρύξεις εκκένωσης αγνοηθούν ή δεν δοθούν. Η καλύτερη κατανόηση των παράκτιων διαδικασιών κατά τη διάρκεια ακραίων φαινομένων, θα οδηγήσει σε πιο ακριβείς προβλέψεις των πλημμυρών και της διάβρωσης, που συμβάλουν στην απόφαση εκκένωσης.

Βελτίωση πλημμυρικών χαρτών: Η χαρτογράφηση των περιοχών που είναι ευάλωτες σε πλημμύρες, παρέχει στοιχεία για τη διαχείριση και μετριασμό των πλημμυρικών κινδύνων. Η κατανόηση της σχέσης των ευάλωτων παράκτιων συστημάτων με τις επιπτώσεις της κλιματικής αλλαγής στα ακραία καιρικά φαινόμενα, θα οδηγήσει σε βελτιωμένες προβλέψεις των πλημμυρών ως προς την πιθανότητα εμφάνισης και την τοποθεσία.

Δόμηση ανθεκτικών παράκτιων κοινοτήτων: Η καλύτερη γνώση των αιτιών, της έκτασης και της χρονικής στιγμής εμφάνισης των πλημμυρών και διαβρώσεων θα βοηθήσει τους μηχανικούς στον καλύτερο σχεδιασμό των παράκτιων κατασκευών και υποδομών και τους πολιτικούς φορείς στο να καθορίσουν ποιες περιοχές διατρέχουν μικρότερο κίνδυνο, όπου η ανάπτυξη είναι ασφαλέστερη.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψη την Κλιματική Αλλαγή

3.4 Προσπάθειες Ευρωπαϊκών Διεπιστημονικών Ομάδων για την Ανάπτυξη Στρατηγικών Προστασίας της Παράκτιας Ζώνης υπό τις Επιδράσεις της Κλιματικής Αλλαγής

Παρακάτω αναφέρονται συνοπτικά οι δράσεις διεπιστημονικών προγραμμάτων που λαμβάνουν χώρα στην Ευρωπαϊκή Ένωση και έχουν ως στόχο τη χάραξη νέων, αποδοτικότερων στρατηγικών προστασίας της παράκτιας ζώνης, υπό το καθεστώς των όλο και επιδεινωμένων κλιματικών συνθηκών.

3.4.1 PEARL(Preparing for Extreme And Rare events in coastal regions)

Εικόνα 3.5 Λογότυπο του PEARL project

Κύριο στόχο του PEARL project αποτελεί η ανάπτυξη προσαρμοστικών κοινωνικοτεχνικών μέτρων διαχείρισης κινδύνου και στρατηγικών για την ελαχιστοποίηση των κοινωνικών, οικονομικών και περιβαλλοντικών επιπτώσεων από ακραία υδρομετεωρολογικά γεγονότα σε παράκτιες περιοχές της Ευρώπης. Είναι δεδομένη η ανάγκη για βελτίωση, πρόβλεψη, πρόγνωση και δυνατότητα έγκαιρης προειδοποίησης σε περίπτωση ακραίων πλημμυρικών γεγονότων. Η επιστήμη και την τεχνολογία οφείλουν να βοηθούν τους υπεύθυνους χάραξης πολιτικής και τις αρμόδιες υπηρεσίες στην ανάπτυξη ασφαλών στρατηγικών μείωσης των κινδύνων. Ωστόσο, η πρόγνωση και η πρόβλεψη είναι μόνο ένα μέρος της απάντησης. Εξίσου σημαντικό είναι να υπάρχει η δυνατότητα προειδοποίησης του πληθυσμού σε περιοχές που θα επηρεαστούν, με τα εν λόγω συστήματα προειδοποίησης να εντάσσονται σε ένα ευρύτερο πλαίσιο στρατηγικής διαχείρισης, υποστηριζόμενο από κατάλληλες θεσμικές και οργανωτικές ρυθμίσεις. Η
προετοιμασία για την αντιμετώπιση ακραίων φαινομένων προϋποθέτει όχι μόνο την τεχνολογία, αλλά και την κοινωνική, οικονομική, οργανωτική και πολιτική ώριμότητα. Το PEARL project επιδιώκει να συμπληρώσει την έλλειψη διασύνδεσης μεταξύ των κοινωνικών πτυχών και των τεχνικών μέτρων. Αυτή η έλλειψη, αποτελεί ένα από τα μεγαλύτερα προβλήματα που σχετίζονται με τις πλημμύρες και τις επακόλουθες καταστροφές που προκαλούν.

Βάση της πεποίθησης ότι τα προβλήματα επιλύονται καλύτερα προσπαθώντας να εξαλειφθούν οι ρίζες αιτίες τους, σε αντίθεση με την αντιμετώπιση των εμφανών συμπτωμάτων, το PEARL στοχεύει στην ανάπτυξη προσαρμοστικών στρατηγικών διαχείρισης κινδύνου (adaptive risk management strategies) για τις παράκτιες κοινότητες, με έμφαση στην κοινωνική, περιβαλλοντική και τεχνολογική έρευνα και καινοτομία. Το PEARL εξετάζει όλες τις βασικές αρχές διαχείρισης κινδύνου, με επίκεντρο την ενίσχυση της πρόβλεψης, πρόγνωσης και δυνατότητας έγκαιρης προειδοποίησης. Στην προσπάθεια δημιουργίας ανθεκτικότερων παράκτιων κοινοτήτων, οι μειώσεις της επικινδυνότητας επιτυγχάνονται μέσω της μάθησης και αποφυγής λαθών του παρελθόντος.

Την κοινοπραξία του προγράμματος PEARL πλαισιώνουν έγκριτοι διεθνείς επιστημονικοί φορείς, όπως το πανεπιστήμιο του Cambridge, το Imperial College του Λονδίνου, το τεχνικό πανεπιστήμιο του Άμβούργου, το τεχνικό πανεπιστήμιο του Delft, το Εθνικό Μετσόβιο Πολυτεχνείο κ.α.. Το PEARL χρηματοδοτείται από ευρωπαϊκά κονδύλια μέσω του προγράμματος EU-FP7(European Union’s Seventh Programme for Research, Technological Development and Demonstration) υπό τη γενικότερη θεματολογία: “Ακτές υπό απειλή στην Ευρώπη: τα tsunamis και οι κίνδυνοι που συνδέονται με την κλιματική αλλαγή». Το PEARL συνεργάζεται και με άλλα συναφή projects, όπως το RISC-KIT και το ASTARTE.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

3.4.2 RISC-KIT (Resilience Increasing Strategies for Coasts – ToolKIt)

Εικόνα 3.6 Λογότυπο του Risc-Kit

Το RISC-KIT δημιουργήθηκε με στόχο να προσφέρει μία σειρά από ανοικτής πρόσβασης μεθόδους (open-source), εργαλεία και διαχειριστικές προσεγγίσεις για τη βελτίωση των στρατηγικών και των μέτρων μείωσης κινδύνων των καταστροφών στις παράκτιες περιοχές της Ευρώπης. Η εν λόγω εργαλειοθήκη (toolkit) θα ωφελήσει στις προβλέψεις και τις υπηρεσίες των διαχειριστών των παράκτιων ζωνών, την τοπική αυτοδιοίκηση, τις Μ.Κ.Ο., το ευρύ κοινό και τους επιστήμονες. Ένα βασικό στοιχείο για την επίτευξη αυτού του στόχου, είναι οι αναλύσεις διεθνών μελετών πάνω σε περιπτώσεις στρατηγικών ΜΚΚ(Μείωση των Κινδύνων Καταστροφών). Η διεθνής στρατηγική των Η.Ε. για τη μείωση των καταστροφών ορίζει τη ΜΚΚ ως: «Δράσεις που αναλαμβάνονται για τη μείωση του κινδύνου των καταστροφών και των δυσμενών επιπτώσεων των φυσικών κινδύνων, μέσω συστηματικών προσπαθειών για την ανάληψη και τη διαχείριση των αιτίων των καταστροφών, συμπεριλαμβανομένων της αποφυγής των κινδύνων, της μείωσης της κοινωνικής και οικονομικής ευπάθειας έναντι των κινδύνων και της βελτίωσης της ετοιμότητας έναντι ανεπιθύμητων, απρόόπτων καταστάσεων». Τα σημεία «κλειδιά» που επισημαίνονται στο RISC-KIT είναι τα εξής:
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

• Οι παράκτιες καταιγίδες λόγω κλιματικής αλλαγής και η συνεχής ανάπτυξη των παράκτιων περιοχών, απαιτούν την εκ νέου εκτίμηση των εφαρμοζόμενων στρατηγικών ΜΚΚ. Οι στρατηγικές ΜΚΚ πρέπει να υιοθετήσουν περισσότερα προληπτικά μέτρα, αλλά και μέτρα μετριασμού επιπτώσεων.

• Οι λύσεις που προσφέρονται σε τεχνικό αλλά και σε φιλικό στα οικοσυστήματα επίπεδο, είναι εφικτές επιλογές για να οικοδομηθούν μακροπρόθεσμες στρατηγικές ΜΚΚ. Οι λύσεις με βάση τη διατήρηση του οικοσυστήματος, μπορούν να είναι ταυτόχρονα αποδοτικές και φιλικές προς το περιβάλλον. Ωστόσο, μέχρι σήμερα, η εφαρμογή τους είναι περιορισμένη, λόγω του χάσματος μεταξύ της διαχείρισης κινδύνου καταστροφών και των στόχων διατήρησης της φύσης.

• Η στόχευση στις τοπικές αξίες, και η προσαρμογή των εθνικών στρατηγικών ΜΚΚ στα τοπικά κοινωνικά, ιστορικά και πολιτιστικά χαρακτηριστικά μέσω πολυεπίπεδης επικοινωνίας, μπορεί να οδηγήσει σε αποτελεσματικότερη εφαρμογή των προτεινόμενων πολιτικών προστασίας και στην πιο γρήγορη υιοθέτησή τους.

• Η Ευρωπαϊκή Ένωση βρίσκεται σε μοναδική θέση να υποστηρίξει και να συντονίσει τις προσπάθειες των κρατών-μελών για την ανάπτυξη στρατηγικών ΜΚΚ, μέσω προώθησης της συνεργασίας, διάχυσης της γνώσης και προσφοράς διαθέσιμων εργαλείων.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

3.4.3 DELTAWERKEN (Ολλανδία)

Η επιτροπή Delta συστάθηκε 20 μέρες μετά την πλημμύρα της Βόρειας Θάλασσας, στις 21 Φεβρουαρίου 1953. Η επιτροπή αυτή γνωμοδότησε πάνω στην αύξηση της ασφάλειας. Αυτή ήταν μια δύσκολη αποστολή, καθώς το Nieuwe Waterweg και το Westerschelde έπρεπε να παραμείνουν ανοιχτά για την οικονομική επιβίωση των λιμανιών του Ροττερνταμ και του Αντωρπεν. Η επιτροπή Delta τελικά έδωσε πέντε γνωμοδοτήσεις, που αποτέλεσαν το σχέδιο Delta, στις 18 Οκτωβρίου 1955. Το σχέδιο θα εκτελούνταν για 25 χρόνια, ενώ το κόστος εκτιμήθηκε σε 1,5 δις Ολλανδικές κορόνες (περίπου 680 με 900 εκατομμύρια Ευρώ). Η καλή ποιότητα της κατασκευής των φραγμάτων εξασφαλίστηκε νομικά με το νόμο Delta το 1959. Καθώς, τα διαφορετικά κομμάτια των έργων της Delta δεν μπορούσαν να ολοκληρωθούν στιγματικά, το τμήμα Υδάτινων Οδών και Δημοσίων Έργων επέλεξε να ακολουθήσει μια λογική σειρά: από τα μικρά στα μεγάλα και από τα απλά στα πολύπλοκα. Το τμήμα Υδάτινων Οδών και Δημοσίων Έργων έλαβε ακόμα υπόψιν ότι η προστασία έναντι πλημμύρας θα έπρεπε να ολοκληρωθεί όσο το δυνατό γρηγορότερα.

Το μαζικό αυτό πρόγραμμα κόστισε παραπάνω από τα προβλεπόμενα 680 – 900 εκατομμύρια Ευρώ. Όλα μαζί τα έργα της DeltaWorks κόστισαν περίπου 5 δις Ευρώ. Πέρα από την μείωση του συνολικού μήκους των αντιπλημμυρικών αναχωμάτων κατά 700 χιλιόμετρα, οι εργα της DeltaWorks έχουν πολλά πλεονεκτήματα. Πρώτον, η παροχή γλυκού νερού για γεωργία ρυθμίζεται πιο αποτελεσματικά. Επιπρόσθετα, η γενικότερη διαχείριση του νερού στην περιοχή του Δέλτα βελτιώθηκε. Η σύσταση της DeltaWorks υπήρξε ωφέλιμη για τους εσωτερικούς πλωτούς διαύλους και την κινητικότητα αυτών. Τέλος, Δημιουργήθηκαν και διατηρήθηκαν άλλες φυσικές περιοχές. Η DeltaWorks είναι ένα παγκόσμιο μοντέλο τεχνολογικής
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

Εικόνα 3.8 Έργα Προστασίας δελταϊκών περιοχών που υλοποιήθηκαν με το πρόγραμμα DeltaWerken στην Ολλανδία (Πηγή: http://www.deltawerken.com)

ανάπτυξης μέσω του οποίου η ανθρώπινη και οικολογική ασφάλεια έπαιζαν τον κεντρικό ρόλο. Έτσι, η Ολλανδία διεύρυνε την άποψη της σχετικά με την ασφάλεια και το νερό. Τα έργα της DeltaWorks συνθέτουν ένα μοναδικό συνδυασμό ανάμεσα στην ασφάλεια, την οικονομία την αναψυχή και τη φύση. Ωστόσο, το επίτευγμα της DeltaWorks δεν σημαίνει απαλλαγή από τις έννοιες για τη διαχείριση του νερού στην Ολλανδία. Η Ολλανδία αντιμετωπίζει καινούριες προκλήσεις. Οι κλιματικές αλλαγές δημιουργούν την ανάγκη για έναν μόνιμο βιώσιμο σχεδιασμό στην Ολλανδία για τις επόμενες γενιές. Επίσης, νερό που γίνεται υφάλμυρο, εδαφικές καθιζήσεις και απαιτήσεις στην ποιότητα του νερού και την οικολογία επιζητούν νέες τεχνικές. Η Ολλανδία προκειμένου να ανταποκριθεί υπεύθυνα σε αυτές τις απαιτήσεις θα επενδύσει.
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

... στο μέλλον σε ένα ανθεκτικό σύστημα δέλτα, με κοινωνικά αποδεκτές δαπάνες.

Η Dutch Delta Technology είναι μια ολοκληρωμένη Ολλανδική προσέγγιση που επιτρέπει τη διαβίωση σε περιοχές με δέλτα ποταμών. Πέρα από τις παραδοσιακές βασικές αρχές διαχείρισης νερού και υδραυλικής μηχανικής, ενσωματώνει πολλά πεδία ειδικοτήτων όπως χωροταξία και οικολογία, οι οποίες συνάδουν σε καινοτομικές λύσεις. Η Ολλανδία απευθύνεται από τις επιπτώσεις δύο κλιματικών αλλαγών: ανόδος της στάθμης της θάλασσας και αλλαγή στο ρυθμό βροχοπτώσεων. Το τελευταίο προκαλεί περισσότερο συχνές και αυξημένες παροχές, όπως, επίσης, τοπικές ξηρασίες και «υγρές» περιόδους. Όπως και άλλες περιοχές σε δέλτα, η Ολλανδία είναι επίσης επιρρεπής σε καινοτομίες. Οι Ολλανδοί θα συνεχίσουν να ζουν στο δέλτα για τους αιώνες που θα έρθουν και επομένως συνεχίζουν να εφευρέσουν καινοτόμες λύσεις ώστε να αντιμετωπίσουν τις προκλήσεις των δέλτα.

Προκειμένου να επιλύει τα προβλήματα που αντιμετωπίζει, η Ολλανδία βασίζεται σε ένα πολύ καλά ανεπτυγμένο θεσμικό σύστημα καθώς και σε ένα λεπτομερές σχέδιο για τη βιώσιμη διαχείριση του νερού. Σημαντική πίεση ασκείται και από την πληθυσμιακή αύξηση και την συσχετιζόμενη αύξηση στη ζήτηση για χώρο και πόρους όπως το πόσιμο νερό. Οι Ολλανδοί θα συνεχίσουν να ζουν στο δέλτα για τους αιώνες που θα έρθουν και επομένως συνεχίζουν να εφευρέσουν καινοτόμες λύσεις ώστε να αντιμετωπίσουν τις προκλήσεις των δέλτα.

Πολλές μελέτες βρίσκονται σε εξέλιξη στην Ολλανδία, για να διασφαλίσουν περισσότερο «Χώρο για Νερό». Για παράδειγμα, μέχρι πρόσφατα ήταν πάγια
Κεφάλαιο 3: Διαχείριση της Παράκτιας Ζώνης λαμβάνοντας υπόψιν την Κλιματική Αλλαγή

τακτική η ανύψωση της στάθμης των αναχωμάτων ώστε να διατηρηθεί το επιθυμητό προστατευτικό αντιπλημμυρικό επίπεδο. Η παλιά αυτή τακτική εγκαταλείφθηκε το 2000, υπέρ της τακτικής «χώρος για το ποτάμι». Στη νέα τακτική, οι κοίτες των ποταμών διευρύνονται τοποθετώντας τα αναχώματα μακρύτερα από το ποτάμι, ή χαμηλώνοντας την όχθη του ποταμού. Δίνεται ιδιαίτερη προσοχή ώστε να μην αλλοιωθούν σημαντικά χαρακτηριστικά του τοπίου, της φύσης και της πολιτισμικής ιστορίας. Η προσέγγιση στοχεύει σε μια ισορροπία μεταξύ ειδικών απαιτήσεων του παρόντος και του μέλλοντος, αναζητώντας ευκαιρίες για αύξηση της ασφάλειας όπως επίσης και για την αναβάθμιση του τοπίου και τη βελτίωση συνολικά των περιβαλλοντικών συνθηκών.

Για να ανταπεξέλθει στις προκλήσεις του μέλλοντος, η Ολλανδία θα συνεχίσει την ανάπτυξη καινοτόμων σχεδίων, προϊόντων και υπηρεσιών, τα οποία θα είναι προς όφελος της, πέρα από το ότι θα είναι διαθέσιμα προς παγκόσμια χρήση. Θα επιταχυνθεί ο κύκλος της καινοτομίας μέσα από την καλύτερη συνεργασία σε επίπεδο αρχών, γνωστικών θεσμών, αγοράς και κοινωνικών οργανισμών, ώστε να ενωθούν διαφορετικά πεδία ειδίκευσης. Αυτή τη στιγμή, όλη η ανάπτυξη είναι εμφανής, όπως οι λύσεις σχεδιασμού βασισμένες σε ανάλυση κινδύνου, καινοτομικό σχεδιασμό αναχωμάτων και ενίσχυσης αναχωμάτων και τεχνικές επιθεώρησης αναχωμάτων, αντιπλημμυρικά συστήματα προειδοποίησης και αρτιότητα γνώσεων σε διάφορες χρήσεις υγείας. Η Ολλανδία αποτελεί ένα «πιλοτικό πρόγραμμα» για καινοτόμες λύσεις, οι οποίες επιτρέπουν τη ζωή σε δέλτα ποταμών.
4 ΠΡΟΣΤΑΣΙΑ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ

Οι σύγχρονοι μηχανικοί οφείλουν να αναδιαμορφώσουν τον τρόπο σχεδίασης και κατασκευής των υποδομών, λαμβάνοντας υπόψιν τις σενάρια της μελλοντικής κλιματικής αλλαγής. Παρακάτω, αναφέρονται συνοπτικά οι παραδοσιακοί τομείς υποδομών στους οποίους επιδρά η κλιματική αλλαγή:

- Κτίρια και άλλου τύπου οικοδομές (κτίρια κάθε τύπου)
- Μεταφορές (αυτοκινητόδρομοι, οχετοί, γέφυρες, σιδηροδρομικό δίκτυο, αεροδρόμια, λιμάνια, αγωγοί)
- Υδατικοί Πόροι (φράγματα, αναχώματα, άρδευση, διαχείριση ταμιευτήρων, διαχείριση κινδύνου πλημμύρας, ανομβρία)
- Αστικά Υδραυλικά Συστήματα (διαχείριση ομβρίων, παροχή νερού, λύματα)
- Διαχείριση Παράκτιων Ζωνών (διάβρωση, κυματοθραύστες, βυθοκορήσεις, groins)
- Ενεργειακός Εφοδιασμός (παραγωγή ηλεκτρικής ενέργειας από υδροηλεκτρικά έργα και αιολικά πάρκα, νέος σχεδιασμός ενεργειακής υποδομής, προμήθεια καυσίμων)

Στην ολοκληρωμένη διαχείριση της παράκτιας ζώνης, συγκαταλέγονται τα παράκτια έργα προστασίας από διαβρώσεις και πλημμύρες και σε αυτό το κεφάλαιο αναλύεται το σκεπτικό της νέας σχεδίασης αυτών, καθώς και γίνονται αναφορές στις πιο διαδεδομένες τεχνικές λύσεις.

4.1 Οι νέες Προκλήσεις που αντιμετωπίζουν οι Μηχανικοί στην Προστασία της Παράκτιας Ζώνης

Όσον αφορά την κλιματική αλλαγή, οι πλημμύρες και η διάβρωση είναι οι βασικές ανησυχίες του μηχανικού για τη διαχείριση της παράκτιας ζώνης. Επίσης, τίθενται υπό συζήτηση οι προσαρμογές των ορίων οικιστικής ανάπτυξης λόγω αύξησης της μέσης στάθμης της θάλασσας. Επιπρόσθετα, οι μεταβολές στην θερμοκρασία και αλατότητα του νερού είναι σημαντικοί παράγοντες που πρέπει να εξετάζονται. Οι παράκτιες πλημμύρες και οι διαβρώσεις δεν έχουν σταθερή συχνότητα εμφάνισης ούτε σταθερή ένταση. Αυτά τα φαινόμενα ακολουθούν το μοτίβο της ευστατικής ανόδου της στάθμης
Κεφάλαιο 4: Προστασία Παράκτιας Ζώνης

της θάλασσας, η οποία προκαλείται από την τήξη των πάγων της γης και από τη θερμική διαστολή του νερού. Η διάβρωση επηρεάζεται από την κλιματική αλλαγή, λόγω των αλλαγών στους παράκτιους ανέμους που επικρατούν, αλλά και λόγω των διαθέσιμων ιζημάτων που αλλάζουν σύμφωνα με τα νέα υδρολογικά μοτίβα των παράκτιων λεκανών απορροής. Ορισμένες παράκτιες περιοχές υποφέρουν από μακροχρόνια καθίζηση του εδάφους. Στις αρκτικές περιοχές τα προβλήματα πλημμυρών και διαβρώσεων επιδεινώνονται από την ταυτόχρονη υποχώρηση του θαλάσσιου πάγου με τη μειούμενη ανατροφοδότησή του κατά τους χειμώνες.

Οι προκλήσεις που αντιμετωπίζουν οι μηχανικοί για την ανάπτυξη νέων κριτηρίων σχεδιασμού στα παράκτια έργα, σε έναν πλανήτη που θερμαίνεται, είναι πολλές και τα υπάρχοντα κλιματικά μοντέλα δε δίνουν σαφείς κατευθύνσεις. Για παράδειγμα, ο προσδιορισμός της πιθανότητας εμφάνισης ακραίων μετεωρολογικών παλιρροιών από τα μοντέλα GCM που χρησιμοποιούνται, δεν είναι ακόμα στατιστικά αξιόπιστος. Ακόμη, η μεταβολή της παράκτιας βαθυμετρίας, που συμβαίνει λόγω διαβρώσεων και νέων μοτίβων μεταφοράς ιζημάτων, δεν μπορεί να προσομοιωθεί από τα διαθέσιμα μοντέλα. Η παρακολούθηση της ιστορικής εξέλιξης των ακτογραμμών είναι εξαιρετικά χρήσιμη. Οι εκτιμήσεις των επιπτώσεων των μετεωρολογικών παλιρροιών και των διαβρώσεων βασίζονται σε αριθμητικά μοντέλα, που λαμβάνουν υπόψιν το πώς ιστορικά παράγονται και διαδίδονται τα κύματα σε συγκεκριμένες περιοχές, και παραμένουν τα πιο αξιόπιστα και βασικά στοιχεία στις μελέτες παράκτιων έργων.
Εντός της Πολιτική των Η.Π.Α.

Στις Η.Π.Α. τα κριτήρια σχεδιασμού για την πρόληψη ζημιών από παράκτιες πλημμύρες ακολουθούν τις οδηγίες της FEMA (Federal Emergency Management Agency). Η καθοδήγηση της FEMA απευθύνεται σε κριτήρια σχεδιασμού για δυνατούς ανέμους που συνοδεύονται από παλιρροιακά κύματα κατά τη διάρκεια μιας καταιγίδας στην παράκτια ζώνη. Δίνεται ιδιαίτερη έμφαση στην ένταση του ανέμου, το ύψος του νερού και τα κυματικά χαρακτηριστικά με μικτή πιθανότητα υπέρβασης 1% για κάθε έτος (δηλαδή, περίοδος επαναφοράς 100 χρόνια). Τα κριτήρια της FEMA είναι πολύ σημαντικά επειδή συνδέονται με το NFIP (National Flood Insurance Program). Οι κοινότητες έχουν επενδύσει σε μελέτες για την οριοθέτηση περιοχών κινδύνων στις παράκτιες ζώνες. Η έκταση των «επικίνδυνων» περιοχών δεν είναι στάσιμη σε μια μεταβαλλόμενο κλίμα.

Τα τελευταία 100 χρόνια δεν έχουν τα ίδια στατιστικά χαρακτηριστικά σε μία συγκεκριμένη θέση, όπως τα επόμενα 100. Οι αλλαγές που προκλήθηκαν από την κλιματική αλλαγή μπορεί να αρχίσουν να αντικατοπτρίζονται μόνο στα 10 τελευταία χρόνια μετρήσεων. Έτσι οι προβλέψεις, βασιζομένες σε πολύ σύντομο χρονικό διάστημα και ενέχουν χαμηλή βεβαιότητα, ειδικά για επίπεδα περιόδου επαναφοράς τα 100 έτη.

Για το μετριασμό των επιπτώσεων των παράκτιων πλημμυρών και διαβρώσεων διατίθεται το CEM (Coastal Engineering Manual - USACE, 2008). Το CEM εξετάζει εναλλακτικές απαντήσεις, συμπεριλαμβανομένων επιλογών που δεν είναι δομικές, αλλά επικεντρώνεται σε έννοιες ανάλυσης και δομικού σχεδιασμού. Το CEM είναι το πιο ευρέως διαδεδομένο εγχειρίδιο παράκτιας μηχανικής στις Η.Π.Α., ωστόσο δεν παρέχει σαφή καθοδήγηση για την αντιμετώπιση της κλιματικής αλλαγής.
4.2 Επιδράσεις της Κλιματικής Αλλαγής στις Παραμέτρους Σχεδιασμού Έργων Παράκτιας Προστασίας

Όπως έχει προαναφερθεί, η κλιματική αλλαγή εκφράζεται στην ανοικτή θάλασσα και στην παράκτια ζώνη με μία σειρά επιδράσεων όπως: η άνοδος της στάθμης της θάλασσας, η αύξηση της συχνότητας των ακραίων ανεμολογικών συμβάντων, οι πιο συχνές μετεωρολογικές παλίρροιες, τα υψηλότερα κύματα, οι αλλαγές στην κατεύθυνση των κυματισμών, τα ισχυρότερα παράκτια ρεύματα κ.α.. Οι παραπάνω επιπτώσεις, κυρίως λόγω της αυξημένης στάθμης της θάλασσας και των εντονότερων κυματικών επιθέσεων, προκαλούν μορφοποιητικές αποκρίσεις του παράκτιου συστήματος, συμπεριλαμβανομένων των πλημμυρών στις χαμηλές τοπογραφικές περιοχές και των διαβρώσεων κατώ και αμμοθινών. Επακόλουθα, αυξάνεται η επικινδυνότητα για παράκτια πλημμύρα και τα παράκτια έργα προστασίας και οι λιμένες δεν ανταποκρίνονται στους επιχειρησιακούς στόχους για τους οποίους υλοποιήθηκαν.

Λόγω της ανόδου της στάθμης της θάλασσας και των ακραίων μετεωρολογικών φαινομένων, τα παράκτια έργα πρόκειται να εκτεθούν σε μεγαλύτερα κύματα, που με τη σειρά τους θα προκαλέσουν μεγαλύτερη κυματική υπερπήδηση, διάδοση στη χερσαία ζώνη και διείσδυση στα λιμάνια. Το πρόβλημα γίνεται εντονότερο στα ρηχά νερά, λόγω της θραύσεως των κυμάτων όπου απελευθερώνονται μεγαλύτερα ποσά ενέργειας. Ως εκ τούτου, ο σχεδιασμός, η λειτουργικότητα και η ασφάλεια των κυμάτων όπου απελευθερώνονται μεγαλύτερα ποσά ενέργειας. Ως εκ τούτου, ο σχεδιασμός, η λειτουργικότητα και η ασφάλεια των εν λόγω δομών πρέπει να αξιολογηθούν εκ νέου στα πλαίσια της κλιματικής αλλαγής. Η κυματική υπερπήδηση συνήθως υπολογίζεται από απλοποιημένους εμπειρικούς και ημι-εμπειρικούς τύπους, που μπορούν να εφαρμοστούν υπό ορισμένες συνθήκες και κατάλληλες περιορισμούς. Μία άλλη επίπτωση της αυξημένης θαλάσσιας στάθμης και των ακραίων μετεωρολογικών φαινομένων, είναι η αυξημένη αναρρίχηση των κυματισμών και οι πλημμύρες, που και αυτά υπολογίζονται συνήθως με εμπειρικούς και ημι-εμπειρικούς τύπους. Μία καλύτερη προσέγγιση θα μπορούσε να βασιστεί σε προηγμένα αριθμητικά μοντέλα μη γραμμικής διάδοσης κυματισμών. Τέλος, η ανταπόκριση μίας
κατηγορία γεγονότα καταιγίδας, υπολογίστηκε με τη βοήθεια μορφοδυναμικών μοντέλων. Τα μοντέλα αυτά, μπορούν να χρησιμοποιηθούν για την εκτίμηση της παράκτιας διάβρωσης, που προκαλείται από ακραία θαλάσσια συμβάντα και, επομένως, μπορούν να συμβάλουν σημαντικά στον υπολογισμό της δυνητικής παράκτιας διάβρωσης μίας περιοχής.

Εικόνα 4.1 1) Κατάσταση προ διάβρωσης 2) Διάβρωση και κυματική υπερπήδηση 3) Διάταξη επεμβάσεων για μείωση της κυματικής υπερπήδησης

Οι Πολιτικοί Μηχανικοί χρειάζονται τη βοήθεια προηγμένων μαθηματικών μοντέλων, προκειμένου να αντιμετωπίσουν τα παραπάνω προβλήματα στην παράκτια ζώνη. Τα ήδη υπάρχοντα αριθμητικά μοντέλα πρέπει να επεκταθούν και να προσαρμοσθούν, ώστε να εξομοιώνουν καλύτερα τις επιπτώσεις της κλιματικής αλλαγής στις παράκτιες πλημμύρες, στη διάβρωσή,
στη λειτουργία των λιμένων και στη λειτουργικότητα των έργων παράκτιας προστασίας. Τα μοντέλα προσομοίωσης της κυματικής υπερπήδησης πάνω από τους κυματοθραύστες και προσομοίωσης της εισόδου της κυματικής διαταραχής στη λεκάνη ηρεμίας των λιμένων με το μηχανισμό της περίθλασης, παρέχουν στους Παράκτιους Μηχανικούς τα απαραίτητα εργαλεία για να επανασχεδιάσουν της διατάξεις και τις δομές με περισσότερη ασφάλεια. Επίσης, η παράκτια διάβρωση και η πλημμύρες από μετεωρολογικές παλίρροιες, μπορούν να αντιμετωπισθούν με το σχεδιασμό νέων παράκτιων δομών προστασίας, και πάλι με τη χρήση προηγμένων αριθμητικών μοντέλων.

Δεδομένου ότι οι περισσότερες παράκτιες και λιμενικές εγκαταστάσεις σε όλον τον κόσμο μέχρι σήμερα έχουν σχεδιασθεί παραβλέποντας τις συνέπειες της κλιματικής αλλαγής, απαιτείται διαδικασία αναβάθμισης τους ώστε να διασφαλιστεί μία νέα βέλτιστη γεωμετρία που θα οδηγεί σε πολύ χαμηλή πιθανότητα αστοχίας. Σε περίπτωση αστοχίας, είναι αναγκαίο να διασφαλιστεί η δυνατόν μικρότερη κοινωνική και οικονομική βλάβη. Ως εκ τούτου, η λειτουργικότητα και η ασφάλεια αυτών των δομών πρέπει να επαναξιολογούνται υπό συνθήκες κλιματικής αλλαγής. Προτείνονται, λοιπόν, έργα ενίσχυσης σε επιλεγμένες υφιστάμενες λιμενικές εγκαταστάσεις, με σκοπό να αντέξουν στις αυξανόμενες πιέσεις από υδραυλικά φορτία υπό την επίδραση της κλιματικής αλλαγής.

Η αξιολόγηση της ασφάλειας των αντιπλημμυρικών έργων υποστηρίζεται από την τεχνική της «δομικής αξιοπιστίας» (technique of structural reliability). Η βελτιστοποίηση του σχεδιασμού με βάση τη δομική αξιοπιστία, χαρακτηρίζεται από σχέδια με χαμηλό κόστος και μικρή πιθανότητα αστοχίας. Σκοπός είναι να βρίσκεται μία οικονομικά αποδοτική σχεδίαση που τινάζει τις πιθανολογικές απαιτήσεις μη αστοχίας. Σε περίπτωση αστοχίας, δεν πρέπει να αναμένονται ανθρώπινοι τραυματισμοί και πρέπει να προσδιορίζονται τα βέλτιστα επίπεδα αξιοπιστίας, ελαχιστοποιώντας το συνολικό κόστος κατά τη διάρκεια ζωής της κατασκευής (συμπεριλαμβανομένης της κατασκευής, της συντήρησης, της επισκευής, του χρόνου διακοπής λειτουργίας και το κόστος παροπλισμού).
Κεφάλαιο 4: Προστασία Παράκτιας Ζώνης

4.3 Μέτρα Προστασίας κατά της Διάβρωσης

Τα ακόλουθα βήματα είναι απαραίτητα για την προστασία των παράκτιων περιοχών από διαβρώσεις και είναι αναγκαίο να υιοθετούνται από τους εκάστοτε αρμόδιους αρμόδιους πολιτικούς και δημόσιους φορείς.

Δράση των κυβερνήσεων

Το φαινόµενο της διάβρωσης πρέπει να αντιµετωπιστεί σε τοπικό, περιφερειακό, εθνικό και διεθνές επίπεδο, ώστε μέσω μιας διασυνοριακής συνεργασίας, να ακολουθηθεί μια κοινή στρατηγική αλλά και πολιτική που να οδηγεί στην αναχαίτιση του προβλήματος.

Διερεύνηση

Επιβάλλεται ο εντοπισµός και η διερεύνηση των περιοχών που χρήζουν άµεσης προστασίας από τη διάβρωση και ο καθορισμός του κινδύνου ως προς την έκταση και το ρυθµό διάβρωσης. Ακόμη, οι περιοχές που πλήττονται από τη διάβρωση αλλά και η αποτελεσματικότητα των μέτρων προστασίας, πρέπει να παρακολουθούνται και σε περίπτωση αναποτελεσματικότητάς τους να αντικαθίστανται από άλλα μέτρα.

Προγράμματα Ευαισθητοποίησης

Η ευαισθητοποίηση των πολιτών για τις δυνητικές επιπτώσεις της ανόδου της στάθμης της θάλασσας, λόγω του φαινοµένου του θερµοκηπίου, σε συνδυασµό µε την παροχή κινήτρων από τις κυβερνήσεις για τη χάραξη αναχαιτιστικής πολιτικής, αποτελεί σηµαντικό µέτρο προστασίας.

Απαγόρευση της Δόµησης στις παράκτιες ζώνες

Επιπρόσθετα, πρέπει να απαγορευτεί η δόµηση, σε περιοχές που είναι ευαισθητες σε διάβρωση ή ευπαθεις σε πλημµύρες και να παραχωρηθουν κίνητρα στους πολίτες για τη μεταφορα των ιδιοκτησιων τους μακρια απο τις ακτες.
Μελέτη Εκτίμησης Περιβαλλοντικών Επιπτώσεων

Η υποχρεωτική εκπόνηση περιβαλλοντικής μελέτης για τις συνέπειες της κατασκευής έργων στις παράκτιες ζώνες, συμβάλλει στον εντοπισμό και στην αντιμετώπιση φαινομένων όπως η διάβρωση και θα πρέπει να περιλαμβάνει τις ανησυχίες για διάβρωση των ακτών.

Απόδοση ευθύνης και αποκατάσταση ζημιών

Η ευθύνη για την αποκατάσταση των ζημιών αλλά και για την αντιμετώπιση πιθανών κινδύνων εξαιτίας της διάβρωσης των ακτών, πρέπει να μετατοπιστεί στους κατασκευαστές τεχνικών έργων, αλλά και στους δικαιούχους και στους επενδυτές, έτσι ώστε να τους αναπτυχθεί μεγαλύτερο αίσθημα υπευθυνότητας.

4.4 Παράκτια Έργα Προστασίας

Η διάβρωση μίας παράκτιας περιοχής μπορεί να περιοριστεί, αλλά και να ανακτηθεί σημαντικό μέρος της ακτογραμμής από αυτό που χάθηκε εξαιτίας της. Ένας πλήρης προσδιορισμός του υδροδυναμικού καθεστώτος μίας περιοχής παρέχει χρήσιμες πληροφορίες στο σχεδιασμό παράκτιων έργων που θα προστατεύουν την ακτή ή και θα συμβάλουν στην αναπλήρωσή της. Η προστασία μίας ακτής μπορεί να πραγματοποιηθεί με συμβατικά ή ήπια έργα. Η διάκριση μεταξύ των δύο αυτών κατηγοριών έργων προκύπτει από το κείμενο του Ευρωπαϊκού Κώδικα Συμπεριφοράς για τις παράκτιες ζώνες (European Code of conduct for coastal zones). Σύμφωνα με το κείμενο αυτό, ως συμβατικά έργα προστασίας ακτών χαρακτηρίζονται οι σταθερές κατασκευές που αποσκοπούν στην αντίσταση της ενέργειας των κυμάτων και των παλιρροιών. Ως τέτοιες κατασκευές μπορούν να χαρακτηριστούν οι κυματοθραύστες, οι τοίχοι και οι πρόβολοι. Ως ήπιες μέθοδοι προστασίας παράκτιων ακτών μπορούν να χαρακτηριστούν εγκαταστάσεις στοιχείων και τεχνικών διατάξεων, που συνεργάζονται με τη φύση και μπορούν να προσαρμοστούν στην ενέργεια των κυμάτων και των παλιρροιών και στον ανέμο. Αυτή η προσέγγιση έχει οικονομικά
πλεονεκτήματα, καθώς ελαχιστοποιεί τις περιβαλλοντικές επιπτώσεις των παραδοσιακών κατασκευών. Σε αυτή την κατηγορία έργων ανήκουν:

- Η μέθοδος τεχνητής αναπλήρωσης των ακτών με φυσικά υλικά
- Η μέθοδος των πυθμενικών προβόλων
- Η μέθοδος των κυματοθραυστών χαμηλής στέψης
- Οι φυτείες υδρόφιλων θάμνων στην παράκτια ζώνη
- Πλωτοί κυματοθραύστες

4.4.1 Συμβατικά Έργα Προστασίας

Έργα προστασίας της ακτής μπορεί να είναι παράλληλα προς αυτήν ή κάθετα σε αυτήν. Τα έργα που είναι παράλληλα στην ακτή, είναι δυνατόν να κατασκευαστούν είτε πάνω στο μέτωπο της ακτής, είτε σε κάποια απόσταση από αυτήν. Στην πρώτη περίπτωση, το έργο θωρακίζει το μέτωπο που διαβρώνεται και είναι συνήθως έργα θωράκισης ακτής. Στη δεύτερη κατηγορία, τα έργα βρίσκονται σε κάποια απόσταση από τη διαβρωμένη ακτή και παρεμποδίζουν τη δράση μεγάλου μέρους της ενέργειας σε αυτήν, όπως οι κυματοθραύστες και οι φυσικοί αναβαθμοί. Στα έργα κάθετα στην ακτή ανήκει και ο πρόβολος.

Anαμφισβήτητα, η αποτελεσματικότερη και φυσικότερη προστασία μιας ακτής επιτυγχάνεται όταν υπάρχει μια ευσταθής κεκλιμένη παράκτια ζώνη, στην οποία αποβάλλεται το μεγαλύτερο μέρος της κυματικής ενέργειας. Σε περιοχές όπου η ακτή διαβρώνεται, αρχικό μέλημα είναι η δημιουργία μίας τέτοιας τεχνητής κεκλιμένης περιοχής, πάντα σύμφωνη με τα μορφολογικά χαρακτηριστικά του πυθμένα της περιοχής. Τα σημαντικότερα κριτήρια σύμφωνα με τα οποία επιλέγεται ο τύπος του έργου σε μία περιοχή είναι:

- Ο μηχανισμός διαβρώσεως της ακτής
- Ο τύπος της ακτής και των ιζημάτων
- Η χρήση της παράκτιας ζώνης
- Η οικονομικότητα του προτεινόμενου έργου
4.4.1.1 Θωράκιση Μετώπου της Ακτής

Οι αρχικές και παλαιότερες μέθοδοι προστασίας της ακτογραμμής επεδιώκαν τη θωράκιση του μετώπου της προσβαλλόμενης ακτής με φυσικούς ή τεχνητούς ογκολίθους, πλάκες ή με ειδικούς τύπους θωρακίσεως, όπως οι αμμόσακοι, οι αμμοσωλήνες και τα συρματοκιβώτια. Στη θωράκιση με ογκόλιθους η τοποθέτηση είναι τυχαία, ενώ στις υπόλοιπες μεθόδους η τοποθέτηση είναι προδιαγεγραμμένη, μετά από υπολογισμούς. Το βασικό μειονέκτημα αυτών των μεθόδων είναι η στέρηση του παραλιακού μετώπου από χρήσιμες λειτουργίες όπως αναψυχή και αθλητικές δραστηριότητες. Επίσης, άλλο ένα μειονέκτημα της συγκεκριμένης μεθόδου, είναι η πιθανή υποσκαφή του πόδα του έργου και η διάβρωση στα αμέσως κατάντη. Για την αποφυγή αυτού του φαινομένου συνίσταται η συνέχιση της θωράκισης με ανθεκτικό πέτρωμα ή η ριζική μεταβολή της ακτογραμμής.

Εικόνα 4.2 Φωτογραφία θωράκισης μετώπου στη Λεμεσό Κύπρου
Κεφάλαιο 4: Προστασία Παράκτιας Ζώνης

4.4.1.2 Έργα σε Απόσταση από την Ακτογραμμή

Όπως έχει προαναφερθεί, στα παράκτια έργα σε απόσταση από την ακτογραμμή ανήκουν οι φυσικοί αναβαθμοί και οι κυματοθραύστες. Τα έργα της πρώτης κατηγορίας σχηματίζονται κυρίως από φυσικές διεργασίες και αποτελούνται από λεπτόκοκκο ίζημα, σε αντίθεση με τους κυματοθραύστες που είναι τεχνητά έργα από διάφορα υλικά, όπως φυσικοί ή τεχνητοί ογκόλιθοι από σκυρόδεμα. Η επιλογή για τα υλικά της κατασκευής του κυματοθραύστη εξαρτάται τόσο από το βάθος του πυθμένα στην περιοχή κατασκευής του, όσο και από την κατάστασή του (σταθερότητα του εδάφους). Επίσης εξαρτάται από τα διαθέσιμα υλικά στην κοντινή ενδοχώρα, όσο επίσης και από το διαπλέον μηχανολογικό εξοπλισμό.

Εικόνα 4.3 Φωτογραφία κυματοθραύστη με δημιουργία salient

Οι κυματοθραύστες τοποθετούνται συνήθως παράλληλα προς την ακτογραμμή και οι βασικοί στόχοι τους είναι να περιορίσουν τη δράση των κυματισμών στην προσήνεμη πλευρά των έργων αυτών, ανακλώντας και διαχέοντας ένα ποσοστό της ενέργειας του προσπίπτοντος κύματος. Η μείωση της κυματικής ενέργειας επιβραδύνει τα παράκτια ρεύματα, με αποτέλεσμα τη συσσώρευση άμμου στην υπήνεμη πλευρά του έργου και τη δημιουργία salient (Εικόνα 4.3), το οποίο μπορεί να προσεγγίσει την
κατασκευή και να σχηματιστεί tombolo. Τα κατάλληλα σχεδιασμένα αυτά έργα καθίστανται αποτελεσματικά, τόσο στη μείωση της διάβρωσης και τη διεύρυνση της παραλίας, όσο και στην προστασία και σταθεροποίηση έργων αναπλήρωσης της ακτής. Η ποσότητα ιζήματος που συσσωρεύεται στην υπήνεμη μεριά του έργου, δηλαδή η τελική οριογραμμή της παράκτιας ζώνης, εξαρτάται από το μήκος, το ύψος και την απόσταση του κυματοθραύστη από την ακτή και αν μεταξύ τους υπάρχει σύστημα κυματοθραυστών.

Εικόνα 4.4 Σύστημα κυματοθραυστών στον Κορινθιακό κόλπο (Πηγή: Google Earth)

4.4.1.3 Έργα Κάθετα στην Ακτή - Πρόβολοι
Το έργο προστασίας της ακτής, του οποίου ο άξονας είναι κάθετος στην ακτογραμμή και συνδέεται με αυτήν ονομάζεται πρόβολος. Ο στόχος ενός προβόλου ή ενός συστήματος προβόλων είναι η προστασία τμήματος της ακτής έναντι διάβρωσης και η σταθεροποίησή της, κυρίως σε περιοχές όπου η διάβρωση αποτελεί χρόνιο πρόβλημα λόγω της μειωμένης προσφοράς ιζήματος. Οι πρόβολοι, κατά κύριο λόγο, κατασκευάζονται για να διακόψουν τη μεταφορά ιζήματος κατά μήκος της ακτής, η οποία οφείλεται στη δράση των κυμάτων και των ρευμάτων. Ουσιαστικά το ιζήμα παγιδεύεται στην υπό μελέτη ακτή έως το σημείο που το αμμώδες υλικό θα τείνει να αγγίξει την άκρη του προβόλου ή θα τείνει να κυκλώσει τον πρόβολο σε περιόδους έντονου
κυματισμού. Ως προς την κατασκευή τους, τα συγκεκριμένα έργα εδράζονται στον πυθμένα, ενώ η στέψη τους διαμορφώνεται με τέτοιο τρόπο ώστε να περιορίζονται οι συνέπειες από τη θραύση των κυμάτων πάνω τους. Το μήκος του προβόλου πρέπει να φτάνει μέχρι τη ζώνη θραύσης και όχι να το ξεπερνάει. Στην περίπτωση που το ξεπεράσει, παρατηρείται συσσώρευση ιζήματος μεγαλύτερη της επιθυμητής στα ανάντη, με αποτέλεσμα εμφάνιση διάβρωσης στα κατάντη του προβόλου.

Εικόνα 4.5 Φωτογραφία Συστήματος Προβόλων στη Λυκοποριά Κορινθίας

4.4.1.4 Ήπια Τεχνικά Μέτρα – Περιβαλλοντικός Σχεδιασμός
Τα μεγάλα τεχνικά έργα, όπως λιμάνια, μαρίνες, κυματοθραύστες και βραχιόνες, χαρακτηρίζονται ως σκληρά μέτρα προστασίας των ακτών και οδηγούν σε παράκτια διάβρωση των γειτονικών ακτών, στη διατάραξη του ισοζυγίου των φερτών υλικών και στην παρεμπόδιση της ελεύθερης κυκλοφορίας των θαλάσσιων μαζών. Οι ανθρώπινες παρεμβάσεις που γίνονται με την κατασκευή παράκτιων έργων, με κακό σχεδιασμό και αστοχίες, οδηγούν σε ποικιλία φαινομένων όπως η διάθλαση και η ανάκλαση κυματισμών από τα κατακόρυφα τοιχία δίπλα στην παραλία. Επίσης, τα
αλιευτικά καταφύγια, τα λιμάνια και οι προβόλες αποτελούν εμπόδια για τη μεταφορά του ιζήματος. Επιπρόσθετα, η κατασκευή υποδομών μειώνει το ενεργό πλάτος της παραλίας και, τέλος, οι αμμοληψίες που γίνονται κρυφά σε πολλές παράκτιες περιοχές επηρεάζουν και αυτές τη διάβρωση των ακτών. Χαρακτηριστικά το Eurosion Project (2004), αναφέρει στο PART 1 - Major findings and Policy Recommendations of the EUROSION project, ότι το 63% των 875 χιλιομέτρων ακτών που διαβρώνονται τις τελευταίες δεκαετίες, εντός της ευρωπαϊκής ένωσης, βρίσκεται σε απόσταση λιγότερη από 30 χιλιόμετρα από περιοχές που άλλαξαν πρόσφατα λόγω τεχνικών έργων, όπως λιμενοβραχίονες, κυματοθραύστες, αναχώματα και άλλα. Οι επιπτώσεις των σκληρών μέτρων προστασίας των ακτών, οδήγησαν στη λήψη ηπίωτης μορφής μέτρων, περιβαλλοντικά φιλικών, που συστήνονται τόσο από το Eurosion Programme, όσο και από την IPCC. Τα ήπια τεχνικά μέτρα στοχεύουν στην μείωση των αρνητικών επιπτώσεων που επιφέρουν τα σκληρά μέτρα των έργων προστασίας των ακτών, αναφορικά με την αισθητική του τοπίου, την ανεμόμοιρη κυκλοφορία υδάτων και τη μετατόπιση των προβλημάτων διάβρωσης στις γειτονικές παρακείμενες ακτές, καθώς και στην επικίνδυνη κατάληψη της περιβάλλοντος, των παλιρροιών και του άμμου. Η εφαρμογή μέτρων ήπιας προστασίας των ακτών, εναρμονισμένων με τον περιβάλλοντος, όπως τροφοδότηση ακτών με άμμο, τεχνητοί υφάλων και σταθεροποίηση ακτών παρακείμενων, κρίνεται ως το πλέον αποτελεσματικό μέτρο αντιμετώπισης της παράκτιας διάβρωσης.

4.4.1.5 Τεχνητή Αναπλήρωση Ακτής

Ο περιοδικός τεχνητός εμπλούτισμός των ακτών δύναται να αποκαταστήσει το ανθρωπογενές διαταραγμένο περιβάλλον, έξαιτια της τουριστικής ανάπτυξης, αλλά και να αποκαταστήσει το ισοζύγιο των φερτών υλικών. Η τεχνητή τροφοδότηση των ακτών για ενίσχυση της προστασίας τους, προϋποθέτει την επικίνδυνη κατάληψη της περιβάλλοντος, εκείνη της τεχνητής τροφοδότησης ακτών παρακείμενες ακτές, καθώς και στην τροποποίηση της ενέργειας των κυμάτων, των παλιρροιών και του ανέμου. Η εφαρμογή μέτρων ήπιας προστασίας των ακτών, εναρμονισμένων με τον περιβάλλοντος, όπως τροφοδότηση ακτών με άμμο, τεχνητοί υφάλων και σταθεροποίηση ακτών παρακείμενων, κρίνεται ως το πλέον αποτελεσματικό μέτρο αντιμετώπισης της παράκτιας διάβρωσης.
Κεφάλαιο 4: Προστασία Παράκτιας Ζώνης

μεταφερθείσας ποσότητας ιζήματος και στη μείωση των πλευρικών και
eγκάρσιων απωλειών. Επιπρόσθετα, τα κύματα οδηγούνται σε μια πρώτη
θραύση και σε απώλεια κυματικής ενέργειας, πριν προσεγγίσουν τις ακτές.

Εικόνα 4.6 Αποτελέσματα της μεθόδου τεχνητής αναπλήρωσης ακτής στην
Πελοπόννησο

4.4.1.6 Εγκατάσταση Πυθμενικών Προβόλων
Οι πυθμενικοί πρόβολοι από γεωύφασμα κατασκευάζονται από έχαστο
σκυρόδεμα και αποτελούν ένα ήπιο μέτρο προστασίας των ακτών από
φαινόμενα διάβρωσης. Οι πυθμενικοί πρόβολοι, τοποθετούνται σε σειρά ώστε
να είναι μεταξύ τους παράλληλοι και εδράζονται στον βυθό, ενώ το μήκος
tους φτάνει μέχρι τα 45 μέτρα και η μεταξύ τους απόσταση κυμαίνεται από
20-25 μέτρα.
Κεφάλαιο 4: Προστασία Παράκτιας Ζώνης

Εικόνα 4.7 Φωτογραφία Πυθμενικών Προβόλων εγκατεστημένων σε ακτή της Πελοποννήσου

4.4.1.7 Κυματοθραύστες Χαμηλής Στέψης

Οι βυθισμένοι κυματοθραύστες, κατασκευάζονται από λιθορρυτή και ογκόλιθους, παράλληλα με την ακτή. Λόγω του ότι η στέψη τους βρίσκεται κάτω από την επιφάνεια της θάλασσας, καθιστούν δυνατή την ανεμπόδιση κυκλοφορία των θαλάσσιων μαζών, ενώ παράλληλα ανακλούν μέρος της κυματικής ενέργειας, με αποτέλεσμα την προστασία των ακτών από τη διάβρωση, αλλά και την επέκταση ή δημιουργία μιας αμμώδους παραλίας. Σε αυτήν την κατηγορία ανήκουν και οι τεχνητοί ύφαλοι.

Ένας τεχνητός ύφαλος είναι μία υποβρύχια δομή, που φτιάχνεται για δύο κατόπιν λόγους. Αρχικά για να προστατευθεί η θαλάσσια ζωή και κατά δεύτερον να ελεγχθεί η διάβρωση των ακτών, μειώνοντας την ενέργεια των κυμάτων που προσπίππουν πάνω σε αυτές. Οι τεχνητοί ύφαλοι επιτυγχάνουν τη σταθεροποίηση και τη θρέψη της παραλίας, καθώς επίσης και τη βελτίωση των συνθηκών κυματισμού. Πολλοί από τους τεχνητούς ύφαλους κατασκευάζονται με ό,τι υλικά είναι διαθέσιμα τη δεδομένη στιγμή, συνήθως σε σχήμα πυραμίδας, έτσι ώστε να επιτύχουν τη θραύση των κυμάτων. Για την κατασκευή πολλών τεχνητών ύφαλων έχουν χρησιμοποιηθεί μπάζα, ρόδες ή και διάφορα άλλα συντρίμμια, ενώ άλλοι είναι κατασκευασμένοι από γρανίτη, PVC ή και σκυρόδεμα. Η κατασκευή και η λειτουργία των τεχνητών
κεφάλαιο 4: προστασία παράκτιας ζώνης

υφάλων βασίζεται στη λειτουργία των ναυαγίων, καθώς παρατηρήθηκε ότι στις περιοχές όπου βρισκόταν ένα ιστορικό ή σύγχρονο ναυάγιο, οι ακτές δεν πλήττονταν από τη διάβρωση.

Η λειτουργία ενός τεχνητού υφάλου είναι όμοια με τη λειτουργία του κυματοθραύστη. Τοποθετείται σε απόσταση με την ακτή και σε συνδυασμό πάντοτε με τη διεύθυνση των κυμάτων και των ρευμάτων της περιοχής, μπορεί να απελευθερώσει την ενέργεια των κυμάτων και να προστατεύσει την ακτή από τη διάβρωση. Ο πρώτος τεχνητός ύφαλος της Ευρώπης άρχισε να κατασκευάζεται το 2008 στο Boscombe-Bournemouth της Αγγλίας, λειτούργησε το 2009 και ήταν κατασκευασμένος από εμπορευματοκιβώτια.

Εικόνα 4.8 Δημιουργία Τεχνητού Υφάλου με τσιμεντόλιθους
4.4.1.8 Τεχνητή Φυτοκάλυψη
Η φυτείες υδρόφιλων θάμνων ή άλλων κατάλληλων φυτών στην παράκτια ζώνη, κατά μήκος των ακτογραμμών, έχει ως αποτέλεσμα την αύξηση της έκτασης των ακτών λόγω συγκράτησης των ιζημάτων.

4.4.1.9 Πλωτοί Κυματοθραύστες
Οι πλωτοί κυματοθραύστες, είναι τεμάχια οπλισμένου σκυροδέματος που το εσωτερικό τους αποτελείται από διογκωμένη πολυστέρινη. Συμβάλλουν στην ανεμπόδιστη κυκλοφορία των ρευμάτων χωρίς να επηρεάζουν την μορφολογία του πυθμένα ή της ακτής, ενώ παράλληλα παρέχουν προστασία κατά της διάβρωσης.
Κεφάλαιο 5: Συμπεράσματα

Σύμφωνα με τα όσα έχουν αναφερθεί στην παρούσα διπλωματική εργασία, προκύπτουν, συνοπτικά, τα ακόλουθα συμπεράσματα και προτεινόμενες κατευθύνσεις:

- Το κλίμα αλλάζει. Ωστόσο, υπάρχει μεγάλη αβεβαιότητα στην πρόβλεψη των μελλοντικών κλιματικών συνθηκών υπό την επιρροή του ανθρώπινου παράγοντα. Θα είναι δύσκολο να δοθούν αξιόπιστες εκτιμήσεις της μελλοντικής κλιματικής κατάστασης μετά από κάποιες δεκαετίες, λόγω του ότι δε γίνεται να προβλεφθεί το πώς θα είναι δομημένο το ανθρώπινο περιβάλλον και πώς θα επηρεαστεί το κλίμα.

- Οι προβλέψεις των ακραίων καιρικών φαινομένων για την ένταση και τη συχνότητα εμφάνισής τους, ενέχουν ακόμα μεγαλύτερη αβεβαιότητα σε σχέση με τις προβλέψεις πάνω στις μακροχρόνιες τάσεις της θερμοκρασίας και των υετών. Τα κλιματικά μοντέλα GCM είναι πολύ πιθανό να αυξάνουν την αβεβαιότητα.

- Οι πιθανοτικές μέθοδοι συχνά βασίζονται σε μία υπόθεση στασιμότητας, η οποία συνεπάγεται ότι οι ιδιότητες διαφόρων μεταβλητών σε μελλοντικές χρονικές περιόδους θα είναι παρόμοιες με αυτές που έχουν παρατηρηθεί κατά το παρελθόν. Αυτή η υπόθεση αμφισβητείται, επειδή το μελλοντικό κλίμα και τα ακραία μελλοντικά καιρικά φαινόμενα αναμένεται να είναι στατιστικά διαφορετικά από ό,τι στο παρελθόν.

- Επειδή η αβεβαιότητα που συνδέεται με το μέλλον του κλίματος δεν είναι απολύτως μετρήσιμη, μπορεί να μην είναι δυνατό να χρησιμοποιηθεί μία πιθανολογική προσέγγιση στη διαδικασία αξιολόγησης ρίσκου. Ως εκ τούτου, εάν οι προβλέψεις πρέπει να λογίζονται υποψής στην Τεχνική Πρακτική, θα απαιτείται μεγάλη ικανότητα κριτικής σκέψης εκ μέρους των μηχανικών.

- Επιβάλλεται η συνεργασία μεταξύ μηχανικών και επιστημόνων που ασχολούνται με το κλίμα, για την παρατήρηση και μοντελοποίηση του κλίματος, του καιρού και των ακραίων καιρικών φαινομένων. Ο σκοπός αυτής της συνεργασίας είναι η βελτίωση (μέσω αύξησης της συνάφειας των παρατηρήσεων) των μοντέλων που χρησιμοποιούνται στο σχεδιασμό, τη λειτουργία, τη συντήρηση και την ανανέωση του δομημένου και φυσικού περιβάλλοντος. Πρέπει να συνδυάζονται οι ανάγκες της κοινότητας των μηχανικών με τους περιορισμούς που τίθενται εκ μέρους της επιστημονικής κοινότητας.

- Οι μηχανικοί, οι συμμετέχοντες στα έργα και οι ιθύνοντες θα πρέπει να ενημερώνονται σχετικά με την αβεβαιότητα των προβλέψεων του μελλοντικού κλίματος με διευκρινίσεις από την επιστημονική κοινότητα. Καθώς η αβεβαιότητα που συνδέεται με το μελλοντικό κλίμα δεν είναι απόλυτα μετρήσιμη, εάν οι προβλέψεις αυτές χρησιμοποιούνται στην
Τεχνική Πρακτική, είναι πολύ σημαντική η κρίση των μηχανικών λόγω της απαίτησης εξισορρόπησης του κόστους και των πιθανών συνεπειών αστοχίας.

- Οι μηχανικοί θα πρέπει να αναπτύξουν νέα Τεχνικά Πρότυπα για έναν κόσμο στον οποίο το κλίμα μεταλλάσσεται, κάτι που όμως δεν μπορεί να προβλεφθεί με υψηλό βαθμό βεβαιότητας. Όταν δεν είναι δυνατή η μείωση της αβεβαιότητας και να καθορίζεται πλήρως ο κίνδυνος και το δυνητικό κόστος για ένα υπό εξέταση έργο, πρέπει να εφαρμόζονται προσαρμοστικές στρατηγικές για να κάνουν το έργο ανθεκτικότερο στις μελλοντικές κλιματικές και ακραίες καιρικές συνθήκες.

- Πρέπει, στο μεγαλύτερο δυνατό βαθμό, να εντοπίζονται οι υποδομές ζωτικής σημασίας που απειλούνται περισσότερο από την κλιματική αλλαγή σε συγκεκριμένες περιοχές και να έχουν εφαρμογή αυτής της αξιολόγησης. Οι μηχανικοί θα πρέπει να έλθουν σε συνεννόηση με ιδιοκτήτες, χρήστες, χρηματοδότες και άλλους ενδιαφερόμενους, ώστε να καταλήξουν σε προσαρμοστικές σχεδιαστικές λύσεις, κάτω από συνθήκες αβεβαιότητας, που θα μεγιστοποιήσουν τις επιδόσεις των υποδομών, την ελαχιστοποίηση του κόστους καθ’ όλο τον κύκλο ζωής τους στο πλαίσιο ενός μεταβαλλόμενου κλίματος.

- Η παράκτια ζώνη είναι ευάλωτη στην κλιματική αλλαγή. Οι παράκτιες ανεμοδοτήσεις και άλλες ενδιαφερόμενες υποδομές λόγω της ανόδου της μέσης στάθμης της θάλασσας, της πτώσης της ανεμοδοτήσεως και της κλιματικής αλλαγής στην παράκτια ζώνη. Οι κοινωνικές ανάγκες ωθούν την επιστημονική κοινότητα να κατανοήσει εις βάθος τους παράκτιους μηχανισμούς και να προσφέρει προβλέψεις για τις μελλοντικές συνθήκες που θα επικρατούν στην παράκτια ζώνη.

- Δεδομένης της σημασίας της παράκτιας ζώνης για την οικονομία και, εν γένει, τον κοινωνικό εξωτικό, καθίσταται ως μεγάλο μειονέκτημα η έλλειψη γνώσης πάνω στο πώς η παράκτια ζώνη ανταποκρίνεται στις ατελείες της κλιματικής αλλαγής, όπως η ανάπτυξη της ταχείας θάλασσας και η ακραίας μετεωρολογική φαινόμενα. Οι κοινωνικές ανάγκες ωθούν την επιστημονική κουίντη την κατανοήσεις εις βάθος τους παράκτιους μηχανισμούς και να προσφέρει προβλέψεις για τις μελλοντικές συνθήκες που θα επικρατούν στην παράκτια ζώνη.

- Πρέπει να ερευνηθεί η μακροπρόθεσμη εξέλιξη της παράκτιας ζώνης λόγω ανθρωπογενών και φυσικών διεργασιών. Ο στόχος είναι να προσομοιωθεί επακριβώς η εξέλιξη της παράκτιας ζώνης, λαμβάνοντας υπόψη γεωλογικούς και ανθρωπογενείς (κλιματική αλλαγή, οικονομική και δραστηριότητα, παράκτια διαχείριση) παράγοντες. Τα κοινωνικά οφέλη θα περιλαμβάνουν τη βιώσιμη παράκτια εξέλιξη.
κυματικής διάδοσης, αναρρίχησης, χερσαίας διάδοσης και ιζηματομεταφοράς κατά τη διάρκεια ακραίων φαινομένων σε εσχέση με ήπιες συνθήκες καταιγίδας. Τα κοινωνικά σφέλη θα είναι η βελτιωμένη διαχείριση των παράκτιων πλημμυρών και ανθεκτικότερες παράκτιες κοινότητες.

- Για την αντιμετώπιση των παράκτιων πλημμυρών, πρέπει να εκδοθούν βελτιωμένοι πλημμυρικοί χάρτες, οι παράκτιες κοινότητες να βοηθηθούν από υποδομές για να αναπτύξουν ανθεκτικότητα στις πλημμύρες και οι υπηρεσίες προστασίας να ενημερώνουν τους πολίτες έγκαιρα και έγκυρα για την πιθανή εμφάνιση ακραίων συμβάντων.

- Η Ευρωπαϊκή Ένωση βρίσκεται σε μοναδική θέση και πρέπει να υποστηρίξει και να συντονίσει τις προσπάθειες των κρατών-μελών για την ανάπτυξη στρατηγικών προστασίας της παράκτιας ζώνης, μέσω προώθησης της συνεργασίας, διάχυση της γνώσης και προσφοράς διαθέσιμων εργαλείων.

- Δεδομένου ότι οι περισσότερες παράκτιες και λιμενικές εγκαταστάσεις σε όλον τον κόσμο μέχρι σήμερα έχουν σχεδιασθεί παραβλέποντας τις συνέπειες της κλιματικής αλλαγής, απαιτείται διαδικασία αναβάθμισης των δομών ώστε να διασφαλιστεί ένα νέο βέλτιστο σχέδιο που θα οδηγεί σε πολύ χαμηλή πιθανότητα αστοχίας. Σε περίπτωση αστοχίας, είναι αναγκαίο να διασφαλίζεται η δυνατόν μικρότερη κοινωνική και οικονομική βλάβη. Ως εκ τούτου, η λειτουργικότητα και η ασφάλεια αυτών των δομών πρέπει να επαναξιολογηθούν υπό συνθήκες κλιματικής αλλαγής.

- Δεδομένου ότι οι περισσότερες παράκτιες και λιμενικές εγκαταστάσεις σε όλον τον κόσμο μέχρι σήμερα έχουν σχεδιασθεί παραβλέποντας τις συνέπειες της κλιματικής αλλαγής, απαιτείται διαδικασία αναβάθμισης των δομών ώστε να διασφαλιστεί μία νέα βέλτιστη γεωμετρία που θα προορίζει σε πολύ χαμηλή πιθανότητα αστοχίας. Σε περίπτωση αστοχίας, είναι αναγκαίο να διασφαλίζεται η δυνατόν μικρότερη κοινωνική και οικονομική βλάβη. Ως εκ τούτου, η λειτουργικότητα και η ασφάλεια αυτών των δομών πρέπει να επαναξιολογηθούν υπό συνθήκες κλιματικής αλλαγής. Αυτό θα βοηθήσει στην αποδοτικότερη λειτουργία και στην ασφάλεια παράκτιων κοινοτήτων. Προτείνονται, λοιπόν, έργα ενίσχυσης σε επιλεγμένες λιμενικές κοινότητες, με σκοπό να αντέξουν στις αυξανόμενες πιέσεις από υδραυλικά φορτία υπό την επίδραση της κλιματικής αλλαγής.

- Συμβατικά «σκληρά» έργα προστασίας της παράκτιας ζώνης είναι μεν αποτελεσματικά, αλλά ελλοχεύουν κινδύνους παράπλευρων οικολογικών απωλειών. Πρέπει, όσο είναι δυνατόν, να υιοθετούνται

Τα συμβατικά «σκληρά» έργα προστασίας της παράκτιας ζώνης είναι μεν αποτελεσματικά, αλλά ελλοχεύουν κινδύνους παράπλευρων οικολογικών απωλειών. Πρέπει, όσο είναι δυνατόν, να υιοθετούνται
Κεφάλαιο 5: Συμπεράσματα

ήτια μέτρα προστασίας που είναι φιλικά προς το περιβάλλον και δεν αλλάζουν το φυσικό τοπίο.

- Η αντίδραση του ανθρώπου στις προκλήσεις για την προστασία της παράκτιας ζώνης οφείλει να είναι όσο το δυνατόν ηπιότερη. Πρέπει να εξετάζονται εναλλακτικές λύσεις και «κόλπα» κανονιστικών παρεμβάσεων, όπως για παράδειγμα θωρακίσεις συγκεκριμένων σημείων μίας διαβρώμενης ακτογραμμής που έχουν μεγαλύτερη αξία. Τα σημεία αυτά θα μπορούσαν να είναι τόποι αναψυχής, τουριστικής ανάπτυξης, προστατευόμενοι βιότοποι, χώροι αρχαιολογικού ενδιαφέροντος, χώροι για εμπόριο και μεταφορές κ.α.. Το ίδιο ισχύει και για τον κίνδυνο πλημμυρών, όπου μπορεί να δειχθεί ανοχή για σημεία μειωμένου ενδιαφέροντος, που δεν είναι κρίσιμο εάν θα πληγούν. Οι ιθύνοντες πρέπει να έχουν επαρκή επικοινωνία με τα εργαστήρια εφαρμογής τεχνικών έργων και, με κριτική σκέψη, να επιλέξουν τα «διαμάντια» που οφείλουν να θωρακίσουν.
American Society of Civil Engineers (ASCE), Committee on Adaptation to a Changing Climate (CACC), (2014) *Bridging the Gap between Climate Science and Civil Engineering Practice*.

Eurovision Project (2004), Major findings and Policy Recommendations of the EUROSION

Intergovernmental Panel on Climate Change

Gordon, Alex (1972) “Designing for survival: the President introduces his long life/loose fit/low energy study,” Royal Institute of British Architects Journal

Karambas Theofanis V. (2014), Modeling of climate change impacts on coastal flooding/erosion, ports and coastal defence structures

Kunkel E. Kenneth (2013), Monitoring and Understanding Trends in Extreme Storms: State of Knowledge

National Climate Assessment (NCA). (2014). The Third National Climate Assessment

National Research Council (NRC) Committee on a National Strategy for Advancing Climate Modeling; Board on Atmospheric Studies and Climate; Division on Earth and Life Studies, 2012. A National Strategy for Advancing Climate Modeling, National Academies Press, Washington, DC

National Snow and Ice Data Center (NSIDC), (2012). Arctic Climatology and Meteorology Glossary

National Weather Service (NWS), National Weather Service Glossary

NEARSHORE PROCESSES COMMUNITY (2014), The future of nearshore processes research

U.S. Army Corps of Engineers (USACE) (2013). “Incorporating Sea-level Change Considerations in Civil Works Programs”

WEB

http://www.deltawerken.com/

http://www.ipccdata.org/guidelines/pages/gcm_guide.html

http://www.pearl-fp7.eu

http://www.risckit.eu

http://thebritishgeographer.weebly.com/coastal-processes.html