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Summary 

 

 

In many systems (e.g. random/stochastics dynamical systems) in which researchers are 

interested in finding probability density functions (pdf(s)), which describe the system, we 

have observed that they approximate these pdfs by a superposition of some appropriate 

functions (which are called approximation to the identity or delta family), which is different 

at any approximated point, generally; see Athanassoulis, Sapsis (2008). Furthermore, when 

researchers have data, they use estimators which are similar with the aforementioned 

approximation form (delta estimators); see Brox et all. (2007), Bengio (2003). Although their 

results are very effective, there is not a proved mathematical construction in the literature 

which allows this approximation. Our motivation was to cover this gap in the literature, 

although this good has not been fully achieved, and there is one question remaining 

unanswered. 

 

Initially, we want to give a rigorous mathematical construction of this approximation, and 

secondly to link this result with other mathematical fields (classical analysis, estimation 

Statistics, and Large Sample Theory) highlighting their similarities. 

 

In Chapter 2, we show the importance of the approximation method which we shall use, and 

the necessity of existence of a discrete approximation of a multidimensional pdf. In 

particular, in the first part of this chapter, we prove completely the Fourier inversion 

Theorem. This is an important theorem in mathematical analysis, which is based on the 

convergence which we shall describe. Continuing, in the second part of Ch. 2, we cite an 

application of a random dynamical system where we can realize that we need a discrete 

approximation form. 

 

In the following chapter (Chapter 3) we present the main results of our work. In particular, 

we present a series of theorems establishing that any multidimensional pdf can be 

approximated by a superposition of Gaussian pdfs (or more general functions/kernels). In the 

simplest case, we can assume spherically symmetric kernels, and easily can be generalized to 

ellipsoidal ones in orientation of the usual basis of 
N

. In the most interesting case, which 

we study here, we can assume general ellipsoidal kernels in any orientation. Firstly, we prove 

that any pdf can “generate” a family of approximation to the identity (or delta family). 

Subsequently, we show the central theorem of this chapter, in which we prove an integral 

approximation of any pdf h , namely 
 

       lim

N

K h d h  G
G

x
x ,

x u u u x




, 

where  G x


 is a family of matrices in an appropriate directed set. In the third part of this 

chapter, using the Riemann Sum, we give a discrete approximation form by a superposition 

of Gaussian pdfs, and we prove that we can change this superposition at any approximated 

point of support of pdf. It means, we can achieve better approximation with less points of the 

partition, i.e., we can decrease the computational cost. In other words, we prove that 

  ( ) ;h p K



  Cx x u x , where  C x  is the localized covariance matrix, 
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and p  are unknown constants. As we shall see, there are many common points with the 

Fourier inversion Theorem. The basic deference is that we require (it is a nature condition) 

positivity of family of approximation to the identity. This additional condition makes it 

different, and it is the reason we study the approximation of pdfs separately. 

 

Last, in Chapter 4, we deal with estimation of pdfs. We define the delta sequences estimators, 

   
1

1ˆ ,

n

n m i

i

f K
n



 x x x , and we present the most basic of the kernel estimators 

(which are delta ones). Then, we focus on theorems of asymptotic unbiasedness, ;i.e., 

    ˆE 0
n

nf f


 x x , and consistency of variation term, i.e., 

    ˆ ˆE 0
P

nf f x x  in  1 , ,N NL B . In last years, functional data have been 

developed in statistics. For this reason, we generalized the above definitions in infinite 

dimensional spaces, and we present some recent published results in Banach spaces.  

 

At first glance, integral approximation, and estimation of a pdf are different methods. 

However, the fact that the expected value of a delta estimator can be written in the following 

form,        ˆE ( ) ,n mn

N

f K f d z  z zx x , allow us to link these two methods. 

Studying the bias problem, we shall show that     ˆE
n

nf f


x x , which is the 

same problem as the integral approximation of a pdf. On the other hand, if we assume all p  

are equal, then the discrete form which we derive in Chapter 3, looks like with a delta 

estimator. Finally, as we shall notice, either we refer to the classical analysis, either to the 

approximation-estimation of pdfs, the properties of families of approximation to the identity 

play a key role on proving the theorems. 
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Σύνοψη 
 

 

Σε αρκετά συστήματα (π.χ. τυχαία/στοχαστικά δυναμικά συστήματα) όπου οι ερευνητές 

ενδιαφέρονται να βρούνε άγνωστες συναρτήσεις πυκνότητας πιθανότητας (σππ), οι οποίες 

περιγράφουν το σύστημα, παρατηρήσαμε πως προσεγγίζουν αυτές τις άγνωστες σππ με μια 

υπέρθεση κατάλληλων συναρτήσεων (οικογένειες προσέγγισης την μονάδας ή δέλτα 

οικογένειες), διαφορετική γενικά σε κάθε σημείο προς προσέγγιση; Βλέπε Athanassoulis, 

Sapsis (2008. Επιπλέον, όταν οι ερευνητές έχουν δεδομένα, χρησιμοποιούν εκτιμητές που 

μοιάζουν με την προαναφερθείσα προσέγγιση (δέλτα εκτιμητές); Βλέπε see Brox et all. 

(2007), Bengio (2003). Παρόλο που τα αποτελέσματα στα οποία καταλήγουν είναι αρκετά 

ικανοποιητικά στην βιβλιογραφία δεν έχουμε, όσο και αν ψάξαμε σε όποια πηγή 

μπορούσαμε, βρει μια αποδεδειγμένη μαθηματική κατασκευή που να επιτρέπει την 

παραπάνω προσέγγιση.Στόχος αυτής της εργασίας ήταν να καλύψει ακριβώς αυτό το κενό, 

παρόλο που δεν επιτευχθεί από πλήρη επιτυχία κι ένα ερώτημα παραμένει αναπάντητο.  

 

Επιθυμούμε αρχικά να δώσουμε μια αυστηρή μαθηματική κατασκευή αυτής της 

προσέγγισης, και δεύτερον, να συνδέσουμε το αποτέλεσμα μας με άλλους τομείς των 

μαθηματικών (κλασσική ανάλυση, εκτιμητική στατιστική και θεωρία μεγάλων δειγμάτων), 

αναδεικνύοντας τα κοινά τους στοιχεία.  

 

Στο Κεφάλαιο 2 δείχνουμε την σημαντικότητα της προσέγγισης που θα χρησιμοποιήσουμε 

και την αναγκαιότητα να υπάρχει μια διακριτή μορφή προσέγγισης μιας σππ. Συγκεκριμένα 

στο πρώτο μέρος του κεφαλαίου αποδεικνύουμε πλήρως το θεώρημα αντιστροφής του 

μετασχηματισμού Fourier. Μια πολύ σημαντική εφαρμογή στη μαθηματική ανάλυση όπου 

βασίζεται στην σύγκλιση που θα περιγράψουμε. Στη συνέχεια, στο δεύτερο μέρος του ίδιου 

κεφαλαίου παραθέτουμε μια εφαρμογή ενός στοχαστικού δυναμικού συστήματος κατά το 

οποίο γίνεται αντιληπτό πως χρειαζόμαστε μία διακριτή μορφή προσέγγισης. 

 

Στο επόμενο κεφάλαιο (Κεφ. 3) παρουσιάζουμε τα πιο σημαντικά αποτελέσματα αυτής της 

δουλείας. Συγκεκριμένα παρουσιάζουμε μια σειρά από θεωρήματα δείχνοντας ότι κάθε 

πολυδιάστατη σππ μπορεί να προσεγγιστεί όσο καλά θέλουμε από μια υπέρθεση Gaussian 

σππ (ή και γενικότερων συναρτήσεων). Στην απλούστερη περίπτωση μπορούμε να 

θεωρήσουμε σφαιρικούς πυρήνες, και εύκολα να γενικεύσουμε σε ελλειψοειδής στην 

κατεύθυνση της συνήθης βάσης του 
N

. Στην πιο ενδιαφέρουσα περίπτωση, την οποία 

μελετάμε εδώ, θεωρούμε γενικούς ελλειψοειδής πυρήνες σε οποιοδήποτε προσανατολισμό. 

Αρχικά αποδεικνύουμε ότι κάθε σππ ΄΄γεννά΄΄ μια τέτοια οικογένεια. Στη συνέχεια, 

δείχνουμε το κεντρικό θεώρημα του κεφαλαίου στο οποίο αποδεικνύουμε μια συνεχή 

προσέγγιση για κάθε σππ., h , δηλ. 
 

       lim

N

K h d h  G
G

x
x ,

x u u u x




, 

όπου  G x


 είναι μια οικογένεια πινάκων που ανήκει σε κάποιο κατάλληλο κατευθυνόμενο 

σύνολο. Στο τρίτο μέρος, χρησιμοποιώντας το Riemann άθροισμα, δίνουμε μια διακριτή 

προσέγγιση μιας σππ από υπέρθεση Gaussian συναρτήσεων. Επιπλέον, το σημαντικότερο 

είναι ότι σε κάθε σημείο στο στήριγμα της σππ μπορούμε να αλλάζουμε αυτή την υπέρθεση. 

Αυτό είναι πολύ σημαντικό αποτέλεσμα διότι μπορούμε να πετύχουμε καλύτερη προσέγγιση 
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με λιγότερα σημεία της διαμέρισης που χρησιμοποιούμε για την προσέγγιση, το οποίο 

σημαίνει μείωση του υπολογιστικού κόστους. Με άλλα λόγια θα δείξουμε ότι

  ( ) ;h p K



  Cx x u x , όπου  C x  είναι ο τοπικός πίνακας 

συνδιακύμανσης. Όπως θα δούμε υπάρχουν αρκετά κοινά στοιχεία με τα θεωρήματα της 

κλασσικής ανάλυσης. Η ουσιαστική διαφορά είναι ότι ζητάμε οι οικογένειες προσέγγισης της 

μονάδας, που θα χρησιμοποιήσουμε, να είναι θετικές (φυσική συνθήκη). Αυτή η επιπλέον 

ιδιότητα διαφοροποιεί τα πράγματα και είναι ο λόγος για τον οποίο πρέπει να μελετήσουμε 

ξεχωριστά την προσέγγιση των σππ. 

 

Τέλος, στο Κεφάλαιο 4, ασχολούμαστε με την εκτίμηση σππ. Ορίζουμε γενικά τους δέλτα 

εκτιμητές    
1

1ˆ ,

n

n m i

i

f K
n



 x x x , και γίνεται η παρουσίαση των πιο σημαντικών 

δέλτα εκτιμητών. Στη συνέχεια, επικεντρωνόμαστε θεωρήματα ασυμπτωτικής αμεροληψίας, 

δηλ.     ˆE 0
n

nf f


 x x , και συνέπειας, δηλ.     ˆ ˆE 0
P

nf f x x  

των δέλτα εκτιμητών στον  1 , ,N NL B . Τα τελευταία χρόνια στην στατιστική έχουν 

αναπτυχθεί τα λεγόμενα συναρτησιακά δεδομένα. Για αυτό τον λόγο, γενικεύουμε τους 

παραπάνω ορισμούς σε Banach χώρους και παρουσιάζουμε τα σημαντικά αποτελέσματα που 

πρόσφατα έχουν δημοσιευτεί σε τέτοιους χώρους.  

 

Με μια πρώτη ματιά, η προσέγγιση και η εκτίμηση μιας σππ φαίνονται διαφορετικές 

μέθοδοι. Παρόλο αυτά, το γεγονός πως η μέση τιμή ενός δέλτα εκτιμητή γράφεται στην 

ακόλουθη μορφή,        ˆE ( ) ,n mn

N

f K f d z  z zx x , μας επιτρέπει να συνδέσουμε 

αυτές τις δύο μεθόδους. Συγκεκριμένα μελετώντας το πρόβλημα της αμεροληψίας θα 

δείξουμε ότι     ˆE
n

nf f


x x , όπου είναι το ίδιο πρόβλημα που 

αντιμετωπίζουμε στη προσέγγιση μιας σππ. Από την άλλη μεριά, αν στην διακριτή μορφή 

προσέγγισης που δίνουμε στο Κεφ. 3 θεωρήσουμε όλα τα p  ίσα, τότε μοιάζει αρκετά με 

έναν δέλτα εκτιμιτή. Επίσης, όπως θα παρατηρήσουμε είτε αναφερόμαστε στην κλασσική 

ανάλυση, είτε στη προσέγγιση-εκτίμηση σππ καθοριστικό ρόλο στις αποδείξεις των 

θεωρημάτων παίζουν οι ιδιότητες των οικογενειών προσέγγισης της μονάδας. 
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NOTATION 
 

 

 
0

K   
  an approximation to the identity 

   Lebesgue measure 

Leb( )f   Lebesgue set of a function  1 Nf L  

f̂   Fourier transform of a function  1 Nf L  (Chapter 2) 

( ; )x t   random (or stochastic) response (or output) 

( ; )y t   random (or stochastic) excitation o(or input 

PX  infinite dimensional measure of the Borel sets of the sample (functional)  

 BanachX  space 

,xy u vF   characteristic functional of  joint response-excitation 

( ) ( ) ( , )x t y s u v  characteristic function of joint response-excitation  

( ) ( ) ( ,b)x t y sf a  joint (two-time) response excitation probability density function 

( ) (b)y tf  excitation pdf 

t  Dirac delta generalized function at time t   

,

( )

x y u v

u t





F
 Volterra u  partial derivative of xyF  

N
bC  the space of bounded continuous functions defined on N  

Gaussf   Gaussian pdf 

Q  proper rotation matrix 

 ; /Q 0   ellipsoidal by orientation Q  

C   covariance matrix of Gaussian pdf 

C   dependent localized covariance matrix 

i j  correlation coefficients of covariance matrix C   

i j  correlation coefficients of the  dependent localized covariance matrix 

 , , P  probability space 

esssup f  essential supremum of f  

f̂  estimator of f  (Chapter 4) 

ˆ
B

f  balloon estimator 

ˆ
S

f  sample point estimator 

ˆ
B S

f  binned sample point estimator 

mn
K   delta sequence 

E   Banach space 
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2                                                             Chapter 1 

1.1.  Motivation and scope of the present work 

In many systems that involve random functions we are interested in finding their probability 

density functions (pdf(s)). Examples of such systems are the random/stochastic dynamical 

systems described by random/stochastic differential equations. Athanassoulis, Sapsis (2008), 

New partial differential equations governing the joint, response-excitation,probability 

distributions of nonlinear systems, under general stochastic excitation, and Venturi et al. 

(2012), A computable evolution equation for the joint response-excitation probability density 

function of stochastic dynamical systems, study such models, in which they derive first order 

differential equations for the joint response-excitation pdf of a particular system. In addition, 

we often encounter such systems in Statistics. In Statistics, researchers use various statistical 

estimators to estimate the unknown pdf. 

 

As we have observed in these systems, researchers use a superposition of families of 

approximations to the identity to estimate the unknown pdf, and especially Gaussian pdfs 

(Gaussian kernels). In addition, they can change this family at any approximated-estimated 

point; see Athanassoulis, Sapsis (2008), Sec. 8, 9. This becomes clearer as we consider some 

articles, such as Susarla, Walter (1981), Estimation of a Multivariate Density Function Using 

Delta Sequences, who deal with positive type delta sequences in section 2. Also, Nolan, 

Marron (1989), Uniform consistency of automatic and location-adaptive delta-sequence 

estimators, who were the first researchers to present locally adaptive estimators, and to prove 

some important results. During the last few years, scientists who deal with Large Sample 

Theory have developed these methods, and have published many results and insights. 

Specifically, Sain, Scott (1996), On locally adaptive density estimation, Sain (2002), 

Multivariate locally adaptive density estimation, Vidal-Sanz (2005), Pointwise universal 

consistency of nonparametric density estimators, present locally adaptive delta estimators, 

and show asymptotic theorems for unbiasedness and consistency. Also, there is applied 

research, such as, Brox et al. (2007), Nonparametric Density Estimation with Adaptive, 

Anisotropic Kernels for Human Motion Tracking, Eqs. 5 and 6 of Sec. 3 who deal with the 

human motion tracking using exactly those estimators, and Bengio et. al. (2006) Non-Local 

Manifold Parzen Windows  

 

After having examined the results of aforementioned research, see Athanassoulis, Sapsis 

(2008), Sec. 11, and Brox et al. (2007), Figure 1 (pp. 156), and Sec. 4, we have concluded 

that the above approximation is effective. However, we did not find in the literature (as long 

as we have searched, and at any source we could) a rigorous mathematical construction 

which allows this particular approximation. 

 

Our initial aim was exactly to cover this gap, although this good has not been fully achieved, 

and there is one question remaining unanswered. We want to construct a theory, and within 

its frame to show that any pdf can be approximated by a superposition of families of 

approximation to the identity (or delta families). The most important part for the application 

is that we can approximate any pdf by a superposition of Gaussian pdfs, and thus we can 

change this superposition at any approximated point. It is obvious that our aim is not to prove 

a general theorem, but we want to construct the mathematical tools, such that, we could 

solve/cover this particular problem/gap. 

 

Our aim is not restricted in only the aforementioned one, but we, also, have a more general 

one. We would like to link our technique of approximation, with other fields of mathematics. 
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In particular, we try to highlight the similarities between the fields of mathematical analysis, 

estimation Statistics and Large Sample Theory. With the proofs, which we cite and our 

comments where we deem necessary, we, largely, succeed in it. The reader will understand 

that the particular convergence and the approximation (continuous and discrete), which we 

use, play a significant role in mathematics, and exactly with this, we can prove strong 

theorems, such as the inversion of Fourier transform. 

 

Despite the essential objectives of this work there is also a personal objective, but an equally 

important one. Through this thesis, I intend to broaden my knowledge and to incorporate with 

new techniques and ideas. This means, I intend to learn how to handle a problem and to 

realize that mathematics are not divided into sectors, but they are a unified whole where each 

time we just use the tools that we need (or construct them) in order to solve a problem. We 

believe that this objective has been achieved to a great extent. 

 

Finally, we tried our text to be as complete as we can. We cite the proofs and the definitions 

completely, and the preliminaries that we deem necessary for better understanding of 

concepts. In addition, we have tried to present/analyze recent papers, so readers could be 

informed with recent results. 

 

 

1.2.  Preview of chapters 

 

In Chapter 2, we show the importance of the approximation method which we shall use, and 

the necessity of existence of a discrete approximation of a multidimensional pdf. In 

particular, in the first part of this chapter, we prove completely the Fourier inversion 

Theorem. This is an important theorem in mathematical analysis, which is based on the 

convergence which we shall describe. Continuing, in the second part of Ch. 2, we cite an 

application of a random dynamical system where we can realize that we need a discrete 

approximation form. 

 

In the following chapter (Chapter 3) we present the main results of our work. In particular, 

we present a series of theorems establishing that any multidimensional pdf can be 

approximated by a superposition of Gaussian pdfs (or more general functions/kernels). In the 

simplest case, we can assume spherically symmetric kernels, and easily can be generalized to 

ellipsoidal ones in orientation of the usual basis of 
N

. In the most interesting case, which 

we study here, we can assume general ellipsoidal kernels in any orientation. Firstly, we prove 

that any pdf can “generate” a family of approximation to the identity (or delta family). 

Subsequently, we show the central theorem of this chapter, in which we prove an integral 

approximation of any pdf h , namely 
 

       lim

N

K h d h  G
G

x
x ,

x u u u x




, 

where  G x


 is a family of matrices in an appropriate directed set. In the third part of this 

chapter, using the Riemann Sum, we give a discrete approximation form by a superposition 

of Gaussian pdfs, and we prove that we can change this superposition at any approximated 

point of support of pdf. It means, we can achieve better approximation with less points of the 

partition, i.e., we can decrease the computational cost. In other words, we prove that 
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  ( ) ;h p K



  Cx x u x , where  C x  is the localized covariance matrix, 

and p  are unknown constants. As we shall see, there are many common points with the 

Fourier inversion Theorem. The basic deference is that we require (it is a nature condition) 

positivity of family of approximation to the identity. This additional condition makes it 

different, and it is the reason we study the approximation of pdfs separately. 

 

Last, in Chapter 4, we deal with estimation of pdfs. We define the delta sequences estimators, 

   
1

1ˆ ,

n

n m i

i

f K
n



 x x x , and we present the most basic of the kernel estimators 

(which are delta ones). Then, we focus on theorems of asymptotic unbiasedness, ;i.e., 

    ˆE 0
n

nf f


 x x , and consistency of variation term, i.e., 

    ˆ ˆE 0
P

nf f x x  in  1 , ,N NL B . In last years, functional data have been 

developed in statistics. For this reason, we generalized the above definitions in infinite 

dimensional spaces, and we present some recent published results in Banach spaces.  

 

At first glance, integral approximation, and estimation of a pdf are different methods. 

However, the fact that the expected value of a delta estimator can be written in the following 

form,        ˆE ( ) ,n mn

N

f K f d z  z zx x , allow us to link these two methods. 

Studying the bias problem, we shall show that     ˆE
n

nf f


x x , which is the 

same problem as the integral approximation of a pdf. On the other hand, if we assume all p  

are equal, then the discrete form which we derive in Chapter 3, looks like with a delta 

estimator. Finally, as we shall notice, either we refer to the classical analysis, either to the 

approximation-estimation of pdfs, the properties of families of approximation to the identity 

play a key role on proving the theorems. 
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2.1.  Introduction 
 

In this chapter we present a basic theorem in Harmonic analysis, and an application of a 

dynamical stochastic system. We have two main objectives. First, we shall show the 

importance of the convergence, which we shall deal with in the sequel. Second, we shall 

show the necessity of the approximation of a pdf. 

 

In Section 2.2, we present a theorem from mathematical analysis, the Fourier inversion 

Theorem. In the proof of this theorem, we use the fact that the convolution of a function f  

with a family of functions  
0

K   
,with some properties (see Def. 1 below), convergences 

to the function (Theorem 1 below). We shall prove a similar theorem in Chapter 3. But there, 

we need a new property of these functions (kernels): to be positive. 

 

Someone might ask why we need an approximation of a pdf. We answer this question in 

Section 2.3. We present an application where a discrete approximation of a pdf is necessary. 

 

2.2.  The Theorem of inverse Fourier transform 

 

Definition 1: A family  
0

K   
 of functions on N  is called an approximation to the 

identity  if : 

 (a) For any 0  ,    1

N

K d  y y . 

 (b) There exists a constant 0M   such that, for any 0   and 
Ny ,   

                   
N

M
K


y . 

 (c) There exists a constant 0M   such that, for any 0   and 
Ny , 

          
1N

M
K 




y
y

.  ■ 

 

Definition 2: Let f  be a locally integrable function on N  (i.e.,  1 N
locf L ). The 

Lebesgue set, Leb( )f , of f  is defined by  
 

 
( ) 0

1
Leb( ) : ( ) and lim ( ) ( )

( )B
B B

f f f f d
B 



 
 

     
 
 


x

x x y x y ,   (1) 

 

where   denotes  the Lebesgue measure, and B  an open ball in 
N

.  ■ 
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Furthermore, it can be proved that   \ Leb( ) 0N f   (Giannopoulos (2014), Harmonic 

Analysis (notes), Chapter 2, Lemma 2.3.5). 

Definition 3: If  1 Nf L , then its Fourier transform ˆ : Nf   is defined by

      ˆ exp 2

N

f f i d    x x x  .  ■     (2) 

 

Lemma 1: Let  1 Nf L , and Leb( )fx . Then, for any 0   we define the 

following function 

    
1

( )
N

f f d








  
y

x y x y .                  (3) 

Then, the function  is bounded, continuous and 
0

lim ( ) 0





 .  ■ 

 

Proof: Giannopoulos (2014), Harmonic Analysis (notes), Chapter 2, Lemma 2.4.8.   ◄ 

 

Theorem 1 (Giannopoulos (2014), Chapter 2, Theorem 2.4.7.): Let  
0

K   
 be an 

approximation to the identity. Then, for any  1 Nf L  the following limiting relation 

holds true 
 

      
0

lim

N

f K d f
 

  y x y y x ,                  (4) 

for any Leb( )fx , i.e., almost everywhere with respect to Lebesgue measure on N .     ■ 
 

Proof: Let 0  . We set  1: 2 2N k k
kJ     y | y| , and we have 

 

 

           

     

     

     
0

N N

N

k J k

f K d f f K d f

f f K d

f f K d

f f K d

 















    

  

  

  

 





 

| y|

y x y y x x y y y x

x y x y y

x y x y y

x y x y y
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1

0

1

N

N

k J k

M
f f K d

M f f d
















  

  



 

| y|

x y x y y

x y x y
y

  

 

 
   

1

10 2

( )

2
N

k
kk

M
M f f d












 

    
| y|

x y x y   

 

 

 
 1 1

1

0

( ) 2 ( 2 )

2

N
k k

N
k

k

M
M


  




 





   

 

 
1

0

2
( ) ( 2 )

2

N
k

k

k

M
M  






   

 

 1
1

0

1
( ) ( 2 ) ,

2

k

k

k

M  






 
  
 
  

  

 

by setting 1 2 NM M . 

Now, let  0  . We know that

0

1

2 k

k





   hence, we can find n , such that 

1

2 k

k n







 . 

 

Further, from the fact that 
0

lim ( ) 0





  we can find 0 0  , such that ( 2 )
3

k 
    for 

any 0   and 0,1,...,k n . Also, we know that 

   (see Lemma 1).  

 

Then, for any 0   

 

     
1

1
1 1

0

1
1

1
( ) ( 2 )

2

1
( 2 )

2

n

k

k

N k

k

k

k n

f K d f M M

M

  














   







y x y y x
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1

1

0

1 1

3 3 2 2

n

k k

k k n

M
 

 



 

 
   
 
  

   

 

 1

2

3 3
M

 




 
   

 
 

 

 1 1M 


  
 

,   for any 0  . 

 

This is proves Eq. (4),      
0

lim

N

f K d f
 

  y x y y x , and the proof is complete.◄ 

 

Lemma 2 (Multiplication formula, Giannopoulos (2014), Chapter 2, Theorem 2.4.7): Let 

,f g  be two integrable functions on N . Then,  
 

        ˆ ˆ

N N

f g d f g d  y y y   .  ■     (5) 

 

Proof: We shall use the definition of Fourier transform (Def. 3) and the Fubini Theorem (see 

Billingsley (1995), Chapter 2, Sec. 18, Theorem 18.3) 

 

 

         

     

ˆ exp 2

exp 2

N N N

N N

f g d f i d g d

g i d f d

 
 

   
 
 
 

 
 

   
 
 
 

  

 

y y y

y y y

     

  

 

 

       ˆ

N

f g d  y y y .  ◄ 

 

Lemma 3: Let 
Nx  and 0  .Then, the Fourier transform of function  g


  

   
2

exp exp 2 i  x  ,  
N  given by: 

  
2

/2

1
ˆ exp

N
g
 

 
   

 
y x y .   ■     (6) 

 

Proof: Giannopoulos (2014), Harmonic Analysis (notes), Chapter 3, Lemma 3.2.3.   ◄ 

 



10                                                              Chapter 2 

 

To prove the following theorem we need to define a particular family of kernels  2
0

K
  

 

given by: 

  2

2

2

1
exp

N
K
  

 
  
 
 

y
y ,   0   and y .     (7) 

We shall prove that the above family is an approximation to the identity. 

 

Theorem 2 (Inverse Fourier transform, Giannopoulos (2014), Chapter 3, Theorem 3.2.1): Let 

the family  2
0

K
  

 be defined in terms of Eq. (7). If  1 Nf L , and  1ˆ Nf L  

then, the following relation holds true: 
 

          2

0

ˆlim exp 2

N N

f f K d f i d
 

     x y x y y x   ,   (8) 

almost everywhere with respect to Lebesgue measure on N .  ■ 

 

Proof: First, we prove that  2
0

K
  

 is an approximation to the identity. For any 0  , by 

changing of variable  zy  we derive 
 

    2

2
2

2

1
exp exp 1

N

N N N

K d d d
  

 
   
 
 

   z z
y

y y y = = .        (a) 

 

Also, for any 0   and 
Ny  we have 

  2

2

2

1 1
0 exp

N N
K
   

 
    
 
 

y
y .                  (b) 

Last, using the known inequality  
1

exp ( )
( 1)!

Nt
t

N






, 0t  , at t





y
, we obtain 

 

  2

2 1

2 1 1( 1)/2

1 1 ( 1)!
0 exp

N

N N N NN

N M
K


 

  



 

  
     
   

y
y

y y
.    (c) 

 

By setting 
( 1)/2

( 1)!
N

N
M







.So, we have proved the three properties of definition 1. 

 

Now, let 
Nx  and 

2
g


 be the function of Lemma 3. We know that  

  2

2

2

1
ˆ exp

N
g
  

 
   

 
y x y         (d) 

 

Using Lemma 2, for any 0  , we obtain  
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          2

22ˆ exp exp 2

N N

f i d f K d


     x y x y y    .   (e) 

 

In the right term of above equation, 2K


 is an approximation to the identity, so by theorem 1 

we have 

 

      2

0

lim

N

f K d f
 

  y x y y x   almost everywhere.     (f) 

 

For the left term, we use the dominated convergence Theorem (see Billingsley (1995), 

Chapter 2, Sec. 16, Theorem 16.4) 

 

          
22

0

ˆ ˆlim exp exp 2 exp 2

N N

f i d f i d





      x x       .     

              (g) 

 

Finally, combining Eqs. (f) and (g) we obtain the equation (8) 

 

          2

0

ˆlim exp 2

N N

f f K d f i d
 

     x y x y y x   .   ◄ 

 

Stein, Shakarchi (2003), in Chapter 5, Theorem 1.9, prove the same theorem on a Schartz 

space. 

 

2.3.  An example in which  the approximation of pdf is necessary 
 

In the sequel of this work we focus on approximation of multidimensional pdfs, which is the 

basic result of this work which is analyzed in Chapter 3. In this section, we present a problem 

which shows the necessity of a discrete approximation of any pdf.  

 

We start with some basic definitions 

 

Definition 4: Let   be a sample space, and 0 ,t     be a real interval. A generic 

random (or stochastic) differential equation (RDE) given by  
 

 
( ; )

( ; ) , ( ; ) ,( )
d x t

x t y t t
dt

G   ■     (9) 

Where,  is the sample argument, t  , and G  is a continuous function which is nonlinear 

generally. Thus, ( ; )y t  is a known random function which is called the excitation of the 

system and ( ; )x t is called the response of the system.  ■ 
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Definition 5: Let X  be a separable Banach space, and P P= X be a probability measure 

defined on it. The characteristic functional F  of P  is a cylinder functional defined on the 

dual space U X  by the formula: 

 

 , ,( ) exp , ( ) exp ( )( )( )( ) PE i u x uu i u x d x




X

UF . (10) 

Notice that this is the Fourier transform of the induced probability measure PX . Also, this 

integral always exists provided that the corresponding probability measure is well defined. 

See Vakhania et al. (1987) and Pugachev, Sinitsyn (2001) for its properties.  ■ 

 

The concept of the characteristic functional was introduced by Kolmogorov in 1935, by 

means of an amazing and far ahead of its time, two-page article, in Comptes Rendu de l’ 

Académie des Science de Paris. 

 

Furthermore, we shall need the definitions of functional derivatives. Here, we give only the 

definitions. For more details and properties of them see Athanassoulis (2011), Functional 

analysis (notes). 

 

Definition 6: Let  X
X , ,  Y

Y ,  be two normed spaces, and consider an operator, 

: X YF  . We shall say that F  is Frechet differentiable at 
0

Xx   if there exists a 

continuous and linear operator : X YL  , such that 

 

 
0

0

0 0
Y

0
X

( ) ( ) ( )

lim 0
x x

x x

F x F x L x x

x x



  




                 (11) 

 

The operator L   is called Frechet derivative of F  at point 
0

Xx  , and it will be denoted by 

0( )D F x  (or 0( )F x ).  ■ 

 

Definition 7: Let X , Y  be linear topological spaces, and consider an operator, : X YF  . 

Also, assume Xh , and X0h  . We shall say that F  has Gateaux derivative at 
0

Xx  , 

and it will be denoted by 
0

( ; )F x h , if there exists the following limit 

 

 0 0 0
0 0

( ) ( ) ( )
( ; ) lim|

t t

d F x t h F x t h F x
F x h

d t t


  

  
  ,             (12) 

 

and if X0h   then we shall define X0
( ;0 ) 0F x  .  ■ 

 

Definition 8: Let X  be a linear function space, which is equipped with a metric, and consider 

an operator, : XF   (or  ). We shall say that F  has Volterra derivative at ( ) Xx   , 

and it will be denoted by  ( ( ))F x  , if there exists the following limit 
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( )

( ) ( ) ( )
lim

( )

D

F x h F x

h t dt










    


   as   increases,               (13) 

where 
( )

D

  is the support of function h 

 . 

 

See Athanassoulis (2011), Functionals and functional differentiation (notes), for more details 

and clarifications.       ■ 

 

Now, assume a dynamical system which is described by the following RDE and the initial 

condition: 

 

 3( ; )
( ; ) ( ; ) ( ; )

d x t
x t k x t y t

dt


      ,              (14a) 

 

 
0 0( ; ) ( )x t x ,                 (14b) 

 

Where , k   are deterministic constants, 
0 ( )x  is a random variable with known 

characteristic function 0( ),u u  . The excitation is a real-valued random function with 

sample space a separable Banach space Y , probability measure Py , and known 

characteristic functional ( )y vF ,  v   V Y . We denote X  the sample space of 

random function ( ; )x t  , its probability measure Px , and the dual space of  by U X . 

In this problem, we assume that I , I( )kCY  for some  0k    and 

1 I( )kCX . Last, we assume that the above probability measures and the joint one, 

Px y , are well defined. See Skorokhod (1969, 2005), Chapter 2 and Spiliotis (notes) (2012), 

for more details about probability measures in infinite dimensional spaces. 

 

Our aim is to derive a new equation for the corresponding pdfs. This has first introduced by 

Athanassoulis, Sapsis (2008). In Sections 4 and 5, someone can study the whole proof. Here, 

we shall give a description of this work. 

 

The joint response-excitation characteristic functional is given by 

 

 

 ,( , ) exp , , ( , )( )( ) ,Pxyxy u vu v i u x v y d x d y

YX

,U VF ,   

                       (15) 

Now, let us consider the Volterra u  partial derivative of xyF  at time t   
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( , )

( )exp , , ( , )
( )

( )( ) Pxy
x y u v

i x t i u x v y d x d y
u t




YX

F
,            (16) 

 

and we differentiate with respect to t , obtaining 

 

 
( , )

( )exp , , ( , )
( )

( )( ) Pxy
x y u vd

i x t i u x v y d x d y
dt u t




YX

F
.           (17) 

 

Similarly, 

 

 
( , )

( )exp , , ( , )
( )

( )( ) Pxy
x y u v

i y t i u x v y d x d y
v t




YX

F
.            (18) 

 

We computing the three-fold Volterra u  partial derivative of xyF  at time instants 

1 2 3, , It t t  ,and then we set 1 2 3t t t t    

 
3

1 1 3

1 2 3

( , )
( ) ( ) ( )exp , , ( , )

( ) ( ) ( )
( )( ) Pxy

x y u v
i x t x t x t i u x v y d x d y

u t u t u t



  
YX

F
.  

       (19) 

 

Now, combining Eqs. (16 – 19) we obtain the following differential equation for the 

characteristic functional 

 

 

3

3

( , ) ( , ) ( , ) ( , )

( ) ( ) ( )( )

x y x y x y x yu v u v u v u vd
k

dt u t u t v tu t

   
 

  

F F F F
,             (20a) 

 

with initial condition  

 

 0 0,0 ( ),( )x y t   F ,              (20b) 

 

where   denotes the Dirac delta generalized function. 

 

Continuing, we apply Eq. (20a), to the pair  

 

  u t     ,  v s      for fixed ,t s .               (21) 

 

For the first term of Eq. (20a) we have 

 

 ( )

( )

( , )

( )
| u t

v s

x y u vd

dt u t
 

 





F
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  ( )exp ( ) ( ) ( , )( ) Pxyi x t i x t i y s d x d y 

YX

           (22a) 

 

  
1

exp ( ) ( ) ( , )( ) Pxyi x t i y s d x d y
t

 


YX

          (22b) 

 

   ( ) ( )

1
exp ( , )( ) x t y si x i y f x y d x d y

t
 


           (22c) 

 

   
( ) ( ) ( , )1 x t y s

t

  







.               (22d) 

 

And taking the limit s t  , we conclude to 

 

 
( ) ( )

( )

( )

( , ) ( , )1
lim

( )
| |x t y s

u t
s ts t v s

x y u vd

dt u t t
 

 

   

 

F
.             (23a) 

 

In Eq. (22c), we applied the projection Theorem. Athanassoulis, Sapsis (2008) give an 

analytic discussion for this theorem in Section 2. They give the general form in Eqs. (2.5) and 

(2.6). 

 

With similar way, we obtain 

 

 
( ) ( )( ) , ( ) ( , )

( )

( ) x t y sx y t t

u t

      

 

F
.                        (23b) 

 

 

3 3
( ) ( )

3 3

( ) , ( ) ( , )

( )

( ) x t y sx y t t

u t

      

 

F
.             (23c) 

 

 
( ) ( )( ) , ( ) ( , )

( )

( ) x t y sx y t t

v t

      

 

F
.             (23d) 

 

Combining Eqs. (23a-d) and (20a,b), we derive  

 

 

3
( ) ( ) ( ) (t) ( ) (t) ( ) (t)

3

( , ) ( , ) ( , ) ( , )1 |x t y s x t y x t y x t y

s t

u v u v u v u v
k

u t u vu

   




   
  

  
,  

 

 

 
0 0 0( ) (t ) ( ) 0( ,0) ( ) ( ),x t y x t         .           (24a,b) 
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Finally, implying the inverse Fourier transform, as we see in previous section, to (24a, b) we 

derive  

 

     ( ) ( ) 3
( ) ( ) ( ) ( )

( ,b)
( ,b) ( ,b) 0|x t y s

x t y s x t y ss t

f a
a k a f a b f a

t a a




            
, 

 

 
0 0 0( ) ( ) ( )( ,b) b ( )x t y t x tf a d f a ,   a  .            (25a,b) 

 

Further, the marginal compatibility condition 

 

 ( ) ( ) ( )( ,b) (b)x t y t y tf a d a f ,   0b ,t t  ,              (25c) 

 

and the constitutive conditions  

 ( ) ( ) 0( ,b) b 1, ,x t y sf a d a d t s t



  ,              (25d) 

 

 ( ) ( ) ( ,b) 0x t y sf a    for any ,ba   and 0,t s t .              (25e) 

 

Venturi et al. (2011), in Section 2, conclude to the same equation (25a,b) by using the 

following functional integral representation of a pdf 

 

 

 

 

( ) ( )

,

( , b) E ( ( ; ) ) ( b ( ; ) )

( ( ; ) ) ( b ( ; ) ) .P

x t y t

xy d x d y

f a x t y s

x t y s


    

    



  

  
YX

 

 

To solve the system (25a-e) it is obvious that we need a discrete approximation form of the 

joint response-excitation pdf. Then, we can apply a numerical method. Athanassoulis, Sapsis 

(2008), in Sections 8, 9 discuss about this approximation pdf. They approximate the 

particular pdf by a superposition with Gaussian pdfs (kernels). The following chapter gives a 

rigorous mathematical construction for this approximation, in particular, we shall prove that 

any pdf can be approximated by a Gaussian (or more general) pdfs different at any 

approximated point. 
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3.1.  Introduction 

 

In this chapter we present the main results of our work. We deal with a method of 

approximation theory, the integral approximation of multidimensional probability density 

functions. In particular, we prove that any probability density function (pdf) can be 

approximated by superposition of a family of approximation to the identity (or delta family).  

 

As we have noticed in few applied articles, researchers conclude in equations with unknowns 

pdfs. To find them, they approximate pdfs by a superposition of Gaussian pdfs (kernels), and 

then, apply numerical methods. In addition, they can change this superposition at any 

approximated point. In practice, this works effectively (see Brox (2007), Sec. 2, who deals 

with the human motion tracking and Athanassoulis, Sapsis (2008), Sec 8, 9, who deal with 

random dynamical systems), but there is not a rigorous and strict mathematical theory in the 

literature, which allows this. 

 

Our aim is exactly this. We want to conclude to a discrete approximation form of a 

multidimensional pdf, which is useful in applied works but it is equally useful and interesting 

as a mathematical construction. To prove this, we construct a particular space, in which we 

prove some helpful lemmata, and then, the main theorem (Theorem2, integral approxima- 

tion). Finally, in the last part of this chapter, we derive the discrete approximation. First of all, 

we try to give the geometric notion of the functions which we use. Thus, we prove that  we 

can use a different delta family at any approximated point, which is the most important, and 

new result in integral approximation of pdfs. 

 

Specifically, in Sections 3.2 and .3.3, we provide some basic results from analysis and 

algebra, and introduce the definition of delta family giving a short discussion, 

correspondingly. Then, we prove the main result of this chapter and work (Section 3.4), that is 

any pdf generates a delta family. Finally in Section 3.5, we show that any probability density 

function can be approximated by a superposition of Gaussian pdfs, and we can change it at 

any approximated point. Last, we give some properties for the corresponding covariance 

matrix, and correlations coefficients. 
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3.2.  Preliminaries 

 

In this section, we present some basic results from linear algebra, and real analysis which, we 

shall use in the sequel. 

 

Definition 1: Let A  be a  N N  real matrix (i.e., N NA ). A  is called diagonalizable 

if it  is similar to a diagonal matrix, i.e.,, 1  Λ Q A Q . Where,  1 2diag , , ... , N  Λ  

is the diagonal matrix of eigenvalues of A , and, the nonsingular matrix Q   is the  matrix of 

eigenvectors of A .  ■ 

 

Definition 2: We say that matrix, N NA  is positive definite and we write 0A  if 

T   Ax x  

1 1

A 0

N N

i j i j

i j

x x

 

     \ { }N  0x    ■ 

 

In the following lemma, we collect and prove some auxiliary matrix-theoretic results, which 

we shall use in proofs of Lemmata 3 and 4. 

 

Lemma 1: Let N NA   be a symmetric (i.e., T A A ), and positive definite matrix. 

Then, 

         (a) A  is diagonalizable, i.e., 1  Λ Q A Q  and eigenvectors of A , iq ,1 i N  ,  

                can be chosen to form an orthonormal basis on N , i.e., 1 Q  T
Q . 

         (b) The eigenvalues of  A  are real and positive (i.e., 0i  , 1 i N  ). 

         (c) The quadratic region   : 1N T     A x x A x  is a real ellipsoidal in 
N

, 
 

 centered at 0  with lengths of semiaxes 
1

i

i

s


 . The  eigenvalues determine the 

 

 lengths of semiaxes, and the eigenvectors (i.e., the columns,  iq , 1 i N  , of  ma- 
 

 trix Q ) determine  the directions of semiaxes.   ■ 

 

Proof: (a) Βάρσος,Δεριζιώτης,Εμμανουήλ,Μαλιάκας,Μελάς,Τατέλη, (2009). “Μια εισαγωγή 

στη γραμμική άλγεβρα” Chapter 4, Theorem 4.4.2. 
 

(b) First, we show that  , 1i i N     are real numbers. By definition of eigenvalues we 

have i i iA q = q ,  1 i N   and  N
i   0q . Then,  

  T T
i i i i     A Aq q q q  

2

1

j

N
T

i i i i i

j

 



  q q q   

Also, we can obtain 
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2

1

j

N
T T

T
ii i i i i i i i

j

 



        A Aq q q q q q q  

So, we have i i i      and   N
i   0q , 1 i N  . Thus, the fact that A  is 

positive definite implies  
2

1

0 0 0
j

N
T

i i ii
j

 



      Aq q q ,  1 i N  . 

(c)  
2

1

1 1 1 1
1/

N
T iT T T T

i i

y



 
               
  
 

A Q Λ Q Λx x x x y y  

by setting T Qy x , this is., 
1 2

1 1 1
; , , ... ,

N  

 
 
 
 

 Q 0y .   

See Sharipov (1996), Linear algebra and multidimensional geometry, Chapter IV, for more 

details about quadratic forms.   ◄ 

 

The formula of change of variables in multidimensional integrals (for invertible 

transformations) will be the basic technical tool in what follows. It is recalled by the 

following. 

 

Theorem 1 (Change of variables in multidimensional integrals): Let D  and   be do-

mains in N , Dx , u , and ( )x T u  a transformation having   as its domain of 

definition and D  as its range. The transformation T  is assumed to be  

 One-to one, and thus invertible,  

 1C  in  ,  

 with non-zero (Frechet) derivative  
 

 

1 1

1

1

( )
( )

N

N N

N

x x

u u
D D

D
D D

x x

u u

T u x
T u

u u
. 

 

Then, for every function f , integrable in D , we have  
 

 

1D ( )

( ) ( ( ) ) det

D

D
f d f d

D
 T

x
x x T u u

u
, 

 

where det
D

D

x

u
 is the Jacobian of the derivative of T .  ■ 

 

In addition, we shall give some definitions about generalized convergence; see McShane 

(1955), Section 3. 
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Definition 3: Let   be a nonempty set and    be a binary relation  with properties 
 

 D.1       (reflexivity) 
 

 D.2  , , and            (transitivity) 
 

 D.3    1 2 3 1 3 2 3, and           (every pair 1 2,   in  
 

        has supremum) 
 

The relation   is called a direction in    and  the  pair   ,  is called a directed set.  ■ 

 

Definition 4: Let  ,  a directed set, and X  a general set (e.g., topological/metric space). 

Every function x X :  is called net in X   and we write  x 
.   ■ 

 

A net is the generalization of a sequence. Every sequence is a net with the directed set  

 ,  .  ■ 

 

Definition 5: Let X  be a metric (topological) space,  , a directed set,  x 
 a net 

in X , and x X . We say that the  x 
 converges to  x   (in the direction  ) and we 

write x x    (or 
,

lim x x


 )  if for every region  xU U  of x , there is 

 0 0  U :  x x U  for every    0    : .  ■  

 

 

Notational conventions: To make the notation more compact (in order to save space in 

writing equations and proofs) the index vector  1 2, , ... , N    will be usually denoted by 

λ , and the scaled vector 
1 2

, , ... ,
N

  

  

 
 
 
 

 will be symbolically represented  by 



:  

 
def

1 2

, , ... ,
N

   

  

 
 

 
  

  (1a) 

 

Also, we define  

 
def

1 1 2 2 ... N N            λ μ      (1b) 

and  

 
def

1 20, 0, ... , 0N       0    ■    (1c) 
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3.3.  Approximation of functions by integral operators. A few comments on a huge 

subject  

 

Definition 6: Let ( )N N
b bC C  be the space of bounded continuous functions 

defined on N , ( , )S  be a directed set (e.g., ,( )S  or a set of positive definite 

matrices ordered by decreasing norm), and ( )s s S
K  be a family of locally integrable 

functions N
sK : , with the property  

 

 ( ) 1

N

ss K dS u u .          (2)  

 

The family ( )s s S
K  is called an approximate reproducing kernel family (ARK family), or 

a delta family (Bandyopadhyay (2002), Sec. 12.4), or an approximation to the identity (Stein 

1993, Sec. 6) if  
 

 
,

lim ( ) ( ) ( )

N

s
s

K h d hx u u u x ,     ( )N
bh C    and   N

x ,      (3)  

 

We shall also (loosely speaking) refer to the functions sK  as the kernel (functions).     ■ 

 

Kernel functions having the limiting reproducing property (3) first appeared in Fourier 

(Harmonic) Analysis, in connection with the problem of summation of Fourier series. The 

Dirichlet kernel, the Fejer kernel and the Poisson kernel are three well-known examples. See 

e.g. Katznelson (1968), Korner (1988), Duoandikoetxea (2001); the multidimensional case is 

studied in detail by Grafakos (2008), Classical Fourier Analysis (Chapter 3). 

 

The functions sK  of an ARK family may be positive (non-negative(
1
)) or of alternating sign. 

In Harmonic Analysis the Dirichlet kernel is of alternating sign, while the Fejer’s and 

Poisson’s kernels are of positive type. In this section we shall study only positive kernels. 

The amazing fact is that positivity, in conjunction with condition (2), suffice to ensure the 

validity of the limiting reproducing property (3). Informally speaking,  

 

“Every probability density function  generates an ARK family.” 

 

 

3.4.  Delta families generated by probability density functions through general linear 

        transformations  

 

Consider any function NK : , such that  
 

 ( ) 0K x ,   and         (4a) 
 

                                                 
(

1
)  In the sequel we shall use the term positive as a synonym to the term non-negative.  
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 ( ) 1

N

K d  u u ,         (4b) 

that is, any pdf over N . The support of NK :  may be the whole N  or some 

proper subset NA  . The Gaussian pdf N
Gaussf :  is a standard example with 

support N . Its general form is given by the formula  
 

 

   
   

T 11 1
( ) ( ; , ) exp

22 det
Gauss Gauss

N
f f



 
       

 

C C

C

x x μ x μ x μ , 

 

where μ  is the mean vector and C  is the covariance matrix (assumed nonsingular). The 

Gaussian kernel K , which will be extensively used in the sequel, is defined by  
 

 

   

T 11 1
( ) ( ; , ) exp

22 det
Gauss Gauss

N
K f



 
     

 

0 C C

C

x x x x , (5a) 

or 

 

   
   

T 11 1
( ) ( ; , ) exp

22 det
Gauss Gauss

N
K f



 
        

 

C C

C

x u x u x u x u , (5b) 

 

Given a function K  satisfying Eq. (4a,b), i.e. given any pdf defined over N , we define the 

family  
 

    11
,

det ( )
K K  G G

G
x x    (6) 

 

where  G   (i.e., G  is a N N( )  real matrix)  with det ( ) 0G  (i.e., invertible). 

 

Each kernel K G , as defined by Eq. (6), satisfies conditions (4a) and (4b), that is, each 

( )K G x  is a pdf as well. The condition ( ) 0K G x  is obvious; to prove condition (4b) use 

will be made of the formula of change of variables in multi-dimensional integrals, as stated in 

Theorem 1 of Sec. 3.2. 

 

Lemma 2: Let K G  be defined in terms of Eq. (6), through a pdf K . Then, for any 

 G   with   det 0G , 
 

    1

N N

K d K d   G Gx x x u u .  ■           (7a,b) 

 

Proof of Eq. (7a): To calculate the integral  
 

 11

det
K d K d  G G

G
x x x x , 

we shall use the change of variables  
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1

2
( )

N

x

x

x

 
 
 

    
 
 
 

T Gx v v ,where    Nv      (8a) 

 

(anisotropic linear dilatation with rotation). This transformation possesses all properties listed 

in Theorem 1 of Sec. 3.2. Further, in this case we have  
 

 

1

N

i i k k

k

x G v i N



      Gx v , 1  

 

 1G 0 ... G 1 ... G 0 Gi
i i j i N i j

j

x
i N

v


          


, 1  

 

That  means    

 
D

D
 G

x

v
 (8b) 

  det det
D

D

 
 

 
G

x

v
   and   1 ( )N N T               (8c,d) 

 
 

Thus, applying Theorem 1, we obtain  
 

 

 
 

 

 
 

 
     

1

)1(

1

det

1
det

det

1
det 1.

det

N N

N

N N

K d K d

D
K d

D

K d K d





 

 
  

 

  

 



 

G

T

G
G

G

G
G

x x x x =

x
v v

v

v v v v

 

 

This proves Eq. (7a). 
 

To prove Eq. (7b), the integral  K d G x u u  is calculated by using the transformation 

 1 ( )T   u w w x ,         (9a) 
 

having the properties  
 

  det  1
D

D

 
 

 

u

w
    and    

1
1 ( )N N

T .   (9b,c) 

 

Applying again Theorem 1, we obtain  
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1

1 ( )

 det  

1

N N N

N

D
K d K T d

D

K d

 

 
    

 

 

 



G G

G

T

u
x u u x w w

w

w w

, 

 

in  accordance  with  the  first  part  of  the  proof. Thus, the proof  of  Lemma 2  has  been 

complete.  ◄ 

 

 

Lemma 2 holds true for any matrix  G    with the only property det ( ) 0G . In 

continuing, in Lemmata 3, 4 and Theorem 2 we need a structure of convergence for the net 

K G . 

 

For any proper rotation matrix Q , (i.e., 1 T Q Q ,  det 1 Q ), we define the family of 

matrices LQ  as:  

     1 2diag , , ... , diag ,NL        Q G Λ Q : Λ 0    (10) 

 

Notice that if L QG , then det ( ) det ( ) det ( )det ( )  G Λ Q Λ Q det ( ) Λ , and  

2 2 2
1 2det ( ) 0N    Λ .  

 

Now, we are in a position to define a direction in LQ . 

 

Definition 7 (direction in LQ ): We define the binary relation   in LQ   as: 

 2 11 2
 G G     (i.e., in this direction,  0 ; see Eq. (1b,c)).  ■ 

 

We shall show that the above relation is a direction in LQ , for any Q    ■ 

 

Proof: We will prove the three properties of the direction; see Def. 3 of Sec. 3.2. 

 

D1) For :  L  Q G GG G Gλ λ   
. 

 

D2) For    
1 2 3

, , L QG G G     with 
2 11 2 2 3

and  G G G G λ λ         and  
 

 3 2λ λ   so we obtain  3 2 1 3 1
1 3

     G Gλ λ λ λ λ   . 

 

D3) For  
1 2

, L QG G  , let  1 1 2, , ... , N  λ  and  2 1 2, , ... , N  λ , we  set 
 

         3 1 1 2 2 1 2min , ,min , , ... ,min , , , ... ,N N N         λ , and,  3 Λ  
 

  1 2diag , , ... , N   . Then,  by setting  3
3

L   QG Λ Q ,   we   obtain    3 1λ λ   
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 3 2 31 3 2
and and  G G G Gλ λ     .  ◄ 

 

So, the  ,LQ   is  directed set which we shall use for the convergence in Lemmata 3,4, 

and, when the net :( , )K L G
 converges to k  , we shall write lim K kG

G ,




. 

 

Lemmata 3 and 4, presented below, establish the important fact that the probability mass of 

K G
 is finally (as  0λ ) concentrated within a ball of arbitrarily small radius.  

 

Lemma 3: Let 
2

( , ) NB  0 :x x , the open ball centered at 0   with 

radius , and K G
 be defined in terms of a pdf K , by means of Eq. (6) and, L QG  for 

some Q . Then, for any given 0    and for any proper rotation matrix Q , the following 

limiting relations, in the direction  (see Def. 7), hold true:  

  

( , )

lim 1

B

K d



 G
G

0
,

x x




, (11a) 

  

( , )

lim 0

N B

K d



 G
G

0
,

x x




  ■             (11b) 

 

Proof of Eq. (11a): To calculate the integral, use will be made of the transformation 

( )x T v    Gx v , introduced in the proof of  Lemma 2, Eq. (7a). In order to specify 

the inverse image  1 ( , )B 
T 0 , we observe that  

 

 

 

 

2 22 2 2
2 2

T 2 2 T 2

2

2 2 2
1 2

1 2

( , )

1
1

; , , ... , ; , , ... ,

; /

T T

T T

N
N

B    




     

    



           

            

 
      

   
   
 



Q Q

Q

0 G G G

Q Λ Q Q Λ Q

0 0

0

x x v v v

v v v v

v

  



 

 

that  is, 

    1

1 2

( , ) ; , , ... , ; /
N

B
  

 
  


 

  
 
 

Q QΤ 0 0 0  ,             (12a) 
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the ellipsoidal with semiaxes 1 2/ , / , ... , / N      , and the orthogonal columns of Q , 

 , 1i i N q , determine  the orientation of ellipsoidal. 

 
 

Taking into account Eqs. (8a,b) and (12), and applying the formula of change of variables in 

multidimensional integrals, we calculate the integral appearing in Eq. (11a) as follows:  
 

 

 
 

 

 
 

 

 
   

 

 

 

1

( , ) ( , )

1 ( , )

; /

; /

1

det

1
det

det

1
det

det

,

B B

B

K d K d

D
K d

D

K d

K d

 











 

 
  

 





 







Q

Q

G

0 0

T 0

0

0

G
G

G

G
G

x x x x

x
v v

v

v v

v v















 

that is,  
 

    

 ; /( , )B

K d K d



 
Q

G

00

x x v v




.              (12b) 

Taking the limit of both sides of the above equation  in the direction  (i.e.,  0 ), and 

observing  that    lim ; / N Q
G

0
,

   (it holds true because Q   is orthogonal ), we 

obtain  
 

 

   

 

 

 

 

; /( , )

lim ; /

lim lim

1 ,

N

B

K d K d

K d K d





 

  

 

 

G
G G

00

0
G

, ,

,

x x v v

v v v v


 







 

which proves Eq. (11a).  
 

To prove Eq. (11b) we observe that  
 

      

( , )( , )N N BB

K d K d K d



   G G G

00

x x x x x x
  

.  

 

Taking the limit of both sides of the above equation in the direction , and using Eqs. (7a) 

and (11a), we obtain Eq. (11b). The proof of the Lemma 3 is complete.  ◄ 
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Remark 1: In proof of the above lemma, we observe that we used only the property that the 

columns of Q ,  , 1i i N q , are orthogonal in N  and it is independent which are 

exactly. It is a crucial observation for the proof of Theorem 2 below. 

 

 

Lemma 4:  Let  2
( , ) NB     x u u x: , the open ball centered at x  with 

radius  , and K G
 be defined in terms of a pdf K , by means of Eq. (6) and L QG


, for 

some Q . Then, for any given 0  , and for any proper rotation matrix Q , the following 

limiting relations, in the direction  , hold true: 
 

  

( , )

lim 1

B

K d



  G
G ,

x

x u u




,               (13a) 

  

( , )

lim 0

N B

K d



  G
G ,

x

x u u




.   ■           (13b) 

 

Proof of Eq. (13a): To calculate the integral, we shall use the transformation  1 u T w  

 w x , written also  n n nu w x   , introduced in the second part of the proof of 

Lemma 2, Eq. (9a). In order to specify the inverse image  1
1 ( , )B 

T x , we observe that  
 

  
2

2 2 2

1 1

( , ) ( , )

N N

n n n

n n

B u x w B   

 

        u x w 0 , 

 

that is,  1
1 ( , ) ( , )B B  T x 0 . Using this result and Eq. (9b), the application of Theo-

rem 1 leads to the following calculations:  

 

    
 

 

1

( , )
1( , )

1

( , )

det

BB

B

D
K d K d

D

K d







 
    

 



 



G G

G

0

xTx

u
x u u x T w w

w

w w

 



 

 

Thus, the desired conclusion follows by taking the limit of the first and the last terms of the 

above equation in the direction  , and invoking Lemma 3, Eq. (11a). 

 

Eq. (13b) is simply obtained from Eq. (13a), exactly as Eq. (11b) has been derived by Eq. 

(11a), in Lemma 3.  ◄ 

 

 

Remark 2: It is important to keep in mind that the limiting equations in Lemmata 2 and 3 are 

valid for any given radius   of the balls ( , )B 0  and ( , )B x .  

 

 

We are now in a position to state and prove the main result of this section:  
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Theorem 2 [Every pdf generates a delta family]: Let NK :  be a pdf over N , 

and  
 

 11

det
K K  G G

G
x x



, and   L QG , for some Q .  

 

Then, for any function ( )N
bh C , and for any proper rotation matrix Q , we have  

 

     lim

N

K h d h  G
G ,

x u u u x




.  ■   (14) 

 

 

Proof: Since 1 ( )NK LG
 and h  is bounded over N , the integral 

   
N

K h d G u u u


 exists. Also, from the boundedness of h , we conclude that there 

exists a constant 0hM   such that  
 

    sup ( ) , sup ( ) ,N N
hh A h M    u u u u .      (a) 

 

Further, using Eq. (7b) and the positivity of K G
, we obtain  

 

      ( ) ( ) ( ) ( )

N N N

K h d h K h d K h d        G G Gx u u u x x u u u x u x u
 

             
N N

K h h d K h h d      G Gx u u x u x u u x u


   (b)  

 

Decomposing the last integral in two parts, over the ball ( , )B x  and its complement N   

( , )B x , we obtain  
 

      
N

K h h d   G x u u x u


  

 

           

( , ) ( , )NB B

K h h d K h h d

 

       G G

x x

x u u x u x u u x u
 

 

 

        

( , )

sup , ,

B

h h B K d



     G

x

u x u x x u u


 

        

( , )

sup , , .N

N B

h h B K d







     G

x

u x u x x u u


 (c)  
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We shall now show that both terms of the last member of (c) become arbitrarily small, which 

essentially proves our assertion. First, on the basis of inequality (a), we obtain  
 

       sup , , 2N
hh h B M   u x u x .       (d)  

 

Besides, since h  is continuous at (any) Nx , for any given / 2 0  , it is possible to 

find a  , 0   x , such that  
 

       sup , ,
2

h h B


  u x u x .          (e)  

 

Combining Eqs. (b), (c), (d) and (e), we obtain  
 

       

 

( , )

( , )

2

2 .h

N

N B

B

K h d h K d

M K d









    

 

 



G G

G

x

x

x u u u x x u u

x u u

 



.    (f) 

 

 

Further, because of the Eq. (13b), we can find  a matrix  0 0
L  QG G  ,  0  is the 

same for every  Q , such that, for any 
0

:L QG G G  , 

 

  

( , )

4 h
N B

K d
M







  G

x

x u u


.         (g) 

 

Finally, using (g), and the fact that  
 

    

( , )

1

NB

K d K d



    G G

x

x u u x u u
 

  (Lemma 2),  

 

inequality (f) implies that, for any 
0

:L QG G G , we have  

 

       1 2
2 4

h
h

N

K h d h M
M

 
       G x u u u x


.  

 

The last inequality is equivalent with Eq. (14). The proof of Theorem 2 is thus completed.   ◄ 

 

The essential in Theorem 2 is that  0  is independent from the proper rotation matrix Q . It 

means we can find the same 0  for every Q , such that,  In. (g) holds true. We can see  this 

observing (see Lemmata 3 and 4 )  that 
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 ; /( , ) ( , )N N NB B

K d K d K d

   

    G G

Q 00x

x u u w w v v
 



 

 

Now, combining the Remark 1, which we made in Lemma 3, and the above equality, there 

exists   0 0   , (same for every Q ), such that, for any 0  : 
 

  

 ; /

4 h
N

K d
M








Q 0

v v



 . 

Equivalently, there exists 00
, G Λ Q   0 0diagΛ  , such that, for any :L QG  

0
G G  In. (g) holds true, and 0  is same for every Q . 

 

Observing this detail, in proof of Theorem 2, we can assume that  Q  is generally different  at 

any point supp( )hx , i.e.,     Q Q Q xx , and we can now state the general and 

main result of this work: 
 

 
 

       lim

N

K h d h  G
G

x
x ,

x u u u x




              (14)΄ 

 

 

3.5.  The delta family generated by a general (correlated) Gaussian pdf  
 

Notational conventions: In the sequel, by writing ,Q G  and C  we shall mean that matrices 

are dependent from the point x , i.e.,  Q Q x ,  G G x   and   C C x , and we 

shall write the vector x  when we want to emphasize . 

 

Let C  be a nonsingular (invertible) covariance matrix and  
 

  
   

   
T 11 1

exp
22 det

N
K



 
       

 

C

C

x u x u x u ,  (15)  

 

be the Gaussian pdf centered at u , with covariance matrix C . The latter is not assumed 

diagonal; it may be a complete (nonsingular, positive-definite) matrix. Then, in accordance to 

Theorem 2 of Sec. 3.4, the kernel family  
 

 
     

    
T

11 11 1 1
exp

det 2
2 det

N
K



  
         

 
G G C G

G
C

λ λ
λ

λ
x u x u x u ,(16)  

 

is a delta family, producing the approximation to the identity  
 

      lim

N

K f d f  G
G ,

x u u u x




,      (17)  
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for any continuous pdf Nf : . For our applications it is more convenient to refor-

mulate Eq. (15) so that the matrix Gλ  does not affect directly the variables x  and u . This 

becomes possible with the aid of some auxiliary matrix-theoretic results, which are collected 

and proved in the following lemma.  

 

Lemma 5: Let 1 2, , ... , Nx x xx ,   , det 0N N C C  and  , G Λ Qλ   

where  1 2diag , , ... , N     with 0 , 1i i N    , and, Q  is a proper rotation 

matrix, i.e., orthogonal with  det 1 Q . Then,  
  

 (a) We have       1 1 1 1 11T
T T    

          Λ Q C Λ Q Λ Q C Q Λx x = x x  

 

       where   11 1 1

1 1

1
   

N N
TT

jli k k l
i j

l k N N

Q C Q
 

  

  

 
     
 
 

Λ Q C Q Λ . 

 

(b) The inverse of the matrix  of   T    C Λ Q C Q Λ , where  
 

   1

1 1

   

N N
TT

i j jli k k l

l k N N

Q C Q  

  

 
     
 
 

Λ Q C Q Λ  ,  is the matrix 

  1 1 1 1T       C Q C QΛ Λ   

 

 (c) If   T    C Λ Q C Q Λ  then,     2 2 2
1 2det ... detN   C C .  ■ 

 

Proof: The proof of the above lemma is obvious by combining, the known results from linear 

algebra, if , N NA B , and Λ  is a diagonal matrix, then  
T T T  A B B A , 

 
1 1 1    A B B A , T Λ Λ , and       det det det  A B A B , and the properties 

of a proper rotation matrix, 1 T Q Q  and   det 1 Q .  ◄ 

 

Theorem 3 [Reformulation of the Gaussian kernel in terms of unscaled variables x  and 

u ]: Let  i j
N N

C


C  be a covariance matrix, and  T    C Λ Q C Q Λ  be the 

corresponding covariance matrix. Then, the Gaussian kernel, Εq. (16), can be written in terms 

of unscaled variables x  and u , and the scaled covariance  C x , in the form  

 

    ;K K  G Cx u x u


 (18a) 

 

where, 

  
   

   
1 1 1T

; exp
2

2 det

K
N



 
       

 


CC

C

x u x u x u  
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and    T    C Λ Q C Q Λ .  ■            (18b,c) 

 

Proof: By setting  G Λ Q  in Eq. (16) and using  (a),(b),(c) of Lemma 5 we easily derive 

Eqs. (18a,b,c).   ◄ 

 

 

The correlation coefficients of the  dependent localized covariance matrix 

 

It is interesting to see the change of the correlation coefficients after application the linear 

transformation. The initial correlation coefficients of the covariance matrix C  and  the corre- 

sponding of the  dependent localized covariance matrix    T    C Λ Q C Q Λ  given by 

the following equations 
 

 

 
i j

i j

ii j j

C

C C
                    (19a) 

 

 

   

1 1
1/2 1/2

      

1 1 1 1

   

      

N N
T

k l jli k
i j l k

i j
N N N Nii j j

T T
k l l i k l jli k j k

l k l k

Q C Q
C

C C

Q C Q Q C Q

  

   

 
   
   
   
   



 

, (19b) 

 

We observe that i j   are independent from the scaled variable   but they are dependent 

from the rotation matrix Q , as we expected. This means that   i j i j
  x . Notice that, 

generally, i j i j  , but in special case that  Q  is the identity matrix we can easily show 

that   i j i j  . 

 

From the integral approximate representation to the approximation by means of linear 

superposition of Gaussian kernel with localized covariance matrices:  

 
 

   ; ( ) ( )

N

K f d f  Cx u x u u x       (20) 

Now, applying the definition of Riemann integral we can find a partition of the support of f , 

such that, 

 

      ; ( ) ; ( )

N

K f d K f



    C Cx u x u u x u x u u . (21) 

Where   is  the set of  points of the partition. Combining  Eqs. (20) and (21) we  also  obtain 

 



36                                                            Chapter 3 

 

   ; ( ) ( )K f f



   Cx u x u u x .     (22) 

 

By setting ( )p f u u , we obtain the following discrete approximation form of a pdf 

f , 

 

 

   ( ) ;f p K



  Cx x u x   supp fu .    (24) 

 

It is enough to choose 0   at any point x , where 0  is that we found in In. (14g). Thus 

,by (b) of Lemma 5, the  i j  element of C  is equal with 
 

        T

ij i j
i j

   C Q C Qx x x .      (23) 

So, we choose C , such that, it  has “little” elements to its diagonal and “free” nondiagonal 

ones. 

 

3.6.  Notes 

 

As we see, we chose a particular family of matrices (Eq. (10)) to prove the main lemmata and 

theorems in Sections 3.4 and 3.5. Someone could observe that we can use other families as 

well. For instance, the diagonalizable matrices  

     1 2diag , , ... , diag ,T
NL         Q G Q Λ Q : Λ 0   , 

or  

     1 2diag , , ... , diag ,T
NL        Q G Q Λ : Λ 0   . 

In that case, we can prove the basic theory with similar way, but we cannot write a “clear” 

discrete form as Eq. (24). In particular, in these cases we cannot distinguish the localized 

parameter   from the localized covariance matrix, as we did in Theorem 3 (Eq. (18c)). In 

some cases, we can avoid it with a change of variable, but then, it becomes more complex. 

 

In addition, an interesting case is when G  is a diagonal matrix with positive determinant, 

which is a special case of Eq. (10) ( Q is the identity matrix). Then, it is easily to see that the 

ellipsoidal is moved to a fixed orientation for all approximated points, that is the usual 

orthogonal system in N . Another way to see this, is that the correlation coefficients of the 

initial covariance matrix are same with the correlation coefficients of the  dependent 

localized covariance matrix, this means there is not rotation. In this case, we have only 

dilatation. 

 

Finally, we would like to change the localized covariance matrix at any point  supp fu  

(see Eq. (24)); i.e., to change the proper rotation matrix at any point  supp fu . 

Although researchers apply it to empirical, we cannot prove it with our mathematical theory. 
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We need stronger conditions such that, the transformation  ( ) ( )  T Gx v x v  (see Eq. 

(8a)) is bijection for all Nx ,v , which is too limitative. 
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4.1.  Introduction 

In this chapter we present a method of multidimensional density estimation by delta- 

sequences. In Section 4.2, we give some definitions and lemmata from real analysis, and 

probability theory, which we shall use in the rest of chapter. 

Then, in Section 4.3, we give the definitions of some general delta-sequence estimators 

(histogram, orthogonal series, and kernel estimators), which have attracted the attention of 

many researchers. The class of locally adaptive density estimators has developed, only 

recently. We introduce them, in Section 4.4, and we present the most important of them. 

In the following two Sections, we prove the asymptotic unbiasedness, and the consistency of a 

delta estimator in  1 , ,N NL B  (Section 4.5), and we generalize the previous results in a 

Banach space (Section. 4.6). 

 

4.2.  Preliminaries 

In this section, we present some definitions and lemmata from analysis and measure theory 

(especially, in probability theory) which we shall use in the rest of this chapter. 

Definition 1: Let T  be an operator on a general space of functions, X   . T  is linear if 

satisfies: 

 (a)      T T +Tx y x y  ,    , Xx y    

 (b)    T Tx x  ,    Xx    and     

If T , instead of (a), satisfies      T T +Tx y x y  ,  , Xx y    then, it is a sublinear 

operator.  ■ 

 

Definition 2: Let a set X   . A set G X  is called G  if it can be written as a countable 

intersection of open subsets of X .  ■ 

Definition 3: Let  X, , be a measure space,   is a   finite measure if there exists a 

sequence  Fn  , such that 

1

F X

n

n





 , and   Fn   , n  .   ■ 

Definition 4: Let  X, ,  be a measure space, a nonempty set, E   is said to be an 

atom of  if  F F E F =    : .Thus,   is a diffuse measure if  there are no 

atoms in .  ■ 
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Definition 5: Let ,   be two measures in measurable space  X, . We say that     is 

absolutely continuous with respect to   (or dominated by  ), and we write   , if for 

every set    F F 0 F 0    : . Further, with the additional property that both 

measures are   finite, Radon-Nikodym Theorem states that there exists a    measurable 

function f   taking values in  0, , such that for any measurable set A  (i.e., A  ) the 

following relation holds true 

  

A

A f d   . 

Furthermore, f  is called a density function of   or Radon-Nikodym derivative with respect 

to  , and is denoted 
d

f
d




 .  ■ 

Definition 6: Let  X, ,  be a measure space and Xf :  be a measurable function 

on set X   . In addition, we define the set of essential upper bounds of f  as 

   1U , 0
ess

f
a f a    : . Then, the essential supremum is defined as 

esssup inf U
ess

f
f  , and if U

ess

f
    we define esssup f   . Also, we can define the 

essential infimum similarly.  ■ 

Below, in Lemmata 1-4, we present some basic inequalities in probability theory. 

 

Lemma 1 (
r

c  Inequality): Let  , , P  be a probability space, and ,X Y :  be two 

random variables. Then, the following inequality, which is known as 
r

c  inequality, holds true     

       E E E
r r r

rX Y c X Y     

where 1,rc   if 0 1r   and 
12 ,r

rc   if 1r  .   ■ 

Proof: if 0 1r  : then function 
r

x , 0x    is a concave and increasing. Thus,  

  
11

0

x y y

r r rr

x

x y x r t dt r x s d s



       

  1

0

y

rrr s d s y  . 

If 1r  : then 
r

x  is a convex function and following inequality holds true for any ,x y   
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2 2

r rr
x yx y 

 . 

Now, taking expectations in above two cases, and the result follows.  ◄ 

 

Lemma 2 (Markov Inequality): Let  , , P  be a probability space, and X :  be a 

random variable. Then   

  
 E X

P X a
a

  .   ■ 

Proof: Fist, we write  IX X   , where I  is the indicator function then, we derive  

         
 E

I
X

X X P X P X a
a

            .       ◄ 

 

Lemma 3 (Jensen Inequality): Let  , , P  be a probability space, and g :  be a 

convex function, i.e.,         1 1g x g y g x y         , ,x y   and  0,1  . 

Also, let f  :  be a measurable function. Assume that  ,f g f  are integrable then    

    g f d P g f d P  .   ■ 

Proof: Durrett (2010), Section 1.5, Theorem 1.5.1.  ◄ 

 

Lemma 4 (Hoeffding Inequality): Let  , , P  be a probability space, and iX ,  1 i n   

be independent real valued random variables. Also, let ,i ia b  , 1 i n  , and assume that 

,i i iX a b     with probability one. Then, for any 0    the following inequality holds true 

   
 

2 2

2
1

1

1 2
E 2exp

n

i i n

i
i i

i

n
P X X

n
a b








 
 

          
   
   

  




   ■ 

Proof: Györfi, Kohler, Kryzak, Walk (2002), Appendix A.2, Lemma A.3, and  Hoeffding 

(1963), Theorem 2.  ◄ 
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Lemma 5 (Borel-Cantelli): (a) Let  , , P  be a probability space, and  An n
 be a 

sequence in , and assume that  
1

An

n

P





  . Then,  limsupA 0nP  . 

(b) Let  , , P  be a probability space, and  An n
 be a sequence of independent events 

in , and assume that  
1

An

n

P





  . Then,  limsupA 1nP  .  ■ 

Proof: (a) Assume the random variable  
1

I An

n

X





  then,  limsupAn X   . Thus  

       
1 1

I A An n

n n

X P

 

 

       .  

Also, we know that if 0X   and  X     then   0P X    . It implies 

 limsupA 0nP  . 

(b)   
1

limsup A A lim A
cc

n k k
n

n k n k n

P P P

  


  

   
    
   
   
   

 , the last equation holds true 

because the sequence A
c
k

k n





 
 
 
 
 

 is increasing for any 1n  . Now, for 1n   we have  

     A lim A lim A lim 1 A

m m m
c c c
k k k k

m m m
k n k nk n k n

P P P P



  
  

   
      
   
   
   

   

      lim exp A lim exp A

m m

k k
m m

n kn k

P P
 



 
 

    
 
 

  

   exp A 0k

n k

P





 
 

   
 
 

 . 

Finally,         limsupA 0 1 limsupA 0 limsupA 1
c

n n nP P P      .   ◄ 
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4.3.  Delta-sequence estimators  

There are a lot of examples of delta-sequence estimators in the literature. Histograms, 

orthogonal series, and kernel density estimators are well-known examples. Below, we give the 

definition and some examples of a delta sequence estimator. 

Definition 7: A sequence of functions N N
mK :   is called a delta-sequence  if  

( )Nf C  (i.e., for each continuous function on N ) and Nx  

      , ,     as mn

N

K f d f n   x y x y x ,  ■   (1) 

where nm  belongs in a directed set. We shall refer to the functions m n
K  as the kernels 

(functions). 

 

Definition 8: Let  1 2, , ... , nx x x  be independent observations from an unknown 

distribution F on N  with probability density function (pdf) f . A delta-sequence estimator 

can be written in the form 

    
1

1ˆ ,

n

n m in

i

f K
n



 x x x .  ■      (2) 

 

Definition 9: Let  1 2, , ... , nx x x  be independent observations from an unknown 

distribution F on   with pdf f , and      I : 0,1j x   be the indicator function for the 

bin   ( 1) ,j h j h , j    and 0h   ( i.e.,  I 1j x  , if x   ( 1) ,j h j h   and  

 I 0,j x   otherwise). Then the Histogram estimator, with equal binwidths and  in one 

dimension, given by 

      
1

1ˆ I I

n

n j j i

i j

f x x x
n



 

   .  ■     (3) 

 

Definition 10: Let  1 2, , ... , nx x x  be independent observations from an unknown 

distribution F on  with pdf f , and   
1

m

j
j

x


  be a orthonormal system on  ,a b 

consisting of eigenfunctions of a compact operator  on  2 ,L a b . Then the Orthogonal 

series estimator given by 

      
1 1

1ˆ
n m

n j j i

i j

f x x x
n

 

    .  ■     (4) 
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Definition 11: Let 1 2, , ... , nx x x  be a N variate random sample, and : N
mK   

be a kernel with the properties  0mK   and    1m

N

K d  x x , then a kernel estimator 

given by  

    
1

1ˆ
n

n m i

i

f K
n



 x x x .  ■      (5) 

For more details for theses estimators see Nolan, Marron (1989), Sec. 1, Walter, Blum (1979), 

Sec. 1. 

4.4.  Locally adaptive density estimators 

Let  1 2, , ... , nx x x  be a N variate random sample with unknown pdf f . The simplest  

multivariate kernel density estimator given by             

    
1 1

1 1ˆ
n n

i
h iN

i i

f K K
h nn h

 

 
   

  
 

x x
x x x ,     (6a) 

by setting   
1

h N
K K

hh

 
  

 

x
x .                  (6b) 

Where NK :   is a N-variate density function, and 0h   is the smoothing parameter 

(bandwidth or window width), which controls the size of kernel, and in this case is held 

constant for all evaluation points 
Nx . This estimator is called fixed.   

It is more interesting the smoothing parameter (bandwidth) based on the evaluation point or 

on the random sample. These estimators are called locally adaptive density estimators. 

So, we can generalize Eqs. (6a,b), assuming that the bandwidth is based on  the point 
Nx , i.e.,  h hx x , and in this case we obtain the balloon estimator. 

    
1 1

1 1ˆ
n n

i
h iNB

i i

f K K
h nn h

 

 
   

   
  x

xx

x x
x x x .    (7) 

The balloon estimator was first introduced by Loftsgaarden, Quesenberry (1965) in the form 

of the k  th nearest neighbor estimator, which can be written in the form of Eq. (8) by using a 

constant kernel and setting    kh dx x where  kd x  returns the distance to the k  th 

nearest data point to x .   
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With analogous way, we can assume that the smoothing parameter is  based on the random 

sample  1 2, , ... , nx x x . We define the sample point estimator which is equal with  

    
1 1

1 1 1ˆ
n n

i
h iS N i

ii ii

f K K
n h nh

 

 
   
 
 

  x
xx

x x
x x x .    (8) 

This type of estimator was introduced by Breiman et al. (1977).   

As we saw the smoothing parameter h  controls the size of kernel. One constant smoothing 

parameter corresponds to spherically symmetric kernels. We can generalize this parameter to 

a vector  1 2, , ... , Nh h hh ,  0ih  ,  0 i N  , and more general to a symmetric and 

positive definite matrix H  that  is analogous to the covariance matrix of K. With this way, we 

generalize the above estimators. (i.e., Eqs. (6a), (7), and (8)) 

The generalized fixed estimator given by 

       1/2

1/2

1 1

1 1ˆ
n n

i i

i i

f K K
nn



 

    


  HH
H

x x x x x ,   (9a) 

by setting       1/2

1/2

1
K K  H H H

H
xx x .               (9b) 

where,   indicates the determinant of a matrix. 

 

The generalized balloon estimator given by 

  
 

        1/2

1/2

1 1

1 1ˆ
n n

i iB

i i

f K K
nn



 

    


  HH
H

xx x x x x x
x

.      (10) 

 

And the generalized sample-point estimator given by 

  
 

       
1/2

1/2

1 1

1 1 1ˆ
n n

i iiS
i

i ii

f K K
n n



 

 
     

   H
H

H
x

x x x x x x

x

           (11) 

For the latter, we can assume that we divide the support of the density in m  bins, then the 

binned sample-point estimator given by  

  
 

       
1/ 2

1/ 2

1 1

1 1ˆ
m m

j
j j j jB S j

j jj

n
f K n K

n n



 

 
     

   H
H

H
t

x t x t x t

t

,        (12) 
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where jn  is the number of data points in the j  th bin, (i.e., 

1

m

j

j

n n



 ), jt  is the center 

of the j  th bin, and ( )jH t  is the smoothing matrix associated with the j  th bin. In 

general, an equally spaced mesh of points is laid down over the support of the density to 

define the bins, although other binning rules such as the linear binning defined in Hall, Wand 

(1996) could be considered.   

 

Generally, we can summarize all the above estimators, defining three families of matrices, 

depending on the form of matrix H , for Eqs. (9a), (10), (11), and (12). 

 2
1 , 0Nh h   H I , which correspond to spherically symmetric kernels with 

only one smoothing parameter. 

  2 2 2
2 1 2diag , , ... , , 0Nh h h  H h , which correspond to ellipsoidal kernels with 

N  smoothing parameters. 

 3 ,   is symmetric and positive difiniteN N H H , which is the most general and 

allows ellipsoidal kernels of arbitrary orientation with ( N 1) / 2N    parameters. 

Sain (2002) in Sec 1 and 3 gives a discussion about the above three classes of matrices and 

numerical comparison among of the estimators.   

 

A lot of researchers focused on finding the optimal choice for the smoothing parameters that 

minimize the Mean Integrated Square Error (MISE) for the above estimators 

          
2 2

ˆ ˆE E
N N N

M I S E f f d f f d M S E d      x x x x x x x , 

For more details about MISE, Asymptotic MISE (AMISE), and the optimal selection of 

bandwidth see Want, Jones (1994,1995), Shirahata, Chu (1992), Sain, Scott (1996), Sain 

(2002). 

4.5.  Pointwise consistency of delta estimators in  1 , ,N NL B  

In this section we assume that P  is a probability measure in  ,N NB  which is absolutely 

continuous with respect to a   finite measure   and 
d P

f
d

   is the Radon-Nikodym 

derivate. In addition, we assume that  1 , ,N Nf L  B . Supposing that   is the 

Lebesgue measure, then f  is the usual probability density function (pdf) but it is instructive 

to assume a general   finite measure  ; see Vidal-Sanz (2005), Sec. 1. 
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Let  1 2, , ... , nx x x  be a random sample from P , a delta estimator of f  can be written in 

the following form (see Def. 7 of Sec. 4.3) 

    
1

1ˆ ,

n

n m in

i

f K
n



 x x x ,                 (14) 

where the smoothing sequence mn  belongs to a directed set  ,L , and m n
K  is a net in

 1 , ,N NL B . For example, mn  may be a sequence of positive definite matrices ordered 

by decreasing a norm in kernel estimation of multivariate densities. In this case, Eq. (14) take 

the form: 

      
1

1

1 1ˆ
n

n n i

ni

f K m
n m





 
   

 x x x .               (15) 

Definition 12: Let    be a  -finite measure in  , ,N NB  and P  a probability measure 

satisfying P  , i.e., P  is absolutely continuous with respect to ; see Def.5 of Sec. 4.2. 

We say that a delta estimator ˆnf  is strongly (or weakly) consistent almost everywhere (a.e.) 

with respect to , if    ˆ 0
n

nf f


 x x  almost surely (or in probability), for 

almost every 
Nx with respect to the measure  . We say that the convergence is 

universal when it holds for every P  such that, P  .  ■ 

 

Using triangular inequality we derive  

              ˆ ˆ ˆ ˆE En n n nf f f f f f    x x x x x x . (16) 

The deterministic term,     ˆE nf fx x , is called bias term, and the stochastic term, 

    ˆ ˆEnf fx x , is called variation term. In the sequel, we study the convergence to 

zero of each term separately. 

4.5.1.  Convergence of bias term 

In this section we study bias problem, we want to conclude that the expected value of ˆ ( )nf x

convergences to f  almost everywhere, for any  1 , ,N Nf L  B . 

The expected value of ˆ ( )nf x  is easily calculated and reads as follow 

          ˆ( ) E ( ) ,n n mn

N

a f f K f d z   z zx x x .    (17) 



Chapter 4                                                                  49 

Eq. (17) defines the linear operator    1: , ,N N N
na L C B . 

Definition 13: Let na  be a linear operator on  1 , ,N NL B . We say that na  is bounded 

in measure, if for every 0  , there exists 0  , such that 

     
1

1

:sup N
n

f
L

a f  


  x x                (18a) 

Thus, a sequence of linear operators, n
n

a


, is uniformly bounded in measure if the 

maximal operator      supM
n

n

a f a f


x x  is such that, for every 0  , there exists 

0   such that 

     
1

1

:sup N M

f
L

a f  


  x x .              (18b) 

Notice that maximal operator is a sublinear operator and not a linear one.   ■ 

Bellow, we shall present a type result of one of fundamental theorems in functional analysis, 

the uniform boundedness principle. 

 

Theorem 1 (Pointwise uniform boundedness, Vidal-Sanz (2005), Sec. 2, Theorem 1): Let 

 n
n

a


 be a sequence of linear operators on  1 , ,N NL B  each of them being bounded 

in measure. Then, only one of the following statements holds true:  
 

 (a)  n
n

a


 is uniformly bounded in measure. 

 (b) For every 0  , there exists a set  1 1 , ,N NC L L   B , which is G  and  

  dense in 1L , such that for every f C :     :N Ma f    x x

                 ■ 

To prove this theorem, we shall need the following lemma 

 

Lemma 6: For any 0   and 0   we define the set 

        1 , , : :N N N MV f L a f
        x xB .    (a) 

Then, V 
  is an open subset in  1 , ,N NL B . Hence, for any sequence  k

k



, 

0k  ,  k

k
V





 is a sequence of open sets for any 0  .  ■ 

 

Proof of Lemma 6: Vidal-Sanz (2005), Sec. 2, Theorem 2.  ◄ 
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Proof of Theorem 1: Let us first assume that (b) is not hold true. Assume there exists a 

k  , such that, kV

  is not dense in  1 , ,N NL B . Then, there exists an 

 0 1 , ,N Nf L  B  and 0r   such that for  1 , , :N Nf L  B f r 

 0
kf f V

  , where   indicates the norm of  1 , ,N NL B . So, we have 

    0:N M
ka f f     x x . In addition, we can write f   

 0 0f f f  , and using the fact that the maximal operator is sublinear (see Def. 1) we 

obtain 

 

         
    

0

0

: 2 :

: 2

N M N M
k k

N M
k

a f a f f

a f

   

  

     

   

x x x x

x x

 

Finally,      2
:sup N

n

f r

a f
r


 



  x x        (b) 

That is, Ma  uniformly bounded in measure (see Def. 13) with 
2

r


    and 2 k  , i.e., (a) 

holds true. 

Now, if every kV

  is dense in  1 , ,N NL B , the application of Baire theorem (see Rudin 

(1987), Chapter 5, Theorem 5.6) implies that  

1

k

k

C V







  is a dense and, G  set (see Def. 

2). If f C , then for any 0   and 0k   we have  

     :N M
ka f    x x . In other words, (b) holds true, and the same 

time (a) does not hold.  ◄ 

Our aim is to show that the linear operators  n
n

a


 is approximate identity in 

 1 , ,N NL B . The following theorem shows that it is enough to prove this property only 

for a dense subset of  1 , ,N NL B . 

 

Theorem 2 (Pointwise approximation, Vidal-Sanz (2005), Sec. 2, Theorem 2): Let  n
n

a


 

be a sequence of linear operators in  1 , ,N NL B , and assume that  

 (a) the sequence  n
n

a


 is uniformly bounded in measure  
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 (b) there exists a dense set,  1 , ,N NG L  B , such that for every f G : 

          n
na f a f


   a.e.  

Then  n
n

a


 is an approximation to the identity in the a.e sense, i.e., 

   n
na f a f


   a.e., for every   1 , ,N Nf L  B .  ■ 

Proof: Assume that there exists a dense set,  1 , ,N NG L  B , such that for every 

f G  and 0    

     '
'

lim : sup 0N
n

n n n

a f f 
 

   
     
    

x x x       (a) 

Also, by assumption G  is dense so, for any 0   and  1 , ,N Nf L  B  there exists 

 1 , ,N Nf L  B , such that, f f            (b)  

Now, using the triangular inequality we derive:  

          

        

' ' '
' '

'
'

sup sup

sup (c)

n n n
n n n n

n
n n

a f f a f a f

a f f f f

 



  

   

x x x x

x x x x

 

for 
Nx , and  n N . Observing that if     '

'

sup n
n n

a f f 


 x x  then,  

               ' ' '
' '

sup supn n n
n n n n

a f a f a f f f f 
 

     x x x x x x , 

by Eq. (c), and each term is positive. Hence, at least one of them must be higher than 
3


. 

So,      '
'

: supN
n

n n

a f f 


  
   

  

x x x  

       ' '
'

: sup
3

N
n n

n n

a f a f




  
   

  

 x x x  
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     '
'

: sup
3

N
n

n n

a f f




  
   

  

x x x   

    :
3

N f f
 

   
 

x x x          (d) 

It follows 

     '
'

: supN
n

n n

a f f 


   
    
    

x x x   

     

    

   

' '
'

'
'

: sup
3

: sup
3

: (e)
3

N
n n

n n

N
n

n n

N

a f a f

a f f

f f














   
     
    

   
     
    

  
     

  

x x x

x x x

x x x

 

Using the assumption (a), we can show that first term of (d) can be arbitrary small, i.e.,  

 

      ' ' 1
'

: sup
3

N
n n

n n

a f a f


 


   
     
    

x x x ,     (f) 

for  1 0   and 1  can be arbitrary small. 

Then, we have  

     '
'

: supN
n

n n

a f f 


   
    
    

x x x

    

   

1 '
'

: sup
3

3

N
n

n n

a f f

f f


 





   
      
    




x x x

x x

           (g) 

And finally,  
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     '
'

: supN
n

n n

a f f 


   
    
    

x x x

    1 '
'

: sup
3

3

N
n

n n

a f f


 







   
      
    



x x x

           (h) 

In latter inequality 1,   are arbitrary small and the second term tend to zero by In. (a). So, a.e 

approximation follows.  ◄ 

Remark 1: The assumption (a) of Theorem 2 is necessary, and we cannot assume weaker 

condition, i.e., all na  are bounded in measure. To see this, we assume that  n
n

a


 is an 

approximation to the identity in  1 , ,N NL B , and all na  are bounded in measure but the 

uniform boundedness in measure is not satisfied. It follows that  n
n

a


 is an approximation 

to the identity in every dense  1 , ,N NC L  B . Then, using Theorem 1, we can prove 

that there exists a dense set C , such that for any 0   and f C : 

      : limN
n

n

a f f 


  
       

  

x x x , 

which contradicts the a.e approximation property; see Pointwise approximation, Vidal-Sanz 

(2005), Sec. 2, Theorem 2. 

 

 

Now, we are in position to state sufficient conditions for pointwise approximation of expected 

value of a delta estimator. 

 

Theorem 3 (Sufficient conditions for pointwise approximation, Vidal-Sanz (2005), Sec. 2, 

Theorem 3): Let          ˆ( ) E ( ) ,n n mn

N

a f f K f d z   z zx x x . We define 

     ,n mn
a K f d  z z zx . Assume that 

 (a) the sequence na   is uniformly bounded in measure. 

 (b)    , 1
n

mn

N

K d


 z zx  a.e. 

 (c) For every 0   there exists M  , such that    s u p ,mn
n

K d M 





 


z

z z

x

x    a.e. 
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 (d) For every 0        , 0
n

mn
K d






 


z

z z

x

x   a.e. 

Then,    n
na f a f


  a.e. for every  1 , ,N Nf L  B    ■ 

Proof: From the fact that  n
n

a


 is uniform bounded in measure we can prove that 

 n
n

a


 is uniform bounded in measure. This is observing, 

               sup sup , ,
MM

n mn
n n

a f a f K f d a f
 

   z z zx x x x

and then for any 0    

          : :
MN M Na f a f       x x x x ,            (a) 

which proves that  n
n

a


 is uniformly bounded in measure. 

In the sequel, we shall give the idea of proof. It is proved the approximation property for any 

 1 , ,N Nf L  B  with an a.e. identical elements in  N
cC  (the set of continuous and 

compactly supported functions on N ). Then, as  N
cC  is dense in  1 , ,N NL B , 

applying Theorem 2 the result follows.  ◄ 

Remark 2: The idea and the manipulations of proof of Theorem 3 are similar with Theorem 2 

in Chapter 3, and for this reason we omit the last part of proof. This is, why we work in set of 

continuous compactly supported functions, and every continuous function defined on a 

compact set is bounded. 

Remark 3: In Theorems 2 and 3 we assume a general delta estimator, and we proved them 

under some assumptions. Now, we shall give some examples of delta estimators which satisfy 

these assumptions. 

 

Example 1: Let   be the Lebesgue measure, and I C  be the indicator function of a set,

NC  . Consider the kernel estimator 

      1

1 1

1 1 1ˆ ( )
det ( )

n n

m m i n in n
n

i i

f K K m
n n m



 

    x x x x x   

in  1 , ,N NL B . If there exist a closed interval 
NC  , and positive constants 1 2,c c , 

such that 1 2I ( ) ( ) I ( )C Cc K c u u u , then the operators    ˆ( ) E ( )n na f fx x  (see Eq. 

(17)) are uniformly bounded in measure. Now, let  be a matrix norm, such that 
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A B A B  ,   , N NA B  . Then, using the Theorem of change of variables we 

obtain: 

 

    11
( )

det ( )
m nn

n
N

K d K m d
m






 

    
z

z z z z z

x

x x x  

 

   
0

0
mnn

C

m
K d





  u u u . 

Now, the approximation property follows applying Theorem 3. 

 

4.5.2.  Convergence of  variation term 

In the following lemma we shall show the universal weak consistency of variation term. 

Lemma 7 (Universal pointwise weak consistency of variation term, Vidal-Sanz (2005), Sec. 

3, Preposition 1): Assume that for any probability measure, P , such that 
dP

f
d



 1 , ,N NL  B , and    1E ,
r

r
m in

K o n  
 

 
x x  for some 1r   almost 

everywhere with respect to  . Then,     ˆ ˆE E 0
r n

nf f
 

  
 

x x , and 

    ˆ ˆE 0
P

nf f x x  a.e. with respect to     (19a,b), and the result hold 

universally in P .   ■ 

Proof: Applying the rc  equation (Lemma1) we have 

          
1

1ˆ ˆE E E , E ,

r
n

r

n m i m in n

i

f f K K
n



 
              
 

x x x x x x  

      
1

1

2
E , E ,

nr r

m i m ir n n

i

K K
n





 
   

 
 x x x x   

   
1

2
E , 0

nr r
n

m ir n

i

K
n





 
  

 
 x x ,            (a) 

which proves Eq. (19a). 

Now, applying Markov inequality (Lemma 2) we prove Eq. (19b).  
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     ˆ ˆE E

ˆ ˆE 0
n n

n

f f
P f f 






   
x x

x x .          (b) 

               ◄ 

 

Theorem 4 (Universal pointwise strong consistency of variation term, Vidal-Sanz (2005), 

Sec. 3, Theorem 4): Assume that for any probability measure, P , such that 
dP

f
d

  

 1 , ,N NL  B , and 
 

2

1

exp

nn

n

M





 
 

  
  


x

  a.e. with respect to  , where 

   esssup ,n mn
M K

z

zx x . Then universal pointwise convergence (see Def. 12) is 

satisfied a.e. universally in P .  ■ 

Proof: First, by assumption, we know that       , ,m i n nn
K M M   x x x x , and 

applying the Hoeffding Inequality (Lemma 4) we derive 

      
  

2 2

2

1

1 2
, E , 2exp

2

m i m i nn n

n

i

n
P K K

n
M






 
 

         
    

 
  




x x x x

x

 

    
 

2

2
2 exp

2 n

n

M

  
  

  x
.       (a) 

Further, by Borrel-Canteli Lemma (Lemma 5a), we obtain 

      1
limsup , E , 0m i m in n

n

P K K
n


 
   
 
 

 x x x x ,    (b)  

which is equivalent with universal pointwise convergence (see Def. 12).  ◄ 

 

Example 2: Consider the kernel estimator, and assume that kernel K  has a global maximum 

at point, 0u u . Then, we have    
0( )

sup
det ( )

n mn
n

K u
M K

m
  

z

zx x , and we require 

 2

1

exp det ( )n

n

n m





   . A sufficient condition for latter inequality to holds true is 

2det ( )

log( )

nn m

n
  . Applying Theorem 4 the universal pointwise strong consistency follows. 
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4.6.  Estimation in infinite dimensional spaces  

In this section we present the main points of some recent works about estimation in infinite 

dimensional spaces; see Prakasa-Rao (2010), Niang (2004), Ferraty, Vieu (2008). Before 

continuing, it is necessary to give a description of the concept of data in an infinite 

dimensional space. 

 

There are different fields of applied sciences (environmetrics, chemometrics, biometrics, 

medicine, econometrics, engineering, etc.) where the collected data are curves. These data are 

called functional. A functional observation can be expressed by a random family 

  , TX t t    where  T  be a linearly ordered set of indices (e.g., T  or T ). 

We give the following general definitions for functional variable /data  and functional  

dataset.   

 

Definition 14. A random variable  is called functional variable if it takes values in an 

infinite dimensional space. An observation (value of a functional variable)    of   is called 

a functional data.  ■ 
 

Definition 15. A functional dataset   1 2, , ... , n     is the observation of n   functional 

variables  1 2, , ... , n .   ■ 

 

As we can see from the above definitions the notion of functional variable covers a larger area 

than curves analysis. In particular, a functional variable can be a random surface or any other 

more complicated mathematical object. Examples of functional data are the stochastic 

processes with continuous sample paths on a finite interval associated with the supremum 

norm or stochastic processes whose sample paths are square integrable on the real line. 

Spaces, such as the previous, are separable Banach spaces. For more details about functional 

data see Ferraty, Vieu (2006), and Ramsay, Silverman (2005,2002). 

 

Unlike to the finite dimensional spaces (i.e., N ),  there is no analog of the Lebesgue 

measure on an infinite dimensional Banach space. The density function of a random element, 

if it exists, is related to the dominating measure with respect to which the density function of 

the Radon–Nikodym derivative is computed. 

For this reason, it is necessary to introduce new conditions in the topological structure, and to 

the delta sequences to obtain uniform results of a delta sequence estimator in a Banach space 

(or in a general infinite dimensional space). 

 
 

Let  , , P  be a probability space, and E  is an infinite dimensional separable Banach 

space  (e.g., the continuous functions on the interval  0,1  endowed with the supremum 

norm). In additional, let B  be the σ-algebra of Borel subsets of E . Suppose now that X  is a 

random element defined on  , , P  taking values in  ,E B , and that it  has a density 

function f   with respect to a σ-finite  measure    on  ,E B , such that   0 B     

for every open ball B E . Now, let  1 2, , ... , nX X X  be independent and identically 
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distributed random elements (i.i.d) as X . Also, suppose C  is a compact subset of E  with 

the property that for any  0nr   there exists k Et  , 1 nk d    

  
1

,

d n

k n

k

C rt



 B ,                  (20a) 

and 

  there exists 0na   and 0c   such that   n
n n

a
d r c  .           (20b) 

The symbol  ,k nrtB  denotes the open ball in E  with center  kt and radius nr . This is the 

new topological condition that we introduce in an infinite dimensional space. We assume that 

a compact set C  can be covered by a finite number of balls (Eq. (20a)) and  a geometrical 

link between the number nd  of  balls and the radius nr of each of them (Eq. (20b)). 

Note that the condition (20a,b) is trivially satisfied in an Euclidian space ( N  ), by choosing  

na N  (also, it holds true for  infinite dimensional projection-based semi-metric spaces; 

see Ferrati, Vieu (2008) Sec.3 for the proof) but to obtain analogous uniform results  in a 

general infinite dimensional space it is necessary to assume that a compact set can be written 

as we saw above. Ferrati, Vieu (2008), Sec. 1, observe this detail, and give an extensive 

discussion. Also, Prakasa-Rao (2010), Sec. 1, includes this in a Bannach space.  

 

Now, we are in position to give the delta-sequence definition in Banach space and two 

additional conditions which we need in order to prove some theorems. 

 

Let   denotes the norm of Banach space E . 
 

 

 (G1) We assume that  for every 0  , there exists 0   such that, if x C ,   
 

          y E :  x y     then      f x f y   . 

 

Then, it follows that there exists 0M   such that  sup
x C

f x M


   .            (21) 

 

Definition 16 (Prakasa-Rao (2010) Sec.1): Let E  be a Banach space. A sequence of 

nonnegative functions   , ,m x y m   defined on E E  is said to be a delta 

sequence with respect to the measure   if  it satisfies the following conditions 
 

 (G2)  For every   , 0   ,  

 

 

,

lim sup , 1 0m
m x C

x

x y d y



 
 

 
B

,  

         where    , :x y E x y    B , 

 

 (G3)  there exists a constant 0c  such that   0
,

sup ,m m
x C y E

x y sc
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   where 0 asms m       and  
 

lim
logm m

m

s m

 


, 

 

 (G4) there exist 1 20 , 0, 0c       such that  
 

       2 1
1 2 1 2, ,m m mx y x y c s x x

 
      , 1 2, ,x x y E , 

 

 (G5) for any 0  ,

    
 

, ,

lim sup , 0m
m x y C E x

x y x y



   

  
B

.  ■ 

 

 

 (G6) Finally, we suppose that 
a

nd n , for 0a   and  

 

    
 

1/ 2

1 2 logm
n m

s m
r s

m

   
    

 

. 

Now, a delta sequence estimator on a Banach space can be written in the following form 

    
1

1ˆ ,

n

n m i

i

f x x X
n





  .                  (22) 

Note that m  might depend on n  such that  m     as   n  . 

Theorem 5 (Prakasa-Rao (2010), Sec. 2. Theorem 1): Suppose m   and there exists 

0 1p    such that pn m n   for large n .Under the conditions (G1) – (G6) the 

following limiting relation holds true: 

    ˆlim sup 0 .n
n x C

f x f x a s
 

  .  ■              (23) 

Proof: Due to the complexity of this proof, we give the reference where an interested reader 

could study. The completed proof there is in Prakasa-Rao (2010), Sec. 2. Theorem 1. ◄ 

Theorem 6 (Prakasa-Rao (2010), Sec. 2. Theorem 1): Suppose the conditions (G1) ,and 

(G3)–(G6). In addition, the following  condition holds true:  

(G2)΄   there exists 0   , such that  

 

   
,

sup , 1m m
x C

x

x y d y O D



 


 
B

, 

where,     sup , , y , , 0 1m mD x y x C E x y o      , as m  . Also, 

suppose that f  is Lipschitzian, i.e., there exists 0K   such that 
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    f x f y K x y     , for any x C  and y E  .          

Then, with probability one,      
 log

ˆsup
m

n m
x C

s m
f x f x O D O

m

 
   
 
 

,  (24)  

    ■ 

Proof: Since (G2)΄  implies (G2) applying Theorem 5, we get  

     
 log

ˆ ˆsup E
m

n n
x C

s m
f x f x O

m

 
  
 
 

,  a.s   

So it is sufficient to prove  

       ˆsup E n m
x C

f x f x O D


  . (a) 

We have  

             ˆE ,n m

E

f x f x x y f y d y f x     

          ,m

E

x y f y f x d y    

                            ,m

E

x y f x d y f x    

       , 1m

E

J f x x y d y 

 
   
 
  
 , (b) 

where          ,m

E

J x y f y f x d y   . 

Hence, 

       ˆE n mf x f x J O D   , by condition (G2)΄. (c) 

Thus, f  is Lipschitzian, so there exists K  , such that 

    f x f y K x y   , for any x C  and y E . (d) 
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Then,  

        ,m

E

J x y f y f x d y    

    ,m m

E

K D x y d y    

  mO D , by condition (G2)΄. (e) 

Now, combining (c) and (e) we derive 

       ˆE n mf x f x O D  .     ◄ 

Dabo-Niang (2004) gives a definition of naive kernel estimator in case that   is a    finite 

and diffuse   measure. 

 

Definition 17: Let   be a σ-finite and diffuse measure, and a sequence  nr  which satisfies    

0nr  , 0lim n
n

r


 ,  ,lim n
n

n rx


    B   (21a,b,c). Let , nrx 
 B   be the 

closed ball with center x , and radius nr , and  I A  denotes the indicator function of a set .A

Then, the naive kernel estimator given by 

 
 

 
1

1ˆ I ,
,

n

n i n

n i

f x X r
n r

x
x



       
 B

B
,   for  x E   ■         (25) 

 

Then she proves the following theorem 

 

Theorem 7 (Dabo-Niang (2004), Sec. 1, Theorem 1): If the density function f  is continuous 

at x E  and  ˆnf  is the naive kernel estimator, then      
2

ˆE 0lim n
n

f x f x


  . 

 ■              (26) 

 

Proof: First, we observe that for any x E  we have  
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B

B

1
E

B

1

B

n x
xrn
rn

x
xrn
rn

f x f x f y d y f x

f y f x d y







  

 





                (a) 

Also, by assumption f  is continuous at x E , so 0    there exists 0  , such that 

   y x f y f x      .         (b) 

Thus, if 0
n

r  , then, 0   there exists n  , such that  n n : 0
n

r    . Let 

   , then, 0   there exists n  such that, n n   and B
x
rn

y   we have  

 

    n
y x r f y f x        (c) 

and finally we obtain  
 

 

 
     

B

1

B
x

xrn
rn

f y f x d y 


  . (d) 

 

That is,     ˆE 0lim n
n

f x f x


  . (e) 

And obtaining the variation  

 

      

   

  
 

   

  
 

 

2

2B B

2 2

ˆV ( ) E

E ( ) E ( )

BB B

n n

x x
r rn nn n

x
x x

rnr rn n

f x f x f x

f y d y f y d y

f x f x

n nn n

 

 

 

   

 

    (f) 

 

Now, if 0nr    and   B
x
rn

n    , then  ( ) 0nV f x  . And the proof is complete. ◄ 
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