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Περί ληψη 

 

 

Σκοπός της διπλωματικής εργασίας είναι η δημιουργία ενός προσομοιωτή της 

διαδικασίας εκκένωσης ενός επιβατηγού πλοίου σε έκτακτες καταστάσεις, κυρίως λόγω 

εσωτερικών απειλών. Ο προσομοιωτής θα αναπτυχθεί με τη βοήθεια του λογισμικού πακέτου 

Unity3D, το οποίο περιλαμβάνει την rendering μηχανή και το αναπτυξιακό περιβάλλον της 

τριδιάστατης εικονικής σκηνής. Ο προγραμματισμός της τεχνητής νοημοσύνης των 

αυτόνομων χαρακτήρων, που θα αναπαριστούν το πλήθος, θα χωρισθεί σε δύο μέρη : το 

πρώτο θα ελέγχει την κίνησή τους χρησιμοποιώντας το ενσωματωμένο σύστημα εύρεσης 

διαδρομής και το δεύτερο τους τρόπους και κανόνες αλληλεπίδρασης μεταξύ τους - το οποίο 

θα πραγματοποιηθεί με γραφή συγκεκριμένου κώδικα. Το αποτέλεσμα θα είναι η δημιουργία 

ενός μοντέλου πλήθους με ρεαλιστικά συστήματα κατεύθυνσης/κίνησης και συγκρούσεων. 

 

Το μοντέλο αυτό θα χρησιμοποιηθεί στην προηγμένη μέθοδο ανάλυσης εκκένωσης 

που έχει υιοθετήσει η Maritime Safety Committee (MSC) και περιγράφεται στο «Interim 

guidelines for evacuation analysis for new and existing passenger ships». Οι κατευθυντήριες 

αυτές γραμμές προήλθαν από τους κανονισμούς του International Maritime Organization 

(IMO) για την ασφάλεια στα επιβατηγά πλοία και επιβάλλουν τη χρήση της μοντελοποίησης 

της εκκένωσης για την αξιολόγηση των διαδρομών διαφυγής από νωρίς στην διαδικασία 

σχεδιασμού του πλοίου. Η ανάγκη για αύξηση της ασφάλειας των επιβατών σε έκτακτες 

καταστάσεις προέκυψε λόγω σειράς θανάσιμων ατυχημάτων με πολλαπλές απώλειες σε 

επιβατηγά πλοία αλλά και από πρόσφατες ναυπηγήσεις cruise liners μερικών χιλιάδων 

επιβατών. Έτσι, η χρήση του μοντέλου θα διευκολύνει τον σχεδιασμό του νέου πλοίου καθώς 

θα μπορεί να επιδείξει διάφορες πληροφορίες στον ναυπηγό μηχανικό, όπως ο συνολικός 

χρόνος εκκένωσης, τις διαδρομές που ακολουθήθηκαν και τις περιοχές αυξημένης 

κυκλοφοριακής συμφόρησης.  
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Abstract 

 

 

The objective of this thesis is the creation of a framework for simulating a passenger 

ship’s evacuation procedure after an emergency, usually caused by internal threats. The 

simulation framwork will be developed using the Unity3D software package, which includes 

a 3-D rendering engine and an editor environment where the virtual scenes are built. The 

autonomous characters (agents), which all together represent a human crowd, will have 

artificial intelligence that is programmed in two parts: the first will control their movement 

using Unity3D’s embedded path navigation system, and the second will define the ways and 

rules that govern agent interaction. The final outcome will be the formulation of a crowd 

model with realistic movement and collision control. 

 

This model will be used in the advanced evacuation analysis method that is authored 

by Maritime Safety Committee (MSC) and further described in the: “Interim guidelines for 

evacuation analysis for new and existing passenger ships”. These guidelines are derived from 

International Maritime Organization’s (IMO) regulations about safety in passenger ships and 

impose the use of evacuation modelling to evaluate the escape routes in the ship design 

process. The need for increased measures, concerning the passengers’ safety in real 

emergency conditions, originated from a series of multiple fatalities accidents involving 

passenger ships and from recent shipbuilding of new cruise liners capable of carrying several 

thousand passengers. So, using our model could facilitate the design of a new ship since it can 

display various information to the naval architect, such as the total evacuation time, the paths 

that were followed, and the congestion points.   
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Character, Agent, Crowd Model, Congestion, MSC, IMO, Unity3D.  



 6 

Contents 

 

Περίληψη .................................................................................................................................. 4 

Abstract ..................................................................................................................................... 5 

Contents .................................................................................................................................... 6 

Table Contents.......................................................................................................................... 8 

Figure Contents ........................................................................................................................ 9 

Chapter 1) INTRODUCTION .............................................................................................. 10 

1.1) BRIEF DESCRIPTION OF THE MSC ............................................................................... 11 

1.2) SAFETY IN PASSENGER SHIPS ..................................................................................... 12 

Chapter 2) SOFTWARE ....................................................................................................... 15 

2.1) AUTOCAD ................................................................................................................... 15 

2.1.1) General ................................................................................................................. 15 

2.1.2) Operation Mode .................................................................................................. 15 

2.1.3) Usage .................................................................................................................... 17 

2.2) 3D STUDIO MAX ......................................................................................................... 19 

2.2.1) General ................................................................................................................. 19 

2.2.2) Operation Mode .................................................................................................. 19 

2.2.3) Usage .................................................................................................................... 21 

2.3) UNITY3D ..................................................................................................................... 25 

2.3.1) General ................................................................................................................. 25 

2.3.2) Operation Mode .................................................................................................. 26 

2.3.3) Usage .................................................................................................................... 28 

Chapter 3) METHOD MODEL ........................................................................................... 29 

3.1) ADVANCED EVACUATION ANALYSIS METHOD ......................................................... 29 

3.1.1) Advanced method purpose ................................................................................ 30 

3.1.2) Advanced method assumptions......................................................................... 30 

3.1.3) Method of calculating the total evacuation time ............................................. 30 

3.2) ENTITY MODELLING-AGENT ...................................................................................... 32 

3.2.1) Agent Parameters ................................................................................................ 32 

3.2.2) Agent Movement and Behaviours .................................................................... 38 

3.2.2.1) Seek Behaviour ............................................................................................. 38 

3.2.2.2) Arrive Behaviour .......................................................................................... 39 

3.2.2.3) AvoidWall Behaviour ................................................................................... 40 

3.2.2.4) PushAgent Behaviour ................................................................................... 41 

3.2.2.5) AvoidNearest Behaviour .............................................................................. 42 

3.2.2.6) Agent Movement .......................................................................................... 43 

 

 



 7 

Chapter 4) SIMULATION IMPLEMENTATION IN UNITY3D .................................. 45 

4.1) MAIN SCENE ................................................................................................................ 45 

4.2) AGENT ANALYSIS ....................................................................................................... 54 

4.3) AGENTMANAGER ANALYSIS ..................................................................................... 63 

4.4) SIMULATION FINALIZATION ....................................................................................... 69 

4.5) TEST SCENES ................................................................................................................ 71 

Chapter 5) CONCLUSIONS ................................................................................................ 73 

Bibliography ........................................................................................................................... 75 

 

 

  



 8 

Table Contents 

 

 

Chapter 2) 
TABLE 2.1  :  DECK DIMENSIONS .............................................................................................. 18 

 

Chapter 3) 
TABLE 3.1  :  POPULATION COMPOSITION (AGE AND GENDER) ................................................. 36 

TABLE 3.2  :  MAXIMUM SPEED ON HORIZONTAL GROUND ...................................................... 36 

TABLE 3.3  :  MAXIMUM SPEED ON STAIRS .............................................................................. 37 

 

Chapter 4) 
TABLE 4.1  :  EXAMPLE OF CONGESTION VALUES VERSUS TIME .............................................. 70 

  



 9 

Figure Contents 

 

 

Chapter 2) 
FIGURE 2.1  :  BRIDGE DECK – DECK7 ...................................................................................... 16 

FIGURE 2.2  :  PASSENGERS DECK – DECK6 .............................................................................. 17 

FIGURE 2.3  :  EMBARKATION DECK – DECK5 ........................................................................... 18 

FIGURE 2.4  :  DECK7 AND DECK7_GROUND MODELS ............................................................... 19 

FIGURE 2.5  :  DESIGN ERRORS CHECKING WITH THE UNWRAP UVW TRANSFORMATION ....... 22 

FIGURE 2.6  :  DECK6 AND DECK6_GROUND MODELS ............................................................... 23 

FIGURE 2.7  :  DECK5 AND DECK5_GROUND MODELS ............................................................... 24 

FIGURE 2.8  :  UNITY3D INTERFACE (EDIT MODE) .................................................................... 26 

FIGURE 2.9  :  UNITY3D INTERFACE (PLAY MODE) ................................................................... 27 

 

Chapter 3) 

 FIGURE 3.1  :  TOTAL EVACUATION TIME ................................................................................ 31 

 FIGURE 3.2  :  AGENT PARAMETERS ......................................................................................... 33 

 FIGURE 3.3  :  GRAPHICAL ENVIRONMENT FOR VALUE-ASSIGNG ENVIRONMENT TO THE 

AGENTMANAGER PARAMETERS ........................................................................ 34 

 FIGURE 3.4  :  SEEK BEHAVIOUR .............................................................................................. 38 

 FIGURE 3.5  :  AVOIDWALL BEHAVIOUR ................................................................................. 40 

 FIGURE 3.6  :  PUSHAGENT BEHAVIOUR .................................................................................. 41 

 FIGURE 3.7  :  AVOIDNEAREST BEHAVIOUR - VELOCITIES OF SAME DIRECTION ....................... 42 

 FIGURE 3.8  :  AVOIDNEAREST BEHAVIOUR - VELOCITIES OF OPPOSITE DIRECTION ................. 42 

 

Chapter 4) 

FIGURE 4.1  :  CREATING NAVMESH OF DECK5 ........................................................................ 45 

FIGURE 4.2  :  MAIN CAMERA CULLING OF DECK6 .................................................................... 46 

FIGURE 4.3  :  LAYER COLLISION MATRIX ................................................................................ 48 

FIGURE 4.4  :  DECK7 AND DECK7_GROUND WITH GLASS SHADER .......................................... 49 

FIGURE 4.5  :  DECK7 AND DECK7_GROUND WITH TRANSPARENT ΚΑΙ OUTLINE SHADERS ...... 50 

FIGURE 4.6  :  EDITOR SCRIPT FOR PLACING PREFAB : GENERATORAGENT IN THE SCENE ........ 51 

FIGURE 4.7  :  GENERATOR SCRIPT FOR AGENTS CREATION ..................................................... 51 

FIGURE 4.8  :  CONGESTIONAREA TRIGGER COLLIDER ............................................................. 52 

FIGURE 4.9  :  MUSTERSTATION TRIGGER COLLIDER ............................................................... 53 

FIGURE 4.10  :  DEBUG INFORMATION IN THE SCENE WINDOW ................................................. 54 

FIGURE 4.11  :  “STUCK” AGENT EXAMPLE .............................................................................. 56 

FIGURE 4.12  :  FUNCTION  OFFSETCORNERS ............................................................................ 58 

FIGURE 4.13  :  FUNCTION  OFFSETCORNERS EXPLANATION  .................................................... 59 

FIGURE 4.14  :  THE AGENT CHECKS IF IT CAN SKIP A PATH POINT, SHORTENING ITS PATH ....... 61 

FIGURE 4.15  :  DISTANCE BETWEEN THE AGENT AND THE NEAREST EDGE OF NAVMESH ........ 62 

FIGURE 4.16  :  AGENTMANAGER AND ITS MAIN SCRIPT ........................................................... 67 

FIGURE 4.17  :  SIMULATION FINALIZATION .............................................................................. 70 

FIGURE 4.18  :  TEST SCENE EXAMPLE ..................................................................................... 72 

  



 10 

Chapter 1 

 

Introduction 
 

 

This thesis came up as a natural continuation of the semester project that we undertook 

for the course “Solid Modelling: Special Topics and Applications in the Virtual Ship” of the 

Inter-Departmental Postgraduate Programme “Marine Technology and Science”. In that 

venture, we studied the fundamental principles and functions of artificial intelligence in the 

Unity3D environment. We mainly delved into the following subjects: 

 

 Finite State Machine 

 Pathfinding using the algorithm A* 

 Pathfinding using the Nav Mesh system 

 Pathfollowing 

 Obstacle Avoidance 

 Flocking 

 

Using these and other additional techniques, such as various agent behaviours that we 

will analyze later, we ended up constructing a model for analyzing the evacuation process of a 

passenger-ferry - which is the subject of this report. We will try to prove that this model is 

consistent with the requirements of the advanced evacuation analysis method approved by the 

Maritime Safety Committee (MSC) of the International Maritime Organization (IMO). Before 

proceeding to the description of our model, let us first see a short description of the MSC and 

generally the safety of passenger ships. 
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1.1 Brief description of the MSC 

 

The Maritime Safety Committee is a subsidiary of the IMO Council [1]. The 

committee is consisted by representatives from all the member governments, and is the 

highest technical department of the organization. Its responsibilities include any matter within 

the jurisdiction of the organization which is associated with: 

 

 Any type of navigation aids 

 Ship construction and equipment 

 Manning security 

 Collision prevention rules 

 Management of dangerous and/or harmful cargo 

 Procedures and requirements of maritime safety 

 Hydrographic information/data 

 Logbook and navigation files 

 Investigation of marine accidents, 

 Salvage and rescue 

 Any other issue that affects maritime safety 

 

The commitee also provides mechanisms regarding the execution of any duty assigned 

by the IMO convention, or any duty - within the issues mentioned above – assigned by an 

international organization which has already been accepted by the IMO. In addition, it has the 

responsibility to examine and submit recommendations and guidelines, regarding safety, to be 

discussed and approved by the IMO. 

 

The MSC [2], having already approved the guidelines for a simplified evacuation 

analysis method of RO-RO (Roll On-Roll Off) ships as a guide for the implementation of 

Regulation II-2 / 28-1.3 of SOLAS (Safety Of Life At Sea), asked, in the May of 1999, the 

subcommittee which is responsible for the fire protection to develop rules for analyzing the 

evacuation process in passenger ships in general but also in high-speed passenger ships. 

In June 2001, following the recommendations of the subcommittee, the MSC 

approved the guidelines for the simplified evacuation analysis method of high-speed 

passenger ships. In May 2005, it considered a proposal of the subcommittee and finally 

approved the new guidelines replacing the previous ones. 

Meanwhile, in May 2002, the MSC accepted the guidelines of the subcommittee on 

evacuation analysis for new and existing passenger ships. It also asked member governments 

to collect and submit to the subcommittee any data or information that was gained from 

research, development or testing, and any findings about human behaviour that could be used 

to improve these guidelines. 

The current version of the guidelines was given by the MSC in October 2007. They 

apply to new and existing passenger ships, including the RO-RO. There are two different 

methods for the analysis of evacuation: 
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 The simplified method 

 The advanced method 

In this report, we will use the advanced method, which we will further analyze it in 

Chapter 3. 

 

 

1.2 Safety in passenger ships 

 

 

In the Greek Merchant Marine Academy – Deck Officers School the following 

recommendations concerning safety on passenger ships are specified [3]: 

 

1. The IMO Convention for the Safety of Life at Sea requires a sufficient number of 

trained personnel to be on board for the guidance and assistance of untrained people. 

2. The crew which is defined by the division tables to assist passengers in emergency 

situations, should undertake additional training to ensure that it is able to perform its 

duties efficiently. The number of the trained crew members must be included in the 

safety manning document of the ship. 

3. Training that takes place in a series of courses on land, should be supplemented by 

on-board training before undertaking the tasks referred to 2. The training should 

satisfy the State Flag and should specify a number of means to ensure that the crew 

members maintain continuous proficiency and efficiency through periodic training 

courses, exercises or related work experience. 

4. The communication skills of designated seafarers should be adequate to assist 

passengers during an emergency, taking into account the following criteria: 

a. the language(s) needed for communication with all the passengers of different 

nationalities carried on a particular route, 

b. the ability to use elementary English vocabulary for basic instructions, which 

provides a way to interact with a passenger in need of assistance whether the 

passenger and crew member speak a common language or not, 

c. the possible need to communicate by other means (e.g. by demonstration, or 

gestures, or asking him to pay attention to the instructions, assembly stations, 

means of rescue or evacuation routes) during an emergency when verbal 

communication is not feasible,  

d. providing complete and thorough safety instructions to passengers in their native 

language, 

e. the different languages in which emergency announcements can be transmitted 

during an emergency or an exercise to carry vital instructions to passengers and 

to help crew members in assisting passengers. 

5. The training provided under recommendation 2. should include, but not necessarily 

limited to, the following theoretical and practical items: 
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a. awareness of the plans of rescue equipment and firefighting plans and 

knowledge of division tables and emergency instructions including: 

i. the general alarms and the procedures to assemble the passengers in 

designated stations, 

ii. areas of responsibility with emphasis on “designated sectors”. 

b. the general arrangement of the ship with special emphasis on the position of the 

assembly stations where embarkation into the lifeboats is possible, the accesses 

and escape routes,  

c. the location and use of emergency equipment in relation to the tasks of 2. with 

emphasis on “designated sectors” and escape routes from there, 

d. the location of life jackets for adults and children, 

e. the location of other evacuation supplies (e.g. blankets), which must be 

transferred to lifeboats, 

f. basic first aid skills and transportation of injured people, 

g. communication: 

i. use of interphone systems,  

ii. alerting, 

iii. updating the passengers, 

iv. reporting and notification. 

h. evacuation: 

i. use of passengers lists or admesurement, 

ii. alarms, 

iii. assembly – order maintainance and avoiding panic procedures, 

iv. emergency exits, 

v. evacuation equipment, 

vi. passengers control at passageways, staircases and doors, 

vii. maintaining escape routes free and functionable, 

viii. assistance en route to the assembly stations and embarkation into the 

lifeboats,  

ix. methods available to evacuate people with mobility limitations and/or 

needing of special assistance, 

x. restrictions on the use of lifts, 

xi. searching within accommodation areas, 

xii. ensuring that passengers are suitably clothed and have properly worn their 

lifejackets. 

i. fire cases: 

i. fire detection and initial restriction, 

ii. alarming, 

iii. smoke inhalation risk, 

iv. respiratory protection.  

j. abandoning ship cases: 

i. correct use of personal safety equipment, e.g. lifejackets, immersion suits, 

lifebuoys, light signals, and fumigants, 

ii. need of assistance in particular cases. 
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k. familiarity through repeated, organized, guided tours in the ship, 

l. repeated participation in fire exercises and embarkation into the lifeboats, 

including simulated transportation of injured people, 

m. repeated exercises in use of equipment, such as wearing lifejackets and 

appropriate protective clothing, 

n. repeated exercises in use of interphone systems, 

o. repeated evacuation exercises. 

6. Before the ship departure, instructions regarding emergency procedures and 

evacuation should be given to the passengers. 

7. Wherever possible, a video regading safety should be displayed to passengers, right 

after boarding. 

8. Clear emergency signals should be positioned at a suitable height in a major 

understandable language to assist passengers follow the routes to assembly stations 

and to the boxes with the lifejackets. For this purpose, international IMO symbols 

should be used.  

9. Embarking into lifeboats exercises should take place according with the SOLAS 

guidelines. The rest lifesaving equipment should be frequently checked and 

maintained in good condition. Manufacturers’ instructions about maintainance and 

replacement should always be followed.  

10. The whistles and communication systems should be regularly tested and maintained 

in good working condition.  

11. The exercises and the procedures regarding man at sea should be carried out 

frequently.   
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Chapter 2 

 

Software 
 

 

In this section we will briefly describe the three different programs we used to 

complete the current project. For each program we will mention general information, show its 

basic functions and explain how we used it to achieve the creation of the simulation model of 

the evacuation process. 

 

2.1 AutoCAD 

 

2.1.1 General 
 

 

It is the most known program from the Autodesk company [4]. It is a design software 

(Computer-Aided Design, CAD) which exists since 1982 and is considered the most widely 

used CAD program worldwide. It is mainly used by engineers, so there are specialized 

versions, such as: 

 

 For architects: AutoCAD Architecture. 

 For civil engineers: AutoCAD Civil 3D. 

 For electrical engineers: AutoCAD Electrical. 

 Για mechanical engineers: AutoCAD Mechanical. 

 For surveyor engineers: AutoCAD Map 3D (GIS). 

 For building construction engineers: AutoCAD MEP. 

 For piping construction engineers: AutoCAD P&ID. 

 For plant construction engineers: AutoCAD Plant 3D. 

  

 

2.1.2 Operation Mode 
 

 

Design in AutoCAD is based on the use of basic shapes such as lines, polygons, 

circles and the modification of them to achive every desired geometry. This modification is 

made using transformations, e.g. rotation, displacement (offset), resize (scale and stretch), 

mirror, cut (trim), compouned curved line (fillet), join objects, split objects (break), reverse 
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the direction of a line and a lot more.  

 

Also, there are many helpful features that facilitate our work such as creating and 

editing objects as a group (group), the use of explanatory text (comments), inserting objects in 

a layer so that we can work only with it without affecting the objects of the other layers, 

counting accurate dimensions (distance) and programming various additional functions in the 

languages: VBA, .NET, AutoLISP, Visual LISP, ObjectARX (based on C ++). 

 

 
Figure 2.1: Bridge Deck – deck7 

 

 

In Figure 2.1 we can distinguish the user interface. The screen is basically divided into 

three parts. The top part has all the features available, the middle and larger one is the 

designing area of our objects and the bottom one is the console where we can see some useful 

information or errors but also where we can input direct commands (e.g. the command line 

creates a line from two points that we can define), or enter the parameters of a command. 

Under the console, there is a line of auxiliary functions for the selection and placement of 

objects and also for the management of our working area (i.e. the central portion), for 

example the ability to zoom / unzoom. 
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2.1.3 Usage 
 

 

We worked with the basic version AutoCAD 2010. We designed three decks of a 

passenger-ferry which we used for the advanced analysis method of the evacuation process. 

Figure 2.1 shows the design of the bridge deck (bridge deck or deck7 as we named the 

reconstructed 3-D object in the Unity3D software). We will explain the conversion process in 

from a 2-D design to a 3-D object in paragraph §2.2.3. 

In the following Figures 2.2 and 2.3 we can see the designs of the passenger 

(Passenger Deck - deck6) and embarkation or boarding (Embarkation Deck - deck5) deck 

respectively. The numbers 5, 6, 7 denote the level of each deck in the ship. For example, the 

bridge deck is at level 7, the highest level in the ship. 

 

 
Figure 2.2: Passenger Deck – deck6 
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Figure 2.3: Embarkation Deck – deck5 

 

We worked mainly with DWG files, the default file format in AutoCAD. These files 

will later be imported into the 3D Studio Max software to create 3-D models of the topology 

of decks but also 2-D models of the deck floors. Upon these models, our Agents will move 

within the Unity3D software to simulate the evacuation. 

 

The dimensions of the three decks are: 

 

 Length Width Height 

deck5 72.438m 27.147m 3.200m 

deck6 71.084m 26.740m 2.700m 

deck7 70.316m 32.503m 2.750m 

Table 2.1: Decks Dimensions 

 

The sequence of operations, i.e. starting from an AutoCAD drawing without any 

unnecessary lines, then making a respective 3-D model and then running the simulation in a 

3-D rendering engine was inspired from here: [5].  



 19 

2.2 3D Studio Max 

 

2.2.1 General 
 

 

For the reconstruction of the 3-D models of the decks and their floors, we will use the 

3D Studio Max software from Autodesk Company [6]. The 3D Studio specializes in creating 

3-D objects, characters, environments and generally detailed 3-D scenes which can include 

cameras, light sources and shadows. Furthermore, we can apply textures to the objects and 

determine how they can move (animation). The most important feature of the 3D Studio is to 

create complex objects and apply various transformations to them. 

 

 

2.2.2 Operation Mode 
 

 

Figure 2.4 shows the interface of 3D Studio Max and particularly the deck7 and 

deck7_ground models: 

 

 
Figure 2.4: deck7 and deck7_ground models 
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We can see the top, side, front and perspective view of the object under construction, 

thus having a better 3-D understanding of the scene. At the top, there are the mostly used 

tools, such as: selecting items or a group of them, position, rotation, size, inversion and 

reversal transformations, attributes editor, layers, curves and materials. At the bottom there is 

a range of frames where we change the attributes / characteristics of the object in each frame, 

thereby giving it the illusion of motion. On the right side there are the most important 

functions of creating and shaping / transforming objects. For example, we can make several 

basic 3-D objects (spheres, cubes, cylinders, pyramids, spirals, cones, tubes), extended objects 

(axles, spindles, cubes and cylinders with rounded edges, prisms, capsules, spirals bonds, 

polyhedrons) and apply set operations to them (union, intersection, and subtraction A-B or B-

A) and various other transformations to create new complex objects. The transformations can 

apply either to whole objects or only to parts of them and they are of three types: 

 

 Mesh. 

 Spline. 

 Polygon. 

 

The most important are: bend, bevel, cross section, extrude, flex, melt, mirror, noise, 

normalize, projection, ripple, shell, skew, skin morph, slice, spherify, squeeze, stretch, 

subdivide, substitute, sweep, symmetry, taper, tessellate, trim, twist, wave. We can apply a 

large number of transformations to an object and they are placed in a transformation queue. 

The queue is a First In First Out (FIFO) collection, so every new transformation will be 

applied to the resulting object from the previous transformations. An added advantage is that 

we can disable a transformation so it won’t affect the object and that we can also change the 

transformations order. 

  

Furthermore, on the right side there are the functions of objects color selection, 

creation of: particle systems to simulate e.g. a fire-smoke objects system, dynamic objects that 

move because of forces that imitate the physics laws of the real world (e.g. gravity), cameras, 

light sources and their shadows. It is worth mentioning the ability to construct very detailed 

two-legged (biped) characters. Initially, we make the mesh which consists of independent 

parts that correspond to the different body parts and then we apply an underlying invisible 

skeleton (rigging) that can connect these parts. This independency permits the movement of 

just one body part if that is needed (e.g. wave only the right hand), and the rigging connection 

makes the general movement of the whole body to be more natural. Then we can place 

various materials upon our model (unwrap uvw), which determine how the surfaces reflect the 

light from the light source(s) of the scene. Usually, the material has a texture applied to it, in 

order for the character to look “clothed” with it. 

 

The 3D Studio can extract the scene, that we have created, in various file formats, so 

we can then import and use in other programs like Unity3D. A similarity with Unity3D is the 

ability to export the scene in an executable file that can run (so we can see the scene) in a 

computer that does not have the 3D Studio Max program installed. Finally, the 3D Studio, 

like other programs of Autodesk company, can use and the Autodesk Backburner system. It is 
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a Distributed Queueing System (DQS) involving several computers of various operating 

systems (Linux, Windows, Irix) that work collectively on the same network. As the 

complexity of a scene in the 3D Studio can be very high because of the big number of objects 

and the high level of detail it may contain, the rendering of the scene from a single computer 

can take a long time. So, using the DQS, many computers (Render Nodes) in the same 

network cooperate to achieve a common work, e.g. the rendering, in far less time (comparing 

to the needed time for a single computer to do the same job). The DQS is composed of: 

 

 A computer (called Render Client) an application of which sends the requested work 

(rendering) to the Render Nodes. 

 Render Nodes are one or more computers that are responsible for the execution of the 

job. 

 A computer (Backburner Manager) who is responsible for the distribution and 

management of the work of the Render Nodes. 

 One or more computers (Backburner Monitor) which monitor the work performed at 

the Render Nodes. 

 

The four parts communicate with each other using the TCP/IP protocol.   

 

 

2.2.3 Usage 
 

 

We will briefly describe the steps in the process of reconstructing the 3-D deck models 

in 3D Studio Max 2010 from the 2-D designs of AutoCAD: 

 

 Creation of the design in AutoCAD and saving it as a DWG file. 

 In 3D Studio we import the DWG file. In the dialog box that automatically pops up, 

we confirm that all the options in Geometry Options sector (and especially the Cap 

Closed Spline option) are selected. This is needed, because when we execute the 

Extrude command later to create the walls, they should be closed in both their upper 

and lower side. 

 We select the 2-D model which is now an Editable Spline, and apply the Extrude 

transformation so that the lines will be lifted vertically and converted into 3-D walls. 

 We then Collapse the Extrude transformation (and therefore the model is converted to 

an Editable Mesh) and add the Unwrap UVW transformation which prepares the faces 

(triangles) to accept textures and also indicates the design errors (in green colour). 

These errors were created because of unclosed polygons (Figure 2.5 top left sub 

window). We also activate the Backface Cull option in the model’s Object Properties 

(right-click) in the General tab. This should indicate whether which of the faces have 

wrong direction (normal vector) and consequently they should be flipped. 

 We then Collapse the Unwrap UVW transformation and add the UVW Map one. In 

the parameters, we choose Planar Mapping. 
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 We Collapse the UVW Map. We confirm that the model is positioned at the 

coordinate origin (0, 0, 0) and that every part of it is in the same layer and have the 

same material.  

 With the model selected, we choose the Export Selected option and export it as a FBX 

file. 

 We Import the FBX file in the Unity3D software where it will be ready to be used in 

our scene. We set the Scale Factor in the model’s Rig the value 0.001, so that the 3D 

Studio’s mm units will correspond correctly to Unity3D’s m units.  

 

 
Figure 2.5: Design errors checking with the Unwrap UVW transformation 

 

The height values that we set in the Extrude transformation are: 3200mm for deck5, 

2700mm for deck6 and 2750mm for deck7 (Table 1). 

 

For the floor models, we execute the same steps except for the Extrude transformation 

since they have no height as they are simple planes. The original floors in the AutoCAD were 

manufactured by first creating a plane and then dividing into several sections so more vertices 

will be generated. Afterwards, we started moving the vertices to the desired positions so the 2-

D floor would take the needed form in all of the decks. Also, we created manually some 

empty spaces in specific positions, so that the 3-D deck objects in the Unity3D can be 

connected by stair objects. The stair objects were created in the Unity3D from groups of 

primitive boxes that were transformed to the sizes of real life stair steps. 
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For the sake of completion, we present below the Figures of the rest of the decks 

together with their floors. 

 

Figure 2.6: deck6 and deck6_ground models 

 

In the floor models we have applied a material with a checkboard texture (Diffuse: 

Checker in the Material Editor). This is usually done to test if the UVW Mapping is of the 

wanted type and that there are no other errors. In our case, it is a simple Planar Mapping. 

 

Obviously, afterwards in the Unity3D we can change the checker material with any 

other combination of material / texture we want to achieve the desired visual effect. For 

example, we have used a material with a dark brown texture imitating a hardwood floor (see 

Figure 2.8 or Figure 2.9). 
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Figure 2.7: deck5 and deck5_ground models 
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2.3 Unity3D 

 

2.3.1 General 
 

 

Unity3D software (or Unity for short) has been developed by the Unity Technologies 

company and includes a complete 3-D rendering engine and an Integrated Development 

Environment (IDE) where the user can create and evolve 2-D or 3-D applications [7]. To 

implement new capabilities of an application project, the user can write code and develop 

scripts for these specific functions. Unity deploys, by default, the (cross-platform) compiler: 

MonoDevelop, but other compilers can be selected and used as well, such as the Microsoft 

Visual Studio. The following languages are supported: Boo, C# and JavaScript. The major 

advantages of Unity are: 

 

 Little time required to learn the basic functions. 

 Developing complex and also detailed scenes is quite easy. 

 The existence of many integrated systems: Physics System (PhysX), Collision System, 

Graphical User Interface, Terrain Creator & Editor, Particle System, NavMesh 

Navigation System, Lighting & Shadows, Animation, etc, which can be smoothly 

imported into the main application. 

 The usage of scripts for the development and customization of applications. 

 The ability to export the application in 21 different platforms. The major ones are the 

following: Pc, Mac, Linux, Web Player, Android, iOS, Windows Phone 8, BlackBerry 

10, PS4, Xbox 360, Wii U and Oculus Rift; without the user needing to know the 

individual IDEs of each platform like the DirectX, OpenGL, OpenGL ES, etc. 

 

Currently (April 2015), it has reached the version 5.0.1. There are two variants of Unity, the 

personal which is available without any cost and the professional that has to be purchased but 

has more features such as application development in the cloud.  
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2.3.2 Operation Mode 
 

 

Figure 2.8 illustrates the Unity interface, when it is in edit mode: 

 

 
Figure 2.8: Interface of Unity3D (edit mode) 

 

We can see that it is actually divided into four windows. At the bottom (Project) there 

are all the files (assets) belonging to the application we are developing. Examples of asset 

files are the 3-D models, images, sounds and music, the scenes that make up the application, 

the various scripts we have developed, etc. 

 

Out of all the project assets, we can see exactly which ones we are using in a particular 

scene in the left window, the Hierarchy. Meaning that the Hierarchy is all the objects that 

make up a particular scene. Those shown in dark blue are objects that have been created from 

prefabs. The prefabs could be perceived as object molds, from which we obtain similar 

objects with common properties. Of course, we can create an object from a prefab and later 

change its properties. 

 

This is done in the right window, Inspector. Having selected the main camera object 

(Main Camera) in the Hierarchy window, we can see its properties in the Inspector. So here, 

we can change the values of any object property, e.g. the degrees of the field of view (FOV). 

Similarly, we can click, select any other object in the Hierarchy and alter its properties values. 
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Let us emphasize here that in the Inspector, only the public variables of our scripts are visible 

by default. 

 

In the main window (Scene), our scene is being rendered. Here, all the changes that 

we make to the transformation properties of our objects will appear, e.g. translating an object 

or scaling its dimensions. When we press the Play button at the top of the screen, then the 

Scene window changes focus to the Game window where our application executes and runs. 

The Pause button temporarily stops the execution until we press again Play, and the rightmost 

button advances the execution/time by one frame. In Figure 2.9, we have pressed the Play 

button and Unity is in play mode (play mode). We can see some passengers, which have been 

created at the beginning of the simulation, walking on the decks. 

 

 
Figure 2.9: Interface of Unity3D (play mode) 

 

In general, the creation of applications in Unity is based on two key concepts: the 

Game Object and the Component. A Game Object is every object in our scene. Some Game 

Objects have a visual substance, i.e. a graphical representation (mesh) in the scene so they can 

be seen (such as the model of a deck or a passenger), while other Game Objects are not 

drawn/rendered as they serve some function where the visualization is not necessary, e.g. a 

Game Object which is responsible (through a specialized script) to listen for specific events 

(such as a proximity event) and forward them to all other Game Objects that represent 

animated characters (Agents). Also, a Game Object can become a “child” of another Game 

Object to inherit the translation, rotation and scaling properties of the parent object.  
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The second basic concept, Component, is applied to Game Objects and gives them the 

corresponding properties we would. All Game Objects have at least the Transform 

Component which consists of three 3-D vectors (Vector3): Position, Rotation, and Scale. So, 

if we want a Game Object to function as a light source in the scene, we add to it a Light 

Component and then give values to multiple parameters, e.g. the kind of the light source 

should be Directional and its color should be dark red. Another Component example is: if we 

would prefer a Game Object to obey the laws of physics and for example to react to collisions 

with other encountered Game Objects, we could add two Components to it: a Rigidbody and a 

Collider of some type (e.g. a Capsule Collider). 

As we mentioned in §2.2.3, one of the biggest advantages of Unity is also the ability 

that is granted to the developer to create new features for a Game Object. Meaning, we can 

program in a language these functions and save them in a script. Then, we can add this script 

as a Component in any Game Object we want, thus giving it the desired functionalities. 

 

2.3.3 Usage 
 

The process to import the 3-D deck and floor models into Unity were presented in 

§2.2.3. Their usage inside the Unity environment and the description of how: 1) we modelled 

a crowd of passengers and 2) we simulated the evacuation procedure in Unity, are the central 

themes of the next chapter. 
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Chapter 3 

 

Method Model  
 

 

In this chapter we will first deal with the advanced evacuation analysis method 

analyzing its purpose, its affairs and the procedure to calculate the total evacuation time. 

Next, we will present how we modelled the ship passengers as autonomous, moving 

and intelligent entities. For brevity, we will call them Agents. 

In the end, we will describe how the physical laws affect the movement of the Agents 

and how they were implemented in our code. 

 

 

3.1 Advanced Evacuation Analysis Method 
 

 

As we saw in §1.1, the Maritime Safety Committee (MSC) of the International 

Maritime Organization (IMO), in the «Interim guidelines for evacuation analysis for new and 

existing passenger ships», proposes two different methods for the analysis of the evacuation 

process. The first (simplified) considers the number of passengers as a fluid motion which is 

defined by the Navier-Stokes equations. The accuracy of this method decreases as the 

complexity of the ship increases, i.e. when increasing the number of different types of 

passengers and accommodation spaces, the number of decks and stairs. For this reason and 

also because it is easily implemented, it is mainly used only in the initial stages of the design 

of a new ship to give an approximation of the expected performance of the evacuation. 

The second (advanced) method is usually considered as a simulation of evacuation in a 

computer, but having a more microscopic modelling of people (passengers and crew) [2]. 

That is, each person is regarded as a separate entity containing information about the topology 

of the model ship, and the main point of examination is the interactions between these entities 

as well as between the entities and the modelled ship. We will analyze it more in the next 

paragraphs. 

Let us emphasize here that the requirements of MSC are given in the form of 

guidelines, which means that they are considered more as recommendations/suggestions than 

imposed regulations. 
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3.1.1 Advanced Method Purpose  
 

The purpose of the advanced method is to:  

 

 Identify and eliminate, as much as practically possible, areas of increased congestion 

which may be created during an evacuation. 

 Demonstrate that the escape arrangements are sufficiently flexible to provide 

alternative solutions if some escape routes, assembly stations, embarkation stations or 

lifeboats are not available due to an accident.  

 

 

3.1.2 Advanced Method Assumptions 
 

The following assumptions have been made: 

 

 The passengers and crew are represented as unique entities with specific properties 

and response times. 

 Passengers and crew will use the main escape routes. 

 The escape mechanisms are 100% available. 

 The crew will be in the right positions to help passengers. 

 The passengers follow the instructions of the crew and the emergency signs to reach 

the assembly stations. 

 Smoke, heat and the toxic products of fire do not affect the performance of the crew 

and passengers. 

 There is no family group behaviour. 

 The movement and heel of the ship are not considered.  

 

 

3.1.3 Method of Calculating the Total Evacuation Time 
 

The total evacuation time is calculated by the formula: 

 

𝑇𝑡𝑜𝑡 = 1.25 ∗ 𝑇 +  
2

3
∗ (𝐸 + 𝐿)    (3.1) 

 

Where T is the Travel time, 1.25 is a safety factor, E is the Embarkation time and L is 

the Launch time. According to the MSC instructions, the following must apply:  

 

𝑇𝑡𝑜𝑡 ≤ 𝑛 ⟺ 1.25 ∗ 𝑇 +  
2

3
∗ (𝐸 + 𝐿) ≤ 𝑛   (3.2) 
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Where n is the maximum allowable evacuation time and is equal to: 

 

𝑛 =  {

60 𝑚𝑖𝑛, 𝑓𝑜𝑟 𝑅𝑜 − 𝑅𝑜 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑠ℎ𝑖𝑝𝑠

60 𝑚𝑖𝑛, 𝑓𝑜𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑠ℎ𝑖𝑝𝑠 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑅𝑜 − 𝑅𝑜) 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 3 𝑚𝑎𝑖𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑧𝑜𝑛𝑒𝑠

80 𝑚𝑖𝑛, 𝑓𝑜𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑠ℎ𝑖𝑝𝑠 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑅𝑜 − 𝑅𝑜) 𝑤𝑖𝑡ℎ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 3 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑧𝑜𝑛𝑒𝑠
 (3.3) 

 

 

This restriction should also apply: 

 

𝐸 + 𝐿 ≤ 30 𝑚𝑖𝑛     (3.4) 

 

 

The timing requirements of (3.2) and (3.3) schematically: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Total Evacuation Time 

Where: 

(1) is the Overlap Time and equals to (Ε + L) / 3, 

(2) is the Calculated Evacuation Time, 

(3) is the Maximum Allowable Evacuation Time, n, calculated from (3.3) 
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3.2 Entity Modelling – Agent 
 

Each individual entity of the simulation that represents persons participating in the 

evacuation, will be called Agent. Thus, the Agent is the basis of our simulation. It has been 

given such parameters to convey the human movement as realistically as possible. In addition, 

it has a set of behaviours that define its general route but also create local small movements, 

e.g. to avoid another nearby Agent. 

 

According to MSC Circular 1238, Annex 2 (I.M.O. 2007), the Agent model should 

have at least these characteristics: 

 

 Each person is represented individually (by an Agent). 

 The properties of each Agent are determined by parameters, some of which are 

probabilistic (analyzed in the next paragraph §3.2.1). 

 The path each Agent follows is recorded (the user selects the recording frequency, i.e. 

the number of times per second that the Agent’s position is recorded). 

 The parameters should differ between individuals that make up the population of the 

evacuation (according to the Tables 3.1, 3.4 and 3.5 of MSC Circular 1238, Annex 2 

(I.M.O. 2007) for the various age groups and the corresponding Agent movement 

speeds). 

 The basic rules for individual decisions and movements are the same for all Agents 

and are described in a universal algorithm (we have adopted this technique which will 

be described in paragraph §3.2.2).  

 The time difference between two movements of any Agent in the simulation should 

not exceed one second of simulated time; with the help of multi-threading 

programming, we succeeded to make all the Agents monitor and adjust their 

movement every frame. Thus, in a computer that can achieve a high frames per second 

(FPS) rate, let’s say 30 fps, the time difference between the two movements is 1/30 s ≈ 

0.0333 s.  

 

 

3.2.1 Agent Parameters 
 

 

The Agent parameters are shown in the Figure 3.2. At the top, there is a boolean 

variable GetValuesFromManager. If this is true (which is its default value), then the Agent 

does not take into account the values of the parameters that have been given to it through the 

Inspector of Figure 3.2 (in the Unity Editor), but takes the values from the AgentManager, 

which is a Game Object that manages and controls all the Agents in the scene. 
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Figure 3.2: Agent Parameters 

 

So, through the AgentManager, the user can easily change the values of the parameters 

of all the agents. If, however, they wish to give special values to some specific Agents, then 

they simply give the false value in the GetValuesFromManager variable in the Inspector 

window, so these Agents will use their own values inputted in the Inspector (Figure 3.2) 

which can be customized for each one separately. 

We have also created a scene in which the user can use a graphical environment, for 

greater convenience, to give values to the parameters of the AgentManager. This is shown in 

Figure 3.3. The value changes are appearing in real time. Another alternative for the user is to 

directly give values to the parameters of the AgentManager in its Inspector. 
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Figure 3.3: Graphical environment for value-assigning to the AgentManager parameters  

 

So in conclusion, there are three different ways for an Agent to get values for its 

parameters: 

 

 To assign values on each Agent individually in the Inspector and set its parameter 

GetValuesFromManager = false. 

 To set values in the AgentManager Inspector, which all the Agents that have their 

GetValuesFromManager = true, will “inherit” afterwards. 

 To use the graphical environment to assign values to the AgentManager properties and 

then again all the Agents that have their GetValuesFromManager = true, will “inherit”. 

 

In any case, the parameters that characterize and define every Agent are the same, so 

let's illustrate what each of them represents: 

 

 Initially, the user shoud select the method of determining the maximum speed when 

the Agent is walking on a horizontal ground and when walking on stairs - ascending 

and descending. There are three cases: 

i The user can precisely set the maximum value for each of the three speeds. 

ii The user can set a range [min, max] and the maximum value will randomly take a 

value within these bounds. 

iii The user can choose that the simulation will run according to the MSC guidelines, so 

the maximum values (shown in Tables 3.1, 3.2 and 3.3) derive from Tables 3.1, 3.4 

and 3.5 of Annex 2, respectively. 
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 Rotate Speed: Angular rotational speed. 

 Intermediate Distance: The distance between the Agent and any intermediate node in 

its path, that is except the last one, to consider that they have “arrived” to this node 

and should start to move to the next node. 

 Slowing Distance: When the distance between the Agent and the last node of its path 

is equal or smaller than this value, the Agent starts to reduce their speed. Practically, 

in this distance, the movement behaviour changes from Seek to Arrive. This 

phenomenon will be further analyzed in §3.2.2.2 and §4.2. 

 Stopping Distance: The distance between the Agent and the last node of the path, in 

which they are considered to have reached their target and completed their path. 

 Mass. 

 Detection Frequency: The frequency (times per second) the Agent creates an invisible 

sphere to detect its neighboring Agents. It will be further analyzed in §4.2. 

 Detection Radius:  The radius of the above sphere. 

 Push Radius: It is the radius that defines the bodies of Agents. When two Agents come 

closer than 2 * Push Radius, then it is considered that their spaces/volumes have been 

invaded by each other and, consequently, they begin to repel the invading Agent until 

they are again at a least 2 * Push Radius distance. This will be further analyzed in 

§4.2.  

 LookAhead Distance: This is the maximum distance between two Agents in which the 

one located behind the other can start a bypassing process.  

 FOV (Field Of View): The visual field of the Agent in degrees. It is distinguished in 

the snapshot of Figure 3.3. This, as well as the LookAhead Distance will be further 

analyzed in §4.2. 

 Max Health: The maximum value of the “health” of the Agent. It is reduced when the 

Agent is involved in collisions with other Agents that are considered harsh, i.e. when 

the relative speed exceeds a certain limit. It will be further analyzed in §4.2. 

 Know Way To Muster: Boolean variable. If this is true, then the Agent knows the way 

to the nearest Muster Station. If false, then the Agent does not know the way to the 

nearest Muster Station so they will move to the nearest sign to get information about 

where the nearest Muster Station’s location.  

 Record Path: Boolean variable. If this is true, then the Agent stores its position in a list 

of Vector3 periodically, defined by the next parameter. From this list, the entire path 

that the Agent followed until it reached the Muster Station can be extruded. 

 Record Path Frequency: The frequency (times per second) the Agent records its 

position. 
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If we choose to follow the guidelines of MSC to determine the maximum value of 

walking speed on a horizontal ground and on stairs, the following procedure is followed: 

 

1. Each Agent is assigned to an age and gender category according to the Table 3.1 

percentage values.  

2. Depending on the assigned group, the maximum walking speed at horizontal ground 

get a value randomly in the range [min, max] specified in Table 3.2. 

3. Similarly, the walking speed on stairs get a random maximum value for ascending and 

another value for descending, with the range bounds defined in Table 3.3. 

 

 

Population Groups - Passengers Passenger Percentage (%) 

Male, under 30 years old 7 

Male, 30 - 50 years old 7 

Male, over 50 years old 16 

Male, over 50 years old with mobility limitation-1 10 

Male, over 50 years old with mobility limitation-2 10 

Female, under 30 years old 7 

Female, 30 - 50 years old 7 

Female, over 50 years old 16 

Female, over 50 years old with mobility limitation-1 10 

Female, over 50 years old with mobility limitation-2 10 

Population Groups - Crew Crew Pecentage (%) 

Male 50 

Female 50 

Table 3.1: Population composition (age and gender) 

 

 

Population Groups - Passengers 
Speed at horizontal ground 

Min (m/s) Max (m/s) 

Male, under 30 years old 1.11 1.85 

Male, 30 - 50 years old 0.97 1.62 

Male, over 50 years old 0.84 1.40 

Male, over 50 years old with mobility limitation-1 0.64 1.06 

Male, over 50 years old with mobility limitation-2 0.55 0.91 

Female, under 30 years old 0.93 1.55 

Female, 30 - 50 years old 0.71 1.19 

Female, over 50 years old 0.56 0.94 

Female, over 50 years old with mobility limitation-1 0.43 0.71 

Female, over 50 years old with mobility limitation-2 0.37 0.61 

Population Groups - Crew 
Speed at horizontal ground 

Min (m/s) Max (m/s) 

Male 1.11 1.85 

Female 0.93 1.55 

Table 3.2: Maximum speed on horizontal ground 
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Population Groups - Passengers 

Speed on stairs 

Descending Ascending 

Min 

(m/s) 

Max 

(m/s) 

Min 

(m/s) 

Max 

(m/s) 

Male, under 30 years old 0.76 1.26 0.50 0.84 

Male, 30 - 50 years old 0.64 1.07 0.47 0.79 

Male, over 50 years old 0.50 0.84 0.38 0.64 

Male, over 50 years old with mobility limitation-1 0.38 0.64 0.29 0.49 

Male, over 50 years old with mobility limitation-2 0.33 0.55 0.25 0.41 

Female, under 30 years old 0.56 0.94 0.47 0.79 

Female, 30 - 50 years old 0.49 0.81 0.44 0.74 

Female, over 50 years old 0.45 0.75 0.37 0.61 

Female, over 50 years old with mobility limitation-1 0.34 0.56 0.28 0.46 

Female, over 50 years old with mobility limitation-2 0.29 0.49 0.23 0.39 

Population Groups - Crew 

Speed on stairs 

Descending Ascending 

Min 

(m/s) 

Max 

(m/s) 

Min 

(m/s) 

Max 

(m/s) 

Male 0.76 1.26 0.50 0.84 

Female 0.56 0.94 0.47 0.79 

Table 3.3: Maximum speed on stairs 
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3.2.2 Agent Movement and Behaviour 
 

 

Initially, we will analyze the behaviours [8] that altogether control the movement of 

the Agent and then we will describe how this movement is implemented. All the symbols in 

bold are vectors. 

 

 

3.2.2.1 Seek Behaviour 
 

 

The Seek behaviour is the most frequently used. It gives the Agent the desired velocity 

vector to reach its target. We have changed the algorithms of [9] and [10], from 2-D to 3-D 

vectors that we are using. Figure 3.4 schematically shows the implementation: 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Seek Behaviour 

 

Seek Algorithm: 

 We know the vector of the current speed, Vcurrent. 

 We know the position vector of our target, Target Position. 

 We calculate the desired velocity vector, Vdesired, as:  

 𝑽𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑻𝒂𝒓𝒈𝒆𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏)) ∗ 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑 

 In order for the Agent to achieve the desired velocity vector, the following seek vector 

should be applied to it: 

𝑽𝑠𝑒𝑒𝑘𝑆𝑡𝑒𝑒𝑟 = 𝑽𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

 Finally, we multiply the above vector by a weight factor wseekSteer , so that we are able 

to control how much the overall final movement vector is affected by the Seek 

behaviour. 
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3.2.2.2 Arrive Behaviour 
 

 

The Arrive behaviour is pretty much like the Seek behaviour, i.e. it leads the Agent to 

a target, but with the difference that at a certain distance (from the target) the Agent starts to 

slow down [9]. This distance is the variable Slowing Distance of Agent. The reason for this is 

to avoid a descending oscillation that is created around the Target Position when the Agent 

using the Seek Behaviour has high speed and overtakes the target, and then turns back 

resulting in a repeating back and forth process until they stop. However, using Arrive, the 

Agent slows down as it approaches the Target Position (and the distance between them is 

decreasing), and when it is close enough, its speed has decreased to zero. We usually use the 

Arrive behaviour together with the Slowing Distance parameter of the agent (see §3.2.1), 

when the agent has almost completed its path and is moving towards its last node. 

 

Arrive Algorithm: 

 We know the position vector of Agent, Agent Position. 

 We know the position vector of our target, Target Position. 

 We calculate the vector between the two positions, VtoTarget , as:  

𝑽𝑡𝑜𝑇𝑎𝑟𝑔𝑒𝑡 = (𝑻𝒂𝒓𝒈𝒆𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏) 

 We calculate the distance between the two positions: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝑽𝑡𝑜𝑇𝑎𝑟𝑔𝑒𝑡) 

 We decrease the speed (the velocity magnitude) depending on the distance and the 

decelerationRate factor which defines how quickly the Agent is able to slow down: 

𝑠𝑝𝑒𝑒𝑑 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒
 

 We make sure that the speed does not exceed its maximum value: 

𝑠𝑝𝑒𝑒𝑑 = 𝑀𝑖𝑛(𝑠𝑝𝑒𝑒𝑑, 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑) 

 We calculate the normalized vector of the desired speed by dividing VtoTarget with the 

distance (which is faster than normalizing first and then multiplying by maxSpeed as 

we did in Seek): 

𝑽𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑽𝑡𝑜𝑇𝑎𝑟𝑔𝑒𝑡 ∗
𝑠𝑝𝑒𝑒𝑑

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

 Finally VarriveSteer equals to: 

𝑽𝑎𝑟𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑒𝑟 = 𝑽𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

 Similarly, we multiply the above vector with a weight factor warriveSteer. 
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3.2.2.3 AvoidWall Behaviour 
 

 

The AvoidWall behaviour is activated when the Agent approaches a wall. Specifically, 

it is activated when the distance of the center of the Agent from the nearest NavMeshEdge is 

less than the Agent’s Push Radius parameter. Then a force vector is applied that repels the 

Agent from the wall. The following Figure 3.5 schematically shows the AvoidWall Behaviour 

(the symbols in bold are vectors) where we assume that there are no other applicable steering 

vectors: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: AvoidWall Behaviour 

 

 

AvoidWall Algorithm: 

 Every frame, the Agent calls its function FindClosestEdge that returns the nearest 

point (NearestNavPosition) of the closest NavMeshEdge.  

 We calculate the distance between the Agent and this point: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝑵𝒆𝒂𝒓𝒆𝒔𝒕𝑵𝒂𝒗𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏) 

 We use a factor, approachEdgeFactor, which we divide the distance by to find the total 

distance we would like the wall to start applying force. 

 If this distance is less than finalPushRadius, then a perpendicular vector with direction 

away from the wall will be applied on the Agent. 

 The magnitude of the avoidWallSteer vector is defined as a linear interpolation of the 

normal vector obtained from the difference of the Agent’s position minus the 

NearestNavPosition compared to their distance, i.e.:  

𝑖𝑓 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < finalPushRadius) 

𝑽𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 −  𝑵𝒆𝒂𝒓𝒆𝒔𝒕𝑵𝒂𝒗𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏) 

𝑽𝑎𝑣𝑜𝑖𝑑𝑊𝑎𝑙𝑙𝑆𝑡𝑒𝑒𝑟 = 𝑉𝑒𝑐𝑡𝑜𝑟3. 𝐿𝑒𝑟𝑝(𝑽𝑛𝑜𝑟𝑚𝑎𝑙, 𝑽𝑧𝑒𝑟𝑜 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑓𝑖𝑛𝑎𝑙𝑃𝑢𝑠ℎ𝑅𝑎𝑑𝑖𝑢𝑠)  

 Similarly, we multiply the above vector with a weight factor wavoidWallSteer. 
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3.2.2.4 PushAgent Behaviour 
 

 

The PushAgent behaviour is activated when two Agents are found one into the space 

of the other, where the space of each Agent is defined as a sphere with the Agent in the centre 

and a radius of PushRadius (see §3.2.1). The PushAgent behaviour is implemented in the 

same code segment with the next AvoidNearest behaviour, since both need to verify the 

Agent’s position in relation with the positions of its neighbors. So, in order to avoid checking 

the list of neighboring Agents for the second time, we have written the two behaviours 

together and we simply return two vectors, one for each behaviour. 

The PushAgent Behaviour resembles the AvoidWall and the Separate Behaviour of 

[11]. Let’s see schematically the case of the PushAgent (Figure 3.6), where we assume that 

there are no other applicable steering vectors: 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: PushAgent Behaviour 

 

PushAgent Algorithm: 

 Every frame, the Agent checks its position against its neighboring Agents’ positions 

and calculates the vector (for each neighbor): 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄 = 𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝑷𝒖𝒔𝒉𝒊𝒏𝒈𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 

 Then, it calculates the distance between the two Agents, i.e. the magnitude of the 

previous vector: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄) 

 If the distance is less than the sum: PushRadius1 + PushRadius2, then the two Agents 

have entered in each other’s space and a steering vector should be applied to push 

them apart. We normalize the distanceVec vector and use a linear interpolation as in 

AvoidWall: 

𝑖𝑓 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑡𝑜𝑡𝑎𝑙𝑃𝑢𝑠ℎ𝑅𝑎𝑑𝑖𝑢𝑠) 

𝑽𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄) 
𝑽pushAgentSteer = 𝑉𝑒𝑐𝑡𝑜𝑟3. 𝐿𝑒𝑟𝑝(𝑽𝑛𝑜𝑟𝑚𝑎𝑙, 𝑽𝑧𝑒𝑟𝑜 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / 𝑡𝑜𝑡𝑎𝑙𝑃𝑢𝑠ℎ𝑅𝑎𝑑𝑖𝑢𝑠)  

 We multiply with the inverse ratio of the masses, so that the heaviest Agent will  

receive less force: 

𝑽pushAgentSteer = 𝑽pushAgentSteer ∗ (𝑃𝑢𝑠ℎ𝑖𝑛𝑔𝐴𝑔𝑒𝑛𝑡𝑀𝑎𝑠𝑠 / 𝐴𝑔𝑒𝑛𝑡𝑀𝑎𝑠𝑠𝑠) 

 Similarly, we multiply the above vector with a weight factor wpushAgentSteer. 
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3.2.2.5 AvoidNearest Behaviour 
 

 

The AvoidNearest behaviour [10] is activated just for the nearest Agent existing 

within the Field Of View of the considered Agent, [12]. As mentioned in §3.2.2.4 as well, the 

AvoidNearest is executed along with the PushAgent right after the check of the neighboring 

Agents list. Its function is the same whether the Agent under consideration and the one that is 

closest to it have velocities with same or opposite direction. The first case is shown in Figure 

3.7 and the second one in Figure 3.8. In both cases, we assume that there are no other 

applicable steering vectors. 

 

 

 

 

 

 

 

Figure 3.7: AvoidNearest Behaviour – Velocities of same direction 

 

 

 

 

 

 

 

Figure 3.8: AvoidNearest Behaviour – Velocities of opposite direction 

 

 

We notice that the VavoidNearestSteer vector remains the same for the two cases, which is 

expected since it is independent of the velocity vector of the nearest Agent. 
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AvoidNearest Algorithm: 

 In every frame, the Agent inspects its position compared to its neighbors’ positions and 

finds the nearest of those who exists inside its Field Of View [13]. Then, we calculate 

the sign of the dot product of their velocity vectors: 

𝑐𝑜𝑠𝜃 = 𝑉𝑒𝑐𝑡𝑜𝑟3. 𝐷𝑜𝑡(𝑽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑽𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐴𝑔𝑒𝑛𝑡) 

 

 If cosθ < 0 then the two Agents move towards one another, so an appropriate steering 

vector must be applied in order to avoid collision. Furthermore, if the two Agents share 

common velocity directions, but the one behind has greater maxSpeed than the one in 

the front, then a collision between those two is possible. Therefore, we calculate the 

vector of their distance and its magnitude: 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄 = 𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝑪𝒍𝒐𝒔𝒆𝒔𝒕𝑨𝒈𝒆𝒏𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄) 

 

 In order to find the perpendicular vector (to the vector of their distance) which should 

assist to avoid collision, we will calculate the cross product of the velocity vector of the 

Agent and distanceVec twice: 

𝑽𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝐶𝑟𝑜𝑠𝑠(𝐶𝑟𝑜𝑠𝑠(𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄, 𝑽𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝒆𝒄)) 

 

 Afterwards, we use the normalized vector into a linear interpolation, also considering 

the lookAheadDistance variable (see §3.2.1), which determines the distance where an 

overtake process should start:  

𝑽avoidNearestSteer = 𝑉𝑒𝑐𝑡𝑜𝑟3. 𝐿𝑒𝑟𝑝(𝑽𝑛𝑜𝑟𝑚𝑎𝑙, 𝑽𝑧𝑒𝑟𝑜, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / 𝑙𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

 

 Finally, we multiply it with either 1.2 when the velocities share common direction, or 

with 2.4 when the velocities have opposite directions. This is because when the Agents 

have opposite velocity directions, they are going to collide in a smaller time space (than 

when they have similar directions), and consequently the avoiding perpendicular vector 

should have a larger magnitude. 

 

 Similarly, we multiply the above vector with a weight factor wavoidNearestSteer. 

 

 

3.2.2.6 Agent Movement 
 

 

As we said in §3.1, we tried to create a microscopic modelling of people (passengers 

and crew). So, we represented each person as an entity that obeys Newton's laws of motion. 

Thus, the fundamental law of dynamics (Newton's second law) applies to their movement - 

the bold characters represent vectors: 

 

∑ 𝑭 = 𝑚𝒂 ⇒ 𝜶 =
∑ 𝑭𝑛

𝑚
 𝑛     (3.5) 
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That is, the acceleration α of a body of mass m results from the sum of the n forces 

∑ 𝑭 applied on the body divided by its mass. 

 

Also, the definition of the acceleration is: 

 

𝒂 =  
𝑑𝑽

𝑑𝑡
     (3.6) 

 

Where dV is the instantaneous velocity variation in time dt. Therefore, from (3.5) and 

(3.6) follows: 

 

𝑑𝑽

𝑑𝑡
=  

∑ 𝑭𝑛

𝑚
⇒ 𝑑𝑽 =

∑ 𝑭𝑛

𝑚
 𝑑𝑡    (3.7) 

 

Thus, considering we have a list in our code, the SteerList, with all the steering vectors 

summed, i.e. the forces applied to each Agent by the various (enabled) behaviours, it will be 

respectively (where AgentList is a list with all the Agents in the scene):  

 

AgentList[i].velocity += SteerList[i] * deltaTime 

 

Therefore, the velocity vector of Agent i is modified (every frame) from the total 

steering vector i. The deltaTime is the time between two successive frames of the rendering of 

the application. 

 

Similarly, starting from the definition of speed, we find that for the displacement r of 

an Agent, the physical equation is: 

 

𝑽 =  
𝑑𝒓

𝑑𝑡
⇒ 𝑑𝒓 = 𝑽𝑑𝑡    (3.8) 

 

Accordingly, the code responsible for changing the position vector of Agent i in the 3-

D space is: 

 

AgentList[i]. position += AgentList[i].velocity * deltaTime 

That is, the position of each Agent is modified by the velocity vector, which is derived 

from the sum of all steering vectors that are applied, for deltaTime time. 

 

Thus, our model, reproducing and applying the natural physics laws, simulates as close 

as possible a normal 3-D human movement.  
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Chapter 4 

 

Simulation Implementation in Unity3D 
 

 

In this chapter we will describe how we implemented the main scene of the simulation 

of the evacuation process in Unity3D. Also, we will further analyze the Agent model and will 

delve in the most interesting parts of the code of the various Scripts we have developed. 

 

4.1 Main Scene 
 

 

We described in §2.2.3 how starting from a deck design in AutoCAD we ended up in a 

3-D model of the deck in Unity. After creating two Directional Lights and the Main Camera 

in our scene, we imported the deck models with their floors. We define them both as 

Navigation Static, so we can create a NavMesh from the geometry of every Deck and 

Deck_ground pair. It is the blue plane that can be distinguished over the floor in Figure 4.1: 

 

 
Figure 4.1: Creating NavMesh of Deck5 
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The NavMesh is created in the Navigation window with the Bake button. In Figure 4.1 

there are also shown some purple lines, especially on the stairs, which make up the 

HeightMesh. Through this, NavMesh levels of different heights are connected. We 

constructed the stairs in Unity as a composition of many cuboids; they also belong to the 

Stairs Layer. There are two types of stairs, the first one has 3.2 m height and joins Deck5 and 

Deck6 and the second has 2.7 m height and joins Deck6 and Deck7. Similarly, we make 

NavMesh(es) for the rest of the decks. Unity’s Navigation system uses these NavMesh(es) in 

order to create the path to Agents’ desired target. 

In the scene camera we have added a Script (FreeCamera.cs) which manages its 

movement. Its translation and rotation operate in the same way as in the Editor of Unity. 

Pressing the 'c' button the camera is moved to a specific position directly above the ship and is 

facing down, i.e. as a top view. In the same script, with the buttons '5', '6' and '7' we can make 

the Deck5, Deck6 and Deck7 “visible” and “invisible” along with all the Agents that stand on 

them. In Figure 4.2 we can see an example where the Deck6 and the Agents that walk on it 

have “disappeared”: 

 

 
Figure 4.2: Main camera culling of Deck6 

 

This is accomplished by using binary masks corresponding to each Layer. There are 

three Layers for the three Decks and three Layers for the Agents when they are standing on a 

Deck. Figure 4.1 shows some (two) white cubes in the bottom of the stairs. Their function is 

that when an Agent goes down the stairway, it has to go through this cube, so a Trigger 

collision is called which changes the Agent’s Layer as well as all of their “children” Game 

Objects (script: ChangeLayer.cs). Such cubes can be found at the top end of the ladder to 

change the Layer of Agents going up. The script also disables the MeshRenderer of the blocks 

so when the application starts, they won’t be visible since it is not necessary. 
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Let us explain how the culling mask of the Main Camera works with an example.  

Initially, with the commands: 

 

layerDeck6Mask = LayerMask.NameToLayer(“Deck6”); (let = 1110) 

layerAgent6Mask = LayerMask.NameToLayer(“Agent6”);  (let = 1410) 

 

we find the integer numbers corresponding to Layers: Deck6 and Agent6 (this is the Layer for 

those Agents walking on Deck6). When the application starts, the culling mask of the Main 

Camera is (32-bit): 

11111111111111111111111111111111 

 

i.e. all the bits are 1 (activated), so all the Layers are visible. If we press for example the '6' 

button, the following will take place: 

layerDeckMask = 1 << layerDeck6Mask; 

layerAgentMask = 1 << layerAgent6Mask; 

 

so a new mask is made, layerDeckMask, starting from the value: 

00000000000000000000000000000001 

 

and we left shift (<<) it as many positions as needed to reach the integer value of 

layerDeck6Mask = 11, thus becomes: 

00000000000000000000100000000000 

 

Similarly layerAgentMask becomes: 

00000000000000000100000000000000 

 

The next command is: 

camera.cullingMask ^= (layerDeckMask | layerAgentMask) 

 

So we have a total mask resulting from | (OR) of the two masks: 

00000000000000000100100000000000 

 

And we make that mask ^ (XOR) to get the cullingMask which finally becomes: 

11111111111111111011011111111111 

 

So now the Main Camera does not render the layers belonging to the disabled bits (0), in this 

case the Layers: Deck6 and Agent6. 

 

If we press again the '6' button then the cullingMask will be turned back to XOR with the total 

mask: 

11111111111111111011011111111111 

00000000000000000100100000000000 

11111111111111111111111111111111 
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so all the Layers will be rendered again. 

In order for the white cubes to correctly change the Agents’ Layers, when they pass 

through them, we must have first defined appropriately in the Unity’s physics system which 

Layers collide with which other Layers. This is defined in: Edit => Project Settings => 

Physics. It is the window shown in Figure 4.3: 

 

 

 
Figure 4.3: Layer Collision Matrix 

 

 

We are mainly interested in the Layer Collision Matrix, where we can distinguish which 

Layers interact with each other and cause collisions. Thus, for example, the white cubes with 

the Layer: ChangeLayer cause collisions with all three Layers of the Agents, Agent5, Agent6, 

and Agent7. At the same time, ChangeLayer does not cause collisions with any of the three 

Layers of Decks: Deck5, Deck6, and Deck7. Of course, in both the Agents and white cubes, 
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the Collisions have been designated as Trigger, so there is no impeding of the Agents’ 

movement; only the event: OnTriggerEnter is simply activated. 

 

There is another script (ShadersControl.cs) in the Main Camera which changes the 

materials of the Decks and Deck_grounds Game Objects. In each Deck and Deck_ground we 

have added two Materials. So, by using different Shaders to those materials, we achieve 

different visual combinations. In the Figures we have examined so far, both the Decks and the 

Deck_grounds have Materials with the ordinary Diffuse Shaders. In the following Figure 4.4, 

we can see in the Materials of Deck7 and Deck7_ground that there is a custom Shader, Glass, 

resembling the appearance of glass. The visual effect is that we can see the Agents behind the 

walls of Deck7 and under Deck7_ground (i.e. those on Deck6): 

 

 
Figure 4.4: Deck7 and Deck7_ground with Glass Shader 

 

 

Another example is shown in Figure 4.5, where we have used a combination of two 

Shaders in Deck7 and Deck7_ground. The first one is a predefined Transparent-Diffuse with 

an Alpha value (which defines the percentage of transparency) of 80 out of 255 (including 0). 

The second one is another custom Shader, Outline, highlighting with a black line the contours 

of the Meshes that it have been applied to. 

 

The combinations of the Shaders alternate by pressing the '1' , '2', and '3' buttons for 

Deck5 / Deck5_ground, Deck6 / Deck6_ground, and Deck / Deck7_ground respectively.  
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Figure 4.5: Deck7 and Deck7_ground with Transparent and Outline Shaders 

 

 

In the main scene, there is also an object called GeneratorsInspector. This Game 

Object has a component which is an Editor Script (ObjectGroupInspector.cs). The editors 

Scripts must necessarily exist in the Assets\Editor folder and do not work at runtime. Their 

use is limited only when Unity is in edit mode. This particular Script helps us to quickly place 

Prefabs (i.e. pre-made Game Objects with all appropriate Components) in our scene. We 

mainly use it to place the Prefabs: GeneratorAgent, i.e. “generators” of Agents. While in edit 

mode in Unity, we activate the Editor Script with its first button which then turns green. 

Afterwards, we can choose which Prefab we wish to put inside our scene. The Script searches 

the Prefabs folder and presents all those found in a list. So, we can select the Prefab: 

GeneratorAgent and alter the parameters underneath. It is placed exactly at the mouse cursor 

position when the right mouse button is clicked. The interface of our Editor Script is shown in 

Figure 4.6: 
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Figure 4.6: Editor Script for placing the Prefab: GeneratorAgent in the scene 

 

The Generator Multitude parameter defines how many Agents will be created by the 

GeneratorAgent when the application starts. The next parameter Generator Range sets the 

radius of the circle (if the last IsRectangular parameter is false) within which the Agents will 

be created. If we choose as Generator Range = 0 and the last IsRectangular parameter is true, 

then the GeneratorAgent “shoots” four rays, north / south / east / west and counts the 

distances of the nearest walls which stop the rays. Then it transports itself in the center of the 

rectangle that is formed by these distances and generates the Agents in random positions 

inside this rectangle. 

 

Let's take a look on the corresponding Script on the GeneratorAgentPrefab that after 

“inheriting” the parameters from the Script Editor, it will perform the aforementioned steps 

for the creation of the Agents (Figure 4.7): 

 

 
Figure 4.7: Generator Script for the creation of the Agents 
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Obviously, we can select the AgentPrefab in the Editor Script and right-click to place 

one Agent in a specific position. The underneath parameters are not considered, as the Editor 

Script checks if the selected Prefab has a Generator Script on it or not, in order to pass the 

parameters values to it. 

Thus, we have got a fast way to create GeneratorAgent objects in various positions 

which in turn will produce specific Agents crowds. 

 

 

In the main scene there are some Game Objects named CongestionArea placed in 

specific locations on the decks. Since their function is to measure the traffic congestion, they 

are placed in areas that we expect congestion problems to arise, such as entrances to 

staircases. They are Trigger Colliders that with the Script: Congestion.cs count how many 

Agents are located within their volume. The counter is incremented when there is an Event: 

OnTriggerEnter, i.e. when an Agent enters them, and decreases when there is the Event: 

OnTriggerExit, i.e. when an Agent exits. At the end of the simulation, the user can store the 

congestion values throughout the evacuation. The Congestion values are measured with a 

user-defined frequency (checkFrequency) and are stored in a list (CongestionList). Also, the 

maximum Congestion value acquired is recorded. The storage process will be further 

discussed in §4.4. In the picture below we can see a CongestionArea: 

 

   
Figure 4.8: CongestionArea Trigger Collider 
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The last objects of the main scene are the two Game Objects: MusterStation. These are 

the muster stations which all Agents are trying to reach to. Like the CongestionArea, the 

MusterStation is basically just a Trigger Collider (with the Script: MusterStationCollider.cs). 

Their use is two-fold (further analyzed in §4.4): 

 

a. To destroy the Agents that touch the MusterStations. This is done to avoid big 

concentration of the Agents in a small area which results in decreased application 

performance. 

b. To inform the AgentManager to check if the specific Agent, that has just entered the 

area and got destroyed, was the last moving Agent. If so, then the simulation of the 

evacuation is complete. 

 

Figure 4.9 shows the Trigger Collider of the MusterStation: 

 

 

Figure 4.9: MusterStation Trigger Collider 
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4.2 Agent Analysis 
 

 

In this section we will analyze in depth the functions of both the Agent and the 

AgentManager (who is controlling all the Agents in the scene). In Figure 4.10 we have started 

the application using the Play button, and then we have temporarily stopped it with the Pause 

button, so we are back in the Scene window. In the Agent’s Script (Agent.cs) we have added 

appropriate Debug commands (such Debug.DrawLine, Gizmos.DrawWireSphere and 

Gizmos.DrawRay) in order to see more visual information in the Scene window. This 

information will help us to better understand the actions performed by the Agents. We 

emphasize that this visual information is not shown in the Game window or when we run the 

executable. In Figure 4.10 the Agent that is lower in the screen is selected: 

 

 
Figure 4.10: Debug information in the Scene window 

 

When the Agent is created, the following initializations are made: 

 

 It becomes part of a list of all the Agents which the AgentManager maintains. 

 It checks the height they are located and compares it to the heights (i.e., the 

coordinate y) of the Decks, to get the Layer of the correct Deck. 

 If the boolean variable, getValuesFromManager, is true, then it will get all the values 

of movement parameters, detection and health by the AgentManager. Otherwise, it 

will use its own personal values. 

 It checks if it has a target position. If so, it starts moving towards it. If not, then it 

checks its boolean variable, knowWayToMuster, and if that is true then it will create 

a path to the nearest (known) Muster Station. Otherwise, it will build a path to the 

nearest sign to get further information. 
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Also, it starts periodically calling functions (we will explain further right below): 

 

 DetectNeighbors: called with detectionFrequency frequency. 

 CheckIfStuck: called with checkIfStuckFrequency frequency. 

 RecordPath: called with recordPathFrequency frequency. 

 CheckIfOnStairs: called with a frequency of two times per second. 

 

 

DetectNeighbors performs the function of the built-in Unity Physics system: 

   

Physics.OverlapSphere() 

 

This creates a sphere, centered in the position of the Agent and with a radius equal to 

detectionRadius, and returns all the Colliders that are inside. The sphere is illustrated with the 

gray lines in Figure 4.10. Using the right Layers and masks, we achieve that the 

OverlapSphere will return only Agents and no other objects, such as walls / floors, and 

spefically Agents that are in the same Deck. In order for this function to work, our Agents 

must have two Physics Components: Rigidbody and Collider (Capsule). Let us note here that 

the Rigidbody has been designated as Kinematic and the Collider as Trigger, so the bodies of 

the Agents will not repel each other from the Physics system. We simulate repelling using the 

behaviour (§3.2.2.4) PushAgent when the Agents are very close. The radius PushRadius, 

which PushAgent depends on, appears as a purple sphere of an equivalent radius in the center 

of the Agent. 

 

After OverlapSphere has returned all the Colliders found within, the DetectNeighbors 

finds the Agents that these Colliders belong to, and then stores those Agents in a list, 

detectedAgents. That is, with this process, each Agent comes to have a list of all its 

neighboring Agents. This list will be processed afterwards by the AgentManager in 

PushAgent and AvoidNearest behaviours. The AvoidNearest avoids the nearest Agent within 

the FOV. The FOV is illustrated with the two yellow lines. 

 

The CheckIfStuck is executed every one second (a value of checkIfStuckFrequency 

empirically and practically set) and assigns into a variable the distance of the Agent from the 

very next point of its path. Then it checks if the current distance and the distance that was 

registered in the previous call of the function differ by a small number. If the difference is 

greater than this small number, then the Agent proceeds normally along its path. If, however, 

it is not, this means that the Agent has moved very little during one second, so it is probably 

“stuck” in a corner. That happens sometimes due to the repulsive forces acting between the 

Agents as they are walking closeby to each other. It may happen that an Agent gets pushed 

out of his correct path and gets “stuck” in a small space. In this case, the Agent creates a new 

path to its target position and thus gets “unstuck”. 
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In Figure 4.11, we can see an example where the selected Agent is pushed by the other 

Agents out of the corridor and gets “stuck” in the corner: 

 

 
 Figure 4.11: “Stuck” Agent Example 

 

RecordPath is executed only if the Agent’s recordPath variable is true. Then, the Agent 

registers its position in a list, recordedPath, with recordPathFrequency frequency. At the end 

of the simulation, we can unite all the positions of the list with straight line segments using 

the Component: Line Renderer of the Agent. So, basically, a continuous line is created which 

shows the path travelled by the Agent from its starting position up to the Muster Station. 

 

The CheckIfOnStairs function uses the SamplePathPosition function of its 

NavMeshAgent Component: 

 

navAgent.SamplePathPosition (-1, 0.0f, out stairsHit) 

 

and checks the position of the Agent in the NavMesh. The check result is stored in the 

stairsHit parameter and because this is an out parameter, i.e. it acts as pass by reference, if the 

function SamplePathPosition changes its value, the new value will remain even after the 

function is returned. So, afterwards, by making a binary AND (&) the stairsHit.mask with the 

mask Layer of the stairs we can find if the Agent is walking on stairs or on deck ground. 

 

If the Agent walks on the deck, then we set the variable: 

 

maxSpeed = maxSpeedFlat 

 

If the Agent walks on stairs, then we set the variable: 

 

maxSpeed = maxSpeedStairsUp 
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or 

maxSpeed = maxSpeedStairsDown 

 

depending on whether ascending or descending the staircase respectively. The recognition if 

the Agent goes up or down is done by comparing the height of the second to next point of the 

path to the height of the current position. 

 

Then, the AgentManager uses this maxSpeed variable to control (and clamp) the 

movement of every Agent. At this point, the initialization of the Agent’s periodic functions is 

done. 

 

Aftewards, the Agent checks the value of the boolean variable knowWayToMuster. If 

this is true, then it is considered that the Agent knows where all Muster Stations are, so it will 

calculate the distances from every one of them and will then finally make a path to the 

nearest, using the function: 

 

navAgent.CalculatePath() 

 

If it is false, then it is considered that the Agent does not know where the Muster 

Stations are located, but it always knows where the traffic-instruction signs are, so, similarly, 

it will create a path to the nearest sign where it will get information to make a new path to a 

Muster Station or to another sign.  

 

In both cases, in order for the Agent to be able to use the function CalculatePath, it 

must have the Component: NavMeshAgent. 

 

 

When CalculatePath is executed, it returns a path of NavMeshPath type, towards the 

target the Agent wants to move to. We process this path, using the function: 

 

OffsetCorners() 

 

In Figure 4.12 we can see a screenshot where the Navigation window is also activated, 

enabling us to see the generated (Baked) NavMesh. It is the light blue plane above the floor 

and it defines the “walkable” area in the decks, meaning all the places that an Agent can set a 

target and transverse to.  

 

We will explain what exactly the function OffsetCorners does and how it processes the 

NavMeshPath path, which is returned by CalculatePath, with also the help of Figure 4.13. 
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Figure 4.12: Function OffsetCorners 

 

 

For debugging purposes, we have used a helper function, DrawPathSpheres, which 

creates small red balls at the points that comprise the final path of the Agent. Of course, all 

these visual cues appear only in Unity’s edit mode. In the usual play mode, we can see and 

distinguish only the Agent walking on a deck. 

 

The CalculatePath function returns a path which is comprised of several points, called 

corners, which are right on top of the NavMesh’s edges, i.e. in Figure 4.12 at the northern 

ends of the green line segments where these lines intersect with the NavMesh’s edges. 

However, using these points - corners, the movement of the Agents does not seem very 

natural, because they continually move across the edges of the NavMesh. Moreover, when all 

the Agents have the same destination, they follow exactly the same path and corners. The 

OffsetCorners function calculates for every interior point of the path (i.e. not the first and not 

the last) the angles formed between this point and its previous one, as well as between this 

and its next one. Then it calculates the difference between these two angles and finally finds 

the perpendicular bisector that the two segments form (Figure 4.13). Based on the 

perpendicular bisector a check is performed (function NavMesh.Raycast) to find out if there is 

available “walking area” of the NavMesh within a small distance from the considered point or 

not. If not, then we simply reverse the normalized vector normal which is formed by the 

perpendicular bisector.  
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Figure 4.13: Explanation of Function OffsetCorners  

 

Thus, in any case, a vector that points to the correct side of the NavMesh is calculated,  

where the Agents can walk on. The end of the normal vector is the point (of the new path) 

that the Agent will attempt to walk by. All these endpoints, resulting from the OffsetCorners, 

are saved in a new list, activePath, which is the actual path the Agents follow. We also create 

the red balls in these points for our visual convenience, as explained before.  

 

The result is that the movement of the Agents appears to be more human-like, since they 

will walk near the center of the passageways and not on their edges. Also, by multiplying the 

normal by a random number within a defined range, we achieve that the paths, that the Agents 

follow, differ by some amount, and therefore their movement is not exactly the same. 

 

 

After all the initializations are done and the activePath is created, the Agent’s Update 

function (Unity’s main loop) will continuously be “running” where the following steps will be 

performed each frame (for every Agent): 

 

1. Change the value of the Finite State Machine (FSM) depending on its position.  

2. Calculation of the distance to the next point of the activePath. 

3. Checking if movement to the second next point of the activePath is feasible. 

4. Calculation of the nearest NavMeshEdge. 

 

 

  

Corners of the NavMesh 
 
 

normal 

nextAngle 

previousAngle 

diffAngle = nextAngle - previousAngle 
 
 angle = previousAngle + (diffAngle/2) - 90° 
 
 
normal = Vector3(cos(angle), 0, sin(angle)) 
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Let us further analyze each of the above steps: 

 

1. The Agent checks if it has an activePath, i.e. a path to be followed. 

 

If not, then it sets its FSM, which uses an enumeration AIStatus {Seek = 0, Arrive = 1, 

Idle = 2} and simply records the current state/status of the Agent, in the Idle value, resulting 

that the Agent does not move. 

If it has an activePath and is in less than slowingDistance from the last point of 

activePath, then the FSM gets the Arrive value and the Agent will use the Arrive behaviour 

(§3.2.2.2) to move. 

If it has an activePath and is not in less than slowingDistance from the last point of 

activePath, then the FSM is assigned the Seek value and the Agent will use the Seek 

behaviour (§3.2.2.1) to move.  

 

2. The Agent calculates the distance from itself to the next point of the activePath, 

which is always the first element in the list (List <Vector3>) associated to the activePath. 

 

If this is not the last point, then the Agent will use the intermediateStoppingDistance 

variable’s value and if the calculated distance is less than this value, then it is considered that 

the Agent has “reached” this point so it will be then removed from the activePath. Once this 

(the first) point of the list is removed, the list will automatically shift all the other points 

towards its beginning. So, the point that was previously second, will now become the first one 

and the Agent will start moving towards it. 

If this point is the last one of the activePath, then the Agent will use the value of the 

stoppingDistance variable and if the calculated distance is less than this value, then it is 

considered that it has “reached” its final destination and will call the OnArrived function. In 

this function we can put whatever command we would like the Agent to execute upon 

finishing their path, for example stop recording its path. 

 

3. The Agent “casts” an invisible ray: 

 

NavMesh.Raycast(position, activePath[1], out hit, Int32.MaxValue); 

 

The ray targets the second point of the activePath (the index in Lists and Arrays starts 

from zero). If there is not any obstacle between the Agent and the point, then the Agent can 

remove the first point of the activePath and begin to move directly to the second one (which 

will be first now after the list element shifting). 

This trick helps the Agents to bypass corners with steep values, such as in narrow 

passageways. Figure 4.14 shows that the Agent has casted a ray to the first point of its 

activePath and has not found an obstacle, and therefore has started to target the second one. 

At the next frame, it will send a ray to the next point, but in this case there is a wall in the 

way, thereby a vertical red line is formed at the point where the ray collided with the wall (in 

the Figure 4.14 it’s the vertical line close to the Agent’s “nose”). Also the Agent will not 

change direction in this case.  
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Figure 4.14: The Agent checks if it can skip a path point, shortening its path 

 

 

  

4. The Agent calls the function: 

 

navAgent.FindClosestEdge(out closestNavEdge) 

 

and finds the closest (to itself) edge of the current deck’s NavMesh and stores it in the out 

closestNavEdge parameter. The use of an out parameter was explained in the analysis of 

CheckIfOnStairs function (§4.2). Inside the closestNavEdge parameter, the information of the 

distance between the edge and the Agent is also contained, which we save in the 

nearestEdgeDistance variable: 

 

nearestEdgeDistance = closestNavEdge.distance; 

 

This distance is the white line shown in Figure 4.15. 

 

The AgentManager uses the value of the nearestEdgeDistance variable to check how 

close every Agent is to its closest wall. If the nearestEdgeDistance becomes smaller than the 

PushRadius of the Agent, then the AgentManager will apply a steering vector, through the 

AvoidWall behaviour (§3.2.2.3), that will push the Agent away from the wall. 
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Figure 4.15: The white line is the distance between the Agent and the nearest edge of the 

NavMesh 

 

 

Please note that the Agent has been created as an Empty Game Object to which we have 

added, among other Components, the Script: Agent.cs which performs all the functionalities 

that were just mentioned. The graphical representations of the body (a primitive Game Object: 

Capsule), the head (a primitive Game Object: Sphere) and the nose (a primitive Game Object: 

Cube) are implemented as “children” Game Objects of the Empty Game Object, so they can 

be easily replaced by more complex, detailed, textured models/meshes of people without 

affecting the Agent’s functionality/behaviour. 

 

The head’s color depends on the age group the the Agent belongs to according to Table 

3.1. If we do not use this Table with the IMO values, but instead set its age directly either 

with an Exact value or with a random value inside a Range, then the head will be colored 

gray. The body’s color is green. If the injury system is used, then the Agent has a health score 

which decreases when a severe collision (the relative velocity of two colliding Agents exceeds 

a determined value) happens. At the same time, the color of the body will get darker, until its 

health reaches the value 0 and the color will be completely black. Then, the Agent is 

considered incapacitated, will not move, and act as an obstacle to the other Agents navigating 

through the deck’s NavMesh. The Agent’s body dimensions followed these guidelines: [14].  
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4.3 AgentManager Analysis 
 

 

The AgentManager was created mainly because of the need to have a central control of 

a large number of Agents. 

On the computer we have been working, the application performance (measured in 

Frames per Second - FPS) started to deteriorate when there were more than about four 

hundred Agents in the scene. Then, because of the the reduced FPS, the movement of the 

Agents seemed abnormal and “jerky/stuttered” as the frames were updated by significant time 

intervals. So, a way had to be found to enable the application to handle a large number of 

Agents (e.g. one thousand) in a satisfactory FPS. 

 

The first attempt was made with using the coroutines of the C# language. Their 

implementation in Unity allows for a function to begin, pause at some point and then continue 

from where it stopped at a later time. We used the coroutines as follows: 

 

 The AgentManager initially separated the Agents into groups (e.g. per hundred), and 

in the first frame it calculated the Steering vectors for the first group. The coroutine 

paused at this point. 

 In the second frame, the coroutine remembered where it had stopped and continued 

the Steering vector calculations for the next group. 

 Similarly, the Steering vectors for all the rest Agent groups were calculated in the 

subsequent frames, so afterwards, the process will start again with the first group. 

 

The disadvantage of this method was that when we had a large number of Agents (e.g. 

one thousand – 10 groups of 100), the first hundred will be updated with their Steering vectors 

in the first frame, but their next update will be done after ten frames, in the 11th frame. The 

result is that the Agents moved for ten frames by a Steering vector that might no longer be 

correct. So, the Agents could be located within the space of others or inside a walled area 

without having acquired correctional vectors (from the corresponding behaviours) to avoid 

these situations. 

 

In the end, we implemented multithreading programming [15]. It supports threads, i.e. a 

short sequence of programming commands that can be executed concurrently on multiple 

separate cores of modern processors. 

 

To achieve multithreading programming in Unity we used the free version of Loom 

library. The principle of this implementation resembles the one from coroutines. We will 

further explain right next: 
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 We find the number of cores: SystemInfo.processorCount (e.g. four). 

 The ideal would be to create a thread per core. Therefore, we divide the multitude of 

the Agents in the scene (e.g. a thousand) by the number of cores. The AgentManager 

will then create four threads where in each frame, they will “take over” 1000/4 = 250 

Agents. 

 The four threads will “run” at the same time and when one of them is finished with 

the calculations of the Steering vectors of the Agents, a counter will be increased by 

one. 

 When this counter reaches the number of cores (= number of threads) then we know 

that the calculations of all Agents are finished and we can now apply the Steering 

vectors in the Agents’ movements in the AgentManager’s Update function. 

 We reset the counter for the next frame. 

 The above four steps are repeated in the AgentManager’s Update function until the 

application ends. 

 

Multithreading starts in each frame in the Update function when the function is called:  

 

RunAsync() 

  

This divides the number of Agents by the number of cores and creates as many threads 

as the available cores. Each generated thread “takes over” as many Agents as the result from 

the division: total Agents / number of groups. Thus, e.g. the first thread has the 1-250 Agents, 

the second has the 251 to 500, etc.  

The threads creation is done using the function: 

 

StartThread(from, to) 

 

Where from is the index of the first Agent and to is the index of the last Agent in the 

group of this thread. The StartThread calls the function RunAsync of the Loom library: 

 

Loom.RunAsync(() => { … }) 

 

Within the parameters of the RunAsync function we can see the lambda expression 

symbol =>. Therefore, the code that is located between the brackets turns into an action, 

which Loom’s RunAsync requires as a parameter. The Action is a delegate that does not return 

a value, i.e. as a void. C#’s delegate corresponds to C++’s function pointer, i.e. a variable that 

stores the address of a function in memory. So, when we use the function pointer, the 

function, in which the pointer is pointing at, is called. Usually, they are used as parameters to 

functions, e.g. callbacks / listeners types.  
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Loom’s RunAsync function adds the action parameter in the queue of the operating 

system’s ThreadPool. Once a free thread is found, the ThreadPool will perform the action: 

 

ThreadPool.QueueUserWorkItem(RunAction, a); 

 

where a is our action and RunAction an auxiliary function. 

 

The action, i.e. the code between the brackets, is responsible for adding all the Steering 

vectors, for every Agent, derived from the different behaviours (§3.2.2.1 up to and including 

§3.2.2.5) and for the storage of the final sum to the SteerList list which is a List <Vector3>. 

Thus, the calculations to obtain the Steering vectors are done in threads, helping us to 

avoid a drop in performance and low FPS of our application. 

 

We should now emphasize that because of the way the Unity is constructed, there is a 

major limitation: 

Only Unity’s main thread has access to the classes and functions of the Unity API 

(Application Programming Interface). This means that the threads we create, do not have 

access. They can only use the basic types of variables (e.g. int, float, bool, etc.) and structures. 

So, in our threads we cannot perform many Unity’s functions, such as: 

 

Physics.OverlapSphere() 

 

to find neighboring Agents. 

 

Therefore, Unity API’s functions are performed in each Agent’s Update function 

(§4.2). Similarly, we cannot change an Agent’s position from our Threads because we do not 

have access to the Agent’s Transform component. In this case, we used only Unity’s main 

thread (and AgentManager’s Update function) where we do: 

 

for (int i=0; i < AgentList.Count; i++) 

{ 

AgentList[i].position += AgentList[i].velocity * deltaTime; 

AgentList[i].localEulerAngles = new Vector3 (AgentList[i].localEulerAngles.x, newY,  

AgentList[i].localEulerAngles.z); 

} 

 

i.e., we alter the position and rotation/orientation of all the Agents necessarily in the main 

thread. 
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However, we took advantage of the fact that the Vector3 is a Struct, so we can 

use/manipulate it in our own threads. Therefore, we have implemented all the Agent 

behaviours in the AgentManager in such way as to have as inputs the major types and / or 

Vector3 and similar type outputs. Thus, the threads can call the functions that implement the 

different behaviours for each Agent (recall that the AgentManager maintains a list containing 

all the Agents in the scene, the AgentList). Within these functions the necessary calculations 

are made and the total Steering vector, resulting from the sum of all the Steering vectors of 

the behaviours, is stored in a second list of the AgentManager, the SteerList, which is also a 

List <Vector3>. Obviously, the element AgentList[i] refers to the same Agent as the element 

SteerList[i], i.e. the two lists have the same indexes for the Agents. These lists are shown in 

Figure 4.16 which shows the AgentManager’s Inspector and its script (AgentManager.cs). 

 

 

The AgentManager has another list, AgentCollidedList, which is private and therefore 

not shown in Figure 4.16, that records which of the Agents have collided too severly so they 

will lose health [16] and change their body’s color. To change the color we must have access 

to the Agent’s material, so we can only change it from Unity’s main thread. Thus, in the 

behaviour PushAgent (which “runs” in our threads), when two Agents are found inside each 

other’s PushRadius, we check their relative speed and if it exceeds a threshold, then the 

collision is considered severe and these two Agents are stored in the AgentCollidedList. In the 

Update of the main thread, each Agent in this list calls its function: 

 

AgentCollidedList[j].Collided() 

 

which is responsible for the reduction of its health and the color change of the material of the 

body. 
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Figure 4.16: AgentManager and its main script of the same name 

 

 

Figure 4.16 also shows the second usage of the AgentManager which is to assign values 

to the parameters of the Agents. As we said in §3.2.1, if the GetValuesFromManager variable 

of an Agent is true, then this Agent will not use the values set in its Inspector, but it will get 

its values from the AgentManager at the beginning of the application. This is an easy and 

quick way for us to define the parameter values of a large number of Agents without inserting 

them in individually. 
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Finally, we note that the AgentManager has been implemented as a Singleton [17]. It is 

a programming design pattern, which enforces the existence of just one object of a Class. 

Generally, Singletons are used when we need a central control point of our system’s internal 

or/and external resources. Thus, all kinds of managers, like the AudioManager, 

LoggingManager, SerializationManager, AgentManager, etc, are usually implemented as 

Singletons. 

 

So, our AgentManager is responsible for:  

a. creating and using the threads that simultaneously handle the behaviours of all the 

Agents, 

b. controlling the movement and rotation of all the Agents. 

 

Also, since it operates in a global scope, it is very easy for the other Scripts to access its 

public variables and functions. A simple example: 

 

AgentManager.Instance.AgentList.Add(this); 

AgentManager.Instance.SteerList.Add(Vector3.zero); 

 

That is, when an Agent is created, they immediately add themselves (this) in the 

AgentManager’s AgentList. They also add an initial zero vector to the corresponding Steering 

vectors list, SteerList. 

 

We implemented the version Persistent Singleton, where there is this command: 

 

DontDestroyOnLoad(); 

 

which informs Unity that this object, the Singleton AgentManager, will not be destroyed 

when a new scene is loaded (as happens to all other game objects). So, when we are in the 

scene where we change the AgentManager’s parameter values in a graphical environment 

(§3.2.1) and then we load the main stage of the simulation, the AgentManager won’t be 

destroyed and retain all its values. 

 

A disadvantage of the Singleton is that it should be created from the very first initial 

scene (main menu) and then it will not be destroyed when we move to the fundamental 

simulation scene. But, if we want to work on the simulation scene and load it in the Editor, 

then there will be not an AgentManager as a game object, because we haven’t loaded the first 

scene where it is created. To solve this, we have to make a copy of the AgentManager game 

object in the scene that we want to work on, which will later give parameter values to the 

Agents. Then, if we run the application from the beginning, the standard AgentManager will 

erase this copy and the simulation will work correctly. To be sure, we set the 

AgentManager.cs first in the Script Execution Order (Edit => Project Settings => Script 

Execution Order). [This created a bug in the 4.6.4 version due to multi-threading, so we did 

not use the Script Execution Order in the end].  
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4.4 Simulation Finalization 
 

 

When an Agent arrives at a Muster Station, we destroy it, in order to avoid having a 

very large number of Agents in a small space which would cause a reduced application 

performance due to the increased calculations needed because of the fact that every Agent has 

many neighbors. Moreover, we set the corresponding entry of the destroyed Agent as null in 

the AgentManager’s AgentList where all the Agents in the scene are registered. 

 

However, before destroying the Agent, we check if their recodPath variable is equal to 

true. If so, we copy its path list to the AgentManager (AddToAgentPathsList function), so this 

path will not be lost by the destruction of this the Agent. 

 

Moreover, when an Agent collides with the Muster Station’s Collider, we check if this 

Agent is the last active (CheckIfEvacuationComplete) one. As active, we consider any Agent 

which has not been set as null in the AgentList (i.e. has not reached yet the Muster Station) or 

is not Incapacitated. Therefore, the simulation will be completed when there are not any 

active Agents. In code, the concept is the following: 

 

if (!AgentList.Exists( element => element != null && element.isIncapacitated == false)) 

 

where element is the parameter of the lambda expression. 

 

When the simulation is competed, we stop the timer, store its value in the Times file in 

the Reports folder and set the AgentManager’s isEvacuationComplete variable equal to true. 

Then, the Script: GUIDisplay.cs will show four additional buttons, two for congestion: Show 

Max Congestion, Save Congestion Information and two for the Agents paths: Show Path 

Routes, Save Path Routes (Figure 4.17 top). 

 

The first shows the maximum value observed (function ShowMaxCongestion) in every 

Congestion Area object. The second window stores, in the folder Reports, a file with its 

filename comprising of the object name and the date/time that it was created. Example: 

CongestionAreaDeck7_01_230520151754. In this file, the value of the congestion in this area 

is recorded with a period specified by the checkPeriod variable in the Script: Congestion.cs 

(Table 4.1). This recorded value shows how many Agents are located inside the Congestion 

Area’s Collider. For the programming implementation of the congestion concept, we created 

the class: TimeCongestionValue and a list (CongestionList) of values for this class. The 

recording is accomplished by: 

 

writer.WriteLine(CongestionList[i].Time + “,” + CongestionList[i].Value); 
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The button Show Path Routes shows the paths of those Agents having recordPath = 

true. They are shown as gray lines, [18] and [19], created by Line Renderers (AgentManager’s 

function ShowAllPathRoutes). For each point i of path, we do: 

 

lineRenderer.SetPosition(i++, pathPoint.Position); 

 

So, the lineRenderer connects all the points of the path up to the collision with the Muster 

Station’s Collider where the Agent was destroyed. 

  

The last button Save Path Routes saves, in the Reports folder, the file named: Paths 

along with the date and time of creation, e.g. : Paths230520151754. We used the class: 

TimePositionValue that we have created in the Script: Agent.cs. The file contains the time 

stamps and the locations of every point in the pathPoint list. For every position, we do (Figure 

4.17): 

writer.WriteLine(pathPoint.Time + “,” + pathPoint.Position.ToString()); 

 

 
Figure 4.17: Simulation Finalization 

 

Table 4.1: Example of congestion values versus time (sec) 
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4.5 Test Scenes 
 

 

In §3.1 we analyzed MSC’s advanced evacuation analysis method according to [2]. 

There, MSC also suggests some tests to measure the conformity of the programmed model 

and software. These are: 

 

1. Constant speed maintenance in a passageway. 

2. Constant speed maintenance ascending stairs. 

3. Constant speed maintenance descending stairs. 

4. The flow rate in an exit should not exceed 1.33 persons/s. 

5. Agents should have different personal response times. 

6. The ability to pass through passageway/corridor angles without penetrating the walls. 

7. Agents should have different speeds according to Table 3.2. 

8. Proving that the total evacuation time is increased when there is reverse passenger 

flow. 

9. Proving that the total evacuation time is reduced when there are more exits in the 

same space. 

10. Agents should be able to choose different exits depending on their distances. 

11. Demonstration of congestion area in a passageway that leads to a staircase. 

 

All of the above tests have been implemented except Test5, because in our 

implementation, we have used the AgentManager as the entity responsible for moving all the 

Agents. So, when the user presses the Start button for the evacuation simulation to begin, all 

the Agents will start moving simultaneously. If each Agent was controlling its own 

movement, then it would be very easy to have and use a different response time as well. 

 

We can check the rest of the tests at the homonymous test scenes that we've created. We 

access these scenes through the main menu by selecting the button: Test Scenes, which opens 

a second menu with all our scenes.  

 

When a test scene included a large number of Agents in a small area, our application 

could not handle the simulation and the performance dropped. An example is Test4, where 

100 Agents are in a room with one single exit. They were hugely compressed by the repulsive 

forces of the other Agents. Thus, they couldn’t maintain their proper volume and the flow rate 

through the exit was greater than the allowable. 

 

Also, in Test9 where there are 1000 Agents in a large area, we observed decreased 

program performance, i.e. a reduction in the number FPS and loss of control of the Agents’ 

movement.  
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Figure 4.18: Test Scene Example 

 

 

In Figure 4.18 we can see a snapshot from Test10 where the Agents of the four 

rightmost rooms are moving to the right exit, while the Agents which started from the other 

rooms are directing to the main top exit. 

 

We should now note the user-friendly way of how we created every Test Scene’s 

description which is placed in the bottom left corner (see Figure 4.18). We used an XML file 

[20] in which we had the all the scenes descriptions and the dimensions of the windows that 

would display them. For example for Test10: 

 

 <sceneRecord> 

  <name>Test10</name> 

  <description>Test 10: Exit route allocation 

The passengers in the 4 right rooms are allocated the  

secondary exit. All the remaining passengers are  

allocated the main exit. The expected result is that  

the allocated passengers move to the appropriate exits.</description> 

  <length>330</length> 

  <height>85</height> 

 </sceneRecord> 

 

Then, using the: XmlDocument, XmlNodeList, and XmlNode in our code, we get the 

data that correspond to the current scene and display them in a window with the mentioned 

dimensions. 

  



 73 

Chapter 5 

 

Conclusions 
 

 

Working in Unity, we confirmed the benefits it offers as a 3-D rendering engine. In its 

editor there are many premade Components, such as: Collider, NavMeshAgent, TextMesh, 

etc., but also whole Systems, such as the lighting and shadows system or the physical system. 

These can be fast incorporated into the application that we want to create, saving us the 

required time to develop everything from the beginning ourselves. Moreover, the 

programming language C#, that is mainly used in Unity, along with the Mono development 

framework provide us many libraries which are compatible with the .NET development 

framework. So, the volume of code to be written is even more lessened. 

 

In this application, however, several problems arose: 

 

1. Unity’s navigation system, which we used to provide the NavMeshAgents with a 

path-finding ability, has difficulties of simultaneously servicing a large number of 

Agents. For example in our current computer, when there are about 500 Agents in 

the scene, their control is very good. But if about 1000 Agents are located in the 

scene, then their movement starts to become defective. This phenomenon is clearly 

visible in many cases where Agents are concentrated in a small space (Test4 and 

Test9). Then, there is also the possibility that the Agents will walk out of the 

NavMesh’s edges and be completely out of control. 

We tried to make our own path-finding system with the A* algorithm, but it 

proved to be too slow for so many Agents. 

 

2. The basis of the application was not built correctly. This happened mainly because of 

the changes that were made during the development cycle. As an example, the Script: 

Agent.cs initially had all the controls and functions of the Agent. That is, every Agent 

was responsible for only themself. However, when the problem of managing many 

Agents appeared, we changed the application so that the Agent carries out only the 

necessary checks (e.g. how close they are to the next point on the path, or which is 

the nearest wall-edge). The movement and the different behaviours that need those 

checks were transferred to the AgentManager which is responsible for all the Agents. 

Thus, having a global supervision, we were able to use multi-threading 

programming.  

Even with this arrangement, improvements can be made, for example by 

separating the Script: Agent.cs into two classes. Then we would have a class with all 

the parameters - characteristics of the Agent and a second one with the all the checks 
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performed by the Agent periodically. The first one would not have to inherit 

anything from the MonoBehaviour class, so we could have the ability to implement 

null Agents, something that proved a big complication and problem. 

 

3. As we said earlier, we used multi-threading programming to take advantage of 

modern processors’ multiple cores. We assigned groups of Agents to threads which 

were served by the cores. But there is one major limitation: Unity API’s functions 

can be called only by the main thread. For this reason, we had to let the Agents 

perform their checks in a non multi-threaded way. If, for example, an Agent wants to 

find its neighboring Agents, they do it in the main thread. We cannot use the 

AgentManager to call the function: Physics.OverlapSphere() through one of its 

threads. So, all the Agents run their checks together in the main thread. Suppose that 

each Agent finds 10 Agents within the OverlapSphere area. Then they have to do: 

GetComponent<Agent>() for every one of the 10 Agents, which is a very slow 

function. This shows how much the application is burdened, thus reducing its 

performance. Unfortunately, for this limitation we cannot do something, since it’s a 

Unity API’s limitation. 

To find neighboring Agents, a better alternative could be to use KD-trees or 

Quadtrees (2 dimensions) / Octrees (3 dimensions), but they should be developed 

entirely from the beginning instead of using Unity’s Physics system. 
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