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ITepiAndn

Kodog oL 8loo TdoElg TV %pUG TUANOTELOOMY HELOYOVTOL CUVEYMS Xt oL Blounyavieg utoloyi-
OTWV EVOOUATOVOUY OAO X0l TEQIGOOTEPOUS TUPTVES UEGU GTO (B0 OAOXANPWUEVO TEOXEWEVOL
VoL BEATIOCOLY TIC ETUOOCELS TV CUCTNUATGY TOUS, 1) GUYVOTNTU CYIAUATOS TOV GUC TNUATOY
oUEAVETOL EVIEIVOVTOC TNV OVAY XY YLoL TNV AVTIIETOTLON TOV CQUAIATOY oUTGY, T660 6T Ev-
OWHATWPEVA 600 ot oTa LucThata Tdhnirc Anddoong.

‘Eyouv avartuydel pédodol mou avtiuetonilouy o o@diuata auTd TG00 GTO ENNEDO TOU Mu-
OTAUATOS, OmO TOUG UPYLTEXTOVEG UTOAOYLOT®Y, 660 o oTo eninedo Egupuoyhc and toug
TEOYQOUUATIO TEC.

Mo SLaBedoUEVN TEYVIXT AVTHIETOTIONS TV o@ohudToV etvar 1) uétdodog Checkpoint /Restart.
Me n pédodo auth| 1 xoTdo TAoT) TOU GUG TARUTOS N TNG EQUPUOYNG amodnxelEToL OE ToX T YeO-
VX SLoo THUATOL €TOL (OOTE OTaY €V opAApa TeoxOYEL, To GOGTNUA 1) 1) EPUPUOYT| VAl UTORECEL
VoL Vo GUEL amd Lol TROYEVEGTERT) ACPUAT| XATAC TACT).

Hpoxewévou dume va emteuyVel 1 axepondTnTa xou 1) alOTLG T{oL TOU CUC THUATOS 1) TNG EXTEAE-
O™ Mo EPapUoY T Yenotdormolnvtog T pédodo tou Checkpoint /Restart elodyovion emniéov
Ypovixéc emPBoplvoelg, oL omoleg TEOXUAOUY TN UETABANTOTNTA TNG AmOBOONG. MUVETMS EYE-
fpeton To {ATNHOL TG AVEXTNOMG AUTOL TOL YoUEVOU YEOVOU.

O oxondg authic Tng dimhwpotixAc ebvar va tportoroiniel Eva evontotnuévo nepBdhhoy extéle-
ong, o Depman, o onoloc ulomotel t uédodo Checkpoint/Restart oe entnedo epapuoyhc étot
(OOTE VO AVOXTOVTOL Ol YPOVIXEC XoUG TEPHOELS TNE UEVOOOU Xai Vo ETULTUY YveTan 1) GOYXALoN
TOU YPOVOL EXTEAEOTC TNG EQPUAPUOYTC OTO YPOVO avapoEdc.

HpoomadwvTog Vo anocagnvicoule To TEQIEYOUEVO TNG TUPOVUCAS ERYUCIAS TPETEL VoL AVOPEQ-
Yolue oto mbavd o@dhpata Tou TaEouLcLalovTal 0TO UG TNUN XUTE TNV EXTEAECT) LIS EQOpP-
uoync, otn pévdodo Checkpoint/Restart xou otoug tpénouC emtdyuvone tne exTéreons UluC
EQOPUOYTC.

Ta ogdhpota umopody va tpoxhndoly ano padiepvépyeta [1, 2], yHpavon twy xpuotahhotpt-
68wV [3], xau omd T cLuVEYN OUiXELYOY TWYV BLUCTUCEMY XL THY EXTENESY) GTO GpLO TWY SUVA-
TOTHTWV TV UTtoloyto twy. Ta ogdiuata autd yweilovta oe Silent Data Corruptions (SDC)
xou Detected Unrecoverable Errors (DUE). To npdto aopody v naporywyn Aaviaouévev
AmOTEAEOUATOVY amd To UG TNUA xou oyetilovtal dueca pe TNy exdotote e@apuoyr. To delte-
e, Tou efvon xat auTd Tou Yo Yo amacy ol oouy evioTi{ovTal amd TO AELTOURYIXG GUCTNUA 1
Ao TO UAXG X0 £YOLY TO YUPUXTNPIOTIXO VO BLOXOTITOUY TNV EXTEAECT) TNG EQPUAPUOYTHC OTAY
evtonilovTa.

H avoryvopion twv o@oludtony duwe omd uovn tne dev npoopépet xdmota aflomotion. H uédo-
do¢ Checkpoint/Restart eivou oe Véom vo mpoopépel auty| TNV oltomiotia. H Aettoupyla tng
TeptypdpeTal wg eEAg. Xe ToxTd ypovixd dtac Tt | Bridato exTéheoT, OTKg elvon 0Ty Te-
elmtwor| pag, anotnxedetal 1 xaTtdoTaoY ToU CUOTAUATOS 1 Tor LOTXE O ToLYEld TNG EPUOUOYTC
xou €ToL OTay €var odhua eviomo el 1 extéheor cuveyilel and To onueio excivo. H Siadixaocio
tou Checkpoint/Restart elvou énoe avanapiotatar oty Lyfuo 1.
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Fallure

Teheckpointing :TI'F‘+TmpuJ| )
| | I s T

R DU R S '
-

T T Tr

Yyhua 1: Movtelonoinon tne Medédou C/R.

‘Onwg ebvon cagéc n uédodog tou C/R etodyel emmiéov ypovixée xaduoteprioelc oTny eEXTEAEDT
TOU TEOYEHUUATOS, Ol OTOlEC TEETEL Vo xohugUoly. Ot xaducteproeic autéc etvar o eCAc:

o Apywd ebvar o ypdvog mou ydvetan eCoutiog tng omoVodpdunone Tng EQopUoYNS ot Eva
TeOYEVEGTERO Briua. Autd onualvel Twe xdmotol utoloyiouol Yo exTeAecToOY Lovd OTOTE
Yo yodel uTohoYIoTINGC YEOVOC.

e Enlong etvar 0 ypdvog mou damavdtar Adyw Tng emavexxiviong tne epopuoync. ‘Otay éva
OQPIAUL EVTOTUOTEL X0 1) EQUEUOYT) OTUUATHOEL, 0 Depman eAcyyel edv umdpyel xdmolo
ao@arég onueio enavexxivnong, xahel To pédodo tng Auvouxric ahhayhig LuyvoTnTog Xou
Tdong xa Ootepa emavexxavel Ty egapuoyr. Auth 1 dadacio amoutel xdmolo yeoévo o
omofog xau mpénel vor avoxtrniel.

o Emmiéov elvor 0 ypdvog mou yeeldleTon 1 eQuploY 1 (Bl doTe var €0plEel TIC TYES TV
ToEayOVTRY TG and ta apyceta Twv Checkpoints xan vo cuveyloel Ty extéieot| Tne.

o Téhog elvar 0 ypdvog oL YEELILETOL TROXEWEVOU VO BLUTNEOVVTOL OTLYULOTUTO TNG Q-
HoYNS 00TWE MOTE VoL UTOPEL OE MERITTWOT GQIAIATOS Vor Avoxdet.

Ipoxewévou howmdy va avaxtriel o yopévog yedvog LTdpyouv 600 BLAPORETIXES TPOCEYYIOELS.
H mpdtn agopd tnv emitdyuvorn Yéow tng aulopeinong Tng ouyvoTnTag XaL TNG TAoNg ol
1 0eUTEPN aPoEd TOV TUEAAANAO LTOAOYIOUO omd TeplocOTeEPOU Tuprves. ‘Ocov agopd To
Thalolo auThC TNG OtmAwpatinrc Vo aoyorndolue Ue TNy EMTAYLVOT TNG EXTEAEOTC AOY® NG
awgopeiwong TG TdoNg xo TS CLYVOTNTOC.

H egapuoyt| mou dnuiovpyinxe hertoupyel 6mng meplypdgeton and to My fuo 2.
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Lyfua 2: Awdrypoppor Aertoupylog tou Depman

H extéheon tne epapuoyrc exxvelton xou o Depman eréyyel tnv €€000 TOU TEOYQEAUUATOC
TopoxohoLlmvTag yio ogdipote. H eqgopuoyy| avd toxtd Brpata extéAeonc xputdel €vo oTLy-
WOTUTIO TNS XATAC TACTC TNG omd TNV onolo Yol UTOPECEL VoL EMUVEXXIVACEL OV TOPOUGLAC TEL Evat
o@dhua. Av mapoatneniel xdmolo opdiua, eite enedr) To npoxakéoaue eucic eite yiotl Tpoéxu-
(e and To cloTNUA, TOTE e€eTAlETON EQV UTERYEL VOl GTLYULOTUTIO TPOYEVEG TERNC XUTAC TUCTC
¢ and To onolo Vo PTopoUCE VoL ETAVEXXIVIOEL Xou eavexxveiton 1) Sadixacio. §d¢ xevtpn
€QOEUOYT| Yo TNV EEUTNEETNOT TWV AVOYXOY AUTHC TNS epyacioc yenowonotinxe évac Teo-
COUOLWTAC VELPGVWLY, o Infoli.

[t TNy avdxTnon Tou youévou UTOAOYLo TV Ypdvou Joviehonotolue Thy dadwoctio Tng Ato-
xOpavone tne Tdong xou tng Yuyvotnrag o Eva xAelo o Bpdyyo OTee aneixovi{eTon 0To Ly o
3.

5
—_— Controller J— IVFS Processor n

- m Knob

Y

Monitor -

Yo 3: Adrypapar yior TNV Agttovpyio TG AUEOUEIWONS TNG CUYVOTNTOC XoL TN TAGNS OF
xheloTo Bedyyo

‘Etou xdde @opd mou mpoleveiton éva opdiua, utoloyl(eton 0 ypdvog mou 1) dladacio Eyel
xoduoTERNOEL o UToAOYI(ETOL 1) VEAL GUYVOTNTA TTOL TRETEL VoL CUVEYLC TEL 1) EXTEAEDT] TNG €-
PoPUOY NG TROXEWEVOU VO XEEDIGOUUE TO Yauevo ypdvo. "Totepa Poloxoude tn xovtvotepn ot
QUTY| TNV TYT CLYVOTNT TOU ETECEPYUCTH XL TNV ETAEYOUUE OOTE VoL GUVEY{COUUE amd exel



TNV EXTEAEOT).

H egappoyn mou avantdydnxe eréytnxe t6co oto Single-Chip Cloud Computer (SCC) éco
xan oe pla epumopiny| X86 TAaTQOEUL.

‘Oco agopd to SCC vhomolinxe 1 e@apuoyt Tou XyAuatog 4.

slack <0

slack <0
efault Mode Burst Mode
slack>=0

slack>=0

Yyua 4: Audrypopuor xatdoTtaong Yo Ty vhonoinon tou SCC

And to Bdrypapuo gatvetar Twe €youpe 600 cuyvotnteg Aettovpylag. H plo emiéyetan otay
uTdEYEL XordLoTEENOT OTNV EXTEAEST] TOU TEOYQPAUUATOS Xou 1 ShAN &Tay 1) xorducTéENon auUTh
éyer e€aherpiel. Ilpoxeévou va unohoyioTtel €dv €yel yodel ypdvog 1 Oyl yenoiwonoteiton 1
elowon;

Snew = Sprevious — timeQOuverheads+

1
+ (lastTTF x curFreq — lastTTF x defFreq) (1)

'Etol utohoyiCouye 0 cuvohixr xaduc Tépnor Tou TEoeveltar xon EAEYYOUUE €AV EYEL OVOXTY-
Vel 0 youévog ypdvog AOYw extéheonc o ulmAdTeEpT CUYVOTNTA 1) O)L.

Hpoxewévou va eAEYEOUUE TNV ATOTEAECUATIXOTNTO TG EQPUQUOYTC LIS AEYIXE EXTEAEGOUE TIEO-
copolnoelc yia mtoxtha Checkpoint Intervals, peyédn mAéypatoc, apriud muprvewy xot yedvoug
OQAuaTOC Xan ABoe Tor amoTeEREoUATA OTWS TaEOLCLAlovVToL 6TO My fud 5.
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DVFS Results for ckptinterval 2000 and TTF 120

DVFS Results for ckptinterval 4000 and TTF 120
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DVFS Results for ckptinterval 4000 and TTF 180

DVFS Results for ckptinterval 2000 and TTF 180
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Lo 5 Amoteréoparta yia mowxiieg dlapopeTinés ouviécelg, Checkpoint Interval of 2000
xou 4000 simulation steps xau ypdvoug ogdhuatog 120 xou 180 sec

Amo 1o amoTeAEoTA QUTA, TORATNEOVUE TS O YPOVOS XaUCTEENONS TOU TEOYEUUUATOS O-
VOXGUTETOL UETAUBHAAOVTUC XATHAANAL TNV TAOT) X0 TN GUYVOTNTA TOU ETECERY AT TH.

Ipoxewévou va eréylouue TEQIGGOTERO TNV EPUQUOYT| UOC, EXTEAECOUE TEOCOUOLOOELS Yid
otodepd uéyedog mAéyuatog (0o e 16296 1600 Yo otadepd yeovo PeTalh TV GQUAIATWY,
660 xaL yior Tuyaio yeovo mou diveton and TNy e&lowon;

P.— ] — o~ At/MITFs
=

(2)

To anoteléopata ebvon OTwe mopovctdlovial oto My fua 6 xau 7.
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Yyfua 6: Amotehéopata ypovou xou EVERYELNS, Yl Ypovo opdAuatog 122 sec
Time Reference: 823 seconds and Energy Reference: 29210 Joules
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Yyfuo 7: AmoteléopaTa YeOVOU Xou EVEQYELIS Yol TUY X0 YEOVO GQIALATOC
Time Reference: 823 seconds and Energy Reference: 29210 Joules



And ¢ mopamdvey YEUPIXES TUQUOTUCEL GUUTERUEVOUUE TS O YAUUEVOS YEOVOS avaxTdTal, OF

Bdpog Tou AOGTOUG HATAVIAWOTG EVEQRYELOG.

To onuavtixé otoiyeio mou agopd tnv viomoinon oto SCC elvor o ypdvog mou ypeldleTon
Tpoxeévou va yivel plo petdfoaocrn and éva eminedo tdong xou cuyvotnTag o€ éva dhho. O
YeOVOog auToC ebfvar onpavTindg xon xodopilel T Acttoupyio Tng vAomoinomg pag. O yedvog xa
1 EVEQYEL TOU XoTavah@veTon ametxoviCovton ota mopaxdte oyfuata. Xto SCC 1 extéheon
neplopiletan elte ot ouyvoTNTaL TV 533 M H 2 cite oe auth| Twv 800M H z hote va teplopicouye
TIC OLYVES METUPBAOELS XAl VoL YALTOOOUUE TO YPOVO GAAUYAS TNG LY VOTNTOC.
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Yyfua 8: Xpovixr emBdpuvorn yia oAlay T
and H33M Hz o 8O0M H 2
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Yyfua 9: Xpovixr emBdpuvorn yia oAAayT
and 800M Hz og 533M H 2
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Yyfuor 10: Katavdhworn evépyetag yia
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Yy 11: Koatavdhwon evépyetag yia
uetdBoon oe ocuyvétnta 533M H z

Hopoatneolue mwe ypetdleton oNUavTXdS Yeovos Yia TN HeTdBact and T pla otddun cuyvo-
THTOV oTNY dhhn. Emmiéov, n adinon tng ouyvotntog cuvendyetal o TNy adEnom Tng Xota-
VaAwong evépyetag. Axoun xatd Tn Sdpxelo Tng UeTdBaon amd T Wi cuyvVOTNTAL 0TV GAAT,
BAEmoupe oS UTdPYEL Bl OUAVOT) TNV T TOU PEVUATOC, OTOTE TEETEL VAl TEQUIEVOUUE TO
eelpa va otadepontomiel ot pla T TEOTOV GUVEYICOUUE TNV EXTEAEDT) TN EQPAPUOYTC.

x1



Values

Values

Values

Values

Current and Voltage flunctuations

Current and Voltage flunctuations

20 25
20 r
15r
current g 1571
10+ — — — voltage =
= 10} ——— current
— — — voltage
5 F
77777777777777777 5¢r
(0] (6]
o 20 40 60 (o} 20 40 60
Time (seconds) Time (seconds)
Current and Voltage flunctuations Current and Voltage flunctuations
20 25
20 r
15 ¢
current «a 15}
10} — — — voltage c_?‘
= 10¢ current
5t sl — — — voltage
(0] [0}
o 20 40 60 [0} 20 40 60
Time (seconds) Time (seconds)
7 / 4 4
Yyfuor 120 Awncdpovor téong xan peduatog yio etdBaon oe cuyvotno 800M H 2
Current and Voltage flunctuations Current and Voltage flunctuations
30 35
25t 307
2 k
20 r 5
current B 20+ current
15} — — — voltage = - - -
S 45! voltage
101 1ol
S5r 5t
(0] (6]
o 10 20 30 40 50 (o} 20 40 60
Time (seconds) Time (seconds)
Current and Voltage flunctuations Current and Voltage flunctuations
30 25
25+ 20}
20 r
current a 15+ —  current
15} — — — voltage = — — — voltage
= 10}
10
st S
(0] (6]
o 20 40 60 (o} 10 20 30 40 50

Time (seconds)

Time (seconds)

Yyfuor 130 AwancOpovor téong xan peduatog yio etdBaon oe cuyvotne 533M H 2

xii



IIépa amd v Lvhornoinon oto SCC dume €yvav xow dVo vhoTofoelg oe 86 mhatgopuo. H
TN elvor OTwe TopouotdleTon 6To Lyuo 14.

slack=0
slacies0 slack<0

slack=0

Lo 14: Awdrypoppor xatdoTaong Yo TNV TEMT EQURUOYT

Am6 0 BLdypouua XUTAC TAOTG, TUPATNEOVUE TWE EYOUNE TEELS DLUPOPETIXES XUTUC TUOELS AEL-
Tovpylag avdAoyo Ue TO €4V 1) EXTEAEST]) TG EQPUPUOYTG TPOTOREUETOL, LTtoAe(meTon 1) ebvan (Bia
ue v extéheon avapopds. Ilpoxewévou va Peolue edv n extéleor €yel xaducteprioel yern-
owonoloUue TNV Bl eéiowon mou yenowlomotfinxe xar otnyv vhomoinon yia To SCC. T'a Tov
UTIOAOYIGUO TNG VEUC GUYVOTNTAC AEtTovpylag yenotuonoteital 1 e&lowon:

—s+defFreq x MTTF
MTTF

(3)

newFreq =

ITpotol nopouctdcouye to anoteAécpata TN HEVOO0U, Vol GNUAVTIXG VO ONUEWOCOLUE OTL 1)
oy€on TNG TUONG UE TN CUYVOTNTA TNG TAATPOPUAS BlveTan amd TN oyéon

V(f)=583x10""x f+0.184, fin KHz (4)

xal €TOL UTOPOUUE Vo UTOAOYIGOUNE TNV EVEQYELXL (G

E=cx fxV*x Dt (5)
E\éy&ape tnv vlomolnon auth yio otadepd péyedoc mAéyuatoc VEUpOVWLY (oo ue 12216 %o

yior TUy oo GOANIATO XEUTOVTUC OTLYULOTUTIA TNG extéreong avd 1000, 1500 xan 2000 Bruota
extéheone. To anotehéoyata neptypdpoviar oto My nua 15.

xiil



19K i
1.85F i
1.8 i
1.75F i
1.7F
1.65F reference value
16k I Normalized Time w/ DVFS
1.55 I Normalized Energy w/ DVFS
15k [N Normalized Time w/o DVFS

I Normalized Energy w/o DVFS

1000 1500 2000
Checkpoint Interval(simSteps)

Yyfua 15: Thonolnon 1: Anoteréopato ypovou xon EVERYELIS Yiot TUYaiO YeOVO GQANINTOS
Xpovog Avagopdc: 578 sec xan Evépyewa Bactouévn otn oyéon P oc £ ><Vd2d

‘Onwe TapatnEoluE xon TEAL, €Y0UNE XUAUTERT amddooT xEEdIlovTag TO Youévo Ypbvo. Axoun,
BAémoupe 6TL €youe XoMOTERY GUYXMOT TWV ATOTEAECUATOY OTNY TYLY| ovapopds. Autéd ouy-
Badver xuplog Aoyw Tng TOAD pxeric yeovixr|c emBdpuvong Tou ETLQEREL 1) HETUBOAY TNE TdoNg
OTNV TAATQOPUAL.

Emuniéov vhomotfdnxe xou pio deltepn €x8001 Yoo TOV TEOTO EMAVAXTNONG TOU YEOVOU TOU
Yainxe. Loupova ue TNV LAomolnotn auTy, 6Tay Ve GPIAU EVIOTUGTEL XU YPELCTEL Vou ok~
Aoy Oel 1 ouyvotTnTa o Véa T, TOTE LTOAOYILETOL O aXEB3NG YPOVOS TOL YEELWULETOL WGTE Vol
enavéldel 0 ypdvog ot Quotohoyixd enineda xou UGTEPA 1) CUYVOTNTA ETAVEPYETAL OTa ENiTEDY
avapopdc. Ilpoxewévou va utohoyiotel o ypdvog mou yeetdleton vo emitayuviel 1 exTtéleon
elvou:

—S

reclaimingTime = (6)

determinedFreq — def Freq

To Budrypapa XaTAGTAONS TOU TEPLYEAPEL TNV UAOTOMOT auTy| elvan Omwe ametxovi{eton 6To
Ly 16.

X1iv



slack=0

slack<0

slack=0

Yo 16: Adrypaar xatdotaong yio TV 0e0TERT EQUOUOYT

Ané To Biudypauua auTd QaiveTal TS €YOUPE Uovdya U0 xaTaoTdoel Acttovpylag.  Autd
elvo Aoyo oy avoAOYLOTOUUE TS BEV UTdEYEL AGYOS Yo YElwon TNG cuyvoTNTaS XdTw TNg
CLYVOTNTOG AvopoEdc SLOTL 1) TY Tou s Oev Umopel ToTé var mdpet Vetiny| Ty amd T oTiyun
TOUL ETITOY OVETAL 1) BLadixaolar u€yplc 6Tou UNdEVoTEL 1 xaducTépnon NG EPaPUOYHS Xou o)L

TPV,

H viomoinon

outy| er€yyUnxe Yo péyedog mAdypotog 10214 xon Tol AMOTEAEGUATA TOQOUGL-

dCovton oo Lyrfua 17.

2.1
2.05

1.95

1.85
1.8
1.75
1.7
1.65
1.6
1.55

1.45
1.4
1.35
1.3
1.25
1.2
1.15
1.1
1.05

0.95
0.9
0.85
0.8
0.75

reference value

I Normalized Time w/ DVFS
I Normalized Energy w/ DVFS
I Normalized Time w/o DVFS
I Normalized Energy w/o DVFS

1000 1500 2000
Checkpoint Interval(simSteps)

Yyfua 17: Thonoinon 2: Anoteréopato ypovou %ot EVERYELNS, TUY LA €XYUOT) CQUAIATELY

Xpbvoc Avagopdc: 494 sec xa Evépyeto Pactopévn otn oyéon P o £ xVE

BAénoupe xan oA 6TL xEEdioUUE O YPOVO EXTENEOTG, AAAY XUTOVOADUNXE UEYUADTEQO OGO
evépyelac. AuTo TOU TEETEL VoL GNUELWOCOUUE EIVOL OTL 1) XATOVIAWOT) EVERYELIC TEQLOPIOTNXE OF

OYEOT UE TNV

TEOYYOUUEVY UAOTIOINOT).

XV



'Eyovtoag nopouctdoel o amOTEAEGUAUTH TWVY EPUOUOYOVY UAS, XUTUANYOUUE GTO CUUTEQUOUN OTL
1 EXTENECT] EVOC TROYEAUUATOC UTopel vor emitaryuvUel Ye Ty awopeinon tng ouyvotntog. Me
TOV TPOTO aUTH UTOPOLY VoL amopeopnloly oL Ypovixeg emBuplVoELS TOU TEOXUAAODVTAL OO
UNYoVIoRoUE TOU TPOGHEROUY 0ELOTIOTIOl GTNV EXTEAECT) TMV TEOYEUUUATWY ATOOEYOUEVOL TNV
emmAéov emBIEUVOT] GTNY HATAVIAWOT] EVEQYELIG.

[épa Ouwe amd TNV amopedPNoT TETOWWY YEOVIXGY ETBUPUVOEWY, UTOPOUUE VA YETOULOTOL-
HOOVUE TO UOVTEAO QUTO TROXEWEVOU VoL TIUREYOUUE OTOUG TROYLUUUATIO TEG T1) OUVOTOTNTA VoL
EMUTAYOVOLY TNV EXTEAECT] TV TEOYRUUUATOY Toug, 6ToTE TO Xpivouy anopaitnto. Emmiéov
©¢ pehhovtixt| douleld Yo uropoloe vo tpoctedel oTov XMOXA XaL 1) TUREAANAY eTiTdyLVoN
NG EXTEAEOTNC €TOL MOTE VUL YPNOWOTOLETOL 0 GUYBLACHOS TV B0 PEdOdwWY Yo Ty Bedtionon
NG ATOBOTIXOTNTOC TWV TEOY PUUUATLY.

Xvi



Abstract

As performance enhancement is accompanied by the aggressive integration of many-cores
to a single chip and technology nodes approach deca-nanometer dimensions, the system’s
failure rate is becoming significant. Inevitably, computer systems must tolerate such failures.
Both hardware and software methods are available enabling fault-tolerance to the systems.
The Checkpoint/Restart technique provides reliability to the execution of an application.
However, Checkpoint/Restart introduce an additional time overhead in order to achieve the
fault-tolerance of the execution, that leads to performance variability.

The scope of this thesis is to enhance a runtime manager, Depman, that orchestrates an
application level Checkpoint/Restart technique so that such time overheads are absorbed,
achieving performance predictability and reliability on the fly, by using Dynamic Voltage and
Frequency Scaling (DVFS). A closed-loop implementation controlling the clock frequency is
proposed, that quantifies the time overheads induced by the checkpoint restart process and
adjusts the frequency levels of the CPU so that execution time converges to the normal.

Depman was also modified to extend its portability to other platforms and applications
and was tested using the self fault injection module to both the Intel’s Single-Chip Cloud
Computer (SCC) and an x86 general computing platform, evaluating both the execution
time and energy consumption of our scheme.

Keywords: Dynamic Voltage and Frequency Scaling (DVFS), Checkpoint/Restart (C/R),
Execution Sprinting, Dependability, Reliability, Availability and Serviceability, Single-Chip
Cloud Computer (SCC)
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CHAPTER 1

Introduction

In the recent years, technology nodes approach deca-nanometer dimensions and even though
novel transistors exhibit significant improvement in their reliability profiles, bit level cor-

ruption has been a major reliability concern in microprocessor design [5].

Moreover, computer companies incorporate multiple processing nodes on a single chip in
order to enhance the performance of their systems, both for Embedded Computing (EC) and
High Performance Computing (HPC). This aggressive integration leads to increased failure
rates at the circuit and system level [8]. Inevitably, computer systems must tolerate those
failures, especially as far as reliability and safety are concerned, since availability,integrity
and maintanability are, mostly, guaranteed by the hardware and operating system. As a
result fault-tolerance mechanisms should be adopted, in order to provide reliability and

availability to these systems.

There are both hardware (HW) and software (SW) available methods for the mitigation
of such errors. Computer architects enhance their designs with reliability, availability and
serviceability (RAS) schemes to identify and correct such errors. Also software defined
methods have been implemented, such as the application or system level Checkpoint Restart
(C/R) method, which periodically saves a snapshot of the application’s key data structures

and performs a rollback-recovery when an error occurs.

However, fault-tolerance mechanisms rarely come with no associated time overheads for the
execution of applications. As a result, Error Correcting Codes (ECC) produce a perfor-
mance degradation, which is often quantified by Performance Vulnerability Factor (PVF)

9], depending on the implentation and the type of the detected error.

This thesis covers the process of introducing fault-tolerance to an application, while at the



same time temporal overheads produced by such RAS mechanisms are absorbed, using Dy-
namic Voltage and Frequency Scaling (DVFS) techniques, controlled in a closed loop. DVFS
is a power management technique that provides the capability to adjust the voltage and fre-
quency to different values, depending upon circumstances and proportionally adjusting the

execution speed of the application.

In this context, we evaluate our scheme by modifying an adaptive dependability manager,
called Depman [10], that uses an application level Checkpoint/Restart method to provide
reliability to an application. So we incorporate the DVF'S module in order to provide besides

fault-tolerance and error recovery, time overhead mitigation.

Our target application is a time-driven simulator of the inferior olive neurons (Infoli simula-~
tor) [11]. Our application scheme is ported and tested to a many-core platform, Intel Lab’s

Single-Chip Cloud Computer (SCC) [12], as well as an x86 commercial platform.

In contrast to recent trends in C/R and slack reclaiming methods, our implementation

estimates the time overheads on the fly and adapts to time-dependent error failure rates.

The current thesis is structured as follows:

e In the next chapter we present the samples of Prior Art which motivated us to get

involved with slack reclaiming techniques, systems performance and reliability.

e Next, we introduce the overhead produced by a voltage and frequency alteration both
for the SCC and the x86 platform. First, we give a brief overview about voltage
regulators, which provide the capability of voltage changes, and the two platforms and

then we analyze how we perform the alterations to each platform.

e In Chapter 4 we discuss the operation of Depman, including the DVFS module, for our
target application and also we exhibit the function of the DVFEFS module. Furthermore,
we formulate the problem of performance dependability, in view of timing noise and
we quantify the time overhead caused by the C/R method, as well as the way in which

we calculate the exact time overhead during the execution of the application.



e In addition, in Chapter 5 we depict the results of our application scheme for both
platforms and analyze in further detail each implementation. First we demostrate the
SCC implementation and then two different implementations for the x86 platform.

Also we discuss and evaluate our results.

e Finally, in the last Chapter we list a series of conclusions from the work presented

herein. Directions for future work are also pointed out.



CHAPTER 2
Prior Art

2.1 Introduction

In this Chapter we will present the state of the art concerning this thesis. The way to
achieve this is to categorize the main aspects that lead to the need of slack reclaiming. In

Figure 2.1 we illustrate the scope of the Chapter.

cause the variability

of the application's
Errors axeoution

¥

i !
Fault-tolerance Translate the previous
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., oy

. J

the need to absorb the time
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Figure 2.1: Representation of the urgency for slack reclaiming

So, first, we analyze the causes of errors and the their types that violate the reliability of a
process. Then we analyze techniques that tolerate these errors. In precise, we analyze the
Checkpoint /Restart technique that is occupied in this thesis to enable fault-tolerance. We
provide an insight into how the Checkpoint/Restart technique is used in modern systems, its
usefullness and the way that it is modelled. Finally, after we have established the need for
slack reclaiming because of the time overheads introduced by fault-tolerance mechanisms,
we present different approaches for computational sprinting, both parallel and frequency
sprinting [4], as well as an approach regarding the slack reclaiming of cycle noise induced

by RAS mechanisms [5].



2.2 Error Profilling

Current trends suggest that soft errors, bit-level corruption of computer data, will emerge
as a priority for microprocessor designers in the future [13]. As a result, a need for the
classification, intuitive understanding and quantitative measurement of errors should be

launched, regarding the way that errors affect the system behavior.

Transient faults may arise from radiation [1, 2] ,transistor aging [3] and the constant device
miniaturization, as well as near-threshold computing [14, 9]. Also chip overheating and

voltage spikes can cause such failures.

The potential errors can be classified into two different categories, the Silent Data Corrup-

tions (SDC) and the Detected Unrecoverable Errors (DUE) [13].

Silent Data Corruptions are faults, which cause the system to generate erroneous outputs.
These type of errors are not detected by the corresponding hardware or operating system and
are directly related with each specific application. On the other hand, DUEs are detected by
hardware or firmware and have the characteristic that when they manifest the application is
either terminated or blocked. However, detecting an error does not provide any reliability,
but does provide the fail-stop behavior and avoids data corruption. The fail-stop model
takes for granted that the appearence of an error causes the simultaneous termination or
block of the process. It is likely though that an error is detected after the process termination
or , in case of the C/R restart method, during the checkpointing procedure which means
that multi-version checkpointing is needed. Both SDCs and DUEs are expressed by two
variables. The first is the Mean Time to Failure (MTTF) metric, which is the average
period of time between two consecutive failures. The other one is the Failures in Time

(FIT), which represents the number of errors detected in a billion device hours.

2.3 Checkpoint Restart

The Checkpoint Restart (C/R) technique enables fault-tolerance through the storage of

snapshots either of the system or the application state, known as checkpoints. In case of a



failure these snapshots are used to restore the system to a previous stable state. The C/R
is a well known technique used in HPC [15, 16, 17], as well as many-core platforms and
distributed systems [18]. In the latter, C/R procedure demands the consistency between
the nodes of the system, which can be violated because of heavy packet loss or the network
latencies, so checkpointing is either implemented over unified distributed storage schemes

or it is managed through coordination schemes [19].

As it is already indicated, checkpointing can be performed both at the system or application
level. At system level, the platform’s components are stored in checkpoints, such as registers
and memory contents, while on application level the crucial application structures are stored
in checkpoint files [20]. As a result the application level C/R restart implementation can
outperform system level C/R as the size of checkpoints is, generally, smaller, since only the
storage of the application’s critical components is required. There are several tools which
facilitate the process of C/R. As an example is The Cornell Checkpointing pre-Compiler [15]
known as C3, thoroughly used in HPC systems, which parses the programmers framework

and indicate potential checkpoint and restarting locations.

In the context of this thesis a Supervised C/R application level technique will be reused
and modified [10], called Depman. Depman, initialy, orchestrates a C/R closed loop model
to introduce reliability to a many-core platform, the Single Chip Cloud Computer (SCC).
Checkpoints are stored periodically for the notable application structures in double buffered
files and also it monitors for both DUE’s and SDC errors. When an error is detected
Depman performs the available countermeasures for the SCC platform, such as core-reboot
or platform reset, and restarts the application. No design-time benchmark parameters are
required, since it automatically adapts to time-dependent error failure rates of the system.

The operation of Depman concerning this thesis will be presented in Chapter 4.
The Checkpoint procedure can be modelled as presented in Figure 2.2.

Where the Checkpoint Interval, 7, indicates the time or simulation steps between two sequen-
tial checkpoints. The time consumed by the checkpoint to be taken is called Teheckpointing,

TTR is the time needed for the application to be restarted and Tiepair is the time for the ap-
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Figure 2.2: Modelling the Checkpoint cycle

plication to restore its state from the checkpoint files. Finally, T, is the application rollback
time that needs to be performed again. As a result, it is clear that the added fault-tolerance
provided by the C/R technique comes with the cost of added execution time and data re-
dundancy [21]. The time overheads introduced by the C/R process are discussed in greater

detail in Section 4.4.

2.4 Execution Boosting

In embedded systems, the desire for increased number of operations per unit power seems
to be a major concern in the near future. However, this type of power efficiency com-
monly evokes partially compromised resiliency [22]. Moreover, High Performance Comput-
ers (HPC) need to adapt fault-tolerance mechanisms in order to improve their reliability
and availability, but the time overhead introduced by such mechanisms lead to the concept
of “Reliability Wall” [23], meaning that performance and scalability might be violated due
to reliability techniques. For example the Checkpoint/Restart technique, as presented in
the previous Section, improves the system’s reliability but incurs additional execution time

for saving the checkpoints and for performing rollback-recovery.

These facts lead to the idea of slack reclaiming and execution sprinting. Since additional
time overhead has been imported to the execution of our application, it is important to
adapt real-time techniques to achieve the minimum performance degradation, as far as
time and energy constraints are concerned. In this direction we have two different types of

computational sprinting as presented in Figure 2.3.
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Figure 2.3: Types of computational sprinting [4]

Frequency sprinting refers to the alteration of CPU’s clock to opperate on higher frequencies
so that the execution is accelerated.

In this scope, Intel has presented the Turbo Boost Feature, which makes the processor op-
portunistically increase the frequency of the cores depending on the core temperature, the
number of active cores and the estimated power consumption [24]. It is known that idle
cores consume small amount of active power. So when a portion of cores are inactive the
extra power headroom available can be diverted to the active cores so that the execution is
quickened without compromising the power and thermal envelope. Of course, the need for
dynamically power asymmetric multi-core processors is raised, so that all cores may use the
same instruction set, but the frequency of each core can vary independently [24].

The speedup resulting from this method is not identical for all applications. It depends on
the application type, i.e. whether the application uses integer or floating point numbers, the
last level cache miss rate, the temperature of the platform and the effective frequency for
the application. As a result we do not expect a memory intensive application to experience
as much performance gain as CPU intensive. The effective frequency levels for memory in-
tensive applications are lower, since the cache miss rate is greater and the execution delays
waiting data fetching, so they cannot achieve the full potential of Turbo Boosting. These
claims are substantiated in related work [24], where the efficiency of Turbo Boost is depicted.
Another factor that affects the results of Turbo Boosting is the interference between applica-
tions running in parallel. As it is presented in related work [24], the speedup achieved with
Turbo Boost is greater when two CPU-intensive applications are executed concurrently than
when two Memory-intensive applications are running at the same time. Also it is important
whether the applications are mapped on the same or different cores.

In every case though, the application executes faster when running on Turbo Boost in the

cost of a significant increase in energy consumption.



Parallel sprinting refers to the activation of reserved cores and the distribution of compu-
tational load. Of course parallel sprinting results to high performance gains and exploits
better the thermal capacitance of the platform. However, the disadvantage of this method
is that not all applications support parallel programming and even if they do, sequencial

phases of parallel application are, almost, inevitable.

Another approach is to practice both frequency and parallel sprinting where sequential
phases of applications can be boosted as well. This method has been applied as it is presented
in related work [4, 25]. In that case computational sprinting was adopted in order to increase
the system’s responsiveness when the computation demands are high, always taking under

consideration the thermal limits of the platform.

We need to introduce two new concepts, the Unabridged and the Truncated sprint [4]. The
first, refers to a sprint that is able to complete within the thermal constraints of the plat-
form, no matter if it is parallel or frequency sprint, while the second refers to a sprint that
needs to be sustained because the thermal limits where infringed. As a consequence we can

realize that we can not sprint unconditionally and for a prolonged period of time.

Energy consumption is a critical factor nowadays. Sprinting has the pottential to lead
to more energy efficient schemes by ”amortizing the fixed uncore power consumption over
a large number of active cores and capturing race to idle effects” [4]. However, it is a fact
that frequency sprinting requires higher voltage values that increase the power consump-
tion during the execution. The more idle core power is optimized the more energy effective
sprinting will be.

It is important to note that in previous work, sprinting has been used to enhance application
performance. On the contrary in our work, frequency sprinting is used to reclaim correction
overheads. Furthermore, it is important to note that sprinting, as mentioned in related
work, tends to press the Thermal Design Power (TDP), whereas in our case we as just using

“legal” P-states to enable dependable performance.

Recently, techniques have been proposed and evaluated facilitating observability and con-

trollability of the target platform in order to enhance performance stability [5]. The goal



is to mitigate performance variability at run time level absorbing the cycle noise overheads
caused by RAS mechanisms, through a Proportional-Integral-Differential (PID) closed-loop
control scheme that modify the voltage and frequency levels to the appropriate values, Fig-
ure 2.4. The concept of this idea is to formulate the issue of performance variability and
quantify the overhead in what is called cycle noise, control the DVFS process with a PID

controller and evaluate the time and energy outcome.

z [n]

Srer [11] m| C [n]
s[n—1] T
Monitor
N [n]

p[n] . .
4{ System Scenario Detection |

Figure 2.4: Block diagram for the run time performance dependability scheme in view of
RAS temporal overheads [5]

As indicated in Figure 2.4 the cycle noise (x), interferes with the timing budget of the
application (N) and produces the slack (s) which indicates the recession of the application’s
execution time. So a frequency multiplier is proposed and the closest available frequency
of the processor is selected. This concept was the main springboard of this thesis and its
functionality is greatly discussed throughout this thesis. The results of these simulations
indicate that time variations are negligible but the energy consumption exhibit a rise [5], in

case the aggression of DVF'S is not appropriately harnessed.
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CHAPTER 3
DVFS Overhead Characterization

3.1 Voltage Regulators

Dynamic Voltage and frequency scaling is a well known technique used to reduce energy in
digital systems. However, the effectiveness of DVF'S can be restricted by prolonged voltage
transitions. The same applies for our case that we use DVFS to accelerate the execution of
the application when needed. So with the growing power and execution time management
concerned, as well as the need for per core DVFS, the requirement for efficient voltage
regulation has become critical. This Section will present and compare off-chip and on-chip

voltage regulators, and also will introduce two rife regulator topologies.

A voltage regulator is needed to keep voltages within the prescribed range that can be tol-
erated by the electronic device. Its role is to deliver power from the source to the load, with
minimum loss and maintain constant voltage during transient response [26]. Most voltage
regulators are off-chip devices due to the large power transistors and output filter compo-
nents that are required. However, lately, great emphasis is given to integrating the voltage
regulators on the same chip as the load they feed, on-chip regulators. That is because
on-chip regulators result in multiple benefits. They are smaller so they can be integrated
on chip, which results to the reduction of Process Control Block (PCB) area required from
off-chip regulators, they provide faster voltage switching and offer the potential to provide
multiple on-chip power domains to chip multiprocessor systems [27].

There are three important regulator characteristics that should be taken into account when
designing on-chip instead of off-chip regulators. These are regulator efficiency, load transient
response and voltage switching time [27, 26].

Regulator efficiency concerns the power losses due to the regulator, which depend on the size
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of switching power transistors, switching frequency and load conditions. Regulators with
higher switching frequencies, such as on-chip regulators, are capable of fast voltage scaling,
but incur higher regulator losses. However, on-chip regulators are closer to the load so the
losses from parasitic resistors (I2 x R) between the source and the load are less.

Load transient response determines how much the voltage fluctuates in response to a change
in current. For on-chip implementation, the size of the filter components is reduced, leading
to efficiency degradation due to voltage fluctuations. That means there is a trade off between
operating at high switching frequencies and achieving satisfactory power efficiency. How-
ever, on-chip regulators remove impedance restrictions by reducing mid-frequency package
resonance issues.

As far as voltage scaling time is concerned, the voltage does not scale immediately, but grad-
ually. So the yield of DVFS has been hindered by slow voltage scaling. On-chip regulators

offer the ability for nanosecond voltage scaling and per-core DVFS.

Two widely used regulator topologies are the linear and switching regulators [27, 26]. Linear
regulators offer several advantages such as ease of on-chip integration, small size, low cost,
no complexity and fast response to load transients. Furthermore, since they are inexpensive
and small they are ideal for multiple voltage domains. Unfortunately, the power conversion
efficiency of a linear regulator is constrained by its dependency on the Vout/Vin ratio, where
Vout is the output and Vin is the input voltage of the regulator. In contrast, switching regu-
lators provide better power conversion efficiency and are less sensitive to the Vout/Vin ratio.
Also, they can regulate a wide range of output voltage levels. Different from linear regula-
tors, some types of switching regulators are also capable of providing outputs higher than
the input. Hence, switching regulators are better suited for loads employing DVFS, both for
turbo boosting and power saving. However, switching regulators also exhibit serious con-
cerns when it comes to on-chip implementation. First of all, the size of a switching regulator
is bigger so it is harder to be integrated on a chip. Additionally, switching regulators do
not provide clean output voltage, due to the presence of the inductor. So the requirements

for high efficiency and high accuracy make the size of the regulator prohibitively large for

12



on-chip implementation.

3.2 Target Platforms

This Section will be about exploring the details of the target platforms that we will test our
application scheme. We test our application in two different platforms. The first one is the
Intel’s Single-Chip Cloud Computer,SCC, experimental platform and the second one is an

x86 architecture commercial laptop distributed by Hewlett-Packard.

3.2.1 Single-Chip Cloud Computer, SCC

The Single-chip Cloud Computer (SCC) is a research chip created by Intel Labs to study
many-core CPUs, their architectures, and the techniques used to program them [6, 28].
The processor consists of 48 cores, which are grouped in tiles of two cores each. The tiles
are inteconnected through a mesh network. Each tile contains two Intel architecture 32-bit
P54C cores, a unified L2 cache memory of 256KB, a router that connects the tile to the
mesh and a Message Passing Buffer (MPB), which is used for the message exchange between
the cores. The chip allows dynamic voltage and frequency scaling accross the tiles , as will
be explained in the next Section 3.3, thus it is appropriate for the purposes of this thesis.

Furthermore, the board that hosts the SCC chip communicates with a Management-Console
Personal Computer (MCPC) through ethernet and PCle links. The MCPC is equipped with
the SCCKit, which is a software framework for the SCC providing the user the capability to
monitor the board remotely. The user can define the power domains of the board, restart
the cores, boot linux image on each core, reinitialize the board and ping the available cores.
The MCPC and the board can also communicate through a directory called /shared which
is common for both and can store the output files of an application running on the board.
Additionally, a C Library called RCCE is provided with SCC [29]. RCCE is a small library
for message passing, similar to the Message Passing Interface (MPI), which is tuned to the

needs of many-core chips. RCCE also provides a power management interface to support
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power-aware applications. The RCCE source code is crosscompiled with icc/icpe compiler

in order to generate the appropriate executable for the SCC board.

3.2.2 x86 architecture platform

The second platform on which we test our implementation, is an x86 architecture HP Pavil-
ion dv6 Notebook, running a Linux 3.8.0-44-generic Ubuntu distribution. Its processor is an
Intel(R) Core(TM) 7 — 2630QQ M Sandy-bridge. The i7 —2630QM is a quad core processor
with two simultaneous multi-threading (SMT) contexts per core, providing us eight logical

cores. It has a 4GB DDR3 RAM and a 6MB cache.

As far as DVFS is concerned, the system uses the acpi-cpufreq driver to perform frequency
changes. Also, the userspace governor that will be analyzed in Section 3.4.1 is supported,
offering the ability to perform our own frequency alterations. The available scaling cpu
frequencies range from 800M H z to 2G H z with a step of 100M H z.

What is more, the Message Passing Interface (MPI) is supported [30], which is very similar
to the RCCE. Our target application is ported both for RCCE and MPI so that we can
perform our executions on both platforms.

Finally, contrary to the SCC platform where we use the RCCE power management interface
to make voltage and frequency alterations, now the cpufrequtils linux package that will
be further analyzed in Section 3.4.2 is installed providing the capability for changing the
cpu-frequency and monitor the cpu-frequency information using its tools, cpufreq-set and

cpufreq-info.
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3.3 SCC voltage/frequency alteration overhead

In this Section we present the time overhead of the voltage alteration on the SCC platform.
The SCC platform contains an off-chip Voltage Regulator Controller (VRC) which provides
the capability of changing the voltage on a voltage domain of the platform and the frequency
of each tile individually. There are seven voltage domains and 24 frequency domains on the
platform. Six of the voltage domains comprising four tiles of two cores each in a 2x2 array

as shown in Figure 3.1 [6], while the seventh is the entire set of tiles. Each of the frequency

==

domains matches a single tile.

SCC package

Figure 3.1: SCC Voltage and Frequency domains [6]

In order to change the SCC power we use the RCCE power management call RCCE_iset _power (),
which sets the tile frequency to the reference clock divided by the supplied divider. In our
case the reference clock is 1.6 GHz and the dividers would be either two or three, which
lead to a tile frequency of 800 MHz and 533 MHz, respectively. In the case of 800 MHz tile
frequency, each voltage domain has a voltage value of about 1.1 Volts, while in case of 533

MHz the voltage of each domain is approximately 0.8 Volts.
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To record the measurements that follow we altered the voltage of all domains of the platform
from 1.1 Volts (divider two) to 0.8 Volts (divider three) and vice versa for 300 iterations. In
each iteration, we measured the total time needed for the voltage to be stabilized to every
voltage domain. Also, we recorded the voltage and current of the platform with an interval

of approximately 0.3 seconds. To achieve that, we forked two processes:

e the first uses the RCCE_iset _power () call to alter the voltage and frequency values

and then waits for the voltage to be stabilized to each domain

e the second constantly records the voltage and current of the platform until is termi-

nated by the first.

In Figure 3.2 we present the time overhead of DVF'S to change from voltage divider three to
voltage divider two, while in Figure 3.3 we present the time overhead to change from voltage
divider two to voltage divider three. The y-axis represents the frequency of reporting results
in a histogram bin throughout the iterations. The x-axis is the total time needed for the

voltage to stabilize to the new value.
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The results are fitted with a Gaussian curve. For Figure 3.2 the fitting curve is

F(2) = ay x @B/ g @b/ g o (@ba)/es)?) (3.1)
while Figure 3.3 is fitted with the curve

(@) = ay x @B/ | ) s o(H@b)/e2) | g, 5 o(@bo)/es)?) (3.2)

Both Gaussian curves contain three factors. To evaluate the fit we use two regression models
the R-squared and the Root Mean Square Error (RMSE). R-squared is a figure of merit for
the fitting. It is the square of the correlation between the response values and the pre-
dicted response values. The RMSE is the square root of the variance of the residuals, which
are defined as the difference between the observed value of the dependent variable and the
predicted value. It indicates the absolute fit of the model to the data, which means how
close the observed data points are to the model’s predicted values. Whereas R-squared is a
relative measure of fit, RMSE is an absolute measure of fit. Lower values of RMSE indicate
better fit, while for R-square the closer its value is to one the better the fit is. The values

of both RMSE and R-square are show in Table 3.1.

f(x) | () f(x) | s
a, | 1965 | 39.82 a 40.02 | 2741
by | 15.72 | 15.78 bs 13.97 | 13.91
c1 | 0.1846 | 0.1395 e 0.3896 | 0.4437

ay | 100.8 | 93.3 RMSE 0.9998 | 0.7151
by | 16.28 | 16.03 | R-Squared | 2.003 1
c2 | 0.2535 | 0.3681

Table 3.1: R-squared and RMSE values for voltage alteration overhead curves

As a result, we can see that the curves fit the histogram in a very accurate way explaining
the behavior of voltage alteration overhead.

Comparing the two figures (Figure 3.2 and Figure 3.3) we can note that there is not appre-
ciable difference in the total time needed for voltage alteration between the two dividers.

Changing from divider two to divider three is slightly faster, and that probably is because
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the process that uses the RCCE_iset_power () call to alter the voltage is executed in a fre-
quency of 800MHz, whereas changing from divider three to divider two the same process is
executed in a frequency of 533 MHz. Also reducing the voltage level is a somewhat faster

process than increasing it.

Apart from the time of voltage alteration, we also calculated the energy overhead during
the alteration between the two dividers. In order to calculate the energy consumption we
first determined the power for every 0.3 seconds with the values of voltage and current that
we recorded. Then we use the trapezoidal rule to calculate the integral of power during the
time of the alteration, which is the energy consumption. As a result we get the following
two figures, where y-axis represents the frequency of reporting results in a histogram bin
throughout the iterations and in x-axis is the total energy consumption. In Figure 3.4 we
represent the energy consumption during the alteration from divider three to divider two,
while in Figure 3.5 the energy consumption during the alteration from divider two to divider

three.
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Again the results are fitted with a Gaussian curve. For Figure 3.4 the fitting curve is
h(z) = a; x e(—((@=b1)/e1)?)

and for Figure 3.5 the fitting curve is

t(x) = a; x e(—((z=b1)/e1)?)

The Gaussian functions have one factor. We evaluate the fit using again the R-squared and

RMSE regression models as before and we get the following result as shown in Table 3.2.

f(x) | 8(x) f(x) | 8x
ay | 126 | 7472 RMSE | 0.9132 | 0.8053
b, | 815.6 | 552.8 | R-Squared | 13.13 | 13.37
c1 | 26.54 | 31.42

Table 3.2: R-squared and RMSE values for Energy fluctuation curves

The results indicate that although the relative measure of fit is satisfactory, the absolute fit
is not as good as it was previously. However, the curves are representative of the energy

fluctuation behaviour.

From the two figures (Figure 3.4 and Figure 3.5 ) we can observe that the energy con-
sumption during the alteration from divider three to divider two is greater. This is because
when we want to adjust the voltage level to a higher value on the voltage domains, the
current of the platform is also increased.

In particular, we can see this behavior in the following two figures, where in Figure 3.6 we
represent the current and voltage fluctuation of the whole SCC platform, not a particular
voltage domain, for four random iterations of voltage alteration from divider three to di-
vider two, while in Figure 3.7 we depict the current and voltage fluctuation for four random

iterations of voltage alteration from divider two to divider three.
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Figure 3.6: SCC voltage and current fluctuation for voltage alteration from divider three
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As a result, in both cases the voltage value of the platform is the same and remains stable

throughout the alterations. It is the current that changes its value. In the case of changing
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from divider three to divider two, the current switches from a value of 8.3 Ampere to a
value of 16.3 Ampere. On the other hand, switching from divider two to divider three, the
current value is reduced from 16.3 Ampere to 8.3 Ampere. As a consequence to this behavior
the total energy consumption is greater when we increase the voltage and frequency on the

voltage islands of the platform since the current of the platform is increasing as well.

In addition, we must note that the current of the platform does not change instantaneously
and is resulting to its final value dissimilar in each iteration [31]. This is the reason we must

wait until the values are stable in each voltage island before we launch our application again.

In summary, in order to change the voltage value of the voltage domains of SCC adds
a time overhead that should also be taken into account during the time reclaiming of our
application. Also, we must indicate that executing our application in a higher frequency is
a time saving, but energy consuming process, so we must reduce the frequency as soon as

the overhead of the restart procedure is reclaimed.

3.4 Voltage/Frequency alteration and overhead for x86

architecture

In this Section we present how we can perform the DVFS operation in a machine with x86
architecture. First we will present the available scaling policies of a machine introducing
the CPUfreq governors, then we will discuss about the available scaling options when we

use the userspace governor and finally the cpufrequtils linux package will be analyzed.

3.4.1 CPUfreq governors

On a given platform, a variety of frequency scaling technologies can be supported and a

proper driver must be present to efficiently perform the frequency alterations. The cpufreq
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infrastructure allows the user to use one CPU-specific driver per platform, plus a number of
frequency-changing policies, known as governors [32, 33].

The CPUfreq subsystem has, generally, five available in-kernel governors ,which can change
the frequency depending on certain criteria such as CPU usage, energy consumption or user

input as presented in [33, 32, 34].

e The first governor is the performance governor. This governor statically sets the pro-
cessor to the highest frequency available. Of course the highest available frequency can
be determined by the user by changing the appropriate system file as will be presented
later. The goal of this governor is to achieve the maximum system performance by

setting the processor clock speed to the maximum value.

e The second governor is the powersave governor. In contrast to the previous governor
this one sets the cpu frequency to the lowest available value specified by the user.
The goal of this governor is to save power by operating at the lowest processor clock
speed. However, this governor often does not save any power since the greatest power
savings usually come from the savings at idle state. Powersave governor prolongs the

execution of a process and the system takes longer to enter an idle state [34].

e The third governor is the ondemand governor. This governor sets the cpu-frequency
depending on the current usage of the CPU. If the utilization of the CPU exceeds a
certain threshold the frequency is set to the highest available. If the utilization is less
than the threshold, then the frequency is reduced to the next available, until it reaches
the lowest frequency bound. The CPU utilization sampling rate, the threshold and

the available frequency borders can be set by the user.

e The fourth governor is the conservative governor. This governor operates such as the
ondemand governor, with the difference that it gracefully increases and decreases the
CPU speed rather than setting the frequency to the maximum level when the CPU

utilization exceeds a certain threshold.

e The fifth governor is the wuserspace governor. This governor allows the user or any

userspace program to adjust the frequency of the CPU. This is the governor that we
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will use for the purposes of this thesis, as it gives as the authorization to perform our

own frequency adjustments within the available frequency borders.

As mentioned in related work [33, 35] ,voltage scaling is achieved using voltage layer and
regulator driver. Every time the CPUfreq driver makes an alteration on the cpu-frequency,
the voltage corresponding to this frequency should be selected. This is achieved by iterat-
ing the OPP List (Operating Performance Point), which is a list of tuples consisting of a
frequency value and the voltage required to run at that frequency. Then the device scale

function requests the voltage layer to scale the device voltage to the target voltage.

The voltage layer consists of the information of all voltage domains in the system and
configures all voltages during voltage layer initialization. Thus, when a voltage change is
requested, the voltage layer requests the regulator framework to change the device voltage
to the target voltage. Then the regulator driver verifies if the target voltage is within the

limits of the voltage domain and regulator supply constraints and performs the alteration.

3.4.2 DVFS options and alteration

The /sys filesystem of the linux kernel provides the interface for the CPUfreq changes.
Specifically, in the /sys/devices/system/cpu/cpu*/cpufreq folder are all the files that
contain the available frequency information. When we use the userspace governor the folder

contains the following files, that are crucial for our implementation.

e First is the scaling driver file which indicates the name of the low-level CPU-specific

driver that is being used on this system.

e Next, are the scaling cur/max/min freq files which contain information about the
current, the maximum and the minimum frequency that we use or we can use, respec-
tively. We can change the maximum and minimum frequency limits from these files,
but the values should always be within the range indicating by the cpuinfo_max/min_freq

files.
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e Another file that will concern us about the frequency alteration is the scaling_setspeed
which is a read-write file. When we read this file, it denotes the current CPU frequency.
However, the user can write a value to this file and the CPU will change the frequency

to the one specified by the user.

e Finally is the cpuinfo_transition latency file which contains the latency value of

a frequency alteration.

What we should note here is the great difference between the time overhead caused from the
voltage alteration between the SCC platform and an x86 architecture commercial platform.
As shown in Figures 3.2 and 3.3 the alteration of voltage and frequency needs about 16
seconds. On the other hand, an x86 machine only needs some pseconds to perform the al-
teration. For instance, the platform that we will test our application and benchmarks needs
10 pseconds to perform a frequency and voltage change. That means that the cycle noise
introduced while performing the DVF'S operation is widely reduced and the slack reclaiming

is expected to be more accurate.

In order to perform our alterations we use a tool called cpufreq-set which is included
in the cpufrequtils package. This executable allows us to change the CPUfreq gover-
nor to userspace for each CPU of our machine and also gives us the capability to set the
frequency at a current value without having to alterate the value of /sys/devices/sys-
tem/cpu/cpu*/cpufreq/scaling setspeed all the time. So we can define the frequency
value that we want for a certain CPU, or even for all CPUs, and the cpufreq-set will
set the value to the scaling setspeed file. In this way if we want to perform DVFS to
all CPUs we shall not change each file entry one by one, but we invoke the cpufreq-set
command with the CPUs that we want to alter the frequency of.

What is more, cpufrequtils contains a tool called cpufreq-info which gives us the utility
to retrieve cpufreq kernel information at any time and also providing statistics about the

cpu-frequencies utilization.
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CHAPTER 4

Depman tool and timing noise
quantification

4.1 Introduction

Fault tolerance mechanisms both on Hardware and Software introduce a performance degra-
dation known as Performance Vulnerability Factor (PVF), which is the additional execution
time of an application because of the invocation of RAS mechanisms.

In this chapter, we first present the target application we use to test our implemention
scheme. Then we examine the operation of Depman tool as far as the Checkpoint-Restart
procedure is concerned. Also we present the scheme of the DVFES module we use to reclaim
the time overheads produced by the C/R operation. Additionally we analyze the way in
which we inject errors during the application’s execution in order to examine the perfor-
mance of our tool.

Finally, we quantify the timing noise introduced by the Checkpoint-Restart procedure and
we explain the ways in which we measure the total execution time overheads, in order to

reclaim them on the fly.

4.2 Target Application

The target application that has been used for the purposes of this thesis is a simulator of a
crucial set of brain cells, called inferior olive (IO) cells, based on the Hodgkin-Huxley model

[11, 7, 36, 37, 38]. Each cell comprises of three individual compartments:

e the dentrite compartment, which is responsible for communicating with the rest cells
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of the grid for receiving input voltages

e the soma compartment which is the computational center of the cell, performing all

time consuming calculations

e the axon compartment which serves as the output for the neuron.

The simulator receives as input the grid size, a connectivity file which declares the static
connections between the neuron cells and,optionally, a file of external input currents for each
cell. If the last file is not provided as input to the simulator, pseudo-random input currents
are generated for each cell.

The Infoli simulation data flow is briefly explained in Figure 4.1 for each simulation step

to, tl, tz,

Figure 4.1: Dataflow for the Infoli simulator [7]

First, the dedrite compartment is fed input current as defined by the input file for external
current inputs or the generated currents. Then the dendrite compartment records the den-
tritic voltage levels of its communicating cells, as described by the connectivity file. After the
communication is done, each compartment performs its computations to recalculate their
biological parameters [7]. For every axonal compartment the new voltage values are recorded
to the application output files. The simulation’s output is a number of files containing each
cell’s axon voltages for every simulation step. For the development of our scheme, a porting
option utilizing data level parallelism of the Infoli simulator is used. Each core is assigned

with entire cells, executing all compartments.
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4.3 Depman Tool

4.3.1 Depman Operation

Depman is a runtime manager that controls the operation of a checkpointed application
[10], in our case the Infoli simulator, by both handling DUE errors that would cause the
application to suspend its execution and by reclaiming the wasted time due to the checkpoint
procedure.

Depman was implemented in Python2.7 [39] and has minimum platform and application
dependencies, so it is portable to any other platform and application.

The functionality of Depman tool is briefly explained in Figure 4.2.

DepmanT@od

' Store Ckpt
/%tart the appliualion/ ______ AT I
' ; No
Jv ——»Application Execution _,. Terminate
i [y
DUE Monitor i
cees ik, ; Yes
Inject Error Folback
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v

Periorm DVFS

¥

Restart the
application

Figure 4.2: Depman tool operation diagram

First, Depman provides the appropriate input to the application and starts its execution.
Also, it starts a thread that constantly monitors the application’s output for errors. Then
it waits until the execution of the application is stopped and checks if the application has
ended normally or the DUE monitor has detected an error. For our scheme we self inject the
application, but Depman is also operational with real time DUE errors. If an error has been
detected Depman checks whether a valid checkpoint for the application has been stored and

if it is we perform the DVFS module and then restart the application. The application itself
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stores its state to checkpoint files and is capable to restart from a valid checkpoint during

the restart procedure.

4.3.2 The Checkpoint Restart procedure

In order to enable fault tolerance, the Infoli simulator uses an application-level C/R method.
Therefore, the vital points of the application state should be stored periodically, keeping
in mind that the checkpoint files should keep storage requirements to a minimum. The
stored points of the Infoli simulator consist of the data structures representing the state of
each simulated neuron cell, such as dendrite and soma compartments of the cell and voltage
or potassium levels for the axon. Also the simulation step, the number of cores and the
number of cells are stored to the checkpoint files. That means the size of the checkpoint file
is related with the number of cells of each core. The more cells manipulated by a core, the
bulker the checkpoint file will be. The Infoli simulator operates in a number of simulation
steps, allowing to select a Checkpoint Interval in simulation steps rather than time. Hence
a checkpoint is taken at the beginning of a simulation step that divides the Checkpoint

Interval with no remainder [10].

The Checkpointing of all cores is done simultaneously by calling a barrier function when a
checkpoint needs to be taken. Furthermore each checkpoint is stored in double-buffered files
that contain two sequential checkpoints at any time, so that a valid checkpoint exists even

if an error occurs during the checkpoint procedure.

The Restart procedure regards the extraction of the neuron cells from the checkpoint files,
the appropriate variables initialization and the continuance of the application from the
correct simulation step. Since the checkpoint files are double buffered, cores should perform
a communication scheme in order to determine the maximum recoverable simulation step
that they can restart from. Each core broadcasts the maximum simulation step that it
can restart from and then all cores restart from the minimum simulation step that was
broadcasted. Additionally, the simulation could restart with a different number of cores. It

can be restarted with less cores, because a number of cores is not responding or we want to
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restrict the cores utilization by the application. Also it can be restarted with more cores,
because we desire more parallelism for our application in order to achieve computational
sprinting. This means that during the Restart procedure each core should identify the
appropriate checkpoint files that should recover the neuron cell state from, depending on
the number of cells and cores. In both cases the output files should be reconstructed for

each core in order to be consistent.

4.3.3 Diagnostics and Self Injection module

The Depman tool is capable of detecting DUE errors that cause the application to stop
and perform the appropriate countermeasures to restart the application from the appropri-
ate simulation step. In our implementation scheme, we utilize the ProcessExit diagnostic,
which monitors the stdout of the running process for failure messages indicating a Detected
Unrecoverable Error (DUE) error [2]. In order to examine the performance of our exper-
imental setup, errors during the runtime of the application are required. That is why a
self injection module is used, periodically injecting the application with DUE errors. When
a DUE error is injected the injection module calls the process_line function of the Pro-
cessExit class containing a key word indicating program failure, the key word is relevant
to the target platform. The process_line function detects the key word and stops the
simulation by running a script to detect and kill the application. The time between errors
for the injection module is user defined. In our setup we use both a steady TTF value and
a Weibull distributed TTF to test our implementation. When we inject errors using the
Weibull distribution the probability of error occurence is given by Equation 4.1, where At

is the time interval between failures and MTTF's is the user-specified MTTF' intervals.

P, = 1 — ¢~ At/MTTFs (4.1)
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4.3.4 DVFS module

To enable observability and controllability of our application’s performance we use the DVF'S
module before we restart our application after each DUE error. Our goal is to mitigate the
performance variability, caused by DUE errors and the C/R procedure. So we calculate on
the fly the timing noise of the application and adjust the voltage and frequency to a new
level in order to reclaim the time overheads. This Section will present the main features
of the DVFS module, as we use it for the SCC and the x86 platform. A more detailed
explanation of the DVFS process will be displayed later in the respective Sections which

exhibit the DVFS results for each individual implementation.

The control loop of the DVF'S is presented in Figure 4.3

s
_— En Controller J— DVFS Processor n

2 m Knab Myeal

Y

Monitar +

Figure 4.3: Block diagram for the DVFS closed loop implementation

As slack (s) we define the time that the application has fallen back due to the invocation
of RAS mechanisms, the C/R procedure, and the restart process that was the result of a
DUE error. We want to succeed the slack convergence to s,.r, which in our case is zero and
indicates the target slack we want to achieve when the application is terminated succesfully.
The Monitor measures and updates the slack after each DUE error. The parameter n in-
dicates the number of the restart operations that have occured throughout the execution of
the application. Then the Controller reacts to the value of e, = s,.f — s,_1 and proposes
a frequency multiplier in order to reclaim the generated slack. Frequency multipliers(m)
reflect the DVFS configurations of the processor. So after the Controller proposes a fre-
quency multiplier, the DVFS Knob chooses the nearest available frequency multiplier for

the processor and applies the DVFS alteration.
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Afterwards the execution of the Processor is continued to the new frequency/voltage con-
figuration.

The timing noise indicated by z, is the total time the application is delayed because of
the checkpoint restart procedure and contains the checkpointing time and the time for the
application to recover from a previous simulation step during the restart procedure. The
processor’s slack is given as input to the Monitor before it updates the slack containing all
timing noise overheads as will be discussed in Section 4.4. Finally, the r parameter is used
to tune how often the DVFS Knob performs a voltage/frequency alteration, in a number
of detected errors. That means a value of r=1 will perform DVFS changes for every DUE

error, while a value of r=2 will perform DVFS changes every two errors and so on.

4.4 Timing Noise Overheads

The timing noise imported to the execution of the application due to C/R comes as a

consequence to the following factors.

e First of all, the Rollback Time (T,.), which represents the lost computation time that
needs to be performed again when the application restarts from a previous simulation
step because of a detected error.

In order to recognize the timing noise of the application rollback we need to recognize
the exact computation waste time. To achieve that we need to calculate the time
difference between the creation of the restarting checkpoint file and the time that the
execution of the application was suspended. The checkpoints are stored in double
buffered files that contain two sequential checkpoints at any time, so that there is a
valid checkpoint for all nodes even if an error occurs while the checkpoint process was
ongoing. As a result to this technique we cannot use the checkpoint file itself to mea-
sure the time difference between the checkpoint and the error that caused the process
to terminate. We need to know the exact time that each checkpoint was stored. That
is why when a checkpoint is stored, we also create a file named after the simulation

step of the current checkpoint taken so that we can use this file to calculate the T,

31



L OANWHAOON®

4O =SNWHNON®

overhead.

The values of T, vary in relation to Checkpoint Interval. As Checkpoint Interval is
increasing, 7T, is increasing too. In our scheme, using self injection to test and bench-
mark our application setup, we observe the results as illustrated in Figure 4.4 for four
different grid sizes, executing in a number of cores indicated by the second grid size

factor. These results concern the SCC platform.
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Figure 4.4: Rollback Time characterization for the SCC

As a result we notice that increasing the Checkpoint Interval leads to greater T, values.
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Also, in Figure 4.4 the number of positive and negative T, is displayed. The reason

that we notice negative T, values is because of the self injection module that we use.

— First, by the time we inject an error to the application scc diagnostics notice the
injected error and need to terminate the process. We take a timestamp of the
process termination at that time, but actually there is some more time needed
for us to manually kill the process with a termination script.

During this time, maybe a new checkpoint is stored and that results to a negative

T, value.

— Another reason that we may observe a negative 7T, value is the I/O delays of the
SCC platform [31]. So even if the checkpoint was stored before an error occurred,

the time to sync the file to our /shared folder may result to a negative T,.

However, if a negative T, value occurs it is minimal compared to the overall slack of
the application restart process and we ignore it without any performance loss for our
scheme.

As we can also observe from Figure 4.4, when the Checkpoint Interval increases the
possibility for a negative T} reduces. In our measurements we used Checkpoint Interval
values of 103 Simulation Steps or more so that we eliminate as far as possible such

phenomena.

Next, the Time to Restart (I'T R) which is the time to perform the available counter-
measures after the simulation stopped its execution, and restart the application. In
our experimental setup, after the execution is terminated because of an error we check
whether there is a valid checkpoint that the simulation could restart from. Then, if
it is, we call our DVFS module to update the slack of our application and change
the Voltage/Frequency values, if needed, to reclaim the waste time due to the restart
procedure. That means that TT R includes both the time overhead for the DVFS as
was presented in Chapter 3 and the time to test if the application has a previous valid
state that could restart from and restart the application.

In order to calculate the timing noise of TT'R we measure the time difference from
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the time that scc diagnostics notice the error, since the time that the application was
successfully restarted.
For the SCC platform TT'R overhead is remarkable compared to an x86 commercial

platform because of the great DVFS overhead when a voltage alteration is performed.

In addition, the Repair Time (T, epair) overhead, which is the actual time for our ap-
plication to restore its state from the checkpoint files and continue the execution from
the appropriate simulation step. This time overhead is not considered crucial for our
application if the number of active cores is the same before and after the restart pro-
cedure, since the time to extract the neuron state data structures from the checkpoint
files and restart from the correct simulation step is little. However, if the application
restarts with a different number of cores the output files of the Infoli simulator should
be reconstructed to provide a consistent output and T,.¢peir becomes significant.

The simulation continues after all nodes have restored their state from the checkpoint
files. That means that the T}y, is the same for all nodes. After the state restora-
tion,only the node with core;; == 0 publishes a file in the /shared folder, for the SCC
, or the designated folder, for the x86 platform, that reports the T,epqir time of the
application, to reduce the I/O traffic. The DVFS module can then retrieve the T} epqir
of the application when is called and update the slack of the application including that

value.

Finally, the time overhead introduced because of the checkpoint procedure 7¢heckpointing -
Inevitably, the application needs to store its state to a checkpoint file periodically, as
it is defined by the Checkpoint Interval. This procedure causes extra overhead to the
execution. In our simulation T peckpointing 15 Of the order of miliseconds because the
neuron state data structures stored do not occupy a great amount of memory. Still
checkpointing may cause a scalability and performance barrier in high performance
computer systems as noted in [23].

The checkpointing of all nodes is done synchronously by setting a barrier before and
after the checkpoint is taken. Even though blocking communication and barriers intro-

duce more overhead than non-blocking, the Infoli simulator already utilized blocking
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techniques so there is no extra overhead. This means that although we synchronize
the checkpointing procedure for all cores both before and after a checkpoint is taken,
we see no performance degradation, because the Infoli simulator already uses blocking
communication schemes to exchange information between the cells of each core. Since
the checkpoint procedure is done at the same time for all nodes, same as before the
node with core;; == 0 publishes a file in the /shared folder, for the SCC, or the desig-
nated folder, for the x86 platform, that indicates Ttheckpointing: S0 When a fault happens
and DVFS module is called Tiheckpointing 1S Tetrieved from the file and is multiplied by
the number of checkpoints that took place between the restarting simulation step and

the previously restarted simulation step (which maybe zero for the first fault).
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CHAPTER 5

Reclaiming Timing Noise

5.1 Introduction

This chapter will present the performance of the depman tool and especially the DVFS
module, for both the SCC and the x86 platform. For each individual implementation the
DVEFS procedure will be analyzed, and the mitigation of the performance variability will
be presented and discussed. First, the SCC impementation will be presented and then
two similar implementations for the x86 will be introduced. One operating as the SCC
implemention, but with more frequency configurations so that we can reduce or increase
the frequency levels more frequently, and the other operates in higher frequency levels only
for as much time needed to reclaim the slack and then resets frequency to its default value,

whether a fault has been detected or not.

5.2 SCC Results

As mentioned before (Section 3.3), a voltage and frequency alteration for the SCC platform
is a time consuming procedure, that adds additional time overhead to the execution of our
application. That is why we focus on two different DVFS configurations and switch between
them depending on whether we have a positive or a negative slack, so that we make a
frequency /voltage change as rarely as possible. In the first configuration the SCC operates
at a frequency of 533M Hz and 0.8V olts while in the second one the frequency is equal to
800M H z and the voltage is 1.1V olts. Also we perform no DVFS change during the first
failure where we only have the T, and Tipeckpointing, in order to make less alterations.

When we start the execution of the Infoli simulator the SCC is configured at 533M H z and
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0.8V olts, which is the default mode for our case, and the DVFS module operates as shown

in Figure 5.1.

slack <0
slack <0
efauh Mode Burst Mode
slack>=0

slack>=0

Figure 5.1: State diagram for the SCC DVFS module for slack reclaiming

The application starts its execution at the Default Mode. When a DUE error is detected and
the application stops then the DVFS module is called and the total slack of the application
is calculated as :

Snew = Sprevious — timeQOuverheads+
(5.1)

+ (lastTTF x curFreq — lastTTF x defFreq)

The time overheads are calculated as mentioned in Section 4.4 and refer to T,., TT R, T cpair
and Tipeckpointing,; While the last factor of the equation depicts the time difference for the
execution of our application in case we are running with a different frequency multiplier
than the default one. That means we can calculate the time that we have reclaimed from
the last failure till the current one. On the SCC platform we only have two execution modes,
the default and the burst mode. That means the last factor of Equation 5.1 only shows the
reclaimed time during the last TTF. However, as we will see later for the x86 platform,
where we have lower frequency configurations than the default one, it can also show the fall

back of our execution.

So if the slack is negative that means the application’s execution time has fallen back and
we need to speedup by operating at Burst Mode until the slack is reclaimed. Of course,
before we make an alteration the parameter r should be taken into account to see if we
must do a frequency change at that time before the application is restarted. We must
note here that if the application is executed without any faults at all, then the overhead

produced by the checkpointing procedure, Tneckpointing, Will not be reclaimed, since the DVFS
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module will never be called, but this overhead is minimal for the currently inspected case
study. Nevertheless, we can modify the DVFS module so that it is triggered every time a

checkpoint storage action is taking place, in order to avoid such conditions if needed.

First we test our setup on multiple grid sizes and numbers of cores, for a Checkpoint Interval
of 2000 and 4000 and stable TTF values of 120 and 180 seconds. The number of active cores
is indicated by the second factor of the grid size.

In Figure 5.2 we illustrate our results. For each grid size we depict the execution time if the
application was running without any faults and checkpointing, the total time when we have
faults and we apply DVFS changes and the time that would be needed if we had faults but
the DVFS module was inactive.

As we can see from our results the DVFS implementation outperforms the execution with
faults and no DVFS. That means that the cycle overhead introduced to our application is
reclaimed. The only case that we see the DVFS implementation to draw back is for grid size
12x12, TTF 180 seconds and Checkpoint Interval of 4000 simulation steps. The reason is
that,in this case, there is not enough time to reclaim the cycle noise. The first DVFS change
occurs after the second detected failure which happens near the application termination. So
adding the time overhead produced by the voltage alteration we reduce even more the per-
formance of our execution. However, for all the other cases the results are satisfactory and
there are cases that we achieve the convergence of our execution time to the time without
faults, even though we alter between only two frequency configurations. Also there are cases
that DVFS is even better from the default execution. That is because the DVFS module
is called after a DUE error and makes a decision about the frequency configuration taking
into account the value of the slack. The slack however may have a negative value near to
zero. The DVFS module recognizes that the application needs to perform faster so it keeps
running on Burst Mode reclaiming the total slack and performing even faster than we would
expected. Such cases, of largely positive slack effectively correspond to energy loss and must
be avoided when possible. We will introduce an implementation for the x86 architecture

that avoids a positive overall slack at all times later.
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DVFS Results for ckptinterval 2000 and TTF 120
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Figure 5.2: DVFS results for multiple grid sizes and active cores, Checkpoint Interval of
2000 and 4000 simulation steps and Time to Failure 120 and 180 seconds

In order to test the DVFS performance even further, we select a grid size of 16x96 which

executes for a long period of time, so it is ideal for our experiments, and we select to run

with 24 active cores. Our goal now is not only to evaluate the time performance of our

scheme but also the energy consumption for different values of the r parameter for stable

and Weibull distributed TTF values. For our energy measurements we use the same tactic

as in Section 3.3. We forked a process that constantly records the current and voltage of

the SCC platform every 0.3 seconds throughout the execution of the application and then

we used the trapezoidal integration to calculate the energy consumption.

First the results concerning stable TTF of 122 seconds will be presented for three different
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Checkpoint Intervals of 1000,2000 and 4000 and for multiple r values ranging from one to
six. As a reference value for our graphs we select the execution time without any faults and
the checkpoint procedure, which is 823 seconds of execution time, with energy consumption
of 29210 Joules. The y-axis represents the Normalized Time/Energy Overhead, which means
that a value of 1.1 for the execution time refers to a value 1.1 x 823 seconds, and the same

with energy but multiplying with the energy reference value.

From Figure 5.3 it is clear that the DVFS module efficiently reclaims the time overheads
of the Checkpoint Restart procedure. However, this comes with the cost of more energy
consumption. For an application like the one tested that runs for a long period of time the
DVF'S module is capable of absorbing the cycle noise and converging to the reference value,
especially when r=1 the DVFS alteration is performed every time that is needed. On the
other hand, by inreasing the value of r seems to generally result in less energy waste with
a little or no performance loss. We can not keep increasing r though, because then the
slack becomes so massive that there is not enough time to be reclaimed. In our scheme, if r
exceeds the value of six the performance of the DVFS is reducing. Furthermore, when the
DUE errors are randomly injected there is no guarantee that a great r value will manage to
perform satisfactory.

That is why we also test our setup for Weibull distributed TTF values for r=1,2,3 and

MTTFs 120 seconds .
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Figure 5.3: Time and Energy results for the SCC platform, for TTF 122 seconds
Time Reference: 823 seconds and Energy Reference: 29210 Joules
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Figure 5.4: Time and Energy results for the SCC platform, Weibull distributed TTF values
Time Reference: 823 seconds and Energy Reference: 29210 Joules
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The first two columns of each bin of Figure 5.4 represent the execution time and the energy
consumption of the application, when the DVFS module is activated, respectively, while the
next two represent the time and energy if we run the application with a TTF value of the
MTTF we calculated during the previous execution so we can compare our results. Our
reference value is the no-fault and no-checkpointing execution of the Infoli simulator for a
grid size 16x96 and 24 active cores, which are 823 seconds and 29210 Joules.

Again the results indicate that the DVFS modules can adjust to random T'TF with minimum
performance cost as far as execution time is concerned. On the other side it seems that the
energy consumption can be greater when faults appear randomly, but that largely depends

on the failure rate.

5.3 x86 Results

Before we present the results for the x86 implementations we must note the way that Energy
was calculated. From the Intel’s 2nd Generation Datasheet [40] we can see the maximum
and minimum voltage values of our processor. Assuming a linear relationship between the
Voltage and the CPU frequency we determined that Voltage and frequency are related with

the following equation:

V(f) =583 x 107" x f+0.184, fin KHz (5:2)

As a result, we can use Equation 5.2 to calculate the Voltage values for each frequency
configuration. During the execution of our application we keep track of the time that each
frequency configuration was used so that we can measure the Energy Consumption using
Equation 5.3.

E=cx fxV2x Dt (5.3)

Of course we do not know the value of constant ¢ but that is no boundary for us to calculate
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the Normalized Energy consumption.

5.3.1 First implementation

The x86 platform, in contrast with SCC, has the advantage that frequency alterations are
performed rapidly. So we can perform alterations more frequently without any appreciably
time overhead and between more frequency configurations. The state diagram describing

the function of our first implementation for the DVFS module is given in Figure 5.5.

slack=0
slacks0 slack<0

slack=0

Figure 5.5: State diagram for the first implementation of the x86 DVFS module for slack
reclaiming

As we can see from the state diagram in this case we have Delay, Default and Burst Mode.
That means we have frequency configurations varying from lower to greater values than the
default one. Precisely, we have the following frequency configurations: 800MHz, 1000MHZ,
1.2GHz, 1.4GHz, 1.6GHz, 1.8GHz and 2.0GHz, where 1.2GHz is defined as the default
frequency level. So we have four Burst Mode configurations defined by the frequency levels
above the default one and two Delay Mode configurations defined by the frequency levels
lower to the default one. When the value of slack is negative, meaning that the execution
of the application is delayed due to timing noise, then we can switch to the appropriate
Burst Mode configuration. On the other hand, when we have a positive slack, meaning
that the application has overtaken the time overheads and is executing even faster than it
is needed we can switch to the appropriate Delay Mode. We switch to Default Mode when
the value of slack is zero. In order to update the value of slack we use the Equation 5.1
as described in the previous Section. Having calculated the slack value, we can determine

the appropiate Mode in which we should continue the execution of the application with the
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following equation

—s+defFreq x MTTF
MTTF

newFreq = (5.4)

With Equation 5.4 we can determine the frequency value that we should continue the exe-
cution of our simulation, in order to reclaim the application fall back time before the next
expected DUE error, that will cause the application to stop. That means we should calcu-
late the Mean Time to Failure (MTTF) before each restart procedure, so that our DVFS
module is adaptive to errors.

After the newFreq value is calculated we decide the actual frequency level that we must
switch to, by finding the closest frequency available that is equal or lower to newFreq, and
then we make the alteration and then restart the application.

In order to test our scheme we executed the Infoli simulator for three different Checkpoint In-
tervals (1000,1500,2000), grid size 12 x 16, Weibull distributed Time to Failure with MTTF's
value of 20 seconds. Also, for the same Checkpoint Intervals we executed the Infoli Sim-
ulator for TTF of 20 seconds with the DVFS module deactivated so that we can compare
the time and energy values. Furthermore, since the frequency and voltage alterations for
the x86 platform consumes minimal time we only tested our implementation for » = 1. The

results are as presented in Figure 5.6.

As we can see from the Figure, the DVFS execution outperforms the execution without
the DVFS module, in cost of energy. In comparison with the SCC implementation we can
observe that our results converge more accurate to the reference value than it happened
before. The main reason for this precision is the less time overhead introduced by the
voltage alteration. Also we must note that the error values are less here than there were for

the SCC implementation, which means there is less variability to our measurements.
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Figure 5.6: Implementation 1: Time and Energy results for the x86 platform, Weibull
distributed TTF values
Time Reference: 578 seconds and Energy normalized, based on P o< f x V2

5.3.2 Second Implementation

We already stated that frequency/voltage alterations on an x86 platform are performed,
almost, instantly providing us the capability to perform frequency changes more frequently
and between more frequency levels. Another advantage of the x86 platform is that we can
implement a frequency change even while the simulation is ongoing.

So far, the implementations we presented have the disadvantage that after an error is de-
tected and the frequency level is set to a new value then the application is executed on
the new frequency until a new error, that will cause the DVFS module to reconsider the
frequency and make an alteration if needed, is detected. Hence, the execution of the ap-
plication could be even faster in comparison with the reference case, that is if no error was
detected, because it executed on higher frequency levels for more time than it was needed.
As was presented by the previous results, we can see that such phenomena are rare when
faults follow a statistical distribution. However, it is likely that only one fault is detected

during the execution and the execution time would not be able to converge to the reference
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value.
As a consequence, we implemented a DVFEFS module that overtakes such incidents. It’s func-

tion is described in the following state diagram of Figure 5.7.

slack=0

slack<0

slack<=0

slack=0

Figure 5.7: State diagram for the second implementation of the x86 DVFS module for
slack reclaiming

Here we only have two different opperating Modes. There is no need for Delay Mode, since
we never have positive slack in this case. As a result, we define 800MHz as the default
operation value and all other frequency configurations represent the different Burst Mode
configurations. The value of slack is updated with Equation 5.1 and the frequency level is
determined as in the first implementation, using Equation 5.4.

The difference is when a frequency alteration is performed, we also fork a process which
takes as a parameter the total time that the application should execute in Burst Mode so
that the slack is reclaimed, and after that time has passed it restores frequency to its default

value (Default Mode). This time is calculated as :

—S

(5.5)

reclaimingTime =
I determinedFreq — def Freq

So after we determine the theoritical expedient frequency level that we must continue our
execution, we determine the actual frequency value that is available for us and then calculate
the time that the application needs to run on this frequency, in order to reclaim the time
overheads. Therefore, every time the DVFS module is called we should certify whether or
not the forked process has restored the frequency value to default. We can not compare

the TTF value with the reclaimingTime value because race conditions can occur this way,
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if for instance TTF is equal to reclaimingTime it is not certain that the frequency alter-
ation has already occured or not. Thus, we use the poll method contained in the Python’s
subprocess module [39]. This method returns None if the process has not terminated yet,
or the termination code otherwise. So we poll the forked process and in case None is returned
we kill the process and calculate the remaining slack using the Equation 5.1. Whereas if
the process has terminated normally we reset the slack to zero value and calculate the new
slack using Equation 5.1. Consequently, this implementation never leads to positive slack
values and only boosts the execution for as much time as needed to reclaim the slack. In
order to evaluate the implemented scheme we executed the Infoli simulator with grid size
10 x 14 and all the other configurations remain the same as the previous implementation.

The results are as depicted in Figure 5.8.

reference value

I Normalized Time w/ DVFS
I Normalized Energy w/ DVFS
I Normalized Time w/o DVFS
I Normalized Energy w/o DVFS

1000 1500 2000
Checkpoint Interval(simSteps)

Figure 5.8: Implementation 2: Time and Energy results for the x86 platform, Weibull
distributed TTF values
Time Reference: 494 seconds and Energy normalized, based on P o< f XV

The results indicate a precise convergence to the reference value as far time is concerned.
Again we can observe that slack reclaiming leads to greater power consumption. However,

this implementation massively reduces the wasted power due to execution sprinting, since it
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sprints the execution for as much time as needed and then restores frequency to its default

value.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This work introduced an approach to enable fault-tolerance to an application without violat-
ing any time constraints. For the purposes of this development the Infoli simulator has been
employed as the target application, upon which a periodic application level C/R scheme
has been adopted. Our scheme was tested and evaluated both on the Single-Chip Cloud

Computer and on an x86 commercial platform, to highlight the portability of our work.

The implementation is controlled by the Depman tool which monitors the execution of the
application by parsing the system’s output for DUE errors. Depman needs to restart the
application, until it is terminated normally, when an error occurs by checking whether or
not there is a valid checkpoint for the application to restart from. It also sets the voltage
and frequency to the appropriate level so that the time overheads introduced by the C/R
procedure are reclaimed. In this concept we quantified the total time overhead, that is
induced, and controlled it with the DVFS module in a closed-loop. We made three different
versions of the DVFS module. One concerning the SCC platform and has the ability to
change between Default and Burst Mode depending on the value of slack. The other two
concern the x86 platform. The first of them has three different execution Modes, Default,
Delay and Burst Mode, and has the ability to change between each one of them depending
on the value of slack. The second has two Modes, Default and Burst, but the frequency
alteration is performed only for the time needed so that the total slack is reclaimed and

then the frequency is set back to default resulting less energy overhead.

In order to test our scheme the error injection module was utilized. That way we injected

errors to the execution of our application using static or Weibul-destributed injection scenar-
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ios. For the evaluation of this work we measured the execution time and energy consumption

throughout various experiments and conclude that the time overheads are greatly reclaimed,

and in case of x86 almost converge to the reference values, in cost of more energy consump-

tion.

6.2

Future Work

Copious modifications can be made to both Depman and the DVFS module itself in order

to achieve better efficiency or even use it for a different purpose. In this thesis, the burden

of our views was about the wasted time restoration caused by the C/R procedure. However,

the created scheme can be used vasriously. These potential future work is presented in this

section.

First of all, Depman can be used as the main component to utilize C/R techniques
to multiple machines comprising a distributed system. This extension demands the
consistency of data between all machines and the sunchronization of checkpoints. So
Depman can be used to each of the many-core nodes of the system to provide fault-
tolerance and network techniques should be employed to achieve the communication

of the nodes.

Secondly, Depman can be modified not only to work on a closed-loop, but during the
execution of the application reacting to numerous events. That way many modules,
such as the DVFS module presented here, can be incorporated to Depman and used
by the programmers. For example the DVFS module may be called every time a

checkpoint is taken or a module that applies checkpoint merging is called.

Moreover, besides the DVFS technique parallel sprinting may also be applied. Both
Depman and Infoli simulator are build in a way that can exploit the use of computa-

tional sprinting as another way of slack reclaiming.

The DVFS module itself can be used independently not only for the slack reclaiming

of C/R, but for other fault-tolerance schemes. Also it can be used by the developers in
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order to accelerate the execution of their process or even slow it down if energy saving
is a major concern. In this direction the DVFS and a module performing parallel
sprinting can be implemented as a library, which the programmer may use to adjust
the execution speed of his process taking into account the thermal capacitance of the

platform.

What is more the DVFS module can be exploited by web servers, in a way that the
performance is boosted during rush hours when the traffic is high so that customers
observe less time delay in their services and then performance is degraded when traffic

is low so that energy is saved.

52



References

1]

R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,”

Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 305-316, Sept 2005.

Y. Cao, J. Velamala, K. Sutaria, M.-W. Chen, J. Ahlbin, I. Sanchez Esqueda, M. Ba-
jura, and M. Fritze, “Cross-layer modeling and simulation of circuit reliability,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch, and
M. M. K. Martin, “Computational sprinting on a hardware/software testbed.” xix, 4,

8,9

D. Rodopoulos, F. Catthoor, and D. Soudris, “Tackling performance variability due
to ras mechanisms with pid-controlled dvfs,” Computer Architecture Letters, vol. PP,

no. 99, pp. 1-1, 2014. xix, 1, 4, 9, 10

The SCC Programmer’s Guide-Revision 0.75. Boston,MA USA: Intel Corporation,
2010. xix, 13, 15

G. Chatzikonstantis, “Energy aware mapping of a biologically accurate inferior olive
cell model on the single-chip cloud computer,” bachelor thesis, National Technical Uni-

versity of Athens, September 2013. xix, 25, 26

A. Dixit, R. Heald, and A. Wood, “Trends from ten years of soft error experimentation,”

System Effects of Logic Soft Errors (SELSE), 2009. 1

23



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Hardy, I. Sideris, N. Ladas, and Y. Sazeides, “The performance vulnerability of
architectural and non-architectural arrays to permanent faults,” in Microarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pp. 48-59, Dec
2012. 1, 5

A. Mavrogiannis, “On the dependability of transient neuron simulations,” bachelor

thesis, National Technical University of Athens, June 2014. 2, 6, 27, 28

D. Rodopoulos, G. Chatzikonstantis, A. Pantelopoulos, D. Soudris, C. De Zeeuw, and
C. Strydis, “Optimal mapping of inferior olive neuron simulations on the single-chip
cloud computer,” in Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation (SAMOS XIV), 2014 International Conference on, pp. 367-374, July 2014. 2,
25

J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, et al., “A 48-core ia-32 processor in 45 nm cmos
using on-die message-passing and dvfs for performance and power scaling,” Solid-State

Circuits, IEEE Journal of, vol. 46, no. 1, pp. 173-183, 2011. 2

S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an architectural
perspective,” in High-Performance Computer Architecture, 2005. HPCA-11. 11th In-

ternational Symposium on, pp. 243247, Feb 2005. 5

R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold
computing: Reclaiming moore’s law through energy efficient integrated circuits,” Pro-

ceedings of the IEEFE, vol. 98, pp. 253-266, Feb 2010. 5

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated application-
level checkpointing of mpi programs,” ACM Sigplan Notices, vol. 38, no. 10, pp. 84-94,
2003. 6

P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint /restart (bler) for linux clus-
ters,” in Journal of Physics: Conference Series, vol. 46, p. 494, IOP Publishing, 2006.
6

o4



[17]

[18]

[19]

[20]

[21]

[22]

[25]

Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L. Scott,
“An optimal checkpoint/restart model for a large scale high performance computing
system,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pp. 1-9, IEEE, 2008. 6

J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent checkpointing for cluster
computations and the desktop,” in Parallel Distributed Processing, 2009. IPDPS 2009.

IEEFE International Symposium on, pp. 1-12, May 2009. 6

J. P. Walters and V. Chaudhary, “Application-level checkpointing techniques for par-
allel programs,” in Distributed Computing and Internet Technology, pp. 221-234,
Springer, 2006. 6

L. M. Silva and J. G. Silva, “System-level versus user-defined checkpointing,” in Reliable
Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on, pp. 68-74,
IEEE, 1998. 6

J.-C. Laprie, “Dependable computing and fault-tolerance,” Digest of Papers FTCS-15,
pp- 2-11, 1985. 7

D. J. Cross, “Power Efficiency Revolution for Embedded Computing
Technologies  (perfect),”  tech. rep., Defense Advanced Research Projects
Agency (DARPA), 2010. Available: http://www.darpa.mil/program/

power-efficiency-revolution-for-embedded-computing-technologies. 7

X. Yang, Z. Wang, J. Xue, and Y. Zhou, “The reliability wall for exascale supercom-

puting,” Computers, IEEE Transactions on, vol. 61, pp. 767-779, June 2012. 7, 34

J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova, “Evaluation of the intel
x00ae; core x2122; i7 turbo boost feature,” in Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, pp. 188-197, Oct 2009. 8

A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,

and M. M. K. Martin, “Computational sprinting,” in Proceedings of the 2012 IEEE

95


http://www.darpa.mil/program/power-efficiency-revolution-for-embedded-computing-technologies
http://www.darpa.mil/program/power-efficiency-revolution-for-embedded-computing-technologies

[26]

[27]

[28]

[29]

[30]

[31]

18th International Symposium on High-Performance Computer Architecture, HPCA
"12, (Washington, DC, USA), pp. 1-12, IEEE Computer Society, 2012. 9

J. Gjanci, “On-Chip Voltage Regulation for Power Management in System-on-Chip,”

Master’s thesis, B.S. University of Illinois, Chicago, 2006. 11, 12

W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core

)

dvfs using on-chip switching regulators,” in High Performance Computer Architecture,

2008. HPCA 2008. IEEFE 14th International Symposium on, pp. 123-134, Feb 2008. 11,
12

SCC External Architecture Specification (EAS) Revision 1.1. Intel Corporation, 2010.
13

T. M. (IL) and R. van der Wijngaart (SSG), RCCE: a Small Library for Many-Core

Communication. Intel Corporation, 2010. 13

M. P. Forum, “Mpi: A message-passing interface standard,” tech. rep., Knoxville, TN,
USA, 1994. 14

R. Bakker, M. Van Tol, and A. Pimentel, “Emulating asymmetric mpsocs on the in-
tel scc many-core processor,” in Parallel, Distributed and Network-Based Processing
(PDP), 2014 22nd Euromicro International Conference on, pp. 520-527, Feb 2014. 21,
33

V. Pallipadi, “Enhanced Intel SpeedStep® Technology and Demand-Based Switching

on Linux*,” tech. rep., Intel, 10 2010. 22
“The linux kernel documentation.” https://www.kernel.org/doc. 22, 23
J. Hopper, “Reduce Linux power consumption,” tech. rep., IBM, 09 2009. 22

“Texas instruments, dvfs user guide.” http://processors.wiki.ti.com/index.php/

DVFS_User_Guide. 23

26


https://www.kernel.org/doc
http://processors.wiki.ti.com/index.php/DVFS_User_Guide
http://processors.wiki.ti.com/index.php/DVFS_User_Guide

[36]

[37]

[39]

[40]

[41]

[42]

J. R. D. Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. 1. D. Zeeuw, “Climbing fiber burst
size and olivary sub-threshold oscillations in a network setting,” PLoS computational

biology, p. 8(12):€1002814, 2012. 25

P. Bazzigaluppi, J. R. D. Gruijl, R. S. V. D. Giessen, S. Khosrovani, C. . D. Zeeuw, and
M. T. D. Jeu, “Olivary subthreshold oscillations and burst activity revisited,” Frontiers

i neural circuits, no. 6, 2012. 25

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current

and its application to conduction and excitation in nerve,” The Journal of physiology,

p. 117(4):500, 1952. 25

“Python software foundation. python language reference, version 2.7. available at

http://www.python.org.” 27, 48

“2nd generation intel®) core tm processor family mobile and intel®) celeron(®) processor

family mobile,” September 2012. 43

D. Rodopoulos, A. Papanikolaou, F. Catthoor, and D. Soudris, “Demonstrating hw-sw

2

transient error mitigation on the single-chip cloud computer data plane,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 23, pp. 507-519, March

2015.

“Ubuntu manpages (cpufrequtils).” http://manpages.ubuntu.com/manpages/lucid/

manl/cpufreq-set.1.html.

o7


http://manpages.ubuntu.com/manpages/lucid/man1/cpufreq-set.1.html
http://manpages.ubuntu.com/manpages/lucid/man1/cpufreq-set.1.html

CHAPTER 7

Appendix

7.1 Source Code

The source code of Depman tool for all three implementations can be found at https://github.com/A-
Kokolis/thesis-ntua. The code is licenced under the GPLv3 licence and can be modified and

redistributed under these terms.

An adaptive Checkpoint/Restart and Slack Reclaiming Manager

Copyright (C) 2015, Apostolos Kokolis, Alexandros Mavrogiannis

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

If not, see http://www.gnu.org/licenses/ .
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