
NATIONAL TECHNICALUNIVERSITY OFATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION
COMPUTING SYSTEMS LABORATORY

Study, assessment and optimisation of last level cache replacement
policies in CMP systems

DIPLOMA THESIS
of

Ioannis K. Agriomallos

Supervisor: Nectarios Koziris
Professor NTUA

Athens, March 2015

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
COMPUTER SCIENCE DIVISION
COMPUTING SYSTEMS LABORATORY

Study, assessment and optimisation of last level cache replacement
policies in CMP systems

DIPLOMA THESIS
of

Ioannis K. Agriomallos

Supervisor: Nectarios Koziris
Professor NTUA

Approved by the three-member committee on the 4th of March 2015.

..
Nectarios Koziris
Professor NTUA

..
Nikolaos Papaspyrou

Associate Professor NTUA

..
Georgios Goumas
Lecturer NTUA

Athens, March 2015

. . .

Ioannis K. Agriomallos
Graduate Electrical and Computer Engineer of NTUA

Copyright © Agriomallos K. Ioannis, 2015
All rights reserved.

The present work may not be reproduced, stored nor distributed in whole or in part for com-
mercial purposes. Permission is hereby granted to reproduce, store and distribute this work for
non-profit, educational and research purposes, provided that the source is acknowledged and
the present copyright message is retained. Enquiries regarding use for profit should be directed
to the author.
The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the National
Technical University of Athens.

Περίληψη

Η συνεχώς αυξανόμενη ζήτηση για ολοένα και αποδοτικότερα υπολογιστικά συ-
στήματα ώθησε τους κατασκευαστές υλικού στην αναζήτηση καινοτόμων αλλαγών
στην ήδη υπάρχουσα τεχνολογία, με κύριο στόχο την αύξηση στην ταχύτητα μετάδο-
σης,επεξεργασίας και αποθήκευσης των δεδομένων. Η μετάβαση από μονοπύρηνα
σε πολυπύρηνα επεξεργαστικά συστήματα ήταν μία απ’τις κυρίαρχες αλλαγές, όπου
πολλά σχεδιαστικά ζητήματα επιλύθηκαν με την υϊοθέτηση της νοοτροπίας κατα-
σκευής των μονοπύρηνων συστημάτων. Όμως ο τρόπος λειτουργίας των πολυπύρη-
νων συστημάτων δεν είναι ξεκάθαρος σε όλες του τις πτυχές και δεν προσομοιάζει αυ-
τόν των μονοπύρηνων, ανοίγοντας έτσι το δρόμο της έρευνας για την εξεύρεση νέων
βέλτιστων σχεδιαστικών αλλαγών. Ένας απ’τους τομείς που χρήζει έρευνας είναι η
ιεραρχία μνήμης, όπου έγινε αυτούσια μεταφορά της βέλτιστης πολιτικής αντικατά-
στασης -ελάχιστα πρόσφατα χρησιμοποιούμενου ή Least Recently Used (LRU)- για το
τελευταίο επίπεδο κρυφής μνήμης (Last Level Cache [LLC]) από τα μονοπύρηνα στα
πολυπύρηνα συστήματα. Μελέτες έχουν δείξει πως η LRU δεν είναι η βέλτιστη πο-
λιτική αντικατάστασης LLC για τα πολυεπεξεργαστικά συστήματα, ενώ έχουν γίνει
διάφορες προτάσεις οι οποίες συμπεριφέρονται καλύτερα απ’την LRU.

Σκοπός της συγκεκριμένης διπλωματικής εργασίας είναι η μελέτη, υλοποίηση,
αξιολόγηση και βελτιστοποίηση αλγορίθμων πολιτικών αντικατάστασης μπλοκ στο
τελευταίο επίπεδο κρυφής μνήμης για πολυεπεξεργαστικά συστήματα. Συγκεκριμένα
γίνεται σύγκριση διάφορων υλοποιημένων πολιτικών αντικατάστασης -ενδεικτικά:
ABFCP, TADIP, TADRRIP, PIPP, UCP- ως προς την LRU. Επιπλέον προτείνεται μια
τροποποίηση μιας εξ’αυτών (ABFCP), η οποία βελτιώνει την ήδη υπάρχουσα πολι-
τική, σε βαθμό συγκρίσιμο με τις καλύτερες πολιτικές και σε συνδυασμό με αισθητά
μειωμένο κόστος σε επιπλέον υλικό.

Λέξεις Κλειδιά — πολιτική αντικατάστασης, κατακερματισμός κρυφής μνήμης,
Bloomφίλτρα,ABFCP, ανακατασκευήUMON, BFMON, πολυπύρηνες αρχιτεκτονικές

i

Abstract

The constantly increasing demand for more efficient computing systems motivated the
hardware manufacturers to make innovative changes in existing technology, in order to
achieve faster transmission, processing and storing of data. The transition from single-
processing to multi-processing systems was one of the main changes, where many design-
ing issues were resolved by adopting the principles of single-processing systems. The way
multi-processing systems operate is yet to be fully understood and does not resemble that of
single-processing systems, thus opening the path of research for new optimal design changes.
Among the fields that favour research is memory hierarchy, where optimal replacement
policy -Least Recently Used (LRU)- for the Last Level Cache (LLC) was transferred un-
changed from single-processing to multi-processing systems. Researches have shown that
LRU is not the best LLC replacement policy for multiprocessing systems, whereas several
competing policies have been proposed, which perform better than LRU.

The major subject of this diploma thesis is the study, implementation, evaluation and op-
timization of last level cache replacement algorithms for multiprocessing systems. Specific-
ally a comparison is made between several implemented replacement policies -for instance:
ABFCP, TADIP, TADRRIP, PIPP, UCP- with respect to LRU. Moreover an alternative for
one of these policies (ABFCP) is proposed, which shows an improvement at a degree com-
parable to the best performing ones, as well as combining considerably reduced hardware
overhead.

Keywords — replacement policy, cache partitioning, Bloom filters, ABFCP, UMON re-
construction, BFMON, estimator, multicore architectures

iii

“Not all those who wander are lost.”

J. R. R. Tolkien

Acknowledgements

This diploma thesis was conducted in the Computing Systems Laboratory of the School
of Electrical and Computer Engineering of the National Technical University of Athens,
under the supervision of Professor Nectarios Koziris.

Primarily, I would like to thank my supervisor, Dr. Nectarios Koziris, for his guidance
during the process of this thesis and throughout my undergraduate studies.

Furthermore, I would specially like to express my appreciation and gratitude to the Post-
Doctoral Researcher Konstantinos Nikas, who not only guided me appropriately, but also
through his patience gave me space and time to find -among others- myself and manage to
bring this cycle of my studies to completion. I would also like to thank all CSLab researchers
for their help whenever needed.

In this journey my family could not be absent, whom I can’t thank enough in these lines,
for their continuous and sometimes-hard-for-the-recipient-to-perceive (that is me) selfless
support. I thank my parents, Kostas and Dimitra, my grandparents and uncle Takis, who all
contributed more or less to who I am today. I also thank my siblings, Petros and Katerina,
who witnessed, silently endured and ultimately supported my efforts throughout the years.

Moreover i would like to ‘high-five’ my other family, that is my friends, for playing a
significant role in my life, by being part of some of its most memorable instances up till
now, as well as standing by my side on any occasion. Though I may forget some, I thank
Giorgos, Nikos, Anestis, Thanos, Alkis, Eleni and Vivi for the chance to get to know each
other and walk on the ‘same road’.

Finally, I would like to distinctly thank 3 of my friends that played a major role both
during my studies and during my experiencing of life. Firstly, I would like to thank my
long-time (no see, due to his PhD obligations) school friend Evangelos Giampazolias, who
apart from his against-all-odds efforts to enlighten me, was always there for support, help,
suggestions, conversations and endless laughter. Subsequently, I would like to thank my
colleague Theodoros Gkountouvas (also long-time no see, due to PhD obligations) for the
opportunity of coming in touch with a new world, sharing some of the most awesome faculty
years, as well as constantly proving that a single ‘++’ can make all the difference. Last but not
least, I would like to thank my colleague Georgios Veletzas, whom I consider as one of my
role models, for his unprecedented perception, spirit and force of will, which influenced not
only my evolution but contributed in some aspects to the realisation of this diploma thesis.

v

Contents

Περίληψη i

Abstract iii

Acknowledgements v

Contents vii

List of Figures ix

List of Tables x

List of Algorithms x

1 Introduction 1
1.1 Modern Computer Architectures . 1
1.2 Memory Hierarchy . 1
1.3 Cache . 3

1.3.1 Structure & Functionality . 3
1.3.2 Associativity . 4

1.4 CMP’s Approach . 4

2 Cache Replacement Policies 5
2.1 Replacement Policy Properties . 5
2.2 Commonly Used Replacement Policies . 6
2.3 Application Profiles based on Cache Occupancy . 7
2.4 Replacement Schemes for Shared Last Level Caches . 8

2.4.1 Partitioning Based Policies . 8
2.4.2 Insertion Based Policies . 11
2.4.3 Hybrid Policies . 16

2.5 Synopsis . 16

3 Experimental Methodology 17
3.1 CMP$im Simulator . 17
3.2 Benchmark Suite . 18

3.2.1 SPEC CINT 2006 . 18
3.2.2 SPEC CFP 2006 . 19

3.3 Classification of Benchmarks . 20
3.3.1 Cache-friendly . 20
3.3.2 Cache-fitting. 20

vii

3.3.3 Cache-thrashing & Cache-streaming . 20
3.4 Multi-core Simulation Configuration . 24
3.5 Synopsis . 24

4 Results, Optimisation & Analysis 25
4.1 Metrics . 25
4.2 Comparison of LLC Partitioning Schemes . 25
4.3 Optimisation of ABFCP . 27

4.3.1 Distribution of Ways . 27
4.3.2 Repartition Phase . 29
4.3.3 Set Flexibility . 30

4.4 New Estimator for ABFCP . 31
4.5 Effect of Sampling for ABFCP . 33
4.6 Effect of Reduction of Bloom Filter’s Tag . 34
4.7 Comparison of all presented LLC schemes . 35

5 Conclusions 39
5.1 Overview . 39
5.2 Future Work . 40

Appendices 41

Appendix A Details for LLC Replacement Policies 43
A.1 UCP’s Partitioning Algorithms . 43
A.2 ABFCP’s Partitioning Algorithms. 45
A.3 PIPP’s stream-sensitive mechanism . 46

Bibliography 47

viii

List of Figures

1.1 Example of memory hierarchy in a 4-core CMP.. 2
1.2 Main Memory and Cache Organisation. 3

2.1 Victim selection, insertion and promotion strategies of LRU. 5
2.2 LRU stack property. 8
2.3 UCP scheme for a dual core processor. 9
2.4 Utility Monitor. 9
2.5 ABFCP scheme for a dual core processor. 10
2.6 Bloom Filter. 11
2.7 LRU , LIP and BIP policy. 12
2.8 DIP. 15
2.9 TADIP. 15

3.1 Cache-friendly benchmarks. 21
3.2 Cache-fitting benchmarks. 22
3.3 Cache-thrashing benchmarks. 23
3.4 Cache-streaming benchmarks. 23

4.1 Throughput of LLC partitioning policies. 26
4.2 Weighted speedup of LLC partitioning policies. 26
4.3 Harmonic mean fairness of LLC partitioning policies. 27
4.4 BFMON for an 8-way cache. 28
4.5 Throughput of ABFCP original and per-way flexible. 28
4.6 Harmonic mean fairness of ABFCP original and per-way flexible. 29
4.7 Throughput of ABFCP versions for both resetting and halving of counters. . . 29
4.8 Harmonic mean fairness of ABFCP versions versions for both resetting

and halving of counters. 30
4.9 Throughput of ABFCP versions for both per-set and uniform partitioning. . . 30
4.10 Harmonic mean fairness of ABFCP versions for both per-set and uniform

partitioning. 31
4.11 Original vs New ABFCP. 31
4.12 Throughput and Harmonic mean fairness of original and new

ABFCP versions. 32
4.13 ABFCP sampling versions. 33
4.14 Throughput and Harmonic mean fairness of best 3 ABFCP versions for

Sampling and GroupSampling. 33
4.15 Throughput and Harmonic mean fairness of best ABFCP version, namely

nA+-1uni_div2_32_s, with varying size of BF’s tag. 34
4.16 Throughput of LLC replacement schemes. 35

ix

4.17 Harmonic mean fairness of of LLC replacement schemes. 35
4.18 Throughput of LRU managed LLC for different cache configurations,

normalised to best new ABFCP. 37

List of Tables

2.1 RRIP. 14

3.1 Workload mixes. 24

4.1 Differences between ABFCP and UCP. 27
4.2 Required Hardware Overhead of LLC schemes . 36

A.1 Possible Partition Changes. 45

List of Algorithms

1 UCP’s Greedy Algorithm . 44
2 UCP’s Lookahead Algorithm . 44
3 ABFCP’s Linear Algorithm . 45
4 ABFCP’s new Estimator Linear Algorithm . 46

x

“Computer Science is no more about computers than astro-
nomy is about telescopes.”

Edsger W. Dijkstra

“I do not fear computers. I fear the lack of them.”

Isaac Asimov

1
Introduction

It lies within the impositions of modern times, that performance and efficiency come at
low cost, while such demand is ever-increasing. The trigger for this change was mainly the
advent of computing era, which since its appearance has been an expanding field, becoming
the point of reference while redefining our perception for most everyday aspects. Computers
have changed radically everyday life, with some saying it is for the best, while others still
remain suspicious. It is a truly powerful and unprecedented invention and lies within human
reach to make best use of it, trying to preserve balance between one’s potential and moral,
while hunting for “knowledge”.

1.1 Modern Computer Architectures
In an attempt to achieve better-performing computing systems, scientists used several

techniques, among which was increasing processor’s (CPU) frequency, introducing instruc-
tion level parallelism (via pipelining or superscaling) or thread level parallelism (via multi-
threading or multi-processing). Thus, the transition from single- to multi-processing systems
was realised, otherwise known as chip multiprocessors or CMPs, which is the most common
case nowadays. However, in a computing system where several components must operate
in coordination, CPU is -currently- the fastest working one, starving most of the time for
data, waiting for their arrival from the closest memory. The speed-performance bottleneck
is caused by the generally-slower operating memory, a problem that scientists tried to solve
by adopting -among others- a memory hierarchy logic.

1.2 Memory Hierarchy
Μemory is divided into several hierarchical layers resembling a pyramid, where closer-

to-CPU and smaller-in-size memories respond faster than more distant and bigger ones.
This notion would provide requested data quicker by alleviating the bottleneck problem and
therefore result in a better performing system. Ahead of themainmemory a group of smaller
memories is placed, known as cache (french for ‘hidden’), in order to hold some of the

1

1.2 Memory Hierarchy

more frequently used data closer to the processor, thus allowing it to complete execution
of instructions sooner rather than stalling and waiting for data. The memory hierarchy is
usually distributed as follows, with the top of the list comprising fast, expensive and small
in size units, while at the bottom reside slower, cheaper and bigger units:

1. Processor Registers, which are the closest units to the CPU, containing all data neces-
sary during execution time.

2. Cache, which contains copies of main memory blocks and is mainly divided into two
independent categories, instruction and data cache, with data cache usually organised
in more levels:

(a) Level 1 Cache (L1C), private to each core, split into:
i. Level 1 Instruction Cache (L1IC), which speeds up instruction fetch.
ii. Level 1 Data Cache (L1DC).

(b) Level 2 Cache (L2C), either private to each core or shared by every two cores,
unless it is the last level cache, when it is shared by all cores.

(c) Level 3 Cache (L3C) or last level (LLC), shared by all cores.

3. MainMemory, which contains instructions and data of every executing application and
provides them to CPU and therefore to higher levels in memory hierarchy as well.

Every memory hierarchy layer can only trade data with the layer above and below it. The
smallest amount of data that can be transferred between layers is called block. Figure 1.1
shows an example of a 4-core CMP’s memory hierarchy.

Figure 1.1: Example of memory hierarchy in a 4-core CMP.

Main memory is vital for a system, since a program is loaded there before starting exe-
cution. Main memory consists of a number of cells, whose size is called word length and can
store a certain amount of bytes. Each cell has a unique unalterable address, through which
a CPU can access its contents. If there are m cells and each address is represented by n
digits, then the main memory addresses vary from 0 to 2n − 1 with 2n = m, as can be seen
in Figure 1.2.

2 Ioannis K. Agriomallos - Diploma Thesis

1.3 Cache

1.3 Cache
When the processor needs to read from or write to a location in main memory, it first

checks whether a copy of that data is in the cache. If so, the processor immediately reads
from or writes to the cache, which is much faster than reading from or writing to main
memory. From now on cache will denote LLC, unless stated otherwise. Some of cache’s
characteristic properties are presented subsequently.

1.3.1 Structure & Functionality
Cache is organised similarly to main memory and its fundamental terminology follows:

• Entry/Block/Line is the basic structural unit of each cache, similar to main memory
cells, composed of the data block (copied group of main memory words) and the tag
(identifier used for resolving an access into a hit or miss).

• Set is a group of entries, whose tags are checked simultaneously during cache accesses.

• Way is equal to the number of entries in a set and is denoted by the degree of cache
associativity.

Figure 1.2: Main memory (on the left) and a 5-way set associative cache (on the right).

When the processor requires access to a location in main memory, it first checks for a cor-
responding entry in the cache. The cache checks for the contents of the requested memory
location in any cache lines that might contain that address, by comparing requested with

Ioannis K. Agriomallos - Diploma Thesis 3

1.4 CMP’s Approach

stored tag. If the processor finds that the memory location is in the cache, a cache hit has
occurred. However, if the processor does not find the memory location in the cache, a cache
miss has occurred. In the case of:

• a cache hit, the processor immediately reads or writes the data in the cache line

• a cache miss, the cache allocates a new entry and copies in data from main memory,
then the request is fulfilled from the contents of the cache.

On a cache miss, the data arriving from main memory may have to replace another cache
block, due to cache’s limited storage capacity. A replacement policy denotes which among
the existing cache blocks should be evicted.

1.3.2 Associativity
Considering that cache is orders of magnitude smaller than main memory, there has to

be a mapping/association of main memory addresses to cache entries. There are mainly
three types of cache, with respect to associativity:

• Direct mapped, where each main memory block is associated with exactly one cache
entry.

• Fully associative, where each main memory block can be associated with any cache
entry.

• N -way set associative, where each main memory block can be associated with any of
the N cache entries (ways), contained in a specific cache set. For instance a N -way
set associative cache containing B total entries, is organised in L = B/N sets.

In fact a direct mapped resembles a 1-way set associative cache and a fully associative is like
a B-way set associative cache, where B denotes the total number of entries in the cache.
Figure 1.2 shows a related example.

1.4 CMP’s Approach
Caches play an important role in system performance and the key aspects of reducing

their response time are miss rate, miss latency/penalty and hit time. The two latter remain
beyond the scope of this diploma thesis, which mainly focuses on techniques for miss rate
reduction.

Last Level Cache is shared by all available cores, whether it resides within a single-
core or a multi-core system, so its effective management is crucial, as it is the last available
level of low-latency and fast-responsive memory, before requesting the desired data from
the distant and slower main memory. It would be ideal if every request resulted in a cache
hit and although this cannot be true, due to compulsory misses (first request to a specific
memory address), hardware designers try to minimise capacity misses (no more available
cache storing space) and conflict misses (that could have been avoided, had the cache not
evicted an entry earlier).

Several techniques have been proposed for reduction of capacity or conflict misses, like
increasing cache size and/or associativity, using hardware prefetching, using NUCA (Non
Uniform Cache Access), optimising replacement policies etc. In this diploma thesis a few
LLC replacement policies and their significance in system performance are examined.

4 Ioannis K. Agriomallos - Diploma Thesis

“Computers are useless. They can only give you answers.”

Pablo Picasso

“Science is what we understand well enough to explain to a
computer; art is everything else.”

Donald Ervin Knuth

2
Cache Replacement Policies

When a block is transferred from a lower layer to a higher layer of memory hierarchy,
it is probable that it will have to take the place of another block. A replacement policy
designates which block/victim is to be evicted. This operation concerns all caches with
associativity more than one, so direct mapped caches are excluded, since only then more
than one candidate evictees are available. In this chapter replacement policies for single-
core and multi-core systems will be presented.

2.1 Replacement Policy Properties
Most replacement policies are based on a “priority” stack mechanism, so as to track how

important each cache block is, which helps them decide the next victim. Each replacement
policy usually consists of 3 distinct strategies/components:

No
eviction

CPU access to E Cache HIT

Evict H

Insert L
at Highest
Priority

Lowest priority
(to evict)

Highest priority
(to keep)

A B C D E F G H

CPU access to L Cache MISS

A B C D E F GL

E A B C D F GL

Promote E
to Highest
 Priority

Figure 2.1: Victim selection, insertion and
promotion strategies of LRU.

• Victim selection, which in-
dicates on a cache miss
whose block turn is to be
evicted.

• Insertion, which indicates on
a cache miss where in the
priority stack the incoming
block will be placed.

• Promotion, which indicates
on a cache hit where in the
priority stack a block will be
promoted.

Figure 2.1 shows an example of
LRU replacement policy, which is
subsequently presented.

5

2.2 Commonly Used Replacement Policies

2.2 Commonly Used Replacement Policies
Replacement policies that are often met on single-core systems and have influenced re-

placement schemes for shared last level caches in CMPs are presented below, together with
their strategies.

⇀LRU (Least Recently Used) is universally accepted as the best replacement policy
for single-core systems, indicating that on a cache miss the least recently accessed block is
replaced. The 3 distinct strategies of LRU are:

• Victim selection: evict block at LRU (Least Recenlty Used) recency position.
• Insertion: insert block at MRU (Most Recenlty Used) recency position.
• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

An example of its usage is presented in Figure 2.1. LRU generally has the best performance
among all other policies, but it is quite expensive, requiring log2N bits per block to imple-
ment the recency stack mechanism (4 bits for 16 way cache), for an N -way set associative
cache.

⇀NRU (Not Recently Used) is a derivative of PLRU (Pseudo-LRU), which in turn is
an approximation of LRU, that uses 1 bit to implement its recency stack and almost always
discards one of the least recently used items instead of the least recently used. NRU is able
to distinguish between two priorities: near-immediate and distant. The 3 distinct strategies
of NRU are:

• Victim selection: evict one among the blocks at distant recency position (e.g. leftmost).
If none found, convert all near-immediate recency positions to distant and repeat.

• Insertion: insert a block at near-immediate recency position.
• Promotion: promote accessed block to near-immediate recency position.

NRU provides adequate performance for low hardware overhead and is usually a good al-
ternative over LRU, that several hardware manufacturers [1, 2] choose for their systems.

⇀FIFO (First In First Out) is a replacement policy, which also uses a stack logic per
set, where a new block is inserted at the head, while the block at the tail is kicked out. The
3 distinct strategies of FIFO are:

• Victim selection: evict the oldest block (stack tail), thus the first to come is also the
first to go.

• Insertion: insert at newest ‘age’ (stack head), namely the incoming blockwill be evicted
last among the existing blocks.

• Promotion: no promotion required, since only insertion priority matters during victim
selection.

Due to its simplicity, FIFO has a low hardware overhead, but usually performs poorly for
practical applications, so it is rarely used in its unmodified form.

⇀RANDOM is a replacement policy, which has minimal cost on hardware overhead,
since there is no need for tracking any kind of history or recency. The 3 distinct strategies
of RANDOM are:

• Victim selection: evict a block, which is randomly picked.

6 Ioannis K. Agriomallos - Diploma Thesis

2.3 Application Profiles based on Cache Occupancy

• Insertion: insert anywhere in set, since victim selection is performed randomly, re-
quiring no priority information.

• Promotion: no promotion required, since victim selection is performed randomly.

RANDOM policy usually performs better than FIFO and in some cases (e.g. big loops with
memory accesses that exceed cache size) even better than LRU. However it generally per-
forms worse than LRU so it is rarely used in shared caches. Some hardware manufacturers
use it for private L1IC (UltraSPARC T2 [2]).

2.3 Application Profiles based on Cache Occupancy
Each application running on a core has its own cache profile, described by its cache

access pattern. In general these access patterns can be classified in four main categor-
ies, as presented by Jaleel et al. [3]. If ai stands for a cache line address, (a1, . . . , ak)N
stands for a temporal sequence of references to k unique addresses that repeatsN times and
Pϵ(a1, . . . , ak) denotes a temporal sequence that occurs with some probability ϵ, then the
classification is as follows:

• Recency-friendly Access Patterns: (a1, a2, . . . , ak−1, ak, ak, ak−1, . . . , a2, a1)
N , for

any value of k. This access pattern benefits from LRU replacement and may de-
grade performance with any other replacement policy. Applications whose behaviour
could be summarised by similar access patterns are characterised as cache-friendly.

• Thrashing Access Patterns: (a1, a2, . . . , ak)N . When k ≤ cache size, then the working
set of applications behaving in this manner fits in the cache, and such applications are
known as cache-fitting. However if k > cache size, then LRU causes no cache hits,
with applications labeled as cache-thrashing. The optimal replacement policy would
preserve some of the working set in the cache.

• Streaming Access Patterns: (a1, a2, . . . , ak), where k can be infinite. Similar access
patterns receive no cache hit under any replacement policy, therefore replacement
decisions are irrelevant in presence of streaming applications.

• Mixed Access Patterns: [(a1, . . . , ak, ak, . . . , a1)APϵ(a1, a2, . . . , ak, ak+1, . . . , am)]N
or [(a1, . . . , ak)APϵ(b1, b2, . . . , bm)]N , where k < cache size and 0 < ϵ < 1. The
bold subpatterns represent a scan, namely a big sequence of accesses with low chance
of reusability. When m + k < cache size, then both the working set and the scan
fit into the cache and LRU works well (cache-fitting applications). If however m +
k > cache size, then LRU discards the frequently referenced working set over the
scan, ultimately causing any reference to the working set after the scan to always miss
(cache-thrashing applications). An optimal replacement policy would keep as much
of the working set in cache as possible, efficiently recognising and discarding any
blocks belonging to a scan, in order to provide the opportunity to the working set to
be reused.

This classification helps to better understand the possible behaviour of any application either
executing on its own or in the presence of others, as well as explore the boundaries of op-
timisation that a replacement policy may achieve.

Ioannis K. Agriomallos - Diploma Thesis 7

2.4 Replacement Schemes for Shared Last Level Caches

2.4 Replacement Schemes for Shared Last Level Caches
Modern CMPs appearance triggered the need to address a bunch of hardware design

issues, one of which being the efficient utilisation of shared LLC, in order to avoid long
latency misses to main memory. To achieve that, LLC should retain more data from applic-
ations which benefit from it than from those who don’t. However LRU treats every applic-
ation based on demand rather than on performance benefit, thus risking to privilege with
resources an application that has no gain while starving a low demand high performing ap-
plication. Consequently in presence of more than one cores competing for resources, it is
imperative that LLC management opts for performance rather than demand.

Since application profiles differ from each other, a thread unaware LLC replacement
policy that treats all of them as one application with mixed access pattern is inefficient.
On the contrary, hardware designers should orient towards more thread aware policies, that
handle each application separately depending on whether it shows promising utilisation of
cache resources or not. Previously presented common replacement policies lack on per
thread information and decision making, opening the frontier for relevant research. Many
of the subsequently described replacement schemes inherit LRU stack logic, but fine-tune ac-
cordingly insertion, promotion and victim selection policies, so as to achieve a performance-
based and thread-aware management of cache.

2.4.1 Partitioning Based Policies
The first approach towards thread-aware policies for LLC was the partitioning technique.

Macroscopicaly, partitioning distributes cache resources among all cores, instead of simply
allowing every core to compete with each other under LRU on a demand basis. Microscopic-
ally, the partitioning decisions are enforced during victim selection. Therefore, partitioning
algorithms try to compute the best distribution of cache resources among competing applic-
ations in order to achieve better performance. The underlying policy is usually LRU but can
be altered as well.

A basic LRU property, which has facilitated the estimation of each core’s cache pro-
file, is the LRU stack property [4], which denotes that if an access hits on an LRU man-
aged cache with N ways, then it is guaranteed to hit on a cache with more ways.

HITS AT EACH
RECENCY

POSITION WHEN
CORE OCCUPIES

4 WAYS

MISSES WHEN
CORE OCCUPIES

DIFFERENT
NUMBER OF

WAYS

25

TOTAL
MISSES

25

355070

1st WAY
(MRU) 2nd WAY 3rd WAY

4th WAY
(LRU)

1 WAY 2 WAYS 3 WAYS 4 WAYS

30 20 1015

+++

Figure 2.2: LRU stack property for 4-way set
associative cache.

Figure 2.2 shows a 4-way set as-
sociative cache and the break-
down of cache hits on the differ-
ent recency positions from MRU
to LRU. If cache associativity is
reduced from 4 to 3 ways, then
misses would increase by 10 to
a total of 35. Further reducing
cache associativity to 2 ways, res-
ults in 50 misses and with only 1
way 70 misses occur. Therefore if
the distribution of hits is known for an N -way cache, then it is possible to compute hits and
misses for all different N associativity configurations.

⇀UCP (Utility based Cache Partitioning), proposed byQureshi and Patt [5], distributes
cache resources according to the utility, namely the change in misses, that an application is
predicted to exhibit, depending on its occupancy of cache resources (ways) at that moment.

8 Ioannis K. Agriomallos - Diploma Thesis

2.4 Replacement Schemes for Shared Last Level Caches

Figure 2.3: UCP scheme for a dual
core processor.

UCP intends to provide more cache re-
sources to whichever application has bigger
utility and vice versa. In order to compute
the utility of each core, information con-
cerning each core’s per-way misses must be
available. For this purpose there was in-
troduced a per-core external (not part of
cache) mechanism, called UMON (Utility
MONitor), that tracks all LLC accesses of

the corresponding core. Each UMON simulates the behaviour of its core, if it had all the
cache availabe to itself, managed by LRU. Finally a partitioning algorithm computes the
utility for each core derived from UMONs (in a way described below) and decides the dis-
tribution of cache resources, ensuring 1 way per set for each core. UCP, which can be seen
in Figure 2.3, enforces partition during replacement and contains 3 distinct strategies:

• Victim selection: if the incoming block belongs to a core possessing more cache blocks
than its partition indicates then the block at the LRU recency position of this core is
evicted, otherwise the block at the LRU recency position among all the remaining
cores is replaced.

• Insertion: insert at MRU recency position.
• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

A UMON is composed by a group of entries, called ATD (Auxiliary Tag Directory),
which contains as many sets and ways as LLC does, but stores only the corresponding tag,
omitting the unnecessarily big -for its purposes- data blocks. Moreover each UMON’s set
contains N counters, one per way, in case of a N -way setassociative LLC, in order to store
the per way hits of the application. Whenever a recorded by UMON access results in a ATD
hit, the counter corresponding to the hit occurring recency/way is incremented by one. Thus,
by using LRU stack property and by containing the necessary information for utility computa-
tion, UMON calculates the number of misses for all possible ways an application can occupy.

Legend
SET A MRU LRU

SET B

SET C

SET D

HIT COUNTER FOR RECENCY POSITION

TAG ENTRY OF ATD

ASSOCIATION OF RECENCY TO COUNTER

MRU LRUSET A

SET C

UMON-DSSUMON-local

Figure 2.4: Utility Monitor.

UMON’s initial design, known as
UMON-local, opted for flexibility
and comprised per way hit coun-
ters for each cache set, being cap-
able of different partition on a per
set basis. Since its implementa-
tion cost was prohibitive, attempts
to reduce hardware overhead res-
ulted in UMON-DSS, which mon-
itored not all but a few cache sets,
using a tecnique called dynamic set
sampling (DSS), as well as having a
hit counter per recency positionas can be seen in Figure 2.4. As few as 32 sets is an adequate
and representative sample choice for UMON-DSS, which is able to take uniform (same for
all sets) partitioning decisions and is ultimately used.

When the partitioning algorithm is executed, it distributes cache ways among the applic-
ations, to reduce the total number of misses, which are directly correlated with the utility
information in the hit counters of UMON. Ifmissa andmissb denote the number of misses

Ioannis K. Agriomallos - Diploma Thesis 9

2.4 Replacement Schemes for Shared Last Level Caches

incurred by an application occupying a and b (a < b) ways respectively, then the utility U b
a

of increasing the ways from a to b for aN -way set associative cache withC competing cores
is defined as:

U b
a = missa −missb =

b∑
way=a+1

hitcounters[way], with
{

a ∈ [1, N − C]

b ∈ [2, N − C + 1]
(2.1)

If moreover A and B are two applications on a dual-core system, with utility functions UA
and UB respectively, then their combined utility Utot is given by:

Utot = UAi
1 + UBN−i

1 , with i ∈ [1, N − 1] (2.2)

The partition with the biggest combined utility value among all possible partitions is chosen,
ensuring at least 1 way to each application. This algorithm is known as exhaustive and finds
the best among all possible partitions, but finding an optimal solution for more than 2 cores
becomes prohibitively complex (NP-hard). For this reason two approximate algorithms were
proposed, that find a nearly optimal solution: Greedy and Lookahead (see Appendix A.1),
among which Lookahead is used due to high efficacy and low complexity. The partitioning
algorithm is repeated every five million cycles and after each repartition all hit counters are
reduced in half, combining information from past and present.

⇀ABFCP (Adaptive Bloom Filter Cache Partitioning) was proposed by Nikas et al.
[6], who wanted to retain flexibility of per set partitioning. UCP’s uniform partitioning is a

PARTITIONING
ALGORITHM

BFilter1 & Counters BFilter2 & Counters

SHARED Last
Level Cache (L3)CORE1 CORE2

MAIN MEMORY

Figure 2.5: ABFCP scheme for a dual
core processor.

not so flexible choice, since it enforces the
same partition on all sets, as it is the only
practical choice due to the hardware over-
head required. If for instance competing ap-
plications demonstrate different behaviour
per set, a sudden scan phase mapped on few
sets would influence decisions for the re-
maining sets as well. ABFCP utilises among
others a structure for maintaining probabil-
istic set membership, called Bloom Filters.
Similar to UMON, Bloom Filter is a mech-

anism that keeps track of accesses to LLC for each core, in order to use the gathered inform-
ation for partitioning decisions. ABFCP, which can be seen in Figure 2.5, enforces partition
during replacement and contains 3 distinct strategies:

• Victim selection: if the incoming block belongs to a core possessing more cache blocks
than its partition indicates (over-allocated) then the block at the LRU recency position
of this core is evicted, otherwise the block at the LRU recency position among the
remaining over-allocated cores is replaced (at least one will exist).

• Insertion: insert at MRU recency position.
• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

Nikas et al. [6] proposed using Partial-Address Bloom Filter (BF), developed by Peir
et al. [7], to store per core information about cache blocks that were replaced from the LLC.

10 Ioannis K. Agriomallos - Diploma Thesis

2.4 Replacement Schemes for Shared Last Level Caches

Figure 2.6: Bloom Filter.

BF is an array containing 2k 1-bit entries,
where addressing is done by the k least sig-
nificant bits of the tag of a cache block,
as shown in Figure 2.6. On a cache miss
the evicted cache block sets the correspond-
ing BF entry. Moreover if the incoming
block causing the LLCmiss, is found in BF,
namely the corresponding entry is set, then a
far-miss is detected, denoting that this miss
may have been a hit, had the core been as-
signed more ways. In total one BF is used
for each core on a per set basis. An arising
issue is that there is no certainty that a BF
hit means that the block looked up was previously present in the LLC, resulting in a false-
positive, caused by a problem knows as “aliasing”, where more than one tags may be mapped
to the same BF entry, as only k bits are used for the indexing. However in case of a BF miss,
it is certain that the block looked upon was previously absent from the cache. Moreover the
order in which the BF entries are set cannot be known and such kind of information would
require additional hardware. At the same time the true entries contained in a BF could be
more than cache associativity, therefore a far-miss detection cannot possibly lead to how
many more ways the core should have been given for that miss to become a hit.

Apart from BFs, a pair of counters for each core on a per set basis is used. One counter
(CBFHIT) is incremented when BF detects a far-miss. The other counter (CLRUHIT) is
incremented when an access results in a hit at the LRU entry owned by the core. Exploiting
the LRU stack property, these counters can estimate possible performance gains or losses
by changing a core’s allocation. More specifically, if a core is deprived of one way, then
the hits in the LRU recency position would become misses, therefore for this case CLRUHIT

estimates performance loss. Similarly,CBFHIT tracks far-misses (with a possibility of false-
positives), that might result in hits if the core possessed at least one more way, thus being
an adequate estimation for performance gain. Since CBFHIT contains information for an
unknown number of true entries, a scaling factor α is added, in order to achieve a per way
gain estimation. Therefore gain or loss of 1 extra way are calculated as follows:

If α = 1− waysoccupied
associativity

then:
{

loss1 = CLRUHIT

gain1 = α×CBFHIT

(2.3)

Combining the information of those counters, a partitioning algorithm decides per set if
the allocated resources of each core, will be increased by one, reduced by one, or leaved un-
changed. Rather than evaluating all possible partition changes and choosing the best choice
that maximises a given metric, Nikas et al. [6] proposed a Linear algorithm that selects
the best partition or a good approximation thereof (see Appendix A.2). The partitioning al-
gorithm is executed every one million cycles and at the end of each repartition both counters
and BFs are reset.

2.4.2 Insertion Based Policies
Considering that LRU is a well-suited policy for handling cache-friendly applications,

hardware designers focused on how to create thrash-resistant and scan-resistant policies.
Apart from the need for per thread information andmanagement of shared LLC, the primary

Ioannis K. Agriomallos - Diploma Thesis 11

2.4 Replacement Schemes for Shared Last Level Caches

idea was to vary the insertion policy of new blocks, instead of partitioning, in an attempt to
place cache-friendly applications towards MRU and cache-unfriendly ones towards LRU
recency positions.

Thread Unaware Insertion Policies

Initially a few thread unaware insertion policies suitable for single-core systems were
proposed, which are shown below:

⇀LIP (LRU Insertion Policy) was proposed by Qureshi et al. [8], who came to the
conclusion that under LRU, applications with a lot of cache misses (thrashing & streaming
applications) are unnecessarily kept in cache, since all new blocks are inserted at MRU. The
3 distinct strategies of LIP are:

• Victim selection: evict block at LRU recency position.

• Insertion: insert block at LRU recency position, which makes it candidate victim,
unless it is re-referenced nearly immediately and gets promoted.

• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

An example of its usage is presented in Figure 2.7, for ϵ = 0. LIP is stream- and thrash-
resistant.

⇀BIP (Bimodal Insertion Policy) was also proposed by Qureshi et al. [8] and came as
a generalisation to LRU and LIP, after the conclusion that LIP treats all accesses similarly
and “suspiciously”, failing to favour cache-friendly applications. The 3 distinct strategies of
BIP are:

• Victim selection: evict block at LRU recency position.

• Insertion: insert block at MRU recency position with -usually low- probability ϵ and
at LRU recency position with 1− ϵ.

• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

BIP degenerates to LIP for ϵ = 0 and LRU for ϵ = 1, as can be seen in Figure 2.7. Behaviour
of BIP is therefore controlled by ϵ.

Figure 2.7: BIP policy, which equals to LIP for ϵ = 0 and LRU for ϵ = 1.

⇀DIP (Dynamic Insertion Policy) was introduced by Qureshi et al. [8] in an attempt to
combine two different cache management policies: cache-friendly LRU and thrash/stream-
resistant BIP. DIP dedicates few cache sets to each of the two -BIP and LRU- competing
policies and the policy that causes fewer misses at those dedicated sets is applied to the rest
(follower) sets of the cache. Dedicated sets are called SDM or Set Dueling Monitors, half
of which work with BIP (BIP SDM) and the other half with LRU (LRU SDM). Moreover

12 Ioannis K. Agriomallos - Diploma Thesis

2.4 Replacement Schemes for Shared Last Level Caches

both SDM use a saturating counter, called PSEL or Policy SELector, which indicates which
policy is better. PSEL is incremented by one on a cache miss occurring at LRU SDM and is
decremented by one on a cache miss at BIP SDM. Let <P> denote the policy followed by
each cache set, with LRU represented by <0> and BIP by <1>. If MSB or Most Significant
Bit of PSEL counter is one, meaning it is more than half full, then LRU causes a lot of misses
and BIP is chosen for the follower sets. Otherwise, if MSB of PSEL is zero, LRU is chosen.
Figure 2.8 shows DIP scheme. In general <P> policy of the follower sets is specified by
P = MSB(PSEL). The 3 distinct strategies of DIP are:

• Victim selection: evict block at LRU recency position.
• Insertion:

– if <P>=<0>, then new block is inserted at MRU recency position with -usually
low- probability ϵ and at LRU recency position with 1− ϵ (BIP insertion).

– if <P>=<1>, then new block is inserted at MRU recency position (LRU inser-
tion).

• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

As few as 32 sets for each SDM are proven sufficient and hence are used for the rest of the
study.

⇀RRIP (Re-Reference Interval Prediction) was proposed by Jaleel et al. [9] in an at-
tempt to generalise NRU. RRIP implements its own recency stack, using M bits per block,
called RRPV or Re-Reference Interval Values, being able to store 2M different possible re-
reference intervals, with highest priority predicted to be re-referenced in the near-immediate
future and lowest priority predicted to be re-referenced in the distant future. IfM = 1RRIP
degenerates into NRU, while if M > 1 intermediate re-reference intervals are enabled.
Primary objective of RRIP is to prevent blocks with distant re-reference interval from pol-
luting the cache, but in the absence of external information it can take decisions statically,
therefore is also known as SRRIP (Static RRIP). The 3 distinct strategies of SRRIP are:

• Victim selection: evict one among the blocks with distant RRPV (e.g. leftmost). If
none found, demote all RRPVs towards distant RRPV and repeat.

• Insertion: insert new block at long RRPV, namely one RRPV before distant RRPV.

• Promotion: promote accessed block to highest priority, that is near-immediate RRPV.

SRRIP always predicts a long re-reference interval for incoming blocks, in order to prevent
cache pollution but also provide a cache-friendly application the chance to “express itself”.
Table 2.1 shows an example of using LRU, NRU and SRRIP for the same sequence of ac-
cesses, showing the advantage of SRRIP that accomplishes two hits more than the other two
policies.

⇀BRRIP (Bimodal RRIP) was also proposed by Jaleel et al. [9] as an equivalent of BIP,
since SRRIP can be considered generalisation ofNRU. The 3 distinct strategies of BRRIP are:

• Victim selection: evict one among the blocks with distant RRPV (e.g. leftmost). If
none found, demote all RRPVs towards distant RRPV and repeat.

• Insertion: insert new block at long RRPV, namely one RRPV before distant RRPV,
with -usually low- probability ϵ and at distant RRPV with 1− ϵ.

Ioannis K. Agriomallos - Diploma Thesis 13

2.4 Replacement Schemes for Shared Last Level Caches

Next RRIP head (MRU) RRIP tail (LRU)
Ref ↓ ↓
A1 Inv

0
Inv

1
Inv

2
Inv

3
miss Inv

1
Inv

1
Inv

1
Inv

1
miss Inv

3
Inv

3
Inv

3
Inv

3
miss

A2 A1 0
Inv

1
Inv

2
Inv

3
miss A1 0

Inv
1

Inv
1

Inv
1

miss A1 2
Inv

3
Inv

3
Inv

3
miss

A2 A2 0
A1 1

Inv
2

Inv
3

hit A1 0
A2 0

Inv
1

Inv
1

hit A1 2
A2 2

Inv
3

Inv
3

hit
A1 A2 0

A1 1
Inv

2
Inv

3
hit A1 0

A2 0
Inv

1
Inv

1
hit A1 2

A2 0
Inv

3
Inv

3
hit

B1 A1 0
A2 1

Inv
2

Inv
3

miss A1 0
A2 0

Inv
1

Inv
1

miss A1 0
A2 0

Inv
3

Inv
3

miss
B2 B1 0

A1 1
A2 2

Inv
3

miss A1 0
A2 0

B1 0
Inv

1
miss A1 0

A2 0
B1 2

Inv
3

miss
B3 B2 0

B1 1
A1 2

A2 3
miss A1 0

A2 0
B1 0

B2 0
miss A1 0

A2 0
B1 2

B2 2
miss

B4 B3 0
B2 1

B1 2
A1 3

miss B3 0
A2 1

B1 1
B2 1

miss A1 1
A2 1

B3 2
B2 3

miss
A1 B4 0

B3 1
B2 2

B1 3
miss B3 0

B4 0
B1 1

B2 1
miss A1 1

A2 1
B3 2

B4 2
hit

A2 A1 0
B4 1

B3 2
B2 3

miss B3 0
B4 0

A1 0
B2 1

miss A1 0
A2 1

B3 2
B4 2

hit

A2 0
A1 1

B4 2
B3 3

B3 0
B4 0

A1 0
A2 0

A1 0
A2 0

B3 2
B4 2

LRU stack position↙ nrubit↙ RRPV↙
(a) LRU (b) NRU (c) SRRIP

Cache Hit: Cache Hit: Cache Hit:
(i) move block to MRU (i) set nrubit of block to ‘0’ (i) set RRPV of block to ‘0’

Cache Miss: Cache Miss: Cache Miss:
(i) replace LRU block (i) search for first ‘1’ from left (i) search for first ‘3’ from left
(ii) move block to MRU (ii) if ‘1’ found go to step (v) (ii) if ‘3’ found go to step (v)

(iii) set all nrubits to ‘1’ (iii) increment all RRPVs
(iv) goto step (i) (iv) goto step (i)
(v) replace block and set nrubit to ‘0’ (v) replace block and set RRPV to ‘2’

Table 2.1: RRIP.

• Promotion: promote accessed block to highest priority, that is near-immediate RRPV.

⇀DRRIP (Dynamic RRIP)was finally proposed by Jaleel et al. [9] as an anology ofDIP,
which uses the already known SDM to choose the best of two competing policies, SRRIP and
BRRIP, applying its decision to all follower sets. The 3 distinct strategies of DRRIP are:

• Victim selection: evict one among the blocks with distant RRPV (e.g. leftmost). If
none found, demote all RRPVs towards distant RRPV and repeat.

• Insertion:

– if <P>=<0>, then new block is inserted at long RRPV, with probability ϵ and
at distant RRPV with 1− ϵ (BRRIP insertion).

– if <P>=<1>, then new block is inserted at long RRPV (SRRIP insertion).

• Promotion: promote accessed block to near-immediate RRPV.

Thread Aware Insertion Policies

Thread-aware policies for shared LLCs were influenced by thread unaware schemes and
are presented below:

⇀TADIP (Thread Aware DIP) was proposed by Jaleel et al. [3] as an expansion of
DIP to shared LLCs. DIP performswell on single-core systems but fails to do so inmulti-core
in the absence of thread-aware information, treating all cache blocks the same, independently
to whom core they belong. TADIP dedicates 2C SDM in total, namely two SDM for each
of the C competing cores. Let <Pi> denote the policy followed by core i on a cache set,
where Pi = MSB(PSELi) and i ∈ [0, C − 1]. For each core i, one SDM follows BIP and
the other LRU for blocks belonging to core i, while following the best performing policy
<Pj> for blocks of each j of the remaining cores. There are C PSEL counters, where
each miss on LRU_SDMi decrements PSELi by one and each miss on BIP_SDMi

increments PSELi by one. The follower sets use the best performing policy for each core.

14 Ioannis K. Agriomallos - Diploma Thesis

2.4 Replacement Schemes for Shared Last Level Caches

TADIP decides for the best policy of one core accounting for the best policy of the remaining
cores, as shown in Figure 2.9. The 3 distinct strategies of TADIP are:

• Victim selection: evict block at LRU recency position.
• Insertion:

– if <Pi>=<0>, then new block of core i is inserted at MRU recency position with
-usually low- probability ϵ and at LRU recency position with 1−ϵ (BIP insertion).

– if <Pi>=<1>, then new block of core i is inserted at MRU recency position
(LRU insertion).

• Promotion: promote accessed block to MRU and demote remaining blocks accord-
ingly towards LRU recency position.

< 1 >

< P >

LRU SDM

< 0 >BIP SDM

PSEL

-1

+1

Misses

P =
MSB(PSEL)

Follower
Sets

Figure 2.8: DIP. Figure 2.9: TADIP.

⇀TADRRIP (Thread Aware DRRIP) was proposed by Jaleel et al. [9] as an equivalent
of TADIP, which uses SDM and PSEL counters the same way as TADIP. Apart from its
low cost on hardware overhead, TADRRIP is able to take thread aware decisions, choosing
between a stream/thrash resistant policy (BRRIP) and a policy that performs well in pres-
ence of cache-friendly applications (SRRIP), being also able to adjust the insertion of new
blocks, presenting some sort of scan-resistance, by preventing cache pollution. The 3 distinct
strategies of TADRRIP are:

• Victim selection: evict one among the blocks with distant RRPV (e.g. leftmost). If
none found, demote all RRPVs towards distant RRPV and repeat.

• Insertion:

– if <Pi>=<0>, then new block is inserted at long RRPV, with probability ϵ and
at distant RRPV with 1− ϵ (BRRIP insertion).

Ioannis K. Agriomallos - Diploma Thesis 15

2.5 Synopsis

– if <Pi>=<1>, then new block is inserted at long RRPV (SRRIP insertion).

• Promotion: promote accessed block to near-immediate RRPV.

2.4.3 Hybrid Policies
Finally hybrid LLC management schemes may be created, that combine all techniques

available by exploiting their advantages to achieve better performance. One hybrid LLC
policy is presented subsequently.

⇀PIPP (Promotion Insertion Pseudo-Partitioning) was proposed by Xie and Loh [10]
and uses decisionsmade by a partitioning scheme (in this caseUCP) in order to adjust accord-
ingly insertion policy of each core. In fact UMON-DSS is used for each core, that provides
a partition at the end of each repartition phase. This information could be derived from any
partitioning scheme (e.g. ABFCP). PIPP doesn’t enforce partitioning information during
replacement, but instead uses it to during insertion. The 3 distinct strategies of PIPP are:

• Victim selection: evict block at LRU recency position.
• Insertion: insert at recency position equal to the indicated partition, with 1 way denot-
ing LRU and N ways denoting MRU recency position for an N -way set associative
cache.

• Promotion: promote accessed block one recency position towards MRU with probab-
ility pprom and leave unchanged with 1− pprom.

PIPP does not strictly enforce the target partitioning, but the combination of targeted in-
sertion and incremental promotion creates results similar to explicit partition enforcement,
hence pseudo-partitioning. There was also added a stream-sensitive mechanism to PIPP in
order to recognise any cache-unfriendly applications easier (see Appendix A.3).

2.5 Synopsis
In this chapter single-core replacement policies, as well as multi-core proposed schemes

have been presented. Among these policies, ABFCP is chosen for further investigation,
due to its promising per-set flexibility.

16 Ioannis K. Agriomallos - Diploma Thesis

“The good news about computers is that they do what you tell
them to do. The bad news is that they do what you tell them
to do.”

Ted Nelson

“It’s hardware that makes a machine fast. It’s software that
makes a fast machine slow.”

Craig Bruce

3
Experimental Methodology

In order to avoid time-consuming, bug-risky and resource-hungry on-chip transfer of
hardware design choices, simulation is an invaluable asset, that is widely used by both re-
searchers and manufacturers. Apart from the apparent need for adaptive system simulators,
various programms, with special features and behaviour have been introduced, known as
benchmarks, in order to test thoroughly a system’s components performance.

3.1 CMP$im Simulator
Jaleel et al. [11] introduced the CMP$im Simulator, an alternative to execution-driven

and trace-driven simulation methodologies, that uses the binary instrumentation tool, PIN,
created by Luk et al. [12]. Since CMP$im simulator is not publicly available, a free closed-
code version is used for this diploma thesis, that permits alterations only to files related to
the management of the LLC. This version resides online1 and was used during a Cache
Replacement Championship provided by The Journal of Instruction-Level Parallelism [13].
The provided simulation framework models a simple out-of-order processor with the fol-
lowing basic parameters:

• 128-entry instruction window with no scheduling restrictions (i.e., any instruction that
is ready in the window can be scheduled out-of-order).

• Processor has an 8-stage, 4-wide pipeline. A maximum of two loads and a maximum
of one store can be issued every cycle.

• Perfect branch prediction (i.e., no front-end or fetch hazards).

• All instructions have one-cycle latency except for cache misses. L1 cache misses / L2
cache hits are 10 cycles. L2 cache misses / L3 cache hits are 30 cycles, and L3 cache
misses / memory requests have a 200-cycle latency. Hence, the total round-trip time
from processor to memory is 240 cycles.

1http://www.jilp.org/jwac-1/

17

http://www.jilp.org/jwac-1/

3.2 Benchmark Suite

• The memory model will consist of a 3-level cache hierarchy, consisting of L1 split
instruction and data caches, a L2, and a L3 (Last Level) cache. All caches support
64-byte lines. The L1 instruction cache is 32KB 4-way set associative cache with
true LRU replacement. The L1 data cache is 32KB 8-way set-associative with true
LRU replacement. The L2 data cache is 256KB, 8-way set-associative with true LRU
replacement. The LLC’s specifications (i.e. size, associativity, replacement scheme
followed, etc.) are customisable and configured by the user/designer. The LLC is a
non-inclusive (also non-exclusive) cache. L1 and L2 caches are private to each core,
while LLC is shared by all cores.

• The number of cores is also customisable and ranges between 1, 2 and 4.

The version of PIN tool used is 2.7-31933, the version of gcc compiler is 3.4.6 and
the simulator is compiled to run on a 64bit system under linux. The PIN tool is used to
collect instruction-containing traces for any single-threaded application. Each trace is then
in suitable form and can be feeded into the CMP$im for the simulation.

3.2 Benchmark Suite
The benchmarks used for simulations in this thesis belong to a quite popular and widely

used collection, called SPEC CPU 2006 [14], which is an industry-standardised, CPU-
intensive benchmark suite, stressing a system’s processor, memory subsystem and compiler.
This benchmark suite includes the SPEC CINT (integer component) and the SPEC CFP
(floating-point component) benchmarks, which contain 12 and 19 different benchmark tests
respectively. Among these benchmarks, 17 are used for the simulations, the same way as
TADIP [3] does. These benchmarks are described subsequently, whose notation comprises
an identification number, a name and a letter denoting the input used.

3.2.1 SPEC CINT 2006
400.perlbench.d belongs to the general category of programming languages, written

by Larry Wall et al., in C. It is a cut-down version of Perl v5.8.7, the popular scripting
language, but SPEC’s version has had most of OS-specific features removed. The workload
includes SpamAssassin, MHonArc (an email indexer), and specdiff (SPEC’s tool that checks
benchmark outputs). The used input is ‘diffmail.pl 4 800 10 17 19 300’.

401.bzip2.c belongs to the general category of compression tools, written by Julian Se-
ward, in C. It is based on bzip2 version 1.0.3 of the same author, modified to do most work
in memory, rather than doing I/O. The used input is ‘chicken.jpg 30’.

403.gcc.s belongs to the general category ofCompilers for C, written byRichard Stallman
and others2, in C. It is based on gcc version 3.2 and generates code for an AMD Opteron
processor. The benchmark runs as a compiler with many of its optimisation flags enabled.
The used input is ‘scilab.i’.

429.mcf.r belongs to the general category of combinatorial optimisation, written by An-
dreas Löbel, in C. It is derived from MCF and uses a network simplex algorithm (which is
also used in commercial products) to schedule public transport. The used input is the default
reference ‘inp.in’.

2http://gcc.gnu.org/onlinedocs/gcc/Contributors.html.

18 Ioannis K. Agriomallos - Diploma Thesis

http://gcc.gnu.org/onlinedocs/gcc/Contributors.html .

3.2 Benchmark Suite

456.hmmer.r belongs to the general category of search in a gene sequence database,
written by Sean Eddy, in C. It is used for protein sequence analysis using profile hidden
Markov models (profile HMMs), which are statistical models of multiple sequence align-
ments, that are used in computational biology to search for patterns in DNA sequences. The
used input is ‘–fixed 0 –mean 500 –num 500000 –sd 350 –seed 0 retro.hmm’.

462.libquantum.r belongs to the general category of physics and quantum computing,
written by Björn Butscher and Hendrik Weimer, in C. It is a library for the simulation of a
quantum computer, which is based on the principles of quantum mechanics and can solve
certain computationally hard tasks in polynomial time. It runs Shor’s polynomial-time fac-
torisation algorithm. The used input is the default reference ‘1397 8’.

464.h264ref.f belongs to the general category of video compression, written by Karsten
Sühring et al3 , in C. It is a reference implementation of H.264/AVC (Advanced Video
Coding), the latest state-of-the-art video compression standard, that encodes a videostream
using 2 parameter sets. The H.264/AVC standard is expected to replace MPEG2. The used
input is ‘-d foreman_ref_encoder_main.cfg’.

473.astar.r belongs to the general category of computer games, artificial intelligence and
path finding, written by Lev Dymchenko, in C++. It is derived from a portable 2D path-
finding library that is used in game’s AI and implements among others the well-known A*
algorithm. The used input is ‘rivers.cfg’.

483.xalancbmk.r belongs to the general category of xml processing, written by IBM’s
Michael Wong et al., in C++. It is a modified version of Xalan-C++, an XSLT processor
written in a portable subset of C++, which transforms XML documents to other document
types. The used input is the default reference ‘-v t5.xml xalanc.xsl’.

3.2.2 SPEC CFP 2006
416.gamess.c belongs to the general category of quantum chemical computations, writ-

ten by Gordon Research Group of Iowa State University, in Fortran. It implements a wide
range of quantum chemical computations. For the SPEC workload, self-consistent field
calculations are performed using the Restricted Hartree Fock method, Restricted open-
shell Hartree-Fock, and Multi-Configuration Self-Consistent Field. The used input is ‘<
cytosine.2.config’.

433.milc.s belongs to the general category of physics and quantum chromodynamics
(QCD), written by Steven Gottlieb, in C. It is a gauge field generating program for lattice
gauge theory programs with dynamical quarks. The used input is ‘< su3imp.in’.

434.zeusmp.z belongs to the general category of physics and magnetohydrodynamics,
written byMichael Norman, in Fortran. It is a computational fluid dynamics code developed
at the Laboratory for Computational Astrophysics (NCSA, University of Illinois at Urbana-
Champaign) for the simulation of astrophysical phenomena. It solves problems in three
spatial dimensions with a wide variety of boundary conditions. This program doesn’t need
any input.

450.soplex.p& 450.soplex.r belong to the general category of linear programming and
optimisation, written by R. Wunderling et al., in C++. It is based on SoPlex version 1.2.1
and solves a linear program using a simplex algorithm and sparse linear algebra. Test cases
include railroad planning and military airlift models. The used inputs are ‘-s1 -e -m45000
pds-50.mps’ and ‘-m3500 ref.mps’ respectively.

3http://iphome.hhi.de/suehring/tml/doc/lenc/html/contributors_8h.html

Ioannis K. Agriomallos - Diploma Thesis 19

http://iphome.hhi.de/suehring/tml/doc/lenc/html/contributors_8h.html

3.3 Classification of Benchmarks

459.GemsFDTD.r belongs to the general category of computational electromagnetics,
written by Ulf Andersson et al., in Fortran. It solves the Maxwell equations in 3D using the
finite-difference time-domain (FDTD) method. This program doesn’t need any input.

470.lbm.l belongs to the general category of fluid dynamics, written by Thomas Pohl, in
C. It implements the “Lattice-Boltzmann Method” to simulate incompressible fluids in 3D.
The used input is ‘3000 reference.dat 0 0 100_100_130_ldc.of’.

482.sphinx3.a belongs to the general category of speech recognition, written by Sphinx
Speech Group, in C. It is a widely-known speech recognition system from Carnegie Mellon
University. The used input is ‘ctlfile . args.an4’.

3.3 Classification of Benchmarks
CMP$im simulator was executed for all traces generated for each one of the 17

benchmarks described above, for a range of LLC configurations (size_associativity ∈
{256_1, 512_2, 1024_4, 2048_8, 4096_16, 8192_32}), for 1 billion instructions, under
LRU replacement policy, in order to extract single-core IPC (Instructions per Cycles) and
MPKI (Misses Per Kilo Instructions) metrics. The different LLC configurations were cre-
ated by having a fixed number of sets (namely 4096) and adjusting the associativity ac-
cordingly (from 1 to 32, with ×2 step) to achieve desired cache size (size = sets ×
associativity). Each trace was initially generated using PIN tool by running each bench-
mark with its input, for 1 billion instructions, after fast-forwarding (warming-up cache) 40
billion instructions.

Based on the classification of applications described in section 2.3, the selected bench-
marks can be divided in the following three categories: cache-friendly, cache-fitting and
cache-thrashing & streaming. Since benchmarks may reside in more than one categories,
the classification is not absolute, but helps to intuitively understand the behaviour of each
benchmark.

3.3.1 Cache-friendly
Cache-friendly benchmarks, which are shown in Figure 3.1, demonstrate good use of

cache resources, reducing the misses and increasing performance, if they are given more
ways. Sphinx3.a shows low utility of cache resources, so it could also be characterised as
cache-thrashing, for smaller cache configurations (size_associativity). Some benchmarks,
like bzip2.c, gcc.s and xalancbmk.r could also be characterised as cache-fitting for bigger
cache configurations.

3.3.2 Cache-fitting
Cache-fitting benchmarks, which are shown in Figure 3.2, have a relatively small working

set, that fits into the existing cache, therefore these benchmarks exhibit few misses with little
allocated resources.

3.3.3 Cache-thrashing & Cache-streaming
Cache-thrashing benchmarks, which are shown in Figure 3.3, have several misses and ex-

hibit little to no performance gain, if they allocate more resources. Cache-streaming bench-
marks, which are shown in Figure 3.4, have several misses and show no performance gain,

20 Ioannis K. Agriomallos - Diploma Thesis

3.3 Classification of Benchmarks

regardless of how many resources they allocate. Usually the distinction between streaming
and thrashing behaviour is difficult, therefore for the scope of this diploma thesis they are
all characterised as thrashing.

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.8

1.6

2.4

3.2

4

IP
C

Size_Associativity

bzip2_c

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

3

4

5

M
P

K
I

(a) bzip2.c

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.5

1

1.5

2

2.5

IP
C

Size_Associativity

gcc_scilab

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

3

4

5

M
P

K
I

(b) gcc.s

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.1

0.2

0.3

0.4

0.5

IP
C

Size_Associativity

mcf_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

13

26

39

52

65

78

M
P

K
I

(c) mcf.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.3

0.6

0.9

1.2

1.5
IP

C

Size_Associativity

soplex_p

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

6

12

18

24

30

M
P

K
I

(d) soplex.p

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.4

0.8

1.2

1.6

2

IP
C

Size_Associativity

sphinx3_a

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

3

6

9

12

15

M
P

K
I

(e) sphinx3.a

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.4

0.8

1.2

1.6

2

IP
C

Size_Associativity

xalancbmk_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

4

8

12

16

20

24

M
P

K
I

(f) xalancbmk.r
Figure 3.1: Cache-friendly benchmarks.

Ioannis K. Agriomallos - Diploma Thesis 21

3.3 Classification of Benchmarks

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.8

1.6

2.4

3.2

4

IP
C

Size_Associativity

astar_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

3

4

M
P

K
I

(a) astar.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.8

1.6

2.4

3.2

4

IP
C

Size_Associativity

gamess_c

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

M
P

K
I

(b) gamess.c

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.8

1.6

2.4

3.2

4

IP
C

Size_Associativity

h264ref_fb

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

3

4

M
P

K
I

(c) h264ref.f

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.8

1.6

2.4

3.2

4

4.8

IP
C

Size_Associativity

hmmer_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

3

4

M
P

K
I

(d) hmmer.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.7

1.4

2.1

2.8

3.5

IP
C

Size_Associativity

perlbench_d

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

1

2

M
P

K
I

(e) perlbench.d
Figure 3.2: Cache-fitting benchmarks.

22 Ioannis K. Agriomallos - Diploma Thesis

3.3 Classification of Benchmarks

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.2

0.4

0.6

0.8

1

IP
C

Size_Associativity

GemsFDTD_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

5

10

15

20

25

M
P

K
I

(a) GemsFDTD.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.3

0.6

0.9

1.2

1.5

IP
C

Size_Associativity

lbm_l

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

7

14

21

28

35

M
P

K
I

(b) lbm.l

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.1

0.2

0.3

0.4

0.5

0.6

IP
C

Size_Associativity

soplex_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

6

12

18

24

30

M
P

K
I

(c) soplex.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.4

0.8

1.2

1.6

2

2.4

IP
C

Size_Associativity

zeusmp_z

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

2

4

6

8

M
P

K
I

(d) zeusmp.z
Figure 3.3: Cache-thrashing benchmarks.

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.2

0.4

0.6

0.8

1

IP
C

Size_Associativity

libquantum_r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

4

8

12

16

20

M
P

K
I

(a) libquantum.r

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

0.2

0.4

0.6

0.8

1

IP
C

Size_Associativity

milc_s

256_1 512_2 1024_4 2048_8 4096_16 8192_32
0

4

8

12

16

20

M
P

K
I

(b) milc.s
Figure 3.4: Cache-streaming benchmarks.

Ioannis K. Agriomallos - Diploma Thesis 23

3.4 Multi-core Simulation Configuration

3.4 Multi-core Simulation Configuration
For the scope of this diploma thesis, simulations were run for a four-core system, with

4MBytes 16 way set-associative LLC, with 64 bytes cache line size, running on each one of
LLC management schemes described in section 2.4. The inputs used for the simulations are
15 workload mixes, which combine the 17 benchmarks per 4. For each workload mix, each
benchmark is executed for 1 billion instructions and repeats execution until all benchmarks
have reached that number. The workload mixes were taken in accordance to [3] and are
listed at Table 3.1, where abbreviations FR, FI and TH denote cache friendly, fitting and
thrashing or streaming profiles respectively.

Table 3.1: Workload mixes.
Mix Name Benchmarks in Mix Benchmark Profiles
MIX_00 xalacbmkr.r | mcf.r | milc.s | gcc.s FR | FR | TH | FR
MIX_01 sphinx3.a | mcf.r | hmmer.r | soplex.r FR | FR | FI | TH
MIX_02 bzip2.c | zeusmp.z | lbm.l | hmmer.r FR | FR | TH | FI
MIX_03 soplex.r | xalancbmk.r | h264ref.f | astar.r TH | FR | FI | FI
MIX_04 libquantum.r | milc.s | soplex.p | bzip2.c TH | TH | FR | FR
MIX_05 soplex.r | sphinx3.a | soplex.p | bzip2.c TH | FR | FR | FR
MIX_06 zeusmp.z | h264ref.f | gcc.s | soplex.p FR | FI | FR | FR
MIX_07 astar.r | GemsFDTD.r | hmmer.r | gcc.s FI | TH | FI | FR
MIX_08 zeusmp.z | xalancbmk.r | sphinx3.a | soplex.r FR | FR | FR | TH
MIX_09 mcf.r | xalancbmk.r | astar.r | perlbench.d FR | FR | FI | FI
MIX_10 libquantum.r | soplex.p | perlbench.d | hmmer.r TH | FR | FI | FI
MIX_11 soplex.p | milc.s | libquantum.r | zeusmp.z FR | TH | TH | FR
MIX_12 lbm.l | xalancbmk.r | soplex.r | milc.s TH | FR | TH | TH
MIX_13 zeusmp.z | libquantum.r | soplex.r | milc.s FR | TH | TH | TH
MIX_14 gamess.c | perlbench.d | h264ref.f | hmmer.r FI | FI | FI | FI

3.5 Synopsis
In this chapter CMP$im has been presented, which is used for the simulation of LLC

replacement schemes presented in section 2.4. In order to understand the behaviour of a
real 4-core system with common workloads, benchmarks from SPEC CPU 2006 suite were
used, by creating 15 different combinations/mixtures of 4 out of 17 selected benchmarks.
The simulation results and further analysis follow in the next chapter.

24 Ioannis K. Agriomallos - Diploma Thesis

“Part of the inhumanity of the computer is that, once it is com-
petently programmed and working smoothly, it is completely
honest.”

Isaac Asimov

“I’m sorry, Dave, I’m afraid I can’t do that.”
HAL, a spaceship computer, 2001: A Space Odyssey

4
Results, Optimisation & Analysis

The necessary infrastructure has already been demonstrated, upon which all the follow-
ing results and analysis will be based. In this chapter several LLC replacement policies are
compared and their advantages are being examined.

4.1 Metrics
In order to measure performance of multiple concurrently executing applications several

metrics have been proposed, that account for fairness, performance or both. In this diploma
thesis three commonly used metrics are preferred: throughput, weighted speedup and har-
monic mean fairness. Throughput (TH) is a performance metric, showing how many total
instructions are executed in a given amount of cycles (IPC).Weighted Speedup (WS) [15] is a
fairness metric, showing how close to the performance when executing alone gets each core
in the presence of others, by evaluating the sum of the normalised IPCs. Harmonic Mean
Fairness (HMF) [16], which is harmonic mean of normalised IPCs, balances both fairness
and performance. These metrics are given by:

Throughput =
∑

(IPCi) (4.1)

WeightedSpeedup =
∑

(IPCi/SingleIPCi) (4.2)

HarmonicMeanFairness = N/
∑

(SingleIPCi/IPCi) (4.3)
where IPCi is the IPC of the ith application when it concurrently executes with other ap-
plications and SingleIPCi is IPC of the same application in isolation, namely having all
the cache for itself.

4.2 Comparison of LLC Partitioning Schemes
Initially a comparison of all LLC partitioning schemes (see subsection 2.4.1), namely

UCP and ABFCP, is presented. The simulations were run for the 15 workload mixes, for a

25

4.2 Comparison of LLC Partitioning Schemes

16-way set associative 4MBLast Level Cache. Each benchmark repeats execution if needed,
until all have executed 1 billion instructions. Statistics for each benchmark are collected
only for the first 1 billion instructions, also known as region of interest. For the described
configuration, Figures 4.1, 4.2, 4.3 show throughput, weighted speedup and harmonic mean
fairness metrics normalised to LRU respectively. Apart from results for the 15 workload
mixes, the geometric mean (gmean = n

√
x1×x2×. . .×xn) is also depicted.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

T
H

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP

Figure 4.1: Throughput of LLC partitioning policies.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

W
S

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP

Figure 4.2: Weighted speedup of LLC partitioning policies.
Considering throughput metric, it is obvious that UCP has an overall better performance

with 15% speedup over LRU, while ABFCP follows with a speedup of around 10.8%.
Moreover, as weighted speedup denotes, UCP is fairer with around 7.3% speedup over

LRU, with ABFCP following with a speedup of 6.1%.
Finally, regarding harmonic mean fairness, UCP has also the most balanced behaviour,

being both fair and well-performing, with a speedup of 8.8% over LRU. ABFCP demon-
strates an approximate gain of 7.7%.

Weighted speedup metric shows a similar estimation as harmonic mean fairness metric,
so hereinafter it will be omitted for brevity purposes.

26 Ioannis K. Agriomallos - Diploma Thesis

4.3 Optimisation of ABFCP

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

H
M

F
 n

o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP

Figure 4.3: Harmonic mean fairness of LLC partitioning policies.

4.3 Optimisation of ABFCP
ABFCP is a scheme that possesses the flexibility of per-set but not per-way (+-1 ways)

partitioning, whereas UCP can take per-way flexible (+-N) but uniform partitioning de-
cisions. It is within the scope of this diploma thesis to explore the potential optimisa-
tions that may be introduced to ABFCP. For this purpose ABFCP is compared primarily
with UCP, since both belong to the partitioning policies family. Table 4.1 depicts the dif-
ferences between ABFCP and UCP.

Table 4.1: Differences between ABFCP and UCP.
Partitioning Properties ABFCP UCP
Distribution of Ways at most +/- 1 way all ways

Repartition Phase all counters set to 0 all counters divided by 2
BF reset UMON unaltered

Set Flexibility per-set partitioning uniform partitioning

4.3.1 Distribution of Ways
So far ABFCP’s partitioning decisions have differed at most 1 way from the partitioning

decision of the previous repartition phase. This happens due to the nature of Bloom Filters,
which do not contain per-way utility but merely probabilistic set membership. UCP however,
redistributes all ways among competing applications on each repartition and is independent
from the decision of the previous repartition phase. Thus arises the idea of making AB-
FCP more flexible on a per-way basis as well.

To achieve that, an approximate reconstruction of UCP’s UMON has been attempted,
called BFMON (BFMONitor). BFMON is used just like UMON, namely ABFCP’s partition-
ing algorithm becomes identical to that of UCP. The difference lies in structure of BFMON,
which does not need an ATD but merely reconstructs the content of counters per recency
position, using LRU stack property and 3 counters: BF counter, LRU counter and TOT
counter. BF counts total Bloom Filter hits so is the same as CBFHIT , LRU counts hits on
LRU recency position so is the same as CLRUHIT and TOT counts total hits.

Ioannis K. Agriomallos - Diploma Thesis 27

4.3 Optimisation of ABFCP

3030

20

40

1 2 3 4 5 6 7 8

WiMRU LRU

50

20

10

BF = 60LRU = 50TOT = 140

Flip if a < b

a

b

Recency
stack

Counters:

Figure 4.4: BFMON for an 8-way cache.

The basic idea is that when a
core i occupies Wi ways, then the
TOT counter represents the sum of
recency positions of UMON from
MRU toWi, LRU counter repres-
ents the hits due to With way and
BF counter represents the sum of
recency positions of UMON from
recency positions right after Wi

to LRU. The BFMON attempts a
linearly distributed reconstruction,
which is shown in Figure 4.4 and is
realised as follows:

• recency ∈ [MRU,Wi): values of recency positions lie on the slanted edge of a
trapezoid with 2 orthogonal angles, with area equal to the TOT counter, where one
side is known (LRU) and the other can be easily computed (2×TOT

Wi
− LRU). The

sub-trapezoid with one side at MRU and the other at recency right beforeWi is flipped
if needed, so as slanted edge is decreasing towards LRU.

• recency = Wi: value equals to LRU counter.

• recency ∈ (Wi, LRU]: values of recency positions lie on the hypotenuse of the
orthogonal triangle with area equal to BF counter, where the ‘base’ edge is known
(LRU −Wi) and the height edge can be easily computed (2×BF

LRU−Wi
). The triangle’s

height edge is facing towards MRU.
In order to evaluate the results of ABFCP partitioning all ways rather than only +/- 1, a

comparison is imperative. Figures 4.5 and 4.6 show throughput and harmonic mean fairness
respectively, between ABFCP original (ABFCP+-1) and ABFCP new (ABFCP+-N).

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

T
H

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1

ABFCP+−N

Figure 4.5: Throughput of ABFCP original and per-way flexible.
Considering throughput metric, new per-way flexible ABFCP performs worse than ori-

ginal, with 7% speedup over LRU. The same stands for harmonic mean fairness, where new
ABFCP comes last with 5% speedup. It seems that per-way flexible ABFCP doesn’t af-
fect performance significantly, if no other changes are made.

28 Ioannis K. Agriomallos - Diploma Thesis

4.3 Optimisation of ABFCP

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

H
M

F
 n

o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1

ABFCP+−N

Figure 4.6: Harmonic mean fairness of ABFCP original and per-way flexible.

4.3.2 Repartition Phase
On each repartition phase the new partition is decided and the information holding

units, like counters and monitoring structures, have to be updated accordingly. UCP leaves
UMONs unchanged and halves its counters, while ABFCP resets both BFs and counters. It
would be wise to check the influence of these parameters on ABFCP as well, since halving
counters or leaving BFMONs unchanged, results in retaining of present and past informa-
tion and may improve prediction. Thus Figures 4.7 and 4.8 depict throughput and harmonic
mean fairness respectively, for ABFCP with +/-1 or +/-N distribution of ways and reset or
halving of counters.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

T
H

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1set_0

ABFCP+−1set_div2

ABFCP+−Nset_0

ABFCP+−Nset_div2

Figure 4.7: Throughput of ABFCP versions for both resetting and halving of counters.
Regarding both throughput and harmonic mean fairness metrics, ABFCP versions with

halved counters perform better than those which reset counters. The biggest change is
presented in the ABFCP+-N per-set partitioning, which had a throughput of 7% when coun-
ters were reset and ‘jumped’ to 12.2% when counters were halved. It seems that counter
halving improves performance of ABFCP, independently of the version. The reset in-
terval of BFs was also tested, with measurements for each 1 (original), 2 and 4 repartitions.

Ioannis K. Agriomallos - Diploma Thesis 29

4.3 Optimisation of ABFCP

 0.90

 1.00

 1.10

 1.20

 1.30

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

H
M

F
 n

o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1set_0

ABFCP+−1set_div2

ABFCP+−Nset_0

ABFCP+−Nset_div2

Figure 4.8: Harmonic mean fairness of ABFCP versions versions for both resetting and
halving of counters.

Results showed that BF reset interval is either of no gain or degrades performance
and for brevity reasons are neglected.

4.3.3 Set Flexibility
The main difference between ABFCP and UCP is that the former attempts to decide a

partition per each set, thus sacrificing the per-way flexibility, while the latter attempts to be
fully per-way flexible, enforcing uniform instead of per-set partitioning. Both policies try to
find the optimal tradeoff, avoiding any prohibitive hardware overhead. ABFCP may not al-
ways perform like expected, namely per-set decisions might be an ‘overkill’. For this reason,
an alternative ABFCP is introduced, which enforces partition uniformly and the decision is
made by taking into account the sum of counters from all sets. Figures 4.9 and 4.10 show
throughput and harmonic mean fairness respectively, for ABFCP+-1 and ABFCP+-N both
for per-set and uniform partitioning as well as halving or resetting of counters.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

T
H

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1set_0

ABFCP+−1set_div2

ABFCP+−1uni_0

ABFCP+−1uni_div2

ABFCP+−Nset_0

ABFCP+−Nset_div2

ABFCP+−Nuni_0

ABFCP+−Nuni_div2

Figure 4.9: Throughput of ABFCP versions for both per-set and uniform partitioning.

30 Ioannis K. Agriomallos - Diploma Thesis

4.4 New Estimator for ABFCP

 0.90

 1.00

 1.10

 1.20

 1.30

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

H
M

F
 n

o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1set_0

ABFCP+−1set_div2

ABFCP+−1uni_0

ABFCP+−1uni_div2

ABFCP+−Nset_0

ABFCP+−Nset_div2

ABFCP+−Nuni_0

ABFCP+−Nuni_div2

Figure 4.10: Harmonic mean fairness of ABFCP versions for both per-set and uniform
partitioning.

Regarding either throughput or harmonicmean fairnessmetric, uniformABFCP perform
slightly better than the equivalent per-set ABFCP versions for +/-1 partitioning. For +/-N
partitioning with resetting counters uniform ABFCP performs better than per-set ABFCP,
whereas it performs slightly worse for the +/-N partitioning with halving counters. It seems
that uniform partitioning either improves or doesn’t significantly affect performance
compared to the per-set versions of ABFCP, showing that the per-set flexibility of
ABFCP, at least for the measured workloads, may be an ‘overkill’, thus opening the
way for further reduction of hardware overhead.

4.4 New Estimator for ABFCP
Original ABFCP made use of two counters CBFHIT and CLRUHIT to count the hits in

Bloom Filter and LRU recency position respectively. The partitioning algorithm (presented
in Appendix A.2) created two sorted lists, one for each counter, with the first showing the
gain of taking 1 more way and the second showing the cost of losing 1 way. ABFCP may
not handle some situations well, when for instance the BF falsely estimates a lot of gain, due
to false-positives or thrashing applications, that would require a lot more ways than available
associativity. Applications could potentially deceive ABFCP into ‘believing’ that their gain
is more than others’ loss, thus getting assigned a lot more resources, that they do not utilise.

? * CBFHIT

CLRUHIT

? * CBFHIT * (CLRUHIT / Accesses)

Max Min

Min Max

GAIN :

LOSS :

ORIGINAL ABFCP NEW ABFCP

Max Min

Promised
Gain

Expectation or
Probability of

Utilisation

Figure 4.11: Original vs New ABFCP.

Ioannis K. Agriomallos - Diploma Thesis 31

4.4 New Estimator for ABFCP

To address this shortcoming a new ABFCP estimator is proposed, as shown in Figure
4.11, which correlates the information contained in the two counters. If α × CBFHIT rep-
resents an estimation of per-way gain, CLRUHIT represents utilisation of 1 way (LRU) and
CLRUHIT/Accesses denotes the probability that an access will result in a hit, then the new
estimator is:

estimator = α× CBFHIT × CLRUHIT/Accesses (4.4)

New ABFCP needs only one sorted list, since it compares values of same nature (see Ap-
pendix A.2). The new estimator is predicted to filter applications that tend to be deceptive,
by showing a lot of BF hits but very low LRU hit rate. There have been created all new
ABFCP scheme’s versions, in continuation of the previous analysis. Thus new ABFCP can
partition +/-1 or +/-N ways, per-set or uniformly, while resetting or halving counters. For
the +/-N ways partitioning, the value of TOT (α×CBFHIT) counter, which reconstructed a
portion of BFMON, is replaced with the new estimator in equation 4.4. Figure 4.12 shows
for brevity only the geometric mean of the 15 workloads for the throughput and harmonic
mean fairness of both original and new ABFCP schemes.

 1.00

 1.02

 1.04

 1.06

 1.08

 1.10

 1.12

 1.14

 1.16

gmean_of_TH gmean_of_HMF

T
H

 a
n
d
 H

M
F

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP+−1set_0

ABFCP+−1set_div2

ABFCP+−1uni_0

ABFCP+−1uni_div2

ABFCP+−Nset_0

ABFCP+−Nset_div2

ABFCP+−Nuni_0

ABFCP+−Nuni_div2

newABFCP+−1set_0

newABFCP+−1set_div2

newABFCP+−1uni_0

newABFCP+−1uni_div2

newABFCP+−Nset_0

newABFCP+−Nset_div2

newABFCP+−Nuni_0

newABFCP+−Nuni_div2

Figure 4.12: Throughput and Harmonic mean fairness of original and new
ABFCP versions.

New ABFCP scheme performs better for all the corresponding versions compared to
the original, except for the ABFCP with +/-N, per-set and halved counters partitioning
(newABFCP+-Nset_div2). This may occur because of the nature of the new estimator,
which multiplies the counters, resulting in a cummulative erratic prediction due to halv-
ing, if counters contain deceptive information, which then may be distributed among more
ways of BFMONs for +/-N version instead of just 1 for +/-1 version. However, some ver-
sions of new ABFCP even surpass UCP for the harmonic mean fairness metric. These are
new ABFCP with +/-N, uniform and reset counters partitioning (newABFCP+-Nuni_0) and
new ABFCP with +/-1, uniform and halved counters partitioning (newABFCP+-1uni_div2),
showing a speedup of 9.5% and 9.3% respectively overLRU, whileUCP had a 8.8% speedup.
It seems that new estimator for ABFCP shows an overall improvement of ABFCP be-
haviour and challenges best-performing LLC policies.

32 Ioannis K. Agriomallos - Diploma Thesis

4.5 Effect of Sampling for ABFCP

4.5 Effect of Sampling for ABFCP
Since per-set partitioning may be redundant, the effect of per-set sampling is examined,

to realise how much reduction in hardware overhead may be achieved, without significant
loss of performance. Set sampling is a technique like UCP’s DSS presented in subsection
2.4.1, where few sets decide for the rest. Two alternatives are proposed: Sampling (S) and
GroupSampling (GS), which can be seen in Figure 4.13.

SET 1 MRU LRU

SET 2

SET 5 MRU LRU

SET 6

GROUP
1

GROUP
2

BFs and
Counters

SET 3

SET 4

SET 7

SET 8

(a) Sampling

SET 1 MRU LRU

SET 2

SET 5 MRU LRU

SET 6

GROUP
1

GROUP
2

BFs and
Counters

SET 3

SET 4

SET 7

SET 8

(b) GroupSampling
Figure 4.13: ABFCP sampling versions.

Sampling simply stores information, namely BFs and counters, only for the sampled sets,
which in turn decide for all sets of their group. For k samples out of n sets, there are k groups
containing n/k sets each. GroupSampling differs from Sampling in that BFs and counters of
each sampled set are updated by all sets of its group, instead of the sampled set only.

 0.95

 0.96

 0.97

 0.98

 0.99

 1.00

 1.01

gmean_of_TH gmean_of_HMF

T
H

 a
n
d
 H

M
F

 n
o
rm

al
is

ed
 t

o
 U

C
P

Workload Mix

nA+−1set_div2_4096_s

nA+−1set_div2_1024_s

nA+−1set_div2_1024_gs

nA+−1set_div2_128_s

nA+−1set_div2_128_gs

nA+−1set_div2_64_s

nA+−1set_div2_64_gs

nA+−1set_div2_32_s

nA+−1set_div2_32_gs

nA+−1uni_div2_4096_s

nA+−1uni_div2_1024_s

nA+−1uni_div2_1024_gs

nA+−1uni_div2_128_s

nA+−1uni_div2_128_gs

nA+−1uni_div2_64_s

nA+−1uni_div2_64_gs

nA+−1uni_div2_32_s

nA+−1uni_div2_32_gs

nA+−Nuni_0_4096_s

nA+−Nuni_0_1024_s

nA+−Nuni_0_1024_gs

nA+−Nuni_0_128_s

nA+−Nuni_0_128_gs

nA+−Nuni_0_64_s

nA+−Nuni_0_64_gs

nA+−Nuni_0_32_s

nA+−Nuni_0_32_gs

Figure 4.14: Throughput and Harmonic mean fairness of best 3 ABFCP versions for
Sampling and GroupSampling.

Figure 4.14 shows the geometric mean of throughput and harmonic mean fair-
ness for 3 among the best performing ABFCP schemes presented previously with both

Ioannis K. Agriomallos - Diploma Thesis 33

4.6 Effect of Reduction of Bloom Filter’s Tag

Sampling and GroupSampling versions. The 3 selected ABFCP schemes are newABFCP+-
1set_div2, newABFCP+-1uni_div2 and newABFCP+-Nuni_0. Moreover samples ∈
{32, 64, 128, 1024}. For each one of the 3 examined ABFCP versions, the initial unsampled
version is also showed, which is equivalent to 4096 samples with Sampling. The results are
normalised to UCP instead of LRU. Since all examined versions use new ABFCP the ”nA”
abbreviation is used.

Observing throughput metric, Sampling is in almost all cases a more reliable choice,
while GroupSampling degrades performance compared to Sampling and only for nA+-
1set_div2 version with 1024 samples performs even better than unsampled version (4096_s).
The best performing version seems to be nA+-1uni_div2 with Sampling of 32 sets, with
14.7% compared to UCP’s 15% speedup over LRU. For this version (nA+-1uni_div2)
Sampling appears to increase performance despite that the information collected is reduced.
Observing harmonic mean fairness metric, Sampling seems to be better thanGroupSampling
except for the per-set version of nA+-1set_div2. Samplingwas expected to behave equally
or slightly worse in some cases. However this is not always true, considering overall
performance of nA+-1uni_div2, whose version of 32 samples is the best choice, com-
bining fairness, performance and reduced hardware overhead, while achieving even
better speedup than the initial unsampled version.

4.6 Effect of Reduction of Bloom Filter’s Tag
So far, simulations have been run with a close-to-ideal tag, which in this case is 14 bits.

Since 14 bits tag for BFs is an impractical design choice due to hardware cost, the effect of
reduction of BF’s tag on overall performance is examined. Figure 4.15 shows the geometric
mean of throughput and harmonic mean fairness for the best-performing ABFCP scheme,
namely new ABFCP with +-1, uniform and halving counters partitioning, with Sampling of
32 sets (nA+-1uni_div2_32_s). Moreover tag ∈ {3, 4, 5, 6, 7, 8, 10}.

 0.95

 0.96

 0.97

 0.98

 0.99

 1.00

 1.01

gmean_of_TH gmean_of_HMF

T
H

 a
n
d
 H

M
F

 n
o
rm

al
is

ed
 t

o
 U

C
P

Workload Mix

3 bits tag

4 bits tag

5 bits tag

6 bits tag

7 bits tag

8 bits tag

10 bits tag

14 bits tag

Figure 4.15: Throughput and Harmonic mean fairness of best ABFCP version, namely
nA+-1uni_div2_32_s, with varying size of BF’s tag.

Regarding both throughput and harmonic mean fairness metrics, it seems that perform-
ance is reduced as the size of BF’s tag is reduced. However performance seems to have a

34 Ioannis K. Agriomallos - Diploma Thesis

4.7 Comparison of all presented LLC schemes

‘peak’ for 8 bits tag, instead of at 14 bits. Thus the best ABFCP version which combines
performance, fairness and reduced hardware overhead is nA+-1uni_div2_32_s with
8 bits tag.

4.7 Comparison of all presented LLC schemes
Finally all presented in section 2.4 LLC replacement schemes are compared, namely

UCP, ABFCP, TADIP, TADRRIP, PIPP, alongside the best version of new ABFCP, that is
nA+-1uni_div2_32_s with 8 bits tag. Figures 4.16 and 4.17 show throughput and harmonic
mean fairness respectively, of the aforementioned LLC schemes.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

T
H

 n
o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP

newABFCP

TADIP

TADRRIP

PIPP

Figure 4.16: Throughput of LLC replacement schemes.

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 gmean

H
M

F
 n

o
rm

al
is

ed
 t

o
 L

R
U

Workload Mix

UCP

ABFCP

newABFCP

TADIP

TADRRIP

PIPP

Figure 4.17: Harmonic mean fairness of of LLC replacement schemes.
Considering throughput metric, UCP has an overall better performance with 15% spee-

dup over LRU, followed closely by new ABFCP with 14.8% speedup. TADRRIP comes af-
terwards with 12%, while original ABFCP and PIPP follow with a speedup of around 10.8%
and 10.4% respectively. TADIP comes last performing around 10% better than LRU.

Ioannis K. Agriomallos - Diploma Thesis 35

4.7 Comparison of all presented LLC schemes

Considering harmonic mean fairness, TADRRIP and newABFCP have themost balanced
behaviour, being both fair and well-performing, with a speedup of 9.7% over LRU. They
are closely followed by UCP which demonstrates a 8.8% gain, while TADIP and original
ABFCP demonstrate an approximate gain of 7.9% and 7.7% respectively. PIPP comes last
with 5% speedup.

Table 4.2 shows the required harware overhead of all the compared LLC schemes.
TADRRIP has the lowest total requirements with 0.4% of cache size, followed by TADIP and
best version of new ABFCP requiring 0.8% and 0.9% extra hardware respectively. UCP uses
1.1% more hardware, while original ABFCP wants 3% compared to cache. TADRRIP is
based on RRIP which uses less bits to implement its priority stack, therefore requiring at least
half of the hardware that LRU based policies need. Even though new ABFCP requires
50%more hardware compared to TADRRIP, it performs 23% better for the through-
put metric and is equally fair for the harmonic mean fairness metric. Moreover new
ABFCP requires 15% less hardware compared to UCP, performing 2% worse while
being 10% fairer. Finally new ABFCP requires 72% less hardware compared to ori-
ginal ABFCP, performing 37% better while being 23% fairer.

Table 4.2: Required Hardware Overhead of LLC schemes
CACHE SIZE 4MB = 32Mb

Number of Sets (Sets) 4096
Associativity (As) 16

Number of Threads (Th) 4
EXTRA HARDWARE REQUIRED FOR IMPLEMENTATION OF REPLACEMENT POLICIES

BASE POLICY (BP) LRU based RRIP based
Priority bits per Set (Pb) log216 = 4 2

Total bits for Cache (TBPb) =
Pb× As× Sets

4× 16× 4096 = 256Kb 128Kb

LLC POLICIES (LP) ABFCP new ABFCP UCP & PIPP TADIP TADRRIP
Sampled Sets (SS) 4096 32 32 32 32

bits per Monitor (Mb) 32 bits (BF entries)
for 5 bits tag

256 bits (BF entries)
for 8 bits tag

16 ways (UMON ATD entries)
of 44 bits (tag) each = 704bits

- -

Total Monitor bits for Cache (TMb) =
SS ×Mb× Th

512Kb 32Kb 88Kb - -

bits per Counter (Cb) 8 8 10 10 10

Number of Counters (NC)

2
(CLRUHIT

CBFHIT)
per sample

3
(CLRUHIT

CBFHIT

Accesses)
per sample

16
(1 counter per each

UMON priority position)
for all samples

1
(PSEL)
per sample

1
(PSEL)
per sample

Total Counter bits for Cache (TCb) =
SS × (NC × Cb)× Th

256Kb 3Kb 640bits = 0.625Kb
(SS = 1 for counters)

1280bits =
1.25Kb

1280bits =
1.25Kb

Total LP bits for Cache (TLPb) =
TMb+ TCb

768Kb 35Kb 88.625Kb 1.25Kb 1.25Kb

PERCENTAGE of fewer required LP bits
with respect to best LLC policy’s LP bits (UCP)

-766% or
×7.66

60.5% or
×0.4

0% or
×1

98.6% or
×0.01

98.6% or
×0.01

TOTAL EXTRA bits (Tb) =
TBPb+ TLPb

1Mb 291Kb 344.626Kb 257.25Kb 129.25Kb

PERCENTAGE of EXTRA bits
with respect to CACHE SIZE

+3% +0.9% +1.1% +0.8% +0.4%

It seems that the proposedABFCP optimisations improve the behaviour of original
ABFCP, so much that in some cases it ties in both performance and fairness the top-
performing examined LLC schemes, likeUCP and TADRRIP, while requiring reduced
hardware overhead.

Finally, Figure 4.18 shows throughput of LRU managed LLC for different cache sizes,
where the number of sets is kept constant (4096 sets) and the number of ways is variated
accordingly. The results are normalised to best new ABFCP, so as to estimate how much
more cache size would LRU require in order to reach or surpass its performance.

36 Ioannis K. Agriomallos - Diploma Thesis

4.7 Comparison of all presented LLC schemes

 −12.00%

 −10.00%

 −8.00%

 −6.00%

 −4.00%

 −2.00%

 0.00%

 2.00%

LRU_4MB_16 LRU_6MB_24 LRU_8MB_32 LRU_10MB_40

T
h

ro
u

g
h

p
u

t
n

o
rm

al
is

ed
 t

o
 b

es
t

A
B

F
C

P

Geometric Mean

Figure 4.18: Throughput of LRU managed LLC for different cache configurations,
normalised to best new ABFCP.

Best new ABFCP on a 4MB 16-way cache requires 0.9% extra hardware and per-
forms equally to LRU on a 10MB 40-way cache, which requires 150% extra hardware
compared to the 4MB 16-way one.

Ioannis K. Agriomallos - Diploma Thesis 37

4.7 Comparison of all presented LLC schemes

38 Ioannis K. Agriomallos - Diploma Thesis

“The science of today is the technology of tomorrow.”

Edward Teller

“If you control the code, you control the world. This is the
future that awaits us.”

Marc Goodman

5
Conclusions

In this diploma thesis several replacement policies have been examined, for a 4-core
system equipped with a 4MB 16-way set associative last level cache. For the simulations
CMP$im simulator was used, as well as 15 workload mixes of 4 out of 17 benchmarks
explicitly picked from SPEC CPU 2006 benchmark suite, so as to estimate a system’s per-
formance running real-life applications that stress both CPU and memory.

5.1 Overview
ABFCP was chosen among the policies for study and potential optimisations. Several

parameters of ABFCP were examined or differentiated, among which were:

• Introduction of +/-N (all ways) partitioning instead of just +/-1 partitioning.

• Halving of counters instead of just resetting on each repartition phase.

• Uniform (same for all cache) instead of per-set partitioning.

• New Estimator for ABFCP, which correlates the information of the existing counters,
in order to take partitioning decisions.

• Sampling of cache sets, having either one set or all sets of each group decide for the
whole group.

• Reduction of BF’s tag bits.

The best among these ABFCP versions used new estimator, +/-1, uniform partitioning,
with halving counters, 32 sets sampling (nA+-1uni_div2_32_s) and 8 bits BF tag. Best new
ABFCP requires 72% less hardware than original ABFCP, while improving performance
by 37% and fairness by 23%. Even though best new ABFCP requires 50% more hardware
compared to TADRRIP, it performs 23% better for the throughput metric and is equally
fair for the harmonic mean fairness metric. Moreover best new ABFCP requires 15% less

39

5.2 Future Work

hardware compared to UCP, performing 2% worse while being 10% fairer. In the ‘per-
formance race’ it manages to ‘climb’ from 4th place among the 5 compared schemes
to 2nd, closely following the 1st UCP. In the ‘fairness race’ it manages to share the
1st place with TADRRIP, leaving behind its predecessor at 4th place. Finally best new
ABFCP on a 4MB 16-way cache requires 0.9% extra hardware and performs equally
to LRU on a 10MB 40-way cache, which requires 150% extra hardware compared to
the 4MB 16-way one.

5.2 Future Work
ABFCP is a partitioning scheme, therefore it was primarily compared to the other parti-

tioning schemeUCP, which performs better than all compared LLC policies. ABFCP optim-
isations attempted to examine the design differences between the two schemes and choose
the best-performing features. However there was another approach for replacement policies,
like variation of insertion policy, used in TADIP,TADRRIP and PIPP, which was not ex-
amined for ABFCP in this thesis. Some thoughts for future work are:

• Usage of ABFCP partitioning to a hybrid scheme, like PIPP, where partitioning de-
cisions aren’t enforced during victim selection, but instead denote insertion priority.

• Usage of RRIP or NRU instead of LRU as the underlying policy of ABFCP. This will
allow for more hardware overhead reduction, like in TADRRIP, but may also introduce
a performance improvement, similar to that demonstrated from TADIP to TADRRIP.
By using an approximation of LRU, like RRIP, one among the least recently used
blocks will be evicted, instead of the least recently used, opening the way for re-design
of several ABFCP structures.

• Evaluation of power consumption requirements of each LLC scheme.

The perfect extraction and combination of information is a difficult yet challenging and
charming task to achieve, especially during run-time. Thus technology and mankind ad-
vance, for it is the never-ending need for knowledge and exploration, that motivates humans
to surpass and expand the boundaries they confront each time.

40 Ioannis K. Agriomallos - Diploma Thesis

Appendices

41

“Whether we are based on carbon or on silicon makes no fun-
damental difference; we should each be treated with appro-
priate respect.”

Arthur C. Clarke, 2010: Odyssey Two

A
Details for LLC Replacement Policies

A.1 UCP’s Partitioning Algorithms
The exhaustive partitioning algorithm finds the best among all possible partitions, but

finding an optimal solution for more than 2 cores becomes prohibitively complex (NP-hard).
In fact it is proven that there are

(
N−1
N−C

)
= (N−1)!

(N−C)!(C−1)!
different possible partitions, given

that all cores take at worst 1 way. For instance if N = [16, 32] and C = [4, 8] then there
are [455, 2629575] possible partitions respectively. For this reason Qureshi and Patt [5] pro-
posed two approximate algorithms that find a nearly optimal solution. Their initial approach
was the Greedy algorithm, which gives a way to the application with the maximum utility for
this given way, iterating until all ways are distributed and is depicted in Algorithm 1. It finds
an optimal solution if utility is a convex function of ways, but may behave pathologically in
case of non convex utility functions.

To confront this problem Qureshi and Patt [5] proposed Lookahead algorithm. Letmar-
ginal utility MU denote the utility U per unit cache resource (way or block). Using the
notation of subsection 2.4.1:

MU b
a =

missa −missb
b− a

=

∑b
way=a+1 hitcounters[way]

b− a
=

U b
a

b− a
. (A.1)

This algorithm can take into account possible gains from more than one extra ways for
each core, by calculating MU for all possible ways that an application can have. Dur-
ing each iteration maximum MU (max_mu) and minimum ways needed to achieve that
are calculated for each core. The core with the biggest max_mu receives the corres-
ponding minimum required ways. The algorithm is repeated until all ways are distrib-
uted and since at least 1 way is granted on each iteration, it requires in the worst case
N + (N − 1) + · · · + 1 = N(N − 1) ≈ N2/2 calculations for an N -way set associ-
ative cache. Algorithm 2 shows the above logic. Lookahead algorithm outperforms Greedy
and shows little to no loss of performance compared to the optimal exhaustive one.

43

A.1 UCP’s Partitioning Algorithms

Algorithm 1: UCP’s Greedy Algorithm
Input: N total ways, C total cores/applications, hitcounters for each way
Output: partitioning allocations for each application
begin

balance←− N
for i←− 0 to C − 1 do

allocations[i]←− 0

while balance > 0 do
for i←− 0 to C − 1 do

alloc←− allocations[i]
Unext[i] = get_util_value(i, alloc, alloc+ 1)

winner ←− application with maximum value of Unext
allocations[winner]←− allocations[winner] + 1
balance←− balance− 1

return allocations
Function get_util_value(p, a, b) :

U ←−
∑b

way=a+1 hitcounters[way]
return U

Algorithm 2: UCP’s Lookahead Algorithm
Input: N total ways, C total cores/applications, hitcounters for each way
Output: partitioning allocations for each application
begin

balance←− N
for i←− 0 to C − 1 do

allocations[i]←− 0

while balance > 0 do
for i←− 0 to C − 1 do

alloc←− allocations[i]
max_mu[i]←− get_max_mu(i, alloc, balance)
blocks_req[i]←− min blocks to getmax_mu[i]

winner ←− application with maximum value ofmax_mu
allocations[winner]←− allocations[winner] + blocks_req[winner]
balance←− balance− blocks_req[winner]

return allocations
Function get_max_mu(p, alloc, balance) :

max_mu←− 0
for ii←− 1 to balance do

mu←− get_mu_value(p, alloc, alloc+ ii)
ifmu > max_mu then

max_mu←− mu

returnmax_mu

Function get_mu_value(p, a, b) :
MU ←−

∑b
way=a+1 hitcounters[way]

returnMU/(b− a)

44 Ioannis K. Agriomallos - Diploma Thesis

A.2 ABFCP’s Partitioning Algorithms

A.2 ABFCP’s Partitioning Algorithms
Rather than evaluating all possible partition changes as shown in Table A.1 and

choosing the best choice that maximizes a given metric, Nikas et al. [6] proposed
a Linear algorithm that selects the best partition or a good approximation thereof.

Table A.1: Possible Partition
Changes.

Cores Part. Ch.
2 3
4 19
8 1107
16 5196627

This algorithm initially reads both counters of each core.
Then, in each iteration, the maximum gain value is com-
pared against the minimum loss value. If the former is
greater, then the allocation of the core associated with that
CBFHIT counter is increased by one way, while the core
associated with that CLRUHIT counter is deprived of one
way. The process is repeated until no cores are left to be
considered or the maximum gain value is smaller than the
minimum loss value. Algorithm 3 shows the described
logic. In the worst case C/2 comparisons need to be per-
formed, where C the number of cores. Therefore, the
complexity of this algorithm is O(C).

Algorithm 3: ABFCP’s Linear Algorithm
Input: C total cores/applications, CBFHIT, CLRUHIT, previous allocations of each

core
Output: new allocations of each core
begin

for i←− 0 to C − 1 do
gain1[i]←− α× CBFHIT

loss1[i]←− CLRUHIT

order gain1 and loss1 frommin tomax value
whilemax(gain1) > min(loss1) do

i←− core ofmax(gain1) value
j ←− core ofmin(loss1) value
allocations[i]←− allocations[i] + 1
allocations[j]←− allocations[j]− 1
remove i, j from gain1, loss1
C ←− C − 2
if C ≤ 1 then

return allocations

return allocations

Optimisation of ABFCP included the introduction of a new estimator which correlates
the information stored in counters to take partitioning decisions. Algorithm 4 shows the new
estimator logic for +/-1 partitioning.

Ioannis K. Agriomallos - Diploma Thesis 45

A.3 PIPP’s stream-sensitive mechanism

Algorithm 4: ABFCP’s new Estimator Linear Algorithm
Input: C total cores/applications, CBFHIT, CLRUHIT, Accesses, previous allocations

of each core
Output: new allocations of each core
begin

for i←− 0 to C − 1 do
gainorloss1[i]←− α× CBFHIT × CLRUHIT/Accesses

order gainorloss1 frommin tomax value
whilemax(gainorloss1) > min(gainorloss1) do

i←− core ofmax(gainorloss1) value
j ←− core ofmin(gainorloss1) value
allocations[i]←− allocations[i] + 1
allocations[j]←− allocations[j]− 1
remove i, j from gainorloss1
C ←− C − 2
if C ≤ 1 then

return allocations

return allocations

A.3 PIPP’s stream-sensitive mechanism
Xie and Loh [10] add a stream-sensitive mechanism to make PIPP stream-resistant. Al-

though partitioning schemes may recognize any cache-unfriendly patterns and restrict them
by allocating few ways to such cores, stream-sensitive PIPP adds an extra mechanism for
safety. By using UMONs, PIPP tracks the total number of accesses by corei (Ai) and the
number of misses the core would experience if it had access to the entire cache for itself
(mi). If a certain threshold is exceeded either by the total number of misses (mi ≥ θm) or by
the miss rate (mi

Ai
≥ θmr), then PIPP assumes the core is running a stream-like application.

The intuition behind this modification is that an application with a large number of abso-
lute misses (mi) or miss rate (mi

Ai
) would likely cause significant thrashing and any resource

investment would be wasted. When PIPP detects a streaming cores, it makes all insertions
at priority position πstream, regardless of target partition πs. Insertion position πstream is
set to equal the current number of stream-like applications. Promotion for hits due to cores
only occur with a reduced probability pstream ≪ pprom. For the corner case where all ap-
plications simultaneously exhibit streaming behaviour, PIPP reverts to inserting all lines at
highest-priority position, since there are no cache-friendly applications to hurt. The best
values chosen for PIPP are pprom = 3

4
, pstream = 1

128
, θm ≥ 4095 and θmr = 12.5% = 1

8
.

46 Ioannis K. Agriomallos - Diploma Thesis

Bibliography

[1] I♭♳♤♫ ♠♭♣ H♤♶♫♤♳♳ P♠♢♪♠♱♣. Inside the Intel® Itanium® 2 Processor: an Itanium
Processor Family member for balanced performance over a wide range of applications.
2002. URL http://www.dig64.org/about/Itanium2_white_paper_public.
pdf.

[2] O♱♠♢♫♤ ♠♭♣ S♴♭ M♨♢♱♮♲♸♲♳♤♬♲. UltraSPARC T2TM Supplement to the UltraSPARC
Architecture. 2007. URL http://www.oracle.com/technetwork/systems/
opensparc/t2-14-ust2-uasuppl-draft-hp-ext-1537761.html.

[3] A. J♠♫♤♤♫, W. H♠♲♤♭♯♫♠♴♦♧, M. K. Q♴♱♤♲♧♨, J. S♤♡♮♳, S. C. S. J♱. ♠♭♣ J. S. E♬♤♱.
Adaptive insertion policies for managing shared caches. In A. M♮♲♧♮♵♮♲, D. T♠♱♣♨♳♨
♠♭♣ K. O♫♴♪♮♳♴♭, eds., 17th International Conference on Parallel Architecture and
Compilation Techniques (PACT 2008), Toronto, Ontario, Canada, October 25-29,
2008, pp. 208–219. ACM, 2008. URL http://doi.acm.org/10.1145/1454115.
1454145.

[4] R. L. M♠♳♳♲♮♭, J. G♤♢♲♤♨, D. R. S♫♴♳♹ ♠♭♣ I. L. T♱♠♨♦♤♱. Evaluation Techniques for
Storage Hierarchies. IBM Syst. J., vol. 9(2):pp. 78–117, 1970. ISSN 0018-8670. URL
http://dx.doi.org/10.1147/sj.92.0078.

[5] M. K. Q♴♱♤♲♧♨ ♠♭♣ Y. N. P♠♳♳. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-39 2006), 9-13
December 2006, Orlando, Florida, USA, pp. 423–432. IEEEComputer Society, 2006.
URL http://doi.ieeecomputersociety.org/10.1109/MICRO.2006.49.

[6] K. N♨♪♠♲, M. H♮♱♲♭♤♫♫ ♠♭♣ J. D. G♠♱♲♨♣♤. An adaptive bloom filter cache parti-
tioning scheme for multicore architectures. In W. A. N♠♩♩♠♱ ♠♭♣ H. B♫♴♬♤, eds.,
Proceedings of the 2008 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (IC-SAMOS 2008), Samos, Greece, July 21-
24, 2008, pp. 25–32. IEEE, 2008. URL http://dx.doi.org/10.1109/ICSAMOS.
2008.4664843.

[7] J.-K. P♤♨♱, S.-C. L♠♨, S.-L. L♴, J. S♳♠♱♪ ♠♭♣ K. L♠♨. Bloom Filtering Cache Misses
for Accurate Data Speculation and Prefetching. In Proceedings of the 16th Inter-
national Conference on Supercomputing, ICS ’02, pp. 189–198. ACM, New York,
NY, USA, 2002. ISBN 1-58113-483-5. URL http://www.cise.ufl.edu/~peir/
pdf2/ics02.pdf.

[8] M. K. Q♴♱♤♲♧♨, A. J♠♫♤♤♫, Y. N. P♠♳♳, S. C. S. J♱. ♠♭♣ J. S. E♬♤♱. Adaptive insertion
policies for high performance caching. In D. M. T♴♫♫♲♤♭ ♠♭♣ B. C♠♫♣♤♱, eds., 34th
International Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007,

47

http://www.dig64.org/about/Itanium2_white_paper_public.pdf
http://www.dig64.org/about/Itanium2_white_paper_public.pdf
http://www.oracle.com/technetwork/systems/opensparc/t2-14-ust2-uasuppl-draft-hp-ext-1537761.html
http://www.oracle.com/technetwork/systems/opensparc/t2-14-ust2-uasuppl-draft-hp-ext-1537761.html
http://doi.acm.org/10.1145/1454115.1454145
http://doi.acm.org/10.1145/1454115.1454145
http://dx.doi.org/10.1147/sj.92.0078
http://doi.ieeecomputersociety.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1109/ICSAMOS.2008.4664843
http://dx.doi.org/10.1109/ICSAMOS.2008.4664843
http://www.cise.ufl.edu/~peir/pdf2/ics02.pdf
http://www.cise.ufl.edu/~peir/pdf2/ics02.pdf

BIBLIOGRAPHY

San Diego, California, USA, pp. 381–391. ACM, 2007. URL http://doi.acm.
org/10.1145/1250662.1250709.

[9] A. J♠♫♤♤♫, K. B. T♧♤♮♡♠♫♣, S. C. S. J♱. ♠♭♣ J. S. E♬♤♱. High performance cache
replacement using re-reference interval prediction (RRIP). In A. S♤♹♭♤♢, U. C. W♤♨♲♤♱
♠♭♣ R. R♮♭♤♭, eds., 37th International Symposium on Computer Architecture (ISCA
2010), June 19-23, 2010, Saint-Malo, France, pp. 60–71. ACM, 2010. URL http:
//doi.acm.org/10.1145/1815961.1815971.

[10] Y. X♨♤ ♠♭♣ G. H. L♮♧. PIPP: promotion/insertion pseudo-partitioning of multi-core
shared caches. In S. W. K♤♢♪♫♤♱ ♠♭♣ L. A. B♠♱♱♮♲♮, eds., 36th International Sym-
posium on Computer Architecture (ISCA 2009), June 20-24, 2009, Austin, TX,
USA, pp. 174–183. ACM, 2009. URL http://doi.acm.org/10.1145/1555754.
1555778.

[11] A. J♠♫♤♤♫, R. S. C♮♧♭, C.-K. L♴♪ ♠♭♣ B. J♠♢♮♡. CMP$im: A Pin-Based On-The-
Fly Multi-Core Cache Simulator. In Fourth Annual Workshop on Modeling, Bench-
marking and Simulation (MoBS), co-located with ISCA’2008. 2008. URL http:
//www.jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf.

[12] C.-K. L♴♪, R. C♮♧♭, R. M♴♳♧, H. P♠♳♨♫, A. K♫♠♴♲♤♱, G. L♮♶♭♤♸, S. W♠♫♫♠♢♤, V. J.
R♤♣♣♨ ♠♭♣ K. H♠♹♤♫♶♮♮♣. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACMSIGPLANConference on
Programming Language Design and Implementation, PLDI ’05, pp. 190–200. ACM,
New York, NY, USA, 2005. ISBN 1-59593-056-6. URL http://doi.acm.org/
10.1145/1065010.1065034.

[13] T♧♤ J♮♴♱♭♠♫ ♮♥ I♭♲♳♱♴♢♳♨♮♭-L♤♵♤♫ P♠♱♠♫♫♤♫♨♲♬. 1st JILP Workshop on Computer
Architecture Competitions (JWAC-1): Cache Replacement Championship, . 2010. URL
http://www.jilp.org/jwac-1/.

[14] J. L. H♤♭♭♨♭♦. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit.
News, vol. 34(4):pp. 1–17, 2006. ISSN 0163-5964. URL http://doi.acm.org/
10.1145/1186736.1186737.

[15] A. S♭♠♵♤♫♸ ♠♭♣ D. M. T♴♫♫♲♤♭. Symbiotic Jobscheduling for a Simultaneous Mul-
tithreaded Processor. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems, AS-
PLOS IX, pp. 234–244. ACM, New York, NY, USA, 2000. ISBN 1-58113-317-
0. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
37.7963&rep=rep1&type=pdf.

[16] L. K♴♭, G. J♠♸♠♭♳♧ ♠♭♣ F. M♠♭♮♩. Balancing thoughput and fairness in SMT pro-
cessors. In International Symposium on Performance Analysis of Systems and Soft-
ware. 2001.

48 Ioannis K. Agriomallos - Diploma Thesis

http://doi.acm.org/10.1145/1250662.1250709
http://doi.acm.org/10.1145/1250662.1250709
http://doi.acm.org/10.1145/1815961.1815971
http://doi.acm.org/10.1145/1815961.1815971
http://doi.acm.org/10.1145/1555754.1555778
http://doi.acm.org/10.1145/1555754.1555778
http://www.jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf
http://www.jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://www.jilp.org/jwac-1/
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.7963&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.7963&rep=rep1&type=pdf

	Περίληψη
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Modern Computer Architectures
	Memory Hierarchy
	Cache
	Structure & Functionality
	Associativity

	CMP's Approach

	Cache Replacement Policies
	Replacement Policy Properties
	Commonly Used Replacement Policies
	Application Profiles based on Cache Occupancy
	Replacement Schemes for Shared Last Level Caches
	Partitioning Based Policies
	Insertion Based Policies
	Hybrid Policies

	Synopsis

	Experimental Methodology
	CMP$im Simulator
	Benchmark Suite
	SPEC CINT 2006
	SPEC CFP 2006

	Classification of Benchmarks
	Cache-friendly
	Cache-fitting
	Cache-thrashing & Cache-streaming

	Multi-core Simulation Configuration
	Synopsis

	Results, Optimisation & Analysis
	Metrics
	Comparison of LLC Partitioning Schemes
	Optimisation of ABFCP
	Distribution of Ways
	Repartition Phase
	Set Flexibility

	New Estimator for ABFCP
	Effect of Sampling for ABFCP
	Effect of Reduction of Bloom Filter's Tag
	Comparison of all presented LLC schemes

	Conclusions
	Overview
	Future Work

	Appendices
	Appendix Details for LLC Replacement Policies
	UCP's Partitioning Algorithms
	ABFCP's Partitioning Algorithms
	PIPP's stream-sensitive mechanism

	Bibliography

