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Summary

In many systems (e.g. random/stochastics dynamical systems) in which researchers are
interested in finding probability density functions (pdf(s)), which describe the system, we
have observed that they approximate these pdfs by a superposition of some appropriate
functions (which are called approximation to the identity or delta family), which is different
at any approximated point, generally; see Athanassoulis, Sapsis (2008). Furthermore, when
researchers have data, they use estimators which are similar with the aforementioned
approximation form (delta estimators); see Brox et all. (2007), Bengio (2003). Although their
results are very effective, there is not a proved mathematical construction in the literature
which allows this approximation. Our motivation was to cover this gap in the literature,
although this good has not been fully achieved, and there is one question remaining
unanswered.

Initially, we want to give a rigorous mathematical construction of this approximation, and
secondly to link this result with other mathematical fields (classical analysis, estimation
Statistics, and Large Sample Theory) highlighting their similarities.

In Chapter 2, we show the importance of the approximation method which we shall use, and
the necessity of existence of a discrete approximation of a multidimensional pdf. In
particular, in the first part of this chapter, we prove completely the Fourier inversion
Theorem. This is an important theorem in mathematical analysis, which is based on the
convergence which we shall describe. Continuing, in the second part of Ch. 2, we cite an
application of a random dynamical system where we can realize that we need a discrete
approximation form.

In the following chapter (Chapter 3) we present the main results of our work. In particular,
we present a series of theorems establishing that any multidimensional pdf can be
approximated by a superposition of Gaussian pdfs (or more general functions/kernels). In the
simplest case, we can assume spherically symmetric kernels, and easily can be generalized to

ellipsoidal ones in orientation of the usual basis of RN . In the most interesting case, which
we study here, we can assume general ellipsoidal kernels in any orientation. Firstly, we prove
that any pdf can “generate” a family of approximation to the identity (or delta family).
Subsequently, we show the central theorem of this chapter, in which we prove an integral

approximation of any pdf h, namely  lim I Ks, (x) (x=u)h(u)du = h(x),
G, (x),< N A

where G/l (x) is a family of matrices in an appropriate directed set. In the third part of this
chapter, using the Riemann Sum, we give a discrete approximation form by a superposition
of Gaussian pdfs, and we prove that we can change this superposition at any approximated

point of support of pdf. It means, we can achieve better approximation with less points of the
partition, i.e., we can decrease the computational cost. In other words, we prove that

h(x) = Z P, K( X—=U;; é( x) ) where C( x) is the localized covariance matrix,
(el



and p, are unknown constants. As we shall see, there are many common points with the

Fourier inversion Theorem. The basic deference is that we require (it is a nature condition)
positivity of family of approximation to the identity. This additional condition makes it
different, and it is the reason we study the approximation of pdfs separately.

Last, in Chapter 4, we deal with estimation of pdfs. We define the delta sequences estimators,

n
° 1 . .
fa(x) = - E Km( X, X; ), and we present the most basic of the kernel estimators
-

(which are delta ones). Then, we focus on theorems of asymptotic unbiasedness, ;i.e.,

E ( fn( X)) )— f(x) 2% 50, and consistency of variation term, i.e.,

o ( X)—E( f( X))—P>O in LI(RN,%N,,U). In last years, functional data have been

developed in statistics. For this reason, we generalized the above definitions in infinite
dimensional spaces, and we present some recent published results in Banach spaces.

At first glance, integral approximation, and estimation of a pdf are different methods.
However, the fact that the expected value of a delta estimator can be written in the following

form, E ( f (%) ) = I K, (x,z)f(z)u(dz), allow us to link these two methods.
R N

Studying the bias problem, we shall show that E ( fn( X) ) — =2 f(x), which is the

same problem as the integral approximation of a pdf. On the other hand, if we assume all p,

are equal, then the discrete form which we derive in Chapter 3, looks like with a delta
estimator. Finally, as we shall notice, either we refer to the classical analysis, either to the
approximation-estimation of pdfs, the properties of families of approximation to the identity
play a key role on proving the theorems.



Xovoyn

Ye apketd ovotnuaTo (7). TUYXOI0/GTOXOOTIKA SUVOUKE GUGTHUATO) OTOL Ol EPEVLVNTEG
eVOLPEPOVTOL V. BPOVVE AYVMOOTES GLVOPTNGELS TLUKVOTNTAG TOAVOTNTOG (OTT), Ol OTOlEG
TEPLYPAPOVY TO GUGTNLO, TOPATNPNCAUE TOG TPOCEYYILOVY AVTEG TIG AYVIOGTEG ONTT LLE LIl
vépOeon KATAAANA®V GUVOPTNCE®V (OIKOYEVEIEG TPOCEYYIONG TNV HovAadag 1M OéATa
OIKOYEVELEG), SLOPOPETIKN YeViKd o€ kabe onueio mpog mpocéyyion; BAéme Athanassoulis,
Sapsis (2008. EmmAéov, Otav ot peuvnTéc £XouV ded0UEVE, YPNOUOTOLOVV EKTIUNTES TOL
potdlovv pe v mpoavapepbeioa mpocéyyion (déAta extyuntéc); BAéme see Brox et all.
(2007), Bengio (2003). ITopoAo OV TO OTOTEAEGUOTO GTO OTOI0L KATAARYOLV Eival opKETE,
wavomomtikd omv Piprloypaeio dev €yovpe, 600 kot ov yaape oe Omol TNYY
UTOPOLGALE, Ppel o omodederyuévn HOOMUOTIKY] KOTOUOKELY] 7OV VO EMITPEMEL TNV
TOPOUTAVE® TPOGEYYION.ZTOYOG VNG NG EPYACTOg NTOV Vo KAADWEL aKkplPdg avTd TO KEVO,
TapOA0 OV dev emiteLyOel amd TANPN emTLYiO KL EVOL EPAOTNLOA TOPAUEVEL AVATAVTNTO.

EmBopodue oapyikd vo O®GOLHE Mo ovoTNPY]  HOONUATIKY] KOTOGKELN] OVLTAG NG
TPOCEYYIONG, KOl OEVLTEPOV, VO GUVOEGOVLUE TO OMOTEAEGUO HOG HE GAAOVLG TOMEIS TMV
HOONUOTIKOV (KAOGOIKT avOALGT), EKTIUNTIKY GTOTIOTIKN Kot Oswpion peydAmv derypdtmv),
AVaOEIKVDOVTOG TO KOV TOVG GTOLYE .

>10 Kepdiaio 2 delyvovpe v ONUOVTIKOTNTA TG TPOCEYYIoNG TOL Oa XPNGUOTO|GOVLE
KOL TNV ovayKooOTnTo VoL DITEPYEL Lo SLOKPIT LOPON TPOGEYYIONS LING O, LVYKEKPLUEVOL
0TO TPATO WEPOG TOV KEPOAOIOL ATOOEIKVOOVUE TANPMOS TO Be®pnUo OVTICTPOPNS TOV
petacynuaticpov Fourier. Mo modd onuavTiky €Qoppoyn ot podnuotikn avaiven 6mwov
Bacileton otV 6vyKAon mov Bo TEPTYPAWYOLLE. XTN GUVEYELD, GTO OEVTEPO HEPOG TOL OOV
KepaAaiov mopabétovpe por epaproyr evOg GTOXUGTIKOD SVVOLIKOD GLUGTHWOTOS KOTA TO
omoio yivetal avTiiAnmtd mmg ¥pelalOUacTE pio S10KPLTH) LOPPT] TPOGEYYIONG.

Y10 emopevo kepaiato (Keg. 3) mopovsialovpe T TO GNUOVTIKE QTOTEAEGLLOTO ALTNG TNG
dovAeioc. Xvykekpuévo mapovotdlovpe por oepd amd Beopriuota deiyvoviog Ot Kibe
TOAVOIAOTATN OGN UIopel va mpoceyylotel 660 koAd BéAovue amd o veépbeon Gaussian
ont (] Kol YEVIKOTEP®V OCULVAPTNGEWV). XTNV OMAOVOTEPT TEPITTM®ON UTOPOVUE VO
Bempnoovpe GEPOIPIKOVG TLPNVEG, KOl €OKOAO VO YEVIKEDGOLUE GE EAAELYOEWONG OTNV

katevBvvon g cvvndng Pdong tov RN, 2V mo eVOPEPOLGA TTEPITTWGT, TNV Omoia
peretape £0M, Be@pPoOUE YEVIKOVS EAAENYOELING TVUPTVEG GE OMOLOINTOTE TPOCAVATOMGHO.
Apywd omodeikvbovpe 0Tt kGBe omm “yevwd' o tétolo OKOYEVELD. XTN GLVEXEL,
dglyvoupe 10 KEVIPIKO Oedpnua TOV KEPOAGIOL GTO OMOI0 AMOOEIKVOOLE W0 GULVEYN

npocéyyon i kéde onm., h, Snh. lim I Ke., (x) (x-u)h(u)du = h(x),
G, (x),< N A

omov G 2 (X) elval (o 01KoY£EVELN TIVAK®Y OV OVIKEL O KATO0 KATAAANAO KATELOLVOLEVO

obvoro. Xt0 Tpito uépog, ypnowomoldvtag to Riemann abpoiopa, divoope pia dtokprm
npocéyylon wog onm amd vrépbeon Gaussian cuvvoptioswv. Emmiéov, 10 onuavtikdtepo
etvat 011 og k@B onpeio 61O GTAPLYUE TNG O UTOPOVLE Vo AALALOVUE aVTH TNV VITEPDEDT).
AvT6 givor oA oNUOVTIKO OmOTEAEGHO O1OTL LITOPOVUE VO TETVYOVE KAADTEPT TPOCEYYIoN



Vi

pe Myotepo onueion TG SWOUEPIONG OV YPNCULOTOIOVUE Ylo. TNV TPOGEYYIGT, TO ONOIO0
onuaivel peimon TOL  LTOAOYIOTIKOD KOOTOVG. Me AGAlo Adyw Bo  deiovpe Ot

h(x) = Z P, K( X—=U;; C( X) ), OOV C( X) glvar 0 TOMKOG  TivOoKag
el

ovvdlokvpaveons. Onmg Ba dodue vapyovv apketd kKovd otowyeion pe To Bempruota ™G

KAootkng avaivong. H ovolaotiky dtapopd eivar 6Tt {NTape o1 01KOYEVEIEG TPOCEYYIONG TG

povadag, mov Ba ypnoomomoovue, vo givar Oetikég (puoikn ocvvOnkn). Avti 1 emmAéov

10T dropopomotel To TPAypHoTo Kot €ival 0 AOYoS Yo ToV 0Toio TPEMEL VO, LEAETICOVLLE

EEXYWPIOTA TNV TPOGEYYIOT| TOV GTT.

Téhog, oto Kepdhato 4, acyorobpacte pe v extiunon onm. Opilovpe yevikd tovg €At
n
P 1 . . ,
EKTIUNTEG fn( X) == E Km( X, X; ), Kot yivetal 1 Topovciosn TV O GNUOVTIKOV
n
=1

OEATOL EKTIUNTAV. TN GLVEYELN, ETIKEVIPOVOUAOTE OEMPNUOTO OCVUTTOTIKNG OUEPOANYING,
SNA. E( fo( X))— f(x)—2250, ku cvvéneiag, Snh. fn( X)—E( f( X)) P50

TOV OEATO EKTIUNTOV GTOV Ll( RN 8N, ,u). Ta tedevtaio ¥poOVIo. 6TV GTOTIOTIKN £XOLV

avantuydel T Aeyopeva cuovapmnolokd oedopuéva. [a avtd tov Adyo, yEVIKEDOLUE TOVG
Topandve opiopodc o Banach ydpoug kot mapovctdlovpe To GNUAVTIKG 0TOTEAEGLOTO TTOV
TPOCPUTA £XOVV ONLOGIEVTEL GE TETOL0VG YDPOVG.

Me pia mpdT potid, 1 TPOGEYYIST KO 1) EKTIUNGCT] HOG OGN POIVOVTOL OLOPOPETIKES
pébodot. ITapdro avtd, T0 YEYOVOS TG M UEST TN €VOG OEATOL EKTIUNTN YPAPETAL GTNHV

akolovdn popeny, E ( f (%) ) = I K, (x,z)f(z)u(dz), pog emrpénet vo cuvdécovpe

N
avtég TIg OVo peBOIOLG. Zvynciptuéva HeEAETOVTAG TO TPOPANUa g apepoinyiog Oa
deiéovpe 6Tt E ( fn( X)) ) — 225 f(x), 6émov eivar t0 S0 mPOPAnpa  mov
AVTILETOTILOVLE OTN TPOGEYYION OGS O, AT TNV GAAN HEPLY, OV GTNV JOKPLTH LOPON
TpocEyylong mov divovpe oto Keg. 3 Bewpnoovue oha ta p, ioo, tote poalet apketd pe
évav délta extyurr). Emiong, 6mwg Bo moapatnprioovue gite ava@epOUOcTE GTNV KAUGGIKN

avéivon, eite o wpocEyyon-extiunon onm kaboploTikd POAO OTIG OmOOEigelg TV
Bewpnudtov Tailovy o1 IOTNTES TV OIKOYEVEIMV TPOGEYYIONG TNG LOVADIGS.
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Notation

NOTATION

(K5)5>0
A
Leb(f)
f
X(t;w)

y(t,w)
Pfi}f

Px(t)y(s)(U,V)
1:x(t)y(s) (a ) b)
fycy (0)

o -—t
8Ty UV
ou(t)

C, RN =R
fGauss

Q
Eo(0;512)

an approximation to the identity

Lebesgue measure
Lebesgue set of a function f e Ll(R N )

Fourier transform of a function f e Ll(R N) (Chapter 2)

random (or stochastic) response (or output)
random (or stochastic) excitation o(or input

infinite dimensional measure of the Borel sets of the sample (functional)

Banach.2&> space
characteristic functional of joint response-excitation

characteristic function of joint response-excitation
joint (two-time) response excitation probability density function
excitation pdf

Dirac delta generalized function at time t

Z =

Volterra u—partial derivative of .7,

the space of bounded continuous functions defined on & "

Gaussian pdf

proper rotation matrix
ellipsoidal by orientation Q

covariance matrix of Gaussian pdf

A —dependent localized covariance matrix
correlation coefficients of covariance matrix C

correlation coefficients of the A —dependent localized covariance matrix
probability space

essential supremum of f

estimator of f (Chapter 4)

balloon estimator

sample point estimator

binned sample point estimator

delta sequence

Banach space
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Pdf Probability Density Function

ARK Approximate Reproducing Kernels

MISE Mean Integrated Square Error

AMISE Asymptotic MISE
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2 Chapter 1

1.1. Motivation and scope of the present work

In many systems that involve random functions we are interested in finding their probability
density functions (pdf(s)). Examples of such systems are the random/stochastic dynamical
systems described by random/stochastic differential equations. Athanassoulis, Sapsis (2008),
New partial differential equations governing the joint, response-excitation,probability
distributions of nonlinear systems, under general stochastic excitation, and Venturi et al.
(2012), A computable evolution equation for the joint response-excitation probability density
function of stochastic dynamical systems, study such models, in which they derive first order
differential equations for the joint response-excitation pdf of a particular system. In addition,
we often encounter such systems in Statistics. In Statistics, researchers use various statistical
estimators to estimate the unknown pdf.

As we have observed in these systems, researchers use a superposition of families of
approximations to the identity to estimate the unknown pdf, and especially Gaussian pdfs
(Gaussian kernels). In addition, they can change this family at any approximated-estimated
point; see Athanassoulis, Sapsis (2008), Sec. 8, 9. This becomes clearer as we consider some
articles, such as Susarla, Walter (1981), Estimation of a Multivariate Density Function Using
Delta Sequences, who deal with positive type delta sequences in section 2. Also, Nolan,
Marron (1989), Uniform consistency of automatic and location-adaptive delta-sequence
estimators, who were the first researchers to present locally adaptive estimators, and to prove
some important results. During the last few years, scientists who deal with Large Sample
Theory have developed these methods, and have published many results and insights.
Specifically, Sain, Scott (1996), On locally adaptive density estimation, Sain (2002),
Multivariate locally adaptive density estimation, Vidal-Sanz (2005), Pointwise universal
consistency of nonparametric density estimators, present locally adaptive delta estimators,
and show asymptotic theorems for unbiasedness and consistency. Also, there is applied
research, such as, Brox et al. (2007), Nonparametric Density Estimation with Adaptive,
Anisotropic Kernels for Human Motion Tracking, Eqgs. 5 and 6 of Sec. 3 who deal with the
human motion tracking using exactly those estimators, and Bengio et. al. (2006) Non-Local
Manifold Parzen Windows

After having examined the results of aforementioned research, see Athanassoulis, Sapsis
(2008), Sec. 11, and Brox et al. (2007), Figure 1 (pp. 156), and Sec. 4, we have concluded
that the above approximation is effective. However, we did not find in the literature (as long
as we have searched, and at any source we could) a rigorous mathematical construction
which allows this particular approximation.

Our initial aim was exactly to cover this gap, although this good has not been fully achieved,
and there is one question remaining unanswered. We want to construct a theory, and within
its frame to show that any pdf can be approximated by a superposition of families of
approximation to the identity (or delta families). The most important part for the application
is that we can approximate any pdf by a superposition of Gaussian pdfs, and thus we can
change this superposition at any approximated point. It is obvious that our aim is not to prove
a general theorem, but we want to construct the mathematical tools, such that, we could
solve/cover this particular problem/gap.

Our aim is not restricted in only the aforementioned one, but we, also, have a more general
one. We would like to link our technique of approximation, with other fields of mathematics.
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In particular, we try to highlight the similarities between the fields of mathematical analysis,
estimation Statistics and Large Sample Theory. With the proofs, which we cite and our
comments where we deem necessary, we, largely, succeed in it. The reader will understand
that the particular convergence and the approximation (continuous and discrete), which we
use, play a significant role in mathematics, and exactly with this, we can prove strong
theorems, such as the inversion of Fourier transform.

Despite the essential objectives of this work there is also a personal objective, but an equally
important one. Through this thesis, I intend to broaden my knowledge and to incorporate with
new techniques and ideas. This means, I intend to learn how to handle a problem and to
realize that mathematics are not divided into sectors, but they are a unified whole where each
time we just use the tools that we need (or construct them) in order to solve a problem. We
believe that this objective has been achieved to a great extent.

Finally, we tried our text to be as complete as we can. We cite the proofs and the definitions
completely, and the preliminaries that we deem necessary for better understanding of
concepts. In addition, we have tried to present/analyze recent papers, so readers could be
informed with recent results.

1.2. Preview of chapters

In Chapter 2, we show the importance of the approximation method which we shall use, and
the necessity of existence of a discrete approximation of a multidimensional pdf. In
particular, in the first part of this chapter, we prove completely the Fourier inversion
Theorem. This is an important theorem in mathematical analysis, which is based on the
convergence which we shall describe. Continuing, in the second part of Ch. 2, we cite an
application of a random dynamical system where we can realize that we need a discrete
approximation form.

In the following chapter (Chapter 3) we present the main results of our work. In particular,
we present a series of theorems establishing that any multidimensional pdf can be
approximated by a superposition of Gaussian pdfs (or more general functions/kernels). In the
simplest case, we can assume spherically symmetric kernels, and easily can be generalized to

ellipsoidal ones in orientation of the usual basis of RN . In the most interesting case, which
we study here, we can assume general ellipsoidal kernels in any orientation. Firstly, we prove
that any pdf can “generate” a family of approximation to the identity (or delta family).
Subsequently, we show the central theorem of this chapter, in which we prove an integral

approximation of any pdf h, namely  lim I Ks, (x) (X —u)h(u)du = h(x),
G, (x),< N A

where G/1 (x) is a family of matrices in an appropriate directed set. In the third part of this

chapter, using the Riemann Sum, we give a discrete approximation form by a superposition
of Gaussian pdfs, and we prove that we can change this superposition at any approximated
point of support of pdf. It means, we can achieve better approximation with less points of the
partition, i.e., we can decrease the computational cost. In other words, we prove that



4 Chapter 1

h(x) = Z P, K( X—u,;C(x) ) where C( x ) is the localized covariance matrix,
(e
and p, are unknown constants. As we shall see, there are many common points with the

Fourier inversion Theorem. The basic deference is that we require (it is a nature condition)
positivity of family of approximation to the identity. This additional condition makes it
different, and it is the reason we study the approximation of pdfs separately.

Last, in Chapter 4, we deal with estimation of pdfs. We define the delta sequences estimators,

n
. 1 . .
fa(x) == E Km( X, X; ), and we present the most basic of the kernel estimators
n
-

(which are delta ones). Then, we focus on theorems of asymptotic unbiasedness, ;i.e.,
E ( fn( X ) )— f(x) —12%® ,0, and consistency of variation term, i.e.,

o ( X)—E( f( X))L)O in Ll(RN,%N,,u). In last years, functional data have been

developed in statistics. For this reason, we generalized the above definitions in infinite
dimensional spaces, and we present some recent published results in Banach spaces.

At first glance, integral approximation, and estimation of a pdf are different methods.
However, the fact that the expected value of a delta estimator can be written in the following

form, E ( f (%) ) = I K, (x,z)f(z)u(dz), allow us to link these two methods.
gN

Studying the bias problem, we shall show that E ( fn( X ) ) —12% 5 f ( X ), which is the

same problem as the integral approximation of a pdf. On the other hand, if we assume all p,

are equal, then the discrete form which we derive in Chapter 3, looks like with a delta
estimator. Finally, as we shall notice, either we refer to the classical analysis, either to the
approximation-estimation of pdfs, the properties of families of approximation to the identity
play a key role on proving the theorems.
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6 Chapter 2

2.1. Introduction

In this chapter we present a basic theorem in Harmonic analysis, and an application of a
dynamical stochastic system. We have two main objectives. First, we shall show the
importance of the convergence, which we shall deal with in the sequel. Second, we shall
show the necessity of the approximation of a pdf.

In Section 2.2, we present a theorem from mathematical analysis, the Fourier inversion
Theorem. In the proof of this theorem, we use the fact that the convolution of a function f

with a family of functions (K5)5>0 ,with some properties (see Def. 1 below), convergences

to the function (Theorem 1 below). We shall prove a similar theorem in Chapter 3. But there,
we need a new property of these functions (kernels): to be positive.

Someone might ask why we need an approximation of a pdf. We answer this question in
Section 2.3. We present an application where a discrete approximation of a pdf is necessary.

2.2. The Theorem of inverse Fourier transform

Definition 1: A family (K5)5 , of functions on RN s called an approximation to the
>

identity if :
(@) Forany & >0, I Ks(y)dy=1.
&N
(b) There exists a constant M > 0 such that, forany 6 >0 and y e RN,
M
Ks(y) <—.
‘ s ( )‘ s\
(c) There exists a constant M > 0 such that, forany § >0 and y € RN,
Mo
M
Definition 2: Let f be a locally integrable function on RN (e, feljy, (RN)). The
Lebesgue set, Leb(f), of f isdefined by
Leb(f) =4 xeR:|[f(x)|<wand lim i.ﬁ f(y)-f(x)|dy ¢, (1)
AB) 0 A(B) B
X e

where A denotes the Lebesgue measure, and B an open ball in R N [
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Furthermore, it can be proved that /1( RN \Leb(f) ) =0 (Giannopoulos (2014), Harmonic

Analysis (notes), Chapter 2, Lemma 2.3.5).
Definition 3: If f € Ll(RN), then its Fourier transform f: RN — C is defined by

f(&)= I f(x) exp(-2ix-£) dx. . 0
oN
Lemma 1: Let f e Ll(RN), and x e Leb(f). Then, for any >0 we define the

following function

1
A@) =~ J' £ (x—y)-f(x)|dy. 3
ly|<o
Then, the function .4 is bounded, continuous and lim .4(5) =0. n
50
Proof: Giannopoulos (2014), Harmonic Analysis (notes), Chapter 2, Lemma 2.4.8. <

Theorem 1 (Giannopoulos (2014), Chapter 2, Theorem 2.4.7.): Let <K5)5>o be an

approximation to the identity. Then, for any f e Ll(RN) the following limiting relation

holds true

5“210 I f(y)Kg(x-y)dy=f(x), (4)

forany x € Leb(f), i.e., almost everywhere with respect to Lebesgue measure on R N m

Proof: Let 5 > 0. We set J, :{yeRN: 2k5<|y|32k+15},andwehave

[ 1 Ks(x=y)ay=1(0|=| | f(x=y)Ks(y)dy = f(x)

r N R
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<M [ 110y = 109 K, (v)]dy

+ Y Ma [[f(x-y)- f(x)\mﬁdy

k=0 Iy
Mo

K N-+1
k=0 (2 5) lyl<2K*ls

[M]s

<M .A@S) + | f(x-y)- f(x)|dy

= N
MA@+ Y M (215)" a2k
k=0 | 2
MAE)+ S EM ks
=M A@)+ Y AR

k=0
_ - 1 k+l
=My | 4G+ ) w2 15) |,
k=0
by setting M1:2NM.

= 1 .

Now, let & >0. We know thatz — <® hence, we can find ne N, such that
k=0

=1

Z 2—k<8.

k=n

Further, from the fact that lim .4(6) =0 we can find 6y > 0, such that A(2%5) < % for
-0

any & < 8y and k =0,1,...,n. Also, we know that | 4| _ <o (see Lemma 1).

Then, forany 6 < 6

n-1

j F(Y) Ks(x=y)dy — F(x)| <My A@)+ My D

rN k=0

1

2k ./4(2k+1(5)

+ M3

]

1
2_k-/4(2k+15)
k=n
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=M, 1+||,4||w]g, forany £ > 0.

This is proves Eq. (4), lim I f(y) Ks(x—y)dy = f(x), and the proof is complete. «
0—>0
gN

Lemma 2 (Multiplication formula, Giannopoulos (2014), Chapter 2, Theorem 2.4.7): Let
f ,g be two integrable functions on RN . Then,

[ @ a@ae- | 1(naay. . (5)

Proof: We shall use the definition of Fourier transform (Def. 3) and the Fubini Theorem (see
Billingsley (1995), Chapter 2, Sec. 18, Theorem 18.3)

[ & a@ae= [ | [ 1(y)exp(-2niy-£)dy|g()ds

Il
—

j g(&)exp(-2niy-£)dé | f(y)dy

rN R

j f(y)g(y)dy. <

Lemma 3: Let xeR"N and &> 0.Then, the Fourier transform of function 95 (&) =

exp(—rc §|‘§|2 )exp(2nix-§), £eRN given by:
N 1
95(V)=Wexp(—glx—ylzj- . (6)

Proof: Giannopoulos (2014), Harmonic Analysis (notes), Chapter 3, Lemma 3.2.3. <
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To prove the following theorem we need to define a particular family of kernels (K 2)
0>0

given by:

1 n|y|®
K(Sz(y)_é—Nexp{— 52 J s>0and yeR. (7)

We shall prove that the above family is an approximation to the identity.

Theorem 2 (Inverse Fourier transform, Giannopoulos (2014), Chapter 3, Theorem 3.2.1): Let
the family (K52) be defined in terms of Eq. (7). If f € Ll(RN), and f e Ll(]RN)

0>0
then, the following relation holds true:
f(x)=lim [ f(y)K,(x-y)dy= j f(&)exp(2mix-&)déE, (®)
-0
R RN
almost everywhere with respect to Lebesgue measure on R N [

Proof: First, we prove that (ng) is an approximation to the identity. For any 6 > 0, by
0

o>
changing of variable y = & z we derive

1 n|y|®
f Ko(y)dy=—¢ I exp| ——=

5 5
rN rN

]dy: I exp(—n|z|2)dz:1. (a)

&N
Also, forany 6 >0 and y e RN we have
2
1 n|y]| 1
0<K52(y)5—NeXp{ 52 ]<5N' (b)
N+1
Last, using the known inequality exp (t) > (lt\l D t>0,att= \/;5| y| , We obtain
+1)!
2 N-+1
1 n|y]| 1 (N+D!'s M &S
0<K =—exp| — < = : C
52(y) 5N Xp[ 52 J 5N 7T(N+l)/2|y|N+l |y|N+1 ( )
. (N+D)! . I
By setting M = N .S0, we have proved the three properties of definition 1.
T

Now, let x e RN and 952 be the function of Lemma 3. We know that

§.,(y) iexp(—é—ilx—ylz} (d)

5 :5'\‘

Using Lemma 2, for any 6 > 0, we obtain
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j f(f)exp(—n52|§|2)exp(Znix.g)dg=J f(y) K52(x—y)dy. (e)

RN gN
In the right term of above equation, K52 IS an approximation to the identity, so by theorem 1
we have
lim f(y) K 2 (x—y)dy= f(x) almost everywhere. )
R

For the left term, we use the dominated convergence Theorem (see Billingsley (1995),
Chapter 2, Sec. 16, Theorem 16.4)

lim f(g)exp(_n52|§|2)exp(znix.g)dg:j f(&)exp(2mix-&)dE.

5—>ORN N
(9)
Finally, combining Egs. (f) and (g) we obtain the equation (8)
f(x)= lim f(y)K.,(x-y)dy= j f(f)exp(Znix-f)df. <
-0 oN g Y

Stein, Shakarchi (2003), in Chapter 5, Theorem 1.9, prove the same theorem on a Schartz
space.

2.3. An example in which the approximation of pdf is necessary

In the sequel of this work we focus on approximation of multidimensional pdfs, which is the
basic result of this work which is analyzed in Chapter 3. In this section, we present a problem
which shows the necessity of a discrete approximation of any pdf.

We start with some basic definitions

Definition 4: Let Q be a sample space, and T = [tO,T] be a real interval. A generic
random (or stochastic) differential equation (RDE) given by

dx(t;w

%:G(x(t;w),y(t;w),t) [ 9)
Where, w is the sample argument, t € T, and G is a continuous function which is nonlinear
generally. Thus, y(t;w) is a known random function which is called the excitation of the
system and x(t;w) is called the response of the system. [
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Definition 5: Let .« be a separable Banach space, and P = P_,,/K be a probability measure

defined on it. The characteristic functional .7~ of P is a cylinder functional defined on the
dual space 7/ = .2’ by the formula:

T (u) = E” (exp(ii (u, x(@)))) = feXp(i<u,x>) P@x), ue@/. (0

Notice that this is the Fourier transform of the induced probability measure P/ . Also, this

integral always exists provided that the corresponding probability measure is well defined.
See Vakhania et al. (1987) and Pugachev, Sinitsyn (2001) for its properties. [

The concept of the characteristic functional was introduced by Kolmogorov in 1935, by
means of an amazing and far ahead of its time, two-page article, in Comptes Rendu de I’
Académie des Science de Paris.

Furthermore, we shall need the definitions of functional derivatives. Here, we give only the
definitions. For more details and properties of them see Athanassoulis (2011), Functional
analysis (notes).

Definition 6: Let ( X I ) ( Y.y ) be two normed spaces, and consider an operator,

F: X —> Y. We shall say that F is Frechet differentiable at x, € X if there exists a

continuous and linear operator L: X — Y, such that

0

CFO=Flxg) - Lix=x0) |,
lim =0 (11)
X=X X—XOHX
X # Xy

The operator L is called Frechet derivative of F at point x, € X, and it will be denoted by
DF(xq) (or F'(xg)). u

Definition 7: Let X, Y be linear topological spaces, and consider an operator, F: X — Y.
Also, assume h e X, and h # 0, . We shall say that F has Gateaux derivative at X, € X,

and it will be denoted by & F (X, ;h), if there exists the following limit

dF(x, +th F(x,+th) - F(x
5F(X0,h)=¥ = lim ( 0 ) ( 0), (12)
dt =0 t—> t
and if h = 0, then we shall define 6 F (x,;0x) =0. ]

Definition 8: Let X be a linear function space, which is equipped with a metric, and consider
an operator, F: X - R (or C ). We shall say that F has Volterra derivative at x(-) € X,

and it will be denoted by F'(x(-)), if there exists the following limit
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CF(xO) +h () )= F(x()
lim J. F
Y hy (t)dt

p(®)

as y increases, (13)

where Df) is the support of function hf.

See Athanassoulis (2011), Functionals and functional differentiation (notes), for more details
and clarifications. [

Now, assume a dynamical system which is described by the following RDE and the initial
condition:

dX(;tia’_)+yx(t;a))+kX3(t;a))=Y(tiw)’ (14a)
X(ty;w) =X, (w), (14b)

Where 4, k  are deterministic constants, X,(w) is a random variable with known
characteristic function ¢q(u), u € R. The excitation is a real-valued random function with

sample space a separable Banach space (f// probability measure Py, and known
characteristic functional ?y(v) ve() =" We denote .20 the sample space of
random function x(t; @), its probability measure PX, and the dual space of by 7/ = .21
In this problem, we assume that ¢/, =C*(1), ICR for some keNu{0} and

2 = C**(1). Last, we assume that the above probability measures and the joint one,
ny, are well defined. See Skorokhod (1969, 2005), Chapter 2 and Spiliotis (notes) (2012),
for more details about probability measures in infinite dimensional spaces.

Our aim is to derive a new equation for the corresponding pdfs. This has first introduced by
Athanassoulis, Sapsis (2008). In Sections 4 and 5, someone can study the whole proof. Here,
we shall give a description of this work.

The joint response-excitation characteristic functional is given by

Ty (U,V) = f exp(i ((u, x)+(v,y))) Pydx,dy), ue@/, ve?)
XYy
(15)
Now, let us consider the Volterra u — partial derivative of 57)(;, attime t
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8- Tyy(U,v)

sul) f i x®exp(i ((u,x)+(v,y)))Py@x.dy), (16)

@ Xy

and we differentiate with respect to t, obtaining

dé“%:y(uav)_ ., _
dt sut) f i xX'Mexp(i ({u, x)+(v,y))) Pydx,dy). (17
A XUy
Similarly,
5‘\}7;y(u1v)_ ) _
O [ iyoen(i((ux)+(v.y)) Pyx.ay). (18)

a5 XYy

We computing the three-fold Volterra u-—partial derivative of Txy at time instants
t;,to,tyel,andthenweset t; =t, =t3 =t

§° Tylu,v)
Sut)ou(t,)su(ts)

[ ix@xexa)en( ((u.x)+(v.y)) Pyldx.dy).
XY
(19)

Now, combining Egs. (16 — 19) we obtain the following differential equation for the
characteristic functional

1597;,(u,v)4r 55%’9(u,v)_k 8% Fyyu.v) 6.7y (u,v)

. su) YT su() PTTS00° s (202)
with initial condition

Ty (LS =15 ,0) =g4), vER, (20b)
where 6 denotes the Dirac delta generalized function.
Continuing, we apply Eg. (20a), to the pair

u=v-6(-—t), v=v-6(-—s) forfixed t,s. (21)

For the first term of Eq. (20a) we have

ddg%y(u,v)
—————— |u=vsc-n =
at suw Huzuiicy
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- f i X'(©)exp (i LX()+i vy (s)) Py (dx,dy) (224)
a; XAy
:%5 f exp(i vx(0)+i vy(s)) Py (dx,dy) (22b)
45Xy
10 -
:;affexp(lux-l—lvy) f ey (X y)dxdy (22¢)
R R
_199x@y( V) (22d)
v ot '

And taking the limit s — t , we conclude to

_d 5Ty 190,040 V)
lim —————— | u—vs(-v =— : (23a)
s—t dt ou(t) Vvevis(—s) U ot s=t

In Eq. (22c), we applied the projection Theorem. Athanassoulis, Sapsis (2008) give an
analytic discussion for this theorem in Section 2. They give the general form in Egs. (2.5) and
(2.6).

With similar way, we obtain

5%y(u-5(- —t),v-8(-—t)) _ Px(tyy(s)(©5V)

o~ 1 (23b)

o8 {\’7;)/(0-5(- — ta) v-o(-—t)) _ 83(Px(t)y(ss)(') V) . (23c)
Su(t) dv

5%3{(05( —t),v-8(-—1)) _ 9Py (©v) . (23d)

Sv(t) v

Combining Egs. (23a-d) and (20a,b), we derive

190 yis)(UV) . Iua(px(t)y(t) (uv) y 0° Pty U V) _ 92x@yn V)
u ot s=t ou oud ov ’

Px(ty)y(ty) (010) =0y ) (V) = @p(v), LER. (24a,b)
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Finally, implying the inverse Fourier transform, as we see in previous section, to (24a, b) we
derive

0 fx(t)y(s) (a,b) 0 3 o
ot st | 5[(“6‘”& )fx(t)y(s)(aﬁ)} + a[b froye@.b) | =0,
_[ Py (@D db = fiq(@), aeR. (25a,b)
R

Further, the marginal compatibility condition

jfx(t)y(t)(a’b)da: fyp®), beR t>t, (25¢)
R

and the constitutive conditions

j froys(@,b)dadb=1 ts=>t, (25d)
R xR
fxy)(@,b) =20 forany a,beR and t,s > 1. (25e)

Venturi et al. (2011), in Section 2, conclude to the same equation (25a,b) by using the
following functional integral representation of a pdf

frwywm @) =E” (5 (a-x(t;0)) 5(b-y(s;w)))

= [ S(a-x(t;0) 5(b-y(s;0))Pyy (dx.dy).
a7 %y

To solve the system (25a-e) it is obvious that we need a discrete approximation form of the
joint response-excitation pdf. Then, we can apply a numerical method. Athanassoulis, Sapsis
(2008), in Sections 8, 9 discuss about this approximation pdf. They approximate the
particular pdf by a superposition with Gaussian pdfs (kernels). The following chapter gives a
rigorous mathematical construction for this approximation, in particular, we shall prove that
any pdf can be approximated by a Gaussian (or more general) pdfs different at any
approximated point.
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3.1. Introduction

In this chapter we present the main results of our work. We deal with a method of
approximation theory, the integral approximation of multidimensional probability density
functions. In particular, we prove that any probability density function (pdf) can be
approximated by superposition of a family of approximation to the identity (or delta family).

As we have noticed in few applied articles, researchers conclude in equations with unknowns
pdfs. To find them, they approximate pdfs by a superposition of Gaussian pdfs (kernels), and
then, apply numerical methods. In addition, they can change this superposition at any
approximated point. In practice, this works effectively (see Brox (2007), Sec. 2, who deals
with the human motion tracking and Athanassoulis, Sapsis (2008), Sec 8, 9, who deal with
random dynamical systems), but there is not a rigorous and strict mathematical theory in the
literature, which allows this.

Our aim is exactly this. We want to conclude to a discrete approximation form of a
multidimensional pdf, which is useful in applied works but it is equally useful and interesting
as a mathematical construction. To prove this, we construct a particular space, in which we
prove some helpful lemmata, and then, the main theorem (Theorem2, integral approxima-
tion). Finally, in the last part of this chapter, we derive the discrete approximation. First of all,
we try to give the geometric notion of the functions which we use. Thus, we prove that we
can use a different delta family at any approximated point, which is the most important, and
new result in integral approximation of pdfs.

Specifically, in Sections 3.2 and .3.3, we provide some basic results from analysis and
algebra, and introduce the definition of delta family giving a short discussion,
correspondingly. Then, we prove the main result of this chapter and work (Section 3.4), that is
any pdf generates a delta family. Finally in Section 3.5, we show that any probability density
function can be approximated by a superposition of Gaussian pdfs, and we can change it at
any approximated point. Last, we give some properties for the corresponding covariance
matrix, and correlations coefficients.
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3.2. Preliminaries

In this section, we present some basic results from linear algebra, and real analysis which, we
shall use in the sequel.

Definition 1: Let A bea ( NxN ) real matrix (i.e, A e RN*N). A is called diagonalizable
if it is similar to a diagonal matrix, i.e., A =Q*-A- Q. Where, A = diag( A, Aoy s AN )

is the diagonal matrix of eigenvalues of A, and, the nonsingular matrix Q is the matrix of
eigenvectors of A. [

Definition 2: We say that matrix, A e RN*N s positive definite and we write A >0 if

N N
XT‘A'X=ZZAiniXJ‘>O VXGRN\{O} |
i=l j=1

In the following lemma, we collect and prove some auxiliary matrix-theoretic results, which
we shall use in proofs of Lemmata 3 and 4.

Lemma 1: Let Ae RN*N  be a symmetric (i.e., AT = A), and positive definite matrix.
Then,

(a) A isdiagonalizable, i.e., A = Q1A -Qand eigenvectorsof A, g;,1<i< N,

can be chosen to form an orthonormal basis on RN ,ie, Q1= Q.
(b) The eigenvalues of A are real and positive (i.e., 4; >0,1<i<N).

(c) The quadratic region E 5 = { xeRN:xT-A-x < 1} is a real ellipsoidal in RN,

. : 1 . .
centered at 0 with lengths of semiaxes s; = W The eigenvalues determine the
i
lengths of semiaxes, and the eigenvectors (i.e., the columns, g;, 1<i < N, of ma-

trix Q) determine the directions of semiaxes. [

Proof: (a) Bapoog,Aepilidng, Eppovouni, Matdkag, Meldg, Tatéln, (2009). “Mua etcaymyn
ot ypapukn aryefpa” Chapter 4, Theorem 4.4.2.

(b) First, we show that A;,1<i<N are real numbers. By definition of eigenvalues we

have A-q; = 4;q;, 1<i<N and g; e CN~{0}. Then,
N
_ _ _ 2
q"-A-q; ZQiT'(A'Qi ): AT -a; =2 Z ‘ G| ‘
j=1

Also, we can obtain
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T

a" A :(A'Qi) Qi Z(li i

j=1
So,we have 1i =4; = 4; e R and q; e RV -{0}, 1< . Thus, the fact that A is

2
positive definite implies ¢;" -A-q > 0 = A Z [, >0= 4 >0 1<i<N,

2

©) xT-A-x£1<:>(QT-x) AQ  x<ley' Ay<1<:>z

| Q¢ 1/2
0' e
, \//l’ ' \//LZ ’ , \/ﬂ,N

See Sharipov (1996), Linear algebra and multidimensional geometry, Chapter 1V, for more
details about quadratic forms. <

<1

by setting y = Q" -x, thisis., y € £q

The formula of change of variables in multidimensional integrals (for invertible
transformations) will be the basic technical tool in what follows. It is recalled by the
following.

Theorem 1 (Change of variables in multidimensional integrals): Let D and €2 be do-
mainsin R", xe D, ueQ, and x = T (u) a transformation having Q as its domain of
definition and D as its range. The transformation T is assumed to be

e One-to one, and thus invertible,

e ClinQ,

e with non-zero (Frechet) derivative

0%, 0%,

ou, ouy

DT (u) = DT(u) _ Dx ) . )
- Du  Du ' ' '

O Xy OXy

ou, ouy

Then, for every function f , integrable in D, we have

ff(x)dx _ f £ (T () det[DX] du,
Du
D Q=T1"%(D)
Dx|. . ..
where det [ D_] is the Jacobian of the derivative of T . n
u

In addition, we shall give some definitions about generalized convergence; see McShane
(1955), Section 3.
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Definition 3: Let A be a nonempty setand < be a binary relation with properties

D1 (VieA) A=A (reflexivity)
D2 (VA mveA) A<pand u<v = A=<v (transitivity)
D3 (VA1 A,€A)(FA3eA) A=Az and 4, < (every pair A, 4, in

A has supremum)

The relation < is called a direction in A and the pair (A, <) is called a directed set. m

Definition 4: Let (A, <) a directed set, and X a general set (e.g., topological/metric space).

Every function x: A — X iscalled netin X and we Write(x/1 )i K [
€

A net is the generalization of a sequence. Every sequence is a net with the directed set
(N,<). .
Definition 5: Let X be a metric (topological) space, (A, < )a directed set, (x/1 )l N net
S
inX,and x € X . We say that the (xﬂ )/1 |, converges to x (in the direction <) and we
S
write X, T x (or limx, =x) if for every region U:U(x) of x, there is

A,<

Aog=A9(U)eA: x, eU(x)forevery (V AeA): 1g=< 4. =

Notational conventions: To make the notation more compact (in order to save space in
writing equations and proofs) the index vector (11,/12, e AN ) will be usually denoted by

A, and the scaled vector i i i will be symbolically represented by é:
A Ay AN A
def
606 o179 (1a)
A Ay AN A
Also, we define
def
> ANAy> i AN o ANAy> Uy <& A>p (1b)

and

zlio,zzio,...,,ledg,wo . (1c)
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3.3. Approximation of functions by integral operators. A few comments on a huge
subject

Definition 6: Let C, R" — R = C,(R") be the space of bounded continuous functions

defined on RV, (S,<) be a directed set (e.g., S = (1&%’* ,g) or a set of positive definite

matrices ordered by decreasing norm), and (KS)Ses be a family of locally integrable

functions K : " — R, with the property

Vses fKS(u)du =1. (2
RN
The family (K| )S cs is called an approximate reproducing kernel family (ARK family), or

a delta family (Bandyopadhyay (2002), Sec. 12.4), or an approximation to the identity (Stein
1993, Sec. 6) if

lim fKS(x—u)h(u)du = h(x), Vher(RN) and Vxe RV, (3)
Sl_< RN
We shall also (loosely speaking) refer to the functions K as the kernel (functions). [

Kernel functions having the limiting reproducing property (3) first appeared in Fourier
(Harmonic) Analysis, in connection with the problem of summation of Fourier series. The
Dirichlet kernel, the Fejer kernel and the Poisson kernel are three well-known examples. See
e.g. Katznelson (1968), Korner (1988), Duoandikoetxea (2001); the multidimensional case is
studied in detail by Grafakos (2008), Classical Fourier Analysis (Chapter 3).

The functions K¢ of an ARK family may be positive (non-negative(})) or of alternating sign.

In Harmonic Analysis the Dirichlet kernel is of alternating sign, while the Fejer’s and
Poisson’s kernels are of positive type. In this section we shall study only positive kernels.
The amazing fact is that positivity, in conjunction with condition (2), suffice to ensure the
validity of the limiting reproducing property (3). Informally speaking,

“Every probability density function generates an ARK family.”

3.4. Delta families generated by probability density functions through general linear

transformations

Consider any function K : RN — R, such that

e K(x)=0, and (4a)

(M) Inthe sequel we shall use the term positive as a synonym to the term non-negative.



Chapter 3 25

. j K(u)du = 1, (4b)
N
that is, any pdf over RN . The support of K : 2N — & may be the whole ®" or some

proper subset A< R"N. The Gaussian pdf fg, : R — R is a standard example with

support & N its general form is given by the formula

exp{— %(x —u) -Clo(x- ﬂ)}

foauss (X) = foauss (X3 #,C) = \/(Zﬂ)N'det(C)

where u is the mean vector and C is the covariance matrix (assumed nonsingular). The
Gaussian kernel K, which will be extensively used in the sequel, is defined by

KGauss(X) = fGauss(X;O’C) = eXp{_le 'C_l : X}, (53)
(27)" - det(C) 2

or

Koauss ( X-U) = fgauss (X5U,C) = \/ eXp{_%(X_U)T'C_l'(X_U)}' (5b)

(27)" - det(C)
Given a function K satisfying Eq. (4a,b), i.e. given any pdf defined over 2N, we define the
family
=;K(G‘l-x), (6)
| det (G)

where G e RN*N (i.e,, G isa (N x N) real matrix) with det(G) = O (i.e., invertible).

Each kernel Ky, as defined by Eq. (6), satisfies conditions (4a) and (4b), that is, each
Kg (x) is a pdf as well. The condition Kg (Xx) > 0 is obvious; to prove condition (4b) use

will be made of the formula of change of variables in multi-dimensional integrals, as stated in
Theorem 1 of Sec. 3.2.

Lemma 2: Let Kg be defined in terms of Eq. (6), through a pdf K. Then, for any
G e RNN with det(G)=0,

J. Ke(x)dx =1 = J- Kg(x—u)du. = (7a,b)
RN rN

Proof of Eq. (7a): To calculate the integral I Kg(x)dx = ;J‘ K(G‘l-x)dx,
det(o)]

we shall use the change of variables
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=X =T(v) = G-v ,where veRN (8a)

(anisotropic linear dilatation with rotation). This transformation possesses all properties listed
in Theorem 1 of Sec. 3.2. Further, in this case we have

N
x:G~v:>xi:ZGikvk, I<is<N =
k=1
%:G- 0+.+G; ;- 1+..+G; -0 = G, ; I<i<N
an i1 i] iN ijo =1 =
That means
D x
“2 -G 8b
" = (8b)
D x -1 N N
det(EJ:det(G) and T"(R")=R (8c,d)
Thus, applying Theorem 1, we obtain
1 =)
j Kg(x)dx = K(G -x)dx=
N ‘det(G)‘EN
:‘ L ‘ '[ K(v)det[%} dv =
det( G
() T-1(pN)
o
= K(v)|det(G)[dv = K(v)dv =1
ey | KWl (v)

This proves Eq. (7a).
To prove Eq. (7b), the integral IKG ( X —u)du is calculated by using the transformation
u=Ty(W)=-w+ X, (9a)
having the properties
(3

Applying again Theorem 1, we obtain

=1 and T;H(RV)=R"N, (9b,c)
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dw =

j Kg(x-u)du = J Ke(x-Ty(w))

det[ﬁj
Dw

:RJ;\I Kg(w)dw =1

in accordance with the first part of the proof. Thus, the proof of Lemma 2 has been
complete. <

Lemma 2 holds true for any matrix G e RN*N  with the only property det(G) = 0. In
continuing, in Lemmata 3, 4 and Theorem 2 we need a structure of convergence for the net
Kg-

For any proper rotation matrix Q, (i.e., Ql=0qT, det(Q) = +1), we define the family of
matrices Lq as:

Lo = { Gy = AQ: A =diag( 4,4y, ..., 2y )=diag(4), 4 > 0} (10)
Notice that if G, e Ly, then det(G,)=det(A-Q) =det(A)det(Q) =det(A), and
det(A) = A7 25 .. A > O.

Now, we are in a position to define a direction in L .

Definition 7 (direction in L ): We define the binary relation < in L as:
G; < Ga, © A, < A (ie., inthis direction, A 1 0; see Eq. (1b,c)). "
We shall show that the above relation is a direction in Lq, for any Q [
Proof: We will prove the three properties of the direction; see Def. 3 of Sec. 3.2.
Dl) For Gﬂ S LQ . )\/Gi < ;\’Gl = Gﬂ,—< Gﬂ

D2) For G/il,GAZ,G,1L3 e Lo with Ga < Gﬂ2 and G,12<G,13 = A,<4, and

A3< A, soweobtain 43< A, <4 = A3<4 = Gy <Gy,

D3)For G, ,G, elg,letd;= (A, 45,...., Ay )and 4, = ( pq, i, ...,y ), We set
A%, €kq 1 142 N 2 1 H2 N

Ay = (min(/ll,yl),min(iz,yz), ,min(ﬂN,uN)) = (vl,vz, e VN ),and, Aj =

diag(vl,vz,...,vN ).Then, by setting 6/13 = A3-Qelg, we obtain A3< 4
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and 43< 4, = Gy, < G, and Gs,<Gay- |

So, the ( Lo, <) is directed set which we shall use for the convergence in Lemmata 3,4,
and, when the net KG/1 :(L,=<)—> R convergesto k € R, we shall write lim KG/1 =K.
Gy <

Lemmata 3 and 4, presented below, establish the important fact that the probability mass of
KG/1 is finally (as A4 0) concentrated within a ball of arbitrarily small radius.

Lemma 3: Let B(0,6) = xeR":|x|, <& , the open ball centered at 0 with

radius o, and Ks, be defined in terms of a pdf K, by means of Eq. (6) and, G, L for

some Q. Then, for any given 6 >0 and for any proper rotation matrix Q, the following
limiting relations, in the direction < (see Def. 7), hold true:

lim I Ko, (x)dx = 1, (11a)
G, .=

B(0,5)
lim j Ka, (x)dx = 0 . (11b)
G ]
27 eN_B(0.6)

Proof of Eq. (11a): To calculate the integral, use will be made of the transformation
X =T (v) (x= Gy-v), introduced in the proof of Lemma 2, Eq. (7a). In order to specify

the inverse image T ‘1( B(0,5) ), we observe that

xeB(0,8) & [x]; <62 & |G, v| <62 o v .G, G v &

s v -QTA2Q v < 5% & vT-%QT-AZ-Q-v <1l o

@VE(S‘Q O, 5 y 5 y y 5 :5Q O,i,i, ,i
/112 122 /1’31 ﬂ’l 12 ﬂ“N
=& (0;5/4)

that is,

T 1(B(0,6)) = 5Q[0;%£,...,i] = Eo(0;014), (12a)
1
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the ellipsoidal with semiaxes &6/A4,, 6/ A4,, ..., 6/ Ay, and the orthogonal columns of Q,

{qi L 1<i<N } , determine the orientation of ellipsoidal.

Taking into account Egs. (8a,b) and (12), and applying the formula of change of variables in
multidimensional integrals, we calculate the integral appearing in Eq. (11a) as follows:

j KGﬂ(x)dx=m J. K(Gﬂ‘l.x)dx

B(0,5) B(0,9)
Dx
det( E)
1

:daé%) [ x
T-1(B(0,4))
o] j K(v) det(G, )dv
2 go(0:014)
j K(v)dy,
Eq(0;614)

dv

that is,

j Koy (x)dx = I K(v)dv. (12b)
B(0,5) Eq(0;6/4)
Taking the limit of both sides of the above equation in the direction < (i.e., A 1 0), and

im £5(0,6/4) = RN (it holds true because Q is orthogonal ), we

observing that |
Ga,<

obtain
li K dx=li K dv =
dim [ Key(x)dx=dim [ K(v)dy
B(0,5) £(0;514)
_ j K(v)dv = j K(v)dv=1,
lim £(0;5/4) RN
G, <

which proves Eq. (11a).
To prove Eqg. (11b) we observe that
J. Kgy (x)dx = J-KGﬂ(x)dx — j Kg, (x)dx.
RN_B(0,6) rN B(0, )

Taking the limit of both sides of the above equation in the direction <, and using Egs. (7a)
and (11a), we obtain Eq. (11b). The proof of the Lemma 3 is complete. <
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Remark 1: In proof of the above lemma, we observe that we used only the property that the
columns of Q, {qi , 1<i<N } are orthogonal in ®N and it is independent which are

exactly. It is a crucial observation for the proof of Theorem 2 below.

Lemma 4: Let B(x,0) = {u e RN :lu- x|, < 5}, the open ball centered at x with
radius ¢, and KG/1 be defined in terms of a pdf K, by means of Eq. (6) andG, € Lq, for

some Q. Then, for any given 6 > 0, and for any proper rotation matrix Q, the following
limiting relations, in the direction <, hold true:

li K —u)du =1, 13
G;vn,! I GA(X u)du (13a)
B(x,0)
lim j K, (x—u)du = 0. . (13b)
Gﬂ,,'< A
RN_B(x,5)

Proof of Eq. (13a): To calculate the integral, we shall use the transformation u=T;(w )=

— W + X, written also (un =—-W, + X, ) introduced in the second part of the proof of

Lemma 2, Eq. (9a). In order to specify the inverse image Tl‘l( B(x,0) ) we observe that

N N
2
ueB(x,5) < Z (un —xn) <5? o Z w2 < 5% o weB(0,5),
n=1 n=1
that is, Tl‘l( B(x,8)) = B(0, ). Using this result and Eq. (9b), the application of Theo-
rem 1 leads to the following calculations:

I KGﬂ(x—u)du: J KGﬂ(x—Tl(w))det[%J dw
B(x,5) Tl—l(s(x,a))
= I KGﬂ(w)dW
B(0,4)

Thus, the desired conclusion follows by taking the limit of the first and the last terms of the
above equation in the direction <, and invoking Lemma 3, Eq. (11a).

Eqg. (13b) is simply obtained from Eq. (13a), exactly as Eq. (11b) has been derived by Eq.
(11a), in Lemma 3. <

Remark 2: It is important to keep in mind that the limiting equations in Lemmata 2 and 3 are
valid for any given radius ¢ of the balls B(0,¢) and B(x, ).

We are now in a position to state and prove the main result of this section:
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Theorem 2 [Every pdf generates a delta family]: Let K : RN > R bea pdf over R N
1

d K = —
and Ko, (%) = Gat(a; )

K (Gi‘l-x),and G, Lo, for some Q.
Then, for any function h € Cy, (& N'y, and for any proper rotation matrix Q , we have

lim IKG (x—u)h(u)du = h(x). . (14)
GA,<RN A

Proof: Since Kg, eL'(R") and h is bounded over RN, the integral

j Kg, (u)h(u)du exists. Also, from the boundedness of h, we conclude that there
N
R

exists a constant M, > 0 such that
sup{|h(u)|,UEAgRN}Ssup{|h(u)|,UGRN}sMh. (a)

Further, using Eq. (7b) and the positivity of KG/1 , We obtain

KGl(x—u)h(u)du—h(x) = KGi(x—u)h(u)du— KGl(x—u)h(x)du =

RN RN RN

- IKGA(x—u)(h(u)—h(x))du < | Ke, (x=u)[h(u)=h(x)[du ()
»N RN

Decomposing the last integral in two parts, over the ball B(x, &) and its complement 2N —
B(x,d), we obtain

KGﬂ(x—u)‘h(u)—h(x)‘du =

rN

- [ ke (u)nu)-n(x)fdu+ [ Ke, (x=u)[n(u)-h(x)|dus
B(x,d) RN_B(x,6)

SSUp{‘h(U)—h(X)‘,UEB(X,5)} J KGl(x—u)du+
B(x,0)
+sup{‘h(u)—h(x)‘,UeRN—B(x,5)} I KGﬂ(x—u)du.(c)
RN-B(x,5)
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We shall now show that both terms of the last member of (c) become arbitrarily small, which
essentially proves our assertion. First, on the basis of inequality (a), we obtain

SUp{‘h(U)—h(X)‘,UGRN—B(X,5)}SZMh. (d)

Besides, since h is continuous at (any) x € RN, for any given £/2 > 0, it is possible to
finda 6 =&(&,x) > 0, such that

sup{‘h(u)—h(x)‘,UeB(x,é)}<g. (e)
Combining Egs. (b), (c), (d) and (e), we obtain
J.KGA(x—u)h(u)du—h(x) <§ j KGA(x—u)du+
RN B(x,0) G
+ 2 M, j KGﬂ(x—u)du.
RN-B(x,6)

Further, because of the Eqg. (13b), we can find a matrix G}k0 = Gﬂo(s) €lg, Ay is the

same for every Q, suchthat, forany G, eLq: G5, <G,

&
K X—-u)du < .
| e, (x-ujau < o ©
RN_B(x,0)
Finally, using (g), and the fact that
I Ksg, (x-u)du < j K, (x-u)du =1 (Lemma?2),
B(X,5) RN
inequality (f) implies that, forany G e Lq: Gy < G, we have
&

J.KGﬂ(x—u)h(u)du—h(x) < §~1+2Mh~4Mh s

»N
The last inequality is equivalent with Eq. (14). The proof of Theorem 2 is thus completed. <«
The essential in Theorem 2 is that A is independent from the proper rotation matrix Q. It

means we can find the same A, for every Q, such that, In. (g) holds true. We can see this
observing (see Lemmata 3 and 4 ) that
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I KGl(x—u)du: j KGA(W)dW: j K(v)dv

RN-B(x,5) RN-B(0,6) RN-£q(0;6/4)

Now, combining the Remark 1, which we made in Lemma 3, and the above equality, there
exists Ag = Ag( &), (same for every Q), such that, forany 4 < A:

I K(v)dv < i
4 M,
RN-€q(0;6/2)
Equivalently, there exists Gjo=A0-Q, Ag= diag(/lo ) such that, for any G, eLq:

Gy <G, In. (9) holds true, and A is same for every Q.

Observing this detail, in proof of Theorem 2, we can assume that Q is generally different at
any point X e supp(h), ie., Q=Q( X)= Q x, and we can now state the general and
main result of this work:

lim Ks () (X=u)h(u)du = h(x (14)
o, lim. RJN e, (X=u)h(u)du = h(x)

3.5. The delta family generated by a general (correlated) Gaussian pdf

Notational conventions: In the sequel, by writing Q,G; and C we shall mean that matrices
are dependent from the point x, i.e, Q =Q(x),G; =G, (x) and C=C(x), and we
shall write the vector x when we want to emphasize .

Let C be a nonsingular (invertible) covariance matrix and

K(x-u) = ! exp{—%(x—u)T.C‘l.(x—u)}, (15)

@)V det(c)
be the Gaussian pdf centered at u, with covariance matrix C. The latter is not assumed

diagonal; it may be a complete (nonsingular, positive-definite) matrix. Then, in accordance to
Theorem 2 of Sec. 3.4, the kernel family

_ 1 1
®(C:) [(22)"- cet(c)

is a delta family, producing the approximation to the identity

Kel(X—U)

exp{—%(Gl‘l-( X — u))T- ctG,t(x- u)},(16)

lim I KGl(x—u)f(u)du: f(x), (17)
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for any continuous pdf f : N — R . For our applications it is more convenient to refor-
mulate Eq. (15) so that the matrix G, does not affect directly the variables x and u. This

becomes possible with the aid of some auxiliary matrix-theoretic results, which are collected
and proved in the following lemma.

Lemma 5: Let X = X;,X,,..,Xy , CeRNN det(C)=0 and G, =A-Q,
where A =diag( 43,4, .., Ay ) With 4; >0, 1<i<N, and, Q is a proper rotation
matrix, i.e., orthogonal with det( Q ) = +1. Then,

(a) We have ((A-Q)‘l-x)T ct(aQ) tx =X At (QCctQT Jatx

N N
e (o7 ot <35 ol e |

N xN

(b) The inverse of the matrix of € = A -(QT .C -Q)-A , where

N N

A.(QT.C.Q)-A - [ﬂ,iﬂ,j ZZ Q} C. Q“-J , is the matrix
N xN

1=1 k=1

el _ A—l.(QT 'C—l.Q)_A—l

©1If €= A-(QT-C-Q)-A then, det(C) = A7 27 .. A% -det(C). -

Proof: The proof of the above lemma is obvious by combining, the known results from linear
algebra, if A,BeR"N, and A is a diagonal matrix, then (A-B )T =BT.AT,
(A-B)_1 =B1.A1, AT = A, and det (A-B)=det ( A)-det (B), and the properties
of a proper rotation matrix, Q " = Q" and det(Q)=+1. <

Theorem 3 [Reformulation of the Gaussian kernel in terms of unscaled variables x and

u]:Let C = (Cij )NXN be a covariance matrix, and C = A-(QT -C -Q)-A be the

corresponding covariance matrix. Then, the Gaussian kernel, Eq. (16), can be written in terms
of unscaled variables x and u, and the scaled covariance C(x), in the form

KGﬂ(x—u)zK(x—u;é) (18a)

where,

K(x—u;(:)z

exp{— %(x — u)T.C_l.(x - u)}
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and C::A.(QT-C-Q)-A. - (18b,c)

Proof: By setting G, = A-Q in Eq. (16) and using (a),(b),(c) of Lemma 5 we easily derive
Egs. (18a,b,c). <

The correlation coefficients of the A —dependent localized covariance matrix

It is interesting to see the change of the correlation coefficients after application the linear
transformation. The initial correlation coefficients of the covariance matrix C and the corre-

sponding of the A —dependent localized covariance matrix C = A-(QT -C-Q)-A given by

the following equations

(19a)

T
Pij \ﬁ ﬁcjj

,5” _ CEij _ =1 k=1 , (19b)
\jéii \/C” N N 12 N N 1/2
[ZZ Q' ClenJ [ZZ Q}k CkIQ|jJ

11 k=1 11 k=1

We observe that p;; are independent from the scaled variable A but they are dependent

from the rotation matrix Q, as we expected. This means that p;; = [)ij (x) . Notice that,

generally, pj; # pjj, butin special case that Q is the identity matrix we can easily show

that plj :pij'

From the integral approximate representation to the approximation by means of linear
superposition of Gaussian kernel with localized covariance matrices:

j K(x-u;&(x))fuydu= f(x) 20)
=N

Now, applying the definition of Riemann integral we can find a partition of the support of f ,
such that,

J. K( x—u;é(x))f(u)du ~ Z K( X — U, ;é(x))f(uﬂ)AuU. (21)
Where £ is the set of points of the partition. Combining Egs. (20) and (21) we also obtain
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ZK(X—uf;C(X))f(u()Auﬁz f(x). (22)

(el

By setting p, = f (u,)Au,, we obtain the following discrete approximation form of a pdf
f,

f(x) = Z P, K(x—ug;é(x)) u, esupp(f). (24)

(e

It is enough to choose A4 < A at any point x, where A, is that we found in In. (149). Thus

by (b) of Lemma 5, the (i j ) element of C is equal with

= T
Cij(X)Zﬂiﬂj((Q(X)) 'C'Q(X))_- (23)
i
So, we choose C, such that, it has “little” elements to its diagonal and “free” nondiagonal

ones.

3.6. Notes

As we see, we chose a particular family of matrices (Eq. (10)) to prove the main lemmata and
theorems in Sections 3.4 and 3.5. Someone could observe that we can use other families as
well. For instance, the diagonalizable matrices

Lo ={ Gy =Q"-A-Q: A =diag( 4,2z, ... Ay )=diag(2), 4 > 0},
or

Lo ={ Gy =Q"-A: A =diag( 4,2y, .., Ay )=diag(1), 4 >0 }.
In that case, we can prove the basic theory with similar way, but we cannot write a “clear”
discrete form as Eq. (24). In particular, in these cases we cannot distinguish the localized

parameter A from the localized covariance matrix, as we did in Theorem 3 (Eqg. (18c)). In
some cases, we can avoid it with a change of variable, but then, it becomes more complex.

In addition, an interesting case is when G, is a diagonal matrix with positive determinant,

which is a special case of Eg. (10) (Q is the identity matrix). Then, it is easily to see that the
ellipsoidal is moved to a fixed orientation for all approximated points, that is the usual

orthogonal system in R N Another way to see this, is that the correlation coefficients of the
initial covariance matrix are same with the correlation coefficients of the A —dependent
localized covariance matrix, this means there is not rotation. In this case, we have only
dilatation.

Finally, we would like to change the localized covariance matrix at any point u, e supp ( f )

(see Eq. (24)); i.e., to change the proper rotation matrix at any point u, esupp( f )
Although researchers apply it to empirical, we cannot prove it with our mathematical theory.
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We need stronger conditions such that, the transformation x =T(v) = G(x)-v (see Eq.
(8a)) is bijection for all x,v e RN, which is too limitative.
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4.1. Introduction

In this chapter we present a method of multidimensional density estimation by delta-
sequences. In Section 4.2, we give some definitions and lemmata from real analysis, and
probability theory, which we shall use in the rest of chapter.

Then, in Section 4.3, we give the definitions of some general delta-sequence estimators
(histogram, orthogonal series, and kernel estimators), which have attracted the attention of
many researchers. The class of locally adaptive density estimators has developed, only
recently. We introduce them, in Section 4.4, and we present the most important of them.

In the following two Sections, we prove the asymptotic unbiasedness, and the consistency of a
delta estimator in Ll( RN N ,,u) (Section 4.5), and we generalize the previous results in a

Banach space (Section. 4.6).

4.2. Preliminaries

In this section, we present some definitions and lemmata from analysis and measure theory
(especially, in probability theory) which we shall use in the rest of this chapter.

Definition 1: Let T be an operator on a general space of functions, X = &. T is linear if
satisfies:

@ T(x+y)=T(x)+T(y), x,yeX
(b) T(ﬁ,X)Z/IT(X), xeX and 1eR

If T, instead of (a), satisfies T(x+y) < T(x)+T(y), x,yeX then, itis a sublinear
operator. »

Definition 2: Letaset X = &. Aset G < X is called G if it can be written as a countable
intersection of open subsets of X. [

Definition 3: Let (X,]—“,y)be a measure space, u is a o—finite measure if there exists a

sequence{Fn}ef,suchthatG F, = X,and u(Fn)<oo, vVneN. n

n=1

Definition 4: Let (X,}",y) be a measure space, a nonempty set, E € F is said to be an

atomof F if VFeF: FcE = F=¢.Thus, u is a diffuse measure if there are no
atoms in F . [
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Definition 5: Let x,v be two measures in measurable space (X,]—"). We say that v is
absolutely continuous with respect to g (or dominated by ), and we write v < g, if for
every set Fe F: u(F)=0 = v(F)=0. Further, with the additional property that both
measures are o — finite, Radon-Nikodym Theorem states that there exists a x— measurable
function f taking values in [0,oo ] such that for any measurable set A (i.e., A e F) the
following relation holds true

v(A)= I fdu.
A
Furthermore, f is called a density function of v or Radon-Nikodym derivative with respect
to u,andis denoted f :d—v. u
du

Definition 6: Let ( X,F,x ) be a measure space and f: X — R be a measurable function
on set X = . In addition, we define the set of essential upper bounds of f as

ess
U

;= {aeR:,u<f‘1(a,oo))=O}. Then, the essential supremum is defined as

esssup f =inf U?SS, and if U?SS = (J we define esssup f =o0. Also, we can define the

essential infimum similarly. [

Below, in Lemmata 1-4, we present some basic inequalities in probability theory.

Lemma 1l (c, Inequality): Let (Q, F, P) be a probability space, and X , Y : Q — R be two
random variables. Then, the following inequality, which is known as c¢_ inequality, holds true

E(|x+v[")<e, (E(|X|r)+E(|Y|r))
where ¢, =1, ifO<r<Zlandc, =2"7, if r>1. n

Proof: if 0 < r <1:then function | X |r ,X >0 isaconcave and increasing. Thus,

X+y Yy
Ix+y|" —|x]|" = j rtr‘ldt:.[r(x+s)rlds
X 0

y
sjrsr‘ldss|y|r.
0

If r >1:then | X |r is a convex function and following inequality holds true for any x,y
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X+Yy
2

X eyl
2

Now, taking expectations in above two cases, and the result follows. <

Lemma 2 (Markov Inequality): Let (Q, F, P) be a probability space, and X : Q — R be a
random variable. Then

E(X)

P(X > <
(x>a)< =l

Proof: Fist, we write X > « I( X > a),where | is the indicator function then, we derive

E(X)

E(X)2E(al(X2a))=aP(X2a)= P(X2a)< "

<

Lemma 3 (Jensen Inequality): Let (Q,J—“, P) be a probability space, and g: R —> R be a
convex function, i.e., Ag(x)+(1-2)g(y)=Ag(Ax+(1-2)y), x,yeR and A€(01).
Also, let f:Q — R be a measurable function. Assume that f , g(f) are integrable then

g(deP)sIg(f)dP. .

Proof: Durrett (2010), Section 1.5, Theorem 1.5.1. <
Lemma 4 (Hoeffding Inequality): Let ( €, F,P ) be a probability space, and X;, 1<i<n

be independent real valued random variables. Also, let a;,b; e R, 1<i< n, and assume that

X; € [ a;,b; ] with probability one. Then, for any & > 0 the following inequality holds true

P %_n (Xi—E(Xi)) > & | < 2exp s .

i=1

Proof: Gyorfi, Kohler, Kryzak, Walk (2002), Appendix A.2, Lemma A.3, and Hoeffding
(1963), Theorem 2. <
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Lemma 5 (Borel-Cantelli): (a) Let (€,F,P) be a probability space, and { A be a

n}neN

sequence in JF, and assume that ZP < . Then, P ( limsup A, ) =0.
n=1

(b) Let ( Q,F,P ) be a probability space, and { An}neN be a sequence of independent events

in F, and assume that ZP(An) =oo. Then, P (limsupA, )=1. n
n=1
Proof: (a) Assume the random variable X = Z I then limsup A, {X = oo}.Thus
n=1
E(X)=) E(I(A)))=D P(A)<
n=1 n=1

Also, we know that if X >0 and E(X)<o then P{X =o}=0. It implies
P(limsupA,)=0.

(b) P({IlmsupA ) [U ﬂAk] lim P[ﬂAkJ , the last equation holds true

n—oo
n=1 k=n

because the sequence { ﬂAi } is increasing for any n > 1. Now, for n >1 we have

Finally, P({IimsupAn }¢ ) =0 = 1-P({limsupA, } ) =0 = P({limsupA, })=1. <«



44 Chapter 4

4.3. Delta-sequence estimators

There are a lot of examples of delta-sequence estimators in the literature. Histograms,
orthogonal series, and kernel density estimators are well-known examples. Below, we give the
definition and some examples of a delta sequence estimator.

Definition 7: A sequence of functions K., : RN x R" — R is called a delta-sequence if

vfeC(R") (ie., for each continuous functionon #")and x € RN

IKmn(x,y)f(x)dy—>f(x), as n — o, L @)
2N

where m, belongs in a directed set. We shall refer to the functions K, ~as the kernels

(functions).

Definition 8: Let {xl,xz,...,xn} be independent observations from an unknown

distribution Fon RN with probability density function (pdf) f . A delta-sequence estimator
can be written in the form

fn(x)z%zn: Kmn(x,xi). n )
i=1

Definition 9: Let {xl,xz, ,xn} be independent observations from an unknown
distribution Fon R with pdf f,and I;(x):R —{0,1} be the indicator function for the
bin [(j-1h, jh), jeN and h>0 (ie,lj(x)=1,if xe[(j-1)h, jh) and
I j(x)=0, otherwise). Then the Histogram estimator, with equal binwidths and in one
dimension, given by

. 1 n 00
fn(X)ZHZ ZIJ(X)IJ(Xl) | (3)
i=l j=-oo
Definition 10: Let {xl,xz, e X } be independent observations from an unknown

distribution F on R with pdf f, and {@ i ( x)}T_1 be a orthonormal system on [ a,b | = R

consisting of eigenfunctions of a compact operator on L2 [a,b] . Then the Orthogonal
series estimator given by

m

) =230 3 0y (x )y ). . @

i1 j=1
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Definition 11: Let{ X1, X9, .. ,xn} be a N —variate random sample, and K, RN SR

be a kernel with the properties K., > 0 and I Kmn(x)dx =1, then a kernel estimator
N
R

given by

fn(X)Z%Z Km(x—xi). n (5)

For more details for theses estimators see Nolan, Marron (1989), Sec. 1, Walter, Blum (1979),
Sec. 1.

4.4. Locally adaptive density estimators

Let {xl,xz, ,xn} be a N —variate random sample with unknown pdf f . The simplest
multivariate kernel density estimator given by

f(x):n,iNzK[x_hXiJ:%Z Kh(x—xi), (6a)
i=1

i=1
. 1 X
by setting Kh(x)=h—NK[—). (6b)

Where K : RN — R is a N-variate density function, and h > 0 is the smoothing parameter
(bandwidth or window width), which controls the size of kernel, and in this case is held

constant for all evaluation points x € R N This estimator is called fixed. O

It is more interesting the smoothing parameter (bandwidth) based on the evaluation point or
on the random sample. These estimators are called locally adaptive density estimators.

So, we can generalize Egs. (6a,b), assuming that the bandwidth is based on the point
x e RN ie, h, = h(x), and in this case we obtain the balloon estimator.

]:%Z Khx(x—xi). @)
i=1

The balloon estimator was first introduced by Loftsgaarden, Quesenberry (1965) in the form
of the k —th nearest neighbor estimator, which can be written in the form of Eq. (8) by using a

constant kernel and setting h(x) = d (x)where d (x) returns the distance to the k —th

n

A 1 X = Xj
f = K
(0= b Sk 2

i=1

nearest data pointto X. O
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With analogous way, we can assume that the smoothing parameter is based on the random
sample { X1, X0, ey Xp } We define the sample point estimator which is equal with

. 1 1 X —X; 1
fS(X):ﬁé o K{ e ]_ﬁizl“ Khxi(x—xi). (8)

This type of estimator was introduced by Breiman et al. (1977). O

As we saw the smoothing parameter h controls the size of kernel. One constant smoothing
parameter corresponds to spherically symmetric kernels. We can generalize this parameter to

avector h = (hl,hz, .,y ) h; > 0, 0 <i < N, and more general to a symmetric and

positive definite matrix H that is analogous to the covariance matrix of K. With this way, we
generalize the above estimators. (i.e., Egs. (6a), (7), and (8))

The generalized fixed estimator given by

|H|U22K(H V2 (x-x;)) = iZKH(X—xi), (%)

—_—>
—

%KH(X)(H_M-X). (9b)

by setting Ky (x) = m
H

where, | - | indicates the determinant of a matrix.

The generalized balloon estimator given by

f(x) = Wz K(H(x)‘”z-(x—xi)) - %Z Kux) (x=%i).  (10)

And the generalized sample-point estimator given by

Z”: (H(xi)_ﬂz'(x_xi)):%i KH(xi)(X_Xi) (11)

i=1 ‘ i ‘ i=1

DIH

For the latter, we can assume that we divide the support of the density in m bins, then the
binned sample-point estimator given by

sl =1 2 K[ )= T g (o)

A
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m
where n; is the number of data points in the j—th bin, (i.e., Z nj = n), tj isthe center

j
j=1
of the j—th bin, and H(t;) is the smoothing matrix associated with the j—th bin. In

general, an equally spaced mesh of points is laid down over the support of the density to
define the bins, although other binning rules such as the linear binning defined in Hall, Wand
(1996) could be considered. O

Generally, we can summarize all the above estimators, defining three families of matrices,
depending on the form of matrix H, for Egs. (9a), (10), (11), and (12).

H, = { H=nh21 N h >0 } which correspond to spherically symmetric kernels with

only one smoothing parameter.

H, = { H = diag( h,h3,...,h3% ),h >0 },which correspond to ellipsoidal kernels with

N smoothing parameters.

Hy = { H e RV*N H is symmetric and positive difinite } which is the most general and

allows ellipsoidal kernels of arbitrary orientation with N (N+1) / 2 parameters.

Sain (2002) in Sec 1 and 3 gives a discussion about the above three classes of matrices and
numerical comparison among of the estimators. O

A lot of researchers focused on finding the optimal choice for the smoothing parameters that
minimize the Mean Integrated Square Error (MISE) for the above estimators

MISE = E | (F(x)-1(x)) ax= jE(f(x)_f(x))zdx: | msEex
RN RN RV
For more details about MISE, Asymptotic MISE (AMISE), and the optimal selection of

bandwidth see Want, Jones (1994,1995), Shirahata, Chu (1992), Sain, Scott (1996), Sain
(2002).

4.5. Pointwise consistency of delta estimators in Ll(RN,%N,u)

In this section we assume that P is a probability measure in ( RN BN ) which is absolutely

continuous with respect to a o —finite measure 4 and f = 3—P is the Radon-Nikodym
MU

derivate. In addition, we assume that f e Ll(RN,%N,,u). Supposing that u is the

Lebesgue measure, then f is the usual probability density function (pdf) but it is instructive
to assume a general o —finite measure u ; see Vidal-Sanz (2005), Sec. 1.
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Let { X1, X9, ooy Xy } be a random sample from P, a delta estimator of f can be written in
the following form (see Def. 7 of Sec. 4.3)

fn(x):%i Kmn(x,xi), (14)
i=1

where the smoothing sequence m, belongs to a directed set ( L,< ) and K, is a net in

Ll( RN N 7 ) For example, m may be a sequence of positive definite matrices ordered

by decreasing a norm in kernel estimation of multivariate densities. In this case, Eq. (14) take
the form:

fn(x)=%Zl:ﬁK((mn)l-(x—xi)). (15)

Definition 12: Let x be a o -finite measure in (RN,‘BN ) and P a probability measure

satisfying P < u, i.e., P is absolutely continuous with respect to z; see Def.5 of Sec. 4.2.
We say that a delta estimator f o Is strongly (or weakly) consistent almost everywhere (a.e.)

with respect to u, if ‘ fn( x)—f(x) ‘%o almost surely (or in probability), for

almost every X e R N with respect to the measure x. We say that the convergence is
universal when it holds for every P such that, P < u. [

Using triangular inequality we derive

a0 100 <[ E(fu(x))- 100 +

fW()-E(fa(x))| @8

The deterministic term, E( fo(x) )— f(x), is called bias term, and the stochastic term,

fn( x)-E ( f( X )) is called variation term. In the sequel, we study the convergence to
zero of each term separately.

4.5.1. Convergence of bias term

In this section we study bias problem, we want to conclude that the expected value of fn(x)
convergencesto f almost everywhere, forany f e Ll( RN 8N 4 ) .

The expected value of f q(X) is easily calculated and reads as follow

a, (1)) =E( fo(x) )= _[ K, (%,2)(2)u(d2). (17)

]RN
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Eq. (17) defines the linear operator a,, : L1<RN,%N,;1) —>C<RN )

Definition 13: Let a, be a linear operator on Ll(RN,‘BN,,u). We say that a,, is bounded

in measure, if for every ¢ > 0, there exists ¢ > 0, such that

sup /J({XERNZ‘an(f)(X)‘>5})S8 (182)
1], <1

Thus, a sequence of linear operators,{an}n N is uniformly bounded in measure if the
S

maximal operator a™ (f)(x) = sup ‘an (f )(x)‘ is such that, for every ¢ > 0, there exists

neN
6 > 0 such that
sup ,u({XERN:aM(f)(X)>5})S€. (18b)
], <t
Notice that maximal operator is a sublinear operator and not a linear one. [

Bellow, we shall present a type result of one of fundamental theorems in functional analysis,
the uniform boundedness principle.

Theorem 1 (Pointwise uniform boundedness, Vidal-Sanz (2005), Sec. 2, Theorem 1): Let
{an} en be a sequence of linear operators on Ll( RN N ,,u) each of them being bounded
S

in measure. Then, only one of the following statements holds true:

(a) {an} e is uniformly bounded in measure.

(b) For every & > 0, there existsaset C, c L, = Ll(RN,%N,y), which is G; and

dense in L,, such that for every f e C,: ,u( {XERN ZaM(f)(X)zoo} ) > &

|
To prove this theorem, we shall need the following lemma
Lemma 6: Forany £ > 0 and & > 0 we define the set
V2 :{f e Ll(RN,%N,,u):y( {XGRN :aM(f)(x)>5} ) > g}. (a)
Then, V2 i i N, N
en, V. is an open subset in Ll(R B ,,u). Hence, for any sequence (5k )k N

oy >0, {Vﬁ }keN is a sequence of open sets forany ¢ > 0. |

Proof of Lemma 6: Vidal-Sanz (2005), Sec. 2, Theorem 2. <
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Proof of Theorem 1: Let us first assume that (b) is not hold true. Assume there exists a
keN, such that, VX is not dense in Ll(RN,SBN,,u). Then, there exists an

foeLy(RN,B" 1) and r>0 such that for fely(RY, BN )| f]<r=
(f0+ f)evfk, where | -| indicates the norm of Ll(RN,%N,,u). So, we have
,u({XERNZaM(fO-I-f)(X)>5k})SS. In addition, we can write f =

(fo + f)— fo, and using the fact that the maximal operator is sublinear (see Def. 1) we
obtain

,u({XeRNZaM(f)(X)>25k})S,u({XERNZaM(fO+f)(X)>5k})
+,u({XGRN:aM(fO)(x)>5k})§25

Finally, sup ﬂ({XERNZ‘an(f)(X)‘>5})SZ—f (b)
[fl<r

Thatis, a™ uniformly bounded in measure (see Def. 13) with &' = 2 and & =20,,1.e, (a)
r

holds true.

Now, if every Vﬁ is dense in Ll( RN N 7 ) the application of Baire theorem (see Rudin

(1987), Chapter 5, Theorem 5.6) implies that C = ﬂ ka is a dense and, G4 set (see Def.
k=1
2). If f € C,thenforany ¢ >0 and &, >0 we have

,u( { xe RN :aM(f)(x)> &, } )> ¢. In other words, (b) holds true, and the same
time (a) does not hold. <

Our aim is to show that the linear operators {an}n N IS approximate identity in
S

Ll( RN N 7 ) The following theorem shows that it is enough to prove this property only

for a dense subset of Ll(RN,SBN,,u).

Theorem 2 (Pointwise approximation, Vidal-Sanz (2005), Sec. 2, Theorem 2): Let {an} en
S

be a sequence of linear operators in Ll( RN 8N 4 ) and assume that

(a) the sequence {an} en is uniformly bounded in measure
S
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(b) there exists a dense set, G Ll(RN,%N,,u), such that for every f e G
an(f)i)a(f) a.e.
Then {an}n N is an approximation to the identity in the a.e sense, i.e.,

ap(f)——">a(f) ae., forevery feLl(RN,%N,,u). n

Proof: Assume that there exists a dense set, G < Ll(RN,%N,y), such that for every

feGands>0

lim y[{XERN:sup‘an-(f)(x)f(x)‘>§}]=0 (a)

n—0 n'>n

Also, by assumption G is dense so, for any ¢ >0 and f e Ll( RN,%N,y) there exists

fely(RN,®", ), suchthat, | f - F <& (b)
Now, using the triangular inequality we derive:

an (1)(x) - ap(F)(x)]

+sup |ap(F)() - T+ F()-F(0)]  ©

n'>n

sup ‘an-(f)(x)— f(x)‘ﬁ sup

n'>n n'>n

for x e RN, and n e N . Observing that if sup ‘an-(f)(x)— f(x)‘ > & then,

sup \an.(f)(x)_an.(f)(x)\+n;ug lan (F)(x) = T+ F ()= (x)| > 5,

by Eq. (c), and each term is positive. Hence, at least one of them must be higher than g

So, {XERN : sup ‘an.(f)(x)— f(x)‘>5}

n'>n
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U{XERN . sup ‘an.(f)(x)— f(x)‘>g}

n'>n

U{XGRNZ‘f(X)—f(X)‘>§} (d)

It follows

yHXERN : sup ‘an-(f)(x)— f(x)‘>§}}

n'>n

S/J[{XERN: sup ‘an.(f)(x)—an-(f)(x)‘>g}]

+,U[{XERNInSIliE\) ‘an-(f)(x)— f(x)‘>§}]
+y({X€RNZ‘f(X)—f(X)‘>%}j (e)

Using the assumption (a), we can show that first term of (d) can be arbitrary small, i.e.,

,UL{XERNZ nsgr: ‘an'(f)(x)—an-(f)(x)‘>§}J351, (f)

for ¢, >0 and &, can be arbitrary small.

Then, we have
y[{XERN : sup ‘an-(f)(x)— f(x)‘>5}]

an(F)(x)- f(x)‘>%}}
(@)

Sé‘l-l-,uL{XGRNZ sup
n'>n
+:st(x)_f(x)H

)

And finally,
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,UL{XERN : sup ‘an-(f)(x)— f(x)‘>5}]

<81+Iu£{XE]RN © sup ‘an-(f)(x)— f(x)‘>%}}
n'>n (h)
3¢
L 28
o

In latter inequality ¢,&, are arbitrary small and the second term tend to zero by In. (a). So, a.e
approximation follows. <

Remark 1: The assumption (a) of Theorem 2 is necessary, and we cannot assume weaker
condition, i.e., all a, are bounded in measure. To see this, we assume that {an}n N Is an
S

approximation to the identity in Ll( RN N 7 ) and all a, are bounded in measure but the

uniform boundedness in measure is not satisfied. It follows that {an} o IS an approximation
(S

to the identity in every dense C < Ll( RN N ,,u). Then, using Theorem 1, we can prove

that there exists a dense set C ., such that forany ¢ >0 and f € C,:

ﬂHxERN :Jier%\an(f)(x)_(f)(x)\zoo}} > ¢,

which contradicts the a.e approximation property; see Pointwise approximation, Vidal-Sanz
(2005), Sec. 2, Theorem 2.

Now, we are in position to state sufficient conditions for pointwise approximation of expected
value of a delta estimator.

Theorem 3 (Sufficient conditions for pointwise approximation, Vidal-Sanz (2005), Sec. 2,

Theorem 3): Let a,()()=E ( fo(x) )= J' Ko (x,2) f(2)u(dz). We define
&N

\an\:ﬂ Ky (%,2)| 1 (2) (d2). Assume that

(a) the sequence ‘ a, ‘ is uniformly bounded in measure.

(b) I Kmg (X,2)u(dz) —"22 1 ae.
RN

(c) For every & > 0 there exists M s, such that sup J ‘Kmn(x,z)‘y(dz)< Ms ae.

| x-z| <&
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(d) For every 6 >0 j ‘Kmn(x,z)‘y(dz)&o a.e.

| x-z||> &
Then, an(f)%a(f)a.e.foreveryfeLl(RN,%N,,u) C
Proof: From the fact that {‘an ‘} N Is uniform bounded in measure we can prove that
ne

{an } N is uniform bounded in measure. This is observing,
ne

aM(f)(x)= sup ‘an(f)(x)‘snsulg ”Kmn(x,z)f(z)‘y(dz)=|a|'\" (] f1)(x),

neN

and then forany 6 >0
,u({XERNZaM(f)(X)>5})S,u({XERNZ|a|M(|f|)(X)>5} ) (a)

which proves that { a,, | . 15 uniformly bounded in measure.

ne

In the sequel, we shall give the idea of proof. It is proved the approximation property for any
fe Ll( RN BN ,ﬂ) with an a.e. identical elements in C, (R N) (the set of continuous and

compactly supported functions on RN ). Then, as CC(RN) is dense in Ll(RN,SBN,y),
applying Theorem 2 the result follows. <

Remark 2: The idea and the manipulations of proof of Theorem 3 are similar with Theorem 2
in Chapter 3, and for this reason we omit the last part of proof. This is, why we work in set of
continuous compactly supported functions, and every continuous function defined on a
compact set is bounded.

Remark 3: In Theorems 2 and 3 we assume a general delta estimator, and we proved them
under some assumptions. Now, we shall give some examples of delta estimators which satisfy
these assumptions.

Example 1: Let 4 be the Lebesgue measure, and |- be the indicator function of a set,
CcR N Consider the kernel estimator

fig (%) = iz i (X1 ) = 1 ey 20 K (M)

i=1

in Ll( RN 8N 2 ) If there exist a closed interval C = RN | and positive constants ¢y, c,,
such that ¢, I (u) < |K(u)| < c, 1 (u), then the operators a,(f)(x) =E ( fn(x)) (see Eq.

(17)) are uniformly bounded in measure. Now, let |- |be a matrix norm, such that
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| A-B||<| Al|B]|, A,BeRN*N. Then, using the Theorem of change of variables we
obtain:

I ‘Kmn(x—z)‘dz Sm J.N||x—z|||< (mn—l(x—z))dz
R

| x-z||>¢

| m, | mn] -0
< j||u|| K (u)du ——1"" 0.
Cc

)

Now, the approximation property follows applying Theorem 3.

4.5.2. Convergence of variation term
In the following lemma we shall show the universal weak consistency of variation term.

Lemma 7 (Universal pointwise weak consistency of variation term, Vidal-Sanz (2005), Sec.

3, Preposition 1): Assume that for any probability measure, P, such that f :d—P

du
ely(RY, 3N, 1), and EUKmn(X’Xi)

.
]:o(nr‘l) for some r>1 almost

everywhere with respect to 4. Then, EU fn(x)—E(f(x)) r)%o, and

‘ fn(x)—E( f(x))‘—P>0 a.e. with respect to x  (19ab), and the result hold

universally in P. [

Proof: Applying the ¢, equation (Lemmal) we have

r} L AN ) (a)

IA
| N
m
7\
—_—
A
3
=}
—
X
X
SN—
N—

which proves Eq. (19a).

Now, applying Markov inequality (Lemma 2) we prove Eq. (19b).
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Theorem 4 (Universal pointwise strong consistency of variation term, Vidal-Sanz (2005),

Sec. 3, Theorem 4): Assume that for any probability measure, P, such that f :S—P
U

N onN c -n )
eLl(R B ,,u), and ZEXp{W}«D a.e. with respect to u, where
n=1 n

Mn(x)zesssup‘Kmn(x,z)‘. Then universal pointwise convergence (see Def. 12) is
z

satisfied a.e. universally in P . [

Proof: First, by assumption, we know that K (x,x;)e[-M,(x), M,(x)], and
applying the Hoeffding Inequality (Lemma 4) we derive

—2n2g?
n

Z( 2M, () )2

i=1
— 92 ng _
exp{ZMH(X)2 €))

>e|=0, (b)

P >¢g | < 2exp

L5t 5ol )

Further, by Borrel-Canteli Lemma (Lemma 5a), we obtain

%Z (Kmn(x,xi)—E(Kmn(X’xi)))

P| limsup
n

which is equivalent with universal pointwise convergence (see Def. 12). <

Example 2: Consider the kernel estimator, and assume that kernel K has a global maximum

. K(uo) :
at point, u =ugy. Then, we have M, (x) =sup ‘ K, ( x—z)‘ , and we require
zZ

" det(m,)

Z exp{—ndet(mn)2 } < oo. A sufficient condition for latter inequality to holds true is
n=1

ndet(m,,)?

log(n) — . Applying Theorem 4 the universal pointwise strong consistency follows.
og(n
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4.6. Estimation in infinite dimensional spaces

In this section we present the main points of some recent works about estimation in infinite
dimensional spaces; see Prakasa-Rao (2010), Niang (2004), Ferraty, Vieu (2008). Before
continuing, it is necessary to give a description of the concept of data in an infinite
dimensional space.

There are different fields of applied sciences (environmetrics, chemometrics, biometrics,
medicine, econometrics, engineering, etc.) where the collected data are curves. These data are
called functional. A functional observation can be expressed by a random family

{X(t),teT} where T be alinearly ordered set of indices (e.g., T = R* or T = N).

We give the following general definitions for functional variable /data and functional
dataset.

Definition 14. A random variable X is called functional variable if it takes values in an
infinite dimensional space. An observation (value of a functional variable) » of X is called
a functional data. ]

Definition 15. A functional dataset {;(1,;(2, e Xn } is the observation of n functional

variables {Xl,XZ, . } ]

As we can see from the above definitions the notion of functional variable covers a larger area
than curves analysis. In particular, a functional variable can be a random surface or any other
more complicated mathematical object. Examples of functional data are the stochastic
processes with continuous sample paths on a finite interval associated with the supremum
norm or stochastic processes whose sample paths are square integrable on the real line.
Spaces, such as the previous, are separable Banach spaces. For more details about functional
data see Ferraty, Vieu (2006), and Ramsay, Silverman (2005,2002).

Unlike to the finite dimensional spaces (i.e., ]RN), there is no analog of the Lebesgue
measure on an infinite dimensional Banach space. The density function of a random element,
if it exists, is related to the dominating measure with respect to which the density function of
the Radon—Nikodym derivative is computed.

For this reason, it is necessary to introduce new conditions in the topological structure, and to
the delta sequences to obtain uniform results of a delta sequence estimator in a Banach space
(or in a general infinite dimensional space).

Let (Q , F, P) be a probability space, and E is an infinite dimensional separable Banach

space (e.g., the continuous functions on the interval [O,l] endowed with the supremum

norm). In additional, let B be the c-algebra of Borel subsets of E. Suppose now that X isa
random element defined on (Q, F, P) taking values in (E,), and that it has a density

function f with respect to a o-finite measure x on (E,®B), suchthat 0< u(B)<x

for every open ball B < E. Now, let {Xl,Xz, ,Xn} be independent and identically
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distributed random elements (i.i.d) as X . Also, suppose C is a compact subset of E with
the property that forany r, > O thereexistst, € E, 1<k <d,

dn
celJB(trm), (20a)
k=1
and
there exists a,, > 0 and C > 0O such that dn-(rn)a” = C. (20b)

The symbol B( t.ry ) denotes the open ball in E with center t, and radius r,, . This is the

new topological condition that we introduce in an infinite dimensional space. We assume that
a compact set C can be covered by a finite number of balls (Eqg. (20a)) and a geometrical
link between the number d, of balls and the radius r,, of each of them (Eq. (20b)).

Note that the condition (20a,b) is trivially satisfied in an Euclidian space (RN ), by choosing
a, = N (also, it holds true for infinite dimensional projection-based semi-metric spaces;

see Ferrati, Vieu (2008) Sec.3 for the proof) but to obtain analogous uniform results in a
general infinite dimensional space it is necessary to assume that a compact set can be written
as we saw above. Ferrati, Vieu (2008), Sec. 1, observe this detail, and give an extensive
discussion. Also, Prakasa-Rao (2010), Sec. 1, includes this in a Bannach space.

Now, we are in position to give the delta-sequence definition in Banach space and two
additional conditions which we need in order to prove some theorems.

Let || - | denotes the norm of Banach space E .

(G1) We assume that for every & > 0, there exists » > 0 such that, if x € C,
y e E: |x=y| <y then |f(x)-f(y)|<e.

Then, it follows that there exists M > 0 such that sup f(x) < M < oo, (21)

xeC

Definition 16 (Prakasa-Rao (2010) Sec.1): Let E be a Banach space. A sequence of
nonnegative functions {6m(x,y), m e N} defined on Ex E is said to be a delta

sequence with respect to the measure g if it satisfies the following conditions

(G2) Forevery y ,0 < y <o, lim sup j Sm(X,y)u(dy) —1| =0,

m — oo xeC
= | B[x.r]

where B[ x,7 ] = {y € E:||x-y]| < » },

(G3) there exists a constant C, such that sup 5m( x,y) < Cp:Spy < ™
xeC,yeE
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: m
where 0 <s,, —»>o as m—>o and |lim —— = oo,

moo Sy -log(m)
(G4) there exist c >0, B, > 0,5, >0 such that
om0 9) = onl(x20v)] < osm) [ xe [ x ke < €

(G5) forany y > 0, lim sup Sm(X,y)| x=y | =0. n
M= (x,y)eCx( E-B[x,7])

(G6) Finally, we suppose that d,, = n?, for a > 0 and

(rr )ﬁl-(sm )ﬂz < [—Sm'log(m)]m.

m
Now, a delta sequence estimator on a Banach space can be written in the following form

fn(x):%i S (XX ). (22)
i=1

Note that m might depend on n suchthat m —o as n— oo.

Theorem 5 (Prakasa-Rao (2010), Sec. 2. Theorem 1): Suppose m — oo and there exists

0 < p <1 suchthat n?P < m < n for large n.Under the conditions (G1) — (G6) the
following limiting relation holds true:

lim sup
n—o>o xeC

fa(X)-f(x)[ =0 as. " (23)

Proof: Due to the complexity of this proof, we give the reference where an interested reader
could study. The completed proof there is in Prakasa-Rao (2010), Sec. 2. Theorem 1. <

Theorem 6 (Prakasa-Rao (2010), Sec. 2. Theorem 1): Suppose the conditions (G1) ,and
(G3)—(GB6). In addition, the following condition holds true:

(G2)" thereexists 0 < y <oo, such that sup I Sm(Xx,y)u(dy) -1 = O( D, )

xeC
= | B[xr]

where, D, = sup{||x—y||, xeC,yeE, 5m(x,y)>0} =0(1), as m-—>o. Also,
suppose that f is Lipschitzian, i.e., there exists K > 0 such that
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| f(x)-f(y)|<K|[x=y]| ,foranyxeCandyecE.

) Sm -log( m
Then, with probability one, sup ‘ fo(x)- f(x)‘ = O( Dm )+O{ %()J (24)

xeC

Proof: Since (G2)" implies (G2) applying Theorem 5, we get
sup fn(x)_E(fn(x))\o[ %g(m)],a.s
So it is sufficient to prove
fLejr(): E( fn(x))—f(x)‘:O(Dm). (@)
We have
E( fa(x)) = 1(x)= [ 8n(x.y) F(y)u(dy)=-(x)
= [ om(xy)(£(y)= 1 (x))uu(y)
+J Sm(x,y)fF(x)u(dy)— f(x)
=J+f(x)“-5m(x,y)y(dy)l}, (b)
where J:I S (X, y)(F(y)-(x))u(dy).
Hence,
‘E( fn(x))—f(x)—J‘:O<Dm),bycondition(GZ)’. ©)

Thus, f is Lipschitzian, so there exists K R, such that

| f(x)-f(y)|<K|x-y]|,foranyx e Candy € E. (d)
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Then,

312 [ Sn(xy)] 1(y)= T(x)]u(dy)

E

<KDy [ on(x.y) u(dy)

<O( Dy ), by condition (G2)". ()
Now, combining (c) and (e) we derive

E(fa(x))=f(x)|=0(Dn). <

Dabo-Niang (2004) gives a definition of naive kernel estimator in case that x isa o — finite
and diffuse measure.

Definition 17: Let x be a o-finite and diffuse measure, and a sequence r,, which satisfies

r, >0, limr, =0, lim n-y( B[X,rn} ) = +o0 (2la,b,c). Let B[X,rn] be the
n—oo n—o

closed ball with center X, and radius I, and I(A) denotes the indicator function of a set A.

Then, the naive kernel estimator given by

n

fo(x) = 1 Z 1 X;eB[X,r, ] ), for x ¢ E (25

n'ﬂ( B[X’r“] ) i-1

Then she proves the following theorem

Theorem 7 (Dabo-Niang (2004), Sec. 1, Theorem 1): If the density function f is continuous

at x e E and f, is the naive kernel estimator, then |im E( fAn(x)—f(x))2 = 0.
n —oo

[ (26)

Proof: First, we observe that for any x € E we have
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1
\E(fn(x>)—f<x>\=ﬂ(8€) j f(y) u(dy) -1 (x)
n (a)
1
e Bjxmy)—f(x)\u(dy)

n
Also, by assumption f is continuousat x € E,so V ¢ >0 there exists §, > 0, such that

| y=-x|<6, = |f(y)-f(x)|<e. (b)
Thus, if r — 0, then, V &' >0 there exists n., such that n=n,: O<r <& Let

g =6,,then, V &> 0 thereexists n, suchthat, V. n>n_and y e B we have
n

|y-x|<r <5, :>|f(y)—f(x)|<g (c)
and finally we obtain
1
F(y)=-f(x)|u(dy)<e. (d)
) L1
That is, lim E(fn(x)—f(x)):o. (e)

And obtaining the variation
V(f,00) = E( fa(x)-1(x) )’
)

_ 5 CER(fa00) _ By _E(f(9)

n(,u(BX))z " n(u(Bx))2 _ nu(By)

Now, if r, -0 and n 'U(Br)r(] ) — o0, then V ( f,(x) ) — 0. And the proof is complete. <«
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