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Περίληψη

Μελετάμε τη μέθοδο Lyapunov-Schmidt Reduction που ξεκίνησε από την πρωτοποριακή δουλειά
των Floer A., Weinstein A. [35] και μάλιστα εξελίχθηκε μέχρι που λύθηκε η εικασία του De Giorgi
για N = 9 διαστάσεις. Αναφέρουμε τη σχέση της μεθόδου με τις εξίσωσεις Allen-Cahn, NLS και τα
minimal surfaces, constant mean curvature surfaces αντίστοιχα.

Ιστορικά, υπάρχει πλούσιο υλικό από το έργο των De Giorgi [16], Del Pino, Kowalczyk, Wei, Felmer,
Pacard [25],[27],[28],[29], [30],[31],[32],[33],[34], [42], Ambrosetti, Malchiodi [3],[4],[5],[6],[7],[8],[9],[10],[11],
[40] Modica [41], Berestycki [15] και πολλών άλλων.



Abstract

We study the Lyapunov-Schmidt Reduction Method, that started from the pioneering work by Floer
and Weinstein [35] and evolved untill the De Giorgi conjecture was solved for N = 9 dimensions. The
relation of this method with the Allen-Cahn , NLS equations and minimal surfaces, constant mean
curvature surfaces respectively, is also mentioned.

Historically, there is a vast amount of work by De Giorgi [16], Del Pino, Kowalczyk, Wei, Felmer, Pac-
ard [25],[27],[28],[29], [30],[31],[32],[33],[34],[42], Ambrosetti, Malchiodi [3],[4],[5],[6],[7],[8],[9],[10],[11],[40]
Modica [41], Berestycki [15] and many other.
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Πρόλογος

Χωριζουμε την εργασια σε 3 κυρια μέρη.
Το Κεφάλαιο 1, που περιέχει μια εισαγωγή στη Γ - σύγκλιση με κάποια ιστορικά στοιχεία αλλά και

αρκετούς ορισμούς και ϑεωρήματα, βασικές έννοιες της ϑεωρίας αυτής, όπως επίσης και τη σύνδεση
με φαινόμενα αλλαγής φάσης.

Το Κεφαλαιο 2, στο οποιο κάνουμε μια εισαγωγή για την εξίσωση Allen-Cahn, όπου έχουμε tran-
sition layers, δείχνουμε ύπαρξη λύσης για κάθε ε, μέσω μεθόδων μεταβολών και έπειτα μελετάμε τη
συμπεριφορά όταν ε → 0 εφαρμόζοντας τη μέθοδο Lyapunov-Schmidt Reduction.

Το Κεφάλαιο 3, στο οποίο κάνουμε μια εισαγωγή για την εξίσωση NLS, όπου έχουμε spikes, τονί-
ζοντας τη πρωτοποριακή δουλειά των Floer A., Weinstein A. [35] που κατασκεύασαν μια ϑετική λύση
μέσω της μεθόδου Lyapunov-Schmidt Reduction.

Τέλος, στο παράρτημα κάνουμε μια ανασκόπηση της Lyapunov-Schmidt μεθόδου για ελλειπτικές
εξισώσεις και το πώς πηγε ιστορικα από την αναγωγή πεπερασμένης διάστασης σε άπειρης ώστε να
λύσει την εικασία του De Giorgi. Επίσης, τονίζουμε το γεγονός ότι η μέθοδος επεκτείνεται και σε
παραβολικά προβλήματα.

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή Ρόθο Βασίλειο αυτής της διπλωματικής
εργασίας, για την υπομονή και κατανόησή του. Ευχαριστώ, ακόμα το καθηγητή Σούρδη Χρήστο για τη
βοήθεια και συνεισφορά του στη συγγραφή της, όπως επίσης και τη τριμελή επιτροπή.
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Chapter 1

Γ - Convergence

1.1 Introduction

The theory of Γ-convergence, from the time of its inception by Ennio De Giorgi in the the 1970’s, has
become a powerful tool in a variational framework. It emanated from previous notions of convergence
related mainly to elliptic operators as G-convergence or H-convergence or to convex functionals as Mosco
convergence. The last forty years have seen an increasing interest for variational convergences. But why
a variational convergence?

In many mathematical problems, may they come from the world of Physics, applications to problems
in Partial Differential Equations (phase transitions, singular perturbations, boundary value problems in
wildly perturbed domains, and nonsmooth analysis) or abstract mathematical questions, some parameter
ε appears (small or large, of geometric or constitutive origin, coming from an approximation process or a
discretization argument, at times more than a single parameter) which makes those problems increasingly
complex or more and more degenerate. Nevertheless, as we vary this ε-parameter, it is often possible to
anticipate some ‘‘limit’’ behaviour, and assume that we may substitute the complex, degenerate problems
we started with, with a new one, simpler and with a more comprehensible behaviour, possibly of a
completely different type, where the parameters have disappeared, or appear in a more handy way.

Therefore it plays a central role for its compactness properties and for the large number of results
concerning Γ-limits of integral functionals. It also, provides a indespensible tool for studying global and
local minimizers. An essential matter in the definition of Γ-convergence is examining the behaviour of a
family of global minimum problems (minimum values and minimizers) of a sequence fε , in an abstract
notation

min { fε(x) : x ∈ Xε} (1.1.1)

by the computation of an ‘‘effective’’ minimum problem

min { f (x) : x ∈ X} (1.1.2)

involving the (properly defined) Γ-limit of this sequence.
Even though the definition of such a limit is local (in that in defining its value at a point x we only

take into account sequences converging to x), its computation in general does not describe the behaviour
of local minimizers of fε (i.e., points xε which are absolute minimizers of the restriction of fε to a small
neighbourhood of the point xε itself).
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In Figure 1, we can see a possible situation, in a simplified picture, where fε has many local minimizers.
However, after the Γ-convergence procedure some or all minimizers are ‘‘integrated out’’ (note that this

Figure 1.1

happens even when the oscillations depth does not vanish). When we have an isolated local minimizer x

of the Γ-limit, we may track the behaviour of local minimizers as absolute minimizers of fε restricted
to a fixed neighbourhood of x and conclude the existence of local minimizers for fε close to x. Kohn
and Sternberg used this general principle and found the existence of local minimizers of the Allen-Cahn
equation by considering a surface that locally minimizes its area (minimal surface).

1.2 Some definitions of Γ-convergence

Some properties

1. Γ-limits are stable under continuous perturbations. This means that once a Γ-limit is computed we
do not have to redo all computations if ‘‘lower-order terms’’ are added. Conversely, we can always
remove such terms to simplify calculations.

2. Under suitable conditions Γ-convergence implies convergence of minimum values and minimizers.
Note that some minimizers of the Γ-limit may not be limit of minimizers, so that Γ-convergence
may be interpreted as a choice criterion.

3. The computation of Γ-limits can be separated into computing lower and upper bounds. The first
involving lower-semicontinuity inequalities, the second the construction of suitable approximating
sequences of functions. In order to better handle these operations Γ-Iower and upper limits are
introduced.

4. The natural setting of Γ-convergence are lower semicontinuous functions. In particular Γ-upper
and lower limits are lower semicontinuous functions, and the operation of Γ-limit does not change
if functionals are replaced by their lower semicontinuous envelopes (which, in turn, are usually
easier to handle).

5. The choice of the convergence with respect to which computing the Γ-limit is essential. Since
the arguments of Γ-convergence rely on compactness issues, it is usually more convenient to use
weaker topologies, which explains why spaces of ‘‘weakly-differentiable functions’’ are preferred.
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Definition 1.2.1. Let f : X → [−∞,+∞], where X is a metric space equipped with the distance d.
We define the lower limit of f at x as

lim
y→x

in f f (y) = in f
{
lim
ε

in f f (xε) : xε ∈ X, xε → x
}

= in f
{
lim
ε

f (xε) : xε ∈ X, xε → x, ∃ lim
ε

f (xε)
}

We define the upper limit of f at x as

lim
y→x

sup f (y) = sup
{
lim
ε

sup f (xε) : xε ∈ X, xε → x
}

= sup
{
lim
ε

f (xε) : xε ∈ X, xε → x, ∃ lim
ε

f (xε)
}

By taking xε = x we always get lim
y→x

in f f (y) ≤ f (x). It can also be checked that

lim
y→x

in f (− f (y)) = − lim
y→x

sup f (y)

lim
y→x

in f ( f (y) + g(y)) ≥ lim
y→x

in f f (y) + lim
y→x

in f g(y)

lim
y→x

in f ( f (y) + g(y)) ≤ lim
y→x

sup f (y) + lim
y→x

in f g(y)

Definition 1.2.2. A function f : X → R is called (sequentially) lower semicontinuous (l.s.c. for short) at x,
if for every sequence (xε) converging to x we have

f (x) ≤ lim
ε

in f f (xε)

Remark 1.1. (i) If f and g are l.s.c. at x, then so is f + g

(ii) If f = XE is the characteristic function of the set E, then f is l.s.c. if and only if E is open.

(iii) A function f : X → R is called upper semicontinuous if − f is l.s.c. Then f = XE is upper
semicontinuous if and only if E is closed.

Definition 1.2.3. We say that the function f is a lower bound for the sequence ( fε) if for all x ∈ X we
have

f (x) ≤ lim
ε→0

in f fε(xε), ∀xε → x

Definition 1.2.4. We say that the function f is an upper bound for the sequence ( fε) if for all x ∈ X we
have that there exists a xε → x such that

f (x) ≥ lim
ε→0

sup fε(xε)

Definition 1.2.5. We say that f is the Γ-limit for the sequence ( fε) if it is both lower and upper bound. If
both bounds hold at a point x, then we say that f is the Γ-limit at x and we write

f (x) = Γ − lim
ε→0

fε(x)
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In this notation fε Γ-converges to f if and only if f (x) = Γ − lim
ε→0

fε(x) at all x ∈ X.

Remark 1.2. If f is a lower bound then requiring that upper bound holds is equivalent to any of the
following

(i) there exists a xε → x such that

f (x) = lim
ε→0

fε(xε)

(ii) ∀η > 0 there exists xε → x such that f (x) + η ≥ lim
ε→0

sup fε(xε)

A sequence satisfying the first one is called recovery sequence. The second one is called approximate
limsup inequality.

Definition 1.2.6. We define

Γ − lim
ε→0

in f fε(x) = in f
{
lim
ε→0

in f fε(xε) : xε → x
}

Γ − lim
ε→0

sup fε(x) = in f
{
lim
ε→0

sup fε(xε) : xε → x
}

as the lower and upper Γ-limits respectively.

Remark 1.3. (i) The Γ-limit exists at a point x if and only if

Γ − lim
ε→0

in f fε(x) = Γ − lim
ε→0

sup fε(x)

(ii) Comparing with the trivial sequence xε = x, we obtain

Γ − lim
ε→0

in f fε(x) ≤ lim
ε→0

in f fε(x)

Γ − lim
ε→0

sup fε(x) ≤ lim
ε→0

sup fε(x)

Proposition 1.2.1. An important property of Γ-convergence is its stability under continuous perturbations:
Let fε Γ-converge to f and gε converge continuously to g (i.e., gε(xε)→ g(x) if xε → x). Then fε +gε → f +g.

Note that this proposition applies to gε = g if g is continuous, but is in general false for gε = g even
if g is lower semicontinuous.
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1.3 Gradient theory of phase transitions

We consider a fluid, under isothermal conditions, confined to a container which occupies a bounded,
open region Ω ⊂ Rn. If we denote the concentration of the fluid with a function u : Ω→ [0, 1], then the
classical problem of determining the equilibrium configurations of the fluid is to minimize a suitable
energy depending on u under a mass constraint:

min
{

E(u) : u : Ω→ [0, 1],
∫

Ω

udx = m
}

(1.3.1)

where m is the total mass of the fluid in Ω and the energy, if there are no other contributions, is given
by the functional

E(u) =

∫
Ω

W(u(x))dx

The energy density, per unit volume, W : (0,∞)→ R is a non-convex function, of the density u, given by
the Van der Waals Cabn Hilliard theory, whose graph is of the form as in Fig. 1.2.

W

Figure 1.2

In order to understand the properties of minimizers, we may add an affine change of variable to W,
replacing W by W(u) + c1u + c2. The minimum problem remains unchanged, since it amounts to add the
fixed quantity ∫

Ω

(c1u + c2) dx = mc1 + c2 |Ω|

to E(u). It is customary to choose c1 and c2 so that the new energy density, which we still denote by W,
is continuous, non-negative, capable of supporting two phases, and attains the minimum value of zero at
exactly two points α and β (α < β), as in Fig. 1.3

Definition 1.3.1. We will call such a potential double-well, also called bi-stable and balanced when

W(x) > 0 i f x , β or x , α, W(α) = W(β) = 0, W′′(α) > 0, W′′(β) > 0

If this is allowed by the mass constraint, minimizers of the original problem (1.3.1) will be simply
given by all functions u which take only the values α and β and still satisfy the constraint

∫
Ω

udx = m.
The two values α and β of the density u correspond to a stable, two-phase configuration of the fluid
and form a partition of Ω. Note that minimizing the original problem does not provide any information
about the interface between the two phases, which may be irregular or even dense in Ω. In particular,
there is no way to recover the physically reasonable criterion that among these minimizers some special
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Figure 1.3

configuration are preferred, instead, and precisely those with minimal interface between the phases. This
minimal-interface criterion is interpreted as a consequence of higher-order terms: in order to prevent
the appearance of irregular interfaces, based on the the van der Waals-Cahn-Hilliard theory we perturb
energy functionals (singular perturbation) by a gradient term of u, which may be interpreted as giving a
(small) surface tension between the phases. The mathematical problem is then to study the asymptotic
behaviour, as ε → 0+, of the solutions uε of the minimization problems

min
{∫

Ω

(
ε2 |Du|2 + W(u)

)
dx :

∫
Ω

udx = m
}

(1.3.2)

where ε2 is a small, positive parameter, which accounts for surface energy between phases and we also
require some more regularity on u.

It is also proved that uε converges to a function, which takes only the values α and β and for which
the interface between the sets {u = α} and {u = β} has minimal area. The solutions uε of this problem
have the form

uε(x) ≈ u(x) + u1

(
dist(x, S )

ε

)
,

where u : Ω→ {α, β} is a phase-transition function with minimal interface S in Ω, and u1 : R→ R is a
function with limit 0 at infinity, which gives the optimal profile between the phases at ε > 0.

Fig. 1.4 picture a minimizer uε corresponding to a minimal u with a minimal (linear) interface between

u=

u=

Figure 1.4
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the phases. This is a natural ansatz and is proved rigorously by a Γ-convergence arguments. We can
picture this behaviour in the one-dimensional case, where, then, u is simply a function with a single
discontinuity point. In Fig.1.5 are represented functions uε for various values of ε.

Figure 1.5

The behaviour of uε cannot be read out directly by examining small-energy functions for problem
(1.3.2), but may be more easily deduced if that problem is rewritten as

min
{∫

Ω

(
ε |Du|2 +

W(u)
ε

)
dx :

∫
Ω

udx = m
}

(1.3.3)

in order for each piece in the integral to have the same relative size as ε → 0 for minimizing sequences.
The qualitative effect of the first term is to penalize the spatial inhomogeneity of u, while the effect

of the second term is that u tends to get closer to α or β. It can be seen that problem (1.3.3) is well
approximated as ε gets small by a minimal interface problem:

min
{

Per ({u = α} ,Ω) : u : Ω→ {α, β} ,

∫
Ω

udx = m
}

(1.3.4)

where Per(A,Ω) denotes the properly defined perimeter of A in Ω.
We refer to [2],[18],[19],[41] for further details in Γ-convergence and phase transitions and we proceed

to the next Chapter applying this theory to Allen-Cahn Equation.
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Chapter 2

Allen-Cahn Equation

2.1 Introduction

We study the semilinear elliptic problem

∆u + f (u) = 0 in Rn (2.1.1)

where f (x) = −W′(x) and W is a ῾῾ double-well potential ᾿᾿ , as seen in Definition 1.3.1. A typical example
of such a double well potential is given by

W(x) =
1
4

(
1 − x2

)2
where f (x) =

(
1 − x2

)
x

Equation (2.1.1) is a prototype for the continuous modeling of phase transition phenomena, for example
when two materials try to coexist in a domain Ω of a ῾῾ binary mixture ᾿᾿ , water in solid phase (+1)
and water in liquid phase(-1), while minimizing their interaction which is proportional to the (n − 1) -
dimensional volume of the interface {x ∈ Ω | u(x) = 0}.

Let Λ ⊂ Rn be an open, connected, bounded subset of Ω with ∂Λ minimally smooth (smooth and with
small perimeter). The configuration above can be described as a function

uε(x) ≈

+1, in Λ

−1, in Ω \ Λ

where ε > 0 is a small parameter. This function has a sharp transition between these values across a
narrow layer, called the interface, of width roughly O(ε).

Definition 2.1.1. (Domain with minimally smooth boundary)
An open set Ω ⊂ Rn (n = 2, 3, . . .) is said to be a domain with minimally smooth boundary if there exist

ε > 0, N ∈ N, M > 0 and a sequence {Ui}i∈N of open subsets of Rn such that

1. for any x ∈ ∂Ω, B(x, ε) ⊂ Ui holds for some i ∈ N

2. no point in Rn belongs to more than N of the Ui

3. for any i ∈ N, there exists a special Lipschitz domain Ωi, whose Lipschitz bound is not more than M,
such that Ui ∩Ω = Ui ∩Ωi
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We will consider the case in which the container isn’t homogeneous so that distinct costs are paid for
parts of the interface in different locations. Then the Allen-Cahn energy in the bounded domain Ω ⊆ Rn

is

Jε(u) =

∫
Ω

[
ε

2
|∇u|2 +

1
4ε

(
1 − u2

)2]
a(x)dx

where a(x) is smooth and we make the assumption that there exists β, γ such that 0 < γ ≤ a(x) ≤ β,
∀ x ∈ R. The system has variational structure as solutions are critical points of the Euler-Lagrange
functional. We refer to [25],[27],[28],[40],[42] for further motivation and references on the subject.

2.2 Critical points of Jε(u)

We recall In order to find the critical points of Jε(u) we vary u and try to calculate the value of the
functional on a new position in W1,2(Ω) which corresponds to the function uε + tϕ , where ϕ ∈ C∞0 (Ω)

and t > 0 is small real number.

Jε(uε + tϕ) =

∫
Ω

ε |∇ (uε + tϕ)|2

2
+

1
ε

∫
Ω

(
1 −

(
uε + tϕ2

))2
4

 a(x)dx (2.2.1)

So,

Jε(uε + tϕ) − Jε(uε) =

(
ε
2∇uε∇ (tϕ) + |∇ (tϕ)|2

2
+

1
ε

∫
Ω

uε
(
−1 + u2

ε

)
tϕ

)
a(x)dx

where we excluded the higher order terms of t (O(t2)), and we now have

∂

∂t
[
Jε(uε + tϕ)

]
t=0 = 0 = DJε(uε ;ϕ) =

= lim
t→0

Jε(uε + tϕ) − Jε(uε)
t

= ε

∫
Ω

(∇uε∇ϕ) a(x)dx −
1
ε

∫
Ω

(1 − u2
ε )uεϕ a(x)dx (2.2.2)

where the notation DJε(uε ;ϕ) implies that we look at the ῾῾infinitesmal᾿᾿ variation of the functional at the
position u along the direction ϕ (vanishes on the boundary). Thus, at a critical point of J, it holds that
DJε(uε ;ϕ) = 0. Otherwise, u is called regular.

We recall in 1-dimension that if X is a Banach space and the functional J ∈ C1(X,R), then a critical
point of J is an element x ∈ X such that F′(x) = 0. We say that J achieves its minimum, whenever there
exists x0 ∈ X such that

J(x0) = inf
x∈X

J(x)

Then x0 is a critical point of J.
For a set M ⊂ W1,2(Ω), a point u ∈ M is an absolute minimizer for J on M if ∀v ∈ M there holds

J(v) ≥ J(u). A solution u ∈ C2(Rn) is called globally minimizing if

J(u; Ω) ≤ J(u + ϕ; Ω)

for every smooth, bounded domain Ω ⊂ Rn and ∀ϕ ∈ C∞0 (Ω).
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Integrating (2.2.2) by parts and if uε ∈ C2(Ω), we obtain∫
Ω

(
−ε∇ · (a∇uε) +

a
ε

W′(uε)
)
ϕdx = 0, ∀ϕ ∈ C∞0 (Ω) (2.2.3)

Thus, the Euler-Lagrange equation is the weighted Allen Cahn equation in Ω

−ε∇ · (a∇uε) −
a
ε

(
1 − u2

)
u = 0, in Ω (2.2.4)

If Ω = R, we obtain

ε2u′′ + ε2u′
a′

a
+

(
1 − u2

)
u = 0, in R (2.2.5)

Multiplying (2.2.5) against u′ and integrating by parts we obtain

∫ +∞

−∞

d
dx

ε u′

2
−

(
1 − u2

)2
4ε

 + ε

∫ +∞

−∞

a′

a
u′2 = 0 (2.2.6)

Assuming that u(∞) = 1, u(−∞) = −1, u′(±∞) = 0, we obtain

ε

∫ +∞

−∞

a′

a
u′2 = 0

Observation 2.2.1. If a is monotone and a′ , 0, then there are no solutions. We need the existence (
if a′ , 0) of local maximum or local minimum of a. Given a local maximum or local minimum x0 of a

non-degenerate (a′′(x0) , 0), a solution to (2.2.5) exists, with transition layer.

Letting a = 1, ε = 1, u(x) ≈ w(t) in (2.2.5), we obtain the limit fast system

w′′ +
(
1 − w2

)
w = 0, w(+∞) = 1, w(−∞) = −1 (2.2.7)

The solution

w(t) = tanh
(

t
√
2

)
is unique up to translations, vanishes at t = 0 and tends to +1 at +∞ and −1 at −∞. This solution is
called the ῾῾heteroclinic solution᾿᾿.

Indeed, if

w′′ + f (w) = 0, in R, w(+∞) = 1, w(−∞) = −1 (2.2.8)

where f (w) = −W′(w), the heteroclinic solution exists and defined uniquely up to a constant translation
a ∈ R, by the identity ∫ w(t)

0

ds
√
2W(s)

= t − a,

which follows from the fact that

w′2 − 2W(w) = E,
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where E is constant and w(+∞) = 1, w(−∞) = −1 if an only if E = 0.
We fix in what follows the unique w for which∫

R
tw′2(t)dt = 0

In general, w approaches its limits at exponential rates,

w(t)→ ±1, as t → ±∞

and w(0) = 0.
Changing variables for x = x0 + ε (t + h), with x0 ∈ R and h ∈ R , we set

v(t) = u(x) = u (x0 + ε (t + h))⇒

v̇(t) = εu′ (x0 + ε (t + h))⇒

v̈(t) = ε2u′′ (x0 + ε (t + h))

and substituting in (2.2.5) we obtain

ε2u′′ (x0 + ε (t + h)) + ε2u′ (x0 + ε (t + h))
a′

a
(x0 + ε (t + h)) +

(
1 − v2(t)

)
v(t) = 0⇒

v̈(t) + εv̇(t)
a′

a
(x0 + ε (t + h)) +

(
1 − v2(t)

)
v(t) = 0, v(±∞) = ±1 (2.2.9)

A natural way is to find approximations first and then to look for genuine solutions as small perturbations
of approximations. Letting ε = 0, we observe that we obtain (2.2.7), and we look for a solution
v(t) = w(t) + ϕ, where ϕ is a small error in ε. We make the following assumptions,

1. There exists β, γ such that 0 < γ ≤ a(x) ≤ β, ∀ x ∈ R

2. ‖a′‖L∞(R) , ‖a′′‖L∞(R) < +∞

3. x0 is a non-degenerate critical point of a (a′(x0) = 0, a′′(x0) , 0).

2.3 Lyapunov-Schmidt Reduction Method

2.3.1 The Linear Projected Problem

Theorem 2.3.1. ∀ε > 0 sufficiently small, there exists a solution v = vε to (2.2.9) for some h = hε , where
|hε | ≤ Cε and vε(t) = w(t) + ϕε(t) and

‖ϕε‖ ≤ Cε

Proof. Substituting v(t) = w(t) + ϕ(t) in (2.2.9) we obtain

w′′ + ϕ′′ + ε
a′

a
(x0 + ε (t + h))

(
w′ + ϕ′

)
+

(
1 − (w(t) + ϕ(t))2

)
(w(t) + ϕ(t)) = 0⇒

w′′(t) + ϕ′′(t) + ε
a′

a
(x0 + ε (t + h)) w′ + ε

a′

a
(x0 + ε (t + h))ϕ′

+ f (w + ϕ) − f (w) − f ′(w)ϕ + f (w) + f ′(w)ϕ = 0, ϕ(+∞) = ϕ(−∞) = 0
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where f (v) = (1 − v2)v. Considering that w′′ + f (w) = 0 from (2.2.8), we write the above in the following
way

ϕ′′ + f ′(w)ϕ + E + B(ϕ) + N(ϕ) = 0, ϕ(+∞) = ϕ(−∞) = 0

where 
E = ε a′

a (x0 + ε (t + h)) w′

B(ϕ) = ε a′
a (x0 + ε (t + h))ϕ′

N(ϕ) = f (w + ϕ) − f (w) − f ′(w)ϕ = −3wϕ2 − ϕ3

(2.3.1)

We consider the problem

L(ϕ) = ϕ′′ + f ′(w)ϕ = −g(t), ϕ ∈ L∞(R) (2.3.2)

In order to solve (2.3.2), we try to invert the linear operator L so that we can rephrase the problem as a
fixed point problem.

Let g ∈ L∞(R) and multiply the above equation against w′ we get∫ +∞

−∞

(
w′′′ + f ′(w)w′

)
ϕ +

∫ +∞

−∞

gw′ = 0⇒∫ +∞

−∞

gw′ = 0 (2.3.3)

So a necessary and sufficient condition in order to have a solution is that g in (2.3.3) is orthogonal to
the kernel. Indeed, if we write

ϕ = w′Ψ⇒

ϕ′ = w′Ψ′ + w′′Ψ⇒

ϕ′′ = w′′′Ψ + 2w′′Ψ′ + w′Ψ′′

then (2.3.2) becomes

w′′′Ψ + 2w′′Ψ′ + w′Ψ′′ + f ′(w)w′Ψ + g = 0

and multiplying by w′ we have

2w′′w′Ψ′ + w′2Ψ′′ = −gw′ ⇒(
w′2Ψ′

)′
= −gw′ ⇒

w′2Ψ′(t) = −

∫ +∞

−∞

g(s)w′(s)ds

Then

Ψ(t) = −

∫ t

0

dτ
w′2(τ)

∫ τ

−∞

g(s)w′(s)ds

14



and

ϕ(t) = −w′(t)
∫ t

0

dτ
w′2(τ)

∫ τ

−∞

g(s)w′(s)ds

�

where w′(t) ≈ 2
√
2e−

√
2 |t| .

Lemma 2.3.1. If
∫ +∞

−∞
gw′ = 0, then we have the following estimate

‖ϕ‖∞ ≤ C ‖g‖∞

If t > 0,

|ϕ(t)| ≤
∣∣∣w′(t)∣∣∣ ∫ t

0

C

e−2
√
2τ

∣∣∣∣∣∣
∫ +∞

τ
gw′ds

∣∣∣∣∣∣ dτ ≤ C ‖g‖∞ e−
√
2t

∫ t

0
e
√
2τdτ ≤ C ‖g‖∞ .

If t < 0, a similar estimate yields, so

|ϕ(t)| ≤ C ‖g‖∞

2.3.2 The Nonlinear Projected Problem

Lemma 2.3.2. Given g ∈ L∞(R), there exists a unique C = C(g) =

∫ +∞

−∞
gw′∫ +∞

−∞
w′2

and ϕ ∈ L∞(R) with ϕ(0) = 0
such that

ϕ′′ + f ′(w)ϕ +
(
g − cw′

)
= 0, ∈ R (2.3.4)

has a solution, which defines an operator ϕ = T [g] with

‖T [g]‖∞ ≤ C ‖g‖∞

In fact, if T̂ [ĝ] is the solution find in the previous step then ϕ = T̂ [g −C(g)w′] solves (2.3.4) and

‖ϕ‖∞ ≤ C ‖g‖∞ + |C(g)|C ≤ C ‖g‖∞

Proof. Rather than solving the problem directly, we consider a projected version of it

L(ϕ) = ϕ′′ + f ′(w)ϕ = −E − B(ϕ) − N(ϕ) + Cw′, ϕ ∈ L∞(R)

where

C =

∫
R

[
E + B(ϕ) + N(ϕ)

]
w′∫

R
w′2

Step 1: Given the parameter function h, we find a solution ϕ = Φ(h) to the problem. We assume |h| ≤ 1,
and we write in fixed point form

ϕ = T
[
E + B(ϕ) + N(ϕ)

]
= M[ϕ]
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Remark: Given the relations in (2.3.1), we obtain

‖E‖∞ ≤ Cε2

‖B(ϕ)‖∞ ≤ Cε
∥∥∥ϕ′∥∥∥

∞

‖N(ϕ)‖∞ ≤ C
(∥∥∥ϕ2

∥∥∥
∞

+
∥∥∥ϕ3

∥∥∥
∞

)
with C uniform on |h| ≤ 1.

‖M‖∞ +

∥∥∥∥∥ d
dt

M
∥∥∥∥∥
∞

≤ C
(
‖E‖∞ + ‖B(ϕ)‖∞ + ‖N(ϕ)‖∞

)
≤ C

(
ε2 + ε

∥∥∥ϕ′∥∥∥
∞

+
∥∥∥ϕ2

∥∥∥
∞

+
∥∥∥ϕ3

∥∥∥
∞

)
If ‖ϕ′‖∞ + ‖ϕ‖∞ ≤ Mε2, we have

‖M‖∞ +

∥∥∥∥∥ d
dt

M
∥∥∥∥∥
∞

≤ C∗ε2

We define the space X =
{
ϕ ∈ C1(R) : ‖ϕ′‖∞ + ‖ϕ‖∞ ≤ Mε2

}
. Let us observe that M(X) ⊂ X and

‖M(ϕ1) − M(ϕ2)‖∞ +

∥∥∥∥∥ d
dt

(M(ϕ1) − M(ϕ2))
∥∥∥∥∥
∞

≤ Cε
(
‖ϕ1 − ϕ2‖∞ +

∥∥∥ϕ′1 − ϕ′2∥∥∥∞)
So if ε is small, M is a contraction mapping which implies that there exists a unique ϕ ∈ X such that
ϕ = M[ϕ] = Φ(h). �

Step 2: We need to find h such that C = 0 in for ϕ = Φ(h).

C = 0⇔ αε(h) =

∫
R

[
E + B(ϕ) + N(ϕ)

]
w′ = 0

If we call ψ(x) = a′
a (x), then

ψ (x0 + ε (t + h)) = ψ (x0) + ψ′ (x0) ε (t + h) +

∫ 1

0
(1 − s)ψ′′ (x0 + sε (t + h)) ε2 (t + h)2 ds

We want ψ′′ ∈ L∞(R), so a′′′ ∈ L∞(R). The first term of the integral gives∫
Ehw′ = ε2ψ′ (x0)

∫
(t + h) w′2(t) + ε3

∫
R

(∫ 1

0
(1 − s)ψ′′ (x0 + sε (t + h)) ds

)
(t + h)2 w′(t)dt

Given, 
∫
R

tw′2(t) = 0∣∣∣∫
R

(B(ϕ) + N(ϕ)) w′
∣∣∣ ≤ C

(
ε ‖Φ(h)‖C1 − ‖Φ(h)‖L∞

)
≤ Cε3

we conclude that

αε(h) = ψ′(x0)ε2 (h + O(ε))

The term inside the parenthesis changes sign, so ∃hε : |hε | ≤ Mε such that αε(h) = 0, which means C = 0.
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Observation 2.3.1.

L̄(ϕ) = ϕ′′ + (1 − 3w2)ϕ + εψ +
1
2

f ′′(w + sϕ)ϕ + O(ε2)e−2
√
2|t| = 0, |t| > R

We consider t > R and 1
2 f ′′(w + sϕ)ϕ = O(ε2). Using ϕ̂ = εe−|t| + δe|t| and maximum principle, we obtain

ϕ ≤ εe−|t|, as δ→ 0.

Lemma 2.3.3. Given the bilinear form of the operator L(ϕ) = ϕ′′ + f ′(w)ϕ, ϕ ∈ H2(R)

B(ϕ, ϕ) = −

∫
R

L(ϕ)ϕ =

∫
R
ϕ′2 − f ′(w)ϕ2, ϕ ∈ H1(R)

Then,

B(ϕ, ϕ) ≥ 0, ∀ϕ ∈ H1(R) and B(ϕ, ϕ) = 0 ⇔ ϕ = cw′(t)

In fact J′′(w)[ϕ, ϕ] = B(ϕ, ϕ).

Proof. We write again ϕ = w′Ψ, ϕ ∈ C∞0 (R),Ψ ∈ C∞0 (R). Then L(ϕ) = L(w′Ψ) = 2w′′Ψ′ + w′Ψ′′ =
1

w′
[
2w′′w′Ψ′ + w′2Ψ′′

]
= 1

w′
(
w′2Ψ′

)′
and

B(ϕ, ϕ) = −

∫
1

w′
(
w′2Ψ′

)′
w′Ψ = −

(
w′2Ψ′Ψ

∣∣∣∞
−∞

)
+

∫
R

w′2Ψ′2, ∀ϕ ∈ C∞0 (R)

Same is valid ∀ϕ ∈ H1(R). We have,

B(ϕ, ϕ) =

∫
R

∣∣∣ϕ′∣∣∣2 − f ′(w)ϕ2 =

∫
R

w′2
∣∣∣Ψ′∣∣∣2 ≥ 0

and also B(ϕ, ϕ) = 0⇔ Ψ′ = 0, which means that ϕ = cw′. �

We now give a spectral gap estimate:

Corollary 2.3.1. There exists γ > 0 such that if ϕ ∈ H1(R) and
∫
R
ϕw′ = 0 then

B(ϕ, ϕ) ≥ γ
∫
R
ϕ2

Proof. If not, there exists ϕn such that 0 ≤ B(ϕn, ϕn) < 1
n

∫
R
ϕ2

n. W.l.o.g, we normalize
∫
R
ϕ2

n = 1, and using
the Rellich-Kondrachov Theorem implies that

ϕn ⇀ ϕ ∈ H1(R)

and ϕn → ϕ uniformly ∈ L2, so

0 = lim
n→∞

∫
R
ϕnw′ =

∫
R
ϕw′

Also,

B(ϕn, ϕn) =

∫ ∣∣∣ϕ′n∣∣∣2 + 2
∫

ϕ2
n − 3

∫ (
1 − w2

)
ϕ2

n → 0
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and B(ϕn, ϕn)→ B(ϕ, ϕ), so B(ϕ, ϕ) = 0 and
∫
R
ϕw′ = 0, which means ϕ = 0. But

2 ≤ 3
∫ (

1 − w2
)
ϕ2

n + o(1)

which implies that 2 ≤ 3
∫ (

1 − w2
)
ϕ2. This means that ϕ , 0, so we have a contradiction. �

Observation 2.3.2. If we choose δ =
γ

2‖ f ′‖∞
, then∫

ϕ′2 − (1 + δ) f ′(w)ϕ2 ≥ 0.

This implies that

B(ϕ, ϕ) ≥ α
∫

ϕ′2.
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Chapter 3

Nonlinear Schrödinger Equation (NLS)

3.1 Introduction

We study semiclassical states of nonlinear Schrödinger equations

εiΨt + ε2∆Ψ −W(x)Ψ + |Ψ|p−1 Ψ = 0 (3.1.1)

where i is the imaginary unit and W(x) given potential that may exhibit vanishing and singularity while
allowing decays and unboundedness at infinity. We are also interested in spike type standing waves
concentrating at the singularities of the potentials.

Equation (3.1.1) arises in may fields of physics, in particular when we describe Bose-Einstein
condensates and the propagation of light in some nonlinear optical materials (see the introduction
and references in [21]). We already know that

∫
RN |Ψ|

2 = constant. In this section, we are concerned with
standing waves of the nonlinear Schrödinger equation for small ε > 0. These standing wave solutions
are refereed as semiclassical states and have the form Ψ(x, t) = e−iEtu(x), where u(x) is a real-valued
function and E is the energy of the wave. In what follows, we shall only consider positive, finite energy
solutions of (3.1.1)

In order to obtain a bound state we require u ∈ W1,2(RN). Replacing the ansatz Ψ(x, t) into (3.1.1), we
obtain

εEu + ε2∆u −Wu + up = 0

where ∆ =
∑N

j=1
∂2

∂x2
j
stands for the Laplace operator.

With a simple rescaling, choosing E = λ
ε and defining V(x) = (W(x) − λ), we obtainε

2∆u − V(x)u + up = 0

u > 0, u ∈ W1,2(RN), lim|x|→∞ u(x) = 0
(3.1.2)

Its structure has variational form and solutions can be found as critical points of the following Euler-
Lagrange functional Jε(u) : W1,2(RN)→ R

Jε(u) =

∫
RN

(
ε2 |∇u|2

2
+

V(x)u2

2

)
−

1
p + 1

∫
RN
|u|p+1 , u ∈ W1,2(RN)

In recent years many authors have tried to understand solutions structure of (3.1.2) as ε → 0. A
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characteristic feature is that the semiclassical bound states exhibit concentration behaviors as ε → 0, in
the sense that, out of a certain concentration set, the function uε(x) decays uniformly to zero as ε → 0.
When this concentration set is a single point these solutions are usually called spikes.

Floer and Weinstein [35] investigated the special case where N = 1 and p = 3. Assuming that
V is globally bounded potential having a non-degenerate critical point, say x = 0, and inf

x∈RN
V(x) > 0,

they constructed a positive solution uε of (3.1.2) for small ε > 0 via the Lyapunov-Schmidt Reduction.
They proved that the solution concentrates around the critical point of V , i.e most of the mass of uε is
contained in a neighbourhood of 0 that shrinks to a single point as ε → 0. Their results were generalized
by Y.-G. Oh [36],[37] to the higher-dimensional case with 1 < p < N+2

N−2 and were obtained multi-peak
solutions concentrating near several non-degenerate critical points of V . We refer the reader to the (still
incomplete) list of papers [3],[4],[5],[6],[7],[8],[9],[10],[11],[14],[22],[23],[29],[30],[31],[32],[47],[48].

We also refer to P. L. Lions [39], Y. Li [38], Bahri and P. L. Lions [12] as well as to their bibliographies
for other works involving variational methods to treat the existence of standing waves for nonlinear
Schrödinger equations.

3.2 Lyapunov-Schmidt Reduction Method

We study first the case of dimension 1:ε
2u′′ − V(x)u + up = 0, x ∈ R, p > 1

u(x) > 0, lim|x|→∞ u(x) = 0
(3.2.1)

where inf
x∈R

V(x) > 0 and we assume V ≥ γ > 0, V,V ′,V ′′,V ′′′ ∈ L∞ and V ∈ C3(R).
Rescaling the above equation to fast variable t = εx, we obtain

w′′ − w + wp = 0, w > 0, w(±∞) = 0, p > 1

There exists a homoclinic solution

w(t) =
Cp

cosh
(

p−1
2 t

) 2
p−1
, Cp =

(
p + 1
2

) 1
p−1

and w(t) ≈ 22/(p−1)Cpe−|t|, as t → ∞.

Observation 3.2.1. Given x0 we can assume V(x0) = 1. We write

u(x) = λ
2

p−1 v (λx0 + (1 − λ)x0)

and we obtain from (3.2.1)

ε2v′′(y) − V̂(y)v + vp = 0

where y = λx0 + (1 − λ)x0 and V̂(y) = V
(

y−(1−λ)x0
λ

)
. If we choose λ =

√
V(x0) then V̂(x0) = 1.

Theorem 3.2.1. We assume V(x0) = 1,V ′(x0) = 0,V ′′(x0) , 0. Then there exists a solution to (3.2.1) with
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the form

uε(x) ≈ w
( x − x0

ε

)
hence a solution that concentrates at x0. We say that a solution uε of (3.2.1) concentrates at x0 (as

ε → 0 ) provided

∀δ > 0,∃ε0 > 0,R > 0 : uε(x) ≤ δ,∀ |x − x0| ≥ εR, ε < ε0

This kind of solutions are called spike layers or simply spikes. From the physical point of view, spikes
are important because they show that (focusing) NLS of the type (3.2.1) are not dispersive but the energy
is localized in packets.

Remark 3.1. If uε is a solution of (3.2.1) with minimal energy concentrating at x0, then x0 is a global
minimum of V . Moreover, any solution concentrating at some x0 has a unique maximum which converges
to x0. This justifies the name spikes given to these solutions.

Following the same procedure, as in Section 2.3, we change variables x = x0 + ε (t + h), with x0 ∈ R

and h ∈ R , we set

v(t) = u(x) = u (x0 + ε (t + h))

and substituting in (3.2.1) we obtain

ε2u′′ (x0 + ε (t + h)) − V (x0 + ε (t + h)) u (x0 + ε (t + h)) + up (x0 + ε (t + h)) = 0⇒

v̈(t) − V (x0 + ε (t + h)) v + vp = 0 (3.2.2)

We look for a solution v(t) = w(t) + ϕ, where ϕ is a small error in ε.
Then,

ϕ′′ + w′′ − V (x0 + ε (t + h)) w − V (x0 + ε (t + h))ϕ + (w + ϕ)p + pwp−1ϕ − pwp−1ϕ = 0⇒

ϕ′′ − ϕ + pwp−1ϕ + w′′ − w − [V (x0 + ε (t + h)) − V(x0)] w − [V (x0 + ε (t + h)) − V(x0)]ϕ + (w + ϕ)p − pwp−1ϕ = 0⇒

ϕ′′ − ϕ + pwp−1ϕ − [V (x0 + ε (t + h)) − V(x0)]ϕ + (w + ϕ)p − wp − pwp−1ϕ − [V (x0 + ε (t + h)) − V(x0)] w = 0
(3.2.3)

where we used the fact that w′′ − w + wp = 0 and V(x0) = 1. Now, we write the above in the following
way,

ϕ′′ − ϕ + pwp−1ϕ = E + N(ϕ) + B(ϕ), ϕ(±∞) = 0 (3.2.4)

where 
E = [V (x0 + ε (t + h)) − V(x0)] w

B(ϕ) = [V (x0 + ε (t + h)) − V(x0)]ϕ

N(ϕ) = (w + ϕ)p − wp − pwp−1ϕ = f (w + ϕ) − f (w) − f ′(w)ϕ = −3wϕ2 − ϕ3

(3.2.5)

where we used the fact that V ′(x0) = 0 and f (v) = vp − v.
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Observation 3.2.2. In order to have a solution, V ′ needs to change sign and V , 0. Consider V ′(x) ≥ 0.
Multiplying equation (3.2.2) by u′ and integrating by parts, we obtain that

∫
R

v̇ u2

2 = 0. This implies that
u = 0.

3.2.1 The Linear Projected Problem

We consider the problem

L(ϕ) = ϕ′′ − ϕ + pwp−1ϕ = g(t), ϕ ∈ L∞(R) (3.2.6)

and want to know when it is solvable. Let g ∈ L∞(R) and multiply the above equation against w′ we get∫ +∞

−∞

(
w′′′ − w′ + pwp−1w′

)
ϕ =

∫ +∞

−∞

gw′ ⇒∫ +∞

−∞

gw′ = 0 (3.2.7)

because w′′ − w + wp = 0. So g in (3.2.7) is orthogonal to the kernel. If we write

ϕ = w′Ψ⇒

ϕ′ = w′Ψ′ + w′′Ψ⇒

ϕ′′ = w′′′Ψ + 2w′′Ψ′ + w′Ψ′′

multiplying operator L(ϕ) by w′ we obtain

w′′′Ψw′ + 2w′′Ψ′w′ + w′2Ψ′′ − w′2Ψ + pwp−1w′Ψ = gw′ ⇒

2w′′Ψ′w′ + w′2Ψ′′ = gw′ ⇒(
w′2Ψ′

)′
= gw′, f or t , 0 (3.2.8)

Then, for t < 0

Ψ(t) =

∫ −1

t

dτ
w′2(τ)

∫ τ

−∞

g(s)w′(s)ds

and

ϕ(t) = w′(t)
∫ −1

t

dτ
w′2(τ)

∫ τ

−∞

g(s)w′(s)ds

and for t > 0

Ψ(t) =

∫ t

1

dτ
w′2(τ)

∫ ∞

τ
g(s)w′(s)ds

ϕ(t) = w′(t)
∫ t

1

dτ
w′2(τ)

∫ ∞

τ
g(s)w′(s)ds

Lemma 3.2.1. If
∫ +∞

−∞
gw′ = 0, then we have the following estimate

‖ϕ‖∞ ≤ C ‖g‖∞
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If t > 0,

|ϕ(t)| ≤
∣∣∣w′(t)∣∣∣ ∫ t

0

C

e−2
√
2τ

∣∣∣∣∣∣
∫ +∞

τ
gw′ds

∣∣∣∣∣∣ dτ ≤ C ‖g‖∞ e−
√
2t

∫ t

0
e
√
2τdτ ≤ C ‖g‖∞ .

If t < 0, a similar estimate yields, so

|ϕ(t)| ≤ C ‖g‖∞

There exists a unique solution with ϕ(O−) = ϕ(O+) = 0

ϕ(O−) = lim
t→O−

−
∫ t
−1

dτ
w′2(τ)

∫ τ

−∞
g(s)w′(s)ds

1
w′(t)

= lim
t→O−

− 1
w′(t)2

∫ t
−∞

gw′

− 1
w′(t)2 w′′(t)

=

∫ 0
−∞

gw′

w′′(0)
= 0

ϕ(O+) = lim
t→O+

∫ t
1

dτ
w′2(τ)

∫ ∞
τ

g(s)w′(s)ds
1

w′(t)

=

∫ ∞
0 gw′

w′′(0)
= 0

3.2.2 The Nonlinear Projected Problem

Lemma 3.2.2. Given g ∈ L∞(R), there exists a unique C = C(g) =

∫ +∞

−∞
gw′∫ +∞

−∞
w′2

and ϕ ∈ L∞(R) with ϕ(0) = 0
such that

ϕ′′ − ϕ + pwp−1ϕ +
(
g − cw′

)
= 0, ϕ ∈ L∞(R) (3.2.9)

has a solution, which defines an operator ϕ = T [g] with

‖T [g]‖∞ ≤ C ‖g‖∞

In fact if T̂ [ĝ] is the solution find in the previous step then ϕ = T̂ [g −C(g)w′] solves and

‖ϕ‖∞ ≤ C ‖g‖∞ + |C(g)|C ≤ C ‖g‖∞

Proof. We consider a projected version of the problem

L(ϕ) = ϕ′′ − ϕ + pwp−1ϕ = −E − B(ϕ) − N(ϕ) −Cw′, ϕ ∈ L∞(R)

where

C =

∫
R

[
E + B(ϕ) + N(ϕ)

]
w′∫

R
w′2

Step 1: Given the parameter function h, we find a solution ϕ = Φ(h) to the problem. We assume |h| ≤ 1,
and we write in fixed point form

ϕ = T
[
E + B(ϕ) + N(ϕ)

]
= M[ϕ]
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Remark: Given the relations in (2.3.1), we obtain

‖E‖∞ ≤ Cε2

‖B(ϕ)‖∞ ≤ Cε2 ‖ϕ‖∞

‖N(ϕ)‖∞ ≤ C
(∥∥∥ϕ2

∥∥∥
∞

+
∥∥∥ϕ3

∥∥∥
∞

)
with C uniform on |h| ≤ 1.

We define the space X =
{
ϕ ∈ C0(R) : ‖ϕ‖∞ ≤ Mε2

}
. Let us observe that M(X) ⊂ X and

‖M(ϕ1) − M(ϕ2)‖∞ ≤ Cε
(
‖ϕ1 − ϕ2‖∞

)
So if ε is small, M is a contraction mapping, which implies that there exists a unique ϕ ∈ X such that
ϕ = M[ϕ] = Φ(h). �

Step 2: We need to find h, such that C = 0 in for ϕ = Φ(h).

C = 0⇔ Ch =

∫
R

[
E + B(ϕ) + N(ϕ)

]
w′ = 0

The first term of the integral gives∫
Ehw′ =

∫ ∞

−∞

[V (x0 + ε (t + h)) − V(x0)] ww′dt

= −ε

∫ ∞

−∞

V ′ (x0 + ε (t + h))
w2

2
dt

where we integrated by parts and used the fact that the approximation w(t) is zero at infinity. We now
use Taylor expansion for V ′ (x0 + ε (t + h))

V ′ (x0 + ε (t + h)) = V ′(x0) + V ′′(x0)(εt + εh) +
V ′′′(ξ)

2
ε2(t + h)2

Uusing the fact that
∫ ∞
−∞

w2V ′′(x0)εt = 0 and V ′(x0) = 0, we obtain

−ε

∫ ∞

−∞

[
V ′′ (x0) εh +

V ′′′(ξ)
2

ε2(t + h)2
]

w2

2
dt = 0

so

Ch = V ′′ (x0) ε(h + O(ε2))

Thus, the reduced problem is a smooth function and ∃hε : |hε | ≤ 1 such that Ch = 0, which means C = 0.
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Appendix A

Brief review of Lyapunov-Schmidt
history and further remarks

As we mentioned Allen-Cahn and NLS equations have attracted the interest of many mathematicians and
the existence of positive solutions under various assumptions has been proved using different methods. As
the problem has generated an impressive amount of publications, it is impossible to give a comprehensive
list of references here, but we will try to list as much as we can.

The formulation of a Lyapunov-Schmidt type procedure was first introduced by Floer and Weinstein
in [35] who investigated the one-dimensional case. It uses in an essential way the non-degeneracy of the
critical point of the potential V , so that one can address the natural question whether alternative arguments
may be used to extend their result to a degenerate setting, that is whether solutions concentrating around
possibly degenerate critical points of the potential can be obtained. Many authors have subsequently
extended this result to higher dimensions to the construction of solutions exhibiting high concentration
around one or more points of space under various assumptions on the potential and nonlinearity.
Specifically, Oh’s [36; 37] result led to so-called multi-bump standing waves which reduces the original
problem to a finite dimensional one.

The Lyapunov-Schmidt reduction was then combined with variational arguments by Ambrosetti
[3; 7; 8; 10] and [38] for multibump solutions. On the other hand, Rabinowitz [44] was the first in dealing
with the question from a global variational point of view, then mainly relayed by del Pino and Felmer
[29; 30; 29; 32]. A difficulty faced with variational characterizations of critical values, is that they do not
always allow easily to localize properties of associated critical points, especially if they do not enjoy a
minimizing or least-energy character. On the other hand this is an advantage of the implicit-function
Lyapunov-Schmidt type approach, which discovers the solutions around a small neighborhood of a well
chosen first approximation. However, this approach relies heavily on non-degeneracy properties of the
linearized problem around this first approximation, thus this reduction procedure is possible only with
very fine information on the the limiting equation. In a number of interesting problems exhibiting point
concentration this type of information is simply not available, and could be very hard to be obtained
even for simplest possible nonlinearities. The need is then created of finding ways of localizing without
linearizing.

In [43], Pacard and Ritoré started from a minimal hypersurface Σ in a compact Riemannian manifold
M and, under suitable assumptions, they showed that it can be achieved as the limit as ε → 0 of nodal
sets (that is 0-level sets) of solutions uε of the rescaled Allen-Cahn equation. These solutions uε were
constructed with techniques such as fixed point theorems and the Lyapunov-Schmidt reduction, and are

25



not necessarily minimizers. Despite several results lead to think that, in some sense, the nodal sets of
the solutions to the Allen-Cahn equation resemble minimal surfaces, there are also solutions for which
the nodal set is far from being minimal. For instance, Agudelo, Del Pino and Wei constructed axially
symmetric solutions u = u(|x′| , x3) in R3 such that the components of the nodal set, for |x′| large enough,
look like a catenoid (see [1]).

The Lyapunov-Schmidt reduction was also applied to the non compact case, to construct entire
solutions to the Allen-Cahn equation in R9 that are monotone in one variable but not one-dimensional,
since their nodal set resembles the Bombieri-De Giorgi-Giusti graph, that is a minimal graph over R8

that is not affine (see [16; 26]). The close connection between minimal surfaces and the entire solutions
of Allen-Cahn equation led De Giorgi to formulate a celebrated conjecture on the Allen-Cahn equation,
that asserts that,

DE GIORGI’S CONJECTURE. Let u be a bounded solution of the Allen-Cahn equation such that ∂xN u > 0.
Then the level sets {u = λ} are all hyperplanes, at least for dimension N ≤ 8

• True for N = 2, Ghoussoub and Gui (1998)

• True for N = 3 Ambrosio and Cabré (1999)

• True for 4 ≤ N ≤ 8, Savin (2009), thesis (2003), if in addition

lim
xN→±∞

u
(
x′, xN

)
= ±1, ∀ x′ ∈ RN−1

The monotonicity of u implies that the scaled functions (see Section 2.2) are, in a suitable sense, local
minimizers of the functional. Moreover, the level sets of u are all graphs. In this setting, De Giorgi’s
conjecture is a natural, parallel statement to Bernstein’s theorem for minimal graphs, which in its most
general form, due to Simons [35], states that any minimal hypersurface in RN , which is also a graph of a
function of N − 1 variables, must be a hyperplane if N ≤ 8.

Bernstein’’s problem (by Fleming, 1962). Is it true that all entire minimal graphs are hyperplanes,
namely any entire solution F of the minimal surface equation

∇ ·

 ∇F√
1 + |∇F|2

 = 0, in RN−1

must be a linear affine function?

This claim is true for N ≤ 8.

• Bernstein (1917), Fleming (1962), N = 3

• De Giorgi (1965), N = 4

• Almgren (1966), N = 5

• Simons (1968), N = 6, 7, 8

Strikingly, Bombieri, De Giorgi and Giusti (1969) proved that this fact is false in dimension N ≥ 9
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After the famous poincare conjecture and Grigori Perelman’s proof, the Hamilton-Ricci flow theory
enjoyed a lot of attention. Recent results by P. Daskalopoulos, M. del Pino, N. Sesum [24] in geometric
flows, also use the Lyapunov-Schmidt reduction techniques in the parabolic setting in order to construct
new ancient solutions to the Yamabe flow.
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