

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: ΣΧΕΔΙΑΣΜΟΥ, ΑΝΑΛΥΣΗΣ & ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ & ΦΑΙΝΟΜΕΝΩΝ ΜΕΤΑΦΟΡΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΡΟΒΛΕΨΗ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΑΕΡΙΩΝ ΣΥΜΠΥΚΝΩΜΑΤΩΝ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

Πλακιά Ανθούλα

Επιβλέπων: Βουτσάς Επαμεινώνδας, Αναπληρωτής Καθηγητής

Αθήνα, Ιούνιος 2015

ΠΡΟΛΟΓΟΣ

Η παρούσα διπλωματική εργασία εκπονήθηκε στο εργαστήριο Θερμοδυναμικής και Φαινομένων Μεταφοράς της Σχολής Χημικών Μηχανικών στο Εθνικό Μετσόβιο Πολυτεχνείο.

Με το πέρας της συγγραφής της θα ήθελα να ευχαριστήσω θερμά τον αναπληρωτή καθηγητή, κο Επαμεινώνδα Βουτσά για το θέμα που μου εμπιστεύτηκε, καθώς και για την καθοδήγησή του σε όλο το διάστημα εκπόνησης της διπλωματικής εργασίας.

Επίσης θα ήθελα να ευχαριστήσω όλα τα μέλη του εργαστηρίου για την ψυχολογική υποστήριξη και τη βοήθεια που μου προσέφεραν όποτε τη χρειάστηκα και ιδιαίτερα τη Νεφέλη Νόβακ για την πολύτιμη βοήθειά της σε όλη τη διάρκεια εκπόνησης της διπλωματικής μου εργασίας.

Τέλος θα ήθελα να ευχαριστήσω την οικογένειά μου, για την ψυχολογική υποστήριξη, και την εταιρεία Statoil, για την επικοινωνία και τις πληροφορίες που μου δόθηκαν.

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΡΟΛΟΓΟΣ	1
ΠΕΡΙΕΧΟΜΕΝΑ	2
ΠΕΡΙΛΗΨΗ	5
ABSTRACT	7
ΕΙΣΑΓΩΓΗ	9
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ	
1. ΕΙΔΗ ΠΕΤΡΕΛΑΪΚΩΝ ΡΕΥΣΤΩΝ- ΦΥΣΙΚΟ ΑΕΡΙΟ	
2. ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ	
3. ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ	14
3.1 Rendlich-Kwong equation of state	
3.2 Soave-Rendlich-Kwong equation of state	15
3.3 Peng-Robinson equation of state	
3.4 Επίδραση των συντελεστών αλληλεπίδρασης	
3.5 UMR-PRU	
3.6 UMR-new	19
3.7 Patel-Teja equation of state	
3.8 PC-SAFT EOS	20
4. ΜΕΘΟΔΟΙ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΓΙΑ GAS CONDENSATES	21
4.1 Μέθοδοι που χρησιμοποιούν ΡΝΑ κατανομή	21
4.1.1 PNA-Statoil	21
4.1.2 Shariati-Peters-Moshfeghian method	22
4.1.3 Modified Shariati	23
4.1.4 Μέθοδος 3	24
4.1.5 Μέθοδος C ₆ +	25
4.2 Μέθοδοι που δε χρησιμοποιούν PNA κατανομή	26
4.2.1 Μέθοδος των αντιστοίχων κανονικών αλκανίων	26
4.2.2 Χαρακτηρισμός με βάση το μοριακό βάρος (MW Matching)	27
4.2.3 Χαρακτηρισμός με βάση το σημείο βρασμού (Tb Matching)	27
4.2.4 Whitson	27
4.2.5. Ahmed model	
4.2.6 Pedersen	
4.2.7 Distribution functions (M.Sportisse)	29

γπολοι	ΓΙΣΜΟΙ	31
1. ΔH	ΜΙΟΥΡΓΙΑ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ	31
2. ΣYN	ΝΘΕΤΙΚΑ ΑΕΡΙΑ ΣΥΜΠΥΚΝΩΜΑΤΑ	31
2.1	Σύγκριση αποτελεσμάτων των διαφορετικών μοντέλων στο ίδιο αέριο συμπύκνωμα .	31
2.2	Σύγκριση των αποτελεσμάτων του ίδιου μοντέλου σε διαφορετικά αέρια συμπυκνώμ	ιατα47
2.3	Υπολογισμός σφαλμάτων των μοντέλων SRK, PR, UMR στα συνθετικά αέρια συμπυκν	ώματα . 64
2.4	Σύνοψη αποτελεσμάτων	68
3. ПР/	ΑΓΜΑΤΙΚΑ ΣΥΜΠΥΚΝΩΜΑΤΑ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ (REAL GAS CONDENSATES)	69
3.1 фu	Υπολογισμός θερμοκρασίας βρασμού του βαριού κλάσματος των συμπυκνωμάτω σικού αερίου	ν 69
3.2 (M)	Χαρακτηρισμός με βάση το μοριακό βάρος του βαριού κλάσματος W-Matching)	70
3.3 Ma	- Χαρακτηρισμός με βάση το σημείο βρασμού του βαριού κλάσματος itching)	(Tb- 81
3.4	Modified Shariati (PNA)	86
3.5 (M)	Υπολογισμός σφαλμάτων των SRK, PR, UMR με τρεις μεθόδους χαρακτηρισμού W- Matching, Tb-Matching, PNA)	94
3.6	Επίδραση των παραμέτρων αλληλεπίδρασης στα αέρια συμπυκνώματα	99
3.7	Pedersen	
3	3.7.1 Pedersen-MW	102
3	3.7.2 Υπολογισμός σφαλμάτων της μεθόδου Pedersen-MW	110
3	3.7.3 Pedersen- Tb	110
3	3.7.4 Υπολογισμός σφαλμάτων της Pedersen-Tb με τα μοντέλα SRK, PR, UMR	116
3.8	Σύγκριση των διαφόρων μεθόδων χαρακτηρισμού	117
3.9	Υπολογισμός σφαλμάτων των μεθόδων χαρακτηρισμού	121
3.1	Ο Σύνοψη αποτελεσμάτων	125
ΣΥΜΠΕΡ	ΡΑΣΜΑΤΑ	126
ΒΙΒΛΙΟΓ	ΡΑΦΙΑ	127
ΠΑΡΑΡΤ	НМА А	129
ΠΑΡΑΡΤ	НМА В	133
ΠΑΡΑΡΤ	ΉΜΑ Γ	136
ΠΑΡΑΡΤ	ΉΜΑ Δ	143
ΠΑΡΑΡΤ	НМА Е	155
ΠΑΡΑΡΤ	НМА Z	162

ПАРАРТНМА Н	
ΠΑΡΑΡΤΗΜΑ Θ	
ΠΑΡΑΡΤΗΜΑ Ι	
ПАРАРТНМА К	
ΠΑΡΑΡΤΗΜΑ Λ	179
ΠΑΡΑΡΤΗΜΑ Μ	

ΠΕΡΙΛΗΨΗ

Το φυσικό αέριο είναι ένα πετρελαϊκό ρευστό, το οποίο αποτελείται από υδρογονάνθρακες, σε μεγαλύτερο ποσοστό το μεθάνιο. Η πρόβλεψη της ισορροπίας φάσεων των μιγμάτων φυσικού αερίου είναι ιδιαίτερα σημαντική για τη βιομηχανία, διότι επηρεάζει το σχεδιασμό και τη λειτουργία των διεργασιών παραγωγής και μεταφοράς φυσικού αερίου. Η πρόβλεψη αυτή γίνεται από διάφορα θερμοδυναμικά μοντέλα, κάθε ένα από τα οποία παρουσιάζει διαφορετική ακρίβεια σε αυτή την πρόβλεψη, ανάλογα και με τη σύσταση του μίγματος που μελετά.

Δεν είναι πάντα όμως εφικτό να χρησιμοποιηθεί απευθείας το μοντέλο για αυτή την πρόβλεψη, λόγω της πολυπλοκότητας των μιγμάτων φυσικού αερίου. Το κάθε μίγμα διαχωρίζεται σε ελαφρύ και βαρύ τμήμα. Το ελαφρύ έχει πλήρως καθορισμένη σύσταση, ενώ για το βαρύ κλάσμα (C6+, C7+) τα δεδομένα είναι περιορισμένα. Για το σκοπό αυτό, εξίσου απαραίτητη με τη χρήση θερμοδυναμικών μοντέλων για την πρόβλεψη της ισορροπίας φάσεων είναι η χρήση μεθόδων χαρακτηρισμού (πριν τη χρήση θερμοδυναμικών μοντέλων) για τον προσδιορισμό της σύστασης του βαριού κλάσματος φυσικού αερίου. Στη συνέχεια μπορεί να χρησιμοποιηθεί το θερμοδυναμικό μοντέλο για την πρόβλεψη της ισορροπίας φάσεων.

Στα πλαίσια αυτής της διπλωματικής εργασίας μελετήθηκαν τα δύο παραπάνω θέματα σε αέρια συμπυκνώματα φυσικού αερίου. Αρχικά εξετάστηκαν συνθετικά αέρια συμπυκνώματα, στα οποία η σύσταση ήταν γνωστή. Έτσι συλλέχθηκε από τη βιβλιογραφία η σύσταση τέτοιων μιγμάτων, καθώς επίσης και πειραματικά σημεία δρόσου. Στη συνέχεια χρησιμοποιήθηκαν τρία θερμοδυναμικά μοντέλα για την πρόβλεψη των σημείων αυτών, με σκοπό να διαπιστωθεί ποιο μοντέλο παρουσιάζει τα μικρότερα σφάλματα σε σχέση με τα πειραματικά σημεία. Χρησιμοποιήθηκαν δύο πολύ διαδομένες κυβικές καταστατικές εξισώσεις: η Soave- Redlich- Kwong (SRK) EOS και η Peng-Robinson (PR) EOS. Αυτές χρησιμοποιήθηκαν χωρίς συντελεστές αλληλεπίδρασης (kij). Το άλλο θερμοδυναμικό μοντέλο που χρησιμοποιήθηκε είναι το UMR-new (που έχει αναπτυχθεί από το εργαστήριο Θερμοδυναμικής και Φαινομένων Μεταφοράς). Το μοντέλο αυτό συμπεριλαμβάνει και τη δομή του μορίου στους υπολογισμούς του, μέσω της χρήσης των ομάδων της Unifac. Σε επόμενο στάδιο συγκρίθηκε η πρόβλεψη του κάθε μοντέλου σε συμπυκνώματα με μικρές διαφορές στη σύσταση. Από αυτή την ανάλυση διαπιστώθηκε σε ποια μίγματα δίνει καλύτερα αποτελέσματα το κάθε μοντέλο.

Στη συνέχεια της διπλωματικής εργασίας μελετήθηκαν οι μέθοδοι χαρακτηρισμού. Έτσι αρχικά συλλέχθηκαν από τη βιβλιογραφία πραγματικά αέρια συμπυκνώματα φυσικού αερίου και δημιουργήθηκε μία βάση δεδομένων με τις συστάσεις αυτών και τα πειραματικά σημεία δρόσου που δίνονταν. Για κάθε ένα αέριο συμπύκνωμα δίνονταν πληροφορίες για το βαρύ του κλάσμα (όπως η πυκνότητά του και το μοριακό του βάρος) που χρησιμοποιήθηκαν αργότερα στο χαρακτηρισμό. Χρησιμοποιήθηκαν τέσσερις μέθοδοι χαρακτηρισμού: Χαρακτηρισμός με βάση το μοριακό του βάρος) που χρησιμοποιήθηκαν αργότερα στο χαρακτηρισμό. Χρησιμοποιήθηκαν τέσσερις μέθοδοι χαρακτηρισμού: Χαρακτηρισμός με βάση το μοριακό βάρος του βαριού κλάσματος, χαρακτηρισμός με βάση το σημείο βρασμού του βαριού κλάσματος, Modified Shariati και Pedersen. Όλες εκτός από την Modified Shariati δε χρησιμοποιούν PNA κατανομή. Αφού χαρακτηρίστηκαν πολλά από τα μίγματα που συλλέχθηκαν με τις μεθόδους αυτές, προβλέφθηκε η ισορροπία φάσεων για κάθε αέριο συμπύκνωμα χαρακτηρισμένου με κάθε μέθοδο χαρακτηρισμού. Ύστερα από υπολογισμό των σφαλμάτων των υπολογισμένων σε σχέση με τα πειραματικά σημεία βρέθηκε η βαρίο τοι ποι μέθοδος χαρακτηρισμού και το καλύτερο μοντέλο.

Αρχικά για κάθε συμπύκνωμα χαρακτηρισμένο με μία μέθοδο χαρακτηρισμού μελετήθηκε η επίδραση των θερμοδυναμικών μοντέλων (SRK, PR, UMR), με σκοπό να διαπιστωθεί ποιο είναι το καλύτερο

μοντέλο. Στη συνέχεια μελετήθηκαν τα αποτελέσματα μόνο με ένα μοντέλο (το UMR) και κάθε μέθοδο χαρακτηρισμού για κάθε αέριο συμπύκνωμα με σκοπό να διαπιστωθεί ποια μέθοδος χαρακτηρισμού είναι καλύτερη.

Αξίζει να σημειωθεί ότι μελετήθηκε και η επίδραση των παραμέτρων αλληλεπίδρασης (kij). Για να μελετηθεί η επίδρασή τους σε συμπυκνώματα φυσικού αερίου, συγκρίθηκαν τα αποτελέσματα της SRK με και χωρίς kij στα μίγματα που είχαν χαρακτηριστεί με τη μέθοδο Modified Shariati.

Τέλος σε κάποια συστήματα χρησιμοποιήθηκε και η PC-SAFT για να διαπιστωθεί η ικανότητα πρόβλεψης της ισορροπίας φάσεων και από αυτό το μοντέλο.

ABSTRACT

Natural gas is a petroleum fluid, that consists of hydrocarbons. The main component is methane. The prediction of phase equilibrium of gas mixtures is particularly important for the industry because it affects the design and operation of gas production and transport processes. The prediction is made by various thermodynamic models, each of which presents different accuracy in this prediction, depending on the composition of the mixture studying.

However, it is not always possible to use directly the model for this prediction because of the complexity of the gas mixtures. Each mixture is separated into light and heavy section. The light has a fixed composition, while the heavy fraction (C6 +, C7 +) data are limited. For this purpose, as necessary as using thermodynamic models to predict the equilibrium phases is, is the use of methods to characterize the mixtures (before using thermodynamic models), in order to determine the composition of the heavy fraction .Then thermodynamic models can be used in phase equilibrium prediction.

Within this thesis we studied the above two issues in natural gas condensates. Initially synthetic gas condensates, in which the composition was known, were tested. So the composition of such mixtures was collected from the literature, as well as experimental dew points. Then three thermodynamic models were used to predict these points in order to determine which model has the smallest deviation from the experimental points. Two widespread cubic equations of state were used: the Soave- Redlich- Kwong (SRK) EOS and Peng-Robinson (PR) EOS. These were used without interaction coefficients (kij). The other thermodynamic model, which was used is the UMR-new (developed by the laboratory of Thermodynamics and Transport Phenomena). This model includes the structure of the molecule in its calculations, through the use of Unifac groups. At a later stage the prediction of each model was compared with the other models in gas condensates with small differences in their concentration. From this analysis it was found the kind of condensates, that each model gives better results.

Then characterization methods were studied. Firstly there was an extension of an existing database with new components, in order to use even more components in the characterization procedure. Then real natural gas condensates were collected from the literature and a database of their composition and their experimental dew points was created. For each gas condensate there was information about the heavy fraction (such as density and molecular weight), which was used later in the characterization. Four characterization methods were used: Characterization by the molecular weight of the heavy fraction (MW-Matching), characterization according to the boiling point of the heavy fraction (Tb-Matching), Modified Shariati and Pedersen. All methods except Modified Shariati did not use PNA distribution. When many of the mixtures collected were characterized by these methods, the phase equilibrium was predicted for each gas condensate characterized by each method. After calculating the error of the calculated points, the best characterization method and the best model were found.

Initially for each condensate characterized by a characterization method, the effect of thermodynamic models (SRK, PR, UMR) was studied , in order to determine what the best model is. Then results with one model (UMR) and each characterization method for each gas condensate were studied in order to determine which method is the best for characterization.

Notably we studied the effect of the interaction parameters (kij). To study their effect on natural gas condensates, the results of SRK with and without kij for condensates characterized by the method Modified Shariati, were compared.

Finally on some systems PC-SAFT was used in order to see its' results in phase equilibrium prediction in natural gas condensates.

ειδαγωγη

Πολλές από τις ιδιότητες των πετρελαϊκών κλασμάτων είναι σημαντικές στο σχεδιασμό και στη λειτουργία σχεδόν κάθε σημείου του εξοπλισμού μιας πετρελαϊκής βιομηχανίας. Τέτοιες ιδιότητες είναι το ειδικό βάρος και η πυκνότητα του ρευστού, το σημείο βρασμού του, το μοριακό του βάρος και πολλές άλλες. Από τις ιδιότητες αυτές ,οι θερμοδυναμικού και φυσικού χαρακτήρα ,υπολογίζονται συνήθως μέσω συσχετίσεων ή καταστατικών εξισώσεων ή άλλων σχέσεων πίεσης-όγκου- θερμοκρασίας (PVT). Οι μέθοδοι αυτοί παρέχουν μία σχετική ακρίβεια στα αποτελέσματά τους, η οποία εξαρτάται όμως από την ακρίβεια των δεδομένων που εισάγονται σε αυτές. Για την εφαρμογή των κυβικών καταστατικών εξισώσεων, που χρησιμοποιούνται τυπικά στην πετρελαϊκή βιομηχανία, απαιτείται η γνώση της κρίσιμης θερμοκρασίας (P_c) και του ακεντρικού παράγοντα (ω). Αν πρόκειται για καθαρό συστατικό οι ιδιότητες αυτές είναι γνωστές, στην περίπτωση όμως μη καθορισμένων ουσιών (όπως πετρελαϊκών κλασμάτων) χρειάζονται οι ψευδο-κρίσιμες ιδιότητες. Για τον υπολογισμό τους απαιτούνται επιπλέον ιδιότητες. Για το σκοπό αυτό χρησιμοποιούνται διάφορες μέθοδοι και του κεντρικού και δρομεί και του αιαλογισμό τους απαιτούνται επιπλέον ιδιότητες. Για το σκοπό αυτό χρησιμοποιούνται διάφορες μέθοδοι κρίσιμες ιδιότητες καθώς επίσης και η σύσταση διαφόρων πετρελαϊκών κλασμάτων. (Riazi, 2005)

Στην παρούσα διπλωματική εργασία μελετήθηκαν μέθοδοι χαρακτηρισμού για τον προσδιορισμό του γραμμομοριακού κλάσματος των διαφόρων συστατικών των πετρελαϊκών ρευστών (και συγκεκριμένα του C₇+ κλάσματος του φυσικού αερίου). Τα πετρελαϊκά ρευστά αποτελούν μίγματα υδρογονανθράκων που θεωρούνται πλήρως προσδιορισμένα αν είναι γνωστή η σύσταση όλων των συστατικών τους. Μάλιστα όσο πιο αναλυτική είναι η ανάλυση της σύστασης των κλασμάτων αυτών τόσο πιο ακριβής είναι ο προσδιορισμός των ιδιοτήτων τους (πχ μέσω καταστατικών εξισώσεων). (Riazi, 2005). Επίσης είναι ιδιαίτερα σημαντικό να ζητούνται από τις μεθόδους χαρακτηρισμού όσο το δυνατόν λιγότερα δεδομένα εισόδου για να είναι εύχρηστες.

Όσον αφορά το φυσικό αέριο, αυτό χωρίζεται σε δύο κλάσματα: στο ελαφρύ και στο βαρύ. Για το ελαφρύ είναι γνωστές όλες οι ενώσεις που περιέχονται σε αυτό και ιδιότητές του, ενώ για το βαρύ είναι γνωστές μόνο κάποιες ιδιότητες. Είναι απαραίτητη λοιπόν η χρήση μεθόδων χαρακτηρισμού για τον προσδιορισμό της σύστασης του βαριού κλάσματος φυσικού αέριου.

Πέραν της σημασίας της γνώσης της σύστασης όλων των κλασμάτων του φυσικού αερίου, είναι απαραίτητη και η γνώση των διαγραμμάτων φάσεων με σκοπό τον καλύτερο σχεδιασμό των διεργασιών παραγωγής και μεταφοράς φυσικού αερίου από τη βιομηχανία. Ιδιαίτερης σημασίας είναι οι πληροφορίες που δίνονται σχετικά με τα σημεία cricondentherm και cricondenbar από τέτοια διαγράμματα. Τα σημεία αυτά αποτελούν σημεία κορεσμού στη μέγιστη θερμοκρασία και στη μέγιστη πίεση, αντίστοιχα, που παρουσιάζεται στο διάγραμμα φάσεων. Για το σωστό σχεδιασμό, είναι απαραίτητο να υπάρχει ένα απλό και εύχρηστο θερμοδυναμικό μοντέλο για την πρόβλεψη των διαγραμμάτων ισορροπίας φάσεων. Επίσης είναι απαραίτητη η συλλογή πειραματικών δεδομένων, ώστε να ελεγχθούν τα αποτελέσματα των διαφόρων μοντέλων, ως προς την αξιοπιστία τους.

Τα πιο συχνά χρησιμοποιούμενα μοντέλα είναι η SRK και η PR. Πέραν αυτών των δύο μοντέλων, εξετάστηκε στα πλαίσια αυτής της διπλωματικής και το μοντέλο UMR-new, που αποτελεί παραλλαγή του μοντέλου UMR-PRU. Επίσης εξετάστηκε σε μικρότερο βαθμό το μοντέλο PC-SAFT. Τόσο οι μέθοδοι χαρακτηρισμού που εξετάστηκαν όσο και τα θερμοδυναμικά μοντέλα δοκιμάστηκαν σε αέρια συμπυκνώματα φυσικού αερίου. Συλλέχθηκαν επίσης πειραματικά δεδομένα από τη βιβλιογραφία με σκοπό την αξιολόγηση των μεθόδων και των μοντέλων. Σκοπός αυτής της διπλωματικής εργασίας ήταν η ανάλυση της συμπεριφοράς κάθε μοντέλου και μεθόδου χαρακτηρισμού σε διαφορετικά αέρια συμπυκνώματα με στόχο την εύρεση μίας αξιόπιστης μεθόδου χαρακτηρισμού και ενός αξιόπιστου μοντέλου για την πρόβλεψη της ισορροπίας φάσεων.

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

1. ΕΙΔΗ ΠΕΤΡΕΛΑΪΚΩΝ ΡΕΥΣΤΩΝ- ΦΥΣΙΚΟ ΑΕΡΙΟ

Τα πετρελαϊκά ρευστά ενός ταμιευτήρα είναι πολυσυστατικά μίγματα υδρογονανθράκων. Το μεθάνιο είναι ο απλούστερος υδρογονάνθρακας και το πιο συνηθισμένο συστατικό σε αέρια πετρελαϊκά ρευστά. Υδρογονάνθρακες με επτά ή περισσότερα άτομα άνθρακα ομαδοποιούνται σε ένα κλάσμα που αποκαλείται κλάσμα C₇+. Τα πετρελαϊκά ρευστά ενός ταμιευτήρα μπορούν να περιλαμβάνουν υδρογονάνθρακες με πολύ μεγάλο αριθμό ατόμων άνθρακα (πχ C₂₀₀).

Τα πετρελαϊκά ρευστά ενός ταμιευτήρα χωρίζονται σε

- Φυσικά αέρια
- Μίγματα gas condensate
- Μίγματα κοντά στο κρίσιμο σημείο ή πτητικά oils.
- Black oils

Ο διαχωρισμός των παραπάνω μιγμάτων γίνεται με βάση τη θέση του κρίσιμου σημείου, που εξαρτάται από το μοριακό βάρος του αερίου και την περιεκτικότητά του σε μεθάνιο.

Το φυσικό αέριο είναι ένα ορυκτό καύσιμο και αποτελείται από μίγμα αέριων υδρογονανθράκων. Το κύριο συστατικό του είναι το μεθάνιο, αλλά περιλαμβάνει και ποικίλες ποσότητες ανώτερων αλκανίων καθώς και ένα μικρότερο ποσοστό διοξειδίου του άνθρακα, αζώτου και υδρόθειου. Πρόκειται για έναν μη ανανεώσιμο πόρο, ο οποίος αποτελεί μία πηγή ενέργειας που χρησιμοποιείται συχνά.

Το φυσικό αέριο βρίσκεται βαθιά στη γη σε υπόγειους σχηματισμούς βράχων. Υπάρχουν δύο θεωρίες για την προέλευσή του. Η μία αναφέρει ότι δημιουργήθηκε σε υπόγειες κοιλότητες λόγω συσσώρευσης οργανικών υπολειμμάτων και υψηλής θερμοκρασίας και πίεσης που επικρατούσαν και η άλλη ότι δημιουργήθηκε από τη μεταβολική δράση μικροοργανισμών κατά την οποία παραγόταν μεθάνιο.

Γενικώς όταν η θερμοκρασία στον ταμιευτήρα είναι μεγαλύτερη από την κρίσιμη θερμοκρασία του συστήματος υδρογονανθράκων το κοίτασμα αποτελεί κοίτασμα φυσικού αερίου.

Κατά τη διάρκεια παραγωγής από ένα κοίτασμα η θερμοκρασία διατηρείται σταθερή στην αρχική θερμοκρασία του ταμιευτήρα, T_{res}, ενώ η πίεση μειώνεται λόγω της μετακίνησης του ρευστού έξω από τον ταμιευτήρα. Για ένα φυσικό αέριο αυτή η μείωση της πίεσης δεν έχει καμία επίδραση στον αριθμό των φάσεων (δεν παρατηρείται καμία αλλαγή φάσης). Για ένα gas condensate η μείωση της πίεσης θα οδηγήσει κάποια στιγμή στη δημιουργία δεύτερης (υγρής) φάσης.

Όσον αφορά τα μίγματα κοντά στο κρίσιμο σημείο, η μείωση της πίεσης οδηγεί στη δημιουργία δεύτερης φάσης. Αν η δεύτερη φάση είναι αέρια το μίγμα είναι πτητικό oil. Αν η δεύτερη φάση είναι υγρή το μίγμα είναι gas condensate. Η πρώτη περίπτωση συμβαίνει αν η θερμοκρασία στον ταμιευτήρα είναι μικρότερη της κρίσιμης θερμοκρασίας, ενώ η δεύτερη αν η θερμοκρασία στον ταμιευτήρα είναι μεγαλύτερη της κρίσιμης.

Τέλος στα black oils η μείωση της πίεσης οδηγεί πάντα στη δημιουργία δεύτερης αέριας φάσης.

Τα παραπάνω φαίνονται πιο παραστατικά στο διάγραμμα που ακολουθεί:

Εικόνα 1: Διάγραμμα φάσεων διαφόρων πετρελαϊκών ρευστών

(Pedersen, et al., 2007)

2. ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ

Ένα διφασικό σύστημα θεωρείται ότι βρίσκεται σε κατάσταση ισορροπίας όταν η ολική ελεύθερη ενέργεια Gibbs- σε σταθερή πίεση και θερμοκρασία- λαμβάνει την ελάχιστη τιμή της. Αυτό οδηγεί σε ισότητα των τάσεων διαφυγής για κάθε συστατικό i στις δύο φάσεις. Έτσι στην περίπτωση ισορροπίας φάσεων υγρού- ατμού ισχύει:

$$\widehat{f_i}^{\nu} = \widehat{f_i}^l \quad (1)$$

, όπου οι εκθέτες Ι και ν αναφέρονται στην υγρή και την ατμώδη φάση αντίστοιχα.

Για διάφορες θερμοκρασίες και πιέσεις επιλύοντας την παραπάνω εξίσωση για ένα φυσικό αέριο με συγκεκριμένη σύσταση προκύπτει μια καμπύλη της ακόλουθης μορφής:

Εικόνα 2: Διάγραμμα φάσεων φυσικού αερίου και σημαντικά σημεία

Στο διάγραμμα αυτό παρατηρούμε τις καμπύλες των σημείων δρόσου και των σημείων φυσαλίδας. Αυτές ενώνονται στο κρίσιμο σημείο. Στο σημείο αυτό οι θερμοδυναμικές ιδιότητες και των δύο φάσεων ταυτίζονται. Το κρίσιμο σημείο δεν αποτελεί τη μέγιστη θερμοκρασία, στην οποία ένα δεδομένο μίγμα μπορεί να υπάρξει σε υγρή κατάσταση. Αντιπροσωπεύει όμως τη μέγιστη θερμοκρασία στην οποία όλο το ρευστό μπορεί να υπάρξει σε υγρή φάση.

Τα σημεία cricondentherm και cricondenbar αποτελούν τη μέγιστη θερμοκρασία και τη μέγιστη πίεση αντίστοιχα, στις οποίες μπορεί να συνυπάρξουν υγρό και ατμός.

Στα μίγματα των υδρονανθράκων (όπως το φυσικό αέριο) παρατηρείται το φαινόμενο της παλινδρομικής συμπύκνωσης (retrograde condensation). Πρόκειται για ένα φαινόμενο που παρατηρείται στην περιοχή δεξιά της κρίσιμης θερμοκρασίας και η περιοχή αυτή ονομάζεται παλινδρομική περιοχή. Για να περιγραφεί καλύτερα το φαινόμενο παρουσιάζεται το παρακάτω διάγραμμα:

Εικόνα 3: Περιοχή παλινδρομικής συμπύκνωσης στο διάγραμμα φάσεων φυσικού αερίου

Κατά το φαινόμενο αυτό αν σε ένα μίγμα ξεκινώντας από κορεσμένο ατμό (σημείο B) μειωθεί η πίεση ισόθερμα, εμφανίζεται μίγμα υγρού-ατμού (σημείο D). Αν υπάρξει περαιτέρω μείωση της πίεσης οδηγούμαστε σε κορεσμένο ατμό (σημείο F) και πάλι και στη συνέχεια σε υπέρθερμο ατμό. Το φαινόμενο αυτό μπορεί να παρατηρηθεί και με ισοβαρή μείωση της θερμοκρασίας.

Η παλινδρομική συμπύκνωση είναι πολύ σημαντική κατά την παραγωγή αέριων συμπυκνωμάτων από κοιτάσματα, αφού η πτώση πίεσης, εξαιτίας της ανάκτησης αερίου, μπορεί να οδηγήσει σε συμπύκνωση και κατά συνέπεια σε απώλεια βαρέων συστατικών. Επίσης είναι σημαντική για τα συστήματα μεταφοράς φυσικού αερίου, γιατί η πτώση πίεσης μπορεί να οδηγήσει στη δημιουργία υγρής φάσης και σε απόφραξη των σωληνώσεων.

(Τασσιός, 2001)

3. ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Οι περισσότεροι υπολογισμοί ισορροπίας φάσεων (VLE) για πετρελαϊκά μίγματα, φυσικά αέρια αλλά και gas condensates γίνονται μέσω κυβικών καταστατικών εξισώσεων. Κυβικές καταστατικές ονομάζονται οι εξισώσεις που έχουν όρους όγκου υψωμένους στην πρώτη, δεύτερη και τρίτη δύναμη. Οι πιο γνωστές είναι η SRK (Soave-Rendlich-Kwong) και η PR (Peng-Robinson).

3.1 Rendlich-Kwong equation of state

Η εξίσωση Rendlich-Kwong (1949) είναι:

$$P = \frac{RT}{V-b} - \frac{a}{\sqrt{T} V (V+b)} \quad (2)$$

όπου $a = \frac{0.42748R^2T_c^{2.5}}{P_c}$ (3) $b = \frac{0.08664 R T_c}{P_c}$ (4)

Για μίγμα Ν-συστατικών οι παράμετροι α και b υπολογίζονται από τους παρακάτω κανόνες ανάμιξης:

$$a = \sum_{i=1}^{N} \sum_{j=1}^{N} z_i z_j a_{ij}$$
(5)
$$b = \sum_{i=1}^{N} z_i b_i$$
(6)

Όπου z_i και z_j τα κλάσματα mol των συστατικών i και j αντίστοιχα. Η παράμετρος b_i υπολογίζεται από τη σχέση (4). Η παράμετρος *a_{ij}* υπολογίζεται από τη σχέση:

$$a_{ij} = \frac{0.42748R^2 T_{cij}^{2.5}}{P_{cij}} \qquad (7)$$

Πρόκειται για εξίσωση αντίστοιχη της σχέσης (3), με τη διαφορά ότι αντί των κρίσιμων ιδιοτήτων των καθαρών συστατικών υπάρχουν οι όροι Τ_{cij} και P_{cij}, οι οποίοι υπολογίζονται από τις σχέσεις:

$$T_{cij} = \sqrt{T_{ci}T_{cj}}(1-k_{ij}) \quad (8)$$
$$P_{cij} = \frac{Z_{cij}RT_{cij}}{V_{cij}} \quad (9)$$

Στις σχέσεις αυτές ο όρος k_{ij} είναι μία δυαδική παράμετρος αλληλεπίδρασης των συστατικών i και j, που αντιπροσωπεύει την ανομοιότητα ανάμεσα στα μόρια i και j. Όσο αυξάνεται η ανομοιότητα (είτε σε μέγεθος είτε σε είδος διαμοριακών δυνάμεων) αυξάνεται και η τιμή του συντελεστή. Για δύο πανομοιότυπα συστατικά η παράμετρος αυτή είναι μηδέν εξ' ορισμού. Για δύο διαφορετικά μη πολικά συστατικά η παράμετρος είναι κοντά στο μηδέν. Για δύο διαφορετικά συστατικά εκ των οποίων το ένα τουλάχιστον είναι πολικό η παράμετρος αυτή είναι συνήθως μη μηδενική. Επίσης ο όρος Z_{cij} δίνεται από τη σχέση:

$$Z_{cij} = \frac{Z_{ci} + Z_{cj}}{2}$$
(10)

$$V_{cij} = \left(\frac{V_{ci}^{1/3} + V_{cj}^{1/3}}{2}\right)^3 \quad (11)$$

Ακόμη

Τα Z_{ci} και Z_{cj} είναι οι συντελεστές συμπιεστότητας των συστατικών i και j αντίστοιχα.

(Pedersen, et al., 2007 pp. 66-68)

3.2 Soave-Rendlich-Kwong equation of state

Ο Soave πρότεινε μία αλλαγή στην εξίσωση ώστε να υπάρχει μία πιο γενική εξάρτηση από τη θερμοκρασία. Η εισαγωγή θερμοκρασιακής εξάρτησης έγινε στην παράμετρο α του ελκτικού όρου της RK. Η SRK καταστατική εξίσωση είναι:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)} \qquad (12)$$

Όπου a (T)= $\alpha_c \alpha(T)$

$$a_{c} = \frac{0.42747R^{2}T_{c}^{2}}{P_{c}} \quad (13)$$

$$b = \frac{0.08664 R T_{c}}{P_{c}} \quad (14)$$

$$\alpha(T) = \left(1 + m\left(1 - \sqrt{\frac{T}{T_{c}}}\right)\right)^{2} \quad (15)$$

$$m = 0.480 + 1.574\omega - 0.176\omega^2$$
 (16)

Οι Mathias-Copeman πρότειναν μία πιο ευέλικτη σχέση για την εξάρτηση του α από τη θερμοκρασία:

$$\alpha(T) = \left(1 + C_1 \left(1 - \sqrt{T_r}\right) + C_2 \left(1 - \sqrt{T_r}\right)^2 + C_3 \left(1 - \sqrt{T_r}\right)^3\right)^2 \quad \gamma \iota \alpha \ T_r < 1$$
(17)

$$\alpha(T) = \left(1 + C_1 \left(1 - \sqrt{T_r}\right)\right)^2 \quad \gamma \iota \alpha \ T_r \ge 1 \tag{18}$$

Τα C_1 , C_2 και C_3 είναι σταθερές και εξαρτώνται από το συστατικό.

Σύμφωνα με την SRK ο συντελεστής συμπιεστότητας για ένα καθαρό συστατικό είναι ίσος με 0.333. Για πολυσυστατικά μίγματα ο συντελεστής συμπιεστότητας δίνεται από τη σχέση:

$$Z^{3} - Z^{2} + (A - B + B^{2})Z - AB = 0$$
(19)

Τα Α και Β δίνονται από τις σχέσεις:

$$A = \frac{\mathsf{a}(T)P}{R^2 T^2} \tag{20}$$

$$B = \frac{bP}{RT} \tag{21}$$

Ο Soave πρότεινε τον υπολογισμό των α και b από τις σχέσεις (5) και (6) αντίστοιχα με τη διαφορά ότι το a_{ij} υπολογίζεται τώρα από τη σχέση:

$$a_{ij} = \sqrt{a_i a_j} (1 - k_{ij}) \quad (22)$$

(Pedersen, et al., 2007 pp. 68-70)

3.3 Peng-Robinson equation of state

Οι υπολογιζόμενες πυκνότητες από την SRK ήταν γενικώς πολύ χαμηλές. Οι Peng-Robinson πρότειναν λοιπόν μία εξίσωση της μορφής:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)+b(V-b)}$$
 (23)

Όπου a (T)= $\alpha_c \alpha(T)$ (24)

$$a_c = \frac{0.45724R^2 T_c^2}{P_c} \quad (25)$$

$$b = \frac{0.07780 R T_c}{P_c}$$
(26)

$$\alpha(T) = \left(1 + m \left(1 - \sqrt{\frac{T}{T_c}}\right)\right)^2$$
(27)

$$m = 0.37464 + 1.54226\omega - 0.26992\omega^2$$
(28)

Η εξίσωση (23) δίνει ένα συντελεστή συμπιεστότητας 0.307 για καθαρά συστατικά, αλλά και πάλι υψηλό συγκρινόμενο με πειραματικά δεδομένα. Αργότερα οι Peng-Robinson τροποποιήσαν τη σχέση (28):

$$m = 0.379642 + 1.48503\omega - 0.164423\omega^2 + 0.016666\omega^3 \quad \gamma \iota \alpha \, \omega > 0.49 \tag{29}$$

(Pedersen, et al., 2007 pp. 71-72)

3.4 Επίδραση των συντελεστών αλληλεπίδρασης

Για την εύρεση των τάσεων διαφυγής από μία κυβική καταστατική εξίσωση (όπως η SRK ή η PR) για δεδομένη σύσταση, θερμοκρασία και πίεση με αυτήν της καταστατικής εξίσωσης είναι απαραίτητες οι εξής πληροφορίες:

- Οι τιμές των παραμέτρων α_{ii} και b_i που υπολογίζονται με γνώση των κρίσιμων ιδιοτήτων και του ακεντρικού παράγοντα των συστατικών του μίγματος, καθώς και της θεμοκρασίας του συστήματος.
- Οι τιμές των α_{ij} που υπολογίζονται από τα α_{ii} και α_{jj} και από τους συντελεστές αλληλεπίδρασης kij.

Για το σκοπό αυτό πολύ σημαντική είναι η γνώση των συντελεστών αλληλεπίδρασης kij. Αυτοί δεν μπορούν να θεωρηθούν μηδενικοί όταν υπάρχουν σημαντικές διαφορές στο μέγεθος και στον τύπο των μορίων του μίγματος. Έτσι είναι απαραίτητοι σε μίγματα που περιέχουν μεθάνιο ή σε περίπτωση παρουσίας μη υδρογονανθράκων, όπως H₂, CO₂, H₂S, N₂ κλπ.

Αξίζει να σημειωθεί ότι η ακρίβεια της πρόρρησης από τα μοντέλα εξαρτάται από τις τιμές των συντελεστών αλληλεπίδρασης. Επίσης σε πρώτη φάση οι συντελεστές αλληλεπίδρασης θεωρούνται ανεξάρτητοι της θερμοκρασίας και της πίεσης, αλλά στην πραγματικότητα αποτελούν συναρτήσεις της θερμοκρασίας.

(Τασσιός, 2001)

3.5 UMR-PRU

Το συγκεκριμένο μοντέλο χρησιμοποιεί την κυβική καταστατική εξίσωση Peng-Robinson EoS:

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b) + b(v - b)}$$
(30)

όπου *a* =α* *a*_c

$$a_c = 0.45724 * \frac{(RT_c)^2}{P_c}$$
 (31)

$$\alpha = [1 + m(1 - \sqrt{T_r})]^2 \quad (32)$$

$$b = 0.07780 \frac{RT_c}{P_c} \quad (33)$$

$$m = 0.37464 + 1.54226 * \omega - 0.26992 * \omega^2 \quad (34)$$

όπου P_c , T_c οι κρίσιμες ιδιότητες πίεσης και θερμοκρασίας, R η παγκόσμια σταθερά αερίων, T_r ανηγμένη θερμοκρασία.

Εκτός από την Peng-Robinson το μοντέλο UMR-PRU χρησιμοποιεί έναν γενικό κανόνα ανάμιξης UMR (Universal Mixing Rule) που δίνεται από τη σχέση:

$$\frac{\alpha}{bRT} = \frac{1}{A} \frac{G_{AC}^{E,SG} + G_{AC}^{E,res}}{RT} + \sum_{i} x_{i} \frac{a_{i}}{b_{i}RT}$$
(35)
$$b = \sum_{i} \sum_{j} x_{i} x_{j} b_{ij}$$
(36)
$$b_{ij} = \left(\frac{b_{i}^{1/2} + b_{j}^{1/2}}{2}\right)^{2}$$
(37)

όπου A=-0,53. Οι όροι $G_{AC}^{E,SG}$ και $G_{AC}^{E,res}$ είναι ο συνδυαστικός και υπολειμματικός όρος της ενέργειας Gibbs αντίστοιχα και υπολογίζονται μέσω της UNIFAC. Οι εξισώσεις της παρουσιάζονται παρακάτω:

$$\frac{G_{AC}^{E,SG}}{RT} = 5 \sum_{i} x_{i} q_{i} ln \frac{\theta_{i}}{\varphi_{i}} \qquad (38)$$

$$\frac{G_{AC}^{E,res}}{RT} = \sum_{i} x_{i} \nu_{k}^{i} (ln\Gamma_{k} - ln\Gamma_{k}^{i}) \qquad (39)$$

$$ln\Gamma_{k} = Q_{k} \left[1 - ln(\sum_{m} \theta_{m} \Psi_{mk}) - \sum_{m} \frac{\theta_{m} \Psi_{mk}}{\sum_{n} \theta_{n} \Psi_{mm}} \right] \qquad (40)$$
Fin éva συστατικό i: $\varphi_{i} = \frac{x_{i}r_{i}}{\sum_{j} x_{j}r_{j}} \qquad (41)$

$$\theta_i = \frac{x_i q_i}{\sum_j x_j q_j} \qquad (42)$$

Για ομάδα συστατικών m:

$$\theta_{m} = \frac{Q_{m}X_{m}}{\sum_{n}Q_{n}X_{n}}$$
(43)
$$X_{m} = \frac{\sum_{j}v_{m}^{(j)}x_{j}}{\sum_{j}\sum_{n}v_{n}^{(j)}x_{j}}$$
(44)
$$\Psi_{nm} = exp\left[-\frac{A_{nm}+B_{nm}(T-298.15)+C_{nm}(T-298.15)^{2}}{T}\right]$$
(45)

Το παραπάνω μοντέλο αποτελεί ουσιαστικά την καταστατική εξίσωση Peng-Robinson με νέους κανόνες ανάμιξης. Το μοντέλο αυτό ανήκει στην κατηγορία των EoS-Ge μοντέλων, που εξισώνουν την ελεύθερη ενέργεια Gibbs, που προκύπτει από μία καταστατική εξίσωση, με αυτήν που προκύπτει από ένα μοντέλο συντελεστή ενεργότητας. Με αυτόν τον τρόπο υπολογίζονται νέοι κανόνες ανάμιξης, βελτιωμένοι συγκριτικά με τους τυπικούς van der Waals του ενός ρευστού. Στην περίπτωση του μοντέλου UMR, η καταστατική εξίσωση είναι η PR, συνδυασμένη με το μοντέλο υπολογισμού συντελεστή ενεργότητας συνεισφοράς ομάδων UNIFAC για τον υπολογισμό των κανόνων ανάμιξης UMR. Το UMR-PRU δίνει πολύ καλά αποτελέσματα στην πρόρρηση των σημείων δρόσου και βελτιώνει τα αποτελέσματα της PR κοντά στο cricondenbar. Σαν δεδομένο εισόδου απαιτεί τη σύσταση κάθε συστατικού.

(Louli, et al., 2012)

3.6 UMR-new

Το μοντέλο UMR-new είναι αυτό που χρησιμοποιήθηκε στα πλαίσια αυτής της διπλωματικής. Αποτελεί μία παραλλαγή του προηγούμενου μοντέλου και ισχύουν ακριβώς όσα αναφέρθηκαν με την εξής διαφορά: δεν υπάρχει η παράμετρος m και ο υπολογισμός των α γίνεται από την εξής σχέση:

$$\alpha = \left[1 + C_1 * \left(1 - \sqrt{T_r}\right) + C_2 * \left(1 - \sqrt{T_r}\right)^2 + C_3 * \left(1 - \sqrt{T_r}\right)^3\right]^2 \quad (46) \qquad \text{, bian } Tr < 1$$

$$\alpha = \left[1 + C_1 * \left(1 - \sqrt{T_r}\right)\right]^2 \quad (47) \quad \text{, όταν } Tr \ge 1$$

, όπου Tr η ανηγμένη θερμοκρασία και C1, C2, C3 σταθερές Mathias-Copeman για κάθε συστατικό που δίνονται στο παράρτημα για κάποια συστατικά. Σε περίπτωση που δε δίνονταν τα C1, C2, C3 θεωρούνταν τα C2, C3 μηδενικά και υπολογιζόταν το C1 από τη σχέση του Soave:

$$C_1 = 0.37464 + 1.54226 * \omega - 0.26992 * \omega^2 \quad (48)$$

Επιπλέον πέραν των ομάδων της UNIFAC προστέθηκαν τρεις επιπλέον ομάδες (συνολικά δεκαέξι ομάδες). Οι τρεις που προστέθηκαν αφορούσαν κυκλικά μόρια και ήταν οι: cC, cCH, cCH2. Η πρώτη ομάδα αναφέρεται σε έναν άνθρακα που υπάρχει σε κυκλικό δακτύλιο, η δεύτερη σε έναν άνθρακα με ένα υδρογόνο μέσα σε κυκλικό δακτύλιο και τέλος η τρίτη ομάδα αφορά έναν άνθρακα ενωμένο με δύο υδρογόνα μέσα σε κυκλικό δακτύλιο.

Στο UMR-new συμπεριλαμβάνονται δυαδικές παράμετροι αλληλεπίδρασης (PoI) μεταξύ των συστατικών, που εξαρτώνται από τη θερμοκρασία και υπολογίζονται από τη σχέση:

$$PoI = AA + BB * (T - 298.15) + CC * (T - 298.15)^{2}$$
(49)

Οι παράμετροι αλληλεπίδρασης ΑΑ, ΒΒ, CC καθώς και τα C1, C2, C3 που χρησιμοποιήθηκαν παρουσιάζονται στο παράρτημα.

3.7 Patel-Teja equation of state

Πρόκειται για 3-παραμετρική εξίσωση η οποία δίνει καλύτερα αποτελέσματα από την PR και SRK στην ισορροπία φάσεων και στους όγκους κορεσμένου υγρού. Επίσης σύμφωνα με αποτελέσματα πειραμάτων η συγκεκριμένη εξίσωση δίνει ικανοποιητικά αποτελέσματα και για συστήματα υδρογονανθράκων σε υψηλές πιέσεις. Χρησιμοποιείται ικανοποιητικά για πρόβλεψη PVT υδρογονανθράκων σε gas condensates. Συνοπτικά το συγκεκριμένο μοντέλο παρουσιάζεται παρακάτω:

$$P = \frac{RT}{\nu - b} - \frac{\alpha}{\nu(\nu + b) + c(\nu - b)}$$
(50)

Οι σταθερές α, b και c δίνονται από τις σχέσεις:

$$\alpha = \frac{\Omega_a a R^2 T_c^2}{p_c} \quad (51)$$

$$b = \frac{\Omega_b R T_c}{p_c} \quad (52)$$

$$c = \frac{\Omega_c R T_c}{p_c} \quad (53)$$

$$\Omega_\alpha = 3\xi_c^2 + 3(1 - 2\xi_c)\Omega_b + \Omega_b^2 + (1 - 3\xi_c) \quad (54)$$

Όπου το \varOmega_b είναι η μικρότερη θετική ρίζα της εξίσωσης:

$$0 = \Omega_b^{3} + (2 - 3\xi_c)\Omega_b + 3\xi_c^{2}\Omega_b - \xi_c^{3}$$
 (55)

Το α της σχέσης (40) έχει τη μορφή που προτείνεται από τον Soave:

$$\alpha = \left(1 + F\left(1 - \sqrt{T_R}\right)\right)^2 \quad (56)$$

Όπου $F = 0.452413 + 1.30982\omega - 0.295937\omega^2$ (57)

$$\xi_c = 0.329032 - 0.076799\omega + 0.0211947\omega^2$$
 (58)

Οι παράμετροι α_M, b_M, c_M υπολογίζονται από τον κανόνα ανάμιξης van der Waals:

$$a_{M} = \sum \sum x_{i} x_{j} \sqrt{a_{i} a_{j}} (1 - k_{ij}) \quad (59)$$
$$b_{M} = \sum x_{i} b_{i} \quad (60)$$
$$c_{M} = \sum x_{i} c_{i} \quad (61)$$

(Daqing, et al., 1997)

3.8 PC-SAFT EOS

Η καταστατική εξίσωση PC- SAFT αποτελεί μία παραλλαγή της SAFT EoS. Χρησιμοποιεί ένα συνδυασμό των hard-sphere chain και των δυνάμεων διασποράς. Προτάθηκε για να μοντελοποιήσει ασύμμετρα και

μη ιδανικά συστήματα. Η PC-SAFT μπορεί να εκφραστεί από την πλευρά της ενέργειας Helmholtz α̃ως εξής:

$$\tilde{\alpha} = \tilde{\alpha}^{id} + \tilde{\alpha}^{hc} + \tilde{\alpha}^{disp} + \tilde{\alpha}^{assoc} \quad (62)$$

,όπου $\tilde{\alpha}^{id}$ είναι η συνεισφορά του ιδανικού αερίου, $\tilde{\alpha}^{hc}$ είναι η συνεισφορά της σφαιρικής αλυσίδας του συστήματος αναφοράς, $\tilde{\alpha}^{disp}$ είναι η συνεισφορά της διασποράς και $\tilde{\alpha}^{assoc}$ είναι η συνεισφορά της συσχέτισης που βασίζεται στη θεωρία Wertheim.

Διαφέρει από τις κυβικές καταστατικές εξισώσεις. Θα μπορούσε κανείς να πει ότι χωρίς τον όρο $\tilde{\alpha}^{assoc}$, μοιάζει με κυβική καταστατική εξίσωση, έχοντας ως ελκτικό όρο τον $\tilde{\alpha}^{id} + \tilde{\alpha}^{hc}$ και ως απωστικό τον $\tilde{\alpha}^{disp}$. Κάτι τέτοιο όμως δεν ισχύει, γιατί ο ελκτικός και απωστικός όρος των κυβικών καταστατικών εξισώσεων είναι εμπειρικός, ενώ στην PC- SAFT οι όροι $\tilde{\alpha}^{hc}$ και $\tilde{\alpha}^{disp}$ δεν είναι και προκύπτουν από πολύπλοκα μαθηματικά μοντέλα.

4. ΜΕΘΟΔΟΙ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΓΙΑ GAS CONDENSATES

4.1 Μέθοδοι που χρησιμοποιούν ΡΝΑ κατανομή

4.1.1 PNA-Statoil

Η πρώτη μέθοδος χαρακτηρισμού που θα αναλυθεί είναι η PNA-Statoil. Πρόκειται για μέθοδο που αναπτύχθηκε από την ομώνυμη εταιρεία και είναι απλή στην εφαρμογή της. Κατά τη μέθοδο αυτή χρησιμοποιούνται χρωματογραφήματα τα οποία δίνουν αναλυτικά τη σύσταση μέχρι και το κανονικό εξάνιο. Από εκεί και μετά οι ενώσεις χωρίζονται σε υποκλάσματα. Το πρώτο υπόκλασμα αρχίζει μετά το κανονικό εξάνιο και φτάνει μέχρι και το κανονικό επτάνιο. Αυτό ονομάζεται C₇. Αντίστοιχα χωρίζονται τα υπόλοιπα συστατικά στα υποκλάσματα C₈ και C₉ και πάλι με όρια τα κανονικά αλκάνια. Σε κάθε υπόκλασμα προσδιορίζεται η συγκέντρωση του παραφινικού, ναφθενικού και αρωματικού τμήματος και σε κάθε τμήμα αντιστοιχίζεται μία ένωση, γνωστής μοριακής δομής, όπως φαίνεται στον παρακάτω πίνακα.

ΥΠΟΚΛΑΣΜΑ	ТМНМА	ΕΝΩΣΗ
	Παραφινικό (Ρ)	Κανονικό επτάνιο
C7	Ναφθενικό (Ν)	Κύκλο-εξάνιο
	Αρωματικό (Α)	Βενζόλιο
	Παραφινικό (Ρ)	Κανονικό οκτάνιο
C8	Ναφθενικό (N)	Κύκλο-επτάνιο
	Αρωματικό (Α)	Τολουόλιο
	Παραφινικό (Ρ)	Κανονικό εννιάνιο
C9	Ναφθενικό (N)	Κύκλο-οκτάνιο
	Αρωματικό (Α)	Μέτα-ξυλόλιο

Πίνακας 1: PNA κατανομή στα διάφορα υποκλάσματα με βάση τη μέθοδο PNA Statoil

Τα βαρύτερα κλάσματα C_{10} μέχρι και C_{15} χαρακτηρίζονται από το αντίστοιχο κανονικό αλκάνιο (πχ το C_{10} από το nC_{10} κλπ). Η συγκέντρωση τους είναι η συγκέντρωση του παραφινικού τους τμήματος.

Η συγκεκριμένη μέθοδος δίνει ικανοποιητικά αποτελέσματα στον υπολογισμό των σημείων cricondentherm και cricondenbar.

(Νόβακ, 2013)

4.1.2 Shariati-Peters-Moshfeghian method

Πρόκειται για μέθοδο χαρακτηρισμού του C₇+ κλάσματος. Η μέθοδος αυτή θεωρεί ότι στο C₇+ κλάσμα χωρίζονται τα συστατικά σε υποκλάσματα με βάση το σημείο βρασμού τους και ότι τα μόρια που χρησιμοποιούνται για την PNA κατανομή είναι: τα κανονικά αλκάνια, τα κανονικά αλκυλκυκλοπεντάνια και τα κανονικά αλκυλβενζόλια. Για την επιλογή του κατάλληλου μορίου μοντέλου θεωρείται ότι κάθε ένα από τα παραπάνω μόρια-μοντέλα έχει το ίδιο σημείο βρασμού με το υπόκλασμα. Προτάθηκε ακόμα η ακόλουθη εξίσωση, που συσχετίζει τον αριθμό ατόμων άνθρακα των παραπάνω μορίων με το μέσο κανονικό σημείο βρασμού του κλάσματος:

$$CN(P, N, A) = A_1 + A_2T_b + A_3T_b^2 + A_4T_b^3 + A_5T_b^4$$
(63)

Όπου A₁, A₂, A₃, A₄, A₅ είναι σταθερές για κάθε ένα από τα P, N, A μόρια. CN(P, N, A) είναι ο αριθμός ατόμων άνθρακα του P, N ή A συστατικού. Τ_b είναι το μέσο κανονικό σημείο βρασμού του κλάσματος.

Αφού προσδιορίστηκε ο επιθυμητός αριθμός ατόμων άνθρακα για τους τρεις τύπους μορίων μέσω της παραπάνω εξίσωσης, προσδιορίστηκαν επιπλέον μόρια για κάθε κλάσμα με σκοπό την καλύτερη επίτευξη αποτελεσμάτων:

- Κανονικά αλκάνια: CN(P)-1 ,και CN(P)+1
- Κανονικά αλκυλκυκλοπεντάνια: CN(N)-1, και CN(N)+1
- Κανονικά αλκυλβενζόλια: CN(A)-1, και CN(A)+1

Μετά τα μόρια-μοντέλα χωρίστηκαν σε τρεις ομάδες ως εξής:

1^η ομάδα για παραφινικά και πολύ παραφινικά κλάσματα:

- CN(P)-1, CN(P), CN(P)+1, CN(N), και CN(A).
 - 2^η ομάδα για ναφθενικά και πολύ ναφθενικά κλάσματα:
- CN(P), CN(N)-1, CN(N), CN(N)+1, και CN(A).
- 3^η ομάδα για αρωματικά και πολύ αρωματικά κλάσματα:
- CN(P), CN(N), CN(A)-1, CN(A), και CN(A)+1.

Υπάρχουν σε κάθε ομάδα 5 μόρια για κάθε κλάσμα, άρα χρειάζονται πέντε εξισώσεις για να προσδιοριστεί η σύστασή τους. Για το σκοπό αυτό, ιδιότητες για κάθε κλάσμα, όπως η πυκνότητα και το μοριακό βάρος, συσχετίστηκαν με τις ίδιες ιδιότητες για τα επιλεγμένα μόρια. Ο αλγόριθμος που προτείνεται από τη συγκεκριμένη μέθοδο για το χαρακτηρισμό των κλασμάτων C₇+ είναι ο ακόλουθος:

Βήμα 1: Αρχικά επιλέγεται η πρώτη ομάδα μορίων.

Βήμα 2: Στη συνέχεια θεωρείται ένα γραμμομοριακό κλάσμα για ένα από τα μόρια της ομάδας. Βήμα 3: Μέσω των παρακάτω εξισώσεων υπολογίζονται τα κλάσματα mol των υπολοίπων μορίων:

$$\sum_{i=1}^{5} x_i M W_i = M W \tag{64}$$

$$\sum_{i=1}^{5} x_i \frac{MW_i}{d_i} = \frac{MW}{d_i} \tag{65}$$

$$\sum_{i=1}^{5} x_{i} M W_{i} K W_{i} = M W * K W$$
(66)
$$\sum_{i=1}^{5} x_{i} = 1$$
(67)

Όπου x_i είναι το κλάσμα mol του μορίου i, *MW_i*, *d_i*, *KW_i* είναι το μοριακό βάρος, η πυκνότητα και ο παράγοντας χαρακτηρισμό Watson για το μόριο i αντίστοιχα. *MW*, *d*, *KW* είναι το μοριακό βάρος, η πυκνότητα και ο παράγοντας χαρακτηρισμού Watson για το αναφερόμενο κλάσμα αντίστοιχα.

i=1

Αν κάποια σύσταση βρέθηκε αρνητική, τροποποιείται η σύσταση που υποτέθηκε αρχικά και επαναλαμβάνεται η διαδικασία επίλυσης των εξισώσεων. Εάν τα αποτελέσματα που προκύπτουν δεν είναι σε καμία περίπτωση θετικά επαναλαμβάνεται η ίδια διαδικασία για τις ομάδες 2 και 3 και αν παρόλα αυτά κάποια σύσταση είναι πάλι αρνητική, μειώνεται ο αριθμός των συστατικών κάθε ομάδας από πέντε σε τέσσερα. Αν πάλι η λύση είναι αρνητική μειώνεται ο αριθμός των συστατικών σε τρία. Η διαδικασία συνεχίζεται μέχρι όλες οι συστάσεις που βρίσκονται να είναι θετικές.

Βήμα 4: Στη συνέχεια επιλέγεται μία καταστατική εξίσωση για τον υπολογισμό της πίεσης σημείου φυσαλίδας στο κανονικό σημείο βρασμού (Τ₀) του υποκλάσματος.

Βήμα 5: Εάν $|P_{calc} - 1 (atm)| < \varepsilon$ τότε ολοκληρώνεται η διαδικασία. Εάν δεν ισχύει η ανίσωση επιλέγεται νέα σύσταση και γίνονται ξανά οι υπολογισμοί του βήματος 3. (ε: η επιθυμητή ακρίβεια των υπολογισμών)

Βήμα 6: Εάν το παραπάνω κριτήριο δεν ικανοποιείται με τα μόρια-μοντέλα της 1^{ης} ομάδας επιλέγονται τα μόρια-μοντέλα των άλλων ομάδων και η διαδικασία ξεκινά από το βήμα 2.

(Shariati, et al., 2000)

4.1.3 Modified Shariati

Η μέθοδος αυτή βασίζεται τόσο στην μέθοδο Shariati όσο και στην PNA-Statoil. Με βάση αυτή τη μέθοδο το C7+ κλάσμα χωρίζεται σε τρία υποκλάσματα C7,C8,C9 και κάθε κλάσμα από αυτά χαρακτηρίζεται από τρία συστατικά: ένα παραφινικό, ένα ναφθενικό και ένα αρωματικό. Η τριάδα που τελικά επιλέγεται για κάθε υπόκλασμα προκύπτει από τον παρακάτω αλγόριθμο:

Βήμα 1: Αρχικά επιλέγεται η πρώτη ομάδα μορίων: ένα παραφινικό, ένα ναφθενικό και ένα αρωματικό. Βήμα 2: Μέσω των παρακάτω εξισώσεων υπολογίζονται τα κλάσματα mol των μορίων:

$$\sum_{i=1}^{5} x_i M W_i = M W \tag{68}$$

$$\sum_{i=1}^{5} x_i \frac{MW_i}{d_i} = \frac{MW}{d_i}$$
(69)
$$\sum_{i=1}^{5} x_i = 1$$
(70)

Όπου x_i είναι το κλάσμα mol του μορίου i, MW_i , d_i είναι το μοριακό βάρος και η πυκνότητα για το μόριο i αντίστοιχα. MW, d είναι το μοριακό βάρος και η πυκνότητα για το αναφερόμενο κλάσμα αντίστοιχα.

Βήμα 3: Στη συνέχεια προβλέπεται η πίεση στο κανονικό σημείο βρασμού του κλάσματος ,με τη χρήση του μοντέλου UMR-PRU, για όλες τις τριάδες συστατικών που προέκυψαν με την προηγούμενη διαδικασία, των οποίων η σύσταση είναι θετική. Το κανονικό σημείο βρασμού υπολογίζεται από τη σχέση Retzekas:

$$T_{b} = 48.89673 \qquad \cdot MW^{-0.46667} \quad \cdot d^{-0.36364}$$
(71)

, όπου MW το μοριακό βάρος και d η πυκνότητα του κλάσματος στους 20 °C.

Η πυκνότητα μπορεί να μετατραπεί από τους 16 στους 20 °C με την ακόλουθη σχέση:

$$d_{16°C} = 1.003 d_{20°C}$$
 (72)

Βήμα 4: Επιλέγεται η τριάδα μορίων που η πίεση στο κανονικό σημείο βρασμού υπολογίστηκε πιο κοντά στη μονάδα.

Παρατήρηση: Στα πλαίσια της συγκεκριμένης εργασίας ολόκληρο το plus κλάσμα χαρακτηρίστηκε από 3 συστατικά: ένα παραφινικό, ένα ναφθενικό και ένα αρωματικό. Δεν υπήρχαν δηλαδή υποκλάσματα C8,C9, αλλά μόνο C7+.

(NTUA, Athens)

4.1.4 Μέθοδος 3

Η μέθοδος 3 απαιτεί ως δεδομένα εισόδου:

- Τις συγκεντρώσεις βασικών συστατικών που καταγράφονται στον πίνακα.
- Το γραμμομοριακό κλάσμα του C₇+ κλάσματος.

Υπόκλασμα	Τμήμα	Ένωση
	Παραφινικό	κανονικό επτάνιο
		2-μέθυλο εξάνιο
C7		3-μέθυλο εξάνιο
07	Ναφθενικό	κύκλο-εξάνιο
		μέθυλο-κύκλο-πεντάνιο
	Αρωματικό	Βενζόλιο
C0	Παραφινικό	κανονικό οκτάνιο
6	Αρωματικό	Τολουόλιο
	Παραφινικό	Κανονικό εννιάνιο
C9	Ναφθενικό	αιθυλ-κύκλο εξάνιο
	Αρωματικό	μέτα-ξυλόλιο

Πίνακας 2: ΡΝΑ κατανομή στα διάφορα υποκλάσματα με βάση τη μέθοδο χαρακτηρισμού 3

Στη συνέχεια το υπόλοιπο του C₇+ κλάσματος κατανέμεται στα υποκλάσματα C₇, C₈, C₉ με τον τρόπο που φαίνεται στον πίνακα:

Υπόκλασμα	% του Υπολοίπου
C7	36
C8	61
C9	3

Πίνακας 3: Κατανομή του υπολοίπου του C7+ στα υποκλάσματα με βάση τη μέθοδο χαρακτηρισμού 3

Για την κατανομή του υπολοίπου στις ενώσεις λαμβάνεται υπόψιν η PNA κατανομή για κάθε υπόκλασμα. Επιπλέον, στην περίπτωση του ναφθενικού τμήματος του υποκλάσματος C₈, η συγκέντρωση του υπολοίπου αποδίδεται στο κύκλο-πεντάνιο, το οποίο δεν αποτελεί πραγματικό συστατικό του συστήματος, αλλά χρησιμοποιείται ευρέως σε μεθοδολογίες χαρακτηρισμού του C₇+ κλάσματος. Η PNA κατανομή του υπολοίπου καταγράφεται στον παρακάτω πίνακα:

Υπόκλασμα	Τμήμα	Ένωση	% Σύσταση ως προς το υπόκλασμα
67	Παραφινικό	κ-επτάνιο	35
۲	Ναφθενικό	κύκλο-εξάνιο	65
C o	Παραφινικό	κ-οκτάνιο	8
Co	Ναφθενικό	κύκλο-επτάνιο	92
	Παραφινικό	κ-εννιάνιο	25
C9	Ναφθενικό	αιθυλ-κύκλο-εξάνιο	25
	Αρωματικό	μέτα-ξυλόλιο	50

Πίνακας 4: ΡΝΑ κατανομή του υπολοίπου στα διάφορα υποκλάσματα με βάση τη μέθοδο 3

(Πετροπούλου, 2011)

4.1.5 Μέθοδος C₆+

Τα δεδομένα εισόδου στη συγκεκριμένη μέθοδο είναι οι συγκεντρώσεις του ελαφριού κλάσματος (μέχρι και το κανονικό πεντάνιο).Οι ενώσεις μέχρι και το κανονικό πεντάνιο λαμβάνονται από

χρωματογραφήματα. Στην συνέχεια βρίσκεται το γραμμομοριακό κλάσμα του C₆+. Το υπόκλασμα C₆+ κατανέμεται στα επιμέρους υποκλάσματα C₆, C₇, C₈, C₉ και C₁₀+ με βάση τα μέσα γραμμομοριακά κλάσματα που προέκυψαν από τη μελέτη των χρωματογραφημάτων.

Υπόκλασμα	% Σύσταση ως προς το C6+
C6	44.4
C7	38.1
C8	15.2
C9	2
C10+	0.3

Πίνακας 5: Κατανομή του υπολοίπου του C6+ στα διάφορα υποκλάσματα με βάση τη μέθοδο χαρακτηρισμού C6+

Το υποκλάσμα C6 θεωρείται σαν 90% παραφινικού χαρακτήρα με ουσία που το αντιπροσωπεύει το κανονικό εξάνιο και 10% ναφθενικού χαρακτήρα με ουσία που το αντιπροσωπεύει το κυκλοπεντάνιο (cyC5). Στα υποκλάσματα C7, C8 και C9 το σύνολο του υποκλάσματος πολλαπλασιάζεται με το ποσοστό P, N, A, του κάθε υποκλάσματος (από ανάλυση των χρωματογραφημάτων) και προκύπτει η περιεκτικότητα του κάθε υποκλάσματος σε P,N A, τμήμα.

Υπόκλασμα	Τμήμα	Ένωση	% Σύσταση ως προς το υπόκλασμα
	Р	Κανονικό επτάνιο	26.9
C7	Ν	Κύκλο-εξάνιο	60.1
	А	Βενζόλιο	13
	Р	Κανονικό οκτάνιο	13.2
C8	Ν	Μέθυλο- κυκλοεξάνιο	64.7
	А	Τολουόλιο	22.1
	Р	Κανονικό εννιάνιο	27.9
C9	N	Αίθυλο- κυκλοεξάνιο	33
	А	Μέτα-ξυλόλιο	39.1

Πίνακας 6: ΡΝΑ κατανομή του υπολοίπου στα διάφορα υποκλάσματα με βάση τη μέθοδο χαρακτηρισμού C6+

(Νόβακ, 2013)

4.2 Μέθοδοι που δε χρησιμοποιούν ΡΝΑ κατανομή

4.2.1 Μέθοδος των αντιστοίχων κανονικών αλκανίων

Κατά την μέθοδο αυτή χρησιμοποιούνται χρωματογραφήματα τα οποία δίνουν αναλυτικά τη σύσταση μέχρι και το κανονικό εξάνιο. Από εκεί και μετά οι ενώσεις χωρίζονται σε υποκλάσματα. Το πρώτο υπόκλασμα αρχίζει μετά το κανονικό εξάνιο και φτάνει μέχρι και το κανονικό επτάνιο. Αυτό ονομάζεται

C₇. Αντίστοιχα χωρίζονται τα υπόλοιπα συστατικά στα υποκλάσματα C₈ και C₉ και πάλι με όρια τα κανονικά αλκάνια. Σε κάθε υπόκλασμα αντιστοιχίζεται μία ένωση, η οποία είναι το αντίστοιχο κανονικό αλκάνιο κάθε υποκλάσματος. Δηλαδή στο υποκλάσμα C₇ αντιστοιχεί το κανονικό επτάνιο, στο C₈ το κανονικό οκτάνιο κλπ.

4.2.2 Χαρακτηρισμός με βάση το μοριακό βάρος (MW Matching)

Η μέθοδος αυτή μπορεί να χρησιμοποιηθεί στην περίπτωση που για όλο το plus κλάσμα δίνονται ιδιότητες, μεταξύ των οποίων είναι το μοριακό του βάρος. Έτσι το plus κλάσμα αντιστοιχίζεται με το κανονικό αλκάνιο που έχει το κοντινότερο και αμέσως μεγαλύτερο μοριακό βάρος σε σύγκριση με αυτό του βαριού κλάσματος.

4.2.3 Χαρακτηρισμός με βάση το σημείο βρασμού (Tb Matching)

Στη μέθοδο αυτή είναι και πάλι απαραίτητη η γνώση ιδιοτήτων για το βαρύ κλάσμα, όπως η πυκνότητα στους 20 °C και το μοριακό βάρος του κλάσματος. Με αυτές τις ιδιότητες υπολογίζεται το σημείο βρασμού από τη σχέση Retzekas:

$$T_{b} = 48.89673 \cdot MW^{0.46667} \cdot d^{0.36364}$$
 (73)

,όπου MW το μοριακό βάρος του κλάσματος και d η πυκνότητα στους 20 °C σε gr/mol.

Στη συνέχεια με βάση αυτή τη θερμοκρασία βρίσκεται ο υδρογονάνθρακας που έχει το κοντινότερο σημείο βρασμού σε αυτό που υπολογίστηκε και χρησιμοποιείται αυτός για το χαρακτηρισμό όλου του κλάσματος.

4.2.4 Whitson

Ο Whitson πρότεινε μία συνάρτηση γάμμα τριών παραμέτρων για να περιγράψει τη σχέση μεταξύ των κλασμάτων mole και των μοριακών βαρών των plus fractions. Η σύσταση z_i κάθε κλάσματος δίνεται από τη σχέση:

$$z_i = z_{plus} \int_{M_{i-1}}^{M_i} P(M) dM \qquad (74)$$

Όπου το P(M) δίνεται από τη σχέση $P(M) = \frac{(M-n)^{a-1}e^{\left(-\frac{M-n}{\beta}\right)}}{\beta^{\alpha}\Gamma(\alpha)}$ (75)

Το β προσδιορίζεται από τη σχέση:

$$\beta = \frac{M_{C_{7+}} - n}{a} \qquad (76)$$

Η παράμετρος η μπορεί να θεωρηθεί φυσικά ως το ελάχιστο μοριακό βάρος που συναντάται στο C₇₊ fraction. Το $M_{C_{7+}}$ είναι το μέσο μοριακό βάρος του κλάσματος C₇₊. Το Γ είναι η συνάρτηση γάμμα και

εξαρτάται από τις τρεις παραμέτρους α,β,n. Για $0 \le x \le 1$ δίνεται από τη σχέση των Abramowitz και Stegun, 1972:

$$\Gamma(x+1) = 1 + \sum_{i=1}^{8} a_i x_i$$
 (77)

Για x > 1 έχουμε:

$$\Gamma(x+1) = x\Gamma(x) \tag{78}$$

(Pedersen, et al., 2007)

4.2.5. Ahmed model

Προτάθηκε ένα μοντέλο βασισμένο στην παρατήρηση ότι τα συστήματα υδρογονανθράκων παρουσιάζουν μία μοριακή κατανομή παρόμοια με το μέσο μοριακό βάρος του plus fraction. Έτσι περιγράφηκε μία τεχνική με βάση την οποία τα μοριακά βάρη των plus fractions (M_{n+}) υπολογίζονται από πειραματικά δεδομένα. Τελικά η σύσταση κάθε υποκλάσματος δίνεται από τη σχέση:

$$z_n = z_{n+} \left(\frac{M_{(n+1)+} - M_{n+}}{M_{(n+1)+} - M_n} \right)$$
(79)

Όπου zn είναι η σύσταση του n κλάσματος (mole%), Mn είναι το μέσο μοριακό βάρος του κλάσματος και το Mn+ είναι το μέσο μοριακό βάρος του n plus fraction και υπολογίζεται από τη σχέση:

$$M_{n+} = M_{C_{7+}} + S(n-7) \tag{80}$$

n=7, 8, 9...

Το $M_{(n+1)+}$ είναι το μοριακό βάρος του επόμενου plus fraction και υπολογίζεται πάλι από την παραπάνω εξίσωση μόνο που στη θέση του n τίθεται n=n+1.

To z_{n+} υπολογίζεται από τη σχέση:

$$z_{n+} = z_{(n-1)+} - z_{(n-1)}$$
(81)

Το S στον παραπάνω τύπο είναι ίσο με 15,5 για $n \le 8$ και 17,0 για n > 8.

(Ghasemi, et al., 2014)

4.2.6 Pedersen

Στη μεθοδολογία αυτή προτάθηκε για αριθμό ατόμων άνθρακα πάνω από 6, μία γραμμική σχέση μεταξύ του αριθμού ατόμων άνθρακα και του λογαρίθμου του κλάσματος mol:

$$C_N = A + Blnz_n \tag{82}$$

Όπου C_n ο αριθμός ατόμων άνθρακα του υποκλάσματος n, zn το γραμμομοριακό κλάσμα του υποκλάσματος n. Τα A και B είναι παράμετροι που πρέπει να ικανοποιούν τις σχέσεις:

$$\sum_{i=C+}^{C_{max}} z_n = z_+$$
(83)
$$\frac{\sum_{i=C+}^{C_{max}} M_i z_i}{\sum_{i=C+}^{C_{max}} z_i} = M_+$$
(84)

Για την πυκνότητα του C7+ παρατηρήθηκε ότι αυξάνει συνήθως με την αύξηση του αριθμού ατόμων άνθρακα. Έτσι προτάθηκε η ακόλουθη σχέση:

$$\rho_N = C + DlnCN_n \quad (85)$$

Τα C και D είναι σταθερές που δίνονται από την παρακάτω σχέση για την ολική πυκνότητα του plus κλάσματος:

$$\frac{\sum_{i=C+}^{C_{max}} M_i z_i}{\sum_{i=C+}^{C_{max}} \frac{z_i M_i}{\rho_i}} = \rho_+ \quad (86)$$

Με βάση τα δεδομένα για την πυκνότητα και το μοριακό βάρος, προσδιορίζονται τα Tc, Pc, ω των υποκλασμάτων του βαριού κλάσματος. Η σχέση που προτάθηκε για τον προσδιορισμό του Tb είναι:

$$T_B = 97.58 M^{0.3323} \rho^{0.04609}$$
 (87)

(Pedersen, et al., 2007)

4.2.7 Distribution functions (M.Sportisse)

Πρόκειται για μέθοδο χαρακτηρισμού του C_{11} + κλάσματος, όταν είναι γνωστό το μέσο μοριακό του βάρος και το μέσο βάρος του (M_{C11+} , W_{C11+} αντίστοιχα).

Η γενική μορφή της παραφινικής κατανομής δίνεται από μία φθίνουσα εκθετική συνάρτηση. Υπάρχουν, πράγματι, κάποια πειραματικά δεδομένα που αποδεικνύουν ότι τα κλάσματα moles των παραφινικών ενώσεων μειώνονται εκθετικά αυξανομένου του αριθμού των ατόμων άνθρακα. Προτείνεται λοιπόν η ακόλουθη κανονικοποιημένη μορφή για τα κλάσματα βάρους $\overline{w_{\iota}}'$ των κανονικών αλκανίων:

$$\overline{w_{i}'} = r_{1} W_{C11+} \frac{w_{i}'}{\sum w_{i}'}$$
(88)

Όπου $w'_i = \frac{M_{i'}}{M_{10'}} a^{i-10}$ (89)

Το r_1 αναπαριστά το κλάσμα βάρους της παραφινικής κατανομής του C₁₁+ κλάσματος ($0 \le r_1 \le 1$). Το α δίνει το φθίνοντα ρυθμό της συνάρτησης ($0 \le \alpha \le 1$). M_{10}' είναι το μοριακό βάρος του κανονικού δεκανίου και M_i' το μοριακό βάρος του κανονικού αλκανίου με i αριθμό ατόμων άνθρακα.

Μόνο λίγες πειραματικές αναλύσεις των αρωματικών ειδών του υπολείμματος gas condensate είναι διαθέσιμες. Για αυτό δεν υπάρχει καμία γενική μορφή αρωματικής κατανομής. Προτείνεται λοιπόν η χρήση της Γάμμα συνάρτησης για τη μολαρική κατανομή των κανονικών αλκυλοβενζενίων και μία γκαουσιανή κατανομή για την οικογένεια πολυαρωματικών. Τα κλάσματα βάρους για τα κανονικά αλκυλοβενζένια δίνονται από τη σχέση:

$$\overline{w_{i}''} = r_2 W_{C11+} \frac{w_{i}''}{\sum w_{i}''} \qquad (90)$$

Όπου $w_i'' = \frac{M_i''}{M_{10}''} (i - 10)^{b-1} e^{-(i-10)}$ (91)

Το r_2 αναπαριστά το κλάσμα βάρους της κατανομής των κανονικών αλκυλοβενζενίων του C₁₁+ κλάσματος ($0 \le r_2 \le 1$). Το b δίνει είναι η θέση της κορυφής της συγκέντρωσης (μέγιστο), (1 < b). M_{10}'' είναι το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου στο C₁₀ και M_i'' το μοριακό βάρος του κανονικού αλκυλοβενζενίου με i αριθμό ατόμων άνθρα κα.

Για τα πολυαρωματικά συστατικά έχουμε:

$$\overline{w_i'''} = r_3 W_{C11+} \frac{w_i'''}{\sum w_i'''}$$
(92)

Όπου $w_i^{\prime\prime\prime} = e^{-(i-A)^2}$ (93)

Το r_3 αναπαριστά το κλάσμα βάρους της κατανομής των ψευδο-αρωματικών του C₁₁+ κλάσματος ($0 \le r_3 \le 1$). Το Α δίνει είναι η θέση της κορυφής της συγκέντρωσης (μέγιστο), ($10 \le A \le 40$).

Ισχύει προφανώς ότι:

$$W_{C11+} = \sum w_i' + \sum w_i'' + \sum w_i''' \qquad (94)$$

$$r_1 + r_2 + r_3 = 1 \tag{95}$$

(Sportisse, et al., 1997)

ΥΠΟΛΟΓΙΣΜΟΙ

1. ΔΗΜΙΟΥΡΓΙΑ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ

Πριν τους υπολογισμούς καλό είναι να αναφερθεί ο τρόπος συλλογής δεδομένων για τα συνθετικά και τα πραγματικά αέρια συμπυκνώματα φυσικού αερίου, καθώς και η συλλογή δεδομένων για συστατικά που χρησιμοποιήθηκαν στο χαρακτηρισμό.

Η συλλογή δεδομένων για τα αέρια συμπυκνώματα (τόσο τα συνθετικά όσο και τα πραγματικά) έγινε βιβλιογραφικά. Όσον αφορά τα συνθετικά, αναζητήθηκαν στη βιβλιογραφία αέρια συμπυκνώματα των οποίων δινόταν αναλυτικά η σύσταση, καθώς και κάποια πειραματικά σημεία του διαγράμματος φάσεων. Από αυτά επιλέχθηκαν μόνο τα σημεία δρόσου. Για τα πραγματικά αέρια συμπυκνώματα, αναζητήθηκαν μίγματα τα οποία διέθεταν βαρύ κλάσμα (plus fraction), για το οποίο δινόταν συνολικά η σύσταση και όχι αναλυτικά. Μέχρι και πριν το βαρύ κλάσμα η σύσταση δινόταν αναλυτικά. Επίσης δίνονταν διάφορες ιδιότητες για το βαρύ κλάσμα, όπως το μοριακό βάρος και η πυκνότητα, που θα χρησιμοποιηθούν στο χαρακτηρισμό και πειραματικά σημεία δρόσου.

Τόσο οι ιδιότητες του βαριού κλάσματος, όσο και τα πειραματικά σημεία δρόσου, δεν μπορούν να θεωρηθούν πλήρως αξιόπιστα. Ιδίως τα πειραματικά δεδομένα, των οποίων οι μετρήσεις γίνονται σε πολύ υψηλές πιέσεις, και τα οποία ήταν συνήθως λίγα σε αριθμό, δεν πρέπει κανείς να τα εμπιστευτεί απόλυτα. Ειδικά στα πραγματικά αέρια συμπυκνώματα, τα πειραματικά δεδομένα πολλές φορές δεν ξεπερνούσαν το ένα σημείο δρόσου, κάτι που σημαίνει πως πρέπει να υπάρχει κάποια επιείκεια ως προς την αξιολόγηση των μοντέλων.

Η βάση δεδομένων για τα πραγματικά αέρια συμπυκνώματα μαζί με τις βιβλιογραφικές πηγές παρουσιάζεται στο παράρτημα. Η βάση δεδομένων για τα συνθετικά αέρια συμπυκνώματα παρουσιάζεται στο κείμενο παραθέτοντας τη σύσταση κάθε συμπυκνώματος και τη βιβλιογραφική πηγή.

Αξίζει να σημειωθεί ότι επεκτάθηκε και μία βάση δεδομένων συστατικών με σκοπό να χρησιμοποιηθούν περισσότερα συστατικά στο χαρακτηρισμό. Συλλέχθηκαν δεδομένα σχετικά με κρίσιμες ιδιότητες, μοριακό βάρος, ακεντρικό παράγοντα και πυκνότητα για τα συστατικά αυτά. Όλες οι πληροφορίες προέρχονταν από τον DIPPR.

Οι υπολογισμοί χωρίστηκαν σε δύο μέρη. Στο πρώτο μέρος μελετήθηκαν τα synthetic gas condensates που βρέθηκαν στη βιβλιογραφία και στο δεύτερο μέρος τα real gas condensates που βρέθηκαν.

2. ΣΥΝΘΕΤΙΚΑ ΑΕΡΙΑ ΣΥΜΠΥΚΝΩΜΑΤΑ

2.1 Σύγκριση αποτελεσμάτων των διαφορετικών μοντέλων στο ίδιο αέριο συμπύκνωμα

Στο σημείο αυτό παρουσιάζονται τα αποτελέσματα των διαγραμμάτων φάσεων διαφόρων συνθετικών αέριων συμπυκνωμάτων, όπως αυτά βρέθηκαν από πειραματικά δεδομένα καθώς και όπως προβλέφθηκαν μέσω τριών μοντέλων, της SRK, της PR και της UMR-NEW. Θα παρουσιαστούν εκείνα τα συμπυκνώματα για τα οποία υπήρχαν αποτελέσματα και με τα τρία μοντέλα και οι υπολογισμοί ήταν ολοκληρωμένοι. Όσα συμπυκνώματα είχαν ελλιπείς υπολογισμούς (κυρίως λόγω αδυναμίας του κώδικα του UMR), παρουσιάζονται σε παράρτημα.

Αρχικά παρουσιάζονται τα παραπάνω αποτελέσματα σε διαγράμματα ώστε να μπορούν να συγκριθούν ποιοτικά οι διάφορες μέθοδοι. Στη συνέχεια θα παρουσιαστούν τα αποτελέσματα σε μορφή πινάκων, όσον αφορά τα σημεία cricodentherm και cricondenbar.

<u>SGC1:</u>

Η σύσταση του πρώτου αέριου συμπυκνώματος (gas condensate) (SGC 1) είναι:

Composition
0.7905
0.0023
0.1999
0.0023
0.0050

Πίνακας 7: Σύσταση του αέριου συμπυκνώματος SGC1

(Jensen, και συν., 2003)

Το διάγραμμα φάσεων (phase envelope) για το συγκεκριμένο αέριο συμπύκνωμα είναι:

Διάγραμμα 1: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC1 (υπολογισμένα και πειραματικά σημεία)

Στο συγκεκριμένο διάγραμμα διαπιστώνουμε πολύ καλή πρόβλεψη των σημείων του phase envelope που βρίσκονται κοντά στο cricondenbar από το μοντέλο UMR-NEW (μόνο λίγο υποεκτιμημένα), σε αντίθεση με τις SRK και PR που υποεκτιμούν αρκετά το phase envelope σε αυτά τα σημεία. Επίσης γίνεται αντιληπτό ότι το UMR προβλέπει όλα τα σημεία, κάτι που σημαίνει ότι τα έχει προβλέψει σαν σημεία δρόσου (αφού αν εμφάνιζε κρίσιμο σημείο ο αλγόριθμος θα είχε πρόβλημα και δε θα έδινε περαιτέρω σημεία). Αντίθετα τα δύο άλλα μοντέλα ,κάποια από τα σημεία, τα προβλέπουν σαν σημεία φυσαλίδας, αφού εμφανίζουν πιο δεξιά από κάποια πειραματικά σημεία το κρίσιμο σημείο.

<u>SGC2:</u>

Το δεύτερο gas condensate (SGC 2) έχει την παρακάτω σύσταση:

Compounds	Composition
C1	0.7905
iC5	0.0023
nC5	0.1999
nC6	0.0023
Naphthalene	0.0050

Πίνακας 8: Σύσταση του αέριου συμπυκνώματος SGC2

(Jensen, και συν., 2003)

Παρατηρούμε πως το συγκεκριμένο αέριο έχει ίδια συστατικά με το προηγούμενο με τη διαφορά ότι αντί για εικοσιτετράνιο διαθέτει ναφθαλένιο. Εφόσον λοιπόν οι συστάσεις είναι παρόμοιες αναμένουμε και παρόμοια συμπεριφορά των καταστατικών εξισώσεων, με κάποιες βέβαια διαφορές εφόσον τώρα ναφθαλένιο είναι ένα λιγότερο βαρύ συστατικό και αρωματικό.

Διάγραμμα 2: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC2 (υπολογισμένα και πειραματικά σημεία)

Αυτή τη φορά παρατηρούμε μία υπερεκτίμηση από το UMR-NEW του διαγράμματος φάσεων όσον αφορά τα σημεία κοντά στο cricodenbar, σε αντίθεση με προηγουμένως που η πρόβλεψη στα αντίστοιχα σημεία ήταν καλύτερη και ελαφρώς υποεκτιμούσε το διάγραμμα φάσεων εκεί. Καλύτερα από όλες ως προς το cricodenbar φαίνεται να πηγαίνει η PR, ενώ ως προς το cricondentherm το UMR-NEW φαίνεται να το υποεκτιμά, χωρίς να είμαστε απολύτως βέβαιοι γι αυτό, αφού δε διατίθενται πειραματικά δεδομένα μέχρι το cricondentherm. Επίσης παρατηρούμε ότι όλα τα μοντέλα προβλέπουν κάποια σημεία ως σημεία φυσαλίδας, ενώ είναι σημεία δρόσου. Η PR φαίνεται να έχει εκτιμήσει περισσότερα πειραματικά σημεία ως σημεία δρόσου (βάσει της θέσης του κρίσιμου σημείου της). Ακολουθεί η SRK και τέλος το UMR (αφού τα σημεία που προέβλεψε ο αλγόριθμος είναι κατά πάσα πιθανότητα σημεία δρόσου, όπως αναφέρθηκε και προηγουμένως).

<u>SGC3:</u>

Το τρίτο αέριο που μελετήθηκε (SGC 3) έχει την ακόλουθη σύσταση:

Compounds	Composition
C1	0.7905
iC5	0.0023
nC5	0.1999
nC6	0.0023
nC24	0.0020
Naphthalene	0.0030

Πίνακας 9: Σύσταση του αέριου συμπυκνώματος SGC3

(Jensen, και συν., 2003)

Ως προς τη σύσταση παρατηρούμε πως και πάλι μοιάζει με τις προηγούμενες με τη διαφορά ότι τώρα υπάρχουν δύο πιο βαριά συστατικά (εικοσιτετράνιο και ναφθαλένιο). Η σύσταση θα λέγαμε λοιπόν πως είναι μία μίξη των δύο προηγούμενων συστάσεων.

Το διάγραμμα φάσεων έχει την παρακάτω μορφή:

Διάγραμμα 3: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC3 (υπολογισμένα και πειραματικά σημεία)

Θα λέγαμε πως στην συγκεκριμένη περίπτωση το UMR-NEW δίνει την καλύτερη πρόβλεψη για τα σημεία κοντά στο cricondenbar, σε σχέση με τις προηγούμενες περιπτώσεις. Δίνει επίσης πολύ καλύτερα αποτελέσματα σε σχέση με την SRK και PR οι οποίες υποεκτιμούν τα πειραματικά σημεία. Είναι επίσης εμφανές ότι και τα τρία μοντέλα προβλέπουν όλα τα σημεία, εκτός από ένα ως σημεία δρόσου.

<u>SGC4:</u>

Το επόμενο αέριο που μελετήθηκε (SGC 4) έχει την ακόλουθη σύσταση:

Compounds	Composition
C1	0.814
n-C4	0.135
n-C10	0.051

Πίνακας 10: Σύσταση του αέριου συμπυκνώματος SGC4

(Urlic, et al., 2003)

Για τη συγκεκριμένη σύσταση μπορούμε να παρατηρήσουμε πως διαθέτει σε μικρότερο ποσοστό βαριά συστατικά σε σχέση με τις προηγούμενες.

Το διάγραμμα φάσεων για το συγκεκριμένο αέριο είναι:

Διάγραμμα 4: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC4 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε λοιπόν και πάλι υπερεκτίμηση της UMR-NEW ως προς την πίεση του cricondenbar και πολύ καλά αποτελέσματα αυτής ως προς το cricondentherm. Από τις άλλες δύο καταστατικές η PR φαίνεται να προβλέπει συνολικά τα σημεία δρόσου πιο σωστά. Και πάλι τα μοντέλα προβλέπουν λανθασμένα κάποια πειραματικά σημεία ως σημεία φυσαλίδας, ενώ είναι σημεία δρόσου. Οπτικά φαίνεται να προβλέπουν τον ίδιο αριθμό πειραματικών σημείων ως σημεία φυσαλίδας, αλλά αναλυτικά θα φανεί στον υπολογισμό των σφαλμάτων παρακάτω.

<u>SGC5:</u>

Το επόμενο synthetic gas condensate (SGC 5) που μελετήθηκε έχει την ακόλουθη σύσταση:

Compounds	Composition				
C1	0.6				
n-C4	0.31				
n-C10	0.09				
-11	1				

Πίνακας 11: Σύσταση του αέριου συμπυκνώματος SGC5

(Urlic, και συν., 2003)

Παρατηρούμε πως πρόκειται για τα ίδια συστατικά με το SGC4 , με μεγαλύτερο ποσοστό όμως σε βαριά (n-C10). Το phase envelope που προκύπτει είναι το ακόλουθο:

Διάγραμμα 5: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC5 (υπολογισμένα και πειραματικά σημεία)

Συγκριτικά με το SGC 4, παρατηρούμε πως η UMR-NEW μοιάζει να υπερεκτιμά λιγότερο αυτή τη φορά το cricondenbar, ενώ και πάλι φαίνεται να δίνει αρκετά καλά αποτελέσματα στο cricondentherm. Η PR φαίνεται να πηγαίνει και πάλι καλύτερα όσον αφορά το cricondenbar, ενώ αυτή τη φορά υποεκτιμά το τα σημεία κοντά στο cricondentherm. Η SRK υπερεκτιμά τα πειραματικά σημεία, όπως και προηγουμένως. Στην περίπτωση αυτή όλα τα μοντέλα έδωσαν τα πειραματικά σημεία ως σημεία δρόσου.

<u>SGC6:</u>

Το επόμενο αέριο που μελετήθηκε ήταν το SGC 6 με την ακόλουθη σύσταση:

Compounds	Composition
C1	0.7581
C2	0.1132
n-C4	0.0488
nC8	0.0268
Toluene	0.0199
nC16	0.023
Phenanthrene	0.0102

Πίνακας 12: Σύσταση του αέριου συμπυκνώματος SGC6

(Ungerer, et al., 1995)

Παρατηρούμε πως το συγκεκριμένο αέριο έχει σε ποσοστό λιγότερα βαριά συστατικά από το προηγούμενο, περισσότερα όμως σε αριθμό, διαφορετικά μεταξύ τους, με σχετικά μεγάλο μοριακό βάρος και άλλα με αρωματικούς δακτυλίους.

Το διάγραμμα φάσεων του παραπάνω αερίου είναι:

Διάγραμμα 6: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC6 (υπολογισμένα και πειραματικά σημεία)

Από το παραπάνω διάγραμμα παρατηρούμε ότι η SRK και PR υποεκτιμούν τα πειραματικά σημεία, ενώ το UMR τα υπερεκτιμά. Επίσης μπορεί κανείς να παρατηρήσει ότι το UMR δίνει καλύτερα την τάση των πειραματικών σημείων ποιοτικά και φαίνεται να πηγαίνει καλύτερα από τις υπόλοιπες μεθόδους. Ακολουθεί η SRK και τέλος η PR. Κρίσιμο σημείο για την SRK δε δόθηκε, οπότε αν θεωρηθούν όλα τα σημεία αυτής και του UMR σημεία δρόσου, τότε όλα τα μοντέλα προβλέπουν τα πειραματικά σημεία σωστά ως σημεία δρόσου.

<u>SGC7:</u>

Το επόμενο αέριο που μελετήθηκε ήταν το SGC 7. Η σύσταση αυτού είναι:

Compounds	Composition
C1	0.7472
C2	0.1097
n-C4	0.0442
nC8	0.0387
Toluene	0.0272
nC16	0.033
10 = /	1 1 0

Πίνακας 13: Σύσταση του αέριου συμπυκνώματος SGC7

(Ungerer, και συν., 1995)

Παρατηρούμε πως η σύσταση αυτού είναι και πάλι παρόμοια με του SGC 6 (που υπάρχει στο παράρτημα), με τη διαφορά ότι τώρα δεν υπάρχει το φαινανθρένιο, μία αρωματική ένωση. Αυτό βλέπουμε πως επηρεάζει την πρόβλεψη του διαγράμματος φάσεων:

Διάγραμμα 7: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC7 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε πως και πάλι παρουσία αρωματικών (όπως και στο SGC 2) η UMR φαίνεται να υπερεκτιμά το διάγραμμα φάσεων κοντά στο cricondenbar. Όσον αφορά τις άλλες μεθόδους, καλύτερα φαίνεται να πηγαίνει και πάλι η SRK (όπως και στο SGC 6), μιας και η σύσταση είναι παρόμοια με αυτού του αέριου συμπυκνώματος. Η διαφορά με το προηγούμενο αέριο έγκειται στη θέση του κρίσιμου σημείου. Τώρα, όπως φαίνεται από το διάγραμμα το UMR και η SRK, προβλέπουν τρία πειραματικά σημεία ως σημεία δρόσου, ενώ η PR προβλέπει μόνο δύο σημεία ως σημεία δρόσου, ενώ τα υπόλοιπα ως σημεία φυσαλίδας.

<u>SGC8:</u>

Το επόμενο condensate που μελετήθηκε ήταν το SGC 8. Αυτό έχει σύσταση:

Compounds	Composition
C1	0.763
C2	0.114
n-C4	0.049
nC8	0.027
Toluene	0.02
nC16	0.023
nC36	0.004

Πίνακας 14: Σύσταση του αέριου συμπυκνώματος SGC8

(Ungerer, και συν., 1995)

Εδώ παρατηρούμε σύσταση παρόμοια με του SGC 8, με τη διαφορά ότι υπάρχει ένα επιπλέον συστατικό με μεγαλύτερο μοριακό βάρος από τα υπόλοιπα. Καταλαβαίνουμε λοιπόν ότι το phase envelope θα μετακινηθεί προς τα πάνω όσον αφορά τα σημεία κοντά στο cricondenbar για τα οποία και διαθέτουμε πειραματικά δεδομένα. Η πρόβλεψη των μοντέλων για αυτή την αλλαγή παρουσιάζεται στο διάγραμμα:

Διάγραμμα 8: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC8 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε πως τόσο τα πειραματικά όσο και τα υπολογισμένα σημεία έχουν μετακινηθεί προς τα πάνω σε σχέση με το SGC7, όπως αναμενόταν. Και πάλι καλύτερα φαίνεται να πηγαίνει το UMR, ακολουθεί η SRK και τέλος η PR. Φαίνεται μάλιστα πως το UMR δίνει καλύτερα την τάση των πειραματικών σημείων, αφού ακολουθεί παρόμοια κλίση. Παρατηρούμε ότι το UMR πλέον (με την αύξηση των βαριών συστατικών) υποεκτιμά το διάγραμμα φάσεων, ενώ στο SGC7 το υπερεκτιμούσε. Τέλος είναι εμφανές ότι το UMR έδωσε αποτελέσματα για όλα τα πειραματικά σημεία, που σημαίνει ότι τα προβλέπει σαν σημεία δρόσου, ενώ τα άλλα δύο μοντέλα προβλέπουν κάποια σημεία από αυτά ως σημεία φυσαλίδας.

<u>SGC9:</u>

Το επόμενο αέριο που μελετήθηκε ήταν το SGC 9 με σύσταση:

Compounds	Composition
C1	0.756
C2	0.113
n-C4	0.049
nC8	0.027
Toluene	0.02
nC16	0.023
nC36	0.012

Πίνακας 15: Σύσταση του αέριου συμπυκνώματος SGC9

(Ungerer, et al., 1995)

Διάγραμμα 9: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC9 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε πως με αύξηση του ποσοστού των βαριών συστατικών αυξήθηκε και η υποεκτίμηση από τα μοντέλα. Από τα τρία μοντέλα καλύτερα πηγαίνει το UMR, ακολουθεί η SRK και τέλος η PR. Αυτό σημαίνει ότι τα μοντέλα δίνουν τα μικρότερα σφάλματα με τη σειρά που αναφέρθηκαν. Βέβαια κανέναν μοντέλο δεν έχει προβλέψει ως σημεία δρόσου όλα τα πειραματικά σημεία. Περισσότερα σημεία προέβλεψε σωστά ως σημεία δρόσου το UMR, μετά η PR και τέλος η SRK. Να σημειωθεί ότι οι υπολογισμοί εδώ για το UMR έγιναν με hysys, για αυτό και βρέθηκε το κρίσιμο σημείο.

<u>SGC10:</u>

Το επόμενο αέριο συμπύκνωμα που μελετήθηκε ήταν το SGC 10.

Compounds	Composition
C1	0.8232
C3	0.0871
nC5	0.0505
n-C10	0.0198
nC16	0.0194

Πίνακας 16: Σύσταση του αέριου συμπυκνώματος SGC10

(Gozalpour, et al., 2003)

Όπως φαίνεται στον πίνακα η σύσταση του δεν διαθέτει κάποιο κοινό με τα προηγούμενα condensates για να συγκριθεί σε αυτά. Παρατηρούμε όμως πως δεν υπάρχουν αρωματικά και πως η σύσταση σε βαρύ κλάσμα είναι σχετικά μικρή.

Το διάγραμμα φάσεων του συγκεκριμένου αερίου είναι:

Διάγραμμα 10: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC10 (υπολογισμένα και πειραματικά σημεία)

Σαφή συμπεράσματα δεν μπορούν να υπάρξουν λόγω της ύπαρξης μόνο δύο πειραματικών σημείων. Αυτό που μπορεί κανείς να διαπιστώσει είναι υπερεκτίμηση των σημείων αυτών από τη UMR και υποεκτίμηση από τις άλλες μεθόδους. Επίσης, όπως φαίνεται ούτε η SRK ούτε η PR προβλέπουν τα πειραματικά σημεία ως σημεία δρόσου, ενώ το UMR προβλέπει το ένα από τα δύο σημεία ως σημείο δρόσου.

<u>SGC11:</u>

Το επόμενο αέριο που μελετήθηκε ήταν το SGC 11. Η σύστασή του είναι:

Compounds	Composition
C1	0.8205
C3	0.0895
nC5	0.0500
n-C10	0.0199
nC16	0.0201

Πίνακας 17: Σύσταση του αέριου συμπυκνώματος SGC11

(Gozalpour, και συν., 2003)

Παρατηρούμε παρόμοια σύσταση με αυτή του SGC 10, με ελάχιστη παραπάνω περιεκτικότητα σε βαριά συστατικά. Το διάγραμμα φάσεων είναι το ακόλουθο:

Διάγραμμα 11: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC11 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε υπερεκτίμηση του phase envelope από το UMR μετά το cricondenbar η οποία όμως μειώνεται στο cricondenbar. Οι άλλες δύο μέθοδοι υποεκτιμούν και πάλι το phase envelope, ενώ καλύτερη από τις δύο φαίνεται να είναι η SRK. Είναι εμφανές και εδώ ότι το UMR και η PR εκτιμούν σωστά περισσότερα από τα πειραματικά σημεία ως σημεία δρόσου σε σχέση με την SRK.

<u>SGC12:</u>

Η σύσταση του condensate που μελετήθηκε είναι αυτή που φαίνεται στον παρακάτω πίνακα:

Compounds	Composition
C1	0.738427
C2	0.072998
C3	0.046031
iC4	0.009098
n-C4	0.018082
iC5	0.008626
nC5	0.009655
nC6	0.014289
n-C7	0.015889
cy-C6	0.006811
M-cy-C5	0.003652
Benzene	0.000449
nC8	0.014322
M-cy-C6	0.011746
Toluene	0.003926
C9	0.007549
m-Xylene	0.003559
o-xylene	0.000881
n-C10	0.006041
C11	0.003384
C12	0.001726
C13	0.001217
C14	0.000690
C15	0.000310
C16	0.000236
C17	0.000164
C18	0.000104
C19	0.000059
C20	0.000034
C21	0.000014
C22	0.000009
C23	0.000007
C24	0.000006
C25	0.000005
C26	0.000004
C27	0.00003

Πίνακας 18: Σύσταση του αέριου συμπυκνώματος SGC12

(Ng, 1986)

To phase envelope όπως προέκυψε από το hysys είναι:

Διάγραμμα 12: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC12 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε πως τα αποτελέσματα από τα μοντέλα δίνουν πως τα πειραματικά σημεία δεν είναι όλα σημεία δρόσου αλλά στην πραγματικότητα είναι. Συνεπώς προβλέπουν λάθος τη συμπεριφορά του συγκεκριμένου condensate και δεν ακολουθούν ακριβώς ούτε την τάση των πειραματικών σημείων. Παρόλα αυτά καλύτερα φαίνεται να πηγαίνει σε κάποια σημεία το UMR και σε κάποια άλλα η SRK. Ποσοτικά στα σημεία κοντά στο cricondenbar δεν αποκλίνουν πολύ, ενώ σε πιο απομακρυσμένα σημεία παρουσιάζουν μεγαλύτερες αποκλίσεις.

<u>SGC14:</u>

To condensate που μελετήθηκε στη συνέχεια ήταν το SGC 14. Η σύστασή του είναι:

Compounds	Composition
C1	0.8031
n-C4	0.1365
n-C7	0.0403
n-C10	0.0141
C14	0.006

Πίνακας 19: Σύσταση του αέριου συμπυκνώματος SGC14

(Shariati, et al., 2014)

Παρατηρούμε πως έχει σχετικά μικρό ποσοστό βαριών. Το διάγραμμα φάσεων του συγκεκριμένου αερίου είναι:

Διάγραμμα 13: Διάγραμμα φάσεων του αερίου συμπυκνώματος SGC14 (υπολογισμένα και πειραματικά σημεία)

Παρατηρούμε λοιπόν και πάλι υπέρβαση του UMR κοντά στο cricindenbar. Εκεί καλύτερα αποτελέσματα δίνει η PR. Αντίθετα κοντά στο cricondentherm το UMR δίνει πολύ καλά αποτελέσματα. Οι υπόλοιπες μέθοδοι φαίνεται επίσης να πηγαίνουν καλά σε αυτά τα σημεία. Τέλος φαίνεται πως στη συγκεκριμένη περίπτωση περισσότερα πειραματικά σημεία προβλέφθηκαν ως σημεία δρόσου από την PR, μετά από την SRK, ενώ τα λιγότερα ήταν από το UMR.

Στο σημείο αυτό παρατίθεται ο πίνακας με όλα τα πειραματικά και υπολογισμένα σημεία cricondentherm και cricondenbar:

SGC	EXP		SRK					
	CricoT - T	CricoT -P	CricoP - T	CricoP - P	CricoT - T	CricoT -P	CricoP - T	CricoP - P
SGC 1	-	-	397.550	290.800	565.536	53.736	393.695	252.289
SGC 2	-	-	312.950	177.300	418.990	65.483	327.158	193.889
SGC 3	-	-	371.950	244.100	533.664	44.571	372.000	221.684
SGC 4	462.010	80.600	338.030	228.100	465.604	84.372	348.848	249.574
SGC 5	485.100	93.200	-	-	486.467	74.130	384.767	180.025
SGC 6	-	-	-	-	578.079	98.612	390.908	376.847
SGC 7	-	-	342.450	329.000	559.798	85.286	390.727	312.491
SGC 8	-	-	334.550	435.000	654.667	63.935	421.055	363.987
SGC 9	-	-	343.150	536.000	700.904	75.818	446.128	410.434
SGC 10	-	-	-	-	535.469	80.896	375.647	305.516
SGC 11	-	-	353.150	319.800	537.010	81.173	376.717	305.907
SGC 12			366.480	274.210	474.183	63.208	347.973	243.701
SGC 14	465.450	50.530	342.580	216.200	466.373	69.551	347.736	229.295

Πίνακας 20: Πειραματικά και υπολογισμένα σημεία cricondetherm, cricondenbar

SGC	PR		UMR-NEW					
	CricoT - T	CricoT -P	CricoP - T	CricoP - P	CricoT - T	CricoT -P	CricoP - T	CricoP - P
SGC 1	556.123	46.124	381.183	232.083	554.550	43.934	369.080	272.798
SGC 2	416.174	62.106	323.808	189.531	414.200	61.973	371.000	171.403
SGC 3	524.406	39.039	356.621	207.607	525.580	40.999	361.010	237.802
SGC 4	460.928	77.014	343.133	239.515	462.620	79.187	321.970	269.561
SGC 5	485.420	69.377	380.018	175.936	488.340	72.755	403.540	183.012
SGC 6	570.894	85.673	384.291	353.956	577.240	89.954	-	-
SGC 7	552.620	75.271	381.940	294.713	553.223	69.363	373.416	354.549
SGC 8	639.638	53.294	405.064	325.270	624.160	37.018	347.892	402.745
SGC 9	685.949	63.053	430.732	361.641	666.130	42.962	368.848	440.982
SGC 10	528.577	71.380	366.853	286.958	530.490	68.154	310.860	352.120
SGC 11	530.102	71.630	367.891	287.368	531.960	68.293	313.310	352.195
SGC 12	470.326	56.363	342.805	237.643	471.749	64.065	335.761	248.671
SGC 14	461.320	62.720	341.504	220.242	465.750	64.738	326.540	247.185

Πίνακας 21: Υπολογισμένα σημεία cricondentherm, cricondenbar

Ο υπολογισμός των σφαλμάτων για τα σημεία cricondenbar και cricondentherm παρουσιάζεται στο παράρτημα.

2.2 Σύγκριση των αποτελεσμάτων του ίδιου μοντέλου σε διαφορετικά αέρια συμπυκνώματα

Στο σημείο αυτό έγινε μία προσπάθεια ομαδοποίησης των συνθετικών αέριων συμπυκνωμάτων φυσικού αερίου, σύμφωνα με κάποιες ομοιότητες που είχαν στη σύστασή τους. Έτσι επιλέχθηκαν κάποια condensates, που είχαν κάποια μικρή μόνο διαφορά στη σύστασή τους και εξετάστηκε η επίδραση αυτής της διαφοράς στο διάγραμμα φάσεων, τόσο στα πειραματικά όσο και στα υπολογισμένα από τα μοντέλα σημεία.

SGC1-SGC2-SGC3:

Επιλέχτηκαν αυτά τα αέρια να μελετηθούν μαζί, διότι μέχρι και το κανονικό εξάνιο έχουν ακριβώς τα ίδια συστατικά και σε ίδιο ποσοστό το καθένα. Από εκεί και πέρα το SGC 1 έχει σαν συστατικό το κανονικό εικοσιτετράνιο, ενώ το SGC 2 το ναφθαλένιο. Το SGC 3 διαθέτει δύο συστατικά πιο βαριά από το κανονικό εξάνιο, τα οποία είναι τα δύο αυτά (εικοσιτετράνιο και ναφθαλένιο) των άθροισμα του ποσοστού των οποίων ισούται με το ποσοστό του κανονικού εικοσιτετρανίου στο SGC 1 και με το ποσοστό του ναφθαλενίου στο SGC 2. Αρχικά λοιπόν συγκεντρώθηκαν οι ιδιότητες των δύο αυτών συστατικών, αφού αυτές θα προκαλέσουν επίσης κύριες διαφορές στο διάγραμμα φάσεων των τριών condensate:

	nC24	Naphthalene
Μοριακός τύπος	C24H50	C10H8
Είδος ένωσης	n-alcane	aromatic
Μοριακό βάρος (g/mol)	338.65	128.17
Πυκνότητα (g/cm3)	0.797	1.145
Θερμοκρασία βρασμού (° C)	391	218

Πίνακας 2	2: Ιδιότητες	συστατικών
-----------	--------------	------------

Παρατηρούμε λοιπόν πως το nC24 έχει μεγαλύτερο μοριακό βάρος αλλά μικρότερη πυκνότητα από το ναφθαλένιο, που εξηγείται από τον αρωματικό δακτύλιο του δεύτερου. Αξίζει επίσης να υπολογίσουμε τη θερμοκρασία βρασμού και την πυκνότητα του βαριού κλάσματος. Για το SGC1 και SGC 2, οι ιδιότητες αυτές ταυτίζονται με αυτές του nC24 και του ναφθαλενίου αντίστοιχα. Για το SGC 3 που περιέχει και τα δύο συστατικά υπολογίστηκαν: Πυκνότητα= 0.974754 g/cm3 και θερμοκρασία βρασμού ενδιάμεση των άλλων δύο. Εν' ολίγοις το βαρύ κλάσμα του SGC 3 έχει ενδιάμεση πυκνότητα και σημείο βρασμού από τα βαριά κλάσματα των άλλων δύο condensate.

Παρακάτω βλέπουμε την ικανότητα πρόρρησης του phase envelope από 3 μεθοδολογίες: την SRK, την PR και το UMR. Αρχικά παρουσιάζεται το phase envelope των τριών condensate με τα πειραματικά τους σημεία και με τα αποτελέσματα που έδωσε η SRK.

Διάγραμμα 14: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Από το παραπάνω διάγραμμα γίνεται σαφές ότι το σημείο βρασμού και όχι η πυκνότητα φαίνεται να επηρεάζει περισσότερο το phase envelope, διότι το SGC 1 με το μεγαλύτερο σημείο βρασμού και τη μικρότερη πυκνότητα βρίσκεται πιο ψηλά στο διάγραμμα, ενώ το SGC 2 με το μικρότερο μοριακό βάρος και τη μεγαλύτερη πυκνότητα βρίσκεται πιο χαμηλά. Το SGC 3 βρίσκεται ανάμεσα στα άλλα δύο όπως αναμενόταν.

Παρατηρούμε ότι η SRK έδωσε καλύτερα αποτελέσματα για το SGC2, το βαρύ κλάσμα του οποίου έχει το χαμηλότερο σημείο βρασμού. Πρόκειται δηλαδή για πιο ελαφρύ condensate. Η ικανότητα πρόρρησης του phase envelope της SRK μειωνόταν όσο αυξανόταν το σημείο βρασμού.

Στη συνέχεια παρουσιάζονται τα αντίστοιχα αποτελέσματα με Peng-Robinson:

Διάγραμμα 15: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε πως και η Peng-Robinson έδωσε καλύτερα αποτελέσματα στα πιο ελαφριά condensate. Μάλιστα φαίνεται να επηρεάζεται περισσότερο με την αύξηση του σημείου βρασμού του βαριού κλάσματος σε σχέση με την SRK. Και οι δύο πάντως υποεκτιμούν τα πιο βαριά condensate.

Στη συνέχεια παρουσιάζονται τα αντίστοιχα αποτελέσματα με το UMR-NEW:

Διάγραμμα 16: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Σε αντίθεση με τις δύο προηγούμενες καταστατικές, το UMR έδωσε καλύτερα αποτελέσματα στο SGC3 και όχι στο SGC2. Μάλιστα το SGC2, που το βαρύ του κλάσμα έχει το χαμηλότερο σημείο βρασμού φαίνεται να το υπερεκτιμά.

SGC4-SGC5:

Αυτή η ομάδα condensate μελετήθηκε διότι διαθέτει κοινά συστατικά σε διαφορετικά ποσοστά το καθένα επίσης. Για το λόγο αυτό υπολογίστηκε ο λόγος της περιεκτικότητας του C1 προς το C7+ κλάσμα. Για το SGC 4 ο λόγος επίσης βρέθηκε ίσος με 15.96078 ενώ για το SGC 5 βρέθηκε 6.66. Για condensate με διαφορετικούς λόγους C1/C7+ βρέθηκε στη βιβλιογραφία το παρακάτω διάγραμμα (Elsharkawy, 2002):

Εικόνα 4: Επίδραση του λόγου C1/C7+ στο διάγραμμα φάσεων

Άρα όσο αυξάνεται ο λόγος C1/C7+ το διάγραμμα φάσεων (phase envelope) κοντά στο cricondenbar ανεβαίνει σε πιο υψηλές πιέσεις, ενώ κοντά στο cricondentherm το διάγραμμα φάσεων πηγαίνει πιο αριστερά, δηλαδή σε πιο χαμηλές θερμοκρασίες.

Στη συνέχεια παρουσιάζονται τα phase envelope τόσο με πειραματικά σημεία, όσο και με τα αποτελέσματα που έδωσαν η SRK, η PR και το UMR και διαπιστώνεται ότι η συμπεριφορά που αναλύθηκε προηγουμένως συμβαίνει πράγματι. Αρχικά φαίνονται τα αποτελέσματα με την SRK:

Διάγραμμα 17: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Όσον αφορά τα πειραματικά σημεία παρατηρούμε πως σε πιέσεις κάτω από αυτή του cricondentherm τα πειραματικά σημεία του SGC 4 βρίσκονται πιο μέσα στο phase envelope από αυτά του SGC 5. Το αντίθετο υποψιάζεται κανείς πως συμβαίνει κοντά στο cricondenbar χωρίς να μπορεί να υπάρξει σαφές συμπέρασμα. Επίσης από το παραπάνω διάγραμμα γίνεται εμφανές ότι και τα δύο condensate η SRK τα υπερεκτιμά. Μοιάζει να πηγαίνει λίγο καλύτερα στο SGC5 (μικρότερος λόγος C1/C7+) κοντά στο cricondentherm. Γενικότερα κοντά στο cricondentherm δίνει καλύτερα αποτελέσματα από ό,τι κοντά στο cricondenbar.

Παρακάτω φαίνονται τα αντίστοιχα αποτελέσματα με Peng-Robinson:

Διάγραμμα 18: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Αυτό που μπορεί κανείς να παρατηρήσει είναι μία ελαφριά υποεκτίμηση κοντά στο cricondentherm και των δύο condensate και μία υπερεκτίμηση στο cricondenbar. Και η Peng-Robinson φαίνεται να δίνει λίγο καλύτερα αποτελέσματα στο SGC5 (μικρότερος λόγος C1/C7+).

Τέλος παρουσιάζονται τα αντίστοιχα αποτελέσματα και με το UMR-NEW:

Διάγραμμα 19: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

To UMR φαίνεται να δίνει καλύτερα αποτελέσματα στο SGC4 (μεγαλύτερος λόγος C1/C7+)κοντά στο cricondentherm, ενώ φαίνεται να υπερεκτιμά πολύ το cricondenbar του. Αντίθετα φαίνεται να υπερεκτιμά λιγότερο το cricondenbar του SGC5 (μικρότερος λόγος C1/C7+).

SGC6-SGC7:

Η επόμενη ομάδα condensate που μελετήθηκε ήταν τα SGC6 και SGC7. Επιλέχτηκαν αυτά τα δύο διότι μέχρι και το κανονικό δεκαεξάνιο έχουν τα ίδια συστατικά, ενώ από εκεί και μετά το SGC 6 έχει ένα επιπλέον συστατικό, το φαινανθρένιο. Το ποσοστό κάθε συστατικού στο condensate διαφέρει ελάχιστα μεταξύ των δύο condensate. Στον παρακάτω πίνακα παρουσιάζονται τα συστατικά, που εμφανίζονται στα βαριά κλάσματα μαζί με τις ιδιότητές τους.

	nC8	Toluene	nC16	Phenanthrene
Μοριακός τύπος	C8H18	C7H8	C16H34	C14H10
Είδος ένωσης	n-alcane	aromatic	n-alcane	aromatic
Μοριακό βάρος (g/mol)	114.23	92.14	226.44	178.23
Πυκνότητα (g/cm3)	0.703	0.87	0.77	1.18
Θερμοκρασία βρασμού(° C)	125	110.6	286.8	340

Πίνακας 23: Ιδιότητες συστατικών

Με βάση τα παραπάνω υπολογίστηκε η πυκνότητα και το μοριακό βάρους του βαριού κλάσματος κάθε condensate. Για το βαρύ κλάσμα του SGC 6 βρέθηκαν: πυκνότητα=10.33953 g/cm3, μοριακό βάρος=149.19 g/mol, ενώ για το SGC 7 βρέθηκαν πυκνότητα=1.80456 και μοριακό βάρος=145.5958. Βλέπουμε λοιπόν ότι το βαρύ κλάσμα του SGC 6 έχει μεγαλύτερη πυκνότητα, μεγαλύτερο μοριακό βάρος και μεγαλύτερο σημείο βρασμού από αυτό του SGC 7.

Συμπεριφορά του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα 450 400 350 Pressure (bar) SRK6 300 SRK7 250 SGC6 200 SGC7 150 Critical SRK7 100 250 300 350 400 450 500 550 600 Temperature (K)

Το διάγραμμα φάσεων που προκύπτει με την SRK είναι:

Διάγραμμα 20: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Από τα πειραματικά σημεία του διαγράμματος γίνεται εμφανές πως το phase envelope του SGC6, στα σημεία κοντά στο cricondenbar βρίσκεται πιο ψηλά από αυτό του SGC 7, γεγονός που οφείλεται στο μεγαλύτερο σημείο βρασμού και στη μεγαλύτερη πυκνότητα του πρώτου. Παρατηρούμε επίσης πως η SRK φαίνεται να δίνει λίγο καλύτερα αποτελέσματα στο SGC7 (μικρότερη πυκνότητα, μικρότερο σημείο βρασμού) από ό,τι στο SGC6.

Τα αποτελέσματα με PR είναι:

Διάγραμμα 21: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Kαι η Peng Robinson φαίνεται να δίνει καλύτερα αποτελέσματα κοντά στο cricondenbar του SGC7 (μικρότερη πυκνότητα και σημείο βρασμού).

Τα αποτελέσματα με το UMR είναι:

Διάγραμμα 22: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Στη συγκεκριμένη περίπτωση παρατηρούμε πως το UMR πηγαίνει λίγο καλύτερα στο SGC6, που έχει μεγαλύτερη πυκνότητα και σημείου βρασμού σε σχέση με το SGC7.

SGC8-SGC9:

Τα δύο αυτά condensate μελετήθηκαν μαζί, γιατί αποτελούνται από τα ίδια συστατικά σε διαφορετικά ποσοστά. Αρχικά βρέθηκαν οι ιδιότητες για το πιο βαρύ συστατικό το nC36:

	nC36
Μοριακός τύπος	C36H72
Είδος ένωσης	n-alcane
Μοριακό βάρος (g/mol)	506.98
Πυκνότητα (g/cm3)	0.7795
Θερμοκρασία Βρασμού (° C)	559.9

Πίνακας 24: Ιδιότητες συστατικών

Με τα δεδομένα και αυτά για τα nC8, toluene και nC16 που βρίσκονται σε προηγούμενους πίνακες υπολογίστηκε το μοριακό βάρος και η πυκνότητα των βαριών κλασμάτων του κάθε condensate. Έτσι προκύπτει για βαρύ κλάσμα του SGC8: μοριακό βάρος=164.3655 g/mol και πυκνότητα=10.05168 g/cm3. Για το βαρύ κλάσμα του SGC 9 προέκυψαν: μοριακό βάρος= 197.7913 g/mol και πυκνότητα=8.08498 g/cm3. Επίσης προέκυψαν για το SGC8 λόγος C1/C7+ ίσος με 10.31, ενώ για το SGC9 9.21.

Το διάγραμμα φάσεων επίσης προέκυψε από την SRK είναι:

Διάγραμμα 23: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε λοιπόν εδώ, πως το SGC9 βρίσκεται ψηλότερα στο phase envelope από το SGC8. Οι παράγοντες που φαίνεται να επηρεάζουν είναι το σημείο βρασμού, καθώς το SGC9 έχει μεγαλύτερο σημείο βρασμού και ο λόγος C1/C7+. Παρατηρούμε επίσης ότι και τα δύο condensate η SRK τα

υποεκτιμά. Πρόκειται για δύο condensate με υψηλά σημεία βρασμού. Μοιάζει να υποεκτιμά λιγότερο το SGC8 που από τα δύο είναι το πιο ελαφρύ (πιο μεγάλος λόγος C1/C7+).

Παρακάτω φαίνονται τα αποτελέσματα με την Peng-Robinson:

Διάγραμμα 24: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε πως και η Peng Robinson υποεκτιμά τα δύο condensate, τουλάχιστον στα σημεία κοντά στο cricondenbar. Αυτό που διαπιστώνουμε είναι πως και αυτή παρουσιάζει καλύτερα αποτελέσματα στο SGC8 (μικρότερο σημείο βρασμού, μεγαλύτερος λόγος C1/C7+).

Τέλος παρουσιάζονται τα αποτελέσματα με UMR:

Διάγραμμα 25: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Εδώ παρατηρούμε πως το UMR δίνει καλύτερα αποτελέσματα για το SGC8 (μικρότερο σημείο βρασμού και μεγαλύτερος λόγος C1/C7+).

SGC14-SGC5:

Επιλέχτηκαν τα δύο αυτά condensate, γιατί διαθέτουν τρία κοινά συστατικά, με το SGC 14 να διαθέτει δύο επιπλέον συστατικά: το κανονικό επτάνιο και το κανονικό δεκατετράνιο. Μελετήθηκαν ως προς το λόγο C1/C7+, ο οποίος προέκυψε ίσος με 13.2963 για το SGC14 και 6.6666 για το SGC 5.

Στη συνέχεια παρατηρούμε τα αποτελέσματα που έδωσαν η SRK, η PR και το UMR. Αρχικά για την SRK έχουμε:

Διάγραμμα 26: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Και εδώ επιβεβαιώνεται η παρατήρηση που έγινε και στη μελέτη των SGC4 – SGC5 σχετικά με τον λόγο C1/C7+.

Η SRK φαίνεται να προβλέπει καλύτερα τα σημεία του SGC14 (πιο μεγάλος λόγος C1/C7+) κοντά στο cricondentherm σε σχέση με τα αντίστοιχα σημεία του SGC5, ενώ υπερεκτιμά τα σημεία του SGC14 κοντά στο cricondenbar.

Τα αποτελέσματα με Peng Robinson είναι:

Διάγραμμα 27: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε εδώ πως η Peng Robinson δίνει αρκετά καλά αποτελέσματα στο cricondenbar του SGC14, χωρίς μεγάλη υπερεκτίμηση,όπως η SRK. Στο cricondentherm μοιάζει να δίνει λίγο καλύτερα αποτελέσματα στο SGC5 (μικρός λόγος C1/C7+).

Τέλος τα αποτελέσματα με το UMR είναι:

Διάγραμμα 28: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε πως το UMR δίνει πολύ καλά αποτελέσματα κοντά στο cricondentherm του SGC14 (μεγάλος λόγος C1/C7+), καλύτερα από ό,τι στο SGC5 κοντά στο cricondentherm, αλλά υπερεκτιμά πολύ το cricondenbar του SGC14.

SGC14-SGC4:

Τα condensates αυτά επιλέχθηκαν να μελετηθούν μαζί, γιατί παρουσιάζουν κοινά συστατικά, με το SGC14 να παρουσιάζει 2 επιπλέον συστατικά. Το SGC14 έχει λόγο C1/C7+ 13.2936, ενώ στο SGC4 ο λόγος αυτός ισούται με 15.96.

Τα phase envelope όπως προβλέφθηκαν από την SRK είναι:

Διάγραμμα 29: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Η SRK φαίνεται να δίνει λίγο καλύτερα αποτελέσματα στο SGC14 (μικρότερος λόγος C1/C7+) στο cricondentherm από ό,τι στο SGC4 που φαίνεται να το υπερεκτιμά. Κοντά στο cricondenbar φαίνεται να υπερεκτιμά λιγότερο το SGC14 σε σχέση με το SGC4.

Τα αποτελέσματα με Peng-Robinson φαίνονται παρακάτω:

Διάγραμμα 30: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Στο cricondentherm φαίνεται η PR να πηγαίνει καλύτερα στο SGC4 (πιο μεγάλος λόγος C1/C7+), ενώ στο cricondenbar δίνει καλύτερα αποτελέσματα στο SGC14.

Παρακάτω φαίνονται τα αποτελέσματα με το UMR:

Διάγραμμα 31: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Παρατηρούμε πως το UMR δίνει καλύτερα αποτελέσματα στο SGC14 (μικρότερος λόγος C1/C7+) στο cricondentherm, ενώ το SGC4 φαίνεται να το υπερεκτιμά ελαφρώς. Το υπερεκτιμά ακόμη περισσότερο στο cricondenbar, όπου για το SGC14 δίνει και πάλι ελαφρώς καλύτερα αποτελέσματα.

SGC12-SGC6:

Τα condensates αυτά επιλέχτηκαν να μελετηθούν μαζί γιατί το SGC12 διαθέτει ως πιο βαρύ συστατικό το nC27 και το SGC6 το φαινανθρένιο. Επίσης τα συστατικά του SGC6 είναι και συστατικά του SGC12, μόνο που το δεύτερο διαθέτει πολύ περισσότερα ενδιάμεσα συστατικά. Επίσης ο λόγος C1/C7+ του SGC6 είναι μεγαλύτερος από τον αντίστοιχο του SGC12. Αυτό που θα διαπιστώσουμε είναι ότι αν και το SGC12 διαθέτει πολλά και βαρύτερα του SGC6 συστατικά τα πειραματικά των δύο condensate ακολουθούν την πορεία που δικαιολογείται από τη σχέση των λόγων C1/C7+. Έτσι το SGC6 που έχει μεγαλύτερο λόγο βρίσκεται ψηλότερα.

Διάγραμμα 32: Σύγκριση των αποτελεσμάτων του μοντέλου SRK σε διαφορετικά αέρια συμπυκνώματα

Αρχικά παρατηρούμε πως η SRK υποεκτιμά και στις δύο περιπτώσεις τα πειραματικά σημεία. Επίσης δε φαίνεται να προβλέπει σωστά την τάση των πειραματικών σημείων και μάλιστα στο SGC12, είναι εμφανές ότι έχει δώσει ως bubble κάποια πειραματικά σημεία, ενώ είναι dew. Σε κάποια σημεία στο SGC6 φαίνεται να πηγαίνει καλά, και γενικότερα στο SGC6 (μεγαλύτερος λόγος C1/C7+) φαίνεται να έχει μικρότερα σφάλματα σε σχέση με το SGC12.

Διάγραμμα 33: Σύγκριση των αποτελεσμάτων του μοντέλου PR σε διαφορετικά αέρια συμπυκνώματα

Αντίστοιχα βλέπουμε πως ούτε η PR εκτιμά σωστά την τάση των πειραματικών, ειδικά στο SGC12 που έχει δώσει κάποια σημεία ως σημεία φυσαλίδας, ενώ βάσει των πειραματικών είναι σημεία δρόσου. Υποεκτιμά και αυτή και τα δύο condensate.

Επίσης η PR πηγαίνει καλύτερα στο SGC12 (πιο μικρός λόγος C1/C7+).

Ακολουθούν τα αποτελέσματα με UMR.

Διάγραμμα 34: Σύγκριση των αποτελεσμάτων του μοντέλου UMR σε διαφορετικά αέρια συμπυκνώματα

Εδώ παρατηρούμε ότι το UMR υποεκτιμά το SGC12, όπως και οι προηγούμενες μέθοδοι, ενώ υπερεκτιμά το SGC6 (μικρότερος λόγος C1/C7+) σε αντίθεση με τα άλλα μοντέλα.

2.3 Υπολογισμός σφαλμάτων των μοντέλων SRK, PR, UMR στα συνθετικά αέρια συμπυκνώματα

Στο σημείο αυτό, υπολογίστηκαν τα σφάλματα των μοντέλων SRK, PR, UMR. Για να γίνει αυτό έπρεπε είτε στη θερμοκρασία του πειραματικού σημείου να βρεθεί η πίεση που προέβλεπε το μοντέλο, είτε στην πίεση του πειραματικού σημείου να βρεθεί η θερμοκρασία που προέβλεπε το μοντέλο. Η πρώτη μέθοδος ακολουθήθηκε για τα σημεία που βρίσκονταν κοντά στην περιοχή του cricondenbar (πάνω στο διάγραμμα φάσεων), ενώ η δεύτερη μέθοδος ακολουθήθηκε για τα σημεία που βρίσκονταν κοντά στην περιοχή του cricondentherm (δεξιά στο διάγραμμα φάσεων).

Για να βρεθούν τα σημεία αυτά με όσο το δυνατόν μεγαλύτερη ακρίβεια, εφαρμόστηκε γραμμή τάσης στο κάθε μοντέλο στην περιοχή των πειραματικών σημείων, και από την εξίσωση επίσης υπολογίστηκαν οι τιμές που έδινε το μοντέλο για συγκεκριμένη θερμοκρασία ή πίεση.

Παρακάτω παρουσιάζεται ο πίνακας των σφαλμάτων. Αξίζει να σημειωθεί ότι σε κάθε αέριο συμπύκνωμα έγινε υπολογισμός μέσου σφάλματος, ενώ το συνολικό σφάλμα στο τέλος του πίνακα προκύπτει ως σταθμικός μέσος των επιμέρους μέσων σφαλμάτων. Αυτό προέκυψε μέσω του τύπου:

$$TOTAL \ ERROR = \frac{\sum_{1}^{NC} Error * ND}{\sum_{1}^{NC} ND}$$

, όπου TOTAL ERROR: το συνολικό σφάλμα της κάθε μεθόδου

Error: το σφάλμα του συγκεκριμένου αέριου συμπυκνώματος (Πειραματική τιμή- Υπολογισμένη τιμή)

NC: αριθμός συμπυκνωμάτων φυσικού αερίου (number of condensates)

ND: αριθμός πειραματικών σημείων κάθε αέριου συμπυκνώματος (number of data)

Στο σημείο αυτό παρουσιάζεται ο πίνακας των σφαλμάτων. Επειδή τα πειραματικά σημεία ήταν πάρα πολλά παρουσιάζονται μόνο τα αποτελέσματα των μέσων σφαλμάτων σε κάθε αέριο και το συνολικό σφάλμα. Αναλυτικά τα σφάλματα σε κάθε πειραματικό σημείο παρατίθενται σε παράρτημα. Τα σύμβολα BP, συμβολίζουν την πρόβλεψη σημείου φυσαλίδας (bubble point) από το μοντέλο, ενώ το αντίστοιχο πειραματικό σημείο είναι σημείο δρόσου. Επίσης οι παύλες συμβολίζουν αδυναμία πρόβλεψης του συγκεκριμένου σημείου από το μοντέλο UMR (κάτι που επίσης αναφέρθηκε σημαίνει ότι το μοντέλο προέβλεψε μάλλον σημείο φυσαλίδας). Όπου τα σφάλματα ΔΤ ήταν μηδενικά ο υπολογισμός του σφάλματος έγινε στην ίδια θερμοκρασία του πειραματικού σημείου. Όπου τα σφάλματα ΔΡ ήταν μηδενικά ο υπολογισμός του σφάλματος έγινε στην ίδια θερμοκρασία του πειραματικού σημεία του αερίου υπολογίστηκαν στην ίδια πίεση του πειραματικού σημεία του αερίου υπολογίστηκαν στην ίδια πίεση του πειραματικό το μοντέλο του συτή λαι για το ΔΤ και γι το ΔΡ, άλλα σημεία του αερίου υπολογίστηκαν στην ίδια πίεση του πειραματικό του στην περίοτηκαν στην ιδια στην ίδια στην ίδια θερμοκρασία του και άλλα στην ίδια θερμοκρασία (Στην περίπτωση αυτή δίνονταν σημεία πειραματικό τόσο στην περιοχή του cricondenbar όσο και του cricondentherm).

	SRK		PR		UMR	
	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC1 Error	0.000	35.952	0.000	53.994	0.000	9.519
SGC2 Error	0.000	10.637	0.000	11.403	0.000	12.825
SGC3 Error	0.000	19.955	0.000	34.223	0.000	6.021
SGC4 Error	5.186	21.412	1.412	11.317	1.353	38.752
SGC5 Error	0.000	11.060	0.000	4.229	0.000	11.981
SGC6 Error	0.000	38.220	0.000	60.204	0.000	20.306
SGC7 Error	0.000	7.307	0.000	28.982	0.000	21.349
SGC8 Error	0.000	68.845	0.000	105.007	0.000	34.702
SGC9 Error	BP	BP	0.000	128.618	0.000	64.893
SGC10 Error	BP	BP	BP	BP	0.000	43.847
SGC11 Error	0.000	20.927	0.000	36.246	0.000	33.117
SGC14 Error	2.636	12.708	4.659	4.615	1.956	31.379
SGC12 Error	0.000	36.415	0.000	44.551	0.000	34.733
TOTAL ERROR	3.328	24.595	3.777	31.492	1.792	22.593

Πίνακας 25: Μέσος όρος σφαλμάτων των μοντέλων σε κάθε αέριο συμπύκνωμα

Από τον πίνακα αυτόν γίνεται εμφανές ότι το καλύτερο μοντέλο για την πρόβλεψη σημείων δρόσου στα συνθετικά αέρια συμπυκνώματα είναι το UMR, ως προς την πρόβλεψη της διαφοράς πίεσης (σφάλμα 22.593 bar) και της διαφοράς θερμοκρασίας (σφάλμα 1.792 K). Αυτό σημαίνει ότι το UMR προβλέπει καλύτερα από τα άλλα μοντέλα πιο σωστά τόσο την περιοχή κοντά στο cricondenbar όσο και κοντά στο cricondentherm. Ακολουθεί η SRK και τέλος η PR.

Τα παραπάνω φαίνονται πιο εύκολα διαγραμματικά:

Διάγραμμα 35: Σφάλματα των μοντέλων (σε bar) (Πειραματική –Υπολογιζόμενη τιμή)

Από το παραπάνω διάγραμμα παρατηρεί κανείς πως το UMR παρουσιάζει το μικρότερο σφάλμα ως προς την πρόβλεψη της πίεσης του σημείου δρόσου. Οι διαφορές βέβαια με την SRK είναι πολύ μικρές σε αυτόν τον υπολογισμό. Κάτι τέτοιο θα φανεί ότι δεν ισχύει στον υπολογισμό της θερμοκρασίας των σημείων δρόσου.

Διάγραμμα 36: Σφάλματα των μοντέλων (σε Κ) (Πειραματική –Υπολογιζόμενη τιμή)

Στο διάγραμμα αυτό παρατηρούμε ότι το UMR είναι πολύ καλύτερο από τα άλλα μοντέλα στον υπολογισμό της θερμοκρασίας των σημείων δρόσου. Με αρκετά μεγαλύτερα σφάλματα ακολουθεί η SRK και τέλος η PR.

Από τα παραπάνω συμπεραίνεται ότι τα μοντέλα που είναι καλύτερα στον υπολογισμό της πίεσης των σημείων κοντά στο cricondenbar (UMR, SRK) είναι καλύτερα και στον υπολογισμό της θερμοκρασίας των σημείων κοντά στο cricondentherm. Βέβαια είναι εμφανές ότι το UMR είναι αρκετά καλύτερο στην πρόβλεψη της θερμοκρασίας των σημείων δρόσου κοντά στο cricondentherm σε σχέση με την πρόβλεψη της πίεσης των σημείων κοντά στο cricondenbar.

Επίσης πολύ σημαντικός παράγοντας στον υπολογισμό σφαλμάτων είναι το ποσοστό των υπολογισμένων σημείων σε σχέση με τα πειραματικά που προβλέφθηκαν σωστά ως σημεία δρόσου και όχι ως σημεία φυσαλίδας. Για το λόγο αυτό παρατίθεται το παρακάτω διάγραμμα, στο οποίο το ποσοστό αυτό αναγράφεται ως ποσοστό επιτυχίας:

Διάγραμμα 37: Ποσοστό επιτυχίας των μοντέλων στην πρόβλεψη των πειραματικών σημείων ως σημεία δρόσου

Παρατηρούμε ότι τα περισσότερα σημεία προβλέφθηκαν σωστά ως σημεία δρόσου από το UMR, σε ποσοστό 71.3 %, ακολούθησε η Peng- Robinson με ποσοστό 69.51 % και τέλος η SRK με ποσοστό 66.82%. Έτσι με βάση αυτή την ανάλυση προκύπτει καλύτερο μοντέλο το UMR, ακολουθεί η PR και τέλος η SRK.

Αν συνδυαστούν οι δύο παραπάνω αναλύσεις καλύτερο μοντέλο προκύπτει σίγουρα το UMR.

2.4 Σύνοψη αποτελεσμάτων

Όσον αφορά το διάγραμμα φάσεων γενικότερα διαπιστώθηκε ότι όσο μεγαλύτερο είναι το σημείο βρασμού του συνθετικού συμπυκνώματος φυσικού αερίου τόσο πιο ψηλά βρίσκεται το διάγραμμα φάσεων αυτού (τουλάχιστον όσον αφορά τα σημεία κοντά στο cricondenbar που μελετήθηκαν). Στα συγκεκριμένα αέρια συμπυκνώματα που εξετάστηκαν δε διαπιστώθηκε κάποια επίδραση της πυκνότητας του βαριού κλάσματος. Επίσης ο λόγος C1/C7+ σε ένα αέριο συμπύκνωμα φαίνεται να έχει διαφορετική επίδραση στο διάγραμμα φάσεων ανάλογα με το αν τα πειραματικά σημεία βρίσκονται κοντά στο cricondenbar ή στο cricondentherm. Όσο αυξάνει ο λόγος C1/C7+ το διάγραμμα φάσεων μετακινείται προς τα πάνω σε σημεία κοντά στο cricondenbar, ενώ μετακινείται προς τα αριστερά σε σημεία κοντά στο cricondentherm. Τέλος ο αριθμός των συστατικών του αέριου συμπυκνώματος δε φαίνεται να επιδρά στο διάγραμμα φάσεων. Οι ιδιότητες του βαριού κλάσματος είναι αυτές που το επηρεάζουν.

Όσον αφορά τα αποτελέσματα των μοντέλων παρατηρείται πως το UMR παρουσιάζει τα μικρότερα σφάλματα σε σχέση με τα πειραματικά σημεία και ότι προβλέπει τα περισσότερα σημεία σωστά σα σημεία δρόσου. Από τα άλλα δύο μοντέλα μικρότερα σφάλματα παρουσιάζει η SRK, ενώ περισσότερα πειραματικά σημεία δρόσου από την PR.

Ως προς τη συμπεριφορά των μοντέλων σε κάθε αέριο συμπύκνωμα παρατηρήθηκαν τα εξής: Το UMR φαίνεται να έχει αδυναμία πρόβλεψης σε συμπυκνώματα με πολλά αρωματικά. Επίσης υπερεκτιμά τα συμπυκνώματα με χαμηλό σημείο βρασμού του βαριού κλάσματος (ελαφριά). Δίνει καλύτερα αποτελέσματα στα πιο βαριά συμπυκνώματα. Το UMR υπερεκτιμά το διάγραμμα φάσεων κυρίως κοντά στο cricondenbar, όσο αυξάνεται ο λόγος C1/C7+. Το cricondentherm το υπερεκτιμά λιγότερο σε σχέση με το cricondenbar. Η SRK έδωσε καλύτερα αποτελέσματα στα πιο ελαφριά συμπυκνώματα (πιο χαμηλό σημείο βρασμού του βαριού κλάσματος), όπως επίσης και η Peng-Robinson. Σε περιπτώσεις μικρού λόγου C1/C7+ (πιο μεγάλο ποσοστό βαριών συστατικών) η SRK και η PR υποεκτιμούν τα πειραματικά σημεία.

3. ΠΡΑΓΜΑΤΙΚΑ ΣΥΜΠΥΚΝΩΜΑΤΑ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ (REAL GAS CONDENSATES)

Στο σημείο αυτό συλλέχθηκαν από τη βιβλιογραφία όλα τα αέρια συμπυκνώματα (gas condensates) τα οποία διέθεταν βαρύ κλάσμα (plus fraction). Για αυτά τα συμπυκνώματα δινόταν αναλυτικά η σύσταση του ελαφριού τμήματος και συνολικά η σύσταση του βαριού κλάσματος, καθώς επίσης και κάποιες ιδιότητες για αυτό το κλάσμα, όπως το μοριακό βάρος, η πυκνότητα και για κάποια το σημείο βρασμού. Επίσης συλλέχθηκαν πειραματικά δεδομένα σημείων δρόσου για αυτά τα αέρια συμπυκνώματα. Η βάση δεδομένων παρουσιάζεται στο παράρτημα.

Στη συνέχεια για αυτά τα αέρια συμπυκνώματα έγινε χαρακτηρισμός με τέσσερις μεθόδους: μία με βάση το μοριακό βάρος του βαριού κλάσματος, η οποία θα ονομάζεται από εδώ και στο εξής MW matching, μία με βάση το σημείο βρασμού του βαριού κλάσματος, η οποία θα ονομάζεται Tb matching, Modified Shariati (η οποία θα ονομάζεται PNA από εδώ και στο εξής), Pedersen. Μετά το χαρακτηρισμό, οι συστάσεις που προέκυψαν χρησιμοποιήθηκαν για υπολογισμούς ισορροπίας φάσεων με την SRK, PR, UMR-new και κάποια αποτελέσματα χρησιμοποιήθηκαν και στην PC-SAFT.

Επειδή όπως αναφέρθηκε δίνονταν μόνο για κάποια αέρια συμπυκνώματα το σημείο βρασμού του βαριού κλάσματος, αλλά ήταν απαραίτητο να βρεθεί το σημείο βρασμού και για τα υπόλοιπα, ώστε να χρησιμοποιηθούν στη μέθοδο Tb matching, χρησιμοποιήθηκε ένα μοντέλο (Retzekas et. al.) που παρουσιάζεται παρακάτω και υπολογίστηκαν τα σφάλματα σε σχέση με τα σημεία βρασμού, που δίνονταν στη βιβλιογραφία για κάποια αέρια συμπυκνώματα.

3.1 Υπολογισμός θερμοκρασίας βρασμού του βαριού κλάσματος των συμπυκνωμάτων φυσικού αερίου

Στο σημείο αυτό υπολογίστηκε η θερμοκρασία βρασμού του βαριού κλάσματος των συμπυκνωμάτων φυσικού αερίου και πραγματοποιήθηκε σύγκριση μεταξύ πειραματικής και υπολογιζόμενης τιμής (σε όσα αέρια συμπυκνώματα δινόταν πειραματική τιμή της θερμοκρασίας βρασμού του βαριού κλάσματος). Η θερμοκρασία βρασμού του βαριού κλάσματος υπολογίστηκε από δύο σχέσεις. Η πρώτη ήταν η σχέση του Ρετζέκα:

$$T_h = 48.89673 * MW^{0.46667} * d^{0.36364}$$

,όπου MW το μοριακό βάρος του βαριού κλάσματος και d η πυκνότητα αυτού στους 20 °C.

(NTUA, Athens)

Η άλλη σχέση για τη θερμοκρασία βρασμού, η οποία προτείνεται από τη μέθοδο Pedersen και είναι η εξής:

$$T_h = 97.58 * M^{0.3323} * \rho^{0.04609}$$

(Pedersen, et al., 2007)

Η σχέση αυτή δεν ήταν τόσο αξιόπιστη όπως θα διαπιστώσουμε παρακάτω και γι αυτό δε χρησιμοποιήθηκε.

Με βάση το μοριακό βάρος και την πυκνότητα στους 20 °C σε gr/ml για κάθε βαρύ κλάσμα υπολογίστηκε η θερμοκρασία βρασμού για τα G4, G5, G6, G7, G8, G9, G10, G11, G13 για τα οποία υπάρχουν και πειραματικές τιμές για τη θερμοκρασία βρασμού του βαριού κλάσματος.

Το μοριακό βάρος δινόταν για τα βαριά κλάσματα (όπως φαίνεται στην βάση δεδομένων στο παράρτημα), αλλά η πυκνότητα κάποιες φορές δινόταν επίσης 16 °C. Τότε μετατρεπόταν στους 20 °C από τη σχέση του Τσονόπουλου:

$$d_{16^{\circ}C} = 1.003 d_{20^{\circ}C}$$

(NTUA, Athens)

Τα αποτελέσματα από τον υπολογισμό της θερμοκρασίας βρασμού παρουσιάζονται παρακάτω:

	Tb _{exp} (K)	Tb _{Retzekas} (K)	Tb _{Pedersen} (K)	Error_Retzekas (K)	Error_Pedersen (K)
G4	554.770	557.283	574.521	-2.513	-19.751
G5	428.200	430.812	485.725	-2.612	-57.525
G6	451.740	454.278	502.674	-2.538	-50.934
G7	444.700	449.158	497.293	-4.458	-52.593
G8	461.250	464.796	512.299	-3.546	-51.049
G9	430.960	434.311	488.450	-3.351	-57.490
G10	462.890	464.594	508.279	-1.704	-45.389
G11	579.600	581.910	590.622	-2.310	-11.022
G13	430.960	434.311	488.450	-3.351	-57.490
Error				-2.932	-44.805

Πίνακας 26: Πειραματικά σημεία βρασμού του βαριού κλάσματος, υπολογισμένα σημεία βρασμού του και σφάλματα των μοντέλων που χρησιμοποιήθηκαν (Πειραματική- Υπολογισμένη τιμή)

Παρατηρούμε μία μεγάλη απόκλιση από τη σχέση Pedersen. Το μοντέλο υπερεκτιμά κατά μέσο όρο 44.805 K τη θερμοκρασία βρασμού. Η σχέση Retzekas φαίνεται πιο αξιόπιστη αφού υπερεκτιμά μόνο 2.932 K τη θερμοκρασία βρασμού. Για το λόγο αυτό χρησιμοποιήθηκε αυτή η μέθοδος τόσο στο Tb-Matching, όσο και στη PNA.

3.2 Χαρακτηρισμός με βάση το μοριακό βάρος του βαριού κλάσματος (MW-Matching)

Η μέθοδος χαρακτηρισμού που μελετήθηκε είναι η εξής: το βαρύ κλάσμα κάθε συμπυκνώματος αντιστοιχίζεται με ένα κανονικό αλκάνιο με μοριακό βάρος το κοντινότερο και αμέσως μεγαλύτερο του μοριακού βάρους του βαριού κλάσματος.

Έτσι για το G1 που το βαρύ κλάσμα έχει μοριακό βάρος 192.8 g/mol επιλέχθηκε το κανονικό δεκατετράνιο (nC14) που έχει μοριακό βάρος 198 g/mol. Για το G2 που το βαρύ κλάσμα έχει μοριακό βάρος 153 g/mol επιλέχθηκε το κανονικό ενδεκάνιο (nC11) με μοριακό βάρος 156 g/mol. Για το G4 που το βαρύ κλάσμα έχει μοριακό βάρος 213 g/mol επιλέχθηκε το κανονικό δεκαεξάνιο (nC16) με μοριακό βάρος 226 g/mol. Για το G5 που το βαρύ του κλάσμα έχει μοριακό βάρος 129.81 g/mol επιλέχθηκε το κανονικό δεκάνιο (nC10) με μοριακό βάρος 142 g/mol. Για το G6, που το βαρύ του κλάσμα έχει μοριακό βάρος 143.6 g/mol επιλέχθηκε το κανονικό ενδεκάνιο (nC11) με μοριακό βάρος 156 g/mol. Για το G10, του οποίου το βαρύ κλάσμα έχει μοριακό βάρος 148 g/mol επιλέχθηκε το κανονικό ενδεκάνιο (nC11) με μοριακό βάρος 156 g/mol. Για το G11 που το βαρύ του κλάσμα έχει μοριακό βάρος 231 g/mol επιλέχθηκε το κανονικό δεκαεπτάνιο (nC17) με μοριακό βάρος 240 g/mol. Για το G13 που το βαρύ κλάσμα έχει μοριακό βάρος 132 g/mol επιλέχθηκε το κανονικό δεκάνιο (nC10) με μοριακό βάρος 142 g/mol. Για το G21 που το βαρύ του κλάσμα έχει μοριακό βάρος 126 g/mol επιλέχθηκε και πάλι το κανονικό εννεάνιο με μοριακό βάρος 128 g/mol. Για το G34 που το βαρύ κλάσμα έχει μοριακό βάρος 127 g/mol επιλέχθηκε το κανονικό εννεάνιο με μοριακό βάρος 128 g/mol. Για το G35 που το βαρύ του κλάσμα έχει μοριακό βάρος 203 g/mol επιλέχθηκε το κανονικό δεκαπεντάνιο (nC15)με μοριακό βάρος 212 g/mol. Τέλος για το G51 που το βαρύ του κλάσμα έχει 220 g/mol επιλέχθηκε το κανονικό δεκαεξάνιο (nC16) με μοριακό βάρος 226 g/mol.

Παρακάτω παρουσιάζονται κάποια αντιπροσωπευτικά παραδείγματα και τα υπόλοιπα βρίσκονται στο παράρτημα.

<u>G1:</u>

Για το G1 προέκυψε η παρακάτω σύσταση:

G1				
Compounds	Composition			
CO2	0.0391			
N2	0.0075			
C1	0.7020			
C2	0.0922			
C3	0.0276			
i-C4	0.0066			
nC4	0.0098			
i-C5	0.0040			
nC5	0.0042			
cy-C5	0.0000			
nC6	0.0082			
nC14	0.0987			

Πίνακας 27: Σύσταση του αέριου συμπυκνώματος G1 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Στο σχήμα παρουσιάζεται το διάγραμμα φάσεων για το G1 όπως προέκυψε από τα τρία μοντέλα, καθώς και τα πειραματικά σημεία που δίνονταν:

Διάγραμμα 38: Διάγραμμα φάσεων αέριου συμπυκνώματος G1 (πειραματικά και υπολογισμένα σημεία)

Παρατηρούμε μία μεγάλη απόκλιση και από τα τρία μοντέλα, κάτι που πιθανώς να οφείλεται στη μέθοδο χαρακτηρισμού που επιλέχθηκε. Επίσης παρατηρούμε πως τα μοντέλα δίνουν τα περισσότερα από τα σημεία δρόσου σαν σημεία φυσαλίδας. Από τα τρία μοντέλα καλύτερα αποτελέσματα φαίνεται να πηγαίνει στα περισσότερα σημεία το UMR, ενώ σε ένα σημείο η SRK (το προβλέπει επίσης σαν σημείο δρόσου). Μάλιστα η SRK και η PR δεν προβλέπουν κανένα σημείο σωστά σαν σημείο δρόσου. Το UMR από εφόσον δίνει αποτελέσματα για όλα τα σημεία, λογικά τα έχει προβλέψει σαν σημεία δρόσου (γιατί ο αλγόριθμος εμφανίζει πρόβλημα κοντά στο κρίσιμο σημείο και δε δίνει περαιτέρω σημεία). Ακολουθεί ο πίνακας που παρουσιάζει τα σημεία cricondentherm και cricondenbar, όπως προέκυψαν:

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	586.206	98.212	409.742	329.035
PR	579.015	86.738	400.692	312.973
UMR-NEW	576.4	76.182	400.5	336.03

Πίνακας 28: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Δεν υπάρχουν πειραματικά δεδομένα για cricondentherm και cricondenbar, οπότε δεν μπορούν να υπολογιστούν σφάλματα στα σημεία αυτά. Η SRK και η PR που δίνουν κρίσιμο σημείο, δίνουν το cricondenbar σαν σημείο φυσαλίδας, κάτι που είναι σωστό γιατί η μεγαλύτερη πίεση βρέθηκε στα σημεία φυσαλίδας των πειραματικών σημείων (δεν παρουσιάζονται εδώ αυτά τα πειραματικά σημεία).

<u>G2:</u>

Η σύσταση του G2, όπως προέκυψε μετά το χαρακτηρισμό με βάση το μοριακό βάρος του βαριού κλάσματος είναι:

G2				
Compounds	Composition			
CO2	0.0217			
N2	0.0034			
C1	0.7064			
C2	0.1076			
C3	0.0494			
i-C4	0.0000			
nC4	0.0302			
i-C5	0.0000			
nC5	0.0135			
cy-C5	0.0000			
nC6	0.0090			
nC11	0.0588			

Πίνακας 29: Σύσταση του αέριου συμπυκνώματος G2 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα και τα πειραματικά σημεία παρουσιάζονται παρακάτω:

Διάγραμμα 39: Διάγραμμα φάσεων αέριου συμπυκνώματος G2 (πειραματικά και υπολογισμένα σημεία)

Παρατηρούμε πως το UMR φαίνεται να δίνει καλύτερα αποτελέσματα, μετά η SRK και τέλος η PR. Όλα τα μοντέλα προέβλεψαν σωστά το πειραματικό σημείο σα σημείο φυσαλίδας.

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	493.715	86.485	369.896	254.869
PR	488.506	76.709	363.213	243.924
UMR-NEW	490.520	77.582	342.67	273.767

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 30: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Υπολογισμός σφάλματος για το cricondentherm και cricondenbar δεν μπορεί να γίνει στην προκειμένη περίπτωση, γιατί δεν υπάρχουν πειραματικά δεδομένα για αυτά τα σημεία. Παρατηρούμε βάσει του διαγράμματος πως και τα δύο μοντέλα που δίνουν κρίσιμο σημείο (SRK, PR) δίνουν το cricondenbar δεξιά του κρίσιμου.

<u>G4:</u>

Για το G4 δε δόθηκε από κανέναν μοντέλο το κρίσιμο σημείο. Η σύσταση για το G4 , όπως προέκυψε μετά το χαρακτηρισμό είναι:

G4			
Compounds	Composition		
CO2	0.0070		
N2	0.0532		
C1	0.8601		
C2	0.0349		
C3	0.0140		
i-C4	0.0036		
nC4	0.0052		
i-C5	0.0028		
nC5	0.0018		
nC6	0.0040		
nC7	0.0033		
nC8	0.0029		
nC9	0.0016		
nC10	0.0015		
nC11	0.0010		
nC16	0.0031		

Πίνακας 31: Σύσταση του αέριου συμπυκνώματος G4 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα και τα πειραματικά σημεία παρουσιάζονται παρακάτω:

Διάγραμμα 40: Διάγραμμα φάσεων αέριου συμπυκνώματος G4 (πειραματικά και υπολογισμένα σημεία)

Παρατηρούμε σε αυτή την περίπτωση πως το UMR φαίνεται να δίνει πολύ καλά αποτελέσματα. Ακολουθεί η SRK και τέλος η PR, οι οποίες υποεκτιμούν το πειραματικό σημείο.

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	464.475	63.767	326.244	277.229
PR	458.132	55.363	318.874	256.632
UMR-NEW	461.800	55.519	_	_

Πίνακας 32: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Υπολογισμός σφάλματος για το cricondentherm και cricondenbar δεν μπορεί να γίνει στην προκειμένη περίπτωση, γιατί δεν υπάρχουν πειραματικά δεδομένα για αυτά τα σημεία.

<u>G6:</u>

Τα αποτελέσματα στο συγκεκριμένο condensate είναι παρόμοια με το προηγούμενο, παρουσιάζεται εδώ επίσης διότι διαθέτει περισσότερα πειραματικά σημεία και μπορεί να διαπιστωθεί αν τα μοντέλα ακολουθούν ποιοτικά την τάση των πειραματικών δεδομένων.

Η σύσταση για το G6, όπως προέκυψε μετά το χαρακτηρισμό είναι:

G6		
Compounds	Composition	
CO2	0.0044	
N2	0.0547	
C1	0.8552	
C2	0.0350	
C3	0.0146	
i-C4	0.0037	
nC4	0.0058	
i-C5	0.0028	
nC5	0.0023	
nC11	0.0214	

Πίνακας 33: Σύσταση του αέριου συμπυκνώματος G6 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα και τα πειραματικά σημεία παρουσιάζονται παρακάτω:

Διάγραμμα 41: Διάγραμμα φάσεων αέριου συμπυκνώματος G6 (πειραματικά και υπολογισμένα σημεία)

Εδώ διαπιστώνεται ότι και πάλι δίνει καλύτερα αποτελέσματα το UMR, ακολουθεί η SRK (μάλιστα σε ένα σημείο δίνει καλύτερα αποτελέσματα από το UMR) και χειρότερα αποτελέσματα δίνει η PR. Αυτό που

επίσης παρατηρεί κανείς, είναι ότι το UMR ακολουθεί την τάση των πειραματικών σημείων για αύξηση της πίεσης προς τα αριστερά, ενώ τα άλλα μοντέλα δεν ακολουθούν τόσο σωστά.

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	305.3722	414.582
SRK	449.514	82.683	321.771	296.811
PR	444.336	72.926	315.637	278.406
UMR-NEW	445.84	73.796	-	-

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 34: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Στην περίπτωση αυτή θεωρήθηκε ως cricondenbar των πειραματικών σημείων αυτό με τη μεγαλύτερη πίεση. Αν και ο συλλογισμός αυτός μπορεί να είναι λανθασμένος, υπολογίζονται τα σφάλματα στο σημείο αυτό. Έτσι η SRK έχει σφάλμα: -16.399 K ως προς τη θερμοκρασία και 117.771 bar ως προς την πίεση του cricondenbar. Τα αντίστοιχα σφάλματα για την PR είναι: -10.265 K και 136.176 bar. Από το UMR δεν έχουμε δεδομένα για το cricondenbar.

Επειδή τα αποτελέσματα με αυτή τη μέθοδο δεν ήταν τόσο καλά δοκιμάστηκαν και άλλα κανονικά αλκάνια, αντί του nC11, και τα αποτελέσματα παρουσιάζονται στο παράρτημα.

<u>G21:</u>

Το πειραματικό του G21 είναι κοντά στο cricondentherm, βάσει των μοντέλων. Η σύσταση που προέκυψε, ύστερα από το χαρακτηρισμό είναι:

G21			
Compounds	Composition		
CO2	0.0000		
N2	0.0161		
C1	0.9443		
C2	0.0153		
C3	0.0055		
nC4	0.0026		
nC5	0.0128		
nC6	0.0015		
nC9	0.0019		

Πίνακας 35: Σύσταση του αέριου συμπυκνώματος G21 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Το διάγραμμα φάσεων, όπως προέκυψε από τα διάφορα μοντέλα παρουσιάζεται:

Διάγραμμα 42: Διάγραμμα φάσεων αέριου συμπυκνώματος G21 (πειραματικά και υπολογισμένα σημεία)

Εδώ δεν παρατηρούνται σημαντικές αποκλίσεις με καλύτερο μοντέλο να είναι το UMR, ακολουθεί η SRK και τέλος η PR. Το πειραματικό σημείο προσεγγίζει το cricondentherm στην προκειμένη περίπτωση, αρά το συγκεκριμένο αέριο συμπύκνωμα μπορεί να χρησιμοποιηθεί ως ένδειξη της συμπεριφοράς των μοντέλων κοντά στο cricondetherm.

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	331.883	45.933	269.354	142.783
PR	328.726	42.459	265.659	136.504
UMR-NEW	331.770	46.285	-	-

Πίνακας 36: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Ούτε σε αυτή την περίπτωση μπορεί να υπάρξει συμπέρασμα, διότι δεν υπάρχουν πειραματικά δεδομένα για το cricondentherm και cricondenbar.

<u>G35:</u>

Παρουσιάζεται το συγκεκριμένο συμπύκνωμα γιατί τα κρίσιμα σημεία από τα μοντέλα δίνονται αρκετά αριστερά, οπότε είναι σίγουρο πως το πειραματικό σημείο προβλέπεται σωστά σαν σημείο δρόσου. Επίσης πρόκειται για βαρύ κλάσμα C11+, και όχι C7+ όπως στις προηγούμενες περιπτώσεις. Η σύσταση, όπως προέκυψε μετά το χαρακτηρισμό είναι:

G35		
Compounds	Composition	
CO2	0.0351	
N2	0.0000	
C1	0.7605	
C2	0.0773	
C3	0.0390	
i-C4	0.0076	
nC4	0.0117	
i-C5	0.0043	
nC5	0.0039	
cy-C5	0.0005	
nC6	0.0054	
су-Сб	0.0042	
Benzene	0.0013	
nC7	0.0037	
M-cy-C6	0.0060	
Toluene	0.0030	
nC8	0.0029	
E-cy-C6	0.0036	
E-Benzene	0.0033	
nC9	0.0026	
Propyl-cy-C6	0.0015	
Propyl-Benzene	0.0017	
nC10	0.0017	
Butyl-cy-C6	0.0008	
nC15	0.0183	

Πίνακας 37 : Σύσταση του αέριου συμπυκνώματος G35 με βάση τη μέθοδο χαρακτηρισμού MW-Matching

Παρά την διαφορετική σύσταση και το πιο βαρύ κλάσμα, τα μοντέλα δίνουν παρόμοια εικόνα στο διάγραμμα φάσεων:

Διάγραμμα 43: Διάγραμμα φάσεων αέριου συμπυκνώματος G35 (πειραματικά και υπολογισμένα σημεία)

Παρατηρούμε και πάλι πως το UMR δίνει καλύτερα αποτελέσματα, ακολουθεί η SRK και τέλος η PR. Όλα τα μοντέλα υποεκτιμούν το πειραματικό σημείο και το εκτιμούν σωστά σαν σημείο δρόσου.

	cricoT		cricoP	
	T(K) P (bar)		Т(К)	P (bar)
EXP	-	-	-	-
SRK	516.871	79.030	371.476	287.288
PR	510.398	69.680	363.171	270.21
UMR-NEW	513.29	68.231	317.95	322.43

Παρουσιάζονται τα αποτελέσματα για το cricondetherm και cricondenbar:

Πίνακας 38: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Ούτε εδώ μπορεί να γίνει υπολογισμός του σφάλματος, γιατί δεν υπάρχουν πειραματικά δεδομένα για το cricondentherm και το cricondenbar.

3.3 Χαρακτηρισμός με βάση το σημείο βρασμού του βαριού κλάσματος (Tb-Matching)

Η μέθοδος αυτή είναι η ακόλουθη: Για το βαρύ κλάσμα κάθε συμπυκνώματος υπολογίστηκε το κανονικό σημείο βρασμού από τη σχέση του Ρετζέκα, με χρήση των ιδιοτήτων της πυκνότητας στους 20°C και του μοριακού βάρους του βαριού κλάσματος, που παρατίθενται στο παράρτημα. Με βάση αυτό βρέθηκε ο υδρογονάνθρακας που έχει το πιο κοντινό στο υπολογισμένο σημείο βρασμού. Έτσι για το G1 που το βαρύ κλάσμα του υπολογίστηκε ότι έχει σημείο βρασμού 525.3 Κ επιλέχθηκε το κανονικό δεκατετράνιο με σημείο βρασμού 526.73 Κ. Για το G2 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 473.06 Κ επιλέχθηκε το n-PentylBenzene με σημείο βρασμού 478.61 Κ. Για το G4 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 557.28 Κ επιλέχθηκε το κανονικό δεκαεξάνιο με σημείο βρασμού 560.01 Κ. Για το G5 που το βαρύ του κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 430.81 Κ επιλέχθηκε το 2,2 διμέθυλο-οκτάνιο με σημείο βρασμού 430.05 Κ. Για το G6 που το βαρύ του κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 454.27 Κ επιλέχθηκε το n-Butylcyclohexane με σημείο βρασμού 454.13 Κ. Για το G10 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 464.59 K επιλέχθηκε το κανονικό ενδεκάνιο (nC11) με σημείο βρασμού 469.08 Κ. Για το G11 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 581.91 Κ επιλέχθηκε το κανονικό δεκαεπτάνιο (nC17) με σημείο βρασμού 575.3 Κ. Για το G13 που το βαρύ του κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 434.31 Κ επιλέχθηκε το m-ethyltoluene με σημείο βρασμού 434.48 Κ. Για το G34 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 424.28Κ επιλέχθηκε το κανονικό εννεάνιο με σημείο βρασμού 423.97 Κ. Για το G35 που το βαρύ κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 546.78 Κ επιλέχθηκε το κανονικό δεκαπεντάνιο με σημείο βρασμού 543.84 Κ. Τέλος για το G51 που το βαρύ του κλάσμα υπολογίστηκε ότι έχει σημείο βρασμού 566.9 Κ επιλέχθηκε το κανονικό δεκαεπτάνιο με σημείο βρασμού 575.3 Κ.

Παρακάτω παρουσιάζονται τα αποτελέσματα για όσα συμπυκνώματα χαρακτηρίστηκαν με διαφορετικό υδρογονάνθρακα σε σχέση με την προηγούμενη μέθοδο. Έτσι αυτά που θα παρουσιαστούν είναι: G2, G5, G6, G13, G21, G51. Για τα υπόλοιπα προέκυψε η ίδια σύσταση με την προηγούμενη μέθοδο.

Από αυτά τα condensates παρουσιάζονται παρακάτω, εκείνα που παρουσιάστηκαν και προηγουμένως G2 (που έχει το κρίσιμο σημείο αριστερά του cricondenbar), G6 (για το οποίο διατίθενται πολλά πειραματικά δεδομένα) και G21 (που το πειραματικό του σημείο βρίσκεται κοντά στο cricondentherm).

<u>G2:</u>

Αντίστοιχα η σύσταση ,που προέκυψε με βάση το σημείο βρασμού του βαριού κλάσματος, είναι:

G2			
Compounds	Composition		
CO2	0.0217		
N2	0.0034		
C1	0.7064		
C2	0.1076		
C3	0.0494		
i-C4	0.0000		
nC4	0.0302		
i-C5	0.0000		
nC5	0.0135		
cy-C5	0.0000		
nC6	0.0090		
n-PentylBenzene	0.0588		

Πίνακας 39: Σύσταση του αέριου συμπυκνώματος G2 με βάση τη μέθοδο χαρακτηρισμού Tb-Matching

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα και τα πειραματικά σημεία παρουσιάζονται παρακάτω:

Διάγραμμα 44: Διάγραμμα φάσεων αέριου συμπυκνώματος G2 (πειραματικά και υπολογισμένα σημεία)

Παρατηρούμε αρχικά πως το UMR δίνει και πάλι καλύτερα αποτελέσματα, ακολουθεί η SRK και τέλος η PR. Η πρόβλεψη του κρίσιμου σημείου είναι παρόμοια και από την SRK και την PR. Συγκριτικά με το χαρακτηρισμό με βάση το μοριακό βάρος του βαριού κλάσματος, βλέπουμε ότι τώρα τα μοντέλα προβλέπουν καλύτερα το διάγραμμα φάσεων, διότι δίνουν αποτελέσματα πιο κοντά στο πειραματικό σημείο. Κάτι τέτοιο είναι λογικό, διότι το σημείο βρασμού του κανονικού εντεκανίου που επιλέχθηκε πριν είναι μικρότερο από αυτό του n- pentylbenzene, συνεπώς το διάγραμμα φάσεων τώρα βρίσκεται ψηλότερα και πιο κοντά στο πειραματικό σημείο.

		1.7 a			ani a a la a tha a maa	way aniaa ada aha w
ιαρακο		$u(\alpha)v(\alpha) + \alpha$	αποτελεοματά	$v(\alpha + \alpha)$	cricondeninerm	KOI CHCONGENDAL
inapano	tta napooott	1,0 ,	anoteneopata	rea co	enconacitent	Rat chicomachiban

	cricoT		cricoP	
	T(K) P (bar)		Т(К)	P (bar)
EXP	-	-	-	-
SRK	511.917	100.142	368.686	317.109
PR	506.823	89.934	363.864	302.487
UMR-NEW	509.42	95.721	335.05	342.419

Πίνακας 40: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Στην προκειμένη περίπτωση δεν μπορεί να υπολογιστεί το σφάλμα σε αυτά τα σημεία διότι δεν υπάρχουν πειραματικά δεδομένα για αυτά τα σημεία. Παρατηρούμε επίσης ότι η πίεση του cricodenbar με βάση τα μοντέλα είναι σαφώς υψηλότερη σε σχέση με τη μέθοδο MW Matching, της τάξης των 60 bar. Αντίστοιχα η θερμοκρασία του cricondentherm είναι μεγαλύτερη, της τάξης των 20 K.

<u>G6:</u>

Με βάση τη δεύτερη μέθοδο χαρακτηρισμού προέκυψε η παρακάτω σύσταση:

G6		
Compounds	Composition	
CO2	0.0044	
N2	0.0547	
C1	0.8552	
C2	0.0350	
C3	0.0146	
i-C4	0.0037	
nC4	0.0058	
i-C5	0.0028	
nC5	0.0023	
n-Butylcyclohexane	0.0214	

Πίνακας 41: Σύσταση του αέριου συμπυκνώματος G6 με βάση τη μέθοδο χαρακτηρισμού Tb-Matching

Για το G6 condensate προέκυψε το παρακάτω phase envelope:

Διάγραμμα 45: Διάγραμμα φάσεων αέριου συμπυκνώματος G6 (πειραματικά και υπολογισμένα σημεία)

Τα αποτελέσματα τώρα παρατηρούμε πως είναι χειρότερα σε σχέση με τον προηγούμενο χαρακτηρισμό, κάτι λογικό, αφού το n-butylcyclohexane έχει χαμηλότερο σημείο βρασμού σε σχέση με το κανονικό ενδεκάνιο. Καλύτερα φαίνεται να πηγαίνει και πάλι το UMR, ακολουθεί η SRK και τέλος η PR.

Παρακάτω παρουσιάζονται τα αποτελέσματα για το cricondentherm και το cricondenbar:

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	305.3722	414.582
SRK	434.632	85.749	320.637	273.904
PR	430.344	79.622	314.404	257.855
UMR-NEW	431.43	80.248	282.61	316.991

Πίνακας 42: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Παρατηρούμε πως τα αποτελέσματα για τη θερμοκρασία του cricondetherm και cricondenbar είναι μικρότερα σε σχέση με τον προηγούμενο χαρακτηρισμό. Τα σφάλματα της SRK είναι -15.26 K ως προς τη θερμοκρασία του cricondenbar και 140.67 bar ως προς την πίεση. Αντίστοιχα τα σφάλματα για την PR είναι: -9.04 K και 156.72 bar και για το UMR: 22.76 K και 97.59 bar.

<u>G21:</u>

Αντίστοιχα η σύσταση με το χαρακτηρισμό με βάση το σημείο βρασμού του βαριού κλάσματος, είναι:

G21				
Compounds	Composition			
CO2	0.0000			
N2	0.0161			
C1	0.9443			
C2	0.0153			
C3	0.0055			
nC4	0.0026			
nC5	0.0128			
nC6	0.0015			
cy-C8	0.0019			

Πίνακας 43: Σύσταση του αέριου συμπυκνώματος G21 με βάση τη μέθοδο χαρακτηρισμού Tb-Matching

Από τα μοντέλα προέκυψε το παρακάτω διάγραμμα φάσεων:

Διάγραμμα 46: Διάγραμμα φάσεων αέριου συμπυκνώματος G21 (πειραματικά και υπολογισμένα σημεία)

Κοντά στο cricondentherm παρατηρούμε αυτή τη φορά καλύτερα αποτελέσματα από την SRK, μετά από την PR και τέλος από το UMR. Το κύκλο-οκτάνιο έχει σημείο βρασμού ελάχιστα μικρότερο από το κανονικό εννεάνιο. Έτσι το phase envelope του UMR πηγαίνει πιο αριστερά ενώ επειδή η διαφορά σε στο σημείο βρασμού είναι πολύ μικρή, τα άλλα δύο μοντέλα δίνουν σχεδόν το ίδιο διάγραμμα φάσεων σε σχέση με την προηγούμενη μέθοδο.

	сгісоТ		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	331.883	45.9331	269.354	142.783
PR	328.726	42.4589	265.659	136.504
UMR-NEW	331.77	46.285	-	-

Τα αποτελέσματα για τα σημεία cricondentherm, cricondenbar είναι:

Πίνακας 44: Πειραματικά και υπολογισμένα cricondentherm, cricondenbar

3.4 Modified Shariati (PNA)

Με αυτή τη μέθοδο επιλέχθηκε μία τριάδα συστατικών για κάθε βαρύ κλάσμα σε κάθε condensate, ένα παραφινικό, ένα ναφθενικό και ένα αρωματικό. Η επιλογή αυτών των συστατικών έγινε μέσω αλγορίθμου σε γλώσσα Fortran. Σε αυτόν επιλεγόταν κάθε φορά μία τριάδα συστατικών (ένα αρωματικό, ένα ναφθενικό, ένα αρωματικό) από μία βάση δεδομένων συστατικών με σημείο βρασμού, μεγαλύτερο του κανονικού εξανίου (για όσα αέρια συμπυκνώματα είχαν βαρύ κλάσμα C7+). Για κάθε αέριο συμπύκνωμα υπολογιζόταν το κανονικό σημείο βρασμού μέσω της σχέσης του Ρετζέκα, μέσω των ιδιοτήτων της πυκνότητας και του μοριακού βάρους. Στη συνέχεια βρισκόταν κάθε φορά μία τριάδα θετικών συστάσεων (με άθροισμα μονάδα) για τα συστατικά που επιλέχθηκαν και με τη χρήση αυτών υπολογιζόταν μέσω του UMR η θερμοκρασία βρασμού σε πίεση μία ατμόσφαιρα. Η τιμή αυτή έπρεπε να είναι κοντά στην τιμή που υπολογιζόταν και συστατικε τη σχέση του Ρετζέκα. Έτσι για κάθε τριάδα υπολογιζόταν το σφάλμα της θερμοκρασίας βρασμού που προβλεπόταν σε μία ατμόσφαιρα από το UMR και αυτής που προβλεπόταν από τη σχέση του Ρετζέκα. Η τριάδα με τη σύσταση εκείνη που έδινε το μικρότερο σφάλμα ήταν αυτή που τελικά επιλεγόταν. Τα αέρια συμπυκνώματα τα οποία χαρακτηρίστηκαν με αυτή τη μέθοδο είναι όσα χαρακτηρίστηκαν και με τις δύο προηγούμενες αλλά έχουν βαρύ κλάσμα C7+ (και το G35 που έχει βαρύ κλάσμα C11+). Παρακάτω παρουσιάζονται τα συμπυκνώματα που παρουσιάστηκαν και με τις προηγούμενες μεθόδους. Τα υπόλοιπα παρουσιάζονται στο παράρτημα.

<u>G1:</u>

Η σύσταση που προέκυψε με αυτή τη μέθοδο είναι:

G1		
Compounds	Composition	
CO2	0.0391	
N2	0.0075	
C1	0.7021	
C2	0.0922	
C3	0.0276	
i-C4	0.0066	
nC4	0.0098	
i-C5	0.0040	
nC5	0.0042	
cy-C5	0.0000	
nC6	0.00820082	
Nc15	0.060264535	
Bicyclohexyl	0.034891945	
1,2,3-TM-Benzene	0.003553392	

Πίνακας 45: Σύσταση του αέριου συμπυκνώματος G1 με βάση τη μέθοδο χαρακτηρισμού PNA

To phase envelope που προέκυψε από τα διάφορα μοντέλα είναι:

Διάγραμμα 47: Διάγραμμα φάσεων αέριου συμπυκνώματος G1 (πειραματικά και υπολογισμένα σημεία)

Εδώ παρατηρεί κανείς ότι τουλάχιστον τα δύο μοντέλα (SRK, PR) έχουν προβλέψει λανθασμένα τα πειραματικά σημεία σαν σημεία φυσαλίδας. Το UMR σταματάει πολύ πριν τα πειραματικά σημεία, κάτι που πιθανώς οφείλεται σε εμφάνιση του κρίσιμου σημείου. Καλύτερα φαίνεται να πηγαίνει το UMR αν και δεν υπάρχουν επαρκή σημεία για να γίνει σύγκριση. Ακολουθεί η SRK και τέλος η PR.

Τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

	cricoT		cricoP	
	T(K) P (bar)		Т(К)	P (bar)
EXP	-	-	-	-
SRK	595.05	105.159	409.294	361.147
PR	587.328	92.483	400.872	341.657
UMR-NEW	586.346	80.373	-	-

Πίνακας 46: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Πειραματικά σημεία για το cricondentherm και cricondenbar δεν υπάρχουν. Επίσης αξίζει να σημειώσουμε ότι τα δύο μοντέλα δίνουν το cricondenbar σαν σημείο φυσαλίδας, κάτι που δεν απέχει

από την πραγματικότητα, γιατί εκτός από αυτά τα πειραματικά δεδομένα υπήρχαν και άλλα που ήταν σημεία φυσαλίδας, και η μεγαλύτερη πίεση βρέθηκε σε αυτά.

<u>G2:</u>

Για το G2 προέκυψε η παρακάτω σύσταση:

G2			
Compounds	Composition		
CO2	0.0217		
N2	0.0034		
C1	0.7064		
C2	0.1076		
C3	0.0494		
i-C4	0.0000		
nC4	0.0302		
i-C5	0.0000		
nC5	0.0135		
cy-C5	0.0000		
nC6	0.0090		
2,7-DM-C8	0.0297		
Bicyclohexyl	0.0177		
Cyclohexylbenzene	0.0114		

Πίνακας 47: Σύσταση του αέριου συμπυκνώματος G2 με βάση τη μέθοδο χαρακτηρισμού PNA

Το διάγραμμα φάσεων που προέκυψε από τα μοντέλα είναι:

Διάγραμμα 48: Διάγραμμα φάσεων αέριου συμπυκνώματος G2 (πειραματικά και υπολογισμένα σημεία)

Καλύτερα εδώ πηγαίνει και πάλι το UMR, ακολουθεί η SRK και τέλος η PR. Σωστά έχουν προβλέψει τα μοντέλα το πειραματικό σημείο ως σημείο δρόσου. Επίσης όλα τα μοντέλα υποεκτιμούν το διάγραμμα φάσεων.

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	516.043	92.761	376.143	297.182
PR	511.018	83.697	370.203	284.146
UMR-NEW	512.92	86.993	349.380	319.828

Ακολουθούν τα αποτελέσματα για το cricondentherm και cricondenbar:

Πίνακας 48: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Και πάλι δεν διατίθενται πειραματικά σημεία για το cricondentherm και cricondenbar.

<u>G6:</u>

Η σύσταση που προέκυψε για το G6 είναι:

G6		
Compounds	Composition	
CO2	0.0044	
N2	0.0547	
C1	0.8552	
C2	0.0351	
C3	0.0146	
i-C4	0.0037	
nC4	0.0058	
i-C5	0.0028	
nC5	0.0023	
3-Methylnonane	0.0095	
n-propyl-cy-C5	0.0042	
n-Hexylbenzene	0.0077	

Πίνακας 49: Σύσταση του αέριου συμπυκνώματος G6 με βάση τη μέθοδο χαρακτηρισμού PNA

Το διάγραμμα φάσεων, όπως το προέβλεψαν τα διάφορα μοντέλα είναι:

Διάγραμμα 49: Διάγραμμα φάσεων αέριου συμπυκνώματος G6 (πειραματικά και υπολογισμένα σημεία)

Εδώ παρατηρεί κανείς πως το UMR δίνει τα καλύτερα αποτελέσματα, με μικρότερα σφάλματα από τα άλλα μοντέλα και με καλύτερη πρόβλεψη της τάσης των σημείων. Ακολουθεί η SRK, και τέλος η PR. Όλα τα μοντέλα υποεκτιμούν τα πειραματικά σημεία. Κρίσιμα σημεία από τα μοντέλα δεν βρέθηκαν, οπότε δεν είναι σίγουρο ότι τα μοντέλα προβλέπουν τα σημεία ως σημεία δρόσου. Πιθανών η πρόβλεψη να είναι όντως για σημεία δρόσου από το UMR γιατί ο κώδικας δεν υπολογίζει σημεία φυσαλίδας.

Τα αποτελέσματα για το	cricondetherm κα	ι cricondenbar είναι	.:
------------------------	------------------	----------------------	----

	crie	cric	оР	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	305.3722	414.582
SRK	451.694	85.104	317.034	318.387
PR	446.654	74.895	312.522	298.068
UMR-NEW	448.370	79.602	-	-

Πίνακας 50: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

To UMR δεν έχει δώσει cricondenbar. Τα σφάλματα για τα υπόλοιπα μοντέλα είναι: -11.662 K και 96.195 bar για τη θερμοκρασία και την πίεση του cricondenbar της SRK αντίστοιχα. Για την PR προέκυψαν -7.149 K και 116.514 bar αντίστοιχα. Να σημειωθεί ότι ως cricondenbar λήφθηκε το πειραματικό σημείο με τη μεγαλύτερη πίεση, κάτι που δεν είναι αξιόπιστο.

<u>G21:</u>

Η σύσταση που προβλέφθηκε από τη συγκεκριμένη μέθοδο χαρακτηρισμού είναι:

G21					
Compounds	Composition				
CO2	0.0000				
N2	0.0161				
C1	0.9443				
C2	0.0153				
C3	0.0055				
nC4	0.0026				
nC5	0.0128				
nC6	0.0015				
4-Methylnonane	0.0009				
trans-1,4-DM-cy-C6	0.0005				
m-xylene	0.0004				

Πίνακας 51: Σύσταση του αέριου συμπυκνώματος G21 με βάση τη μέθοδο χαρακτηρισμού PNA

Το διάγραμμα φάσεων όπως προβλέφθηκε από τα μοντέλα είναι:

Διάγραμμα 50: Διάγραμμα φάσεων αέριου συμπυκνώματος G21 (πειραματικά και υπολογισμένα σημεία)

Εδώ παρατηρούμε ότι το πειραματικό σημείο βρίσκεται κοντά στην περιοχή του cricondentherm. Και με αυτή τη μέθοδο δίνουν το κρίσιμο σημείο αρκετά αριστερά. Επίσης παρατηρούμε μία υποεκτίμηση του πειραματικού σημείου δρόσου από τα μοντέλα. Καλύτερα φαίνεται να πηγαίνει η SRK (όπως και στη μέθοδο Tb matching), ακολουθεί το UMR και τέλος η PR.

	C	ricoT	crie	соР
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	332.836	45.061	269.436	143.104
PR	329.548	41.687	265.738	136.754
UMR-NEW	331.070	45.255	_	-

Ακολουθούν τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 52: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Και πάλι δεν μπορεί να γίνει υπολογισμός σφαλμάτων για τα σημεία αυτά λόγω έλλειψης πειραματικών δεδομένων.

<u>G35:</u>

Το συγκεκριμένο condensate παρουσιάζεται γιατί διαθέτει βαρύ κλάσμα C11+ (σε αντίθεση με το C7+ των προηγούμενων condensates). Παρακάτω παρουσιάζεται η σύσταση που προέκυψε για το G35:

G35			
Compounds	Composition		
CO2	0.0351		
N2	0.0000		
C1	0.7605		
C2	0.0773		
C3	0.0390		
i-C4	0.0076		
nC4	0.0117		
i-C5	0.0043		
nC5	0.0039		
cy-C5	0.0005		
nC6	0.0054		
cy-C6	0.0042		
Benzene	0.0013		
nC7	0.0037		
M-cy-C6	0.0060		
Toluene	0.0030		
nC8	0.0029		
E-cy-C6	0.0036		
E-Benzene	0.0033		
nC9	0.0026		
Propyl-cy-C6	0.0015		
Propyl-Benzene	0.0017		
nC10	0.0017		
nC20	0.0026		
n-Butylcyclohexane	0.0010		
n-Octylbenzene	0.0155		

Πίνακας 53: Σύσταση του αέριου συμπυκνώματος G35 με βάση τη μέθοδο χαρακτηρισμού PNA

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα είναι:

Εδώ παρατηρεί κανείς πως τα μοντέλα έχουν προβλέψει σωστά το σημείο ως dew point. Επίσης το UMR πηγαίνει πολύ καλά και καλύτερα από τα υπόλοιπα μοντέλα. Ακολουθεί η SRK και τέλος η PR.

	cricoT		cricoP		
	Т(К)	P (bar)	Т(К)	P (bar)	
EXP	-	-	-	-	
SRK	533.611	79.427	372.464	322.192	
PR	526.137	70.348	364.800	301.927	
UMR-NEW	529.820	68.229	308.220	358.165	

Τα αποτελέσματα για το cricondetherm και cricondenbar είναι:

Πίνακας 54: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Και πάλι δεν μπορεί να γίνει υπολογισμός σφαλμάτων για τα σημεία αυτά λόγω έλλειψης πειραματικών δεδομένων.

3.5 Υπολογισμός σφαλμάτων των SRK, PR, UMR με τρεις μεθόδους χαρακτηρισμού (MW- Matching, Tb-Matching, PNA)

Στο σημείο αυτό υπολογίζονται τα σφάλματα με βάση τα αποτελέσματα που έχουν προκύψει μέχρι τώρα. Σκοπός αυτής της ανάλυσης είναι η εύρεση καλύτερης κυβικής καταστατικής εξίσωσης (SRK, PR, UMR), αλλά και η εύρεση καλύτερης μεθόδου χαρακτηρισμού μεταξύ των MW, Tb- Matching και PNA.

Έτσι αρχικά παρουσιάζονται τα σφάλματα που προέκυψαν με την SRK και κάθε μέθοδο χαρακτηρισμού στα σημεία δρόσου για τα οποία διατίθονταν πειραματικά δεδομένα. Και πάλι ο υπολογισμός των

σφαλμάτων έγινε όπως στα συνθετικά αέρια συμπυκνώματα. Και εδώ τα σύμβολα BP και οι παύλες συμβολίζουν σημεία φυσαλίδας.

	SRK							
	EX	XP		MW		Tb		PNA
	Т (К)	P (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
	390.500	460.700	BP	BP	BP	BP	BP	BP
C1	410.100	453.100	BP	BP	BP	BP	BP	BP
GI	429.500	446.600	BP	BP	BP	BP	BP	BP
	450.300	428.800	BP	BP	BP	BP	BP	BP
Error								
G2	408.700	334.700	0.000	90.504	0.000	28.830	0.000	44.845
	305.372	387.003	0.000	119.639	0.000	152.351	0.000	138.478
	322.039	378.729	0.000	111.717	0.000	145.939	0.000	132.729
G5	355.372	360.803	0.000	110.823	0.000	149.895	0.000	138.297
	377.594	342.187	0.000	117.121	0.000	161.639	0.000	151.026
	382.039	329.087	0.000	110.423	0.000	156.691	0.000	146.271
Error				113.945		153.303		141.360
	305.372	414.582	0.000	120.332	0.000	142.969	0.000	97.515
	322.039	408.377	0.000	111.518	0.000	134.562	0.000	90.283
66	355.372	394.587	0.000	108.196	0.000	132.311	0.000	89.734
60	372.594	382.866	0.000	110.078	0.000	135.507	0.000	93.057
	377.594	380.108	0.000	112.315	0.000	138.289	0.000	95.735
	386.483	373.213	0.000	115.461	0.000	142.628	0.000	99.705
Error				112.983	-	137.711	-	94.338
G10	435.928	208.566	BP	BP	BP	BP	BP	BP
G13	355.600	281.000	0.000	40.418	0.000	39.755	0.000	9.827
G21	327.040	96.871	6.940	0.000	4.744	0.000	6.340	0.000
G34	344.260	263.724	0.000	67.934	0.000	67.934	0.000	58.527
TOTAL ERROR	-	-	6.940	103.320	4.744	123.522	6.340	99.002

Πίνακας 55: Πειραματικά σημεία δρόσου και σφάλματα των μεθόδων χαρακτηρισμού (Πειραματική- Υπολογισμένη τιμή)

Στο σημείο αυτό παρατηρεί κανείς ότι η μέθοδος PNA με την SRK δίνει καλύτερα αποτελέσματα ως προς τον υπολογισμό της πίεσης σε σταθερή θερμοκρασία, δηλαδή στα σημεία κοντά στο cricondenbar (σφάλμα 99.002 bar). Ακολουθεί η μέθοδος MW-Matching και τέλος το Tb-Matching. Ως προς τον υπολογισμό της θερμοκρασίας με σταθερή πίεση (κοντά στο cricondentherm) καλύτερα αποτελέσματα δίνει το Tb-Matching (σφάλμα 4.744 K), ακολουθεί η μέθοδος PNA και τέλος το MW-Matching.

Στη συνέχεια παρουσιάζονται τα αποτελέσματα με την Peng-Robinson:

	PR							
	E)	(P	Ν	лw	TŁ)	PN	A
	Т (К)	P (bar)	ΔТ (К)	∆P (bar)	ΔТ (К)	∆P (bar)	ΔТ (К)	ΔP (bar)
	390.500	460.700	BP	BP	BP	BP	BP	BP
61	410.100	453.100	BP	BP	BP	BP	BP	BP
01	429.500	446.600	BP	BP	BP	BP	BP	BP
	450.300	428.800	BP	BP	BP	BP	BP	BP
Error								
G2	408.700	334.700	0.000	105.930	0.000	46.995	0.000	61.288
	305.372	387.003	0.000	134.212	0.000	163.991	0.000	151.261
	322.039	378.729	0.000	127.961	0.000	159.449	0.000	147.444
G5	355.372	360.803	0.000	131.277	0.000	168.763	0.000	157.689
	377.594	342.187	0.000	139.559	0.000	182.959	0.000	172.118
	382.039	329.087	0.000	133.061	0.000	177.827	0.000	166.997
Error				133.214		170.598		159.102
	305.372	414.582	0.000	137.227	0.000	156.899	0.000	117.066
	322.039	408.377	0.000	130.388	0.000	150.235	0.000	111.281
66	355.372	394.587	0.000	130.922	0.000	152.193	0.000	113.986
60	372.594	382.866	0.000	134.747	0.000	157.316	0.000	118.966
	377.594	380.108	0.000	137.542	0.000	160.559	0.000	122.100
	386.483	373.213	0.000	141.673	0.000	165.568	0.000	126.840
Error				135.417		157.128		118.373
G10	435.928	208.566	BP	BP	BP	BP	BP	BP
G13	355.600	281.000	0.000	54.599	0.000	53.566	0.000	24.886
G21	327.040	96.871	13.149	0.000	10.222	0.000	12.659	0.000
G34	344.260	263.724	0.000	81.608	0.000	81.608	0.000	74.324
TOTAL ERROR	_	_	13,149	122,908	10.222	141.281	12.659	119.018

Πίνακας 56: Πειραματικά σημεία δρόσου και σφάλματα των μεθόδων χαρακτηρισμού (Πειραματική- Υπολογισμένη τιμή)

Στο σημείο αυτό παρατηρεί κανείς ότι η μέθοδος PNA και με την PR δίνει καλύτερα αποτελέσματα ως προς τον υπολογισμό της πίεσης σε σταθερή θερμοκρασία, δηλαδή στα σημεία κοντά στο cricondenbar (σφάλμα 119.018 bar). Ακολουθεί η μέθοδος MW-Matching και τέλος το Tb-Matching. Ως προς τον υπολογισμό της θερμοκρασίας με σταθερή πίεση (κοντά στο cricondentherm) καλύτερα αποτελέσματα δίνει το Tb-Matching (σφάλμα 10.222 K), ακολουθεί η μέθοδος PNA και τέλος το MW-Matching.

Στη συνέχεια παρουσιάζονται τα αποτελέσματα με το UMR:

	UMR							
	E	(P	I	ww	Tb			PNA
	Т (К)	P (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	∆P (bar)	∆т (к)	ΔP (bar)
	390.500	460.700	0.000	125.328	0.000	125.328	-	-
61	410.100	453.100	0.000	117.693	0.000	117.693	-	-
01	429.500	446.600	0.000	116.494	0.000	116.494	-	-
	450.300	428.800	0.000	110.825	0.000	110.825	-	-
Error				117.585		117.585		
G2	408.700	334.700	0.000	88.042	0.000	18.061	0.000	34.583
	305.372	387.003	0.000	76.669	0.000	123.780	0.000	115.057
	322.039	378.729	0.000	83.271	0.000	128.503	0.000	117.691
G5	355.372	360.803	0.000	104.978	0.000	149.503	0.000	137.061
	377.594	342.187	0.000	122.273	0.000	170.437	0.000	157.966
	382.039	329.087	0.000	117.439	0.000	166.873	0.000	154.432
Error				100.926		147.819		136.442
	305.372	414.582	0.000	55.176	0.000	102.562	0.000	43.945
	322.039	408.377	0.000	65.638	0.000	105.139	0.000	51.880
66	355.372	394.587	0.000	91.251	0.000	121.673	0.000	73.815
00	372.594	382.866	0.000	104.354	0.000	132.838	0.000	85.768
	377.594	380.108	0.000	109.509	0.000	137.781	0.000	90.689
	386.483	373.213	0.000	117.552	0.000	145.878	0.000	98.427
Error				90.580		124.312		74.087
G10	435.928	208.566	0.000	6.071	0.000	6.071	0.000	3.805
G13	355.600	281.000	0.000	35.871	0.000	30.946	0.000	3.033
G21	327.040	96.871	5.965	0.000	9.927	0.000	7.578	0.000
G34	344.260	263.724	0.000	61.846	0.000	61.846	0.000	52.570
TOTAL ERROR	-	-	5.965	90.015	9.927	109.065	7.578	81.381

Πίνακας 57: Πειραματικά σημεία δρόσου και σφάλματα των μεθόδων χαρακτηρισμού (Πειραματική- Υπολογισμένη τιμή)

Και πάλι η μέθοδος PNA δίνει καλύτερα αποτελέσματα ως προς τον υπολογισμό της πίεσης σε σταθερή θερμοκρασία, δηλαδή στα σημεία κοντά στο cricondenbar (σφάλμα 81.381 bar). Ακολουθεί η μέθοδος MW-Matching και τέλος το Tb-Matching. Ως προς τον υπολογισμό της θερμοκρασίας με σταθερή πίεση (κοντά στο cricondentherm) καλύτερα αποτελέσματα δίνει αυτή τη φορά το MW-Matching (σφάλμα 5.965 K), ακολουθεί η μέθοδος PNA και τέλος το Tb-Matching.

Αξίζει να σημειώσουμε ότι τα αποτελέσματα των σφαλμάτων ως προς τη θερμοκρασία με σταθερή πίεση δεν είναι τόσο αξιόπιστα γιατί προέρχονται μόνο από ένα αέριο συμπύκνωμα με ένα μόνο πειραματικό σημείο.

Για να διαπιστωθεί πιο εύκολα ποια μέθοδος χαρακτηρισμού και ποιο μοντέλο είναι καλύτερα παρατίθενται τα παρακάτω διαγράμματα:

Διάγραμμα 52: Σύγκριση σφαλμάτων των μεθόδων χαρακτηρισμού και των μοντέλων (σε bar)

Από το διάγραμμα αυτό παρατηρούμε ότι καλύτερη μέθοδος χαρακτηρισμού είναι η PNA με μικρές διαφορές με τη μέθοδο MW-Matching και καλύτερο μοντέλο είναι το UMR και ύστερα η SRK. Τα παραπάνω αφορούν την πρόβλεψη της πίεσης σε συγκεκριμένη θερμοκρασία.

Παρουσιάζεται όμως και το αντίστοιχο διάγραμμα για πρόβλεψη της θερμοκρασίας, όπως έγινε στο G21:

Διάγραμμα 53: Σύγκριση σφαλμάτων των μεθόδων χαρακτηρισμού και των μοντέλων (σε Κ)

Εδώ φαίνεται πως καλύτερη μέθοδος χαρακτηρισμού για τα σημεία κοντά στο cricondentherm είναι το Tb-Matching και καλύτερο μοντέλο η SRK και ύστερα το UMR. Φυσικά τα αποτελέσματα αυτά δεν είναι αξιόπιστα αφού αφορούν μόνο ένα πειραματικό σημείο. Ένας άλλος σημαντικός παράγοντας για την αξιολόγηση των μεθόδων και των μοντέλων είναι το ποσοστό των πειραματικών σημείων που προβλέφθηκαν σωστά σαν σημεία δρόσου. Για το λόγο αυτό παρατίθεται το παρακάτω διάγραμμα:

Διάγραμμα 54: Ποσοστό επιτυχίας των μεθόδων χαρακτηρισμού και των μοντέλων στην πρόβλεψη των πειραματικών σημείων σα σημεία δρόσου

Από το παραπάνω διάγραμμα φαίνεται πως η μέθοδος Tb και MW-Matching προέβλεψαν σωστά τα περισσότερα σημεία σαν σημεία δρόσου. Καλύτερο μοντέλο από αυτή την άποψη είναι το UMR.

Συμπερασματικά μικρότερα σφάλματα παρουσιάζει η μέθοδος χαρακτηρισμού PNA και το μοντέλο UMR. Περισσότερα πειραματικά σημεία προβλέπονται σαν σημεία δρόσου από το UMR και της μεθόδους MW και Tb-Matching.

3.6 Επίδραση των παραμέτρων αλληλεπίδρασης στα αέρια συμπυκνώματα

Στις παραπάνω περιπτώσεις δεν χρησιμοποιήθηκαν kij στην SRK και PR. Όμως η επίδραση του kij έχει βρεθεί πως είναι πολύ σημαντική στα gas condensates. Για το λόγο αυτό δοκιμάστηκε η χρήση kij στην SRK με μέθοδο χαρακτηρισμού την PNA. Ο λόγος που επιλέχθηκε η SRK για αυτή τη δοκιμή είναι ότι είναι καλύτερο μοντέλο από την PR, ενώ επιλέχθηκε η PNA ως μέθοδος χαρακτηρισμού γιατί από τις τρεις που δοκιμάστηκαν ως τώρα είναι καλύτερη.

Παρακάτω παρουσιάζεται μία ποιοτική σύγκριση των αποτελεσμάτων που προέκυψαν με τη χρήση των kij στην SRK στα αέρια συμπυκνώματα που χαρακτηρίστηκαν με την PNA, με τα αποτελέσματα που προέκυψαν χωρίς τα kij.

Διάγραμμα 55: Σύγκριση των αποτελεσμάτων της SRK (PNA) με και χωρίς παραμέτρους αλληλεπίδρασης στο αέριο συμπύκνωμα G2

Αυτό το αέριο συμπύκνωμα παρουσιάζεται διότι το ένα μοντέλο (χωρίς τα kij), έδωσε κρίσιμο σημείο, οπότε γνωρίζουμε πως τα μοντέλα προβλέπουν το πειραματικό σημείο σωστά σαν σημείο δρόσου. Βλέπουμε πως η SRK με τα kij πηγαίνει πολύ καλύτερα σε σχέση με αυτή χωρίς τα kij. Και στις δύο περιπτώσεις η SRK υποεκτιμά το πειραματικό σημείο.

Διάγραμμα 56: Σύγκριση των αποτελεσμάτων της SRK (PNA) με και χωρίς παραμέτρους αλληλεπίδρασης στο αέριο συμπύκνωμα G6

Εδώ παρατηρούμε και πάλι πολύ καλύτερη πρόβλεψη των σημείων από την SRK με τα kij σε σχέση με αυτή χωρίς τα kij. Μάλιστα εδώ παρατηρούμε και καλύτερη πρόβλεψη της τάσης των πειραματικών σημείων, όταν η πρόβλεψη γίνεται με τη χρήση των kij. Και οι δύο μέθοδοι υποεκτιμούν τα πειραματικά σημεία.

Βρέθηκαν όμως και δύο περιπτώσεις αέριων συμπυκνωμάτων στα οποία η SRK χωρίς τα kij πηγαίνει καλύτερα σε σχέση με την SRK με τα kij ή δεν είναι ξεκάθαρο ποια είναι η καλύτερη.

Διάγραμμα 57: Σύγκριση των αποτελεσμάτων της SRK (PNA) με και χωρίς παραμέτρους αλληλεπίδρασης στο αέριο συμπύκνωμα G13

Στη συγκεκριμένη περίπτωση αν και δε δόθηκαν κρίσιμα σημεία ώστε να είμαστε σίγουροι ότι τα μοντέλα προβλέπουν το πειραματικό σημείο ως dew point, φαίνεται να πηγαίνει καλύτερα η SRK χωρίς τα kij, υποεκτιμώντας ελαφρώς το πειραματικό σημείο. Η SRK με τα kij υπερεκτιμά το σημείο.

Διάγραμμα 58: Σύγκριση των αποτελεσμάτων της SRK (PNA) με και χωρίς παραμέτρους αλληλεπίδρασης στο αέριο συμπύκνωμα G21

Στη συγκεκριμένη περίπτωση παρατηρούμε, ότι η συμπεριφορά της SRK με τα kij με αυτήν χωρίς τα kij είναι παρόμοια κοντά στο cricondentherm. Αυτό το παρατηρεί κανείς και από τα προηγούμενα παραδείγματα. Επειδή εδώ το πειραματικό σημείο βρίσκεται προς την πλευρά του cricondentherm οι αποκλίσεις των δύο μεθόδων είναι μικρές. Λίγο καλύτερα πηγαίνει η SRK με τα kij. Κρίσιμο σημείο ούτε εδώ δόθηκε. Είναι όμως πολύ πιθανό τα μοντέλα να δίνουν το σημείο αυτό ως σημείο δρόσου, αφού βρίσκεται πολύ δεξιά στο διάγραμμα φάσεων.

Τα υπόλοιπα αέρια συμπυκνώματα, για τα οποία είτε τα αποτελέσματα είναι παρόμοια με τις προηγούμενες περιπτώσεις, είτε τα μοντέλα προβλέπουν τα πειραματικά σημεία δρόσου σαν σημεία φυσαλίδας, παρουσιάζονται στο παράρτημα.

3.7 Pedersen

3.7.1 Pedersen-MW

Στο σημείο αυτό μέθοδος Pedersen χρησιμοποιήθηκε με τον εξής τρόπο: Με βάση τη φιλοσοφία της μεθόδου είναι σωστό να αντιστοιχίζονται τα ψευδοσυστατικά με έναν υδρογονάνθρακα με κοντινό μοριακό βάρος και αυτό έγινε στη συγκεκριμένη περίπτωση. Τα αποτελέσματα που παρουσιάζονται παρακάτω είναι αποτέλεσμα της Peng-Robinson και του UMR με χαρακτηρισμό του βαριού κλάσματος με υδρογονάνθρακες με κοντινό μοριακό βάρος με αυτό των ψευδοσυστατικών που προέκυψαν. Ο λόγος που εφαρμόστηκε αυτή η μέθοδος και όχι η Pedersen με τα ψευδοσυστατικά είναι ότι το UMR χρειάζεται πραγματικά συστατικά για τους υπολογισμούς , λόγω του γεγονότος ότι συμπεριλαμβάνει και τη δομή του μορίου στους υπολογισμούς του (αφού περιλαμβάνει και τις ομάδες της Unifac), και δεν μπορεί να χρησιμοποιηθεί με ψευδοσυστατικά.

Αξίζει να σημειωθεί ότι στην Peng- Robinson χρησιμοποιήθηκαν kij σε αντίθεση με όλες τις προηγούμενες περιπτώσεις, που αυτά ήταν μηδενικά. Τέλος για την SRK χρησιμοποιήθηκαν τα ψευδοσυστατικά όπως έχουν (χωρίς αντιστοίχιση με κάποιο κάποιον υδρογονάνθρακα) και χρησιμοποιήθηκαν και kij. Αυτή η μέθοδος βρέθηκε πως δίνει αρκετά κοντινά αποτελέσματα με την Pedersen-MW. Και στην SRK και στην PR τα αποτελέσματα προέρχονται από το hysys, και ως kij χρησιμοποιήθηκαν οι default τιμές που αυτό έδινε.

Παρακάτω θα παρουσιαστούν τα συμπυκνώματα G2, G5,G13,G21 και τα υπόλοιπα σε παράρτημα.

<u>G2:</u>

Το συμπύκνωμα αυτό παρουσιάζεται εξαιτίας της ιδιαίτερα καλής συμπεριφοράς της PR σε αυτό. Η σύστασή του είναι:

G2				
Compounds	Composition			
CO2	0.0217			
N2	0.0034			
C1	0.7064			
C2	0.1076			
C3	0.0494			
i-C4	0.0000			
nC4	0.0302			
i-C5	0.0000			
nC5	0.0135			
cy-C5	0.0000			
nC6	0.0090			
nC7	0.0202			
PropylCyclohexane	0.0133			
Cyclohexylbenzene	0.0119			
nC15	0.0077			
nC22	0.0058			

Πίνακας 58: Σύσταση του αέριου συμπυκνώματος G2 με βάση τη μέθοδο χαρακτηρισμού Pedersen-MW

Στο σημείο αυτό παρουσιάζεται το διάγραμμα φάσεων του συγκεκριμένου συμπυκνώματος:

Διάγραμμα 59: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G2 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Είναι εμφανές ότι καλύτερη συμπεριφορά έχει η PR, ύστερα η SRK και τέλος το UMR. Κρίσιμο σημείο δεν έχει δοθεί, άρα θεωρείται ότι όλα τα παραπάνω σημεία είναι σημεία δρόσου και το πειραματικό σημείο έχει προβλεφθεί σωστά.

Τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar είναι:

	cricoT		cricoP		
	Т(К)	P (bar)	Т(К)	P (bar)	
EXP	-	-	-	-	
SRK	568.477	81.327	369.076	365.909	
PR	561.667	65.653	401.275	323.241	
UMR-NEW	548.790	61.590	359.290	321.105	

Πίνακας 59: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

Υπολογισμός σφαλμάτων για τα σημεία αυτά δεν μπορεί να γίνει λόγω έλλειψης πειραματικών δεδομένων

Η σύσταση που προέκυψε για το G5 με αυτή τη μέθοδο είναι:

G5				
Compounds	Composition			
CO2	0.0060			
N2	0.0556			
C1	0.8519			
C2	0.0357			
C3	0.0154			
i-C4	0.0037			
nC4	0.0057			
i-C5	0.0027			
nC5	0.0023			
су-С7	0.0059			
i-p-cy-C5	0.0073			
tetralin	0.0022			
Cyclohexylbenzene	0.0036			
nC16	0.0021			

Πίνακας 60: Σύσταση του αέριου συμπυκνώματος G5 με βάση τη μέθοδο χαρακτηρισμού Pedersen-MW

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα:

Διάγραμμα 60: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G5 με τη μέθοδο χαρακτηρισμού Pedersen-MW

<u>G5:</u>

Στη συγκεκριμένη περίπτωση παρατηρούμε καλύτερη πρόβλεψη των πειραματικών σημείων από το UMR, ακολουθεί η PR και τέλος η SRK. Επίσης παρατηρούμε πως όλα τα μοντέλα δίνουν σωστά την τάση των πειραματικών σημείων.

	crico	cricoP		
	T(K) P (bar)		Т(К)	P (bar)
EXP	-	-	305.372	387.003
SRK	460.846	75.498	293.122	358.418
PR	463.632	70.223	283.242	367.959
UMR-NEW	467.450	71.237	-	-

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 61: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

Στη συγκεκριμένη περίπτωση και πάλι θεωρήθηκε ως cricondenbar το πειραματικό σημείο με την υψηλότερη πίεση, οπότε δεν είναι σίγουρο πως είναι cricondenbar. Παρόλα αυτά υπολογίστηκαν τα σφάλματα στο σημείο αυτό. Έτσι προέκυψε σφάλμα: 12.25 K και 28.585 bar στην θερμοκρασία και την πίεση του cricondenbar από την SRK, 22.13 K και 19.044 bar αντίστοιχα από την PR. Για το UMR δεν έχουμε δεδομένα μέχρι το cricondenbar, οπότε δεν μπορεί να γίνει υπολογισμός σφαλμάτων.

<u>G13:</u>

Για το συγκεκριμένο συμπύκνωμα προέκυψε η παρακάτω σύσταση:

G13				
Compounds	Composition			
CO2	0.0244			
N2	0.0008			
C1	0.8210			
C2	0.0578			
C3	0.0287			
i-C4	0.0056			
nC4	0.0123			
i-C5	0.0052			
nC5	0.0060			
nC6	0.0072			
nC7	0.0143			
n- Propylbenzene	0.0044			
Butylcyclohexane	0.0056			
nC12	0.0030			
nC16	0.0035			

Πίνακας 62: Σύσταση του αέριου συμπυκνώματος G13 με βάση τη μέθοδο χαρακτηρισμού Pedersen-MW

Το διάγραμμα φάσεων όπως προέκυψε από τα διάφορα μοντέλα είναι:

Διάγραμμα 61: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G13 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Εδώ παρατηρούμε πως σε αντίθεση με την προηγούμενη περίπτωση η SRK υπερεκτιμά το σημείο δρόσου, ενώ το UMR και η PR το υποεκτιμούν. Καλύτερα αποτελέσματα φαίνεται να δίνει και πάλι το UMR.

	cricoT		cricoP	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	477.661	74.564	337.043	300.711
PR	472.022	62.387	328.101	277.641
UMR-NEW	472.920	59.617	304.790	286.831

Ακολουθούν τα αποτελέσματα για το cricondentherm και cricondenbar:

Πίνακας 63: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

Υπολογισμός σφαλμάτων για τα σημεία αυτά δεν μπορεί να γίνει, λόγω έλλειψης πειραματικών δεδομένων.
G21	
Compounds	Composition
CO2	0.0000
N2	0.0161
C1	0.9443
C2	0.0153
C3	0.0055
nC4	0.0026
nC5	0.0128
nC6	0.0015
M-cy-C6	0.0006
m-xylene	0.0004
Propylcyclohexane	0.0005
Pentylbenzene	0.0002
nC15	0.0002

Για το συγκεκριμένο condensate προέκυψε η παρακάτω σύσταση:

Το διάγραμμα φάσεων, όπως το προέβλεψαν τα μοντέλα είναι:

Διάγραμμα 62: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G21 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Παρατηρούμε μεγάλη υπερεκτίμηση του συγκεκριμένου σημείου δρόσου, μικρότερη βέβαια σε σχέση με την προηγούμενη μέθοδο. Παρόλα αυτά και πάλι δεν φαίνεται να πηγαίνει καλά η Pedersen στα

<u>G21:</u>

Πίνακας 64: Σύσταση του αέριου συμπυκνώματος G21 με βάση τη μέθοδο χαρακτηρισμού Pedersen-MW

σημεία κοντά στο cricondentherm. Από τα τρία μοντέλα καλύτερα πάει η SRK, ακολουθεί η PR και τέλος το UMR.

	cric	оТ	cricoP			
	Т(К)	P (bar)	Т(К)	P (bar)		
EXP	-	-	-	-		
SRK	374.970	43.790	281.466	187.694		
PR	380.222	37.186	281.565	180.620		
UMR-NEW	382.500	38.436	-	-		

Τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar είναι:

Πίνακας 65: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

Υπολογισμός σφαλμάτων για τα σημεία αυτά δεν μπορεί να γίνει, λόγω έλλειψης πειραματικών δεδομένων.

3.7.2 Υπολογισμός σφαλμάτων της μεθόδου Pedersen-MW

Στο σημείο αυτό υπολογίστηκαν τα σφάλματα της μεθόδου Pedersen-MW με όλα τα μοντέλα. Από την ανάλυση αυτή θα διαπιστωθεί με ποιο μοντέλο (SRK, PR, UMR) πηγαίνει καλύτερα η μέθοδος Pedersen-MW.

Παρατίθεται ο πίνακας των σφαλμάτων:

	Pedersen-MW											
	S	SRK	Р	R	U	MR						
	ΔT (K) ΔP (bar)		ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)						
	0.000	26.036	0	-	0.000	43.506						
61	0.000	28.737	0	52.100	0.000	46.303						
01	0.000	28.304	0	44.189	0.000	44.329						
	0.000	36.369	0	44.621	0.000	48.074						
Error		29.862		46.970		45.553						
G2	0.000	22.915	0	14.729	0.000	26.088						
	0.000	31.143	0	22.081	0.000	23.957						
	0.000	29.382	0	20.921	0.000	17.115						
G5	0.000	34.974	0	29.783	0.000	1.977						
	0.000	39.808	0	38.328	0.000	14.582						
	0.000	32.144	0	31.554	0.000	8.475						
Error		33.490		28.533		13.221						
	0.000	57.392	0	1.064	0.000	-						
	0.000	52.580	0	3.155	0.000	-						
66	0.000	37.605	0	15.651	0.000	-						
00	0.000	30.947	0	21.209	0.000	23.411						
	0.000	27.920	0	24.030	0.000	27.531						
	0.000	24.033	0	27.734	0.000	33.214						
Error	-	38.413		15.474		28.052						
G10	0.000	26.322	BP	BP	0.000	17.240						
G13	0.000	15.823	0	9.937	0.000	8.514						
G21	37.463	0.000	38.072	0.000	42.040	0.000						
G34	0.000	27.024	0	5.327	0.000	26.719						
TOTAL ERROR	37.463	32.077	38.072	23.907	42.040	25.690						

Πίνακας 66: Σφάλματα των μοντέλων με τη μέθοδο χαρακτηρισμού Pedersen-MW

Είναι εμφανές ότι η μέθοδος χαρακτηρισμού Pedersen-MW δίνει καλύτερα αποτελέσματα με το μοντέλο Peng-Robinson με πολύ μικρή διαφορά με το μοντέλο UMR, όσον αφορά τα πειραματικά σημεία που βρίσκονταν κοντά στο cricondenbar, στην πάνω πλευρά του phase envelope. Για το ένα πειραματικό σημείο που βρισκόταν στην περιοχή του cricondentherm προέκυψε καλύτερο μοντέλο η SRK, αλλά και πάλι τα αποτελέσματα δεν είναι αξιόπιστα.

3.7.3 Pedersen- Tb

Στο σημείο αυτό αξίζει να σημειωθεί ότι δοκιμάστηκε και μία ακόμα μέθοδος χαρακτηρισμού, που αποτελεί και πάλι παραλλαγή της Pedersen. Σε αυτή τη μέθοδο χρησιμοποιήθηκαν οι ιδιότητες της πυκνότητας και του μοριακού βάρους του κάθε ψευδοσυστατικού και από αυτές υπολογίστηκε το

σημείο βρασμού του κάθε ψευδοσυστατικού από τη σχέση του Ρετζέκα. Με βάση αυτή τη θερμοκρασία βρασμού βρέθηκε από μία βάση δεδομένων συστατικών ο υδρογονάνθρακας που είχε το πιο κοντινό σημείο βρασμού στο υπολογισμένο. Με αυτόν τον τρόπο κάθε βαρύ κλάσμα χαρακτηριζόταν από πέντε υδρογονάνθρακες (αφού η Pedersen έδινε πέντε ψευδοσυστατικά).

Επειδή η μέθοδος αυτή αποτελεί δοκιμή και τα αποτελέσματά της δεν ήταν τόσο καλά δεν παρουσιάζονται αναλυτικά τα αποτελέσματα της. Επιπλέον αυτά δεν είναι συγκρίσιμα διότι στην μέθοδο αυτή δεν χρησιμοποιήθηκαν kij στην SRK και PR. Παρόλα αυτά παρουσιάζονται τρία αέρια συμπυκνώματα ώστε να φανεί η συμπεριφορά της μεθόδου χαρακτηρισμού με τα διάφορα μοντέλα.

<u>G5:</u>

Η σύσταση που προέκυψε για το συγκεκριμένο condensate με τη μέθοδο αυτή είναι:

G5	
Compounds	Composition
CO2	0.0060
N2	0.0556
C1	0.8519
C2	0.0357
C3	0.0154
i-C4	0.0037
nC4	0.0057
i-C5	0.0027
nC5	0.0023
2,2,4,4-TM-C5	0.0059
trans-1,3-DM-cy-C6	0.0073
4-Methylnonane	0.0022
tetralin	0.0036
nC18	0.0021

Πίνακας 67: Σύσταση του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Το διάγραμμα φάσεων, όπως το προέβλεψαν τα διάφορα μοντέλα είναι:

Διάγραμμα 63: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G5 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Παρατηρούμε πολύ καλύτερη πρόβλεψη των πειραματικών σημείων από τα μοντέλα με αυτή τη μέθοδο χαρακτηρισμού σε σχέση με τις προηγούμενες. Καλύτερα από όλα φαίνεται να πηγαίνει το UMR, το οποίο εκτός των μικρότερων σφαλμάτων που δείχνει να έχει στα πειραματικά σημεία, δίνει και αρκετά σωστά την τάση τους, σε αντίθεση με τα άλλα μοντέλα. Μετά το UMR ακολουθεί η SRK και τέλος η PR.

	crie	cricoP									
	Т(К)	T(K) P (bar)		P (bar)							
EXP	-	-	305.3722	387.003							
SRK	481.589	65.069	329.412	305.637							
PR	474.281	56.0433	321.927	281.263							
UMR-NEW	477.63	57.9	-	-							

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 68: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Στη συγκεκριμένη περίπτωση το πειραματικό σημείο με τη μεγαλύτερη πίεση θεωρήθηκε ως cricondenbar. Με το UMR δεν δόθηκε cricondenbar. Η SRK παρουσιάζει σφάλμα -24.040 K και 81.366 bar ως προς τη θερμοκρασία και την πίεση του cricondenbar. Τα αντίστοιχα σφάλματα της PR είναι: -16.555 K και 105.74 bar.

<u>G13:</u>

To condensate αυτό επιλέχθηκε να παρουσιαστεί λόγω του ικανοποιητικού αριθμού σημείων που δίνονται από τα μοντέλα και λόγω του κρίσιμου σημείου που δίνεται από SRK και PR αρκετά αριστερά του cricondenbar. Η σύστασή του, όπως προέκυψε με αυτή τη μέθοδο χαρακτηρισμού είναι:

G13	
Compounds	Composition
CO2	0.0244
N2	0.0008
C1	0.8210
C2	0.0578
C3	0.0287
i-C4	0.0056
nC4	0.0123
i-C5	0.0052
nC5	0.0060
nC6	0.0072
nC7	0.0143
2,2,3,3-TM-C5	0.0044
1,2,3-TM-Benzene	0.0056
n-Hexylbenzene	0.0030
nC18	0.0035

Πίνακας 69: Σύσταση του αέριου συμπυκνώματος G13 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

To phase envelope, όπως προέκυψε από τα διάφορα μοντέλα είναι:

Διάγραμμα 64: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G13 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Στη συγκεκριμένη περίπτωση παρατηρούμε υπερεκτίμηση του πειραματικού σημείου από το UMR και υποεκτίμηση από τα άλλα δύο μοντέλα. Καλύτερα στη συγκεκριμένη περίπτωση φαίνεται να πηγαίνει η SRK, ακολουθεί το UMR και τέλος η PR. Τα μοντέλα προβλέπουν, όπως αναφέρθηκε, το κρίσιμο σημείο αριστερά του cricondenbar και το πειραματικό σημείο, το προβλέπουν σωστά ως σημείο δρόσου.

Τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar είναι:

	crico	crie	соР	
	Т(К)	P (bar)	Т(К)	P (bar)
EXP	-	-	-	-
SRK	496.896	64.731	350.562	277.584
PR	489.832	56.709	342.495	259.085
UMR-NEW	492.700	57.151	313.350	310.272

Πίνακας 70: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Υπολογισμός σφαλμάτων στη συγκεκριμένη περίπτωση δεν μπορεί να γίνει, λόγω έλλειψης πειραματικών δεδομένων.

<u>G21:</u>

Επιλέχθηκε να παρουσιαστεί το συγκεκριμένο αέριο συμπύκνωμα γιατί το πειραματικό του σημείο είναι κοντά στο cricondentherm. Θα διαπιστώσουμε πως αυτή η μέθοδος χαρακτηρισμού δεν πηγαίνει

καθόλου καλά στη συγκεκριμένη περίπτωση και ότι λόγω των βαριών συστατικών που δίνει, υπερεκτιμά πολύ το πειραματικό σημείο.

Η σύσταση που προέκυψε με τη μέθοδο αυτή είναι:

G21	
Compounds	Composition
CO2	0.0000
N2	0.0161
C1	0.9443
C2	0.0153
C3	0.0055
nC4	0.0026
nC5	0.0128
nC6	0.0015
2,2,4,4-TM-C5	0.0006
3,3-DM-C6	0.0004
cy-C8	0.0005
1-M-Indene	0.0002
1-n-ButyInaphthalene	0.0002

Πίνακας 71: Σύσταση του αέριου συμπυκνώματος G21 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Από τα μοντέλα προέκυψε το παρακάτω διάγραμμα φάσεων:

Διάγραμμα 65: Διάγραμμα φάσεων (υπολογισμένα και πειραματικά σημεία) για το αέριο συμπύκνωμα G21 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Στη συγκεκριμένη περίπτωση παρατηρούμε μεγάλη υπερεκτίμηση του σημείου από τα μοντέλα. Αυτός είναι και ο λόγος που παρουσιάστηκε το συγκεκριμένο condensate γιατί φαίνεται πως η μέθοδος αυτή δεν προβλέπει σωστά τα σημεία κοντά στο cricondentherm. Καλύτερα φαίνεται να πηγαίνει η Peng-Robinson ακολουθεί το UMR και τέλος η SRK.

	crico	Т	cricoP			
	Т(К)	T(K) P (bar) T(K)				
EXP	-	-	-	-		
SRK	394.104	46.972	287.965	215.657		
PR	389.371	42.306	292.844	202.234		
UMR-NEW	390.840	47.031	-	-		

Παρακάτω παρουσιάζονται τα αποτελέσματα για τα σημεία cricondentherm και cricondenbar:

Πίνακας 72: Υπολογισμένα και πειραματικά σημεία cricondentherm, cricondenbar

Και πάλι δεν υπάρχουν πειραματικά δεδομένα για τα σημεία αυτά.

3.7.4 Υπολογισμός σφαλμάτων της Pedersen-Tb με τα μοντέλα SRK, PR, UMR

Στο σημείο αυτό υπολογίστηκαν τα σφάλματα της μεθόδου αυτής με τα διάφορα μοντέλα και παρατίθενται στον παρακάτω πίνακα:

	Pedersen (Tb)									
	9	SRK		PR	U	JMR				
	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)				
	BP	BP	BP	BP	-	-				
C1	BP	BP	BP	BP	-	-				
61	BP	BP	BP	BP	-	-				
	BP	BP	BP	BP	-	-				
Error										
G2	0.000	36.539	0.000	62.147	-	-				
	0.000	86.238	0.000	108.144	0.000	0.743				
	0.000	73.649	0.000	97.613	0.000	5.972				
G5	0.000	60.588	0.000	88.612	0.000	21.909				
	0.000	55.213	0.000	85.900	0.000	31.816				
	0.000	45.721	0.000	76.937	0.000	25.095				
Error		64.282		91.441		17.107				
	0.000	32.068	0.000	71.083	0.000	-				
	0.000	19.454	0.000	60.578	0.000	-				
66	0.000	4.597	0.000	49.615	0.000	-				
90	0.000	1.762	0.000	45.325	0.000	57.414				
	0.000	2.233	0.000	45.487	0.000	53.538				
	0.000	4.265	0.000	44.628	0.000	48.093				
Error	-	10.730		52.786		53.015				
G10	0.000	79.130	0.000	69.245	0.000	62.565				
G13	G13 0.000 3.606		0.000	23.290	0.000	19.168				
G21	58.669	0.000	50.974	0.000	55.400	0.000				
G34	0.000	14.147	0.000	5.531	0.000	55.851				
TOTAL ERROR	58.669	34.614	50.974	62.276	55.400	34.742				

Πίνακας 73: Σφάλματα των μοντέλων με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Με αυτή τη μέθοδο παρατηρούμε πως καλύτερα αποτελέσματα φαίνεται να έχει η SRK ως προς την πρόβλεψη της πίεσης με σταθερή θερμοκρασία, ενώ ακολουθεί το UMR με πολύ μικρή διαφορά. Ως προς την πρόβλεψη της θερμοκρασίας με σταθερή πίεση καλύτερα αποτελέσματα έχει η PR. Φυσικά όλα τα παραπάνω προκύπτουν χωρίς τη χρήση kij.

3.8 Σύγκριση των διαφόρων μεθόδων χαρακτηρισμού

Στο σημείο αυτό συγκρίθηκαν οι μέθοδοι χαρακτηρισμού και όχι τα μοντέλα. Έτσι στο ίδιο condensate χρησιμοποιούνταν κάθε φορά το ίδιο μοντέλο (UMR) και διαφορετική μέθοδος χαρακτηρισμού και τα αποτελέσματα με όλες τις μεθόδους χαρακτηρισμού παρουσιάζονταν σε ένα διάγραμμα, ώστε να φανεί ποια είναι πιο αξιόπιστη. Ο λόγος που επιλέχθηκε το UMR για να γίνει αυτή η σύγκριση είναι ότι με βάση τις προηγούμενες αναλύσεις διαπιστώθηκε ότι είναι καλύτερο μοντέλο από τα υπόλοιπα. Στην ανάλυση αυτή χρησιμοποιήθηκε και η Pedersen- Tb, διότι μπορεί να χρησιμοποιηθεί με τις υπόλοιπες μέσω του UMR.

Αυτό που θα παρατηρήσουμε είναι ότι στις περισσότερες περιπτώσεις καλύτερα φαίνεται να πηγαίνει η Pedersen-MW, κάποιες φορές η PNA και πιο σπάνια οι άλλες μέθοδοι. Αναλυτικά ποια είναι η καλύτερη θα φανεί στον υπολογισμό των σφαλμάτων. Επιλέχθηκαν να παρουσιαστούν τα condensates: G1, G10, G13, G21, G34, διότι σε κάθε ένα άλλη μέθοδος φαίνεται να είναι η καλύτερη.

<u>G1:</u>

Τα αποτελέσματα για αυτό το αέριο συμπύκνωμα είναι:

Διάγραμμα 66: Σύγκριση του διαγράμματος φάσεων διαφόρων μεθόδων χαρακτηρισμού με το μοντέλο UMR στο αέριο συμπύκνωμα G1

Παρατηρούμε υπερεκτίμηση των πειραματικών σημείων από την Pedersen- MW και υποεκτίμηση από τις υπόλοιπες μεθόδους. Καλύτερα πηγαίνει η Pedersen- MW, ακολουθεί η PNA και μετά το Tb και MW– Matching. Αποτελέσματα για την Pedersen- Tb δεν ήταν εφικτό να βρεθούν λόγω προβλήματος του κώδικα με τα πολύ βαριά συστατικά που προέκυψαν από αυτή τη μέθοδο.

<u>G10:</u>

Με το UMR είχαμε τα παρακάτω αποτελέσματα για το G10:

Διάγραμμα 67: Σύγκριση του διαγράμματος φάσεων διαφόρων μεθόδων χαρακτηρισμού με το μοντέλο UMR στο αέριο συμπύκνωμα G10

Εδώ η εικόνα είναι διαφορετική από το προηγούμενο αέριο συμπύκνωμα. Καλύτερα πηγαίνει η PNA, ακολουθεί το MW και Tb- Matching και τελευταία έρχεται η Pedersen- Tb. Με το πρόγραμμα που έγιναν οι υπολογισμοί τα σημεία που προκύπτουν είναι σημεία δρόσου, οπότε αν θεωρήσουμε ότι όντως είναι έτσι, τότε το UMR προέβλεψε με όλες τις μεθόδους χαρακτηρισμού το πειραματικό σημείο σωστά σαν σημείο δρόσου.

Τα αποτελέσματα με UMR για το συγκεκριμένο συμπύκνωμα είναι:

G13:

Διάγραμμα 68: Σύγκριση του διαγράμματος φάσεων διαφόρων μεθόδων χαρακτηρισμού με το μοντέλο UMR στο αέριο συμπύκνωμα G13

Εδώ παρατηρούμε καλύτερα πηγαίνει η PNA, ακολουθεί με πολύ μικρή υποεκτίμηση η Pedersen- MW, μετά η Pedersen- Tb υπερεκτιμώντας το σημείο και τέλος το υποεκτιμούν η μέθοδος Tb- Matching και περισσότερο η MW- Matching. Η καλύτερη συμπεριφορά της PNA με το UMR ίσως οφείλεται στην τάση της μεθόδου χαρακτηρισμού να υπερεκτιμά το σημείο και στην τάση του μοντέλου να το υπερεκτιμά, οπότε ο συνδυασμός τους αναιρεί το κάθε σφάλμα.

<u>G21:</u>

Με το UMR είχαμε τα παρακάτω αποτελέσματα για το G21:

Διάγραμμα 69: Σύγκριση του διαγράμματος φάσεων διαφόρων μεθόδων χαρακτηρισμού με το μοντέλο UMR στο αέριο συμπύκνωμα G21

Αυτή τη φορά τα αποτελέσματα είναι λίγο διαφορετικά σε σχέση με την προηγούμενη περίπτωση. Εδώ παρατηρεί κανείς ότι καλύτερα πηγαίνει η μέθοδος MW- Matching, ακολουθεί η PNA, μετά το Tb-Matching, ενώ χειρότερα πηγαίνουν η Pedersen- MW και η Pedersen- Tb με μεγάλη υπερεκτίμηση του σημείου.

<u>G34:</u>

Διάγραμμα 70: Σύγκριση του διαγράμματος φάσεων διαφόρων μεθόδων χαρακτηρισμού με το μοντέλο UMR στο αέριο συμπύκνωμα G34

Εδώ καλύτερα πηγαίνει η Pedersen- MW, μετά η Pedersen- Tb, ακολουθεί η PNA και τέλος το Tb και MW- Matching.

3.9 Υπολογισμός σφαλμάτων των μεθόδων χαρακτηρισμού

Στο σημείο αυτό υπολογίστηκαν τα σφάλματα σε κάθε condensate και συγκρίθηκαν οι μέθοδοι χαρακτηρισμού με τη χρήση του ίδιου μοντέλου (UMR). Για το σκοπό αυτό παρατίθενται ένας πίνακας στον οποίο παρουσιάζονται τα σφάλματα των μεθόδων χαρακτηρισμού με τη χρήση του UMR. Όταν τα συμπυκνώματα διέθεταν πάνω από ένα πειραματικό σημείο υπολογιζόταν στο τέλος ο μέσος όρος σφάλματος για το συγκεκριμένο condensate. Το συνολικό σφάλμα είναι ο σταθμισμένος μέσος όρος των μέσων όρων των σφαλμάτων κάθε condensate.

Τα σφάλματα υπολογίστηκαν στην ίδια θερμοκρασία που έδιναν τα πειραματικά σημεία με υπολογισμό της πίεσης από τα μοντέλα. Εξαίρεση αποτελεί το G21, που διέθεται το πειραματικό του σημείο κοντά στο cricondetherm. Έτσι σε αυτό υπολογίστηκε στην ίδια πίεση με τα πειραματικά δεδομένα, η θερμοκρασία που προέβλεψαν τα μοντέλα.

Το σύμβολο BP δείχνει ότι το μοντέλο προέβλεψε bubble point, ενώ ήταν dew point το πειραματικό σημείο. Οπότε δεν υπολογίστηκε σφάλμα. Οι παύλες δηλώνουν τον μη υπολογισμό του συγκεκριμένου σημείου από τον κώδικα, λόγω κάποιου προβλήματος. Επίσης να σημειωθεί ότι τα σφάλματα που αναγράφονται είναι απόλυτες τιμές.

Τα αποτελέσματα λοιπόν με το UMR είναι:

	UMR												
	E)	(P	Γ	ww		Tb	P	NA	Peders	sen (Tb)	Peders	en-MW	
	т (К)	P (bar)	ΔT (K)	ΔP (bar)	ΔT (K)	ΔP (bar)	ΔT (K)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	
G1	390.500	460.700	0.000	125.328	0.000	125.328	-	-	-	-	0.000	43.506	
	410.100	453.100	0.000	117.693	0.000	117.693	-	-	-	-	0.000	46.303	
	429.500	446.600	0.000	116.494	0.000	116.494	-	-	-	-	0.000	44.329	
	450.300	428.800	0.000	110.825	0.000	110.825	-	-	-	-	0.000	48.074	
Error				117.585		117.585						45.553	
G2	408.700	334.700	0.000	88.042	0.000	18.061	0.000	34.583	-	-	0.000	26.088	
G5	305.372	387.003	0.000	76.669	0.000	123.780	0.000	115.057	0.000	0.743	0.000	23.957	
	322.039	378.729	0.000	83.271	0.000	128.503	0.000	117.691	0.000	5.972	0.000	17.115	
	355.372	360.803	0.000	104.978	0.000	149.503	0.000	137.061	0.000	21.909	0.000	1.977	
	377.594	342.187	0.000	122.273	0.000	170.437	0.000	157.966	0.000	31.816	0.000	14.582	
	382.039	329.087	0.000	117.439	0.000	166.873	0.000	154.432	0.000	25.095	0.000	8.475	
Error				100.926		147.819		136.442		17.107		13.221	
G6	305.372	414.582	0.000	55.176	0.000	102.562	0.000	43.945	0.000	-	0.000	-	
	322.039	408.377	0.000	65.638	0.000	105.139	0.000	51.880	0.000	-	0.000	-	
	355.372	394.587	0.000	91.251	0.000	121.673	0.000	73.815	0.000	-	0.000	-	
	372.594	382.866	0.000	104.354	0.000	132.838	0.000	85.768	0.000	57.414	0.000	23.411	
	377.594	380.108	0.000	109.509	0.000	137.781	0.000	90.689	0.000	53.538	0.000	27.531	
	386.483	373.213	0.000	117.552	0.000	145.878	0.000	98.427	0.000	48.093	0.000	33.214	
Error				90.580		124.312		74.087		53.015		28.052	
G10	435.928	208.566	0.000	6.071	0.000	6.071	0.000	3.805	0.000	62.565	0.000	17.240	
G13	355.600	281.000	0.000	35.871	0.000	30.946	0.000	3.033	0.000	19.168	0.000	8.514	
G21	327.040	96.871	5.965	0.000	9.927	0.000	7.578	0.000	55.400	0.000	42.040	0.000	
G34	344.260	263.724	0.000	61.846	0.000	61.846	0.000	52.570	0.000	55.851	0.000	26.719	
	-	-	5.965	90.015	9.927	109.065	7.578	81.381	55.400	34.742	42.040	25.690	

Πίνακας 74: Πειραματικά σημεία και σφάλματα των μεθόδων χαρακτηρισμού με το μοντέλο UMR στα σημεία αυτά.

Σε αυτή την περίπτωση φαίνεται να πηγαίνει καλύτερα η Pedersen- MW, καθώς παρουσιάζει το μικρότερο σφάλμα (25.690 bar). Ακολουθεί η Pedersen- Tb , η PNA, το MW- Matching και τέλος το Tb-Matching.

Για το G21 έχουμε μικρότερα σφάλματα από την μέθοδο MW- Matching, μετά από την PNA, το Tb-Matching, ενώ ακολουθεί η Pedersen-MW και τέλος η Pedersen- Tb. Τα παραπάνω απεικονίζονται και διαγραμματικά:

Διάγραμμα 71: Σύγκριση των σφαλμάτων (σε bar) των μεθόδων χαρακτηρισμού

Από το διάγραμμα αυτό γίνεται σαφές ότι καλύτερη μέθοδος χαρακτηρισμού είναι η Pedersen- MW, ακολουθεί η Pedersen- Tb, μετά η PNA, το MW- Matching και τέλος το Tb- Matching.

Επειδή στα παραπάνω δεν έχει συμπεριληφθεί το σφάλμα στο G21 (διότι όπως αναφέρθηκε εκεί ο υπολογισμός έγινε στην ίδια πίεση του πειραματικού σημείου με εύρεση του σφάλματος στη θερμοκρασία) παρουσιάζεται το διάγραμμα παρακάτω:

Διάγραμμα 72: Σύγκριση των σφαλμάτων (σε K) των μεθόδων χαρακτηρισμού για το αέριο συμπύκνωμα G21

Αυτό που παρατηρούμε στη συγκεκριμένη περίπτωση είναι πως τα πράγματα είναι διαφορετικά από προηγουμένως. Οι καλύτερες μέθοδοι με βάση την προηγούμενη ανάλυση (Pedersen- Tb, Pedersen- MW) φαίνεται τώρα να είναι οι χειρότερες. Καλύτερες μέθοδοι φαίνονται τώρα να είναι το MW- Matching, η PNA και το Tb-Matching. Δεν μπορεί κάποιος να βασιστεί με βεβαιότητα σε αυτά τα αποτελέσματα, διότι πρόκειται για ένα μόνο condensate και ένα μόνο πειραματικό σημείο. Αυτό πάντως που μπορεί κανείς να διαπιστώσει είναι πως οι μέθοδοι Pedersen-Tb και Pedersen- MW είναι οι λιγότερο αξιόπιστες και παρουσιάζουν πολύ μεγάλα σφάλματα υπερεκτιμώντας το cricondetherm.

Ένας επίσης σημαντικός παράγοντας στον υπολογισμό των σφαλμάτων είναι το ποσοστό των σημείων ως προς τα πειραματικά σημεία που προβλέφθηκαν ως dew points. Πολλές φορές, όπως διαπιστώθηκε τα μοντέλα προέβλεπαν τα πειραματικά σημεία ως bubble points, ενώ είναι dew points. Για το σκοπό αυτό βρέθηκε το ποσοστό που σε κάθε συνδυασμό μεθόδου χαρακτηρισμού και μοντέλου προβλέφθηκε σαν dew point. Τα ποσοστά που βρέθηκαν παρουσιάζονται στο παρακάτω διάγραμμα σαν ποσοστά επιτυχίας των μοντέλων. Αξίζει να σημειωθεί ότι τα σημεία που δεν υπολογίστηκαν με το UMR, θεωρήθηκαν bubble points, διότι στο κρίσιμο σημείο έχει διαπιστωθεί ότι ο κώδικας παρουσιάζει προβλήματα και δεν υπολογίζει περαιτέρω σημεία.

Διάγραμμα 73: Ποσοστό επιτυχίας των μεθόδων χαρακτηρισμού στην πρόβλεψη των πειραματικών σημείων ως σημεία δρόσου

Με βάση την προηγούμενη ανάλυση στις μεθόδους χαρακτηρισμού MW- Matching, Tb- Matching και PNA προέκυψε πως το UMR είναι το μοντέλο που προβλέπει τα περισσότερα πειραματικά σημεία σωστά σαν σημεία δρόσου. Από την ανάλυση που γίνεται τώρα διαπιστώνεται ότι η μέθοδος χαρακτηρισμού που προβλέπει τα περισσότερα πειραματικά σημεία σα σημεία δρόσου είναι το Tb-Matching και το MW-Matching, ενώ ακολουθεί η μέθοδος Pedersen-MW.

3.10 Σύνοψη αποτελεσμάτων

Συμπερασματικά λοιπόν και από την ανάλυση που έγινε καλύτερο μοντέλο είναι το UMR, διότι έχει τα μικρότερα σφάλματα με τις περισσότερες μεθόδους χαρακτηρισμού και υπολογίζει τα περισσότερα πειραματικά σημεία σωστά σα σημεία δρόσου. Μικρότερα σφάλματα παρουσιάζει η μέθοδος χαρακτηρισμού Pedersen-MW (τουλάχιστον στα σημεία κοντά στο cricondenbar), ενώ περισσότερα πειραματικά σημεία προβλέπονται σωστά σαν σημεία δρόσου από τη μέθοδο Tb-Matching.

Αυτό που πρέπει να σημειωθεί είναι ότι η Pedersen-MW φαίνεται να δίνει χειρότερα αποτελέσματα όσο αυξάνει το ποσοστό του μεθανίου στο αέριο συμπύκνωμα, άρα όσο αυξάνεται ο λόγος C1/C7+. Σε τέτοιες περιπτώσεις υπερεκτιμά πολύ τα πειραματικά σημεία κυρίως αυτά που είναι κοντά στο cricondentherm. Ακόμα πιο ευαίσθητη στο ποσοστό μεθανίου φαίνεται να είναι η Pedersen-Tb, η οποία σε περίπτωση μεγάλου ποσοστού αυτού του συστατικά υπερεκτιμά ακόμα περισσότερο τα πειραματικά σημεία. Η PNA έχει πιο σταθερή συμπεριφορά με μικρή υποεκτίμηση των πειραματικών σημείων στα περισσότερα αέρια συμπυκνώματα, ενώ η MW και Tb- Matching, υποεκτιμούν ακόμα περισσότερο τα πειραματικά σημεία.

ΣΥΜΠΕΡΑΣΜΑΤΑ

Στα πλαίσια αυτής της εργασίας μελετήθηκαν δύο κατηγορίες μιγμάτων φυσικού αερίου: τα συνθετικά αέρια συμπυκνώματα και τα πραγματικά αέρια συμπυκνώματα. Στην πρώτη κατηγορία δεν απαιτήθηκε χαρακτηρισμός των μιγμάτων γιατί η σύστασή τους ήταν γνωστή. Αντίθετα στη δεύτερη δίνονταν μόνο κάποιες ιδιότητες για το βαρύ κλάσμα και όχι αναλυτικά η σύστασή του και για αυτό το λόγο απαιτήθηκε χαρακτηρισμός. Και στις δύο κατηγορίες εξετάστηκαν τρία μοντέλα (SRK, PR, UMR-new) με σκοπό να διαπιστωθεί ποιο δίνει καλύτερα αποτελέσματα στην πρόβλεψη ισορροπίας φάσεων.

Τα συνθετικά αέρια συμπυκνώματα φυσικού αερίου παρουσίαζαν μεγάλη ποικιλία ως προς τη σύστασή τους. Άλλα είχαν μεγαλύτερο ποσοστό σε ελαφριά συστατικά, άλλα σε βαριά, άλλα μικρό αριθμό συστατικών και άλλα μεγάλο αριθμό. Από τη χρήση των τριών θερμοδυναμικών μοντέλων και την ανάλυση των σφαλμάτων διαπιστώθηκε ότι το UMR-new ήταν το μοντέλο που έδινε τα καλύτερα αποτελέσματα. Από τα άλλα δύο μοντέλα καλύτερη ήταν η SRK. Αξίζει να σημειωθεί ότι στην ανάλυση αυτή δε χρησιμοποιήθηκαν παράμετροι αλληλεπίδρασης.

Στη συνέχεια διαπιστώθηκε σε ποια κατηγορία αέριων συμπυκνωμάτων δίνει κάθε μοντέλο καλύτερα αποτελέσματα. Έτσι διαπιστώθηκε ότι το UMR παρουσιάζει αδυναμία πρόβλεψης σε συστήματα με πολλά αρωματικά συστατικά και υπερεκτιμά τα συμπυκνώματα στα οποία το βαρύ κλάσμα έχει χαμηλό σημείο βρασμού. Αντίθετα η SRK έδινε καλύτερα αποτελέσματα στα πιο ελαφριά συμπυκνώματα (αυτά με πιο χαμηλό σημείο βρασμού του βαριού κλάσματος). Ίδια συμπεριφορά είχε και η PR.

Στη συνέχεια χαρακτηρίστηκαν τα πραγματικά αέρια συμπυκνώματα. Αρχικά χαρακτηρίστηκαν με τρεις μεθόδους χαρακτηρισμού: με βάση το μοριακό βάρος του βαριού κλάσματος, με βάση το σημείο βρασμού του βαριού κλάσματος και με Modified Shariati (PNA). Σε αυτές και πάλι δε χρησιμοποιήθηκαν παράμετροι αλληλεπίδρασης στην SRK και PR. Διαπιστώθηκε από την ανάλυση αυτή ότι καλύτερο μοντέλο ήταν το UMR και καλύτερη μέθοδος από τις τρεις η Modified Shariati.

Στο σημείο αυτό διαπιστώθηκε η σημασία της επίδρασης των παραμέτρων αλληλεπίδρασης στα αέρια συμπυκνώματα. Ύστερα από σύγκριση της SRK με και χωρίς kij σε συμπυκνώματα χαρακτηρισμένα με Modified Shariati, διαπιστώθηκε πως τα αποτελέσματα ήταν πολύ καλύτερα με τη χρήση των kij.

Για το λόγο αυτό στην επόμενη μέθοδο (Pedersen) χρησιμοποιήθηκαν kij. Από την Pedersen-MW προέκυψε καλύτερο μοντέλο η Peng-Robinson, χωρίς να είναι αξιόπιστο αποτέλεσμα, διότι προέκυψε μόνο με μία μέθοδο χαρακτηρισμού. Ύστερα από σύγκριση όλων των μεθόδων χαρακτηρισμού σε αέρια συμπυκνώματα σε συνδυασμό με τη χρήση του μοντέλου UMR-new, προέκυψε πως η Pedersen-MW είναι η καλύτερη μέθοδος χαρακτηρισμού.

Αξίζει να σημειωθεί ότι έγιναν κάποιες δοκιμές της PC-SAFT στα συμπυκνώματα, που είχαν χαρακτηριστεί με βάση το μοριακό βάρος και διαπιστώθηκε η πολύ καλή συμπεριφορά αυτής στα αέρια συμπυκνώματα. Μετά το UMR ίσως είναι το καλύτερο μοντέλο, αλλά κάτι τέτοιο πρέπει να αποτελέσει αντικείμενο περαιτέρω έρευνας.

ΒΙΒΛΙΟΓΡΑΦΙΑ

Daqing, Zheng και Tianmin, Guo. 1997. Prediction of the Phase Behavior of Gas Condensates uning Patel-Teja Equation of State and Gamma Distribution Function. *Chinese J. of Chem. Eng.* 1997, σσ. 200-207.

Elsharkawy, Adel M. 2002. Predicting the dew point pressure for gas condensate reservoirs:empirical models and equations of state. *Fluid Phase Equilibria.* 2002, σσ. 147–165.

Ghasemi, και συν. 2014. On the analytical extension of gas condensate plus fraction. *Journal of Natural Gas Science and Engineering.* 2014, σσ. 1-9.

Gozalpour, F. και al., et. 2003. Vapour–liquid equilibrium volume and density measurements of a fivecomponent gas condensate at 278.15–383.15 K. *Fluid Phase Equilibria.* 2003, σσ. 95-104.

Jensen, M.R. και al, et. 2003. Crystallisation of heavy hydrocarbons from three synthetic condensate gases at high pressure. *Fluid Phase Equilibria.* 2003, σσ. 247-260.

Louli, et al. 2012. Measurement and prediction of dew point curves of natural gas mixtures. *Fluid Phase Equilibria.* 2012, pp. 1-9.

Ng, H., C. Chen, and D. Robinson. 1986. *Vapor liquid equilibrium and condensing curves in the vicinity of the critical point for a typical gas condensate.* 1986.

NTUA, Thermodynamics & Transport Phenomena Laboratory. Athens. *PREDICTION OF HYDROCARBON PHASE ENVELOPE USING THE UMR-PRU MODEL.* Athens.

Pedersen and Christensen. 2007. Phase Behaviour of Petroleum Reservoir Fluids. s.l. : Taylor & Francis, 2007. pp. 1-11,66-72,76-77,89-91.

Riazi, M.R. 2005. *Characterization and Properties of Petroleum Fractions.* s.l. : ASTM International, 2005. σσ. 12-13,95-96.

Shariati, A. και al., et. 2014. Experimental phase behavior study of a five-component model gas condensate. *Fluid Phase Equilibria.* 2014, σσ. 147-150.

Shariati, Peters and Mahmood. 2000. Further evaluation of the Shariati–Peters–Moshfeghian C7+ Characterization Method. *Fluid Phase Equilibria.* 2000, pp. 23-41.

Spiliotis, και συν. **1994**. Application of the LCVM model to multicomponent systems: Extension of the UNIFAC interaction parameter table and prediction of the phase behavior of synthetic gas condensate and oil systems. *Fluid Phase Equilibria*. 1994, σσ. 187-210.

Sportisse, Barreau και Ungerer. 1997. Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. *Fluid Phase Equilibria.* 1997, σσ. 255-276.

Ungerer, P. και al., et. 1995. High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon. *Fluid Phase Equilibria.* 1995, σσ. 287-311.

Urlic, L.E. και al., et. 2003. Phase and Interfacial Tension Behavior of Certain Model Gas Condensates: Measurements and Modeling. Transport in Porous Media. 2003, σσ. 141-157.

Νόβακ. 2013. Διπλωματική Εργασία: Ανάπτυξη μεθόδων χαρακτηρισμού του βαρέως C6+ κλάσματος μιγμάτων φυσικού αερίου. 2013. σσ. 23-24,48-49.

Πετροπούλου. 2011. Διπλωματική Εργασία: Ανάπτυξη μεθόδου χαρακτηρισμού του βαρέως C7+ κλάσματος μιγμάτων φυσικού αερίου. 2011. σσ. 25,39-40.

Τασσιός. 2001. Εφαρμοσμένη Θερμοδυναμική Χημικής Μηχανικής. Αθήνα : s.n., 2001.

Bonyadi, M. και Esmaeilzadeh, F. 2007. Prediction of gas condensate properties by Esmaeilzadeh– Roshanfekr equation of state. 2007, σσ. 326-334.

Majidi, Seyed Mohammad Javad, και συν. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. *Chemical Engineering Research and Design.* 2014, σσ. 891-902.

Mørch, Ø., και συν. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. *Fluid Phase Equilibria*. 2006, σσ. 138-145.

Nasrifar, Kh. και Moshfeghian, M. 2002. Vapor–liquid equilibria of LNG and gas condensate mixtures by the Nasrifar–Moshfeghian equation of state. *Fluid Phase Equilibria.* 2002.

Shariati, Peters και Moshfegian. 2001. Further evaluation of the Shariati–Peters–Moshfeghian C7+ characterization method. *Fluid Phase Equilibria*. 2001, σσ. 23-41.

Sportisse, Barreau και Ungerer. 1997. Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. *Fluid Phase Equilibria.* 1997, σσ. 255-276.

ΠΑΡΑΡΤΗΜΑ Α

Στο παράρτημα αυτό παρουσιάζονται οι παράμετροι της UNIFAC (AA,BB,CC) που χρησιμοποιήθηκαν από το UMR-new:

	CO2	N2	CH4	C2H6	СНЗ	CH2	СН	С	ACH	AC	ACCH3	ACCH2	ACCH	cCH2	cCH	сC
CO2	0	382.6799	301.9815	90.86	70.05567	70.05567	70.05567	70.05567	11.83337	11.83337	-114.648	-114.648	-114.648	39.0096	39.0096	39.0096
N2	-137.9	0	-119.608	-154.523	112.5168	112.5168	112.5168	112.5168	143.8686	143.8686	220.3347	220.3347	220.3347	117.2215	117.2215	117.2215
CH4	-83.7249	194.0367	0	96.48736	328.7962	328.7962	328.7962	328.7962	186.0861	186.0861	142.1045	142.1045	142.1045	155.721	155.721	155.721
C2H6	117.63	303.9206	-71.146	0	154.4904	154.4904	154.4904	154.4904	103.7201	103.7201	-43.1294	-43.1294	-43.1294	107.2693	107.2693	107.2693
СНЗ	84.67786	-4.25723	-214.414	-140.185	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
CH2	84.67786	-4.25723	-214.414	-140.185	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
СН	84.67786	-4.25723	-214.414	-140.185	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
С	84.67786	-4.25723	-214.414	-140.185	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
ACH	99.43619	145.1794	-101.91	-56.2063	-6.73	-6.73	-6.73	-6.73	0	0	-155.4	-155.4	-155.4	-6.73	-6.73	-6.73
AC	99.43619	145.1794	-101.91	-56.2063	-6.73	-6.73	-6.73	-6.73	0	0	-155.4	-155.4	-155.4	-6.73	-6.73	-6.73
ACCH3	445.0811	220.6562	-106.628	69.48409	252.5	252.5	252.5	252.5	366.6	366.6	0	0	0	252.5	252.5	252.5
ACCH2	445.0811	220.6562	-106.628	69.48409	252.5	252.5	252.5	252.5	366.6	366.6	0	0	0	252.5	252.5	252.5
ACCH	445.0811	220.6562	-106.628	69.48409	252.5	252.5	252.5	252.5	366.6	366.6	0	0	0	252.5	252.5	252.5
cCH2	141.64	-13.6892	-119.879	-95.386	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
сСН	141.64	-13.6892	-119.879	-95.386	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0
cC	141.64	-13.6892	-119.879	-95.386	0	0	0	0	64.45	64.45	-93.37	-93.37	-93.37	0	0	0

Πίνακας 75: Παράμετροι αλληλεπίδρασης UNIFAC (AA)

	CO2	N2	CH4	C2H6	СНЗ	CH2	СН	С	ACH	AC	ACCH3	ACCH2	ACCH	cCH2	cCH	сC
CO2	0	1.5736	1.69508	-0.4893	-0.72765	-0.72765	-0.72765	-0.72765	-2.05679	-2.05679	-3.6506	-3.6506	-3.6506	0.1982	0.1982	0.1982
N2	-1.6936	0	-0.7538	-0.90206	-1.49027	-1.49027	-1.49027	-1.49027	-0.46995	-0.46995	-1.2827	-1.2827	-1.2827	-1.28611	-1.28611	-1.28611
CH4	-2.25699	0.83182	0	0.50731	1.803056	1.803056	1.803056	1.803056	-0.59327	-0.59327	-0.37713	-0.37713	-0.37713	-0.46662	-0.46662	-0.46662
C2H6	-0.3263	0.94671	-0.40115	0	-0.28153	-0.28153	-0.28153	-0.28153	-1.09586	-1.09586	-0.11056	-0.11056	-0.11056	0.0615	0.0615	0.0615
СНЗ	-0.69893	0.62645	-1.22023	-0.18584	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
CH2	-0.69893	0.62645	-1.22023	-0.18584	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
СН	-0.69893	0.62645	-1.22023	-0.18584	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
С	-0.69893	0.62645	-1.22023	-0.18584	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
ACH	1.38681	-0.44902	-0.20892	0.29066	-0.5662	-0.5662	-0.5662	-0.5662	0	0	-1.489	-1.489	-1.489	-0.5662	-0.5662	-0.5662
AC	1.38681	-0.44902	-0.20892	0.29066	-0.5662	-0.5662	-0.5662	-0.5662	0	0	-1.489	-1.489	-1.489	-0.5662	-0.5662	-0.5662
ACCH3	8.18684	0.54027	0.934017	1.24646	2.65	2.65	2.65	2.65	13.22	13.22	0	0	0	2.65	2.65	2.65
ACCH2	8.18684	0.54027	0.934017	1.24646	2.65	2.65	2.65	2.65	13.22	13.22	0	0	0	2.65	2.65	2.65
ACCH	8.18684	0.54027	0.934017	1.24646	2.65	2.65	2.65	2.65	13.22	13.22	0	0	0	2.65	2.65	2.65
cCH2	-1.3184	1.34083	0.0722	-0.35122	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
сСН	-1.3184	1.34083	0.0722	-0.35122	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0
сC	-1.3184	1.34083	0.0722	-0.35122	0	0	0	0	0.3745	0.3745	-1.103	-1.103	-1.103	0	0	0

Πίνακας 76: Παράμετροι αλληλεπίδρασης UNIFAC (BB)

	CO2	N2	CH4	C2H6	СНЗ	CH2	СН	С	ACH	AC	ACCH3	ACCH2	ACCH	cCH2	сСН	cC
CO2	0	0	0	0	0.002452	0.002452	0.002452	0.002452	-0.00181	-0.00181	0.018463	0.018463	0.018463	-0.01413	-0.01413	-0.01413
N2	0	0	0	0	0.000607	0.000607	0.000607	0.000607	0.000113	0.000113	-0.00252	-0.00252	-0.00252	-0.00216	-0.00216	-0.00216
CH4	0	0	0	0	-0.01116	-0.01116	-0.01116	-0.01116	0.003441	0.003441	0.010348	0.010348	0.010348	0.007538	0.007538	0.007538
C2H6	0	0	0	0	0.011039	0.011039	0.011039	0.011039	0.007017	0.007017	-0.00515	-0.00515	-0.00515	0.009934	0.009934	0.009934
СНЗ	0.002966	0.002043	0.004627	-0.00539	0	0	0	0	0	0	0	0	0	0	0	0
CH2	0.002966	0.002043	0.004627	-0.00539	0	0	0	0	0	0	0	0	0	0	0	0
СН	0.002966	0.002043	0.004627	-0.00539	0	0	0	0	0	0	0	0	0	0	0	0
С	0.002966	0.002043	0.004627	-0.00539	0	0	0	0	0	0	0	0	0	0	0	0
ACH	0.007309	-0.00077	0.000485	-0.00303	0	0	0	0	0	0	0	0	0	0	0	0
AC	0.007309	-0.00077	0.000485	-0.00303	0	0	0	0	0	0	0	0	0	0	0	0
ACCH3	0.304722	0.004442	-0.0074	-0.003	0	0	0	0	0	0	0	0	0	0	0	0
ACCH2	0.304722	0.004442	-0.0074	-0.003	0	0	0	0	0	0	0	0	0	0	0	0
ACCH	0.304722	0.004442	-0.0074	-0.003	0	0	0	0	0	0	0	0	0	0	0	0
cCH2	0.020399	0.000741	-0.00494	-0.00512	0	0	0	0	0	0	0	0	0	0	0	0
сСН	0.020399	0.000741	-0.00494	-0.00512	0	0	0	0	0	0	0	0	0	0	0	0
cC	0.020399	0.000741	-0.00494	-0.00512	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας 77: Παράμετροι αλληλεπίδρασης UNIFAC (CC)

ΠΑΡΑΡΤΗΜΑ Β

Στο σημείο αυτό παρουσιάζονται οι σταθερές Mathias-Copeman, C1, C2, C3, που χρησιμοποιήθηκαν:

NAME	C1	C2	С3
CO2	0.71369	-0.44764	2.43752
N2	0.43635	0	0
CH4	0.39234	0	0
С2Н6	0.52005	0.0043	0.10292
C3	0.61838	-0.16071	0.48785
iC4	0.65617	-0.1387	0.50392
nC4	0.67123	-0.03803	0.21886
nC36	2.09957	0	0
iC5	0.71582	-0.10058	0.38314
nC5	0.75063	-0.10734	0.38707
nC6	0.8347	-0.31803	1.02085
nC11	1.1559	-0.30621	0.94119
nC14	1.29426	0.02029	0.10428
nC18	1.54389	-0.70593	1.69458
nc34	2.03196	0	0
2,2-DM-C8	0.98633	0	0
n-Butylcyclohexane	0.77737	0	0
cy-C5	0.65461	0.02574	0.19252
nC16	1.43076	-0.45415	1.19557
E-cy-C5	0.7643	-0.0132	0.2878
E-cy-C6	0.63637	0.72751	-0.81316
E-benzene	0.82853	-0.18209	0.65157
Propyl-cy-C6	0.60924	1.12825	-1.42821
nC21	1.568757	0	0
n-Octylbenzene	1.168499	0	0
nC32	1.9014	0	0
nC23	1.43459	0	0
C24	1.71679	0	0
nC44	2.272734	0	0
Fluorene	0.880418	0	0
2,2,3,3-TM-C5	0.7853	0	0
3,3-DM-C6	0.8408	0	0
1-n-Butylnaphthalene	1.072	0	0

Πίνακας 78: Σταθερές Mathias-Copeman C1,C2,C3

	C1	C2	C3
3-M-3-E-C5	0.8199	0	0
nC54	2.4389	0	0
Nc46	2.218463	0	0
Nc25	1.711842	0	0
Diphenylmethane	1.0294	0	0
1,3,5 Trimethyl Benzene (Mesitylene)	0.963	-0.1257	0.2017
Pyrene	0.760044	0	0
i-p-Benzene (Cumene)	0.8491	-0.0491	0.4206
trans-1,2-DM-cy-C6	0.7263	0	0
tetralin	0.8152	0.1882	-0.1321
Naphthalene	0.80907	0.0049	0.15925
Phenanthrene	1.25774	-1.9249	3.73816
nC19	1.4672	-0.0584	1.40634
nC27	1.776561	0	0
n-Hexylbenzene	1.0507	0	0
1-M-1-E-cy-C5	0.8539	0	0
2,2,4,4-TM-C5	0.8349	0	0
nC7	0.86479	0.07156	0.06692
2,2,4-TM-C5	0.8264	-0.1685	0.6185
1-M-Indene	0.861958	0	0
2,6-DM-Naphthalene	0.9717	0	0
су-С8	0.70573	0.27206	-0.18774
Propylbenzene	0.87346	-0.06176	0.32352
Pentylbenzene	0.99941	0	0
1-Ethylnaphthalene	0.89837	0	0
m-ethyl-toluene	0.843398	0	0
Bicyclohexyl	0.984758	0	0
nC22	1.41002	0	0
2,7-DM-C8	1.003586	0	0
Cyclohexylbenzene	0.919716	0	0
nC18	1.5439	-0.7059	1.6946
nC15	1.41472	-0.6389	1.60314
1,2,3-TM-Benzene	0.903488	0	0
nC12	1.20587	-0.32361	1.07634

Πίνακας 79: Σταθερές Mathias-Copeman C1,C2,C3

	C1	C2	С3
2,6-DM-C8	0.999151	0	0
n-Butylcyclohexane	0.77737	0	0
i-p-cy-C5	0.61778	0.84354	-1.06637
o-ethyltoluene	0.803627	0	0
3-Methylnonane	1.0333	0	0
n-propyl-cy-C5	0.774	0	0
5-Methylnonane	1.022	0	0
p-Diisopropylbenzene	0.9351	0	0
Nc26	1.7709	0	0
1,1,3-TM-cy-C6	0.7672	0	0
trans-1,3-DM-cy-C6	0.72	0	0
nC20	1.7817	-1.4889	3.1228
1,1-Diphenylethane	1.0226	0	0
4-Methylnonane	1.0336	0	0
trans-1,4-DM-cy-C6	0.725	0	0
m-xylene	0.86653	-0.1874	0.49412
nC39	1.73396	0	0
су-Сб	0.68054	-0.06898	0.57648
M-cy-C5	0.74952	-0.39012	1.16613
Benzene	0.68309	-0.10519	0.66711
nC8	0.96331	-0.2563	0.8864
су-С7	0.73833	-0.22055	0.87688
M-cy-C6	0.71619	-0.02043	0.33964
toluene	0.76465	-0.09737	0.42565
nC9	1.04122	-0.22919	0.64752
p-xylene	0.87223	-0.31779	0.80879
o-xylene	0.84452	-0.2051	0.61154
nC10	1.06818	-0.07245	0.43641
C26	1.71184	0	0
nC13	1.29116	-0.53347	1.48318
nC17	1.46392	-0.45071	1.65812
C20	1.78174	-1.48886	3.12278
nc30	1.891	0	0
nC36	2.09957	0	0
2,2-DM-C8	0.32501	0	0

Πίνακας 80: Σταθερές Mathias-Copeman C1,C2,C3

ΠΑΡΑΡΤΗΜΑ Γ

1. ΥΠΟΛΟΓΙΣΜΟΣ ΣΦΑΛΜΑΤΩΝ ΤΩΝ ΜΟΝΤΕΛΩΝ ΣΕ ΣΧΕΣΗ ΜΕ ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΗΜΕΙΑ

Στο παράρτημα αυτό παρουσιάζονται αναλυτικά τα σφάλματα για όλα τα πειραματικά σημεία σε κάθε αέριο συμπύκνωμα:

	Experi	mental		SRK		PR	l	UMR
	ΔТ (К)	∆P (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC1	303.650	246.500	BP	BP	BP	BP	0.000	3.919
	307.550	250.100	BP	BP	BP	BP	0.000	2.835
	310.150	253.000	BP	BP	BP	BP	0.000	1.533
	324.850	261.400	0.000	33.153	0.000	45.276	0.000	0.959
	346.650	281.400	0.000	40.330	0.000	55.298	0.000	11.346
	373.350	288.300	0.000	38.096	0.000	56.478	0.000	15.517
	397.550	290.800	0.000	38.569	0.000	59.979	0.000	22.272
	413.150	280.000	0.000	29.613	0.000	52.941	0.000	17.772
SGC1 Error				35.952		53.994		9.519
SGC2	305.150	176.000	BP	BP	BP	BP	-	-
	308.450	176.800	BP	BP	BP	BP	-	-
	312.950	177.300	BP	BP	BP	BP	-	-
	317.450	177.200	BP	BP	BP	BP	-	-
	322.650	176.700	BP	BP	0.000	12.368	-	-
	324.850	176.600	BP	BP	0.000	12.435	-	-
	327.250	176.700	0.000	17.268	0.000	12.221	-	-
	347.450	173.200	0.000	17.023	0.000	10.809	0.000	18.668
	362.450	166.000	0.000	16.354	0.000	8.656	0.000	15.541
	383.050	155.400	0.000	8.198	0.000	2.083	0.000	3.336
	396.650	144.300	0.000	0.575	0.000	12.125	0.000	8.247
	410.450	117.400	0.000	4.405	0.000	20.525	0.000	18.336
SGC2 Error				10.637		11.403		12.825
SGC3	305.650	207.200	BP	BP	BP	BP	BP	BP
	323.550	226.100	0.000	15.811	0.000	24.040	0.000	4.323
	336.450	235.900	0.000	20.341	0.000	30.315	0.000	1.323
	352.650	241.900	0.000	22.027	0.000	34.334	0.000	4.495
	371.950	244.100	0.000	22.440	0.000	37.609	0.000	6.976
	393.250	241.800	0.000	22.399	0.000	40.656	0.000	9.856
	419.550	227.200	0.000	16.711	0.000	38.383	0.000	9.151
SGC3 Error				19.955		34.223		6.021

Πίνακας 81:Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

	Experii	mental		SRK		PR		UMR
	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC4	254.040	177.100	BP	BP	BP	BP	-	-
	257.120	181.300	BP	BP	BP	BP	-	-
	258.800	183.100	BP	BP	BP	BP	-	-
	261.820	186.700	BP	BP	BP	BP	-	-
	263.950	189.100	BP	BP	BP	BP	-	-
	265.710	190.900	BP	BP	BP	BP	-	-
	267.650	192.900	BP	BP	BP	BP	-	-
	269.030	194.100	BP	BP	BP	BP	-	-
	269.780	195.100	BP	BP	BP	BP	-	-
	270.910	195.900	BP	BP	BP	BP	-	-
	271.100	196.300	BP	BP	BP	BP	-	-
	272.680	197.500	BP	BP	BP	BP	-	-
	273.710	198.500	BP	BP	BP	BP	-	-
	274.450	199.500	BP	BP	BP	BP	-	-
	276.420	200.900	BP	BP	BP	BP	-	-
	276.670	201.500	BP	BP	BP	BP	-	-
	278.390	202.900	BP	BP	BP	BP	-	-
	278.410	202.700	BP	BP	BP	BP	-	-
	279.690	203.700	BP	BP	BP	BP	-	-
	282.260	206.100	BP	BP	BP	BP	-	-
	285.460	208.500	BP	BP	BP	BP	-	-
	289.370	211.300	BP	BP	BP	BP	-	-
	293.560	214.300	BP	BP	BP	BP	-	-
	298.090	216.900	BP	BP	BP	BP	-	-
	302.960	219.500	BP	BP	BP	BP	-	-
	307.660	221.700	BP	BP	BP	BP	-	-
	313.610	223.900	BP	BP	BP	BP	-	-
	318.070	225.300	BP	BP	BP	BP	-	-
	323.590	226.700	BP	BP	0.000	9.818	0.000	42.763
	327.650	227.500	0.000	18.693	0.000	10.146	0.000	41.673
	332.770	227.900	0.000	19.721	0.000	10.780	0.000	40.628
	333.360	227.900	0.000	19.860	0.000	10.872	0.000	40.533
	338.030	228.100	0.000	20.567	0.000	11.200	0.000	39.441
	342.870	227.700	0.000	21.556	0.000	11.776	0.000	38.644
	347.810	227.300	0.000	22.193	0.000	11.974	0.000	37.537
	352.860	226.500	0.000	22.858	0.000	12.170	0.000	36.496
	357.770	225.300	0.000	23.566	0.000	12.405	0.000	35.617
	362.810	224.300	0.000	23.694	0.000	12.031	0.000	34.186
	460.060	59.400	2.673	0.000	0.688	0.000	0.788	0.000
	461.790	74.100	3.338	0.000	0.904	0.000	0.721	0.000
	461.840	75.100	3.373	0.000	0.933	0.000	0.710	0.000
	461.850	76.600	3.474	0.000	0.929	0.000	0.742	0.000
	461.930	78.100	3.485	0.000	1.017	0.000	0.686	0.000
	462.010	80.600	3.514	0.000	1.153	0.000	0.604	0.000
	461.850	83.900	3.739	0.000	1.149	0.000	0.687	0.000
	461.490	88.800	4.037	0.000	1.180	0.000	0.782	0.000

Πίνακας 82: Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

	Experi	mental		SRK		PR	_	UMR
	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC4	460.870	93.700	4.419	0.000	1.129	0.000	0.970	0.000
	460.220	98.600	4.668	0.000	1.212	0.000	1.033	0.000
	459.360	103.500	4.973	0.000	1.236	0.000	1.160	0.000
	458.460	108.500	5.158	0.000	1.384	0.000	1.174	0.000
	457.350	113.400	5.431	0.000	1.437	0.000	1.286	0.000
	456.010	120.600	5.306	0.000	2.036	0.000	0.942	0.000
	454.520	125.600	5.623	0.000	2.049	0.000	1.117	0.000
	452.850	130.600	5.994	0.000	2.009	0.000	1.358	0.000
	451.280	135.600	6.143	0.000	2.197	0.000	1.386	0.000
	449.070	140.600	6.808	0.000	1.876	0.000	1.943	0.000
	446.950	145.600	7.258	0.000	1.783	0.000	2.298	0.000
	444.770	150.600	7.641	0.000	1.774	0.000	2.599	0.000
	442.270	155.600	8.211	0.000	1.600	0.000	3.102	0.000
	439.580	160.600	8.833	0.000	1.402	0.000	3.672	0.000
SGC4 Error			5.186	21.412	1.412	11.317	1.353	38.752
SGC5	410.700	166.800	0.000	9.431	0.000	6.074	0.000	14.943
	420.540	162.200	0.000	10.977	0.000	4.351	0.000	16.137
	430.500	156.900	0.000	12.121	0.000	4.207	0.000	16.028
	440.250	150.700	0.000	12.107	0.000	4.603	0.000	15.145
	443.390	148.600	0.000	11.812	0.000	4.186	0.000	14.688
	446.360	146.400	0.000	11.611	0.000	3.646	0.000	14.283
	449.400	144.000	0.000	11.436	0.000	2.902	0.000	13.799
	452.390	141.400	0.000	11.401	0.000	2.134	0.000	13.333
	455.300	138.900	0.000	11.237	0.000	1.167	0.000	12.625
	460.310	134.000	0.000	11.273	0.000	0.124	0.000	11.482
	465.280	128.500	0.000	11.413	0.000	0.890	0.000	10.313
	470.230	122.100	0.000	11.549	0.000	1.213	0.000	9.249
	475.090	114.900	0.000	11.084	0.000	2.449	0.000	7.883
	480.120	105.200	0.000	10.322	0.000	6.546	0.000	6.448
	485.100	93.200	0.000	8.130	0.000	18.940	0.000	3.367
SGC5 Error				11.060		4.229		11.981

Πίνακας 83: Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

	Experimental			SRK		PR	UMR		
	ΔΤ (Κ)	ΔP (bar)	ΔΤ (Κ)	ΔP (bar)	ΔΤ (Κ)	ΔP (bar)	ΔТ (К)	ΔP (bar)	
SGC6	344.150	421.000	0.000	57.860	0.000	77.795	0.000	18.626	
	347.650	419.000	0.000	53.855	0.000	73.976	0.000	19.539	
	373.550	406.000	0.000	30.992	0.000	52.788	0.000	23.773	
	423.550	375.000	0.000	4.503	0.000	30.604	0.000	27.335	
	343.150	424.000	0.000	61.463	0.000	81.347	0.000	15.935	
	345.850	422.000	0.000	57.866	0.000	77.890	0.000	17.099	
	347.550	420.000	0.000	54.910	0.000	75.026	0.000	18.570	
	358.150	414.000	0.000	43.810	0.000	64.550	0.000	21.190	
	368.150	413.000	0.000	39.336	0.000	60.743	0.000	18.766	
	387.650	405.000	0.000	28.205	0.000	51.100	0.000	18.902	
	406.350	393.000	0.000	17.584	0.000	42.091	0.000	21.096	
	425.450	378.000	0.000	8.255	0.000	34.537	0.000	22.843	
SGC6 Error				38.220		60.204		20.306	
SGC7	298.550	320.000	BP	BP	BP	BP	-	-	
	322.350	328.000	BP	BP	BP	BP	-	-	
	342.450	329.000	BP	BP	BP	BP	-	-	
	362.250	328.000	BP	BP	BP	BP	-	-	
	382.850	326.000	BP	BP	0.000	31.295	0.000	25.674	
	400.950	322.000	0.000	10.146	0.000	29.471	0.000	21.361	
	423.150	311.000	0.000	4.469	0.000	26.179	0.000	17.012	
SGC7 Error				7.307		28.982		21.349	
SGC8	334.550	435.000	BP	BP	BP	BP	-	-	
	340.250	435.000	BP	BP	BP	BP	0.000	32.406	
	349.050	434.000	BP	BP	BP	BP	0.000	31.298	
	369.250	432.000	0.000	81.450	0.000	113.235	0.000	30.710	
	387.850	432.000	0.000	73.534	0.000	108.184	0.000	34.658	
	407.750	426.000	0.000	63.045	0.000	100.771	0.000	36.482	
	426.050	421.000	0.000	57.353	0.000	97.838	0.000	42.660	
SGC8 Error				68.845		105.007		34.702	
SGC9	335.550	524.000	BP	BP	BP	BP	BP	BP	
	337.050	528.000	BP	BP	BP	BP	BP	BP	
	338.450	532.000	BP	BP	BP	BP	BP	BP	
	339.750	534.000	BP	BP	BP	BP	BP	BP	
	343.150	536.000	BP	BP	BP	BP	BP	BP	
	348.450	535.000	BP	BP	BP	BP	BP	BP	
	365.550	525.000	BP	BP	BP	BP	BP	BP	
	386.150	514.000	BP	BP	BP	BP	BP	BP	
	404.350	503.000	BP	BP	BP	BP	0.000	67.295	
	423.150	490.000	ВР	BP	0.000	128.618	0.000	62.491	
SGC9 Error	278 150	202.600	DD	DD	DD	128.618		64.893	
30010	278.150	293.600	BP	BP	BP	BP	-	-	
	303.150	308.100	ВР	BP	ВР	BP	0.000	43.847	
	212 150	212 400	DD	DD	DD	DD	0.000	43.847	
30011	313.150	313.400	BP	54 201	BP 0.000	20 500	0.000	30.793	
	333.150	318.000	0.000	24.391	0.000	38.580	0.000	33.089	
	303.150	313.800	0.000	17.403	0.000	33.905	0.000	27.469	
SGC11 Error	203.150	512.500	۲۵	20.027	٥٢	26.246	-	-	
SOCITERION				20.927		30.240		33.11/	

Πίνακας 84: Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

	Experimental		SRK			PR	UMR	
	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC14	456.510	30.670	0.734	0.000	2.152	0.000	1.523	0.000
	459.010	35.650	1.034	0.000	2.171	0.000	1.599	0.000
	460.810	40.640	1.331	0.000	2.201	0.000	1.672	0.000
	462.360	45.630	1.318	0.000	2.535	0.000	1.447	0.000
	463.780	50.620	0.993	0.000	3.169	0.000	0.927	0.000
	464.690	55.620	0.826	0.000	3.631	0.000	0.583	0.000
	465.260	60.610	0.712	0.000	4.030	0.000	0.308	0.000
	465.330	65.610	0.861	0.000	4.160	0.000	0.309	0.000
	465.210	70.610	0.994	0.000	4.305	0.000	0.302	0.000
	464.840	75.600	1.194	0.000	4.389	0.000	0.364	0.000
	464.540	80.600	1.152	0.000	4.727	0.000	0.183	0.000
	464.260	85.600	0.924	0.000	5.267	0.000	0.187	0.000
	463.690	90.600	0.821	0.000	5.698	0.000	0.436	0.000
	462.330	95.600	1.343	0.000	5.522	0.000	0.064	0.000
	461.000	100.600	1.670	0.000	5.557	0.000	0.113	0.000
	459.680	105.600	1.822	0.000	5.780	0.000	0.118	0.000
	458.060	110.600	2.110	0.000	5.875	0.000	0.269	0.000
	456.360	115.600	2.317	0.000	6.052	0.000	0.357	0.000
	454.450	120.600	2.579	0.000	6.169	0.000	0.524	0.000
	452.290	125.600	2.945	0.000	6.173	0.000	0.826	0.000
	450.070	130.590	3.237	0.000	6.237	0.000	1.092	0.000
	458.240	110.590	1.932	0.000	6.051	0.000	0.092	0.000
	454.910	120.590	2.123	0.000	6.625	0.000	0.068	0.000
	450.660	130.600	2.643	0.000	6.832	0.000	0.498	0.000
	448.450	135.600	2.792	0.000	7.024	0.000	0.663	0.000
	446.220	140.600	2.840	0.000	7.305	0.000	0.770	0.000
	443.430	145.600	3.334	0.000	7.139	0.000	1.359	0.000
	441.010	150.600	3.343	0.000	7.471	0.000	1.491	0.000
	437.960	155.600	3.863	0.000	7.336	0.000	2.140	0.000
	434.710	160.600	4.445	0.000	7.218	0.000	2.833	0.000
	431.310	165.600	5.012	0.000	7.250	0.000	3.447	0.000
	427.580	170.600	5.696	0.000	7.368	0.000	4.064	0.000
	416.960	14.090	23.153	0.000	20.938	0.000	24.407	0.000
	431.140	14.590	9.728	0.000	7.511	0.000	10.982	0.000
	435.600	15.590	6.723	0.000	4.497	0.000	7.974	0.000
	439.120	16.580	4.574	0.000	2.334	0.000	5.817	0.000
	443.850	18.080	1.797	0.000	0.476	0.000	3.020	0.000
	448.260	20.570	0.321	0.000	2.033	0.000	1.489	0.000
	451.100	23.060	0.063	0.000	2.396	0.000	1.157	0.000
	454.100	25.540	0.677	0.000	3.262	0.000	0.327	0.000
	455.720	28.040	0.302	0.000	3.028	0.000	0.601	0.000
	457.900	30.530	0.747	0.000	3.624	0.000	0.049	0.000
	459.580	33.040	0.904	0.000	3.941	0.000	0.221	0.000
	460.750	35.530	0.764	0.000	3.962	0.000	0.195	0.000
	462.810	40.530	0.708	0.000	4.234	0.000	0.363	0.000
	464.560	45.530	0.908	0.000	4.755	0.000	0.775	0.000
	465.450	50.530	0.694	0.000	4.850	0.000	0.756	0.000
	460.410	40.580	1.710	0.000	1.819	0.000	2.053	0.000

Πίνακας 85: Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

	Experi	mental		SRK		PR	l	JMR
	ΔТ (К)	∆P (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)	ΔТ (К)	ΔP (bar)
SGC14	461.950	45.580	1.715	0.000	2.135	0.000	1.846	0.000
	463.150	50.540	1.608	0.000	2.548	0.000	1.545	0.000
	463.830	55.570	1.680	0.000	2.774	0.000	1.439	0.000
	464.180	60.570	1.789	0.000	2.950	0.000	1.387	0.000
	464.400	65.550	1.789	0.000	3.228	0.000	1.239	0.000
	464.420	70.540	1.785	0.000	3.510	0.000	1.095	0.000
	464.260	74.070	1.845	0.000	3.650	0.000	1.057	0.000
	463.280	80.570	2.415	0.000	3.463	0.000	1.446	0.000
	459.650	90.570	4.865	0.000	1.652	0.000	3.609	0.000
	456.670	100.570	6.007	0.000	1.218	0.000	4.450	0.000
	452.880	110.580	7.295	0.000	0.688	0.000	5.455	0.000
	294.190	199.400	BP	BP	BP	BP	-	-
	299.730	203.000	BP	BP	BP	BP	-	-
	304.680	205.600	BP	BP	BP	BP	-	-
	309.460	207.900	BP	BP	BP	BP	-	-
	313.560	209.500	BP	BP	BP	BP	-	-
	317.980	211.500	BP	BP	BP	BP	-	-
	322.400	212.400	BP	BP	0.000	5.033	-	-
	327.540	214.000	0.000	12.328	0.000	4.766	0.000	33.176
	332.370	214.600	0.000	12.990	0.000	5.031	0.000	32.367
	337.330	215.900	0.000	12.619	0.000	4.226	0.000	30.563
	342.580	216.200	0.000	12.896	0.000	4.017	0.000	29.412
	287.800	193.900	BP	BP	BP	BP	-	-
	291.830	196.800	BP	BP	BP	BP	-	-
	294.130	198.300	BP	BP	BP	BP	-	-
SGC14 Error			2.636	12.708	4.659	4.615	1.956	31.379
SGC12	255.370	264.760	BP	BP	BP	BP	-	-
	283.150	268.400	BP	BP	BP	BP	-	-
	310.930	270.960	BP	BP	BP	BP	-	-
	338.710	273.430	0.000	30.359	0.000	35.937	0.000	24.865
	366.480	274.210	0.000	32.938	0.000	40.809	0.000	31.545
	394.260	274.020	0.000	45.947	0.000	56.907	0.000	47.788
SGC12 Error				36.415		44.551		34.733
TOTAL ERROR			3.328	24.595	3.777	31.492	1.792	22.593

Πίνακας 86: Πειραματικά σημεία και σφάλματα των μοντέλων στα σημεία αυτά για τα συνθετικά αέρια συμπυκνώματα

2. ΥΠΟΛΟΓΙΣΜΟΣ ΣΦΑΛΜΑΤΩΝ ΤΩΝ ΜΟΝΤΕΛΩΝ ΣΤΑ ΣΗΜΕΙΑ CRCONDENTHERM KAI CRICONDENBAR

Στο σημείο αυτό υπολογίστηκαν τα σφάλματα των μοντέλων SRK, PR , UMR στα σημεία cricondentherm και cricondenbar, όταν διατίθονταν πειραματικά δεδομένα για τα σημεία αυτά.

		E	KP		EXP - SRK				
SGC	Crie	соТ	Cri	соР	Cri	соТ	Cric	оР	
	т (К)	P (bar)	Т (К)	P (bar)	ΔT	ΔΡ	ΔΤ	ΔΡ	
SGC 1	-	-	397.55	290.8			3.855	38.511	
SGC 2	-	-	312.95	177.3			-14.208	-16.589	
SGC 3	-	-	371.95	244.1			-0.05	22.416	
SGC 4	462.01	80.6	338.03	228.1	-3.594	-3.7717	-10.818	-21.474	
SGC 5	485.1	93.2	-	-	-1.367	19.0704			
SGC 6	-	-	-	-					
SGC 7	-	-	342.45	329			-48.277	16.509	
SGC 8	-	-	334.55	435			-86.505	71.013	
SGC 9	-	-	343.15	536			-102.978	125.566	
SGC 10	-	-	-	-					
SGC 11	-	-	353.15	319.8			-23.567	13.893	
SGC 12	-	-	-	-					
SGC 14	465.45	50.53	342.58	216.2	-0.923	-19.0207	-5.156	-13.095	
AVERAGE (ABS(DT or DP))					1.961333	13.95427	32.82378	37.674	
max dev					3.594	19.0704	102.978	125.566	

Πίνακας 87:Πειραματικά σημεία cricondentherm, cricondenbar και σφάλματα των μοντέλων στα σημεία αυτά (πειραματικήυπολογισμένη τιμή)

	EXP - PR				EXP - UMR-NEW			
SGC	CricoT		CricoP		CricoT		CricoP	
	ΔΤ	ΔΡ	ΔΤ	ΔΡ	ΔΤ	ΔΡ	ΔΤ	ΔΡ
SGC 1			16.367	58.717			28.470	18.002
SGC 2			-10.858	-12.231			-58.050	5.897
SGC 3			15.329	36.493			10.940	6.298
SGC 4	1.082	3.586	-5.103	-11.415	-0.610	1.413	16.060	-41.461
SGC 5	-0.320	23.823			-3.240	20.445		
SGC 6								
SGC 7			-39.490	34.287			-30.966	-25.549
SGC 8			-70.514	109.730			-13.342	32.255
SGC 9			-87.582	174.359			-25.698	95.018
SGC 10								
SGC 11			-14.741	32.432			39.840	-32.395
SGC 12								
SGC 14	4.130	-12.190	1.076	-4.042	-0.300	-14.208	16.040	-30.985
AVERAGE (ABS(DT or DP))	1.844	13.200	29.007	52.634	1.383	12.022	26.601	31.984
max dev	4.130	23.823	87.582	174.359	3.240	20.445	58.050	95.018

Πίνακας 88: Σφάλματα των μοντέλων στα σημεία cricondentherm, cricondenbar (πειραματική-υπολογισμένη τιμή)

ΠΑΡΑΡΤΗΜΑ Δ

Παρακάτω παρουσιάζεται η βάση δεδομένων των real gas condensates, που συλλέχθηκαν από τη βιβλιογραφία.

1. Σύσταση των real gas condensates

Στο σημείο αυτό παρουσιάζεται η σύσταση των real gas condensates όπως βρέθηκε στη βιβλιογραφία. Επίσης αναγράφονται οι ιδιότητες του βαριού κλάσματος που βρέθηκαν. Η πυκνότητα στους 20 °C, είναι αυτή που υπολογίστηκε από τη σχέση του Τσονόπουλου.
Gas Condensate	G1	G2	G3	G4	G5	G6	G7	G8
Source	Mørch, Ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. <i>Fluid Phase</i> <i>Equilibria.</i> 2006, pp. 138-145. Gas 3	Mørch, Ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. <i>Fluid Phase</i> <i>Equilibria.</i> 2006, pp. 138-145. Gas 4	Mørch, Ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. <i>Fluid Phase</i> <i>Equilibria.</i> 2006, pp. 138-145. Gas 5	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh- Roshanfekr equation of state. 2007, pp. 326-334.	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh- Roshanfekr equation of state. 2007, pp. 326-334.	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh- Roshanfekr equation of state. 2007, pp. 326-334.	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh- Roshanfekr equation of state. 2007, pp. 326-334.	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh- Roshanfekr equation of state. 2007, pp. 326-334.
paper/Compounds	Gust	Gub 4	Gubb	in a contract of the second seco				
H2S								
CO2	0.0391	0.0217	0.0061	0.0070	0.0060	0.0044		0.0061
N2	0.0075	0.0034	0.0042	0.0532	0.0556	0.0547		0.0046
C1	0.7020	0.7064	0.5753	0.8601	0.8519	0.8552	0.9135	0.6864
C2	0.0922	0.1076	0.1345	0.0349	0.0357	0.0350	0.0403	0.1390
C3	0.0276	0.0494	0.0752	0.0140	0.0154	0.0146	0.0153	0.0689
i-C4	0.0066	0.0000	0.0000	0.0036	0.0037	0.0037		0.0066
nC4	0.0098	0.0302	0.0415	0.0052	0.0057	0.0058	0.0082	0.0266
i-C5	0.0040	0.0000	0.0000	0.0028	0.0027	0.0028		0.0062
nC5	0.0042	0.0135	0.0233	0.0018	0.0023	0.0023	0.0034	0.0094
cy-C5	0.0000	0.0000	0.0000					
nC6	0.0082	0.0090	0.0179	0.0040			0.0039	0.0114
cy-C6								
Benzene								
nC7				0.0033				
2-M-C6								
M-cy-C6								
Toluene								
nC8				0.0029				
4-M-C7								
E-cy-C6								
E-Benzene								
nC9				0.0016				
4-M-C8								
Propyl-cy-C6								
Propyl-Benzene								
nC10				0.0015				
4-M-C9								
Butyl-cy-C6								
nC11				0.0010				
C/+	0.0987	0.0588	0.1220		0.0210	0.0214	0.0154	0.0348
C11+				0.0004				
C12+	103.0	150	102	0.0031	120.01	142.0	120 70	152.2
IVIVV(C+) (g/moi)	192.8	153	193	213	129.81	143.0	138.78	152.3
SG(15/15)(C+)	0.803	0.81	0.8115					
SG(60/60)(C+)				0.8314	0.7734	0.7861	0.7961	0.7763
Tb(C+) (K)				554.77	428.2	451.74	444.7	461.25
density (C+) (15 °C, 1 atm) (g/ml)	0.8023	0.8093	0.8108					
density C+(20 oC) (gr/ml)	0.7999	0.8069	0.8083	0.8281	0.7703	0.7830	0.7929	0.7732

Πίνακας 89: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G9	G10	G11	G13	G15	G16
Source	M.	м.	М.	Shariati, Peters	Majidi Seyed	Majidi Seyed
	Bonyadi	Bonyadi	Bonyadi	and	Mohammad	Mohammad
	and F.	and F.	and F.	Moshfegian.	Javad, et al.	Javad, et al.
	Esmaeilzad	Esmaeilza	Esmaeilzad	2001. Further	2014. Evolving	2014. Evolving
	eh, 2007.	deh,	eh, 2007.	evaluation of	an accurate	an accurate
	Prediction	2007.	Prediction	the Shariati-	model based	model based
	of gas	Prediction	of gas	Peters-	on machine	on machine
	condensate	of gas	condensate	Moshfeghian	learning	learning
	properties	condensa	properties	C/+	approach for	approach for
	Esmaoilzad	nropertie	Dy Esmaoilzad	n method	dew-point	dew-point
	eh-	shy	eh-	Fluid Phase	nressure in gas	nressure in gas
	Roshanfekr	Esmaeilza	Roshanfekr	Equilibria.	condensate	condensate
	equation of	deh-	equation of	2001, pp. 23-	reservoirs.	reservoirs.
	state. 2007,	Roshanfe	state.	41.	Chemical	Chemical
	pp. 326-	kr	2007, pp.		Engineering	Engineering
	334.	equation	326-334.		Research and	Research and
		of state.			Design. 2014,	Design. 2014,
		2007, pp.			pp. 891-902.	pp. 891-902.
Nomo in	Minture F	326-334.	Minture II	Deserver gee	1	2
name in namer/Compounds	Wixture F	Wixture G	WIXture H	condensate	1	2
H2S						
CO2	0.0244	0.0226	0.0030	0.0244	0.0028	0.0106
N2	0.0008	0.0567	0.0073	0.0008		0.0034
C1	0.8210	0.4574	0.7997	0.8210	0.8686	0.6831
C2	0.0578	0.1147	0.0756	0.0578	0.0237	0.0372
	0.0287	0.0759	0.0332	0.0287	0.0150	0.0244
nC4	0.0030	0.0638	0.0126	0.0030	0.0133	0 1716
i-C5	0.0052	0.0050	0.0036	0.0052	0.0133	0.1710
nC5	0.0060	0.0431	0.0056	0.0060	0.0086	0.0118
cy-C5						
nC6	0.0072	0.0592	0.0063	0.0072	0.0100	0.0097
су-Сб						
Benzene						
nC7			0.0101			
2-M-C6						
M-cy-C6						
Toluene			0.0072			
11C8			0.0072			
F-cy-C6						
E-Benzene						
nC9			0.0047			
4-M-C8						
Propyl-cy-C6						
Propyl-Benzene						
nC10			0.0031			
4-M-C9						
Butyl-cy-C6						
nC11	0.0010	0.1000		0.0210	0.0500	0.0400
C/+	0.0310	0.1066		0.0310	0.0580	0.0482
			0.0227			
MW(C+) (g/mol)	132	148	231	132	178	151
SG(15/15)(C+)	132	140	2.51	132	1/0	101
SG(60/60)(C+)	0.774	0.8044	0.8438	0.774	0.8681	0.7976
Tb(C+) (K)	430.96	462.89	579.6	430.96		
density (C+) (15 °C) (g/ml)	-					
density C+(20 oC) (gr/ml)	0.7709	0.8012	0.8404	0.7709	0.8647	0.7944

Πίνακας 90: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G17	G18	G19	G20	G21	G22	G23	G24
Source	Majidi Seyed	Majidi Seyed	Majidi Seyed	Majidi Seyed	Majidi Seyed	Majidi Seyed	Majidi Seyed	Majidi Seyed
	Mohammad	Mohammad	Mohammad	Mohammad	Mohammad	Mohammad	Mohammad	Mohammad
	Javad, et al.	Javad, et al.	Javad, et al.	Javad, et al.	Javad, et al.	Javad, et al.	Javad, et al.	Javad, et al.
	2014. Evolving	2014. Evolving	2014. Evolving	2014. Evolving	2014. Evolving	2014. Evolving	2014. Evolving	2014. Evolving
	an accurate	an accurate	an accurate	an accurate	an accurate	an accurate	an accurate	an accurate
	model based on	model based	model based	model based	model based	model based	model based	model based
	machine	on machine	on machine	on machine	on machine	on machine	on machine	on machine
	approach for	approach for	approach for	approach for	approach for	approach for	approach for	approach for
	prediction of	nrediction of	prediction of	prediction of	nrediction of	prediction of	prediction of	nrediction of
	dew-point	dew-point	dew-point	dew-point	dew-point	dew-point	dew-point	dew-point
	pressure in gas	pressure in	pressure in gas	pressure in				
	condensate	gas	condensate	condensate	condensate	condensate	condensate	gas
	reservoirs.	condensate	reservoirs.	reservoirs.	reservoirs.	reservoirs.	reservoirs.	condensate
	Chemical	reservoirs.	Chemical	Chemical	Chemical	Chemical	Chemical	reservoirs.
	Engineering	Chemical	Engineering	Engineering	Engineering	Engineering	Engineering	Chemical
	Research and	Engineering	Research and	Engineering				
	Design. 2014,	Research and	Design. 2014,	Research and				
	pp. 891-902.	Design. 2014,	pp. 891-902.	Design. 2014,				
		pp. 051-502.						pp. 051-502.
Name in	3	4	5	6	7	8	9	10
paper/Compounds								
Н25						0.00/1		0.0000
(02	0.0115	0.0117	0 0059	0 0059	0.0000	0.0041	0 0207	0.0000
N2	0.0032	0.0033	0.0000	0.0017	0.0161	0.4322	0.0020	0.0290
C1	0.8061	0.8562	0.9668	0.9359	0.9443	0.3344	0.8634	0.0349
C2	0.0460	0.0516	0.0119	0.0333	0.0153	0.0500	0.0464	0.0037
C3	0.0238	0.0223	0.0032	0.0094	0.0055	0.0424	0.0183	0.0018
i-C4								
nC4	0.0190	0.0127	0.0023	0.0047	0.0026	0.0322	0.0102	0.0022
	0.0110	0.0000	0.0028	0.0022	0.0120	0.0108	0.0021	0.0022
nus 0x-05	0.0116	0.0060	0.0028	0.0022	0.0128	0.0198	0.0031	0.0023
nC6	0.0088	0.0050	0.0014	0.0013	0.0015	0.0109	0.0028	0.0020
cy-C6								
Benzene								
nC7								
2-M-C6								
M-cy-C6								
Toluene								
nC8								
4-M-C/								
E-CY-CO								
nC9								
4-M-C8								
Propyl-cy-C6								
Propyl-Benzene								
nC10								
4-M-C9								
Butyl-cy-C6								
nC11								
C7+	0.0700	0.0311	0.0057	0.0056	0.0019	0.0243	0.0331	0.0049
C11+								
U_{12+}	19/	200	224	182	126	178	225	157
SG(15/15)(C+)	154	200	224	102	120	120	233	137
SG(60/60)(C+)	0.824	0.8324	0.8597	0.8185	0.7617	0.768	0.8368	0.8031
Tb(C+) (K)			··					
density (C+) (15 °C)(g/ml)								
density C+(20 oC) (gr/ml)	0.8207	0.8291	0.8563	0.8152	0.7587	0.7649	0.8335	0.7999

Πίνακας 910: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G25	G26	G27	G28	G29	G30	G31	G32
Source	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.
Name in paper/Compounds	11	12	13	14	15	16	17	18
H2S	0.0000	0.0000	0.0000	0.0000	0.0001	0.0948	0.2986	0.0000
CO2	0.0095	0.0021	0.0077	0.0009	0.0085	0.0053	0.0803	0.0582
N2	0.0000	0.0000	0.0000		0.0035	0.0089	0.0104	0.0000
C1	0.7406	0.9646	0.8980	0.9042	0.6253	0.6837	0.5275	0.5685
C2	0.0772	0.0216	0.0381	0.0160	0.1288	0.0563	0.0348	0.1109
C3	0.0485	0.0037	0.0151	0.0086	0.0684	0.0238	0.0082	0.0858
i-C4		0.0007	010101	0.0000	0.0001	010200	010002	010000
nC4	0.0310	0.0023	0.0080	0.0560	0.0332	0.0209	0.0055	0.0/181
i C5	0.0310	0.0025	0.0080	0.0300	0.0332	0.0205	0.0033	0.0401
1-05	0.0175	0.0000	0.0040	0.0020	0.0100	0.0122	0.0045	0.0221
nus	0.0175	0.0006	0.0040	0.0026	0.0189	0.0122	0.0045	0.0221
cy-C5								
nC6	0.0151	0.0005	0.0045	0.0024	0.0132	0.0148	0.0045	0.0152
cy-C6								
Benzene								
nC7								
2-M-C6								
M cy C6								
Toluono								
4-IVI-C7								
E-Cy-Co								
E-Benzene								
ncy								
4-171-08								
Propyl-cy-C6								
Propyl-Benzene								
nC10								
4-M-C9								
Butyl-cy-C6								
nC11								
C7+	0.0606	0.0046	0.0246	0.0093	0.1001	0.0793	0.0257	0.0912
C11+								
C12+								
MW(C+) (g/mol)	130	175	158	127	161	135	140	157
SG(15/15)(C+)								
SG(60/60)(C+)	0.7805	0.7821	0.7936	0.7627	0.8	0.7925	0.836	0.8312
Tb(C+) (K)								
density (C+) (15°C)(g/ml)								
density C+(20 oC) (gr/ml)	0.7774	0.7790	0.7904	0.7597	0.7968	0.7894	0.8327	0.8279

Πίνακας 92: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G33	G34	G35	G36	G37	G38	G39	G40
Source	Majidi Seyed	Majidi Seyed	M. Sportisse,	М.	M. Sportisse,	м.	М.	М.
	Mohammad	Mohammad	A. Barreau and	Sportisse, A.	A. Barreau	Sportisse, A.	Sportisse, A.	Sportisse, A.
	Javad, et al. 2014.	Javad, et al.	P. Ungerer,	Barreau and	and P.	Barreau and	Barreau and	Barreau and
	Evolving an	2014. Evolving	1997. Modeling	P. Ungerer,	Ungerer,	P. Ungerer,	P. Ungerer,	P. Ungerer,
	accurate model	an accurate	of gas	1997.	1997.	1997.	1997.	1997.
	based on machine	model based	condensates	Modeling of	Modeling of	Modeling of	Modeling of	Modeling of
	learning approach	on machine	properties	gas	gas	gas	gas	gas
	dow point	approach for	continuous	proportios	proportios	proportios	proportios	proportios
	nressure in gas	nrediction of	distribution	using	using	using	using	using
	condensate	dew-point	functions for	continuous	continuous	continuous	continuous	continuous
	reservoirs.	pressure in gas	the	distribution	distribution	distribution	distribution	distribution
	Chemical	condensate	characterisatio	functions for	functions for	functions for	functions for	functions for
	Engineering	reservoirs.	n of the heavy	the	the	the	the	the
	Research and	Chemical	fraction. Fluid	characterisa	characterisati	characterisa	characterisa	characterisa
	Design. 2014, pp.	Engineering	Phase	tion of the	on of the	tion of the	tion of the	tion of the
	891-902.	Research and	Equilibria.	heavy	heavy	heavy	heavy	heavy
		Design. 2014,	1997, pp. 255-	fraction.	fraction. <i>Fluid</i>	fraction.	fraction.	fraction.
		pp. 891-902.	276.	Fluid Phase	Phase	Fluid Phase	Fluid Phase	Fluid Phase
				Equilibria.	Equilibria.	Equilibria.	Equilibria.	Equilibria.
				255-276	276.	255-276	255-276.	255-276.
Name in paper/Compounds	19	20	GC-No1	GC-No2	GC-No3	GC-No4	GC-No5	GC-No6
H2S	0.1255	0.0000						
CO2	0.0510	0.0010	0.0351	0.0276	0.0217	0.0132	0.0105	0.0069
N2	0.0278	0.0000	0.0000	0.0041	0.0037	0.0075	0.0052	0.0079
C1	0.6627	0.9451	0.7605	0.7631	0.7679	0.7241	0.6700	0.7186
<u>C2</u>	0.0528	0.0168	0.0773	0.0966	0.0714	0.0924	0.0916	0.0952
	0.0216	0.0092	0.0390	0.0449	0.0359	0.0489	0.0507	0.0544
nC4	0.0132	0.0061	0.0076	0.0104	0.0054	0.0093	0.0095	0.0081
i-C5	0.0132	0.0001	0.0043	0.0050	0.0045	0.0064	0.0077	0.0058
nC5	0.0080	0.0031	0.0039	0.0034	0.0061	0.0069	0.0093	0.0078
cy-C5			0.0005	0.0002	0.0004	0.0004	0.0008	0.0008
nC6	0.0070	0.0032	0.0054	0.0038	0.0077	0.0076	0.0104	0.0074
су-Сб			0.0042	0.0021	0.0044	0.0029	0.0048	0.0034
Benzene			0.0013	0.0010	0.0023	0.0008	0.0012	0.0008
nC7			0.0037	0.0017	0.0053	0.0048	0.0074	0.0060
2-M-C6			0.0000	0.0020	0.0054	0.0044	0.0007	0.0050
M-cy-Cb Toluopo			0.0060	0.0028	0.0051	0.0041	0.0067	0.0050
nC8			0.0030	0.0024	0.0041	0.0017	0.0024	0.0011
4-M-C7			0.0025	0.0015	0.0011	0.0033	0.0000	0.0032
E-cy-C6			0.0036	0.0014	0.0028	0.0043	0.0053	0.0042
E-Benzene			0.0033	0.0023	0.0034	0.0025	0.0029	0.0016
nC9			0.0026	0.0016	0.0033	0.0035	0.0055	0.0044
4-M-C8								
Propyl-cy-C6			0.0015	0.0005	0.0011	0.0020	0.0029	0.0025
Propyl-Benzene			0.0017	0.0010	0.0016	0.0018	0.0029	0.0017
nC10			0.0017	0.0009	0.0023	0.0026	0.0043	0.0033
4-M-C9			0.0008	0.0003	0.0011	0.0014	0.0028	0.0017
BulyI-cy-Co			0.0008	0.0003	0.0011	0.0014	0.0028	0.0017
C7+	0.0304	0.0155						
C11+	0.0001	0.0100	0.0183	0.0089	0.0223	0.0301	0.0606	0.0286
C12+								
MW(C+) (g/mol)	132	127	203	214.35	203.61	217.92	222.14	208.93
SG(15/15)(C+)								
SG(60/60)(C+)	0.7942	0.7627						
Tb(C+) (K)			0.000	0.057	0.005	0.005	0.0505	0.0007
density (C+) (15 °C) (g/ml)	0 7010	0.7507	0.8384	0.8574	0.8351	0.8321	0.8585	0.8395
density C+(20 oC) (gr/ml)	0.7910	0.7597	0.8359	0.8548	0.8326	0.8296	0.8559	0.8370

Πίνακας 93: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G41	G42	G43	G44	G45	G46	G47	G48
Source	M. Sportisse.	M.	M.	M.	M.	М.	М.	M.
	A. Barreau and	Sportisse, A.						
	P. Ungerer.	Barreau and						
	1997. Modeling	P. Ungerer.						
	of gas	1997.	1997.	1997.	1997.	1997.	1997.	1997.
	condensates	Modeling of						
	properties	gas						
	using	condensates						
	continuous	properties						
	distribution	using						
	functions for	continuous						
	the	distribution						
	characterisatio	functions for						
	n of the heavy	the						
	fraction. Fluid	characterisa						
	Phase Equilibria	tion of the						
	Equilibria.	freetien	fraction	freetien	freetien	freetion	fraction	fraction
	1997, pp. 255-	Fluid Bhase	Fluid Bhase	Fluid Dhaco	Fluid Bhase	Fluid Phase	Fluid Phase	Fluid Bhaco
	270.	Fauilibria						
		1997 nn						
		255-276.	255-276.	255-276.	255-276.	255-276.	255-276.	255-276.
Name in paper/Compounds	GC-No7	GC-No8	GC-No9	GC-No10	GC-No11	GC-No12	GC-No13	GC-No14
H2S								
CO2	0.0209	0.0107	0.0392	0.0244	0.0267	0.0000	0.0248	0.0276
N2	0.0000	0.0283	0.0016	0.0069	0.0054	0.0000	0.0059	0.0039
C1	0.7740	0.8886	0.8609	0.7784	0.6613	0.7671	0.6418	0.7460
C2	0.0493	0.0506	0.0604	0.0756	0.0896	0.0978	0.0885	0.0709
C3	0.0380	0.0118	0.0183	0.0336	0.0464	0.0688	0.0560	0.0338
i-C4	0.0090	0.0020	0.0000	0.0043	0.0094	0.0000	0.0068	0.0046
nC4	0.0133	0.0027	0.0058	0.0104	0.0188	0.0262	0.0207	0.0121
i-C5	0.0064	0.0010	0.0000	0.0029	0.0080	0.0000	0.0063	0.0042
nC5	0.0050	0.0009	0.0021	0.0038	0.0090	0.0158	0.0094	0.0063
cy-C5	0.0010	0.0000	0.0000	0.0004	0.0010	0.0000		
nC6	0.0066	0.0007	0.0008	0.0038	0.0111	0.0002	0.0124	0.0082
cy-C6	0.0056	0.0002	0.0000	0.0030	0.0043	0.0000		
Benzene	0.0007	0.0001	0.0000	0.0013	0.0013	0.0000	0.0033	0.0028
nC7	0.0042	0.0005	0.0019	0.0029	0.0088	0.0007	0.0093	0.0046
2-M-C6						0.0001		
M-cy-C6	0.0084	0.0004	0.0000	0.0037	0.0064	0.0001	0.0088	0.0078
Toluene	0.0022	0.0004	0.0000	0.0023	0.0038	0.0000	0.0062	0.0045
nC8	0.0037	0.0001	0.0025	0.0028	0.0072	0.0001	0.0076	0.0048
4-M-C7						0.0006		
E-cy-C6	0.0051	0.0001	0.0000	0.0020	0.0048	0.0004	0.0081	0.0060
E-Benzene	0.0029	0.0000	0.0000	0.0022	0.0042	0.0001	0.0063	0.0046
nC9	0.0028	0.0002	0.0016	0.0023	0.0061	0.0000	0.0060	0.0037
4-M-C8						0.0005		
Propyl-cy-C6	0.0022	0.0001	0.0000	0.0014	0.0035	0.0000	0.0027	0.0013
Propyl-Benzene	0.0018	0.0000	0.0000	0.0011	0.0021	0.0012	0.0023	0.0018
nC10	0.0025	0.0001	0.0007	0.0020	0.0052	0.0001	0.0068	0.0035
4-M-C9						0.0009		
Butyl-cy-C6	0.0001	0.0000	0.0000	0.0001	0.0014	0.0019		
nC11								
C7+								
C11+	0.0342	0.0004	0.0042	0.0282	0.0540	0.0173	0.0600	0.0371
C12+								
MW(C+) (g/mol)	232.98	203.11	358.31	286.07	233.2	170	267	242
SG(15/15)(C+)								
SG(60/60)(C+)								
Tb(C+) (K)								
density (C+) (15 °C) (g/ml)	0.8398	0.8033	0.856	0.8515	0.8175		0.817	0.8479
density C+(20 °C) (gr/ml)	0.8373	0.8009	0.8534	0.8490	0.8151		0.8146	0.8454

Πίνακας 94: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G49	G50	G51	G52	G53	G54
Source	M. Sportisse A.	M. Sportisse A.	M. Sportisse	M. Sportisse	M. Sportisse	M. Sportisse
Course	Barreau and P	Barreau and P	A Barreau and	A Barreau and	A Barreau and	A Barreau and
	Ungerer 1997.	Ungerer 1997.	P. Ungerer	P. Ungerer	P. Ungerer	P. Ungerer
	Modeling of gas	Modeling of gas	1997. Modeling	1997, Modeling	1997, Modeling	1997, Modeling
	condensates	condensates	of gas	of gas	of gas	of gas
	nronerties using	nronerties using	condensates	condensates	condensates	condensates
	continuous	continuous	properties	properties	properties	properties
	distribution	distribution	using	using	using	using
	functions for the	functions for the	continuous	continuous	continuous	continuous
	characterisation	characterisation	distribution	distribution	distribution	distribution
	of the heavy	of the heavy	functions for	functions for	functions for	functions for
	fraction. Fluid	fraction. Fluid	the	the	the	the
	Phase Equilibria.	Phase Equilibria.	characterisatio	characterisatio	characterisatio	characterisatio
	1997. pp. 255-	1997. pp. 255-	n of the heavy			
	276.	276.	fraction. Fluid	fraction. Fluid	fraction. Fluid	fraction. Fluid
			Phase	Phase	Phase	Phase
			Equilibria.	Equilibria.	Equilibria.	Equilibria.
			1997, pp. 255-	1997, pp. 255-	1997, pp. 255-	1997, pp. 255-
			276.	276.	276.	276.
Name in paper/Compounds	GC-No15	GC-No16	GC-No17	GC-No18	GC-No19	GC-No20
H2S			0.0000	0.0224	0.0026	0.0139
CO2	0.0207	0.0287	0.0296	0.0184	0.0295	0.0392
N2	0.0041	0.0035	0.0323	0.0328	0.0376	0.0019
C1	0.7662	0.7753	0.8365	0.8100	0.8379	0.8551
C2	0.0740	0.0711	0.0423	0.0543	0.0443	0.0333
C3	0.0348	0.0322	0.0133	0.0198	0.0139	0.0165
i-C4	0.0048	0.0045	0.0036	0.0042	0.0038	0.0025
nC4	0.0127	0.0115	0.0054	0.0075	0.0057	0.0056
i-C5	0.0042	0.0038	0.0032	0.0033	0.0029	0.0020
nC5	0.0064	0.0056	0.0025	0.0032	0.0023	0.0023
cy-C5						
nC6	0.0084	0.0071	0.0051	0.0040	0.0033	0.0033
су-Сб						
Benzene	0.0007	0.0023	0.0010	0.0005	0.0005	0.0008
nC7	0.0092	0.0039	0.0045	0.0018	0.0020	0.0024
2-M-C6						
M-cy-C6	0.0034	0.0060	0.0027	0.0021	0.0014	0.0035
Toluene	0.0023	0.0033	0.0019	0.0006	0.0007	0.0022
nC8	0.0082	0.0035	0.0027	0.0016	0.0012	0.0021
4-M-C7	0.0004	0.0040	0.0007	0.0045	0.0011	0.0000
E-CY-C6	0.0031	0.0048	0.0027	0.0015	0.0011	0.0029
E-Benzene	0.0031	0.0033	0.0017	0.0008	0.0008	0.0016
nC9	0.0045	0.0027	0.0012	0.0011	0.0008	0.0015
4-IVI-C8	0.0010	0.0000	0.0000	0.0005	0.0004	0.0000
Propyl-cy-C6	0.0012	0.0008	0.0006	0.0005	0.0004	0.0006
Propyi-Benzene	0.0015	0.0013	0.0005	0.0005	0.0003	0.0004
	0.0035	0.0024	0.0010	0.0012	0.0008	0.0009
4-M-C9						
Butyl-cy-Co						
	0.0221	0.0227	0.0059	0.0079	0.0062	0.0052
	0.0231	0.0227	0.0039	0.0079	0.0002	0.0055
U_{12}^{+}	210	222	220	100 7	220	100
SG(15/15)(C+)	219	222	220	199.7	220	133
SG(15/15)(C+)						
$T_{h}(C_{+})(K)$						
$\frac{1}{10}(C+)(C+)(15 \circ C)(a/m!)$	0 8339	0 8392	0.8352	0.8213	0.8378	0.8358
density $(+)$ (15 C) (g/III)	0.8335	0.8352	0.8332	0.8188	0.8378	0.8333
activity C (20 0C) (81/111)	0.0014	0.0307	0.0327	0.0100	0.0000	0.0000

Πίνακας 95: Βάση δεδομένων των συστάσεων των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

2. Πειραματικά σημεία των real gas condensates

Στη συνέχεια δίνονται πειραματικά δεδομένα dew points για αυτά τα gas condensates, που βρέθηκαν στη βιβλιογραφία:

Gas Condensate	G1		G2		G3		G4		G5		G6	
Source	Mørch, ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria. 2006, pp. 138-145. Gas 3		Mørch, Ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria. 2006, pp. 138-145.		Mørch, Ø., et al. 2006. Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria. 2006, pp. 138-145.		M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh– Roshanfekr equation of state. 2007, pp. 326- 334.		M. Bonyadi Esmaeilzado Prediction o condensate Esmaeilzado equation of pp. 326-334	and F. ch, 2007. f gas properties by ch–Roshanfekr state. 2007,	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh–Roshanfekr equation of state. 2007, pp. 326-334.	
Name in	Gi	as 3	Gas 4		Gas 5		Mixt	ure A	Miz	ture B	Mixt	ture C
рарег	т(к)	P(bar)	т(к)	P(bar)	т(к)	P(har)	т(к)	P(bar)	T(K) P(bar)		т(к)	P(bar)
	313.5	450.2	408.7	334.7	-	-	379,817	269.86	305.3722	387.003	305.3722	414.582
	333.2	458.9							322.0389	378.729	322.0389	408.377
	352.8	465.3							355.3722	360.803	355.3722	394.587
	371.6	466.8							377.5944	342.187	372.5944	382.866
	390.5	460.7							382.0389	329.087	377.5944	380.108
	410.1	453.1									386.4833	373.213
	429.5	446.6										
	450.3	428.8										

Πίνακας 96: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas	G7	G8			G9		G10		G11	
Condensate										
Source	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh– Roshanfekr equation of state. 2007, pp.		M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh– Roshanfekr equation of state. 2007, pp. 326-334.		M. Bonyad Esmaeilzad Prediction condensatu properties Esmaeilzad Roshanfek of state. 20 326-334.	M. Bonyadi and F. Esmaeilzadeh, 2007. Prediction of gas condensate properties by Esmaeilzadeh– Roshanfekr equation of state. 2007, pp.		and F. h, 2007. f gas properties deh– equation of pp. 326-	M. Bonyad Esmaeilzad Prediction condensate properties Esmaeilzad Roshanfek of state. 20 326-334.	i and F. leh, 2007. of gas by leh- r equation 107, pp.
Name in	Mixtu	ire D	Mixt	ture E	Mixt	ure F	Mixture G		Mixtu	ire H
paper										
	Т(К)	P(bar)	T(K) P(bar)		Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	366.9833	264.6	363	235.365	355.6 281.003		435.9278 208.566		394	470.361

Πίνακας 97: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G13		G15 Majidi Seved Mohammad		G16		G17		G18	
Source	Shariati, F Moshfeg Further e of the S Pet Moshfeg characte metho Phase E 2001, p	Peters and ian. 2001. valuation shariati– ers– shian C7+ erization d. Fluid quilibria. p. 23-41.	Majidi Seyed Javad, et Evolving a model based learning ap prediction o pressur condensate Chemical E Research a 2014, pp.	Mohammad al. 2014. In accurate don machine oproach for of dew-point re in gas e reservoirs. Engineering and Design. . 891-902.	Majidi Seye Javad, e Evolving model base learning a prediction pressu condensa Chemical Research 2014, p	d Mohammad et al. 2014. an accurate ed on machine approach for of dew-point ure in gas te reservoirs. Engineering and Design. o. 891-902.	Majid Mohammar 2014. Ev accurate mo machine approach f of dew-poir gas cor reservoirs Engineerin and Des	i Seyed J Javad, et al. rolving an odel based on e learning or prediction nt pressure in idensate s. Chemical ng Research ign. 2014.	Majidi Seye Javad, et al. an accurat on mach approach fo dew-point condensa Chemical Research 2014, p	ed Mohammad 2014. Evolving e model based ine learning or prediction of pressure in gas te reservoirs. I Engineering and Design. p. 891-902.
Name in paper	Pazan condensa	an gas ite system	1			2		3		4
	Т(К)	P(bar)	T(K) P(bar)		Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	355.6	281	376.48 588.8123		388.71 394.3801		402.59	459.7424	405.37	743.9443

Πίνακας 98: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G	619	G	20		G21	G	22	G23			G24
Source	Majic Mohamm al. 2014. accurate r on machi appro predictio point pre condensat Chemical Research 2014, pp	li Seyed ad Javad, et Evolving an nodel based ne learning bach for on of dew- ssure in gas e reservoirs. Engineering and Design. 0. 891-902.	G20 Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Majii Moham et al. 20: an accu based c learnin for pre dew-poi in gas c reservoi Engi Research 2014, p	di Seyed mad Javad, 14. Evolving rate model on machine g approach ediction of nt pressure ondensate rs. Chemical neering and Design. p. 891-902.	Majid Mohamma al. 2014. E accurate m on machin appro predictio point pres condensate Chemical E Research a 2014, pp	i Seyed ad Javad, et ivolving an nodel based ne learning ach for n of dew- sure in gas e reservoirs. Engineering and Design. . 891-902.	Majid Mohamma al. 2014. E accurate m on machin appro predictio point pres condensate Chemical I Research a 2014, pp	i Seyed ad Javad, et evolving an nodel based ne learning ach for n of dew- ssure in gas e reservoirs. Engineering and Design. . 891-902.	Maji Mohamma 2014. I accurate on mach approach of dew-po gas cc reservoi Engineer and Desi 89	di Seyed ad Javad, et al. Evolving an model based nine learning for prediction int pressure in ondensate rs. Chemical ing Research gn. 2014, pp. 1-902.
Name in paper		5		6	7			8		9		10
	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	T(K)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	384.82	665.6888	284.26	301.4388	327.04	96.87134	383.15	304.9551	405.37	586.0544	335.37	126.5188

Πίνακας 99: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G	i25	G	26	(327	G	28	G	29	(G30
Source	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Majid Mohammac 2014. Ev accurate m on machii approach fo of dew-poin gas con reservoirs Engineerir and Design 891	Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew- point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Seyed d Javad, et volving an odel based he learning ach for n of dew- sure in gas reservoirs. ingineering ind Design. 891-902.	Majidi Mohamma al. 2014. E accurate m on machir approach fo of dew-poi in gas co reservoirs Engineerin and Desigr 891-	Seyed d Javad, et dvolving an odel based he learning or prediction nt pressure ndensate . Chemical g Research h. 2014, pp. -902.	Majidi Seye Javad, c Evolving model base learning a prediction press condensa Chemical Research 2014, p	ed Mohammad et al. 2014. an accurate ed on machine approach for of dew-point ure in gas te reservoirs. Engineering and Design. p. 891-902.
Name in												
paper	1	11	1	12	13		1	4	1	.5		16
	Т(К)	P(bar)	Т(К)	P(bar)	T(K) P(bar)		Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	394.26	233.3875	361.48 237.5244		377.59	404.7223	327.59	242.6955	363.15	319.2273	375.93	304.3346

Πίνακας 100: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	C	331	G3	2	G3	33	G3	34	G	35	(336
Source	G31 Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew- point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Majidi Seyed Mohammad Javad, et al. 2014. Evolving an accurate model based on machine learning approach for prediction of dew- point pressure in gas condensate reservoirs. Chemical Engineering Research and Design. 2014, pp. 891-902.		Majidi Mohamma al. 2014. En accurate m on machin approach fo of dew-poir in gas cor reservoirs. Engineerin and Design 891-1	Seyed d Javad, et volving an odel based e learning r prediction nt pressure ndensate Chemical g Research . 2014, pp. 902.	Majidi Mohammad 2014. Evc accurate me on machin approach for of dew-point gas conc reservoirs. Engineering and Design 891-5	Seyed Javad, et al. olving an odel based e learning r prediction r prediction r pressure in densate Chemical g Research . 2014, pp. 902.	M. Spor Barreau and 1997. Mod condensate using co distributio for the char of the heav Fluid Phase 1997, pp.	tisse, A. I P. Ungerer, eling of gas s properties ntinuous n functions facterisation vy fraction. Equilibria. 255-276.	M. Sportiss and P. Un Model condensat using c distributior the charac the heavy f Phase Equ pp. 2	se, A. Barreau gerer, 1997. ing of gas es properties ontinuous n functions for cterisation of fraction. Fluid iilibria. 1997, 55-276.
Name in paper	17		18		19		20	D	GC-	No1	GC	C-No2
	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	353.15	269.9297	415.37	307.8509	347.04	245.7291	344.26	263.7245	382.15	353	388.75	421

Πίνακας 101: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	(G37	G3	8	G	39	G4	10	G	41	(G42
Source	M. Spo	ortisse, A.	M. Sport	isse, A.	M. Sportisse, A.		M. Sportisse, A.		M. Sportisse, A.		M. Sportisse, A. Barreau	
	Barrea	au and P.	Barreau	and P.	Barreau and P.		Barreau and	Barreau and P. Ungerer,		I P. Ungerer,	and P. Ur	gerer, 1997.
	Ungerer, 1997.		Ungerer, 1997.		Ungerer, 1997.		1997. Mod	eling of gas	1997. Mod	eling of gas	Model	ing of gas
	Modeling of gas		Modeling of gas		Modeling of gas		condensates properties		condensates properties		condensat	es properties
	condensates		condensates		condensates properties		using cor	ntinuous	using co	ntinuous	using c	ontinuous
	properties using		properties using		using continuous		distribution functions		distribution functions		distributio	n functions for
	continuous distribution		continuous		distribution functions		for the characterisation		for the characterisation		the characterisation of	
	functions for the		distribution	functions	for the characterisation		of the heav	y fraction.	of the hear	vy fraction.	the heavy fraction. Fluid	
	character	isation of the	for the		of the heav	y fraction.	Fluid Phase	Equilibria.	Fluid Phase	e Equilibria.	Phase Equ	ilibria. 1997,
	heavy fra	action. Fluid	characterisation of the		Fluid Phase	Equilibria.	1997, pp.	255-276.	1997, pp.	255-276.	pp. 2	255-276.
	Phase Equ	ilibria. 1997,	heavy fract	tion. Fluid	1997, pp.	255-276.						
	pp. 2	255-276.	Phase Equili	bria. 1997,								
			pp. 25	5-276.								
Name in	G	No2	60.1		ec.	NoE					60	No8
paper	GC-N03		90-1	104	GC-I	105	GC-I	100	GC-NO7		G	-1100
	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	373.05	380.3	431.95	398	428.65	386	417.65	319	399.05	396	303.15	170.6

Πίνακας 102: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	C	643	G4	4	G4	15	G4	16	G	47	(G48
Source	G43 M. Sportisse, A. Barreau and P. Ungerer, 1997. Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. Fluid Phase Equilibria. 1997, pp. 255-276.		M. Sportisse, A. Barreau and P. Ungerer, 1997. Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. Fluid Phase Equilibria. 1997,		M. Sport Barreau Ungerer Modelin condensates using cor distributior for the chara of the heav Fluid Phase 1997, pp.	tisse, A. and P. 7, 1997. g of gas 5 properties 1 functions acterisation ry fraction. Equilibria. 255-276.	M. Sport Barreau and 1997. Mode condensates using cor distributior for the chara of the heav Fluid Phase 1997, pp.	tisse, A. P. Ungerer, eling of gas s properties n functions acterisation ry fraction. Equilibria. 255-276.	M. Spor Barreau and 1997. Mod condensate using co distributio for the char of the hear Fluid Phase 1997, pp.	tisse, A. I P. Ungerer, eling of gas s properties ntinuous n functions facterisation vy fraction. e Equilibria. 255-276.	M. Sportis and P. Ur Model condensat using c distribution the chara the heavy Phase Equ pp. 2	se, A. Barreau agerer, 1997. ing of gas es properties ontinuous n functions for cterisation of fraction. Fluid uilibria. 1997, 255-276.
Name in paper	GC-No9		GC-No10		GC-No11		GC-No12		GC-No13		GC	-No14
	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	422.15 715		398.15	576	456.05	329	314.1	249.1	379.85	378	380.35	451

Πίνακας 103: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

Gas Condensate	G	649	G5	0	G	51	G	52	G	53	(G54
Source	G49 M. Sportisse, A. Barreau and P. Ungerer, 1997. Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. Fluid Phase Equilibria. 1997, pp. 255-276. GC-No15		M. Sport Barreau Ungerer Modelin, conder propertic contin distribution for t characterisa heavy fract Phase Equili pp. 255	isse, A. and P. , 1997. g of gas isates es using uous functions he tion of the tion. Fluid bria. 1997, j-276.	M. Spor Barreau Ungerei Modelin condensates using cor distributior for the char of the heav Fluid Phase 1997, pp.	tisse, A. and P. r, 1997. g of gas s properties ntinuous n functions acterisation ry fraction. Equilibria. 255-276.	M. Spor Barreau and 1997. Mode condensates using cor distribution for the char of the heav Fluid Phase 1997, pp.	tisse, A. P. Ungerer, eling of gas s properties ntinuous n functions acterisation ry fraction. Equilibria. 255-276.	M. Spor Barreau and 1997. Mod condensate using co distributio for the char of the hear Fluid Phase 1997, pp.	tisse, A. I P. Ungerer, eling of gas s properties ntinuous n functions acterisation vy fraction. Equilibria. 255-276.	M. Sportis and P. Ur Model condensat using c distribution the chara the heavy Phase Equ pp. 2	se, A. Barreau ogerer, 1997. ing of gas es properties ontinuous n functions for cterisation of fraction. Fluid uilibria. 1997, 255-276.
Name in paper	GC-No15		GC-No16		GC-No17		GC-N	lo18	GC-I	No19	GC	-No20
	Т(К)	P(bar)	т(к)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)	Т(К)	P(bar)
	372.65	416	378.75	416	397.05	427	377.55	358.8	398.15	429	400.15	285

Πίνακας 104: Βάση δεδομένων των πειραματικών σημείων δρόσου των πραγματικών αέριων συμπυκνωμάτων φυσικού αερίου

ΠΑΡΑΡΤΗΜΑ Ε

1. Συστάσεις των συμπυκνωμάτων φυσικού αερίου

Παρακάτω παρουσιάζονται οι συστάσεις των συμπυκνωμάτων φυσικού αερίου, που δεν παρουσιάστηκαν παραπάνω, όπως προέκυψαν με τη μέθοδο MW-Matching:

Gas Condensate	G5	G10	G11	G13	G34	G51
CO2	0.0060	0.0226	0.0030	0.0244	0.0010	0.0296
N2	0.0556	0.0567	0.0073	0.0008	0.0000	0.0323
C1	0.8519	0.4574	0.7997	0.8210	0.9451	0.8365
C2	0.0357	0.1147	0.0756	0.0578	0.0168	0.0423
C3	0.0154	0.0759	0.0332	0.0287	0.0092	0.0133
i-C4	0.0037		0.0053	0.0056		0.0036
nC4	0.0057	0.0638	0.0126	0.0123	0.0061	0.0054
i-C5	0.0027		0.0036	0.0052		0.0032
nC5	0.0023	0.0431	0.0056	0.0060	0.0031	0.0025
cy-C5						
nC6		0.0592	0.0063	0.0072	0.0032	0.0051
cy-C6						
Benzene						0.0010
nC7			0.0101			0.0045
M-cy-C6						0.0027
Toluene						0.0019
nC8			0.0072			0.0027
E-cy-C6						0.0027
E-Benzene						0.0017
nC9			0.0047		0.0155	0.0012
Propyl-cy-C6						0.0006
Propyl-Benzene						0.0005
nC10	0.0210		0.0031	0.0310		0.0010
Butyl-cy-C6						
nC11		0.1066				
nC15						
nC16						0.0059
nC17			0.0227			

Πίνακας 105: Σύσταση των πραγματικών αέριων συμπυκνωμάτων με τη μέθοδο MW-Matching

2. Phase envelope

Παρακάτω παρουσιάζονται όλα τα phase envelope των υπολοίπων condensate που χαρακτηρίστηκαν με τη μέθοδο MW-Matching:

Διάγραμμα 74: Διάγραμμα φάσεων του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 75: Διάγραμμα φάσεων του αέριου συμπυκνώματος G10 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 76: Διάγραμμα φάσεων του αέριου συμπυκνώματος G11 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 77: Διάγραμμα φάσεων του αέριου συμπυκνώματος G13 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 78: Διάγραμμα φάσεων του αέριου συμπυκνώματος G34 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 79: Διάγραμμα φάσεων του αέριου συμπυκνώματος G51 με τη μέθοδο χαρακτηρισμού MW-Matching

3. Πειραματικά και υπολογισμένα σημεία cricondenbar και cricondentherm:

		Ex	perimental		SRK				
	Cricondentherm		Cricondenbar		Criconde	ntherm	Cricondenbar		
	т (К)	P (bar)	Т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	
G5	-	-	305.372	387.003	426.779	78.455	312.856	267.946	
G10	-	-	-	-	522.972	77.572	398.409	201.735	
G11	-	-	-	-	556.921	85.284	383.169	340.179	
G13	-	-	-	-	442.688	79.101	334.721	244.521	
G34	-	-	-	-	391.541	69.653	299.500	218.863	
G51	-	-	-	-	486.412	70.232	341.125	294.300	

Πίνακας 106: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

			PR		UMR-NEW					
	Cricondentherm		Cricondenbar		Criconde	ntherm	Cricondenbar			
	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)		
G5	422.259	70.527	307.352	252.813	423.100	71.733	-	-		
G10	518.332	71.465	393.399	196.551	522.430	75.052	422.890	205.365		
G11	549.318	73.601	373.552	316.403	547.310	65.943	349.000	396.800		
G13	438.190	71.597	328.960	233.039	438.980	72.732	297.210	266.790		
G34	387.632	63.519	294.582	207.899	390.090	65.646	-	-		
G51	479.809	61.568	333.222	273.034	482.840	60.066	-	-		

Πίνακας 107: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

4. Δοκιμές στα G5, G6 διαφορετικών αλκανίων για το χαρακτηρισμό

Στο σημείο αυτό παρουσιάζονται κάποιες δοκιμές που έγιναν σε αυτά τα condensate με τη μέθοδο MW-Matching, επειδή τα αποτελέσματα της μεθόδου δεν ήταν τόσο καλά.

Έτσι δοκιμάστηκε αρχικά στο G5 το κανονικό **δωδεκάνιο** και το κανονικό **δεκατετράνιο**. Τα αντίστοιχα phase envelope που προέκυψαν με UMR είναι:

Διάγραμμα 80: Διάγραμμα φάσεων του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού MW-Matching (κανονικό αλκάνιο που επιλέχθηκε: δωδεκάνιο)

Διάγραμμα 81: Διάγραμμα φάσεων του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού MW-Matching (κανονικό αλκάνιο που επιλέχθηκε: δεκατετράνιο)

Για το G6 δοκιμάστηκαν και πάλι το κανονικό **δωδεκάνιο** και το κανονικό **δεκατετράνιο.** Τα αντίστοιχα αποτελέσματα με UMR είναι:

Διάγραμμα 82: Διάγραμμα φάσεων του αέριου συμπυκνώματος G6 με τη μέθοδο χαρακτηρισμού MW-Matching (κανονικό αλκάνιο που επιλέχθηκε: δωδεκάνιο)

Διάγραμμα 83: Διάγραμμα φάσεων του αέριου συμπυκνώματος G6 με τη μέθοδο χαρακτηρισμού MW-Matching (κανονικό αλκάνιο που επιλέχθηκε: δεκατετράνιο)

Παρατηρούμε πως τώρα τα αποτελέσματα είναι σαφώς καλύτερα από τον προηγούμενο χαρακτηρισμό. Επειδή όμως δεν θεωρούνται αξιόπιστα, αφού δεν βασίζονται σε κάποια μέθοδο αλλά σε απλή δοκιμή, δεν παρουσιάζονται αναλυτικά.

ΠΑΡΑΡΤΗΜΑ Ζ

1. Συστάσεις των συμπυκνωμάτων φυσικού αερίου

Παρακάτω παρουσιάζονται οι συστάσεις των συμπυκνωμάτων φυσικού αερίου, που δεν παρουσιάστηκαν παραπάνω, όπως προέκυψαν με τη μέθοδο Tb-Matching:

Gas Condensate	G5	G13	G51
CO2	0.0060	0.0244	0.0296
N2	0.0556	0.0008	0.0323
C1	0.8519	0.8210	0.8365
C2	0.0357	0.0578	0.0423
C3	0.0154	0.0287	0.0133
i-C4	0.0037	0.0056	0.0036
nC4	0.0057	0.0123	0.0054
i-C5	0.0027	0.0052	0.0032
nC5	0.0023	0.0060	0.0025
nC6		0.0072	0.0051
Benzene			0.0010
nC7			0.0045
M-cy-C6			0.0027
Toluene			0.0019
nC8			0.0027
2,2 -DM- C8	0.0210		
E-cy-C6			0.0027
E-Benzene			0.0017
m-Ethyl- Toluene		0.0310	
nC9			0.0012
Propyl-cy-C6			0.0006
Propyl-Benzene			0.0005
nC10			0.0010
Butyl-cy-C6			
nC17			0.0059

Πίνακας 108: Συστάσεις των αέριων συμπυκνωμάτων με βάση τη μέθοδο χαρακτηρισμού Tb-Matching

2. Phase envelope

Παρακάτω παρουσιάζονται όλα τα phase envelope των υπολοίπων condensate που χαρακτηρίστηκαν με τη μέθοδο Tb-Matching:

Διάγραμμα 84: Διάγραμμα φάσεων του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού Tb-Matching

Διάγραμμα 85: Διάγραμμα φάσεων του αέριου συμπυκνώματος G13 με τη μέθοδο χαρακτηρισμού Tb-Matching

Διάγραμμα 86: Διάγραμμα φάσεων του αέριου συμπυκνώματος G51 με τη μέθοδο χαρακτηρισμού Tb-Matching

		Ex	perimental		SRK				
	Cricondentherm		Cricondenbar		Criconde	ntherm	Cricondenbar		
	т (К)	P (bar)	Т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	
G5	-	-	305.372	387.003	408.300	74.190	308.306	234.748	
G13	-	-	-	-	433.351	84.917	330.165	247.497	
G51	-	-	-	-	500.920	71.207	346.546	311.209	

3. Πειραματικά και υπολογισμένα σημεία cricondenbar και cricondentherm:

Πίνακας 109: Πειραματικές και υπολογισμένες τιμές cricondentherm, cricondenbar

			PR		UMR-NEW				
	Cricondentherm		Cricondenbar		Criconde	ntherm	Cricondenbar		
	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	
G5	404.050	67.355	302.723	222.618	405.120	68.653	-	-	
G13	429.161	78.470	325.219	236.659	431.630	84.455	313.430	263.467	
G51	493.810	62.048	338.257	286.987	495.310	59.203	-	-	

Πίνακας 110: Πειραματικές και υπολογισμένες τιμές cricondentherm, cricondenbar

ΠΑΡΑΡΤΗΜΑ Η

1. Συστάσεις των συμπυκνωμάτων φυσικού αερίου

Παρακάτω παρουσιάζονται οι συστάσεις των συμπυκνωμάτων φυσικού αερίου, που δεν παρουσιάστηκαν παραπάνω, όπως προέκυψαν με τη μέθοδο Modified Shariati:

Gas Condensate	G5	G10	G13	G34
CO2	0.0060	0.0226	0.0244	0.0010
N2	0.0556	0.0567	0.0008	0.0000
C1	0.8519	0.4574	0.8210	0.9451
C2	0.0357	0.1147	0.0578	0.0168
C3	0.0154	0.0759	0.0287	0.0092
i-C4	0.0037		0.0056	
nC4	0.0057	0.0638	0.0123	0.0061
i-C5	0.0027		0.0052	
nC5	0.0023	0.0431	0.0060	0.0031
nC6		0.0592	0.0072	0.0032
cy-C7				0.002631
i-p-cy-C5	0.0040			
trans-1,2-DM-cy-C6			0.0029	
cy-C8		0.0143		
E-Benzene				0.003347
o-Ethyltoluene	0.0064			
nC9			0.0222	
2,6-DM-C8	0.0106			
3-Methylnonane				
4-Methylnonane				0.009521
5-Methylnonane		0.0403		
1-Ethylnaphthalene			0.0058	
p-Diisopropylbenzene		0.0520		

Πίνακας 111: Σύσταση των αέριων συμπυκνωμάτων με βάση τη μέθοδο χαρακτηρισμού ΡΝΑ

2. Phase envelope

Παρακάτω παρουσιάζονται όλα τα phase envelope των υπολοίπων condensate που χαρακτηρίστηκαν με τη μέθοδο Modified Shariati:

Διάγραμμα 87: Διάγραμμα φάσεων του αέριου συμπυκνώματος G5 με τη μέθοδο χαρακτηρισμού PNA

Διάγραμμα 88: Διάγραμμα φάσεων του αέριου συμπυκνώματος G10 με τη μέθοδο χαρακτηρισμού PNA

Διάγραμμα 89: Διάγραμμα φάσεων του αέριου συμπυκνώματος G13 με τη μέθοδο χαρακτηρισμού PNA

Διάγραμμα 90: Διάγραμμα φάσεων του αέριου συμπυκνώματος G34 με τη μέθοδο χαρακτηρισμού PNA

		E	xperimental		SRK				
	Cricondentherm		Cricondenbar		Cricond	entherm	Cricondenbar		
	т (К)	P (bar)	т (К)	P (bar)	Т (К)	P (bar)	т (К)	P (bar)	
G5	-	-	305.372	387.003	409.323	77.7773	306.24	248.554	
G10	-	-	-	-	522.622	83.170	398.371	211.824	
G13	-	-	-	-	465.086	78.2745	340.928	273.041	
G34	-	-	-	-	395.803	70.7362	299.573	228.203	

3. Πειραματικά και υπολογισμένα σημεία cricondenbar και cricondentherm

Πίνακας 112: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

		Р	R		UMR-NEW				
	Cricondentherm		erm Cricondenbar		Criconde	entherm	Cricondenbar		
	т (К)	P (bar)	т (К)	P (bar)	т (К)	T (K) P (bar)		P (bar)	
G5	405.037	70.8109	301.668	235.523	406.010	74.042	283.420	277.296	
G10	518.272	76.754	393.789	206.666	521.240	80.078	417.3	217.946	
G13	460.581	71.8754	335.677	259.674	461.650	75.791	306.79	291.139	
G34	391.667	64.3452	294.899	216.267	393.770	66.861	-	-	

Πίνακας 113: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

ΠΑΡΑΡΤΗΜΑ Θ

1. Συστάσεις των συμπυκνωμάτων φυσικού αερίου

Οι συστάσεις, όπως προέκυψαν με τη μέθοδο Pedersen-Tb είναι:

Gas Condensate/ Compounds	G1	G2	G6	G10	G34
CO2	0.0391	0.0217	0.0044	0.0226	0.0010
N2	0.0075	0.0034	0.0547	0.0567	0.0000
C1	0.7021	0.7064	0.8552	0.4574	0.9451
C2	0.0922	0.1076	0.0350	0.1147	0.0168
C3	0.0276	0.0494	0.0146	0.0759	0.0092
i-C4	0.0066	0.0000	0.0037		
nC4	0.0098	0.0302	0.0058	0.0638	0.0061
i-C5	0.0040	0.0000	0.0028		
nC5	0.0042	0.0135	0.0023	0.0431	0.0031
cy-C5	0.0000	0.0000			
nC6	0.0082	0.0090		0.0592	0.0032
E-cy-C5		0.0202		0.0391	
1-M-1-E-cy-C5	0.0405				
2,2,4-TM-C5			0.0083		
trans-1,2-DM-cy-C6					0.0055
cy-C8			0.0051		
2,2,4,4-TM-C5					0.0046
1,3,5 Trimethyl Benzene (Mesitylene)					0.0016
i-p-Benzene (Cumene)		0.0133		0.0248	
p-Diisopropylbenzene	0.0239	0.0119			
tetralin					0.0025
Fluorene	0.0141				
1-M-Indene			0.0031	0.0157	
2,6-DM-Naphthalene			0.0031		
Diphenylethane				0.0162	
Pyrene				0.0109	
nC16		0.0077			
nC18					0.0013
nC23	0.0122				
nC24			0.0018		
nC26		0.0058			
nC44	0.0081				

Πίνακας114: Σύσταση των αέριων συμπυκνωμάτων με βάση τη μέθοδο χαρακτηρισμού Pedersen-Tb

2. Phase envelope

Διάγραμμα 91: Διάγραμμα φάσεων του αέριου συμπυκνώματος G1 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Διάγραμμα 92: Διάγραμμα φάσεων του αέριου συμπυκνώματος G2 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Διάγραμμα 93: Διάγραμμα φάσεων του αέριου συμπυκνώματος G6 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Διάγραμμα 94: Διάγραμμα φάσεων του αέριου συμπυκνώματος G10 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

Διάγραμμα 95: Διάγραμμα φάσεων του αέριου συμπυκνώματος G34 με τη μέθοδο χαρακτηρισμού Pedersen-Tb

3. Πειραματικά και υπολογισμένα σημεία cricondenbar και cricondentherm

Στο σημείο αυτό παρουσιάζονται τα πειραματικά και υπολογισμένα cricondentherm και cricondenbar για τα condensates που παρουσιάστηκαν σε αυτό το παράρτημα:

		E	xperimental		SRK				
	Cricondentherm		Cricondenbar		Cricondentherm		Cricondenbar		
	т (К)	P (bar)	т (К)	P (bar)	T (K) P (bar)		т (К)	P (bar)	
G1	-	-	-	-	724.003	53.7803	451.917	312.908	
G2	-	-	-	-	597.66	63.0933	405.632	298.208	
G6	-	-	305.3722	414.582	542.59	67.2412	340.871	391.428	
G10	-	-	-	-	614.935	79.2861	436.922	287.7	
G34	-	-	-	-	466.354	58.8657	322.123	281.992	

Πίνακας 115: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

		Р	R		UMR-NEW				
	Cricondentherm		Cricondenbar		Cricondentherm		Cricondenbar		
	т (К)	P (bar)	т (К)	P (bar)	T (K) P (bar)		т (К)	P (bar)	
G1	705.531	42.6029	426.537	276.035	-	-	-	-	
G2	587.118	53.9161	392.428	273.973	565.9008	50.5835	365.6435	309.0409	
G6	532.092	56.3968	331.916	348.739	531.2	53.548	-	-	
G10	609.421	72.8631	431.518	277.821	582.6	80.437	414.29	273.203	
G34	459.257	50.2821	314.933	259.762	463	53.737	-	-	

Πίνακας116: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

ΠΑΡΑΡΤΗΜΑ Ι

1. Συστάσεις των συμπυκνωμάτων φυσικού αερίου

Οι συστάσεις, όπως προέκυψαν με τη μέθοδο Pedersen-MW είναι:

Gas Condensate/ Compounds	G1	G6	G10	G34
CO2	0.0391	0.0044	0.0226	0.0010
N2	0.0075	0.0547	0.0567	0.0000
C1	0.7021	0.8552	0.4574	0.9451
C2	0.0922	0.0350	0.1147	0.0168
C3	0.0276	0.0146	0.0759	0.0092
i-C4	0.0066	0.0037		
Nc4	0.0098	0.0058	0.0638	0.0061
i-C5	0.0040	0.0028		
Nc5	0.0042	0.0023	0.0431	0.0031
cy-C5	0.0000			
Nc6	0.0082		0.0592	0.0032
E-cy-C5				0.0046
Nc7		0.0083	0.0391	
i-p-cy-C5	0.0404			0.0055
n-pentylbenzene		0.0031	0.0157	
PropylCyclohexane		0.0051	0.0248	
Cyclohexylbenzene				
tetralin				0.0016
Fluorene	0.0239			
Nc11				0.0025
Nc14		0.0031	0.0162	
Nc15				
Nc16	0.0141			0.0013
Nc20		0.0018	0.01088	
Nc21	0.0122			
Nc22				
Nc32	0.0081			

Πίνακας117: Σύσταση των αέριων συμπυκνωμάτων με βάση τη μέθοδο χαρακτηρισμού Pedersen-MW

2. Phase envelope

Διάγραμμα 96: Διάγραμμα φάσεων του αέριου συμπυκνώματος G1 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Διάγραμμα 97: Διάγραμμα φάσεων του αέριου συμπυκνώματος G6 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Διάγραμμα 98: Διάγραμμα φάσεων του αέριου συμπυκνώματος G10 με τη μέθοδο χαρακτηρισμού Pedersen-MW

Διάγραμμα 99: Διάγραμμα φάσεων του αέριου συμπυκνώματος G34 με τη μέθοδο χαρακτηρισμού Pedersen-MW

3. Πειραματικά και υπολογισμένα σημεία cricondenbar και cricondentherm

Στο σημείο αυτό παρουσιάζονται τα πειραματικά και υπολογισμένα cricondentherm και cricondenbar για τα condensates που παρουσιάστηκαν σε αυτό το παράρτημα:

		Expe	rimental		SRK				
	Cricondentherm		erm Cricondenbar		Criconde	ntherm	Cricondenbar		
	Т (К)	P (bar)	Т (К)	P (bar)	T (K) P (bar)		Т (К)	P (bar)	
G1	-	-	-	-	684.086	83.270	-	-	
G6	-	-	305.372	414.582	507.076	79.989	-	-	
G10	-	-	-	-	572.823	68.100	409.042	237.718	
G34	-	-	-	-	442.392	68.083	294.324	310.485	

Πίνακας 118: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

		F	PR		UMR-NEW				
	Cricondentherm		ntherm Cricondenbar		Cricondentherm		Cricondenbar		
	Т (К)	P (bar)	Т (К)	P (bar)	T (K) P (bar)		Т (К)	P (bar)	
G1	665.841	72.703	404.883	508.812	650.009	61.884	313.875	512.194	
G6	502.927	63.796	-	-	500.350	56.318	-	-	
G10	561.257	57.336	434.138	217.061	564.150	56.661	423.790	228.675	
G34	442.169	57.182	294.378	290.000	443.750	56.333	-	-	

Πίνακας 119: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar

ΠΑΡΑΡΤΗΜΑ Κ

Παρακάτω παρουσιάζεται για κάθε condensate που δεν παρουσιάστηκε στο κυρίως μέρος η σύγκριση των μεθόδων χαρακτηρισμού στο ίδιο condensate με το ίδιο μοντέλο.

Διάγραμμα 100: Σύγκριση του διαγράμματος φάσεων του αέριου συμπυκνώματος G2 με διάφορες μεθόδους χαρακτηρισμού και το μοντέλο UMR

Διάγραμμα 101: Σύγκριση του διαγράμματος φάσεων του αέριου συμπυκνώματος G5 με διάφορες μεθόδους χαρακτηρισμού και το μοντέλο UMR

Διάγραμμα 102: Σύγκριση του διαγράμματος φάσεων του αέριου συμπυκνώματος G6 με διάφορες μεθόδους χαρακτηρισμού και το μοντέλο UMR

ΠΑΡΑΡΤΗΜΑ Λ

Στο σημείο αυτό παρουσιάζεται η σύγκριση της SRK με kij και χωρίς kij με τη μέθοδο PNA:

Διάγραμμα 103: Σύγκριση των αποτελεσμάτων της SRK με και χωρίς kij με τη μέθοδο χαρακτηρισμού PNA για το αέριο συμπύκνωμα G1

Διάγραμμα 104: Σύγκριση των αποτελεσμάτων της SRK με και χωρίς kij με τη μέθοδο χαρακτηρισμού PNA για το αέριο συμπύκνωμα G5

Διάγραμμα 105: Σύγκριση των αποτελεσμάτων της SRK με και χωρίς kij με τη μέθοδο χαρακτηρισμού PNA για το αέριο συμπύκνωμα G10

Διάγραμμα 106: Σύγκριση των αποτελεσμάτων της SRK με και χωρίς kij με τη μέθοδο χαρακτηρισμού PNA για το αέριο συμπύκνωμα G34

Διάγραμμα 107: Σύγκριση των αποτελεσμάτων της SRK με και χωρίς kij με τη μέθοδο χαρακτηρισμού PNA για το αέριο συμπύκνωμα G35

ΠΑΡΑΡΤΗΜΑ Μ

Όπως αναφέρθηκε στην περίπτωση του πρώτου χαρακτηρισμού με το μοριακό βάρος δοκιμάστηκε και η PC-SAFT. Πρόκειται για μία μη κυβική καταστατική εξίσωση. Επειδή οι δοκιμές έγιναν μόνο με μία μέθοδο χαρακτηρισμού, τα αποτελέσματα παρουσιάζονται στο παράρτημα και δε συγκρίνονται με αυτά των άλλων μοντέλων, αν και φαίνεται να πηγαίνει αρκετά καλά αυτό το μοντέλο.

Διάγραμμα 108: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G1 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 109: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G2 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 110: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G4 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 111: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G5 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 112: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G6 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 113: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G10 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 114: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G11 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 115: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G13 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 116: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G21 με τη μέθοδο χαρακτηρισμού MW-Matching

Διάγραμμα 117: Διάγραμμα φάσεων με διάφορα μοντέλα (Συμπεριλαμβανομένου της PC-SAFT) για το αέριο συμπύκνωμα G34 με τη μέθοδο χαρακτηρισμού MW-Matching

Από τα παραπάνω είναι εμφανές ότι η PC-SAFT είναι ένα πολύ καλό μοντέλο για τα αέρια συμπυκνώματα. Ακολουθεί την τάση του UMR, ενώ κάποιες φορές (όπως στο G1), πηγαίνει καλύτερα σε ορισμένα σημεία). Φαίνεται μάλιστα να είναι καλύτερο μοντέλο από την SRK και την PR, τουλάχιστον όταν σε αυτές δεν χρησιμοποιούνται kij.

Στο σημείο αυτό παρουσιάζονται τα αποτελέσματα με την PC-SAFT για τα σημεία cricondentherm και cricondenbar:

Real Condensate	Experimental				PC-SAFT			
	Cricondentherm		Cricondenbar		Cricondentherm		Cricondenbar	
	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)	т (К)	P (bar)
G1	-	-	-	-	585.518	82.7138	374.293	348.597
G2	-	-	-	-	493.908	76.188	344.432	265.860
G4	-	-	-	-	464.095	58.874	298.575	285.815
G5	-	-	305.372	387.003	424.510	70.830	291.099	265.474
G6	-	-	305.372	414.582	447.638	73.174	296.857	295.319
G10	-	-	-	-	524.389	70.641	387.642	206.196
G11	-	-	-	-	556.016	74.275	345.132	356.173
G13	-	-	-	-	441.512	72.702	311.263	249.316
G21	-	-	-	-	331.579	44.4462	263.238	137.974
G34	-	-	-	-	390.343	65.1484	282.492	213.613

Πίνακας 120: Πειραματικά και υπολογισμένα σημεία cricondentherm, cricondenbar