
Κοκόλης Απόστολος

Mitigation of performance variability induced by

Checkpoint-Restart using DVFS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Ι. Σούντρης

Αναπληρωτής Καθηγητής

Αθήνα, Ιούλιος 2015

Κοκόλης Απόστολος

Mitigation of performance variability induced by

Checkpoint-Restart using DVFS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Ι. Σούντρης

Αναπληρωτής Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 28
η
 Ιουλίου 2015.

Αθήνα, Ιούλιος 2015

............................

Δημήτριος Ι. Σούντρης

 Αναπληρωτής Καθηγητής

............................

Κιαμάλ Πεκμεστζή

 Καθηγητής

............................

Νεκτάριος Κοζύρης

 Καθηγητής

...................................

Κοκόλης Απόστολος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Απόστολος Κοκόλης, 2015

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

Contents

Abstract . iii

Acknowledgements . xviii

List of Figures . xix

List of Tables . xxi

1 Introduction . 1

2 Prior Art . 4

2.1 Introduction . 4

2.2 Error Profilling . 5

2.3 Checkpoint Restart . 5

2.4 Execution Boosting . 7

3 DVFS Overhead Characterization . 11

3.1 Voltage Regulators . 11

3.2 Target Platforms . 13

3.2.1 Single-Chip Cloud Computer, SCC 13

3.2.2 x86 architecture platform . 14

3.3 SCC voltage/frequency alteration overhead 15

3.4 Voltage/Frequency alteration and overhead for x86 architecture 21

3.4.1 CPUfreq governors . 21

3.4.2 DVFS options and alteration . 23

4 Depman tool and timing noise quantification 25

4.1 Introduction . 25

4.2 Target Application . 25

4.3 Depman Tool . 27

4.3.1 Depman Operation . 27

i

4.3.2 The Checkpoint Restart procedure 28

4.3.3 Diagnostics and Self Injection module 29

4.3.4 DVFS module . 30

4.4 Timing Noise Overheads . 31

5 Reclaiming Timing Noise . 36

5.1 Introduction . 36

5.2 SCC Results . 36

5.3 x86 Results . 43

5.3.1 First implementation . 44

5.3.2 Second Implementation . 46

6 Conclusions and Future Work . 50

6.1 Conclusions . 50

6.2 Future Work . 51

References . 53

7 Appendix . 58

7.1 Source Code . 58

ii

Περίληψη

Καθώς οι διαστάσεις των κρυσταλλοτριόδων μειώνονται συνεχώς και οι βιομηχανίες υπολογι-

στών ενσωματώνουν όλο και περισσότερους πυρήνες μέσα στο ίδιο ολοκληρωμένο προκειμένου

να βελτιώσουν τις επιδόσεις των συστημάτων τους, η συχνότητα σφάλματος των συστημάτων

αυξάνεται εντείνοντας την ανάγκη για την αντιμετώπιση των σφαλμάτων αυτών, τόσο στα Εν-

σωματωμένα όσο και στα Συστήματα Υψηλής Απόδοσης.

΄Εχουν αναπτυχθεί μέθοδοι που αντιμετωπίζουν τα σφάλματα αυτά τόσο στο επίπεδο του Συ-

στήματος, από τους αρχιτέκτονες υπολογιστών, όσο και στο επίπεδο Εφαρμογής από τους

προγραμματιστές.

Μία διαδεδομένη τεχνική αντιμετώπισης των σφαλμάτων είναι η μέθοδος Checkpoint/Restart.
Με τη μέθοδο αυτή η κατάσταση του συστήματος ή της εφαρμογής αποθηκεύεται σε τακτά χρο-

νικά διαστήματα έτσι ώστε όταν ένα σφάλμα προκύψει, το σύστημα ή η εφαρμογή να μπορέσει

να ανακάμψει από μια προγενέστερη ασφαλή κατάσταση.

Προκειμένου όμως να επιτευχθεί η ακεραιότητα και η αξιοπιστία του συστήματος ή της εκτέλε-

σης μιας εφαρμογής χρησιμοποιώντας τη μέθοδο του Checkpoint/Restart εισάγονται επιπλέον
χρονικές επιβαρύνσεις, οι οποίες προκαλούν τη μεταβλητότητα της απόδοσης. Συνεπώς εγε-

ίρεται το ζήτημα της ανάκτησης αυτού του χαμένου χρόνου.

Ο σκοπός αυτής της διπλωματικής είναι να τροποποιηθεί ένα ενοποιημένο περιβάλλον εκτέλε-

σης, ο Depman, ο οποίος υλοποιεί τη μέθοδο Checkpoint/Restart σε επίπεδο εφαρμογής έτσι
ώστε να ανακτώνται οι χρονικές καθυστερήσεις της μεθόδου και να επιτυγχάνεται η σύγκλιση

του χρόνου εκτέλεσης της εφαρμογής στο χρόνο αναφοράς.

Προσπαθώντας να αποσαφηνίσουμε το περιεχόμενο της παρούσας εργασίας πρέπει να αναφερ-

θούμε στα πιθανά σφάλματα που παρουσιάζονται στο σύστημα κατά την εκτέλεση μιας εφαρ-

μογής, στη μέθοδο Checkpoint/Restart και στους τρόπους επιτάχυνσης της εκτέλεσης μιας
εφαρμογής.

Τα σφάλματα μπορούν να προκληθούν απο ραδιερνέργεια [1, 2], γήρανση των κρυσταλλοτρι-

όδων [3], και από τη συνεχή σμίκρυνση των διαστάσεων και την εκτέλεση στο όριο των δυνα-

τοτήτων των υπολογιστών. Τα σφάλματα αυτά χωρίζονται σε Silent Data Corruptions (SDC)
και Detected Unrecoverable Errors (DUE). Τα πρώτα αφορούν την παραγωγή λανθασμένων
αποτελεσμάτων από το σύστημα και σχετίζονται άμεσα με την εκάστοτε εφαρμογή. Τα δεύτε-

ρα, που είναι και αυτά που θα μας απασχολήσουν εντοπίζονται από το λειτουργικό σύστημα ή

από το υλικό και έχουν το χαρακτηριστικό να διακόπτουν την εκτέλεση της εφαρμογής όταν

εντοπίζονται.

Η αναγνώριση των σφαλμάτων όμως από μόνη της δεν προσφέρει κάποια αξιοπιστία. Η μέθο-

δος Checkpoint/Restart είναι σε θέση να προσφέρει αυτή την αξιοπιστία. Η λειτουργία της
περιγράφεται ως εξής. Σε τακτά χρονικά διαστήματα ή βήματα εκτέλεσης, όπως είναι στην πε-

ρίπτωσή μας, αποθηκεύεται η κατάσταση του συστήματος ή τα ζωτικά στοιχεία της εφαρμογής

και έτσι όταν ένα σφάλμα εντοπιστεί η εκτέλεση συνεχίζει από το σημείο εκείνο. Η διαδικασία

του Checkpoint/Restart είναι όπως αναπαρίσταται στην Σχήμα 1.

iii

Σχήμα 1: Μοντελοποίηση της Μεθόδου C/R.

΄Οπως είναι σαφές η μέθοδος του C/R εισάγει επιπλέον χρονικές καθυστερήσεις στην εκτέλεση
του προγράμματος, οι οποίες πρέπει να καλυφθούν. Οι καθυστερήσεις αυτές είναι οι εξής:

• Αρχικά είναι ο χρόνος που χάνεται εξαιτίας της οπισθοδρόμησης της εφαρμογής σε ένα
προγενέστερο βήμα. Αυτό σημαίνει πως κάποιοι υπολογισμοί θα εκτελεστούν ξανά οπότε

θα χαθεί υπολογιστικός χρόνος.

• Επίσης είναι ο χρόνος που δαπανάται λόγω της επανεκκίνησης της εφαρμογής. ΄Οταν ένα
σφάλμα εντοπιστεί και η εφαρμογή σταματήσει, ο Depman ελέγχει εάν υπάρχει κάποιο
ασφαλές σημείο επανεκκίνησης, καλεί το μέθοδο της Δυναμικής αλλαγής Συχνότητας και

Τάσης και ύστερα επανεκκινεί την εφαρμογή. Αυτή η διαδικασία απαιτεί κάποιο χρόνο ο

οποίος και πρέπει να ανακτηθεί.

• Επιπλέον είναι ο χρόνος που χρειάζεται η εφαρμογή η ίδια ώστε να εξορύξει τις τιμές των
παραγόντων της από τα αρχεία των Checkpoints και να συνεχίσει την εκτέλεσή της.

• Τέλος είναι ο χρόνος που χρειάζεται προκειμένου να διατηρούνται στιγμιότυπα της εφαρ-
μογής ούτως ώστε να μπορεί σε περίπτωση σφάλματος να ανακάμψει.

Προκειμένου λοιπόν να ανακτηθεί ο χαμένος χρόνος υπάρχουν δύο διαφορετικές προσεγγίσεις.

Η πρώτη αφορά την επιτάχυνση μέσω της αυξομείωσης της συχνότητας και της τάσης και

η δεύτερη αφορά τον παράλληλο υπολογισμό από περισσότερους πυρήνες. ΄Οσον αφορά το

πλαίσιο αυτής της διπλωματικής θα ασχοληθούμε με την επιτάχυνση της εκτέλεσης λόγω της

αυξομείωσης της τάσης και της συχνότητας.

Η εφαρμογή που δημιουργήθηκε λειτουργεί όπως περιγράφεται από το Σχήμα 2.

iv

Σχήμα 2: Διάγραμμα λειτουργίας του Depman

Η εκτέλεση της εφαρμογής εκκινείται και ο Depman ελέγχει την έξοδο του προγράμματος
παρακολουθώντας για σφάλματα. Η εφαρμογή ανά τακτά βήματα εκτέλεσης κρατάει ένα στιγ-

μιότυπο της κατάστασής της από την οποία θα μπορέσει να επανεκκινήσει αν παρουσιαστεί ένα

σφάλμα. Αν παρατηρηθεί κάποιο σφάλμα, είτε επειδή το προκαλέσαμε εμείς είτε γιατί προέκυ-

ψε από το σύστημα, τότε εξετάζεται εάν υπάρχει ένα στιγμιότυπο προγενέστερης κατάστασής

της από το οποίο θα μπορούσε να επανεκκινήσει και επανεκκινείται η διαδικασία. Ως κεντρική

εφαρμογή για την εξυπηρέτηση των αναγκών αυτής της εργασίας χρησιμοποιήθηκε ένας προ-

σομοιωτής νευρώνων, ο Infoli.

Για την ανάκτηση του χαμένου υπολογιστικού χρόνου μοντελοποιούμε την διαδικασία της Δια-

κύμανσης της Τάσης και της Συχνότητας σε ένα κλειστό βρόγχο όπως απεικονίζεται στο Σχήμα

3.

Σχήμα 3: Διάγραμμα για την λειτουργία της αυξομείωσης της συχνότητας και της τάσης σε

κλειστό βρόγχο

΄Ετσι κάθε φορά που προξενείται ένα σφάλμα, υπολογίζεται ο χρόνος που η διαδικασία έχει

καθυστερήσει και υπολογίζεται η νέα συχνότητα που πρέπει να συνεχιστεί η εκτέλεση της ε-

φαρμογής προκειμένου να κερδίσουμε το χαμένο χρόνο. ΄Υστερα βρίσκουμε τη κοντινότερη σε

αυτή την τιμή συχνότητα του επεξεργαστή και την επιλέγουμε ώστε να συνεχίσουμε από εκεί

v

την εκτέλεση.

Η εφαρμογή που αναπτύχθηκε ελέγθηκε τόσο στο Single-Chip Cloud Computer (SCC) όσο
και σε μία εμπορική x86 πλατφόρμα.

΄Οσο αφορά το SCC υλοποιήθηκε η εφαρμογή του Σχήματος 4.

Σχήμα 4: Διάγραμμα κατάστασης για την υλοποίηση του SCC

Από το διάγραμμα φαίνεται πως έχουμε δύο συχνότητες λειτουργίας. Η μία επιλέγεται όταν

υπάρχει καθυστέρηση στην εκτέλεση του προγράμματος και η άλλη όταν η καθυστέρηση αυτή

έχει εξαλειφθεί. Προκειμένου να υπολογιστεί εάν έχει χαθεί χρόνος ή όχι χρησιμοποιείται η

εξίσωση:

snew = sprevious − timeOverheads+
+ (lastTTF × curFreq − lastTTF × defFreq)

(1)

΄Ετσι υπολογίζουμε τη συνολική καθυστέρηση που προξενείται και ελέγχουμε εάν έχει ανακτη-

θεί ο χαμένος χρόνος λόγω εκτέλεσης σε υψηλότερη συχνότητα ή όχι.

Προκειμένου να ελέγξουμε την αποτελεσματικότητα της εφαρμογής μας αρχικά εκτελέσαμε προ-

σομοιώσεις για ποικίλα Checkpoint Intervals, μεγέθη πλέγματος, αριθμό πυρήνων και χρόνους
σφάλματος και λάβαμε τα αποτελέσματα όπως παρουσιάζονται στο Σχήμα 5.

vi

8x12 8x24 8x48 12x12 12x24 16x12 16x24 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 2000 and TTF 120

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x12 8x24 8x48 12x12 12x24 16x12 16x24 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 4000 and TTF 120

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x48 12x12 12x24 16x24 16x48 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 2000 and TTF 180

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x48 12x12 12x24 16x24 16x48 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 4000 and TTF 180

w/o faults

w/ dvfs

w/ faults and w/o dvfs

Σχήμα 5: Αποτελέσματα για ποικίλες διαφορετικές συνθέσεις, Checkpoint Interval of 2000
και 4000 simulation steps και χρόνους σφάλματος 120 και 180 sec

Από τα αποτελέσματα αυτά, παρατηρούμε πως ο χρόνος καθυστέρησης του προγράμματος α-

νακάμτεται μεταβάλλοντας κατάλληλα την τάση και τη συχνότητα του επεξεργαστή.

Προκειμένου να ελέγξουμε περισσότερο την εφαρμογή μας, εκτελέσαμε προσομοιώσεις για

σταθερό μέγεθος πλέγματος ίσο με 16x96 τόσο για σταθερό χρόνο μεταξύ των σφαλμάτων,
όσο και για τυχαίο χρόνο που δίνεται από την εξίσωση:

Ps = 1− e−∆t/MTTFs
(2)

Τα αποτελέσματα είναι όπως παρουσιάζονται στο Σχήμα 6 και 7.

vii

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(αʹ) Checkpoint Interval =1000,TTF = 122

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(βʹ) Checkpoint Interval =2000,TTF = 122

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(γʹ) Checkpoint Interval =4000,TTF = 122

Σχήμα 6: Αποτελέσματα χρόνου και ενέργειας, για χρόνο σφάλματος 122 sec
Time Reference: 823 seconds and Energy Reference: 29210 Joules

viii

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(αʹ) r = 1

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(βʹ) r = 2

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(γʹ) r = 3

Σχήμα 7: Αποτελέσματα χρόνου και ενέργειας για τυχαίο χρόνο σφάλματος

Time Reference: 823 seconds and Energy Reference: 29210 Joules

ix

Από τις παραπάνω γραφικές παραστάσεις συμπεραίνουμε πως ο χαμένος χρόνος ανακτάται, σε

βάρος του κόστους κατανάλωσης ενέργειας.

Το σημαντικό στοιχείο που αφορά την υλοποίηση στο SCC είναι ο χρόνος που χρειάζεται
προκειμένου να γίνει μία μετάβαση από ένα επίπεδο τάσης και συχνότητας σε ένα άλλο. Ο

χρόνος αυτός είναι σημαντικός και καθορίζει τη λειτουργία της υλοποίησης μας. Ο χρόνος και

η ενέργεια που καταναλώνεται απεικονίζονται στα παρακάτω σχήματα. Στο SCC η εκτέλεση
περιορίζεται είτε στη συχνότητα των 533MHz είτε σε αυτή των 800MHz ώστε να περιορίσουμε
τις συχνές μεταβάσεις και να γλιτώσουμε το χρόνο αλλαγής της συχνότητας.

13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18
0

20

40

60

80

100

120

140

160

180

200

Time(seconds)

F
re

q
u
e
n
c
y

Voltage Alteration Time

Σχήμα 8: Χρονική επιβάρυνση για αλλαγή

από 533MHz σε 800MHz

13.5 14 14.5 15 15.5 16 16.5 17
0

20

40

60

80

100

120

Time(seconds)

F
re

q
u
e
n
c
y

Voltage Alteration Time

Σχήμα 9: Χρονική επιβάρυνση για αλλαγή

από 800MHz σε 533MHz

x

650 700 750 800 850 900 950
0

20

40

60

80

100

120

140

Energy

F
re

q
u
e
n
c
y

Energy flunctuation histogram for voltage alteration

Σχήμα 10: Κατανάλωση ενέργειας για

μετάβαση σε συχνότητα 800MHz

460 480 500 520 540 560 580 600 620 640
0

10

20

30

40

50

60

70

80

90

Energy

F
re

q
u
e
n
c
y

Energy flunctuation histogram for voltage alteration

Σχήμα 11: Κατανάλωση ενέργειας για

μετάβαση σε συχνότητα 533MHz

Παρατηρούμε πως χρειάζεται σημαντικός χρόνος για τη μετάβαση από τη μία στάθμη συχνο-

τήτων στην άλλη. Επιπλέον, η αύξηση της συχνότητας συνεπάγεται και την αύξηση της κατα-

νάλωσης ενέργειας. Ακόμη κατά τη διάρκεια της μετάβαση από τη μία συχνότητα στην άλλη,

βλέπουμε πως υπάρχει διακύμανση στην τιμή του ρεύματος, οπότε πρέπει να περιμένουμε το

ρεύμα να σταθεροποιηθεί σε μία τιμή προτού συνεχίσουμε την εκτέλεση της εφαρμογής.

xi

0 20 40 60
0

5

10

15

20
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

Σχήμα 12: Διακύμανση τάσης και ρεύματος για μετάβαση σε συχνότηα 800MHz

0 10 20 30 40 50
0

5

10

15

20

25

30
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25

30

35
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25

30
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 10 20 30 40 50
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

Σχήμα 13: Διακύμανση τάσης και ρεύματος για μετάβαση σε συχνότηα 533MHz

xii

Πέρα από την υλοποίηση στο SCC όμως έγιναν και δύο υλοποιήσεις σε x86 πλατφόρμα. Η
πρώτη είναι όπως παρουσιάζεται στο Σχήμα 14.

Σχήμα 14: Διάγραμμα κατάστασης για την πρώτη εφαρμογή

Από το διάγραμμα κατάστασης, παρατηρούμε πως έχουμε τρεις διαφορετικές καταστάσεις λει-

τουργίας ανάλογα με το εάν η εκτέλεση της εφαρμογής προπορεύεται, υπολείπεται ή είναι ίδια

με την εκτέλεση αναφοράς. Προκειμένου να βρούμε εάν η εκτέλεση έχει καθυστερήσει χρη-

σιμοποιούμε την ίδια εξίσωση που χρησιμοποιήθηκε και στην υλοποίηση για το SCC. Για τον
υπολογισμό της νέας συχνότητας λειτουργίας χρησιμοποιείται η εξίσωση:

newFreq =
−s+ defFreq ×MTTF

MTTF
(3)

Προτού παρουσιάσουμε τα αποτελέσματα της μεθόδου, είναι σημαντικό να σημειώσουμε ότι η

σχέση της τάσης με τη συχνότητα της πλατφόρμας δίνεται από τη σχέση

V (f) = 5.83× 10−7 × f + 0.184, f in KHz (4)

και έτσι μπορούμε να υπολογίσουμε την ενέργεια ως

E = c× f × V 2 ×Dt (5)

Ελέγξαμε την υλοποίηση αυτή για σταθερό μέγεθος πλέγματος νευρώνων ίσο με 12x16 και
για τυχαία σφάλματα κρατώντας στιγμιότυπα της εκτέλεσης ανά 1000, 1500 και 2000 βήματα

εκτέλεσης. Τα αποτελέσματα περιγράφονται στο Σχήμα 15.

xiii

1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

Σχήμα 15: Υλοποίηση 1: Αποτελέσματα χρόνου και ενέργειας για τυχαίο χρόνο σφάλματος

Χρόνος Αναφοράς: 578 sec και Ενέργεια βασισμένη στη σχέση P ∝ f ×V 2
dd

΄Οπως παρατηρούμε και πάλι, έχουμε καλύτερη απόδοση κερδίζοντας το χαμένο χρόνο. Ακόμη,

βλέπουμε ότι έχουμε καλύτερη σύγκλιση των αποτελεσμάτων στην τιμή αναφοράς. Αυτό συμ-

βαίνει κυρίως λόγω της πολύ μικρής χρονικής επιβάρυνσης που επιφέρει η μεταβολή της τάσης

στην πλατφόρμα.

Επιπλέον υλοποιήθηκε και μία δεύτερη έκδοση για τον τρόπο επανάκτησης του χρόνου που

χάθηκε. Σύμφωνα με την υλοποίηση αυτή, όταν ένα σφάλμα εντοπιστεί και χρειαστεί να αλ-

λαχθεί η συχνότητα σε νέα τιμή, τότε υπολογίζεται ο ακριβής χρόνος που χρειάζεται ώστε να

επανέλθει ο χρόνος σε φυσιολογικά επίπεδα και ύστερα η συχνότητα επανέρχεται στα επίπεδα

αναφοράς. Προκειμένου να υπολογιστεί ο χρόνος που χρειάζεται να επιταχυνθεί η εκτέλεση

είναι:

reclaimingT ime =
−s

determinedFreq − defFreq (6)

Το διάγραμμα κατάστασης που περιγράφει την υλοποίηση αυτή είναι όπως απεικονίζεται στο

Σχήμα 16.

xiv

Σχήμα 16: Διάγραμμα κατάστασης για την δεύτερη εφαρμογή

Από το διάγραμμα αυτό φαίνεται πως έχουμε μονάχα δύο καταστάσεις λειτουργίας. Αυτό

είναι λογικό αν αναλογιστούμε πως δεν υπάρχει λόγος για μείωση της συχνότητας κάτω της

συχνότητας αναφοράς διότι η τιμή του s δεν μπορεί ποτέ να πάρει θετική τιμή από τη στιγμή
που επιταχύνεται η διαδικασία μέχρις ότου μηδενιστεί η καθυστέρηση της εφαρμογής και όχι

παραπάνω.

Η υλοποίηση αυτή ελέγχθηκε για μέγεθος πλέγματος 10x14 και τα αποτελέσματα παρουσι-
άζονται στο Σχήμα 17.

1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

Σχήμα 17: Υλοποίηση 2: Αποτελέσματα χρόνου και ενέργειας, τυχαία έκχυση σφαλμάτων

Χρόνος Αναφοράς: 494 sec και Ενέργεια βασισμένη στη σχέση P ∝ f ×V 2
dd

Βλέπουμε και πάλι ότι κερδίσαμε σε χρόνο εκτέλεσης, αλλά καταναλώθηκε μεγαλύτερο ποσό

ενέργειας. Αυτό που πρέπει να σημειώσουμε είναι ότι η κατανάλωση ενέργειας περιορίστηκε σε

σχέση με την προηγούμενη υλοποίηση.

xv

΄Εχοντας παρουσιάσει τα αποτελέσματα των εφαρμογών μας, καταλήγουμε στο συμπέρασμα ότι

η εκτέλεση ενός προγράμματος μπορεί να επιταχυνθεί με την αυξομείωση της συχνότητας. Με

τον τρόπο αυτό μπορούν να απορροφηθούν οι χρονικές επιβαρύνσεις που προκαλλούνται από

μηχανισμούς που προσφέρουν αξιοπιστία στην εκτέλεση των προγραμμάτων αποδεχόμενοι την

επιπλέον επιβάρυνση στην κατανάλωση ενέργειας.

Πέρα όμως από την απορρόφηση τέτοιων χρονικών επιβαρύνσεων, μπορούμε να χρησιμοποι-

ήσουμε το μοντέλο αυτό προκειμένου να παρέχουμε στους προγραμματιστές τη δυνοτότητα να

επιταχύνουν την εκτέλεση των προγραμμάτων τους, όποτε το κρίνουν απαραίτητο. Επιπλέον

ως μελλοντική δουλειά θα μπορούσε να προστεθεί στον κώδικα και η παράλληλη επιτάχυνση

της εκτέλεσης έτσι ώστε να χρησιμοποιείται ο συνδυασμός των δύο μεθόδων για την βελτίωση

της αποδοτικότητας των προγραμμάτων.

xvi

Abstract

As performance enhancement is accompanied by the aggressive integration of many-cores
to a single chip and technology nodes approach deca-nanometer dimensions, the system’s
failure rate is becoming significant. Inevitably, computer systems must tolerate such failures.
Both hardware and software methods are available enabling fault-tolerance to the systems.
The Checkpoint/Restart technique provides reliability to the execution of an application.
However, Checkpoint/Restart introduce an additional time overhead in order to achieve the
fault-tolerance of the execution, that leads to performance variability.

The scope of this thesis is to enhance a runtime manager, Depman, that orchestrates an
application level Checkpoint/Restart technique so that such time overheads are absorbed,
achieving performance predictability and reliability on the fly, by using Dynamic Voltage and
Frequency Scaling (DVFS). A closed-loop implementation controlling the clock frequency is
proposed, that quantifies the time overheads induced by the checkpoint restart process and
adjusts the frequency levels of the CPU so that execution time converges to the normal.

Depman was also modified to extend its portability to other platforms and applications
and was tested using the self fault injection module to both the Intel’s Single-Chip Cloud
Computer (SCC) and an x86 general computing platform, evaluating both the execution
time and energy consumption of our scheme.

Keywords: Dynamic Voltage and Frequency Scaling (DVFS), Checkpoint/Restart (C/R),
Execution Sprinting, Dependability, Reliability, Availability and Serviceability, Single-Chip
Cloud Computer (SCC)

xvii

Acknowledgements

I wish to express my sincere thanks to Professor Dimitrios Soudris for giving me the op-
portunity to carry out my diploma thesis under his supervision. His guidance and advices,
alongside with his invaluable research experience provided me with the motivation and in-
spiration to accomplish this work.

In addition, I would like to thank Dimitrios Rodopoulos, who stood by me throughout the
duration of this thesis with accurate observations and suggestions. He was always willing to
support me in every difficulty I faced and share his knowledge with me, so i feel grateful for
having the opportunity to cooperate with him. Also, I could not miss to thank Alexandros
Mavrogiannis whose work first introduced me to the challenging field of system reliability and
gave rise to my collaboration with the Microprocessors Laboratory and Digital Systems Lab
of the School of Electrical and Computer Engineering of the National Technical University
of Athens.

I give my special thanks to Zisi Iliana and Kiriaki Kokoli for their enjoyable support and
cheering me up whenever I needed it. I also thank all my friends who supported me through-
out my studies in NTUA.

Finally, I like to thank my family who always encouraged and assisted me to achieve my
goals.

Kokolis Apostolos

xviii

List of Figures

2.1 Representation of the urgency for slack reclaiming 4

2.2 Modelling the Checkpoint cycle . 7

2.3 Types of computational sprinting [4] . 8

2.4 Block diagram for the run time performance dependability scheme in view of
RAS temporal overheads [5] . 10

3.1 SCC Voltage and Frequency domains [6] . 15

3.2 Voltage alteration overhead from divider three to divider two 16

3.3 Voltage alteration overhead from divider two to divider three 16

3.4 Energy fluctuation for voltage alteration from divider three to divider two . . 18

3.5 Energy fluctuation for voltage alteration from divider two to divider three . . 18

3.6 SCC voltage and current fluctuation for voltage alteration from divider three
to divider two . 20

3.7 SCC voltage and current fluctuation for voltage alteration from divider two
to divider three . 20

4.1 Dataflow for the Infoli simulator [7] . 26

4.2 Depman tool operation diagram . 27

4.3 Block diagram for the DVFS closed loop implementation 30

4.4 Rollback Time characterization for the SCC 32

5.1 State diagram for the SCC DVFS module for slack reclaiming 37

5.2 DVFS results for multiple grid sizes and active cores, Checkpoint Interval of
2000 and 4000 simulation steps and Time to Failure 120 and 180 seconds . . 39

5.3 Time and Energy results for the SCC platform, for TTF 122 seconds Time
Reference: 823 seconds and Energy Reference: 29210 Joules 41

5.4 Time and Energy results for the SCC platform, Weibull distributed TTF
values Time Reference: 823 seconds and Energy Reference: 29210 Joules . . 42

5.5 State diagram for the first implementation of the x86 DVFS module for slack
reclaiming . 44

5.6 Implementation 1: Time and Energy results for the x86 platform, Weibull
distributed TTF values Time Reference: 578 seconds and Energy normalized,
based on P ∝ f × V 2

dd . 46

xix

5.7 State diagram for the second implementation of the x86 DVFS module for
slack reclaiming . 47

5.8 Implementation 2: Time and Energy results for the x86 platform, Weibull
distributed TTF values Time Reference: 494 seconds and Energy normalized,
based on P ∝ f × V 2

dd . 48

xx

List of Tables

3.1 R-squared and RMSE values for voltage alteration overhead curves 17

3.2 R-squared and RMSE values for Energy fluctuation curves 19

xxi

Chapter 1

Introduction

In the recent years, technology nodes approach deca-nanometer dimensions and even though

novel transistors exhibit significant improvement in their reliability profiles, bit level cor-

ruption has been a major reliability concern in microprocessor design [5].

Moreover, computer companies incorporate multiple processing nodes on a single chip in

order to enhance the performance of their systems, both for Embedded Computing (EC) and

High Performance Computing (HPC). This aggressive integration leads to increased failure

rates at the circuit and system level [8]. Inevitably, computer systems must tolerate those

failures, especially as far as reliability and safety are concerned, since availability,integrity

and maintanability are, mostly, guaranteed by the hardware and operating system. As a

result fault-tolerance mechanisms should be adopted, in order to provide reliability and

availability to these systems.

There are both hardware (HW) and software (SW) available methods for the mitigation

of such errors. Computer architects enhance their designs with reliability, availability and

serviceability (RAS) schemes to identify and correct such errors. Also software defined

methods have been implemented, such as the application or system level Checkpoint Restart

(C/R) method, which periodically saves a snapshot of the application’s key data structures

and performs a rollback-recovery when an error occurs.

However, fault-tolerance mechanisms rarely come with no associated time overheads for the

execution of applications. As a result, Error Correcting Codes (ECC) produce a perfor-

mance degradation, which is often quantified by Performance Vulnerability Factor (PVF)

[9], depending on the implentation and the type of the detected error.

This thesis covers the process of introducing fault-tolerance to an application, while at the

1

same time temporal overheads produced by such RAS mechanisms are absorbed, using Dy-

namic Voltage and Frequency Scaling (DVFS) techniques, controlled in a closed loop. DVFS

is a power management technique that provides the capability to adjust the voltage and fre-

quency to different values, depending upon circumstances and proportionally adjusting the

execution speed of the application.

In this context, we evaluate our scheme by modifying an adaptive dependability manager,

called Depman [10], that uses an application level Checkpoint/Restart method to provide

reliability to an application. So we incorporate the DVFS module in order to provide besides

fault-tolerance and error recovery, time overhead mitigation.

Our target application is a time-driven simulator of the inferior olive neurons (Infoli simula-

tor) [11]. Our application scheme is ported and tested to a many-core platform, Intel Lab’s

Single-Chip Cloud Computer (SCC) [12], as well as an x86 commercial platform.

In contrast to recent trends in C/R and slack reclaiming methods, our implementation

estimates the time overheads on the fly and adapts to time-dependent error failure rates.

The current thesis is structured as follows:

• In the next chapter we present the samples of Prior Art which motivated us to get

involved with slack reclaiming techniques, systems performance and reliability.

• Next, we introduce the overhead produced by a voltage and frequency alteration both

for the SCC and the x86 platform. First, we give a brief overview about voltage

regulators, which provide the capability of voltage changes, and the two platforms and

then we analyze how we perform the alterations to each platform.

• In Chapter 4 we discuss the operation of Depman, including the DVFS module, for our

target application and also we exhibit the function of the DVFS module. Furthermore,

we formulate the problem of performance dependability, in view of timing noise and

we quantify the time overhead caused by the C/R method, as well as the way in which

we calculate the exact time overhead during the execution of the application.

2

• In addition, in Chapter 5 we depict the results of our application scheme for both

platforms and analyze in further detail each implementation. First we demostrate the

SCC implementation and then two different implementations for the x86 platform.

Also we discuss and evaluate our results.

• Finally, in the last Chapter we list a series of conclusions from the work presented

herein. Directions for future work are also pointed out.

3

Chapter 2

Prior Art

2.1 Introduction

In this Chapter we will present the state of the art concerning this thesis. The way to

achieve this is to categorize the main aspects that lead to the need of slack reclaiming. In

Figure 2.1 we illustrate the scope of the Chapter.

Figure 2.1: Representation of the urgency for slack reclaiming

So, first, we analyze the causes of errors and the their types that violate the reliability of a

process. Then we analyze techniques that tolerate these errors. In precise, we analyze the

Checkpoint/Restart technique that is occupied in this thesis to enable fault-tolerance. We

provide an insight into how the Checkpoint/Restart technique is used in modern systems, its

usefullness and the way that it is modelled. Finally, after we have established the need for

slack reclaiming because of the time overheads introduced by fault-tolerance mechanisms,

we present different approaches for computational sprinting, both parallel and frequency

sprinting [4], as well as an approach regarding the slack reclaiming of cycle noise induced

by RAS mechanisms [5].

4

2.2 Error Profilling

Current trends suggest that soft errors, bit-level corruption of computer data, will emerge

as a priority for microprocessor designers in the future [13]. As a result, a need for the

classification, intuitive understanding and quantitative measurement of errors should be

launched, regarding the way that errors affect the system behavior.

Transient faults may arise from radiation [1, 2] ,transistor aging [3] and the constant device

miniaturization, as well as near-threshold computing [14, 9]. Also chip overheating and

voltage spikes can cause such failures.

The potential errors can be classified into two different categories, the Silent Data Corrup-

tions (SDC) and the Detected Unrecoverable Errors (DUE) [13].

Silent Data Corruptions are faults, which cause the system to generate erroneous outputs.

These type of errors are not detected by the corresponding hardware or operating system and

are directly related with each specific application. On the other hand, DUEs are detected by

hardware or firmware and have the characteristic that when they manifest the application is

either terminated or blocked. However, detecting an error does not provide any reliability,

but does provide the fail-stop behavior and avoids data corruption. The fail-stop model

takes for granted that the appearence of an error causes the simultaneous termination or

block of the process. It is likely though that an error is detected after the process termination

or , in case of the C/R restart method, during the checkpointing procedure which means

that multi-version checkpointing is needed. Both SDCs and DUEs are expressed by two

variables. The first is the Mean Time to Failure (MTTF) metric, which is the average

period of time between two consecutive failures. The other one is the Failures in Time

(FIT), which represents the number of errors detected in a billion device hours.

2.3 Checkpoint Restart

The Checkpoint Restart (C/R) technique enables fault-tolerance through the storage of

snapshots either of the system or the application state, known as checkpoints. In case of a

5

failure these snapshots are used to restore the system to a previous stable state. The C/R

is a well known technique used in HPC [15, 16, 17], as well as many-core platforms and

distributed systems [18]. In the latter, C/R procedure demands the consistency between

the nodes of the system, which can be violated because of heavy packet loss or the network

latencies, so checkpointing is either implemented over unified distributed storage schemes

or it is managed through coordination schemes [19].

As it is already indicated, checkpointing can be performed both at the system or application

level. At system level, the platform’s components are stored in checkpoints, such as registers

and memory contents, while on application level the crucial application structures are stored

in checkpoint files [20]. As a result the application level C/R restart implementation can

outperform system level C/R as the size of checkpoints is, generally, smaller, since only the

storage of the application’s critical components is required. There are several tools which

facilitate the process of C/R. As an example is The Cornell Checkpointing pre-Compiler [15]

known as C3, thoroughly used in HPC systems, which parses the programmers framework

and indicate potential checkpoint and restarting locations.

In the context of this thesis a Supervised C/R application level technique will be reused

and modified [10], called Depman. Depman, initialy, orchestrates a C/R closed loop model

to introduce reliability to a many-core platform, the Single Chip Cloud Computer (SCC).

Checkpoints are stored periodically for the notable application structures in double buffered

files and also it monitors for both DUE’s and SDC errors. When an error is detected

Depman performs the available countermeasures for the SCC platform, such as core-reboot

or platform reset, and restarts the application. No design-time benchmark parameters are

required, since it automatically adapts to time-dependent error failure rates of the system.

The operation of Depman concerning this thesis will be presented in Chapter 4.

The Checkpoint procedure can be modelled as presented in Figure 2.2.

Where the Checkpoint Interval,τ , indicates the time or simulation steps between two sequen-

tial checkpoints. The time consumed by the checkpoint to be taken is called Tcheckpointing,

TTR is the time needed for the application to be restarted and Trepair is the time for the ap-

6

Figure 2.2: Modelling the Checkpoint cycle

plication to restore its state from the checkpoint files. Finally, Tr is the application rollback

time that needs to be performed again. As a result, it is clear that the added fault-tolerance

provided by the C/R technique comes with the cost of added execution time and data re-

dundancy [21]. The time overheads introduced by the C/R process are discussed in greater

detail in Section 4.4.

2.4 Execution Boosting

In embedded systems, the desire for increased number of operations per unit power seems

to be a major concern in the near future. However, this type of power efficiency com-

monly evokes partially compromised resiliency [22]. Moreover, High Performance Comput-

ers (HPC) need to adapt fault-tolerance mechanisms in order to improve their reliability

and availability, but the time overhead introduced by such mechanisms lead to the concept

of “Reliability Wall” [23], meaning that performance and scalability might be violated due

to reliability techniques. For example the Checkpoint/Restart technique, as presented in

the previous Section, improves the system’s reliability but incurs additional execution time

for saving the checkpoints and for performing rollback-recovery.

These facts lead to the idea of slack reclaiming and execution sprinting. Since additional

time overhead has been imported to the execution of our application, it is important to

adapt real-time techniques to achieve the minimum performance degradation, as far as

time and energy constraints are concerned. In this direction we have two different types of

computational sprinting as presented in Figure 2.3.

7

Figure 2.3: Types of computational sprinting [4]

Frequency sprinting refers to the alteration of CPU’s clock to opperate on higher frequencies

so that the execution is accelerated.

In this scope, Intel has presented the Turbo Boost Feature, which makes the processor op-

portunistically increase the frequency of the cores depending on the core temperature, the

number of active cores and the estimated power consumption [24]. It is known that idle

cores consume small amount of active power. So when a portion of cores are inactive the

extra power headroom available can be diverted to the active cores so that the execution is

quickened without compromising the power and thermal envelope. Of course, the need for

dynamically power asymmetric multi-core processors is raised, so that all cores may use the

same instruction set, but the frequency of each core can vary independently [24].

The speedup resulting from this method is not identical for all applications. It depends on

the application type, i.e. whether the application uses integer or floating point numbers, the

last level cache miss rate, the temperature of the platform and the effective frequency for

the application. As a result we do not expect a memory intensive application to experience

as much performance gain as CPU intensive. The effective frequency levels for memory in-

tensive applications are lower, since the cache miss rate is greater and the execution delays

waiting data fetching, so they cannot achieve the full potential of Turbo Boosting. These

claims are substantiated in related work [24], where the efficiency of Turbo Boost is depicted.

Another factor that affects the results of Turbo Boosting is the interference between applica-

tions running in parallel. As it is presented in related work [24], the speedup achieved with

Turbo Boost is greater when two CPU-intensive applications are executed concurrently than

when two Memory-intensive applications are running at the same time. Also it is important

whether the applications are mapped on the same or different cores.

In every case though, the application executes faster when running on Turbo Boost in the

cost of a significant increase in energy consumption.

8

Parallel sprinting refers to the activation of reserved cores and the distribution of compu-

tational load. Of course parallel sprinting results to high performance gains and exploits

better the thermal capacitance of the platform. However, the disadvantage of this method

is that not all applications support parallel programming and even if they do, sequencial

phases of parallel application are, almost, inevitable.

Another approach is to practice both frequency and parallel sprinting where sequential

phases of applications can be boosted as well. This method has been applied as it is presented

in related work [4, 25]. In that case computational sprinting was adopted in order to increase

the system’s responsiveness when the computation demands are high, always taking under

consideration the thermal limits of the platform.

We need to introduce two new concepts, the Unabridged and the Truncated sprint [4]. The

first, refers to a sprint that is able to complete within the thermal constraints of the plat-

form, no matter if it is parallel or frequency sprint, while the second refers to a sprint that

needs to be sustained because the thermal limits where infringed. As a consequence we can

realize that we can not sprint unconditionally and for a prolonged period of time.

Energy consumption is a critical factor nowadays. Sprinting has the pottential to lead

to more energy efficient schemes by ”amortizing the fixed uncore power consumption over

a large number of active cores and capturing race to idle effects” [4]. However, it is a fact

that frequency sprinting requires higher voltage values that increase the power consump-

tion during the execution. The more idle core power is optimized the more energy effective

sprinting will be.

It is important to note that in previous work, sprinting has been used to enhance application

performance. On the contrary in our work, frequency sprinting is used to reclaim correction

overheads. Furthermore, it is important to note that sprinting, as mentioned in related

work, tends to press the Thermal Design Power (TDP), whereas in our case we as just using

“legal” P-states to enable dependable performance.

Recently, techniques have been proposed and evaluated facilitating observability and con-

trollability of the target platform in order to enhance performance stability [5]. The goal

9

is to mitigate performance variability at run time level absorbing the cycle noise overheads

caused by RAS mechanisms, through a Proportional-Integral-Differential (PID) closed-loop

control scheme that modify the voltage and frequency levels to the appropriate values, Fig-

ure 2.4. The concept of this idea is to formulate the issue of performance variability and

quantify the overhead in what is called cycle noise, control the DVFS process with a PID

controller and evaluate the time and energy outcome.

Figure 2.4: Block diagram for the run time performance dependability scheme in view of
RAS temporal overheads [5]

As indicated in Figure 2.4 the cycle noise (x), interferes with the timing budget of the

application (N) and produces the slack (s) which indicates the recession of the application’s

execution time. So a frequency multiplier is proposed and the closest available frequency

of the processor is selected. This concept was the main springboard of this thesis and its

functionality is greatly discussed throughout this thesis. The results of these simulations

indicate that time variations are negligible but the energy consumption exhibit a rise [5], in

case the aggression of DVFS is not appropriately harnessed.

10

Chapter 3

DVFS Overhead Characterization

3.1 Voltage Regulators

Dynamic Voltage and frequency scaling is a well known technique used to reduce energy in

digital systems. However, the effectiveness of DVFS can be restricted by prolonged voltage

transitions. The same applies for our case that we use DVFS to accelerate the execution of

the application when needed. So with the growing power and execution time management

concerned, as well as the need for per core DVFS, the requirement for efficient voltage

regulation has become critical. This Section will present and compare off-chip and on-chip

voltage regulators, and also will introduce two rife regulator topologies.

A voltage regulator is needed to keep voltages within the prescribed range that can be tol-

erated by the electronic device. Its role is to deliver power from the source to the load, with

minimum loss and maintain constant voltage during transient response [26]. Most voltage

regulators are off-chip devices due to the large power transistors and output filter compo-

nents that are required. However, lately, great emphasis is given to integrating the voltage

regulators on the same chip as the load they feed, on-chip regulators. That is because

on-chip regulators result in multiple benefits. They are smaller so they can be integrated

on chip, which results to the reduction of Process Control Block (PCB) area required from

off-chip regulators, they provide faster voltage switching and offer the potential to provide

multiple on-chip power domains to chip multiprocessor systems [27].

There are three important regulator characteristics that should be taken into account when

designing on-chip instead of off-chip regulators. These are regulator efficiency, load transient

response and voltage switching time [27, 26].

Regulator efficiency concerns the power losses due to the regulator, which depend on the size

11

of switching power transistors, switching frequency and load conditions. Regulators with

higher switching frequencies, such as on-chip regulators, are capable of fast voltage scaling,

but incur higher regulator losses. However, on-chip regulators are closer to the load so the

losses from parasitic resistors (I2 ×R) between the source and the load are less.

Load transient response determines how much the voltage fluctuates in response to a change

in current. For on-chip implementation, the size of the filter components is reduced, leading

to efficiency degradation due to voltage fluctuations. That means there is a trade off between

operating at high switching frequencies and achieving satisfactory power efficiency. How-

ever, on-chip regulators remove impedance restrictions by reducing mid-frequency package

resonance issues.

As far as voltage scaling time is concerned, the voltage does not scale immediately, but grad-

ually. So the yield of DVFS has been hindered by slow voltage scaling. On-chip regulators

offer the ability for nanosecond voltage scaling and per-core DVFS.

Two widely used regulator topologies are the linear and switching regulators [27, 26]. Linear

regulators offer several advantages such as ease of on-chip integration, small size, low cost,

no complexity and fast response to load transients. Furthermore, since they are inexpensive

and small they are ideal for multiple voltage domains. Unfortunately, the power conversion

efficiency of a linear regulator is constrained by its dependency on the Vout/Vin ratio, where

Vout is the output and Vin is the input voltage of the regulator. In contrast, switching regu-

lators provide better power conversion efficiency and are less sensitive to the Vout/Vin ratio.

Also, they can regulate a wide range of output voltage levels. Different from linear regula-

tors, some types of switching regulators are also capable of providing outputs higher than

the input. Hence, switching regulators are better suited for loads employing DVFS, both for

turbo boosting and power saving. However, switching regulators also exhibit serious con-

cerns when it comes to on-chip implementation. First of all, the size of a switching regulator

is bigger so it is harder to be integrated on a chip. Additionally, switching regulators do

not provide clean output voltage, due to the presence of the inductor. So the requirements

for high efficiency and high accuracy make the size of the regulator prohibitively large for

12

on-chip implementation.

3.2 Target Platforms

This Section will be about exploring the details of the target platforms that we will test our

application scheme. We test our application in two different platforms. The first one is the

Intel’s Single-Chip Cloud Computer,SCC, experimental platform and the second one is an

x86 architecture commercial laptop distributed by Hewlett-Packard.

3.2.1 Single-Chip Cloud Computer, SCC

The Single-chip Cloud Computer (SCC) is a research chip created by Intel Labs to study

many-core CPUs, their architectures, and the techniques used to program them [6, 28].

The processor consists of 48 cores, which are grouped in tiles of two cores each. The tiles

are inteconnected through a mesh network. Each tile contains two Intel architecture 32-bit

P54C cores, a unified L2 cache memory of 256KB, a router that connects the tile to the

mesh and a Message Passing Buffer (MPB), which is used for the message exchange between

the cores. The chip allows dynamic voltage and frequency scaling accross the tiles , as will

be explained in the next Section 3.3, thus it is appropriate for the purposes of this thesis.

Furthermore, the board that hosts the SCC chip communicates with a Management-Console

Personal Computer (MCPC) through ethernet and PCIe links. The MCPC is equipped with

the SCCKit, which is a software framework for the SCC providing the user the capability to

monitor the board remotely. The user can define the power domains of the board, restart

the cores, boot linux image on each core, reinitialize the board and ping the available cores.

The MCPC and the board can also communicate through a directory called /shared which

is common for both and can store the output files of an application running on the board.

Additionally, a C Library called RCCE is provided with SCC [29]. RCCE is a small library

for message passing, similar to the Message Passing Interface (MPI), which is tuned to the

needs of many-core chips. RCCE also provides a power management interface to support

13

power-aware applications. The RCCE source code is crosscompiled with icc/icpc compiler

in order to generate the appropriate executable for the SCC board.

3.2.2 x86 architecture platform

The second platform on which we test our implementation, is an x86 architecture HP Pavil-

ion dv6 Notebook, running a Linux 3.8.0-44-generic Ubuntu distribution. Its processor is an

Intel(R) Core(TM) i7− 2630QM Sandy-bridge. The i7− 2630QM is a quad core processor

with two simultaneous multi-threading (SMT) contexts per core, providing us eight logical

cores. It has a 4GB DDR3 RAM and a 6MB cache.

As far as DVFS is concerned, the system uses the acpi-cpufreq driver to perform frequency

changes. Also, the userspace governor that will be analyzed in Section 3.4.1 is supported,

offering the ability to perform our own frequency alterations. The available scaling cpu

frequencies range from 800MHz to 2GHz with a step of 100MHz.

What is more, the Message Passing Interface (MPI) is supported [30], which is very similar

to the RCCE. Our target application is ported both for RCCE and MPI so that we can

perform our executions on both platforms.

Finally, contrary to the SCC platform where we use the RCCE power management interface

to make voltage and frequency alterations, now the cpufrequtils linux package that will

be further analyzed in Section 3.4.2 is installed providing the capability for changing the

cpu-frequency and monitor the cpu-frequency information using its tools, cpufreq-set and

cpufreq-info.

14

3.3 SCC voltage/frequency alteration overhead

In this Section we present the time overhead of the voltage alteration on the SCC platform.

The SCC platform contains an off-chip Voltage Regulator Controller (VRC) which provides

the capability of changing the voltage on a voltage domain of the platform and the frequency

of each tile individually. There are seven voltage domains and 24 frequency domains on the

platform. Six of the voltage domains comprising four tiles of two cores each in a 2x2 array

as shown in Figure 3.1 [6], while the seventh is the entire set of tiles. Each of the frequency

domains matches a single tile.

Figure 3.1: SCC Voltage and Frequency domains [6]

In order to change the SCC power we use the RCCE power management call RCCE iset power(),

which sets the tile frequency to the reference clock divided by the supplied divider. In our

case the reference clock is 1.6 GHz and the dividers would be either two or three, which

lead to a tile frequency of 800 MHz and 533 MHz, respectively. In the case of 800 MHz tile

frequency, each voltage domain has a voltage value of about 1.1 Volts, while in case of 533

MHz the voltage of each domain is approximately 0.8 Volts.

15

To record the measurements that follow we altered the voltage of all domains of the platform

from 1.1 Volts (divider two) to 0.8 Volts (divider three) and vice versa for 300 iterations. In

each iteration, we measured the total time needed for the voltage to be stabilized to every

voltage domain. Also, we recorded the voltage and current of the platform with an interval

of approximately 0.3 seconds. To achieve that, we forked two processes:

• the first uses the RCCE iset power() call to alter the voltage and frequency values

and then waits for the voltage to be stabilized to each domain

• the second constantly records the voltage and current of the platform until is termi-

nated by the first.

In Figure 3.2 we present the time overhead of DVFS to change from voltage divider three to

voltage divider two, while in Figure 3.3 we present the time overhead to change from voltage

divider two to voltage divider three. The y-axis represents the frequency of reporting results

in a histogram bin throughout the iterations. The x-axis is the total time needed for the

voltage to stabilize to the new value.

13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18
0

20

40

60

80

100

120

140

160

180

200

Time(seconds)

F
re

q
u
e
n
c
y

Voltage Alteration Time

Figure 3.2: Voltage alteration overhead from
divider three to divider two

13.5 14 14.5 15 15.5 16 16.5 17
0

20

40

60

80

100

120

Time(seconds)

F
re

q
u
e
n
c
y

Voltage Alteration Time

Figure 3.3: Voltage alteration overhead from
divider two to divider three

16

The results are fitted with a Gaussian curve. For Figure 3.2 the fitting curve is

f(x) = a1 × e(−((x−b1)/c1)2) + a2 × e(−((x−b2)/c2)2) + a3 × e(−((x−b3)/c3)2) (3.1)

while Figure 3.3 is fitted with the curve

g(x) = a1 × e(−((x−b1)/c1)2) + a2 × e(−((x−b2)/c2)2) + a3 × e(−((x−b3)/c3)2) (3.2)

Both Gaussian curves contain three factors. To evaluate the fit we use two regression models

the R-squared and the Root Mean Square Error (RMSE). R-squared is a figure of merit for

the fitting. It is the square of the correlation between the response values and the pre-

dicted response values. The RMSE is the square root of the variance of the residuals, which

are defined as the difference between the observed value of the dependent variable and the

predicted value. It indicates the absolute fit of the model to the data, which means how

close the observed data points are to the model’s predicted values. Whereas R-squared is a

relative measure of fit, RMSE is an absolute measure of fit. Lower values of RMSE indicate

better fit, while for R-square the closer its value is to one the better the fit is. The values

of both RMSE and R-square are show in Table 3.1.

f(x) g(x) f(x) g(x)
a1 196.5 39.82 a3 40.02 27.41
b1 15.72 15.78 b3 13.97 13.91
c1 0.1846 0.1395 c3 0.3896 0.4437
a2 100.8 93.3 RMSE 0.9998 0.7151
b2 16.28 16.03 R-Squared 2.003 1
c2 0.2535 0.3681

Table 3.1: R-squared and RMSE values for voltage alteration overhead curves

As a result, we can see that the curves fit the histogram in a very accurate way explaining

the behavior of voltage alteration overhead.

Comparing the two figures (Figure 3.2 and Figure 3.3) we can note that there is not appre-

ciable difference in the total time needed for voltage alteration between the two dividers.

Changing from divider two to divider three is slightly faster, and that probably is because

17

the process that uses the RCCE iset power() call to alter the voltage is executed in a fre-

quency of 800MHz, whereas changing from divider three to divider two the same process is

executed in a frequency of 533 MHz. Also reducing the voltage level is a somewhat faster

process than increasing it.

Apart from the time of voltage alteration, we also calculated the energy overhead during

the alteration between the two dividers. In order to calculate the energy consumption we

first determined the power for every 0.3 seconds with the values of voltage and current that

we recorded. Then we use the trapezoidal rule to calculate the integral of power during the

time of the alteration, which is the energy consumption. As a result we get the following

two figures, where y-axis represents the frequency of reporting results in a histogram bin

throughout the iterations and in x-axis is the total energy consumption. In Figure 3.4 we

represent the energy consumption during the alteration from divider three to divider two,

while in Figure 3.5 the energy consumption during the alteration from divider two to divider

three.

650 700 750 800 850 900 950
0

20

40

60

80

100

120

140

Energy

F
re

q
u
e
n
c
y

Energy flunctuation histogram for voltage alteration

Figure 3.4: Energy fluctuation for voltage
alteration from divider three to

divider two

460 480 500 520 540 560 580 600 620 640
0

10

20

30

40

50

60

70

80

90

Energy

F
re

q
u
e
n
c
y

Energy flunctuation histogram for voltage alteration

Figure 3.5: Energy fluctuation for voltage
alteration from divider two to

divider three

18

Again the results are fitted with a Gaussian curve. For Figure 3.4 the fitting curve is

h(x) = a1 × e(−((x−b1)/c1)2)

and for Figure 3.5 the fitting curve is

t(x) = a1 × e(−((x−b1)/c1)2)

The Gaussian functions have one factor. We evaluate the fit using again the R-squared and

RMSE regression models as before and we get the following result as shown in Table 3.2.

f(x) g(x) f(x) g(x)
a1 126 74.72 RMSE 0.9132 0.8053
b1 815.6 552.8 R-Squared 13.13 13.37
c1 26.54 31.42

Table 3.2: R-squared and RMSE values for Energy fluctuation curves

The results indicate that although the relative measure of fit is satisfactory, the absolute fit

is not as good as it was previously. However, the curves are representative of the energy

fluctuation behaviour.

From the two figures (Figure 3.4 and Figure 3.5) we can observe that the energy con-

sumption during the alteration from divider three to divider two is greater. This is because

when we want to adjust the voltage level to a higher value on the voltage domains, the

current of the platform is also increased.

In particular, we can see this behavior in the following two figures, where in Figure 3.6 we

represent the current and voltage fluctuation of the whole SCC platform, not a particular

voltage domain, for four random iterations of voltage alteration from divider three to di-

vider two, while in Figure 3.7 we depict the current and voltage fluctuation for four random

iterations of voltage alteration from divider two to divider three.

19

0 20 40 60
0

5

10

15

20
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)
Va

lu
es

current

voltage

Figure 3.6: SCC voltage and current fluctuation for voltage alteration from divider three
to divider two

0 10 20 30 40 50
0

5

10

15

20

25

30
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25

30

35
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 20 40 60
0

5

10

15

20

25

30
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

0 10 20 30 40 50
0

5

10

15

20

25
Current and Voltage flunctuations

Time (seconds)

Va
lu

es

current

voltage

Figure 3.7: SCC voltage and current fluctuation for voltage alteration from divider two to
divider three

As a result, in both cases the voltage value of the platform is the same and remains stable

throughout the alterations. It is the current that changes its value. In the case of changing

20

from divider three to divider two, the current switches from a value of 8.3 Ampere to a

value of 16.3 Ampere. On the other hand, switching from divider two to divider three, the

current value is reduced from 16.3 Ampere to 8.3 Ampere. As a consequence to this behavior

the total energy consumption is greater when we increase the voltage and frequency on the

voltage islands of the platform since the current of the platform is increasing as well.

In addition, we must note that the current of the platform does not change instantaneously

and is resulting to its final value dissimilar in each iteration [31]. This is the reason we must

wait until the values are stable in each voltage island before we launch our application again.

In summary, in order to change the voltage value of the voltage domains of SCC adds

a time overhead that should also be taken into account during the time reclaiming of our

application. Also, we must indicate that executing our application in a higher frequency is

a time saving, but energy consuming process, so we must reduce the frequency as soon as

the overhead of the restart procedure is reclaimed.

3.4 Voltage/Frequency alteration and overhead for x86

architecture

In this Section we present how we can perform the DVFS operation in a machine with x86

architecture. First we will present the available scaling policies of a machine introducing

the CPUfreq governors, then we will discuss about the available scaling options when we

use the userspace governor and finally the cpufrequtils linux package will be analyzed.

3.4.1 CPUfreq governors

On a given platform, a variety of frequency scaling technologies can be supported and a

proper driver must be present to efficiently perform the frequency alterations. The cpufreq

21

infrastructure allows the user to use one CPU-specific driver per platform, plus a number of

frequency-changing policies, known as governors [32, 33].

The CPUfreq subsystem has, generally, five available in-kernel governors ,which can change

the frequency depending on certain criteria such as CPU usage, energy consumption or user

input as presented in [33, 32, 34].

• The first governor is the performance governor. This governor statically sets the pro-

cessor to the highest frequency available. Of course the highest available frequency can

be determined by the user by changing the appropriate system file as will be presented

later. The goal of this governor is to achieve the maximum system performance by

setting the processor clock speed to the maximum value.

• The second governor is the powersave governor. In contrast to the previous governor

this one sets the cpu frequency to the lowest available value specified by the user.

The goal of this governor is to save power by operating at the lowest processor clock

speed. However, this governor often does not save any power since the greatest power

savings usually come from the savings at idle state. Powersave governor prolongs the

execution of a process and the system takes longer to enter an idle state [34].

• The third governor is the ondemand governor. This governor sets the cpu-frequency

depending on the current usage of the CPU. If the utilization of the CPU exceeds a

certain threshold the frequency is set to the highest available. If the utilization is less

than the threshold, then the frequency is reduced to the next available, until it reaches

the lowest frequency bound. The CPU utilization sampling rate, the threshold and

the available frequency borders can be set by the user.

• The fourth governor is the conservative governor. This governor operates such as the

ondemand governor, with the difference that it gracefully increases and decreases the

CPU speed rather than setting the frequency to the maximum level when the CPU

utilization exceeds a certain threshold.

• The fifth governor is the userspace governor. This governor allows the user or any

userspace program to adjust the frequency of the CPU. This is the governor that we

22

will use for the purposes of this thesis, as it gives as the authorization to perform our

own frequency adjustments within the available frequency borders.

As mentioned in related work [33, 35] ,voltage scaling is achieved using voltage layer and

regulator driver. Every time the CPUfreq driver makes an alteration on the cpu-frequency,

the voltage corresponding to this frequency should be selected. This is achieved by iterat-

ing the OPP List (Operating Performance Point), which is a list of tuples consisting of a

frequency value and the voltage required to run at that frequency. Then the device scale

function requests the voltage layer to scale the device voltage to the target voltage.

The voltage layer consists of the information of all voltage domains in the system and

configures all voltages during voltage layer initialization. Thus, when a voltage change is

requested, the voltage layer requests the regulator framework to change the device voltage

to the target voltage. Then the regulator driver verifies if the target voltage is within the

limits of the voltage domain and regulator supply constraints and performs the alteration.

3.4.2 DVFS options and alteration

The /sys filesystem of the linux kernel provides the interface for the CPUfreq changes.

Specifically, in the /sys/devices/system/cpu/cpu*/cpufreq folder are all the files that

contain the available frequency information. When we use the userspace governor the folder

contains the following files, that are crucial for our implementation.

• First is the scaling driver file which indicates the name of the low-level CPU-specific

driver that is being used on this system.

• Next, are the scaling cur/max/min freq files which contain information about the

current, the maximum and the minimum frequency that we use or we can use, respec-

tively. We can change the maximum and minimum frequency limits from these files,

but the values should always be within the range indicating by the cpuinfo max/min freq

files.

23

• Another file that will concern us about the frequency alteration is the scaling setspeed

which is a read-write file. When we read this file, it denotes the current CPU frequency.

However, the user can write a value to this file and the CPU will change the frequency

to the one specified by the user.

• Finally is the cpuinfo transition latency file which contains the latency value of

a frequency alteration.

What we should note here is the great difference between the time overhead caused from the

voltage alteration between the SCC platform and an x86 architecture commercial platform.

As shown in Figures 3.2 and 3.3 the alteration of voltage and frequency needs about 16

seconds. On the other hand, an x86 machine only needs some µseconds to perform the al-

teration. For instance, the platform that we will test our application and benchmarks needs

10 µseconds to perform a frequency and voltage change. That means that the cycle noise

introduced while performing the DVFS operation is widely reduced and the slack reclaiming

is expected to be more accurate.

In order to perform our alterations we use a tool called cpufreq-set which is included

in the cpufrequtils package. This executable allows us to change the CPUfreq gover-

nor to userspace for each CPU of our machine and also gives us the capability to set the

frequency at a current value without having to alterate the value of /sys/devices/sys-

tem/cpu/cpu*/cpufreq/scaling setspeed all the time. So we can define the frequency

value that we want for a certain CPU, or even for all CPUs, and the cpufreq-set will

set the value to the scaling setspeed file. In this way if we want to perform DVFS to

all CPUs we shall not change each file entry one by one, but we invoke the cpufreq-set

command with the CPUs that we want to alter the frequency of.

What is more, cpufrequtils contains a tool called cpufreq-info which gives us the utility

to retrieve cpufreq kernel information at any time and also providing statistics about the

cpu-frequencies utilization.

24

Chapter 4

Depman tool and timing noise
quantification

4.1 Introduction

Fault tolerance mechanisms both on Hardware and Software introduce a performance degra-

dation known as Performance Vulnerability Factor (PVF), which is the additional execution

time of an application because of the invocation of RAS mechanisms.

In this chapter, we first present the target application we use to test our implemention

scheme. Then we examine the operation of Depman tool as far as the Checkpoint-Restart

procedure is concerned. Also we present the scheme of the DVFS module we use to reclaim

the time overheads produced by the C/R operation. Additionally we analyze the way in

which we inject errors during the application’s execution in order to examine the perfor-

mance of our tool.

Finally, we quantify the timing noise introduced by the Checkpoint-Restart procedure and

we explain the ways in which we measure the total execution time overheads, in order to

reclaim them on the fly.

4.2 Target Application

The target application that has been used for the purposes of this thesis is a simulator of a

crucial set of brain cells, called inferior olive (IO) cells, based on the Hodgkin-Huxley model

[11, 7, 36, 37, 38]. Each cell comprises of three individual compartments:

• the dentrite compartment, which is responsible for communicating with the rest cells

25

of the grid for receiving input voltages

• the soma compartment which is the computational center of the cell, performing all

time consuming calculations

• the axon compartment which serves as the output for the neuron.

The simulator receives as input the grid size, a connectivity file which declares the static

connections between the neuron cells and,optionally, a file of external input currents for each

cell. If the last file is not provided as input to the simulator, pseudo-random input currents

are generated for each cell.

The Infoli simulation data flow is briefly explained in Figure 4.1 for each simulation step

t0, t1, t2, ...

Figure 4.1: Dataflow for the Infoli simulator [7]

First, the dedrite compartment is fed input current as defined by the input file for external

current inputs or the generated currents. Then the dendrite compartment records the den-

tritic voltage levels of its communicating cells, as described by the connectivity file. After the

communication is done, each compartment performs its computations to recalculate their

biological parameters [7]. For every axonal compartment the new voltage values are recorded

to the application output files. The simulation’s output is a number of files containing each

cell’s axon voltages for every simulation step. For the development of our scheme, a porting

option utilizing data level parallelism of the Infoli simulator is used. Each core is assigned

with entire cells, executing all compartments.

26

4.3 Depman Tool

4.3.1 Depman Operation

Depman is a runtime manager that controls the operation of a checkpointed application

[10], in our case the Infoli simulator, by both handling DUE errors that would cause the

application to suspend its execution and by reclaiming the wasted time due to the checkpoint

procedure.

Depman was implemented in Python2.7 [39] and has minimum platform and application

dependencies, so it is portable to any other platform and application.

The functionality of Depman tool is briefly explained in Figure 4.2.

Figure 4.2: Depman tool operation diagram

First, Depman provides the appropriate input to the application and starts its execution.

Also, it starts a thread that constantly monitors the application’s output for errors. Then

it waits until the execution of the application is stopped and checks if the application has

ended normally or the DUE monitor has detected an error. For our scheme we self inject the

application, but Depman is also operational with real time DUE errors. If an error has been

detected Depman checks whether a valid checkpoint for the application has been stored and

if it is we perform the DVFS module and then restart the application. The application itself

27

stores its state to checkpoint files and is capable to restart from a valid checkpoint during

the restart procedure.

4.3.2 The Checkpoint Restart procedure

In order to enable fault tolerance, the Infoli simulator uses an application-level C/R method.

Therefore, the vital points of the application state should be stored periodically, keeping

in mind that the checkpoint files should keep storage requirements to a minimum. The

stored points of the Infoli simulator consist of the data structures representing the state of

each simulated neuron cell, such as dendrite and soma compartments of the cell and voltage

or potassium levels for the axon. Also the simulation step, the number of cores and the

number of cells are stored to the checkpoint files. That means the size of the checkpoint file

is related with the number of cells of each core. The more cells manipulated by a core, the

bulker the checkpoint file will be. The Infoli simulator operates in a number of simulation

steps, allowing to select a Checkpoint Interval in simulation steps rather than time. Hence

a checkpoint is taken at the beginning of a simulation step that divides the Checkpoint

Interval with no remainder [10].

The Checkpointing of all cores is done simultaneously by calling a barrier function when a

checkpoint needs to be taken. Furthermore each checkpoint is stored in double-buffered files

that contain two sequential checkpoints at any time, so that a valid checkpoint exists even

if an error occurs during the checkpoint procedure.

The Restart procedure regards the extraction of the neuron cells from the checkpoint files,

the appropriate variables initialization and the continuance of the application from the

correct simulation step. Since the checkpoint files are double buffered, cores should perform

a communication scheme in order to determine the maximum recoverable simulation step

that they can restart from. Each core broadcasts the maximum simulation step that it

can restart from and then all cores restart from the minimum simulation step that was

broadcasted. Additionally, the simulation could restart with a different number of cores. It

can be restarted with less cores, because a number of cores is not responding or we want to

28

restrict the cores utilization by the application. Also it can be restarted with more cores,

because we desire more parallelism for our application in order to achieve computational

sprinting. This means that during the Restart procedure each core should identify the

appropriate checkpoint files that should recover the neuron cell state from, depending on

the number of cells and cores. In both cases the output files should be reconstructed for

each core in order to be consistent.

4.3.3 Diagnostics and Self Injection module

The Depman tool is capable of detecting DUE errors that cause the application to stop

and perform the appropriate countermeasures to restart the application from the appropri-

ate simulation step. In our implementation scheme, we utilize the ProcessExit diagnostic,

which monitors the stdout of the running process for failure messages indicating a Detected

Unrecoverable Error (DUE) error [2]. In order to examine the performance of our exper-

imental setup, errors during the runtime of the application are required. That is why a

self injection module is used, periodically injecting the application with DUE errors. When

a DUE error is injected the injection module calls the process line function of the Pro-

cessExit class containing a key word indicating program failure, the key word is relevant

to the target platform. The process line function detects the key word and stops the

simulation by running a script to detect and kill the application. The time between errors

for the injection module is user defined. In our setup we use both a steady TTF value and

a Weibull distributed TTF to test our implementation. When we inject errors using the

Weibull distribution the probability of error occurence is given by Equation 4.1, where ∆t

is the time interval between failures and MTTFs is the user-specified MTTF intervals.

Ps = 1− e−∆t/MTTFs (4.1)

29

4.3.4 DVFS module

To enable observability and controllability of our application’s performance we use the DVFS

module before we restart our application after each DUE error. Our goal is to mitigate the

performance variability, caused by DUE errors and the C/R procedure. So we calculate on

the fly the timing noise of the application and adjust the voltage and frequency to a new

level in order to reclaim the time overheads. This Section will present the main features

of the DVFS module, as we use it for the SCC and the x86 platform. A more detailed

explanation of the DVFS process will be displayed later in the respective Sections which

exhibit the DVFS results for each individual implementation.

The control loop of the DVFS is presented in Figure 4.3

Figure 4.3: Block diagram for the DVFS closed loop implementation

As slack (s) we define the time that the application has fallen back due to the invocation

of RAS mechanisms, the C/R procedure, and the restart process that was the result of a

DUE error. We want to succeed the slack convergence to sref , which in our case is zero and

indicates the target slack we want to achieve when the application is terminated succesfully.

The Monitor measures and updates the slack after each DUE error. The parameter n in-

dicates the number of the restart operations that have occured throughout the execution of

the application. Then the Controller reacts to the value of en = sref − sn−1 and proposes

a frequency multiplier in order to reclaim the generated slack. Frequency multipliers(m)

reflect the DVFS configurations of the processor. So after the Controller proposes a fre-

quency multiplier, the DVFS Knob chooses the nearest available frequency multiplier for

the processor and applies the DVFS alteration.

30

Afterwards the execution of the Processor is continued to the new frequency/voltage con-

figuration.

The timing noise indicated by x, is the total time the application is delayed because of

the checkpoint restart procedure and contains the checkpointing time and the time for the

application to recover from a previous simulation step during the restart procedure. The

processor’s slack is given as input to the Monitor before it updates the slack containing all

timing noise overheads as will be discussed in Section 4.4. Finally, the r parameter is used

to tune how often the DVFS Knob performs a voltage/frequency alteration, in a number

of detected errors. That means a value of r=1 will perform DVFS changes for every DUE

error, while a value of r=2 will perform DVFS changes every two errors and so on.

4.4 Timing Noise Overheads

The timing noise imported to the execution of the application due to C/R comes as a

consequence to the following factors.

• First of all, the Rollback Time (Tr), which represents the lost computation time that

needs to be performed again when the application restarts from a previous simulation

step because of a detected error.

In order to recognize the timing noise of the application rollback we need to recognize

the exact computation waste time. To achieve that we need to calculate the time

difference between the creation of the restarting checkpoint file and the time that the

execution of the application was suspended. The checkpoints are stored in double

buffered files that contain two sequential checkpoints at any time, so that there is a

valid checkpoint for all nodes even if an error occurs while the checkpoint process was

ongoing. As a result to this technique we cannot use the checkpoint file itself to mea-

sure the time difference between the checkpoint and the error that caused the process

to terminate. We need to know the exact time that each checkpoint was stored. That

is why when a checkpoint is stored, we also create a file named after the simulation

step of the current checkpoint taken so that we can use this file to calculate the Tr

31

overhead.

The values of Tr vary in relation to Checkpoint Interval. As Checkpoint Interval is

increasing, Tr is increasing too. In our scheme, using self injection to test and bench-

mark our application setup, we observe the results as illustrated in Figure 4.4 for four

different grid sizes, executing in a number of cores indicated by the second grid size

factor. These results concern the SCC platform.

200 500 1000 2000 4000 6000
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Checkpoint Interval (simulation steps)

number of positive rollbacks(p.u.)

number of negative rollbacks(p.u.)

mean rollback time (seconds)

(a) grid size 8x24

200 500 1000 2000 4000 6000
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Checkpoint Interval (simulation steps)

number of positive rollbacks(p.u.)

number of negative rollbacks(p.u.)

mean rollback time (seconds)

(b) grid size 8x48

200 500 1000 2000 4000 6000
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Checkpoint Interval (simulation steps)

number of positive rollbacks(p.u.)

number of negative rollbacks(p.u.)

mean rollback time (seconds)

(c) grid size 16x24

200 500 1000 2000 4000 6000
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Checkpoint Interval (simulation steps)

number of positive rollbacks(p.u.)

number of negative rollbacks(p.u.)

mean rollback time (seconds)

(d) grid size 16x48

Figure 4.4: Rollback Time characterization for the SCC

As a result we notice that increasing the Checkpoint Interval leads to greater Tr values.

32

Also, in Figure 4.4 the number of positive and negative Tr is displayed. The reason

that we notice negative Tr values is because of the self injection module that we use.

– First, by the time we inject an error to the application scc diagnostics notice the

injected error and need to terminate the process. We take a timestamp of the

process termination at that time, but actually there is some more time needed

for us to manually kill the process with a termination script.

During this time, maybe a new checkpoint is stored and that results to a negative

Tr value.

– Another reason that we may observe a negative Tr value is the I/O delays of the

SCC platform [31]. So even if the checkpoint was stored before an error occurred,

the time to sync the file to our /shared folder may result to a negative Tr.

However, if a negative Tr value occurs it is minimal compared to the overall slack of

the application restart process and we ignore it without any performance loss for our

scheme.

As we can also observe from Figure 4.4, when the Checkpoint Interval increases the

possibility for a negative Tr reduces. In our measurements we used Checkpoint Interval

values of 103 Simulation Steps or more so that we eliminate as far as possible such

phenomena.

• Next, the Time to Restart (TTR) which is the time to perform the available counter-

measures after the simulation stopped its execution, and restart the application. In

our experimental setup, after the execution is terminated because of an error we check

whether there is a valid checkpoint that the simulation could restart from. Then, if

it is, we call our DVFS module to update the slack of our application and change

the Voltage/Frequency values, if needed, to reclaim the waste time due to the restart

procedure. That means that TTR includes both the time overhead for the DVFS as

was presented in Chapter 3 and the time to test if the application has a previous valid

state that could restart from and restart the application.

In order to calculate the timing noise of TTR we measure the time difference from

33

the time that scc diagnostics notice the error, since the time that the application was

successfully restarted.

For the SCC platform TTR overhead is remarkable compared to an x86 commercial

platform because of the great DVFS overhead when a voltage alteration is performed.

• In addition, the Repair Time (Trepair) overhead, which is the actual time for our ap-

plication to restore its state from the checkpoint files and continue the execution from

the appropriate simulation step. This time overhead is not considered crucial for our

application if the number of active cores is the same before and after the restart pro-

cedure, since the time to extract the neuron state data structures from the checkpoint

files and restart from the correct simulation step is little. However, if the application

restarts with a different number of cores the output files of the Infoli simulator should

be reconstructed to provide a consistent output and Trepair becomes significant.

The simulation continues after all nodes have restored their state from the checkpoint

files. That means that the Trepair is the same for all nodes. After the state restora-

tion,only the node with coreid == 0 publishes a file in the /shared folder, for the SCC

, or the designated folder, for the x86 platform, that reports the Trepair time of the

application, to reduce the I/O traffic. The DVFS module can then retrieve the Trepair

of the application when is called and update the slack of the application including that

value.

• Finally, the time overhead introduced because of the checkpoint procedure Tcheckpointing.

Inevitably, the application needs to store its state to a checkpoint file periodically, as

it is defined by the Checkpoint Interval. This procedure causes extra overhead to the

execution. In our simulation Tcheckpointing is of the order of miliseconds because the

neuron state data structures stored do not occupy a great amount of memory. Still

checkpointing may cause a scalability and performance barrier in high performance

computer systems as noted in [23].

The checkpointing of all nodes is done synchronously by setting a barrier before and

after the checkpoint is taken. Even though blocking communication and barriers intro-

duce more overhead than non-blocking, the Infoli simulator already utilized blocking

34

techniques so there is no extra overhead. This means that although we synchronize

the checkpointing procedure for all cores both before and after a checkpoint is taken,

we see no performance degradation, because the Infoli simulator already uses blocking

communication schemes to exchange information between the cells of each core. Since

the checkpoint procedure is done at the same time for all nodes, same as before the

node with coreid == 0 publishes a file in the /shared folder, for the SCC, or the desig-

nated folder, for the x86 platform, that indicates Tcheckpointing. So when a fault happens

and DVFS module is called Tcheckpointing is retrieved from the file and is multiplied by

the number of checkpoints that took place between the restarting simulation step and

the previously restarted simulation step (which maybe zero for the first fault).

35

Chapter 5

Reclaiming Timing Noise

5.1 Introduction

This chapter will present the performance of the depman tool and especially the DVFS

module, for both the SCC and the x86 platform. For each individual implementation the

DVFS procedure will be analyzed, and the mitigation of the performance variability will

be presented and discussed. First, the SCC impementation will be presented and then

two similar implementations for the x86 will be introduced. One operating as the SCC

implemention, but with more frequency configurations so that we can reduce or increase

the frequency levels more frequently, and the other operates in higher frequency levels only

for as much time needed to reclaim the slack and then resets frequency to its default value,

whether a fault has been detected or not.

5.2 SCC Results

As mentioned before (Section 3.3), a voltage and frequency alteration for the SCC platform

is a time consuming procedure, that adds additional time overhead to the execution of our

application. That is why we focus on two different DVFS configurations and switch between

them depending on whether we have a positive or a negative slack, so that we make a

frequency/voltage change as rarely as possible. In the first configuration the SCC operates

at a frequency of 533MHz and 0.8V olts while in the second one the frequency is equal to

800MHz and the voltage is 1.1V olts. Also we perform no DVFS change during the first

failure where we only have the Tr and Tcheckpointing, in order to make less alterations.

When we start the execution of the Infoli simulator the SCC is configured at 533MHz and

36

0.8V olts, which is the default mode for our case, and the DVFS module operates as shown

in Figure 5.1.

Figure 5.1: State diagram for the SCC DVFS module for slack reclaiming

The application starts its execution at the Default Mode. When a DUE error is detected and

the application stops then the DVFS module is called and the total slack of the application

is calculated as :

snew = sprevious − timeOverheads+

+ (lastTTF × curFreq − lastTTF × defFreq)
(5.1)

The time overheads are calculated as mentioned in Section 4.4 and refer to Tr, TTR, Trepair

and Tcheckpointing, while the last factor of the equation depicts the time difference for the

execution of our application in case we are running with a different frequency multiplier

than the default one. That means we can calculate the time that we have reclaimed from

the last failure till the current one. On the SCC platform we only have two execution modes,

the default and the burst mode. That means the last factor of Equation 5.1 only shows the

reclaimed time during the last TTF. However, as we will see later for the x86 platform,

where we have lower frequency configurations than the default one, it can also show the fall

back of our execution.

So if the slack is negative that means the application’s execution time has fallen back and

we need to speedup by operating at Burst Mode until the slack is reclaimed. Of course,

before we make an alteration the parameter r should be taken into account to see if we

must do a frequency change at that time before the application is restarted. We must

note here that if the application is executed without any faults at all, then the overhead

produced by the checkpointing procedure, Tcheckpointing, will not be reclaimed, since the DVFS

37

module will never be called, but this overhead is minimal for the currently inspected case

study. Nevertheless, we can modify the DVFS module so that it is triggered every time a

checkpoint storage action is taking place, in order to avoid such conditions if needed.

First we test our setup on multiple grid sizes and numbers of cores, for a Checkpoint Interval

of 2000 and 4000 and stable TTF values of 120 and 180 seconds. The number of active cores

is indicated by the second factor of the grid size.

In Figure 5.2 we illustrate our results. For each grid size we depict the execution time if the

application was running without any faults and checkpointing, the total time when we have

faults and we apply DVFS changes and the time that would be needed if we had faults but

the DVFS module was inactive.

As we can see from our results the DVFS implementation outperforms the execution with

faults and no DVFS. That means that the cycle overhead introduced to our application is

reclaimed. The only case that we see the DVFS implementation to draw back is for grid size

12x12, TTF 180 seconds and Checkpoint Interval of 4000 simulation steps. The reason is

that,in this case, there is not enough time to reclaim the cycle noise. The first DVFS change

occurs after the second detected failure which happens near the application termination. So

adding the time overhead produced by the voltage alteration we reduce even more the per-

formance of our execution. However, for all the other cases the results are satisfactory and

there are cases that we achieve the convergence of our execution time to the time without

faults, even though we alter between only two frequency configurations. Also there are cases

that DVFS is even better from the default execution. That is because the DVFS module

is called after a DUE error and makes a decision about the frequency configuration taking

into account the value of the slack. The slack however may have a negative value near to

zero. The DVFS module recognizes that the application needs to perform faster so it keeps

running on Burst Mode reclaiming the total slack and performing even faster than we would

expected. Such cases, of largely positive slack effectively correspond to energy loss and must

be avoided when possible. We will introduce an implementation for the x86 architecture

that avoids a positive overall slack at all times later.

38

8x12 8x24 8x48 12x12 12x24 16x12 16x24 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 2000 and TTF 120

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x12 8x24 8x48 12x12 12x24 16x12 16x24 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 4000 and TTF 120

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x48 12x12 12x24 16x24 16x48 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 2000 and TTF 180

w/o faults

w/ dvfs

w/ faults and w/o dvfs

8x48 12x12 12x24 16x24 16x48 24x12 24x24 24x48
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

Application Grid Size

T
im

e
 (

s
e

c
o

n
d

s
)

DVFS Results for ckptInterval 4000 and TTF 180

w/o faults

w/ dvfs

w/ faults and w/o dvfs

Figure 5.2: DVFS results for multiple grid sizes and active cores, Checkpoint Interval of
2000 and 4000 simulation steps and Time to Failure 120 and 180 seconds

In order to test the DVFS performance even further, we select a grid size of 16x96 which

executes for a long period of time, so it is ideal for our experiments, and we select to run

with 24 active cores. Our goal now is not only to evaluate the time performance of our

scheme but also the energy consumption for different values of the r parameter for stable

and Weibull distributed TTF values. For our energy measurements we use the same tactic

as in Section 3.3. We forked a process that constantly records the current and voltage of

the SCC platform every 0.3 seconds throughout the execution of the application and then

we used the trapezoidal integration to calculate the energy consumption.

First the results concerning stable TTF of 122 seconds will be presented for three different

39

Checkpoint Intervals of 1000,2000 and 4000 and for multiple r values ranging from one to

six. As a reference value for our graphs we select the execution time without any faults and

the checkpoint procedure, which is 823 seconds of execution time, with energy consumption

of 29210 Joules. The y-axis represents the Normalized Time/Energy Overhead, which means

that a value of 1.1 for the execution time refers to a value 1.1× 823 seconds, and the same

with energy but multiplying with the energy reference value.

From Figure 5.3 it is clear that the DVFS module efficiently reclaims the time overheads

of the Checkpoint Restart procedure. However, this comes with the cost of more energy

consumption. For an application like the one tested that runs for a long period of time the

DVFS module is capable of absorbing the cycle noise and converging to the reference value,

especially when r=1 the DVFS alteration is performed every time that is needed. On the

other hand, by inreasing the value of r seems to generally result in less energy waste with

a little or no performance loss. We can not keep increasing r though, because then the

slack becomes so massive that there is not enough time to be reclaimed. In our scheme, if r

exceeds the value of six the performance of the DVFS is reducing. Furthermore, when the

DUE errors are randomly injected there is no guarantee that a great r value will manage to

perform satisfactory.

That is why we also test our setup for Weibull distributed TTF values for r=1,2,3 and

MTTFs 120 seconds .

40

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(a) Checkpoint Interval =1000,TTF = 122

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(b) Checkpoint Interval =2000,TTF = 122

WithFaults r=1 r=2 r=3 r=4 r=5 r=6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

reference value

Normalized Time

Normalized Energy

(c) Checkpoint Interval =4000,TTF = 122

Figure 5.3: Time and Energy results for the SCC platform, for TTF 122 seconds
Time Reference: 823 seconds and Energy Reference: 29210 Joules

41

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(a) r=1

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(b) r=2

1000 2000 4000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

(c) r=3

Figure 5.4: Time and Energy results for the SCC platform, Weibull distributed TTF values
Time Reference: 823 seconds and Energy Reference: 29210 Joules

42

The first two columns of each bin of Figure 5.4 represent the execution time and the energy

consumption of the application, when the DVFS module is activated, respectively, while the

next two represent the time and energy if we run the application with a TTF value of the

MTTF we calculated during the previous execution so we can compare our results. Our

reference value is the no-fault and no-checkpointing execution of the Infoli simulator for a

grid size 16x96 and 24 active cores, which are 823 seconds and 29210 Joules.

Again the results indicate that the DVFS modules can adjust to random TTF with minimum

performance cost as far as execution time is concerned. On the other side it seems that the

energy consumption can be greater when faults appear randomly, but that largely depends

on the failure rate.

5.3 x86 Results

Before we present the results for the x86 implementations we must note the way that Energy

was calculated. From the Intel’s 2nd Generation Datasheet [40] we can see the maximum

and minimum voltage values of our processor. Assuming a linear relationship between the

Voltage and the CPU frequency we determined that Voltage and frequency are related with

the following equation:

V (f) = 5.83× 10−7 × f + 0.184, f in KHz (5.2)

As a result, we can use Equation 5.2 to calculate the Voltage values for each frequency

configuration. During the execution of our application we keep track of the time that each

frequency configuration was used so that we can measure the Energy Consumption using

Equation 5.3.

E = c× f × V 2 ×Dt (5.3)

Of course we do not know the value of constant c but that is no boundary for us to calculate

43

the Normalized Energy consumption.

5.3.1 First implementation

The x86 platform, in contrast with SCC, has the advantage that frequency alterations are

performed rapidly. So we can perform alterations more frequently without any appreciably

time overhead and between more frequency configurations. The state diagram describing

the function of our first implementation for the DVFS module is given in Figure 5.5.

Figure 5.5: State diagram for the first implementation of the x86 DVFS module for slack
reclaiming

As we can see from the state diagram in this case we have Delay, Default and Burst Mode.

That means we have frequency configurations varying from lower to greater values than the

default one. Precisely, we have the following frequency configurations: 800MHz, 1000MHZ,

1.2GHz, 1.4GHz, 1.6GHz, 1.8GHz and 2.0GHz, where 1.2GHz is defined as the default

frequency level. So we have four Burst Mode configurations defined by the frequency levels

above the default one and two Delay Mode configurations defined by the frequency levels

lower to the default one. When the value of slack is negative, meaning that the execution

of the application is delayed due to timing noise, then we can switch to the appropriate

Burst Mode configuration. On the other hand, when we have a positive slack, meaning

that the application has overtaken the time overheads and is executing even faster than it

is needed we can switch to the appropriate Delay Mode. We switch to Default Mode when

the value of slack is zero. In order to update the value of slack we use the Equation 5.1

as described in the previous Section. Having calculated the slack value, we can determine

the appropiate Mode in which we should continue the execution of the application with the

44

following equation

newFreq =
−s+ defFreq ×MTTF

MTTF
(5.4)

With Equation 5.4 we can determine the frequency value that we should continue the exe-

cution of our simulation, in order to reclaim the application fall back time before the next

expected DUE error, that will cause the application to stop. That means we should calcu-

late the Mean Time to Failure (MTTF) before each restart procedure, so that our DVFS

module is adaptive to errors.

After the newFreq value is calculated we decide the actual frequency level that we must

switch to, by finding the closest frequency available that is equal or lower to newFreq, and

then we make the alteration and then restart the application.

In order to test our scheme we executed the Infoli simulator for three different Checkpoint In-

tervals (1000,1500,2000), grid size 12×16, Weibull distributed Time to Failure with MTTFs

value of 20 seconds. Also, for the same Checkpoint Intervals we executed the Infoli Sim-

ulator for TTF of 20 seconds with the DVFS module deactivated so that we can compare

the time and energy values. Furthermore, since the frequency and voltage alterations for

the x86 platform consumes minimal time we only tested our implementation for r = 1. The

results are as presented in Figure 5.6.

As we can see from the Figure, the DVFS execution outperforms the execution without

the DVFS module, in cost of energy. In comparison with the SCC implementation we can

observe that our results converge more accurate to the reference value than it happened

before. The main reason for this precision is the less time overhead introduced by the

voltage alteration. Also we must note that the error values are less here than there were for

the SCC implementation, which means there is less variability to our measurements.

45

1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

Figure 5.6: Implementation 1: Time and Energy results for the x86 platform, Weibull
distributed TTF values

Time Reference: 578 seconds and Energy normalized, based on P ∝ f ×V 2
dd

5.3.2 Second Implementation

We already stated that frequency/voltage alterations on an x86 platform are performed,

almost, instantly providing us the capability to perform frequency changes more frequently

and between more frequency levels. Another advantage of the x86 platform is that we can

implement a frequency change even while the simulation is ongoing.

So far, the implementations we presented have the disadvantage that after an error is de-

tected and the frequency level is set to a new value then the application is executed on

the new frequency until a new error, that will cause the DVFS module to reconsider the

frequency and make an alteration if needed, is detected. Hence, the execution of the ap-

plication could be even faster in comparison with the reference case, that is if no error was

detected, because it executed on higher frequency levels for more time than it was needed.

As was presented by the previous results, we can see that such phenomena are rare when

faults follow a statistical distribution. However, it is likely that only one fault is detected

during the execution and the execution time would not be able to converge to the reference

46

value.

As a consequence, we implemented a DVFS module that overtakes such incidents. It’s func-

tion is described in the following state diagram of Figure 5.7.

Figure 5.7: State diagram for the second implementation of the x86 DVFS module for
slack reclaiming

Here we only have two different opperating Modes. There is no need for Delay Mode, since

we never have positive slack in this case. As a result, we define 800MHz as the default

operation value and all other frequency configurations represent the different Burst Mode

configurations. The value of slack is updated with Equation 5.1 and the frequency level is

determined as in the first implementation, using Equation 5.4.

The difference is when a frequency alteration is performed, we also fork a process which

takes as a parameter the total time that the application should execute in Burst Mode so

that the slack is reclaimed, and after that time has passed it restores frequency to its default

value (Default Mode). This time is calculated as :

reclaimingT ime =
−s

determinedFreq − defFreq
(5.5)

So after we determine the theoritical expedient frequency level that we must continue our

execution, we determine the actual frequency value that is available for us and then calculate

the time that the application needs to run on this frequency, in order to reclaim the time

overheads. Therefore, every time the DVFS module is called we should certify whether or

not the forked process has restored the frequency value to default. We can not compare

the TTF value with the reclaimingTime value because race conditions can occur this way,

47

if for instance TTF is equal to reclaimingTime it is not certain that the frequency alter-

ation has already occured or not. Thus, we use the poll method contained in the Python’s

subprocess module [39]. This method returns None if the process has not terminated yet,

or the termination code otherwise. So we poll the forked process and in case None is returned

we kill the process and calculate the remaining slack using the Equation 5.1. Whereas if

the process has terminated normally we reset the slack to zero value and calculate the new

slack using Equation 5.1. Consequently, this implementation never leads to positive slack

values and only boosts the execution for as much time as needed to reclaim the slack. In

order to evaluate the implemented scheme we executed the Infoli simulator with grid size

10 × 14 and all the other configurations remain the same as the previous implementation.

The results are as depicted in Figure 5.8.

1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Checkpoint Interval(simSteps)

reference value

Normalized Time w/ DVFS

Normalized Energy w/ DVFS

Normalized Time w/o DVFS

Normalized Energy w/o DVFS

Figure 5.8: Implementation 2: Time and Energy results for the x86 platform, Weibull
distributed TTF values

Time Reference: 494 seconds and Energy normalized, based on P ∝ f ×V 2
dd

The results indicate a precise convergence to the reference value as far time is concerned.

Again we can observe that slack reclaiming leads to greater power consumption. However,

this implementation massively reduces the wasted power due to execution sprinting, since it

48

sprints the execution for as much time as needed and then restores frequency to its default

value.

49

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work introduced an approach to enable fault-tolerance to an application without violat-

ing any time constraints. For the purposes of this development the Infoli simulator has been

employed as the target application, upon which a periodic application level C/R scheme

has been adopted. Our scheme was tested and evaluated both on the Single-Chip Cloud

Computer and on an x86 commercial platform, to highlight the portability of our work.

The implementation is controlled by the Depman tool which monitors the execution of the

application by parsing the system’s output for DUE errors. Depman needs to restart the

application, until it is terminated normally, when an error occurs by checking whether or

not there is a valid checkpoint for the application to restart from. It also sets the voltage

and frequency to the appropriate level so that the time overheads introduced by the C/R

procedure are reclaimed. In this concept we quantified the total time overhead, that is

induced, and controlled it with the DVFS module in a closed-loop. We made three different

versions of the DVFS module. One concerning the SCC platform and has the ability to

change between Default and Burst Mode depending on the value of slack. The other two

concern the x86 platform. The first of them has three different execution Modes, Default,

Delay and Burst Mode, and has the ability to change between each one of them depending

on the value of slack. The second has two Modes, Default and Burst, but the frequency

alteration is performed only for the time needed so that the total slack is reclaimed and

then the frequency is set back to default resulting less energy overhead.

In order to test our scheme the error injection module was utilized. That way we injected

errors to the execution of our application using static or Weibul-destributed injection scenar-

50

ios. For the evaluation of this work we measured the execution time and energy consumption

throughout various experiments and conclude that the time overheads are greatly reclaimed,

and in case of x86 almost converge to the reference values, in cost of more energy consump-

tion.

6.2 Future Work

Copious modifications can be made to both Depman and the DVFS module itself in order

to achieve better efficiency or even use it for a different purpose. In this thesis, the burden

of our views was about the wasted time restoration caused by the C/R procedure. However,

the created scheme can be used vasriously. These potential future work is presented in this

section.

• First of all, Depman can be used as the main component to utilize C/R techniques

to multiple machines comprising a distributed system. This extension demands the

consistency of data between all machines and the sunchronization of checkpoints. So

Depman can be used to each of the many-core nodes of the system to provide fault-

tolerance and network techniques should be employed to achieve the communication

of the nodes.

• Secondly, Depman can be modified not only to work on a closed-loop, but during the

execution of the application reacting to numerous events. That way many modules,

such as the DVFS module presented here, can be incorporated to Depman and used

by the programmers. For example the DVFS module may be called every time a

checkpoint is taken or a module that applies checkpoint merging is called.

• Moreover, besides the DVFS technique parallel sprinting may also be applied. Both

Depman and Infoli simulator are build in a way that can exploit the use of computa-

tional sprinting as another way of slack reclaiming.

• The DVFS module itself can be used independently not only for the slack reclaiming

of C/R, but for other fault-tolerance schemes. Also it can be used by the developers in

51

order to accelerate the execution of their process or even slow it down if energy saving

is a major concern. In this direction the DVFS and a module performing parallel

sprinting can be implemented as a library, which the programmer may use to adjust

the execution speed of his process taking into account the thermal capacitance of the

platform.

• What is more the DVFS module can be exploited by web servers, in a way that the

performance is boosted during rush hours when the traffic is high so that customers

observe less time delay in their services and then performance is degraded when traffic

is low so that energy is saved.

52

References

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,”

Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 305–316, Sept 2005.

iiiiii, 5

[2] S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2008. iiiiii, 5, 29

[3] Y. Cao, J. Velamala, K. Sutaria, M.-W. Chen, J. Ahlbin, I. Sanchez Esqueda, M. Ba-

jura, and M. Fritze, “Cross-layer modeling and simulation of circuit reliability,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 33, pp. 8–23, Jan 2014. iiiiii, 5

[4] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch, and

M. M. K. Martin, “Computational sprinting on a hardware/software testbed.” xix, 4,

8, 9

[5] D. Rodopoulos, F. Catthoor, and D. Soudris, “Tackling performance variability due

to ras mechanisms with pid-controlled dvfs,” Computer Architecture Letters, vol. PP,

no. 99, pp. 1–1, 2014. xix, 1, 4, 9, 10

[6] The SCC Programmer’s Guide-Revision 0.75. Boston,MA,USA: Intel Corporation,

2010. xix, 13, 15

[7] G. Chatzikonstantis, “Energy aware mapping of a biologically accurate inferior olive

cell model on the single-chip cloud computer,” bachelor thesis, National Technical Uni-

versity of Athens, September 2013. xix, 25, 26

[8] A. Dixit, R. Heald, and A. Wood, “Trends from ten years of soft error experimentation,”

System Effects of Logic Soft Errors (SELSE), 2009. 1

53

[9] D. Hardy, I. Sideris, N. Ladas, and Y. Sazeides, “The performance vulnerability of

architectural and non-architectural arrays to permanent faults,” in Microarchitecture

(MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pp. 48–59, Dec

2012. 1, 5

[10] A. Mavrogiannis, “On the dependability of transient neuron simulations,” bachelor

thesis, National Technical University of Athens, June 2014. 2, 6, 27, 28

[11] D. Rodopoulos, G. Chatzikonstantis, A. Pantelopoulos, D. Soudris, C. De Zeeuw, and

C. Strydis, “Optimal mapping of inferior olive neuron simulations on the single-chip

cloud computer,” in Embedded Computer Systems: Architectures, Modeling, and Sim-

ulation (SAMOS XIV), 2014 International Conference on, pp. 367–374, July 2014. 2,

25

[12] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,

M. Konow, M. Riepen, M. Gries, et al., “A 48-core ia-32 processor in 45 nm cmos

using on-die message-passing and dvfs for performance and power scaling,” Solid-State

Circuits, IEEE Journal of, vol. 46, no. 1, pp. 173–183, 2011. 2

[13] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an architectural

perspective,” in High-Performance Computer Architecture, 2005. HPCA-11. 11th In-

ternational Symposium on, pp. 243–247, Feb 2005. 5

[14] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold

computing: Reclaiming moore’s law through energy efficient integrated circuits,” Pro-

ceedings of the IEEE, vol. 98, pp. 253–266, Feb 2010. 5

[15] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated application-

level checkpointing of mpi programs,” ACM Sigplan Notices, vol. 38, no. 10, pp. 84–94,

2003. 6

[16] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr) for linux clus-

ters,” in Journal of Physics: Conference Series, vol. 46, p. 494, IOP Publishing, 2006.

6

54

[17] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L. Scott,

“An optimal checkpoint/restart model for a large scale high performance computing

system,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pp. 1–9, IEEE, 2008. 6

[18] J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent checkpointing for cluster

computations and the desktop,” in Parallel Distributed Processing, 2009. IPDPS 2009.

IEEE International Symposium on, pp. 1–12, May 2009. 6

[19] J. P. Walters and V. Chaudhary, “Application-level checkpointing techniques for par-

allel programs,” in Distributed Computing and Internet Technology, pp. 221–234,

Springer, 2006. 6

[20] L. M. Silva and J. G. Silva, “System-level versus user-defined checkpointing,” in Reliable

Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on, pp. 68–74,

IEEE, 1998. 6

[21] J.-C. Laprie, “Dependable computing and fault-tolerance,” Digest of Papers FTCS-15,

pp. 2–11, 1985. 7

[22] D. J. Cross, “Power Efficiency Revolution for Embedded Computing

Technologies (perfect),” tech. rep., Defense Advanced Research Projects

Agency (DARPA), 2010. Available: http://www.darpa.mil/program/

power-efficiency-revolution-for-embedded-computing-technologies. 7

[23] X. Yang, Z. Wang, J. Xue, and Y. Zhou, “The reliability wall for exascale supercom-

puting,” Computers, IEEE Transactions on, vol. 61, pp. 767–779, June 2012. 7, 34

[24] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova, “Evaluation of the intel

x00ae; core x2122; i7 turbo boost feature,” in Workload Characterization, 2009. IISWC

2009. IEEE International Symposium on, pp. 188–197, Oct 2009. 8

[25] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,

and M. M. K. Martin, “Computational sprinting,” in Proceedings of the 2012 IEEE

55

http://www.darpa.mil/program/power-efficiency-revolution-for-embedded-computing-technologies
http://www.darpa.mil/program/power-efficiency-revolution-for-embedded-computing-technologies

18th International Symposium on High-Performance Computer Architecture, HPCA

’12, (Washington, DC, USA), pp. 1–12, IEEE Computer Society, 2012. 9

[26] J. Gjanci, “On-Chip Voltage Regulation for Power Management in System-on-Chip,”

Master’s thesis, B.S. University of Illinois, Chicago, 2006. 11, 12

[27] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core

dvfs using on-chip switching regulators,” in High Performance Computer Architecture,

2008. HPCA 2008. IEEE 14th International Symposium on, pp. 123–134, Feb 2008. 11,

12

[28] SCC External Architecture Specification (EAS) Revision 1.1. Intel Corporation, 2010.

13

[29] T. M. (IL) and R. van der Wijngaart (SSG), RCCE: a Small Library for Many-Core

Communication. Intel Corporation, 2010. 13

[30] M. P. Forum, “Mpi: A message-passing interface standard,” tech. rep., Knoxville, TN,

USA, 1994. 14

[31] R. Bakker, M. Van Tol, and A. Pimentel, “Emulating asymmetric mpsocs on the in-

tel scc many-core processor,” in Parallel, Distributed and Network-Based Processing

(PDP), 2014 22nd Euromicro International Conference on, pp. 520–527, Feb 2014. 21,

33

[32] V. Pallipadi, “Enhanced Intel SpeedStep R© Technology and Demand-Based Switching

on Linux*,” tech. rep., Intel, 10 2010. 22

[33] “The linux kernel documentation.” https://www.kernel.org/doc. 22, 23

[34] J. Hopper, “Reduce Linux power consumption,” tech. rep., IBM, 09 2009. 22

[35] “Texas instruments, dvfs user guide.” http://processors.wiki.ti.com/index.php/

DVFS_User_Guide. 23

56

https://www.kernel.org/doc
http://processors.wiki.ti.com/index.php/DVFS_User_Guide
http://processors.wiki.ti.com/index.php/DVFS_User_Guide

[36] J. R. D. Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. I. D. Zeeuw, “Climbing fiber burst

size and olivary sub-threshold oscillations in a network setting,” PLoS computational

biology, p. 8(12):e1002814, 2012. 25

[37] P. Bazzigaluppi, J. R. D. Gruijl, R. S. V. D. Giessen, S. Khosrovani, C. I. D. Zeeuw, and

M. T. D. Jeu, “Olivary subthreshold oscillations and burst activity revisited,” Frontiers

in neural circuits, no. 6, 2012. 25

[38] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current

and its application to conduction and excitation in nerve,” The Journal of physiology,

p. 117(4):500, 1952. 25

[39] “Python software foundation. python language reference, version 2.7. available at

http://www.python.org.” 27, 48

[40] “2nd generation intel R© core tm processor family mobile and intel R© celeron R© processor

family mobile,” September 2012. 43

[41] D. Rodopoulos, A. Papanikolaou, F. Catthoor, and D. Soudris, “Demonstrating hw-sw

transient error mitigation on the single-chip cloud computer data plane,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 23, pp. 507–519, March

2015.

[42] “Ubuntu manpages (cpufrequtils).” http://manpages.ubuntu.com/manpages/lucid/

man1/cpufreq-set.1.html.

57

http://manpages.ubuntu.com/manpages/lucid/man1/cpufreq-set.1.html
http://manpages.ubuntu.com/manpages/lucid/man1/cpufreq-set.1.html

Chapter 7

Appendix

7.1 Source Code

The source code of Depman tool for all three implementations can be found at https://github.com/A-

Kokolis/thesis-ntua. The code is licenced under the GPLv3 licence and can be modified and

redistributed under these terms.

An adaptive Checkpoint/Restart and Slack Reclaiming Manager

Copyright (C) 2015, Apostolos Kokolis, Alexandros Mavrogiannis

This program is free software: you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-

RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

If not, see http://www.gnu.org/licenses/ .

58

	Title
	Table of Contents
	Abstract
	Abstract

	Acknowledgements
	Acknowledgements

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	2 Prior Art
	2.1 Introduction
	2.2 Error Profilling
	2.3 Checkpoint Restart
	2.4 Execution Boosting

	3 DVFS Overhead Characterization
	3.1 Voltage Regulators
	3.2 Target Platforms
	3.2.1 Single-Chip Cloud Computer, SCC
	3.2.2 x86 architecture platform

	3.3 SCC voltage/frequency alteration overhead
	3.4 Voltage/Frequency alteration and overhead for x86 architecture
	3.4.1 CPUfreq governors
	3.4.2 DVFS options and alteration

	4 Depman tool and timing noise quantification
	4.1 Introduction
	4.2 Target Application
	4.3 Depman Tool
	4.3.1 Depman Operation
	4.3.2 The Checkpoint Restart procedure
	4.3.3 Diagnostics and Self Injection module
	4.3.4 DVFS module

	4.4 Timing Noise Overheads

	5 Reclaiming Timing Noise
	5.1 Introduction
	5.2 SCC Results
	5.3 x86 Results
	5.3.1 First implementation
	5.3.2 Second Implementation

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	7 Appendix
	7.1 Source Code

