
National Technical University of Greece  

Interdisciplinary Program of Postgraduate 
Studies “ENVIRONMENT & DEVELOPMENT” 

Academic year 2013 – 15 

A study on the distribution of forest 
tree species and forest biodiversity 
using hyperspectral and multispectral 
imagery in the University Research 
Forest Taxiarchis in Chalkidiki  

Postgraduate thesis by: 

Maria Kampouri 

 

University Research Forest Taxiarchis 
(Source: ΑΠΘ, 2014) 

 

Supervisors: 

Prof. Demetre Argialas 

Assoc. Prof. Vassilia Karathanassi 

Dr. Pol Kolokoussis 



2 

 



3 

 

Contents 
 

Abstract .............................................................................................................................. 12 

Περίληψη ............................................................................................................................ 13 

Introduction ........................................................................................................................ 15 

1. Literature Review ........................................................................................................ 20 

1.1 Biodiversity and Ecosystem Monitoring ..................................................................... 20 

1.2 Habitats ..................................................................................................................... 21 

1.3 Vegetation Mosaics ................................................................................................... 23 

1.4 Legislation ................................................................................................................. 24 

1.5 Research and Policy ................................................................................................... 25 

1.6 Remote Sensing and Monitoring Ecosystems ............................................................. 31 

1.7 Object Based Image Analysis (OBIA) ........................................................................... 36 

1.8 Segmentation ............................................................................................................ 38 

1.9 Spectral Signatures of Forest Trees ............................................................................ 41 

2. Methods ...................................................................................................................... 47 

2.1 Study Area ................................................................................................................. 47 

2.1.1 Geography .......................................................................................................... 47 

2.1.2 The trees of Taxiarchis forest .............................................................................. 50 

2.1.3 Ground Derived Vector Data and Tree Distribution ............................................. 59 

2.2 Satellite and Aerial Imagery ....................................................................................... 62 

2.2.1 CASI .................................................................................................................... 62 

2.2.2 Landsat ............................................................................................................... 65 

2.2.3 GeoEye ............................................................................................................... 66 

2.2.4 Hyperion ............................................................................................................. 67 

2.2.5 ASTER Global Digital Elevation Model (ASTER GDEM) .......................................... 68 

2.3 Pre-Processing ........................................................................................................... 69 

2.3.1 Vegetation Sampling – Vector Data ..................................................................... 69 

2.3.2 ASTER GDEM....................................................................................................... 73 

2.3.3 Satellite and Aerial Imagery ................................................................................ 74 



4 

 

2.3.3.1 CASI ...................................................................................................... 74 

2.3.3.2 Landsat ................................................................................................. 74 

2.3.3.3 GeoEye - 2 ............................................................................................ 74 

2.3.3.4 Hyperion ........................................................................................... 75 

2.3.4 Feature Extraction Methodology for Hyperspectral Images ................................. 76 

2.3.4.1 Principal Component Analysis (PCA) ..................................................... 76 

2.3.4.2 Minimum Noise Fraction Transform (MNF) ........................................... 80 

2.3.5 Feature Selection Methodology for Hyperspectral Images .................................. 83 

2.3.5.1 Band selection based on correlation statistics of spectral signatures per 
classification category ...................................................................................... 83 

2.4 Processing – Object Based Image Analysis (OBIA) ...................................................... 86 

3. Results ............................................................................................................................ 87 

3.1 Object Based Image Analysis (OBIA) on Remote Sensing Multispectral and 
Hyperspectral Data .......................................................................................................... 87 

3.1.1 CASI 2m spatial resolution imagery ..................................................................... 87 

3.1.2 CASI 5 m spatial resolution imagery .................................................................... 91 

3.1.3 CASI 2m spatial resolution atmospherically corrected (ATM) imagery ................. 94 

3.1.4 Classification accuracies for CASI imagery ........................................................... 96 

3.1.5 Landsat imagery .................................................................................................. 97 

3.1.6 GeoEye imagery ................................................................................................ 100 

3.1.7 Hyperion imagery ............................................................................................. 102 

3.1.8 Classification accuracies for satellite imagery .................................................... 104 

3.2 OBIA on Principal Component Analysis (PCA) transformed Hyperspectral Imagery ... 105 

3.2.1 PCA transformed CASI 5m spatial resolution imagery ........................................ 105 

3.2.2 PCA transformed CASI 2 m and 5 m spatial resolution atmospherically corrected 
(ATM) imagery ........................................................................................................... 107 

3.2.3 PCA transformed Hyperion imagery .................................................................. 109 

3.2.4 Classification accuracies for PCA transformed hyperspectral imagery................ 111 

3.3 OBIA on Minimum Noise Fraction (MNF) transformed Hyperspectral Imagery ......... 112 



5 

 

3.3.1 MNF transformed CASI 2m spatial resolution imagery....................................... 112 

3.3.2 MNF transformed Hyperion imagery ................................................................. 115 

3.3.3 Classification accuracies for MNF transformed hyperspectral imagery .............. 117 

3.4 OBIA on Hyperspectral Imagery after Feature Selection ........................................... 118 

3.4.1 OBIA on CASI 2m hyperspectral imagery after band selection ........................... 118 

3.4.2 OBIA on Hyperion imagery after band selection ................................................ 122 

3.4.3 Classification accuracies for hyperspectral imagery with band selection based on 
correlation of species’ spectral signatures ................................................................. 125 

3.5 OBIA with Fuzzy Analysis: Classification Improvement Using Physiographic 
Characteristics of Forest Trees ....................................................................................... 126 

3.5.1 Landsat Imagery Object Based Image Analysis (OBIA) with Fuzzy Analysis Based on 
Physiographic Parameters ......................................................................................... 132 

3.5.2 MNF Transformed Hyperion Object Based Image Analysis (OBIA) with Fuzzy 
Analysis Based on Physiographic Parameters ............................................................. 138 

3.5.3 MNF Transformed CASI 2m Spatial Resolution Object Based Image Analysis (OBIA) 
with Fuzzy Analysis Based on Physiographic Parameters ............................................ 143 

3.6 Biodiversity Index .................................................................................................... 148 

3.6.1 Simpson’s Diversity Index.................................................................................. 148 

4. Discussion ..................................................................................................................... 154 

5. Conclusion ..................................................................................................................... 158 

Acknowledgements ........................................................................................................... 160 

References ........................................................................................................................ 161 

Appendix I: Landsat 8 receptors and bands for data collection .......................................... 173 

Appendix II: Hyperion Layer Mixing ................................................................................... 174 

Appendix III: Spectral bands of the CASI imagery ............................................................... 180 

1. CASI imagery without atmospheric correction ....................................................... 180 

2. CASI imagery with atmospheric correction (CASI-ATM) .......................................... 182 

Appendix IV: Tree species’ spectral signature correlation tables ........................................ 184 

1. CASI 2m Spatial Resolution Imagery ....................................................................... 184 

2. Hyperion Imagery .................................................................................................. 185 

Appendix V: Producer, User, KIA per Class and Overall Accuracy ....................................... 186 

1. Group A Classification Accuracies .......................................................................... 186 

2. Group B Classification Accuracies ........................................................................... 193 



6 

 

Appendix VI: List of Tree Species Present in Taxiarchis University Forest ........................... 197 

Appendix VII: Tree Species, Common Names and Greek Names ........................................ 200 



7 

 

List of Figures 
 

Figure 1: Compositional, structural and functional biodiversity, as interconnected spheres, 
with each one including multiple levels of organisation. This ideological framework can 
facilitate the selection of indices, which represent the multiple dimensions of biodiversity, 
ensuring the adoption of the most suitable approach in environmental monitoring and 
evaluation programs (Source: Noss, 1990)........................................................................... 16 

Figure 2: Methodology outline and flowchart. ..................................................................... 19 

Figure 3: The inductive and the combined inductive and deductive approaches to producing 
maps of vegetation series (Source: EEA & MNHN, 2014)...................................................... 26 

Figure 4: Typologies used by selected habitat-mapping projects in Europe (Source: EEA & 
MNHN, 2014). ..................................................................................................................... 29 

Figure 5: National or regional maps of PVN in Europe (EEA & MNHN, 2014). ....................... 30 

Figure 6: Relationship between the segmentation parameters (user determined weights) in 
eCognition. Usually, the weights for individual spectral layers (bands) (w1, w2, … wc) are set 
to 1. Users need to give the value for Smoothness weight (1-wcompact) (or Compactness 
weight (wcompact)) and Shape weight (1-w). The weights (1-wcompact) and (1-w) are used to 
calculate the Fusion Value (f). The value f is then compared with a user specified Scale value 
(s) to estimate whether the two adjacent objects need to be merged, or not (if f < s 2, merge 
the two objects; if f ≥ s 2 , stop the merging) (Source: Zhang et al., 2010). ........................... 38 

Figure 7: Some species have similarities in composition that may cause spectral confusion. a) 
Species that show spectral similarities related to cutin-rich cuticles. b) Species that show 
spectral similarities related to silica-rich cuticles (Source: Ribeiro da Luz & Cowley, 2010). .. 46 

Figure 8: Location of the study area and spatial extent of the Hyperion imagery (Source: 
Stavrakoudis et al., 2014). ................................................................................................... 47 

Figure 9: Acer platanoides (Wikipedia, 2015). ...................................................................... 50 

Figure 10: Querqus cossifera L. ............................................................................................ 51 

Figure 11: Castanea sativa (Wikipedia, 2015). ..................................................................... 52 

Figure 12: Abies borisii regis ................................................................................................ 52 

Figure 13: Fagus moesiacae (National Park Sutjeska, 2015). ................................................ 53 

Figure 14: Pinus brutia......................................................................................................... 54 

Figure 15: Pinus nigra .......................................................................................................... 54 

Figure 16: Pinus sylvestris (Wikipedia, 2015). ....................................................................... 55 



8 

 

Figure 17: Pinus halepensis (Greenscenelandscape, 2015). .................................................. 56 

Figure 18: Pinus pinaster ..................................................................................................... 56 

Figure 19: Pinus radiata (Wikipedia, 2015). .......................................................................... 57 

Figure 20: Tree species distribution in Taxiarchis Forest (see figure 21 for a colour-tree 
species index table) ............................................................................................................. 60 

Figure 21: Colour-tree species index key.............................................................................. 61 

Figure 22: Group A categories and map (TTA mask for samples and accuracy evaluation for 
group A categories generated from this template of forest tree species’ distribution). ........ 70 

Figure 23: Group B categories and map (TTA mask for samples and accuracy evaluation for 
group B categories generated from this template of forest tree species’ distribution) ......... 71 

Figure 24: Aster GDEM imagery for Taxiarchis forest, which includes three layers: elevation, 
slope and aspect. ................................................................................................................ 73 

Figure 25: Geometry of the principal component analysis and PCA bands (source: Rodarmel 
& Shan, 2002)...................................................................................................................... 79 

Figure 26: CASI 2m spatial resolution imagery (GDEM layers are also included, but not 
visible). ............................................................................................................................... 88 

Figure 27: Scale 100 multiresolution segmentation result for CASI image 2m resolution with 
GDEM (including elevation, slope and aspect). The entire area of the image is illustrated in 
figure 1, while figure 2 depicts a zoomed on area and illustrating the way polygons were 
separated during segmentation........................................................................................... 89 

Figure 28: CASI 2 m spatial resolution training areas and classification result (refer to figure 
21 for a colour key). Figures 27.1 and 27.2 show the training areas for classes of groups A 
and B respectively. Figures 27.3 and 27.4 illustrate the classification result for group A and B 
groups of classes respectively.............................................................................................. 90 

Figure 29: CASI 5m resolution. Colour composite: Red: band 27, Green: band 14, Blue: band 
2. ........................................................................................................................................ 91 

Figure 30: Scale 100 multiresolution segmentation result for CASI image 5m resolution with 
GDEM (including elevation, slope and aspect). The entire area of the image is illustrated in 
figure 1, while figure 2 depicts a zoomed on area and illustrates the way polygons were 
separated during segmentation........................................................................................... 92 

Figure 31: CASI 5 m spatial resolution training areas and classification results.  Training areas 
(figures 1 and 3) and classification result (figures 3 and 4) for group A (figures 1 and 3) and B 
(figures 2 and 4) classes respectively. .................................................................................. 93 

Figure 32: Multiresolution segmentation result full image extent (1) and zoomed (2) to show 
the separation of polygons. ................................................................................................. 94 



9 

 

Figure 33: Atmospherically corrected (ATM) CASI 2 m spatial resolution training areas and 
classification result. Training areas (figures 1 and 3) and classification result (figures 3 and 4) 
for group A (figures 1 and 3) and B (figures 2 and 4) classes respectively. ............................ 95 

Figure 34: Landsat image with colour composite representing true colours. ........................ 97 

Figure 35: Multiresolution segmentation for the Landsat image. ......................................... 98 

Figure 36: Landsat training areas and classification result. Training areas (figures 1 and 3) and 
classification result (figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) 
classes respectively. ............................................................................................................ 99 

Figure 37: Geoeye image (1) and multiresolution segmentation zoomed (2) to show the 
separation of polygons. ..................................................................................................... 100 

Figure 38: GeoEye samples and classification result. Training areas (figures 1 and 3) and 
classification result (figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) 
classes respectively. .......................................................................................................... 101 

Figure 39: Hyperion image (1) and multiresolution segmentation zoomed (2) to show the 
separation of polygons. ..................................................................................................... 102 

Figure 40: Hyperion training areas and classification result areas (figures 1 and 3) and 
classification result (figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) 
classes respectively. .......................................................................................................... 103 

Figure 41: PCA CASI 5m spatial resolution image (1) and multiresolution segmentation 
zoomed (2) to show the separation of polygons. ............................................................... 105 

Figure 42: PCA CASI 5 m spatial resolution imagery classification result (figures 1 and 2) for 
group A (figure 1) and B (figure 2) classes respectively. ..................................................... 106 

Figure 43: PCA transformed atmospherically corrected (ATM) CASI 2m (see figure 1) (for 
segmentation see figure 2) and 5m (for segmentation see figure 3) spatial resolution 
imagery. ............................................................................................................................ 107 

Figure 44: PCA transformed CASI ATM 2m and 5m spatial resolution classification results ( 
for 2m spatial resolution classification result see figures 1 and 2, and for 5m spatial 
resolution see figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) classes 
respectively. ...................................................................................................................... 108 

Figure 45: PCA transformed Hyperion image (see figure 1), segmentation (see figure 2) and 
zoomed in segmentation (see figure 3).............................................................................. 109 

Figure 46: PCA transformed Hyperion imagery classification results for group A (see figure 1) 
and B (see figure 2) classes respectively. ........................................................................... 110 



10 

 

Figure 47: MNF CASI 2m  image (see figure 1) and segmentation MNF transformed CASI 2m 
(for segmentation see figure 2) and 5m (for segmentation see figure 3) spatial resolution 
imagery. ............................................................................................................................ 113 

Figure 48: MNF CASI 2m spatial resolution classification result for group A (see figure 1) and 
B (see figure 2) classes respectively. .................................................................................. 114 

Figure 49: MNF transformed Hyperion image (see figure 1), segmentation (see figure 2) and 
zoomed in segmentation (see figure 3).............................................................................. 115 

Figure 50: MNF transformed Hyperion imagery classification results for group A (see figure 1) 
and B (see figure 2) classes respectively. ........................................................................... 116 

Figure 51: Correlation of spectral signatures of main tree species/classes to Pinus brutia at 
different spectral bandwidths. .......................................................................................... 119 

Figure 52: Correlation graph for different tree species (% reflectance is multiplied by 1000 
for better visual separation between spectral signatures of classes). ................................. 120 

Figure 53: CASI 2m spatial resolution classification result based on correlation between 
spectral signatures for group A (see figure 1) and B (see figure 2) classes respectively....... 121 

Figure 54: Correlation of spectral signatures of main tree species/classes to Oak at different 
spectral bandwidths. ......................................................................................................... 122 

Figure 55: Correlation graph for different tree species (% reflectance is multiplied by 1000 
for better visual separation between spectral signatures of classes). ................................. 123 

Figure 56: Hyperion classification result based on correlation between spectral signatures for 
group A (see figure 1) and B (see figure 2) classes respectively. ......................................... 124 

Figure 57: Membership function example for fuzzy analysis based classification for the 
elevation (m) range of beech. ............................................................................................ 130 

Figure 58: Membership function example for fuzzy analysis based classification for the 
degree of slope (%) range of beech. .................................................................................. 131 

Figure 59: Classification result for Landsat image after fuzzy analysis-based classification. 132 

Figure 60: Classification Stability for the Landsat image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by 
yellow and green for more stable classification results successively. ................................. 134 

Figure 61: Best classification result for the Landsat image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by 
yellow and green for more stable classification results successively. ................................. 136 

Figure 62: Classification result for MNF transformed Hyperion image after fuzzy analysis-
based classification. .......................................................................................................... 139 



11 

 

Figure 63: Classification stability for the MNF transformed Hyperion image after entering a 
fuzzy range for physiographic parameters. Red shows areas with high conflict between 
classes, followed by yellow and green for more stable classification results successively. .. 140 

Figure 64: Best classification result for the MNF transformed Hyperion image after entering a 
fuzzy range for physiographic parameters. Red shows areas with high conflict between 
classes, followed by yellow and green for more stable classification results successively. .. 142 

Figure 65: Classification Stability for the MNF transformed CASI image after entering a fuzzy 
range for physiographic parameters. Red shows areas with high conflict between classes, 
followed by yellow and green for more stable classification results successively. .............. 145 

Figure 66: Best classification result for the MNF transformed CASI image after entering a 
fuzzy range for physiographic parameters. Red shows areas with high conflict between 
classes, followed by yellow and green for more stable classification results successively. .. 147 

Figure 67: Illustration of the two levels used in the project for estimating Simpson's 
biodiversity index. ............................................................................................................. 149 

Figure 68: Simpson's index estimation formula, as entered in the eCognition software. .... 151 

Figure 69: Simpson’s diversity index. Darker areas have scored higher than more lightly 
coloured areas, while the red area represents a patch where the index could not be 
calculated due to the absence of vegetation. .................................................................... 152 

Figure 70: 2D Features space plot of elevation / height (m) against Simpson's Diversity Index.
 ......................................................................................................................................... 153 

 

 
 

 

 

 



12 

 

Abstract 
 

The aim of the study is to show how satellite or aerial imagery can be used to 
estimate patches of high biodiversity for conservation and management purposes in 
a Mediterranean forest ecosystem. The present thesis investigates the effectiveness 
of identifying forest tree species through high spatial resolution multispectral 
satellite imaging, as well as hyperspectral satellite and aerial imagery. We used 
Landsat and GeoEye multispectral images, as well as CASI and Hyperion 
hyperspectral images over Taxiarchis University Forest in Chalkidiki, North Greece. 
The images were subject to pre-processing for the purpose of reducing noise and the 
number of spectral bands used, along with file size and processing time, without 
compromising accuracy. The transforms used for band extraction included the 
Principal Component Analysis (PCA), the Minimum Noise Fraction (MNF) and for 
band selection, band selection based on the correlation between the spectral 
signatures of the trees of interest. Masks were created from field sampling was used 
for defining tree species’ spectral signatures, as well as consequent accuracy 
estimation. Classification was object based and aimed mainly on the identification of 
tree patches, but also tree species in the case of the CASI imagery with resolution up 
to 2 m. After the best image in terms of classification accuracy and stability, 
processing time and suitability in incorporating a fuzzy analysis based on 
physiographic characteristics of tree distribution, was selected, a biodiversity index 
(Simpson’s Biodiversity Index) was estimated.  

Keywords: multispectral, hyperspectral, OBIA, biodiversity, Simpson’s Biodiversity 
Index, Taxiarchis University Forest, PCA, MNF, tree spectral signatures. 
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Περίληψη 
 

Ο στόχος της παρούσας μελέτης είναι η διερεύνηση μεθόδων ανάλυσης δεδομένων 
ψηφιακής τηλεπισκόπησης για τον προσδιορισμό περιοχών με υψηλή 
βιοποικιλότητα για την προστασία και τη σωστή διαχείρισή τους σε ένα 
Μεσσογειακό δασικό οικοσύστημα. Μετά την ανάλυση μίας ποικιλίας δορυφορικών 
εικόνων και αεροφωτογραφιών, από το Πανεπιστημιακό Δάσος Ταξιάρχη, με τη 
μέθοδο της αντικειμενοστραφούς ταξινόμησης (OBIA) και με βάση διανυσματικά 
δεδομένα, που αποκτήθηκαν μετά από δειγματοληψία πεδίου, ήταν δυνατό να 
επιλεγούν εικόνες που παρείχαν την πιο ακριβή ταξινόμηση δασικών ειδών 
δένδρου για περαιτέρω ανάλυση. Οι εικόνες που χρησιμοποιήθηκαν περιλαμβαναν 
δορυφορικές πολυφασματικές, όπως οι Landsat (υψηλή χωρική ανάλυση) και 
GeoEye (πολύ υψηλή χωρική ανάλυση), καθώς και υπερφασματικές εικόνες όπως η 
δορυφορική Hyperion (υψηλή χωρική ανάλυση), και οι υπερφασματικές εικόνες του 
δέκτη CASI (πολύ υψηλή χωρική ανάλυση). Στις υπερφασματικές εικόνες 
εφαρμόστηκαν τρεις μέθοδοι μετασχηματισμού με σκοπό τη μείωση των καναλιών, 
του μεγέθους του αρχείου και του χρονου επεξεργασίας. Αυτές είναι: Ανάλυση 
Κυρίων Συνιστωσών (PCA), Μετασχηματισμός Ελαχιστοποίησης Θορύβου (MNF) και 
η επιλογή καναλιων βάσει της συσχέτισης των φασματικών υπογραφών των ειδών 
δέντρου. 

Οι εικόνες που παρείχαν τα καλύτερα αποτελέσματα ακρίβειας ταξινόμησης, οι 
οποίες επιλέχθηκαν για περαιτέρω επεξεργασία, ήταν η μετασχηματισμένη με τον 
Μετασχηματισμό Ελαχιστοποίησης Θορύβου (MNF) CASI με 2m χωρική ανάλυση, η 
εικόνα Landsat, καθώς και η μετασχηματισμένη με MNF Hyperion εικόνα, η οποία 
αν και δεν παρουσίασε ιδιαίτερα υψηλή ακρίβεια, ήταν χρήσιμη στη σύγκριση και 
αξιολόγηση των αποτελεσμάτων. Ανάλυση με χρήση ασαφούς λογικής, βάσει της 
ταξινόμησης δασικών ειδών κατά υψομετρική διαβάθμιση (λαμβάνοντας υπόψη 
υψόμετρο, κλίση και προσανατολισμό), χρησιμοποιώντας το ψηφιακό μοντέλο 
εδάφους Aster GDEM, βοήθησαν στη μείωση των συγκρούσεων ταξινόμησης 
μεταξύ των κατηγοριών, αλλά όχι στη βελτίωση της συνολικής ακρίβειας. Η 
διαδικασία της ταξινόμησης με τη βοήθεια ασαφούς λογικής για την κατανομή κάθε 
κατηγορίας από άποψη υψομέτρου και κλίσης (ο προσανατολισμός αποδείχτηκε 
αναξιόπιστος) ήταν μια χρονοβόρα διαδικασία που απαίτησε προσεκτική 
παρατήρηση, αλλά οδήγησε σε βελτιώσεις σε ότι αφορά την ακρίβεια ταξινόμησης 
ορισμένων κατηγοριών κατά την ταξινόμηση. 

Ο μετασχηματισμός MNF αποδείχτηκε ένα εξαιρετικά χρήσιμο εργαλείο για τη 
μείωση των δεδομένων που υποβάλλονται σε επεξεργασία και, κατά συνέπεια, τον 
χρόνο επεξεργασίας. Επίσης, αποδείχθηκε ότι είναι μια μέθοδος εξαγωγής 
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χρακτηριστικών, η οποία μπορεί να μειώσει με επιτυχία τον θόρυβο, χωρίς απώλεια 
χρήσιμων πληροφοριών για την ταξινόμηση των δασικών ειδών, χρησιμοποιώντας 
αντικειμενοστραφή ταξινόμηση (OBIA). Ειδικά στην περίπτωση της εικόνας CASI, 
μιας εικόνας με 72 κανάλια, ο MNF μετασχηματισμός αύξησε δραματικά την 
ταχύτητα του χρόνου επεξεργασίας της, δίνοντας ικανοποιητικά αποτελέσματα 
ακρίβειας ταξινόμησης. Με μια χωρική ανάλυση 2m, η μετασχηματισμένη με MNF 
εικόνα CASI αποδείχθηκε η πιο αξιόπιστη για την παροχή μίας σταθερής 
ταξινόμησης των ειδών δέντρων, ενώ η Landsat και η Hyperion έδωσαν υψηλή 
ακρίβεια, αλλά χαμηλή σταθερότητα και εμπιστοσύνη στα αποτελέσματα μετά την 
εισαγωγή περιορισμών ασαφούς λογικής. Μπορούμε λοιπόν να συμπεράνουμε ότι 
η χωρική ανάλυση πρέπει να είναι τουλάχιστον 2 μέτρα για την αποτελεσματική 
ταυτοποίηση των ειδών δέντρου όταν εφαρμόζεται αντικειμενοστραφής 
ταξινόμηση. 

Σε μια μελλοντική μελέτη, μπορεί να είναι χρήσιμο για τα δεδομένα του εδάφους να 
συλλέγονται βάσει αμιγών κατηγοριών και όχι μεικτών, όταν η μελέτη 
χρησιμοποιείται για τους σκοπούς της ψηφιακής τηλεπισκόπησης, με σκοπό τον 
προσδιορισμό συγκεκριμένων φασματικών υπογραφών ανά είδος. Μια άλλη 
προοπτική για τη βελτίωση των αποτελεσμάτων της παρούσας μελέτης, είναι η 
αξιοποίηση των φασματικών υπογραφών ανά είδος δέντρου, το οποίο θα μπορούσε 
στη συνέχεια να χρησιμοποιηθεί για την ανάλυση των τηλεπισκοπικών δεδομένων. 

Ο Δείκτης Βιοποικιλότητας Simpson υπολογίστηκε και παρουσιάστηκε με τη μορφή 
ενός χάρτη, που δείχνει περιοχές εντός του δάσους του Ταξιάρχη με υψηλή 
βιοποικιλότητα. Δασικά δένδρα μπορεί να αποτελούν οικότοπους για μια ποικιλία 
ζωντανών οργανισμών. Λαμβάνοντας υπόψη τη σημασία που αποδίδεται στη 
βιοποικιλότητα, από άποψη πολιτικής και νομοθεσίας της ΕΕ, ως κριτήριο για τη 
προστασία του οικοσυστήματος, η χρήση τηλεπισκόπησης για τον εντοπισμό 
περιοχών με υψηλή βιοποικιλότητα είναι σημαντική, διότι αυτό θα μπορούσε να 
αφορά εξαιρετικά μεγάλες δασικές περιοχές ή ακόμα και άλλους τύπους 
οικοσυστημάτων. Σε περιοχές όπου παρατηρείται μεγάλη βιοποικιλότητα, θα 
μπορούσαν να ενταθούν οι προσπάθειες περιβαλλοντικής προστασίας παρέχοντας 
προστασία για ένα ολόκληρο οικοσύστημα. Επιπλέον, ζώνες προστασίας θα 
μπορούσαν να σχεδιαστούν γύρω από περιοχές που θεωρούνται οικολογικά 
πολύτιμες δεδομένης της υψηλής βιοποικιλότητας, κάνοντας χρήση εργαλείων 
ψηφιακής τηλεπισκόπησης. 
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Introduction 
 

Since Darwin and Wallace, biologists concerned with ecology and evolution have 
been trying to interpret the distribution of species and discover why certain areas 
are especially species-rich (Turner et al., 2003). Biologists appreciate today that 
biodiversity is based on different levels of organisation. The management approach 
of protecting biodiversity offers a possibility for integrated environmental 
protection, as opposed to a species-centered approach. 
 
Biodiversity does not only represent a collection of genes, species, ecosystems or 
any other grouping for a particular area. The fact that an area might contain 500 
species while another contains 50 does not offer sufficient information to evaluate 
their relative importance when aiming for environmental protection. Biodiversity 
usually takes into consideration the rate of occurrence or the abundance of a species 
or of another ecological entity, along with the multitude of species within the 
sample. Biodiversity indices, such as the Shannon & Weaver and the Simpson Index 
combine species richness with a measure of the degree of heterogeneity in their 
distribution. 
 
When a natural landscape is fragmented, for example, the total biodiversity of a 
community may remain on the same levels or may increase, even though the 
integrity of the community may have been compromised due to the intrusion of 
alien-species, dislocating for example species which previously existed there. As an 
area gradually loses its character, global biodiversity is reduced (Noss, 1990). 
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Figure 1: Compositional, structural and functional biodiversity, as interconnected spheres, with each one 
including multiple levels of organisation. This ideological framework can facilitate the selection of indices, 
which represent the multiple dimensions of biodiversity, ensuring the adoption of the most suitable approach 
in environmental monitoring and evaluation programs (Source: Noss, 1990). 

 
 
The hierarchical theory proposes that higher levels of organization include and 
restrict the behaviour of lower levels. Based on this theory, global environmental 
problems, such as the greenhouse effect and the reduction of ozone in the 
stratosphere constitute substantial obstacles for the protection of natural 
ecosystems or endangered species. The requirement for the acquisition of consistent 
temporal and spatial data regarding natural ecosystems on a global scale and 
especially within the EU is a commitment, which creates the requirement for the 
development of suitable tools for monitoring. Specifically, the Framework Directive 
of the United Nations for Climate Change, during which the Kyoto Protocol was 
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agreed on, invites participant countries to provide information concerning carbon 
sinks (such as forests and oceans), as well as their evolution in time (De Fries et al., 
2000). 
 
This theoretical background of hierarchical structure of different levels of ecosystem 
organisation (see figure 1) allows for the selection of indicators, which represent the 
multiple sides of biodiversity and create a practical background for the development 
of monitoring and protection programs. On higher levels of organisation, a valuable 
monitoring tool is remote sensing. While research on lower levels focuses on the 
mechanistic basis of the interactions between species, which constitutes the basis 
for the motives, arrangements and reiterations constitute higher levels of 
organisation. The structure, biodiversity and productivity of a landscape can be 
recorded through aerial and satellite photography to provide a time-series record 
(Noss, 1990; Turner et al., 2003). 
 
Digital sensors offer systematic and synoptic visualisation of ground cover and land 
uses at regular time intervals (Nagendra, 2001). For example, Landsat 8 (see 
appendix I) with a pixel resolution of 30 m (15 m for panchromatic data), offers data 
for the entire surface of the Earth on 16-day intervals, which are distributed for free 
(USGS, 2014). Remote sensing is an important tool for the study of biodiversity on a 
large and medium scale, while on smaller scales, remote sensing data can be used 
for the evaluation of structural changes in a forest ecosystem, as well as motives that 
emerge over time (Townshend et al., 1991). 
 
According to Jones & Riddle (1996), the evaluation of biodiversity can be studied on 
different scales depending on the objective and aim of the study. On a global scale, it 
is possible to use satellite images for the study of the factors affecting the 
distribution of species-rich areas. On a landscape scale, remote sensing can be a tool 
for identifying current trends for biodiversity and biotopes.  
 
Remote sensing can provide answers in the form of maps and inventories, while 
allowing for the quantification of environmental characteristics, as well as the 
evaluation of the fundamental conditions of biodiversity. When combined with 
additional data from field studies, remote sensing can significantly contribute to the 
illustration of biodiversity through digitally processed images, ultimately assisting in 
management, conservation and decision-making (Innes & Koch, 1998). Whilst the 
rate of biotope loss remains high, the need for the protection of biodiversity 
becomes increasingly urgent. For the purpose of planning strategies for 
conservation, remote sensing provides a systematic tool in gathering information 
concerning the distribution and dynamics of species constituting an ecosystem, as 
well as their course in time (Nagendra, 2001). 
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The majority of studies on biodiversity focus on canopy tree species of a forested 
area (even though in recent years with the use of radar sensors, such as Lidar, 
penetration on lower vegetative levels is feasible), as these are usually static and 
bulky organisms. However, various studies conclude that the distinction between 
tree species is particularly difficult and requires both good resolution of imaging and 
a suitable selection of a spectral signature area (or a combination), which depends 
on the biochemical composition of an organism. In most cases, the accuracy of 
classification, which is achieved for the identification of tree species using remote 
sensing data, varies between 50% and 90%. In case the aim of a study is the 
identification of a homogenous assimilation of tree species classification accuracy is 
improved. Reliability of results can be substantially improved incorporating data 
from a digital elevation model (DEM) (Nagendra, 2001; Franklin et al., 1994). 
 

The present thesis investigates the effectiveness of identifying forest tree species 
through high spatial resolution multispectral satellite imaging, as well as 
hyperspectral satellite and aerial imagery. An outline of the proposed methodology 
is depicted in figure 2. We used Landsat and GeoEye multispectral images, as well as 
CASI and Hyperion hyperspectral images over Taxiarchis University Forest in 
Chalkidiki, North Greece. The images were subject to pre-processing for the purpose 
of reducing noise and the number of spectral bands used, along with file size and 
processing time, without compromising accuracy, with the exception of the Landsat 
image, which was ready for processing. The transforms used for band extraction 
included the Principal Component Analysis (PCA), the Minimum Noise Fraction 
(MNF) and for band selection, band selection based on the correlation between the 
spectral signatures of the trees of interest (see figure 2). After the best image in 
terms of classification accuracy and stability, processing time and suitability in 
incorporating a fuzzy analysis based on physiographic characteristics of tree 
distribution, was selected, a biodiversity index (Simpson’s Biodiversity Index) was 
estimated. 

The aim of the study is to show how satellite or aerial imagery can be used to 
estimate patches of high biodiversity for conservation and management purposes. 
The implication concerns the entire ecosystem, as forest constitutes the habitat of 
numerous species of animal and plant life, as well as microorganisms.  
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Figure 2: Methodology outline and flowchart. 
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1. Literature Review 

 

1.1 Biodiversity and Ecosystem Monitoring  
 

The concept of biodiversity, which includes variation at the level of genes, species 
and ecosystems, has been evolving over the past 25 years after being proposed by 
E.O. Wilson (1988). In his 1985 paper, “The crisis of biological diversity” Wilson 
wrote: 

The worst thing that can happen during the 1980s is not energy depletion, economic 
collapse, limited nuclear war, or conquest by a totalitarian government. As terrible as 
these catastrophes would be for us, they can be repaired within a few generations. 
The one process ongoing in the 1980s that will take millions of years to correct is the 
loss of genetic and species diversity by the destruction of natural habitats. This is the 
folly that our descendents are least likely to forgive us. 

Wilson also pointed out the importance of mapping biodiversity in order to plan its 
conservation and practical use. He has also stressed the importance of identifying 
patterns in endemism and biodiversity hotspots, ultimately addressing land use and 
conservation issues (Raven & Wilson, 1992). His vision of mapping global diversity, a 
task that should be assigned to multidisciplinary research teams on a national level 
and addressing conservation and land use constitutes today an important EU goal. 

Initially, most protected areas were set aside because of their spectacular natural 
beauty, the occurrence of populations of rare or endangered species, or their value 
in harboring species of recreational interest. More recently, the identification and 
prioritisation of places meriting protection has become more systematic and 
scientific. Several organizations (e.g., Conservation International, the World Wildlife 
Fund) have targeted places for global protection based upon the biodiversity they 
contain—so-called “hotspots” of species richness (Myers et al., 2000). Others, such 
as The Nature Conservancy (TNC), have used inventories of species and communities 
and assessments of major threats such as development or habitat fragmentation to 
target areas for protection within broadly defined eco-regions (Groves & The Nature 
Conservancy, 2003). Systematic conservation planning has become a major focus of 
conservation and management (Wiens et al., 2009). 
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1.2 Habitats 
 

The term habitat has often been defined as the spatial extent of a resource for a 
particular species. Habitat in this sense is explicitly linked to a species, or species 
group sharing the same ecological requirements. Dictionary definitions are also not 
specific and usually refer generally to communities. The terms ‘habitat patch’, 
‘micro-habitats’ and ‘temporary habitat’, are also often used in this respect. Other 
terms such as biotope and ecosystem are also used in similar contexts in the 
literature but are rarely defined. In recent years the latter term has been increasingly 
used in the concept of ecosystem services but as described by Fisher et al. (2009) it is 
usually applied at a range of different scales from the specific e.g. a crop field to the 
general such as a riparian zone. Ecosystem services have to be considered as a policy 
parameter additional to traditional nature conservation (Haslett et al., 2010). 

The scientific use of the term habitat shows an evolution in meaning from the vague 
and broad to the narrow and precise, as shown following examples of definitions: 

- “Place, living space, where an organism lives” (Odum, 1963). 

- “Place where a species normally lives, often described in terms of physical factors 
such as topography and soil moisture and by associated dominant forms (e.g. 
intertidal rock pools or mesquite woodland)” (Calow, 1999). 

- “Habitat is a zone (area) comprising a set of resources, consumables and utilities, 
for the maintenance of an organism. The resources occur in union and/or intersect 
and may also be equivalent; links between resource outlets are established by 
individual searching movements of the organism” (Dennis & Shreeve, 1996). 

The above definitions are primarily theoretical and are not designed for field 
mapping with the objective to determine the extent of habitats and their spatial 
distribution. However, Bunce et al. (2008) have adapted the principles originally 
developed in the Great Britain Countryside Survey for mapping European habitats 
and rules are provided for assignment of a given patch to a habitat class at a defined 
scale. Bunce et al. (2008) define habitat as “an element of the land surface that can 
be consistently defined spatially in the field in order to define the principal 
environments in which organisms live”. 

In addition to their recognition in their own right habitats also have the following 
practical advantages: 

1. Aerial photographs, especially infra-red, can be used to estimate habitat extent 
and its change over time e.g. Ståhl et al. (2011) 
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2. Remote sensing data from satellites can be linked to in situ maps of habitats to 
larger units (Mücher et al., 2009). 

3. Relationships between habitats and species assemblage composition or particular 
taxa important to biodiversity can be used to link habitat records to other 
biodiversity indicators, such as species e.g. Petit and Usher (1998) 

4. Habitat records can be linked to changes over time at the landscape level and to 
vegetation assemblages. Protocols are now available and can be used to link extant 
habitat data across Europe for five national major monitoring programs and could 
also be developed for other surveys (Bunce et al., 2013). 

Habitats are important as indicators of biodiversity in their own right but they are 
also linked to species and assemblages both of plants and other taxa in a variety of 
ways. This is axiomatic for plant species, as habitats are often defined by 
phytosociological syntaxa which are determined by vegetation composition. Plant 
species, can also be used as indicators for a habitat as described in the Interpretation 
Manual for Annex I habitats (European Commission, 2007). These species can then 
be used in conjunction with ancillary data, such as soils, to predict the distribution of 
the habitats themselves across Europe as shown by Mücher et al. (2009). 

The landscape ecological literature also provides many studies where habitats have 
been used as a framework for examining the behaviour of species. Thus Harvey et al. 
(2006) related tree cover to birds, butterflies and dung beetles while Dover et al. 
(2010) examined how the structure even within a single habitat can affect butterfly 
abundance and Hinsley and Bellamy (2000) show how bird assemblages, even within 
one habitat, a hedge, are related to management. 

Although widely used, the term ‘habitat’ remains diverse, ambiguous, and difficult to 
apply consistently because it is has been developed in different contexts with 
contrasting meanings (Bunce et al., 2013). 
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1.3 Vegetation Mosaics 
 

Vegetation mosaics or complexes are found when two or more communities, each 
occupying small areas, are found in close proximity, often as a repeating pattern. It is 
a constant mapping issue as scale increases (decreasing precision), because 
individual vegetation types can no longer be represented. The concept of vegetation 
complexes has been developed mainly by Schmithüsen (1948) and Tüxen (1978). 

According to dynamic and landscape approaches to vegetation science, the 
distribution of plant associations within homogeneous regions is not random, and 
there is a tendency of associations to be related. These relationships can be divided 
into two categories, as seen below: 

 Temporal (i.e. dynamic): communities substitute for each other over time, starting 
with a pioneer stage and evolving towards a climax community. 

 Spatial: as a result of topographical factors, i.e. micromorphology of the substratum 
or the soil. They can be open or closed, depending on whether the mosaic elements 
are separated by substrate. An example is a bog system where hummocks and 
hollows can be shown on a large-scale map, but not at smaller scales. 

A third approach is aggregating patches of the same type in order to form a bigger 
polygon, without representing the mosaic on the map. In the Italian project Carta 
della Natura (Angelini et al., 2009 in EEA & MNHN, 2014), all the patches of the same 
habitat type that were separated by a distance less than a distance related to the 
patch size were merged, including the matrix portion that separates them. Thus, a 
polygon was obtained with a surface area equal to or higher than the minimum 
mapping unit. When this is not possible, because the patches are too distant or the 
surface of the aggregation is too small, the polygon is attributed to the predominant 
habitat types (EEA & MNHN, 2014). 
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1.4 Legislation 
 

Habitats are specifically referred to in the European Union (EU) Habitats Directive 
which includes a list (Annex I) of habitats to be protected (European Commission, 
1992). These habitats are described in various levels of detail in the Interpretation 
Manual (European Commission, 2007) which has been revised several times to 
include additional habitats and revised definitions as the EU has expanded. In the 
Manual there are some diagnostic features as well as lists of associated species. 
Criteria to identify a particular habitat or to distinguish between them are not 
included in the legal text of the Directive. 

These habitats, together with selected species listed in Annex II, have been used to 
construct the Special Areas of Conservation (SAC) which together with Special 
Protection Areas (SPA) designated under the 1979 EU Birds Directive and Marine 
Protected Areas (MPA) form the Natura 2000 network which is the primary 
framework for site-based nature protection in the EU. EU Member states are also 
obliged to report on the conservation status of these habitats every six years under 
Article 17 of the Habitats Directive and Article 12 of the Birds Directive. 

In addition, the RAMSAR Convention relates to one habitat group, wetlands. Habitats 
are also referred to in the Berne Convention with an agreed list of habitats to be 
used for selection of sites for its Emerald Network (Council of Europe, 2014). Habitat 
conservation is also one of the 2020 targets (Aichi targets) of the Convention on 
Biological Diversity and its status is an important category to report on (GEO BON, 
2011). Habitats are therefore a central pillar of European nature conservation policy. 

The categorisation of European habitats started with the earlier CORINE biotopes 
classification (Devillers et al., 1991) from which the original list of habitats for Annex 
I was selected and then the Palearctic classification (Devillers & Devillers-Terschuren, 
1996). Annex I has been progressively modified with the accession of new member 
states with the most recent version being 2007 and recent changes have been based 
on the Palearctic classification (Evans, 2006). Although Natura 2000 also protects 
species listed in Annex II of the Habitats Directive together with selected bird species 
listed in the Birds Directive it is often considered that the maintenance of a series of 
habitats in good condition is one of the best ways to conserve species (Bunce et al., 
2013) 
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1.5 Research and Policy 
 

Using a mixture of remote sensing and field methods seems to deliver the best 
results in mapping habitats. This requires ecologists and remote sensing experts to 
collaborate closely. Several projects have pioneered the use of field computers. This 
helps the field surveyor in data capture and eliminates the need to transcribe field 
notes, potentially removing a source of error. Habitat maps are important for 
reporting under Article 17 of the Habitats Directive where distribution maps of the 
Annex I habitat types are required, together with estimates of their total area and 
trends. Similar information is also required for compiling Red Lists of habitats, 
typically at the national level and currently under development at the European 
level. 

Habitat maps are also very useful input to processes of spatial planning, including 
environmental impact assessments (EIAs) and assessments required under Article 6 
of the Habitats Directive to protect the Natura 2000 network. They have been used 
when designing ecological networks from regional to continental scales, as with the 
Pan-European Ecological Network (PEEN), and are important in implementing the 
European Commission's Green Infrastructure Strategy. 

More recently, the EU's Biodiversity Strategy to 2020 included three targets calling 
for knowledge on habitats: (a) to fully implement the Birds (Directive 2009/147/EC) 
and Habitats Directives; (b), to maintain and restore ecosystems and their services; 
and (c), to increase the contribution of agriculture and forestry to maintaining and 
enhancing biodiversity. 

The most detailed and comprehensive classifications of vegetation types across 
Europe are provided by phytosociology, the discipline that studies patterns of co-
occurring plant species. Phytosociology is based on the concept of association 
defined by Braun-Blanquet (1928 in EEA & MNHN, 2014) as a “vegetal grouping, 
more or less stable, and in equilibrium with the environment, characterised by a 
particular floristic composition, in which some exclusive or almost exclusive elements 
(characteristic species) reveal with their presence a particular and autonomous 
ecology”. 

Associations are classified in a hierarchical system. A vegetation series is a list of the 
associations that could occur on a given area of land which is ecologically 
homogeneous with the same physical conditions (i.e. climate, soil type, 
geomorphology) depending on management, extreme events (e.g. storm damage) 
and processes of vegetation succession. Series are named after their most mature 
stage, usually the potential natural vegetation (PNV) (see figure 3). 
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Figure 3: The inductive and the combined inductive and deductive approaches to producing maps of 
vegetation series (Source: EEA & MNHN, 2014). 

 

There are many types of vegetation maps, produced for diverse reasons. First, maps 
may show different aspects of vegetation, based on the floristic composition, 
structure, the ecology of plant communities (synecology), the dynamic stages and 
relations of plant communities (syndynamics) and the distribution of plant 
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communities (synchorology). Each of these may be represented on a map. Secondly, 
maps may vary according to scale and definition of the vegetation units. Thirdly, a 
vegetation map depends on the theoretical conceptions of the different 
geobotanical schools, and thus on the interpretation and classification of vegetation 
resulting from these different approaches. The hierarchical system of syntaxa 
governed by the International Code of Nomenclature (Weber et al., 2000) is based 
on four principal ranks: association, alliance, order and class. Many authors also 
recognise sub-ranks (e.g. sub-associations or sub-alliances). Schaminée et al. (2009) 
showed that more than 1.8 million relevés1 had been already digitised, 75% of which 
are found in centralised databases of countries or regions. 

The term biotope mapping is used as a synonym for habitat mapping in central 
Europe. Increasingly, especially since the EU Habitats Directive came into force in 
1992, maps are being produced which show habitat types or biotopes. Typologies 
based on phytosociological classification are strictly defined by plant communities, 
whereas habitat types or biotopes take into account geographic, abiotic and biotic 
features. The term biotope mapping is used as a synonym for habitat mapping in 
central Europe (EEA & MNHN, 2014). 

The Corine Biotopes classification was published in 1991 (Devillers et al., 1991) as 
part of the Corine Biotopes project which aimed to identify and describe the habitats 
of major importance for the conservation within the European Community (then 
comprising only 12 Member States). It is a hierarchical classification system intended 
to cover all habitat types but with a focus on natural and semi-natural habitats and a 
limited coverage of marine habitat types. Although it is clearly based on 
phytosociological classifications, it also includes other factors like geography, climate 
and soil, and covers several habitat types with no plant cover (e.g. glaciers and lava 
tubes). The original version of Annex I of the EU Habitats Directive as published in 
1992 is a selection from the Corine biotopes classification (Evans, 2010). 

In 1995, the EEA, through its European Topic Centre on Nature Conservation (the 
ETC/BD's predecessor), began work on the EUNIS habitat classification (Davies et al., 
2004): the aim is a comprehensive hierarchical classification of the terrestrial, 
freshwater and marine habitats for the whole of Europe, associated islands and seas. 
The EU INSPIRE Directive, which aims to allow for the combination of spatial data 
and services from different sources across Europe in a consistent way, proposes that 
the EUNIS habitat classification be used as a common reference for habitats (EEA & 
MNHN, 2014). 

                                                             
1 A relevé is defined as each of a number of small plots of vegetation, analysed as a 
sample of a wider area (Oxford Dictionary, 2014 - 
http://www.oxforddictionaries.com/definition/english/relev%C3%A9). 
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The General Habitat Categories (GHC) was a classification model developed as part 
of the EU-funded BioHab and EBONE projects (EBONE, 2015). Tested in Europe, and 
for non-European Mediterranean and desert environments, the approach has been 
applied successfully in field inventories and for linking remote sensing information 
with in situ data. As habitat is a key entry to other biodiversity stock and change 
variables, it is important to integrate approaches. 

In the EU, the most important development is the INSPIRE Directive that entered 
into force in May 2007. It establishes an infrastructure for spatial information to 
support Community environmental policies and policies or activities which may have 
an impact on the environment. Interoperability is understood as providing access to 
spatial data sets through network services, typically via the Internet. Specific data 
specifications are defined for habitats and biotopes. The habitat types from Annex I 
of the Habitats Directive and the EUNIS habitat classification have been adopted as 
the principal reference lists, and to be INSPIRE-compliant, all habitat features must 
have one or two habitat type encodings, an obligatory code using either Annex I or 
the 'EUNIS habitat classification' and an optional second code from a national or 
local habitat classification system, as long as they are well accepted, registered and 
documented. 

Where a few years ago biodiversity conservation policies primarily focused on 
species and ecosystem conservation and restoration, the political focus on 
biodiversity has now extended to the maintenance or restoration of ecosystem 
services (Intergovernmental Platform on Biodiversity & Ecosystem Services (IPBES),1 
EU biodiversity strategy to 2020 (EC, 2011), TEEB (2010). But also in the 
development of other policy frameworks such as the greening of the European 
Union Common Agricultural Policy, inclusion of payments for ecosystem services is 
considered (EC, 2010). 

The current trend in policy development inevitably generates an increasing need to 
be informed on the status of ecosystem services and thus a need for relevant 
indicators. With indicators, policy-makers can identify and prioritise interventions 
through a more goal-orientated and time-efficient approach (Layke et al., 2012). The 
need to monitor changes in ecosystem services provisioning has already been 
identified at a global level by the Group on Earth Observations Biodiversity 
Observation Network (GEOBON, 2011). With the recent green lights for setting up 
the IPBES, the demand for monitoring data on ecosystem services will become even 
more prominent. Within the European Union, several environmental and 
biodiversity monitoring schemes have been proposed and implemented, and data is 
collected from EU-wide general land cover mapping to specific red list species in 
Annex I habitats. These monitoring schemes have been developed and implemented 
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to monitor changes, to identify and to analyse trends, to support and/or to evaluate 
policy effectiveness (Geijzendorffer & Roche, 2013). 

A map is a representation of the world and cannot depict its true complexity: it is 
produced for a specific objective. Therefore a balance must be found between the 
scale and the resulting precision, the type of object mapped and the level of detail 
required and the extent of the map. 

 

Figure 4: Typologies used by selected habitat-mapping projects in Europe (Source: EEA & MNHN, 2014). 

Up to 45 potential natural vegetation (PNV) maps were identified in 24 European 
countries (see figure 4); most of them (86%) are at landscape scale (i.e. 1:100,000 or 
smaller). According to EEA & MNHN (2014), the only large-area PNV maps at large 
scale (i.e. 1:50,000) are from Spain (Basque country, Catalonia and Navarre) and 
Slovenia (see figure 4) (Noirfalise, 1987 in EEA & MNHN, 2014). 
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Figure 5: National or regional maps of PVN in Europe (EEA & MNHN, 2014). 

 

In Greece, an important project aimed to identify, describe and map all habitat types 
in all 237 terrestrial Sites of Community Importance (SCIs) (20,000 km²). The project 
(1999–2001) was mainly designed for inventory purposes including detailed 
characterisation of the vegetation communities and mapping. A second project 
(2013–2015) is using the same methodology but with a focus on monitoring. The 
vegeta on relevés taken within each site were used to iden fy and describe the 
vegetation communities, and thus to document the presence, extent and spatial 
distribution of Annex I habitat types present in Greece (85), as well as a number of 
habitat types considered of Greek importance (30) (Dimopoulos et al., 2012).   
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1.6 Remote Sensing and Monitoring Ecosystems 
 

Remote sensing plays an important role in assessing the condition of protected areas 
and facilitating this broadening of focus from protected areas to entire landscapes. 
For example, resource managers and conservation practitioners are making 
extensive use of land-cover and land-use information to portray and analyze the 
landscape context of conservation areas at multiple scales. Data gathered by remote 
sensing for the same areas over time are being used to assess changes in landscapes 
and associated factors, again at multiple scales (Wiens et al., 2009). 

Moreover, remote sensing data sets are increasingly being considered by EU 
Member States, in order to fulfil their reporting obligations under the Habitats 
Directive (Lengyel et al., 2008). However, the use of satellite-based remote sensing 
for accurate, detailed and complete conservation status assessment and monitoring 
of natural and semi-natural habitats, as required under the Habitats Directive, is still 
rare (Vanden Borre et al., 2011). The coupling of remote sensing and field data can 
result in an increase in precision and in area estimates of various habitat classes 
(McRoberts et al., 2002). 

The best way forward in modelling vegetation and habitat distributions is to combine 
top-down modelling with bottom-up knowledge. However, exploitation of bottom-
up knowledge demands considerable efforts in terms of data collection and 
harmonisation (EEA & MNHN, 2014). 

The adequacy and quality of spatial data sets and data sources is an important 
consideration. The choice of the spatial resolution depends on the spatial scale, the 
distribution and the heterogeneity of the species and habitats being monitored, the 
factors that control species distributions, and the availability of ancillary data sets 
related to, for example, soils, drainage networks, geology, topography, population 
and/or management regimes, that provide additional insights required for 
interpretation of remote sensing data sets (Nagendra, 2001). 
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Juncus-dominated), 
unimproved (Festuca 

dominated), 
semiimproved and 

improved 

– 

++ 

Determining the 
species 

composition 

Level 2 

Distinction 
within the 

physiognomic 
type: 

Heathlands 

++ 

Seasonal 
phenological 

variation 

Can discriminate 
the evergreen 

Calluna vulgaris 
from the 
decidious 
Vaccinium 
myrtillus 

++ 

With multi-seasonal 
imagery: distinction 

between heath types 
(e.g. Genista and 

Erica) 

– 

++ 

Distinction 
between dry and 
wet heathland, 
heathland types 

(Calluna, Molinia, 
Deschampsia, 
Erica etc.) and 

heath age classes 
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Level 2 

Distiction 
within the 

type: 
Wetlands2 

 

+ 

Detection of 
riparian 

vegetation 
species 

+ 

Seasonal imagery 
allows mapping the 

spatial extent of 
seasonally submerged 

wetlands and some 
vegetation species 

– 

++ 

Distinction 
between aquatic 

macrophytes 
species (Typha, 

Phragmites, 
Scirpus) 

Note: The degrees of suitability of the sensor to the identification of a given parameter are: 

– = unsuitable 

–/+ = more or less suitable 

+ = suitable 

++ = recommended 

 

Table 1: Contribution of various remote sensing techniques to the mapping of natural habitats at two 
classification levels (Source: EEA & MNHN, 2014). 

 

Remote sensing observations can complement and add to field observations as they 
deliver a synoptic view and offer the opportunity to provide consistent information 
in time and space (Nagendra, 2001; Nagendra & Rocchini, 2008; Vanden Borre et al., 
2011). For the purpose of habitat monitoring, remote sensing methods and 
especially hyperspectral techniques are promising, but existing remote sensing data 
and classification methods fall short in several aspects: (a) airborne hyperspectral 
data are suitable, but coverage is still limited; (b) existing methods have not 
addressed the issue of habitat structure and functioning, which is a key factor for 
assessing habitat quality; and (c) most existing remote sensing methodologies have 
not been tested vigorously for operational purposes (Hufkens et al., 2010).  

Hyperspectral sensors offer finer spectral measurements than multispectral 
instruments, with often hundreds of spectral bands of narrow width being recorded, 
allowing a near continuous spectrum to be reconstructed for each pixel. This 
presents opportunities for more precise identification of biochemical and biophysical 
properties of the vegetation compared to when broadband multispectral sensors are 
used. New spaceborne hyperspectral sensors are on their way, in parallel to the 
existing very high spatial resolution (VHSR) multispectral sensors such as Worldview-
II and (with a spatial resolution of 2 m for the 8 multispectral bands and 0.5 m for the 

                                                             
2 Wetlands are not a physiognomic type per se, but are various physiognomic types that 
have adapted to the continuous or temporary presence of water 
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panchromatic band). For example, Italy’s ASI space agency plans to launch PRISMA, a 
medium-resolution hyperspectral imaging mission with about 235 channels in the 
visible, NIR and SWIR wavelength regions, by the end of 2013. The German 
Aerospace Centre (DLR) and the German Research Centre for Geosciences (GFZ) are 
planning to launch the EnMAP hyperspectral satellite in 2015 to map the Earth’s 
surface in over 250 narrow wavebands. And in 2015 or 2016, NASA plans to launch 
the HyspIRI mission, which will acquire medium-resolution imagery across 210 
spectral bands. Thus, high resolution multispectral and medium resolution 
hyperspectral spaceborne data are going to become increasingly available by the end 
of the decade (Mücher et al., 2013). 

Natural complexity can be best explored using spatial analysis tools based on 
concepts of ecosystems or landscapes as process continuums, which can be partially 
decomposed into objects or patches. Object based image analysis (OBIA), often 
referring to object-based image segmentation, classification concepts and tools, has 
been proposed as a strong toolset to identify, delineate, describe and label the 
required patches in a consistent way (Blaschke, 2010). Nevertheless, OBIA 
techniques have been criticised for being still less suitable for the assessment of 
continuous gradients related to structural and functional processes. Schmidtlein et 
al. (2007) for example combined ordination measures derived from floristic field 
data with spectral data from HyMap hyperspectral imagery to derive continuous 
maps which represent abrupt transitions between habitats as well as gradual 
transitions and within habitat heterogeneity. 

Another approach for continuous vegetation mapping is the use of spectral mixture 
analysis (SMA). In SMA, the reflectance of a single pixel is considered to be a mixture 
of endmembers, each with a specific spectrum, and each relating to a vegetation or 
species class present in the pixel. Because the same endmember can be used to 
analyse a time sequence, SMA has the capability to estimate changes in abundance 
(Rosso et al., 2005). Hestir et al. (2008) also showed the potential of SMA to estimate 
the spatial distribution and abundance of invasive species and vegetation. Thus, SMA 
has great values for monitoring aspects related to habitat structure and function 
(e.g. grass encroachment), because changes in patterns can be detected and 
quantified (Mücher et al., 2013). 

The choice of an appropriate scale, or spatial resolution, for a particular application 
depends on several factors. These include the information desired about the ground 
scene, the analysis methods to be used to extract the information, and the spatial 
structure of the scene itself.  In most scientific endeavors the investigator selects the 
scale at which observations are collected. However, when using remotely-sensed 
imagery from space-borne sensors, investigators are limited to specific scales of 
observations. The appropriate scale for observations is a function of the type of 
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environment and the kind of information desired. The techniques used to extract 
information from imagery also interact with these variables to influence the 
selection of an appropriate scale. Thus, the problem of selecting an appropriate scale 
is fairly complex.  

The elements in a scene model may vary, depending on the interests of the 
investigator. For example, in a forest, we may be interested to consider individual 
leaves, branches, trees, or stands of trees. Common backgrounds in a forest scene 
include soil, snow, and vegetative understory. Nested models of scenes are also 
possible, in which one level of elements is used to derive the properties of a new 
level, or larger elements. Again, forest scenes serve as a good example. At one level, 
the individual trees might serve as elements in a scene model. At the same time, 
groups of trees, or stands, might serve as a higher level in the scene model. In this 
situation, the properties of the individual trees are used to determine the 
characteristics of the stands (Woodcock & Strahler, 1987). 

One methodological issue resulting from the observed graphs of local variance as a 
function of resolution concerns the relationship between the size of the objects in 
the scene and the spatial resolution of peak local variance. It was initially 
hypothesized that the peak would occur when the size of the resolution cells 
matched the size of the objects. However, in each of the graphs with a well 
developed peak in local variance the peak occurs at a resolution cell size somewhat 
smaller than the size of the objects in the scene.  Boundary pixels have a mix of 
elements, and reducing the number of mixed pixels reduces confusion in the 
classification process, re- suiting in higher classification accuracy (Woodcock & 
Strahler, 1987). 

Ideally, the size of the pixel should be matched so that it is one quarter to one third 
of the size of the smallest patches of habitat, species assemblage or individual 
plant/tree being mapped. Some studies exploring the use of medium-resolution (few 
tens of metres) and high-resolution (a few metres) satellite images for assessing 
plant species richness (Rocchini et al., 2007) or for ecological prediction (Stickler & 
Southworth, 2008) found that Landsat performed better than IKONOS or QuickBird 
VHR satellites, across a range of measures of species richness (EEA & MNHN, 2014). 

We conclude by commenting on several aspects that may affect the use of remote 
sensing in conservation: the resolution of the remote sensing data; the value of 
ground sampling; matching the scale of the data to the conservation objectives; and 
balancing the costs against the benefits of remote sensing (Wiens et al., 2009). 
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1.7 Object Based Image Analysis (OBIA) 
 

With the continuously growing availability of the very high resolution (VHR) imagery 
with the spatial resolution having pixel sizes significantly smaller than the average 
size of the object of interest, there grows also the need for reliable methods capable 
to classify them efficiently. As proved already in many studies, object-oriented 
approach offers an optimal solution for classifying such data. This approach brings 
the ability to group relatively homogenous pixels into meaningful objects based on 
their radiometric values and then extract useful extra information such as size, 
shape, texture or contextual information (Machala & Zejdová, 2014). 

The development of object based image analysis (OBIA) stems primarily from the 
desire to use the important semantic information necessary to interpret an image, 
which is not presented in single pixels but rather in meaningful objects and their 
mutual relations. In particular in OBIA, homogeneous image objects at a chosen 
resolution are first extracted and subsequently classified. In addition to spectral 
information, this allows a multitude of additional information, such as shape, 
texture, area, context, topological relationship with other objects, and information 
from other object layers, to be derived from objects and used in image classification 
(Shackelford & Davis 2003). 

Pixel-based classification identifies the class of each pixel by comparing its value with 
the training data and allocates it to a proper class based on a certain algorithm.  In 
the classification based on segmentation result, image is firstly segmented and then 
classified based on the mean spectral information of the segments. OBIA in 
eCognition comprises two parts: multi-resolution segmentation and context-based 
classification. Segmentation, the first step in the object-oriented approach, involves 
merging the pixels in the image into image object primitives called objects or 
segments with a certain heterogeneous and homogeneous criterion. This step is 
critical because segmentation generates the objects that will be treated as a whole 
in the classification (Mitri & Gitas, 2004). 

Multi-resolution segmentation allows generating image objects on an arbitrary 
number of scales taking into account criteria of homogeneity in colour and shape. 
Additionally, the created segments are embedded into a hierarchical network in 
which each object knows its neighbouring objects in horizontal and vertical direction 
(Baatz & Schape, 1999). The image objects can then be described and classified by an 
extensive variety of features that include colour, texture, form, and context 
properties in several forms. This is usually done with a standard nearest neighbour 
classifier (NN) or fuzzy membership functions, or a combination of both. The variety 
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of object features can be used either to describe fuzzy membership functions, or to 
determine the feature space for NN (Baatz & Schape, 1999; Gao et al., 2007). OΒΙΑ, 
which is based on a fuzzy concept, is an approach that uses not only spectral 
information but also spatial information. Fuzzy theory replaces the ‘yes’ or ‘no’ in the 
binary theory by the continuous (0–1), where 0 means ‘exactly no’ and 1 means 
‘exactly yes’; thus all values between 0 and 1 represent a more or less certain status 
of yes and no (Mitri & Gitas, 2004).  

eCognition Developer 8.64 software (formerly Definiens) of Trimble Germany GmbH 
(München, Germany), which was specifically created as an instrument for OBIA 
analyses, was chosen for the purposes of this study. However, trial and error is still a 
standard approach of eCognition to finding proper segmentation parameters for 
achieving a proper segmentation of objects of interest. In the segmentation, 
operator’s knowledge of the image and experience of the segmentation process play 
an important role for the success of the segmentation (Zhang et al., 2010).  
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1.8 Segmentation 

 
To find the boundary of an image object or segment an object, eCognition 
implemented a region merging approach to segmentation called “Fractal Net 
Evolution” approach. This technique starts with individual adjacent pixels as initial 
objects, and then measures: 

(1) the spectral heterogeneity change, hspectral, and 

(2) the shape heterogeneity change, hshape, between the two neighbor pixels 
(objects) to determine whether they need to be merged together, or not. Once the 
two pixels are merged into one object, the region of the object grows one step. This 
measurement and merging process continues iteratively until a user defined 
threshold is reached (Zhang et al., 2010). In the figure (6) below the segmentation 
process is diagrammatically illustrated. 

 

Figure 6: Relationship between the segmentation parameters (user determined weights) in eCognition. 
Usually, the weights for individual spectral layers (bands) (w1, w2, … wc) are set to 1. Users need to give the 
value for Smoothness weight (1-wcompact) (or Compactness weight (wcompact)) and Shape weight (1-w). The 
weights (1-wcompact) and (1-w) are used to calculate the Fusion Value (f). The value f is then compared with a 
user specified Scale value (s) to estimate whether the two adjacent objects need to be merged, or not (if f < s 
2, merge the two objects; if f ≥ s 2 , stop the merging) (Source: Zhang et al., 2010). 

 

The region of the object then stops growing, resulting in a one image segment. The 
region merging and region growing process was designed with the view to meeting 
six aims (Baatz & Schape, 2000): 
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a. Production of homogeneous image object-primitives; 

b. Adaptability to different scales; 

c. Production of similar segment sizes for a chosen scale; 

d. Applicability to a variety of data sets; 

e. Reproducibility of segmentation results; and 

f. Requirement for reasonably fast performance. 

 

The purposes of the segmentation parameters are (Hofmann, 2001): 

(1) Scale parameter: influence the average object size. It determines the maximal 
allowed heterogeneity of the objects. The larger the scale parameter, the larger the 
objects become. 

(2) Shape/Color: adjust the influence of shape vs. color homogeneity on the object 
generation. The higher the shape value, the less spectral homogeneity influences the 
object generation. 

(3) Smoothness/Compactness: determine the compactness or smoothness of the 
resulting object. With a selected shape value, the user can influence the 
compactness or smoothness of the final object. 

(4) Image Layer weights: determine the weight of each spectral band in the 
segmentation. It is used to control the influence of each band on the object 
generation. 

(5) Level settings: determine whether a newly generated image level will either 
overwrite a current level or whether the generated objects shall contain sub- or 
super-objects of an existing level. The order of the level generation affects the 
objects’ shape (top-down vs. bottom-up segmentation). 

To address the issues existing in the trial-and-error selection of segmentation 
parameters, a tool for supervised segmentation parameter determination should 
meet the following requirements (Maxwell, 2005 in Zhang et al., 2010): 

a. Each execution of the tool is aimed at extracting one land cover type and results in 
one level of the object hierarchy; 

b. Segmentation must be controlled and refined in an iterative manner based on an 
object model; 
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c. The tool must rely on an initial segmentation as a start state; 

d. Scale, shape, and smoothness parameters must be determined; 

e. Parameter selection must be reproducible; and 

f. The tool must demonstrate reasonably fast and efficient performance. 

The segmentation of an input image is performed on a number of different levels to 
permit objects of different scales to be extracted on their own level. By using this 
approach, objects can be classified on the level where the segments are the most 
meaningful and best represent the object of interest. This infers that the user must 
have a specific land cover class in mind when segmenting the image so that the 
parameters can be best estimated and then refined through iteration. As a result, 
the tool must aim to extract one particular land cover type each time it is executed. 
By running the tool a number of times, a hierarchy of object levels can then be 
developed (Zhang et al., 2010). 
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1.9 Spectral Signatures of Forest Trees 
 

In a time of rapid climate change there is urgency to better characterise and 
understand ecosystems and the species that live within them. Forest ecosystems 
present particular challenges, mainly because of the intrinsic difficulties to access. 
Remote sensing techniques have been used to address some of the problems 
inherent in forest ecosystem studies. With the advent of sensors capable of 
collecting high-spectral-resolution radiance data has come the expectation that, if 
measurements are made with sufficient spatial resolution to avoid spectral mixing, 
most types of rock, soil and vegetation should be remotely identifiable. However, 
despite the creation of spectral libraries for various materials and plant species, the 
unique identification of many materials has proven difficult due to the numerous 
problems present in real-world measurements, such as angle of view, atmospheric 
properties, spectral mixture, moisture content and illumination angle, to mention 
just a few. Furthermore, Price (1994) has suggested that several species may actually 
have quantitatively similar spectra due to the spectral signature variation present 
within a species. In short, spectral signatures may not be unique. 

The spectral separability of vegetation provides special difficulties because its 
spectral behaviour is described by a small number of independent variables (Price, 
1994). Specifically, the response of vegetation reflectance spectra in visible 
wavelengths (400–700nm) is primarily determined by the composition and 
concentration of chlorophyll a, chlorophyll b and carotenoids (Tucker & Garrett, 
1977). Conversely, the response of reflectance spectra in the near-infrared 
wavelengths (700–1300 nm) is a function of the number and configuration of the air 
spaces that form the internal leaf structure (Danson & Plummer, 1995). In summary, 
the reflectance of vegetation from different species is highly correlated due to their 
common chemical composition (Portigal et al., 1997). 

In recent years, advances have been made in classifying vegetation using optimal 
spatial resolutions, red-edge first derivatives and green peak statistical indices 
(Portigal et al., 1997). Price (1994) has suggested the need to expand spectral 
libraries such that they can account for intraspecies variability, but there are no 
guidelines on how to measure such variability. Variance can occur within a species 
due to micro-climates, soil characteristics, precipitation, topography and a host of 
other environmental factors (Portigal et al., 1997). In addition, stress factors such as 
air pollution, heavy metals and drought can change the spectral properties of foliage. 
Furthermore, both foliage age (for maquis) (Roberts et al., 1998) and position in the 
canopy (Danson & Plummer, 1995) have been shown to cause substantial 
differences in the spectral signatures of some species. In addition, an extensive 



42 

 

amount of variability is found in the spectral response of foliage within a species and 
even within a single tree. 

Though many problems are posed for the discrimination of different species using 
remotely sensed data, the potential for separation of different species based on 
foliar reflectance does exist. Variation of the reflectance from the foliage within a 
species necessitates the consideration that species inhabit a spectral region and not 
a specific location. If sufficient data exist, this spectral space can be defined and used 
directly (shape filtering) or statistically (e.g. red-edge first derivatives3), as a superior 
discrimination tool for classifying spectrally similar entities. Due to the non-unique 
nature of spectral responses in vegetation, separation of vegetation at the species 
level is never likely to be perfect, but it can be a useful tool. Variations in leaf angle, 
crown structure, non-photosynthetic vegetation and other factors will make datasets 
more complex but need not preclude separation of species. As reflectance from 
foliage is defined by a spectral shape, so too should the other aspects of vegetation. 
Therefore, it may be possible to use training sets from high-resolution (spatially and 
spectrally) data to define the spectral shapes of vegetation classes or species of 
interest. These shapes can then be modified to optimally discriminate features of 
interest at a given scale. Misclassifications will occur, but if the imagery scale is 
smaller than the features of interest, then correctly classified entities should form 
clusters (e.g. tree crowns), while misclassifications should be more evenly scattered 
(e.g. individual branches). Therefore, post-classification filtering for noise may 
improve overall classification accuracy (Cochrane, 2000). 

Hyperspectral visible to short wave infrared (VSWIR; 0.4-2.5 μm) imagery has been 
especially valuable. VSWIR absorption features are dominated by water and 
pigments within the leaf volume and as these constituents are present in all plants 
they typically do not produce distinctive signatures unique to individual species. In 
contrast to their VSWIR spectral behaviour, fresh leaves are particularly opaque in 
thermal infrared spectra (TIR; 8.0-14.0 μm). Consequently, the spectral response is 
dominated by the plant tissue that forms the external surfaces, namely the cuticular 
membrane and the outer cell walls. Different species are known to have a variety of 
spectral features related to differences in chemical composition of the surface 
tissues (Ribeiro da Luz & Cowley, 2010). 

Challenges to the identification of thermal infrared (TIR) spectral features at the 
canopy level include the following: leaves have subtle emissivity features that can 
only be retrieved from at-sensor radiance data by using very effective atmospheric 
compensation and temperature-emissivity separation methods. Temperature 

                                                             
3 The position of the inflexion point in the red edge (680 nm to 780 nm) is termed the 
red-edge position (REP) (Cochrane, 2000). 
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variations inside a canopy due to differential solar heating and variations in leaf 
angle and shading might impede emissivity retrievals. Also the already weak spectral 
features of tree canopies might be further attenuated by canopy voids, as well as the 
superposition of emitted and reflected energy components (Ribeiro da Luz & 
Cowley, 2010).  

 

Cover type 

Approximate 
height of 
mature 

vegetation 
upper canopy 

Ground 
surface 

covered by 
vegetation 

Seasonality Leaf type 

Evergreen needleleaf 
forests 

>5m >60% 
Almost all trees 
remain green all 

year 
Needleleaf 

Evergreen broadleaf forests >5m >60% 
Almost all trees 
remain green all 

year 
Broadleaf 

Deciduous needleleaf 
forests 

>5m >60% 

Trees shed their 
leaves almost 

simultaneously 
in response to 

dry or cold 
seasons 

Needleleaf 

Deciduous broadleaf forests >5m >60% 

Trees shed their 
leaves almost 

simultaneously 
in response to 

dry or cold 
seasons 

Broadleaf 

Mixed forests >5m >60% 

Neither 
broadleaf or 

needleleaf forest 
types has <25% 

or >75% 

Interspersed 
mixtures or 
mosaics of 

needleleaf or 
broadleaf 

forest types 

Woodlands >5m 
Tree canopy 
cover >40% 
and <60% 

Can be either 
evergreen or 

deciduous with 
woody or 

herbaceous 
understories 

Either 
broadleaf or 
needleleaf 
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Wooded 
grasslands/shrublands 

>5m 
Tree canopy 
cover >10% 
and <60% 

Can be either 
evergreen or 

deciduous with 
woody or 

herbaceous 
understories 

Either 
broadleaf or 
needleleaf 

Closed bushlands or 
shrublands 

Bushes and 
shrubs <5m 

Bush and 
shrub canopy 

coverage 
>40%. Tree 

canopy 
coverage is 

either bare or 
herbaceous 

Shrubs or 
bushes can be 

either evergreen 
or deciduous 

Either 
broadleaf or 
needleleaf 

Open shrublands Shrubs <2m 

Shrub canopy 
coverage 
>10% and 

<40% 

Shrubs can be 
either evergreen 

or deciduous 
NA 

Grasses NA 

Continuous 
herbaceous 
cover and 
<10% tree 

cover 

NA NA 

Croplands NA 

>80% covered 
in crop-

producing 
fields 

NA NA 

Bare NA 

<10% 
vegetated 

cover during 
anytime of 
the year. 
Includes 

exposed soil, 
sand, rocks, 
snow or ice 

NA NA 

 

Table 2: Definitions, land cover types and characteristics (Source: De Fries et al., 1998). 
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In a study by De Fries et al. (1998), the spectral signatures of cover types with regard 
to mean annual NDVI4 and maximum annual NDVI values suggested that it is possible 
to classify almost all pixels in the global land mass as one of the 13 cover types listed 
in figure 6. There is however overlap between some of the cover types, for example 
woodlands and wooded grasslands, indicating the not unexpected requirement to 
discriminate between cover types with metrics in addition to mean and maximum 
annual NDVI values. This study also indicates that some cover types are not normally 
distributed, that is they are clearly multimodal, for example needleleaf evergreen 
forest. The classification algorithm therefore needs to be based on non-parametric 
statistics or the cover types need to be further subdivided into homogeneous 
clusters (De Fries et al., 1998). 

According to Ribeiro da Luz  and Cowley (2010), successful plant species 
identification using TIR canopy measurements appears to involve at least five 
factors: 1) Spectrum shape and contrast — the greater the spectral contrast and the 
more diagnostic the shape, the better the identification success; 2) Morphology of 
leaves — larger leaves with relatively simple shapes and large surface areas give a 
more distinct TIR spectral response; 3) Disposition of leaves — planophile canopies 
give a better spectral response than canopies with leaves arranged in drooping or 
erectophile configurations, both of which tend to accentuate blackbody behavior; 4) 
Canopy closure — some canopies naturally contain more voids between leaves 
and/or between layers of leaves, tending to dilute the total canopy spectral 
response; 5) Size of the canopy — larger canopies may be discernable even when 
their spectral contrast with other scene materials is only moderately strong. 

For example, F. grandifolia (Beech) had one of the best identification results. This 
species was found to show high spectral contrast (approx. 6%), to have medium-
sized leaves with relatively smooth surfaces and margins, and a closed planophile 
canopy. Large leaf size and canopy closure are important because this increases the 
chance that at least some pixels will be filled by leaves rather than canopy voids. 
Larger leaves also help to ensure that the sensor FOV is filled by emitters at or near 
the same temperature. This facilitates an accurate temperature–emissivity 
separation. 

                                                             
4 The Normalized Difference Vegetation Index (NDVI) is a simple graphical indicator that 
can be used to analyse remote sensing measurements and assess whether the target 
being observed contains live green vegetation or not. 
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Figure 7: Some species have similarities in composition that may cause spectral confusion. a) Species that show 
spectral similarities related to cutin-rich cuticles. b) Species that show spectral similarities related to silica-rich 
cuticles (Source: Ribeiro da Luz & Cowley, 2010).   

 

Another example is pine, which exhibits the higher radiance in the visible bands is a 
consequence of the lack or reduction of leaf pigments. Chlorophyll a and b, A 
Carotene and ß xanthophyll cause a strong absorption in the region about 0.445jnm, 
while chlorophyll also absorbs in the red region (0.645jurn). Therefore, the values of 
burned vegetation are higher in the blue and red bands. On the other hand, the 
scorched pine displays a lower reflectance in the near infrared as a result of the 
deterioration in the internal cellular structure of the leaf (Chuvieco & Congalton, 
1988). 
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2. Methods 
 

2.1 Study Area 
 

2.1.1 Geography 
 

The University Forest of Taxiarchis is located on the southern and southwestern 
slopes of Mount Cholomontas in Chalkidiki, in the Central Macedonia region. It 
extends from 40°23ʹE to 40°28ʹE and 23°28ʹN to 23°34ʹN and covers an area of 60 
km2 (see figure 1). The terrain of the study area is diverse and very rough at places as 
a result of sharp alterations in altitude, which ranges between 320 and 1200 m. The 
Mediterranean climate of the area is characterised by short periods of drought, hot 
summers and mild winters. Main characteristic of the climate is the large 
fluctuations of rainfall during summer as well as the double dry season (July and 
September) with limited duration and intensity (Mallinis et al., 2014). 

 

Figure 8: Location of the study area and spatial extent of the Hyperion imagery (Source: Stavrakoudis et al., 
2014). 
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The study area forms a complex mosaic. Common forest species are Italian oak 
(Quercus frainetto), Calabrian pine (Pinus brutia), Black pine (Pinus nigra) and Beech 
(Fagus sylvatica). Forest tree communities mainly comprise of mixed stands, as 
deciduous species have gradually invaded the areas occupied by pines. In addition, 
patches within the forest are covered with maquis species (Quercus ilex, Quercus 
coccifera, Erica arborea, etc.), low herbaceous vegetation and scattered oak trees 
(Mallinis et al., 2008). 

There are mainly deciduous forests in this area, which is divided in three zones: 
Quercetalia ilicis, Quercetalia pubescentis and Fagetalia. These zones are formed 
based on flora composition, altitude, petrology, soil conditions, the exposure and 
incline of the slopes, air temperature and rainfall. The area is mostly covered with 
broad-leaved oak trees. The flora of the area also includes beech trees, black pine 
trees, brutian pine trees and Aleppo pine trees, as well as other ligneous plants, such 
as Quercus ilex, Erica arborea (a plant of beekeeping interest), holly oak trees, 
arbutus trees, Fraxinus trees, plane trees, willow trees, etc. Hence, there are about 
60 ligneous plant species and more than 200 herbaceous plant species. The area is 
also home to rich fauna, including large populations of wild boars. The animal 
species displayed in the museum can also be found in the forest. Villagers coexist 
harmoniously with wild boars and refrain from poaching (Aristotle University of 
Thessaloniki, 2014). 

Broad-leaved species that grow in Greece prevail in the area of the university forest. 
They are regenerated naturally and, when weather conditions are adverse, they are 
artificially regenerated. The systematic and sustainable management of the forest 
over the last decades has encouraged local populations to continue to reside in their 
villages. The main forest products include oak, beech, pine firewood and charcoal. 
Since the forest is not mature enough, little timber is produced (wooden beams, 
planks, parquet elements, etc.). In total, 30-35 people work in the timber industry 
every year. Fir trees are also very important to the region; they are planted by 
villagers in order to sell them as Christmas trees. Villagers have been trading 
Christmas trees for 30 years. There are more than 2 million fir trees in the area, 
offering income opportunities to villagers, protecting the land and providing shelter 
to wildlife (Aristotle University of Thessaloniki, 2014). 

The University Forest area is also part of the NATURA2000 network (GR1270001-
Oros Cholomontas) (Mallinis et al., 2014). Moreover, Mount Cholomontas was 
granted protection under an EU order, mainly with regards to the predator birds 
living in the forest; there are many wildlife shelters in the forest, where any form of 
hunting is forbidden (Aristotle University of Thessaloniki, 2014). 
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Implementing a different policy for sustainable forestry development, focusing on 
forest preservation and, at the same time, trying to meet human needs, the 
University Forest Administration and Management Fund has spent money on the 
following infrastructure: 

 A large forest road network (Α-Β-C category), 

 A firebreak and water intake network, observation posts and a state-of-the-art 
remote sensing system for additional firebreak protection, 

 Two shelters for wildlife, covering an area of 3,000 hectares,   

 A large number of experimental fields, established in collaboration with the Faculty 
of Forestry and Natural Environment, 

 Projects to promote tourism in the area, such as constructing trails and greenways, 
an artificial lake, stands, kiosks, as well as embellishing chapels, etc. 

A sufficient number of building facilities has been constructed over the years in the 
area of the University Forest, which houses the administration offices and offers 
accommodation for the administrative personnel, teaching personnel, students and 
researchers who carry out various projects. The building complex has many 
dormitories, a restaurant, laboratories, storerooms and two conference halls. 

The Forest Museum is also housed in the building facilities of the University Forest. 
Native flora and fauna, as well as natural resources are displayed in the museum, 
which was founded in 2008. Its founding was funded by the Aristotle University 
Property Development and Management Company. There are special cases in the 
museum where aspects of forest management planning are represented, and stuffed 
birds and animals are displayed. Moreover, all plant and seed species displayed, as 
well as multimedia displays provide visitors and students, who specialise in the field 
of forestry, with information. The Forest Museum at the University Forest in 
Taxiarchis offers visitors and students of the Faculty of Forestry and Natural 
Environment training seminars, as well as environmental education, whilst 
promoting tourism in the area (Aristotle University of Thessaloniki, 2014). 
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2.1.2 The trees of Taxiarchis forest 

 
Among several tree species present in Taxiarchis University Forest, we selected 
those with representation in two or more sample patches of the ground sampling. 
The tree species’ categories, used in the classification classes of this study are listed 
and described below. Please note that all the tree species are referred to for the 
most part of this study, using the name, which is also used in the Aristotle University 
management plan, however each class is also taxonomically defined below: 

 

 Maquis 

Common name: Norway maple 

Species: Acer platanoides 

Other closely related species present 
in the area: Acer campestre 

Family: Aceraceae 

Height: 25 m 

Shape: Broadly columnar 

Leaf persistence: Deciduous 

Native region: S.W. Asia, Europe 

Habitat: Mountain woods 

Leaves: Palmately lobed, up to 15 cm long and 17.5 cm across, with five lobes, each 
lobe ending in several teeth with long, slender points, bright green, smooth when 
mature on both sides, turning yellow or sometimes red in autumn; the long, slender 
leaf stalks exudes milky juice when cut. 

Bark: Grey and smooth. 

Flowers: Small and bright yellow-green, borne in conspicuous clusters in spring 
before and with the youngest leaves. 

Fruit: With large, spreading wings, up to 5 cm long. 

Remark: A fast-growing species, which quickly reaches its maximum height. In 
cultivation, it has many ornamental forms, selected for both foliage and habit. 

Figure 9: Acer platanoides (Wikipedia, 2015). 
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 Oak 

Common name: Turkey oak  

Species: Querqus cerris (Querqus coccifera L.) 

Other closely related species present in the 
area: Quercus ilex, Quercus pubescens, 
Quercus petraea, Quercus frainetto 

Family: Fagaceae 

Height: 35 m 

Shape: Broadly spreading 

Leaf persistence: Deciduous 

Native region: C. and S. Europe 

Habitat: Woods 

Leaves: elliptic to oblong, up to 12 cm long and 7.5 cm across, deeply lobed, toothed, 
glossy dark green above, downy when young becoming smooth beneath. 

Bark: Dark grey-brown, thick, rough and deeply ridged. 

Flowers: Males in yellow-green, drooping catkins, females inconspicuous, borne 
separately on the same plant in early summer. 

Fruit: An acorn, up to 2.5 cm long, one-half enclosed in a cup, the cup covered in 
long, slender scales. 

 

 Castanea 

Common name: Sweet chestnut  

Species: Castanea sativa 

Other closely related species present in the area: Castanea vesca 

Family: Fagaceae 

Height: 30 m 

Shape: Broadly columnar 

Figure 10: Querqus cossifera L. 
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Leaf persistence: Deciduous 

Native region: N. Africa, S.W. Asia, 
Europe 

Habitat: Woods 

Leaves: Oblong, up to 20 cm long 
and 7.5 cm across, usually rounded 
or heart-shaped at the base, taper-
pointed at the tip, toothed, glossy 
dark green and smooth above, paler 
becoming smooth beneath. 

Bark: Grey and smooth, becoming 
brown and usually spirally ridged 
with age. 

Flowers: Males and females both small and creamy yellow, in catkis up to 25 cm 
long, separate, but usually on the same spike in the summer. 

Fruit: A spiny husk, up to 6 cm across, enclosing one to three edible, glossy, red-
brown nuts. 

 

 Fir 

Common name: King Boris Fir, Bulgarian 
Fir 

Species: Abies borisii regis, Abies alba 
(silver fir) subspecies acutifolia 

Other closely related species present in 
the area: Pseudotsuga menziesii 

Family: Pinaceae 

Height: 40 m 

Shape: Narrowly conical 

Leaf persistence: Evergreen 

Native region: Bulgaria, northern Greece, Albania, and former Yugoslavia 

Habitat: Mountain forests 

Figure 12: Abies borisii regis 

Figure 11: Castanea sativa (Wikipedia, 2015). 
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Leaves: Linear, up to 3 cm long, with a notched tip, glossy dark green above, with 
two whitish bands beneath, spreading either side of the shoot, shorter and pointing 
forward above. 

Bark: Grey and smooth, cracking into small plates with age. 

Flowers: Males yellow, beneath the shoot, females green, upright, borne in separate 
clusters on the same plant in spring. 

Fruit: A cylindrical upright cone, up to 15 cm long, green at first ripening to brown, 
with protruding, down-turned bracts. 

 

 Beech 

Common name: Balkan beech  

Species: Fagus moesiacae, considered the same species as the Crimean beech, Fagus 
taurica and a hybrid between F. orientalis and F. sylvatica (often referred to as a 
subspecies of F. sylvatica) 

Other closely related species present in 
the area: Fagus sylvatica 

Family: Fagaceae 

Height: 30 m 

Shape: Broadly spreading 

Leaf persistence: Deciduous 

Native region: S.E. Europe 

Habitat: Hills and mountains 

Leaves: Elliptic to obovate, up to 12 cm long and 6 cm across, usually with a wavy 
margin, untoothed or slightly toothed, with up to 12 pairs of veins beneath, turning 
yellow in autumn. 

Bark: Grey and smooth, sometimes furrowed. 

Flowers: Males and females both small, males yellow, females green, in separate 
clusters on the same plant in mid-spring. 

Fruit: A bristly husk, up to 2.5 cm long, enclosing one to three small, edible nuts. 

Figure 13: Fagus moesiacae (National Park Sutjeska, 2015). 
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 Pinus brutia 

Common name: Turkish pine, Calabrian pine 

Species: Pinus brutia (sometimes considered a subspecies of Pinus halepensis) 

Other closely related species present in the 
area: Pinus halepensis, Pinus pinaster 

Family: Pinaceae 

Height: 35 m 

Shape: Narrowly columnar 

Leaf persistence: Evergreen 

Native region: S.E. Europe 

Habitat: Mountains 

Leaves: Needle-like and stiff, in pairs, slender, mostly 10–16 cm long, bright green to 
slightly yellowish green. 

Bark: Orange-red, thick and deeply fissured at the base of the trunk, and thin and 
flaky in the upper crown 

Flowers: Males yellow, females red in separate clusters on the young shoots in late 
spring to early summer. 

Fruit: Stout, heavy and hard, 6–11 cm long and 4–5 cm broad at the base when 
closed, green at first, ripening glossy red-brown when 24 months old. 

 

 Pinus nigra 

Common name: Austrian pine 

Species: Pinus nigra 

Family: Pinaceae 

Height: 40 m 

Shape: Broadly columnar 

Leaf persistence: Evergreen 

Figure 14: Pinus brutia 

Figure 15: Pinus nigra 
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Native region: C. and S.E. Europe 

Habitat: Mountains and hills, often on limestone 

Leaves: Needle-like and stiff, up to 15 cm long, in pairs, sharp-pointed, very dark 
green, on stout, glossy brown shoots. 

Bark: Nearly black, scaly, ridged. 

Flowers: Males yellow, females red in separate clusters on the young shoots in late 
spring to early summer. 

Fruit: An egg-shaped, brown cone, up to 8 cm long. 

 

 Pinus sylvestris  

Common name: Scots pine 

Species: Pinus sylvestris 

Family: Pinaceae 

Height: 35 m 

Shape: Broadly spreading 

Leaf persistence: Evergreen 

Native region: Asia, Europe 

Habitat: Mountains, on sandy or gravelly soil. 

Leaves: Needle-like stout, and twisted, up to 7 cm long, in pairs, blue-green to blue-
grey. 

Bark: Purple-grey, peeling in irregular plates; orange and flaking towards the top of 
the plant. 

Flowers: Males yellow, females red, in separate clusters on young shoots in late 
spring to early summer. 

Fruit: An egg-shaped cone, up to 7.5 cm long, green ripening to brown. 

Remark: This species makes a broadly spreading tree in open situations, but is 
narrow in confined spaces. 

 

Figure 16: Pinus sylvestris (Wikipedia, 2015). 
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 Pinus halepensis 

Common name: Aleppo pine, 
Jerusalem pine 

Species: Pinus halepensis 

Other closely related species present 
in the area: Pinus pinaster, Pinus 
brutia (often considered a subspecies 
of Aleppo pine), Pinus sylvestris 

Family: Pinaceae 

Height: 25 m 

Shape: Broadly columnar 

Leaf persistence: Evergreen 

Native region: Mediterranean region 

Habitat: Hills and mountains 

Leaves: Very slender, up to 12 cm long, distinctly yellowish green, and produced in 
pairs (rarely a few in threes). 

Bark: Orange-red, thick, and deeply fissured at the base of the trunk, and thin and 
flaky in the upper crown. 

Flowers: Males yellow, females red, in separate clusters on young shoots in late 
spring to early summer. 

Fruit: Narrow conic, up to 12 cm long and 3 cm across at the base when closed, 
green at first, ripening glossy red-brown when 24 months old. They open slowly over 
the next few years, a process quickened if they are exposed to heat such as in forest 
fires. 

 

 Pinus maritime 

Common name: Maritime pine 

Species: Pinus pinaster 

Figure 18: Pinus pinaster 

Figure 17: Pinus halepensis (Greenscenelandscape, 2015). 
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Other closely related species present in the area: Pinus Halepensis, Pinus Brutia, 
Pinus sylvestris 

Family: Pinaceae 

Height: 35 m 

Shape: Broadly columnar 

Leaf persistence: Evergreen 

Native region: N. Africa, S.W. Europe 

Habitat: Sandy soil 

Leaves: Needle-like and stiff, up to 20 cm long, in pairs, sharp-pointed, grey-green 
becoming dark green, borne on stout shoots. 

Bark: Purple-brown, ridged, deeply-fissured. 

Flowers: Males yellow, females red, in separate clusters on the young shoots in early 
summer. 

Fruit: A conical, glossy brown cone, up to 20 cm long, the scales with sharp prickles, 
persisting for many years. 

 

 Pinus radiata 

Common name: Monteray pine 

Species: Pinus radiata 

Other closely related species present 
in the area:  

Family: Pinaceae 

Height: 30 m 

Shape: Broadly conical 

Leaf persistence: Evergreen 

Native region: USA - California 

Habitat: Dry slopes, near coast. 

Figure 19: Pinus radiata (Wikipedia, 2015). 
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Leaves: Needle-like and slender, up to 15 cm long, in clusters of three, bright green 
on grey-green shoots. 

Bark: Dark grey, deeply fissured. 

Flowers: Males yellow-brown, females red-purple, in separate clusters on the young 
shoots in early summer. 

Fruit: A brown cone, up to 12 cm long, persisting for years. 

(Coombes, 1992; Aristotle University of Thessaloniki, 2013; Filotis, 2015) 

 

A full list of tree species found in Taxiarchis forest can be found in Appendix VI. 
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2.1.3 Ground Derived Vector Data and Tree Distribution 
 

The classes used for all classifications were based on a field study by the Aristotelian 
University of Thessaloniki, as shown in the map below (figure 20), illustrating the 
distribution of tree species and habitats. 

It should be noted that the tree species’ names in the key presented in figure 21 are 
based on those used in the forest management plan, compiled by the Department of 
Forestry of the Aristotle University of Thessaloniki. Thus certain disambiguations 
concerning the names name used in the study, the common name, the species name 
and the common Greek name of each tree may be resolved by referring to appendix 
VII. 
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Tree species and land use categories in Taxiarchis forest

$ 0 1.5 30.75 Kilometers

 

Figure 20: Tree species distribution in Taxiarchis Forest (see figure 21 for a colour-tree species index table) 
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Tree and land use categories
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Figure 21: Colour-tree species index key. 
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2.2 Satellite and Aerial Imagery 
 

The imagery used in this study includes satellite and aerial imagery of varying spatial 
resolutions and band range (see figure 2 for methodology outline diagram).  The 
multispectral satellite imagery used includes Landsat 8 OLI (low resolution) and 
GeoEye - 2 (high resolution) imagery, while the hyperspectral imagery includes both 
satellite and aerial imagery, Hyperion (low resolution) and CASI (high resolution) 
respectively. The date each image was taken, as well as their spatial resolution is 
listed in table 3, below. 

Imagery Date data was acquired Spatial resolution 

Landsat 8 OLI 1/6/2013 15 m 

GeoEye - 2 19/4/2013 0.5 m 

Hyperion 10/2008 30 m 

CASI 25/7/2013 2 and 5 m 

 

Table 3: Date of data acquisition and spatial resolution of satellite and aerial imagery. 

 

The following sections of this chapter provide a description of the sensors and the 
characteristics of these images used. 

 

2.2.1 CASI 
 

CASI (Compact Airborne Spectrographic Imager) is a VIS/NIR pushbroom imaging 
spectrograph5 with a reflection grating and a two-dimensional CCD (charge coupled 
device) solid-state array detector. This relatively lightweight and compact instrument 
may be flown on light aircraft, helicopters or mounted on a lift. The instrument 
                                                             

5 Pushbroom imaging spectrograph = An imaging spectrometer is an instrument used in 
hyperspectral imaging and imaging spectroscopy to acquire a spectrally-resolved image of 
an object or scene, often referred to as a datacube due to the three-dimensional 
representation of the data. A push broom scanner is a technology for obtaining images 
with spectroscopic sensors, regularly used for passive remote sensing from space and in 
spectral analysis on production lines, for example with near-infrared spectroscopy (NASA, 
2013). 
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operates by looking down in a fixed direction and imaging successive lines of the 
scene under the platform, building up a two-dimensional image as the platform 
moves forward. The CASI instrument has been used in a variety of applications from 
forest cover mapping to pollution monitoring. 

Details: 

The CASI instrument is composed of 6 components weighing a total of 55 kg. The 
components are: 

Instrument Control Unit 

 Keyboard Unit 

 Power Supply Unit 

 Sensor Head Unit 

 Video Display Unit 

 60 Hz Inverter 

The CCD sensor is a P86520 series frame transfer device. The array is 
thermoelectrically cooled to reduce dark current. The imaging area of the array is 
512 x 288 pixels with each element measuring 15.5 by 22 um. The instrument can be 
run on 110 volts at 2.4 amps. For DC operation the inverter supplied with the system 
requires 28 VDC, 13 amps peak. For the optional gyro another inverter supplies 
400Hz AC. 

The 512 image pixels across the field of view (FOV) of 35 degrees give a 1.23 meter 
ground resolution (cross track) per 1 km AGL altitude. The along track ground 
resolution is approximately the product of the integration time and the aircraft 
speed. The required integration time is directly proportional to the number of bands 
collected in spatial mode or in spectral mode the number of views. For example, if 
the aircraft speed is traveling at 51 m/s (100 knots), and the CASI sensor integration 
time is 100 ms the along track pixel size is 5.2 m. 

The CCD sensor is read out and digitized to 12 bits by a programmable electronics 
system which is controlled by an internal single-board computer. Data are recorded 
on a built-in digital recorder (Exabyte) which uses 8mm video cassettes as the 
recording medium. This gives up to two gigabytes of data per tape. The frame rate is 
configuration dependent up to a maximum of 85 lines/sec. The CCD can be read out 
to select and sum groups of rows, to create high spatial resolution bands, or sample 
columns from the array, to create high spectral resolution views. This capability 
allows the instrument to operate in different modes, as follows: 
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1) Imaging mode (Spatial). This mode has 512 spatial pixels across a 35 degree swath. 
The user selects the band center spectral row (wavelength) and number of spectral 
rows to sum (bandwidth) to create up to 15 non-overlapping bands. 

2) Multispectrometer mode (Spectral). All 288 spectral rows are sampled in up to 39 
view directions across 35 degree swath. The view directions are user selected 
columns from the CCD. There is a programmable scene recovery Band in this mode. 
The scene recovery Band gives all 512 CCD elements (pixels) at one wavelength (i.e. 
one spectral row). 

3) Full-frame mode. The device samples all 288 spectral rows for all 512 spatial 
columns. This mode requires long image recording times limiting it to stationary or 
slow moving platforms (NASA, 2013). 

In this study the Multispectrometer mode (spectral) was used for the data collection. 



65 

 

 

2.2.2 Landsat 
 

The Landsat 8 satellite images the entire Earth every 16 days. Data collected by the 
instruments onboard the satellite are available to download at no charge from 
GloVis, EarthExplorer, or via the LandsatLook Viewer within 24 hours of reception. 

Landsat 8 carries two instruments: The Operational Land Imager (OLI) sensor, which 
includes refined heritage bands, along with three new bands: a deep blue band for 
coastal/aerosol studies, a shortwave infrared band for cirrus detection, and a Quality 
Assessment band. The Thermal Infrared Sensor (TIRS) sensor provides two thermal 
bands. These sensors both provide improved signal-to-noise (SNR) radiometric 
performance quantized over a 12-bit dynamic range. (This translates into 4096 
potential grey levels in an image compared with only 256 grey levels in previous 8-bit 
instruments). Improved signal to noise performance enable better characterisation 
of land cover state and condition. Products are delivered as 16-bit images (scaled to 
55,000 grey levels) (see appendix I) (USGS, 2014). 

The data (satellite images) used in this study were from Landsat 8 were taken on the 
1st of June 2013. The spatial resolution of the images is 30 m, but combining data 
from the panchromatic spectrum, this was 15 m. 
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2.2.3 GeoEye 
 

The GeoEye-1 satellite sensor was launched on September 6, 2008. This satellite 
provides a resolution of 0.46 meters. The GeoEye-1 satellite collects images at 0.41-
meter panchromatic (black-and-white) and 1.65 meter multispectral resolution. The 
satellite can collect up to 350,000 square kilometers of pan-sharpened multispectral 
imagery per day. This capability is ideal for large-scale mapping projects. GeoEye-1 
can revisit any point on Earth once every three days or sooner. 

The GeoEye-1 satellite sensor was successfully launched on September 6, 2008. The 
satellite, which was launched at Vanderberg Air Force Base, California, provides a 
resolution of 0.46 meters. The GeoEye-1 Satellite sensor is optimized for large 
projects, as it can produce over 350,000 square kilometers of pan-sharpened 
multispectral satellite imagery every day. 

GeoEye-1 has been flying at an altitude of about 681 kilometers and is capable of 
producing imagery with a ground sampling distance of 46 centimeters, meaning it 
can detect objects of that diameter or greater. 

During late summer of 2013 the orbit altitude of the GeoEye-1 Satellite sensor was 
raised to 770 Km/ 478 Miles. GeoEye-1 new nadir ground sample distance (GSD) is 
46cm compared to the previous GSD of 41cm. 

Sensor specifications: 

Resolution 0.46 m / 1.51 ft* panchromatic (nominal at Nadir) 
1.84 m / 6.04 ft* multispectral (nominal at Nadir) 

Spectral Range Panchromatic: 450 - 800 nm 
Blue: 450 - 510 nm 
Green: 510 - 580 nm 
Red: 655 - 690 nm 
Near Infra Red: 780 - 920 nm 

 

Table 4: Sensor specifications for GeoEye satellite data (Source: Satellite Imaging Corporation, 2014) 
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2.2.4 Hyperion 
 

The Hyperion instrument provides a new class of Earth observation data for 
improved Earth surface characterisation. The Hyperion provides a science grade 
instrument with quality calibration based on heritage from the LEWIS Hyperspectral 
Imaging Instrument (HSI). The Hyperion capabilities provide resolution of surface 
properties into hundreds of spectral bands versus the ten multispectral bands flown 
on traditional Landsat imaging missions. Through these spectral bands, complex land 
ecosystems can be imaged and classified. 

The Hyperion provides a high resolution hyperspectral imager capable of resolving 
220 spectral bands (from 0.4 to 2.5 µm) with a 30-meter resolution. The instrument 
can image a 7.5 km by 100 km land area per image, and provide detailed spectral 
mapping across all 220 Bands with high radiometric accuracy. The major components 
of the instrument include the following:  

 System fore-optics design based on the Multi-Purpose Satellite (KOMPSAT) Electro 
Optical Camera (EOC) mission. The telescope provides for two separate grating 
image spectrometers to improve signal-to-noise ratio (SNR). 

 A focal plane array which provides separate Short Wavelength Infrared (SWIR) and 
Visible and Near Infrared (VNIR) detectors based on spare hardware from the LEWIS 
HSI program. 

 A cryocooler identical to that fabricated for the LEWIS HSI mission for cooling of the 
SWIR focal plane. 

Hyperspectral imaging has wide ranging applications in mining, geology, forestry, 
agriculture, and environmental management. Detailed classification of land assets 
through the Hyperion will enable more accurate remote mineral exploration, better 
predictions of crop yield and assessments, and better containment mapping (USGS, 
2011). 
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2.2.5 ASTER Global Digital Elevation Model (ASTER GDEM) 
 

The ASTER Global Digital Elevation Model (ASTER GDEM) is a joint product developed 
and made available to the public by the Ministry of Economy, Trade, and Industry 
(METI) of Japan and the United States National Aeronautics and Space 
Administration (NASA).  It is generated from data collected from the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a spaceborne 
earth observing optical instrument. The aim of the project is to develop a user-
friendly topographic information data set of the global terrain. The ASTER Global 
Digital Elevation Model (ASTER GDEM) is a DEM data which is acquired by a satellite-
borne sensor "ASTER" to cover all the land on earth. 

The ASTER GDEM is the only DEM that covers the entire land surface of the Earth at 
high resolution.  Since the release of the Version 1 on June 29, 2009, the ASTER 
GDEM has been widely used by many users and it has greatly contributed to the 
global earth observing community. 

Version 2 of the ASTER GDEM is developed, employing an advanced algorithm to 
improve GDEM resolution and elevation accuracy and reprocessing a total of 1.5 
million scene data including additional 250,000 scenes acquired after the previous 
release.  Accuracy of this latest version is validated by the collaborate effort between 
Japan and the United States, which shows significant improvements over Version 1.  
The ASTER GDEM Version 2 was formally released as an upgrade to Version 1 on 
October 17, 2011 (ASTER GDEM, 2011). 

The spatial resolution of ASTER GDEM, used here has a spatial resolution of 25 m. 
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2.3 Pre-Processing 
 

Pre-processing of remotely sensed images is a preparatory phase that, in principle, 
improves image quality for further analyses. Corrections, such as noise removal and 
adjustments, such as orthorectification are described below for each imagery used. 
The quality of these processing steps may affect the final outcome of classification to 
a high degree, as we will see in the results and discussion sections. 

 

2.3.1 Vegetation Sampling – Vector Data 
 

A Training and Test Area (TTA) mask was generated, based on field sampling vector 
data, as illustrated in figure 20 for each of the categories of interest. Figure 21 
includes a reference colour index of the tree species and combined categories (this 
key can be referred back to throughout this study). Training samples were created 
using a TTA mask of randomly selected samples (simple random sampling) from the 
vegetation ground data presented in figure 20 (these training samples will be 
illustrated in the results section and are mentioned here because they are derived 
from the TTA masks of figures 22 and 23 depending on the categories used). The 
random selection of tree category data samples and TTA generation was carried out 
using the QGIS software. 

For the classification, two sets of categories were used and assessed for their 
accuracy in each image dataset, group A and group B. Not all classes of tree species 
were used, due to the fact that certain classes were represented in only one 
restricted in area polygon, which was not considered sufficient or indicative as 
spectral signature sample. Group A included all categories, of satisfactory 
representation in the study area, including mixed and non-mixed categories, which 
were represented in the ground-data (used to generate samples) by two or more 
polygons, while group B included only non-mixed tree species categories. 
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Tree species in Taxiarchis forest
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Figure 22: Group A categories and map (TTA mask for samples and accuracy evaluation for group A categories 
generated from this template of forest tree species’ distribution). 
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Tree species in Taxiarchis forest
Group B categories
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Figure 23: Group B categories and map (TTA mask for samples and accuracy evaluation for group B categories 
generated from this template of forest tree species’ distribution) 
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It should be noted that the samples of group B categories were not considered 
satisfactory in number and distribution and thus in certain projects samples were 
taken manually for classes Castanea, Pinus sylvestris, Pinus maritime and Pinus pinea. 

The accuracy in all cases was evaluated using the classification result compared to 
the complete TTA mask of species for each category group, as illustrated in figures 
22 and 23 for categories of group A and B respectively. 
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2.3.2 ASTER GDEM 
 

We have produced slope and aspect maps (layers) based on the GDEM with 
specialised filters using the ER Mapper software. 

Slope is measured in % with 200% corresponding to a 90o slope and aspect measured 
in degrees (0-361o with 361 corresponding to horizontal areas). 

The ASTER GDEM layers were included in all projects and have a spatial resolution of 
25 m. 

 
 

Figure 24: Aster GDEM imagery for Taxiarchis forest, which includes three layers: elevation, slope and aspect. 
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2.3.3 Satellite and Aerial Imagery 
 

2.3.3.1 CASI 

 

Radiometric correction, as well as orthorectification was performed to bring the 
remotely sensed data into registration with the topographic maps and to make the 
images geographically comparable. The imagery was also subjected to mosaicing. 
Mosaicing is one of the techniques of image processing which is useful for tiling 
digital images. Mosaicing is blending together of several arbitrarily shaped images to 
form one large radiometrically balanced image so that the boundaries between the 
original images are not seen. In addition, geometric corrections included 
adjustments, compensating for any tilt of the aircraft, as well as the agglutination of 
the strips. 

The influence of the atmospheric degradation was reduced by radiometric 
correction, using the ATCOR 4 software, in order to correct any influence from 
clouds or other atmospheric factors affecting the reflectance at the time of the data 
collection. Both atmospherically and non-atmospherically corrected CASI images 
were used for classification, in order to assess the quality of each imagery and of the 
atmospherical correction process. In addition, CASI images of spatial resolutions 2 
and 5 m were also used and tested. 

 

2.3.3.2 Landsat  

 

The imagery used was taken from Landsat 8 OLI and was already radiometrically 
corrected and orthorectified. Pansharpening was also performed using the LMVM 
method. The spatial resolution of the image is 30 m, but in merging it with the 
panchromatic bands, the resolution became 15 m (USGS, 2014). 

 

2.3.3.3 GeoEye - 2 

 

Orthorectification was performed to bring the remotely sensed data into registration 
with the topographic maps and to make the images geographically comparable. The 
ENVI software tool was used for geometric corrections, while the imagery was 
already radiometrically corrected. Pansharpening was performed using the LMVM 
method, as well as subsetting of the image. 
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The spectral bands for the GeoEye image include the following: 

- Panchromatic: 450 - 800 nm 

- Blue: 450 - 510 nm 

- Green: 510 - 580 nm 

- Red: 655 - 690 nm 

- Near Infra Red: 780 - 920 nm 

The panchromatic band was fused with other bands giving a spatial resolution of 0.5 
m. 

 

2.3.3.4 Hyperion 

 

The Hyperion imagery was already radiometrically corrected and orthorectified. No 
further pre-processing was performed other than subsetting of the image. Hyperion 
provides imagery with 30 m spatial resolution imagery over a 7.5 km wide swath 
perpendicular to the satellite motion (see appendix II). 

The image comprises a total of 242 contiguous spectral bands. Of these, 196 are well 
calibrated, but 24 bands are considered uncalibrated because they do not meet the 
desired performance requirements or are noisy. Bands with very low SNR (signal-to-
noise ratio) and strong atmospheric water absorption features were also removed. 
Specifically, 87 bands were removed spanning the spectral ranges: 355.6–416.6 nm, 
935.6–935.6 nm, 942.7–962.9 nm, 1346.3–1467.3 nm, 1800.3–1971.8 nm, 2002.1–
2022.3 nm, and 2365.2–2577.1 nm. From the remaining 155 bands, those which 
were not calibrated were also removed (according to appendix II), leaving 31 
channels, which were used for the classification. 
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2.3.4 Feature Extraction Methodology for Hyperspectral Images 

 
Hyperspectral imagery includes a large number of bands, which make these files 
particularly heavy and the process of analysing them particularly time-consuming 
independent of the quality of hardware. In addition, hyperspectral remote sensing 
provides very high spectral resolution image data and the potential for 
discrimination of subtle differences in ground covers. High-dimensional data spaces 
are mostly empty, indicating that the data structure involved exists primarily in a 
subspace. As a result, there is a need for feature extraction methods that can reduce 
the dimensionality of the data to the right subspace without losing the original 
information that allows for the separation of classes. In other words, dimension 
reduction is the transformation that brings data from a high order dimension to a 
low order dimension, thus overcoming the “curse” of dimensionality (Plaza et al., 
2005). 

 

2.3.4.1 Principal Component Analysis (PCA) 

 

The principal component analysis is based on the fact that neighboring bands of 
hyperspectral images are highly correlated and often convey almost the same 
information about the object. The analysis is used to transform the original data so 
to remove the correlation among the bands. In the process, the optimum linear 
combination of the original bands accounting for the variation of pixel values in an 
image is identified. The PCA employs the statistic properties of hyperspectral bands 
to examine band dependency or correlation. Though, one may find many synonyms 
for PCA, such as the Hotellling transformation or Karhunen-Loeve transformation 
(Gonzalez & Woods 1993), all these transformations are based on the same 
mathematical principle known as eigenvalue decomposition of the covariance matrix 
of the hyperspectral image bands to be analyzed. Below is a brief formulation of the 
principle (Rodarmel & Shan, 2002). 

An image pixel vector is estimated with the following formula: 

 TiNi xxxx ......, 21   (1) 

with all pixel values x1, x2,…….xN at one corresponding pixel location of the 
hyperspectral image data. The dimension of that image vector is equal to the 
number of hyperspectral bands N. For a hyperspectral image with m rows and n 
columns there will be M=m*n such vectors, namely i=1,…,M. The mean vector of all 
image vectors is denoted and calculated as: 
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The covariance matrix of x is defined as: 

   TxExxExExCov )()()(   (3) 

where: 

E = expectation operator; 

T superscript = transpose operation; 

and 

Cov = notation for covariance matrix. 

The covariance matrix is approximated via the following calculation: 
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The PCA is based on the eigenvalue decomposition of the covariance matrix, which 
takes the form of: 

T
x ADAC   (5) 

Where: 

)....,( 21 NdiagD    (6) 

is the diagonal matrix composed of the eigenvalues λ1, λ2...λN of the covariance 
matrix CX, and A is the orthonormal matrix composed of the corresponding N 
dimension eigenvectors ak (k=1,2,…, N) of CX as follows: 

),.....,( 21 NaaaA   (7) 

The linear transformation defined by: 

 

),.....,2,1( MIxAy i
T

i   (8) 

is the PCA pixel vector, and all these pixel vectors form the PCA (transformed) bands 
of the original images. 
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Let the eigenvalues and eigenvectors be arranged in descending order so that λ1 > λ2 
>... > λN, thus the first K (K < N, usually K<<N) rows of the matrix AT, namely the first 
K eigenvectors ),....2,1( KjaTj  , can be used to calculate an approximation of the 

original images in the following way: 
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 (9) 

where pixel vector zi will form the first K bands of the PCA images. 

Such formed PCA bands have the highest contrast or variance in the first band and 
the lowest contrast or variance in the last band. Therefore, the first K PCA bands 
often contain the majority of information residing in the original hyperspectral 
images and can be used for more effective and accurate analyses because the 
number of image bands and the amount of image noise involved are reduced. 
According to Gonzalez and Woods (1993), the PCA bands are mutually independent 
or orthogonal and their covariance matrix takes the form of: 

)...,( 21 Kz diagC   (10) 

The geometry of the PCA concept is illustrated in Figure 25, where the original data 
consist of two bands, band 1 and band 2. There is considerable correlation between 
the two bands: a move in band 1 creates an almost linear change in band 2. Once the 
PCA takes place, however, the correlation between the PCA band 1 and 2 vanishes. 
Another aspect of PCA analysis that can be seen in this illustration pertains to the 
variability within bands. Once the transformation has taken place, PCA band 
1accounts for the maximum amount of variability or contrast possible in the image 
and PCA band 2 accounts for the second largest amount. This trend is likely to 
continue in the first few PCA bands, with the remainder containing less and less 
useful information (Rodarmel & Shan, 2002). 
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Figure 25: Geometry of the principal component analysis and PCA bands (source: Rodarmel & Shan, 2002) 
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2.3.4.2 Minimum Noise Fraction Transform (MNF) 

 

In 1988, Green et al. first presented the MNF transform method. The MNF transform 
generates new components ordered by image quality and provides better spectral 
features in major components than the PC transform method, no matter how the 
spectral noise is distributed. Using the theory of MNF, James et al. (1990) presented 
the noise-adjusted principal component (NAPC) transform aiming at the noise 
characteristics of GER hyperspectral scanner. The most important work in MNF 
transform is to accurately estimate the noise covariance matrix (NCM) (Xiang  et al., 
2009). 

One of the most common measures of image quality is the signal-to-noise ratio. 
Thus, instead of choosing new components to maximize variance, as the principal 
components transform does, we now choose them to maximize the signal-to-noise 
ratio. Our choice should then achieve the desired optimal ordering in terms of image 
quality. This transformation can be defined in several ways. It can be shown that the 
same set of eigenvectors is obtained by procedures that maximize either the signal-
to-noise ratio or the noise fraction (Green et al., 1988). 

Let us consider a multivariate data set of p-bands with grey levels: 

),(xZ i   pi ,...,1  

Where x gives the coordinates of the sample. We shall assume that: 

)()()( xNxSxZ   

Where   NS
T xZxZ  )()( and )(xS and )(xN  are the uncorrelated signal 

and noise components of )(xZ . Thus: 

  NsxZCov )(  

Where S  and N  are the covariance matrices of )(xS and )(xN respectively. Note 

that, although we are assuming additive noise, the techniques described in principle 
can also be applied to multiplicative noise by first taking logarithms of the 
observations. 

We define the noise fraction of the thi  band to be: 

   )(/)( xZVarxNVar ii  

the ratio of the noise variance to the total variance for that band. The maximum 
noise fraction (MNF) transform chooses linear transformations: 
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)()( xZaxY T
ii    pi ,...,1  

such that the noise fraction for )(xYi  is maximum among all linear transformations 

orthogonal to ijxY j ,...,1),(  . 

Using arguments similar to those used in the derivation of principal components, it 
can be shown that the vectors ia are the left-hand eigenvectors of 1 N , and that 

i , the eigenvalue corresponding to ia , equals the noise fraction in )(xYi . Hence, 

from the definition of the MNF transform, we see that p  ...21 , and so the 

MNF components will show steadily increasing image quality (unlike the usual 
ordering of principal components). 

For here onwards, it will be assumed that the eigenvectors ia  are normed so that: 

1 i
T
i aa   pi ,...,1 . 

This norming is for mathematical convenience only, and has no effect on the noise 
removal procedures. It will also be convenient at certain points to express the MNF 
transform in the matrix form: 

)()( xZAxY T  

Where ))(),...,(()( 1 xYxYxY p
T   and ),...,( 1 paaA  . 

A property of the MNF transform (not shared by principal components) is that, 
because it depends on signal-to-noise ratios, it is invariant under scale changes to 
any band. Another useful property is that it orthogonalises )(xS  and )(xN , as well 

as )(xZ . To obtain the MNF transform, we need to know both   and N . In many 

practical situations, these covariance matrices are unknown and need to be 
estimated. Usually,   is estimated using the sample covariance matrix of )(xZ . 

 

Noise removal 

Once data have been transformed into components with decreasing noise fraction 
(increasing S/N ratio), it is logical to spatially filter the noisiest components and 
subsequently to transform back to the original coordinate system. As the 
transformed components filtered by this procedure contain a reduced signal 
component, the resulting signal degradation will be much less than if the same 
smoothing were performed on the untransformed data. This procedure should allow 
much more intense smoothing to be applied without serious signal degradation. 
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Noise reduction is achieved by using the high between band correlation that often 
exists in the signal components of remotely sensed data. A multivariate signal can be 
considered to lie between two extremes: perfect between-band correlation and zero 
between-band correlation. In the former case, we would expect to be able to 
achieve a maximal noise reduction (viz. var (S) /var (N) improved by a factor of p if 
the S/N ratio is constant). In the latter case no improvement can be made by the 
procedures discussed here. The amount of noise reduction achieved in each 
situation depends on the degree of between-band correlation, the relative powers of 
the noise in each input band, and the type of smoothing performed on the 
transformed components. 

In general, although the low-order MNF components contain more noise, they still 
have a signal constituent. If these signals need to be retained, each MNF component 
must be filtered before retransformation to obtain a cleaned image. Under these 
conditions it is difficult to estimate the losses in both signal and noise, as they are 
dependent upon the nature of the filtering process. However, when the signal 
content of a MNF component is so low that it can be neglected, it is easy to estimate 
the signal and noise losses in such a process. 

 

Noise in more than one band 

When there is noise in more than one band and its covariance structure is not 
known, we must find some way of estimating it from the data. In general, this will 
involve computing the covariance matrix of new variables resulting from some type 
of spatial filtering of each input band. The selection of the appropriate filter must be 
determined by the spatial characteristics of the noise that it is designed to isolate, 
and on the spatial characteristics of the signal in which it is buried. No filter will 
extract noise completely. Hence, careful analysis will be required to establish the 
conditions under which the covariance matrix so generated approximates N  

(Green et al., 1988). 
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2.3.5 Feature Selection Methodology for Hyperspectral Images 

2.3.5.1 Band selection based on correlation statistics of spectral signatures per 
classification category 

 

A hyperspectral image can be considered as an image cube where the third 
dimension is represented by hundreds of contiguous spectral bands. As a result, a 
hyperspectral pixel is actually a column vector with dimensions equal to the number 
of spectral bands. Such between-band spectral information is very useful and can be 
used for spectral characterisation. Many measures proposed in signal processing and 
pattern recognition can be used for this purpose. Nevertheless, most of them are 
spatial-based measures, and they are not particularly designed to measure spectral 
properties inherent in a single pixel vector (Chang, 2003). 

Spectral Information Measure is a hyperspectral measure derived from the Kullback-
Leibler information distance to capture the spectral variability of a pixel vector. In 
addition, Spectral Information Divergence is also introduced below. These two 
measures are analysed in order to explain the theoretical background of the 
Signature-to-Signature Spectral Correlation (SSSC), which is one of the reprocessing 
techniques used in this paper (Chang, 2003). 

A hyperspectral image is generally acquired by hundreds of spectral channels. As a 
result, a scene pixel vector is usually presented by a column vector, in which each 
component contains specific spectral information provided by a particular channel. 
Therefore, a greater number of spectral channels translate more spectral 
information provided by a particular channel. This implies that a hyperspectral image 
pixel vector generally contains more spectral information than does a multispectral 
image pixel vector. In many situations, such spectral information is valuable and 
crucial in data analysis. In order to capture and characterise the spectral properties 
vector provided in a single pixel vector by hundreds bands, the SIM spectral measure 
is introduced. 

The Spectral Information Measure (SIM) is an information theoretic measure that 
models the spectral band-to-band variability as uncertainty results from 
randomness. It considers each pixel vector as a random variable with the probability 
distribution obtained from normalizing its spectral histogram to unity. With this 
interpretation, SIM can measure the spectral variability of a single hyperspectral 
pixel vector resulting from band-to-band correlation. It not only can describe the 
randomness of a pixel vector, but also can generate high-order statistics of each 
pixel vector based on its spectral histogram. So, with SIM each hyperspectral image 
pixel vector can improve in material detection, discrimination, classification and 
identification. Because SIM is a statistical measure, it can generate higher order 
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statistics that can further be used to characterise spectral variability, such as 
variance, skewness and kurtosis.  This advantage cannot be achieved by any 
deterministic measure, such as Euclidean distance (Schowengerdt, 1997). 

The Spectral Information Divergence (SID) measures spectral similarity. It originates 
from the concept of divergence in information theory and measures the discrepancy 
of probabilistic behaviours between the spectral signatures of two pixel vectors. In 
other words, the spectral similarity between two pixel vectors is measured by SID 
based on the discrepancy between their corresponding spectral signature-derived 
probability distributions. The idea of using divergence is not new and has also been 
found in pattern recognition and band selection, such as Jeffries-Matusita measure. 
But what is new for SID is that it is designed from SIM for spectral similarity. 
Essentially, SID measures the distance between the probability distributions 
produced by the spectral signatures of two pixel vectors and is quite effective in 
capturing spectral variability (Chang, 2003). 

Band selection for remotely sensed image data is an effective means to mitigate the 
problem of dimensionality. Taking advantage of spectral correlation to achieve 
optimal band selection is one of the unique features in multispectral/hyperspectral 
images. Many criteria have been proposed for band selection in the past to find 
bands that are crucial and significant in terms of information conservation. For 
example, distance measures, information theoretic approaches (divergence, 
transformed divergence, mutual information) and eigen-analysis (PCA) have been 
applied to multispectral images for optimal band selection. In particular, the use of 
the divergence measure for band selection has received considerable interest in 
multispectral imagery.  

The Signature-to-Signature Spectral Correlation (SSSC) is a band selection method for 
hyperspectral images, which uses a library of the spectral signatures of the objects 
subject to classification, as criteria (Kolokoussis, 2008). After having calculated mean 
reflectance values for all pixels and objects, a histogram is plotted of bandwidth 
against % reflectance (x1000) for each object, in order to define the behaviour of the 
object spectral signatures per band. Bands are selected based on the assumption 
that the most valuable, in terms of information content, bands are the ones where 
object spectral signatures are most divergent and are essentially those where object 
reflectance allows for the highest degree of material detection, discrimination, 
classification and identification, similar to SIM. A correlation function between the 
reflectance of each object in comparison with all other objects, for each band, is the 
criterion used to exclude bands. A correlation below a certain threshold (in this case 
0.98) for at least one comparison of each object with all others provides us with a 
bandwidth of interest, according to the formula: 
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Where ix  and iy  are values from two datasets corresponding to the % reflectance 

multiplied by 1000 (for storage reduction reasons) for object (or forest tree species) 
X andY , while j  is corresponding to position from a list of a discreet numbers of 

bandwidths in ascending order. 

In this case, each time the correlation is calculated between 3 spectral bands above 
and 3 below a central bandwidth (total 7) for all bandwidths. 
 
The bands that are selected at the end are the ones where at least two (2) of the 
correlations have given a value below 0.98. 

The bands used in classifications can be found in the results section. 
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2.4 Processing – Object Based Image Analysis (OBIA) 

 
Object – based image analysis (OBIA), a technique used to analyze digital imagery, 
was developed relatively recently compared to traditional pixel-based image analysis 
(Burnett & Blaschke, 2003). While pixel-based image analysis is based on the 
information in each pixel, object-based image analysis is based on information from 
a set of similar pixels called objects or image objects. More specifically, image 
objects are groups of pixels that are similar to one another based on a measure of 
spectral properties (i.e. color, size, shape and texture) as well as context from a 
neighborhood surrounding the pixels (Nearest Neighbour – NN feature space).  

Classification was carried out using the eCognition software with standard nearest 
neighbour classifier. All projects were carried out using OBIA, initially with 
classification based solely on the spectral signature of tree species determined using 
the training areas provided by the TTA mask. After using accuracy statistics for 
selecting imagery giving better results, classification was also based on fuzzy-logic-
based restrictions concerning the elevation, slope and aspect specifications for each 
tree species. 
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3. Results 
 

eCognition Developer 8.64 software (formerly Definiens) of Trimble Germany GmbH 
(München, Germany) was specifically created as an instrument for OBIA and is used 
in all processes described below, unless otherwise stated. Classification was carried 
out using the standard nearest neighbour (ΝΝ) classifier and all projects included the 
three layers (elevation, slope and aspect) of the ASTER GDEM imagery. 

For all (multiresolution) segmentations the bands of each image were taken into 
account, having been given equal weights (1), including the three GDEM layers 
(elevation, slope and aspect). For each (hierarchical) classification a Standard 
Nearest Neighbour Feature Space was generated based on the spectral signatures of 
each class as a result of taking into consideration all bands of the respective imagery 
(GDEM layers were not taken into account for the classifications). Simpson’s 
biodiversity index was estimated on a different level (a level above) with greater 
area and was dealt with differently than all other classification processes, as we will 
see in the last section of this chapter. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

 

3.1 Object Based Image Analysis (OBIA) on Remote Sensing 
Multispectral and Hyperspectral Data 

 

3.1.1 CASI 2m spatial resolution imagery 
 

Figure 26, below illustrates the CASI imagery of 2 m spatial resolution, which 
includes all 72 bands. The ASTER Global Digital Elevation Model (ASTER GDEM) 
(three bands: elevation, slope and aspect) is also included in the project. 

The colour composite used in all figures presenting CASI imagery is as follows: 

- Red: band 27 
- Green: band 14 
- Blue: band 2 (see appendix III for bandwidths). 
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Figure 26: CASI 2m spatial resolution imagery (GDEM layers are also included, but not visible). 

 

In figure 26, there are gaps every two strips of cover for the CASI image. This was 
possibly due to the relative position of the receiver to the aircraft or a problem in 
calibrating the instrument. A 40% overlap between strips of received reflectance was 
desired but not achieved. There was an overlap of approximately 80% every two 
strips and a 20% gap. This was compensated for by excluding these gaps from the 
TTA mask used for generating training areas and estimating the accuracy of the 
classification relative to the ground data. 

The CASI image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 100, colour factor 0.8, compactness 
0.5 (see figure 27.2). 

It should be noted, that for all images a variety of segmentations was performed 
with different scale factors. In each case, the segmentation scale selected for further 
processing was the highest possible scale showing the least mixing of categories, 
based on the colour shade, representing vegetation (green or other for PCA and 
MNF). The choice was made based on visual evaluation and trial-and-error. 
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Figures 28.1 and 28.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 28.3 and 28.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

Figure 27: Scale 100 multiresolution 
segmentation result for CASI image 2m 
resolution with GDEM (including elevation, 
slope and aspect). The entire area of the 
image is illustrated in figure 1, while figure 
2 depicts a zoomed on area and illustrating 
the way polygons were separated during 
segmentation. 

1 

2 
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Figure 28: CASI 2 m spatial resolution training areas and classification result (refer to figure 21 for a colour 
key). Figures 27.1 and 27.2 show the training areas for classes of groups A and B respectively. Figures 27.3 and 
27.4 illustrate the classification result for group A and B groups of classes respectively. 

1 2 

3 4 
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3.1.2 CASI 5 m spatial resolution imagery 

 
The reduced spatial resolution of this image, provided that it is still quite high (5 m is 
marginally sufficient resolution for the identification of individual tree crowns of 
mature trees, provided that the image quality is satisfactory), relative to the satellite 
images, serves the purpose of reducing the size of the file under processing and thus 
the processing time. 

The colour composite remains the same as in the previous CASI imagery of 2 m 
resolution. 

 

 

Figure 29: CASI 5m resolution. Colour composite: Red: band 27, Green: band 14, Blue: band 2. 

 

The CASI image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 40, colour factor 0.8, compactness 
0.5.  
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Figures 31.1 and 31.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 31.3 and 31.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

Figure 30: Scale 100 multiresolution 
segmentation result for CASI image 5m 
resolution with GDEM (including elevation, 
slope and aspect). The entire area of the image 
is illustrated in figure 1, while figure 2 depicts a 
zoomed on area and illustrates the way 
polygons were separated during segmentation. 

 

1 

2 
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Figure 31: CASI 5 m spatial resolution training areas and classification results.  Training areas (figures 1 and 3) 
and classification result (figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) classes 
respectively. 

1 2 

4 3 
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3.1.3 CASI 2m spatial resolution atmospherically corrected (ATM) imagery 
 

The CASI image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 100, colour factor 0.8 and 
compactness 0.5 (see figure 32.2). 

 

 

 

Figures 33.1 and 33.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 33.3 and 33.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

 

 

Figure 32: Multiresolution segmentation result 
full image extent (1) and zoomed (2) to show 
the separation of polygons. 

1 

2 
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1 2 

4 3 

Figure 33: Atmospherically corrected (ATM) CASI 2 m spatial resolution training areas and classification result. 
Training areas (figures 1 and 3) and classification result (figures 3 and 4) for group A (figures 1 and 3) and B 
(figures 2 and 4) classes respectively. 
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3.1.4 Classification accuracies for CASI imagery 

 

The accuracy of the classification result was compared to the ground data (as 
depicted in figures 22 and 23) for group A and group B classes.  The accuracy is much 
better for group B classes, containing less and non-mixed classes. This conclusion 
could be anticipated, as the spectral signature of classes containing various tree 
species is expected to be less distinct than that of tree species with one particular 
species of tree and thus a specific and distinct chemical composition. It also becomes 
evident from the table below that the atmospheric correction for the CASI imagery 
did not improve the quality of our data, since greater accuracies were achieved for 
the non-atmospherically corrected imagery. In a study by Stavrakoudis et al. (2014) 
in Taxiarchis forest, the astmospheric correction performed on CASI also gave 
reduced classification accuracy results. 

 

All bands CASI 2m CASI 5m CASI-ATM 2m 

 
Group A Group B Group A Group B Group A Group B 

Overall Accuracy 0.45 0.73 0.39 0.68 0.38 0.65 

KIA 0.35 0.59 0.27 0.51 0.26 0.48 

 

Table 5: Accuracies for classification results of projects with all available bands used relative to the ground 
data generated TTA mask 
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3.1.5 Landsat imagery 
 

The colour composite used in all figures presenting the Landsat 8 OLI image is as 
follows: 

- Red: band 4 
- Green: band 3 
- Blue: band 2 (see appendix I for a full list of Landsat 8 OLI spectral bands.) 

 

 

 

Figure 34: Landsat image with colour composite representing true colours. 

 

The Landsat image was segmented with multi-resolution segmentation. The level 
used for classification was created with scale factor 20, colour factor 0.8 and 
compactness 0.5 (see figure 35). 
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Figure 35: Multiresolution segmentation for the Landsat image. 

 

Figures 36.1 and 36.2, below, illustrate the training areas, as taken using random 
sampling from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 36.3 and 36.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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1 2

3 4

 

Figure 36: Landsat training areas and classification result. Training areas (figures 1 and 3) and classification 
result (figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) classes respectively. 
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3.1.6 GeoEye imagery 
 

The colour composite in all figures presenting the GeoEye imagery is as follows:  

Blue: 450 - 510 nm 
Green: 510 - 580 nm 
Red: 655 - 690 nm 
 
The resulting colour composite is illustrated in figure 37.1, below. 

The GeoEye image was segmented with multi-resolution segmentation. The level 
used for classification was created with scale factor 50, colour factor 0.8, 
compactness 0.5 (see figure 37.2 for the segmentation). 

 

 

Figures 38.1 and 38.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 38.3 and 38.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

 

Figure 37: Geoeye image (1) and 
multiresolution segmentation zoomed (2) to 
show the separation of polygons. 

1 

2 
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Figure 38: GeoEye samples and classification result. Training areas (figures 1 and 3) and classification result 
(figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) classes respectively. 

1 2 

3 4 
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3.1.7 Hyperion imagery 
 

The colour composite, presenting the imagery in true colours (see figure 39.1), is as 
follows: 

- Red: 630 – 680 nm 
- Green: 520 – 590 nm 
- Blue: 450 – 515 nm 
 

The Hyperion image was segmented with multi-resolution segmentation. The level 
used for classification was created with scale factor 10, colour factor 0.8, 
compactness 0.5 (see figure 39.2). 

 

 

Figure 39: Hyperion image (1) and multiresolution segmentation zoomed (2) to show the separation of 
polygons. 

 

Figures 40.1 and 40.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 40.3 and 40.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

1 2 
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Figure 40: Hyperion training areas and classification result areas (figures 1 and 3) and classification result 
(figures 3 and 4) for group A (figures 1 and 3) and B (figures 2 and 4) classes respectively. 

1 2 

3 4 
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3.1.8 Classification accuracies for satellite imagery 
 

The highest accuracy achieved for the satellite images is for Landsat group B classes. 
In fact, it is the highest accuracy achieved (before physiographic corrections), despite 
the spatial resolution being 15 m (after being combined with the panchromatic 
bands). The quality of the Landsat image is better than the GeoEye and Hyperion 
images, both with a greater number of bands and thus containing more information. 
This could be due to a lack in radiometrically induced noise or atmospheric factors. 
Thus, on a preliminary level, we can conclude that noise removal constitutes the 
main obstacle for mapping vegetation using hyperspectral and multispectral 
imaging. 

 

 LANDSAT GEOEYE HYPERION 

All bands Group A Group B Group A Group B Group A Group B 

Overall 
Accuracy 

0.49 0.77 0.39 0.66 0.39 0.66 

KIA 0.39 0.65 0.30 0.51 0.28 0.48 

 

Table 6: Accuracies for classification results of satellite data (GeoEye, Hyperion and Landsat) projects relative 
to the ground data generated TTA mask 
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3.2 OBIA on Principal Component Analysis (PCA) transformed 
Hyperspectral Imagery 

 

3.2.1 PCA transformed CASI 5m spatial resolution imagery 
 

The CASI 5m spatial resolution image was transformed using Principal Component 
Analysis (PCA), thus extracting five (5) bands with the least noise and most 
information, according to the PCA methodology, described in section 2.3.4.1, whilst 
reducing processing time. 

The CASI image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 40, colour factor 0.8, compactness 0.5 
(see figure 41.2). 

 

 

 

Figure 41: PCA CASI 5m spatial resolution image 
(1) and multiresolution segmentation zoomed 
(2) to show the separation of polygons. 

1 

2 
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Figures 42.1 and 42.2 illustrate the classification result (class distribution based on 
spectral signatures), based on the training areas taken using random samples from 
the TTA masks of figures 22 and 23 for groups A and B respectively (see figures 30.1 
and 30.2 for a training area illustration). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

 

 

Figure 42: PCA CASI 5 m spatial resolution imagery classification result (figures 1 and 2) for group A (figure 1) 
and B (figure 2) classes respectively. 

 

1 2 
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3.2.2 PCA transformed CASI 2 m and 5 m spatial resolution atmospherically 
corrected (ATM) imagery 
 

The PCA transformed CASI image (5 PCAs extracted and used with equal weights (1) 
as previously for segmentation and classification) was segmented with multi-
resolution segmentation. The level used for classification was created with scale 
factor 100 for the 2 m and 40 for the 5 m spatial resolution image, colour factor 0.8, 
compactness 0.5 (see figure 43.2 and 43.3) (for all spatial resolutions). 

 

 

Figure 43: PCA transformed atmospherically corrected (ATM) CASI 2m (see figure 1) (for segmentation see 
figure 2) and 5m (for segmentation see figure 3) spatial resolution imagery. 

 

Figures 44.1 and 44.2, below, illustrate the training areas, as taken using random 
samples from the TTA masks of figures 22 and 23 for groups A and B respectively, 
while figures 44.3 and 44.4 illustrate the classification result (class distribution based 
on spectral signatures). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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2 
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Figure 44: PCA transformed CASI ATM 2m and 5m spatial resolution classification results ( for 2m spatial 
resolution classification result see figures 1 and 2, and for 5m spatial resolution see figures 3 and 4) for group A 
(figures 1 and 3) and B (figures 2 and 4) classes respectively. 
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3.2.3 PCA transformed Hyperion imagery 
 

The PCA transformed Hyperion image (see figure 45.1) was segmented with multi-
resolution segmentation. Six (6) PCAs were extracted and were given equal weights 
(1) at the segmentation and classification processes. The level used for classification 
was created with scale factor 50, colour factor 0.8, compactness 0.5 (see figure 45.2 
and 45.3). 

 

 

Figure 45: PCA transformed Hyperion image (see figure 1), segmentation (see figure 2) and zoomed in 
segmentation (see figure 3). 

 

Figures 46.1 and 46.2, below, illustrate the classification result (class distribution 
based on spectral signatures), as taken using random samples from the TTA masks of 
figures 22 and 23 for groups A and B respectively. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 46: PCA transformed Hyperion imagery classification results for group A (see figure 1) and B (see figure 
2) classes respectively. 

1 2 
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3.2.4 Classification accuracies for PCA transformed hyperspectral imagery 
 

All hyperspectral images transformed using the PCA methodology gave similar 
accuracies, with the atmospherically corrected CASI image of 2m spatial resolution 
giving a slightly better result. Overall, comparing the classification accuracies for all 
bands (tables 4 and 5 for CASI and Hyperion imagery respectively) and PCA 
transformed images there is loss of information and accuracy observed (with the 
exception of the atmospherically corrected CASI of 5m spatial resolution). 

 

PCA CASI 5m CASI-ATM 2m CASI-ATM 5m HYPERION 

 

Group 
A 

Group 
B 

Group 
A 

Group 
B 

Group 
A 

Group 
B 

Group 
A 

Group 
B 

Overall Accuracy 0.38 0.65 0.41 0.66 0.41 0.65 0.39 0.64 

KIA 0.27 0.48 0.31 0.49 0.30 0.47 0.27 0.44 

 

Table 7: Accuracies for classification results of PCA projects relative to the ground data generated TTA mask 



112 

 

3.3 OBIA on Minimum Noise Fraction (MNF) transformed 
Hyperspectral Imagery 

 

3.3.1 MNF transformed CASI 2m spatial resolution imagery 
 

The CASI 2m spatial resolution imagery was transformed using Minimum Noise 
Fraction (MNF), thus extracting six (6) bands with the least noise and most 
information, according to the MNF methodology, described in section 2.3.4.2, whilst 
reducing processing time, as with the PCA transform. 

The CASI image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 50, colour factor 0.8, compactness 0.5 
(all six MNF bands were used with equal weights (1) during segmentation and 
classification) (see figures 47.2 and 47.3). 
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Figure 47: MNF CASI 2m  image (see figure 1) and segmentation MNF transformed CASI 2m (for segmentation 
see figure 2) and 5m (for segmentation see figure 3) spatial resolution imagery. 

 

Figures 48.1 and 48.2, below, illustrate the classification result (class distribution 
based on spectral signatures), resulting from using TTA mask-based (see figures 22 
and 23) random samples for groups A and B respectively. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 48: MNF CASI 2m spatial resolution classification result for group A (see figure 1) and B (see figure 2) 
classes respectively. 

1 2 
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3.3.2 MNF transformed Hyperion imagery 
 

Eleven (11) MNF bands were extracted from the Hyperion image and were all given 
equal weight (1) during segmentation and classification. The MNF transformed 
Hyperion image (see figure 49.1) was segmented with multi-resolution 
segmentation. The level used for classification was created with scale factor 10, 
colour factor 0.8, compactness 0.5 (see figure 49.2 and 49.3). 

 

 

Figure 49: MNF transformed Hyperion image (see figure 1), segmentation (see figure 2) and zoomed in 
segmentation (see figure 3). 

 

Figures 50.1 and 50.2, below, illustrate the classification result (class distribution 
based on spectral signatures), as taken using random samples from the TTA masks of 
figures 22 and 23 for groups A and B respectively. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 50: MNF transformed Hyperion imagery classification results for group A (see figure 1) and B (see figure 
2) classes respectively. 

1 2 
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3.3.3 Classification accuracies for MNF transformed hyperspectral imagery 
 

As opposed to the PCA transform, the MNF transform increased the accuracy of 
classification, while reducing the data processing time significantly (approximately 
95% reduction in processing time), as seen in table 7. According to Xiang et al., 
(2009), the MNF transform is an effective method for noise removal, which is the 
main limitation in achieving better forest tree species classification results and our 
results support this conclusion. MNF transformed data gave improved accuracies in 
comparison to PCA, which failed to reduce noise. 

 

MNF CASI 2m HYPERION 

 Group A Group B Group A Group B 

Overall 
Accuracy 

0.44 0.75 0.44 0.69 

KIA 0.34 0.63 0.35 0.53 

 

Table 8: Accuracies for classification results of MNF projects relative to the ground data generated TTA mask 
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3.4 OBIA on Hyperspectral Imagery after Feature Selection 
 

This band selection technique is based on selecting bands where the spectral 
signatures of the species of interest is distinctive in comparison to that of the rest of 
the species of interest. Reflectance of all species of interest for the most abundant 
tree species categories in Taxiarchis forest is plotted against that of all other species 
of interest and a spectral signature is created for each tree species. Each spectral 
reflectance value is correlated to three values above and below it, within the 
spectral range. Areas of the spectrum, where there is a (negative or positive) 
correlation between signatures and thus different species seem to be well separated 
from each other, are selected. The bands of interest and ultimately selected are 
those where correlation values are below 0.98 (98%) for at least two classes (see 
appendix V).  

 

3.4.1 OBIA on CASI 2m hyperspectral imagery after band selection 
 

In figure 51 we see an example of how the spectral signatures of different species 
vary. At around 870 nm for example there is a peak for the spectral signature of 
Pinus brutia in relation to the rest of the species considered. This area represents the 
infrared (IR) area of the spectrum, where it is well know that vegetation reflects well. 
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Figure 51: Correlation of spectral signatures of main tree species/classes to Pinus brutia at different spectral 
bandwidths. 

 

After areas of the spectrum, where spectral signatures are distinct from each other, 
are selected for each species, the reflectance for each species (times 1000 for better 
separation) is plotted against bandwidth, clearly showing the areas of the spectrum 
where reflectance is high and tree species’ spectral signatures are most distinctive 
(the bands selected can be found in Appendix III). 
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Figure 52: Correlation graph for different tree species (% reflectance is multiplied by 1000 for better visual 
separation between spectral signatures of classes). 

 

The CASI image of 2m spatial resolution with selected bands (14 spectral bands 
taken into account with equal weights for the segmentation and classification 
procedures) based on tree species’ spectral signatures was segmented with multi-
resolution segmentation. The level used for classification was created with scale 
factor 80, colour factor 0.8, compactness 0.5. 

Figures 53.1 and 53.2, below, illustrate the classification result (class distribution 
based on spectral signatures), as taken using random samples from the TTA masks of 
figures 22 and 23 for groups A and B respectively. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 53: CASI 2m spatial resolution classification result based on correlation between spectral signatures for 
group A (see figure 1) and B (see figure 2) classes respectively. 
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3.4.2 OBIA on Hyperion imagery after band selection 
 

Again, the example of correlation of the reflectance between oak and other tree 
species demonstrates the logic of this band selection method. 
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Figure 54: Correlation of spectral signatures of main tree species/classes to Oak at different spectral 
bandwidths. 

 

For the Hyperion image we see that the reflectance of trees is better separated 
higher along the IR in comparison to the CASI imagery and thus according to the data 
at hand a different set of bandwidths are selected. 
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Figure 55: Correlation graph for different tree species (% reflectance is multiplied by 1000 for better visual 
separation between spectral signatures of classes). 

 

The number of selected spectral bands is 25 and they were all taken into account 
with equal weights for during the segmentation and classification procedures. The 
Hyperion image was segmented with multi-resolution segmentation. The level used 
for classification was created with scale factor 10, colour factor 0.8, compactness 
0.5. 

Figures 56.1 and 56.2, below, illustrate the classification result (class distribution 
based on spectral signatures), as taken using random samples from the TTA masks of 
figures 22 and 23 for groups A and B respectively. 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 56: Hyperion classification result based on correlation between spectral signatures for group A (see 
figure 1) and B (see figure 2) classes respectively. 
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3.4.3 Classification accuracies for hyperspectral imagery with band 
selection based on correlation of species’ spectral signatures 
 

This band reduction method, through the selection of bands of hyperspectral 
imagery were the spectral signature of classes are most distinct proved useful in 
reducing the data and the processing time, but not in increasing accuracy, neither 
resulting in a major accuracy reduction. However, it gave better results in 
comparison to the PCA method, but worst in comparison to the MNF method for 
band reduction. 

 

Signature 
correlation based 

selection 
CASI Hyperion 

 Group A Group B Group A Group B 

Overall Accuracy 0.45 0.70 0.39 0.64 

KIA 0.35 0.55 0.28 0.45 

 

Table 9: Accuracies for classification results of correlation between forest tree spectral signatures relative to 
the ground data generated TTA mask 
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3.5 OBIA with Fuzzy Analysis: Classification Improvement Using 
Physiographic Characteristics of Forest Trees 
 

Based on the physiographic behaviour of tree species in Greek forest ecosystems, 
listed in table 10, the MNF transformed CASI (2 m spatial resolution), the MNF 
transformed Hyperion and the Landsat imageries were improved by entering fuzzy 
logic restrictions in tree species’ (or classes’) membership functions and evaluated in 
terms of their classification accuracies. These images gave the best accuracies during 
the previous results section, where classification was solely based on the spectral 
signatures of classes (group A and B). In addition, group B classes, consisting of 
unmixed classes, each representing one tree species, having given the best results, 
will be the ones concerning the following analyses and OBIA classifications of all 
following sections. 

Table 10, below is based on a study by Rokos et al. (1992), on the distribution of 
Mediterranean crops and vegetation types, as a basis for image analysis expert 
system rules. 

Tree species 
Criteria for the presence of a tree species, family or group 

 Elevation (m) Slope (%) Aspect (N, S, E, W, NE, NW, SE and SW) 

Pinus nigra 

Rarely 400-800 10-35 W, SE, SW 

Often 800-2000 35-50 N, E 

Very often - >50 NE, NW 

Pinus 
halepensis/ 

Pinus brutia 

Rarely 800-1000 >50 N 

Often 600-800 0-10 E, W, NE, NW, SE 

Very often 0-600 10-50 S, SW 

Pinus pinea 

Rarely 800-1000  N, E, NE, NW 

Often 400-800 
0-10, 

35-50 
S 

Very often 0-400 10-35 SE, SW 

Beech Rarely 600-800 10-35 NE, SE, SW 
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Often 800-1200 35-50 N, S, W, NE 

Very often 1200-2000 >50 E 

Castanea 

Rarely 0-800 10-35 S, W, NW, SE 

Often - >50 N 

Very often 800-2000 35-50 E, NE 

Oak 

Rarely 1000-1200 >50 N, S, NE, NW, SE, SW 

Often 0-600 
0-10, 

35-50 
W 

Very often 600-1000 10-35 E 

Fir 

Rarely 400-800 >50 S, SE, SW 

Often - 35-50 E, W, NW 

Very often 800-1600 10-35 N, NE 

Needleleaf 
species 

Rarely 1200-2000 >50 S, W, NE, NW 

Often 800-1200 
0-10, 

35-50 
- 

Very often 0-800 10-35 N 

Broadleaf 
species 

Rarely 1000-1600 >50 W, NW, SW 

Often 0-400 
0-10, 35-

50 
E 

Very often 400-1000 10-35 S, SE 

 

Table 10: Physiographic parameters related to elevation, slope and aspect requirements of tree species. 
‘Rarely’ refers to a physiographic parameter attributed to 0-20% of trees belonging to a species, family or 
group, ‘often’ is attributed to 20-60%, while ‘very often’ to 60-90%  (Rokos et al,. 1992).  

 

After a series of trials applying the parameters listed in table 10, it was concluded 
that certain parameters were effective, whereas others were not improving our 
results. This may be attributed to the geographical variation of subspecies and 
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behaviour of forest trees in particular environments, as well as radiometric and 
spatial resolution deficiencies in our imagery. More specifically, the third layer of the 
GDEM map, namely the aspect gave very poor results and we concluded that it 
would be best to be omitted from the set of physiographic restrictions used in fuzzy 
analysis. This may be due to the resolution of the GDEM (greater than tree crown 
diameter), as well as the difference  in resolution between the CASI (2 and 5 m 
spatial resolution) and Hyperion (30 m spatial resolution) images in comparison to 
the GDEM (25 m spatial resolution). 

Using ER Mapper software we subsequently extrapolated the range of tree 
distribution of the tree species of group B, using the vector data, onto the exiting 
GDEM available. The results are presented in table 11. These parameters, which are 
specifically related to the behaviour the Taxiarchis forest trees gave improved 
classification results and a greater degree of confidence in terms of tree behaviour 
for our particular area. 

 

Tree species Elevation (m) Slope (%) Aspect (o) 

Maquis 285-888 0-114 1-360 

Castanea 694-753 12-32 207-262 

Beech 567-1129 1-90 1-360 

Pinus brutia 423-746 1-103 1-360 

Pinus sylvestris 575-1013 2-76 14-360 

Pinus maritime 507-657 1-64 1-360 

Pinus nigra 654-1064 0-90 1-360 

Pinus pinea 557-600 13-48 178-297 

Oak 468-1143 0-101 1-360 

 

Table 11: Range of physiographic characteristics extrapolated using the ground data and the GDEM. 

 

Several samples from groups, such as Castanea, Pinus sylvestris, Pinus maritime and 
Pinus Pinea with limited area distribution Taxiarchis forest, were taken manually, in 
addition to the already existing samples. However, Pinus pinea and Pinus sylvestris 
classes were excluded from the classification process in the case of the Landsat 
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imagery; due to the fact the samples were not satisfactory in number and 
distribution, to give a representative spectral signature. 

The parameters for tree distribution in relation to the terrain of Taxiarchis forest 
(elevation and slope), as presented in table 11, were entered for each individual 
class on a fuzzy logic basis in order to improve classification. A process of trial and 
error, based on the classification and the overall accuracy per class, the K index (or 
KIA6), as well as user7 and producer8 accuracies, assisted in deciding upon the fuzzy 
area of distribution for each tree species. As in previous classification processes, a 
nearest neighbour feature space was created with some additional parameters taken 
into account, namely brightness for the Landsat imagery and Standard Deviation for 
the mean value of particular bands of the MNF transformed Hyperion and CASI 
imagery. 

The limits, left and right of the function are based on the range of the vector data as 
extrapolated from the GDEM in relation to the ground sampling (see table 10). 
Depending on producer and user accuracies, the range was restricted or loosened 
and several classification trials were carried out, as too reduce conflict between 
classes during classification at a minimum. This process gave rise to a best possible 
classification result, presented in the following sections. 

Figure 57, below shows an example of the form of membership function entered for 
the elevation range of a class (in this case, beech) for fuzzy analysis based 
classification for the Landsat imagery. 

 

                                                             
6 Reflects the difference between actual agreement and the agreement expected by chance. Kappa of 
0.85 means there is 85% better agreement than by chance alone (Congalton, 1991). 
 
7 User’s accuracy corresponds to error of commission (inclusion). Calculated as: Number correctly 
identified in a given map class / Number claimed to be in that map class (Congalton, 1991). 
 
8 Producer’s accuracy corresponds to error of omission (exclusion). Calculated as: Number correctly 
identified in ref. plots of a given class / Number actually in that reference class  (Congalton, 1991). 
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Figure 57: Membership function example for fuzzy analysis based classification for the elevation (m) range of 
beech. 

 

As in figure 57, figure 58, depicts the range for the degree of slope for beech, as an 
example of the form of fuzzy analysis based classification.  
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Figure 58: Membership function example for fuzzy analysis based classification for the degree of slope (%) 
range of beech. 

 

For this part of the study we restricted our training in areas in those provided by 
group B categories. This is due to the high accuracy of classification they exhibited, 
as well as the straightforwardness in determining a spectral signature per species. 



132 

 

3.5.1 Landsat Imagery Object Based Image Analysis (OBIA) with Fuzzy 
Analysis Based on Physiographic Parameters 

 

The Landsat image was segmented with multi-resolution segmentation. The level 
used for classification was created with scale factor 20, colour factor 0.8 and 
compactness 0.5, as before. 

Figure 59, below, illustrate the classification result (class distribution based on 
spectral signatures, as well as restrictions based on the physiographic parameters of 
table 11, employing fuzzy logic). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 

 

 

Figure 59: Classification result for Landsat image after fuzzy analysis-based classification. 
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The accuracy results which were achieved after a process of trial-and-error in 
deciding upon the fuzzy range attributed to each physiographic parameter is 
presented in table 12, below. It should be noted that the Pinus sylvestris and Pinus 
pinea classes do not affect the overall accuracy and KIA score, as their distribution is 
limited in the area and thus sample size was not satisfactory to give rise to 
meaningful results for the spatial resolution of the Landsat imagery. 

 

Class Maquis Castanea Beech 
Pinus 
Brutia 

Pinus 
Sylvest. 

Pinus 
Maritime 

Pinus 
Nigra 

Pinus 
Pinea 

Oak 

Producer 0.82 0.17 0.14 0.29 0.00 0.30 0.27 0.00 0.94 
User 0.65 0.20 0.79 0.86 0.00 0.09 0.71 - 0.78 

KIA Per 
Class 

0.73 0.17 0.13 0.25 0.00 0.28 0.27 0.00 0.85 

Overall 
Accuracy 

0.73 

KIA 0.56 
 

Table 12: Fuzzy analysis-based classification accuracy assessment for the Landsat image. 

 

Upon comparison with the classification accuracy results listed in appendix V (see 
results for Group B classes); we observe a slight drop in the KIA accuracy, as well as 
for the classes Pinus brutia and Beech. However, other classes, such as Castanea (not 
present in the classification based on spectral signatures alone) were present in this 
classification (mainly due to the additional samples taken), while Pinus maritime 
showed great improvement, as a class. Thus, even though the overall result for 
accuracy is worst, more classes are present and due to the limited number of 
samples available the accuracy drops, as a result of insufficient training areas to 
create a spectral signature for certain species, which are known to be present from 
field studies.  

Two additional indices have been employed for the classification evaluation, 
Classification Stability and Best Classification Result. The Classification Stability 
concerns a statistic type used for accuracy assessment and is depicted in figure 60, 
while the values for each class are listed in table 13. It is a measure for conflict 
between classes during the classification process. The difference between the best 
and the second best class assignment is calculated as a percentage. The statistical 
output displays basic statistical operations (number of image objects, mean, 
standard deviation, minimum value and maximum value) performed on the best-to-
second values per class (eCognition Definiens Developer 7 Userguide, 2007). 
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Figure 60: Classification Stability for the Landsat image after entering a fuzzy range for physiographic 
parameters. Red shows areas with high conflict between classes, followed by yellow and green for more stable 
classification results successively. 

 
From the mapped Classification Stability, illustrated in figure 60, we conclude that 
the classification stability is low. Classes with a wide distribution, such as Maquis, 
Pinus brutia and Oak vary in stability, with Maquis representing a particularly 
unstable class (see SD in table 13).  
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Class Objects Mean SD Minimum Maximum 

Maquis 35104.00 0.27 0.28 0.00 0.94 
Castanea 1405.00 0.03 0.03 0.00 0.21 

Beech 19084.00 0.06 0.06 0.00 0.95 
PinusBrutia 25426.00 0.06 0.06 0.00 0.35 

PinusSylvestris 2823.00 0.02 0.02 0.00 0.14 
PinusMaritime 1739.00 0.04 0.03 0.00 0.10 

PinusNigra 1752.00 0.02 0.03 0.00 0.23 
PinusPinea 0.00 

    
Oak 28424.00 0.05 0.07 0.00 0.76 

 

Table 13: Classification Stability per class for the Landsat imagery after fuzzy analysis-based classification. 

The Best Classification Result is another form of statistical analysis for evaluating 
classification accuracy (see figure 61) and displays a statistic type used for accuracy 
assessment. It addresses the issue of whether a particular segment has been 
assigned to a class well suited to the spectral signature of each tree category and the 
respective parameters. The statistical output for the best classification result is 
evaluated per class. Basic statistical operations are performed on the best 
classification result of the image objects assigned to a class (number of image 
objects, mean, standard deviation, minimum value and maximum value) (eCognition 
Definiens Developer 7 Userguide, 2007). 
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Figure 61: Best classification result for the Landsat image after entering a fuzzy range for physiographic 
parameters. Red shows areas with high conflict between classes, followed by yellow and green for more stable 
classification results successively. 

 

Figure 61, representing a map for the Best Classification Result statistic shows that 
most segments have been attributed to a satisfactory degree to each class. Again 
Maquis, constitutes a class, which despite its wide distribution may be of high 
conflict with other classes and is followed by Pinus maritime, which is not surprising, 
considering the likelihood of conflict between Pinus species with a restricted 
distribution in the area. All other classes, which are present in this classification have 
scored relatively well. 
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Class Objects Mean SD Minimum Maximum 

Maquis 35104.00 0.73 0.26 0.10 1.00 
Castanea 1405.00 0.93 0.07 0.47 0.99 

Beech 19084.00 0.81 0.22 0.10 1.00 
PinusBrutia 25426.00 0.81 0.19 0.10 1.00 

PinusSylvestris 2823.00 0.93 0.07 0.26 1.00 
PinusMaritime 1739.00 0.75 0.21 0.12 0.99 

PinusNigra 1752.00 0.92 0.10 0.11 1.00 
PinusPinea 0.00 

    
Oak 28424.00 0.92 0.13 0.10 1.00 

 

Table 14: Best Classification result per class for the MNF transformed CASI image after fuzzy analysis-based 
classification. 
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3.5.2 MNF Transformed Hyperion Object Based Image Analysis (OBIA) with 
Fuzzy Analysis Based on Physiographic Parameters 

 
The parameters for distribution in relation to the terrain of Taxiarchis forest 
(elevation and slope), as presented in table 11, were entered for each individual 
class in order to improve classification. As before, a process of trial and error, based 
on the classification the overall accuracy per class, the K index, as well as user and 
producer accuracies, assisted in deciding upon the fuzzy area of distribution for each 
tree species. As in previous classification processes, a nearest neighbour feature 
space was created with some additional parameters taken into account, namely 
brightness and Standard Deviation for Layers 4-11. SD for layers 1-3 was not taken 
into account due to high noise observed visually. 

The MNF transformed Hyperion image was segmented with multi-resolution 
segmentation. The level used for classification was created with scale factor 10, 
colour factor 0.8, compactness 0.5. 

Figure 62, below, illustrates the classification result (class distribution based on 
spectral signatures, as well as restrictions based on the physiographic parameters of 
table 11, employing fuzzy logic). 

For all classification results illustrated below, one should refer to the colour key of 
figure 21. 
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Figure 62: Classification result for MNF transformed Hyperion image after fuzzy analysis-based classification. 

 

The accuracy results which were achieved after a process of trial-and-error in 
deciding upon the fuzzy range attributed to each physiographic parameter is 
presented in table 15, below. It should be noted that the Pinus sylvestris class does 
not affect the overall accuracy and KIA score, as its distribution is limited in the area 
and thus sample size was not satisfactory to give rise to meaningful results for the 
spatial resolution of the Landsat imagery. 

Class 
Pinus 

Sylves. 
Maquis Castanea Beech 

Pinus 
Brutia 

Pinus 
Maritime 

Pinus 
Nigra 

Pinus 
Pinea 

Oak 

Producer 0.00 0.81 0.88 0.39 0.58 0.93 0.69 1.00 0.58 
User - 0.64 0.08 0.66 0.68 0.15 0.16 0.02 0.85 

KIA Per 
Class 

0.00 0.71 0.88 0.36 0.52 0.92 0.66 1.00 0.37 

Overall 
Accuracy 

0.63 

KIA 0.49 
 

Table 15: Fuzzy analysis-based classification accuracy assessment for the MNF transformed Hyperion image. 
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Upon comparison with the classification accuracy results listed in appendix V (see 
results for Group B classes, MNF results), we observe a significant, but not large drop 
in both the overall accuracy and the K index (KIA). However, the current 
classification, with the exception of the Pinus sylvestris class, includes many more 
classes and thus gives us a better tool for evaluating the biodiversity of the area.  

The Classification Stability, as a measure for conflict between classes during the 
classification process, shows much reduced conflict in relation to the Landsat result 
(see figure 59), with the red areas (of high conflict) being less extensive and patched.  

 

 

Figure 63: Classification stability for the MNF transformed Hyperion image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by yellow and green 
for more stable classification results successively. 

 

Indeed, looking at table 16, we observe that Classification Stability per class is quite 
high in all classes except in the cases of the Pinus pinea and Castanea classes, both 
classes with limited distribution and samples, thus with a relatively inaccurate 
spectral signature, which again proves to be a defining factor in classification 
accuracy. 
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Class Objects Mean SD Minimum Maximum 

Maquis 963.00 0.48 0.27 0.00 0.94 
Castanea 30.00 0.07 0.09 0.00 0.46 

Beech 132.00 0.14 0.15 0.00 0.75 
PinusBrutia 245.00 0.14 0.13 0.00 0.76 

PinusSylvestris 0.00 
    

PinusMaritime 77.00 0.10 0.11 0.00 0.48 
PinusNigra 191.00 0.14 0.14 0.00 0.65 
PinusPinea 24.00 0.06 0.04 0.00 0.20 

Oak 938.00 0.16 0.12 0.00 0.78 
 

Table 16: Classification Stability per class for the MNF transformed Hyperion image after fuzzy analysis-based 
classification. 

 

The Best Classification Result, addressing the issue of whether a particular segment 
has been assigned to a class well suited to the spectral signature of each tree 
category and the respective parameters, is again improved in the Hyperion in 
comparison to the Landsat imagery. Figure 63 shows a very limited distribution of 
red patches (representing a questionable result) with most area being covered in 
green. 
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Figure 64: Best classification result for the MNF transformed Hyperion image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by yellow and green 
for more stable classification results successively. 

 
According to table 17, all classes scored very high for the Best Classification Result 
statistic, which shows that classification of most segments has a high probability of 
being accurate for the MNF transformed Hyperion image. 

 

Class Objects Mean SD Minimum Maximum 

Maquis 963.00 0.69 0.23 0.11 0.99 
Castanea 30.00 0.45 0.17 0.11 0.99 

Beech 132.00 0.44 0.18 0.10 0.98 
PinusBrutia 245.00 0.54 0.18 0.10 0.96 

PinusMaritime 77.00 0.58 0.15 0.26 0.99 
PinusNigra 191.00 0.47 0.18 0.11 0.99 
PinusPinea 24.00 0.64 0.22 0.27 0.99 

Oak 938.00 0.51 0.17 0.10 1.00 
 

Table 17: Best Classification Result per class for the MNF transformed CASI image after fuzzy analysis-based 
classification. 
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3.5.3 MNF Transformed CASI 2m Spatial Resolution Object Based Image 
Analysis (OBIA) with Fuzzy Analysis Based on Physiographic Parameters 
 

 The parameters for distribution in relation to the terrain of Taxiarchis forest 
(elevation and slope), as presented in table 11, were entered for each individual 
class in order to improve classification. As before, a process of trial and error, based 
on the classification the overall accuracy per class, the K index, as well as user and 
producer accuracies, assisted in deciding upon the fuzzy area of distribution for each 
tree species. As in previous classification processes, a nearest neighbour feature 
space was created with some additional parameters taken into account, namely 
brightness and Standard Deviation for Layers 2-6. Layer 1 SD was not taken into 
account due to high noise observed visually. 

 

 

Table 18: Classification result for MNF transformed CASI image after fuzzy analysis-based classification. 
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The accuracy of the classification for the MNF transformed CASI after entering 
physiographic restrictions, according to a fuzzy-based logic, is considerably lower (by 
1.2 for Overall Accuracy and 1.4 for KIA) in comparison to the result based on 
spectral signatures (see appendix V). Most classed represented have risen in 
accuracy (looking at KIA per class), including Maquis, Castanea (with a great increase 
in accuracy), Pinus maritima (with a great increase in accuracy), Pinus nigra, Pinus 
pinea (with great increase in accuracy). However, the remaining classes had dropped 
considerably. 

 

Class Maquis Castanea Beech Pinus 
Brutia 

Pinus 
Sylvestris 

Pinus 
Maritime 

Pinus 
Nigra 

Pinus 
Pinea Oak 

Producer 0.72 0.25 0.44 0.71 0.41 0.52 0.38 0.90 0.74 

User 0.74 0.10 0.60 0.79 0.04 0.09 0.42 0.06 0.86 

KIA Per 
Class 0.62 0.25 0.41 0.65 0.40 0.49 0.37 0.90 0.57 

Overall Accuracy 0.71 

KIA 0.58 
 
Table 19: Fuzzy analysis-based classification accuracy assessment for the MNF transformed CASI image. 

 

The Classification Stability, concerning conflict between classes during the 
classification process, as depicted in figure 65 is better than the Landsat image, but 
worst in comparison to the MNF transformed Hyperion imagery, with extensive red 
patches. 
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Figure 65: Classification Stability for the MNF transformed CASI image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by yellow and green 
for more stable classification results successively. 

 
As shown in table 19, the classes with particularly low stability include Castanea, 
Pinus sylvestris, Pinus maritime, Pinus nigra and Pinus pinea. This could be attributed 
to both their similarities in spectral signature, as well as their similarities in 
distribution (see table 11). Main dominant species, such as Oak, Pinus brutia, Beech 
and Maquis were found quite stable for the MNF transformed CASI imagery. 
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Class Objects Mean SD Minimum Maximum 

Maquis 2115.00 0.20 0.25 0.00 0.96 
Castanea 25.00 0.12 0.09 0.00 0.29 

Beech 280.00 0.14 0.14 0.00 0.73 
PinusBrutia 861.00 0.08 0.08 0.00 0.60 

PinusSylvestris 206.00 0.06 0.04 0.00 0.24 
PinusMaritime 490.00 0.07 0.07 0.00 0.28 

PinusNigra 156.00 0.05 0.05 0.00 0.30 
PinusPinea 72.00 0.30 0.13 0.01 0.42 

Oak 2949.00 0.13 0.10 0.00 0.98 
Other 1105.00 0.43 0.33 0.00 1.00 

 

Table 20: Classification Stability per class for the MNF transformed CASI image after fuzzy analysis-based 
classification. 

 

The Best Classification Result, as illustrated in figure 65, with values tabulated in 
table 21, shows excellent results, meaning the confidence for attributing each 
segment to a particular class is exceptionally high (almost 100%). 
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Figure 66: Best classification result for the MNF transformed CASI image after entering a fuzzy range for 
physiographic parameters. Red shows areas with high conflict between classes, followed by yellow and green 
for more stable classification results successively. 

 

Class Objects Mean SD Minimum Maximum 

Maquis 2115.00 0.79 0.14 0.50 0.99 
Castanea 25.00 0.70 0.09 0.54 0.99 

Beech 280.00 0.74 0.12 0.50 0.99 
PinusBrutia 861.00 0.84 0.12 0.50 1.00 

PinusSylvestris 206.00 0.72 0.13 0.50 1.00 
PinusMaritime 490.00 0.84 0.15 0.52 0.99 

PinusNigra 156.00 0.80 0.12 0.51 0.99 
PinusPinea 72.00 0.90 0.12 0.50 0.99 

Oak 2949.00 0.82 0.12 0.50 1.00 
Other 1105.00 0.71 0.16 0.50 1.00 

 

Table 21: Best Classification result per class for the MNF transformed CASI image after fuzzy analysis-based 
classification. 
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3.6 Biodiversity Index 
 

Mapping biodiversity in Taxiarchis University Forest, by calculating an index for the 
diversity of forest trees was the final aim of this study. Through this section, the 
potential of remote sensing in evaluating the quality, disturbance and possible 
management needs of a particular ecosystem is demonstrated.  The MNF 
transformed CASI image with 2 m spatial resolution (Group B categories) was used in 
this section, due to the fact it provided the best classification accuracy results in 
comparison to the TTA mask. 

For this part of the study we restricted our training in areas in those provided by 
group B categories. This is due to the high accuracy of classification they exhibited, 
as well as the straightforwardness in determining a spectral signature per species.  

 

3.6.1 Simpson’s Diversity Index 
 

A level was created for the purpose of estimating the biodiversity of the area. The 
MNF transformed CASI image, which was selected for its excellent accuracy scores 
and classification stability, was segmented with multi-resolution segmentation. The 
level used for estimating Simpson’s Diversity Index was created with scale factor 
100, colour factor 0.9, compactness 1. For the segmentation only the Elevation 
feature of the GDEM was considered (so that this level is independent of spectral 
features). 

The two levels, which were generated, are illustrated in figure 67, below. The 
biodiversity level, whose scale is double that of the tree distribution level, takes into 
consideration for the segmentation process only the elevation of the GDEM, so the 
segments are created irrespective of the forest ecosystem composition. The tree 
distribution level takes into consideration, as in previous projects, the 6 MNF 
transformed CASI (2 m spatial resolution) bands and so does the Nearest Neighbour 
classification process, together with brightness (bands 2-6), Standard Deviation (SD) 
(bands 2-6) and physiographic-parameter-based fuzzy analysis, as discussed in 
chapter 3.5.3. The classes are divided into two mother categories based on their 
Normalized Difference Vegetation Index (NDVI9). 

                                                             
9 The NDVI is a simple graphical indicator that can be used to analyse remote sensing measurements 
and assess whether the target being observed contains live green vegetation or not. The formula used 
is as follows: NDVI = (NIR - Red) / (NIR + Red). 
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Figure 67: Illustration of the two levels used in the project for estimating Simpson's biodiversity index. 

 

The formula index used for estimating the species richness per segment is the 
following: 
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Where S, is the area coverage (ha) of each forest tree species (community richness) 
and Pi the i-th species’ area cover within each segment. The value of the index 
depends both on the richness of the forest community, as well as the uniformity of 
the distribution of those species. Consequently, for a specific species richness, D 
increases with the uniformity of the forest community (Begon et al., 1996). 

Figure 68, illustrates the formula, as was entered in the eCognition Developer 
software, adapted appropriately. The Relative Area of each class was used, while the 
Relative Area of the Impervious class was subtracted, so that it is not accounted for, 
as it does not concern us for the calculation of this index (rocky areas may show high 
diversity in forest tree species, but are not likely to be uniformly distributed and thus 
those areas are not likely to score high in any case). 
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Figure 68: Simpson's index estimation formula, as entered in the eCognition software. 

 

In figure 69, we see the distribution of Simpson’s Diversity Index. The darker a patch 
is, the more biodiverse it is considered, with a vibrant and competitive community of 
forest trees. The darker a patch is, the less likely it is for a particular class or tree 
species to be dominant and thus the entire forest community is more likely to be 
richer on all levels of life (including living organisms such as mammals, reptiles, 
insects, microorganisms, fungi etc.). The implications for all forest organisms are 
quite significant and may lead to the identifications of patches within a forest 
ecosystem of particular interest for conservation and management efforts. 
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Figure 69: Simpson’s diversity index. Darker areas have scored higher than more lightly coloured areas, while 
the red area represents a patch where the index could not be calculated due to the absence of vegetation. 

 

Figure 70 shows Simpson’s Diversity Index plotted against elevation (or height), 
based on the GDEM data. We see that forest tree diversity in the Taxiarchis forest is 
independent of elevation. 

One should note that the accuracy of the biodiversity map (see figure 69) directly 
connected to the forest species classification accuracy. 
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Figure 70: 2D Features space plot of elevation / height (m) against Simpson's Diversity Index. 
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4. Discussion 
 

After analysing a variety of satellite and aerial imagery for Taxiarchis forest, by using 
the vector data, acquired from field sampling, it was possible to select the imagery 
providing the most accurate distribution for forest trees. Our imagery included 
multispectral data provided by satellites, such as Landsat and GeoEye, as well as 
hyperspectral data provided by Hyperion Satellite, as well as aerial CASI imagery. 

The consecutive process concerned the satellite and aerially derived data, Hyperion 
and CASI respectively, which had their hyperspectral space reduced, using two 
feature extraction methods, PCA and MNF and one feature selection method based 
on the correlation between class spectral signatures along the spectrum. The PCA 
method did not give good results in comparison to other methods. Rocchini et al. 
(2007) found that generally such studies are prone to underestimation of species 
richness, using PCA to reduce the number of bands. The imagery providing the best 
classification results and accuracy, which were selected for further processing were 
the MNF transformed CASI imagery of 2m spatial resolution, the Landsat imagery, 
while the MNF transformed Hyperion imagery, which did not show especially high 
accuracy, was useful in comparing the results it gave with the other two. Fuzzy 
analysis, based on the distribution of forest tree species along on altitudinal 
gradient, provided by the GDEM data, helped in reducing classification conflict 
between categories, but not overall accuracy.  
 
The process of creating a fuzzy spectrum for the distribution of each class in terms of 
elevation and slope was a process requiring time and careful observation. Despite 
the good quality of data available for the distribution of forest tree species along an 
altitudinal gradient (see tables 9 and especially 10), the results of this process were 
not satisfactory considering the time input required. This process could be improved 
by adding certain rules for the creation of a fuzzy set by systematically studying the 
classification accuracy responses to the different values entered and evaluated 
through trial-and-error. 

The MNF transform allowed for an extremely useful reduction in the amount of data 
being processed and consequently in processing time. It also proved to be a feature 
extraction method, which can successfully reduce noise, without loss of useful 
information for the classification of forest tree species using OBIA. Especially in the 
case of the CASI image, an image with 72 bands, constituting a very heavy file, the 
MNF transform increased the usability of the imagery, giving very good results. It 
should be noted that the CASI imagery had various radiometric flaws and yet gave 
very good results. This could be attributed to the spatial resolution of the imagery. 
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In OBIA the spatial resolution of a particular image should be less than the diameter 
of the target objects, which in our case were primarily forest tree crowns and 
secondarily forest patches. With a spatial resolution of 2m, the CASI imagery was 
proven more reliable for providing a stable and confident identification of tree 
species, while other images, such as the Landsat gave high accuracy, but low stability 
and confidence in the results after the fuzzy analysis. We thus conclude that spatial 
resolution should be at least 2m for an effective identification of tree species and 
patches, when using OBIA. Indeed, ideally, the size of the pixel should be matched so 
that it is one quarter to one third of the size of the smallest patches of habitat, 
species assemblage or individual tree being mapped. Some studies exploring the use 
of medium-resolution (few tens of metres) and high-resolution (a few metres) 
satellite images for assessing plant species richness (Rocchini et al., 2007) or for 
ecological prediction (Stickler & Southworth, 2008) found that Landsat performed 
better than IKONOS or QuickBird VHR satellites, across a range of measures of 
species richness (EEA & MNHN, 2014). The majority of studies on biodiversity focus 
on canopy tree species of a forested area, even though in recent years with the use 
of radar sensors or Lidar penetration on lower vegetative levels is feasible, as these 
are usually static and bulky organisms. However, various studies conclude that the 
distinction between tree species is particularly difficult and requires both good 
resolution of imaging and a suitable selection of a spectral signature area, which 
depends on the biochemical composition of an organism.  

A major problem that was faced at various points during the process of this study 
involved the vector data derived from field observations. This data corresponded to 
a great degree to mixed categories of forest tree species. Those categories 
representing forest communities, often found in a particular composition in the field, 
lacked in that they do not carry a definite spectral signature and result in high 
conflict between species during classification. In a future study, it may be useful for 
ground data to be collected in terms of individual tree species, as opposed to tree 
species combinations or communities, when the study is used for remote sensing 
purposes. Also the already weak spectral features of tree canopies might be further 
attenuated by canopy voids, as well as the superposition of emitted and reflected 
energy components (Ribeiro da Luz & Cowley, 2010) and thus a definite spectral 
signature is of high importance for the systemisation of forest monitoring efforts. 
Spectral unmixing methods would also be an appropriate technique for the type of 
data included in this study and constitutes a prospect for future research, even 
though OBIA was found to be a well suited approach for the identification of tree 
objects. 

Another prospect, with great promise for the continuation and improvement of the 
results of the present study, would be the identification of tree species’ spectral 
signatures in the laboratory, which could later be used for the analysis of remote 
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sensing data. This proposed methodology could also provide powerful insights on 
the differences and similarities between the chemical composition, reflectance and 
even health of the tree species. Separating species based on their spectral signatures 
and identifying them using the vector ground data would be the opposite approach 
of the one used in this study, but would be worth testing, as it could provide in-
depth insights on the reflectance and absorbance differences between tree species. 

The Simpson’s Diversity Index estimates provided results in the form of a map, which 
shows patches within the Taxiarchis forest of particularly high biodiversity. Forest 
trees may constitute habitats for a variety of living organisms, as well as forests 
altogether. Harvey et al. (2006) related tree cover to birds, butterflies and dung 
beetles while Dover et al. (2010) examined how the structure even within a single 
habitat can affect butterfly abundance and Hinsley and Bellamy (2000) show how 
bird assemblages, even within one habitat, a hedge, are related to management. 
Identification and prioritisation of places meriting protection has become more 
systematic and scientific. Several organizations (e.g., Conservation International, the 
World Wildlife Fund) have targeted places for global protection based upon the 
biodiversity they contain—so-called “hotspots” of species richness (Myers et al., 
2000). 

Biodiversity usually takes into consideration the rate of occurrence or the abundance 
of a species or of another ecological entity, along with the multitude of species 
within the sample. Biodiversity indices, such as the Shannon & Weaver and the 
Simpson Diversity Index combine species richness with a measure of the degree of 
heterogeneity in their distribution. When a natural landscape is fragmented, for 
example, the total biodiversity of a community may remain on the same levels or 
may increase, even though the integrity of the community may have been 
compromised due to the intrusion of alien-species, dislocating for example species 
which previously existed there. As an area gradually loses its character, global 
biodiversity is reduced (Noss, 1990). Thus the full interpretation of the biodiversity 
results give some preliminary conclusions related to the distribution of biodiversity 
in Taxiarchis forest, but should also be followed for management purposes by a field 
study. 

Considering the importance attributed to biodiversity, in terms of EU policy and 
legislation, as a criterion for ecosystem conservation, the implications of using 
remote sensing to identify patches of high biodiversity is of particular interest, 
because this could concern extremely large areas of forest or even other types of 
ecosystems. In patches or areas where high biodiversity is observed, conservation 
efforts could be intensified and more focused, ultimately providing protection for an 
entire ecosystem. In addition, buffer zones could be planned around areas 
considered ecologically valuable and of high biodiversity by using these remote 
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sensing tools. For example, the EU INSPIRE Directive, which aims to allow for the 
combination of spatial data and services from different sources across Europe in a 
consistent way, proposes that the EUNIS habitat classification be used as a common 
reference for habitats (EEA & MNHN, 2014). 

Remote sensing observations can complement and add to field observations as they 
deliver a synoptic view and offer the opportunity to provide consistent information 
in time and space (Nagendra, 2001; Nagendra & Rocchini, 2008; Vanden Borre et al., 
2011). It is a field that could assist greatly in conservation and monitoring efforts. 
However, existing remote sensing data are of limited coverage is still limited and this 
is an issue that should be addressed on a policy lever provided that remote sensing 
can play such a valuable role, as demonstrated by the present study. 

Habitat records can be linked to changes over time at the landscape level and to 
vegetation assemblages. Protocols are available and can be used to link extant 
habitat data across Europe (Bunce et al., 2013). A prospect opened by studies such 
as this involve the development of a methodology protocol building on existing 
information concerning the spectral behaviour of forest trees, as well as other 
ecosystem types. In our study such a protocol was partially developed, as discussed 
previously and concerns a process of determining the best accuracy for the existing 
remote sensing data, reducing bands through band extraction and selection 
methods, with the MNF method, as well as the Spectral-Signature-Correlation 
method showing the most promise and applying fuzzy analysis for the identification 
of tree species. 

In most cases, the accuracy of classification, which is achieved for the identification 
of tree species using remote sensing data, varies between 50% and 90% and thus our 
results are considered to have achieved a good level of accuracy. However, our 
results would have been significantly improved if the CASI imagery lacked the serious 
radiometric and geometric defects that it carried. Thus this study may be used as a 
starting point for adding to the sophistication and amelioration of the methods 
described here. 
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5. Conclusion 
 

After analysing a variety of satellite and aerial imagery for Taxiarchis forest, by using 
the vector data, acquired from field sampling, it was possible to select the imagery 
providing the most accurate distribution for forest trees for further analysis. Our 
imagery included multispectral data provided by satellites, such as Landsat and 
GeoEye, as well as hyperspectral data provided by Hyperion Satellite, as well as 
aerial CASI hyperspectral imagery. 

The images providing the best classification results and accuracy, which were 
selected for further processing were the MNF transformed CASI imagery of 2m 
spatial resolution, the Landsat imagery, while the MNF transformed Hyperion 
imagery, which did not show especially high accuracy, was useful in comparing the 
results it gave with the other two. Fuzzy analysis, based on the distribution of forest 
tree species along on altitudinal gradient, provided by the GDEM data, helped in 
reducing classification conflict between categories, but not overall accuracy. The 
process of creating a fuzzy spectrum for the distribution of each class in terms of 
elevation and slope was a process requiring time and careful observation. The MNF 
transform allowed for an extremely useful reduction in the amount of data being 
processed and consequently in processing time. It also proved to be a band 
extraction method, which can successfully reduce noise, without loss of useful 
information for the classification of forest tree species using OBIA. Especially in the 
case of the CASI image, with 72 bands, constituting a very heavy file, the MNF 
transform increased the usability of the imagery, giving very good results. With a 
spatial resolution of 2m, the CASI imagery was proven more reliable for providing a 
stable identification of tree species, while other images, such as the Landsat gave 
high accuracy, but low stability in the results after the fuzzy analysis. We thus 
conclude that spatial resolution should be at least 2m for an effective identification 
of tree species and patches, when using OBIA. In a future study, it may be useful for 
ground data to be collected in terms of individual tree species, as opposed to tree 
species combinations or communities, when the study is used for remote sensing 
purposes. In addition, a newly launched satellite, The ESA-developed Sentinel 
satellite – Sentinel-2A, providing data for land monitoring services and designed to 
be the base for a wide spectrum of applications reaching from agriculture to 
forestry, environmental monitoring to urban planning, could also provide imagery 
complementing the range of imagery used in this study. 

Simpson’s Diversity Index provided results in the form of a map, which shows 
patches within the Taxiarchis forest of particularly high biodiversity. Forest trees may 
constitute habitats for a variety of living organisms, as well as forests altogether. 
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Considering the importance attributed to biodiversity, in terms of EU policy and 
legislation, as a criterion for ecosystem conservation, the implications of using 
remote sensing to identify patches of high biodiversity is useful, because this could 
concern extremely large areas of forest or even other types of ecosystems. In 
patches or areas where high biodiversity is observed, conservation efforts could be 
intensified and more focused, ultimately providing protection for an entire 
ecosystem. In addition, buffer zones could be planned around areas considered 
ecologically valuable and of high biodiversity by using these remote sensing tools. 
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Appendix I: Landsat 8 receptors and bands for data collection 
 

Bands Name 
Spectral range 

(μm) 
Spatial resolution 

(m) 
Operational Land Imager (OLI) 

Band 1 Coastal Aerosol 0.43 – 0.45 30 
Band 2 Blue 0.45 – 0.51 30 
Band 3 Green 0.53 – 0.59 30 
Band 4 Red 0.64 – 0.67 30 
Band 5 Near-Infrared (NIR) 0.85 – 0.88 30 

Band 6 
Shortwave Infrared 

(SWIR) 1 
1.57 – 1.65 30 

Band 7 
Shortwave Infrared 

(SWIR) 2 
2.11 – 2.29 30 

Band 8 
Panchromatic 

(PAN) 
0.50 – 0.68 15 

Band 9 Cirrus 1.36 – 1.38 30 
Thermal Infrared Sensor (TIRS) 

Band 11 
Thermal Infrared 

(TIR) 1 
10.6 – 11.19 100 

Band 12 
Thermal Infrared 

(TIR) 2 
11.5 – 12.51 100 

Table 22: Spectral bands for Landsat 8 and their spatial resolution. 
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Appendix II: Hyperion Layer Mixing 
 

Band no 

HYPERION Spectral Coverage 
ALI Band 

Comparison 

Hyperion 
Band 

Average 
Wavelength 

(nm) 

Full Width at 
Half the 

Maximum 
FWHM (nm) 

Spatial 
Resolution 

(m) 

Not 
Calibrated 

(x) MS 

Pan  
(nm) 
480 - 
690 
(X) 

1   B8 426.8200 11.3871 30 X 

2 MS-1  B9 436.9900 11.3871 30 X 

3 MS-1  B10 447.1700 11.3871 30 X 

4 MS-1'  B11 457.3400 11.3871 30 X 

5 MS-1'  B12 467.5200 11.3871 30 X 

6 MS-1'  B13 477.6900 11.3871 30 X 

7 MS-1' X B14 487.8700 11.3784 30 X 

8 MS-1' X B15 498.0400 11.3538 30  

9 MS-1' X B16 508.2200 11.3133 30  

10  X B17 518.3900 11.2580 30  

11 MS-2 X B18 528.5700 11.1907 30  

12 MS-2 X B19 538.7400 11.1119 30  

13 MS-2 X B20 548.9200 11.0245 30  

14 MS-2 X B21 559.0900 10.9321 30  

15 MS-2 X B22 569.2700 10.8368 30  

16 MS-2 X B23 579.4500 10.7407 30  

17 MS-2 X B24 589.6200 10.6482 30  

18 MS-2 X B25 599.8000 10.5607 30  

19  X B26 609.9700 10.4823 30  

20  X B27 620.1500 10.4147 30  

21 MS-3 X B28 630.3200 10.3595 30  
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22 MS-3 X B29 640.5000 10.3188 30  

23 MS-3 X B30 650.6700 10.2942 30  

24 MS-3 X B31 660.8500 10.2856 30  

25 MS-3 X B32 671.0200 10.2980 30  

26 MS-3 X B33 681.2000 10.3349 30  

27   B34 691.3700 10.3909 30  

28   B35 701.5500 10.4592 30  

29   B36 711.7200 10.5322 30  

30   B37 721.9000 10.6004 30  

31   B38 732.0700 10.6562 30  

32   B39 742.2500 10.6933 30  

33   B40 752.4300 10.7058 30  

34   B41 762.6000 10.7276 30  

35 MS-4  B42 772.7800 10.7907 30  

36 MS-4  B43 782.9500 10.8833 30  

37 MS-4  B44 793.1300 10.9938 30  

38 MS-4  B45 803.3000 11.1044 30  

39   B46 813.4800 11.1980 30  

40   B47 823.6500 11.2600 30  

41   B48 833.8300 11.2824 30  

42 MS-4'  B49 844.0000 11.2822 30  

43 MS-4'  B50 854.1800 11.2816 30  

44 MS-4'  B51 864.3500 11.2809 30  

45 MS-4'  B52 874.5300 11.2797 30  

46 MS-4'  B53 884.7000 11.2782 30  

47   B54 894.8800 11.2771 30  

48   B55 905.0500 11.2765 30  

49   B77 912.4500 11.0457 30  
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50   B56 915.2300 11.2756 30 X 

51   B78 922.5400 11.0457 30  

52   B57 925.4100 11.2754 30 X 

53   B79 932.6400 11.0457 30  

54   B83 972.9900 11.0457 30 X 

55   B84 983.0800 11.0457 30  

56   B85 993.1700 11.0457 30 X 

57   B86 1003.3000 11.0457 30  

58   B87 1013.3000 11.0457 30 X 

59   B88 1023.4000 11.0451 30  

60   B89 1033.4900 11.0423 30 X 

61   B90 1043.5900 11.0372 30  

62   B91 1053.6900 11.0302 30  

63   B92 1063.7900 11.0218 30  

64   B93 1073.8900 11.0122 30  

65   B94 1083.9900 11.0013 30  

66   B95 1094.0900 10.9871 30  

67   B96 1104.1900 10.9732 30 X 

68   B97 1114.1900 10.9572 30  

69   B98 1124.2800 10.9418 30 X 

70   B99 1134.3800 10.9248 30  

71   B100 1144.4800 10.9065 30 X 

72   B101 1154.5800 10.8884 30  

73   B102 1164.6800 10.8696 30 X 

74   B103 1174.7700 10.8513 30  

75   B104 1184.8700 10.8335 30 X 

76   B105 1194.9700 10.8154 30  

77 MS-5'  B106 1205.0700 10.7979 30 X 
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78 MS-5'  B107 1215.1700 10.7822 30  

79 MS-5'  B108 1225.1700 10.7663 30 X 

80 MS-5'  B109 1235.2700 10.7520 30  

81 MS-5'  B110 1245.3600 10.7385 30 X 

82 MS-5'  B111 1255.4600 10.7270 30  

83 MS-5'  B112 1265.5600 10.7174 30 X 

84 MS-5'  B113 1275.6600 10.7091 30  

85 MS-5'  B114 1285.7600 10.7022 30 X 

86 MS-5'  B115 1295.8600 10.6970 30  

87   B116 1305.9600 10.6946 30 X 

88   B117 1316.0500 10.6937 30  

89   B118 1326.0500 10.6949 30 X 

90   B119 1336.1500 10.6996 30  

91   B133 1477.4300 11.0074 30 X 

92   B134 1487.5300 11.0414 30  

93   B135 1497.6300 11.0759 30  

94   B136 1507.7300 11.1108 30  

95   B137 1517.8300 11.1461 30  

96   B138 1527.9200 11.1811 30  

97   B139 1537.9200 11.2156 30  

98   B140 1548.0200 11.2496 30  

99 MS-5  B141 1558.1200 11.2826 30  

100 MS-5  B142 1568.2200 11.3146 30  

101 MS-5  B143 1578.3200 11.3460 30  

102 MS-5  B144 1588.4200 11.3753 30  

103 MS-5  B145 1598.5100 11.4037 30  

104 MS-5  B146 1608.6100 11.4302 30  

105 MS-5  B147 1618.7100 11.4538 30  
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106 MS-5  B148 1628.8100 11.4760 30  

107 MS-5  B149 1638.8100 11.4958 30  

108 MS-5  B150 1648.9000 11.5133 30  

109 MS-5  B151 1659.0000 11.5286 30  

110 MS-5  B152 1669.1000 11.5404 30  

111 MS-5  B153 1679.2000 11.5505 30  

112 MS-5  B154 1689.3000 11.5580 30  

113 MS-5  B155 1699.4000 11.5621 30  

114 MS-5  B156 1709.5000 11.5634 30  

115 MS-5  B157 1719.6000 11.5617 30  

116 MS-5  B158 1729.7000 11.5563 30  

117 MS-5  B159 1739.7000 11.5477 30  

118 MS-5  B160 1749.7900 11.5346 30  

119   B161 1759.8900 11.5193 30  

120   B162 1769.9900 11.5002 30  

121   B163 1780.0900 11.4789 30  

122   B164 1790.1900 11.4548 30  

123   B183 1981.8600 10.9230 30  

124   B184 1991.9600 10.9139 30  

125   B188 2032.3500 10.9013 30  

126   B189 2042.4500 10.8951 30  

127   B190 2052.4500 10.8854 30  

128   B191 2062.5500 10.8740 30  

129   B192 2072.6500 10.8591 30  

130 MS-7  B193 2082.7500 10.8429 30  

131 MS-7  B194 2092.8400 10.8242 30  

132 MS-7  B195 2102.9400 10.8039 30  

133 MS-7  B196 2113.0400 10.7820 30  
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134 MS-7  B197 2123.1400 10.7592 30  

135 MS-7  B198 2133.2400 10.7342 30  

136 MS-7  B199 2143.3400 10.7092 30  

137 MS-7  B200 2153.3400 10.6834 30  

138 MS-7  B201 2163.4300 10.6572 30  

139 MS-7  B202 2173.5300 10.6312 30  

140 MS-7  B203 2183.6300 10.6052 30  

141 MS-7  B204 2193.7300 10.5803 30  

142 MS-7  B205 2203.8300 10.5560 30  

143 MS-7  B206 2213.9300 10.5328 30  

144 MS-7  B207 2224.0300 10.5101 30  

145 MS-7  B208 2234.1200 10.4904 30  

146 MS-7  B209 2244.2200 10.4722 30  

147 MS-7  B210 2254.2200 10.4552 30  

148 MS-7  B211 2264.3200 10.4408 30  

149 MS-7  B212 2274.4200 10.4285 30  

150 MS-7  B213 2284.5200 10.4197 30  

151 MS-7  B214 2294.6100 10.4129 30  

152 MS-7  B215 2304.7100 10.4088 30  

153 MS-7  B216 2314.8100 10.4077 30  

154 MS-7  B217 2324.9100 10.4077 30  

155 MS-7  B218 2335.0100 10.4077 30  

156 MS-7  B219 2345.1100 10.4077 30  

157   B220 2355.2100 10.4077 30  

Table 23: Hyperion bands (USGS, 2011). 

Colour key:  

Spectral area of blue 
Spectral area of green 
Spectral area of red 
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Appendix III: Spectral bands of the CASI imagery 
 

1. CASI imagery without atmospheric correction 
 

Band 01 421.8nm+/- 3.8nm 

Band 02 429.5nm+/- 3.8nm 
Band 03 437.1nm+/- 3.8nm 
Band 04 444.8nm+/- 3.8nm 
Band 05 452.4nm+/- 3.8nm 
Band 06 460.0nm+/- 3.8nm 
Band 07 467.7nm+/- 3.8nm 
Band 08 475.3nm+/- 3.8nm 
Band 09 482.9nm+/- 3.8nm 
Band 10 490.5nm+/- 3.8nm 
Band 11 498.1nm+/- 3.8nm 
Band 12 505.7nm+/- 3.8nm 
Band 13 513.3nm+/- 3.8nm 
Band 14 520.8nm+/- 3.8nm 
Band 15 528.4nm+/- 3.8nm 
Band 16 536.0nm+/- 3.8nm 
Band 17 543.6nm+/- 3.8nm 
Band 18 551.1nm+/- 3.8nm 
Band 19 558.7nm+/- 3.8nm 
Band 20 566.3nm+/- 3.8nm 
Band 21 573.8nm+/- 3.8nm 
Band 22 581.4nm+/- 3.8nm 
Band 23 589.0nm+/- 3.8nm 
Band 24 596.5nm+/- 3.8nm 
Band 25 604.1nm+/- 3.8nm 
Band 26 611.6nm+/- 3.8nm 
Band 27 619.2nm+/- 3.8nm 
Band 28 626.8nm+/- 3.8nm 
Band 29 634.3nm+/- 3.8nm 
Band 30 641.9nm+/- 3.8nm 
Band 31 649.5nm+/- 3.8nm 
Band 32 657.0nm+/- 3.8nm 
Band 33 664.6nm+/- 3.8nm 
Band 34 672.2nm+/- 3.8nm 
Band 35 679.8nm+/- 3.8nm 
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Band 36 687.4nm+/- 3.8nm 
Band 37 695.0nm+/- 3.8nm 
Band 38 702.6nm+/- 3.8nm 
Band 39 710.2nm+/- 3.8nm 
Band 40 717.8nm+/- 3.8nm 
Band 41 725.4nm+/- 3.8nm 
Band 42 733.1nm+/- 3.8nm 
Band 43 740.7nm+/- 3.8nm 
Band 44 748.4nm+/- 3.8nm 
Band 45 756.0nm+/- 3.8nm 
Band 46 763.7nm+/- 3.8nm 
Band 47 771.4nm+/- 3.8nm 
Band 48 779.1nm+/- 3.8nm 
Band 49 786.8nm+/- 3.9nm 
Band 50 794.5nm+/- 3.9nm 
Band 51 802.2nm+/- 3.9nm 
Band 52 809.9nm+/- 3.9nm 
Band 53 817.7nm+/- 3.9nm 
Band 54 825.4nm+/- 3.9nm 
Band 55 833.2nm+/- 3.9nm 
Band 56 841.0nm+/- 3.9nm 
Band 57 848.8nm+/- 3.9nm 
Band 58 856.6nm+/- 3.9nm 
Band 59 864.4nm+/- 3.9nm 
Band 60 872.3nm+/- 3.9nm 
Band 61 880.1nm+/- 3.9nm 
Band 62 888.0nm+/- 3.9nm 
Band 63 895.9nm+/- 4.0nm 
Band 64 903.8nm+/- 4.0nm 
Band 65 911.7nm+/- 4.0nm 
Band 66 919.7nm+/- 4.0nm 
Band 67 927.6nm+/- 4.0nm 
Band 68 935.6nm+/- 4.0nm 
Band 69 943.6nm+/- 4.0nm 
Band 70 951.6nm+/- 4.0nm 
Band 71 959.7nm+/- 4.0nm 
Band 72 967.7nm+/- 4.0nm 

 

Table 24: Bands and bandwidths of CASI imagery without atmospheric corrections. 
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2. CASI imagery with atmospheric correction (CASI-ATM) 
 

Band 01 421.8nm+/- 3.8nm 

Band 02 429.5nm+/- 3.8nm 
Band 03 437.1nm+/- 3.8nm 
Band 04 444.8nm+/- 3.8nm 
Band 05 452.4nm+/- 3.8nm 
Band 06 460.0nm+/- 3.8nm 
Band 07 467.7nm+/- 3.8nm 
Band 08 475.3nm+/- 3.8nm 
Band 09 490.5nm+/- 3.8nm 
Band 10 498.1nm+/- 3.8nm 
Band 11 505.7nm+/- 3.8nm 
Band 12 513.3nm+/- 3.8nm 
Band 13 520.8nm+/- 3.8nm 
Band 14 528.4nm+/- 3.8nm 
Band 15 536.0nm+/- 3.8nm 
Band 16 543.6nm+/- 3.8nm 
Band 17 551.1nm+/- 3.8nm 
Band 18 558.7nm+/- 3.8nm 
Band 19 566.3nm+/- 3.8nm 
Band 20 573.8nm+/- 3.8nm 
Band 21 581.4nm+/- 3.8nm 
Band 22 589.0nm+/- 3.8nm 
Band 23 596.5nm+/- 3.8nm 
Band 24 604.1nm+/- 3.8nm 
Band 25 611.6nm+/- 3.8nm 
Band 26 619.2nm+/- 3.8nm 
Band 27 626.8nm+/- 3.8nm 
Band 28 634.3nm+/- 3.8nm 
Band 29 641.9nm+/- 3.8nm 
Band 30 649.5nm+/- 3.8nm 
Band 31 657.0nm+/- 3.8nm 
Band 32 664.6nm+/- 3.8nm 
Band 33 672.2nm+/- 3.8nm 
Band 34 679.8nm+/- 3.8nm 
Band 35 687.4nm+/- 3.8nm 
Band 36 695.0nm+/- 3.8nm 
Band 37 702.6nm+/- 3.8nm 
Band 38 710.2nm+/- 3.8nm 
Band 39 717.8nm+/- 3.8nm 
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Band 40 725.4nm+/- 3.8nm 
Band 41 733.1nm+/- 3.8nm 
Band 42 740.7nm+/- 3.8nm 
Band 43 748.4nm+/- 3.8nm 
Band 44 756.0nm+/- 3.8nm 
Band 45 763.7nm+/- 3.8nm 
Band 46 771.4nm+/- 3.8nm 
Band 47 779.1nm+/- 3.8nm 
Band 48 786.8nm+/- 3.9nm 
Band 49 794.5nm+/- 3.9nm 
Band 50 802.2nm+/- 3.9nm 
Band 51 809.9nm+/- 3.9nm 
Band 52 817.7nm+/- 3.9nm 
Band 53 825.4nm+/- 3.9nm 
Band 54 833.2nm+/- 3.9nm 
Band 55 841.0nm+/- 3.9nm 
Band 56 848.8nm+/- 3.9nm 
Band 57 856.6nm+/- 3.9nm 
Band 58 864.4nm+/- 3.9nm 
Band 59 872.3nm+/- 3.9nm 
Band 60 880.1nm+/- 3.9nm 
Band 61 888.0nm+/- 3.9nm 
Band 62 895.9nm+/- 4.0nm 
Band 63 903.8nm+/- 4.0nm 
Band 64 911.7nm+/- 4.0nm 
Band 65 919.7nm+/- 4.0nm 
Band 66 927.6nm+/- 4.0nm 
Band 67 935.6nm+/- 4.0nm 
Band 68 943.6nm+/- 4.0nm 
Band 69 951.6nm+/- 4.0nm 
Band 70 959.7nm+/- 4.0nm 
Band 71 967.7nm+/- 4.0nm 
Band 72 shadow mask 

Table 25: CASI bands and bandwidths with atmospheric corrections. 
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Appendix IV: Tree species’ spectral signature correlation tables 
 

1. CASI 2m Spatial Resolution Imagery 
 

Band 
Pinus 

Halepensis 
Maquis 

Pinus 
Maritime 

Pinus 
Nigra 

Oak 
Pinus 
Brutia 

Beech 

452.4 
  

x x 
 

x x 
460.0 x x x x x x x 
467.7 x x x x x x x 
490.5 x 

 
x 

 
x 

 
x 

498.1 x 
 

x 
 

x x x 
551.1 

 
x x x 

 
x x 

672.2 x 
 

x x 
 

x x 
702.6 x 

     
x 

740.7 x 
   

x x x 
748.4 x 

 
x 

 
x x x 

756.0 x 
 

x x x x x 
763.7 x 

 
x 

 
x x x 

856.6 
   

x 
 

x 
 

864.4 x x x x x x x 
Table 26: Spectral bands where correlation between spectral signatures of tree species is significant (below 
98% for three or more correlations between classes). X denotes the classes for which each bandwidth is 
considered of importance relative to the information conveyed, based on this method. 
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2. Hyperion Imagery 
 

Band 
Pinus 

Halepensis 
Maquis 

Pinus 
Maritime 

Pinus 
Nigra 

Oak 
Pinus 
Brutia 

Beech 

508.22 
  

x x x 
 

x 

518.39 x x x x x x x 

528.57 x x x x x x x 

538.74 x x x x x x x 

548.92 x x x x x x x 

559.09 
   

x x 
  

671.02 x x x x x x x 

752.43 x x 
 

x x 
  

762.60 x x 
 

x x x x 

803.30 
 

x 
   

x 
 

823.65 
  

x 
   

x 

833.83 
  

x 
   

x 

1003.30 
 

x x 
   

x 

1013.30 x x x x x x x 

1023.40 x x x x x x x 

1033.49 x x x x x x x 

1043.59 x x x x x x x 

1053.69 x x x 
 

x x x 

1225.17 x 
 

x x x x x 

1235.27 x 
 

x 
 

x 
  

1558.12 x 
   

x 
 

x 

1568.22 x x x x x x x 

1578.32 x x x x x x x 

1588.42 x 
 

x 
 

x 
 

x 

1608.61 
  

x 
 

x 
 

x 

Table 27: Spectral bands where correlation between spectral signatures of tree species is significant (below 
98% for three or more correlations between classes). X denotes the classes for which each bandwidth is 
considered of importance relative to the information conveyed, based on this method. 
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Appendix V: Producer, User, KIA per Class and Overall Accuracy 
 

1. Group A Classification Accuracies 

 
 

All bands 

 
CASI 2m Casi 5m Casi 2m ATM 

Classes Prod. User KIA Prod. User KIA Prod. User KIA 
Maquis 0.47 0.56 0.38 0.44 0.46 0.33 0.39 0.44 0.28 
Maquis/ 
P.Brutia 

0 - 0 0 - 0 0 - 0 

Maquis/ 
Oak 

0.41 0.24 0.36 0.26 0.14 0.19 0.32 0.17 0.25 

Castanea 0 - 0 0 - 0 0 - 0 
Fir - - - - - - - - - 

Beech 0.23 0.34 0.21 0.13 0.34 0.11 0.20 0.30 0.18 
Beech/ 
P.Nigra 

0.05 0.18 0.05 0.03 0.10 0.03 0.05 0.25 0.05 

Beech/ 
Oak 

0.16 0.22 0.15 0.01 0.05 0 0.11 0.22 0.10 

P.Brutia 0.68 0.57 0.62 0.59 0.48 0.52 0.57 0.51 0.50 
P. 

Brutia/ 
Maquis 

0.22 0.28 0.20 0.30 0.18 0.26 0.29 0.20 0.26 

P. 
Brutia/ 

Oak 
0.14 0.20 0.11 0.06 0.12 0.04 0.10 0.18 0.07 

PinusSpp 0.59 0.27 0.59 0.12 0.07 0.12 0.40 0.08 0.40 
P. 

Halepensis 
0 - 0 0 - 0 0 - 0 

P. 
Maritime 

0.01 0.43 0.01 0 - 0 0.02 0.08 0.02 

P. 
Maritime/ 

Maquis 
0.28 0.24 0.27 0.07 0.06 0.06 0.15 0.15 0.15 

P.Nigra 0.29 0.38 0.28 0.17 0.14 0.16 0.17 0.12 0.16 
P.Nigra/ 
Beech 

0.05 0.12 0.05 0.03 0.04 0.03 0.02 0.03 0.01 

P.Nigra/ 
Beech/Oak 

0.28 0.08 0.28 0.14 0.02 0.13 0.26 0.08 0.26 
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P.Nigra/ 
Oak 

0.18 0.22 0.14 0.09 0.23 0.07 0.09 0.20 0.07 

P. 
Nigra/ 

Oak/Beech 
0 - 0 0 0 0 0 0 0 

P.Radiata 0 - 0 0 - 0 0 - 0 
Oak 0.68 0.59 0.53 0.66 0.55 0.48 0.60 0.52 0.39 
Oak/ 

Maquis 
0.16 0.27 0.13 0.09 0.20 0.06 0.13 0.21 0.09 

Oak/Beech 0.15 0.33 0.14 0.14 0.27 0.13 0.14 0.18 0.12 
Oak/ 

P.Brutia 
0.31 0.10 0.29 0.02 0.03 0.01 0.17 0.15 0.17 

Oak/ 
P.Nigra 

0.31 0.22 0.26 0.20 0.14 0.14 0.27 0.19 0.22 

Oak/P. 
Nigra/Beech 

0 - 0 0 - 0 0 - 0 

BareLand - - - - - - - - - 
Agricultural 

Area 
- - - - - - - - - 

Overall Accuracy 0.45 0.39 0.38 
KIA 0.35 0.27 0.26 

Table 28: Accuracy per class. User refers to errors caused by omission of pixels where the class of interest is 
present in the TTA mask based on ground sampling, while producer refers to errors caused by the inclusion of 
pixels to a specific class, classified as a different category in the TTA mask. 
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All bands 

 Landsat GeoEye Hyperion 
Classes Prod. User KIA Prod. User KIA Prod. User KIA 
Maquis 0.59 0.69 0.52 0.49 0.39 0.35 0.36 0.46 0.26 

Maquis/P.Brutia 0 - 0 0 - 0 0 - 0 
Maquis/Oak 0.42 0.33 0.38 0.41 0.22 0.35 0.38 0.15 0.31 

Castanea 0 - 0 0 - 0 0 - 0 
Fir 0 - 0 - 0 0 0 0 0 

Beech 0.24 0.34 0.21 0.29 0.40 0.27 0.20 0.34 0.18 
Beech/P.Nigra 0.13 0.09 0.12 0.07 0.23 0.07 0.03 0.48 0.03 

Beech/Oak 0.21 0.19 0.19 0.21 0.22 0.19 0.14 0.21 0.12 
P.Brutia 0.72 0.58 0.68 0.63 0.57 0.58 0.55 0.49 0.48 

P.Brutia/Maquis 0.29 0.27 0.27 0.24 0.22 0.22 0.34 0.33 0.32 
P.Brutia/Oak 0.28 0.28 0.25 0.23 0.20 0.19 0.19 0.20 0.16 

PinusSpp 0.16 0.11 0.15 0.44 0.32 0.44 0.32 0.24 0.32 
P.Halepensis 0 - 0 0 - 0 0 - 0 
P.Maritime 0.04 0.14 0.04 0.09 0.15 0.08 0.07 0.08 0.06 

P.Maritime/Maquis 0.24 0.26 0.24 0.29 0.19 0.28 0.36 0.22 0.35 
P.Nigra 0.34 0.23 0.33 0.29 0.26 0.28 0.24 0.29 0.23 

P.Nigra/Beech 0.15 0.23 0.14 0.13 0.19 0.12 0.19 0.19 0.18 
P.Nigra/Beech/Oak 0.16 0.22 0.16 0.35 0.13 0.35 0.14 0.14 0.14 

P.Nigra/Oak 0.30 0.35 0.25 0.15 0.32 0.12 0.10 0.22 0.07 
P.Nigra/Oak/Beech 0 - 0 0 - 0 0 - 0 

P.Radiata 0 - 0 0 - 0 0 - 0 
Oak 0.67 0.62 0.51 0.47 0.59 0.31 0.64 0.54 0.46 

Oak/Maquis 0.18 0.26 0.14 0.20 0.24 0.15 0.16 0.20 0.11 
Oak/Beech 0.18 0.20 0.16 0.13 0.22 0.11 0.12 0.25 0.11 

Oak/P.Brutia 0.18 0.15 0.17 0.22 0.13 0.21 0.16 0.13 0.15 
Oak/P.Nigra 0.29 0.23 0.25 0.33 0.19 0.28 0.30 0.24 0.26 

Oak/P.Nigra/Beech 0 - 0 0 - 0 0 - 0 
BareLand - - - - - - - - - 

AgriculturalArea - - - - - - - - - 
Overall Accuracy 0.49 0.39 0.39 

KIA 0.39 0.30 0.28 
Table 29: Accuracy per class for satellite data projects including all bands. User refers to errors caused by 
omission of pixels where the class of interest is present in the TTA mask based on ground sampling, while 
producer refers to errors caused by the inclusion of pixels to a specific class, classified as a different category in 
the TTA mask. 
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PCA 

 Casi 5m Casi 2m ATM 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.40 0.46 0.30 0.39 0.44 0.28 

Maquis/P.Brutia 0 - 0 0 - 0 
Maquis/Oak 0.43 0.24 0.38 0.32 0.17 0.25 

Castanea 0 - 0 0 - 0 
Fir - - - - - 0 

Beech 0.25 0.32 0.23 0.20 0.30 0.18 
Beech/P.Nigra 0.08 0.22 0.08 0.05 0.25 0.05 

Beech/Oak 0.18 0.23 0.17 0.11 0.22 0.10 
P.Brutia 0.50 0.52 0.44 0.57 0.51 0.50 

P.Brutia/Maquis 0.34 0.34 0.32 0.29 0.20 0.26 
P.Brutia/Oak 0.29 0.28 0.25 0.10 0.18 0.07 

PinusSpp 0.48 0.22 0.48 0.40 0.08 0.40 
P.Halepensis 0 - 0 0 - 0 
P.Maritime 0.05 0.13 0.05 0.02 0.08 0.02 

P.Maritime/Maquis 0.25 0.20 0.24 0.15 0.15 0.15 
P.Nigra 0.31 0.20 0.29 0.17 0.12 0.16 

P.Nigra/Beech 0.08 0.18 0.08 0.02 0.03 0.01 
P.Nigra/Beech/Oak 0.57 0.13 0.57 0.26 0.08 0.26 

P.Nigra/Oak 0.14 0.25 0.12 0.09 0.20 0.07 
P.Nigra/Oak/Beech 0 - 0 0 - 0 

P.Radiata 0 - 0 0 - 0 
Oak 0.62 0.55 0.44 0.60 0.52 0.39 

Oak/Maquis 0.16 0.29 0.12 0.13 0.21 0.09 
Oak/Beech 0.21 0.22 0.19 0.14 0.18 0.12 

Oak/P.Brutia 0.37 0.19 0.36 0.17 0.15 0.17 
Oak/P.Nigra 0.34 0.25 0.30 0.27 0.19 0.22 

Oak/P.Nigra/Beech 0 - 0 0 - 0 
BareLand - - - - - - 

AgriculturalArea - - - - - - 
 

      
Overall Accuracy 0.41 0.38 

KIA 0.31 0.26 
Table 30: Accuracy per class for PCA projects. User refers to errors caused by omission of pixels where the class 
of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused by the 
inclusion of pixels to a specific class, classified as a different category in the TTA mask. 
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PCA 

 Casi 5m ATM Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.39 0.47 0.28 0.70 0.59 0.62 

Maquis/P.Brutia 0 - 0 0 - 0 
Maquis/Oak 0.43 0.24 0.37 0.28 0.14 0.21 

Castanea 0 - 0 0 - 0 
Fir 0 0 0 0 0 0 

Beech 0.25 0.32 0.23 0.12 0.15 0.09 
Beech/P.Nigra 0.08 0.26 0.08 0.09 0.09 0.08 

Beech/Oak 0.19 0.23 0.17 0 0 0 
P.Brutia 0.51 0.50 0.44 0.23 0.39 0.17 

P.Brutia/Maquis 0.34 0.35 0.32 0.31 0.24 0.29 
P.Brutia/Oak 0.27 0.26 0.24 0.12 0.16 0.09 

PinusSpp 0.46 0.25 0.46 0 - 0 
P.Halepensis 0 - 0 0 - 0 
P.Maritime 0.05 0.13 0.05 0 - 0 

P.Maritime/Maquis 0.25 0.19 0.24 0.26 0.28 0.26 
P.Nigra 0.29 0.19 0.28 0.19 0.18 0.18 

P.Nigra/Beech 0.09 0.15 0.09 0.07 0.11 0.06 
P.Nigra/Beech/Oak 0.62 0.12 0.62 0 - 0 

P.Nigra/Oak 0.14 0.28 0.12 0.01 0.03 -0.01 
P.Nigra/Oak/Beech 0 - 0 0 - 0 

P.Radiata 0 - 0 0 - 0 
Oak 0.62 0.54 0.44 0.68 0.50 0.49 

Oak/Maquis 0.15 0.27 0.12 0.12 0.18 0.08 
Oak/Beech 0.21 0.22 0.19 0.04 0.05 0.02 

Oak/P.Brutia 0.39 0.18 0.38 0 - 0 
Oak/P.Nigra 0.34 0.24 0.29 0.17 0.11 0.12 

Oak/P.Nigra/Beech 0 - 0 0 - 0 
BareLand - - - - - - 

AgriculturalArea - - - - - - 
Overall Accuracy 0.41 0.39 

KIA 0.30 0.27 
Table 31: Accuracy per class for PCA projects. User refers to errors caused by omission of pixels where the class 
of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused by the 
inclusion of pixels to a specific class, classified as a different category in the TTA mask. 
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MNF 

 Casi 2m Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.43 0.51 0.33 0.59 0.67 0.52 

Maquis/P.Brutia 0 - 0 0 - 0 
Maquis/Oak 0.42 0.20 0.36 0.37 0.14 0.29 

Castanea 0 - 0 0 - 0 
Fir - - - - - - 

Beech 0.26 0.51 0.25 0.10 0.39 0.09 
Beech/P.Nigra 0.05 0.21 0.05 0 - 0 

Beech/Oak 0.25 0.19 0.23 0.40 0.23 0.38 
P.Brutia 0.65 0.56 0.60 0.76 0.51 0.71 

P.Brutia/Maquis 0.34 0.41 0.33 0.40 0.24 0.37 
P.Brutia/Oak 0.31 0.37 0.28 0.22 0.19 0.18 

PinusSpp 0.22 0.15 0.22 0 - 0 
P.Halepensis 0 - 0 0 - 0 
P.Maritime 0.02 0.04 0.02 0 - 0 

P.Maritime/Maquis 0.22 0.14 0.21 0 - 0 
P.Nigra 0.13 0.14 0.12 0 - 0 

P.Nigra/Beech 0.06 0.07 0.05 0 - 0 
P.Nigra/Beech/Oak 0 - 0 0 - 0 

P.Nigra/Oak 0.12 0.20 0.09 0 - 0 
P.Nigra/Oak/Beech 0 - 0 0 - 0 

P.Radiata 0 - 0 0 - 0 
Oak 0.67 0.62 0.52 0.66 0.60 0.51 

Oak/Maquis 0.18 0.27 0.14 0.16 0.17 0.10 
Oak/Beech 0.13 0.21 0.12 0 - 0 

Oak/P.Brutia 0.28 0.16 0.27 0.34 0.09 0.32 
Oak/P.Nigra 0.24 0.21 0.20 0.28 0.43 0.26 

Oak/P.Nigra/Beech 0 - 0 0 - 0 
BareLand - - - - - - 

AgriculturalArea - - - - - - 
Overall Accuracy 0.44 0.44 

KIA 0.34 0.35 
Table 32: Accuracy per class for MNF projects. User refers to errors caused by omission of pixels where the 
class of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused 
by the inclusion of pixels to a specific class, classified as a different category in the TTA mask. 
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Band selection based on spectral signatures 

 Casi 2m Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.42 0.51 0.32 0.54 0.47 0.43 

Maquis/P.Brutia 0 - 0 0 - 0 
Maquis/Oak 0.43 0.26 0.38 0.36 0.23 0.32 

Castanea 0 - 0 0 - 0 
Fir - - - 0 - 0 

Beech 0.28 0.38 0.26 0.22 0.26 0.19 
Beech/P.Nigra 0.07 0.28 0.07 0.11 0.19 0.11 

Beech/Oak 0.20 0.27 0.19 0.19 0.21 0.17 
P.Brutia 0.60 0.56 0.54 0.50 0.47 0.44 

P.Brutia/Maquis 0.33 0.38 0.31 0.26 0.27 0.24 
P.Brutia/Oak 0.29 0.31 0.26 0.19 0.18 0.16 

PinusSpp 0.60 0.30 0.60 0.15 0.10 0.14 
P.Halepensis 0 - 0 0 - 0 
P.Maritime 0.05 0.15 0.05 0.07 0.17 0.07 

P.Maritime/Maquis 0.32 0.18 0.31 0.39 0.25 0.39 
P.Nigra 0.31 0.22 0.30 0.21 0.19 0.20 

P.Nigra/Beech 0.08 0.16 0.08 0.11 0.21 0.11 
P.Nigra/Beech/Oak 0.67 0.20 0.67 0.11 0.12 0.11 

P.Nigra/Oak 0.19 0.31 0.16 0.11 0.23 0.08 
P.Nigra/Oak/Beech 0 - 0 0 - 0 

P.Radiata 0 - 0 0 - 0 
Oak 0.68 0.60 0.53 0.55 0.54 0.34 

Oak/Maquis 0.19 0.31 0.16 0.18 0.21 0.14 
Oak/Beech 0.26 0.28 0.24 0.14 0.26 0.13 

Oak/P.Brutia 0.30 0.14 0.29 0.17 0.13 0.16 
Oak/P.Nigra 0.35 0.24 0.30 0.27 0.20 0.23 

Oak/P.Nigra/Beech 0 - 0 0 - 0 
BareLand - - - - - - 

AgriculturalArea - - - - - - 
Overall Accuracy 0.45 0.39 

KIA 0.35 0.28 
Table 33: Accuracy per class for the band selection method based on spectral signatures of forest tree species. 
User refers to errors caused by omission of pixels where the class of interest is present in the TTA mask based 
on ground sampling, while producer refers to errors caused by the inclusion of pixels to a specific class, 
classified as a different category in the TTA mask. 
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2. Group B Classification Accuracies 
 

 
All bands 

 
Casi 2m Casi 5m Casi 2m ATM 

Classes Prod. User KIA Prod. User KIA Prod. User KIA 

Maquis 0.61 0.77 0.50 0.60 0.65 0.46 0.58 0.64 0.44 

Castanea 0 - 0 0 - 0 0 - 0 

Beech 0.29 0.37 0.26 0.19 0.53 0.17 0.24 0.40 0.21 

P.Brutia 0.77 0.71 0.71 0.65 0.65 0.58 0.63 0.64 0.55 

PinusSpp 0.59 0.23 0.59 0.12 0.09 0.12 0.40 0.11 0.40 

P.Maritime 0.01 0.58 0.01 0 - 0 0.02 0.08 0.02 

P.Nigra 0.31 0.41 0.30 0.17 0.11 0.15 0.17 0.14 0.15 

P.Pinea 0 - 0 0 - 0 0 - 0 

Oak 0.87 0.76 0.72 0.83 0.75 0.65 0.79 0.71 0.57 

Overall Accuracy 0.73 0.68 0.65 

KIA 0.59 0.51 0.48 

Table 34: Accuracy per class for Casi projects containing all bands. User refers to errors caused by omission of 
pixels where the class of interest is present in the TTA mask based on ground sampling, while producer refers 
to errors caused by the inclusion of pixels to a specific class, classified as a different category in the TTA mask. 
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All bands 

 Landsat GeoEye Hyperion 
Classes Prod. User KIA Prod. User KIA Prod. User KIA 

Maquis 0.70 0.82 0.62 0.69 0.53 0.51 0.65 0.60 0.52 

Castanea 0 - 0 0 - 0 0 - 0 

Beech 0.38 0.47 0.34 0.51 0.63 0.48 0.23 0.41 0.20 

P.Brutia 0.82 0.73 0.79 0.79 0.73 0.74 0.67 0.64 0.61 

PinusSpp 0.16 0.15 0.16 0.44 0.27 0.44 0.13 0.15 0.13 

P.Maritime 0.07 0.28 0.06 0.09 0.16 0.08 0.07 0.14 0.07 

P.Nigra 0.44 0.49 0.43 0.33 0.41 0.31 0.26 0.43 0.25 

P.Pinea 0 - 0 0 - 0 0 - 0 

Oak 0.87 0.81 0.73 0.65 0.79 0.44 0.75 0.73 0.50 

Overall Accuracy 0.77 0.66 0.66 

KIA 0.65 0.52 0.48 

Table 35: Accuracy per class for satellite data projects containing all bands. User refers to errors caused by 
omission of pixels where the class of interest is present in the TTA mask based on ground sampling, while 
producer refers to errors caused by the inclusion of pixels to a specific class, classified as a different category in 
the TTA mask. 
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PCA 

 Casi 5m Casi 2m ATM 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.57 0.65 0.43 0.59 0.65 0.45 

Castanea 0 - 0 0 - 0 
Beech 0.29 0.36 0.26 0.29 0.35 0.26 

P.Brutia 0.58 0.64 0.50 0.59 0.65 0.52 
PinusSpp 0.48 0.27 0.48 0.58 0.28 0.58 

P.Maritime 0.09 0.18 0.08 0.05 0.12 0.04 
P.Nigra 0.34 0.25 0.33 0.38 0.27 0.36 
P.Pinea 0 - 0 0 - 0 

Oak 0.80 0.71 0.58 0.80 0.73 0.60 
Overall Accuracy 0.65 0.66 

KIA 0.48 0.49 
Table 36: Accuracy per class for the PCA projects. User refers to errors caused by omission of pixels where the 
class of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused 
by the inclusion of pixels to a specific class, classified as a different category in the TTA mask. 

PCA 

 Casi 5m ATM Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.56 0.66 0.41 0.75 0.67 0.65 

Castanea 0 - 0 0 - 0 
Beech 0.29 0.36 0.26 0.22 0.43 0.19 

P.Brutia 0.58 0.61 0.50 0.44 0.49 0.35 
PinusSpp 0.46 0.29 0.46 0 - 0 

P.Maritime 0.05 0.12 0.05 0 - 0 
P.Nigra 0.34 0.25 0.32 0.22 0.65 0.22 
P.Pinea 0 - 0 0 - 0 

Oak 0.80 0.70 0.58 0.73 0.67 0.43 
Overall Accuracy 0.65 0.64 

KIA 0.47 0.44 
Table 37: Accuracy per class for the PCA projects. User refers to errors caused by omission of pixels where the 
class of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused 
by the inclusion of pixels to a specific class, classified as a different category in the TTA mask. 
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MNF 

 Casi 2m Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.75 0.74 0.65 0.76 0.63 0.66 

Castanea 0 - 0 0 - 0 
Beech 0.45 0.62 0.43 0.08 0.37 0.06 

P.Brutia 0.77 0.75 0.72 0.86 0.60 0.82 
PinusSpp 0.22 0.28 0.22 0 - 0 

P.Maritime 0.02 0.03 0.02 0 - 0 
P.Nigra 0.16 0.14 0.15 0 - 0 
P.Pinea 0 - 0 0 - 0 

Oak 0.82 0.81 0.67 0.72 0.80 0.50 
Overall Accuracy 0.75 0.69 

KIA 0.63 0.53 
Table 38: Accuracy per class for the MNF projects. User refers to errors caused by omission of pixels where the 
class of interest is present in the TTA mask based on ground sampling, while producer refers to errors caused 
by the inclusion of pixels to a specific class, classified as a different category in the TTA mask. 

Band selection based on spectral signatures 

 Casi 2m Hyperion 
Classes Prod. User KIA Prod. User KIA 
Maquis 0.60 0.71 0.47 0.62 0.60 0.49 

Castanea 0 - 0 0 - 0 
Beech 0.38 0.47 0.35 0.25 0.33 0.21 

P.Brutia 0.68 0.69 0.61 0.64 0.64 0.57 
PinusSpp 0.64 0.35 0.64 0.15 0.13 0.14 

P.Maritime 0.05 0.15 0.05 0.07 0.19 0.07 
P.Nigra 0.35 0.24 0.33 0.25 0.28 0.23 
P.Pinea 0 - 0 0 0 0 

Oak 0.83 0.75 0.66 0.73 0.71 0.46 
Overall Accuracy 0.70 0.64 

KIA 0.55 0.45 
Table 39: Accuracy per class for the band selection method based on spectral signatures of forest tree species. 
User refers to errors caused by omission of pixels where the class of interest is present in the TTA mask based 
on ground sampling, while producer refers to errors caused by the inclusion of pixels to a specific class, 
classified as a different category in the TTA mask. 



197 

 

Appendix VI: List of Tree Species Present in Taxiarchis 
University Forest 
 

a) Main forest tree species of economic value: 

1. Quercus frainetto  

2. Quercus petraea spp. medwediewii (Quercus dalechampii)  

3. Quercus pubescens  

4. Fagus moesiacae 

b) Secondary forest tree species of limited economic value: 

1. Acer campestre  

2. Acer platanoides  

3. Arbutus andrachnae 

4. Arbutus unedo  

5. Carpinus orientalis  

6. Castanea sativa, Castanea vesca  

7. Cornus mas  

8. Corylus avellana  

9. Erica arborea 

10. Erica verticillata 

11. Fraxinus ornus  

12. Ilex aquifolium  

13. Juglans regia  

14. Juniperus communis  

15. Juniperus oxycedrus  

16. Laurus nobilis  

17. Ostrya carpinifolia  
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18. Phillyrea media  

19. Pirus amygdaliformis  

20. Platanus orientalis  

21. Populus tremula  

22. Prunus avium  

23. Prunus spinosa  

24. Quercus ilex  

25. Pistacia terebinthus  

26. Quercus coccifera  

27. Sorbus torminalis  

28. Sorbus domestica  

29. Spartium junceum  

30. Tilia tomentosa  

31. Taxus baccata  

32. Ulmus Montana  

Introduced species, which were planted after major forest fires, are the following: 

a) Main forest tree species occupying large areas: 

1. Pinus nigra  

2. Pinus maritima 

3. Pinus brutia  

4. Pinus halepensis  

b) Secondary tree species, occupying limited areas:  

5. Abies borisii regis  

6. Cedrus atlantica  

7. Cupressus sempervirens v. orizontalis  

8. Pinus pinea  
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9. Pinus radiata  

10. Pseudotsuga menziesii  

11. Prunus avium  

12. Robinea pseudacacia 

13. Quercus borealis  

 

(Aristotle University of Thessaloniki, 2013) 
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Appendix VII: Tree Species, Common Names and Greek Names 
 

Name used in this 
study 

Species name Common name 
Common Greek 

name 

Beech Fagus moesiacae Balkan beech Οξιά η μοϊσιακή 

Castanea Castanea sativa Sweet chestnut Καστανιά 

Fir Abies borisii regis 
King Boris Fir, 
Bulgarian Fir 

Ελάτη 

Maquis Acer platanoides Norway maple 
Σφένδαμος 

πλατανοειδής 

PinusBrutia Pinus brutia 
Turkish pine, 

Calabrian pine 
Τραχεία Πεύκη 

PinusHalepensis Pinus halepensis 
Aleppo pine, 

Jerusalem pine 
Χαλέπιος Πεύκη 

PinusMaritime Pinus pinaster Maritime pine 
Παραθαλάσσια 

Πεύκη 

PinusNigra Pinus nigra Austrian pine Μαύρη Πεύκη 

PinusPinea Pinus pinea Stone pine Κουκουναριά 

PinusRadiata Pinus radiata Monteray pine Ραντιάτα 

PinusSylvestris Pinus sylvestris Scots pine Δασική Πεύκη 

Pseudotsuga 
Pseudotsuga 

menziesii 
Douglas fir Ψευδοτσούγκα 

Oak 
Querqus cerris 

(Querqus coccifera L.) 
Turkey oak Πουρνάρι - Πρίνος 

 

Table 40: Scientific and common names of tree species common in Taxiarchis University Forest. 


