
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Σχεδίαση και Υλοποίηση Κατανεμημένου
Συστήματος για την Αυτόματη Αξιολόγηση

Προγραμματιστικών Ασκήσεων

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΝΙΚΟΛΑΟΣ ΤΣΙΑΜΗΤΡΟΣ

Επιβλέπων : Νικόλαος Παπασπύρου

Αναπ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούνιος 2015





Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Σχεδίαση και Υλοποίηση Κατανεμημένου
Συστήματος για την Αυτόματη Αξιολόγηση

Προγραμματιστικών Ασκήσεων

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΝΙΚΟΛΑΟΣ ΤΣΙΑΜΗΤΡΟΣ

Επιβλέπων : Νικόλαος Παπασπύρου

Αναπ. Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 19η Ιουνίου 2015.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Νικόλαος Παπασπύρου
Αναπ. Καθηγητής Ε.Μ.Π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Κωνσταντίνος Κοντογιάννης
Αναπ. Καθηγητής Ε.Μ.Π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Δημήτριος Φωτάκης
Επίκ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούνιος 2015



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Νικόλαος Τσιαμήτρος
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών
Ε.Μ.Π.

Copyright © Νικόλαος Τσιαμήτρος, 2015.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλή-
ρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και
διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπό-
θεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα
που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς
τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-
γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού
Μετσόβιου Πολυτεχνείου.



Περίληψη

Τα κατανεμημένα συστήματα έδωσαν τη δυνατότητα σχεδιασμού γρήγορων, αποκρίσιμων
και ανθεκτικών στις αποτυχίες εφαρμογών. Τρέχοντας σε περισσότερα από ένα μηχανήματα
κάθε στιγμή, μπορούν να χωρίσουν το συνολικό φορτίο σε κομμάτια και να τα μοιράσουν σε
διαφορετικούς κόμβους, ελαχιστοποιώντας έτσι τον χρόνο που απαιτείται για να ολοκληρω-
θεί μια εργασία ή ένα σύνολο από εργασίες που διαφορετικά θα εκτελούνταν ακολουθιακά.
Μια τέτοια εφαρμογή, αν σχεδιαστεί σωστά, μπορεί ιδανικά να εξυπηρετήσει τις αιτήσεις
όλων των πελατών που δυνητικά μπορεί να έχει, χωρίς να ανησυχεί ποτέ για τον πραγματικό
τους αριθμό ή για τον όγκο εργασίας που απαιτούν οι αιτήσεις τους. Η ανάγκη για μια πα-
ρόμοια κατανεμημένη εφαρμογή που μπορεί να κλιμακώνει, ώστε να αναλαμβάνει μεγάλα
φορτία με αποτελεσματικό τρόπο, είναι το κίνητρο πίσω από τη συγκεκριμένη διπλωματική
εργασία.

Αρχίσαμε δουλεύοντας με ένα υπάρχον σύστημα, το οποίο χρησιμοποιείται σε διάφορα μα-
θήματα του πολυτεχνείου και στον Πανελλήνιο Διαγωνισμό Πληροφορικής, για να λαμβάνει
και να αξιολογεί προγράμματα, που υποβάλλονται ως λύσεις σε προκαθορισμένα προβλή-
ματα. Στόχος μας ήταν να επεκτείνουμε το σύστημα για να το καταστήσουμε κλιμακώσιμο
καθώς και να παρέχουμε τις ικανότητές του ως μια δημόσια διαθέσιμη υπηρεσία. Για να
πετύχουμε αυτούς τους σκοπούς, σχεδιάσαμε μια κατανεμημένη αρχιτεκτονική, η οποία κα-
τανέμει τις εισερχόμενες αιτήσεις για αξιολόγηση σε πολλαπλούς εργάτες αξιολόγησης και
παρέχει μια κατάλληλη διεπαφή για να υπάρχει απομακρυσμένη πρόσβαση στις δυνατότητες
αυτές.

Στη συνέχεια, υλοποιήσαμε την αρχιτεκτονική μας, στην οποία ενσωματώσαμε το αρχικό
σύστημα, το οποίο δρα ως εργάτης αξιολόγησης (ή απλά εργάτης). Έπειτα, δοκιμάσαμε το
σύστημα για να επαληθεύσουμε την αποτελεσματικότητά του και διαπιστώσαμε ότι η ανα-
μενόμενη επιτάχυνση στη διαδικασία αξιολόγησης επιτυγχάνεται.

Λέξεις κλειδιά

Grader, σύστημα αξιολόγησης προγραμματιστικών ασκήσεων, Hellenico, κατανεμημένο σύ-
στημα, ZeroMQ, RESTful API, Django REST framework, NFS, message broker, thread pool
pattern.

5





Abstract

Distributed concurrent systems have enabled the design of fast, responsive, and fault-tolerant
applications. Running on more than one single machine at any given instance, they can split
the total workload and dispatch the resulting chunks to different nodes, thus minimizing the
time needed to complete a task or a set of tasks that would otherwise be executed sequentially.
Such an application, if designed properly, could ideally serve all its potential client requests
without ever worrying about their actual number or the amount of work their requests demand.
The need for a similar distributed application that can scale to successfully undertake big
workloads is the motivation behind this particular thesis.

We started with an existing system, which is used in various university courses and in the
Greek Computing Olympiad for high-school students, for receiving and evaluating programs,
submitted as solutions to predefined problems. Our aim was to expand this system to make it
scalable and provide its resources as a publicly available service. To accomplish these targets,
we designed a distributed architecture, which distributes incoming evaluation requests to
multiple evaluation workers and provides an appropriate interface to access those resources
remotely.

Subsequently, we implemented our architecture towhichwe incorporated the original system,
which acts as an evaluation worker (or simply worker). Then, we tested the system to verify
its effectiveness, and we concluded that the expected speedup in the evaluation process is
achieved.

Key words

grader, evaluation system, Hellenico, distributed system, ZeroMQ, RESTful API, Django
REST framework, NFS, message broker, thread pool pattern

7





Ευχαριστίες

Αρχικά θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή Νικόλαο Παπασπύρου,
που μου έδωσε την ευκαιρία να πραγματοποιήσω αυτήν τη διπλωματική εργασία και με
βοήθησε καθοριστικά στην προσπάθεια ολοκλήρωσής της.

Ακόμη, θα ήθελα να ευχαριστήσω ιδιαίτερα τον Ιωάννη Χατζημίχο, που (μαζί με το Χρήστο
Τζάμο) υλοποίησε το αρχικό σύστημα αυτόματης αξιολόγησης, πάνω στο οποίο στηρίχτηκε
αυτή η διπλωματική εργασία, και ο οποίος με καθοδήγησε στη σχεδίαση και υλοποίηση του
νέου συστήματος και μου προσέφερε ουσιαστική βοήθεια σε όλα τα στάδια της εργασίας.

Επίσης, οφείλω ένα ευχαριστώ στον Άγγελο Γιάντσιο για τη συμβολή του τόσο μέσω των
συζητήσεων που είχα μαζί του όσο και μέσω της τεχνικής υποστήριξης που μου προσέφερε.

Τέλος, ευχαριστώ την οικογένεια και τους φίλους μου για την αμέριστη στήριξή τους σε όλη
την διάρκεια της φοιτητικής μου διαδρομής.

Νικόλαος Τσιαμήτρος,

Αθήνα, 19η Ιουνίου 2015

Η εργασία αυτή είναι επίσης διαθέσιμη ως Τεχνική Αναφορά CSD-SW-TR-4-15, Εθνικό Μετσόβιο
Πολυτεχνείο, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Τομέας Τεχνολογίας
Πληροφορικής και Υπολογιστών, Εργαστήριο Τεχνολογίας Λογισμικού, Ιούνιος 2015.

URL: http://www.softlab.ntua.gr/techrep/

FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9





Contents

Περίληψη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Ευχαριστίες . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Thesis motivation and background . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Properties of Distributed Systems . . . . . . . . . . . . . . . . . . 23
2.1.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Communication Paradigms . . . . . . . . . . . . . . . . . . . . . . 24

2.2 ZeroMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 ZeroMQ Technology . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 ZeroMQ Message Handling . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 The ZeroMQ Message Transfer Protocol . . . . . . . . . . . . . . 26
2.2.4 Messaging Patterns of ZeroMQ . . . . . . . . . . . . . . . . . . . 27
2.2.5 The Request-Reply pattern . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 ZeroMQ Example . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Representational State Transfer . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Django REST framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Existing Evaluation System . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Submissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.4 Graders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11



4.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 HTTP servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Safety System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.5 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.6 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 HTTP server node failure . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.2 Broker node failure . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.3 Safety system failure . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.4 Worker node failure . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Front-end Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Back-end Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Safety System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Adjustments to the Previous Architecture . . . . . . . . . . . . . . 63
5.2.5 Evaluation System Behaviour . . . . . . . . . . . . . . . . . . . . 65

6. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Testbed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Evaluation of the new architecture . . . . . . . . . . . . . . . . . . . . . . 69

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12



List of Figures

3.1 The overall architecture of the original evaluation system . . . . . . . . . . 39
3.2 The overall behaviour of the original evaluation system. . . . . . . . . . . . 41

4.1 The proposed distributed architecture for the evaluation system . . . . . . . 44
4.2 The exchange of messages in the system in order to evaluate a submission . 51

5.1 The overall behaviour of the broker. . . . . . . . . . . . . . . . . . . . . . 61
5.2 The overall behaviour of the adjusted evaluation system. . . . . . . . . . . 67

6.1 The time needed to evaluate 200 submissions . . . . . . . . . . . . . . . . 70
6.2 The speedup achieved for 200 submissions . . . . . . . . . . . . . . . . . 71

13





List of Tables

4.1 The task table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 The submission table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 The grader table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 The result table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15





List of Listings

2.1 An exchange of messages with ZeroMQ - Component A . . . . . . . . . . 30
2.2 An exchange of messages with ZeroMQ - Component B . . . . . . . . . . 30
5.1 The submission_t data structure we used for submissions. . . . . . . . . . 64

17





Chapter 1

Introduction

The purpose of this thesis is to design and implement a distributed system for receiving and
evaluating programs, submitted as solutions to predefined problems. It is based on an ex-
isting automatic evaluation system, which is used for programming competitions and class
assignments. We refer to this system as evaluation system or grading system.

A typical use case of the system, for example during a competition, consists of the following
steps:

1. The competition administrators provide the specifications of the problems to be solved.
For each problem, called task, these include information concerning the input and output
filnames of the solutions, the time and memory limits and the test cases to be used. Each
test case consists of an (input, expected output) pair. The input is an arbitrary byte
sequence conforming to the format described in the task specifications and is provided as
input to solutions. The expected output contains the value which solutions considered
as “correct” are expected to produce.

2. The participants design and implement algorithmic solutions for each of the tasks and
submit their source code to the evaluation system.

3. The system compiles the submitted solutions received, called submissions and runs the
resulting executables against a set of the test cases available.

4. The participants receive feedback concerning the performance of their solutions, either
in real-time or at the end of the competition.

The focus of the particular thesis is to expand the previous system, in order to achieve two
goals:

• To provide the ability to simultaneously process multiple submitted solutions and in-
crease the availability and resilience of the system.

• To create and expose a public interface, which will provide a unified way to access the
grading resources, in order to offer grading as a service.

To achieve the first goal we designed and implemented a distributed system that uses multiple
computer nodes to deploy instances of the automatic evaluation system, while it also exploits
the parallelism capabilities inside each multi-core node, deploying multiple instances of the

19



system simultaneously. The system then takes up the task of receiving new submitted solu-
tions from clients and passing them to one of the available evaluation systems running on the
nodes. Using our architecture, the system can withstand failures and recover effectively from
them.

To provide a grading service, we designed and implemented a REST API, which we then
exposed publicly. This way, any evaluation system can benefit from the service, in order to
provide the desired capabilities to its clients, without the need to implement a back-end, that
would actually do the evaluation and grading.

1.1 Thesis motivation and background

The motivation behind this thesis emerged from the need to increase the performance and
availability of the existing evaluation system, which does not implement any form of paral-
lelism in the submission evaluation process. The system receives submitted solutions, com-
piles them appropriately, executes them against a given set of test cases in a sandboxed envi-
ronment, and evaluates them based on the output they produce. As only a single grading node
is used, it examines the incoming submissions sequentially, one at a time. Consequently, un-
der situations of intensive work, such as a competition, a lab or an assignment deadline, this
can result in big queues of submissions waiting to be processed, delaying feedback to the
students and possibly making the system unresponsive.

Moreover, the existing, single-node system lacks availability. In case of node failure, it be-
comes inaccessible and cannot accept new submissions or evaluate the ones in queue, which
is highly undesirable, especially in the case of a competition. We need to expand the system
to withstand node failures and, when not possible, we must ensure that it will be able to fully
recover its previous state, by eliminating the possibility of data loss.

It becomes evident, that the only way to improve the performance of the system and to make
it reliable and highly available is to make it distributed, exploiting the parallelism capabilities
of a multi-core, multi-node cluster environment.

Furthermore, creating a distributed evaluation system that can successfully handle big work-
loads, provides the chance to offer the resources for wider use, as a service, for other academic
divisions or individuals. Therefore, it was necessary to design and expose a RESTful API to
provide unified access to our resources, through standard HTTP requests.

Finally, the automatic evaluation system has been proven valuable, as it has been used for
many years, having become an integral part of many classes offered at the National Techni-
cal University of Athens for automatically evaluating and grading student solutions to class
assignments, and of the Panhellenic Competition in Informatics, which uses it for the needs
of the competition. It is therefore important to provide a scalable and distributed, but above
all reliable and fault-tolerant evaluation service, which is the main focus of this particular
thesis.

20



1.2 Thesis structure

The thesis is organized as follows:

Chapter 2:
We provide the necessary theoretical background for the concepts and entities that are
being discussed throughout the thesis.

Chapter 3:
We present the architecture of the existing evaluation system and describe its function.

Chapter 4:
This chapter provides a thorough explanation of our design proposal. We present our
architecture and describe in detail its individual components and the way they provide
our system with the desired properties.

Chapter 5:
We provide a comprehensive description of the way we implemented the various com-
ponents of our system that we presented in the previous chapter.

Chapter 6:
We evaluate the performance of our design and implementation.

Chapter 7:
We provide some concluding remarks about our thesis and discuss some ideas for future
work that will further expand and improve our system.

21





Chapter 2

Theoretical Background

2.1 Distributed Systems

A distributed system consists of multiple hardware or software components, located at differ-
ent, networked nodes, which cooperate and communicate for a common purpose solely via
message passing [2] [6]. This definition, and the properties presented below, become clear in
Chapter 4, where we present the design of our distributed system.

2.1.1 Properties of Distributed Systems

The most significant properties of distributed systems are:

• Concurrency of components: In the network of nodes comprising the system, typically
many programs run concurrently, possibly by different users, sharing system resources.
The system structure is dynamic and can change by adding/removing resources to/from
the network, while processing a distributed task.

• No global clock: Since the coordination of components is done by exchanging messages
through a network, it is a challenging task for the computers to accurately synchronize
their clocks, resulting in the absence of a single global notion of the correct time.

• Independent component failures: The independent nature of the distributed components
means that the system can fail in many different ways. One or more components may
crush or become inaccessible, due to network faults, leaving other parts of the system
still running, often unaware of the situation.

2.1.2 Architectures

The architecture of a distributed system specifies the way its discrete components are struc-
tured, interrelated and interconnected. It usually falls under one of the following architectural
models:

• Client-Server: In this model there are two distinct entities: the client and the server.
The system components can be classified as either of them or sometimes even as both,
based on their role. The server’s role is to provide a service by receiving and responding

23



to requests from clients. The clients are the service requesters that communicate with
the server to consume its products and they use the data they receive to perform tasks.
Typically, there is a limited number of servers, often just one, and many clients con-
nected to them. Consequently, the provision of service is centralized and the system’s
scaling capabilities limited. However, since this model provides a direct and relatively
simple method to share resources and data, it remains the most widely used. This model
is used by the architecture we design and present in Section 4.2, for the broker-worker
interaction.

• Peer-to-Peer: This architecture describes systems, in which all components involved in
a task have similar roles, dividing the workload among them. There is no distinction
between client and server, but all components send and receive data and provide mem-
ory and processing power to the system, interacting as peers. As a consequence, as the
number of components increases, so are the resources available to run the service. We
should mention that we do not use this model in our architecture.

2.1.3 Communication Paradigms

Since the components of distributed systems are distinct, living on the same or separate net-
worked computer nodes, they need to communicate in order to coordinate and exchange data.
There are many ways through which this is achieved, but they usually follow one, or both, of
the following basic paradigms:

• Remote invocation: This type of communication involves a bidirectional data exchange
between two components of a distributed system, which results to the remote invocation
of a procedure on one of the two components.

• Indirect communication: In this paradigm the communication between two components
is indirect, which means that it does not take place directly between them, but it is
accomplished through a third entity. As a result, the two communicating parties do not
need to exist at the same time (temporal uncoupling) and the sender does not need to
know the receiver (spatial uncoupling).

We will examine three particular examples that follow the aforementioned paradigms. These
include the request-reply protocols and remote procedure calls, which follow the paradigm
of remote invocation, and message queues, which provide a technique for indirect commu-
nication. These techniques are important to the implementation of the distributed system we
intend to build.

Request-reply protocols

Request-reply protocols are a group of protocols following the remote invocation paradigm,
used to support a Client-Server communication architecture. They usually start with a request
from the client to the server, in the form of a message exchange, which results to the invo-
cation of an operation on the server that processes the request. The results of this operation
are sent back to the client as a message response, encoded as an array of bytes. The message
exchange in such protocols is typically synchronous, in the sense that the client actively waits

24



for the response through an open connection to the server, but can also be implemented in an
asynchronous fashion. As we present in section 4.2, an asynchronous type of request-reply
protocol is used in the architecture we design for this thesis for the communication of the
workers with the broker.

Remote procedure calls

Remote procedure call (RPC) is a technique employing remote invocation, that provides the
means for a program running on a computer node to call a procedure located at a remote com-
puter in the same way it calls a local one. This is done by providing an interface that hides
the underlying operations taking place, such as message passing and encoding/decoding of
parameters and results, necessary for the communication of a distributed system. This tech-
nique is very useful in client-server systems, where the servers support specific operations,
which they make available to the clients through an API, and the clients call these operations
as though they were local. From the client’s view, the only visible part of the whole process
is that they call a function and some time later the results are returned. In this thesis, we use
this technique for the HTTP servers described in Section 4.2 to handle remote client requests,
as well as for the broker-worker interaction.

Message queues

Message queues are a type of indirect communication that provides a point-to-point service
through which components can exchange data without being directly connected to each other.
The component that produces the data sends them to a message queue and the consumer
checks the queue for messages and receives the data when it detects their arrival. Most mes-
sage queues have limitations on the amount of data contained in a single message and on
the pending number of messages lingering on the queue. A typical message queue also in-
volves the use of message-queueing software, often called a message broker, which manages
the queue and stores its state and data. As we present in Sections 4.2 and 5.2 we use this
technique in our architecture for the communication of our components.

2.2 ZeroMQ

ZeroMQ is an embeddable library that provides tools for high-performance, asynchronous
messaging between components of distributed and concurrent systems. The basic tool it of-
fers is a message queue, which can connect the components and receive and store messages
exchanged between them. One particular advantage over other message-queueing software is
that there is no need for a separate message broker module [7]. In our distributed architecture
we use ZeroMQ for the communication of our components.

2.2.1 ZeroMQ Technology

The ZeroMQ message queues are available through an API that provides ZeroMQ sockets, a
generalization of normal TCP sockets, to connect the communicating components through an

25



endpoint, following a many-to-many communication paradigm. For that purpose, ZeroMQ
implements the ZeroMQ Message Transfer Protocol (ZMTP), which defines the way to es-
tablish and maintain a connection between ZeroMQ sockets. From the ZMTP specifications
derive several types of sockets, that come in pairs defined by the messaging pattern they
follow.

ZeroMQ uses background threads to handle I/O to and from the queue asynchronously, which
use lock-free data structures to communicate with the foreground threads. It supports many
different message transports, such as TCP, multicast (PGM), inter-thread communication
(ITC), and inter-process communication (IPC).

2.2.2 ZeroMQMessage Handling

A message in ZeroMQ is handled as A Binary Large OBject (BLOB), regardless of its size.
ZeroMQ provides the ability to send multi-part messages, consisting of multiple frames, each
holding a separate set of data. The difference from a single-framed message is that, at the end
of each frame, there is a “more” bit set to one. The last frame of the message has this bit set
to zero. New messages that cannot immediately be received are pushed close to the receiver
before they are automatically queued.

Each ZeroMQ queue has a “high water mark” property, which defines its size. When the
number of queued messages reaches this number, the queue becomes full, and the way new
messages or senders are handled changes, according to the type of the messaging pattern
used. In some patterns, all senders are blocked while in others new messages are discarded.

Every message, single-framed or multi-part, is delivered as a whole, as a single message
on the wire, in exactly the form it was sent, or not at all. This is possible because ZeroMQ
implements strong rules to the exchange of messages. A message will start to be transmitted
through the wire only after the last part of it has been sent by the user, and it will only be
received by a socket after the last part of it has arrived. In the meanwhile, ZeroMQ stores all
parts of a message to be transmitted in memory, until the last one arrives and they are all sent
as one.

When the first frame of a multi-part message contains the address of the receiver, we say that
the message is wrapped in an “envelope”. An envelope is a safe way to include an address to
a message, useful for routing messages among possible receivers, without affecting the data
of the payload. In this way, we can create general purpose intermediaries, that create, read,
add, and remove addresses, regardless of the message structure.

2.2.3 The ZeroMQMessage Transfer Protocol

The ZeroMQ Message Transfer Protocol (ZMTP) is a transport layer protocol which pro-
vides specifications for the establishment of a connection between two peers, as well as the
exchange of messages between them, when communicating using a connected protocol, such
as TCP. The issues it deals with consist of transmission of messages satisfying the TCP lim-
itations, version detecting, security protocols using authentication and encryption and con-
nection metadata exchange.

26



Two sockets implementing ZMTP are expected to follow a sequence of particular steps in
order to establish a connection and exchange messages:

• They start by exchanging data, in order to specify the version and security mechanism
of the connection.

• After an agreement on the security mechanism is reached, they initiate its handshake
process.

• In the case of successful completion, they exchange metadata about the connection.

• At this point, they can start exchanging application messages.

During these steps, each of the peers is free to abandon the procedure and close the connection
at any time.

ZMTP, in general, does not assign specific roles to the sockets, like client and server, but is a
peer-to-peer protocol. Some security mechanisms though, do make that distinction, through
an “as-server” field included in the greeting, set to 1 for servers and to 0 for clients. This is
done in order to assign the task of authentication to servers. If such distinction is not made
both peers have the “as-server” field set to 0.

The metadata exchanged during the connection initiation are in the form of a key-value dic-
tionary and consist of two properties:

• The socket-type, which determines the type of the sender’s socket and may be any of
the available socket types.

• The sender’s identity, used for routing, which may be included when a REQ, DEALER,
or ROUTER socket connects to a ROUTER. Otherwise an empty string is sent.

2.2.4 Messaging Patterns of ZeroMQ

Themessaging patterns in ZeroMQ define the structure and topology of the systemwe create.
The basic messaging patterns are specified by the ZMTP and are the following:

• Request-Reply: This pattern is used in service-oriented architectures, where a group of
clients connect to a group of servers and invoke remote procedures on them. There are
two different versions of this pattern, the synchronous and the asynchronous, which can
be intermingled. The associated socket types are the following: REQ, REP, DEALER,
ROUTER.

• Publish-Subscribe: In this pattern, there is usually a large number of subscribers con-
nected to a small number of publishers, but the opposite is also possible. The subscribers
receive the data the publishers produce, filtered according to their subscription prefer-
ences. A common use case for this pattern is event and data distribution. The sockets
of this pattern include the publishers PUB and XPUB, and the subscribers SUB and
XSUB. The XPUB type can also receive messages from its subscribers and the XPUB
can send messages to its publishers.

27



• Pipeline: This pattern typically involves a pipeline consisting of several stages and
loops, where nodes push tasks to other nodes, that act as workers, which in turn push
their results to nodes deeper into the pipeline. It is therefore intended for task distri-
bution and result collection. This pattern’s socket types include the PUSH and PULL
types, with the first sending and the second receiving messages.

• Exclusive Pair: This kind of pattern has very specific use cases and is usually employed
for inter-thread communication within a process. It connects exactly two sockets in an
exclusive pair. There is only one type of socket for this pattern, the PAIR type.

Below, we will examine in more detail the request-reply pattern, along with the associated
sockets, as it has been proven very useful for the purposes of our distributed system.

2.2.5 The Request-Reply pattern

As we have already discussed, this pattern assigns the roles of the client and the server to the
sockets involved. It also distinguishes between synchronous and asynchronous communica-
tion. Based on these principles, we derive four different socket types that together form the
ZeroMQ request-reply pattern. These are the REQ, REP, DEALER, and ROUTER sockets.

The general idea of this pattern is that a client socket connects to a server socket and sends
messages requesting a service. The server processes the request, which usually results in
a remote procedure call, and sends a reply back. The messages exchanged in this pattern
are always multi-part and have a specific format, with the first frame of each message sent
through the wire being a delimiter, an empty frame. This delimiter is used to separate the
head of the message, which may consist of several layers of REQ socket identities, used for
routing, from the actual payload.

As we present in Section 5.2 we use this ZeroMQ pattern in our architecture for the commu-
nication of the broker with the workers.

The REQ socket type

The REQ socket acts as a synchronous client. Its communication pattern consists of sending
a request for a service or a set of services and waiting for their replies in a synchronous,
lock-step, round-robin fashion.

In more detail, a REQ socket can connect to an arbitrary number of REP and ROUTER
sockets, that act as servers. As it is synchronous in its communication, it can only send one
message at a time, since it always has to receive a reply for each request, before it can send
another. If it is connected to multiple servers, its requests will be distributed to all of them
using a round-robin algorithm, and a reply will be expected for each request, from the appro-
priate server, with the overall message flow consisting of consecutive pairs of request-reply
messages.

REQ sockets are the ones responsible for prepending a delimiter, important for the request-
reply pattern, in front of all outgoing messages, which is done automatically. Upon sending,
the REQ socket type will block if there are no available peers and will not drop messages

28



it cannot send. On the other hand, it will accept a message only from the last peer it sent a
request to and will discard all other messages.

The REP socket type

The REP socket acts as a synchronous server. Its communication pattern involves receiving
a request from a client socket, usually passing it then to an underlying application which
processes it accordingly, and replying back to the same client with a message. Therefore, its
common use case is in systems employing remote-procedure calls. In correspondence with
the REQ case, the messaging pattern of receiving a request from a client and then replying
back to the same client cannot be broken, for example by receiving a second request before
replying, or by sending a reply to a different client.

This type of socket can be connected to any number of REQ and DEALER sockets, which
act as its clients, without breaking the single receive - single reply pattern. It receives all
messages coming from its clients, without applying any filtering on them or modifying the
payload. The format of the messages consists of zero or more identity frames, which are used
for identifying the sender, a delimiter, to separate them from the actual message and from
one or more data frames.

It receives the messages coming from multiple clients using a fair-queuing strategy. This
means that it maintains one queue per connection and serves them in rotation, ensuring that
messages from all its clients get processed, regardless of the rate of their message flow. Upon
receiving a message, the REP socket removes and stores the envelope, which consists of any
number of identity frames, and the delimiter, and passes the rest of the message to the calling
application for processing.

Before receiving any other messages, it must send a reply back to its last sender. To do so, a
message must be provided by its calling application. The socket then prepends the envelope
and the delimiter to the outgoing message and sends it to its appropriate recipient. In case
the recipient is no longer available, the socket does not block, but either drops the message
silently or returns an error.

The DEALER socket type

The DEALER socket acts as the asynchronous equivalent of a REQ socket. This means that,
like the REQ socket, it can be connected to any number of REP and ROUTER sockets, with
which it exchanges messages using a round-robin strategy, but it does not need to follow the
single request - single reply pattern. On the contrary, it can send and receive messages from
any available peer in any order. This is possible by creating and maintaining a double queue
for all connected peers, one for incoming and one for outgoing messages. It processes the
incoming messages using a fair-queuing strategy. Similar to the REQ socket, it blocks on
sending to an unavailable peer, or returns an error.

The ROUTER socket type

The ROUTER socket, in turn, is the asynchronous equivalent of a REP socket. It may be
connected to any number of REQ, DEALER, and other ROUTER sockets and exchange
messages in any order, using a double queue, similar to the DEALER socket. To identify its

29



peers, in order to be able to route messages to specific recipients, it uses a unique identity
string for each of its double queues. This identity can either be automatically chosen by the
ROUTER socket or specified by the peer it identifies.

The incoming messages are received using a fair-queuing strategy. When receiving a mes-
sage, the ROUTER socket prepends to it a frame containing the identity of the queue from
which it was received and passes the resulting message to the calling application. In order
to send a message, it removes its first frame and uses its content as identity for its outgoing
queues. If a queue with the specific identity exists and is not full, it routes the rest of the
message through it, to the appropriate recipient. In case such a queue does not exists, it either
discards the message or returns an error, without blocking.

2.2.6 ZeroMQ Example

The steps needed to be followed in order to exchangemessages using ZeroMQ in a distributed
application can be easily presented and explained using a simple example. For this purpose,
we will implement the request-reply pattern using a REQ socket connecting to a ROUTER.
We will use function names defined for C language syntax. The example codes are presented
in Listings 2.1 2.2

1 int main() {

2 ctx = zmq_ctx_new();

3 socket = zmq_socket(ctx,ZMQ_REQ);

4 zmq_connect(socket,”tcp://localhost:5555”);

5 zmq_send (socket, ”ping”, 5, 0);

6 zmq_recv (socket, buffer, 10, 0);

7 zmq_close (socket);

8 zmq_ctx_destroy (ctx);

9 return 0;

10 }

Listing 2.1: An exchange of messages with ZeroMQ - Component A

1 int main() {

2 ctx = zmq_ctx_new();

3 socket = zmq_socket(ctx,ZMQ_ROUTER);

4 zmq_bind(socket,”tcp://*:5555”);

5 zmq_recv (socket, buffer, 10, 0);

6 zmq_send (socket, ”pong”, 5, 0);

7 zmq_close (socket);

8 zmq_ctx_destroy (ctx);

9 return 0;

10 }

Listing 2.2: An exchange of messages with ZeroMQ - Component B

1. As a first step, each of the two components trying to communicate must create a “Ze-
roMQ context” calling zmq_ctx_new(). This function returns a pointer to a context
instance, which is the container for all sockets in a process.

30



2. Next, each component creates its socket instance, by calling zmq_socket(), passing as
arguments the pointer to our context and the type of the desired socket, and getting a
pointer to a socket instance returned. In our example we specify ZMQ_REQ and ZMQ_-

ROUTER types for the sockets.

3. Then, we can connect our two sockets calling zmq_bind() to bind the first socket to a
local endpoint and zmq_connect() to connect the other socket to that endpoint. Both
take as arguments the appropriate socket pointer and the endpoint, as a string, in the
form: transport://address:port. Typically, the socket acting as server “binds” and
the client “connects” but the reverse is also possible. The supported transports, are tcp,
ipc, inproc, pgm, and epgm.

4. At this point we are able to exchange messages using our sockets. In our example, the
exchange must be started by the REQ socket, which sends a message to the ROUTER.
We can send a message calling zmq_send() and passing our REQ socket, our message
and any additional flags.

5. On the other end, the ROUTER socket must be able to detect and receive the message.
This can be done either with a blocking call to zmq_recv(), until the message arrives,
or with the help of zmq_poll(), used in a loop. This function can be used to poll the
desired sockets for activity and notify the caller whenever there is a new message. The
caller may then receive the message using zmq_recv() and act accordingly.

6. While the ROUTER processes the message, the REQ socket cannot send or receive any
other messages, except for a reply back from the ROUTER. This could also be done
with a simple blocking zmq_recv(), but that would block the whole calling application.
Instead, in order to be able to perform other tasks too, we can use zmq_poll() again,
to periodically check our queue for messages.

7. When a reply from the ROUTER socket finally arrives our REQ socket may send a
request again, with the same pattern being repeated throughout the application.

8. Finally, whenever we want to close the connection and terminate our application, we
first have to close our socket using zmq_close() and then destroy our context calling
zmq_ctx_destroy().

2.3 Representational State Transfer

Representational State Transfer (REST) is an architectural style that provides guidelines for
the development of Web services. Conforming to REST principles is considered to lead to
scalable distributed systems, exhibiting increased performance and greater maintainability
[3] [4] [5]. In our architecture we use REST to design our API, as described in Section 5.1

As a service, we consider a mechanism responsible for the management of a collection of
system resources and for the presentation of their functionality to users and applications. The
service enables access to these resources by exporting a well-defined set of operations using
an appropriate interface. A Web service is a service provided over a network and is usually
accessible through serialized messages conveyed using HTTP.

31



Web service APIs designed to conform to REST constraints are called RESTful APIs and
they usually have the following properties:

• They use a base URI to provide access to their resources.

• Access to resources is granted through standard HTTP methods (GET, POST, PUT,
DELETE).

• They send and receive data using Internet media types, such as JSON.

• They use hypertext links to reference state and related resources.

A REST-compliant Web service applies the following constraints to its components:

• Client-Server Architecture

• Uniform Interface

• Stateless

• Cacheable

• Layered System

• Code on Demand (optional)

Client-Server Architecture

The service is assigns two different types of roles to its components, the client and the server.
The clients ask for the service provided and get back replies, while the servers are those who
provide the service, receive the clients’ requests and reply to them accordingly. In addition,
the interface of the service should distinguish clients from servers, which means that each of
these groups should not be concerned with the internal issues of the other. In this way, client
code becomes more portable and servers more scalable.

Uniform Interface

The uniform interface constraint simplifies and decouples the architecture and enables each
part to be developed independently. A uniform interface should be designed following the
next four principles:

• Resource-Based: Clients use URIs as resource identifiers to refer to individual resources
in their requests. In addition, servers do not return the resources requested as they are
internally processed and stored, but a representation of them using data serialization
formats, such as XML or JSON.

• Manipulation of Resources through Representations: The representation of a resource
sent to a client includes all the necessary information the client needs, in order to modify
or delete the resource on the server, as long as it has such permission.

32



• Self-descriptive Messages: Each message should contain all the information necessary
to describe how to process it. Responses, especially, should also indicate their cache-
ability.

• Hypermedia as the Engine of Application State (HATEOAS): This constraint means that
client or server state is exchanged through hypermedia. Clients in particular use body
contents, query-string parameters, request headers and the URI identifiers, while servers
deliver state or URIs for resource retrieval via body content, response codes, and re-
sponse headers.

Stateless

Statelessness demands that all session state is kept entirely on the client. That means that each
request from client to server must include in the body all the necessary state information to
process it, without using any state stored on the server. Respectively, the header, status and
body included in each server response must contain all session state data. This constraint
enables greater scalability, since the server is concerned only with the resource state, which
is the same for all clients. On the other hand, each client must store all data relevant to its
particular session.

Cacheable

Typically, in Web services, clients are able to cache responses, in order to re-use the infor-
mation provided in the future, avoiding additional interaction with the server, thus increasing
scalability and performance. It is therefore important that responses specify, either implic-
itly or explicitly, whether they are cacheable or not, to prevent clients from caching invalid
information.

Layered System

According to this constraint, a client has no means to verify if the server it is connected to is
the actual end server or an intermediary, located in between. Intermediary servers sometimes
are used to apply security policies and increase scalability, by providing load-balancing and
shared caches.

Code on Demand

Code on demand allows servers to pass to clients logic they can execute, thus affecting their
functionality. Logic can be transferred by compiled components such Java applets and client-
side scripts such as JavaScript.

These constraints provide distributed Web services with properties such as:

• Performance by accelerating component interactions and thus user-perceived perfor-
mance

• Scalability by enabling them to support large number of components and interactions
between them

33



• Simplicity of interfaces

• Modifiability of components

• Visibility of communication between components

• Portability of components

• Reliability by making them resilient at system level to individual component failures

2.4 Django REST framework

Django REST framework is a toolkit, written in Python, that provides an easy way to create
RESTful APIs for database-driven applications. A Web framework, in general, provides the
necessary programming infrastructure for creating applications without having to develop
everything from scratch, focusing on code reusability and component pluggability. Django
follows the Model - View - Controller (MVC) architectural pattern. In this thesis, we use
Django to implement our RESTful API.

Model - View - Controller

MVC is a software architectural pattern, according to which a software application is divided
into three loosely coupled parts, in order to distinguish between the internal representation of
data and the form in which they are presented to users. In addition, each part can be developed
and modified independently, without affecting the rest of the application. The distinct parts
are described below:

• Model: This component is responsible for defining, managing and accessing data, inde-
pendent of the user interface.

• View: This is the component that decides what data should be displayed and the way
they should be represented.

• Controller: This component receives user input, accesses any models, if needed, and
selects the appropriate views to present.

In Django, these components are handled in the following way:

• The Model is handled by the database layer. This layer includes Django models, which
consist of Python code describing our data in the database. A model defines everything
about the data, including its behaviour, the way to access and validate it, and its re-
lationship with other data. Models are used by Django to execute SQL queries in the
background and return database records using Python data structures.

• The View is handled by views and serializers. A Django view is a Python function
that takes an HttpRequest as parameter and returns an instance of HttpResponse, using
the appropriate models and their serializers to perform SQL queries to the database. A
serializer is code which enables the conversion of complex data such as model instances

34



or query sets to native Python datatypes which can in turn be rendered into content types
such as JSON. They also provide deserialization, the conversion of parsed data into
complex types, after their validation.

• The Controller is handled by the framework itself, through a URLconf. A URLconf
maps URLs to the view functions that should be called when they are accessed.

35





Chapter 3

Existing Evaluation System

The initial form of the evaluation system was developed using the C programming language
and ran on a single computer receiving submitted solutions and evaluating them sequentially.

3.1 Architecture

The architecture of the system consists of two layers: A front-end Web server and the back-
end evaluation system. In also includes a database where crucial data are stored.

The Web server provides an interface to users through which they can access the grading
resources. It receives their submissions and passes them to the evaluation system for grading.
In more detail, once a new submission arrives, the server stores it in the database, where
it acquires a unique id. The server uses this id to store the necessary data concerning this
submission to a queue in the local files of the evaluation system.

The evaluation system reads new submissions from its local queue and proceeds to compile,
execute and evaluate them. The general architecture is presented below (Fig. 3.1).

To organize its data, the system uses several entities. These are:

• Tasks

• Submissions

• Tests

• Graders

3.1.1 Tasks

A task provides the specifications of the problem for which solutions are submitted. These
include:

• the input and output files of the solutions

• the time limit and the memory limit

37



• the number and ids of the tests used to evaluate the solutions

• a special flag field indicating default or custom grading

• a flag field specifying whether the solutions are interactive programs or not

There are three types of tasks:

• batch

• reactive

• output only

Batch tasksmake up the vast majority of the tasks that appear in programming contests, which
is why we focus particularly on them. The existing evaluation system provides support only
for the first two types. The system we designed and present in this thesis currently only
supports the first type. However, it is easy to integrate grading for the other two types of
tasks in the future.

3.1.2 Submissions

A submission is the source code, along with the necessary metadata, submitted as solution to
a particular task.

• Received submissions are placed in a queue, from which they are retrieved for grading.

• The metadata include the name of the relevant task, the time and memory limits, the
input and output filenames and the ids of the test cases to be used for the evaluation
process.

• Submissions are identified by an incremental counter, which is tracked by the client.

3.1.3 Tests

These are the test cases used to evaluate the submitted solutions. Each test consists of an
input file which is read by the submitted programs. These programs then produce an output
file which is compared with an expected output, given for every test case, to check whether
the two files match byte by byte. For specific tasks, where a different form of evaluation is
needed, a custom grader is used which is provided by the client (see next paragraph). There
is a set of available test cases for a given task and the client must specify a subset of these to
be used for the evaluation of a particular submission.

38



3.1.4 Graders

Agrader is the program used for grading the submitted solutions based on the output they have
produced. There is a default grader, embedded in the system, but there is also the capability
to use a custom grader, defined by the user.

• The default grader simply compares the output of the program for each test with its
expected output to determine whether it is correct or false. To use the default grader the
task has to specify it in the appropriate flag of the submission.

• A custom grader may work differently and has to be provided by the user, in code. For
example, the former default grader is not helpful in cases where multiple solutions to a
problem may exist, such as the shortest path in a graph, and a different way to evaluate
the solutions has to be employed. Custom graders take the output of the submission and
the expected output for each test case as input and grade the submission with a decimal
number in the range [0,1].

LOCAL FILES 
QUEUE

EVALUATION 
SYSTEM

HELLENICO
HTTP SERVER

    DATABASE

Front-end

Back-end

Clients

System

Figure 3.1: The overall architecture of the original evaluation system

3.2 Behaviour

The overall behaviour of the system consists of three phases:

39



Receive and Prepare

In this phase the Web server receives a new submission. The submission is then stored in the
database, which assigns a unique id to it. The server receives this id and uses it as submission
identifier when it adds it to the grader’s queue.

The grader keeps the expected id of the next submission to be evaluated in a file. The id in the
file is incremented once the corresponding submission is graded. In order to process the next
submission in the queue, the system reads the expected id of the next submission from the file
and periodically checks if the files associated with this submission exist in the queue. When
it finds them, it opens them, reads all the necessary information and initiates the process of
evaluation.

Compile

During this phase, the system reads the source code of the solution and compiles it according
to the programming language used, linking any necessary code, if the related task is reactive.
In case of unsuccessful compilation, the compile errors are stored in a file and the evaluation
process terminates.

Run and Grade

After a successful compilation the system runs the resulting executable once for each test case,
providing it as input, and stores the output it produces in a file for grading. Once the output
for a test is produced, the system evaluates it, using the appropriate grader. After evaluation,
the grader stores the results in a database, where the Web server has also access. It then sends
an empty request to a callback URL, unique for each submission, to notify the server that the
results are ready, in order read them from the database and make them available to users.

40



..read id.

sleep for
some time

.

check if the
submission
with this id
is in queue

.

is the sub-
mission in
queue?

.

write ++id

.

read sub-
mission

.

compile
submission

code

.

compilation
errors?

.

store results
in database

.

notify
server that
results

are ready

.

i=1

.

i <=

test_cnt?

.

run solution
for test case
tests[i]

.

grade
results

.

i++

.

no

.

yes

.

no

.

yes

.

yes

.

no

Figure 3.2: The overall behaviour of the original evaluation system.

41





Chapter 4

Design

In this chapter we describe the approach followed during the design of our evaluation service.
The first goal is to use the existing system in order to create a database-driven distributed
application with the following properties:

• Scalability: To provide this property the grading system needs to be able to run in par-
allel on as many nodes as there are available, without affecting performance. The aim
is to create an application which will distribute work to these systems, exploiting the
parallelism created.

• High Availability: This property is ensured by eliminating single points of failure when
possible, providing the system with the ability to withstand partial failure of a subset of
its components. In such cases, other parts of the system will offer the functionality of
the lost part, guaranteeing that the downtime of the service is minimized.

• Fault Tolerance: To fulfill this target, our architecture makes certain that failures will
not lead to loss of submissions or other crucial data and the system will be able to fully
recover to its previous state after restarting.

• Load balancing: In order to increase its performance, a scalable application needs to be
able to distribute the workload equally among its resources. To achieve this, our system
needs a mechanism to dispatch submissions to all the concurrently running grading sys-
tems, using a fair strategy, thus avoiding overloaded queues on the one hand and idle
graders on the other.

The second goal is to create a REST-compliant service to provide access to our grading re-
sources publicly.

4.1 Design Overview

To achieve our goals we created a topology for the service, where the nodes are divided into
two major groups:

• The HTTP servers, which comprise the front-end of the service. They implement and
expose a RESTful API and accept any requests through HTTP. If the requests are sub-
missions for evaluation they are issued to a message queue, so as to be processed by the
evaluation systems.

43



• The back-end workers. These consist of the evaluation systems running in parallel. They
receive submitted tasks from the queue, evaluate them, and handle the results based on
specifications provided by the client.

Between them there is a message broker that connects them, ensuring that messages from
the HTTP servers are passed to the workers for processing. Connected to the broker, and
communicating only with it, is a safety system used for fault-tolerance. In addition, the system
includes a database, for storing necessary data, as it is explained below. Access to the database
is granted only to the front-end, the broker and the safety service.

With the exception of tests, all the rest information is stored in the database, via standard
SQL queries. Tests were decided to be stored in a distributed file system, so as to be easily
accessible by large numbers of workers, which are designed not to have access to the database.

The new architecture is presented below (Fig 4.1).

W 1 W 2 W N

PHYSICAL NODE
M CORES, M > N

W 1 W 2 W L

PHYSICAL NODE
K CORES, K > L

BROKER

GRADER QUEUE

SUBMISSION QUEUE

HTTP
SERVER

API

ZMQ SOCKET

HTTP
SERVER

API

ZMQ SOCKET

CLIENT
(Hellenico)

Clients

Evaluation System

 SAFETY SYSTEM DATABASE

NFS SERVER

Figure 4.1: The proposed distributed architecture for the evaluation system

4.2 Design Details

In this section we provide details about the design of the system components mentioned above
as well as their behaviour and the interactions among them.

44



4.2.1 HTTP servers

In more detail, the HTTP servers on the front-end expose a RESTful API, which provides
a series of operations to clients, such as the ability to perform CRUD operations on tasks
and their test cases. This is done in a transparent way, via SQL requests that the servers
perform on the database, where most data is stored, in the background. Also, the API offers
the ability to submit solutions to particular assignments and a way to check the status of each
submission. Additional functionality, such as listing all the saved assignments, tests, graders
and preparing the graders for intensive work by fetching all the needed data to memory, are
also supported. An elaborate description of the API is provided below. Finally, they receive
the results for each particular submitted solution by the workers and update the database.

4.2.2 Broker

Of all the requests to the service, only submitted solutions are passed to the back-end. All
the rest functions are provided by the HTTP servers. Submitted solutions are received by the
servers and sent to a queue, waiting to be processed. The broker’s job is to assign these new
submissions to available workers in the back-end. This is done using a client-server pattern.
Whenever a worker is available, it sends a request to the broker asking for work and the broker
replies with a submission from the queue. The broker also checks and updates the database to
ensure that all submissions are processed. We will explain this procedure in detail in Section
4.5

4.2.3 Workers

The back-end is comprised from a set of workers, each of whom consists of a copy of the
evaluation program, running on a computer node. Each node runs multiple such copies and
is part of a cluster which includes multiple nodes. The workers ask the broker for work,
whenever they become idle, thus providing an even distribution of the load to the system.
Each worker is an independent, pluggable component, and thus workers can be added or
removed at will, depending on the resources available and the existing workload. When a
worker finishes evaluating a submission, it sends the results to the HTTP servers using a
standard, predefined URL. Clients, however, have the capability to specify another URL of
their own, where they want their results to be sent after grading.

4.2.4 Safety System

The safety system is a program running on a node, whose job is to keep track of the database
for any submissions that have been being processed for a particularly long time, indicating
that something went wrong along the way (possible a worker failure). Whenever it finds such
a submission, it should send it back to the queue for processing, marking the time it was last
modified, so as to avoid sending it over and over again.

45



4.2.5 Database

Our application needs to handle a lot of data coming from clients, which should be safely
stored and easily accessed. Therefore, we decided to employ a database-driven architecture
and use a database for that purpose. Below we present the design of our database (Tables 4.1
- 4.4), as it derives from the needs of our application.

Field Type Notes
id integer primary key
task_name varchar unique for each task
locked boolean if locked, task cannot be modified or deleted
input_file varchar the file from which input is read
output_file varchar the file from which output is read
time_limit float the maximum time a solution is allowed to run
memory_limit integer the maximum memory a solution is allowed to use
grader varchar the grader to be used for this submission
link varchar this field is intended to be used for linking external code

Table 4.1: The task table

Field Type Notes
id integer primary key, returned to user
task_name varchar the name of the relevant task
language varchar the programming language of the source code
code longtext the source code of the solution
tests varchar the ids of the test cases to be used for this submissions
callback_url varchar optional, user-provided, used to post the results
django_url varchar predefined, server URL, used to post the results
timestamp integer the time a submission last changed its status
status enum the status of a submission, indicating its stage in the system
compilation_status varchar ’COMPILEOK’ if successful, ’NOCOMPILE’ otherwise
compilation_errors varchar the errors when status is ’NOCOMPILE’

Table 4.2: The submission table

Field Type Notes
id integer primary key
grader_name varchar a string identifying a grader
language varchar the programming language of the grader’s source code
source longtext the source code of the grader

Table 4.3: The grader table

46



Field Type Notes
id integer primary key
test integer the relevant test case id
run_time double the time needed to complete the execution of the program
score double the score achieved for this test case, in the range [0,1]
output varchar the output produced for this test case
expected_output varchar the correct output for this test case
sub_id integer the id of the relevant submission
result enum a string describing the result for this test case

Table 4.4: The result table

4.2.6 Cache

Since we store the test cases in a distributed file system, we want to be able to bring them to a
worker’s local storage, in order to decrease their access time and increase throughput. This is
useful in situations, such as a competition, where a large number of solutions is submitted for
a set of specific tasks and, consequently, is tested using the same set of test cases. Therefore,
we provide two API calls, “fetch” and “release”, to manually fetch the necessary test cases
to the workers’ local storage and delete them afterwards. An even better solution would be
to do this action automatically, but designing a cache is beyond the purpose of this thesis.
However, it can be useful future work.

4.3 Scalability

In this section we explain how the proposed architecture provides the application with scal-
ability. More specifically, we describe the way our design enables the system to exploit the
capabilities provided by a cluster environment to deploymultiple worker instances in parallel,
achieving an increase in its performance proportionate to the resources available.

Our focus on scalability is to provide the system with the capability to process multiple sub-
mitted solutions simultaneously. The way to achieve this is by deploying many workers on
cluster nodes pulling work from the queue. Our design offers an easy method to accomplish
this, by providing pluggable and independent workers that can be added effectively and with-
out a limit to the system, as long as there are resources available. In every worker node, the
system deploys workers, the number of which is proportionate to the available cores. After
being deployed, workers are connected to the broker and can normally pull work from the
queue by sending a request.

Since the workload consists only of submissions, which are independent from each other, and
each submission is evaluated by a single grading system, there is no need for synchronization
or communication between the workers in our system. Therefore, an increase in the number of
workers results in a proportionate increase in the maximum speedup, without any limitations
imposed by a bottleneck or communication overhead. Consequently, we can keep adding
workers and getting a proportionate increase in speedup indefinitely.

47



4.4 High Availability

Our system ensures high availability by providing ways to keep the service available, even
when failures happen to the front-end or the back-end of the system.

On the front-end, multiple HTTP servers expose the RESTful API and listen to client re-
quests. Consequently, in the event of a failure on an HTTP server node, other servers will
continue offering the service, receiving client requests that would otherwise be processed by
that server.

On the back-end, multiple instances of the grading system run in parallel, evaluating sub-
mitted solutions. When a worker fails, we make sure that its work will be reproduced and
resumed by a different worker, using a mechanism we describe in the next paragraph.

Using this approach, we minimize downtime and we provide the clients with the experience
of a highly available service.

4.5 Fault Tolerance

We can perceive how fault tolerance is provided to the system by our design, by listing the
various types of individual component failures and describing the ways the system will re-
spond to ensure availability. The most common type of failure in cluster environments is
node failure. In our application we have several types of nodes, each one of whom may fail
independently. These are:

• HTTP servers

• A Broker

• A Safety system

• Workers

4.5.1 HTTP server node failure

When an HTTP server node fails, other HTTP servers may continue the normal provision of
the service, or, in the absence of alternatives, it will become temporarily unavailable, denying
any new requests to clients, until a server comes online. The key in this scenario is to ensure
that no crucial data that will affect the function of the system are lost, as a result of the server
failure.

All data sent to an HTTP server are stored, either in a file, like the tests, or in the database, as
is the case with the rest of the data. Therefore, loosing any of these data can be easily checked
with a simple SQL query to the database and results in a simple repetition of the request that
produced them. A problem arises though, when we handle submissions, for which we must
ensure that they reach the back-end of the service and get processed, otherwise they may be
lost, even after being stored in the database, without the user ever knowing it.

48



To accomplish this we designed the system to block upon receiving a new submission, until
it stores it to the database and sends it to the broker queue. When creating the record in the
database, it uses a PRE_QUEUE status for the new record, meaning that the submission has
not yet been sent to the queue. A submission with PRE_QUEUE status is not considered
fully accepted yet, as the client has not received a confirmation and an identification, which
will enable them to look for the results later.

Therefore, after storing and queueing the submission, it sends a reply back to the client,
containing the unique id assigned to the submission record in the database, informing them
that their solution has been successfully queued for evaluation. In this way, if the client does
not get a reply back, they will know that their submission failed at some point and they have
to send it again. On the other hand, receiving a reply means that the submission has at least
reached the queue and it is up to the back-end of the system to ensure its successful evaluation.

Afterwards, it updates the submission status in the database as IN_QUEUE, which signi-
fies the successful completion of the queueing process. Submissions that have reached IN_-
QUEUE status are guaranteed by the system to complete their evaluation.

4.5.2 Broker node failure

A broker failure would mean that, while the broker is offline, neither submissions waiting on
the queue nor any new ones would be able to get processed, since the broker is the manager
of the queue. However, our design makes it easy to restore the broker’s previous state, after
a failure, and ensures that no data are lost because of it. Furthermore, the broker, like most of
our system’s components, is an independent and pluggable component, being connected with
the rest of the system only via message queues. Therefore, restarting it is practically costless,
and its failure hardly affects the overall performance. This becomes clear by examining what
happens when the broker node fails.

As we have seen, when a new solution is submitted by a client, it has to be stored in the
database and sent to the broker’s queue, before it is considered successfully submitted. There-
fore, while the broker is offline, any new submission requests block, without failing on the
client’s side, until the broker restarts and queues them. Of course, a client may quit and try
again later, by re-submitting their solution, but the broker will receive and queue both sub-
missions. As a result, a broker failure only adds some user perceived latency to the system,
until the broker restarts.

After restarting, the broker needs to restore the state of its queue before the failure. The initial
queue was lost during the failure, but the submissions are stored in the database and can be
retrieved. For that purpose, the broker is provided with a mechanism to recognize which
submitted solutions were on its queue when the failure happened, and get them from the
database, in the right order. Using this method, we ensure that a submission that has been
successfully queued, won’t be lost because of a broker failure.

This mechanism is based on the status attribute of each submission. Only submissions with
IN_QUEUE status are waiting in the queue managed by the broker. Therefore, the broker
will ask from the database only the submissions with this status and will put them back to its
queue to be processed. Upon sending one of them to an available worker, it will update the
submissions’ status in the database as PROCESSING and its timestamp to current time.

49



The overall behaviour of the broker is presented in Fig. 5.1

4.5.3 Safety system failure

A failure on this node does not pose any danger to the system or affect its performance, as
it is not crucial to its function or holds any important data. The only way a failure in this
system can affect the overall behaviour is if it happens while it tries to send requests from
the database back to the queue. In that case, it will restart and try to send them again in the
future, after re-checking the database for “old” submissions. Therefore, it may add some form
of latency, which can be minimized by checking the database at short intervals.

This system will check the timestamp of each submission with status PROCESSING, as it
looks for failures happening on the worker nodes.

4.5.4 Worker node failure

Worker nodes do the most important and heavy work in our system and, therefore, they are
considered the most unreliable and prone to failures. For this reason, we designed them to be
expendable and their individual work easily reproduced by other peers.

In more detail, each worker connects to the server and asks for a solution to evaluate. After
it receives a submission, it evaluates and grades it and sends the results to their designated
receiver. At any point during this process it may fail, with the results being unpredictable. In
our system, all worker failures are handled in the same way. However, there are two types of
failures that seem to have different effects:

1. A failure while a worker is idle, waiting for work.

2. A failure while a worker is evaluating a submission.

We will explain how these failures result in the same state and therefore are treated as one
by our application.

In our design, we do not store any state for a particular worker nor we restart workers to
continue their work. When they fail we just create new instances of workers that replace
them. Consequently, the new instances are completely oblivious to their predecessors’ state.
Simply put, a failing worker’s work is lost with it. However, this does not mean that we
violate our principle that all submissions are eventually processed and evaluated. After some
time, the safety system will notice that a particular submission takes too long to be graded,
meaning that a worker has probably failed, and it will send it back to the queue to be processed
by a different worker.

Our system is designed to exhibit the same response when the failing worker is idle. This
results from the fact that the broker keeps a list of the available workers, without checking
their liveness, meaning that an available worker may fail, without the broker knowing it.
This, along with the fact that we do not restart workers, but create new instances instead,
leads to the broker eventually sending a submission to a non-existent worker, meaning that
the particular copy of the submission is lost. However, it will be later re-queued and finally

50



processed when the safety system takes action, as explained in the previous case. Therefore,
unreliable workers do not account for an unreliable system, but they add delay to the process
of evaluation, which can be controlled using a well designed safety system.

4.5.5 Example

We can easily understand how the system ensures submission evaluation, by overviewing the
stages through which a new submission passes (Fig. 4.2):

W 1 W 2 W N

PHYSICAL NODE
M CORES, M > N

W 1 W 2 W L

PHYSICAL NODE
K CORES, K > L

BROKER

GRADER QUEUE

SUBMISSION QUEUE

HTTP
SERVER

API

ZMQ SOCKET

HTTP
SERVER

API

ZMQ SOCKET

CLIENT
(Hellenico)

Clients

Evaluation System

 SAFETY SYSTEM DATABASE

NFS SERVER

1. New submission

2. POST 

3. PRE_QUEUE

4. New submission

5. IN_QUEUE

6. id

7. READY
8. New submission

9. PROCESSING

10. test case

11. Results

14. PROCESSING

Figure 4.2: The exchange of messages in the system in order to evaluate a submission

1. A new submission arrives to a client of our service.

2. The submission is posted to a front-end server.

3. The submission is inserted into the database by an HTTP server with a PRE_QUEUE
status, and acquires a unique submission id, which is returned to the server.

4. Then, it is sent to the broker, where it is queued for processing.

5. The HTTP server updates the status of the submission to IN_QUEUE.

6. Afterwards, a response message is returned to the client, along with the unique id, nec-
essary to track the submission progress. If there is a failure when receiving, storing or

51



queuing the submission, an error message will be returned to the client, thus ensuring
that only when a request has reached the back-end will it be considered successfully
submitted.

7. A worker becomes available and sends a request for work.

8. The broker replies to the worker’s request with the new submission.

9. The broker changes the status of a submission to PROCESSING, along with its times-
tamp, right after it has been sent to the worker. In case the broker fails, no new solutions
can be submitted and also it is made sure that none already submitted solutions will be
lost, because every time the broker is restarted it automatically loads any IN_QUEUE
submissions from the database , restoring its previous queue.

10. The worker compiles the submission and loads the necessary test cases from the node
where they are stored, which is an NFS server.

11. The worker grades the submission and posts the results to the server and to an optional
user defined URL.

12. The server stores the results and updates the submission status to COMPLETED .

13. The server replies with the results to subsequent requests.

14. The final problem is to handle worker failures and this is done with the help of the sub-
mission safety service. Its purpose is to check the database periodically and find any
submissions, with status PROCESSING, considered “old” based on their timestamp.
An old timestamp, along with a PROCESSING status, means that a worker has proba-
bly failed, leaving its evaluation unfinished. It will then send those submissions back to
the broker to be processed again, thus ensuring that no submitted solutions will be left
waiting indefinitely.

4.6 Load Balancing

Our design provides the system with load balancing in a very practical and perceivable way,
using the request-reply pattern for the workers. All the available work is stored in a central-
ized, FIFO queue, from which every worker is assigned submissions, whenever they become
idle. Using this approach, we ensure that all workers are assigned only as much workload as
they can process, avoiding situations where an unequal distribution of work results in over-
loaded queues in some workers and empty queues in others.

4.7 Summary

In conclusion, our system consists of six components:

1. The HTTP server nodes, which receive and process all requests from clients, and reply
back to them accordingly. Apart from operations concerning tasks, tests and graders,

52



which are handled only by the front-end of the service, their main job is to receive new
submissions and reply back to the clients after successfully storing them in the database
and sending them to the queue. They also receive the results from theworkers and update
the database accordingly.

2. The broker node, who is responsible for managing the submission queue, by sending
pending submissions, queued by the HTTP servers, to available workers. It also com-
municates with the database, to check about submissions that were lost from its queue
without being processed and to update submission status. Furthermore, it accepts mes-
sages to its queue coming from the safety system, concerning submissions that were lost
while being evaluated by workers.

3. The worker nodes, that are evaluation systems running on cluster nodes. They ask and
receive submitted solutions from the broker, evaluate them, and send the results back to
the HTTP servers to be stored in the database, using a standard URL. If specified, they
also send the results to a user defined callback URL.

4. The safety system node, which checks the database for submissions that failed while
being processed and sends them back to the broker queue.

5. The database, in which all data, with the exception of tests used for evaluating submitted
solutions, are stored.

6. The NFS server, which keeps the test cases and shares them with the worker nodes.

53





Chapter 5

Implementation

In this chapter we describe the means and methods we employed to implement our design
and build our distributed service. We start by presenting the implementation of the front-end
and continue with the back-end.

5.1 Front-end Implementation

To implement the RESTful API described in Section 4.2 we used the Django REST frame-
work (Section 2.4). We will describe in detail the models we defined for our database repre-
sentation and the views we created to present these views to clients.

5.1.1 Models

Based on the design of our database we created the following models:

Task

The task model is a class that represents a task, as initially defined in Section 3.1, and later
presented for the database design in Section 4.2. A task class model has the following fields:

• task_name, a charfield, used by submissions and URIs to refer to a task.

• locked, a boolean field.When it is true it is not possible tomodify the task in the database

• input_file, a charfield with default value “stdin”. Defines the input of the solutions.

• output_file, a charfield with default value “stdout”. Defines the output of the solutions.

• time_limit, a floatfield. It is the time limit for solutions.

• memory_limit, an integerfield. It is the memory limit for solutions.

• grader, a charfield, with blank default value, which means using the default grader

55



• link, a charfield, with blank default value, which means that the tasks are not reactive.
In case of a reactive task, this field specifies the code to be linked. We should note that,
although this field exists, the related feature is not implemented in the existing version
of the system, but will be added in a later version.

The unique id for each task and the rest of the models, is not included explicitly in the model
class, but added automatically by the database.

Submission

The submission class model, represents a submission as presented for the database design
and discussed throughout the previous Chapter (4). The fields this class includes are:

• task_name, a charfield that specifies the name of the task, to which this submission is
referred.

• code, a text field containing the source code of the submission

• language, a charfield containing the programming language of the code

• callback_URL, a URL field containing an optional user provided callback URL to use
for sending the results.

• status, a charfield containing the status of each submission. Its range of values is an enu-
meration consisting of PRE_QUEUE, IN_QUEUE,PROCESSING,COMPLETED.

• compilation_errors, a charfield, containing any compilation errors, in case the source
code provided has errors and cannot compile.

• timestamp, an integer field, containing the time that the submission was last modified
in the database.

Grader

The grader class represents a custom grader that can be added by the user to grade the sub-
missions to particular tasks and includes the following fields:

• grader_name, a char field specifying the name of the grader. It is used by submissions
to refer to that grader.

• source, a text field containing the source code of the grader.

• language, a char field specifying the programming language used in the source code.

56



Result

The result class model represents a result referred to a particular submission and concerning
a specific test. The fields it contains are:

• sub, a foreign key. Contains the id of the submission to which the result is referred.

• test, an integer field specifying the particular test it represents

• run_time, a float field containing the runtime of the submitted solution

• score, a float field containing the score gained for the specific test

• output, a char field containing the output produced for that test

• expected_output, a char field containing the expected output for that test

5.1.2 Views

The views we created, based on our API, to present andmodify our models, are the following:

task_list

This view implements the Get Task List and the Add Task operations of the API. It is called
using a GET or a POST method to the /tasks URI.

When called with a GET it implements theGet Task List operation and returns a list containing
the tasks stored in the database or a 404 (not found) status code.

When called with a POST, respectively, it implements the Add Task operation, which expects
to find the JSON containing the task specifications in the body of the request. If the informa-
tion in the body is in the correct form, it stores the new task and returns a response containing
a 201 (created) status code along with a JSON with the stored data of the task. Otherwise it
returns a 400 (bad request) status code discarding the request data.

task_detail

This view implements the Get Task Info, the Modify Task and the Delete Task operations of
the API. It is called using a GET, PUT, or a DELETE method respectively, with the appropriate
task_name, to the /tasks/<task_name> URI. If the task with the requested task name is
not found it returns a 404 (not found) status code.

When called with a GET - Get Task Info - it returns a 200 (ok) status code and a JSON con-
taining the data stored in the database for the specific task.

When called with a PUT method - Modify Task - including the JSON containing the task
information to be modified, it updates the new task data and returns a response containing a
200 (ok) status code along with a JSON with the updated data of the task. If the request is
malformed it returns a 400 (bad request) code without modifying the task data in the database.

57



Finally, when called with a DELETE - Delete Task method, it deletes the specified task from
the database and returns a response containing a 204 (no content) status code.

grade

This view implements theGrade operation. It is called using a POSTmethod to the /submis-
sions URI. In the body of the request a JSON should be provided containing the necessary
information for the new submission, as described in the API. It uses a DEALER socket, cre-
ated by the server, to connect to an endpoint bound by the broker and to send to it received
submissions.We use aDEALER socket so as to be able to send consecutive requests, without
waiting for replies.

The function stores the new submission to the database, with a PRE_QUEUE status and then
blocks on sending to the broker until the submission is successfully queued. It then updates
the submission status to IN_QUEUE, as described in chapter 4, and returns back to the client
a 201 (created) status code, along with a JSON with the unique submission id, assigned to
its record in the database. If the task_name provided in the JSON does not correspond to a
database record, the view returns a 404 (not found) status code and the submission is dis-
carded. Also, if the request is malformed it returns a 400 (bad request) code.

results

This view implements the Grade_info and Post_results operation. It is called using a GET or
POSTmethod respectively to the /submissions/<sub_id> URI, where sub_id is the unique
submission id obtained from the body of the grade response.

When called with a GET, if the submission id exists, this view returns the data stored in the
database concerning the evaluation of this particular submission, as presented in the API. If
the id provided does not correspond to an existing database record, a 404 (not found) status
code is returned.

If a test_id argument is provided with the GET method after the resource URI, in the form
/submissions/<sub_id>/?test_id=<test_id>, the view returns a 200 (ok) status code,
as well as explicit results concerning the particular test. If there are no results for the test
specified a 404 (not found) status code is returned.

add_grader

This view implements the Add Grader operation of the API. It is called using a POSTmethod
to the /gradersURI. The request must include a JSON containing the grader specifications,
as defined by the API. If the information in the body is in the correct form, it stores the new
task and returns a response containing a 201 (created) status code along with a JSON with
the stored data of the task. Otherwise it returns a 400 (bad request) status code discarding the
request data.

58



delete_grader

This view implements the Delete Grader operation of the API. It is called using a DELETE
method to the /graders/<grader_name> URI, where grader_name specifies the desired
grader. If it exists, the view deletes the specified grader from the database and returns a
response containing a 204 (no content) status code. Otherwise it returns a 404 (not found
status code).

add_test

This view implements the Get Test List and the Add Test operations of the API. It is called
using a GET or a POST method, respectively, to the /tests URI.

When called with a GET it expects an argument <task_name> after the URI, specifying the
particular task the tests of which are requested, and returns a 200 (ok) status code and a list
containing the tests available or a 404 (not found) status code.

When calledwith a POST the request must include a JSON containing the test input and output,
as defined by the API. If the information in the body is in the correct form, it stores the new
task and returns a response containing a 201 (created) status code. Otherwise it returns a 400
(bad request) status code discarding the request data.

delete_test

This view implements theDelete Test operation of the API. It is called using a DELETEmethod
to the /tests/<test_id> URI. If it exists, the view deletes the specified test and returns a
response containing a 204 (no content) status code. Otherwise it returns a 404 (not found
status code).

5.2 Back-end Implementation

In this section we describe the way we built the distributed system for our service, based on
our design as described in Chapter 4. Then, we continue by presenting the adjustments we
made to the old evaluation system to make it compatible with our new architecture.

To create the main components of our distributed system we used ZeroMQ (Section 2.2).
These components consist of the broker, the safety system and the workers.

5.2.1 Broker

The broker is an intermediary program that receives submissions from the HTTP servers and
the safety service and assigns them to available workers. For that purpose, it uses a pair of Ze-
roMQROUTER sockets, one to receive submissions and the other to route these submissions
to available workers. It also keeps an internal list of the available workers and another with

59



the pending submissions. To communicate with the front-end, we use aROUTER socket, be-
cause it combines well with the DEALER socket we use there, as it can receive consecutive
messages without replying back. For the back-end, it is useful to use the ROUTER socket,
because we want to route messages to particular workers available.

In more detail, when the broker restarts, it creates the two sockets described and binds them to
two endpoints using predefined addresses. Afterwards, it connects to the database and sends
an SQL query, asking for submissions with IN_QUEUE status. If there are such records in
the database, it means that the broker crashed or terminated with pending submissions in its
queue. The broker then uses another query to the database to get the relevant task data of these
submissions and, with them, it reconstructs the proper submission form. Finally, it pushes the
resulting submissions back to its internal queue.

Subsequently, it enters a loop in which it uses a poller to check its queues for incoming
messages. If there are messages in the front-end queue, it receives them and tries to dispatch
them to available workers. If no workers are available it keeps them in its internal queue.

Any messages in the back-end queue are READY messages sent by workers, signifying that
they are ready for work. For every work request it receives, it checks its internal queue for
submissions and dispatches the first available to the worker from which the request came.
This is done by prepending the worker identity, received with the READY message, to the
front of the submission message. It then connects to the database and updates the submission
status to PROCESSING, using an appropriate SQL query. If none are available it keeps the
worker’s identity in the queue of available workers to use it later.

After handling queue traffic, the broker sends a HEARTBEATmessage to all its idle workers at
regular intervals, informing them that it is still running. This is used as part of a mechanism,
described later in detail, which ensures that the broker sees all its available workers.

The overall behaviour of the broker is presented in Fig. 5.1

5.2.2 Safety System

This component, as described in Chapter 4, checks the database for submissions that failed
to be evaluated completely and sends them back to the front-end broker queue. To do this it
uses a DEALER ZeroMQ socket, in the same way as the HTTP servers.

When it restarts, it creates the DEALER socket and connects to the available broker end-
point. Subsequently, it sends an SQL query to the database asking for all submissions with a
PROCESSING status, whose timestamp is older than a critical value, which indicates that
the evaluation failed, while they were being processed by a worker. If there are such submis-
sions, it uses another query to the database to get the relevant task data of these submissions
and incorporates them to the submission data to reconstruct their proper form. Afterwards, it
sends all these submissions back to the broker as new evaluation requests. Finally, it updates
the status of these submissions to the database to IN_QUEUE and their timestamp to current
time.

60



..restart.

select
IN_QUEUE
submissions

.

add
submissions
to internal
submission
queue

.

poll sockets
for requests

.

new
request?

.

time for
heartbeat?

.

worker
request?

.

send
HEART-
BEAT to
workers

.

add to
internal

submission
queue

.

add to
internal
worker
queue

.

workers
AND sub-
missions
available?

.

send
submission
to worker

.

update
PROCESS-
ING and
timestamp

.

yes

.

no

.

no

.

yes

.

no

.

yes

.

no

.

yes

Figure 5.1: The overall behaviour of the broker.

61



5.2.3 Workers

The workers are the components of the system that evaluate new submissions. For that pur-
pose, they communicate with the broker using REQ sockets to ask and receive work and
use the older evaluation system to evaluate and grade the submitted programs received. The
reason we use REQ sockets is because they are synchronous. A worker will send a request
and then will expect a reply back.

To start multipleworkers on each node, we run amain processwhich forks, assigns a worker()
function to each of its children, along with an incrementing integer, as argument, unique for
each child, and waits for them indefinitely. The integer is used to distinguish which local files
are handled by each of the children. This worker function plays the role of our worker.

Upon being called, each worker process creates a REQ socket, connects it to the broker
back-end endpoint and sends a READY message indicating that it is ready to receive a new
submission. To make sure that the broker is online and their READY message has reached it,
workers use a timer. If they receive a reply from the broker before the timer expires, it means
that the broker is still alive. In case no messages are received within that time frame, they
cannot be sure if the broker received their request and therefore they have to send it again.
As it is not possible to send two consecutive messages with a REQ socket, they have to start
again, creating a new instance of themselves and send another READYmessage. In addition, in
order to provide some time to the failing broker to restart, they wait before doing so, using an
exponential backoff strategy. Ultimately, the broker will restart, receive their message, mark
them as available, and send a reply back, either in the form of a submission or as a HEARTBEAT
message.

Without this mechanism, the workers would be unaware about the liveness of the broker.
Consequently, in the event of a failure, the broker would restart, but it would not have any
available workers in its list, as it would not have received any READY messages. Using this
technique, we ensure that the workers will persistently ask for a reply, until the broker is back
online.

To check for new messages, workers use a poller. As we have explained, there are two types
of messages accepted:

• Amessage containing a new submission to be evaluated.When the worker receives this,
it restarts the timer for the broker and proceeds to process the message, by revoking
the evaluation mechanism. While evaluating the submission, it stores all the relevant
results in a string using JSON format. When the evaluation is completed, it sends this
string, using an HTTP POST method, to a predefined URL on the HTTP servers. This
URL contains the /submissions/<sub_id> URI to refer to the particular evaluated
submission. It also checks for an optional, user provided callback URL to post the results
as well. Afterwards, the worker sends another READY message to the broker to indicate
that it is available again.

• A HEARTBEAT message. When the worker receives this type of message, it restarts the
broker timer and continues to poll its queue for requests or other HEARTBEAT messages.

62



5.2.4 Adjustments to the Previous Architecture

In general, we preserved the architecture and the basic components used in the older eval-
uation system. These include tasks, submissions, tests, and graders as well as the overall
behaviour presented in Chapter 3. In this section we describe the changes we made to these
components to make the system’s architecture compatible to our design.

Tasks

The changes concerning tasks include the following:

• Instead of a special flag field we introduced a “grader” char field, specifying the name
of the grader used for the particular task’s submissions. A blank grader field indicates
default grading.

• Tasks are no longer stored in local files of the evaluation system, but only in the database.
The necessary task information for each submitted solution is incorporated in the final
form of the submission received by the evaluation system. This information is retrieved
from the database and added by the front-end or other intermediaries and is not stored
locally.

Submissions

Submissions are also not stored in local files, only in the database, and the queue is now pro-
vided through ZeroMQ sockets, from which the system receives the submissions and handles
them using appropriate data structures.

Storing submissions in the database is not necessary for the evaluation process, since all the
relevant information is sent to workers inside ZeroMQ messages. However, this method is
crucial for fault tolerance, as it enables the system to retrieve and fully reconstruct submis-
sions that were lost from the broker or the workers because of a failure.

To compile and execute the source code of the submissions we use special directories /tmp0,
/tmp1, …, /tmp<max_child_id>, where we use the unique integer assigned to each of
the children processes, running evaluation systems, as index. Each child process uses the
corresponding directory to save the source code of the submission, in a <sub_id>.<lang_-
ext> file, and its resulting executable, after its compilation. After the evaluation the contents
of the directory are erased, so that the contents of a new submission can be stored.

Submissions received for evaluation contain the following fields in our implementation:

• task_name: The relevant name of the task.

• id: The unique id assigned to each submission by the database.

• tests: A list containing the ids of the test cases for this task.

• code: The base64 encoded source code of the solution provided.

63



• language: The programming language used for the source code.

• callback_URL: An optional, user provided callback URL to send the results.

• input_file: The name of the input file for submissions of this task. Should be blank for
stdin.

• output_file: The name of the output file for submissions of this task. Should be blank
for stdout.

• time_limit: The time limit for submissions of this task.

• memory_limit: The memory limit for submissions of this task.

• grader: The name of the grader to be used for submissions of this task. Should be blank
for the default grader.

• g_code: The source code of the custom grader, if one is specified. Otherwise, this field
should be left blank.

• g_lang: The programming language used for the grader source code.

• type: The type of the relevant task, which can be batch, reactive or output only. The
functionality is not yet implemented.

To store all these data we use an appropriate data structure internally, submission_t. It is
defined as:

1 typedef struct {

2 char * task_name;

3 int sub_id;

4 int test_nbr;

5 int * tests;

6 double runtime;

7 char * code;

8 char * language;

9 char * callback_url;

10 char * input_file;

11 char * output_file;

12 double time_limit;

13 int memory_limit;

14 char * grader;

15 char * g_code;

16 char * g_lang;

17 int type;

18 } submission_t;

Listing 5.1: The submission_t data structure we used for submissions.

64



Tests

To keep a consistent view of the test case data among the workers we use the NFS protocol
[1]. Specifically, we store the test case data as files in a separate node which is also an NFS
server. This node then shares the data to the workers, where each worker in this case also
acts as an NFS client. For each submission, the appropriate test case data are copied to the
corresponding /tmp<child_id> directory in the texttt<task_name>.in file which after the
completion of the evaluation is replaced by the data of the next test case.

Graders

Graders, like the rest of the components described, are not stored locally in the file system
of the worker. Their data exist only in the database and are incorporated to the submission
message before it is issued to the broker’s queue. As is the case with submissions, graders,
apart from the default grader, need also to be compiled and executed. Therefore, their code
is stored in a temporary file grader.<lang_ext>, under the appropriate /tmp<child_id>
directory.

The default grader is an internal function which is called instead of executed. Therefore we
do not store it in any particular files.

In contrast with the existing evaluation system, where each task had a dedicated grader, either
the default or a custom one, we now provide a list of graders available to all tasks, with each
submission specifying the desired grader to be used.

5.2.5 Evaluation System Behaviour

The overall behaviour of the system is similar to the behaviour presented in Chapter 3. The
changes we made are only aimed to incorporate our new distributed architecture. The re-
sulting behaviour is presented in Fig. 5.2 and can generally be described in the following
steps:

1. Receive a new request for evaluation from the worker socket.

2. Store the information included to a submission_t struct. All source code included is
decoded before being stored.

3. Store the source code of the solution provided in a file <sub_id>.<lang_ext> under
the appropriate /tmp<child_id> directory.

4. Compile the source code. The results (successful compilation/errors) are stored in a
string.

5. After successful compilation, check if a custom grader is specified. In that case copy the
source code of the grader to a grader.<lang_ext> file under the same /tmp<child_-
id> directory and compile it, storing the results to a string. If any of the aforementioned
compilations fails jump to step 7.

65



6. i=1;
While i <= test_cnt:

• Check which test case id is specified in the tests[i] variable and copy its data to
the /tmp<child_id> directory, in the appropriate file, which is named <input_-
file>.in.

• Run the executable of the solution submitted.
• Check which grader is specified and either call the appropriate function or run its
executable.

• Collect the results and store them in an appropriately formatted string.
• i++;

7. Send the results collected to the HTTP servers and, if provided, to the user defined
callback URL.

8. Send a READY message to the broker.

9. Poll the queue for incoming messages.

66



..receive new
submission

.

read sub-
mission
info

.

compile
submission

code

.

compilation
errors?

.

post results
to HTTP
server

.

send READY

message
to broker

.

poll socket
for requests

.

i=1

.

i <=

test_cnt?

.

run solution
for test case
tests[i]

.

grade
results

.

i++

.

no

.

yes

.

yes

.

no

Figure 5.2: The overall behaviour of the adjusted evaluation system.

67





Chapter 6

Benchmarks

6.1 Testbed description

To test our systemwe used a computer node with four Intel Xeon® E7340 (2.40 GHz) proces-
sors, with a total number of 16 cores, 4 MB cache and 16 GB RAM, and Debian GNU/Linux
8.0 operating system.

6.2 Evaluation of the new architecture

In this section, we evaluate the performance of our distributed architecture. In order to achieve
this we deploy our system on the testbed node, submit multiple solutions for a simple task
and measure the time needed to evaluate them using different numbers of workers. The sub-
missions are multiple copies of the same implementation of a O(NlogN) algorithm, which we
execute against two test cases, one for N = 1000 and another for N = 20000. The results are
shown in Fig. 6.1 and Fig. 6.2 (execution time and speedup, respectively).

We notice that our architecture provides initially an almost linear increase in performance,
which is expected, as each evaluation of a submission is an independent task, conducted
entirely by one worker. As a result there is no need for communication between workers,
which means that the speedup achieved in the evaluation process should be proportionate
to the number of workers available. One limitation in the number of possible workers is
imposed by the physical characteristics of the system. As the number of workers approaches
the number of physical cores available, the speedup becomes significantly less than linear.
This is a standard overhead resulting from the fact that there are other processes running on
the system, such as the broker, the HTTP server and the safety service. Another standard
overhead derives from the message passing among the components of our system.

69



0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Workers

To
ta

l 
T

im
e

 (
s

)

Figure 6.1: The time needed to evaluate 200 submissions

70



0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

Workers

S
p
e
e
d
u
p

Figure 6.2: The speedup achieved for 200 submissions

71





Chapter 7

Conclusion

7.1 Concluding remarks

This thesis is an effort to increase the performance and availability of the automatic evaluation
system by designing and implementing a distributed architecture for it. It also deals with the
issue of designing and implementing a RESTful API to provide the grading capabilities as a
service.

The performance evaluation we conducted shows that our architecture successfully provides
the system with these desired properties and, consequently, is a much better alternative to the
original architecture of the system.

In addition, our API provides a unified interface to access the grading services publicly and
it is therefore an efficient way for interested clients to make use of our service.

7.2 Future work

We intend to deploy our proposed architecture on a cluster of our university division and
use it for class assignments and competitions. We also need to further expand the system to
provide grading for more kinds of tasks, like reactive tasks, which is currently not supported,
or to increase support for custom grading tasks. Similarly, we can add grading support for
more programming languages.

Furthermore, we intend to increase system security by creating a better sandboxed environ-
ment to test the submissions, since student programs cannot be trusted [8]. We would also
like to provide our service with elasticity to automatically adjust the resources according to
the workload.

Moreover, since there are very few writes and many reads on the NFS server, we can develop
a caching mechanism for test cases to increase performance. Finally, we can develop a test
case specification language so that the grader can automatically check that the format of the
test cases complies with the specification provided in the task description.

73





Bibliography

[1] Brent Callaghan, Brian Pawlowski, and Peter Staubach. NFS version 3 protocol
specification. Network Working Group, 1995.

[2] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed
Systems: Concepts and Design. Pearson Education, Inc., 2012.

[3] Thomas Erl. SOA: Principles of Service Design, volume 1. Upper Saddle River: Prentice
Hall, 2008.

[4] Filho Ferreira and Freitas Otávio. SemanticWeb Services: A RESTful Approach. IADIS,
2009.

[5] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. Dissertation, University of California, 2000.

[6] Sukumar Ghosh. Distributed Systems – An Algorithmic Approach. Chapman & Hall,
CRC, 2007.

[7] Pieter Hintjens. ZeroMQ: Messaging for many applications. O’Reilly Media, Inc., 2013.

[8] Martin Mareš and Bernard Blackham. A New Contest Sandbox, volume 6 of Olympiads
in Informatics. Vilnius University, 2012.

75


	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis motivation and background
	Thesis structure

	Theoretical Background
	Distributed Systems
	Properties of Distributed Systems
	Architectures
	Communication Paradigms

	ZeroMQ
	ZeroMQ Technology
	ZeroMQ Message Handling
	The ZeroMQ Message Transfer Protocol
	Messaging Patterns of ZeroMQ
	The Request-Reply pattern
	ZeroMQ Example

	Representational State Transfer
	Django REST framework

	Existing Evaluation System
	Architecture
	Tasks
	Submissions
	Tests
	Graders

	Behaviour

	Design
	Design Overview
	Design Details
	HTTP servers
	Broker
	Workers
	Safety System
	Database
	Cache

	Scalability
	High Availability
	Fault Tolerance
	HTTP server node failure
	Broker node failure
	Safety system failure
	Worker node failure
	Example

	Load Balancing
	Summary

	Implementation
	Front-end Implementation
	Models
	Views

	Back-end Implementation
	Broker
	Safety System
	Workers
	Adjustments to the Previous Architecture
	Evaluation System Behaviour


	Benchmarks
	Testbed description
	Evaluation of the new architecture

	Conclusion
	Concluding remarks
	Future work

	Bibliography

