
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ
ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΚΑΤΑΝΕΜΗΜΕΝΗΣ ΓΝΩΣΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΛΕΤΗ, ΕΞΑΓΩΓΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΣΧΕΣΙΑΚΩΝ ΜΟΝΤΕΛΩΝ ΜΕΤΑΞΥ
ΕΙΚΟΝΙΚΩΝ ΟΝΤΟΤΗΤΩΝ ΣΤΟ ΚΟΙΝΩΝΙΚΟ ΔΙΑΔΙΚΤΥΟ ΤΩΝ ΠΡΑΓΜΑΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σοφία Ελένη Σπαθαριώτη

Επιβλέπων: Θεοδώρα Βαρβαρίγου
 Καθηγήτρια ΕΜΠ

Αθήνα, Ιούνιος 2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ
ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΚΑΤΑΝΕΜΗΜΕΝΗΣ ΓΝΩΣΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΛΕΤΗ, ΕΞΑΓΩΓΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΣΧΕΣΙΑΚΩΝ ΜΟΝΤΕΛΩΝ ΜΕΤΑΞΥ
ΕΙΚΟΝΙΚΩΝ ΟΝΤΟΤΗΤΩΝ ΣΤΟ ΚΟΙΝΩΝΙΚΟ ΔΙΑΔΙΚΤΥΟ ΤΩΝ ΠΡΑΓΜΑΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σοφία Ελένη Σπαθαριώτη

Επιβλέπων: Θεοδώρα Βαρβαρίγου
 Καθηγήτρια ΕΜΠ

.
Θεοδώρα Βαρβαρίγου Βασίλειος Λούμος Συμεών Παπαβασιλείου
Καθηγήτρια ΕΜΠ Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ

Αθήνα, Ιούνιος 2015

. .
Σοφία Ελένη Σπαθαριώτη
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π

Copyright © Σοφία Ελένη Σπαθαριώτη, 2015
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ
ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,
αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης,
υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν
μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει
να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις είσημες θέσεις του
Εθνικού Μετσόβιου Πολυτεχνείου.

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMMUNICATION, ELECTRONIC AND INFORMATION
ENGINEERING

DISTRIBUTED KNOWLEDGE AND MEDIA SYSTEMS GROUP

STUDY, EXTRACTION AND UTILIZATION OF RELATIONAL MODELS AMONG
VIRTUAL ENTITIES IN THE SOCIAL INTERNET OF THINGS

THESIS

Sofia Eleni Spatharioti

Supervisor: Theodora Varvarigou
 Professor, NTUA

Athens, June 2015

Abstract

The Internet of Things(IoT) is a network of physical objects supplied with unique
identifiers and appropriate mechanisms in order to communicate with other objects,
without the need of human interaction. This area has grown popular over the years due to
a variety of applications, ranging from Home Automation to Healthcare. A recent
approach to the IoT is the social Internet of Things(sIoT), where objects communicate
based on social characteristics.

The concept that motivated this thesis lies in creating an efficient knowledge flow in the
social Internet of Things, through the formation of social relationships. Things acquire
information, that is shaped in the form of knowledge through sensors and analysis and are
able to learn and expand their knowledge based on other objects’ experiences. The
ultimate goal of this thesis is to facilitate autonomy in the social Internet of Things by
proposing appropriate object relationships to serve the knowledge flow in the network.

After an introduction to the necessary background is provided to the reader, the main
subject of this thesis is presented. The first part deals with establishing the main ontologies
of the proposed structure of the sIoT; Virtual Entities, Applications and Users. Each
ontology is defined by a set of given properties, which will be used in establishing the
proposed Relational Models.

Afterwards, the ten proposed Relational Models are analyzed. Each object relationship is
explored in detail, by providing information in the form of characteristics, requirements
for formation and elements of Relational Models Theory. Motivation and challenges
behind each object relationship are also detailed, along with analytic scenarios.

Finally, simulation on a sample network is conducted, through the use of the Gephi
platform. Each object relationship is also individually simulated and observations based
on simulation results are discussed.

Keywords

Internet of Things, social Internet of Things, Relational Models, COSMOS, Virtual Entities,
knowledge flow, autonomy

Περίληψη

Το Διαδίκτυο Των Πραγμάτων(ΔτΠ) είναι ένα δίκτυο α π ό φυσικά αντικείμενα
εξοπλισμένα με μοναδικά αναγνωριστικά και κατάλληλους μηχανισμούς ώστε να μπορούν
να επικοινωνούν με άλλα αντικείμενα, χωρίς την ανάγκη ανθρώπινου παράγοντα. Αυτός ο
κλάδος έχει αναπτύξει ιδιαίτερη δημοφιλία εξαιτίας μιας πληθώρας εφαρμογών, από
Οικιακή Αυτοματοποίηση μέχρι τον χώρο της Υγείας. Μια πρόσφατη προσέγγιση στο ΔτΠ
είναι το κοινωνικό Διαδίκτυο των Πραγμάτων(κΔτΠ), όπου τα αντικείμενα επικοινωνούν
με βάση κοινωνικά χαρακτηριστικά.

Η ιδέα που ενέπνευσε αυτή την εργασία εντοπίζεται στην ανάγκη δημιουργίας μιας
αποδοτικής ροής γνώσης στο κοινωνικό Διαδίκτυο των Πραγμάτων, μέσα από τον
σχηματισμό κοινωνικών σχέσεων. Τα αντικείμενα α π οκτούν π ληροφορία μέσω
αισθητήρων, η οποία μετασχηματίζεται σε μορφή γνώσης μέσω ανάλυσης και είναι ικανά
να μάθουν και να επεκτείνουν τη γνώση τους, με βάση εμπειρίες άλλων αντικειμένων. Ο
απώτερος στόχος αυτής της εργασίας είναι να διευκολύνει την αυτονομία στο κοινωνικό
Διαδίκτυο των Πραγμάτων, προτείνοντας κατάλληλες σχέσεις αντικειμένων με σκοπό τη
ροή γνώσης στο δίκτυο.

Αρχικά, παρέχεται στον αναγνώστη μια εισαγωγή στο βασικό υπόβαθρο και στη συνέχεια,
γίνεται παρουσίαση του κυρίως θέματος της εργασίας αυτής. Το πρώτο κομμάτι
ασχολείται με τις βασικές οντολογίες στο κοινωνικό Διαδίκτυο των Πραγμάτων: Εικονικές
Οντότητες, Εφαρμογές και Χρήστες. Κάθε οντολογία ορίζεται α π ό ένα σύνολο
χαρακτηριστικών τα οποία θα χρησιμοποιηθούν στη δημιουργία των προτεινόμενων
Σχεσιακών Μοντέλων.

Lπειτα, αναλύονται τα δέκα Σχεσιακά Μοντέλα. Κάθε σχέση εξερευνάται σε βάθος,
μελετώνας τα βασικά στοιχεία, απαιτούμενα για τη δημιουργία και στοιχεία από τη
Θεωρεία Σχεσιακών Μοντέλων. Ακόμα, παρουσιάζονται κίνητρα και διάφορες προκλήσεις
για κάθε σχέση, καθώς και αναλυτικά σενάρια εφαρμογής τους.

Τέλος, υλοποιείται μια προσομοίωση δικτύου, με τη χρήση της πλατφόρμας Gephi. Κάθε
σχέση προσομοιώνεται ατομικά και γίνεται συζήτηση πάνω σε παρατηρήσεις και
αποτελέσματα.

Λέξεις Κλειδιά

Διαδίκτυο των Πραγμάτων, κοινωνικό Διαδίκτυο των Πραγμάτων, Σχεσιακά Μοντέλα,
COSMOS, Εικονικές Οντότητες, ροή γνώσης, αυτονομία

Ευχαριστίες

Θα ήθελα να ευχαριστήσω ιδιαίτερα την κα Θεοδώρα Βαρβαρίγου, η οποία ήταν και η
επιβλέπων αυτής της εργασίας, για την ευκαιρία που μου έδωσε να δουλέψω πάνω στο
θέμα αυτό και να μάθω περισσότερα πάνω στο συγκεκριμένο αντικείμενο, καθώς επίσης
και τα μέλη της επιτροπής, κ. Βασίλειο Λούμο και κ. Συμεών Παπαβασιλείου.

Ακόμα, ένα μεγάλο ευχαριστώ οφείλω στον Ορφέα Βουτυρά, για τη στήριξη και βοήθεια
που μου παρείχε καθ’ όλη τη διάρκεια της εκπόνησης της διπλωματικής μου εργασίας. Οι
εύστοχες παρατηρήσεις του και η προθυμία του για συζήτηση οποιαδήποτε στιγμή τη
χρειάστηκα ήταν σημαντικά στοιχεία για την ολοκλήρωση της εργασίας μου.

Τέλος, θα ήθελα να ευχαριστήσω θερμά την οικογένεια μου, τον αδερφό μου και τους
φίλους μου για τη διαρκή υποστήριξη τους κατά τη διάρκεια των σπουδών μου.

CONTENTS

Chapter 1: Introduction 4

1.1 Motivation 4

1.2 Applications and Overview 5

Chapter 2: Background 7

2.1 Social Networks 7

2.1.1 Brief Description of Social Networks 7

2.1.2 Social Network Sites 7

2.1.3 Relational Models in Social Networks 9

2.1.4 Knowledge Flow in Social Networks 9

2.2 Internet of Things 11

2.2.1 Brief History of Internet of Things 11

2.2.2 Definitions of Internet of Things 12

2.2.3 Internet of Things: Technologies 13

2.2.4 Domains 14

2.2.5 Open Issues 15

2.2.6 Knowledge Flow in the Internet of Things 16

2.3 Social Internet of Things 19

2.3.1 From the Internet of Things to the social Internet of Things 19

2.3.2 Evolution from Smart Objects to Social Objects 20

2.3.3 The sIoT Architectural Model 21

2.3.4 Relational Models Theory 23

2.4 COSMOS 24

2.4.1 What is COSMOS 24

2.4.2 MAPE-K Model 24

2.4.3 Knowledge Management: The DIKW Pyramid 27

1

Chapter 3: Defining the Main Ontologies 28

3.1 Introduction 28

3.2 Virtual Entities 28

3.2.1 Introduction 28

3.2.2 VE Properties 28

3.3 Applications 33

3.3.1 Introduction 33

3.3.2 Application Properties 34

3.4 Users 36

3.4.1 Introduction 36

3.4.2 Types of Users 37

3.4.3 User Properties 38

Chapter 4: Relational Models and Hierarchy 39

4.1 Relational Models 39

4.1.1 Introduction 39

4.1.2 Ownership Object Relationship 39

4.1.3 Usage/Interaction Object Relationship 41

4.1.4 Domain Object Relationship 43

4.1.5 Followers/Followees Object Relationship 45

4.1.6 Enemy Object Relationship 47

4.1.7 Parental Object Relationship 48

4.1.8 Co-Work Object Relationship 50

4.1.9 Conflict of Interest Object Relationship 52

4.1.10 Replacement Object Relationship 54

4.1.11 Co-Location Object Relationship 56

4.2 Hierarchy of Relational Models 60

4.2.1 Introduction 60

4.2.2 Fixed Data 62

2

4.2.3 Generic Data 63

Chapter 5: Network Simulation and Results 65

5.1 Implementation 65

5.1.1 Introduction 65

5.1.2 Cases Description 67

5.2 Case 1: 100 Virtual Entities 68

5.2.1 Statistics for Case 1 68

5.2.2 Ownership Object Relationship 69

5.2.3 Usage/Interaction Object Relationship 72

5.2.4 Domain Object Relationship 75

5.2.5 Followers and Enemies Object Relationships 78

5.2.6 Parental Object Relationship 82

5.2.7 Co - Work Object Relationship 85

5.2.8 Conflict Object Relationship 88

5.2.9 Case 1 Complete Network of Object Relationships 91

5.3 Case 2: 500 Virtual Entities 94

5.4 Case 3: 1000 Virtual Entities 96

5.5 Data Generation 98

5.5.1 Network and Application Characteristics 98

5.5.2 Ownership Object Relationship 99

5.5.3 Usage/Interaction Object Relationship 100

5.5.4 Domain Object Relationship 101

5.5.5 Followers/Followees and Enemies Object Relationships 102

5.5.6 Parental Object Relationship 104

5.5.7 Conflict Object Relationship 104

5.5.8 Co - Work Object Relationship 105

5.5.9 Observations and Conclusions 105

References 107
3

Chapter 1: Introduction

1.1 Motivation

The Internet of Things (IoT) has been gaining ground in the past few years, blossoming
from a novel concept to applicable system architectures. The idea behind the IoT is simple:
enabling heterogenous devices to communicate with each other by exchanging
information acquired through deployed sensors. The ultimate goal of the IoT is to create
smart objects, able to construct and utilize an information network, as a way of becoming
independent in making decisions. The rapid development of the IoT has spawned
numerous surveys, protocols, white papers and suggested architectures on the subject,
focusing on different approaches to the issue.

A recent approach to the Internet of Things has been the social Internet of Things(sIoT). In
this approach, objects are able to socialize with other objects, creating various flows of
social information in the network. The main objective of the sIoT is to separate the social
network of humans from the network of things, by establishing a distinct social network of
things. Humans are still able to control various aspects of this network, such as privacy,
but objects will be responsible for making decisions, through sufficient information
acquired through social communication.

One of the fundamental problems of the social Internet of Things is defining appropriate
relationships among objects, in order to achieve scalable solutions. Objects need to be able
to communicate efficiently; seek out other objects only when needed and in the least
possible amount of steps, so as to avoid overloading the network. Data and information
management mechanisms need to be provided to handle the exponentially increasing
volume of digital data.

The focus of this thesis lies in proposing new Relational Models among objects in the
social Internet of Things. Drawing from the human social network, similarities between
social interactions of humans and social interactions of things are observed. By utilizing
the Relational Models Theory that posits that people use four elementary models to
generate, interpret, coordinate, contest, plan, remember, evaluate, and think about most
aspects of most social interaction in all societies[1], we are able to propose ten Object
Relationships to recreate social interactions in the network of objects. By expressing the
social aspect of the Internet of things, all communications are enriched with a purpose and
a scope. Objects will not attempt to blindly connect with all other objects in the network to
acquire information, but will be able to aim at specific groups of objects based on the
nature of the information instead.

4

http://www.sscnet.ucla.edu/anthro/faculty/fiske/RM_main.htm#4models
http://www.sscnet.ucla.edu/anthro/faculty/fiske/RM_main.htm#4models

1.2 Applications and Overview

As more and more objects and devices get involved in the Internet of Things, it is inherent
that a socially enriched object network can have a plethora of applications. Major
companies such as IBM, Amazon and Microsoft are currently heavily investing in the
Internet of Things. Amazon recently introduced Dash Buttons, as a first step into Home
Automation. Dash Buttons will allow users to order grocery items with the push of a WiFi-
based connected button [2]. IBM has made a $3B investment to establish an Internet of
Things unit inside of Big Blue along with a partnership with The Weather Company, to
create Weather Data driven Applications [3]. Microsoft’s Azure IoT services include Oil
Supply solutions(Rockwell Automation)[4], Cloud Connected Elevators(ThyssenKrupp)[5]
and an intelligent car-sharing service (Autolib’)[6]. Although Home Automation and
Smart Cities are currently the driving force of IoT applications, Healthcare is another area
that can be enhanced by allowing devices and objects to communicate.
MarketResearch.com reports that the healthcare Internet of Things market segment is
poised to hit $117 billion by 2020[7].

This thesis is part of the COSMOS project (Cultivate resilient smart Objects for Sustainable
city applicatiOnS)[8]. COSMOS is funded by the European Union and currently supports
three scenarios:

• Smart heat and electricity management (London)
• Smart mobility for public transport (Madrid)
• IoT Business Eco-System (Taipei)

A brief description of each chapter is given below:

Chapter 2: Background

This chapter serves as an introduction to the prerequisites and the social aspect of this
thesis. The main parts of this chapter include the Social Network, the Internet of Things,
the social Internet of Things and the Cosmos Project. For each part, a brief description as
well as a historic timeline is presented, followed by establishing the notion of knowledge
flow, which is supported by appropriate examples.

Chapter 3: Defining the Main Ontologies

In this chapter, the three main ontologies of the COSMOS project are introduced. These
ontologies include the Virtual Entities, Applications and Users. For each ontology, a basic
description is provided, as well as definitions for the basic properties.

Chapter 4: Analysis of the Proposed Relational Models

This chapter contains the focus of this thesis, which is proposing Relational Models among
VEs in the social Internet of Things. Ten Object Relationships are described. This
description contains characteristics, required properties, necessity and motivation behind
each Object Relationship, as well as Relational Model Theory elements, challenges and
detailed examples. An hierarchy of these Object Relationships is also proposed, for two
separate cases: fixed data and generic data.

5

Chapter 5: Network Simulation and Results

The final chapter of this thesis contains a network simulation of the proposed Relational
Models. This includes metrics extraction and graph visualization for each Object
Relationship, as well as observations and conclusions. Step by step analysis of the code
used for the network generation is also presented.

6

Chapter 2: Background

2.1 Social Networks

2.1.1 Brief Description of Social Networks

A social network is a social structure made up of a set of social actors (such as individuals
or organizations) and a set of dyadic ties between them [9]. Actors are defined as the social
entities among whom linkages are created. Actors are discrete individual, corporate, or
collective social units. Examples of actors are people in a group, departments within a
corporation, public service agencies in a city, or nation-states in the world system.
Relational ties are the social ties that establish a linkage among actors. Some common
examples of ties are:

• Evaluation by others(friendship, liking, respect)
• Association or affiliation (jointly attending a social event, or belonging to the same social

club)
• Behavioral interaction (talking together, sending messages)
• Biological relationship (kinship or descent)

A dyadic tie is the linkage or relationship between two actors. We can further define group
as a collection of all actors on which ties are to be measured. A group consists of a finite set
of actors who for conceptual, theoretical, or empirical reasons are treated as a finite set of
individuals on which network measurements are made. Finally, a relation is the collection
of ties of a specific kind among members of a group. For example, the set of friendships
among pairs of employees in a company, or the set of formal diplomatic ties maintained by
nations in the world, are ties that define relations. Various relations can exist for any group
of actors.

Having defined actor, group and relation, we can conclude on a definition of a social
network. A social network consists of a finite set or sets of actors and the relation or
relations defined on them. The presence of relational information is a critical and defining
feature of a social network.

2.1.2 Social Network Sites

Social Network Sites are web-based services that allow individuals to do the following
[10]:

• Construct a public or semi-public profile within a bounded system
• Articulate a list of other users with whom they share a connection
• View and traverse their list of connections and those made by others
• Communicate and share information with other users

The first social network site launched in 1997. SixDegrees.com allowed users to create
profiles, list their friends and surf the friends lists. Named after the six degrees of separation
theory, in which any two people can be connected in a maximum of six steps, SixDegrees
combined features found in community sites and chat clients such as AIM and ICQ,

7

promoting itself as a tool to help people connect with and send messages to others. In
LiveJournal, users can keep a blog, journal, or a diary. LiveJournal also offered one-
directional connections, such that a user can “friend” another user without reciprocation.
Users communicate by commenting on other users’ journal entries.

Friendster was the first social network site to achieve mainstream popularity. Launched in
2002, it was designed to help friends of friends meet. Initially, the site restricted users from
viewing profiles of people more than four degrees away. Following the success of
Friendster, 2003 signaled a surge in social network sites. Maintaining the profile-centric
design, these new social network sites aimed at particular groups of people. LinkedIn is
aimed at business people and is mainly used for professional networking between job
seekers, employees and employers, such as companies. Although not launched with bands
in mind, MySpace became popular as a social network site for discovering music talent
and connecting with musicians. Many media sites soon evolved into social network sites,
such as YouTube for video sharing, Last.FM for music recommendation, as well as Flickr
and Pinterest for photo sharing. Another noteworthy application which is based on social
networks is Foursquare, where people can “check-in” in locations with their friends.

Undeniably, the most successful social network site of the 00s is Facebook. Initially
designed to connect students from Harvard, the site soon expanded on other schools until
it was eventually available to everyone. Users can add other users as friends, post status
updates as well as other media such as videos, links and photos and communicate with
other users through comments and messages. As of June 2014, Facebook had over 1.3
billion active users, with a revenue of $12.466 billions. Twitter was created in 2006. In
Twitter, users can send and read messages called tweets, with a length restriction of 140
characters. Launched in 2010, Instagram enables users to upload photos and videos, while
providing a variety of digital filters to add to these images.

1997

1999

2002

2003

2004

2005

2006

2009

2010

Figure 2.1.2: Timeline of notable Social Network Sites
8

2.1.3 Relational Models in Social Networks

The entities described in the definition of a Social Network can be found in all of the above
social network sites. We can identify actors in the form of users of these sites. These users
can be individuals or representing bigger groups of people, such as companies,
organizations, or even nations. It is also interesting to note the variety of relations that can
be identified among these sites. The most basic relation that can be found in one way or
another in all of the sites, is the relation of friends. This relation is two-directional, as both
users need to accept the request for this relation to be established. Friends are featured
prominently in Facebook, which has also introduced another similar relation, called close
friends. Close friends is aimed at creating a smaller group of friends, giving users the
ability to filter information when their friends’ list becomes too big. A variation of friends,
named connections, can be found on LinkedIn, giving emphasis on professional
networking.

The arrival of Twitter and Instagram popularized a new relation, called followers. In
contrast to friends, this relation is asymmetric, meaning that a user can follow another user
without needing approval and without expecting the other user to follow them back. The
equivalent relation that is created with the introduction of followers is named followees.
A user can have a number of followers, which are other users that follow him/her and that
he/she may or may not be following back, as well as a number of users he/she follows. In
that sense, he/she is a followee of the users he/she follows. Relationships can also be
extracted by studying “check-ins” from location-based social networks, such as
Foursquare [11]

2.1.4 Knowledge Flow in Social Networks

Social Network Sites provide a variety of available actions, which can be divided into two
categories, a) posting information and b) interacting with information. Posting
information is almost identical in most Social Networks. Users can post a “status
message”, which is simple text containing information, upload media such as photos and
videos, or share links from the web. The content of the posted information can be sorted
into the following categories:[12]

• Information Sharing
• Self Promotion
• Opinions/Complaints
• Statements and Random Thoughts
• Me now
• Question to followers/friends
• Presence Maintenance
• Anecdotes about the poster
• Anecdotes about others

The second category differs slightly from one Social Network to another. For example,
Facebook users can like or comment a post, while Twitter users can retweet or favorite
other tweets. However, we can spot two cases of interaction. The first one is to express
approval for the content of the post and the second is to make the post known to other
users of the social network. In both cases, a flow of information is created in Social
Networks, through the creation of new content as well as interaction with existing content.
Users have access to a plethora of information through their network of friends and
followers. A general scenario of knowledge flow in Social Networks is the following: User

9

A has access to a type of information and wishes to make this information known to his/
her extended social network, for example his/her friends on Facebook or his/her
followers on Twitter. This information is then posted on a social network, in the form of
plain text, web link or media, such as video,photo or audio. User B is part of User A’s
network and is notified of the post, as it is now visible. User B is has now acquired
information that could be previously unknown to him/her, through User A. An example
of this scenario is given below:

Alice is browsing the internet and she finds an article informing her of a strike in public
transportation from 11:00 am to 04:30 pm. Using her mobile phone, she logs onto Facebook
and posts the article with the caption: “No public transportation from 11:00-4:00. Guess I’ll
have to walk home”. Bob has friended Alice on Facebook and can see her updates. Alice’s
post appears on Bob’s timeline and he understands that the metro lines will be off. As Bob
usually takes Line A to go to work, he now knows that he must alter his route. As this post
proved useful to Bob, he likes it and shares the link saying: “Good to know! Was about to
spend hours trying to figure my way out had I not seen this”. Eve is not friends with Alice,
yet she is friends with Bob. Eve is currently downtown and was planning on taking the
metro through Main Street as well. Bob’s post now appears on Eve’s timeline and she is
therefore informed that there will not be any metros coming through Main Street. She
chooses to take her car instead.

Eve
No public transport from 11:00 -
4:00. Guess I'll have to walk home

Alice:

Link Share

Good to know! Was about to spend
hours trying to figure my way out
had I not seen this

Bob:

Post Share

Friends Fr
ie
nd
s

Knowledge
Flow

Figure 2.1.4: An example of Knowledge flow in Social Networks

In the above scenario, we witnessed a knowledge flow from Alice to Bob and then to Eve.
Both Bob and Eve were unaware of the information that Alice possessed, but through the
use of social networks, they were both able to acquire new information that proved critical

10

to their planning. Social Network Sites have proved influential in news spreading across
the population, as studied on [13]. Extensive research has also been made in utilizing
social networks in emergencies following disasters. In [14], data from social
networks(Twitter) was gathered during the Colorado Floods in September 2013 to aid in
remote reconnaissance work. Remote reconnaissance becomes critical when teams cannot
get to the field, or cannot survey all areas of an affected area. Citizens’ tweets, combined
with satellite images and images taken with a DSLR camera on an Unmanned Aerial
Vehicle were used to digitally survey a region and navigate optimal paths for direct
observation.

2.2 Internet of Things

2.2.1 Brief History of Internet of Things

Early signs of the Internet of Things can be traced back to as early as 1932. Jay B. Nash
writes in Spectatoritis [15]: “Within our grasp is the leisure of the Greek citizen, made
possible by our mechanical slaves, which far outnumber his twelve to fifteen per free
man… As we step into a room, at the touch of a button a dozen light our way. Another
slave sits twenty-four hours a day at our thermostat, regulating the heat of our home.
Another sits night and day at our automatic refrigerator. They start our car; run our
motors; shine our shoes; and cult our hair. They practically eliminate time and space by
their very fleetness.” In 1946, a wristwatch named 2-Way Wrist Radio is introduced in the
famous comic strip Dick Tracy, becoming one of the comic strip’s most recognizable
icons[16]. The 2-Way Wrist Radio facilitated communications between Tracy and members
of the police force and is considered by many as an inspiration for smartwatches. In 1949,
the bar code is conceived by Norman Joseph Woodland, when he drew four line in the
sand on a Miami beach [17]. This led to the invention of the Universal Product Code
(UPC), the ubiquitous bar code used in supermarkets. In 1967, Hubert Upton invents an
analog wearable computer with eyeglass-mounted display to aid in lip reading [18]. In
1969, the first message is sent over the ARPANET, the predecessor of the Internet [19].

In 1973, Mario Cardullo received the first patent for a passive, read-write RFID tag [20]. In
the early 1980s, members of the Carnegie-Mellon Computer Science department installed
micro-switches in the Coke vending machine so they could see how many bottles were
present in the machine and whether they were cold or not [21]. In 1991, Xerox PARC’s
Mark Weiser publishes “The Computer in the 21st Century” in Scientific American, where
the terms of “ubiquitous computing” and “embodied virtuality” were first used [22]. In
1994, Xerox EuroPARC’s Mik Lamming and Mike Flynn demonstrate the Forget-Me-Not,
a wearable device that records interactions with people and devices, storing the
information in a database [23]. In September of the same year, the term “context-aware”
was first used by B.N. Schilit and M.M Theimer in “Disseminating active map information
to mobile hosts,” Network, Vol. 8, Issue 5 [24].

In October 13-14, 1997, Carnegie-Mellon, MIT and Georgia Tech co-hosted the first IEEE
International Symposium on Wearable Computers, in Cambridge, MA. In 1999, the Auto-
ID (for Automatic Identification) Center is established at MIT. Sanjay Sarma, David Brock
and Kevin Ashton turned RFID into a networking technology by linking objects to the
Internet through the RFID tag [25]. Two years later, the Auto-ID Center would introduce a
new object identification scheme, the Electronic Product Code (EPC). In 2005, a team of
faculty members at the Interaction Design Institute Ivrea in Ivrea, Italy, developed

11

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=313011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D313011
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=313011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D313011
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=313011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D313011
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=313011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D313011

Arduino, a cheap and easy to use single board micro-controller. Arduino made a huge
impact on the world of physical computing.

2.2.2 Definitions of Internet of Things

The Internet of Things (IoT) is a novel paradigm that is rapidly gaining ground in the
scenario of modern wireless telecommunications. The basic idea of this concept is the
pervasive presence around us of a variety of things or objects – such as Radio-Frequency
IDentification (RFID) tags, sensors, actuators, mobile phones, etc. – which, through unique
addressing schemes, are able to interact with each other and cooperate with their
neighbors to reach common goals [26]

We can identify three major different definitions that arise from the name “Internet of
Things” [27]:

• Things Oriented Perspective
• Internet Oriented Perspective
• Semantics Oriented Perspective

The very first definition of IoT derives from a ‘‘Things oriented” perspective; the
considered things were very simple items: Radio-Frequency IDentification (RFID) tags
[28]. Although RFID is still the leading technology in the Things Oriented perspective, due
to maturity, low cost and strong support from the business community, a wide portfolio of
device, network and service technologies are currently building up the IoT, such as Near
Field Communications (NFC) and Wireless Sensor Actuator Networks(WSAN).

On the other hand, the Internet Oriented Perspective calls for a global infrastructure which
connects both virtual and physical generic objects and highlights the importance of
including existing and evolving Internet and network developments[29]. An example of
the Internet Oriented Perspective can be found at IP for Smart Objects (IPSO), a forum
formed in September 2008 to promote Internet Protocol as a network technology for
connecting Smart Objects around the world. Justification for the IPSO lies in the idea that
the IP stack is a light protocol that already connects a huge amount of communicating
devices and runs on tiny and battery operated embedded devices. This guarantees that IP
has all the qualities to make IoT a reality.

Finally, the idea behind the Semantic Oriented Perspective is that the number of items
involved in the Future Internet is destined to become extremely high, thus creating issues
regarding organization, search, representation and storage of IoT information [30].
Semantic technologies can exploit appropriate modeling solutions for things description,
reasoning over data, semantic execution environments and architectures, as well as
scalable storing and communication infrastructure. The following figure gives an outline
of the Internet of Things, as a combination of these three perspectives.

12

According to the authors of [7], RFID still stands at the
forefront of the technologies driving the vision. This a con-
sequence of the RFID maturity, low cost, and strong sup-
port from the business community. However, they state
that a wide portfolio of device, network, and service tech-
nologies will eventually build up the IoT. Near Field Com-
munications (NFC) and Wireless Sensor and Actuator
Networks (WSAN) together with RFID are recognized as
‘‘the atomic components that will link the real world with
the digital world”. It is also worth recalling that major pro-
jects are being carried out with the aim of developing rel-
evant platforms, such as the WISP (Wireless Identification
and Sensing Platforms) project.

The one in [7] is not the only ‘‘Things oriented” vision
clearly speaking of something going beyond RFID. Another
one has been proposed by the United Nations, which, dur-
ing the 2005 Tunis meeting, predicted the advent of IoT. A
UN Report states that a new era of ubiquity is coming
where humans may become the minority as generators
and receivers of traffic and changes brought about by the
Internet will be dwarfed by those prompted by the net-
working of everyday objects [8].

Similarly, other relevant institutions have stressed the
concept that IoT has primarily to be focused on the
‘‘Things” and that the road to its full deployment has
to start from the augmentation in the Things’ intelli-
gence. This is why a concept that emerged aside IoT is
the spime, defined as an object that can be tracked
through space and time throughout its lifetime and that
will be sustainable, enhanceable, and uniquely identifi-
able [9]. Although quite theoretical, the spime definition
finds some real-world implementations in so called
Smart Items. These are a sort of sensors not only

equipped with usual wireless communication, memory,
and elaboration capabilities, but also with new poten-
tials. Autonomous and proactive behavior, context
awareness, collaborative communications and elabora-
tion are just some required capabilities.

The definitions above paved the way to the ITU vision of
the IoT, according to which: ‘‘from anytime, anyplace con-
nectivity for anyone, we will now have connectivity for
anything” [10]. A similar vision is available from docu-
ments and communications of the European Commission,
in which the most recurrent definition of IoT involves
‘‘Things having identities and virtual personalities operat-
ing in smart spaces using intelligent interfaces to connect
and communicate within social, environmental, and user
contexts” [3].

An IoT vision statement, which goes well beyond a mere
‘‘RFID centric” approach, is also proposed by the consor-
tium CASAGRAS [11]. Its members focus on ‘‘a world where
things can automatically communicate to computers and
each other providing services to the benefit of the human
kind”. CASAGRAS consortium (i) proposes a vision of IoT
as a global infrastructure which connects both virtual
and physical generic objects and (ii) highlights the impor-
tance of including existing and evolving Internet and net-
work developments in this vision. In this sense, IoT
becomes the natural enabling architecture for the deploy-
ment of independent federated services and applications,
characterized by a high degree of autonomous data cap-
ture, event transfer, network connectivity and
interoperability.

This definition plays the role of trait d’union between
what we referred to as a ‘‘Things oriented” vision and an
‘‘Internet oriented” vision.

RFID

UID

Spimes

Smart Items

Everyday
objects

Wireless
Sensorsand
Actuators

WISP

“Internet”-oriented
visions

“Things”-
oriented visions

“Semantic”-oriented
visions

INTERNET
OF

THINGS

Connectivity
for anything

Communicating
things

Semantic
Technologies

Smart
Semantic

Middleware

Reasoning
over data

Semantic execution
environments

IPSO (IP for
Smart

Objects)

Internet 0

Web of
Things

NFC

Fig. 1. ‘‘Internet of Things” paradigm as a result of the convergence of different visions.

L. Atzori et al. / Computer Networks 54 (2010) 2787–2805 2789

Figure 2.2.2: Internet of Things as a result of three different visions [27]

2.2.3 Internet of Things: Technologies

The most common technologies used in building the Internet of Things are RFID systems
and Wireless Sensor Networks.
A Radio Frequency Identification (RFID) system consists of RFID readers and RFID tags.
Each tag has a unique identifier and can be applied to objects [31]. RFID readers trigger the
tag transmission by generating an appropriate signal, which essentially searches for tags
in the vicinity. Objects do not need to be in line-of-sight for the pairing of a tag and a
reader to happen. RFID tags can be passive, meaning that they do not rely on-board power
supplies, but are powered from signals by a RFID reader nearby. RFID tags can also use
power supplies, such as batteries, making them semi-passive, or active. In semi-passive
RFIDs, batteries power the microchip while receiving the signal from the reader (the radio
is powered with the energy harvested by the reader signal). Differently, in active RFIDs the
battery powers the transmission of the signal as well. Obviously, the radio coverage is the
highest for active tags even if this is achieved at the expenses of higher production costs.

Sensor networks can cooperate with RFID systems to better track the status of things, such
as their location or temperature, acting as a bridge between the physical and the digital
world. Sensor networks consist of a certain number of sensing nodes communicating in a
wireless multi-hop fashion. Usually nodes report the results of their sensing to a small
number (in most cases, only one) of special nodes called sinks. Design objectives of the
proposed solutions are energy efficiency, scalability (the number of nodes can be very
high), reliability (the network may be used to report urgent alarm events), and robustness
(sensor nodes are likely to be subject to failures for several reasons) [32].

13

2.2.4 Domains

The Internet of Things can, or is already applied to a variety of domains. These domains
are separated in the following categories [33]:

Smart Cities

Smart Parking Structural
Health

Noise Urban
Maps

Smartphone
Detection

Electromagnetic
Field Levels

Traffic
Congestion Smart Lighting Waste

Management Smart Roads

Smart
Environment

Forest Fire
Detection Air Pollution Snow Level

Monitoring
Earthquake

Early Detection
Landslide and

Avalanche
Prevention

Smart Water

Portable Water
Mnitoring

Chemical
leakage

detection in
rivers

Swimming pool
remote

measurement
Polution levels

in the sea River Floods

Smart Metering

Smart Grid Tank LevelPhotovoltaic
Installations Water flowSlios Stock

Calculation

Smart Agriculture

Wine Quality
Enhancing Green HousesGolf CoursesMeteorological

Station Network CompostHydroponics

14

Security &
Emergencies

Perimeter
Access Control

Liquid
Presence

Radiation
Levels

Explosive and
Hazardous

Gases

Smart Animal
Farming

Offsrping
Care

Animal
Tracking

Toxic Gas
Levels

Retail

Supply Chain
Control

NFC
Payment

Intelligent
Shopping

Application
Smart Product
Management

Logistics

Quality of
Shipment
Conditions

Item Location
Storage

Incompatibility
Detection

Fleet Tracking

Home
Automation

Energy and
Water Use

Remote
Control

Appliances

Intrusion
Detection
Systems

Art and Goods
Preservation

eHealth

Fall Detection Medical
Fridges

Sportsmen
Care

Patients
Surveillance

Ultraviolet
Radiation

Figure 2.2.4: Available domains, separated in categories

2.2.5 Open Issues

A number of open issues regarding the Internet of Things can be found in [27]. These
include:

• Standardization
• Mobility Support
• Naming
• Transport Protocol
• Traffic Characterization and QoS Support
• Authentication
• Data Integrity
• Privacy
• Digital Forgetting

Issues regarding standardization stem from the fact that there are several standards so far,
yet no integration in a comprehensive framework has been achieved yet. There are also
many proposals for object addressing but none for mobility support in the IoT scenario,
where scalability and adaptability to heterogeneous technologies represent crucial
problems. As far as naming goes, Object Name Servers (ONS) are needed to map a
reference to a description of a specific object and the related identifier, and vice versa.

Existing transport protocols fail in the IoT scenarios, since their connection setup and
congestion control mechanisms may be useless; furthermore, they require excessive
buffering to be implemented in objects. The IoT will generate data traffic with patterns
that are expected to be significantly different from those observed in the current Internet.
Accordingly, it will also be necessary to define new QoS requirements and support
schemes.

Authentication is difficult in the IoT as it requires appropriate authentication infrastructures
that will not be available in IoT scenarios. Furthermore, things have scarce resources when
compared to current communication and computing devices. Also man-in-the-middle

15

attack is a serious problem. Data integrity is usually ensured by protecting data with
passwords. However, the password lengths supported by IoT technologies are in most
cases too short to provide strong levels of protection

A lot of private information about a person can be collected without the person being
aware. Control on the diffusion of all such information is impossible with current
techniques. Finally, regarding digital forgetting, all the information collected about a person
by the IoT may be retained indefinitely as the cost of storage decreases. Also data mining
techniques can be used to easily retrieve any information even after several years.

2.2.6 Knowledge Flow in the Internet of Things

The Internet of Things has made knowledge flow between things possible, without the
need of a user. The use of wireless sensors, as well as RFID systems has enabled a variety
of applications, ranging from home automation to smart cities and eHealth. In this section,
a few examples of IoT applications are presented, along with a brief description of
knowledge flow as well as scenarios of use.

Nest Learning Thermostat (Home Automation)

Nest Labs, a home automation company in Palo Alto, California, introduced the Nest
Learning Thermostat in 2011, a self-learning Wi-Fi enabled thermostat that is able to
optimize heating and cooling to conserve energy. Nest Thermostat is designed to program
itself, by learning its user habits and preferences. A noteworthy feature of Nest Thermostat
is its Auto-Away function. Using a combination of sensors and algorithms, the thermostat
is able to notice when a user is away from home or when he/she comes back [34]. This is
used to turn itself down when everyone is away and turn itself back up when someone
arrives home. Nest Thermostat can also be controlled remotely, by use of mobile
applications. Nest Thermostat was so successful, that it led to Nest Labs’s acquisition by
Google for $3.2 Billion on January 14, 2014 [35].

Philips Hue Lamps (Home Automation)

Philips introduced its new LED lighting system, Hue, in 2012. This new lighting system
allows light bulbs to be controlled and customized with the use of a mobile application.
Users can program a bulb to notify them of various activities, such as emails or
appointments. Users can customize the hues and the lighting in a room with modes such
as “Reading”, “Relax”, “Energize” and more. Using geofencing technology, Hue can also
detect when a user is back home, to turn the lights on.

Mimo Smart Baby Monitor (eHealth)

The Mimo Smart Baby Monitor utilizes a combination of sensors that relay information via
Bluetooth through the cloud to a connected device [36]. This Baby Monitor can relay a
variety of information, such as sleep status, baby breathing and body position. Parents can
also listen in on their babies, with live audio transmitted through the monitor, using a
mobile device. Statistics about baby activity are gathered with the use of sensors as well.

A scenario using the above three applications can be the following. Alice has installed the
Nest Learning Thermostat as well as the Philips Hue lighting system at her home, as well
as the accompanying applications on her phone. Alice has also equipped her daughter,
Eve, with a Mimo Smart Baby Monitor. Eve is currently staying with her father, Bob. Once

16

Alice comes home, the Nest Thermostat, as well as the Philips Hue lighting system can
detect her arrival, turning the thermostat up and the lights on. A light bulb goes off,
notifying Alice not to forget her doctor appointment in one hour. Alice uses her phone to
see that her daughter Eve is not sleeping and is having a strange body position. Worried,
she phones Bob, who then checks up on Eve to find her ready to jump off her crib.

Eve

Alice

Bob

Mimo baby
monitor

Nest
Thermostat

Philips Hue
Lighting System

Alice's House

Temperature, Location, etc

Sleep status,
baby position

live audio
etc

Figure 2.2.6.1: Knowledge Flow in IoT scenario 1

In the above scenario, we can notice two types of knowledge flow. We have knowledge
flow between things, with information regarding room temperature, geolocation, sleep
status, baby position etc, flowing between the Nest Thermostat, the Philips Hue Lighting
System, the Mimo Baby Monitor and Alice’s mobile device. This flow makes feasible a
secondary flow, between users Alice, Bob and Eve.

The Internet of Things has been used in larger scale applications as well, in cases of waste
management, smart parking and smart city lighting, for example. Bigbelly provides a
smart, self-powered waste management & recycling solution, with waste and recycling
stations that can monitor and report station fullness remotely [37].

Streetline gathers information regarding parking vacancies in parking lots and streets to
provide real time parking guidance as well as statistics regarding parking activity to
provide a better picture on what is going on out on the streets [38].

Echelon provides Wired and Wireless Outdoor Lighting systems that can be controlled to
reduce energy consumption, improve safety for both pedestrians and drivers as well as
serve in a range of other IoT applications. Echelon’s power line communications solutions
are in use at over 600 cities and locations worldwide, with case studies in Oslo, Norway
[39] and in Sénart en Essonne, France [40].

The above applications can be used by a municipality for example, to better track the city’s
streets and traffic, cut down on energy consumption with smart lighting control and
maintain a clean and habitable environment for citizens.

17

Echelon
Lighting Solution

Bigbelly
Waste Management

StreetLine
Parking Management

Municipality

Figure 2.2.6.2: Knowledge Flow in IoT scenario 2

18

2.3 Social Internet of Things

2.3.1 From the Internet of Things to the social Internet of Things

The basic idea behind the social Internet of Things is the definition of a “social network of
objects”, analogous to the Social Networks Sites for humans. The possible advantages are
[41]:

• Give the IoT a structure that can be shaped as required to guarantee network
navigability, so as that object and service discovery is effectively performed and
scalability is guaranteed like in human social networks

• Extend the use of models designed to study social networks to address IoT related issues
(intrinsically related to extensive networks of interconnected objects).

• Create a level of trustworthiness to be used for leveraging the level of interaction among
things that are “friends”.

A first idea of socialization between objects was introduced in [42], as part of the Smart-Its
project on technologies for computer-augmentation of everyday artifacts. The object was
to develop a range of small, embedded devices as platforms for augmentation and
interconnection of these artifacts. These devices, named Smart-Its, would integrate
sensing, processing and communication with variations in perceptual and computational
capability, in order to facilitate autonomous awareness of an artifact’s context,
independent of infrastructure. The work on [42] focused on enabling these smart devices
to establish temporary relationships, with the mediation of their owners.

In [43], a new type of objects is introduced, called Blogject, meaning “objects that blog”.
These objects can participate within the Internet of social networks, as opposed to things
simply connected to the Internet. Embodied Microblogging is introduced in [44], for the
design of digital technology for social interaction. Embodied Microblogging is defined as
informing the design of augmented objects of everyday life, for facilitating senior citizens’s
everyday life. In the paper, Walky is introduced as a way of Embodied Microblogging.
Walky combines rollators with sensors and dedicated displays. Using the rollator causes a
broadcast of walking activity to the user’s community. Senior citizens can, with the use of
Walky, have an idea of friends around them, enabling them to interact with others, such as
meeting for a walk.

In [45], research is focused on enabling things to participate with humans in forming a
socio-technical network. Using Twitter, the authors enable things to start communicating
their status and functionality, by sharing pictures, comments and sensor data via social
networks. Finally, in [46], objects can develop a networking infrastructure based on the
information that is spread, rather than information on the objects themselves.

However, in order to achieve autonomy in the social Internet of Things, three main points
need to be made:

• Social relationships need to be established among things, without the need of their
owners. Owners can participate, to some extent, to the objects relationships, however, it
is the objects that need to play a key role in this scenario.

• The establishment of social relationships among objects can allow a more effective and
efficient way for objects to discover services and resources, without the presence of
humans.

19

• The envisioned IoT architecture is not a mere service platform centered on the concept of
web of things, yet a real platform for SNSs with suitable components introduced to cope
with the presence of objects instead of human beings.

2.3.2 Evolution from Smart Objects to Social Objects

In the Internet of Things, every human and every object has a locatable, addressable and
readable counterpart in the Internet. In this scenario, objects can produce and consume
services and collaborate with other counterparts towards a common goal. This is possible,
thanks to intense interactions among objects, which collaborate to realize complex
services. This has brought the design of new generations of “smart objects” able to
discover new services, make new acquaintances, exchange information, connect to
external services as well as collaborate towards a common goal[47]. Two important
questions that are currently being investigated are the following:

• Are smart objects expected to manifest new potentials?
• Can these potentials lead to a fully networked human society by introducing more

effective IoT models?

In [47], a parallel between human (and animal) evolution and object evolution is
introduced. In the natural world, examples are ample concerning animals and humans
that managed to overcome the difficulties of their complex environments by creating
groups and forming social relationships. In this light, we can consider a new generation of
social objects that:

a) can achieve an autonomous interaction with other objects, without the mediation of
their owners;

b) can discover services and information in a trust-oriented way by searching the Internet
of Things

c) can inform the rest of the network of their presence.

In analogy with the human evolution from homo sapiens to homo agens, a similar
evolutionary path from a res sapiens (smart object) to a res agens (acting object), an object
capable of acquiring knowledge and converting it into actions, can be made. This can lead
to a new type of object, res socialis (social object), an object that has the ability to take part
in a social community along with other objects.

IEEE Communications Magazine • January 201498

The major contribution of this article is to
provide the reader with a comprehensive analy-
sis of the key aspects of this new phenomenon,
with particular attention to the different visions,
technical solutions, ongoing projects, and open
research challenges that the research community
is called to address. In the following section we
analyze the evolution of the objects’ behavior as
key components of the IoT; we then introduce
the major developments that are ongoing in this
area and the most relevant products already
available on the market. Exemplary use cases
that exploit the major benefits of the conver-
gence between IoT and social networks are then
analyzed. The last section draws important direc-
tions for future studies.

FROM SMART THINGS TO
THINGS THAT SOCIALIZE

The scientific literature provides a wide range of
examples of how modern technology has been
able to accomplish the definition of devices that,
thanks to their abilities, we might call “smart
objects” and consider, without a doubt, the con-
stituent elements of the IoT [2]. Besides, soft-
ware frameworks to build user-centric extensible
smart object systems are the subject of very
interesting research activities like the one in [3].

Nonetheless, smart objects are only the first
step of an evolutionary process that is affecting
modern communication devices and has been
triggered by the advent of IoT in the telecom-
munication scenario.

We are currently observing a generational
leap from objects with a certain degree of smart-
ness to objects with an actual social conscious-
ness.

In analogy with the human evolution from
homo sapiens to homo agens used in economic
and sociological studies, we may talk of a similar
evolutionary path from a res sapiens (smart object)
to what we call a res agens (an acting object),
which is able to translate the awareness of causal
relationships — the basis of knowledge of change
and evolution of its environment — into actions.

In our opinion, the time is ripe to take even a
further important step in the evolution of the
objects, without which the fully development of
an IoT populated by trillions of objects cannot
be achieved. What we intend is a further evolu-
tion toward a new type of object that can be
considered a res socialis (i.e., social object, again
in analogy with the socio-economic term homo
socialis). The term refers to an object that is part
of and acts in a social community of objects and
devices (which, in our case, is a social IoT).

The features of the three identified categories
of IoT objects are illustrated in Fig. 1 and
described in the following subsections, highlight-
ing the advantages these provide (or will pro-
vide) to advances in the IoT.

THE STATUS QUO: RES SAPIENS IN THE IOT
Most IoT solutions have been initially devised
and built in isolation, resulting in limited and
fragmented small islands of heterogeneous
smart objects (res sapiens) disconnected from
each other. This is the natural consequence of
isolated studies and developments conducted
without a widely recognized and interoperable
reference architecture in mind. This has pre-
vented and still prevents implementing an actu-
al IoT ecosystem on top of which composite
applications can easily be developed. An obvi-
ous, yet effective, countermeasure to IoT frag-
mentation consists of enabling the res sapiens
to directly communicate with the external
world by relying on web protocols and commu-
nication paradigms universally recognized by
the current Internet of services. This made the
res sapiens objects evolve through different
stages as sketched in Fig. 2 and described in
the following.

The first innovation has been the introduc-
tion of what is today commonly referred to as
the Web of Things (WoT) [4], which relies on
the implementation of web protocols into either
the objects themselves or specific objects’ prox-
ies/gateways. Mostly, the current implementa-
tions make use of either the Device Profile for
Web Services (DPWS) or Representational State
Transfer (RESTful) application programming
interfaces (APIs) (also in thing-specific versions,
such as Thing-REST [5]). Accordingly, the ser-
vices and information provided by the things can
be incorporated in the open ecosystem of the
Internet of services. On top of this, applications
can be created by using standard web languages
and tools.

Still, the WoT paradigm by itself has some
limits, caused by the difficulties in advertising,
discovering, accessing, and exploiting the objects
and their services.

An additional desirable feature is the capabil-
ity that allows Internet users and services to
sense the physical world and act on it. One
approach in this direction is to create a platform
where the objects can easily be found, searched
for, exploited, and composed. This is the case of
some solutions that have recently appeared on
the web, such as SenseWeb (http://www.sen-
sormap.org) and Xively (formerly called Pachube
— http://xively.com), which provide people with
a central platform to share their sensor data and
deploy relevant applications. The people’s inter-

Figure 1. Main features of the identified three categories IoT objects.

• Increased interoperability with external systems
• Capability to communicate in human social networksRes

sapiens

• Awareness of the environment
• Interactivity with the surrounding environment
• Pseudo-social behavior with neighborsRes

agens

• Capability of building their own social network
• Proficiency in building added-value complex services
through collaboration in the object social networkRes

socialis

ATZORI_LAYOUT_Layout 1/6/14 1:53 PM Page 98

Figure 2.3.2: The path from Res Sapiens to Res Socialis [47]
20

2.3.3 The sIoT Architectural Model

In [41], an sIoT Architectural Model is proposed, in comparison to a common architectural
model for Social Network Sites for humans.1194 IEEE COMMUNICATIONS LETTERS, VOL. 15, NO. 11, NOVEMBER 2011

played by the production batch). This relationship is easily im-
plemented during the item production, it will not change over
time and is only updated by events of disruption/obsolescence
of a given device.

Moreover, objects can establish co-location object relation-
ship and co-work object relationship, like humans do when
they share personal (e.g., cohabitation) or public (e.g., work)
experiences. These relations are determined whenever objects
(e.g., sensors, actuators, RFID Tags, etc.) constantly reside
in the same place (e.g., to offer home/industrial automation
services) or periodically cooperate to provide a common IoT
application, such as emergency response and telemedicine.
These relationships are established as part of the initializa-
tion/implementation of either a “location-based application”
profile or a “situation-based application” profile. Changes are
frequent and usually based on time duration of co-location/co-
working, frequency of the interaction, and reputation. These
are the sort of relationships considered in [8].

A further type of relationship is defined for objects owned
by the same user (mobile phones, game consoles, etc.). We
name this ownership object relationship. Associating one
another all devices of the same user is already a common
procedure. A ownership object relationship is the logical
generalization of this concept through a richer device profile.

The last relationship is established when objects come
into contact, sporadically or continuously, for reasons purely
related to relations among their owners (e.g., devices/sensors
belonging to friends). We name this social object relationship.
Similarly to people exchanging their contacts (phone numbers,
e-mail addresses, etc.), the device, if properly authorized,
autonomously exchanges its social profile. The driving idea is
that devices with similar characteristics and profile can share
best practice to solve problems already faced by “friends”.
Policies, exploiting ad-hoc metrics, measure the opportunity
of maintaining a given relationship.

Accordingly, the relationships among objects in the SIoT
evolve towards social structures that need to be studied to
maximize the benefits of the SIoT in service discovery and ex-
ploitation. Sociology, Anthropology, or Cognition studies can
provide useful hints in this direction. Alan Fiske “relational
models” theory [9], furnishes four basic relational structures
that can be applied to objects as well. In Communal sharing
relationships, equivalence and collectivity membership emerge
against any form of individual distinctiveness. These can
be definitely associated with behaviors of objects that have
collective relevance only. This is, for example, the case of
“swarms” of objects for which is only important the service
that the whole swarm can provide to users.

Equality matching, based on egalitarian relationships char-
acterized by in-kind reciprocity and balanced exchange, may
represent all forms of information exchange among objects
that operate as equals during the IoT service provision while
maintaining their individuality. In communal sharing relation-
ship the service is associated to the whole group; in this second
case each object has associated a service that it advertises.

Authority ranking relationships are asymmetrical, based on
precedence, hierarchy, and status. These are established among
objects of different complexity and hierarchical levels (RFID
reader and tags, Bluetooth master and slaves, etc.) exchanging

Fig. 1. Basic components of social network platforms for humans (on the
left) and for objects (on the right).

information asymmetrically. The service advertised is usually
associated to the group or to the object of the highest rank.

Market pricing relationships are based on proportionality,
with interactions organized by referring to a common scale of
ratio values. They can be established among objects working
together to achieve a mutual benefit. In many IoT applica-
tions, this implies that the participation in this relationship is
considered only when it is worth the while to do so.

III. SIOT ARCHITECTURAL MODEL

In Fig. 1 (left side) we show a common architectural model
of SNS for humans [10]. This is not applicable to the SIoT,
but must be modified to take its specific features into account.
In this context, criteria to consider are related to the main
SIoT objectives, that is, object-related service discovery and
composition as well as object trustworthiness management.

A. Components of SIoT

Accordingly, Fig. 1 compares the main components of a
SNS and of SIoT. Differences in the novel architecture are
shown with bold fonts and dashed contours. Three basic
components can be envisioned:

ID management (ID): to assign an ID that universally
identifies all object categories and to maintain existing object
identification schemes, a simple XML-based protocol can be
implemented, which allows to specify the ID mechanism
adopted other than the ID itself. This system includes at least:
IPv6 addresses, Universal Product Code (UPC), Electronic
Product Code (EPC), Ubiquitous code (Ucode), OpenID, URI.

Object profiling (OP): it includes static and dynamic in-
formation about the object. Objects should be organized into
classes on the basis of the main object features.

Owner control (OC): specific policies need to be defined by
the owner to rule any possible operation the object performs
(information to share, allowed relationships, etc.). To this aim,
different security and access control policy definition lan-
guages already available can be used. Owner control includes
the SNS functionality of the Relation control component.

We foresee the satellite components listed in the following1.
Relationship management (RM): it introduces into the SIoT

the “intelligence” that allows objects to start, update, and

1Social graph is a minor functionality of the SIoT. However, this tool may
still be implemented to allow humans to visualize objects relationships.

Figure 2.3.3.1: Basic components of Social Networks for humans(left) and objects(right) [41]

In the architecture for objects, we can distinguish three basic components:

• ID Management (ID)
• Object Profiling (OP)
• Owner Control (OC)

The ID Management is responsible for assigning appropriate, unique IDs to objects. This
system could be a combination of IPv6 addresses, Universal Product Codes (UPC),
Electronic Product Codes (EPC) or other technologies. The Object Profiling contains static
and dynamic information about the object. This allows object organization into classes,
based on main object features. The Owner Control contains information and policies
defined by the owner, regarding the object’s behavior. The owner is responsible for
deciding what information can be shared and what relationships and with which objects
they can be created. It is understood that this component is in need of existing security and
access control policies.

The satellite components of this architecture are the following:

• Relationship Management (RM)
• Service Discovery (SD)
• Service Composition (SC)
• Trustworthiness Management (TM)
• Service APIs

Relationship Management contains the “intelligence” that allows objects to start, update and
terminate relationship. This component is the main focus of our research. Service Discovery
is responsible for querying the social relationship network to find objects that can provide
services or knowledge. Service Discovery is the analogous of Social Presence in Social
Network Architecture, where humans seek friends and information. Service Composition is
the replacement of the Participation Model. It utilizes object relationships to find and

21

activate a service. Two approaches to service composition are suggested, the reactive and
the proactive approach. Crowd information processing will also be included in this
component, to allow the object to process acquired information to choose the most reliable
answer. Trustworthiness Management is needed to establish reliability of the acquired
information, based on the behavior of the object. This component is strictly related to the
RM component. Various aspects from the social networks can be used in calculating
trustworthiness, such as centrality and prestige. Finally, the Service APIs component is
analogous to the one required in the social networks architecture model. This contains all
the APIs needed to enable the object to perform services.

Based on these components, the social Internet of Things architecture on the server side is
comprised of three layers:

• The Base Layer
• The Component Layer
• Application LayerATZORI et al.: SIOT: GIVING A SOCIAL STRUCTURE TO THE INTERNET OF THINGS 1195

Fig. 2. Architecture for the SIoT: client side (left) and server side (right).

terminate relationships. The selection of which friendship to
accept is based on human control settings. The rules described
in Section II are implemented in this component.

Service discovery (SD): it replaces the Social presence and
is finalized to find which objects can provide the required
service in the same way humans seek for friendships and
information in the SNSs. Indeed, to discover the service, the
object queries its social relationship network.

Service composition (SC): it enables the interaction among
objects and replaces the Participation model. The Service
discovery exploits the object relationships to find the desired
service, which is then activated by this component. Both a
reactive or a proactive approach to service composition are
envisaged. This component will also include the functionality
of crowd information processing, to process the information
obtained from different objects and obtain the most reliable
answer to a query on the basis of different visions.

Trustworthiness management (TM): this is aimed at un-
derstanding how the information provided by other members
has to be processed. Reliability is built on the basis of the
behavior of the object and is strictly related to the RM module.
Trustworthiness can be estimated by well-known SNS notions,
such as centrality and prestige, and, again, built on the basis
of the object social structure we propose.

Service APIs: this component is analogous to the one
required in SNSs.

B. The SIoT architecture

We propose a system architecture made up of three main
layers on the server side (Fig. 2). The Base layer encompasses:
the database for storage and management of data with rele-
vant descriptors, ontologies database, semantic engines, and
communications. The Component layer hosts tools for basic
and satellite component implementation. Interfaces to objects,
humans, and third-party services are in the Application layer.

On the object side, the first architectural layer – named the
Object layer – is where the physical objects are located and
are reached through their specific communication interfaces.
An Object abstraction layer is thus needed to harmonize
the communication of the different devices through common
languages and procedures. In the case of elementary objects,
such as an RFID-tagged object, a gateway is required to

implement this abstraction layer, while for more complex
objects this layer can be implemented in the object itself.

In the third layer, the Social agent is devoted to the
communication among objects and with SIoT servers to update
profile and friendships and to discover/request services from
the social network. Finally, the Service management is the
interface of humans to control the object behavior in the SIoT.

IV. CONCLUSION

In this paper we introduced the novel concept of Social
Internet of Things (SIoT), based on a sort of social relation-
ship among objects, analogously to what happens for human
beings. Currently, we are statistically analyzing the structure of
the SIoT network through simulations that model the mobility
of objects and their relationships. Preliminary results show that
most of SIoT features are similar to those observed in social
networks of humans. Based on the results of this analysis, we
will investigate whether network navigability can be achieved
in SIoT and we will identify techniques in the set up of social
links that can improve navigability.

Possible application scenarios are those where objects share
best practices. For instances, PCs in the same local area
network can establish social relationships that can be used
to find solutions to common setting problems, such as those
related to the configuration of a tricky network printer or an
AP. Similarly, cars of the same brand, model and year can
provide information about possible solutions to frequent and
common mechanical/electrical concerns. In other scenarios,
devices that visit the same geographical area can establish
friendships to exchange useful information on the physical
world. This is the case of handsets that provide data on the
radio coverage to new visitors so as improve their connectivity
service (providing useful information to the user/owner).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of things: a survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] L. Zheng et al., “Technologies, applications, and governance in the
Internet of things,” Internet of Things - Global Technological and
Societal Trends. River Publisher Ed., 2011.

[3] www.internet-of-things-research.eu, “European research cluster on iot.”
[4] J. Kleinberg, “The small-world phenomenon: an algorithmic perspec-

tive,” in Proc. ACM Symposium on Theory and Computing, 2000.
[5] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in

a composable web of things,” in Proc. IEEE PERCOM, 2010.
[6] H. Ning and Z. Wang;, “Future Internet of things architecture: like

mankind neural system or social organization framework?” IEEE Com-
mun. Lett., vol. 15, no. 4, pp. 461–463, 2011.

[7] M. Kranz, L. Roalter, and F. Michahelles, “Things that Twitter: social
networks and the Internet of things,” in What can the Internet of Things
do for the Citizen (CIoT) Workshop at Pervasive, May 2010.

[8] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and
H. Gellersen, “Smart-its friends: a technique for users to easily establish
connections between smart artefacts,” ACM Ubicomp’01.

[9] A. P. Fiske, “The four elementary forms of sociality: framework for a
unified theory of social relations,” Psychological Review, vol. 99, 1992.

[10] D. M. Boyd and N. B. Ellison, “Social network sites: definition, history,
and scholarship,” J. Computer-Mediated Commun., vol. 1-13, 2007.

Figure 2.3.3.2: Architecture of the sIoT: Client Side(left) and server side(right) [41]

The Base layer includes the needed databases and engines. This layer includes the database
for storage and management of data with relevant descriptors, the ontologies database
and semantic engines and communications. The Component layer contains tools for
implementing all components. Interfaces to objects, humans, and third-party services are
in the Application layer.

On the object side, the first architectural layer – named the Object layer – is where the
physical objects are located and are reached through their specific communication
interfaces. An Object abstraction layer is thus needed to harmonize the communication of
the different devices through common languages and procedures. In the case of
elementary objects, such as an RFID-tagged object, a gateway is required to implement this
abstraction layer, while for more complex objects this layer can be implemented in the
object itself. In the third layer, the Social agent is devoted to the communication among
objects and with SIoT servers to update profile and friendships and to discover/request
services from the social network. Finally, the Service management is the interface of
humans to control the object behavior in the SIoT.

22

2.3.4 Relational Models Theory

As mentioned before, the basic idea behind the social Internet of Things is the definition of
a “social network of objects”, analogous to the Social Networks Sites for humans. In order
to achieve that, we need to establish social relationships among objects. The focus of this
research lies in identifying proper object relationships that will allow the objects to achieve
autonomy, by discovering and sharing services and resources on their own.
In order to identify these relationships, we turned to Sociology, Anthropology and
Cognition studies. Alan Fiske’s Relational Models Theory provided helpful insight in this
search. According to Fiske, human relationships and social systems are culture-specific
implementations of just four elementary relational models in various combinations. These
models are presented as [48]:

Communal Sharing (CS)

Communal Sharing is an equivalence relation, in which people attend to something
important they have in common. People in each group are the same in respect to the
matter at hand; outsiders are different. Distinguishing individual identities are socially
irrelevant. Generosity within a Communal Sharing group is not usually conceived of as
altruism due to this shared identity, even though there is typically much behavior which
otherwise would seem like extreme altruism [49]. Examples of Communal Sharing include
nationalism, racism, intense romantic love, indiscriminately killing any member of an
enemy group in retaliation for the death of someone in one’s own group or sharing a meal.

Authority Ranking (AR)

Authority Ranking is a linear hierarchy in which people are asymmetrically differentiated
in the current context. The higher ranked enjoy prestige and privilege and typically have
some control over the lower ranked. However, it is possible for the higher ranked to have
duties of protection and affection for those beneath them. Examples include kings and
princes, military rankings, parents and children, case systems and God’s authority over
humankind. However, it must be stated that manipulation is not considered Authority
Ranking, but is categorized as the Null Relation in which people treat others in non-social
ways [49].

Equality Matching (EM)

Equality Matching is a relationship in which people keep track of additive differences,
with even balance as the reference point. When perfect balance is not maintained, people
calculate how much correction is needed. Examples include the principle of one-person/
one-vote, rotating credit associations, equal starting points in a race, taking turns offering
dinner invitations, and giving an equal number of minutes to each candidate on debates
[49].

Market Pricing (MP)

Market pricing is based on a socially meaningful proportionality, where the ratio may
concern monetary value, utility, efficiency, effort, merit, or anything else. In Market
Pricing, all socially relevant properties of a relationship are reduced to a single measure of
value, such as money or pleasure. Most utilitarian principles involve maximization. An
exception would be Negative Utilitarianism whose principle is the minimization of
suffering. But all utilitarian principles are applications of Market Pricing, since the

23

maximum and the minimum are both proportions. Other examples include rents, taxes,
cost-benefit analyses including military estimates of kill ratios and proportions of fighter
planes potentially lost, tithing, and prostitution [49].

These four basic relational structures can be applied to objects as well. In Communal
sharing relationships for example, equivalence and collectivity membership emerge
against any form of individual distinctiveness. These can be definitely associated with
behaviors of objects that have collective relevance only. This is, for example, the case of
“swarms” of objects for which is only important the service that the whole swarm can
provide to users [41]. Equality matching can characterize the information exchange among
equal objects. Authority Ranking can be viewed in relationships between different levels of
information exchange, for example RFID readers and tags or Bluetooth master and slave
devices. Finally, Market pricing can be viewed as objects forming relationships in order to
gain something. The basis of these relationships is, therefore, mutual benefit.

2.4 COSMOS

2.4.1 What is COSMOS

The COSMOS project (Cultivate resilient smart Objects for Sustainable city applicatiOnS)
aims at enhancing the sustainability of smart city applications, by allowing IoT based
systems to reach their full potential [8]. The project’s goal is to achieve autonomous
evolution of things, making them more reliable and smarter. In order to achieve that,
things will be able to learn based on others experiences, while situational knowledge
acquisition and analysis will make things aware of conditions and events potentially
affecting their behavior. Management decisions and runtime adaptability will be based on
things security, trust, administrative, location, relationships, information and contextual
properties. Data and information management mechanisms are available by COSMOS to
handle the exponentially increasing “born digital” data.

COSMOS enables smart city IoT applications to take full advantage of its technologies,
through three representative scenarios:

• Smart heat and electricity management (London)
• Smart mobility for public transport (Madrid)
• IoT Business Eco-System (Taipei)

2.4.2 MAPE-K Model

In order to achieve self management and autonomy, COSMOS follows the MAPE-K
model. Introduced by IBM in 2006, the MAPE-K loop is used as an autonomic manager.
An autonomic manager is an implementation that automates some management function
and externalizes this function, according to behavior defined by management interfaces
[50]. The autonomic manager is a component that implements an intelligent control loop.
For a system component to be self-managing, it must have an automated method to collect
the details it needs from the system; to analyze those details to determine if something
needs to change; to create a plan, or sequence of actions, that specifies the necessary

24

changes; and to perform those actions. When these functions can be automated, an
intelligent control loop is formed.

The MAPE-K loop consists of four parts that share knowledge:

• The monitor function
• The analyze function
• The plan function
• The execute function

The monitor function provides mechanisms needed to collect, aggregate, filter and report
details collected from a managed resource. The analyze function provides the mechanisms
that correlate and model complex situation such as time-series forecasting. These
mechanisms allow the autonomic manager to learn about the IT environment and help
predict future situations. The plan function provides the mechanisms that construct the
actions needed to achieve goals and objectives, by using policy information to guide its
work. Finally, the execute function provides the mechanisms that control the execution of a
plan with considerations for dynamic updates. Autonomic managers provide sensor and
effector interfaces that can be used by other autonomic managers and other components in
the distributed infrastructure. Using these sensor and effector interfaces enables these
components to be composed together in a manner that is transparent to the managed
resources.

A knowledge source is an implementation of a registry, dictionary, database or other
repository that provides access to knowledge according to the interfaces prescribed by the
architecture. In an autonomic system, knowledge consists of particular types of
management data with architected syntax and semantics, such as symptoms, policies,
requests for change, and change plans. This knowledge can be stored in a knowledge
source so that it can be shared among autonomic managers.

The knowledge stored in knowledge sources can be used to extend the capabilities of an
autonomic manager. An autonomic manager can load knowledge from one or more
knowledge sources, and the autonomic manager’s manager can activate that knowledge,
allowing the autonomic manager to perform additional management tasks (such as
recognizing particular symptoms or applying certain policies). Data used by the
autonomic manager’s four functions (monitor, analyze, plan, and execute) are stored as
knowledge that could be shared among autonomic managers. The knowledge includes
data such as topology information, historical logs, metrics, symptoms, and policies.

25

A
ut
om

at
io
n

Policy

Monitoring Analyzing Planning Executing

M

A

E

P

M

A

E

P

M

A

E

P

M

A

E

P

Analyze Plan

ExecuteMonitor

Knowledge

Symptom

Request for
Change

Change
Plan

Autonomic
Manager

Sensor Effector

Sensor Effector

Figure 2.4.2.1: An autonomic manager [50]

The MAPE-K loop can get all the data needed to achieve an autonomous cycle from the
IoT and at the same time provide to the IoT optimal self managing functionalities.
However, the social approach to the Internet of Things calls for an extension of the MAPE-
K loop model. Two new component are introduced: Social Monitoring (SM) and Social
Analysis (SA) [51].

The Social Monitoring component contains all the main tools and techniques that are
used for the monitoring of the social properties of the things, such as Trust and
Reputation. This component collects, aggregates and distributes monitoring data, in the
form of events, across the decision making components of the collaborating groups. The
Social Analysis component is used for the extraction of complex social characteristics, as
well as models and patterns regarding the behavior and the relations between things.
Social Network Analysis is used in this component.

x The Knowledge level includes problems or detected situations
associated with specific solutions (cases). It gives the VEs the
advantage of learning from previous experiences. A Knowledge
Base (KB) can be shared between VEs with suitable social
characteristics, something that improves the decision making and
leads to the best solution. Moreover, VEs that do not have their
own KB, representing weak devices, take advantage from the KB
of their social group.

x The Wisdom level includes high-level reasoning techniques, such
as CBR and RBR [4], which give to the VEs the ability to reason
and understand their situation and take decisions on their own,
thus producing Knowledge on their own. Things attaining this
level could be characterized as cognitive, intelligent or Wise, as
they have the capacity to acquire, adapt, modify, extend and use
knowledge in order to solve problems.

We focus on the value of experience and experience-sharing.
Different kinds of experience are defined such as Models related to
the Analysis component and Cases related to the Planner (Fig. 2).
Moreover, we support experience sharing giving to a VE the
opportunity to ask for help and find the most suitable solution by
leveraging social features.

3. SOCIAL INTERNET OF THINGS
Things have to operate as social actors. COSMOS, designed as a
Social Internet of Things (SIoT) platform [5], defines, monitors
and exploits social relations and interactions between the VEs, and
uses technologies from the domain of the social media. Social
Network Analysis (SNA) [6] is used to identify local and global
patterns, locate influential entities and examine network dynamics.
In order to manage socialization, we introduce into our control
loop the Social Monitoring and the Social Analysis components.

4. AUTONOMOUS MANAGEMENT
We are going to follow the MAPE-K model [7] as it is very close
to the nature of the IoT management. Our components are:

i. Monitoring (M): collects the details from the managed resources
and correlates them into symptoms that can be analyzed.

ii. Analysis (A): provides the mechanisms to observe and analyze
situations to determine if changes are required. In such a case, it
generates a change request and passes it to the Planner. The
Analysis component contains functionalities such as events-
identification, context awareness, pre-processing mechanisms,
models extraction, Machine Learning techniques etc.

iii. Planner (P): structures the actions needed to achieve goals and
objectives. It constructs adaptation plans based on the results of the

analysis process and passes them to the Executor component. The
main functionality of the Planner is to match events to certain
actions of the VEs. Depending on how “smart” we decide that the
VEs have to be, the Planner evolves accordingly- e.g. it can
provide recommendation services taking under consideration the
input provided by the Social Analysis component too.

iv. Executor (E): Once the Planner has generated an appropriate
plan, some actions may need to be taken to modify the state of one
or more managed resources. The Executor is responsible for
carrying out this series of actions. It executes actions such as IoT-
services calls, M2M communication, experience-sharing, and
sends feedback to the Social Monitoring and to the Monitoring if
the developer has created through his/her application such a loop.

v. Knowledge (K): the place where the KB and other aggregated
data such as topology information, historical logs, metrics,
symptoms, policies and objectives of the VEs, provided by both
the users and COSMOS, are stored. This repository serves for the
initial configuration of the network and guides the operation of all
the other components.

vi. Social Monitoring (SM): contains the main tools and techniques
needed for the monitoring of the social properties of the VEs.

vii. Social Analysis (SA): is used for the extraction of complex
social characteristics of the VEs, as well as models and patterns
regarding the behavior and the relations between the VEs.

5. ACKNOWLEDGMENTS
The research leading to these results is partially supported by the
European Community’s Seventh Framework Programme under
grant agreement n° 609043, in the context of the COSMOS
Project.

6. REFERENCES
[1] Kyriazis, D. and Varvarigou, T. 2013. Smart, Autonomous

and Reliable Internet of Things, 4th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN), Niagara Falls, Canada, 2013. DOI=
http://dx.doi.org/10.1016/j.procs.2013.09.059.

[2] Atzori, L., Iera, A. and Morabito, G .2014. From ‘Smart
Objects’ to ‘Social Objects’: The Next Evolutionary Step of
the Internet of Things” IEEE Communication Magazine,
Networks, vol. 52, no. 1, 2014, 97–105. DOI=
http://dx.doi.org/10.1109/MCOM.2014.6710070.

[3] COSMOS project: http://iot-cosmos.eu/
[4] Dutta, S. and Bonissone, P. P. 1993. Integrating case- and

rule-based reasoning. International Journal of Approximate
Reasoning, Volume 8, Issue 3, May 1993, 163–203, Elsevier.

[5] Atzori, L., Iera, A. , Morabito, G. and Nitti, M.2012. The
Social Internet of Things (SIoT) – When social networks meet
the Internet of Things: Concept, architecture and network
characterization. Computer Networks, Volume 56, Issue 16,
14 Nov. 2012, 3594–3608, Elsevier. DOI=
http://dx.doi.org/10.1016/j.comnet.2012.07.010.

[6] Wasserman, S. and Faust, K. 1994. Social Network Analysis:
Methods and Applications”, Structural Analysis in the Social
Sciences, Chambridge Univeristy Press.

[7] IBM.2005.An architectural blueprint for autonomic
computing. In: Autonomic Computing White Paper.

Figure 2. The COSMOS MAPE-K loop.

.

Cognitive Social Situational-aware

A

P

SA

SM

E

M

Knowledge Component

Figure 2.4.2.2: The COSMOS MAPE-K loop [52]

26

2.4.3 Knowledge Management: The DIKW Pyramid

The Internet of Things will cause a major flood of real world information to the virtual
world. The use of sensors, connected by computer systems, software and services, will
make things more and more aware of what happens in the real world, in real time,
everywhere. Therefore, there is a need for data and information management mechanisms
to efficiently handle the exponentially increasing “digital born” data. This transformation
from raw data into knowledge is one of the biggest challenges behind the Internet of
Things. There is an entire cycle of data processing up to the generation of cooperative
knowledge networks. These knowledge networks can feed complex hierarchical feedback
control loops, since sensorial data is very important for decision making. Decisions made
on the virtual side can be reflected on the real environment helping us to better use our
resources. Hence, a first step to designing the general architecture of a project on the IoT
domain and realizing its capabilities and chances for evolution is the definition of its own
Knowledge Management (KM) cycle [51].

Knowledge management is the process of capturing, developing, sharing and effectively
using knowledge and summarizes all activities with the goal of using knowledge in a
more efficient and effective manner, achieving certain objectives. A Knowledge Pyramid,
the DIKW Pyramid [53], is introduced as a way to represent the structural and functional
relationships between Data, Information, Knowledge and Wisdom [52].

• The Data level includes all the raw-data which are collected from things, through their
IoT services

• The Information level includes all the information produced by analyzing the raw data.
In the Information level, things are considered situational aware.

• The Knowledge level includes problems or detected situations associate with specific
solutions (cases). In this level, things acquire the power of learning from previous
experiences. This is achieved with the use of a Knowledge Base (KB), which can be
shared between things with suitable social characteristics. This base is used to improve
the decision making and lead to an optimal solution. It is also possible for things without
a KB to take advantage of the KB of their social group.

• The Wisdom level includes high-level reasoning techniques, such as Case Based
Reasoning (CBR). This allows things to reason and understand their situation and make
independent decisions. In this level, things are characterized as cognitive, intelligent or
Wise, because they now have the ability to acquire, adapt, modify, extend and use
knowledge in order to solve problems.

Achieving Autonomicity in IoT systems via Situational-
Aware, Cognitive and Social Things

Orfefs Voutyras*
+30-2107722559

orfeasvoutiras@gmail.com

Achilleas Marinakis*
+30-2107722559

achmarin@mail.ntua.gr

Spyridon V. Gogouvitis*
+30-2107722559

spyrosg@mail.ntua.gr

Theodora Varvarigou*
+30-2107722484

dora@telecom.ntua.gr

*National Technical University of Athens, Iroon Polytechniou 9, Zografou 15773, Athens, Greece

ABSTRACT
The Internet of Things (IoT) will exponentially increase the scale
and the complexity of existing computing and communication
systems. In a world of multi-stakeholder information and assets
provision on top of millions of real-time interacting and
communicating Things, autonomicity is an imperative property and
a grand challenge. Autonomic Things will allow systems to self-
manage the complexity, the dynamicity and the distribution of the
IoT. In order to make Things able to manage themselves and
contribute to the global self-management network, we have to
empower them with mandatory properties like situational-
awareness, knowledge, smartness and social behavior. In this paper
we present the approach that the COSMOS project introduces in
order to enable Things to evolve and act in a more autonomous
way, becoming more reliable and smarter.

Categories and Subject Descriptors
I.2.6 [Learning] (K.3.2) - Knowledge acquisition, H.3.4 [Systems
and Software] - Distributed systems.

General Terms
Algorithms, Management, Design.

Keywords
Internet of Things; Autonomous Management; Knowledge
Management; Social Internet of Things; COSMOS project.

1. INTRODUCTION
Autonomicity provides a system with fundamental independence,
essential to decide when it should or can act. The self-management
depends strongly on how much situational-aware, cognitive, smart
and social the Things are [1]. Smart objects able to communicate
and to discover their situation are already available, while various

proposals aimed at giving social-like capabilities to Things exist
[2]. However, the IoT vision can be fully achieved only with the
integration of available technologies and new inspired mechanisms
and models that will make objects able to cooperate in an open and
reliable way.

COSMOS [3] will provide a framework for the decentralized and
autonomous management of Things based on service-, interaction-,
location- and reputation-oriented principles, inspired by social
media technologies. It supports real-virtual world integration by
representing Things as Virtual Entities (VEs). VEs are described
by ontologies and are provided with the key features of a social
intelligent entity. They have social characteristics, can acquire
knowledge, make plans, explain observations etc. Moreover, they
expose IoT-services that can be reflected on the real environment.

2. KNOWLEDGE MANAGEMENT
The IoT will create a flood of real world information to the virtual
world. The transformation of this huge amount of raw data into
knowledge is one of the biggest challenges. A first step to
designing a general architecture and realizing its capabilities and
chances for evolution is the definition of its own Knowledge
Management cycle. The COSMOS DIKW pyramid is presented:

x The Data level includes all the raw-data which are collected from
the VEs through their IoT-services.

x The Information level includes all the information produced by
analyzing the raw-data. Things attaining this level are
characterized as situational-aware.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
PCI '14 , Oct 02-04 2014, Athens, Greece
ACM 978-1-4503-2897-5/14/10.
http://dx.doi.org/10.1145/2645791.2645854

Figure 1. The COSMOS DIKW Pyramid.

.

Data

Information

Knowledge

Wisdom know-Best

know-How

know-What

know-Nothing

learning

planning

analysis

monitoring

Figure 2.4.3: The COSMOS DIKW Pyramid [52]
27

Chapter 3: Defining the Main
Ontologies

3.1 Introduction

The COSMOS project defines three main ontologies for the social Internet of Things:

a) Virtual Entities
b) Applications
c) Users

This chapter focuses on providing a basic understanding for each ontology and its
necessity to the social Internet of Things, as well as defining the basic properties needed to
achieve proper function and interoperability.

3.2 Virtual Entities

3.2.1 Introduction

Undeniably, the main component of the social Internet of Things are the Things; the objects
that are able to communicate with each other and form a social network, in order to
exchange information. In order to create this network, a transition from the real world to
the virtual world is needed. The COSMOS project represents Things and groups of Things
of the real world via their virtual counterparts: Virtual Entities (VEs). VEs may have their
own goals and be equipped with an internal logic in order to achieve them. They acquire
perception through accessing sensor readings via IoT-services and can impact their
environment or undertake physical actions using actuators via other IoT-services. Finally,
VEs may interact with each other for various purposes such as collaboration, cooperation
etc. [51]. VEs are defined by their basic properties. These properties are used to
characterize the VE, by providing enough information to achieve a full description of the
real world object to each virtual entity. It is possible for users to add user-based properties
to their objects’ VEs, allowing for further customization.

3.2.2 VE Properties

➣ Domain

The Domain property is responsible for matching the VE to a given sIoT Domain. It is the
first step into identifying the different groups into which VEs are organized. The Domain
Property plays an important role in various Object Relationships. It is the main property
required for the Domain Object Relationship and is also used in the Conflict of Interest Object
Relationship to determine and resolve conflicts among VEs. The COSMOS platform should
give the developer the option to choose from a variety of diverse domains. As mentioned

28

in the specific chapter, possible choices include Traffic Congestion, Air Pollution, River
Floods, Smart Grid, Meteorological Station Network, Radiation Levels, Animal Tracking,
Supply Chain Control, Intrusion Detection Systems and Patients Surveillance. These
domains could also provide information for further social analysis. VEs must be associated
with at least one domain. Developers will have access to the full list of available domains
and may be able to make suggestions of missing domains as well. By dividing our
ontology's scope into domain-specific parts we also achieve a functioning segregation of
available IoT-services [51]. This means that, if a certain VE exposes services with a
multitude of purposes, intra-VE communication will be more effective as far as both
discovery and service recognition are concerned. Therefore, if a certain VE desires a look-
up of services pertaining to traffic management, domain identifiers can be used to limit the
time needed for a query response.

➣ Physical Entity

The Physical Entity property indicates the type of the actual physical entity represented by
the VE. Although relations with different types of Physical Entities are not limited by the
platform, VEs that share the same Physical Entity should also be able to communicate and
form relationships easier than unrelated ones. Accepted values of the Physical Entity
property must be clear and indicative of the actual nature of the object to avoid confusion.
Typical Values include “BusStop”, “TrafficLight”, “Bus”, “House” etc.

Location: Mobile
Owner ID: 123456
Physical Entity: Car

Domain: Traffic Con.

Physical Entity: Sedan

Location: Mobile
Owner ID: 123456

Domain: Traffic Con.

Figure 3.2.2.1: Acceptable and non acceptable Physical Entities examples

➣ Location

The Location property is used to identify the nature of the object with regards to location
setup. This property is used to distinguish moving objects from stationary ones and is
important in order to determine the capacity of the VE in terms of accessibility. The
location property can take the following values [51]:

• Fixed: This value is used for entities that are established in a permanent structure and
not intended for portable operation. Examples of fixed entities include buildings such as
houses, offices and hospitals

• Portable: This value is used for entities that are fitted in a temporary location. These
entities do not have a permanent structure but may be stationary for long periods of time
as well. Examples of portable entities include devices such as laptops.

29

• Mobile: This value is used for entities that can move and can therefore change their
position frequently and continuously. These types of entities do not remain stationary for
long periods of time but are able to relocate numerous times in a short amount of time.
A prime example of mobile entities include mobile phones.

➣ Geo-location

The Geo-location property is the property that matches a virtual entity to the location of its
physical entity. This property contains the necessary coordinates to determine the location
of the VE on the map, in terms of Latitude and Longitude. Geo-location variables are
represented in the ontology through the use of the “hasGeoLat” and “hasGeoLon” data-
type properties that use a range of float numbers to accurately store latitude and longitude
respectively. The Geo-location property is heavily used in location based relationships
such as Co - Location Object Relationship, where proximity of objects is determined by
their relative positions with regards to predefined geographic boundaries. Accuracy of the
geo-location property is desirable, depending on the accuracy levels needed by
applications to establish location based relationships. For some large scale applications,
accuracy is not a priority and will not greatly affect the validity of the formed
relationships. However, some applications rely on detail, which means that the smallest
error on accuracy can lead to a completely different network of location based
relationships.

➣ Dependability Indexes

The Dependability Indexes are used to determine if a VE is dependable. VEs seek
information from highly dependable VEs that can be reliable, trustworthy and reputable.
The social ontology contains three social indexes for this purpose[51]:

• Reliability Index: An absolute indicator of the performance of the physical entity that
quantifies the efficiency of its sensors and actuators functionalities, relative to their
normal operation. The index is represented by the data-type property “ReliabilityIndex”
which contains a float from 0 to 1.

• Trust Index: A counter which states how many times a VE has successfully shared its CB
and/or IoT-services. Coupled with the concept of feedback and through refinement of its
calculation, we can use this index as a means to simulate social mobility in the platform,
as Trust will be one of the most important components of friendship recommendation.
The index is represented by the data-type property “TrustIndex” which contains an
integer.

• Reputation Index: A counter which monitors how many times the VE has received a
request (how many “hits” it has). It is a cumulative and comparative indicator. The index
is represented by the data-type property “ReputationIndex” which contains an integer.

➣ Owner ID

The Owner ID property represents the physical owner of a VE. This property is used to
match a VE to a user that is considered its owner. A physical owner can be either an
individual or a group of individuals, such as an organization. The Owner ID is important
in establishing user based relationships, such as the Ownership Object Relationship.

30

Location: Mobile
Owner ID: 123456
Physical Entity: Car

Domain: Traffic Con.
Location: Portable
Owner ID: 123456
Physical Entity: Lamp

Domain: Home Automation

Location: Fixed
Owner ID: 123456
Physical Entity: House

Domain: Home Automation
Location: Portable
Owner ID: 123456
Physical Entity: Laptop

Domain: Home Automation

Figure 3.2.2.2: VEs owned by the same user

➣ VE ID

A unique Identifier of each Virtual Entity. VE ID can be a sequence of letters and numbers,
uniquely assigned to each VE once they are first registered with the platform. This
property is needed to identify VEs for direct VE communication and VE discovery
purposes. The VE ID is used when adding a VE to certain types of VE Lists, such as the
Followees and Enemies Lists, or an application’s List of VEs.

➣ Simple Users List

The Simple Users List property is a list that contains a number of User IDs. These User IDs
represent the Simple Users that are currently using the object. This list is used to match the
VE to its users. The Simple Users List is necessary in establishing user based relationships
such as the Usage/Interaction Object Relationship.

➣ Followees List

The Followees List property is a list that contains a number of VE IDs. These VE IDs
represent the VEs that are currently tracked by the VE. This list is used to match the VE to
other VEs that have been determined to be dependable. Following another VE is a way of
establishing friendship between the two VEs. Following a VE can be made either by user
preference, when the user decides to manually add a certain VE to the Followees List, or
by recommendation from the platform. Recommendations take into consideration existing
followees as well as the three Dependability Indexes (Reliability Index, Trust Index and
Reputation Index) in order to recommend similar VEs. The Followees List is necessary in
establishing VE based relationships such as the Followers/Followees Object Relationship.

31

➣ Enemies List

The Enemies List property is a list that contains a number of VE IDs that represent the VEs
that are currently considered hostile by the VE. This list is used to keep track of VEs that
have been determined to be untrustworthy. Marking another VE as an enemy can be made
either by user preference, when the user decides to manually add a certain VE to the
Enemies List, or by recommendation from the platform. Recommendations take into
consideration existing enemies as well as the three Dependability Indexes (Reliability
Index, Trust Index and Reputation Index) in order to recommend similar VEs with low
indexes. The Enemies List is necessary in establishing VE based relationships such as the
Enemy Object Relationship.

Location: Mobile
Owner ID: 123459
Physical Entity: Car

Domain: Traffic Con.
Location: Portable
Owner ID: 123432
Physical Entity: Lamp

Domain: Home Automation

Location: Fixed
Owner ID: 223435
Physical Entity: House

Domain: Home Automation
Location: Portable
Owner ID: 123529
Physical Entity: Laptop

Domain: Home Automation

Location: FIxed
Owner ID: 123456
Physical Entity: TrafficLight

Domain: Traffic Con.

Followees Lst: VE111,VE222
Enemies Lst: VE333,VE444

VE ID: VE111 VE ID: VE333

VE ID: VE444VE ID: VE222

Figure 3.2.2.3: Enemies and Followees of a VE

➣ List of Applications

The List of Applications is a list containing all the applications that the VE is currently
associated with. A VE can be associated with more than one applications at a time,
depending on resources, availability and application needs. The List of Applications can
be used to identify groups of VEs, via their application associations. VEs working in the
same application must be able to communicate easier than unrelated objects in different
applications. The List of Applications can be used in establishing VE based relationships
such as the Co - Work Object Relationship or the Parental Object Relationship, as well as in
application based Object Relationships such as the Replacement Object Relationship.

➣ List of IoT Services

The List of IoT Services is a list containing all the IoT services that the VE can offer. A VE
can offer a variety of IoT services depending on its description and nature. The List of IoT
Services is important in informing other VEs in search of these services that this VE does

32

indeed support them. IoT Services play an important part in the knowledge flow in the
social Internet of Things, as well as in the sharing of services among VEs. The List of IoT
Services can be used in establishing application based relationships such as the
Replacement Object Relationship.

➣ Financial Packages

The Financial Packages property is used to match a VE with its financial information,
regarding applications that offer a payment model in the form of financial packages.
Financial packages are used to certify if and what type of benefits a VE has been awarded
by the application administration. Examples of benefits include extended cloud storage
space, additional resources, access to limited material or priority in service. The Financial
Packages property is a list containing pairs of applications and the financial package the
VE has acquired for the corresponding application. Possible values of Financial Packages
are determined by the application and will be discussed in the following sections.

Domain: Traffic
Congestion

Physical Entity:
Car

Location: Mobile

Geolocation:
hasGeoLat: 37.978377
hasGeoLon:23.782707

Owner ID:
U1234125

VE ID: VE34343

Followees List:
VE34342, VE3521

Enemies List:
VE34846, VE3223

List of
Applications:
A2345, A2454

List of IoT
Services

S345,S589

Financial Packages:
{A2345, Basic} ,

{A2454, Premium}

Simple Users List:
U12345, U87654

Figure 3.2.2.4: VE Properties

3.3 Applications

3.3.1 Introduction

Another significant ontology in the social Internet of Things regards Applications. An
application can be defined as a set of tasks, activities or goals that take place in the social
Internet of Things. Applications are created by Users and are carried out by Virtual
Entities. Each VE is assigned to a number of applications in the sIoT and is responsible for
fulfilling a number of tasks and activities for those applications. A notable example of an
application is a City Waste and Recycling Management Application, which consists of
tasks for cleaning the city and taking care of recycling. Examples of VEs participating in
such an application include garbage disposal trucks or recycling dumpsters. These VEs are
responsible for carrying out the necessary tasks for achieving the goal of the application,
such as collecting garbage from dumpsters, or reporting on the capacity of each dumpster.

33

Applications are defined by their basic properties. These properties are used to provide
enough information to achieve a full description of the application and its goals. It is
possible for users to add user-based properties to their applications, allowing for further
customization.

3.3.2 Application Properties

➣ Application ID

A unique Identifier of each application. Application ID can be a sequence of letters and
numbers, uniquely assigned to each application once they are first created in the social
internet of things. This property is needed to identify applications as well as aid in
application discovery. The List of Applications VE property contains a list of Application IDs
that match the VE to the applications it has joined.

➣ Application Info

The application Info property is introduced to identify basic information regarding the
application. This information is used to shape the application’s purpose in the social
internet of things and provide useful information to users aiming to register their VEs to
the application. The Application Info property consists of the following:

• Application Description: A brief description of the application. Application description
is set by the creator of the application and is used to inform other entities in the network
of the application’s identity. This description must be brief and cochise, to avoid user
misinformation.

• Application Duration: The type of the time duration of the Application. Duration of an
application can be a fixed period of time, in which case this property contains the value
of the duration formatted properly to display years, days, hours, minutes, seconds.
Duration of an application can also be open, in which case no time limit has been
assigned to the application and the value of the property is set to Open.

• Application Start Date: The date that the application was initialized. The creator of an
application is responsible for the initialization of the application. All applications must
have a valid Application Start Date upon their creation.

• Application Expiration Date: The date that the application will be terminated. This
property is dependent on the Application Duration property. If the application has been
configured with a fixed period of time in mind, then this property contains the date that
the application will come to an end. On the contrary, applications configured with an
Open application duration do not have an expiration date. This property is set to Open
instead, in this case.

• Application Size: The size of the application. Size is measured in the number of VEs that
is involved with the application. This property can be used as a measurement of
magnitude among application, as well as statistics and grouping purposes.

• Application Goals: Applications are usually created by their developers with certain
goals in mind. This property is used to document those goals and monitor the
application progress, in terms of accomplished goals, throughout the duration of the
application. Application goals are set by the creator of the application. Automating

34

monitoring of goal completion can be a challenge, as there is no way of communicating
this quantity. Developers must be responsible for monitoring goals and determining if a
goal is completed or not.

➣ List of VEs

This property is a list containing all the VEs that are currently associated with the
application. This list is dynamic, as VEs join and leave applications constantly. The List of
VEs contains the VE IDs of these entities. This property is necessary in establishing
application based relationships such as the Co - Work Object Relationship as well as VE
based relationships such as the Parental Object Relationship.

➣ Head VE

The Head VE property is used to identify a Virtual Entity that has elevated authority over
the rest of the VEs of the application. This authority allows the Head VE to control and
guide the group of VEs, when needed. This property must be configured by the creator of
the application and contains the VE ID of the chosen Head VE. The Head VE is necessary
in establishing the VE based Parental Object Relationship.

➣ Importance Table

This property is a table that contains all the available domains sorted based on priority.
Priority is established by the developer of the application during its creation. Developers
are given the list of available domains and are responsible for categorizing these domains
in priority classes. The number and the size of classes that are created are entirely up to the
developer as well. The importance table is needed to introduce the element of hierarchy
among domains. This hierarchy plays an important role in relationships where resource
sharing creates deadlocks among objects aiming for limited resources. The Importance
Table is used to resolve conflicts as witnessed in the application based Conflict of Interest
Object Relationship.

➣ Financial Packages Table

This property is a table that contains all the available financial packages, sorted based on
priority. Financial packages are used to introduce the use of economic models by
applications. Some applications offer a choice of free or paid packages that can offer
various types of enhancements, such as access to limited content or priority in shared
resources. Financial packages are configured by the developer of the application who is
also responsible for confirming the purchase of these packages by VEs. This property
plays an important role in relationships where resource sharing creates deadlocks among
objects aiming for limited resources. The Financial Packages Table is used to resolve
conflicts as witnessed in the application based Conflict of Interest Object Relationship.

35

Importance Table

Class A
eHealth, Security &

Emergencies

Class B
Smart Cities

Class C
Home Automation, Logistics

Financial Packages Table

Premium
 Basic

Insufficient

Figure 3.3.2: Example of Importance and Financial Packages Tables

➣ GeoBoundaries

This property is used to identify the geographical boundaries inside which the application
is operated and is considered valid. The GeoBoundaries is a list of coordinate pairs that are
used to map a certain area. The creator of the application is responsible for the correct
input of those geographical boundaries. GeoBoundaries play an important role in location
based relationships. The Co - Location Object Relationship relies heavily on
GeoBoundaries to determine proximity among objects of an application.

➣ Creator ID

The Creator ID contains the User ID of the user responsible for creating the application.
This property is used to match users to their applications and can be used for statistics and
grouping purposes.

3.4 Users

3.4.1 Introduction

Autonomy among objects can only be established when we eliminate the need of human
involvement in the Internet of Things. Objects are able to acquire knowledge and become
“wise”, by having the ability to use the acquired knowledge to make decisions by
themselves. A basic component, therefore, for achieving autonomy, is the knowledge flow
that is created through the social Internet of Things. The goal of the sIoT is to enable
communication between objects and not users.

It is understood that in the Internet of Things, the desired role of human users is non
existent. This, however, cannot be true, as with all systems, the presence of users is, to
some extent, necessary for various reasons. The presence of special kinds of users called
network administrators is common practice in computer networks. These users are
responsible for maintaining the network by monitoring traffic. Security is also another
aspect that needs user interference, with moderators needed to inspect suspicious traffic
and decide if content violates rules of conduct.

Human users also play a part in the formation of some of the proposed relationships.
Human interaction with objects is needed in the calculation of relationships regarding
ownership and usage of objects. Users need to report which objects are being owned or

36

currently used by them, as objects are not able to identify owners and users by themselves.
Users are also responsible with associating their objects with the available domains and
applications that are offered in the social Internet of Things.

Another aspect of human involvement that can be found in the sIoT is actual relationships
that users have in their human network. Although it has been stated that social
relationships need to be established among things and not as an outcome of the social
network of humans, users have the option to involve some of their social network
elements to the social Internet of Things. Through the interaction with other people, users
develop social relationships in the form of friends and enemies. When someone labels a
person as a friend, then it is understood that a level of trust is established. People tend to
seek advice from their friends, as well as other notable figures that they consider
trustworthy. In the same context, an enemy is a person that cannot be trusted. Users have
the ability to translate these two relationships in the object space, by being involved in the
formation of similar object relationships.

3.4.2 Types of Users

We can identify three types of users in the social internet of things. The first type of user is
called administrator. An administrator is responsible for matters concerning maintenance,
security and observation. In order to achieve this, the administrator is given a high level of
permissions and privileges, as opposed to other types of users. However, administrator
power is properly distributed to ensure information and user data privacy. Two other
types of users are called owner and simple user. As the name suggests, an owner is a user
that owns one or more objects that can be found in the social Internet of Things. A simple
user, on the other hand, is any user that interacts with one or more objects that can be
found in the sIoT. The main difference between owners and simple users is that owners
have more power over the objects they own, in terms of permissions. Characterization of
user type is not exclusive. An owner of an object can also be a simple user of other objects
and vice versa. All types of users have the ability to create new applications, define their
characteristics and properties and add, invite or expel VEs from the application they
created.

Administrators

Owners

Simple Users

Figure 3.4.2: Hierarchy of types of users

37

3.4.3 User Properties

The properties of each user are the following:

User ID: A unique user Identifier of each user. User ID can be a sequence of letters and
numbers, uniquely assigned to each user once they first interact with the social Internet of
Things. This property is needed to identify users as well as offer a level of privacy, as the
full name is never involved in the formation of relationships. The User ID is important for
the ownership and usage/interaction relationships, as well as the followers and enemies
relationships.

Full Name: The full name of the user. This information is used to match a User ID to a user
name and facilitate the search of friends or enemies. As it is sensitive information, it is
never involved in the knowledge flow. User ID is involved instead.

Email: The email of the user. This information is used for registration, identity verification
and communication purposes.

Sex: The sex of the user, i.e male or female. Another type of identifier. Can be used for
statistics or grouping purposes.

Date of Birth(DoB): The date of birth of a user. Can be used for statistics, grouping
purposes or age restriction of services.

Profile Image: An image of the user. This is mainly used for identification purposes
during the search of friends or enemies.

Types of User(ToU): The type or types that the user has on the social Internet of Things. A
user can either be an administrator, an owner, a simple user, or a combination. Can be
used for statistics or grouping purposes.

Of the above properties, only the User ID is actively involved in the formation of
relationships. The basic user info (full name, email sex, DoB, profile image and ToU) offer
supplementary information about the user and are optional.

User ID: 124285
EMAIL: j.doe@mail.com
FULL NAME: John doe
SEX: MALE
DoB: 01.01.86
ToU: Owner, simple user

Profile Image

Figure 3.4.3: User Properties

38

Chapter 4: Relational Models and
Hierarchy
4.1 Relational Models

4.1.1 Introduction

This chapter is dedicated to presenting the proposed Relational Models that will serve the
social aspect in the social Internet of Things. These are:

• Ownership Object Relationship
• Usage/Interaction Object Relationship
• Domain Object Relationship
• Followers/Followees Object Relationship
• Enemies Object Relationship
• Parental Object Relationship
• Co - Work Object Relationship
• Conflict Object Relationship
• Replacement Object Relationship
• Co - Location Object Relationship

For each of the above Object Relationships, information regarding characteristics,
requirements for formation, RMT elements, challenges and motivation are provided, along
with detailed examples of scenarios.

4.1.2 Ownership Object Relationship

The Ownership Object Relationship is a simple relationship which is established between
objects that share the same owner. The owner of an object is defined as the user who has
full access to the object, regarding its use, maintenance and user permissions. Although
many users can have various levels of access to the referred object, only the owner can at
any point have full control of the object. Typical examples of owners include the
administrator user of a computer or the owner of an automobile. In these examples,
although other users can use the objects, in this case the computer, or the car, some
operations are reserved only for the owner. Ownership is typically established at the time
of purchase of the object, where certain paperwork certifies the owner. A high level of
security is offered to the owner, in the form of passwords or car keys, for the above
examples.

The Ownership Object Relationship is primarily a user based relationship. This means that
the users play an important role in the formation of these kinds of relationships. The less
frequent change of owners of an object makes the relationship a more static relationship.
This means that ownership relationships are not subject to frequent changes and have a
longer duration than other types of relationships. This duration also makes the
relationship more reliable than others, as there is less room for errors during its
calculation. The Ownership Object Relationship is a symmetric relationship, meaning that
if an object has an ownership relationship with another object, then the same applies for
the second object. In terms of Relational Models Theory, the Ownership Object

39

Relationship integrates two of the four basic relational structures, Equality Matching and
Authority Ranking [54] .

The main property that is needed to establish an ownership relationship between objects is
the Owner ID. The Owner ID is an identification that matches the object to the user that
owns it and is assigned to the Virtual Entity of the object at the beginning of ownership.
This property can be changed only if and when the object changes owners. Calculating the
relationship is fairly trivial; if two Virtual Entities share the same Owner ID, then they
form an ownership relationship. The matching between objects and owners is done with
the use of the User ID. The User ID of the user who owns an object is assigned to the
Owner ID of the object.

The motivation behind this relationship lies in the need of knowledge flow between
objects that share the same owner. Through interaction with the owner and with the use of
sensors, objects are able to acquire information that could prove useful to the other objects
that are owned by a user. Missing information is a common problem for objects that are
fairly “young” and haven’t yet acquired a lot of information on their own. Through the
ownership relationship, however, these objects can accelerate the process of achieving
autonomy by filling the missing information through querying other objects.

A minor challenge regarding this relationship regards the need of user involvement. The
user needs to be actively involved with the object, in order be registered as its owner. Up
to this point there has not been any way for objects to detect their owners by themselves,
without the interference of humans. However, this is a fairly trivial challenge, as a well
designed interface can facilitate this procedure of registration. Moreover, the user
involvement begins and ends at the registration level, which makes user involvement not
essential for objects to achieve autonomy in the network. After the user has registered his/
her objects, this relationship needs no more information from the user, in order to be
established.

A simple IoT scenario regarding the Ownership Object Relationship is the following. John
and Mary are working for the same company and have adjacent offices on the same floor.
Both John and Mary have recently bought various IoT enabled lamps, which are equipped
with sensors to measure the level of brightness in the vicinity. These lamps can offer an IoT
service in the form of adjusting their brightness to their users’ needs. Both of them have
installed these lamps at their houses. Through the sensors and the frequent adjustment by
their users, these lamps have “learned” to adjust their brightness based on their owners
preferences and the brightness of the room they are in. John decides to buy one more lamp
for his office. Once installed, the office lamps establishes an ownership relationship with
John’s home lamp and is quick to adjust its brightness according to John’s preferences.
Once Mary decides to install the same type of lamp in her office, this lamp will establish
an ownership relationship only with Mary’s home lamp, as only these lamps share the
same Owner ID.

The above scenario is displayed in the figure below, where VE1 and VE4 are John’s home
lamp an office lamp respectively, and VE2 and VE3 are Mary’s home and office lamps.

40

VE4

VE1 VE2

VE3

FULL NAME: John doe
User ID: 124285

FULL Name: Mary doe
USER ID: 124286

Owner ID:
124285

Owner ID:
124285

Owner ID:
124286

Owner ID:
124286

Figure 4.1.2: Ownership Object Relationship scenario

4.1.3 Usage/Interaction Object Relationship

The Usage/Interaction Object Relationship is similar to the ownership relationship, with a
notable difference in the types of users that take part in its creation. This relationship is
established between objects that share a common simple user. A simple user of an object is
defined as the user who has partial access to the object, regarding its use, maintenance and
user permissions. Simple users can have various levels of access to the referred object,
however the extent of this access is decided only by the owner, who has full control of the
object. Typical examples of simple users include a guest user of a mobile phone or the user
of car rental service. In these examples, although simple users do not own these objects, in
this case the phone, or the car, some operations are made available to them by the owner.
Usage is typically established in the form of an agreement with the owner or by registering
and logging in to a service . A high level of security is offered to the simple users as well.

The Usage/Interaction Object Relationship is primarily a user based relationship. This
means that the users play an important role in the formation of these kinds of
relationships. The frequent change of active users of an object makes the relationship a
more dynamic relationship. This means that these relationships are subject to frequent
changes and have a shorter duration than other types of relationships. However, this
relationship is more reliable than others, as there is less room for errors during its
calculation, a trait shared with the ownership relationship. The usage/interaction
relationship is a symmetric relationship, meaning that if an object has a usage/interaction
relationship with another object, then the same applies for the second object. In terms of
Relational Models Theory, this relationship integrates two of the four basic relational
structures, Equality Matching and Authority Ranking.

The main property that is needed to establish a usage/interaction relationship between
objects is the Simple Users List. The Simple Users List is a list containing all the User IDs
of simple users that are actively using the object. This property can be changed in two
ways; when new simple users acquire access to the object, in which case their ID is added
to the list, or when a user opts out of using the object, in which case their ID is deleted
from the list. Calculating the relationship is fairly trivial; if two Virtual Entities share a
simple user, then they form a usage/interaction relationship.

The motivation behind this relationship lies in the need of knowledge flow between
objects that share simple users. Through interaction with these users and with the use of

41

sensors, objects are able to acquire information that could prove useful to the other objects
that are used by the same simple user. Missing information is a common problem for
objects that are fairly “young” and haven’t yet acquired a lot of information on their own.
Through this relationship, however, these objects can accelerate the process of achieving
autonomy by filling the missing information through querying other objects. In contrast to
the ownership relationship, the usage/relationship relationship is a more flexible
relationship, because of the frequency with which users alternate between objects as well
as the volume of objects a simple user interacts with.

A minor challenge regarding this relationship regards the need of user involvement. This
has been previously presented for the ownership relationship as well.The user needs to be
actively involved with the object, in order be registered as its simple user. Up to this point
there has not been any way for objects to detect their simple users by themselves, without
the interference of humans. However, this is a fairly trivial challenge, as a well designed
interface can facilitate this procedure, much like the registration for the ownership
relationship. Moreover, the user involvement begins and ends at this level, which makes
user involvement not essential for objects to achieve autonomy in the network. After the
user has been declared an active user for his/her objects, this relationship needs no more
information from the user, in order to be established.

A simple IoT scenario regarding this relationship is the following. Bob lives in Greece and
drives an IoT enabled vehicle. This vehicle is equipped with sensors that gather
information regarding Bob’s driving habits, as well as various other types of information.
Bob is required by his employer to travel to Italy for six months. On his first day in the
country, he rents a new car, IoT enabled as well. By logging in, the new car is able to
establish a usage/interaction relationship with the first car and get information regarding
Bob’s driving habits from the other car. When Bob is required to go to France for a few
days, another rented car can follow the same process as the previous one to instantly get
the information from the previous vehicles that Bob has used.

VE2: Bob's rental in Italy VE3: Bob's rental in France

VE1: Bob's vehicle in Greece
Figure 4.1.3: Usage/Interaction Object Relationship scenario

42

4.1.4 Domain Object Relationship

The Domain Object Relationship is another basic relationship that is established between
objects that share the same domain. As detailed in previous chapters, domains are
separated into the following main categories:

• Smart Cities
• Smart Environment
• Smart Metering
• Security & Emergencies
• Retail
• Logistics
• Home Automation
• eHealth
• Smart Animal Farming
• Smart Water
• Smart Agriculture

These categories, along with their numerous sub-categories, offer a diverse selection for
object identification. Examples of objects in the “Waste Management” domain, for
example, include smart garbage collection vehicles and smart garbage bins. Domain
characterization is usually established by owners or users of the object, who are given a
list of domain options to choose from when they set up their objects. The list of domains
can be extended with new domain suggestions from users.

The domain relationship is primarily a user based relationship. This means that the users
play an important role in the formation of these kinds of relationships. Domains are
usually declared at the very beginning. The less frequent change of domains of an object
makes the relationship a more static relationship. This means that domain relationships
are not subject to frequent changes and have a longer duration than other types of
relationships. This duration also makes the relationship more reliable than others, as there
is less room for errors during its calculation. The domain relationship is a symmetric
relationship, meaning that if an object has a domain relationship with another object, then
the same applies for the second object. In terms of Relational Models Theory, the domain
relationship integrates two of the four basic relational structures, Equality Matching and
Communal Sharing.

The main property that is needed to establish a domain relationship between objects is the
Domain property. The Domain property is an identification that matches the object to a
certain predefined domain. This property can be changed only if and when the object
changes domains. Calculating the relationship is fairly trivial; if two Virtual Entities share
the same Domain, then they form a domain relationship.

Minor challenges regarding the domain relationship include the involvement of users.
Users are needed to assign a certain domain to the object. However, as with the previous
two relationships, this involvement is minimum. Another minor challenge with this
relationship regards the choice of domains. Although a plethora of options is already
available, efforts need to be made to ensure that these options are always up to date. The
ability to allow users to add their own domains also requires some effort to maintain the
list as cochise and small as possible, in order to avoid multiple appearances of similar
domains.

43

The motivation behind this relationship lies in the need of knowledge flow between
objects that belong to the same domain. Objects are able to acquire information that could
prove useful to other objects of the same domain. Missing information is a common
problem for objects that are fairly “young” and haven’t yet acquired a lot of information
on their own. Through this relationship, however, these objects can accelerate the process
of achieving autonomy by filling the missing information through querying other objects.
In some critical cases, such as eHealth, it is vital for some objects to seek information only
from objects of the same domain, to reduce misinformation from similar objects that are
registered under a different domain.

A simple IoT scenario regarding the domain relationship is the following: Hospitals A and
B have installed a smart heating and ventilation system to better monitor and control
temperature and air in rooms containing patients recovering. All patient rooms are
registered under the domain of Patients Surveillance. Bob has been recovering in room 642
of Hospital A for a few days and now needs to be transferred to Hospital B to continue
treatment to a newly built ward. Once Bob occupies room 373 in Hospital B, the heat
system that is registered under the same domain of the previous room is able to
communicate with room 642 of Hospital A to adjust the temperature to accommodate the
patient. Room 731 of Hospital A is not occupied by any patient, does not have the same
domain as the other two and, therefore, will not adjust the room temperature.

Hospital A Hospital B

VE1: Room 642

VE3: Room 731

VE2: Room 373

Figure 4.1.4: Domain Object Relationship scenario

44

4.1.5 Followers/Followees Object Relationship

Borrowing elements from similar relationships in the social networks, the followers/
followees object relationship is established between objects that follow other objects.
Following objects is similar to following other users on social networks; Objects establish a
form of friendship by following objects that are considered trustworthy.

Contrary to the previous relationships, the followers/followees relationship is a VE based
relationship. This means that Virtual Entities play an important role in the formation of
these kinds of relationships. Users do not have as much involvement in these types of
relationships. The ephemeral nature of forming friendships makes the relationship a more
dynamic relationship. This means that these relationships are subject to frequent changes
with various ranges of duration. Therefore, this relationship is less reliable. The
followers/followees relationship is an asymmetric relationship, meaning that if an object
has a follower/followee relationship with another object, then the same does not
necessarily apply for the second object. In terms of Relational Models Theory, this
relationship integrates two of the four basic relational structures, Equality Matching and
Communal Sharing.

The main property that is needed to establish a domain relationship between objects is the
Followees List property. The Followees list contains all other Virtual Entities that the
object tracks. VEs that are found in the Followees List are blindly trusted by the chosen
VE. Calculating the relationship is fairly trivial; A Virtual Entity forms a follower/followee
relationship with every VE in its Followees List.

Populating the Followees List of each VE is the biggest challenge for this relationship. This
process begins as early as at the phase of registration. The user can manually set the
Followees List of the VE, by adding VEs of known friends from its social network. This is
the most basic way a VE forms social bonds. Such friends will have a number of benefits
during the social monitoring or discovery phases (e.g. greater priority). Recognizing the
opportunity of a malicious user trying to ‘overvalue’ his/her own VEs and therefore create
imbalances in the social network through collusion, the platform takes into account the
specific social characteristics of the registering VE and adds random suitable VEs in its
Followees List too[55].

Another way of acquiring Followees is through a discovery mechanism, which is based on
recommendation. Discovery through recommendation is more reliable and provides
protection from malicious behavior. New Followees can be recommended to a VE by its
current Followees or by the Social Analysis component.

In the first case, VEs recommend their own Followees to other VEs. After the VE acquires a
number of recommended Followees, their Dependability Indexes are calculated. Finally,
based on the thresholds set by the user for these indexes, the Friends Management
component decides whether it will accept the new recommendations or not. In the second
case, the VE sends Followee recommendation requests to the SA component. Using
weights for calculating the Dependability Index, a minimum acceptable limit of its value
and the current Followees List as parameters, the SA calculates the Dependability of the
Followees, based on the above input. If the new indexes are below the limit, the SA purges
these VEs from the list, replacing them with more reliable ones, and a new Followees List
is returned. Followees that have been set by users and do not have high Dependability
Index anymore are not thrown away from the Followees List, but are isolated (are not used
by the sharing-mechanisms), until they reach a desirable Dependability Index[55].

45

The motivation behind this relationship lies in the need of knowledge flow between
objects that are considered trustworthy. Similar to social networks, objects follow other
objects that have proven to have relevant and truthful information. Virtual Entities of these
objects gain reputation and influence other objects based on this information. As humans
tend to trust and listen to their friends more, the same holds true for objects in the social
internet of things; their virtual entities are more likely to reach out to Virtual Entities in
their Followees List for information first. The element of trust in this relationship is
important in determining how reliable this relationship is.

A simple scenario regarding the Followers/Followees relationship is the following: Alice,
Bob and Eve have all purchased smart refrigerators, that can monitor their inventory, their
owners’ preferences and make shopping arrangements based on this information, by
ordering from a nearby supermarket. Alice and Bob are longtime friends and share the
same taste in food, as they are both vegans. Bob is a famed vegan chef and his refrigerator
has high reputation on the social internet of things. As a result, Bob’s refrigerator is
recommended by the system to Eve, another vegan, as well as Alice’s, as they are friends.
Based on the VEs in their Followees List, the refrigerators are able to establish Follower/
Followee relationships accordingly. If two more people, Rob and Steve, both carnivores,
join the social internet of things with their refrigerators, they will be suggested to each
other and not the vegans.

VE1: Bob's
Refrigerator

VE2: Alice's
Refrigerator

VE3: Eve's
Refrigerator

VE4: Rob's
Refrigerator

VE5: Steve's
Refrigerator

Followees List
<VE5>

Followees List
<VE4>

Followees List
<VE1>

Followees List
<VE1,VE2>

Followees List
<VE2>

Figure 4.1.5: Followers/Followees Object Relationship Scenario

46

4.1.6 Enemy Object Relationship

The Enemy Object Relationship is the exact opposite of the Followers/Followees
Relationship. This relationship is established between objects that consider other objects
enemies. An object is considered hostile when it is untrustworthy. Information from
untrustworthy sources should be handled with warning.

Similar to the follower/followee relationship, the enemy relationship is a VE based
relationship. This means that Virtual Entities play an important role in the formation of
these kinds of relationships. Users do not have as much involvement in these types of
relationships. Making enemies is as fluid as forming friendships, which makes the
relationship a more dynamic relationship. This means that these relationships are subject
to frequent changes with various ranges of duration. Therefore, this relationship is less
reliable. The enemy relationship is also an asymmetric relationship, meaning that if an
object has an enemy relationship with another object, then the same does not necessarily
apply for the second object. In terms of Relational Models Theory, this relationship
integrates two of the four basic relational structures, Equality Matching and Market
Pricing.

The main property that is needed to establish a domain relationship between objects is the
Enemies List property. The Enemies list contains all other Virtual Entities that the object
considers hostile. This list is similar to the Followees List, with the difference that any VE
that is included in the Enemies List is not considered trustworthy. On the contrary,
information from these VEs should be avoided. Calculating the relationship is fairly
trivial; A Virtual Entity forms an enemy relationship with every VE in its Enemies List.

The Enemy Relationship shares the same challenge of populating the relevant list as the
follower/followee Relationship. Similar steps with the previous relationship can be
followed towards overcoming this challenge. The user can manually set the Enemies List
of the VE, by adding VEs of undesired people from its social network. This is a way of
transferring feelings of untrustworthiness from the social network of humans to the social
internet of things. Recommendation of enemies can also come from the Social Analysis
component, by following similar strategies with finding friends, by examining lower
levels of indexes and adding VEs with indexes below certain thresholds as enemies.

The motivation behind this relationship is a bit different than the rest of the relationships.
The goal of this relationship is not to actually maintain knowledge flow between objects,
but rather to avoid flow of dubious information that can not be considered trustworthy. In
order for objects to be considered autonomous, they must be able to distinguish between
information they can trust and information they cannot. Continuous flow of erroneous or
misleading information can jeopardize the integrity of the accumulated knowledge in the
social internet of things. By identifying enemies, a VE can avoid getting information from
this source, safeguarding the quality of its knowledge. If a VE is targeted as an enemy by a
group of other VEs, then the network of VEs can autonomously ostracize this hostile VE.
This process allows for maintaining a “healthy” community of VEs that ensure that the
knowledge flow that is created is of the highest quality.

A simple scenario regarding the Enemy Object Relationship is the following: in a Group of
Virtual Entities (which can be various types of objects), VE1 starts behaving in a strange
way, transmitting misleading information. As a result, its Dependability indexes reach
lower than the thresholds set up by other VEs, which in turn add it to their Enemies List,
establishing an Enemy Relationship with the VE that started to act in an abnormal way.

47

The user of VE4 considers V5 untrustworthy, so it is added to its Enemies List as well. The
following figure show the Enemy Relationships that are developed among the 5 VEs.

VE1 VE2

VE3 VE4 VE5

List Of Enemies
VE1,VE5

List Of Enemies
<Empty>

List Of Enemies
<VE1>

List Of Enemies
<VE1>

List Of Enemies
<Empty>

Figure 4.1.6: Enemy Object Relationship scenario

4.1.7 Parental Object Relationship

The Parental Object Relationship is the relationship that is established between objects and
their higher ranked counterparts. A higher ranked object is defined as the object that has
permission to monitor and control, to some extent, objects that are configured to be under
its authority. In the human network analogy, a traffic officer has a parental relationship
with all drivers approaching the intersection. This means that he/she has the right to
control traffic at that certain point, by stopping cars and allowing other cars to pass as he/
she sees fit. In computing, a parental relationship exists between a scheduler and various
threads, processes or data flows that are all vying for access to system resources such as
CPU time and communications bandwidth. The scheduler is responsible to apply certain
scheduling policies in order to distribute these resources to achieve maximum throughput,
fairness and the least possible latency and waiting time. The same idea can also be applied
to the social internet of things, with objects playing the role of traffic officers or computer
schedulers.

The parental relationship is a VE based relationship. This means that Virtual Entities play
an important role in the formation of these kinds of relationships. Users do not have as
much involvement in these types of relationships. Authorities are decided per application
needs and are not that often subject to change, which makes the relationship a more static
relationship. This ensures a certain duration that makes the relationship more reliable
than others. The parental relationship is also a strictly asymmetric relationship, meaning
that if an object has a parental relationship with another object, then the same does not
apply for the second object. In terms of Relational Models Theory, this relationship
integrates three of the four basic relational structures, Equality Matching and Market
Pricing and Authority Ranking. In fact, it is the most prevalent example of Authority
Ranking among all relationships, as the presence of a higher authority is necessary for this
relationship to exist.

The main properties that are needed to establish a parental relationship between objects is
the Head VE property and the List of VEs for the application. The Head VE is the object
that has authority over all the VEs in the List of VEs. Again, calculating the parental

48

relationship is as trivial as the previous relationships so far; the Head VE establishes a
parental relationship with every VE in the List of VEs.

The main challenge with establishing a parental relationship lies in the need to define a
Head VE. Chain of authority requires that a higher rank must appoint a VE as a Head VE.
This means that other VEs cannot in any way decide their Head VE. The Head VE needs to
be predefined by the application that all VEs are used for instead. Therefore, this property
is set by users creating applications for the social Internet of Things. However, as with
previous user involvement, it is limited only at an initial stage of setup, thus not requiring
further user presence afterwards. Another obvious challenge is that this authority over
other objects depends on the application. Each application has its own Head VE as well as
its own List of VEs. As a consequence, a Head VE for one application can be in a List of
VEs of another application, therefore having a Head VE of its own. This can cause a
conflict of authority, when possible circles in the authority chain are created. To avoid this,
parental relationships are established only with regards to a certain application.

The motivation behind this relationship again varies a bit from previous relationships.
Although the goal of sustaining a knowledge flow among objects remains, the parental
relationship introduces the element of authority, which is necessary to some extent, to all
communities aiming for autonomy. The existence of a VE with a more central role, able to
organize and control the group can help prevent decision deadlocks and solve conflicts
when and if they appear. Objects can make decisions for themselves and, when needed,
receive decisions made by other objects for them. This results in a community of objects
working for themselves, but also for others, towards achieving autonomy, without the
need of human interference.

A simple scenario regarding Parental Object Relationship is the following: Smart traffic
lights have been installed throughout the city, at various streets. These traffic lights are
equipped with sensors able to gather information about traffic on the streets they control.
Three traffic lights are part of an sIoT application responsible for Traffic Flow Management
of Main Street on Rush Hour. Traffic Light A (TLA) is on Main Street, Traffic Light B (TLB)
is on 4th Street and Traffic Light C (TLC) is on 42nd Street. With the use of sensors, TLA is
able to acquire information that Main Street has increased traffic. TLA has been set as
Head VE for the aforementioned application, which means that it has control over TLB
and TLC. TLA is able to coordinate TLB and TLC appropriately by using their IoT services
of changing lights from green, to orange, to red. As a result, the three traffic lights are able
to decompress traffic on their own, without the need of a traffic officer. A fourth traffic
light, Traffic Light D, can be found on the 110th Street. TLD is not part of the same
application as TLA-TLC and cannot be thus controlled by TLA.

49

VE1: TLA VE3: TLC

VE4: TLD VE2: TLB

Traffic Flow Management of Main St

Head VE: VE1

List of VEs: VE1,VE2,VE3

Application Info

Figure 4.1.7: Parental Object Relationship Scenario

4.1.8 Co-Work Object Relationship

The Co-Work Object Relationship connects objects that work on the same application. As it
has been previously stated, each sIoT application deploys a number of objects, represented
by their Virtual Entities, able to gather information from their environment and other
Virtual Entities, gain knowledge from this information in order to make autonomous
decisions and provide a number of IoT services. Applications may need a group of objects
to form a team, in order to share resources, either in the form of specific knowledge or in
the form of IoT services. The co-work relationship is featured prominently in human
communities. Workers on a construction site must coordinate and cooperate in building a
certain part of a building. Employees in a department store maintain constant
communication, querying for inventory and services. Multinational companies have
offices on different countries and employees of different nationalities working together on
the same company projects. This relationship can also be found in computing, with the
emergence of cloud computing. Services that are hosted on the cloud can be hosted on
different servers and machines, that work together to support the service.

The importance of applications in this relationship makes the Co-Work Object
Relationship an application based relationship. This means that applications define the
formation of these kinds of relationships between VEs, by providing all the necessary
information. The type of an application plays an important part in the nature of this
relationship. Applications can be of a fixed size, with a predefined number of VEs
involved, or of an evolving size, with VEs joining and leaving the application as needed.
Duration of applications can vary as well. Applications can have a predetermined
duration or be of open time. Finally, applications may or may not have certain goals and
milestones. All the above characteristics make the Co-Work Object Relationship a dynamic
relationship and of variable reliability, depending on the application characteristics. For
example, a fixed size and fixed time application will form more reliable Co-Work Object
Relationships than an evolving size, open time application. The Co-Work Object
Relationship is also a symmetric relationship, meaning that if a VE has a Co-Work Object
Relationship with another VE, then the same applies for the opposite direction. In terms of
Relational Models Theory, this relationship integrates three of the four basic relational
structures, Equality Matching and Communal Sharing and Authority Ranking [54].

50

As mentioned before, this relationship is an application based relationship, which means
that applications contain all the necessary information to establish relationships of this
kind between VEs. The main property that needs to be examined is the List of VEs of the
application. This list contains all the VEs that are associated with the application. A Co-
Work Object Relationship is formed among all VEs that are included in the List of VEs.

A main challenge of the Co-Work Object Relationship is the dependability on application
and the presence of VEs that participate in more than one applications at a time. An easy
paradigm to display this problem is to examine a cloud of computers working on multiple
applications at once. A certain computer may be hosting two different applications,
forming Co-Work Object Relationships with two different groups of other computers. This
raises an issue of an exponential increase of Co-Work Object Relationships, jeopardizing
navigability in the social internet of things. Therefore, we must consider these types of
relationships as fixed with regards to a certain application, to avoid overlap with similar
relationships created by other applications.

The motivation for this relationship lies both in the need for knowledge flow among
objects with the same purpose, as they operate under the same application, as well as the
ability for VEs to share IoT services. The core RMT structure of the Co-Work Object
Relationship is Communal Sharing, which calls for cooperation towards a shared goal.
This is exactly what makes this relationship so important, objects’ ability to identify the
common goal and work together towards achieving it, by forming an autonomous
community with a purpose.

A simple scenario regarding the Co-Work Object Relationship is the following: A
Construction Company has recently purchased various construction machines and has
deployed them on the lot of 42nd and 5th Street, where there are plans for a new
skyscraper to be built. These construction machines are equipped with smart sensors that
allow them to gather information regarding the level of completion of the skyscraper.
Construction machines CMA, CMC and CMD are in the list of the application responsible
for the completion of the skyscraper. Another construction machine, CMB, is currently
offsite and is working on another application. As the List of VEs of the application
contains CMA, CMC and CMD (Virtual Entities VE1, VE3 and VE4 respectively), they
form Co-Work Object Relationships among them. CMB (Virtual Entity VE2) is not part of
the same application and will not form a Co- Work Object Relationship with the other VEs.

VE1 VE3

VE4 VE2

Skyscraper Construction Management

List of VEs: VE1,VE4,VE3

Application Info

Figure 4.1.8: Co - Work Object Relationship scenario

51

4.1.9 Conflict of Interest Object Relationship

The Conflict of Interest Object Relationship is established between objects that may enter a
conflict. Conflicts are created when objects vie for the same resources, either in the form of
critical information or in the form of vital IoT services that can be offered to a limited
number of objects. Conflicts are common in human networks: people interviewing for the
same company position; prospective buyers bidding for the same piece of art at an art
auction; companies going head to head for market share; countries with different interests
and motivations that go to war. Conflicts can also be found in computer networks, when
various devices race for the same bandwidth, or even in computer scheduling, where
threads and processes aim for the same resources, such as CPU and RAM.

The importance of applications in this relationship makes the Conflict of Interest Object
Relationship an application based relationship. This means that applications define the
formation of these kinds of relationships between VEs, by providing necessary
information for their calculation. The type of an application plays an important part in the
nature of this relationship. As mentioned before, applications can be of a fixed size, with a
predefined number of VEs involved, or of an evolving size, with VEs joining and leaving
the application as needed, different time durations and different goals. All the above
characteristics make the Conflict of Interest Object Relationship a dynamic relationship
and of variable reliability, as VEs could come and go and conflicts are easily created and
resolved, constantly. The Conflict of Interest Object Relationship is also a symmetric
relationship, meaning that if a VE has a Conflict of Interest Object Relationship with
another VE, then the same applies for the opposite direction. In terms of Relational Models
Theory, this relationship integrates three of the four basic relational structures, Equality
Matching and Market Pricing and Authority Ranking.

As mentioned before, this relationship is an application based relationship, which means
that applications contain necessary information to establish relationships of this kind
between VEs. The main properties that need to be examined in the application side, is the
List of VEs, Importance Table and the Financial Package Table of the application. In fact,
the List of VEs is enough to determine conflict of interest among objects. The two tables
however are necessary to calculate priority among VEs, in order to ultimately resolve the
conflict, with the Conflict Resolution Method. VE properties Domain and Financial Package
are also needed to determine VE priority, based on the priorities set by the application
itself. Establishing Conflict of Interest Object Relationships is simple: All VEs in the List of
VEs form Conflict of Interest Object Relationships among themselves.

The Conflict Resolution Method is based on the Importance Class and the Financial
Package Tables. The Importance Class Table lists domains in order of priority, separated in
classes. VEs are then sorted based on their Domain property. In case this sorting is not
enough, further sorting is made possible based on the Financial Package Table. Similarly to
the Importance Class sorting, VEs that tie are further sorted based on their Financial
Package property. In case of further ties, order between the tied VEs is decided at random.

Challenges arise on the contents and the available options for the two tables, the
Importance Class Table and the Financial Package Table. Filling these two tables require
user involvement, when setting up a new application. For the first table, all available
Domains will be given to the user to sort into classes. This means that Importance is not
decided by the social Internet of Things, but by creators of applications. However, it has
been observed that importance is subjective and depends on a plethora of outside factors
that objects cannot have access to. For the Financial Package Table, the selection of possible

52

packages is left to the creator of the application. A set of default packages can be provided
as well, namely the Insufficient, Basic and Premium choices. Another challenge has
already been introduced in previous application based relationships and it regards the
exponential increase in connections, as VEs can be part of more than one applications. In
order to maintain network navigability, this relationship will always be established for one
particular application at a time.

So far in the previous relationships, the presence of three of the main Relational Models
Theory is prominent; Co - Work Object Relationship highlights Communal Sharing,
Parental Object Relationship introduces Authority Ranking and Followers/Followees
Object Relationships are based on Equality Matching. The motivation behind the Conflict
of Interest Object Relationship, however, is tied to the fourth basic structure of RMT
Theory: Market Pricing. Although the ultimate goal of the social Internet of Things is to
create autonomous objects that are able to make decisions and cooperate on their own,
there is always the possibility that an object must make a decision that puts it in direct
conflict with another object. Objects will always attempt to act on decisions they make,
based on the knowledge they have acquired, causing deadlocks that can slow down or
even break the network. Introducing the Conflict of Interest Object Relationship, along
with the Conflict Resolution Method proposed above, will allow objects to move past
deadlocks by calculating priorities based on the characteristics of the applications they are
committed to.

A simple scenario regarding the Conflict of Interest Object Relationship and the Conflict
Resolution Method is the following: A major power failure has created a blackout in an
entire building housing offices and other public services. In case of a blackout, an
application responsible for running a backup generator has been set up. The backup
generator can only provide enough power for 4 of the 6 floors. For each floor, a certain
financial package for the application has been purchased. Each floor is equipped with a
smart electricity system that is represented in the social internet of things with a Virtual
Entity. Each VE has its own Domain and its own Financial Package properties. The
application involving all 6 VEs has been configured with an Importance Class Table and a
Financial Package Table, containing the default financial package choices of Insufficient for
those who have not purchased a sufficient financial package, Basic, for those who have
purchased the Basic package and Premium, for those who have purchased a package for
higher priority. All 6 VEs form Conflict of Interest Object Relationships among them.
Based on the Conflict Resolution Method described above, the VEs are sorted and the first
four are supported by the backup generator. Details of the scenario are given in the
following figure:

53

VE1

VE2

VE3

VE4

VE5

VE6

Importance Table

Class A
eHealth, Security &

Emergencies

Class B
Smart Cities

Class C
Home Automation, Logistics

Packages

Premium, Basic, Insufficient

Domain: eHealth
Package: Basic

Domain: Cities
Package: Insuff.

Domain: Home Auto
Package: Insuff

Domain: Logistics
Package: Premium

Domain: Home Auto
Package: Basic

Domain: Sec & Em
Package: Premium

VE6 VE1 VE2 VE3 VE4 VE5

Application Info

Conflict Resolution Method outcome

Figure 4.1.9: Conflict of Interest Object Relationship scenario

4.1.10 Replacement Object Relationship

The Replacement Object Relationship is a relationship that can be established between an
object and another object that has the capacity to replace it. A replacement object is defined
as the object that can perform in an identical way as the object it replaces, making the
replacement not having any effects on the social Internet of Things. The idea of
replacement can be found in the human network as well. A new employee hired to replace
an old employee that has left a company, a soccer player substituting an injured player at a
soccer game, a Vice President of a country becoming Acting President when the President
resigns. Replacing objects is common practice when noticeable problems in functionality
are observed: replacing old batteries in an electronic radio, or changing a flat tire in a car.
Replacing objects with humans (and vice versa) is also possible. For example, a traffic
officer acts as all traffic lights at an intersection when the lights are malfunctioning. In all
cases, a replacement is made in order to maintain a service. The radio is needed for its
service of playing music, the car for its service of getting someone from home to work etc.
The Replacement Object Relationship aims at maintaing services as well. Objects are
needed to replace other objects in order to maintain the offering of IoT services.

The Replacement Object Relationship is also an application based relationship, as the
formation of these relationships is determined by the application and not the VEs
themselves. The type of an application plays an important part in the nature of this

54

relationship. As mentioned before, applications can be of a fixed size, with a predefined
number of VEs involved, or of an evolving size, with VEs joining and leaving the
application as needed, different time durations and different goals. All the above
characteristics make the Replacement Object Relationship a dynamic relationship and of
varying reliability, however, as the nature of replacement relies on VE properties as well,
these relationships tend to be more reliable once they are established. The Replacement
Object Relationship is also an asymmetric relationship, meaning that if a VE has a
Replacement Object Relationship with another VE, then the same does not necessarily
apply for the opposite direction. In terms of Relational Models Theory, this relationship
integrates three of the four basic relational structures, Equality Matching and Communal
Sharing and Authority Ranking.

In order for an object to be able to replace another object, it must be able to offer the same
IoT services. The main property that is thus needed for the calculation of the Replacement
Object Relationship is the List of IoT Services. This list contains all the IoT Services that an
object can perform. For this relationship to be established, the List of IoT services of the
first object must be a subset of the List of IoT Services of the second object. If that is true,
then the second object can replace the first object, therefore creating a Replacement Object
Relationship. In the event that the two lists are the same, then the two objects can be
considered identical. The List of VEs provided by the application is needed to identify
replacement candidates.

A challenge that all application based relationships share is the consequences of Virtual
Entities participating in more than one applications at the same time on network
navigability. The amount of possible Replacement Object Relationships for all applications
is too high to ensure a scalable network. Therefore, to overcome this, this relationship will
always be established for one particular application at a time.

As mentioned before, capacity of a VE to replace another VE is determined by the List of
IoT Services. A VE can replace another VE if and only if its List of IoT services contains all
the IoT Services found in the relevant list of the second VE. However, ability to efficiently
and successfully replace a VE must also be featured by the platform. Replacement VEs
have various level of success. When multiple VEs are able to act as replacements, the most
efficient and successful one must be chosen first. In order to achieve this, Replacement
Rating is introduced. Replacement Rating is a rating system that measures replacement
efficiency of a VE. Once a replacement is completed, VEs can rate their replacements based
on their level of success. This level can be measured in the percentage of completed tasks
during the replacement period, or can be manually inputed by the user of the VE. In both
cases, a replacement grade is sent to the replacement VE. The Replacement Rating is
calculated as the average of all replacement grades that the VE has received. Continuous
success in replacing VEs will lead to a higher Replacement Rating. When searching for
replacements, available VEs with higher Replacement Ratings will appear first.

The motivation behind the Replacement Object Relationship is essentially the same as
with every kind of replacement; to ensure smooth operation. Objects are constantly
replaced for maintenance and sustainability reasons, however, so far objects could not be
intelligent enough to identify their own replacements. Providing a proper relationship to
achieve this will translate to fewer human interference when an object needs to be
replaced, as the procedure will be entirely supported by the social internet of things
instead.

55

A simple scenario regarding the Replacement Object Relationship is the following: The city
has deployed four new driverless buses that are equipped with sensors to determine their
position and when to stop at bus stations, open their doors and take passengers on board.
The four buses are represented in the social Internet of Things with their Virtual Entities,
VE1, VE2, VE3 an VE4 respectively. Buses VE1 and VE2 are also equipped with a disability
door that opens automatically when it detects a disabled person at the bus stop. All four
buses are part of an application named Public Transport Automation. When bus VE1
breaks down because of a mechanical failure that cannot be fixed based on the knowledge
acquired and is in need of a replacement, it will establish a Replacement Object
Relationship with VE2, as this VE has all the IoT Services that it has. Details of the
scenario, along with all Replacement Object Relationships that are established among the
4 VEs, are given in the following figure:

VE1

VE2VE3

VE4

List of IoT Services:

Driverless Mobility, Position
Detection, Bus Stop Detection,

Passenger Monitoring,
Disability Assistance

List of IoT Services:

Driverless Mobility, Position
Detection, Bus Stop Detection,

Passenger Monitoring

List of IoT Services:

Driverless Mobility, Position
Detection, Bus Stop Detection,

Passenger Monitoring,
Stop Information

List of IoT Services:

Driverless Mobility, Position
Detection, Bus Stop Detection,

Passenger Monitoring,
Disability Assistance

Figure 4.1.10: Replacement Object scenario

4.1.11 Co-Location Object Relationship

The Co - Location Object Relationship is a relationship that is established between objects
that are close to each other. Proximity of objects is defined as the distance between two
objects that satisfies a given lower threshold. Location based information relies heavily on
the location this type of information has been gathered. This type of information is
typically used in applications regarding weather forecasting or geological and
geographical surveying, but can also be used in marketing, to offer location based
promotions. A notable example of location affecting information is following: If two
sensors are placed in two different cities in two different places in the world, for example
Athens (Greece) and Boston (MA, USA), then notable differences come up. Because of the
different time zones, time reading in Greece will be 7 hours ahead. For example, if the two
sensors transmit their time readings at 10:00 UTC, then Greece will transmit 13:00 local
time and Boston will transmit 06:00 local time. Sunlight measurements will also be
different, as more sunlight will be found in Greece, because it is noon , while the sun will
not have fully risen in Boston yet. A final difference can be found in the weather reading,
as Boston tends to be colder than Athens.

56

The Co - Location Object Relationship is a location based relationship, as the formation of
these relationships is determined by the location of the VEs themselves. Calculation of
location is a complex procedure which requires different levels of accuracy, depending on
the scope and scale of the application. Applications focused on services among countries
require less accuracy than application regarding services in the same room. All the above
characteristics make the Co - Location Object Relationship a dynamic relationship and of
low reliability,as it is subject to constant change as location coordinates change, reflecting
measurements and statistical errors. The Co - Location Object Relationship is also a
symmetric relationship, meaning that if a VE has a Co - Location Object Relationship with
another VE, then the same applies for the opposite direction. In terms of Relational Models
Theory, this relationship integrates three of the four basic relational structures, Equality
Matching and Communal Sharing and Authority Ranking [54].

As a location based relationship, the main property that needs to be examined is the
Geolocation of the VE, especially the hasGeoLat and hasGeoLon data-type properties.
However, as mentioned before, the necessary threshold to determine proximity needs to
be set by the application. For that purpose, the GeoBoundaries property of the application
is needed as well. The GeoBoundaries is a set of coordinates that create a geographical
boundary, determining the area and therefore the threshold on distance for the objects to
be considered close. All VEs whose coordinates land inside this specific area that is
defined by the GeoBoundaries establish Co - Location Object Relationships among them.
The List of VEs provided by the application is needed to identify proximity candidates.

Accuracy plays an important role in location based relationships. However, it is really
difficult to achieve true accuracy, no matter how advanced location calculation algorithms
and systems can get. There will always be the margin of error. This is the biggest challenge
that this relationship is faced with. Depending on the vastness of the area that the
GeoBoundaries cover, issues with accuracy may or may not interfere with the correct
calculation of the relationship. An application that covers an entire country inside its
GeoBoundaries will not face many problems because of accuracy errors, as the area
covered is big enough to outweigh them. On the contrary, an application that needs to
confine objects inside a room relies heavily on accurate location data for the Co - Location
Object Relationships to be correctly established. Altitude is also an issue. Revisiting the
previous example, there needs to be a way to distinguish between objects on different
floors. Another location based issue is that VEs are not always stationary. They can be
mobile, such as automobiles, buses and vehicles, or portable, such as portable computers.
This characteristic creates a constant movement of VEs in space, which requires multiple
calculations to determine if its Co - Location Object Relationships can or cannot remain
active. A final challenge is one shared with the application based relationships and regards
the participation of VEs in multiple applications at once. As mentioned before, this can
exponentially increase the number of Co - Location Object Relationships if we consider all
application simultaneously, indirectly creating invalid relationships of the same kind. In
order to avoid this confusion, this relationship will always be established for one
particular application at a time.

The motivation behind the Co - Location Object Relationship lies in the plethora of
location based information that can be gathered by an object and may be deemed useful
for other objects as well. In order for objects to be fully aware of their surroundings, they
must be aware of their environment and be prepared to distinguish information that is
only relevant in a particular location. Decisions an object makes can be affected by the
location conditions it is in. For example, a smart heater system will distribute heat in a

57

house in a different way if it is in a cold area, than if it were in a hotter area. Objects
acquire intelligence by being able to factor location into their decisions. This type of
knowledge is important in the knowledge flow among objects in the social internet of
things, as other objects in the same situation need to acquire this type of information. A
smart heating system in Alaska cannot rely on information from its counterpart in Madrid,
as the temperatures are highly different.

A simple scenario regarding the Co - Location Object Relationship is the following: A cab
company has deployed a number of smart cabs throughout various countries of the
European Union. These smart cabs are able to gather important information about road
status and weather conditions in order to increase safety while on the road. There are
currently three smart cabs operating in London, UK and another three have been
temporarily transferred from London to Madrid, Spain. The cabs in London have gathered
information that shows that it is currently raining and visibility is limited because of fog.
The cabs in Madrid report a dry and sunny day instead. A new cab is about to be added in
the city of London, that will join the application regarding cab services in UK. Based on
their geolocation coordinates and the GeoBoundaries of the application, the new cab is
able to establish Co - Location Object Relationships with the three cabs currently in
London in order to adjust driving to account for the bad weather. Details of the scenario
can be found on the following figure.

VE5

VE6VE4

GeoBoundaries

VE1

VE2VE3

VE7

Figure 4.1.11: Co - Location Object Relationship scenario

The following table summarizes the aforementioned relationships and their characteristics:

58

Object
Relationships

Ontology
Focus Type Reliability Direction RMT User

Properties VE properties Application
Properties

Ownership

Usage/
Interaction

Domain

Follower/
Followee

Enemy

Parental

Co - Work

Conflict of
Interest

Replacement

Co - Location

User based Static High Symmetric EM, AR Owner ID - -

User based Dynamic High Symmetric EM, AR - Simple Users
List -

User based Static High Symmetric CM, EM - Domain -

VE based Dynamic Medium Asymmetric CM, EM - Followees List -

VE based Dynamic Medium Asymmetric EM, MP - Enemies List -

VE based Static High Asymmetric EM, MP,
AR - - Head VE

List of VEs

App based Dynamic Varying Symmetric EM, CM,
AR - - List of VEs

App based Dynamic Varying Symmetric EM, MP,
AR -

Domain
Financial
Package

List of VEs
Importance Table
Financial Package

Table

App based Dynamic Varying Asymmetric EM, CM,
AR -

List of IoT
Services

Replacement
Rating

List of VEs

Location
based Dynamic Low Symmetric EM, CM,

AR - Geolocation GeoBoundaries
List of VEs

4.2 Hierarchy of Relational Models

4.2.1 Introduction

A major issue of the social Internet of Things is network navigability. It is understood that
each user can introduce a number of objects to the network. As the number of objects
involved with the network exponentially rises, efficient ways to navigate through a
dynamic, complex and continuously growing network are needed. Network navigability
and scalability is important in quick and efficient discovery mechanisms, as well as
knowledge flow mechanisms. Objects must be able to search through the network in order
to discover new information from other objects as well as determine if new relationships
must be established, to facilitate this knowledge flow.

The aforementioned object relationships are established between two objects at a time.
This means that an object needs to go through all the available VEs in order to check if the
relationship requirements are met and then form the relationship. If n is the number of
VEs in the network, then this results in a complexity of O(n2) for all VEs in one

relationship, which is a not desirable complexity. In order to overcome this complexity, an
hierarchy among the object relationships must be established. Prioritizing among
relationships can facilitate machine discovery by eliminating unnecessary VEs from the
search range and focusing on specific characteristics. For this purpose, the object
relationships are separated into the following four levels:

User Centered Level

The User Centered Level is focused on object relationships where users play a main role in
their formation. These relationships are separated into two subcategories, for relationships
that are based on user involvement, such as ownership and relationships that are based on
user categorization of the VE, such as domain selection. Relationships in this level are
often based on fixed properties i.e a certain User ID or domain.The User Centered Level
contains the following relationships:

• Ownership Object Relationship: This relationship is established between objects owned
by the same user.

• Usage/Interaction Object Relationship: This Relationship is established between objects
used by the same user.

• Domain Object Relationship: This Relationship is established between objects that
share the same domain.

VE Centered Level

The VE Centered Level is focused on object relationships where Virtual Entities play a
main role in their formation. These relationships are based on information that each VE
has regarding other VEs, by the use of VE properties that provide clues for direct VE to VE
communication. The VE Centered Level contains the following relationships:

• Followers/Followees Object Relationship: This relationship is established between
objects that share a type of trusted friendship in the form of following .

60

• Enemies Object Relationship: This Relationship is established between objects that are
considered hostile.

• Parental Object Relationship: This Relationship is established between objects that are
ordered under a specific authority.

Application Centered Level

The Application Centered Level is focused on object relationships where Applications play
a main role in their formation. These relationships are based on information that each
Application has regarding its associated VEs. Relationships in this level are based on a
particular application. The Application Centered Level contains the following
relationships:

• Co - Work Object Relationship: This relationship is established between objects that
share the same application .

• Conflict of Interest Object Relationship: This Relationship is established between
objects that have a conflict of interest when aiming for a limited amount of resources and
services.

• Replacement Object Relationship: This Relationship is established between objects that
can be used as replacement objects, by performing in the same way as the object they
replace.

Location Centered Level

The Location Centered Level is focused on object relationships where location plays a
main role in their formation. These relationships are solely based on their geographical
position, which is defined by their coordinates. The Location Centered Level contains the
following relationship:

• Co - Location Object Relationship: This relationship is established between objects that
are contained inside geographical boundaries defined by their application.

Each level contains specific object relationships that are arranged in a secondary hierarchy
inside the level. Hierarchy among the four levels, as well as within each level is decided by
the type of information that is available about the objects. Two cases are distinguished:
Fixed Data and Generic Data

Fixed Data Generic Data

Definition

Hierarchy

Type

Reliability

Absolute Generic

Solid Fluid

Static Dynamic

High Low

Table 4.2.1: Differences between the two scenarios
61

4.2.2 Fixed Data

The most common scenario for the COSMOS platform concerns Fixed Data for the Virtual
Entities. Fixed data is the case when all information about the VE is properly inputed,
based on the specifications of the platform. Objects in the Fixed Data scenario have valid
data on all of the VE properties, giving them an absolute definition.

In this scenario, a solid hierarchy can be defined. The solid hierarchy model contains
specific order among levels, which does not change. Hierarchy within each level is also
defined in the same way. Hierarchy of the Fixed Data scenario is as follows:

Top Level: User Centered Level

The User Centered Level is the most important level in this scenario. Priority is given over
the relationships found in this level. The two subcategories inside the User Centered Level
are considered equal, however the first subcategory holds a priority of Ownership over
Usage/Interaction Object Relationships.

Second Level: VE Centered Level

The User Centered Level is immediately after the User Centered Level. Relationships in
this level are usually executed after the execution of one or more relationships from the
top level, in order to eliminate VEs from the search. The internal hierarchy of the VE
Centered Level contains the Followers/Followees Object Relationship and the Enemies
Object Relationship equally at the inner top level and the Parental Object Relationship at
the inner bottom level.

Third Level: Application Centered Level

The Application Centered Level is immediately after the VE Centered Level. Relationships
in this level are usually executed after the execution of one or more relationships from the
second level, in order to further eliminate VEs from the search. The internal hierarchy of
the Application Centered Level contains the Co - Work Object Relationship and the
Conflict of Interest Object Relationship equally at the inner top level and the Replacement
Object Relationship at the inner bottom level.

Bottom Level: Location Centered Level

The weakest level in the Fixed Data scenario is the Location Centered Level. As the
accuracy of the reported locations deeply affect the reliability of these relationships, as
well as the relative rarity of searching with geographical restrictions, relationships in this
level are executed only when all other levels have failed to produce desired results.

A detailed order of relationships in the Fixed Data scenario can be found in the following
figure:

62

Co - Location Object Relationship

User Centered
Level

VE Centered
Level

Application Centered
Level

Location Centered
Level

Domain Object Relationship

Ownership Object
Relationship

Usage/Interaction
Object Relationship

Parental Object Relationship

Followers/Followees
Object Relationship

Enemies Object
Relationship

Replacement Object Relationship

Co - Work Object
Relationship

Conflict of Interest
Object Relationship

Figure 4.2.2: Fixed Data scenario Hierarchy

4.2.3 Generic Data

As users are responsible with appropriately describing their objects and carefully filling
out the VE properties, user factor plays an important role in shaping the VE. Nonetheless,
some information can be incomplete or not properly completed during this process for
various reasons. This can result in a VEs that have a generic definition.

As information on VEs is more generic and not easily interpreted, a fluid hierarchy must
be defined. The fluid hierarchy model does not specify an absolute order among levels. On
the contrary, hierarchy among levels is defined based on the most reliable and well
defined information that can be provided by the VEs. For example, if no information is
provided for the owner, but information in the List of Followees is valid, then the VE
Centered Level acquires a higher position over the User Centered Level. Hierarchy
between relationships within a level is determined in a similar fashion. For example, If no
information is available for the owner of the VE, but the List of Simple Users is given, then
the Usage/Interaction Object Relationship acquires higher priority over the Ownership
Object Relationship. In the Generic Data scenario, fluidity of hierarchy also means that this
hierarchy is dynamic and subject to changes as information about the VE is inserted or
deleted. An example of a fluid hierarchy based on VE information can be found in the
following figure:

63

Co - Location Object RelationshipLocation Centered
Level

User Centered
Level

Domain Object Relationship

Ownership Object
Relationship

Usage/Interaction
Object Relationship

VE Centered
Level

Parental Object Relationship

Followers/Followees
Object Relationship

Enemies Object
Relationship

Application Centered
Level

Replacement Object Relationship

Co - Work Object
Relationship

Conflict of Interest
Object Relationship VE ID: VE2223

Owner ID: <Empty>
Domain: Traffic Congestion
Physical Entity: <Empty>
Location: Portable
Geolocation: <Empty>
Followees List: <Empty>
Enemies List: <Empty>
Simple Users List: <Empty>
List of Applications: {A345}
List of IoT Services: {S323, S456}
Financial Packages: { (A345, Premium)

VE

Application ID: A345
List of VEs: <VE2223, VE2234>
Head VE: VE2223
Importance Table: {Class A: TraffCon}
Financial Pkg Table: {P, B, I}
Geoboundaries: <Empty>
Creator ID: <Empty>
Description: <Empty>

Application

Figure 4.2.3: Generic Data scenario Hierarchy

64

Chapter 5: Network Simulation and
Results
5.1 Implementation

5.1.1 Introduction

The tool that was used for data analysis is Gephi[56]. Gephi is an interactive visualization
and exploration platform for networks and complex systems, which can also support
dynamic and hierarchical graphs. Gephi is open-source and free and can run on Windows,
Linux and OS X. Gephi is based on NetBeans UI, has a built-in 3D rendering engine and is
customizable by plugins. Gephi was selected for its plethora of applications and metrics
such as centrality metrics, density, path length and more. The platform was chosen as it
can support multiple formats such as GDF, GraphML (NodeXL), GML, NET (Pajek), GEFX
and more.

Data is organized as follows: A GraphML file was created for each object relationship.
Each node represents a Virtual Entity and each edge between nodes represents the object
relationship between the selected Virtual Entities. An extra GraphML file was created
containing all object relationships, representing the complete form of the social network
among Virtual Entities. These files were then imported to Gephi for network analysis such
as exporting metrics and visualization of the network.

Some of the layout algorithms offered in Gephi include:

• Force Atlas 2: A force-directed layout close to other algorithms used for network
spatialization. Force Atlas 2 Is a continuous algorithm, that allows graph manipulation
during rendering. It has a linear-linear model, features a unique adaptive convergence
speed and proposes summarized settings. It also features a Barnes Hut optimization. [57]

Force Atlas 2 features these settings:

1) Scaling: How much repulsion you want. More makes a more sparse graph.
2) Gravity: Attracts nodes to the center. Prevents islands from drifting away.
3) Dissuade Hubs: Distributes attraction along outbound edges. Hubs attract less and thus
are pushed to the borders.
4) LinLog mode: Switch ForceAtlas’ model from lin-lin to lin-log. Makes clusters more
tight.
5) Prevent Overlap: Use only when spatialized. Should not be used with “Approximate
Repulsion”
6) Tolerance (speed): How much swinging you allow. Above 1 discouraged. Lower gives
less speed and more precision.
7) Approximate Repulsion: Barnes Hut optimization: n² complexity to n.ln(n) ; allows
larger graphs.
8) Approximation: Theta of the Barnes Hut optimization.
9) Edge Weight Influence: How much influence you give to the edges weight. 0 is “no
influence” and 1 is “normal”.

65

• Fruchterman Reingold: a force-directed layout algorithm. The idea of a force directed
layout algorithm is to consider a force between any two nodes. In this algorithm, the
nodes are represented by steel rings and the edges are springs between them. The
attractive force is analogous to the spring force and the repulsive force is analogous to
the electrical force. The basic idea is to minimize the energy of the system by moving the
nodes and changing the forces between them. For more details refer to the Force Directed
algorithm. In this algorithm, the sum of the force vectors determines which direction a
node should move. The step width, which is a constant determines how far a node
moves in a single step. When the energy of the system is minimized, the nodes stop
moving and the system reaches it's equilibrium state. The drawback of this is that if we
define a constant step width, there is no guarantee that the system will reach equilibrium
at all. T.M.J. Fruchterman and E.M. Reingold introduced a "global temperature" that
controls the step width of node movements and the algorithm's termination. The step
width is proportional to the temperature, so if the temperature is hot, the nodes move
faster (i.e, a larger distance in each single step). This temperature is the same for all
nodes, and cools down at each iteration. Once the nodes stop moving, the system
terminates. [58]

Some of the metrics used for network analysis are the following:

• Average Degree
• Average Weighed Degree
• Distance: The average graph-distance between all pairs of nodes. Connected nodes have

graph distance 1. The diameter is the longest graph distance between any two nodes in
the network.

• Betweennness Centrality: Measures how often a node appears on shortest paths
between nodes in the network

• Closeness Centrality: The average distance from a given starting node to all other nodes
in the network.

• Eccentricity: The distance from a given starting node to the farthest node from it in the
network.

• Density: Measures how close the network is to complete. A complete graph has all
possible edges and density equal to 1.

• HITS: Computes two separate values for each node. The first value, Authority,
measures how valuable information stored at that node is. The second, Hub, measures
the quality of the nodes links.

• Modularity: Community detection algorithm
• PageRank: Ranks nodes “pages” according to how often a user following links will non-

randomly reach the node “page.
• Connected Components: Determines the number of connected components in the

network.
• Clustering Coefficient: The clustering coefficient, along with the mean shortest path,

can indicate a “small-world” effect. It indicates how nodes are embedded in their
neighborhood. The average gives an overall indication of the clustering in the network.

• Eigenvector Centrality: A measure of node importance in a network based on a node’s
connections.

A notable issue with Gephi is that parallel edges are not supported. On the contrary, any
parallel edges that exist on the network are converted into a single edge with weight equal
to the sum of parallel edges. For this reason, graphs with parallel edges will vary from
other graphs, as all edges will be weighed. A graph with no parallel edges will have edge

66

weight equal to 1. This issue is mostly observed in the complete representation of the
network. Metrics take into consideration the weight of edges.

5.1.2 Cases Description

A series of facts about the nature of the data are presented below:

a) Each Virtual Entity(VE) has exactly one Owner.
b) Each VE belongs to exactly one Domain.
c) Each VE participates in exactly one Application.
d) The total number of users is 25% of the Total number of VEs
e) The total number of possible Domains is 8.
f) The total number of applications is 2 and VEs are distributed evenly between these two

Applications.
g) The maximum number of users for any VE is set to 60% of the total number of users.
h) The maximum number of followees/enemies for any VE is set to 60% of the total

number of users.
i) Only the first application presents issues of Conflict.

In order to reduce the size of the social network of the Virtual Entities, the Replacement and
the Co - Location Object Relationships are omitted from the network analysis.

67

5.2 Case 1: 100 Virtual Entities

5.2.1 Statistics for Case 1

The following table summarizes the basic statistics for Case1:

Case 1Case 1

Total Nodes

Total Users

Domains

Applications

Max Friends/Enemies

Ownership Relationships

Usage/Interaction Relationships

Domain Relationships

Followers Relationships

Enemies Relationships

Parental Relationships

Co - Work Relationships

Conflict Relationships

Total Relationships

100

25

8

2

25

223

37129

632

21656

14618

98

2450

1225

78031

Table 5.2.1: Case 1 Statistics

68

5.2.2 Ownership Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

4.4604.4604.4604.4604.460

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 00 1.0 446

DensityDensityDensityDensityDensity

0.0450.0450.0450.0450.045

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.9130.913 0.9130.913 24

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

2424242424

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

1.0001.0001.000 334334

Table 5.2.2: Summary of Network Analysis Reports for Ownership Object Relationships of Case 1

Network analysis of the ownership object relationships immediately reveals useful
information about the network. An average degree below 5 shows us that VEs are
immediately connected to a small amount of VEs, making the relationship very specific.
This means that using this relationship is preferred when searching for particular VEs.
Such is, however, the nature of this relationship as well. Given the fact that a user usually
owns a small amount of objects, the knowledge flow that is created among these VEs is
contained in a small group. The low density of the network of ownership relationships is
also an indication of a sparse network.

The most interesting piece of information that can be gathered both by the metrics reports
and the visualization of the network, regards the number of communities in the network.
Both the number of the communities and the number of weakly connected components
can lead us to the number of owners of the network of Virtual Entities. Each community
represents a group of VEs which share the same owner. Based on the statistics of Case 1,
we can deduce that each User is also an owner of at least one VE in the network, as the
number of Total Users is equal to the number of detected communities, ergo the owners.

69

Figure: Network Analysis for Ownership Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Ownership Object Relationship Graph

5.2.3 Usage/Interaction Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

95.50095.50095.50095.50095.500

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

2 11 1.03535353535354 9900

DensityDensityDensityDensityDensity

0.9650.9650.9650.9650.965

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.0100.010 0.0100.010 3

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

11111

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

0.9750.9750.975 147382147382

Table 5.2.3: Summary of Network Analysis Reports for Usage/Interaction Object Relationships
 of Case 1

Network analysis of the usage/interaction object relationships immediately reveals useful
information about the network. A complete contrast of the ownership relationship, as
witnessed by the visualization of the graph, this relationship comprises of much more
edges than the ownership relationship. An average degree close to 100 shows us that VEs
are immediately connected to a vast amount of VEs, making the relationship generic. This
is the result of multiple users for each VE. As the number of users is less than the number
of VEs, the appearance of similar groups of users on each VEs eventually leads to an
almost complete network. The high density of the network of usage/interaction
relationships is also an indication of a dense network.

The difference between this relationship and the ownership relationship is also evident in
the visualizations of the networks. While communities are easily spotted in the latter,
betraying the number of users, the former relationship gives no clues about the number of
users. On the contrary, the density of the network is reinforced by the visualization of the
network.

72

Figure: Network Analysis for Usage Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Usage/Interaction Object Relationship Graph

5.2.4 Domain Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

12.64012.64012.64012.64012.640

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 11 1.0 1264

DensityDensityDensityDensityDensity

0.1280.1280.1280.1280.128

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.8360.836 0.8360.836 8

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

88888

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

1.0001.0001.000 26502650

Table 5.2.4: Summary of Network Analysis Reports for Domain Object Relationships
 of Case 1

Network analysis of the domain object relationships immediately reveals useful
information about the network. An average degree over 12 shows us that VEs are
immediately connected to a bigger amount of VEs than through the ownership
relationship. However, the number is noticeably low, making the relationship very
specific. This means that using this relationship is preferred when searching for particular
VEs. Given the fact that the number of domains is much lower than the number of VEs in
the network, this knowledge flow is comparable to the one maintained with the
ownership relationship. The low density of the network of domain relationships is also an
indication of a sparse network. In fact, the resulting network is even more sparse than the
ownership relationship equivalent.

The most interesting piece of information that can be gathered both by the metrics reports
and the visualization of the network, regards the number of communities in the network.
Both the number of the communities and the number of weakly connected components
can lead us to the number of domains of the network of Virtual Entities. Each community
represents a group of VEs which share the same domain. The sum of these groups is of
course the total number of domains in the network. This can also be verified by the
statistics of the network of Case1, which gives 8 domains, same as the number of
communities.

75

Figure: Network Analysis for Domain Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Domain Object Relationship Graph

5.2.5 Followers and Enemies Object Relationships

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Weighted Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

96.49096.49096.49096.49096.490

362.740362.740362.740362.740362.740

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

2 11 1.02535353535354 9900

DensityDensityDensityDensityDensity

0.9750.9750.9750.9750.975

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.0290.029 0.0290.029 5

Number of Weakly Connected
Components

Number of Weakly Connected
Components

Number of Weakly Connected
Components

Number of Strongly Connected
Components

Number of Strongly Connected
Components

111 11

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient

0.9750.9750.9750.9750.975

Table 5.2.5: Summary of Network Analysis Reports for the Followers and Enemies Object
Relationships

 of Case 1

Network analysis of the followers and enemies object relationships immediately reveals
useful information about the network. A complete contrast of the ownership and domain
relationships, as witnessed by the visualization of the graph, this relationship comprises of
much more edges, making it similar to the usage/interaction relationship. An average
degree close to 100 shows us that VEs are immediately connected to a vast amount of VEs,
making the relationship generic. This is the result of the sociability of each VE. As each VE
has a commendable amount of “friends” and “enemies”, this way of socializing among
VEs leads to a more complete network. The high density of the network of followers and
enemies relationships is also an indication of a dense network.

The difference between this relationship and relationships such as the ownership and
domain is also evident in the visualizations of the networks. While communities are easily
spotted in the latter, betraying the number of users or domains, the former relationship
gives no such clues. On the contrary, the density of the network is reinforced by the
visualization of the network.

78

Figure: Network Analysis for Followees and Enemies Object Relationships of Case1

From top to bottom: Degree Distribution, In Degree Distribution, Out Degree Distribution, Betweenness Centrality Distribution, Closeness
Centrality Distribution, Eccentricity Distribution,

Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient
Distribution, Eigenvector Centrality Distribution, Weighted Degree Distribution, In Weighted Degree Distribution, Out Weighted Degree

Distribution

Figure: Followees and Enemies Object Relationships Graph

5.2.6 Parental Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

0.9800.9800.9800.9800.980

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 00 1.0 98

DensityDensityDensityDensityDensity

0.0100.0100.0100.0100.010

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.5000.500 0.5000.500 2

Number of Weakly Connected
Components

Number of Weakly Connected
Components

Number of Weakly Connected
Components

Number of Strongly Connected
Components

Number of Strongly Connected
Components

222 100100

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient

0.0000.0000.0000.0000.000

Table 5.2.6: Summary of Network Analysis Reports for Parental Object Relationships
 of Case 1

Network analysis of the parental object relationships immediately reveals useful
information about the network. An average degree below 1 shows us that VEs are
immediately connected to at most one VE, making the relationship very specific. This
means that using this relationship is preferred when searching a particular VE. The low
density of the network of ownership relationships is also an indication of a sparse
network.

The most interesting piece of information that can be gathered both by the metrics reports
and the visualization of the network, regards the number of communities in the network.
Both the number of the communities and the number of weakly connected components
can lead us to the number of Head VEs of the network of Virtual Entities. Each
community represents a group of VEs which share the same leader. The sum of these
groups is of course the total number of Head VEs in the network. This can also be verified
by the statistics of the network of Case1, which is 2 total Head VEs, one for each
application, same as the number of communities. The existence of one Head VE per
application can also lead us to the total number of applications in the network, which is
also 2 in this case.

82

Figure: Network Analysis for Parental Object Relationships of Case1
From top to bottom: Degree Distribution, In Degree Distribution, Out Degree Distribution, Betweenness Centrality Distribution, Closeness

Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Parental Object Relationship Graph

5.2.7 Co - Work Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

49.00049.00049.00049.00049.000

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 11 1.0 4900

DensityDensityDensityDensityDensity

0.4950.4950.4950.4950.495

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.5000.500 0.5000.500 2

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

22222

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

1.0001.0001.000 3920039200

Table 5.2.7: Summary of Network Analysis Reports for Co - Work Object Relationships
 of Case 1

Network analysis of the Co - Work object relationships immediately reveals useful
information about the network. An average degree of 50 shows us that VEs are
immediately connected to half of the network, making the relationship generic. This
means that using this relationship is preferred when searching a particular VE. The
medium density of the network of co - work relationships is also an indication of a half
dense network.

The most interesting piece of information that can be gathered both by the metrics reports
and the visualization of the network, regards the number of communities in the network.
Both the number of the communities and the number of weakly connected components
can lead us to the number of applications of the network of Virtual Entities. Each
community represents a group of VEs which share the same application. The sum of these
groups is of course the total number of applications in the network. This can also be
verified by the statistics of the network of Case1, which is 2 applications.

85

Figure: Network Analysis for Co - Work Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Co - Work Object Relationship Graph

5.2.8 Conflict Object Relationship

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

24.50024.50024.50024.50024.500

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 00 1.0 2450

DensityDensityDensityDensityDensity

0.2470.2470.2470.2470.247

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.0000.000 0.0000.000 51

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

5151515151

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

1.0001.0001.000 1960019600

Table 5.2.8: Summary of Network Analysis Reports for Conflict Object Relationships
 of Case 1

Network analysis of the conflict object relationships rely heavily on the amount of conflict
among VEs. In this case, conflict exists only in the first application, which translates to half
of the VEs of the network (50). The other 50 VEs do not form any conflict relationships.
This affects the average degree greatly. However the low density can provide an image of
how sparse the network is.

The most interesting piece of information that can be gathered both by the metrics reports
and the visualization of the network, regards the number of communities in the network.
The inclusion of the non connected nodes of the network give us a total number of
communities equal to 51. That is however expected, as each non connected node forms a
community. The 51st community, however, is actually the community that betrays the
group of conflicts in the network. This is strongly witnessed in the graph. As only one
application has conflicts, this corresponds to the community that is formed of the
conflicting VEs.

88

Figure: Network Analysis for Conflict Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution

Figure: Conflict Object Relationship Graph

5.2.9 Case 1 Complete Network of Object Relationships

Reports Average DegreeAverage DegreeAverage DegreeAverage DegreeAverage Degree

Degree

Weighted Degree

Graph Distance

Graph Density

Modularity

Connected
Components

Clustering
Coefficient

101.700101.700101.700101.700101.700

407.500407.500407.500407.500407.500

Diameter RadiusRadius Avg. Path Length #. of Shortest Paths

1 11 1.0 9900

DensityDensityDensityDensityDensity

1.0001.0001.0001.0001.000

ModularityModularity Modularity with resolutionModularity with resolution #. of Communities

0.0430.043 0.0430.043 5

Number of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected ComponentsNumber of Weakly Connected Components

11111

Avg. Clustering CoefficientAvg. Clustering CoefficientAvg. Clustering Coefficient Total TrianglesTotal Triangles

1.0001.0001.000 161700161700

Table 5.2.9: Summary of Network Analysis Reports for the Complete Network of Object
Relationships

 of Case 1

Putting all the previous relationships together creates an abundance of edges in the
network. The combination of all object relationships gives a complete network, where all
VEs are immediately connected to the rest of the network, in one way or another. The
resulting network is complete, as evidenced by each density, which proves that it is
possible to reach the total amount of VEs by using one or more of the proposed
relationships.

The visualization of the graph makes separating any information about the relationships
or the network nearly impossible, due to the density caused by the amount of edges. As
mentioned before, Gephi does not support parallel edges and converts them instead to a
single edge with weight equal to the sum of actual edges. This is easily noticed in the
graph, which appears to be mainly dominated by followers/followees and domain
relationships, which is understandable, given the high volume of these relationships and
the removal of all edges that connect same pairs of VEs.

91

Figure: Network Analysis for the Complete Network of Object Relationships of Case1
From top to bottom: Degree Distribution, Betweenness Centrality Distribution, Closeness Centrality Distribution, Eccentricity Distribution,
Authority Distribution, Hubs Distribution, Modularity, PageRank Distribution, Connected Components Distribution, Clustering Coefficient

Distribution, Eigenvector Centrality Distribution, Weighted Degree Distribution

Figure: Complete Network of Object Relationships Graph

5.3 Case 2: 500 Virtual Entities

The following table summarizes the basic statistics for Case 2:

Case 2Case 2

Total Nodes

Total Users

Domains

Applications

Max Friends/Enemies

Ownership Relationships

Usage/Interaction Relationships

Domain Relationships

Followers Relationships

Enemies Relationships

Parental Relationships

Co - Work Relationships

Conflict Relationships

Total Relationships

500

125

8

2

300

1057

1049023

15530

4919532

2767881

498

62250

31125

8846896

Table 5.3: Case 2 Statistics

The visualization of the network for each object relationship is given in the following
figures:

94

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Object Relationship Networks for Case 2: (a) Ownership, (b) Usage, (c) Domain, (d)
Parental, (e) Conflict and (f) Co Work Object Relationships

95

5.4 Case 3: 1000 Virtual Entities

The following table summarizes the basic statistics for Case 3:

Case 3Case 3

Total Nodes

Total Users

Domains

Applications

Max Friends/Enemies

Ownership Relationships

Usage/Interaction Relationships

Domain Relationships

Followers Relationships

Enemies Relationships

Parental Relationships

Co - Work Relationships

Conflict Relationships

Total Relationships

1000

250

8

2

600

2025

7970416

62211

37348915

23149683

998

249500

124750

68908498

Table 5.4: Case 3 Statistics

The visualization of the network for each object relationship is given in the following
figures:

96

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Object Relationship Networks for Case 3: (a) Ownership, (b) Usage, (c) Domain, (d)
Parental, (e) Conflict and (f) Co Work Object Relationships

97

5.5 Data Generation

As COSMOS is still in its infancy, an efficient dataset needed to be created for network
analysis. To this end, we used Python scripts to generate the network of VEs as well as
application and VE characteristics. Then, based on these characteristics, the object
relationships among VEs are gathered and formatted properly into GraphML lines of code,
which are then exported for use in Gephi. This chapter contains code snippets, along with
detailed comments.

5.5.1 Network and Application Characteristics

Code 5.5.1: Setting basic Network and Application info

In this section, the Network and Application characteristics are set. The number of nodes
is read from input arguments, the number of users is set to 25% of the number of nodes,
the 8 Domains are gathered in a list and the maximum numbers of Followers, Enemies and
Users a VE can have are set to 60%. The first Application contains the first half of VEs and
a Head VE a random VE from this set and the second Application contains the second half
of VEs and a Head VE a random VE from this set.

##Number of VEs and Number of Users:
Net_size = int(sys.argv[1]);
Users = math.floor(0.25*Net_size);
Domains:
Domains = ['Smart Cities','Smart Water', 'eHealth', 'Retail', 'Logistics',
'Home Automation', 'Security Emergencies', 'Smart Metering'];
Max number of friends, enemies and users each VE can have:
max_fren = math.floor(0.6*Net_size);
max_users = math.floor(0.6*Users);

Printing Statistics:
print 'Users: ' + str(Users);
print 'Frienemies: ' + str(max_fren);

2 Applications in the Network.
Each Application will be assigned to one application only

APPLICATION 1: Net_size/2 first VEs in App1, random Head VE among them.
App1 = {};
App1['AppID'] = 'A1';
App1['VEs'] = [];
App1['HeadVE'] = randrange(1, Net_size/2 +1,1);

for i in range(1, Net_size/2 +1):
 App1['VEs'].append('VE' + str(i));

APPLICATION 2: Remaining VEs in App2

App2 = {};
App2['AppID'] = 'A2';
App2['VEs'] = [];
for i in range(Net_size/2 +1, Net_size +1,1):
 App2['VEs'].append('VE' + str(i));

App2['HeadVE'] = randrange(Net_size/2 +1, Net_size +1 ,1);

98

5.5.2 Ownership Object Relationship

Code 5.5.2: Ownership Object Relationship

In this section, the Ownership Object Relationship is presented. First of all, each VE is
assigned to an Owner. Then, for each Owner List, that contains the VEs the owner has, an
Ownership Object Relationship is created among all VEs of the list. All Ownership Object
Relationships are then stored in the OwnRel list.

OwnershipList = {}; ## List containing a list of VEs for each Owner

Function to assign owners to each VE
def assign_owners():

 for j in range(1,Net_size+1):

 ! ## Generate a random owner:
 owner = 'U' + str(randrange (1, Users + 1, 1));
 ## Sort the VE into the list of its owner:
 if owner in OwnershipList:
 ve = 'VE'+ str(j);
 if ve not in OwnershipList[owner]:
 OwnershipList[owner].append(ve);
 else:
 OwnershipList[owner] = [];
 OwnershipList[owner].append('VE'+ str(j));
 return;

OwnRel = []; ## List containing all Ownership Object Relationships

Function to create the Ownership Object Relationships
def make_ownership():

! ## Sort VEs into Owners Lists:
 assign_owners();
 for owners in OwnershipList:
 ! ## For every Owner List, create Relationships with VEs of the List:
 velist = OwnershipList[owners];
 for i in range(0, len(velist)):
 for j in range(i, -1,-1):
 if i != j:
 rel = velist[i] + '-' + velist[j];
 OwnRel.append(rel);
 return;

make_ownership();

99

5.5.3 Usage/Interaction Object Relationship

Code 5.5.3: Usage/Interaction Object Relationship

In this section, the Usage/Interaction Object Relationship is presented. First of all, each VE
is assigned a number of Users. Then, for each User List, that contains the VEs the user has,
a Usage/Interaction Object Relationship is created among all VEs of the list. All Usage/
Interaction Object Relationships are then stored in the UsageRel list.

UsageList = {}; ## List of Lists of VEs for each User

def assign_users():

 for j in range(1,Net_size+1):
 ## For Each VE, generate its users and sort VE in its User Lists
 num = randrange(1,max_users+1,1)
 for i in range(num):
 usr = 'U' + str(randrange (1, Users + 1, 1));
 if usr in UsageList:
 ve = 'VE'+ str(j);
 if ve not in UsageList[usr]:
 UsageList[usr].append(ve);
 else:
 UsageList[usr] = [];
 UsageList[usr].append('VE'+ str(j));
 return

UsageRel = []; ## List that contains all Usage/Interaction Object
Relationships
def make_usage():

 assign_users();
 for users in UsageList:
 ## for each User List, create Usage/Interaction Relationships
among VEs in the list:
 velist = UsageList[users];
 for i in range(0, len(velist)):
 for j in range(i, -1,-1):
 if i != j:
 rel = velist[i] + '-' + velist[j];
 UsageRel.append(rel);
 return;

make_usage(); ## UsageRel has the usage relationships

100

5.5.4 Domain Object Relationship

Code 5.5.4: Domain Object Relationship

In this section, the Domain Object Relationship is presented. First of all, each VE is
assigned a Domain. Then, for each Domain List, that contains the VEs of the domain, a
Domain Object Relationship is created among all VEs of the list. All Domain Object
Relationships are then stored in the DomainRel list.

DomainList = {}; ## List of Domain Lists. Each Domain List holds the VEs of
the Domain

def assign_domain():

 for i in range(1,Net_size+1):
 ## Assign a Domain to the VE:
 domain = Domains[randrange(0, len(Domains), 1)];
 ## Sort the VE into the right Domain List:
 if domain in DomainList:
 DomainList[domain].append('VE'+ str(i));
 else:
 DomainList[domain] = [];
 DomainList[domain].append('VE'+ str(i));

 return DomainList;

DomainRel = [];
def make_domain():

 assign_domain();
 ## For each Domain List, make Domain Object Relationships among VEs in
the List:
 for dom in DomainList:
 domlist = DomainList[dom];
 for i in range(0, len(domlist)):
 for j in range(i, -1,-1):
 if i != j:
 rel = domlist[i] + '-' + domlist[j];
 DomainRel.append(rel);
 return;

make_domain(); ## DomainRel has the Domain relationships

101

5.5.5 Followers/Followees and Enemies Object Relationships

Code 5.5.5.1: Followers/Followees and Enemies Object Relationships: Making the Lists

In this section, both the Followers/Followees as well as the Enemies Object Relationships
are presented. These relationships need to be calculated together, in order to avoid
conflicts when a followee VE is also an enemy of at the same time.
First of all, each VE is assigned a number of followees and each followee is sorted into the
FollowersList of the follower VE. Similarly, each VE is then assigned a number of enemies
and each enemy is sorted as well into the EnemiesList, simultaneously eliminating the
case of a VE being both a followee and an enemy at the same time.

FollowersList = {}; ## Contains a List for every VE which contains its
Followees
EnemiesList = {}; ## Contains a List for every VE which contains its Enemies

def assign_followees():

 for j in range(1,Net_size+1):
 ## Assign a number of VEs as followers and sort into Followers Lists
 num = randrange(1,max_fren+1,1);
 ve = 'VE' + str(j);
 for i in range(num):
 new = randrange (1, Net_size + 1, 1);
 friend = 'VE' + str(new);
 if new != j:
 if ve in FollowersList:
 if friend not in FollowersList[ve]:
 FollowersList[ve].append(friend);
 else:
 FollowersList[ve] = [];
 FollowersList[ve].append(friend);
 return

def assign_enemies():

 for j in range(1,Net_size+1):
 ## Assign a number of VEs as enemies and sort into Enemies Lists
 ## A VE cannot be both a followee and an enemy of another VE
 num = randrange(1,max_fren+1,1);
 ve = 'VE' + str(j);
 for i in range(num):
 new = randrange (1, Net_size + 1, 1);
 enemy = 'VE' + str(new);
 if new != j and ve in FollowersList and enemy not in
FollowersList[ve]:
 if ve in EnemiesList:
 if enemy not in EnemiesList[ve]:
 EnemiesList[ve].append(enemy);
 else:
 EnemiesList[ve] = [];
 EnemiesList[ve].append(enemy);
 return

102

Code 5.5.5.2: Followers/Followees and Enemies Object Relationships: Making the Relationships

Then, for each Followers List, that contains the followee VEs of the follower, a Follower/
Followee Object Relationship is created among all VEs of the list. All Followers/Followees
Object Relationships are then stored in the FollowersRel list. Similarly, for each Enemies
List, that contains the enemy VEs of the VE, an Enemy Object Relationship is created
among all VEs of the list. All Enemies Object Relationships are then stored in the
EnemiesRel list.

FollowersRel = [];
EnemiesRel = [];

def make_friends():

 ## Build the Followers Lists and for every List create Followers/Followees
Obj. Rels. among VEs
 assign_followees();
 for friends in FollowersList:
 frlist = FollowersList[friends];
 for i in range(0, len(frlist)):
 for j in range(i, -1,-1):
 if i != j:
 rel = frlist[i] + '-' + frlist[j];
 FollowersRel.append(rel);
 return;

def make_enemies():

 ## Build the Enemies Lists and for every List create Enemies Obj. Rels.
among VEs
 assign_enemies();
 for enemies in EnemiesList:
 frlist = EnemiesList[enemies];
 for i in range(0, len(frlist)):
 for j in range(i, -1,-1):
 if i != j:
 rel = frlist[i] + '-' + frlist[j];
 EnemiesRel.append(rel);
 return;

make_friends();
make_enemies();

103

5.5.6 Parental Object Relationship

Code 5.5.6: Parental Object Relationship

The Parental Object Relationship is one of the simplest Object Relationships. All that is
needed are the VEs and the Head VE of the Application to create the relationships between
the Head VE and each VE of the application. This process is made even more trivial by the
fact that, as assumed at the beginning, the first half of the VEs belong to Application 1 and
the second half to Application 2 and the VEs are serially named. The Parental Object
Relationships are stored in the Parental list.

5.5.7 Conflict Object Relationship

Code 5.5.7: Conflict Object Relationship

The Conflict Object Relationship is equally trivial to generate, based on the assumption
that in our scenarios conflict exists only for the VEs of Application 1. As all the VEs can be
easily retrieved, as mentioned above, it is only a matter of creating the relationships
among those VEs. The Conflict Object Relationships are stored in the Conflict list.

Parental = []; ## List of Parental Object Relationships
def make_parental (lower, upper, head):

 ## For each VE of the application, create a Parental Obj. Re. with
the Head Ve of the App.
 for i in range (lower, upper +1):
 if i != head :
 rel = 'VE'+ str(head) + '-' + 'VE' + str(i);
 Parental.append(rel);

make_parental(1,Net_size/2, App1['HeadVE']);
make_parental(Net_size/2 +1,Net_size, App2['HeadVE']); ## Parental has
the parental relationships

Conflict = []; # List of Conflict Relationships

def make_conflict(lower, upper):

 ## For each VE, make Conflict Obj. Rels with all other VEs
 for i in range(lower,upper+1):
 for j in range(i,0,-1):
 if i != j:
 rel = 'VE'+ str(i) + '-' + 'VE' + str(j);
 Conflict.append(rel);

Only first Application has Conflicts in our scenarios:
make_conflict(1,Net_size/2);

104

5.5.8 Co - Work Object Relationship

Code 5.5.8: Co - Work Object Relationship

Finally, the Co - Work Object Relationships are established in two stages. First, the
relationships among VEs of Application 1 are established and then the relationships
among VEs of Application 2 follow.

5.5.9 Observations and Conclusions

It is made clear that efficient storing of VEs is vital to effortlessly establishing these
relationships. Two assumptions are critical to this end: a) VEs are serially named e,g VE1,
VE2, VE3 etc. and b) Applications are also serially stored, meaning that the first half of the
VEs belong to Application 1 and the second half belong to Application 2. This, in turn, is
crucial in reducing the complexity of searching and creating these relationships. However,
these assumptions cannot always be true in real life scenarios as well. VEs are subject to
arbitrary naming and applications are not usually limited. However, it is important to
design an efficient storing technique of VEs and Applications, that will lead to significant
improvements in terms of complexity.

As networks grow bigger and more complex, memory and disk storage requirements are
also affected. A significant amount of memory needed to be allocated to Gephi in order to
be able to handle our networks, way beyond its default 512MB, i.e a network of 1000
nodes required more than 5GB of memory devoted to Gephi. This, however, is not
surprising, as graphical applications such as Gephi are known to be memory intensive. In
terms of disk storage, the vast amount of relationships translate to bigger GraphML files.
The table below summarizes the space required for our networks:

CoWork = []; ## Contains all Co Work Object Relationships

def make_cowork(lower, upper):

 ## Create the relationships among all specified VEs:
 testlist = [];
 for i in range(lower,upper+1):
 for j in range(i,lower-1,-1):
 if i != j:
 rel = 'VE'+ str(i) + '-' + 'VE' + str(j);
 testlist.append(rel);

 CoWork.append(testlist);

Make the Co - Work Obj. Rels for App 1:
make_cowork(1,Net_size/2);
Make the Co - Work Obj. Rels for App 2:
make_cowork(Net_size/2 +1,Net_size);

105

Ownership Usage/
Interaction Domain

Followers
+ Enemies Parental Co - Work Conflict Total

Case 1:
100

Case 2:
500

Case 3:
1000

14.7KB 410.2KB 44.7KB 2.4MB 8.9KB 171.5KB 84.3KB 5.8MB

82.4KB 75.1MB 1.1MB 548MB 45KB 4.5MB 2.2MB 630.9MB

162.5KB 579.1MB 4.4MB 4.4GB 89.5KB 18.2MB 8.8MB 5.0GB

Table 5.5.9: Disk Storage Requirements for GraphML files

Figure 5.5.9: Disk Storage Percentages for Case 1 files

 It is immediately evident that the most prominent relationships, in terms of space
storage, are Followers/Followees and Enemies Object Relationships. Combined,
they amount to 77.1% of the total size of complete network. Another 12.8% is
allocated to Usage/Interaction. This is easily confirmed when we look back at the
Case 1 statistics, where more than half of the total amount relationships are
Followers/Followees and Enemies Relationships, followed by he Usage/Interaction
relationships. These percentages are directly affected by two factors: a) The
maximum number of followers and enemies a VE can have is set to 60% of the
network size and b) The maximum number of users a VE can have is set to 60% of
the network size. Lowering those thresholds can produce smaller files , as well as
shorter running times.

2.6%
5.4%

0.2%

77.1%

1.5%

12.8%

0.4%

Ownership Usage/Interaction Domain Followers + Enemies
Parental Co - Work Conflict

106

References

[1] Relational Models Theory [Online]. Available: http://www.rmt.ucla.edu.
[2] S. Higginbotham, “Amazon’s Internet-of-things strategy takes shape,” 31-Mar-2015.

[Online]. Available: http://fortune.com/2015/03/31/amazons-internet-of-things-
strategy-takes-shape/.

[3] R. Miller, “IBM Launches Major Internet of Things Offensive.” [Online]. Available:
http://social.techcrunch.com/2015/03/30/ibm-wants-to-get-head-start-on-
internet-of-things/.

[4] “Moving from insight to action with Azure IoT services” [Online]. Available:
http://www.microsoft.com/en-us/server-cloud/customer-stories/rockwell-
automation.aspx.

[5] “Giving the world’s cities a lift with IoT” microsoft.com. [Online]. Available: http://
www.microsoft.com/en-us/server-cloud/customer-stories/Thyssen-Krupp-
Elevator.aspx.

[6] “Autolib’ drives the value of IoT” microsoft.com. [Online]. Available: http://
www.microsoft.com/en-us/server-cloud/customer-stories/autolib.aspx.

[7] T. J. McCue, “$117 Billion Market For Internet of Things In Healthcare By 2020,”
forbes.com. [Online]. Available: http://www.forbes.com/sites/tjmccue/
2015/04/22/117-billion-market-for-internet-of-things-in-healthcare-by-2020/.

[8] “The COSMOS project,” iot-cosmos.eu. [Online]. Available: http://iot-cosmos.eu/.
[9] S. Wasserman, Social Network Analysis. Cambridge: Cambridge University Press,

1994.
[10] D. M. boyd and N. B. Ellison, “Social Network Sites: Definition, History, and

Scholarship,” Journal of Computer-Mediated Communication, vol. 13, no. 1, pp. 210–
230, Dec. 2007.

[11] C. Brown, N. Lathia, A. Noulas, C. Mascolo, and V. Blondel, “Group colocation
behavior in technological social networks,” arXiv.org, vol. cs.SI. 07-Aug-2014.

[12] M. Naaman, “Is it Really About Me? Message Content in SocialAwareness
Streams,” Sep. 2009.

[13] K. Lerman and R. Ghosh, “Information Contagion: an Empirical Study of the
Spread of News on Digg and Twitter Social Networks,” arXiv, vol. cs.CY, 2010.

[14] S. Dashti, L. Palen, M. P. Heris, K. M. Anderson, S. Anderson, and T. J. Anderson,
“Supporting Disaster Reconnaissance with Social Media Data:A Design-Oriented
Case Study of the 2013 Colorado Floods,” Feb. 2014.

[15] J. B. Nash, Spectatoritis. 1932.
[16] G. G. Roberts, Dick Tracy and American Culture. McFarland, 1993.
[17] “Wonders of Modern Technology: Barcodes Sweep the World.”
[18] M. L. HEILIG, “Stereoscopic-television apparatus for individual use,” US2955156.
[19] “internet_first_words.html,” lk.cs.ucla.edu. [Online]. Available: http://

www.lk.cs.ucla.edu/internet_first_words.html.
[20] M. Cardullo, “Genesis of the Versatile RFID Tag,” rfidjournal.com. [Online].

Available: http://www.rfidjournal.com/articles/pdf?392.
[21] “CMU SCS Coke Machine,” cs.cmu.edu. [Online]. Available: http://

www.cs.cmu.edu/~coke/.
[22] M. Weiser, “The Computer for the 21st Century,” wiki.daimi.au.dk. [Online].

Available: http://wiki.daimi.au.dk/pca/_files/weiser-orig.pdf.
[23] M. Lamming and M. Flynn, “Forget-me-not: Intimate computing in support of

human memory,” Proc FRIEND21, 1994.

107

[24] B. N. Schilit and M. M. Theimer, “Disseminating active map information to mobile
hosts,” Network, IEEE, vol. 8, no. 5, pp. 22–32, 1994.

[25] S. Sarma, D. L. Brock, and K. Ashton, “The Networked Physical World.”
[26] D. Giusto, A. Iera, G. Morabito, and L. Atzori, The Internet of Things. New York, NY:

Springer Science & Business Media, 2010.
[27] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer

Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[28] M. Presser and A. Gluhak, The Internet of Things: Connecting the Real World with the

Digital World. EURESCOM mess@ ge–The Magazine for Telecom …, 2009.
[29] J. P. Vasseur and A. Dunkels, “IP for smart objects,” IPSO Alliance, 2008.
[30] I. Toma, E. Simperl, and G. Hench, A joint roadmap for semantic technologies and the

internet of things. Proceedings of the Third STI Roadmapping Workshop, 2009.
[31] H. Vogt, “Efficient Object Identification with Passive RFID Tags,” in Pervasive

Computing, vol. 2414, no. 9, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
98–113.

[32] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002.

[33] “Catalog of IoT Domains for Applications,” pp. 1–41, Oct. 2014.
[34] “Nest Thermostat: What is Auto-Away?.”
[35] “Google to Acquire Nest,” investor.google.com.
[36] “Mimo Smart Baby Moitor,” mimobaby.com. [Online]. Available: http://

mimobaby.com/.
[37] “Bigbelly Waste & Recycling Stations,” bigbelly.com. [Online]. Available: http://

bigbelly.com/solutions/stations/.
[38] “Streetline: ParkSight 2.0 Parking Analytics,” streetline.com. [Online]. Available:

http://www.streetline.com/parking-analytics/.
[39] “Lighting City of Oslo: Street lighting case study,” presented at the echelon.com.
[40] “Lighting: Street Lighting Paris Senart case study,” presented at the echelon.com.
[41] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a Social Structure to the Internet

of Things,” Communications Letters, IEEE, vol. 15, no. 11, pp. 1193–1195, Nov. 2011.
[42] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl5, and H.-W. Gellersen,

“Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts,” in Ubicomp 2001: Ubiquitous Computing, vol. 2201, no. 10, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 116–122.

[43] J. Bleecker, “A Manifesto for Networked Objects — Cohabiting with Pigeons,
Arphids and Aibos in the Internet of Things,” (2006), 2006.

[44] E. Nazzi and T. Sokoler, Walky for embodied microblogging: sharing mundane activities
through augmented everyday objects. New York, New York, USA: ACM, 2011, pp. 563–
568.

[45] M. Kranz and L. Roalter, “Things that twitter: social networks and the internet of
things,” … the Internet of Things do …, 2010.

[46] P. Mendes, “Social-driven internet of connected objects,” Proc of the Interconn Smart
Objects with the Internet …, 2011.

[47] J. Porcello, “From “Smart Objects” to “Social Objects”: The Next Evolutionary Step
of the Internet of Things,” pp. 1–9, Nov. 2014.

[48] A. P. Fiske, Structures of social life: The four elementary forms of human relations:
Communal sharing, authority ranking, equality matching, market pricing. Free Press,
1991.

[49] “Internet Encyclopedia of Philosophy: Relational Models Theory,” iep.utm.edu.
[Online]. Available: http://www.iep.utm.edu/r-models/.

[50] A. Computing, “An architectural blueprint for autonomic computing,” IBM White
Paper, 2006.

108

http://www.streetline.com/parking-analytics/
http://www.streetline.com/parking-analytics/

[51] O. Voutyras, P. Bourelos, D. Kyriazis, and T. Varvarigou, “An Architecture
supporting Knowledge flow in Social Internet of Things systems,” Oct. 2014.

[52] O. Voutyras, S. V. Gogouvitis, A. Marinakis, and T. Varvarigou, “Achieving
Autonomicity in IoT systems via Situational-Aware, Cognitive and Social Things,”
presented at the the 18th Panhellenic Conference, New York, New York, USA, 2014,
pp. 1–2.

[53] J. E. Rowley, “The wisdom hierarchy: representations of the DIKW hierarchy,”
Journal of Information Science, vol. 33, no. 2, pp. 163–180, Feb. 2007.

[54] L. Atzori, A. Iera, and G. Morabito, “Making things socialize in the Internet — Does
it help our lives?,” presented at the Kaleidoscope 2011: The Fully Networked
Human? - Innovations for Future Networks and Services (K-2011), Proceedings of
ITU, 2011, pp. 1–8.

[55] O. Voutyras, P. Bourelos, S. Gogouvitis, D. Kyriazis, and T. Varvarigou, “Social
Monitoring and Social Analysis in Internet of Things Virtual Networks,” pp. 1–8,
Jan. 2015.

[56] “Gephi Main Page,” gephi.github.io. [Online]. Available: http://gephi.github.io/.
[57] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “ForceAtlas2, a Continuous

Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi
Software” plosone.org. [Online]. Available: http://www.plosone.org/article/
fetchObject.action?uri=info:doi/10.1371/journal.pone.
0098679&representation=PDF.

[58] T. M. J. Fruchterman and E. M. Reingold, “Graph Drawing by Force-directed
Placement,” pp. 1–36, Jan. 1997.

109

http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0098679&representation=PDF

