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2ToUG yoVveic uou,

Quwrtewvn kat Avépea






MpoAeyoueva

Zekwvwvtag, Ba nBela va suyxoplotiow tov Kabnyntr pou, NMwpyo lkaléta, ywo tnv
OUVEXH UTIOOTNPLEN TOU KoL TNV EWMLOTOCUVN TIou pou £6ele. Me evBappuve mavta va
0.0X0ANOw pE TNV £pEUVA TTOU HOU APECE KOL HOU XAPLOE AmMAOXEPA EVKALPLEG va avoifw
TOUC EPEUVNTIKOUC HoU opillovieg péoa amd tafidla, CUMUETOXEC O OUVESPLA Kal
KUPLWG, TO HOIPAOUO TWV EUTIELPLWV KOL TWV YVWOEWV TOU. O ElHAL TIAVTA EUYVWHWV.

Itnv ouvéxela, Ba nBela va otabw otnv ocuvepyacia pou pe tov Niko MepoAupo, Tov
omolo mAéov acBavopat oav owkoyevela. Niwbw otL 6,TL kat av ypapw Ba sivat Alyo...
Tov €EUXOPLOTW TIOU HOLPAOTNKE pall LOU TNV ACTELPEUTN YVWON TOU, TO EUPEUVNTIKO
Opapd Tou Kal ou SLEBece ameplOPLOTO XPOVO YLA VO LOU UETOSWOEL OXL LOVOV TOV
OVOAUTIKO TPOTO oKEYNG TOou, aAAA Ko NOIKEC apXEC Kal agieg.

Eniong, euxaplotw tov Kabnyntn, lwavvn Aadoaild, wg Tov MpwTo AvBpwro mou Hou
6i6age to avtikeipevo pe To omoio aoyxoAnbnka otnv Atatplpr) pou, tTnv Bewpla tng
TAQOTIKOTNTAG. YIAPEE TtNyr €UMVEUONG.

210 onueio auto, Ba NBeAa va eUXOPLOTACW KOL TA UTTOAOLTIAL LEAN TNG EEETAOTIKAG LOU
ETUTPOTIAG yla TNV OUVELoPOPA TOUG OTNV OAOKANPWON TNG mapoloas ATplpng: K.
MNavaywwtn NtakoUAa, K. BAaon Koupouon, k. AxtAAéa Mamadnuntpiou kat k. Gioacchino
Viggiani.

MNpoxwpwvtag, Ba nBeia va avadepbBw otoug Ppiloug kat cuvadéAdoug pe Toug omoloug
HOLPAOTNKAUE QyWVIEG, Ayxn, XapEG Kal to (blo ypadeio, OAa autd ta xpovia. Asv eival
aA\oL amod Ttoug: Imupo MNavvakod, Maplavva AwAn kot Oavdaon Zadelpako. To tagidt
auTo bev Ba ATav To 810 MAOUGCLO O€ EUTELPLEC XWPLG auTOUC.

Y€ QUTHV TNV TIOPELA TWV TIEVTE €TWV, Snuoupynoa Kaloug ¢piloug, ot omoiol, o kaBévag
LLE TOV TPOTIO TOU, CUVEBOAQV OTNV TPAYHOTOTNOINoN AUTAC TNG AlaTtpLBNC, £lte HEOoWw TNG
nNOWKNC¢ umootnpPLEng, £ite péow tNG avtaAlaync anoPewyv ML TOU EMLIOTNUOVIKOU. Oa
nBela va fskiviow pe tnv Katepiva Asovtapn, tov Navvn XahovAo, tov BaciAn Apooco,
™V Kk Anuntpladn kat tnv Baowikrp Kapdoutoou. Toug guxaplotw AKPLVA yLa TNV
avidlotednp dpAia toug. Apéowg HeTd, Ba nBsda va avadEpw OVOUOOTIKA TOUG
ouvadéAdouc pou otov TopEd MEWTEXVIKAG KAl VO TOUC €UXOPLOTHOW Tou umnpéav
ouvodounopol og auto to talidl: Kwvotavtivo Kaooad, Kwvotavtivo T{Bako, Mavayuwtn
Jitapévio, AAEEavbpo Kaho, Anuntpn Aitoa, Mavlo Actepiou, QiAo Xoptn, Mavvn



Towana, Kwvotavtivo Mnalaio, Ayyeho Todton, lewpyla AyamouAdkn kot Aven
Paxuavn.

Oa NTav peyain mapdAsupn va pnv euxaplotiow ek Baboug kapdiag Toug Kovtvoug Hou
avBpwrmoug Kal 1o Beppolc umootnpLkteG pou: EAca Kokota, Katepiva ZiwtomouAou,
Avtwvia Makpa, Maphio MtaAdon, AAe€ia Ztepyiou, Aévia Moka, NikoAa MamanAiou,
Mapiva T{wptlakdakn kot Niko KaAaBa.

KAeivovtag, euxaplotw toug yoveig pou, Qwtewv kot AvEpEa, TOUG TILO ONUAVTLKOUG
avBpwroug otn {wr Hou.
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Me emipUAagn mavtog SIKALWUATOC.

Anayopevetal n avuypaen, n anodnikeuon oe apxeio nmAnpowopiwv, n Siavoun, n
avarapaywyn, n UETAQpacn n uetadoon tne mapouvoac epyaciacg, €€ oAokAnpou n
TUNUATOC QUTHG, YLO EUTTOPLKO OKOTTO, UTTO OTTOLAONTIOTE UOPPN KAl UE OTTOLOSHTIOTE UETO
ETKOVWVING, NAEKTPOVIKO 1 UNXOVIKO, XWPIC TNV TPONYyoULEVn Eyypopn adelx tou
ouyypapea. EmTpEnetal n avamapaywyn, amnodnkeuon kat diavoun yia OKOmo un
KEPOOOKOTILKO, EKTTALOEUTIKNC 1) EPEUVNTIKAC QUONG, UmMO TNV mnpolmodeon va
QVOQEPETAL N TINYN TMPOEAEUONC Kal va Slatnpeital To mopov unvuud. Epwtnuata mou
QaPOoPOoUV OTn Xpnon tng epyacioc yia KEpSOOKOMIKO OKOMO MPEMEL va amevduvovtal

TIPOC TO CUYYpPAPEQL.

H gykpion tn¢ dtbaktopikrc dStatpiBric amo tnv Avwrtatn ZxoAn MoAitikwyv Mnxavikwy Tou
ESvikou MetodBiou [MoAuteyveiou 6bev umobnAwvel amoboxn Twv amoYewv TOU

ovyypapéa (N. 5343/1932, ApGpo 202).
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“Development and Calibration of Constitutive Model for Sand”
DOCTORAL DISSERTATION

Panagiota Tasiopoulou

ABSTRACT

The behavior of granular materials has been extensively studied in literature. After
numerous experimental observations, it has become common knowledge that sand
tends to undergo shear-induced volume change until a critical state is reached, upon
which shearing occurs with no volumetric change. Whether shearing tends to develop
positive (contraction) or negative (dilation) volume change depends on the initial state of
the material relative to the critical state which is a function of the relative density and the
confining pressure. In case of undrained loading, the tendency for contraction (loose
sand) is translated into a decrease of mean effective stress, whereas tendency for
dilation (dense sand) results in increase of mean effective stress. Besides the elimination
of volume change upon shearing, another characteristic of critical state is the occurrence
of a residual friction angle, equivalent to the critical state line in triaxial space, being
unique for all initial states.

While the above behavior can be clearly identified under monotonic loading, cyclic
response of sand is quite complex and contradictive with respect to the critical state
concept. Critical state, as it is strictly defined in void ratio versus mean effective stress
plane, is never reached. In particular, drained cyclic loading results in positive cumulative
volumetric change either in case of dense or loose sand (densification). On the other

hand, if unlimited, undrained cyclic loading would lead to continuous decrease of mean
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effective stress, p, until zero (liquefaction). However, after a large number of loading
cycles, the critical stress ratio is reached under both drained and undrained conditions.
For example, in case of liquefaction it has been experimentally observed that cyclic
loading moves the stress paths towards the critical state line which coincides with the so-
called failure envelope at p = 0.

Apart from the dependency of their behavior on initial and critical states, granular
materials exhibit variations in their response, attributed to intrinsic and stress-induced
anisotropy. Intrinsic anisotropy is related with differences on their particle shape, size
and packing, known as fabric effects. Stress-induced anisotropy is associated with the
loading direction relative to the bedding plane, including principal stress rotation and
intermediate stress effects.

The behavioral diversity of sand for different loading conditions (drained/undrained,
monotonic/cyclic, direction), and different initial state and fabric, render its modeling a
difficult and challenging task. The suitability of the used constitutive model is evaluated
by its capability to capture at least the trends across all these conditions without
recalibration of its parameters for each specific case. Simplicity is needless to say a
desirable attribute. Too many parameters might increase the versatility of the model at
the risk, however, of losing its physical appeal.

A novel constitutive model for sand is developed as an alternative plasticity
formulation that exhibits critical state consistency for both monotonic and cyclic loading
and uniqueness of its parameters for a given type of sand, irrespective of loading
conditions. The model, designated as Ta-Ger sand model (Tasiopoulou and Gerolymos,
2012, 2014), is based on a reformulation of perfect elastoplasticity by introducing a
hardening law inspired from Bouc-Wen hysteresis. The latter is a smooth hysteresis
model originally proposed by Bouc (1971), extended by Wen (1976), and used in random
vibration studies of inelastic systems. Since then, modified or extended versions of this
model have been extensively used in numerous structural (e.g. Sivaselvan and Reinhorn,
2000; Triantafyllou and Koumousis, 2012) and geotechnical applications (e.g. Pires et al.,

1989; Gerolymos and Gazetas, 2005). The developed constitutive formulation can be
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regarded as a bounding single-surface model with vanished elastic region and the
distinguished characteristic of a non-explicitly defined plastic modulus.

The goal is to provide a simpler but equally efficient scheme of high versatility. The
explicitly formulated plastic matrix, H, plays a triple role: (i) it offers a gradual and
smooth (“hardening-type”) transition from the elastic to perfectly plastic response in
order to capture pre-failure nonlinearity and the coupling between elastic and plastic
counterparts composing the total strain increment, (ii) it provides an appropriate
loading/unloading/reloading mapping rule by tracking the distance from the ultimate
perfectly plastic state as defined by the failure surface, which herein, serves as a
bounding surface, and (iii) its terms attain values that are strictly bounded within the
range of [0,1].

Salient features of the proposed plasticity approach are: (i) a new plastic flow rule
based on a revision of Rowe dilatancy theory (1962), accounting for anisotropic
distribution of dilatancy to the normal plastic strain increments, as well as densification
due to cyclic loading, (ii) a mapping rule and load reversal criterion based on the first
order work, inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the
evolution of the bounding and phase transformation surfaces as a function of the
cumulative deviatoric strain increment, ensuring critical state consistency not only for
monotonic but also for cyclic loading.

An extensive calibration methodology is then developed aiming at: (i) increasing
model predictability and (ii) minimizing the number of internal model parameters.
Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlations
for dilatancy, given as a function of relative dilatancy index, |;; the latter works as a state
parameter in the constitutive framework. This step reduces the number of unknown
model parameters to three, besides the ones related directly to measurable physical
properties, such as critical state friction angle and elastic modulus. At this stage, the
remaining three unknown parameters are expressed as functions of the initial state
(relative density and pressure), while inherent fabric effects (such as particle shape, size

and packing) on the calibration process are considered. At last, stress-induced anisotropy
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is dealt with introducing a scalar-valued variable in the model, a function of principal
stress rotation angle, a, and the intermediate stress parameter, b, without affecting the
number of unknown model parameters. Validation against experimental data was
performed in every step for various drained and undrained loading paths in a wide range
of a, b values, as well as initial states, for three different types of sand (Toyoura,
Fontainebleau, Sacramento—River). Comparison with experiments reveals the capability
of the model to describe complex patterns of sand behavior, as well as its versatility to
reproduce liquefaction due to cyclic loading at very large strains (e.g. y > 8%) without

exhibiting shear locking.
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EONIKO METZOBIO NOAYTEXNEIO
ZXOAH NMNOAITIKQN MHXANIKQN
TOMEAZ TEQTEXNIKHZ

“Avantuén kat BaOpovopnon Kataoctatikol Mpocopolwpatog yia
Appwén Edadn”

AIAAKTOPIKH AIATPIBH

Navaywwta TacltonovAou

NEPINHWH

H cuunepldpopd kokkwdwv edadwv €xel LeAetnBel emotapévwg otnv BiBAloypadia.
Meta amnod emavel\NUUEVEC TIELPAUATIKES TTAPATNPNOELS, £lval TTAEOV KOWVWCE YVWOTO TTWG
N AUUOG udiloTatal OYKOUETPIKEG apapopPwoEel UTIO Slatunon, €wg 6tou GTAcEL pia
Kplown kataotaon, MEPAV TNG OMOLNG KOO TIEPALTEPW OYKOUETPIKN allayr Oev
T(PAYUATOTOLEITOL TTOPA TN OUVEXLON TNG Slatuntikng ¢optwonc. To av n AUUoG, umo
Slatunon Kat mpw¢ otpayyOPeEVEG CUVONKEG, TElVEL va avamTtuéel BeTIKEG (OUOTAATLKN
ocuuneplpopd) A apvnTkEG (SLaOTOATIKY) cupmePLPOPA) OYKOUETPLKEG TTOPAUOPPWOELG
e€apTaTal amo TNV apxLKr TNG KOTAOTAON O 0XEoNn KE TNV Kpiown, n omola kabopiletatl
OO TNV OXETLKNA TNG TIUKVOTNTA KAL TNV LECN EVEPYO TAOH. YIIO 0lOTPAYYLOTEG CUVONKEC, N
TAON yla CUCTAATIKOTNTA (XoAapr Katdotaon) ekdnAwveal pEow Helwong TG HEon
EVEPYOU TAONG €W KOL TNV OTATIK PEUCTOMOLNGCN, EVW N TACN Yl SLAOTOATIKOTNTA
o6nyel tTeAdlka o avénon tnNg HEoNC evepyol TAONC. 2TNV KPLOLUN KATAOTOON, TIEPA ATTO
TO YEYOVOG OTL N Aupog udiotatal SLaTUNTIKEG TapapopdWOEL UTO otaBepd Oyko, N
SLOTUNTIKA TAON ATOKTA TUWEG TTou Kabopilovtal and pia XapakTtnpLloTiky ywvio TeBng
KPLOLUNG KOTOOTAONG, N OMOLA AVTILOTOLXEL OTNV YPAUUA KPLOLWWNG KATAOTOONG OTO XWPO
SLEKTPOTIKNAG TAONG, ¢, KAl HEONG EVEPYOU TAONG, P, Kol €lval povadikn ya OAd TLg

OPXLIKEC KATAOTAOELG (xaAapn r ukv AUUOG).
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Mapolou mou n mpoavadepBeioa cupnepidpopd pnopel va avayvwploBel pe sukoAia
0g OUVONKEC HOVOTOVIKAG $OPTIONG, N OVOKUKALKH OmOKplon tn¢ AUUOU €lvol o
TLeEPLMAOKN KoL eVOEXOUEVWE avTLhATLKN O oxEon e TNV Bewpla kplolung katdotaonc. H
Kplolun kataotaon, onwg opilleTal avotnpd oe OPouUG AOYOU KEVWV KoL UECNG EVEPYOU
TAoNnG, eV EMITUYXAVETOL TIOTE O OUVONKEC OVOKUKALKNAG HOPTIONC. JUYKEKPLUEVA, N
OVOKUKALKY doption unmd TANPwC oTpayyllOUeVEC OUVONKEG TIPOKOAEL &V YEVEL TNV
OUOOWPEUON OETIKWV OYKOUETPIKWY OoAAaywv (CUPMUKVWON) TOOO Of TEPUTTWON
XOAQPAG 000 KOl TIUKVAG QUOU. AvTioTolya, aVaKUKALK ¢$OPTION UMO AoTPAYYLOTEC
ouvOnkeg, odnyel o ouvexn Helwon NG HEONG EVEPYOU TAONC, SUVNTIKWG £WC KOL OTO
undeviopo tng (pevotomoinon). Ouwg, PETA amd kavo aplOpd KUKAwv ¢optiong, n
Kplolun kataotacn pnopet teAlka va emiteuxBel, aA\d povov og 6poug avtoxng, SnAadn
HEOW TNG Ywvia TPWPNC Kplowng kataoctaong. Mo mapadsypa, otnv mepimtwon
peuotomoinong, €xel SLamMIOTWOEL MEWPOAUATIKA TIwG N aAvAKUKALK $option Kvel tnv
TAOK 08gUCN TPOG TNV YPAUUN Kplowng koatdotacng, N alwg mepiBallovoa
aotoyiag ywa p = 0.

MNépa amd tnv efaptnon ¢ oUUmePLPOPAC TOUG Ao TNV aPXLKN Kol Kplolun
KaTAotaon, Ta KOKKwoN UALKA Tapouctalouv Sladopomolioelg oTn andkpLon Toug Tou
anodibovtal oe ¢awopeva eyyevolg aviootpormiag n/kal aviootpormia  Adyw
katevBuvong ¢optiong. H gyyevnc avicotporia opeiletal otig StadopEG 0TO OXNUA, TO
péyebog, Tnv dtataén, tnv dtafabuion KA. Twv KOKKwvY, dnAadn o datwvoueva doung. H
aviootporia AOyw katevBuvong ¢optiong oxetiletal pe TNV KateLBuvon TNG
eTBAAAOUEVNC HOPTIONG WG TIPOG To eMminedo amobeong f SlaoTpwudtwaong, TV otpodn
TWV KUpLWV a€OVWV Kal tnv enidpacn tng evdldpeong KUPLOG TACNC.

H e€€aptnon 1tng ouunepipopdg TNG AQUUOU amd TG ouvlinkeg optiong
(otpayyllopevn/aoTpayyLlotn, HOVOTOVIKA/avakukALKR, KatevBuvaon), TtTnv apxikn Kot
Kplown katdotoaon (xaAopn/mukvh) kot T dopn, KaBLotd tnv mpocopoiwon SUOKOAN
Kall amottnTikn. H KataAAnAOTNTA €VOG KOTAOTATIKOU TPOCOUOLWLATOC ATOTIHATAL Ao
TNV LKAVOTNTA TOU VO OVATIOPAYEL TIOLOTIKA TOUAAXLOTOV TIG mpoavadepBeloeg TAOELG

UTIO OA£C TIC ouVOnKeg, Xwplc va xpelaletal ek véou Pabuovopunon yla kaBs cuvOnkn
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gexwplotd. H eloaywyn TmpocOstwv Tapapétpwy  aufdvel TNV eveAiia  Tou
TIPOCOUOLWHOTOG UE KOOTOC, OPWC, TNV EVXPNOTLA TOU Kal TPoBAePLUOTNTA TOU.

‘Eva VEO KOTOOTATIKO Tipocopoiwpa yia appwdn edacdn avantuxbnke (Ta-Ger sand
model) w¢ pia evaAlaktiky Slatunwon tng Bewpia mAaotikotntag (Tasiopoulou and
Gerolymos, 2012, 2014). To mpooopoiwpa eival ouvemég pe tn Bewpla kplowng
KATAOTOONG TOOO Yla LOVOTOVLKA 0G0 KL yla avakukALK ¢option, evw xapaktnpiletal
oo UovadlkoTNTa TwV TIHWV TWV TAPOUETpWY TOu yla Sebopévo TUMO AUUOU
avefaptnta amo TG ocuvonkes ¢poptiong. OUCLACTIKA, TO MPOCOUOlWHA amoTEAEL pia
enavadlatunwon ¢ Bewplag TEAELAC €AOOTOMAOOTIKOTNTAC ELOAYOVTAG £VAV VOO
KPATUVONG EUNMVEUCUEVO QMO TO TPOCOUOLWMO OMAARG uotépnong, Bouc-Wen. To
TIPOCOMOlWHA aUTO OpXlKA Tipotddnke amo tov Bouc (1971) koL otnv GUVEXELA
enektadnke amd tov Wen (1976) koL XpnOLUOTORONKE ylo HEAETEC QATIOKPLONC
OVEAQOTIKWY CUCTNUATWY O TUXOLEG TOAQVTWOELG. ATIO TOTE, TPOTIOTIOLNUEVEG EKSOXEC
TOU TIPOCOUOUOLWHATOC Xpnotpomnoltnkav o dladopeg Sopootatikég (e.g. Sivaselvan
and Reinhorn, 2000; Triantafyllou and Koumousis, 2012) kol yewTeEXVIKEG EPaPUOYEGS (e.g8.
Pires et al.,, 1989; Gerolymos and Gazetas, 2005). To QVEMTUYUEVO KOTOOTOTLKO
npooopolwpa TG Tmapoloag epyaciag emiong mepllapPavel  pio  povadikn
nieplBarlovoa emidAVELD OPLOKAG AVIOXNG UE MNOEVIK EAQOTIKN TEPLOXN, KAOWG Ko
€va Un oodpwe OPLOUEVO HETPO TMAAOCTIKOTNTOG, OMWCE UTtayopeVEL n KAaolk Bewpila
TIAQOTIKOTNTAG, OAAQ QVTL AUTOU €va 0adwE OPLOUEVO TTAAOTIKO UNTPWO, H.

2toX0o¢ €ilval n mpotaon uiag amlouoteupévng oAAd €uéAkTnG Slatumwong Tou
TEAELOU EAOOTOTTAQOTIKOU UNTPWOU HECW TNG ELOAYWYNG TOU TTAOOTIKOU pntpwou, H. To
TAOOTIKO uNtpwo, H, €xeL évav TputAd poAo: (o) mpoodEpel pia otadlokn Kot opoAn
uetapaon (kpdtuvon) amd TNV EAACTIKA OTNV  TANPWG TAQOTIK  ATOKPLoN
QVATIOPAYOVTAG ETITUXWGS TNV HUN-YPOMUULIKOTNTO TPV TNV aoctoxia kat tnv oULleuén
EAQOTIKWV KOl TMAQOTIKWV emMauénTikwy mapapopdwoswy, (B) mapéxel éva kataAAnAo
vopo mpoBoAnc ¢optiong/anodoptiong/enavadoptiong Kkataypadovtag tThv TpEXoUCa
TOOLKA KOtAoTtacn oamd tnv emipavela aotoxiag, mou Aswtoupyel cav meplBarlovoa

0pLKNC avToxNG, Kal (y) oL 6pol Tou d€xovtal TIHEG Ppayuéveg oto Staotnua [0,1].
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AN BaoIKA XOPOKTNPLOTIKA TOU TIPOTELVOUEVOU TIPOCOUOLWHATOC £ival: (o) €vag
VEOG VOUOG TTAOOTIKAG pon¢ Baaolopévog otn Bewpia dtaotaAtikotntog tou Rowe (1962),
TIOU ETUTPETEL OVLOOTPOTIN KATAVOMNA TNG SLACTAATIKOTNTAG OTIS 0PBEG EMAUENTIKEG
napapopdwoelg, (B) €va vopo mpoBoAng cuvSUACUEVO UE €va KPLTAPLO aviloTtpodng
doptiong mou Baoiletal oto €pyo mMPwTNG TAENC, Kal (y) e€dptnon tou pubuou e€EALENG
™G mepBarlovoag empAVELNG OPLAKNG AVTOXAG Kat TnG emibavelag aAlayng ¢dong n
SLOOTOATIKOTNTOG ATO TNV CUCCWPEUTLKN SleKTpoTikr mapapopdwon, eEacdaliiloviag
emnitevén ¢ KploWWNG KATAOTAONG TOOO VL0 LOVOTOVIKEG OGO KOl AVOKUKALKEC OUVONKEG
dopTIOoNC.

Mia ektevric pebodoloyia BabBuovounong avamtuxbnke pe okomod: (a) tTnv avénon tng
tkavotntag mpoPAsdng kat (B) tnv Helwon Tou aplBpol TwV TAPOUETPWVY TOU
TIPOCOUOLWHOTOG. APXIKA, Ol EUTELPIKEC OUCXETIOELC SLAOTAATIKOTNTOC TOu Bolton
(1986), wg cuvaptnon tou oXeTkoU Seiktn StaotaAtikotntag, |, evowpatwbnkav oto
KATAOTATIKO TAAiOl0 Mpocopoiwong. 2e autd To otadlo, 0 aplOUOC TwWV AYVWOTWY
TIOPOUETPWY TOU TIPOCOUOLWHATOC UELWONKE Ot TPELS, XWPIC QUTEC TIou pTopolV va
OUOYETLOTOUV HE AUECA PETPNOLUEG GUOLKEC BLOTNTEG, OMWCE N ywvia TPBNC Kpiowng
KATAOTOONG KAL TO UETPO EAAOTIKOTNTAG. 2€ EMOMEVO OTASLO, OL TPEL EVOATIOUEVOUTES
TIAPAUETPOL €KDPACTNKOV OUVOPTACEL TNG OPXLKAG KOTAOTAONG (QPXIK OXETIKN
TIUKVOTNTA, OPXLIKN LEON EVEPYOC TAON), EVW N eMidpacn Twv davopévwy doung (onwg,
oxnua, Héyebog, Owataén KAM. KOKKwvV) otnv PBabuovouncn epsuvatal. TéAog, n
aviootporia AOyw kateuBuvong ¢OpTIONG TPOCEYYIOTNKE HE TNV El0AYWYN HLOG
BaBuwtnc petaBAnTic mou opilleTal wg ocuvaAPTNON TNG OTPOdrC TWV KUPLWV afdovwy, a,
KOl TNG TTOPAUETPOU yLa TNV eMidpaon tng evdlapeong KUPLOG Taong, b, xwplc va aAldaget
0 aplOUOC TWV TAPOUETPWY TOU TIPOCOUOLWHATOC. EmaAnBeuon Tou MPOCOUOLWUATOC
EVOVTL TIELPAATIKWY dedopévwy mpaypatonoldnke os kabe Brpa tng Babuovounong
yla Stadopeg 0devoelg doOPTIONC UG CUVONKEG TOOO TIANPWCE OTPAYYLWOUEVEG OCO Kall
O0OTPAYYLOTEG, OE €va PEYAAO €UPOC TILWV A, b, KAl OPXIKWV KOTOOTACEWV, Ylo TPELG
Tumou¢ dupou (Toyoura, Fontainebleau, Sacramento—River). H oUykplon Le melpdpata

avESeLEe TNV LKAVOTNTA TOU TIPOCOUOLWHOTOC OTO VO TIEPLYPAPEL EMITUXWG OUVOETEC
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TITUXEG TNG OUUTEPLPOPAC TNG AUUOU, OTWG TNV AvVATOpOywyn PEUcTomoinong Adyw
QVAKUKALKAG Slatnong o€ LEYAAEG mapapopdwoELS (e.g. v > 8%), xwpig va mapouaotdalel

«dlatuntiko kKAetdwpa» (shear locking).

25



Abstract/MepiAnyn

[ 26




Table of Contents

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION........ooiiiiiiiiiiieiiiie sttt sttt st ssae e e es 31
1.1 Problem DeSCriPtiON .....ccccccveeieeieeiiiieiirreeeee e e eeetreeeeeeeeseesstbrseeeeeeeeesesansraseeeeeessennnes 31
1.1.1 Monotonic Behavior of Sand ..........cccooiiiniiiiiiiieeeee e 31
1.1.2 Cyclic Behavior of SANd .........coiiiiiiiicieee e 34

1.2 Scope Of DISSErtation ......ccuuviiiiiiei e e e e e e e e et e e e e e e eanes 34
1.3 Structure of DiSSErtation .........coceeiieiiieiie e e 38

T =B LU 38
REFEIENCES ...ttt et s e s e s e re e sane e ne e 44

CHAPTER 2: DEVELOPMENT OF A MODIFIED ELASTOPLASTICITY MODEL FOR SAND IN

TRIAXIAL SPACE.........oouiiiiiiieiie ettt ettt ettt b et b e et e e bt e b e e et e et e e ent e e nneeanbeeneas 47
Y Y o X 1 o ot ST TSP UPPOPRPORPPPROPRO 47
2.1 INTFOAUCTION .ottt sttt e s e sn e s e r e san e e neeeaes 48
2.2 CoNSEItULIVE EQUAtIONS ... s e 49
2.2.1 Review of classical elastoplasiCity.....ccccceeeeceiiiiiieeee e 49
2.2.2 Modified elastoplasiCity .....cccciecciiiiieeee e 50
Hardening and Unloading-Reloading LAWS .............cccoevuveeeeeeeeeieeiiiieveeeeeeeeeesiinnnn, 50

EIQSEIC MOGUII.....c..eeeeeeeeeeeeeee e e 51

2.2.3 FOrmulation iN P=g SPACE ..ccivuiieeeiriieee e ciiee ettt e st e e e e e s sirr e e s e sare e e e s nraeae s 51
EIQSTIC MIQTEIX ..ottt ettt 51

Yield FUNCEION..........ooiiiiieiieeeeeeee et 52

FIOW RUIE........eeeeeeeeee ettt 53
Modified EIaStoOplaStic MOEEiX..........eeveeeeeeeeviueeiieieeeeeiisiirreeeeeseeiessiisereresesessssssnsens 54

2.2.4 Critical State CONCEPL.....vvieeieieie et et e e e sare e e e s saaeee s 56

2.3 MOdel PErfOrmManCe ......coouueiiiiiiiiiieeieee ettt s snee e 57

P N 6o Vol [V Y o] o K- PO 59



Table of Contents

[ T =] LT L TR 61
T A S e e e et ———eee—————e et et aet——atera——atena———aana——_ 63
F IS e e as 65

CHAPTER 3: CONSTITUTIVE MODELING FOR SAND IN MULTIAXIAL SPACE: A NEW

PLASTICITY APPROAGCH ....ooiiiiiei ittt ettt st e e ettt ettt e e e et e ee e e e e e e e e eeaarrreees 73
W 1Y o XX 1 1o [of SRR 73
0 R [0} o Yo 18 [ot 4 Lo o N ORI 73

.......................................................................................................................................... 76
3.3 Constitutive Model for Sand ........cocueeiieiiiiiieeeeeee e 81
3.3.1 Pre-Failure Parameters .........ccccerieiiieniieee e 81
3.3.2 Bounding Surface and Hardening Parameter  ........cccccevvuveeeeviiieeeiniieee e 82
3.3.3 Lode ANgle DEPENAENCY .oeieieieieiteeee ettt e e e et e e e e e e e e s nrrar e e e e e e e eeanes 84
3.3.4 Mapping Rule and Load Reversal Criterion .......cccccceeeiciiivieeee e ccciireeee e 84
3. 3.5 FIOW RUIE e s 86
3.3.6 Influence of Hardening EXPONENT N .....ccoovveiiiieeeieeiiieiiireeeeeee e eesirrreee e e e e eeaans 88
3.3.7 Evolution of bounding and phase transformation lines ........ccccccevviieeeininnenn. 90
Adopting Critical StAte CONCEPL ........oeeevecueeeeeeiiiieeeseiieeeeeeiteeeessieeeesssiaaesssisee e e 90
Using Relative Dilatancy Index as State Parameter ..............ccccceeeeeeeccvvvvennnanennnn, 92

3.4 Model Prediction Versus EXPeriments .....cccccccoiieiciiiiieiie e eernreee e 95
3.5 CONCIUSIONS ..ot r e saneeen e e 96
REFEIENCES ...ttt et e s e re e s e ne e 98
TABIES e e et e e st e st sbe e e sreeeeas 102
BB S e 104

CHAPTER 4: CALIBRATION APPROACH ACCOUNTING FOR INTRINSIC AND STRESS-INDUCED

ANISOTROPY ..ottt e et e et e e bt e e bt e e e e b b e e e ab b e e e abbe e e bbeeabbeesbneennbeee e 123

Y o X g Lo AU PPUPPPPROPPRP 123
7 o A o Yo [V 4 o T o F RSP 124



Table of Contents

4.2 Constitutive Model for Sand ..o 127
4.2.1 Constitutive FOrmulation ........ccocieiiiiiiiiiieieeeeee e 127
4.2.2 Bounding and Phase Transformation Ratios .........cccceevveeiiniiieeiiniiiee e 131

4.3 Calibration Approach for Triaxial CoOmpPression .......cccccoeeceiiieeeeeeieeccceeee e 133
4.3.1 ElaStic MOAUIT «..eeeeieiieeeeeee et 134
4.3.2 PEAK STrENZEN .uvvveeeieiieieceeee ettt e e e e e e et e e e e e e e e snaarreeraeeeens 134
L e B B 11 =1 = o oy VAR 135

4.4 Model Simulations Versus Data from Triaxial Compression Tests ........cccccceevuvneenn. 137
Lt R o Y Lo U = I T o Vo SRR 138
4.4.2 Sacramento RiVEr SaNd .......cocceiiiiiiiiiiiiiiicee e 140
4.4.3 Fontainebleau Sand ...t 141
4.4.4 Variations in calibration for different types of sand.........ccccccveeveeiiiiccnnveennnnnn. 142

4.5 Calibration for Stress-Induced ANISOTIOPY ....eveevviieiiiriiiieeiriiee e 143
4.5.1 Principal Stress Rotation and Intermediate Stress Parameters..........cccceee...... 143
4.5.2 Introduction of stress-induced anisotropy internal variables ............cccc........ 144
4.5.3 Model Simulations versus experiments on Toyoura sand .........ccccecccvvvvveeeennnn. 146

Simple SNEAT LOAGING ........uvveeeeeieeeeeieeiiieiee ettt eeee sttt e e e esssssasereaeaeas 146
Triaxial EXension LOAGING ..........cccuueeeeeeuueeeeesiiieeeessiieeeseiieeeessitaaeesisaeesssneaeans 147
Loading tests with fixed 0, b VAIUES ........cc..evveeeveeiieeeesiiiieeesiies e 148
4.5.4 Model Simulations versus experiments on Fontainebleau sand ..................... 148

4.6 CONCIUSIONS ettt s s e s s e s 149

REFEIENCES ...ttt sae e e s n e sane e 151

TABIES ettt sttt e st e sbe e sreeeaa 155

FIUE S ettt ettt e e e e e et et e e e e e e e e e et b e e e e e e e e e et e e eaeeaaeabb e eas 160

CHAPTER 5: CONCLUSIONS ...ttt 187

APPENDIX ... 191



Table of Contents

[ 30 L




Chapter 1: Introduction

CHAPTER 1

Introduction

1.1 PROBLEM DESCRIPTION

The behavior of sand has been extensively studied in literature both experimentally and
theoretically. Experimental observations provided an insight on the behavioral trends
and mechanisms developed under various loading conditions. These observations
constituted the basis upon which Critical State Theory by Roscoe et al. (1958) and
Schofield and Wroth (1968) was formulated, aiming to accommodate and interpret the
basic behavioral characteristics of sand. In the following, a review of the most
characteristic aspects of sand response is held within the framework of Critical State

Theory.

1.1.1 Monotonic Behavior of Sand

After numerous experimental observations, it has become common knowledge that sand
tends to undergo shear-induced volume change until a critical state is reached, upon
which shearing occurs with no volumetric change. Whether shearing tends to develop
positive (contraction) or negative (dilation) volume change depends on the initial state of

the material relative to the critical state which is a function of the relative density and the
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confining pressure. The critical state is defined by a surface formed in e-p-q space, which
is projected as a line (CSL) in the e-p and g-p planes; e being the void ratio, g the
deviatoric stress and p being the mean effective stress. Critical state is considered to be
unique for each type of sand. Figure 1.1 illustrates the critical state line (CSL) in e-p plane.
Initial loose states, located at the right-hand side of CSL, exhibit contractive behavior
which is reflected through reduction of: (i) void ratio, e, in case of drained p-constant
loading and (ii) mean effective stress, p, in case of undrained loading, until CSL is
reached. Dense states, located at the left-hand side, initially exhibit contractive response
until phase transformation line (PTL) is reached. Thereafter, dilative response dominates
which is interpreted as increase of: (i) void ratio, e, in case of drained p-constant loading

and (ii) mean effective stress, p, in case of undrained loading, until CSL is reached.

This kind of behavior is confirmed experimentally, as shown in Figure 1.2(a). As the initial
void ratio increases for a given initial confining pressure, the response tends to be more
contractive. In terms of stress-strain curves, a hardening type of response is observed
which becomes more intense as the initial void ratio increases. It should be noticed that
the void ratio reaches practically the same residual value, known as critical void ratio,
irrespectively of the initial value, as it is predicted by the Critical State Theory. It is also
worth mentioning that critical state is also reached in p-q space at large strains, as shown
by Figure 1.2(b). The stress ratio q/p reaches a unique residual critical stress ratio,

irrespectively of the initial conditions.

Apart from the dependency of sand response on the initial void ratio (or initial relative
density, D,), Figure 1.3 demonstrates the impact of initial confining pressure, p. For a
given initial relative density, the response becomes more dilative as initial confining
pressure decreases. In stress-strain terms, the effect of dilatancy is exhibited by an

increase in maximum obtained strength followed by strain softening.
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The tendency of positive (dilatancy) or negative (contraction) volumetric change in case
of drained loading conditions is expressed through increase or reduction of mean
effective stress, respectively, in case of undrained loading, as characteristically shown in
Figure 1.4. Experimental results of Figure 1.5 illustrate the behavioral trend under
undrained conditions for various initial relative densities and confining pressures. All the
evolving stress paths in p-q space converge to the critical state line, which works as a

failure envelope, until the ultimate critical stress state is reached.

So far, it has been shown that the behavior of sand is dependent on the relative position
of its initial state, in terms of initial density and means effective stress, to the critical
state line in e-p plane. However, experimental results depicted in Figure 1.6 indicate
dependency on the loading direction, for a given initial state. Despite the given constant
distance between initial state and CSL in e-p space, sand exhibits contractive behavior in
case of triaxial extension loading, while its response is dilative under triaxial compression

loading. This behavioral diversity is attributed to stress-induced anisotropy.

1.1.2 Cyclic Behavior of Sand

Cyclic behavior of sand presents certain differentiations when compared to the
monotonic response, which cannot be fully accommodated by the strictly defined Critical
State framework. For example, experiments confirm that irrespectively of the initial state
relative to the CSL in e-p space, sand exhibits only contractive behavior, in accumulative
terms, tending to reach the densest possible configuration, defined by minimum void
ratio, emin, under drained conditions, or reach zero values of mean effective stress under
undrained conditions, as shown in Figure 1.7. The first tendency leads to densification
and increase in strength/stiffness, known as cyclic hardening, (Figures 1.8-1.10), while
the latter one is associated with cyclic mobility and liquefaction effects (Figure 1.11(a)).

It should be mentioned, though, that the critical state concept applies in p-q space,
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where the critical stress ratio is reached at large strains, after a sufficient number of

cycles, irrespectively of the drainage conditions.

In other words, the dependency of sand behavior on the initial state relative to CSL in e-p
space is not reflected in the same way as in case of monotonic loading, where it
determines whether the response will be dilative or contractive. In case of cyclic loading,
the above mentioned dependency determines the number of loading cycles needed to
achieve either: (i) e = emin (drained conditions) or (ii) p = 0 (undrained conditions). The
correlation between number of cycles and initial relative density is shown in Figures 1.10

and 1.11(b).

1.2. SCOPE OF DISSERTATION

The scope of the Dissertation is to develop a unified versatile macroscopic constitutive
framework that can describe all the aforementioned different aspects of sand behavior
under various loading conditions. It is aimed that the proposed constitutive model can be
used in practice for relevant geotechnical problems. In this line of thought, minimizing
the number of model parameters is intended in order to enhance the usability and

applicability of the model.

1.3 STRUCTURE OF DISSERTATION

The Dissertation is structured in three main chapters, each corresponding to an
autonomous, self-contained, single paper that has either been published in a peer-
reviewed journal and/or conference proceedings, or is undergoing review. However, the
sequence of the chapters, as presented below, intends to propose an indicative path to
the reader, with each chapter appearing motivated or closely related, in logical order,

with the preceding ones.
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Chapter 2

This chapter presents a new constitutive model for sand in triaxial space for drained and
undrained behavior of sand under monotonic and cyclic loading conditions, with emphasis
on liquefaction. The model is based on a modified elastoplasticity scheme combining
features of: (a) the bounding surface plasticity, (b) the critical state concept, and (c) a
hardening evolution law and unloading-reloading rule inspired by smooth hysteresis
models, such as Bouc-Wen type. The model performance is demonstrated through a series
of simulations in p-g space, for all combinations (4 in total) of drained and undrained
loading with monotonic and cyclic loading. It is shown that the model is capable of
reproducing some basic aspects of sand behavior, such as static liquefaction, strain

softening, hysteretic loops and cyclic mobility.

Chapter 3

The above proposed formulation is extended in multiaxial space in Chapter 3. Thus, a
complete novel constitutive model for sand is proposed as an alternative plasticity
formulation that exhibits critical state consistency for both monotonic and cyclic loading
and uniqueness of its parameters for a given type of sand, irrespective of loading
conditions. The model, designated as Ta-Ger (Tasiopoulou — Gerolymos) sand model is
based on a reformulation of perfect elastoplasticity by introducing a hardening law
inspired from Bouc-Wen hysteresis. The latter is a smooth hysteresis model originally
proposed by Bouc (1971), extended by Wen (1976), and used in random vibration studies
of inelastic systems. Since then, modified or extended versions of this model have been
extensively used in numerous structural (e.g. Sivaselvan and Reinhorn, 2000;
Triantafyllou and Koumousis, 2012) and geotechnical applications (e.g. Pires et al., 1989;
Gerolymos and Gazetas, 2005). The developed constitutive formulation can be regarded
as a bounding single-surface model with vanished elastic region and the distinguished

characteristic of an explicitly formulated plastic matrix instead of a plastic modulus.
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The explicitly formulated plastic matrix plays a triple role: (i) it offers a gradual and
smooth (“hardening-type”) transition from the elastic to perfectly plastic response in
order to capture pre-failure nonlinearity and the coupling between elastic and plastic
counterparts composing the total strain increment, (ii) it provides an appropriate
loading/unloading/reloading mapping rule by tracking the distance from the ultimate
perfectly plastic state as defined by the failure surface, which herein, serves as a
bounding surface, and (iii) its terms attain values that are strictly bounded within the

range of [0,1].

Salient features of the proposed plasticity approach are: (i) a new plastic flow rule based
on a revision of Rowe dilatancy theory (1962), accounting for anisotropic distribution of
dilatancy to the normal plastic strain increments, as well as densification due to cyclic
loading, (ii) a mapping rule and load reversal criterion based on the first order work,
inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the evolution of the
bounding and phase transformation surfaces as a function of the cumulative deviatoric
strain increment, ensuring critical state consistency not only for monotonic but also for

cyclic loading.

Comparison with experiments reveals the capability of the model to describe complex
patterns of sand behavior, such as densification, cyclic hardening, as well as, liquefaction

due to cyclic loading at very large strains (e.g. y > 8%) without exhibiting shear locking.

Chapter 4

An extensive calibration methodology is developed in Chapter 4 aiming at: (i) increasing
model predictability and (ii) minimizing the number of internal model parameters.
Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlations
for dilatancy, given as a function of relative dilatancy index, |;; the latter works as a state

parameter in the constitutive framework. This step reduces the number of unknown
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model parameters to three, besides the ones related directly to measurable physical
properties, such as critical state friction angle and elastic modulus. At this stage, the
remaining three unknown parameters are expressed as functions of the initial state
(relative density and pressure), while inherent fabric effects (such as particle shape, size
and packing) on the calibration process are considered. At last, stress-induced anisotropy
is dealt with introducing a scalar-valued variable in the model, a function of principal
stress rotation angle, a, and the intermediate stress parameter, b, without affecting the
number of unknown model parameters. Validation against experimental data was
performed in every step for various drained and undrained loading paths in a wide range
of a, b values, as well as initial states, for three different types of sand (Toyoura,

Fontainebleau, Sacramento—River).
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Figure 1.3. Drained triaxial compression tests on loose and dense sand specimens under a

range of effective confining stresses (Lee and Seed, 1967).

150 . ‘
(a) Torsion test Failure line (¢, = 46°)
= Dr=75% L
% 100} ¢'= 43 |
-
?: PTL(8,=33")
% 50} |
§ Drained test
& Undrained test
0 1 ,
0 50 100 150 200
Mean effective principal stress, o, (kPa)
Figure 1.4.

Shear stress, T & Pore pressure,u (kPa)

150 T T T T -0.3
®) Undrained (T~Y) =
100 |- ) - {-02 £
Drained (t~y)  .* &
= ~ H-01 €
- R ®
i : l—-—-—0 £
y @
0.1 S
-50 Phase transf 1 - 0. S
50 oo ma’resa por;:'rs formation S
A L - A 0.2
10,1 2 3 4 5 6 7
Shear strain, 7 (%)

Influence of drainage conditions on sand response (Zhang et al., 1997).

39



Chapter 1: Introduction

——— Y1 B L B B B B B B
12 - . L=
= = D,=16% Ishihara (1993):
- [ _ [ Toyoura sand, |
E i E r Critical ICU-TC T
il 3 Z 3 sfate h
T o = ool -
w}
w Qe # o0&l -
& - & I b
B g =
T o4 S o4} -
a f L |
T ozl 0z -
o [ [ L L L [ L [ i o P B T T N
g 5 102 15 20 25 30 0 a2 04 06 0.8 1 12 14 18 18 2
Axial strain, g, (%) Mean principal effective stress, p' (atm)
(a)
—T— 7T T 71T "7 T 7 —rT T T T T T
20 - 20 D.=35% -
i a
= 5k = -
Rt & % i
5 B
= -
8 s a -
o P R DRI SIS PR T N
g 5 i@ 15 20 25 30 a 5 10 15 20 25 30 35
Axial strain, g, (%) Mean principal effective siress, p' {atm)
(i) ' '
L 1 T I ¥ I ol 1 b I T 1 ¥ - 3 1 N I I -
I o =30 am - sk u;:::f _
- [ D,=64% 1 = [ ]
EF ? 41 E »f 4
] o - o 3 -
o 25 - - o e -
A | 1 5 ..[ ]
o 20 4 & = -
W - 1 & I 7
5 15 4 &5 15 -
5 15 -
5 whk 4 % ol -
[ L 4 @ L -
ik e ik -
g P R B o N L M B
Q 5 10 15 20 25 ae Q 10 20 30 43 a0 60
(c) Awial strain, g, (%) Mean principal effective sfress, p'(atm)
c

Figure 1.5. Undrained triaxial compression tests on sand specimens of various initial
relative densities under a range of effective consolidation stresses (Verdugo and Ishihara,

1996).



(a)

300 [ T T T

Toyoura sand
Dry deposition

(a)

n
o
o

o, (kPa)

= 0,
o
(=]
o

150 F

100

Deviator stress, q
[4,]
S
—_

Shear strain, y=¢, - &, (%)

0 2 4 6 8 10 12

300 ; . .

o (kPa)
[42]
o
T

Triaxial compression
D, = 33%

o -
b
(=]
o
T

Simple shear
D_=36%

-

o

o
T

(b)

Toyoura sand
Dry deposition

Triaxial
extension
D,=36%

Deviator stress, q =
o 9
o (=]
T T

o

1
50 100 150
Effective mean stress, p' (kPa)

o

200

void
ratio

(b)

Chapter 1: Introduction

Figure 1.6. (a) Influence of loading direction on sand response (Yoshimine et al., 1998)

and (b) how it can be predicted within the critical state framework.
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CHAPTER 2

Development of a Modified
Elastoplasticity Model for

Sand in Triaxial Space

ABSTRACT

The key prerequisite to performance based design of geotechnical structures is the reliable
estimation of the induced displacements. Thus, the need for advanced yet practical
constitutive modeling of soil behavior continuously becomes more profound and
demanding. This chapter presents a new simple effective stress model in triaxial space for
drained and undrained behavior of sand under monotonic and cyclic loading conditions,
with emphasis on liquefaction. The model is formulated in the framework of classical
elastoplasticity, and combines features of: (a) the bounding surface plasticity, (b) the critical
state concept, and (c) a hardening evolution law and unloading-reloading rule inspired by
smooth hysteresis models, such as Bouc-Wen type. The predictive capabilities of the model

are demonstrated through simulations of loading tests in p-q space.
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2.1 INTRODUCTION

Performance based analysis is increasingly gaining ground in daily practice against
conventional pseudostatic analysis. The necessity of developing economically efficient
solutions without jeopardizing safety, is the main reason for this drastic change in the way

we you used to design our structures.

However, the effectiveness of a performance based design approach strongly hinges on
the ability of the utilized numerical tool to realistically calculate the soil and structural
displacements for a wide range of loading paths and initial conditions. Apparently, the
constitutive modeling of soil behavior plays a decisive role on this. The behavioral
diversity of sand for different loading (drained /undrained, monotonic/cyclic), initial stress
and fabric conditions, renders its modeling a difficult and challenging task. The suitability
of the used constitutive model is evaluated by its capability to capture the trends across
all these conditions without recalibration of its parameters for each specific case, but also
by its simplicity. Too many parameters might increase the versatility of the model at the

risk, however, of losing its physical meaning.

In the last three decades, many constitutive models for sand have been proposed, each
with varying degree of accuracy and applicability. The most promising ones are plasticity-
based and incorporate the effective stress and critical state concepts (e.g. Ishihara and
Towhata, 1980; Cubrinovski and Ishihara, 2000; Dafalias and Manzari, 2004; Park and
Byrne, 2004; Boulanger et al., 2011). In this chapter, a brief mathematical description of a

new constitutive model for sand in triaxial space is presented.

The model, which is motivated by the BWGG constitutive law (Gerolymos, 2002;
Gerolymos and Gazetas, 2005), combines features of the bounding surface plasticity and
critical state concept. Having the BWGG genes in its DNA, the proposed model can be
consistent with almost any pair of shear modulus and damping curves of the literature,

while at the same time the corresponding experimentally observed hysteretic soil
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behavior is realistically reproduced. At this stage of development the Drucker-Prager
failure envelope is used as bounding surface, but modifications can be easily implemented
to account for Lode angle dependency, as it will be shown in the multiaxial formulation in
Chapter 3. The combined influence of density and confining stress on the response is

efficiently taken into account through the critical state approach.

The ability of the model to realistically reproduce complex patterns of monotonic and
cyclic behavior such as hysteretic response, dilation, contraction, loss of strength and
cyclic mobility in undrained monotonic and cyclic loading, respectively, etc. is highlighted

through a series of numerical examples in p-q loading space.

2.2 CONSTITUTIVE EQUATIONS

2.2.1 Review of classical elastoplasticity

Within the framework of deformation theory of classical elastoplasticity, the incremental
total deformation, de is decomposed into the elastic and plastic components de® and de”

by a simple superposition:

de=de® +deP (2.1)

The plastic strain increment is obtained from the flow rule:

de” :<L>2—i (2.2)

implying normality to the plastic potential function g. L is a positive scalar of

proportionality designated as the loading index.

Substituting Eqg. (2.2) into Eqg. (2.1) and applying elasticity theory, the following stress-

strain relationship is obtained:
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do =E¢ (ds —<L>2—ij (2.3)

For a perfectly plastic material, the yield surface is fixed in stress space, and therefore
plastic deformation occurs only when the stress path moves on the yield surface. Thus,

the loading condition at failure is postulated by the following consistency equation:

.
df=0:>(2—fJ do=0 (2.4)

()

Combining Eqgs. (2.3) and (2.4), and after some algebra, the stress-strain relationship is

reformulated into:
do=E®’de (2.5)
in which E? is the elasto-plastic matrix, given by:

E°P —E° {I—(Dg (cD§Eeq>g )71 cDJCEe} (2.6)

in which @ and ®, account for the gradient to the failure surface and plastic flow rule,

respectively:

g
d)f=% a)g:% (2.7)

2.2.2 Modified elastoplasticity

Hardening and Unloading-Reloading laws

Hardening and hysteretic behavior is introduced by inserting the matrices H and n into Eq.

(2.6):

E;” =E°(I-BH)n (2.8)
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The terms in matrix H are functions of the dimensionless hardening parameter ¢, which is
inspired by the Bouc-Wen smooth hysteresis model Bouc (1971) and its extended versions
(Wen, 1976 ; Gerolymos and Gazetas, 2005), and n (Gerolymos and Gazetas, 2005; Drosos
et al., 2012) accounts for stiffness degradation by modifying the shape and size of the
hysteretic loops according to the amplitude of the deviatoric strain g, . Finally, B is the

abbreviation of the right-hand side term inside the parentheses of Eq. (2.6):

-1
B=0, (DJE°D, ) ®FE (2.9)

Elastic Moduli

The terms in matrix E€include the shear and bulk moduli which are expressed as

functions of the mean effective stress p, according to:

G=Ap, (pﬁJ k= 21+v) o (2.10)

o

in which, A, is a dimensionless material parameter, v is the Poisson’s ratio, p, is the
atmospheric pressure, and m is a dimensionless parameter determining the rate of

variation of G and K with p.

2.2.3 Formulation in p-q space

Elastic Matrix

The elastic deviatoric and volumetric strain increments, dgg and de: in respect, are used
to calculate deviatoric, dg, and mean effective, dp , stress increments by:
dp =Kde, (2.11)
dq =3Gde, (2.12)

in which, G and K are the elastic shear and bulk moduli, respectively, estimated by Egs.

(2.10). Thus, the elastic matrix in triaxial space is given by:
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EB—K 0 (2.13)
|0 3G '

Yield Function

At the current stage of development, the model incorporates the Drucker-Prager failure

envelope as the bounding surface:
f=q-Msp=0 (2.14)
in which, M is the ultimate strength line in g-p space.

Eqg. (2.14) implies the following consistency condition at failure:

f=0c-9 =1 (2.15)
M;sp

Following Eq. (2.15), the hardening parameter, , is defined as:

(2.16)

q
=
Mip

The hardening parameter, ¢, is bounded, strictly obtaining values within the range [0, 1].

At reversal points, Cis transformed to ¢, according to:

2, :‘—Z _szax (2.17)

in which . is the maximum value of T at the previous reversal (pivot) point. Hence,
hardening parameter {, becomes equal to 0 at the occurrence of loading reversal,

indicating elastic response at the beginning of unloading/reloading.

The hardening matrix H, for monotonic loading, is defined as:
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"0
H= ¢ (2.18)
0o "
where n is an exponential parameter which “controls” the distance of the current stress
state from the failure line (Gerolymos and Gazetas, 2005). For cycling loading parameter
{, of Eq. (2.17) is used for the formation of the plastic matrix:
" 0

H= 2.19
0 o (2.19)

Details on the role of hardening parameter { and exponent n will be given in Chapter 3.

Finally, the gradient to the failure surface described by Eq. (2.14), is given by:

of
_ op _ —M;
O = o _{ 1 } (2.20)
oq

Flow rule

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy
theory (Rowe 1962). Dilatancy, defined as the ratio of the plastic volumetric strain
increment, depp, over the plastic deviatoric strain increment, deqp depends on the distance

of the current stress ratio, g / p = { M from the phase transformation line, M, as follows:

de, P
d:d&—pp:(Mpt _ ‘%D:(Mpt — ng) (2.21)
q

Assuming associativity only for the plastic deviatoric strain increment:
p_
de,” =(L) (2.22)

the plastic volumetric strain increment is estimated, combining Egs.(2.21) and (2.22):
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de, =(L)(Mpe ~{ M) (2.23)

Egs. (2.21) to (2.23), which imply that a non-associative plastic flow rule is used,

determine the gradient to the plastic potential surface, ®,, according to:

o9
lap | | (Mo —tm)| [d
O, = o _[ . }L} (2.24)
oq

Modified Elastoplastic Matrix

Matrix B of Eq. (2.9) is calculated using matrices of Egs. (2.13), (2.20) and (2.24):

B-0,(0/ED,) O o

dl ., K O] [-emM. df[k o] [kmd 3Gd
M o 36 -M, 1|0 3G| | -kM, 3G
B= = & (2.25)

K 0]d d|  —kMd+3G
[-m, 1] [-kM,  3G]
0 3G|1 1
—KM.d 3Gd
| KM +3G  —KM.d+3G
| kM 3G

S

—KM.d+3G —KM.d +3G

The modified elastoplastic matrix, E;” , of Eq. (2.8) is calculated by substitution with Egs.
(2.13), (2.25) and (2.18):
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Ey’ =E°(1-BH) <

—KM.d 3Gd
g _ K 0|1 0| |-kKkMd+3G -kMd+3G| (" O
" 10 3G||0 1 —KM, 3G 0 ¢
KM d+3G  —KM,d+3G
[ kM. d % 3Gd %
w |K O 1 0| | -KM.d+3G —KM.d +3G
- — =
"lo 3G||0 1 —KM, o 3G 7
| KM d+3G°  —KM,d+3G
‘1_ —KM.d % 3Gd %
. |K O —KM.d +3G KM d +3G
0 3G —KM, o1 3G %
| —KkMd+3G —KM.d +3G
_‘KZ—’V’sd;n _ 3KGd__n (2.26)
eep —KM.d +3G —KM.d +3G
h =
—3KGM 2
— s 7" BG—L("
| —KM,d+3G ~KMd +3G " |

The only difference between the modified elastoplastic matrix, E;* , and the elastoplastic

matrix, E®, resulting from elastic-perfectly plastic formulation, given by the following

equation:
_ -k’md 3KGd
—KM.d+3G  —KM.d+3G
EP = s s (2.27)
—3KGM, 36— 9G”
—KM.d +3G —KM._d +3G

is attributed to the introduction of hardening parameter ", which provides a smooth
hysteretic interpolation, Bouc-Wen motivated, between elastic and perfect plastic stress

states. Thus, stress increments are calculated as:
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dp] [A B dgp
{déy{c Dﬂd%} (2.28)

where:
KM
—KM.d+3G
_ 3KGd
—KM.d+3G
(2.29)
_ —3KGM
—KM.d+3G
2
D=3G—L
—KMd+3G
If matrix n, which consists of only diagonal terms:
n O
= 2.30
1 o
is incorporated into Eq. (2.27), then the elastoplastic matrix is modified as:
_ —k’md 3KGd
—KM_d +3G —KM d +3G
EP =n s s (2.31)
’ —3KGM, 36 9G”
—KM.d +3G —KM.d +3G

2.2.4, Critical state concept

The essence of the critical state concept is that no change in volume occurs when the
current stress state reaches the critical state, while the shear deformation continuously
increases. In order to achieve this kind of performance upon critical state, both the phase
transformation line, M,; and the ultimate strength line, M;, should evolve in p-q space

converging to the critical state line, M and producing zero plastic volumetric change
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when M,: = M;= M. The evolution of the ultimate strength line is expressed as a function

of the cumulative total deviatoric strain, 3 |de,| :

Ms =Mcs J{Msp +(Mso —Msp)e_CIngq _Mcs}e_CZngq (2.32)

where My is an initial value of the ultimate strength, and M, is a maximum value that can

be potentially reached depending on the model parameters c¢; and c,.

The phase transformation line evolves according to following expression:

Myt =Mes + (Mo —Ms )e_c-”zdeq (2.33)

p

in which M,y is the initial value of Mp;, ¢ is a model parameter and Z‘dsq‘ expresses the

accumulation of total deviatoric strain increments.

2.3 MODEL PERFORMANCE

Simulations of drained and undrained behavior of sand under monotonic and cyclic
loading have been performed in p-g space (Figures 2.1-2.8). Internal model parameter n of
Eg. (2.31) is set equal to unity for subsequent numerical examples of Figures 2.1 to 2.8.
Both drained and undrained simulations are strain controlled; thus, the applied deviatoric
strain increment dgq is considered known. In case of drained loading, the mean effective
stress, p, is assumed constant, so that dp = 0. According to Eqgs. (2.28) and (2.29), the

deviatoric stess increment, dq, is calculated as:

BC
and the volumetric strain increment, dey, is obtained by:

de, :—%‘dsq‘ (2.35)
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In case of undrained simulations, the volumetric strain, €, is assumed constant, thus, de,
= 0. The deviatoric stress increment, dq and the mean effective stress increment are

estimated according to Egs. (2.28) and (2.29):
dg=Ddeg (2.36)
dp:B‘deq‘ (2.37)

Regarding the monotonic loading, four different relative densities were examined.
Specifically for the monotonic undrained case (Figures 2.1-2.3), the evolution of phase
transformation and ultimate strength lines are illustrated in Figure 2.3 as a function of
deviatoric strain, in order to better demonstrate that both lines reach the critical state line
at large strains. Moreover, it is worth noting that for loose sands the phase transformation
line is initially located above the ultimate strength line in p-q space and vice versa for
denser sands. This is attributed to the more contractive behavior which leads them
directly to the critical state with no phase transformation (Yoshimine and Ishihara, 1998).
The opposite behavior is observed for denser sand crossing the phase transformation line

(contractive response) before “moving” towards the critical state (dilative response).

The set of model parameters, shown in Table 2.1, is common for all simulations with three
exceptions: i) the peak value of ultimate strength line, M, and ii) the initial value of phase
transformation line, My , and iii) parameter c; in case of cyclic loading. Readjustment of
the values of Mg and My, for each specific initial state (loose, medium, dense etc.) is of
critical significance to the model, since they determine how dilative or contractive the
response will be. Lower values of parameter c; in case of undrained cyclic loading indicate
slower evolution of phase transformation line towards critical state; thus allowing for
more cycles to occur once the stress path has reached the failure envelope, close to the
apex (cyclic mobility), creating the “butterfly effects” (Ishihara and Towhata, 1980). In
case of cyclic drained loading, slower evolution of phase transformation line towards
critical state leads to less accumulation of volumetric strain for a certain number of cycles,

Il

due to generation of greater “uplift” of the ey,-eq curve, close to the reversal points.
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Overall, it should be mentioned that critical state, M, is achieved under monotonic, as

well as cyclic loading.

Last, model validation, against experimental data under undrained simple shear loading
(Yoshimine et al., 1998) for various relative densities, is demonstrated in Figure 2.8. Table
2.2 shows the calibrated model parameters offering the best fit with the experiments. It is
worth noticing that almost all model parameters remain the same within the range of
tested relative densities, apart from My and Ms,. In particular, as Dy increases, My
increases while My decreases, highlighting the need to correlate the values of these with
initial state (Do, po). Indeed, based on Eq. (2.21), decreasing My and increasing M, leads
to negative values of dilatancy, d, indicating a more dilative response and vice versa. It is
interesting to mention that the initial value of the bounding line, My, is less than the value
of M, irrespectively of the initial relative density (an observation that will appear to be

useful in calibration process described in Chapter 4.)

Finally, demonstration of the impact of parameter n of Eq. (2.31) on the response, in
terms of stress-strain loops, is shown in Figure 2.9 for three different strain amplitudes.
Evidently, for values of parameter n less than 1, the secant shear modulus along with the
size of the loop decreases, leading to smaller hysteretic damping. On the other hand,
greater values of parameter n less than 1 lead to increase of the secant shear modulus
and the area of the loop producing larger hysteretic damping. Appropriate calibration of
parameter n can offer consistency with any pair of shear modulus and damping curves of

the literature.

2.4 CONCLUSIONS

A new constitutive model for sand in triaxial space was presented, based on a modified
elastoplasticity scheme and founded on the effective stress and critical state concepts. The

constitutive formulation combines features of classical elastoplasticity with a hardening law
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and an unloading-reloading rule of the Bouc-Wen type. The model performance was
demonstrated through a series of simulations in p-q space, for all combinations (4 in total)
of drained and undrained loading with monotonic and cyclic loading. It was shown that the
model is capable of reproducing the basic aspects of sand behavior, such as static

liquefaction, strain softening, hysteretic loops, cyclic mobility etc.
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Table 2.1. Model parameters for simulations illustrated in Figures 2.1-2.7 and 2.9.

. ] Drained | Unrained
Monotonic Loading cyclic eyclic
Drai .
(Drained & Undrained) loading | loading
Very . .
Loose | Medium | Dense | Medium Dense
loose
sand sand sand sand sand
sand
A, 250 250 250 250 250 250
Elasticity m 0.6 0.6 0.6 0.6 0.6 0.6
v 0.2 0.2 0.2 0.2 0.2 0.2
M, 1 1 1 1 1 1
Ultimate Mg, 1.2 1.3 1.4 1.8 1.4 1.8
strength
(o] 40 40 40 40 40 40
Cy 40 40 40 40 40 40
Moo 1.22 1.14 0.9 0.5 0.9 0.5
Phase
transformation
C3 40 40 40 40 5 5
Critical state M, 1.2 1.2 1.2 1.2 1.2 1.2
Hardening n 0.7 0.7 0.7 0.7 0.7 0.7
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Table 2.2. Model parameters for prediction of undrained simple shear experiments by

Yoshimine et al. (1998), shown in Figure 2.8.

Relative Density

23% 25% 29% 34% 35% 41% 44%
A, 315 315 315 315 315 315 315
Elasticity m 0.6 0.6 0.6 0.6 0.6 0.6 0.6
v 0.15 0.15 0.15 0.15 0.15 0.15 0.15
M, 1 1 1 1 1 1 1
Ultimate Ms, 1.18 1.201 1.215 1.22 1.225 1.235 1.3
strength
C1 45 45 45 45 45 45 45
(o) 10 10 10 10 10 10 10
Mo 1.28 1.174 1.145 1.1 1.06 1.01 0.83
Phase
transformation
C3 20 20 20 20 20 20 20
Critical state M 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Hardening n 0.55 0.55 0.55 0.55 0.55 0.55 0.55
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CHAPTER 3

Constitutive Modeling for
Sand in Multiaxial Space:

A New Plasticity Approach

ABSTRACT

A constitutive model for sand is derived in multiaxial space based on a new theoretical
framework that combines features of classical (perfect) elastoplasticity and hardening
plasticity of the Bouc-Wen type. It resembles a bounding surface model with vanished
elastic region, but with considerable modifications in that the plastic modulus is not
explicitly defined, and the mapping rule being Bouc-Wen motivated works equally well in
monotonic as well as stress-reversal loading. Among the innovations, are: (a) Critical
state consistency not only for monotonic but also for cyclic loading, and (b) novel plastic
flow rule accounting for anisotropic distribution of the dilatancy strain ratio, d, to the
normal plastic strain increments. The capabilities of the model in capturing complex

aspects of sand behavior (e.g. cyclic mobility, static liquefaction, densification) are
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demonstrated through illustrative paradigms and comparisons with experimental data,

emphasizing the physical meaning of each key-model parameter.

3.1 INTRODUCTION

The behavioral diversity of sand for different loading (drained/undrained,
monotonic/cyclic), initial stress and fabric conditions, renders its modeling a difficult and
challenging task. The suitability of the used constitutive model is evaluated by its
capability to capture the trends across all these conditions without recalibration of its
parameters for each specific case, but also by its simplicity. Too many parameters might

increase the versatility of the model at the risk, however, of losing its physical meaning.

In the last three decades, many constitutive models for sand have been proposed, each
with varying degree of accuracy and applicability. The most promising ones are plasticity-
based that incorporate the effective stress and critical state concepts (e.g.: Ishihara and
Towhata, 1980; Prevost 1985, Pastor et al. 1990, Manzari and Dafalias, 1997, Cubrinovski
and Ishihara, 2000; Papadimitriou et al., 2001, Elgamal et al., 2002, Dafalias and Manzari,
2004; Park and Byrne, 2004; Boulanger et Ziotopoulou, 2013, Taborda et al, 2014),
though recently developed hypoplastic models have shown remarkable predictability
(e.g. Gudehus 1996, Kolymbas 2012). In this study, a novel constitutive model for sand is
presented based on a new plasticity framework that joins together features from perfect
elastoplasticity and Bouc-Wen type hardening plasticity. The motivation is to develop an
alternative plasticity formulation that exhibits critical state consistency for cyclic loading
and unigueness of its parameters for a given type of sand, irrespective of loading

conditions.

The model, designated as Ta-Ger sand model, is based on a reformulation of perfect

elastoplasticity by introducing a hardening law inspired from Bouc-Wen hysteresis. The
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latter is a smooth hysteresis model originally proposed by Bouc (1971) and subsequently
extended by Wen (1976) and used in random vibration studies of inelastic systems. Since
then, modified or extended versions of this model has been extensively applied in
modeling structural (e.g. Sivaselvan and Reinhorn 2000, Triantafyllou and Koumousis,
2012) and soil behaviour (e.g. Gerolymos and Gazetas 2005, Gerolymos et al. 2007,
Gerolymos 2010).

The developed constitutive formulation can be regarded as a bounding surface model
with vanished elastic region and the distinguished characteristic of a non-explicitly
defined plastic modulus. Salient features of the proposed plasticity approach are: (i) a
new plastic flow rule which is based on a revision of Rowe’s dilatancy theory (1962) to
account for anisotropic distribution of the dilatancy to the normal plastic strain
increments as well as densification due to cyclic loading, (ii) a mapping rule and load
reversal criterion inspired from Bouc-Wen hysteresis, and (iii) a new formulation for the
critical state concept that introduces two state parameters. The first being the
cumulative incremental deviatoric strain and the second one, the relative dilatancy index,
I, as originally proposed by Bolton (1986). The main advantage against well-established
formulations using the traditional state parameter W (Been and Jefferies, 1985, Manzari
and Dafalias, 1997), is critical state consistency for both monotonic cyclic loading and
avoidance of early shear locking in cyclic undrained response (as observed in Dafalias and

Manzari, 2004).

In the following sections, a mathematical description of the proposed plasticity
formulation in multiaxial stress space is attempted, emphasizing the role of the evolution
equations and the physical meaning of key-variables. Finally, the model is shown to be
capable of reproducing complicated experimental behavior with satisfactory engineering

accuracy.
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3.2 PLASTICITY CONCEPT: COMBINING PERFECT PLASTICITY WITH BOUC-
WEN TYPE OF HYSTERESIS

The governing equations of a typical elastoplastic formulation with no hardening
(elastic/perfectly-plastic behavior), in generalized stress space, are revisited. For reasons
of simplicity and convenience, the equations are given in the form of matrices instead of

tensors. The incremental total strain,{ds}, is decomposed into its elastic and plastic

counterparts {dee} and {dep} by a simple addition:

{de} :{dse}+{dsp} (3.1)
The plastic strain increment is obtained from the flow rule:

{dep} ﬁL)% (3.2)

Eqg. (3.2) applies normality of the plastic strain increment to a plastic potential function g.
L is the common scalar-valued stress-dependent multiplier, designated as the loading

index. Substituting Eq. (3.2) into Eq. (3.1) and applying the theory of elasticity,

{do}:{Ee}{dse}, {Ee}, being the linear elastic matrix, the following stress-strain

relationship is obtained:

{do}={e°}| {de}-(L) ool (3.3)

For a perfectly plastic material, the yield surface, f, is fixed in stress space and thus not
functionally dependent on any other state variable than stress. Plastic deformation occurs
only when the stress point reaches and lies on the failure surface. This postulate is stated

by the following consistency equation:
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]T{do} =0 (3.4)

Combining Egs. (3.3) and (3.4), one can obtain both the definition of scalar multiplier, L,

and the elastoplastic stress strain relationship, in respect:

{de} (3.5)

{do}={E°f| {1} - {dz—:} (3.6)
e g
I [@ }] § }(6{0}L
and the elastic-perfectly-plastic matrix is derived:
(e} ={Ee) {1} - (@){0) ) (3.7)

(o)} {0,

where {CDf} and {G)g} account for the gradients of yield surface and plastic potential

surface, respectively:

)= {o,)=E 68

Thus far, it is clear that no kind of hardening response can be accommodated by the
current formulation, allowing only for elastic/perfectly-plastic predictions. Our intention is

to attribute hardening/softening characteristics to the elastic-perfectly-plastic nature of
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Eqg. (3.7), while deviating from the classical plasticity framework which involves the

introduction of a plastic modulus, Ky, in the denominator of Eq. (3.7), according to:

cen) _feel| 11 {(Dg}{q)f}T{Ee}
) ={E 0 K, +{0)T {E° {0, }

(3.9)

To this end, an appropriate plastic matrix {H} is directly inserted in Eq. (3.7) by

multiplying the right-hand side term inside the parentheses:

(3.10)

ol teet] @O
{h} { }{} {CDf}T{Ee}{G)g}

Our goal is to provide a simpler but equally efficient scheme with higher versatility.

Therefore, the role assigned to the matrix {H} is threefold: i) it offers a gradual and

smooth (“hardening-type”) transition from the elastic to perfectly plastic response in
order to capture pre-failure nonlinearity and the coupling between elastic and plastic
counterparts composing the total strain increment, ii) it provides an appropriate
loading/unloading/reloading mapping rule by tracking the distance from the ultimate
perfectly plastic state as defined by the failure surface, which herein, serves as a
bounding surface, and iii) the values of its terms are strictly bounded within the range of

[0,1]. In this line of thought, the matrix {H} acquires only diagonal terms as a function of

a dimensionless parameter {, satisfying the second and third requirements, and a
hardening exponent parameter, n, fulfilling the first postulate. Both of these parameters

are of the Bouc-Wen type (Gerolymos and Gazetas, 2005). Matrix {H} is given as:

{Hy=0{l} (3.11)

As it has been already stated, parameter { needs to be dimensionless and strictly bounded

within the range [0,1]. It is obvious that { should obtain unit value when the stress point
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reaches the ultimate failure state (perfectly plastic, f=0), while all its intermediate values,
from zero to unity, correspond to intermediate stress states. In order to demonstrate an
appropriate function for parameter { compatible with a specific failure surface, let’s
assume a material obeying a cone-type failure criterion in triaxial space, such as Drucker-

Prager:

f=0<q9g—-Mp=0 (3.12)

where g is the deviatoric stress, p is the mean effective stress and M is the bounding
stress ratio representing the ultimate strength, e.g. critical state. In lieu of the

abovementioned requirements, a proper definition of Cis:

% (3.13)

Z:
M

Since the stress ratio, g/p, can only obtain values within the range of [0,M], T is strictly

bounded in the range of [0,1]. Evidently, the elastic state corresponding to =0, {H} ={0}

and {E}i”} :{Ee}, is trivialized to a single point and plastic strains develop from early on,

as soon as { becomes greater than zero. A set of loading surfaces are created upon

definition of ¢, described by the following equation:
q—{Mp=0 (3.14)

Each stress state corresponds to a unique value of { resulting in a specific loading surface
given by Eq. (3.14). Thus, each current stress point automatically lies on a surface
proportional to the failure surface of Eq. (3.12) by the value of T, as illustratively depicted

in Figure 3.1.

Conceptually, the failure surface works similarly to a surface of reference which cannot
be surpassed, namely a bounding surface (Dafalias, 1986), in the sense that for any given

stress state (e.g. stress ratio, q/p) there is always an “image” stress state lying on the
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failure surface (e.g. stress ratio, M) so that the ratio, ¢, between the actual and “image”
stress states can be measured. Specifically, for the examined case of a Drucker-Prager
failure surface which forms a circle in 1 plane, the current stress state is equal to the
radius of the current loading surface, while the “image” stress state is always equal to the

radius of the failure surface (see Figure 3.1).

Clearly, parameter C holds the role of evolution or else mapping rule. Having defined
parameter { in case of monotonic loading, it remains to be defined upon reversal loading
and reloading. Details are given in the following section where the above described
scheme is applied to sand and a generalized bounding/failure surface for all

loading/unloading/reloading conditions is proposed.

In retrospect, the plastic matrix, {H}, is dependent only on the failure/bounding surface.

Hence, the proposed plasticity approach is characterized as a single-surface model. The
elastic area is trivialized to a single point at the beginning of loading, unloading and
reloading, where elastic behavior is expected at least momentarily satisfying Masing rule.
Hence, no yield surface is involved to define the elastic region, or rather, yield surface
diminishes to a single line for =0 (e.g. q = 0 from Eq. (3.14) for T = 0). Needless to say that
neutral loading cannot be captured in the lack of a yield surface. This fact will prove to be
advantageous upon loading reversal where potential unrealistic reversal of loading by
neutral loading is automatically excluded; a weakness that is commonly encountered in
the majority of elastoplasticity models, such as bounding surface (Dafalias, 1986),

generalized-plasticity (Pastor et al., 1990), multisurface ones (Prevost, 1985) etc.

While parameter T tracks the actual distance of the current stress state from the failure
state, exponent parameter n controls the rate of transition from elastic state to the
perfectly plastic one, as characteristically demonstrated in Figure 3.1 for a Drucker-
Prager failure surface. Exponent n is designated as the hardening parameter in the
current scheme, determining the degree of coupling between concurrent elastic and

plastic strain increments during loading. As the value of n increases, the response tends
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to be elastic/perfectly-plastic while the elastic and plastic strain increments tend to be
decoupled during loading (e.g. n = 10), with the elastic ones occurring exclusively prior to
failure (plateau) and the plastic ones developing only after failure takes place. Inversely,
as the value of n decreases, the coupling between the elastic and plastic components of
total strain increment increases until ultimate failure is reached, resulting in a smoother

transition to failure.

3.3 CONSTITUTIVE MODEL FOR SAND

The new plasticity scheme is used as a framework to develop a simple constitutive model
for sand, which can capture all important aspects of sand behavior under monotonic and
cyclic loading, such as critical state behavior, densification, liquefaction etc. An
appropriate bounding surface is proposed, which allows a unique derivation of
parameter { for monotonic and cyclic loading by keeping memory of the last reversal
stress state, while update is achieved by a simple first-order work criterion. Additionally,
a new set of functions is suggested for the evolution of bounding and phase

transformation stress ratios in order to enhance the critical state concept.

3.3.1 Pre-Failure Parameters

The terms in matrix {Ee}are functions of the shear and bulk moduli which in turn are

functions of the mean effective stress p, according to:

K=——7%G 3.15
P (3.15)

Gopp (297-¢F [3} _ 2(1+v)
3(1-2v)

7

in which, A, is a dimensionless material parameter, v is the Poisson’s ratio, p, is the
atmospheric pressure, e is the current void ratio, and m is a dimensionless parameter

determining the rate of variation of G and K with p.
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3.3.2 Bounding Surface and Hardening Parameter {

An open-end, cone-type bounding surface is proposed as a function of the current stress

state as well as the stress state at the last reversal of loading:

f:[(s—rpp):(s—rpp)T/2 —[\EMS,S —np]p:O (3.16)

where s is the second order deviatoric stress tensor and M, 4 is the bounding stress

ratio, determining the ultimate strength, dependent on the lode angle 8. The stress ratio

tensor, 1, is given by:

(3.17)

where o, is equal to the stress tensor and p, the mean effective stress at the pivot

points, once reversal of loading occurs. It is noted that r, is comparatively equivalent to
the back-stress ratio, a, in a conventional bounding surface model. The scalar valued

stress ratio n, is defined as the inner product of two tensors denoting the distance of

the pivot stress ratio r from the hydrostatic axis:
n =n:r (3.18)

in which n is a normalized stress ratio tensor, normal to f:

n= e (3.19)
[ (s—1,p):(s—rp) ]|
The properties of tensor n are given by the following equations:
trn=n;; +n,, +n;; =0 (3.20)
trn” =n:n=nj, +n3, +n3; +2n3, +2n5; +2n5, =1 (3.21)
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Evidently, in case of monotonic loading, the bounding surface, f, returns to its common

Drucker-Prager form but with Lode angle dependency:

F:[s:s]ﬂ2 —\EMSISp:O (3.22)

The evolution of its shape, once reversal occurs, is explained in section 3.3.4 along with
the mapping rule. Parameter Cis defined following the same concept described in section

3.2:

‘= [(r—rp):(r—rp)]l/2 _ ‘r—rp‘
\EMSI9 —n, \EMS,Q —n,

in which r is the current deviatoric stress ratio tensor. It is obvious that { obtains zero

(3.23)

values at each point reversal, initiating elastic unloading, consistent with Masing rule.
Parameter { ensures that the current stress state always lies on a loading surface

described by:

L :[(s—rpp) : (s—rpp)T/2 _Z(\EM&@ —np]p =0 (3.24)

Since plasticity starts practically from =0, the yield surface can be derived by Eq (3.24)

for =0. The gradient to this failure/bounding surface is given by:

a n—l(n:r)l (3.25)

® %3
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3.3.3 Lode Angle Dependency

The Lode angle is defined as:

cos(39)= (3.26)

3V3 45
2

532

where J, is the second deviatoric invariant J;, the third deviatoric invariant. After using

polynomial interpolation, M, 4 can be obtained by:

Ms,z? :(w_Mssjcosz(30)+[%jcos(3ﬁ)+ms (3.27)

in which M, is the bounding stress ratio in compression, M, in extension and M in

simple shear. They are related to friction angle, ¢, as:

_ bsing M. = 6sing

M. = —; M, = ; Mg =2sing (3.28)
3—-sine 3+sing
Then, x is defined:
Ms v
=— 3.29
X="\ (3.29)

3.3.4 Mapping Rule and Load Reversal Criterion

Update of the stress ratio tensor at pivot points, r,, in Eq. (3.16) occurs when the first

order work changes sign; a feature also incorporated in the Bouc-Wen model (e.g.
Gerolymos and Gazetas, 2005). The first order work is equal to the inner product of the
strain rate tensor and the difference of the current stress ratio tensor from the stress

ratio tensor obtained by the last pivot point:
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dW=(r-r):€ (3.30)

Figures 3.2 to 3.4 offer a schematic insight on how the shape of bounding surface, =0,
described by Egs. (3.16) adapts uniquely for each stress path to the shape of the target
failure surface, F=0 of Eq. (3.22).

Initially, Figure 3.2 illustrates certain snapshots of characteristic stress states in m-plane,
corresponding to certain points in a stress-strain loop obtained by a cyclic simple shear
test under constant mean effective stress. The resulting stress path is a straight line along
¥ = /6. The shapes of bounding, target failure and loading surfaces, f=0, F=0and L=0,
described by Egns. (3.16), (3.22), and (3.24) respectively, are plotted in the m-plane plots
along with the current stress point (star symbol). The beginning of loading corresponds to
stress point A which lies on the hydrostatic axis ({ = 0); therefore, the loading surface (L =
0) collapses to a single line containing stress point A. From A to C-, the loading surface
swells isotropically as T increases, until it coincides both with the target failure surface (F

=0) for { =1 (point E-) and the bounding surface (f = 0), since r, is yet equal to 0. At pivot

point C+, the first order work, dW, changes sign, confirming the occurrence of loading

reversal and r obtains the values of point C-. At this moment, the loading surface

trivializes once more to a single point (= 0), while the bounding surface, though concave
in general, fits perfectly to the target convex failure surface at the point opposite to the
current one (namely the “image” point). The “image” point always corresponds to the

point where the projection of current r—r , crosses the surface f = 0, as depicted in

Figure 3.3.

In order to verify the unique adaptation of the bounding surface for each stress path, the
same graphical illustration is adopted in Figure 3.4 for the case of a cyclic triaxial p-
constant test. From points A to C-, the image is similar to that of Figure 3.2, besides the
fact that the stress points lies on ¢ = 0 (compression). Upon first reversal, point C+, the
loading surface becomes a single point in m-plane coinciding with the stress point, while

the bounding surface adapts in a way that fits the target failure at ¢ = /3 (“image”
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point). Upon second reversal, namely point E-, the stress ratio tensor, r,, is updated once
again, so that this time the bounding surface coincides with the target failure oneat =0

(next “image” point).

Overall, Eqg. (3.16) describes a uniquely adaptable bounding surface to the target surface
for each specific stress path. In mathematical terms, the target surface is the geometric
locus of the “image” points derived from the bounding surface. Consequently, the
mapping rule is automatically incorporated in parameter T — since its definition is based

on a reformulation of Eq. (16), and thus, in the plastic matrix {H}

3.3.5 Flow Rule

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy
theory (Rowe 1962). The ratio of the plastic volumetric strain increment, de,’, over the
plastic deviatoric strain increment, dsqp, depends on the distance of the current stress

ratio, q/p, in conventional p-q space from the phase transformation line, My, as follows:

d p
d:i{mpt—ﬂ] (3.31)

When q/p > My, the imposed deviatoric strain increment causes dspp <0andd<0

which corresponds to dilation. Respectively, when q/p < Mg, depp >0 and d > 0 resulting

in contraction. The dilatancy strain ratio, d, remains a scalar quantity in multiaxial stress-

strain space, calculated by:

2 S 2 S

where ¥ is the factor described by Eqn. (3.29) to account for the Lode angle effect and Ry
is a parameter dependent on the current relative density (used as a state parameter)

which allows to capture densification effects due to cyclic drained loading. The gradient
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to the plastic potential surface, necessary for the formation of the elastoplastic matrix of

Eqg. (3.10), is given by:

®, =2—§=n+n2d (3.33)

Both volumetric and deviatoric non-associativeness is applied. The increment of the

plastic strain tensor can be obtained by Eq. (3.2). Due to the property of tensor n,

described by Eq. (3.21), the plastic volumetric increment, dspp, is indeed equal to:
deg? =tr(deP | =(L)tr®g =(L)dtrn” =(L)d (3.34)

It is common in literature to arbitrarily assume an isotropic distribution of the quantity, d,
to the three normal plastic strain increments according to:

0g

d
:n+gl (3.35)
Herein, in an attempt to account for the effect of the loading direction on the distribution
of the dilatancy, d, to the three normal plastic strain components, Eq. (3.33) is adopted.
Comparison is held between Eq. (3.33) and (3.35) in order to highlight the difference in

stress and strain components.

Figure 3.5 illustrates the distribution of normal strain components for a monotonic
simple shear test, where only shear stress, 01, is applied. In terms of shear stress-strain
curve the response is the same for both equations. Eq. (3.35) results in equal normal
strains in all directions (&; = €,/3), whereas Eq. (3.33) develops normal strains only in the
directions related with the applied shear stress; €;; and €;,. The out of plane normal
strain €33 is zero, indicating that there is no tendency for contraction or dilation in the

direction where no shear stress is applied.

In case of an undrained cyclic test, where no normal strain is allowed and only oy, is

applied, the variation of normal stresses is identical when Eq. (3.35) is adopted, resulting
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in a path always lying on /6 in m-plane plot, as depicted in Figure 3.6. Alternatively,
when Eq. (3.33) is used, the out of plane normal stress, o33, decreases in a slower rate
during loading, resulting in a more complicated path as plotted in a m-plane graph.
Whether Eq. (3.33) or (3.35) is closer to reality is difficult to be documented, since no

elaborate data exist in literature, even experimental ones.
Parameter Ry in Eq. (3.32) is given by:

e—a\Dr—Dro\

R, = (3.36)

where D, is the current relative density, D,y is the initial relative density and a is a
constant. Evidently, increase of D, causes decrease of parameter Ry and subsequent
decrease of quantity, d, resulting in densification as shown in Figure 3.7. Parameter Ry is
deliberately chosen as a function of D,, so that Ry remains unity during undrained
loading. Otherwise, any decrease of Ry would hamper the occurrence of liquefaction,

since densification and liquefaction are two competitive mechanisms.

The calibration of constant a for the demonstration of Figure 3.7 was based on the
empirical correlations of volumetric strains with the number of cycles for 1% shear strain

and D,o =45 % (Silver and Seed, 1971; Duku et al., 2008), shown in Figure 3.8.

3.3.6 Influence of Hardening Exponent n

Typical values of hardening exponent n for soils are found in the range of 0.2-0.8, as
suggested by Drosos et al., 2012. In general, the monotonic response is not extremely
sensitive to the evolution of hardening exponent n; thus, a satisfactory prediction can be
achieved with a constant specific value within the range of 0.2-0.5, for both drained and
undrained conditions, accompanied by a proper calibration of the other model
parameters. However, the response under cyclic undrained loading is greatly affected by

the value of n, especially in terms of number of cycles required to cause liquefaction (p =
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0), as shown in Figure 3.9. Three different values of n have been used in an attempt to
predict the response of a sand specimen with D, = 70% under simple shear undrained
loading. In case of n = 0.3, only 6 cycles of loading are required for liquefaction
occurrence (p = 0), while large shear strains > 3% develop abruptly after the 3 cycle. As
n increases (e.g. n = 0.5), the required number of cycles also increases, until n = 0.7 for
which liquefaction cannot be practically achieved within a reasonable number of cycles.
However, no locking is observed, and accumulation of shear strains continues with

increasing loading cycles even for large values of n.

The parameter n can be effectively calibrated to match any experimental CRR (Cyclic
resistance ratio curve) curve from the literature (e.g. De Alba, 1976). Expressing n as a
function of the cumulative deviatoric strain increment:

BYdeq nf }e—y(l—sign(Zdep))stq

n= nf + l:npeak + (no - npeak )e
(3.37)

was shown to provide reasonable estimates. In Eq. (3.37), ns is the final desired value
(when p tends to zero), ng is the initial value, nyea is the potentially reached peak value,

dependent on constants B and y. The latter exponential of Eq. (3.37) depends on the

function, 1—sign(\2dsp\), where stp is the accumulation of volumetric strain increments.
Undrained conditions impose that de, =0; thus this function returns unity for undrained

cylic loading. The necessity of this function will be shown in case of drained loading

conditions.

The resultant prediction for undrained conditions by Eq. (3.37) is depicted in Figure 3.10.
A characteristic rapid decrease of p is observed in the first two cycles (n = 0.5), followed
by slower decrease (for n > 0.6) until the rate of p reduction increases again so that
liguefaction is achieved (0.3 < n £ 0.5). In terms of stress-strain loops, there is a gradual

increase of shear strain amplitude for each additional cycle.
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Cyclic loading under drained conditions causes densification effects, as previously
described, when constant strain amplitude cycles of loading are applied. When constant
stress amplitude cycles of loading are applied, densification is reflected also in stress-
strain loops through decrease of the secant shear modulus. Thus, the area of the loops,
which lose their symmetry, decreases during loading. This behavior can be simulated
with continuous increase of the value of parameter n during loading. For this purpose,

Eq. (3.37) is used, which, in case of drained loading, it is formulated as:
B d
N=Noeai +(n0 ~Npeak )€ 2. (3.38)

since \zdep\>o, so that the function 1—sign(\2dsp\) becomes equal to zero. Consequently,

the constant evolution of parameter n from the initial value ng to higher value npea is
ensured. Demonstration of the impact of Eqg. (3.38) on the predicted response is shown in

Figure 3.11.

3.3.7 Evolution of bounding and phase transformation lines
Adopting Critical State Concept

The essence of the critical state concept is that no change in volume occurs when the
current stress state reaches the critical state despite the continuous increase of shear
strain. In order to achieve this kind of performance upon critical state, both the phase
transformation line, My and the bounding line (or else ultimate strength line), Ms, should
gradually converge to the critical state line, M, producing zero plastic volumetric change
when the stress ratio becomes equal to Mg = M, = M, according to flow rule of Eq.
(3.31). Several suggestions have been made in literature for the variation of Ms and My,
based on a suitable current state material parameter relative to the critical state (Wood

et al.,, 1994; Manzari and Dafalias,1997); one of the most recent and physically
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perceptible, being proposed by Dafalias and Manzari, 2004 and adopted also by Taiebat
and Dafalias, 2007:

M, =Me ™" and M, =Me"" (3.39)

in which W=e—e_, e, is the void ratio given by the critical state line in e-p space

described by:

3
e =e,— A(pij (3.40)
at

and ny,ny appropriate constants. The effectiveness of Eqgs. (3.38) relies on three satisfied
postulates: i) when e = e. then My = M = M and ii) for denser sands where e < e, then

M, <Ms <My leading to dilatant response and iii) for looser sands where e > e, then
My >Ms >Ms resulting in contraction. Although the concept is flawless, at least for

monotonic loading, calibration process can be challenging. The two model parameters
ny,Ng should simultaneously account for the accurate prediction of peak strength,

dilatancy (developed volumetric strain) and the rate which the critical state is reached at,

for all states of sand.

Moreover, the above mentioned postulates are not necessarily satisfied in case of cyclic
loading. For example, in case of liquefaction it has been experimentally observed (Zhang
et al.,,1997; Kramer, 1996, Been and lJefferies, 2006; Elgamal et al, 1998) that cyclic
loading moves the stress paths towards the critical state line which coincides with the so-
called failure envelope at p = 0. However, state parameter W cannot become equal to
zero under cyclic strain accumulation, so that M converges eventually to M. Therefore,
Egs. (3.38) lead to early stabilization at p > 0, hindering liquefaction occurrence (Dafalias
and Manzari, 2004). As a result, extra features usually need to be added in a formulation,
which are usually attributed to fabric-related effects (e.g. fabric-dilatancy tensor).

However, this modification may only contribute to an extra decrease of p up to
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liquefaction and not to a complete solution of the problem. Indeed, M, and M, still

cannot converge to M and shear locking cannot be eventually avoided.

After meticulous observation of experimental data and careful consideration of the
above, the evolution of the bounding stress ratio was chosen as a function of the

cumulative deviatoric strain increments, Z‘dsq‘ :
—Y 'dg - 'dg
MszMCSJr[MSer(MSo—Msp)e 2 q—Mcs}e 2 deq (3.41)

where My, is an initial value and My, is a maximum value that can be potentially reached
depending on the model parameter c. For a typical value of ¢ = 8, M, can never be
reached. Instead, a lower value is reached, herein called Mgyeak- The evolution function of
the bounding stress ratio My has the same form with Eq. (2.32) in Chapter 2. However, the
present formulation uses the same coefficient, c, for both exponentials, in an attempt to

minimize the number of model parameters.

The phase transformation line evolves in the same context, according to the following

expression:

—0.5¢) de,

Mpt =M +(Mpto ~Mes Je (3.42)

’

where My is the initial value of M. The cumulative deviatoric strain increments, Z‘dgq

as the chosen hardening parameter, ensures that critical state will be reached under

monotonic and cyclic loading (Tasiopoulou and Gerolymos, 2012).

Using Relative Dilatancy Index as State Parameter

The proposed set of Egs. (3.40) and (3.41) may present a more convenient and flexible

pattern, but they lack a state parameter that will provide a physical meaning. The latter
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can be achieved by correlating the model parameters Mg, Mg, and My with Bolton's

relative dilatancy index (Bolton 1986, Ching et al., 2012):
I =Dr(Q—In(p))—R (3.43)

where D, is the current relative density of the sand, p is the current mean effective stress,
and Q, R are constants obtaining values close to 10 and 1, respectively. Critical state
occurs when |, = 0, while |, > 0 indicates denser states of sands and |, < 0 accounts for

looser contractive states. For triaxial compression the maximum friction angle is given by

Bolton (1986), @,.x — P =3, thus:

6sin
Mqpear =w (3.44)
3—5iN(@rax )
The bounding stress ratio obtains its maximum value, Mpeak, When:
M. —M
ﬂzO@Z‘dsq :lln = P (3.45)
o[> e peak €| 2(M,—M,,
where the initial value, My, is chosen to be taken as:
6sin(0.8¢_. +5I
_ ( Pes ro) (346)

* " 3—5in(0.8¢ + 5l |

with |, being the initial value of the relative dilatancy index, I,. The reason behind this
selection will be extensively discussed through calibration procedure, described in

Chapter 4. After calculations, My, can be obtained by:

M,, =2M

sp 'speak speak

M, + 0.5\/(2|v|cs —aM )2 ~16M,, (M M )+4M, (3.47)

After statistical processing of numerous drained tests on sands, Bolton (1986) also

suggested that:

93



Chapter 3: Constitutive Modeling for Sand in Multiaxial Space: A New Plasticity Approach

dsp

— P =0. 4

ng 0.3/, (3.48)
max

when the peak strength value, Mspeak, is obtained; a deduction that can be used for the
calibration of the plastic flow rule and specifically the phase transformation line.
Combining flow rule of Eq. (3.31) for triaxial conditions and empirical Eq.(3.48), it is

shown that:

de
3l -—"
{ de, Lx _ -3(031,)

de; M M (3.49)
4 t — Wlpt,peak speak — 3+|: dEpj| Bl 3+ (03|r) .

q

p

de” de
assuming that {—’;} ={—} when maximum strength ({=1) has occurred. In order to
de de
q m, max

q

3(0.31,)

satisfy the above requirement | m = -
y q pt,peak speak 3+(O3lr)

J , Mpto is chosen:

3(0.31,)
Moo = MspeakZn - 3_3(0_;’“ (3.50)
Constant evolution during loading will lead to M, =M, =M, —% at peak strength

(Z=1). In retrospect, by following the above described calibration process, the initially
“physically meaningless” model parameters My, Mg, and Mgy are eventually expressed
as functions of the fundamental soil properties ¢, D, and current confining pressure p.
It should be mentioned, that the intermediate steps behind the selections and
assumptions made for formation of Egs. (3.44) to (3.50) will be shown in detail in Chapter

4, as part of a unified calibration attempt.
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3.4 MODEL PREDICTION VERSUS EXPERIMENTS

Model predictions versus experimental results have been performed for both sets of M
and My Set A [Egs. (3.40)-(3.41)] and Set B [Egs. (3.38)] to evaluate the efficiency of the
proposed set A compared to the well-established set B. Initially, simulations of drained
and undrained triaxial monotonic tests for Toyoura sand were conducted. The values of
the model parameters adopted in these simulations, are depicted in Table 3.1 for both
set of equations. The relative density, D,, was calculated considering e,,,=0.977 and
emin=0.597 for Toyoura sand, according to Verdugo and Ishihara (1996). Figures 3.12-3.16
(a) and (b) illustrate the comparison between model predictions and experiments. The
flexibility offered by the proposed set of equations for My and My provides a better
agreement with the experiments, especially for loose sands. In case of denser sands, the

level of predictability can be considered equal for both models.

Figures 3.12-3.13 (c) and (d) offer an insight on how the new presented constitutive
formulation cooperates with the two sets of equations for M and M, based on the
evolution of state parameter |, for set A and W for set B. The required parameters for the
critical state line in e-p space, A and , were obtained by Taiebat and Dafalias (2007). The
differences between the two sets are mostly attributed to the initial values of Mg which
in case of set A are lower than M for both the looser and denser sand. According to
these new equations, the stress ratio q/p reaches the bounding line early during loading
following the shape of the bounding line up to the critical state. On the other hand, for
set B, the stress ratio meets the bounding line later during loading at a higher current

value of M and then follows the bounding line up to critical state in a much slower rate.

In the following, undrained cyclic loading was simulated and compared with
experimental results, as depicted in Figure 3.17. In order to efficiently capture the
number of cycles to liquefaction, Eg. (3.37) was adopted. The values of the model
parameters considered in the simulations are presented in Table 3.2, for both sets of

equations. Evidently, model prediction incorporating set A captures better the stress-
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strain loops, whereas when set B is adopted, shear locking is observed despite the fact
that early stabilization (at p>0), as previously discussed, is avoided, and liquefaction is
eventually reached; a clear achievement of the proposed plasticity approach. To
elucidate the differences between the two sets of equations, Figure 3.18 depicts the
evolution of Mg and Mg with the number of strain increments (steps). In case of set B, M,
and My, despite the negligible fluctuations due to variation of W, are practically
constants throughout loading, far from their critical state value; a fact which eventually
leads to shear locking. On the other hand, set A leads to a continuous variation of both
M; and M, that tend to an asymptotic oscillatory convergence to M (due to significant
variation of I;). Overall, set A [Eqgs. (3.40)-(3.41)] offers a higher degree of versatility and
flexibility allowing for more consistent predictions of sand behavior under monotonic or

cyclic loading.

3.5 CONCLUSIONS

A new plasticity framework for sand behavior in multiaxial stress space is developed by
combining perfect plasticity with components of smooth hysteretic modeling of the
Bouc-Wen type. The proposed formulation incorporates many innovations (such as new
mapping and plastic flow rules) intended to provide critical state consistency not only for
monotonic but also for cyclic loading and uniqueness of model parameters for a given
type of sand. The comparison with experimental results reveals the capability of the
model to describe complex patterns of sand behavior, such as cyclic hardening and
densification, as well as its flexibility to reproduce liquefaction due to cyclic loading at
very large strains (e.g. y > 8%) without exhibiting shear locking. This very important
feature is mainly attributed to a new set of evolution equations for the bounding and
phase transformation lines that ensures asymptotic convergence to critical state for all

types of applied loading. Implementation of the Ta-Ger sand model in a commercially
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available finite element analysis program is currently under development and appears

promising.

Y
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Table 3.1. Model parameters and values for monotonic loading of Toyoura sand.

SET A, Eqs (3.41)-(3.42) Set B, Eqs (3.39)
Parameter Values Parameter Values
A, 130 Ao 130
Elasticity v 0.15 v 0.15
m 0.8 m 0.8
MCS 125 Mcs 1.25
- - € 0.934
Critical State
- - A 0.019
_ — € 0.7
Q 9.1 Ny 0.9
Bounding Surface &
R 0.75 Ng 0.7
Dilatancy
c 10 — -
Hardening
n 0.35 n 0.25
Exponent n
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Table 3.2. Model parameters and values for undrained cyclic loading of Toyoura sand.

SET A, Eqs (3.41)-(3.42)

Set B, Eqs (3.39)

Parameter Values Parameter Values
A, 130 A, 130
Elasticity v 0.15 v 0.15
m 0.8 m 0.8
Mes 1.33 Mes 1.33
— - eo 0.934
Critical State
- - A 0.019
_ - £ 0.7
Bounding Q 9.1 Np 0.9
Surface & R 0.77 Ng 0.7
Dilatancy C 4 - -
No 0.5 No 1
Hardening n¢ 0.3 N 0.2
Exponent Npeak 8 Npeak 4.7
n B 35 B 105
v 30 Y 42
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Figure 3.1. Evolution of parameter { during loading and influence of hardening exponent
n on the predicted response, in case of a Drucker-Prager failure criterion. The star

symbols characterize the current stress states.
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Figure 3.2. Evolution of loading, L = 0, bounding, f=0, and target failure, F=0, surface,
illustrated in m-plane graphs, for a cyclic simple shear test with constant mean effective

stress. The star symbols characterize the current stress states.
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r,=s,/p

f=0 | __ ‘r—rp|

r,=s,/p ry=sy/p

Figure 3.3. Definition of parameter T upon first loading reversal (point D of Figure 2) for a
cyclic simple shear test with constant mean effective stress. The star symbol characterizes

the current stress state, while the circle corresponds to “image” stress point.
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1.5

£, (%)

E- p, = 100 kPa

Figure 3.4. Evolution of loading, L = 0, bounding, f = 0, and target failure surface, F = 0
illustrated in m-plane graphs, for a cyclic triaxial p-constant test. The star symbols

characterize the current stress states.
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Figure 3.5. Distribution/Evolution of normal strain increments during a monotonic
drained simple shear element test (a). Model prediction is held for both assumed

gradients of plastic potential surface: (b) Eq.(3.33) and (c) Eq.(3.35).
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(a)

ry=ss/p

y (%)

011/Po = 055/Pg

Number of steps

G11/Po = Gzz/pu = 033/[30

Number of steps

Figure 3.6. (a) Stress-strain loops under cyclic shear undrained loading. (b) Stress path in

n-plane using Eq.(3.33), (c) evolution of shear stresses using Eq.(3.33), (d) Stress path in

n-plane using Eq. (3.35), (c) evolution of shear stresses using Eq. (3.35).
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Figure 3.7. Model prediction for a cyclic simple shear test under constant shear strain

amplitude, exhibiting densification.
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Figure 3.8. Volumetric strains in drained cyclic direct simple shear tests on clean sands (Duku et al. 2008): (a) Results from 16 sands at a
relative density of about 60% with an overburden stress of 1.0 atm, and (b) Comparison of trends with earlier relationships by Silver and

Seed (1971) for sands at relative densities of 45, 60, and 80%.
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Figure 3.9. Influence of exponent hardening parameter n on the simulated cyclic

undrained response of sand.
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Figure 3.10. Computed cyclic simple shear undrained response of a sand specimen with

D, = 70% under constant shear stress amplitude and evolving exponent n.
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Figure 3.11. Demonstation of drained cyclic simple shear response of a sand specimen

with DrO = 40 % under constant shear stress amplitude and evolving exponent n.
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Figure 3.12. (a), (b) Comparison between experimental data from monotonic drained
triaxial tests on Toyoura sand with p, =100 kPa (Verdugo and Ishihara, 1996) and model

predictions using two different evolution rules (set of equations A proposed herein, and
set B) for the bounding, M, and phase transformation line, Mpt. (c), (d) Evolution of state

variable, ., bounding line, M. and stress ratio, q/p, versus axial strain for set A [Egs (3.41)
-(3.42)]. (e), (f) Evolution of state variable, W, bounding line, M. and stress ratio, q/p,

versus axial strain for set B [Egs (3.39)].
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Figure 3.13. (a), (b) Comparison between experimental data from monotonic drained
triaxial tests on Toyoura sand with p =100 kPa (Verdugo and Ishihara, 1996) and model

predictions using two different evolution rules (set of equations A proposed herein, and
set B) for the bounding, M_, and phase transformation line, Mpt. (c), (d) Evolution of state

variable, l, bounding line, MS and stress ratio, q/p, versus axial strain for set A [Eqgs (3.41)
-(3.42)]. (e), (f) Evolution of state variable, W, bounding line, M_ and stress ratio, a/p,

versus axial strain for set B [Egs (3.39)].
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Figure 3.14. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara,

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M,

and phase transformation line, Mpt.
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Figure 3.15. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara,

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M, and

phase transformation line, Mpt.
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Figure 3.16. Comparison between experimental data from monotonic undrained triaxial tests on Toyoura sand (Verdugo and Ishihara,

1996) and model predictions using two different evolution rules (set of equations A proposed herein, and set B) for the bounding, M. and

phase transformation line, Mpt.
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Figure 3.17. Comparison between experimental data from cyclic undrained torsional
shear tests on Toyoura sand (Zhang et al., 1997) and model predictions using two
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Figure 3.18. Evolution of bounding, M, and phase transformation line, Mpt for model prediction of experimental data from cyclic

undrained torsional shear tests on Toyoura sand (Zhang et al., 1997) of Figure 15 using two different evolution rules for the bounding and

phase transformation lines: (a) set A [Eqgs (3.41)-(3.42)] and (b) set B [Egs (3.39)].
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CHAPTER 4

Calibration Approach
Accounting for Intrinsic and

Stress-Induced Anisotropy

ABSTRACT

A practical calibration approach of a macroscopic constitutive model, based on a new
plasticity framework (Tasiopoulou and Gerolymos, 2012, 2014 and 2015), is featured in
this chapter. At first, the number of unknown model parameters is reduced to a
minimum by incorporating Bolton’s empirical relationships in model formulation. Then,
calibration is performed based on data from drained and undrained triaxial compression
tests for three different types of sand. At this stage, the remaining unknown parameters
are expressed as a function of the initial state (relative density and pressure), while
inherent fabric effects such as particle shape, size and packing on the calibration process
are discussed. At last, stress-induced anisotropy is dealt by introducing a scalar-valued

variable in the model, being a function of principal stress rotation angle, a and the
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intermediate stress parameter, b, without affecting the number of unknown model

parameters.

4.1 INTRODUCTION

Behavior of granular materials has been extensively studied in literature. After repetitive
experimental observations, it has become common knowledge that sand tends to
undergo shear-induced volume change until a critical state is reached, upon which
shearing can no further cause any volumetric change. Whether shearing tends to develop
positive (contraction) or negative (dilation) volume change depends on the initial state of
the material relative to the critical state, being a function of the relative density or void

ratio and the confining pressure.

Various constitutive models for sands have been proposed in literature aiming to
reproduce the behavior described above by incorporating well-established theoretical
frameworks such as the critical state theory and dilatancy laws (Rowe, 1962; Roscoe,
1970; Bolton, 1986). While their success in simulation is automatically ensured once a
suitable plastic flow rule has been chosen and the critical state concept has been
included, the real challenge arises through validation process against experiments,
otherwise known as calibration. The more advanced the constitutive model is, the higher
the challenge. First, the number of unknown model parameters is proportional to the
level of the model complexity, which usually coincides with the level of detail in
predictability. Secondarily, in these cases, it is common that most of the parameters lose

their physical perceptibility and thus, they cannot be related to measurable properties.

Calibration process is considered successful when realistic model predictions versus
experiments can be obtained for various initial states, covering a wide range of relative
densities and pressures. However, while the set of values assigned to model parameters

after the calibration process, works well for the particular sand under study, it is proven
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to be unsuitable for another sand and recalibration is needed in a “case-specific’” manner
for each sand type. The fact that granular materials exhibit variations in their response,
attributed to differences on their particle shape, size and packing, is long known (Cho et
al., 2006; Santamarina and Cho, 2004; Ando et al., 2012; Desrues and Viggiani, 2004;
Viggiani et al., 2001; Tsomokos and Georgiannou, 2010). Figure 1 illustrates experimental
data verifying how the response of three different types of sands with the same initial
state and loading conditions (drained conventional triaxial compression) varies in terms
of the amount of dilation and the occurrence of peak strength. Table 1 offers information
on the specific geometrical traits, distribution and arrangement of sand particles
constituting a particular inherent fabric for each sand type. Experimental evidence
explicitly indicates that separate calibration would be required for each type of sand even

for the same loading conditions due to fabric effects.

Besides the aforementioned complications, the challenge of calibration process gets even
higher when stress-induced anisotropy is accounted for. It has been observed that the
maximum strength and volume change tendency of a particular sand is influenced not
only by the initial density and pressure but also by the type of loading; thus, the loading
direction relative to deposition plane of the sample (Tatsuoka et al. (1986); Yoshimine et
al., 1998; Nakata et al., 1998) as shown in Figure 2. The differences among the three
types of loading are associated with the angle formed between the maximum principal
stress and the vertical direction (perpendicular to the usually horizontal bedding plane
which is the common fabric orientation due to gravitational forces), a value, and the
effect of the intermediate stress, b value (Yoshimine et al., 1998; Nakata et al., 1998).
Clearly, the values of the model parameters obtained after calibration based on triaxial
compression tests would not be appropriate for simple shear or triaxial extension

loading.

Evidently, the utility of a constitutive model cannot rely on a “case-specific” calibration

for each type of loading especially when large scale boundary-valued problems are
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studied, where stress paths cannot be predetermined. Therefore, in order to capture all
the features of sand behavior described above, a constitutive model requires
supplementary formulations to account for the fabric and anisotropy effects, before
calibration becomes even an issue. Various approaches have been developed to address
stress-induced anisotropy, such as rotation of yield surface by introducing kinematic
hardening (Sekiguchi and Ohta, 1977; Anandarajah and Dafalias, 1986; Cambou and
Lanier, 1988; Pestana and Whittle, 1999; Hashiguchi and Mase, 2007; Duriez and
Vincens, 2015). A most complete theoretical approach has been recently developed by Li
and Dafalias (2012) and Gao et al. (2014), coupling the inherent fabric anisotropy with
the loading direction within the critical state framework, named as “Anisotropic Critical
State Theory”. However, an adoption of any of these approaches increases inevitably the
number of unknown model parameters causing further complications in the calibration

process and undermining the predictability of the model; a vicious circle.

In an attempt to rise to the presented challenges while keeping a balance between utility
and predictability of the model, a calibration approach of a macroscopic constitutive
model based on a new plasticity framework (Tasiopoulou and Gerolymos, 2012, 2014 and
2015), is featured in this chapter. At first, the number of unknown model parameters is
reduced to a minimum by incorporating Bolton’s empirical relationships in model
formulation. Then, calibration is performed based on data from drained and undrained
triaxial compression tests for three different types of sand. At this stage, the remaining
unknown parameters are expressed as a function of the initial state (relative density and
pressure), while inherent fabric effects such as particle shape, size and packing on the
calibration process are discussed. At last, stress-induced anisotropy is dealt by
introducing a scalar-valued variable in the model, being a function of principal stress
rotation angle, a and the intermediate stress parameter, b, without affecting the number

of unknown model parameters.
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4.2 CONSTITUTIVE MODEL FOR SAND

A brief summary of the constitutive model formulation, designated as Ta-Ger sand model
and extensively described by Tasiopoulou and Gerolymos (2015), is given in the
following. Ta-Ger is based on a reformulation of perfect elastoplasticity by combining
features of Bouc-Wen hysteresis (Bouc, 1971 and Wen, 1976) and bounding surface
plasticity (Dafalias, 1986). The developed constitutive formulation consists of a non-
explicitly defined plastic modulus, a vanished elastic region and a plastic flow rule, based
on a Rowe’s dilatancy theory (1962) to account for anisotropic distribution of the

dilatancy to the normal plastic strain increments.

4.2.1 Constitutive Formulation

The elastoplastic matrix is explicitly given by:

(4.1)

)] - 22

where {G)f} and {(Dg} account for the gradients of yield surface and plastic potential

surface, respectively. The plastic matrix {H} offers a gradual and smooth (“hardening-

type”) transition from the elastic to perfectly plastic response. Therefore, the values of its

terms are strictly bounded within the range of [0,1]. The matrix {H} acquires only

diagonal terms as a function of a dimensionless variable { and a hardening exponent
variable, n. Both of these variables are of the Bouc-Wen type (Gerolymos and Gazetas,

2005). Matrix {H} is given as:

{H}=¢"{l (4.2)

The failure surface which has the role of bounding surface is described by the following

equation:
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f:[(r_rp):(r_rp):r/z_{\/ng,e _npjzo (4.3)

where r is the second order deviatoric stress ratio tensor (r=s/p) and Ms,e is the

bounding stress ratio, determining the ultimate strength, dependent on the Lode angle O.
It is given as a proportion of ultimate strength at triaxial compression, M, where 8 = 0,

through a factor x accounting for Lode angle effects:
M, o = XM, (4.4)

where M. is related to the friction angle ¢:

6sind
em (4.5)
3—sind
The stress ratio tensor, r, is given by:
o —p.l
r=—" P, (4.6)
P,

where o, is equal to the stress tensor and p, is the mean effective stress at the pivot

points, once reversal of loading occurs. Pivot point is also considered the initial point of

loading. Thus, in case of initial isotropic consolidation state (Kq = 1), rh,L=0 and the

bounding surface, f, returns to its common Drucker-Prager form but with Lode angle
dependency. Otherwise, Ky effects are taken into account so that the bounding surface is

readjusted appropriately. The scalar valued stress ratio n, is defined as:
n =n:r (4.7)

in which n is a normalized stress ratio tensor, normal to f:

r—r
n= £ (48)

[(r —r):(r —rp)]l/2

128



Chapter 4: Calibration Approach Accounting for Intrinsic and Stress-Induced Anisotropy

with properties: trn=0 and trn> =1. Finally, parameter , required to vary strictly in the

range [0,1], is defined as:

(= (4.9)

Evidently when T = 1, f = 0 (Eqg. (4.3)). After combining Egs. (4.3), (4.7) and (4.8) and

performing a series of calculations, the failure surface can be rewritten as:

f:r:n—\/gMS'e:O (4.10)

The gradient to the failure surface,f, is given by:

of

1(n:r)l (4.11)

(P 3

Dilatancy, accounting for shear-induced volume change is based on Rowe’s concept

(1962):
2
d :L /5 l\/lptx— r: nJ (4.12)

where Mpt is the phase transformation surface (or dilatancy surface) and y is the factor

dependent on Lode angle, 6. It should be noted that when d obtains positive values,
contractive response is expected and vice versa. The distribution of dilatancy, d, to plastic

strain components, or else the gradient to the plastic potential surface is described by:

o, =g—§=n+n2d (4.13)
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so that deP =<L>(Dg, where L is the common scalar-valued stress-dependent multiplier,

designated as the loading index. The plastic volumetric strain increment can be estimated

by:
de,? =tr(ds'° ) =(L)tr®, = <L>[n11 +h,, +Ngy +d(nf1 +N3, +N33 +2n3, +2n55 +2n3; )} =(L)d
(4.14)

while the plastic deviatoric strain increment is calculated as:

1/2
dy dy dy
dsz=<L> %H@n—gj +(CD22—§) +(®33—§j +chlzzJrchzserchslz} =<L> %“

(4.15)

It should be mentioned that the value W is approximately 1 irrespectively of the stress

path, so that:

de? = (L) % (4.16)

Thus, the non-associative plastic flow rule in terms of the ratio of the plastic volumetric
strain increment to the plastic deviatoric strain increment is calculated by combining Egs.
(4.4), (4.10), (4.12), (4.14) and (4.15), when T = 1 indicating that current stress rate lies on

bounding surface:

de, \/, (J»th,x rn) FMpt):/i\ste Moo -Mox = X(Mpt M)

(4.17)
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4.2.2 Bounding and Phase Transformation Ratios

In order to adopt the critical state concept, both the phase transformation ratio, M, and
the bounding ratio, M, should gradually converge to the critical state line, M, producing
zero plastic volumetric change when the stress ratio becomes equal to Mg = M =M, =
M, according to flow rule of Eq. (4.17). The evolution of the bounding stress ratio is

described as a function of the cumulative deviatoric strain increment, Z‘deq , Which

ensures that critical state will be reached under monotonic and cyclic loading

(Tasiopoulou and Gerolymos, 2012).:
M, =M, =M, +(M,, =M, e "2 + (M, —M,, Je = (4.18)

where My is an initial value and My, is a maximum value that can never be practically
reached, as shown in Figure 4.3. Model parameter c controls the rate of evolution towards
the critical state value. Details on the particular selection and use of the current functions
for bounding and phase transformation ratio can be found by Tasiopoulou and Gerolymos
(2012, 2014 and 2015). The curve formed by Eq. (4.18) is shown in Figure 4.3 as the
addition of two separate functions (1) and (2). The function of Eq. (4.18) resembles the
trend of sand behavior under drained conditions in deviatoric stress-strain terms. It is
considered convenient in use, since variable { tends to become rapidly equal to 1 due to
the low initial value, My, and thereafter, the current state is forced to follow the
evolution of the bounding surface. That way, the response, e.g, amount and occurrence of
peak strength can be more easily controlled through calibration process. The point C of
peak strength, Mgpeak, Occurs when the derivative of Eq. (4.18) is equal to zero, as
illustrated in Figure 4.3:

ll M., —M

nl s s (4.19)

oM
S SR PEN Z‘dsq peak  C Z(Mso _MSP)

o Xeed
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Substituting Z‘deq‘ . of Eq. (4.19) in Eq. (4.18), Mspeak is calculated as:
pea

(Msp - Ivlcs )2

m +M (4.20)

speak = cs

Thus, if Mgpeak is known or targeted, My, can be obtained by solving Eq. (4.20) with

respect to Mspeak:

4Mspeak - 2Mcs + JK

M, = 5 (4.21)
where A is the determinant:
2 2
A=(2My — Mo ) —16M,g (Moo — My, ) +4M (4.22)
with the limitation, A>0:
(ZMCS — Mk )2 + Z"'\/Ics2
M., < b (4.23)

16(Mspeak —Mg )

which is easily satisfied if M, <M . Finally, M, can be explicitly rewritten as:

2
My, =2M ~16M,p (M —Ms | +4M>  (4.24)

sp — “Vhpeak — speak)

M, +O.5\/(2MCS —4M
The phase transformation stress ratio evolves in the same context, according to the
following expression:

—0.5¢) de,

Mpt =Mes +(Mpo ~Mes Je (4.25)

where Mg is the initial value of M. Figure 4.4 demonstrates how the shape of bounding

and phase transformation stress ratios can be adjusted to produce either dilative (dense
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sand) or contractive response (loose sand), according to plastic flow rule given by Eq.

(4.12) or Eq. (4.17) after T = 1.

4.3 CALIBRATION APPROACH FOR TRIAXIAL COMPRESSION

Thus far, the parameters of Ta-Ger model, 8 in total (as shown in Table 4.2) may work in
a convenient manner within the formulation, but some of them, such as My, Mgpeak and
Moo, lack a physical connection with sand behavior which is mostly dependent on initial
relative density and confining pressure. Moreover, this situation renders the calibration
process a challenging task. However, the latter can be overcome by correlating the model
parameters Myo, Mg, and Mo with Bolton's relative dilatancy index (Bolton 1986, Ching

et al.,, 2012):
| =D, (Q—ln(p))—R (4.26)

where D, is the current relative density of the sand, p is the current mean effective stress,
and Q, R are constants obtaining values close to 10 and 1, respectively. Critical state
occurs when |, = 0, while I, > 0 indicates denser states of sands and |, < 0 accounts for
looser contractive states. The advantage of choosing I, as a state parameter against well-
established state parameters in literature, such as W by Been and Jeffrees (1985)
correlated to the critical state lines in e — p space, is attributed to the fact that the
relative index |, offers a unique set of correlations (Egs. (4.29) and (4.32)) for the dilatant
behavior of a wide range of sands, as showed by Bolton (1986). In plain words, a single
set of Q and R is assumed to apply for all clean sands, in a sense that critical state lines
for different types of sand in e-p space converge into one in D, — p space, since

differences in e, and enay for each sand have been absorbed in D, values.

At this stage of the study, calibration of the model is focused on triaxial compression type
of loading. The reason is two-fold: i) Bolton’s empirical relationships on maximum

strength and dilatancy are based mostly on triaxial compression tests and therefore, they
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can be fully taken into advantage and ii) triaxial compression is the type of loading that is
the least affected by stress-induced anisotropy effects such as principal stress rotation (a
= 0° = constant) and intermediate stress impact (b = 0 = constant); thus, calibration
variations for different types of sand only due to inherent fabric effects such as particle

shape, size etc. can be better highlighted.
4.3.1 Elastic Moduli
The elastic shear modulus is obtained as:

G, =1000k,, _ p%* (4.27)

where p is the current mean effective stress in kPa and komax is a coefficient adapted by
Seed and Idriss (1970), dependent on initial relative density, D,o. In the original paper by
Seed and Idriss (1970), kamax is suitable for mean effective stresses in lb/ft? and its values
are given in a table for selected values of D,o. After appropriate transformation from
Ib/ft2 to kPa and interpolation between the selected values of Dy, komax can be estimated

by:

k.. =0.13D,+3.6 (4.28)

2max

where D is the initial relative density in %. The elastic bulk modulus, K, is considered to

be equal to G, assuming that Poisson’s ratio, v, is equal to 0.15.
4.3.2 Peak Strength

The maximum friction angle for triaxial compression is given by Bolton (1986), in the

range 0< I, <4:
cbmax :d)CS +3Ir 2 d)CS (429)

Therefore, Mgpeak can be calculated as a function of the current relative dilatancy inder, I,:
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6sin(des +31 )

= (4.30)
Pk 3—sin(de, +3 )
Finally, the critical state ratio can be estimated by:
6sin
= (4::) (4.31)

Mes = 3—sin(dc)

where, ¢ is the friction angle at critical state and its value is offered in abundance in

literature for various types of sands (Bolton, 1986; Been and Jefferies, 2006).
4.3.3 Dilatancy

After statistical processing of numerous drained triaxial and plane-strain compression
tests on sands, Bolton (1986) also suggested that, in the range 0 < I, < 4:

€

d
{_di} ~0.3), (4.32)

; a deduction that can be

peak

when the peak strength value, Mgyeak, is obtained at Z|dsq

used for the calibration of the plastic flow rule and specifically the phase transformation
stress ratio. For triaxial compression conditions, where de, =de,, the ratio of total

volumetric strain increment over the total deviatoric strain increment can be expressed

as a function of the current relative dilatancy index, |, according to the following

calculations:
de
3 3 3| %%

{ﬁ} _ de; +2de, _ EdEp _ Edsp _ { dsl} _ -3(0.31,)
p 2 J -
qu max'tx g(dEl—dES) del_di_'_di §d€1_di 3+{_Epj| 3+(0 3Ir)
2 2 2 2 de,

(4.33)
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Combining the plastic flow rule of Eq. (4.17) and empirical relationship for triaxial

compression conditions of Eq. (4.33), it is shown that:

- | I
de; | .. —3(0.31,)

deP :l
p pt,peak speak
qu o - [_ de, } 3+(0.31)
max

(4.34)

under the assumption that :

ded d
% = % (4.35)
def de,

max max

when maximum strength (¢ = 1) has occurred. Mpipeak is the value of the phase

. Of course the value of

peak

transformation stress ratio at peak strength occurrence, Z|d£q

factor , dependent on Lode angle, is equal to 1 for triaxial compression. Therefore, the

value of Mgt peak Can be considered known, according to Eq. (4.34):

3(0.31,)

I\/lpt,peak = WVlpeak _WBL)

(4.36)

In order to satisfy the requirement of Eq. (4.36), at peak strength occurrence, Z‘stq

peak !
Moo is chosen to be a function of current stress state, instead of being a constant:
My =M, 0 — - 203 1 (4.37)
pro-speak>  3-3(0.31,) x '

Constant evolution of current stress state towards the critical one leads to { being equal
to 1 (usually long before peak strength, Mgyeax has been reached), I, tending to 0 and
Mspeak tending to M according to Eq. (4.30); thus Mgy tends to M. It is reminded that
Eq. (4.37) applies for dense initial states, l,o > 0. In case of loose states, |, < 0, it is

assumed that:
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de
——P =0 4.38
l: de, ] ( )
max
so that:
Mpto = MspeakZ” (4.39)

Finally, Eq. (4.25), which describes the phase transformation stress ratio in a generalized

way, is now modified as:

3(0.3I 1 —0.5¢) de .
Mpt=Mcs+(M5peak<n_M Mcs]e 2 4, if 20

3-3(0.31,) X (4.40)

n —0.5¢) de .
Mpt:Mcs+(M5peakZ _Mcs)e 2 4, if kp<0

While Egs. (4.37) and (4.39) could be used for the evolution of the phase transformation
stress ratio instead of Eqgs. (4.40), since it fits both requirements at: i) peak strength (Eq.
(4.36)) and ii) critical state (Mpo = M), use of Egs. (4.40) ensures that critical state will

occur under both monotonic and cyclic loading conditions due to dependency on Z|dsq|

. It is needless to say that in case of monotonic loading, Egs. (4.37), (4.39) when

compared to Eqgs. (4.40), they give practically identical curves.

4.4 MODEL SIMULATIONS VERSUS DATA FROM TRIAXIAL COMPRESSION
TESTS

Hitherto, four (Gej, V, Mspeak, Mpto) OUt eight model parameters (see Table 4.2) have been
expressed as a function of the current or initial state (I,, po or D;g) and M can obtain
values suggested in literature for various sands (Been and lJefferies, 2006). Two extra
parameters, Q and R of Eq. (4.26), have been introduced in the model formulation along

with the adoption of critical state concept, as stated by Bolton (1986) in D, — p space. The
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set of values assigned to Q and R by Bolton (1986) for clean sands is 10 and 1 in respect,
while Salgado et al. (2000) suggests that Q is equal to 9 and R equal to 0.49. Otherwise,
Q, R can be easily estimated using laboratory tests that have achieved occurrence of
critical state (I, = 0), and the values of D, and p at critical state are given. The remaining
three parameters, the initial value of bounding stress ratio, Mg, the evolution parameter,
c and the hardening exponent, n, will be calibrated to fit experimental data from drained
and undrained triaxial compression tests for three different types of sands (see Table 3):

i) Toyoura, ii) Sacramento River and iii) Fontainebleau.

4.4.1 Toyoura sand

After meticulous observation of the experimental behavior of Toyoura sand under
drained triaxial compression loading (Figures 4.5-4.9), one can observe the impact of
initial relative density and confining pressure on the volume change (dilatancy), the
maximum obtained strength and its occurrence. In particular, as initial relative density
increases and/or initial confining pressure decreases, thus, Ir increases, sand behavior
becomes more dilative, the maximum strength, Mgyeak increases, the evolution up to the

peak strength is more rapid so that Mpeak OCcurs at lower strains, Z|dsq| g Taking into
pea

account Eq. (4.19) which indicates that Z|d£q

decreases as ¢ and Mg increase, it can
k

pea

be safely deduced that both parameters should be a function of initial state, .
Moreover, according to (4.12) and (4.17), when My, increases, dilatancy, d, decreases
leading to a more dilative response, based on sign convention that was previously noted.
In terms of undrained response (Figures 4.10-4.13), lower values of My, are expected to
lead to occurrence of phase transformation or else quasi-steady state at lower mean

effective stresses.

In case of hardening exponent n, previous studies (Gerolymos and Gazetas, 2005; Drosos

et al., 2012; Tasiopoulou and Gerolymos, 2015) have shown that values of exponent n
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varies in the range of 0.2-0.8 for soils. The lower the value of n, the greater the coupling
between elastic and plastic strain increments is until { = 1 (Tasiopoulou and Gerolymos,
2015). Calibration process requires that even lower values are needed for simulating a
more realistic response. By decreasing the value of exponent n, the failure state (=1
and q/p = M), occurs more rapidly and thus, the impact of parameter My on the
response becomes more predominant. For example, in case of drained stress-strain
curves, the current stress ratio would be forced to follow the bounding surface in the
early stages of loading, for low values of n. Therefore by controlling the value of My, one
can control the shape of the stress-strain curve from the beginning, which is very useful
especially for loose sands, such as cases (c) of Figures 4.5 and 4.6. This is desirable
because the burden of proper fitting is moved basically on one key-parameter, rendering
the calibration less complicated. Demonstration of the impact of My, will be shown in

case of Sacramento River sand in the following.

Taking into account how each model parameter influences the response and cooperates
with each other, optimization was performed in order to formulate suitable expressions
for each parameter as a function of initial state conditions. In particular, M is calculated

based on initial frinction angle ¢, which is dependent on friction angle at critical state,

d)cs and IrO:

d)sO = O-9cbcs + 5|rO < d)cs (4.41)

~ 6sin(cl)so)

o = m (4.42)

The limitation ¢, <¢,, is required to avoid instability issues originated by Egs. (4.22) and

(4.23). Model parameter c is expressed as:

c=6+lg (4.43)

Finally, hardening exponent, n, is given as a function of initial relative density, D:
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n=0.4D o +0.14 (4.44)

The set of values of parameters Q and R is estimated based on undrained triaxial
compression loading tests up to critical state by Verdugo and Ishihara (1996), shown in
Figures 4.11-4.13. The value pairs for each test consisting of initial relative density, which
remains constant during loading, and mean effective stress at critical state (the final
value at the end of loading), should satisfy Eq. (4.26) when I, = 0. . Only two value pairs
(two tests) are needed to solve a system of two unknowns: Q and R. After calculations, Q
and R are equal to 9.15 and 0.77, respectively falling into the range of values proposed by

Bolton (1976) and Salgado et al. (2000).

4.4.2 Sacramento River sand

Initially, prediction of drained triaxial compression tests on Sacramento River sand was
attempted based on expressions of model parameters My, ¢ and n used for Toyoura sand
(see Eqgs. (4.41)-(4.44)). Figure 4.14 demonstrates that model predictions are not
satisfying compared to experimental data, which of course was expected based on the
comparison of the experimental behavior between the two types of sand in Figure 4.1(b).
Model behavior is more dilative than experimental one, while the predicted stress-strain
curve transcends the one obtained from laboratory tests at the early stages of loading
before peak strength is reached. The latter observation indicates that lower values of Mg
are required. Indeed, reducing the values of ¢, and thus, My, leads to better model
predictions both in terms of stress-strain and volumetric-vertical strain curves. In
addition, increase of parameter c further improves the model simulations, moving the
occurrence of peak strength at lower strains and rendering the response slightly more
dilative, as indicated by Figures 4.14 and 4.15. In detail, increase of parameter, c,
increases the rate of evolution of bounding surface towards critical state value; an effect

which tends to provide a slight more dilative response for looser sands and a less dilative
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response for denser sands. No need for change in the expression of hardening exponent,

n of Eq. (4.44) arose.

In conclusion, the expressions of model parameters, ¢ and ¢, used for model simulation

of Sacramento River as are:

d)so = O'7¢CS + 5'!’0 (445)

c=6+3l, (4.46)

4.4.3 Fontainebleau sand

After similar calibration process that was followed for Sacramento River sand, the
expressions of model parameters, ¢y and ¢, offering the most satisfying comparison with

experimental data, as shown in Figure 4.16, are found to be:

b5 =0.8ds +5k (4.47)
c=6+4l, (4.48)

In terms of dilatancy, Fontainbleau sand seems to be less dilative than Toyoura sand, as
illustrated in Figure 4.1(a), and overall more dilative than Sacramento River sand, when
the expressions of ¢ for the two types of sands are compared (see Eqgs. (4.45) and (4.47)
). Regarding the rate of evolution of bounding stress ratio towards critical state,
controlled by parameter, ¢, Fontainebleau sand seems to exhibit the most brittle
behavior with rapid occurrence of peak stress ratio accompanied by steep reduction in
strength. This is the reason why higher values of parameter ¢ were needed for better
model predictions of Fontainebleau sand behavior compared to the other two types of
sand (see Eqgs. (4.43), (4.46) and (4.48)). Sacramento River sand seems to be an
intermediate case. This kind of discrepancy in sand behavior is mostly attributed to the

particle shape (Tsomokos and Georgiannou, 2010). It has been reported experimentally
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that sands consisting of rounder particles tend to behave in a more brittle way. Grain
roundness also leads to a thinner shear band formation (Ando et al., 2012). The shear
band starts to develop just before or at the occurrence of peak strength which coincides
with the steeper slope in €,-y space. The thickness of shear band is related to the shear-
induced volume change or else, dilatancy. The thicker the shear band is, the more dilative
the behavior until critical state. Thus, angular sand particles are expected to exhibit a

more dilative response than round ones.

4.4.4 Variations in calibration for different types of sand

Table 4.4 includes the ensemble of calibrated values or expressions for Ta-Ger model
parameters to provide satisfying predictions for triaxial compression loading of three
different types of sand. Clearly, apart from the critical friction angle, ¢, only two
parameters, ¢so and c require certain fine tuning within a quite narrow range in order to

account for particular inherent sand characteristics, or else fabric effects (see Table 4.3).

Various studies in literature (Cho et al., 2006; Santamarina and Cho, 2004; Ando et al.,
2012; Desrues and Viggiani, 2004; Viggiani et al.,, 2001; Tsomokos and Georgiannou,
2010) have attempted to shed light on the impact of particle size, shape, uniformity etc
on sand behavior and quantify some of these characteristics through appropriate
parameters. Nevertheless, a most extensive investigation still needs to be performed in
order to correlate the grain characteristics with macroscopic physical properties. Such an
effort would facilitate the calibration process and increase the applicability of
constitutive models in a wide range of sand types. Then, for example, a unique
expression for each model parameter, ¢ and ¢, would be needed as a function of initial

state, I;, as well as, other properties accounting for inherent fabric effects.
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4.5 CALIBRATION FOR STRESS-INDUCED ANISOTROPY

The impact of loading direction on sand behavior has been investigated experimentally
by many researchers (Tatsuoka et al. (1986); Yoshimine et al., 1998; Nakata et al., 1998).
Stress-induced anisotropy has been repetitively reported, as illustrated in Figure 4.2.
Three specimens of Toyoura sand with the approximately the same initial state (Do, po)
exhibit significant diversity in their response both in terms of under different loading
conditions (triaxial compression, simple shear and triaxial extension). Evidently, a
constitutive model, calibrated for specific loading tests, could not be able to reproduce
the dependency of sand behavior on loading direction, unless model formulation has
been adjusted in a way to account for stress-induced anisotropy. For example Ta-Ger
model in each current state can by no means reproduce realistically sand response under
any other type of loading than triaxial compression, which is what it has been calibrated
for, as demonstrated in Figure 4.17. Thus far, the only differences in response captured
by the model are attributed to Lode angle dependency of the bounding stress ratio,
which clearly is not adequate to account for stress-induced anisotropy effects. In this line
of thought, an introduction of an appropriate variable is introduced to the model, as a

function of principal stress rotation and intermediate stress parameters.

4.5.1 Principal Stress Rotation and Intermediate Stress Parameters

The impact of loading direction, causing stress-induced anisotropy, can be reflected in
the principal stress rotation and intermediate stress effects (Yoshimine et al., 1998;
Nakata et al., 1998). The parameter accounting for principal stress rotation is defined as

the angle between the direction of maximum principal stress and the vertical one:
a:%tan_l (LJ (449)

The effect of intermediate stress can be represented by parameter b, defined as:
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_ 0203
0'1—0'3

b (4.50)

In case of triaxial compression, a = 0° and b = 0, whereas in triaxial extension, a = 90° and
b = 1. Parameter a under shear loading and isotropic initial consolidation state (Ko = 1) is
equal to 45°, while b is approximately 0.5 but it can be reduced to 0.25 during loading
depending on strain boundary conditions. A trend can be identified by experimental
observations, indicating that increase in parameter a and/or b leads to a more

contractive behavior.

4.5.2 Introduction of stress-induced anisotropy internal variables

It has been previously shown that, within the current constitutive framework, reducing
the values of the following model parameters would lead to a less dilative behavior: ¢
and c. In addition, decrease of hardening exponent n and increase of the phase
transformation ratio would emphasize the abovementioned effect. In this line of thought,
an appropriate variable in the role of reduction factor is introduced as a function of

current parameter a and b:
a, =0.98""%0.8° cos'(0.4a) (4.51)

Table 4.5 presents the values of the reduction factor, ay,, for distinguished values of
parameters a and b. The values of reduction factor decrease moving from left-hand to

right-hand side and from top to bottom; a trend based on experimental evidence.

The reduction factor, ay, is applied to model parameters, ¢ (Egs. (4.41), (4.45), (4.47)), c
(Egs. (4.43), (4.46), (4.48)), n (Eq. (4.44)) and My, (Eq. (4.37)) according to:

Ps0,ab =2Ps0 =3 (Kdbes +5ho) (4.52)

Cab :6ab8 +6II’O (453)
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n=a,”(0.4D,g +0.14) (4.54)

3(0.3,)

_ n__
I\/Ipto - IVlspeakz m;ab

(4.55)

where, coefficients, k and 6 vary from 0.7-0.9 and 1-4, respectively, depending on the
type of sand, as shown in Table 4.4. Hence, model parameters have now become a
function of, not only, the initial state, but also the loading direction, accounting for

stress-induced anisotropy.

Another variable is introduced in the model formulation to address some observations by
Bolton (1986) regarding plane strain conditions. Bolton (1986) provides an empirical
correlation for maximum friction angle based on triaxial compression tests (b = 0),
described by Eg. (4.29). However, in case of plane strain compressions tests,

experimental evidence suggests a higher maximum friction angle:

Drmax =Des +5k (4.56)

The difference between the triaxial (o, =0, =constant;b=0) and plane strain
(o, =constant;e, =0) compression tests can only be attributed to intermediate stress

effects, since parameter a is equal to 0° for both test configurations (Tatsuoka et al.,
1986). In particular, under plane strain loading, parameter b is initially equal to 0 and
increases to 0.4 at peak strength for Ko = 1, as shown by DEM experiments (Sazzad and
Suzuki, 2012). Ta-Ger model predictions for plane strain compression tests estimate a
value of b equal to 0.5 at peak strength occurrence. In order to account for this effect,

variable g, is proposed as a function of parameter b:

ot =3+25in(b180°) (4.57)

Variable g,, becomes equal to 5 when b = 0.5 while it gradually returns to value of 3

when b deviates from 0.5 towards either O or 1:
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3<8w <5 (4.58)
Thus, the maximum friction angle is now obtained as:

(bmax = (bcs + 8ok (4.59)

4.5.3 Model Simulations versus experiments on Toyoura sand

Egs. (4.51) to (4.59) are used to predict the behavior of Touyoura sand under various
monotonic drained and undrained loading paths: simple shear, triaxial extension and
shear under fixed a and b values. Coefficients k and & of Eqgs. (4.52) and (4.53), which
have been previously calibrated based on triaxial compression tests, are equal to 0.9 and

1, in respect (see Table 4.4).
Simple Shear Loading

Figure 4.18 illustrates the comparison between model predictions and experimental
results (Yoshimine et al., 1998) under undrained simple shear loading for various initial
relative densities and isotropic initial consolidation state (Ko = 1). All normal strain
components are constrained (dg;=0) during loading. The direction of maximum
principal stress, o;, forms a practically constant angle, a, of 45° with the vertical direction
throughout loading, both in case of model and laboratory tests. The intermediate stress
value, b, remains close to 0.5 in case of model tests, while experiments showed a

variation of b from 0.5 at the beginning of loading to 0.25 at the end of the test.

Figure 4.19 demonstrates model and experimental behavior (Pradhan et al., 1988) under
drained direct simple shear tests for various initial states (D, po) and anisotropic initial
consolidation state (Ko = 0.52eg). Lateral strains were not allowed during loading. Figure
4.20 shows the relationships between parameter and angle, a. Rotation angle a is equal
to 0° at starting point (initial Ko consolidation conditions) and rapidly increases to 25° at

the early stages of loading where b still remains close to zero. As larger shear strains are
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induced, b increases converging to a value of 0.27 approximately while angle a reaches
values of 45° to 55° (smaller for looser states). The plastic flow rule adopted by Ta-Ger
model (Eq. (4.13)) predicts a similar trend, but lower values of angle a (see Figure 20).
However, it gives a more realistic prediction compared to the most commonly used flow
rule, according to which dilatancy, d, is equally distributed among plastic normal strain

components:

0
¢g:a—§:n+§dl (4.60)

The plastic flow rule of Eq. (4.60) predicts a relationship between parameters a and b

that can be described by:
b=sin’(a) (4.61)

Last, Figure 4.21 compares model and experimental results (Yoshimine et al., 1998) from
undrained simple shear tests where dg;;=0 and Ko = 0.5. Figure 4.22 demonstrates the
principal stress rotation angle, a and the evolution of intermediate stress parameter b
versus deviatoric stress, as obtained by both model and laboratory tests. Comparison
indicates that model can capture the right trend of a and b evolution and its dependency
on the initial state (D). Nevertheless, model predicts lower values of angle a, as it has
been also observed in case of drained simple shear tests in Figure 4.20. Despite this
discrepancy, model simulations and experimental data are in good agreement in stress-

strain terms.

Triaxial Extension Loading

Figure 4.23 depicts the comparison between model simulations and experiments in g-y
and g-p terms, in case of undrained triaxial extension loading. Angle a is constantly equal

to 90° during loading, while parameter b remains equal to 1 (o, =0,). These a, b
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conditions assign the lowest value to reduction factor, ay, leading to the most contractive

behavior possibly exhibited than any other type of loading.

Loading tests with fixed a, b values

Figures 4.24 and 4.25 illustrate the capability of Ta-Ger model to capture stress-induced
anisotropy effects for a wide range of principal stress rotation angle, a and intermediate
stress parameter b, against experimental data. In particular, Figure 4.24 depicts sand
behavior under undrained loading with fixed angle a (a = 45°) for various parameters b
(0-1), while Figure 4.25 demonstrates undrained loading tests with fixed b value (b = 0.5)
and varying values of angle a within a range of 15° — 75°. In all cases, Ko = 1 and dg; =0.
Indeed, comparison indicates the satisfying performance of the reduction factor, ay, to

account for a large combination of a and b values.

4.5.4 Model Simulations versus experiments on Fontainebleau sand

Egs. (4.51) to (4.59) are used to predict the behavior of Fontainebleau sand under various
monotonic drained and undrained simple shear loading. Coefficients k and & of Egs.
(4.52) and (4.53), which have been previously calibrated based on triaxial compression
tests, are equal to 0.8 and 4, in respect (see Table 4.4). Figures 4.26 and 4.27 indicate a
good agreement between model predictions and experimental data, indicating that the
reduction factor can reproduce satisfying results for other types of sand as well, without

being case-specific to the calibration needs of a particular sand (e.g. Toyoura).
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4.6 CONCLUSIONS

The present chapter highlights calibration issues of constitutive modeling for sands
regarding their dependency on initial state (Do, po) relative to the critical state, grain
characterization, namely inherent fabric effects, and loading direction inducing stress
anisotropy. In an effort to address these issues without increasing the number of
unknown parameters which would be at the expense of the utility of the constitutive
model at hand, a practical calibration approach is suggested. The constitutive model used
in this study, designated as Ta-Ger sand model, is based on a reformulation of perfect
elastoplasticity by combining features of Bouc-Wen hysteresis (Bouc, 1971 and Wen,
1976), bounding surface plasticity (Dafalias, 1986) and a plastic flow rule, based on a
Rowe’s dilatancy theory (1962) to account for anisotropic distribution of the dilatancy to

the normal plastic strain increments.

Initially, constitutive formulation was adjusted to Bolton’s (1986) empirical correlation
for maximum friction angle and ratio of total volumetric increment to maximum principal
strain increment as a function of state parameter, |, named as relative dilatancy index,
based on triaxial and plane strain compression tests on various sands. This step led to the
reduction of number of unknown model parameters to three (.o, ¢, n) besides the ones
related directly to measurable physical properties, found in literature, such as critical

state angle, ¢.s and elastic modulus.

In the following, calibration was performed for three different types of sand (Toyoura,
Fontainebleau and Sacramento River sand) based on triaxial compression tests. The three
unknown model parameters, s, C, N, were expressed as a function of initial state, Ir0 or
DrO0. It was found that readjustment of coefficients, k and §, in the expressions of ¢y, and
¢, respectively, was needed for different types of sands due to different grain

characteristics, such as particle size, shape, packing etc. Hitherto, the unknown model
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parameters consist only of coefficients, k and 6. However, a quite narrow range of values

is suggested.

At last, two variables, a, and g,, were introduced to account for stress-induced
anisotropy. Key-variable, ay, is expressed as a function of the angle between the direction
of maximum principal stress and the vertical one, a and intermediate stress parameter b.
It was incorporated in the previous expressions of ¢, ¢, n, as a reduction factor. Hence,
the number of model parameters remained unchanged. Finally, validation against
experimental data was performed in every step of the way for various drained and

undrained loading paths in a wide range of a, b values, as well as initial states.
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Table 4.1. Properties of sands used for drained triaxial compression tests, shown in Figure 4.1.

Type of sand Particle Shape C, Dsg €min €max Packing emin-€max References
Fukushima and
Toyoura angular 1.46 0.16 0.605 0.977 0.372
Tatsuoka (1984)
Dupla et al.
Fontainebleau sub-rounded 1.49 0.21 0.51 0.882 0.372
(2010)
Lee and Seed
(1967)
Sacramento River sub-angular 1.4 0.2 0.61 1.03 0.42

Seed and Lee

(1966)
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Table 4.2. Model parameters.

Model
Parameters
Go
Elasticity
Y
Critical State Mes
Hardening Exponent n
MSO
Bounding Surface o
Mspeak
Phase Transformation
Mpto
Surface
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Table 4.3. Properties of sands used in triaxiax compression tests, which calibration was

based on.
Packing
Particle
Type of sand C, Dso €min €max €min- References
Shape
emax
Fukushima and
1.46 | 0.16 | 0.605 | 0.977 | 0.372
Tatsuoka (1984)
Yoshimine et al.
N/A | 0.17 | 0.597 | 0.977 0.38
(1998)
sub-angular Pradhan et al.
Toyoura 1.46 | 0.16 | 0.605 | 0.977 | 0.372
to angular (1988)
Verdugo and
1.7 | 0.17 | 0.597 | 0.977 0.38
Ishihara (1996)
Toyota et al.
1.55 | 0.17 | 0.597 | 0.99 0.393
(2004)
149 | 0.21 | 0.51 | 0.882 0.372 Dupla et al. (2010)
rounded to
Fontainebleau .
Georgiannou et al.
sub-rounded | 4 55 1 922 | 054 | 0.865 | 0.325
(2008)
Lee and Seed
Sacramento (1967)
sub-angular | 1.4 | 0.2 | 0.61 | 1.03 0.42
River Seed and Lee

(1966)
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Table 4.4. Model parameters used for model prediction of laboratory tests shown in

Figures 4.5-4.16.

Model Fontainebleau Sacramento
Toyoura sand
Parameters sand River sand
Go 1000 komaxp**  (Eq. (4.27))
Elasticity
v 0.15
Q 9.15
Critical State R 0.77
bes 32° (33°%) 32° 34°
Hardening
n 0.4D,p + 0.14
Exponent
Bounding ¢$0 0'9¢CS + 5|r0 O-Sd)cs + 5|r0 0.7Cbcs + 5|r0
Surface C 6+l 6 + 4l 6+ 3l

* for experiments by Fukushima and Tatsuoka (1984)
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Table 4.5. Values of internal variable ay,, accounting for stress-induced anisotropy, for specific a, b conditions.

a=0° a=15° a =30° a =45° a =60° a=75° a =90°

b=0 1.000 0.989 0.968 0.938 0.898 0.849 0.793
b=0.25 0.946 0.937 0.921 0.898 0.868 0.833 0.791
b=0.5 0.894 0.887 0.876 0.860 0.840 0.816 0.788
b=0.75 0.846 0.840 0.833 0.824 0.813 0.800 0.786
b=1 0.800 0.796 0.792 0.789 0.786 0.785 0.784
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Figure 4.1. Experimental data of drained behavior of different sands under triaxial
compression. Comparison under the same initial relative density and mean effective
stress between: a) Toyoura (Fukushima and Tatsuoka, 1984) and Fontainebleau sand
(Dupla et al., 2010) and b) Toyoura (Fukushima and Tatsuoka, 1984) and Sacramento River
sand (Lee and Seed, 1967).
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Figure 4.2. Experimental data by Yoshimine et al. (1998) showing the anisotropic behavior of Toyoura sand with initial density, D,=33-36

%, in undrained triaxial compression, extension and simple shear.
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Figure 4.3. lllustration of the evolution of bounding stress ratio Ms with cumulative

deviatoric strain increment Z‘deq , described by Eq. (4.18).
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Figure 4.4. lllustration of the evolution of bounding, M, and phase transformation, My,
, described by Eqgs. (4.18)

stress ratios, with cumulative deviatoric strain increment, Z‘deq

and (4.25), in case of: (a) dense and (b) loose sand.
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Figure 4.5. Model predictions versus experimental data from drained conventional triaxial compression tests on Toyoura sand at p ;= 500

kPa by Verdugo and Ishihara (1996): (a) e, =0.81, (b) e, =0.886 and (c) e, =0.96.
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Figure 4.6. Model predictions versus experimental data from drained conventional triaxial compression tests on Toyoura sand at p, =100

kPa by Verdugo and Ishihara (1996): (a) e,=0.831, (b) e,=0.917 and (c) e, =0.996.
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Figure 4.7. Model predictions versus experimental data from drained conventional triaxial

compression tests on loose Toyoura sand specimens (DrO =21.2 - 40.3 %) at a wide range

of confining pressures (p, = 2-400 kPa) by Fukushima and Tatsuoka (1984).
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Figure 4.8. Model predictions versus experimental data from drained conventional triaxial

compression tests on dense Toyoura sand specimens (Dro =79.6 - 87.9 %) at a wide range

of confining pressures (p0 = 2 — 400 kPa) by Fukushima and Tatsuoka (1984).
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Figure 4.9. Model predictions versus experimental data from drained triaxial compression tests (p constant) on Toyoura sand at p, =100

kPa by Toyota et al. (2004).
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Figure 4.10. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by

Yoshimine et al. (1998).
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Figure 4.11. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by

Verdugo and Ishihara (1996).
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Figure 4.12. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by

Verdugo and Ishihara (1996).
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Figure 4.13. Model predictions versus experimental data from undrained conventional triaxial compression tests on Toyoura sand by

Verdugo and Ishihara (1996).
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Figure 4.14. Model predictions versus experimental data from drained triaxial

compression tests on loose Sacramento River sand (K0 =1) by Lee and Seed (1967).
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Figure 4.15. Model predictions versus experimental data from drained triaxial

compression tests on dense Sacramento River sand (KO =1) by Lee and Seed (1967).

sand particles are expected to exhibit a more dilative response than round ones.
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Figure 4.16. Model predictions versus experimental data from drained triaxial

compression tests on Fontainebleau sand (K0 =1) by Dupla et al. (2010): (a) p,= 100 kPa
and D_=81.5%, (b) p,= 200 kPa and D_=65.6 %, (c) p,= 400 kPa and D_= 65.9 % and (d)

P,= 400 kPa and Dr =46.5 %.
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Figure 4.17. Comparison between: (a) experiments and (b) predictions performed with
the initial version of the model based on triaxial compression tests (Table 4), which does

not account for stress-induced anisotropy.
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Figure 4.18. Model predictions versus experimental data from undrained simple shear

tests on Toyoura sand with isotropic consolidation state, Ky =1, by Yoshimine et al.

(1998) for p,= 100 kPa.
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Figure 4.19. Model predictions versus experimental data from drained torsional simple shear tests (lateral strains equal to zero) on

Toyoura sand with Ko = 0.52e, by Pradhan et al. (1988): (a) po = 100 kPa for various D,q , (b) D;o = 48 % for various po and (c) po = 30 kPa

for various Dyo.
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Figure 4.20. Relationship between a and b parameters during a drained direct simple shear tests with Ko = 0.52e4 by Pradhan et al.
(1988): Comparison of new plastic flow rule of Eq. (4.13) and commonly used in literature flow rule of Eq. (4.60) against experimental

data.
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Figure 4.21. Model predictions versus experimental data from undrained simple shear tests on Toyoura sand with anisotropic

consolidation state (K0 =0.5) by Yoshimine et al. (1998) for p,= 133.3 kPa: (a) D =37.4%, (b) D, =31.3% and (c) D, =25.5%.
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Figure 4.22. Evolution of parameters a and b versus deviatoric stress, o, — o3, for

undrained simple shear tests with Ko = 0.5 by Yoshimine (1998) of Figure 20: Model

predictions versus experimental data.
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Figure 4.23. Model predictions versus experimental data from undrained triaxial

extension tests on Toyoura sand with isotropic consolidation state (Ko = 1) by Yoshimine

et al. (1998) for various values of initial relative density, D, and mean effective stress, p,..
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Figure 4.24. Model predictions versus experimental data from undrained tests on Toyoura sand with variation of b by Yoshimine et al.

(1998) for p,= 100 kPa and D = 31-34 %: (a) experiments and (b) model predictions.
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Figure 4.25. Model predictions versus experimental data from undrained tests on Toyoura sand with variation of rotation angle a by

Yoshimine et al. (1998) for p,= 100 kPa and D _; = 39-41 %: (a) experiments and (b) model predictions.
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Figure 4.26. Model predictions versus experimental data from drained torsional tests on Fontainebleau sand (K0 =1) by Georgiannou et al.

(2008) : (a) P,=75 kPa and D =452%, (b) p,= 130 kPa and D =428% and (c) p,=215 kPa and D =452%.
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Figure 4.27. Model predictions versus experimental data from undrained torsional tests on Fontainebleau sand (K0 =1) by Georgiannou et
al. (2008) : (a) P,= 75 kPa and D =37.5%, (b) p,= 130 kPa and D, =412%, (c) p,= 130 kPa and D, =523% and (d) p,= 215 kPa and D =

37.5 %.
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Appendix

CHAPTER 5

Conclusions

In retrospect, a complete novel constitutive model for sand has been proposed as an
alternative plasticity formulation that exhibits critical state consistency for both
monotonic and cyclic loading and uniqueness of its parameters for a given type of sand,
irrespective of loading conditions. The model, designated as Ta-Ger sand model is based
on a reformulation of perfect elastoplasticity by introducing a hardening law inspired
from Bouc-Wen hysteresis. The proposed formulation incorporates many innovations
intended to provide critical state consistency not only for monotonic but also for cyclic

loading and uniqueness of model parameters for a given type of sand:

e a new plastic flow rule based on a revision of Rowe dilatancy theory (1962),
accounting for anisotropic distribution of dilatancy to the normal plastic strain
increments, as well as densification due to cyclic loading,

e a mapping rule and load reversal criterion based on the first order work, inspired
from Bouc-Wen hysteresis

e a new formulation for the evolution of the bounding and phase transformation
surfaces as a function of the cumulative deviatoric strain increment, ensuring

critical state consistency not only for monotonic but also for cyclic loading.
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The developed constitutive formulation can be regarded as a bounding single-surface
model with vanished elastic region and the distinguished characteristic of an explicitly
formulated plastic matrix instead of a plastic modulus. The explicitly formulated plastic
matrix plays a triple role:

e it offers a gradual and smooth (“hardening-type”) transition from the elastic to
perfectly plastic response in order to capture pre-failure nonlinearity and the
coupling between elastic and plastic counterparts composing the total strain
increment,

e it provides an appropriate loading/unloading/reloading mapping rule by tracking
the distance from the ultimate perfectly plastic state as defined by the failure
surface, which herein, serves as a bounding surface, and

e its terms attain values that are strictly bounded within the range of [0,1].

An extensive calibration procedure has been developed aiming at:
e increasing model predictability,
e minimizing the number of unknown model parameters,

e addressing intrinsic and stress-induced anisotropy.

Constitutive formulation was adjusted to Bolton’s (1986) empirical correlations for
dilatancy, given as a function of relative dilatancy index, I,; the latter works as a state
parameter in the constitutive framework. This step reduced the number of unknown
model parameters to three, besides the ones related directly to measurable physical
properties, such as critical state friction angle and elastic modulus. At this stage, the
remaining three unknown parameters were expressed as functions of the initial state
(relative density and pressure), while inherent fabric effects (such as particle shape, size
and packing) on the calibration process are considered. At last, stress-induced anisotropy

was dealt with introducing a scalar-valued variable in the model, a function of principal
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stress rotation angle, a, and the intermediate stress parameter, b, without affecting the

number of unknown model parameters.

Validation against experimental data was performed in every step for various drained
and undrained loading paths in a wide range of a, b values, as well as initial states, for
three different types of sand (Toyoura, Fontainebleau, Sacramento—River). Comparison
with experiments reveals the capability of the model to describe complex patterns of
sand behavior, such as densification, cyclic hardening, as well as liquefaction due to cyclic

loading at very large strains (e.g. y > 8%) without exhibiting shear locking.
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APPENDIX

Elasticity matrix:

Ee

Il
N N
N =
= N
o O o o

0
0
0 (5.1)
0
0

where:
4G
El =K+? (52)
and
2G
E2 —K—? (5.3)

in which, G and K are the elastic shear and bulk moduli, in respect.
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Deviatoric Stress:

g=\% (5.4)

where J, is the second deviatoric stress invariant:

1 1
J =oSis=0s,s, :E(sfl +85, + 55, + 255, +2s2, +255) (5.5)

O-ll + O-22 + 0-33

where s=0—pl is the deviatoric stress tensor and p= is the mean
effective stress.
The second deviatoric invariant can be also defined (after calculations) as:
N 1 2 2 2 2 2 2
4, _EI:(O-ll _022) +(O-22 _033) +(O-33 _0-11) i|+0'12 T 0310y (5.6)
Thus, the deviatoric stress g, can be written according to Eqn. (5.5) as:
_3,1/2_32 2 2 2 2 2 \1/2
q= E(s :s) = E(s11 +5,, + 553 +25;, +25,, +255,) (5.7)

and according to Eqn. (5.6) as:

1 1/2
qg= \/; [(011 —0,,) +(0,, — 0, +(0y —0, ) +605, +602, + 60321] (5.8)

Deviatoric Strain (equivalent strain)

e eV e Y v

1/2 2 2 2

g, = %(e:e) :J% (511—?"] +(€22—?p] +[£33—?pJ +2€," +26,," +2¢g5,
(5.9)

€
- _ p
where €, =€, + &, +&3; and e—e—?l

or (after calculations)
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1 2 2 2 2 2 ) 12
gq:§|:2(gll—gzz) +2(&y, —&55) +2(&55 £y ) +126,," +126,," +12¢y J (5.10)

- Vi ..
or, considering that ¢, =¢; :%when i#j

1 2 2 2 1/2
& 25[2(511 ~&,) +2("322 _533) +2(533 _Ezz) +3y,° +3p5° +3y312J (5.11)

Principal stresses

l, 2
c, = i+—( If -3, )coscl)e (5.12)
3 3
! 2( F 3|) (¢ 2n) (5.13)
c,="+— —3l, Jcos| ¢, +— :
2 3 3 1 2 0 3
l, 2( > ) ( 4nj
o, =—+—|4/l; =3I, |cos| b, +— (5.14)
3 3 3 1 2 0 3

where

1 | 28 —91L, +27,

$y = —cos 3 (5.15)
3 2(12 -3l %
)

l, =0,, +0,, + 0, (5.16)
|, = > _6° -0’ 5.17
2 = 01102 102033 70336, =0 , =0, —0, (5.17)
l, =G..0,,Cu — . Oon — Gy Oy — GayOog +2G,,5..0 (5.18)

37 Y11-22733 1123 2231 3312 12723731 °

The quanties Iy, |5, |3 are stress invariants.
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Failure/Bounding Surface

[(s - rpp) : (s - rpp)}l/2 + (n o )p — \EMs,ep =0
(s—rpp):(s—rpp)+(n : rp)p[(s—rpp):(s—rpp)}l/z
_\El\/lsﬁp[(s—rpp):(s—rpp)T/2 =0&

(s—rpp) : (s—rpp)+(s—rpp) : rpp—\/%Mslep[(s—rpp):(s—rpp)T/2 =0&
(s—rpp) : (s—rpp+rpp)—\/ng'ep[(s—rpp) . (S—rpp):|l/2 N
(s—rpp):s = —\EMS,SF):O@
[(s—rpp):(s—rpp)}
s:n—\EMS,ep:0<:>§:n—\/§Ms’e:0<:>r:n—\/§Ms,e:0 (5.19)
where
n= (S_rpp) 172~ (S_rpp) (5.20)
[(s—rpp):(s—rpp)} %
where
1/2
Op = (s—rpp) (s—rpp)} &
2 2 ,705
oy —p— P | G o T2 P T33P p] (5.21)
Pp Pp Pp

194



Properties of tensor n

1 c)-]_:I_p_p
i Gll_p_—
% | Po

—_— 1 —_—

Appendix

Oyyp— O3, —
Pp+o,,—p-—E2—F ppp+033_p_—33'p i p}=(5.22)

pp p

2 _pn—n? 12 an2 2 2 2 _
trn® =n:n=nj; +nj, +N33 +2n7, +2n5; +2n3; =

1 Pp
== ,
% 12,p

Pp
%
%

2
O11p— Oyp —
[011 —p-—2 P P Pl + [022 —p-—2E P P

2 2
o o
2P p| +2|03 — 3Lp p
P P

Oy3

(5.23)
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Gradient of the failure/bounding surface of Eq. (5.19)

The volumetric parts:

of 1 011 —P 1 10110—P
0011 24, Pp

1 Y —-p 1 10 —-p
2qp Pp 3 3 Pp

1 o Y 1 10 Y
p

2 o] 10 1 /2 1
+—= 205 ——Lp || -2 -2 [Em g+ N, =
20, P 3 p, | 3\3 3
%110 ~Pp
Opp=P———P
_ Pp 3p-P 3
= ——= | 011 +02 +033 P__(oll,p+022,p+°33,p_ pp) -
qp 3qp pp

O11p P O11p P 0220 P 0220~ P
(Gll_p_ 5 pp]( o pHozz_p_ o pp][ p p}
Pp Pp Pp Pp
033p —P 033p —P 012, 012,
S S v
p P p p
033, 033, 012, 031,
2 023——pp —p +2 031——pp —p
i Pp Pp Pp Pp

O11p ~Pp
Opp=P———P

12 1 Pp 1 1] 1
—= =M g+=n, = —=n, —=,[=M, g +=n, =
3\3 8 3" ap 3 P 3\[; s8737p

O11p ~Pp
O —p——"——

p
Pp 1 /2 1 /2
= ——f—M =n ——/—M
qp 3\3 s,0 11 3\3 s,0

Combining Egs. (5.19) and (5.24):

3qp

(5.24)

1
q)f,]_l:nll—gr:n (525)
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where

1 Y —-p O33 — Y o
rrn=—|+| 033 —p-— 33.p pp ( 33 pj+2 O3 — 12’pp (ij
Y% Pp p Pp p
o o o o
Pp p Pp p

In the same logic,

Df,, =Ny —=r:n
Ot ., =ngz——r:n
The deviatoric parts:
012,
of 2(012 — P p
2 C12,0 P
f12=5—=-—2|012— p =2ny;
001, 24, Pp A%
023
of 2{023 — =R IOJ
p
D¢ 53 = = =2ny3
0053 A
031
8.[: 2[0’31 — P pJ
p
D31 = =2n3;
003, U

0110 —P 011—P G220 P Oy —p
(011—9— p pp}{ 11 j+{022_p_ P || 922
Pp p Pp p

J'
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(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
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Gradient of the plastic potential surface

The volumetric parts:

0g 2 2 2
Og 1= % =Ny +(n11 +Ngp" +Ng3 )d
11
0g 2 2 2
Og 22 = % =Ny, +(n22 +Np" +Ny3 )d
22
0og 2 2 2
Og 33 = % =N33 +(n33 +Ny3" +Ny3 )d
33

The deviatoric parts:

g
Ogrp=7"=2n,+ (NyaNy, +NyoNyg, +Ngyny3)d
004,

og
Og23= o 23 +(NyyN3; +NyNy5 +Ny3Ng3)d

23
og
Og31= o 203 +(Ny4N3; +NyNy5 +N35N55)d
31

Elasto-plastic Matrix Ezp
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The components of the elastoplastic matrix are given by:
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(5.36)

(5.37)



Appendix

Zn
?(q)an + O E, + O 35E )( g11E2+cDg,22E2+cDg,33E1)
Zn
) = (@raEs + O + Oy o6, ) (P 1iEy + Py F, + Oy 35F, )
Zn
) = (@rafy + O + O,y ) (P + Py Fy + Oy F, )
ZG(” (5.38)
(cDg 1By + @, 0,F; + D, 33, )(Df,lz
2 (n
S ((Dg E2+(Dg,22E2+cDg,33E1)ch,23
2G{"
( g 1162 + D 2B + D, 33E1)(Df,31
267"
D, =- S (ch,llEl + O 5, +Ds 33E, )(Dg,IZ
267"
D, =- (chnE +@; 5,F; + O 55F )(Dg12
267"
Dy=—— ((Dan +@; 5,F, + Oy 55F )(D 12
5.39
267" (5.39)
D4:2G 1__ch,12(Dg,12
4G
D5 = _Tch,lz(Dg,B
4GC"
Dg = _—ch,lchg,Sl

S
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2GC"
L, = _—((Df,llEl + @y ,F, + Dy 55F, >®g'23

2GC"
L, = __((])f’llE2 + q)f’zzE]_ + (Df,33E2 )CDg,B

2GT"
L, = __((])f’llE2 + (Df’zzEz + (Df,33E1 )cDg,ZS

5.40

4G o

Ly=————0: 0, ,,
S
2GC"

Ls =2G [1 - T (Df,zsq)g,zs ]

4G’T"
Lg = —T(Df,B(DgSl

2GC"
F = _T((Df’nEl +@; 5,F, + s 53F, )(Dg,31

2GC"
F== S (ch,nEz + Oy 5ok + Dy 35, )cDg,?sl

2GT"
Fy=- S (CDmEZ + O 55k, +ch,33El)(Dg:31

5.41

4G’ o

F,= ——(Df,alq)g,lz
S

4GC"

k= —Tq)f,slq)g,ZS

2G"
F6 = 26[1 - Tq)f’31q)g’31 }

where:

S=D, 1, (Echf,ll +E,O; 5, +E, D 3 ) +Dg ) (Ezq)f,n +E D 5 +E, D 5 )
+0 53 (Ezq)f,ll +E, O 5, +E Qs 5 ) + (5.42)
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Boundary and Loading conditions of Element Tests

All the calculations for model predictions of various experimental tests were based on
solution of Eq. (5.35). For each test six known variables (stress or strain increments) were
needed for the solution. In the following, the boundary and loading conditions of each

type of test are given:

e Conventional Drained Triaxial Test
(1): de,, =deg;
(2): do,, =do;; =0
(3): de;; known (imposed)
(4): do, =0 de;, =0
(5): doy; =0 de,; =0

(6): dos, =0 de;, =0

e Conventional UNDrained Triaxial Test
(1): de,, =deg;
(1): dg;; known (imposed)

d
(3): dej; +ds,, +de;; =dg;; +2de,, =0=de,, = _%u

(4): doy, =0 de;, =0
(5): do,3 =0 de,; =0

(6): doj; =0 de;; =0



e P-constant Drained Triaxial Test
(1): de,, =deg;

d
(2): do,, +do,, +doy; =0=do,; +2do,, =0= do,, =— u

(3): dg;; known (imposed)
(4): do, =0 de;, =0
(5): do,; =0 de,; =0

(6): doy; =0 de;; =0

e Drained Direct Simple Shear test

(1): de,, =0
(2): deg3=0
(2): doj; =0

(3): de,, known (imposed)
(5): do,; =0 de,; =0

(6): dos, =0 de;, =0

e Undrained Direct Simple Shear test

(1): dey, =0
(2): de,, =0
(3): dey, =0

(4): de,, known (imposed)

(5): doy, =0 deyy =0

Appendix



(6): dog, =0 de;, =0

e Drained Simple Shear test (p constant)

(1): do,, =0
(2): do,, =0
(3): dog, =0

(4): de,, known (imposed)
(5): doy; =0 de,; =0

(6): doy; =0 de;; =0

e Undrained Simple Shear test with fixed a, b values

(1): dg;; +de,, +deg; =0
(2): de;, known (imposed)

(3): a known—>

2 2 7 %n Gy ~On
2do,,
=do,, —do,, =
tan(2a)

(4): b known =

1 _ 20 26
o=—tan " (—12] < tan(Qa) = —2—
c

Appendix



Appendix

(5): doy, =0 de,y =0

(6): doy; =0 de;; =0
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