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Abstract

Multiferroics are a class of materials that combine two or more types
of ordering in the same system. The underlying physics of these phenom-
ena is very interesting as they are induced from a combination of two or
more correlated order parameters. Multiferroics are promising candidates
for many technological applications with emphasis in microelectronic devices
and memories. In this thesis we present a Raman study of the perovskite
EuTiO3. EuTiO3 is believed to be a multiferroic and also a quantum para-
electric. Quantum paraelectrics are characteristic materials which despite
the fact that they have lattice instabilities (and a soft mode), which drives
them to ferroelectricity, the quantum fluctuations at low temperatures (near
0 K) do not allow them to reach ferroelectricity and the soft mode saturates
in a non zero value. It is obvious that those systems are of great interest as
the quantum fluctuations dominate their behavior under certain conditions.
Europium titanate resembles strontium titanate, which is a very well studied
quantum paraelectric in many of its properties. This fact gave the initial hint
that a material such as EuTiO3 would have all the interesting properties of
a quantum paraelectric. Besides the fact that it has magnetic anions would
introduce a multiferroic nature in the same system. Until now there has been
a lot of research on the antiferrodistortive phase transition that seems to be
present at ∼ 200 K. The fact that at room temperature europium titanate
is in a cubic phase gave no Raman active modes, so until now its Raman
spectrum has not been presented nor did the Raman spectrum of its lower
apparently tetragonal symmetry phase. In this thesis we induced a symmetry
lowering with various methods such as application of electric field, lowering
of the temperature and high pressure in order to observe the Raman spec-
trum. The Raman spectrum can give us better insight to the structure and
phase dynamics of this material under various conditions.
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Chapter 1

Raman scattering

1.1 Electromagnetic radiation

According to the classical theory of electromagnetic radiation the inten-
sity per second radiated by an oscillating dipole is:

I =
2

3c2

¯̈ 2
M (1.1)

where
¯̈ 2
M is the time average of the second derivative of the dipole moment.

The total intensity is considered as the power radiated from the dipole in all
space directions and is averaged over all dipoles if we have more than one
oscillating dipole.

Let us now assume that we have a plane polarized electromagnetic wave
with frequency f0 traveling along the x-axis

E = Ez = E0 cos(2πf0t− x/c) (1.2)

We assume that the electric field induces an oscillating dipole moment such
as

M = αE0 cos(2πf0t− x/t) (1.3)

and so

M̈2 = 16π4f 4
0α

2E2
0 cos2(2πf0t− x/c) (1.4)

¯̈ 2
M = 8π4f 4

0α
2E2

0 (1.5)

Combining (1.1),(1.5) we obtain the total intensity of the radiation emitted

I =
16π4f 4

0

3c3
α2E2

0 (1.6)
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CHAPTER 1. RAMAN SCATTERING 5

If we integrate with respect to the solid angle of 4π radians we obtain

I =
128π5f 4

0

3c4
α2I0 (1.7)

where I0 is the radiation density for a linear polarized electromagnetic wave

I0 =
c

4π
E2
z =

c

8π
E2

0 (1.8)

The radiation field produced by a dipole is being perceived as the con-
sequence of an accelerating charge if we consider Maxwell’s equations. For
example if we assume a harmonically oscillating positive and negative charge
with frequency ω the dipole moment is p = er = p0 cos(ωt) where r is the
distance between the two charges. The absolute values of the corresponding
electric and magnetic field is

|E| = |H| = ω2

r0c2
p sin(θ) (1.9)

It is obvious that at a 900 angle of the axis of the dipole the electric field
(and the magnetic) is maximum and consequently parallel to the axis of the
dipole no radiation is emitted. The energy density of the electromagnetic
field is:

% =
1

4π

ω4

r2
0c

4
p2 sin2(θ) (1.10)

Another way of expressing the electromagnetic flux in a given direction, which
corresponds to an angle θ is I(θ) = %c . By substituting to (1.10) we have

I(θ) =
ω4p2

4πr2
0c

3
sin2(θ) (1.11)

By integrating ( 1.11) over a sphere with radius ρ0 we obtain

I =
ω4p2

3c3
(1.12)

Equations (1.12) and (1.6) are identical if we substitute to the latest αE0

with p = p0cos(ωt)

1.1.1 Multipole moments

When studying the scattering of electromagnetic radiation by atoms or
molecules, the induced dipole moment (discussed in the previous section)
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plays a crucial role, but there are some cases where electric moments from
clusters of more than two electric charges take place and so one must take
into account higher order (electric or magnetic) moments. The multipole
expansion of the potential is given by the well known formula

V =
A0

r
+

1

r2
(A1xpx + A1ypy + A1zpz)

+
1

r3
(A2xydxy + A2z2dz2 + A2xzdxz + A2yzdyz + A2(x2−y2)dx2−y2)

+
1

r4
(4forbitals) (1.13)

We have chosen this form of representing the multipole expansion because it
gives a good idea of what is the nature of each term and also presents very
clearly the spatial analogy of each term with the atomic orbitals. Specifically
the first term is the electric monopole, which has the spatial distribution of
an s-orbital, the second term is the electric dipole with a p-orbital spatial
distribution and the third term is the quadrupole which has a d-orbital spa-
tial distribution. It is obvious that the dipole moment has vector properties,
whereas the quadrupole moment is a tensor. The importance of higher or-
der electric multipoles is rather low in the examination of light scattering
effects. On the contrary, it is not rare to encounter magnetic dipole moment
contributions in light scattering processes.

Figure 1.1: The spatial distribution of the radiation intensity and amplitude
of a dipole [1]

The origin of a magnetic dipole moment is an electric current and par-
ticularly in our case this current comes from the orbital moment of electrons
in atoms. If we imagine the movement of electrons in their orbitals as a
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Figure 1.2: The spatial distribution of the radiation intensity and amplitude
of a quadrupole

current passing through a ring, we obtain |µ| = πIα
2

c
for the magnetic dipole

moment where α is the radius of the ring and I is the current. For an elec-
tron with mass me moving in the ring with velocity υ the momentum is
M = meυα =

√
l(l + 1)h̄. The corresponding current is I = −eυ

2πα
and so the

magnetic moment would be |µ| = −eυα
2c

. By combining the expressions for

Figure 1.3: The spatial distribution of the radiation intensity and amplitude
of a magnetic dipole

the momentum and the magnetic dipole moment we obtain

|µ| = −eh̄
2mec

√
l(l + 1) =

−e
2mec

M (1.14)

Because of the negative sign of the electrons charge, the angular momentum
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and the magnetic moment are antiparallel and both perpendicular to the
”ring” as shown in the figure. Now let us assume as before that we have an
oscillating dipole, which of course will emit electromagnetic radiation. In our
case the electron following the orbit has displacement x = x0 cos(2πf0t) and
velocity υ = −2πf0x0 sin(2πf0t) The spatial distribution of the field (electric
and magnetic) is easily obtained if we assume a magnetic dipole moment of
the form µ = µ0 sin(2πf0t) where µ0 is equal to |µ0| = ex0f0α

c
. So the radiated

field is:

|E| = |H| = −8π3ex0f
3
0α

rc3
sin(θ) sin[2πf0(t− r/c)]. (1.15)

1.1.2 Some aspects of the interaction of electromag-
netic radiation and matter

During every spectroscopic measurement what really happens is a tran-
sition between two or more (not necessarily electronic) states. These tran-
sitions are induced by the interaction of the incident electromagnetic field
with an atom or a molecule. In order for such an interaction to occur, there
must be some charge distribution to interact with the electromagnetic field.
Depending on the type of charge distribution (and consequently on the way it
interacts with the field) we have dipole, quadrupole or magnetic dipole tran-
sitions with the latter being much weaker than the others. Let us assume
that we have two states (with wavefunctions ψn, ψk and energies En and Ek),
which participate in the transition and are occupied by Nn and Nk number
of particles, respectively. There are three different processes that may occur
during the interaction of our system with an electromagnetic wave. We can
have spontaneous emission, induced absorption and induced emission. Some
aspects of those processes are the following:

(i) Spontaneous emission During this process we have a transition
of the type n → k where En > Ek. This process is characterized by the
formula

−dNn

dt
= NnAn→k (1.16)

where An→k is the Einstein transition probability of the spontaneous emission
and represents the probability of a system in n state to spontaneously pass
to the lower k state by emitting radiation (or in general to lose energy in
some way).
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(ii) Induced absorption The formula representing this process is

−dNk

dt
= NkBk→n%(fnk) (1.17)

Where Bk→n is the Einstein transition probability of induced absorption.
Here we see that the rate of transitions depends on the radiation density due
to incident electromagnetic radiation of energy h(fn − fk).

(iii) Induced emission If we have a radiation field of density %(fnk)
it might also induce the transition of the system from the higher k state to
the lower n accompanied by the emission of radiation of energy h(fk − fn).
The formula of this process is quiet similar to that of the previous one:

−dNn

dt
= NnBn→k%(fnk) (1.18)

1.2 Formulation of the scattering tensor

In order to obtain a clear picture of the problem of light scattering by
matter we need to investigate the interaction of atoms (it is a good ap-
proximation to neglect the contribution of the nucleus and account only for
electrons) with the incident photons. We are going to examine this in a
semi-classical way meaning that we are treating the electrons quantum me-
chanically but we will stick to the classical description of the electromagnetic
field [1]. Let us assume that the wavefunction of the electrons of our system
has the form:

ψ0(q, t) =
∑
n

αnψn(q)e−iEnt/h̄ (1.19)

where q is the coordinates (x,y,z) and the superscript 0 denotes that this
wavefunction refers to the unperturbed system when the interaction with the
electromagnetic field is absent. The next step is to account for the presence
of the electromagnetic field. The perturbation potential arising from the
electromagnetic field can be written as :

H1 = −ME,
−→
M =

∑
j

ej
−→rj (1.20)

Where ej is the charge of the jth electron and −→rj is its position vector. The
superscript 1 on the H denotes that this is a first order perturbation. The
time dependent Schrödinger equation of the perturbed system is:

(H0 −ME)ψ0(q, t) = − h̄
i

∂ψ0

∂t
(q, t). (1.21)
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In 1st order perturbation we obtain the wave function ψk(q, t) of the k state
which has the formula:

ψk(q, t) = ψ0
k(q, t) + ψ1

k(q, t) (1.22)

if we substitute (1.22) to (1.21) we obtain:

(H0 − h̄

i

∂

∂
)ψ1

k(q, t) = (EM)ψ0
k(q, t) (1.23)

and the solution of the differential equation is:

ψ1
k = ψ+

k (q)e−i/h̄(En+hf0)t + ψ−k (q)e−i/h̄(En−hf0)t (1.24)

If we assume that the electromagnetic wave is unpolarized and has a form
E = Ae2πif0t + A∗e−2πif0t, and combining this with (1.24), (1.23) we obtain
a set of equations that depend only on the coefficients with the same time
dependent part:

H0ψ+
k (q)− (Ek + hf0)ψ+

k (q) = (AM)ψk(q) =
∑
r

(AMkr)ψr (1.25)

H0ψ−k (q)− (Ek − hf0)ψ−k (q) = (A∗M)ψk(q) =
∑
r

(A∗Mkr)ψr (1.26)

where ψk(q, t) = ψ0
k(q)e

−i/Ekh̄t is the wavefunction of the state k and Mkr =∫
ψ∗rMψk ,with ψr being also a solution of the H0ψr = Erψr

From (1.25), (1.26) we obtain:

ψ+
k =

∑
r

(AMkr)

Er − Ek − hf0

ψr (1.27)

ψ−k =
∑
r

(A∗Mkr)

Er − Ek + hf0

ψr (1.28)

So the wavefunction ψ1
k is given by :

ψ1
k =

1

h

∑
r

ψr

[
(AMkr)

frk − f0

e−i/h̄(Ek+hf0)t +
(A∗Mkr)

frk + f0

e−i/h̄(Ek−hf0)t

]
(1.29)

It is of paramount importance to calculate the moment M of the electrons
when they are under the influence of the electric field. If during the in-
teraction of the particle with the electric field, we had an elastic scattering
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then the particle would return to its initial state after the interaction. The
expectation value of the moment corresponding to this case is the following:

Mkk =

∫
(ψ0

k + ψ1
k)
∗M(ψ0

k + ψ1
k)dτ (1.30)

and by substitution of ψ1
k and ψ1∗

k :

Mkk = M0
kk +

1

h

∑
r

[
(AMkr)Mkr

fkr − f0

+
Mkr(AMrk)

frk + f0

]
e−2πif0t

+
1

h

∑
r

[
(A∗Mkr)Mkr

fkr + f0

+
Mkr(A

∗Mrk)

frk − f0

]
e2πif0t (1.31)

where M0
kk =

∫
ψ0
kM

0
kdτ is the static term and has nothing to do with

the radiation. It expresses the intrinsic moment that the system might have
in state k.The other two terms of (1.31) can be simplified as,

M
(1)
kk = Ckke

−2πif0t + C∗kke
2πif0t (1.32)

where

Ckk =
1

h

∑
r

[
(AMkr)Mkr

fkr − f0

+
Mkr(AMrk)

frk + f0

]
e−2πif0t (1.33)

It is important that equation (1.32) is real and the time dependent part
is identical to that of the incident radiation. Also, if we assume a plane
polarization of the incident light, meaning that A = E0e

iφ the scattered light
will have the same polarization. This can be deduced by substitution of the
expression of A and by the absence of phase difference between incident and
scattered light. So, it is obvious that (1.32) represents a scattered radiation
which is collinear, in phase, and has the same frequency as the incident one.
This phenomenon is called Rayleigh scattering. Let us now formulate the
type of the induced dipole moment for transitions, which do not end up at
the initial state of the system. The derivation would be in the same manner
as was done for Rayleigh scattering right above:

Mkn =

∫
(ψ0

n + ψ1
n)∗M(ψ0

k + ψ1
k)dτ

= M
(0)
kn +M

(1)
kn +M

(2)
kn (1.34)
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where

M
(0)
kn = Mkne

−2πifknt (1.35)

M
(1)
kn =

1

h

∑
r

[
(AMkr)Mrn

frk − f0

+
Mkr(AMrn)

frn + f0

]
e−2πi(fkn+f0)t

+
1

h

∑
r

[
(A∗Mkr)Mrn

frk + f0

+
Mkr(A

∗Mrn)

frn − f0

]
e2πi(fkn−f0)t (1.36)

M
(2)
kn =

1

h2

∑
r,p

[
(A∗Mkp)Mpr(A

∗Mrn)

(fpk − f0)(frn − f0)
+

(A∗Mkp)Mpr(A
∗Mrn)

(fpk − f0)(frn + f0)

]
e−2πifknt

+
1

h2

∑
r,p

[
(A∗Mkp)Mpr(A

∗Mrn)

(frn + f0)(fkp − f0)

]
e−2πi(fkn−2f0)t

+
1

h2

∑
r,p

[
(AMkp)Mpr(AMrn)

(frn − f0)(fpk + f0)

]
e−2πi(fkn+2f0)t(1.37)

where (fkn)(etc.) fkn = fk − fn. The first part of (1.34) represents scat-
tered photons with energy equal to h(fk − fn). This energy corresponds to
transition n → k, which is induced by the presence of the electromagnetic
field. The second part (M

(1)
kn ) represents radiation scattering of frequency

fkn + f0 (which means that En < Ek + hf0) and fkn − f0 (which means
Ek > En + hf0). These processes correspond to the Raman scattering. The
first one is the Anti-Stokes and the second one is the Stokes part of the
Raman spectrum.

It is important to point out that r, p are real states of the scattering
particle, their eigenvectors span an orthonormal base, and the induced dipole
moment depends on them. This dependence is not random, meaning that
not any given state r or p can play this role.

1.2.1 The scattering tensor

As we know, the Rayleigh scattering is related to the following moment
[1]

M1
kk = Ckke

−2πif0t + Ckke
2πif0t (1.38)

where

Ckk =
1

h

∑
r

[
(AMkr)Mrk

frk − f0

+
Mkr(AMrk)

frk − f0

]
(1.39)
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Figure 1.4: Stokes scattering

Figure 1.5: Anti-Stokes scattering
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Following the same approach for the coefficients of the moment expression of
the Raman effect we have:

Ckn =
1

h

∑
r

[
(AMkr)Mrn

frk − f0

+
Mkr(AMrn)

frk − f0

]
(1.40)

which is a 3rd order tensor. Its coordinates in the Cartesian basis can be
written in a more general form as:

(C%)kn =
1

h

∑
r

[∑
σ Aσ(Mσ)kr(M%)rn

frk − f0

+

∑
σ(M%)krAσ(Mσ)rn

frk − f0

]
(1.41)

so (1.41) can be expressed as:

(C%)kn =
∑
σ

(α%σ)knAσ (1.42)

where

(α%σ)kn =
1

h

∑
r

[
(Mσ)kr(M%)rn
frk − f0

+
(M%)kr(Mσ)rn
frn − f0

]
(1.43)

From (1.42) we can formulate expressions associating the spatial orientation
of the incident electromagnetic field and the spatial components of the (C%)kn
coefficients, which in fact determine the induced dipole moments along three
polarization axes, the Cartesian axes:

(Cx)kn = (αxx)knAx + (αxy)knAy + (αxz)knAz

(Cy)kn = (αyx)knAx + (αyy)knAy + (αyz)knAz (1.44)

(Cz)kn = (αzx)knAx + (αzy)knAy + (αzz)knAz

It is obvious that α is a rank two tensor, which determines the spatial orien-
tation of the induced moments for a given incident electromagnetic field and
it is called scattering tensor. Obviously as a rank two tensor it has the form: αxx αxy αxz

αyx αyy αyz
αzx αzy αzz

 (1.45)

The intensity of the emitted radiation associated with Raman scattering
is:

I =
64π4(f0 + fkn)4

3C3
|Ckn|2 (1.46)
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combining (1.46),(1.43),(1.42) and a plain polarized incident light we ob-
tain:

Ikn =
128π5(f0 + fkn)4

3c4

(∑
σ

(α%σ)kn

)2

I0, I0 =
c

8π
E2

0 (1.47)

or in a more simplified manner

Ikn = QknI0 (1.48)

where

Qkn =
128π5(f0 + fkn)4

3c4

∣∣∣∣∣∑
σ

(α%σ)kn

∣∣∣∣∣
2

(1.49)

The quantity Qkn is called cross section of the scattered radiation and
depends on the polarizability tensor elements and consequently on the po-
larization of the incident light. We can follow the same procedure for the
Raman component of the expansion of the induced moment. The tensor for
the hyper Raman effect is more complicated, though it can be formulated
with the same technique used above. So, the corresponding moments are:

Dkn =
1

h2

∑
r,p

[
(AMkp)Mpr(AMrn)

(frn − f0)(fpk + f0)

]
(1.50)

The expression for the three components of the moment is

(Dσ)kn =
1

h2

∑
r,p

(Mσ)pr[
∑
σ

(AσAσ(Mσ)pr(Mσ)rn)

+
∑
σ 6=%

AσA%(Mσ)rn(M%)pr] (1.51)

so
(D%)kn = β%σσ′Aσ′Aσ (1.52)

and β%σσ′ :

β%σσ′ =
1

h2

∑
r,p

(Mσ′ )rk(Mσ)pr(M%)kp
(frk + f0)(fpn)− f0

(1.53)

1.2.2 Symmetry of the scattering tensor

The operator M of the induced dipole moment is Hermitian as proved
from (1.54) and as an observable of a quantum system :[∫

ψ∗kMψrdτ

]∗
=

∫
ψ∗rMψkdτ
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which is equal to:
[Mrk]

∗ = Mkr (1.54)

if we substitute (1.54) in the expression of α(%σ)kr] (1.43) (with k = n) we
obtain:

(α%σ)kk = (ασ%)
∗
kk (1.55)

if the wavefunction of the states r, p are real then from (1.55) (α%σ)kk =
(ασ%)kk, which means that the scattering tensor is symmetric and the nine
independent elements of the asymmetric case are reduced to six. For real
elements of the scattering tensor and by modifying (1.32) we obtain:

M
(1)
kk =

∑
σ

(α%σ)kk(Aσe
−2πif0 + A∗σe

2πif0)

M
(1)
kk =

∑
σ

(α%σ)kkEσ (1.56)

The real elements (α%σ)kk form the so called polarizability tensor, which is a
special case of the more general scattering tensor that might be asymmetric
even for real wavefunctions [1], [4].

1.3 The scattering operator

As we know from quantum mechanics if we want to calculate the average
value of a physical quantity we must take the inner product of the correspond-
ing operator with the wavefunction that describes the system P =

∫
ψ∗nP̂ψk

or in Dirac formalism P =< ψn|P̂ |ψk >. Thus for the average value of the
electric dipole operator we have < ψn|

∑
i eiri|ψk >. If this inner product is

different from zero we know that an electric dipole transition between k, n
states is allowed. Based on the expression for the scattering tensor elements
and substitute the dipole moments with the average value of the dipole op-
erator of the corresponding states, we obtain:

(α%σ)kn =
1

h

∑[
< ψk|

∑
i eiσ|ψr >< ψr|

∑
i ei%|ψn >

frk − f0

+
[%↔ σ]

frn + f0

]
(1.57)

we can rewrite this equation as an inner product :

(α%σ)kn =< ψn|α̂%σ|ψk > (1.58)

where the quantity α̂%σ is the scattering operator

(α̂%σ)kn =
1

h

∑[
|
∑

i ei%|ψr >< ψr|
∑

i eiσ|
frk − f0

+
[%↔ σ]

frn + f0

]
(1.59)
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Obviously if we know the behavior of the wavefunctions of the states par-
ticipating in the scattering process we can write down the scattering tensor
and subsequently we can deduce the properties of the scattered light.

1.3.1 Symmetry considerations

It is evident that for a Raman (or Rayleigh) transition to take place two
conditions must be satisfied: first (α%σ)kn 6= 0 which simply states that the
corresponding elements of the scattering tensor must be nonzero and second
< ψn|α̂%σ|ψk >6= 0. In order to examine those two conditions we would bene-
fit a lot if we consider the symmetry of the system and use some results from
group theory. Let us assume that we know the irreducible representations of
the initial and final states Γψk and Γn respectively and the irreducible repre-
sentation, which describes the scattering operator. We can check whether a
scattering element is nonzero if the triple product below belongs to the fully
symmetric representation of a point group:

Γψ∗n × Γα%σ × Γψk (1.60)

If we want (1.57) to have nonzero elements the inner products inside the
summation must not vanish, so:

< ψn|e%|ψk >6= 0 if Γψ∗n × Γ% × Γψr ≡ A (1.61)

< ψk|eσ|ψr >6= 0 if Γψ∗k × Γσ × Γψr ≡ A (1.62)

where A is the total symmetric representation. By combining (1.61) and
(1.62) and doing some elementary calculations we obtain:

Γ ˆα%σ × Γ%σ ≡ A (1.63)

which means that
Γα̂%σ ≡ Γ%σ (1.64)

The selection rule for Raman scattering becomes rather simple if the initial
state of the system transforms as the total symmetric representation. Then
the only condition for a transition to be allowed is:

Γψn = Γα̂ (1.65)

which means that the final state and the scattering operator must transform
with the same irreducible representation [4].
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Figure 1.6: hyper Raman Stokes scattering

Figure 1.7: The direction of the induced dipole moment for different cases of
scattering tensors and for incident light polarized along the z-axis



Chapter 2

Ferroelectricity

2.1 Introduction

Ferroelectricity is the physical property of some materials to exhibit a
spontaneous electric polarization without the application of an external field.
Furthermore, these materials exhibit a characteristic hysteresis mechanism,
meaning that in order to eliminate this polarization an external opposite
field must be applied. Ferroelectricity can be considered as the electric ana-
logue to ferromagnetism. Despite the fact that both phenomena describe a
spontaneous polarization or magnetization of matter there are three major
differences between them. First of all the coupling in a ferromagnetic mate-
rial is rather weak and the interaction between two magnetic dipoles is short
range in comparison with electric dipole interaction which is much stronger.
The second difference is the appearance of screening in a ferroelectric ma-
terial which means that, when such materials are polarized, charges tend to
accumulate on their surface in order to cancel the electric field associated
with the spontaneous polarization. This is not present in ferromagnetic ma-
terials due to the absence (as far as we know) of magnetic monopoles. This
is the reason why ferromagnetism was known from ancient times in contrast
to ferroelectricity which was observed much later. The third difference is
the fact that the polarization is strongly associated with the lattice (its ori-
gin is sometimes attributed to lattice instabilities) whereas ferromagnetism
has a weaker correlation to lattice phenomena. In the following section we
are going to present a phenomenological approach to ferroelectricity using
Landau’s theory of phase transitions.

19
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2.2 Phenomenological approach to ferroelec-

tricity

Before we proceed it is essential to stress out the limitations of such
approach. Fist of all Landau’s theory is a phenomenological theory based
on symmetry arguments meaning that it does not describe the underlying
microscopic mechanism. In general, phenomenological theories link together
microscopic models and macroscopic observations. Landau parametrized the
symmetry change of systems in equilibrium near the transition point with
an order parameter. The free energy of the system is expanded in terms
of this order parameter and the properties of the system in the vicinity of
the transition are calculated by minimization of the free energy with respect
to this order parameter. Landau’s theory stands, if the order parameter
fluctuations are small compared to the order parameter itself over a volume
determined by the correlation length. This implies that it is safe to use this
theory in systems with high dimensionality or long range interactions. In the
case of ferroelectricity (where long range interactions take place) the Landau
theory is applicable under some conditions.

We will start with the simplest case and go on with a more realistic
one. Let us assume that we have a bulk ferroelectric crystal which has no
impurities and all its dipole moments can be polarized in one direction. We
can write the following expression for the free energy density [17]

FP =
1

2
αP 2 +

1

4
bP 4 +

1

6
cP 6 − EP (2.1)

The equilibrium demands:
ϑFP
ϑP

= 0 (2.2)

so
E = αP + bP 3 + cP 4 (2.3)

and if we differentiate the equation above and set P = 0 we obtain:

1

α
=
P

E
= χ (2.4)

it is assumed that α has the following dependence on temperature around
the Curie point where T ∼ T0

α = α0(T − T0) (2.5)

from (2.4)

κ =
1

χ
= α0(T − T0) (2.6)
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which is the expected Curie-Weiss behavior of dielectric stiffness for T > T0.
Going back to (2.1)

FP =
1

2
α0(T − T0)P 2 +

1

4
bP 4 +

1

6
cP 6 − EP (2.7)

where α0, c are considered positive. So, the way the free energy transforms
across the phase transition is determined by the sign of b.

Figure 2.1: Second order phase transition a) The free energy as a func-
tion of temperature. We can clearly see that above T0 the energy favorable
state is that with zero polarization, while below the transition temperature
two degenerate states with spontaneous polarization exist. b) The dielectric
stiffness vanishes at the transition temperature which implies a discontinuous
behavior of the susceptibility. c) The spontaneous polarization decreases con-
tinuously to zero as we approach the transition temperature from below.[16]

The first option is when b > 0; in that case the free energy evolves as
a decreasing function of temperature from the case where the minimum is
at P = 0 for T > T0 to P = ±Ps as shown in figure (2.1). From (2.3) by
setting E = 0 and keeping only the first two terms (because all coefficients
are positive) the spontaneous polarization will be:

Ps =
[α0

b
(T0 − T )

]1/2

(2.8)

As we see, the spontaneous polarization will increase with decreasing tem-
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perature. The dielectric stiffness for T < T0 is

κ = 2α0(T0 − T ) (2.9)

which means that κ vanishes for T = T0 and the temperature dependence
is different above and below T0. It is obvious that at the vicinity of the
transition there will be a divergence of the susceptibility.

As we know, the specific heat is given by Cν = −T ϑ2FP
ϑT 2 so, if we want to

determine how the specific heat changes due to the transition we can write:

∆Cν = Cν(T = T+
0 )− Cν(T = T−0 )

∆Cν =
α2

0T0

2b
(2.10)

As we see ∆Cν is a positive quantity which means that there is an increase in
the specific heat across the transition. In general, those types of transitions
as the one described above are called second order phase transitions and they
are associated with a continuous evolution of the order parameter. Also the
transition is characterized by a lowering of symmetry from a more symmetric
state of the system (for T > T0) to a less symmetric one below the transition
temperature.

The other case is when b < 0. The fact that the quadratic coefficient is
negative implies that the free energy might have a local minimum above T0

apart from the trivial P = 0. As we reduce the temperature (and conse-
quently the α coefficient) the polarized states would become more and more
energetically favorable and at the Curie temperature Tc the polarized and
unpolarized states are energetically equivalent. The two phases coexist until
T0 is reached. The most important feature of those transitions (which are
called first order) is that the order parameter jumps discontinuously to zero
when the Curie temperature is approached. We can use the same arguments
as for the second order phase transition with the difference that, when we
use (2.3) for E = 0, we can not neglect the third term because b is now neg-
ative. By doing some calculations we can get the value for the spontaneous
polarization and the Curie temperature:

P 2
s = − b

2c

[
1 + (1− 4αc

b2
(T − T0))1/2

]
(2.11)

Tc = T0 +
3

16

b2

ac
(2.12)

In the same manner as for the second order transitions the susceptibility
above Tc is

1

χ
= α0(T − T0) (2.13)
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For T < Tc by differentiation with respect to the polarization of (2.3) and by
substitution of (2.11) we obtain:

1

χ
= 4α0(Tc − T0) (2.14)

Figure 2.2: First order phase transition a) Free energy as a function of tem-
perature: we clearly see the coexistence of the polarized and unpolarized
states above T0. b) The inverse susceptibility presents a discontinuity at Tc.
c) The spontaneous polarization drops to zero with a jump at Tc. [16]

Another interesting feature about first order ferroelectric transitions is
that the state that our system would have across the transition is determined
by whether the transition point is being approached from below or above.
So in the case that we heat the material to reach the Curie temperature
from below it would be in the polarized state but if we cool the system from
a temperature higher than Tc the favorable state is the unpolarized. This
happens despite the fact that at Tc the polarized and unpolarized state are
both a minimum of free energy.

2.2.1 Coupling of stress and spontaneous polarization

Generally ferroelectrics are very sensitive to the application of an elas-
tic stress (all ferroelectrics exhibit piezoelectricity also) with respect to their
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ferroelectric transition. If we imagine the microscopic mechanism of ferro-
electricity we can see more clearly why this coupling takes place. Let us
imagine a cubic crystal at its paraelectric phase. If our material undergoes
a ferroelectric transition the spontaneous polarization points in one of the
high symmetry axis which is no longer equivalent to the other as if the ma-
terial’s symmetry has been lowered to tetragonal. Such distortion can be
easily described as a strain ε along this axis. The next step is to formulate
the free energy with the strain as order parameter and by allowing terms
which are coupled to the polarization. These coupled terms must be chosen
wisely because they must reflect the symmetry of the problem. For example
in our case the lowest order allowed term must be linear to the strain and
tetragonal to the polarization. So the free energy should have the form [17]

Fε =
1

2
Kε2 +QεP 2 − εσ (2.15)

The first term is the elastic energy stored to the system due to its deforma-
tion, so K is one of the elastic constants. The second term is the coupling
between the strain and the polarization. Now we can determine the proper-
ties of the equilibrium by minimizing the total free energy F = FP + Fε,

ϑF (P, ε)

ϑP
=
ϑF (P, ε)

ϑε
= 0 (2.16)

The second part of the equality gives

ϑF (P, ε)

ϑε
= Kε+QP 2 − σ (2.17)

For P = 0 we get the Hooke’s law, but lets assume a more interesting exam-
ple. Let us say that the applied stress cancels out the strain produced by the
ferroelectric transition. It that case we have perfect clamping, as it is said,
so ε = 0 and the free energy remains unchanged. Another case is when the
applied stress is zero so the strain from the transition is:

ε = −QP
2

K
(2.18)

so the free energy can be rewritten as:

F (P, ε(P )) =
1

2
αP 2 +

1

4
(b− 2Q2/k)P 4 +

1

6
cP 6 + ...− EP (2.19)

As we can see, a strain affects the quadratic term of the expansion and if
we are studying a first order transition (where b is negative) the appear-
ance of strain just enhances the discontinuous nature of the phase transition
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(simply ”makes” the quadratic term more negative). However if we have a
positive b and we decide to ”clamp” our system it is obvious that the nature
of the transition itself can be altered. In general hydrostatic pressure and
biaxial stress from chemical substitution is used widely in material science
in order to change the features of the transition and especially the transition
temperature.

2.2.2 Deviation from perfect polarization

Domain structures

The case that a bulk ferroelectic becomes fully polarized towards one di-
rection is far from a realistic one. The reason for that are microscopic defects,
non-uniform stresses, and the thermal/electrical history of the sample, which
contribute to the formation of domains. Moreover, as we would see, even in
a perfect crystal the appearance of some sort of domains will be energetically
preferable. On the surface of a perfect polarized material we expect free
charges to accumulate. It is obvious that if we have domain structure inside
a material (assuming that within a domain the polarization is uniform) there
would be an accumulation of surface charges on the interfaces between dif-
ferent domains. Those charges would store energy (just like a capacitor) so
our system would prefer to adopt a domain structure which minimizes this
energy. The interface charge density between two domains is:

σ = (P1 − P2) · n̂ (2.20)

Figure 2.3: a) example of 900 domain wall b) 1800 domain wall [17]

where P1, P2 are the polarizations in two neighbor domains and n is the
unit vector normal to the domain interface. We can understand that there are
two configurations, which lead to the vanishing of the interface charges. The
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first is that neighboring domains have antiparallel polarization (namely the
1800 domain wall) and the second is when the domain wall bisects the angle
between two domains that are head-to-tail. The last case is called 900 domain
wall because in cubic materials two neighboring vectors of polarization are
perpendicular. The formation of domains introduces stress inhomogeneities
which counteract the energy lowering introduced by forming polarized states.
Especially for 900 domain wall, inhomogeneities are introduced which behave
in complex ways. The form of the domain might deviate significantly from
the perfect one in order to relax those stresses. Furthermore dislocations and
cracks introduce even more complexity to the real form of the domains.

Non uniform polarization

As stated above the case where we have a perfect polarization is far from
realistic so it is essential to have a short discussion on how we treat the case
of a spatially nonuniform order parameter (here the polarization) again in a
phenomenological framework, which of course would imply some limitations.
The first limitation to accept in order to proceed is that the fluctuations
of the order parameter along different wavevectors in our material must be
uncorrelated. With that in mind we would write the expansion of the free
energy (which is the key point of the Landau analysis) in terms of the gradient
of polarization. This analysis is generally called Ginzburg-Landau theory.
The first orders of the free energy density expansion will be:

F = α0(T − T0)

∫
d3~r[P (~r)]2 + γ

∫
d3~r[∇P (~r)]2 (2.21)

By doing the Fourier transform of the free energy we get:

F =

∫
d3~k

(2π)3
(α0(T − T0) + γk2)|P (~k)|2 (2.22)

Using the equipartition theorem (and the fact that in our expansion we have
two quadratic degrees of freedom) we obtain:

(α0(T − T0) + γk2)|P (~k)|2 = κBT (2.23)

From here we can introduce the correlation function for the polarization
which would give us a measure of the spatial fluctuation of the polarization:

g(~r) =< P (~r)P (~0) > − < P (~0) >2 (2.24)

Taking the Fourier transform of the equation above (in the parelectric phase
where < P~0 >= 0 and with no correlation between the modes with different
wavevectors) we obtain:

g(~q) =< |P (~q)|2 > (2.25)
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Combining (2.25) with (2.23) we obtain the Fourier transform of the corre-
lation function:

g(~q) =
κBT

α0(T − T0) + γk2
(2.26)

Now we simply take the inverse Fourier transformation

g(~r) ∼ κBT

γ

e−r/ξ

r
T 6= 0 (2.27)

g(~r) ∼ κBT

γ

1

r
T = 0 (2.28)

We see that for T > T0 the correlation function decreases exponentially, at
T = T0 it follows a power law and the correlation length is

ξ =

√
γ

α0|T − T0|
=

√
γ

α0T0

√
T0

|T − T0|
≡ ξ0|t|−1/2 (2.29)

where t = T−T0
T0

is the reduced temperature. The physical meaning of the
correlation length: for T > T0 is the length scale where polarization exist and
for T < T0 is the length scale in which the polarization fluctuates from its
equilibrium value. The correlation length can help us identify the boundaries
where Ginzburg-Landau theory ceases to be valid. The essence of this crite-
rion is that all ’modes’ must be ”coarse-grained” on a scale of the correlation
length.

2.2.3 Lattice instabilities and ferroelectricity

General aspects

Keeping in mind the analysis done in the previous sections one can think
that if we take Landau’s analysis literately we would form a picture of the
problem where the lattice displacements associated with the polarization are
equal to zero above Tc and take finite values below it; such a transition can
be characterized as a displacive one. Another possibility is that locally there
is a symmetry breaking, which induce dipole moments even above Tc but
those moments are randomly oriented as long as the transition temperature
has not been reached. One question that needs to be answered in the case of
displacive ferroelectricity is how much charge redistribution is produced by a
displacement of an ion. One way to measure the impact of a transverse optic
phonon is a quantity called transverse electric charge Z∗T and it measures the
average dipole moment per unit cell p generated by an ionic displacement u

p = Z∗T eu (2.30)
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Obviously different optical modes have different Z∗T or even zero transverse
charge if the displacement preserves inversion symmetry. If we assume that
for some reason a transverse optic mode ”softens” (decreases in frequency
until the vibration practically stops) and acquires an amplitude u0 then a
ferroelectric moment would appear with amplitude Z∗T eu0. This example
gives us an idea of the correlation of an instability in the lattice with the
appearance of polarization [18].

2.2.4 More about soft modes

Here we are not going to present in full extend the analysis of lattice
dynamics and instabilities but we are going to jump to some very interest-
ing results, which support the hypothesis of the correlation of ferroelectric
transitions with lattice instabilities. Let us assume a simple ionic crystal
(more complicated structures would lead to more complicated equations) so
that this simple example would give us the essential information about the
physics of the problem. Using the shell model (and in the frame of harmonic
approximation) one can write the equation of motion for the positive ion, the
core, and the negative shell of the negative. After the system of equations is
solved we obtain the following equations for the frequencies of longitudinal
and transverse optical modes [2], [18]

µω2
T = R

′

0 −
4π(εe + 2)(Z

′
e)2

9υ
(2.31)

µω2
L = R

′

0 +
8π(εe + 2)(Z

′
e)2

9υεe
(2.32)

where ωL, ωT are the frequencies of longitudinal and transverse optic modes,
R
′
0 is the effective force constant between the shells of the negative and the

positive ions and Z
′
e the effective charge of the positive ion. The reason

for taking effective values lies on the short range interactions of the lattice
vibrations that generate the dipoles. Finally εe is the high frequency dielectric
constant and υ is the volume of the unit cell. From the Lyddane-Sachs-Teller
equation :

ω2
L

ω2
T

=
εs
εe

(2.33)

we can see that the static dielectric constant goes to infinity if :

R
′

0 =
4π(εe + 2)(Z

′
e)2

9υ
(2.34)
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When this equality holds, the crystal becomes unstable for a zone center
(q = 0) optic transverse mode (with no need to be unstable for any other
normal mode).

In order to deduce the lattice instabilities we must go well beyond the
harmonic approximation. Anharmonic effects tend to make parameters as R0

to depend linearly on temperature. Having this in mind along with (2.31)
we get:

1− 4π(εe + 2)(Z
′
e)2

9υR
′
0

=
µω2

T

R
′
0

= γ(T − Tc) (2.35)

where Tc is the temperature at which the instability just begin to take place.
Combining (2.31) (2.32) (2.33) we obtain:

εs − εe =
4π(εe + 2)2(Z

′
e)2

9υµω2
T

(2.36)

from (2.35):

εs = εe +
4π(εe + 2)2(Z

′
e)2

9υR
′
0γ(T − Tc)

(2.37)

this remind us of the classic Curie-Weiss law:

εs = ε
′
+

4πC

T − Tc
(2.38)

with Curie constant:

C =
4π(εe + 2)2(Z

′
e)2

9υR
′
0γ

' (εe + 2)

4πγ

This is the behavior of our material in the paraelectric phase with the tran-
sition temperature being a singular (the physical meaning of this is the in-
stability of the lattice) point of the static dielectric constant as expected.

Continuing our analysis in the anharmonic regime we can stress out an
interesting result, which gives us a clear point of view what happens in the
crystal in the vicinity of a lattice instability. Lets imagine a restoring force
which acts upon the ions due to lattice vibrations of the form:

Fres = R
′

0u+Bu2 +B
′
u5 (2.39)

The anharmonic nature of this force is obvious and for simplicity we can as-
sume that the displacement u is along [001]. The presence of dipole moments
would result in long range Coulomb interactions which would be displacive
in nature and of the form:

Fcoul =
4π(εe + 2)(Z

′
e)2u

9υ
(2.40)
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So there is an antagonism between the long range coulomb force that drives
the system away from stability and the short range restoring forces. This
antagonism is depicted in Figure 2.4.

Figure 2.4: Restoring and displacing force as a function of displacement a)
before transition temperature b) at the transition temperature [10]

The value of ω2
T is proportional to the difference in slope of the two figures

at the origin. As the temperature is lowered, the slope of the lower graph
(Coulomb force) increases until it intercepts the other at a finite displacement
u. At this temperature the instability begins to take place but a full phase
transition would not occur until the free energy is minimized. So we can
state that a ferroelectric transition (at least the displacive ones which are of
our interest) is associated with a low frequency q = 0 transverse optic mode
resulting from a cancellation of short range and Coulomb interactions.

2.2.5 Some aspects of quantum criticallity in ferro-
electrics

In general, a quantum critical point is a special case of a continuous
transition which takes place at absolute zero temperature meaning that the
quantum fluctuations, which dominate this range of temperatures, play the
most important role in those transitions. Ferroelectics are excellent examples
for studying quantum critical points because one can force (by pressure,
chemical substitution etc) the transition temperature to drop down to zero
and hence give us the opportunity to study novel states of matter. This
ability of ferroelectrics comes from the fact that their criticallity (in contrast
with ferromagents) is a lattice effect. When a quantum critical point is
being approached physical quantities take new and unexpected forms. For
example the electric susceptibility diverges from the familiar Curie-Weiss
form χ−1 ∼ T and takes a very different χ−1 ∼ T−1 in the quantum critical
point region.
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There is a class of ferroelectrics that exhibit a much more interesting
behavior. They are called quantum paraelectrics and the key feature is that
their lattice instability is being counteracted by quantum fluctuation, so the
soft mode does not really reach zero frequency even at zero temperature. It
is profound that quantum paraelectricity is an area for fruitful investigation
because we are dealing with systems that quantum fluctuations determine
their macroscopic behavior.

Figure 2.5: Phase diagram with quantum critical region. It is clear how the
behavior of the system (for example the susceptibility) changes rapidly in
the vicinity of a quantum critical point [10].

Figure 2.6: Typical behavior of a quantum paraelectric. The behaviour of
the a) soft mode frequency and b) dielectric susceptibility deviates from the
classic ferroelectric in a profound way.



Chapter 3

What is a Multiferroic
material?

3.1 Introduction

Ever since Maxwell’s equations electricity and magnetism are being con-
sidered as two sides of the same coin. Despite that for many years electric
and magnetic ordering in materials had been most often examined separately.
One profound reason for that is the fact that electric charges of electrons and
ions are responsible for the electric effects whereas electronic spins and their
interactions govern most of the magnetic phenomena. Through the ages some
cross-links had been found between those two degrees of freedom, especially
magnetic and electric coupling in insulators. If we had to trace the origin of
this idea of new classes of materials where magnetic and electric phenomena
are in strong correlation, we would present a short remark made at 1959 by
Landau and Lifshitz at their classic textbook Course of Theoretical Physics
:

Let us point out two more phenomena, which, in principle, could
exist. One is piezomagnetism, which consist in linear coupling
between a magnetic field in a solid and a deformation (analo-
gous to piezoelectricity). The other is a linear coupling between
magnetic and electric fields in a media, which would cause, for
example a magnetization proportional to an electric field. Both
these phenomena could exist for certain classes of magnetocrys-
talline symmetry. We will not discuss these phenomena in more
detail because it seems that till present, presumably, they have not
been observed in any substance [16]

32
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Soon after this assumption Dzyaloshinskii predicted and Astrov observed this
type of coupling, which is nowadays called the magnetoelectric effect.

A new aspect of this problem is the possibility that not only cross-coupling
of the responses of a material exist but also two types of ordering, ferroelec-
tricity (spontaneous ordering of electric dipole moments) and ferromagnetism
(spontaneous ordering of spin magnetic moments), may coexist in the same
system and in fact they might appear spontaneously, without the application
of any external filed. Multiferroics represent this new class of materials which
bear those elusive properties (in fact there is another possibility of sponta-
neous deformation, ferroelasticity as it is called, but we will stay to the
ferroelectric/ferromagnetic aspects of multiferroics). Ferromagnetism and
ferroelectricity have quite different mechanisms. Localized electrons, mostly
in partially filled d and f orbitals, give rise to localized magnetic moments,
which align under some specific conditions (usually below some critical tem-
perature). The magnetic ordering is due to the exchange interaction between
the magnetic moments. On the other hand ferroelectricity originates from
many different mechanisms and this gives us different types of multiferroics,
which can be organized into two large groups namely type I and type II
multiferroics. In type I multiferroics ferroelectricity presents itself largely
independent of the ferromagnetism and the two have quite different origins.
Particularly those materials exhibit ferroelectricity at higher temperatures
than those at which magnetic ordering takes place, and the spontaneous po-
larization is quite large. The only thing that jeopardize the ’good’ properties
of those materials is the rather weak coupling between magnetic and electric
ordering. On the other hand type II multiferroics have very strongly coupled
magnetic and electric ordering and as a matter of fact ferroelectric ordering
is driven by ferromagnetism. However the spontaneous polarization is rather
weak. It is obvious that a combination of the two types would give an im-
pressive material with strong coupling between the order parameters as well
as a large spontaneous polarization.

3.1.1 Type I multiferroics

As stated above multiferroics of this class have ’good’ ferroelectric and
ferromagnetic properties, with critical temperatures (especially for the ferro-
electricity) being in many cases at room temperature or above. Their only
weak spot is the small coupling between their order parameters, which re-
duces the technological applications as well as the scientific appeal of this
physical system.

By considering the different mechanisms by which ferroelectricity mani-
fest itself we can subdivide the first class of multiferroics into four subcate-



CHAPTER 3. WHAT IS A MULTIFERROIC MATERIAL? 34

gories [5]

Figure 3.1: Different microscopic mechanisms found in type I multiferroics
a) ”Mixed” perovskites with ferroelectrically active d0 ions and magnetic dn

ions. Horizontal arrow depict the shift of the d0 ions with respect to the
oxygen octahedra, which lead to ferroelectricity and the vertical ones corre-
spond to the coexisting magnetic order. b) In those materials the ordering of
lone pairs (like the lobe around the Bi ion) lead to the ferroelectricity. c) In
charge ordered systems, the coexistence of inequivalent sites with different
charges, and inequivalent (long and short) bonds, leads to ferroelectricity d)
In ”geometric” multiferroics like the one in the picture a structure change
(for example a tilting) results to the appearance of dipole moments, which
interacts with one another and lead to ferroelectricity.

Multiferroic perovskites

We know many magnetic perovskites and ferroelectric ones but what is
striking is that that there is almost zero overlap between these two types of
ordering. This rather peculiar incident has its origin at the electronic struc-
ture of each one of the two cases of perovskites. Certain perovskites exhibit
magnetism due to a partially filled d shell of a transition metal ion. On the
other hand ferroelectricity occurs in those systems by an off-center shift of
the transition metal ion with respect to the oxygen octahedra due to a soft-
ening of a transverse optic phonon. The transition metal is strongly bonded
to the oxygens via an empty d shell so this attribute plays a crucial role to
the onset of a ferroelectric transition. One might think that a magnetic and
a ferroelectric ordering are two mutually exclusive cases at those materials
because of the different electronic configurations they demand. But there are
other ways around it such as the use of magnetic rare earths elements as an
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A-site ion or the production of mixed crystals with two types of transition
metals, one with empty and another with partially filled d shells.

Ferroelectricity due to lone pairs

In this type of materials (for example BiFeO3) there are ions with two
outer 6s electrons which do not participate in chemical bonding but, due to
the fact that they have a high polarizability, they play a major role in the
origin of ferroelectricity.

Ferroelectricity due to charge ordering

For some compounds a charge ordering occur under certain conditions.
Especially at those compounds, which have transition metals with different
valences, there might be after the charge ordering an nonequivalency between
both the sites and the bonds and this might lead to ferroelectricity. For
example TbMn2O5 and some nickelates RNiO3 belong to this category.

”Geometrical” ferroelectricity

In those materials (such as YMnO3) there is a geometrical change (tilting,
rotation etc), which provides close packing and as a result we have an ap-
proach of an anion with a cation. This results to a dipole moment providing
the necessary condition for a ferroelectric transition.

3.1.2 Type II mulriferroics

Spiral multiferroics

In this subgroup belong the vast majority of type II multiferroics such as
TbMnO3, Ni3V2O6 and MnWO4. The occurrence of ferroelectricity in those
materials is associated with a spiralling magnetic phase. One type of this
spiralling magnetic phase is a sinusoidal spin density wave where all spin point
in one direction but their magnitude vary in a sinusoidal manner. Because of
the centrosymmetric nature of this type of spin wave it is not compatible with
a ferroelectric ordering. Another possibility is a cycloid where the wave vector
Q describing the propagation of the spin wave and the rotation of the spin
are co-planar. This type of spin wave gives a non zero polarization described
by the following formula P ∼ Q× [Si×Sj] where Si, Sj are neighboring spins.
The microscopic mechanism of this polarization is associated with spin orbit
interaction. This formula was deduced by Katsura, Nagaosa and Balatsky
via a microscopic approach and by Mostovoy by a phenomenological one.
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Figure 3.2: Different types of spin waves a) sinusoidal spin wave, in which
spins point along one direction but vary in magnitude. This structure is
centrosymmetric and consequently not ferroelectric b) The cycloidal spin
wave. The spins rotate at x-y plane and there is a non zero Pz polarization.
c) In ”proper screw” type the inversion symmetry is broken. Despite that,
in most cases no polarization is been produced.

Considering this equation the so called ”proper screw” where the spins rotate
in a plane perpendicular to the one containing the wave vector Q should not
give a polarization. That is the case for particular crystal symmetries such
as the cubic but, for other symmetries, the equation might not hold and so
even proper screw type spin waves might give a non zero polarization.

Multiferroics with collinear magnetic structure

The second group of type II multiferroics have all their magnetic moments
aligned to a particular axis and the polarization arises from magnetic striction
due to the difference of the magnetic coupling with atomic position. The
simplest example of this category is Ca3CoMnO6. Specifically when those
materials are magnetically ordered a polarization arise due to a difference
between ferro- and anti-ferromagnetic bonds with respect to an exchange
striction.



Chapter 4

Review of the material

4.1 Crystallographic structure

Europium titanate crystallizes under normal conditions at the cubic per-
ovskite structure with lattice constant a=3.904 A. The europium atoms oc-
cupy the simple cubic sites, the oxygens occupy the center of the faces and
the titanium atoms are at the center of the oxygen octahedron.

Figure 4.1: Single unit cell of europium titanate. At ambient conditions eu-
ropium titanate has a cubic perovskithe structure with europium ions at the
corners of the cube, oxygens at the center of the faces and the titanium ions
in the center of the oxygen octahedron. The arrows represent the magnetic
moments of the europium ions [15]

37
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4.2 Magnetic and dielectric properties

4.2.1 Magnetic properties

Europium titanate has been found to order antiferromagnetically with
Neel temperature TN ≈ 5.5 ± 0.2K [15], [26]. At this antiferromagnetic
state europium ions occupy two interpenetrating fcc sublattices with each
europium ion having 6 antiferromagnetically coupled nearest neighbors and
12 ferromagnetical coupled next nearest neighbors. Antiferromagnetic or-
dering is believed to arise due to the superexchange interaction via an in-
termediate ion. Magnetic measurements have indicated a χ−1 ∼ (T − θ)
dependence as shown in the next figure. A fit to high temperature data gave
a Curie-Weiss temperature with positive value θ=4.5 K and a Curie constant
of 7.46 cm2K/mol. The fact that the Curie-Weiss temperature is positive is a
characteristic of ferromagnetic behavior. This unusual positive paramagnetic
temperature with the appearance of an antiferromagnetic transition may be
understood in terms of the exchange couplings expressed as [15]

TN =
2S(S + 1)

3kB
(−J1z1 + J2z2)

Θ =
2S(S + 1)

3kB
(J1z1 + J2z2)

where J1 and J2 are the nearest and next nearest exchange constants
whereas z1 and z2 are the nearest and next nearest number of neighbors.
The nearest neighbor antiferromagnetic is approximately half the strength
of the next nearest neighbor ferromagnetic interaction. So we can imagine
the antiferromagnetic ordering of EuTiO3 as result of the antagonism of
those two mechanisms. Eu2+ has half filled 4f configuration which lead to
antiferromagnetic superexchange interaction (figure 4.3). This is because the
virtual hopping leading to kinetic superexchange can take place only if the
two magnetic spins are antipararel. On the other hand the ferromagnetic
interaction arises from a virtual 2p to 5d transition from a filled 2pshell to
the empty 5d shell and a subsequent 5d-4f interaction between the virtually
excited 2p electrons and the 4f spins. For example in EuO the ferromagnetic
interaction is induced by virtual transitions from the full 2p shell to the empty
(5d-6s) and a subsequent polarization of the f shells in the excited state.
This mechanisms dominates the superexchange interaction. On the other
hand in Eu+2 perovskites (as EuTiO3) the antiferromagentic superexchange
interaction competes with the ferromagnetic one.

Below 15K there is a strong anisotropy in the magnetic properties as
shown in figure. Also in this figure 4.7 there is a magnetic feature at ∼3K.
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Figure 4.2: Temperature dependence of the inverse magnetic susceptibility
in µ0H0 = 0.01T [15]

Figure 4.3: Schematic representation of the next nearest neighbors antifer-
romagnetic superexchange in the 1800 configuration.
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Figure 4.4: Schematic representation of the exchange interaction 90 degree
configuration in EuTiO3

Figure 4.5: Dielectric constant measurement at 100kHz and inverse suscep-
tibility of EuTiO3. [15]

This low temperature feature has been attributed to a first order phase tran-
sition from c-axis antiferromagnetic order to ab-plane one [15]. The splitting
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Figure 4.6: Magnetoelectric coupling at low temperatures: a) dielectric con-
stant at 1kHz. b) magnetization in several magnetic fields. The inset shows
the magnetic field dependence of the dielectric constant at 2 K normalized
to its zero-field value. [15]
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Figure 4.7: Magnetic anisotropy with an onset below 15 K. The measure-
ments were taken with µ0H0 = 0.01T . The antiferomagentic transition at
5.5 K and the 2.8 K shoulder are visible. ZFC and FC stands for zero field
cooled and field cooled representing the two different cooling protocols that
were used. The magnetization reaches different values with each one of them.
[15]

may be understood through the existence of a ferromagnetic component of
the magnetization within the antiferromagnetic phase.

4.2.2 Dielectric properties

Low temperature measurements of the dielectric constant has shown a
linear increment below 100 K and a saturation point at T∼ 30 K with ε ∼
400. The Barret formula [15] fits best the temperature dependence of the
dielectric constant:

ε(T ) = A+
C

[(T1
2

) · coth( T1
2T

)]− Tc
(4.1)
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Figure 4.8: Left: The temperature dependence of the two transverse optic
modes. The softening of the TO1 mode is apparent as well as its saturation.
Lines represent different fits to the data. Right: Schematic of the three q=0
transverse optic modes. a) TO1, b) TO2, c) TO4. [8]

where A = 181, C = 2.34 · 104K−1, T1 = 162K, and Tc = −25K indicating
a possible antiferroelectric ordering [15]. At very low temperatures the di-
electric constant decreases with the onset of antiferromagnetism at 5.5 K. A
fully polarized state appears at 1.5 T and 2 K with the full 7µB moment of
the europium anions. The dielectric constant has ε(Ha)/ ε(H0))=7% at 2K,
a quantum paraelectric behavior up to 1.5 T, and a double peak structure at
intermediate field values. The increment of dielectric constant with the ap-
plied magnetic field causes a mode hardening, which drives the system away
from any long range order. The correlation of the dielectric constant with
nearest neighbors spin could be formulated with the following formula [15]
ε(T,B) = ε′0(T )(1 +α < Si ·Sj >) where ε′0(T ) is the bare dielectric constant
and α is the coupling constant between i, j nearest neighbors spins.

Infrared reflectivity and time domain transmission measurements revealed
three q=0 phonons. The first one (TO1) (in order of increasing frequency)
is the movement of titanium anions against the movement of the oxygen
octahera, the second one (TO2) is the movement of the europium anions
against the oxygen octahedra, and the third one (TO4) is the octahedra
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bending (see Fig.4.4). The most interesting is the first phonon since it is
the soft mode which drives the ferroelectric transition. The TO1 softens
with decreasing temperature and saturates below ∼30 K (see Fig.5.4). The
application of the classical Cochran formula for the paraelectric phase yields
:

ωSM(T ) =
√
C(T − Tc) (4.2)

where C=(27.06 ±0.8) cm−2K−1 and Tc=(-184.5 ± 15.4) K. The fact that
the soft mode does not actually freeze is attributed to the effect of quantum
fluctuations [15]. This explains the low temperature saturation of the soft
mode and that the temperature dependence cannot be described better by
the Cochran law at this range of temperature but it can be fitted best by
the Barret formula with parameters C=(27.45 ±1.3) cm−1K−1, T1=(154.6 ±
9.8) K and Tc=(-170 ±29.3) K [15].

In figure 4.9 we observe broad frequency-dependent maxima in the real
part of the dielectric function and associated features in the imaginary part.
Those features shift to higher temperatures with increasing frequency and
the peaks of the real part of the dielectric function broaden.

At extremely low temperatures we can see in figure 4.11 evidence of quan-
tum paraelectric behavior of EuTiO3 due to the saturation of the real part
of the dielectric constant at high values below ∼ 30 K. Also high frequency
permitivity contribution to the dielectric constant as extracted from IR re-
flectivity measurement shows purely quantum paraelectric behavior as shown
in figure 4.12 .

In figure 4.13 we can see that there is a kink in the dielectric constant
associated with the antiferromagnetic transition at TN=5.5 K whereas the
lower temperature slope change is most probably a signature of the uncovered
magnetic anisotropy discussed earlier. The kink in the dielectric constant
presented at Neel temperature is an evidence of the magnetoelectric coupling
which give us a hint about the multiferroic nature of EuTiO3 .

4.3 Structural phase transition

Powder X-ray diffraction showed a structural phase transition when the
temperature is lowered [15] as shown in Figure 4.14. The two (002) split
peaks show a 1/2 intensity ratio suggesting a transition into a tetragonal
phase. So the initial cubic space group Pm-3̄m to the tetragonal I4/mcm
[15]. This structural phase transition is an antiferrodistortive one which has
to do with an antiphase (between neighbor oxygen octahedras) tilting of the
oxygen octahedra and has to do with the softening of a zone corner (at the R
and M points of the brillouin zone) acoustic mode [23],[22], [25], [20]. From
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Figure 4.9: Temperature dependence of the real and imaginary part of the
dielectric function for different frequencies. The ε

′
maximum occurs at T≈

240 K for the lowest frequency of 1kHz and gradually shifts towards higher
temperatures with increasing frequency [15]

.
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Figure 4.10: Broad step like features in the real part of the dielectric constant.
Frequency dependent maxima in the imaginary part of the dielectric constant.
An external variable voltage with amplitude of 10−2 -1 V (corresponding to
∼ 10−1-10 V/cm) seems to has no effect [15]
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Figure 4.11: The real and imaginary part of the dielectric function at low
temperatures. We can see the saturation of the real part at around 30 K
which is an evidence of quantum paraelectric behavior of EuTiO3 [15]

Figure 4.12: The real part of the dielectric constant extracted from FIR
results for f >100 kHz [15]
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Figure 4.13: The low temperature evolution of the dielectric constant. As
a trend ε

′
decreases gradually on lowering temperature below TN . The

higher temperature kink is associated with the antiferromagnetic transition
at TN=5.5 K whereas the lower temperature slope change present itself most
probably due to the magnetic anisotropy discussed earlier. [15]
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all the octahedra tilt patterns the ones with the lower energies are the already
mentioned I4/mcm tetragonal phase, the orthorombic Imma and the rombhe-
dral R3̄c. The inversion symmetry seems to be retained in the average global
tetragonal phase. However there is no need to remove the inversion symmetry
in order to interpret those results. The α axis length shows a sharp decrease
and is smaller compared to SrTiO3 below 200 K. Consequently the tetragonal
strain is bigger in EuTiO3. Figure 4.15 shows the temperature dependence
of the α axis length [15]. Also the c length is presented which does not show
any significant temperature dependence. Site group analysis gives the follow-
ing optical phonons (in the Γ point of the Brillouin zone) for each one of the
three crystal systems [20]. In the cubic structure we have 3F1u+F2u modes in
total. From those the triple degenerate F1u modes are IR active and the F2u

is silent. Following the Brillouin zone folding in the cubic to tetragonal tran-
sition we acquire: 5Eu+3A2u+A1g+3Eg+2B1g+2A2g+B2g+A1u+B2u for the
tetragonal 4/mcm space group. In the tetragonal phase we have 5Eu+3A2u

eight IR active modes, A1g+3Eg+2B1g+B2g seven Raman active modes and
2A2g+A1u+B2u four silent modes. In the orthorombic phase (Imma space
group) we have 5B1u+4B2u+4B3u+3Ag+3B2g+4B3g+2Au+2B1u modes in
total. From those the thirteen 5B1u+4B2u+4B3u are IR active modes ,
the twelve 3Ag+3B2g+4B3g+2B1u are Raman active modes and two 2Au

modes are silent. In the rhombohedral phase (R3̄c space group) we have
5Eu+3A2u+A1g+4Eg+3A2g+2A1u modes. The eight 5Eu+3A2u modes are IR
active, the three 3A2u+A1g modes are Raman active and the five 3A2g+2A1u

modes are silent. The measured transition temperature varies from 200 K
to 283 K or even room temperature.There are some hints that the tetrag-
onal phase might be slightly more energetically favorable in comparison to
the cubic structure. The I4/mcm structure is ∼ 27 meV per formula unit
lower in comparison to the Pm 3̄m, the orthorombic Imma ∼ 26 meV per
formula unit lower and the rhombohedral R3̄c is 25 meV per formula unit
lower [21]. The small energy differences make us expect the coexistence (espe-
cially near 300 K) of those structural phases in the same system.Experiments
have shown that the crystal quality (oxygen vacancies, trivalent europium
ions, fluctuations of lattice parameters and strains) can alter significantly
the antiferrodistorsive transition temperature [20]. It is well established that
this antiferrodistorsive order competes with the (anti)ferroelectric transition
arising from the off centering of the B-site ion (in the case of EuTiO3 the
titanium anion) in tetravalent perovskites. In some XRD spectra there were
seen satellite peaks which were not part of the spectrum corresponding to the
tetragonal phase. A possible explanation is that those satellite peaks result
from a long range modulation of the antiferrodistortive octahedral rotation
[24]. The movement of the oxygens perpendicular to the axis of rotation is
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constrained to 1/2 due to the fact that each oxygen is shared with the neigh-
bor unit cell. Diffuse scattering associated to the (001/2) ordering, which
is in conjunction with the antiferodistortive ordering, is attributed to an-
tiferroelectric distortions arising from the titanium displacements [24]. In
figure 4.16 we clearly see the competition between those different kinds of
ordering. The short range AFE ordering rises where the AFD ordering is
minimum. The two kinds of ordering achieve stability via the formation of
the superstructure shown in figure where the two instabilities are alterna-
tively interwoven. The correlation length f the AFD ordering is ∼ 11 nm(28
unit cells) and ∼ 22 nm (56 unit cells) parallel and perpendicular to the
rotation axis whereas the correlation length of the FE ordering is only ∼ 6
unit cells [24]. Also the modulated AFD ordering showed large time con-
stant meaning that there is a dynamic process where the system fluctuates
between the modulated AFD and the AFE order whereas a simple AFD or-
dering is a static effect. The simple AFD structure disappears at ∼106 K
whereas the modulated AFD structure persist up to ∼ 285 K [24]. These
competition between the two types of ordering can be harnessed in order to
control the topography of the antiferrodistortive domains. The application
of an external electric field (and a perpendicular magnetic field) ensures that
there would be a tendency towards the formation of domains with the rota-
tion axis perpendicular to the external electric field [26] as shown in figure
4.17.

The interatomic distances within the unit cell as a function of tempera-
ture are shown in figure4.18 . The T1-O1 distance (where O1 is the oxygen
in the apical position of the octahedron) decreases with temperature in the
cubic phase and then increases shadowing the α-axis tetragonal distortion
commented above. The Ti-O1 and Ti-O2 distances split below the tetrag-
onal phase transition temperature reflecting the basal oxygen O2 displace-
ment. The Eu-O2 and Eu-O2

′
denote the near and far distances following

the octahedral rotation. The Eu-O1 distance remains fairly temperature
independent. In perovskites, the out of phase tilting angle φ of the TiO6

octahedra (calculated from the values of the x[O(2)] position with tanφ= 1-
4x[(O2)]) has been proposed as the primary order parameter for the Pm-3m
to I4/mcm structural phase transition. In figure4.19 we can see the temper-
ature dependence of the EuTiO3 order parameter alongside with the SrTiO3

data. The octahedral rotation angle φ increases with decreasing temperature
and appears to be saturating around 60 K [15]. The value of the distortion
amplitude is almost double that found in SrTiO3 at the lowest temperatures
reported.

The heat capacity of a EuTiO3 single crystal at temperatures between
0.385 K and 300 K and with a magnetic field applied parallel to the (100)
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Figure 4.14: Temperature evolution of the Miller index (111) and (002) ob-
tained via powder X-ray diffraction. The peak splitting of the (002) at about
200 K gives us a hint about a cubic to tetragonal structural phase transition
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Figure 4.15: Reduced lattice parameters of EuTiO3 and SrTiO3 as a function
of the temperature. The full and open circles are α- and c- axis of the
EuTiO3, respectively. Full and open triangles correspond to the α- and c-
axis of SrTiO3
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Figure 4.16: Illustration of the modulation of the antiferrodistortive titling
of the oxygen octahedra in comparison with the antiferoelectric displacement
of the titanium anions [24]

Figure 4.17: Zero-electric field cooling exhibits many orthogonal domains,
whose c-axis orientations are indicated by arrows and shading. When a
magnetic field H is applied domains with c⊥H (shaded green and yellow)
will undergo a spin-flop transition. Cooling in an electric field E realigns
structural domains with c\\E reducing the total proportion of the crystal
with c⊥H and hence suppressing the spin flop. [26]
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Figure 4.18: The interatomic distances within the unit cell as a function of
temperature. O1 is the oxygen in the apical position whereas O2 is the basal
plane oxygen in the octahedron. The Ti-O1 and Ti-O2 splitting follows the
tetragonal distortion below the transition temperature. Eu-O2 and Eu-O2

′

reflects the oxygen octahedron rotation [15]
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Figure 4.19: In this figure we see the angle of the oxygen octahedra φ. Full
circles represent results for EuTiO3. Open circles, open squares and full
squares represent data from three studies of SrTiO3. The inset depicts the
mode corresponding to the oxygen displacements [15].
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Figure 4.20: Zero magnetic field specific heat capacity of single crystalline
EuTiO3 as a function of temperature [15]

plane is presented in figure 4.20 . At very low temperatures we can see
a CV ∼ T3 temperature dependence followed by a crossover to the classi-
cal behavior at ∼ 3 K . This crossover can be attributed to the magnetic
anisotropy mentioned above. In figure 4.21 we can see clearly a peak at 284
K corresponding to the structural phase transition.

One interesting thing is that there is a discrepancy between the transition
temperature measured with X-ray diffraction (∼ 200 K)and the heat capacity
method (∼ 283 K). The tilting angle is found to be randomly distributed (for
temperature higher than 200 K) from one nanoregion to the next averaging
out to a cubic space group. On further decreasing the temperature the corre-
lation length of the tetragonal tilting diverges so the instruments resolution
starts to pick up the distortion. So this discrepancy can be attributed to the
scale evolution of the correlation length of the structural phase transition
[15].

4.4 Spin-lattice coupling

Strontium Titanate is a well studied incipient ferroelectric. So, it is rea-
sonable to look for a new compound which might incorporate the ferroelectric
qualities of strontium titanate as well as magnetic ordering. That is the rea-
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Figure 4.21: The heat capacity data as seen in the vicinity of the structural
phase transition. A relaxation trend is present above and below the struc-
tural transitions. On cooling from room temperature the first two series of
datapoints have lower values compared to the third. This relaxation trend
vanishes at the transition and is reversed below. This relaxation trend could
be attributed to the existence of local structural distortions terminating at
the temperature corresponding to the appearance of the structural order
parameter or the observed effect may be attributed to metastable phases
coexisting within this region of the phase diagram [15].
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son why ( EuTiO3) is of such interest. The reason why it is believed that
europium titanate would have the same ferroelectric behavior as strontium
titanate is because the two materials share a remarkable amount of similar
properties [9]. They are both cubic at ambient conditions, they have similar
lattice constants, they exhibit a tetragonal phase transition with lowering
temperature, and both have a Ti4+ inside a oxygen octahedra as well as A2+

cation on the A-site. One major difference is the presence of 4f electrons
in europium titanate (which make it magnetic also). The fact that 4f elec-
trons are well localized and shielded by the much ”larger” 5s5p electrons
ensures a great similarity between the electron band of the two materials.
Moreover the antiferrodistortive continuous structural transition that both
materials undergo (and makes them tetragonal) differ greatly at the tem-
perature of transition (100K for strontium titanate and almost 300K for
EuTiO3). One other striking difference is the great discrepancy between the
dielectric constants: SrTiO3 has ε ∼ 104 at low temperatures when EuTiO3

has only ε ∼ 102. Despite some differences it is more reasonable to expect
that EuTiO3 would also be an incipient ferroelectric so the question is : why
bulk EuTiO3 does not exhibit ferroelectricity? Recent theoretical studies [28]
from first principles calculations have revealed a giant spin-lattice coupling
which is responsible for the absence of a distinctive ferroelectric transition for
a bulk EuTiO3. A Hubbard model was used for the 4f electrons of europium.
In figure 4.23 we see that the frequency of the soft mode is being affected
severely be the change of the Hubbard potential; a result peculiar because
the soft mode is driven by the off centering of the titanium cation and so
there is no obvious reason why it is so sensitive to the energy of the Eu bands.
A logical explanation is that there is a spin lattice coupling with the 4f or-
bital playing a role in this. As shown in figure 4.24 there is a hybridization
between Eu-f orbitals and the unoccupied Ti-d orbitals. This hybridization
creates also a pathway for the superexchange interaction which leads to the
antiferromagnetic ordering.

What is even more interesting is that this hybridization depends on the
Hubbard potential applied to the Eu-f states as shown in figure 4.25. This
dependence brings out the underlying physics of the spin-phonon coupling.

Considering the maximally localized Wannier functions (MLWF) in Fig-
ure 4.26 we see two examples of (MLWF) for the occupied f orbitals. The
cubic harmonics corresponding to those orbitals are proportional to z(4y2 −
x2 − z2) and xyz respectively. The more interesting of the two is the fxyz
because, except from the main lobes that are around the core, there is a small
but nonzero part of the lobes around the Ti cation, which presents exactly
the hybridization of Eu-f orbitals and the normally unoccupied Ti-d orbitals.

So the key question is how exactly this orbital hybridization affects the
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Figure 4.22: a) fxyz orbital and 3rd neighbor Eu ions with the intermediate
titanium d(x+y+z)2 orbital. b) energy level of the three orbitals in the fer-
romagnetic configuration. c), d) lowest excitations where one electron hops
onto the Ti cation. e) forbidden configuration due to the Pauli exclusion
principle. However in the antiferromagnetic case also the i) configuration is
allowed [28].

Figure 4.23: Polar soft mode frequency vs UEu for the Eu-4f orbitals [28]
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Figure 4.24: Comparison of the density of states between strontium titanate
and europium titanate. One striking difference is the presence of a sharp
peak corresponding to europium 4f orbitals just below Fermi level with some
non-zero but smaller contributions from oxygen and titanium. This gives us
the impression that the Eu-4f orbital hybridizes with both O and Ti atomic
orbitals [28].

Figure 4.25: The MLWF of the europium fxyz for different values of UEu. It is
clear that as the potential increases the lobes near Ti shrink and consequently
the hybridization decreases [28].
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Figure 4.26: Two maximally localized Wannier orbitals of europium f elec-
trons a) fzy2 ∼ z(4y2− z2−x2) b) fxyz ∼ xyz. Yellow and green parts of the
Wannier functions correspond to isosurfaces of opposite sign [28].

soft mode frequency. The displacement of the Ti towards one of the oxygens
increases the Ti-3d/O-2p hybridization and therefore the hybridized empty
states are moving to higher energies while the occupied ones to lower energy,
which leads to a tendency towards ferroelectricity. On the other hand when
we have also a Eu-4f/Ti-3d hybridization the 3d orbital is not empty, and
there is an additional energy cost which inhibits ferroelectricity (the same
argument applies if the B site ion was magnetic) [13].



Chapter 5

Experimental methods

5.1 Experimetal apparatus

The apparatus consists of a T64000 Jobin-Yvon micro-Raman triple spec-
trometer equipped with a CCD detector. For the excitation an Argon laser
was used. We have used mainly the 514.5nm line for our measurements.

Figure 5.1: The main component of the T64000 Jobin Yvon triple spectrom-
eter. We clearly see the three stages of the spectrometer, which are three
monochromators in line. In the course of this experiment we used only the
micro- Raman configuration.

The spectrometer

A monochromator is a configuration, which is used to analyze polychro-
matic light. It consists of some mirrors that guide the light in and out and
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the main component is a grating (usually diffractive but it can also be re-
flective). The light after the grating is dispersed so it is analyzed to different
wavelengths. Usually two or three monochromators are used in a typical Ra-
man spectroscopy configuration. The triple spectrometer can be used in two
different configurations, the additive and the subtractive. These two con-
figurations correspond to the way the dispersed light from the first and the
second grating reaches the third one. With the subtractive configuration the
light after the second grating is collimated and it is dispersed again when it
reaches the third grating. In the subtractive configuration we acquire a wide
spectrum as the frequency is concerned. Practically in this configuration the
first two stages just play the role of a ’filter’ for the laser line.

Figure 5.2: The subtractive configuration

In the additive configuration the light gets dispersed in every grating so
at the end we have a spectrum which has very good resolution but it is not so
wide. We used for our experiments exclusively the subtractive configuration.

Laser and optics

The laser we used was an Argon laser. The 488 nm, 514.5 nm lines are
the more intense, but we exclusively used the 514.5 nm line. After the laser
there was an attenuator to reduce the laser intensity to an accepted level so
that no local heating of the sample is induced. The laser emits also plasma
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Figure 5.3: The way the light is dispersed in the path through the spectrom-
eter when we use the subtractive configuration. We see how after the second
grating the light is re-collimated

lines due to transitions of the argon ions inside the optical cavity. Those
plasma lines correspond to additional peaks which can be detected in the
spectrum. Furthermore there is a continuum signal due to the cathode dis-
charge. It is crucial to cut off those noises from our spectrum so we used
a SPEX 1450 tunable excitation filter. This filter consists of a mirror that
increases the spot size of the laser before it hits the diffraction grating. The
grating had 1200 grades/nm and 12.7 × 12.7 nm dimensions. It works for
wavelengths between 400-633 nm and it has a bandwidth of 0.5 nm. After
the light is dispersed from the grating it hits a mirror, which refocuses it
and then passes through a slit, which ’cuts’ the plasma lines. We can choose
which wavelengths are excluded by micrometric movements of the diffraction
grating. After the plasma line filter there is a compensator, which enabled
us to choose the polarization of the incident light. Furthermore we can use
an analyser after the microscope in order to choose scattered light with a
given polarization. This enables us to apply selection rules for the Raman
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Figure 5.4: The additive configuration

Figure 5.5: The way the light is dispersed in its path through the spectrom-
eter when we use the additive configuration

scattering and measure specific elements of the Raman tensor. This means
that we can detect phonons with different symmetry if we choose the incident
light polarization properly. The spectrometer responds differently to differ-
ent polarization of the incoming light. The key factor is whether the light
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Figure 5.6: a) The first two monochromators b) the third monochromator
c) The CCD and its liquid nitrogen dewar d) The light entrance from the
microscope

polarization is vertical or parallel to the gratings. It is important to know
for a given laser line which orientation suffers from the low response of the
spectrometer in order to extract correct information from the measurements.

5.2 Direct current apparatus

The idea behind this apparatus was to connect the sample with a DC
source and let a small current pass through. This current would correspond

to an electric filed inside the sample as the formula
−→
J = σ

−→
E postulates. So

the sample was glued on a plastic plate and two copper wires glued on it
with a conductive paint. Later due to the fact that the samples resistance is
significantly lowered with the application of voltage an in-line 560 Ω resistor
was added in order to limit the current. Also the sample and the resistor were
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Figure 5.7: a) Laser tube. b) Mirrors. c) Compensator. d) Plasma line filter.
e) Polarizer.

Figure 5.8: The plasma line filter.

placed on a piece of a PCB board. The DC source had maximum output 30
V so we did our measurements in a 0-30V range with 1V step. The voltage
source had a built-in voltmeter and an amperometer but we have used also
an amperometer in series to monitor the µA passing current that was too
small compared with the built-in instrument’s sensitivity.



CHAPTER 5. EXPERIMENTAL METHODS 68

Figure 5.9: DC Power source with maximum output 30V-DC and an in series
amperometer to monitor the current.

Figure 5.10: The apparatus with the in line compliance resistor. The sample
is under the lens.

5.3 High electric field measurements

The high voltage apparatus had three main components. The first one
was a DC high voltage power supply which was part of a He-Ne laser. We
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Figure 5.11: The sample is between the two wires and conductive contact
was established with the use of conductive paint at the edges of the sample
where the wires were glued.

calculated that the maximum voltage output was approximately 9.430 kV.
The second component was a voltage divider which was made by twelve 1.2
MΩ resistors soldered in line. The voltage divider gave us the opportunity
to select the voltage that we wished to apply on our sample. The last part
was the electrodes which were put inside a type of rails in order to adjust the
distance between them. At first the distance was set to 1 cm. One electrode
could be moved in order to tune the distance between them. The electrodes
were glued on a piece of plexiglass to ensure the electrical insulation of the
apparatus against vertical discharges to the metallic base of the microscope.
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Figure 5.12: DC power supply which provides the high voltage to our appa-
ratus.

Figure 5.13: The voltage divider. The two cables shown were connected to
the electrodes and by choosing different inputs we could adjust the output
voltage.
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Figure 5.14: This is the schematic of the voltage divider, which was simulated
with the SPICE suite. The voltage at the ends of every resistor is 943V. We
see the different voltages that we can acquire.

Figure 5.15: The electrodes. Between them the sample was placed. A small
piece of plexiglass was used to adjust the height of the sample to the most
homogeneous place of the field.
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Figure 5.16: Close-up of the electrodes.



Chapter 6

Results and discussion

6.1 The sample

Basically we had two samples the first one was a small single crystal
and the second one was a large polycrystalline. The polycrystalline sample
was cut in two (Figs 6.1 - 6.2), with one piece polished (thus thinner than
the other one). The whole sample had electric resistance of 1KΩ and its
dimensions were approximately 1.64 cm in length, 0.25 cm in width, and
0.14 cm in height. So we can estimate that the resistance of each piece
has value half of that of the whole piece. Both the single crystal and the
polycrystalline are black and opaque. Under the microscope we were able
to see little well oriented crystallines (on the polycrystalline sample), which
were shiny and therefore easily spotted among the black rest of the sample’s
surface. Their dimensions varied from few microns to some tens of microns.
The single crystal was a cubic piece of a few hundred microns. It was also
polished and so it appeared uniformly lustrous under the microscope.

6.2 Intrinsic spectrum and first efforts

The Raman spectra should not show any peaks as expected due to the
fact that each site in the unit cell is an inversion center. Therefore we ex-
pect three IR active modes at: 110 cm−1, 160 cm−1, and 530 cm1. Those
frequencies have been obtained from IR reflectivity measurements [7]. The
direct application of voltage upon the sample limited significantly the volts
that we could apply. This happened because the sample exhibits a signif-
icant decrease in its resistance when an external voltage is applied, which
leads to overheating. The voltage that could be applied without overheating
was less than 8 volts. Electrical measurements were done in order to un-
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Figure 6.1: The unpolished sample. Its length was approximately 0.8 cm.

Figure 6.2: The polished sample. Due to the polishing the sample was signif-
icantly reduced in size, it became much thinner in comparison to the other
piece.
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Figure 6.3: The decrease in resistance manifests itself as a ’jump’ in the
current at 8 volt. For the measurements, we did not make special electric
contacts on the sample but instead we touched directly the electric pins on
the surface. This definitely introduced some parasitic phenomena but still
provides a qualitative information about the electric response of the sample.

derstand if this overheating was indeed part of the response of the material
to the voltage. Indeed a rapid decrease in the resistance (almost by three
orders of magnitude) was observed for 8 volt bias (figure 6.3 ). In figures 6.4
and 6.5 we see no significant change in the spectra of the materials with the
application of the voltage. There is no new peak appearing or other spectral
modification indicative of a symmetry breaking. Apparently, the electric field
induced inside the material was not strong enough to induce any symmetry
breaking. Therefore, a much more stronger electric field was needed.

In order to avoid the high currents from the lowering of the resistance,
a resistor was introduced in series. In this way, higher voltages could be
reached.

6.3 High voltage measurements

Unpolished sample

For these measurements we took spectra from those crystallites of the
sample that were well oriented with respect to the incident light polarization.
They had smooth shiny surfaces reflecting more light. We have tried to
choose crystallites as big as possible in order to avoid loosing them during
the measurements and also we have chosen crystallites whose surfaces were
as reflective and homogeneous as possible.

As shown in figure 6.6 the spectrum with no external field did not show
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Figure 6.4: Those spectra were taken with the direct current apparatus. No
radical change was observed.

Figure 6.5: This figure corresponds to the direct current apparatus with the in
line compliance resistor and the 30 V DC power supply. Again no significant
changes were observed. For the 30 V we see something like a broad peak at
∼ 100 cm−1 but this must be something random because it had never be seen
afterwards, under the same conditions neither from a different crystalline.
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any peaks or spectral modifications. When the high voltage source were
turned on at ∼ 6.5 kV the spectrum showed the peaks depicted in figure 6.7.
The same peaks were shown in spectra from other crystallites from different
parts of the sample. Besides, when the electric field was applied the sample
was turning trying somehow to align itself with the applied field. Once the
field was applied for the first time and the sample was reoriented, switching
it off and on did not induce any movement of the sample. This happened
in all relative measurements forcing us to believe that the application of the
electric field really induced a polarization of the material accompanied with
the expected symmetry lowering.

Figure 6.6: Spectrum of sample with no applied field

In Fig. 6.8 we present the data from a sample that was modified by the
application of an external field of 6.5 kV/cm. As can be seen (Fig. 6.8 )
the effect of the electric field is not permanent but it fades out after some
time. Two days later the spectral modifications in the recovered sample could
not be induced even by applying a much higher electric field of 9kV/cm.
Meaning that those crystallites, which initially gave spectra like in Fig. 6.7
did not show any new peaks nor did the same peaks reappeared with the
application of the electric field. It must be pointed out that this sample was
also used in the direct current measurements, so it had been already exposed
to some electric field, which of course was small in comparison to that used
for inducing spectral changes. It is possible that the previous treatment of
the material might have affected its behavior.
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Figure 6.7: Same crystalline and accumulation time with the application of
6.5kV/cm

Figure 6.8: Comparison of the spectrum shown in 6.7 after relaxing for 10
minutes and one day without an external electric field. There seems to be
an overall decrease of the signal, which eventually fades out one day later.
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Polished sample

The other piece of the polycrystalline sample (which had been polished)
was never treated before by an external electric field and flowing current.
When this piece was exposed to the same high voltage as the unpolished
one, the same peaks appeared as shown in figure 6.9 .

Figure 6.9: The same peaks reappeared in the polished sample too with the
application of 6.5 kV/cm and accumulation time 2× 300′′.

As we can see in figure 6.10 the signal from the polished sample seems not
to fade out as quickly as in the case of the unpolished one. This might have
to do with the fact that the polishing procedure had introduced strains inside
the sample, which would lead to the pinning of the induced deformations.
After two days there were crystallites that did not show any peaks (just like
the unpolished sample) but the vast majority did show the same peaks but
significantly lowered as shown in figure 6.11 .

The application of the electric field to those crystallines lead to a clear
enhancement of the peaks as shown in figure 6.12. This gives us further
evidence that the appearance of the peaks is an induced effect.

We conducted low temperature measurements in order to understand
how the spectrum is altered due to temperature changes (figure 6.13).What
is more interesting is the fact that the 480cm−1 peak is affected differently
from the lowering of temperature than the other ones.
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Figure 6.10: The two spectra was obtain from the same crystalline in electric
field and one hour later under the same conditions and accumulation time.

The fact that only some peaks were observed for vertical polarization
of the incident light (figure 6.14 ) reflects the different symmetry of the
corresponding phonons.

Some strange spectra

In both samples we have detected some surface spots, which gave peculiar
spectra (Fig. 6.16). The peaks seemed different from the ones obtained from
the rest of the samples. Moreover, those areas were few and localized and they
could be identified even by simple inspection by eye under the microscope due
to the slightly different color and texture from the original one. Those areas
had not been observed prior to the application of the high voltage, they might
be secondary phases of the material, which might brought up by the electric
field (due to symmetry constrains) or they might be local chemical changes,
which were a byproduct of the application of a high electric field. Although
quite a few of the peaks from those spectra (especially from spectrum c)
seems to have some relevance, especially with the peaks that we expect from
the orthorombic and rombohedral phase (figure 6.26), the fact that we could
not detect them except from specific spots called for further investigation.
Also they did not present any alternation with time or application of the
electric field. This static character further enhances our thoughts of a local
alternation or a secondary phase.
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Figure 6.11: Two days after the system relaxed but the peaks are still ob-
servable.

Single crystal

Due to the fact that we did not know the crystallographic orientation
of the faces of the single crystal we tried different orientations in order to
find the appropriate alignment with the electric field. When the electric field
was applied, the sample was turning again until its polarization was aligned
with the field. The spectra that we got are in figures 6.17-6.20. We see
that the spectra are not the same as the polycrystalline was. Despite that
the appearance of peaks in the spectrum enhances the odds that we have
electric field induced Raman scattering but also demands explanation about
the discrepancies between the spectra of the two samples. The fact that
different orientations of the crystal gave us different peaks may be explained
by the fact that the selection rules would allow only specific phonons to
be measured each time depending of the relevant orientation of the crystal
axis with respect to the polarization of the incident light. We see that the
peaks that appeared are not so intense as the ones in the polycrystalline
sample. This means that the induced effect is weaker in the single crystal than
the pollycrystalline sample. Also the fact that this sample is also polished
gives longer relaxation time due to the pinning of the deformations from the
microstrains in the sample.
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Figure 6.12: We can see that the effect reappears with the application of an
electric field. The accumulation time and the conditions in general are the
same for the two spectra. We also observe that now the 480cm−1 peak is not
stronger than the 532cm−1 as it were in the initial spectra of the polished
sample. This means that the orientation of the crystalline determines the
relative strength of the peaks
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Figure 6.13: The low temperature measurements revealed that the ∼
260cm−1,∼ 321cm−1 have different temperature dependence from the rest
of the peaks. The relative intensity of the two remaining peaks increases
significantly with the 480cm−1 being the strongest. The accumulation time
was 2× 1200′′
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Figure 6.14: Spectrum of the same spot with vertical polarization of the
incident light. We can see that only the 480cm−1 and 532cm−1 ”survive”
also a peak at ∼ 193cm−1 is visible. This peak is also barely detectable in
some previous spectra such as in Figs 6.9 and 6.10. The accumulation time
was 1× 1200′′.
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Figure 6.15: Different spot from the polished sample which gives better signal
from the initial one. Comparing these with the corresponding spectra from
the unpolished sample we also see that the third peak is intenser from the
other ones in the polished sample. This discrepancy might be a hint that
this peak has a different origin than the other ones.

Figure 6.16: Spectra obtain from both samples which might belong to phases
different from the main one.
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Figure 6.17: Different orientation of the crystal, different spot. The dis-
crepancy between the horizontal and vertical polarization is striking. The
∼ 65cm−1 peak seems like the soft mode but it has very low frequency for
ambient conditions.
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Figure 6.18: In comparison with figure 6.17 we see that the 65cm−1 peak
disappears in the relief process something that points out that it might be
induced by the electric field.
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Figure 6.19: Spectrum from the single crystal material. We can see the
193cm−1 peak observed also in the precious samples and there is a hint of
the 480cm−1 peak in the spectrum with the 5.6 kV/cm field. The rotation
of the incident light polarization reduced the signal as expected, but the
193cm−1 peak ’survived’ again. The accumulation time was 2× 1200
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Figure 6.20: Vertical polarization. One spectrum was taken with no field
and accumulation time 2 ×1200” and the other one with ∼8kV/cm and
accumulation time 2 ×600”. We see that the difference in the accumulation
time the intensity of the signal is equal and there seems to appear a peak at
∼ 480cm−1 similar to the one we saw in the polycrystalline sample.
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Figure 6.21: Reflectivity measurements of EuTiO3. We can see that we
expect the third transverse optic phonon at ∼ 480cm−1 and the second one
at ∼ 180 − 190cm−1. The first one (which is also the soft mode) is rather
weak and it has lower frequency ∼ 110cm−1 at ambient conditions. The rest
of the peaks 310cm−1, 400cm−1250cm−1 belong to the pyroclore phase of the
material Eu2Ti2O7 [7]. More recent studies [20] have revealed that those
peaks do not originate from the secondary pyrochlore phase but the TO1
and TO4 modes split at low temperatures and generate those new peaks.

Figure 6.22: Dispersion curve for the cubic Pm3̄m structure [21]
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Figure 6.23: Dispersion curve for the tetragonal I4/mcm structure [21]

Figure 6.24: Dispersion curve for the orthorombic Imma structure [21]
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Figure 6.25: Dispersion curve for the rombohedral R3̄c structure [21]

Figure 6.26: This table shows the observed peak frequencies and the calcu-
lated phonon frequencies in the Γ point of the Brillouin zone for each one
of the proposed crystal systems. The frequncies were calculated from the
dispersion curves of each crystal system. [21]
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6.4 Discussion

First of all the fact that some kind of change in the material was intro-
duced with the application of the electric field is obvious (for example the
comparison of figures 6.6 and 6.7 give us an idea of this change). Both sam-
ples were thoroughly checked before the experiments and neither had shown
any peaks in their spectrum, as expected, so these peaks are induced from
the field. The fact that those peaks were shown from a number of different
crystallites, which were chosen randomly and they did not share any special
characteristic, implies that those peaks must not descent from an impurity
or some secondary phase of the material. If all those peaks were from a
secondary phase then crystallites, which show them, should not be found so
frequently and so unbiased. In figure 6.7 we see that there are five peaks
detectable at ∼ 268 cm−1, 323 cm−1, 400 cm−1, 480 cm−1, and 532 cm−1.
From those the 480 and 532 peaks are narrow and intense so they are defi-
nitely first order lattice scattering. The other peaks are broader but this is
not enough to decide whether they are second order scattering. Also if we
see figure 6.10 a peak at ∼190 cm−1 is present, which seems rather weak.
Figures 6.8 , 6.10 show us that the effect is not permanent and it fades out
with time.

The fact that the peaks re-appeared when we applied again the electric
field (figure 6.12) states that those peaks are indeed induced and so they
do not have to do with same chemical alteration of the sample or any other
parasitic phenomenon. But we did not manage to re-induce the phenomenon
to the unpolished sample (and also in some crystallites of the polished sam-
ple). One possible explanation is that after the total relaxation of the sample
there is a permanent effect where the phase with no Raman active phonons
is preferable and more stable than before making it harder to re-produce the
lattice instability.

Figure 6.13 gives us very useful information about the changes in the
relative intensities of the peaks with the lowering of the temperature. From
the change of the relative intensities (shown in the following table) between
the peaks, taken with respect to the 480 cm−1 peak, we can see that all peaks
are enhanced upon cooling except for the 190 cm−1 and the 400 cm−1 peaks.
Also the 480 cm−1 is the most intense peak at 77 K. Taking also into account
the relative reducement of the 190 cm−1 400 cm−1 and we can say that those
two peaks seem to have different mechanisms from the rest of the peaks.
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Figure 6.14 corresponds to a vertical polarization of the incident light.
We can see that the 480 cm−1 and 190 cm−1 peaks had been enhanced in
comparison to the rest (the 268-323 cm−1 have almost vanished). In gen-
eral we can say that the data from the polycrystalline sample show us that
an applied electric field can induce Raman scattering. The expected TO4
phonon has been detected with good agreement (in comparison with the IR
measurements) to its frequency and we have strong indications that the TO2
phonon has been detected but in this case we have a significant difference to
its frequency (up to ∼ 20 %) with respect to the frequency measured with
other techniques.

The spectra obtained from the single crystal (figures 6.17-6.20) are dif-
ferent from those obtained from the polycrystalline sample. The application
of the electric field revealed peaks that were not seen before. The 65 cm−1

(figure 6.17) disappears when the polarization is vertical. This resembles the
behavior that we expect from the soft mode but with much lower frequency
than we expected (110 cm−1 at ambient conditions). In figure 6.18 we can
see that the 65 cm−1 peak is not present when the samples is relaxed.

In figure 6.19, which corresponds to a different orientation of the crystal
with respect to the electric field, we see a 190 cm−1 peak, as the one seen
to the polycrystalline sample. This had been induced by the field. After
the removal of the voltage the peak did not disappear at once and by the
re-application of the field it did not change significantly. At this point we
have seen that by trying different orientations of the crystal we detected two
polar phonons that might be the two lowest transverse optic phonons. In
figure 6.20 we see that another peak was induced (for a third orientation
of the crystal) which is at ∼ 482 cm−1. This resembles the expected TO4
mode, the two wavenumber difference is insignificant and can by explained
by miscalibration of the instrument.

The fact that the single crystal had much better quality gave us spectra
with no secondary phases and parasitic effects. In contrast, the spectra in
figure 6.16 (of the polycrystalline sample) should be from secondary phases or
local chemical changes of the sample because they were found in specific spots
which shared different characteristics from a normal crystalline of the sample.
Also the electric field did not affect them. If there were indeed secondary
phases of the sample one could think why they had not been detected before
the high voltage experiments. A possible explanation is that those secondary
phases have the same symmetry, which means that they do not have Raman
active phonons and eventually the application of the electric field revealed
them as well as the main phase.

In Figure 6.26 we can see a comparison of the frequencies of the modes
from our spectra from the expected ones for each one of the potential crystal
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structure. We can see that there is a similarity especially with the modes of
the tertragonal and orthorombic phase. The 532 cm−1 268−1 and 420−1 and
480 −1 peaks have good agreement with the expected values. The 196 and
323 peaks differ significantly the the theoretical values that can be matched.
If we have indeed seen the Raman spectrum of EuTiO3 this discrepancy can
be explained by a modulation of those modes frequencies by the applied
electric field. This effect hints that those modes correspond to movements of
ions with different valencies, which leads to strong coupling of those modes
with the field. Also what is very interesting is the 65 cm−1 peak in the single
crystal sample which resembles the frequency of optic soft mode of the cubic
structure but in low temperatures. A better match of this mode might be
the orthorombic 74 cm−1 mode.

6.5 Conclusions

In our study we show that the application of an external high electric
field induced a symmetry lowering of the crystal structure which allowed
us to acquire its Raman spectrum. We believe that those spectra did not
come from a secondary phase of the material because they had not been
observed prior the application of the electric field and they show signs of
an induced effect (reappearance in the polished sample). Also the fact that
those spectra were acquired from different (not special or peculiar) spots on
the sample make us thing that they are not some irrelevant impurities and
secondary phases. Also the fact that the peaks that we observed showed
dynamic behavior (they changed with time) makes the case of a large scale
chemical alternation of the sample due to the electric field unlikely. What is
very interesting is the fact that we were not able to see the antiferrodistortive
phase transition with the lowering of the temperature despite the fact that
there are quite a few other experiments (with x-ray diffraction etc) which
confirm the existence of this phase transition.

We make the hypothesis that at ambient conditions the cubic, tetragonal,
orthorombic, and rombohedral phases coexist. As the energy difference be-
tween them is comparable [21] to the thermal energy the structure of the ma-
terial fluctuates dynamically between these four structures. So nanodomains
are formed at ambient conditions and the fluctuations between the four dif-
ferent structures make this dynamic effect very difficult to be observed with
Raman spectroscopy. So the crystal seems as if it has perfect cubic struc-
ture. When we applied an electric field, due to the antagonism between the
antiferrodistortive transition and the displacement of the titanium anions
[26] there would be a formation of larger domains with the tetragonal axis
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oriented perpendicular to the field. The electric field drives the system to-
wards the formation of larger domains where the low symmetry structures
dominate and are fairly static. This hypothesis explains the fact that there
were spots that seemed to undergo structural transitions and others that
did not maybe due to ’bad’ alignment between the crystallographic axis and
the electric field at those crystallites. But we can not explain why when
the crystal (especially the unpolished one) was relaxed fully we could not
re-induce the effect. Maybe there is a permanent alternation in the structure
of the sample, with the cubic becoming more stable than the other phases
and consequently being strongly preferred .

We tried to obtain IR spectra in order to ’see’ if something changes in
the IR spectrum after the application of the electric field. The low reflec-
tivity of the sample did not allow us to have conclusive results. Also more
extensive high pressure measurements would give us better insights to the
antiferrodistortive phase transition.
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