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Abstract 
 

The scope of this thesis is the investigation of aneurysms in thoracic and abdominal aorta 

with the help of Isogeometric Analysis. This method was chosen, as it is innovative, 

integrates CAD/ CAE and describes complex geometries with zero geometrical error. Heart 

disease (including aneurysms) is one of the leading causes of death in the world, especially 

in USA. Aneurysms in particular are very dangerous as they are asymptomatic and in high 

risk of rupture. The routines, which have been used for the analysis of the presented 

applications, were developed in the high-level language and interactive environment 

“MATLAB”, which can produce an exact geometry model of the patient’s aorta, analyze 

it and compute the values of flow’s velocity and pressure at every point. 

 

Σύνοψη 
 

Στόχος της παρούσας διπλωματικής είναι η μελέτη των ανευρυσμάτων στην θωρακική και 

κοιλιακή αορτή με τη βοήθεια της Ισογεωμετρικής Ανάλυσης. Αυτή η μέθοδος 

επιλέχθηκε, επειδή είναι καινοτόμος, ενώνει τις τεχνολογίες CAD/ CAE και περιγράφει 

πολύπλοκες γεωμετρίες με μηδενικό γεωμετρικό σφάλμα. Οι καρδιακές παθήσεις 

(συμπεριλαμβανομένων και των ανευρυσμάτων) είναι μία από τις κύριες αιτίες θανάτων 

στον κόσμο, ειδικά στις ΗΠΑ. Τα ανευρύσματα συγκεκριμένα είναι πολύ επικίνδυνα λόγω 

της ασυμπτωματικής τους φύσης και του υψηλού κινδύνου ρήξης. Οι ρουτίνες , οι οποίες 

χρησιμοποιήθηκαν για την ανάλυση των εφαρμογών, αναπτύχθηκαν στην υψηλού 

επιπέδου γλώσσα προγραμματισμού και το διαδραστικό περιβάλλον “MATLAB”, οι 

οποίες μπορούν να παράγουν ακριβές γεωμετρικό μοντέλο της αορτής του ασθενούς, να 

το αναλύουν και να υπολογίζουν τις τιμές της ταχύτητας ροής και της πίεσης σε κάθε 

σημείο.  
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Prologue 

 
  The last two years were very interesting. I was called to work on the challenging and 

intriguing topic of Bioengineering with Isogeometric Analysis. Challenging, as there were 

so many parameters to consider, not only for the bio part but for the engineering too. 

Intriguing, as this is a serious health issue that troubles many people, but also made me 

think that civil engineering and everything that I learned the last five years don’t 

necessarily apply only on buildings and constructions. 

 

  Through this dissertation I hope to eliminate the number of deaths caused by unexpected 

ruptures of aneurysms. With the application of isogeometric analysis the idea of finding a 

way to prevent this is finally close to become real. Advanced computational methods hold 

the answer to many of our everyday problems and it is our duty, as tomorrow’s scientists 

to take advantage of them. 

 

  Even at this difficult time for Greece, National Technical University of Athens, and 

especially the Institute of Structural Analysis and Antiseismic Research at School of Civil 

Engineering, gives the opportunity to its students to broaden their minds and the hope that 

we can reborn from this economic crisis and become even better. 

 

Michael Eleni 

Athens, July 2015 
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 The concept of Isogeometric Analysis 
 
 
 

1.1 Finite Element Method 
 
 

1.1.1 Historical Overview 
 
Isogeometric Analysis as a historic evolutionary computational mechanics achievement 

 

  Isogeometric Analysis is an innovative method, which integrates design and analysis in the 

greatest scale ever achieved. It was conceived by Thomas J.R. Hughes in 2003, Professor of 

Aerospace Engineering and Engineering Mechanics of the University of Texas at Austin. 

 

  Thomas J.R. Hughes is one of the greatest experts worldwide in Computational and Applied 

Mathematics. He began his career as a mechanical design engineer at Grumman Aerospace and 

then went on to General Dynamics as a research and development engineer. After receiving his 

Ph.D. from the University of California at Berkley, he joined the faculty and moved on to California 

Institute of Technology. Afterwards, he was hired by Stanford University before joining The 

University of Texas at Austin. 

 

 

 
 

Figure 1.1 

Thomas Joseph Robert Hughes. 

(http://users.ices.utexas.edu/~hughes/) 

 

http://users.ices.utexas.edu/~hughes/
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  Isogeometric Analysis is set to bridge the gap that exists between Computer-Aided Design and 

Computer-Aided Engineering. Thomas J.R. Hughes published a book in 2009, along with J.A. 

Cottrell and Y. Bazilevs, explaining the fundamentals of this new method. The book, “Isogeometric 

Analysis: Towards Integration of CAD and FEA” is the first book to be issued on this new field of 

study and a trustworthy guide to the researchers that want to invest in this method. It contains a 

vast number of applications of Isogeometric Analysis, potential resources for the new researcher, 

advantages of the new method and future fields of study. The application of Isogeometric Methods 

can lead to results and improvements in computational mechanics, structural statics and dynamics 

and biomechanics. 

 

 

The need for Isogeometric Analysis 

 

  The compelling need for a new method had to be met; greater challenges in Finite Element 

Analysis were arising every day, demanding faster and more precise results. Even nowadays, 

although structures worldwide are designed using Finite Element Method instead of the traditional 

by-hand ways, design errors cannot be avoided. Since 2000, structural collapse cost humanity over 

1500 lives; many of them could have been spared, had the engineer a more accurate tool for analysis 

and design. Unfortunately, present analysis technologies require a lot of man-hours for manual 

generation of approximated, FEM-suitable geometries and consequently they derive the engineer 

from his main task and force him to devote less time in result evaluation. The risk is even greater, 

considering the mistakes the engineer can make during this transformation. Furthermore, the 

approximation of the geometry sometimes is clearly not enough for the desired convergence. These 

are the gaps that Isogeometric Analysis is set to fill. In order to fully understand Isogeometric 

Analysis, one has to acknowledge the evolution of Analysis throughout its history and understand 

the principles this revolutionary method is based on. This introduction provides the historical 

review of the technologies and the requirements of structural analysis that led to the creation of this 

new method. 

 

 

Before Finite Element Method 

 

  Engineers of the past had to meet the demands for structural analysis and representation of 

accurate results. Construction always needed the cost-efficiency provided by design. In the early 

years, the only weapon the engineer possessed was his mind. In order to solve a statically 

indeterminate structure, Equilibrium, Constitutive and Compatibility Laws had to be applied. 

Several methods existed in order to solve the problem.  

 

  The Force Method used the Betti-Maxwell Theorem in combination with virtual works in order 

to provide support forces and moments. The main idea is the preservation of Equilibrium and 

calculation of forces, in order to ensure Compatibility. 

 

  The Displacement Method, on the other hand, ensures Compatibility is maintained and 

Equilibrium is achieved via calculation of displacements.  
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  The Moment Distribution Method, also known as the Cross Method, relies upon computational 

iteration cycles to an initial moment distribution, until the desired approximation is achieved. It 

only yields results for bending effects and ignores axial and shear tension, but its efficiency made 

it very popular among the engineers in the 1930s. 

 

  These methods had their limits; a vast amount of time was required for the solution and many 

errors would occur in the manual computational process. More complex problems could only be 

approximated and sometimes analysts had to solve differential equations by hand in order to obtain 

the solution. 

 

 

Finite Element Method 
 

  Structural Analysis has been a major part of the engineering field of practice. The knowledge of 

a structure’s reaction to certain loads enhances its safety and makes it cost-effective. It has a wide 

field of application, including buildings, bridges, airplanes, space shuttles, ships, satellites, nuclear 

stations and much more. At first, engineers used methods obtained from the solution of differential 

equations in order to evaluate the stress, strain and displacement conditions of the structure. 

Structural mechanics theorems were developed and used in order to solve the computational 

problem. These served their purpose well for relatively simple, everyday linear problems. However, 

new technologies emerged and the constant demand for faster, more accurate solutions to 

complicated problems had to be met. 

 

  Early computer models had made their appearance and engineering scientists were eager to use 

them in their problems. The birth of Finite Element Methods can be placed at the late stages of 

World War II. Structural Engineers working for the Royal Aeronautical Society of London had to 

design an innovative type of combat jet aircraft whose speed required swept-back wings. 

Unfortunately, none of the existing theories could fit to solve such a complex problem. The failure 

of the German ME262 was palpable proof of that matter. 

 

  This challenging task was assigned to one of the brightest minds of the Royal Aeronautical Society 

of London, John Argyris. Argyris was born in Greece, Volos in 1913 and had studied Civil 

Engineering at National Technical University of Athens. 

 

 

 
 

Figure 1.2 

John Argyris. 

(http://www.nae.edu/27953.aspx) 

  

http://www.nae.edu/27953.aspx
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Figure 1.3 

 City of Volos. Central Greece. John Argyris Birthplace. 

(http://www.greekscapes.gr/~landscapesatlas) 

 

 

  John Argyris graduated from Technical University of Munich in 1936 and had begun to work in 

industrial applications of complex structures. He remained in Germany at the beginning of World 

War II and was accused of giving research info to the Allies, arrested and sent to a concentration 

camp when the Axis invaded Greece. He was rescued by a German Admiral, Kanaris, who was of 

Greek ancestry as well. After breaking out from the concentration camp, Argyris escaped to 

Switzerland by swimming through the Rhine river, in the middle of a raid holding his passport with 

his teeth. He finished his Doctoral Degree in Aeronautics from ETH, Zurich in 1942. Afterwards 

he moved to England and was engaged with the Royal Aeronautical Society of London, working 

as a technical officer. As a researcher, he was really skeptical with Cartesian coordinate systems 

and the way they were used in engineering. He believed that triangular and tetrahedral elements 

were far more suitable for engineering applications. John Argyris was not devoted to everyday 

problems, but would rather get busy with difficult, apparently unsolvable problems. His superiors 

quickly recognized this trait and he in return welcomed the challenges he was given, including the 

swept-back wings aircraft problem.  

 

  It seems he was the right man for the job. In August 1943, after 3 days and nights of devotion to 

the problem, he had a breakthrough. He used triangular elements to simulate the swept-back wings 

and solved the model in the electro-mechanical computing device the Society had recently 

acquired. The device was able to solve an equation with up to 64 unknowns. Analysis results were 

very close to the experimental results, with a deviation of approximately 8 %. This was the birth of 

the Finite Element Method (FEM). All relative papers were at once labeled “secret”. This 

innovative method included a different measurement of stresses and strains, diverging from the 

classical Cartesian field and was proving to be useful and easily generalized. 

 

  In the following years, the “Matrix Force and Displacement Method”, mostly known as “Finite 

Element Method” (or, as Ray Clough wrote in 1960, “The Argyris Method”) was developed by 

many researchers, including Turner, Clough, Zienkiewicz and Cheung. Argyris resumed his 

academic career with drastic contributions to the research and development of Finite Element 

Method as well as many other aspects of the Engineering field until he was 88 years old. He 

invented, among others, the triangular element TRIC and is also well known for the contribution to 

the solution of the heat protection problem for the NASA space shuttle during the entrance in the 

atmosphere. He passed away in April 2004.  

http://www.greekscapes.gr/~landscapesatlas
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  Due to the swift evolution of computational speed and memory capacity, FEM became very 

popular within the engineering industry. Millions of dollars were invested in its development. New 

FEM technologies emerged, such as the isoparametric elements. These allowed for a more general 

approach and a better adaptation to complex geometries. 

 

  NTUA Professor Papardakakis Manolis has devoted his career in the evolution and outspread of 

FEM technologies. Nowadays, in the middle of the financial crisis in Greece, NTUA’s Institute of 

Structural Analysis and Antiseismic Research has a remarkable research portfolio to show, always 

being up to date with the latest technological trends. Bright young minds are given a chance to 

shine, in National Technical University of Athens, continuing and improving the cycle of 

expanding the boundaries of human knowledge. 

 

  In the dawn of 2000, the structural engineering field has changed drastically. Personal computers 

and a variety of FEM software are now available to engineers. All the hard work done so many 

years ago by hand is now avoided. Greater speeds and bigger rates of convergence are achieved 

every other month. Problems once thought to remain unsolved now seem common and relatively 

easy. Finite Elements are used in a wide range of computational analysis, such as structural and 

dynamic analysis, fluid mechanics, biomechanics, earthquake engineering and many more. The 

modern engineer does not need to solve complex mathematical equations by hand, but has to pursue 

a global and thorough understanding of his field of study as well as knowledge of the innovative 

computational methods. 

 

  The engineering software market consists of many products devoted to the analysis of FEM 

models. There are generalized and more theoretical software that can solve almost any type of 

structure. NASTRAN, a widely used FEM platform, was originally developed by NASA in the 

1960s in order to cover the Agency’s special needs. Simulia Abaqus, originally released in 1978, 

was developed using an open-source language, Python and was initially intended for non-linear 

problems. It is particularly popular due to its wide range of Modeling capabilities, both for linear 

and non-linear problems. ADINA (Automatic Dynamic Incremental Non-Linear Analysis) , first 

developed in 1974, is used in a wide range of non-linear problems. It has applications in static and 

dynamic analysis, heat transfer, compressible and incompressible flows and electromagnetic 

phenomena. FEMAP (Finite Element Modeling and Post-processing) is used as an input creation 

and output processing tool for the engineers. It cooperates with the solver routines from other 

platforms (e.g. NASTRAN) and focuses on the easy and accurate communication between software 

and user. 

 

  Specialized software is also available in the engineering market. The specific characteristics and 

complexity of today’s structures require a more personal and delicate approach. ATENA, standing 

for Advanced Tool for Engineering Non-Linear Analysis, is specialized in everything to do with 

reinforced concrete structures. SOFiSTIK, first used in 1987, is directed towards bridge linear and 

non-linear analysis. Furthermore, there are platforms dedicated to the special needs of the Greek 

market. Designing structures in the country with the biggest seismic activity in Europe is not an 

easy task. StereoSTATIKA is suitable for reinforced concrete analysis in countries with dangerous 

seismic activity. FESPA is a Greek software dedicated to analysis and design of reinforced concrete 

and steel buildings.  
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1.1.2 Basic Idea of Finite Element Method 

 
  According to Analysis of Structures with the Finite Element Method (M. Papadrakakis - 

Papasotiriou, 2001), the Basic Idea behind Finite Element Method is the approximation of the 

solution field via piecewise polynomial functions, called the shape functions N . Displacement 

values U at any internal point of the element can be computed from displacements at nodes d : 

 

 

  
 

 
 

 
 ee3 1 3n 13 3n

U(X,Y,Z) N(X,Y,Z) d
 

   

 

where ne is the number of the finite elements. 

 

  A generalization for the whole structure leads to 

 

 
   

 
 

S S S

3 3n3 1 3n 1

U (X,Y, Z) N (X,Y, Z) d
 

     

 

  The problem is directly downsized from infinite unknowns to a finite number of degrees of 

freedom. The next step is to define stress and strain matrices and their interconnection, which 

represents Hooke’s Constitutive Law. 

 

       3D case

 

 

 

 

 

 

    
   
 
   
    

      
    
    
   
       

 

 

           

 

  Deformation Matrix [B] evaluates strains anywhere in the model from nodal displacements. 

 

      , , ( , , ) d           

 

  Using internal and external virtual work equilibrium, we can evaluate the Stiffness Matrix [k] for 

each element 

 

 
 

 
 

 
 

 
 e e e e

T

3n 3n 3n 6 6 6 6 3nV

k B E B dV
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  
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  In the same manner, distributed loads can be transformed into equivalent nodal loads. 

 

 
 

 
 

 
 e e

T

3n 1 3 13n 3V

r N f dV
 

   

 

  The contribution of each element is added to the global matrices, producing the global Stiffness 

Matrix [K] and the Force Vector {R}. The Displacement Matrix can now be calculated from: 

 

 
 

 
 

 
 3n 1 3n 13n 3n

R K D
 

   

 

where n is the number of the nodes. 

 

  We can observe that (naturally) shape functions [N] and deformation matrix [B] depend on the 

Cartesian coordinates. This leads to iteration problems when complex geometries (e.g. circles or 

conic sections in general) are involved. The solution, which contributed to the further generalization 

of FEM, along with a more efficient iteration algorithm, is isoparametric elements. The basic idea 

is the existence of a parent element in the parameter space, which can be modeled as a regular shape 

(e.g. a cube, square or an equilateral triangle). Each element in the physical space (the “real” 

modeling space) can be described using a linear combination of the parent element’s shape 

functions. Hence, geometry can be approximated by the same functions used for the solution field. 

This explains the name “isoparametric”. 

 

 

1.1.3 Drawbacks 

 
  Despite the evolution of FEM all this time, some problems have yet to be solved. For one, even 

isoparametric elements can only produce an approximation of geometry. The most challenging 

tasks of the day often require exact geometrical representation in order to achieve the necessary 

accuracy. After the meshing has been completed, the initial geometry plays no more role in the 

analysis procedure. This is intuitively worrying, to begin with. Furthermore, it produces a vast 

number of problems. The inevitable geometrical approximation means there will be convergence 

errors by definition, regardless of the solution methods and the available computational power. This 

affects the efficiency of the computational methods used for the solution.  

 

  If a finer mesh is required, refinement algorithms will return to the initial geometry and produce 

a different approximation. The new, fine mesh cannot be directly produced from the coarse mesh. 

Efficiency is certainly at a low, as procedures already completed have to be repeated in order for 

the new mesh to be created. Precious analysis time is required and the geometrical differences 

between the coarse and fine mesh make it difficult to compare the results. Hierarchical structures 

provide even greater challenges. Hierarchical refinement is considered an efficient refinement 

technique, as it focuses on the crucial areas of the model, but it is not easily applicable in FEM 

meshes.  
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  The lack of integration between geometry and mesh generation is crucial. Computational 

geometry provides simply an input file for the meshing of the finite element model. Exact 

geometrical representation is not reflected in the new mesh, nor is the smoothness of the initial 

model, which leads to a slightly different model that analysis solves. Even for a small change in 

the geometrical model, reintegration and new mesh generation is required. This process is 

frustrating and pointless for the modern engineer; instead of devoting his time in creativity and 

design, he has to undergo the mundane task of regenerating a slightly different mesh over and over 

again. Many design errors are attributed to this task. In structural design, a vast amount of time is 

spent on these integration cycles between initial, preliminary and final design phases. The risk is 

even greater in complex and innovative structures, where the engineers cannot know beforehand 

what structural results to expect and have almost no way of checking the accuracy of the analysis. 

 

  Computational geometry has evolved since its birth; new and optimized geometrical structures 

are being used more often nowadays. Finite Element geometries fail to keep up with that pace and 

as a result, Computer-Aided Engineering is separated even more from Computer-Aided Design. 

Finite Elements cannot cooperate with the modern technologies of T-SPLines and Subdivision 

Surfaces. These problems had always been present throughout the history of Finite Elements. 

Complicated computational methods and algorithms have been developed in order to overcome 

them. The problem is that the nature of FEM does not allow for significant steps toward CAD-FEM 

integration. Improvements to the basic structure of Finite Elements are difficult and quite 

inefficient. 

 

  Figure 1.4 depicts a wine glass. In order to create this object, a designer has to define the following 

variables: 

 degree of shape functions for each parametric axis 

 knot value vector for each parametric axis 

 control points (Cartesian coordinates and weights). 
 

 

 
 

Figure 1.4 

Wine glass. Geometry Design.  
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  As a result, a mesh of finite elements is created, the “geometry mesh”, which surprisingly is not 

used by FEM software, which instead creates a new approximate one. Figure 1.5 represents the 

initial geometry mesh of the wine glass with the corresponding control net. 

 

 
 

Figure 1.5 

 Wine glass. Geometry Initial Mesh. 

 

  With the previous initial mesh, a designer can represent exactly the wine glass, but an engineer 

cannot analyze it accurately and has to apply refinement in order to increase the accuracy of the 

solution field. Figure 1.6 shows a finer mesh of the wine glass for both cases. In FEA, the smooth 

surface of the cup participates only as input in FEM software and is thereafter replaced by quad 

finite elements. In IGA, the geometry remains intact and the mesh is the exact geometrical model. 

 

 
Figure 1.6. 

Wine glass. Fine FEA Mesh (left one). Fine IGA Mesh.  
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1.2 Computer Aided Design 
 

 

1.2.1 Historical Overview 
 

Isogeometric Analysis as a historic evolutionary computational design achievement 

 

  The evolution of computing systems made the option to design on a platform very attractive. 

Drafts could be edited easily and data could be stored and transferred at much higher speeds. 

Computer Aided Design has many applications in today’s world and a huge industrial support. 

Computer-generated imagery (CGI) is used in movies even more often; 3D and 2D cartoons are 

drafted and animated through computer software. Engineers draft complex designs such as cars, 

space shuttles, long span bridges and so on, one piece at a time in a computer. All the drafts can be 

edited and the escalation to optimized drafting is easier than ever. Designers’ time is now being 

devoted to creative thinking and taking ideas to the next level, rather than useless drafting by hand 

for hours. However, there is still room for improvement. Computational geometry is involved in a 

vast number of engineering applications and should not be considered independently. Design 

entities are supposed to cooperate with Finite Element Methods. Reinventing and improving 

computational geometry structures is the first step in completing this task. In order to understand 

the modern and future world of Computer-Aided Design, one has to study the history, the creation 

and the necessities that led to the creation of computational geometry entities. 

 

  Computer Aided Design (CAD) emerged in the 1950s from the automotive, shipyard and aircraft 

industries. In those times, designers were able to produce accurate drafts by hand, but when ship 

cross sections had to be drafted in real-life size, pencils could not help anymore and things became 

a bit more complex. The main problem was the definition of a real-size curve, which smoothly 

interpolated several predetermined points in order to create the shell of the ship. This task was 

usually carried out in the loft of a building, due to the large amount of space needed. The loftsman, 

as he was called, used easy-to-bend pieces of steel or wood, the spline, in order to interpolate the 

points. In order to maintain the spline’s shape, he usually put weights on them on certain points.  

 

 

 
 

Figure 1.7 

Original Splines and Weights (called Ducks). 

(http://www.boatdesign.net)  
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  The development of NURBS arose from the need to effectively represent freeform surfaces. Two 

engineers in France stood at the forefront of this approach, Pierre Bezier from Renault and Paul de 

Casteljau from Citroen. Bezier’s work was the first to reach publication, and soon after the CAD 

industry started using and enhancing Bezier curves. However, certain disadvantages of Bezier 

curves led to the search for more convenient forms of representation. Researchers finally introduced 

B-SPLines, which were similar to Bezier curves, meaning that the curve was defined by a set of 

points, called the “control points”, but their number was independent of the polynomial order of 

the curve. B-SPLines were a generalization of Bezier curves, but they were also more convenient 

to edit; changing a point no longer changed the whole curve, but only part of it. 

 

  Another problem is that even B-SPLines cannot produce an exact representation of conic sections. 

This is where NURBS came along. Ken Versprille was the first to work with NURBS on his 

dissertation in 1975. Later, when he acquired a top position in Computervision, the company began 

to support NURBS. Boeing, in its ambitious project to create a single curve representation that 

included Bezier curves and conic sections, became the first to industrialize NURBS. 

 

  After that, NURBS began to spread across the CAD industry. They possessed a lot of interesting 

attributes. The parameterization of the whole curve was downsized to a few control points 

coordinates, numerically stable mathematical procedures and easy modification. Cartoon 

characters, videogame graphics, ships, cars, airplanes were designed using NUBRS. This led to 

major investments from research and industrial faculties. Graphic designers became accustomed to 

them and students were taught about the theory and implementation of NURBS in real-life 

problems. This cycle led to the increasing popularity of Non-Uniform Rational B-SPLines in the 

CAD industry . 

 

 
 

 
 

Figure 1.5 

Entities created by NURBS. 

(http://www.smcars.net/threads)(http://www.turbosquid.com)  

http://www.smcars.net/threads
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  Today, even though many other forms of more suitable representations exist, such as T-SPLines, 

Polycube SPLines and Subdivision surfaces, NURBS still hold a large share of the market. Many 

platforms exist for NURBS and designers still find it easier to use them. Many handful tools have 

been developed over the years for them (knot insertion, order elevation, curve fitting, patching). 

This makes them more attractive and easy-to-use than newer techniques with less industry 

experience behind them. 

 

 
Car (http://asakomiyamori.blogspot.gr/) 

 

 
Castle (http://asakomiyamori.blogspot.gr/) 

 

 
Motorbike (http://kawasaki.turbosquid.com/3d-Models/3ds/max/xsi/c4d/obj) 

 

Figure 1.6 

 Entities created by Subdivision Surfaces.  

http://asakomiyamori.blogspot.gr/
http://asakomiyamori.blogspot.gr/
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1.3 Isogeometric Analysis 
 

  The usual design process requires both exact geometrical representation of the model and accurate 

engineering results. Unfortunately, computational geometry and Finite Element Method are 

represented in different file types and are not compatible to each other. The engineer has to create 

a model for FEM solution and the designer a model for CAD representation. Moreover, the typical 

design process is not straightforward. The designer produces CAD designs, which are transformed 

into FEM-compatible forms of representation by the analyst. After generating mesh and obtaining 

results, the analyst informs the designer of the appropriate changes in geometry. The designer then 

gives the new CAD model to the engineer, who has to regenerate the FEM model and the new 

mesh. This cycle of CAD/CAE interaction can go on multiple times. In complex projects each 

design consists of numerous CAD entities combined together and the integration process is 

estimated to take up at around 80% of the whole design time. Researchers around the world have 

been trying to achieve automatic CAD/CAE integration. 

 

  The main problem is that CAD and FEM, even though they refer to the same object, evolved 

differently. This incompatibility drove researchers into separate roads, building a wall between the 

two methods. Thomas J.R. Hughes, a Professor of Aerospace Engineering and Engineering 

Mechanics at the University of Texas at Austin, came up with a different point of view. Instead of 

trying to connect present CAD and CAE formulas, we should reinvent them in ways that enable 

the integration. This is the scope of Isogeometric Analysis. 

 

  The basic idea is to exploit the functions used for the exact geometrical representation in order to 

describe the solution field. Isogeometric Analysis extends, in essence, isoparametric elements, but 

the process of altering geometry for the sake of the solution approximation is reversed.  

 

  This leads to the creation of a single model, capable both of exact representation and analysis. 

Designers and engineers will be working on the same platform. Time for meshing and entity 

translation will be eliminated in an instant. This direct contact between analysis and geometry 

means that every single change can be integrated as soon as it happens, with no risk of errors or 

timely tasks involved. Most importantly, the designer has to follow the engineer’s perspective and 

vice versa; the modern designer has to learn how to help the engineer and the modern engineer has 

to learn the methods the designer is using. 

 

  Isogeometric Analysis brings together two very different technologies, combining their best points 

to one. This leads to a better adaptation both from engineers and designers. In order to understand 

and improve Isogeometric Analysis, it simply needs to improve its counterparts. Finite element and 

computational geometry codes need not change drastically. This makes the new technology even 

more attractive. Understanding the basics of an innovation and implementation in the daily routine 

is usually a difficult and time-consuming task. 
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  There are many geometrical forms of representation suitable for analysis, such as NURBS, T-

SPLines, Polycube SPLines and Subdivision surfaces. Each entity has its own advantages and 

drawbacks, but the variety provided ensures a vast number of alternatives to use, depending on the 

case. This ensures the generalization of Isogeometric Analysis method to even more complex 

geometries. 

 

  FEM’s shape functions are defined only in the interior of the element. Each element has 
1C
 

continuity in the edges. IGA’s shape functions are not contained in one element. Most of the times, 

they are defined through many elements. This ensures a greater continuity and interconnectivity. 

This different approximation works better and leads to greater convergence than the classical 

methods. 

 

  Refinement by order elevation or knot insertion has always been important for computational 

geometry. Hierarchical adaptation has been developed for a vast number of entities. All these 

technologies can be exploited by IGA. Hierarchical structures can be easily developed, straight 

from the geometrical model. Meshing and refinement is also immediately accomplished. 
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 Basic Ingredients of Isogeometric Analysis 
 

 

 

2.1 Introduction 
 

 

  Until recently, the majority of CAD software users had not realized that by designing a 

model, they simultaneously created its corresponding mesh of finite elements. This 

information, although redundant for designers devoted to computational geometry, is a 

revolutionary remark for the engineering community. Before Thomas J.R. Hughes’ idea, 

known as IsoGeometric Analysis (IGA), engineers used to create a new approximate mesh 

instead of taking advantage of the existing accurate one. The additional geometry error 

makes the process less accurate, though more time-consuming. This observation seems 

now very obvious, but it took years of research until 2003, when Thomas J.R. Hughes and 

his research team succeeded to cut the Gordian Knot of CAD – CAE integration. 

 

  The main idea is the elimination of the node mesh in the analysis process. The role and 

properties of the node mesh are inherited by two separate meshes, obtained directly from 

the geometrical representation: 

 

 The Control Point mesh, which defines geometry and the finite number of degrees 

of freedom that form the problem equation. 

 

 The Knot mesh, which provides appropriate discretization for numerical integration 

and boundaries for Shape function influence in the model. 

 

  For the scope of this thesis, I have worked exclusively with Non-Uniform Rational B-

SPLines (NURBS), as they are the most commonly used computational geometry 

technology. Despite the fact that quite more advanced SPLines have emerged, CAD 

industry still invests in NURBS. Since 1970, billions of dollars have been directed towards 

the outspread and evolution of NURBS, establishing them as a common tool for graphic 

representation around the globe. Both professionals and amateurs still use NURBS despite 

their disadvantages, such as difficulties in Patch connection and local Refinement. The 

reason for this is that NURBS are not only much more simple in their definition and use, 

but also able to represent with accuracy smooth curves and all conic sections. 
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2.2 Index, Parameter and Physical Space 
 

  In most occasions, the exact solution of a natural problem is neither possible nor 

necessary. The actual objective is to find an accurate solution that satisfies a selected 

convergence criterion. The ultimate challenge for an engineer is to balance between 

accuracy and time. Design and analysis of extraordinary geometries is a powerful asset for 

modern engineers, who are capable of facing surprisingly more complicated problems. 

Accurate geometrical representations of the natural model are designed in the familiar 

Cartesian system, called Physical Space. Additionally, it is very helpful to envision a 

complex structure in an imaginary, basic space, where all geometries can be represented as 

lines, rectangles and cuboids. This is Parameter Space. This approach is far from new; it is 

already known from the isoparametric concept in Finite Element Methods. The Parameter 

Space utilized in Isogeometric Analysis, however, holds some major differences. 

Furthermore, Isogeometric Analysis also introduces the Index Space. This additional space 

plays an important role for some kinds of SPLines, but it is only auxiliary for NURBS. 

 

 
 (a) (b) 

 

 
(c) 

 
Figure 2.1 

B-SPLine solid. 

(a) Index Space (b) Parameter Space 

(c) Physical Space  
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2.2.1 Index Space 
 

  Index Space is a representation of the model with respect to Knot Values. It is a line in 

1D, containing the corresponding Knot Values in equally spaced positions. This space 

focuses upon the sequence of Knot Values rather than their actual numerical content. 

 

  Index Space describes the contribution of each Knot Value to the creation of a certain B-

SPLine basis function. This helps identify the level of interconnection between basis 

functions and the Knot Value support of each function. 

 

  Control Points are also evaluated in the Index Space. In fact, Control Points are defined 

as the center of the support of Knot Value Spans. 

 

  Expansion to 2D or 3D leads to the creation of rectangles or cuboids respectively. Due to 

tensor product properties, everything mentioned about 1D extends and applies to both 2D 

and 3D. Thus, Index Space provides information that can contribute to the comprehension 

of a complex representation. 

 

 
(a) 

 

 
(b) 

 
Figure 2.2 

 (a) Curve and (b) Surface represented in Index Space  
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2.2.2 Parameter Space 
 

  Parameter Space is a representation of the model with respect to Knots. SPLine entities 

are always represented as orthogonal shapes in Parameter Space. Only lines, rectangles and 

cuboids exist here. In order to transform those simple patterns to virtually unlimited, 

complex geometries, the application of a mapping from Parameter to Physical Space is 

required. Hence, Parameter Space is a primitive, abstract representation of Physical Space. 

The mapping between Parameter Space and Physical Space is achieved through the 

Jacobian Matrix and its inverse. This is something widely utilized in FEM as well. 

 

  The illustration of basis functions in the Parameter Space allows for a better understanding 

of concepts such as support, Control Point coordinates and the role of Knots in basis 

function creation. Each Knot marks the beginning and the end of a basis function domain. 

By “domain” we mean the area in which the basis function is non-zero, as all basis 

functions are defined throughout the Parameter Space, but are non-zero only in specific 

Knot Spans. Basis functions sharing the same domain are overlapping in Parameter Space 

and controlling a common part of the entity in the Physical Space. 

 

 
(a) 

 

 
(b) 

 
Figure 2.3 

(a) Curve and (b) Surface represented in Parameter Space  
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2.2.3 Physical Space 
 

  Physical Space is the already known Cartesian Space, where the real model is represented. 

Simple orthogonal shapes from Parameter Space are transformed into complex entities in 

the Physical Space. Physical coordinates of the Control Points play a major role in the 

aforementioned mapping, but an equally drastic role is set upon basis functions. In fact, for 

a given set of Control Points, only a single set of basis functions can lead to the same 

geometry. We will examine this thoroughly later. 

 

  Control Points can often be seen outside the model in Physical Space in contrast to FEM’s 

nodes which always belong to the mesh. It is one of the reasons NURBS and SPLine 

entities in general can accurately represent multiple types of geometries and the 

understanding of this peculiarity is one of the many challenges of Isogeometric Analysis. 

 

 

 
(a) 

 

 
(b) 

 
Figure 2.4 

 (a) Curve and (b) Surface represented in Physical Space  
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2.3 B-SPLine Geometries 
 

 

2.3.1 B-SPLine Basis Functions 
 

  Given a sequence of non-decreasing numbers,  1 2 n p n p 1...         , we can 

evaluate the B-SPLine basis functions at 1 n p 1,  
      using the Cox-de Boor recursive 

formula: 

 

  First, for degree p 0  (piecewise constant, Box B-SPLine) 

 

i i 1

i,0

1, if  
N ( )

0, otherwise

    
  


 

 

  The piecewise constant does not include the right edge i 1  in order to ensure partition of 

unity, as the next basis function begins at that edge. The last function, however, includes 

both left and right edge, in order to be defined for the whole Knot Span. 

 

n p n p 1

n p,0

1, if  
N ( )

0, otherwise

  



    
  


 

 

  Afterwards, for degree p 1,2,... : 

 

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N ( ) N ( ) N ( )
 

  

   

 
      

   
 

 

with the assumption of 
0

0
0

. 

 

  We keep the same symbols with Isogeometric Analysis: Toward Integration of CAD and 

FEA (J. Austin Cottrell, Thomas J. R. Hughes, Yuri Bazilevs - Wiley, 2009), which is quite 

popular, because we want the reader to browse through this thesis conveniently. In the 

software implementation of this method, however, we discourage the use of symbolizations 

and instead represent the variables with full names. 
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2.3.2 Knot Value Vector as Boundary of Basis Functions Support 
 

  Knots define the boundaries of the model’s basis functions. They represent “switches” 

which turn “on” or “off” a certain piece of a B-SPLine basis function. In order to acquire 

the Knots and the basis functions, a Knot Vector must be defined. 

 

  A Knot Vector   is usually defined in bibliography as a set of coordinates i , with 

i i 1   . It can contain the same number multiple times and generates the basis in a unique 

way. 

 

  In order to improve efficiency and communication between members of GiGA Team, we 

define as  

 

 “Knot Value Vector”: the whole set of non-decreasing coordinates (“Knot 

Values”). 

 

 “Knot Vector”: the set of unique coordinates (“Knots”). 

 

  For example, a Knot Value Vector could be  0 1 1 1 2 2 3 3  where 

0, 1, 1, 1, 2, 2, 3, 3  are the separate Knot Values. The corresponding Knot Vector is 

 0 1 2 3  where 0, 1, 2, 3  are the separate Knots. 

 

  Let p  be the polynomial degree of the basis function. If the first and the last Knots are 

repeated p 1  times, the Knot Value Vector is considered “Open”, because it has 1C  

Continuity on the edges, creating an open curve that is interpolatory at these points. If Knot 

Values are equally spaced, the Knot Value Vector is considered “Uniform”. In CAD 

community, non-uniform, open Knot Value Vectors are widely used. An example of such 

a Knot Value Vector with p 2  is:  

 

 0 0 0 0.5 1 1.5 2 2.5 3 3 3  

 

  A Knot Value Vector may contain integers or decimals. In fact, the actual numerical 

content of Knot Values is of no importance. What matters is the relative distance between 

them. This means a Knot Value Vector can be multiplied by any number, or have a number 

added to every Knot Value and the resulting basis would still be the same.  

 

  In GiGA Team, we generally prefer to use Knot Value Vectors that start from 0 and span 

by 1, as it is more convenient for the human mind to use an integer system. 
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2.3.3 Control Points as the Center of the Support 
 

  Control Points exist in all three spaces. Their parametric coordinates are defined as the 

center of the support in the Index Space. Recall that for the thi  basis function of order p  

the support is i i p 1,  
  . The support contains p 1  Knot Value Spans, therefore p 2  

Knot Values (including the right boundary value 
i p 1  ). 

 

  For even degrees, the center of the support in the Index Space lies between two sequential 

Knot Values, 
p

i
2

  and
p

i 1
2

  . As a result, the coordinate of the Control Point is defined 

as the average of these Knot Values: 

CP p p
i i 1

2 2

0.5
  

 
      

 
 

 

which means that a Control Point of even degree can either be on a Knot, or in the middle 

of a Knot Span. 

 

  For odd degrees, the center of the support is the Knot Value 
p 1

i
2


 . Therefore, for odd 

degrees, Control Points are always coincident with Knots. 

 

2.3.4 Full Tensor Product as a characteristic of B-SPLine Basis 

Functions 
 

  B-SPLine basis functions are of full-tensor product nature. Consequently, it is easy to 

combine B-SPLines across different directions, in order to evaluate a multi-directional B-

SPLine Shape function.  

 

  2D B-SPLine Shape functions can be evaluated as tensor product of basis functions 

i,pN ( )  and  j,qM  : 

 p,q

i, j i,p j,qR , N ( ) M ( )       

 

  3D B-SPLine Shape functions are a tensor product of basis functions on three directions, 

i,pN ( ) ,  j,qM   and  k,rL  : 

   p,q,r

i, j,k i,p j,q k,rR ( , , ) N ( ) M L          

 

  It is understood that all properties of B-SPLine basis functions in one direction are 

inherited by the multi-directional Shape functions. As a result, thorough adaptation to one-

directional B-SPLine basis function properties and techniques is very important for 

understanding multi-directional complex geometries.  



Basic Ingredients of Isogeometric Analysis 

33 

 

2.3.5 B-SPLine Basis Function Properties 
 

  According to “The NURBS Book”, B-SPLine basis functions possess the following 

important properties: 

 

1. Local support: 

i,pN ( ) 0  i i p 1,  
    

 

2. In any given Knot Span, at most p 1  functions of order p  are non-zero. 

 

3. Nonnegativity:  

i,pN ( ) 0 ,i,p     

4. Partition of unity: 
n

i,p

i 1

N ( ) 1 ,p


     

 

5. p mC   Continuity across Knots with multiplicity m . 

 

6. 
i,pN ( )  has exactly one maximum value, except for p=0. 

 

7. A non-periodic Knot Value Vector that produces n functions of order p  has 

n p 1   Knot Values. 

 

8. Every B-SPLine basis function shares support with 2p  B-SPLines.  

 

 

2.1.1.1 Local support 

 

  Local support means that basis functions are non-zero only in certain Knot Spans in 

Parameter Space. This can be expressed by 

 

i,pN ( ) 0   i i p 1,  
    

 

  Local support is a result of the recursive character of B-SPLines. For the creation of a B-

SPLine function of degree p , two consecutive B-SPLine functions of order p 1  are used. 

For the creation of those consecutive basis functions, three consecutive functions of order 

p 2  are needed. Inductively, p 1  consecutive box basis functions are required. 

 

  Each box function has a support of one Knot Value Span. As a result, the support of the 

final basis function is defined by the union of the supports of the box functions, hence p 1  

consecutive Knot Value Spans. 
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Figure 2.5 

Lower-order basis functions required for the creation of 5,3N ( ) .  

 

  In Figure 2.6, the recursive character of B-SPLines is represented. The box functions, 

drawn in red, are required in order to build the linear basis functions, drawn in green. Linear 

functions are combined for the evaluation of quadratic  p 2  basis functions. Bear in 

mind that some linear and box functions are zero across the entire domain, but still 

contribute to the evaluation of the next-order B-SPLines. 

 

 
 

Figure 2.6 

B-SPLine recursive character. 

Basis functions required for the evaluation of a quadratic B-SPLine function. 

 

  For example, 
4,2N ( )  in Figure 2.6 is created from 

4,1N ( )  and 
5,1N ( ) . They, in turn, 

are evaluated from 
4,0N ( ) , 

5,0N ( )  and 
5,0N ( ) , 

6,0N ( )  respectively. The 

corresponding box functions are non-zero in the Knot Spans  1,2 ,  2,3  and  2,3 ,  3,4

, thus creating the support  1,4  of 
4,2N ( ) .  
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  In a similar fashion, a support can be defined with respect to Knot Values contributing to 

the creation of a B-SPLine basis function. These are the p 2  Knot Values that are 

contained in the Knot Value Span support of the function. Both Knot Value Span Support 

and Knot Value Support are necessary for the understanding of Isogeometric Methods. 

 

 
Figure 2.7 

 B-SPLine Basis functions for Knot Value Vector .

 0 0 0 0 0 1 2 3 4 5 5 5 5 6 6 6 6 6   

1D Shape Function 5,4N ( )  

 

  In Figure 2.7, the degree is p 4 , so each basis function has a support of p 1 4 1 5     

Knot Value Spans. The selected function 
5,4N ( ) , drawn in red, is non-zero only in the 

Knot Value Spans  0,1 ,  1,2 ,  2,3 ,  3,4  and  4,5 . The p 2 6   Knot Values that 

define this function are  0,1,2,3,4,5  shown in green. There are no trivial spans in this B-

SPLine function, so it is considered a fully developed basis function.  

 

  Bear in mind that Knot Values can be repeated, thus forming trivial spans. 

 

 
Figure 2.8 

B-SPLine Basis functions for Knot Value Vector .

 0 0 0 0 0 1 2 3 4 5 5 5 5 6 6 6 6 6   

1D Shape function 6,4N ( )   
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  In Figure 2,8 
6,4N ( )  is highlighted. This function is non-zero in the Knot Value Spans 

 1,2 ,  2,3 ,  3,4 ,  4,5  and  5,5 . The corresponding Knot Values shown in green are 

 1,2,3,4,5,5 . The support is five Knot Value Spans, but this leads to only four Knot 

Spans, as a trivial span is contained. 

 

  Observe the next basis functions in this example; as more trivial spans are contained, the 

Knot Span support of each function is reduced. Still, the Knot Value Span support and the 

corresponding Knot Value support follow the rules already mentioned. 

 

 
Figure 2.9 

 B-SPLine Basis functions for Knot Value Vector. 

 0 0 0 0 1 2 3 4 5 6 7 7 7 7   

1D Shape Function 6,3N ( )  

 

  In the above figure, the polynomial degree of the basis functions is p 3 . Knot Value 

Span support is p 1 4   Knot Value Spans, which requires Knot Value support of 

p 2 5   Knot Values.  

 

  
6,3N ( )  is non-zero in the Knot Value Spans  2,3 ,  3,4 . 4,5  and  5,6 . No trivial 

spans are involved, so this is another fully developed B-SPLine. The Knot Value Support 

consists of the Knot Values  2,3,4,5,6 .  

 

  B-SPLine tensor product properties enable the immediate expansion of 1D properties to 

2D and 3D B-SPLine Shape functions. 

 

  
3,2N ( )  in Figure 2.10 has a support of 3 Knot Value Spans per  ,  0,1 ,  1,2  and  2,3

. It is created by Knot Values  0,1,2,3 . 

 

  
4,2M ( )  has a support of 3 Knot Value Spans per  ,  1,2 ,  2,3 and  3,4 . It is created 

by Knot Values  1,2,3,4 .  
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Figure 2.10 

Shape Function  p,q 2,2

i, j 3,4R R ,    as a tensor product of 3,2N ( )  and  4,2M   

Knot Value Vector  0 0 0 1 2 3 4 5 5 5   

Knot Value Vector  0 0 0 1 2 3 4 4 4   

 

 The 2D Shape function  2,2

3,4R ,   is the full tensor product of 
3,2N ( )  and  4,2M  . The 

support of the Shape function is a rectangle created from the supports of the respective 

basis functions. It has a total area of 3 3 9   Knot Value Rectangles. 

 

  Observe that the value of the bidirectional B-SPLine is represented both in the third axis 

of the graph and by projection of the contour in the 2D plane. This is useful for 

representation of 3D basis functions. 

 

 
Figure 2.11 

Shape Function  p,q 2,2

i, j 1,6R R ,    as a tensor product of 1,2N ( )  and  6,2M   

Knot Value Vector:  0 0 0 1 2 3 3 4 5 5 5   

Knot Value Vector  0 0 0 1 2 2 3 4 4 4    
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  Both 1D basis functions have reduced Continuity in Figure 2.11.  

 

  
1,2N ( )  has a Knot Value Span Support of  0,0 ,  0,0  and  0,1 , leading to a Support 

of a single Knot Span,  0,1 . The corresponding Knot Value Support is  0,0,0,1 . 

 

   6,2M   has a Knot Value Support of  2,3,4,4  which leads to a Knot Value Span 

Support of  2,3 ,  3,4 ,  4,4 . One trivial and two non-trivial Spans are contained. 

 

  Support for the Shape Function  2,2

1,6R ,   is defined as the tensor product of the supports 

of the basis functions, namely 1 2 2   Knot Rectangles. 

 

  3D B-SPLine Shape functions can be represented as in the Figure 2.12. 

 

 
Figure 2.12 

 Shape Function  p,q,r 2,2,1

i, j,k 3,3,1R R , ,     as tensor product of 3,2N ( ) ,  3,2M  , 1,1L ( ) . 

Knot Value Vector  0 0 0 1 2 2 2   

Knot Value Vector  0 0 0 1 2 2 2   

Knot Value Vector  0 0 1 2 2   

 

  The three axes represent the three parametric directions , ,   . B-SPLine basis functions 

for   are drawn in the     plane, functions for   in the    plane and functions for   

in the     plane.  

 

  
3,2N ( )  and  3,2M   both have a support of 3 Knot Value Spans,  0,1 ,  1,2  and  2,2  

in their respective directions. Knot Value Support for those functions is  0,1,2,2 . Knot 

Span Support is restrained at 2 Knot Spans for each function.  
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1,1L ( )  has a Knot Value Span Support of  0,0  and  0,1 , leading to the support of 1 

Knot Span. Knot Value Support is defined as  0,0,1 . 

 

  Their tensor product value has been calculated as a function of two parametric directions 

at the Control Point coordinate of the remaining direction. The resulting contour is 

projected on a plane that is parallel to the two directions and intersects with the tensor 

product Control Point. This process is repeated for all three possible combinations, thus 

creating contours at    ,    and     planes. 

 

  For example, Control Point  3,3,1  has coordinates    , , 1.5,1.5,0    .  

 

   2,2,1

3,3,1R , ,0   has been calculated and projected in 0   plane. The support of the 

projection shows the support of the 3D Shape function per ,  , namely 2 2 4   Knot 

Rectangles. 

 

   2,2,1

3,3,1R ,1.5,   is represented in the plane 1.5  . Support of the 3D Shape function per 

,     is 2 1 2   Knot Rectangles. 

 

   2,2,1

3,3,1R 1.5, ,   is projected in 1.5   plane. The support of the 3D Shape function per 

,     is 2 1 2   Knot Rectangles. 

 

  The support of the 3D Shape function across the entire domain is the tensor product of 

the 1D supports. In this particular case, it is 2 2 1 4    Knot Cuboids. The support is 

represented by the tensor product of the projections in Figure 2.12. 

 

2.1.1.2 Maximum number of non-zero functions per Knot Span 

 

  A box function that is non-zero in one Knot Span contributes to the evaluation of two 

consecutive B-SPLine basis functions of order p 1 . These two functions lead to the 

creation of three consecutive basis functions of order p 2 . Inductively, a box function 

contributes to the creation of p 1  B-SPLine basis functions of order p . 

 

  It applies from Cox de Boor recursive formula that only one box function is non-zero 

across a selected Knot Span. As a result, only the corresponding p 1  B-SPLine basis 

functions of order p  can be non-zero in that specific Knot Span. 

 

  Therefore, at a non-trivial Knot Value Span  i i 1,    only the basis functions 

i p,p i p 1,p i,pN ( ),  N ( ),  ...,  N ( )      are non-zero. This is used efficiently in Stiffness Matrix 

Formulation, in order to reduce computational cost. 
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Figure 2.13 

Contribution of one box function 

to the creation of higher-order B-SPLine basis functions. 

 

 
Figure 2.14 

Contribution of one box function to non-zero higher-order B-SPLine basis functions across Knot Span 

 1,2 . 

 

 
Figure 2.15 

B-SPLine Basis functions for Knot Value Vector  

 0 0 0 1 2 3 4 5 6 7 7 7  . 

Basis functions that are non-zero in Knot Span  0,1  are drawn in red. 

Basis functions that are non-zero in Knot Span  4,5  are drawn in green.  
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  In Figure 2.15, two separate Knot Spans are examined. For every Knot Span, p 1 3   

basis functions are non-zero.  

 

  For the first Knot Span,    3 40,1 ,   , basis functions 
1,p 2,p 3,pN ( ),  N ( ),  N ( )    are non-

zero. 

 

  For the second Knot Span,    7 84,5 ,   , basis functions 
5,p 6,p 7,pN ( ),  N ( ),  N ( )    are 

non-zero. 

 

  As a result, in 2D, at a given Knot Rectangle, only the tensor products of the respective 

non-zero basis functions are non-zero, namely    p 1 q 1    Shape functions. 

 

  Inductively, in 3D, at a given Knot Cuboid, the tensor products of the corresponding non-

zero basis functions create      p 1 q 1 r 1      non-zero Shape functions. 

 

2.1.1.3 Non-negativity 

 

  It has been established that: 

 

i,pN ( ) 0 ,i,p    . 

 

 
Figure 2.16 

B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9 9   

 

  The degree in Figure 2.16 is p 4 . As we see in the picture above, all the basis functions 

are positive for every , i . This property is very important for Isogeometric Analysis and 

it does not apply in the classical Shape functions of Finite Element Analysis. Naturally, it 

is easier for the human mind to work with only positive values, so this attribute simplifies 

and encourages the understanding of B-SPLines. Non-negativity applies for 2D and 3D 

Shape functions as well.  
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2.1.1.4 Partition of unity 

 

  Partition of unity is expressed by 

 
n

i,p

i 1

N ( ) 1


   , p . 

 

 
Figure 2.17 

 B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 1 2 3 4 5 6 7 7 7 7   

Sum of B-SPLine function value at every  . Partition of Unity. 

 

  The degree for the B-SPLine basis functions in Figure 2.17 is p 3 . The green horizontal 

line represents the sum of B-SPLine values at the corresponding  , which, of course, is 

equal to 1 for every  .  

 

  For example, B-SPLine values have been evaluated for 4.81  , with the following 

results for the four non-zero basis functions: 

 

 

5,3N (4.81) 0.0011  

6,3N (4.81) 0.2763  

7,3N (4.81) 0.6340  

8,3N (4.81) 0.0886  

 

  The above yields 
10

i,3

i 1

N (4.81) 1


  

as expected.  
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  Partition of unity applies for multi-dimensional Shape functions as well. 

 

  In 2D, partition of unity is expressed as 
n m n m

p,q

i, j i,p j,q

i 1 j 1 i 1 j 1

R N ( ) M ( ) 1
   

       

 

which is a result of tensor product nature: 
n m n m n m

p,q

i, j i,p j,q i,p j,q

i 1 j 1 i 1 j 1 i 1 j 1

R N ( ) M ( ) N ( ) M ( ) 1
     

  
          

   
     

 

  In full analogy, 3D Shape functions also possess partition of unity: 

 
n m l n m l

p,q,r

i, j,k i,p j,q k,r

i 1 j 1 k 1 i 1 j 1 k 1

R N ( ) M ( ) L 1
     

         

 

  Partition of unity is also a property of great importance for the Shape functions that are 

used in Finite Element Analysis. 

 

2.1.1.5 
p m

C  Continuity 

 

  At a Knot with multiplicity m , 
i,pN ( ) produces p m  continuous derivatives or, in other 

words, it has p mC   Continuity. Continuity less than 0C  is not acceptable for internal Knots, 

which means they can be repeated up to p  times. Bear in mind that as Continuity decreases, 

B-SPLine basis functions tend to be more “steep”.  

 

 
Figure 2.18  

B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 1 2 3 4 4 4 5 6 7 8 8 8 8   
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  The polynomial order in Figure 2.18 is p 3 . Continuity for a basis function is affected 

only by the corresponding Knot Values. Knot 4   has multiplicity m 3  with respect 

to the Knot Vector. Its multiplicity with respect to the basis functions depends on each 

function’s Knot Value Support. 

 

  
4,3N ( ) , a fully developed basis function, drawn in red, has a Knot Value Support of 

 0,1,2,3,4 . The Knot 4   has multiplicity m 1  with respect to the basis function 

4,3N ( ) , so this function is p m 3 1 2C C C    Continuous in the entire domain. 

 

  The purple basis function, 
5,3N ( )  has a Knot Value Support of  1,2,3,4,4 . The Knot 

in question has multiplicity m 2  with respect to the basis function, which makes 
5,3N ( )  

p m 3 2 1C C C    Continuous across 4  . 

 

  Knot Value Support for 
6,3N ( )  and 

7,3N ( )  is  2,3,4,4,4  and  3,4,4,4,5  

respectively. The multiplicity of the Knot is m 3  for both basis functions. Therefore, 

these functions have p m 3 3 0C C C    Continuity across 4  . 

 

  Observe that when a B-SPLine basis function 
j,pN ( )  has a Knot m with multiplicity p  

in the center of the Knot Value Support, it applies that 
j,p mN ( ) 1  . 

 

  In 2D and 3D cases, Continuity per direction is obtained straight from the Continuity of 

the corresponding one-directional B-SPLine basis functions. 

 

  In Figure 2.19.a,  2,2

3,4R ,   is tensor product of 
3,2N ( )  and  4,2M  . 

3,2N ( )  has 

p m 2 1 1C C C    Continuity across 3   and  4,2M   has p m 2 2 0C C C    Continuity 

across 2  . Therefore,  2,2

3,4R ,   has 1C  Continuity with respect to   and 0C  Continuity 

with respect to   across    , 3,2   . 

 

  In Figure 2.19.b,  2,2

5,4R ,   is tensor product of 
5,2N ( )  and  4,2M  . Both B-SPLine 

basis functions have 0C  Continuity across 3  , 2   respectively. As a result, 

 2,2

5,4R ,   has 0C  Continuity across    , 3,2   . This particular case of 0C  Continuity 

for both directions will be utilized in future applications. 

 

 Note that 0C  Continuity per both directions leads to    2,2

5,4 5.2 4.2R 3,2 N (3) M 2 1   . Non-

negativity and Partition of unity properties require that  2,2

i, jR 3,2 0 ,    i, j 5,4  .  
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(a) 

 

 
(b) 

 
Figure 2.19 

B-SPLine Basis functions for directions ,   
 

Knot Vector  0 0 0 1 2 3 3 4 5 5 5   

Knot Vector  0 0 0 1 2 2 3 4 4 4   

 
(a): Shape Function  p,q 2,2

i, j 3,4R R ,    as tensor product of 3,2N ( )  and  4,2M   

(b): Shape Function  p,q 2,2

i, j 5,4R R ,    as tensor product of 5,2N ( )  and  4,2M   
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  Figure 2.20 represents  2,2,2

4,3,3R , ,   , a Shape function formed as a tensor product of three 

0C  Continuous functions across  2,1,1 . The corresponding basis functions are 
4,2N ( ) , 

 3,2M   and  3,2L  . Naturally, at the point of 0C Continuity for all three directions, it 

applies that      2,2,2

4,3,3 4,2 3,2 3,2R 2,1,1 N (2) M 1 L 1 1    . 

 

  Observe that all functions of reduced Continuity tend to be more “steep”. This happens 

because they contain multiple Knot Values of the same Knot, and therefore develop across 

trivial spans. This “steepness” is the first indication that a basis function has reduced 

Continuity. 

 

  Moreover, internal 0C  Continuity produced exactly the same B-SPLine basis functions as 
1C  Continuity on the edge of the Knot Vector. This means that at every Knot with 

multiplicity m p , only one function remains non-zero. Due to partition of unity, that 

function’s value at that Knot is equal to 1.  

 

  In multi-dimensional functions, 0C  Continuity across a Knot requires the basis functions 

per all directions to be 0C  Continuous at that point. In this case, the value of the multi-

dimensional Shape function across this Knot is equal to 1. 

 
 
 

Figure 2.20 

Shape Function    p,q,r 2,2,2

i, j,k 4,3,3R , , R , ,         

 
Knot Value Vector  0 0 0 1 2 2 3 3 3   

Knot Value Vector  0 0 0 1 1 2 2 2   

Knot Value Vector  0 0 0 1 1 2 2 2   
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2.1.1.6 Linear Independence 

 

  Given a finite number of distinct vectors  1 2 nu u ... u  and scalars  1 2 na a ... a

, the subset S  of a vector space V  is called linearly independent if the equation 

1 1 2 2 n na u a u ... a u 0     leads to the unique solution 1 2 na a ... a 0    . Thus the 

subset is linearly independent if a linear combination of the vectors is the zero vector, only 

for 1 2 na a ... a 0    . The linear independence in Isogeometric Analysis applies for the 

basis functions  1,p 2,p n,pN ( ) N ( ) ... N ( )   . The equation 

 

1 1,p 2 2,p n n,pa N ( ) a N ( ) ... a N ( ) 0           

 

leads to 1 2 na a ... a 0    . We can reach the conclusion that no B-SPLine basis function 

can be expressed as a linear combination of the other B-SPLine basis functions. 

 

  These linearly independent vectors form a basis for the vector space V . Some interesting 

attributes of such vectors include: 

 

 The basis of the vector space V  can be formed by different sets of linearly 

independent vectors. Any set can be used, provided that the vectors are linearly 

independent and all the properties above apply for every vector. Thus, in 

Isogeometric Analysis, we can choose different sets of B-SPLine basis functions in 

order to represent the vector space. 

 

 The number of vectors of any basis chosen is equal to the dimension of V , often 

represented as  dim V . In Isogeometric Analysis  dim V  is equal to the number 

of Control Points and, consequently, the number of basis functions used. 

 

 Let there be a mass of vectors  1 2 nu u ... u  which form the basis of a vector 

space with  dim V n  and the numbers  1 2 na a ... a , called the coordinates 

of u . In Isogeometric Analysis, the basis of the vector space is the set of B-SPLine 

basis functions  1,p 2,p n,pN ( ) N ( ) ... N ( )    and the numbers are the 

coordinates 1 2 nX X ... X  of the Control Points of the curve. A random vector 

u  of the vector space V  can be represented by the equation: 

 

1 1 2 2 n nu a u a u ... a u     

 

which in Isogeometric Analysis applies as 

 

1 1,p 2 2,p n n,pC( ) X N ( ) X N ( ) ... X N ( )             
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  Any vector in V  can be described as a linear combination of the basis. The numbers 

 1 2 na a ... a  are the coordinates of u  and they are unique for this specific u  and this 

specific basis. 

 

  Vector space V in  is a mass of vectors with the properties below: 

 

1. Commutativity of addition: 

 

u v v u   , u, v V   

 

In Isogeometric Analysis this property applies as 

 

 1 2 2 1C C ( ) C ( ) C ( )        

 

2. Associativity of addition: 

 

   u v w u v w     , u, v, w V   

 

Respectively in Isogeometric Analysis, 

 

         1 2 3 1 2 3C C C C C ( ) C ( )            

 

3. Identity element of addition: There is an element 0 V , the zero vector, so that 

 

u 0 u  , u V   

 

In Isogeometric Analysis the equation applies as 

 
C( ) 0 C( )     

 

4. Inverse elements of addition: There is an element u V   such that 

 u u 0   , u V   

 

The u  is called the additive inverse of u . The equivalent in Isogeometric Analysis 

is 
C( ) ( C( )) 0      

 

5. Identity element of scalar multiplication: For the real number 1 , it applies: 

1 u u  , u V   

 

Respectively, in Isogeometric Analysis 

 
1 C( ) C( )      
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6. Distributivity of scalar multiplication with respect to vector addition: a   and 

u, v V   applies the relation 

 

 a u v a u a v       

 

In Isogeometric Analysis this equation applies as 

 

1 2 1 2a (C ( ) C ( )) a C ( ) a C ( )           

 

7. Distributivity of scalar multiplication with respect to field addition: a, b   and 

u V   applies the relation 

 

 a b u a u b u       

 

which is implemented in Isogeometric Analysis as 

 
(a b) C( ) a C( ) b C( )          

 

8. Compatibility of scalar multiplication with field multiplication: a, b   and 

u V   applies the equation 

 

   a b u a b u      

 

Its equivalent in Isogeometric Analysis is  

 
a (b C( )) (a b) C( )        

 

  B-SPLine basis functions are indeed the basis for a vector space with  dim V n , where 

n is the number of Control Points. Control Points are the coordinates that transform the 

basis functions at any point in the given Physical Space. Conclusively, 

 1,p 2,p n,pN ( ) N ( ) ... N ( )    

 

is the basis of the Vector space, while 

 1 2 nX X ... X  

 

are the coordinates for a vector C( ) . The familiar linear combination applies: 

1 1,p 2 2,p n n,pC( ) X N ( ) X N ( ) ... X N ( )            

 

  Due to linear independence and vector space properties, it is understood that for a specific 

set of basis functions, only one set of Control Points can yield the appropriate geometry. If 

one wants to change the basis functions, the Control Points have to be shifted accordingly.  
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2.1.1.7 Fixed Number of Knot Values 

 

  A non-periodic Knot Value Vector that produces n  functions of order p  has n p 1   

Knot Values. 

 

 
 

Figure 2.21 

B-SPLine Basis functions for Knot Value Vector 

 0 0 0 1 2 3 3 4 5 6 7 7 8 9 9 9   

 

 

  In this example the degree is p 2 and we have thirteen basis functions produced, so 

n 13 . 

 

  We observe that the Knot Value Number is k n p 1 13 2 1 16       . This occurs 

because for the creation of n basis functions of degree p , needed to construct the curve, 

n p  basis functions of order p 0  are used, hence n p 1   Knot Values are needed. 

 

  In another approach, each Control Point has a Knot Value Support of p 2  Knot Values. 

For n Control Points,  n p 2   Knot Values are needed. There are  p 1  Knot Values 

repeated in  n 1  Control Point interconnections. The total number of Knot Values is: 

 

     n p 2 n 1 p 1 n p 2n n p n p 1 n p 1                  

 

  Therefore, n p 1   Knot Values are required. 
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2.1.1.8 Shared Support 

 

  Each B-Spline shares support with at most 2p  B-Splines. More specifically, each basis 

function shares support with at most p  basis functions on each side. This results in higher 

interconnection, compared to equivalent Finite Element Method Shape functions. Basis 

function overlapping leads to interconnectivity between Control Points as well. 

 

 
Figure 2.22 

Shared support for 6,3N ( ) . 

 0 0 0 0 1 2 3 4 5 6 6 7 8 9 9 9 9   

 

  
6,3N ( )  interacts with p 3  basis functions on each side, 

3,2N ( ) , 
4,2N ( )  and 

5,2N ( )  

on the left, 
7,2N ( ) , 

8,2N ( ) , 
9,2N ( )  on the right. As a result, the respective positions in 

the Stiffness Matrix will be non-zero. 

 

 
Figure 2.23 

 Shared support for 8,4N ( ) . 

 0 0 0 0 0 1 2 3 4 5 6 6 7 8 9 10 10 10 10 10   

 

  
8,4N ( )  shares support with 2p 8  basis functions, 4 on each side. Greater-order basis 

functions tend to create more dense Stiffness Matrices and therefore demand more 

computational power.  
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2.3.6 B-SPLine Basis Function Derivatives 
 

  Basis function derivatives are widely used in Isogeometric Analysis. Deformation and 

Stiffness Matrices are built upon the derivatives of Shape functions. As a result, the 

distribution of stresses and strains across the model is based on those derivatives. The 

derivatives of B-SPLines, as obtained from the recursive formula, are represented as a 

linear combination of previous polynomial order basis functions: 

i,p i,p 1 i 1,p 1

i p i i p 1 i 1

d p p
N ( ) N ( ) N ( )

d
  

   

      
    

 

 

  This leads to a generalized equation for the kth derivative: 

 
k k

i,p k, j i j,p kk
j 0

d p!
N ( ) a N ( )

d (p k)!
 



    
 


 

0,0

k 1,0

k,0

i p k 1 i

k 1, j k 1, j 1

k, j

i p j k 1 i j

k 1,k 1

k,k

i p 1 i k

a 1

a
a

a a
a ,  j=1, . . . , k-1, 

a
a



  

  

    

 

  




 



  



  

 

 

  The partial derivatives of two-directional B-SPLine Shape functions can be easily 

obtained by application of the quotient rule: 

 p,q

i, j i,p j,q

d
R , N ( ) M ( )

d

 
      

  
 

 

 p,q

i, j i,p j,q

d
R , N ( ) M ( )

d

 
      

  
 

 

  3D Shape function derivatives per direction can be obtained in the same manner 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
 

 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
 

 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
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2.3.7 B-SPLine Curves, Surfaces and Solids 
 

  Given a Knot Value Vector   and a polynomial order p , we can evaluate the B-SPLine 

functions at every  . In order to create the B-SPLine curve, we also need a vector of 

coordinates for each basis function, the Control Points  i i i iX X Y Z . The curve is 

evaluated for every  as a linear combination of basis functions: 

 
n

i,p i

i 1

C( ) N ( ) X


     

 

  After evaluating the Shape functions, the B-SPLine surface is defined in analogy to the 

B-SPLine curve: 

   
n m n m

p,q

i,p j,q i, j i, j i, j

i 1 j 1 i 1 j 1

S( , ) N ( ) M ( ) X R X
   

           

 

  Using the tensor product properties, we can also evaluate the solid function: 

 

    
n m l n m l

p,q,r

i,p j,q k,q i, j,k i, j,k i, j,k

i 1 j 1 k 1 i 1 j 1 k 1

S( , , ) N ( ) M ( ) L ( ) X R , , X
     

                 

 

 
 (a) (b) 

 
(c) 

Figure 2.24 

B-SPLine Entities. (a) Curve, (b) Surface and (c) Solid.  
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2.3.8 B-SPLine Curve Properties 
 

  B-SPLine curve entities have the following properties, as obtained from Piegl, Tiller: 

1. B-SPLine curves are a generalization of Bezier curves. 

 

2. C( )  is a piecewise polynomial curve. 

 

3. Each basis function corresponds to a certain Control Point. 

 

4. The first and last Control Point as well as internal Control Points corresponding to 
0C  Continuous basis functions are interpolatory to the curve. 

 

5. B-SPLine curves possess strong convex hull property. 

 

6. Moving a Control Point iX  only changes part of the curve. 

 

7. The Control Polygon represents a piecewise linear approximation to the curve. 

 

8. It is possible to use multiple Control Points with the same coordinates. 

 

9. Any transformation applied to the curve can be applied directly at the Control 

Points. This property is known as “affine invariance” or “affine covariance”. 

 

10. In every Knot Span, at most p+1 Control Points contribute to the definition of the 

curve, corresponding to the p 1  non-zero basis functions. 

 

11. Since C( )  is a linear combination of 
i,pN ( ) , curve Continuity and 

differentiability are obtained straight from the basis functions. 

 

12. No line has more intersections with the curve, than with the Control Polygon.  

 

2.1.1.9 Generalization of Bezier curves 

 

  B-SPLine curves are a generalization of Bezier curves. Given an open Knot Vector and 

n p 1   Control Points, a Bezier curve is produced. 

 

  Bezier curves were utilized in CAD methods before B-SPLines. Figure 2.25 presents a 

Bezier curve with p 3 , an open Knot Value Vector  0 0 0 0 1 1 1 1  and 

n p 1 4    Control Points. Bezier curves are B-SPLine curves defined in only one Knot 

Span. As a result, every basis function is non-zero across the entire parameter space and 

Control Points affect the shape of the entire curve. Bezier surfaces are a special case of 

one-rectangle B-SPLine surfaces and Bezier solids a special case of one-cuboid B-SPLine 

solids as well.  
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(a) 

 
(b) 

Figure 2.25 

B-SPLine as generalization of Bezier curves. (a) Physical Space and (b) basis functions 

 

2.1.1.10 Piecewise polynomial curve 

 

  C( )  is formed from piecewise polynomials 
i,pN ( ) , and therefore is a piecewise 

polynomial curve. 

 

 
Figure 2.26 

 Piecewise polynomials that form a B-SPLine basis function. Knots represent the boundaries of the pieces.  
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  A B-SPLine curve is obtained through the curve function: 
n

i,p i

i 1

C( ) N ( ) X


     

 

which is a linear combination of piecewise polynomial basis functions. This applies in 

multi-directional entities as well. Tensor product Shape functions are piecewise 

polynomials with respect to the corresponding directions, thus B-SPLine Surfaces and 

Solids are also piecewise polynomials. The term B-SPLine, after all, stands for Basis - 

Smooth Polynomial Line. 

 

2.1.1.11 Control Point – Basis Function Correspondence 

 

  Each basis function corresponds to a certain Control Point. There are n  basis functions 

and n  Control Points in a B-SPLine curve. 

 

 
(a) 

 
(b) 

Figure 2.27 

 (a) Physical Space and (b) basis functions with the corresponding Control Points.  
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  In Figure 2.27, Control Points are represented both in Parameter and Physical Space. Each 

Point controls a specific basis function. This property also applies for multiple directions. 

Every Control Point of the surface or the solid is tensor product of a Control Point in 

directions  ,   and  . By extension, the corresponding B-SPLine is tensor product of the 

basis functions. In the most general case, there are n m l   Control Points and basis 

functions. 

 

2.1.1.12 Interpolation to the Curve 

 

  The first and last Control Points are interpolatory to the curve. Any internal Control Point 

corresponding to 0C  Continuous basis function is also interpolatory to the curve. 

 

 
(a) 

 
(b) 

 
Figure 2.28 

Control Point interpolation. (a) B-SPLine curve and (b) the reciprocal basis functions 

 

  In Figure 2.28, the first and the last Control Point, which have 1C  Continuity, are 

interpolatory to the curve. This can be explained with the help of the equation of the curve: 

 
n

i,2 i

i 1

C( ) N ( ) X


      
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  For 0  , it applies that: 
n

i,2 i

i 1

C(0) N (0) X


   

where, 

1,2N (0) 1  

 

i,2N (0) 0 , i 2,...,6   

so, 

1,2 1 1C(0) N (0) X X    

And for 3  : 
n

i,2 i

i 1

C(3) N (3) X


   

 

6,2N (3) 1  

 

i,2N (3) 0 , i 1,...,5  

so, 

6,2 6 6C(3) N (3) X X    

 

  Likewise, the internal Control Point, with 0C  Continuity across 2   is interpolatory to 

the curve because: 

 

 
n

i,2 i

i 1

C(2) N (2) X


   

 

4,2N (2) 1 , as this is the only non-zero basis function across 2   

 

i,2N (2) 0 , i 4  

so, 

4,2 4 4C(2) N (2) X X    

 

  Observe that both the form of the curve and the form of the basis functions indicate that 

this geometry could be represented by two different sets of Knot Vectors and Control 

Points, with absolutely no deflections from the current representation. This will be 

examined thoroughly later. 

 

  Interpolation also applies for Surfaces and Solids, when appropriately reduced Continuity 

is used for all directions at a Knot. 1C  Continuity is required for external Knots and 0C  

for internal. 
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  In Figure 2.29, 
5,2N ( )  at axis   and 

6,2M ( )  at axis   have 0C  Continuity. Therefore 

the Control Point corresponding to  2,2

5,6R ,   is interpolatory to the surface. The external 

Control Points with 1C  Continuity at both directions are also interpolatory to the surface. 

 

  In Figure 2.30, 
4,2N ( )  at parametric axis   and 

4,2M ( )  at parametric axis   have 0C  

Continuity, thus Control Points corresponding to the Shape functions  2,2,1

4,4,1R , ,    and 

 2,2,1

4,4,2R , ,   , are interpolatory to the solid. As we can see, the external Control Points are 

also interpolatory to the solid, because Continuity is reduced to 1C . 

 

 
(a) 

\ 
(b) 

 
(c) 

Figure 2.29 

(a) B-SPLine Surface and (b), (c) the corresponding basis functions in axes ,  .  
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(a) 

 

 
(b) 

 

 
 (c) (d) 
 

Figure 2.30 

 (a) Solid in the Physical Space 

with (b), (c), (d) the associated basis functions in axes , ,   .  
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2.1.1.13 Convex Hull 

 

  B-SPLine curves possess strong convex hull property. The convex hull of the curve is 

defined as the sum of the convex hulls of p+1 consecutive Control Points. The curve is 

always contained in the convex hull. 

 

 
 

 
 

Figure 2.31 

 Step-by-step convex hull creation for a B-SPLine curve. 

 

  The curve in Figure 2.31 has a degree of p 2 . The convex hull is formed by connecting 

each Control Point with the p 2  successive ones. As we can easily see in the figure, the 

union of the convex hulls contains the curve. The convex hull is a way to assume the 

general form of a B-SPLine curve.  
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2.1.1.14 Control Point Local support 

 

  Moving a Control Point iX  only changes part of the curve, more specifically the part 

corresponding to the 
i i p 1[ , )    Knot Value Spans. This is a result of the local support of 

the corresponding B-SPLine function. 

 

  Moving along the curve, basis function 
i,pN ( ) is switched “on” at the Knot Value i  and 

then again switched “off” at the Knot Value 
i p 1  , where the function 

i p 1,pN ( )    is 

switched “on”. 

 

 

 
(a) 

 
(b) 

Figure 2.32 
 Control Point Local support (a) in Physical and (b) in Parameter Space. 

 

  Every Control Point is associated with a basis function. Support of the Control Point is 

defined by the support of the corresponding basis function. Therefore, Control Points affect 

only part of the curve. In Figure 2.32, a curve with p 2  and Knot Value Vector 

 0 0 0 1 2 3 4 4 4 , is presented. The Control Point for i 3  is moved and 

this affects partially the entity. 
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  In this example, 
3,2N ( )  spans from 0   to 3  . The Knots act as boundaries of the 

support. For 3  , 
3,2N ( )  is switched “off” and 

6,2N ( )  is switched “on”. 

 

  Local support of Control Points is also expanded by tensor product properties. The local 

support of a Multi-directional Control Point is the tensor product of the respective supports. 

 

 
(a) 

 
(b) 

 
Figure 2.33 

 Local support of a 2D Control Point. 

Surface (a) in Physical and (b) in Parameter Space. 

 

  Figure 2.33 represents the local support in the parametric axis ,   of 
4,2N ( )  and 

3,2M ( )  B-SPLine curves respectively. In parametric axis   the local support expands 

throughout the axis, whereas in parametric axis   the basis function is switched “on” at 

the second Knot Span. In Figure 2.33.a, the tensor product of the respective supports for 

,   is represented in cyan. It spans across 4x3 12  Knot Rectangles in total.  
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  The same properties apply for B-SPLine solids as well. 

 

 
(a) 

 

 
(b) 

 
Figure 2.34 

Local support of a 3D Control Point. 

Solid (a) in Physical and (b) in Parameter Space. 

 

 

  Figure 2.34.b presents the local support of 
3,2N ( ) , 

4,2M ( )  and 
1,1L ( ) . In parametric 

axes ,    , the local support expands at all Knot Spans, whereas in the parametric axis   

the local support spans between Knots 1  and 4 . In Figure 2.34.a, the local support is 

displayed in cyan and it does not reach all the Knot Spans in parametric axis  . A total of 

3 3 1 9    Knot Cuboids represent the Support of the Control Point.  
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2.1.1.15 Control Polygon approximation 

 

  The Control Polygon represents a piecewise linear approximation to the curve. Due to 

convex hull properties, Refinement by knot insertion or order elevation brings the Control 

Polygon closer to the curve. 

 

 
 

 
 

 
Figure 2.35 

 Control Polygon approximation through Refinement. 

 

  In Figure 2.35 a curve of degree p 3  is designed. The Control Polygon already 

represents a linear approximation to the curve. When consecutive h- or p- Refinements are 

applied, the Control Polygon is brought even closer to the curve. Refined Control Polygons 

provide a general idea of the form of the curve. This property also applies for multiple 

directions. 

 
Figure 2.36 

Control Net approximation through Surface h-Refinement. 

 

  For example, in Figure 2.36, the Refinements, that were made, brought the Control Net 

closer to the surface.  
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2.1.1.16 Multiple Control Points 

 

  It is possible to use multiple Control Points with the same coordinates. This can prove to 

be very useful. 

 

 
(a) 

 

 
(b) 

 
Figure 2.37 

(a) Physical Space and (b) Convex Hull creation for a curve 

with two coincident Control Points (drawn in deep red). 

 

  In Figure 2.37.a, a quadratic curve with a double Control Point is designed. The curve is 

interpolatory at these Points and a sharp edge is formed. This is explained in Figure 2.37.b, 

where the convex hull of the curve is designed. The curve is always contained in the convex 

hull, therefore a sharp edge has to be formed exactly at the double Point coordinates. 

Inductively, this applies when p  coincident Control Points are used in a curve of 

polynomial degree p .  
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2.4 Non-Uniform Rational B-SPLines 
 

  B-SPLine geometries may have many promising attributes, but they also have several 

weaknesses in geometrical representation. Some basic geometrical forms cannot be 

presented as B-SPLine entities, such as circles or conic sections in general. In order to solve 

this problem, the CAD industry introduced Non-Uniform Rational B-Splines (NURBS). 

The basic idea is simple. A NURBS entity is produced from the actual section of a cone 

with a plane. 

 

2.4.1 Basic Idea 
 

 
 

Figure 2.38 

 B-SPLine curve and projective transformation to NURBS Curve. 

 

  As shown in Figure 2.38, the projective B-SPLine curve 
wC ( )  is created from the 

projective 3D Control Points  w w w wX X Y Z .  

 

  Projection of the curve and Control Points on the plane z 1  produces the NURBS curve 

C( )  and the 2D Control Points: 

 

 X X Y  

where, 

 
w w

i i
i i w w

i i

X Y
X Y

Z Z

 
  
 

 

 

  The Weights of the NURBS curve are defined as: 

 

 ww Z  

 

  In generalization, n -dimensional Rational B-SPLines are projections of  n 1 -

dimensional non-rational B-SPLines.   
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2.4.2 NURBS Shape Functions 
 

  In order to evaluate NURBS Shape functions, the Weighting function is defined: 

 

    
n

i,p i

i 1

W N w


     

 

  In most engineering applications, Weights have positive values. Unless otherwise stated, 

they will be considered positive for the scope of this thesis. W( )  is in fact the Z-

coordinate of the projective B-SPLine curve. Projective transformation is applied by 

dividing the other two coordinates of the B-SPLine curve with the Z-coordinate. NURBS 

Shape functions are calculated from 

 

 

i,p i i,p ip

i n

i ,p i

i 1

N ( ) w N ( ) w
R ( )

W( )
N ( ) w 



   
  


 

 

 

  p

iR ( )  are piecewise rational functions. The expression “the order of NURBS” refers to 

the order of the projective B-SPLine curve. 

  NURBS Shape Functions in multiple directions can be obtained as tensor products of 

one-directional basis functions: 

  Shape functions for two directions: 

 

 

i,p j,q ijp,q

i, j n m

i ,p j ,q i j

i 1 j 1

N ( ) M ( ) w
R ( , )

N ( ) M ( ) w   

  

   
  

   
 

 
n m

i ,p j ,q i j

i 1 j 1

W( , ) N ( ) M ( ) w   

  

        

 

  Similarly, we expand the equations in order to obtain tensor product 3D Shape functions: 

 

 

i,p j,q k,r ijkp,q,r

i, j,k n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

N ( ) M ( ) L ( ) w
R ( , , )

N ( ) M ( ) L ( ) w     

    

     
   

     
 

 

  The Weighting function is now defined as: 

 
n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

W( , , ) N ( ) M ( ) L ( ) w     

    

           

 

  Observe that for 
ijkw 1 , i, j, k , it applies that NURBS Shape functions downgrade to 

B-SPLine basis functions. Actually, NURBS entities are a generalization of B-SPLine 

entities. All the B-SPLine properties examined in this thesis apply for NURBS as well.  
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2.4.3 NURBS Shape Function Derivatives 
 

  Simple application of the quotient rule yields the derivatives of NURBS Shape functions 

for one and multiple directions. 

 

 

i,p i,p

p

i i 2

d d
N ( ) W( ) W( ) N ( )

d dd
R ( ) w

d W( )

   
         

      
 

 

where 

   
n

i,p i

i 1

d d
W N w

d d

 
    

  
  

 

  For bidirectional Shape functions: 

 

 

i,p j,q i,p j,q

p,q

i, j ij 2

d
N ( ) M ( ) W( , ) W( , ) N ( ) M ( )

d
R ( , ) w

W( , )

   
               

        
  

 

 

 

i,p j,q i,p j,q

p,q

i, j ij 2

d
N ( ) M ( ) W( , ) W( , ) N ( ) M ( )

d
R ( , ) w

W( , )

   
               

        
    

 
  Derivatives of 3D Shape functions per direction are evaluated as shown 

 

p,q,r

i, j,k

i,p j,q k,r i,p j,q k,r

ijk 2

R ( , , )

d
N ( ) M ( ) L ( ) W( , , ) W( , , ) N ( ) M ( ) L ( )

d
w

W( , , )


   



   
                     

     
  
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   
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   
                     

     
  
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

   
                     

     
  
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2.4.4 NURBS Entities 
 

  NURBS entities are created as a linear combination of NURBS Shape functions, exactly 

the same way as B-SPLine entities. The following is the equation for the creation of 

NURBS Curves: 

 

 
n

p

i i

i 1

C( ) R ( ) X


     

 

Surfaces: 

  
n m

p,q

i, j i, j

i 1 j 1

S( , ) R , X
 

       

 

and Solids: 

  
n m l

p,q,r

i, j,k i, j,k

i 1 j 1 k 1

S( , , ) R , , X
  

         

 

 
 (a) (b) 

 

  
(c) 

 

Figure 2.39 

NURBS elliptical Entities. 

(a) Curve, (b) Surface and (c) Solid.  
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2.4.5 NURBS Examples 
 

 
(a) 

 
(b) 

Figure 2.40 

(a) NURBS curves and (b) Shape Functions for different Weight values. 

 

  In Figure 2.40, five NURBS Curves with the same set of Control Point Coordinates are 

represented. The corresponding Weights are iw 1 , for i 3 . The third Control Point has 

a different Weight for each curve. Observe that, as the Weight value increases, the Shape 

function and, as a result, the corresponding Control Point tends to dominate the p 1  Knot 

Spans of the support. Thus, the Knots are gravitated closer to the corresponding Control 

Point. 

 

  According to Isogeometric Analysis: Toward Integration of CAD and FEA (J. Austin 

Cottrell, Thomas J. R. Hughes, Yuri Bazilevs - Wiley, 2009), in order to accurately 

represent an arc of 180  degrees, three Control Points are required. Weights for the first 

and last Points are 1 3w w 1  , whereas the middle one has a weight of 
2w cos

2

 
  

 
. 

 

  In Figure 2.41, the same circle is represented by NURBS Shape functions of different 

order. This is a closed curve, so the first and last Control Points coincide. Weights are 

shown for each Control Point. A NURBS circle is usually represented by four consecutive 

Patches, bound together by a common Knot Value Vector.   



Simulation of Human Aorta and Isogeometric Fluid Analysis 

72 

 

 
 (a) (b) 

 
(c) 

Figure 2.41 

NURBS Circle of different polynomial degree. Weight values for each Control Point. 
 

(a) Quadratic basis functions. Knot Value Vector 

 0 0 0 1 1 2 2 3 3 4 4 4   

(b) Cubic basis functions. Knot Value Vector 

 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4   

(c) Quadric basis functions. Knot Value Vector 

 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4   

 

 
Figure 2.42 

Basis functions for circle represented in Figure 2.41. 

Contour distribution for Shape Function 2

5R ( ) , with corresponding Weight 
2

0.7071
2

 . 

Comparison with basis function 5,2N ( )  shown in blue.   
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Figure 2.43 

 NURBS Surface created from consecutive circle cross-sections. 

 

 

 
 

Figure 2.44 

Shape Function  2,2

2,6R ,   for the surface of Figure 2.43. 

The corresponding Weight is 
2

0.7071
2

 . 

The representation and main attributes are exactly the same as those of B-SPLine Shape Functions.  
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(a) 

 

 
(b) 

 
Figure 2.45 

NURBS Solids. 

(a) Wine Glass and (b) Abstract NURBS Solid 

 

  The glass of wine displayed in Figure 2.45.a is a 3D NURBS solid. The potential of 

Isogeometric Analysis is clearly represented in this model. Observe the exact 

representation of conic sections and smooth surfaces, in combination with immediate mesh 

generation. The mesh, that is depicted in the picture, can be instantly used for analysis. An 

abstract form of another NURBS solid is represented in Figure 2.45.b.  
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2.5 Patches 
 

  NURBS entities are created by transforming a simple Parametric shape (line, rectangle, 

cube) to a model in Physical Space (curve, surface, solid). They are used for the exact and 

efficient representation of complex geometrical structures. Sometimes, the mapping of a 

single Parametric shape is not the optimum solution. A designer might need two or three 

parametric cubes in order to efficiently represent solids with major changes in geometrical 

attributes. As displayed in Figure 2.46, each of these cubes, mapped to a portion of the 

solid in Physical Space, is a NURBS Patch. As expected, each Patch has continuity p mC   

on interior Knots and 1C  on the edge.  

 

 
 (a) (b) 

Figure 2.46 

 (a) Geometrical Representation of the famous Falkirk Wheel “abutment”.  

Five separate patches are used. 

  (b) Each Patch portrays a cube in Parameter Space mapped as a complex shape in Physical Space.  

 

  Interconnection between Patches can be roughly achieved by choosing coincident Control 

Points on the edges. Still, Patch connection rarely is leak-proof. This is one of the major 

disadvantages of NURBS, downsized and eliminated in the next version of SPLines (T-

SPLines etc.). 

 

  Sometimes, Patches exist for other reasons. For example, a major change in material 

properties, as displayed in Figure 2.47, requires a Patch boundary. Interpolation through a 

certain Control Point calls for Patch boundary to be established there. Even application of 
0C  Continuity, for analysis purposes, is enabled by introduction of a Patch. If the same 

polynomial order is used, the mapping can be unified. In these special occasions, the 

separate Parameter Spaces of the Patches can be united in one Parameter Space, using one 

set of basis functions and one Knot Value Vector. The distinction between Patches can be 

applied by enforcing 0C  Continuity across the boundary. In the examples used in this book, 

the latter option is preferred, when possible.  
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Figure 2.47 

 NURBS Patches enforced in order to distinct timber from steel. 

Each material requires separate Patch Stiffness Matrix evaluation, 

before Global Stiffness Matrix creation. 

 

 
 

 
Figure 2.48 

 Separate Knot Vectors united into one. 

The Control Points at the boundary are merged. 0C  Continuity is applied. 

 

  In the geometrical models presented in this thesis, Knot boundaries are drawn in blue and 

Patch boundaries in black. This separates 1C  and 0C  Continuity from 1C  and greater 

Continuity. The importance of Continuity in Analysis is examined in the following 

Chapters.  
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 Fluid Analysis 
 

3.1 CFD-Computational Fluid Dynamics 
 

3.1.1 Introduction to CFD 
 

  CFD is a branch of fluid dynamics. It uses numerical methods and computers, in order to 

solve complicate fluid problems. CFD is the simulation of fluids engineering systems using 

modeling and numerical methods. It is a simulation of an experiment on the computer and 

the solution is reached with the help of mathematical models. It actually explains how a 

fluid (liquid or gas) will move around a solid object. 

 

  In order to explain how a fluid will behave, partial differential equations are used. With 

this way, conservation laws about energy, mass and momentum are represented. CFD 

actually replaces these partial differential equations with algebraic equations that a 

computer can solve. 

 

 

3.1.2 Comparison with EFD 
 

  It is usually preferred in place of Experimental Fluid Dynamics (EFD), as it is more cost 

effective and has a high fidelity database. CFD investigates all desired quantities at the 

same time, while EFD gives results for one quantity at a time. Also, in many cases and 

phenomena, simulation is easier done than a real experiment. 

 

  Such cases are: 

 Meteorological phenomena (e.g. wind, storms) 

 Environmental effects(air pollution,  

 Equipment in large scale (e.g. ships, planes) 

 Heating, ventilation and air conditioning of buildings 

 Hazards (e.g. explosions, nuclear pollutions) 

 Medical processes (e.g. breathing, blood flow) 

 

  The error in CFD has its sources from: 

 the modeling procedure 

 implementation 

 iteration and 

 discretization 

unlike EFD where the error comes from measurements errors.  
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3.1.3 CFD Analysis Process 
 

  A basic procedure is followed in every problem: 

 

1. Geometry 

The geometry (physical bounds) of the problem is defined. 

 

2. Problem statement 

Information about the flow and the fluid. 

 

3. Mathematical model 

The mathematical model is chosen, according to the problem. 

 

4. Mesh generation 

The mesh is created by the division of the fluid volume into discrete cells. The mesh 

can be uniform or non-uniform. 

 

5. Modelling 

The physical modelling is defined with the help of the needed equations. 

 

6. Boundary Conditions 

Boundary conditions are set. The fluid behavior and the boundaries’ properties 

must be defined. 

 

7. Space and time discretization  

Discretization with coupled ODE/DAE and algebraic systems 

 

8. Simulation/Solution 

The simulation begins and the equations are solved iteratively. 

 

9. Implementation 

Software implementation with simultaneous debugging 

 

10. Postprocessing 

A postprocessor is used for the analysis and visualization of the resulting solution. 

 

11. Verification 

Model validation / adjustment 

 

 

  Modelling includes all five first stages. It is the setup of a problem while using all the 

known data (geometry, boundary conditions and equations).  
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3.1.4 Applications of CFD 
 

  CFD is usually used in: 

 aerospace 

 automotive 

 marine engineering 

 bioengineering 

 

  In these cases, CFD is usually used on the stage of the product’s design. Examples of 

these applications are given in the next figures: 

 

 
Figure 3.1 

Simulation of air flow 

(http://www.alentecinc.com/cfd_modeling.htm) 

 

 
Figure 3.2 

Aerodynamic shape design 

(http://www.alentecinc.com/cfd_modeling.htm)  

http://www.alentecinc.com/cfd_modeling.htm
http://www.alentecinc.com/cfd_modeling.htm
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Figure 3.3 

Use of CFD in ship design projects 

(http://www.marin.nl/web/Facilities-Tools/CFD.htm) 

 

 
Figure 3.4 

3D printing of the simulation of wall shear stress in artery 

(Vincent Lab at the Imperial College London) 

 

  Finite element analysis is usually used for the analysis of this kind of problems, but in our 

case Isogeometric Analysis is used. Also, it is important to be reported, that an integration 

of CAD/ CAE is needed for the solution of the problem. This is ideal, as Geomiso is a 

software that combines both CAD and CAE functions. 

 

  The results of CFD analysis are not always reliable, as the input data are usually based on 

assumptions or they are not very precise. Also, the chosen mathematical model might be 

inadequate for the investigated case. Last but not least, there is an error of accuracy due to 

the available computing power. So, CFD should be used with some reservation and only 

in cases where the source of error is known and expected. 
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3.2 Navier Stokes Equations 
 

  Navier Stokes equations are a group of equations that describe the motion of fluids. They 

are widely used in CFD problems. They are the result of application of the second law of 

Newton on fluid motion. In order to apply this law, an assumption is made, that the fluid 

substance is described by viscous flow. They explain the connection between velocity, 

pressure, temperature and density of a moving fluid substance. They also show the effect 

of the viscosity of the fluid. 

 

 
(a) Velocity streamlines 

 
(b) Modulus of velocity 

 
Figure 3.5 

Domain geometry and velocity component of the exact solution 

(Isogeometric Analysis: new stable elements for the Stokes equation) 

 

  Note that the blood is not described by viscous flow.  
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  The pair of the following equations shows the solution to the Stokes problem. 

 

 

2 f in 

0 in 

u p

u

    


  
  

 u: exact velocity 

 p: exact pressure 

 f: load 

 μ: constant viscosity 

 

  An approximation of the exact solution is reached when the next two equations are 

solved. h is an index that shows the element mesh. 

 

 

( , ) ( , ) f vh h ha u v b v p v V


    
  

 

 ( , ) 0h hb q u q Q     

 

 a  and b are bilinear forms that show the relation between the approximate and the 

exact solution. Further explanation of these relations is given in the following two 

equations respectively 

 hu : approximate velocity 

 hp : approximate pressure 

 hV : domain of velocity 

 hQ : domain of pressure 

  

 

( , ) :a u v u v


  
  

 

 

( , ) divb v q d v


 
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  Ω is physical domain. 

 

  ̂  is parametric domain. 

 

  Uh, ph are the finite dimensional velocity and pressure at the elements of mesh. They are 

approximate solutions to the problem. Based on these solutions, the values of velocity and 

pressure on every point are calculated (through shape functions). 

 

  It must be noted that certain appropriate shape functions must be chosen, in order to have 

an optimized approximation of Uh to v and minimize the error. 

 

  Div stands for divergence. In cartesian coordinates it is computed as below: 

 

 
U V W

div F F
x y z

  
    

  
  

 

  Gradient is the generalization of the derivative of a function in one dimension to a function 

in several dimensions. In cartesian coordinates it is computed as below: 

 i j+ k
f f f

f
x y z

  
  

  
  

 

2p v f     

 

The load f  is known and it is in the form of a vector. Below, f  is further expanded. 

Pressure p is unknown and in scalar form, as it changes from point to point. The result of 

p  though is in vector form. Viscosity   is also in scalar form, for the same reasons as 

pressure, but its value is known. Finally, velocity v  is in vector form and its value is 

unknown. The result of 2v  is also in vector form and it is explained in the next page.  
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External Load Vector 

 

( , ) [ (x, y), (x, y)]x y x y x yf f i f j f f f f        

 

Pressure Space 

 

( , )p p x y  (3.9) 

 

p p
p i j

x y

 
  

 
  

 

Velocity Space 

( , ) [ ( , ), ( , )]x y x y x yv v i v j v v v x y v x y       

 

( , ) ( , )
yx

x y

vv
div v v v v

x y x x

 
    

   
   

 

  The result is in scalar form 

2 22 2
2

2 2
( ) ( , )( ) ( , )

y y yx x x
v v vv v v

v v
x y x x x x y x y y

     
       

         
  

 

  The result is in vector form. A more analytic explanation of the equation is shown below 

in equation 3.13. 

 

2p v f     

2 22 2

2 2
( ) [( ) ( ) ]

y yx x
x y

v vv vp p
i j i j f i f j

x y x x y x y y


   
      

       
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22

2

yx
x

vvp
f

x x x y
 


  
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22

2

yx
y

vvp
f

y x y y
 


  

   
 

 

 

  As the fluid is incompressible, this assumption is made: 

 

( , ) ( , )
yx

x y

vv
v v v

x y x x

 
   

   
 

 

0 0
y yx x

v vv v
v

x x x x

  
       

   
 

 

  An ideal fluid is incompressible that is, it has no shear stress, only normal stress. 

 

Figure 3.6 

Depiction of a real experiment and a virtual simulation of a flow 

(http://www.mathematik.ni-dortmund.de) 

 



Simulation of Human Aorta and Isogeometric Fluid Analysis 

86 

 

  



Geomiso Bio 

87 

 

 Geomiso Bio 
 

4.1 Introduction 
 

 

  Geomiso Bio is an innovative diagnostic tool that works as a plugin for Geomiso. It 

utilizes the graphic environment and the refinement solver of Geomiso, so that the user can 

draw the model of thoracic and abdominal aorta (the coarse mesh). Next, the required fine 

mesh will be produced and entered as data in the plugin. Post processing of the results will 

also utilize the graphic environment of Geomiso. The Geomiso will also provide the 

external load solver, the boundary condition solver and the transition functions of the 

values from the control points to the material points.

  

  The geometry will be exported from the MRI apparatus. The initial coarse mesh of the 

geometry of the thoracic/abdominal aorta will be created by Geomiso. Then, through the 

automated solver, the required fine mesh will be produced. This fine mesh will be used, in 

order to create the BioMesh.

   BioMesh contains the following fields: 

1. Geometry 

2. Pressure 

3. Velocity 

4. Stiffness Matrix 

5. External Load 

6. Boundary Condition 

7. Solver 

8. Fluid Parameter 

 

  The required results (the output of Geomiso Bio) are the velocity and pressure at control 

points. From the values of the pressure at control points and the corresponding shape 

functions, the distribution of pressure at all material points of the model is resulting. The 

same procedure is followed for the velocity. 

 

This distribution will be depicted with contours. The contours will diagnose the 

problematic areas with high values of pressure. Parametric investigation will be     

conducted for the systole and the diastole of the heart. The illustration points are used for 

the purpose of research.  
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  The parameterization of geometry is given at the corresponding sheet, while the data of 

pressure are given at the sheet “Bio”. 

 

  The Geomiso Bio solver works with fluid analysis. The difference between fluid and 

linear analysis of elements is that the velocity and the pressure are the unknowns. 

Furthermore, the isoparametric concept in this case is relaxed, because we need to define 

different shape functions for pressure and velocity. 

 

  The input for the solver is always a coarse mesh of the physical space, as CAD works 

with the minimum required control points. Then, solver applies refinement to the coarse 

mesh in order to produce a finer one. Refinement refers to pressure space, means that the 

mesh of the pressure space is the fine mesh of the corresponding coarse mesh of the 

geometry. 

 

  Index space is just helpful for the nurbs. Index space helps the user to understand how the 

control points are defined (as the middle of the influence field of a base function). The 

influence field of a base function equals always p+1 knot value spans. Knot spans are the 

non-trivial knot value spans. This is how the rule n+p+1= number of knot values occurred. 

The determinant space is the parametric space. 

 

  Geomiso distinguishes the patches by primary and secondary. The primary patches are 

defined by the variant “Patch_Number”. Every primary patch has its own Knot Value 

Vector and it is described only by discontinuities C-1. The primary patch may contain 

secondary patches, which are described by discontinuities C-1, as well as by discontinuities 

C-0. The secondary patches do not have their own Knot Value Vectors. 

 

  Every space is described with different shape functions. The geometry space is described 

by NURBS shape functions, while the pressure and velocity spaces are described by B-

SPLine shape functions. 

 

Some details about velocity and pressure space: 

 

12. The pressure is applied perpendicularly on the surface while the velocity is on the 

same direction with the surface 

 

13. The freedom degrees of velocity on the direction x and y are independent between 

them 

 

14. Velocity and pressure have common mesh, finite elements and gauss points. They 

have different continuity, shape functions, control points and knot value spans. 
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4.2 Element Types 
 

  On analysis, three types of finite fluid elements are used: Raviart-Thomas, Taylor-Hood, 

Nedelec. The element type defines the way from which velocity space is constructed by 

the corresponding pressure space. We have the same number of knot spans for both cases. 

The difference is the continuity and the knot value spans. In the three types, the pressure 

space is the same: 
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 p: degree 

 a: continuity 

 

  The Velocity Space though is calculated differently, depending on the type of element. 

Velocity space consists of a velocity space along the axis x and the velocity space along 

the axis y. 
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 Taylor Hood 

 

  The Taylor Hood element is the simplest of all three elements. It is a standard stable 

element used for the Stoke equations. The velocity shape function have less than the 

maximum continuity in both directions (ξ,η). Also, there is no requirement of Piola 

Transformation. The boundary conditions are simple, the velocity is zero at all sides. 

 

  The drawback of Taylor Hood elements is that they are not point-wise divergence free. 

Also, due to continuous pressure space use, the element wise mass is not conserved.  
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 Nedelec 

  The Nedelec element is something in between of Taylor Hood and Raviart Thomas 

elements. The velocity shape functions have in one of the directions the maximum 

continuity. Piola Transformation, in this case, is required in order to approximate the 

velocity field. The boundary conditions are simple, the velocity is zero at all sides. 

 

 Raviart Thomas 

  It is the most promising but also the most troublesome of all three elements. The 

velocity shape functions have in all directions the maximum continuity. Piola 

Transformation is also required in order to approximate the velocity field. The problem 

lies on boundary conditions. Beside the zero velocity at all sides, zero pressure is 

required on all corners. This leads to a poor approximation on the pressure field and to 

a restriction of accuracy to first order. 

 

 
Figure 4.1 

Pressure and velocity streamlines in Raviart Thomas elements (left) and Taylor Hood elements (right) in a 

driven cavity 

(Isogeometric Analysis: new stable elements for the Stokes equation) 

 

 
Figure 4.2 

Divergence of velocity in Raviart Thomas elements (left) and Taylor Hood elements (right) in a driven 

cavity 

(Isogeometric Analysis: new stable elements for the Stokes equation)  
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4.3 Piola Transformation 
 

  It is a different way of approximation of the velocity field. It is required on Nedelec and 

Raviart Thomas elements, in order to get stable discretizations. The Piola Transformation 

is a rotation of the coordinate system. The new shape functions are obtained from this 

formula: 

 

 
 

deti i

J
T R

J
    

 

 

 
Figure 4.3 

The difference between a Taylor-Hood stiffness matrix and a Nedelec stiffness matrix (after the Piola 

Transformation) 

(created by Eleni Michael with Geomiso Bio) 

 

  Especially on Raviart Thomas elements, an affine transformation is not appropriate, as 

this kind of transformation does not preserve orthogonality of vectors and thus the 

enforcement of continuity is not available. The Piola transformation has this ability and 

therefore it is preferred.  
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  The procedure of Piola Transformation is presented in the following flowchart: 

 

 
 

Figure 4.4 

Flowchart of Piola Transformation 

(Created by Eleni Michael with Edraw Flowchart)  
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4.4 Stiffness Matrix 
 

The stiffness matrix in fluid analysis consists of: 

 the viscosity matrix (it matches the velocity degrees of freedom) 

 the pressure matrix (it shows the relation between velocity and pressure degrees of 

freedom) 

  the equation that shows that the average pressure is zero 

 

  Special care has to be taken to assure the correct calculation of the Jacobian. The positive 

direction of axes in parameter and physical space must coincide, or else the determinant of 

the Jacobian will be negative and the matrix 
 J

 irreversible. Numerical integration on 

points of singularity, such as two points on parameter space mapped into the same point 

on physical space, has to be avoided as well as far as NURBS are concerned. 

 

The Jacobian is calculated with the geometry data. The equation that gives the Jacobian is: 
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where N is the total number of control points. 

 

  The inverse Jacobian matrix is used in stiffness matrix calculation: 

 

 
   

* *
1 22 1211 12

* *
2 2 21 1121 22

J JJ J 1
J

J Jdet JJ J





   
     

    
 

  The determinant of the Jacobian matrix is also required and is equal to: 

 

  11 22 21 12det J J J J J   
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  This means that the cartesian coordinates of the geometry control points are used as XY 

and the derivatives of the shape functions (calculated from the parameterization of 

geometry) as DN. 

  The next step is to calculate the matrices  1B  and  2B . The matrix  1B  transfers the 

strains of the element from Parameter to Physical Space and the matrix  2B  transfers the 

nodal displacements of the elements to the strains at the Parameter Space. Therefore, the 

matrices  1B and  2B  can be calculated from the equations below: 
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3 4
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  After that, the Deformation Matrix is evaluated. 

 

 
 

 
 

 
 

1 2

3 2N 3 4 4 2N

B , B , B ,
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                   

 

  Both Deformation Matrix and Jacobian are used for the formulation of each part of the 

stiffness matrix. After all the individual matrices are computed, the stiffness matrix is 

assembled. The general integration for the matrices is: 

 
 

 
 

 
 

 
 

 
n p 1 m q 1

0 0

T

2N 2N 3x32N 3 3 2N

K B , E B , t det J d d
    

   

                   

 GP 
: the total number of Gauss Points per  for the specific Patch 

 GP 
: the total number of Gauss Points per  for the specific Patch 

 
i j,    : the coordinates of the tensor product Gauss Point i,  j  

 GP GP

i jw ,  w  : the corresponding weights 

 [K]: viscosity or pressure matrix 

 [E]: matrix with viscosity values or values of shape functions and the divergence 

(div).  
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  With numerical integration the values of the matrix are computed with a very small 

error.  The Viscosity Matrix has a similar way of calculation with solids (the first 

derivative of shape functions is used). The only difference is the use of viscosity instead 

of Young’s module and Poisson coefficient. 

 

  The Pressure matrix is even more different as it utilizes the values of shape functions and 

the divergence (div). 

 

  The form of the stiffness matrix is the following: 

• [A] : Stiffness Viscosity Matrix (Velocity - Velocity DoFs) 

• [B]: Stiffness Pressure Matrix ( Velocity – Pressure DoFs) 

• [E]: Equation for Average Pressure=0 (1 line) 

 

 
 

 
Figure 4.5 

 The form of the Stiffness Matrix 

(created by Eleni Michael with Geomiso Bio)  
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  The structure of the code is presented in the following diagram: 

 

 

Figure 4.6 

Flowchart of Geomiso Bio 

(Created by Eleni Michael with Edraw Flowchart)

 

 



Geomiso Bio 

97 

 

4.5 Parameterization 
 

4.5.1 Introduction 
 

  The CAD researchers wish for the minimum number of control points. On the other 

hand, CAE researchers seek for maximum number of control points. As the input will 

be given from a CAD program, the initial mesh will always be coarse. As the analysis 

proceeds, a refinement on the mesh is required, so that the maximum number of control 

points (that the CAE program requires) is achieved. 

  As a first step a simple equivalent geometry of the aorta is investigated. 

 

 

Figure 4.7 

 Arterial cross-section template based on a NURBS mesh of a circle that is subsequently mapped onto a 

patient-specific geometry. Fluid and solid regions are identified and separated by an interface (Isogeometric 

Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes,Yuri Bazilevs, 

p.261,f.10.7) 

 

 Coarse mesh of a circle 

  The minimum required control points, in order to create a circle are nine. The minimum 

case is a triangle.  
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In the following figures, the procedure of designing the geometry model is shown step by 

step. 

 

 

Figure 4.8 

The NURBS mesh for a circle comprised of four 90◦ arcs. All of the control points lie on a square in which 

the circle is inscribed. Five of the control points (one repeated value) are on the circle itself and have a 

weight of 1, while the remaining control points are at the corners of the square and have a weight of 1 √2. 

(Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.59,f.2.35) 

 

 

Figure 4.8 

Control points for the inner edge at the top of the pipe. Note that the weights (in blue) are frequently stored 

as the fourth component of the control point that they are associated with, but we do not consider them to 

be part of the control point itself. 

(Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.61,f.2.37) 
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 Coarse mesh of an annulus 

  In order to describe as simple as possible the geometry of the section of the aorta, an 

annulus is used. 

  The minimum required control points for the annulus are 18 (9 for the outer circle and 9 

for the inner circle). 

 

Figure 4.9 

The annular surface at the top of the pipe. The control points for the outer edge are shown. (Isogeometric 

Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, Yuri Bazilevs, 

p.61,f.2.38) 

 

 

Figure 4.10 

Table with all the coordinates of the control points of the annulus 

(Table created by Eleni Michael)  

X Y Z W

B1 1 0 0 1

B2 1 1 0 0,707107

B3 0 1 0 1

B4 -1 1 0 0,707107

B5 -1 0 0 1

B6 -1 -1 0 0,707107

B7 0 -1 0 1

B8 1 -1 0 0,707107

B9 1 0 0 1

B10 2 0 0 1

B11 2 2 0 0,707107

B12 0 2 0 1

B13 -2 2 0 0,707107

B14 -2 0 0 1

B15 -2 -2 0 0,707107

B16 0 -2 0 1

B17 2 -2 0 0,707107

B18 2 0 0 1
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 Parametric axis ζ 

  The simplified geometry of a section of the aorta has already been described on the 

previous sections. The geometry of the aorta is simulated as a cylinder. 

  The minimum control points of cylindrical annulus are 36. 

 

 

Figure 4.11 

 The artery template should be refined somewhat before deformation to fit the patient- specific geometry. 

Smaller elements in the fluid domain near the fluid–solid boundary allow for better resolution of the 

resulting boundary layer. 

(Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.275,f.10.A.2) 

 

 

Figure 4.12 

 The geometrical mapping of this solid cylinder has a degeneracy along its axis. This results in a singularity 

in the inverse mapping. In practice, however, such meshes have been used successfully.  

(Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.58,f.2.33) 
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Figure 4.13 

The control lattice for the cylindrical portion of the pipe. Note that there are three levels of control points, 

one corresponding to each of the three quadratic NURBS functions in the ζ-direction of this element. 

(Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.62,f.2.40) 

 

 

Figure 4.15 

Table with all the coordinates of the control points of the cylindrical pipe 

(Table created by Eleni Michael)  

X Y Z W X Y Z W

B1 1 0 0 1 B19 1 0 4 1

B2 1 1 0 0,707107 B20 1 1 4 0,707106781

B3 0 1 0 1 B21 0 1 4 1

B4 -1 1 0 0,707107 B22 -1 1 4 0,707106781

B5 -1 0 0 1 B23 -1 0 4 1

B6 -1 -1 0 0,707107 B24 -1 -1 4 0,707106781

B7 0 -1 0 1 B25 0 -1 4 1

B8 1 -1 0 0,707107 B26 1 -1 4 0,707106781

B9 1 0 0 1 B27 1 0 4 1

B10 2 0 0 1 B28 2 0 4 1

B11 2 2 0 0,707107 B29 2 2 4 0,707106781

B12 0 2 0 1 B30 0 2 4 1

B13 -2 2 0 0,707107 B31 -2 2 4 0,707106781

B14 -2 0 0 1 B32 -2 0 4 1

B15 -2 -2 0 0,707107 B33 -2 -2 4 0,707106781

B16 0 -2 0 1 B34 0 -2 4 1

B17 2 -2 0 0,707107 B35 2 -2 4 0,707106781

B18 2 0 0 1 B36 2 0 4 1
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  The following figures show a case of an abdominal aneurysms and the various models 

of geometry, as done by J. Austin Cottrell, Thomas J. R. Hughes,Yuri Bazilevs in 

“Isogeometric Analysis Toward Integration of CAD and FEA”. 

 

 
(a) Patient-specific imaging data 

 

 

  
(b) Skeleton of the NURBS mesh  
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(c) Isogeometric Analysis Toward Integration of CAD and FEA with color-coded patches. The 

computational mesh consists of 44,892 quadratic NURBS elements. 
 

Figure 4.16 

Flow in a patient-specific abdominal aorta with aneurysm, obtained by using a 64-slice CT angiography. 

((Isogeometric Analysis Toward Integration of CAD and FEA, J. Austin Cottrell, Thomas J. R. Hughes, 

Yuri Bazilevs, p.262,f.10.8) 

 

  The number of patches that are needed to describe the aorta is seven: 

1. Abdominal aorta 

2. Descending aorta 

3. Aortic arch 

4. Ascending aorta 

5. Sinotubular junction 

6. Aortic root 

7. Annulus 

 
  Areas, like the annulus, have a very complex geometry and thus, isogeometric analysis is 

the best approach for bioengineering problems. In medicine, even the smallest detail 

matters, as in many cases is a matter of life and death.  
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4.6 External Load 
 

  Having created the stiffness matrix with the procedure described in 4.4, it is now 

imperative to define loads, which comply with the actual load situation of the examined 

structure. In finite element analysis (FEA), external loads act on the nodes of the structure, 

which are at the same time material points. In isogeometric analysis (IGA), external loads 

are imposed not on material points, but on the control net. It is obvious that this handling 

is far away from a young engineer’s perception, who is used to act loads directly on points 

belonging to the model geometry. The only case in IGA where a load imposed at a control 

point and a material point at the same time is at interpolatory control points. We should 

keep in mind that, regardless the type of the external loads chosen for the analysis, the final 

forces will be implemented on interpolatory control points, due to the fact that only 

interpolatory control points can be loaded. In case a f(ξ,η,ζ) load has to be distributed on 

control points, that are not interpolatory to the curve, it has to be transformed into 

equivalent concentrated loads by integration : 
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More specifically, for each case: 

 

1D: 
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2D: 
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3D: 
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This way, the load vector 
 F

 is assembled. 
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Figure 4.17  

Physical space. Quarter of an annulus. 2D Analysis. 

Red color refers to free control points and yellow to the supported ones. 

Concentrated loads have been acted at green control points. 

(Created with Geomiso) 
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4.7 Boundary Conditions 
 

  A crucial step, that allows analysis to be done, is the enforcement of the boundary 

conditions, as structures cannot be analyzed when they are not stable. This means that some 

degrees of freedom will be free and some have to be fixed, i.e. their values of pressure and 

velocity will be zero. These degrees of freedom are called stationary and their 

corresponding rows and columns are deleted from the stiffness matrix and the load vector. 

The stiffness matrix and the load vector having only free degrees of freedom are 
 ffK

 and 

 fF
 respectively. The solution of the equation is the final step in analysis: 

 

           
1

f ff f f ff fF K D D K F


      

 

  The (zero) values for the stationary degrees of freedom are added back to the result 

creating the pressure and velocity vector 
 D

. 
 
  The necessity of applying boundary conditions and the inability to apply strong 

formulation leads to the application of a weak one. The weak formulation of such boundary 

conditions demands that they are applicable on a finite number of points. The enforcement 

of the boundary conditions takes place at the control points of the structure. Each control 

point has one, two or three pressure degrees of freedom and two, four or six velocity 

degrees of freedom for 1D, 2D and 3D analysis respectively. In this reference, we deal with 

the enforcement of 2D boundary conditions, which are enforced at the corners of the 

domain’s boundaries. At these points, basis functions have C-1 continuity and one 

component of them refers to corner control point. We aim to these control points’ 

commitment only when their corresponding basis function has non-zero value. Having set 

zero corner control point’s pressure, we ensure that all the material points of the specific 

boundary side have zero pressure values, too. For example, on parametric axis ξ: 

 
1

1 11 1
1 2 2
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n p n p n p

i i n p ii i n p i
i i i
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  Τhe procedure of the boundary condition enforcement is getting complicated, because the 

domain of influence of each control point overlaps the domains of its adjoining control 

points. Compared with finite element analysis, in which control points are simultaneously 

material points, in isogeometric analysis control points may be points out of the structure’s 

body. So, another difficulty is ahead, concerning the enforcement of boundary conditions 

in IGA. Enforcing boundary conditions in this way, we do not deal with a general case of 

mixed conditions on a boundary domain. Every researcher should give special attention to 

its implementation and dare with all the above difficulties. 
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5. Human Circulatory System 
 

5.1 Real geometry of aorta 
 

The aorta originates from the left ventricle with the aortic root and ends in the abdomen 

with the iliac bifurcation. Its purpose is to provide oxygenated blood from the left ventricle 

to all organs of the human body through the systemic circulation. It can be divided on four 

main segments: the ascending aorta, the aortic arch, the descending aorta and the abdominal 

aorta. 

  The aorta can be simulated as a wind turbine. It stores kinetic energy during systole, which 

is delivered during the diastole so that the aortic pressure is maintained on the same level. 

 

 

Figure 5.1 

How diastole and systole works 

(www.gesundheit.de) 

 

 

5.1.1 Thoracic aorta 
 

    The size of the thoracic aorta follows the shape of a cone. The size of the aorta depends 

on various parameters such as: age, sex, body surface area (height and weight), and daily 

workload.  

  

http://www.gesundheit.de/lexika/medizin-lexikon/windkessel
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  The thoracic aorta consists of the following six segments: 

 

 Annulus 

Annulus is the formation of a virtual ring at the base of the aortic root. The shape of 

this ring is elliptical. It is also known as the area of the three folds. The annulus opens 

during the systole of the heart and closes during the diastole. In figure 5.2 this part 

of thoracic aorta is shown as the bottom formation of a ring in the annulus. 

 

 Aortic root 

Aortic root is actually the aortic valve. This term contains the sinuses of Vasalva and 

the valve leaflets. The two limits are the annulus and the sinotubular junction. Figure 

5.2 shows in color the parts that substitute the aortic root. 

 
 

Figure 5.2 

Thoracic aorta. 

Ascending aorta and aortic root with its parts are depicted in color. 

The components of aorta are leaflet, commissure, sinus of Vasalva, inter leaflet triangle, sinotubular 

junction and leaflets attachment. 

(http://www.annalscts.com) 

 

 Sinotubular Junction 

It is where the normal tubular of the aorta is attained. The normal diameter for this 

ring is around 2.8 cm. In figure 5.2 this part of thoracic aorta is shown as the top 

formation of a ring in the annulus. 

  

http://www.annalscts.com/
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Figure 5.3 

Depiction of the sinotubular junction (blue ring) and the annulus (green ring) 

(Anatomy and Function of Normal Aortic Valvular Complex) 

 

 Ascending Thoracic Aorta 

The ascending aorta is the initial part of the aorta. It rises superiorly from the left 

ventricle and it has a length of approximately 5 cm. The normal value of the diameter 

of the ascending aorta is lower than 2.1 cm/m2. 

 

 Aortic Arch 

The aortic arch is the segment that links the ascending and descending aorta. 

 

 Descending Thoracic Aorta 

The descending aorta contains a thoracic part and an abdominal part. The size of the 

descending aorta is lower than 1.6 cm/m2. 

 

 
Figure 5.4 

The geometry of thoracic aorta 

(Contemporary Reviews in Cardiovascular Medicine)  
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5.1.2 Abdominal Aorta 
 

  The abdominal aorta has a diameter lower than 3cm/m2. It is a direct continuation of the 

thoracic descending aorta. Through the length of the aorta there are six paired branches, 

where the most of them are in the abdominal part. These six paired branches are: 

 bronchial arteries 

 mediastinal arteries 

 esophageal arteries, 

 pericardial arteries 

 super phrenic artery  

 intercostal arteries 

 

  The intercostal branches are in fact nine. The right branches are longer than the left (the 

descending aorta is placed on left side of the vertebrae). All this branches have a purpose: 

they provide blood to several organs and areas, such as the lungs, esophagus and chest area. 

 

 
 

Figure 5.5 

Abdominal aorta with its branches. 

(www.uwhealth.org) 

 

  The definition of all these seven areas (six areas of thoracic aorta and one of abdominal 

aorta) is important, because each area defines a patch. Patches are segments of the entire 

geometry of an object. This segmentation happens due to different materials or alteration 

of geometry. The border between two patches is where the continuity stops.  

http://www.uwhealth.org/files/uwhealth/docs/pdf6/EEC_courses/paramedic_training_60/abdominal_trauma.pdf
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5.2 Aneurysms 

 
  Aneurysm is a local permanent non reversible dilatation of the aorta by at least 50% of its 

normal size (according to the patient’s height weight and sex). Aneurysms are classified as 

abdominal or thoracic (the thoracic aneurysm grow faster than abdominal ones, on old 

patients).The majority of them are abdominal. An abdominal aneurysm is any area in the 

abdominal aorta with diameter over 3cm and they usually appear in the area below the 

renal arteries. The thoracic aneurysms can be in the ascending aorta (between aortic 

annulus and innominate artery), aortic arch, descending aorta (in the area of the left 

subclavian artery) and thoracoabdominal aorta. A real aneurysm is in fact the case of 

dilatation of all three layers of the aortic wall. 

 

 
Figure 5.6 

Comparison of a healthy aorta and an aorta with aneurysm 

(www.aggeia.com) 

 

  The aneurysm happens in three phases. First, as an aftermath of the degradation of the 

elastin and the high production of collagen, the aneurysm expands (from 2cm to 3cm). 

Next, on the second stage the collagen degenerates and the diameter reaches at 5 cm. finally 

on the third phase the degeneration of collagen accelerates and in combination with the 

continuous increase of diameter the result is the rupture of aorta. 

 
Figure 5.7 

Detail of aortic aneurysm 

(http://patient.info/health/abdominal-aortic-aneurysm)  

http://www.aggeia.com/category/%CF%80%CE%B1%CE%B8%CE%B7%CF%83%CE%B5%CE%B9%CF%83/%CF%80%CE%B1%CE%B8%CE%B7%CF%83%CE%B5%CE%B9%CF%83-%CE%B1%CF%81%CF%84%CE%B7%CF%81%CE%B9%CF%89%CE%BD/a%CE%BD%CE%B5%CF%85%CF%81%CF%85%CF%83%CE%BC%CE%B1-%CF%84%CE%B7%CF%83-%CE%BA%CE%BF%CE%B9%CE%BB%CE%B9%CE%B1%CE%BA%CE%B7%CF%83-%CE%B1%CE%BF%CF%81%CF%84%CE%B7%CF%83
http://patient.info/health/abdominal-aortic-aneurysm
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  A patient that suffers from aortic rupture usually dies within 6 hour from the moment of 

rupture. A doctor can predict if there is a high risk of rupture from the size of the aneurysm. 

On the time of rupture there is acute pain and the patient collapses, gets in shock or dies. 

 

  A cause of aneurysm may be a trauma. Also, after an inflammation of the aortic wall or 

because of a dissection of aorta (this case has a higher rate of diameter’s increase) 

 

  Whether a patient with a traumatic rupture of an aneurysm will survive, is depended on 

the period of time since the rupture, the rest injuries and the medication. The causes of the 

traumatic rupture are that the body decelerates after the crash with an immobile body and 

the immediate damage on thorax after the crash. So the real causes of damage are the forces 

on the body of the patient that create strain, rupture, bending and explosion on the wall of 

aorta due to the high stent pressure. 

 

  An aneurysm due to acute dissection of the aorta must be treated surgically immediately. 

The kinds of the aortic dissections are categorized as type I, II or III. During the dissection 

the aorta is torn in the media (the middle layer). Then, blood flows through the various 

“holes” from the lumen to the media. Due to this fact, a false lumen is created in the area 

of the half diameter. The rupture is often transverse and “covers” the intima and almost all 

the media. As to the diameter, the disorder happens in more than the half diameter of the 

aorta. The causes of dissection are high blood pressure and the degeneration of the media 

layer. The pain of the dissection is sharp and intense. Another feature of the pain of aortic 

dissection is that it continually migrates. Patients often describe the pain as if their internal 

organs are torn. The best way to face this disorder (after it is diagnosed) is with medication, 

so that the pain is reduced, the dissection stops and the risk of rupture is avoided. If the 

doctor decides on surgery, the reason is that the dissection is near a “risky” area or that the 

danger of rupture is high. During the surgery the problematic length of the aorta is replaced 

with a tubular graft. 

 

  The aneurysms of aortic root are usually ruptured on the side of the right atrium or free 

(in no specific direction). Similar behaviors show the aneurysms of the ascending aorta. 

 

 
Figure 5.8 

Several cases of aortic aneurysms 

(www.aorticdissection.com)  

http://www.aorticdissection.com/
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  If an aneurysm has a diameter larger than 5cm, a surgical interference is required. If not, 

there is the risk of rupture or dissection. The critical diameters for these risks are 6cm for 

the ascending thoracic aorta and 7cm for the descending thoracic aorta. 

  Below there is a table that shows, according to the body surface area and the size of 

aorta how high is the risk of an aneurysm. 

 

 
Figure 5.9 

The risk of an aneurysm based on the aortic size and the body surface area. 

(American College of Cardiology Foundation) 

 

  The risk factors are atherosclerosis-hypercholesterolemia (are they the same??), family 

history, tobacco smoking, male sex, increasing age, white race, prior vascular diseases, 

hypertension, renal failure, previous aortic aneurysm repairs or chronic obstructive 

pulmonary diseases. The causes may be trauma, infections, inflammatory diseases and 

connective-tissue disorders, aortitis, weightlifting, amphetamines and cocaine (the three 

last “activities” are risky possibly due to the fact that during them a steep rise of blood 

pressure). 

 

  The real problem with aneurysms is that most of the thoracic aneurysms are asymptotic 

and they are often misdiagnosed. So, they are usually located by luck or too late (after they 

are ruptured). 

 

 
Figure 5.10 

Repair of a descending thoracic aortic aneurysm with a stent 

(http://www.cardiachealth.org/thoracic-aortic-aneurysm)  

BSA 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

1.30 2.69 3.08 3.46 3.85 4.23 4.62 5.00 5.38 5.77

1.40 2.50 2.86 3.20 3.57 3.93 4.29 4.64 5.00 5.36

1.50 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00

1.60 2.19 2.50 2.80 3.13 3.44 3.75 4.06 4.38 4.69

1.70 2.05 2.35 2.65 2.94 3.24 3.53 3.82 4.12 4.41

1.80 1.94 2.22 2.50 2.78 3.06 3.33 3.61 3.89 4.17

1.90 1.84 2.11 2.37 2.63 2.89 3.16 3.42 3.68 3.95

2.00 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

2.10 1.67 1.90 2.14 2.38 2.62 2.86 3.10 3.33 3.57

2.20 1.59 1.82 2.05 2.27 2.50 2.72 2.95 3.18 3.41

2.30 1.52 1.74 1.96 2.17 2.39 2.61 2.83 3.04 3.27

2.40 1.46 1.67 1.88 2.08 2.29 2.50 2.71 2.92 3.13

2.50 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

low risk(~4% per year)

moderate risk(~8% per year)

severe risk(~20% per year)

Aortic Size (cm)
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5.3 Medical Imaging 
 

  Medical imaging is a procedure for creating visual representations of human parts. It 

shows internal structures that are surrounded by skin and bones, without arising the 

problem of superimposition. They are widely used as it is a noninvasive way for detection 

of diseases, pre-surgical planning or for after-surgical follow-up. 

 

  There are several technologies of medical imaging being used in medicine, but in every 

case the doctor chooses the appropriate one, that will give the best results.  

 

  These technologies are: 

 Magnetic resonance imaging 

 Ultrasonography 

 Endoscopy 

 X-ray radiography 

 Elastography 

 Tactile imaging 

 Thermography 

 Medical photography 

 Positron emission tomography 

 Fluoroscopy 

  

 

  Medical imaging and equipment are used often in Biomechanics for the procedure of 

geometry processing. Usually a combination of apparatus is needed, as the results are not 

clear or missing information. This kind of apparatus often have low contrast and their 

results are often incomplete. Therefore the data from the patient need some analysis and 

clean-up, before using them for the solution of the problem. 

  In medical procedure, imaging is critical. The results of imaging are used for diagnosing 

and after surgery monitoring. Doctors are interested in watching the area of the heart and 

aorta during the phase of systole and diastole. 

 
Figure 5.11 

Cross section of an abdominal aneurysm 

(http://emedicine.medscape.com)  

http://emedicine.medscape.com/
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5.3.1 Axial Tomography 
 

  Computerized Axial Tomography Scan (CAT scan) is a medical imaging technique that 

gives results from combinations of many X-Ray images from different angles. The user 

can see any cross sectional image from the spot that he is interested without actually cutting 

the object. It is also known as X-Ray computed tomography (X-Ray CT). The machine 

takes two dimensional radiographic images around an axis of rotation. The result is a three 

dimensional picture of the object. The interesting fact about CT scan is that it is not used 

only for medical imaging but for industrial reasons too. Medical imaging is the most 

common application and it helps with diagnosing and decisions making for the healing 

process. 

  In some cases contrast materials are used, that highlight objects that are difficult to 

delineate from their surroundings (e.g. blood vessels). These materials can also provide 

useful information about tissues. 

Procedure 

  The object investigated is surrounded by an X-ray source and X-ray sensors in opposite 

sides. There is continuous rotation of the source and sensors while the object slowly and 

smoothly slides through the ring. Due to this rotation, the machines are called helical or 

spiral CT machines. Some machines have multiple rows of sensors, which are capturing 

multiple cross-sections on the same time. 

  A sinogram is a visual representation of the raw data, that it is not sufficient for 

interpretation. The raw data are actually projections of the object being scan. With Radon 

transformation, the raw data create the structure of the object. 

 

(a) Image of an off-centered disk in the (x,y) space 
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(b) Image of a sinogram. Radon transformation X-axis: angle, Y-axis: parameter t 

Figure 5.12 

Depiction of real geometry and produced raw data 

(oftankonyv.reak.bme.hu) 

 

  Two-dimensional CT images are conventionally rendered so that the view is as though 

looking up at it from the patient's feet. Hence, the left side of the image is to the patient's 

right and vice versa, while anterior in the image also is the patient's anterior and vice versa. 

This left-right interchange corresponds to the view that physicians generally have in reality 

when positioned in front of patients. 

Advantages 

  

 The results are in high contrast resolution 

 Every difference between tissues that differ in physical density by less than 1% is 

distinguished 

 There is no problem with the superimposition of surrounding objects 

 Data from a single CT imaging procedure consisting of either multiple contiguous 

or one helical scan can be viewed as images in the axial, coronal, or sagittal planes, 

depending on the diagnostic task  

http://oftankonyv.reak.bme.hu/tiki-index.php?page=The+sinogram
https://en.wikipedia.org/wiki/Axial_plane
https://en.wikipedia.org/wiki/Coronal_plane
https://en.wikipedia.org/wiki/Sagittal_plane
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Disadvantages 

 

 The patient is exposed to a moderate to high radiation that can even lead to cancer. 

As a result, doctors try to avoid using this scan, especially in the case of children. 

When an MRI can be used, it is preferred. 

 The procedure involves injected radiocontrast agents. These agents have some side 

effects, such as nausea, vomiting, or an itching rash. In rarer case anaphylaxis may 

occur, which is an effect than can lead to death when the patient is of poor health. 

 It shows only an image and not data like flow velocity or wall shear stress 

 

 
Figure 5.13 

CT scan machine 

(www3.gehealthcare.in) 

 

 
Figure 5.14 

CT scan of an abdominal aneurysm. The aneurysm is right before rupture 

(circ.ahajournals.org)  

http://www3.gehealthcare.in/en/products/categories/computed_tomography
http://circ.ahajournals.org/content/111/6/816.full.pdf
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5.3.2 Magnetic Tomography 
 

  Magnetic Resonance Tomography (MRT) is a medical imaging technique used in 

radiology for investigation of the patient’s anatomy and physiology. It is also known as 

Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance Imaging (NMRI). 

It works with magnetic fields and radio waves in order to formulate images of parts of the 

body. Subsequent pictures are taken with a difference of mere miliseconds, so the object 

of research is depicted at different times. In case of cardiovascular diseases, MRI is used 

in combination with other imaging techniques, as the movement of the heart is too fast. 

Nowadays it is widely used in hospitals for diagnosing, pre-surgical planning and follow 

up. Furthermore, the kinematic sequences and volumetric areas are given 

Procedure 

  A strong magnetic field is created around the investigated object. This magnetic field must 

be strong and uniform, with a magnetic strength of 0.2-7 Tesla. Protons (hydrogen atoms) 

in tissues that contain water molecules are used to create a signal. This signal is processed 

to form an image of the body. Energy from an oscillating magnetic field is temporarily 

applied to the patient at the appropriate resonance frequency. The excited hydrogen atoms 

emit a radio frequency signal which is measured by a receiving coil. The radio signal can 

encode position information by varying the main magnetic field using gradient coils. As 

these coils are rapidly switched on and off, they produce the characteristic repetitive noise 

of an MRI scan. The contrast between different tissues is determined by the rate at which 

excited atoms return to the equilibrium state. Exogenous contrast agents may be given 

intravenously, orally or intra-articularly for more clear images. 

 

Advantages (bullets) 

 

 the patient is not exposed to any radiation 

 more sensitive than a CT and thus used for exposing small geometries 

 

Disadvantages 

 

 Expensive 

 time consuming 

 causes claustrophobia in some cases 

 not suitable for patients with cochlear implants or cardiac pacemakers  

http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Radiology
http://en.wikipedia.org/wiki/Anatomy
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Properties_of_water
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Excited_state
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Radiofrequency_coil
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
https://en.wikipedia.org/wiki/Exogeny
https://en.wikipedia.org/wiki/Intravenous_therapy
https://en.wikipedia.org/wiki/Oral_administration
https://en.wikipedia.org/wiki/Joint_injection
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5.3.3 Geomiso Bio 
 

  Geomiso Bio is working with MRI images, as MRI is the only available medical machine 

in Greek hospitals that can give the necessary data, such as velocity flow. In cooperation 

with the Greek hospital “Hygeia” and its cardiology unit, real data from patients’ MRI will 

be compared with the results of Geomiso Bio. Doctors were especially interested in 

features like finding the value of pressure in specific areas of aorta, or simulation of 

treatment in complex geometries. 

Most medical imaging files are CAD files, meaning they only show an image and they lack 

in analyzing the case (CAE). Geomiso Bio will solve this problem, as it will both creating 

an exact model of the aorta’s geometry and simultaneously analyzing it in short time. It 

will give more results for the geometry than any medical technology can give today, 

The majority of files from medical imaging apparatus are in DICOM format (.dci). DICOM 

means Digital Imaging and Communications in Medicine. A file of a medical image, also 

contains the patient’s information so that the image can never be separated from this data. 

In order to process the data, a special software is needed or the creation of a plugin for the 

connection of MRI machine and Geomiso. Special software programs are offered free 

online, while there is also a huge database of DICOM files from several cases and 

machines. 

 

 

Figure 5.15 

MRI apparatus. It is a rather large machine, which requires space and also soundproofing, as the magnets 

produce a humming sound. 

(www.universitymri.com)  

http://www.universitymri.com/service_CT.html
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(a)  a large aneurysm on the origin of the left subclavian artery 

 

 
(b) after the procedure. 

The diameter of aorta went back to normal after the placement of a stent 

Figure 5.16 

MRI images of a patient with an aneurysm in the left subclavian artery and after the surgery. The case was 

critical as the aneurysm was in danger of rupture. 

(http://www.revespcardiol.org)  

http://www.revespcardiol.org/
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5.4 Constitutive Law 

 
5.4.1 Introduction 

 
  In order to achieve an analysis that corresponds to the actual behavior of the used material, 

its properties and constitutional law have to be defined. Properties deal with elasticity 

modulus, Poisson’s ratio and specific weight. The constitutive law defines the response of 

the material under the action of external forces, depending on whether it is elastic-inelastic, 

isotropic-anisotropic, homogenous- no homogenous and includes equations which describe 

this reaction. Elastic materials tend to recover completely from deformation and return to 

their initial shape after the external load is removed. Isotropic materials have identical 

properties in all directions and the homogenous ones have identical properties at all points 

in their body. 

 

  So, the constitutive law of the material plays a major role on the analysis type that will be 

performed. Many types of analysis can be applied to a structure, varying from linear (stress 

proportional to strain) to nonlinear and static to dynamic. Linear and nonlinear analyses 

are types imposed by material properties, as explained above. The choice between static 

and dynamic analysis depends on the acceleration of the applied load in comparison to the 

natural frequency of the structure. When the load is applied slowly enough, static analysis 

can be performed. Otherwise, inertia forces should be taken into consideration and the 

suitable analysis type is the dynamic one. 

 

 
Figure 5.17 

Blood cells moving through an artery 

(www.sciencedaily.com) 

  

http://www.sciencedaily.com/releases/2011/01/110126131540.htm
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5.4.2 Aortic wall 
 

  The aortic wall has three layers: 

1. intima 

2. media 

3. adventitia. 

 

 

  The intima is the inner thin layer and the media provides the strength of the lumen through 

the formation of a spiral layer of tissue that consists of elastic fibers and smooth muscle 

cells. Finally the adventitia is the outermost connective tissue that provides the nutrition 

from the arterial and venous vasa vasorum. The thickness of the aortic wall is lower than 

4mm. 

 

 
Figure 5.18 

The cross section and detail of aortic wall. 

(http://biology.about.com)  

http://en.wikipedia.org/wiki/Connective_tissue
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  An aorta has a thick wall to carry blood at high pressure. The wall of aorta works as an 

elastic tube that has the ability to expand during a pressure pulse and to store elastic energy. 

Because of this specification of the aortic wall the blood can flow smoothly through the 

arteries to the human body. The tissue of the wall is similar with skin. It contains elastin to 

give the ability to expand and collagen to set limits to this expansion. A section of the aorta 

can be seen in figure 5.18. 

 

  The components of an aortic wall are: 

 endothelium 

 internal elastic membrane 

 smooth muscle 

 external elastic membrane 

 

  Figure 5.19 shows the image of the aortic wall’s structure from a microscope. Collagen 

strands, because of their “fiber” nature, create an elastic mesh that allows the wall to stretch 

and deform. Collagen is a protein that provides stiffness and strength and play a major role 

in the properties. 

 

 

Figure 5.19 

Collagen strands imaged by atomic force microscopy. 

(Image generated with an Asylum Research MFP-3D Atomic Force Microscope, image courtesy of Asylum 

Research UK) 

(CES database) 

 

  The mechanical characteristics of the wall of aorta vary from person to person. They 

also change through the years. They lose their tensile strength and in case of high blood 

pressure, the strain of the wall increases.  
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  The following diagrams shows the relationship between stress-strain and modulus-

pressure. Both pairs are rising exponentially. These quantities don’t have a constant value 

through the length of aorta. 

 

  Specifically on the first graph, the modulus of artery and vein increases with strain in a 

manner designed to prevent bursting. 

 

 

 
 

Figure 5.20 

Stress-strain curve for human elastic arterial tissue 

(CES database) 

 

 

 
 

Figure 5.21 

Modulus-density curve for human elastic arterial tissue 

(CES database)  
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Some of the mechanical properties of the wall are: 

 Density: 1,3e3-1,35e3 kg/m3 

 Young’s modulus: 8e-4-0,0015 GPa 

 Elongation strain: 74-104% 

 Mechanical loss coefficient (tan delta): 0,1-0,15 

 

  The modulus of the wall increases with strain, in order to prevent bursting. Also, the loss 

coefficient has a low value, so that at least 85% of the elastic energy is provided to pump 

blood between expansion pulses. 

 

  In order to describe an elastic material, the elastic modulus is needed. In our case, aortic 

tissue is a non linear material, so a single value of the elastic modulus cannot describe the 

aortic wall. Some assumptions are made, such as that the aortic wall is an incompressible 

material. These characteristics can vary from person to person. Doctors can determine the 

range of these values through tests and enter an average value in Geomiso Bio. 

 

 

 
 

Figure 5.22 

When mechanical properties of aorta are decreasing, danger of aortic dissection shows up. Dissection is a 

tear in the inner layer of the wall. After dissection blood flows into the wall and the layers separate, with 

danger of rupture. 

(https://ufhealth.org/uf-health-aorta-center/aortic-dissection)  
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5.4.3 Blood Properties 
 

  An assumption of a rigid wall means exclusion of pressure wave propagation and it 

overestimates the shear stress. In order to take in consideration the movement of the wall 

a computing method is needed, such as the Langrangian-Eulerian approach (How ALE 

works: The arterial wall is treated as a nonlinear elastic solid in the Lagrangian description 

governed by the equations of elastodynamics.) 

. 

  As a simplification of the problem, the fluid that interacts with the solid wall is considered 

to be a Newtonian viscous fluid governed by the incompressible Navier-Stokes equations. 

Only in a very small scale blood behaves as elastic. 

 

  The purpose of the blood is to carry the essential to the cells of the body and to carry 

waste away from them. An average adult has 5 liters of blood in his body, which consist 

8% of his total weight. Blood is circulated around the body through blood vessels by the 

pumping action of the heart. The process of systole and diastole “pushes” the blood and 

through arteries and veins, it goes to the body. 
 

 

 
 

Figure 5.23 

A real human heart with the arteries. 

(www.nickbouboulis.4ty.gr) 

 

Red blood cells are disc-shaped cells containing hemoglobin, which enables the cells to 

pick up and deliver oxygen to all parts of the body, then pick up carbon dioxide and remove 

it from tissues.  

https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Heart
http://www.nickbouboulis.4ty.gr/
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  The blood flows through the human body with the help of the heart that works as a pump. 

The velocity of the blood in the aorta is 40 cm/s. The velocity is higher during the systole 

than during the diastole. 

 

 
Figure 5.24 

The blood vessels of the human body 

(http://www.innerbody.com/) 

 

  The blood contains 55% of plasma and 45% of cells. The plasma is consisted of 92% 

water and 8% proteins and other solutes. The cells that are contained in the blood are the 

red and white blood cells and the platelets. 

 

  The blood cannot be described as a Newtonian fluid, due to the interaction of plasma and 

cells. Therefore the classic hydrodynamics cannot express the behavior of the blood. There 

is a special scientific branch for this purpose; the hemodynamics. Also, the blood is a shear-

thinning fluid, which is it has lower viscosity at high shear rates. 

 

Viscosity is a property of fluids, which shows the resistance of the substance to deform. 

The velocity of deformation is connected with the shear stress. 

  The blood viscosity is affected from many factors, such as: 

 Hematocrit 

 Plasma viscosity 

 Mechanical properties of red blood cells 

 Temperature 

 

  The normal value of blood viscosity at 37°C is 3 10-3 Pa s. 

  Even though, the blood is not a Newtonian fluid, the plasma can be described as such. 

The viscosity of plasma at 37°C is 1.2 Ns/m2. An increase of the temperature causes a 

decrease of the viscosity.
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6. Applications 

 

6.1 Bent Pipe 
 

 

  The bent pipe was first presented in Isogeometric Analysis: Toward Integration of CAD 

and FEA - J. Austin Cottrell, Thomas J. R. Hughes, Yuri Bazilevs - Wiley, 2009. It consists 

of a straight and a circular section, joined together. Parametric direction   represents the 

longitudinal direction of the pipe. Parametric direction   represents the pipe thickness and 

ζ the creation of the circular shape. 

 

 
 (a) (b) 

 

 
 (c) (d) 

 
Figure 6.1.  

(a) Physical Space and (b), (c), (d) basis functions for bent pipe.  
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  There are four patches across  , as required for the representation of a circle, and one 

patch across  , necessary for the transition from straight to circular section of the pipe. 

 

  This coarse mesh cannot produce accurate results. These are achieved, as usual, by 

Refinement. h- and k- Refinement are applied on the bent pipe. The corresponding basis 

functions on ξ, ζ are represented in Figures 6.33 (e),(f) and 6.34 (e),(f). 

 

  Refinements lead to increased continuity and element interconnectivity. The stress 

discontinuity across patch boundary on   is visible as well. 

 

  
 

(a) Physical Space 
 

(b) 
zz  contour 

 
  

  
 

(c) 
xx  contour (d) 

zx  contour 
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(e) B-SPLine basis function   

 

 

 
(f) B-SPLine basis function   

 

Figure 6.2 

h-Refinement for Bent Pipe  
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(a) Physical Space 
 

(b) 
zz  contour 

 

 

  
 

(c) 
xx  contour 

 

(d) 
zx  contour 

 

 

  
 

(e) B-SPLine basis function   
 

(f) B-SPLine basis function   

Figure 6.3 

 k-Refinement for Bent Pipe 
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6.2 Annulus 
 

  It is one of the most important applications as it simulates a section of aorta. Only a quarter of the 

annulus has to be analyzed as there is symmetry on both axis. There is a comparison of exact 

solution and the computed solution with the Geomiso software. The required results are velocity 

and pressure.  
 

  The first representation shows a NURBS geometrical model. The coarse mesh is shown with the 

minimum required number of control points, which is nine (shown in red color in figure 6.4). For 

the time only the 2D case is investigated. 

 

 
Figure 6.4 

NURBS Geometrical Representation 

 

  A parametric investigation was made in all three elements (Taylor Hood, Nedelec, Raviart 

Thomas) with different degrees and continuities. Keeping constant the pressure degree 

(first at 2 and then at 3), the knot spans are increasing per ξ and η. Below there are the 

stiffness matrices from this investigation, as produced by Geomiso Bio. 
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(a) Knot Span=3 

 

(b) Knot Span=4 

 

(c) Knot Span=5 

Figure 6.5 

Taylor Hood stiffness matrix, Degree=2  
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(a) Knot Span=2 

 

(b) Knot Span=3 

 

(c) Knot Span=4 

 

Figure 6.6 

Taylor Hood stiffness matrix, Degree=3  
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(a) Knot Span=3 

 

(b) Knot Span=4 

 

(c) Knot Span=5 

 

Figure 6.7 

Nedelec stiffness matrix, Degree=2  
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(a) Knot Span=2 

 

 
(b) Knot Span=3 
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(c) Knot Span=4 

 

 
(d) Knot Span=5 

 

Figure 6.8 

Nedelec stiffness matrix, Degree=3  
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(a) Knot Span=3 

 
(b) Knot Span=4 

 

 
(c) Knot Span=5 

 

Figure 6.9 

Raviart Thomas stiffness matrix, Degree=2  
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(a) Knot Span=2 

 

 
(b) Knot Span=3 

 

 
(c) Knot Span=4  
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(d) Knot Span=5 

 

 
(e) Knot Span=6 

 

Figure 6.10 

Raviart Thomas stiffness matrix, Degree=3  
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  The following diagrams are showing the comparison of results’ errors (for pressure and 

velocity) between the second and third degree of pressure for every element type. 

 

 

Figure 6.11 

Taylor Hood pressure divergence. 

Comparison of pressure error between second and third degree 

 

 

Figure 6.12 

Taylor Hood velocity divergence. 

Comparison of velocity error between second and third degree 
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Figure 6.13 

Nedelec pressure divergence. 

Comparison of pressure error between second and third degree 

 

 

 

Figure 6.14 

Nedelec velocity divergence. 

Comparison of velocity error between second and third degree 
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Figure 6.15 

Raviart Thomas pressure divergence. 

Comparison of pressure error between second and third degree 

 

 

 

Figure 6.16 

Raviart Thomas velocity divergence. 

Comparison of velocity error between second and third degree 
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  A comparison between all three element types, based on the degree was also depicted.The 

following diagrams are showing the results of comparison for pressure and velocity 

respectively. 

 

 

Figure 6.17 

Pressure divergence, degree=2. 

Comparison of velocity error between the three element types 

 

 

Figure 6.18 

Velocity divergence, degree=2. 

Comparison of velocity error between the three element types  
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Figure 6.19 

Pressure divergence, degree=3. 

Comparison of velocity error between the three element types 

 

 

 
 

Figure 6.20 

Pressure divergence, degree=3. 

Comparison of velocity error between the three element types 
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  The following set of figures is showing graphically the values of pressure and their 

divergence from the exact solutions. 

  
(a) Taylor Hood 

 

  
(b) Nedelec 

 

  
(c) Raviart Thomas 

Figure 6.22 

Graphical presentation of pressure values (left) and their divergence from the exact solution (right) 

for every element type  
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  The following set of figures is showing graphically the values of velocity along the axis 

x and their divergence from the exact solutions. 

  
(a) Taylor Hood 

  
(b) Nedelec 

  
(c) Raviart Thomas 

 

Figure 6.23 

Graphical presentation of velocity x values (left) and their divergence from the exact solution 

(right) for every element type  
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  In a similar way, the next set of figures shows graphically the values of velocity along 

the axis y and their divergence from the exact solutions. 

  

(a) Taylor Hood 

  

(b) Nedelec  

  

(c) Raviart Thomas 

 

Figure 6.24 

Graphical presentation of velocity y values (left) and their divergence from the exact solution 

(right) for every element type  
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6.2.1 Conclusions 

 

  According `to the previous graphs, there is acceptable convergence even for a limited 

number of knot spans. Also, as expected, the lower order pressure approximation gives 

poorer results, while for velocity space the results were competent. 

  The fluid element types require different number of control points, due to the fact that 

every type has different continuities, even for the same number of knot spans. 

  Finally, from all three element types, Nedelec, with enhanced Continuity, produces the 

optimum results. Raviart-Thomas though is the most promising, but due to problems with 

boundary conditions, for the time it does not give the best results. 

 

 

 

 

Figure 6.25 

Graphical depiction of the vectors of velocity. On the left is the computed results (as given by the 

isogeometric software Geopdes) and the exact solution  
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Appendix 

Point Inversion 
 

Introduction 

 
Definition: 

  Having the Cartesian coordinates of a point of the NURBS-model, we want to find the 

corresponding parametric coordinates of this point. 

 

  We investigate the second method that is referred in NURBS Book (page 230), as it is 

more simple (and equally effective). The first method depends on the solution of a (linear?) 

system of equations. This method uses the Newton iteration with the form: 

 

 

 

   

     
1 2

' ( )

' '' ( ) | ' |

i i i

i i i

i i i i

f C C X
u

f C C X C


 
   

  

  
 

   
 

 

where: 

 i : the point’s parametric coordinate of iteration i 

 X : the point’s physical coordinate 

  C  : the equation of the curve 

 

 

  At first we have to set the initial value u0. According to NURBS Book, the selection 

criteria are: 

o If we know that the point is on the curve, we use the Convex Hull Property and we 

define the candidate spans.  

o We split the candidate span in (n-1) parts using n parameter values. We calculate the 

Cartesian coordinates of those parameter values. Then, we calculate the distance of 

each parametric value in Physical Space (whose coordinate we just got) from the 

given point P(X,Y,Z). We choose the point (parametric value) which has the 

minimum distance. 

 

  Actually an initial value was chosen from the corresponding Knot Value Vector. 

 

  After we apply the Newton iteration type, we have to check if the new value converges. 

Previously, I have set two zero tolerances (as data entry in Excel): 

 

ε1: a measure of Euclidean distance 

ε2: a zero cosine measure 
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  We have to check the first two criteria. 

 

1. Point Coincidence 

 

  1| |iC X    

 

The points must be close together, that is they must almost coincide. 

 

2. Zero Cosine 

 

   

   
2

| ' ( ) |

| ' | | |

i i

i i

C C X

C C X

 


 

 


 
 

 

The difference of the two points must be vertical on the direction of the derivative 

(see NURBS Book fig6.1b page 231) 

 

 
 

  If at least one of the two criteria is not satisfied, a new value is calculated. Otherwise, we 

continue. 

 

3. The parameter stays within the range of the curve 
1 1 1[ , ]i n p     . 

 

We consider that the curve is open. 

 

1 1 1 1

1 1 1 1

i i

i n p i n p

 

     

  

  

   

   

 

 

4. The parameter does not change significantly. 

 1 1| ( ) ' |i i iC        

 

  If the criteria (1), (2) or (4) are satisfied, the process is halted. 
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2D Application 
 

In case of 2D 

 

( , ) ( , )r S P      

 

( , ) r( , ) S ( , )f        

 

g( , ) r( , ) S ( , )       

 

 

1

1

i i

i

i i

 


 





   
        

 

 

2

2

| |

| |
i

f f S r S S S r S
J

g g S S r S S r S

      

      

      
    

        
 

 

 
( , )

( , )

i i

i

i i

f

g

 


 

 
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 
 

 

The system Ji.δi=κi is solved as to δ and using the next two equations the two new 

parametric values are determined: 

 

1i i       

 

1i i       

 

The convergence criteria have to be applied, with the same process as in 1D. 

1.Point Coincidence 

 

1| ( , ) |i iS P     

 

 

2.Zero Cosine 

 

2

| ( , ) ( ( , ) ) |

| ( , ) || ( , ) |

i i i i

i i i i

S S P

S S P





   


   

 



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3.Two variables are defined now, one as to ξ and one as to η. The surface is considered 

open in the two dimensions, so this is the only case investigated. 

 

Open as to ξ 

o If ( i+1<a)    i+1=a 

o If ( i+1>b)   i+1=b 

 

Open as to η 

o If ( i+1<c)    i+1=c 

o If ( i+1>d)   i+1=d 

 

4.This criterion checks that there is no significant difference between the initial parametric 

value and the final. 

 

1 1 1| ( ) ( , ) ( ) ( , ) |i i i i i i i iS S             
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3D Application 
 

In case of 3D 

 

( , , ) ( , , )r S P        

 

( , , ) r( , , ) S ( , , )f           

 

g( , , ) r( , , ) S ( , , )          

 

h( , , ) r( , , ) S ( , , )          
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1

1
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( , , )

( , , )

h( , , )

i i i

i i i i
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f

g
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 
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The system Ji.δi=κi is solved as to δ and using the next two equations the two new 

parametric values are determined: 

 

1i i       

 

1i i       

 

1i i       
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The convergence criteria have to be applied, with the same process as in the previous 

dimensions. 

 

1. Point Coincidence 

 

1| ( , , ) |i i iS P      

 

2. Zero Cosine 
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3. Three variables are defined now, one as to ξ, one as to η and one as to ζ.  The surface is 

considered open in the three dimensions, so this is the only case investigated. 

 

Open as to ξ 

o If ( i+1<a)    i+1=a 

o If ( i+1>b)   i+1=b 

 

Open as to η 

o If ( i+1<c)    i+1=c 

o If ( i+1>d)   i+1=d 

 

Open as to ζ 

o If ( i+1<e)    i+1=e 

o If ( i+1>f)    i+1=f 

 

4. This criterion checks that there is no significant difference between the initial 

parametric value and the final. 

 

 
1 1 1 1| ( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ||i i i i i i i i i i i i i i iS S S                          
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