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 “Development and Calibration of Constitutive Model for Sand” 
 

DOCTORAL DISSERTATION 

Panagiota  Tasiopoulou 

 

ABSTRACT 

 

The behavior of granular materials has been extensively studied in literature. After 

numerous experimental observations, it has become common knowledge that sand 

tends to undergo shear-induced volume change until a critical state is reached, upon 

which shearing occurs with no volumetric change. Whether shearing tends to develop 

positive (contraction) or negative (dilation) volume change depends on the initial state of 

the material relative to the critical state which is a function of the relative density and the 

confining pressure. In case of undrained loading, the tendency for contraction (loose 

sand) is translated into a decrease of mean effective stress, whereas tendency for 

dilation (dense sand) results in increase of mean effective stress. Besides the elimination 

of volume change upon shearing, another characteristic of critical state is the occurrence 

of a residual friction angle, equivalent to the critical state line in triaxial space, being 

unique for all initial states. 

While the above behavior can be clearly identified under monotonic loading, cyclic 

response of sand is quite complex and contradictive with respect to the critical state 

concept. Critical state, as it is strictly defined in void ratio versus mean effective stress 

plane, is never reached. In particular, drained cyclic loading results in positive cumulative 

volumetric change either in case of dense or loose sand (densification). On the other 

hand, if unlimited, undrained cyclic loading would lead to continuous decrease of mean 
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effective stress, p, until zero (liquefaction). However, after a large number of loading 

cycles, the critical stress ratio is reached under both drained and undrained conditions. 

For example, in case of liquefaction it has been experimentally observed that cyclic 

loading moves the stress paths towards the critical state line which coincides with the so-

called failure envelope at p = 0. 

Apart from the dependency of their behavior on initial and critical states, granular 

materials exhibit variations in their response, attributed to intrinsic and stress-induced 

anisotropy. Intrinsic anisotropy is related with differences on their particle shape, size 

and packing, known as fabric effects.  Stress-induced anisotropy is associated with the 

loading direction relative to the bedding plane, including principal stress rotation and 

intermediate stress effects. 

The behavioral diversity of sand for different loading conditions (drained/undrained, 

monotonic/cyclic, direction), and different initial state and fabric, render its modeling a 

difficult and challenging task. The suitability of the used constitutive model is evaluated 

by its capability to capture at least the trends across all these conditions without 

recalibration of its parameters for each specific case. Simplicity is needless to say a 

desirable attribute. Too many parameters might increase the versatility of the model at 

the risk, however, of losing its physical appeal. 

A novel constitutive model for sand is developed as an alternative plasticity 

formulation that exhibits critical state consistency for both monotonic and cyclic loading 

and uniqueness of its parameters for a given type of sand, irrespective of loading 

conditions. The model, designated as Ta-Ger sand model (Tasiopoulou and Gerolymos, 

2012, 2014), is based on a reformulation of perfect elastoplasticity by introducing a 

hardening law inspired from Bouc-Wen hysteresis. The latter is a smooth hysteresis 

model originally proposed by Bouc (1971), extended by Wen (1976), and used in random 

vibration studies of inelastic systems. Since then, modified or extended versions of this 

model have been extensively used in numerous structural (e.g. Sivaselvan and Reinhorn, 

2000; Triantafyllou and Koumousis, 2012) and geotechnical applications (e.g. Pires et al., 

1989; Gerolymos and Gazetas, 2005). The developed constitutive formulation can be 
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regarded as a bounding single-surface model with vanished elastic region and the 

distinguished characteristic of a non-explicitly defined plastic modulus.  

The goal is to provide a simpler but equally efficient scheme of high versatility. The 

explicitly formulated plastic matrix, H, plays a triple role: (i) it offers a gradual and 

smooth (“hardening-type”) transition from the elastic to perfectly plastic response in 

order to capture pre-failure nonlinearity and the coupling between elastic and plastic 

counterparts composing the total strain increment, (ii) it provides an appropriate 

loading/unloading/reloading mapping rule by tracking the distance from the ultimate 

perfectly plastic state as defined by the failure surface, which herein, serves as a 

bounding surface, and (iii) its terms attain values that are strictly bounded within the 

range of [0,1].  

Salient features of the proposed plasticity approach are: (i) a new plastic flow rule 

based on a revision of Rowe dilatancy theory (1962), accounting for anisotropic 

distribution of dilatancy to the normal plastic strain increments, as well as densification 

due to cyclic loading, (ii) a mapping rule and load reversal criterion based on the first 

order work, inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the 

evolution of the bounding and phase transformation surfaces as a function of the 

cumulative deviatoric strain increment, ensuring critical state consistency not only for 

monotonic but also for cyclic loading. 

An extensive calibration methodology is then developed aiming at: (i) increasing 

model predictability and (ii) minimizing the number of internal model parameters. 

Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlations 

for dilatancy, given as a function of relative dilatancy index, Ir; the latter works as a state 

parameter in the constitutive framework. This step reduces the number of unknown 

model parameters to three, besides the ones related directly to measurable physical 

properties, such as critical state friction angle and elastic modulus. At this stage, the 

remaining three unknown parameters are expressed as functions of the initial state 

(relative density and pressure), while inherent fabric effects (such as particle shape, size 

and packing) on the calibration process are considered. At last, stress-induced anisotropy 
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is dealt with introducing a scalar-valued variable in the model, a function of principal 

stress rotation angle, α, and the intermediate stress parameter, b, without affecting the 

number of unknown model parameters. Validation against experimental data was 

performed in every step for various drained and undrained loading paths in a wide range 

of α, b values, as well as initial states, for three different types of sand (Toyoura, 

Fontainebleau, Sacramento–River). Comparison with experiments reveals the capability 

of the model to describe complex patterns of sand behavior, as well as its versatility to 

reproduce liquefaction due to cyclic loading at very large strains (e.g. γ > 8%) without 

exhibiting shear locking. 
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“Ανάπτυξη και Βαθμονόμηση Καταστατικού Προσομοιώματος για 
Αμμώδη Εδάφη” 

 

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ 

Παναγιώτα Τασιοπούλου 

 

ΠΕΡΙΛΗΨΗ 

 

Η συμπεριφορά κοκκωδών εδαφών έχει μελετηθεί επισταμένως στην βιβλιογραφία. 

Μετά από επανειλημμένες πειραματικές παρατηρήσεις, είναι πλέον κοινώς γνωστό πως 

η άμμος υφίσταται ογκομετρικές παραμορφώσεις υπό διάτμηση, έως ότου φτάσει μία 

κρίσιμη κατάσταση, πέραν της οποίας καμία περαιτέρω ογκομετρική αλλαγή δεν 

πραγματοποιείται παρά τη συνέχιση της διατμητικής φόρτισης. Το αν η άμμος, υπό 

διάτμηση και πήρως στραγγιζόμενες συνθήκες, τείνει να αναπτύξει θετικές (συσταλτική 

συμπεριφορά) ή αρνητικές (διασταλτική συμπεριφορά) ογκομετρικές παραμορφώσεις 

εξαρτάται από την αρχική της κατάσταση σε σχέση με την κρίσιμη, η οποία καθορίζεται 

από την σχετική της πυκνότητα και την μέση ενεργό τάση. Υπό αστράγγιστες συνθήκες, η 

τάση για συσταλτικότητα (χαλαρή κατάσταση) εκδηλώνεαι μέσω μείωσης της μέση 

ενεργού τάσης έως και την στατική ρευστοποίηση, ενώ η τάση για διασταλτικότητα 

οδηγεί τελικά σε αύξηση της μέσης ενεργού τάσης. Στην κρίσιμη κατάσταση, πέρα απο 

το γεγονός ότι η άμμος υφίσταται διατμητικές παραμορφώσεις υπό σταθερό όγκο, η 

διατμητική τάση αποκτά τιμές που καθορίζονται από μία χαρακτηριστική γωνία τριβής 

κρίσιμης καταστασης, η οποία αντιστοιχεί στην γραμμή κρίσιμης κατάστασης στο χώρο 

διεκτροπικής τάσης, q, και μέσης ενεργού τάσης, p, και είναι μοναδική για όλα τις 

αρχικές καταστάσεις (χαλαρή ή πυκνή άμμος). 
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Παρόλου που η προαναφερθείσα συμπεριφορά μπορεί να αναγνωρισθεί με ευκολία 

σε συνθήκες μονοτονικής φόρτισης, η ανακυκλική απόκριση της άμμου είναι πιο 

περίπλοκη και ενδεχομένως αντιφατική σε σχέση με την θεωρία κρίσιμης κατάστασης. Η 

κρίσιμη κατάσταση, όπως ορίζεται αυστηρά σε όρους λόγου κενών και μέσης ενεργού 

τάσης, δεν επιτυγχάνεται ποτέ σε συνθήκες ανακυκλικής φόρτισης. Συγκεκριμένα, η 

ανακυκλική φόρτιση υπό πλήρως στραγγιζόμενες συνθήκες προκαλεί εν γένει την 

συσσώρευση θετικών ογκομετρικών αλλαγων (συμπύκνωση) τόσο σε περίπτωση 

χαλαρής όσο και πυκνής άμμου. Αντίστοιχα, ανακυκλική φόρτιση υπό αστράγγιστες 

συνθήκες, οδηγεί σε συνεχή μείωση της μέσης ενεργού τάσης, δυνητικώς έως και στο 

μηδενισμό της (ρευστοποίηση). Όμως, μετά από ικανό αριθμό κύκλων φόρτισης, η 

κρίσιμη κατάσταση μπορεί τελικά να επιτευχθεί, αλλά μόνον σε όρους αντοχής, δηλαδή 

μέσω της γωνία τριβής κρίσιμης καταστασης. Για παράδειγμα, στην περίπτωση 

ρευστοποίησης, έχει διαπιστωθεί πειραματικά πως η ανακυκλική φόρτιση κινεί την 

τασική οδευση προς την γραμμή κρίσιμης κατάστασης, ή αλλιώς περιβάλλουσα 

αστοχίας για p = 0. 

Πέρα από την εξάρτηση της συμπεριφοράς τους από την αρχική και κρίσιμη 

κατάσταση, τα κοκκώδη υλικά παρουσιάζουν διαφοροποιήσεις στην απόκριση τους που 

αποδίδονται σε φαινόμενα εγγενούς ανισοτροπίας ή/και ανισοτροπία λόγω 

κατεύθυνσης φόρτισης. Η εγγενής ανισοτροπία οφείλεται στις διαφορές στο σχήμα, το 

μέγεθος, την διάταξη, την διαβάθμιση κλπ. των κόκκων, δηλαδή σε φαινόμενα δομής. Η 

ανισοτροπία λόγω κατεύθυνσης φόρτισης σχετίζεται με την κατεύθυνση της 

επιβαλλόμενης φόρτισης ως προς το επίπεδο απόθεσης ή διαστρωμάτωσης, την στροφή 

των κύριων αξόνων και την επίδραση της ενδιάμεσης κύριας τάσης. 

Η εξάρτηση της συμπεριφοράς της άμμου από τις συνθήκες φόρτισης 

(στραγγιζόμενη/αστράγγιστη, μονοτονική/ανακυκλική, κατεύθυνση), την αρχική και 

κρίσιμη κατάσταση (χαλαρή/πυκνή) και τη δομή, καθιστά την προσομοίωση δύσκολη 

και απαιτητική. Η καταλληλότητα ενός καταστατικού προσομοιώματος αποτιμάται από 

την ικανότητά του να αναπαράγει ποιοτικά τουλάχιστον τις προαναφερθείσες τάσεις 

υπό όλες τις συνθήκες, χωρίς να χρειάζεται εκ νέου βαθμονόμηση για κάθε συνθήκη 
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ξεχωριστά. Η εισαγωγή πρόσθετων παραμέτρων αυξάνει την ευελιξία του 

προσομοιώματος με κόστος, όμως, την ευχρηστία του και προβλεψιμότητά του. 

Ένα νέο καταστατικό προσομοίωμα για αμμώδη εδάφη αναπτύχθηκε (Ta-Ger sand 

model) ως μία εναλλακτική διατύπωση της θεωρία πλαστικότητας (Tasiopoulou and 

Gerolymos, 2012, 2014). Το προσομοίωμα είναι συνεπές με τη θεωρία κρίσιμης 

κατάστασης τόσο για μονοτονική όσο και για ανακυκλική φόρτιση, ενώ χαρακτηρίζεται 

από μοναδικότητα των τιμών των παραμέτρων του για δεδομένο τύπο άμμου 

ανεξάρτητα από τις συνθήκες φόρτισης. Ουσιαστικά, το προσομοίωμα αποτελεί μία 

επαναδιατύπωση της θεωρίας τέλειας ελαστοπλαστικότητας εισάγοντας έναν νόμο 

κράτυνσης εμπνευσμένο από το προσομοίωμα ομαλής υστέρησης, Bouc-Wen. Το 

προσομοίωμα αυτό αρχικά προτάθηκε απο τον Bouc (1971) και στην συνέχεια 

επεκτάθηκε από τον Wen (1976) και χρησιμοποιήθηκε για μελέτες απόκρισης 

ανελαστικών συστημάτων σε τυχαίες ταλαντώσεις. Από τότε, τροποποιημένες εκδοχές 

του προσομομοιώματος χρησιμοποιήθηκαν σε διάφορες δομοστατικές (e.g. Sivaselvan 

and Reinhorn, 2000; Triantafyllou and Koumousis, 2012) και γεωτεχνικές εφαρμογές (e.g. 

Pires et al., 1989; Gerolymos and Gazetas, 2005). Το ανεπτυγμένο καταστατικό 

προσομοίωμα της παρούσας εργασίας επίσης περιλαμβάνει μία μοναδική 

περιβάλλουσα επιφάνεια οριακής αντοχής με μηδενική ελαστική περιοχή, καθώς και 

ένα μη σαφώς ορισμένο μέτρο πλαστικότητας, όπως υπαγορεύει η κλασική θεωρία 

πλαστικότητας, αλλά αντί αυτού ένα σαφώς ορισμένο πλαστικό μητρώο, Η. 

Στόχος είναι η πρόταση μίας απλουστευμένης αλλά ευέλικτης διατύπωσης του 

τέλειου ελαστοπλαστικού μητρώου μέσω της εισαγωγής του πλαστικού μητρώου, Η. Το 

πλαστικό μητρώο, Η, έχει έναν τριπλό ρόλο: (α) προσφέρει μία σταδιακή και ομαλή 

μετάβαση (κράτυνση) από την ελαστική στην πλήρως πλαστική απόκριση 

αναπαράγοντας επιτυχώς την μη-γραμμικότητα πριν την αστοχία και την σύζευξη 

ελαστικών και πλαστικών επαυξητικών παραμορφώσεων, (β) παρέχει ένα κατάλληλο 

νόμο προβολής φόρτισης/αποφόρτισης/επαναφόρτισης καταγράφοντας την τρεχουσα 

τασική κατάσταση από την επιφάνεια αστοχίας, που λειτουργεί σαν περιβάλλουσα 

οριακής αντοχής, και (γ) οι όροι του δέχονται τιμές φραγμένες στο διάστημα [0,1]. 
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Άλλα βασικά χαρακτηριστικά του προτεινόμενου προσομοιώματος είναι: (α) ένας 

νέος νόμος πλαστικής ροής βασισμένος στη θεωρία διασταλτικότητας του Rowe (1962), 

που επιτρέπει ανισότροπη κατανομή της διασταλτικότητας στις ορθές επαυξητικές 

παραμορφώσεις, (β) ένα νόμο προβολής συνδυασμένο με ένα κριτήριο αντιστροφής 

φόρτισης που βασίζεται στο έργο πρώτης τάξης, και (γ) εξάρτηση του ρυθμού εξέλιξης 

της περιβάλλουσας επιφάνειας οριακής αντοχής και της επιφάνειας αλλαγής φάσης ή 

διασταλτικότητας από την συσσωρευτική διεκτροπική παραμόρφωση, εξασφαλίζοντας 

επίτευξη της κρίσιμης κατάστασης τόσο για μονοτονικές όσο και ανακυκλικές συνθήκες 

φόρτισης. 

Μία εκτενής μεθοδολογία βαθμονόμησης αναπτύχθηκε με σκοπό: (α) την αύξηση της 

ικανότητας πρόβλεψης και (β) την μείωση του αριθμού των παραμέτρων του 

προσομοιώματος. Αρχικά, οι εμπειρικές συσχετίσεις διασταλτικότητας του Bolton 

(1986), ως συνάρτηση του σχετικού δείκτη διασταλτικότητας, Ir, ενσωματώθηκαν στο 

καταστατικό πλαίσιο προσομοίωσης. Σε αυτό το στάδιο, ο αριθμός των άγνωστων 

παραμέτρων του προσομοιώματος μειώθηκε σε τρεις, χωρίς αυτές που μπορούν να 

συσχετιστούν με άμεσα μετρήσιμες φυσικές ιδιότητες, όπως η γωνία τριβής κρίσιμης 

κατάστασης και το μέτρο ελαστικότητας. Σε επόμενο στάδιο, οι τρεις εναπομενουσες 

παράμετροι εκφράστηκαν συναρτήσει της αρχικής κατάστασης (αρχική σχετική 

πυκνότητα, αρχική μέση ενεργός τάση), ενώ η επίδραση των φαινομένων δομής (όπως, 

σχήμα, μέγεθος, διάταξη κλπ. κόκκων) στην βαθμονόμηση ερευνάται. Τέλος, η 

ανισοτροπία λόγω κατευθύνσης φόρτισης προσεγγίστηκε με την εισαγωγή μιας 

βαθμωτής μεταβλητής που ορίζεται ως συνάρτηση της στροφής των κύριων αξόνων, α, 

και της παραμέτρου για την επίδραση της ενδιάμεσης κύριας τάσης, b, χωρίς να αλλάξει 

ο αριθμός των παραμέτρων του προσομοιώματος. Επαλήθευση του προσομοιώματος 

έναντι πειραματικών δεδομένων πραγματοποιήθηκε σε κάθε βήμα της βαθμονόμησης 

για διάφορες οδεύσεις φόρτισης υπό συνθήκες τόσο πλήρως στραγγιζόμενες όσο και 

αστράγγιστες, σε ένα μεγάλο εύρος τιμών α, b, και αρχικών καταστάσεων, για τρεις 

τύπους άμμου (Toyoura, Fontainebleau, Sacramento–River). Η σύγκριση με πειράματα 

ανέδειξε την ικανότητα του προσομοιώματος στο να περιγράφει επιτυχώς σύνθετες 
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πτυχές της συμπεριφοράς της άμμου, όπως την αναπαραγωγη ρευστοποίησης λόγω 

ανακυκλικής διατμησης σε μεγάλες παραμορφώσεις (e.g. γ > 8%), χωρίς να παρουσιάζει 

«διατμητικό κλείδωμα» (shear locking). 
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CHAPTER  1 

Introduction 
 

 

1.1  PROBLEM DESCRIPTION 

 

The behavior of sand has been extensively studied in literature both experimentally and 

theoretically. Experimental observations provided an insight on the behavioral trends 

and mechanisms developed under various loading conditions. These observations 

constituted the basis upon which Critical State Theory by Roscoe et al. (1958) and 

Schofield and Wroth (1968) was formulated, aiming to accommodate and interpret the 

basic behavioral characteristics of sand. In the following, a review of the most 

characteristic aspects of sand response is held within the framework of Critical State 

Theory. 

 

 

1.1.1 Monotonic Behavior of Sand 
 
After numerous experimental observations, it has become common knowledge that sand 

tends to undergo shear-induced volume change until a critical state is reached, upon 

which shearing occurs with no volumetric change. Whether shearing tends to develop 

positive (contraction) or negative (dilation) volume change depends on the initial state of 

the material relative to the critical state which is a function of the relative density and the 
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confining pressure. The critical state is defined by a surface formed in e-p-q space, which 

is projected as a line (CSL) in the e-p and q-p planes; e being the void ratio, q the 

deviatoric stress and p being the mean effective stress. Critical state is considered to be 

unique for each type of sand. Figure 1.1 illustrates the critical state line (CSL) in e-p plane. 

Initial loose states, located at the right-hand side of CSL, exhibit contractive behavior 

which is reflected through reduction of: (i) void ratio, e, in case of drained p-constant 

loading and (ii) mean effective stress, p, in case of undrained loading, until CSL is 

reached. Dense states, located at the left-hand side, initially exhibit contractive response 

until phase transformation line (PTL) is reached. Thereafter, dilative response dominates 

which is interpreted as increase of: (i) void ratio, e, in case of drained p-constant loading 

and (ii) mean effective stress, p, in case of undrained loading, until CSL is reached. 

 

This kind of behavior is confirmed experimentally, as shown in Figure 1.2(a). As the initial 

void ratio increases for a given initial confining pressure, the response tends to be more 

contractive. In terms of stress-strain curves, a hardening type of response is observed 

which becomes more intense as the initial void ratio increases. It should be noticed that 

the void ratio reaches practically the same residual value, known as critical void ratio, 

irrespectively of the initial value, as it is predicted by the Critical State Theory. It is also 

worth mentioning that critical state is also reached in p-q space at large strains, as shown 

by Figure 1.2(b). The stress ratio q/p reaches a unique residual critical stress ratio, 

irrespectively of the initial conditions. 

 

Apart from the dependency of sand response on the initial void ratio (or initial relative 

density, Dr), Figure 1.3 demonstrates the impact of initial confining pressure, p. For a 

given initial relative density, the response becomes more dilative as initial confining 

pressure decreases. In stress-strain terms, the effect of dilatancy is exhibited by an 

increase in maximum obtained strength followed by strain softening.  
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The tendency of positive (dilatancy) or negative (contraction) volumetric change in case 

of drained loading conditions is expressed through increase or reduction of mean 

effective stress, respectively, in case of undrained loading, as characteristically shown in 

Figure 1.4. Experimental results of Figure 1.5 illustrate the behavioral trend under 

undrained conditions for various initial relative densities and confining pressures. All the 

evolving stress paths in p-q space converge to the critical state line, which works as a 

failure envelope, until the ultimate critical stress state is reached. 

 

So far, it has been shown that the behavior of sand is dependent on the relative position 

of its initial state, in terms of initial density and means effective stress, to the critical 

state line in e-p plane. However, experimental results depicted in Figure 1.6 indicate 

dependency on the loading direction, for a given initial state. Despite the given constant 

distance between initial state and CSL in e-p space, sand exhibits contractive behavior in 

case of triaxial extension loading, while its response is dilative under triaxial compression 

loading.  This behavioral diversity is attributed to stress-induced anisotropy. 

 

 
1.1.2 Cyclic Behavior of Sand 

 

Cyclic behavior of sand presents certain differentiations when compared to the 

monotonic response, which cannot be fully accommodated by the strictly defined Critical 

State framework. For example, experiments confirm that irrespectively of the initial state 

relative to the CSL in e-p space, sand exhibits only contractive behavior, in accumulative 

terms, tending to reach the densest possible configuration, defined by minimum void 

ratio, emin, under drained conditions, or reach zero values of mean effective stress under 

undrained conditions, as shown in Figure 1.7. The first tendency leads to densification 

and increase in strength/stiffness, known as cyclic hardening, (Figures 1.8-1.10), while 

the latter one is associated with cyclic mobility and liquefaction effects (Figure 1.11(a)).  

It should be mentioned, though, that the critical state concept applies in p-q space, 
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where the critical stress ratio is reached at large strains, after a sufficient number of 

cycles, irrespectively of the drainage conditions.  

 

In other words, the dependency of sand behavior on the initial state relative to CSL in e-p 

space is not reflected in the same way as in case of monotonic loading, where it 

determines whether the response will be dilative or contractive.  In case of cyclic loading, 

the above mentioned dependency determines the number of loading cycles needed to 

achieve either: (i) e = emin (drained conditions) or (ii) p = 0 (undrained conditions). The 

correlation between number of cycles and initial relative density is shown in Figures 1.10 

and 1.11(b). 

 

 
1.2. SCOPE OF DISSERTATION  

 
The scope of the Dissertation is to develop a unified versatile macroscopic constitutive 

framework that can describe all the aforementioned different aspects of sand behavior 

under various loading conditions. It is aimed that the proposed constitutive model can be 

used in practice for relevant geotechnical problems. In this line of thought, minimizing 

the number of model parameters is intended in order to enhance the usability and 

applicability of the model. 

 

1.3 STRUCTURE OF DISSERTATION 

 
The Dissertation is structured in three main chapters, each corresponding to an 

autonomous, self-contained, single paper that has either been published in a peer-

reviewed journal and/or conference proceedings, or is undergoing review. However, the 

sequence of the chapters, as presented below, intends to propose an indicative path to 

the reader, with each chapter appearing motivated or closely related, in logical order, 

with the preceding ones. 
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Chapter 2 
 

This chapter presents a new constitutive model for sand in triaxial space for drained and 

undrained behavior of sand under monotonic and cyclic loading conditions, with emphasis 

on liquefaction. The model is based on a modified elastoplasticity scheme combining 

features of: (a) the bounding surface plasticity, (b) the critical state concept, and (c) a 

hardening evolution law and unloading-reloading rule inspired by smooth hysteresis 

models, such as Bouc-Wen type. The model performance is demonstrated through a series 

of simulations in p-q space, for all combinations (4 in total) of drained and undrained 

loading with monotonic and cyclic loading. It is shown that the model is capable of 

reproducing some basic aspects of sand behavior, such as static liquefaction, strain 

softening, hysteretic loops and cyclic mobility. 

 

Chapter 3 

 
The above proposed formulation is extended in multiaxial space in Chapter 3. Thus, a 

complete novel constitutive model for sand is proposed as an alternative plasticity 

formulation that exhibits critical state consistency for both monotonic and cyclic loading 

and uniqueness of its parameters for a given type of sand, irrespective of loading 

conditions. The model, designated as Ta-Ger (Tasiopoulou – Gerolymos) sand model is 

based on a reformulation of perfect elastoplasticity by introducing a hardening law 

inspired from Bouc-Wen hysteresis. The latter is a smooth hysteresis model originally 

proposed by Bouc (1971), extended by Wen (1976), and used in random vibration studies 

of inelastic systems. Since then, modified or extended versions of this model have been 

extensively used in numerous structural (e.g. Sivaselvan and Reinhorn, 2000; 

Triantafyllou and Koumousis, 2012) and geotechnical applications (e.g. Pires et al., 1989; 

Gerolymos and Gazetas, 2005). The developed constitutive formulation can be regarded 

as a bounding single-surface model with vanished elastic region and the distinguished 

characteristic of an explicitly formulated plastic matrix instead of a plastic modulus. 
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The explicitly formulated plastic matrix plays a triple role: (i) it offers a gradual and 

smooth (“hardening-type”) transition from the elastic to perfectly plastic response in 

order to capture pre-failure nonlinearity and the coupling between elastic and plastic 

counterparts composing the total strain increment, (ii) it provides an appropriate 

loading/unloading/reloading mapping rule by tracking the distance from the ultimate 

perfectly plastic state as defined by the failure surface, which herein, serves as a 

bounding surface, and (iii) its terms attain values that are strictly bounded within the 

range of [0,1].  

 

Salient features of the proposed plasticity approach are: (i) a new plastic flow rule based 

on a revision of Rowe dilatancy theory (1962), accounting for anisotropic distribution of 

dilatancy to the normal plastic strain increments, as well as densification due to cyclic 

loading, (ii) a mapping rule and load reversal criterion based on the first order work, 

inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the evolution of the 

bounding and phase transformation surfaces as a function of the cumulative deviatoric 

strain increment, ensuring critical state consistency not only for monotonic but also for 

cyclic loading.  

 

Comparison with experiments reveals the capability of the model to describe complex 

patterns of sand behavior, such as densification, cyclic hardening, as well as, liquefaction 

due to cyclic loading at very large strains (e.g. γ > 8%) without exhibiting shear locking. 

 

Chapter 4 

An extensive calibration methodology is developed in Chapter 4 aiming at: (i) increasing 

model predictability and (ii) minimizing the number of internal model parameters. 

Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlations 

for dilatancy, given as a function of relative dilatancy index, Ir; the latter works as a state 

parameter in the constitutive framework. This step reduces the number of unknown 



 
 
 

Chapter 1: Introduction 
 

 

 
 

37 

model parameters to three, besides the ones related directly to measurable physical 

properties, such as critical state friction angle and elastic modulus. At this stage, the 

remaining three unknown parameters are expressed as functions of the initial state 

(relative density and pressure), while inherent fabric effects (such as particle shape, size 

and packing) on the calibration process are considered. At last, stress-induced anisotropy 

is dealt with introducing a scalar-valued variable in the model, a function of principal 

stress rotation angle, α, and the intermediate stress parameter, b, without affecting the 

number of unknown model parameters. Validation against experimental data was 

performed in every step for various drained and undrained loading paths in a wide range 

of α, b values, as well as initial states, for three different types of sand (Toyoura, 

Fontainebleau, Sacramento–River).  
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Figure 1.1. Illustration of monotonic behavior of sand in e-p space, where e is the void 

ratio and p is the mean effective stress: (a) drained and (b) undrained conditions. 

 

 
Figure 1.2. Drained triaxial tests: (a) stress-strain curves and void ratio versus deviatoric 

stress, (b) stress ratio versus axial strain (Verdugo and Ishihara, 1996). 
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Figure 1.3. Drained triaxial compression tests on loose and dense sand specimens under a 

range of effective confining stresses (Lee and Seed, 1967). 

 

 
 

Figure 1.4. Influence of drainage conditions on sand response (Zhang et al., 1997). 
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Figure 1.5. Undrained triaxial compression tests on sand specimens of various initial 

relative densities under a range of effective consolidation stresses (Verdugo and Ishihara, 

1996). 

 



 
 
 

Chapter 1: Introduction 
 

 

 
 

41 

 
 
Figure 1.6. (a) Influence of loading direction on sand response (Yoshimine et al., 1998) 

and (b) how it can be predicted within the critical state framework. 

 
 

 

Figure 1.7. Illustration of cyclic behavior of sand in e-p space, where e is the void ratio 

and p is the mean effective stress: (a) drained and (b) undrained conditions. 
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Figure 1.9. Stress-strain curves (left) and volumetric strain versus shear strain for a 

medium dense sand specimen subjected to drained cyclic simple shear under constant 

strain amplitude (Shahnazari and Towhata, 2002). 

 
 

 

Figure 1.10. Volumetric strains in drained cyclic direct simple shear tests on clean sands 

(Duku et al. 2008): (a) Results from 16 sands at a relative density of about 60% with an 

overburden stress of 1.0 atm, and (b) Comparison of trends with earlier relationships by 

Silver and Seed (1971) for sands at relative densities of 45, 60, and 80%. 
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Figure 1.8. Stress-strain curves (left) and volumetric strain versus shear strain for a 

medium dense sand specimen subjected to drained cyclic simple shear under constant 

shear stress amplitude (Wahyudi et al., 2010). 

 

 

Figure 1.11. (a) Effective stress path and stress-strain hysteresis observed in a cyclic 

undrained torsional test (Zhang et al., 1997), (b) Cyclic stress ratio versus number of 

cycles required to cause 5% of DA axial strain for samples with relative density, Dr of 50%, 

70% and 90% (Lombardi et al., 2014). 
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CHAPTER  2 

Development of a Modified 

Elastoplasticity Model for 

Sand in Triaxial Space 
 

 

ABSTRACT 

 

The key prerequisite to performance based design of geotechnical structures is the reliable 

estimation of the induced displacements. Thus, the need for advanced yet practical 

constitutive modeling of soil behavior continuously becomes more profound and 

demanding. This chapter presents a new simple effective stress model in triaxial space for 

drained and undrained behavior of sand under monotonic and cyclic loading conditions, 

with emphasis on liquefaction. The model is formulated in the framework of classical 

elastoplasticity, and combines features of: (a) the bounding surface plasticity, (b) the critical 

state concept, and (c) a hardening evolution law and unloading-reloading rule inspired by 

smooth hysteresis models, such as Bouc-Wen type. The predictive capabilities of the model 

are demonstrated through simulations of loading tests in p-q space. 
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2.1 INTRODUCTION 

 

Performance based analysis is increasingly gaining ground in daily practice against 

conventional pseudostatic analysis. The necessity of developing economically efficient 

solutions without jeopardizing safety, is the main reason for this drastic change in the way 

we you used to design our structures. 

However, the effectiveness of a performance based design approach strongly hinges on 

the ability of the utilized numerical tool to realistically calculate the soil and structural 

displacements for a wide range of loading paths and initial conditions. Apparently, the 

constitutive modeling of soil behavior plays a decisive role on this. The behavioral 

diversity of sand for different loading (drained /undrained, monotonic/cyclic), initial stress 

and fabric conditions, renders its modeling a difficult and challenging task. The suitability 

of the used constitutive model is evaluated by its capability to capture the trends across 

all these conditions without recalibration of its parameters for each specific case, but also 

by its simplicity. Too many parameters might increase the versatility of the model at the 

risk, however, of losing its physical meaning.  

In the last three decades, many constitutive models for sand have been proposed, each 

with varying degree of accuracy and applicability. The most promising ones are plasticity-

based and incorporate the effective stress and critical state concepts (e.g. Ishihara and 

Towhata, 1980; Cubrinovski and Ishihara, 2000; Dafalias and Manzari, 2004; Park and 

Byrne, 2004; Boulanger et al., 2011). In this chapter, a brief mathematical description of a 

new constitutive model for sand in triaxial space is presented.  

The model, which is motivated by the BWGG constitutive law (Gerolymos, 2002; 

Gerolymos and Gazetas, 2005), combines features of the bounding surface plasticity and 

critical state concept. Having the BWGG genes in its DNA, the proposed model can be 

consistent with almost any pair of shear modulus and damping curves of the literature, 

while at the same time the corresponding experimentally observed hysteretic soil 
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behavior is realistically reproduced. At this stage of development the Drucker-Prager 

failure envelope is used as bounding surface, but modifications can be easily implemented 

to account for Lode angle dependency, as it will be shown in the multiaxial formulation in 

Chapter 3. The combined influence of density and confining stress on the response is 

efficiently taken into account through the critical state approach.  

The ability of the model to realistically reproduce complex patterns of monotonic and 

cyclic behavior such as hysteretic response, dilation, contraction, loss of strength and 

cyclic mobility in undrained monotonic and cyclic loading, respectively, etc. is highlighted 

through a series of numerical examples in p-q loading space. 

 

 

2.2 CONSTITUTIVE EQUATIONS 

 

2.2.1 Review of classical elastoplasticity 

Within the framework of deformation theory of classical elastoplasticity, the incremental 

total deformation, dε is decomposed into the elastic and plastic components dεe and dεp 

by a simple superposition: 

  ε ε εe pd d d  (2.1) 

The plastic strain increment is obtained from the flow rule: 

 





ε
σ

p g
d L  (2.2) 

implying normality to the plastic potential function g. L is a positive scalar of 

proportionality designated as the loading index. 

Substituting Eq. (2.2) into Eq. (2.1) and applying elasticity theory, the following stress-

strain relationship is obtained: 
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 
 
 


 


σ E

σ
e g

d d Lε  (2.3) 

For a perfectly plastic material, the yield surface is fixed in stress space, and therefore 

plastic deformation occurs only when the stress path moves on the yield surface. Thus, 

the loading condition at failure is postulated by the following consistency equation: 

 
Τ

0 0
 
 
 


  


σ

σ

f
df d  (2.4) 

Combining Eqs. (2.3) and (2.4), and after some algebra, the stress-strain relationship is 

reformulated into: 

 σ E εepd d  (2.5) 

in which Εep is the elasto-plastic matrix, given by: 

  
1 

 
 

 Ε E I Φ Φ E Φ Φ Eep e T e T e
g gf f  (2.6) 

in which Φf  and Φg account for the gradient to the failure surface and plastic flow rule, 

respectively: 

 





Φ
σf
f

  ,  





Φ
σg
g

 (2.7) 

 

2.2.2 Modified elastoplasticity 

 

Hardening and Unloading-Reloading laws 

Hardening and hysteretic behavior is introduced by inserting the matrices H and η into Eq. 

(2.6): 

   E E I BH ηep e
h  (2.8) 
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The terms in matrix H are functions of the dimensionless hardening parameter ζ, which is 

inspired by the Bouc-Wen smooth hysteresis model Bouc (1971) and its extended versions 

(Wen, 1976 ; Gerolymos and Gazetas, 2005), and η (Gerolymos and Gazetas, 2005; Drosos 

et al., 2012) accounts for stiffness degradation by modifying the shape and size of the 

hysteretic loops according to the amplitude of the deviatoric strain εq . Finally, B is the 

abbreviation of the right-hand side term inside the parentheses of Eq. (2.6): 

  
1

B Φ Φ E Φ Φ ET e T e
g gf f  (2.9) 

Elastic Moduli 

The terms in matrix Ee include the shear and bulk moduli which are expressed as 

functions of the mean effective stress p, according to: 

 
 
  
 



m

o α
α

p
G A p

p
  

     

 
 

2 1

3 1 2






ν
K G

ν
 (2.10) 

in which, Ao is a dimensionless material parameter, v is the Poisson’s ratio, pa is the 

atmospheric pressure, and m is a dimensionless parameter determining the rate of 

variation of G and K with p. 

 

2.2.3 Formulation in p-q space 

 

Elastic Matrix 

The elastic deviatoric and volumetric strain increments, e
qdε  and e

pdε  in respect, are used 

to calculate deviatoric, dq , and mean effective, dp  , stress increments by: 

 e
pdp Kdε   (2.11) 

 3 e
qdq Gdε   (2.12) 

in which, G and K are the elastic shear and bulk moduli, respectively, estimated by Eqs. 

(2.10). Thus, the elastic matrix in triaxial space is given by: 
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0

0 3
e K

G

 
 
 

E   (2.13) 

 

Yield Function 

At the current stage of development, the model incorporates the Drucker-Prager failure 

envelope as the bounding surface:  

 0  sf q M p  (2.14) 

in which, Ms is the ultimate strength line in q-p space. 

Eq. (2.14) implies the following consistency condition at failure: 

 
0 1  

s

q
f

M p
 (2.15) 

Following Eq. (2.15), the hardening parameter, ζ, is defined as:  

 
s

q

M p
ζ   (2.16) 

The hardening parameter, ζ, is bounded, strictly obtaining values within the range [0, 1]. 

At reversal points, ζ is transformed to ζα , according to: 

 
2
max

a
ζ ζ

ζ


  (2.17) 

in which ζmax is the maximum value of ζ at the previous reversal (pivot) point. Hence, 

hardening parameter ζα becomes equal to 0 at the occurrence of loading reversal, 

indicating elastic response at the beginning of unloading/reloading. 

 

The hardening matrix H, for monotonic loading, is defined as: 
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0

0

n

n

ζ

ζ

 
 
  

H   (2.18) 

where n is an exponential parameter which “controls” the distance of the current stress 

state from the failure line (Gerolymos and Gazetas, 2005). For cycling loading parameter 

ζα of Eq. (2.17) is used for the formation of the plastic matrix: 

 
0

0

n
α

n
α

ζ

ζ

 
 
  

H   (2.19) 

Details on the role of hardening parameter ζ and exponent n will be given in Chapter 3. 

Finally, the gradient to the failure surface described by Eq. (2.14), is given by: 

 
1

s
f

f
Mp

Φ
f

q

 
   
   
   
 
 




 





  (2.20) 

 

Flow rule 

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy 

theory (Rowe 1962). Dilatancy, defined as the ratio of the plastic volumetric strain 

increment, dεp
p, over the plastic deviatoric strain increment, dεq

p depends on the distance 

of the current stress ratio, q / p = ζ Μs from the phase transformation line, Mpt, as follows: 

  
p

p
pt pt sp

q

q
d

p

dε
M M ζM

dε

 
  

 
 

     (2.21) 

Assuming associativity only for the plastic deviatoric strain increment: 

 p
qdε L  (2.22) 

the plastic volumetric strain increment is estimated, combining Eqs.(2.21) and (2.22): 
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  p
p pt sdε L M ζM   (2.23) 

Eqs. (2.21) to (2.23), which imply that a non-associative plastic flow rule is used, 

determine the gradient to the plastic potential surface, Φg , according to: 

 

 

 ζ

11

pt s
g

g
dM Mp

Φ
g

q

 
     
      
       
 




 





 (2.24) 

 

Modified Elastoplastic Matrix 

Matrix B of Eq. (2.9) is calculated using matrices of Eqs. (2.13), (2.20) and (2.24): 

 

 

 

   

1

1

3
1 3

3

3 3

3

3 3

300

1 30 31 0 3

0

0 3 1 1

s s
s

s s

s
s s

s

s s

s

s s

T e T e
g gf f

d
M

KM d G
M KM G

KM d Gd

KM d G KM d G

KM G

KM d G KM d G

dM d KM GdKd K

M KM GGG

K d d

G


 

       
        

           
      

      
     

 
    
 
 
 
    

 

 

Φ Φ E Φ Φ EΒ

Β

B

  (2.25) 

 

The modified elastoplastic matrix, ep
hE  , of Eq. (2.8) is calculated by substitution with Eqs. 

(2.13), (2.25) and (2.18): 
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 
 
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E
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



  (2.26) 

 

The only difference between the modified elastoplastic matrix, ep
hE  , and the elastoplastic 

matrix, epE , resulting from elastic-perfectly plastic formulation, given by the following 

equation: 

 

2

2

3

3 3

3 9
3

3 3

s

s s

s

s s

ep

K M d KGd

KM d G KM d G

KGM G
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K
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 
    

 
 

     

E   (2.27) 

is attributed to the introduction of hardening parameter ζn, which provides a smooth 

hysteretic interpolation, Bouc-Wen motivated, between elastic and perfect plastic stress 

states. Thus, stress increments are calculated as: 
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p

q

dεdp

dq dε

A B

C D

   
   
      

   (2.28) 

where: 
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  (2.29) 

If matrix η, which consists of only diagonal terms: 

 
0

0

η

η

 
 
 

η   (2.30) 

is incorporated into Eq. (2.27), then the elastoplastic matrix is modified as: 
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E   (2.31) 

 

2.2.4. Critical state concept 

The essence of the critical state concept is that no change in volume occurs when the 

current stress state reaches the critical state, while the shear deformation continuously 

increases. In order to achieve this kind of performance upon critical state, both the phase 

transformation line, Mpt and the ultimate strength line, Ms, should evolve in p-q space 

converging to the critical state line, Mcs and producing zero plastic volumetric change 
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when Mpt  = Ms = Mcs. The evolution of the ultimate strength line is expressed as a function 

of the cumulative total deviatoric strain, qdε  : 

                                     

  1 2
0

q qdε dεc c
s cs sp sp cssM M M M M e M e

  
 
  

 
      (2.32) 

where Ms0 is an initial value of the ultimate strength, and Msp is a maximum value that can 

be potentially reached depending on the model parameters c1 and c2.  

The phase transformation line evolves according to following expression: 

   3
0

qc dε
pt cs pt csM M M M e


  



         
 (2.33) 

in which Mpt0 is the initial value of Mpt , c3 is a model parameter and qdε  expresses the 

accumulation of total deviatoric strain increments. 

 

2.3 MODEL PERFORMANCE 

Simulations of drained and undrained behavior of sand under monotonic and cyclic 

loading have been performed in p-q space (Figures 2.1-2.8). Internal model parameter η of 

Eq. (2.31) is set equal to unity for subsequent numerical examples of Figures 2.1 to 2.8. 

Both drained and undrained simulations are strain controlled; thus, the applied deviatoric 

strain increment dεq is considered known. In case of drained loading, the mean effective 

stress, p, is assumed constant, so that dp = 0. According to Eqs. (2.28) and (2.29), the 

deviatoric stess increment, dq, is calculated as: 

 q
BC

dq D dε
A

 
 
 

     (2.34) 

and the volumetric strain increment, dεp, is obtained by: 

 p q
B

dε dε
A

   (2.35) 
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In case of undrained simulations, the volumetric strain, εp, is assumed constant, thus, dep 

= 0. The deviatoric stress increment, dq and the mean effective stress increment are 

estimated according to Eqs. (2.28) and (2.29): 

 qdq Ddε   (2.36) 

 qdp B dε   (2.37) 

Regarding the monotonic loading, four different relative densities were examined. 

Specifically for the monotonic undrained case (Figures 2.1-2.3), the evolution of phase 

transformation and ultimate strength lines are illustrated in Figure 2.3 as a function of 

deviatoric strain, in order to better demonstrate that both lines reach the critical state line 

at large strains. Moreover, it is worth noting that for loose sands the phase transformation 

line is initially located above the ultimate strength line in p-q space and vice versa for 

denser sands. This is attributed to the more contractive behavior which leads them 

directly to the critical state with no phase transformation (Yoshimine and Ishihara, 1998). 

The opposite behavior is observed for denser sand crossing the phase transformation line 

(contractive response) before “moving” towards the critical state (dilative response). 

The set of model parameters, shown in Table 2.1, is common for all simulations with three 

exceptions: i) the peak value of ultimate strength line, Msp and  ii) the initial value of phase 

transformation line, Mpt0 , and iii) parameter c3 in case of cyclic loading. Readjustment of 

the values of Ms and Mpt0, for each specific initial state (loose, medium, dense etc.) is of 

critical significance to the model, since they determine how dilative or contractive the 

response will be.  Lower values of parameter c3 in case of undrained cyclic loading indicate 

slower evolution of phase transformation line towards critical state; thus allowing for 

more cycles to occur once the stress path has reached the failure envelope, close to the 

apex (cyclic mobility), creating the “butterfly effects” (Ishihara and Towhata, 1980). In 

case of cyclic drained loading, slower evolution of phase transformation line towards 

critical state leads to less accumulation of volumetric strain for a certain number of cycles, 

due to generation of greater “uplift” of the ep-eq curve, close to the reversal points. 
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Overall, it should be mentioned that critical state, Mcs, is achieved under monotonic, as 

well as cyclic loading. 

Last, model validation, against experimental data under undrained simple shear loading 

(Yoshimine et al., 1998) for various relative densities, is demonstrated in Figure 2.8. Table 

2.2 shows the calibrated model parameters offering the best fit with the experiments. It is 

worth noticing that almost all model parameters remain the same within the range of 

tested relative densities, apart from Mpt0 and Msp. In particular, as Dr0 increases, Msp 

increases while Mpt0 decreases, highlighting the need to correlate the values of these with 

initial state (Dr0, p0). Indeed, based on Eq. (2.21), decreasing Mpt0 and increasing Msp leads 

to negative values of dilatancy, d, indicating a more dilative response and vice versa. It is 

interesting to mention that the initial value of the bounding line, Ms0, is less than the value 

of Mcs, irrespectively of the initial relative density (an observation that will appear to be 

useful in calibration process described in Chapter 4.) 

Finally, demonstration of the impact of parameter η of Eq. (2.31) on the response, in 

terms of stress-strain loops, is shown in Figure 2.9 for three different strain amplitudes. 

Evidently, for values of parameter η less than 1, the secant shear modulus along with the 

size of the loop decreases, leading to smaller hysteretic damping. On the other hand, 

greater values of parameter η less than 1 lead to increase of the secant shear modulus 

and the area of the loop producing larger hysteretic damping. Appropriate calibration of 

parameter η can offer consistency with any pair of shear modulus and damping curves of 

the literature. 

 

2.4 CONCLUSIONS 

A new constitutive model for sand in triaxial space was presented, based on a modified 

elastoplasticity scheme and founded on the effective stress and critical state concepts. The 

constitutive formulation combines features of classical elastoplasticity with a hardening law 
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and an unloading-reloading rule of the Bouc-Wen type. The model performance was 

demonstrated through a series of simulations in p-q space, for all combinations (4 in total) 

of drained and undrained loading with monotonic and cyclic loading. It was shown that the 

model is capable of reproducing the basic aspects of sand behavior, such as static 

liquefaction, strain softening, hysteretic loops, cyclic mobility etc. 
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Table 2.1. Model parameters for simulations illustrated in Figures 2.1-2.7 and 2.9. 

  

Monotonic Loading  
(Drained & Undrained) 

Drained 
cyclic 

loading 

Unrained 
cyclic 

loading 

Very 
loose 
sand 

Loose 
sand 

Medium 
sand 

Dense 
sand 

Medium 
sand 

Dense 
sand 

Elasticity 

Ao 250 250 250 250 250 250 

m 0.6 0.6 0.6 0.6 0.6 0.6 

ν 0.2 0.2 0.2 0.2 0.2 0.2 

Ultimate 
strength 

Mso 1 1 1 1 1 1 

Msp 1.2 1.3 1.4 1.8 1.4 1.8 

c1 40 40 40 40 40 40 

c2 40 40 40 40 40 40 

Phase 
transformation 

Mpto 1.22 1.14 0.9 0.5 0.9 0.5 

c3 40 40 40 40 5 5 

Critical state Mcs 1.2 1.2 1.2 1.2 1.2 1.2 

Hardening n 0.7 0.7 0.7 0.7 0.7 0.7 
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Table 2.2. Model parameters for prediction of undrained simple shear experiments by 

Yoshimine et al. (1998), shown in Figure 2.8. 

  
Relative Density   

23% 25% 29% 34% 35% 41% 44% 

Elasticity 

Ao 315 315 315 315 315 315 315 

m 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

ν 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Ultimate 
strength 

Mso 1 1 1 1 1 1 1 

Msp 1.18 1.201 1.215 1.22 1.225 1.235 1.3 

c1 45 45 45 45 45 45 45 

c2 10 10 10 10 10 10 10 

Phase 
transformation 

Mpto 1.28 1.174 1.145 1.1 1.06 1.01 0.83 

c3 20 20 20 20 20 20 20 

Critical state Mcs 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Hardening n 0.55 0.55 0.55 0.55 0.55 0.55 0.55 
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Figure 2.1. Simulation of monotonic undrained behavior of sand: a) very loose, b) loose, c) 

medium and d) dense sand. 
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Figure 2.2. Simulation of monotonic undrained behavior of sand: a) very loose, b) loose, c) 

medium and d) dense sand. 
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Figure 2.3. Evolution of ultimate strength, Ms and phase transformation lines, Mpt during 

simulation of monotonic undrained loading. 

 

 

 

 

 

Figure 2.4. Simulation of monotonic drained behavior of sand. 
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Figure 2.5. Simulation of cyclic drained behavior of sand (medium density) with increasing 

deviatoric strain amplitude. 
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Figure 2.6. Simulation of cyclic undrained behavior of dense sand. 
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Figure 2.7. Evolution of stress and strain components, as well as internal model variables for 

the simulation of cyclic undrained behavior of dense sand, shown in Figure 2.6. 
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Figure 2.8. Mode predictions versus experiments (Yoshimine et al., 1998) for undrained simple shear loading. Model parameters are shown 

in Table 2.2. 



 
 
 

Chapter 2: Development of a Modified Elastoplasticity Model for Sand in Triaxial Space 
 

 

 
 

72 

 

 

Figure 2.9. Demonstration of impact of parameter η of Eq. (2.31) on the size of stress-strain 

hysteretic loops for: (a) 1% , (b) 2% and (c) 4% strain amplitude. 
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CHAPTER  3 

Constitutive Modeling for 

Sand in Multiaxial Space:  

A New Plasticity Approach 

 

ABSTRACT 

A constitutive model for sand is derived in multiaxial space based on a new theoretical 

framework that combines features of classical (perfect) elastoplasticity and hardening 

plasticity of the Bouc-Wen type. It resembles a bounding surface model with vanished 

elastic region, but with considerable modifications in that the plastic modulus is not 

explicitly defined, and the mapping rule being Bouc-Wen motivated works equally well in 

monotonic as well as stress-reversal loading. Among the innovations, are: (a) Critical 

state consistency not only for monotonic but also for cyclic loading, and (b) novel plastic 

flow rule accounting for anisotropic distribution of the dilatancy strain ratio, d, to the 

normal plastic strain increments. The capabilities of the model in capturing complex 

aspects of sand behavior (e.g. cyclic mobility, static liquefaction, densification) are 
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demonstrated through illustrative paradigms and comparisons with experimental data, 

emphasizing the physical meaning of each key-model parameter.  

 

3.1 INTRODUCTION 

 

The behavioral diversity of sand for different loading (drained/undrained, 

monotonic/cyclic), initial stress and fabric conditions, renders its modeling a difficult and 

challenging task. The suitability of the used constitutive model is evaluated by its 

capability to capture the trends across all these conditions without recalibration of its 

parameters for each specific case, but also by its simplicity. Too many parameters might 

increase the versatility of the model at the risk, however, of losing its physical meaning. 

 

In the last three decades, many constitutive models for sand have been proposed, each 

with varying degree of accuracy and applicability. The most promising ones are plasticity-

based that incorporate the effective stress and critical state concepts (e.g.: Ishihara and 

Towhata, 1980; Prevost 1985, Pastor et al. 1990, Manzari and Dafalias, 1997, Cubrinovski 

and Ishihara, 2000; Papadimitriou et al., 2001, Elgamal et al., 2002, Dafalias and Manzari, 

2004; Park and Byrne, 2004; Boulanger et Ziotopoulou, 2013, Taborda et al, 2014), 

though recently developed hypoplastic models have shown remarkable predictability 

(e.g. Gudehus 1996, Kolymbas 2012). In this study, a novel constitutive model for sand is 

presented based on a new plasticity framework that joins together features from perfect 

elastoplasticity and Bouc-Wen type hardening plasticity. The motivation is to develop an 

alternative plasticity formulation that exhibits critical state consistency for cyclic loading 

and uniqueness of its parameters for a given type of sand, irrespective of loading 

conditions.  

 

The model, designated as Ta-Ger sand model, is based on a reformulation of perfect 

elastoplasticity by introducing a hardening law inspired from Bouc-Wen hysteresis. The 
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latter is a smooth hysteresis model originally proposed by Bouc (1971) and subsequently 

extended by Wen (1976) and used in random vibration studies of inelastic systems. Since 

then, modified or extended versions of this model has been extensively applied in 

modeling structural (e.g. Sivaselvan and Reinhorn 2000, Triantafyllou and Koumousis, 

2012) and soil behaviour (e.g. Gerolymos and Gazetas 2005, Gerolymos et al. 2007, 

Gerolymos 2010).  

 

The developed constitutive formulation can be regarded as a bounding surface model 

with vanished elastic region and the distinguished characteristic of a non-explicitly 

defined plastic modulus. Salient features of the proposed plasticity approach are: (i) a 

new plastic flow rule which is based on a revision of Rowe’s dilatancy theory (1962) to 

account for anisotropic distribution of the dilatancy to the normal plastic strain 

increments as well as densification due to cyclic loading, (ii) a mapping rule and load 

reversal criterion inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the 

critical state concept that introduces two state parameters. The first being the 

cumulative incremental deviatoric strain and the second one, the relative dilatancy index, 

Ir, as originally proposed by Bolton (1986). The main advantage against well-established 

formulations using the traditional state parameter Ψ (Been and Jefferies, 1985, Manzari 

and Dafalias, 1997), is critical state consistency for both monotonic cyclic loading and 

avoidance of early shear locking in cyclic undrained response (as observed in Dafalias and 

Manzari, 2004). 

 

In the following sections, a mathematical description of the proposed plasticity 

formulation in multiaxial stress space is attempted, emphasizing the role of the evolution 

equations and the physical meaning of key-variables. Finally, the model is shown to be 

capable of reproducing complicated experimental behavior with satisfactory engineering 

accuracy.  
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3.2 PLASTICITY CONCEPT: COMBINING PERFECT PLASTICITY WITH BOUC-

WEN TYPE OF HYSTERESIS 

The governing equations of a typical elastoplastic formulation with no hardening 

(elastic/perfectly-plastic behavior), in generalized stress space, are revisited. For reasons 

of simplicity and convenience, the equations are given in the form of matrices instead of 

tensors. The incremental total strain, dε , is decomposed into its elastic and plastic 

counterparts  edε  and  pdε  by a simple addition: 

       e pdε dε dε  (3.1) 

The plastic strain increment is obtained from the flow rule: 

  
  
 





p σ

σ

g
dε L  (3.2) 

Eq. (3.2) applies normality of the plastic strain increment to a plastic potential function g. 

L is the common scalar-valued stress-dependent multiplier, designated as the loading 

index. Substituting Eq. (3.2) into Eq. (3.1) and applying the theory of elasticity, 

     e edσ E dε ,  eE , being the linear elastic matrix, the following stress-strain 

relationship is obtained: 

      
  
 

 
 
 
 


 


e dε

g σ
dσ E L

σ
 (3.3) 

For a perfectly plastic material, the yield surface, f, is fixed in stress space and thus not 

functionally dependent on any other state variable than stress. Plastic deformation occurs 

only when the stress point reaches and lies on the failure surface. This postulate is stated 

by the following consistency equation: 
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   
 

 
 
 
 
 


  



Τ

σ
σ

f
df 0 dσ 0  (3.4) 

Combining Eqs. (3.3) and (3.4), one can obtain both the definition of scalar multiplier, L, 

and the elastoplastic stress strain relationship, in respect:   

 
 

 

 
 

 

 

 
   

    
          

T

e

T

e

f
E

σ
L dε

f g
E

σ σ

 (3.5) 

     
   

 

 
 

 

 

    
           

     
            

T

e

e

T

e

g f
E

σ σ
dσ E I dε

f g
E

σ σ

 (3.6)

  

and the elastic-perfectly-plastic matrix is derived: 

                                          
    
    

 
 
 
 

 

T e
g f

T e
f g

ep e
Φ Φ E

I
Φ Ε Φ

Ε E                                         (3.7) 

where  fΦ   and  gΦ  account for the gradients of yield surface and plastic potential 

surface, respectively: 

  
 





f
σ

f
Φ   

,  
 

 





g
σ

g
Φ  (3.8) 

Thus far, it is clear that no kind of hardening response can be accommodated by the 

current formulation, allowing only for elastic/perfectly-plastic predictions. Our intention is 

to attribute hardening/softening characteristics to the elastic-perfectly-plastic nature of 
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Eq. (3.7), while deviating from the classical plasticity framework which involves the 

introduction of a plastic modulus, Kp, in the denominator of Eq. (3.7), according to: 

 

    
    
    

 
 
 
 

 

T e
g f

T e
p f g

ep e
Φ Φ E

I
K Φ Ε Φ

Ε E   (3.9) 

To this end, an appropriate plastic matrix  H  is directly inserted in Eq. (3.7) by 

multiplying the right-hand side term inside the parentheses: 

    
     

    

T e
g fep

h T e
f g

e
Φ Φ E H

I
Φ Ε Φ

Ε E
 
 
 
 

   (3.10) 

Our goal is to provide a simpler but equally efficient scheme with higher versatility. 

Therefore, the role assigned to the matrix  H  is threefold: i) it offers a gradual and 

smooth (“hardening-type”) transition from the elastic to perfectly plastic response in 

order to capture pre-failure nonlinearity and the coupling between elastic and plastic 

counterparts composing the total strain increment, ii) it provides an appropriate 

loading/unloading/reloading mapping rule by tracking the distance from the ultimate 

perfectly plastic state as defined by the failure surface, which herein, serves as a 

bounding surface, and iii) the values of its terms are strictly bounded within the range of 

[0,1]. In this line of thought, the matrix  H  acquires only diagonal terms as a function of 

a dimensionless parameter ζ, satisfying the second and third requirements, and a 

hardening exponent parameter, n, fulfilling the first postulate. Both of these parameters 

are of the Bouc-Wen type (Gerolymos and Gazetas, 2005). Matrix  H  is given as: 

    nH ζ I  (3.11) 

As it has been already stated, parameter ζ needs to be dimensionless and strictly bounded 

within the range [0,1]. It is obvious that ζ should obtain unit value when the stress point 
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reaches the ultimate failure state (perfectly plastic, f=0), while all its intermediate values, 

from zero to unity, correspond to intermediate stress states. In order to demonstrate an 

appropriate function for parameter ζ compatible with a specific failure surface, let’s 

assume a material obeying a cone-type failure criterion in triaxial space, such as Drucker-

Prager: 

 

    f 0 q Mp 0  (3.12) 

where q is the deviatoric stress, p is the mean effective stress and M is the bounding 

stress ratio representing the ultimate strength, e.g. critical state. In lieu of the 

abovementioned requirements, a proper definition of ζ is:  

 
 


M

q
p

ζ  (3.13) 

Since the stress ratio, q/p, can only obtain values within the range of [0,M], ζ is strictly 

bounded in the range of [0,1]. Evidently, the elastic state corresponding to ζ=0,    H 0  

and    ep
h

eE E , is trivialized to a single point and plastic strains develop from early on, 

as soon as ζ becomes greater than zero. A set of loading surfaces are created upon 

definition of ζ, described by the following equation: 

 q ζMp 0      (3.14) 

Each stress state corresponds to a unique value of ζ resulting in a specific loading surface 

given by Eq. (3.14). Thus, each current stress point automatically lies on a surface 

proportional to the failure surface of Eq. (3.12) by the value of ζ, as illustratively depicted 

in Figure 3.1.  

Conceptually, the failure surface works similarly to a surface of reference which cannot 

be surpassed, namely a bounding surface (Dafalias, 1986), in the sense that for any given 

stress state (e.g. stress ratio, q/p) there is always an “image” stress state lying on the 
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failure surface (e.g. stress ratio, M) so that the ratio, ζ, between the actual and “image” 

stress states can be measured. Specifically, for the examined case of a Drucker-Prager 

failure surface which forms a circle in π plane, the current stress state is equal to the 

radius of the current loading surface, while the “image” stress state is always equal to the 

radius of the failure surface (see Figure 3.1).  

Clearly, parameter ζ holds the role of evolution or else mapping rule. Having defined 

parameter ζ in case of monotonic loading, it remains to be defined upon reversal loading 

and reloading. Details are given in the following section where the above described 

scheme is applied to sand and a generalized bounding/failure surface for all 

loading/unloading/reloading conditions is proposed.  

In retrospect, the plastic matrix,  H , is dependent only on the failure/bounding surface. 

Hence, the proposed plasticity approach is characterized as a single-surface model. The 

elastic area is trivialized to a single point at the beginning of loading, unloading and 

reloading, where elastic behavior is expected at least momentarily satisfying Masing rule. 

Hence, no yield surface is involved to define the elastic region, or rather, yield surface 

diminishes to a single line for ζ=0 (e.g. q = 0 from Eq. (3.14) for ζ = 0). Needless to say that 

neutral loading cannot be captured in the lack of a yield surface. This fact will prove to be 

advantageous upon loading reversal where potential unrealistic reversal of loading by 

neutral loading is automatically excluded; a weakness that is commonly encountered in 

the majority of elastoplasticity models, such as bounding surface (Dafalias, 1986), 

generalized-plasticity (Pastor et al., 1990), multisurface ones (Prevost, 1985) etc. 

While parameter ζ tracks the actual distance of the current stress state from the failure 

state, exponent parameter n controls the rate of transition from elastic state to the 

perfectly plastic one, as characteristically demonstrated in Figure 3.1 for a Drucker-

Prager failure surface. Exponent n is designated as the hardening parameter in the 

current scheme, determining the degree of coupling between concurrent elastic and 

plastic strain increments during loading. As the value of n increases, the response tends 
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to be elastic/perfectly-plastic while the elastic and plastic strain increments tend to be 

decoupled during loading (e.g. n = 10), with the elastic ones occurring exclusively prior to 

failure (plateau) and the plastic ones developing only after failure takes place. Inversely, 

as the value of n decreases, the coupling between the elastic and plastic components of 

total strain increment increases until ultimate failure is reached, resulting in a smoother 

transition to failure. 

 

3.3 CONSTITUTIVE MODEL FOR SAND 

The new plasticity scheme is used as a framework to develop a simple constitutive model 

for sand, which can capture all important aspects of sand behavior under monotonic and 

cyclic loading, such as critical state behavior, densification, liquefaction etc. An 

appropriate bounding surface is proposed, which allows a unique derivation of 

parameter ζ for monotonic and cyclic loading by keeping memory of the last reversal 

stress state, while update is achieved by a simple first-order work criterion. Additionally, 

a new set of functions is suggested for the evolution of bounding and phase 

transformation stress ratios in order to enhance the critical state concept. 

 

3.3.1 Pre-Failure Parameters 

The terms in matrix  eE are functions of the shear and bulk moduli which in turn are 

functions of the mean effective stress p, according to: 

 

 
.  

  
 






m
2

o α
α

(2 97 e) p
G A p

1 e p
,     

 
 






2 1 ν
K G

3 1 2ν
 (3.15) 

in which, Ao is a dimensionless material parameter, v is the Poisson’s ratio, pa is the 

atmospheric pressure, e is the current void ratio, and m is a dimensionless parameter 

determining the rate of variation of G and K with p. 
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3.3.2 Bounding Surface and Hardening Parameter ζ 

An open-end, cone-type bounding surface is proposed as a function of the current stress 

state as well as the stress state at the last reversal of loading: 

 
 

      
 

     s r s r
1/2

p p ps,θ

2

3
f ( p):( p) M n p 0  (3.16) 

where s is the second order deviatoric stress tensor and  ,s θM  is the bounding stress 

ratio, determining the ultimate strength, dependent on the lode angle θ. The stress ratio 

tensor, rp  is given by: 


 

Is σ
r p p p

p

p p

p

p p
        (3.17) 

where σp  is equal to the stress tensor and pp the mean effective stress at the pivot 

points, once reversal of loading occurs. It is noted that rp is comparatively equivalent to 

the back-stress ratio, α, in a conventional bounding surface model. The scalar valued 

stress ratio pn  is defined as the inner product of two tensors denoting the distance of 

the pivot stress ratio rp  from the hydrostatic axis: 

 :n rp pn    (3.18) 

in which n is a normalized stress ratio tensor, normal to f: 

 



 
 

 

s r
n

s r s r

p

1/2

p p

p

( p):( p)
 (3.19) 

The properties of tensor n are given by the following equations: 

    11 22 33tr n n n 0n  (3.20) 

 2 2 2 2 2 2 2
11 22 33 12 23 31tr n n n 2n 2n 2n 1:       n n n  (3.21) 
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Evidently, in case of monotonic loading, the bounding surface, f, returns to its common 

Drucker-Prager form but with Lode angle dependency:  

    s s
1/2

s,θ

2

3
F : M p 0   (3.22) 

The evolution of its shape, once reversal occurs, is explained in section 3.3.4 along with 

the mapping rule. Parameter ζ is defined following the same concept described in section 

3.2: 

 
  
  



 

r r r r r r
1/2

p p p

p ps,θ s,θ

2 2

3 3

( ):( )
ζ

M n M n

      (3.23) 

in which r is the current deviatoric stress ratio tensor. It is obvious that ζ obtains zero 

values at each point reversal, initiating elastic unloading, consistent with Masing rule. 

Parameter ζ ensures that the current stress state always lies on a loading surface 

described by: 

 
 

      
 

     s r s r
1/2

p p ps,θ

2

3
L ( p):( p) ζ M n p 0  (3.24) 

Since plasticity starts practically from ζ=0, the yield surface can be derived by Eq (3.24) 

for ζ=0. The gradient to this failure/bounding surface is given by: 

  f
f 1

3






Φ
σ

n n:r I  (3.25) 
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3.3.3  Lode Angle Dependency 

 

The Lode angle is defined as: 

   /

J
cos θ

J
 3

3 2
2

3 3
3

2
 (3.26) 

where 2J  is the second deviatoric invariant 3J , the third deviatoric invariant. After using 

polynomial interpolation, sM ,θ  can be obtained by: 

    ,θ cos θ cos θ
   
   
   

 
   2c e c e

ss sss
M M M M

M 3 3 M
2 2

M    (3.27) 

in which cM  is the bounding stress ratio  in compression, eM  in extension and sM  in 

simple shear. They are related to friction angle, φ, as: 

 
sinφ

; ; sinφ
sinφ

sinφ

sinφ
 





e ssc

6
M M 2

3

6
M

3
 (3.28) 

Then, χ is defined: 

 
,θχ  s

c

M

M
 (3.29) 

 

3.3.4  Mapping Rule and Load Reversal Criterion 

Update of the stress ratio tensor at pivot points, rp , in Eq. (3.16) occurs when the first 

order work changes sign; a feature also incorporated in the Bouc-Wen model (e.g. 

Gerolymos and Gazetas, 2005). The first order work is equal to the inner product of the 

strain rate tensor and the difference of the current stress ratio tensor from the stress 

ratio tensor obtained by the last pivot point: 
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 r r εp( ):dW  (3.30) 

Figures 3.2 to 3.4 offer a schematic insight on how the shape of bounding surface, f=0, 

described by Eqs. (3.16) adapts uniquely for each stress path to the shape of the target 

failure surface, F=0 of Eq. (3.22).  

Initially, Figure 3.2 illustrates certain snapshots of characteristic stress states in π-plane, 

corresponding to certain points in a stress-strain loop obtained by a cyclic simple shear 

test under constant mean effective stress. The resulting stress path is a straight line along 

θ = π/6. The shapes of bounding, target failure and loading surfaces, f = 0, F = 0 and L = 0, 

described by Eqns. (3.16), (3.22), and (3.24) respectively, are plotted in the π-plane plots 

along with the current stress point (star symbol). The beginning of loading corresponds to 

stress point A which lies on the hydrostatic axis (ζ = 0); therefore, the loading surface (L = 

0) collapses to a single line containing stress point A. From A to C-, the loading surface 

swells isotropically as ζ increases, until it coincides both with the target failure surface (F 

= 0) for ζ = 1 (point E-) and the bounding surface (f = 0), since rp  is yet equal to 0. At pivot 

point C+, the first order work, dW, changes sign, confirming the occurrence of loading 

reversal and rp  obtains the values of point C-. At this moment, the loading surface 

trivializes once more to a single point (ζ = 0), while the bounding surface, though concave 

in general, fits perfectly to the target convex failure surface at the point opposite to the 

current one (namely the “image” point). The “image” point always corresponds to the 

point where the projection of current 
pr r , crosses the surface f = 0, as depicted in 

Figure 3.3.  

In order to verify the unique adaptation of the bounding surface for each stress path, the 

same graphical illustration is adopted in Figure 3.4 for the case of a cyclic triaxial p-

constant test. From points A to C-, the image is similar to that of Figure 3.2, besides the 

fact that the stress points lies on θ = 0 (compression). Upon first reversal, point C+, the 

loading surface becomes a single point in π-plane coinciding with the stress point, while 

the bounding surface adapts in a way that fits the target failure at θ = π/3 (“image” 
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point). Upon second reversal, namely point E-, the stress ratio tensor, rp , is updated once 

again, so that this time the bounding surface coincides with the target failure one at θ = 0 

(next “image” point). 

Overall, Eq. (3.16) describes a uniquely adaptable bounding surface to the target surface 

for each specific stress path. In mathematical terms, the target surface is the geometric 

locus of the “image” points derived from the bounding surface. Consequently, the 

mapping rule is automatically incorporated in parameter ζ – since its definition is based 

on a reformulation of Eq. (16), and thus, in the plastic matrix  H . 

3.3.5 Flow Rule  

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy 

theory (Rowe 1962). The ratio of the plastic volumetric strain increment, dεp
p, over the 

plastic deviatoric strain increment, dεq
p, depends on the distance of the current stress 

ratio, q/p, in conventional p-q space from the phase transformation line, Mpt, as follows: 

 
 

  
 

 

p
p

ptp
q

d
dε q

M
pdε

 (3.31) 

When q/p > Mpt, the imposed deviatoric strain increment causes p
pdε  < 0 and d < 0 

which corresponds to dilation. Respectively, when q/p < Mpt, 
p

pdε  > 0 and d > 0 resulting 

in contraction. The dilatancy strain ratio, d, remains a scalar quantity in multiaxial stress-

strain space, calculated by: 

 
   
     

  

   d dpt pt
2 2

d χ χ
3 3

R M R M
p p
s sn :n :n  (3.32) 

where χ is the factor described by Eqn. (3.29) to account for the Lode angle effect and Rd 

is a parameter dependent on the current relative density (used as a state parameter) 

which allows to capture densification effects due to cyclic drained loading. The gradient 
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to the plastic potential surface, necessary for the formation of the elastoplastic matrix of 

Eq. (3.10), is given by: 

 





Φ
σ

n n2
g

g d  (3.33) 

Both volumetric and deviatoric non-associativeness is applied. The increment of the 

plastic strain tensor can be obtained by Eq. (3.2). Due to the property of tensor n, 

described by Eq. (3.21), the plastic volumetric increment, p
pdε , is indeed equal to: 

 ε Φ np p 2
p gd tr d L tr L dtr L d   ε  (3.34) 

It is common in literature to arbitrarily assume an isotropic distribution of the quantity, d, 

to the three normal plastic strain increments according to: 

 





Φ
σ

n Id
g

3

g
 (3.35) 

Herein, in an attempt to account for the effect of the loading direction on the distribution 

of the dilatancy, d, to the three normal plastic strain components, Eq. (3.33) is adopted. 

Comparison is held between Eq. (3.33) and (3.35) in order to highlight the difference in 

stress and strain components. 

Figure 3.5 illustrates the distribution of normal strain components for a monotonic 

simple shear test, where only shear stress, σ12, is applied. In terms of shear stress-strain 

curve the response is the same for both equations. Eq. (3.35) results in equal normal 

strains in all directions (εii = εp/3), whereas Eq. (3.33) develops normal strains only in the 

directions related with the applied shear stress; ε11 and ε22. The out of plane normal 

strain ε33 is zero, indicating that there is no tendency for contraction or dilation in the 

direction where no shear stress is applied.  

In case of an undrained cyclic test, where no normal strain is allowed and only σ12 is 

applied, the variation of normal stresses is identical when Eq. (3.35) is adopted, resulting 



 
 
 

Chapter 3: Constitutive Modeling for Sand in Multiaxial Space:  A New Plasticity Approach 
 

 

 
 

88 

in a path always lying on π/6 in π-plane plot, as depicted in Figure 3.6. Alternatively, 

when Eq. (3.33) is used, the out of plane normal stress, σ33, decreases in a slower rate 

during loading, resulting in a more complicated path as plotted in a π-plane graph. 

Whether Eq. (3.33) or (3.35) is closer to reality is difficult to be documented, since no 

elaborate data exist in literature, even experimental ones.  

Parameter Rd in Eq. (3.32) is given by: 

 d
r r0D Dα

R e


  (3.36) 

where Dr is the current relative density, Dr0 is the initial relative density and α is a 

constant. Evidently, increase of Dr causes decrease of parameter Rd and subsequent 

decrease of quantity, d, resulting in densification as shown in Figure 3.7. Parameter Rd is 

deliberately chosen as a function of Dr, so that Rd remains unity during undrained 

loading. Otherwise, any decrease of Rd would hamper the occurrence of liquefaction, 

since densification and liquefaction are two competitive mechanisms.  

The calibration of constant α for the demonstration of Figure 3.7 was based on the 

empirical correlations of volumetric strains with the number of cycles for 1% shear strain 

and Dr0 = 45 % (Silver and Seed, 1971; Duku et al., 2008), shown in Figure 3.8.  

 

 

3.3.6 Influence of Hardening Exponent n 

Typical values of hardening exponent n for soils are found in the range of 0.2-0.8, as 

suggested by Drosos et al., 2012. In general, the monotonic response is not extremely 

sensitive to the evolution of hardening exponent n; thus, a satisfactory prediction can be 

achieved with a constant specific value within the range of 0.2-0.5, for both drained and 

undrained conditions, accompanied by a proper calibration of the other model 

parameters. However, the response under cyclic undrained loading is greatly affected by 

the value of n, especially in terms of number of cycles required to cause liquefaction (p = 
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0), as shown in Figure 3.9. Three different values of n have been used in an attempt to 

predict the response of a sand specimen with Dr = 70% under simple shear undrained 

loading. In case of n = 0.3, only 6 cycles of loading are required for liquefaction 

occurrence (p = 0), while large shear strains > 3% develop abruptly after the 3rd cycle. As 

n increases (e.g. n = 0.5), the required number of cycles also increases, until n = 0.7 for 

which liquefaction cannot be practically achieved within a reasonable number of cycles. 

However, no locking is observed, and accumulation of shear strains continues with 

increasing loading cycles even for large values of n.  

The parameter n can be effectively calibrated to match any experimental CRR (Cyclic 

resistance ratio curve) curve from the literature (e.g. De Alba, 1976). Expressing n as a 

function of the cumulative deviatoric strain increment: 

 
  pdε qq

γ 1 sign dεβ dε
peak 0 peakf fn n n n n e n e

   
  

                   

(3.37) 

was shown to provide reasonable estimates. In Eq. (3.37), nf is the final desired value 

(when p tends to zero), n0 is the initial value, npeak is the potentially reached peak value, 

dependent on constants β and γ. The latter exponential of Eq. (3.37) depends on the 

function,  pdε1 sign  , where pdε  is the accumulation of volumetric strain increments. 

Undrained conditions impose that 0pdε  ; thus this function returns unity for undrained 

cylic loading. The necessity of this function will be shown in case of drained loading 

conditions.  

The resultant prediction for undrained conditions by Eq. (3.37) is depicted in Figure 3.10. 

A characteristic rapid decrease of p is observed in the first two cycles (n = 0.5), followed 

by slower decrease (for n > 0.6) until the rate of p reduction increases again so that 

liquefaction is achieved (0.3 ≤ n ≤ 0.5). In terms of stress-strain loops, there is a gradual 

increase of shear strain amplitude for each additional cycle. 
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Cyclic loading under drained conditions causes densification effects, as previously 

described, when constant strain amplitude cycles of loading are applied. When constant 

stress amplitude cycles of loading are applied, densification is reflected also in stress-

strain loops through decrease of the secant shear modulus. Thus, the area of the loops, 

which lose their symmetry, decreases during loading. This behavior can be simulated 

with continuous increase of the value of parameter n during loading. For this purpose, 

Eq. (3.37) is used, which, in case of drained loading, it is formulated as: 

   qβ dε
peak 0 peakn n n en

     (3.38) 

since pdε 0 , so that the function  pdε1 sign  becomes equal to zero. Consequently, 

the constant evolution of parameter n from the initial value n0 to higher value npeak is 

ensured. Demonstration of the impact of Eq. (3.38) on the predicted response is shown in 

Figure 3.11. 

 

3.3.7 Evolution of bounding and phase transformation lines 

Adopting Critical State Concept 

The essence of the critical state concept is that no change in volume occurs when the 

current stress state reaches the critical state despite the continuous increase of shear 

strain. In order to achieve this kind of performance upon critical state, both the phase 

transformation line, Mpt and the bounding line (or else ultimate strength line), Ms, should 

gradually converge to the critical state line, Mcs, producing zero plastic volumetric change 

when the stress ratio becomes equal to Ms = Mpt = Mcs, according to flow rule of Eq. 

(3.31). Several suggestions have been made in literature for the variation of Ms and Mpt, 

based on a suitable current state material parameter relative to the critical state (Wood 

et al., 1994; Manzari and Dafalias,1997); one of the most recent and physically 
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perceptible, being proposed by Dafalias and Manzari, 2004 and adopted also by Taiebat 

and Dafalias, 2007: 

 b dn Ψn Ψ
s cs cspte   and   eM M M M  (3.39) 

in which   cΨ e e , ec is the void ratio given by the critical state line in e-p space 

described by: 

 
   

 

ξ

c 0
at

p
e e λ

p
 (3.40) 

and b dn ,n
 
appropriate constants. The effectiveness of Eqs. (3.38) relies on three satisfied 

postulates: i) when e = ec then Mpt = Ms = Mcs and ii) for denser sands where e < ec, then

 pt cs sM M M  leading to dilatant response and iii) for looser sands where e > ec, then 

 pt cs sM M M  resulting in contraction. Although the concept is flawless, at least for 

monotonic loading, calibration process can be challenging. The two model parameters 

,b dn n  should simultaneously account for the accurate prediction of peak strength, 

dilatancy (developed volumetric strain) and the rate which the critical state is reached at, 

for all states of sand.  

Moreover, the above mentioned postulates are not necessarily satisfied in case of cyclic 

loading. For example, in case of liquefaction it has been experimentally observed (Zhang 

et al.,1997; Kramer, 1996, Been and Jefferies, 2006; Elgamal et al, 1998) that cyclic 

loading moves the stress paths towards the critical state line which coincides with the so-

called failure envelope at p = 0. However, state parameter Ψ cannot become equal to 

zero under cyclic strain accumulation, so that Ms converges eventually to Mcs. Therefore, 

Eqs. (3.38) lead to early stabilization at p > 0, hindering liquefaction occurrence (Dafalias 

and Manzari, 2004). As a result, extra features usually need to be added in a formulation, 

which are usually attributed to fabric-related effects (e.g. fabric-dilatancy tensor). 

However, this modification may only contribute to an extra decrease of p up to 
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liquefaction and not to a complete solution of the problem. Indeed, Ms and Mpt still 

cannot converge to Mcs and shear locking cannot be eventually avoided. 

After meticulous observation of experimental data and careful consideration of the 

above, the evolution of the bounding stress ratio was chosen as a function of the 

cumulative deviatoric strain increments, qdε : 

 s cs sp sp css0
dε dεq qc c

M M M M M e M e
  
 
 

       (3.41) 

where Mso is an initial value and Msp is a maximum value that can be potentially reached 

depending on the model parameter c. For a typical value of c = 8, Msp can never be 

reached. Instead, a lower value is reached, herein called Mspeak. The evolution function of 

the bounding stress ratio Ms has the same form with Eq. (2.32) in Chapter 2. However, the 

present formulation uses the same coefficient, c, for both exponentials, in an attempt to 

minimize the number of model parameters.  

The phase transformation line evolves in the same context, according to the following 

expression: 

  
    q

pt cs pt0 cs
0.5c dε

M M M M e  (3.42) 

where Mpt0 is the initial value of Mpt. The cumulative deviatoric strain increments, qdε , 

as the chosen hardening parameter, ensures that critical state will be reached under 

monotonic and cyclic loading (Tasiopoulou and Gerolymos, 2012). 

 

Using Relative Dilatancy Index as State Parameter  

The proposed set of Eqs. (3.40) and (3.41) may present a more convenient and flexible 

pattern, but they lack a state parameter that will provide a physical meaning. The latter 
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can be achieved by correlating the model parameters Ms0, Msp and Mpt0 with Bolton's 

relative dilatancy index (Bolton 1986, Ching et al., 2012): 

   rrI D Q ln p R     (3.43) 

where Dr is the current relative density of the sand, p is the current mean effective stress, 

and Q, R are constants obtaining values close to 10 and 1, respectively. Critical state 

occurs when Ir = 0, while Ir > 0 indicates denser states of sands and Ir < 0 accounts for 

looser contractive states. For triaxial compression the maximum friction angle is given by 

Bolton (1986),  φ φ max cs r3I , thus:  
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 
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M
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φ

φ
                                            (3.44)  

The bounding stress ratio obtains its maximum value, Mspeak, when: 
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where the initial value, Ms0, is chosen to be taken as: 

 
 
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6sin 0.8 5I
M

3 sin 0.8 5I




 

φ

φ
  (3.46) 

with Iro being the initial value of the relative dilatancy index, Ir. The reason behind this 

selection will be extensively discussed through calibration procedure, described in 

Chapter 4. After calculations, Msp can be obtained by: 

          
2 2

sp cs cs so cs csspeak speak speakM 2M M 0.5 2M 4M 16M M M 4M   (3.47) 

After statistical processing of numerous drained tests on sands, Bolton (1986) also 

suggested that: 
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    (3.48) 

when the peak strength value, Mspeak, is obtained; a deduction that can be used for the 

calibration of the plastic flow rule and specifically the phase transformation line. 

Combining flow rule of Eq. (3.31) for triaxial conditions and empirical Eq.(3.48), it is 

shown that: 
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 , Mpt0 is chosen: 

 n r
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  (3.50) 

Constant evolution during loading will lead to r
pt pt0 speak

r

3(0.3I )
M M M

3 3(0.3I )
 


 at peak strength 

(ζ=1). In retrospect, by following the above described calibration process, the initially 

“physically meaningless” model parameters Ms0, Msp and Mpt0 are eventually expressed 

as functions of the fundamental soil properties φcs , Dr and current confining pressure p. 

It should be mentioned, that the intermediate steps behind the selections and 

assumptions made for formation of Eqs. (3.44) to (3.50) will be shown in detail in Chapter 

4, as part of a unified calibration attempt. 
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3.4  MODEL  PREDICTION  VERSUS  EXPERIMENTS 

 

Model predictions versus experimental results have been performed for both sets of Ms 

and Mpt: Set A [Eqs. (3.40)-(3.41)] and Set B [Eqs. (3.38)] to evaluate the efficiency of the 

proposed set A compared to the well-established set B. Initially, simulations of drained 

and undrained triaxial monotonic tests for Toyoura sand were conducted. The values of 

the model parameters adopted in these simulations, are depicted in Table 3.1 for both 

set of equations. The relative density, Dr, was calculated considering emax=0.977 and 

emin=0.597 for Toyoura sand, according to Verdugo and Ishihara (1996). Figures 3.12-3.16 

(a) and (b) illustrate the comparison between model predictions and experiments. The 

flexibility offered by the proposed set of equations for Ms and Mpt provides a better 

agreement with the experiments, especially for loose sands. In case of denser sands, the 

level of predictability can be considered equal for both models.  

Figures 3.12-3.13 (c) and (d) offer an insight on how the new presented constitutive 

formulation cooperates with the two sets of equations for Ms and Mpt based on the 

evolution of state parameter Ir for set A and Ψ for set B. The required parameters for the 

critical state line in e-p space, λ and ξ, were obtained by Taiebat and Dafalias (2007). The 

differences between the two sets are mostly attributed to the initial values of Ms which 

in case of set A are lower than Mcs for both the looser and denser sand. According to 

these new equations, the stress ratio q/p reaches the bounding line early during loading 

following the shape of the bounding line up to the critical state. On the other hand, for 

set B, the stress ratio meets the bounding line later during loading at a higher current 

value of Ms and then follows the bounding line up to critical state in a much slower rate.   

In the following, undrained cyclic loading was simulated and compared with 

experimental results, as depicted in Figure 3.17. In order to efficiently capture the 

number of cycles to liquefaction, Eq. (3.37) was adopted. The values of the model 

parameters considered in the simulations are presented in Table 3.2, for both sets of 

equations. Evidently, model prediction incorporating set A captures better the stress-
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strain loops, whereas when set B is adopted, shear locking is observed despite the fact 

that early stabilization (at p>0), as previously discussed, is avoided, and liquefaction is 

eventually reached; a clear achievement of the proposed plasticity approach. To 

elucidate the differences between the two sets of equations, Figure 3.18 depicts the 

evolution of Ms and Mpt with the number of strain increments (steps). In case of set B, Ms 

and Mpt, despite the negligible fluctuations due to variation of Ψ, are practically 

constants throughout loading, far from their critical state value; a fact which eventually 

leads to shear locking. On the other hand, set A leads to a continuous variation of both 

Ms and Mpt that tend to an asymptotic oscillatory convergence to Mcs (due to significant 

variation of Ir). Overall, set A [Eqs. (3.40)-(3.41)] offers a higher degree of versatility and 

flexibility allowing for more consistent predictions of sand behavior under monotonic or 

cyclic loading. 

 

3.5  CONCLUSIONS 

 

A new plasticity framework for sand behavior in multiaxial stress space is developed by 

combining perfect plasticity with components of smooth hysteretic modeling of the 

Bouc-Wen type. The proposed formulation incorporates many innovations (such as new 

mapping and plastic flow rules) intended to provide critical state consistency not only for 

monotonic but also for cyclic loading and uniqueness of model parameters for a given 

type of sand. The comparison with experimental results reveals the capability of the 

model to describe complex patterns of sand behavior, such as cyclic hardening and 

densification, as well as its flexibility to reproduce liquefaction due to cyclic loading at 

very large strains (e.g. γ > 8%) without exhibiting shear locking. This very important 

feature is mainly attributed to a new set of evolution equations for the bounding and 

phase transformation lines that ensures asymptotic convergence to critical state for all 

types of applied loading. Implementation of the Ta-Ger sand model in a commercially 
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available finite element analysis program is currently under development and appears 

promising. 
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Table 3.1.  Model parameters and values for monotonic loading of Toyoura sand. 

 

 

SET A, Eqs (3.41)-(3.42) Set B, Eqs (3.39) 

Parameter Values Parameter Values 

Elasticity 

Ao 130 Ao 130 

ν 0.15 ν 0.15 

m 0.8 m 0.8 

Critical State 

Mcs 1.25 Mcs 1.25 

– – e0 0.934 

– – λ 0.019 

– – ξ 0.7 

Bounding Surface & 

Dilatancy 

Q 9.1 nb 0.9 

R 0.75 nd 0.7 

c 10 – – 

Hardening 

Exponent      n 
n 0.35 n 0.25 
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Table 3.2.  Model parameters and values for undrained cyclic loading of Toyoura sand. 

 

SET A, Eqs (3.41)-(3.42) Set B, Eqs (3.39) 

Parameter Values Parameter Values 

Elasticity 

Ao 130 Ao 130 

ν 0.15 ν 0.15 

m 0.8 m 0.8 

Critical State 

Mcs 1.33 Mcs 1.33 

– – e0 0.934 

– – λ 0.019 

– – ξ 0.7 

Bounding 

Surface & 

Dilatancy 

Q 9.1 nb 0.9 

R 0.77 nd 0.7 

c 4 – – 

Hardening 

Exponent 

n 

n0 0.5 n0 1 

nf 0.3 nf 0.2 

npeak 8 npeak 4.7 

β 3.5 β 105 

γ 30 γ 42 
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Figure 3.1. Evolution of parameter ζ during loading and influence of hardening exponent 

n on the predicted response, in case of a Drucker-Prager failure criterion. The star 

symbols characterize the current stress states. 
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Figure 3.2. Evolution of loading, L = 0, bounding, f=0, and target failure, F=0, surface, 

illustrated in π-plane graphs, for a cyclic simple shear test with constant mean effective 

stress. The star symbols characterize the current stress states. 
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Figure 3.3. Definition of parameter ζ upon first loading reversal (point D of Figure 2) for a 

cyclic simple shear test with constant mean effective stress. The star symbol characterizes 

the current stress state, while the circle corresponds to “image” stress point. 
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Figure 3.4. Evolution of loading, L = 0, bounding, f = 0, and target failure surface, F = 0 

illustrated in π-plane graphs, for a cyclic triaxial p-constant test. The star symbols 

characterize the current stress states. 
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Figure 3.5. Distribution/Evolution of normal strain increments during a monotonic 

drained simple shear element test (a). Model prediction is held for both assumed 

gradients of plastic potential surface: (b) Eq.(3.33) and (c) Eq.(3.35). 
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Figure 3.6.  (a) Stress-strain loops under cyclic shear undrained loading. (b) Stress path in 

π-plane using Eq.(3.33), (c) evolution of shear stresses using Eq.(3.33), (d) Stress path in 

π-plane using Eq. (3.35), (c) evolution of shear stresses using Eq. (3.35). 

 

 

 

 



 
 
 

Chapter 3: Constitutive Modeling for Sand in Multiaxial Space:  A New Plasticity Approach 
 

 

 
 

110 

 

 

 

Figure 3.7. Model prediction for a cyclic simple shear test under constant shear strain 

amplitude, exhibiting densification. 
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Figure 3.8. Volumetric strains in drained cyclic direct simple shear tests on clean sands (Duku et al. 2008): (a) Results from 16 sands at a 

relative density of about 60% with an overburden stress of 1.0 atm, and (b) Comparison of trends with earlier relationships by Silver and 

Seed (1971) for sands at relative densities of 45, 60, and 80%. 
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Figure 3.9. Influence of exponent hardening parameter n on the simulated cyclic 

undrained response of sand. 
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Figure 3.10. Computed cyclic simple shear undrained response of a sand specimen with 

Dr = 70% under constant shear stress amplitude and evolving exponent n. 
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Figure 3.11. Demonstation of drained cyclic simple shear response of a sand specimen 

with Dr0 = 40 % under constant shear stress amplitude and evolving exponent n. 
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Figure 3.12. (a), (b) Comparison between experimental data from monotonic drained 

triaxial tests on Toyoura sand  with p
0
 =100 kPa (Verdugo and Ishihara, 1996) and model 

predictions using two different evolution rules (set of equations A proposed herein, and 

set B) for the bounding, M
s
 , and phase transformation line, M

pt
. (c), (d) Evolution of  state 

variable, I
r
, bounding line,  M

s
 and stress ratio, q/p, versus axial strain for set A [Eqs (3.41)

-(3.42)]. (e), (f) Evolution of  state variable, Ψ, bounding line,  M
s
 and stress ratio, q/p, 

versus axial strain for set B [Eqs (3.39)].  
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Figure 3.13. (a), (b) Comparison between experimental data from monotonic drained 

triaxial tests on Toyoura sand  with p
0
 =100 kPa (Verdugo and Ishihara, 1996) and model 

predictions using two different evolution rules (set of equations A proposed herein, and 

set B) for the bounding, M
s
 , and phase transformation line, M

pt
. (c), (d) Evolution of  state 

variable, I
r
, bounding line,  M

s
 and stress ratio, q/p, versus axial strain for set A [Eqs (3.41)

-(3.42)]. (e), (f) Evolution of  state variable, Ψ, bounding line,  M
s
 and stress ratio, q/p, 

versus axial strain for set B [Eqs (3.39)].  
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Figure 3.14. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara, 

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M
s
 , 

and phase transformation line, M
pt

. 



 
 
 

Chapter 3: Constitutive Modeling for Sand in Multiaxial Space:  A New Plasticity Approach 
 

 

 
 118 

 

Figure 3.15. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara, 

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M
s
 and 

phase transformation line, M
pt
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Figure 3.16. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara, 

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M
s
 and 

phase transformation line, M
pt
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Figure 3.17. Comparison between experimental data from cyclic undrained torsional 

shear tests on Toyoura sand (Zhang et al., 1997) and model predictions using two 

different evolution rules (set of equations A proposed herein, and set B) for the bounding, 

M
s
 and phase transformation line, M

pt
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Figure 3.18. Evolution of bounding, M
s
 and phase transformation line, M

pt
 for model prediction of experimental data from cyclic 

undrained torsional shear tests on Toyoura sand (Zhang et al., 1997) of Figure 15 using two different evolution rules for the bounding and 

phase transformation lines: (a) set A [Eqs (3.41)-(3.42)] and (b) set B [Eqs (3.39)]. 
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CHAPTER  4 

Calibration Approach  

Accounting for Intrinsic and 

Stress-Induced Anisotropy  
 

ABSTRACT 

A practical calibration approach of a macroscopic constitutive model, based on a new 

plasticity framework (Tasiopoulou and Gerolymos, 2012, 2014 and 2015), is featured in 

this chapter. At first, the number of unknown model parameters is reduced to a 

minimum by incorporating Bolton’s empirical relationships in model formulation. Then, 

calibration is performed based on data from drained and undrained triaxial compression 

tests for three different types of sand. At this stage, the remaining unknown parameters 

are expressed as a function of the initial state (relative density and pressure), while 

inherent fabric effects such as particle shape, size and packing on the calibration process 

are discussed. At last, stress-induced anisotropy is dealt by introducing a scalar-valued 

variable in the model, being a function of principal stress rotation angle, α and the 
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intermediate stress parameter, b, without affecting the number of unknown model 

parameters.  

 

4.1 INTRODUCTION 

Behavior of granular materials has been extensively studied in literature. After repetitive 

experimental observations, it has become common knowledge that sand tends to 

undergo shear-induced volume change until a critical state is reached, upon which 

shearing can no further cause any volumetric change. Whether shearing tends to develop 

positive (contraction) or negative (dilation) volume change depends on the initial state of 

the material relative to the critical state, being a function of the relative density or void 

ratio and the confining pressure.  

 

Various constitutive models for sands have been proposed in literature aiming to 

reproduce the behavior described above by incorporating well-established theoretical 

frameworks such as the critical state theory and dilatancy laws (Rowe, 1962; Roscoe, 

1970; Bolton, 1986). While their success in simulation is automatically ensured once a 

suitable plastic flow rule has been chosen and the critical state concept has been 

included, the real challenge arises through validation process against experiments, 

otherwise known as calibration. The more advanced the constitutive model is, the higher 

the challenge. First, the number of unknown model parameters is proportional to the 

level of the model complexity, which usually coincides with the level of detail in 

predictability. Secondarily, in these cases, it is common that most of the parameters lose 

their physical perceptibility and thus, they cannot be related to measurable properties.  

 

Calibration process is considered successful when realistic model predictions versus 

experiments can be obtained for various initial states, covering a wide range of relative 

densities and pressures. However, while the set of values assigned to model parameters 

after the calibration process, works well for the particular sand under study, it is proven 
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to be unsuitable for another sand and recalibration is needed in a “case-specific” manner 

for each sand type. The fact that granular materials exhibit variations in their response, 

attributed to differences on their particle shape, size and packing, is long known (Cho et 

al., 2006; Santamarina and Cho, 2004; Andò et al., 2012; Desrues and Viggiani, 2004; 

Viggiani et al., 2001; Tsomokos and Georgiannou, 2010). Figure 1 illustrates experimental 

data verifying how the response of three different types of sands with the same initial 

state and loading conditions (drained conventional triaxial compression) varies in terms 

of the amount of dilation and the occurrence of peak strength. Table 1 offers information 

on the specific geometrical traits, distribution and arrangement of sand particles 

constituting a particular inherent fabric for each sand type. Experimental evidence 

explicitly indicates that separate calibration would be required for each type of sand even 

for the same loading conditions due to fabric effects.  

 

Besides the aforementioned complications, the challenge of calibration process gets even 

higher when stress-induced anisotropy is accounted for. It has been observed that the 

maximum strength and volume change tendency of a particular sand is influenced not 

only by the initial density and pressure but also by the type of loading; thus, the loading 

direction relative to deposition plane of the sample (Tatsuoka et al. (1986); Yoshimine et 

al., 1998; Nakata et al., 1998) as shown in Figure 2. The differences among the three 

types of loading are associated with the angle formed between the maximum principal 

stress and the vertical direction (perpendicular to the usually horizontal bedding plane 

which is the common fabric orientation due to gravitational forces), α value, and the 

effect of the intermediate stress, b value (Yoshimine et al., 1998; Nakata et al., 1998). 

Clearly, the values of the model parameters obtained after calibration based on triaxial 

compression tests would not be appropriate for simple shear or triaxial extension 

loading.  

 

Evidently, the utility of a constitutive model cannot rely on a “case-specific” calibration 

for each type of loading especially when large scale boundary-valued problems are 
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studied, where stress paths cannot be predetermined. Therefore, in order to capture all 

the features of sand behavior described above, a constitutive model requires 

supplementary formulations to account for the fabric and anisotropy effects, before 

calibration becomes even an issue. Various approaches have been developed to address 

stress-induced anisotropy, such as rotation of yield surface by introducing kinematic 

hardening (Sekiguchi and Ohta, 1977; Anandarajah  and Dafalias, 1986; Cambou and 

Lanier, 1988; Pestana and Whittle, 1999; Hashiguchi  and Mase, 2007; Duriez and 

Vincens, 2015). A most complete theoretical approach has been recently developed by Li 

and Dafalias (2012) and Gao et al. (2014), coupling the inherent fabric anisotropy with 

the loading direction within the critical state framework, named as “Anisotropic Critical 

State Theory”. However, an adoption of any of these approaches increases inevitably the 

number of unknown model parameters causing further complications in the calibration 

process and undermining the predictability of the model; a vicious circle.  

 

In an attempt to rise to the presented challenges while keeping a balance between utility 

and predictability of the model, a calibration approach of a macroscopic constitutive 

model based on a new plasticity framework (Tasiopoulou and Gerolymos, 2012, 2014 and 

2015), is featured in this chapter. At first, the number of unknown model parameters is 

reduced to a minimum by incorporating Bolton’s empirical relationships in model 

formulation. Then, calibration is performed based on data from drained and undrained 

triaxial compression tests for three different types of sand. At this stage, the remaining 

unknown parameters are expressed as a function of the initial state (relative density and 

pressure), while inherent fabric effects such as particle shape, size and packing on the 

calibration process are discussed. At last, stress-induced anisotropy is dealt by 

introducing a scalar-valued variable in the model, being a function of principal stress 

rotation angle, α and the intermediate stress parameter, b, without affecting the number 

of unknown model parameters.  
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4.2 CONSTITUTIVE MODEL FOR SAND 

A brief summary of the constitutive model formulation, designated as Ta-Ger sand model 

and extensively described by Tasiopoulou and Gerolymos (2015), is given in the 

following. Ta-Ger is based on a reformulation of perfect elastoplasticity by combining 

features of Bouc-Wen hysteresis (Bouc, 1971 and Wen, 1976) and bounding surface 

plasticity (Dafalias, 1986).  The developed constitutive formulation consists of a non-

explicitly defined plastic modulus, a vanished elastic region and a plastic flow rule, based 

on a Rowe’s dilatancy theory (1962) to account for anisotropic distribution of the 

dilatancy to the normal plastic strain increments. 

 

4.2.1 Constitutive Formulation 

The elastoplastic matrix is explicitly given by: 

     
     

    

T e
g f

T e
f g

ep e
Φ Φ E H

I
Φ Ε Φ

Ε E
 
 
 
 

    (4.1) 

where  fΦ   and  gΦ  account for the gradients of yield surface and plastic potential 

surface, respectively. The plastic matrix  H  offers a gradual and smooth (“hardening-

type”) transition from the elastic to perfectly plastic response. Therefore, the values of its 

terms are strictly bounded within the range of [0,1]. The matrix  H  acquires only 

diagonal terms as a function of a dimensionless variable ζ and a hardening exponent 

variable, n. Both of these variables are of the Bouc-Wen type (Gerolymos and Gazetas, 

2005). Matrix  H  is given as: 

   nH ζ I   (4.2) 

The failure surface which has the role of bounding surface is described by the following 

equation: 
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1/2

p p ps,θ

2

3
f ( ):( ) M n 0

 
      

 
     r r r r   (4.3) 

where r is the second order deviatoric stress ratio tensor ( /pr s ) and  s θM ,  is the 

bounding stress ratio, determining the ultimate strength, dependent on the Lode angle θ. 

It is given as a proportion of ultimate strength at triaxial compression, Mc, where θ = 0, 

through a factor χ accounting for Lode angle effects: 

 cs,θM Mχ   (4.4) 

where Mc is related to the friction angle φ: 

 c
6sinφ

3 sinφ
M


   (4.5) 

The stress ratio tensor, rp  is given by: 

 
p p

p

p

p

p




Iσ
r   (4.6) 

where σp  is equal to the stress tensor and pp is the mean effective stress at the pivot 

points, once reversal of loading occurs. Pivot point is also considered the initial point of 

loading. Thus, in case of initial isotropic consolidation state (K0 = 1), rp  = 0 and the 

bounding surface, f, returns to its common Drucker-Prager form but with Lode angle 

dependency. Otherwise, K0 effects are taken into account so that the bounding surface is 

readjusted appropriately.  The scalar valued stress ratio pn  is defined as: 

 
p pn n r:   (4.7) 

in which n is a normalized stress ratio tensor, normal to f: 

 p

1/2

p p( ):( )



 
 
 

r r
n

r r r r
  (4.8) 
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with properties: tr 0n  and 2tr 1n . Finally, parameter ζ, required to vary strictly in the 

range [0,1], is defined as: 

 

1/2

p p

ps,θ

2

3

( ):( )
ζ

M n

 
 
 





r r r r
  (4.9) 

Evidently when ζ = 1, f = 0 (Eq. (4.3)). After combining Eqs. (4.3), (4.7) and (4.8) and 

performing a series of calculations, the failure surface can be rewritten as: 

 s θ
2

f M 0
3

  ,r :n   (4.10) 

 The gradient to the failure surface,f, is given by: 

  f
f 1

3






Φ
σ

n n:r I   (4.11) 

Dilatancy, accounting for shear-induced volume change is based on Rowe’s concept 

(1962): 

 ptχ
2

3
d M

 
 
 
 

  r : n   (4.12) 

where ptM  is the phase transformation surface (or dilatancy surface) and χ is the factor 

dependent on Lode angle, θ. It should be noted that when d obtains positive values, 

contractive response is expected and vice versa. The distribution of dilatancy, d, to plastic 

strain components, or else the gradient to the plastic potential surface is described by: 

 
2

g
g d





Φ
σ

n n   (4.13)
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so that p
gd Lε Φ , where L is the common scalar-valued stress-dependent multiplier, 

designated as the loading index. The plastic volumetric strain increment can be estimated 

by: 

    p p 2 2 2 2 2 2
p g 11 22 33 11 22 33 12 23 31dε tr d L tr L n n n d n n n 2n 2n 2n L d            

 
ε Φ  

 (4.14) 

while the plastic deviatoric strain increment is calculated as: 

 

1 22 2 2
p 2 2 2
q 11 22 33 12 23 31

d d d2 2dε L Φ Φ Φ 2Φ 2Φ 2Φ L μ
3 33 3 3

      
               

       

/

  (4.15) 

It should be mentioned that the value μ is approximately 1 irrespectively of the stress 

path, so that: 

 
p
q

2dε L
3

   (4.16) 

Thus, the non-associative plastic flow rule in terms of the ratio of the plastic volumetric 

strain increment to the plastic deviatoric strain increment is calculated by combining Eqs. 

(4.4), (4.10), (4.12), (4.14) and (4.15), when ζ = 1 indicating that current stress rate lies on 

bounding surface: 

 
 

 
p

s θp

p
q

pt pt
pt c pt c

2 2 2χ χ Mdε L d 3 3 3 χ χ χ
2 2 2dε

L
3 3 3

M M
M M M M      

  ,
r :n

 

 (4.17) 
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4.2.2 Bounding and Phase Transformation Ratios 

 

In order to adopt the critical state concept, both the phase transformation ratio, Mpt and 

the bounding ratio, Ms, should gradually converge to the critical state line, Mcs, producing 

zero plastic volumetric change when the stress ratio becomes equal to Ms = Mc =Mpt = 

Mcs, according to flow rule of Eq. (4.17). The evolution of the bounding stress ratio is 

described as a function of the cumulative deviatoric strain increment, qdε , which 

ensures that critical state will be reached under monotonic and cyclic loading 

(Tasiopoulou and Gerolymos, 2012).: 

    2c dε c dεq q
s c cs sp sp css0M M M M M e M M e          (4.18) 

where Ms0 is an initial value and Msp is a maximum value that can never be practically 

reached, as shown in Figure 4.3. Model parameter c controls the rate of evolution towards 

the critical state value. Details on the particular selection and use of the current functions 

for bounding and phase transformation ratio can be found by Tasiopoulou and Gerolymos 

(2012, 2014 and 2015). The curve formed by Eq. (4.18) is shown in Figure 4.3 as the 

addition of two separate functions (1) and (2). The function of Eq. (4.18) resembles the 

trend of sand behavior under drained conditions in deviatoric stress-strain terms. It is 

considered convenient in use, since variable ζ tends to become rapidly equal to 1 due to 

the low initial value, Ms0, and thereafter, the current state is forced to follow the 

evolution of the bounding surface. That way, the response, e.g, amount and occurrence of 

peak strength can be more easily controlled through calibration process. The point C of 

peak strength, Mspeak, occurs when the derivative of Eq. (4.18) is equal to zero, as 

illustrated in Figure 4.3:   

 

   
cs sps

q peak
sps0q

M MM 1
0 dε ln

c 2 M Mdε

 
 
 
 
 


  





  (4.19) 
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Substituting q peak
dε  of Eq. (4.19) in Eq. (4.18), Mspeak is calculated as: 

 
 
 

2

sp cs

speak cs

sp s0

M M
M M

4 M M


 


 (4.20) 

Thus, if Mspeak is known or targeted, Msp can be obtained by solving Eq. (4.20) with 

respect to Mspeak: 

 
speak cs

sp

4M 2M Δ
M

2

 
  (4.21) 

where Δ is the determinant: 

    
2 2

cs speak s0 speak cs csΔ 2M 4M 16M M M 4M      (4.22) 

with the limitation, Δ>0:  

 
 

 

2 2
cs speak cs

s0

speak cs

2M 4M 4M
M

16 M M

 



 (4.23) 

which is easily satisfied if s0 csM M . Finally, Msp can be explicitly rewritten as: 

    
2

2
sp cs cs cs css0speak speak speakM 2M M 0.5 2M 4M 16M M M 4M         (4.24) 

The phase transformation stress ratio evolves in the same context, according to the 

following expression: 

   q0.5
pt cs pt0 cs

c dε
M M M M e


      (4.25) 

where Mpt0 is the initial value of Mpt. Figure 4.4 demonstrates how the shape of bounding 

and phase transformation stress ratios can be adjusted to produce either dilative (dense 
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sand) or contractive response (loose sand), according to plastic flow rule given by Eq. 

(4.12) or Eq. (4.17) after ζ = 1. 

 

4.3 CALIBRATION APPROACH FOR TRIAXIAL COMPRESSION 

Thus far, the parameters of Ta-Ger model, 8 in total (as shown in Table 4.2) may work in 

a convenient manner within the formulation, but some of them, such as Ms0, Mspeak and 

Mpt0, lack a physical connection with sand behavior which is mostly dependent on initial 

relative density and confining pressure. Moreover, this situation renders the calibration 

process a challenging task. However, the latter can be overcome by correlating the model 

parameters Ms0, Msp and Mpt0 with Bolton's relative dilatancy index (Bolton 1986, Ching 

et al., 2012): 

   rrI D Q ln p R     (4.26) 

where Dr is the current relative density of the sand, p is the current mean effective stress, 

and Q, R are constants obtaining values close to 10 and 1, respectively. Critical state 

occurs when Ir = 0, while Ir > 0 indicates denser states of sands and Ir < 0 accounts for 

looser contractive states. The advantage of choosing Ir as a state parameter against well-

established state parameters in literature, such as Ψ by Been and Jeffrees (1985) 

correlated to the critical state lines in e – p space, is attributed to the fact that the 

relative index Ir offers a unique set of correlations (Eqs. (4.29) and (4.32)) for the dilatant 

behavior of a wide range of sands, as showed by Bolton (1986). In plain words, a single 

set of Q and R is assumed to apply for all clean sands, in a sense that critical state lines 

for different types of sand in e-p space converge into one in Dr – p space, since 

differences in emin and emax for each sand have been absorbed in Dr values. 

At this stage of the study, calibration of the model is focused on triaxial compression type 

of loading. The reason is two-fold: i) Bolton’s empirical relationships on maximum 

strength and dilatancy are based mostly on triaxial compression tests and therefore, they 
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can be fully taken into advantage and ii) triaxial compression is the type of loading that is 

the least affected by stress-induced anisotropy effects such as principal stress rotation (α 

= 0° = constant) and intermediate stress impact (b = 0 = constant); thus, calibration 

variations for different types of sand only due to inherent fabric effects such as particle 

shape, size etc. can be better highlighted.  

4.3.1 Elastic Moduli 

The elastic shear modulus is obtained as: 

 0.4
2maxelG 1000k p   (4.27) 

where p is the current mean effective stress in kPa and k2max is a coefficient adapted by 

Seed and Idriss (1970), dependent on initial relative density, Dr0. In the original paper by 

Seed and Idriss (1970), k2max is suitable for mean effective stresses in lb/ft2 and its values 

are given in a table for selected values of Dr0. After appropriate transformation from 

lb/ft2 to kPa and interpolation between the selected values of Dr0, k2max can be estimated 

by: 

 2max r0k 0.13D 3.6    (4.28) 

where Dr0 is the initial relative density in %. The elastic bulk modulus, Kel is considered to 

be equal to Gel, assuming that Poisson’s ratio, ν, is equal to 0.15. 

4.3.2 Peak Strength 

The maximum friction angle for triaxial compression is given by Bolton (1986), in the 

range 0 < Ir < 4: 

 max cs r csφ φ 3I φ    (4.29) 

Therefore, Mspeak can be calculated as a function of the current relative dilatancy inder, Ir: 
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 
 

cs r

speak
cs r

6sin φ 3I
M

3 sin φ 3I




 
  (4.30) 

Finally, the critical state ratio can be estimated by: 

 
 
 

cs
cs

cs

6sin φ
M

3 sin φ



  (4.31) 

where, φcs  is the friction angle at critical state and its value is offered in abundance in 

literature for various types of sands (Bolton, 1986; Been and Jefferies, 2006). 

4.3.3 Dilatancy 

After statistical processing of numerous drained triaxial and plane-strain compression 

tests on sands, Bolton (1986) also suggested that, in the range 0 < Ir < 4: 

 
p

r
1 max

dε
0.3I

dε

 
 
  

    (4.32) 

when the peak strength value, Mspeak, is obtained at 
q peak

dε ; a deduction that can be 

used for the calibration of the plastic flow rule and specifically the phase transformation 

stress ratio. For triaxial compression conditions, where  2 3dε dε , the ratio of total 

volumetric strain increment over the total deviatoric strain increment can be expressed 

as a function of the current relative dilatancy index, Ir, according to the following 

calculations: 

 

 

p

1

p

1

p p p
p 1 3 r
p

rq p p1max,tx 1 3
1 1

dε
3

dε

dε
3

dε

3 3
dε dεdε dε 2dε 3(0.3I )2 2

2 3 (0.3I )dε dε dεdε 3dε dε dε dε3 2 2 2 2

 

 

 
     

     
                

        

  (4.33) 
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Combining the plastic flow rule of Eq. (4.17) and empirical relationship for triaxial 

compression conditions of Eq. (4.33), it is shown that: 

  

p

p
1p max r

pt,peak speakp
p rq max,tx

1 max

dε
3

dεdε 3(0.3I )
M M χ

dε 3 (0.3I )dε
3

dε

 
     

    
      

 

  (4.34) 

under the assumption that : 

 

p
p p

p
q qmax max

dε dε

dε dε

   
   

      

  (4.35) 

when maximum strength (ζ = 1) has occurred. Mpt,peak is the value of the phase 

transformation stress ratio at peak strength occurrence, 
q peak

dε . Of course the value of 

factor χ, dependent on Lode angle, is equal to 1 for triaxial compression. Therefore, the 

value of Mpt,peak can be considered known, according to Eq. (4.34): 

 r
pt,peak speak

r

3(0.3I )
M M

3 (0.3I )
 


  (4.36) 

In order to satisfy the requirement of Eq. (4.36), at peak strength occurrence, 
q peak

dε , 

Mpt0 is chosen to be a function of current stress state, instead of being a constant: 

 n r
pto speak

r

1

χ

3 0.3
3 3 0.3

( I )
M M ζ

( I )
 


  (4.37) 

Constant evolution of current stress state towards the critical one leads to ζ being equal 

to 1 (usually long before peak strength, Mspeak has been reached), Ir tending to 0 and 

Mspeak tending to Mcs according to Eq. (4.30); thus Mpt0 tends to Mcs. It is reminded that 

Eq. (4.37) applies for dense initial states, Ir0 > 0. In case of loose states, Ir0 < 0, it is 

assumed that: 
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p

1 max

0
dε

dε

 
 
  

    (4.38) 

so that: 

 n
pt0 speakM M ζ   (4.39) 

Finally, Eq. (4.25), which describes the phase transformation stress ratio in a generalized 

way, is now modified as: 
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
  (4.40) 

 

While Eqs. (4.37) and (4.39) could be used for the evolution of the phase transformation 

stress ratio instead of Eqs. (4.40), since it fits both requirements at: i) peak strength (Eq. 

(4.36)) and ii) critical state (Mpt0 = Mcs), use of Eqs. (4.40) ensures that critical state will 

occur under both monotonic and cyclic loading conditions due to dependency on qdε

. It is needless to say that in case of monotonic loading, Eqs. (4.37), (4.39) when 

compared to Eqs. (4.40), they give practically identical curves. 

 

4.4  MODEL SIMULATIONS VERSUS DATA FROM TRIAXIAL COMPRESSION 

TESTS 

 

Hitherto, four (Gel, v, Mspeak, Mpto) out eight model parameters (see Table 4.2) have been 

expressed as a function of the current or initial state (Ir, p0 or Dr0) and Mcs can obtain 

values suggested in literature for various sands (Been and Jefferies, 2006). Two extra 

parameters, Q and R of Eq. (4.26), have been introduced in the model formulation along 

with the adoption of critical state concept, as stated by Bolton (1986) in Dr – p space. The 
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set of values assigned to Q and R by Bolton (1986) for clean sands is 10 and 1 in respect, 

while Salgado et al. (2000) suggests that Q is equal to 9 and R equal to 0.49. Otherwise, 

Q, R can be easily estimated using laboratory tests that have achieved occurrence of 

critical state (Ir = 0), and the values of Dr and p at critical state are given. The remaining 

three parameters, the initial value of bounding stress ratio, Ms0, the evolution parameter, 

c and the hardening exponent, n, will be calibrated to fit experimental data from drained 

and undrained triaxial compression tests for three different types of sands (see Table 3): 

i) Toyoura, ii) Sacramento River and iii) Fontainebleau.  

 

 

4.4.1 Toyoura sand 

After meticulous observation of the experimental behavior of Toyoura sand under 

drained triaxial compression loading (Figures 4.5-4.9), one can observe the impact of 

initial relative density and confining pressure on the volume change (dilatancy), the 

maximum obtained strength and its occurrence. In particular, as initial relative density 

increases and/or initial confining pressure decreases, thus, Ir increases, sand behavior 

becomes more dilative, the maximum strength, Mspeak increases, the evolution up to the 

peak strength is more rapid so that Mspeak occurs at lower strains, 
q peak

dε . Taking into 

account Eq. (4.19) which indicates that 
q peak

dε decreases as c and Ms0 increase, it can 

be safely deduced that both parameters should be a function of initial state, Ir0. 

Moreover, according to (4.12) and (4.17), when Ms0 increases, dilatancy, d, decreases 

leading to a more dilative response, based on sign convention that was previously noted.  

In terms of undrained response (Figures 4.10-4.13), lower values of Ms0 are expected to 

lead to occurrence of phase transformation or else quasi-steady state at lower mean 

effective stresses. 

In case of hardening exponent n, previous studies (Gerolymos and Gazetas, 2005; Drosos 

et al., 2012; Tasiopoulou and Gerolymos, 2015) have shown that values of exponent n 
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varies in the range of 0.2-0.8 for soils. The lower the value of n, the greater the coupling 

between elastic and plastic strain increments is until ζ = 1 (Tasiopoulou and Gerolymos, 

2015). Calibration process requires that even lower values are needed for simulating a 

more realistic response. By decreasing the value of exponent n, the failure state (ζ = 1 

and q/p = Ms), occurs more rapidly and thus, the impact of parameter Ms0 on the 

response becomes more predominant. For example, in case of drained stress-strain 

curves, the current stress ratio would be forced to follow the bounding surface in the 

early stages of loading, for low values of n. Therefore by controlling the value of Ms0, one 

can control the shape of the stress-strain curve from the beginning, which is very useful 

especially for loose sands, such as cases (c) of Figures 4.5 and 4.6. This is desirable 

because the burden of proper fitting is moved basically on one key-parameter, rendering 

the calibration less complicated. Demonstration of the impact of Ms0, will be shown in 

case of Sacramento River sand in the following. 

 

Taking into account how each model parameter influences the response and cooperates 

with each other, optimization was performed in order to formulate suitable expressions 

for each parameter as a function of initial state conditions. In particular, Ms0 is calculated 

based on initial frinction angle φs0, which is dependent on friction angle at critical state, 

φcs and Ir0: 

 cs css0 r0φ 0.9φ 5I φ    (4.41) 

 
 
 

s0
s0

s0

6sin φ
M

3 sin φ



  (4.42) 

The limitation css0φ φ  is required to avoid instability issues originated by Eqs. (4.22) and 

(4.23). Model parameter c is expressed as: 

 r0c 6 I    (4.43) 

Finally, hardening exponent, n, is given as a function of initial relative density, Dr0: 
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 r0n 0.4D 0.14    (4.44) 

The set of values of parameters Q and R is estimated based on undrained triaxial 

compression loading tests up to critical state by Verdugo and Ishihara (1996), shown in 

Figures 4.11-4.13. The value pairs for each test consisting of initial relative density, which 

remains constant during loading, and mean effective stress at critical state (the final 

value at the end of loading), should satisfy Eq. (4.26) when Ir = 0. . Only two value pairs 

(two tests) are needed to solve a system of two unknowns: Q and R. After calculations, Q 

and R are equal to 9.15 and 0.77, respectively falling into the range of values proposed by 

Bolton (1976) and Salgado et al. (2000). 

 

4.4.2 Sacramento River sand 

Initially, prediction of drained triaxial compression tests on Sacramento River sand was 

attempted based on expressions of model parameters Ms0, c and n used for Toyoura sand 

(see Eqs. (4.41)-(4.44)). Figure 4.14 demonstrates that model predictions are not 

satisfying compared to experimental data, which of course was expected based on the 

comparison of the experimental behavior between the two types of sand in Figure 4.1(b). 

Model behavior is more dilative than experimental one, while the predicted stress-strain 

curve transcends the one obtained from laboratory tests at the early stages of loading 

before peak strength is reached. The latter observation indicates that lower values of Ms0 

are required. Indeed, reducing the values of φs0 and thus, Ms0, leads to better model 

predictions both in terms of stress-strain and volumetric-vertical strain curves. In 

addition, increase of parameter c further improves the model simulations, moving the 

occurrence of peak strength at lower strains and rendering the response slightly more 

dilative, as indicated by Figures 4.14 and 4.15. In detail, increase of parameter, c, 

increases the rate of evolution of bounding surface towards critical state value; an effect 

which tends to provide a slight more dilative response for looser sands and a less dilative 
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response for denser sands. No need for change in the expression of hardening exponent, 

n of Eq. (4.44) arose. 

In conclusion, the expressions of model parameters, φs0 and c, used for model simulation 

of Sacramento River as are: 

 css0 r0φ 0.7φ 5I    (4.45) 

 r0c 6 3I    (4.46) 

 

4.4.3 Fontainebleau sand 

After similar calibration process that was followed for Sacramento River sand, the 

expressions of model parameters, φs0 and c, offering the most satisfying comparison with 

experimental data, as shown in Figure 4.16, are found to be: 

 css0 r0φ 0.8φ 5I    (4.47) 

 r0c 6 4I    (4.48) 

In terms of dilatancy, Fontainbleau sand seems to be less dilative than Toyoura sand, as 

illustrated in Figure 4.1(a), and overall more dilative than Sacramento River sand, when 

the expressions of φs0 for the two types of sands are compared (see Eqs. (4.45) and (4.47)

). Regarding the rate of evolution of bounding stress ratio towards critical state, 

controlled by parameter, c, Fontainebleau sand seems to exhibit the most brittle 

behavior with rapid occurrence of peak stress ratio accompanied by steep reduction in 

strength. This is the reason why higher values of parameter c were needed for better 

model predictions of Fontainebleau sand behavior compared to the other two types of 

sand (see Eqs. (4.43), (4.46) and (4.48)). Sacramento River sand  seems to be an 

intermediate case. This kind of discrepancy in sand behavior is mostly attributed to the 

particle shape (Tsomokos and Georgiannou, 2010). It has been reported experimentally 
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that sands consisting of rounder particles tend to behave in a more brittle way. Grain 

roundness also leads to a thinner shear band formation (Andò et al., 2012). The shear 

band starts to develop just before or at the occurrence of peak strength which coincides 

with the steeper slope in εv-γ space. The thickness of shear band is related to the shear-

induced volume change or else, dilatancy. The thicker the shear band is, the more dilative 

the behavior until critical state. Thus, angular sand particles are expected to exhibit a 

more dilative response than round ones.  

 

4.4.4 Variations in calibration for different types of sand 

Table 4.4 includes the ensemble of calibrated values or expressions for Ta-Ger model 

parameters to provide satisfying predictions for triaxial compression loading of three 

different types of sand. Clearly, apart from the critical friction angle, φcs, only two 

parameters, φs0 and c require certain fine tuning within a quite narrow range in order to 

account for particular inherent sand characteristics, or else fabric effects (see Table 4.3). 

Various studies in literature (Cho et al., 2006; Santamarina and Cho, 2004; Andò et al., 

2012; Desrues and Viggiani, 2004; Viggiani et al., 2001; Tsomokos and Georgiannou, 

2010) have attempted to shed light on the impact of particle size, shape, uniformity etc 

on sand behavior and quantify some of these characteristics through appropriate 

parameters. Nevertheless, a most extensive investigation still needs to be performed in 

order to correlate the grain characteristics with macroscopic physical properties. Such an 

effort would facilitate the calibration process and increase the applicability of 

constitutive models in a wide range of sand types. Then, for example, a unique 

expression for each model parameter, φs0 and c, would be needed as a function of initial 

state, Ir, as well as, other properties accounting for inherent fabric effects. 
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4.5  CALIBRATION FOR STRESS-INDUCED ANISOTROPY 

The impact of loading direction on sand behavior has been investigated experimentally 

by many researchers (Tatsuoka et al. (1986); Yoshimine et al., 1998; Nakata et al., 1998). 

Stress-induced anisotropy has been repetitively reported, as illustrated in Figure 4.2. 

Three specimens of Toyoura sand with the approximately the same initial state (Dr0, p0) 

exhibit significant diversity in their response both in terms of under different loading 

conditions (triaxial compression, simple shear and triaxial extension). Evidently, a 

constitutive model, calibrated for specific loading tests, could not be able to reproduce 

the dependency of sand behavior on loading direction, unless model formulation has 

been adjusted in a way to account for stress-induced anisotropy. For example Ta-Ger 

model in each current state can by no means reproduce realistically sand response under 

any other type of loading than triaxial compression, which is what it has been calibrated 

for, as demonstrated in Figure 4.17. Thus far, the only differences in response captured 

by the model are attributed to Lode angle dependency of the bounding stress ratio, 

which clearly is not adequate to account for stress-induced anisotropy effects.  In this line 

of thought, an introduction of an appropriate variable is introduced to the model, as a 

function of principal stress rotation and intermediate stress parameters. 

 

4.5.1 Principal Stress Rotation and Intermediate Stress Parameters 

The impact of loading direction, causing stress-induced anisotropy, can be reflected in 

the principal stress rotation and intermediate stress effects (Yoshimine et al., 1998; 

Nakata et al., 1998). The parameter accounting for principal stress rotation is defined as 

the angle between the direction of maximum principal stress and the vertical one: 

 1 12

11 22

σ1
α tan

2 σ σ

 
 
 
 




  (4.49) 

The effect of intermediate stress can be represented by parameter b, defined as: 
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 2 3

1 3

σ σ
b

σ σ





  (4.50) 

In case of triaxial compression, α = 0° and b = 0, whereas in triaxial extension, α = 90° and 

b = 1. Parameter α under shear loading and isotropic initial consolidation state (K0 = 1) is 

equal to 45°, while b is approximately 0.5 but it can be reduced to 0.25 during loading 

depending on strain boundary conditions. A trend can be identified by experimental 

observations, indicating that increase in parameter α and/or b leads to a more 

contractive behavior. 

 

4.5.2 Introduction of stress-induced anisotropy internal variables 

It has been previously shown that, within the current constitutive framework, reducing 

the values of the following model parameters would lead to a less dilative behavior: φs0 

and c. In addition, decrease of hardening exponent n and increase of the phase 

transformation ratio would emphasize the abovementioned effect. In this line of thought, 

an appropriate variable in the role of reduction factor is introduced as a function of 

current parameter α and b: 

  sinα b 1 b
ba 0.98 0.8 cos 0.4α   (4.51) 

Table 4.5 presents the values of the reduction factor, ab, for distinguished values of 

parameters α and b. The values of reduction factor decrease moving from left-hand to 

right-hand side and from top to bottom; a trend based on experimental evidence. 

The reduction factor, αb, is applied to model parameters, φs0 (Eqs. (4.41), (4.45), (4.47)), c 

(Eqs. (4.43), (4.46), (4.48)), n (Eq. (4.44)) and Mpto (Eq. (4.37)) according to: 

  b b css0 r0s0,αbφ a φ a κφ 5I     (4.52) 

 b
8

αb r0δc 6a I    (4.53) 
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  b
2

r0n 0.4D 0.14a    (4.54) 

 n r
pto speak b

r

μ

χ

3 0.3
3 3 0.3

( I )
M M ζ a

( I )
 


  (4.55) 

where, coefficients, κ and δ vary from 0.7-0.9 and 1-4, respectively, depending on the 

type of sand, as shown in Table 4.4. Hence, model parameters have now become a 

function of, not only, the initial state, but also the loading direction, accounting for 

stress-induced anisotropy. 

Another variable is introduced in the model formulation to address some observations by 

Bolton (1986) regarding plane strain conditions. Bolton (1986) provides an empirical 

correlation for maximum friction angle based on triaxial compression tests (b = 0), 

described by Eq. (4.29). However, in case of plane strain compressions tests, 

experimental evidence suggests a higher maximum friction angle: 

 max cs r5φ φ I    (4.56) 

The difference between the triaxial ( 2 3σ σ constant;b 0   ) and plane strain                       

( 3 2σ constant;ε 0  ) compression tests can only be attributed to intermediate stress 

effects, since parameter α is equal to 0° for both test configurations (Tatsuoka et al., 

1986). In particular, under plane strain loading, parameter b is initially equal to 0 and 

increases to 0.4 at peak strength for K0 = 1, as shown by DEM experiments (Sazzad and 

Suzuki, 2012). Ta-Ger model predictions for plane strain compression tests estimate a 

value of b equal to 0.5 at peak strength occurrence. In order to account for this effect, 

variable gab is proposed as a function of parameter b: 

  αb 180g 3 2sin b    (4.57) 

Variable gab becomes equal to 5 when b = 0.5 while it gradually returns to value of 3 

when b deviates from 0.5 towards either 0 or 1: 
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 αb3 g 5    (4.58) 

Thus, the maximum friction angle is now obtained as: 

 αbmax cs rφ φ g I    (4.59) 

 

4.5.3 Model Simulations versus experiments on Toyoura sand 

Eqs. (4.51) to (4.59) are used to predict the behavior of Touyoura sand under various 

monotonic drained and undrained loading paths: simple shear, triaxial extension and 

shear under fixed α and b values. Coefficients κ and δ of Eqs. (4.52) and (4.53), which 

have been previously calibrated based on triaxial compression tests, are equal to 0.9 and 

1, in respect (see Table 4.4).  

Simple Shear Loading  

Figure 4.18 illustrates the comparison between model predictions and experimental 

results (Yoshimine et al., 1998) under undrained simple shear loading for various initial 

relative densities and isotropic initial consolidation state (K0 = 1).  All normal strain 

components are constrained ( iidε 0 ) during loading. The direction of maximum 

principal stress, σ1, forms a practically constant angle, α, of 45° with the vertical direction 

throughout loading, both in case of model and laboratory tests. The intermediate stress 

value, b, remains close to 0.5 in case of model tests, while experiments showed a 

variation of b from 0.5 at the beginning of loading to 0.25 at the end of the test. 

Figure 4.19 demonstrates model and experimental behavior (Pradhan et al., 1988) under 

drained direct simple shear tests for various initial states (Dr0, p0) and anisotropic initial 

consolidation state (K0 = 0.52e0). Lateral strains were not allowed during loading. Figure 

4.20 shows the relationships between parameter and angle, α. Rotation angle α is equal 

to 0° at starting point (initial K0 consolidation conditions) and rapidly increases to 25° at 

the early stages of loading where b still remains close to zero.  As larger shear strains are 
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induced, b increases converging to a value of 0.27 approximately while angle α reaches 

values of 45° to 55° (smaller for looser states). The plastic flow rule adopted by Ta-Ger 

model (Eq. (4.13)) predicts a similar trend, but lower values of angle α (see Figure 20). 

However, it gives a more realistic prediction compared to the most commonly used flow 

rule, according to which dilatancy, d, is equally distributed among plastic normal strain 

components: 

 
1

g
3

g d





Φ
σ

n I   (4.60) 

The plastic flow rule of Eq. (4.60) predicts a relationship between parameters α and b 

that can be described by: 

  2b sin α   (4.61) 

Last, Figure 4.21 compares model and experimental results (Yoshimine et al., 1998) from 

undrained simple shear tests where iidε 0   and K0 = 0.5. Figure 4.22 demonstrates the 

principal stress rotation angle, α and the evolution of intermediate stress parameter b 

versus deviatoric stress, as obtained by both model and laboratory tests. Comparison 

indicates that model can capture the right trend of α and b evolution and its dependency 

on the initial state (Dr0). Nevertheless, model predicts lower values of angle α, as it has 

been also observed in case of drained simple shear tests in Figure 4.20. Despite this 

discrepancy, model simulations and experimental data are in good agreement in stress-

strain terms. 

 

Triaxial Extension Loading 

Figure 4.23 depicts the comparison between model simulations and experiments in q-γ 

and q-p terms, in case of undrained triaxial extension loading. Angle α is constantly equal 

to 90° during loading, while parameter b remains equal to 1 ( 1 2σ σ ). These α, b 
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conditions assign the lowest value to reduction factor, ab, leading to the most contractive 

behavior possibly exhibited than any other type of loading. 

 

Loading tests with fixed α, b values 

Figures 4.24 and 4.25 illustrate the capability of Ta-Ger model to capture stress-induced 

anisotropy effects for a wide range of principal stress rotation angle, α and intermediate 

stress parameter b, against experimental data. In particular, Figure 4.24 depicts sand 

behavior under undrained loading with fixed angle α (α = 45°) for various parameters b 

(0–1), while Figure 4.25 demonstrates undrained loading tests with fixed b value (b = 0.5) 

and varying values of angle α within a range of 15° – 75°. In all cases, K0 = 1 and iidε 0 . 

Indeed, comparison indicates the satisfying performance of the reduction factor, ab, to 

account for a large combination of α and b values. 

 

4.5.4 Model Simulations versus experiments on Fontainebleau sand 

Eqs. (4.51) to (4.59) are used to predict the behavior of Fontainebleau sand under various 

monotonic drained and undrained simple shear loading. Coefficients κ and δ of Eqs. 

(4.52) and (4.53), which have been previously calibrated based on triaxial compression 

tests, are equal to 0.8 and 4, in respect (see Table 4.4). Figures 4.26 and 4.27 indicate a 

good agreement between model predictions and experimental data, indicating that the 

reduction factor can reproduce satisfying results for other types of sand as well, without 

being case-specific to the calibration needs of a particular sand (e.g. Toyoura).  
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4.6  CONCLUSIONS 

 

The present chapter highlights calibration issues of constitutive modeling for sands 

regarding their dependency on initial state (Dr0, p0) relative to the critical state, grain 

characterization, namely inherent fabric effects, and loading direction inducing stress 

anisotropy. In an effort to address these issues without increasing the number of 

unknown parameters which would be at the expense of the utility of the constitutive 

model at hand, a practical calibration approach is suggested. The constitutive model used 

in this study, designated as Ta-Ger sand model, is based on a reformulation of perfect 

elastoplasticity by combining features of Bouc-Wen hysteresis (Bouc, 1971 and Wen, 

1976), bounding surface plasticity (Dafalias, 1986) and a plastic flow rule, based on a 

Rowe’s dilatancy theory (1962) to account for anisotropic distribution of the dilatancy to 

the normal plastic strain increments.   

 

Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlation 

for maximum friction angle and ratio of total volumetric increment to maximum principal 

strain increment as a function of state parameter, Ir, named as relative dilatancy index, 

based on triaxial and plane strain compression tests on various sands. This step led to the 

reduction of number of unknown model parameters to three (φs0, c, n) besides the ones 

related directly to measurable physical properties, found in literature, such as critical 

state angle, φcs and elastic modulus. 

 

In the following, calibration was performed for three different types of sand (Toyoura, 

Fontainebleau and Sacramento River sand) based on triaxial compression tests. The three 

unknown model parameters, φs0, c, n, were expressed as a function of initial state, Ir0 or 

Dr0. It was found that readjustment of coefficients, κ and δ, in the expressions of φs0 and 

c, respectively, was needed for different types of sands due to different grain 

characteristics, such as particle size, shape, packing etc. Hitherto, the unknown model 
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parameters consist only of coefficients, κ and δ. However, a quite narrow range of values 

is suggested. 

 

At last, two variables, ab and gab, were introduced to account for stress-induced 

anisotropy. Key-variable, ab, is expressed as a function of the angle between the direction 

of maximum principal stress and the vertical one, α and intermediate stress parameter b. 

It was incorporated in the previous expressions of φs0, c, n, as a reduction factor. Hence, 

the number of model parameters remained unchanged. Finally, validation against 

experimental data was performed in every step of the way for various drained and 

undrained loading paths in a wide range of α, b values, as well as initial states.  
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Table 4.1. Properties of sands used for drained triaxial compression tests, shown in Figure 4.1. 

Type of sand Particle Shape Cu D50 emin emax Packing emin-emax References 

Toyoura angular 1.46 0.16 0.605 0.977 0.372 
Fukushima and 

Tatsuoka (1984) 

Fontainebleau sub-rounded 1.49 0.21 0.51 0.882 0.372 
Dupla et al. 

(2010) 

Sacramento River sub-angular 1.4 0.2 0.61 1.03 0.42 

Lee and Seed 

(1967) 

Seed and Lee 

(1966) 
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Table 4.2. Model parameters. 

 

Model 

Parameters 

Elasticity 
G0 

ν 

Critical State Mcs 

Hardening Exponent n 

Bounding Surface 

Ms0 

c 

Mspeak 

Phase Transformation 

Surface 
Mpto 
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Table 4.3. Properties of sands used in triaxiax compression tests, which calibration was 

based on. 

Type of sand 
Particle 

Shape 
Cu D50 emin emax 

Packing 

emin-

emax 

References 

Toyoura 
sub-angular 

to angular 

1.46 0.16 0.605 0.977 0.372 
Fukushima and 

Tatsuoka (1984) 

N/A 0.17 0.597 0.977 0.38 
Yoshimine et al. 

(1998) 

1.46 0.16 0.605 0.977 0.372 
Pradhan et al. 

(1988) 

1.7 0.17 0.597 0.977 0.38 
Verdugo and 

Ishihara (1996) 

1.55 0.17 0.597 0.99 0.393 
Toyota et al. 

(2004) 

Fontainebleau 
rounded to 

sub-rounded 

1.49 0.21 0.51 0.882 0.372 Dupla et al. (2010) 

1.55 0.22 0.54 0.865 0.325 
Georgiannou et al. 

(2008) 

Sacramento 

River 
sub-angular 1.4 0.2 0.61 1.03 0.42 

Lee and Seed 

(1967) 

Seed and Lee 

(1966) 
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Table 4.4. Model parameters used for model prediction of laboratory tests shown in 

Figures 4.5-4.16. 

 

Model 

Parameters 
Toyoura sand 

Fontainebleau 

sand 

Sacramento 

River sand 

Elasticity 

G0 1000 k2max p
0.4   (Eq. (4.27)) 

ν 0.15 

Critical State 

Q 9.15 

R 0.77 

φcs 32° (33°*) 32° 34° 

Hardening 

Exponent 
n 0.4Dr0 + 0.14 

Bounding 

Surface 

φs0 0.9φcs + 5Ir0 0.8φcs + 5Ir0 0.7φcs + 5Ir0 

c 6 + Ir0 6 + 4Ir0 6 + 3Ir0 

* for experiments by Fukushima and Tatsuoka (1984) 
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Table 4.5. Values of internal variable ab, accounting for stress-induced anisotropy, for specific α, b conditions. 

 
α = 0° α = 15° α = 30° α = 45° α = 60° α = 75° α = 90° 

b = 0 1.000 0.989 0.968 0.938 0.898 0.849 0.793 

b = 0.25 0.946 0.937 0.921 0.898 0.868 0.833 0.791 

b = 0.5 0.894 0.887 0.876 0.860 0.840 0.816 0.788 

b = 0.75 0.846 0.840 0.833 0.824 0.813 0.800 0.786 

b = 1 0.800 0.796 0.792 0.789 0.786 0.785 0.784 
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Figure 4.1. Experimental data of drained behavior of different sands under triaxial 

compression. Comparison under the same initial relative density and mean effective 

stress between: a) Toyoura (Fukushima and Tatsuoka, 1984) and Fontainebleau sand 

(Dupla et al., 2010) and b) Toyoura (Fukushima and Tatsuoka, 1984) and Sacramento River 

sand (Lee and Seed, 1967). 
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Figure 4.2. Experimental data by Yoshimine et al. (1998) showing the anisotropic behavior of Toyoura sand with initial density, D
r0

 = 33-36 

%, in undrained triaxial compression, extension and simple shear. 
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Figure 4.3. Illustration of the evolution of bounding stress ratio Μs with cumulative 

deviatoric strain increment qdε , described by Eq. (4.18). 
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Figure 4.4. Illustration of the evolution of bounding, Μs and phase transformation, Mpt, 

stress ratios, with cumulative deviatoric strain increment, qdε , described by Eqs. (4.18)

and (4.25), in case of: (a) dense and (b) loose sand. 

 

 

 

 

 

 



 
 
 

Chapter 4: Calibration Approach Accounting for Intrinsic and Stress-Induced Anisotropy 
 

 

 
 164 

 

Figure 4.5. Model predictions versus experimental data from drained conventional triaxial compression tests on Toyoura sand at p
0
 = 500 

kPa by Verdugo and Ishihara (1996): (a) e
0
 = 0.81, (b) e

0
 = 0.886 and (c) e

0
 = 0.96. 
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Figure 4.6. Model predictions versus experimental data from drained conventional triaxial compression tests on Toyoura sand at p
0
 = 100 

kPa by Verdugo and Ishihara (1996): (a) e
0
 = 0.831, (b) e

0
 = 0.917 and (c) e

0
 = 0.996. 
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Figure 4.7. Model predictions versus experimental data from drained conventional triaxial 

compression tests on loose Toyoura sand specimens (D
r0

 = 21.2 – 40.3 %) at a wide range 

of confining pressures (p
0
 = 2–400 kPa) by Fukushima and Tatsuoka (1984). 
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Figure 4.8. Model predictions versus experimental data from drained conventional triaxial 

compression tests on dense Toyoura sand specimens (D
r0

 = 79.6 - 87.9 %) at a wide range 

of confining pressures (p
0
 = 2 – 400 kPa) by Fukushima and Tatsuoka (1984). 
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Figure 4.9. Model predictions versus experimental data from drained triaxial compression tests (p constant) on Toyoura sand at p
0
 = 100 

kPa by Toyota et al. (2004). 
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Figure 4.10. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by 

Yoshimine et al. (1998). 
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Figure 4.11. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by 

Verdugo and Ishihara (1996). 
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Figure 4.12. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by 

Verdugo and Ishihara (1996). 
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Figure 4.13. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by 

Verdugo and Ishihara (1996). 
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Figure 4.14. Model predictions versus experimental data from drained triaxial 

compression tests on loose Sacramento River sand (K
0
 = 1) by Lee and Seed (1967). 

 



 
 
 

Chapter 4: Calibration Approach Accounting for Intrinsic and Stress-Induced Anisotropy 
 

 

 
 

174 

 

Figure 4.15. Model predictions versus experimental data from drained triaxial 

compression tests on dense Sacramento River sand (K
0
 =1) by Lee and Seed (1967). 

sand particles are expected to exhibit a more dilative response than round ones.  



 
 
 

Chapter 4: Calibration Approach Accounting for Intrinsic and Stress-Induced Anisotropy 
 

 

 
 

175 

 

Figure 4.16. Model predictions versus experimental data from drained triaxial 

compression tests on Fontainebleau sand (K
0
 =1) by Dupla et al. (2010): (a) p

0
= 100 kPa 

and D
r
 = 81.5 %, (b) p

0
= 200 kPa and D

r
 = 65.6 %, (c) p

0
= 400 kPa and D

r
 = 65.9 % and (d) 

p
0
= 400 kPa and D

r
 = 46.5 %. 
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Figure 4.17. Comparison between: (a) experiments and (b) predictions performed with 

the initial version of the model based on triaxial compression tests (Table 4), which does 

not account for stress-induced anisotropy. 
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Figure 4.18. Model predictions versus experimental data from undrained  simple shear  

tests on Toyoura sand with  isotropic consolidation state, K
0
 = 1,

   
by Yoshimine et al. 

(1998) for p
0
= 100 kPa. 
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Figure 4.19. Model predictions versus experimental data from drained torsional simple shear  tests (lateral strains equal to zero) on 

Toyoura sand with K0 = 0.52e0 by Pradhan et al. (1988): (a) p0 = 100 kPa for various Dr0 , (b) Dr0 ≈ 48 % for various p0 and (c) p0 = 30 kPa 

for various Dr0. 
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Figure 4.20. Relationship between α and b parameters during a drained direct simple shear tests with K0 = 0.52e0 by Pradhan et al. 

(1988): Comparison of new plastic flow rule of Eq. (4.13) and commonly used in literature flow rule of Eq. (4.60) against experimental 

data. 
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Figure 4.21. Model predictions versus experimental data from undrained simple shear tests on Toyoura sand with anisotropic 

consolidation state (K
0
 = 0.5)

   
by Yoshimine et al. (1998) for p

0
= 133.3 kPa: (a) D

r
 = 37.4 %, (b) D

r
  = 31.3% and (c) D

r
 = 25.5 %. 
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Figure 4.22. Evolution of parameters α and b versus deviatoric stress, σ1 – σ3, for 

undrained simple shear tests with K0 = 0.5 by Yoshimine (1998) of Figure 20: Model 

predictions versus experimental data. 

 



 
 
 

Chapter 5: Conclusions 
 

 

 
 

182 

 

Figure 4.23. Model predictions versus experimental data from undrained triaxial 

extension tests on Toyoura sand with isotropic consolidation state (K
0
 = 1)

   
by Yoshimine 

et al. (1998) for various values of initial relative density, D
r0

 and mean effective stress, p
0
. 



 
 
 

Chapter 4: Calibration Approach Accounting for Intrinsic and Stress-Induced Anisotropy 
 

 

 
 183 

 

Figure 4.24. Model predictions versus experimental data from undrained tests on Toyoura sand with variation of b by Yoshimine et al. 

(1998) for p
0
= 100 kPa and D

r0
 = 31-34 %: (a) experiments and (b) model predictions. 
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Figure 4.25. Model predictions versus experimental data from undrained tests on Toyoura sand with variation of rotation angle α by 

Yoshimine et al. (1998) for p
0
= 100 kPa and D

r0
 = 39-41 %: (a) experiments and (b) model predictions. 
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Figure 4.26. Model predictions versus experimental data from drained torsional tests on Fontainebleau sand (K
0
 =1) by Georgiannou et al. 

(2008) : (a) p
0
= 75 kPa and D

r
 = 45.2 %, (b) p

0
= 130 kPa and D

r
 = 42.8 % and (c) p

0
= 215 kPa and D

r
 = 45.2 %. 
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Figure 4.27. Model predictions versus experimental data from undrained torsional tests on Fontainebleau sand (K
0
 =1) by Georgiannou et 

al. (2008) : (a) p
0
= 75 kPa and D

r
 = 37.5 %, (b) p

0
= 130 kPa and D

r
 = 41.2 %, (c) p

0
= 130 kPa and D

r
 = 52.3 % and (d) p

0
= 215 kPa and D

r
 = 

37.5 %. 
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CHAPTER  5 

Conclusions  
 

 

In retrospect, a complete novel constitutive model for sand has been proposed as an 

alternative plasticity formulation that exhibits critical state consistency for both 

monotonic and cyclic loading and uniqueness of its parameters for a given type of sand, 

irrespective of loading conditions. The model, designated as Ta-Ger sand model is based 

on a reformulation of perfect elastoplasticity by introducing a hardening law inspired 

from Bouc-Wen hysteresis. The proposed formulation incorporates many innovations 

intended to provide critical state consistency not only for monotonic but also for cyclic 

loading and uniqueness of model parameters for a given type of sand: 

 

 a new plastic flow rule based on a revision of Rowe dilatancy theory (1962), 

accounting for anisotropic distribution of dilatancy to the normal plastic strain 

increments, as well as densification due to cyclic loading, 

 a mapping rule and load reversal criterion based on the first order work, inspired 

from Bouc-Wen hysteresis 

 a new formulation for the evolution of the bounding and phase transformation 

surfaces as a function of the cumulative deviatoric strain increment, ensuring 

critical state consistency not only for monotonic but also for cyclic loading.  
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The developed constitutive formulation can be regarded as a bounding single-surface 

model with vanished elastic region and the distinguished characteristic of an explicitly 

formulated plastic matrix instead of a plastic modulus. The explicitly formulated plastic 

matrix plays a triple role:  

 it offers a gradual and smooth (“hardening-type”) transition from the elastic to 

perfectly plastic response in order to capture pre-failure nonlinearity and the 

coupling between elastic and plastic counterparts composing the total strain 

increment,  

 it provides an appropriate loading/unloading/reloading mapping rule by tracking 

the distance from the ultimate perfectly plastic state as defined by the failure 

surface, which herein, serves as a bounding surface, and 

 its terms attain values that are strictly bounded within the range of [0,1].  

 

An extensive calibration procedure has been developed aiming at: 

 increasing model predictability,  

 minimizing the number of unknown model parameters, 

 addressing intrinsic and stress-induced anisotropy. 

 

Constitutive formulation was adjusted to Bolton’s (1986) empirical correlations for 

dilatancy, given as a function of relative dilatancy index, Ir; the latter works as a state 

parameter in the constitutive framework. This step reduced the number of unknown 

model parameters to three, besides the ones related directly to measurable physical 

properties, such as critical state friction angle and elastic modulus. At this stage, the 

remaining three unknown parameters were expressed as functions of the initial state 

(relative density and pressure), while inherent fabric effects (such as particle shape, size 

and packing) on the calibration process are considered. At last, stress-induced anisotropy 

was dealt with introducing a scalar-valued variable in the model, a function of principal 
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stress rotation angle, α, and the intermediate stress parameter, b, without affecting the 

number of unknown model parameters.  

 

Validation against experimental data was performed in every step for various drained 

and undrained loading paths in a wide range of α, b values, as well as initial states, for 

three different types of sand (Toyoura, Fontainebleau, Sacramento–River). Comparison 

with experiments reveals the capability of the model to describe complex patterns of 

sand behavior, such as densification, cyclic hardening, as well as liquefaction due to cyclic 

loading at very large strains (e.g. γ > 8%) without exhibiting shear locking. 
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APPENDIX 

 

 
Elasticity matrix: 

 

1 2 2

2 1 2

2 2 1
e

E E E 0 0 0

E E E 0 0 0

E E E 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G

 
 
 
 
 

  
 
 
 
  

E   (5.1) 

where: 

 
1

4G
E K

3
    (5.2) 

and 

 
2

2G
E K

3
    (5.3) 

in which, G and K are the elastic shear and bulk moduli, in respect. 
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Deviatoric Stress: 

  2q J  (5.4) 

where 2J  is the second deviatoric stress invariant: 

        2 2 2 2 2 2
2 11 22 33 12 23 31

1 1 1
: ( 2 2 2 )

2 2 2
ij ijJ s s s s s s s ss s  (5.5) 

where  ps σ Ι  is the deviatoric stress tensor and 
   

 11 22 33

3
p  is the mean 

effective stress. 

The second deviatoric invariant can be also defined (after calculations) as: 

                   
2 2 2 2 2 2

2 11 22 22 33 33 11 12 23 31

1
( ) ( ) ( )

6
J  (5.6) 

Thus, the deviatoric stress q, can be written according to Eqn. (5.5) as: 

       1/2 2 2 2 2 2 2 1/2
11 22 33 12 23 31

3 3
( : ) ( 2 2 2 )

2 2
q s s s s s ss s  (5.7) 

and according to Eqn. (5.6) as: 

                   
1/22 2 2 2 2 2

11 22 22 33 33 11 12 23 31

1
( ) ( ) ( ) 6 6 6

2
q  (5.8) 

 

Deviatoric Strain (equivalent strain) 

 

 

1 22 2 2
1 2 2 2 2

11 22 33 12 23 31
2 2 2 2 2

3 3 3 3 3

/

/
:

p p p
q

ε ε ε
ε ε ε ε ε ε ε

      
               
       

e e

 (5.9) 

where 11 22 33pε ε ε ε    and 
3

pε
 e ε I  

or (after calculations) 
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      
1 22 2 2 2 2 2

11 22 22 33 33 11 12 23 31

1
2 2 2 12 12 12

3
qε ε ε ε ε ε ε ε ε ε         

 

/

 (5.10) 

or, considering that 
2

ij
ij ij

γ
ε e  when i j   

      
1 22 2 2 2 2 2

11 22 22 33 33 22 12 23 31

1
2 2 2 3 3 3

3

/

qε ε ε ε ε ε ε γ γ γ         
 

 (5.11) 

 

Principal stresses 

 

  21
1 1 2

I 2
I 3I cos

3 3
       (5.12) 

  21
2 1 2

I 2 2
I 3I cos

3 3 3



     

 
 
 

  (5.13) 

  21
3 1 2

I 2 4
I 3I cos

3 3 3



     

 
 
 

  (5.14) 

where 

 

 

3
1 1 1 2 3

3
2 2
1 2

2I 9I I 27I1
cos

3
2 I 3I





 
 



 
 
 
 
 

  (5.15) 

 1 11 22 33I       (5.16) 

 
2 2 2

2 11 22 22 33 33 11 12 23 31
I             (5.17) 

 11 22 33 11 22 33 12 23 31

2 2 2
3 23 31 12I 2                  (5.18) 

The quanties I1, I2, I3 are stress invariants. 
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Failure/Bounding Surface 
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s n n r n

p

s,θ1/2

p p

s,θ s,θ s,θ

p : 2
M p 0

3p : p

2 2 2
: M p 0 : M 0 : M 0

3 p 3 3

 
 

  

 

        (5.19) 

where  

 
 

   

 p p

1/2

p p
p

p p

qp : p


 
 

 


 

s r s r
n

s r s r
  (5.20) 

where 

 

   
0.5

2 2 2
11,p p 22,p p 33,p p

11 22 33
p p p

2 2 2
12,p 23,p 31,p

12 23 31
p p p

1/2

p p p

σ p σ p σ p
σ p p σ p p σ p p

p p p

p
σ σ σ

2 σ p 2 σ p 2 σ p
p p p

q p : p

q

  
  

        
             
      
      
 

     
           
      

      

 s r s r

 (5.21) 
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Properties of tensor n 

 

 

 

11 22 33

11,p p 22,p p 33,p p
11 22 33

p p p p

11 22 33 11,p 22,p 33,p p
p p

tr n n n

σ p σ p σ p1
σ p p σ p p σ p p

q p p p

1 p
σ σ σ 3p σ σ σ 3p 0

q p

 
 
  

 
 
  

   

  
         

        

n

(5.22) 

 

2 2 2 2 2 2 2
11 22 33 12 23 31

2 2 2

11,p p 22,p p 33,p p
11 22 33

p p p

2 2 2 2
p

12,p 23,p 31,p
12 23 31

p p p

tr : n n n 2n 2n 2n

σ p σ p σ p
σ p p σ p p σ p p

p p p1

q σ σ σ
2 σ p 2 σ p 2 σ p

p p p

     
     
     
     

     
     
     
     

       

  
        



     

n n n

2
p
2
p

q
1

q




 
 
 
 
 



 

 (5.23) 
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Gradient of the failure/bounding surface of Eq. (5.19) 

The volumetric parts: 

 

11,p p 11,p p
f,11 11

11 p p p

22,p p 22,p p
22

p p p

33,p p 33,p p
33

p p p

12,p
12

p p

σ p σ p1 1 1
2 σ p p 1

2q p 3 3 p

σ p σ p1 1 1
2 σ p p

2q p 3 3 p

σ p σ p1 1 1
2 σ p p

2q p 3 3 p

σ2
2 σ p

2q p

f
Φ

σ

   
       

  
  

   
       

  
  

   
       

  
  


 





 

12,p 23,p 23,p
23

p p p p

31,p 31,p
31 s,θ p

p p p

11,p p
11

p
11 22 33 11,p 22,p 33,p p

p p p

σ σ σ1 2 1
2 σ p

3 p 2q p 3 p

σ σ2 1 1 2 1
2 σ p M n

2q p 3 p 3 3 3

σ p
σ p p

p 1 p
σ σ σ 3p σ σ σ 3p

q 3q p

    
         

     
     

  
       

  
  


 

 
         

 

11,p p 11,p p 22,p p 22,p p
11 22

p p p p

33,p p 33,p p 12,p 12,p
33 12

p p p p p

23,p 23
23

p

σ p σ p σ p σ p
σ p p σ p p

p p p p

σ p σ p σ σ1
σ p p 2 σ p

3q p p p p

σ σ
2 σ p

p




        
          

     
     

      
          

     
     

 
 

 
 

,p 12,p 31,p
31

p p p

11,p p
11

p
s,θ p p s,θ p

p

11,p p
11

p
s,θ 11 s,θ

p

σ σ
2 σ p

p p p

σ p
σ p p

p1 2 1 1 1 2 1
M n n M n

3 3 3 q 3 3 3 3

σ p
σ p p

p 1 2 1 2
M n M

q 3 3 3 3

 
 
 
 
 

 
 
 

          
     

     


 

      


 

   

    

(5.24) 

Combining Eqs. (5.19) and (5.24): 

 f,11 11
1

n :
3

Φ   r n   (5.25) 
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where 

 

11,p p 22,p p11 22
11 22

p p

33,p p 12,p33 12
33 12

p p p

23,p 31,p23
23 31

p p

σ p σ pσ p σ p
σ p p σ p p

p p p p

σ p σσ p σ1
: σ p p 2 σ p

q p p p p

σ σσ
2 σ p 2 σ p

p p p

        
                   

       
                    

   
         

r n

31σ

p

 
 
 
 
 
 
 
 

  
      

  (5.26) 

In the same logic, 

 
22 22f,

1
n :

3
Φ   r n   (5.27) 

 
33 33f,

1
n :

3
Φ   r n   (5.28) 

The deviatoric parts: 

 

12,p
12

p12,p
f,12 12 12

12 p p p

σ
2 σ p

pσ2
2 σ p n

2q p q

f
Φ 2

σ

 
 

    
    

 
 





  (5.29) 

 

23,p
23

p
f,23 23

23 p

σ
2 σ p

p
n

q

f
Φ 2

σ

 
 

 
 

 





  (5.30) 

 

31,p
31

p
f,31 31

31 p

σ
2 σ p

p
n

q

f
Φ 2

σ

 
 

 
 

 





  (5.31) 
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Gradient of the plastic potential surface  

The volumetric parts: 

 

 

 

 

2 2 2
11 11 12 13

11

2 2 2
22 22 12 23

22

2 2 2
33 33 13 23

33

g 11

g 22

g 33

g
Φ

σ

g
Φ

σ

g
Φ

σ

n n n n

n n n n

n n n n

d

d

d

 

 

 

 

 

 













,

,

,

 (5.32) 

The deviatoric parts: 

 

 

 

 

12 11 12 22 12 31 23
12

23 12 31 22 23 23 33
23

31 11 31 12 23 31 33
31

g 12

g 23

g 31

2

2

2

g
Φ

σ

g
Φ

σ

g
Φ

σ

n n n n n n n

n n n n n n n

n n n n n n n

d

d

d

 

 

 

 

 

 













,

,

,

 (5.33) 

 

Elasto-plastic Matrix 
ep
hE  

 

 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

ep
h

A A A A A A

B B B B B B

C C C C C C

D D D D D D

E E E E E E

F F F F F F

 
 
 
 

  
 
 
 
  

E  (5.34) 
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11 1 2 3 4 5 6 11

22 1 2 3 4 5 6 22

33 1 2 3 4 5 6 33

12 1 2 3 4 5 6 12

23 1 2 3 4 5 6 23

31 1 2 3 4 5 6 31

dσ A A A A A A dε

dσ B B B B B B dε

dσ C C C C C C dε

dσ D D D D D D dε

dσ L L L L L L dε

dσ F F F F F F dε

     
     
     
     

     
     
     
     
          

 (5.35) 

 

The components of the elastoplastic matrix are given by: 

 

  

  

  

 

n

1 1 f ,11 1 f ,22 2 f ,33 2 g,11 1 g,22 2 g,33 2

n

2 2 f ,11 2 f ,22 1 f ,33 2 g,11 1 g,22 2 g,33 2

n

3 2 f ,11 2 f ,22 2 f ,33 1 g,11 1 g,22 2 g,33 2

n

4 g,11 1 g,22 2 g,33 2 f ,

ζ
A E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
A E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
A E Φ E Φ E Φ E Φ E Φ E Φ E

S

2Gζ
A Φ E Φ E Φ E Φ

S

     

     

     

   

 

 

12

n

5 g,11 1 g,22 2 g,33 2 f ,23

n

6 g,11 1 g,22 2 g,33 2 f ,31

2Gζ
A Φ E Φ E Φ E Φ

S

2Gζ
A Φ E Φ E Φ E Φ

S

   

   

 (5.36) 

 

 

  

  

  

 

n

1 2 f ,11 1 f ,22 2 f ,33 2 g,11 2 g,22 1 g,33 2

n

2 2 f ,11 2 f ,22 1 f ,33 2 g,11 2 g,22 1 g,33 2

n

3 2 f ,11 2 f ,22 2 f ,33 1 g,11 2 g,22 1 g,33 2

n

4 g,11 2 g,22 1 g,33 2 f ,

ζ
B E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
B E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
B E Φ E Φ E Φ E Φ E Φ E Φ E

S

2Gζ
B Φ E Φ E Φ E Φ

S

     

     

     

   

 

 

12

n

5 g,11 2 g,22 1 g,33 2 f ,23

n

6 g,11 2 g,22 1 g,33 2 f ,31

2Gζ
B Φ E Φ E Φ E Φ

S

2Gζ
B Φ E Φ E Φ E Φ

S

   

   

 (5.37) 
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  

  

  

 

n

1 2 f ,11 1 f ,22 2 f ,33 2 g,11 2 g,22 2 g,33 1

n

2 2 f ,11 2 f ,22 1 f ,33 2 g,11 2 g,22 2 g,33 1

n

3 2 f ,11 2 f ,22 2 f ,33 1 g,11 2 g,22 2 g,33 1

n

4 g,11 2 g,22 2 g,33 1 f ,

ζ
C E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
C E Φ E Φ E Φ E Φ E Φ E Φ E

S

ζ
C E Φ E Φ E Φ E Φ E Φ E Φ E

S

2Gζ
C Φ E Φ E Φ E Φ

S

     

     

     

   

 

 

12

n

5 g,11 2 g,22 2 g,33 1 f ,23

n

6 g,11 2 g,22 2 g,33 1 f ,31

2Gζ
C Φ E Φ E Φ E Φ

S

2Gζ
C Φ E Φ E Φ E Φ

S

   

   

 (5.38) 

 

 

 

 

 

n

1 f ,11 1 f ,22 2 f ,33 2 g,12

n

2 f ,11 2 f ,22 1 f ,33 2 g,12

n

3 f ,11 2 f ,22 2 f ,33 1 g,12

n

4 f ,12 g,12

2 n

5 f ,12 g,23

2 n

6 f ,12 g,31

2Gζ
D Φ E Φ E Φ E Φ

S

2Gζ
D Φ E Φ E Φ E Φ

S

2Gζ
D Φ E Φ E Φ E Φ

S

2Gζ
D 2G 1 Φ Φ

S

4G ζ
D Φ Φ

S

4G ζ
D Φ Φ

S

   

   

   

 
  

 

 

 

 (5.39) 
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 

 

 

n

1 f ,11 1 f ,22 2 f ,33 2 g,23

n

2 f ,11 2 f ,22 1 f ,33 2 g,23

n

3 f ,11 2 f ,22 2 f ,33 1 g,23

2 n

4 f ,23 g,12

n

5 f ,23 g,23

2 n

6 f ,23 g,31

2Gζ
L Φ E Φ E Φ E Φ

S

2Gζ
L Φ E Φ E Φ E Φ

S

2Gζ
L Φ E Φ E Φ E Φ

S

4G ζ
L Φ Φ

S

2Gζ
L 2G 1 Φ Φ

S

4G ζ
L Φ Φ

S

   

   

   

 

 
  

 

 

  (5.40) 

 

 

 

 

 

n

1 f ,11 1 f ,22 2 f ,33 2 g,31

n

2 f ,11 2 f ,22 1 f ,33 2 g,31

n

3 f ,11 2 f ,22 2 f ,33 1 g,31

2 n

4 f ,31 g,12

2 n

5 f ,31 g,23

n

6 f ,31 g,31

2Gζ
F Φ E Φ E Φ E Φ

S

2Gζ
F Φ E Φ E Φ E Φ

S

2Gζ
F Φ E Φ E Φ E Φ

S

4G ζ
F Φ Φ

S

4G ζ
F Φ Φ

S

2Gζ
F 2G 1 Φ Φ

S

   

   

   

 

 

 
  

 

  (5.41) 

where: 

   

 

     

g,11 1 f ,11 2 f ,22 2 f ,33 g,22 2 f ,11 1 f ,22 2 f ,33

g,33 2 f ,11 2 f ,22 1 f ,33

g,12 f ,12 g,23 f ,23 g,31 f ,31

S Φ E Φ E Φ E Φ Φ E Φ E Φ E Φ

Φ E Φ E Φ E Φ

2G Φ Φ 2G Φ Φ 2G Φ Φ

     

   

  

 (5.42) 
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Boundary and Loading conditions of Element Tests 

 

All the calculations for model predictions of various experimental tests were based on 

solution of Eq. (5.35). For each test six known variables (stress or strain increments) were 

needed for the solution. In the following, the boundary and loading conditions of each 

type of test are given: 

 Conventional Drained Triaxial Test 

(1): 22 33dε dε  

(2): 22 33 0dσ dσ   

(3): 11dε known (imposed) 

(4): 12 0dσ   12 0dε   

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   

 

 Conventional UNDrained Triaxial Test 

(1): 22 33dε dε  

(1): 11dε known (imposed) 

(3): 11
11 22 33 11 22 222 0

2

dε
dε dε dε dε dε dε        

(4): 12 0dσ   12 0dε   

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   
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 P-constant Drained Triaxial Test 

(1): 22 33dε dε  

(2): 11
11 22 33 11 22 220 2 0

2

dσ
dσ dσ dσ dσ dσ dσ         

(3): 11dε known (imposed) 

(4): 12 0dσ   12 0dε   

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   

 

 Drained Direct Simple Shear test 

(1): 22 0dε   

(2): 33 0dε   

(2): 11 0dσ   

(3): 12dε known (imposed) 

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   

 

 Undrained Direct Simple Shear test  

(1): 11 0dε   

(2): 22 0dε   

(3): 33 0dε   

(4): 12dε known (imposed) 

(5): 23 0dσ   23 0dε   



 
 
 

Appendix 
 

 

 
 

204 

(6): 31 0dσ   31 0dε   

 

 Drained Simple Shear test (p constant)  

(1): 11 0dσ   

(2): 22 0dσ   

(3): 33 0dσ   

(4): 12dε known (imposed) 

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   

 

 Undrained Simple Shear test with fixed α, b values 

(1): 11 22 33 0dε dε dε    

(2): 12dε known (imposed) 

(3): α known 

 

1 12 12

22 11 22 11

12
22 11

2 21
tan tan(2 )

2

2d
d d

tan(2 )

  
    

    


    



 
 
 

  

(4): b known   
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 

 

 
 

 

 
 

 
 

2 3 33 11 22

2
1 3 222 11

12

2

212 11 22
12 33

12

11 22
33 12

2

212
12

/ 21
b 1

2

2

2b 1
tan 2 2

1
1

tan 2d d
d 2b 1 d

2 2

tan 2

      
   
   

 

   
      



 
 

     


 



 
 
 
 

    
  

 
 
 

 
 
 

 
 
 

  

(5): 23 0dσ   23 0dε   

(6): 31 0dσ   31 0dε   

 


