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To my parents



Rather than love, than money, than fame, give me truth.

- In Walden; or, Life in the Woods, by Henry David Thoreau (1854)



Preface

During the last decades numerous studies on the prediction of climatic variables have been
published. The prediction problem is usually solved using state-of-the-art deterministic
models which predict the climate for decades or centuries ahead. However the results of these

deterministic models were not verified in the last decade.

A shift of paradigm from deterministic to stochastic approach is proposed. The stochastic
prediction of geophysical variables is well established in hydrology, but rarely implemented
by climate scientists. The initial aim of this research was to use well established stochastic
techniques of hydrology in climate science, as well as to develop new statistical methods for
the problem at hand. However the lack of knowledge on this direction, forced us to focus on

the development of these tools and minimize the amount of numerical results.

The stochastic modelling of phenomena was based on well established notions of physics.
It is assumed that processes exhibiting Hurst-Kolmogorov behaviour are appropriate to model
geophysical variables. The author hopes that the models used in this study are correct, but an

a priori verification is out of the scope of this thesis.

The simple Bayesian methodology (model choice — prior distribution — collection of data
— posterior distribution — posterior predictive distribution) is mathematically strict and can
quantify the uncertainty of the predictions, not just providing point estimates. Therefore
Bayesian tools for the prediction of hydroclimatic processes assuming that they exhibit Hurst-
Kolmogorov behaviour were developed here. Also statistical tools used in previous

frequentist studies have also been verified.
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Summary

Climatic prognosis is performed, using the deterministic General Circulation Models. These
models whose use started half a century ago, are based on the Navier—Stokes equations and
are numerical representations of the climate system based on the physical, chemical and
biological properties of its components, their interactions and feedback processes. Recently it
was proved that their older versions failed to provide adequate predictions, while newer

versions are still not able to reproduce the climate of the past.

Thus a shift of paradigm to stochastic models has been proposed. Toy models have shown
that stochastic models are more capable of predicting for long horizons, and additionally they
can quantify the uncertainty on their predictions. We prefer to follow the path less travelled
and model geophysical processes stochastically. Whereas a usual approach to stochastic
modelling is the ad hoc choice of the appropriate stochastic model for the time series at hand,
we again prefer to use results obtained from the implementation of general notions of physics,
such as the maximization of entropy, albeit a satisfactory answer to the question, which is an
appropriate stochastic model for climate has not yet been given. Maximization of entropy
under certain constraints results in models exhibiting Hurst-Kolmogorov behaviour. In this

thesis the Hurst-Kolmogorov stochastic process will be used to model this behaviour.

The overall aim of this thesis is the development of tools for climate prediction. Attempts
to achieve this aim in a typical statistical context have been proved successful so far, but they
do not offer much space for further improvements. A Bayesian approach offers more
flexibility at the cost an additional assumption, i.e. the introduction of the prior distribution

for the parameters of the models.

The main questions that are addressed in this thesis are:

- How can the uncertainty in the estimation of the parameters of the model be integrated in
the uncertainty of the prediction?

- How can the data be used for the prediction?

- Which is an appropriate framework to gain information from the available deterministic

models?

The main components of the framework that will be developed in this thesis are the
stochastic model and the data. The development of tools should contribute in quantifying the
uncertainty in the prediction of climate. Uncertainty quantification contrary to point

estimation may explain climate variability.



To answer these questions, a previous typical statistical approach of the problem is
investigated and is justified analytically. The general algorithm for the estimation of
confidence intervals of parameters of interest that was used in this study is compared to other
general algorithms and it is found that it performs satisfactorily. Properties of the algorithm
are discovered within an analytical framework strengthening the arguments in favour of its
use in this earlier study. However this approach is not adequate to solve the problem, owing to
its indirect but encouraging results. Thus to continue the research, another path is chosen,

namely the Bayesian approach.

To strengthen the Bayesian choice some results on the estimation of the parameters of the
Hurst-Kolmogorov process using a maximum likelihood estimator are presented. A novel
estimator is proposed as well and its properties are examined analytically. It is shown that
handling all parameters of the process simultaneously is critical to obtain valid results. The
posterior predictive distributions of the climate variables for the Hurst-Kolmogorov process
are calculated conditional on past observations within a Bayesian stochastic framework. The
examined variables are assumed to be normal or truncated normal. The results are compared
with cases where some of the parameters are considered known and the effect of the
uncertainty in their estimation is shown. Uncertainties not previously given attention are

revealed.

We conclude trying to use information from deterministic model outputs to improve
stochastic prediction. To this end properties of the maximum likelihood estimator of the
bivariate Hurst-Kolmogorov process are analysed. A stochastic framework including both

data and model outputs is developed.

On a more practical level the stochastic framework is applied to temperature, rainfall and
runoff data from Greece and Europe and it is shown that it is able to explain climatic
variability within a stationary context. The latter framework is applied to historical global
temperature and over land precipitation data. General Circulation Models are used as
deterministic models. It is shown that the information added by the General Circulation
Models to that contained in the historical datasets is not substantial. This means that the

output of the General Circulation Models has almost null effect on the stochastic predictions.



Hepiinyn
Ewooywyn

10 apOpo “A random walk on water” (Koutsoyiannis 2010) to omoio exmoviOnke yio tnv
tehetn amovoung tov PpaPeiov Henry Darcy Medal tifetar to epdtuo €0V 1 VIETEPUIVIGTIKN
mpoPAeym Tov KApOTOg eivor duvatn Ko M omdvinon eival kornyopnuotikd «Ooxw. O
CUYYPOPENS  EMYEIPNUATOAOYEL OTL «EVOl OVVATOV VO GYHUATOTOICOVUE IO OUVETH
OTOYAOTIKI] QVOTOPAOTOTH YEWPVOIKMV OLEPYATIOV, OTHV OTOL0, ] JOVATOTHTA TPOPAEYNS (1
OTOLOL TOPEYETAL OATO VIETEPUIVIOTIKODS KAVOVES) KAl 1] 0OVVOULO (TOXOLOTHTO) GOVOTAPYOVY KOl
oev amotelovv Ceywpiota N wpdabeta otoiyeia 0 évo Tov aAlov. H amdpaon woid arxd ta 000
Kvplapyel eloptdror amid. amd TOV YpPoviKo opilovio. kol TG KAuokog THG TPOfAewng.
Moaxpivol opilovieg mpofleyns avomopevkto, ovayeTilovtal ue vynin afefordtyto, s omolog

N TOCOTIKOTOINON ECOPTOTOL AT TIG ATVUTTWTIKES OTOYOOTIKES IOLOTHTES TV OIEPYOTLOVY.

Ot epyaociec oyetikd pe v emdoyn &vOg KOTAAANAOL GTOXUGTIKOD HOVIEAOL Yo TNV
KMpotikny wpdPreyn eivor Alyeg (Keenan 2014). Xe oavty v epyocio emiéydnke n
npocéyyion tov Koutsoyiannis (2011) pe v ¥p1on GLYKEKPIUEVO TNG GTOYUCTIKNG OVEAIENG
Hurst-Kolmogorov (HKp), 6nmg ovopdletoar amd tov Koutsoyiannis (2010) kot m omoia,
napovotdler ovumepipopd Hurst-Kolmogorov (HK). XEtoyaotikd povtéla to  omoia
napovstalovy cvouneprpopd HK mpoxdmtouy amd v €popuroyn Tov 0e0TEPOV VOUOL TNG
Beppoduvokng, omAadn TV HEYIGTOTOINGN TNG EVIPOTING, VIO OPIGUEVOVG TTEPLOPICUOVE
(Koutsoyiannis 2011). H HKp &ivail otdoun otoyaotikn avéMén, kot  coprnepipopd HK
yapaktnpiletor and v Tiun g mapapétpov Hurst H. Yrobétovpe 6mun {x}, t=1, 2, ...

glval (o GTAGIUN GTOYOOTIKN AVEAMET e LEO TN K
w = Ex] (1)
TUTTIKT) OTTOKAILON &
o :=~[Var[x] 2)
GLVAPTNGT GLVOLNGTOPAG Yk
7 := Cov[xy, X+], k=0, £1, £2, ... 3)
Kot ovuvaptnon avtocvoyétiong (autocorrelation function, ACF) pk
p=wlo k=0,+1,+2, ... 4)

Tote 1 ovpneprpopd HK umopei va poviehoromOei amd v {x:}, eav (Beran 1994 p.42)
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limpx/ (Ck®) =1,0<a<l,0<c (5)

k—o0

H mapdapetpog H opileton amd v
H:=1-al/2 (6)
EmumAéov vobétovpe ot {xi}, t=1, 2, ... elvan kavovikn. 'Eoto k évag Oetikog axépatog

0 0moiog avamaploTd o xpovikn KAipako peyoddtepn and 1, dnAadn v ypovikn KAipoko

¢ avéMEng {x}. H péon otoyaotikn avéMén oe avtv v KAMpoKo SnAGVETOL ™G

X(K) B tx
x =k XX (7

I=(t-1)x+1

H akdlovdn e€icwon opilelt v HKp (Koutsoyiannis 2003).

(Xi"‘)—ﬂ)g[ﬂ =), 0<H<1, i,j=1,2,... andi, 2=1,2, ... (8)

H ACF ¢ HKp &ivau (Koutsoyiannis 2003)
pk=k+ 1P/ 2+ k—12"/2—- k™M k=0,1,... 9)
Meydreg Tipég T1g mapapétpov H eivarl kat@AANAES Yia TNV HLOVTEAOTOINGT SEPYAGLOV OL
omoieg mapovcotdlovy pHeYOAES OOKVUAVOES OT®G o010 Xynua 1 xor umopodv  va
APNOOTOMB0VV avTi U GTACIUOV GTOYACTIKOV HOVIEA®V TOV OToimV 1 ¥pNoN TPENEL VA

amo@evyeTal, Onwc mpoteiverar amd tov Koutsoyiannis (2006b).

o~ —

— H=05

0 2000 4000 6000 8000 10000
Yyqpa 1. Kwovpevog pécsog yia 30 onpeia yio pia tpocopotopévny HKp pe 4 =0, 6 = 1 ko
() H=0.5 ko (B) H=0.8.

YmoBétovtag Ot T0 6TOYUoTIKO HOVTEAD €ivol KATAAANAO TO TPOPAnua g TpdPAeymc,

O0d0UEVOV TV TOPOTNPNOE®Y, UTopel va emAvOel o éva Mred{lavd otoTioTikd TAaiclo. Xe

Xii



avTd TO0 MAOIGLO €lval SVVATH 1 EKTIUNGN TOV TOPAUETPO®V TOL HOVIEAOL, 1 €VPECT] TNG
KOTOVOUNG TOVG KOl 1] EVPECT] TNG KATOVOUNG HETARANTAOV, OTMG QVTOV OV Yopaktnpilovv
v peArovtikn eEEMEN g otoxaoTiKng aveMENG. Opilovue v Tuyaio petaPAnTi Xin = (X1

... Xn)', Omov:
Xiin ~ f(X1:n|0) (10)

To Mneblioavo oTatiotikd HOVTELO amoTeAEiTOL OO TIC X1:n, X1:n Kot 7 (RoObert 2007 p.9). H
afeporotnta e mopouéTpov @ poviehomoleital amd TNV KaTovoun TOavOTTOS 7, 1 0ol

ovopaleTol €K TOV TPOTEPMV KATOVOUT| Kot 0pileTal g £ENG

0~ =(0) (11)
Tote M xotavoun g @ eivon n €€NG:
_ _f(x1n|0)7(0)
w(O0a0) = Ty, ol0)2(0)d0 (12)

KoL 1) KOTOVOUN HoG 0olacOnmote (Tov pmopel va givort kot HeALOVTIKY) HeTafANTG Y elvan
N &gng:
g(yxwn) = J9(Y10.x1:0)7(0]x1:0)d0 (13)

H epyoacia Aowdv eotidler oty mpOPAeyn VOPOKAUATIKOV UETAPANTOV, OT®MG 1
Beppokpacia kol n BpoxdmTmon, eviog evoc otoyootikod mAaiciov. H emiAvon avtov tov
mpofAnpatog ce owtd To MAAiclo pmopel va unv eivon M tekevtain AEEN NG TEXVOAOYIOG,
®oTOc0 givol 1 HoOVN ProOcIUn EMAOYN YOO [0 ETAPKN OTAVINGY 6€ 0VTO TO TPOPANUQ
(Koutsoyiannis 2010). M Biociun andvinon 6to epaTnua, mold gival 1o TAE0V KATdAANLOo
OTOYAOTIKO LOVTELOD Yo TV HeAETn Tov KATpaTog dev £xet dobel (Keenan 2014). Xe avtrv v
gpyooia yiverar n wapadoyn OTL 01 YEWEVOIKES depyacieg mapovstalovy coumeprpopd HK
Kol povrehomolovvton avtiototya. OAn M wAnpogopio. NG KAMOTIKNG  HETOPANTIG
nepapfPdavetor oty katavoun ™s. Eivar kpiowo Aowov va Bpebel avtn n xotavoun. H
TAEOV TPOKTIKY] TOPAUETPIKT] TPOGEYYION TOL TpoPAnuatog eivor n Mredliovr, n omoia
LEWOVEL TNV TOALTAOKOTNTA TOV TPOPAUOTOC o€ TeRVIKA {nTtnuato, pe T0 KOGTOG HL0G

eMIAEOV VTTOOEGN G, ONAOON TNV TOPASOYN KNG EK TOV TPOTEP®Y KATAVOUNS Yo, TV .

Evog alyopiBuog yio v katookevny Movte Kapio d100tqudtmv EUmIoTOGOVHS VL0 GOVOPTHOELS

ToPoUETP @V TOAVOTIKOV KOTOVOUMY

Mo tpdtn Tpocsyyion tov mwpoPAnuatog amd tovg Koutsoyiannis et al. (2007) oe éva

OTOYOOTIKO TANIGI0 €yve pE TUTIKEG OTATIOTIKEG HeEBOdoVS. AvamthyOnke dloncHNTIKA Evag
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vevikog alyopiBuog (Monte Carlo Confidence Interval, MCCI) yopig avolvtikny tekunpioon
TOV KOl YPNCHOTOMONKE Y10 TNV EDPECT] SLOGTNUATOV EUTIGTOGVVG Y10 TIG TOPAUETPOVS KO
ocuvaptnoel Tov mapapétpov g HKp. Xt ovvéyela vmoloyiotnkov To Ol00THOTO
gumotoovuvng mocootnuopiov e HKp. Ta dwwotiuata eumotochving ypnoipomodnkay
oV ekTipumon g afefardnrog HEAAOVTIK®Y VOPOKAUATIKOV petafAntov. To péyebog tng
afefordTrog MTOV TOAD HEYOADTEPO, GLYKPIVOULEVO HE HOVIEAD oTO. Omoio yiveton 1
nmapadoyn aveEaptnoioc 1 MapkoPiovig oxéong LETOED TV HETARANTOV. € GUYKEKPIUEVEG
TEPUITAOGELS AmOdeiyOnKe OTL TO HOVTELO MTOV IKOVO VO OVATOPACTHGEL TIG UETAPBOAES OTIC

TOPOTNPNUEVES TLES TOV YEOPVOIKAOV LETAPANTOV.

2mv moapovoa epyacio peletinke kot empPeformbnke avaivtikd Kot aptOuntikd n a&io
TOV oAyopifuov, o omoiog amotedel pia yevikevon g pnebddov tov Ripley (1987 p.176-178).
O oryopBpog ekTipd évo TPooeyyIoTiko 1 — a SIGTNIO EUTIGTOGVYNG Yo TNV TapApeTpo 6
oG povomapapeTpikng kortavoung f(x|d) mov, dnwg npoxvmtel Kot amd to Zynua 2, divetot

amd TV enduevN oyéon:

100,001 = (000 + gy b(x) + el (1)

omov b := b(X1:n) givan 1 extpnTpro péytotng mboavoedvelag (EMII) e napauétpov 6 kat 0=
b(X1n) M extipmon g mopapéTpov. Ymobiétovtag OtL 1 KoTovour Tov otatiotiko b(X1n)

etva g(bl6), 1ote o1 cuvaptoeig A(H), v(d) opilovtar wg e&ng:
2(0) = G Y(a/2|6) and v(#) = G (1 — a/2]6) (15)

H G !(-|0) dnidver v aviictpoen g cuvaptnon g ovvaptnong katavopns G. Ttnv
oxéon (14) ouv dyvoctor (do/d@)p = by wor (dA/dO)y = by vrOAoyilovow peTd oamd
npocopolwoelg Movie Kapro. AmodelyOnke avalvutikd 0Tt avtdg o arlyopiduoc eivan axping
YO OIKOYEVELEG KaTOvVOU®DV Béong kot kAipokoag. EmmAéov 1o didommuo eumotochvng g
oxéong (14) amodeiydnke O6TL eival ooLVUTTOTIKG 160dVVaApO pE éva dtdotnpa Tomov Wald yia

OTOLONTOTE GLVAPTNGT] TOL B KOl GUVETMG Kol Yia TO 1010 T0 6.

Amodelytmke ovolvtikd Ot pia dtucOnTikn tpomomoinomn  tov  aAyopiBuov  yio
TOAVTOPOUETPIKES KATOVOUES amOdidel €MioNG OOGTAWOTO EUTICTOCVUVIG OGLUTTMOTIKA
toodvvapo pe dtwotipata tomov Wald. O adydpiBuog epappoctnie oty eKOETIKY Katavoun,
TNV KAVOVIKY KaTovoun, tnyv katavoun Gamma kot v katavour; Weibull kot cuykpiOnke pe

dAhovg yevikovg aAdyopiBuove. Ao ta aroteAéopata tov [ivaka 1, paivetarl 6ti vepeiye.
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Estimated parameter &

I 6= !

6=6 True parameter, 6

Yo 2. Exitco mov e€nyel Tov TPocdlopiod TV opimv eumiotocivrg | kat U and v
AVTIGTPOPT] TOL EAEYYOV VTOOEGTC.

Mivaxkag 1. Moévte Kdapro mbavotmreg kdivyng kot kotdtaén kabe peboddov yio tov
VIOAOYIGHO Saotnudtov gumtotoovvng 0.975 petd omd 10 000 emavaiiyelg (n katdtoén 1
amodideTol otV HEB0OO e TNV KAADTEPT ATOO00).

MBavotnteg keAvuyng (ue katatdéelg o TapeviEéselc) yio

OAeg TIg 1eBdOOVG
Iepintwon Katavoun IMopdpetpog Méyebog Twyn Twn  Ipooeyyoticd  Ripley Ripley Tomov  Bootstrap ~ MCCI
SelyoT0g TOPAUETPOV TOPAUETPOV Oéong  kMpokag ~ Wald
1 Exfetucry KAipoxo 10 =2 0.889 (5) 0.977 (2) 0.975(1) 0.916 (4) 0.966 (3)
2 Kavovikr) Oéon 10 ©=0 =1 0.946 (3) 0.946 (3) 0.947 (2) 0.931(5) 0.968 (1)
3 Kavovik TTocootnp 10 u=0 =1 0.919 (4) 0.929 (2) 0.929 (2) 0.867 (5) 0.973 (1)
oplo
4 Gamma  K\ipoka 50 o=2 c=3 0.753 0.923 (5) 0.976 (1) 0.940 (4) 0.957 (3) 0.974 (1)
5 Gamma Mopon 50 o=2 c=3 0.976 0.948 (5) 0.972(2) 0.978 (2) 0.956 (4) 0.974 (1)
6 Weibull  K\ipoxa 50 a=2 b=3 0.971 0.969 (3) 0.970(2) 0.966 (4) 0.965 (5) 0.973 (1)
7 Weibull  TTocootnu 50 a=2 b=3 0.971 0.968 (3) 0.970 (1) 0.961 (4) 0.969 (2)
oplo
péon katdradn 4.000 1.857 2.500 4.286 1.429

Tavtoypovy extiunon twv Topoustpwy e oroyaotikng avélilne Hurst-Kolmogorov

ATOQAGIOTIKY] OMUOGio GTNV OVAAVCT] TOV YEOPUOIK®OV JEPYUCIOV EYEL M EKTIUNON NG
woyvo¢ ¢ cvumepipopds HK 1 omoia exppaletar and v Ty g mopapétpov H. TToArég
ektunTpeg tov H €yovv mpotabel. Avtéc ot ektunTpileg cvviBwg dev eXTILOVY TALTOYPOVA
Ko T1g aAleg mapapétpoug g HKp. Edd amodskvoetor 6t 1 extipnon tov H exnpedlel v
eKTiunon g TLMIKNG omdKAonG, €va yeyovdc oto omoio dev €xel dobel mpocoyn otnv
Broypapia. Ipoteivoope v Pacicpévn ommv péBodo eloyioTmV TETPAYOVOV Yid THV
dwaomopd. (Least Squares based on Variance estimator, LSSV) kot digpguvovpe aptOuntikd
™V amddoon TG, TV omoio cvyKpivovpe pe v pnéEBodo ehayiotmv TETpaydVOV Paciopévn

omv tumkn oamdkiorn (Least Squares based on Standard Deviation, LSSD) xot v

XV



ekt TpLa TG pHéytotng mbavopdvetoc. Ot tpelg avtég extipntpieg Pacilovtal otnv doun g
HKp kot extipovv ovyypdveg v mapdpetpo H ko v tuomkn Swacmopd. Emmiéov
eEAEYYOLLE TNV ATOS00T TV TPLOV HEBOdWV Yo Eva €Opog peyeddV Tov delyLOTOg KOl TILMY
tov H pe o pelétn mpooopoimwong kot TiG OLYKPIVOLUE HE GAAEG EKTIUATPIEG TG
Broypapiog.

YnobOétovpe ot n {xi}, t =1, 2, ... givar o HKp. Opilovue eniong v cvvabpoicpuévn
GTOYOOTIKY aVEMEN Yo KGO ypovikn KApokaL:

tx
M= Yx=xx (16)
I=t-1)rx+1

[Mo ovtv Vv 6ToYaoTIKN AvEMEN 1GYVEL:

. ” . ‘ i 1/2
E[2] = k1, 9 = Var[z{"] = @ yo, 0 = (4) (17)

. . , . () () . ,
H ocvvapton cuvdiacmopds yio 0mrolodnTote amd o Xt - Kot Zt , KOt Y10 OTOLONTOTE XPOVIKN

KAMpoko cuvdBpotong x, etvar aveEaptnn tov «, ko divetor amd
Pz =k 1P 24+ k= 12772 — kP k=0, 1,... (18)

Mo o Topatpnon Xin N mbavoedavelo, tov 8 = (4, o, H) maipver tv popen (McLeod
and Hippel 1978):

1 .
1(Olx1n) = 5y 102 Rz ]2 eXp[~1/(202) (Xun — 2 €n)" R pion) ) (Xan — 2 €n)] - (19)

Omov
en=(1,1, ...,1)T (20)

etvan éva dtdvoopa otNAn pe N otoeia, Ry (1] €lvan o wivakag ovtocvoyeticemy, dNAaoT

évag mivakag N X N pe ototyeia rij = pji—jj, Kot | - | dnAdvel v dtokpivovsa Tov Tivaka.

H extyntpio péyromg mboavoedvelog 0 = (,uA 9, I/-\|) amotedeiton amd TG akOAoLOEG

GY£0ELG:
T A-l
A Xin Ryinping €n
H="7r" ) (21)
en R [1:n] [1:n] €n
N 1A N
N (Xlzn —U en) R [1:n] [1:n] (Xlzn — U en)
o= N (22)
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ko to A ekTdTol amd TV peytotomoinomn g cvvaptmong gi(H), n omoia opiletar mg e&ng:

T A-l
n Xun Rznj[n €

gu(H) == SIn[(xun — "7 a1 —en)T -
en Rnjn €n

T Al
-1 X1:n R [1:n] [1:n] €n 1
R [wny i (Xen = =7 A en)] =5 IN(Rpwn (1:n)) (23)
en R [L:n] [1:n] €n

O extypunepieg LSSD (Koutsoyiannis 2003) kot LSV Bacilovtar oty 1010 Aoyikn pe v
dwpopd 6t N petayevéotepn LSV tekumpioveton amd avarvtikég pebooove, oe avtibeon pe
v LSSD 7y v tekunpioon g omoiag £yve po peAétn mpocopoimong, 610tt dev NTav

duvat 1 aveALTIKY TeKunpioon the. Amodeikvietat 0Tt (de¢ emiong Beran 1994 p.9):

2, _ (n/x) — (n/x 2H _(n/k) — (n/x)*H!

E[§n - (n/K) _ 1 y 0 — (n/K) _ 1 KZH 02 = CK(H) KZH 02 (24)
ooV
n
N (25)
i=1
n/x) — (n/k 2H-1 2(x 1 n/x K
c(H) = ( ()n /Kg —an o = -1 _Zl(Zi( )k X(ln))z. (26)

H LSV pébodog extipd ta H kot o ehayiotomoldvog tnv akdAovdn cuvaptnon

” 20y _ 202 2H 2 22
(o, Hy = 3 [ Lo 1 Zl[c"(H)K K;’2 S T (27)

k=1

AmodeikvdeTon petd amd peAétn mpocopoimong Ot ot mapardve pébodot tapovsidlovv
TOAD KAAVTEPEG 1010TNTEG G GYEon He TS dAAeg peBddovg g Piproypapiog. Emmiéov ot
EKTILOUEVEG TIHES TOL H glvo eviog Tov TEdiov OPIGHOV TOV. ATOJEIKVOETAL EMTALOV HETA
TOV VTOAOYIGUO Tov Tivaka mAnpoeopiog Fisher 6t ta o ko H degv givar opboydvia, 6T
eoivetar kot oto Zynua 3. Ot Cox and Reid (1987) neprypdpovy cuvontikd évav aptOpd tomv
OTATIOTIKOV GUVETEI®V TG opBoywvikotntag. Mw un tavtdypovn ektipunomn tov ¢ kot H
tomg va givar vmode€otepn o€ OTL aPopa TV gvotabela, cuykpivovtag pe tig pebodovg ML,
LSSD kot LSV ot omoieg exktipodv tawtdypova ta o kot H. Ao mpaktikny aroyn, 1 onpocio
g €£APTNONG TOV EKTIUNTPLOV, UTOPEL va katovondel amd Tic ToAvAplOUeG ONUOGIEVGELS

oTIC omoiec 0 o extipaton amd v (25), evd v o otryun extipodvv H > 0.5 ko pepiég
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@opég kovtd oto 1. TTpogavdg TEToleg EKTIUNCELG EVOL APKETO LEPOANTITUKEC.
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Estimated Hurst Parameter,H

Yympo 3. Extipopevn mapapetpog Hurst H évovtt ektipdpevng tomikng andxions o and my
puébodo péyiomg mbavoedvelog amd 200 detypato cuvOETIK®OV YPOVOCEP®OV pE ddpopa
unkn. To méve dudypappa avtiotoryel oe mpoypatikd H = 0.8 kot to kGt ddypoppa ce
apaypotikd H = 0.6.

H mpoflertinn kotavoun vdpoxAuotikmv Uetofintov

H HKp éyet peydreg avtocuoyetioelg akoun Kot yio LeYOAES YPOVIKES OMOGTAGELS, OTMS Kot
HEYAAN peTOPANTOTNTO G OAEC TG YpoviKeS kAipokes. To mpdPAnpa Aowtdv eivor mwg Ba
EVOOUOTMOGOVUE TIG VOPOKAUOTIKEG TOPOTNPNOES YO VO, TOPAYOLUE TNV TPOPAENTIKN

KOTOVOUT TOV VOPOKAUATIKOV SEPYACIOV GE KALATIKES YPOVIKES KMpakec. Me v ypnon

Mrebllovmv TexvVik®v dNpovpyovue £va TAAIGLO Yo Vo, AVGOVUE aVTO TO TPOPAN L.

YnroOétovpe 6t {Xi}, t =1, 2, ... &ivor pio KOVOVIKY GTAGIUN OTOXOOTIKY avEMEN pe

napapéTpovg Tov divovral and t1g (1)-(4). 'Eotm 6t n {a} eivan évag Aevkdc 06pvPog (White
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Noise, WN), dniadn pa axorovdia oveEaptntov toxoimv UeTABANTOV OO L0 KOVOVIKY|

katavour pe péoco Ef[ad = 0 ko daonopd Var[ay] = 05. Amd €dd ko oto €€ng n {a} Oa
avapépetor g WN. H endpevn e&icmon opiler to povtédo avtomaivopounong tééng 1

(first-order autoregressive process, AR(1)).
Xe = p = g1(Xe-1 — ) + 2y, || <1 (28)

H ACF tov AR(1) givan (Wei 2006 p.34)

k
pk=0p1,k=0,1,... (29)
H xotovoun g MetaPANTic Xin = (X1,...,Xn)| o0 10 KOVOVIKY] GTAGIUY GTOYOGTIKN
avéMén elvat:
f(x1:0l0) = 21y ™2 |0 Ry | ™2 exp(~1/267) (Xun — e €)" R iy it (Xa:0 — gz €n)] (30)

O6mov Ry [un) &ival o mivaxkog avtoocvoyeticemv pe ototxeio rij = pji-j, 1, = 1,2, ...,n. H
OTOGVGYETLON pjijl £6T® OTL EIVOL GUVAPTNON THG TAPALETPOL @, TéTotag Mot O := (i, 62, @)
va gtvon 1 Tapdpetpog g avéMEng. Emonuaivetan 6t €dv 1 Xn eivar WN, tote po = 1 ko px
=0,k=1,2, ..., €av eivon AR(1) to1¢ 10 pK diveton amd v (29) ko av givar HKp t01€ 10 pi

divetar amd v (4).

‘Eocto 611 10 ¢ elval ek TOV TPOTEP®V KOTAVEUNUEVO OLOLOHOPPA. OETOVE OC EK TOV
TPOTEPMV KATAVOUN Yiot TO @ TNV KoTavour undevikng minpoopiog (deg eniong Robert 2007
example 3.5.6)

n(0) < 1/6° (31)

H &k 10v vo1épov Katavoun Tev mopatéTpmy 0ev el aVOAVTIKN Lopen. 261060 pmopel
va. vtoAoylotel amd éva pelypo Pociopévo oTIG OECUEVUEVEG KOTOVOWUES. ZVYKEKPIUEVA

amodEIKVVETOL OTL:
T -1 T -1 T -1
glO'Z, 0, Xt:n ~ N[(Xt:n R 2 [2:n €n)/(€n R [1:n] [1:n] €n), Uzl(en R[] [2:n] €n)] (32)

T -1
@, X1:n ~ Inv-gamma{(n—1)/2, [en R [:n] n] -
T - T -1 T -1
en Xun R [n [ng Xen — (Xen R [eing en)z]/(z en Rnny €n)} (33)
_ T -1
m(@[X1:n) oc |Rxn gl Y2 [€n R 1] 1] €n -
T -1 T -1 e T -1 _
X1:n R[] 12:n] Xe:n — (X2:n R [2:n] [2:0] en)z] (12 (enR [1:n] [1:n] en)n/2 1 (34)
Xe mpaypoTikd TpoPAnuata emPBaAloviol Gve 1 KAT® QPAyHoTe Yio TIG LETAPANTES Xt

‘Ecteo 011 1 katavoun e Xin vt @paypévn Kot omd tig 600 mAELPEG pe epaypato a Kot b,
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oniadn,
f(xw:0(6) o exp[(~1/20%) (X1 — pt €)' R iy i (Xan — e €)] lpap(¥s, ..., Xa)  (35)

6mov 1o | dnhdver v cuvaptnon deiktn, T€T010 BOTE l[ap"(X1, ..., Xn) = 1 €av Xn € [a,b]" ko
0 aAro¥. Ecto 611 T0 6hvoro mov ppdocet to u givan [a,b], a,b € Ru{—w,0}. O axdrovbog

aAyopiOpog Gibbs amodeikvidetor 0Tl pog TapEyel €K TOV VOTEPOV OEIYUO TPOCOLOIMONG TOL
0= 0
7(lo?, @, Xtn) o exp{—— (Xt R 1] (1] €n)/(En -

R ol o) €n)]/(20%/en R wng o) €n)} lao (1) (36)

g2|,u, 0, X1i:n ~ InV'gamma{n/Z, (Xl;n ) en)T RE}_n] [1:n] (Xl:n — U en)/2} (37)

7(p] 11, 7, Xun) o« vy il ™ eXpl— (Xun — 1 €0)" R g (xn — s €n)/26%]  (38)
H &k tov votépov TpoPAENTIKN KATAVOUY TOV X(n+1):(n+m) OECUELUEVOL T®V @ KoLl Xin
amodeikvoetar 0Tt givon (Eaton 2007 p.116,117)
f(X (1m0, X1:0) = (216%) ™2 R 2 -
exp[(~1/26%) (Xsay(rem) — fmin) " Rain (Xsayuom) — pimin)] (39)

OMOL Hmin T0. Rmin dtvovton omd ta:
-1
Hmin = 1em + Rpn+1):(n+m)] [1:n] R [1:n] [2:n] (X1n — ,Uen) (40)

T -1
Rmin = Rim+1):nem)] [(n+2):n+m)] — R [wn] [0+2):00em)] R [on] [2:n Rp2en] (o 2):(nem] (41)

6mov 10 Ry minp €tvon évog vomivaxag tov R, 0 omoiog mepiéyet ta ototyeia rij, K< 1 <1, m <
J £ n. ta omoio. vwoAoyilovtal avaroya pe TIG WOTNTEG TNG 0TOXAOTIKNG avEMENS {X}. Ot
avVOTEP® GYEGELG UTOPOVV VAL YPNGLULOTONOOVV Y10 OTOL0ONTOTE GLVAPTNGT VTOCVLGYETIONG,
OTOLOGONTOTE GTAGIUNG KAVOVIKNG 0TOXAGTIKNG avEMENS, omws o WN, n AR(1) xar n HKp.
Emmpdoheta eivar dvvaty M edpeon G KOTAvOUNG TG UETOPANTAG Xn+m+l):(n+m+) =
(Xn+m+1,. .., Xn+m+1) YL M — oo, deopevpévov Tov Xin. H petafint avt) ekepdler v
oLUTEPLPOPE TG avEMENG, OTav 0 Ypovikdg opilovtag teivel oto dnepo. Eivon emiong dvvan

1 €DPECT NG KOTOVOUNG KO Y10 TNV TEPIMTOGT TNG PPAYUEVNG GTOYUGTIKNG AvEMENG.

H pébodog epapuooke oe dedopéva Beprokpaciog, BpoxodmTwong Kol amoppons and tov
Bowwtikd Kneiod motopd (Rozos et al. 2004) kou oe dedopévo Bepurokpacioc amd Tto

Bepoiivo (Koutsoyiannis et al. 2007) kou tqv Biévvn (Koutsoyiannis 2011). H xhpatikng
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petofAnt mov eEetdotnke ivon 1 Xi3o) N onoio opiletar w¢ e&ng:

Xt30) :=(1/30)( i Xi+ im), t=n+1, ...,n+29 ko X(30) :=(1/30) i&, t=n+30,n+31,...(42)
I=t-29 I=n+1 I=t-29

Yto oynuato 4 kot 5 dlvovtar ot ek tewv votépwv mpoPrentikég 0.95-meproyég
gumotoovvng. ['a v mepintwon ¢ amoppong tov Bowwtikoh Kneiood oto Zynua 4 n
meployn etvarl acHUpeTpn AOy®m ToL KAT® QPAYUOTOC KOl TNG OYXETIKA HEYAANG O106TOPAG,
avtifeTa e TIg GALEC TEPMTMGELG 1| S1AGTOPA EIVAL GYETIKA UIKPY, OTWG GTNV TEPITTOGT TNG
Bpoxomtwong otnv AMlapto oto Zynua 4 1 o0ev vmdpyovv opayupata. o Oheg Tig
TEPMTMOGELS, Ol PEYOADTEPES TEPLOYES epmoToocvuvng Ntav avtés s HKp (Adyo g
eppovng), akorovBovpeveg amd v AR(1) kot v WN. ®vokd ov meproyég omov 1o H
Bewpeiton dyvooto sivar LEYOADTEPES ATO TIC TEPIMTOGELS TOL Bewpeitan YvmoTd Ko {60 pe
v ektipnon péylomg mlavopdvelag. Ot € ACLUTTOTIKES TEPLOYES EUTICTOGVVIG PAivVETOL
va givol 1KovES Vo LOVIEAOTIOWGOVY TIG KAUOTIKEG SLOKVUAVOELS Y10, TNV TEPITTMON OV

ypnowonoteiton p HKp, emPePfardvovtag v emAoyn g yro TNV HeAETN TOL KAILATOG.

Eni g mpofleyns Euuovav averiCemv ypnoyomoimvias 10, amoTELETUATO. VIETEPULVIOTIKWOV

HOVTELWY

‘Eva mpofAnpo. mov cvvavtdtor oty TEXVIK LOPOAOYIKN KOwOTNTe €ivor M mpoPieyn
VOPOAOYIKADV UETAPANTOV HE O£OOUEVES TIS 1OTOPIKEG TOPOUTNPNOCELS Kol TIS TPOPAEYELS
TAPELOOVTIKOV KOl LEALOVTIKAV YEYOVOT®MV OO VIETEPUIVIOTIKA HOVTEAR. ApKeTég nébodot
&yovv avamtuyfel yuoo va ovTipetonicovy ovtd T0 TPOPANUA LTO TNV TAPASOYN| TNG
Maoapkofrovig oyéong HeTasy TV PeTafANTaOV. Xe avtiv TV epyacio yivetor mpoomdHeio

EMEKTAOTG TOL TPOPANLLATOG KOl € dlepyaciec mov tapovotdlovv cuumeprpopd HK.
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Historical White Noise HK H known  ---------

Moving average AR(1) oo - HK T
Sample mean e AR(1) asymptotic -——-- HK asymptotic ———-
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Yympoa 4. Iotopikd dedopéva Ko TEPLOYEG EUMIGTOGVVNG Y10l TO LEAAOVTIKO KAMpa (yio 1 —a =

0.95 kot kKhMpotiky ypovikny xkiipoka 30 €m) yw (méve) v amoppon tov Bowwtikov
Knooov, (uéco) Bpoyomtmon otnv AAiapto, kat (kdtm) Beppokpacio oty Aliapto.

[Ipog avtnv Vv katevbvvon ot Ot {Xut} kou {Xzt}, t = 1, 2, ... eivor dvo HKp’S pe
TapopéTpovg (11, o1, Hi) xou (12, a2, H2) avtictoyya. Tote 1 dipetafAnt) otoxaotik) aveMEn

{xt = (X1, x20)}, t=1, 2, ... eivon pa wooppomnuévn HKp eav (Amblard et al. 2012)
wij(K) := pij [K%*H, pii =1, pij = pji = p, {i.j} € {{1.2}.{1,2}} (43)
7ii(K) == Cov[Xit, Xjt+«] = (1/2) ai g7 (wij(k—1) — 2 wij(k) + wij(k+1) ) (44)

VO TOV TEPLOPIOUO

) <1“(2H1+1) 1 (2H>+1) sin(zH31) sin(ntH>)

P"= T P2(Hi+Ho+1) sin?(n(HitHo)/2) (45)
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Emonpaivetar 6t yio i = j, n (44) givor 10odOvaun pe mv (9). Xy mopodoa epyacia

extymonkav ot mapduetpor g Oetafintig HKp pe v pébodo g péyiotng

mOavoeaveLag.

Historical White Noise HKH known — ---------
Moving average AR(1) S s HK BEEEEEE
Sample mean —_— AR(1) asymptotic -—-—- - HK asymptotic ———-
l | I I | I |
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(0]

2

Temperature

1800 1850 1900 1950 2000 2050

Year
Yypa 5. Iotopucd dedopéva Kot TEPLOYES EUTIGTOGHVNG Y10 TO LeAAOVTIKO KAlpa (Yoo 1 —a =
0.95 ka1 KApatikn ypovikn kiipako 30 £tn) ya (méve) v Oepuokpacio oto BepoAivo, kat
(kdtw) v Bepuokpacio otnv Biévvn.

‘Eotm 01t X1 1:(n+k) €lvol TO AmOTEAEGHO TOV VIETEPUIVIOTIKOD HOVTEAOL Kot X2 1:n €lval Tol

mapoatnpnuéva dedopéva. Embopovue va Bpovpe v KoTavoun Tov X2 (n+1):(n+m) OEGUEVUEVOV

, . T T \T , , ,
TOV X1 1:(n+m) Kot X2 1:n. Opilovpe Win := (X110, X21:n)' HE TVOKA GLVOOCTOP®V TOL diveTon

and v (46) ko draympileton couemva pe v (50)
[ 21 2w }
o _[ 2n 22 (46)
21 = 01 Ry, Ra(ij) = Ra(iii) 1= pag-iy and 22 := o Ra, Ra(inj) = Ra(ioi) = pagey  (47)
221 =212 1= p12 01 02 Ra1, Raa(i,)) = Ra1(§,1) = R21(J—i) := p21(j—i) (48)

p21(j—i) := yaa(i=i) / (p o1 62) = (12) ( [j—i—1|H1tHz2 — 2 |j—i |HitHz + |j—j+1|Hi+H2)) (49)
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2 211 2w

P, P
X=| 221 2Zoan 22mm :[ P211 P122 ] (50)
2212 2omn Zom
Omov 0 X2m glvan évag M X M wivakag Kot
21 2z } [ 2122 }
‘:2211 Son , P21 [ 212 Z2mn ], P12 S , P2 =20 (51)

Tote 1 ek TOV VOTEPOV TPOPAETTIKN KATOVOUY] TOV X2 (n+1):(n+m) OEGUEVUEVOV TMV X1 1:(n+m),

X2 1:n KO @ glvor
f(X2 e):(em)IX2 10+, X2 10,0) = (2162) ™2 |Rppjn[ 22 -
expl(~1/202) (X2 (ve1y:(rem) — min) " Rein (X2 (o2 oem) — ptmin)] (52)

OOV TA Mmin KOl Rmin dlvovtan amd tv:
-1,, T T T T
Hmin = p2€m + P21 Py ( (Xl 1:(n+m) , X2 1:n)T — (ta€n+m ,Mzen)T) (53)
-1
Rmin = P2 — P21 P1 P12 (54)

Xpnowonowwvtag ®g T tov € v ektipnon péyiotng mbavoedvelog, eéetdotnioy
TEPUTAOGELS TOV Ta LoVTEAQ TpoEPAemay Bepokpacio kot Bpoxdntmon. X115 TEPIGGOTEPES
TEPUTTAOGELS N EKTILAOUEVT] TOPAUETPOS p NTAV 6YedOV ion pe 0, dote TeMkd 1 TANpoPopia
oV TPOcEBETAV TAL VIETEPUIVIOTIKG LovTéLa va gtvar undevikr|. TlapatiBevron ta Zynpota 6,

7 mov emaAnBeHovv L TOV TOV 1IGYLPICUO.

historical moving average ----- deterministic -+ prediction ----- -
. | | | | |
e | AN s B ey
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8 Vo o il T
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Xympa 6. 95% meproyr| eumioTocvvng Yo TV TPOPAeyn tov Kivoduevov pEcov Opov tmv 30
eTOV G péon emotog Beppokpaciog (°C) yuu to oevipio ALB tov poviéhov ECHO-G,
YPNCLOTOIDVTAG TIG O1APOPES TNG LEoNS eTnotag Beppokpaciog tov NOAA.
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historical moving average ----- deterministic -+ prediction ----- -
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Xyfqpa 7. 95% meployn epmioTosvuvng Yo TNV TpOPAEYN TOV KIVOUUEVOL HEGOL Opov TV 30
etov g péon emowog Beppokpaciog (°C) yu 1o oevapo Bl tov poviéhov ECHO-G,
YPNOLOTOIDVTAG TIG SaPOPES TNG LéonS eTnotag Beppokpaciog tov NOAA.
Emonpaivetor 6011 1 avotépo pédodog elvor por eméktacn mTPONYOOUEVOV UEAETMV
Krzysztofowicz 1999a,b; Wang et al. 2009), otic omoieg OU®C €EETACTNKOV TEPIMTMOGELS

Mapkofavav povtédwmv.
2VUTEPCTUOTO. KO TPOTATELS

O apyod¢ 6KOTOS OVTNG TNG EPYACIAG NTOV 1N AVATTLEN EVOG GTOYOGTIKOD TANLGIOV Yo TV
TPOPAEYN VOPOKAMUOTIKOV HETAPANTOV ypnoiporotdvtos Mrebliavég texvikés. [a va Avbel
10 TPOPANUO OTOPAGICALE VO OKOAOVONGCOVLUE Lo TOPAUETPIKT TPpocEyyon. Etot éva
o01oYaoTIKO poviého emAéyOnke. H emloyn Paciomnke oe Begpelopévo ek TV TPOTEPOV
KPUTNPle, KOl GLYKEKPEVO TOV  Og0TEPO VOUO NG Beppodvvopukng oniodn v
LEYIOTOTTOINGN NG EVIPOTIAG, LWO OPICUEVOLG TEPLOPICHOVE M omoion odnyel oe pua
owoyéveld petafintav ot omoieg mapovcsialovv cvumepipopd HK. Mo Mrebliovn
TPOcEyylon eMAEYONKE Yo TV €0PESN NG €K TOV VOTEPMOV TPOPAENTIKNG KATOVOUNG TOV

UEAETOUEVOV VOIPOKMUATIKOV HETARANTOV.

Mo Tponyovpevn TpocEyyion n omoia. avETTVEE £vol 6TOYXAOTIKO TANIG10 dlepeuviOnKe.
Ta amoteAéopoto e peAéng NTav evBappuvtikd. QotOG0 vt NtV Paciopévn o Evav
SloOnTkd adyopiBpo. e autiyv Vv gpyacio amodeiydnke avoivtikd 611 0 0AyOp1OUOg
avTOG Exel KavomonTikég 1W010tTeg. Eautiog twv mePopiopdv TG mPOTNG TPOCEYYIOoNG
amoQOcioTNKE M €miAvorn Tov TPoPAnuatoc pe v ypnon Mnebvliavng otatiotikng. Eva
TPOTO PO TPOS ATV TNV KATEHOLVGT NTAV 1 EKTIUNGCT TOV EKTIUNTPLOV TOV TOPAUETPOV
TOV 6TOYAGTIKOV Hovtédov. Ta amotedéopota Nrav Eavd evBappuvtikd. 'Etot og éva devtepo

frua Avoape 1o TpoPAnua pe Mredllovny péBodo YPNOLOTOIDOVTOS L0 €K TOV TPOTEPWOV
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KOTOVOUTY UNOEVIKNG TTANPOPOPIOG Yol TIG TAPUUETPOVS TOV GTOYACTIKOV HovTéAov. Emumiéov
AmOPOCIoTNKE M YPNON TNG TANPOPOPIOS VIETEPUIVIOTIKMOV HOVTEA®V Yo TNV Pedtioon Tov

OTOTEAEGUATMV TOL 6TOYACTIKOD LoVTEAOV. H Peltimon TelMKd SV TOV GNUOVTIKY.

dvokd avt) M epyacia dev emAVELl TANPOS T0 TPOPANUa. To tedevtaiog te)voAoyiag
HOVTEAQ Y10t TNV KAUOTIKY TPOPAEYT EIVOL VIETEPUIVIGTIKA KOt 1 £PEVLVO EMIKEVIPOONKE GTNV
avanTTLEN TOLVG, TaPd TIC eAAElyelS Tovg. EAdyiota epevvnTikd amoTeAECUATO VITAPYOVY GTOV
Topén TG KMUOTIKAG TPOPAeyNg pne otoyootikés pneboddovg. EAmiCovue 1o avoivtikd

gpyoireio mov avamtHyONKAY £0® VO TPOCPEPOLY GE ATV TV EPEVLVAL.
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1. Introduction

1.1 Long horizons of prediction within a stochastic framework

In the paper “A random walk on water” (Koutsoyiannis 2010), prepared for the Henry Darcy
Medal award occasion, the question whether deterministic prediction of climate is possible
arises and the answer is emphatically “no”. The author argues that “it is possible to shape a
consistent stochastic representation of natural processes, in which predictability (suggested
by deterministic laws) and unpredictability (randomness) coexist and are not separable or
additive components. Deciding which of the two dominates is simply a matter of specifying
the time horizon and scale of the prediction. Long horizons of prediction are inevitably
associated with high uncertainty, whose quantification relies on the long-term stochastic
properties of the processes”. Hence a deterministic prediction of climate for a long horizon is

impossible.

To support his arguments Koutsoyiannis (2010) studies a deterministic toy model of a
caricature hydrological system. In this toy model the evolution of the state of the system is
observed. The state of the system is a function of time, the parameters of the toy model and
the initial conditions of the system. A small change of the initial conditions results in
completely different trajectories of the state of the system after a long time horizon. Assuming
that a precise observation of the initial conditions is not possible Koutsoyiannis (2010)
concludes that deterministic dynamics can produce good predictions only for short time

horizons and that a shift of paradigm from determinism to stochastics is needed.

On the other hand the scientific community focuses on General Circulation Models
(GCMs) following Phillips’ (1956) first published attempt to predict the future climate.
GCMs are numerical representations of the climate system based on the physical, chemical
and biological properties of its components, their interactions and feedback processes, and
accounting for all or some of its known properties. They are applied as a research tool to
study and simulate the climate, and for operational purposes, including monthly, seasonal and
interannual climate predictions (IPCC 2007 p.946). They are deterministic models based on

the Navier—Stokes equations.

There are numerous attempts to predict future climate based on the results of GCMs. For
instance, the projection of surface temperature to the year 3000 (!) (IPCC 2007 p.823) is
mentioned. However, there have been many criticisms regarding the validity of the results of

GCMs. Some of them are listed here:



- They have negligible hindcast properties, i.e. they cannot reproduce the climate of the
past, even for relatively small time horizons, e.g. Koutsoyiannis et al. (2008a),
Anagnostopoulos et al. (2010), Fyfe et al. (2013).

- They cannot predict the regional climate on seasonal to decadal time scales, even for
short time horizons, e.g. Handorf and Dethloff (2012), Scafetta (2013).

- They do not model adequately the climate due to their inherent properties, e.g. Spencer
and Braswell (2011), McNider et al. (2012), Stevens and Bony (2013).

1.2 Long-term persistence in predicting the climate

Little work has been done in choosing a suitable stochastic model for climate prediction
(Keenan 2014). Here the approach of Koutsoyiannis (2011) will be adopted. Koutsoyiannis
(2011) proved that “under certain constraints, i.e. the preservation of the mean, variance and
lag-1 autocovariance and an inequality relationship between conditional and unconditional
entropy production, the extremization of entropy production of stochastic representations of
natural systems, performed at asymptotic times (zero or infinity) results in Hurst-Kolmogorov
processes”. An a priori choice of the statistical model, justified by the implementation of a
principle well established in physics, i.e. the second law of thermodynamics, seems

appropriate (Keenan 2014).
1.2.1 Hurst-Kolmogorov behaviour of geophysical processes

The Hurst-Kolmogorov (HK) behaviour of hydrological and other geophysical processes as
named by Koutsoyiannis (2010) was discovered by Hurst (1951), later became known with
several names such as Hurst phenomenon, long-term persistence and long-range dependence,
and has subsequently received extensive attention in the literature. Earlier, Kolmogorov
(1940), when studying turbulence, had proposed a mathematical model to describe this
behaviour, which was further developed by Mandelbrot and van Ness (1968) and has been
known as simple scaling stochastic model or fractional Gaussian noise (see Beran 1994;
Embrechts and Maejima 2002; Palma 2007; Doukhan et al. 2003; Robinson 2003; and the

references therein).

Many studies on this kind of behaviour have been accomplished. Beran (1994) discusses
some of them related to diverse scientific fields from climatology to agronomy and from
economics to chemistry. The HK behaviour is of special interest for hydrologists, e.g. see
Koutsoyiannis (2002, 2003, 2006a), Koutsoyiannis and Montanari (2007), all published in



hydrological journals. Furthermore many studies on the HK behaviour of geophysical
processes have been published, e.g. recently Buette et al. (2006) studied the Irish daily wind
speeds and Zhang et al. (2009) studied the scaling properties of the hydrological series in the

Yellow River basin.
1.2.2 A mathematical definition of Hurst-Kolmogorov behaviour

In the rest of this thesis the Dutch convention for notation, according to which random
variables and stochastic processes are underlined (Hemelrijk 1966) will be used. We assume

that {x:}, is a stationary stochastic process in discrete time t = 1,2,... with mean

= Efx] (1.1)

standard deviation

o :=~Var[x] (1.2)
autocovariance function
yk := Cov[xt, Xe+k], k=0, £1, £2, ... (1.3)
and autocorrelation function (ACF)
k=l o, k=0, 41, 42, ... (1.4)
Then the HK behaviour can be modelled by {x:} if (Beran 1994 p.42)

limpc/(ck®=10<a<l,0<c (1.5)

k—c0
The parameter H, defined by
H:=1-a/2 (1.6)
is the Hurst or self-similarity parameter of the process.

Processes exhibiting the HK behaviour include the Fractional ARIMA processes (Beran
1994 p.59) and the Hurst-Kolmogorov stochastic process (HKp), also known as fractional
Gaussian noise, (fGn); see also Beran (1994 p.55) and Koutsoyiannis (2010). The typical
modelling approach with artificial models such as the Fractional ARIMA processes suffers in
many aspects (Koutsoyiannis 2015). On the other hand the HKp does not belong to this class

of models, thus we prefer to use it in this manuscript to model geophysical processes.

Furthermore we assume that {x:}, t =1, 2, ... is normal. Let x be a positive integer that

represents a timescale larger than 1, the original time scale of the process {x:}. The averaged



stochastic process on that timescale is denoted as
(K) tx
=Uk) X (1.7)
I=(t-Dx+1
The notation implies that a superscript (1) could be omitted, i.e. x§ = = xt. Now we consider

the following equation that defines the HKp (Koutsoyiannis 2003).

H
(x(”)—ﬂ)g(fj =), 0<H<1, i,j=1,2,... andi, A=1,2, ...  (L8)

The ACF of the HKp is (Koutsoyiannis 2003)
pk=k+1PH 72+ k—12H/2- kM, k=0, 1,... (1.9)
with an asymptotic behaviour same with that of (1.5).
1.2.3 Consequences of the Hurst-Kolmogorov behaviour
A direct consequence of (1.8) is that
Var[xi] := o n?H 2 (1.10)

Assuming that the climate variable of interest is modelled by {x:} it is obvious that VarB(ln)] >

o?In for 0.5 < H < 1 and that Var[x(ln)] = ¢?/n, when H = 0.5, which corresponds to independent
{xt},t=1, 2, .... Thus a HKp can explain bigger variations of an observed variable compared
to independent variables, e.g. see Figure 1.1. This is shown for instance by Koutsoyiannis
(2006a), and will be studied thoroughly in Chapter 4.

o~ —

— H=05

2000 4000 6000 8000 10000
Figure 1. 1 Moving average for 30 points for a simulated HKp with x =0,s=1and (a) H =
0.5and (b) H=0.8.

The fact that a HKp is stationary is emphasized also. Koutsoyiannis (2006b) shows that the



HKp can reproduce climatic trends due to its scaling behaviour. These trends are then
considered as large-scale fluctuations. Paradoxical results obtained by modelling long-term
terms as deterministic components are avoided, e.g the case study examined by Koutosyiannis
(2006b, Section 2.6)). Koutsoyiannis (2006b) explains that the nonstationarity modelling
approach is contradictory in its rationale and its terminology, implying misleading perception
of the phenomena and uncertainty estimation.

1.3 A Bayesian framework on the prediction of climate

Assuming that the chosen statistical model is appropriate to model the data, the problem of
predicting future variables conditional on their observed values belongs to the branch of
parametric statistics. A Bayesian approach is suitable to solve the problem. For a defence of
the Bayesian choice the interested reader is referred to Robert (2007 p.507-518).

1.3.1 Definition of the Bayesian statistical model

We assume that there is a record of n observations which we write as a vector Xin =
(X1,...,Xn)" (where the superscript T is used to denote the transpose of a vector or matrix and
vectors and matrices are bolded, see also Appendix A for more on the notations). Furthermore

we define the random variable X1:n := (X1,...,Xn)", Where
X1:n ~ f(X1:n|0) (1.11)

where f is a probability distribution with unknown parameter @ which belongs to a vector
space @ of finite dimension. Then a parametric statistical model consists of X1.n and Xin
(Robert, 2007 p.7).

We assume now that the uncertainty of the parameter @ is modelled by a probability
distribution z on @, called prior distribution, such that

0~ 7(6) (1.12)

Notice that we generally use the symbol = for probability density functions of parameters.

Then the distribution of @ conditional on xu:n is called posterior distribution and is used to
make inference on 4.

f(X1:0|0)7(0)
[f(x1:0|0)7(60)dO

2(Olx1n) = (1.13)

Then the Bayesian statistical model consists of x1:n, X1:n and z (Robert 2007 p.9).

Notice that:



- The term [f(x1:n|0)7(0)d@ in (1.13) does not depend on @. Furthermore for the given record
of observations it is a constant. Thus z(#|X1.n) is proportional to f(x1:n|@) 7(#). An important
consequence is that to calculate z(6|x1:n) the calculation of the integral term is not necessary.

- The analysis on @ is performed, conditional upon xu:n (Robert 2007 p.529). For instance
after modelling x1:n with the parametric statistical model, an inference on € is made,
calculating its confidence intervals. The typical approach of the construction of confidence
intervals is justified on a long-term basis (Robert 2007 p.16). On the other hand the Bayesian
statistical model proposes a procedure for the problem at hand (Robert 2007 p.513).

- Bayesian inference obeys the likelihood principle, according to which the information
brought by xi1.n about @ is entirely contained in the likelihood function 1(@x1:n). For more
information on the likelihood principle and its application in Bayesian statistics see Robert
(2007 p.15).

- At the cost of an additional assumption, i.e. the introduction of the prior distribution of 8,
inference on @ or some future variables reduces to a simple technical problem. Furthermore
the cost of this assumption can be reduced using a noninformative prior distribution, i.e. a
distribution derived from f (Robert 2007 p.127) when this is the only available information.
Sometimes this automatic derivation leads to improper (or generalized, Robert 2007 p.27)
distributions for 8. In these cases @ cannot be considered as a random variable. As pointed by
Robert (2007 p.10) “the importance of the prior distribution in a Bayesian statistical analysis
is not at all that the parameter of interest @ can (or cannot) be perceived as generated from «
or even as a random variable, but rather that the use of a prior distribution is the best way to
summarize the available information (or even the lack of information) about this parameter,
as well as the residual uncertainty, thus allowing for incorporation of this imperfect
information in the decision process”. Furthermore if the integral [f(x.:n|0)z(6)d@ is finite, the
distribution z(@[x1:n) is well defined and can be used as a regular probability distribution to
describe the properties of #. For consistency reasons @ will be handled as a random variable
(Robert 2007 p.165).

1.3.2 Parameter estimation and confidence regions

The available information on @ is summarized by its posterior distribution. However,
sometimes an estimate of @ is required. Bayesian point estimation is based on decision theory.
A loss function L(0,0) is selected. This function evaluates the error L(8,0) associated with the
decision ¢ (i.e. the estimate of #) when the parameter takes the value # (Robert 2007 p.52). A



Bayes rule 6*(x1:n), which is the value of ¢ that minimizes the function E*[L(8,0)X1:n] for the
given z, X1:n and Xu1:n, is defined as a Bayesian estimate of @ (Robert 2007 p.173).

Furthermore after the computation of z(#|x1:n) confidence regions on @ are available. In the
Bayesian formulation @ has a given probability to belong to a fixed confidence region. On the
other hand confidence intervals have a given probability to contain the parameter 6. The
former notion is more intuitive (Robert 2007 p.260).

1.3.3 Predictive distribution

In our particular problem, i.e. the prediction of a future variable y conditional on Xi:n the

posterior predictive distribution defined by (Robert 2007 p.22)
g(Y|X1:n) = J.g(yw,xl:n)ﬂ'(mxl:n)da (1.14)

solves the problem. The calculation of the integral (1.14) is not necessary, since g(y|X1:n) can
be simulated from the mixture of the conditional distributions z(#|x1:n) and g(y|@,X1:n) (Gelman
et al. 2004 p.74). The future variable can be any variable of interest, e.g. y = Xn:n, for n1 > n

where
Xnginp := (Xng, - Xnp) T (1.15)
One could claim that instead of using the posterior distribution of , it would suffice to

substitute @ for @ in g(y|@,x1:n). As will be shown in Chapter 4 neglecting the uncertainty in

the estimation of @ for the problem at hand, valuable information is lost.

1.4 Obijectives and research questions

1.4.1 The broader perspective

To summarize the discussion, this thesis focuses on the prediction of hydroclimatic variables
including temperature and rainfall, using a stochastic framework. Handling this problem using
stochastics is not the state-of-the-art for the climatology scientific community, however it
seems to be the only reasonable option for an adequate answer to this problem. Not
surpringly, after completing the technical part of the thesis the author came up to an article
pointing that the number of climatologists supporting this options steadily increases
(Macilwain 2014). A viable answer to the question, which is the most appropriate stochastic
model for studying climate has not yet been given (Keenan 2014). In this thesis it is assumed

that geophysical processes exhibit HK behaviour and are modelled correspondingly.



Owing to their structure, GCMs do not regard the climate variables as random. Thus
climate projections are point estimates. Contrary to the aforementioned approach, stochastic
models treat climate variables as random. Hence all the information about the climate
variables is included in their distribution. It is crucial to find this distribution. The most
practical parametric approach is the Bayesian one, which reduces the complexity of the
problem to technical issues, with the cost of just one additional assumption, i.e. the

assignment of a prior distribution to 6.
1.4.2 Research objectives

The objective of this thesis is to provide some tools towards the development of a stochastic
framework for the prediction of hydroclimatic variables. The main components of this
framework are the stochastic model and the data. Topics such as the estimation of the
parameters of the model, the uncertainty of the estimation of the parameters and the
incorporation of this uncertainty in the prediction uncertainty are examined. An additional
component, namely the output of GCMs is incorporated in the model. Information gained
from the deterministic models is assessed and is used to update the inference of the stochastic

model.

The development of these tools should contribute in quantifying the uncertainty in the
prediction of climate. Uncertainty quantification contrary to point estimation may explain

climate variability.
1.4.3 Research questions

The main questions that are addressed in the manuscript are:

- How can the uncertainty in the estimation of the parameters be integrated in the
uncertainty of the prediction?

- How can the data be used for the prediction?

- Which is an appropriate framework to gain from available information from deterministic

models?

To answer these questions, a previous typical statistical approach of the problem is
investigated and is justified theoretically. However this approach is not adequate to solve the
problem, owing to its indirect but encouraging results. Thus to continue the research, another
way is chosen, namely the Bayesian approach. Some results on the estimation of parameters

using a maximum likelihood estimator further strengthen the Bayesian choice.



The main problem i.e. the prediction, is solved in a Bayesian way, revealing uncertainties
not previously paid attention to. The thesis concludes with an attempt to improve prediction
using deterministic information, incorporating this in a stochastic model with dependence

structure more complicated than a Markovian one.
1.5 Thesis outline

This thesis examines several issues associated with the climate stochastic prediction. In
Chapter 2 a general algorithm for the estimation of confidence intervals of parameters of
interest is investigated. This algorithm was discovered heuristically in a previous study and
was used for estimating hydroclimatic uncertainty in a stochastic framework. Here it is
compared with other general algorithms and it is found that it performs satisfactorily.
Properties of the algorithm are discovered within an analytical framework strengthening the

arguments in favour of its use in this earlier study.

Following the encouraging results of Chapter 2 we decide to head to the study of stochastic
models, however following the Bayesian paradigm. In Chapter 3 the properties of three
estimators of the parameters of the HKp are examined analytically. One estimator is novel. A
simulation study is performed and it is shown that these estimators have some optimal
properties. The optimal properties of the maximum likelihood estimator are encouraging in
the sense that the likelihood principle is followed by the Bayesian approach. Furthermore it is
shown that the parameters of the HKp must be handled simultaneously, and we should avoid

examining them separately.

Chapter 4 is the main part of this thesis. The posterior predictive distributions of the
climate variables are calculated conditional on past observations within a Bayesian stochastic
framework. This framework contains a stationary stochastic process which exhibits HK
behaviour. The examined variables are assumed to be normal or truncated normal. The results
are compared with cases where some of the parameters are considered known and the effect
of the uncertainty in their estimation is shown. The framework is applied to temperature,

rainfall and runoff data from Greece and Europe.

An attempt to include the outputs of a deterministic model within the framework of the
stochastic model is displayed in Chapter 5. To this end properties of the maximum likelihood
estimator of the bivariate HKp are analysed. In this case the parameters of the framework are
considered known and equal to their estimates. The framework is applied to global

temperature and rainfall data and their corresponding GCMs prediction. Chapter 6



summarizes the analytical results on the technical level providing also some insights from

their application in climate data.
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2. An algorithm to construct Monte Carlo confidence intervals for an

arbitrary function of probability distribution parameters

In this Chapter! an algorithm for calculating an exact confidence interval for a parameter of
the location or scale family, based on a two-sided hypothesis test on the parameter of interest,
using some pivotal quantities is analysed. We use this algorithm to calculate approximate
confidence intervals for the parameter or a function of the parameter of one-parameter
continuous distributions. After appropriate heuristic modifications of the algorithm we use it
to obtain approximate confidence intervals for a parameter or a function of parameters for
multi-parameter continuous distributions. The advantage of the algorithm is that it is general
and gives a fast approximation of an exact confidence interval. Some asymptotic (analytical)
results are shown which validate the use of the method under certain regularity conditions. In
addition, numerical results of the method compare well with those obtained by other known
methods of the literature on the exponential, the normal, the gamma and the Weibull

distribution.

The algorithm of the method was derived by Koutsoyiannis and Kozanis (2005) and is a
main tool of the statistical software Hydrognomon (ltia research group 2009-2012).
Koutsoyiannis et al. (2007) used the algorithm as an intuitive tool without mathematical
proofs in an attempt to form a stochastic framework for climate prediction and quantification

of the prediction uncertainty.
2.1 Introduction

Various general methods for the calculation of a confidence interval for a parameter of
interest exist. Casella and Berger (2001 p.496-497) suggest the use of the asymptotic
distribution of the maximum likelihood estimator (MLE) to construct a confidence interval for
a function of the parameter of a one-parameter distribution. Wilks (1938) constructs a
confidence interval based on the score statistic (see also Casella and Berger 2001 p.498). Kite
(1988) gives approximate confidence intervals for the parameters of various distributions, by
performing separate analyses for each distribution and each parameter estimation method.
Garthwaite and Buckland (1992) make a new use of the Robbins-Monro search process to
generate Monte Carlo confidence intervals for a one-parameter probability distribution. The

Jacknife method is another general technique to obtain confidence intervals (see e.g. Roman-

1 Based on: Tyralis et al. (2013)
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Montoya et al. 2008). Ripley (1987 p.176-178) constructs simple Monte Carlo confidence
intervals which depend on the type of local properties (location or scale) of the parameter of

interest.

In this Chapter we generalize the method proposed by Ripley (1987), retaining its
simplicity. The method we study here incorporates Ripley’s two suggested equations into one
new equation. The method has a general character and does not make a distinction between
the location and scale families, while other methods make such distinction. It provides single
results without requiring user choices. These are strong advantages which make the proposed

method a useful statistical computation tool.

Initially, we show that our algorithm is asymptotically equivalent to a Wald-type interval,
i.e. an interval resulting from the inversion of a Wald test (Casella and Berger 2001 p.499) of
a parameter or a function of a parameter of any one-parameter probability distribution. We
also show how this algorithm works for certain distributions. Then we generalize this new
algorithm to construct confidence intervals for the parameters or functions of parameters for
multi-parameter probability distributions. We show that these intervals are asymptotically
equivalent to Wald-type intervals. We also show analytically how this algorithm works for the
normal distribution. We compare the results of the algorithm with those obtained by other
exact and approximate methods for the exponential, normal, gamma and Weibull
distributions, and it turns out that the algorithm works well even for small samples. The
approximate methods described here include Wald-type intervals given in the literature or
derived using the formula in Casella and Berger (2001 p.497), Ripley's two equations, and
bias-corrected and accelerated (BCa) bootstrap non-parametric intervals (see also DiCiccio
1984; Di Ciccio and Efron 1996; Di Ciccio and Romano 1995; Efron 1987; Efron and
Tibshirani 1993; Hall 1988; Kisielinska 2012).

The proposed algorithm is partly heuristic and simultaneously so general that it needs no
assumptions about the statistical behaviour of the statistics under study, i.e. it can perform for
any continuous distribution with any number of parameters, and for any distributional or
derivative parameter. Only the theoretical probabilistic model is needed and all other
calculations are done by a number of Monte Carlo simulations without additional

assumptions.
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2.2 Terminology and notation

We use the terminology of Casella and Berger (2001). We recall that an interval estimate of a
parameter & € R is any pair of functions, I(x) and u(x), of a sample Xi:n = (X,...,Xn) that
satisfy I(X1:n) < u(xaw:n) for all X, If X1:n is the random variable, consisting of i.i.d random
variables, whose realization is Xi:n, the inference 1(X1n) < @ < u(X1:n) is made. The random

interval [1(x1:n),u(x1:n)] is called an interval estimator.

The following result from Casella and Berger (2001 p.421,422) is necessary for the proofs
of Section 2.3 and shows how we can construct a confidence interval from a hypothesis

testing procedure:

For each 6o € ® < R, let A(6o) be the acceptance region of a level a test of Ho: 8 = 6o. For

each xu:n, we define an interval C(X1n) in the parameter space by
C(Xl:n) = {60: X1n € A(QO)} (21)

Then the random set C(x1n) is a 1 — a confidence interval. Conversely, let C(xin) bea l — a

confidence interval. For any 6y € ©, we define
A(Go) = {X1:n: G0 € C(Xzn)} (2.2)

Then A(6o) is the acceptance region of a level « test of Ho: 8 = 6o. For 0 < o < 1, a test with
power function f(0) is a level o test if supsea, f(0) < a. If supsca, f(0) = a then this is a size
a test which is a special case of the level « test (Casella and Berger 2001 p.385). Note that the

above terminology is not precise when the test is randomized (Shao 2003 p.477).
2.3 Construction of confidence intervals for one-parameter distributions

Now we proceed to the construction of a confidence interval for one-parameter continuous
probability distributions. The following result which is a consequence of (2.1) and (2.2) is

necessary for the construction of the confidence interval.
We suppose that b := b(x1:n) is @ MLE of the parameter 6 of a one-parameter distribution

with density f(x|d). Then 0= b(X1:n) is the estimate of the parameter. We suppose now that the
probability density of the statistic b(x1:n) is g(b|@). Then we seek two functions A(6), v(6) such
that:

P{A(0) <b(X1n) <0v(@)} =1-a (2.3)

We define A(0), v(0) as those functions that satisfy:

13



Pr{b(x1n) < 4(0)} = Pr{b(X1:n) > ()} = a/2 (2.4)
The above equation implies that:
(0) = G Hal2]0) and v(8) = G (1 — al2|6) (2.5)

where G 1(:|9) denotes the inverse of the cumulative distribution function (or distribution

function from this point forward) G of the statistic b(x1:n).
Now we construct a test Ho: 0= 6 vs Hy: 0 # 0 with acceptance region:
/\ N\ /\
A0) = {xun: G Hal2]0) < b(x) < G (1 - a/2|6)} (2.6)
which is a size a test because the value of the power function at Bis ﬁ(@), given by (2.7).
N\ N\ N\ N\
B(O) =1—Pr{G (a/2]0) < b(x1:n) <G'(1 — a/2|6)|0 = 6)} (2.7)
Thus

BO) =1-[GG (1 - al2))) - GG 2D =1-(1—-a2-al2)=a  (2.8)

From this test and according to (2.1) and (2.2) we obtain the following 1 — a confidence

interval for 6:

C(xan) = {0: G L(a/2]0) < b(xan) < G XL — a/2|6)} (2.9)
After rewriting (2.9) we obtain the following 1 — a confidence interval for 6:
C(X1n) = {0: G H(a/2|6) < b(x1n) <G (1 - o/2/0)} (2.10)
Now we define | and u as the solutions of the equations:
o(l) = b(x1:n) and A(u) = b(X1:n) (2.12)
From the above equation we obtain that:
G }a/2|u) = b(x1n) and G711 — a/2|l) = b(X1:n) (2.12)
We assume that C(x1:n) = [61,82] where 61,62 are the solutions of the equations
G Y(a/2|62) = b(x1n) and G (1 — a/2|61) = b(X1:n) (2.13)

Now it is obvious that [l,u] is a 1 — « confidence interval estimate for 6.
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2.3.1 Construction of the confidence interval

Having proved that [l,u] is a 1 — « confidence interval estimate for 6, we can use it to

construct an approximate confidence interval that can be easily computed numerically. From
Figure 2.1 we observe that

N\ N
v(@) -6 CA

—_— ~

do
A - cB”~ (@i (2.14)

Solving for | we find

N\ N
|~ fe 0O (2.15)
(dold6)e=5

and in a similar way we find that
0— (0
u=0+ —LL (2.16)
(dA/dB)p=19
We can thus claim that
: b(x) — v(b(X)) b(x) — A(b(X))
[169,uGIT = 0D *+ (/) - g * PR * (A /00) = e ) 210

is an approximate 1 — a confidence interval for 6.

Estimated parameter &

] e=b u !
6=6 True parameter, 6

Figure 2.1. Sketch explaining the determination of confidence limits | and u from an
inversion of a hypothesis test.

Under suitable regularity conditions (i.e. Casella and Berger 2001 p.516) the density of the
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MLE is given by Hillier and Armstrong (1999). The necessary conditions for the equations

(2.15) and (2.16) to hold are that A and » are continuous and differentiable at a region of 0.
The validity of these assumptions for certain cases could be investigated, using Hillier and

Armstrong (1999) formula, but at such situations this is not always possible.
2.3.2 Some theoretical results

It is useful to find cases where the above derived confidence interval is exact (i.e. 2.15 and
2.16 are exact). We can easily prove that this happens in the case where v(¢) = c10 + c2, where
c1 and c. are any real numbers:

v(@)—@_ C1/0\+02—@

(d—v) 9 =c1,and =
0=0= C1, = =
de” 0-1  0-1[(0-ca)lc

C1 (2.18)

(The proof for u can be conducted in a similar way and is omitted). Special cases of this are
(i) when o(0) = 6 + ¢, and (ii) when v(0) = 0. These two correspond to the first and second

methods described by Ripley (1987) respectively (p.176, eq.3 and p.177, eq.6, after
. d A . . : -
substitution of (d—Z)w: 9 =Cc=0(0)/0in (2.17)). We can also easily prove that location families

correspond to the first case and scale families correspond to the second case. The proof is

given below:

(a) For location families the quantity x — u (where « is a MLE of the location parameter ) is a
pivotal quantity, i.e. its distribution does not depend on unknown parameters (see Lawless
2003 p.562). Then from (2.4) we have that

Pr{u < ()} = al2 (2.19)

which implies that
Pr{u— u < () — u} = al2 (2.20)

and we obtain that
M) =+ G Y(al2) (2.21)

where G is the distribution function of 4 — u that does not depend on x. In a similar way we
obtain that

() = 1+ G'(1 - al2) (2.22)
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Now it is obvious from (i) above that the confidence interval obtained by (2.17) is an exact

confidence interval.

(b) For scale families the quantity o/c (where ¢ is a MLE of the location parameter o) is a

pivotal quantity (see Lawless 2003 p.562). Then from (2.4) we have that

Pr{c <A(0)}=al2 (2.23)

which implies that
Pr{olo < A(o)lc} = al2 (2.24)

and we obtain that
M0) =0 G (al2) (2.25)

where G is the distribution function of o/ and is independent of o. In a similar way we obtain
that

(o) = G (1 —al2) (2.26)

Now it is obvious from (ii) above that the confidence interval obtained by (2.17) is an exact

confidence interval.

While in the above cases our method provides exact confidence intervals, when the
equation () = c10 + c2 does not hold, it can only provide approximate confidence intervals,
where the level of approximation depends on the form of A and v and for certain cases will be
examined in the next Sections. It is also easy to prove that the confidence interval given by
(2.17) is asymptotically equivalent to a Wald-type interval for any function of the parameter 9
(and hence for the parameter itself) under certain regularity conditions. The proof is given

below.

We want to find a confidence interval for a function h(#) of 6. We assume that ¢ is a MLE
of #. Then according to Casella and Berger (2001 p.497) and Efron and Hinkley (1978), the

variance of the function h(¢) can be approximated by

[h"(O)]lo=5
2
—2@ N (Oxun)lo=

Var[h(9)|6] ~ (2.27)

where 8 is the maximum likelihood estimate of & and I(0|x1:n) the likelihood function of 6.

Now according to Casella and Berger (2001 p.497) we have the following result:
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% — N(0,1) (2.28)
Then from (2.4) we get that

Pr{h(6) < A(0)} = a/2 (2.29)
and

Pr{h(6) > v(0)} = al2 (2.30)

which imply that

2(6) = h(6) +\|Var[h(0)[0]® *(e/2) and v(6) = h(0) +\/ Var[h(@)d]d L1 — «/2) (2.31)

where @1 denotes the inverse of the standard normal distribution function. If we substitute 8

for h(6) then (2.28) becomes identical to case (i) above.
2.3.3 Construction of the algorithm

Having found an expression for the confidence interval, we can construct a Monte Carlo
algorithm to calculate it when there do not exist analytical expressions for the functions of

interest. The algorithm has the following steps:

Step 1. We find the maximum likelihood estimate say 6.
Step 2. We produce k samples of size n, from f(x|/0\).

Step 3. We use these k samples to compute A(@) and 0(9).

Step 4. We produce additional k samples of size n, from f(x|§+89), where 86 is a small

increment.

Step 5. We use these additional k samples to compute A(/0\+60) and v(/9\+80).

Step 6. We substitute (g—g)w _ 5 of (2.15) with [0(8+56) — v(9)]/56, and (g—g)w _ 5 of (2.16) with

[1(5+50) — 2(H)]/s6.
Step 7. We compute | and u from (2.15) and (2.16).

We conclude based on the construction of the algorithm that it could be applied to cases
where 6 is estimated by a different estimator. Below we give an application of the algorithm

on the normal distribution where we used the unbiased estimator of ¢ and obtained good

results.
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2.4 Construction of confidence intervals for multi-parameter probability distributions

We assume now that we have a multi-parameter probability distribution with density f(x|@)
and parameter @ = (61, 02, ..., 6k), whose estimator is T = (T1, T, ..., Tx). We wish to calculate
a 1 — a confidence interval for a scalar function £ := h(@) of . If we assume that T is a MLE
then b(x) given by (2.32)

b(x) :=h(T) (2.32)
is a MLE for h(@) and b(x1:n) given by (2.33)
b(Xl:n) = h(t) (233)

is its estimate. To extend the method, described by (2.15) and (2.16) in the multiple parameter

case, the derivatives d//d@ and do/dé should be evaluated in appropriate directions d; and d,.
Let y be defined by (2.34)
y:= B o) (2.34)
where A, v have been defined by (2.4) and let
Var[T] = diag(Var[T1], ..., Var[Zk]) (2.35)

Var[T] can be easily computed during the same Monte Carlo simulation that is performed to
compute p. It is reasonable to assume that d; and d, will depend on Var[T] as well as on the

matrix of derivatives of y,

B B A/
do 001 00: T 06k
o_| ¥ || 2B X )36
0| do |7| a0 a6, " (2.36)
dv w w
—do L oo 06 T otk -
Heuristically, we can assume a simple relation of the form
QZT
d, = Var[T] (da) e (2.37)

where e; is a size 3 vector of constants needed to transform the matrix product of the first two
terms of the right hand side into a vector. The elements of this vector could be thought of as
weights corresponding to each of the derivatives of the three elements of y. The simplest
choice is to assume equal weights, i.e.
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e.=(1,1,1)7 (2.38)
However, numerical investigations showed that (2.39)
e,=(0,1,1)7 (2.39)

yields better approximations and the theoretical analysis below showed that it yields

asymptotically good results under certain regularity conditions.

The derivatives of 4 and £ with respect to & on direction d; will then be
T T
di di d d d d
(@) di = (@) Var[T] (Eg) e, [ﬁj di = (a%) Var[T] (Eg) & (2.40)

and are both scalars, so by taking their ratio we can calculate di/ds. By symmetry, similar

relationships can be written for » and d, with
e=(1,1,0)" (2.41)

The two groups of relationships can be unified in terms of the 3 x 3 matrix g defined as

dy dy)
q:=4g Var[T] 40 (2.42)
It can then be easily shown that on the directions d; and d,,

di _guiz+Qqiz  do_ Qa1+ 03 (2.43)
df Qe +qxs’ df g tQ2 :

In Section 2.7 we show that the confidence interval for the parameter x of a normal
distribution N(u,6?) is asymptotically equivalent to a Wald-type interval. We also show that
the confidence interval obtained by our method is asymptotically equivalent to a Wald-type
interval for two-parameter regular distributions and hence for any multi-parameter

distribution.
2.4.1 Construction of the algorithm

Now the algorithm for the calculation of the intervals follows:

Step 1. We find the MLE of #, namely @, and its maximum likelihood estimate say 0.
Step 2. The MLE of f is h(@), and its maximum likelihood estimate is h(@).

Step 3. We produce m samples of size n, from f(xlb\).

Step 4. We use these m samples to compute /1(3), 1)(2’), h(@) and Var[T].
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Step 5. We produce additional m samples of size n, from f(x|@+80i), where 06 is a vector with

all elements zero except the ith element, which is a small quantity 66i.

Step 6. We use these additional m samples to compute /1(9+50i), v(9+50i) and h(@+80i).
Step 7. We repeat steps 4 and 5 for i = 1,2,....k.

Step 8. We substitute in (2.36) [,1(0+80.) - /1(0) /56; for [v(0+60. v(0)]/6<9. for Qo and

89 ’
[h(6+56i) — h(6)]/56; for 2%

Step 9. We calculate g from (2.42).
Step 10. We compute | and u from (2.15) and (2.16).

2.5 Simulation results

To test the algorithm in specific cases, we construct confidence intervals for the scale
parameter of the exponential distribution, the location parameter and the pth percentile of the
normal distribution, the scale and shape parameter of the gamma distribution and the scale
parameter and the pth percentile of the Weibull distribution. Then we compare the numerical
results with known, mostly analytical, results from the literature. Various methods are first
compared using a single sample but the ranking based on visual inspection could be
considered as subjective. Thus coverage probabilities using Monte Carlo methods are also

calculated to obtain a more objective inference.
2.5.1 Confidence interval for the scale parameter of the exponential distribution

The density of the exponential distribution is
fexr(X|o) = (/o) exp(—x/o),x>0,0>0 (2.44)

The MLE of ¢ is

o=x (2.45)

A 1 — a Wald-type confidence interval (Papoulis and Pillai 2002 p.310), is

X(1n) (n)

['@11”)’“@11”)]:[1+q>1(1 al2)\n' 1 —® 1(1 al2)\[n ] (2.46)

We find a 1 — o exact confidence interval, using the pivotal quantity o/c. The distribution

of g is given by (2.47)

o ~ gamma(n,n/o) (2.47)
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and a 1 — a exact confidence interval is obtained by the following equations.

FeO Il = 1 — /2, Fe("In,nfu) = a/2 (2.48)
where Fe(x|a,f) is the gamma distribution whose density is

fo(X|a,B) = B [T(a)] ' x* ! exp(—px), x>0 (2.49)
where a > 0 is the shape parameter and 1/4 > 0 is the scale parameter.

The confidence interval obtained by (2.48) is exact and the confidence interval obtained by
(2.46) is Wald-type. These two are intercompared also with the BCa bootstrap non-parametric
interval, designated as "bootstrap"”, the two confidence intervals obtained by the two Ripley's
methods, designated as "Ripley location” and "Ripley scale”, respectively, and the confidence
interval obtained by our algorithm, designated as MCCI (Monte Carlo Confidence Interval).

Figure 2.2 compares the confidence intervals obtained by all six methods for a simulated

sample with 50 elements from an exponential distribution with ¢ = 1. For this sample o=
1.002. As we see, MCCI is close to the exact and the "Ripley scale” and gives a better

approximation than the Wald-type, the "bootstrap"” and the "Ripley location".
2.5.2 Confidence interval for the location parameter of the normal distribution

The density of the normal distribution is
fn(X|u,0) = 2na?) 1% exp[(—1/267) (X — 1)?] (2.50)

where u is the location parameter, and o > 0 is the scale parameter. A 1 — a exact confidence
interval (Papoulis and Pillai 2002 p.309) is

— S - S
[ (Xen) U(xan)] = [ = Frin(1 — a/2) % X" + F 1ion(L — al2) T’;]] (2.51)

Sn :=\/n—11 i (i — X3)2 (2.52)
i=1

A 1 — a Wald-type confidence interval (Papoulis and Pillai 2002 p.309) is

where

[(xen)u(xen)] = DS — @741 — a/2) %,xﬁ”) + O YL - af2) %] (2.53)
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Figure 2.2. Confidence intervals for the scale of an exponential distribution with n = 50, o=
1.002. Here the number of samples k = 50 000 for MCCI, "Ripley location” and "Ripley
scale" cases and 6o = 0.05.

We compare the MCCI with the exact interval obtained by (2.51), as well as with the
Wald-type interval, the BCa interval and the intervals obtained by Ripley’s two methods.

Figure 2.3 compares the confidence intervals obtained by the six methods for a simulated
sample with 10 elements from a normal distribution with = 0 and ¢ = 1. For this sampleﬁ =

0.026 and 3 = 1.023. In this case for the calculation of the confidence interval we use the
unbiased estimators of x and &® (instead of the MLE). As we see, MCCI gives a better

approximation than the other four approximate methods.
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Figure 2.3. Confidence intervals for the location parameter of a normal distribution with n =

10, Q = 0.026 and & = 1.023. Here the number of samples k = 100 000 for MCCI, "Ripley
location" and "Ripley scale" cases, du = 0.1 and 60 = 0.1.

2.5.3 Confidence interval for the percentile of the normal distribution

The pth percentile tp is defined by (2.54)
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th:=u+zpo (2.54)

where zp is pth percentile of the standard normal distribution. A 1 — o Wald-type confidence

interval estimate is given by the following equation (e.g. Koutsoyiannis 1997 p.69)

[1(X1n),U(Xen)] = [+ 2801 (1—al2) \/—S—:]\/l+25/2,X(1n)+ZpSn+(D_1(1—a/2) \/—S—:]\/1+z;2)/2] (2.55)

Another way to obtain a confidence interval is by using Bayesian analysis (see Gelman et
al. 2004 p.75,76). Then if we chose a prior z defined by (2.56)

n(u,0) oc 1/6? (2.56)

we can construct a sampler based on the following mixture.
|X1:n ~ Inv-xz(n—l,sﬁ) and u|o® X1:n ~ N(x(ln),ozln) (2.57)

Thus, here we compare six confidence intervals, the Bayesian confidence region, the
Wald-type of equation (2.55), the BCa interval, the intervals obtained by Ripley’s two
methods, and the MCCI. Figure 2.4 compares the confidence intervals for u + 20 obtained by

the six methods for a simulated sample with 50 elements from a normal distribution with x =

0 and o = 1. For this sample ﬁ — —0.027 and & = 0.998. As we see, Bayesian and MCCI are
almost indistinguishable, and MCCI is better when compared to "Ripley location” and
"Ripley scale". "Ripley location" is close to the Wald-type and the "bootstrap”. The same
holds for Figure 2.5 which compares all methods on the calculation of a 1-0.01 confidence

interval, when z;, varies from —3 to 3.
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Figure 2.4. Confidence intervals for u + 2¢ of a normal distribution with n = 50, Q = -0.027

and & = 0.998. Here the number of samples m = 50 000 for MCCI, "Ripley location” and
"Ripley scale" cases, ou = 0.1 and 60 = 0.1.
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Figure 2.5. Confidence intervals with confidence coefficient 1-0.01 for x + zo of a normal

distribution with n = 50, Q = —0.027 and & = 0.998. Here the number of samples m = 50 000
for MCCI, "Ripley location" and "Ripley scale" cases, du = 0.1 and do = 0.1.

2.5.4 Confidence interval for the scale parameter of the gamma distribution

First we show how we can calculate an approximate confidence interval for the scale

parameter of the gamma distribution. We define Rn by (2.58)
Rn := In(x"/%) (2.58)

where X is the geometric mean of a size-n sample, which, according to Bhaumik et al. (2009)
and Bain and Engelhardt (1975), has a distribution independent of the scale parameter ¢ = 1/5.
The maximum likelihood estimates of o and ¢ according to Bhaumik et al. (2009) and Choi

and Wette (1969), denoted by a and & are the solutions of the equations (2.59)
R = In(e) - w(a) and ao = x5 (2.59)
where y denotes the digamma function.
We have that
E[Rn] = —In(n) — y(a) + w(na) and Var[Rn] = (1/n)y’(a) — y’(na) (2.60)

We also define as ¢ and v, functions of o and n, the solutions of the system of equations
(2.61)

2no E[Rn] = cv and (2na)?Var[Rn] = 2¢%v (2.61)
From (2.61) we obtain
_ naVaI’|Bn| _ ZElenl
c= E[R] andv = Var[Ri] (2.62)
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For the construction of the confidence interval see Bhaumik et al. (2009) and Engelhardt
and Bain (1977). The statistic z defined by (2.63)

z2=2xlo (2.63)
has approximately a chi-square distribution with 2na degrees of freedom, specifically

Z ~y3(2na) (2.64)

We define the statistic T1 by (2.65).

Ty = 2naRuc + 2 (2.65)

Then Ty is approximately distributed according to (2.66).

N
T1 ~ x2(v+2na) (2.66)

Now using the T statistic we obtain the following 1 — a confidence interval for the scale

parameter o.

2nx” 2nx”

3 Iy A P N A
F2(1 — al2|v+2nk) — 2na Rn/c Fy2 (af2|v+2nk) — 2no Rn/c

[1(xun),u(xan)] = [ 1 (2.67)

We will designate the confidence interval obtained by (2.67) as "approximate"”. Another
way to obtain a confidence interval is by using Bayesian analysis (See Robert 2007).
According to Son and Oh (2006), if we choose a prior z(a,0) o« 1/o, we construct a Gibbs

sampler using the following equations

n
ola,X1:n ~ Inv-gamma(na, Y Xi) (2.68)
i=1

Also

m(alo,Xn) oc [M(@)]™ O_—naﬁ N

i=1

(2.69)

A Wald-type interval is calculated, using the formula in Casella and Berger (2001 p.497)

[1(Xen),U(Xen)] = [0 — DXL — al2)\ 1"(0), 0 + O — a/2) \[-1"(5)] (2.70)

where — I"(g) is an estimate of the Hessian at (3,3), when optimizing the log-likelihood

function.
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We designate the confidence region obtained by (2.68) and (2.69) as Bayesian, the BCa
interval as "bootstrap", the confidence interval obtained by Ripley’s two methods as "Ripley
location™ and "Ripley scale” and the confidence interval obtained by our algorithm as MCCI.

Figure 2.6 compares the confidence intervals obtained by all seven methods for a simulated
sample with 50 elements from a gamma distribution with a = 2 and ¢ = 3. For this sample a=

1.979 and & = 3.007. As we can see, the MCCI, "Ripley scale™ and "bootstrap” limits are close
to the Bayesian ones, but the approximate, "Wald-type and "Ripley location” limits lie far
apart, which shows that they do not provide a satisfactory approximation (perhaps owing to

too many assumptions involved in their derivation).
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Figure 2.6. Confidence intervals for the scale parameter of a gamma distribution with n = 50,

a = 1.979 and o = 3.007. Here the number of samples m = 20 000 for MCCI, "Ripley
location" and "Ripley scale" cases, da. = 0.3 and 60 = 0.3.

2.5.5 Confidence interval for the shape parameter of the gamma distribution

To obtain a 1 — a confidence interval for the shape parameter o, according to Bhaumik et al.
(2009; see also Engelhardt and Bain 1978), we use the statistic T: defined by (2.71).

T1 =2naRn (2.71)
Then Ty is approximately distributed according to (2.72).
T1~c(v) (2.72)

Then a 1 — a confidence interval corresponds to the following inequality

Var[Rn] _-1 Var[Rn] -
?[[B_T]nl Fa(a/2]v) < 2Rn < ?[B—[n—]”l Fa(l — al2y) (2.73)

where we solve for a.
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A Wald-type interval is calculated, using the formula in Casella and Berger (2001 p.497)

[1(Xen),U(Xen)] = [ — YL — af2)\-1"(a), @ + O — af2) \|-1"(@)] (2.74)

where — I"(Q) is an estimate of the Hessian at (3, 3), when optimizing the log-likelihood

function.

We designate the confidence interval obtained by (2.73) as "approximate™, the confidence
region obtained by (2.68), (2.69) as Bayesian, the confidence interval obtained by (2.74) as
Wald-type, the BCa confidence interval as "bootstrap”, the confidence intervals obtained by
the two Ripley's methods as "Ripley location™ and "Ripley scale” and the confidence interval
obtained by our algorithm as MCCI.
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Figure 2.7. Confidence intervals for the shape parameter of a gamma distribution with n = 50,

a = 1.979 and o = 3.007. Here the number of samples m = 20 000 for MCCI, "Ripley
location" and "Ripley scale" cases, da. = 0.3 and 60 = 0.3.

Figure 2.7 compares the confidence intervals obtained by all seven methods for a simulated
sample with 50 elements from a gamma distribution with k = 2 and & = 3. For this sample a=

1.979 and o = 3.007. As we can see, the "approximate"”, Wald-type, "Ripley location” and
MCCI confidence intervals are close. The Bayesian confidence region is close to the
"approximate" which, in our opinion, gives a good approximation of the exact confidence

interval. "Ripley location" is far from the other intervals.
2.5.6 Confidence interval for the scale parameter of the Weibull distribution

The density of the Weibull distribution is

fw(xla,b) = (b/a) (Wa)> ! exp(—(x/a)°), x > 0 (2.75)
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where a > 0 is the scale parameter and b > 0 is the shape parameter. According to Yang et al.
(2007) first we must find a modified MLE of b, according to the following equation, which is
a modification of the equations discussed in Cohen (1965).

n

I(b) := % Y X))+ S Inx = 0 (2.76)
i=1 i=1 i=1

We denote b the modified maximum likelihood estimate given by (2.76) and a the

modified maximum likelihood estimate given by the following equation.

A n G N
a=[(1/n)> xi]*® (2.77)
i=1
We define S(b) and c1 by (2.78).
n
S(b) := 3. X3, 1 := /1 + 0.607927-0.4226422 (2.78)

=1

Then a 1 — « confidence interval estimate is given by the (2.79).

25(b) b 25(b)

_ - )/5)(2.79)
c1 Fp(1 —al2]2n) — 2n(c1 — 1) c1 Fp(a/2]2n) — 2n(c1 — 1)

[1(x2:n),u(xen)] = [(
A Wald-type interval is calculated, using the formula in Casella and Berger (2001 p.497)

[1(X1n), U(Xen)]=[ 2 — D LL — al2)\ -I"(8), 2 + &1 — af2)\ -1I"(A)] (2.80)

where — I"(Q) is an estimate of the Hessian at (3, /B), when optimizing the log-likelihood

function.

We designate the interval obtained by (2.79) as "approximate", the interval obtained by
(2.80) as Wald-type, the BCa interval as "bootstrap”, the confidence interval obtained by
Ripley’s two method as "Ripley location" and "Ripley scale” and the confidence interval
obtained by our algorithm as MCCI.

Figure 2.8 compares the confidence intervals obtained by the six methods for a simulated
sample with 50 elements from a Weibull distribution with a = 2 and b = 3. For this sample a=

2.022 and b = 3.097. As we can see, the "approximate"”, "Ripley scale” and MCCI confidence
intervals are almost indistinguishable and the Wald-type, "bootstrap” and "Ripley location™

are far from the previous intervals.
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Figure 2.8. Confidence intervals for the scale parameter of a Weibull distribution with n = 50,

a = 2.022 and b = 3.097. Here the number of samples m = 20 000 for MCCI, "Ripley
location" and "Ripley scale" cases, 6a = 0.1 and 6b = 0.1.

2.5.7 Confidence interval for the pth percentile of the Weibull distribution
According to Yang et al. (2007) the pth percentile of the Weibull distribution is
t, = a[—In(1—p)]*P (2.81)

Then a 1 — a approximate confidence interval estimate is given by the following equation.

25(b)In(1—p)
c2 Fpp(a/2]2n) — 2n(cz — 1)

25(h)In(1-p)
Ca Fp(1 — af2]2n) — 2n(c2 — 1)

[1(x0) u(xe)] = [(- o (~ 0] (2.82)

where c2 is defined by (2.83).

c2 ;=1 +0.607927 {0.422642—In[~In(1-p)]}? (2.83)

Figure 2.9 compares the confidence intervals obtained by the five methods, the
"approximate”, the "bootstrap”, the "Ripley location”, the "Ripley scale™ and the MCCI for a
simulated sample with 50 elements from a Weibull distribution with a = 2 and b = 3. For this

sample a=2.022and b =3.007. "Bootstrap™ and "Ripley location" are close to each other but

far from the other three confidence intervals.
2.5.8 Summary results

Table 2.1 shows the results of all previous methods summarized. MCCI is similar to "exact"
(when "exact" can be calculated analytically, cases 1,2). MCCI is also similar to

"approximate", in cases 5,6,7. In these cases "approximate"” seems to be a good approximation
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of an exact confidence interval. This implies that MCCI is a good approximation of an exact

confidence interval.
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Figure 2.9. Confidence intervals for the 75th percentile of a Weibull distribution with n = 50,

a = 2.022 and b = 3.097. Here the number of samples m = 20 000 for MCCI, "Ripley
location” and "Ripley scale" cases, 6a = 0.1 and b = 0.1.

On the other hand in case 3 MCCI is almost identical to "Bayesian™ which we think is a
good property. In case 4, MCCI is closer to "Bayesian” than the "approximate”. We believe
that the "approximate” is not a good approximation of an exact confidence interval, because it
involves a lot of assumptions and transformations. MCCI was also better in our opinion than
Wald-type and bootstrap intervals in all cases. We should also keep in mind that confidence
intervals and Bayesian "confidence regions" are not directly comparable (see also the Chapter
dedicated to matching priors in Robert 2007 p.137).

Table 2.1. Summary results of the case studies examined. Smaller numbers mean that the
corresponding result is better. Equal numbers mean that there is a similarity between the
different results. For example, in the case of the percentile of the normal distribution, MCCI,
"Ripley scale” and "Bayesian" methods (marked as 1) gave similar results, whereas Wald-
type, "bootstrap” and "Ripley location” methods (marked as 2, 3 and 3 correspondingly) gave
results worse than the former methods.

Methods
Case Figure Distribution Parameter Exact Bayesian Approximate Ripley Ripley Wald- Bootstrap MCCI
No location scale type
1 2.2 Exponential  Scale 1 4 1 3 2 1
2 2.3 Normal Location 1 2 2 2 3 1
3 24 Normal  Percentile 1 3 1 2 3 1
4 2.6 Gamma Scale 1 3 2 1 2 1 1
5 2.7 Gamma Shape 2 1 3 1 1 2 1
6 2.8 Weibull Scale 1 2 1 2 2 1
7 2.9 Weibull  Percentile 1 2 1 2 1

As an additional means of intercomparison, coverage probabilities using Monte Carlo

methods were calculated for all methods except for the Bayesian confidence regions and the
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algorithm behaved relatively well in all cases (Table 2.2). MCCI was better when estimating
the confidence intervals for the normal and the gamma distribution parameters, and had the

best mean rank for all the examined cases.

An application of the algorithm, using historical river flow data is given in Section 2.8.

Table 2.2. Monte Carlo coverage probabilities and rank of each method when calculating
0.975 confidence intervals after 10 000 iterations (rank 1 is assigned to the method of best
performance).

Coverage probabilities (with ranks in parentheses) for all

methods
Case Distribution Parameter Sample Parameter Parameter Approximate Ripley Ripley ~ Wald- Bootstrap MCCI
size value value location scale type

1 Exponential Scale 10 =2 0.889 (5) 0.977 (2) 0.975(1) 0.916 (4) 0.966 (3)
2 Normal Location 10 =0 o=1 0.946 (3) 0.946 (3) 0.947(2) 0.931 (5) 0.968 (1)
3 Normal Percentile 10 n=0 =1 0.919 (4) 0.929 (2) 0.929 (2) 0.867 (5) 0.973 (1)
4 Gamma  Scale 50 a=2 o=3 0.753 0.923 (5) 0.976 (1) 0.940 (4) 0.957 (3) 0.974 (1)
5 Gamma  Shape 50 a=2 o=3 0.976 0.948 (5) 0.972(2) 0.978(2) 0.956 (4) 0.974 (1)
6  Weibull Scale 50 a=2 b=3 0.971 0.969 (3) 0.970(2) 0.966 (4) 0.965 (5) 0.973 (1)
7 Weibull Percentile 50 a=2 b=3 0.971 0.968 (3) 0.970 (1) 0.961 (4) 0.969 (2)

mean rank 4.000 1.857 2.500 4.286 1.429

2.6  Sensitivity to the choice of the increment and the simulation sample size

In this Section we test the sensitivity of the algorithm on the choice of the increments du and
oo and the simulated sample size in the case of the location parameter and the percentile of

the normal distribution.

Figure 2.10 tests the sensitivity of the algorithm to the choice of the increments du and o
in the cases of the location and the percentile parameters of the normal distribution, for n = 10
(upper panel) and n = 50 (lower panel), where for the calculation of the confidence interval
the unbiased estimators of 4 and o> were used. As we see, the algorithm gives good
approximations, regardless of the choice of du and da. For small n, a slight problem appears if
ou is too small (< 0.5). Figure 2.11 describes the convergence of the algorithm for the same
cases. The speed of convergence is low since ~50 000 iterations are needed for its

stabilization, although reasonable results are obtained even for ~10 000 iterations.
2.7 Some theoretical results

First we show that the confidence interval for the parameter x of a normal distribution N(u,0%)

is asymptotically equivalent to a Wald-type interval. For the normal distribution we define
0 :=(u, 0) (2.84)

T(X) == (T1(X), T2(x)) (2.85)

where T1(X) = i, and T2(X) = g are the MLE of x and o respectively.
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Figure 2.10. 0.95 confidence intervals for a normal distribution estimated for different du and
do (the parameter increments denoted in text as 86i): (upper) confidence interval for the

location parameter x from a sample with n = 10, ﬁ = 0.026 and & = 1.023 and number of
samples drawn m = 100 000; (lower) confidence interval for the quantity 4 + 2o from a

sample with n = 50,2 = —0.027 and & = 0.998 and number of samples drawn m = 50 000.

Then, following the notation of the preceding Sections we have

B =huo) = u (2.86)
hT) =T (2.87)
and
P(b(x) < A(0)) = al2, P(b(X) > v(B)) = a2 (2.88)
which imply that
A= u+ @ Yal2)oh[nand v =+ &1 - a/2)oh/n (2.89)

Now from (2.36) we obtain
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Figure 2.11. 0.95 confidence intervals for a normal distribution estimated for varying
simulation sample size: (upper) confidence interval for the location parameter x from a

sample with n = 10, //) = 0.026 and & = 1.023; (lower) confidence interval for the quantity u +
20 from a sample with n = 50,//} =—0.027 and & = 0.998.

It is also easy to prove that asymptotically

[iiﬁ}'\'([ 8 }ﬂé 1?2 D (2.91)

u ~ N(u, 6°/n) and ¢ ~ N(o, 6%/2n) (2.92)

thus

We also have that

O Y1 - al2) = — D Yal2) (2.93)
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From (2.15), (2.16) we derive
l=u—= 7 andu=u+= o7 (2.94)

From (2.43) we have that

G_d_ (@0 a2y
du = du 4n

(2.95)

A 1 — o confidence interval for x is (u — Frn-1)(1 — a/2) ﬁ,g + Frn-1(1 — o/2) ﬁ) (e.g.

Papoulis and Pillai 2002 p.309). Now we have that

O Y1 - al2)/ (S—Z)
Fro-n(l —af2) ~ 1 (2.96)

lim

N—oo
which proves that the confidence interval obtained by (2.17) is asymptotically exact.

We will also show that the confidence interval obtained by our method is asymptotically
equivalent to a Wald-type interval for two-parameter regular distributions. According to
Casella and Berger (2001 p.472)

Jn@-0) 3 N, (2.97)
where @ is the MLE of @, and | is the Fisher Information Matrix with elements
&Inf(x|@
ljk = E[—%eje—ll(—z] (2.98)
This means that
Jn(@: - 01) 8 N, 111) and \n (@2 — 62) S N(O,123) (2.99)
We conclude that
d 2
\n(8 - ) = N(0.05) (2.100)

where 02 depends only on #; and 2. Suppose that we seek a 1 — o confidence interval for .

Then it is easy to show that asymptotically

MB) =B — @ (1 — al2)ash[n, v(B) = B+ D (1 — al2)aph[n (2.101)

Now we have
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Var[g1] = l/n, Var[62] = lz2/n (2.102)

and
% 569% — oL~ /2)6—"é W Lo - a2 |
dy_| 48 |_ op P
do~| do |~ 061 00, (2.103)
_ g_:; 1L 5651 oL /2)8—05 N -+ o1 - Wi2) S|
- - _ 0o 0 0030
Gt [ (- [( FTARI +( )2122] — @41~ al2)\n] aeﬂaeﬁ i+ aeﬁag 1]

OopOf  Oop 0 0
L N O 2)(aefa§1 T ~ 2N + ()

an(( Dy + oy

—~ 2.104)
. dop0f 0o P o B (
Vi 0 - )G + S ~ (G ik + (e
It is obvious that
do 31+ 0
nll_r:odﬂ lim o+ G2 (2.105)
In a similar way we can find that
di 12+ Qi3 _
n“_r:odﬁ lim oo + o (2.106)
Now substituting to (2.15), (2.16) we obtain
1= 8-® (1 —al2)ag[n, u=g+d'(1 - al2)osr/n (2.107)

which is an asymptotically equivalent to a Wald-type interval according to Casella and Berger
(2001 p.497).

Repeating the same procedure for three-parameter distributions, we obtain the same

results.
2.8 Application of the algorithm to a historical river flows dataset

In this Section we apply the algorithm on a historical river flow data set using the
hydrological statistical software Hydrognomon (ltia research group 2009-2012), suitable for

the processing and the analysis of hydrological time series, which has already incorporated
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the proposed method. The case study is performed on an important basin in Greece, which is
currently part of the water supply system of Athens and has a history, as regards hydraulic
infrastructure and management, that goes back to at least 3500 years ago. Modelling attempts
with good performance have already been carried out on the hydrosystem (Rozos et al., 2004).
A long-term dataset of the catchment runoff, extending from 1906 to 2008, is available. The
example presented in Figure 2.12 is for the January monthly flow record at the Boeoticos
Kephisos river outlet at the Karditsa station measured in hm?. The gamma distribution is often
used to model monthly river flows. Confidence limits of quantiles of distributions are of
interest to hydrologists. Here we derived confidence intervals for the scale and the shape
parameters of the gamma distribution. Comparison of the results of the different methods used
show that the MCCI and "Ripley scale™ limits are close to the Bayesian ones. In addition,
Figure 2.13 gives confidence limits of the distribution percentiles using the same dataset, this

time constructed using Hydrognomon (ltia research group 2009-2012).
2.9 Conclusions

By modifying two Monte Carlo methods used by Ripley (1987), associated with the
computation of a confidence interval for a parameter of a probability distribution, we derive a
new equation and a general algorithm which gives a single solution for a confidence interval,
which combines the advantages of these two methods without requiring discrimination for the
type of parameter. We show that this algorithm is exact for a single parameter of distribution
of either location or scale family. It is also asymptotically equivalent to a Wald-type interval

for parameters of regular continuous distributions.

After appropriate modification of the algorithm we make it appropriate for calculating
confidence intervals for a parameter of multi-parameter distributions. We show that this

algorithm is asymptotically equivalent to a Wald-type interval for regular distributions.

We tested the algorithm in seven cases, namely the construction of a confidence interval
for the scale parameter of the exponential distribution, the location parameter and the pth
percentile of the normal distribution, the scale and shape parameter of a gamma distribution,
and the scale parameter and the pth percentile of the Weibull distribution. We found that in

general this algorithm works well and results in correct coverage probabilities.
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Figure 2.12. Confidence intervals for the scale (upper) and shape (lower) parameter of a
gamma distribution, used to model the Boeoticos Kephisos river January monthly flows with

n =102, o = 3.842 and o = 15.218. Here the number of samples m = 120 000 for MCCI and m
=60 000 for the "Ripley location" and "Ripley scale" cases, da = 0.3 and 60 = 0.3.

We propose the use of the algorithm for an approximation of a confidence interval of any
parameter for any continuous distribution because it is easily applicable in every case and
gives better approximations than other known algorithms as shown in specific cases above.
An additional advantage compared to Ripley's two methods is that it is not needed to select
one of the methods. Our algorithm worked equally well or better from the best of Ripley's
methods in all the examined cases. Thanks to its generality, the algorithm has been
implemented in the hydrometeorological software package Hydrognomon (ltia research group
2009-2012), which fits various distributions in data records and calculates point and interval
estimates for parameters and distribution quantiles, which are then used for hydrological

design.
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Figure 2.13. A graph (normal probability plot) produced by the Hydrognomon software
referring to the monthly flow of Boeoticos Kephisos river for the month of January (1993-
2006). The sample (dots plotted using Weibul plotting positions) was modelled by a gamma

distribution (central line) with o = 3.842 and o = 15.218. Dotted lines represent 95%
prediction intervals for these parameter values (denoted as 4 and v in the text) and dashed
lines represent 95% confidence intervals (MCCI denoted as | and u in the text) for the
distribution percentiles.

The confidence intervals obtained by the algorithm are approximate and the algorithm was
not developed with the intention to replace the exact confidence intervals, when their
calculation is possible. Further research is needed to evaluate the influence of the choice of
the numerical parameters (increments d6; and the simulation sample size) to the results of the

algorithm. A disadvantage of the algorithm is that a lot of repetitions are needed to converge.
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3. Simultaneous estimation of the parameters of the Hurst-Kolmogorov

stochastic process

Of critical importance! in analyzing hydrological and geophysical time series is the estimation
of the strength of the HK behaviour. The parameter H of the HKp arises naturally from the
study of self-similar processes and expresses the strength of the HK behaviour. A number of
estimators of H have been proposed. These are usually validated by an appeal to some aspect
of self-similarity, or by an asymptotic analysis of the distributional properties of the estimator
as the length of the time series converges to infinity and only estimate the self-similarity

parameter.

Here we show that the estimation of H affects the estimation of the standard deviation, a
fact that was not given appropriate attention in the literature. We propose the Least Squares
based on Variance estimator, and we investigate numerically its performance, which we
compare to the Least Squares based on Standard Deviation estimator, as well as the maximum
likelihood estimator after appropriate streamlining of the latter. These three estimators rely on
the structure of the HKp and estimate simultaneously its Hurst parameter and standard
deviation. In addition, we test the performance of the three methods for a range of sample
sizes and H values, through a simulation study and we compare it with other estimators of the

literature.
3.1 Introduction

Rea et al. (2013) present an extensive literature review dealing with the properties of these
estimators. They also examine the properties of twelve estimators, i.e. the nine estimators
(aggregated variance, differencing the variance, absolute values of the aggregated series,
Higuchi’s method, residuals of regression, R/S method, periodogram method, modified
periodogram method, Whittle estimator) discussed in Tagqu et al. (1995) plus the wavelet,
GPH and Haslett-Raftery estimator. Weron (2002) discusses the properties of residuals of
regression, R/S method and periodogram method. Grau-Carles (2005) also analyzes the

behaviour of the residuals of regression, the R/S method and the GPH.

Additionally, new estimators are proposed, for example Guerrero and Smith (2005)
presented a maximum likelihood based estimator, while Coeurjolly (2008) presented

estimators based on convex combinations of sample quantiles of discrete variations of a
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sample path over a discrete grid of the interval [0, 1]. Some authors propose improvements of
existing estimators. For example, Mielniczuk and Wojdyllo (2007) improve the R/S method.
Other authors like Esposti et al. (2008) propose techniques which use more than one methods

simultaneously to estimate the H parameter.

Because the finite sample properties of these estimators can be quite different from their
asymptotic properties, some authors have undertaken empirical comparisons of estimators of
H. The nine classical estimators were discussed in some detail by Taqqu et al. (1995) who
carried out an empirical study of these estimators for a single series length of 10 000 data
points, 5 values of H, and 50 replications. All twelve estimators above were discussed in more
detail by Rea et al. (2013) who carried out an empirical study of these estimators for series
lengths between 100 and 10 000 data points in steps of 100, H values between 0.55 and 0.90
in steps of 0.05 and 1000 replications. Rea et al. (2013) also presented an extensive literature

review about the same kind of empirical studies.

These studies did not include two methods. The maximum likelihood (ML) method
discussed by McLeod and Hippel (1978) and McLeod et al. (2007), probably due to
computational problems (Beran 1994 p.109), and the method by Koutsoyiannis (2003),
hereinafter referred to as the LSSD (Least Squares based on Standard Deviation) method,
which was also articulated recently by Ehsanzadeh and Adamowski (2010). The ML method
estimates the Hurst parameter based on the whole structure of the process, i.e. its joint
distribution function. The LSSD method relies on the self-similarity property of the process.
One common characteristic of the ML and LSSD methods is that they estimate
simultaneously the Hurst parameter H and the standard deviation ¢ of the process. This is of
great importance, because both parameters are essential for the construction of the model and,
as we will show below (see also Koutsoyiannis 2003) their estimators generally are not
independent of each other. In addition, the classical statistical estimator of ¢ encompasses
strong bias if applied to a series with HK behaviour (Koutsoyiannis 2003; Koutsoyiannis and
Montanari 2007). It is thus striking that some of the existing methods do not remedy or even
pose this problem at all, and estimate H independently of ¢ and vice versa, e.g. assuming that

o can be estimated using its classical statistical estimator, which does not depend on H.

The focus of this Chapter is the simultaneous estimation of the parameters H and o of the

HKp. We use the ML and LSSD methods that have the capacity for simultaneous estimation,

1 Based on: Tyralis and Koutsoyiannis (2011)
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after appropriate streamlining of the former in a more practical form, and we propose a third
method which is an improvement of the LSSD method (referred to as LSV method —Least
Squares based on Variance) retaining the simultaneous parameter estimation attitude. We
apply the three methods to evaluate their performance in a Monte Carlo simulation framework
and we compare the results with those of the estimators presented in Taqqu et al. (1995) with
the exception of the Whittle estimator, which we replaced by the local Whittle estimator

presented in Robinson (1995).
3.2 Definitions

We assume that {x}, t=1, 2, ... is an HKp. We also define the aggregated stochastic process

for every time scale:

tx
7= Yx=wex’ (3.1)
I=(t—1)c+1

For this process the following relationships hold:
K, K, K, . K, 1/2
B[z =k p, 10 = Varlzt"] = g0, 0 = (9) (3.2)

The autocorrelation function of either of xt(K) and ;gk), for any aggregated timescale «, is

independent of «, and given by

P == k+ 1P 12+ k= 1R/ 2 — kPR k=0, 1,... (3.3)
3.3 Methods
3.3.1 Maximum likelihood estimator

In this Section the method of maximum likelihood is employed for the estimation of the
parameters of HKp, namely H, o, x. For a given record Xu:n the likelihood of @ := (i, o, H)

takes the general form (McLeod and Hippel 1978):
1 _
(Olx1n) = (52 0% Ryt 2 €Xp[—1/(20%) (Xun — gt €n) R [t g (Xt — e €0)] (3.4)

where
en=(1,1,....0)7 (3.5)

IS a column vector with n elements, R [1n) IS the autocorrelation matrix, i.e., a n-by-n

matrix with elements rij = pji- j, and | - | denotes the determinant of a matrix.
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Then a maximum likelihood estimator & = (,u/\ o, H), as shown in Section 3.4, consists of
the following relationships:

T A-1
A Xin R [1:n] [1:n] €n
H = T A1 ’ (36)
en R [1:n][:n) €n
AT N
N (Xzn — g en)’ Rpungun] (Xun — 1 €n)
5= : 3.

and H can be obtained from the maximization of the single-variable function g:(H) defined as:

T Al T Al
. n X1:n R [1:n] [1:n] €n -1 X1:n R [1:n] [1:n] €n 1
g1(H):=— Eln[(xl:n_ T A En)TR [1:n] [l:n](Xl:n_ T A-1 Un)]_z In(lR[lin] [1:n]|) (3.8)
en R[1:nye:n] €n en R [n] [1:n] €n

3.3.2 LSSD method

This method was proposed by Koutsoyiannis (2003). In his paper after a systematic Monte

Carlo study he found an estimator s, of o, approximately unbiased for known H and for

normal distribution of x;, where

- n—1/2 n—1/2
Sn Z:’\/W&:\/(n_l)(n_nZH—l) (3.9)
n
N b (3.10)
i=1

This algorithm is based on classical sample estimates s of standard deviations ¢® for
timescales x ranging from 1 to a maximum value «" = [n/10]. This maximum value was

chosen so that s® can be estimated from at least 10 data values.

Combining (3.2) and (3.9), assuming E[s] = ¢ and using the self-similarity property of the

process one obtains
E[s"] ~ c(H) ' & (3.12)

with

nlx — (nlx)?H 1
c(H) = \/ n/K(_ 172 (3.12)

Then the algorithm minimizes a fitting error er?(s, H):
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K )y _ 1re@2 Gl o« . _ Inc®y2 q+1
5 [INE[sn"] —Insn’] N H= 5 [Ing + H - Inx + Inc(H) — Insn '] N H
k=1

KP g+l KP g+l (313)

er’(o, H) :=

- k=1
where a weight equal to 1/x" is assigned to the partial error of each scale x. For p = 0 the
weights are equal whereas for p = 1, 2, ..., decreasing weights are assigned to increasing
scales; this is reasonable because at larger scales the sample size is smaller and thus the
uncertainty larger. Using Monte Carlo experiments it was found that, although differences in
estimates caused by different values of p in the range 0 to 2 are not so important, p = 2 results
in slightly more efficient estimates (i.e., with smaller variation) and thus is preferable. A
penalty factor H%*%/(g+1) has been included in er? in (3.13) for a high g, say 50. The effect of

this factor is that it excludes the value H = 1 and forces A to slightly smaller values when it is
close to 1. As a consequence this factor helps get rid of an infinite o also forcing to smaller
values for A close to 1 (see Section 3.5).

An analytical procedure to locate the minimum is not possible. Therefore, minimization of
er’(c, H) is done numerically and several numerical procedures can be devised for this

purpose. A detailed iterative procedure is given in Koutsoyiannis (2003).

3.3.3 LSV method

In Section 3.3.2 an approximately unbiased estimator s, of o was found after a systematic
Monte Carlo simulation. However, if ¢ is used instead of o, we have the advantage that there
exists a theoretically consistent expression, which determines E[s?] as a function of ¢ and H.
This is the basis to form a modified version of the LSSD method, the LSV method. From the

general relationship (Beran 1994 p.9)
d .. n-t k
Bl = (1= ) o where ) = (U) X pli =2 £ (- e (314)
i#] k=1

we easily obtain that for an HKp:
2H-1

n—n

2
Els] ==

o (3.15)

Due to the self-similarity property of the process the following relationship holds:

2, _ (n/k) — (n/x)*" 1 _ (n/k) — (n/x)?"1

E[§n (n/K) -1 Y0 — (n/K) 1 KZH 0'2 = CK(H) K'ZH 0'2 (316)
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where

(n/x) — (n/K 2H-1 20) _ e (n))2

(M) =" (-1 ands: n/K 1. Z((K) (3.17)

Thus, the following error function should be minimized in order to obtain an estimation of
H and o:

2(x) 2(;«) Z(K)

2 K 2H 2
er(o, H) 1= gl[E[— L I Z[C”(H)’“ K{,’z L - @1s)
Taking partial derivatives, i.e.,
2
%;—Hl = 2 [¢? aus(H) — azz(H)] (3.19)
where:
2(x)
oni(H) = ZM, aia(H) = ZM (3.20)

and equating to zero we obtain an estimate of o:

o=\ aro(Q)/ons () (3.21)

An estimate of H can be obtained by minimizing the single-variable function:

v Ax)
¥ Sp £ (H)
g2(H) = zl—Kp - ‘;M(H), 0<H<1 (3.22)

K=

We prove in Section 3.5 that er?(s, H) attains its minimum for H < 1. However, when A =
1, then from equations (3.21) and (3.30) we obtain that & = . Accordingly, to avoid such

behaviour (values of o tending to infinity), a penalty factor H9*Y/(g+1) for a high q is added

again, as in method LSSD, to the error function.

So the function to be minimized becomes:

2(1c)

L [c(H) KZH 02

q+l
I? H

er’(o, H) := Z 01

k=1

(3.23)

An estimate of H can be obtained by the minimization of the single-variable function:
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4(x) +1
 Eos fz(H) Hd
it = £ Ko< e20

and o is again estimated from (3.21).
3.4 Proof of equations (3.6) and (3.8)

From equation (3.4) we obtain:

1 1 5 XlnR[ln][ln]en
|0X; =2 1 lIR : : e - e R € - 2+
(Olxn) = (592 o Rewen ol ™ expl 202( 0 R ) €n (1 e R oy 1 €0

T -1
En R [l n] [1:n] €n Xl n R [1 n] [1 n] X1:n — (X1 R [1in] [1:n] en)2

)] (3.25)

En R [l n] [1:n] €n

Since e, R_[ill.:n] ] €n > 0 (Rpun) [ is positive definite matrix) the maximum of 1(@x1n) is

achieved when

T -1
X1:n R [1:n] [1:n] €n

N
= - 3.26
# eI R [i:n] [L:n] €n (3:26)

For that value of y, taking the logarithm of the posterior density we obtain:

1 _
In[1(0lx1.0)]=—(/2) In(2m)-nIno—(L/2) n[Riz anl—5 2(ur—en) R iy g (Xur—en)(3.27)

81 I 0X : n 1 _
n[ (60 i) T+ 5 (un — fien)" R gl i) (X — fin) (3.28)

Thus, the logarithm of the maximum posterior density is maximized when Jln[1(8|xn)]/0c =
0. The solution of this equation proves equation (3.6) and gives the ML estimator of o.

Substituting the values of x and o from equation (3.6), we obtain:

T 51 T -1
n n.nn X1:n R [1:n] [1:n] €n -1 X1:n R [1:n] [1:n] €n
In[1(0X1:n)] = 5IN(52)—5— 5IN[(X1:n— = en) 'R [wn] wn(Xen—F — en)] —
(@] = 3INGp) 2 Il (xen en R [L] [1:1] €n ) R (X en R [1:] [1:1] €n ")

1 n n n
~2  In[detRum )] =3 NG) ~ 3 + Gu(H) (329)

which is a function of H through the matrix Rpnj [1:n. SO we maximize the above single-
variable function, or equivalently the function g:(H), and find A.

We may observe that it is not necessary to form the entire matrix Rywnj (1:n] and invert it to

compute gi(H) (It suffices to form a column (oo ... pn1)" ). Since Rpun 1) is @ positive
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definite Toeplitz matrix we can use the Levinson-Trench-Zohar algorithm (Musicus, 1988).

This algorithm can solve the problem of calculating R_[}_:n] [:n] €n and In|Rpwn) (1:ny| using only
O(n?) operations and O(n) storage. In contrast, standard methods such as Gaussian elimination
or Choleski decomposition generally require O(n®) operations and O(n?) storage. This is of
critical importance when the time series size is large and computer memory capacity restricts

its ability to solve the problem.

3.5 Proof of boundedness of the LSV estimate of H in (0, 1]

In order to examine the behaviour of & and g2(H) from equations (3.21) and (3.22) we

calculate the following limits:

lim 22 _ [zﬂm} ZM>Oand nmm(% o (3.30)

o1 @11(H)

Therefore, there is a possibility that g2(H) could have a minimum for H =1 and o = o0, when o

tends to infinity from this path: o =/ a12(H)/a11(H).
Then

lim ga(H) = isnx —(Zln(n/K)K 52" )2/(2 ngn/zc)x (3:31)

H—1 k=1

Now we prove er?(s, H) attains its minimum for H < 1. The proof is given bellow:

Suppose that H2 > 1 and o2 > 0 (It’s easy to prove that an estimated 5>0 always). Now for
any Hi € (0, 1) we can always find a 1 > 0, such that c,(H1) x*™ af - sﬁ(x) < 0 for every «. For
these values of Hi and o1: [ce(H1) x>t s — sz(K)| < [ck(H2) x> o5 — sﬁ(")| for every x. This

proves that er?(o1, Hi) < er?(o2, Hz). Thus, er?(e, H) attains its minimum for H < 1.
3.6 Calculation of Fisher Information Matrix’s elements

We can easily calculate the 112(6), 113(8) and 123(6) elements of the Fisher Information Matrix
(Robert 2007 p.129):

oln[l(@|x
U = _02 (en R[1 n[L:n] €n U — X1n R[1 n] [L:n] €n) (3.32)
8ln| HGX : )l n 1 —
oo sl ; + ; (X1n — en)T R [i:n] [1:n] (X1:n — e en) (3.33)
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S2In[1(O)x. 2 - _

_alu[_(—alfﬂ = ? (e-rl; R [i:n] [Ln] €n it — X-{:n R [i:n] [1:n] En) (3.34)
azlnllfaxl:n“ 1 T Rfl OR[1:n] [1:n] )
du oH =2 (u en Ry rng oH
_ _ AR Ll —
R [i:n] [1:n] €n — X-rl; R [i:n] [1:n] _|'1a_|n_|]_[1_n1 R [i:n] [1:n] €n) (3.35)
OIn[1(]X1:n)] 1 _ OR[Ln] [1n]

aO'(aHl n) = — ? (Xl:n — U en)T R [i:n] [1:n] gr_l L R [}_:n] [1:n] (Xl:n iy en) (336)

The expectations of the above expressions are easily calculated and give the corresponding

elements of the Fisher Information Matrix 1(6).
3.7 Results

The three H and o estimators, namely ML, LSSD and LSV are implemented in the
computational software Matlab. We evaluated each estimator’s performance in estimating H
and o for simulated HKp. HKp series were generated using Stoev (2008) function. This
function generates “exact” paths of HKp by using circulant embedding. We ran 200
replications of simulated HKp series with eight different lengths and five different H values.
The lengths were 64, 128, 256, 512, 1 024, 2 048, 4 096 and 8 192 data points. The H values
were 0.60, 0.70, 0.80, 0.90 and 0.95. Without loss of generality, in all cases the true
(population) value of o was assumed 1.00.

For each series, H and o were estimated by each of these three estimators. For each H
value and series length we estimated from the simulated data the median, 75% and 95%

confidence intervals and the square root of the mean square error (Tagqu et al. 1995)

1 200 5
RMSE := ﬁkgl(Hk—H) (3.37)

The H or ¢ estimates were sorted into ascending order and the median (50th percentile) was
obtained after replacement of the 100th and 101st values by their arithmetic average. Similar
calculations were done for the 75% and 95% parametric bootstrap confidence intervals, based

on symmetric upper and lower sample quantile values.

Figures 3.1-3.5 depict some of the results in graphical form. (To present the results in
tabular form would require a very large amount of space). In Figures 3.1-3.3 the vertical axis
ranges between —0.3 and 0.2 for AH (the estimated H minus the true H) to facilitate
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comparisons among the estimators’ standard deviation of their estimates. Figure 3.4 shows the
RMSE as a function of the series length. Again all vertical axes have the same range to
facilitate comparisons. Figure 3.5 presents RMSE as a function of series length. Figures 3.1-

3.5 also depict corresponding results for the o estimators.
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Figure 3.1. Monte Carlo confidence intervals for the H and ¢ estimates with true H = 0.60, H

= 0.90 and H = 0.95 (upper to lower panels), where AH = A - H, Ao = . o, for the ML
estimator.

The results for the ML method are shown in Figure 3.1. The ML method is unbiased for H
at all series lengths when true H = 0.6, but becomes biased and underestimated H when H
increases, for low length of time series. This method is unbiased for ¢ at all series lengths
when true H = 0.6 but becomes biased and underestimates & when H increases. But even for
values of H over 0.9, the method becomes unbiased when the time series length increases.

The results for the LSSD method are presented in Figure 3.2. The LSSD method was
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unbiased for H and o at all series lengths when true H < 0.9, but became biased and
underestimated H and ¢ when true H = 0.95. We observed the same results for the LSV
method (Figure 3.3), but this method was slightly worse compared with the previous method.
The 75% confidence intervals all contain the true values, except when true H = 0.95 and the

LSSD or LSV method is used to estimate H or o.
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Figure 3.2. Monte Carlo confidence intervals for the H and ¢ estimates with true H = 0.60, H

=0.90 and H = 0.95 (upper to lower panels), where AH = A - H, Ao = - o, for the LSSD
estimator.

Figure 3.4 compares the RMSE of all three methods. We observe that when estimating H
the ML method is best, followed by the LSV method, for all values of H. The same holds
when estimating o, except that the LSSD method behaves better than the LSV method.

Figure 3.5 presents the variation of RMSE when H increases. We observe that when
estimating H the RMSE increases when H increases for the LSSD and LSV methods but it
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remains stable for the maximum likelihood method. However, when estimating o, the RMSE

increases for increasing H in all methods.
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Figure 3.3. Monte Carlo confidence intervals for the H and ¢ estimates with true H = 0.60, H

= 0.90 and H = 0.95 (upper to lower panels), where AH = A - H, Ao = G- o, for the LSV
estimator.

Figure 3.6 presents the correlation between A and Q for nominal H = 0.8. B does not seem

to affectﬁ, in terms of bias and this holds for every time series length.

Figure 3.7 presents the correlation between A and 3, for nominal H = 0.6 and 0.8. It seems
that an increase of nominal H results in an increase of the correlation between Il-\l and 3. We

can see that a high A results in a high 3, and a low H results in a low o,
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Figure 3.4. Root mean square error (RMSE) (left of the estimated H and right of the
estimated o) as a function of series length for all three estimators, with H = 0.60, H = 0.90 and
H = 0.95 (upper to lower panels) and o = 1.

A proof of the kind of dependence between the maximum likelihood estimates of the

parameters could be given by the use of the Fisher Information Matrix 1(8) with elements

’In[l(@ .
1ij(0) = — E[—ggijgg:—nﬂ], where 6 = (61, 62, 63) = (u, o, H). We easily calculate 112(0) =

_ OR1:11 1
0 and 123(0) = (1/0) Tr(R [i;n] [L:n] —w) # 0 (see Section 3.6). Thus Q and H are

113(0) oH

N N N N\
orthogonal and so are ¢ and o, but not o and H.

Figure 3.8 presents the mean of the estimated AH and As along with their corresponding
standard deviations from the ensemble versus q. An increase of g results to a decrease of bias
when estimating H and an increase in the corresponding variance. The minimum bias when

estimating o, is achieved for values of g around 50 depending on the actual values of H, but
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there is also an increase in the corresponding variance when q increases as expected from
equations (3.21) and (3.30). It should be noted that a change of g does not influence the

estimates when H is low, because H9™ / (g+1) is negligible for values of H near 0.5.
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Figure 3.5. Root mean square error (RMSE) of H (left) and o (right) as a function of true H
for all lengths. Upper to lower panels correspond to ML, LSSD and LSV methods.

Figure 3.9 presents the mean of the estimated AH and Ao along with their corresponding
standard deviations from the ensemble versus p. There is a range of p between 5 and 6, where
we achieve minimum bias when estimating H or o, but the corresponding variance decreases
when p increases. We also note the irregularity between the graphs, caused by the presence of
g, which gives smaller standard deviation of estimator for a high H = 0.95 rather than smaller
H (e.g. H = 0.90).
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Figure 3.6. Estimated Hurst parameter H versus estimated mean x from the ML method from
200 ensembles of synthetic time series with various lengths for true H = 0.8.

Figure 3.10 presents the mean of the estimated AH and Ao along with their corresponding
standard deviations from the ensemble versus m := n/«". We observe that up to a value of m =
10 = 1024/100 the results remain the same, while for values of m more than 10 there is a

higher bias and lower variance.

Finally we can see from Table 3.1 and Table 3.2 that these three methods perform better
than the eight methods discussed in Taqqu et al. (1995) and the local Whittle estimator
discussed in Robinson (1995).

3.8 Conclusions

It is clear from the simulations that the three estimators (ML, LSSD and LSV) are not
equivalent, when compared to each other. Compared to other estimators of the literature,
when estimating H, they seem to be more accurate and have a low error. This holds, because
they have lower variance for large time series length and the other estimators rely on some

asymptotic properties, whereas these estimators rely mostly on the structure of the HKp.
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Table 3.1. Estimation results for H using 200 independent realizations 8 192 long where 7 is
the standard deviation of the sample containing the estimated H’s. H’s were estimated using
Chen (2008) package, except the local Whittle estimates (Shimotsu 2004).

Estimation Nominal H Estimation Nominal H
method method
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
Variance Il-\i 0.595 0.687 0.775 0.850 R/S 0.619 0.706 0.784 0.854
T 0.027 0.027 0.026 0.027 0.031 0.032 0.031 0.032
RMSE 0.027 0.030 0.036 0.057 0.036 0.033 0.035 0.055
DiffVar |/—\I 0.567 0.667 0.771 0.864 Periodogram 0.604 0.708 0.809 0.912
T 0.073 0.068 0.067 0.061 0.024 0.023 0.025 0.024
RMSE 0.080 0.076 0.073 0.070 0.024 0.024 0.026 0.027
Absolute |’_\| 0.594 0.686 0.775 0.849 Modified 0.565 0.661 0.752 0.847
Periodogram
T 0.028 0.027 0.028 0.029 0.037 0.038 0.037 0.034
RMSE 0.029 0.031 0.038 0.059 0.051 0.054 0.060 0.063
Higuchi Il—\| 0599 0.696 0.798 0.888 Local 0.601 0.700 0.804 0.902
Whittle
T 0.028 0.029 0.040 0.044 0.023 0.023 0.022 0.021
RMSE 0.028 0.029 0.040 0.046 0.023 0.023 0.023 0.021
Var. of Il—\| 0.600 0.702 0.801 0.896

Residuals
T 0.024 0.028 0.030 0.027
RMSE 0.024 0.028 0.030 0.027
Note: Variance: a method based on aggregated variance; DiffVar: a method based on differencing the variance;
Absolute: a method based on absolute values of the aggregated series; Higuchi: a method based on finding the
fractal dimension; Var. of Residuals: a method based on residuals of regression, also known as Detrended
Fluctuation Analysis (DFA); R/S: the original method by Hurst, based on the rescaled range statistic;
Periodogram: a method based on the periodogram of the time series; Modified Periodogram: similar as the
Periodogram method but with frequency axis divided into logarithmically equally spaced boxes and averaging
the periodogram values inside the box (see details in Taqqu et al. 1995); Local Whittle: a semiparametric version
of the Whittle estimator (see details in Robinson 1995).

Table 3.2. Estimation results for H using 200 independent realizations 8 192 long where 7 is
the standard deviation of the sample containing the estimated H’s.

Estimation method Nominal H
0.6 0.7 0.8 0.9

Maximum Likelihood |’_‘| 0.599 0.700 0.799 0.899
T 0.008 0.007 0.008 0.007

RMSE 0.008 0.007 0.008 0.007

Least Squares Standard Deviation |’_‘| 0.599 0.699 0.799 0.892
T 0.011 0.011 0.015 0.015

RMSE 0.011 0.012 0.015 0.017

Least Squares Variation A 0.599 0.700 0.800 0.895
T 0.009 0.008 0.011 0.014

RMSE 0.009 0.008 0.011 0.015
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Figure 3.7. Estimated Hurst parameter H versus estimated standard deviation ¢ from the ML
method from 200 ensembles of synthetic time series with various lengths. The upper diagram
corresponds to true H = 0.8 and the lower diagram coresponds to true H = 0.6.

An additional advantage of these three estimators is that, in addition to H, they estimate o
which is essential for the model. As seen in Figure 3.7, and also proved in Section 3.7, A and

o are correlated and thus their maximum likelihood estimators cannot be calculated
separately. Cox and Reid (1987) outline a number of statistical consequences of
orthogonality. They state that the maximum likelihood estimate of H or & when x is given
varies only slowly with x. But this is not the case when examining o versus H. As a
consequence a non simultaneous estimator of ¢ and H may be suboptimal in terms of
robustness compared to the ML, LSSD or LSV estimators which estimate H and o
simultaneously. From a more practical point of view, the importance of accounting for the

dependence of the estimators, could be understood from the numerous publications that
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calculate the standard deviation by the classical statistical estimator while at the same time
find an H > 0.5, and sometimes very close to 1. Apparently, such estimates of standard

deviation are heavily biased and this is a point which authors generally fail to note.
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Figure 3.8. Mean of the estimated AH and Ao (left) and their corresponding standard
deviations from 200 ensembles of synthetic time series 128 long (right) versus g, where AH =

A - H, Ao = G- o, 1 and 7, are standard deviations and p = 6 for the LSV estimator.

200 200
Definition of symbols used: 74 := ((1/(200-1)) > (AHW?)Y?, 7, := ((1/(200-1)) Y (Ac))Y2.
k=1 k=1

There are some problems with the choice of g or p in LSSD and LSV estimators. When
choosing a large q we benefit from the fact that it decreases the variance of the ¢ estimator,
but it causes an irregularity for high values of H, that cannot be controlled a priori. However
we believe that the benefits from the presence of q are superior to the losses induced from its
use, especially given that its presence does not affect the estimators for low values of H. For
the choice of p the conflicting criteria of minimum bias and minimum variance of estimator
should be considered. As a consequence, an a priori choice of p and g has a degree of
subjectivity. In this study we chose p = 6 for LSV, p = 2 for LSSD and g = 50 for both
methods, and the results were rather satisfactory. Additionally we chose m = 10, although
Figure 3.10 allows to use lower m values. A choice of m below 10 does not influence the

results.
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Figure 3.9. Mean of the estimated AH and Ao (left) and their corresponding standard
deviations from 200 ensembles of synthetic time series 128 long (right) versus p, where AH =

A - H, Ao = g o, tH and 7, are standard deviations and q = 50 for the LSV estimator. (See
definition of symbols used in caption of Figure 3.8).
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deviations from 200 ensembles of synthetic time series 1 024 long (right) versus m, where AH

=A - H, Ao = G- o, v and 7, are standard deviations, p = 6 and g = 50 for the LSV
estimator. (See definition of symbols used in caption of Figure 3.8).

Another strong point of these three estimators is that they are easy to understand, again
because they rely on the structure of the HKp. They also enable some interesting theoretical
analyses such as those presented here, namely the bracketing of H and the behaviour of the

estimator for high values of H.

There is a problem with the implementation of the ML estimator, because it needs large
computational times for large time series lengths (e.g. many thousands of data values). But in
hydrology the available time series are usually short. Thus, we think that its use is preferable,
when an estimation of the HKp parameters is required. When the time series length increases
we can switch to the LSV or the LSSD method. Among the three estimators, the ML
estimator is better when estimating H, followed by the LSV method. But when estimating o
the LSSD method is superior to the LSV method.
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4.  The predictive distribution of hydroclimatic variables

The HKp? entails high autocorrelations even for large lags, as well as high variability even at
climatic scales. A problem that, thus, arises is how to incorporate the observed past
hydroclimatic data in deriving the predictive distribution of hydroclimatic processes at
climatic time scales. Here with the use of Bayesian techniques we create a framework to solve
the aforementioned problem. We assume that there is no prior information for the parameters
of the process and use a noninformative prior distribution. We apply this method with real-
world data to derive the posterior distribution of the parameters and the posterior predictive
distribution of various 30-year moving average climatic variables. The marginal distributions
we examine are the normal and the truncated normal (for nonnegative variables). We also
compare the results with two alternative models, one that assumes independence in time and
one with Markovian dependence, and the results are dramatically different. The conclusion is
that this framework is appropriate for the prediction of future hydroclimatic variables

conditional on the observations.
4.1 Introduction

A lot of work has been done in predicting the future of hydroclimatic processes using
Bayesian statistics. Berliner et al. (2000) applied a Markov model to a low-order dynamical
system of tropical Pacific SST, using a hierarchical Bayesian dynamical modelling, which led
to realistic error bounds on forecasts. Duan et al. (2007) illustrated how the Bayesian model
averaging (BMA) scheme can be used to generate probabilistic hydrologic predictions from
several competing individual predictions. Kumar and Maity (2008) used two different
Bayesian dynamic modelling approaches, namely a constant model and a dynamic regression
model (DRM) to forecast the volume of the Devil’s lake. Maity and Kumar (2006) used a
Bayesian dynamic linear model to predict the monthly Indian summer monsoon rainfall.

Bakker and Hurk (2012) used a Bayesian model to predict multi-year geostrophic winds.

On the other hand, GCMs give deterministic projections of future hydroclimatic processes
for some hypothesized scenarios e.g. for the increase of CO> concentration, etc. However, the
uncertainty of these projections whose sources may be attributed to insufficient current
understanding of climatic mechanisms, to inevitable weaknesses of numerical climatic and

hydrologic models to represent processes and scales of interest, to complexity of processes

1 Based on: Tyralis and Koutsoyiannis (2014)
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and to unpredictability of causes (Koutsoyiannis et al. 2007), is not estimated by these
models. Consequently, it is impossible to estimate whether any observed changes reflect the
natural variability of the climatic processes or should be attributed to external forcings.
Additionally, using deterministic projections and thus neglecting the uncertainty in future
hydroclimatic conditions, may result in underestimation of possible range of the future

hydroclimatic variation.

Koutsoyiannis et al. (2007) have done some work on the uncertainty assessment of future
hydroclimatic predictions. They propose a stochastic framework for future climatic
uncertainty, where climate is expressed by the 30-year time average of a natural process
exhibiting HK behaviour. To this end, they combine analytical and Monte Carlo methods to
determine uncertainty limits and they apply the framework developed to temperature, rainfall
and runoff data from a catchment in Greece, for which measurements are available for about a

century.

In the study by Koutsoyiannis et al. (2007), the climatic variability and the influence of
parameter uncertainty are studied separately. As a result, a hydroclimatic prediction needs two
confidence coefficients to be defined, one referring to the uncertainty of the climatic evolution
and one to the uncertainty of model parameters. In this Chapter we unify the study of the two
uncertainties so that a climatic prediction needs only one confidence coefficient to be defined.
To this end, we solve the problem of climatic predictions of natural processes using Bayesian
statistics, instead of the stochastic framework developed by Koutsoyiannis et al. (2007). For
physical consistency with natural processes such as rainfall and runoff, whose values are
nonnegative, we also examine the case where truncation of the negative part of the
distributions is applied. No prior information for the parameters of processes is assumed, so
that the prior distribution is noninformative. The posterior joint distribution is derived from a
mixture for the case where truncation is not applied and a Gibbs sampler for the case where
truncation is applied. We derive the posterior predictive distribution (Gelman et al. 2004 p.8)
of the process in closed form given the posterior distribution of the parameters. We simulate a
sample from the posterior predictive distribution and use it to make inference about the future
evolution of the averaged process. We apply this procedure using the same data as in
Koutsoyiannis et al. (2007), and specifically runoff (Case 1 or C1), rainfall (C2) and
temperature (C3) data from catchments in Greece and temperature data from Berlin (C4, C6
with the last 90 years excluded from the dataset); in addition we used temperature data from
Vienna (C5, C7 with the last 90 years excluded from the dataset). For the rainfall and runoff
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data we use truncated distributions.

As per the temporal dependence of the processes, three alternative assumptions are made:
(@) independence in time; (b) Markovian dependence modelled by first-order autoregressive
(AR(1)) process; and (c) HK dependence (see Markonis and Koutsoyiannis 2013, for a
justification of the latter). In the last Section we compare the results of the three models.
Additional results such as the posterior distributions of the parameters and the asymptotic

behaviour of the predictive distribution are also given.

While this Chapter uses the same case studies as those in Koutsoyiannis et al. (2007), the
results are not directly comparable to each other. Here we give posterior predictive
distributions of the climatic variables, whereas Koutsoyiannis et al. (2007) give confidence
limits for specified quantiles of climatic variables. The posterior predictive distribution of the
variables given here is exactly what we call climatic prediction, whereas we could say that the
confidence limits of the quantiles, given by Koutsoyiannis et al. (2007), are intermediate or
indirect results. The Bayesian methodology applied here aims at (stochastic) prediction
(Robert 2007 p.7) and is direct, while its disadvantage compared to Koutsoyiannis et al.

(2007) framework is the much heavier computational burden.
4.1.1 Definition of AR(1)

We assume that {x}, t = 1, 2, ... is a normal stationary stochastic process with parameters
given by (1.1)-(1.4). We assume that {a:} is a zero mean normal white noise process (WN),

i.e. a sequence of independent random variables from a normal distribution with mean E[a(] =

0 and variance Var[a] = ai. In the following discussion {a} is always referred to as WN. The

following equation defines the first-order autoregressive process AR(1).
Xe— 1= 1(Xe1 — ) +ay e <1 (4.1)

The ACF of the AR(1) is (Wei 2006 p.34)

= k=0, 1,... (4.2)
4.2 Posterior distribution of the parameters of a stationary normal stochastic process
The distribution of the variable X1:n = (X1,...,Xn)" from a normal stationary stochastic process is

f(X1:nl@) = (2m) ™2 |62 Rpum 1| 2 exp[(~1/206%) (Xun — e €n)" R_[i:n] (] (Xen — u €n)] (4.3)
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where Rpu:n [1:n] IS the autocorrelation matrix with elements rij = pji-j, 1,j = 1,2, ...,n. Details on
the distributions used thereafter are given in Appendix A. The autocorrelation pjij is assumed
to be function of a parameter (scalar or vector) ¢, so that 8 := (i, 6%, @) is the parameter vector
of the process. We note that if x» is white noise then po =1 and px =0, k=1, 2, ...; if it is
AR(1) then px is given by (4.2) if it is HKp then pk is given by (1.9).

We assume that ¢ is uniformly distributed a priori. We set as prior distribution for @ the

noninformative distribution (see also Robert 2007 example 3.5.6)
n(0) o< 1/6? (4.4)

The posterior distribution of the parameters does not have a closed form. However it can
be calculated from a mixture based on conditional distributions. Specifically, it is shown (see
Section 4.4) that

T -1 T -1 T -1
,4'0'2, @, Xt:n ~ N[(Xz:n R[2:n7 [1:n] €n)/(€n R [1:n] [L:n] €n), 0'2/(en R [1:n] [2:n] €n)] (4.5)
T -1
@, X1:n ~ Inv-gamma{(n—1)/2, [en R [1:n] [:n] €n -
T -1 T -1 T -1
X1:n R[] [2:n] Xe:n — (X2:n R [2:n] [2:0] en)Z]/(z en R[nj ] en)} (4.6)
-12 1al Rl
7(@|X1:n) oc |Rrunyrung] ~° [€n R [ [un €n -
T -1 T -1 (n— T -1 _
X1:n Rzng 2:n] X2:n — (X2:n R [eng [2:n] En)z] (=12 (en Ryznuin en)n/2 1 4.7

As real world problems often impose upper or lower bounds on the variables x;, we assume

that the distribution of x1:n is two-sided truncated by bounds a and b, i.e.,
f(Xl;n|0) oC eXp[(—l/ZUZ) (Xl;n - ILL En)T R]:}_n] [1:n] (Xl;n —/1 en)] I[a,b]n(XL ceey Xn) (48)

where | denotes the indicator function, so that lapn(X1, ..., Xn) = 1 if xn € [a,b]" and O

otherwise.

We assume that the truncation set of x is [a,b], a,b € Ru{—w,»0}. The following Gibbs

sampler is used to obtain a posterior sample from 8 = (u, &%, @) (see Section 4.4).

m(u|o?, @, X1n) o< exp{—[u— (xI;n .
R 1) ] €n)/(€n R 1) 1 €n)]2/(202/en R g g )} Iy () (4.9)

Pli, @, Xn ~ Inv-gamma{n/2, (Xun — 2 €n)T R g g (Xun — g2 €0)/2} (4.10)

7(p] 1, 0, Xan) o IRyt (1] ™2 €Xp[— (Xan — e €n)" R i) (1) (Xam — e €n)/207]  (4.11)

64



4.3 Posterior predictive distributions

As we stated in Section 4.1, we seek to make an inference about the future evolution of a
process given observations of its past. To this end, in this Section we derive the posterior
predictive distributions of Xn+1):(n+m)|X1:n for the cases of the white noise, the AR(1) and the

HKp, where Xq+1):(em) := (Xn+1,. . .. Xn+m) -
4.3.1 White noise

We assume that x;, t = 1, 2, ... is white noise, with f(x{u,0%) = (2n6%) 2 exp[—(x—1)?/(26%)]. A
noninformative prior distribution for = (u,6%) is 7(6) o 1/6°. The posterior distributions of

the parameters are given by (Gelman et al. 2004 p.75-77)
wXin ~ tnfl(x(ln), Sﬁ /n) (4.12)
@[X1n ~ Inv-gamma((n — 1)/2, ((n — 1) st)/ 2) (4.13)

Notice that (4.12) and (4.13) are derived from (4.5),(4.6),(4.7) for Rn = I (the former after
integrating out ¢%). The posterior predictive distribution is

Xt|X1:n ~ tn_l(x(ln),((n + 1)/n)s§), t=n+1,n+2, ... (4.14)

Where Xn+1, Xn+2,... are mutually independent and ty(u,6%) is the Student’s distribution with v

degrees of freedom.
4.3.2 AR(1) and HKp

When there is dependence among the elements of X1.(n+m), the posterior predictive distribution
of X(n+1):(n+m) given @ and Xy:n is (Eaton 2007 p.116,117)

f(X ) (nem)] @, X1:n) = (2116%) ™2 |Rmin| 2 exp[(—1/267)
(X2 rem) = min) " R (X(re 2y — min)] (4.15)
where umpn and Rmjn are given by:
pimin = pi€m + Rinsyrem) ] R (L] (1] (Xtn — pe€r) (4.16)

T -1
Rmin = Ryn+1):(n+m)] [o2):nemy] — R [zen] [oeay:oemy] R [1ing g Rpzn neay:nem (4.17)

where Rk m:ny IS the submatrix of R which contains the elements rij, k<i <, m<j<n. The
elements of the correlation matrices Ri:n and Ru:(n+m) are obtained from (4.2) for the case of
the AR(1) and from 1.9) for the case of HKp. In the implementation of the AR(1) model we
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assume that all three parameters u, o, g1 are unknown. For the HKp we examine two cases: (a)
all three parameters y, o, H, are unknown, and (b) x, o, are unknown but H is considered to be

known and equal to its maximum likelihood estimate (Chapter 3).

In the case that all three parameters of the AR(1) or HKp are unknown, we obtain a
simulated sample of 8 from (4.5),(4.6),(4.7) and use this sample to simulate gmpn and Rmin from
(4.16) and (4.17) and generate a sample of Xn+1):(+m) from (4.15). In the case where H is
considered as known, we obtain a simulated sample of @ = (1, %) from (4.5),(4.6) and use
this sample to simulate gmn and Rmn from (4.16) and (4.17) and generate a sample of

X(n+1):(n+m) from (415)
4.3.3 Asymptotic behaviour of AR(1) and HKp

In most applications, it is useful to know the ultimate confidence regions as prediction
horizon tends to infinity. This is expressed by the distribution of Xn+m+1):(nem+n =

(Xn+m+1,...,Xn+m+1) " @S M — oo, conditional on X1:n. For given @ this distribution is:
f(X(n+m+1):(n+m+1)|@,X1:0) = (27T0'2)7|/2’Rlln’71/2 :
expl(—L/26%)( Xpsmety(reme) — poin) Rin( X(uemetyromet) — )] (4.18)

where gin and Ryjn are given by:
-1
Hin = per + Rynem+1):(n+m+n)] [1:n] R (2] [1:n] (X:n — €n) (4.19)

T -1
Rin = Ryn+m+1):(n+m+)] [(n+m+1):( n+m+)] — R [Ln] [(n+m+1):(nem+1)] R [1:n] [2:0] R{Ln] [(n+m+2):(n+m+1)) (4.20)

We observe that, as m — oo, Ry (n+m+1):(n+m+1)] @nd Rpp+m+1):(n+m+1] [1:n] DECOME zero matrices

and Ryn+m+1):(n+m+)] [(n+m+1):(n+m+1)] = Rz - This implies that:
Hin = e (4.21)
Rin = Ry (4.22)

where R) is again obtained from (4.2) for the case of the AR(1) and from (1.9) for the case of
HKp.

Accordingly, the application can proceed as follows. We obtain a simulated sample of @
from (4.5),(4.6),(4.7) and use this sample to simulate gn and Ry from (4.21) and (4.22) and

generate a sample of X(n+m+1):(+m+1) from (4.18) for a large m.
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4.3.4 Truncated white noise, AR(1) and HKp

To examine real world problems which often impose upper or lower bounds on the variables
Xt, we assume that the distribution of X1 is two-sided truncated, and is given by (4.8). We
obtain a posterior sample of @ using the Gibbs sampler defined by (4.9), (4.10), (4.11). When
¢ is known, we obtain a posterior sample of (x,6%) using the Gibbs sampler defined by (4.9)
and (4.10). Then x1:m|@ follows a truncated normal multivariate distribution and according to
Horrace (2005) the conditional multivariate distributions of Xn+1):(n+m)|@,X1:n are again
truncated normal. As a result (4.15) still holds after slight modifications and (4.16), (4.17) are
valid. The posterior predictive distribution of Xn+1):(n+m)|@,X1:n iS then a multivariate truncated

normal distribution:

F(Xre1y:rem)0,X1:0)ocXPL(—1/262) (X 1y 4m)—tamin) "R (X 1y emy—pemin) oo "(Xne o) (4.23)

Now for the case of white noise, (4.12), (4.13) and (4.14) are not valid. But from (4.16),
(417) and for po = 1 and Pk = O, k= 1, 2, ..., WE obtain that Hmn = UEm and Rm\n = R[l;m] [1:m]-

When looking for the asymptotic behaviour of the process, (4.18) still holds after slight
modifications, according to Horrace (2005). As a result, the distribution of Xq+m+1):(n+m+1)|@,X1:n
is truncated multivariate normal, while (4.21) and (4.22) remain valid:

f(X+me1):(nem+)|@,X1:n) oc €XP[(—1/26%) (X(n+me+1):(nemel) — Miin) " -
Rin( Xemetysmety — )] asg( Xaemetyoemeh) (4.24)
4.3.5 Asymptotic convergence of MCMC

To simulate from (4.7) we use a random walk Metropolis-Hastings algorithm with a normal
instrumental (or proposal) distribution (Robert and Casella 2004 p.271). We implement the
algorithm using the function MCMCmetroplR of the R package ‘MCMCpack’ (Martin et al.
2011). The variable ‘burnin’ in this package is given the value 0, whereas the other variables

keep their default values.

There are a lot of methods to decide whether convergence can be assumed to hold for the
generated sample (see Gamerman and Lopes 2006 p.157-169; Robert and Casella 2004 p.272-
276). We use the methods of Heidelberger and Welch (1983) and Raftery and Lewis (1992).
These methods are described by Smith (2007), whose notation we use here. We use the R
package ‘coda’ (Plummer et al. 2006) to implement these methods. We assume that we have

obtained a sample w1, y2,... of a scalar variable ¢ using the MCMC algorithm.
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The diagnostic of Heidelberger's method provides an estimate of the number of samples
that should be discarded as a burn-in sequence and a formal test for non-convergence. The
null hypothesis of convergence to a stationary chain is based on Brownian bridge theory and

1

uses the Cramer-von-Mises test statistic f Bn(t)?dt, where
0

Bn(t) = (7], — [nt] 7 )A[nS(0) (4.25)
Tk:Zk:q/j,kzl,L...andTo:O (4.26)
j=1

where LxJ denotes the floor of x (the greatest integer not greater than x) and S(0) is the

spectral density evaluated at frequency zero. In calculating the test statistic, the spectral
density is estimated from the second half of the original chain. If the null hypothesis is
rejected, then the first 0.1n of the samples are discarded and the test is reapplied to the
resulting chain. This process is repeated until the test is either non-significant or 50% of the
samples have been discarded, at which point the chain is declared to be non-stationary. For
more details see Smith (2007).

The methods of Raftery and Lewis are designed to estimate the number of MCMC samples
needed when quantiles are the posterior summaries of interest. Their diagnostic is applicable
for the univariate analysis of a single parameter and chain. For instance, let us consider the

estimation of the following posterior probability of a model parameter 6:
P(f(f) <a|x)=q (4.27)

where x denotes the observed data. Raftery and Lewis sought to determine the number of
MCMC samples to generate and the number of samples to discard in order to estimate q to
within £r with probability s. In practice, users specify the values of g, r and s to be used in
applying the diagnostic (For more details see Smith, 2007).

To simulate from (4.11) we use an accept-reject algorithm (Robert and Casella 2004 p.51-
53) with a uniform instrumental density. Simulation from (4.9) and (4.10) is trivial. We assess
the convergence of the chain simulated from (4.9), (4.10), (4.11) using the method of Gelman
and Rubin (1992; see also Gelman 1996; Gamerman and Lopes 2006 p.166-168). An
indicator of convergence is formed by the estimator of a potential scale reduction (PSR) that
is always larger than 1. Convergence can be evaluated by the proximity of PSR to 1. Gelman
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(1996) suggested accepting convergence when the value of PSR is below 1.2.
4.4 Mathematical proofs

In Section 4.4 the proofs of (4.5),(4.6),(4.7),(4.9),(4.10),(4.11) are given. It is easily shown
that

(X1:n — e €n)" R_[le.:n] [n] (Xun — e €n) = eZ R_[i:n] [L:n] €n w—2 XI:n R_nl enput X-]I_-:n R_nl Xin  (4.28)
After completing the squares the above expression becomes:

eIR_[i;n] [1:n] €npt? — ZXI:nR_[ll:n] [Lnjenit + XI:nR_[ll:n] [n]Xn = eIR_[i;n] rngenfi — (X-lr:nR_[i:n] [njen) / (eI

RH:n] njen)]? + [eIREi:n] [1:n]enX—lr:nR7[i:n] [LnXn — (XI:nREi;n] [njen)?] / (elREi:n] [L:n]E€n) (4.29)
From (4.3) and (4.4) we obtain the following:

() f(X1:n|0) oc ™2 |Rpng rng| ~2 exp[(—1/26%) (Xen — 2 €n)" RH:n] in] Xen—wen)]  (4.30)

From (4.28),(4.29) and (4.30) we obtain (4.5). After integration of (4.30) we obtain (4.31)
which proves (4.6):

2(6Ap X1n) o (62 T2 Rppy ol 2 exp[(—1/262)[€nR (L] ng€nXinR in] [LngXo—(X1nR L] L]
en)21/(enR [in frmen)] (4.31)

After integration of (4.30) we obtain (4.32), which proves (4.7) after integration:
w(plxen) oc (o7 [Rizng i1l ~2 exp(~1/20%) (Xtn — e )" R (g () (Xen — pe €0)] de do*(4.32)
See also Falconer and Fernadez (2007) for some results.

Now for the case where truncation is applied we obtain from (4.4) and (4.8):
7(6) f(x1:nl6) oc "2 Rezn g 7 -

exp[(~1/26%) (X1n — 2 €n)T R ol g (Xa:n — 2 €0)] Tpapp(X0, -, Xn) (4.33)

Conditional on x4 € [a,b], a,b € Ru{—w,0}the derivation of (4.9), (4.10) and (4.11) from
(4.33) is then trivial.

45 Case studies

In this Section we apply the methodology developed in the previous Sections to five historical
datasets; three of them obtained from the Boeoticos Kephisos River basin, one from Berlin
and one from Vienna. The choice of these datasets was dictated by the fact that they have

been also studied in other works with similar objectives, i.e. Koutsoyiannis et al. (2007) and
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Koutsoyiannis (2011), so that the interested reader can make some comparisons. We present
the results of the application of the methodology to the aforementioned datasets.

4.5.1 Historical datasets

The first case study is performed on an important catchment in Greece, which is part of the
water supply system of Athens and has a history, as regards hydraulic infrastructure and
management that extends backward at least 3500 years. This is the closed (i.e. without outlet
to the sea) basin of the Boeoticos Kephisos River (Figure 4.1), with an area of 1955.6 km?,
mostly formed over a Kkarstic subsurface. Owing to its importance for irrigation and water
supply, data availability for the catchment extends for about 100 years (the longest dataset in
Greece) and modelling attempts with good performance have already been carried out on the
hydrosystem (Rozos et al. 2004).

D Sub-basin
B Lake

= River segment
Aqueduct

B Spring
® Borehole

Figure 4.1. The Boeoticos Kephisos River basin.

The long-term dataset for the basin extends from 1908 to 2003 and comprises a flow
record at the river outlet at the Karditsa station (C1), rainfall observations in the raingage
Aliartos (C2) and a temperature record at the same station (C3); the station locations are
shown in Figure 4.1. Further details on the construction of these datasets are given by
Koutsoyiannis et al. (2007). The relatively long records have already made it possible to
identify the scaling behaviour of rainfall and runoff in this basin (Koutsoyiannis 2003), and

make the catchment ideal for a case study of uncertainty assessment.

The two other datasets which we use are the mean annual temperature record of

Berlin/Templehof and Vienna, two of the longest series of instrumental meteorological
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observations. For further details on the Berlin mean annual temperature dataset see
Koutsoyiannis et al. (2007) and for the Vienna mean annual temperature dataset see
Koutsoyiannis (2011). We examine two cases. In the first case we assume that the update of
the prior information is done (C4, C5), using the whole dataset. In the second case the update

is done excluding the last 90 years of the datasets (C6, C7).
4.5.2 Application of the method

We classified the data into three classes, the first containing the data from the Boeoticos
Kephisos River basin (C1-C3), the second containing the data from Berlin and Vienna (C4,
C6) and the third containing again the data from Berlin and Vienna (C5, C7) but excluding
the last 90 years. In the third case the posterior results were compared to the actual 90 last

years.

Table 4.1. Summarized results and maximum likelihood estimates for the cases of WN,
AR(1) and HKp at Boeoticos Kephisos River basin.
Boeoticos basin
Runoff (mm) Rainfall (mm) Temperature (°C)

Start year 1908 1908 1898
End year 2003 2003 2003
Size, n 96 9% 106

WN

p 197.63 658.36 16.96
A 81.25 155.82 0.69
AR(1)

p 197.65 658.22 16.96
A 81.22 155.81 0.69
A 0.34 0.10 031
1

HK

p 195.11 657.38 16.97
n 80.47 155.00 0.70
0 0.71 0.60 0.71

First we calculated the maximum likelihood estimates of the parameters for all the
examined cases (WN, AR(1), HKp). The results are given in Table 4.1 and Table 4.2.
Truncated models were used for C1 and C2 datasets due to the relatively high estimated o
which otherwise would result in negative values. Instead, when we examined the temperature
datasets (C3-C7), simulated values near the absolute zero never appeared, indicating a good

behaviour of the non-truncated model.

The procedure for the temperature datasets is described below. We used (4.12) and (4.13)
to generate a posterior sample from x and ¢ for the WN case. To simulate from (4.7) for the
@1 and H posterior distribution of the AR(1) and HK cases correspondingly, we used a
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random walk Metropolis-Hastings algorithm. We simulated a single chain with 3 000 000
MCMC samples. The Metropolis acceptance rates are given in Table 4.3. To decide whether
convergence has been achieved, we used the Heidelberger and Welch method (1983). We
tested four cases, the first case containing all the 3 000 000 samples, the second containing the
last 2 000 000 samples and so forth. The results are presented in Table 4.4 and Table 4.5,
from where we conclude that stationary chain hypothesis holds in every case. We also used
the methods of Raftery and Lewis (1992), to estimate the number of MCMC samples needed
when quantiles are the posterior summaries of interest. The minimum number of samples and
the burn-in period for the simulation is given in Table 4.6 and Table 4.7, where q = 0.025,
0.500, 0.975 are the quantiles to be estimated, r = 0.005 is the desired margin of error of the
estimate and s = 0.95 is the probability of obtaining an estimate in the interval (g—r, g+r). We
decided to use the last 2 000 000 samples of the chains, to obtain the histograms of the
posterior distributions of the parameters g1 and H. The simulation of x, ¢® from (4.5) and (4.6)
is then trivial. Summarized results for the parameters of the AR(1) and HK cases respectively
are shown in Table 4.8 and Table 4.9.

Table 4.2. Summarized results and maximum likelihood estimates for the cases of WN,
AR(1) and HKp at Berlin and Vienna.

Berlin Vienna Berlin Vienna
Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

Start year 1756 1775 1756 1775
End year 2009 2009 1919 1919
Size, n 254 235 164 145
WN

2 9.17 9.58 9.04 9.36
g 0.91 0.87 0.92 0.84
AR(1)

/2 9.18 9.58 9.05 9.36
3 0.92 0.87 0.92 0.84
(1/J\1 0.37 0.30 0.30 0.11
HK

2 9.27 9.64 9.10 9.37
3 0.91 0.86 0.92 0.84
I/-\| 0.73 0.70 0.70 0.59

From the simulated samples we obtained the posterior probability plots of u, o, H, @1 for
the AR(1) and HK cases (Figures 4.2-4.8). The last 100 000 simulated samples of the
parameters, described in the previous paragraph were used to obtain samples from the
required posterior predictive probabilities. The samples from the posterior predictive
probability of x¢Xzn, t = n+1, n+2,..., n+90 were used to obtain samples for the variable of

interest Xt(30) given by (4.34).
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n t
Xi30) := (1/30)( X xi+ D xi), t=n+1, ..., n+29 and

I=t-29 I=n+1
t
Xi(30) :=(1/30) > xi, t=n+30, n+31, ... (4.34)
I=t-29

Table 4.3. Metropolis acceptance rate for the MCMC simulation of ¢1 and H, respectively, at

Boeoticos Kephisos River basin.
Aliartos temperature Berlin temperature  Vienna temperature Berlin temperature Vienna temperature

(1756-2009) (1775-2000) (1756-1919) (1775-1919)
o1 0.70731 0.70603 0.70612 0.70649 0.70654
H 0.706037 0.70551 0.70599 0.70601 0.70638

Table 4.4. Heidelberger and Welch test, for significance level 0.05, at Boeoticos Kephisos
River basin.

Aliartos temperature

Parameter 01 H
Stationarity test passed  passed passed passed passed  passed passed passed
Start iteration 1 1 1 1 1 1 1 1
p-value 0.427 0.745 0.46 0242 0.869 0.567 0.338 0.618
Table 4.5. Heidelberger and Welch test, for significance level 0.05, at Berlin and Vienna.
Berlin temperature (1756-2009) Vienna temperature (1775-2009)
Data start 1 1000000 2000000 2900000 1 1000000 2000000 2900000
Parameter 01 01
Stationarity test  passed  passed passed passed | passed  passed passed passed
Start iteration 1 1 1 1 1 1 1 1
p-value 0.943 0.738 0.342 0.448 0.928 0.696 0.366 0.0761
Parameter H H
Stationarity test  passed  passed passed passed | passed  passed passed passed
Start iteration 1 1 1 1 1 1 1 1
p-value 0.837 0.466 0.279 0.691 0.789 0.501 0.296 0.84
Berlin temperature (1756-1919) Vienna temperature (1775-1919)
Parameter 01 01
Stationarity test  passed  passed passed passed | passed  passed passed passed
Start iteration 1 1 1 1 1 1 1 1
p-value 0.94 0.589 0.376 0.425 0.777 0.55 0.308 0.592
Parameter H H
Stationarity test passed  passed passed passed | passed  passed passed passed
Start iteration 1 1 1 1 1 1 1 1
p-value 0.833 0.606 0.339 0.923 0.885 0.83 0.373 0.323

We examined the cases of WN, AR(1), asymptotic behaviour of AR(1), HK where H is
considered to be known and has the value of the maximum likelihood estimate, HK when H is
not known, and its asymptotic behaviour. Figures 4.9-4.11 show the 0.025, 0.500 and 0.975

quantiles of the posterior predictive distributions of Xtao)[X1:n, t = n+1, n+2,..., n+90.

The procedure for C1 and C2 is described below. We simulated from (4.9), (4.10) and
(4.11) to obtain a posterior sample from y, o> and ¢ for all cases. We simulated 10 chains with
each one having 300 000 MCMC samples. To decide whether convergence has been
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achieved, we used the Gelman and Rubin (1992) rule. In all cases PSR =~ 1 which shows that
the chains converged to the target distribution. We decided to use the last 200 000 samples of
each chain, to obtain the histograms of the posterior distributions of the parameters @1 and H.
Summarized results for the parameters of the AR(1) and HK cases respectively are shown in
Table 4.8.

Table 4.6. Raftery and Lewis test for the case of Boeoticos Kephisos River basin.
Aliartos temperature
g Burn- Total Lower Dependence Burn- Total Lower Dependence

in bound factor in bound factor

91 0.025 21 31794 3746 8.49 H 18 35784 4899 7.3
0.500 24 356752 38415 9.29 24 464024 50239 9.24
0.975 28 32298 3746 8.62 28 42161 4899 8.61

Note: q is the quantile to be estimated, r = 0.005 is the desired margin of error of the estimate,
s = 0.95 the probability of obtaining an estimate in the interval (q—r, g+r), eps = 0.001 is the
precision required for estimating time to convergence.

Table 4.7. Raftery and Lewis test for the cases of Berlin and Vienna.

Berlin temperature (1756-2009) Vienna temperature (1775-2009)
g Burn-in Total Lower bound Dependence factor|Burn-in Total Lower bound Dependence factor

010025 21 31416 3746 8.39 21 31612 3746 8.44
0500 24 356512 38415 9.28 21 322441 38415 8.39
0975 21 31731 3746 8.47 21 31745 3746 8.47
H 0.025 18 27288 3746 7.28 18 35670 4899 7.28
0500 21 322777 38415 8.4 21 422975 50239 8.42
0975 28 32732 3746 8.74 28 42882 4899 8.75

Berlin temperature (1756-1919) Vienna temperature (1775-1919)

910025 21 31780 3746 8.48 21 31780 3746 8.48
0.500 24 356656 38415 9.28 21 323631 38415 8.42
0975 21 32193 3746 8.59 21 32137 3746 8.58
H 0.025 18 27330 3746 7.3 18 27072 3746 7.23
0500 21 323330 38415 8.42 21 324177 38415 8.44
0975 18 32991 3746 8.81 27 39690 3746 10.6

Note: g is the quantile to be estimated, r = 0.005 is the desired margin of error of the estimate,
s = 0.95 the probability of obtaining an estimate in the interval (q—r, g+r), eps = 0.001 is the
precision required for estimating time to convergence.

From the simulated samples we obtained the posterior probability plots of u, o, H, @1 for
the AR(1) and HK cases (Figure 4.2 and Figure 4.3). The last 10 000 simulated samples of the
parameters of each chain, described in the previous paragraph are used to obtain samples from
the required posterior predictive probabilities. The samples from the posterior predictive
probability of x¢Xun, t = n+1, n+2,..., n+90 are used to obtain samples for the variable of
interest 5530) given by (4.34). We examined the cases of WN, AR(1), asymptotic behaviour of
AR(1), HK where H is considered to be known and has the value of the maximum likelihood
estimate, HK with unknown H and its asymptotic behaviour. Figure 4.9 shows the 0.025,

0.500 and 0.975 quantiles of the posterior predictive distributions of xizo)|X1n, t = n+1, n+2,...,
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n+90.
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Figure 4.2. Posterior probability distributions of u, o, H, @1 for the cases of AR(1) and HK
processes, for the runoff of Boeoticos Kephisos.

4.5.3 Results

A first important result of the proposed framework is that it provides good estimates of the
model parameters without introducing any assumptions (i.e., using noninformative priors).
While common statistical methods give point estimates of parameters, the Bayesian
framework provides also interval estimates based on their posterior distributions. The
estimated values of x are given in Table 4.10. It turns out that irrespective of the method used

(MLE or posterior medians) they are almost equal. When examining temperatures, HKp

resulted in the Iargest;/} and AR(1) in the second largest. In C4 and C6, //} was larger than in
C5 and C7 respectively. From the density diagrams of the posterior distributions (Figures 4.2-
4.8) it seems that the posterior distribution of x is wider when HKp is used. The posterior
distribution of ¢ is also wider on the right (see the values of the 0.975 quantiles in Table 4.8
and Table 4.9) for the HKp. However the estimated values of ¢ are almost equal for the three
used models (Table 4.1 and Table 4.2). The estimated ¢1 and H are given in Table 4.1 and
Table 4.2. Their estimated values for C5 are considerably higher compared to C7, but their
posterior distributions are narrower (Table 4.9), probably because of the bigger sample size in

the former case. Their posterior distributions are also narrower for C4 compared to C6.
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Figure 4.5. Posterior probability distributions of u, o, H, ¢1 for the cases of AR(1) and HK
processes, for the temperature at Berlin/Tempelhof. In this case the parameters are estimated

from years 1756-2009.
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Figure 4.9. Historical climate and confidence regions of future climate (for 1 —a = 0.95 and

climatic time scale of 30 years) for (upper) runoff of Boeoticos Kephisos, (middle) rainfall at
Aliartos, and (lower) temperature at Aliartos.

The second result of the framework is the predictive distribution of the future evolution of
the process of interest. The posterior predictive 0.95-confidence regions for the 30-year
moving averages are given in Figures 4.9-4.11. For C1 the confidence region is not symmetric

with respect to the estimated mean, owing to the lower truncation bound alongside with the
relatively big o.In contrast, there is a symmetry for C2 owing to the relatively small 3, which

justifies our decision to use models without truncation in those cases where o is even smaller
(compared to mean). For all cases, the widest confidence regions correspond to the HKp (due
to the existence of persistence), followed by the AR(1), while the narrowest confidence

regions appear for the WN. Of course the confidence regions for unknown H are wider than in
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the case where H was considered to be known and equal to its maximum likelihood estimate.
In C5 and C7 the HKp seems to be the best model, because it captures better than the others
the observed values of the climate variable for the last 90 years based on the observed values
of the previous years. In C7 it seems that the HKp did not capture the increase of temperature
in last decades. But when we examine the full dataset (C5), the behaviour in last 90 years does
not appear extraordinary. For the asymptotic values in the HKp, the 0.95-confidence region
ranges at intervals of the order of 150 mm (C1), 220 mm (C2), 1.6°C (C3), 1.9°C (C4), 1.4°C
(C5) for the 30-year moving average. The corresponding values for the case of the WN of the
order of 50 mm (C1), 75 mm (C2), 0.5°C (C3), 0.6°C (C4), 0.6°C (C5) are considerably
smaller compared to the case of the HKp.

Historical White Noise HK H known — ---------
Moving average AR() memes HK ===
Sample mean —_— AR(1) asymptotic -—-—- - HK asymptotic ———-

Temperature

Temperature

1800 1850 1900 1950 2000 2050

Year
Figure 4.10. Historical climate and confidence regions of future climate (for 1 —a =0.95 and
climatic time scale of 30 years) for (upper) temperature at Berlin, and (lower) temperature at
Vienna.

4.6 Summary

We developed a Bayesian statistical methodology to make hydroclimatic prognosis in terms
of estimating future confidence regions on the basis of a stationary normal stochastic process.
We applied this methodology to five cases, namely the runoff (C1), the rainfall (C2) and the

temperature (C3) at Boeoticos Kephisos river basin in Greece, as well as the temperature at
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Berlin (C4, C6) and the temperature at Vienna (C5, C7). The Bayesian statistical model
consisted of a stationary normal process (or truncated stationary normal process for the runoff
and rainfall cases) with a noninformative prior distribution. Three kinds of stationary normal
processes were examined, namely WN, AR(1) and HKp. We derived the posterior
distributions of the parameters of the models, the posterior predictive distributions of the
variables of the process and the posterior predictive distribution of the 30-year moving
average which was the climatic variable of interest. The methodology can also be applied to
other structures of the ACF.
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Figure 4.11. Historical climate and confidence regions of climate (for 1 — a = 0.95 and
climatic time scale of 30 years) for (upper) temperature at Berlin/Tempelhof after the year
1920 and (lower) temperature at Vienna after the year 1920.

A first important conclusion is that for all the examined cases and for all the examined
processes their estimated means are almost equal as expected. However the posterior
distributions of the means are wider when using the HKp, due to the persistence of the
process, and even wider when all parameters of the process are assumed to be unknown. This
results in wider confidence regions for future climatic variables of the processes. Moreover
the confidence regions of truncated future variables are asymmetric. This asymmetry depends

on the variance of the examined process. However the posterior distributions of the means of
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all processes were less asymmetric.

Table 4.8. Summary results for the parameters of the AR(1) and HK cases at Boeoticos
Kephisos River basin.

Quantiles

Case Mean Standard 2.5% 25% 50% 75%  97.5%

Deviation
Boeoticos runoff
AR(1)
U 197.7 12.69 1725 189.4 197.7 2059 22238
o 83.93 7.41 71.50 78.78 83.23 88.29 100.45
01 0.35 0.10 0.16 0.28 0.35 0.42 0.55
HK
i 194.85 31.30 132 178.1 195 2116  256.1
g 86.51 12.35 71.19 79.15 84.40 91.06 114.22
H 0.74 0.07 0.62 0.69 0.74 0.78 0.88
Aliartos rainfall
AR(1)
i 658.18 18.57 621.5 646 658.2 6704 694.7
g 159.9 12.24 138.3 151.3 159.1 167.5 186.2
01 0.11 0.10 -0.09 0.04 0.11 0.18 0.32
HK
i 657.09 31.98 592.5 638.4 6573 676.1 720.4
o 160.7 13.45 137.9 1514 1595 1686 190.3
H 0.62 0.06 0.51 0.58 0.62 0.66 0.75
Aliartos temperature
AR(1)
U 16.96 0.10 16.76 16.89 16.96 17.02 17.15
o 0.71 0.06 0.61 0.67 0.70 0.74 0.84
01 0.33 0.10 0.14 0.26 0.33 0.39 0.52
HK
u 16.97 0.29 16.44 16.83 16.97 17.11 17.52
fox 0.75 0.13 0.62 0.68 0.73 0.79 0.99
H 0.74 0.07 0.61 0.69 0.74 0.79 0.88
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Table 4.9. Summary results for the parameters of the AR(1) and HK cases respectively at
Berlin and Vienna.

Quantiles

Case Mean Standard 2.5% 25% 50% 75%  97.5%

Deviation
Berlin temperature (1756-2009)
AR(1)
U 9.18 0.09 9.01 9.12 9.18 9.24 9.35
o 0.93 0.05 0.84 0.89 0.92 0.96 1.03
01 0.38 0.06 0.26 0.34 0.38 0.42 0.49
HK
U 9.28 0.25 8.80 9.13 9.27 9.43 9.79
o 0.94 0.06 0.83 0.89 0.93 0.97 1.08
H 0.75 0.03 0.67 0.72 0.75 0.77 0.83
Vienna temperature (1775-2009)
AR(1)
U 9.58 0.08 9.42 9.53 9.58 9.63 9.74
o 0.88 0.05 0.80 0.85 0.88 0.91 0.98
01 0.31 0.06 0.19 0.27 0.31 0.35 0.43
HK
U 9.64 0.19 9.27 9.52 9.64 9.76 10.03
o 0.88 0.05 0.79 0.84 0.87 0.91 0.99
H 0.71 0.04 0.64 0.68 0.71 0.73 0.79
Berlin temperature (1756-1919)
AR(1)
U 9.05 0.10 8.85 8.98 9.05 9.12 9.25
c 0.94 0.06 0.83 0.89 0.93 0.97 1.06
01 0.31 0.08 0.16 0.26 0.31 0.37 0.46
HK
U 9.11 0.26 8.60 8.95 9.10 9.26 9.64
o 0.96 0.08 0.83 0.90 0.95 1.00 1.14
H 0.72 0.05 0.63 0.69 0.72 0.76 0.83
Vienna temperature (1775-1919)
AR(1)
U 9.36 0.08 9.20 9.31 9.36 9.42 9.52
c 0.86 0.05 0.76 0.82 0.85 0.89 0.97
01 0.12 0.08 -0.04 0.06 0.12 0.18 0.29
HK
U 9.37 0.13 9.10 9.29 9.37 9.45 9.63
o 0.86 0.06 0.76 0.82 0.86 0.89 0.98
H 0.61 0.05 0.51 0.57 0.61 0.64 0.72

Table 4.10. Estimates of 4 using various methods.
Maximum likelihood estimate | 50% quantile

Examined case WN AR(1) HKp |AR(1) HK
Boeoticos runoff 197.63 197.65 195.11 | 197.7 195
Aliartos rainfall 658.36  658.22 657.38 | 658.2 657.3
Aliartos temperature 16.96 16.96 16.97 | 16.96 16.97

Berlin temperature (1756-2009) 9.17 9.18 9.27 9.18 9.28
Vienna temperature (1775-2009)  9.58 9.58 9.64 958 9.64
Berlin temperature (1756-1919) 9.04 9.05 9.10 9.05 9.11
Vienna temperature (1775-1919)  9.36 9.36 9.37 9.36 9.37

Another important conclusion is that the use of short-range dependence stochastic

processes is not suitable to model geophysical processes, because they underestimate
uncertainty. However stationary persistent stochastic processes are suitable to achieve this

purpose. In the examined cases they performed well and were able to explain the fluctuations
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of the process.

One may claim that, when climate is to be predicted, an assumption of stationarity is not an
appropriate one as currently several climate models project a changing future climate.
Nonetheless, an assessment of future climate variability and uncertainty based on the
stationarity hypothesis is a necessary step in establishing a stochastic method, whose
generalization at a second step would enable incorporating nonstationary components. In
addition, without knowing the variability under stationary conditions, it would not be possible
to quantify the credibility of climate models and even their usefulness. Work on the
generalization of the methodology to incorporate deterministic predictions by climate models
is presented in Chapter 5.
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5. On the prediction of persistent processes using the output of

deterministic models

A problem frequently met! in the engineering hydrology community is the prediction of
future hydrologic variables conditional on their historical observations and the hindcasts and
forecasts of a deterministic model. Various methods have been developed to deal with this
task under the independence or the Markovian dependence assumption of the variables. On
the other hand it is a common practice for climatologists to use the output of GCMs for the
prediction of climatic variables despite their imperfections and their inability to quantify the
uncertainty of the predictions. In this Chapter we extend the aforementioned hydrological
frameworks to include cases where persistent dependence appears. The framework is applied
to climate time series and the output of GCMs. Predictions of the climate variables are
derived, with their uncertainty. We conclude that the influence of the GCMs to the reduction

of the uncertainty is negligible.
5.1 Introduction

Recently various studies regarding the prediction of future hydrologic variables based on
stochastic models have been carried out. To mention some of them, Koutsoyiannis et al.
(2008b) proposed a stochastic model for the prediction of the Nile flow a month ahead. On
larger time scales Koutsoyiannis et al. (2007) proposed a stochastic framework to calculate
future climatic uncertainties conditional on historic observations, while the same problem was
tackled in a Bayesian framework in Chapter 4. Stochastic models are frequently used also by
engineering hydrologists for the prediction of hydrologic variables, whereas the climatologists
focus on deterministic models (GCMs) (Koutsoyiannis et al. 2007). While it is true that
deterministic models incorporate knowledge of the climatic mechanisms expressed through

deterministic equations, they are not appropriate to quantify the uncertainty of prediction.

The task of exploiting the output of deterministic models to improve the output of
stochastic models has been studied as well by hydrologists, e.g. Montanari and Grossi (2008),
Zhao et al. (2011), Smith et al. (2012) and others. Krzysztofowicz (1987a,b; 1999a,b; 2001;
2002), Krzysztofowicz and Maranzano (2004), and Krzysztofowicz and Evans (2008)
proposed a stochastic framework, namely the Bayesian Forecasting System (BFS) for

producing a probabilistic forecast of a hydrologic predictand via any deterministic catchment

1 Based on: Tyralis and Koutsoyiannis (2015)
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model. Wang et al. (2009) and Pokhrel et al. (2013) proposed a Bayesian joint probability
(BJP) modelling approach for seasonal forecasting of streamflows at multiple sites. The BFS
and the BJP can be applied to any hydrological processes, irrespective of their autocorrelation
structure. However to the authors’ knowledge they have been applied only to white noise or

Markovian stochastic processes.

Koutsoyiannis (2000) examined the handling of HK behaviour in multivariate stochastic
simulation of hydrological processes. A multivariate extension of the HKp was proposed by
Lavancier et al. (2009) and its properties were studied extensively by Amblard and Coeurjolly
(2011), Amblard et al. (2012), Coeurjolly et al. (2010; 2013).

In this Chapter we modify the BJP proposed by Wang et al. (2009) to make prediction of
hydrologic processes exhibiting HK behaviour conditional on their historical observations and
the output of some deterministic models. The output’s time period spans from the historical
observations period to future projection in an arbitrary time. To this end we model the two
time series (the observed data and the output of the deterministic model) using a well-
balanced bivariate HKp (see definition below). A maximum likelihood estimator of the
parameters of the model is proposed and the estimated values of the parameters are used to
make inference for the distribution of the processes under study. In the proposed framework,
the knowledge of the exact dynamics of the deterministic model is not a requirement,
similarly to the BFS. However the structure of the proposed approach differs, in that the BFS
relies on an assumption of conditional independence between the variables of the stochastic
process and the deterministic model. Hence the distribution of the deterministic model is
determined from the stochastic process. In our model the distribution of the variables of the
deterministic model is considered known and the correlation between the variables is

examined.

The framework is applied to global averaged temperature and precipitation datasets, which
are assumed to exhibit HK behaviour. The deterministic models are GCMs. It is shown that
the information added by the deterministic models is negligible, particularly for precipitation.
This was expected according to Koutsoyiannis et al. (2008a) and Anagnostopoulos et al.
(2010) who compared the output of various GCMs to temperature and precipitation

observations and showed that the spatially integrated projections were poor.
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5.1.1 Definition of the well-balanced bivariate HKp

We assume that {x1t} and {x2t}, t =1, 2, ... are two HKp’s with parameters (u1, o1, H1) and
(u2, 02, H) respectively. Then the normal bivariate process {x: = (Xi,x2)}, t=1,2, ... is a
well-balanced (i.e. a time-reversible) HKp if (Amblard et al. 2012)

wij(K) = pij [K[A*H, pii =1, pij = pji = p, {i.j} € {{1,2}.{1,2}} (5.1)
7ii(K) == Cov[xit, Xjt+«] = (1/2) gi g7 (wij(k—1) — 2 wij(k) + wij(k+1) ) (5.2)
under the following restriction

2 - I'(2H1+1) I'(2H>+1) sin(xH1) sin(zH>)
P =" I?(Hi+Ha+1) sin?(n(Hi+H2)/2)

(5.3)

Note that for i = j, (5.2) is equivalent to (1.9).
5.2  Maximum likelihood estimator for the parameters of the bivariate HKp

The problem of finding and assessing the maximum likelihood estimator for the parameters of
the HKp was studied in Chapter 3. The solution of this problem for the bivariate HKp is more
complicated. We assume that there is a record of n observations X1 1:n := (X11,...,X1n)" and Xz 1:n
:= (X21,...,X2n)". The parameters of the bivariate HKp are @ = (w1, u2, o1, 02, H1, Hz, p). We use
the terminology of Wei (2006 p.382-427). Hence we have the mean vector

Elxd = (11, )" (5.4)

and the lag-k covariance matrix I'(k), which as a function of k is called the covariance matrix

function for the process xt.

1K) = Cov[xe, Xk :[ yyl:l((i)) iigg ] (5.5)
The covariance matrix of the multivariate normal variable X1:n := (xI,x;,...,xz)T is
ro rn .. r(n-1
e r ro .. rn-—2 (5.6)
o) o2 .. 10

. . T T . .
Rearranging the elements of x1.n we define the vector Win := (X1 1:n, X2 1:n)" With covariance

matrix

[ 2 2 }
Z—[ S 5 (5.7)

87



where 21 and 2> are the covariance matrices of X1 1:n and X2 1:n and 212, 21 are their cross-

covariance matrices.
21 := 0 Ry, Ru(ii) = Ra(jii) := pagiy and 22 := o Ra, Ra(irj) = Ra(j,i) := poy  (5.8)
2o1= 212 1= p o1 02 Rot, Raaiif) = Raa(j,i) = Raa(j—i) := paa(j—i) (5.9)
p21(7=1) = y1(—i) / (p 01 02) = (1/2) ( [j-i—1HrH2 — 2 |j—i [HitH2 + |j—j+1]H1+H2 )(5.10)

The R1, Rz, Rag, 21, 22 and X1 are symmetric Toeplitz positive definite matrices (Golub
and Van Loan 1996 p.193). The Schur complements (Horn and Zhang 2005 p.18) of the

matrices 2> and 2 are
S1=21- 2125 Zn =01 (Ri—p? R R2 Ran) (5.11)
S2=3-Zn 21 En = o (R2—p®Ra1 R: R21) (5.12)

and they are symmetric as well. It is proved after substituting (5.8) and (5.9) in (5.13) that

X1 3nSs=- _0% Ri R (R2—p? R Ri Ro1)] ™t (5.13)
Additionally
~ SN i =(-212nS2) (5.14)

because Sz, Z»1 and X1 are symmetric matrices, hence the inverse of X is (Horn and Zhang
2005 p.19)

. Si ~X1ZaS: Si ~SiEnz,
2= -1 -17 -1 = -1 1T -1 (5.15)
(=21 221S7) S> (—S12n2>) S2

Now we define the vectors
en=(L1,...,1)7 (5.16)
g = (uen , pzen )T (5.17)
The probability distribution function of w1, is (Eaton 2007 p.122)

f(Winlu , 2) = ) " |22 exp(—(1/2) (Win — )T 27 (Win — p)) (5.18)

The maximum likelihood estimates /z\l and /z\z are given in Section 5.3 and depend on the
other parameters of the bivariate HKp. However when substituting them in (5.18) its
maximization becomes complicated. From now on we assume that w1, u2 are known or

estimated from the corresponding sample means, e.g. see the estimation techniques proposed
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by Amblard and Coeurjolly (2011). Substituting X! from (5.15) in (5.18) and taking the
partial derivatives of the log-likelihood function (5.18) with respect to o1 and o> we obtain

2 - - _
-3 (R1—p’RaR ) Ro1)™! ‘él'._z R: R (R2—p?RaR ) R21)] ™
ox! o1 01 02 5 19
Oo1 a p12 2 -1 4 -1 ( : )
5 —(R2—p°RaaR1 Ra1)] " R R1 0
0102
0 "01_22 R1 Rz (R2—p? R R R21)] ™!
ox ! 0102 & 20
do2 | p12 2 -1 1 -1 2 ) -1 . (520)
5(R2—p°Ra1R1 Ra1)] " Ra1 R —3(R2—p°Ra1R1 Ra1)
01 02 02

The determinant of X' is (Horn and Zhang 2005 p.19)

121 = 122 S1] = |Z1] IS2] = |o2R2] |01 (R1 — p?Ra1iR 2 Raa)| = [01Ry| |03 (R2 — p?RuR 1R2)|  (5.21)

and
Ologl2] _ 2n Jdlogl2] _2n
dor o1’ Oo2 o2 622
Solving the system
oIn(fWanl , 2) _ o O Wanlu, 2) _ o (5.23)
oo 002

for o1 and o2 we obtain

12 1/2

N 1/2 1/2 1/2
or=((@1a3 —pazar )/(naz

N2, 02 = ((asar —pazas )(nai )2 (5.24)

where
ai .= yhn (R1—p?Ra Ra Ro1) !y 1,
a = y-zrlzn (R2— p? R Ril R21) 1 R |:\’711 Y1i1n, 83 := ygl:n (R2—p? R R? Ra1) y21n  (5.25)
and
Y11 = ( X-lrl:n — ,uleI)T, Y21n = (Xgl:n - ,uzel )T (5.26)
Now substituting (5.24) in (5.18) and maximizing the log-likelihood of the three
parameters we obtain I-/|\1, I-ll\z, 2. After substituting these values in (5.24) we obtain O/'\1 and ol'\z.

We assume now that there is a record of observations X1 1:(n+m) := (X11,...,X1 (n+m) " @nd X2 1:n

:= (X21,...,X2n)". Following the same procedure it is shown that X1, = o and
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a1 = Y1 o) (Ru— p? Rt Rz Raa) t ya sioem)
az:= y-2rl:n (RZ_pZRZIRalel)_lRZlRllyl 1:(n+m), A3 1= yg 1n (Rz—p2R21R11R;1)_1Y2 1n (5.27)

5.3 Maximum likelihood estimators of the means of the bivariate HKp

We mentioned in Section 5.2 that the maximum likelihood estimates /i\l and ,L/t\z depend on the

other parameters of the bivariate HKp. To obtain them we substitute (5.15) in (5.28):

1
(Wan — )" 27" (Wan — p) = (12) (a1, pi2) A[ zz } — (g1, p2) b+ Win X Wi (5.28)
where
- _ _ T o5 ou
enS1 €n en &) L3S 21) €n Win 2 o
A=2| ; 00 L b=2 (5.29)
€n (_21 ZZlSZ)En enS2 en WT- Z—l_aﬂ
1:n 5/12

To maximize (5.18), (5.28) should be minimized. Its minimum is attained for (Golub and
Van Loan 1996 p.490)

(a1, 12)"=A"'b (5.30)
The matrices A and b are functions of the other parameters of the bivariate HKp, therefore

after substituting their maximum likelihood estimates in (5.30) we obtain /2\1 and ,z?z. However,

as mentioned in Section 5.2, this result will not be used in this study.
5.4 Posterior predictive distributions

We assume that X1 1:(n+k) is the output of the deterministic model and x2 1.1 is the data observed.
We wish to find the distribution of X2 (n+1):(+m) conditional on X1 1:(n+m) and Xz 1:n. Assuming
that {xt = (Xu,X2))}, t =1, 2, ... is a bivariate HKp, the probability distribution of W1: (n+m) IS
given by (5.18). The 2(n+m)-by-2(n+m) covariance matrix of the process is given by (5.7) and
is partitioned according to (5.31)
21 21 21
P1 P
X=| 2211 2on 2onm |= (5.31)
Pa P2
2212 2Zomn 2om

where X>n is m-by-m matrix and

21

_[ 2 2
- 22nm

2211 22n i|’ P2 = 22m (532)

i|, Po = [ 2212 2omn ], P12 =[
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Then the posterior predictive distribution of X2 (r+1):(n+m) conditional on Xu 1:(n+m), X2 1:n @nd @
IS

f(XZ (n+1):(n+m)|X1 1:(n+m), X2 1:n,0) = (27IO'2)_m/2 |Rm|n|_1/2 exp[(_1/20'2) :

(X2 (w1 (rem) — pimin) " R (X2 (ne2y: (o) — pimin)] (5.33)

where umn and Rmp are given by
Hmin = (28m + P21 le ( (XIl:(n+m) , X;l:n)T - (,Llle;|1—+m ,,uzeI)T) (5.34)
Rmin = P2 — P21 P1’ Pr2 (5.35)

Here we mention that in the following @ will be considered known and equal to its
maximum likelihood estimate. In a Bayesian setting we would assume that @ is a random
variable, however this is out of the scope of this study and will be examined in the future. In
the Bayesian setting the uncertainty of the prediction would increase, e.g. see Chapter 4. The
variables that will be examined in the following will be considered normal. For truncated
normal variables the interested reader is referred to Horrace (2005) and Chapter 4. The

examination of non-normal variables is out of the scope of this study as well.
5.4.1 Investigation for various values of

An investigation for various values of the parameters is performed here.

- For p = 0, x1 and x» are uncorrelated, hence the knowledge added by X1 1:(n+m) is useless. In

this case (5.33) reduces to
(X2 (n+2):(n+m) X1 1:(n+m), X2 1:0,0) = T(X2 (n+1):(n+m)|X2 1:0,0) (5.36)
which already has been examined in Chapter 4.

- For Hy = Hz = 0.5 (5.33) reduces to the case of the normal-linear processor examined by
Krzysztofowicz (1999a) with the following equivalence between the parameters of normal-

linear processor and our model.

M = (5.37)
S=0; (5.38)

a=(p o1)lo (5.39)

& =01 (1-p?) (5.40)
b= (021~ p 01 p2)l o2 (5.41)
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5,5 Case study

We applied our methodology to global temperature data and precipitation data shown in Table
5.1. These data are modelled by a Hurst-Kolmogorov process (Koutsoyiannis and Montanari
2007). We used the 20C3M for the calibration of the model and the SRES scenarios A1B, B1,
A2 of the IPCC Fourth Assessment Report (AR4) to improve the prediction of the stochastic
model (Table 5.2). The AR4 output could be divided into two time periods. The first time
period corresponds to the 20C3M scenario, which simulates the climate of the past, based on
greenhouse gasses increasing as observed through the 20th century. The 20C3M scenario
approximately covers a time period spanning from 1880 to 2000, albeit the exact time period
depends on the developer of the model. A list of model developers is shown in Table 5.3. The
second time period corresponds to the A1B, B1, A2 scenarios and simulates the future
climate, based on hypotheses mentioned in Table 5.2. We preferred to use the AR4 because
the intersection of its second time period with the time period corresponding to the observed
histical data is almost 10 years, thus we can inspect the validity of our predictions. The
specific GCMs that where used in the study are shown in Table 5.3. Tables B.1-B.4 show the
maximum likelihood estimates of the bivariate HKp {x: = (x1t,X2t)}, where {xu} is the process
which models the GCM and {x2} is the process which models the observations. The time
interval for the calibration spans from the maximum starting year of the corresponding
20C3M scenario and the observed data to the minimum of the corresponding 20C3M scenario
and the observed data (e.g. see Figure 5.1). We also examined the case where the parameters
are estimated separately. Specifically the {xit}, {x2t} are assumed to be univariate HKps and
their parameters are estimated as in Chapter 3. The sample cross-correlation function is used

in this case to estimate p.

Calibration period ; Prediction period
Historical observations, x; : :
20C3M L1 Al
GCM output, x; ; §
Year E E >
1880 2000 2010 2050

Figure 5.1. Scetch explaining the time periods that are used for model calibration, i.e.
estimation of its parameters, and prediction. The specific years depicted in the sketch
represent the typical years that were used in case studies (although these may vary in some of
them; see Appendix B.
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Table 5.1. Study historical time series.

Data Name Developed by Time interval

Temperature Global Land-Ocean Temperature GISS 1880-2012
Index

Temperature Annual Global Land and Ocean NOAA 1880-2012
Temperature Anomalies

Temperature Combined land [CRUTEM4] and CRU 1850-2012
marine temperature anomalies

Precipitation Precipitation over land areas CRU 1900-1998

Sources: data.giss.nasa.gov; www.nodc.noaa.gov/General/temperature.html; www.cru.uea.ac.uk/cru/data/temperature/;
www.climatedata.info/Precipitation/Precipitation/global.html

Using the simultaneous maximum likelihood estimate of p, we obtain the posterior
predictive distribution of X2 (n+1):(+m) conditional on X1 1:(n+m), X2 1:n and @ from (5.33). The
other parameters of the bivariate process are estimated again assuming that {xit}, {x2} are
univariate HKps, however in this case we use the whole sample, starting from the common
starting year of {x1t} and {x2t} until the year 2100 for the {x1t} parameter estimates and the
common end year of the corresponding 20C3M scenario and {x2t} for the {x2t} parameter
estimates. The samples from the posterior predictive probability of xxn, t = n+1, n+2,..., were

used to obtain samples for the variable of interest x> o) given by (4.34).

93


http://data.giss.nasa.gov/
http://www.nodc.noaa.gov/General/temperature.html
http://www.cru.uea.ac.uk/cru/data/temperature/
http://www.climatedata.info/Precipitation/Precipitation/global.html

Table 5.2. IPCC scenarios and their relevance to the study.

Scenario

Characteristics

Reason for being appropriate or inappropriate

AR4 SRES

AlB

Bl

A2

COMMIT

1%-2X,
1%-4X

Pl-cntrl

20C3M

Various hypothetical scenarios for the
future.

A future world of very rapid economic
growth, low population growth and rapid
introduction of new and more efficient
technology. Major underlying themes are
economic and cultural convergence and
capacity building, with a substantial
reduction in regional differences in per
capita income. In this world, people
pursue personal wealth rather than
environmental quality.

A convergent world with the same global
population as in the Al storyline but with
rapid changes in economic structures
toward a service and information
economy, with reductions in materials
intensity, and the introduction of clean
and resource-efficient technologies.

A very heterogeneous world. The
underlying theme is that of strengthening
regional cultural identities, with an
emphasis on family values and local
traditions, high population growth, and
less concern for rapid economic
development.

Greenhouse gases fixed at year 2000
levels.

Assume a 1%-per-year increase in CO2,
usually starting at year 1850.

Uses pre-industrial greenhouse gas
concentrations.

Generated from output of late 19th &
20th century simulations from coupled
ocean-atmosphere models, to help
assess past climate change.

Runs start in the 21st century.

Runs start in the 21st century, however it is a
conservative scenario.

Results in CO2 being 570 cm®/m? (ppm) already in
1920, when in fact it was 379 cm3/m? in 2005. Actual
20th century concentrations are required.

Actual 20th century concentrations are required.

This scenario is used for calibration.

Sources: Leggett et al. (1992); IPCC (2000); IPCC (2007); IPCC-TGCIA (1999); Hegerl et al. (2003)
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Figure 5.2. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A1B scenario of the ECHO-G model, using the NOAA annual global land and ocean
temperature anomalies.
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Figure 5.3. 95% confidence region for the predictive 30-moving average temperature (°C) for
the B1 scenario of the ECHO-G model, using the NOAA annual global land and ocean
temperature anomalies.

We preferred to present some specific examined cases with characteristics presented in
Table 5.4. First we examined the scenarios A1B, B1, A2 of the ECHO G model on the NOAA
annual global land and ocean temperature anomalies (Figures 5.2-5.4). The estimated p for
this case was equal to 0.24 and rather moderate. A 95% confidence region for the predictive
global climate temperature for the worst scenario A2 was of the order of 0 to 0.5°C more than
the 2012 climate temperature. Figures 5.5-5.7 show the results for the scenario A1B of the
CGCMa3.1 (T63) for all temperature datasets. The estimated p took values at the range of 0.12
to 0.24. A 95% confidence region for the predictive global climate temperature for all
historical datasets is of the order of —0.2 to 0.6°C more than the 2012 climate temperature.
We also examined a case with relatively big estimated p’s of the order of 0.26 to 0.38 for the
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Al1B of the UKMO HadGEM1 and for all temperature datasets. Figures 5.8-5.10 show the
results for this scenario. A 95% confidence region for the predictive global climate
temperature for all historical datasets is of the order of 0.7 to 1.2°C more than the 2012
climate temperature. For the CRU precipitation over land areas dataset we decided to show
the results for the scenarios A1B, B1, A2 of the ECHO G model for the CRU precipitation
over land areas (Figures 5.11-5.13). It seems that the model’s output failed to fit to the

historical datasets.

Table 5.3. Main characteristics of the GCMs used in the study.

IPCC Name Developed by Country
report
AR4 BCC CM1 Beijing Climate Center China
BCCR Bjerknes Centre for Climate Research Norway
BCM2.0
CCSM3.0 National Center for Atmospheric Research USA
CGCM3.1 Canadian Centre for Climate Modelling & Analysis Canada
(T47)
CGCM3.1 Canadian Centre for Climate Modelling & Analysis Canada
(T63)
CNRM Meétéo-France / Centre National de Recherches Météorologiques France
CM3
CSIRO CSIRO Atmospheric Research Australia
Mk3.5
ECHAMS Max Planck Institute for Meteorology Germany
MPI-OM
ECHO G Meteorological Institute of the University of Bonn, Meteorological Germany/Korea
Research Institute of KMA, and Model and Data group.
FGOALS LASG / Institute of Atmospheric Physics China
gl1.0
GFDL US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory USA
CM2.1
GISSER NASA / Goddard Institute for Space Studies USA
INGV Instituto Nazionale di Geofisica e Vulcanologia Italy
ECHAM4
INM Institute for Numerical Mathematics Russia
CM3.0
IPSL CM4 Institut Pierre Simon Laplace France

MIROCS3.2 Center for Climate System Research (The University of Tokyo), National ~ Japan
(medres) Institute for Environmental Studies, and Frontier Research Center for
Global Change (JAMSTEC)

MRI Meteorological Research Institute Japan
CGCM

2.3.2

PCM National Center for Atmospheric Research USA
UKMO  Hadley Centre for Climate Prediction and Research / Met Office UK
HadCM3

UKMO  Hadley Centre for Climate Prediction and Research / Met Office UK
HadGEM1

Sources: http://www-pcmdi.linl.gov/ipcc/model_documentation/ipcc_model_documentation.php; climexp.knmi.nl
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Figure 5.4. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A2 scenario of the ECHO-G model, using the NOAA annual global land and ocean
temperature anomalies.
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Figure 5.5. 95% confidence region for the predictive 30-moving average temperature (°C) for

the A1B scenario of the CGCM3.1 (T63) model, using the GISS global land-ocean
temperature index.

Table 5.4. Main characteristics of the cases presented in Figures 5.2-5.13.

Variable Historical dataset ~ Model Scenario Estimated p Corresponding Corresponding
developer table figure

Temperatue NOAA ECHO-G AlB 0.24 Table B.2 Figure 5.2
Temperatue NOAA ECHO-G Bl 0.24 Table B.2 Figure 5.3
Temperatue NOAA ECHO-G A2 0.24 Table B.2 Figure 5.4
Temperatue GISS CGCM3.1(T6e3) AlB 0.21 Table B.1 Figure 5.5
Temperatue NOAA CGCM3.1(Te3) AlB 0.24 Table B.2 Figure 5.6
Temperatue CRU CGCM3.1(T6e3) AlB 0.12 Table B.3 Figure 5.7
Temperatue GISS UKMO HadGEM1 A1B 0.37 Table B.1 Figure 5.8
Temperatue NOAA UKMO HadGEM1 A1B 0.38 Table B.2 Figure 5.9
Temperatue CRU UKMO HadGEM1 A1B 0.26 Table B.3 Figure 5.10
Precipitation CRU ECHO-G AlB -0.03 Table B.4 Figure 5.11
Precipitation CRU ECHO-G Bl -0.03 Table B.4 Figure 5.12
Precipitation CRU ECHO-G A2 -0.03 Table B.4 Figure 5.13
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Figure 5.6. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A1B scenario of the CGCM3.1 (T63) model, using the NOAA annual global land and
ocean temperature anomalies.
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Figure 5.7. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A1B scenario of the CGCM3.1 (T63) model, using the CRU combined land [CRUTEM4]
and marine temperature anomalies.

5.6 Summary and conclusions

The aim of this Chapter was to predict the future evolution of a LTP process used to model a
geophysical phenomenon conditional on historical observations of the phenomenon and the
hindcasts and predictions of a deterministic model of the phenomenon. To this end we
modelled both time series (histrorical observations and deterministic model outputs) using the
bivariate HKp. We derived a new MLE to estimate the parameters of the bivariate HKp. The
parameters were given values equal to their estimations, and the distribution of the future
variables conditional on the historical observations, the hindcasts and predictions of the

deterministic model and the estimated parameters was derived.
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Figure 5.8. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A1B scenario of the UKMO HadGEM1 model, using the GISS global land-ocean
temperature index.
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Figure 5.9. 95% confidence region for the predictive 30-moving average temperature (°C) for
the A1B scenario of the UKMO HadGEM1 model, using the NOAA annual global land and
ocean temperature anomalies.

The methodology was applied to historical global temperature and over land precipitation
data. GCMs were used as deterministic models. Using the estimated values of the parameters
we provided stochastic prediction of the future climate combining the projections of the
GCMs and their corresponding hindcasts with the observed time series. It was found that the
estimated values of the cross-correlation between the historical datasets (at global scale) and
the hindcasts of the GCMs range from 0 to 0.4, showing that the information added by the
GCMs to that contained in the historical datasets is not substantial. Hence the upper bound of
the 95% confidence region of the climatic value of temperature at year 2100 was estimated to
about 1.2°C more than the current value of this climatic variable. For the precipitation dataset

the estimated value of the cross-correlations between the historical datasets and the hindcasts
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of the GCMs was almost equal to 0. This meant that the output of the GCM had no effect on
the stochastic predictions.
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Figure 5.10. 95% confidence region for the predictive 30-moving average temperature (°C)
for the A1B scenario of the UKMO HadGEM1 model, using the CRU combined land
[CRUTEMA4] and marine temperature anomalies.
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Figure 5.11. 95% confidence region for the predictive 30-moving average precipitation (mm)
for the A1B scenario of the ECHO-G model, using the CRU precipitation over land areas.

We emphasize that the estimation of the stochastic model parameters should better be
performed using only data that were not used in the GCM fitting/tuning, i.e. for the period
after 2000. This would correspond to the so-called split-sample technique, which avoids
possible model overfitting on the available data. However this would increase considerably
the uncertainty of the estimators of the parameters of the models and practically would result
in total neglect of the GCM predictions. Hence we decided to approach the problem more

conservatively.
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Figure 5.12. 95% confidence region for the predictive 30-moving average precipitation (mm)
for the B1 scenario of the ECHO-G model, using the CRU precipitation over land areas.
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Figure 5.13. 95% confidence region for the predictive 30-moving average precipitation (mm)
for the A2 scenario of the ECHO-G model, using the CRU precipitation over land areas.

Our approach is an extension of previous studies (Krzysztofowicz 1999a,b; Wang et al.
2009), which exploited the outputs of deterministic models combined with historical dataset,
on persistent stochastic processes. In this study a methodology for LTP processes is proposed
whereas in the previous studies only white noise and the AR(1) processes were examined. An
expansion of the methodology to a Bayesian setting, in which also the uncertainty of

parameters is accounted for, will be a next step.
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6. Summary, conclusions and recommendations

The initial aim of this thesis was the development of a stochastic framework for the prediction
of hydroclimatic processes using Bayesian techniques. To solve the problem we decided to
select a parametric approach. Thus a stochastic model was chosen. The choice was based on
well established a priori criteria, namely the second law of thermodynamics, which under
certain constraints results to a family of stochastic models exhibiting HK behaviour. A
Bayesian approach was adopted to find the posterior predictive distributions of the

hydroclimatic variables of interest.

The thesis proceeded linearly as planned from the start. A previous study which developed
a stochastic framework was investigated. The results of that study were encouraging.
However it was based on a new heuristic algorithm. In this thesis we proved analytically that
this algorithm is correct. Due to the limitations of the first approach we decided to solve the
problem using Bayesian statistics. A first step to this direction is the assessment of the
estimators of the parameters of the stochastic model. The results were again encouraging.
Hence in the second step we solved the problem in a Bayesian way using a noninformative
prior distribution for the parameters of the stochastic model. Last we decided to use

information provided by deterministic models to improve the results of the stochastic model.

Of course this thesis can not solve exhaustively the problem as mentioned in Section 6.3.
The state-of-the-art models for climate prediction are deterministic and research is focused on
their development, despite their deficiencies. Little research has been conducted in the domain
of stochastics. Therefore the stochastic approach could be considered innovative on its own.

We hope that the analytical tools developed here add a building block to this effort.

6.1 Methodological contributions

6.1.1 A new algorithm to calculate confidence intervals

In Chapter 2 a Monte-Carlo algorithm for an approximation of a confidence interval of any
parameter for any continuous distribution was proposed. It was shown that the algorithm is
exact for a single parameter of distribution of either location or scale family. It is also
asymptotically equivalent to a Wald-type interval for parameters of regular continuous
distributions. After appropriate modification of the algorithm it was made appropriate for
calculating confidence intervals for a parameter of multi-parameter distributions and it was

shown that it is asymptotically equivalent to a Wald-type interval for regular distributions.
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The algorithm was tested in several distributions and was found that in general works well
and results in correct coverage probabilities. The algorithm is proposed for an approximation
of a confidence interval of any parameter for any continuous distribution because it is easily
applicable in every case and gives better approximations than other known algorithms as
shown in specific cases. The algorithm was implemented in an earlier study examining future

hydroclimatic variables for a better approximation of confidence intervals.
6.1.2 On the estimation of the parameters of the HKp

A simulation study to assess the performance of several estimators of the HK-process was
performed in Chapter 3. It was found that three estimators (ML, LSSD and LSV) were more
accurate when estimating the Hurst parameter of the HKp, compared to other estimators of the

literature, probably because they are based on the structure of the HKp.

The LSV estimator is novel and follows closely the rationale of the construction of the
LSSD, deferring in that its construction was based on analytical results. Properties of the LSV
were found analytically, namely, the boundedness property of H and the behaviour of the
estimator for high values of H. It is mentioned that other estimators, than the ones proposed
here, yield estimates of H outside of its proper domain. The MLE was presented after

appropriate streamlining, to be used in Chapter 3.

An additional advantage of these three estimators is that, in addition to H, they estimate o
which is essential for the statistical model. It was shown that o and H are not orthogonal, thus
their maximum likelihood estimators are correlated. On the other hand the pairs yx, o and x, H
are orthogonal, thus the maximum likelihood estimate of o or H varies only slowly with x. As
a consequence a non simultaneous estimator of ¢ and H may be suboptimal in terms of
robustness comparing to the ML, LSSD or LSV estimators which estimate H and o

simultaneously.
6.1.3 The Bayesian statistical model

In Chapter 4 a Bayesian statistical model was proposed for estimating future confidence
regions on the basis of a stationary normal stochastic process. Furthermore the problem for a
truncated stationary normal stochastic process was solved as well. A noninformative prior of
the parameters was chosen. The posterior distributions of the parameters of the model, the

posterior predictive distributions of the variables of the process and the posterior predictive
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distribution of the 30-year moving average which is the climatic variable of interest were
derived after technical manipulations.

The methodology was applied to runoff, rainfall and temperature datasets from Greece,
Vienna and Berlin to five cases. Three kinds of stationary normal processes were examined,
namely WN, AR(1) and HKp. It was shown that the use of short-range dependence stochastic
processes, i.e. WN and AR(1) is not suitable to model geophysical processes, because they
underestimate uncertainty. However the HKp achieved this purpose. In the examined cases it

performed well and was able to explain the fluctuations of the process.

Results associated with the estimation of the parameters on a Bayesian framework
compared to typical statistical estimators, such as the ML estimator were also derived
showing that in general the two estimators are almost equal. Posterior distributions of the

parameters were derived and it was shown that they were wider for the HKp.
6.1.4 Incorporating information from deterministic models

Concluding the thesis we tried to encompass information from deterministic models. To this
end datasets and deterministic model outputs were time modelled by the bivariate HKp. A
new MLE of the parameters of the bivariate HKp was derived. The parameters were given
values equal to their estimations, and the distribution of the future variables conditional on the
historical observations, the hindcasts and predictions of the deterministic model and the

parameters was derived.

We applied the method to historical global temperature and over land precipitation data.
GCMs were used as deterministic models. It was shown that the information added by the
GCMs to that contained in the historical datasets is not substantial. Hence the upper bound of
the 95% confidence region of the climatic value of temperature at year 2100 was estimated to
about 1.2°C more than the current value of this climatic variable. For the precipitation dataset
the estimated value of the cross-correlations between the historical datasets and the hindcasts
of the GCMs was almost equal to 0. This meant that the output of the GCM had no effect on
the stochastic predictions.
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6.2 Recommendations for further research

6.2.1 Technical issues

Regarding the topics studied in this thesis, there is a lot of space for improvements related to
technical issues. Further research is needed to evaluate the influence of the choice of the
numerical parameters (increments and the simulation sample size) to the results of the

algorithm in Chapter 2.

The prior distribution of the parameters of the HKp in Chapter 4 could be determined
automatically, directly derived from the sampling distribution in a noninformative approach,
e.g. a Jeffreys prior, a reference prior or a matching prior. A comparison of different
simulators for the bivariate HKp in the fashion of Chapter 3, would be a step for a better

establishment of the new MLE estimator.
6.2.2 Further research

The stochastic framework developed in this thesis could be improved considerably. We could
switch to an informative prior based on prior information, e.g. information from similar
observed geophysical processes or use hierarchical models. The framework examines only
normal variables. The incorporation of non-normal variables using appropriate
transformations will be a next step. An extension of the framework to the multivariate case to

examine multiple time series in adjacent regions will be another improvement.

The derivation of the MLE for the multivariate HKp is worth studying. The Bayesian
expansion of the framework that incorporates information from deterministic models, will
reveal uncertainties in a similar manner to the stochastic framework. Furthermore truncated
normal variables could easily be examined within the framework. The examination of its
mathematical relationship with the Bayesian Forecasting System will also offer opportunities
for new developments. Furthermore the methods developed in this thesis could be applied to

more datasets for obtaining more practical results.
6.3 Limitations

This thesis focused on the HKp to model geophysical processes. Despite its parsimony owing
to the use of only three parameters it is limited when modelling complicated phenomena.
More complex but also parsimonious models should be developed to model such phenomena.

However we believe that the methods developed here could serve as building blocks in this
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effort. These models for example could be derived setting different constraints when
maximizing entropies or could be selected per se. Regional models towards the same direction
could also be developed, e.g. the incorporation of deterministic information in the stochastic

framework for the multivariate case could be examined.
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Appendix A Notations and distributions

The notations used in this thesis unless stated otherwise are summarized in Table A.1.

Table A.1. Notations.

Symbol Notation

XY,z Observations

X Y. Z Random variables

X, Y, Z Vectors or Matrices

f,g,h Densities

f(x|6) Density of x conditional on the parameter &

T Densities for parameters (Bayesian setting)

F,GH Distribution functions

F(x16) Distribution function of x conditional on the parameter 6

For easy reference, the details of the distribution functions used in this thesis are summarized
in Table A.2.

Table A.2. Distributions used in the Bayesian framework.

Distribution Notation Parameters Density function
Chi-square X ~%2(v) degrees of freedom v > 0 f2(x|v) = (1/2)"2 [T(w/2)]! x">7! exp(—x/2), x>0
Inverse chi-square x ~ Inv-y2(v) degrees of freedom v > 0 Finv(X|v) = (1/2)"2 [T(/2)]' x /2D exp(—1/2X), X >0
Exponential x ~ EXP(0) scale s> 0 fexp(X|o) = (L/o)exp(—x/o)
Gamma X ~ gamma(a,p) shape a >0 fo(X|a,B) = B [T(@)] ' x* ! exp(—px), x>0
scale 1/8>0
Inverse-gamma  x ~ Inv-gamma(a,f) & >0 fic(X|a,B) = B* [[(@)] ™! x @V exp(=p/x), x>0
p>0
Normal X~ N(u,0%) location u fN(X|w,0%) = 2ra?) 2 exp[(—1/26%) (x — 1)?]
scales>0
Truncated normal  x ~ TN(u,02,a,b) location u frn(X|w,0%,8,b) = [@((b—w)lo) — ©((a—p)lo)] "' (Ue) O((x—w)lo)
scale o >0 x e [a,b], (x) := fn(x|0,12)

a minimum value
b maximum value
Multivariate normal x ~ N(z,%) location u fun(X|u,X) = 2n) ™2 | X2 exp[(—1/2) (X —p)T Z7' (X — p)]
(implicit dimension n) symmetric, pos. definite
n X n variance matrix X~

Student-t X ~ ta(ut,0%) degrees of freedom n Not needed in the manuscript
location u
scales>0

Weibull x ~ Weibull(a,b) scalea >0 fw(xja,b) = (b/a) (x/a)>~! exp(—(x/a)®)
shape b >0
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Appendix B Results for deterministic models

Table B.1. Maximum likelihood estimates for the parameters of the bivariate HKp for the GISS global land-ocean temperature index.

GCM Time Simultaneous MLE Separate MLE
p o o Hi Hy | p i ) o 02 Hi  H
BCC CM1 itas_bcc_cml1_20c3m_0-360E_-90-90N_n_su_00 1871-2003 | 0.37 0.15 0.40 0.89 0.98|0.84 16.82 14.00 0.20 0.50 0.95 0.99
itas_bcc_cmi1_20c3m_0-360E_-90-90N_n_su_01 1871-2003 | 0.44 0.14 0.36 0.88 0.98|0.89 16.81 14.00 0.20 0.50 0.96 0.99
BCCR BCM2.0 itas_bccr_bcm2_0_20c3m_0-360E_-90-90N_n_su 1850-1999 |-0.05 0.26 0.47 0.97 0.99|0.53 1256 13.97 0.22 041 097 0.99
CGCM3.1 (T63) itas_cccma_cgem3_1_t63_20c3m_0-360E_-90-90N_n_su 1850-2000 | 0.21 0.87 0.31 0.995 0.97|0.86 12.53 13.97 0.92 0.42 0.995 0.99
CNRM CM3 itas_cnrm_cm3_20c3m_0-360E_-90-90N_n_su 1860-1999 | 0.08 0.49 0.43 0.96 0.99|0.80 13.09 13.97 0.49 041 097 0.99
CSIRO MK3.5 itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_01 1871-2000 | 0.08 0.77 0.44 0.99 0.99|0.76 15.13 13.97 0.73 042 0.99 0.99
ECHAMS5 MPI-OM itas_mpi_echam5_20c3m_0-360E_-90-90N_n_su_03 1860-2000 | 0.06 0.28 0.45 0.90 0.99|0.56 14.23 13.97 0.27 042 0.90 0.99
ECHO G itas_miub_echo_g_20c3m_0-360E_-90-90N_n_su_00 1860-2000 | 0.27 0.46 0.40 0.98 0.98|0.79 13.57 13.97 0.49 042 0.99 0.99
itas_miub_echo_g_20c3m_0-360E_-90-90N_n_su_02 1860-2000 | 0.26 0.52 0.39 0.99 0.98|0.78 13.51 13.97 0.55 042 0.99 0.99
FGOALS g1.0 itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_00 1850-1999 | 0.05 0.27 0.44 0.71 0.99|0.30 12.42 13.97 0.25 041 0.72 0.99
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_01 1850-1999 | 0.02 0.30 0.44 0.75 0.99|0.51 1235 13.97 0.28 041 0.76 0.99
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_02 1850-1999 | 0.02 0.27 0.44 0.68 0.99|0.34 1241 1397 0.25 0.41 0.69 0.99
GFDL CM2.1 itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_00 1861-2000 | 0.13 0.49 042 095 0.99|0.73 13.31 13.97 052 042 096 0.99
itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_01 1861-2000 | 0.17 0.60 0.42 0.98 0.99|0.70 13.33 13.97 0.61 0.42 098 0.99
itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_02 1861-2000 | 0.22 0.60 0.42 0.97 0.99|0.68 13.30 13.97 0.63 0.42 098 0.99
GISSER itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_00  1880-2003 | 0.35 0.39 0.45 0.99 0.99|0.85 14.01 14.00 0.44 0.50 0.99 0.99
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_01  1880-2003 | 0.28 0.51 0.45 0.99 0.99|0.85 14.00 14.00 0.53 0.50 0.99 0.99
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_07  1880-2003 | 0.45 0.41 0.43 0.99 0.99|0.87 14.02 14.00 0.46 0.50 0.99 0.99
INM CM3.0 itas_inmcm3_0_20c3m_0-360E_-90-90N_n_su 1871-2000 | 0.14 0.68 0.42 0.99 0.99|0.78 12.75 13.97 0.67 042 0.99 0.99
IPSL CM4 itas_ipsl_cm4_20c3m_0-360E_-90-90N_n_su 1860-2000 | 0.12 0.37 0.43 0.96 0.99|0.79 13.08 13.97 0.37 042 0.97 0.99
MIROC3.2 (medres) itas_miroc3_2_medres_20c3m_0-360E_-90-90N_n_su_00 1850-2000 | 0.29 0.38 0.40 0.98 0.98|0.79 13.37 13.97 0.41 042 0.99 0.99
itas_miroc3_2_medres_20c3m_0-360E_-90-90N_n_su_01 1850-2000 | 0.31 0.48 0.39 0.99 0.98|0.76 13.41 13.97 0.49 042 0.99 0.99
itas_miroc3_2_medres_20c3m_0-360E_-90-90N_n_su_02 1850-2000 | 0.28 0.48 0.41 0.99 0.98|0.70 13.45 13.97 0.49 0.42 0.99 0.99
MRI CGCM 2.3.2  itas_mri_cgcm2_3_2a 20c3m_0-360E_-90-90N_n_su_01 1851-2000 | 0.04 0.50 0.45 0.98 0.99|0.79 12.82 13.97 0.46 0.42 0.99 0.99
UKMO HadGEM1 itas_ukmo_hadgem1_ 20c3m_0-360E_-90-90N_n_su_00  1860-1999 | 0.37 0.36 0.38 0.98 0.98|0.78 12.63 13.97 0.39 0.41 0.99 0.99

Source: climexp.knmi.nl
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Table B.2. Maximum likelihood estimates for the parameters of the bivariate HKp for the NOAA annual global land and ocean temperature
anomalies.

GCM Time Simultaneous MLE Separate MLE
p oo o2 Hi H| p o1 o2 Hi Hp
BCC CM1 itas_bcc_cml_20c3m_0-360E_-90-90N_n_su_00 1871-2003 | 0.36 0.15 0.41 0.88 0.98|0.85 0.20 0.52 0.95 0.99
itas_bcc_cml_20c3m_0-360E_-90-90N_n_su_01 1871-2003 | 0.41 0.14 0.38 0.88 0.98|0.90 0.20 0.52 0.96 0.99
BCCR BCM2.0 itas_bccr_bcm2_0_20c3m_0-360E_-90-90N_n_su 1850-1999 |-0.06 0.26 0.50 0.97 0.99|0.50 0.22 0.45 0.97 0.99
CCsSM3.0 itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_02 1870-1999 | 0.29 0.72 0.36 0.99 0.98|0.86 0.76 0.45 0.995 0.99

itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_05  1870-1999 | 0.31 0.42 0.40 0.98 0.98|0.84 0.49 045 0.99 0.99
CGCM3.1 (T63) itas_cccma_cgem3_1_t63_20c3m_0-360E_-90-90N_n_su  1850-2000 | 0.24 0.85 0.34 0.995 0.98|0.85 0.92 0.45 0.995 0.9

CNRM CM3 itas_cnrm_cm3_20c3m_0-360E_-90-90N_n_su 1860-1999 | 0.09 0.49 046 096 0.99|0.79 049 045 097 0.99
CSIRO Mk3.5 itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_00 1871-2000 | 0.00 0.62 0.50 0.98 0.99|0.69 0.56 0.45 0.98 0.99

itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_01 1871-2000 | 0.09 0.77 0.47 0.99 099|074 0.73 045 0.99 0.99
ECHAMS5 MPI-OM itas_mpi_echam5_20c3m_0-360E_-90-90N_n_su_03 1860-2000 | 0.07 0.28 0.48 0.89 0.99|0.55 0.27 045 091 0.99
ECHO G itas_miub_echo_g_20c3m_0-360E_-90-90N_n_su_00 1860-2000 | 0.24 0.46 0.44 098 0.99|0.79 0.49 045 0.99 0.99

itas_miub_echo_g_20c3m_0-360E_-90-90N_n_su_02 1860-2000 | 0.28 052 0.42 0.99 0.990.78 055 0.45 0.99 0.99
itas_miub_echo_g_20c3m_0-360E_-90-90N_n_su_03 1860-2000 | 0.17 0.36 0.46 0.98 0.990.75 0.38 0.45 0.98 0.99
FGOALS g1.0 itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_00 1850-1999 | 0.04 0.27 0.47 0.71 0.99|0.28 0.25 0.45 0.72 0.99
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_01 1850-1999 | 0.02 0.30 0.48 0.750 0.99|0.50 0.28 0.45 0.76 0.9
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_02  1850-1999 | 0.02 0.27 0.48 0.69 0.99|0.33 0.25 0.45 0.69 0.9

GFDL CM2.1 itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_00 1861-2000 | 0.11 0.50 0.46 0.95 0.99|0.73 052 0.45 0096 0.99
itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_01 1861-2000 | 0.15 0.61 0.46 0.98 0.99|0.70 0.61 0.45 0098 0.99
GISS ER itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_00  1880-2003 | 0.36 0.39 0.47 0.99 0.99|0.85 0.44 052 0.99 0.9

itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_01  1880-2003 | 0.29 0.51 0.48 0.99 0.99|0.85 0.53 0.52 0.99 0.99

itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_05  1880-2003 | 0.35 0.50 0.47 0.99 0.99/0.82 052 0.52 0.99 0.99
INM CM3.0 itas_inmcm3_0_20c3m_0-360E_-90-90N_n_su 1871-2000 | 0.14 0.68 0.46 0.99 0.99|0.78 0.67 0.45 0.99 0.99
IPSL CM4 itas_ipsl_cm4_20c3m_0-360E_-90-90N_n_su 1860-2000 | 0.11 0.37 0.46 0.96 0.99|0.78 0.37 0.45 0.97 0.99
MIROC3.2 (medres) itas_miroc3_2_medres_20c3m_0-360E_-90-90N_n_su 02 1850-2000 | 0.24 0.49 045 0.99 0.99|0.68 0.49 045 0.99 0.99
MRI CGCM 2.3.2  itas_mri_cgcm2_3 2a 20c3m_0-360E_-90-90N_n_su_01 1851-2000 | 0.05 0.49 0.48 0.98 0.99|0.78 0.46 0.45 0.99 0.99
UKMO HadCM3 itas_ukmo_hadcm3_20c3m_0-360E_-90-90N_n_su_00 1860-1999 | 0.07 0.33 0.47 0.96 0.99|0.62 0.32 045 0.96 0.99
UKMO HadGEM1 itas_ukmo_hadgeml 20c3m_0-360E_-90-90N_n_su 00  1860-1999 | 0.38 0.36 0.42 0.98 0.99|0.77 0.39 0.45 0.99 0.99

Source: climexp.knmi.nl

120


http://climexp.knmi.nl/

Table B.3. Maximum likelihood estimates for the parameters of the bivariate HKp for the CRU combined land [CRUTEM4] and marine
temperature anomalies.

GCM Time Simultaneous MLE Separate MLE
p o1 o2 Hi H2 p oo oy Hi H
BCC CM1 itas_bcc_cml_20c3m_0-360E_-90-90N_n_su_00 1871-2003 | 0.51 0.16 0.33 0.89 0.965| 0.87 0.20 0.45 0.95 0.99
itas_bcc_cml_20c3m_0-360E_-90-90N_n_su_01 1871-2003 | 0.51 0.15 0.31 0.89 0.96 | 0.89 0.19 0.45 0.95 0.99
BCCR BCM2.0 itas_bccr_bcm2_0_20c¢3m_0-360E_-90-90N_n_su 1850-1999 | -0.04 0.29 0.44 0.97 0.98 | 043 0.23 0.35 0.97 0.98
CCSM3.0 itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_01 1870-1999 | 0.23 0.59 0.32 0.99 0.97 | 0.83 0.60 0.37 0.99 0.98

itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_02  1870-1999 | 0.20 0.73 0.28 099 0.95 | 0.85 0.76 0.37 0.995 0.98
itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_03  1870-1999 | 0.21 052 0.35 099 0.97 | 0.77 0.51 0.37 0.99 0.98
itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_04  1870-1999 | 0.20 0.66 0.34 099 0.97 | 0.75 0.65 0.37 0.99 0.98
itas_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_su_05  1870-1999 | 0.27 0.45 0.32 098 0.97 | 0.81 0.48 0.37 0.99 0.98
CGCM3.1(T63) itas_cccma_cgem3_1 t63_20c3m_0-360E_-90-90N_n_su 1850-2000 | 0.12 0.99 0.33 0.995 0.96 | 0.79 0.93 0.35 0.995 0.98
CNRM CM3 itas_cnrm_cm3_20c3m_0-360E_-90-90N_n_su 1860-1999 | 0.09 057 0.38 097 0.97 |0.76 053 0.35 0.97 0.98
CSIRO MK3.5 itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_00 1871-2000 | 0.01 0.69 0.42 099 098 | 0.64 0.61 0.37 0.99 0.98
itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_01 1871-2000 | 0.07 0.81 0.40 0.99 0.98 | 0.69 0.73 0.37 0.99 0.98
itas_csiro_mk3_5_20c3m_0-360E_-90-90N_n_su_02 1871-2000 | 0.14 0.61 0.9 0.99 0.98 | 0.70 057 0.37 0.99 0.98
ECHAMS5 MPI-OM itas_mpi_echam5_20c3m_0-360E_-90-90N_n_su_03 1860-2000 | 0.07 0.30 0.41 0.89 0.98 | 051 0.26 0.36 0.90 0.98
FGOALS g1.0 itas_iap_fgoals1_0_g_20c3m_0-360E_-90-90N_n_su_00 1850-1999 |-0.01 0.33 0.43 0.78 0.98 |-0.01 0.27 0.35 0.78 0.98
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_01 1850-1999 |-0.02 0.38 0.44 0.82 0.98 | 0.14 0.30 0.35 0.81 0.98
itas_iap_fgoalsl_0_g_20c3m_0-360E_-90-90N_n_su_02 1850-1999 |-0.01 0.31 0.44 0.72 0.98 | 0.10 0.25 0.35 0.72 0.98

GFDL CM2.1 itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_00 1861-2000 | 0.08 055 0.40 0.96 0.98 | 0.73 050 0.36 0.96 0.98
itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_01 1861-2000 | 0.09 0.68 0.39 098 098 | 071 0.62 0.36 0.98 0.98
itas_gfdl_cm2_1_20c3m_0-360E_-90-90N_n_su_02 1861-2000 | 0.17 0.65 0.38 0.98 0.97 | 0.71 0.63 0.36 0.98 0.98

GISSER itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su 00  1880-2003 | 0.34 0.39 0.37 0.99 0.98 | 0.86 0.44 0.45 0.99 0.9

itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su 01  1880-2003 | 0.24 0.52 0.37 0.99 0.98 | 0.86 0.53 0.45 0.99 0.9
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_03  1880-2003 | 0.28 0.53 0.34 0.99 0.97 | 0.88 0.57 0.45 0.995 0.99
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_04  1880-2003 | 0.32 0.46 0.35 0.99 0.97 | 0.86 0.50 0.45 0.99 0.99
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_06  1880-2003 | 0.28 0.49 0.40 0.99 0.98 | 0.84 051 0.45 0.99 0.9
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_07  1880-2003 | 0.40 0.42 0.37 0.99 0098 | 0.85 0.46 0.45 0.99 0.99
itas_giss_model_e_r_20c3m_0-360E_-90-90N_n_su_08  1880-2003 | 0.27 0.43 0.38 0.99 0098 | 0.84 0.46 0.45 0.99 0.99

INGV ECHAM4 itas_ingv_echam4_20c3m_0-360E_-90-90N_n_su 1870-2000 | 0.19 0.62 0.36 099 0.97 |0.76 0.58 0.37 0.99 0.98
INM CM3.0 itas_inmcm3_0_20c3m_0-360E_-90-90N_n_su 1871-2000 | 0.11 0.70 0.39 099 098 | 0.75 0.65 0.37 0.99 0.98
IPSL CM4 itas_ipsl_cm4_20c3m_0-360E_-90-90N_n_su 1860-2000 | 0.11 0.39 039 096 098 |0.75 0.35 0.36 0.97 0.98

MRI CGCM 2.3.2 itas_mri_cgem2_3_2a_20c3m_0-360E_-90-90N_n_su_00 1851-2000 | 0.15 0.60 0.37 0.99 0.7 | 0.78 054 0.36 0.99 0.98
itas_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_su 01 1851-2000 |0.074 051 0.41 0.98 0098 | 0.77 0.44 0.36 0.98 0.98
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GCM Time Simultaneous MLE Separate MLE
p o1 o2 Hi H2 p oo oy Hi H
itas_mri_cgcm2_3_2a 20c3m_0-360E_-90-90N_n_su_02 1851-2000 | 0.20 0.69 0.36 0.99 0.97 | 0.81 0.64 0.36 0.991 0.98
itas_mri_cgcm2_3_2a 20c3m_0-360E_-90-90N_n_su_03 1851-2000 | 0.30 0.59 0.31 0.99 0.96 | 0.84 0.58 0.36 0.99 0.98
itas_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_su_04 1851-2000 | 0.29 0.57 0.32 0.99 0.96 | 0.83 0.57 0.36 0.99 0.98
PCM itas_ncar_pcm1_20c3m_0-360E_-90-90N_n_su_00 1890-1999 | 0.23 0.41 0.34 0.98 0.97 | 0.78 0.46 0.39 0.98 0.98
itas_ncar_pcm1_20c3m_0-360E_-90-90N_n_su_01 1890-1999 | 0.29 0.30 0.32 0.96 0.97 | 0.79 0.37 0.39 0.98 0.98
itas_ncar_pcm1_20c3m_0-360E_-90-90N_n_su_02 1890-1999 | 0.23 0.40 0.34 0.98 0.97 | 0.78 0.45 0.39 0.99 0.98
itas_ncar_pcm1_20c3m_0-360E_-90-90N_n_su_03 1890-1999 | 0.30 0.41 0.32 0.98 0.97 | 0.81 0.49 0.39 0.98 0.98
UKMO HadCM3 itas_ukmo_hadcm3_20c3m_0-360E_-90-90N_n_su_00  1860-1999 | 0.06 0.36 0.41 0.96 0.978| 0.57 0.31 0.35 0.96 0.98
UKMO HadGEM1 itas_ukmo_hadgeml_20c3m_0-360E_-90-90N_n_su_00 1860-1999 | 0.26 0.49 0.35 099 0.97 |0.73 046 0.35 0.99 0.98

Source: climexp.knmi.nl
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Table B.4. Maximum likelihood estimates for the parameters of the bivariate HKp for the CRU precipitation over land areas.

GCM Time Simultaneous MLE Separate MLE
p o1 o2 Hi Hx | »p U1 2 o1 o2 Hi  H
CCSM3.0 ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_00 1870-1999 | 0.02 11.35 161.75 0.69 0.99| 0.23 756.00 1082.68 11.44 160.35 0.69 0.99
ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_01 1870-1999 |-0.02 10.20 160.86 0.73 0.99|-0.05 756.56 1082.68 10.29 160.35 0.74 0.99
ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_02 1870-1999 |-0.02 12.34 164.05 0.71 0.99| 0.15 753.87 1082.68 12.34 160.35 0.71 0.99
ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_03 1870-1999 | 0.00 12.25 162.61 0.76 0.99| 0.05 756.33 1082.68 12.31 160.35 0.76 0.99
ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_04 1870-1999 |-0.02 10.03 162.80 0.72 0.99 |-0.01 753.96 1082.68 10.08 160.35 0.72 0.99
ipr_ncar_ccsm3_0_20c3m_0-360E_-90-90N_n_5lan_su_05 1870-1999 | 0.00 10.19 162.29 0.62 0.99| 0.15 756.44 1082.68 10.24 160.35 0.62 0.99
CGCM3.1 (T47) ipr_cccma_cgcm3_1 20c3m_0-360E_-90-90N_n 5lan_su_00 1850-2000 |-0.03 9.80 160.99 0.70 0.99|-0.09 685.01 1082.68 9.87 160.35 0.70 0.99
ipr_cccma_cgcm3_1 20c3m_0-360E_-90-90N_n 5lan_su_01 1850-2000 | 0.02 9.88 163.61 0.62 0.99| 0.08 686.24 1082.68 9.94 160.35 0.63 0.99
ipr_cccma_cgcm3_1 20c3m_0-360E_-90-90N_n_5lan_su_02  1850-2000 |-0.04 11.33 161.11 0.78 0.99|-0.03 687.32 1082.68 11.41 160.35 0.78 0.99
ipr_cccma_cgcm3_1 20c3m_0-360E_-90-90N_n_5lan_su_03  1850-2000 | 0.03 12.15 162.83 0.77 0.99| 0.09 686.65 1082.68 12.22 160.35 0.77 0.99
ipr_cccma_cgcm3_1 20c3m_0-360E_-90-90N_n_5lan_su_04 1850-2000 |-0.01 11.09 161.99 0.76 0.99|-0.05 687.51 1082.68 11.14 160.35 0.76 0.99
CGCM3.1 (T63) ipr_cccma_cgcm3_1 t63_20c3m_0-360E_-90-90N_n_5lan_su 1850-2000 |-0.02 11.42 162.18 0.62 0.99|-0.07 698.15 1082.68 11.48 160.35 0.62 0.99
CSIRO Mk3.5 ipr_csiro_mk3_5 20c3m_0-360E_-90-90N_n_5lan_su_00 1871-2000 | 0.01 22.70 162.83 0.62 0.99|-0.03 677.67 1082.68 22.80 160.35 0.62 0.99
ipr_csiro_mk3_5 20c3m_0-360E_-90-90N_n_5lan_su_01 1871-2000 | 0.00 22.00 162.51 0.65 0.99|-0.05 673.90 1082.68 22.11 160.35 0.65 0.99
ipr_csiro_mk3 5 20c3m_0-360E_-90-90N_n_5lan_su_02 1871-2000 |-0.03 19.49 162.46 0.65 0.99|-0.08 678.32 1082.68 19.60 160.35 0.65 0.99
ECHAMS5 MPI-OM ipr_mpi_echam5_20c3m_0-360E_-90-90N_n_5lan_su_03 1860-2000 |-0.01 11.05 162.67 0.55 0.99|-0.03 678.27 1082.68 11.11 160.35 0.55 0.99
ECHO G ipr_miub_echo_g 20c3m_0-360E_-90-90N_n 5lan_su_00 1860-2000 |-0.03 10.53 164.31 0.61 0.99| 0.05 757.54 1082.68 10.58 160.35 0.61 0.99
ipr_miub_echo_g_20c3m_0-360E_-90-90N_n_5lan_su_01 1860-2000 | 0.01 10.51 162.46 0.68 0.99| 0.10 758.15 1082.68 10.57 160.35 0.68 0.99
ipr_miub_echo_g_20c3m_0-360E_-90-90N_n_5lan_su_02 1860-2000 | 0.00 10.96 162.05 0.65 0.99| 0.16 758.50 1082.68 11.02 160.35 0.65 0.99
GFDL CM2.1 ipr_gfdl_cm2_1 20c3m_0-360E_-90-90N_n_5lan_su_00 1861-2000 |-0.03 28.72 161.12 0.49 0.99|-0.10 749.37 1082.68 28.86 160.35 0.49 0.99
ipr_gfdl_cm2_1 20c3m_0-360E_-90-90N_n_5lan_su_01 1861-2000 |-0.01 25.85 162.76 0.48 0.99| 0.02 747.31 1082.68 25.98 160.35 0.48 0.99
ipr_gfdl_cm2_1 20c3m_0-360E_-90-90N_n_5lan_su_02 1861-2000 |-0.02 25.63 162.34 0.61 0.99|-0.07 750.61 1082.68 25.77 160.35 0.61 0.99
GISSER ipr_giss_model_e_r_20c3m_0-360E_-90-90N_n_5lan_su_01  1880-2003 | 0.01 9.88 161.94 0.77 0.99| 0.04 878.52 1082.68 9.93 160.35 0.77 0.99
ipr_giss_model_e_r_20c3m_0-360E_-90-90N_n_5lan_su_03  1880-2003 |-0.03 8.96 160.95 0.56 0.99|-0.16 880.45 1082.68 9.01 160.35 0.56 0.99
ipr_giss_model_e_r_20c3m_0-360E_-90-90N_n_5lan_su_04  1880-2003 |-0.04 11.10 164.06 0.66 0.99|-0.14 880.03 1082.68 11.14 160.35 0.65 0.99
ipr_giss_model_e r 20c3m_0-360E_-90-90N_n 5lan_su_05  1880-2003 |-0.02 10.22 162.58 0.67 0.99|-0.11 879.16 1082.68 10.27 160.35 0.67 0.99
ipr_giss_model_e r 20c3m_0-360E_-90-90N_n 5lan_su_06  1880-2003 | 0.01 8.65 163.75 0.64 0.99|-0.11 880.93 1082.68 8.69 160.35 0.64 0.99
ipr_giss_model_e r 20c3m_0-360E_-90-90N_n 5lan_su_07  1880-2003 |-0.04 9.87 161.64 0.68 0.99|-0.17 879.71 1082.68 9.96 160.35 0.69 0.99
ipr_giss_model_e r 20c3m_0-360E_-90-90N_n 5lan_su_08  1880-2003 | 0.02 10.55 164.42 0.65 0.99|-0.17 880.12 1082.68 10.59 160.35 0.64 0.99
INGV ECHAM4 ipr_ingv_echam4 20c3m_0-360E_-90-90N_n_5lan_su 1870-2000 | 0.01 10.79 162.22 0.75 0.99| 0.10 755.09 1082.68 10.86 160.35 0.75 0.99
INM CM3.0 ipr_inmcm3_0 20c3m_0-360E_-90-90N_n_5lan_su 1871-2000 | 0.03 12.28 156.60 0.70 0.99 | 0.43 693.42 1082.68 12.48 160.35 0.72 0.99
IPSL CM4 ipr_ipsl_cm4_20c3m_0-360E_-90-90N_n_5lan_su 1860-2000 |-0.01 9.93 163.12 0.60 0.99| 0.12 656.51 1082.68 9.98 160.35 0.60 0.99
MIROC3.2 (medres) ipr_miroc3_2_medres_20c3m_0-360E_-90-90N_n_5lan_su_00 1850-2000 |-0.03 19.40 160.50 0.81 0.99|-0.34 807.72 1082.68 19.72 160.35 0.82 0.99
ipr_miroc3_2_medres_20c3m_0-360E_-90-90N_n_5lan_su_01 1850-2000 | 0.06 20.02 163.83 0.86 0.99|-0.09 799.97 1082.68 19.97 160.35 0.85 0.99
ipr_miroc3_2_medres_20c3m_0-360E_-90-90N_n_5lan_su_02 1850-2000 | 0.11 18.44 164.95 0.84 0.99| 0.00 801.56 1082.68 18.53 160.35 0.84 0.99
MRI CGCM 2.3.2  ipr_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_5lan_su_00 1851-2000 | 0.02 9.92 162.66 0.50 0.99| 0.10 710.52 1082.68 9.97 160.35 0.50 0.99
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GCM Time Simultaneous MLE Separate MLE
p o1 ) Hi  H p i 2 o1 02 Hi H
ipr_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_5lan_su_02 1851-2000 |-0.03 10.76 162.83 0.65 0.99|-0.04 711.06 1082.68 10.80 160.35 0.64 0.99
ipr_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_5lan_su_03 1851-2000 |-0.02 9.60 162.31 0.59 0.99|-0.02 712.80 1082.68 9.65 160.35 0.59 0.99
ipr_mri_cgcm2_3_2a_20c3m_0-360E_-90-90N_n_5lan_su_04 1851-2000 |-0.02 12.04 160.75 0.57 0.99|-0.14 709.93 1082.68 12.11 160.35 0.57 0.99
PCM ipr_ncar_pcm1_20c3m_0-360E_-90-90N_n_5lan_su_00 1890-1999 | 0.05 11.40 163.51 0.57 0.99| 0.11 758.02 1082.68 11.45 160.35 0.56 0.99
ipr_ncar_pcm1_20c3m_0-360E_-90-90N_n_5lan_su_01 1890-1999 |-0.01 12.00 163.06 0.57 0.99| 0.07 759.18 1082.68 12.06 160.35 0.57 0.99
ipr_ncar_pcm1_20c3m_0-360E_-90-90N_n_5lan_su_02 1890-1999 | 0.00 1250 162.45 0.60 0.99|-0.04 757.91 1082.68 12.56 160.35 0.60 0.99
ipr_ncar_pcm1_20c3m_0-360E_-90-90N_n_5lan_su_03 1890-1999 | 0.00 12.05 163.16 0.44 0.99|-0.06 757.87 1082.68 12.11 160.35 0.44 0.99
UKMO HadCM3 ipr_ukmo_hadcm3_20c3m_0-360E_-90-90N_n_5lan_su_00 1860-1999 |-0.03 13.07 162.90 0.43 0.99|-0.06 768.84 1082.68 13.14 160.35 0.43 0.99
ipr_ukmo_hadecm3_20c3m_0-360E_-90-90N_n_5lan_su_01 1860-1999 |-0.03 13.46 159.40 0.47 0.99|-0.14 768.47 1082.68 13.52 160.35 0.48 0.99
UKMO HadGEM1 ipr_ukmo_hadgem1_20c3m_0-360E_-90-90N_n_5lan_su_00  1860-1999 |-0.04 13.81 159.55 0.72 0.99|-0.26 805.32 1082.68 13.95 160.35 0.73 0.99

Source: climexp.knmi.nl
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