EOviko Metoofo IToAvteyveio

€

5

Yyol HAektpoddymv Mnyovikov

Kot Mnyavikov Y toloylotaov

Touéag Teyvoloyiac ITAnpopopikng kot
YmoAoylotav

POMHOEVS -
nvp$opo

N

WA

Avaivon TS CNUAVTIKOTNTOS GYECEMY TNYOL0V
KOOIKA Yo TNV €€0puén TS UPYLTEKTOVIKNG
GLGTINOTOS

AITIAOMATIKH EPT'AXIA

YTAYPOIIOYAOY IQANNA

Emprénov : Kootag Kovroyidvvng

Avaminpotg Kabnyntc E.M.IT

AbBnva, lovdog 2015

EOviko Metoofo IToAvteyveio

o
%

Yyol HAektpoddymv Mnyovikov

Kot Mnyavikov Y toloylotaov

Touéag Teyvoloyiac ITAnpopopikng kot
YmoAoylotav

. 9!
1y
oV

i
NPOMHOEVS .
QS >
nvp$opo

Ly

tn,

Avaivon TS CNUAVTIKOTNTOS GYECEMY TN YO.L0V
KOOKA Yo TNV €€0puén TS UPYLTEKTOVIKNG
GLGTINOTOS

AIIIAQMATIKH EPT'AXIA

YTAYPOIIOYAOY IQANNA

Emprénov : Kootag Kovroyudvvng

Avaminpotrg Kadnynmge E.M.I1

Eykpinke and v tpuuekn eetaoctikn emrponn v 2n loviiov 2015.

Kootag Kovroytdvvng lodvvnc Bactieiov Ying Zou
Av. Kabnynmg E.M.II Koabnyntg, E.ML.IL Av. Kabnyntpua, Havemomuo Queen’s

AbBnva, lovog 2015

Yravporovrov loavva

Authopatovyoc Hiektpoddyog Mnyovikoc ko Mnyovikdg Ymoroyiotov
E.M.II.

Copyright © Xtavpomovrov lodvva, 2015.
Me empoiaén mavtog dkaidpatog. All rights reserved.

AmoaryopeveTal 1 avTrypa®n, amodnKevon Kot Slavour| TG Topovcas epyoaciog, €€ oAoKAN-
POV 1M TUNHOTOG ALTNG, Yo epmopikd okomd. Emirpénetar n avatdnwon, armobrjkevon kot
SLOVOUT Y100 OKOTO [N KEPOOOKOTIKO, EKTALOEVTIKNG 1] EPEVVNTIKNG GVONGS, VIO TNV TPOLTO-
Beom va avaeépeTat 1 TYN TPOoEAELONS Kot va dtatnpeitat To Tapodv unvopa. Epotipata
OV QPOPOVV TN YPNON TNG EPYACIOG Y10 KEPOOGKOMIKO GKOTO TPEMEL VO, ATEVOVVOVTOL TPOG
TOV GUYYPOPEQL.

Ot amdYELS KO TO GUUTEPACUATO TOV TEPIEXOVTOL GE AT TO £YYPOPO EKPPALOVY TOV GLY-
YPOQEQ Kot OEV TPETEL VoL EpUNVEVDEL OTL avTITPOc®TELOVY TIC EMionueg B0€aelg Tov EOvikon
Metoépov [Torvteyveiov.

IHepiinyn

H e£6puén apyrtektovikng eivan pia meproyn g Teyxvoloyiog AoyiopuikoD Tov £xel TPOGEA-
KOGELTO EVOLAPEPOV TOALDY EPEVVITMOV Ko S1APOPES TPOCEYYIGELS ExovV TpoTabel. QoTd60,
EKTETOUEVT Epevval OeV £xel dte&oyOel Yia TNV eMidpaoN TOV GYEGEDV TOV EEAYMVTOL OO TOV
nnyoaio Kodka otnv eE0puén apyttektovikng. O 6TdY0g TS TOPOVGAS SIMAMULOTIKNG EPYOL-
olag eivotl vo TEPOUATIOTEL GYETIKA LLE TO AVTIKTUTO TOV GYE0EMV OV EEAY®OVTOL amd TOV
nnyoio K®diko otnv eE0PLEN APYITEKTOVIKNG. L& LT TNV KatehBvvon, diepevvope 10 Tpod-
BAN O TOL EVTOMIGHOV KO TNG EMAOYNG EVOG EAGYLGTOL GLVOLOL GYEGEMV TTOL UITOPEL VaL Y PT)-
owomomBet yio tnv €£0pvEN, LEG® TNG OLAOOTOINGNG, L0 APYLITEKTOVIKNG TOL E1val 0pKETA
KOVTA G€ Lo 0pYITEKTOVIKT TOV BE®PEITOL KOVTA GTNV TPOYLOTIKY] OPYLITEKTOVIKT EVOG G-
OTNHOTOG AOYIG KOV, ZTO TAAIG1O QLTS TNG SIMAMUOTIKNG EPYUGIOC, £XOVUE EQAPUOGEL £VaL
mAaiclo mov eEdyel oyEoelg omd Tov mNYaio KM VOS AOYIGHIKOD GUGTHUATOG, dNUIoVPYET
£vaL GTIYUIOTLTIO TOV LOVTEAOD HLOG OPYLTEKTOVIKT] Y10l SLPOPETIKOVG GLVOLOUGLOVS TWV OYE-
cewV, opilel pia amdoTACT] OHOIOTNTOG LETOED TMV LOVTEA®VY OPYLITEKTOVIKNG Kol 0E10A0YEL
™V andGTACT) OPOLOTNTAG HETAED TG EEAYMUEVNG OPYITEKTOVIKNG KO LLOG OPYLTEKTOVIKNG
ov Bepeiton KOVTE GTNV TPAYUOTIKY OPYITEKTOVIKY TOV GLGTHIATOS. To amoteAéouata
pog aE0A0YNONKAVY e TNV TPOYUATOTOINON TEWPOUAT®OV 68 pia gupeic GLALOYT GLGTN UG-
TV, TOL TAEIVOUOVVTOL GE SOPOPETIKE TESTA EPOPLOYNG KOl YAMGOOV TPOYPOUUOTIGLOD.
Epyoaotkape pe texvikég yio T HOVTEAOTOINGT OPYITEKTOVIKAOV AOYICUIKOD, TEXVIKES Y10l
™V €£0y®YN CUYKEKPIUEVOV LOVTEA®V OPYITEKTOVIKNG oo mnyoio kmoKa, Kabdg Kot Te-
YVIKES Y10l VO VTOAOYIOTEL PLe PETPIKEG 1) OLOLOTNTA HETOED TOV LOVTEAWDV OPYITEKTOVIKNG.

A&Ee1c KAheod

Teyxvoroyia Aoyiopkov, Apyrtektovikny Xvotnudtov, EE0puén Apyitektovikng,

Evyoprotieg

Oélm va gvyoploom Beppd tov emPAETOVTO KOONYNTH QLTS TG OWTAOUOTIKNG EPYOCTOC
K. Kdota Kovtoyidvvn yio) cvveyn kabodnynon Tov Kot TV EUTIGTOCVVN TOV LoV £JE1EE
KaBmG Kot TIc ToAVTIHES GVUPBOVAES TOV. Agv Ba Bpiokopovy 6TV Topeio TOV ipton GNIUEPD
xopic v Pondetd tov. BEA® va evXaPIGTIC® AKOUN TOVS GLVEPYATES oL 610 Epyactipilo
Teyvoloyiag Aoyiopkol mov popdotnray pali Lov Tig ToADTIUES YVAGELG TOVS. Evyapiotd
axoun tov ['dyko Mutihivn yuo Ty vootpién Kot TNV VITOUOVH Tov LoV £xet dgilel. Oa
NBeha TEAOG VO EVYAPLOTIC® TNV OIKOYEVELA OV KOl KUPIMG TOLG YOVELG LoV, o1 omtoiot pe
VROGTNPIEAY Ko EKOVOV OLVOTH TNV OMEPIOTAGTN EVOGYOANGT OV TOGO LE TNV EKTOVION
NG SWAMUATIKAG L0V, OGO KOl GUVOAMKA LE TIG GTOVOEG LOV.

Ytavpomovrov lodvva,

AbBMva, 2n TovAiov 2015

H epyacia avt eivan eniong Stabéoyun wg Teyvikn Avapopd CSD-SW-TR-42-14, EBvicé Metoopio
IToAvteyveio, Zyoin Hiektpoddymv Mnyovikdv kot Mnyoavikav Ymoloyiotov, Topéag Teyvoroyiag
[Mmpopopiknig kar Ynoroyiotdv, Epyactipio Teyvoroyiag Aoyiopukov, [ovAlog 2015.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

Abstract

Architecture recovery is an area of Software Engineering that has attracted the interest of
many researchers and several approaches have been proposed. However, research has not
been conducted on the impact that source code extracted relations have on architectural ex-
traction. The objective of this diploma thesis is to experiment on the impact of source code
extracted relation on architectural recovery. In this direction, we investigate the problem of
identifying and selecting a minimal set of relations that can be used to extract, through clus-
tering, an architecture that is close enough to the real architecture of a software system. In the
context of this thesis, we implemented a framework that extracts relations from source code
a software system, generates an instance of the an architecture model for different combi-
nations of relations, defines a similarity distance between architecture models and evaluates
a similarity distance between the extracted architecture and a gold standard architecture of
the system. The results were evaluated by conducting experiments in a wide collection of
systems, classified in different application domains and programming language paradigms.
We worked with several techniques for modeling software architectures, techniques to ex-
tract instances of concrete architecture models from legacy code, as well as techniques to
compute similarity metrics between architecture models.

Key words

Software Engineering, Software Architecture, Architectural Extraction, Reverse Engineer-
ing

Acknowledgements

Foremost, [would like to express my sincere gratitude to my advisor Prof. Kostas Kontogian-
nis for the continuous support of my diploma thesis research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of research and
writing of this thesis. I could not have imagined having a better advisor and mentor for my
diploma thesis. Besides my advisor, I thank my fellow lab mates for the stimulating discus-
sions that we had and the expertise that they shared with me in the last two years . Also I
would like to thank Giagkos Mytilinis who supported me though this venture. Last but not
the least, I would like to thank my family, especially my parents who have supported me
through my life and made it possible for me to be here at this moment.

Stavropoulou loanna,

Athens, July 2, 2015

This thesis is also available as Technical Report CSD-SW-TR-42-14, National Technical University of
Athens, School of Electrical and Computer Engineering, Department of Computer Science, Software
Engineering Laboratory, July 2015.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

11

Contents

Abstract,
Acknowledgementso
Contents
Listof Tables s
Listof Figures
1. Imtroduction L
1.1 Architecture Recovery,

1.2 Objective e e e e

1.3 Thesis Organization

2. Background Knowledge
2.1 Source Code Analysis.

2.2 Software Clustering
22.1 ACDC,

222 Bunch

2.3 Architecture Representation
2.3.1 The Meta Object Facility (MOF) Standard

3. Proposed Methodology and Modeling
3.1 ProcessOutline

3.2 Relation Model

3.3 Architecture Metamodel

4. Architecture Similarity
4.1 ComponentMatching
4.1.1 The Hungarian Method

4.2 Entity and Property Matching

4.3 Connector Matching

4.4 BindingMatching

4.5 Differencing Score

5. Implementation of the Framework
5.1 Selection of the Clustering Methodology

5.2 Population of the Architecture Model

5.3 Population Examples

6. Experimentation Resultso 0000000 71

6.1 PreprocessingResults L. 71
6.1.1 ExecutionTimes 71

6.2 Experimental Infrastructure, 76

6.3 Systemsunder Analysis 76

6.4 AnalysisResults. 78
6.4.1 Procedural Systems, 79

6.4.2 ObjectOriented Systems 84

6.5 InterpretationoftheResults. 88
6.5.1 Procedural Systems L. 88

6.5.2 Object Oriented Systems 90

7. Conclusion and Future Work 93
Bibliography 95

14

List of Tables

2.1
2.2
23
24

3.1
32

5.1
52
53
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15

Comparison of Fact Extractors 23
Abstractmodel content Lo 25
Relations that Fetch extracts 29
Patterns detected by ACDC 32
Class Descriptions for Modified Architecture Metamodel 47
The children of elements 47
Result of Similarity Algorithm for Combination1 63
Result of Similarity Algorithm for Combination2 64
Result of Similarity Algorithm for Combination3 66
Result of Similarity Algorithm for Combination4 67
Result of Similarity Algorithm for Combination5 69
Fetch Execution Time for Procedural Systems 72
Fetch Execution Time for Object Oriented Systems 72
Execution time for ACDC for procedural systems 73
Execution time for ACDC for object oriented systems 74
Execution time for Bunch for procedural systems 75
Execution time for Bunch for object oriented systems 75
Procedural Systems under Examination 77
Object Oriented Systems under Examination 78
Ease of extraction of relations from sourcecode 78
Best combinations of relations - Procedural Systems 81
Worst combinations of relations - Procedural Systems 82
Average and Standard Deviation with and without a combination of relations

- Procedural Systems 83
Best combinations of relations - Object Oriented Systems 86
Worst combinations of relations - Object Oriented Systems 87
Average and Standard Deviation with and without a combination of relations

- Object Oriented Systems 88

15

List of Figures

2.1
2.2
23
24
2.5
2.6

3.1
3.2
33

5.1
5.2

53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9

Fact Extraction Tool Chain
Four Layer Metadata Architecture
EMOF Data Types ot e e e e e
EMOF Packageo
EMOF Types e
Example model M1)

The chain of tools comprising the implemented framework
ACME Metamodel
Modified Architecture Metamodel

Comparison of Execution Time for ACDC and Bunch - Procedural Systems
Comparison of Execution Time for ACDC and Bunch - Object Oriented Sys-
TeMS e e e e
Steps for Population of Architectural Instances
Populated Architecture Instance
Populated Architecture Instance for Combination 1
Populated Architecture Instance for Combination2
Populated Architecture Instance for Combination3
Populated Architecture Instance for Combination4
Populated Architecture Instance for Combination5

Fetch Execution Time for Procedural Systems
Fetch Execution Time for Object Oriented Systems
Execution Time for ACDC in comparison with input file size - Procedural
Systems e
Execution Time for ACDC in comparison with input file size - Object Ori-
ented Systems L. Lo
Execution Time for Bunch in comparison with input file size - Procedural
Systems e
Execution Time for Bunch in comparison with input file size - Object Ori-
ented Systems e
Average distance score for Procedural Systems
Sorted average distance score for Procedural Systems
Average distance score for Object Oriented Systems

6.10 Sorted average distance score for Object Oriented Systems

17

Chapter 1

Introduction

1.1 Architecture Recovery

The cycle of development for large-scale software systems usually begins with requirement
gathering, followed by architecture construction and high level design. Then the system is
implemented and finally, as part of its life cycle, as the system is maintained, it evolves.

As architecture of a software system, we define the structure of the system, which com-
prises the software elements, externally visible properties of those elements, and relationships
among them [Bass13]. Software architecture design is concerned with gross organization and
global control structure of a system. Architecture bridges the gap between the requirements
and implementation of the system. Software architecture is a very important concern due to
understanding, analysis, reusability, evolution and management of legacy systems.

As a software system evolves so does its implementation and its architecture as well.
However, in reality software engineers have to deal with the problem of ensuring that a soft-
ware system’s architecture is kept up to date with its implementation.

In software architecture research, this process of mapping a system’s implementation to
its architecture is known as software architecture recovery. Architecture recovery is really
important for large and complex systems. Consistency between the architecture and the im-
plementation is crucial. This problem is solved by recovering the software architecture from
the implementation and comparing the recovered architecture with a gold standard. This is
a difficult and time consuming process. Therefore several automated tools have been de-
veloped to aid software engineers tackle this obstacle. These tools are based on several ar-
eas of software engineering, artificial intelligence, programming languages etc. The most
used approaches are Cluster based [Lung98], Domain based [DeBa94] and Structural based
[Kosc06].

Finally, because this area greatly concerns the research community of software engineers,
several techniques have been proposed [Magb07], [Corall], [Garc11] for automated archi-
tectural recovery. As a result, several studies have been conducted to evaluate all these tech-
niques that have been proposed, [Wu05a], [Garc13].

Specifically on cluster based architectural extraction, although researchers continually try
to come up with better clustering algorithms or ways to fine tune the existing ones, exten-
sive research has not been done on investigating the impact that different relations have on
architectural extraction. There is no experimentation on how the input relations affect the
outcome of the clustering and which relations should be used. This was our motivation for
this work.

19

1.2 Objective

The objective of this diploma thesis is to further experiment on the impact of source code
extracted relations on architectural recovery. In this direction, we investigate the problem
of identifying and selecting a minimal set of relations that can be used to extract, through
clustering, an architecture that is close enough to the real architecture of a software system.

In the context of this thesis, we will implement a framework that extracts relations from
the source code of a software system, generates an instance of an architecture model for
different combinations of relations, defines a similarity distance between architecture models
and evaluates a similarity distance between the extracted architecture and a gold standard
architecture of the system. The results will be evaluated by conducting experiments in a wide
collection of systems, classified in different application domains and programming language
paradigms.

We will work with several techniques for modeling software architectures, techniques to
extract instances of concrete architecture models from legacy code, as well as techniques to
compute similarity metrics between architecture models.

Once this thesis is completed we want to be able to answer the following questions:

e Does the selection of source code extracted relations that are used for architectural re-
covery affect the result of the recovery?

e Can we use only a subset of the relations that exist in the source code and still get an
accurate result?

e Which combinations of relations produce the closest architecture to the gold standard?

e What is the smallest subset of relations that can be used and still produce an accurate
architecture?

o [s there a right balance between the best possible outcome and the less effort expended
to extract relations?

1.3 Thesis Organization

The rest of the thesis is organized in six chapters. The second chapter summarizes the existing
background knowledge on which we rely in order to design and implement our framework.
The third chapter describes briefly our proposed methodology and modeling tools. The forth
chapter presents our similarity algorithm that defines a similarity distance between architec-
ture models and in the fifth chapter we go more into detail about the implementation of our
framework. Finally, the sixth chapter presents the experimental infrastructure and method-
ology and our results. The seventh and final chapter presents the conclusions of our work as
well as recommendations for future work on the field.

More specifically, in Chapter 2, we will provide background knowledge firstly on source
code analysis and the tools that are used. Then, we will refer to software clustering, and two
very well known tools for clustering, ACDC and Bunch. Finally, we will discuss about the
Meta Object Facility, a standard for model specification.

Having examined briefly the most important concepts that we will deal with, in Chapter
3 we will get into detail about the methodology that we propose and the models that we
designed. We will firstly describe in detail the process outline of our framework and then

20

we will present the relation model and the architecture metamodel that we designed in order
to represent the source code extracted relations and the architecture of a software system
respectively.

In Chapter 4, we will describe in detail the similarity algorithm that is used to compare
architecture instances and extract the similarity distance of them. We will explain how differ-
ent types of elements are matched and based on what criteria. Furthermore, we will explain
how the similarity metric is computed and what is its physical meaning.

In Chapter 5, we will explain how we chose the clustering methodology that we used,
we will present the process of the population of the architecture metamodel and we will
provide specific examples to make the process more comprehensible. In addition to that, the
examples will also demonstrate practically the use of the similarity algorithm that is described
in Chapter 4.

In Chapter 6, we will analyze our experimentation results. We will present the experi-
mental infrastructure that was used and give details about the systems that were analyzed.
Then we will display our results with extensive interpretation.

Finally, in Chapter 7, we will refer to the conclusions that we reached during our experi-
mentation with the use of source code extracted relations for architectural recovery. We will
also underline some issues that we feel require further exploration.

21

Chapter 2

Background Knowledge

2.1 Source Code Analysis

The last decades have seen an explosive growth in the software industry worldwide. This
development has put in the spotlight the need of tools that analyze large software systems.
Developers need tools to discover and map unknown source code for enhancement or main-
tenance tasks. Tools that are helpful in this direction:

e give information about metrics of the source code, that provide quantitative indicators
to identify maintenance hot spots

e offer visualization that can help the understanding of the system composition
e detect patterns

e perform dependency analysis that reveal component interactions

When all these tools are combined, the developer has a complete view of the system and
its interacting components.

Several fact extraction tools exist that offer most or all of these features. [Bois07] com-
pares several C++ fact extractors and we will present their findings. Table 2.1 compares
some fact extractors based on the features that we previously described.

The abbreviations that are used are: (i) MC for Metric Calculation; (ii) PD for Pattern
Detection; (iii)) DA for Dependency Analysis; and V for Visualization. It should be noted
that the fact that a fact extractor lacks one or more of these features only means that it was
designed differently and has other key features. It is also indicated whether the extractor is
open source, which is also an important aspect in the context of this thesis.

Open Visualization Toolkit - Combines Source Navigator [SN] with Open Inventor C++
toolkit [Tele02]. This tool has been mainly used for reverse architecting large systems.

TkSee/SN -Also uses Source Navigator [SN] to generate a GXL representation of the
Dagstuhl Middle Model (DMM) [McQu06]. This tool supports navigation as well as query-
ing. However, even though this tool is indicated in [Leth02] to be open source, no reference

Fact Extractor MC PD DA V Open Source
Open Visualization Toolkit / vV

TkSee/SN vV v/ vV
SN/Rigi V v Vv Partially
CPPX v v oV Y J
Fetch v vV VvV Y

Table 2.1: Comparison of Fact Extractors

23

Red Hat
Source Navigator

Conditional
Compilation Script

Namespace
Script

=M (EE

Source '
Code \

Figure 2.1: Fact Extraction Tool Chain

to the source code nor any binary release exists.

SN/Rigi - In [Mois03] a C++ fact extractor is presented that combines Source Navigator
[SN] with Rigi [Mull88]. The output model comforms to a C/C++ domain model and is
presented in a Rigi Standard Format (RSF).

CPPX - CPPX extracts facts from C++ source from the highest semantic level (classes
and global data and functions) down to the lowest code level of individual statements and
expressions. The output format is a GXL (Graph eXchange Language) representation of
Datrix [Dean01].

Fetch - Fetch (Fact Extraction Tool CHain) [Bois07] is a tool chain for software analysis.
It consists of several open-source tools targeting the exploration of large C, C++ and Java
software systems. It is open source and offers several tools to work with.

From the extraction tools we previously described, we chose to work with Fetch because
it offers good documentation which made it easier to extend and also can extract facts from
C, C++ and Java systems, so we can have a variety in the systems that we examine for our
experiments.

Figure 2.1 demonstrates how Fetch combines different tools and extracts the desired out-
put. Details about each tool will be discussed next.

Fetch takes as input the source code of the system under examination. Source code does
not have to be compilable or preprocessed in any way. The first tool that is applied on the
source code is Source Navigator [SN]. Source Navigator was initially developed by Red Hat
and is a source code analysis and comprehension tool that provides an IDE for understanding
and reengineering large software systems. Source Navigator performs fast lexical analysis,
extracting information from C, C++, Java and other systems and ten uses this information
to build a system database. Source Navigator graphical browsing tools use this database
to query symbols, such as functions and global variables, and the relations between them.
Source Navigator does not provide low-level and detailed information about the system under
examination which makes it fast and ideal for architectural analyses.

In addition to Source Navigator, another tool, C and C++ Code Counter, CCCC [Sc01],
is used to extract information that Source Navigator is unable to deduct from the structure
of the source code, such as Lines of Code, Lines of Comments and Cyclomatic Complexity.
Finally two home-made scripts run on the source code, one to extract namespace scopes and
the other to extract conditional compilation directives.

24

Entity Origin

File, Include Source Navigator

Conditional Compilation Conditional Compilation Script
Package Namespace Script

Class, Inheritance, Typedef Source Navigator

Method, Function Source Navigator

Attribute, Global Variable ~ Source Navigator

Invocation, Access Source Navigator and Snavtofamix
Measurement Source Navigator and CCCC

Table 2.2: Abstract model content

The facts extracted by these tools are combined and interconnected by Snavtofamix,
which queries the created database and resolves cross-references such as inheritance, invoca-
tions, accesses etc. The output is an abstract model corresponding to the Famix (FAMOOS
[famo] Information Exchange Model) specification. The representation of the Famix model
is in a Case Data Interchange Format, CDIF [Imbe91]. Table 2.2 presents the contents of the
Famix model as well as the tool that extracts each one from the source code.

The final step is to translate the abstract model that was created to a graph format (RSF,
Rigi Standard Format). This transformation is implemented by the CDIF2RSF tool and is
required to facilitate querying the abstract model and extracting specific information.

Fetch offers several other tools for visualization and graph querying, such as Guess, R
scripts and Crocopat, but those tools will not be further discussed since they are out of the
scope of this thesis and were not used.

To make everything that was discussed more clear, a simple example of the use of Fetch
is presented next.

In Listing 2.1, a small C program that prints a Pascal Triangle is presented.

#include <stdio.h>
long factorial (int);
int main() {

int i, n, c;

printf(”Enter the number of rows to see in pascal triangle\n”);
scanf(”%d”,&n);

for (i = 0; 1 < n; i+t+) {
for (¢ =0 ; ¢ <= 1i; c++)
printf(”%I1d ”,factorial(i)/(factorial(c)*factorial(i—c)));
printf (”\n”); }

return O0;
H
long factorial (int n){
int c;
long result = 1;
for (¢ = 1; ¢ <= n; c++)

result = result*c;
return result;

Listing 2.1: Pascal Triangle

25

This source code is the input of Fetch. Source Navigator, CCCC and the home-made
scripts run on this input, the database is created, however we do not have access to it. Snavto-
famix is also executed, resulting to the creation of CDIF, which is presented in Listing 2.2.

Lines 1-10 represent the header of the model and contain general information about the
program such as the language of the source code and the name of the system (which comes
from the name of the folder that was given as input to Fetch) and when Fetch was executed.
These lines are followed by the abstract model.

Lines 12—16 represent a source file. The field unigueName provides the unique name of
the file, which is different from the name field only when there are several same-named files
in the project, which is not the case. If there were more source files in the system, these lines
would be repeated for each one of them.

In addition to that, information about the library that is included is given in lines 18-22.
The information that is includes is: which file (line 19) includes which other file (line 20)
and at what line of the source code this occurs (line 21).

Lines 24-30 and 3945 are about the two functions of the source code, main() and fac-
torial(), and provide information such as the names and signatures of the functions and their
return types or classes.

Also, because the factorial() function is defined in the file pascal.c, CDIF contains lines
32-37, which state where the function is declared.

Finally, the main() function calls factorial() and therefore there is an invocation in lines
47-53. Line 48 defines the function that causes the invocation and line 49 defines the function
that is invoked. In addition to that, there is the line where the invocation occurs (line 50), as
well as where the above mentioned functions are declared(lines 51-52).

26

© 0 N L R W N —

(:HEADER
(:SUMMARY

(ExporterName ”snavtofamix™)
(ExporterVersion 71096”)
(ExporterDate 72015/05/27”)
(ExporterTime 714:44:24”)
(ParsedSystemName “pascalFolder™)
(SourceLanguage 7C”))

)

(: MODEL

(SourceFile FMI
(uniqueName “pascal.c”)
(name “pascal.c”)

)

(Include FM2
(includingFile ”pascal.c”)
(includedFile ”stdio.h”)

(sourceAnchor #[file “pascal.c” start 1 end 1]|]#)

)

(Function FM3
(name ”factorial”)
(signature ”factorial(int)”)
(declaredReturnType “long”)
(declaredReturnClass ”7)
(sourceAnchor #[file ”pascal.c” start 3 end 3|]#)

)

(FunctionDefinition FM4
(name ”factorial”™)
(declaredBy ”factorial (int)”)
(sourceAnchor #[file ”pascal.c” start 26 end 26|]#)
(declSourceAnchor #[file ”pascal.c” start 3 end 3|]#)

)

(Function FMS5
(name “main”
(signature ”main()”)
(declaredReturnType “int”)
(declaredReturnClass)
(sourceAnchor #[file ”pascal.c” start 5 end 5|]#)

)

(Invocation FM6
(invokedBy “main()”)
(invokes ”factorial (int)”)
(sourceAnchor #[file ”pascal.c” start 18 end 18|]#)
(sourceSourceAnchor #[file ”pascal.c” start 5 end 5|]#)
(destinationSourceAnchor #[file “pascal.c” start 3 end 3|]#)

Listing 2.2: CDIF for Pascal Triangle

27

R T

Once CDIF is created it can be transformed to RSF in order to be more useful. By running
the CDIF2RSF script an RSF file is created. This file is presented in Listing 2.3. We should
note that CDIF contains information that is not included in the RSF file, for example the fact
that stdlib.h is included in pascal.c. This happens because standard system libraries that are
included are not presented in the RSF. If pascal.c included a non standard system library, the

RSF file would have had another line to describe this fact.

FileBelongsToModule ”pascal.c”#1 7/”#Ml
DeclaredIn “factorial (int)”#3 “pascal.c”#l
DefinedIn ”main()”#5 “pascal.c”#1
DeclaredIn ”main()”#5 “pascal.c”#1
DefinedIn ”factorial (int)”#3 “pascal.c”#l
Calls ”main()”#5 ”factorial (int)”#3

Listing 2.3: RSF for Pascal Triangle

If we take a closer look at the RSF file, it contains triples in the form: Relation Entity
Entity. Each line represents a different relation, there are no duplicates and the Entities are
characterized by their name, followed by a unique identifier.

This was a very simple example, with one source file that has two functions and just one
call. Real software systems contain hundreds of source files and much more complex asso-
ciations between them. However, the procedure that was described is the same for systems
of any kind and any size.

Finally, we will take a look at the relations that Fetch is able to extract from the source
code. These are presented on Table 2.3 with a small description for each one of them. There
are several types of relations and apparently for our purpose not all these relations are useful.
We will elaborate on the relations that we use on Section 3.2.

Relation Description
Module Belongs to Module States a containment relation between two
modules
. File Belongs to Module States to which Module each File belongs
Containment . : .
Class Belongs to File States to which File each Class or Struct
belongs
Invocable Entity Belongs to File | States the Global Variables that belong to
each File
Method Belongs to Class States the Methods that belong to each
Class
Attribute Belongs to Method States the Attributes of each Method or
Struct
Macros Macro Definition States the deﬁpi?ion of'a Macro as well as
the file where it is defined
Macro Use States in which File a Definition, that was
previously defined, is used
Conditions Conditional Compilation States under which conditions a block of
code is compiled
Location Entity Location States in which File and from which to
which line an Entity is located
Entity Belongs to Block States to which block of source code —
which is conditionally compiled — an En-
tity belongs

28

Declaration

Defined In

States in which file a function or a method
is defined. This is the file where the ac-
tual body of the function or the method is
located. We should underline that for ev-
ery function and method there is only one
Defined In relation in the output file of the
extractor.

Declared In

This relation is similar to the one above,
with one great difference. Declared In
states in which file there is a declaration
of the function or the method. As a result
there can be more than one such relations
for the same function or method in the out-
put file of the extractor.

Invocations

Call

Declares an invocation between two
methods or functions

Types

Type Definition

This relation states that a type name is as-
sociated with a class, a struct or another
type name that was previously defined

Uses Type

This relation states which class or struct,
not a primitive type, is used in a method
or a function respectively

Has Type

States the type of a function, method, at-
tribute or global variable.

Has Type Definition

This relation combines the previous ones
and associates a function, method, at-
tribute or global variable with a type name

Information

Signature

States the signature of a method

Visibility

States the visibility of a class, attribute or
method when this is applicable

No of Lines

States in which line of a File an Entity be-
long to

Other

Inherits From

Represents the inheritance of classes in
object-oriented programming

Include

States which File is included in another
File

Access

States in which method or function, an at-
tribute or a global variable is on the right
side of an assignment statement

Set Variable

States in which function or method an at-
tribute or a global variable is on the left
side of an assignment statement

Table 2.3: Relations that Fetch extracts

29

2.2 Software Clustering

Software clustering methodologies group entities of a software system into meaningful sub-
systems in order to help with the process of understanding the high level structure of a large
and complex software system. A software clustering approach that is successful in accom-
plishing this task can have significant practical value for software engineers, particularly
those working on legacy systems with obsolete or even non-existent documentation.

Software clustering has troubled the research community for more than two decades.
During this time, several software clustering algorithms have been published in the litera-
ture, most of which have been applied to particular software systems with success. The key
to determining if a clustering algorithm is considered successful, is the distance of the clus-
tering solution that it offers, to that of an expert who is knowledgeable of the system. In
this direction the research community has developed several methods to assess the quality
of software clustering algorithms such as the MoJo distance [Tzer99], the Craft framework
[Mitc01] and several other experiments that have been conducted [Anqu99] and [Kosc00].

Software Clustering has preoccupied the research community for so long, because it
solves important software engineering problems in mainly two areas, software evolution and
information recovery.

Software Evolution: Every software system evolves in order to add new functionality,
correct existing faults and improve maintainability. Software clustering tools attempt to im-
prove the software structure — e.i. software restructuring — or reduce the complexity of large
modules — e.i. source code decoupling.

Software restructuring is a form of perfective maintenance that modifies the structure of
a program’s source code. The goal is to facilitate maintenance activities, such as adding new
functionality or correcting previously undetected errors within a software system [Lung04].
Source code decoupling attempts to reduce the complexity of complex modules or functions.
In [Lung06] a case study is presented where software clustering is applied for source code
decoupling at the procedural level. Software clustering groups related statements together in
order to produce dependency rank between the groups.

Information Recovery: The primary goal of reverse engineering is to recover components
or to extract system abstractions. Several approaches and techniques have been proposed
in the literature. Especially, architecture recovery methods utilize software clustering with
success. The architecture recovery methods focus on discovering the system architecture by
analyzing abstractions extracted from the source code, such as components, subsystems and
design patterns. For example, in [Baue04] design patterns are used to recover architecture
or in [Zhao10] software clustering is used to generate the software architecture of business
applications.

Software Clustering is also used to identify duplicate code [Lung06] as well as predict
the fault proneness of software modules [Zhon04].

It is obvious that software clustering is an important technique, that can be used to solve
several problems in our area. We will take a closer look at two software clustering tools, the
ACDC (Algorithm for Comprehension Driven Clustering) [Tzer00] and the Bunch clustering
suite [Manc99] which are commonly used in experiments in the literature.

30

22.1 ACDC

ACDOC is an algorithm that is based on the detection of commonly observed patterns in the
subsystems of large software systems. As [Tzer0O] underlines, most clustering algorithms
aim to achieve low coupling and high cohesion, interface minimization, shared neighbours
etc. However, in the effort to maximize performance or accuracy of the algorithms, re-
searchers have forgotten about the primary concern of software clustering, which is com-
prehension. In this direction, the algorithm uses pattern recognition to find certain system
decompositions that appear frequently in software systems. In addition to that, the algorithm
uses meaningful cluster names that give information about each cluster and make the decom-
position more understandable. Finally, the size of the clusters is bounded in order to make
the decomposition even more manageable and comprehensible. The maximum size of each
cluster is set by default at 20 elements.

ACDOC offers several features to help the software engineer understand the obtained de-
composition faster. These features are:

1. Effective cluster naming: This allows engineers associated with the software system to
understand the decomposition more easily and start benefiting from it faster. However,
this problem has not attracted much attention, the researchers that created ACDC believe
that it is important for the high level view of a software system to have names associated
with the software system, rather than SSO1 or SubsystemO1.

2. Bounded cluster cardinality: Decompositions containing clusters of one or two re-
sources even though they achieve low coupling, are practically unusable. On the other
hand, with very large clusters the same problem is presented. Therefore, ACDC bounds
cluster sizes to a limited number of objects to make the decomposition more compre-
hensible and useful. However, this should not be done at the expense of the system’s
structure and if this is the case, large clusters should be simply further decomposed
producing nested clusters of several levels.

3. Pattern-driven approach: ACDC is based on patterns that commonly emerge in manual
decompositions created by experts. These are patterns that are found in large systems,
containing more than 100 source files, covering a wide range of familiar subsystem
structures that appear in manual decompositions of large industrial software systems.
The patterns that ACDC detects are presented on Table 2.4.

Therefore, ACDC utilizes this knowledge and identifies these patterns in order to create
a system decomposition.

The algorithm is executed in two steps. Step one, based on the identification of the pre-
described patterns, an initial decomposition is created and the created clusters are named
appropriately. Firstly, source file clusters are created and from this point after the file and
the contained entities are considered as an atomic entity. Then, the body-header pattern, the
leaf collection as well as the support library patterns are identified. For the later, there are no
clusters created, simply entities are identified as candidates. Then, the central dispatcher and
subgraph domination clusters are created and finally a supporting cluster is created including
the remaining elements that were identified as candidates for the support library pattern and
have not been assigned to any other subsystem. During step two, the remaining elements that
have not been assigned to any subsystem are incorporated into the existing decomposition
using the Orphan Adoption technique [Tzer97]. In other words, the remaining elements of
the systems that were not put into clusters during the first step are added to the cluster that

31

Pattern Description
Source file pattern The set of procedures/functions/methods can be
grouped together with the variables contained in
the same source file.
Directory structure pattern || The structure of the source code may correspond
to a subsystem decomposition. However, this
pattern is not always the case and must be used
with caution. Many systems contain folders
with a collection of header files or libraries and
such a cluster will not be useful from a compre-
hension point of view.
Body-header pattern The header file and the corresponding body file,
such as .c and .h files in C, can create a cluster
containing only these files. Even though thisis a
really small cluster, it can reduce the complexity
of a system’s structure.
Leaf collection pattern A set of files which are not connected to each
other, but offer similar services —such as a set of
drivers— can be grouped together.
Support library pattern Procedures accessed by the majority of the sys-
tem’s subsystems [Miil93] are grouped together
into one cluster.
Central dispatcher pattern || This pattern is the dual of the support library pat-
tern. Large systems commonly contain a small
number of resourses that depend on a large num-
ber of other resources. These are ignored ini-
tially, in order not to obscure other patterns and
then are reconsidered once subsystems have al-
ready been formed.
Subgraph dominator pattern || This pattern searches for a subgraph in the sys-
tem’s graph which contains a set of nodes where
in order to access each node of the set, one
must go through one specific node, considered
a ”dominator node”.

Table 2.4: Patterns detected by ACDC

have the most interaction with. If there are several clusters that comply with this criterion,
a new cluster is created and all the elements that can not be put into an existing cluster with
certainty are placed there.

32

2.2.2 Bunch

Bunch clustering suite [Manc99] provides a variety of algorithms for Software Clustering.
Bunch takes as input a module dependency graph, e.g.an RSF file, and aims to create a de-
composition of the system which meets two criteria:

e Highly interdependent elements are grouped in the same clusters.
e Independent elements are assigned to separate clusters..

One way to solve this problem is to use exhaustive search and find the best of all the possible
decompositions for the system. In order to achieve that, a function that determines the quality
of a decomposition is required. The function that Bunch uses is the Modularization Quality
measurement (Section 2.2.2). Given that function, even though exhaustive search always
gives the best answer, the number of decompositions that need to be checked grow very
rapidly and a 15-node graph is the limit for performing exhaustive search. Therefore, there
is a need for a sub-optimal strategy to solve this problem.

Hill Climbing

Hill Climbing is an other solution. The idea is to find a starting position and with every
move transition to a better state. Bunch offers two Hill-Climbing algorithms based on how
the choice of the next state is made. Firstly, there is the Steepest Ascent Algorithm which
is a greedy algorithm. Steepest Ascent calculates all the possible states it can transition to
and takes the best one. As all greedy algorithms, even though each step is optimal, the algo-
rithm may not be optimal overall. Secondly, there is the Nearest Ascent Algorithm, which
is a non-greedy Hill Climbing algorithm. Nearest Ascent does not compute the set of all
the possible states to transition to, but computes states until a better one than the current is
found. As a result, it is much faster than Steepest Ascent. However, there are some common
problems with Hill Climbing, such as what happens if we find a local maximum and how to
avoid getting a bad start, which also apply to our problem. In order to help Hill Climbing
algorithms, Bunch restarts the algorithm at some random state after finding a local maximum.
Another technique to assist Hill Climbing algorithms is Simulated Annealing. In this case,
the algorithm occasionally takes a transition that is not an increase in quality in the hope that
this will lead to climbing a better hill.

Genetic Algorithms

Another solution is Genetic Algorithms. Generally, Genetic Algorithms are heuristics that
mimic the process of natural selection, and generate solutions to optimization problems us-
ing techniques inspired by natural evolution, such as inheritance, mutation, selection and
crossover. Genetic Algorithms work by representing each state as a string and then applying
genetic manipulation in ways analogous to nature as we described before. Genetic Algo-
rithms tend to provide good result and converge to a solution quickly when the solutions
space is small relative to the search space. Additionally, this approach tends to overcome
local maxima that Hill Climbing struggles with. .

33

Modularization Quality

The Modularization Quality (MQ) is a measurement of the quality of a partition. In each
partition there are two types of edges, Intra-Edges which are edges inside one cluster and
Inter-Edges which are edges connecting different clusters. For the rest of this section we will
refer to Intra-Edges as p edges and Inter-Edges as ¢ edges.

Given k clusters in one partition, MQ is calculated by Equation 2.1, where C'F; is the
cluster factor for cluster ¢ and is calculated by Equation 2.2, which increases as the cluster’s
cohesiveness increases.

k

MQ=> CF (2.1)

=1

CF, {0 i =0 2.2)
i 2pi : .
TS S —— otherwise

2.3 Architecture Representation

According to the Object Management Group (OMG), a model of a system is a description
or a representation of that system and its environment for some certain purpose. A model is
often presented as a combination of drawings and text, which may either in a modeling or a
natural language [OMG]. Since models are used extensively, not only in model-driven and
reverse engineering but across most of the areas of Software Engineering, it is imperative
that models are represented in a uniform and expressive manner. For this purpose various
modeling languages have been proposed. These languages can either be graphical or textual.
Graphical modeling languages use a diagram technique with named symbols that represent
concepts, lines that connect the symbols and represent relations and various other graphical
notations to represent constraints. On the other hand, textual modeling languages use stan-
dardized keywords accompanied by parameters or even natural language terms and phrases
to make computer-interpretable expressions.

The most well-known modeling language is the Unified Modeling Language (UML)
which has established itself as an industry standard for specification, design, visualization
as well as documentation of software systems. In UML terms, a model is an instance of the
UML metamodel and a diagram describes a graphical representation of a model [Selo03].
Additionally, a model element refers to a UML metaclass instance, while a property of a
model element refers to a meta-attribute instance belonging to the model element. The state
of'a model element is defined by the property values.

2.3.1 The Meta Object Facility (MOF) Standard

The Model Driven Architecture (MDA) is a software design approach for development of
software systems. It provides a set of guidelines for structuring of specifications. It was
launched by the OMG in 2001 and is related to multiple standards including the Unified Mod-
eling Language (UML), the Meta-Object Facility (MOF), the XML Metadata Interchange
(XMI) etc.

As [OMG] mentions, the Meta Object Facility Specification defines an abstract language
and a framework for specifying, constructing and managing technology neutral metamodels.
A metamodel is in effect an abstract language for some kind of metadata. Examples include

34

M3
MOF Meta-metamodel meta-metamodel
M2
e.g. UML Metamodel metamodel
M1
e.g. UML Model model
e.g. Programs MO .
information

Figure 2.2: Four Layer Metadata Architecture

the metamodels for UML and the MOF itself, as well as those in various OMG specifications
in progress.

In addition, MOF defines a framework for implementing repositories that hold metadata
(e.g. models) described by the metamodels. This framework uses standard technology map-
ping to transform MOF metamodels into metadata APIs. This gives consistent and interop-
erable metadata repository APIs for different vendor products and different implementation
technologies.

Four Layer Metadata Architectures

The classical framework for metamodeling is based on an architecture with four meta-layers,
where each layer is an instance of the layer above. Figure 2.2 illustrates the classical four
layer metamodeling framework.

At the top of the hierarchy of the four layers is the M3 layer. The primary responsibility
of this layer is to define the language for specifying a metamodel. MOF is an example of a
meta-metamodel. According to [Objeb], a meta-metamodel is typically more compact than
a metamodel that it describes, and often describes several metamodels. It is generally desir-
able that related metamodels and meta-metamodels share common design philosophies and
constructs. However, each layer can be viewed independently of the other layers, and needs
to maintain its own design integrity. Meta-metamodels are defined using meta-metamodels,
i.e. meta-metamodels are reflective, MOF is defined using MOF itself.

The metamodel layer is an instance of the meta-metamodel layer. The primary respon-
sibility of the metamodel layer, often referred as M2, is to define a language for specifying
models. UML and the OMG Common Warehouse Metamodel (CWM) are examples of meta-
models. Metamodels are typically more elaborate than the meta-metamodels that describe
them, especially when they define dynamic semantics. The UML metamodel is an instance
of the MOF.

Models belong to the model layer, referred as M /. A model is an instance of a metamodel.
The primary responsibility of the model layer is to define languages that describe semantic
domains. A user model is an instance of the UML metamodel. In the domain of software, the
elements of the M/ layer are the models of the software systems which are defined in UML
models (Class diagrams, sequence diagrams etc.).

The hierarchy bottoms out at M0, which contains the runtime instances of model elements
defined in a model. The snapshots that are modeled at M/ are constrained versions of the M0
runtime instances.

It should be underlined that there are architectures with more than four levels, which all

35

| NamedElement |

i

| PackageableElement |

i

| InstanceSpecification |

DataType

+enuner ati on

+ownedLi t er al I

7 EnumerationLiteral

PrimitiveType | | Enumeration

Figure 2.3: EMOF Data Types

share the same characteristic; the existence of pairs of classes-instances and a mechanism to
traverse from the instance to its class.

Structure and Description of MOF

The most recent version of MOF (2.4.2) is designed and specified in a way that is tightly
connected with UML 2.0. Additionally, for its specification MOF utilizes the syntax and
semantics of UML. Actually, for its specification MOF utilizes a subset of UML (mainly
class diagrams), an object constraint language (OCL) and precise natural language.

The specification provides two variations of MOF: the Essential MOF (EMOF) and the
Complete MOF (CMOF). Both EMOF and CMOF are described using CMOF, which is also
used to describe UML2. EMOF is also completely described in EMOF by applying package
import, and merge semantics from its CMOF description. As a result, EMOF and CMOF
are described using themselves, and each is derived from, or reuses part of, the UML 2.0
Infrastructure Library.

While the purpose of CMOF is to provide a general framework for metamodeling, EMOF
is the subset of MOF that closely corresponds to the facilities found in Object Oriented Pro-
gramming Languages and XML.

As the functionality of EMOF is enough for this thesis, Figures 2.3 - 2.5 present the MOF
diagrams that specify EMOF as they are presented in the specification document [Objel3].

It should be underlined that the complete specification of EMOF contains several con-
straints as well as guidelines and definitions which can be found in the specification docu-
ment.

XML Representation

MOF describes the means to create and manipulate models and metamodels. However, MOF
is a standard and not an implementation. The creation of implementations that correspond to
the MOF specification is at the discretion of software producers. MOF may even be particu-
larly useful in a programming environment where different technologies coexist. Therefore,
the issue of interconnectivity with other standards is is imperative. This issue is addressed by
the specification of mappings to other standard frameworks, such as mapping from MOF to
Interface Definition Lanuage (IDL) [Objea], to Java using the Java Metadata Interface (JMI)
[Proc02], to XML using the XML Metadata Interchange (XMI) [Obje07] etc.

36

PackageableElement

+visibility: VisibilityKind

public{redefines visibility}

FpackagedH enent
0‘ . *

+owni ngPag¢kage
0..1

+nest edPackage

0..%

Package +package

+ownedType

Type

0..

+URlI: String [O..]

+nest | ngPackage
0..1

Figure 2.4: EMOF Package

Element

+owni ngEl enent

0..

x

i\

0..1

/.\+annot at edEl enent
0..

*

+conmment
0..*

\%

NamedElement

Comment

+name: String [O0..]
#qual i fi edName: String [0..] {readOnly}
+visibility: VisibilityKind [O..]

+body: String [O..]

1

PackageableElement

+t ypedEl ement +t ype
TypedElement P P

A

0..7 0.

—>

Type

Figure 2.5: EMOF Types

+ownedComrent
0..*

37

[Department

= name : EString
= location | Location = Athens

H Company

[1..*] departments

= name ; EString

]

[1..*] ¢mployees

‘ EQ Emplovee

= name : EString
= salary : EDouble = 4000.0

* Loation

= Athens -
= Lamia 1

E Manager | | [Subordinate ‘

= company_car : Boolean = false

Figure 2.6: Example model (M1)

XMI is an OMG standard for exchanging metadata information via Extensible Markup
Language (XML). It can be used for any metadata whose metamodel can be expressed MOF.
The most common use of XMI is an interchange format for UML models, although it can
also be used for serialization of models of other languages.

Therefore, we have an infrastructure to represent architecture models either with graphical
(UML, MOF) or textual (XMI) ways.

For example, Figure 2.6 presents an simple model (M1) for Companies and Listing 2.4
presents a part (the class Employee) of the corresponding XMI file it visualizes. This model
is an instance of the Ecore (M2) model, which is an implementation of the EMOF(M3).

<eClassifiers xsi:type="ecore:EClass” name="Employee” abstract="true”>

<eStructuralFeatures xsi:type="ecore:EAttribute” name="name” eType="
ecore: EDataType http ://www. eclipse.org/emf/2002/Ecore#//EString”/>

<eStructuralFeatures xsi:type="ecore:EAttribute” name="salary” eType
=”¢core : EDataType http ://www. eclipse.org/emf/2002/Ecore#//EDouble”
defaultValueLiteral =74000.0"/>

</eClassifiers >

Listing 2.4: Example XMI (M1)

38

Chapter 3

Proposed Methodology and Modeling

3.1 Process Outline

Figure 3.1 illustrates how several tools are combined in the framework that we implemented
for our experiments in order to evaluate several source code extracted relations.

The input of the process is the source code of a specific software system, either procedural
or object oriented. The source code does not need to be preprocessed in any way.

The first phase consists of analyzing the source code and extracting an RSF file containing
all the relations of the relation model discussed in Section 3.2. For this phase we use Fetch that
was discussed in Section 2.1 and a script to eliminate the relations that do not belong to the
relation model. Once the RSF file is created, using a simple script all the combinations of the
relations that belong to the RSF file are generated. The combinations are created in a specific
order. First there are the combinations containing one relation, then those containing two
relations, then those containing three relations etc. A simple way to understand the generation
process of the combinations is to compare it to a counter, in the tridecimal numerical system
for example, if the system contain 13 relations. As a result, the number of combinations that
are created depends on the number of relations that the system contains. For example, if the
system contains 13 relations, we end up with 8192 different combinations of relations, for 12
relations, 4096 combinations etc.

During the next phase, the entities of each of these combinations are clustered using a
clustering algorithm. Once the clustering result for a specific combination is available, using
this information and the corresponding RSF file we can populate an instance of the Architec-
ture Metamodel (Section 3.3). In a similar way, by taking into consideration all the relations
of the system, the architecture instance that is considered the gold standard is created.

In the final phase, all the architecture instances are compared to the gold standard us-
ing our similarity algorithm that calculates the distance of the two instances. The output of
this final phase is a difference score between the gold standard and the architecture under
examination. Based on this score we can evaluate the combination and decide whether it is
considered a good, an average or a bad combination. This means that the architecture created
by a good combination is close to the real architecture of the system and therefore this combi-
nation of relations is useful for architectural recovery. On the other hand, bad combinations
do not have enough amount of information and therefore should not be used for architectural
extraction.

39

AN
Source Code

Custers : Architecture
#1 Instance #1
AN
2

Parsing and
Analysis

Generate cl .
Combinations ustering Population

Custers Architecture
Instance #2

AN
Custers Architecture

#n I nstance #n

Figure 3.1: The chain of tools comprising the implemented framework

_Oo_a St andar d _

Differencing

Di stance
Score #1

Di stance
Score #2

Di st ance
Score #n

40

3.2 Relation Model

Once the extraction tool has completed all the steps, the resulted file contains the relations
from the source code. The extraction tool can extract 22 different relations from the source
code. However, from these relations we only use 13 of them.

The choice of these relations was made based on two criteria. Firstly, the relations that
would not give information about the architecture of the system, needed to be eliminated. For
example, the information if a method is abstract or what is its signature would not add infor-
mation that the clustering could really utilize and would not make the extracted architecture
more accurate. Also, measurements about the source code, such as lines of code for methods
or structs are irrelevant. Secondly, clustering is a time consuming procedure and we need to
minimize the combinations of relations that will be clustered to the absolute minimum. So
we want to eliminate relations that give the same information with other relations.

For example, Fetch identifies three relations for type definitions and associations: a) Type
Definition(TypeDef) where a type name is associated with a Class, a Struct or another Type
Name that was previously defined, b) the information (HasType) about which Class or Struct
is the type of a Function, Method, Attribute or Global Variable and c) a relation (HasType-
Def) that combines the previous ones and associates a Function, Method, Attribute or Global
Variable with a type name. In the output file these relations could have the next form:

TypeDef FooClass fooType
HasType fooMethod FooClass

HasTypeDef fooMethod fooType

From these 3 relations keeping only the second one ensures that there is no information
loss and that the minimal set of relations is kept. The other two relations are actually resolved
and their information is included in the HasType relation. Keeping these extra relations would
only increase the number of combinations of relations that need to be checked.

The 13 relations that we retained are presented and explained with examples.

1. Calls function/method function/method: Occurs when a function or a method calls an-
other function or method.
Example:

foo ()
{

[C N N VO SR

bar () ;

=3
——

Created Relation:

— Calls foo bar

41

42

B W0 =

. Include file file: Appears when a file includes another file in C and C++ and represents

the imports in Java.
Example:

//in file foo.c

#include <foo .h>

Created Relation:

— Include foo.c foo.h

. Sets function/method attribute/global variable: In a function or method an attribute, of

AW N =

a class or a struct, or a global variable is on the left side of an assignment statement.
Example:

foo ()
{

}

globalVarA = 5;

Created Relation:

— Sets foo globalVarA

. Accesses function/method attribute/global variable: In a method or a function, an at-

[Y S O VR SR

tribute, of a class or a struct, or a global variable is on the right side of an assignment
statement.
Example:

foo ()
{

x = globalVarA;

Created Relation:

— Accesses foo globalVarA

. Class Belongs To File class/struct file: Shows to which file a class or struct belongs.

BwW N =

Example:

//in file Foo.java
class Foo{

}

Created Relation:

— ClassBelongsToFile Foo Foo.java

Inherits From class class: Represents the inheritance of classes in object-oriented pro-
gramming.
Example:

class Foo extends Bar {

}

Created Relation:
— InheritsFrom Foo Bar

Has Type function/method/attribute/global variable class/struct: As we explained be-
fore, this relation gives the information about the type of a function, method, attribute
or global variable.

Example:

public FooClass fooMethod () {

}

Created Relation:

— InheritsFrom Foo Bar

. Defined In function/method file: Shows in which file a function or a method is defined.

LS N P

This is the file where the actual body of the function or the method is located. We should
underline that for every function and method there is only one ”Defined in” relation in
the output file of the extractor.

Example:

//in file Foo.java
Foo bar ()

{
}

Created Relation:

— DefinedIn bar Foo.java

43

9.

© 9 ;B W N =

Declared In function/method file: This relation is similar to the previous one, with
one great difference. ”Declared In” shows in which file there is a declaration of the
function or the method. As a result there can be more than one such relations for the
same function or method in the output file of the extractor.

Example:

//in file header.h
foo ()

{
}

//in file bar.c
foo () ;

Created Relations:

— DefinedIn foo header.h
— DeclaredIn foo header.h

— DeclaredIn foo bar.c

10. Attribute Belongs To Class attribute class/struct: Shows to which class or struct an

B W0 =

attribute belongs.
Example:

class Foo

{
}

attributeType bar = 0;

Created Relation:

— AttrubuteBelongsToClass bar Foo

11. Accessible Entity Belongs To File global variable file: This relation has the informa-

44

B W0 =

tion to which file a global variable belongs.
Example:

//in file bar.c

type foo = 0;

Created Relations:

— AccessibleEntityBelongsToFile foo bar.c

12. Method Belongs To Class method class: This relation shows which methods belong

to each class in object oriented source code files.
Example:

//in file Foo.java
class Foo

{
barl ()

Created Relations:

— MethodBelongsToClass barl Foo
— MethodBelongsToClass bar2 Foo

13. Uses Type function/method struct/class: This relation occurs when a class or a struct,

not a primitive type, is used in a method or a function respectively.
Example:

class Foo

{
}

class Bar

{
barl ()

{

Foo x = new Foo();

Created Relation:

— UsesType barl Foo

45

Property

+name: String

+val: String
Port
1 $
ComponentType Element
+extends: String —D Thame: Sting 4_
1 T
> Component
Role
Componentinstance
inst: Of: Stri "
Tinstance o Representation
1
1 01
ACMEEntry < System ® 1 “| Connector
B | 1
"
1 Link
ACMEFile
Binding Attachment
+compsSrc: String +comp: String

+portSrc: String +port: String

+compDest: String +con: String

+portDest: String +role: String

Figure 3.2: ACME Metamodel

3.3 Architecture Metamodel

In order to describe the architecture of a software system, a metamodel which describes ar-
chitectures is required. Then, the population of this metamodel will create instances of the
architecture of each system. The metamodel that was created was based on the metamodel
of the architecture description language ACME [Garl97] which is presented on Figure 3.2.
Figure 3.3 shows the metamodel that we created.

Table 3.1 describes the classes of the Modified Architecture Metamodel and Table 3.2
lists the types of entities that relate.

Generally, our metamodel, in agreement with the ACME metamodel, defines that each
system contains elements which can either be Components or Connectors. An element, can
have several Properties and depending on its type, the element contains different Entities.

To begin with, Components represent the generated clustered sets by the clustering pro-
cedure. Each Component has a unique name, which however does not have any information
about the Entities that it contains. Each Entity that belongs to a Component can be an Atomic
Entity (an Entity that does not enclose other Entities, and will only be connected to its parent
Entity, e.g. attributes) or a Composite Entity (an Entity that contains other entities, e.g. files).
All the Entities are characterized by their system-wide unique name. The Entities that are
attached to a Component are organized in a spanning tree, based on the relations that connect
them. For example, if there is a relation ”Class Belongs To File class file”, then the class
would be the child of the file.

46

Class

Description

Component

Represents a cluster from a specific decomposi-
tion. It contains several Entities.

Connector

Represents a link between two Components.
Each one contains one or more Bindings.

Binding

Specifies a link between two Entities that belong
to two different Components. Represents one of
the following relations: Call, Access, Set Vari-
able, Include.

Property

Represents one of the following relations: Uses
Type, Has Type, Inherits From, Defined In. It
is attached to the Entity it refers to.

File

Refers to all the .c and .h files for procedural
systems, and .java, .cpp and .h files for object
oriented. Other Entities can be attached to Files.

Type

Represents classes in object oriented systems
and structs in procedural systems.

Function

Represents functions in procedural systems and
several Properties can be attached to it.

Method

Represents methods in object oriented systems.
Public attributes and several Properties can be
attached to it.

Global Variable

Represents global variables in procedural sys-
tems and is absent in object oriented systems.

Public Attribute

Represents public attributes of classes in object
oriented systems and struct fields in procedural
systems.

Table 3.1: Class Descriptions for Modified Architecture Metamodel

Element type | Type of children of element
System Components, Connectors
Connector | Bindings
Module Files
File Types, Global Variables, Functions
Type Methods, Inherits From, Has Type
Function Has Type, Defined In, Uses Type
Method Attribute, Has Type, Defined In, Uses Type

Table 3.2: The children of elements

47

Inherits From Uses Type

+reference: Entity +reference: Entity

ZF ZF System

+nanme: String

Has Type Defined In

<+

+reference: Entity

Property Architecture Element
+nane: String

+reference: Entity

Entity |
+nane: String Component Connector
+nane: String +nanme: String
+srcConp: Conponent
+dest Conp: Conponent

| Atomic Entity | | Composite Entity | T
4 Binding

+nane: String

I I I +srcPort: Entity

| Module | | File | | Type | Method +destPort: Entity
Attribute %

Global Variable

| Include | |Cal|| |Access | | Set Variable |

Figure 3.3: Modified Architecture Metamodel

Furthermore, Entities can have several additional Properties that characterize them. The
type of a class, the files where a method or a function are declared and the class that another
class inherits from are some of them. Properties are children of the Entities that they are
related to, for example a class may have a Property about its type as a child.

On the other hand, there are Connectors. Connectors represent links between Compo-
nents, however do not provide information about which specific Entities are connected. For
this reason, each Connector contains one or more Bindings. Bindings connect specific Enti-
ties that belong to the Components that the Connector links. Each Binding is characterized
by its type (Call, Access, Include, Set Variable) and the two Entities that the Binding refers
to.

By populating this metamodel, we get instances of the system architecture. This proce-
dure will be discussed in Section 5.2.

48

Chapter 4

Architecture Similarity

Given two instances of a software system, one of which is considered a gold standard, we
needed to create a differencing algorithm that calculates the distance of the two instances by
indicating the Entities that need to be moved, added and deleted in order for the one instance
to be transformed to the gold standard.

Our algorithm assumes that one important condition is met, based on the metamodel that
is used to create the instances. As we already mentioned, the names of the Entities are unique
system-wide. As aresult, if two Entities from two different instances are compared and their
names are the same, we can safely assume that we are referring to the same Entity of the
system. However, that is not applicable to Components, which are compared and matched
with a different procedure that will be discussed in Section 4.1.

Our differencing algorithm is based on the UMLDiff algorithm [Xing05]. UMLDiff takes
as input two versions of a system and retrieves the structural changes that occurred as the
system evolved from the one version to the other. For UMLDIfY the input is modelled as a a
directed graph, where nodes are entities of the system and edges are the relations that connect
the entities such as containment, declaration, method call etc.

Generally, UMLD:IfT traverses though the graphs of the two compared instances level by
level, from the top to the bottom starting from the root of system. For each level, firstly the
matched entities are identified. For two entities to be matched, their names need to be the
same and they must also belong to the same level. After that, the entities that are renamed
are identifies based on name and structure similarity.

e Name Similarity : calculates the similarity of the names of the entities by calculating
the common adjacent character pairs that are contained in the two compared names.

o Structure Similarity : computes the similarity of two entities based on their connection
with already matched entities. For example if two entities with similar names have as
children other entities that have been identified as matched entities, then if the similarity
score is higher than a set threshold the entities are identified as renamed.

Once the renamed entities have been identified, the next step is to identify which of the
remaining entities have been moved to another part of the system. Same-named entities that
belong to different levels and can not be characterized as matched, are here identified as
moved entities. As soon as this step is completed, all the remaining entities of the initial ver-
sion are identified as removed and all the remaining entities of the other version are identified
as added entities. The output of UMLDIfY is the labelled tree graph instance of the version
of the system.

Based on UMLD:Iff we developed our differencing algorithm. It is a top-down algorithm
that traverses from the root to to leaves of the tree graphs of two instances, one is the gold
standard and the other is the instance generated for a specific combination of relations. We

49

identify matched, moved and deleted entities, but not renamed, since both instances come
from the same version of the software system under examination, and not different versions
like UMLDIff was examining.

The algorithm starts from the root level, moving on to Components, Composite Entities
and finally Atomic Entities. At each level, except the Component level, based on the names
of the entities which are unique, all entities are categorized as matched, moved and deleted.
Components are matched differently, and we will discuss about it shortly.

Matched entities have the same name as well as belong to matched Components. Moved
entities have the same name but belong to Components that are not matched. Finally deleted
entities are present on the gold model instance but not on the other instance under examina-
tion. Once all entities have been identified, properties need to be matched.

Properties of matched entities are checked and if they have the same type and the attributes
of the properties are the same, then these Properties are identified as matched. Otherwise,
properties of the gold standard instance are categorized as deleted and the ones of the other
instance as added.

Finally, Connectors are matched. Given two Connectors A and B, if the Components that
Connector A joins have already been matched with the Components that Connector B joins,
then A and B are identified as a match. On the other hand, if their Components are not a
match, then Connector A is a deletion and Connector B is an addition.

As far as Bindings are concerned, if two Bindings belong to matched Connectors, have
the same type and refer to the same entities, they are a match. On the contrary, Bindings
that have different types or refer to different entities or belong to not matched Connectors are
classified as deleted if they belong to the gold standard instance and as added if they belong
to the other instance under examination.

4.1 Component Matching

As we discussed previously, Components are the sets that result from the clustering with
some extra entities added during the population of the instance. However, since the names
of the Components do not provide any information about their content we had to come up
with a different way to match the Components of an instance to the Components of the gold
standard.

To understand the way that Components were matched we will firstly discuss about the
Hungarian Method [Kuhn55].

4.1.1 The Hungarian Method
General Problem

Given n workers and tasks, and an n X n matrix, W, containing the gain from assigning each
worker to a task. The problem is how we can assign each worker z; to a task y;, such that the
total gain is maximized over all possible assignments.

Given X = {z1,...,2,},Y = {v1,...,yn}, andamatrix W where W;; = weight(x;, y;)
is the weight of assigning z; to y;, find the matching assigning each x; to each y; such that
the total weight is maximized.

50

Assuming that Vi, j € {1,...,n} : W;; > 0 this problem can be transformed to a Com-
plete Weighted Bipartite Graph G = (V, E):

e V=XUY
o [/ = {(xiayi)}miGX,yiEY
o weight(x;,y;) = Wi,

The problem of finding an assignment that is a perfect matching is reduced to finding the
perfect matching with maximum weight.

Definitions

1. A labeling for graph G = (V, E) is a function [: V' — R, such that:

V(u,v)3 € E: l(u) + l(v) > weight(u,v) 4.1)

2. An Equality Subgraph is a subgraph G, = (V, E;) C G = (V, E), fixed on a labeling /,
such that:
E; = {(u,v) € E:l(u) + l(v) = weight(u,v)} 4.2)

The algorithm utilizes the Kuhn-Munkres Theorem: Given labeling [, if M is a perfect
matching on (G, then M is a maximal-weight matching of G. By the Kuhn-Munkres Theorem
the problem of finding a maximum weight assignment is reduced to finding the right labeling
function and any perfect matching on the corresponding equality subgraph.

Algorithm Idea

The main algorithm idea is to maintain both a matching M and an equality graph G, starting
with M = () and a valid [. In each step either augment M or improve the labeling I — " until
M becomes a perfect matching on G;.

Augment the matching

Given labeling [, G; = (V, E;), some matching M on (7}, and unmatched u € V,u € M:
1. A path is augmenting for M on G; if it alternates between E; — M and M, and the
first and last vertices of the path are unmatched in M. We keep track of an almost”

augmenting path starting at w.

2. If we can find an unmatched vertex v, then we create an augmenting path o from u to
V.

3. Flip the matching by replacing the edges in M with the edges in the augmenting path
that are in F; — M.

4. Since we start and end unmatched, this increases the size of the matching, |M'| > M.

51

Improve the labeling

1. S C XandT C Y suchthat S, T represent the current almost” augmenting alternating
path between the matching M and outside other edges in £ — M.

2. Let N,(S) be the neighbors to each node in S along E;. N;(S) = {v |Vu € S : (u,v) €
E;.

3. If N;(S) = T we cannot increase the alternating path and augment, so we must improve
the labeling.

4. We compute §; = minyesper{l(v) + l(v) — weight(u,v)}

5. Improvel — " :
l('f’) — (51 ZfT es
U'(ry=q1l(r)+6 ifreT (4.3)

I(r) otherwise

" is a valid labeling and £, C E —I'.

Algorithm

We start with some matching A and a valid labeling [:=Vz € X,y € Y : l(y) = 0,l(z) =
mazy ey (weight(z,y')). Until M is a perfect matching:

1. Look for augmenting path
2. If augmenting path does not exist, improve [— [’ and go to step 1.

The Hungarian Method, with small alterations, fits perfectly to solve our Component
matching problem. The problem can be identified as a maximum weighted bipartite matching
[Wils86]. The two partite sets are the Components of the instance under examination and
the Components of the gold standard. The weight of the edges of the graph is the count
of the same-named entities that the two Components that are connected have in common.
We want to maximize the overall number of entities that are matched. Yet in order to solve
this problem the two sets must have the same number of elements which is not always the
case. To overcome this obstacle extra dummy Components are added to the set with the
lowest cardinality and are connected with zero-weight edges to the other set. As a result the
outcome of matching is not affected.

After that we have a matching between the Components of the two instances. Because
of the nature of our problem, we can end up with unmatched Components —matched to the
dummy Components that we added— which can lead to moved entities later on. However,
our experiments showed that at least 80% of the Components of the instance that we are
examining are matched with Components from the gold standard which is satisfactory.

Time complexity of the Hungarian Method is O(n?), nevertheless there are a lot of one-
to-one matches between Components (Components that share same-named entities with only
one Component of the other set), which improves running time by decreasing n and actually
solving a smaller problem.

Listing 4.1 presents the algorithm for Component matching.

52

matchComponents (rA, rB, matchedComponents, added, deleted, next)

setl = rA.getComponents();

set2 = rB.getComponents();

graph = generateGraphNodes(setl , set2);

for all el in setl
for all e2 in set2

createEdge(el, e2, graph);

next.addAll(el.getChildren);

matching = graph.HungarianMethod () ;

matchedComponents.addAll (matching);

for all el in setl and not in matchedComponents
added .add(el);

for all e2 in set2 and not in matchedComponents
deleted .add(e2);

Listing 4.1: Component Matching

4.2 Entity and Property Matching

Listing 4.2 describes the algorithm that is used for identification of Entities and Properties.
Given an Entity or Property e/ from the instance under examination, algorithm 4.2 character-
izes it as matched, moved or added. Based on its name, searchEntity() (line 2) retrieves the
same-name Entity or Property respectively, e2, of the gold standard. If this exists and both e/
and e2 belong to the same logical level of the architecture then we have a match (lines 5-6).
Otherwise, if they belong to different levels that is identified as a move (lines 8-9), else if e2
does not exist at all, then e/ is identified as an added Entity to the system (line 11). While
this is done, every time a match or a move is found it is removed from setB, which contains
the Entities and Properties of the initial system. As a results once all Entities and Properties
have been identified, setB contains all the deleted Entities and Properties.

identifyEntity (el, matched, moved, added, next, setB)

e2 = setB.searchEntity(el.name);
if (e2 != null)
if (e2.level == el.level)

matched.add(el);
setB.remove(el);
else
moved.add(el);
setB .remove(el);

else
added.add(el);

Listing 4.2: Entity and Property Matching

53

© 0 9 L A W N =

=

11

e 0 9 L R W N —

4.3 Connector Matching

After Components, Entities and Properties have been identified, the next step is to match
Connectors. We iterate through the Connectors of the instance under evaluation and try to
find for each one a matching Connector from the gold standard. In order for two Connectors,
¢l and c2, to be considered a match, they need to have the same type (line 6) and additionally
the Components that ¢/ connects need to have already been matched to the Components
that ¢2 connects (line 8). The remaining Connectors are identified as added, if they initially
belonged to the examined instance (line 12) and as deleted if they initially were part of the
gold standard (line 13).

matchConnectors(rA, rB, matchedConnectors, added, deleted)
conA = rA.getConnectors () ;
conB = rB.getConnectors () ;
for all ¢l in conA
for all ¢2 in conB
if (cl.type!=c2.type) continue;
else
if (isMatch(cl.components, c2.components))
matchedConnectors.add([cl, c2]);
conA.remove(cl);
conB.remove(c2);
added.addAll(conA);
deleted .addAll(conB);

Listing 4.3: Connector Matching

4.4 Binding Matching

Finally, only the Bindings are still unmatched. Matched Bindings share the same name as
well as matched parent Connectors. Therefore, we iterate through all the Bindings of the
instance we want to evaluate (line 2) and find same-named Bindings within the gold standard
(lines 3-4). If they also have matched Connectors as parents they are identified as matched
(lines 5-7), otherwise they are identified as moved (lines 9-10). If there is no such same-
named Binding, then it is identified as a deleted Binding from the gold standard. Also, after
each iteration, whenever a move or a match is identified, the Binding is removed from the
set of Bindings of the gold standard and as a result all remaining Bindings in that set are
identified as added Bindings to the gold standard.

matchBindings (bindsA, bindsB, matched, moved, added, deleted)
for all bindl in bindsA
if bindsB.contains(bindl)
bind2 = bindB.get(bindl);
if bindl. getParent.isMatched(bind2.getParent)
matchedBindings (bindl);
bindsB .remove (bind2);
else
movedBindings.add(bindl);
bindsB .remove(bind2);
else
deleted .add(bindl);
added.addAll(bindsB);

Listing 4.4: Binding Matching

54

4.5 Differencing Score

The output of the previously explained algorithm is the distance score between the gold stan-
dard and the architecture instance under examination.

This score should fulfil certain criteria. Firstly, it should be stable, meaning that with
small changes in the instance under examination, the score should change equally. In ad-
dition, once the score is normalized, the value 1 should represent completely difference in-
stances, while 0 a complete match.

This score is calculated by 4.4.

AddedConnectors + DeletedConnectors + AddedComponents
+ DeletedComponents + AddedEntities + Deleted Entities
+ MovedEntities + Added Bindings + Deleted Bindings
+ MovedBindings
TotalConnectors + TotalComponents + Total Entities
+ Total Properties + Total Bindings

diffi =

(4.4)
After these scores have been calculated for all the combinations of the system under anal-
ysis, they are normalized by scaling between 0 and 1 using 4.5.

dif fi — man(dif f)
maz(dif f) — min(dif f)

This value is sufficient to evaluate the relations of each system.

normalized(dif f;) =

(4.5)

55

Chapter 5

Implementation of the Framework

5.1 Selection of the Clustering Methodology

In the context of this thesis, we had to choose which software algorithm to use. This choice
was made based on two criteria respectively, execution speed and stability. Firstly, we wanted
an algorithm that would be stable in the meaning that small changes in the input of the clus-
tering should lead to small changes in the result of the clustering. Secondly, execution speed
of the algorithm played an important role, since for our experiments the clustering algorithm
would be executed about 50,000 times. By default clustering of large software systems is a
time-consuming procedure, so we wanted to minimize the time of execution of this step since
the results of the clustering will be used by the next steps of our work.

We compared two clustering algorithms, the ACDC algorithm 2.2.1 and the hill climbing
clustering algorithm from the Bunch clustering suite 2.2.2, which for the rest of the thesis
will be simply referred as Bunch.

Both algorithms presented advantages and disadvantages. As Wu et al.[Wu05b] have
indicated the ACDC algorithm is more stable than Bunch, with the later even producing
different clustering results for the same input. On the other hand, Bunch produces much
more uniform clusters meaning that the sizes of the clusters do not present extremities (too
big or too small clusters). But, since ACDC provided stable clusters, the fact that there were
extremities in their sizes did not affect our experiments. However, Bunch had a disadvantage
that we were not able to ignore. Execution speed of Bunch was significantly greater than
ACDC as we presented before. Figures 5.1 and 5.2 compares the time that ACDC and Bunch
required in order to cluster several procedural and object oriented systems.

For small systems, less than 60 KLOC, the difference between the clustering algorithms
is small but significant, ACDC is 8.5 times faster than Bunch. However, in bigger systems
containing 75 KLOC, ACDC is 56 times faster than Bunch, with the latter needing more than
half an hour just for the clustering of one input file. When even larger systems are examined,
like OpenSSL which contains almost 300 KLOC, ACDC requires about 15 minutes, which is
one of the largest clustering execution times. On the other hand, Bunch requires 135 minutes
and in order for the execution to be completed, we also had to increase the heap size of the
program to 6GB.

We should also underline that execution time depends on the size of the source code of
the system, but also depends on the number of different entities that there are as well as the
way that these are connected. We observed that object oriented systems need slightly more
time than same-sized procedural systems and this is why there are deviations in execution
time between same-sized systems.

As a result, we choose the faster and more stable ACDC algorithm.

57

Clustering Methods Comparisson

140
BUNCH

120 ACDC ///i

100 |
80 |
60 |
40 |
20 |

Execution Time (min)

0 50 100 150 200 250 300
KLOC

Figure 5.1: Comparison of Execution Time for ACDC and Bunch - Procedural Systems

Clustering Methods Comparisson

70 r
BUNCH
60 | ACDC

50 |
40 |
30 |
20 |
10 |
0

Execution Time (min)

50 60 70 80 90 100 110 120
KLOC

Figure 5.2: Comparison of Execution Time for ACDC and Bunch - Object Oriented Systems

58

] N Create Attach Create Attach Attach Architecture
RSF File Components Entities Connectors Bindings Properties I nst ance

Figure 5.3: Steps for Population of Architectural Instances

5.2 Population of the Architecture Model

In order to be able to evaluate any software architecture, we first need to populate the meta-
model and get an instance of the architecture that will be compared to the gold standard.
For each instance to be created we need:

1. the extracted relations from the source code of the software system

2. the result of the clustering procedure for the specific combination that is under exami-
nation

Each instance that is produced is a spanning tree. The steps of the population procedure
are shown in Figure 5.3. It should be noted that the same procedure is followed for the
population of both object-oriented and procedural instances.

We should emphasize that although clustering had as input only the relations that belong
to a specific combination, and thus the output file contains only the Entities that are con-
nected with these relations, during the population procedure we take into consideration all
the Entities of the software system under examination. The reason for this is that we want to
evaluate the impact of the relations of the combination to the system architecture and this is
reflected on the results of the clustering. If only the Entities that were involved in the clus-
tering were kept, the distance between architectures would be greater even though in reality
the architectures are similar.

To begin with, the Components are created from the information of the clustering in order
for the Entities that belong to each Component to be placed where they belong.

Secondly, the Entities need to be placed and we begin with the Files. From the clustering
results we get the Component that each File belongs to and create an edge between the two
nodes. Then, we move on to the next level, the Classes or Structs and Global Variables.
For each one of them we get the Component that it belongs to and the File Entity that it is
connected with. If the Component that the Entity belongs to is the same with the Component
that the File belongs to, then and edge is created between the Entity and the File. Otherwise,
and edge is created between the Entity and the Component that it belongs to. Before we
move on to the next and final level of Entities, we have to also include in the instance the
Classes or Structs and Global Variables that were not part of the clustering. These entities
become children of the Files that they belong to or are declared in. Finally, we move on to
the Attributes of the Classes or the Structs. If the Attribute and the Class or Struct belong to
the same Component, an edge is created between the Attribute and the Class or the Struct,
while if they belong to different Components, we simply attach the Attribute straight from
the Component it belongs to.

If the relations that were taken into consideration during the clustering do not include any
Files, then necessarily we move on the next level and therefore our graph will not have any
Files. This happens because Files are top level entities that only belong to Components and if
we do not obtain this information from the clustering, there is no way of certainly allocating
Files to Components, like we do with the other types of Entities.

59

Once the previous step is completed, all the Entities, those that were part of the clustering
procedure and the others that were not, have been positioned in the tree graph of the instance
of the system architecture. The next step is to add the Connectors. Connectors represent the
relations Calls, Include, Accesses and Sets. For a Connector to be made there is a restriction,
the two Entities that interact with one of these relations have to be in different Components.
Therefore, we go through all these relations that could create Connectors between Compo-
nents. For each one, if the Entities of the relation belong to different Components and there
is no Connector between them, a new Connector is created as well as a new Binding that
includes information about the type of the relation and the Entities that are affected. The
Binding becomes a child of the Connector that was just created and the Connector is con-
nected with an edge to System root node. On the other hand, if a Connector already exists
between two Components, only a Binding is created with the appropriate information and it
is connected with the existing Connector.

Finally, we add the Properties to the Entities. The relations that describe properties are
Uses Type, Has Type, Inherits From and Defined In. For each one of these relations in
the relation file of the system, a new Property of the specified type with the appropriate
information is created and connected with the Entity that the Property refers to. Once this is
done for all the relations that describe properties, the population of the metamodel is done
and the instance of the architecture of the software system is ready to be compared to the gold
standard.

It should be noted that the instance that is considered as the gold standard is also created
by this procedure when all the relations are taken into consideration during the clustering.

60

© o 9 L R W N =

AL =

5.3 Population Examples

To make the population process more understandable, in this section we will present several
simple examples.

The system that we will examine is not a real system and was created only for the purposes
of this section and therefore is really small.

The initial RSF file of the system is presented on Listing 5.1.

Accesses M6 PAI1S
AttributeBelongsToClass PA1S5 T12
ClassBelongsToFile T10 Fl1
ClassBelongsToFile T11 F2
ClassBelongsToFile T12 F3
ClassBelongsToFile T13 F4
ClassBelongsToFile T14 F4
MethodBelongsToClass M5 T10
MethodBelongsToClass M6 TI11
MethodBelongsToClass M7 T13
MethodBelongsToClass M8 TI13
MethodBelongsToClass M9 T14
DefinedIn M7 F4

DeclaredIn M7 F4

DefinedIn M8 F4

DeclaredIn M8 F4

DefinedIn M9 F4

DeclaredIn M9 F4

Calls M5 M6

UsesType M6 TI12

Include F2 F3

Listing 5.1: Complete RSF File

The result of the clustering of this system is presented below. There are 4 clusters con-
taining the 15 Entities of the system.

SS(M5.ss) = M5, PAIl5, F3, M6, TI2
SS(T10.ss) = F1, TI10

SS(T11.ss) F2, T11

SS(M9.ss) = M9, Tl14, F4, T13, M7, M8

Listing 5.2: Clustering Result

Combining the information presented above and using the populator that was described in
Section 5.2 we can create an instance of the architecture of the system. Figure 5.4 illustrates
the XMI that was created graphically.

61

System

nane = Test System

Component
Component Component Component Connector
nane = Cl
T nane = C2 nane = C3 nane = C4 name = Connectorl
" srcComp = C3
File ‘ dest Conp = C2
name = F4 File _ _
I nane = F2 File Method Method File
| |] name = F3 name = Vb name = MVb name = F1
Type Type Type _ Include
name = T13 name = T14 name = T11
Type Uses Type nane = |ncludel
_ i yp Type srcPort = F2
_ _ nane = T12 reference = T12 name = T10 destPort = F3
Method Method Method *
nane = M nane = M8 nane = Public Attribute
nane = PAl15
Defined In Defined In Defined In

reference = F4

reference = F4 reference = F4

Figure 5.4: Populated Architecture Instance

62

Matched Elements 4
Added Elements 0
Deleted Elements 15
Moved Elements 0
Matched Clusters 1
Added Clusters 0
Deleted Clusters 3
Matched Connectors 0
Added Connectors 0
Deleted Connectors 1
Matched Bindings 0
Added Bindings 0
Deleted Bindings 1
Moved Bindings 0
Distance Score 0.789

Table 5.1: Result of Similarity Algorithm for Combination 1

System

name = Test System

Component
nane = C3
Type Method
nane = T12 name = M5
Public Attribute Uses Type
nane = PAl5 reference = T12

Figure 5.5: Populated Architecture Instance for Combination 1

To better understand the functionality of the populator, we will present the result of the
population for some of the combinations of the relations. For each one we will present the
combination of relations, the result of the clustering as well as the architecture instance that is
created. In addition to population we will present the result of our similarity algorithm when
comparing the several combinations to the architecture of the system 5.4.

1. Combination 1: UsesType

UsesType M6 TI12

Listing 5.3: RSF File for Combination 1

SS(M6.ss) = M6, T12

Listing 5.4: Clustering Result for Combination 1

63

64

Matched Elements
Added Elements
Deleted Elements
Moved Elements
Matched Clusters
Added Clusters
Deleted Clusters
Matched Connectors
Added Connectors
Deleted Connectors
Matched Bindings
Added Bindings
Deleted Bindings
Moved Bindings

—
—_—

Distance Score

o

NSO m m OR) R, ON~=NDWWLmO

—
o0

Table 5.2: Result of Similarity Algorithm for Combination 2

. Combination 2: Method Belongs To Class, Defined In

® 9 N U A W N —

MethodBelongsToClass
MethodBelongsToClass
MethodBelongsToClass
MethodBelongsToClass
MethodBelongsToClass

DefinedIn
DefinedIn
DefinedIn

M7 F4
M8 F4
M9 F4

M5 TI10
M6 TI11
M7 TI13
M8 T13
M9 T14

Listing 5.5: RSF File for Combination 2

SS(M9. ss)
SS(MS5. ss)
SS(M6. ss)

M9, Tl14,
T10, M5
= M6, TI1

F4, M7, M8, TI13

Listing 5.6: Clustering Result for Combination 2

System

name = Test System

Component Component Component Connector
nane = CL name = C2 name = C3 name = Connectorl
r_____J srcComp = C2
| dest Co = C3
File T i
ype
name = F4 Type
name = T11
I nane = T10
[|

Typo oo Include
name = T13 nane = T14 Method name = Calll
| Method srcPort = F5
nane = M destPort = F6

| I namre = M
Method Method Method
nane = M/ = MB -
name name = M Uses Type
reference = T12
Defined In Defined In Defined In

reference = F4

reference = F4

reference = F4

Figure 5.6: Populated Architecture Instance for Combination 2

65

System

name = Test System

Component Component Cormacior
e name = 1 nane = Connectorl
srcComp = C1
‘ | dest Conp = Q2
File File Method Method
name = F3 nane = F2 name = Vb name = Vb
| | | Access
Type Type Uses Type name = Accessl
srcPort = F6
rame = T nare = 1 reference = T12 destPort = PAL5

Public Attribute

nanme = PALS5

Figure 5.7: Populated Architecture Instance for Combination 3

W

Matched Elements
Added Elements
Deleted Elements
Moved Elements
Matched Clusters
Added Clusters
Deleted Clusters
Matched Connectors
Added Connectors
Deleted Connectors
Matched Bindings
Added Bindings
Deleted Bindings
Moved Bindings
Distance Score 0.657

—_
—_

—_——_ O OO =N N W

o

Table 5.3: Result of Similarity Algorithm for Combination 3

3. Combination 3: Calls, Include

Calls M5 M6
Include F2 F3

N -

Listing 5.7: RSF File for Combination 3

SS(M5.ss) = M6, M5
SS(F2.ss) F2, F3

S

Listing 5.8: Clustering Result

66

—_
(o)

Matched Elements
Added Elements
Deleted Elements
Moved Elements
Matched Clusters
Matched Tested Clus-
ters

Matched Goal Clusters
Added Clusters
Deleted Clusters
Matched Connectors
Added Connectors
Deleted Connectors
Matched Bindings
Added Bindings
Deleted Bindings
Moved Bindings
Distance Score 0.657

b W OO

S = O = N O = B

—_

Table 5.4: Result of Similarity Algorithm for Combination 4

. Combination 4: Class Belongs To File, Calls, Declared In

© o N A L A W N —

nOR W N~

ClassBelongsToFile T10 F1
ClassBelongsToFile TI11 F2
ClassBelongsToFile T12 F3
ClassBelongsToFile T13 F4
ClassBelongsToFile T14 F4
DeclaredIn M7 F4
DeclaredIn M8 F4
DeclaredIn M9 F4

Calls M5 M6

Listing 5.9: RSF File for Combination 4
SS(T11.ss) = TI1, F2
SS(T10.ss) = F1, TI0

SS(M5.ss) = M5, M6
SS(F4.ss) = T13, F4, T14, M7, M8, M9
SS(T12.ss) = F3, TI12

Listing 5.10: Clustering Result

67

System

name = Test System

Component Component Component Component Component Connector Connector
nane = CL nane = C2 name = C3 name = C4 name = C5 name = Connector 1 name = Connect or 2
T srcConp = C4 srcConp = Q2
_ _ _ _ dest Conp = C3 dest Conp = C3
Method Method Method File File File Method Method File
name = M) name = M8 name = M nane = F4 name = F2 nane = F3 name = Nb name = b name = F1

_ | _ | _ | _ _ _ ACCess Include
Defined In Defined In Defined In Type Type Type Type Uses Type nane = Accessl name = Incl udel

reference = F4 f = F4 f = F4 n = T13 = =Tl Type sreport = Wb et por 7

reference = reference = ane = nane = T14 nane = name = T12 reference = T12 — destPort = PALS destPort = F3

_ name =

Public Attribute

nane = PA15

Figure 5.8: Populated Architecture Instance for Combination 4

68

W

© 9 ;B W N =

[N VO SR

—_
3

Matched Elements
Added Elements
Deleted Elements
Moved Elements
Matched Clusters
Added Clusters
Deleted Clusters
Matched Connectors
Added Connectors
Deleted Connectors
Matched Bindings
Added Bindings
Deleted Bindings
Moved Bindings
Distance Score 0.096

S OO, OO~ hNOO

—

Table 5.5: Result of Similarity Algorithm for Combination 5

Combination 5: Access, Calls, Class Belongs To File, Method Belongs To File

Accesses M6 PAI1S
ClassBelongsToFile T10 F1
ClassBelongsToFile T11 F2
ClassBelongsToFile T12 F3
ClassBelongsToFile T13 F4
ClassBelongsToFile T14 F4
MethodBelongsToClass M5 TI10
MethodBelongsToClass M6 T11
MethodBelongsToClass M7 T13
MethodBelongsToClass M8 T13
MethodBelongsToClass M9 T14
Calls M5 M6

Listing 5.11: RSF File for Combination 5

SS(T10.ss) = T10, Fl

SS(T11.ss) F2, T11

SS(M5.ss) = M5, M6, PAIS

SS(M9.ss) = M9, T14, F4, T13, M7, M8
SS(T12.ss) = F3, TI12

Listing 5.12: Clustering Result

69

System

nane = Test System

Component Component Component Component Component Connector
name = Cl nane = C2 name = C3 nane = C4 name = C5 nane = Connectorl
srcComp = C2
_ _ dest Conp = C5
File File Public Attribute Method Method File File
name = F4 nane = F2 nane = PALb nane = M6 nane = Mo name = F1 nane = F3
_ Include
Type Tyvoe Type nane = Includel
yp Type Uses Type Type srcPort = F2
name = T13 nane = T14 name = Til Teference = T12 nane = T10 name = T12 destPort = F3
Method Method Method
name = M/ nane = M8 name = M)
Defined In Defined In

Defined In
reference = F4

reference = F4

reference = F4

Figure 5.9: Populated Architecture Instance for Combination 5

70

Chapter 6

Experimentation Results

6.1 Preprocessing Results

6.1.1 Execution Times

In this section we will discuss the execution time of the several tools that we discussed.

Fetch

As far as execution time is concerned, the total time that Fetch requires to analyze several
procedural and object oriented systems is presented on Figures 6.1 and 6.2 respectively. In
addition to the graphs, because for smaller systems parsing times are not clearly visible,
Tables 6.1 and 6.2 present the exact parsing times for procedural and object oriented systems
respectively.

Generally in both procedural and object oriented systems, as the lines of code augment,
parsing time rises as well. However, there is a difference between same sized procedural
and object oriented systems. The first require less parsing time than the later. This happens
because the analysis of the source code mainly depends on the interaction of the source code

Parsing Execution Time - Procedural Systems

16 .
Fetch +
14 Interpolation
c L
g 12
) 10 B
E 8
2 6}
&
g 4
2}
0 . Lo it . . .
0 50 100 150 200 250 300

KLOC

Figure 6.1: Fetch Execution Time for Procedural Systems

71

Parsing Time (min)

72

14 |
1.2

1

0.8 |
0.6 |
04 t
0.2 t

0

System LOC

Parsing Time

(min)

Freeglut ~ 22832
Tcsh 52143
OpenVPN 61606
OpenSSH 63999

Putty 85716
Clips 91021
Zsh 98061
Bash 98871

OpenSSL 298767

0.23
0.38
0.56
0.58
0.76
0.96
0.86
0.90
14.72

Table 6.1: Fetch Execution Time for Procedural Systems

Parsing Execution Time - Procedural Systems

Fetch +

Interpolation
50 60 70 80 90 100 110

KLOC

Figure 6.2: Fetch Execution Time for Object Oriented Systems

System LOC Parsing Time (min)
Texmaker 59434 0.61
Apache Ivy 72724 0.83
Apache Maven 78442 0.90
jHotDraw 80160 0.98
Apache Ant 107243 1.01
jEdit 118491 1.06

Table 6.2: Fetch Execution Time for Object Oriented Systems

120

ACDC Clustering - Procedural Systems

14 | ' ACDC - ' ' e
— Interpolation
£ 12
E
o 10
e
= 8
c
i) 6
5
8 4t
i
2}
0 PP T *

0 10 20 30 40 50 60 70
Input Size (K Lines)

Figure 6.3: Execution Time for ACDC in comparison with input file size - Procedural Sys-

tems
System Input File Size | No of Nodes | Time (Min)
Freeglut 9275 4161 0.80
Tcsh 12995 3138 0.18
Zsh 16905 5309 0.20
Putty 18439 6111 0.30
OpenVPN 18876 4411 0.35
OpenSSH 19370 4037 0.20
Bash 22850 7246 0.58
Clips 31217 6752 0.50
OpenSSL 62283 23385 14.13

Table 6.3: Execution time for ACDC for procedural systems

elements and not only on the size. In object oriented systems there are many cross-references
to be resolved and there is a greater demand of queries to the database and therefore parsing
time increases.

ACDC

ACDC algorithm takes as input an RSF file. Execution time depends on the size of the input
file as well as the connections that exist between the entities of the system. We conducted
experiments about the execution time of ACDC. Execution time varied from 10 seconds
for the smaller systems to about 15 minutes for the larger ones. Figures 6.3 and 6.4 show
the average clustering time for several procedural and object oriented systems respectively
compared to the number of relations that were given as input. To make this more clear
Tables 6.3 and 6.4 show the information about the procedural and object oriented systems
respectively.

73

ACDC Clustering - Object Oriented Systems

ACDC -
Interpolation +

Execution Time (min)

+ +

15 20 25 30 35 40 45 50 55 60 65
Input Size (K Lines)

Figure 6.4: Execution Time for ACDC in comparison with input file size - Object Oriented

Systems
System Input File Size | No of Nodes | Time (Min)
TexMaker 18643 3970 0.28
Apache Maven 29827 11506 0.58
jHotDraw 33797 10712 0.61
Apache Ivy 48184 11280 3.13
jEdit 49903 12875 2.01
Apache Ant 63332 18149 4.20

Table 6.4: Execution time for ACDC for object oriented systems

We observe that object oriented systems need slightly more time than same sized pro-
cedural systems. This happens because even though we refer to same-sized input files, as
we can see from Tables 6.3 and 6.4 procedural systems have almost twice the nodes object
oriented systems have, and therefore more conflicts to be resolved during clustering.

Bunch

As far as execution time is concerned, Figures 6.5 and 6.6 show the average clustering time
for several procedural and object oriented systems respectively compared to the number of
relations that were given as input. Tables 6.5 and 6.6 show the information about the proce-
dural and object oriented systems respectively. As we can see, Bunch is quite unstable and
even for small input files time may vary from a couple of minutes to hours for the bigger
files.

74

Bunch Clustering - Procedural Systems

140 T r
Bunch +

120 Interpolation

100
80
60 |
40 t
20

O . i, 2 . .
0 10 20 30 40 50 60 70

Input Size (K Lines)

Execution Time (min)

Figure 6.5: Execution Time for Bunch in comparison with input file size - Procedural Sys-
tems

System Input File Size | No of Nodes | Time (Min)
Freeglut 9275 4161 0.20
Tcsh 12995 3138 0.46
Zsh 16905 5309 7.21
Putty 18439 6111 2.55
OpenVPN 18876 4411 2.73
OpenSSH 19370 4037 3.45
Bash 22850 7246 8.65
Clips 31217 6752 6.43

OpenSSL 62283 23385 135.78

Table 6.5: Execution time for Bunch for procedural systems

System Input File Size | No of Nodes | Time (Min)
TexMaker 18643 3970 2.51
Apache Maven 29827 11506 32.68
JHotDraw 33797 10712 18.00
Apache Ivy 48184 11280 32.20
jJEdit 49903 12875 62.80
Apache Ant 63332 18149 92.45

Table 6.6: Execution time for Bunch for object oriented systems

75

Bunch Clustering - Object Oriented Systems

70 r T
Bunch *
60 Interpolation

50 t
40
30
20 t
10

0

Execution Time (min)

15 20 25 30 35 40 45 50 55 60 65
Input Size (K Lines)

Figure 6.6: Execution Time for Bunch in comparison with input file size - Object Oriented
Systems

6.2 Experimental Infrastructure

Before we go into detailed discussion about our experiments, we should first report the hard-
ware and software configuration that was used. Because mainly clustering was an extremely
time-consuming part of our work, we parallelized our experiments by using six quad-core
processor machines. Processors are Intel Core 17 at 3,2 GHz with 8GB physical memory
each. All machines run on Ubuntu Linux.

6.3 Systems under Analysis

In this section we present the systems that were analyzed during our experimentation process.
We examined several open source, large procedural and object oriented systems from
various fields, such as Artificial Intelligence, Databases, Security etc.

Procedural Systems

The procedural systems that we examined consist of:

e Bash is a Unix shell and command language. It has been distributed widely as the shell
for the GNU operating system and as a default shell on Linux and OS X. It is written in
C.

e Clips is a software tool for building expert systems. It is the most widely used expert
system tool. It is written in C.

e OpenSSH is asuite of security-related network-level utilities based on the SSH protocol.
It is a free and open source alternative to the proprietary SSH. It is written in C.

76

System LOC | RSF Lines | No of Nodes
Bash 99871 22850 7246
Clips 91021 31217 6752

Freeglut 22832 9275 4161

OpenSSH || 63999 19370 4037

OpenSSL || 298767 62283 23385

OpenVPN || 61606 18876 4411
Putty 85716 18439 6111
Tcsh 52143 12995 3138
ZSH 98061 16905 5309

Table 6.7: Procedural Systems under Examination

e OpenSSL is an open source implementation of the SSL and TLS protocols. The core
library implements basic cryptographic functions and utilities. It is written in C.

e OpenVPN is an open source software application that implements virtual private net-
work techniques for creating secure point-to-point connections in routed configurations
and remote access facilities. It is written in C.

e Freeglut is an open source alternative to the OpenGL Utility Toolkit (GLUT) library.
It is written in C.

e Puttyis a free and open source terminal emulator, serial console and network file transfer
application. It supports several network protocols such as SCP, SSH, Telnet etc. It is
written in C.

e Tcsh is a Unix Shell based on and compatible with the C shell (csh). It is written in C.

e Zsh is a Unix shell that can be used a powerful command interpreter for shell scripting.
It is written in C.

Specific information about the procedural systems such as Line of Code (LOC), Number
of relations included in the RSF File, Number of Nodes in the RSF File are presented in Table
6.7.

Object Oriented Systems

The object oriented systems that we examined consist of:

e Apache Ant is a software tool for automating software build processes. It is written in
Java.

e Apache Maven is a software tool for automating software build processes used primarily
for Java projects. It is written in Java.

e Apache Ivy is a sub-project of the Apache Ant project that is used to resolve project
dependencies. It is written in Java.

e jEdit is a free and open source software text editor. It is written in Java.

77

System LOC | RSF Lines | No of Nodes
Apache Ant 107243 63332 18149
Apache Ivy 72724 48184 11280

Apache Maven || 78442 29827 11506
jEdit 118491 49903 12875
JHotDraw 80160 33797 10712
TexMaker 59434 18643 3970

Table 6.8: Object Oriented Systems under Examination

e jHotDraw is a Java framework for technical and structured Graphics. It is written in
Java.

e Texmaker is a free and cross-platform LaTeX editor for Linux, OS X and Windows sys-
tems that integrates many tools needed to develop documents with LaTeX. It is written
in C++.

Details about the object oriented systems are presented in Table 6.8.

6.4 Analysis Results

In this section we will present the results of our experiments.

First of all, Table 6.9 shows how easy or difficult it is to extract each relation from the
source code. The extraction of a relation is considered easy if the source code does not need
any special preparation to extract it, such as Include which can be obtained with a simple
”grep”. Furthermore, the extraction of a relation is considered of medium difficulty, if a small
preprocessing is required, such as for the Call relation, which first needs to learn which are
the function and then find the connection between them. Finally, relations that need the use
of the linker or require information from the AST (Abstract Syntax Tree) are considered hard
to extract. An example is the relations regarding types, which need to have the information
about scopes, dependencies etc.

Relation Easy | Medium | Hard
Access Vv
Accessible Entity Belongs to File vV
Attribute Belongs to Class
Class Belongs to File vV
Call
Declared In
Defined In
Has Type V
Include

Inherits From

Method Belongs to Class
Set Variable Vv
Uses Type Vv

NSNS

RN

Table 6.9: Ease of extraction of relations from source code

78

6.4.1 Procedural Systems

Our results for the procedural systems are presented on the next figures and tables.

Figure 6.7 presents the average distance score for each combination from all the systems.
As we can see, there are created three groups of points. Firstly, those above 0.6 who are
considered bad combinations because the similarity between the two instances is very low.
Then, we have the average combinations, with distance score between 0.3 and 0.6. Those
combinations represent instances that are closer to the gold standard, but still are not suffi-
cient. Finally, there are the combinations with distance score below 0.3. These combinations
are very close to the gold standard and are considered good combinations that can be used
for architectural extraction.

Comparison to Gold Standard - Procedural

diff
good

- ‘average

Distance from Gold Standard

Combination

Figure 6.7: Average distance score for Procedural Systems

Figure 6.8 contains the same information as the previous figure (6.7), however we have
sorted the data in descending order based on the distance score. Although in the x axis of this
figure the combinations are in an unknown order to the reader and one might think it does not
have physical meaning, it clearly shows something quite odd. There are two steps in the figure
that are marked with the two vertical lines. The first line separates the combinations that do
not have the relation Call (left) from those that have it (right). The second line separates the
combinations that do not have the relations Access or Call (left) from those that have them
both (right).

Table 6.10 shows the best combinations of relations. For each combination, we present
the average Distance Score for all systems, the Z score as well as the p Value of a Chi Square
Test. Z Score represents how many standard deviations the value is from the mean for this
number of relations (per one, per two etc.). A Z score less than -2 represents the this value
is in the top 0.5% of this set. Values that are so far from the mean, stand out of the set
of combinations and are considered the best of them. As far as the p Value is concerned,
we conducted simple Chi Square Tests in order to reveal the significance level of our results.
Our Null Hypothesis was that each combination of relations and the outcome (good, average,

79

Comparison to Gold Standard - Procedural (Sorted)

1
0.8 -\\ no Calls
0.6 | \

with Calls
04 } ‘and Accesses
‘mmomomom »

Combination

Distance from Gold Standard

Figure 6.8: Sorted average distance score for Procedural Systems

bad) are independent. As we can see, for all the combinations that we present as best, the
Null Hypothesis is rejected and with a probability of 100% we can conclude that there is a
connection between the best combinations and the outcome.

On the other hand, Table 6.11 shows the worst relations that can be used for architectural
extraction. As with Table 6.10, this one has information about the Distance Score, the Z Score
as well as the p Value for a Chi Square Test of each combination. We can see here, that all
these relations are independent of the outcome. And therefore, their use for architectural
extraction is not suggested.

80

Combination

Diff Score Z Score <-2

p Value=10
Call 0.622 -2.72
Call, Access 0.319 -343
Call, Defined In 0.528 -2.00
Access, Call, Accessible Entity Be- 0.249 -2.76
longs to File
Access, Call, Class Belongs to File 0.308 -2.42
Access, Call, Declared In 0.238 -2.82
Access, Call, Include 0.254 -2.73
Access, Call, Has Type 0.319 -2.35
Access, Call, Defined In 0.253 -2.73
Access, Call, Set Variable 0.309 -2.42
Access, Call, Attribute Belongs to 0.286 -2.54
Class
Access, Call, Uses Type 0.286 -2.55
Access, Call, Declare, Include 0.170 -2.46
Access, Call, Accessible Entity Be- 0.185 -2.38
longs to File, Declared In
Access, Call, Accessible Entity Be- 0.189 -2.36
longs to File, Defined In
Access, Call, Accessible Entity Be- 0.137 -2.06

longs to File, Declared In, Include

Table 6.10: Best combinations of relations - Procedural Systems

81

82

Combination

Diff Score Z Score p Value

Attribute Belongs to Class 0.999 0.84 0.931
Uses Type 0.973 0.60 0.969
Declared In 0.971 0.58 0.954
Defined In 0.966 0.53 0.954
Has Type 0.955 0.42 0.969
Attribute Belongs to Class, Uses Type 0.976 1.08 0.941
Class Belongs to File, Declared In 0.971 1.05 0.961
Attribute Belongs to Class, Declared In 0.968 1.03 0911
Attribute Belongs to Class, Has Type 0.966 1.01 0.941
Class Belongs to File, Defined In 0.966 1.01 0.961
Class Belongs to File, Declared In, De- 0.951 1.26 0.922
fined In

Attribute Belongs to Class, Declared In, 0.951 1.26 0.828
Defined In

Attribute Belongs to Class, Class Belongs 0.947 1.23 0.922
to File, Declared In

Attribute Belongs to Class, Class Belongs 0.942 1.21 0.922
to File, Defined In

Attribute Belongs to Class, Has Type, In- 0.937 1.18 0.872
clude

Attribute Belongs to Class, Declared In, 0.925 1.41 0.774
Defined In, Uses Type

Attribute Belongs to Class, Class Belongs 0.923 1.40 0.847
to File, Declared In, Defined In

Attribute Belongs to Class, Declared In, 0918 1.37 0.774
Defined In, Has Type

Attribute Belongs to Class, Class Belongs 0.915 1.36 0.749
to File, Declared In, Has Type

Accessible Entity Belongs to File, Class 0.910 1.33 0.676
Belongs to File, Declared In, Defined In

Accessible Entity Belongs to File, At- 0.900 1.54 0.399
tribute Belongs to Class, Declared In, De-

fined In, Include

Attribute Belongs to Class, Class Belongs 0.899 1.53 0.721
to File, Declared In, Defined In, Has Type

Accessible Entity Belongs to File,Class 0.899 1.53 0.663
Belongs to File, Declared In, Defined In,

Include

Attribute Belongs to Class, Class Belongs 0.896 1.51 0.840
to File, Declared In, Defined In, Uses

Type

Accessible Entity Belongs to File, At- 0.894 1.51 0.840

tribute Belongs to Class, Class Belongs to
File, Declared In, Has Type

Table 6.11: Worst combinations of relations - Procedural Systems

Combination Mean Diff SD Mean Diff SD
Score with Score without
combination combination

Call 0.322 0.162 0.749 0.135
1 | Access 0.445 0.276 0.625 0.208

Set Variable 0.502 0.238 0.568 0.277

Call, Access 0.189 0.094 0.796 0.139
2 | Call, Declared In 0.299 0.160 0.759 0.133

Call, Defined In 0.299 0.159 0.759 0.134

Call, Access, Accessible Entity Be- 0.166 0.080 0.811 0.123
3 | longs to File

Call, Access, Declared In 0.166 0.093 0.806 0.136

Call, Access, Defined In 0.167 0.093 0.807 0.136

Call, Access, Accessible Entity Be- 0.139 0.082 0.822 0.119
4 | longs To File, Declared In

Call, Access, Accessible Entity Be- 0.142 0.082 0.824 0.118

longs To File, Defined In

Call, Access, Declared In, Include 0.147 0.083 0.816 0.130

Call, Access, Accessible Entity Be- 0.122 0.096 0.831 0.122
5 | longs to File, Declared In, Uses

Type

Call, Access, Accessible Entity Be- 0.122 0.093 0.837 0.107

longs to File, Declared In, Include

Call, Access, Accessible Entity Be- 0.123 0.095 0.832 0.122

longs to File, Defined In, Uses Type

Table 6.12: Average and Standard Deviation with and without a combination of relations -
Procedural Systems

Finally, Table 6.12, presents the mean distance score for all the relations that contain
this combination, as well as for all the relations that do not contain it in addition to the cor-
responding standard deviation for the best combinations of relations. The fact that when a
combination of relations is present, we have a low distance score and standard deviation,
while when this combination is absent the distance score rises significantly, shows that this
combination is important for architecture recovery and should not be absent.

83

Comparison to Gold Standard - Object Oriented

0.8

06 |

04

Distance from Gold Standard

Combination

Figure 6.9: Average distance score for Object Oriented Systems

6.4.2 Object Oriented Systems

Our results for the object oriented systems are presented on the next figures and tables.

Figure 6.9 presents the average distance score for each combination from all the systems.
As we can see, there are created four groups of points. Firstly, those above 0.8 who are
considered bad combinations because the similarity between the two instances is extremely
low. Then, we have the average bad combinations, with distance score between 0.8 and 0.6,
which are still very different from the gold standard. Those combinations represent instances
that are closer to the gold standard, but still are not sufficient. Furthermore, there are the
combinations with distance score between 0.3 and 0.5 which are considered average good.
Finally, there are the combinations with distance score below 0.3. These combinations are
very close to the gold standard and are considered good combinations that can be used for
architectural extraction.

Figure 6.10 contains the same information as the previous figure (6.9), however we have
sorted the data in descending order based on the distance score. Although in the x axis of this
figure the combinations are in an unknown order to the reader and one might think it does
not have physical meaning, it clearly shows something quite odd. There are three steps in the
figure that are marked with the three vertical lines. The first line separates the combinations
that do not have the relations Call, Access or Set Variable (left) from those that have at least
one of them (right). The second line separates the combinations that do not have the Call
relation (left) from those that do (right). Finally, the third line separates the combinations
that do not have the relations Access or Call (left) from those that have them both (right).

Table 6.13 shows the best combinations of relations for object oriented systems. For each
combination, we present the average Distance Score for all systems, the Z score as well as
the p Value of a Chi Square Test. Z Score represents how many standard deviations the

84

Comparison to Gold Standard - Object Oriented (Sorted)

08 | \ without Calls

without Calls, AN

B Accesses and
g Sets Variable
S 06 |
(D] \
o ‘«\
o)
o \
£
o
> with Calls
2 04 | and Accesses
IS
25 O -
o
\
02 | \ |
0
Combination

Figure 6.10: Sorted average distance score for Object Oriented Systems

value is from the mean for this number of relations (per one, per two etc.). A Z score less
than -2 represents the this value is in the top 0.5% of this set. Values that are so far from
the mean, stand out of the set of combinations and are considered the best of them. As far
as the p Value is concerned, we conducted simple Chi Square Tests in order to reveal the
significance level of our results. Our Null Hypothesis was that each combination of relations
and the outcome (good, average good, average bad, bad) are independent. As we can see,
for all the combinations that we present as best, the Null Hypothesis is rejected and with a
probability of 100% we can conclude that there is a connection between the best combinations
and the outcome.

On the other hand, Table 6.14 shows the worst relations that can be used for architectural
extraction in object oriented systems. As with Table 6.13, this one has information about the
Distance Score, the Z Score as well as the p Value for a Chi Square Test of each combination.
We can see here, that all these relations are independent of the outcome. And therefore, their
use for architectural extraction is not suggested.

Finally, Table 6.15, presents the mean distance score for all the relations that contain
this combination, as well as for all the relations that do not contain it in addition to the cor-
responding standard deviation for the best combinations of relations. The fact that when a
combination of relations is present, we have a low distance score and standard deviation,
while when this combination is absent the distance score rises significantly, shows that this
combination is important for architecture recovery and should not be absent.

85

86

Combination

Diff Score Z Score <-2

p Value=10
Call 0.665 -2.43
Access, Call 0.377 -2.90
Call, Defined In 0.421 -2.61
Call, Declared In 0.432 -2.53
Call, Method Belongs To Class 0.4741 -2.25
Access, Call, Declared In 0.209 -2.96
Access, Call, Defined In 0.214 -2.93
Access, Call, Method Belongs to Class 0.253 -2.71
Access, Call, Attribute Belongs to Class 0.317 -2.34
Access, Call, Include 0.361 -2.09
Access, Call,Uses Type 0.364 -2.07
Access, Call, Inherits From 0.372 -2.03
Access, Call, Defined In, Method Belongs to 0.174 -2.54
Class
Access, Call, Declared In, Include 0.185 -2.48
Access, Call, Declared In, Method Belongs to 0.188 -2.47
Class
Access, Call, Defined In, Include 0.188 -2.47
Access, Call, Declared In, Class Belongs to File 0.192 -2.44
Access, Call, Declared In, Set Variable 0.196 -2.43
Access, Call, Defined In, Set Variable 0.200 -2.40
Access, Call, Declared In, Include, Method Be- 0.149 -2.21
longs to Class
Access, Call, Declared In, Class Belongs to File, 0.151 -2.20
Method Belongs to Class
Access, Call, Declared In, Attribute Belongs to 0.154 -2.18
Class, Method Belongs to Class
Access, Call, Defined In, Include, Method Be- 0.157 -2.17
longs to Class
Access, Call, Defined In, Has Type, Method Be- 0.157 -2.17
longs to Class
Access, Call, Declared In, Attribute Belongs to 0.165 -2.13
Class, Include
Access, Call, Declared In, Class Belongs to File, 0.166 -2.12

Include

Table 6.13: Best combinations of relations - Object Oriented Systems

Combination Diff Score Z Score <-2
p Value > 0.8

Inherits From 0.985 0.843

Uses Type 0.972 0.71

Method Belongs to Class 0.959 0.57

Attribute Belongs to Class 0.958 0.57

Defined In 0.956 0.54

Has Type, Uses Type 0.982 1.13

Class Belongs to File, Declared In 0.969 1.04

Attribute Belongs to Class, Method Be- 0.967 1.03

longs to Class

Class Belongs to File, Defined In 0.961 0.99

Has Type, Method Belongs to Class 0.959 0.98

Class Belongs to File, Declared In, De- 0.970 1.38

fined In

Attribute Belongs to Class, Method Be- 0.968 1.36

longs to Class, Has Type

Attribute Belongs to Class, Method Be- 0.964 1.35

longs to Class, Uses Type

Has Type, Inherits From, Uses Type 0.958 1.31

Attribute Belongs to Class, Inherits From, 0.954 1.29

Method Belongs to Class

Attribute Belongs to Class, Has Type, 0.964 1.68

Method Belongs to Class, Uses Type

Class Belongs to File, Declared In, De- 0.950 1.61

fined In, Include

Attribute Belongs to Class Has Type, In- 0.943 1.56

clude, Method Belongs to Class

Attribute Belongs to Class, Declared In, 0.941 1.56

Defined In, Inherits From

Attribute Belongs to Class, Include, 0.941 1.55

Method Belongs to Class, Uses Type

Class Belongs to File, Declared In, De- 0.941 1.87

fined In, Has Type, Uses Type

Attribute Belongs to Class, Has Type, In- 0.941 1.87

clude, Method Belongs to Class, Uses

Type

Atribute Belongs to Class, Class Belongs 0.939 1.858

to File, Declared In, Defined In, Method

Belongs to Class

Class Belongs to File, Declared In, Has 0.935 1.84

Type, Include, Uses Type

Attribute Belongs to Class, Declared In, 0.935 1.84

Defined In, Has Type, Inherits From

Table 6.14: Worst combinations of relations - Object Oriented Systems

87

Combination Mean Diff SD Mean Diff SD
Score with Score without
combination combination

Call 0.324 0.146 0.702 0.114
1 | Access 0.421 0.229 0.605 0.192

Set Variable 0.482 0.194 0.543 0.258

Call, Access 0.202 0.080 0.764 0.128
) Call, Declared In 0.284 0.131 0.710 0.111

Call, Method Belongs to Class 0.286 0.134 0.719 0.112

Call, Defined In 0.288 0.131 0.713 0.111

Call, Access, Declared In 0.161 0.041 0.768 0.120
3 | Call, Access, Defined In 0.164 0.042 0.770 0.122

Call, Access, Method Belongs to 0.168 0.071 0.781 0.121

Class

Call, Access, Declared In, Method 0.129 0.032 0.793 0.109
4 | Belong to Class

Call, Access, Defined In, Method 0.133 0.032 0.795 0.109

Belongs to Class, Defined In

Call, Access, Class Belongs to File 0.148 0.044 0.804 0.125

Call, Access, Declared In, Attribute 0.113 0.030 0.809 0.107
5 | Belongs to Class, Method Belongs

to Class

Call, Access, Declared In, Class Be- 0.114 0.033 0.825 0.115

longs to File, Method Belongs to

Class

Call, Access, Declared In, Method 0.115 0.031 0.792 0.114

Belongs to Class, Include

Table 6.15: Average and Standard Deviation with and without a combination of relations -
Object Oriented Systems

6.5 Interpretation of the Results

In this section we will discuss what we learned form our experiments. For both procedural
and object oriented systems we will answer several question that explain our findings.

6.5.1 Procedural Systems

o Are there any relations that should not be absent no matter what the cost is?

In fact there are two relations that their presence or absence makes significant differ-
ence. First of all, the Call relation seems to be the most important relation in procedural
systems. As we can see from Figure 6.7 there are three groups of distance score, which
are very clearly separated. The difference between the the top group and the other two
below is the presence of the Call relation. This means that if we choose not to include
the Call relation in our set of relations that will be used to recall the architecture we
cannot obtain a distance score less than 0.6, which in no way is considered satisfying.
As a result is is safe to assume that the Call relation should not be absent, even though

88

it is not the easiest to extract.

This is also visible in Table 6.12. In the first row we present the mean and the standard
deviation of the distance score of all the combinations that contain and do not contain
the Call relation. When in the combinations the relation is present, the mean distance
score is 0.322 with a standard deviation of 0.162, while when the relation is absent the
mean distance score rises to 0.749 with a standard deviation of 0.135. There is a big
distance between the two mean scores which is in fact the price that ones has to pay if it
is decided not to use the Call relation. Even if all other relations are used, except Call,
the distance score is 0.66, which is higher than the distance score containing at least
Call. Therefore, our proposal is to start with the Call relation and build up with more
relations if more accuracy is required and more resources can be spend in the extraction
of more relations.

In addition to Call, another relation is recommended to be part of the set of relations
that will be used is Access. This relation combined with Cal/l make the perfect double,
that as we see in Table 6.10 is present in all the best combinations and is absent from
all the worst combinations in Table 6.11. Furthermore, the double Call, Access is what
makes the difference between the average and good relations in Figure 6.7. All the
combinations below 0.3, which are considered good combinations for recovery, contain
both Call and Access relations.

As a result, our proposal is that Call and Access should not be absent no matter what
their cost of extraction is. The combinations that have these relations have a mean of
0.189 with a standard deviation of 0.094 compared to 0.796 and 0.139 respectively for
those that do not have them. Therefore, if only two relations are to be used these are
definitely Call and Access and if there is room for more these should be part of the set.

e Are there any relations that should not be used?

The answer is no. In our experiments we did not encounter any relation that when it
was added to a combination negatively affected the updated distance score.

However, further to what we discussed before, some combinations affect the clustering
mainly in a way that whether they are present or not does not have significant difference.
These relations are Has Type, Set Variable and Class Belongs to File. As we can see
from Table 6.10, when these relations are added to the Call, Access combination the
distance score is slightly changed. The same happens if we add these relations to any
combination. Given the fact that these relations are considered slightly difficult to be
extracted from the source code and their contribution is not significant, it is safe to
propose that these relations can be omitted for the sake of faster results with no loss in
accuracy.

Additionally, if we take a look at Table 6.11, we see that combinations containing infor-
mation about structural aspects of the system, such as Attribute Belongs to Class, Class
Belongs to File and Accessible Entity Belongs to File, but not how all these entities are
connected produce the worst output. For that reason, these relations should be avoided
to be used on their own for recovery without a relation that defines connections between
these entities such as Call, Access or Declared In.

89

e How many relations do we need for accurate architectural recovery?

Of course the answer to this question depends on which relations we are willing to use
first of all. For example, if for some reason the Call relation is not used, even if the other
10 relations are used the distance score is about 0.65 which is very high. For that reason,
if we choose the right relations, we ended up that 6 relations are enough. More specif-
ically, the use of Call and Access is not negotiable. Then, by also including Declared
In, DefinedlIn, Include and Accessible Entity Belongs to File the distance score drops to
0.124 which is very accurate compared to the number of relation that were extracted.
For more than 6 relation, because the amount of the information that is provided is close
to the total amount of information of the system, provided that Call and Access are in-
cluded, the difference between the distance scores of the combinations are insignificant
(in the range 0.09 - 0.15). As a result, for more than 6 relation, if Call and Access are
included, the choice of the other relations does not really matter.

6.5.2 Object Oriented Systems

As far as object oriented systems are concerned, although our finding are quite similar to
those of the procedural systems, there are some essential differences.

90

e We observed that in procedural systems the relations that actually make a difference in

extracting their architecture mainly involve the relations that show interaction between
the components of the system,such as Call and Access. Although, in object oriented
systems these relations are still important, the architecture is revealed actually from
these relations in combination with the relations about the organization of the source
code. As we can observe in Table 6.15 in order to get an architecture close to the gold
standard (distance score less than 0.2) in addition to relations about the interaction of
components we need relations about the organization of the source code. The orga-
nization of the classes in object oriented systems is a satisfactory representation of the
system’s architecture if combined with one relation about the interaction of the system’s
elements.

Additionally, Figure 6.10 has a difference compared to the corresponding figure for
procedural systems. There is a large fall in the beginning of the diagram, that as we
already mentioned, separates the combinations that do not contain any of the relations
Call, Access and Set Variable from those that do. As a result, we can safely conclude
that the absence of information about the interaction of the Components results to great
deviations from the gold standard.

o Are there any relations that should not be absent no matter what the cost is?

In order to acquire an architecture close to the gold standard we need at least three
relations, Call, Access and a relation such as Method Belongs to Class, Declared In or
Defined In that represent the structure of the system. With only these three relations the
distance score is about 0.25, which is adequate for an estimation of the architecture. For
an even more accurate representation we can combine the relations that we previously
mentioned and get a score less than 0.2 if four relations are combined or 0.15 if five
relations are combined.

Additionally, the relations about the structure of the source code are easy to extract from
the source code, according to Table 6.9 with a simple parsing of the source code and
therefore do not require extra effort.

If we choose to ignore these relations, as Table 6.15 shows, the average distance score
rises higher than 0.7 which actually means that the remaining relations are unusable for
architectural extraction.

Therefore, our proposal for object oriented systems is to start with the combination Call,
Access and one of the following Declared In, Defined In or Method Belongs to Class
and build up with more relations if more accuracy is required and more resources can
be spend in the extraction of more relations.

Are there any relations that offer unnecessary information concerning architectural
extraction?

Some combinations affect the clustering mainly in a way that whether they are present
or not does not have significant difference. These relations are Has Type, Inherits From
and Uses Type. As we can see from Table 6.13, when these relations are added to the
Call, Access combination the distance score is slightly changed. The same happens
if we add these relations to any combination. Given the fact that these relations are
considered slightly difficult to be extracted from the source code and their contribution
is not significant, it is safe to propose that these relations can be omitted for the sake of
faster results with no loss in accuracy.

Additionally, if we take a look at Table 6.11, we see that combinations containing in-
formation about structural aspects and types of the system, such as Attribute Belongs to
Class, Class Belongs to File, Method Belongs to Class and Uses Type but not how all
these entities are connected, produce the worst output. For that reason, these relations
should be avoided to be used on their own for recovery without a relation that defines
connections between these entities such as Call, Access or Set Variable.

How many relations do we need for accurate architectural recovery?

Of course the answer to this question depends on which relations we are willing to use
first of all. For example, if for some reason the Call relation is not used, even if the
other 11 relations are used the distance score is about 0.7 which is very high. For that
reason, if we choose the right relations, we ended up that 5 relations are enough. More
specifically, the use of Call, Access and a relation or two about the structure of the
source code is not negotiable. By including more relation such as Method Belongs to
Class, Attribute Belongs to Class or Class Belongs to File the distance score drops lower
that 0.1 which is very accurate compared to the number of relation that were extracted.
For more than 5 relation, because the amount of the information that is provided is
close to the total amount of information of the system, provided that both structural
and relation about interaction of Components are included, the difference between the
distance scores of the combinations are insignificant (in the range 0.07 - 0.15). As
a result, for more than 5 relation, if information about the structural elements ana how
these are connected are included, the choice of the other relations does not really matter.

91

Chapter 7

Conclusion and Future Work

We conclude this thesis with a summary of what was described and presented so far. Firstly,
we will summarize the conclusions that where reached during the design, modeling and ex-
perimentation that we conducted. Then, this thesis will end with reference to the issues we
felt require further investigation in the form of proposals for future research.

We designed and implemented a framework in order to evaluate the effect that source
code extracted relations have on cluster based architectural extraction. We went a step further
from what has been researched so far and our work enabled us to respond to the questions
that we set in the introduction.

e As we observed, the selection of the relations has a huge impact on the outcome of the
extraction. Even one relation can make a great change and therefore the selection of the
relations that are used should be made with caution.

e Depending on the accuracy that we want, we can get an accurate architecture by using
only a subset of relations. As we noticed, in procedural systems, relations about the
interaction of the Components, such as the ”Call” and ”Access” relations, should never
be omitted and then as the number of relations used approaches the total number of
relations of the system, the extracted architecture becomes more accurate. In object
oriented systems, the organization of the source code reveals much information about
the architecture and therefore there is the need for relations about the structure of the
source code in order to extract an accurate architecture.

e As we expected, the combinations that have the greater number of relations produce the
closest architectures to the real one. However, to our big surprise, when the relations that
we consider as the most important are missing, the similarity deteriorates dramatically,
to the point that it is best to use only the two good relations to get an outcome than the
other ones combined.

e Fortunately, there are no relations that deteriorate the outcome and should be avoided.
However, we found certain relations that their presence or not does not make any signif-
icant difference and can be omitted for the sake of a faster but still accurate extraction.

e Finally, a very important observation that we made was that six relations for procedural
systems and five for object oriented, if selected properly, give a very accurate outcome
with relatively little effort. When architectural extraction is used in real systems and not
for research reasons, the fact that instead of eleven or twelve relations, six or five are
enough to get an accurate estimate of the architecture of the system has a great impact
on the time required which is crucial.

93

We believe that our work set the base for further experimentation on this subject. How-
ever, there are several aspects that could be explored further.

We analyzed several systems written in C, C++ and Java, and it would be interesting to
experiment on other popular programming languages, such as Python which supports multi-
ple programming paradigms (object oriented, imperative, functional, procedural) and see if
relations that we now consider important are then insignificant.

Also, larger systems should be examined and from different application domains to dis-
cover if the results remain the same or the domain affects the importance of the relations.

Finally, it would be really interesting to experiment on distributed systems and include in
the relations that are evaluated the relations involving the messages that are interchanged by
the connected nodes. Maybe these messages hide valuable information about the architecture
of the system.

94

Bibliography

[Anqu99]

[Bass13]

[Baue04]

[Bois07]

[Corall]

[Dean01]

[DeBa94]

[famo]

[Garcl1]

[Garcl13]

Nicolas Anquetil, Cédric Fourrier and Timothy C. Lethbridge, “Experiments with
Clustering As a Software Remodularization Method”, in Proceedings of the Sixth
Working Conference on Reverse Engineering, WCRE *99, pp. 235—, Washington,
DC, USA, 1999, IEEE Computer Society.

Len Bass, Paul Clements and Rick Kazman, Software Architecture in Practice,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2013.

Markus Bauer and Mircea Trifu, “Architecture-Aware Adaptive Clustering
of OO Systems”, in 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004), 24-26 March 2004, Tampere, Finland, Proceed-
ings, pp- 3—14, 2004.

Bart Du Bois, Bart Van Rompaey, Karel Meijfroidt and Eric Suijs, “Supporting
Reengineering Scenarios with FETCH: an Experience Report”, ECEASST, vol. 8,
2007.

Anna Corazza, Sergio Di Martino, Valerio Maggio and Giuseppe Scanniello, “In-
vestigating the Use of Lexical Information for Software System Clustering.”, in
Tom Mens, Yiannis Kanellopoulos and Andreas Winter, editors, CSMR, pp. 35—
44, IEEE Computer Society, 2011.

Thomas R. Dean, Andrew J. Malton and Richard C. Holt, “Union Schemas as a
Basis for a C++ Extractor”, in Proceedings of the Eighth Working Conference on
Reverse Engineering, WCRE 01, Stuttgart, Germany, October 2-5, 2001, p. 59,
2001.

Jean-Marc DeBaud, Bijith Moopen and Spencer Rugaber, “Domain Analysis and
Reverse Engineering.”, in Hausi A. Miiller and Mari Georges, editors, /CSM, pp.
326335, IEEE Computer Society, 1994.

“FAMOOS”, http://scg.unibe.ch/archive/famoos/.

Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic and Yuan-
fang Cai, “Enhancing Architectural Recovery Using Concerns”, in Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE 11, pp. 552-555, Washington, DC, USA, 2011, IEEE Com-
puter Society.

Joshua Garcia, Igor Ivkovic and Nenad Medvidovic, “A comparative analysis
of software architecture recovery techniques”, in 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2013, Silicon Valley,
CA, USA, November 11-15, 2013, pp. 486496, 2013.

95

[Garl97]

[Imbe91]

[Kosc00]

[Kosc06]

[Kuhn55]

[Leth02]

[Lung98]

[Lung04]

[Lung06]

[Manc99]

[Magb07]

David Garlan, Robert T. Monroe and David Wile, “Acme: An Architecture De-
scription Interchange Language”, in Proceedings of CASCON 97, pp. 169—183,
Toronto, Ontario, November 1997.

Mike Imber, “Software Engineering Environments”, 1991.

Rainer Koschke and Thomas Eisenbarth, “A Framework for Experimental Eval-
uation of Clustering Techniques”, in 8th International Workshop on Program
Comprehension (IWPC 2000), 10-11 June 2000, Limerick, Ireland, pp. 201-210,
IEEE Computer Society, 2000.

Rainer Koschke, Gerardo Canfora and Jorg Czeranski, “Revisiting the approach
to component recovery”, Science of Computer Programming, vol. 60, no. 2,
pp. 171 — 188, 2006. Special Issue on Software Analysis, Evolution and, Re-
engineering.

Harold W. Kuhn, “The Hungarian Method for the Assignment Problem”, Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83-97, March 1955.

Timothy T. Lethbridge and Francisco Herrera, “Assessing the Usefulness of the
TKSee Software Exploration Tool”, in Hakan Erdogmus and Oryal Tanir, editors,
Advances in Software Engineering, chapter Metrics, pp. 73-93, Springer-Verlag
New York, Inc., New York, NY, USA, 2002.

Chung-Horng Lung, “Software Architecture Recovery and Restructuring
Through Clustering Techniques”, in Proceedings of the Third International
Workshop on Software Architecture, ISAW *98, pp. 101-104, New York, NY,
USA, 1998, ACM.

Chung-Horng Lung, Marzia Zaman and Amit Nandi, “Applications of Cluster-
ing Techniques to Software Partitioning, Recovery and Restructuring”, J. Syst.
Softw., vol. 73, no. 2, pp. 227-244, October 2004.

Chung-Horng Lung, Xia Xu, Marzia Zaman and Anand Srinivasan, “Program
restructuring using clustering techniques”, Journal of Systems and Software,
vol. 79, no. 9, pp. 1261 — 1279, 2006. Selected papers from the fourth Source
Code Analysis and Manipulation (SCAM 2004) Workshop Fourth Source Code
Analysis and Manipulation Workshop.

S. Mancoridis, B. S. Mitchell, Y. Chen and E. R. Gansner, “Bunch: A clustering
tool for the recovery and maintenance of software system structures”, in In Pro-

ceedings, IEEE International Conference on Software Maintenance, p. pages,
IEEE Computer Society Press, 1999.

Onaiza Magbool and Haroon Babri, “Hierarchical Clustering for Software Ar-
chitecture Recovery”, [EEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759-780,
November 2007.

[McQuo06] Jacqueline A. McQuillan and James F. Power, “Experiences of using the Dagstuhl

96

Middle Metamodel for defining software metrics”, in Proceedings of the 4th
International Conference on Principles and Practices of Programming in Java,
2006.

[Mitc01]

[Mois03]

[Mull88]

[Miil93]

[Objea]

[Objeb]

[Obje07]

[Objel3]

[OMG]

[Proc02]

[ScO1]

[Selo03]

[SN]

[Tele02]

[Tzer97]

Brian S. Mitchell and Spiros Mancoridis, “CRAFT: A Framework for Evaluating
Software Clustering Results in the Absence of Benchmark Decompositions”, in
WCRE, pp. 93-102, 2001.

Daniel L. Moise and Kenny Wong, “An Industrial Experience in Reverse En-
gineering”, in Proceedings of the 10th Working Conference on Reverse Engi-
neering, WCRE ’03, pp. 275—, Washington, DC, USA, 2003, IEEE Computer
Society.

H. A. Miiller and K. Klashinsky, “Rigi-A System for Programming-in-the-large”,
in Proceedings of the 10th International Conference on Software Engineering,
ICSE ’88, pp. 80—86, Los Alamitos, CA, USA, 1988, IEEE Computer Society
Press.

Hausi A. Miiller, Mehmet A. Orgun, Scott R. Tilley and James S. Uhl, “A Reverse
Engineering Approach To Subsystem Structure Identification”, 1993.

Inc. Object Management Group, “MOF to IDL Mapping, Version 27,
http://www.omg.org/spec/MOF2I/.

Inc. Object Management Group, “UML Infrustructure Specification”,
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/.

Inc. Object Management Group, “MOF 2.0/XMI Mapping Vesrion 2.1.17,
http://www.omg.org/spec/XMI/2.1.1/, 2007.

Inc. Object Management Group, “MOF Core Specification Vesrion 2.4.1”,
http://www.omg.org/spec/MOF/2.4.1/, 2013.

“Object Management Group, Inc.”, www.omg.org/mda.

Java Community Process, “Java Metadata Interface (JMI) Specification, JSR
040, Version 1.0”, http://www.omg.org/spec/MOF21/, 2002.

Tim Littlefair B. Sc, “AN INVESTIGATION INTO THE USE OF SOFTWARE
CODE METRICS IN THE INDUSTRIAL SOFTWARE DEVELOPMENT EN-
VIRONMENT?”, 2001.

Petri Selonen, “Set Operations for Unified Modeling Language,”, in Proceedings
of the Eight Symposium on Programming Languages and Tools, SPLST’2003, pp.
70-81, 2003.

“The Source Navigator IDE Homepage”, http://sourcenav.sourceforge.net/.

Alexandru Telea, Alessandro Maccari and Claudio Riva, An Open Visualization
Toolkit for Reverse Architecting, pp. 3—10, University of Groningen, Johann
Bernoulli Institute for Mathematics and Computer Science, 2002.

V. Tzerpos and R. C. Holt, “The orphan adoption problem in architecture main-
tenance”, in Working Conference on Reverse Engineering (WCRE 1997), p. 76,
Amsterdam, The Netherlands, Oktober 1997.

97

[Tzer99]

[Tzer00]

[Wils86]

[Wu05a]

[Wu05b]

[Xing05]

[Zhao10]

[Zhon04]

98

Vassilios Tzerpos and Richard C. Holt, “MoJo: A Distance Metric for Software
Clusterings”, in Sixth Working Conference on Reverse Engineering, WCRE 99,
Atlanta, Georgia, USA, October 6-8, 1999, p. 187, 1999.

Vassilios Tzerpos and R. C. Holt, “ACDC : An Algorithm for Comprehension-
Driven Clustering”, in In Proceedings of the Seventh Working Conference on
Reverse Engineering, pp. 258-267, IEEE, 2000.

Robin J Wilson, Introduction to Graph Theory, John Wiley & Sons, Inc., New
York, NY, USA, 1986.

Jingwei Wu, Ahmed E. Hassan and Richard C. Holt, “Comparison of Clustering
Algorithms in the Context of Software Evolution.”, in ICSM, pp. 525-535, IEEE
Computer Society, 2005.

Jingwei Wu, Ahmed E. Hassan and Richard C. Holt, “Comparison of Clustering
Algorithms in the Context of Software Evolution”, in Proceedings of the 21st
IEEE International Conference on Software Maintenance, ICSM ’05, pp. 525—
535, Washington, DC, USA, 2005, IEEE Computer Society.

Zhenchang Xing and Eleni Stroulia, “UMLDiff: An Algorithm for Object-
oriented Design Differencing”, Proc. 20th International Conference on Auto-
mated Software Engineering, pp. 54—65, 2005.

Xulin Zhao and Ying Zou, “A Business Process Driven Approach for Generating
Software Architecture”, in Proceedings of the 10th International Conference on
Quality Software, QSIC 2010, Zhangjiajie, China, 14-15 July 2010, pp. 180—189,
2010.

Shi Zhong, Taghi M. Khoshgoftaar and Naeem Seliya, ‘“Analyzing Software
Measurement Data with Clustering Techniques”, [EEE Intelligent Systems,
vol. 19, no. 2, pp. 20-27, March 2004.

