

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

> Διπλωματική Εργασία Κατσιμίχα Παναγιώτα

«Αξιολόγηση συμπεριφοράς και ενίσχυση σεισμόπληκτου κτιρίου - Pilotis (Σεισμός Κεφαλλονιάς 2014) »

> Επιβλέπων: Σπυράκος Κωνσταντίνος, Καθηγητής Ε.Μ.Π. Συνεπιβλέπων: Ταφλαμπάς Ιωάννης, Πολιτικός Μηχανικός

> > Αθήνα, Ιούλιος 2015

Σε όλους όσους συνετέλεσαν στην πραγματοποίηση αυτής της εργασίας.

Πρόλογος

Η παρούσα διπλωματική εργασία εκπονήθηκε στα πλαίσια του προπτυχιακού κύκλου σπουδών στης Σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου στον Τομέα Δομοστατικής, στο Εργαστήριο Αντισεισμικής Τεχνολογίας, για την απόκτηση διπλώματος Πολιτικού Μηχανικού.

Τα κτίρια από οπλισμένο σκυρόδεμα αποτελούν την πλειονότητα των κατασκευών που μελετήθηκαν και οικοδομήθηκαν στην Ελλάδα τουλάχιστον έως τα τέλη της δεκαετίας του 1970. Ένας σημαντικός αριθμός από τα κτίρια αυτά, κατά τη διάρκεια σεισμών που έχουν συμβεί στο διάστημα από την κατασκευή τους έως σήμερα, έχουν υποστεί μικρότερης ή μεγαλύτερης έκτασης βλάβες. Η φυσική φθορά που υφίσταται μία κατασκευή με το χρόνο, εφόσον δεν υπάρχει πρόνοια για κατάλληλη συντήρηση και ενδεχομένως ενίσχυσή της, μειώνει την αντοχή της κατασκευής λόγω σεισμικών φορτίων. Κατά συνέπεια, ένας προοδευτικά αυξανόμενος αριθμός υφιστάμενων κατασκευών, χρήζει επεμβάσεις για την ανάληψη σεισμικών φορτίων.

Τα τελευταία χρόνια η επισκευή και ενίσχυση κτιρίων από οπλισμένο σκυρόδεμα αποτελεί ένα από τα ελάχιστα αντικείμενα του Δομοστατικού Πολιτικού Μηχανικού που γνωρίζει τόσο μεγάλη πρόοδο. Σε όλο τον κόσμο αρκετά ερευνητικά και πειραματικά προγράμματα βρίσκονται σε εξέλιξη με στόχο την αναβάθμιση των διατάξεων και κανονισμών που διέπουν το πεδίο αυτό. Ο πολυσύνθετος χαρακτήρας του τομέα των ανασχεδιασμών οδήγησε στη σύσταση ενός κανονιστικού κειμένου μελέτης των δομητικών επεμβάσεων, όπως του Ελληνικού Κανονισμού Επεμβάσεων (ΚΑΝ.ΕΠΕ.) με ενσωματωμένες Οδηγίες από το ευρωπαϊκό πρότυπο του Ευρωκώδικα 8 – Μέρος 3 (Αντισεισμικός Σχεδιασμός των Κατασκευών - Αποτίμηση της φέρουσας ικανότητας και ενισχύσεις κτιρίων, ΕΝ 1998 - 3:2005) καθώς και άλλων διεθνών διατάξεων βάσει των οποίων γίνονται πλέον οι έλεγχοι επάρκειας, αποτίμησης και ενίσχυσης των κατασκευών από οπλισμένο σκυρόδεμα.

Βασικοί στόχοι της παρούσας διπλωματικής εργασίας είναι η θεωρητική και πρακτική παρουσίαση των ελέγχων επάρκειας, που βασίζονται στις οδηγίες αυτών των Κανονισμών, η ανάδειξη και αξιολόγηση των αποτελεσμάτων αυτών, η ενίσχυση υφιστάμενου δομήματος, καθώς επίσης και η εκτίμηση των βλαβών για την ποσοτικοποίηση της επάρκειας των μέτρων ενίσχυσης.

Στο σημείο αυτό, θα ήθελα να ευχαριστήσω θερμά όλους όσους συνέβαλαν με την καθοδήγηση και τις γνώσεις τους στην πραγματοποίηση αυτής της διπλωματικής εργασίας και ιδιαίτερα τον Καθηγητή του τομέα Αντισεισμικής Τεχνολογίας της σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου, κύριο *Σπυράκο Κωνσταντίνο*, για την εμπιστοσύνη που μου έδειξε αναθέτοντάς μου το θέμα αυτό, αλλά και για την καθοδήγησή του στην αποπεράτωση αυτής της προσπάθειας. Επίσης, ευχαριστώ ιδιαίτερα τον κύριο *Ταφλαμπά Ιωάννη* για την καθοδήγηση του στο κομμάτι της αξιολόγησης των βλαβών με τη μεθοδολογία HAZUS. Ακόμη, ευχαριστώ το *Δημήτρη Κοκκινάκο* και *Δημήτρη Χιώτη* για την πολύτιμη βοήθειά τους, για τις ουσιαστικές τους υποδείξεις και για την ηθική και ψυχολογική τους υποστήριξη.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους μου που με στήριζαν ψυχολογικά στις δύσκολες στιγμές και ιδιαίτερα ένα πολύ κοντινό μου πρόσωπο που έδειξε αμέτρητη υπομονή απέναντι μου και με υποστήριζε ακόμα και σε στιγμές που ήταν σχεδόν ανέφικτο.

Κατσιμίχα Παναγιώτα

Πίνακας περιεχομένων

1	Βασικές αρχ	χές αποτίμησης υφιστάμενων κατασκευών	8 -				
	1.1 Εισαγωγή						
	1.2 Διερεύ	.2 Διερεύνηση-τεκμηρίωση φέροντος οργανισμού					
	1.2.1	Ιστορικό του δομήματος	9 -				
	1.2.2	Διερευνητικές εργασίες	9 -				
	1.2.3	Βλάβες	10 -				
	1.2.4	Στάθμες αξιοπιστίας δεδομένων (Σ.Α.Δ.)	14 -				
	1.3 Στρατη	γικές και συστήματα επεμβάσεων	18 -				
	1.3.1	Στρατηγικές επεμβάσεων	18 -				
	1.3.2	Συστήματα επεμβάσεων	19 -				
	1.3.3	Επιλογή συστήματος επεμβάσεων	23 -				
	1.3.4	Σχεδιαστικοί περιορισμοί	24 -				
	1.3.5	Διαχειριστικές στρατηγικές επεμβάσεων	24 -				
2	Μέθοδοι αν	νάλυσης υφιστάμενων κατασκευών	25 -				
	2.1 Γενικές	απαιτήσεις προσομοίωσης και ελέγχων	25 -				
	2.1.1	Γενικά- βασικοί ορισμοί	25 -				
	2.1.2	Κύρια και δευτερεύοντα στοιχεία	26 -				
	2.1.3	Αντιστάσεις στοιχείων- έλεγχοι ασφαλείας	27 -				
	2.1.4	Διαφράγματα	27 -				
	2.1.5	Συνεκτίμηση της στρέψης	28 -				
	2.1.6	Αλληλεπίδραση εδάφους – θεμελίωσης	28 -				
	2.1.7	Επιρροές 2 ^{ας} τάξεως	29 -				
	2.2 Μέθοδ	οι ανάλυσης	30 -				
	2.2.1	Γενικά	30 -				
	2.2.2	Ελαστική στατική μέθοδος	31 -				
	2.2.3	Ελαστική δυναμική μέθοδος	32 -				
	2.2.4	Ανελαστική στατική μέθοδος	33 -				
	2.2.5	Ανελαστική δυναμική μέθοδος	40 -				
3	Ενίσχυση τα	ων κατασκευών	41 -				
	3.1 Παραδοσιακές μέθοδοι ενίσχυσης κατασκευών 41						
	3.1.1	Διαστασιολόγηση επεμβάσεων	41 -				
	3.1.2	Ενίσχυση δοκών	43 -				
	3.1.3	Ενίσχυση υποστυλωμάτων	50 -				
	3.1.4	Ενίσχυση τοιχωμάτων	55 -				
	3.2 Χρήση	σύνθετων υλικών για ενίσχυση κατασκευών	58 -				

	3.2.1	Εισαγωγή- Εφαρμογές και γενικά χαρακτηριστικά	58 -
	3.2.2	Στάδια εφαρμογής σύνθετων υλικών	59 -
	3.2.3	Αρχές σχεδιασμού συστημάτων επισκευής και ενίσχυσης με σύνθετα υλι	κά - 60 -
	3.2.4	Επιβολή εξωτερικής περίσφιγξης με μανδύα σύνθετων υλικών	60 -
4	Περιγραφή	υφιστάμενου δομήματος	66 -
	4.1 Εμπρόσ	σθιο τμήμα – Τμήμα Α	71 -
	4.2 Στοιχεία	α υφιστάμενου δομήματος	75 -
	4.2.1	Σκυρόδεμα	75 -
	4.2.2	Χάλυβας	76 -
	4.2.3	Υποστυλώματα και τοιχώματα	76 -
	4.2.4	Αποτύπωση οπλισμών πλακών	78 -
	4.2.5	Αποτύπωση οπλισμών δοκών	78 -
	4.3 Προσομ	ιοίωση μοντέλου	79 -
	4.3.1	Προσομοίωση υλικών	80 -
	4.3.2	Κάνναβος σχεδίασης μοντέλου	80 -
	4.3.3	Προσομοίωση υποστυλωμάτων και τοιχωμάτων	81 -
	4.3.4	Προσομοίωση εκκεντροτήτων κατακόρυφων στοιχείων	83 -
	4.3.5	Προσομοίωση πλακών και ανελκυστήρα	84 -
	4.3.6	Προσομοίωση δοκών	86 -
	4.3.7	Τοπικοί άξονες μελών	93 -
	4.3.8	Τοιχοπληρώσεις	93 -
	4.3.9	Συνολικός φορέα	101 -
	4.3.10	Προσομοίωση φορτίσεων	103 -
	4.3.11	Στήριξη φορέα	114 -
5	Ανάλυση υφ	οιστάμενου κτιρίου με ελαστικές μεθόδους	122 -
	5.1 Ιδιομορ	φική ανάλυση	122 -
	5.1.1	Γενικά	122 -
	5.1.2	Ιδιομορφική ανάλυση πακτωμένου φορέα	122 -
	5.1.3	Ιδιομορφική ανάλυση φορέα με Α.Ε.Θ	125 -
	5.1.4	Αξιολόγηση αποτελεσμάτων ιδιομορφικών αναλύσεων	127 -
	5.2 Προκατ	αρκτικές ελαστικές αναλύσεις	128 -
	5.2.1	Δείκτες ανεπάρκειας δομικού στοιχείου	128 -
	5.2.2	Προϋποθέσεις εφαρμογής ελαστικών μεθόδων	128 -
	5.2.3	Ελαστική στατική ανάλυση	129 -
	5.2.4	Ελαστική δυναμική ανάλυση	142 -
	5.2.5	Συμπεράσματα ελαστικών αναλύσεων	150 -

6	Ανελαστική α	στατική ανάλυση – Pushover analysis	151 -
	6.1 Γενικά –	Βασικοί Ορισμοί	151 -
	6.1.1	Προϋποθέσεις εφαρμογής	151 -
	6.1.2	Βασικά χαρακτηριστικά μηχανικής συμπεριφοράς δομικών στοιχείων	152 -
	6.1.3	Αντίσταση και ικανότητα παραμόρφωσης υφιστάμενων στοιχείων	154 -
	6.1.4	Ενεργός δυσκαμψία στοιχείων οπλισμένου σκυροδέματος	156 -
	6.1.5	Παραμορφώσεις αστοχίας στοιχείων οπλισμένου σκυροδέματος	156 -
	6.1.6	Έλεγχοι ασφαλείας αναλόγως της στάθμης επιτελεστικότητας	159 -
	6.2 Υπολογια	σμός χαρακτηριστικών μηχανικής συμπεριφοράς δομικών στοιχείων κτιρίου·	- 160 -
	6.3 Προσομα	οίωση μοντέλου για ανελαστικές αναλύσεις	175 -
	6.3.1	Προσομοίωση πλαστικών αρθρώσεων δοκών	175 -
	6.3.2	Προσομοίωση πλαστικών αρθρώσεων υποστυλωμάτων	177 -
	6.3.3	Εισαγωγή απομειωμένων δυσκαμψιών	187 -
	6.4 Ανελαστ	τική στατική ανάλυση κτιρίου στο SAP	189 -
	6.4.1	Ορισμός κατανομών οριζόντιων φορτίων καθ' ύψος του κτιρίου	189 -
	6.4.2	Καμπύλες αντίστασης φορέα υπό σεισμική φόρτιση	198 -
	6.4.3	Διγραμμικοποίηση καμπυλών αντίστασης – Στοχευόμενη μετακίνηση	215 -
7	Ενίσχυση υφ	ιστάμενου δομήματος	227 -
	7.1 Γενικά –	Στόχος επεμβάσεων	227 -
	7.2 Επιλογή	και διαστασιολόγηση ενισχύσεων υφιστάμενου κτιρίου	227 -
	7.2.1	Όπλιση νέων τοιχωμάτων	228 -
	7.2.2	Όπλιση και διαστασιολόγηση μανδύα ΩΣ υποστυλωμάτων	230 -
	7.3 Προσομο	οίωση υφιστάμενου δομήματος για ελαστικές αναλύσεις	230 -
	7.3.1	Προσομοίωση υφιστάμενων και νέων υλικών	230 -
	7.3.2	Προσομοίωση νέων τοιχωμάτων στο SAP2000	231 -
	7.3.3	Προσομοίωση υποστυλωμάτων με μανδύα ΩΣ στο SAP2000	233 -
	7.3.4	Τρισδιάστατες εικόνες ενισχυμένου φορέα	235 -
	7.4 Ελαστικέ	ές αναλύσεις ενισχυμένου φορέα	237 -
	7.4.1	Ιδιομορφική ανάλυση ενισχυμένου φορέα	237 -
	7.4.2	Ελαστική δυναμική ανάλυση ενισχυμένου φορέα	240 -
	7.5 Έλεγχος	υποστυλωμάτων κτιρίου σε διάτμηση και ενίσχυση αυτών	241 -
	7.5.1	Έλεγχος των υποστυλωμάτων του ενισχυμένου κτιρίου σε διάτμηση	241 -
	7.5.2	Ενίσχυση έναντι τέμνουσας με χρήση σύνθετων υλικών	249 -
	7.6 Στατική	μη γραμμική ανάλυση ενισχυμένου φορέα	257 -
	7.6.1	Δεδομένα εισαγωγής για την ανελαστική ανάλυση του φορέα	257 -
	7.6.2	Καμπύλες αντίστασης φορέα	261 -
	7.6.3	Υπολογισμός στοχευόμενης μετακίνησης	278 -
	7.6.4	Συμπεράσματα ανελαστικής ανάλυσης ενισχυμένου κτιρίου	288 -

	7.6.5	Τροποποιημένες καμπύλες αντίστασης φορέων	288 -
8	Αξιολόγηση	βλαβών κτιρίου με τη μέθοδο HAZUS	294 -
	8.1 Ανάγκη	εκτίμησης σεισμικής διακινδύνευσης	294 -
	8.2 Μεθοδα	ολογία HAZUS	295 -
	8.2.1	Γενικά	295 -
	8.2.2	Επισκόπηση μεθοδολογίας HAZUS	295 -
	8.2.3	Επίπεδα βλάβης	298 -
	8.3 Ανάπτυ	η καμπυλών τρωτότητας υφιστάμενου και ενισχυμένου κτιρίου	302 -
	8.3.1	Καμπύλες τρωτότητας υφιστάμενου κτιρίου	302 -
	8.3.2	Καμπύλες τρωτότητας ενισχυμένου κτιρίου	313 -
	8.3.3	Συμπεράσματα αξιολόγησης βλαβών	323 -
9	Συμπεράσμα	ιτα	326 -
Βι	βλιογραφία .		328 -

Περίληψη

Η παρούσα διπλωματική εργασία πραγματεύεται το ευαίσθητο και πολυπαραμετρικό θέμα της αποτίμησης και ενίσχυσης υφιστάμενης κατασκευής μέσω ελέγχων που πραγματοποιούνται σε σεισμόπληκτο ξενοδοχείο στην Κεφαλλονιά, το οποίο υπέστη σοβαρές βλάβες μετά τους ισχυρότατους επιφανειακούς σεισμούς της Κεφαλλονιάς στις 26/1/2014 και 3/2/2014, μεγέθους Mw=6.1 ο πρώτος, Mw=5.8 ο δεύτερος, με επίκεντρο ΝΔ του Ληξουρίου και οι δύο. Καταγράφτηκε μέγιστη εδαφική επιτάχυνση ίση με 0,75g, γεγονός που αποδεικνύει τη σφοδρότητα αυτών των σεισμών. Το ξενοδοχείο βρίσκεται στην περιοχή της Κουνόπετρας, του δήμου Παλλικής και έχει μελετηθεί και οικοδομηθεί περί τη δεκαετία του '70. Τα φέροντα δομικά στοιχεία του κτιρίου είναι από οπλισμένο σκυρόδεμα και σχεδιάστηκαν σύμφωνα με τις διατάξεις του Κανονισμού Οπλισμένου Σκυροδέματος (1954) και του Αντισεισμικού Κανονισμού (1959) οι οποίες στερούνταν την αυστηρότητα των σύγχρονων Οδηγιών ως προς τη μελέτη και την επίβλεψη. Οι σοβαρότατες ανεπάρκειες που κατέδειξε ο έλεγχος επάρκειας σύμφωνα με το τελικό κείμενο του ΚΑΝ.ΕΠΕ. (2010/2011), μετά τη δυναμική ελαστική ανάλυση για το φάσμα του ΕC8 και μετά τις 8 ανελαστικές στατικές αναλύσεις, οδήγησαν στην επιτακτική ανάγκη για βελτίωση της σεισμικής συμπεριφοράς του φορέα. Αποφασίστηκε, λοιπόν, η λήψη κάποιων μέτρων ενίσχυσης, προκειμένου το κτίριο να ανταποκρίνεται στις σύγχρονες απαιτήσεις των σημερινών αντισεισμικών κανονισμών. Τέλος, έγινε εκτίμηση των πιθανών βλαβών που μπορεί να υποστεί το δόμημα υπό δεδομένο σεισμικό σενάριο (φάσμα σχεδιασμού EC8) με τη μέθοδο HAZUS. Αναλυτικότερα:

Στο *Κεφάλαιο* 1, τίθεται το ζήτημα της διατύπωσης των αρχών που διέπουν την αποτίμηση. Περιγράφονται συνοπτικά τα βήματα που ακολουθούνται κατά τον ανασχεδιασμό, ενώ παρουσιάζονται και οι βασικότερες στρατηγικές – συστήματα επεμβάσεων, ανάλογα με τις ανάγκες που υφίστανται.

Στο Κεφάλαιο 2, περιγράφονται θεωρητικά όλες οι μέθοδοι με τις οποίες μπορεί να γίνει η ανάλυση μιας κατασκευής (ελαστικές, ανελαστικές). Αναφέρονται και αναλύονται όλες οι προϋποθέσεις που ορίζει τόσο ο ΕC8, όσο και ο ΚΑΝ.ΕΠΕ για τις δύο ελαστικές και ανελαστικές αναλύσεις.

Στο Κεφάλαιο 3, παρουσιάζονται περιληπτικά και σε θεωρητικό επίπεδο οι τρόποι ενίσχυσης των διαφόρων δομικών μελών μιας κατασκευής, ενώ στο Κεφάλαιο 7 εφαρμόζονται στο υφιστάμενο κτίριο έτσι ώστε να αναβαθμιστεί.

Στο *Κεφάλαιο* 4 παρουσιάζονται τα στοιχεία, τα υλικά και οι παράμετροι του κτιρίου και των φορτίσεων που υπεισέρχονται στο προσομοίωμα, καθώς και ο τρόπος μοντελοποίησής τους στο λογισμικό SAP2000 v.15.

Στο *κεφάλαιο* 5 το μοντέλο υπόκειται σε πλήρη έλεγχο επάρκειας μετά από ελαστική στατική και ελαστική δυναμική ανάλυση, που εφαρμόζονται αφού εξεταστεί η ικανοποίηση των προϋποθέσεων που τίθενται από τους ισχύοντες κανονισμούς.

Έπειτα, στο κεφάλαιο 6 γίνεται εκτενής παρουσίαση της ανελαστικής στατικής ανάλυσης του υπό μελέτη κτιρίου. Δίνονται λεπτομερώς όλες οι παράμετροι και οι υπολογισμοί που ορίζει ο KAN.ΕΠΕ. για την προσομοίωση της ανελαστικής συμπεριφοράς των δομικών μελών, η προσομοίωση αυτών στο SAP2000 καθώς επίσης και η μόρφωση των διαγραμμάτων αλληλεπίδρασης αυτών μέσω του προγράμματος BYAXIAL.

Τέλος, αφού γίνει η διαστασιολόγηση των επεμβάσεων στο *κεφάλαιο 7*, στο *Κεφάλαιο 8* γίνεται μια προσπάθεια αξιολόγησης των βλαβών που ήταν πιθανό να συμβούν στο υφιστάμενο κτίριο, αλλά και αυτές που είναι πιθανό να συμβούν σε κάποιο επόμενο στον ενισχυμένο πλέον φορέα.

1 Βασικές αρχές αποτίμησης υφιστάμενων κατασκευών

1.1 Εισαγωγή

Η χώρα μας συγκαταλέγεται μεταξύ των χωρών με την μεγαλύτερη σεισμικότητα στον κόσμο (1^η στην Ευρώπη και 6^η στον κόσμο). Από στατιστικές και με τα μέχρι τώρα καταγεγραμμένα στοιχεία, στην Ελλάδα συμβαίνει ένας σεισμός μεγέθους 6 βαθμών της κλίμακας Richter κάθε χρόνο. Από το 1900 μέχρι και σήμερα έχουν καταγραφεί εκατοντάδες μεγάλοι σεισμοί αρκετοί από τους οποίους ήταν φονικοί και στοίχισαν την ζωή σε περίπου 1500 ανθρώπους, ενώ προκάλεσαν και υλικές καταστροφές μεγάλης αξίας.

Οι αντισεισμικοί κανονισμοί για τον σχεδιασμό και την κατασκευή των κτιρίων στην Ελλάδα, άρχισαν δειλά-δειλά να εμφανίζονται την δεκαετία 1960-1970, στην αρχή με πολύ απλουστευμένες προσεγγίσεις, μέχρι να φτάσουμε στο 1995, έτος κατά το οποίο εφαρμόστηκε για πρώτη φορά κάποιος πιο σύγχρονος αντισεισμικός κανονισμός. Το μεγαλύτερο ποσοστό κτιρίων στην Ελλάδα (85% - 3,5 από τα 4 εκατομμύρια), έχει κτιστεί πριν το 1990, απουσία σύγχρονου αντισεισμικού κανονισμού, γεγονός που σε συνδυασμό με την συχνότητα και το μέγεθος των σεισμών στην χώρα, δημιουργεί μια επικίνδυνη κατάσταση κυρίως για τους πυκνά δομημένους αστικούς χώρους.

Η αβεβαιότητα ως προς τις φορτίσεις, ειδικά τις σεισμικές και ως προς την προσομοίωση της κατασκευής με τη χρήση των ανάλογων παραδοχών, δημιουργούν προβλήματα αξιοπιστίας και βλάβες στις κατασκευές. Ο τομέας της Αντισεισμικής Τεχνολογίας, ωστόσο, έχει γνωρίσει σοβαρή πρόοδο τα τελευταία χρόνια έτσι ώστε να μπορεί να εξασφαλίζεται η προστασία και η ασφάλεια ενός νεόδμητου κτιρίου, κατασκευασμένου σύμφωνα με τον πρόσφατο Αντισεισμικό Κανονισμό, σε ικανοποιητικό βαθμό.

Σκοπός της αποτίμησης υφισταμένου δομήματος είναι η εκτίμηση της διαθέσιμης φέρουσας ικανότητάς του και ο έλεγχος ικανοποίησης των ελαχίστων υποχρεωτικών απαιτήσεων που επιβάλλονται από τους ισχύοντες κανονισμούς. Για την εκτίμηση της διαθέσιμης φέρουσας ικανότητας του δομήματος θα λαμβάνονται υποχρεωτικώς υπόψη και τα στοιχεία που προέκυψαν από την έρευνα του ιστορικού του. Ο μελετητής Μηχανικός οφείλει να προγραμματίσει και να επιβλέψει μια σειρά διερευνητικών εργασιών ώστε να τεκμηριώσει και να αιτιολογήσει τις παραδοχές στις οποίες θα βασισθεί η αποτίμηση της υφιστάμενης κατάστασης. Η διαδικασία της αποτίμησης διαφοροποιείται ανάλογα με την ύπαρξη ή όχι βλαβών στο προς αποτίμηση κτίριο. Στην περίπτωση που δεν υπάρχουν βλάβες, το αποτέλεσμα της αποτίμησης, ανάλογα με τον επιδιωκόμενο στόχο ανασχεδιασμού θα οδηγήσει στην απόφαση για ενίσχυση ή όχι του δομήματος. Στην περίπτωση που ήδη υπάρχουν βλάβες, η διαδικασία αποτίμησης έχει δύο σκέλη.

I. Αποτιμάται πρώτα το δόμημα ως έχει, με συνεκτίμηση των βλαβών. Ανάλογα με τον επιδιωκόμενο στόχο ανασχεδιασμού, το αποτέλεσμα της αποτίμησης θα οδηγήσει στην απόφαση για επέμβαση (επισκευή ή/και ενίσχυση) ή όχι. Το σκέλος αυτό της αποτίμησης πρακτικώς έχει εφαρμογή όταν οι βλάβες είναι περιορισμένες.

II. Σε περίπτωση που απαιτείται επέμβαση, αποτιμάται το δόμημα στην προ των βλαβών κατάσταση, δηλαδή με την παραδοχή ότι απλώς θα αποκατασταθούν (επισκευασθούν) οι βλάβες. Ανάλογα με τον επιδιωκόμενο στόχο ανασχεδιασμού, το αποτέλεσμα της αποτίμησης αυτής θα οδηγήσει στην απόφαση για απλή μόνο επισκευή ή για επισκευή και ενίσχυση.

1.2 Διερεύνηση-τεκμηρίωση φέροντος οργανισμού

1.2.1 Ιστορικό του δομήματος

Απαιτείται η σύνταξη του ιστορικού του δομήματος, δηλαδή η συγκέντρωση των πληροφοριών σχετικά με τις φάσεις κατασκευής, μεταγενέστερες επεμβάσεις ή αλλαγές χρήσης, φορτίων, εμφάνιση βλαβών ή φθορών κατά το παρελθόν, και τρόπος αποκατάστασής τους, έκτακτες δράσεις (σεισμοί, πυρκαγιά, πρόσκρουση, κατασκευή μμεγάλου γειτονικού έργου κ.λπ.).Στα παραπάνω περιλαμβάνονται:

Η ημερομηνία κατασκευής, ο κανονισμός μελέτης που ίσχυε και εφαρμόσθηκε, η εκτίμηση της παραμένουσας οικονομικής αξίας του κτιρίου, καθώς και πληροφορίες από τον φάκελο ποιοτικού ελέγχου (εάν υπάρχει) κατά την κατασκευή.

4 Αξιολόγηση των τευχών του φακέλου της υφιστάμενης μελέτης, η οποία περιλαμβάνει εξέταση των κατασκευαστικών σχεδίων και των υπολογισμών.

Συλλογή πληροφοριών όσον αφορά την προηγούμενη κατάσταση του κτιρίου, συμπεριλαμβανομένων των ενδεχόμενων προηγούμενων εργασιών επισκευής ή ενίσχυσης, τη συμπεριφορά κατά τη διάρκεια προηγούμενων σεισμών, τις προϋπάρχουσες βλάβες ή φθορές, καθώς και πληροφορίες από εκσκαφές που έχουν πραγματοποιηθεί σε μικρή απόσταση. Η συμπεριφορά κατά τους προηγούμενους σεισμούς (συγκριτικά και με την συμπεριφορά άλλων κτιρίων της περιοχής) αποτελεί πληροφορία η οποία θα πρέπει να λαμβάνεται δεόντως υπόψη ως μια συνολική φυσική δοκιμή της κατασκευής.

Οι πληροφορίες αυτές μπορεί να βοηθήσουν σημαντικά τη βαθμονόμηση των μεθόδων αξιολόγησης, καθώς και τη λήψη αποφάσεων. Η έκταση του ιστορικού είναι ανάλογη με τη σπουδαιότητα του αντικειμένου. Σε ιδιωτικά έργα περιορισμένης σημασίας, το ιστορικό μπορεί να είναι μια απλή καταγραφή υπευθύνων πληροφοριών που δίνονται από τον κύριο του έργου.

1.2.2 Διερευνητικές εργασίες

Οι διερευνητικές εργασίες αποβλέπουν στη συγκέντρωση στοιχείων τα οποία μπορεί να είναι χρήσιμα για την εκτίμηση της φέρουσας ικανότητας του κτιρίου. Οι κατάλληλες μετρήσεις και δοκιμές μπορούν να πραγματοποιούν επιτόπου ή /και σε εργαστήριο. Η επιλογή των μμετρήσεων και δοκιμών θα πρέπει να γίνεται κατά περίπτωση κατά την κρίση του μελετητή Μηχανικού. Πάντως, για την ελαχιστοποίηση των αμφιβολιών, καλόν είναι να πραγματοποιείται διασταύρωση των πληροφοριών της κάθε πηγής. Ο μελετητής Μηχανικός, βάσει των ως άνω διερευνητικών εργασιών, οφείλει να αιτιολογήσει τις παραδοχές με τις οποίες θα γίνει η αποτίμηση και ο ανασχεδιασμός. Για την εκτίμηση της κατάστασης υφιστάμενου δομήματος, θα συλλέγονται δεδομένα από διαθέσιμα δημόσια ή ιδιωτικά αρχεία, από σχετικές υπεύθυνες και αξιόπιστες πληροφορίες και από επιτόπου διερευνήσεις και ελέγχους. Οι διαδικασίες επιθεώρησης, οι κατάλογοι ελέγχου και οι λοιπές διαδικασίες συλλογής στοιχείων, θα ακολουθούν προδιαγραφές επαγγελματικών ή δημοσίων οργανισμών, θα πρέπει δε να είναι συμβατές με τα διαθέσιμα μέσα για επιθεώρηση, διερεύνηση και λήψη μέτρων επισκευής/ενίσχυσης. Περιληπτικά, δίνονται παρακάτω ενδεικτικές προτάσεις για έναν κατάλογο απαιτούμενων πληροφοριών και στοιχείων, καθώς και η μεθοδολογία που μπορεί να ακολουθείται σε περίπτωση όπου δεν υπάρχουν παρόμοιες προδιαγραφές. Ωστόσο, ενδέχεται να είναι δύσκολο να συλλέγουν πάντοτε τόσο λεπτομερείς πληροφορίες. Στις περιπτώσεις αυτές, οι αβεβαιότητες μπορούν να καλύπτονται με την εισαγωγή της έννοιας «στάθμης αξιοπιστίας δεδομένων» . Απαιτούμενες πληροφορίες:

- 1. Προσδιορισμός του δομητικού συστήματος.
- 2. Πληροφορίες σχετικά με τις δομικές αλλαγές από την εποχή κατασκευής, οι οποίες πιθανόν μεταβάλλουν τη συμπεριφορά και την απόκριση του κτιρίου.
- 3. Προσδιορισμός των συνθηκών του υπεδάφους (κατάταξη σε κατηγορίες εδάφους).
- 4. Προσδιορισμός του τύπου και των χαρακτηριστικών θεμελίωσης του κτιρίου.

- 5. Προσδιορισμός της κατηγορίας περιβαλλοντικών συνθηκών, ενδεχομένως βλαπτικών για τα στοιχεία του δομήματος.
- 6. Πληροφορίες σχετικά με τις διαστάσεις και τις διατομές των δομικών στοιχείων του κτιρίου και σχετικά με την κατάσταση των υλικών που τα απαρτίζουν, του τρόπου δόμησης και κατασκευής κ.λπ.
- Περιγραφή της πραγματικής ή /και σχεδιαζόμενης χρήσης του κτιρίου (με προσδιορισμό και της κατηγορίας σπουδαιότητας).
- 8. Εκτίμηση των κινητών φορτίων, λαμβάνοντας υπόψη την πραγματική χρήση των διαφόρων χώρων του κτιρίου.
- 9. Πληροφορίες σχετικά με την ποιότητα των υφισταμένων υλικών, με ποσοτικούς όρους όπου είναι δυνατόν.
- Πληροφορίες σχετικές με τον τύπο και την έκταση προηγουμένων και σημερινών δομητικών βλαβών ή φθορών, εάν υπάρχουν, συμπεριλαμβανομένων προηγουμένων μέτρων επισκευής ή ενίσχυσης.
- 11. Πληροφορίες σχετικές με αναγνωρίσιμα σημαντικά σφάλματα στη μελέτη, σχετικά με ελαττώματα των υλικών, καθώς και περιγραφή τους.
- 12. Γεωμετρικές μετρήσεις όπως: διαστάσεις των διατομών, του μήκους των δομικών στοιχείων και του πάχους των τελειωμάτων όπως κατασκευάσθηκαν, χωροσταθμήσεις, μετρήσεις εκκεντροτήτων, αποκλίσεων, εύρος ρωγμών ή αποκολλήσεις σε κατασκευές από σκυρόδεμα ή τοιχοποιία, παραμορφώσεις και ασυνέχειες σε αρμούς, μετατοπίσεις κ.λπ.

Σε κτίρια για τα οποία διατίθεται μελέτη (η οποία έχει εφαρμοστεί χωρίς ουσιώδεις παρεκκλίσεις) ή τουλάχιστον διατίθενται κατασκευαστικά σχέδια, η αποτύπωση αφανών στοιχείων μπορεί να περιορίζεται σε δειγματοληπτικό έλεγχο/επιβεβαίωση της εφαρμογής των σχεδίων. Ειδικά για τις λεπτομέρειες όπλισης, τρεις (3) διερευνητικές τομές ανά κατηγορία εξεταζόμενου δομικού στοιχείου θεωρούνται απαραίτητες, με ιδιαίτερη έμφαση στα μήκη αγκυρώσεων και ενώσεων ράβδων με παράθεση σε κρίσιμες περιοχές, καθώς και στις λεπτομέρειες των συνδετήρων. Σε κτίρια για τα οποία δεν διατίθενται σχέδια ή διαπιστώνονται σημαντικές αποκλίσεις από την εγκεκριμένη μελέτη, η έκταση της διερεύνησης πρέπει να είναι ικανή να δώσει αξιόπιστες πληροφορίες για την αποτίμηση και τον ανασχεδιασμό. Αυτό συνεπάγεται την ανάγκη μέτρησης των διαστάσεων όλων των μελών του φέροντος οργανισμού, ίσως δε και των τοιχοπληρώσεων. Σε ό,τι αφορά τις διατομές και την διάταξη του οπλισμού, είναι πρακτικώς αδύνατος ο προσδιορισμός τους για όλα τα δομικά στοιχεία και όλες τις θέσεις. Απαιτείται επομένως να γίνει επιλογή των σημείων ελέγχου, ανάλογα με τη σημασία κάθε στοιχείου για την αντισεισμική ικανότητα του κτιρίου. Πάντως, για την εκτίμηση των μεγεθών τα οποία είναι δύσκολο να μετρηθούν ευθέως, είναι χρήσιμη η γνώση των συνθηκών και των συνηθειών που επικρατούσαν την εποχή κατασκευής του κτιρίου, ώστε σε συνδυασμό με ένα ελάχιστο πλήθος διερευνητικών τομών να είναι δυνατή η συναγωγή αξιόπιστων συμπερασμάτων.

1.2.3 Βλάβες

1.2.3.1 Τυπικοί βαθμοί βλάβης δομικών στοιχείων από Ο/Σ

Η μέθοδος που επιλέγεται για την επισκευή ενός στοιχείου που έχει υποστεί απομείωση της αντοχής του λόγω σεισμικής δράσης βρίσκεται σε άμεση συνάρτηση με το μέγεθος της βλάβης, αφού αυτό καθορίζει τόσο την απομένουσα φέρουσα ικανότητα όσο και τα διαθέσιμα περιθώρια ασφαλείας του βλαμμένου στοιχείου. Φέροντα στοιχεία από οπλισμένο σκυρόδεμα μπορούν να παρουσιάσουν τέσσερις τυπικούς βαθμούς βλάβης από σεισμό:

Απλή ρηγμάτωση (βλάβες βαθμού Α και Β): Το στοιχείο παρουσιάζει είτε μεμονωμένες ρωγμές μικρού εύρους (< 2 mm) λόγω δευτερευόντων λόγων και τοπικών αδυναμιών (π.χ. αρμοί διακοπής

σκυροδέτησης, ανεπαρκές μήκος αγκύρωσης του οπλισμού, κτλ.) είτε πολλές ρωγμές λόγω κάμψης ή μεμονωμένες λοξές ρωγμές λόγω διάτμησης μικρού εύρους (< 0.5 mm), με την προϋπόθεση ότι δεν παρατηρούνται εμφανείς μετακινήσεις του σκελετού. Οι παραπάνω βλάβες χαρακτηρίζονται ελαφρές. Οι βλάβες σε αυτό το βαθμό αποκαθίστανται κατά κανόνα με χρήση εποξικών ρητινών, συγκόλληση νέων οπλισμών, χαλύβδινων ελασμάτων, προσθήκη εξωτερικών συνδετήρων (κολάρων) ή σύνθετων υλικών.

Σχήμα 1-1 Ρηγμάτωση υποστυλώματος λόγω κάμψης

Μερική αποδιοργάνωση (βλάβες βαθμού Γ): Παρατηρείται έντονη ρηγμάτωση μεγάλου πλάτους, καθώς και τοπική αποδιοργάνωση του σκυροδέματος από θλίψη ή και διάτμηση. Οι παραμένουσες παραμορφώσεις είναι πολύ μικρές. Οι βλάβες αυτού του βαθμού χαρακτηρίζονται σοβαρές και αποκαθίστανται με μερική καθαίρεση του βλαμμένου σκυροδέματος και αντικατάσταση αυτού με έγχυτο ή εκτοξευόμενο σκυρόδεμα, με ενίσχυση με νέους οπλισμούς, με συγκόλληση χαλύβδινων ελασμάτων ή σύνθετων υλικών.

Σχήμα 1-2 Τοπική αποδιοργάνωση του σκυροδέματος υποστυλώματος

Διακοπή συνεχείας από πλήρη αποδιοργάνωση σκυροδέματος ή βλάβη οπλισμών (βλάβες βαθμού Δ): Χαρακτηρίζονται βαριές βλάβες. Πρόκειται για τη σοβαρότερη κατηγορία επισκευάσιμων βλαβών. Παρατηρείται θραύση του σκυροδέματος του στοιχείου, βλάβη των κυρίων οπλισμών (π.χ. λυγισμός των διαμήκων ράβδων και θραύση ή διαρροή των συνδετήρων) και διακοπή της συνέχειας του στοιχείου. Παρόλ' αυτά, οι παραμένουσες παραμορφώσεις και ιδιαίτερα οι κατακόρυφες είναι σχετικά μικρές. Οι βλάβες αυτού του βαθμού αποκαθίστανται με πλήρη επισκευή ή αντικατάσταση ολοκλήρου του στοιχείου με έγχυτο ή εκτοξευόμενο σκυρόδεμα και τοποθέτηση νέου οπλισμού. Για περαιτέρω ενίσχυση των δομικών στοιχείων χρησιμοποιούνται μετά την αποκατάστασή τους, και όπου απαιτείται από την μελέτη, είτε χαλύβδινα ελάσματα με μορφή κλειστών ή ανοικτών μανδυών είτε μεταλλικοί κλωβοί που δημιουργούνται με κατακόρυφα γωνιακά ελάσματα και είτε οριζόντια μεταλλικά κολάρα είτε πλήρη χαλύβδινα φύλλα.

Σχήμα 1-3 Διακοπή συνέχειας υποστυλώματος λόγω πλήρους αποδιοργάνωσης του σκυροδέματος και βλάβης του διαμήκους και εγκάρσιου οπλισμού

Σχήμα 1-4 Αστοχία με διακοπή της συνέχειας στοιχείου στην κρίσιμη περιοχή υποστυλώματος και κόμβου

Σχήμα 1-5 Αστοχία τοιχώματος λόγω διάτμησης

Πρέπει να παρατηρήσουμε ότι, κατά τον ανασχεδιασμό, το δομικό στοιχείο στο οποίο εφαρμόζεται μία από τις παραπάνω τεχνικές ή και συνδυασμός τους, μπορεί να θεωρηθεί εν μέρει μονολιθικό. Επίσης, σε κάθε δομικό στοιχείο που έχει υποστεί τέτοιου είδους επέμβαση είναι απαραίτητο να ελέγχεται η επάρκεια της σύνδεσης στη διεπιφάνεια παλαιού και νέου σκυροδέματος, έτσι ώστε να εξασφαλίζεται η ασφαλής μεταφορά των δυνάμεων από το ένα στοιχείο στο ίχει οποιχείο στο άλλο.

1.2.3.2 Διαδικασία διάγνωσης βλαβών

Η διαδικασία διάγνωσης βλαβών περιλαμβάνει το συνδυασμό της οπτικής αξιολόγησης της κατασκευής με τις κατάλληλες ενόργανες μεθόδους διάγνωσης βλαβών με σκοπό την απόκτηση επαρκών στοιχείων για την κατάσταση της κατασκευής. Επίσης, η θέση και η επιλογή των προς εξέταση δειγμάτων είναι σημαντική για την εξαγωγή σωστών συμπερασμάτων που αφορούν στο σύνολο του φορέα. Ο αριθμός των ελέγχων πρέπει να επαρκεί για την επιλογή της σωστής στρατηγικής επεμβάσεων και την καλή εκτίμηση του συνολικού τμήματος της κατασκευής που χρήζει επισκευών. Για τη διεξαγωγή των ελέγχων απαιτείται πεπειραμένο συνεργείο, το οποίο σε συνεργασία με το μελετητή μηχανικό πρέπει να διασφαλίσει τα ακόλουθα:

- Την εφαρμογή των κατάλληλων μεθόδων διάγνωσης βλαβών στην πράξη, συμπεριλαμβανομένης της λειτουργίας του απαραίτητου μηχανικού εξοπλισμού.
- **μ** Την επιλογή της κατάλληλης μεθόδου και θέσης ελέγχου ανάλογα με το είδος της βλάβης.
- Την ορθή και λεπτομερή περιγραφή των αποτελεσμάτων της έρευνας, καθώς και την ερμηνεία των αποτελεσμάτων αυτών.

Επιτόπου, μία εξειδικευμένη διάγνωση ξεκινά πάντα με έναν οπτικό έλεγχο που σκοπό έχει την απόκτηση μιας εποπτικής εικόνας του κτιρίου και των βλαβών που έχει υποστεί. Οι οπτικές παρατηρήσεις καταγράφονται σε πρόχειρα σχέδια κατόψεων και όψεων. Τα σχέδια πρέπει να περιλαμβάνουν την ταυτότητα και τον προσανατολισμό των ελεγχόμενων στοιχείων. Όταν ολοκληρωθεί ο οπτικός έλεγχος, γίνεται μία 'υπόθεση εργασίας' σχετικά με την αιτία των βλαβών. Με βάση την υπόθεση αυτή, επιλέγονται οι μέθοδοι διάγνωσης βλαβών που θα εφαρμοσθούν καθώς και οι θέσεις των προς εξέταση περιοχών. Αφού προσδιοριστούν οι θέσεις, μετρούνται κατακόρυφες αποστάσεις, συνήθως από το επίπεδο του εδάφους. Οριζόντιες αποστάσεις πρέπει επίσης να μετρηθούν από μία καλώς ορισμένη θέση αναφοράς (π.χ. γωνία κάποιου συγκεκριμένου υποστυλώματος). Όταν όλοι οι προγραμματισμένοι έλεγχοι έχουν ολοκληρωθεί, οι οπτικές παρατηρήσεις και τα αποτελέσματα των ελέγχων πρέπει να συνεκτιμηθούν έτσι ώστε να καθορισθεί επακριβώς η αιτία, η έκταση και η πιθανή περαιτέρω ανάπτυξη των βλαβών. Εάν ο επακριβής καθορισμός δεν είναι δυνατός, συμπληρωματικοί έλεγχοι πρέπει να επιλεγούν και να εκτελεστούν. Εφόσον τα αποτελέσματα των ελέγχων δεν επαληθεύουν την αρχική υπόθεση για την αιτία των βλαβών, αυτή πρέπει να αναθεωρηθεί. Ενδέχεται να απαιτηθεί η εκτέλεση συμπληρωματικών ελέγχων για την επιβεβαίωση της αναθεωρημένης υπόθεσης.

1.2.3.3 Μέθοδοι και όργανα διάγνωσης βλαβών

Υπάρχει μεγάλη ποικιλία ελέγχων διάγνωσης βλαβών που χρησιμοποιούνται για τη διερεύνηση τόσο των μηχανικών ιδιοτήτων του σκυροδέματος όσο και της διαβρωτικής δράσης ουσιών στο σκυρόδεμα και στο χάλυβα του οπλισμού. Οι έλεγχοι αποσκοπούν κυρίως στην εκτίμηση της αντοχής του σκυροδέματος και στον προσδιορισμό περιοχών που χαρακτηρίζονται από μεγάλη διαπερατότητα, ρηγματώσεις, αποφλοιώσεις, μειωμένη πυκνότητα, κλπ. Διακρίνουμε τέσσερις κύριες κατηγορίες ελέγχων:

- Μη καταστροφικοί. Οι κυριότεροι μη καταστροφικοί έλεγχοι για τον έλεγχο του σκυροδέματος μιας υφιστάμενης κατασκευής είναι:
 - Οπτικός έλεγχος
 - Κρουσιμέτρηση
 - Χρήση υπερήχων
 - ✓ Μαγνητικές μέθοδοι
 - Μέτρηση του ηλεκτρικού δυναμικού σιδηροπλισμού
 - Ακτινογράφηση με ακτίνες "Χ" και "Γ"
 - Θερμογράφηση με υπέρυθρη ακτινοβολία
 - Μέτρηση του ποσοστού υγρασίας με εκπομπή νετρονίων

- Ημικαταστροφικοί: Είναι προφανές ότι υπάρχουν περιορισμοί στη βλάβη που επιτρέπεται να προκαλέσει ένας ημικαταστροφικός έλεγχος στην υπάρχουσα κατασκευή. Οι κυριότεροι από τους ελέγχους αυτούς είναι οι ακόλουθοι:
 - 🗸 Λήψη πυρήνων
 - Χρήση εξολκέα
 - Έλεγχος ράβδων οπλισμού σε εφελκυσμό
 - Μέθοδος της πετρογραφικής ανάλυσης
- Επιτόπου χημικοί. Οι επιτόπου χημικοί έλεγχοι σχετίζονται κυρίως με τη διάρκεια ζωής του σκυροδέματος. Ενδεικτικά αναφέρονται οι ακόλουθοι:
 - Έλεγχος του βάθους ενανθράκωσης
 - Έλεγχος χλωριόντων
- Καθολική φόρτιση. Η καθολική φόρτιση είναι συχνά το έσχατο μέσο για την αξιολόγηση κατασκευών των οποίων τα αρχικά σχέδια δεν είναι διαθέσιμα και η φέρουσα ικανότητα είναι ασαφής. Η μέθοδος αυτή εφαρμόζεται συνήθως σε πλαισιακούς φορείς με εμφανή ίχνη φθοράς και σε κατασκευές που η ανάλυση υποδεικνύει ότι υπάρχει υπέρβαση επιτρεπόμενων τάσεων υπό δεδομένη φόρτιση Η φόρτιση της κατασκευής γίνεται με μικροδονήσεις ή άλλες αποδεκτές μεθόδους διέγερσης, καθώς επίσης και αρμονικές δονήσεις. Στη συνέχεια υπολογίζονται τα δυναμικά χαρακτηριστικά της κατασκευής (θεμελιώδης ιδιοπερίοδος και απόσβεση) ή κάποιου επιμέρους τμήματός της, τα οποία μπορούν να δώσουν σημαντικές πληροφορίες για το επίπεδο των βλαβών.

Εκτός από τις παραπάνω κύριες κατηγορίες ελέγχων διάγνωσης βλαβών, μία κατασκευή μπορεί επίσης να υποβληθεί και σε άλλους συμπληρωματικούς ελέγχους για την εξαγωγή συμπερασμάτων όσον αφορά στην εμφάνιση βλαβών, όπως:

- Έλεγχοι της γεωμετρίας των δομικών στοιχείων του φορέα:
 - Μετρήσεις των διαστάσεων των διατομών και του μήκους των μελών και των τελειωμάτων όπως κατασκευάσθηκαν
 - 🖊 Μετρήσεις του εύρους των ρωγμών στο σκυρόδεμα ή στη φέρουσα τοιχοποιία
 - Μετρήσεις των παραμενουσών παραμορφώσεων (συνιστάται χρήση τοπογραφικών οργάνων)
- II. Έλεγχοι της θεμελίωσης και του εδάφους έδρασης:
 - Μέτρηση των διαστάσεων των θεμελιώσεων και αξιολόγηση με την εκσκαφή τάφρων ελέγχου
 - 🖊 Λήψη και εξέταση δειγμάτων υπεδάφους

1.2.4 Στάθμες αξιοπιστίας δεδομένων (Σ.Α.Δ.)

Η στάθμη αξιοπιστίας δεδομένων (Σ.Α.Δ.) που αφορούν δράσεις ή αντιστάσεις, εκφράζει την επάρκεια των πληροφοριών περί του υφισταμένου κτιρίου και λαμβάνεται υπόψη κατά την αποτίμηση και τον ανασχεδιασμό. Δεν ορίζεται με βάση τη διασπορά των αποτελεσμάτων των διερευνητικών εργασιών. Η διασπορά αυτή λαμβάνεται ήδη υπόψη κατά τη φάση αξιολόγησης, και επηρεάζει την «αντιπροσωπευτική τιμή» κάθε μεγέθους. Η Σ.Α.Δ. δεν είναι αναγκαστικώς ενιαία για ολόκληρο το κτίριο. Προσδιορίζονται επιμέρους Σ.Α.Δ. για τις διάφορες επιμέρους κατηγορίες πληροφοριών. Για την επιλογή των μεθόδων ανάλυσης θα χρησιμοποιείται η δυσμενέστερη από τις επιμέρους Σ.Α.Δ. Η έννοια της Σ.Α.Δ. εφαρμόζεται και για την πληρότητα της αποτύπωσης του φέροντος οργανισμού και των τοιχοπληρώσεων, ιδίως στις περιπτώσεις αφανών στοιχείων. Οι επιπτώσεις της αβεβαιότητας μπορεί να ληφθούν υπόψη στις δράσεις ή

στις αντιστάσεις κατά περίπτωση (π.χ. αβεβαιότητα στο πάχος της επικάλυψης της πλάκας θα ληφθεί υπόψη στις δράσεις, αβεβαιότητα στο πάχος της ίδιας της πλάκας θα ληφθεί υπόψη κυρίως στις αντιστάσεις).

1.2.4.1 Κατηγορίες Σ.Α.Δ.

Διακρίνονται τρείς στάθμες αξιοπιστίας δεδομένων:

- Ι. «Υψηλή»
- II. «Ικανοποιητική»
- III. «Ανεκτή»

Σε ό,τι αφορά τα ίδια βάρη, η χαρακτηριστική τους τιμή πρέπει να λαμβάνεται με τη δυσμενέστερη τιμή που είναι συμβατή με τη γεωμετρία του δομήματος ή/και προβλέπεται για παρόμοιες κατασκευές. Σε ό,τι αφορά τις αντιστάσεις, οι τιμές τους μπορούν να προσδιορίζονται με βάση τις διαστάσεις, τους οπλισμούς και τα χαρακτηριστικά υλικών τα οποία οδηγούν στην αιτιολόγηση της προηγούμενης συμπεριφοράς του φέροντος οργανισμού. Ανάλογα με την αξιοπιστία των δεδομένων:

Επιλέγονται οι κατάλληλοι συντελεστές ασφαλείας γ_f για ορισμένες δράσεις με αβέβαιες τιμές, σε συνδυασμό με τους κατάλληλους γ_{sd}. Τέτοια ενδέχεται να είναι η περίπτωση των αντιπροσωπευτικών τιμών ορισμένων έμμεσων δράσεων (πιέσεων ή ωθήσεων), καθώς και του βάρους δυσπροσπέλαστων επικαλύψεων ή τοιχοπληρώσεων. Σε ορισμένες περιπτώσεις αυξημένων αμφιβολιών, (και αν εκτιμάται ότι η επιρροή του μεγέθους της αντίστοιχης δράσης είναι σημαντική), συνιστάται η θεώρηση δύο «ευλόγως ακραίων» αντιπροσωπευτικών τιμών (S_{κ,min} και S_{κ,max}).

Επιλέγονται οι κατάλληλοι συντελεστές ασφαλείας γ_m για τα δεδομένα των υφιστάμενων υλικών, σε συνδυασμό με τους κατάλληλους γ_{Rd}. Ως δεδομένα των υλικών νοούνται οι διαστάσεις και οι αντοχές του σκυροδέματος και του χάλυβα των σιδηροπλισμών, αλλά και οι πραγματικές λεπτομέρειες όπλισης, οι αγκυρώσεις, οι αναμονές κλπ. που διαμορφώνουν τις αντιστάσεις.

1.2.4.2 Καθορισμός Σ.Α.Δ. μηχανικών χαρακτηριστικών υλικών

Σύμφωνα με τον ΚΑΝ.ΕΠΕ. υπάρχουν κάποιες ελάχιστες απαιτήσεις διερεύνησης προκειμένου να οριστούν τα χαρακτηριστικά των υλικών που έχουν χρησιμοποιηθεί για την κατασκευή ενός δομήματος. Ειδικά σε περιπτώσεις αντικειμενικής αδυναμίας εκτέλεσης του προγράμματος ελέγχων και διερευνήσεων για τα χαρακτηριστικά των υλικών, και αν δε διαπιστωθούν προβλήματα κακοτεχνιών, φθορών, βλαβών κλπ. επιτρέπεται να χρησιμοποιηθούν για την τεκμηρίωση της αντοχής των υλικών αξιόπιστα αποτελέσματα παλαιότερων ποιοτικών ελέγχων. Αν και τούτα δε διατίθενται είναι δυνατόν να χρησιμοποιηθούν ονομαστικές μέσες τιμές αντοχής υλικών μετά από σχετική απόφαση της Δημόσιας Αρχής σε συνδυασμό με διαθέσιμες υπεύθυνες πληροφορίες ή/και άλλα αξιόπιστα στοιχεία.

Σκυρόδεμα

Η διερεύνηση του σκυροδέματος σκοπεί, κυρίως, στον προσδιορισμό της θλιπτικής αντοχής, για κάθε περιοχή του φέροντος οργανισμού. Άλλες ιδιότητες όπως το μέτρο ελαστικότητας, η εφελκυστική αντοχή κλπ. μπορούν να προσδιορίζονται έμμεσα (βάσει της θλιπτικής αντοχής), εφόσον δεν γίνεται ειδική έρευνα. Για την αποτίμηση και τον ανασχεδιασμό υφιστάμενης κατασκευής, θα χρησιμοποιείται η επιτόπου αντοχή σκυροδέματος σε κάθε κρίσιμη περιοχή κάθε δομικού στοιχείου. Τέτοιες κρίσιμες περιοχές είναι τα δύο άκρα των ραβδόμορφων στοιχείων (υποστυλωμάτων ή δοκών), καθώς και η περιοχή αμέσως πάνω απ' την πάκτωση του τοιχώματος.

Πρέπει να λαμβάνεται υπόψη η αναμενόμενη συστηματική διαφοροποίηση αντοχής σκυροδέματος, ανάλογα με τη χαρακτηριστική θέση-του στον φορέα, και ανάλογα με τις συνθήκες σκυροδέτησης, συμπύκνωσης και συντήρησης. Είναι ενδεχόμενο να παρουσιάζονται σημαντικές διαφορές αντοχών ανάμεσα στις πλάκες, στις δοκούς, στα πάνω τμήματα υποστυλωμάτων και στα κάτω τμήματα υποστυλωμάτων (κατά μία τελείως ενδεικτική αναλογία 0,70/0,80/0,90/1,00), ενώ σε περίπτωση κακότεχνης σκυροδέτησης υποστυλώματος, δεν αποκλείεται και το κάτω τμήμα του να παρουσιάσει μικρότερες αντοχές λόγω απόμειξης και σπηλαιώσεως.

Όταν δεν υπάρχουν ενδείξεις τοπικών κακοτεχνιών, οι τιμές αντοχής σκυροδέματος που χρησιμοποιούνται στους υπολογισμούς για κάθε χαρακτηριστική θέση στο φορέα επιτρέπεται να προέρχονται από μετρήσεις που γίνονται σε ένα επιλεγμένο ποσοστό του συνόλου των θέσεων αυτών στο κτίριο. Το πλήθος των χαρακτηριστικών θέσεων στις οποίες θα γίνονται τέτοιες μετρήσεις ανά όροφο και είδος δομικού στοιχείου πρέπει να είναι αρκετό για την επιζητούμενη αξιοπιστία, επηρεάζεται δε και απ' το μέγεθος της από θέση σε θέση διαφοράς τιμών που θα παρατηρηθούν. Πάντως, το πλήθος αυτό δεν μπορεί να είναι μικρότερο των ελαχίστων απαιτήσεων της

Για μικρά (μέχρι διώροφα) κτίρια, το απολύτως ελάχιστο απαιτούμενο πλήθος πυρήνων, είναι n = 3, από ομοειδή δομικά στοιχεία. Για μεγαλύτερα κτίρια, απαιτούνται τουλάχιστον 3 πυρήνες ανά δύο ορόφους, οπωσδήποτε όμως 3 πυρήνες στον «κρίσιμο» όροφο. Κρίσιμος όροφος, νοείται εκείνος στον οποίο αναμένεται η δυσμενέστερη καταπόνηση λόγω σεισμού. Στις συνήθεις περιπτώσεις κρίσιμος όροφος είναι ο κατώτερος (ισόγειο), ιδίως σε περιπτώσεις pilotis. Οι αντοχές των πυρήνων χρησιμοποιούνται για τη βαθμονόμηση των εμμέσων μεθόδων. Η απευθείας εκτίμηση της επιτόπου αντοχής κάθε δομικού στοιχείου αποκλειστικώς μέσω πυρήνων, θα απαιτούσε μεγάλο πλήθος δοκιμών, επαρκές για την στατιστική επεξεργασία των αποτελεσμάτων.

- Για να μπορεί η Σ.Α.Δ., για την αντοχή του σκυροδέματος, να θεωρείται «υψηλή» πρέπει οι θέσεις εφαρμογής των εμμέσων μεθόδων να καλύπτουν σε κάθε όροφο επαρκές ποσοστό για κάθε είδος δομικού στοιχείου και ειδικότερα:
 - Το 45% των κατακόρυφων στοιχείων
 - Το 25% των οριζοντίων στοιχείων (δοκοί ή πλάκες)

Ως έμμεση μέθοδος θα εφαρμόζεται τουλάχιστον μία από τις μεθόδους με υπερήχους ή με κρουσίμετρο (ή με εξόλκευση ήλου, όταν $f_c < 15$ ΜΡα). Συνιστάται ο συνδυασμός μεθόδων. Τα ραβδόμορφα στοιχεία (υποστυλώματα ή δοκοί) ελέγχονται σε δύο τουλάχιστον θέσεις, στα άκρα τους. Τα τοιχώματα ελέγχονται σε μία τουλάχιστον θέση στη βάση τους, ανά όροφο.

- Για να μπορεί η Σ.Α.Δ. να θεωρείται «ικανοποιητική», αρκεί οι θέσεις εφαρμογής των εμμέσων μεθόδων να καλύπτουν ένα μικρότερο αλλά επαρκές ποσοστό για κάθε είδος δομικού στοιχείου και ειδικότερα:
 - Το 30% των κατακόρυφων στοιχείων
 - Το 15% των οριζοντίων στοιχείων (δοκοί ή πλάκες)

Στην περίπτωση που τα αποτελέσματα των μετρήσεων παρουσιάζουν ικανοποιητική σύγκλιση (τυπική απόκλιση S≤0,20X_{μέση}) τότε η Σ.Α.Δ. μπορεί να θεωρείται «υψηλή».

▲ Με εφαρμογή της μεθόδου στο μισό των παραπάνω ποσοστών, η Σ.Α.Δ. μπορεί να θεωρείται «ανεκτή», εκτός αν τα αποτελέσματα των μετρήσεων παρουσιάζουν ικανοποιητική σύγκλιση (τυπική απόκλιση S≤0,20X_{μέσο}) οπότε η Σ.Α.Δ. μπορεί να θεωρείται «ικανοποιητική».

Σε ειδικές περιπτώσεις κτιρίων για τα οποία διατίθενται υπεύθυνες και αξιόπιστες πληροφορίες για τον τρόπο κατασκευής τους, οι δοκιμές για την επαλήθευση των διατιθέμενων πληροφοριών μπορούν να περιορίζονται στην ελάχιστη πυρηνοληψία, από ομοειδή δομικά στοιχεία κάθε ορόφου. Απαραίτητη προϋπόθεση είναι η επαρκής σύγκλιση των αποτελεσμάτων (η απόκλιση αντοχής κάθε πυρήνα να είναι μικρότερη από το 15% της μέσης τιμής). Στις περιπτώσεις αυτές η Σ.Α.Δ. θεωρείται «ικανοποιητική».

Χάλυβας οπλισμού

Ο προσδιορισμός της κατηγορίας του χάλυβα οπλισμού υφιστάμενου κτιρίου αποτελεί απαραίτητη προϋπόθεση για την αποτίμηση και τον ανασχεδιασμό. Η κατάταξη του χάλυβα μπορεί να γίνει με οπτική αναγνώριση (επιφάνεια λεία ή με νευρώσεις, τυχόν αναγνώσιμες σημάνσεις στην επιφάνεια των ράβδων), σε συνδυασμό και με την εποχή κατασκευής του κτιρίου. Στην περίπτωση αυτή η Σ.Α.Δ. για την αντοχή του χάλυβα θεωρείται «ικανοποιητική».

Σε ό,τι αφορά την κατηγορία του οπλισμού, στις περισσότερες περιπτώσεις αναμένεται σχετική ομοιομορφία σε ένα κτίριο, ενώ υπάρχουν και αρκετές περιπτώσεις (κυρίως της περιόδου 1970~1985) με εφαρμογή χάλυβα δύο κατηγοριών στο ίδιο κτίριο, αλλά συνήθως κατά διακριτές ομάδες δομικών στοιχείων. Για τη συσχέτιση της κατηγορίας του χάλυβα με τον χρόνο κατασκευής όπως επίσης με τη μορφή των νευρώσεων, παρέχονται πληροφορίες στον ΚΑΝΟΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΑΣ ΧΑΛΥΒΩΝ (2008).

Η διερεύνηση για τον προσδιορισμό των «πραγματικών» χαρακτηριστικών του χάλυβα (όριο διαρροής, αντοχή, ολκιμότητα) πρέπει να περιλαμβάνει τη δοκιμή σε τρία (3) τουλάχιστον δείγματα περίπου ίδιας διαμέτρου από δομικά στοιχεία του κρίσιμου ορόφου. Αν από τα δείγματα αυτά, διαπιστωθεί η παρουσία χαλύβων που κατατάσσονται σε διαφορετικές κατηγορίες, τότε η έρευνα πρέπει να επεκταθεί, ώστε να προσδιοριστούν τα δομικά στοιχεία στοιχεία στα χάλυβα θα θεωρείται «υψηλή».

Πρέπει να λαμβάνεται συντηρητικώς υπόψη η αναμενόμενη διαφορά στα χαρακτηριστικά του χάλυβα αναλόγως με τη διάμετρο της ράβδου, καθώς επίσης και η μειωμένη ολκιμότητα εντόνως διαβρωμένων χαλύβων. Όταν από τον ανασχεδιασμό προβλέπεται συγκόλληση νέων με παλιούς οπλισμούς, πρέπει να γίνεται έρευνα για τη «συγκολλησιμότητά» τους.

Τοίχοι πλήρωσης

Σε ό,τι αφορά τους τοίχους πλήρωσης, και στις περιπτώσεις που αυτοί συνεκτιμώνται στην ανάληψη σεισμικών δράσεων, προβλέπεται οι εργασίες αποτύπωσης να περιλαμβάνουν κατ' ελάχιστο αποκαλύψεις της τοιχοποιίας σε δύο θέσεις σε κάθε όροφο, διαστάσεων περίπου 0,7x0,7m. Κατά την αποτύπωση λαμβάνονται πληροφορίες που αφορούν το σύστημα και την ποιότητα δόμησης, το πάχος του τοίχου, το είδος και την ποιότητα των υλικών δόμησης (τούβλα και κονίαμα), το πάχος των αρών και τον βαθμό πλήρωσης με κονίαμα, τόσο για τους οριζόντιους όσο και για τους κατακόρυφους αρμού, τη σφήνωση της τοιχοποιίας στην περίμετρο και τα διαζώματα.

Για τον προσδιορισμό της συμπεριφοράς των τοιχοποιιών ενδιαφέρουν κυρίως η θλιπτική αντοχή, η διατμητική αντοχή και τα αντίστοιχα μέτρα ελαστικότητας. Όταν δεν διατίθενται ακριβέστερα στοιχεία, τα ως άνω χαρακτηριστικά μπορούν να προσδιοριστούν έμμεσα από ημιεμπειρικές σχέσεις, με βάση τα επιμέρους χαρακτηριστικά όπως την αντοχή των λιθοσωμάτων, την αντοχή του κονιάματος, το πάχος των αρμών, το πάχος και την αντοχή του επιχρίσματος. Στην περίπτωση αυτή η Σ.Α.Δ. για τα μηχανικά χαρακτηριστικά της τοιχοποιίας θεωρείται «ικανοποιητική», ενώ απλώς «ανεκτή» Σ.Α.Δ. δεν επιτρέπεται. Στις περιπτώσεις όπου τα μηχανικά χαρακτηριστικά της τοιχοποιίας δοκιμές επαρκούς αριθμού δοκιμίων, η Σ.Α.Δ. μπορεί να θεωρείται «υψηλή».

Γεωμετρικά δεδομένα

Ως γεωμετρικά δεδομένα θεωρούνται το είδος και η γεωμετρία του φορέα της θεμελίωσης, το είδος και η γεωμετρία του φορέα της ανωδομής, το είδος και η γεωμετρία των τοιχοπληρώσεων, οι επιστρώσεις, επενδύσεις και η όπλιση. Σε ό,τι αφορά τα γεωμετρικά δεδομένα του δομήματος, η Σ.Α.Δ. εξαρτάται από την προέλευση του δεδομένου και διαφοροποιείται κατά περίπτωση, σύμφωνα με όσα αναφέρονται στον επόμενο πίνακα του ΚΑΝ.ΕΠΕ.

2		22			ΔΕΔΟΜΕΝΑ								
ΣΧΕΔΙΑ ΑΡΧΙΚΗΣ ΜΕΛΕΤΗΣ		ΠΡΟΕΛΕΥΣΗ ΔΕΔΟΜΕΝΟΥ		ΠΑΡΑΤΗ	ΕΙΔΟΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑ ΦΟΡΕΑ ΘΕΜΕΛΙΩΣΗΣ Ή ΑΝΩΔΟΜΗΣ		ΠΑΧΗ, ΒΑΡΗ κ.λπ. ΤΟΙΧΟΠΑΗΡΩΣΕΩΝ, ΕΠΙΣΤΡΩΣΕΩΝ, ΕΠΕΝΔΥΣΕΩΝ κ.λπ.		ΔΙΑΤΑΞΗ ΚΑΙ ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΗΣ		ζΑΙ ΕΙΕΣ Σ		
VIIAPXOYN	AEN YIIAPXOYN				Ανεκτή	Ικανοποιητική	Ywnλή	Ανεκτή	ไหยงงสอยฤรณที่	Υψηλή	Ανεκτή	Ικανοποιητική	Υψηλή
\checkmark		1	Δεδομένο που προέρχεται από σχέδιο της αρχικής μελέτης η οποία έχει αποδεδειγμένα εφαρμοστεί, χωρίς τροποποιήσεις	(1)			\checkmark			\checkmark			\checkmark
\checkmark		2	Δεδομένο που προέρχεται από σχέδιο της αρχικής μελέτης η οποία έχει εφαρμοστεί με λίγες τροποποιήσεις	(2)			\checkmark			\checkmark		\checkmark	
\checkmark		3	Δεδομένο που προέρχεται από αναφορά (π.χ. υπόμνημα σε σχέδιο της αρχικής μελέτης)	(3)	\checkmark			\checkmark			\checkmark		
	\checkmark	4	Δεδομένο που έχει διαπιστωθεί ή/και μετρηθεί ή/και αποτυπωθεί αξιόπιστα	(4)		\checkmark			\checkmark			\checkmark	
	\checkmark	5	Δεδομένο που έχει προσδιοριστεί με έμμεσον αλλά επαρκώς αξιόπιστον τρόπο	(5)	\checkmark			\checkmark			\checkmark		
	\checkmark	6	Δεδομένο που έχει ευλόγως θεωρηθεί κατά την κρίση Μηχανικού	(6)	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	

Σχήμα 1-6 Πίνακας στάθμης αξιοπιστίας γεωμετρικών δεδομένων

1.3 Στρατηγικές και συστήματα επεμβάσεων

1.3.1 Στρατηγικές επεμβάσεων

Η στρατηγική των επεμβάσεων είναι η βασική προσέγγιση που υιοθετείται για τη βελτίωση της σεισμικής συμπεριφοράς μιας κατασκευής ή διαφορετικά για τη μείωση της διακινδύνευσης σε αποδεκτά όρια. Για τη μείωση της σεισμικής διακινδύνευσης, μπορούν να εφαρμοστούν στρατηγικές είτε καθαρά τεχνικής είτε διαχειριστικής φύσης. Στην πρώτη κατηγορία περιλαμβάνονται επιλογές, όπως η αύξηση της σεισμικής απαίτησης. Αντίστοιχα, στη δεύτερη κατηγορία ανήκει μεταξύ άλλων η πιθανή αλλαγή χρήσης, η προοδευτική εφαρμογή των επεμβάσεων και η λήψη προσωρινών μέτρων ενίσχυσης.

Το εύρος των τεχνικών και των διαχειριστικών στρατηγικών που μπορούν να εφαρμοστούν για τη μείωση της σεισμικής διακινδύνευσης μιας υφιστάμενης κατασκευής είναι εξαιρετικά μεγάλο. Οι τεχνικές στρατηγικές αποτελούν προσεγγίσεις που στοχεύουν στη μεταβολή των βασικών παραμέτρων τόσο της σεισμικής απαίτησης όσο και της συμπεριφοράς του κτιρίου για το σεισμό σχεδιασμού. Περιλαμβάνουν επεμβάσεις στο φέροντα οργανισμό για τη διόρθωση ενδεχόμενων ατελειών, στην αύξηση της αντοχής και της δυσκαμψίας της κατασκευής, στην αύξηση της ικανότητας απορρόφησης ενέργειας και στη μείωση της σεισμικής απαίτησης.

Είναι αξιοσημείωτο ότι κατά το παρελθόν η στρατηγική ενίσχυσης που υιοθετήθηκε από τους περισσότερους μηχανικούς στόχευε στην ικανοποίηση των απαιτήσεων του εκάστοτε ισχύοντος κανονισμού. Η στρατηγική αυτή μεταφραζόταν σε επεμβάσεις, ώστε η ενισχυμένη κατασκευή να φέρει με ασφάλεια ένα ποσοστό των σεισμικών φορτίων που προέβλεπε ο εκάστοτε εν ισχύ κανονισμός για τις νέες κατασκευές. Στην πραγματικότητα η παραπάνω προσέγγιση δεν αποτελεί στρατηγική, αλλά κριτήριο σχεδιασμού που μπορεί να χρησιμοποιηθεί σε συνδυασμό με μία από τις στρατηγικές που αναφέρθηκαν. Τα κριτήρια σχεδιασμού αφορούν στο ποσό της αντοχής, της δυσκαμψίας ή της ικανότητας απορρόφησης ενέργειας που πρέπει να προστεθεί στο δόμημα, ώστε να ικανοποιηθούν οι απαιτήσεις της επιλεγείσας στάθμης επιτελεστικότητας. Σύμφωνα με τη φιλοσοφία που έχει πλέον επικρατήσει διεθνώς, το βασικό κριτήριο επιλογής των επεμβάσεων είναι ο περιορισμός των βλαβών που υφίστανται τα πρωτεύοντα καθώς και τα δευτερεύοντα στοιχεία της κατασκευής σε ανεκτά επίπεδα για τη δεδομένη στάθμη επιτελεστικότητας. Πρωτεύοντα είναι τα στοιχεία και οι φορείς που συμβάλλουν ουσιαστικά στην αντοχή του κτιρίου έναντι κατάρρευσης υπό σεισμική δράση, λόγω κίνησης του εδάφους σε οποιαδήποτε διεύθυνση (π.χ. υποστυλώματα, τοιχώματα, κτλ.).

Πέρα από τις τεχνικές στρατηγικές, υπάρχει και ένας μεγάλος αριθμός εναλλακτικών διαχειριστικών στρατηγικών που πρέπει επίσης να ληφθούν υπόψη κατά το σχεδιασμό των επεμβάσεων. Οι διαχειριστικές στρατηγικές περιλαμβάνουν θέματα όπως:

- Την απόφαση να υλοποιηθούν οι επεμβάσεις ενώ το κτίριο παραμένει σε χρήση ή να εκκενωθεί το κτίριο έως ότου πραγματοποιηθούν οι εργασίες ενίσχυσης
- II. Να θεωρηθεί αποδεκτή η υπάρχουσα σεισμική διακινδύνευση της κατασκευής και να μη γίνουν επεμβάσεις ή να αλλαχτεί η χρήση της κατασκευής, έτσι ώστε να είναι αποδεκτή η διακινδύνευση
- III. Να κατεδαφιστεί το υπάρχον κτίριο και να αντικατασταθεί με άλλο
- ΙV. Να υλοποιηθούν οι προτεινόμενες επεμβάσεις προοδευτικά μέσα σε μεγάλης διάρκειας χρονικό περιθώριο ή να ληφθούν προσωρινά μέτρα ενίσχυσης έως ότου αντικατασταθεί η κατασκευή
- V. Εάν οι επεμβάσεις θα γίνουν στο εξωτερικό του κτιρίου, έτσι ώστε να μειωθούν οι αρνητικές επιπτώσεις στους ενοίκους, ή αντίθετα αν οι εργασίες θα γίνουν στο εσωτερικό του κτιρίου προκειμένου να μην αλλοιωθούν τα χαρακτηριστικά της εξωτερικής του όψης.

Αν και πολλοί μηχανικοί θεωρούν ότι οι διαχειριστικές στρατηγικές δεν αποτελούν αντικείμενο της άμεσης αρμοδιότητάς τους, πρέπει να γίνει κατανοητό ότι αυτές ενδέχεται να έχουν πολύ σημαντική επίδραση τόσο στην εφαρμοσιμότητα όσο και στο κόστος της προτεινόμενης τεχνικής στρατηγικής των επεμβάσεων. Είναι γεγονός ότι, κατά κανόνα, η βέλτιστη λύση για ένα κτίριο σχετίζεται με τη λήψη αποφάσεων διαχειριστικής και τεχνικής φύσης. Για τους λόγους αυτούς οι διαχειριστικές στρατηγικές πρέπει να συνεκτιμώνται από το Μηχανικό και να επισημαίνονται στον Κύριο του Έργου προκειμένου να επιλεγεί η κατάλληλη στρατηγική επεμβάσεων.

1.3.2 Συστήματα επεμβάσεων

Το σύστημα των επεμβάσεων είναι η συγκεκριμένη μέθοδος επεμβάσεων που χρησιμοποιείται για την επίτευξη της στρατηγικής που έχει επιλεγεί. Προκειμένου μία κατασκευή να επιδείξει αξιόπιστη σεισμική συμπεριφορά πρέπει να διαθέτει ένα πλήρες σύστημα ανάληψης των σεισμικών φορτίων, το οποίο να είναι ικανό να περιορίζει τις μετακινήσεις σε μεγέθη που αντιστοιχούν σε αποδεκτά επίπεδα βλαβών για την επιδιωκόμενη στάθμη επιτελεστικότητας της κατασκευής. Οι κύριοι παράγοντες που καθορίζουν την αποδοτικότητα του συστήματος ανάληψης σεισμικών φορτίων είναι:

- Η μάζα, η δυσκαμψία, η απόσβεση και η διαμόρφωση του φέροντος και του μη φέροντος οργανισμού
- II. Η ικανότητα παραμόρφωσης των στοιχείων του φέροντος και του μη φέροντος οργανισμού
- III. Η ενέργεια και ο χαρακτήρας της σεισμικής διέγερσης στην οποία υποβάλλεται η κατασκευή.

Τα συστήματα επεμβάσεων εξασφαλίζουν επαρκή σεισμική συμπεριφορά επηρεάζοντας άμεσα τους παραπάνω παράγοντες και εφαρμόζονται είτε μεμονωμένα είτε σε συνδυασμό. Παραδείγματος χάριν, οι παραδοσιακές μέθοδοι ενίσχυσης, όπως είναι η προσθήκη δικτυωτών συνδέσμων ή τοιχωμάτων οπλισμένου σκυροδέματος, επιδρούν στη δυσκαμψία και στην αντοχή της κατασκευής. Τα συστήματα απορρόφησης ενέργειας, π.χ. οι ιξώδεις αποσβεστήρες, μεταβάλλουν την απόσβεση της κατασκευής και η σεισμική μόνωση επιδρά στο χαρακτήρα της εδαφικής διέγερσης που μεταδίδεται στην κατασκευή. Αν θεωρήσουμε, ότι το μέγεθος της μέγιστης αναπτυσσόμενης ενέργειας παραμόρφωσης λόγω σεισμού αποτελεί μέτρο της σεισμικής αντίστασης της κατασκευής, τότε μπορούμε να χαράξουμε μια καμπύλη υπερβολικής μορφής που αναπαριστά την απαιτούμενη σεισμική ικανότητα. Επομένως η καμπύλη αυτή υποδηλώνει το όριο μεταξύ της ασφαλούς και της ανασφαλούς επιλογής της λύσης ενίσχυσης. Δηλαδή μία κατασκευή θεωρείται ασφαλής όταν η καμπύλη που αναπαριστά τη συμπεριφορά της επεκτείνεται στην περιοχή πάνω από την καμπύλη (s) που απεικονίζει τον ασφαλή σχεδιασμό. Στην αντίθετη περίπτωση απαιτείται ενίσχυση.

Μετακινήσεις

Σχήμα 1-7 Στρατηγικές ενίσχυσης

Διακρίνουμε λοιπόν τέσσερις στρατηγικές αντισεισμικής ενίσχυσης ανάλογα με την επιδιωκόμενη σεισμική συμπεριφορά της κατασκευής:

- Ι. Τοπικές επεμβάσεις στο φορέα
- II. Αύξηση της δυσκαμψίας και της αντοχής της κατασκευής
- III. Αύξηση της ικανότητας παραμόρφωσης της κατασκευής
- ΙV. Μείωση της σεισμικής απαίτησης της κατασκευής (π.χ. σεισμική μόνωση)

1.3.2.1 Βελτίωση του φορέα με τοπικές επεμβάσεις

Η στρατηγική βελτίωσης ενός φορέα με τοπικές επεμβάσεις εφαρμόζεται σε κατασκευές που, ενώ διαθέτουν τα βασικά στοιχεία ενός επαρκούς συστήματος ανάληψης σεισμικών φορτίων, στερούνται ορισμένων κατασκευαστικών λεπτομερειών που είναι απαραίτητες για τη βελτιστοποίηση του συστήματος και την εξασφάλιση της επιθυμητής λειτουργίας του. Η ικανότητα μετακίνησης μιας τέτοιας κατασκευής μπορεί να είναι επαρκής σε σχέση με τη δεδομένη σεισμική απαίτηση, παρόλ' αυτά πριν επιτευχθεί αυτή η μετακίνηση ενδέχεται να συμβούν τοπικές αστοχίες σε διάφορες θέσεις της κατασκευής. Οι πλέον συνηθισμένες ατέλειες που ευθύνονται για τέτοιου είδους τοπικές αστοχίες είναι το ανεπαρκές μήκος έδρασης στις θέσεις των στηρίξεων προκατασκευασμένων στοιχείων και η ανεπαρκής αγκύρωση ή σύνδεση των στοιχείων του φέροντος οργανισμού τόσο μεταξύ τους όσο και με τα στοιχεία του μη φέροντος οργανισμού. Η τοπική επέμβαση για τη διόρθωση αυτών των ατελειών θα επέτρεπε στην κατασκευή να συμπεριφερθεί με τον επιθυμητό τρόπο. Πολύ συχνά η στρατηγική των τοπικών επεμβάσεων χρησιμοποιείται σε συνδυασμό με άλλες στρατηγικές προκειμένου να επιτευχθεί μία κατασκευή με επαρκή σεισμική συμπεριφορά.

1.3.2.2 Αύξηση της αντοχής και της δυσκαμψίας του φορέα

Η αύξηση της αντοχής και της δυσκαμψίας του φορέα είναι η πιο διαδεδομένη στρατηγική βελτίωσης της σεισμικής συμπεριφοράς σε κατασκευές με ανεπαρκές σύστημα ανάληψης σεισμικών φορτίων. Αν και οι δύο στρατηγικές σχετίζονται άμεσα μεταξύ τους, η κύρια διαφορά

τους έγκειται στο γεγονός, ότι μέσω της αύξησης της δυσκαμψίας επιτυγχάνεται μείωση της απαίτησης σε μετακίνηση, ενώ με την αύξηση της αντοχής επιτυγχάνεται επιπλέον αύξηση της σεισμικής δύναμης που απαιτείται ώστε να προκληθούν βλάβες στην κατασκευή. Εφόσον η αύξηση της αντοχής γίνει χωρίς ταυτόχρονη αύξηση της δυσκαμψίας, όπως με τη χρήση μμεταλλικών ελασμάτων ή ινοπλισμένων πολυμερών, τότε η ενισχυμένη κατασκευή μπορεί για μμεγαλύτερα σεισμικά φορτία να μην υποστεί βλάβες. Πρέπει να σημειωθεί ότι ακόμα και αν η μείωση της απαίτησης σε μετακίνηση που επιτυγχάνεται με την αύξηση της δυσκαμψίας του συστήματος δεν είναι μεγάλη, μπορεί να μεταβάλλει σημαντικά τη συμπεριφορά των στοιχείων της κατασκευής, τα οποία, ενώ δεν συμμετέχουν ιδιαίτερα στην ανάληψη των σεισμικών φορτίων, είναι εξαιρετικά ευαίσθητα στις πλευρικές μετακινήσεις. Τέτοια στοιχεία αποτελούν υποστυλώματα με χαμηλή πλαστιμότητα που χρησιμοποιούνται κυρίως για την παραλαβή των κατακόρυφων φορτίων και αρχιτεκτονικά διαχωριστικά τοιχεία και επικαλύψεις. Η αύξηση της αντοχής και της δυσκαμψίας του φορέα αποτελούν στρατηγικές που εφαρμόζονται κατά κανόνα ταυτόχρονα, καθώς τα περισσότερα συστήματα που αυξάνουν την αντοχή μιας κατασκευής, όπως είναι η προσθήκη τοιχωμάτων ή πλαισίων, αυξάνουν και τη δυσκαμψία της. Εξαίρεση αποτελούν τα τοπικά μέτρα ενίσχυσης τα οποία αυξάνουν την αντοχή συγκεκριμένων στοιχείων χωρίς να μεταβάλουν σημαντικά τη δυσκαμψία τους. Παραδείγματος χάριν, μία συνήθης ατέλεια των παλαιότερων πλαισιακών φορέων από οπλισμένο σκυρόδεμα είναι ότι τα μήκη υπερκάλυψης των εφελκυόμενων ράβδων του διαμήκους οπλισμού είναι ανεπαρκή, με αποτέλεσμα χαμηλή καμπτική αντοχή των μελών του φορέα. Η επιβολή εξωτερικής περίσφιγξης στις θέσεις των ενώσεων με υπερκάλυψη μπορεί να βελτιώσει σημαντικά τη συμπεριφορά των πλαισίων και να τους επιτρέψει να αναπτύξουν μεγαλύτερη αντοχή χωρίς να μεταβληθεί σημαντικά η δυσκαμψία τους.

Σχήμα 1-8 Ενίσχυση κατασκευής με προσθήκη τοιχωμάτων ή δικτυωτών συνδέσμων

1.3.2.3 Αύξηση της ικανότητας παραμόρφωσης

Η βελτίωση της σεισμικής συμπεριφοράς ενός κτιρίου μέσω της αύξησης της ικανότητας των στοιχείων του φέροντος οργανισμού να διατηρούν την αντοχή τους για μεγάλες παραμορφώσεις, είναι μία σχετικά νέα μέθοδος για τη σεισμική ενίσχυση κτιρίων από οπλισμένο σκυρόδεμα. Οι κυριότερες μέθοδοι για την αύξηση της ικανότητας παραμόρφωσης περιλαμβάνουν:

- Ι. Την επιβολή εξωτερικής περίσφιγξης σε υφιστάμενα στοιχεία
- II. Την τοπική απομείωση της δυσκαμψίας
- III. Την τροποποίηση στοιχείων, κυρίως κατακόρυφων, του φέροντος οργανισμού ώστε να μεταβληθούν οι προβλεπόμενοι μηχανισμοί αστοχίας
- ΙV. Την παροχή επιπλέον στήριξης σε περιοχές που αστοχούν λόγω υπερβολικών μετακινήσεων.

Κατά κανόνα αυτές οι μέθοδοι απαιτούν πολύ μικρότερη αρχιτεκτονική παρέμβαση στο κτίριο, σε σχέση με αυτές που αφορούν σε αύξηση της αντοχής ή της δυσκαμψίας.

Με την επιβολή εξωτερικής περίσφιγξης επιτυγχάνεται αύξηση της πλαστιμότητας. Η μέθοδος εφαρμόζεται κατά κανόνα σε υποστυλώματα. Για το σκοπό αυτό χρησιμοποιούνται μανδύες οπλισμένου σκυροδέματος, μεταλλικοί μανδύες ή μανδύες από σύνθετα υλικά ινοπλισμένων πολυμερών. Η τοπική απομείωση της δυσκαμψίας μπορεί να είναι ένας πολύ αποτελεσματικός τρόπος αποφυγής ανεπιθύμητων μορφών αστοχίας ή ακόμα περιορισμού των βλαβών σε μεμονωμένα στοιχεία που δεν είναι καθοριστικά για τη συνολική συμπεριφορά της κατασκευής. Η ενίσχυση συγκεκριμένων υποστυλωμάτων μπορεί να απαιτείται σε πλαισιακούς φορείς που δεν ικανοποιούν τις απαιτήσεις του ικανοτικού σχεδιασμού με αποτέλεσμα τη δημιουργία μηχανισμού ορόφου, δηλαδή τη συγκέντρωση των πλαστικών παραμορφώσεων στα άκρα των υποστυλωμάτων του ορόφου με μειωμένη δυσκαμψία. Χαρακτηριστική περίπτωση είναι οι κατασκευές με pilotis. Η παροχή επιπλέον στήριξης μπορεί να χρησιμοποιηθεί σε οριζόντια στοιχεία που συμμετέχουν κυρίως στην ανάληψη των κατακόρυφων και όχι των πλευρικών φορτίων και τα οποία ενδέχεται να απωλέσουν την έδρασή τους σε περίπτωση μεγάλων πλευρικών μετακινήσεων του φορέα.

Η στρατηγική της αύξησης της ικανότητας παραμόρφωσης είναι περισσότερο αποτελεσματική όταν το πλήθος των στοιχείων που απαιτούν τροποποιήσεις είναι σχετικά μικρό. Σε διαφορετική περίπτωση, η συγκεκριμένη στρατηγική μπορεί, αφενός μεν να αποδειχθεί εξαιρετικά δαπανηρή, αφετέρου δε να προκαλέσει σημαντικές δυσχέρειες στη χρήση του κτιρίου κατά τη διάρκεια των εργασιών ενίσχυσης.

Σχήμα 1-9 Ενίσχυση υποστυλώματος με μανδύα οπλισμένου σκυροδέματος

1.3.2.4 Μείωση της σεισμικής απαίτησης

Η συγκεκριμένη στρατηγική έχει ως στόχο την επιβολή μεταβολών στην υφιστάμενη κατασκευή ώστε να μειωθούν οι αναπτυσσόμενες δυνάμεις και παραμορφώσεις λόγω σεισμού. Μέθοδοι αυτής της στρατηγικής περιλαμβάνουν:

(α) τη μείωση της μάζας της κατασκευής και

(β) την εγκατάσταση συστημάτων σεισμικής μόνωσης ή/και απορρόφησης ενέργειας.

Η συμπεριφορά ορισμένων κτιρίων μπορεί να βελτιωθεί σημαντικά με τη μείωση της μάζας τους. Η μείωση της μάζας οδηγεί σε μείωση των αδρανειακών δυνάμεων και της συνολικής απαίτησης σε μετακίνηση της κατασκευής. Η μάζα, παραδείγματος χάριν, μπορεί να μειωθεί είτε απομακρύνοντας μη φέροντα στοιχεία μεγάλου βάρους, όπως επικαλύψεις, δεξαμενές, κτλ., είτε σε ακραία περίπτωση έναν ή περισσότερους ορόφους.

Η εγκατάσταση των συστημάτων σεισμικής μόνωσης ή/και απορρόφησης ενέργειας κατά κανόνα συνεπάγεται μία σημαντική δαπάνη. Πλεονέκτημα αυτών των συστημάτων είναι ότι

παρέχουν προστασία όχι μόνο στο φέροντα οργανισμό του κτιρίου αλλά και στα περιεχόμενα του. Κατά συνέπεια, η χρήση τους είναι συχνά κατάλληλη για κτίρια αυξημένης σπουδαιότητας, φέρουν ευαίσθητο εξοπλισμό ή είναι απαραίτητο να παραμείνουν σε λειτουργία τόσο κατά τη διάρκεια όσο και αμέσως μετά το σεισμό. Αυτοί είναι μερικοί από τους σημαντικότερους λόγους που η σεισμική μόνωση έχει επιλεγεί για το σχεδιασμό και τη σεισμική αναβάθμιση νοσοκομείων, εργοστασίων παραγωγής ενέργειας και τηλεπικοινωνιακών κέντρων. Συστήματα σεισμικής μόνωσης επίσης έχουν χρησιμοποιηθεί για την ενίσχυση ιστορικών κτισμάτων γιατί παρέχουν τη δυνατότητα μικρών σχετικά επεμβάσεων στα αρχιτεκτονικά χαρακτηριστικά της κατασκευής.

Η χρήση της σεισμικής μόνωσης απαιτεί την εισαγωγή εύκαμπτων εφεδράνων σε ένα συγκεκριμένο επίπεδο του στατικού συστήματος της κατασκευής, κατά κανόνα κοντά στη θεμελίωση. Τα εφέδρανα χαρακτηρίζονται από μεγάλη ικανότητα πλευρικής παραμόρφωσης, ενώ πολλά από αυτά έχουν επίσης και χαρακτηριστικά αποσβεστήρων. Η εγκατάσταση ενός συστήματος σεισμικής μόνωσης έχει ως αποτέλεσμα τη σημαντική αύξηση της θεμελιώδους ιδιοπεριόδου και, ενδεχομένως, του ποσοστού απόσβεσης της κατασκευής. Καθώς τα εφέδρανα έχουν πολύ μεγαλύτερη πλευρική ενδοτικότητα σε σχέση με την κατασκευή, η απαίτηση πλευρικής μόνωσης σεισμικής που σεισμού συγκεντρώνεται σε αυτά. Κατά συνέπεια, η απαίτηση σε μετακίνηση στο τμήμα της κατασκευής πάνω από τα εφέδρανα μειώνεται σημαντικά. Προκειμένου να συμβεί αυτό πρέπει το τμήμα της κατασκευής πάνω από τα εφέδρανα να είναι σημαντικά πιο δύσκαμπτο από τους μονωτήρες. Επίσης, η σεισμική μόνωση είναι πιο αποδοτική εάν η ανωδομή μπορεί να συμπεριφερθεί ελαστικά για την υπολειπόμενη απαίτηση σε μετακίνηση. Για να επιτευχθούν οι δύο παραπάνω περιορισμοί, η εγκατάσταση ενός συστήματος σεισμικής μονωσης του σο το του οποιο του από του ρεισμού συγκεντρώνεται σε αυτά. Κατά συνέπεια, η απαίτηση σε μετακίνηση το τμήμα της κατασκευής πάνω από τα εφέδρανα μειώνεται σημαντικά. Προκειμένου να συμβεί αυτό πρέπει το τμήμα της κατασκευής πάνω από τα εφέδρανα του αποδοτική εάν η ανωδομή μπορεί να συμπεριφερθεί ελαστικά για την υπολειπόμενη απαίτηση σε μετακίνηση. Για να επιτευχθούν οι δύο παραπάνω περιορισμοί, η εγκατάσταση ενός συστήματος σεισμικής μόνωσης απαιτεί συχνά την αύξηση της δυσκαμψίας του φορέα.

Τα συστήματα απορρόφησης ενέργειας αυξάνουν άμεσα την ικανότητα της κατασκευής να απορροφά σεισμική ενέργεια και με αυτό τον τρόπο μειώνουν την απαίτηση σε μετακίνηση της κατασκευής. Για την εγκατάσταση των αποσβεστήρων συχνά χρειάζεται πρώτα η τοποθέτηση συνδέσμων σε επιλεγμένα φατνώματα του φορέα, πάνω στους οποίους αναρτώνται οι αποσβεστήρες. Τα συστήματα απορρόφησης ενέργειας έχουν κατά κανόνα μεγαλύτερο κόστος από τα παραδοσιακά συστήματα αύξησης της αντοχής και της δυσκαμψίας της κατασκευής, αλλά εξασφαλίζουν σημαντικά βελτιωμένη σεισμική συμπεριφορά. Είναι πιο αποδοτικά σε κατασκευές με σημαντική ικανότητα πλευρικής μετακίνησης, όπως πλαισιακοί φορείς, καθώς εάν η κατασκευή είναι σχετικά δύσκαμπτη, οι αποσβεστήρες, η ικανότητα απορρόφησης ενέργειας των οποίων εξαρτάται άμεσα από την αναπτυσσόμενη δύναμη και την παραμόρφωσή τους, δεν θα μπορέσουν να ενεργοποιηθούν πριν η κατασκευή υποστεί μεγάλες μετακινήσεις. Συνεπώς, τα συστήματα αυτά εφαρμόζονται κυρίως σε πλαισιακούς φορείς.

1.3.3 Επιλογή συστήματος επεμβάσεων

Συνοψίζοντας τα παραπάνω, μπορούμε να ταξινομήσουμε τις μεθόδους αντισεισμικής ενίσχυσης ανάλογα με τον επιδιωκόμενο στόχο ως εξής:

- Αν ο στόχος είναι η αύξηση της δυσκαμψίας και της αντοχής της κατασκευής, τότε η πλέον αποτελεσματική μέθοδος είναι η προσθήκη τοιχωμάτων εντός των πλαισίων του φορέα. Ακολουθεί η μέθοδος της προσθήκης δικτυωτών συνδέσεων, η μμέθοδος της προσθήκης τοιχωμάτων κατ' επέκταση υφιστάμενων υποστυλωμάτων και η χρήση σύνθετων υλικών.
- II. Αν ο στόχος είναι η αύξηση της πλαστιμότητας, τότε η μέθοδος που ενδείκνυται είναι η κατασκευή μανδυών σε ένα πλήθος επιλεγμένων υποστυλωμάτων, καθώς και η χρήση σύνθετων υλικών.
- III. Αν στόχος είναι η ταυτόχρονη αύξηση αντοχής, δυσκαμψίας και πλαστιμότητας της κατασκευής τότε μπορεί να χρησιμοποιηθεί οποιαδήποτε από τις μεθόδους αντισεισμικής ενίσχυσης λαμβάνοντας υπόψη τον επιθυμητό βαθμό αύξησης του μεγέθους καθενός από τα παραπάνω χαρακτηριστικά.

Στην περίπτωση που οι απαιτούμενες αυξήσεις είναι ιδιαίτερα υψηλές και για τα τρία χαρακτηριστικά, είναι κατά κανόνα αναπόφευκτη η προσθήκη νέων κατακόρυφων στοιχείων. Πρέπει να επισημανθεί ότι συχνά είναι σκόπιμο να εφαρμόζεται ένας συνδυασμός μεθόδων ή επιμέρους τεχνικών ώστε να προκύψει η βέλτιστη οικονομοτεχνικά λύση. Επίσης πρέπει να γίνει κατανοητό ότι πολλές φορές η μέθοδος επέμβασης που επιλέγεται ως καταλληλότερη δεν είναι τεχνικά εφικτή. Για παράδειγμα, το σύνολο σχεδόν των κτιρίων από οπλισμένο σκυρόδεμα που κατασκευάστηκαν στην Ελλάδα έως τα μέσα της δεκαετίας του 1980 δεν πληρούν τις απαιτήσεις πλαστιμότητας των σύγχρονων κανονισμών. Παρόλ' αυτά η αύξηση της πλαστιμότητας σε ένα από τα κτίρια αυτά με προσθήκη μανδυών δημιουργεί την ανάγκη για πρόσθετα στοιχεία δυσκαμψίας και αντοχής, τα οποία όμως ενδέχεται να αυξήσουν σημαντικά την απαίτηση στη θεμελίωση ή να προκαλέσουν προβλήματα λειτουργικότητας όταν η κατασκευή επανέλθει σε χρήση. Με βάση τα παραπάνω είναι εύλογο ότι το νομοθετικό πλαίσιο που καθορίζεται από την Πολιτεία για την αποκατάσταση των βλαβών μετά από ένα καταστροφικό σεισμό δεν πρέπει να αποτελεί αντικείμενο αυστηρής επιστημονικής κριτικής, καθώς προσπαθεί να συγκεράσει το ευκταίο με το εφικτό. Με άλλα λόγια, πρόκειται περί πολιτικής απόφασης, με την ευρύτερη σημασία του όρου, που επιχειρεί να πετύχει το βέλτιστο συνδυασμό επιστημονικής γνώσης και οικονομοτεχνικών περιορισμών με στόχο την άμεση αντιμετώπιση του οξύτατου κοινωνικού προβλήματος της ασφαλούς επισκευής των κατασκευών που έχουν υποστεί βλάβες.

1.3.4 Σχεδιαστικοί περιορισμοί

Οι σχεδιαστικοί περιορισμοί είναι οι παράγοντες εκείνοι, πέρα από τα χαρακτηριστικά του φέροντος οργανισμού της κατασκευής, που επηρεάζουν άμεσα τη δυνατότητα υλοποίησης μιας στρατηγικής ή ενός συστήματος επεμβάσεων. Μεταξύ των παραγόντων αυτών περιλαμβάνονται η επιλεγείσα στάθμη επιτελεστικότητας, περιορισμοί κόστους που αφορούν είτε στη μελέτη είτε στην κατασκευή, καθώς επίσης και χρονικοί περιορισμοί σχετικά με την αποπεράτωση του έργου. Περιορισμοί ακόμη μπορεί να επιβληθούν από πολεοδομικές διατάξεις, απαιτήσεις διατήρησης του ιστορικού χαρακτήρα της κατασκευής, καθώς και τις επιπτώσεις των εργασιών ανασχεδιασμού στη λειτουργικότητα και τη χρήση του κτιρίου τόσο κατά τη διάρκεια όσο και μετά την ολοκλήρωσή τους.

1.3.5 Διαχειριστικές στρατηγικές επεμβάσεων

Οι διαχειριστικές στρατηγικές επεμβάσεων αποτελούν αποτέλεσμα προγραμματισμού και κατά κανόνα καθορίζονται από τον Κύριο του Έργου σε συνεργασία με το μελετητή Μηχανικό. Διακρίνονται συνήθως σε δύο κατηγορίες: σε στρατηγικές που επηρεάζουν την ικανότητα της κατασκευής να ικανοποιεί τις απαιτήσεις της επιδιωκόμενης στάθμης επιτελεστικότητας για τη χρήση της και σε στρατηγικές που ρυθμίζουν τον τρόπο εφαρμογής της μεθόδου των επεμβάσεων. Μεταξύ αυτών περιλαμβάνονται η αλλαγή χρήσης της κατασκευής, η κατεδάφιση, η προσωρινή ενίσχυση, η ενίσχυση σε φάσεις, η ενίσχυση χωρίς διαταραχή της λειτουργίας της κατασκευής, η ενίσχυση με εκκένωση της κατασκευής και η ενίσχυση της κατασκευής και η ενίσχυση της κατάλληλης διαχειριστικής στρατηγικής αποτελεί πολύ σημαντική παράμετρο επίτευξης του αντικειμενικού στόχου, δηλαδή της μείωσης της σεισμικής διακινδύνευσης μιας υφιστάμενης κατασκευής. Επομένως, οι εναλλακτικές στρατηγικές επεμβάσεων πρέπει να συνεκτιμώνται από το Μηχανικό και να παρουσιάζονται στον Κύριο του Έργου, ο οποίος ενδέχεται να μην είναι εξοικειωμένος με αυτές ώστε να γνωρίζει τα σχετικά πλεονεκτήματα και μειονεκτήματα από την εφαρμογή τους.

2 Μέθοδοι ανάλυσης υφιστάμενων κατασκευών

2.1 Γενικές απαιτήσεις προσομοίωσης και ελέγχων

2.1.1 Γενικά- βασικοί ορισμοί

Για την εκτίμηση της συμπεριφοράς μιας υφιστάμενης κατασκευής για το σεισμό σχεδιασμού και τη λήψη αποφάσεων που αφορούν σε ενδεχόμενη ενίσχυσή της είναι απαραίτητο να προηγηθεί ανάλυση για να υπολογιστούν τα εντατικά μεγέθη και οι παραμορφώσεις των στοιχείων του φέροντος οργανισμού. Με την ανάλυση εξετάζεται εάν η κατασκευή ανταποκρίνεται στους στόχους αποτίμησης και ανασχεδιασμού που έχουν οριστεί από τον Κύριο του Έργου ή την υπεύθυνη δημόσια Αρχή σε περίπτωση δημοσίων κτισμάτων, μνημείων, κτλ. Οι στόχοι αυτοί προκύπτουν με βάση την επιλεγείσα στάθμη επιτελεστικότητας, δηλαδή την επιθυμητή συμπεριφορά της κατασκευής για την αντίστοιχη σεισμική δράση σχεδιασμού.

Πιθανότητα υπέρβασης σεισμικής δράσης εντός του συμβατικού χρόνου ζωής των 50 ετών		Στάθμη επιτελεστικότητας φέροντος οργανισμού						
		Άμεση χρήση μετά τον σεισμό	Προστασία ζωής	Αποφυγή οιονεί κατάρρευσης				
1.	10%	A1	B1	Г1				
2.	50%	A2	B2	Г2				

Οι στάθμες επιτελεστικότητας για την αποτίμηση και τον ανασχεδιασμό της κατασκευής διακρίνονται με βάση το είδος και το επίπεδο των βλαβών που αναπτύσσονται στην κατασκευή, δηλαδή στο φέροντα και μη φέροντα οργανισμό, από το σεισμό σχεδιασμού και είναι οι ακόλουθες βάσει ΚΑΝ.ΕΠΕ και ΕC8 ως εξής:

- 🖊 Οριακή κατάσταση Περιορισμού Βλαβών (ΕC8) Άμεση Χρήση (ΚΑΝ.ΕΠΕ)
- 븆 Οριακή κατάσταση Σημαντικών Βλαβών (EC8) Προστασία Ζωής (KAN.EΠE)
- 븆 Οριακή κατάσταση Οιονεί Κατάρρευσης (EC8-KAN.ΕΠΕ)

Ειδικώς για τις ανάγκες του ΚΑΝ.ΕΠΕ οι στάθμες επιτελεστικότητας του φέροντος οργανισμού ορίζονται ως εξής:

- «Άμεση χρήση μετά τον σεισμό» (Α) είναι μια κατάσταση κατά την οποία αναμένεται ότι καμιά λειτουργία του κτιρίου δεν διακόπτεται κατά τη διάρκεια και μετά τον σεισμό σχεδιασμού, εκτός ενδεχομένως από δευτερεύουσας σημασίας λειτουργίες. Είναι ενδεχόμενο να παρουσιασθούν μερικές τριχοειδείς ρωγμές στον φέροντα οργανισμό.
- «Προστασία ζωής» (B) είναι μια κατάσταση κατά την οποία κατά τον σεισμό σχεδιασμού αναμένεται να παρουσιασθούν επισκευάσιμες βλάβες στον φέροντα οργανισμό του κτιρίου, χωρίς όμως να συμβεί θάνατος ή σοβαρός τραυματισμός ατόμων εξαιτίας των βλαβών αυτών, και χωρίς να συμβούν ουσιώδεις βλάβες στην οικοσκευή ή τα αποθηκευόμενα στο κτίριο υλικά.
- «Οιονεί κατάρρευση» (Γ) είναι μια κατάσταση κατά την οποία κατά τον σεισμό σχεδιασμού αναμένεται να παρουσιασθούν εκτεταμένες και σοβαρές ή βαριές (μη-επισκευάσιμες κατά πλειονότητα) βλάβες στον φέροντα οργανισμό, ο οποίος όμως έχει ακόμη την ικανότητα να φέρει τα προβλεπόμενα κατακόρυφα φορτία (κατά, και για ένα διάστημα μετά, τον σεισμό), χωρίς πάντως να διαθέτει άλλο ουσιαστικό περιθώριο ασφαλείας έναντι ολικής ή μερικής κατάρρευσης.

Αξίζει να σημειωθεί ότι για την αποτίμηση και τον ανασχεδιασμό των περισσοτέρων συνήθων οικοδομικών έργων, που αντιστοιχούν σε κατηγορία σπουδαιότητας Σ2 σύμφωνα με τον Ευρωκώδικα 8 (ΕC8), επιλέγεται η δεύτερη στάθμη επιτελεστικότητας. Για κατασκευές υψηλής σπουδαιότητας συνιστάται η υιοθέτηση αυστηρότερων κριτηρίων επιτελεστικότητας σε συνεργασία με τον Κύριο του Έργου. Το επίπεδο της σεισμικής δράσης σχεδιασμού για την

ανάλυση της κατασκευής καθορίζεται με βάση διάφορα οικονομικοκοινωνικά κριτήρια, όπως είναι η σπουδαιότητα του κτιρίου, οι επιπτώσεις από ενδεχόμενη διακοπή της λειτουργίας του και οι διαθέσιμοι οικονομικοί πόροι για την ενίσχυσή του. Για τον υπολογισμό της σεισμικής δράσης χρησιμοποιούνται είτε φάσματα σχεδιασμού, είτε χρονοϊστορίες επιταχύνσεων. Ανάλογα με την επιλεγείσα στάθμη επιτελεστικότητας και θεωρώντας ότι η συμβατική διάρκεια ζωής μιας κατασκευής είναι 50 έτη, η σεισμική δράση σχεδιασμού μπορεί να έχει πιθανότητα υπέρβασης είτε 10% στα 50 έτη είτε 50% στα 50 έτη. Η πρώτη πιθανότητα υπέρβασης αντιστοιχεί σε περίοδο επαναφοράς 475 έτη, ενώ η δεύτερη σε περίοδο επαναφοράς 72 έτη. Για κατασκευές ιδιαίτερης σπουδαιότητας, ως σεισμός σχεδιασμού μπορεί να χρησιμοποιηθεί και δράση με πιθανότητα υπέρβασης 5% στα 50 χρόνια. Πρέπει να σημειωθεί ότι οι σεισμικές δράσεις που υπολογίζονται με βάση τον ισχύοντα αντισεισμικό κανονισμό με τη βοήθεια φασμάτων απόκρισης σε όρους επιτάχυνσης αντιστοιχούν σε πιθανότητα υπέρβασης 10% στα 50 έτη. Οι σεισμικές δράσεις για πιθανότητα υπέρβασης 50% στα 50 έτη προσδιορίζονται με χρήση κάποιας από τις επιστημονικά αποδεκτές μεθόδους της σεισμολογίας. Απλοποιητικά μπορούν να λαμβάνονται ίσες με το 50% αυτών που αντιστοιχούν σε πιθανότητα υπέρβασης 10% στα 50 έτη.

2.1.2 Κύρια και δευτερεύοντα στοιχεία

Πριν την επιλογή των κριτηρίων επιτελεστικότητας είναι απαραίτητο να γίνει ο διαχωρισμός των στοιχείων της κατασκευής που φορτίζονται λόγω των μετακινήσεων που επιβάλλονται στην κατασκευή από τα σεισμικά φορτία σε πρωτεύοντα και δευτερεύοντα. Οι επιμέρους φορείς του φέροντος οργανισμού ενός κτιρίου, καθώς και τα μεμονωμένα δομικά στοιχεία (μέλη) που επηρεάζουν τη δυσκαμψία και την κατανομή της έντασης στο κτίριο, ή που φορτίζονται λόγω των πλευρικών μετακινήσεων του κτιρίου, μπορεί κατά την αποτίμηση ή τον ανασχεδιασμό να διακρίνονται σε «κύρια» (ή «πρωτεύοντα») και «δευτερεύοντα». Ως κύρια εν γένει θα χαρακτηρίζονται τα στοιχεία ή οι επιμέρους φορείς που συμβάλλουν στην αντοχή και ευστάθεια του κτιρίου υπό σεισμικά φορτία. Τα υπόλοιπα φέροντα στοιχεία ή επιμέρους φορείς θα χαρακτηρίζονται ως δευτερεύοντα. Η βασική συνέπεια του χαρακτηρισμού ενός φέροντος στοιχείου (ή επιμέρους φορέα) ως δευτερεύοντος είναι ότι για τα στοιχεία αυτά ισχύουν διαφορετικά κριτήρια επιτελεστικότητας, επιτρέπεται δηλαδή να υποστούν μεγαλύτερες μετακινήσεις και βλάβες απ' ό,τι τα πρωτεύοντα στοιχεία. Στην περίπτωση κατά την οποία ως στόχος αποτίμησης ή ανασχεδιασμού έχει επιλεγεί η άμεση χρήση μετά τον σεισμό, η παραπάνω διάκριση σε κύρια και δευτερεύοντα στοιχεία δεν επιτρέπεται. Για τις τοιχοπληρώσεις, οι οποίες δεν φέρουν κατακόρυφα φορτία δεν ισχύει η διάκριση σε πρωτεύοντα και δευτερεύοντα στοιχεία. Σύμφωνα με τον ΚΑΝ.ΕΠΕ. όταν συνεκτιμώνται στην ανάληψη σεισμικών δράσεων, αντιμετωπίζονται και ελέγχονται ιδιαιτέρως.

Η διάκριση αυτή επαφίεται στην κρίση του μελετητή Μηχανικού. Η ειδοποιός διαφορά μεταξύ των δύο κατηγοριών είναι κατά πόσον ένα στοιχείο ή φορέας (π.χ. πλαίσιο, τοίχωμα) είναι κρίσιμο (και όχι απλώς συνεισφέρει) στην αντίσταση του κτιρίου έναντι κατάρρευσης. Κατά συνέπεια, ως δευτερεύοντα θα χαρακτηρίζονται εν γένει τα στοιχεία που συμβάλλουν στην ανάληψη κατακόρυφων φορτίων, αλλά δεν συνεισφέρουν σε σημαντικό βαθμό στην αντίσταση έναντι αναξιόπιστος, λόγω χαμηλής δυσκαμψίας ή αντοχής ή πλαστιμότητας (ή και λόγω ανέλεγκτου τρόπου δόμησης).

Η (δυνητική) διάκριση σε κύρια και δευτερεύοντα φέροντα στοιχεία γίνεται για να υπάρχει η δυνατότητα να διαφοροποιούνται οι έλεγχοι για την κάθε κατηγορία στοιχείων (τα δευτερεύοντα επιτρέπεται να υποστούν μεγαλύτερες μετακινήσεις και βλάβες απ' ό,τι τα πρωτεύοντα στοιχεία) και για να μην οδηγεί ο έλεγχος στο συμπέρασμα ότι ένα κτίριο δεν είναι επαρκές λόγω της αστοχίας κάποιων μεμονωμένων στοιχείων που δεν είναι καθοριστικά για την ευστάθειά του υπό σεισμικές δράσεις. Η διάκριση των στοιχείων σε κύρια και δευτερεύοντα είναι ιδιαίτερα χρήσιμη (και σκόπιμη) σε περιπτώσεις όπου:

• Σε έναν καταρχήν και γενικώς επαρκή (από αντισεισμικής πλευράς) φορέα, υπάρχουν μεμονωμένα στοιχεία που είναι πρακτικώς αδύνατο να πληρούν τα κριτήρια επιτελεστικότητας του

παρόντος Κανονισμού, χωρίς όμως η αδυναμία αυτή να συνεπάγεται αναπόφευκτη αδυναμία του φορέα (πρόκειται, ουσιαστικώς, για την παραδοχή αυξημένου βαθμού βλάβης ορισμένων στοιχείων). Στην κατηγορία αυτή ανήκουν οι δοκοί συζεύξεως τοιχωμάτων και εν γένει οι σχετικά μικρού μήκους δοκοί που συμβάλλουν σε τοιχώματα (εφόσον δεν έχουν οπλισθεί με κατάλληλους οπλισμούς), οι δοκοί με έμμεσες στηρίξεις επί δοκών, τα φυτευτά υποστυλώματα σε περιπτώσεις ρετιρέ κ.λπ. Τέτοια στοιχεία μπορεί να χαρακτηρισθούν ως δευτερεύοντα και ο έλεγχος της επάρκειας του φορέα να γίνει χωρίς αυτά (π.χ. θεώρηση «αρθρωτής» συνδέσεώς τους με τον κύριο φορέα).

Κατά τον ανασχεδιασμό του κτιρίου, χρησιμοποιούνται νέοι φορείς (τοιχώματα, δικτυώματα και, σπανιότερα, πλαίσια) οι οποίοι σχεδιάζονται για να αναλάβουν το σύνολο σχεδόν των σεισμικών δράσεων. Ο υφιστάμενος (πριν από την επέμβαση) φορέας μπορεί τότε να χαρακτηρισθεί ως δευτερεύων.

2.1.3 Αντιστάσεις στοιχείων- έλεγχοι ασφαλείας

Ο έλεγχος ικανοποίησης των κριτηρίων επιτελεστικότητας (έλεγχος της ανίσωσης ασφαλείας) σε όρους δυνάμεων (εντατικών μεγεθών) ή παραμορφώσεων γίνεται για κάθε δομικό στοιχείο, αφού προηγουμένως το στοιχείο έχει χαρακτηρισθεί ως «πρωτεύον» ή «δευτερεύον», Για τους οιονεί πλάστιμους τρόπους αστοχίας (δυνατότητα ανάπτυξης μετελαστικών παραμορφώσεων χωρίς σημαντική μείωση της αντοχής), οι έλεγχοι γίνονται εν γένει σε όρους παραμορφώσεων. Για τους οιονεί ψαθυρούς τρόπους αστοχίας ή σε περιπτώσεις μικρού λόγου διάτμησης, οι έλεγχοι γίνονται εν γένει σε όρους δυνάμεων. Τόσο τα πρωτεύοντα, όσο και τα δευτερεύοντα στοιχεία του κτιρίου πρέπει να μπορούν να παραλάβουν τις δυνάμεις και τις παραμορφώσεις που αντιστοιχούν στα κριτήρια ελέγχου της ανίσωσης ασφαλείας Όταν για τις ανάγκες μιας ανελαστικής μεθόδου ανάλυσης, υπολογίζεται η αντίσταση ενός στοιχείου, οι αντιπροσωπευτικές τιμές των ιδιοτήτων των υλικών που θα χρησιμοποιηθούν πρέπει να ανταποκρίνονται στον αναμενόμενο τρόπο αστοχίας του. Στην περίπτωση πλάστιμου τρόπου αστοχίας και ελέγχου σε όρους παραμορφώσεων, ως αντιπροσωπευτικές τιμές των ιδιοτήτων των υλικών θα χρησιμοποιούνται οι μέσες τιμές τους, ενώ στην περίπτωση ψαθυρού τρόπου αστοχίας και ελέγχου σε όρους δυνάμεων, ως αντιπροσωπευτικές τιμές των ιδιοτήτων των υλικών θα χρησιμοποιούνται οι μέσες τιμές τους μειωμένες κατά μία τυπική απόκλιση.

2.1.4 Διαφράγματα

Οι εντός επιπέδου παραμορφώσεις του διαφράγματος υπό την επίδραση των διανεμημένων σεισμικών αδρανειακών δράσεων και των αντιδράσεων των κατακόρυφων στοιχείων που συνδέονται με το διάφραγμα, οφείλουν να λαμβάνονται υπόψη κατά τον υπολογισμό των σχέσεων που συνδέουν τις μετακινήσεις των κατακόρυφων στοιχείων. Προς τούτο, επιτρέπεται η κατάταξη των διαφραγμάτων σε δύο κατηγορίες: Ευπαραμόρφωτα και απαραμόρφωτα. Ένα διάφραγμα θα χαρακτηρίζεται ως ευπαραμόρφωτο, όταν η μέγιστη εντός του επιπέδου του οριζόντια παραμόρφωσή του υπερβαίνει το διπλάσιο του μέσου σχετικού βέλους των κατακόρυφων φορέων του υποκείμενου ορόφου. Για διαφράγματα που εδράζονται επί τοιχωμάτων υπογείου, θα λαμβάνεται υπόψη το σχετικό βέλος του ορόφου που υπέρκειται του διαφράγματος. Αντίστοιχα, ένα διάφραγμα θα χαρακτηρίζεται ως απαραμόρφωτο, όταν η μέγιστη εντός του επιπέδου του οριζόντια παραμόρφωση κατά μήκος του διαφράγματος είναι μικρότερη του μισού του μέσου σχετικού βέλους των κατακόρυφων φορέων του υποκείμενου ορόφου. Δδιαφράγματα που δεν ανήκουν σε μία από τις παραπάνω κατηγορίες χαρακτηρίζονται ως δυσπαραμόρφωτα, αλλά για απλοποίηση της ανάλυσης μπορεί να κατατάσσονται στην πλησιέστερη από τις δύο κατηγορίες (ευπαραμόρφωτα - απαραμόρφωτα). Εάν δεν γίνεται λεπτομερέστερη θεώρηση, ένα διάφραγμα από οπλισμένο σκυρόδεμα μπορεί να θεωρείται ως απαραμόρφωτο, εάν πληρούνται τα εξής (απλοποιητικά) κριτήρια:

 Παρουσία ουσιωδών περιμετρικών δοκών, απουσία έντονων μεταβολών πάχους και διατομών, ή ασυνεχειών στη διάταξη δοκών ή/και πλακών, • Δεν πρόκειται για συστήματα συμπαγών πλακών χωρίς δοκούς ή με έμμεσες στηρίξεις, Στην κατηγορία αυτή δεν συμπεριλαμβάνονται οι συμπαγείς πλάκες χωρίς δοκούς με επαρκή τοιχώματα καθώς και οι δοκιδωτές πλάκες (ιδίως τύπου Sandwich) επίσης με επαρκή τοιχώματα.

Οι ανισοσταθμίες μέσα στον ίδιο όροφο δεν είναι έντονες (π.χ. υψομετρικές διαφορές όχι μεγαλύτερες του h_b/2, όπου h_b το μέσο ύψος δοκών)

• Η μορφή της κάτοψης είναι συμπαγής (π.χ. απουσία μεγάλων εισεχόντων ή εξεχόντων τμημάτων, κατόψεων με επιμήκεις πτέρυγες μορφής Γ, Τ, Π κλπ.)

 Δεν υπάρχουν μεγάλα κενά (ανοίγματα) μέσα στο διάφραγμα, ιδίως στην περιοχή μεγάλων τοιχωμάτων (κατ' εξοχήν πρωτευόντων φερόντων στοιχείων).

Στη συνήθη περίπτωση των συστημάτων πλακών – δοκών από οπλισμένο σκυρόδεμα, το αντίστοιχο διάφραγμα επιτρέπεται να θεωρείται απαραμόρφωτο, χωρίς αναλυτικό υπολογισμό, όταν η γεωμετρία και η αντοχή του (εντός επιπέδου) μπορεί να θεωρηθούν ικανοποιητικές. Στα κτίρια με ευπαραμόρφωτα διαφράγματα, η προσομοίωση του διαφράγματος, ως φορέα γίνεται με εντός επιπέδου στοιχεία, των οποίων η δυσκαμψία είναι συμβατή με τα μμηχανικά χαρακτηριστικά των υλικών που συνθέτουν το διάφραγμα. Τέλος, η προσομοίωση των κτιρίων με απαραμόρφωτα διαφράγματα στο χιαφράγματα.

2.1.5 Συνεκτίμηση της στρέψης

Σύμφωνα με τον ΚΑΝ.ΕΠΕ η επιρροή της στρέψης περί κατακόρυφο άξονα δεν απαιτείται να λαμβάνεται υπόψη στην περίπτωση κτιρίων με ευπαραμόρφωτα διαφράγματα και η αύξηση (ή μείωση) των δυνάμεων και μετακινήσεων λόγω στρέψης θα υπολογίζεται σε όλες τις άλλες περιπτώσεις. Με βάση αφενός τις ιδιαιτερότητες του υφιστάμενου κτιρίου και αφετέρου την υιοθέτηση των ανελαστικών μεθόδων ανάλυσης από τον ΚΑΝ.ΕΠΕ, αντί της μεθόδου του ΕΚ 8-1, η επιρροή της στρεπτικής επιπόνησης κατά την εφαρμογή των στατικών μεθόδων επιτρέπεται να συνεκτιμάται με βάση τα παρακάτω:

• Ο συντελεστής επαύξησης των μετακινήσεων 'η' σε κάθε όροφο θα υπολογίζεται ως ο λόγος της μέγιστης μετακίνησης σε οποιοδήποτε σημείο του διαφράγματος προς τη μέση μετακίνηση (η = $\delta_{max}/\delta_{avg}$).

• Η αύξηση των δυνάμεων και μετακινήσεων λόγω τυχηματικής στρέψης θα λαμβάνεται υπόψη, εκτός αν:

(i) η αντίστοιχη ροπή στρέψης είναι μικρότερη από το 25% της υφιστάμενης στρέψης ή

(ii) ο συντελεστής 'η' επαύξησης των μετακινήσεων λόγω επιβαλλόμενων σεισμικών φορτίων και τυχηματικής εκκεντρότητας είναι μικρότερος του 1.1 σε κάθε όροφο.

Στην ελαστική στατική μμέθοδο, οι δυνάμεις και οι μμετακινήσεις λόγω τυχηματικής στρέψης θα επαυξάνονται με βάση τον συντελεστή (η/1,2)2 ≤3, όταν ο συντελεστής επαύξησης των μετακινήσεων 'η' υπερβαίνει την τιμή 1.2 σε οιονδήποτε όροφο.

Σε κάθε περίπτωση, εφόσον μία αρχική αποτίμηση χωρίς συνεκτίμηση της τυχηματικής στρέψης δείξει ανεπάρκεια, δεν απαιτείται περαιτέρω έλεγχος κατά την φάση αυτή.

2.1.6 Αλληλεπίδραση εδάφους – θεμελίωσης

Η προσομοίωση του υφιστάμενου δομήματος πρέπει να λαμβάνει υπόψη τις πραγματικές συνθήκες στήριξης στο έδαφος. Σε κτίρια με υπόγειο που περιβάλλεται από μονολιθικά τοιχώματα, μπορεί να θεωρείται πλήρης πάκτωση των στύλων του ισογείου στη βάση τους. Σε όλες τις άλλες περιπτώσεις πρέπει να αιτιολογείται επαρκώς η ενδεχόμενη παραδοχή πάκτωσης στη στάθμη θεμελίωσης, λαμβάνοντας υπόψη και το θέμα της αλληλεπίδρασης εδάφους-θεμελίωσης.

Η αλληλεπίδραση του εδάφους, της θεμελίωσης και της ανωδομής μπορεί να έχει μικρότερο ή μεγαλύτερο ρόλο στη συνολική απόκριση του συστήματος ανάλογα πάντα με τη σχετική δυσκαμψία και μάζα του εδάφους, της θεμελίωσης και της κατασκευής. Υπό στατική φόρτιση, η περισσότερο προφανής επίπτωση της συνεκτίμησης του ρόλου του εδάφους στη μελέτη απόκρισης της κατασκευής, είναι η αύξηση των οριζοντίων μετακινήσεων και η ταυτόχρονη μείωση των φορτίων διατομής στη βάση των κατακόρυφων δομικών στοιχείων. Επιπρόσθετα, όταν η φόρτιση έχει δυναμικό χαρακτήρα όπως συμβαίνει με την σεισμική φόρτιση, τα βασικά χαρακτηριστικά της απόκρισης διαφοροποιούνται σε σχέση με αυτά μια πακτωμένης κατασκευής. Συγκεκριμένα, και όπως περιγράφεται συνοπτικά στον Ευρωκώδικα 8, παρατηρούνται τα ακόλουθα:

- Η κίνηση της θεμελίωσης μιας εύκαμπτα στηριζόμενης κατασκευής είναι διακριτή από αυτή μ ιας πακτωμένης στη βάση κατασκευής και ενδεχόμενα να εμπεριέχει σημαντική λικνιστική συ νιστώσα (rocking component).
- Η θεμελιώδης ιδιοπερίοδος της κατασκευής αναμένεται να είναι μεγαλύτερη, σε σχέση με την θεμελιώδη ιδιοπερίοδο κατασκευής πακτωμένης στη βάση της. Άμεση επίπτωση του γεγονότ ος αυτού είναι ότι η κατασκευή οδηγείται σε θέση προς τα δεξιά του φάσματος όπου η φασμ ατική επιτάχυνση αναμένεται μεν να είναι μικρότερη αλλά παρατηρούνται μεγαλύτερες μετα κινήσεις.
- Οι ιδιομορφές και οι συντελεστές συμμετοχής είναι πιθανό να διαφέρουν ουσιαστικά.
- Η συνολική απόσβεση του συστήματος θα περιέχει μια επιπρόσθετη εσωτερική απόσβεση στη διεπιφάνεια εδάφους θεμελίωσης αφού ένα μέρος της ενέργειας ταλάντωσης διαχέεται στο περιβάλλον, κάτι το οποίο δεν συμβαίνει όταν η βάση της κατασκευής θεωρείται πακτωμένη.

Η αλληλεπίδραση εδάφους-θεμελίωσης-κατασκευής μπορεί να αποδοθεί σε δύο αιτίες. Κατά πρώτο λόγο η θεμελίωση δεν είναι πάντα δυνατόν να ακολουθήσει την κίνηση του εδάφους, με αποτέλεσμα η απόκριση της βάσης της κατασκευής να διαφέρει από την κίνηση που εισάγει το έδαφος. Δηλαδή, παρατηρείται μια αδυναμία συμβιβαστού των παραμορφώσεων του ελεύθερου πεδίου και των μετατοπίσεων στερεού σώματος της θεμελίωσης που επιφέρει την ανάκλαση και διάχυση των προσπιπτόντων κυματισμών και την αλλοίωση της αρχικής εδαφικής διέγερσης. Η διαδικασία αυτή περιγράφεται ως κινηματική αλληλεπίδραση. Επιπλέον, η δυναμική συμπεριφορά του συστήματος θεμελίωση-κατασκευή επιβάλλει μέσω των αδρανειακών δυνάμεων που αναπτύσσονται σε αυτές, καταναγκασμένες μετακινήσεις στο έδαφος επηρεάζοντας δραστικά σε ορισμένες περιπτώσεις την εδαφική απόκριση (αδρανειακή αλληλεπίδραση). Μπορεί συνεπώς να θεωρηθεί ότι η σχέση αλληλεξάρτησης μεταξύ των τριών μελών του συστήματος, διακρίνεται σε ένα κινηματικό και σε ένα αδρανειακό μέρος. Στο μεγαλύτερο μέρος των περιπτώσεων των κατασκευών, όπου λαμβάνεται υπόψη το φαινόμενο της αλληλεπίδρασης εδάφους-θεμελίωσης-κατασκευής, μελετάται το αδρανειακό μέρος του φαινομένου, το οποίο περιλαμβάνει την εκτίμηση ελατηριακών σταθερών, με βάση τα χαρακτηριστικά του εδάφους θεμελίωσης και του τύπου θεμελίωσης της κατασκευής.

2.1.7 Επιρροές 2^{ας} τάξεως

Η ανάλυση των κτιρίων πρέπει να γίνεται συνεκτιμώντας τις στατικές και δυναμικές επιρροές 2ας τάξεως. Οι στατικές επιρροές 2ας τάξεως θα λαμβάνονται υπόψη τόσο στην ελαστική όσο και στην ανελαστική ανάλυση. Στην ελαστική ανάλυση, όταν ο δείκτης σχετικής μεταθετότητας θ προκύπτει μικρότερος του 0.1, οι επιρροές 2ας τάξεως μπορεί να αγνοηθούν. Όταν ο δείκτης θ κυμαίνεται μεταξύ 0.1 και 0.2, οι σεισμικές δυνάμεις και μετακινήσεις στον όροφο i θα επαυξάνονται με το συντελεστή 1/(1-θi). Όταν ο δείκτης θ υπερβαίνει την τιμή 0.2, το κτίριο θα θεωρείται οιονεί ασταθές, οπότε θα απαιτείται κατάλληλη ενίσχυσή του, ώστε να μειωθούν οι πλευρικές του μετακινήσεις προκειμένου ο δείκτης θ να προκύπτει εντός των ανωτέρω ορίων. Όσον αφορά την ανελαστική ανάλυση, οι στατικές επιρροές 2ας τάξεως θα συνεκτιμώνται ενσωματώνοντας στο προσομοίωμα την μη-γραμμική σχέση έντασης - παραμόρφωσης όλων των στοιχείων που φέρουν αξονικά φορτία. Και στην περίπτωση αυτή ισχύει η απαίτηση σχετικά με το δείκτη θ.

Οι δυναμικές επιρροές 2ας τάξεως μπορούν να λαμβάνονται υπόψη με κατάλληλη επαύξηση των μετακινήσεων που υπολογίστηκαν αγνοώντας τις επιρροές αυτές Η επαύξηση μπορεί να γίνει πρακτικά μέσω του συντελεστή C3, ο οποίος υπεισέρχεται στην ανελαστική στατική μέθοδο.

2.2 Μἑθοδοι ανἁλυσης

2.2.1 Γενικά

Οι μέθοδοι ανάλυσης που χρησιμοποιούνται για την ανάλυση κατασκευών από οπλισμένο σκυρόδεμα είναι οι ακόλουθες:

 Ελαστική (ισοδύναμη) στατική ανάλυση, με καθολικό δείκτη συμπεριφοράς (q) ή τοπικό δείκτη πλαστιμότητας (m)

• Ελαστική δυναμική ανάλυση με καθολικό δείκτη συμπεριφοράς (q) ή τοπικό δείκτη πλαστιμότητας (m)

• Ανελαστική στατική ανάλυση - Pushover

Ανελαστική δυναμική ανάλυση (ανάλυση χρονοϊστορίας)

Οι **ελαστικές μέθοδοι ανάλυσης** υιοθετούν την παραδοσιακή γραμμική σχέση έντασης – παραμόρφωσης για τα δομικά στοιχεία της κατασκευής με κατάλληλες τροποποιήσεις των μετακινήσεων και των κριτηρίων επιτελεστικότητας, έτσι ώστε να λαμβάνεται υπόψη η πιθανότητα εκδήλωσης μη γραμμικής συμπεριφοράς για το σεισμό σχεδιασμού. Η ελαστική στατική ανάλυση και η ελαστική δυναμική ανάλυση αντιστοιχούν στην απλοποιημένη φασματική μέθοδο και στη δυναμική φασματική μέθοδο σύγχρονων αντισεισμικών κανονισμών, όπως ο EC8. Μπορούν μεν να δώσουν μία καλή ένδειξη της ελαστικής συμπεριφοράς της κατασκευής μέχρι το σημείο της πρώτης διαρροής, αλλά δεν μπορούν να προβλέψουν την ανακατανομή των εντάσεων που θα συμβεί κατά τη διάρκεια της προοδευτικής διαρροής των δομικών στοιχείων του φορέα.

Η <u>ανελαστική στατική ανάλυση</u>, που συχνά καλείται και μέθοδος ελέγχου των μετακινήσεων, χρησιμοποιεί απλοποιημένες τεχνικές προσέγγισης της μη γραμμικής συμπεριφοράς του φορέα για την εκτίμηση των ανελαστικών παραμορφώσεων που θα αναπτυχθούν στα δομικά στοιχεία όταν η κατασκευή υπόκειται στη σεισμική δράση σχεδιασμού.

Η <u>ανελαστική δυναμική ανάλυση</u>, γνωστή και ως ανάλυση χρονοϊστορίας, αποτελεί μεν την πιο πλήρη και ρεαλιστική μέθοδο ανάλυσης, αλλά ταυτόχρονα απαιτεί σημαντική κριτική ικανότητα και εμπειρία του μηχανικού που διενεργεί τον έλεγχο αποτίμησης και ανασχεδιασμού της υφιστάμενης κατασκευής, καθώς και αξιόπιστη γνώση των μηχανικών ιδιοτήτων των δομικών υλικών. Για τους λόγους αυτούς, σε συνδυασμό με την αυξημένη της πολυπλοκότητα, δεν κρίνεται πρακτική για γενική χρήση.

Οι **ανελαστικές μέθοδοι ανάλυσης** βοηθούν στην κατανόηση της πραγματικής συμπεριφοράς των κατασκευών καταδεικνύοντας τόσο τους μηχανισμούς αστοχίας όσο και το ενδεχόμενο προοδευτικής κατάρρευσης. Η χρήση ανελαστικών μεθόδων ανάλυσης για την αποτίμηση και τον ανασχεδιασμό υφιστάμενων κατασκευών επιτρέπει καλύτερη εποπτεία και κατανόηση της συμπεριφοράς μιας κατασκευής όταν υποβληθεί σε ισχυρούς σεισμούς, για τους οποίους είναι δεδομένο ότι θα συμπεριφερθεί ανελαστικά. Με τον τρόπο αυτό αντιμετωπίζονται πολλές από τις αβεβαιότητες που σχετίζονται με τις ελαστικές μεθόδους ανάλυσης που υιοθετούνται από τους σύγχρονους αντισεισμικούς κανονισμούς. Λόγω του ότι υπάρχει εν γένει εξοικείωση του μηχανικού με τις ελαστικές μεθόδους, οι ενότητες που ακολουθούν επικεντρώνονται στις ανελαστικές μεθόδους και συγκεκριμένα στην απλούστερη από αυτές, δηλαδή την ανελαστική στατική ανάλυση.

2.2.2 Ελαστική στατική μέθοδος

2.2.2.1 Προϋποθέσεις εφαρμογής

Η μέθοδος αυτή αναφέρεται στον ΕC8 ως: «Μέθοδος ανάλυσης οριζόντιας φόρτισης» . Γενικά αυτός ο τύπος ανάλυσης μπορεί να εφαρμοστεί σε κτίρια η απόκριση των οποίων σε κάθε κύρια διεύθυνση δεν επηρεάζεται σημαντικά από τις συμβολές ιδιομορφών ταλάντωσης υψηλότερων από την θεμελιώδη ιδιομορφή. Η απαίτηση της παρούσας θεωρείται ότι ικανοποιείται βάσει EC8 σε κτίρια που ικανοποιούν τους ακόλουθους δύο όρους:

- έχουν θεμελιώδεις περιόδους ταλάντωσης T₁, στις δύο κύριες διευθύνσεις, μικρότερες από τις ακόλουθες τιμές $T_1 \le 4T_c$ και $T_1 \le 2$ sec, όπου η T_c δίνεται παρακάτω
- 🖊 ικανοποιούν τα κριτήρια για κανονικότητα σε όψη

Ειδικότερα, ο ΚΑΝ.ΕΠΕ ορίζει για τα κτίρια της χώρας μας τις εξής προϋποθέσεις:

- 🖊 Η θεμελιώδης ιδιοπερίοδος του κτιρίου Τ₀ είναι μικρότερη του 4 Τ₅ ή 2sec.
- 4 Ο λόγος της οριζόντιας διάστασης σε έναν όροφο προς την αντίστοιχη διάσταση σε έναν γειτονικό όροφο δεν υπερβαίνει το 1.5 (εξαιρούνται ο τελευταίος όροφος και τα προσαρτήματα)
- 4 Το κτίριο δεν παρουσιάζει έντονα ασύμμετρη κατανομή της δυσκαμψίας σε κάτοψη, σε οποιονδήποτε όροφο.
- Το κτίριο σε καθ' ύψος τομή δεν παρουσιάζει ασύμμετρη κατανομή της μάζας ή της δυσκαμψίας.
- Το κτίριο διαθέτει σύστημα ανάληψης σεισμικών δράσεων σε δύο περίπου κάθετες μεταξύ τους διευθύνσεις.

Ανεξαρτήτως της ισχύος των παραπάνω συνθηκών, αλλά υπό την προϋπόθεση ότι δεν υπάρχουν ουσιώδεις βλάβες, επιτρέπεται για τους σκοπούς μόνον της αποτίμησης η εφαρμογή της στατικής ελαστικής μεθόδου. Στην περίπτωση αυτή οι συντελεστές ασφαλείας προσομοιώματος γ_{sd} αυξάνονται κατά 0,15.

2.2.2.2 Ισοδύναμα στατικά φορτία

Εφόσον η ανάλυση γίνεται με τη μέθοδο του καθολικού δείκτη συμπεριφοράς (q), το συνολικό οριζόντιο φορτίο (τέμνουσα βάσεως) σε μια διεύθυνση του κτιρίου θα υπολογίζεται με βάση τον ΕΚ 8-1 και όσα ειδικότερα αναφέρονται στον ΚΑΝ.ΕΠΕ. Η σεισμική τέμνουσα δύναμη βάσης F_b, για κάθε οριζόντια διεύθυνση κατά την οποία μελετάται το κτίριο, θα καθορίζεται με χρήση της ακόλουθης έκφρασης: $F_b = S_d(T_1) * m * \lambda$

Όπου:

 S_d (T₁) είναι η τετμημένη του φάσματος σχεδιασμού στην περίοδο T₁

- Τ₁ Είναι η θεμελιώδης ιδιοπερίοδος ταλάντωσης του κτιρίου για οριζόντια κίνηση στην εξεταζόμενη διεύθυνση
- **m** είναι η συνολική μάζα του κτιρίου πάνω από την θεμελίωση ή πάνω από την άνω επιφάνεια άκαμπτης βάσης
- **λ** είναι συντελεστής διόρθωσης, η τιμή του οποίου ισούται με λ = 0,85 εάν T₁ < 2 T_c και το κτίριο έχει πάνω από δύο ορόφους, ή λ = 1,0 σε κάθε άλλη περίπτωση.

ΣΗΜΕΙΩΣΗ:

Ο συντελεστής λ εκφράζει το γεγονός ότι σε κτίρια με τουλάχιστον τρεις ορόφους και μεταφορικούς βαθμούς ελευθερίας σε κάθε οριζόντια διεύθυνση, η δρώσα ιδιομορφική μάζα της 1ης θεμελιώδους ιδιομορφής είναι μικρότερη, κατά 15% κατά μέσον όρο, από τη συνολική μάζα του κτιρίου.

Η κατανομή των οριζόντιων σεισμικών φορτίων ακολουθεί το σχήμα των θεμελιωδών ιδιομορφών στις οριζόντιες διευθύνσεις της ανάλυσης του κτιρίου και μπορεί να υπολογιστεί με χρήση μεθόδων δυναμικής ή μπορεί να προσεγγιστεί από οριζόντιες μετακινήσεις που αυξάνονται γραμμικά με το ύψος του κτιρίου. Τα σεισμικά εντατικά μεγέθη θα καθορίζονται με την εφαρμογή, στα δύο επίπεδα προσομοιώματα, οριζόντιων φορτίων σε όλους τους ορόφους.

2.2.3 Ελαστική δυναμική μέθοδος

2.2.3.1 Προϋποθέσεις εφαρμογής ελαστικής δυναμικής μεθόδου

Η εφαρμογή της ελαστικής δυναμικής μεθόδου επιτρέπεται υπό τις προϋποθέσεις που αναφέρονται στον ΕC8. Ειδικότερα για τα κτίρια της χώρας μας, ισχύουν εναλλακτικά βάσει ΚΑΝ.ΕΠΕ οι παρακάτω αναφερόμενες προϋποθέσεις:

- Το πεδίο εφαρμογής της δυναμικής ελαστικής μεθόδου ορίζεται από τη συνθήκη πως για όλα τα κύρια στοιχεία προκύπτει λ≤2,5.
- II. Ανεξαρτήτως της ισχύος των συνθηκών της προηγουμένης παραγράφου, αλλά υπό την προϋπόθεση ότι δεν υπάρχουν ουσιώδεις βλάβες, επιτρέπεται για τους σκοπούς (μόνον) της αποτίμησης η εφαρμογή της δυναμικής ελαστικής μεθόδου. Στην περίπτωση αυτή οι συντελεστές ασφαλείας προσομοιώματος γsd αυξάνονται κατά 0,15.

2.2.3.2 Προσομοίωση σεισμικής δράσης στην ελαστική δυναμική μέθοδο

Στην ελαστική δυναμική ανάλυση θα εισάγεται ως σεισμική δράση είτε το φάσμα σχεδιασμού του EC8, είτε χρονοϊστορίες επιταχύνσεων βάσεως συμβατές με το φάσμα αυτό (σύμφωνα με τις διατάξεις του EC8-1).

Μέθοδος απόκρισης φάσματος

Η δυναμική ανάλυση για τον προσδιορισμό των μέγιστων τιμών που αντιστοιχούν σε κάθε ιδιομορφή θα γίνεται με βάση τη μέθοδο της φασματικής ιδιομορφικής ανάλυσης, χρησιμοποιώντας επαρκή αριθμό ιδιομορφών. Οι μέγιστες τιμές εντατικών μεγεθών, μετακινήσεων, δυνάμεων ορόφων, τεμνουσών ορόφων, και τεμνουσών βάσεως για κάθε ιδιομορφή, θα συνδυάζονται με βάση τις διατάξεις του ΕC8. Σύμφωνα μ' αυτόν:

- Ι. Οι αποκρίσεις σε δύο ιδιομορφές ταλάντωσης i και j (που περιλαμβάνουν και μεταφορικές και στρεπτικές ιδιομορφές) μπορεί να ληφθούν ως ανεξάρτητες εφόσον οι περίοδοί τους T_i και T_j ικανοποιούν (με T_j \leq T_i) την ακόλουθη συνθήκη: T_j \leq 0,9 T_i
- ΙΙ. Όταν όλες οι σχετικές ιδιομορφικές αποκρίσεις μπορούν να θεωρηθούν αμοιβαία ανεξάρτητες, η μέγιστη τιμή ΕΕ ενός εντατικού σεισμικού μεγέθους ή μετακίνησης μπορεί να ληφθεί ως:

$$E_E = \sqrt{\sum E_{E_i}^2}$$

Όπου:

ΕΕ είναι το σεισμικό μέγεθος που εξετάζεται (δύναμη, μετακίνηση, κλπ.)

Ε_{εi} είναι η τιμή του ίδιου σεισμικού μεγέθους λόγω της ιδιομορφής ταλάντωσης i.

III. Εάν η (Ι) δεν ικανοποιείται, θα υιοθετούνται ακριβέστερες μέθοδοι για το συνδυασμό των ιδιομορφικών μεγίστων, όπως ο "Πλήρης Τετραγωνικός Συνδυασμός".

Μέθοδος χρονοϊστορίας της απόκρισης

Η ανάλυση με τη μέθοδο της χρονοϊστορίας της απόκρισης θα γίνεται για επιταχυνσιογραφήματα βάσεως από πραγματικές καταγραφές ή για συνθετικά επιταχυνσιογραφήματα. Το μητρώο απόσβεσης θα περιγράφει τα χαρακτηριστικά απόσβεσης του κτιρίου για απόκριση κοντά στο όριο διαρροής των στοιχείων. (π.χ. μέγιστες ροπές ή τέμνουσες, και αντίστοιχα αξονικά φορτία). Εφόσον χρησιμοποιούνται τουλάχιστον τρία επιταχυνσιογραφήματα, ο έλεγχος θα γίνεται για τη μέγιστη τιμή κάθε εντατικού μεγέθους που προκύπτει από την ανάλυση της χρονοϊστορίας (και τα αντίστοιχα ταυτοχρόνως δρώντα μεγέθη, όποτε απαιτείται). Εφόσον χρησιμοποιούνται τουλάχιστον επτά επιταχυνσιογραφήματα (ή ζεύγη

επιταχυνσιογραφημάτων, για ανάλυση στο χώρο), επιτρέπεται να γίνεται ο έλεγχος για τη μέση τιμή κάθε μεγέθους. Η χωρική επαλληλία των σεισμικών δράσεων θα γίνεται σύμφωνα με την παραπάνω σχέση. Εναλλακτικά, επιτρέπεται η ανάλυση προσομοιώματος στον χώρο για ταυτόχρονη δράση ζευγών οριζοντίων συνιστωσών (επιταχυνσιογραφημάτων), μιας σε κάθε κύρια διεύθυνση του κτιρίου.

2.2.3.3 Προσδιορισμός εντατικών μεγεθών και παραμορφώσεων

Όταν η ανάλυση γίνεται με τη μέθοδο του καθολικού δείκτη συμπεριφοράς (q), οι παραμορφώσεις που υπολογίζονται από την ανάλυση, είτε με βάση τη φασματική ιδιομορφική μέθοδο είτε με βάση τη μέθοδο της χρονοϊστορίας της απόκρισης, θα πολλαπλασιάζονται επί τον συντελεστή συμπεριφοράς (q), ώστε να ληφθεί υπόψη η επιρροή της ανελαστικής συμπεριφοράς των επιμέρους δομικών στοιχείων.

Όταν η ανάλυση γίνεται με τη μέθοδο των επιμέρους δεικτών πλαστιμότητας (m), όλα τα εντατικά μεγέθη και οι παραμορφώσεις που υπολογίζονται από την ανάλυση, είτε με βάση τη φασματική ιδιομορφική μέθοδο είτε με βάση τη μέθοδο της χρονοϊστορίας της απόκρισης θα αυξάνονται κατάλληλα ώστε να ληφθεί υπόψη η επιρροή της ανελαστικής συμπεριφοράς των επιμέρους δομικών στοιχείων.

Σε όλες τις περιπτώσεις, τα εντατικά μεγέθη και οι παραμορφώσεις θα επαυξάνονται ώστε να συνεκτιμάται η επιρροή της στρέψης.

2.2.4 Ανελαστική στατική μέθοδος

2.2.4.1 Σκοπός της ανάλυσης

Κύριος στόχος της ανελαστικής στατικής ανάλυσης είναι η εκτίμηση του μεγέθους των ανελαστικών παραμορφώσεων που θα αναπτυχθούν στα δομικά στοιχεία όταν το κτίριο υπόκειται στη σεισμική δράση για την οποία γίνεται η αποτίμηση ή ο ανασχεδιασμός. Η μέθοδος αναφέρεται ενίοτε και ως μέθοδος ελέγχου των μετακινήσεων. Εκτός από τις τιμές των ανελαστικών παραμορφώσεων, η μέθοδος δίνει και τιμές των δυνάμεων (εντατικών μεγεθών) στα δομικά στοιχεία που έχουν εισέλθει στην μετελαστική περιοχή της απόκρισής τους. Οι τιμές αυτές είναι εν γένει πιο αξιόπιστες από εκείνες που υπολογίζονται με βάση τις ελαστικές μεθόδους (και τυχόν ικανοτικούς ελέγχους). Οι απλοποιημένες ανελαστικές αναλυτικές μέθοδοι που βασίζονται στη μέθοδο ελέγχου των μετακινήσεων απαιτούν τον προσδιορισμό τριών πρωταρχικών παραμέτρων: της ικανότητας, της απαίτησης σε μετακίνηση και της συμπεριφοράς.

- Ικανότητα: Η συνολική ικανότητα της κατασκευής εξαρτάται από την επιμέρους ικανότητα των δομικών στοιχείων που συνθέτουν το φέροντα οργανισμό. Προκειμένου να προσδιοριστεί η ικανότητα πέρα από το όριο διαρροής, απαιτείται κάποιας μορφής ανελαστική ανάλυση, όπως η μέθοδος σταδιακού ελέγχου των μετακινήσεων (ΣΕΜ - Pushover analysis). Η μμέθοδος αυτή χρησιμοποιεί μία σειρά από διαδοχικές ελαστικές αναλύσεις για την προσέγγιση της ελαστοπλαστικής συμπεριφοράς της κατασκευής. Καθεμία από τις αναλύσεις αυτές αποτελεί ένα ξεχωριστό υπολογιστικό βήμα. Τα αποτελέσματα κάθε ανάλυσης προστίθενται στα αποτελέσματα της προηγούμενης έτσι ώστε να προσεγγιστεί το συνολικό διάγραμμα τέμνουσας βάσης, V, –μμετακίνησης στην κορυφή της κατασκευής, δ, η οποία ονομάζεται καμπύλη ικανότητας. Μετά από κάθε ελαστική ανάλυση το αναλυτικό προσομοίωμα της κατασκευής τροποποιείται κατάλληλα, ώστε να ληφθεί υπόψη η πραγματική εντατική κατάσταση και η μείωση της δυσκαμψίας των στοιχείων που έχουν διαρρεύσει. Εφαρμόζεται μία νέα κατανομή μονοτονικά αυξημένων πλευρικών φορτίων και η ελαστική ανάλυση επαναλαμβάνεται μέχρι να διαρρεύσει μία νέα ομάδα δομικών στοιχείων. Η διαδικασία αυτή επαναλαμβάνεται έως ότου η κατασκευή γίνει ασταθής ή η συνολική μετακίνηση της κατασκευής γίνει ίση με μία προκαθορισμένη οριακή τιμή.
- II. Απαίτηση σε Μετακίνηση: Η κίνηση του εδάφους κατά τη διάρκεια ενός σεισμού προκαλεί στις κατασκευές σύνθετες οριζόντιες μετακινήσεις που μεταβάλλονται με το χρόνο. Η παρακολούθηση αυτών των μετακινήσεων σε κάθε χρονικό βήμα έτσι ώστε να καθοριστούν οι

απαιτήσεις σχεδιασμού είναι πολύ δύσκολη. Οι ελαστικές μέθοδοι ανάλυσης χρησιμοποιούν πλευρικά κατανεμημένα φορτία για να αναπαραστήσουν τη σεισμική δράση. Στις ανελαστικές μεθόδους χρησιμοποιείται ως συνθήκη σχεδιασμού ένα σύνολο πλευρικών μετακινήσεων. Για μία δεδομένη κατασκευή και εδαφική κίνηση, η απαίτηση σε μετακίνηση αποτελεί εκτίμηση της μέγιστης αναμενόμενης σεισμικής απόκρισης της κατασκευής.

Σχήμα 2-1 Καμπύλη ικανότητας κατασκευής

Σχήμα 2-2 Καθ' ύψος κατανομή πλευρικού φορτίου

III. Συμπεριφορά: Από τη στιγμή που έχουν καθοριστεί η καμπύλη ικανότητας και η απαίτηση σε μετακίνηση, μπορεί να γίνει ο έλεγχος συμπεριφοράς της κατασκευής. Με τον έλεγχο συμπεριφοράς εξασφαλίζεται ότι τα φέροντα, αλλά και τα μη φέροντα στοιχεία (π.χ. τοίχοι πλήρωσης), εφόσον έχουν συμπεριληφθεί στο προσομοίωμα της κατασκευής, δεν έχουν υποστεί βλάβες πέρα από τα επιτρεπτά όρια για τη δεδομένη στάθμη επιτελεστικότητας, όταν υποβάλλονται στις εντάσεις και μετακινήσεις που αντιστοιχούν στην απαίτηση σε μετακίνηση.

2.2.4.2 Βασικές παραδοχές μεθόδου

Στη στατική ανελαστική ανάλυση το προσομοίωμα του κτιρίου θα συνεκτιμά με άμεσο τρόπο τα μη γραμμικά χαρακτηριστικά του νόμου δύναμης παραμόρφωσης των δομικών στοιχείων. Το προσομοίωμα αυτό θα υποβάλλεται σε οριζόντια φορτία κατανεμημένα κατά τρόπο ανάλογο προς τις αδρανειακές δυνάμεις του σεισμού, τα οποία θα αυξάνονται μονότονα, εν γένει μέχρις ότου κάποιο δομικό στοιχείο δεν είναι πλέον σε θέση να φέρει τα κατακόρυφα φορτία του. Από την ανάλυση αυτή προκύπτει η καμπύλη αντίστασης του κτιρίου, η οποία εν γένει χαράσσεται σε όρους τέμνουσας βάσης – μετακίνησης χαρακτηριστικού σημείου του κτιρίου (κόμβος ελέγχου), το οποίο εν γένει λαμβάνεται στην κορυφή του. Η καμπύλη αυτή αποτελεί τη βάση για όλους τους απαιτούμενους ελέγχους ικανοποίησης των κριτηρίων επιτελεστικότητας. Στην πρακτική εφαρμογή της μεθόδου αρκεί η χάραξη της καμπύλης αντίστασης μέχρι ένα σημείο που αντιστοιχεί σε μετακίνηση μεγαλύτερη (π.χ. κατά 50%) από τη στοχευόμενη. Αφού επιλεγεί η σεισμική δράση (αποτίμησης ή ανασχεδιασμού), ο έλεγχος ικανοποίησης των κριτηρίων επιτελεστικότητας γίνεται για τη μετακίνηση του κόμβου ελέγχου που αντιστοιχεί στη σεισμική αυτή δράση. Ελέγχεται ότι για τη μετακίνηση αυτή η παραμόρφωση (γωνία στροφής κατά ή μετά τη διαρροή) των πλάστιμων δομικών στοιχείων δεν συνεπάγεται βαθμό βλάβης μεγαλύτερο από εκείνον που γίνεται ανεκτός για τη σκοπούμενη στάθμη επιτελεστικότητας του κτιρίου Όταν δεν γίνεται ακριβέστερος υπολογισμός, η μετακίνηση του κόμβου ελέγχου (στοχευόμενη μετακίνηση δt) που προκαλείται από τη σεισμική δράση (αποτίμησης ή ανασχεδιασμού) μπορεί να εκτιμηθεί με βάση το φάσμα μετακινήσεων που αντιστοιχεί σε πλαστιμότητα συμβατή με τη μετακίνηση του κτιρίου.

2.2.4.3 Προϋποθέσεις εφαρμογής μεθόδου

Ι. Συνιστάται όταν εφαρμόζεται η ανελαστική στατική μέθοδος, να διασφαλίζεται τουλάχιστον «Ικανοποιητική» ΣΑΔ. Όλες οι μέθοδοι ανάλυσης είναι πρακτικώς εξίσου ευαίσθητες στη διακύμανση των τιμών των βασικών δεδομένων, ενώ το ίδιο ισχύει εν γένει και για τους συνακόλουθους ελέγχους ασφαλείας. Συνιστάται ωστόσο, όταν εφαρμόζεται η ανελαστική στατική

μέθοδος, να διασφαλίζεται τουλάχιστον «Ικανοποιητική» ΣΑΔ, δεδομένου ότι είναι ευρύτατα διαδεδομένη στους Μηχανικούς η αίσθηση ότι μια υψηλής στάθμης ανάλυση οφείλει να βασίζεται σε αντίστοιχης στάθμης δεδομένα.

Π. Η στατική ανελαστική μέθοδος εφαρμόζεται σε κτίρια στα οποία η επιρροή των ανώτερων ιδιομορφών δεν είναι σημαντική και η καμπύλη ικανότητας κατασκευάζεται με βάση την παραδοχή, ότι η θεμελιώδης ιδιομορφή της ταλάντωσης είναι δεσπόζουσα όσον αφορά στη σεισμική απόκριση της κατασκευής. Η παραδοχή αυτή είναι γενικά ορθή για κτίρια με θεμελιώδεις ιδιοπεριόδους έως 1sec. Για περισσότερο εύκαμπτα κτίρια, πρέπει κατά κανόνα να συμπεριληφθεί και η επιρροή των ανώτερων ιδιομορφών στην ανάλυση. Για τον έλεγχο της προϋπόθεσης αυτής απαιτείται μια αρχική δυναμική ελαστική ανάλυση όπου θα συνεκτιμώνται οι ιδιομορφές οι οποίες συνεισφέρουν τουλάχιστον το 90% της συνολικής μάζας. Κατόπιν θα γίνεται δεύτερη δυναμική ελαστική ανάλυση με βάση μόνο την πρώτη ιδιομορφή (σε κάθε διεύθυνση). Η επιρροή των ανώτερων ιδιομορφών μπορεί να θεωρείται ότι είναι σημαντική όταν η τέμνουσα σε κάθε όροφο που προκύπτει από την πρώτη ανάλυση υπερβαίνει το 130% εκείνης από τη δεύτερη ανάλυση. Για τις πιο πάνω δυναμικές αναλύσεις γίνεται χρήση του ελαστικού φάσματος του ΕΚ 8-1 (g=1). Όταν η επιρροή των ανώτερων ιδιομορφών είναι σημαντική, επιτρέπεται να εφαρμόζεται η στατική ανελαστική ανάλυση, υπό τον όρο ότι θα εφαρμόζεται σε συνδυασμό με μια συμπληρωματική δυναμική ελαστική ανάλυση ανεξαρτήτως δε των λοιπών προϋποθέσεων εφαρμογής της δυναμικής ελαστικής μεθόδου. Στην περίπτωση αυτή, διεξάγονται όλοι οι έλεγχοι και με τις δύο μεθόδους, ενώ επιτρέπεται μια αύξηση κατά 25 % των τιμών των παραμέτρων που υπεισέρχονται στα κριτήρια ελέγχου και των δύο μεθόδων. Δηλαδή, εφόσον εφαρμόζεται η μέθοδος του καθολικού δείκτη συμπεριφοράς q, αυτός μπορεί να λαμβάνεται αυξημένος κατά 25%.

2.2.4.4 Προσομοίωση και ανάλυση

Προκειμένου να κατασκευαστεί η καμπύλη ικανότητας απαιτείται αρχικά να γίνει το αναλυτικό προσομοίωμα της κατασκευής και να κατηγοριοποιηθούν τα δομικά στοιχεία σε πρωτεύοντα και δευτερεύοντα. Η σχέση δύναμης –μετακίνησης όλων των στοιχείων πρέπει να περιλαμβάνεται με όσο το δυνατόν μεγαλύτερη ακρίβεια στο προσομοίωμα μέσω καμπύλων μονοτονικής φόρτισης μέχρι την αστοχία του στοιχείου. Στις καμπύλες αυτές είναι απαραίτητο να απεικονίζεται τόσο η φάση απομείωσης της αντοχής του στοιχείου όσο και η ανάπτυξη παραμένουσας αντοχής, εάν υπάρχουν. Προκειμένου να εκτιμηθεί αξιόπιστα η απαίτηση σε παραμόρφωση όσων δευτερευόντων στοιχείων δεν περιλαμβάνονται στο προσομοίωμα, ο μηχανικός μπορεί μεν να τα συμπεριλάβει αλλά με αμελητέα δυσκαμψία, έτσι ώστε να υπολογίσει την παραμόρφωσή τους χωρίς να επηρεαστεί σημαντικά η συνολική συμπεριφορά της κατασκευής. Η διακριτοποίηση του αναλυτικού προσομοιώματος πρέπει να είναι αντιπροσωπευτική της σχέσης έντασης – παραμόρφωσης των στοιχείων που ανήκουν στις περιοχές του φορέα στις οποίες αναμένεται ανελαστική συμπεριφορά.

Η καμπύλη αντίστασης, δηλαδή η σχέση ανάμεσα στην τέμνουσα βάσεως και την οριζόντια μετακίνηση του κόμβου ελέγχου θα υπολογίζεται για μετακινήσεις του κόμβου ελέγχου οι οποίες θα κυμαίνονται από μηδέν μέχρι και πέρα από την μετακίνηση για την οποία θα γίνει ο έλεγχος. Αυτό γίνεται αφενός για να είναι αντιπροσωπευτική της διαθέσιμής απόκρισης του κτιρίου η διγραμμική καμπύλη που θα χρησιμοποιηθεί για τους ελέγχους και αφετέρου για να διασφαλιστεί αριθμητική ευστάθεια της μεθόδου ανάλυσης στη στάθμη της μετακίνησης ελέγχου. Κατ' ελάχιστον, η καμπύλη θα χαράσσεται ως το 150% της στοχευόμενης μετακίνησης εφόσον βεβαίως δεν έχει στο μεταξύ επέλθει αστοχία του φορέα. Συνιστάται, ωστόσο, η χάραξη 'πλήρους' καμπύλης αντίστασης, δηλαδή μέχρι τη μετακίνηση που αντιστοιχεί σε ουσιώδη πτώση της αντοχής του φορέα, η οποία παρέχει, πέραν της μέγιστης φέρουσας ικανότητας του κτιρίου, και μία εκτιμήτρια της διαθέσιμης πλαστιμότητας μετακινήσεων (μ_δ), ανεξαρτήτως της τιμής που θα ληφθεί τελικώς υπόψη για σχετικούς ελέγχους (π.χ. για την επαλήθευση των δεικτών η και m).
2.2.4.5 Φορτία για τον προσδιορισμό της ικανότητας

Τα φορτία βαρύτητας των στοιχείων πρέπει να συμπεριλαμβάνονται στην ανάλυση, έτσι ώστε να συνδυάζονται με τα οριζόντια πλευρικά φορτία σύμφωνα με το σεισμικό συνδυασμό που καθορίζει ο ΕC8. Τα οριζόντια φορτία εφαρμόζονται σε κάθε ανάλυση σε συγκεκριμένη διεύθυνση και φορά και οδηγούν σε αντίστοιχα εντατικά μεγέθη για κάθε στοιχείο. Συνήθως η ανάλυση επαναλαμβάνεται για 4 έως 8 διαφορετικές γωνίες επιβολής του οριζόντιου φορτίου, ανάλογα με τη μορφή του κτιρίου. Για κάθε διεύθυνση τα πλευρικά φορτία εφαρμόζονται στο προσομοίωμα σε αντιστοιχία με την κατανομή των αδρανειακών δυνάμεων που αναπτύσσονται λόγω σεισμού στο επίπεδο του διαφράγματος κάθε ορόφου. Η κατανομή των οριζόντιων πλευρικών φορτίων αποτελεί μετρό του σχετικού μεγέθους των τεινουσών, ροπών και παραμορφώσεων των στοιχείων της κατασκευής. Η κατανομή αυτών των εντατικών μεγεθών μεταβάλλεται συνεχώς κατά τη διάρκεια ενός ισχυρού σεισμού, καθώς τμήματα της κατασκευής διαρρέουν και η δυσκαμψία τους αλλάζει. Οι ακραίες τιμές της κατανομής εξαρτώνται από το βαθμό ανελαστικής συμπεριφοράς της κατασκευής. Επομένως, για όλες τις αναλύσεις είναι απαραίτητο να εφαρμόζονται τουλάχιστον δύο διαφορετικές καθ' ύψος κατανομές φορτίων, έτσι ώστε να περικλείουν το εύρος των δράσεων που είναι πιθανό να συμβούν κατά τη διάρκεια της πραγματικής δυναμικής συμπεριφοράς της κατασκευής. Προκειμένου να αντιμετωπισθεί ρεαλιστικά το θέμα της κατανομής των φορτίων, απαιτείται η εφαρμογή των δυο διαφορετικών καθ' ύψος κατανομών βάσει ΚΑΝ.ΕΠΕ.

- 1) «Ομοιόμορφη», βασισμένη σε οριζόντια φορτία ανάλογα ως προς τη μάζα κάθε ορόφου ανεξάρτητα από τη στάθμη του (ομοιόμορφη επιτάχυνση απόκρισης).
- «Ιδιομορφική», ανάλογη προς οριζόντια φορτία συμβατά προς την κατανομή οριζοντίων φορτίων στην υπό εξέταση διεύθυνση, όπως προκύπτει από ελαστική ανάλυση.

2.2.4.6 Υπολογιστικά βήματα

Μετά την κατανομή των οριζόντιων πλευρικών φορτίων, ακολουθούν διαδοχικές αναλύσεις του φορέα για τον υπολογισμό των εντατικών μεγεθών των δομικών στοιχείων του φέροντος οργανισμού. Κατά την πρώτη ανάλυση επιδιώκεται τα πλευρικά φορτία να εντείνουν κάποιο στοιχείο στο 100% της αντοχής του. Στη συνέχεια το προσομοίωμα αναθεωρείται κατάλληλα, ώστε τα στοιχεία που διέρρευσαν στο προηγούμενο βήμα να έχουν μηδενική ή αμελητέα δυσκαμψία, και ακολουθεί νέα ανάλυση του αναθεωρημένου φορέα εφαρμόζοντας μία προσαυξημένη κατανομή πλευρικών φορτίων με σκοπό να διαρρεύσει μία νέα ομάδα στοιχείων (σημείο 2).Πρέπει να σημειωθεί ότι τα εντατικά μεγέθη και οι στροφές των δομικών στοιχείων στην αρχή κάθε υπολογιστικού βήματος έχουν την ίδια τιμή με τα αντίστοιχα μεγέθη στο τέλος του προηγούμενου βήματος. Κάθε φορά που εφαρμόζεται μία νέα κατανομή προσαυξημένων οριζόντιων φορτίων διενεργείται μία νέα ανάλυση, η οποία αρχίζει από μηδενικές αρχικές συνθήκες. Κατά συνέπεια, ο προσδιορισμός του σημείου διαρροής μιας νέας ομάδας στοιχείων γίνεται προσθέτοντας τα εντατικά μεγέθη της τρέχουσας ανάλυσης στο άθροισα των μεγεθών που έχουν προκύψει από τις προηγούμενες αναλύσεις. Αντίστοιχα, ο προσδιορισμός των στροφών γίνεται προσθέτοντας τις στροφές της τρέχουσας ανάλυσης στο άθροισμα των στροφών από τις προηγούμενες αναλύσεις. Στο τέλος κάθε υπολογιστικού βήματος καταγράφεται η τέμνουσα βάσης και η μετακίνηση στην κορυφή του κτιρίου. Είναι επίσης σκόπιμο να καταγράφονται τα εντατικά μεγέθη και οι στροφές των δομικών στοιχείων γιατί είναι απαραίτητα για τον έλεγχο των κριτηρίων επιτελεστικότητας. Η παραπάνω διαδικασία επαναλαμβάνεται έως ότου η συμπεριφορά της κατασκευής γίνει οριακή όσον αφορά μία από τις παρακάτω παραμέτρους (σημείο n):

Αστάθεια λόγω φαινομένων δευτέρας τάξεως (επιρροή P – Δ).

• Σημαντική υπέρβαση των κριτηρίων της επιθυμητής στάθμης επιτελεστικότητας.

 Απώλεια φέρουσας ικανότητας κατακόρυφων φορτίων ενός στοιχείου ή μιας ομάδας στοιχείων λόγω μεγάλης πλευρικής μετακίνησης. Για τις περισσότερες κατασκευές η καμπύλη ικανότητας μπορεί να σχηματιστεί με επαρκή ακρίβεια σε λιγότερα από δέκα βήματα, ενώ για τις απλούστερες από αυτές απαιτούνται μόνο τρία ή τέσσερα. Η διαδικασία που περιγράφεται παραπάνω οδηγεί στη μόρφωση της καμπύλης ικανότητας του φορέα. Μία τυπική καμπύλη ικανότητας, όπως αυτή που φαίνεται στο Σχήμα 2-3, αποτελείται από διαδοχικά ευθύγραμμα τμήματα με προοδευτικά ελαττούμενη κλίση, τα οποία αναπαριστούν την προοδευτική απομείωση της δυσκαμψίας της κατασκευής που οφείλεται στην αυξανόμενη πλευρική μετακίνηση, την προοδευτική διαρροή των στοιχείων του φέροντος οργανισμού και τις βλάβες που σημειώνονται στο φορέα.

Σχήμα 2-3 Καμπύλη ικανότητας

2.2.4.7 Πολλαπλές καμπύλες ικανότητας

Όταν η απομείωση της αντοχής αφορά σε μία ομάδα στοιχείων, τα οποία όταν προσεγγίσουν ένα συγκεκριμένο επίπεδο πλευρικής μετακίνησης, χάνουν όλη ή ένα σημαντικό μέρος της φέρουσας ικανότητάς τους, τότε η συνεισφορά των στοιχείων αυτών πρέπει να μειώνεται ή και να εξαλείφεται. Στη συνέχεια, δημιουργείται μία νέα καμπύλη ικανότητας με την εφαρμογή της ίδιας κατανομής οριζόντιων φορτίων στην αναθεωρημένη κατασκευή. Ο αριθμός των πρόσθετων καμπύλων ελέγχου των μετακινήσεων πρέπει να είναι τέτοιος, ώστε να προσδιορίζεται επαρκώς η συνολική απώλεια αντοχής της κατασκευής. Στο επόμενο σχήμα απεικονίζεται η παραπάνω διαδικασία για την περίπτωση που απαιτούνται τρεις διαφορετικές καμπύλες ικανότητας ώστε να προσομοιωθεί επαρκώς η βαθμιαία απώλεια αντοχής των στοιχείων της κατασκευής. Η τελική καμπύλη ικανότητας προκύπτει με μετάβαση από την πρώτη στη δεύτερη καμπύλη για τη μετακίνηση που αντιστοιχεί στην αρχική απώλεια αντοχής, από τη δεύτερη στην τρίτη, κοκ. Η τελική καμπύλη έχει 'πριονωτό' σχήμα, όπως φαίνεται παρακάτω. Η προσομοίωση της συνολικής απώλειας αντοχής της κατασκευής απαιτεί εξαιρετική κριτική ικανότητα από το Μηχανικό που διενεργεί τον έλεγχο αποτίμησης και ανασχεδιασμού. Όταν η απώλεια αντοχής μιας ομάδας στοιχείων ξεπερνά το 20%, η αναμενόμενη συμπεριφορά των στοιχείων που επιδεικνύουν αυτή την απώλεια πρέπει να επανεξετάζεται με μεγάλη προσοχή.

2.2.4.8 Εξιδανικευμένη καμπύλη δύναμης-μετακίνησης

Ο κόμβος ελέγχου της στοχευόμενης μετακίνησης θα λαμβάνεται εν γένει στο κέντρο μάζας της οροφής του κτιρίου. Για κτίρια με σοφίτες ή μικρούς οικίσκους στο δώμα, ο κόμβος ελέγχου θα λαμβάνεται στην οροφή του πλήρους υποκείμενου ορόφου. Η μετακίνηση αυτού θα υπολογίζεται από την ανάλυση του προσομοιώματος για τα οριζόντια στατικά φορτία. Η μη-γραμμική σχέση δύναμης- μετακίνησης που συνδέει την τέμνουσα βάσεως και τη μετακίνηση του κόμβου ελέγχου, θα αντικαθίσταται από μια εξιδανικευμένη καμπύλη για τον υπολογισμό της ισοδύναμης πλευρικής δυσκαμψίας K_e και της αντίστοιχης δύναμης διαρροής V_y του κτιρίου. Η εξιδανικευμένη καμπύλη αντίστασης (σχέση δύναμης μετακίνησης) συνιστάται να είναι διγραμμική, με κλίση του πρώτου κλάδου K_e και κλίση του δεύτερου κλάδου ίση με α*K_e. Οι δύο ευθείες που συνθέτουν τη διγραμμική καμπύλη μπορεί να προσδιορίζονται γραφικά, με κριτήριο την κατά προσέγγιση ισότητα των εμβαδών των χωρίων που προκύπτουν πάνω και κάτω από τις τομές της πραγματικής και της εξιδανικευμένης.

Σχήμα 2-6 Εξιδανίκευση μιας σχηματικής καμπύλης αντίστασης της κατασκευής με διγραμμική καμπύλη

Η ισοδύναμη πλευρική δυσκαμψία K_e προκύπτει ως η επιβατική δυσκαμψία που αντιστοιχεί σε δύναμη ίση προς το 60% της δύναμης διαρροής V_y η οποία ορίζεται από την τομή των ευθειών που προαναφέρθηκαν. Η ανηγμένη κλίση (α) του δεύτερου κλάδου προσδιορίζεται από μια ευθεία που διέρχεται από το σημείο της (πραγματικής) μη-γραμμικής καμπύλης αντίστασης που αντιστοιχεί στη μετακίνηση αστοχίας (δ_u), πέραν της οποίας παρατηρείται σημαντική μείωση της αντοχής του φορέα. Σε κάθε περίπτωση η προκύπτουσα τιμή της α πρέπει να είναι θετική (ή μηδέν), αλλά να μην ξεπερνά το 0.10 (ώστε να είναι συμβατή και με τις λοιπές παραδοχές της μεθόδου εκτίμησης της δ_t, όπως ο συντελεστής C₁). Η συνιστώμενη τιμή του ποσοστού μείωσης της αντοχής είναι το 15%, εφόσον στη στάθμη αυτή δεν έχει επέλθει αστοχία κύριου κατακόρυφου στοιχείου (οπότε η διγραμμικοποίηση θα γίνεται στη μετακίνηση που αντιστοιχεί στην αστοχία αυτή). Απλοποιητικώς, και εφόσον δεν απαιτείται εκτίμηση της διαθέσιμης πλαστιμότητας του κτιρίου, η μεν κλίση K_e μπορεί να λαμβάνεται ως η επιβατική τιμή για στάθμη αντοχής ίση προς το 60% της μέγιστης αντίστασης (V_{max}), η δε δύναμη διαρροής V_y, για τον υπολογισμό του δείκτη R ως το 80% της V_{max}.

2.2.4.9 Προσδιορισμός ιδιοπεριόδου

Ο προσδιορισμός της ισοδύναμης θεμελιώδους ιδιοπεριόδου στη θεωρούμενη διεύθυνση γίνεται με βάση τη διγραμμική καμπύλη δύναμης –μετακίνησης. Η ισοδύναμη θεμελιώδης

ιδιοπερίοδος Τ_e δίνεται από την ακόλουθη σχέση: $T = T_o \sqrt{\frac{K_o}{K_e}}$

Όπου:

Τ₀ η ελαστική κυριαρχούσα ιδιοπερίοδος στη θεωρούμενη διεύθυνση που υπολογίζεται με βάση μια ελαστική δυναμική ανάλυση

Κο η αντίστοιχη ελαστική πλευρική δυσκαμψία

Ke η ισοδύναμη πλευρική δυσκαμψία.

2.2.4.10 Στοχευόμενη μετακίνηση

Η στοχευόμενη μετακίνηση δ_t θα υπολογίζεται συνεκτιμώντας κατάλληλα όλους του παράγοντες από τους οποίους επηρεάζεται η μετακίνηση ενός ανελαστικά αποκρινόμενου κτιρίου. Επιτρέπεται να γίνεται θεώρηση της μετακίνησης ενός ελαστικού μονοβάθμιου συστήματος με ιδιοπερίοδο ίση με τη θεμελιώδη ιδιοπερίοδο του κτιρίου το οποίο υπόκειται στη σεισμική δράση για την οποία γίνεται ο έλεγχος, με κατάλληλη διόρθωση ώστε να προκύπτει η αντίστοιχη μετακίνηση του ελαστοπλαστικά αποκρινόμενου κτιρίου. Προς τούτο αρκεί να λαμβάνονται προσεγγιστικώς υπόψη:

4 Η διαφορά ελαστικής – ανελαστικής μετακίνησης

- Η διαφορά της μετακίνησης του ανωτέρω μονοβάθμιου συστήματος και του «κόμβου ελέγχου» του κτιρίου.
- Η διαφορά της μετακίνησης ενός ελαστοπλαστικού μμονοβάθμιου συστήματος και ενός αντίστοιχου συστήματος με φθίνουσα δυσκαμψία κατά την ανακύκλιση.
- 🖊 Η επιρροή των φαινομένων 2ας τάξεως στη μετακίνηση.

Εφόσον δεν χρησιμοποιείται ακριβέστερη προσέγγιση, η στοχευόμενη μετακίνηση δ_t επιτρέπεται να υπολογίζεται με βάση την παρακάτω σχέση και να διορθώνεται όποτε απαιτείται ως εξής :

$$\delta_t = C_0 C_1 C_2 C_3 \left(\frac{T_e^2}{4\pi^2} \right) S_{e(T)}$$

Όπου:

 $S_e(T)$: η ελαστική φασματική ψευδοεπιτάχυνση από το φάσμα του ΕΚ 8-1 που αντιστοιχεί στην ισοδύναμη ιδιοπερίοδο της κατασκευής

 T_e : ισοδύναμη ιδιοπερίοδος της κατασκευής υπολογιζόμενη με βάση το σημείο καμπής του διαγράμματος δυνάμεων – μετακινήσεων του φορέα

C₀, C₁, C₂,C₃: διορθωτικοί συντελεστές που ορίζονται ως εξής:

- ↓ C₀: Συντελεστής που συσχετίζει τη φασματική μετακίνηση του ισοδύναμου ελαστικού φορέα με δυσκαμψία K_e (S_d=[Te2/4π2]· Φe), με την πραγματική μετακίνηση δt της κορυφής του ελαστοπλαστικά αποκρινόμενου φορέα. Οι τιμές του μπορεί να λαμβάνονται ίσες προς 1.0, 1.2, 1.3, 1.4, 1.5, για αριθμό ορόφων 1, 2, 3, 5, και ≥10, αντίστοιχα
- Ο λόγος C₁=δ_{inel}/δ_{el} της μέγιστης ανελαστικής μετακίνησης ενός κτιρίου προς την αντίστοιχη ελαστική επιτρέπεται να λαμβάνεται από τις σχέσεις:

$$C_1 = 1.0 \ \gamma \iota \alpha \ T \ge T_C$$

$$C_1 = \frac{[1.0 + (\frac{R-1}{T})T_C]}{R}$$
 yia $T < T_C$

Όπου:

 T_{c} η τιμή στην οποία αρχίζει ο κατιών κλάδος του φάσματος απόκρισης και

 $R=V_{el}/V_{v}$ ο λόγος της ελαστικής απαίτησης προς την αντίσταση διαρροής του φορέα. Ο λόγος αυτός μπορεί να εκτιμηθεί από τη σχέση:

$$R = \left(\frac{\frac{S_e}{g}}{\frac{V_y}{W}}\right) * C_m$$

στην οποία η αντίσταση διαρροής V_y υπολογίζεται με κατάλληλη διγραμμικοποίηση του διαγράμματος τέμνουσα βάσεως– μετακίνησης κορυφής του κτιρίου. Απλοποιητικά (και προς το μέρος της ασφάλειας), ο λόγος V_y/W μπορεί να λαμβάνεται ίσος με 0.15 για κτίρια με μικτό σύστημα, και 0.10 για κτίρια με αμιγώς πλαισιακό σύστημα.

C2: Συντελεστής που λαμβάνει υπόψη την επιρροή του σχήματος του βρόχου υστέρησης στη μέγιστη μετακίνηση. Οι τιμές του μπορεί να λαμβάνονται από τον Πίνακα Σ5.1. του ΚΑΝ.ΕΠΕ. Για τιμές Τ μεταξύ 0.1s και Τ_c πρέπει να γίνεται γραμμική παρεμβολή.

Στάθμη επιτελεστικότητας	$T \leq 0.1s$		$T \ge T_c$	
	φορέας τύπου 1	φορέας τύπου 2	φορέας τύπου 1	φορέας τύπου 2
Άμεση χρήση μετά τον σεισμό	1.0	1.0	1.0	1.0
Προστασία ζωής	1.3	1.0	1.1	1.0
Αποφυγή οιονε κατάρρευσης	á 1.5	1.0	1.2	1.0

Πίνακας Σ5.1: Τιμές του συντελεστή C2

Ως φορείς τύπου 1 νοούνται οι φορείς χαμηλής πλαστιμότητας (π.χ. κτίρια πριν το 1985, ή κτίρια που η καμπύλη αντίστασής τους χαρακτηρίζεται από διαθέσιμη πλαστιμότητα μετακινήσεων μικρότερη του 2), που αναμένεται να έχουν φτωχότερη υστερητική συμπεριφορά από εκείνους με υψηλή πλαστιμότητα (φορείς τύπου 2, π.χ. κτίρια από το 1985 και έπειτα, ή κτίρια που η καμπύλη αντίστασής τους χαρακτηρίζεται από διαθέσιμη πλαστιμότητα μετακινήσεων με υψηλή πλαστιμότητα (φορείς τύπου 2, π.χ. κτίρια από το 1985 και έπειτα, ή κτίρια που η καμπύλη αντίστασής τους χαρακτηρίζεται από διαθέσιμη πλαστιμότητα μετακινήσεων με υψηλή πλαστιμότητα (φορείς τύπου 2, π.χ. κτίρια από το 1985 και έπειτα, ή κτίρια που η καμπύλη αντίστασής τους χαρακτηρίζεται από διαθέσιμη πλαστιμότητα μετακινήσεων μεγαλύτερη του 2). Δεδομένου ότι η επιρροή της υστερητικής συμπεριφοράς είναι μεγαλύτερη για υψηλότερα επίπεδα μετελαστικής συμπεριφοράς του φορέα, γίνεται στον Πίνακα Σ5.1 διαφοροποίηση του C₂ με τη στάθμη επιτελεστικότητας.

4 C₃: Συντελεστής που λαμβάνει υπόψη την αύξηση των μετακινήσεων λόγω φαινομένων 2ας τάξεως (Ρ-Δ). Μπορεί να ληφθεί ίσος προς 1+5(θ-0.1)/Τ, όπου θ ο δείκτης σχετικής μεταθετότητας. Στη συνήθη (για κτίρια από ΟΣ και από τοιχοποιία) περίπτωση, όπου θ<0.1, λαμβάνεται C3=1.0.

ΣΗΜΕΙΩΣΗ: Η στοχευόμενη μετακίνηση θα επαυξάνεται κατάλληλα για να συνεκτιμηθούν τα στρεπτικά φαινόμενα.

2.2.5 Ανελαστική δυναμική μέθοδος

Βασική προϋπόθεση για την εφαρμογή της μεθόδου είναι να διασφαλίζεται τουλάχιστον «Ικανοποιητική» ΣΑΔ. Το προσομοίωμα θα συνεκτικά με άμεσο τρόπο τα μη γραμμικά χαρακτηριστικά της σχέσης έντασης παραμόρφωσης των στοιχείων του κτιρίου και θα υποβάλλεται σε σεισμική δράση υπό μορφή ιστορικού επιταχύνσεων βάσεως, είτε από πραγματικές καταγραφές είτε από συνθετικά επιταχυνσιογραφήματα. Τα εντατικά μεγέθη και οι μετακινήσεις που υπολογίζονται από τη μέθοδο θα ελέγχονται απευθείας με τις αντίστοιχες τιμές σχεδιασμού.

3.1 Παραδοσιακές μέθοδοι ενίσχυσης κατασκευών

Ένας μεγάλος αριθμός κατασκευών και τεχνικών έργων υποδομής σε παγκόσμιο επίπεδο προσεγγίζουν το όριο της συμβατικής διάρκειας ζωής τους και κατά συνέπεια χρήζουν ελέγχου και ενδεχομένως επέμβασης με σκοπό την αποκατάσταση της στατικής τους επάρκειας. Η ταχεία γήρανση ιδιαίτερα των κατασκευών που βρίσκονται σε δυσμενές, έντονα διαβρωτικό περιβάλλον καθιστούν περισσότερο επιτακτική την ανάγκη της επέμβασης. Πέρα από τα φυσικά αίτια, άλλοι παράγοντες που συμβάλλουν καθοριστικά στη λήψη απόφασης επέμβασης είναι η αλλαγή χρήσης μιας κατασκευής, καθώς και η αύξηση της σεισμικής απαίτησης που επιβάλλεται από τους νέους αντισεισμικούς κανονισμούς, ιδιαίτερα για κατασκευές που βρίσκονται σε περιοχές αυξημένης σεισμικής διακινδύνευσης.

Η αποδοτικότερη εφαρμογή των διατιθέμενων μεθόδων για την επισκευή και ενίσχυση κατασκευών προϋποθέτει τη χρήση υλικών και τεχνολογιών μέσω των οποίων μπορεί να αποκατασταθεί ή τουλάχιστον να βελτιωθεί η στατική επάρκεια του δομήματος με τρόπο οικονομικό και αποτελεσματικό. Τα υλικά που χρησιμοποιούνται κυρίως για το σκοπό αυτό είναι το σκυρόδεμα και ο χάλυβας. Το κυριότερο πλεονέκτημα των υλικών αυτών, που συχνά χαρακτηρίζονται ως 'συμβατικά', σε σχέση με τα νέα υλικά, όπως τα ινοπλισμένα πολυμερή, είναι η πολύ καλή γνώση των ιδιοτήτων τους και η μακροχρόνια εφαρμογή τους στην πράξη. Επιπλέον, κατασκευές που είχαν υποστεί βλάβες λόγω σεισμικής δράσης και επισκευάστηκαν ή ενισχύθηκαν με κάποια από τις παραδοσιακές μεθόδους, κατά κανόνα επέδειξαν πολύ καλή συμπεριφορά σε μεταγενέστερους σεισμούς. Για τους λόγους αυτούς, οι παραδοσιακές μέθοδοι επισκευής και ενίσχυσης σε υφιστάμενες κατασκευές.

Αν και οι περισσότερες από αυτές τις μεθόδους έχουν ένα ιδιαίτερα ευρύ φάσμα εφαρμογών, η επιλογή της πλέον κατάλληλης τόσο από πλευράς απόδοσης όσο και οικονομίας προϋποθέτει την εμπειρία του μηχανικού που έχει αναλάβει τη μελέτη αποτίμησης και ανασχεδιασμού της κατασκευής. Πολύτιμο εργαλείο στην προσπάθεια του αυτή αποτελεί η ακριβής γνώση της υφιστάμενης κατάστασης της κατασκευής που επιτυγχάνεται μέσω ενός προγράμματος διαγνωστικών ελέγχων, έτσι ώστε να προσδιοριστούν οι ακριβείς ιδιότητες του σκυροδέματος και του χάλυβα των σιδηροπλισμών του δομήματος που πρόκειται να επισκευαστεί ή να ενισχυθεί.

Στις ενότητες που ακολουθούν παρουσιάζονται οι κυριότερες παραδοσιακές μέθοδοι επισκευής και ενίσχυσης μελών από οπλισμένο σκυρόδεμα. Πρέπει να σημειωθεί ότι υπάρχουν δύο γενικές προσεγγίσεις όσον αφορά στις μεθόδους αυτές. Σύμφωνα με τις ενεργητικές μεθόδους, τα δομικά στοιχεία αναβαθμίζονται ώστε να μπορούν να παραλάβουν τόσο τα μελλοντικά (κινητά, επικαλύψεις, κτλ.) όσο και τα παρόντα (μόνιμα) φορτία. Οι ενεργητικές μέθοδοι συνήθως περιλαμβάνουν προένταση ή τοποθέτηση μανδυών στα ενισχυόμενα μέλη με σκοπό την κατάργηση των παραμενουσών τάσεων σε αυτά. Οι παθητικές μέθοδοι αναφέρονται σε επεμβάσεις για την παραλαβή αποκλειστικά των μελλοντικών φορτίων. Κατά συνέπεια, ο πρόσθετος οπλισμός που τοποθετείται στο στοιχείο καθίσταται ενεργός μόνο αφού η διατομή υποστεί παραμορφώσεις λόγω των νέων φορτίων που καλείται να παραλάβει.

3.1.1 Διαστασιολόγηση επεμβάσεων

Η συμπεριφορά του στοιχείου που προκύπτει με εφαρμογή μιας από τις μεθόδους επισκευής και ενίσχυσης εξαρτάται κατά κύριο λόγο από την απόκριση της διεπιφάνειας παλαιού και νέου στοιχείου. Η απόκριση της διεπιφάνειας μεταβάλλεται ανάλογα με το βαθμό ολίσθησης που επιτρέπει ο τρόπος σύνδεσης των δύο στοιχείων κατά μήκος της μεταξύ τους διεπιφάνειας και εκφράζεται μέσω ενός διαγράμματος διατμητικού φορτίου-ολίσθησης.

Επειδή η διαδικασία για τον υπολογισμό της σχετικής ολίσθησης και κατά συνέπεια ο σχεδιασμός των σύνθετων μελών που προκύπτουν μετά την επέμβαση προϋποθέτει τη χρήση αναλυτικών προσομοιωμάτων και είναι ιδιαίτερα πολύπλοκη, σε συνήθη οικοδομικά έργα η συνήθης πρακτική είναι να εφαρμόζεται η απλούστερη προσεγγιστική μέθοδος της εφαρμογής κατάλληλων συντελεστών μονολιθικότητας.

Οι συντελεστές μονολιθικότητας είναι διορθωτικοί συντελεστές που εκφράζουν την αβεβαιότητα στην προσομοίωση των διατομών που υφίστανται την επέμβαση. Συσχετίζουν τα πραγματικά χαρακτηριστικά απόκρισης της επισκευασμένης ή ενισχυμένης διατομής με τα αντίστοιχα μιας μονολιθικής διατομής και διακρίνονται σε συντελεστές μονολιθικότητας δυσκαμψίας k_k και συντελεστές μονολιθικότητας αντοχής k_r . Είναι προφανές ότι οι συντελεστές μονολιθικότοτες ή ίσες της μονάδας. Συνήθως είναι $k_k < k_r$, δηλαδή η ασυνέχεια μεταξύ παλαιού και νέου στοιχείου επιδρά περισσότερο στη δυσκαμψία παρά στην αντοχή του στοιχείου.

Η επιλογή των κατάλληλων συντελεστών μονολιθικότητας για κάθε είδος επέμβασης προκύπτει με βάση πειραματικά αποτελέσματα, με την προϋπόθεση ότι τα πειράματα εκτελούνται σε συνθήκες ανάλογες με αυτές που εφαρμόζονται στην πράξη και επομένως είναι αξιόπιστα. Λόγω έλλειψης πειραματικών δοκιμών, είναι εξαιρετικά σύνηθες στη διαστασιολόγηση των επισκευασμένων ή ενισχυμένων στοιχείων να υπεισέρχεται σε μεγάλο βαθμό η κρίση του μηχανικού του έργου. Γενικά πρέπει να επιδιώκεται η επίτευξη του μέγιστου δυνατού βαθμού μονολιθικότητας της σύνθετης διατομής. Κατά συνέπεια συνιστάται να λαμβάνονται όλα τα απαραίτητα μέτρα, π.χ. χρήση επαρκούς αριθμού βλήτρων και αγκυρίων, έτσι ώστε να ικανοποιείται το συμβιβαστό των παραμορφώσεων στη διεπιφάνεια παλαιού και νέου στοιχείου.

Στην περίπτωση επισκευής μικρών σχετικά βλαβών, δηλαδή είτε ελαφράς ρηγμάτωσης που αποκαθίσταται με χρήση εποξικών ρητινών είτε μερικής αποδιοργάνωσης του σκυροδέματος της διατομής που επισκευάζεται με τοπική αποκατάσταση ίσης διατομής, μπορούν να χρησιμοποιούνται συντελεστές μονολιθικότητας ίσοι με τη μονάδα τόσο για τη δυσκαμψία όσο και για την αντοχή του επισκευασμένου στοιχείου. Αντίστοιχα για την ενίσχυση με χρήση επικολλητών χαλύβδινων φύλλων συνήθως επιλέγονται συντελεστές μονολιθικότητας ίσοι με τη μονάδα εφόσον δεν διατίθενται πληρέστερα πειραματικά αποτελέσματα.

3.1.1.1 Συντελεστές μονολιθικότητας δυσκαμψίας

Αναφέρονται στην απομείωση των αδρανειακών χαρακτηριστικών της σύνθετης διατομής που προκύπτει μετά την επέμβαση ως προς τα αντίστοιχα της ίδιας διατομής θεωρούμενης ως μονολιθικής.

$$k_k = \frac{\Delta υ \sigma \kappa \alpha \mu \psi (\alpha \sigma v \theta \varepsilon \tau \eta \varsigma \delta (\alpha \tau \sigma \mu \eta \varsigma)}{\Delta υ \sigma \kappa \alpha \mu \psi (\alpha '' (\delta (\alpha \varsigma '' \mu o v o \lambda) \theta (\kappa \eta \varsigma \delta (\alpha \tau \sigma \mu \eta \varsigma)} \leq 1$$

Μικρότεροι συντελεστές μονολιθικότητας k_k συνεπάγονται μείωση των εντατικών μεγεθών που αναλαμβάνουν τα επισκευασμένα ή ενισχυμένα στοιχεία, ενώ παράλληλα αυξάνουν τα εντατικά μεγέθη που καλούνται να αναλάβουν τα υπόλοιπα.

3.1.1.2 Συντελεστές μονολιθικότητας αντοχής

Αφορούν στην απομείωση της αντοχής, δηλαδή της ικανότητας παραλαβής αξονικού, διατμητικού ή καμπτικού φορτίου, της σύνθετης διατομής ως προς την αντίστοιχη της ίδιας διατομής θεωρούμενης ως μονολιθικής.

$$k_r = \frac{Aντοχή σύνθετης διατομής}{Aντοχή ''ίδιας'' μονολιθικής διατομής} \le 1$$

Οι συντελεστές μονολιθικότητας αντοχής εφαρμόζονται κατά τη διαστασιολόγηση του επισκευαζόμενου ή ενισχυόμενου μέλους απομειώνοντας την αντοχή του, έτσι ώστε να ικανοποιείται η βασική ανίσωση ασφαλείας.

$$S_d \leq k_r * R_d$$

'Οπου:

 S_d και R_d είναι η δράση και η αντίσταση σχεδιασμού του μέλους, αντίστοιχα, για το συγκεκριμένο είδος καταπόνησης. Η εφαρμογή μικρότερων συντελεστών μονολιθικότητας αντοχής έχει ως αποτέλεσμα την αύξηση του απαιτούμενου οπλισμού της διατομής.

3.1.2 Ενίσχυση δοκών

Οι δοκοί είναι τα δομικά στοιχεία από οπλισμένο σκυρόδεμα που αποτελούν συνηθισμένο αντικείμενο επέμβασης, είτε λόγω βλαβών που έχουν υποστεί είτε λόγω πρόσθετων φορτίων που καλούνται να παραλάβουν. Η επέμβαση είναι δυνατό να περιλαμβάνει μόνο την επισκευή των υφιστάμενων βλαβών, όπου αυτές υπάρχουν, ή επιπλέον την ενίσχυση της δοκού, δηλαδή την περαιτέρω βελτίωση των ιδιοτήτων της.

Σε περίπτωση σεισμικής καταπόνησης, οι βλάβες επικεντρώνονται κατά κανόνα στην περιοχή του κόμβου δοκού και υποστυλώματος. Κατά συνέπεια, στις περιπτώσεις αυτές η επέμβαση στις βλαμμένες δοκούς αποτελεί μέρος ενός ευρύτερου σχεδίου επεμβάσεων που μπορεί να περιλαμβάνει τους κόμβους καθώς και τα κατακόρυφα στοιχεία που συντρέχουν σε αυτούς.

Η επιλογή της κατάλληλης μεθόδου ενίσχυσης μιας δοκού εξαρτάται άμεσα από τον επιδιωκόμενο στόχο. Κατά κανόνα, μεταξύ του συνόλου των δοκών της κατασκευής που ανασχεδιάζεται, ενισχύονται αυτές που εμφανίζουν ανεπαρκή καμπτική ή/και διατμητική αντοχή με βάση τις απαιτήσεις και τα κριτήρια σχεδιασμού της επιλεγείσας στάθμης επιτελεστικότητας. Επίσης, ένας άλλος συνήθης λόγος ενίσχυσης είναι η αύξηση των φορτίων που καλείται να παραλάβει η υπόψη δοκός λόγω αλλαγής χρήσης του κτιρίου.

3.1.2.1 Ενίσχυση σε κάμψη με πρόσθετες στρώσεις σκυροδέματος

Όταν η αντοχή μιας δοκού σε κάμψη δεν πληροί τα κριτήρια σχεδιασμού, είναι δυνατή η ενίσχυση του εφελκυόμενου πέλματος με νέους διαμήκεις οπλισμούς που καλύπτονται από εκτοξευόμενο σκυρόδεμα σε όλο το πλάτος της δοκού. Το πάχος του εκτοξευόμενου σκυροδέματος είναι της τάξης των 7 - 10cm. Στη λιγότερο συνηθισμένη περίπτωση ενίσχυσης του θλιβόμενου πέλματος δεν είναι απαραίτητη η χρήση νέου οπλισμού, ενώ αντί για εκτοξευόμενο σκυρόδεμα μπορεί να χρησιμοποιηθεί έγχυτο. Πρέπει να σημειωθεί ότι πριν την εφαρμογή της μεθόδου πρέπει να γίνεται αποφόρτιση της ενισχυόμενης δοκού στο μέγιστο δυνατό βαθμό.

Σχήμα 3-1 Ενίσχυση κάτω πέλματος δοκού με πρόσθετες στρώσεις σκυροδέματος

Όπως και στην περίπτωση της κατασκευής μανδύα, η σύνδεση του υπάρχοντος με το νέο οπλισμό γίνεται μέσω παρεμβλημάτων. Ανάλογα με την απόσταση μεταξύ των οπλισμών, τα παρεμβλήματα μπορούν να είναι καβίλιες ή αναρτήρες. Εναλλακτικά, όταν το πάχος της νέας στρώσης σκυροδέματος είναι μεγάλο, η σύνδεση παλαιού και νέου στοιχείου μπορεί να γίνει με μονότμητα ή δίτμητα βλήτρα. Το πλεονέκτημα της χρήσης βλήτρων είναι ότι με τον τρόπο αυτό αποφεύγονται οι αρνητικές συνέπειες της ηλεκτροσυγκόλλησης στις ιδιότητες του χάλυβα. Σε κάθε περίπτωση, η επιφάνεια του πέλματος που ενισχύεται πρέπει να έχει προηγουμένως εκτραχυνθεί έως ότου αποκαλυφθούν τα αδρανή. Η εκτράχυνση γίνεται με υδροβολή ή κατάλληλο μηχανικό εξοπλισμό. Η προσεκτική προετοιμασία της διεπιφάνειας για τη σύνδεση παλαιού και νέου στοιχείου είναι ιδιαίτερα κρίσιμη προκειμένου να αποφευχθεί η αποκόλληση των πρόσθετων στρώσεων σκυροδέματος όταν η ενισχυμένη δοκός κληθεί να παραλάβει τα επιπλέον φορτία. Παρόλο που η μέθοδος της ενίσχυσης δοκών με προσθήκη στρώσεων σκυροδέματος έχει εξαιρετικά ευρεία εφαρμογή, εξακολουθεί να παρουσιάζει μειονεκτήματα. Το κυριότερο από αυτά είναι ότι το νέο σκυρόδεμα, είτε έγχυτο είτε εκτοξευόμενο, υπόκειται σε συστολή ξηράνσεως έως ότου αναλάβει πλήρως την αντοχή του, ενώ αντίθετα οι διαστάσεις του αρχικού στοιχείου παραμένουν πρακτικά αμετάβλητες. Επειδή όμως τα δύο στοιχεία συνδέονται μεταξύ τους και συμπεριφέρονται ως ενιαία διατομή, η συστολή ξηράνσεως του νέου σκυροδέματος παρεμποδίζεται, οπότε αναπτύσσονται εφελκυστικές τάσεις. Εάν οι τάσεις αυτές είναι σημαντικές μπορεί να έχουν ως αποτέλεσμα τη ρηγμάτωση του προστιθέμενου στοιχείου ή την αποκόλλησή του από την υφιστάμενη διατομή. Για την αντιμετώπιση του προβλήματος, όπως και στην περίπτωση της κατασκευής μανδύα, συνιστάται να χρησιμοποιείται σκυρόδεμα με κατάλληλα χημικά πρόσθετα ή να αντικαθίσταται το τσιμέντο από μη συρρικνούμενη κονία.

Ένα άλλο πιθανό πρόβλημα που σχετίζεται με την αύξηση της διατομής με προσθήκη σκυροδέματος είναι η διάβρωση του νέου οπλισμού και των βλήτρων που βρίσκονται σε επαφή με το παλαιό σκυρόδεμα λόγω ηλεκτροχημικής διάβρωσης του σκυροδέματος αυτού.

Οι συντελεστές μονολιθικότητας που χρησιμοποιούνται συνήθως για τη διαστασιολόγηση των νέων στοιχείων είναι $k_k = 0.85$ και $k_r = 0.90$. Επίσης, συνιστάται τα χαρακτηριστικά των νέων υλικών, χάλυβα και σκυροδέματος, που χρησιμοποιούνται για την ενίσχυση να μην υπολείπονται των χαρακτηριστικών των υφιστάμενων υλικών.

3.1.2.2 Ενίσχυση με προσθήκη νέων μεταλλικών μελών

Η προσθήκη νέων μελών αποτελεί μία οικονομική αλλά και αποδοτική μέθοδο ενίσχυσης δοκών από οπλισμένο σκυρόδεμα. Ανάλογα με την αντοχή της υπερκείμενης πλάκας, τα πρόσθετα μέλη μπορούν να τοποθετηθούν είτε μεταξύ των υφιστάμενων δοκών είτε σε επαφή με τις πλευρικές παρειές τους. Το προφανές πλεονέκτημα της τοποθέτησης των μελών στο μεσοδιάστημα μεταξύ των δοκών είναι η μείωση του ανοίγματος της πλάκας στο μισό, οπότε αυτόματα αυξάνεται σημαντικά η φέρουσα ικανότητα τόσο της πλάκας όσο και του συστήματος των δοκών. Από την άλλη μεριά, τοποθετώντας τις νέες δοκούς στις παρειές των υφιστάμενων και εξασφαλίζοντας ότι θα λειτουργήσουν μαζί για την παραλαβή των φορτίων, δημιουργείται μία νέα σύνθετη διατομή με αυξημένη αντοχή σε σχέση με την αρχική.

Σύμφωνα με την παθητική προσέγγιση που αναφέρθηκε παραπάνω, οι νέες δοκοί παραλαμβάνουν μόνο τα πρόσθετα φορτία ενώ η υπάρχουσα πλάκα και οι δοκοί εξακολουθούν να φέρουν το ίδιο βάρος τους. Με βάση την ενεργητική προσέγγιση, απαιτείται ανύψωση με γρύλους της πλάκας και των δοκών έτσι ώστε να αναιρεθούν οι παραμορφώσεις που οφείλονται στα φορτία βαρύτητας πριν την τοποθέτηση των νέων μελών. Η διαδικασία αυτή είναι επίπονη και συχνά με μικρή ωφέλεια.

Σχήμα 3-2 Προσθήκη μεταλλικών δοκών στο μέσο του ανοίγματος της πλάκας

Συνήθως είναι ευκολότερο και ταχύτερο τα πρόσθετα μέλη να είναι από δομικό χάλυβα αντί για σκυρόδεμα. Η χρήση νέων στοιχείων από δομικό χάλυβα παρουσιάζει αρκετά πλεονεκτήματα.

Αντίθετα η κατασκευή νέων δοκών από σκυρόδεμα απαιτεί κατασκευή ξυλοτύπου και υποστύλωση, ενώ η σκυροδέτηση τους είναι δύσκολη λόγω της ύπαρξης της υφιστάμενης πλάκας. Προκειμένου να εξασφαλιστεί η αποδοτικότητα των πρόσθετων μεταλλικών δοκών, πρέπει να ικανοποιείται το συμβιβαστό των παραμορφώσεων στη διεπιφάνεια τους με τις ενισχυόμενες δοκούς από οπλισμένο σκυρόδεμα. Η προσθήκη μεταλλικών διατομών U σε κάθε πλευρά μιας υφιστάμενης δοκού αποτελεί μία ακόμα πρακτική για την ενίσχυση δοκών από οπλισμένο σκυρόδεμα. Η προσθήκη μεταλλικών διατομών U σε κάθε πλευρά μιας υφιστάμενης δοκού αποτελεί μία ακόμα πρακτική για την ενίσχυση δοκών από οπλισμένο σκυρόδεμα. Και απομαροφίσεων στη διεπιφάνεια τους με τις ενισχυόμενες δοκούς από του αποτελεί μία ακόμα πρακτική για την ενίσχυση δοκών από σκυρόδεμα και κοχλιώνονται στις ακραίες μεταλλικές δοκούς. Κατά τη διάρκεια εκτέλεσης των εργασιών ενίσχυσης, η επιφάνεια της πλάκας πάνω από την υπόψη δοκό πρέπει να εκκενώνεται έτσι ώστε να απομακρύνονται τα κινητά φορτία από τη δοκό.

Μία άλλη παρόμοια τεχνική για την ενίσχυση δοκών φαίνεται στο Σχήμα 4.8β. Σύμφωνα με αυτή, εύκαμπτες μεταλλικές διατομές U τοποθετούνται στις δύο παρειές της δοκού που ενισχύεται, αλλά συνδέονται με αυτή μόνο στα άκρα τους. Ο σκοπός της σύνδεσης τους κατ' αυτό τον τρόπο είναι η ανακούφιση της υφιστάμενης δοκού από μέρος των φορτίων που της ασκούνται μέσω της επιβολής σε αυτή δυνάμεων με φορά προς τα πάνω. Αυτό επιτυγχάνεται είτε επιβάλλοντας προκαθορισμένη τιμή θετικής παραμόρφωσης στις δοκούς είτε τοποθετώντας σφήνες στο κενό μεταξύ της κάτω παρειάς της πλάκας και τις μεταλλικές διατομές. Ένα σημαντικό πλεονέκτημα της συγκεκριμένης μεθόδου ενίσχυσης σε σχέση με αυτή που απεικονίζεται στο Σχήμα 4.8α είναι ότι δεν απαιτείται η ικανοποίηση του συμβιβαστού των παραμορφώσεων στη διεπιφάνεια παλαιού και νέου στοιχείου. Το γεγονός ότι η δυσκαμψία των μεταλλικών διατομών δεν απαιτείται να είναι συγκρίσιμη με αυτή των δοκών από σκυρόδεμα καθιστά δυνατή τη χρήση ελαφρών εύκαμπτων μεταλλικών δοκών, σε αντίθεση με τις βαριές δύσκαμπτες δοκούς που απαιτούνται για την εφαρμογή της προηγούμενης μεθόδου. Παρακάτω φαίνεται η προσθήκη νέων μεταλλικών μελών στις παρειές υφιστάμενης δοκού.

Σχήμα 3-3 Δύσκαμπτες διατομές

Σχήμα 3-4 Εύκαμπτες διατομές

Πρέπει να σημειωθεί ότι σε ορισμένες περιπτώσεις η προσθήκη νέων μεταλλικών δοκών δεν αποτελεί τη βέλτιστη λύση. Όταν η ενισχυμένη δοκός έχει αυξημένες απαιτήσεις πυροπροστασίας, όταν λόγοι αισθητικής επιβάλλουν την παρουσία αποκλειστικά σκυροδέματος στην κατασκευή που θα προκύψει ή όταν το κόστος της μεταφοράς των μελών από χάλυβα είναι μεγάλο σε σχέση με το κόστος της παραγωγής σκυροδέματος στη θέση του έργου, επιλέγεται συνήθως η αύξηση της διατομής με πρόσθετες στρώσεις σκυροδέματος, σύμφωνα με την τεχνική που αναπτύχθηκε στην προηγούμενη ενότητα. Επίσης, η χρήση νέων μεταλλικών μελών ενδέχεται να παρουσιάσει δυσκολίες στις θέσεις των συνδέσεων με τα υφιστάμενα υποστυλώματα.

3.1.2.3 Ενίσχυση με μείωση του ανοίγματος της δοκού

Ορισμένες φορές, όταν τα αποτελέσματα της ανάλυσης υποδεικνύουν ότι η καμπτική αντοχή μιας δοκού είναι ανεπαρκής, η υπόψη δοκός, υπό την προϋπόθεση ότι βρίσκεται στο ισόγειο της κατασκευής, είναι δυνατό να ενισχυθεί με απλό τρόπο μειώνοντας το άνοιγμα της. Αυτό επιτυγχάνεται με την κατασκευή νέων πρόσθετων υποστυλωμάτων. Τα νέα υποστυλώματα

απαιτούν θεμέλια, η κατασκευή των οποίων καθιστά αναγκαία την απομάκρυνση τμήματος της πλάκας του δαπέδου. Το κόστος μιας τέτοιας επέμβασης ενδέχεται να είναι απαγορευτικό. Εναλλακτικά το άνοιγμα της δοκού μπορεί να μειωθεί με την τοποθέτηση διαγώνιων συνδέσμων από τη βάση των υφιστάμενων υποστυλωμάτων έως ορισμένο σημείο της κάτω παρειάς της δοκού. Με τον τρόπο αυτό αποφεύγεται η κατασκευή των πρόσθετων θεμελίων. Το κυριότερο μειονέκτημα των δύο παραπάνω μεθόδων είναι ότι θυσιάζουν μέρος του ωφέλιμου χώρου κάτω από τις ενισχυόμενες δοκούς. Και στις δύο παραπάνω περιπτώσεις ενδείκνυται η χρήση στοιχείων από χάλυβα, αφού ο χάλυβας δεν παρουσιάζει συστολή ξηράνσεως και μπορεί να εγκατασταθεί γρήγορα και εύκολα (Σχήμα 4.9). Καθώς όλες οι θέσεις των συνδέσεων αναμένεται να είναι υπό θλίψη, ένα ζεύγος χαλύβδινων αγκυρίων κατά κανόνα επαρκεί για την αγκύρωση των νέων μελών στα υφιστάμενα.

Σχήμα 3-5 Μείωση του ανοίγματος δοκού με χρήση μεταλλικού υποστυλώματος

Αντί για διαγώνιους συνδέσμους ενδεχομένως θα μπορούσαν να χρησιμοποιηθούν ενισχύσεις στις γωνίες των πλαισίων μειώνοντας έτσι την απώλεια ωφέλιμης επιφάνειας κάτω από τη δοκό. Σε αυτή την περίπτωση όμως οι ενισχύσεις επιβάλλουν οριζόντιες δυνάμεις στα υποστυλώματα με τα οποία συνδέονται, με αποτέλεσμα αυτά να καταπονούνται σε επιπλέον κάμψη και διάτμηση. Αντίθετα, οι διαγώνιοι σύνδεσμοι μεταφέρουν τα φορτία στη βάση του υποστυλώματος όπου μπορούν εύκολα να παραληφθούν από την υποκείμενη πλάκα.

3.1.2.4 Ενίσχυση με προσθήκη κοχλιωμένου εφελκυόμενου οπλισμού

Όταν η καμπτική αντοχή της υφιστάμενης δοκού δεν επαρκεί, μπορεί να ενισχυθεί επιτόπου με την προσθήκη χαλύβδινων ελασμάτων ή ακόμα και συγκολλητών μεταλλικών διατομών που κοχλιώνονται στη δοκό. Η συγκολλητή διατομή σχήματος ανεστραμμένου Π που φαίνεται στο σχήμα χρησιμοποιείται στην περίπτωση που το εμβαδό του απαιτούμενου πρόσθετου οπλισμού είναι σημαντικό. Με βάση την παθητική προσέγγιση σχεδιασμού ο νέος χάλυβας παραμένει ανενεργός έως ότου το σκυρόδεμα αρχίσει να παραμορφώνεται λόγω του πρόσθετου φορτίου.

Σχήμα 3-6 Κοχλιωτή σύνδεση συγκολλητής μεταλλικής διατομής για αύξηση της καμπτικής αντοχής υφιστάμενης δοκού από σκυρόδεμα

Το μέγεθος και η απόσταση μεταξύ των κοχλιών που χρησιμοποιούνται για τη σύνδεση της νέας μεταλλικής διατομής με την υφιστάμενη δοκό εξαρτώνται από το μέγεθος των φορτίων σχεδιασμού που μμεταβιβάζονται από τα μεταλλικά στοιχεία στο σκυρόδεμα στις θέσεις των συνδέσεων μέσω της εφελκυστικής και της διατμητικής αντοχής των κοχλιών. Στην περίπτωση που οι κοχλίες διαπερνούν πλήρως το σώμα της δοκού απαιτείται ιδιαίτερη προσοχή στην επιλογή της θέσης που θα διανοιχτεί η οπή και γενικά συνιστάται η θέση της οπής να είναι σε όσο το δυνατόν μεγαλύτερη απόσταση από τον άξονα του διαμήκους οπλισμού της δοκού. Μία παραλλαγή της παραπάνω μεθόδου περιλαμβάνει σύνδεση των μεταλλικών ελασμάτων στην κάτω παρειά της δοκού με χρήση κατακόρυφων χημικώς πακτωμένων αγκυρίων. Απαραίτητη προϋπόθεση για την εφαρμογή της συγκεκριμένης τεχνικής είναι η προσεκτική σάρωση της παρειάς της δοκού για τον ακριβή εντοπισμό των διαμήκων ράβδων, ώστε να μην προκληθούν βλάβες σε αυτές κατά τη φάση διάνοιξης των οπών για την τοποθέτηση των αγκυρίων. Εναλλακτικά μπορούν να προστεθούν δύο ελάσματα, ένα στην πάνω και ένα στην κάτω παρειά της δοκού. Τα ελάσματα μπορούν να συνδέονται μεταξύ τους μέσω κοχλιών που διαπερνούν κάθετα όλο το ύψος της δοκού. Η τεχνική αυτή χρησιμοποιείται συνήθως όταν η δοκός παρουσιάζει μεγάλη ανεπάρκεια όσον αφορά στην αντοχή της. Το κυριότερο μειονέκτημά της είναι ότι όχι μόνο η διαδικασία διάνοιξης των οπών καθ' ύψος της δοκού είναι εξαιρετικά δύσκολη, αλλά επιπλέον απαιτείται ειδική επικάλυψη της επιφάνειας της πλάκας πάνω από την δοκό ώστε να καλυφθεί το άνω έλασμα και τα αγκύρια του. Πρέπει να σημειωθεί ότι με τις τεχνικές ενίσχυσης που αναπτύσσονται παραπάνω αλλά και στις επόμενες ενότητες είναι δυνατόν εκτός από την αντοχή να αυξηθεί ταυτόχρονα και η δυσκαμψία της δοκού. Επίσης, εάν με βάση τον ανασχεδιασμό της δοκού προκύψει ότι απαιτείται σημαντική αύξηση του εφελκυόμενου οπλισμού της δοκού, η οποία μπορεί να επιτευχθεί μόνο με μεταλλικά στοιχεία πολύ μεγάλου μεγέθους, είναι δυνατόν ο αριθμός και η διάμετρος των κοχλιών που χρησιμοποιούνται για την υλοποίηση των συνδέσεων να είναι εξαιρετικά μεγάλος και κατά συνέπεια μη ρεαλιστικός. Σε αυτή την περίπτωση πρέπει να επιλέγεται κάποια άλλη μέθοδος ενίσχυσης της δοκού.

3.1.2.5 Ενίσχυση με προσθήκη επικολλητών χαλύβδινων ελασμάτων

Αντί να συνδέονται με κοχλίες, τα χαλύβδινα ελάσματα μπορούν να επικολληθούν στην επιφάνεια του σκυροδέματος με χρήση εποξικής κόλλας προκειμένου να αυξήσουν την καμπτική αντοχή της δοκού. Η επικόλληση των ελασμάτων είναι σαφώς ευκολότερη από τη διάνοιξη οπών και την κοχλίωσή τους στο σκυρόδεμα. Επίσης, οι εργασίες της ενίσχυσης μπορούν να γίνουν γρήγορα, με μικρή επιβάρυνση τόσο της υφιστάμενης κατασκευής όσο και όχληση των ενοίκων. Με τη συγκεκριμένη τεχνική, πέρα από την αύξηση της καμπτικής αντοχής επιτυγχάνεται και αξιοσημείωτη αύξηση της καμπτικής δυσκαμψίας. Το σύστημα ενίσχυσης είναι απόλυτα εξαρτημένο από την ποιότητα της εργασίας, ιδιαίτερα στη φάση εφαρμογής της εποξικής κόλλας. Εάν η επιφάνεια του σκυροδέματος δεν είναι κατάλληλα προετοιμασμένη, η κόλλα που χρησιμοποιείται είναι ελαττωματική ή δεν μπορεί να ακολουθήσει το ρυθμό παραμόρφωσης της δοκού ή η διαδικασία δεν γίνει όσο προσεκτικά απαιτείται, το τελικό αποτέλεσμα θα είναι μία χαλαρή σύνδεση του ελάσματος στη δοκό που θα περιορίζει σημαντικά την αποδοτικότητα της ενίσχυσης. Οι τρεις καθοριστικότεροι παράγοντες για επιτυχή εφαρμογή της μεθόδου είναι οι ακόλουθοι:

- Επισταμένη προετοιμασία της επιφάνειας του σκυροδέματος στην οποία θα επικολληθεί το χαλύβδινο έλασμα. Απαιτείται εκτράχυνση και απομάκρυνση της επιφανειακής ασθενούς στρώσης σκυροδέματος ιδιαίτερα εάν παρουσιάζει ίχνη ενανθράκωσης. Όπως και στην περίπτωση των πρόσθετων στρώσεων σκυροδέματός, η εκτράχυνση μπορεί να γίνει με υδροβολή ή κατάλληλο μηχανικό εξοπλισμό.
- Η αντοχή συνάφειας της εποξικής κόλλας πρέπει να είναι τουλάχιστον ίση με αυτή του σκυροδέματος. Επίσης η κόλλα πρέπει να είναι η κατάλληλη για τις συγκεκριμένες περιβαλλοντικές συνθήκες που επικρατούν στη θέση του έργου.
- Το χαλύβδινο έλασμα πρέπει να έχει επαρκές μήκος και πλάτος έτσι ώστε να αποφευχθεί η ψαθυρή αστοχία του συστήματος ενίσχυσης με αποκόλληση του ελάσματος από τη δοκό.

Η εποξική κόλλα μπορεί να τοποθετηθεί είτε με ρητινένεση είτε με επάλειψη της κόλλας και στις δύο επιφάνειες που πρόκειται να συγκολληθούν. Η σύνδεση της δοκού με το χαλυβδόφυλλο συνήθως απαιτεί την άσκηση πίεσης, ώστε να επιτευχθεί η απαιτούμενη αντοχή της κόλλας. Για την ανάρτηση του ελάσματος αλλά και την παροχή πρόσθετης διατμητικής αντοχής στη διεπιφάνεια μπορούν να χρησιμοποιηθούν σπειροειδείς ράβδοι που ακυρώνονται σε κατακόρυφες οπές πληρωμένες με τσιμεντένεμα (Σχήμα 4.11).Η κυριότερη αδυναμία της συγκεκριμένης τεχνικής εντοπίζεται στις υψηλές συγκεντρωμένες τάσεις που αναπτύσσονται στην περιοχή αγκύρωσης των άκρων των ελασμάτων. Οι τάσεις αυτές στα άκρα μπορούν να οδηγήσουν σε απόσχιση στη γειτονική προς το έλασμα περιοχή σκυροδέματος (Σχήμα 4.12). Για το λόγο αυτό πρέπει να εξασφαλίζεται επαρκές μήκος αγκύρωσης του ελάσματος, εκτός της περιοχής που απαιτείται καμπτική ενίσχυση. Επιπλέον, πρέπει να γίνεται έλεγχος της συγκέντρωσης καμπτικών και διατμητικών τάσεων στην περιοχή των άκρων, λόγω της ασυνέχειας του επικολλητού ελάσματος. Συνήθως ελέγχονται μόνο οι διατμητικές τάσεις στην περιοχή του πέρατος των χαλυβδόφυλλων. Παρόλ' αυτά συνιστάται να ελέγχεται και η αλληλεπίδραση των δύο εντάσεων. Μία συνήθης πρακτική για τον περιορισμό των συγκεντρωμένων τάσεων είναι η προοδευτική μείωση του πάχους των ελασμάτων στα άκρα τους.

Σχήμα 3-7 Ενίσχυση καμπτικής αντοχής δοκού με επικολλητά χαλυβδόφυλλα

Σχήμα 3-8 Αστοχία στην περιοχή αγκύρωσης των άκρων ελάσματος

Η Αχίλλειος πτέρνα του συστήματος ενίσχυσης δοκών με επικολλητά χαλυβδόφυλλα είναι ο κίνδυνος διάβρωσης του χάλυβα στην περιοχή της διεπιφάνειας με το σκυρόδεμα. Η επικάλυψη του ελάσματος με ειδική αντιδιαβρωτική βαφή δεν αποτελεί τη βέλτιστη λύση λόγω της πιθανής αλληλεπίδρασής της με την εποξική κόλλα. Πρέπει επίσης να σημειωθεί ότι η προσθήκη εξωτερικού οπλισμού με μορφή ελασμάτων δεν πρέπει να αποτελεί μακροπρόθεσμη λύση στην περίπτωση που η κατασκευή αντιμετωπίζει πρόβλημα διάβρωσης. Τα πρόσθετα μεταλλικά στοιχεία όχι μόνο αποκρύπτουν τα ίχνη της διάβρωσης, αλλά επιπλέον συνεισφέρουν στην ανάπτυξη γαλβανικής δράσης και καθιστούν το πρόβλημα εντονότερο. Τέλος, κατά την εφαρμογή της μεθόδου ιδιαίτερη προσοχή εφίσταται στην μείωση της αντοχής της εποξικής κόλλας υπό αυξανόμενη θερμοκρασία. Για τη διαστασιολόγηση της ενισχυμένης διατομής λαμβάνεται υπόψη η συνεισφορά τόσο του υπάρχοντος όσο και του προστιθέμενου υπό μορφή ελασμάτων οπλισμού, θεωρώντας απλοποιητικά ένα μέσο στατικό ύψος. Η αντοχή της ενισχυμένης διατομής δεν πρέπει να ξεπερνά την αντοχή του αρχικού στοιχείου. Όσον αφορά στις κατασκευαστικές λεπτομέρειες, το πάχος των ελασμάτων δεν πρέπει να ξεπερνά είτε τα 4 mm είτε το 2% του πλάτους του ελάσματος. Το σημαντικότερο πλεονέκτημα των ελασμάτων μικρού πάχους είναι ότι μπορούν να παρακολουθήσουν τις παραμορφώσεις του πέλματος της δοκού χωρίς την επιβολή πρόσθετων τάσεων στο έλασμα. Για το λόγο αυτό συνιστάται να χρησιμοποιούνται περισσότερα ελάσματα μικρότερου πάχους αντί για ελάσματα μεγάλου πάχους. Η αγκύρωση των ελασμάτων καλό είναι να γίνεται κοντά στα σημεία μηδενισμού του διαγράμματος ροπών και πάντοτε σε ικανή απόσταση από τις θέσεις των μέγιστων ροπών. Για το μήκος αγκύρωσης ισχύει η ακόλουθη σχέση:

$$l_b = \max(200mm, \frac{140}{b_l}, 200t_l)$$

Όπου:

b, και t, είναι το πλάτος και το πάχος του ελάσματος σε mm, αντίστοιχα. Για την καλύτερη αγκύρωση των ελασμάτων μπορούν να χρησιμοποιούνται ειδικά επικολλητά γωνιακά αγκύρωσης, συγκολλημένα στα ελάσματα και στις παρειές της δοκού.

3.1.2.6 Ενίσχυση δοκών σε διάτμηση

Στις προηγούμενες ενότητες παρουσιάστηκαν οι κυριότερες μέθοδοι για την αύξηση της καμπτικής αντοχής μιας δοκού. Παρόμοιες τεχνικές μμπορούν να χρησιμοποιηθούν για την ενίσχυση των δοκών σε διάτμηση. Η χρήση δύο μεταλλικών ελασμάτων μπορεί π.χ. να αυξήσει τη διατμητική αντοχή της δοκού, εφόσον τα δύο ελάσματα τοποθετηθούν στις πλευρικές παρειές της και συνδεθούν με αυτή μέσω κοχλιών που διαπερνούν εγκάρσια το σώμα της δοκού σε δύο τουλάχιστον θέσεις. Ανάλογα με τις απαιτήσεις της μελέτης ενίσχυσης, ελάσματα για την ενίσχυση της δοκού τόσο σε κάμψη όσο και σε διάτμηση μπορούν να χρησιμοποιηθούν σε διαφορετικές θέσεις κατά μήκος της δοκού. Μία άλλη μέθοδος για την αύξηση της διατμητικής αντοχής δοκού από οπλισμένο σκυρόδεμα είναι η προσθήκη νέων χαλύβδινων συνδετήρων που περισφίγγουν εξωτερικά τη δοκό. Οι συνδετήρες μπορούν να είναι είτε κατακόρυφοι είτε υπό γωνία 45°.Οι δοκοί από σκυρόδεμα με ανεπαρκή διατμητική αντοχή ενδέχεται να παρουσιάζουν διαγώνιες ρωγμές που ξεκινούν από την εσωτερική παρειά των στηρίξεων με κατεύθυνση προς το μέσον της δοκού. Εάν οι ρωγμές είναι μεγάλου εύρους (> 0.5 mm), ο μηχανισμός αλληλεμπλοκής αδρανών ενδέχεται να μην είναι σε θέση να αποτρέψει τη σχετική ολίσθηση μεταξύ των παρειών των ρωγμών. Σε αυτή την περίπτωση σοβαρών διατμητικών βλαβών η προσθήκη είτε πλευρικών ελασμάτων είτε εξωτερικών συνδετήρων δεν επαρκεί για την επισκευή και ενίσχυση της δοκού, αλλά επιπλέον απαιτείται η σύσφιγξη των στοιχείων ενίσχυσης μέχρι αρνήσεως. Όπως φαίνεται στο Σχήμα 4.15, ζεύγη κοχλιών τοποθετούνται σε κάθε πλευρά της ρηγματωμένης δοκού και εντείνονται αποτρέποντας τη διάρρηξη του σκυροδέματος κατά μήκος της ρωγμής. Η λειτουργία του μηχανισμού αλληλεμπλοκής αδρανών μπορεί να αποκατασταθεί σημαντικά και με ρητινενέσεις μέσα στις ρωγμές.

διαγώνιους εξωτερικούς συνδετήρες

3.1.2.7 Ενίσχυση δοκών με μανδύες οπλισμένου σκυροδέματος

Πέρα από τη χρήση της για την επισκευή δοκών από οπλισμένο σκυρόδεμα που έχουν υποστεί βλάβες, η τεχνική της κατασκευής μανδυών αποτελεί τη συνηθέστερη και αποτελεσματικότερη μέθοδο ενίσχυσης δοκών όταν απαιτείται αύξηση τόσο της καμπτικής όσο και της διατμητικής τους αντοχής. Πριν τη σκυροδέτηση του μανδύα τοποθετούνται νέοι διαμήκεις οπλισμοί στην εφελκυόμενη παρειά και νέοι συνδετήρες περιμετρικά του στοιχείου. Για τη δημιουργία του μανδύα μπορεί να χρησιμοποιηθεί είτε έγχυτο είτε εκτοξευόμενο σκυρόδεμα, αν και συνήθως προτιμάται η χρήση εκτοξευόμενου σκυροδέματος για λόγους κατασκευαστικής ευκολίας. Στις περιπτώσεις που δεν είναι δυνατή η θραύση της πλάκας στην περιοχή πάνω από τη θλιβόμενη παρειά της δοκού, έτσι ώστε να κατασκευαστεί κλειστός μανδύας, επιλέγεται η λιγότερο αποτελεσματική τεχνική της τοποθέτησης ανοικτού μανδύα. Για την κατασκευή του χρησιμοποιείται εκτοξευόμενο σκυρόδεμα, ενώ ιδιαίτερη προσοχή απαιτείται για την εξασφάλιση της επαρκούς αγκύρωσης των συνδετήρων. Επίσης, ο διορθωτικός συντελεστής μονολιθικότητας για τη δυσκαμψία kk μπορεί να λαμβάνεται ίσος με 0.75, ενώ ο αντίστοιχος συντελεστής για την αντοχή k_r παίρνει τις τιμές 0.90 και 0.80 για διαστασιολόγηση της ενισχυμένης διατομής έναντι κάμψης και διάτμησης, αντίστοιχα.

3.1.3 Ενίσχυση υποστυλωμάτων

Η ανάγκη για ενίσχυση υφιστάμενων υποστυλωμάτων από οπλισμένο σκυρόδεμα προκύπτει όταν τα στοιχεία καλούνται να παραλάβουν φορτία τα οποία υπερβαίνουν τη διαθέσιμη αντοχή τους. Τυπικό παράδειγμα ενίσχυσης υποστυλωμάτων αποτελεί η καθ' ύψος προσθήκη ορόφων σε υπάρχουσα κατασκευή. Οι μέθοδοι ενίσχυσης υποστυλωμάτων διακρίνονται σε δύο βασικές κατηγορίες. Κριτήριο της διάκρισης αποτελεί το αν η ενίσχυση επιτυγχάνεται με ή χωρίς αύξηση της διατομής του στοιχείου. Οι τεχνικές ενίσχυσης που ανήκουν στην πρώτη κατηγορία υλοποιούνται κυρίως με την κατασκευή μανδύα γύρω από το αρχικό στοιχείο με προσθήκη νέων στρώσεων σκυροδέματος και πρόσθετου οπλισμού. Αντίθετα με τις μεθόδους ενίσχυσης της δεύτερης κατηγορίας οι διαστάσεις της διατομής παραμένουν ουσιαστικά αμετάβλητες και η ενίσχυση επιτυγχάνεται με την ενεργό περίσφιγξη του στοιχείου.

3.1.3.1 Ενίσχυση υποστυλωμάτων με αύξηση της διατομής

Η τεχνική της αύξησης των διαστάσεων της διατομής με κατασκευή μανδύα από οπλισμένο σκυρόδεμα αποτελεί τη συνηθέστερη μέθοδο ενίσχυσης υφιστάμενων υποστυλωμάτων που εμφανίζουν ανεπάρκεια όσον αφορά στην αντοχή, τη δυσκαμψία και την πλαστιμότητα τους. Τα κυριότερα πλεονεκτήματα της συγκεκριμένης μεθόδου είναι ότι αφενός δεν μεταβάλλεται η αρχιτεκτονική όψη της ενισχυμένης κατασκευής με την προσθήκη νέων υλικών και αφετέρου αυξάνεται ο βαθμός πυροπροστασίας. Επιπλέον, η κατασκευή μανδύα που περικλείει το υφιστάμενο στοιχείο έχει ως αποτέλεσμα τη μείωση της λυγηρότητας καθώς και την αύξηση της δυσκαμψίας της διατομής. Δεδομένου ότι η ενισχυμένη διατομή είναι σε θέση να παραλάβει μόνο τα πρόσθετα φορτία που θα ασκηθούν σε αυτή, η τεχνική της αύξησης της διατομής δεν αποτελεί λύση για την περίπτωση που το υποστύλωμα έχει ήδη υπερβεί τη φέρουσα ικανότητά του λόγω των υφιστάμενων φορτίων, εκτός αν της κατασκευής του μανδύα προηγηθεί αποφόρτιση του στοιχείου που πρόκειται να ενισχυθεί. Στο Σχήμα 4.18 φαίνεται η λεπτομέρεια όπλισης μανδύα στην περιοχή του κόμβου δοκού – υποστυλώματος. Ανάλογα με το είδος του σκυροδέματος που χρησιμοποιείται για την κατασκευή του μανδύα, τα πλέον διαδεδομένα είδη μανδυών οπλισμένου σκυροδέματος που χρησιμοποιείται για την κατασκευή του μανδύα, τα πλέον διαδεδομένα είδη μανδυών οπλισμένου σκυροδέματος που κοροροχυθεί.

Μανδύες από έγχυτο σκυρόδεμα. Έγχυτο σκυρόδεμα χρησιμοποιείται όταν ο μανδύας που πρόκειται να κατασκευαστεί έχει πάχος μεγαλύτερο από 8cm. Για τη σκυροδέτηση του μανδύα απαιτείται η χρήση ξυλοτύπου.

Σχήμα 3-12 Όπλιση μανδύα στην περιοχή του κόμβου δοκού - υποστυλώματος

Μανδύες από εκτοξευόμενο σκυρόδεμα. Η κατασκευή μανδύα από εκτοξευόμενο σκυρόδεμα αποτελεί τη συνηθέστερη πρακτική για την περίπτωση που το συνολικό πάχος του μανδύα δεν υπερβαίνει τα 10cm. Αν και δεν απαιτείται ξυλότυπος, ιδιαίτερη προσοχή πρέπει να δίνεται στην εξασφάλιση της κατακόρυφης επιφάνειας του μανδύα. Για το σκοπό αυτό γίνεται συνήθως χρήση οδηγών. Πρέπει επίσης να τονιστεί, ότι η συστολή ξηράνσεως είναι μεγαλύτερη στη συγκεκριμένη κατηγορία μανδυών, οπότε έχει μεγάλη σημασία η σωστή συντήρησή τους με εφαρμογή όλων των σχετικών διατάξεων του Κανονισμού Τεχνολογίας Σκυροδέματος.

Μανδύες από σκυροτσιμεντόπηγμα. Το κυριότερο πλεονέκτημα αυτού του είδους των μμανδυών είναι η εύκολη σκυροδέτηση ακόμα και παρουσία πυκνού διαμήκους και εγκάρσιου οπλισμού. Η διαδικασία εφαρμογής του σκυροτσιμεντοπήγματος περιλαμβάνει την τοποθέτηση αδρανών σε καλούπια και στη συνέχεια την πλήρωση των μεταξύ τους κενών με υγροποιημένο τσιμέντο υπό πίεση. Τα αδρανή έχουν ελάχιστο μέγεθος κόκκων 10-15mm. Με τη χρήση σκυροτσιμεντοπήγματος μειώνεται σημαντικά το πρόβλημα της συστολής ξηράνσεως, καθώς τα αδρανή, που βρίσκονται ήδη σε επαφή μεταξύ τους, περιορίζουν τη συστολή ξηράνσεως στο

ελάχιστο. Η χρήση της συγκεκριμένης τεχνικής δεν είναι διαδεδομένη λόγω έλλειψης εμπειρίας εκ μέρους των τεχνικών και υψηλού σχετικά κόστους.

Μανδύες από ειδικά σκυροδέματα ή τσιμεντοκονιάματα. Με τη χρησιμοποίηση ειδικών σκυροδεμάτων ή τσιμεντοκονιαμάτων είναι δυνατόν να υλοποιηθούν μανδύες εξαιρετικά μικρού πάχους. Το βασικό μειονέκτημα που αποτελεί τροχοπέδη για τη διάδοση της είναι το αυξημένο κόστος κατασκευής τους.

Όσον αφορά στην απόσταση μεταξύ των συνδετήρων καθώς και στην αγκύρωση των διαμηκών ράβδων του μανδύα ισχύουν οι διατάξεις του κανονισμού που αναφέρονται και στα νέα υποστυλώματα από οπλισμένο σκυρόδεμα. Αν εξαιρέσουμε την περίπτωση που οι διαμήκεις ράβδοι του μανδύα τοποθετούνται μόνο στις τέσσερις κορυφές του, γενικά οι οπλισμοί των παρειών του θα διακόπτονται καθ' ύψος από δοκούς που συντρέχουν στο ενισχυόμενο υποστύλωμα, ενώ θα πρέπει επίσης να διακόπτονται στις υπερκείμενες και υποκείμενες πλάκες. Στην περίπτωση που χρησιμοποιούνται περισσότερες από τέσσερις διαμήκεις ράβδοι, αυτές που βρίσκονται σε ανάσταση μεγαλύτερη από 15cm από τις κορυφές συνιστάται να στηρίζονται πλευρικά. Η στήριξη μπορεί να παρέχεται από βλήτρα τα οποία στο ένα άκρο του καταλήγουν σε άγκιστρο, ενώ το άλλο αγκυρώνεται στο σώμα του υφιστάμενου υποστυλώματος. Επίσης, στην περίπτωση που το υποστύλωμα του ανώτερου ορόφου είναι μικρότερων διαστάσεων από το υποστύλωμα που ενισχύεται με μανδύα, ο διαμήκης οπλισμός του μανδύα αγκυρώνεται στην άνω παρειά της πλάκας.

Σχήμα 3-13 Ενίσχυση υποστυλωμάτων με μανδύα οπλισμένου σκυροδέματος (α)Εσωτερικό μεμονωμένο υποστύλωμα , (β) Περιμετρικό υποστύλωμα σε επαφή με τοίχωμα

Στην περίπτωση του εξωτερικού υποστυλώματος σε επαφή με τοιχώματα οπλισμένου σκυροδέματος ο μανδύας μπορεί να διαιρεθεί σε δύο τμήματα, ένα σε κάθε πλευρά του τοιχώματος. Προκειμένου να τοποθετηθούν οι συνδετήρες του μανδύα, είναι απαραίτητο να διανοιχθούν διαμπερείς οπές που διαπερνούν εγκάρσια το τοίχωμα. Για να περιοριστεί η διάμετρος των οπών εντός λογικών ορίων, συνιστάται η κάμψη των άκρων των συνδετήρων προκειμένου να αγκυρωθούν να γίνεται επιτόπου. Όταν ο μανδύας δεν μπορεί να περιβάλλει ολόκληρη τη διατομή λόγω π.χ. μεσοτοιχίας ή αρμού επιλέγεται η λύση του ανοικτού μανδύα. Παρακάτω φαίνονται δύο χαρακτηριστικές περιπτώσεις μανδύα ανοικτού τύπου. Όπως και στην περίπτωση των δοκών, ιδιαίτερη προσοχή απαιτείται στην αγκύρωση των συνδετήρων και στη συγκόλληση παλαιού και νέου οπλισμού.

Σχήμα 3-14 Κατασκευή ανοικτού μανδύα υποστυλώματος στην περιοχή αντισεισμικού αρμού

Πειραματικοί έλεγχοι σε υποστυλώματα που είχαν ενισχυθεί με κλειστούς μανδύες οπλισμένου σκυροδέματος έδειξαν ότι το ενισχυμένο στοιχείο συμπεριφέρεται σχεδόν πανομοιότυπα με το αντίστοιχο μονολιθικό όσον αφορά τόσο στη δυσκαμψία όσο και στην αντοχή του. Παρόλ' αυτά, λόγω αβεβαιοτήτων που υπεισέρχονται στην ποιότητα κατασκευής του μανδύα και κατ' επέκταση στο βαθμό συνεργασίας παλαιού και νέου σκυροδέματος, συνιστάται, οι αντίστοιχοι συντελεστές μονολιθικότητας να λαμβάνουν τιμές $k_k = 0.70^{-1.00}$ και $k_r = 0.80^{-1.00}$.

(**β**) Σχήμα 3-15 Ενίσχυση υποστυλώματος με μανδύα ανοικτού τύπου (α) Αγκύρωση συνδετήρων με διαμπερή οπή και συγκόλληση,(β)Αγκύρωση συνδετήρων με συγκόλληση σε γωνιακά βλητρωμένα στο υπάρχον στοιχείο

Απαραίτητες προϋποθέσεις για την εφαρμογή των παραπάνω συντελεστών, σε περίπτωση που το υποστύλωμα έχει υποστεί σημαντικές βλάβες, είναι να έχει αποκατασταθεί η συνέχειά του με συγκόλληση νέου οπλισμού, καθώς επίσης οι διαμήκεις ράβδοι του μανδύα να είναι καλά αγκυρωμένες στον υπάρχοντα φορέα και το εμβαδόν του μανδύα να είναι μικρότερο από το διπλάσιο του εμβαδού του αρχικού στοιχείου. Σε κάθε περίπτωση η διαστασιολόγηση του μανδύα μπορεί να γίνεται με βάση τα δυσμενέστερα εντατικά μεγέθη που προκύπτουν από δύο αναλύσεις. Στην πρώτη ανάλυση λαμβάνεται υπόψη μόνο η διατομή του μανδύα και αγνοείται πλήρως το υπάρχον στοιχείο είτε η δυσκαμψία των ενισχυμένων στοιχείων εκτιμάται με χρήση $k_r = 0.70$, ενώ στη δεύτερη ανάλυση θεωρείται πλήρως μονολιθική σύνδεση παλαιού και νέου στοιχείου οπότε λαμβάνεται $k_k = 1.00$. Όσον αφορά στο ελάχιστο πάχος του μανδύα, πρέπει να είναι τουλάχιστον 5cm για μανδύες εκτοξευόμενου σκυροδέματος, 8~12cm για μανδύες από έγχυτο σκυρόδεμα με μία σειρά οπλισμών και 12cm για μανδύες από έγχυτο σκυρόδεμα με δύο σειρές οπλισμών.

3.1.3.2 Ενίσχυση υποστυλωμάτων με περίσφιγξη

Ο συνηθέστερος τρόπος επιβολής εξωτερικής περίσφιγξης χωρίς αύξηση της διατομής του υποστυλώματος είναι με χρήση επικολλητών χαλύβδινων διατομών. Η πλέον διαδεδομένη τεχνική είναι η χρήση μεταλλικού κλωβού, ο οποίος υλοποιείται με την προσαρμογή τεσσάρων μεταλλικών γωνιακών στις κορυφές του υποστυλώματος, τα οποία συσφίγγονται με ειδικά κλειδιά έτσι ώστε να επιβληθεί περίσφιγξη. Η σύνδεση των γωνιακών με το υποστύλωμα μπορεί να γίνει είτε με συγκόλληση είτε κοχλιωτά με χρήση κατάλληλων χημικώς πακτωμένων αγκυρίων. Πάνω στα γωνιακά συγκολλούνται οριζόντια μεταλλικά ελάσματα. Αντί για σύσφιγξη των γωνιακών, είναι δυνατό να προθερμαθούν τα οριζόντια ελάσματά σε θερμοκρασία 200-400°C, έτσι ώστε μέσω της απόψυξής τους να δημιουργηθεί περίσφιγξη λόγω συστολής. Το κενό μεταξύ του μεταλλικού κλωβού και του σκυροδέματος πληρώνεται συνήθως με μη συρρικνούμενη κονία. Η διαμόρφωση της τελικής επιφάνειας γίνεται με ισχυρή τσιμεντοκονία οπλισμένη με ελαφρύ δομικό πλέγμα. Εάν το ύψος του υποστυλώματος είναι σχετικά μικρό (h/d ≤ 3), αντί για μεταλλικά ελάσματα μπορούν να χρησιμοποιηθούν πλήρη χαλύβδινα φύλλα. Με βάση πειραματικά αποτελέσματα η διατομή των γωνιακών πρέπει να είναι τουλάχιστον L50x5. Το πάχος των οριζόντιων μεταλλικών ελασμάτων είναι συνήθως ίσο με το πάχος των γωνιακών, ενώ το πλάτος τους κυμαίνεται μεταξύ 25 και 60 mm. Η απόσταση μεταξύ τους δεν πρέπει να υπερβαίνει τη μικρότερη τιμή από το ήμισυ της μικρότερης διάστασης της διατομής και τα 15cm.

Σχήμα 3-16 Εφαρμογή της τεχνικής του μεταλλικού κλωβού για ενίσχυση υποστυλώματος με επιβολή εξωτερικής περίσφιγξης

Εναλλακτικά, αντί για χρήση μεταλλικού κλωβού, η επιβολή εξωτερικής περίσφιγξης μπορεί να επιτευχθεί με επικολλητά χαλύβδινα κολάρα με σύνηθες πάχος 1-2 mm, εντός των οποίων εγκιβωτίζεται ολόκληρη η διατομή του ενισχυόμενου υποστυλώματος. Η αποδοτικότητα της περίσφιγξης αυξάνει εφόσον τα μεταλλικά κολάρα είναι προεντεταμένα, ενώ μπορεί επίσης να χρησιμοποιηθεί σπειροειδής οπλισμός από μεταλλικά ελάσματα, ο οποίος τοποθετείται εξωτερικά και περιβάλλει ολόκληρο το στοιχείο καθ' ύψος. Μία άλλη αρκετά συνηθισμένη μέθοδος για ενίσχυση υποστυλώματων κυρίως κυκλικής διατομής, είναι η κατασκευή ολόσωμου μεταλλικού μανδύα. Συνήθως μεταξύ του μανδύα και του υποστυλώματος υπάρχει μικρό δακτυλιοειδές κενό, το οποίο πληρώνεται με τσιμεντένεμα. Με τη χρήση μεταλλικού μανδύα, εκτός από την αύξηση της θλιπτικής αντοχής του σκυροδέματος και της καμπτικής και διατμητικής αντοχής του στοιχείου, επιτυγχάνεται επίσης σημαντική αύξηση της πλαστιμότητας του υποστυλώματος. Σε περίπτωση υποστυλώματος ορθογωνικής διατομής συνιστάται το σχήμα του μανδύα να είναι ελλειψοειδές. Η συγκεκριμένη μέθοδος έχει ευρεία εφαρμογή για την ενίσχυση βάθρων γεφυρών. Το κυριότερο μειονέκτημά της είναι το υψηλό εργατικό κόστος και η ανάγκη χρήσης ειδικού μηχανολογικού εξοπλισμού για τη μεταφορά και εγκατάσταση των μανδυών.

Σχήμα 3-17 Ενίσχυση υποστυλώματος με επικολλητά χαλύβδινα κολάρα

3.1.3.3 Προσθήκη νέων υποστυλωμάτων

Ένα υποστύλωμά από οπλισμένο σκυρόδεμα μπορεί επίσης να ενισχυθεί με την κατασκευή ενός νέου υποστυλώματος. Τα δύο υποστυλώματα μπορούν είτε να είναι τελείως ανεξάρτητα είτε να συνδέονται μεταξύ τους μέσω βλήτρων ή άλλων μηχανικών μέσων. Η προσθήκη ενός νέου υποστυλώματος έχει εξαιρετικά επωφελή αποτελέσματα όταν το υφιστάμενο υποστύλωμα λαμβάνει το μεγαλύτερο μέρος του φορτίου του κυρίως από μία μόνο δοκό. Όπως και στη μέθοδο της κατασκευής μανδύα, το νέο υποστύλωμα θα παραλάβει μόνο τα μελλοντικά φορτία. Δεν μπορεί να ανακουφίσει το στοιχείο από τα φορτία που ήδη φέρει, εκτός αν της κατασκευής του νέου υποστύλωμα θα παραλάβει μόνο τα μελλοντικά φορτία. Δεν μπορεί να ανακουφίσει το στοιχείο από τα φορτία που ήδη φέρει, εκτός αν της κατασκευής του νέου υποστύλωμα μπορεί να ανακουφίσει το στοιχείο από τα φορτία που ήδη φέρει, εκτός αν της κατασκευής του νέου υποστύλωμα μπορεί να ανακουφίσει το στοιχείο από τα φορτία που ήδη φέρει, εκτός αν της κατασκευής του ούο υποστύλωμα μπορεί να ανακουφίσει το στοιχείο από τα φορτία που ήδη φέρει, εκτός αν της κατασκευής του νέου υποστυλώματος προηγηθεί αποφόρτιση του υφιστάμενου στοιχείου. Το νέο υποστύλωμα μπορεί να κατασκευαστεί είτε από δομικό χάλυβα είτε από οπλισμένο σκυρόδεμα. Το σκυρόδεμα αποτελεί ίσως καλύτερη επιλογή όταν υπάρχουν αυξημένες απαιτήσεις πυροπροστασίας, αν και το μεταλλικό υποστύλωμα καταλαμβάνει σαφώς λιγότερο χώρο. Μία ενδιάμεση λύση θα ήταν ένα σύμμικτο υποστύλωμα, στο οποίο η μεταλλική διατομή εγκιβωτίζεται στο σκυρόδεμα. Όταν επιλέγεται η λύση του χάλυβα, προτιμώνται συνήθως σωληνοειδείς διατομές για λόγους αισθητικής.

Αντίστοιχα, για νέα υποστυλώματα από οπλισμένο σκυρόδεμα, χρησιμοποιούνται κατά κανόνα ορθογωνικές διατομές. Εναλλακτικά μπορεί να επιλεγεί η λύση της επέκτασης της υφιστάμενης διατομής του στοιχείου προς τη μία ή και τις δύο πλευρές του. Το κυριότερο μειονέκτημα της προσθήκης γειτονικού υποστυλώματος κοντά σε υπάρχον, είναι ο τρόπος θεμελίωσης του νέου στοιχείου. Συνήθως οι διαστάσεις του υπάρχοντος θεμελίου δεν επαρκούν για να θεμελιωθεί σε αυτό και το νέο υποστύλωμα, αλλά ενδεχομένως να μην υπάρχει και επαρκής χώρος για την κατασκευή νέου θεμελίου. Για το λόγο αυτό, πριν την κατασκευή του πρόσθετου στοιχείου, απαιτείται η προσεκτική διερεύνηση των συνθηκών στο επίπεδο της θεμελίωσης. Προκειμένου να συνδεθεί το νέο υποστύλωμα με το θεμέλιο του υπάρχοντος, οι διαμήκεις ράβδοι του ματίζονται σε βλήτρα, τα οποία ακυρώνονται μέσα στο θεμέλιο. Σε περίπτωση που ο αριθμός των διαμήκων ράβδων είναι μεγάλος, είναι προτιμώτερο να χρησιμοποιηθεί μία πλάκα έδρασης στην οποία συγκολλούνται τα βλήτρα. Η πλάκα έδρασης συνδέεται αντίστοιχα με το θεμέλιο μέσω αγκυρίων.

Για την ασφαλή μεταβίβαση φορτίων από την υπερκείμενη δοκό στο νέο υποστύλωμα, είτε αυτό είναι μεταλλικό είτε από σκυρόδεμα, το νέο στοιχείο κατασκευάζεται ελαφρώς κοντύτερο και το κενό μεταξύ της κάτω παρειάς της δοκού και της κεφαλής του υποστυλώματος πληρώνεται εκ των υστέρων με μη συρρικνούμενη κονία. Στην περίπτωση υποστυλώματος από σκυρόδεμα, συνιστάται η πλήρωση του κενού να γίνεται το αργότερο δυνατόν, ώστε να έχει ολοκληρωθεί το μεγαλύτερο μέρος της διαδικασίας της συστολής ξηράνσεως.

3.1.4 Ενίσχυση τοιχωμάτων

Όπως και στην περίπτωση των υποστυλωμάτων έτσι και τα τοιχώματα μπορούν να ενισχυθούν είτε με αύξηση της διατομής τους με κατασκευή μανδύα οπλισμένου σκυροδέματος είτε με επιβολή εξωτερικής περίσφιγξης. Σε κάθε περίπτωση η μέθοδος που επιλέγεται πρέπει να

τροποποιείται κατάλληλα έτσι ώστε να λαμβάνεται υπόψη τόσο η ιδιαίτερη συμπεριφορά των τοιχωμάτων έναντι σεισμικής δράσης όσο και οι περιορισμοί που επιβάλλονται λόγω της γεωμετρίας τους.

3.1.4.1 Ενίσχυση τοιχωμάτων με αύξηση της διατομής τους

Η μέθοδος της κατασκευής μανδύα από οπλισμένο σκυρόδεμα αποτελεί την πλέον συνηθισμένη και αποδοτική μέθοδο ενίσχυσης τοιχωμάτων. Σε αντίθεση με τα υποστυλώματα, για τα οποία επιλέγεται συνήθως η λύση του κλειστού μανδύα, κατά κανόνα οι μανδύες για την ενίσχυση των τοιχωμάτων δεν είναι κλειστοί. Αυτό οφείλεται κυρίως στη μεγάλη τιμή του λόγου του μήκους ως προς το πλάτος τους, ο οποίος είναι ίσος ή μεγαλύτερος του τέσσερα και μπορεί να πάρει πολύ μεγάλες τιμές. Για το λόγο αυτό κατά κανόνα η ενίσχυση του τοιχώματος αφορά στην αύξηση του πάχους του με κατασκευή μανδύα ανοικτού τύπου (Σχήμα 4.26α) που αποβλέπει κυρίως στην αύξηση της διατμητικής αντοχής του τοιχώματος. Μία άλλη συνήθης πρακτική που εφαρμόζεται κυρίως για την καμπτική ενίσχυση των τοιχωμάτων είναι η κατασκευή δύο κρυφοϋποστυλωμάτων, όπως φαίνεται στο Σχήμα β. Στο Σχήμα γ παρουσιάζεται η κατασκευή κλειστού μανδύα που περιβάλλει ολόκληρο το υπάρχον τοίχωμα. Για τη διαστασιολόγηση των ενισχυμένων τοιχωμάτων μπορούν να χρησιμοποιούνται οι τιμές των συντελεστών μονολιθικότητας που ισχύουν για την περίπτωση της ενίσχυσης υποστυλωμάτων με κλειστούς μανδύες οπλισμένου σκυροδέματος, δηλαδή $k_k = 0.70^{-1.00}$ και $k_r = 0.80^{-1.00}$. Προϋποθέσεις για την εφαρμογή των παραπάνω τιμών για τους συντελεστές k_k και k_r είναι η αποκατάσταση της διατομής του βλαμμένου τοιχώματος πριν την κατασκευή του μανδύα, η επαρκής αγκύρωση του νέου οπλισμού στο υπάρχον σκυρόδεμα και ο περιορισμός του εμβαδού του μανδύα έως το διπλάσιο του εμβαδού του αρχικού στοιχείου

Σχήμα 3-18 Ενίσχυση τοιχωμάτων με αύξηση της διατομής τους (α)Διατμητική ενίσχυση (β) Καμπτική ενίσχυση (γ)Διατμητική και καμπτική ενίσχυση με κλειστό μανδύα

Γενικά συνιστάται να γίνονται δύο αναλύσεις θεωρώντας $k_k = 0.70$ και $k_k = 1.00$, αντίστοιχα. Η διαστασιολόγηση του ενισχυμένου τοιχώματος πρέπει να γίνεται με βάση τα δυσμενέστερα εντατικά μεγέθη που προκύπτουν από τις δύο αναλύσεις. Η ανάλυση για k_k = 1.00, δηλαδή με θεώρηση μονολιθικής σύνδεσης παλαιού και νέου σκυροδέματος, δίνει δυσμενέστερη τιμή για την τέμνουσα σχεδιασμού. Η τιμή αυτή αν και είναι εξαιρετικά συντηρητική μπορεί να χρησιμοποιείται για το σχεδιασμό του μμανδύα. Η ανάλυση για k_k = 0.70 χρησιμοποιείται για τη διαστασιολόγηση των άλλων μελών του φορέα. Η κατανομή της τέμνουσας σχεδιασμού του ενισχυμένου τοιχώματος στο παλαιό και το νέο στοιχείο γίνεται με βάση την απομένουσα δυσκαμψία του υπάρχοντος τοιχώματος και τη δυσκαμψία του μανδύα, αντίστοιχα. Εάν στον προσδιορισμό της απομένουσας δυσκαμψίας του παλαιού τοιχώματος υπεισέρχεται μεγάλος βαθμός αβεβαιότητας, τότε η τέμνουσα που παραλαμβάνει ο μανδύας μπορεί να υπολογιστεί ως η διαφορά της αρχικής διατμητικής αντοχής του υφιστάμενου τοιχώματος από τη συνολική τέμνουσα σχεδιασμού του ενισχυμένου στοιχείου. Απαραίτητη προϋπόθεση είναι η επιμελής επισκευή τυχόν βλαβών που έχει υποστεί το τοίχωμα πριν την ενίσχυσή του με το μανδύα. Όσον αφορά στη διατμητική αντοχή του σύνθετου στοιχείου, αυτή μπορεί να υπολογίζεται συνεκτιμώντας τη συνεισφορά των συνδετήρων του υπάρχοντος τοιχώματος, εφόσον αυτοί είναι αγκυρωμένοι σύμφωνα με τις διατάξεις του ισχύοντος κανονισμού οπλισμένου σκυροδέματος για στοιχεία με αυξημένες απαιτήσεις πλαστιμότητας. Προκειμένου να εξασφαλιστεί η επάρκεια του ενισχυμένου στοιχείου έναντι τέμνουσας οι έλεγχοι που απαιτούνται είναι οι ακόλουθοι:

Έλεγχος περιορισμού λοξής θλίψης σκυροδέματος κορμού:

$$V_{sd} \leq k_r * V_{Rd2,\mu\nu\nu\lambda}$$

Όπου V_{Rd2,μονολιθ.} είναι η τέμνουσα αντοχής σχεδιασμού λόγω λοξής θλίψης κορμού της αντίστοιχης μονολιθικής διατομής.

4 <u>Έλεγχος οπλισμού τεμνουσών:</u>

$$V_{sd} \leq k_k * V_{Rd3,\mu\nu\nu\lambda}.$$
$$V_{Rd3,\mu\nu\nu\lambda} = V_{cd,\mu\nu\nu\lambda} + V_{wd,\mu\alpha\lambda} + V_{wd,\mu\alpha\nu\lambda}$$

Όπου ο όρος V_{cd,μονολιθ.} αναφέρεται στην τέμνουσα που παραλαμβάνεται από το σκυρόδεμα της αντίστοιχης μονολιθικής διατομής, ενώ οι όροι V_{wd,αρχ.} και V_{wd,μανδ.} συμβολίζουν την τέμνουσα που παραλαμβάνεται από τους συνδετήρες του αρχικού στοιχείου και του μανδύα, αντίστοιχα.

Όταν χρησιμοποιείται εκτοξευόμενο σκυρόδεμα για την κατασκευή του μανδύα, το πάχος του δεν πρέπει να είναι μικρότερο από 5cm. Για μανδύα από έγχυτο σκυρόδεμα, το αντίστοιχο ελάχιστο πάχος είναι 8cm. Επίσης γενικά συνιστάται η αντοχή του σκυροδέματος του μανδύα να είναι μία κατηγορία μεγαλύτερη από αυτή του αρχικού στοιχείου. Για τη σύνδεση του μανδύα με το υπάρχον τοίχωμα συνήθως χρησιμοποιούνται βλήτρα σχήματος Γ. Σε αμφίπλευρους μανδύες ενδείκνυται τα βλήτρα να είναι διαμπερή εφόσον αυτό είναι εφικτό (ελάχιστος αριθμός 3Ø14/m2), ενώ σε μονόπλευρους μανδύες πρέπει να προτιμώνται δίτμητοι διατμητικοί σύνδεσμοι σχήματος Π.

3.1.4.2 Ενίσχυση τοιχωμάτων με περίσφιγξη

Αν και η εφαρμογή εξωτερικής περίσφιγξης σε τοιχώματα δεν παρουσιάζει ιδιαίτερες κατασκευαστικές δυσκολίες, η χρήση της είναι πολύ λιγότερο διαδεδομένη σε σύγκριση με την περίπτωση των υποστυλωμάτων. Αυτό οφείλεται κυρίως στο γεγονός ότι η αποδοτικότητα της περίσφιγξης μειώνεται σημαντικά λόγω του έντονα ορθογωνικού σχήματος των τοιχωμάτων. Η μέθοδος επιβολής εξωτερικής περίσφιγξης που βρίσκει εφαρμογή στην περίπτωση των τοιχωμάτων που παρουσιάζει είναι η τεχνική του μεταλλικού κλωβού. Τα κυριότερα από αυτά είναι η αυξημένη ικανότητα παραλαβής τέμνουσας, αλλά και η

χρησιμότητα της ως προσωρινής λύσης για την ανάληψη των κατακόρυφων φορτίων σε περίπτωση τοιχωμάτων που έχουν υποστεί σημαντικές βλάβες και ως εκ τούτου αδυνατούν να μεταφέρουν με ασφάλεια τα αξονικά τους φορτία. Στην περίπτωση που χρησιμοποιείται η τεχνική του μεταλλικού κλωβού για την επιβολή περίσφιγξης, αύξηση της απόδοσης μπορεί να επιτευχθεί με χρήση διαμπερών συνδέσμων σχήματος Π ή Ζ σε αποστάσεις της τάξης των 30cm μεταξύ τους, οι οποίοι ηλεκτροσυγκολλούνται στα αντιδιαμετρικά ελάσματα του κλωβού.

3.2 Χρήση σύνθετων υλικών για ενίσχυση κατασκευών

3.2.1 Εισαγωγή- Εφαρμογές και γενικά χαρακτηριστικά

Η ραγδαία πρόοδος που έχει σημειωθεί στον τομέα της τεχνολογίας των δομικών υλικών τα τελευταία χρόνια, είχε ως αποτέλεσμα την ανάπτυξη πληθώρας νέων προϊόντων που μπορούν να χρησιμοποιηθούν σε πολλές εφαρμογές της επιστήμης του Πολιτικού Μηχανικού, όπου η αποκλειστική χρήση συμβατικών υλικών αποτυγχάνει να παρέχει μία ικανοποιητική λύση. Μεταξύ των προϊόντων αυτών σημαντική θέση κατέχουν τα σύνθετα υλικά από ινοπλισμένα πολυμερή (fiber reinforced polymer composites), τα οποία αποτελούνται από 'υφάσματα' από ινώδη οπλισμένα πολυμερή εμποτισμένα με ειδικές εποξικές ρητίνες. Τα 'υφάσματα' αυτά τοποθετούνται στις επιφάνειες των δομικών στοιχείων, αποτελώντας εξωτερικό οπλισμό και μόνιμη ενίσχυσή τους. Λόγω κυρίως της ανθεκτικότητάς τους σε ηλεκτροχημική διάβρωση και του υψηλού λόγου αντοχής προς βάρος, αποτελούν μία πολύ καλή εναλλακτική επιλογή για την επίδυση προβλημάτων που σχετίζονται με την επισκευή και ενίσχυση κατασκευών.

Κατά τη διάρκεια της τελευταίας δεκαπενταετίας, στο πλαίσιο ερευνητικών προγραμμάτων και δραστηριοτήτων, ερευνητές από διάφορα μέρη του κόσμου έχουν αναπτύξει πολλές εφαρμογές σύνθετων υλικών από ινοπλισμένα πολυμερή για την όπλιση και προένταση κατασκευών από οπλισμένο σκυρόδεμα, τη σεισμική ενίσχυση κατασκευών τόσο από οπλισμένο σκυρόδεμα όσο και από άοπλη τοιχοποιία, την ενίσχυση γεφυρών και κτιριακών κατασκευών κτλ. Οι προσπάθειες των ερευνητών αυτών είχαν ως αποτέλεσμα μία πραγματικά εντυπωσιακή ανάπτυξη της μεθόδου ενίσχυσης κατασκευών με σύνθετα υλικά, με τις πρώτες ευρείας κλίμακας εφαρμογές να αναφέρονται στις αρχές της περασμένης δεκαετίας.

Οι βασικές αρχές για το σχεδιασμό μανδυών από σύνθετα υλικά είναι αντίστοιχες με τις αρχές σχεδιασμού των μεταλλικών μανδυών. Σε σύγκριση με τη χρήση μεταλλικών ελασμάτων για την ενίσχυση δομικών στοιχείων, η εναλλακτική εφαρμογή ινοπλισμένων πολυμερών παρουσιάζει σημαντικά πλεονεκτήματα, όπως οι εξαιρετικές ιδιότητες βάρους προς αντοχή, η διαθεσιμότητα του υλικού σε σχετικά απεριόριστο μήκος, η συγκριτικά ευκολότερη εγκατάσταση και η ανθεκτικότητα σε διάβρωση. Τα πλεονεκτήματα αυτά καθιστούν τα σύνθετα υλικά μία πολύ ελκυστική εναλλακτική πρόταση.

Γενικά, η εφαρμογή των υλικών αυτών έχει ως αποτέλεσμα την αύξηση ή ορθότερα την τροποποίηση της καμπτικής, διατμητικής και αξονικής αντοχής του μέλους στο οποίο εφαρμόζεται. Η εξωτερική ενίσχυση με μανδύα από ινοπλισμένα πολυμερή είναι κατάλληλη για πληθώρα εφαρμογών. Αντιπροσωπευτικές χρήσεις είναι οι ακόλουθες:

- Ενίσχυση της φέρουσας ικανότητας της κατασκευής.
- Παθητική περίσφιγξη για βελτιστοποίηση της ικανότητας ανάληψης σεισμικών φορτίων.
- Έλεγχος ρηγματώσεως και συρραφή ρωγμών. Τα σύνθετα υλικά έχουν χρησιμοποιηθεί και για την επισκευή και ενίσχυση διατηρητέων κτιρίων, μνημείων και ιστορικών και αρχαιολογικών κτισμάτων που έχουν υποστεί ρηγματώσεις και άλλου είδους βλάβες.

Παρόλες τις υψηλές προσδοκίες που έχουν καλλιεργηθεί, η χρήση σύνθετων υλικών από ινοπλισμένα πολυμερή έχει μία σχετικά βραχύχρονη ιστορία. Κατά συνέπεια, η απόφαση για την επισκευή και ενίσχυση κατασκευών με ινοπλισμένα πολυμερή πρέπει να λαμβάνεται με ιδιαίτερη προσοχή και αφού συνεξεταστούν όλες οι υπόλοιπες εναλλακτικές επιλογές. Η χρήση ινοπλισμένων πολυμερών πρέπει γενικά να αποφεύγεται στις παρακάτω περιπτώσεις:

- Η κατάσταση της υπόστρωσης πάνω στην οποία θα εφαρμοστούν τα σύνθετα υλικά είναι άγνωστη ή έχει υποστεί σημαντική απομείωση της αντοχής της.
- Υπάρχει σε εξέλιξη σημαντική διάβρωση του σιδηροπλισμού.
- Δεν υπάρχει σιδηροπλισμός που να εξασφαλίζει την πλάστιμη συμπεριφορά του μέλους που πρόκειται να ενισχυθεί.

Τα κυριότερα πλεονεκτήματα της χρήσης σύνθετων υλικών για την επισκευή και ενίσχυση κατασκευών σε σχέση με τις παραδοσιακές μεθόδους επισκευής και ενίσχυσης με χρήση συμβατικών υλικών είναι τα εξής:

- Απαιτείται μικρή προετοιμασία στο εργοτάξιο. Η εκκένωση του χώρου δεν είναι αναγκαία και η όχληση στους χρήστες είναι ελάχιστη. Η προετοιμασία των προς ενίσχυση στοιχείων είναι μικρή και σύντομη.
- Η εφαρμογή των σύνθετων υλικών είναι απλή.
- Οι διαστάσεις του ενισχυόμενου δομικού στοιχείου παραμένουν ουσιαστικά αμετάβλητες, λόγω του μικρού πάχους του σύνθετου υλικού.
- Η τοποθέτηση των σύνθετων υλικών είναι δυνατή ακόμα και σε περιπτώσεις που υπάρχει περιορισμός του χώρου εργασίας (π.χ. υποστυλώματα σε μεσοτοιχία).
- Το βάρος των σύνθετων υλικό είναι μικρό και για την τοποθέτησή τους δεν απαιτείται βαρύς ή ειδικός εξοπλισμός.
- Τα σύνθετα υλικά μπορούν να επιχριστούν και να χρωματιστούν σύμφωνα με τις αισθητικές απαιτήσεις του έργου.
- Τα αρχιτεκτονικά χαρακτηριστικά των κατασκευών παραμένουν πρακτικά αμετάβλητα.
- Το κόστος εφαρμογής των σύνθετων υλικών είναι ανάλογο των παραδοσιακών μεθόδων επισκευής και ενίσχυσης.

Ως επίλογος αξίζει να αναφερθεί ότι οι μηχανικοί που επιλέγουν τη χρήση ινοπλισμένων πολυμερών για την ενίσχυση μιας κατασκευής βρίσκονται αντιμέτωποι με μία μεγάλη πρόκληση. Αυτό οφείλεται κυρίως στο γεγονός ότι η τεχνολογία τους δεν είναι ευρέως γνωστή στον τεχνικό κόσμο σε σύγκριση με την αντίστοιχη τεχνολογία των συμβατικών υλικών επισκευής και ενίσχυσης, όπως είναι ο χάλυβας και το σκυρόδεμα. Για το λόγο αυτό το παρόν κεφάλαιο είναι σχετικά εκτεταμένο, έτσι ώστε πολλές από τις έννοιες που σχετίζονται με τη χρήση σύνθετων υλικών να αποσαφηνιστούν όσο το δυνατόν πληρέστερα.

3.2.2 Στάδια εφαρμογής σύνθετων υλικών

Συνοπτικά, η διαδικασία εφαρμογής σύνθετων υλικών περιλαμβάνει τα ακόλουθα στάδια:

- Καθαίρεση του επιχρίσματος.
- Αποκατάσταση των ενδεχόμενων βλαβών με χρήση κατάλληλης μεθόδου.
- Προετοιμασία της επιφάνειας του δομικού στοιχείου (εξομάλυνση της επιφάνειας, λάξευση γωνιών, κτλ.).
- Επάλειψη της επιφάνειας του δομικού στοιχείου με εποξική ρητίνη ή άλλη κατάλληλη συγκολλητική ουσία.
- Τοποθέτηση της πρώτης στρώσης του ινοπλισμένου πολυμερούς στην επιφάνεια του δομικού στοιχείου. Συνιστάται η πλήρης επαφή του σύνθετου υλικού με την επιφάνεια του δομικού στοιχείου. Στην περίπτωση χρήσης υλικών τύπου ελάσματος χρησιμοποιείται μόνο μία στρώση.
- Τοποθέτηση ειδικών αγκυρίων όπου απαιτείται (τοιχεία, άνω παρειές δοκών, κτλ.).
- Τοποθέτηση επιπλέον στρώσεων σύνθετου υλικού σύμφωνα με τη μελέτη επισκευής/ ενίσχυσης.
- Μετά τη σκλήρυνση του συστήματος (περίπου μετά από 24 ώρες), εφαρμογή επιχρίσματος και βαφή της επιφάνειας του δομικού στοιχείου με βάση αρχιτεκτονικές και αισθητικές απαιτήσεις.

3.2.3 Αρχές σχεδιασμού συστημάτων επισκευής και ενίσχυσης με σύνθετα υλικά

Τα σύνθετα υλικά ινοπλισμένων πολυμερών χρησιμοποιούνται για το σχεδιασμό της ενίσχυσης τόσο γραμμικών στοιχείων – υποστυλωμάτων, τοιχωμάτων και δοκών – όσο και επιφανειακών στοιχείων – πλακών – από οπλισμένο σκυρόδεμα. Με την εφαρμογή των σύνθετων υλικών μπορεί να επιτευχθεί σημαντική αύξηση της καμπτικής και διατμητικής αντοχής των ενισχυόμενων στοιχείων με πρακτικά μηδενική επιβάρυνση του βάρους τους. Ειδικά για την περίπτωση γραμμικών στοιχείων, τα ινοπλισμένα πολυμερή χρησιμοποιούνται επιπλέον για την επιβολή εξωτερικής περίσφιγξης στο στοιχείο μέσω της οποίας επιτυγχάνεται αύξηση τόσο της θλιπτικής αντοχής του σκυροδέματος όσο και της πλαστιμότητας του στοιχείου.

Η διαστασιολόγηση βασίζεται στην ικανοποίηση της συνθήκης συμβιβαστού των παραμορφώσεων μεταξύ σκυροδέματος, υπάρχοντος σιδηροπλισμού και σύνθετου υλικού. Πρέπει να τονιστεί ότι απαραίτητη προϋπόθεση του σχεδιασμού ενίσχυσης με χρήση σύνθετων υλικών είναι ο αποκλεισμός της αποκόλλησης του ινοπλισμένου πολυμερούς από την επιφάνεια του στοιχείου που ενισχύεται κατά την επιβολή των φορτίων.

3.2.4 Επιβολή εξωτερικής περίσφιγξης με μανδύα σύνθετων υλικών

Η τεχνική της επιβολής εξωτερικής περίσφιγξης με τοποθέτηση μανδυών από σύνθετα υλικά εφαρμόζεται κυρίως σε υποστυλώματα κτιρίων και βάθρα γεφυρών. Η ενίσχυση με ινοπλισμένα πολυμερή είναι αποδοτικότερη για στοιχεία κυκλικής και τετραγωνικής διατομής. Για υποστυλώματα με ορθογωνική διατομή, η απόδοση της εφαρμογής περιορίζεται όσο αυξάνεται ο λόγος των πλευρών της διατομής του υποστυλώματος. Προκειμένου να επιτευχθεί πλήρης περίσφιγξη ορθογωνικής διατομής, απαιτείται η τροποποίηση του σχήματος της διατομής, είτε με λάξευση των γωνιών της είτε με τοποθέτηση πρόσθετου σκυροδέματος, έτσι ώστε να δημιουργηθεί μία συνεχής καμπύλη επιφάνεια πάνω στην οποία θα τοποθετηθεί ο μανδύας. Τα σύνθετα υλικά που χρησιμοποιούνται για την εφαρμογή της περίσφιγξης μπορεί να έχουν μία από τις ακόλουθες μορφές:

- Ολόσωμοι μανδύες που αποτελούνται από στρώσεις ινοπλισμένων πολυμερών, οι οποίοι επικολλούνται εξωτερικά σε όλο το ύψος του προς ενίσχυση στοιχείου.
- Μανδύες περιορισμένου ύψους ('κολάρα') που αποτελούνται από μεμονωμένες λωρίδες ινοπλισμένων πολυμερών.
- Προεντεταμένοι μανδύες περιορισμένου ύψους από ινοπλισμένα πολυμερή με μορφή ταινιών 'πακεταρίσματος'.
- Ινοπλισμένα πολυμερή με μορφή σπειροειδούς οπλισμού, ο οποίος περιελίσσεται στην εξωτερική επιφάνεια του προς ενίσχυση στοιχείου κατ' αντιστοιχία με το συνήθη σπειροειδή σιδηροπλισμό που χρησιμοποιείται για την όπλιση του στοιχείου.

Μέσω της εξωτερικής περίσφιγξης που επιβάλλει ο μανδύας σύνθετων υλικών, εισάγεται τριαξονική θλίψη στο σκυρόδεμα και έτσι επιτυγχάνεται αύξηση τόσο της θλιπτικής του αντοχής του όσο και της πλαστιμότητας του στοιχείου έναντι του πρόσθετου φορτίου που καλείται να αναλάβει μετά την επέμβαση. Επιπλέον με το μανδύα σύνθετων υλικών από ινοπλισμένα πολυμερή μπορεί να αποτραπεί ο λυγισμός των θλιβομένων ράβδων του διαμήκους οπλισμού του στοιχείου λόγω μεγάλης απόστασης μεταξύ των υπαρχόντων συνδετήρων στις περιοχές σχηματισμού πλαστικών αρθρώσεων. Τέλος, όταν το διατιθέμενο μήκος υπερκάλυψης των διαμήκων οπλισμών στις περιοχές των ενώσεων δεν είναι επαρκές, είναι δυνατό μέσω της εξωτερικά επιβαλλόμενης περίσφιγξης από το μανδύα σύνθετων υλικών να επιτευχθεί βελτίωση των συνθηκών αγκύρωσης και κατά συνέπεια να μειωθεί ο κίνδυνος αστοχίας της συνάφειας των ματιζομένων ράβδων οπλισμού του στοιχείου.

3.2.4.1 Αύξηση θλιπτικής αντοχής σκυροδέματος

Όπως προαναφέρθηκε, οι μανδύες σύνθετων υλικών τοποθετούνται στις εξωτερικές επιφάνειες υποστυλωμάτων για να αυξήσουν τη θλιπτική αντοχή του σκυροδέματος. Η αύξηση της θλιπτικής

αντοχής επιτυγχάνεται με μανδύες ινοπλισμένων πολυμερών, των οποίων οι ίνες είναι προσανατολισμένες κάθετα στον άξονα του στοιχείου. Η αυξημένη λόγω μανδύα σύνθετων υλικών θλιπτική αντοχή f_{cc} του σκυροδέματος ορθογωνικής διατομής διαστάσεων bxd υπολογίζεται από τη σχέση:

$$f_{cc} = f_{co}(1+1.5\rho_{sj})$$

Όπου f_{co} είναι η θλιπτική αντοχή του υπάρχοντος σκυροδέματος και ρ_{sj} το ογκομετρικό ποσοστό περίσφιγξης σκυροδέματος από το μανδύα σύνθετου υλικού, το οποίο δίνεται από την ακόλουθη σχέση:

$$\rho_{sj} = \frac{2nt_j(b+d)}{bd}$$

Όπου n είναι ο αριθμός των στρώσεων του μανδύα σύνθετου υλικού και t_i το πάχος μιας στρώσης.

3.2.4.2 Αύξηση πλαστιμότητας

Για την αύξηση της πλαστιμότητας υποστυλωμάτων κυκλικής και ορθογωνικής διατομής χρησιμοποιούμε σύνθετα υλικά με προσανατολισμό των κυρίων ινών τους κάθετα στον άξονα του στοιχείου. Όπως προαναφέρθηκε, η αύξηση της πλαστιμότητας επιτυγχάνεται με την ανάπτυξη τριαξονικής θλίψης που αναπτύσσεται στο σκυρόδεμα της διατομής με περίσφιγξη. Προκειμένου να επιτευχθεί η μέγιστη δυνατή αύξηση της πλαστιμότητας, ενδείκνυται να λαξεύονται οι γωνίες των ορθογωνικών διατομών με ακτίνα όχι μικρότερη από 2cm, πριν την τοποθέτηση του μανδύα ινοπλισμένου πολυμερούς.

Όταν η τιμή της ανηγμένης αξονικής που ασκείται στο στοιχείο είναι μεγαλύτερη του 0.30, τότε το μήκος περίσφιγξης πρέπει να αυξάνεται κατά 50%. Επίσης, το απαιτούμενο πάχος του μανδύα ινοπλισμένου πολυμερούς συνιστάται να αυξάνεται κατά 33% για πρόσθετη προστασία των θλιβομένων ράβδων του διαμήκους οπλισμού από λυγισμό.

Με τη χρήση μανδύα σύνθετων υλικών αυξάνεται στην απαιτούμενη τιμή της τόσο η γενική πλαστιμότητα μετακίνησης του φορέα μα όσο και η τοπική πλαστιμότητα καμπυλότητας μ_c στις θέσεις πλαστικών αρθρώσεων των επιμέρους στοιχείων που ενισχύονται. Η ύπαρξη επαρκούς πλαστιμότητας καμπυλότητας στις θέσεις που αναμένεται ο σχηματισμός των πλαστικών αρθρώσεων είναι αναγκαία, έτσι ώστε να επιτρέψει τη μετακίνηση του φορέα που αντιστοιχεί στη γενική πλαστιμότητα μετακίνησης του συστήματος.

Η τοπική πλαστιμότητα καμπυλότητας με της διατομής της πλαστικής άρθρωσης συνδέεται με την πλαστιμότητα μετακίνησης του στοιχείου μ_{cd} μέσω της σχέσης:

$$\mu_c = 1 + \frac{\mu_{cd} - 1}{3 \frac{l_p}{l} [1 - 0.5 \frac{l_p}{l}]}$$

Όπου Ι_p είναι το θεωρητικό μήκος της πλαστικής άρθρωσης και Ι το μήκος στοιχείου μορφής προβόλου πλήρως πακτωμένου στο έδαφος, στην παραμόρφωση του οποίου οφείλεται η μετακίνηση του φορέα. Το μήκος της πλαστικής άρθρωσης σε διατομές οπλισμένου σκυροδέματος μπορεί να υπολογιστεί από την προσεγγιστική σχέση:

$$l_p = 0.08l + 0.022d_s f_y$$

Όπου d_s και f_y είναι η διάμετρος και το όριο διαρροής του διαμήκους οπλισμού σε m και MPa, αντίστοιχα.

Από ανάλυση ροπών- καμπυλοτήτων προκύπτει η καμπυλότητα διαρροής της διατομής της πλαστικής άρθρωσης φ_γ. Η καμπυλότητα κατά την αστοχία της διατομής φ_u δίνεται από τη σχέση:

$$\varphi_u = \mu_c \, \varphi_y$$

Η αυξημένη παραμόρφωση αστοχίας του σκυροδέματος ε_{cu} συνδέεται με την καμπυλότητα φ_u και το μήκος της θλιβόμενης ζώνης της διατομής κατά την αστοχία c_u μέσω της σχέσης:

$$\varepsilon_{cu} = \varphi_u c_u$$

Το ογκομετρικό ποσοστό περίσφιγξης ρ_{sj} από το μανδύα σύνθετων υλικών που προστίθεται για την ενίσχυση υποστυλώματος ορθογωνικής διατομής διαστάσεων bxd υπολογίζεται από τη σχέση:

$$\rho_{sj} = 0.8 \; \frac{(\varepsilon_{cu} - \varepsilon_{co}) f_{cc}}{f_{uj} \varepsilon_{uj}}$$

Όπου:

ε_{co} είναι η αρχική θλιπτική παραμόρφωση αστοχίας του σκυροδέματος f_{cc} η αυξημένη λόγω μανδύα σύνθετων υλικών θλιπτική αντοχή του σκυροδέματος f_{uj} η μέγιστη εφελκυστική τάση του μανδύα σύνθετων υλικών ε_{uj} η μέγιστη εφελκυστική παραμόρφωση του μανδύα σύνθετων υλικών.

Επίσης, το απαιτούμενο πάχος t_f του μανδύα σύνθετων υλικών, το αυξημένο πάχος t_f λόγω πρόσθετης προστασίας των θλιβομένων ράβδων του διαμήκους οπλισμού από λυγισμό και ο τελικός αριθμός των στρώσεων n του σύνθετου υλικού υπολογίζονται ως εξής:

$$t_f = \frac{0.5\rho_{sj}bd}{b+d}$$
$$t_{f'} = 1.33t_f$$
$$n = \frac{t_{f'}}{t_j}$$

Όπου t_j είναι το πάχος μιας στρώσης σύνθετου υλικού.

3.2.4.3 Αύξηση αντοχής σε τέμνουσα

Η διατμητική αντοχή δομικών στοιχείων από οπλισμένο σκυρόδεμα, μπορεί να αυξηθεί με μμανδύες σύνθετων υλικών από ινοπλισμένα πολυμερή, οι οποίοι επικολλούνται εξωτερικά στα στοιχεία και παραλαμβάνουν τέμνουσα δύναμη κατ' αντιστοιχία με το συμβατικό οπλισμό διάτμησης. Τα σύνθετα υλικά που χρησιμοποιούνται για ενίσχυση σε διάτμηση μπορεί να έχουν, είτε τη μορφή ολόσωμων μανδυών που αποτελούνται από επικολλητές στρώσεις ινοπλισμένων πολυμερών είτε τη μορφή μανδυών περιορισμένου ύψους ('κολάρα') που αποτελούνται από λωρίδες ινοπλισμένων πολυμερών. Για την περίπτωση ενίσχυσης υποστυλωμάτων σε διάτμηση, η τοποθέτηση των ινοπλισμένων πολυμερών εφαρμόζεται όπως για την περίπτωση της επιβολής εξωτερικής περίσφιγξης. Οι ίνες του πολυμερούς είναι κατά κανόνα κάθετες στον άξονα του στοιχείου.

Πρέπει να τονιστεί ότι, στην περίπτωση που ο μανδύας από σύνθετο υλικό δεν είναι δυνατό να περιβάλλει πλήρως τη διατομή του στοιχείου (π.χ. περίπτωση ενίσχυσης πλακοδοκού), ιδιαίτερη προσοχή πρέπει να δίνεται στην όσο το δυνατόν καλύτερη αγκύρωση των στρώσεων του σύνθετου υλικού στο υπάρχον στοιχείο. Στην περίπτωση ορθογωνικών διατομών, συνιστάται επίσης η λάξευση των γωνιών τους πριν την τοποθέτηση των στρώσεων του μανδύα, όπως καθορίζουν οι κατασκευαστικές διατάξεις.

Σχήμα 3-19 Ενίσχυση δοκών σε διάτμηση με μανδύα σύνθετων υλικών (α)Ολόσωμοι μανδύες (β) Κολάρα

Όσον αφορά στο σχεδιασμό του μανδύα σύνθετων υλικών, θεωρούμε ότι αυτός συμπεριφέρεται σαν πρόσθετος οπλισμός διάτμησης, ενώ δεν συνεισφέρει στην αντοχή της διατομής λόγω λοξής θλίψης κορμού. Για το λόγο αυτό, η τέμνουσα αντοχής σχεδιασμού λόγω λοξής θλίψης κορμού VRd2λαμβάνεται ίση με αυτήν του στοιχείου πριν την επέμβαση. Η τέμνουσα αντοχής σχεδιασμού λόγω οπλισμού διάτμησης VRd3 υπολογίζεται σύμφωνα με την ακόλουθη σχέση:

$$V_{Rd3} = V_{cd} + V_{wd,v\pi} + V_{sj}$$

Όπου:

 V_{cd} και $V_{wd,v\pi}$ είναι η τέμνουσα που παραλαμβάνεται από το σκυρόδεμα και τον υπάρχοντα οπλισμό διάτμησης, αντίστοιχα, ενώ V_{sj} είναι η πρόσθετη τέμνουσα που παραλαμβάνει ο μανδύας σύνθετων υλικών.

Στην περίπτωση στοιχείου ορθογωνικής διατομής με πλάτος b_w και ύψος h, η τέμνουσα δύναμη V_{sj} που παραλαμβάνεται από το μανδύα σύνθετου υλικού υπολογίζεται από τη σχέση:

$$V_{si} = \sigma_{wd}\rho_w b_w 0.9h(\cot\theta + \cot\alpha)\sin^2 a$$

Όπου σ_{wd} και ρ_w είναι η τιμή σχεδιασμού της ενεργού τάσης και το γεωμετρικό ποσοστό του μανδύα σύνθετου υλικού, αντίστοιχα, θ είναι η γωνία κλίσης των θλιβομένων διαγώνιων του σκυροδέματος και α η γωνία κλίσης των κυρίων ινών του σύνθετου υλικού ως προς τον διαμήκη άξονα του στοιχείου. Στη γενική περίπτωση που θ = 45° και α = 90°, η σχέση παίρνει τη μορφή:

$$V_{sj} = 0,9\sigma_{wd}\rho_w b_w h$$

Για τον υπολογισμό της τιμής σχεδιασμού της ενεργού τάσης σ_{wd} του μανδύα σύνθετου υλικού χρησιμοποιούμε την ακόλουθη σχέση:

$$\sigma_{wd} = \varepsilon_{fd,e} E_f$$

Όπου E_f είναι το μετρό ελαστικότητας στην κατεύθυνση των κυρίων ινών και ε_{fd,e} η τιμή σχεδιασμού της ενεργού παραμόρφωσης του ινοπλισμένου πολυμερούς. Η ε_{fd,e} εξαρτάται από τον τύπο του μανδύα σύνθετου υλικού. Για μανδύες <u>κλειστού τύπου</u> η ε_{fd,e} μπορεί να υπολογιστεί ως εξής:

$$\varepsilon_{fd,e} = \min\{0, 17\varepsilon_{fud}(\frac{f_{cm}^2}{E_f\rho_w})^{0,3}; \frac{0,006}{\gamma_{fl}}\}$$

Όπου fcm = fck + 8 η μέση θλιπτική αντοχή του σκυροδέματος.

Αντίστοιχα, για ανοικτούς μανδύες:

$$\varepsilon_{fd,e} = \min\{0, 17\varepsilon_{fud}(\frac{f_{cm}^2}{E_f\rho_w})^{0,3}; \frac{0,65*10^{-3}}{\gamma_{fb}}; (\frac{f_{cm}^2}{E_f\rho_w})^{0,56}; \frac{0,006}{\gamma_{fl}}\}$$

Με f_{cm} συμβολίζουμε τη μέση θλιπτική τάση του σκυροδέματος σε MPa, το E_f λαμβάνεται σε GPa, ενώ οι συντελεστές ασφαλείας γ_{fl} και γ_{fb} παίρνουν τις τιμές 1.25 και 1.30, αντίστοιχα. Επίσης, ε_{fud} είναι η τιμή σχεδιασμού της παραμόρφωσης θραύσης του ινοπλισμένου πολυμερούς, η οποία δίνεται από τη σχέση:

$$\varepsilon_{fud} = \frac{\varepsilon_{fuk}}{\gamma_f}$$

Όπου ε_{fuk} είναι η χαρακτηριστική τιμή της παραμόρφωσης θραύσης του σύνθετου υλικού, ενώ ο συντελεστής ασφαλείας γ_f λαμβάνει την τιμή 1.20, 1.25 και 1.30 για ίνες υάλου, πολυαραμίδης και άνθρακα, αντίστοιχα. Το γεωμετρικό ποσοστό ρ_w του μανδύα σύνθετου υλικού υπολογίζεται από τη σχέση:

$$\rho_w = \frac{2nt_j}{b_w sina}$$

Όπου n είναι ο αριθμός των στρώσεων του μανδύα και t_j το πάχος μιας στρώσης. Εάν οι ίνες του πολυμερούς είναι κάθετες στον άξονα του στοιχείου, τότε α = 90° οπότε η σχέση απλοποιείται ως εξής:

$$V_{sj} = 1,8 n t_j h \varepsilon_{fd,e} E_f$$

3.2.4.4 Αύξηση αντοχής σε κάμψη

Όταν η καμπτική αντοχή ενός δομικού στοιχείου από οπλισμένο σκυρόδεμα είναι μειωμένη λόγω ανεπαρκούς εφελκυόμενου οπλισμού, μπορεί να αυξηθεί με επικόλληση στην κάτω παρειά του 'υφασμάτων' από σύνθετο υλικό ινοπλισμένου πολυμερούς. Η μέθοδος εφαρμόζεται κυρίως για την ενίσχυση πλακών και δοκών. Απαραίτητη προϋπόθεση για την εφαρμογή της μεθόδου είναι σε περίπτωση αστοχίας του σύνθετου υλικού λόγω μιας τυχηματικής δράσης, όπως π.χ. πυρκαγιάς, το προς ενίσχυση στοιχείο να αναλαμβάνει ασφαλώς τουλάχιστον τα μόνιμα φορτία του. Για το λόγο αυτό συνιστάται να μην αυξάνεται η καμπτική αντοχή του στοιχείου περισσότερο από 50% σε σχέση με την αρχική αντοχή του. Η σύνδεση του υπάρχοντος στοιχείου με τις στρώσεις του σύνθετου υλικού της ενίσχυσης θεωρείται μονολιθική, με το ινοπλισμένο πολυμερές να συμπεριφέρεται σαν πρόσθετος εξωτερικός οπλισμός. Ο υπολογισμός της αύξησης της καμπτικής αντοχής του στοιχείου γίνεται με θεώρηση μιας μέγιστης επιτρεπόμενης παραμόρφωσης του σύνθετου υλικού ε_{e.lim}, πέρα από την οποία το σύνθετο υλικό αστοχεί με αποκόλληση από την παρειά του ενισχυόμενου στοιχείου. Η ε_{e.lim}λαμβάνει τιμές που κυμαίνονται μεταξύ του 33 - 50% της παραμόρφωσης θραύσης του ινοπλισμένου πολυμερούς. Το σύνηθες εύρος των τιμών της ε_{e.lim} είναι από 3.5 έως 9‰, ενώ μία ενδεικτική τιμή που μπορεί να χρησιμοποιείται για το σχεδιασμό της ενίσχυσης σε περίπτωση που δεν διαθέτουμε επαρκέστερα στοιχεία είναι ε_{e,lim} = 6‰, ανεξάρτητα από το είδος του ινοπλισμένου πολυμερούς. Προκειμένου να αποφευχθεί η ψαθυρή αστοχία της θλιβόμενης ζώνης του σκυροδέματος ($ε_c \le ε_{cu} = 3.5\%$), επιλέγουμε τόσες στρώσεις σύνθετου υλικού, ώστε στην οριακή κατάσταση αστοχίας της ενισχυμένης διατομής, η παραμόρφωση του υφιστάμενου εφελκυόμενου οπλισμού να είναι τουλάχιστον ίση με την παραμόρφωση διαρροής του χάλυβα και η παραμόρφωση του ινοπλισμένου πολυμερούς ίση με την ε_{e,lim}. Όπως φαίνεται στο σχήμα, αυτό εξασφαλίζεται όταν $\xi > \epsilon_{cu}$ (h / d) / ($\epsilon_{cu} + \epsilon_{e,lim}$), όπου h και d είναι το γεωμετρικό και το στατικό ύψος της διατομής, αντίστοιχα. Η αποδοτικότητα της ενίσχυσης της καμπτικής αντοχής με χρήση 'υφασμάτων' ινοπλισμένου πολυμερούς, είναι δυνατή μόνο εφόσον έχει εξασφαλιστεί η επάρκεια του μμηχανισμού μμεταφοράς δυνάμεων στην περιοχή απόληξης του 'υφάσματος' μέσω κατάλληλης αγκύρωσης των στρώσεων του σύνθετου υλικού στο υφιστάμενο στοιχείο, η οποία καλό είναι να γίνεται στη θλιβόμενη ζώνη της διατομής. Ενδεχόμενη ανεπάρκεια του μηχανισμού αυτού, μπορεί να οδηγήσει σε αστοχία του συστήματος της ενίσχυσης με αποκόλληση από το ενισχυόμενου στοιχείο, λόγω υπερβολικής συγκέντρωσης τάσεων στα άκρα του μανδύα σύνθετου υλικού.

Σχήμα 3-20 Επιθυμητή οριακή κατάσταση αστοχίας ενισχυμένης διατομής

Οι γενικοί κανόνες που πρέπει να ακολουθούνται προκειμένου να μειωθεί η πιθανότητα αστοχίας της ενίσχυσης είναι οι εξής:

- Είναι προτιμώτερο να χρησιμοποιούνται περισσότερες στρώσεις ινοπλισμένου πολυμερούς μικρότερου πάχους αντί για λιγότερες στρώσεις μεγαλύτερου πάχους, αφού έτσι ικανοποιείται ευκολότερα το συμβιβασμό των παραμορφώσεων χωρίς σημαντική επιβολή τάσεων στο σύνθετο υλικό. Συνιστάται ο αριθμός των στρώσεων να μην υπερβαίνει τις πέντε.
- Δεδομένου ότι τα σύνθετα υλικά διατίθενται κατά κανόνα σε ρολά μεγάλου σχετικά μήκους, συνιστάται να αποφεύγεται η τοποθέτηση επικαλυπτόμενων φύλλων ινοπλισμένου πολυμερούς κατά μήκος του ενισχυόμενου στοιχείου, αλλά να χρησιμοποιούνται ενιαία 'υφάσματα'.
- Προκειμένου να μειωθεί ο κίνδυνος αποκόλλησης του σύνθετου υλικού από το στοιχείο, η απόσταση του 'υφάσματος' από το άκρο της διατομής του ενισχυόμενου στοιχείου δεν πρέπει να είναι μεγαλύτερη από την επικάλυψη σκυροδέματος της πλησιέστερης προς το άκρο παράλληλης ράβδου σιδηροπλισμού.
- Για την καλύτερη αγκύρωση του ινοπλισμένου πολυμερούς στο στοιχείο μπορούν να χρησιμοποιούνται εγκάρσιες λωρίδες σύνθετου υλικού ή γωνιακά. Αντίθετα, πρέπει να αποφεύγεται η αγκύρωση του υλικού με διάνοιξη οπών, γιατί έτσι μειώνεται σημαντικά η αντοχή στα σημεία αυτά.
- Όταν χρησιμοποιούνται παράλληλα 'κολάρα' σύνθετου υλικού, η απόσταση μεταξύ τους δεν πρέπει να υπερβαίνει το μικρότερο μήκος από το πενταπλάσιο του πάχους του στοιχείου και το 20% της απόστασης μεταξύ των σημείων μηδενισμού του διαγράμματος των ροπών κάμψεως κατά μήκος του στοιχείου.

4 Περιγραφή υφιστάμενου δομήματος

Στην παρούσα εργασία εξετάζεται η στατική και σεισμική επάρκεια ενός σεισμόπληκτου ξενοδοχείου. Το υπό μελέτη ξενοδοχείο βρίσκεται στην Κουνόπετρα, κοντά στον οικισμό Μαντζαβινάτων, στο δημοτικό διαμέρισμα του Ληξουρίου του Δήμου Παλλικής στην Κεφαλλονιά. Ανήκει σε συγκρότημα κτιρίων συνολικής έκτασης είκοσι στρεμμάτων.

Το υπό μελέτη κτίριο είναι τριώροφη κατασκευή αποτελούμενη από:

- Υπόγειο 80,00m² (βοηθητικοί χώροι, μηχανοστάσιο, κλιμακοστάσιο).
- Ισόγειο 571,19m² (reception, σαλόνι, καθιστικό, μπαρ, γραφείο, μαγειρείο, κοινόχρηστα WC και 8 δίκλινα δωμάτια, ανελκυστήρας, κλιμακοστάσια προς υπόγειο και Α' όροφο).
- Α' όροφο 441,71m² (14 δίκλινα και 2 μονόκλινα δωμάτια, ανελκυστήρας και κλιμακοστάσιο προς ισόγειο και Β' όροφο).
- Β' όροφο 419,35m² με πατάρι 38,00m² (11 δίκλινα και 4 μονόκλινα δωμάτια, ανελκυστήρας και κλιμακοστάσιο προς Α' όροφο).

Συγκεκριμένα, το υπόγειο, το ισόγειο και ο 1ος όροφος έχουν φέροντα οργανισμό από οπλισμένο σκυρόδεμα, ενώ ο δεύτερος όροφος, ο οποίος αποτελεί προσθήκη, είναι ξύλινος. Ακόμη, υπάρχει ξύλινη στέγη με κεραμίδια ως επικάλυψη. Το καθαρό ύψος του υπογείου είναι 2,45m, του ισογείου 3,05m, του 1°° 2,85m και του 2°° 2,65m. Το πάχος όλων των πλακών είναι 20cm με εξαίρεση τη μία πλάκα της οροφής του ισογείου του δυτικού τμήματος του κτιρίου, η οποία είναι 30cm. Το κατακόρυφο σύστημα στήριξης του κτιρίου αποτελείται από υποστυλώματα και τοιχώματα, οι διαστάσεις των οποίων φαίνονται σε επόμενο σχήμα.

Εικόνα 4-1 Πρόσοψη ξενοδοχείου

Η ανέγερση του πραγματοποιήθηκε τη δεκαετία του '70 και ο σχεδιασμός του έγινε σύμφωνα με τις οδηγίες του τότε ισχύοντος Αντισεισμικού Κανονισμού του 1959 (Α.Κ 1959). Σύμφωνα με αυτόν υπολογίστηκαν τα σεισμικά φορτία για περιοχή κατηγορίας ΙΙΙ, με την παραδοχή εδάφους Α και συντελεστή σεισμικής επιβάρυνσης 0,08. Βάσει των διατάξεων του Κ.Ω.Σ. 1954, για κατασκευές οπλισμένου σκυροδέματος, έχει γίνει όπλιση όλων των στοιχείων του φέροντος οργανισμού με ελάχιστο ποσοστό διαμήκους οπλισμού As,min=0.8% επί της επιφάνειας της κάθε διατομής και έχει ακολουθηθεί ο συνήθης τρόπος όπλισης των δοκών της περιόδου κατασκευής του. Παρακάτω ακολουθούν ενδεικτικά κάποια αρχιτεκτονικά σχέδια του υφιστάμενου κτιρίου.

Εικόνα 4-2 Κάτοψη Α' ορόφου

Εικόνα 4-3 Ενδεικτική όψη κατά μήκος του κτηρίου

Εικόνα 4-5 Τομή Α-Α κατά μήκος του κτιρίου

Από τα παραπάνω σχέδια γίνεται αντιληπτή η έντονη μη κανονικότητα σε κάτοψη. Στο εμπρόσθιο τμήμα του κτιρίου υπάρχουν διαφορετικοί χώροι με πολλαπλές χρήσεις. Αντίθετα, στο πρόσθιο τμήμα κυριαρχεί μια σχετική ομοιομορφία. Ταυτόχρονα, παρατηρείται μεταβολή και καθ΄ ύψος του συνολικού κτιρίου. Έτσι, προκύπτουν συνέπειες μη κανονικής κατανομής μάζας και δυσκαμψίας.

Γι' αυτό το λόγο, μετά τους ισχυρότατους σεισμούς στις 26/1/2014 και 3/2/2014 στην Κεφαλλονιά, πραγματοποιήθηκε αντισεισμικός αρμός που χώρισε το κτίριο σε δύο τμήματα, το τμήμα Α και το τμήμα Β, χωρίς όμως να διακόπτεται οποιαδήποτε λειτουργία μεταξύ τους. Η επέμβαση αυτή κρίθηκε σκόπιμη, προκειμένου να μειωθεί η ευαισθησία του συνολικού κτιρίου έναντι στρέψης λόγω της έντονης μη κανονικότητας σε κάτοψη. Ο αρμός έχει μήκος 14,90m και πλάτος 10cm. Τα κατακόρυφα φέροντα στοιχεία στη θέση της αδιατάρακτης κοπής του κτιρίου αποτελούν στοιχεία του εμπρόσθιου τμήματος Α. Έτσι, στο οπίσθιο τμήμα Β προστέθηκαν τέσσερα υποστυλώματα ακριβώς κατά μήκος της παρειάς πραγματοποίησης του αρμού. Αυτά κατασκευάστηκαν από σκυρόδεμα C25/30 και χάλυβα B500C.

4.1 Εμπρόσθιο τμήμα – Τμήμα Α

Μετά την πραγματοποίηση του αντισεισμικού αρμού μελετήθηκε το κάθε τμήμα του κτιρίου ξεχωριστά, σαν να λειτουργούν και τα δύο αυτόνομα. Αντικείμενο, λοιπόν, της παρούσας εργασίας είναι η μελέτη της συμπεριφοράς του εμπρόσθιου τμήματος (τμήμα Α), προκειμένου να εκτιμηθεί η διαθέσιμη φέρουσα ικανότητα του, να γίνει έλεγχος της ικανοποίησης των ελαχίστων υποχρεωτικών απαιτήσεων που επιβάλλουν οι ισχύοντες κανονισμοί και να εκτιμηθεί η ανάγκη λήψης μέτρων επέμβασης, επισκευής ή ακόμα και ενίσχυσης, αν αυτό κρίνεται απαραίτητο. Ακολουθούν τα κατασκευαστικά σχέδια αυτού του τμήματος του κτιρίου.

Εικόνα 4-7 Ξυλότυπος οροφής ισογείου

Εικόνα 4-11 Ξυλότυπος θεμελίωσης

Αμέσως παρακάτω παρατίθεται μέρος της φωτογραφικής αποτύπωσης του υπό μελέτη τμήματος του κτιρίου.

Εικόνα 4-12 Δημιουργία μαλακού ορόφου

Εικόνα 4-13 Δημιουργία μαλακού ορόφου

Εικόνα 4-14 Διακοπή συνέχειας υποστυλώματος λόγω πλήρους αποδιοργάνωσης του σκυροδέματος και βλάβης του διαμήκους οπλισμού και εγκάρσιου οπλισμού

Εικόνα 4-15 Αστοχία με διακοπή της συνέχειας στοιχείου στην κρίσιμη περιοχή υποστυλώματος και κόμβου

Εικόνα 4-16 Τοπική αποδιοργάνωση σκυροδέματος ανελκυστήρα

Εικόνα 4-17 Θραύση σκυροδέματος στοιχείου και λυγισμός διαμήκων οπλισμών

Εικόνα 4-18 Τυπική μορφή βλάβης βαθμού Δ

Εικόνα 4-19 Αστοχία κατασκευής λόγω λειτουργίας κατασκευής τύπου pilotis

4.2 Στοιχεία υφιστάμενου δομήματος

4.2.1 Σκυρόδεμα

Ο φέρων οργανισμός του κτιρίου έχει κατασκευαστεί από σκυρόδεμα C8/10. Κατά τη διάρκεια των υπολογισμών της ανάλυσης του υφιστάμενου δομήματος στη θέση της θλιπτικής αντοχής του σκυροδέματος χρησιμοποιείται η χαρακτηριστική που εφαρμόζεται στις γραμμικές αναλύσεις όπως ορίζει επίσης ο KAN.ΕΠΕ.

$$\begin{split} &f_{ck} \texttt{=8MPa} \\ &f_{cm} = f_{ck} + 8(\text{MPa}) = 8 + 8 = 16 \text{ MPa} \\ &f_{ctm} = 0.3 \cdot f_{cm}^{2/_3} = 1,905 \text{ MPa} \\ &f_{ctk,0.05} = 0.7 \cdot f_{ctm} = 1,334 \text{ MPa} \\ &\tau_R = 0.25 \cdot f_{ctk,0.05} = 0,333 \text{ MPa} \\ &E_{cm} = 9.50 \cdot (f_{ck} + 8)^{1/_3} = 23,938 \text{ GPa} \end{split}$$

4.2.2 Χάλυβας

Όσον αφορά τους διαμήκεις οπλισμούς, από επί τόπου μετρήσεις και αποκαλύψεις οπλισμών, βρέθηκε ότι έχει τοποθετηθεί νευροχάλυβας STAHL III, δηλαδή S400 με χαρακτηριστική εφελκυστική αντοχή (f_{yk}) ίση με 400MPa, μέτρο ελαστικότητας E_s=200GPa και μέση τιμή ίση με τη χαρακτηριστική. Ο χάλυβας αυτός δεν έχει κράτυνση και παρουσιάζει υψηλή συνάφεια.

Σχετικά με τους εγκάρσιους οπλισμούς, οι ράβδοι είναι λείες, θερμής έλασης και αντιστοιχούν σε ποιότητα STAHL Ι, δηλαδή S220 με χαρακτηριστική εφελκυστική αντοχή (f_{yk}) ίση με 220MPa. Από τις αποκαλύψεις των οπλισμών προέκυψε εικόνα πλήρους ανεπάρκειας, όσον αφορά τις απαιτήσεις των κατασκευαστικών λεπτομερειών αυτών. Δεν συμβάλλουν στην διαθέσιμη φέρουσα ικανότητα του κτιρίου και γι' αυτό ούτε προσομοιώθηκαν, ούτε ελήφθησαν υπόψη στους υπολογισμούς έναντι διάτμησης.

Katayo pla	ENAEIEEIE	Δυάμετρος τατο	Έλάχιστον βριον διαρροής Kg/cm ²	'Αντοχή εἰς ἐφελχυσμόν Kg/cm²	Έλαχίστη μήκου σις επιμήκους προτύπου δοκιμίου %
1	2	3	4	5	6
1	Κοινός Χάλυψ Ι		2200	3400-5000	18
	Χάλυψ ΙΙ	1			1
Ifa	(φυσικώς σκληρός μέχρι τοῦδε «χάλυψ ύψηλῆς ἀντοχῆς») Είδικός νάλιψ. Η	≤ i8 > i8	3600 3400	5000-6200 5000-6400	20 18
ite	(κατειργασμένος έν ψυχρώ)	≤18 >18	3600 3400	} > 5000	14
	Χάλυψ ΙΙΙ	1			1
111a	(φυσικώς σκληρός) Είδικός Χάλυψ ΙΙΙ	≤ 18 >18	4200 4000	} > 5000	18
1116	(κατειργασμένος έν ψυχρῷ) Μόνον ὑπὸ είδικὴν μορφήν	≤18 >18	4200 4000	} > 5000	8
	Χάλυψ ΙV	1 1			
IV.a	(φυσικώς σκληρός) Βίδικός χέλυψ ΙV		5000	-	16
11/16	(κατειργασμένος έν ψυχρῷ δίκτυωτὸς όπλι- σμὸς μετὰ ἀμετατοπίστων κόμβων ὡς π.χ. δίκτυωτὰ ἐλάσιματα).		5000	-	8

Πίνακας 4-1 Χαρακτηριστικά χαλύβων ποιότητας STAHL

4.2.3 Υποστυλώματα και τοιχώματα

Κατά την τεκμηρίωση του δομήματος διαπιστώθηκε ο υπάρχων οπλισμός των υποστυλωμάτων, ο οποίος και παρουσιάζεται στον παρακάτω πίνακα. Τα υποστυλώματα όλων των ορόφων έχουν οπλιστεί με τον ίδιο ακριβώς τρόπο. Εξετάστηκαν οι διατομές ως προς το λόγο ύψος/πλάτος και βρέθηκε ποιες θεωρούνται υποστυλώματα, ποιες τοιχώματα, προκειμένου να γίνει η κατάλληλη απομείωση δυσκαμψίας που απαιτείται σύμφωνα με τον ΚΑΝ.ΕΠΕ για κάθε δομικό στοιχείο. Διευκρινίζεται ότι σύμφωνα με τον ΕC8 όταν:

- 🖊 h/b<4 🗲 διατομή: υποστύλωμα
- </u> h/b>4 🗲 διατομή: τοίχωμα

					Παράλλ	ηλα στη Χ	Παράλλ	ηλα στην Υ	
A/A	h(cm)	b(cm)	Λόγος h/b	Εμβαδόν (cm²)	Αριθμός Φ	As (cm²)	Αριθμός Φ	As (cm²)	A _{s,tot} (cm²)
K1	100	20	5	2000	4Φ20	12,56	4Φ10	3,14	31,4
К2	55	30	1,83	1650	2Ф20	6,28	4Ф20	12,56	37,68
К3	55	30	1,83	1650	2Φ20	6,28	4Φ20	12,56	37,68
К4	55	30	1,83	1650	2Φ20	6,28	4Φ20	12,56	37,68
K5	55	30	1,83	1650	2Ф20	6,28	4Φ20	12,56	37,68
K6	100	20	5	2000	4Φ20	12,56	4Φ10	3,14	31,4
K7	160	20	8	3200	5Φ10	3,925	3Ф20	9,42	26,69
K8	100	20	5	2000	4Φ20	12,56	4Φ10	3,14	31,4
К9	100	20	5	2000	4Φ20	12,56	4Φ10	3,14	31,4
K10	70	25	2,8	1750	2Ф20	6,28	3Ф20	9,42	31,4
K11	40	20	2	800	1Φ16	2,01	2Ф16	4,02	12,06
K12	40	25	1,6	1000	2Φ20	6,28	1Φ20	3,14	18,84
K13	40	20	2	800	1Φ16	2,01	2Φ16	4,02	12,06
K14	160	20	8	3200	5Φ10	3,925	3Ф20	9,42	26,69
K15	30	30	1	900	1Φ20	3,14	1Φ20	3,14	12,56
K16	55	30	1,83	1650	2Ф20	6,28	4Ф20	12,56	37,68
K17	80	30	2,67	2400	2Ф20	6,28	4Φ10	3,14	18,84
K17A	80	20	4	1600	2Ф20	6,28	4Φ10	3,14	18,84
K18	40	30	1,33	1200	3Ф20	9,42	2Ф16	4,02	26,88
K19	60	20	3	1200	1Ф16	2,01	2Ф20	6,28	16,58
К20	60	20	3	1200	2Φ20	6,28	1Φ16	2,01	16,58
K21	40	30	1,33	1200	3Ф20	9,42	2Ф16	4,02	26,88

Πίνακας 4-2 Όπλιση κατακόρυφων στοιχείων δομήματος

Κάθε κανονισμός ορίζει μέγιστο και ελάχιστο ποσοστό διαμήκους οπλισμού της διατομής.

	ω _{min} (cm ²))		ω _{max} (cm ²)
Ε.Κ.Ω.Σ 1954 (0,8%Ac)	E.C.2 (0,2%Ac)	E.C.8 (1%Ac)	Ε.Κ.Ω.Σ 1954 (4%Ac)	E.C.2 (8%Ac)	E.C.8 (4%Ac)

Ακολουθεί σύγκριση του υπάρχοντος συνολικού ποσοστού οπλισμού κάθε διατομής με το απαιτούμενο κάθε φορά ποσοστό σύμφωνα με τον Ε.Κ.Ω.Σ 1954, Ε.C.2 και Ε.C.8.

				ω _r	_{nin} (cm²)		ω	_{max} (cm ²	²)		
A/A	h	b	Εμβαδόν bxh (cm²)	E.K.Ω.Σ 1954 (0.8%Ac)	E.C.2 (0,2%Ac)	E.C.8 (1%Ac)	E.K.Ω.Σ 1954 (4%Ac)	E.C.2 (8%Ac)	E.C.8 (4%Ac)	As,tot (cm2)	Έλεγχος
K1	100	20	2000	16	4	20	80	160	80	31,4	ОК
К2	55	30	1650	13,2	3,3	16,5	66	132	66	37,68	ОК
К3	55	30	1650	13,2	3,3	16,5	66	132	66	37,68	ОК
K4	55	30	1650	13,2	3,3	16,5	66	132	66	37,68	ОК
K5	55	30	1650	13,2	3,3	16,5	66	132	66	37,68	ОК
K6	100	20	2000	16	4	20	80	160	80	31,4	ОК
K7	160	20	3200	25,6	6,4	32	128	256	128	<mark>26,6</mark> 9	X
K8	100	20	2000	16	4	20	80	160	80	31,4	ОК
К9	100	20	2000	16	4	20	80	160	80	31,4	ОК
K10	70	25	1750	14	3,5	17,5	70	140	70	31,4	ОК
K11	40	20	800	6,4	1,6	8	32	64	32	12,06	ОК
K12	40	25	1000	8	2	10	40	80	40	18,84	ОК
K13	40	20	800	6,4	1,6	8	32	64	32	12,06	ОК
K14	160	20	3200	25,6	6,4	32	128	256	128	26,69	X
K15	30	30	900	7,2	1,8	9	36	72	36	12,56	ОК
K16	55	30	1650	13,2	3,3	16,5	66	132	66	37,68	ОК
K17	80	30	2400	19,2	4,8	24	96	192	96	18,84	X
K17A	80	20	1600	12,8	3,2	16	64	128	64	18,84	ОК
K18	40	30	1200	9,6	2,4	12	48	96	48	26,88	ОК
K19	60	20	1200	9,6	2,4	12	48	96	48	16,58	ОК
K20	60	20	1200	9,6	2,4	12	48	96	48	16,58	ОК
K21	40	30	1200	9,6	2,4	12	48	96	48	26,88	ОК

Πίνακας 4-3 Απαιτούμενα ποσοστά οπλισμού βάσει ΕΚΩΣ,1954, ΕC2, ΕC8

4.2.4 Αποτύπωση οπλισμών πλακών

Όπως φαίνεται στον ξυλότυπο οροφής ισογείου, η πλάκα του εμπρόσθιου τμήματος έχει μορφή 'γάμα'. Ακόμα, έχει διάκενα και αποτελεί πλάκα τύπου sandwich. Το συνολικό της πάχος είναι 30cm. Όλες οι υπόλοιπες πλάκες έχουν πάχος 20cm. Διαπιστώθηκαν αρκετά αραιοί οπλισμοί. Ο κύριος οπλισμός αυτών είναι Φ8/15, διανομής και απόσχισης Φ6/25 και ο πρόσθετος στις στηρίξεις είναι Φ8/30.

4.2.5 Αποτύπωση οπλισμών δοκών

Ο συνήθης τρόπος όπλισης των δοκών την περίοδο κατασκευής του υπό μελέτη κτιρίου ήθελε περισσότερο δύσκαμπτες διατομές στις δοκούς ως προς την επιλογή του οπλισμού, καθώς ο σχεδιασμός των κόμβων δε διεπόταν από τις ικανοτικές διατάξεις, αλλά με μεγάλα μήκη ανοιγμάτων. Θεωρούμε ότι έχουν χρησιμοποιηθεί οι απλοποιητικοί κανόνες κλιμάκωσης των οπλισμών κάμψης οι οποίοι ακολουθούν την περιβάλλουσα ροπών, ανάλογα με το στατικό σύστημα κάθε δοκού.

Σχήμα 4-1 Απλοποιητικοί κανόνες κλιμάκωσης οπλισμών

Οι δοκοί διαφέρουν από όροφο σε όροφο, τόσο σε επίπεδο οπλισμών, όσο και σε επίπεδο προσομοίωσης με ή χωρίς συνεργαζόμενα πλάτη. Οι περισσότερες δοκοί έχουν τους οπλισμούς του επόμενου σχήματος.

Σε επόμενο κεφάλαιο δίνονται αναλυτικά οι οπλισμοί όπως αποτυπώθηκαν και προσομοιώθηκαν ανάλογα με τη διατομή (πλακοδοκός ή ορθογωνική).

4.3 Προσομοίωση μοντέλου

Για τις αναλύσεις του υφιστάμενου κτιρίου απαιτείται η προσομοίωση αυτού μέσω ενός μοντέλου, το οποίο να ανταποκρίνεται όσο το δυνατόν πιο πιστά στην πραγματικότητα. Το πακέτο λογισμικού που χρησιμοποιείται για την προσομοίωση είναι το SAP2000 v15.0.0 της Computers and Structures. Επιλέγεται η μόρφωση ενός χωρικού πλαισίου, αποτελούμενο από γραμμικά και επιφανειακά στοιχεία. Τα υποστυλώματα, τα τοιχώματα και οι δοκοί προσομοιώνονται με γραμμικά στοιχεία. Τα πρώτα είναι ορθογωνικής διατομής, οι δε δοκοί έχουν μορφή πλακοδοκού. Ειδικότερα, οι εσωτερικές είναι μορφής ταυ, ενώ οι εξωτερικές μορφής γωνιακού. Οι πλάκες της οροφής του ισογείου προσομοιώνονται με επιφανειακά στοιχεία, ενώ στις υπόλοιπες θέσεις του κτιρίου λαμβάνονται υπόψη μέσω του συνεργαζόμενου πλάτους της πλακοδοκού. Όπου δεν έχουν προσομοιωθεί οι πλάκες με επιφανειακά στοιχεία, διασφαλίζεται η διαφραγματική λειτουργία στο προσομοίωμα με τον εξαναγκασμό της κοινής μετακίνησης των κόμβων για κάθε όροφο. Με επιφανειακά στοιχεία έχουν προσομοιωθεί επίσης τα κλιμακοστάσια και ο ανελκυστήρας. Όσον αφορά την εισαγωγή των τοιχοποιιών στο μοντέλο, ακολουθεί ακριβής υπολογισμός κατά ΚΑΝ.ΕΠΕ (παρ.7.4), βάσει του οποίου προκύπτει ανεπάρκεια αυτών και αδυναμία να συμβάλουν ουσιαστικά στη φέρουσα ικανότητα του υφιστάμενου δομήματος. Γι' αυτό, δεν προσομοιώθηκαν στο στάδιο αποτίμησης αυτής. Για τον προσδιορισμό των εντατικών και παραμορφωσιακών μεγεθών η γειτνίαση με άλλα δομήματα επιτρέπεται να αγνοείται. Τα παραπάνω εφαρμόζονται σε δυο μοντέλα. Στο πρώτο ο φορέας είναι πακτωμένος στη βάση του (στάθμη του εδάφους) χωρίς να προσομοιώνεται το υπόγειο, ενώ στο δεύτερο προσομοιώνεται το υπόγειο, η θεμελίωση και το έδαφος με χρήση ελατηρίων.

4.3.1 Προσομοίωση υλικών

Η προσομοίωση του σκυροδέματος και του χάλυβα έγινε με τις εξής εντολές: Define → Materials → Add New Material

Material Name and Display Color	beton
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 25,	KN, m, C 💌
Mass per Unit Volume 2,549	3
sotropic Property Data	
Modulus of Elasticity, E	25330000
Poisson's Ratio, U	0,2
Coefficient of Thermal Expansion, A	1,000E-05
Shear Modulus, G	10554167
Other Properties for Concrete Materials	
Specified Concrete Compressive Stren	gth, l'c 8000,
🗂 Lightweight Concrete	
Shear Strength Reduction Factor	

Material Name and Display Color	oplismol
Material Tune	Behar
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 0,	KN, m, C 💌
Mass per Unit Volume 0,	
Iniaxial Property Data	
Modulus of Elasticity, E	2,000E+08
Poisson's Ratio, U	0,
Coefficient of Thermal Expansion, A	1,000E-05
Shear Modulus, G	0,
ther Properties for Rebar Materials	
Minimum Yield Stress, Fy	400000,
Minimum Tensile Stress, Fu	400000,
Expected Yield Stress, Fye	400000,
Expected Tensile Stress, Fue	400000,

Παρουσιάζονται οι καρτέλες από το περιβάλλον του προγράμματος με τις ιδιότητες των υλικών.

Εικόνα 4-20 Προσομοίωση σκυροδέματος

Εικόνα 4-21 Προσομοίωση χάλυβα οπλισμών

Διευκρινίζεται ότι στην προσομοίωση του χάλυβα, δόθηκε το ειδικό του βάρος (γ_s) ίσο με μηδέν, διότι έχει συμπεριληφθεί στο σκυρόδεμα ως διαμήκης οπλισμός. Επίσης, ο συντελεστής θερμικής διαστολής είναι α_t=10⁻⁵ και ο λόγος Poisson v=0,2.

4.3.2 Κάνναβος σχεδίασης μοντέλου

Σημειώνονται στην κάτοψη κάθε ορόφου τα κέντρα βάρους των υποστυλωμάτων, τοιχωμάτων και τα θεωρητικά μήκη των δοκών. Από την τομή αυτών δημιουργείται ο κάνναβος (coordinate system) πάνω στον οποίο σχεδιάζονται οι κόμβοι (joints). Ενώνοντας τους κόμβους κατάλληλα σχεδιάζονται τα υποστυλώματα, τα τοιχώματα και οι δοκοί ως γραμμικά στοιχεία. Ωστόσο, τα κέντρα βάρους των στοιχείων δεν είναι συνευθειακά. Γι' αυτό, θα χρησιμοποιηθούν στη συνέχεια άκαμπτα στοιχεία που προσομοιώνουν τις τυχόν εκκεντρότητες. Έχουν χρησιμοποιηθεί ως στάθμες των ορόφων οι μέσες γραμμές των πλακών. Με αρχικό σημείο αναφοράς τη γραμμή εδάφους, η στάθμη του 1^{ου} ορόφου βρίσκεται στο +3,20m, του 2^{ου} στο +6,20m και η στέγη ξεκινά στο +9,00 και καταλήγει στο +10,25m. Το κτίριο συνολικά έχει μοντελοποιηθεί με 343 κόμβους που συνδέονται μεταξύ τους με ραβδωτά στοιχεία.

Eντολές: Define \rightarrow Coordinate System \rightarrow Global \rightarrow Modify/ Show System

					Units		Grid Lines
System	Name	G	LOBAL		KN	Quick Start.	
< Grid Da	ta						
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color 🔺	
1	×1	0,	Primary	Hide	End		
2	×2	3,875	Secondary	Hide	End		
3	x3	3,975	Secondary	Hide	End		
4	×4	4,16	Secondary	Hide	End		
5	x'2	7,	Secondary	Hide	End		
6	x5	7,925	Secondary	Hide	End		5.95
7	X17	8,23	Secondary	Hide	End		
8	*6	8,55	Secondary	Hide	End	•	
Grid Da	ta						Display Grids as
	Grid ID	Ordinate	Line Tune	Visibiltu	Bubble Loc	Grid Color	C. Ordination C. Straning
1	u'2	-1.88	Primary	Hide	Start		a cranaco a opacing
2	v1	0	Secondary	Hide	Start		
3	v12	0.4	Secondary	Hide	Start		Hide All Grid Lines
4	v2	4,725	Secondary	Hide	End		
5	v12'	5,16	Primary	Hide	Start		Give to Grid Lines
6	v3	6.1	Secondary	Hide	End		
7	y4	6,3	Secondary	Hide	End		Bubble Size 2.
8	y5	6,5	Secondary	Hide	End	-	
Grid Da	ta						1
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.		Heset to Default Lolor
1	z1	0,	Secondary	Hide	End		0.1.0.1.1
2	z6	0,2	Primary	Hide	End		meorder Urdinates
3	z'2	1,6	Secondary	Hide	End		
4	z6	2,2	Primary	Hide	End		
5	z2	3,2	Primary	Hide	End		
6	z5	4,7	Primary	Hide	End		
7	z7	5,4	Primary	Hide	End		OK Cancel
8	z3	6.2	Primary	Show	End	-	

Εικόνα 4-22 Εισαγωγή Κανάβου στο SAP2000

Εικόνα 4-23 Κάνναβος σε τρισδιάστατη μορφή

4.3.3 Προσομοίωση υποστυλωμάτων και τοιχωμάτων

Η προσομοίωση των υποστυλωμάτων και τοιχωμάτων έγινε με γραμμικά στοιχεία τύπου frame sections, των οποίων οι διατομές με τις ράβδους των οπλισμών τους σχεδιάστηκαν στο section designer. Ανάλογα με το είδος της διατομής έγινε η παρακάτω απομείωση της δυσκαμψίας κατά KAN.ΕΠΕ. (παρ. 4.4.1.4).

A/A	Δομικό Στοιχείο	Δυσκαμψία
1.1	Υποστύλωμα εσωτερικό	0,8*(E _c I _g)
1.2	Υποστύλωμα περιμετρικό	0,6*(E _c I _g)
2.1	Τοίχωμα μη ρηγματωμένο(1)	0,7*(E _c I _g)
2.2	Τοίχωμα ρηγματωμένο	0,5*(E _c I _g)

Πίνακας 4-4 Συντελεστές απομείωσης δυσκαμψίας βάσει ΚΑΝ.ΕΠΕ

(1) Ή επισκευασμένο με απλές μεθόδους.

Eντολές: Define → Section Properties → Frame Sections → Add New Property → Section Designer, Set Modifiers

Ακολουθούν ενδεικτικά κάποιες διατομές υποστυλωμάτων (εσωτερικών, εξωτερικών) και τοιχωμάτων, όπως σχεδιάστηκαν στο SAP, καθώς επίσης και η αντίστοιχη απομείωση της δυσκαμψίας τους.

Τοίχωμα Κ20Χ80

roperty/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	Ĩ
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	0,7
Moment of Inertia about 3 axis	0,7
Mass	1
Weight	1

Εικόνα 4-25 Προσομοίωση απομειωμένης δυσκαμψίας ρηγματωμένου τοιχώματος

Υποστύλωμα περιμετρικό K30X30

Εικόνα 4-26 Σχεδιασμός στο section designer περιμετρικού υποστυλώματος K30X30

roperty/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Forsional Constant	1
Moment of Inertia about 2 axis	0,6
foment of Inertia about 3 axis	0,6
Mass	1
√eiaht	1

Εικόνα 4-27 Προσομοίωση απομειωμένης δυσκαμψίας περιμετρικού υποστυλώματος

Υποστύλωμα εσωτερικό K40X20

	SAP2000 - K 40X20				
e Edit View Define Draw Select Display Options Help					
	K				
1					
<u>(</u>					
1					
		X			
1					
1					
J					
the second s		¥ = 0.29	Y = 0.22	KN m C x	Done

Εικόνα 4-28 Σχεδιασμός στο section designer εσωτερικού υποστυλώματος K40X20

Property/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	0,8
Moment of Inertia about 3 axis	0,8
Mass	1
Weight	1

Εικόνα 4-29 Προσομοίωση απομειωμένης δυσκαμψίας εσωτερικού υποστυλώματος

4.3.4 Προσομοίωση εκκεντροτήτων κατακόρυφων στοιχείων

Τα υποστυλώματα όπως και τα τοιχώματα παρουσιάζουν μεγάλες εκκεντρότητες ως προς τον κάνναβο, οι οποίες προσομοιώνονται με βοηθητικό άκαμπτο οριζόντιο στοιχείο rigid (δ*). Αποτελεί διατομή με μεγάλη δυσκαμψία, μηδενικό βάρος και διαστάσεις τυχαίες. Το μήκος του στοιχείου είναι κάθε φορά ίσο με το μισό πλάτος του υποστυλώματος/ τοιχώματος. Οι πολλαπλασιαστές αυτού είναι οι παρακάτω:

	SAP2000 -	6*	- 0
le Edit View Define Dr	ee Select Display Options Help	fe-	
000100	8 4 5 ■ 8 4 4		
and another the state of the st	direction direct (MID)		
e			
i			
-			
1			
9			
din .	I THE AND ADDRESS FOR A DATE OF		1

Εικόνα 4-30 Σχεδιασμός βοηθητικού άκαμπτου στοιχείου

operty/Stiffness Modifiers for Analysis	
ross-section (axial) Area	1
ihear Area in 2 direction	1
Shear Area in 3 direction	1
orsional Constant	1
Ioment of Inertia about 2 axis	10000
foment of Inertia about 3 axis	10000
lass	0
/eight	0

Εικόνα 4-31 Προσομοίωση απομειωμένης δυσκαμψίας άκαμπτου στοιχείου

4.3.5 Προσομοίωση πλακών και ανελκυστήρα

Είναι εμφανές στην οροφή του ισογείου ότι υπάρχουν μεγάλα προεξέχοντα τμήματα σε κάτοψη, πολλά κλιμακοστάσια και περίεργες αρχιτεκτονικές διαμορφώσεις. Η κάτοψη του τμήματος που μελετάται είναι ασύμμετρη, μη κανονική, με δύσκολο στατικό προσομοίωμα. Συνεπώς, ο προσδιορισμός των φορτίων που μεταβιβάζουν αυτές στις δοκούς είναι δύσκολος. Έτσι, όλες οι πλάκες της οροφής του ισογείου και τα κλιμακοστάσια προσομοιώθηκαν με επιφανειακά στοιχεία κελύφους (shell elements), τύπου shell thin, τα οποία στηρίζονται πάνω στους κόμβους των γραμμικών στοιχείων των υποστυλωμάτων. Τα επιφανειακά στοιχεία της πλάκας έχουν μεμβρανική δυσκαμψία, η οποία δεν απομειώνεται. Τα φορτία των πλακών μεταβιβάζονται στα υποστυλώματα με εξαιρετική ακρίβεια. Η παραπάνω ακριβής προσομοίωση δίνει τη δυνατότητα ακριβούς υπολογισμού των μεμβρανικών διαφραγματικών τάσεων, των ακριβών εντατικών μεγεθών και παραμορφώσεων, της ακριβούς προσομοιώσεως οπών σε πλάκες, πλακών με ασυνήθη γεωμετρία και τέλος την επιρροή των θερμοκρασιακών καταναγκασμών. Με επιφανειακά στοιχεία προσομοιώθηκαν και τα τοιχώματα του ανελκυστήρα. Μας δίνουν τα μεγέθη ορθής έντασης (Μ, V, N) με τα οποία στη συνέχεια ελέγχονται σύμφωνα με τις διατάξεις του ΕC8 και ΚΑΝ.ΕΠΕ. Με τον τρόπο αυτό δίδεται η δυνατότητα προσομοίωσης πυρήνων από οπλισμένο σκυρόδεμα οποιασδήποτε διατομής με τη μέγιστη ακρίβεια, λαμβάνοντας υπόψη του φαινόμενα στρεπτικής ακαμψίας και στρέβλωσης που με τη προσεγγιστική μέθοδο των ραβδωτών στοιχείων αγνοούνται. Όπως έγινε απομείωση της δυσκαμψίας των τοιχωμάτων που προσομοιώθηκαν με γραμμικά στοιχεία, έτσι έγινε και απομείωση των τοιχωμάτων του ανελκυστήρα στα επιφανειακά στοιχεία θέτοντας τους συντελεστές f_{11} , f_{12} , f_{22} , m_{11} , m_{12} , m_{22} ίσους με 0,7, όσο ορίζει ο ΚΑΝ.ΕΠΕ. για τοιχώματα μη ρηγματωμένα.

Eντολές: Define \rightarrow Section Properties \rightarrow Area Sections \rightarrow Add New Section \rightarrow Shell Thin, Thickness, Material, Stiffness modifiers

Shell	Section Data	Shell	Section Data
Section Name	P1	Section Name	p20
Section Notes	Modify/Show	Section Notes	Modify/Show
	Display Color 📃		Display Color 🛛 📘
Туре		Туре	
📀 Shell - Thin		Shell - Thin	
C Shell - Thick		C Shell - Thick	
C Plate - Thin		C Plate - Thin	
C Plate Thick		C Plate Thick	
C Membrane		C Membrane	
C Shell - Layered/No	onlinear	C Shell - Layered/N	lonlinear
Modify	Show Layer Definition	Modify	VShow Layer Definition
Material		Material	
Material Name	+ beton •	Material Name	+ beton 💌
Material Angle	0,	Material Angle	0,
Thickness		Thickness	
Membrane	0,26	Membrane	0,2
Bending	0,26	Bending	0,2
Concrete Shell Section	Design Parameters	Concrete Shell Section	Design Parameters
Modify/Show S	Shell Design Parameters	Modify/Show	Shell Design Parameters
- Stiffness Modifiers	Temp Dependent Properties	Stiffness Modifiers	Temp Dependent Properties-
Set Modifiers	Thermal Properties	Set Modifiers	Thermal Properties
<u> </u>	Cancel	C. OK	Cancel

Εικόνα 4-32 Δημιουργία επιφανειακού στοιχείου πάχους 25cm

Εικόνα 4-33 Δημιουργία επιφανειακού στοιχείου πάχους 20cm

Property/Stiffness Modifiers for Anal	ysis
Membrane f11 Modifier	1
Membrane f22 Modifier	1
Membrane f12 Modifier	1
Bending m11 Modifier	1
Bending m22 Modifier	1
Bending m12 Modifier	1
Shear v13 Modifier	1
Shear v23 Modifier	1
Mass Modifier	0
Weight Modifier	0

Εικόνα 4-34 Δεν απομειώνεται η δυσκαμψία στα Ε Modifiers της διατομής

ocation Assignments	Loads	
dentification .		
Label 16		
Section Property		A
Section Name	p20	
Section Type	Shell (Shell-Thin)	-
Property Modifiers		Lun
n1	0,7	[KN, m, L
f22	0,7	
f12	0,7	Reset All
m11	0.7	
m22	0,7	
m12	0,7	
Material Overwrite	None	
Thickness Overwrite	None	
Joint Offset Overwrite	None	
Local Axes	Default	Hadata Disala
Area Springs	None	update Displaj
Area Mass	None	Modify Display
Automatic Area Mesh		
Mesh Type	MaxSize	OK
Auto Edge Constraint	No	
Maturial Taxas	Default	(Cance

Εικόνα 4-35 Απομείωση δι	υσκαμψίας στα στοιχεία
της διατ	τομής

Εικόνα 4-36 Τρισδιάστατη εικόνα επιφανειακών στοιχείων προσομοιώματος

4.3.6 Προσομοίωση δοκών

Κάθε δοκός θα προσομοιωθεί με ραβδωτό στοιχείο αποτελούμενο από τρεις διαφορετικές διατομές. Διακρίνουμε τις εξής περιπτώσεις:

- Συνεχής δοκός- ακραίο άνοιγμα: Η ακραία διατομή δεξιά εκτείνεται σε απόσταση c_{δεξια} ίση με 0,20L, η ακραία αριστερά σε απόσταση c_{αριστ} ίση με 0,1L και το άνοιγμα το υπόλοιπο μήκος της δοκού.
- Συνεχής δοκός- ακραίο άνοιγμα: Η ακραία διατομή δεξιά εκτείνεται σε απόσταση c_{δεξια} ίση με 0,20L, η ακραία αριστερά σε απόσταση c_{αριστ.} ίση με 0,2L και το άνοιγμα το υπόλοιπο μήκος της δοκού.
- Αμφιέρειστη: Όλο η δοκός προσομοιώνεται με ενιαία διατομή.

Σύμφωνα με τον ΚΑΝ.ΕΠΕ.(πίνακας Σ4.1) πρέπει να γίνει απομείωση της δυσκαμψίας των δοκών ίση με 0,4*(E_gI_g). Για τις πλακοδοκούς, μορφής Γ ή Τ επιτρέπεται να ληφθεί υπόψη Ig = (1,5 ή 2,0)Iw, αντιστοίχως, όπου I_w είναι η ροπή αδράνειας της ορθογωνικής διατομής του κορμού μόνο.

4.3.6.1 Προσομοίωση δοκών οροφής ισογείου

Οι δοκοί της οροφής του ισογείου έχουν προσομοιωθεί με ραβδωτά στοιχεία ορθογωνικής διατομής, χωρίς το συνεργαζόμενο πλάτος της πλάκας, αφού εκείνη προσομοιώνεται με επιφανειακό στοιχείο.

					Ά	κρα		Άνοιγμα				
A/A	h	b _w	l _i (m)	c _{αριστ} (m)	c _{δεξια} (m)	Α _{s,άνω}	Α _{s,κάτω}	Μέσο (m)	Α _{s,άνω} (m)	Α _{s,κάτω} (m)		
Δ1	0,4	0,2	3,88	0,39	0,78	2Φ16+2Φ8	2Φ16	2,71	2Ф16	4Φ16		
Δ2	0,4	0,2	4,05	0,81	0,81	2Φ16+2Φ8	2Φ16	2,43	2Φ16	4Φ16		
Δ3	0,4	0,2	3,85	0,77	0,77	2Φ16+2Φ8	2Φ16	2,3	2Φ16	4Φ16		
Δ4	0,4	0,2	3,95	0,79	0,79	2Φ16+2Φ8	2Φ16	2,37	2Φ16	4Φ16		
Δ5	0,4	0,2	4,28	0,86	0,43	2Φ16+2Φ8	2Φ16	2,99	2Φ16	4Φ16		
Δ6	0,3	1	4,58									
Δ7	0,4	0,2	3,43	0,69	0,34	2Φ16+2Φ8	2Φ16	2,39	2Φ16	4Φ16		
Δ8	0,45	0,2	3,64	-	-	-	-	3,64	2Φ16	3Ф16		
Δ9	0,4	0,3	4,16	0,42	0,83	2Φ16+2Φ8 2Φ16		2,91	2Φ16	4Φ16		
Δ10	0,4	0,3	4,49	0,9	0,45	2Φ16+2Φ8 2Φ16		3,14	2Φ16	4Φ16		
Δ10.A	0,4	0,2	5,03	-	-	-	-	5,02	2Φ16	3Ф16		
Δ11	0,4	0,2	3,64	-	-	-	-	3,64	2Φ16	3Ф16		
Δ12	0,4	0,2	3,43	0,34	0,69	4Φ20	2Φ20	2,39	2Ф20	4Φ20		
Δ12.A	0,4	0,2	1,6	0,32	-	4Φ20	2Φ20	1,28	2Ф20	4Φ20		
Δ13	0,45	0,2	3,61	-	-	-	-	3,6	2Ф20	4Φ20		
Δ14	0,4	0,2	5,9	0,59	1,18	2Φ16+2Φ8	2Φ16	4,13	2Φ16	4Φ16		
Δ15	0,4	0,2	4,75	0,95	0,48	2Φ16+2Φ8	2Φ16	3,32	2Φ16	4Φ16		
Δ16	0,4	0,3	4,55	-	-	-	-	4,55	2Φ16	3Ф16		
Δ17	0,45	0,2	5,24	0,52	1,05	2Φ16+2Φ8	2Φ16	3,66	2Φ16	4Φ16		
Δ18	0,4	0,25	2,62	0,52	0,26	2Φ16+2Φ8	2Φ16	1,83	2Φ16	4Φ16		
Δ18.A	0,45	0,2	2,84	0,28	0,57	2Φ16+2Φ8	2Φ16	1,98	2Φ16	4Φ16		
Δ18.B	0,4	0,2	2,62	0,52	0,26	2Φ16+2Φ8	2Φ16	1,83	2Φ16	4Φ16		
Δ19	0,5	0,25	4,16	-	-	-	-	4,16	2Ф20	4Φ20		
Δ20	0,4	0,2	3,64	-	-	-	-	3,64	2Ф16	3Ф16		
Δ21	0,45	0,2	1,98	-	-	-	-	1,97	2Φ16	3Φ16		
Δ22	0,45	0,25	4,16	-	-	-	-	4,16	2Ф20	4Φ20		

Πίνακας 4-5 Οπλισμοί δοκών οροφής ισογείου

Εντολές: Define →Section Properties → Frame Properties → Add New Property-> Section Designer

Section Name Section Notes Modify/Show Notes	Property/Stiffness Modifiers for Analysis Cross-section (axial) Area Shear Area in 2 direction
Base Material + beton •	Torsional Constant
Design Type	Moment of Inertia about 2 axis 10,4
C No Check/Design	Moment of Inertia about 3 axis
C General Steel Section	Mass
Concrete Column	Weight
Concrete Column Check/Design	Cancel
Reinforcement to be Checked	
	Εικόνα 4-38 Προσομοίωση απομειωμένης
C Reinforcement to be Designed	-moral composition of another that the
C Heintorcement to be Designed Define /Edit/Show Section	δυσκαμψίας δοκού
C Heinforcement to be Designed Define/Edit/Show Section Section Designer	δυσκαμψίας δοκού 1 S42000 - 60 30000 Fit fat Vere Defere Dare Setal Darja, Cystem Help - - - # - - # - # #
C Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers	SUGKALWÚKAC ŠOKOÚ SUGKALWÚKAC ŠOKOÚ SUGKALWÍKAC ŠOKOÚ SUGKALVÍKAC ŠOKOÚ SUČK
C Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color	
C Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color	
C* Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color DK Cancel	
C Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color OK Cancel Zóurg 4-37 Annuou purior voor uur voit	
C [*] Heinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color OK Cancel tόνα 4-37 Δημιουργία γραμμικού	

Εικόνα 4-40 Κάτοψη οροφής ισογείου -γραμμικά στοιχεία σε extruded view

4.3.6.2 Προσομοίωση δοκών οροφής 1^{ου} ορόφου

Η προσομοίωση των δοκών της οροφής του 1°υ ορόφου γίνεται με ραβδωτά στοιχεία πλακοδοκού, διατομής ταυ ή γάμα, αναλόγως με τη θέση της δοκού (εσωτερική ή εξωτερική). Σύμφωνα με τον ΚΑΝ.ΕΠΕ το συνεργαζόμενο σε εφελκυσμό πλάτος της πλάκας σε κάθε πλευρά του κορμού μπορεί να ληφθεί ίσο με το ένα τέταρτο του ανοίγματος της δοκού, ή με το μισό της απόστασης μέχρι την πρώτη παράλληλη δοκό, όποιο είναι μικρότερο. Η ροπή αστοχίας για εφελκυσμό στην πλάκα πρέπει να υπολογίζεται προσμετρώντας και τους παράλληλους στη δοκό οπλισμούς της πλάκας οι οποίοι βρίσκονται μέσα στο συνεργαζόμενο σε εφελκυσμό πλάτος της πλάκας και είναι επαρκώς αγκυρωμένοι πέραν της διατομής στήριξης της δοκού. Η ροπή αντοχής ή διαρροής της πλακοδοκού δεν επηρεάζεται ουσιωδώς από την τιμή του συνεργαζόμενου πλάτους σε θλίψη, όμως είναι ευαίσθητη στην αντίστοιχη τιμή σε εφελκυσμό. Η υποτίμηση της καμπτικής αντοχής πλακοδοκών, με υιοθέτηση χαμηλής τιμής συνεργαζόμενου πλάτους σε εφελκυσμό είναι σε βάρος της ασφάλειας, εάν οδηγεί στο εσφαλμένο συμπέρασμα ότι η πλακοδοκός διαρρέει σε κάμψη προτού αστοχήσει σε τέμνουσα ή ότι σχηματίζονται πλαστικές αρθρώσεις στις δοκούς αντί στα υποστυλώματα. Συνεπώς, προσομοιώνονται οι πλακοδοκοί με το συνεργαζόμενο πλάτος βάσει ΕC2 και λαμβάνονται σ' αυτό υπόψη οι οπλισμοί που δίνει ο ΚΑΝ.ΕΠΕ.

Σύμφωνα με τον ΕC2:

 $b_{eff} = \Sigma b_{eff,i} + b_w < b$

όπου : b= b₁ + b₂ +b_w

και b_{eff,i} = 0,2b_i +0,1l_o <= 0,2l_o

Σχήμα 4-3 Υπολογισμός Ιο σε συνεχή δοκό 3 ανοιγμάτων

Ακολουθεί συνοπτικός πίνακας με τα συνεργαζόμενα πλάτη των πλακοδοκών.

					b _{eff} (m)	
A/A	Διατομή	h (m)	b _w (m)	ΑΡΙΣΤΕΡΑ	ΜΕΣΟ	ΔΕΞΙΑ
Δ1	Т	0,4	0,2	1,34	1,34	0,68
Δ2	Т	0,4	0,2	0,68	1,2	0,67
Δ3	Т	0,4	0,2	0,67	1,16	0,67
Δ4	Т	0,4	0,2	0,67	1,18	0,69
Δ5	Т	0,4	0,2	0,69	1,44	1,44
Δ6	Т	0,4	0,2	0,71	1,48	0,68
Δ7	Т	0,4	0,2	0,68	1,36	1,36
Δ8	Г	0,4	0,2	1,29	1,29	1,29
Δ9	Т	0,4	0,3	1,52	1,52	0,82
Δ10	Т	0,4	0,3	0,82	1,4	0,87
Δ10.A	I	0,4	0,2	0,2	0,2	0,2
Δ11	I	0,4	0,2	0,2	0,2	0,2
Δ12	I 0,4		0,2	0,2	0,2	0,2
Δ12.A	I	0,4	0,2	0,2	0,2	0,2
Δ13	Г	0,45	0,2	1,12	1,12	1,12
Δ14	Г	0,4	0,2	0,92	1,4	0,68
Δ15	Г	0,4	0,2	0,62	1,2	0,86
Δ16	Т	0,4	0,3	0,89	1,57	1,17
Δ17	Т	0,45	0,2	1,98	1,98	0,67
Δ18	I	0,4	0,25	0,25	0,25	0,25
Δ18.A	I	0,45	0,2	0,2	0,2	0,2
Δ18.B	I	0,4	0,2	0,2	0,2	0,2
Δ19	I	0,5	0,25	0,25	0,25	0,25
Δ20	Г	0,4	0,2	1,23	1,23	1,23
Δ21	Г	0,4	0,2	0,79	0,79	0,79
Δ22	Т	0,45	0,25	1,57	1,57	1,57
Δ23	Т	0,4	0,2	1,55	1,55	0,71
Δ24	Т	0,4	0,2	0,57	1,86	0,84
Δ25	Т	0,4	0,2	1,85	1,85	1,85
Δ26	Т	0,4	0,2	1,17	1,76	1,17
Δ27	Т	0,4	0,2	1,21	1,78	1,21

Πίνακας 4-6 Συνεργαζόμενα πλάτη πλακοδοκών

Οι πλάκες έχουν οπλιστεί με κύριο οπλισμό Φ8/15, διανομής και απόσχισης Φ6/25 και ο πρόσθετος οπλισμός στις στηρίξεις είναι Φ8/30. Έχουν ληφθεί υπόψη μόνο όσοι βρίσκονται εντός του συνεργαζόμενου πλάτους κατά ΚΑΝ.ΕΠΕ.

Εικόνα 4-41 Σχεδιασμός πλακοδοκού μορφής Γ

Εικόνα 4-42 Προσομοίωση οροφής Α ορόφου με γραμμικά στοιχεία

Εικόνα 4-43 Extruded view γραμμικών στοιχείων οροφής Α ορόφου

4.3.6.3 Προσομοίωση διαφραγματικής λειτουργίας

Η κάθε πλάκα είναι μονολιθικά συνδεδεμένη με τις περιμετρικές δοκούς της, με αποτέλεσμα να συνεργάζονται και να παραλαμβάνει και εκείνη κάμψη. Επιπλέον, η δυσκαμψία των κατακόρυφων είναι περίπου ομοιόμορφη. Άρα, η παραδοχή διαφραγματικής λειτουργίας των πλακών είναι εξαιρετικά ικανοποιητική. Στην οροφή του 1^{ου} ορόφου, η οποία προσομοιώνεται με γραμμικά στοιχεία χωρίς να εισάγεται η πλάκα ως επιφανειακό στοιχείο, πρέπει να προσομοιωθεί η διαφραγματική λειτουργία αυτής με συγκεκριμένη εντολή.

Eντολή: Επιλογή όλων των κόμβων της στάθμης +6,20m \rightarrow Assign \rightarrow Joint \rightarrow Constrains \rightarrow Diaphragm \rightarrow Add New Constrains.

4.3.6.4 Προσομοίωση δοκών οροφής 2^{ου} ορόφου

Ο φέρων οργανισμός της κεκλιμένης στέγης αποτελείται από οπλισμένες, κεκλιμένες δοκούς ορθογωνικής διατομής και προσομοιώνεται με ραβδωτά στοιχεία. Και σ' αυτήν την περίπτωση, ανάλογα με το στατικό σύστημα της δοκού, η καθεμία μορφώνεται από τρεις επιμέρους διατομές. (ακραία δεξιά, ακραία αριστερά και μέσο- άνοιγμα).

					Αριστερά			Άνοιγμα			Δεξιά				
A/A	h (m)	b _w (m)	l _i (m)	C _{αριστ}	Α _{s,άνω}	Α _{s,κάτω}	Μέσο	Α _{s,άνω}	Α _{s,κάτω}	C _{δεξια}	Α _{s,άνω}	Α _{s,κάτω}			
Δ1	0,60	0,20	3,88	0,39	3Ф20	2Φ20	2,71	2Ф20	3Ф20	0,78	3Ф20	2Φ20			
Δ2	0,60	0,20	4,05	0,81	3Ф20	2Φ20	2,43	2Ф20	3Ф20	0,81	3Ф20	2Ф20			
Δ3	0,60	0,20	3,85	0,77	3Ф20	2Φ20	2,31	2Ф20	3Ф20	0,77	3Ф20	2Φ20			
Δ4	0,60	0,20	3,95	0,79	3Ф20	2Φ20	2,37	2Ф20	3Ф20	0,79	3Ф20	2Φ20			
Δ5	0,60	0,20	4,28	0,86	3Ф20	2Φ20	2,99	2Ф20	3Ф20	0,43	3Ф20	2Ф20			
Δ6	0,60	0,20	4,58	0,92	3Ф20	2Φ20	3,20	2Ф20	3Ф20	0,46	3Ф20	2Φ20			
Δ7	0,60	0,20	3,43	0,69	3Ф20	2Φ20	2,40	2Ф20	3Ф20	0,34	3Ф20	2Φ20			
Δ8	0,60	0,20	3,64	0,36	3Ф20	2Φ20	2,91	2Ф20	3Ф20	0,36	3Ф20	2Φ20			
Δ9	0,60	0,30	4,16	0,42	4Φ20	2Φ20	2,91	2Ф20	4Φ20	0,83	4Φ20	2Φ20			
Δ10	0,60	0,30	4,49	0,90	4Φ20	2Φ20	3,14	2Ф20	4Φ20	0,45	4Φ20	2Φ20			
Δ11	0,60	0,20	3,64	0,36	3Ф20	2Φ20	2,91	2Ф20	3Ф20	0,36	3Ф20	2Φ20			
Δ14	0,60	0,20	4,08	0,41	3Ф20	2Φ20	3,67	2Ф20	3Ф20	0,00	3Ф20	2Φ20			
Δ14.A	0,60	0,20	1,70	0,00	3Ф20	2Φ20	1,53	2Ф20	3Ф20	0,17	3Ф20	2Φ20			
Δ15	0,60	0,20	4,75	0,95	3Ф20	2Φ20	3,33	2Ф20	3Ф20	0,48	3Ф20	2Φ20			
Δ16	0,60	0,30	4,55	0,91	4Φ20	2Φ20	3,19	2Ф20	4Φ20	0,46	4Φ20	2Φ20			
Δ17	0,60	0,20	5,24	1,05	3Ф20	2Φ20	3,67	2Ф20	3Ф20	0,52	3Ф20	2Φ20			
Δ20	0,60	0,20	4,03	0,40	3Ф20	2Φ20	3,23	2Ф20	3Ф20	0,40	3Ф20	2Ф20			
Δ21	0,60	0,20	2,21	0,22	3Ф20	2Φ20	1,77	2Ф20	3Ф20	0,22	3Ф20	2Φ20			
Δ23	0,60	0,20	3,98	0,40	3Ф20	2Φ20	2,78	2Ф20	3Ф20	0,80	3Ф20	2Ф20			
Δ24	0,60	0,20	4,88	0,49	3Ф20	2Φ20	4,39	2Ф20	3Ф20	0,00	3Ф20	2Φ20			
Δ24.A	0,60	0,20	1,70	0,00	3Ф20	2Φ20	1,53	2Ф20	3Ф20	0,17	3Ф20	2Φ20			
Δ25	0,60	0,20	4,88	0,49	3Ф20	2Φ20	4,39	2Ф20	3Ф20	0,00	3Ф20	2Φ20			
Δ25.A	0,60	0,20	1,56	0,00	3Ф20	2Φ20	1,41	2Ф20	3Ф20	0,16	3Ф20	2Φ20			
Δ26	0,60	0,20	4,88	0,49	3Ф20	2Φ20	4,39	2Ф20	3Ф20	0,00	3Ф20	2Ф20			
Δ26.A	0,60	0,20	1,65	0,00	3Ф20	2Φ20	1,49	2Ф20	3Ф20	0,17	3Ф20	2Ф20			
Δ27	0,60	0,20	4,88	0,49	3Ф20	2Φ20	4,39	2Ф20	3Ф20	0,00	3Ф20	2Φ20			
Δ27.A	0,60	0,20	2,38	0,00	3Ф20	2Φ20	2,14	2Ф20	3Ф20	0,24	3Ф20	2Φ20			

Πίνακας 4-7 Οπλισμοί δοκών οροφής Β' ορόφου

Εικόνα 4-44 Τρισδιάστατη εικόνα φορέα

4.3.6.5 Προσομοίωση εκκεντροτήτων δοκών

Τα οριζόντια με τα κατακόρυφα γραμμικά στοιχεία συνδέθηκαν κεντροβαρικά, ενώ στην πραγματικότητα κάποιο τμήμα αποτελεί αλληλοεπικάλυψη δοκού- υποστυλώματος και είναι άκαμπτο. Το τμήμα αυτό προσομοιώνεται μέσω της εντολής: Assign → Frame → End Length Offset.

4.3.7 Τοπικοί άξονες μελών

Σύμφωνα με το λογισμικό προσομοίωσης SAP2000 ισχύουν τα παρακάτω για τους τοπικούς άξονες των μελών:

- 4 Άξονας 1- Κόκκινος: Είναι ο διαμήκης άξονας τους στοιχείου με φορά προς τον κόμβο πέρατος του στοιχείου.
- Άξονας 2- Πράσινος: Για τα κατακόρυφα στοιχεία είναι παράλληλος στον καθολικό άξονα Χ και για τα οριζόντια είναι εκείνος που ανήκει στο επίπεδο 1-Ζ.
- Άξονας 3- Κυανός: Είναι εκείνος που προκύπτει με τον κανόνα του δεξιού χεριού με θετική φορά την αντιωρολογιακή.

Αφού σχεδιαστούν οι διατομές στο section designer και έπειτα τα γραμμικά στοιχεία στον κάνναβο, ελέγχεται μέσω τρισδιάστατης απεικόνισης ότι έχουν τοποθετηθεί με σωστό προσανατολισμό με έλεγχο των τοπικών αξόνων.

Εικόνα 4-45 Τρισδιάστατη εικόνα φορέα με τοπικούς άξονες γραμμικών στοιχείων

4.3.8 Τοιχοπληρώσεις

Ένας τοίχος πλήρωσης λαμβάνεται υπόψη μόνο όταν περιβάλλεται από στοιχεία οπλισμένου σκυροδέματος (δηλαδή είναι σφηνωμένος σε- ή συνδεδεμένος με- στοιχεία του σκελετού) τουλάχιστον κατά τις τρεις πλευρές του και δεν έχει μεγάλα ανοίγματα ή/και πολλά ανοίγματα και δεν αστοχεί πρόωρα εκτός επιπέδου.

4.3.8.1 Άοπλες τοιχοπληρώσεις

- Οι τοιχοπληρώσεις δεν συμμετέχουν στην ανάληψη κατακόρυφων φορτίων (βαρύτητας), πλην του ιδίου βάρους τους. Υπό σεισμό μπορούν να προσομοιωθούν :
 - Είτε ως διατμητικό φάτνωμα/πέτασμα, ορθοτροπικό, με τέσσερις κόμβους- αρθρώσεις προς τους αντίστοιχους κόμβους του τοιχοπληρωμένου πλαισίου
 - ii) Είτε απλούστερα ως ισοδύναμη αμφιαρθρωτή θλιβόμενη διαγώνια ράβδος (κατά τη εκάστοτε φορά του σεισμού εντός του πλαισίου) με συγκεκριμένο πλάτος b.
- 2. Οι υφιστάμενες τοιχοπληρώσεις, συνήθεις και άοπλες, ελέγχονται σε όρους δυνάμεων ή παραμορφώσεων και λαμβάνονται υπόψη μόνο στις στάθμες επιτελεστικότητας Α ή Β. Για τη στάθμη επιτελεστικότητας Γ δεν συμπεριλαμβάνονται στο προσομοίωμα και κατ' ακολουθία δεν ελέγχονται. Επισημαίνεται ότι απαγορεύεται γενικώς να λαμβάνονται υπόψη ή όχι οι τοιχοπληρώσεις επιλεκτικώς, π.χ. από όροφο σε όροφο ή/και από θέση σε θέση του κτιρίου.

- 3. Οι σκοπίμως προστιθέμενες οπλισμένες πλινθοπληρώσεις ή οι υφιστάμενες τοιχοπληρώσεις μετά από ενίσχυση μπορούν να ληφθούν υπόψη και για τη στάθμη επιτελεστικότητας Γ, με κατά περίπτωση έλεγχο σε όρους δυνάμεων ή παραμορφώσεων. Σχετικώς, επιτρέπεται να συνεκτιμηθεί και ο κλάδος της σκελετικής καμπύλης συμπεριφοράς μετά την αστοχία, με τιμές α=0,25 και β=1,5, όπως και για στοιχεία ΩΣ. Ο κλάδος μετά την αστοχία και κυρίως η τιμή Fres, ενδιαφέρει μόνο για λόγους ακριβέστερης προσομοίωσης της ανελαστικής απόκρισης του συνόλου, σχετικώς με την απαίτηση ικανοποίησης κριτηρίων και κανόνων ελέγχου από όλα τα δομικά στοιχεία.
- 4. Όταν εντός ενός φατνώματος η τοιχοπλήρωση έχει ανοίγματα, η προσομοίωση της θα πρέπει να προσαρμόζεται καταλλήλως, ελέγχοντας κατά πόσο η διάταξη των ανοιγμάτων επιτρέπει τη λειτουργία διατμητικού φατνώματος ή τη διαμόρφωση λοξών θλιβόμενων ράβδων τοιχοποιίας, για τις οποίες να εξασφαλίζονται συνοριακές συνθήκες επιτρέπουσες τη συμμετοχή των θλιβόμενων ράβδων στο σχήμα αντίστασης του πλαισίου. Κατά τον έλεγχο αυτόν, θα λαμβάνεται καταλλήλως υπόψη και το κατά πόσον τα κάθε είδους ανοίγματα περιβάλλονται από τα διαζώματα ή πλαίσια (ή άλλα ενισχυτικά στοιχεία), οριζόντια ή/και κατακόρυφα (οπλισμένοι λαμπάδες ή/και ποδιές, πρέκια κλπ.). Η επιρροή του μεγέθους και της θέσης των ανοιγμάτων στην δυστμησία ή δυστένεια και στη φέρουσα ικανότητα των τοιχοπληρώσεων δεν προσομοιώνεται με απλά μέσα. Ελλείψει λεπτομερέστερης διερευνήσεως για άσπλες τοιχοπληρώσεις, μπορούν να λαμβάνονται υπόψη τα ακόλουθα στοιχεία:
 - Όταν υπάρχουν δυο μεγάλα ανοίγματα κοντά σ' αμφότερα τα άκρα του φατνώματος, η τοιχοπλήρωση αμελείται.
 - Όταν υπάρχει άνοιγμα με διαστάσεις οι οποίες δεν υπερβαίνουν το 20% των αντίστοιχων διαστάσεων του φατνώματος και είναι τοποθετημένο περίπου στο κέντρο του φατνώματος, η επιρροή του στα χαρακτηριστικά της τοιχοπλήρωσης μπορεί να αμελείται.
 - Όταν υπάρχει άνοιγμα, τοποθετημένο στο κέντρο του φατνώματος, του οποίου οι διαστάσεις πλησιάζουν ή υπερβαίνουν το 50% των αντίστοιχων διαστάσεων του φατνώματος, η τοιχοπλήρωση μπορεί να αμελείται.
 - Όταν υπάρχει άνοιγμα τοποθετημένο περίπου στο κέντρο του φατνώματος, του οποίου οι διαστάσεις είναι μεταξύ του 20% και του 50% των αντίστοιχων διαστάσεων του φατνώματος, τότε είναι δυνατό να ληφθούν υπόψη δύο λοξοί θλιπτήρες ανά φάτνωμα. Αυτοί οι θλιπτήρες θα ξεκινούν απ' τα δύο άκρα της κυρίας διαγώνιου και θα καταλήγουν κοντά στο μέσο της υπερκείμενης και της υποκείμενης δοκού αντιστοίχως. Σ' αυτή την περίπτωση, θα πρέπει να λαμβάνεται υπόψη η επιρροή των θλιπτήρων στην έναντι τέμνουσας ασφάλεια των δοκών.
 - Δυο μικρά και γειτονικά ανοίγματα σε ένα φάτνωμα μπορούν να θεωρηθούν ως ένα ισοδύναμο και ενιαίο, περιγεγραμμένο σ' αυτά.
- 5. Πρέπει να εξασφαλίζεται ότι οι άσπλες τοιχοπληρώσεις δεν αστοχούν πρόωρα εκτός επιπέδου. Εάν δε γίνεται ακριβέστερος υπολογισμός μπορεί να μειώνεται καταλλήλως η διατμητική και η θλιπτική αντίσταση της τοιχοποιίας. Η μείωση των αντοχών μπορεί να γίνει με βάση τη λυγηρότητα λ της τοιχοπλήρωσης, η οποία ορίζεται ως το πηλίκο L/t, όπου L=√(l² + h²), το καθαρό μήκος της διαγώνιου του τοιχοφατνώματος, με Ι και h το καθαρό μήκος και ύψος του τοιχοφατνώματος και t το ισοδύναμο πάχος της τοιχοποιίας. Για ενιαίες κατά τη διατομή τοιχοπληρώσεις, ως ισοδύναμο πάχος λαμβάνεται το συνολικό τους πάχος. Στην περίπτωση δίστρωτων (κοίλων) τοιχοπληρώσεων, αποτελούμενων από δυο ανεξάρτητους τοίχους με ενδιάμεσο κενό, ο υπολογισμός του ισοδύναμου πάχους θα λαμβάνει υπόψη τη γεωμετρία της διατομής της τοιχοποιίας, την ενδεχόμενη ύπαρξη ή απουσία επαρκών εγκάρσιων συνδέσμων μεταξύ εσωτερικής και εξωτερικής παρειάς της τοιχοποιίας και τον κίνδυνο πρόωρης αστοχίας της πιο λυγηρής παρειάς. Ελλείψει ακριβέστερων στοιχείων για παρειές με πάχη t1 και t2 και ημιτελείς εγκάρσιους συνδέσμους, ως ισοδύναμο πάχος της τοιχοποιάς και τον κίνδυνο πρόωρης αστοχίας της πιο λυγηρής παρειάς. Ελλείψει ακριβέστερων στοιχείων για παρειές με πάχη τα τιμή t_{eff}= 0.5*(t1+t2). Αντιστοίχως, για πλήρη σύνδεση των παρειών ως ισοδύναμο πάχος μπορεί να ληφθεί η τιμή τ_{eff}<(2/3)*(t₁+t₂). Συναρτήσει της λυγηρότητας και για περιπτώσεις απλής

περιμετρικής επαφής με το περιβάλλον πλαίσιο, εκτιμάται η αντίστοιχη μείωση αντίστασης της τοιχοπλήρωσης ως εξής:

- Όταν η λυγηρότητα λ δεν υπερβαίνει την τιμή 15, ή πρακτικώς όταν $\frac{l}{t}$ ή $\frac{h}{l} \leq 15$ δεν απαιτείται μείωση αντίστασης.
- Όταν η λυγηρότητα της τοιχοπλήρωσης είναι μεγαλύτερη από 30, η τοιχοπλήρωση θα αμελείται, δηλαδή οι αντιστάσεις της εντός και εκτός του επιπέδου θα λαμβάνονται πρακτικώς μηδενικές, πλην περιπτώσεων δυσμενούς επιρροής.
- Σε ενδιάμεσες περιπτώσεις και τιμές λ, η θλιπτική αντοχή της τοιχοποιίας πολλαπλασιάζεται με το μειωτικό συντελεστή φ, κατά τα επόμενα. (βλ. και EC6):

$$\varphi = 0.9 \frac{1}{e^{\frac{(0.0447\lambda - 0.063)^2}{0.9}}} \qquad \acute{\mathbf{h}} \qquad \varphi = 0.9 \frac{1}{e^{\frac{(0.0316 - 0.063)^2}{0.9}}}$$

για E_w ≈(500 ή1000) f_{wc} αντιστοίχως.

Απλούστερα, οι απομειωμένες (F_{red}) αντοχές των άοπλων τοιχοπληρώσεων μπορούν να εκτιμηθούν με βάση το ακόλουθο διάγραμμα, το οποίο ισχύει για απλή περιμετρική επαφή και για επιμελημένη περιμετρική σφήνωση προς το περιβάλλον πλαίσιο (ενδεχομένως μετά από αποκατάσταση των τυχόν οριζοντίων ρωγμών συνίζησης κάτω από τις δοκούς):

Διάγραμμα 4-1 Αντοχή άοπλης τοιχοπλήρωσης συναρτήσει λυγηρότητας της

- 6. Τα μηχανικά χαρακτηριστικά της τοιχοποιίας πλήρωσης εκτιμώνται βάσει των μηχανικών χαρακτηριστικών των πλινθοσωμάτων και του κονιάματος, λαμβάνοντας καταλλήλως υπόψη και τον τρόπο δόμησης της τοιχοποιίας. Βεβαίως, η αντίσταση της τοιχοπλήρωσης είναι συνάρτηση και του μήκους επαφής μεταξύ τοιχοπλήρωσης και στοιχείων του περιβάλλοντος πλαισίου. Αυτό δε το μήκος επαφής με τη σειρά του, εξαρτάται από το μέγεθος της οριζόντιας επιβαλλόμενης μετακίνησης και τις βλάβες. Έτσι, τα γεωμετρικά μεγέθη που διαμορφώνουν τις αντιστάσεις και τελικώς, οι αντιστάσεις καθ' αυτές, εκτιμώνται και αναλόγως της σκοπούμενης στάθμης επιτελεστικότητας (Α ή Β), δηλαδή αναλόγως των μετακινήσεων και του ανεκτού βαθμού βλάβης της τοιχοπλήρωσης.
 - Όταν η τοιχοπλήρωση προσομοιώνεται ως φάτνωμα/ πέτασμα, η συμπεριφορά του περιγράφεται από κατάλληλο διάγραμμα διατμητικών τάσεων- γωνιακών παραμορφώσεων, λαμβάνοντας υπόψη και την επιρροή της ανακύκλισης, καθώς και τον ευνοϊκό ρόλο της εντός επιπέδου περίσφιξης της τοιχοποιίας απ' το περιμετρικό πλαισίωμα. Όταν δε διατίθεται ακριβέστερα στοιχεία για άοπλες τοιχοποιίες μπορεί να θεωρηθεί ότι η μετά την αστοχία εναπομένουσα αντοχή Fres είναι μηδενική και να χρησιμοποιηθεί το ακόλουθο διάγραμμα για στάθμη επιτελεστικότητας Β.

Διάγραμμα 4-2 Διάγραμμα διατμητικών τάσεων - γωνιακών παραμορφώσεων άοπλης τοιχοπλήρωσης

Διάγραμμα διατμητικών τάσεων- γωνιακών παραμορφώσεων άσπλης τοιχοπλήρωσης με γ_ν $(\frac{l}{h} + \frac{h}{l})^*(1,0-1,5)^* 10^{-3}$ και γ_u $(\frac{l}{h} + \frac{h}{l})^*(2,0-3,5)^* 10^{-3}$. Η επιλογή των γγ και γυ οφείλει να γίνεται κατ' αντιστοιχία προς τις αναγραφόμενες περιοχές τιμών, δηλαδή για μικρές γ_ν ισχύουν και μικρές γ_u.

- Όταν η τοιχοπλήρωση προσομοιώνεται ως ισοδύναμη θλιβόμενη διαγώνια ράβδος, τα μεγέθη που υπεισέρχονται στο σχεδιασμό και τους υπολογισμούς θα εκτιμώνται καταλλήλως, ως ακολούθως:
 - Το πάχος t της θλιβόμενης διαγώνιου, θα εκτιμάται όπως και για το προσομοίωμα του διατμητικού φατνώματος
 - Το πλάτος της θλιβόμενης διαγώνιου, θα εκτιμάται με βάση την ισοδυναμία και το συμβιβαστό των παραμορφώσεων και δυνάμεων (τάσεων), ενώ
 - Η μέση θλιπτική αντοχή της τοιχοπλήρωσης κατά τη διεύθυνση της διαγώνιας f_{wc,s} μπορεί να συνεκτιμάται με βάση τη μέση θλιπτική αντοχή κατά την κατακόρυφη διεύθυνση, λαμβάνοντας υπόψη και την εξαιτίας εγκάρσιων (οριζόντιων) εφελκυστικών τάσεων απομείωσης της. Ελλείψει άλλων ακριβέστερων στοιχείων μπορούν να χρησιμοποιούνται οι ακόλουθες προσεγγίσεις:
 - i. Όσον αφορά το συμβιβαστό των παραμορφώσεων και δυνάμεων (τάσεων):

b≈0,15L
G*A_φ= E*A_ρ*sinα*cos²a
γ≈ε*
$$(\frac{l}{h} + \frac{h}{l})$$

ii. Όσον αφορά το προσομοίωμα σ-ε της θλιβόμενης διαγώνιας ράβδου και όταν δεν διατίθεται ακριβέστερα στοιχεία για άοπλη τοιχοποιία μπορεί να θεωρηθεί ότι μετά την αστοχία η εναπομένουσα αντοχή Fres είναι μηδενική και να χρησιμοποιηθεί το ακόλουθο διάγραμμα για στάθμη επιτελεστικότητας Β.

Για την εκτίμηση της μέσης θλιπτικής αντοχής f_{wc,s} της τοιχοποιίας κατά τη διεύθυνση της διαγώνιας ράβδου θα λαμβάνεται υπόψη η μέση θλιπτική αντοχή κατά την κατακόρυφη

διεύθυνση και η μείωση της λόγω των εγκάρσιων και εφελκυστικών τάσεων. Ελλείψει ακριβέστερων δεδομένων, η αντοχή αυτή επιτρέπεται να εκτιμάται μέσω της χαρακτηριστικής τιμής της θλιπτικής αντοχής της τοιχοποιίας κατά την κατακόρυφη διεύθυνση f_{wc,k} κατά τον EC6 ως εξής:

$$f_{wc,s} = \lambda_m \, \lambda_s \lambda_c \mathsf{k} f_{bc}^{0,7} f_{mc}^{0,3} \approx 1,25 \mathsf{k} f_{bc}^{0,7} f_{mc}^{0,3}$$

Όπου:

 $\lambda_m = 1,5$ συντελεστής μετατροπής της χαρακτηριστικής αντοχής σε μέση

 $\lambda s = 0,7$ μειωτικός συντελεστής για τη δυσμενή υπό γωνία εφαρμογή του φορτίου

 $\lambda c = 1,2$ αυξητικός συντελεστής για την ευμενή επιρροή της περίσφιξης την οποία εξασφαλίζουν τα περιβάλλοντα την τοιχοπλήρωση δομικά στοιχεία οπλισμένου σκυροδέματος

fbc και fmc θλιπτική αντοχή τοιχοσώματος και κονιάματος αντιστοίχως

k εμπειρικός συντελεστής, ο οποίος λαμβάνει υπόψη την ομάδα στην οποία κατατάσσονται τα τοιχοσώματα και το είδος του κονιάματος δομήσεως. Για συνήθη κονιάματα, ο συντελεστής παίρνει τιμές από 0,35 έως 0,55.

ΣΗΜΕΙΩΣΕΙΣ:

- Όταν οι κατακόρυφοι αρμοί της τοιχοποιίας δεν είναι γεμάτοι με κονίαμα, η τιμή της θλιπτικής αντοχής του λοξού θλιπτήρα πολλαπλασιάζεται με έναν πρόσθετο μειωτικό συντελεστή πέραν του λs. Όταν δε διατίθεται ακριβέστερα στοιχεία, ο μειωτικός συντελεστής εκτιμάται βάσει του ποσοστού πληρώσεως των κατακόρυφων αρμών και μπορεί να παίρνει τιμές από 0,60 έως 0,90.
- ✓ Όταν το πάχος των οριζόντιων αρμών της τοιχοποιίας είναι μεγαλύτερο από 15mm, η τιμή της θλιπτικής αντοχής της τοιχοποιίας πολλαπλασιάζεται με έναν πρόσθετο μειωτικό συντελεστή ίσο με 0,85.
- 7. Η οριζόντια και η κατακόρυφη συγκεντρωμένη τέμνουσα δύναμη που προκύπτει απ' την επιρροή και την αλληλεπίδραση πάνω στο πλαίσιο των τοιχοπληρώσεων, πρέπει να εξετάζεται κατά τον έλεγχο των υποστυλωμάτων και των δοκών του πλαισίου αντιστοίχως, λαμβάνοντας υπόψη και την ευνοϊκή απευθείας ανάληψη τυχόν τελικής τέμνουσας (κοντά σε στήριξη δοκού ή υποστυλώματος) μέσω λοξού θλιπτήρα, μειωτικός συντελεστής β της V_{Ed} για συγκεντρωμένα φορτία κοντά σε άμεσες στηρίξεις.

4.3.8.2 Οπλισμένες τοιχοπληρώσεις

Οπλισμένες τοιχοπληρώσεις προκύπτουν μετά την ενίσχυση υφιστάμενων τοιχοπληρώσεων μέσω μονόπλευρου ή αμφίπλευρου οπλισμένου επιχρίσματος ή μανδύα ή με τη διάταξη νέων οπλισμένων τοιχοφατνωμάτων, κυρίως με διάσπαρτο οπλισμό (κατακορύφως και οριζοντίως). Στις περιπτώσεις αυτές επιτρέπεται να συνεκτιμηθεί και ο κλάδος της σκελετικής καμπύλης συμπεριφοράς μετά την αστοχία με τιμές α=0,25 και β=1,50, όπως και για στοιχεία Ο/Σ.

4.3.8.3 Προσομοίωση τοιχοπληρώσεων

Για κάθε όροφο του υφιστάμενου κτιρίου εξετάστηκαν τα χαρακτηριστικά της κάθε τοιχοπλήρωσης με τους δυο τρόπους. Αρχικά, υπολογίζοντας το μειωτικό συντελεστή φ της αντοχής, λαμβάνοντας υπόψη το κριτήριο πρόωρης αστοχίας εκτός του επιπέδου της και την προσαρμογή βάσει των ανοιγμάτων που περιλαμβάνει και έπειτα, με αναλυτικό τρόπο υπολογίζοντας τη μέση θλιπτική αντοχή αυτής.

🖊 Τοιχοπληρώσεις 1°υ ορόφου

												Πρ	οσαρμ		
										Έλεγχος πρόω	ρης αστοχίας	ανοι	ιγμάτα		
				Πλά	ιτος					εκτός επιπέδ	δου (σελ.7-31		KAN		
				υποσ	πυλ.					KAN.	ЕПЕ.)		Ανοί		
Δοκός	h (m)	b _w (m)	l _i (m)	b _{αρ.} (m)	b _{δεξ.} (m)	h _{τοιχοπ.} (m)	Ι _{τοιχοπ.} (m)	L (m)	t _{eff} (m)	λυγηρότητα (λ)	Λαμβάνεται υπόψη	b (m)	h (m)	π% (Ε _{ανοιγμ} /Ε _{τοιχ})	Μειωτικος Συντελεστής φ
Δ1	0,40	0,20	3,875	0,20	0,55	2,40	3,50	4,24	0,10	42,44	αμελείται	1,50	2,30	41,07	0,12
Δ2	0,40	0,20	4,050	0,55	0,55	2,40	3,50	4,24	0,10	42,44	αμελείται	1,50	2,30	41,07	0,12
Δ3	0,40	0,20	3,845	0,55	0,55	2,40	3,30	4,08	0,10	40,76	αμελείται	1,50	2,30	43,63	0,14
Δ4	0,40	0,20	3,950	0,55	0,55	2,40	3,40	4,16	0,10	41,62	αμελείται	1,50	2,30	42,28	0,13
Δ5	0,40	0,20	4,275	0,55	0,20	2,40	3,90	4,58	0,10	45,79	αμελείται	1,50	2,30	36,86	0,09
Δ6	0,30	1,00	4,575	0,20	0,70	2,50	4,13	4,82	0,10	48,23	αμελείται	0,90	2,20	19,20	0,07
Δ7	0,40	0,20	3,425	0,70	0,00	2,40	3,08	3,90	0,10	39,01	αμελείται				0,17
Δ8	0,45	0,20	3,640	0,40	0,25	2,35	3,32	4,06	0,10	40,63	αμελείται				
Δ9	0,40	0,30	4,160	0,30	0,55	2,40	3,74	4,44	0,10	44,40	αμελείται	1,50	2,30	38,49	0,10
Δ10	0,40	0,30	4,490	0,55	0,30	2,40	4,07	4,72	0,10	47,21	αμελείται	1,50	2,30	35,36	0,08
Δ10.A	0,40	0,20	5,025	0,30	0,20	2,40	4,78	5,34	0,10	53,44	αμελείται	0,90	2,30	18,06	0,04
Δ11	0,40	0,20	3,640	0,40	1,60	2,40	2,64	3,57	0,10	35,68	αμελείται				0,22
Δ12	0,40	0,20	3,425	0,30	0,60	2,40	2,98	3,82	0,10	38,22	αμελείται				0,18
Δ12.A	0,40	0,20	1,600	0,60		2,40	1,30	2,73	0,10	27,29	NAI				0,39
Δ13	0,45	0,20	3,605	0,20	0,30	2,35	3,36	4,10	0,10	40,96	αμελείται				0,14
Δ14	0,40	0,20	5,900	1,00	1,00	2,40	4,90	5,46	0,10	54,56	αμελείται				0,03
Δ15	0,40	0,20	4,750	1,00	0,30	2,40	4,10	4,75	0,10	47,51	αμελείται				0,07
Δ16	0,40	0,30	4,550	1,00	0,30	2,40	3,90	4,58	0,10	45,79	αμελείται				0,09
Δ17	0,45	0,20	5,240	0,25	0,80	2,35	4,72	5,27	0,10	52,68	αμελείται	0,70	2,20	13,90	0,04
Δ18	0,40	0,25	2,620	0,80	0,40	2,40	2,02	3,14	0,10	31,37	αμελείται	1,20	1,30	32,18	0,30
Δ18.A	0,45	0,20	2,840		0,80	2,35	2,44	3,39	0,10	33,88	αμελείται	0,90	2,20	34,53	0,25
Δ18.B	0,40	0,20	2,620	0,80		2,40	2,22	3,27	0,10	32,69	αμελείται	0,90	2,20	37,16	0,27
Δ19	0,50	0,25	4,160		0,60	2,30	3,86	4,49	0,10	44,93	αμελείται	0,90	2,20	22,30	0,10
Δ20	0,40	0,20	3,640	1,00	0,20	2,40	3,04	3,87	0,10	38,73	αμελείται				0,17
Δ21	0,45	0,20	1,975	0,20	0,40	2,35	1,68	2,89	0,10	28,86	NAI				0,36
Δ22	0,45	0,25	4,160	0,20	0,40	2,35	3,86	4,52	0,10	45,19	αμελείται	1,50	2,30	38,03	0,09

Πίνακας 4-8 Τοιχοπληρώσεις 1°υ ορόφου - Α τρόπος

Δοκός	h (m)	b _w (m)	l _i (m)	b _{αρ} (m)	b _{δεξ} (m)	h _{τοιχοπ} (m)	Ι _{τοιχοπ.} (m)	L (m)	t _{eff} (m)	b (m)	Απλή περιμετρ. Επαφή λ'	Fred F	k	Θλιπτική Αντοχή Λιθοσωμάτων f _{bc}	Θλιπτική Αντοχή Κονιάματος f _{mc}	Ολιπτική Αντοχή Τοιχοποιίας f _{wc,s} (MPa)	Μέτρο Ελαστικότητας Τοιχοποιίας Ε
Δ1	0,40	0,20	3,875	0,20	0,55	2,40	3,50	4,24	0,10	0,64	29,0	0	0,45	9,00	1,00	0,00	0,00
Δ2	0,40	0,20	4,050	0,55	0,55	2,40	3,50	4,24	0,10	0,64	29,0	0	0,45	9,00	1,00	0,00	0,00
Δ3	0,40	0,20	3,845	0,55	0,55	2,40	3,30	4,08	0,10	0,61	28,1	0	0,45	9,00	1,00	0,00	0,00
Δ4	0,40	0,20	3,950	0,55	0,55	2,40	3,40	4,16	0,10	0,62	28,6	0	0,45	9,00	1,00	0,00	0,00
Δ5	0,40	0,20	4,275	0,55	0,20	2,40	3,90	4,58	0,10	0,69	30,6						
Δ6	0,30	1,00	4,575	0,20	0,70	2,50	4,13	4,82	0,10	0,72	32,1	0	0,45	9,00	1,00	0,00	0,00
Δ7	0,40	0,20	3,425	0,70		2,40	3,08	3,90	0,10	0,59	27,2	0	0,45	9,00	1,00	0,00	0,00
Δ8	0,45	0,20	3,640	0,40	0,25												
Δ9	0,40	0,30	4,160	0,30	0,55	2,40	3,74	4,44	0,10	0,67	29,9	0	0,45	9,00	1,00	0,00	0,00
Δ10	0,40	0,30	4,490	0,55	0,30	2,40	4,07	4,72	0,10	0,71	31,2	0	0,45	9,00	1,00	0,00	0,00
Δ10.A	0,40	0,20	5,025	0,30	0,20	2,40	4,78	5,34	0,10	0,80	33,9	0	0,45	9,00	1,00	0,00	0,00
Δ11	0,40	0,20	3,640	0,40	1,60	2,40	2,64	3,57	0,10	0,54	25,2	0	0,45	9,00	1,00	0,00	0,00
Δ12	0,40	0,20	3,425	0,30	0,60	2,40	2,98	3,82	0,10	0,57	26,7	0	0,45	9,00	1,00	0,00	0,00
<u>Δ12.</u> Α	0,40	0,20	1,600	0,60		2,40	1,30	2,73	0,10	0,41	17,7	0,21	0,45	9,00	1,00	0,55	549,94
Δ13	0,45	0,20	3,605	0,20	0,30	2,35	3,36	4,10	0,10	0,61	28,1	0	0,45	9,00	1,00	0,00	0,00
Δ14	0,40	0,20	5,900	1,00	1,00	2,40	4,90	5,46	0,10	0,82	34,3	0	0,45	9,00	1,00	0,00	0,00
Δ15	0,40	0,20	4,750	1,00	0,30	2,40	4,10	4,75	0,10	0,71	31,4	0	0,45	9,00	1,00	0,00	0,00
Δ16	0,40	0,30	4,550	1,00	0,30	2,40	3,90	4,58	0,10	0,69	30,6	0	0,45	9,00	1,00	0,00	0,00
Δ17	0,45	0,20	5,240	0,25	0,80	2,35	4,72	5,27	0,10	0,79	33,3	0	0,45	9,00	1,00	0,00	0,00
Δ18	0,40	0,25	2,620	0,80	0,40	2,40	2,02	3,14	0,10	0,47	22,0	0	0,45	9,00	1,00	0,00	0,00
Δ18.A	0,45	0,20	2,840		0,80	2,35	2,44	3,39	0,10	0,51	23,9	0	0,45	9,00	1,00	0,00	0,00
Δ18.B	0,40	0,20	2,620	0,80		2,40	2,22	3,27	0,10	0,49	23,1	0	0,45	9,00	1,00	0,00	0,00
Δ19	0,50	0,25	4,160		0,60	2,30	3,86	4,49	0,10	0,67	29,8	0	0,45	9,00	1,00	0,00	0,00
Δ20	0,40	0,20	3,640	1,00	0,20	2,40	3,04	3,87	0,10	0,58	27,0	0	0,45	9,00	1,00	0,00	0,00
Δ21	0,45	0,20	1,975	0,20	0,40	2,35	1,68	2,89	0,10	0,43	19,8	0,02	0,45	9,00	1,00	0,05	52,37
Δ22	0,45	0,25	4,160	0,20	0,40	2,35	3,86	4,52	0,10	0,68	30,1	0	0,45	9,00	1,00	0,00	0,00

Πίνακας 4-9 Τοιχοπληρώσεις 1^{ου} ορόφου - Α τρόπος

Στο υφιστάμενο δόμημα, από τα παραπάνω και για τις δυο μεθόδους αξιολόγησης της φέρουσας ικανότητας των τοιχοπληρώσεων, προκύπτει ότι μπορεί να προσομοιωθεί η τοιχοπλήρωση της δοκού Δ12. Α και Δ21. Ωστόσο, όπως προαναφέρθηκε στην αρχή του κεφαλαίου, ένας τοίχος πλήρωσης λαμβάνεται υπόψη μόνο όταν περιβάλλεται από στοιχεία οπλισμένου σκυροδέματος (δηλαδή είναι σφηνωμένος σε- ή συνδεδεμένος με- στοιχεία του σκελετού) τουλάχιστον κατά τις τρεις πλευρές του και δεν έχει μεγάλα ανοίγματα ή/και πολλά ανοίγματα και

δεν αστοχεί πρόωρα εκτός επιπέδου. Αυτό δεν συμβαίνει στην περίπτωση των Δ12.Α και Δ21. Οπότε, σε φάση αποτίμησης της φέρουσας ικανότητας του συνολικού κτιρίου δεν προσομοιώνονται.

🖊 Τοιχοπληρώσεις οροφής πρώτου ορόφου

				Πλό	ιτος					Έλεγχος αστοχίας εκτ	πρόωρης :ός επιπέδου κανι ΕΠΕ)	Πρ ανο	οσαρμα ιγμάτων ΚΑΝ.Ε		
				υποσ	στυλ.					(02/.7-31		Ανοίγ			
Δοκός	h (m)	b _w (m)	l _i (m)	b _{αρ.} (m)	b _{δεξ.} (m)	h _{τοιχοπ.} (m)	Ι _{τοιχοπ.} (m)	L (m)	t _{eff} (m)	λυγηρότητα (λ)	Λαμβάνεται υπόψη	b (m)	h (m)	π% (Ε _{ανοιγμ} /Ε _{τοιχ})	Μειωτικος Συντελεστής φ
Δ1	3,88	0,40	0,20	0,20	0,55	2,60	3,50	4,36	0,10	43,60	αμελείται	1,500	2,300	37,91	0,304
Δ2	4,05	0,40	0,20	0,55	0,55	2,60	3,50	4,36	0,10	43,60	αμελείται	1,500	2,300	37,91	0,304
Δ3	3,85	0,40	0,20	0,55	0,55	2,60	3,30	4,20	0,10	41,97	αμελείται	1,500	2,300	40,27	0,309
Δ4	3,95	0,40	0,20	0,55	0,55	2,60	3,40	4,28	0,10	42,80	αμελείται	1,500	2,300	39,03	0,307
Δ5	4,28	0,40	0,20	0,55	0,20	2,60	3,90	4,69	0,10	46,87	αμελείται	1,500	2,300	34,02	0,295
Δ6	4,58	0,40	0,20	0,20	1,00	2,60	3,98	4,75	0,10	47,50	αμελείται	2,400	2,300	53,41	0,294
Δ7	3,43	0,40	0,20	1,00		2,60	2,93	3,91	0,10	39,14	αμελείται				0,319
Δ8	3,64	0,40	0,20	0,40	0,25	2,60	3,32	4,21	0,10	42,13	αμελείται				0,309
Δ9	4,16	0,40	0,30	0,30	0,55	2,60	3,74	4,55	0,10	45,51	αμελείται	1,500	2,300	35,53	0,299
Δ10	4,49	0,40	0,30												
Δ10.A	5,03	0,40	0,20	0,30	0,20	2,60	4,78	5,44	0,10	54,37	αμελείται				0,279
Δ11	3,64	0,40	0,20	0,40	1,60	2,60	2,64	3,71	0,10	37,05	αμελείται				0,327
Δ12	3,43	0,40	0,20	0,30	0,60	2,60	2,98	3,95	0,10	39,51	αμελείται				0,318
∆12.A	1,60	0,40	0,20	0,60		2,60	1,30	2,91	0,10	29,07	0,1647				0,386
Δ13	3,61	0,45	0,20	0,20	0,30	2,55	3,36	4,21	0,10	42,14	αμελείται				0,309
Δ14	5,90	0,40	0,20	1,00	1,00	2,60	4,90	5,55	0,10	55,47	αμελείται				0,277
Δ15	4,75	0,40	0,20	1,00	0,30	2,60	4,10	4,85	0,10	48,55	αμελείται				0,291
Δ16	4,55	0,40	0,30	1,00	0,30	2,60	3,90	4,69	0,10	46,87	αμελείται				0,295
Δ17	4,95	0,45	0,20	0,20	0,80	2,55	4,45	5,13	0,10	51,29	αμελείται	1,500	2,300	30,40	0,286
Δ18	2,62	0,40	0,25	0,40	0,40	2,60	2,22	3,42	0,10	34,19	αμελείται	1,200	1,300	27,03	0,342
Δ18.A	2,84	0,45	0,20		0,80	2,55	2,44	3,53	0,10	35,29	αμελείται	0,900	2,200	31,82	0,336
Δ18.B	2,62	0,40	0,20	0,80		2,60	2,22	3,42	0,10	34,19	αμελείται	0,900	2,200	34,30	0,342
Δ19	4,16	0,50	0,25		0,60	2,50	3,86	4,60	0,10	45,99	αμελείται	0,900	2,200	20,52	0,299
Δ20	3,64	0,40	0,20	1,00	0,20	2,60	3,04	4,00	0,10	40,00	αμελείται				0,316
Δ21	1,98	0,40	0,20	0,20	0,40	2,60	1,68	3,09	0,10	30,93	αμελείται				0,365
Δ22	4,16	0,45	0,25	0,20	0,40	2,55	3,86	4,63	0,10	46,26	αμελείται	1,200	2,300	28,04	0,298
Δ23	3,98	0,40	0,20	0,20	0,20	2,60	3,78	4,58	0,10	45,84	αμελείται	1,600	2,200	35,86	0,298
Δ24	6,10	0,40	0,20	0,30	0,20	2,60	5,85	6,40	0,10	64,02	αμελείται				0,262
Δ25	6,10	0,40	0,20	0,30	0,20	2,60	5,85	6,40	0,10	64,02	αμελείται				0,262
Δ26	6,10	0,40	0,20	0,30		2,60	5,95	6,49	0,10	64,93	αμελείται				0,261
Δ27	6,80	0,40	0,20		0,20	2,60	6,70	7,19	0,10	71,87	αμελείται	0,900	2,200	11,37	0,251

Πίνακας 4-10 Τοιχοπληρώσεις 2°υ ορόφου - Α τρόπος

Δοκός	h (m)	b _w (m)	l _i (m)	b _{αρ} (m)	b _{δεξ} (m)	h _{τοιχοπ} (m)	Ι _{τοιχοπ.} (m)	L (m)	t _{eff} (m)	b (m)	Απλή περιμετρ. Επαφή λ'	Fred F	k	Θλιπτική Αντοχή Λιθοσωμάτων f _{bc}	Θλιπτική Αντοχή Κονιάματος f _{mc}	Θλιπτική Αντοχή Τοιχοποιίας f _{wc,s} (MPa)	Μέτρο Ελαστικότητας Τοιχοποιίας Ε
Δ1	3,88	0,40	0,20	0,20	0,55	2,60	3,50	4,36	0,10	0,65	30,17	0,00	0,45	9,00	1,00	0,000	0,00
Δ2	4,05	0,40	0,20	0,55	0,55	2,60	3,50	4,36	0,10	0,65	30,17	0,00	0,45	9,00	1,00	0,000	0,00
Δ3	3,85	0,40	0,20	0,55	0,55	2,60	3,30	4,20	0,10	0,63	29,27	0,00	0,45	9,00	1,00	0,000	0,00
Δ4	3,95	0,40	0,20	0,55	0,55	2,60	3,40	4,28	0,10	0,64	29,73	0,00	0,45	9,00	1,00	0,000	0,00
Δ5	4,28	0,40	0,20	0,55	0,20	2,60	3,90	4,69	0,10	0,70	31,84	0,00	0,45	9,00	1,00	0,000	0,00
Δ6	4,58	0,40	0,20	0,20	1,00	2,60	3,98	4,75	0,10	0,71	32,15	0,00	0,45	9,00	1,00	0,000	0,00
Δ7	3,43	0,40	0,20	1,00		2,60	2,93	3,91	0,10	0,59	27,58	0,00	0,45	9,00	1,00	0,000	0,00
Δ8	3,64	0,40	0,20	0,40	0,25	2,60	3,32	4,21	0,10	0,63	29,36	0,00	0,45	9,00	1,00	0,000	0,00
Δ9	4,16	0,40	0,30	0,30	0,55	2,60	3,74	4,55	0,10	0,68	31,16	0,00	0,45	9,00	1,00	0,000	0,00
Δ10	4,49	0,40	0,30									0,00					
Δ10.A	5,03	0,40	0,20	0,30	0,20	2,60	4,78	5,44	0,10	0,82	35,23	0,00	0,45	9,00	1,00	0,000	0,00
Δ11	3,64	0,40	0,20	0,40	1,60	2,60	2,64	3,71	0,10	0,56	26,20	0,00	0,45	9,00	1,00	0,000	0,00
Δ12	3,43	0,40	0,20	0,30	0,60	2,60	2,98	3,95	0,10	0,59	27,81	0,00	0,45	9,00	1,00	0,000	0,00
<u>Δ12.A</u>	1,60	0,40	0,20	0,60		2,60	1,30	2,91	0,10	0,44	18,38	0,18	0,45	9,00	1,00	0,471	471,37
Δ13	3,61	0,45	0,20	0,20	0,30	2,55	3,36	4,21	0,10	0,63	29,25	0,00	0,45	9,00	1,00	0,000	0,00
Δ14	5,90	0,40	0,20	1,00	1,00	2,60	4,90	5,55	0,10	0,83	35,69	0,00	0,45	9,00	1,00	0,000	0,00
Δ15	4,75	0,40	0,20	1,00	0,30	2,60	4,10	4,85	0,10	0,73	32,65	0,00	0,45	9,00	1,00	0,000	0,00
Δ16	4,55	0,40	0,30	1,00	0,30	2,60	3,90	4,69	0,10	0,70	31,84	0,00	0,45	9,00	1,00	0,000	0,00
Δ17	4,95	0,45	0,20	0,20	0,80	2,55	4,45	5,13	0,10	0,77	33,69	0,00	0,45	9,00	1,00	0,000	0,00
Δ18	2,62	0,40	0,25	0,40	0,40	2,60	2,22	3,42	0,10	0,51	24,02	0,00	0,45	9,00	1,00	0,000	0,00
Δ18.A	2,84	0,45	0,20		0,80	2,55	2,44	3,53	0,10	0,53	24,94	0,00	0,45	9,00	1,00	0,000	0,00
Δ18.B	2,62	0,40	0,20	0,80		2,60	2,22	3,42	0,10	0,51	24,02	0,00	0,45	9,00	1,00	0,000	0,00
Δ19	4,16	0,50	0,25		0,60	2,50	3,86	4,60	0,10	0,69	31,06	0,00	0,45	9,00	1,00	0,000	0,00
Δ20	3,64	0,40	0,20	1,00	0,20	2,60	3,04	4,00	0,10	0,60	28,11	0,00	0,45	9,00	1,00	0,000	0,00
Δ21	1,98	0,40	0,20	0,20	0,40	2,60	1,68	3,09	0,10	0,46	20,87	0,00	0,45	9,00	1,00	0,000	0,00
Δ22	4,16	0,45	0,25	0,20	0,40	2,55	3,86	4,63	0,10	0,69	31,37	0,00	0,45	9,00	1,00	0,000	0,00
Δ23	3,98	0,40	0,20	0,20	0,20	2,60	3,78	4,58	0,10	0,69	31,33	0,00	0,45	9,00	1,00	0,000	0,00
Δ24	6,10	0,40	0,20	0,30	0,20	2,60	5,85	6,40	0,10	0,96	39,00	0,00	0,45	9,00	1,00	0,000	0,00
Δ25	6,10	0,40	0,20	0,30	0,20	2,60	5,85	6,40	0,10	0,96	39,00	0,00	0,45	9,00	1,00	0,000	0,00
Δ26	6,10	0,40	0,20	0,30		2,60	5,95	6,49	0,10	0,97	39,33	0,00	0,45	9,00	1,00	0,000	0,00
Δ27	6,80	0,40	0,20		0,20	2,60	6,70	7,19	0,10	1,08	41,74	0,00	0,45	9,00	1,00	0,000	0,00

Πίνακας 4-11 Τοιχοπληρώσεις 2ου ορόφου

Όμοια με την οροφή ισογείου, η δοκός Δ12.Α δεν περιβάλλεται από στοιχεία οπλισμένου σκυροδέματος κατά τρεις τουλάχιστον πλευρές. Οπότε, καμία τοιχοπλήρωση της οροφής του 1^{ου} ορόφου δεν προσομοιώνονται στη φάση αποτίμησης της φέρουσας ικανότητας του κτιρίου.

Αξίζει να σημειωθεί ότι τόσο η πρώτη μέθοδος που λαμβάνει υπόψη την πρόωρη αστοχίαύπαρξη ανοιγμάτων μέσω του μειωτικού συντελεστή φ, όσο και η ακριβής η οποία λαμβάνει υπόψη τη θλιπτική αντοχή των λιθοσωμάτων και του κονιάματος καταλήγουν στο ίδιο αποτέλεσμα όσον αφορά το ποιες τοιχοποιίες πρέπει να συμπεριληφθούν στην προσομοίωση του φορέα.

4.3.9 Συνολικός φορέα

Παρακάτω ακολουθούν τρισδιάστατες εικόνες του φορέα, προκειμένου να γίνει πλήρως αντιληπτή η μορφή του.

Εικόνα 4-46 Τρισδιάστατη εικόνα φορέα

Εικόνα 4-47 Τρισδιάστατη εικόνα φορέα

Εικόνα 4-48 Τρισδιάστατη εικόνα φορέα

Εικόνα 4-49 Φορέας σε Extruded view

Εικόνα 4-50 Τρισδιάστατη εικόνα φορέα

4.3.10 Προσομοίωση φορτίσεων

Σε κάθε όροφο τα φορτία έχουν κατανεμηθεί με διαφορετικό τρόπο, κατ' αντιστοιχία με τον τρόπο προσομοίωσης του φέροντα οργανισμού. Στην οροφή ισογείου, η οποία προσομοιώθηκε με επιφανειακά στοιχεία, τα κύρια φορτία κατανέμονται επιφανειακά σε KN/m², ενώ στους άλλους δυο ορόφους έχουμε γραμμικά κατανεμημένα φορτία σε KN/m. Έχουν χρησιμοποιηθεί οι χαρακτηριστικές τιμές των επιβαλλόμενων φορτίων βάσει EC1 για κατηγορία χρήσης του πρόσθιου τμήματος ισογείου C1 (χώροι στους οποίους συναθροίζονται άνθρωποι) και Α (χώροι διαμονής) το υπόλοιπο τμήμα του υπό εξέταση κτιρίου, εφόσον αποτελεί υπνοδωμάτια ξενοδοχείου.

A		Hababerpa
	Χώροι διαμονής	Δωμάτια σε κτήρια κατοικιών και σπίπα. Θάλομοι και πτέρυγες σε νοσοκομεία. Υπνοδωμάτια σε ξενοδοχεία και ξενώνες, κουζίνες και τουαλέτες.
В	Χώροι γραφείων	
C	Χώροι στούς οποίους οι άνθρωποι μπορεί να συναθροισθούν (με εξαίρεση τους χώρους που κατατάσανται στις κατηγορίες Α,Β, και D ¹¹ }	 C1: Χώροι με τραπέζια κλπ. Π.χ. σχολικοί χώροι, νηπισγωγεία, καφενεία, εσπιστόρια, αίθουσες φαγητού, αναγνωστήρια, χώροι υποδοχής. C2: Χώροι με σταθερά καθίσματα, Π.χ. χώροι σε εκκλησίες, θέστρα ή κινηματογγάφους, αίθουσες συνελριάσεων, αθουσες συγκεντρώσεων, χώροι ανομονής, χώροι ανομονής, χώροι ανομονής, χώροι ανομονής, το ειδηροδρομικούς στο τεχωρός.
		C3: Χώροι χωρίς εμπόδια στη διακίνηση του κοινού, π.χ. χώροι σε μουσεία, εκθεσιακοί χώροι, κλπ. και χώροι πρόσβασης σε δημόσια και διοικητικά κτήρια, ξενοδοχεία και νοσακομεία. Προσύλια σιδηροδρομικών σταθμών.
		C4: Χώροι για πιθανές σωματικές δραστηριότητες, π.χ. αίθουσες χορού, αίθουσει γυμναστικής και θεατρικές σκηνές
		C5: Χώροι επιρρεπείς σε μεγάλα πλήθη, π.χ. για δημάσιες εκδηλώσεις όπως αίθουσες συναυλιών, κλειστά γήπεδα, εξέδρες γηπέδων, εξώστες και χώροι πρόσβασης, πλατφόρμες σίδηροδρόμων.
D	Χώροι με εμπορικά καταστήματα	D1: Χώροι σε καταστήματα λιανικής πώλησης, γενικά.

Πίνακας 4-12 Κατηγορία χρήσης κτιρίου βάσει ΕC1

Η επικάλυψη των δαπέδων έχει γίνει με τυποποιημένο πλακάκι και λαμβάνεται φορτίο επικαλύψεων ίσο με 1KN/m². Όσον αφορά τις τοιχοπληρώσεις, για τις εξωτερικές (μπατική οπτοπλινθοδομή) λαμβάνεται φορτίο ανά μονάδα επιφάνειας ίσο με 3,6KN/m², ενώ για τις εσωτερικές (δρομική οπτοπλινθοδομή) 2,1KN/m². Αυτή μορφώνεται από διπλό τούβλο πάχους 10cm έκαστο και ενδιάμεσα μόνωση με 5cm φελιζόλ. Για λόγους μεγαλύτερης ακρίβειας έχουν ληφθεί υπόψη τα ανοίγματα αφαιρώντας τις επιφάνειες τους από την συνολική επιφάνεια κάθε τοιχοπλήρωσης.

	Κατηγορίες φορτιζόμενων επιφανειών	q _k [kN/m ²]	Q _k [kN]
Κινητό δαπέδων 2KN/m²	Κατηγορία Α - Δάπεδα - Σκάλες - Μπαλκόνια Κατηγορία Β	1,5 έως <u>2.0</u> <u>2,0 έως</u> 4,0 <u>2,5 έως</u> 4,0 2,0 έως <u>3,0</u>	<u>2.0</u> έως 3,0 <u>2.0</u> έως 4,0 <u>2.0</u> έως 3,0 1,5 έως <u>4,5</u>
Κινητό κλιμακοστασίων 3,5KN/m²	Κατηγορία C - C1 - C2 - C3 - C4 - C5	2,0 έως <u>3,0</u> 3,0 έως <u>4,0</u> 3,0 έως <u>5,0</u> 4,5 έως <u>5,0</u> <u>5,0</u> έως 7,5	3,0 έως <u>4,0</u> 2,5 έως 7,0 (<u>4,0</u>) <u>4,0</u> έως 7,0 3,5 έως <u>7,0</u>
Κινητό εξωστών 4KN/m²	Κατηγορία D - D1 - D2	<u>4.0</u> έως 5,0 4,0 έως <u>5,0</u>	3,5 έως 7,0 (4.0) 3.5 έως 7,0

Σχετικά με τα ωφέλιμα φορτία, έχουν ληφθεί οι τιμές του <u>πίνακα 6.2 του EC1</u>, ο οποίος δίνει:

Πίνακας 4-13 Επιβαλλόμενα φορτία σε δάπεδα, μπαλκόνια και σκάλες κτηρίων

Τέλος, περιμετρικά στους εξώστες υπάρχει στηθαίο ύψους 1,15m κατασκευασμένο από μπετό και οριζόντιο κιγκλίδωμα, τα φορτία των οποίων μεταβιβάζονται ως γραμμικά στις δοκούς μέσω των επιφανειών επιρροής.

Η προσομοίωση των φορτίσεων έγινε στο SAP2000 με τη δημιουργία δύο φορτικών καταστάσεων. Η μία αφορά τα μόνιμα και η άλλη τα κινητά. Σημειώνεται ότι στα μόνιμα μπαίνει συντελεστής βάρους (self-weight multiplier) 1, ενώ στα κινητά 0.

Εντολές: Define → Load Pattern → DEAD, LIVE

Define \rightarrow Load Cases \rightarrow Define Load Case Type

oad Cases		Click to:
Load Case Na	ime Load Case Type	Add New Load Case
MONIMA	Linear Static Linear Static	Add Copy of Load Case
		Modify/Show Load Case
		Delete Load Case
		Display Load Cases
		Show Load Case Tree

Εικόνα 4-52 Δημιουργία Load Cases μόνιμων και κινητών φορτίων

4.3.10.1 Φορτία οροφής ισογείου

Η οροφή του ισογείου προσομοιώθηκε με γραμμικά και επιφανειακά στοιχεία, δοκοί και πλάκες αντίστοιχα, χωρίς τοιχοπληρώσεις. Σε καθένα απ' αυτά κατανέμονται τα παρακάτω φορτία:

- Γραμμικά στοιχεία- δοκοί
 - \rm 🕹 Ι.Β δοκών
 - </u> Τοιχοποιίες πάνω στις δοκούς
 - </u> Στηθαία κατά μήκος του εξώστη
- Υποστυλώματα

Έχουν ασκηθεί επικόμβια φορτία:

- Στα υποστυλώματα K1,K6, K18, K21, K14, K15 ασκούνται τα φορτία των περιμετρικών στηθαίων ύψους h=1,15m και βάρους W=4,313KN.
- Στα K2, K3, K4, K5, K16 ασκούνται τα φορτία των διαχωριστικών των δωματίων ύψους h=1,70m και βάρους W=6,375KN.

Επιφανειακά στοιχεία- πλάκες

με επιφανεία Α=146,498m ⁻ . Π	
g _{επικαλυψ} . 1,00	
μόνιμα g _{τοίχων} 5,59	14,09
κινητά q 2,00	2,00
B) Π2: Πλάκα πάχους h=20cm Π2	
I.B πλάκας $g_{πλ} = 5,00$ KN/m ²	
F_{11} (μαλύψεις g _{επικ} = 1 KN/m ² (μαλύμεις g _{πλ} = 2 KN/m ² (μαλύμεις g _{πλ} = 2 KN/m ² (μαλύμεις g _{πλ} = 1 00)	
βεπικαλυψ. 1,00	6.00
μονιμα <u>g_{τοίχων}</u> 0,00	6,00
κινητα q 2,00	2,00
A=22,349cm ²	
Tοιχοποιίες $g_{\text{τοιχ}} = 5,595$ KN/m ²	
I.Β πλακας $g_{\pi\lambda}$ = 5,00 KN/m ² Επικαλύψεις $g_{\pi\mu}$ = 1KN/m ²	
$K_{\rm LV}$ Γ $K_{\rm LV}$ $K_{\rm L$	
μόνιμα <u>g_{τοίχων} 1,46</u>	7,46
κινητα q 2,00	2,00
$ε_{πι}$ φάνειας A=12,797 cm ²	
Τοιχοποιίες g _{τοιχ.=} 1,72KN/m ²	
I.Β πλάκας $g_{πλ}$ = 5,00KN/m ² $g_{πλάκας}$ 5,00	
Eπικαλυψείς $g_{επικ.} = 1$ KN/m ² Kινητό $g_{επικαλυψ.} = 2$ KN/m ² 1,00	
μόνιμα g _{τοίχων} 1,72	7,72
κινητά q 2,00	2,00
E) Π3.Α: Πλάκα πάχους h=20cm Π3.Α	
Ι.Β πλακας gπλ.= 5,00KN/m2 Επικαλύψεις gεπικ. = 1KN/m2 g _{πλάκας} 5,00	
Κινητό qπλ. =2KN/m2 g _{επικαλυψ.} 1,00	
μόνιμα <u>g_{τοίχων} 0,00</u>	6,00
κινητά q 2,00	2,00
Z) Π11: Πλάκα πάχους h=20cm Π11	
$g_{πλάκας}$ 5,00 g _{πλάκας} 5,00 g _{πλάκας} 5,00	
Κινητό qπλ. =2KN/m2 g _{επικαλυψ} 1,00	
μόνιμα g _{τοίχων} 0,00	6,00
κινητά q 2,00	2,00
Η) ΕΞΩΣΤΕΣ: Πλάκα πάχους h=20cm Εξώστες	
I.Β πλάκας gπλ.= 5,00KN/m2 $g_{πλάκας}$ 5.00	
$K_{\rm LV}$ μόνιμα $g_{\rm επικαλυψ.}$ 1,00	6,00

	g _{τοίχων}	0,00	
κινητά	q	5,00	5,00

Πίνακας 4-14 Επιφανειακά Φορτία πλακών

Εντολές: Επιλογή επιφανειακού στοιχείου → Assign → Area loads → Uniform (Shell)

Load Pattern N	lame		Units
+ KINH	TA	-	KN, m, C 💌
Uniform Load Load Coord System Direction	10,25 GLOBAL – Gravity –	Options C Ac C Be C De	ld to Existing Loads eplace Existing Loads elete Existing Loads
	ОК	Car	ncel

Εικόνα 4-53 Επιβολή κινητών φορτίων

Τα επιβαλλόμενα φορτία στα επιφανειακά στοιχεία φαίνονται γραφικά με την *Eντολή: Display* → Show Load Assigns → Area → Uniform Load Contours (gravity)

Εικόνα 4-54 Επιφανειακά φορτία κατασκευής

4.3.10.2 Φορτία οροφής πρώτου ορόφου

Οι αντιδράσεις τετραέρειστων ομοιόμορφα φορτισμένων πλακών, οι οποίες χρησιμοποιούνται για τον υπολογισμό των δράσεων του σχεδιασμού των δοκών, επιτρέπεται να υπολογίζονται από τις επιφάνειες φόρτισης που προκύπτουν από γεωμετρικό μερισμό της επιφάνειας της κάτοψης. Στηρίξεις που δεν ελήφθησαν υπόψη στον υπολογισμό της πλάκας πρέπει να συμμετέχουν στη
διανομή των φορτίων της πλάκας. Η κατανομή των φορτίων γίνεται με βάση τις παρακάτω παραδοχές:

- Εφόσον σε μια γωνία συναντώνται δυο πλευρές ομοειδούς στήριξης, η γωνία μερισμού είναι 45°. Εφόσον συναντώνται πλήρως πακτωμένη με ελεύθερα εδραζόμενη πλευρά, η γωνία μερισμού προς την πλευρά της πάκτωσης είναι 60°. Για μερική πάκτωση λαμβάνονται γωνίες μεταξύ 45° και 60°.
- 4 Οι τραπεζοειδείς, τριγωνικές ή ομοιόμορφες φορτικές επιφάνειες μετατρέπονται σε ομοιόμορφο φορτίο κατανεμημένο στη δοκό.
- 븆 Τα φορτίο του προβόλου μεταβιβάζεται εξ' ολοκλήρου στη δοκό που τον στηρίζει.

Περιγραφή ξύλινου τμήματος

Το πρόσθιο τμήμα του 2^{ου} ορόφου του υπό μελέτη κτιρίου αποτελεί προσθήκη και έχει φέρων οργανισμό από ξύλο. Δεν έχει προσομοιωθεί με ραβδωτά ή επιφανειακά στοιχεία και θα επιβληθεί ως φορτίο στην οροφή του 1^{ου} ορόφου, σύμφωνα με τον κανονισμό φορτίσεων του βασιλικού διατάγματος 1945.

Αναλυτικότερα, η κατασκευή αυτή αποτελείται από εξωτερικούς τοίχους, εσωτερικούς και πέτσωμα. Οι εξωτερικοί μορφώνονται με ξυλοδοκούς διατομής 8cmx15cm, τοποθετημένες ανά 85cm, οι εσωτερικοί 5cmx10cm ανά 70cm και το πέτσωμα με το σοβά είναι μέσα έξω 2,5cm. Για τον υπολογισμό του συνολικού φορτίου της ξύλινης κατασκευής που μεταβιβάζεται στις δοκούς ελήφθη το ειδικό βάρος του ξύλου ίσο με 5KN/m³.Η παραπάνω κατασκευή προστατεύεται από ξύλινη, κεκλιμένη στέγη συνολικού ύψους 1,40m με επικάλυψη κεραμιδιών. Στηρίζεται σε ξύλινους φορείς διαστάσεων 7cmx15cm ανά 85cm και ξύλινο και κεντρικό κορφιά διαστάσεων διατομής 10cmx25cm.

Ο υπολογισμός των μονίμων φορτίων της παραπάνω κατασκευής γίνεται προσεγγιστικά. Αρχικά, υπολογίζονται τα μόνιμα φορτία της στέγης, τα μόνιμα του ξύλινου φέροντα οργανισμού (ίδια βάρη των κατακόρυφων, οριζόντιων και κεκλιμένων ξυλοδοκών), έπειτα, ανάγονται στην επιφάνεια που ασκούνται και τέλος, επιβάλλονται στο SAP2000 ως γραμμικά κατανεμημένα στις αντίστοιχες περιμετρικές δοκούς των επιφανειών επιρροής. Με τον ίδιο τρόπο, μεταφέρεται και το κινητό της στέγης, το οποίο επελέγη από τον πίνακα 6.10 του EC1 για στέγη κατηγορίας Η (μη βατή και προσβάσιμη μόνο για την κανονική συντήρηση και επισκευή) με τιμή 0,4KN/m².

Στέγη	q _k [kN/m²]	Q _k [kN]
Κατηγορία Η	q _k	Q _k
ΣΗΜΕΙΩΣΗ 1: Για την κατηγορία Η το q _k μπορεί v kN/m² και το Q _k μπορεί να επιλεγεί μεταξύ 0,9 kN και	να επιλεγεί μεταξύ 0,00 kl 1,5 kN.	N/m² και 1,0
Όπου δίδεται φάσμα τιμών, οι τιμές θα πρέπει να Οι προτεινόμενες τιμές είναι:	ορίζονται από το Εθνικό	Προσάρτημα.
$q_k = 0.4kN / m^2, Q_k = 1.0kN$		
ΣΗΜΕΙΩΣΗ 2: Το q _k μπορεί να διαφοροποιείται σ κλίση της στέγης.	το Εθνικό Προσάρτημα α	νάλογα με την
ΣΗΜΕΙΩΣΗ 3: Το q _k μπορεί να θεωρηθεί ότι δρα το Εθνικό Προσάρτημα. Η προτεινόμενη τιμή για το Α μεταξύ του μηδενός και ολόκληρης της επιφάνειας τη	σε μια επιφάνεια Α που θ \ είναι 10m², στα πλαίσια ς στέγης.	ια ορίζεται από ενός φάσματος
ΣΗΜΕΙΩΣΗ 4: Βλέπε επίσης 3.3.2 (1).		
Πίνακας 4-15 Επιβαλλόμενα φορτία	α στις στέγες κατηγο	ρίας Η

Σχήμα 4-5 Κατανομή φορτίων 2ου ορόφου στις δοκούς της οροφής του 1ου

Σχήμα 4-6 Κατανομή φορτίων στις δοκούς μέσω των επιφανειών επιρροής

	Δοκ	ός		Εμβαδά Πλακών		Εμβαδά Προβόλων			Πλα	άκα
Δ _i	l _i (m)	h	b _w	Επιφάνειες Επιρροής	m²	Επιφάνειες Επιρροής	m²	<mark>g_{ι.β.} (KN/m)</mark>	<mark>Β</mark> πλάκας	<mark>Β</mark> επικαλύ ψεις
Δ1	3,88	0,4	0,2	E1.3	2,9	E11.1	5,96	2	11,43	2,29
Δ2	4,05	0,4	0,2	E2.3	2,61	E11.2	6,38	2	11,11	2,22
Δ3	3,85	0,4	0,2	E3.3	2,13	E11.3	5,77	2	10,27	2,05
Δ4	3,95	0,4	0,2	E4.3	1,46	E11.4	4,8	2	7,92	1,58
Δ5	4,28	0,4	0,2	E5.4	4,66	E11.5	7,54	2	14,27	2,85
Δ6	4,58	0,4	0,2	E2.1	4,54	E7.3	5,45	2	10,92	2,18
Δ7	3,43	0,4	0,2	E3.1+E8.3	8,95			2	13,06	2,61
Δ8	3,64	0,4	0,2	E5.1	2,14			2	2,94	0,59
Δ9	4,16	0,4	0,3	E6.1	5,01	E10.1	6	3	13,23	2,65
Δ10	4,49	0,4	0,3			E10.2+E7.1	11,42	3	12,72	2,54
Δ10.A	5,03	0,4	0,2	E8.1	6,36			2	6,32	1,26
Δ11	3,64	0,4	0,2	E9.3	2,37			2	3,25	0,65
Δ12	3,43	0,4	0,2					2		
Δ12.A	1,6	0,4	0,2					2		
Δ13	3,61	0,45	0,2	E9.1	2,35			2,25	3,26	0,65
Δ14	5,9	0,4	0,2	E1.4	6,01			2	5,09	1,02
Δ15	4,75	0,4	0,2	E6.4	3,5			2	3,68	0,74
Δ16	4,55	0,4	0,3	E6.2	6,15	E7.4	6,08	3	13,44	2,69
Δ17	4,95	0,45	0,2	E8.4	6,97	E7.2	6,1	2,25	13,21	2,64
Δ18	2,62	0,4	0,25			E10.3	3,23	2,5	6,17	1,23
Δ18.A	2,84	0,45	0,2	E8.2	3,96			2,25	6,97	1,39
Δ18.B	2,62	0,4	0,2					2	0	0
Δ19	4,16	0,5	0,25	E9.4	6,5			3,13	7,82	1,56
Δ20	3,64	0,4	0,2	E5.3	8,17			2	11,22	2,24
Δ21	1,98	0,4	0,2	E5.2	1,67			2	4,23	0,85
Δ22	4,16	0,45	0,25	E9.2	3,78	E12.1	6,24	2,81	12,04	2,41
Δ23	3,98	0,4	0,2	E1.1+E6.3	10,04			2	12,63	2,53
∆24	6,1	0,4	0,2	E1.2+E2.4	19,71			2	16,16	3,23
Δ25	6,1	0,4	0,2	E2.2+E3.4	18,24			2	14,95	2,99
Δ26	6,1	0,4	0,2	E3.2+E4.1	17,74			2	14,54	2,91
Δ27	6,8	0.4	0.2	E4.2+E5.5	24.82			2	18.25	3.65

Πίνακας 4-16 Φορτία δοκών οροφής 1°υ ορόφου

A/A		Ανοίγματ	α	Τοιχοποιίες						Στη	θαίο
Δ _i	b (m)	h (m)	<mark>₩_{ανοιγμ.} (KN)</mark>	Η _{τοιχοπ.} (m)	g' _{τοιχοπ.} (KN/m ²)	W _{τοιχοπ.} (KN)	W _{καθαρό}	៩ _{τοιχοπ.} (KN/m)	g* _{τοιχοπ.} (KN/m)	W _{στηθαίου} (KN)	g _{στηθαίου} (KN/m)
Δ1	1,5	2,3	12,42	2,6	3,6	36,27	23,85	6,15	1,85	11,14	2,88
Δ2	1,5	2,3	12,42	2,6	3,6	37,91	25,49	6,29	1,43	11,64	2,88
Δ3	1,5	2,3	12,42	2,6	3,6	35,99	23,57	6,13	1,36	11,05	2,88
Δ4	1,5	2,3	12,42	2,6	3,6	36,97	24,55	6,22	1,03	11,36	2,88
Δ5	1,5	2,3	12,42	2,6	3,6	40,01	27,59	6,45	2,51	12,29	2,88
Δ6	2,4	2,3	19,87	2,6	3,6	42,82	22,95	5,02	2,2		
Δ7				2,6	3,6	32,06	32,06	9,36	3,99		
Δ8				2,6	3,6	34,07	34,07	9,36	1,35		
Δ9	1,5	2,3	12,42	2,6	3,6	38,94	26,52	6,37	0	11,96	2,88
Δ10									0	12,91	2,88
Δ10.A				2,6	3,6	47,03	47,03	9,36	1,09		
Δ11				2,6	3,6	34,07	34,07	9,36	0,84		
Δ12				2,6	3,6	32,06	32,06	9,36	0		
Δ12.A				2,6	3,6	14,98	14,98	9,36	0		
Δ13				2,55	3,6	33,09	33,09	9,18	0,85		
Δ14				2,6	3,6	55,22	55,22	9,36	2,51		
Δ15				2,6	3,6	44,46	44,46	9,36	0		
Δ16				2,6	3,6	42,59	42,59	9,36	0		
Δ17	1,5	2,3	12,42	2,55	3,6	45,44	33,02	6,67	1,22		
Δ18	1,2	1,3	5,62	3,6	3,6	33,96	28,34	10,82	0	4,03	1,54
Δ18.A	0,9	2,2	7,13	2,55	3,6	26,07	18,94	6,67	1,2		
Δ18.B	0,9	2,2	7,13	2,6	3,6	24,52	17,4	6,64	0		
Δ19	0,9	2,2	7,13	2,5	3,6	37,44	30,31	7,29	2,03		
Δ20				2,6	3,6	34,07	34,07	9,36	5,16		
Δ21				2,6	3,6	18,49	18,49	9,36	1,95		
Δ22	1,2	2,3	9,94	2,55	3,6	38,19	28,25	6,79	1,18	11,96	2,88
Δ23	1,6	2,2	7,39	2,6	2,1	21,7	14,31	3,6	3,12		
Δ24				2,6	3,6	57,1	57,1	9,36	7,58		
Δ25				2,6	3,6	57,1	57,1	9,36	6,96		
Δ26				2,6	3,6	57,1	57,1	9,36	7,61		
Δ27	0,9	2,2	7,13	2,6	3,6	63,65	56,52	8,31	9,12		

Πίνακας 4-17 Φο	ρτία δοκών οροφής	1°υ ορόφου (συνέχεια)
-----------------	-------------------	-----------------------

Στα υπόλοιπα φορτία της οροφής του 1^{ου} ορόφου προστίθενται αυτά του ξύλινου τμήματος και προκύπτουν τα παρακάτω συνολικά φορτία των δοκών του.

	Ξ	Ξύλινο τμήμα		Κιν	ητά	Συνολικά Φορτία		
A/A	q _{στέγης} (KN/m)	<mark>g_{στέγης} (KN/m)</mark>	<mark>΄ g_{ξυλοδοκών} (KN/m)</mark>	q _{δαπέδου}	q _{μπαλκονιού}	Mόνιμα (KN/m)	Κινητά (KN/m)	
Δ1				1,5	7,69	23,72	9,19	
Δ2				1,29	7,88	23,05	9,17	
Δ3				1,11	7,5	21,82	8,61	
Δ4				0,74	6,08	18,74	6,81	
Δ5				2,18	8,81	28,09	11	
Δ6				1,98	5,96	22,32	7,95	
Δ7	1,31	2,83	2,72	5,22		36,57	6,53	
Δ8	0,29	0,64	0,61	1,18		17,49	1,47	
Δ9				2,41	7,21	25,25	9,62	
Δ10					12,72	18,26	12,72	
Δ10.A	0,63	1,37	1,32	2,53		22,73	3,16	
Δ11	0,32	0,7	0,68	1,3		17,48	1,62	
Δ12						11,36	0	
Δ12.A						11,36	0	
Δ13	0,33	0,71	0,68	1,31		17,58	1,63	
Δ14				2,04		19,99	2,04	
Δ15				1,47		15,77	1,47	
Δ16				2,7	6,68	28,48	9,38	
Δ17	1,32	2,86	2,75	2,82	6,16	31,6	10,3	
Δ18	0,62	1,34	1,28		6,17	23,34	6,78	
Δ18.A	0,7	1,51	1,45	2,79		21,44	3,48	
Δ18.B	0	0	0			8,64	0	
Δ19	0,78	1,69	1,63	3,13		25,14	3,91	
Δ20				4,49		29,99	4,49	
Δ21				1,69		18,39	1,69	
Δ22	1,2	2,61	2,5	1,81	7,5	30,34	10,52	
Δ23				5,05		23,88	5,05	
Δ24				6,46		38,33	6,46	
Δ25				5,98		36,26	5,98	
Δ26				5,82		36,42	5,82	
Δ27				7,3		41,34	7,3	

Πίνακας 4-18 Συνολικά φορτία δοκών οροφής 1° ορόφου

4.3.10.3 Προσομοίωση φορτίων οροφής δευτέρου ορόφου

Η κεκλιμένη στέγη στηρίζεται πάνω σε κεκλιμένες δοκούς από οπλισμένο σκυρόδεμα, στις οποίες μεταφέρονται μέσω των επιφανειών επιρροής τα φορτία. Η στέγη δέχεται το μόνιμο φορτίο των επικαλύψεων (κεραμίδια), το ίδιο βάρος των δοκών από ΟΣ και το κινητό των 0,4KN/m². Επίσης, υπάρχει ένα τμήμα τοιχοποιίας περιμετρικά της σκάλας που στηρίζεται στη στέγη. Επιβάλλεται, λοιπόν, ως μόνιμο φορτίο στις δοκούς Δ8 και Δ11.

				Εμβαδά στέγης		Μόνιμα	ι Στέγης	Τοιχα	οποιία	I.B.	Κινητά	Συνολικά	ά Φορτία
A/A	h	b _w	l _i (m)	Επιφάνειες επιρροής	m²	g _{στέγης} (KN/m)	g _{επικ.} (KN/m)	Η _{τοιχοπ.} (m)	<mark>g_{τοιχ.} (KN/m)</mark>	g _{δοκών} (KN/m)	q _{στέγης} (KN/m)	Μόνιμα (KN/m)	Κινητά (KN/m)
Δ1	0,6	0,2	3,88	E1.1+E13.1	10,93	1,13	1,97			3	1,41	6,1	1,41
Δ2	0,6	0,2	4,05	E2.1+E13.2	10,93	1,08	1,89			3	1,35	5,97	1,35
Δ3	0,6	0,2	3,85	E3.1+E13.3	9,49	0,99	1,73			3	1,23	5,72	1,23
Δ4	0,6	0,2	3,95	E4.1+E13.4	7,34	0,74	1,3			3	0,93	5,04	0,93
Δ5	0,6	0,2	4,28	E5.1+E13.5	15,74	1,47	2,58			3	1,84	7,05	1,84
Δ6	0,6	0,2	4,58	E7.1+E11.3	9,41	0,82	1,44			3	1,03	5,26	1,03
Δ7	0,6	0,2	3,43	E8.1	3,4	0,4	0,7			3	0,5	4,09	0,5
Δ8	0,6	0,2	3,64	E9.1+E14.2	13,59	1,49	2,61	1,26	4,54	3	1,87	11,64	1,87
Δ9	0,6	0,3	4,16	E10.1+E12.1	11	1,06	1,85			4,5	1,32	7,41	1,32
Δ10	0,6	0,3	4,49	E11.1+E12.2	12,55	1,12	1,96			4,5	1,4	7,58	1,4
Δ11	0,6	0,2	3,64	E14.1	10,26	1,13	1,97	1,58	5,69	3	1,41	11,79	1,41
Δ14	0,6	0,2	4,08	E1.3	5,09	0,5	0,87			3	0,62	4,37	0,62
Δ14.A	0,6	0,2	1,7	E6.3	0,55	0,13	0,23			3	0,16	3,36	0,16
Δ15	0,6	0,2	4,75	E10.4	3,95	0,33	0,58			3	0,42	3,91	0,42
Δ16	0,6	0,3	4,55	E10.2+E11.4	12,23	1,07	1,88			4,5	1,34	7,46	1,34
Δ17	0,6	0,2	5,24	E11.2	6,1	0,47	0,82			3	0,58	4,28	0,58
Δ20	0,6	0,2	4,03	E5.2	5,93	0,59	1,03			3	0,74	4,62	0,74
Δ21	0,6	0,2	2,21	E9.2	2,12	0,38	0,67			3	0,48	4,06	0,48
Δ23	0,6	0,2	3,98	E6.1+E10.3	9	0,91	1,58			3	1,13	5,49	1,13
Δ24	0,6	0,2	4,88	E2.3	7,81	0,64	1,12			3	0,8	4,76	0,8
∆24.A	0,6	0,2	1,7	E6.2+E7.3	1,89	0,44	0,78			3	0,56	4,22	0,56
Δ25	0,6	0,2	4,88	E2.2+E3.3	14,94	1,22	2,14			3	1,53	6,37	1,53
Δ25.A	0,6	0,2	1,56	E7.2+E8.3	1,9	0,49	0,85			3	0,61	4,34	0,61
Δ26	0,6	0,2	4,88	E3.2+E4.3	13,57	1,11	1,95			3	1,39	6,06	1,39
Δ26.A	0,6	0,2	1,65	E8.2	0,93	0,22	0,39			3	0,28	3,62	0,28
Δ27	0,6	0,2	4,88	E5.3	9,7	0,8	1,39			3	0,99	5,19	0,99
Δ27.A	0,6	0,2	2,38	E9.3	2,11	0,35	0,62			3	0,44	3,98	0,44

Πίνακας 4-19 Φορτία οροφής 2°υ ορόφου

Η επιβολή των γραμμικά κατανεμημένων φορτίων στο λογισμικό προσομοίωσης έγινε ως εξής: Εντολή: Assign → Frame Loads → Distributed

oad Patter	n Name			its (N , m , C 🔄 💌
oad Type Force Coord Sys Direction	and Direction s C Mom GLOBAL Gravity	ents	Options	xisting Loads Existing Loads xisting Loads
rapezoidal	Loads			4
Distance	0,	0,25	0,75	- 4. 1.
Load	0,	0,	0,	0,
Relation Relation	ative Distance	from End-I	C Absolute Di	stance from End-I
Uniform Loa	be			
Load	0.	-	ОК	Cancel

Εικόνα 4-55 Επιβολή γραμμικών φορτίων

Εικόνα 4-56 Τρισδιάστατη εικόνα φορέα με γραμμικά φορτία

4.3.10.4 Προσομοίωση φορτίων ανελκυστήρα και κλιμακοστασίων

Όσον αφορά το φορτίο του ανελκυστήρα, σύμφωνα με τις τότε ισχύουσες διατάξεις και σύμφωνα με την εφημερίδα της κυβέρνησης, υπολογίζεται φορτίο 1500Kg ανά 100kg ωφέλιμου φορτίου. Δηλαδή, προκύπτει συντελεστής ασφάλειας ίσος με 15. Η επιφάνεια του ανελκυστήρα είναι A=1,62m², στην οποία αντιστοιχεί ωφέλιμο φορτίο 9 ατόμων, δηλαδή W=675Kg. Συνεπώς, πρέπει να ασκηθεί συνολικά στον ανελκυστήρα κινητό φορτίο:

 $W_{\alpha\nu\epsilon\lambda\kappa}$ = 15*675=10.125kg $\rightarrow W_{\alpha\nu\epsilon\lambda\kappa}$ = 10.125kg

Αυτό το φορτίο επιβάλλεται απλουστευτικά στους τέσσερις γωνιακούς κόμβους των επιφανειακών στοιχείων των τοιχωμάτων του ανελκυστήρα.

	ΥΔΡΑΥΛΙΚΟΙ ΑΝΕΛΚΥΣΤΗΡΕΣ ΜΕ ΜΙΑ Η ΔΥΟ ΑΥΤΟΜΑΤΕΣ ΠΟΡΤΕΣ (ΤΗΛΕΣΚΟΠΙΚΕΣ)										
	0.0541140	ΜΕΓΙΣΤΟ		ΜΕΓΙΣΤΟ ΕΛΑΧΙΣΤΟ		ΕΝΔΕΙΚΤΙΚΕΣ		ΔΙΑΣΤΑΣΕΙΣ ΦΡΕΑΤΙΟΥ			
ΑΤΟΜΑ	ΦΟΡΤΙΟ Kg	ΘΑΛΑΜΟΥ	ΘΑΛΑΜΟΥ	ΘΑΛΑΜΟΥ	ΘΥΡΑΣ	ME MIA AYTOMATH NOPTA	ΜΕ ΔΥΟ ΑΥΤΟΜΑΤΕΣ ΠΟΡΤΕΣ				
		m2	m2	mm	mm	mm	mm				
3	225	0.70	0.60	800x850	700	1250x1250	1250x1410				
4	300	0.90	0.79	900x1000	700	1350x1400	1350x1560				
5	375	1.17	0.98	1000x1150	700	1450x1550	1450x1750				
6	450	1.30	1.17	1100x1150	800	1600x1550	1600x1750				
7	525	1.45	1.31	1100x1300	800	1600x1700	1600x1900				
8	600	1.60	1.45	1100x1400	800	1600x1800	1600x2000				
9	675	1.75	1.59	1100x1550	800	1650x1950	1650x2110				
10	750	1.90	1.73	1200x1550	800	1750x1950	1750x2110				
11	825	2.05	1.87	1200x1600	800	1750x2000	1750x2160				
12	900	2.20	2.01	1300x1650	900	1850x2050	1850x2210				
13	975	2.35	2.15	1100x2100	900	1650x2500	1650x2660				
13	1000	2.40	2.15	1400x1600	900	1950x2000	1950x2160				
14	1050	2.50	2.29	1300x1900	900	1850x2300	1850x2460				
15	1125	2.65	2.43	1300x2000	900	1850x2400	1850x2560				
16	1200	2.80	2.57	1350x2000	1000	1900x2400	1900x2560				

Πίνακας 4-20 Φορτίο ανελκυστήρα

Τέλος, σχετικά με τα φορτία των κλιμακοστασίων, επελέγη να προσομοιωθούν με επιφανειακά στοιχεία μηδενικού βάρους και το ίδιον βάρος τους να επιβληθεί χειροκίνητα. Είναι ίσο με 6KN/m² (με τις επικαλύψεις) και κινητό 3,5KN/m² βάσει EC1.

4.3.11 Στήριξη φορέα

4.3.11.1 Προσομοίωση πακτωμένου φορέα

Το προς αποτίμηση ή ανασχεδιασμό κτίριο προσομοιώνεται εν γένει σύμφωνα με τον ΕΚ 8-1. Η προσομοίωση πρέπει να λαμβάνει υπόψη τις πραγματικές συνθήκες στήριξης στο έδαφος. Σε κτίρια με υπόγειο που περιβάλλεται από μονολιθικά τοιχώματα, μπορεί να θεωρείται πλήρης πάκτωση των στύλων του ισογείου στη βάση τους. Σε όλες τις άλλες περιπτώσεις πρέπει να αιτιολογείται επαρκώς η ενδεχόμενη παραδοχή πάκτωσης στη στάθμη θεμελίωσης, λαμβάνοντας υπόψη και το θέμα της αλληλεπίδρασης εδάφους-θεμελίωσης.

Θεωρούμε αρχικά το φορέα μας πακτωμένο. Αυτό πραγματοποιείται με δέσμευση όλων των κόμβων στήριξης με πλήρεις πακτώσεις.

Eντολή: Assign \rightarrow Joint \rightarrow Restraints

7	Translation 1	•	Rotation about 1
7	Translation 2	•	Rotation about 2
•	Translation 3	•	Rotation about 3
ast	Restraints	7 4	•

Εικόνα 4-57 Προσομοίωση πακτώσεων

Εικόνα 4-58 Στηρίξεις φορέα - Πακτώσεις

4.3.11.2 Περιγραφή και προσομοίωση θεμελίωσης

Στο τεχνικό έργο που εξετάζεται στα πλαίσια της παρούσας εργασίας, το φαινόμενο αλληλεπίδρασης εδάφους-θεμελίωσης-ανωδομής λαμβάνεται υπόψη μέσω των ελατηριακών στηρίξεων στη βάση των μεμονωμένων πεδίλων. Συγκεκριμένα, σε κάθε επιφάνεια θεμελίωσης τοποθετούνται ελατήρια κατά την κατακόρυφο, ώστε να γίνεται έλεγχος για τυχόν ανασήκωμα θεμελίου, με μηχανικά χαρακτηριστικά τα οποία προσδιορίζονται με βάση τα χαρακτηριστικά του εδάφους θεμελίωσης και της θεμελίωσης (τύπος θεμελίωσης, γεωμετρικά χαρακτηριστικά). Στην συνήθη ανάλυση της αλληλεπίδρασης εδάφους – θεμελίωσης, γεωμετρικά χαρακτηριστικά). Στην συνήθη ανάλυση της αλληλεπίδρασης εδάφους – θεμελίωσης, γεωμετρικά χαρακτηριστικά). Στην συνήθη ανάλυση της αλληλεπίδρασης εδάφους – θεμελίωσης, η αναπαράσταση του υποστηρίζοντάς εδάφους με κατανεμημένα κατακόρυφα ελατήρια Winkler έχει αποδειχθεί ιδιαιτέρως χρήσιμη λόγω της απλότητάς της, και της ικανότητά της να αναδεικνύει τα μη- γραμμικά χαρακτηριστικά τον ελαστικό με τον ελαστικό προσομοιώνουν την αποκόλληση του θεμελίου από το έδαφος ενώ με τον ελαστικό– ιδεωδώς πλαστικό καταστατικό νόμο για τα ελατήρια μπορεί να αναπαρασταθεί η κατάσταση εδαφικής διαρροής. Στα πλαίσια του κλασσικού προσομοιώματος Winkler, συνήθως υιοθετούνται οι ακόλουθες παραδοχές:

Μία ενιαία σταθερά ελατηρίου επιλέγεται για όλους τους τύπους φόρτισης (συμμετρικής ή αντιμετρικής), ανεξαρτήτως της απόστασης από το κέντρο της διεπιφάνειας x. Κατά συνέπεια, η επιβολή καθαρής κατακόρυφης δύναμης ή ροπής στο θεμέλιο προκαλεί αντιστοίχως ομοιόμορφη ή τριγωνική κατανομή των πιέσεων επαφής από το έδαφος.

•Ο πόλος περιστροφής του λικνιζόμενου συστήματος παραμένει παγιωμένος στο μέσον της διεπιφάνειας ακόμα και υπό συνθήκες αποκόλλησης.

• Κατά τη διάρκεια δεξιόστροφης (αριστερόστροφης) περιστροφής, η αποκόλληση λαμβάνει χώρα όταν η κατακόρυφη μετακίνηση του αριστερού (δεξιού) άκρου του θεμελίου επανέλθει στο μηδέν.

 Φαινόμενα δευτέρας τάξεως αγνοούνται, ακόμα και στην περίπτωση μεγάλων μετακινήσεων υψίκορμων κατασκευών. Η γεωμετρία του συστήματος του άκαμπτου θεμελίου επί ελατηριωτού εδάφους απεικονίζεται στο παρακάτω σχήμα.

Σχήμα 4-7 Το κλασικό προσομοίωμα δοκού επί ελατηριωτού εδάφους: (α) Η γεωμετρία του συστήματος και (b) Η επαλληλία των δυο τύπων φορτίσεων στο συμβατικό υπολογισμό των τάσεων επαφής

\rm Έδαφος

Από επιτόπου ενδείξεις, χάρτες της περιοχής και πίνακες τους ΕC8 δεχόμαστε ότι πρόκειται για έδαφος κατηγορίας Β: Αποθέσεις πολύ πυκνής άμμου, χαλίκων ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων που χαρακτηρίζονται βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος.

</u> Θεμελίωση

Η στάθμη θεμελίωσης βρίσκεται στο -2,20m. Περιμετρικά του κτιρίου υπάρχει ενιαίο τοίχωμα πάχους 20cm και ύψους 2,20m το οποίο προσομοιώνεται με επιφανειακό στοιχείο τύπου shell thin πάχους 0,2m και απομειωμένη δυσκαμψία 0,7, κατ' αντιστοιχία με τα τοιχώματα.

Shell	Section Data	Property/Sumiess in	ouncation ractors
		Property/Stiffness Modifiers for Ana	alysis
Section Name	upogeio	Membrane f11 Modifier	0,7
Section Notes	Modify/Show	Membrane (22 Modifier	0,7
	Display Color	Membrane f12 Modifier	0,7
Туре		Dendice and Medice	0.7
📀 Shell - Thin		Bending mili Modiner	0.7
C Shell - Thick		Bending m22 Modifier	10,7
C Plate - Thin		Bending m12 Modifier	0,7
C Plate Thick		Shear v13 Modifier	1
C Membrane		Shear y23 Modifier	1
Shell - Layered/No	onlinear /Charu Lawar Distinguises	Mass Modifier	1
imodily.	Show Layer Denniton	Mass Mouner	1
Material		Weight Modifier	1
Material Name	+ beton		
Material Angle	0,		Cancel
Thickness		Εικόνα 4-61 Προσομοία	οση απομειωμένη
Membrane	0,2	δυσκαιμίας στοιχ	τίων υπονείου
Bending	0,2	συσκαμφιας στοιχά	
Concrete Shell Section	Design Parameters		
Modify/Show 3	Shell Design Parameters		
Stiffness Modifiers	- Temp Dependent Properties		
Set Modifiers	Thermal Properties		
ŪΚ	Cancel		

🖊 Προσομοίωση πεδιλοδοκού

Στη βάση των εξωτερικών υποστυλωμάτων υπάρχει πεδιλοδοκός, ενώ στα εσωτερικά έχουμε μεμονωμένα πέδιλα. Η πεδιλοδοκός προσομοιώνεται με γραμμικό στοιχείο σταθερής διατομής κατά μήκος και έχει συντελεστή απομείωσης δυσκαμψίας ίσο με 0,4, όπως οι δοκοί.

Εικόνα 4-62 Σχεδιασμός διατομής πεδιλοδοκού

roperty/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	0,4
Moment of Inertia about 3 axis	0,4
Mass	1
Weight	1

Εικόνα 4-63 Απομείωση δυσκαμψίας πεδιλοδοκού

Η πεδιλοδοκός αντιμετωπίζεται ως δοκός επί ελαστικού εδάφους. Κατά μήκος αυτής θα τοποθετηθούν μετακινησιακά ελατήρια, που θα προσομοιώνουν τον δείκτη εδάφους, η σταθερά των οποίων εξαρτάται από τα χαρακτηριστικά της πεδιλοδοκού. Μετά την εφαρμογή των κριτηρίων Hetenyi και Mayerhof και την κατάταξη της πεδιλοδοκού σε σχέση με τη δυσκαμψία της, προέκυψαν οι παρακάτω τιμές του δείκτη εδάφους σε γραμμική κατανομή και Winkler.

ΠΕΔΙΛΟΔΟΚΟΣ	
В	0,6
h	0,3
I	0,0009488
Es	50000
E _b	25330000
v	0,3
k _{winkler} (KN/m ³)	53365
k _{winkler} (KN/m)	26255

🖊 Μεμονωμένα πέδιλα

Τα πέδιλα είναι ορθογωνικής διατομής, οι διαστάσεις των οποίων βρίσκονται στον επόμενο πίνακα. Καθένα απ' αυτά προσομοιώθηκε με τρία ελατήρια. Ένα μετακινησιακό και δυο στροφικά (περί Χ και Υ). Οι σταθερές αυτών υπολογίζονται με βάση τις παρακάτω σχέσεις (Γκαζέτας, 2010) για:

Πίνακας 4-21 Στοιχεία πεδιλοδοκού

ΣΤΑΘΕΡΕΣ Ε	ΣΤΑΘΕΡΕΣ ΕΔΑΦΟΥΣ					
E (KPa)	50000					
v	0,3					
G (KPa)	19230,77					

Θεμελίωση Τυχόντος σχήματος τ κατόψεως σε Ομοιογενή Ημίχωρο

		17
	Στατική Δυσκαμψία Κ Τυχόν Σχήμα (2B ,2L, A _b)	Στατική Δυσκαμψία Κ Τετράγωνο (28 × 28)
Κατακόρυφη Ζ	$\begin{split} K_z &= \frac{2.GL}{1-v} \left(0.73 + 1.54 \chi^{ 0.75} \right) \\ \chi &= A_b / 4 L^2 \end{split}$	$K_2 = \frac{4.54 \text{ G B}}{1 \cdot \text{v}}$
Οριζόντια γ	$K_{\gamma} = \frac{2 G L}{2 - v} (2 + 2.5 \chi^{0.85})$	$K_{y} = \frac{9 G B}{2 \cdot v}$
Οριζόντια χ	$K_x = K_y - \frac{0.2}{0.75 - v} GL(1 - B/L)$	$K_x = K_y$
Περιστροφική εχ	$K_{\theta,rx} = \frac{G}{1-v} \left(l_{bx} \right)^{0.75} \ \left(\frac{L}{B} \right)^{0.25} (2.4 + 0.5 \frac{B}{L})$	$K_{\theta,rx} = \frac{3.6 \ G \ B^3}{1 - v}$
Περιστροφική ry	$\mathcal{K}_{\theta,ry} = \frac{G}{1-v} \left(l_{bw} \right)^{0.75} \left[3 \left(\frac{L}{B} \right)^{0.15} \right]$	$K_{\theta,ry} = K_{\theta,rx}$
Στρεπτική t	$K_{t} = G(J_{t})^{0.75} \left[4 + 11 \left(1 - \frac{B}{L}\right)^{10}\right]$	$K_t = 8.3 \ G \ B^3$

G, v, p

28] K

Πίνακας	4-22	Δυσκαμι	μία	πέδιλου
---------	------	---------	-----	---------

ΤΕΤΡΑΓΩΝΙΚΑ ΘΕΜΕΛΙΑ							
A / A		ΠΛΑΤΟΣ	Kz	Κ _{θ, rx}	Κ _{θ,ry}		
A/A		В	(KN/m)	(KN*m)	(KN*m)		
K1	1	1	124725	98901	98901		
К2	1	1	124725	98901	98901		
К3	1	1	124725	98901	98901		
К4	1	1	124725	98901	98901		
К5	1	1	124725	98901	98901		
К6	1	1	124725	98901	98901		
К8	1	1	124725	98901	98901		
К9	1	1	124725	98901	98901		
K10	1	1	124725	98901	98901		
K11	0,5	0,5	62363	12363	12363		
K12	0,5	0,5	62363	12363	12363		
K13	0,75	0,75	93544	41724	41724		
K16	1	1	124725	98901	98901		
K17	1	1	124725	98901	98901		
K17.A	0,75	0,75	93544	41724	41724		
K18	1	1	124725	98901	98901		
K19	1	1	124725	98901	98901		
К20	1	1	124725	98901	98901		
K21	1	1	124725	98901	98901		

Πίνακας 4-23 Στατική δυσκαμψία μεμονωμένων τετραγωνικών πεδίλων

	ΤΥΧΟΝ ΣΧΗΜΑ								
A/A	ΜΗΚΟΣ L	ΠΛΑΤΟΣ Β	Х	۱ _{bx}	K _z (KN/m)	K _{θ,rx} (KN*m)	K _{θ,ry} (KN*m)		
K7	1,3	1	0,77	0,87	142494	80366	77002		
K14	1,3	1	0,77	0,87	142494	80366	77002		
K15	1	0,88	0,88	0,45	116662	46112	45938		

Πίνακας 4-24 Στατική δυσκαμψία μεμονωμένων ορθογωνικών πεδίλων

Eντολές: Assign \rightarrow Joint \rightarrow Springs: Translation Z, Rotation X, Rotation Y

pring Direction	
Coordinate System G	LOBAL 🗾
Spring Stiffness	
Translation Global $ imes$	0,
Translation Global Y	0,
Translation Global Z	116662
Rotation about Global $ imes$	46112
Rotation about Global Y	45938
Rotation about Global Z	0,
)ptions	
C Add to Existing Sprin	ngs
 Replace Existing Sp 	orings
C Delete Existing Sprin	ngs
Advanced	I

Εικόνα 4-64 Προσομοίωση ελατηρίων στο SAP

Εικόνα 4-65 Τρισδιάστατη εικόνα φορέα με προσομοιωμένο υπόγειο

Εικόνα 4-66 Τρισδιάστατη εικόνα φορέα με ελατήρια

Εικόνα 4-67 Τρισδιάστατη εικόνα φορέα

5 Ανάλυση υφιστάμενου κτιρίου με ελαστικές μεθόδους

5.1 Ιδιομορφική ανάλυση

5.1.1 Γενικά

Κατά τη διαδικασία αποτίμησης της υφιστάμενης κατασκευής έγιναν ελαστικές αναλύσεις με το λογισμικό SAP2000 V15. Αρχικά, έγινε ιδιομορφική ανάλυση στις δυο διευθύνσεις X και Y, στο προσομοίωμα με πάκτωση στη θεμελίωση και σε αυτό με αλληλεπίδραση εδάφους θεμελίωσης, για το προσδιορισμό των δυναμικών χαρακτηριστικών της κατασκευής, αλλά και τον έλεγχο επίδρασης των ανωτέρων ιδιομορφών στη συμπεριφορά του δομήματος. Η εξίσωση από την οποία προκύπτουν οι ιδιομορφές του κτιρίου, που είναι και αυτή που εφαρμόζεται από το πρόγραμμα, είναι η $|[K] - [M] \cdot \omega^2| = 0$. Από τα ποσοστά συμμετοχής της μάζας που αντιστοιχούν στη θεμελιώδη ιδιομορφή για κάθε διεύθυνση εκτιμάται η επίδραση των ανώτερων ιδιομορφών στη συμπεριφορά των ανώτερων ιδιομορφών στη συμπεριφορή των ανώτερων ιδιομορφή για κάθε διεύθυνση εκτιμάται η επίδραση των ανώτερων ιδιομορφών στη συμπεριφορά του δολαμβάνεται υπόψη η απόκριση των αυμίας σύμφωνα με το σχήμα της θεμελιώδους ιδιομορφής της. Θα λαμβάνεται υπόψη η απόκριση όλων των ιδιομορφών ταλάντωσης που συμβάλλουν σημαντικά στη συνολική απόκριση. Η απαίτηση αυτή θεωρείται ότι ικανοποιείται εάν μπορεί να αποδειχθεί οποιοδήποτε από τα ακόλουθα:

 - το άθροισμα των δρωσών ιδιομορφικών μαζών για τις ιδιομορφές που λαμβάνονται υπόψη είναι τουλάχιστον το 90% της συνολικής μάζας του φορέα

- λαμβάνονται υπόψη όλες οι ιδιομορφές με δρώσες ιδιομορφικές μάζες μεγαλύτερες από το 5% της συνολικής μάζας.

5.1.2 Ιδιομορφική ανάλυση πακτωμένου φορέα

Ειδικά για τον πακτωμένο φορέα χρησιμοποιήθηκε το πρώτο κριτήριο. Ακολουθούν οι πίνακες με τα δυναμικά χαρακτηριστικά του.

		TABLE:	Modal Pa	rticipating	Mass Ratio	DS		
OutputCase	StepNum	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
MODAL	1	0,3893	0,2097	0,1019	0,0024	0,2097	0,1019	0,0024
MODAL	2	0,2827	0,0866	0,6096	0,2754	0,2963	0,7115	0,2778
MODAL	3	0,2442	0,4586	0,0083	0,3667	0,7549	0,7198	0,6444
MODAL	4	0,2026	0,0432	0,0268	0,0962	0,7981	0,7466	0,7407
MODAL	5	0,1948	0,0034	0,0318	0,0308	0,8015	0,7784	0,7715
MODAL	6	0,1432	0,006	0,0116	0,0002	0,8074	0,79	0,7717
MODAL	7	0,1375	0,0038	0,0176	0,0213	0,8113	0,8076	0,793
MODAL	8	0,1323	0,0001	0,0239	0,0098	0,8114	0,8315	0,8028
MODAL	9	0,1307	0,0089	0	0,0022	0,8203	0,8316	0,805
MODAL	10	0,1283	0,01	0,0019	0,002	0,8302	0,8334	0,807
MODAL	11	0,127	0,0015	0,0002	0,0019	0,8318	0,8336	0,8089
MODAL	12	0,1206	0,004	0,002	0,0045	0,8358	0,8356	0,8134
MODAL	13	0,1182	0,0353	0,0008	0,0108	0,8711	0,8364	0,8242
MODAL	14	0,114	0	0,0001	0,0011	0,8711	0,8364	0,8253
MODAL	15	0,1093	0,0001	0,0009	0,0003	0,8712	0,8374	0,8256
MODAL	16	0,1073	0,0019	0,0048	0	0,8731	0,8421	0,8256
MODAL	17	0,1027	0,0033	0,0003	0,0008	0,8764	0,8425	0,8264
MODAL	18	0,0974	0	0,0051	0,0052	0,8764	0,8476	0,8316
MODAL	19	0,096	0,0004	0,0123	0,0057	0,8768	0,8598	0,8373
MODAL	20	0,0942	0,0002	0,0003	0	0,8769	0,8601	0,8373
MODAL	21	0,0882	0,0495	0,0151	0,0013	0,9264	0,8752	0,8385
MODAL	22	0,0868	0,0004	0,0003	0,0007	0,9268	0,8754	0,8392
MODAL	23	0,0801	0	0,0002	0,0005	0,9268	0,8757	0,8398
MODAL	24	0,0795	0,0243	0,004	0,0234	0,9512	0,8797	0,8632
MODAL	25	0,079	0,0049	0,0007	0,004	0,956	0,8803	0,8671
MODAL	26	0,0773	0,0004	0,0021	0,003	0,9564	0,8825	0,8701
MODAL	27	0,0759	0,0025	0,0054	0,0004	0,9589	0,8879	0,8705
MODAL	28	0,0742	0,002	0,0004	0,0011	0,9608	0,8882	0,8716
MODAL	29	0,0737	0,0001	0	0,0001	0,9609	0,8883	0,8717
MODAL	30	0,0732	0,0055	0,0005	0,0151	0,9664	0,8888	0,8868
MODAL	31	0,0714	0,0002	0,0002	0	0,9666	0,889	0,8868
MODAL	32	0,0696	0,0048	0,0182	0,0078	0,9714	0,9072	0,8946

Πίνακας 5-1 Ιδιομορφές και ποσοστά ταλαντούμενης μάζας πακτωμένου φορέα

Στον παραπάνω πίνακα φαίνονται οι 32 πρώτες ιδιομορφές του κτιρίου. Οι σημαντικότερες από αυτές είναι:

- 4 2^η ιδιομορφή: T₂ = 0,283sec, η οποία είναι μεταφορική κατά τη διεύθυνση Υ με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 60,96%.
- 3^η ιδιομορφή: T₃ = 0,244sec, η οποία είναι μεταφορική κατά τη διεύθυνση X με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 45,86% και ταυτόχρονα στροφική με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 36,67%.

Άρα, οι θεμελιώδεις ιδιοπερίοδοι είναι: T_x =0,244sec και T_y =0,283sec.

Ακολουθούν εικόνες του παραμορφωμένου φορέα στις τρεις πρώτες ιδιομορφές ταλάντωσης του.

Εικόνα 5-1 Πρώτη (1^η) ιδιομορφή πακτωμένου φορέα

Εικόνα 5-2 Δεύτερη (2^η) ιδιομορφή πακτωμένου φορέα

Εικόνα 5-3 Τρίτη (3^η) ιδιομορφή πακτωμένου φορέα

5.1.3 Ιδιομορφική ανάλυση φορέα με Α.Ε.Θ

Ακολουθούν τα δυναμικά χαρακτηριστικά του φορέα που λαμβάνει υπόψη την αλληλεπίδραση εδάφους κατασκευής.

TABLE: Modal Participating Mass Ratios								
OutputCase	StepNum	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	1	0,4936	0,2655	0,1488	0,0334	0,2655	0,1488	0,0334
MODAL	2	0,3734	0,1284	0,5728	0,237	0,3939	0,7217	0,2704
MODAL	3	0,3189	0,3723	0,0169	0,4317	0,7662	0,7385	0,7021
MODAL	4	0,2066	0,0038	0,0076	0,0177	0,77	0,7462	0,7197
MODAL	5	0.1976	0.0032	0.0067	0.0059	0.7732	0.7529	0.7256
MODAL	6	0.1559	0	0.0095	0.0004	0.7732	0.7624	0.726
MODAL	7	0 1502	0.0124	0.0036	0.0001	0 7856	0.766	0 7261
MODAL	8	0 1399	0,0006	0.0109	0.0129	0 7862	0 7769	0 7389
MODAL	9	0,1346	0.0057	0,0105	0,0125	0,7002	0,7787	0,7303
MODAL	10	0,1340	0,0037	0,0015	0,0015	0,7915	0,77856	0,7400
MODAL	10	0,1330	0,0008	0,0008	0,001	0,7920	0,7850	0,7410
MODAL	11	0,1306	0,0079	0,0005	0,0025	0,8005	0,7001	0,7441
MODAL	12	0,1271	0,0006	0	0,0008	0,8011	0,7861	0,7449
MODAL	13	0,1254	0,0024	0	0,0002	0,8035	0,7861	0,7451
MODAL	14	0,1227	0,0022	0,0015	0,0009	0,8057	0,7876	0,746
MODAL	15	0,1208	0,0064	0,0006	0,0063	0,8121	0,7882	0,7523
MODAL	16	0,1164	0,0015	0,0001	0,0001	0,8136	0,7883	0,7524
MODAL	17	0,1156	0,0001	0,0002	0	0,8137	0,7885	0,7524
MODAL	18	0,1143	0,0002	0	0,0008	0,8138	0,7886	0,7531
MODAL	19	0,1109	0,0012	0,0012	0,0003	0,8151	0,7898	0,7534
MODAL	20	0,1075	0,0014	0,0015	0,0005	0,8165	0,7913	0,7539
MODAL	21	0,1057	0	0,0001	0,0002	0,8165	0,7914	0,7541
MODAL	22	0,1028	0,0021	0,0002	0,0002	0,8186	0,7916	0,7543
MODAL	23	0,1024	0,0002	0,0053	0,0022	0,8188	0,7969	0,7564
MODAL	24	0,0988	0,0068	0,0153	0,004	0,8256	0,8122	0,7604
MODAL	25	0,0986	0,0083	0,0022	0,0059	0,8338	0,8144	0,7663
MODAL	26	0.0973	0.0037	0.0019	0.0002	0.8375	0.8162	0.7665
MODAL	27	0.0965	0.0001	0.0006	0.0001	0.8376	0.8168	0.7665
MODAL	28	0.0944	0.0135	0.0004	0.0047	0.8511	0.8173	0 7712
MODAL	29	0.0935	0.0001	0.0001	0.0004	0.8512	0.8174	0 7716
MODAL	30	0,0933	0,0001	0,0001	0,0004	0,8531	0,8176	0 7724
MODAL	31	0.0887	0.002	0,0005	0,0000	0.8556	0,0170	0,7724
MODAL	22	0,0007	0,0024	0	0,0000	0,0550	0,0177	0,7732
MODAL	22	0,0876	0	0.0216	0 0224	0,0550	0,0177	0,7752
MODAL	33	0,0866	0	0,0316	0,0234	0,8556	0,8492	0,7966
MODAL	34	0,0851	0,0072	0,0024	0,0091	0,8628	0,8516	0,8056
MODAL	35	0,0835	0	0,0008	0,0027	0,8628	0,8524	0,8084
MODAL	36	0,0819	0,0015	0,0032	0,0085	0,8644	0,8556	0,8169
MODAL	37	0,0815	0,001	0,0002	0,0011	0,8654	0,8558	0,8179
MODAL	38	0,0789	0,0001	0,0006	0,0034	0,8654	0,8563	0,8213
MODAL	39	0,0777	0	0,0007	0,0004	0,8655	0,857	0,8217
MODAL	40	0,0768	0,0006	0,0117	0,0054	0,8661	0,8688	0,8272
MODAL	41	0,0765	0	0,0023	0	0,8661	0,871	0,8272
MODAL	42	0,0755	0,0005	0,0044	0,0074	0,8665	0,8754	0,8346
MODAL	43	0,0742	0	0,0032	0,0003	0,8665	0,8786	0,8349
MODAL	44	0,0738	0	0,0002	0,0002	0,8665	0,8788	0,8351
MODAL	45	0,073	0,0002	0,0045	0,004	0,8668	0,8833	0,8391
MODAL	46	0,0724	0,0004	0	0,0001	0,8671	0,8833	0,8392
MODAL	47	0,071	0	0,002	0,0006	0,8671	0,8853	0,8398
MODAL	48	0,0704	0,0005	0,0014	0,0005	0,8676	0,8866	0,8403
MODAL	49	0,0693	0,0003	0,0017	0,0023	0,8679	0,8883	0,8426
MODAL	50	0,0682	0,0001	0,0001	0,0002	0,868	0,8884	0,8428
MODAL	51	0.0668	0.0001	0	0.0003	0.8681	0.8884	0.843
MODAL	52	0.066	0	0.0008	0.0008	0.8682	0.8892	0.8439
MODAL	52	0.0651	0	0,0000	0,0000	0,8692	0.8801	0,8439
MODAL	53	0,0031	0	0,0002	0.0005	0,0002	0,0054	0,0439
MODAL	54	0,0040	0 0001	0,0005	0,0005	0,0002	0,0099	0,0443
MODAL	55	0,0629	0,0001	0,0001	0	0,0084	0,89	0,8443
MODAL	50	0,0028	0,0001	0.0001	0.0000	0,0084	0,89	0,8444
NODAL	5/	0,0617	0,0001	0,0001	0,0002	0,8685	0,8901	0,8446
MODAL	58	0,0614	0,0002	0,0001	0	0,8688	0,8902	0,8446
MODAL	59	0,061	0	0	0	0,8688	0,8902	0,8446
MODAL	60	0,0606	0	0	0,0001	0,8688	0,8902	0,8447
	61	0,0602	0,0001	0,0001	0,0002	0,8689	0,8904	0,8449
MODAL			0.0001	0	0,0001	0,869	0,8904	0,845
MODAL	62	0,0595	0,0001					
MODAL MODAL MODAL	62 63	0,0595 0,0588	0,0001	0	0	0,8692	0,8904	0,845
MODAL MODAL MODAL MODAL	62 63 64	0,0595 0,0588 0,0582	0,0001 0,0002 0,0003	0	0 0,0002	0,8692 0,8695	0,8904 0,8904	0,845 0,8452
MODAL MODAL MODAL MODAL MODAL	62 63 64 65	0,0595 0,0588 0,0582 0,0574	0,0001 0,0002 0,0003 0	0 0 0,0001	0 0,0002 0	0,8692 0,8695 0,8695	0,8904 0,8904 0,8905	0,845 0,8452 0,8452
MODAL MODAL MODAL MODAL MODAL MODAL	62 63 64 65 66	0,0595 0,0588 0,0582 0,0574 0,0569	0,0001 0,0002 0,0003 0 0,0001	0 0 0,0001 0,0002	0 0,0002 0 0,0004	0,8692 0,8695 0,8695 0,8696	0,8904 0,8904 0,8905 0,8906	0,845 0,8452 0,8452 0,8456

Πίνακας 5-2 Ιδιομορφές και ποσοστά ταλαντούμενης μάζας φορέα με Α.Ε.Θ

Στον παραπάνω πίνακα φαίνονται οι 30 πρώτες ιδιομορφές του κτιρίου. Οι σημαντικότερες από αυτές είναι:

- 4 2^η ιδιομορφή: T₂ = 0,373sec, η οποία είναι μεταφορική κατά τη διεύθυνση Υ με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 57,28%.
- 3ⁿ ιδιομορφή: T₃ = 0,319sec, η οποία είναι μεταφορική κατά τη διεύθυνση X με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 37,23% και ταυτόχρονα στροφική με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 43,17%.

Στο φορέα αυτό οι ιδιομορφές που απαιτούνταν για να πληρείται το κριτήριο με το άθροισμα των δρωσών ιδιομορφικών μαζών του 90% ξεπερνούσαν τις 200 και οδηγούσαν το πρόγραμμα σε αδυναμία επίλυσης. Συγκεκριμένα:

- ✓ Στην 142η ιδιομορφή έχουμε SUMUy=90,006% και SUMUx=88.265%
- ✓ Στην 184η ιδιομορφή έχουμε SUMUy=91,006% και SUMUx=89.592%
- ✓ Στην 106η ιδιομορφή έχουμε SUMUx=88,169% και SUMUy=89,659%
- Στην 171η ιδιομορφή έχουμε SUMUx=89,072% και SUMUy=90,706%

<u>Συμπέρασμα</u>

Απαιτούνται 65 ιδιομορφές για να αυξηθεί κατά 1% το ποσοστό της ταλαντούμενης μάζας του φορέα στη διεύθυνση X και 42 ιδιομορφές στην Y. Μέχρι και την 200^η ιδιομορφή το άθροισμα των δρωσών ιδιομορφικών μαζών τους δεν ξεπερνούσε το 90% της συνολικής μάζας του φορέα. Οπότε, εξετάστηκαν τα υπόλοιπα κριτήρια του EC8 σχετικά με τον αριθμό των ιδιομορφών που λαμβάνονται υπόψη. Σύμφωνα με αυτόν: Εάν οι απαιτήσεις που ορίζονται στην προηγούμενη παράγραφο δεν ικανοποιούνται (π.χ. σε κτίρια με σημαντική συμβολή στρεπτικών ιδιομορφών) ο ελάχιστος αριθμός ιδιομορφών k που λαμβάνεται υπόψη σε μια χωρική ανάλυση πρέπει να ικανοποιεί και τις δύο ακόλουθες συνθήκες: k \geq · 3Vn και T_k \leq 0.2sec, όπου k είναι το πλήθος των ιδιομορφών που ιδιομορφών που λαμβάνονται υπόψη, n είναι το πλήθος των ορόφων πάνω από την θεμελίωση ή πάνω από την άνω επιφάνεια άκαμπτου υπογείου και T_k είναι η περίοδος ταλάντωσης της ιδιομορφής k.

Στο υφιστάμενο κτίριο με n=4 ορόφους, πρέπει k≥6 και T₆≤0,2sec, που ισχύει γιατί T₆=0,148sec. Συνεπώς, πρέπει να ληφθούν υπόψη τουλάχιστον 6 ιδιομορφές. Τελικά, λαμβάνονται υπόψη 67 ιδιομορφές, οι οποίες πλησιάζουν το 90% της ταλαντούμενης μάζας.

Άρα, οι θεμελιώδεις ιδιοπερίοδοι είναι: $T_x=0,319sec$ και $T_y=0,373sec$.

Εικόνα 5-4 Πρώτη (1^η) ιδιομορφή προσομοιωμένου φορέα με ελατήρια

Εικόνα 5-5 Δεύτερη (2^η) ιδιομορφή προσομοιωμένου φορέα με ελατήρια

Εικόνα 5-6 Τρίτη (3^η) ιδιομορφή κτιρίου με ελατήρια

5.1.4 Αξιολόγηση αποτελεσμάτων ιδιομορφικών αναλύσεων

Είναι εμφανές ότι στο κτίριο αυτό (και στις δυο αναλύσεις) πέρα από τις καμπτικές ιδιομορφές κατά X και Y πρέπει να λάβουμε υπόψη και τις στρεπτικές, οι οποίες εμφανίζονται ταυτόχρονα με τις καμπτικές στις πρώτες κιόλας ιδιομορφές. Γενικά, παρατηρείται αύξηση των ιδιοπεριόδων του φορέα που λαμβάνει υπόψη την αλληλεπίδραση εδάφους κατασκευής σε σχέση με τον πακτωμένο. Αυτό ήταν αναμενόμενο διότι το μοντέλο των ελατηρίων Winkler προσδίδει μεγαλύτερη ευκαμψία στο προσομοίωμα. Ταυτόχρονα, υπάρχει δυσκολία εύρεσης του ακριβή αριθμού ιδιομορφές που λαμβάνονται υπόψη είναι τουλάχιστον το 90% της συνολικής μάζας του φορέα), γεγονός που αποδεικνύει τη μεγάλη συμβολή των στρεπτικών ιδιομορφών. Προκύπτει, λοιπόν, ιδιαίτερα σημαντική η ανάγκη προσομοίωσης των τυχηματικών στρεπτικών επιδράσεων. Παρακάτω αναλύεται πως προσομοιώνεται βάσει ΕC8.(παρ. 4.3.3.3)

5.2 Προκαταρκτικές ελαστικές αναλύσεις

Οι ελαστικές μέθοδοι ανάλυσης που μπορούν να χρησιμοποιούνται για την ανάλυση είναι:

- Ελαστική (ισοδύναμη) στατική ανάλυση με καθολικό δείκτη συμπεριφοράς ή τοπικό δείκτη πλαστιμότητας, η οποία αντιστοιχεί στη <<μέθοδο ανάλυσης οριζόντιας φόρτισης>> κατά EC8.
- II. Ελαστική δυναμική ανάλυση με καθολικό δείκτη συμπεριφοράς(q) ή τοπικό δείκτη πλαστιμότητας (m), η οποία αντιστοιχεί στην << ιδιομορφική ανάλυση φάσματος απόκρισης>> κατά EC8.

5.2.1 Δείκτες ανεπάρκειας δομικού στοιχείου

Προκειμένου να προσδιοριστεί το μέγεθος και η κατανομή των απαιτήσεων ανελαστικής συμπεριφοράς στα πρωτεύοντα φέροντα στοιχεία του φορέα ανάληψης των σεισμικών δράσεων, απαιτείται μία προκαταρκτική ελαστική ανάλυση του κτιρίου, έτσι ώστε για κάθε στοιχείο του να υπολογισθούν οι λόγοι- «δείκτες ανεπάρκειας»

 $\lambda = \frac{S_E}{R_m}$

- S_E είναι το εντατικό μέγεθος (ροπή) λόγω των δράσεων του σεισμικού συνδυασμού, όπου η σεισμική δράση λαμβάνεται χωρίς μείωση (q=1)
- R_m είναι η αντίστοιχη διαθέσιμη αντίσταση του στοιχείου, υπολογιζόμενη με βάση τις μέσες τιμές των αντοχών των υλικών.

Οι λόγοι λ υπολογίζονται, τόσο για την αποτίμηση όσο και για τον ανασχεδιασμό, σε κάθε πρωτεύον φέρον στοιχείο. Ο μεγαλύτερος λόγος λ για ένα επιμέρους στοιχείο σε έναν όροφο (το πλέον υπερκαταπονούμενο) θα θεωρείται κρίσιμος λόγος λ για τον όροφο. Οι δείκτες ανεπάρκειας λ συμπίπτουν, πρακτικώς, με τους λόγους "ρ" του ΕΚ 8-3, αν ρ_{min} = 1. Οι λόγοι λ υπολογίζονται μόνο με βάση τις αντοχές σε κάμψη, αφενός για συντόμευση των σχετικών υπολογισμών και αφετέρου διότι, ακόμη και στην περίπτωση που επιλεγεί (συνεκτιμώντας και τις τιμές των λ) ελαστική μέθοδος ανάλυσης, οι έλεγχοι σε τέμνουσα γίνονται με ικανοτική θεώρηση, άρα ελέγχεται η απαίτηση λ<1 για την ικανοτική τέμνουσα. Οι λόγοι λ, πέραν του ότι μπορούν να χρησιμοποιηθούν για τον ορισμό της κανονικότητας, δίνουν και μία πρώτη εικόνα της αντίστασης του κτιρίου σε σεισμό. Π.χ. αν λ>4 για μεγάλο αριθμό στοιχείων (άνω του 1/3 του συνόλου), είναι σαφής η ανεπάρκεια και θα περίττευε περαιτέρω αποτίμηση του κτιρίου ορόφου. Για τον προσδιορισμό του κρίσιμου λόγου δεν είναι απαραίτητο να λαμβάνονται υπόψη οι δοκοί εκτός εάν πρόκειται για δοκούς κυρίων πλαισίων σε αμιγώς πλαισιακά συστήματα.

5.2.2 Προϋποθέσεις εφαρμογής ελαστικών μεθόδων

Το πεδίο εφαρμογής κάθε μεθόδου εξαρτάται από τα μορφολογικά χαρακτηριστικά του κτιρίου, τα οποία επηρεάζουν τη συμπεριφορά του υπό σεισμικές δράσεις. Το κτίριο θεωρείται ως μορφολογικά κανονικό όταν ικανοποιούνται οι αναφερόμενες στον ΕΚ 8-1 συνθήκες. Ειδικότερα, για τα υφιστάμενα κτίρια μπορούν εναλλακτικά να ικανοποιούνται όλες οι παρακάτω συνθήκες:

- Κανένας επιμέρους φορέας ανάληψης σεισμικών δράσεων δεν διακόπτεται καθ' ύψος ούτε συνεχίζει σε διαφορετικό φάτνωμα.
- ΙΙ. Κανένας επιμέρους φορέας ανάληψης σεισμικών δράσεων δεν συνεχίζει στον γειτονικό όροφο σε εκτός επιπέδου εσοχή.

Εικόνα 5-7 Παραδείγματα μη κανονικότητας καθ' ύψος

III. Το κτίριο δεν περιλαμβάνει όροφο του οποίου ο μέσος δείκτης ανεπάρκειας λ_k υπερβαίνει το 150% του μέσου δείκτη ανεπάρκειας ενός γειτονικού (υποκείμενου ή υπερκείμενου) ορόφου, όπου :

$$\lambda_k = \frac{\sum_{1}^n \lambda_i * V_{Si}}{\sum_{1}^n V_{Si}}$$

Ο όροφος k του οποίου ο λόγος $\lambda_k > 1.5\lambda_{k-1}$ ή $\lambda_k > 1.5\lambda_k+1$ ονομάζεται καμπτοδιατμητικώς ασθενής όροφος. Η συνθήκη αυτή δεν είναι απαραίτητο να ελέγχεται όταν $\lambda_k < 1.0$. Στη σχέση αυτή, λ_i είναι ο δείκτης ανεπάρκειας για το κύριο στοιχείο i του ορόφου, V_{si} είναι η αντίστοιχη δρώσα τέμνουσα (από ελαστική ανάλυση για q=1), και n ο αριθμός των κύριων στοιχείων του ορόφου 'k'.

IV. Το κτίριο δεν περιλαμβάνει όροφο του οποίου, για μία δεδομένη διεύθυνση της σεισμικής δράσης, το πηλίκο του λόγου λ στοιχείου που βρίσκεται στη μία πλευρά του ορόφου, προς τον αντίστοιχο λόγο στοιχείου που βρίσκεται σε οιαδήποτε άλλη πλευρά (του ορόφου) υπερβαίνει το 1,5. Ο κανόνας αυτός αφορά ορόφους των οποίων το υπερκείμενο διάφραγμα δεν είναι ευπαραμόρφωτο εντός του επιπέδου του. Ένας τέτοιος όροφος ονομάζεται στρεπτικώς ασθενής όροφος.

5.2.3 Ελαστική στατική ανάλυση

Η μέθοδος αυτή αναφέρεται στον ΕC8 ως: <<Μέθοδος ανάλυσης οριζόντιας φόρτισης>>. Γενικά αυτός ο τύπος ανάλυσης μπορεί να εφαρμοστεί σε κτίρια η απόκριση των οποίων σε κάθε κύρια διεύθυνση δεν επηρεάζεται σημαντικά από τις συμβολές ιδιομορφών ταλάντωσης υψηλότερων από την θεμελιώδη ιδιομορφή. Η απαίτηση της παρούσας θεωρείται ότι ικανοποιείται σε κτίρια που ικανοποιούν τους ακόλουθους δύο όρους:

α) έχουν θεμελιώδεις περιόδους ταλάντωσης T_1 , στις δύο κύριες διευθύνσεις, μικρότερες από τις ακόλουθες τιμές $T_1 \leq 4T_c$ και $T_1 \leq 2$ sec, όπου η T_c δίνεται παρακάτω

β) ικανοποιούν τα κριτήρια για κανονικότητα σε όψη

<u>Τέμνουσα δύναμη βάσης</u>:

Η σεισμική τέμνουσα δύναμη βάσης F_b, για κάθε οριζόντια διεύθυνση κατά την οποία μελετάται το κτίριο, θα καθορίζεται με χρήση της ακόλουθης έκφρασης:

$$F_b = S_e(T_1) * m * \lambda$$

Όπου:

- S_e (T₁) είναι η τετμημένη του φάσματος σχεδιασμού στην περίοδο T₁
- T₁ Είναι η θεμελιώδης ιδιοπερίοδος ταλάντωσης του κτιρίου για οριζόντια κίνηση στην εξεταζόμενη διεύθυνση
- m είναι η συνολική μάζα του κτιρίου πάνω από την θεμελίωση ή πάνω από την άνω επιφάνεια άκαμπτης βάσης

λ είναι συντελεστής διόρθωσης, η τιμή του οποίου ισούται με λ = 0,85 εάν T₁ < 2 T_c και το κτίριο έχει πάνω από δύο ορόφους, ή λ = 1,0 σε κάθε άλλη περίπτωση.

ΣΗΜΕΙΩΣΗ

Ο συντελεστής λ εκφράζει το γεγονός ότι σε κτίρια με τουλάχιστον τρεις ορόφους και μεταφορικούς βαθμούς ελευθερίας σε κάθε οριζόντια διεύθυνση, η δρώσα ιδιομορφική μάζα της 1^{ης} θεμελιώδους ιδιομορφής είναι μικρότερη, κατά 15% κατά μέσον όρο, από τη συνολική μάζα του κτιρίου.

Κατανομή των οριζόντιων σεισμικών φορτίων:

Το σχήμα των θεμελιωδών ιδιομορφών στις οριζόντιες διευθύνσεις της ανάλυσης του κτιρίου μπορεί να υπολογιστεί με χρήση μεθόδων δυναμικής ή μπορεί να προσεγγιστεί από οριζόντιες μετακινήσεις που αυξάνονται γραμμικά με το ύψος του κτιρίου. Τα σεισμικά εντατικά μεγέθη θα καθορίζονται με την εφαρμογή, στα δύο επίπεδα προσομοιώματα, οριζόντιων φορτίων F_i σε όλους τους ορόφους.

$$F_i = F_b \frac{s_i * m_i}{\sum s_j * m_j}$$

Όπου:

Fi είναι το οριζόντιο φορτίο που ασκείται στον όροφο i Fb είναι η σεισμική τέμνουσα βάσεως σύμφωνα με την παραπάνω έκφραση si, sj είναι οι μετακινήσεις των μαζών mi, mj που αντιστοιχούν στην θεμελιώδη ιδιομορφή

m_i, m_j είναι οι μάζες ορόφων

5.2.3.1 Προσδιορισμός ταλαντούμενης μάζας

Δημιουργούμε το σεισμικό συνδυασμό φόρτισης G+0.3Q, όπου G τα μόνιμα και Q τα κινητά φορτία και προσδιορίζουμε τις αξονικές δυνάμεις των υποστυλωμάτων, προκειμένου να υπολογιστεί η ταλαντούμενη μάζα για την ελαστική στατική ανάλυση.

Eντολές: Define \rightarrow Load Combinations \rightarrow Add New Combo \rightarrow Linear Add, Scale factor, Load case type

oad Combination	Name (User-Generated)	G+0,3Q	
otes		Modify/Show	Notes
oad Combination Typ	pe	Linear Add	•
ptions			
4	P		
Convert to User L	oad Combo Create Nonli	inear Load Case from l	.oad Combo
Convert to User L	oad Combo Create Nonli	inear Load Case from l	.oad Combo
Eonvert to User L	Load Combo	inear Load Case from I	.oad Combo
Eonvert to User L efine Combination of Load Case Nar MONIMA	oad ComboCreate Nonli Load Case Results meLoad Case Type ▼ Linear Static	Scale Factor	.oad Combo
Eonvert to User L efine Combination of Load Case Nat MONIMA MONIMA	oad Combo Create Nonli Load Case Results me Load Case Type ↓ Linear Static Linear Static	Scale Factor	Load Combo
Eonvert to User L efine Combination of Load Case Nai MONIMA MONIMA KINHTA	Load Combo Load Case Results me Load Case Type ↓ Linear Static Linear Static	Scale Factor 1, 0,3	_oad Combo
Convert to User L efine Combination of Load Case Nar MONIMA MONIMA KINHTA	oad Combo Create Nonli Load Case Results me Load Case Type ▼ Linear Static Linear Static Linear Static	Scale Factor	_oad Combo
Eonvert to User L efine Combination of Load Case Nat MONIMA MONIMA KINHTA	oad Combo Load Case Results me Load Case Type ▼ Linear Static Linear Static	Scale Factor	_oad Combo

Εικόνα 5-8 Δημιουργία συνδυασμού φόρτισης G+0.3Q

Ι. Πακτωμένου Φορέα

Ειδικά για τον ανελκυστήρα, ο οποίος παραλαμβάνει μεγάλη αξονική , δημιουργήθηκαν κάποια « Section Cuts» περιμετρικά αυτού μέσω τον οποίων υπολογίστηκε πόση αξονική δέχεται συνολικά στη βάση του.

TABLE: Section Cut Forces - Analysis								
SectionCut	OutputCase	F1	F2	F3	Αθροισμα			
Text	Text	KN	KN	KN	(KN)			
1A	G+0,3Q	-4,744	-91,659	18,208				
1B	G+0,3Q	-2,65	31,184	20,674	100 700			
1C	G+0,3Q	-29,065	-7,088	265,727	498,700			
1D	G+0,3Q	25,331	38,74	194,097				
2A	G+0,3Q	1,694	-81,063	2,062				
2B	G+0,3Q	-6,253	11,002	18,241	155 142			
2C	G+0,3Q	-15,605	51,482	89,709	155,145			
2D	G+0,3Q	15,536	-1,795	45,131				
isogeioA	G+0,3Q	0,709	5,932	159,771				
isogeioB	G+0,3Q	10,675	-3,874	70,701	1026 607			
isogeioC	G+0,3Q	6,511	-6,554	467,739	1020,007			
isogeioD	G+0,3Q	-3,034	-15,581	328,396				

Πίνακας 5-3 Αξονικές δυνάμεις τοιχωμάτων ανελκυστήρα

ΣΤΟΙΧΕΙΟ	ΙΣΟΓΕΙΟΥ	1 ^{ου} ΟΡΟΦΟΥ	2 ^{ου} ΟΡΟΦΟΥ
K1	-351,678	-167,712	-39,972
К2	-610,332	-295,614	-56,614
К3	-592,862	-292,189	-60,347
К4	-603,047	-309,509	-60,583
К5	-630,37	-319,881	-56,893
К6	-348,993	-190,398	-38,909
К7	-441,574	-170,623	-48,24
К8	-430,362	-211,709	-45,126
К9	-868,758	-420,914	-73,11
K10	-787,54	-422,82	-60,079
K11	-355,16	-256,811	-41,02
K12	-121,908	-98,941	-34,9
K13	-252,815	-155,274	-31,501
K14	-328,839	-210,963	-51,589
K15	-258,363	-120,731	-28,626
К16	-524,338	-251,621	-64,994
K17	-529,624	-315,477	-46,475
K17.A	-341,054	-201,777	
K18	-151,664	-85,892	
К19	-151,095	-72,993	
K20	-266,651	-136,328	
K21	-244,867	-115,012	
ΑΝΕΛΚΥΣΤΗΡΑΣ	-1026,607	-498,706	-155,143
ΑΘΡΟΙΣΜΑ (ΚΝ)	-10218,501	-5321,895	-994,121
ΒΑΡΟΣ ΟΡΟΦΟΥ (ΚΝ)	5890,727	4327,774	994,121
MAZA (KNm ⁻¹ sec ²)	589,073	432,777	99,412
m _{tot}	1121,262		

Πίνακας 5-4 Υπολογισμός ταλαντούμενης μάζας πακτωμένου φορέα

ΙΙ. Φορέα με Α.Ε.Θ

	TABLE: Section Cut Forces - Analysis							
SectionCut	OutputCase	F1	F2	F3	Αθροισμα			
Text	Text	KN	KN	KN	(KN)			
1A	G+0,3Q	-10,78	-132,544	36,804				
1B	G+0,3Q	-5,451	99,054	41,489	662 466			
1C	G+0,3Q	-91,713	-32,452	333,357	003,400			
1D	G+0,3Q	113,378	39,201	251,816				
2A	G+0,3Q	56,578	-92,671	12,39				
2B	G+0,3Q	-39,07	34,293	7,678	172 065			
2C	G+0,3Q	-82,14	52,194	116,91	172,005			
2D	G+0,3Q	65,146	-11,634	35,887				
isogeioA	G+0,3Q	2,32	-9,239	261,65				
isogeioB	G+0,3Q	28,09	-26,015	190,741	1154 900			
isogeioC	G+0,3Q	28,09	-26,015	190,741	1104,899			
isogeioD	G+0,3Q	-5,57	-7,492	511,767				

Πίνακας 5-5 Αξονικές δυνάμεις ανελκυστήρα

ΣΤΟΙΧΕΙΟ	ΙΣΟΓΕΙΟΥ	1 ^{оџ} ОРОФОҮ	2 ^{ου} ΟΡΟΦΟΥ
K1	-357,716	-173,423	-42,121
К2	-643,571	-310,045	-61,515
К3	-617,843	-302,024	-62,675
K4	-579,962	-302,934	-58,896
K5	-620,048	-317,815	-55,956
К6	-362,393	-196,402	-41,081
K7	-432,055	-169,133	-46,069
K8	-507,591	-245,178	-54,952
К9	-681,237	-327,21	-45,519
K10	-594,385	-345,715	-38,893
K11	-215,865	-137,421	-42,88
K12	-135,56	-95,549	-35,449
K13	-176,298	-128,239	-29,701
K14	-340,98	-216,318	-52,449
K15	-250,265	-121,181	-29,232
K16	-586,177	-278,301	-71,969
K17	-536,171	-331,849	-51,896
K17.A	-216,689	-164,042	
K18	-142,582	-88,198	
K19	-173,541	-78,801	
К20	-289,832	-145,073	
K21	-241,481	-113,917	
ΑΝΕΛΚΥΣΤΗΡΑΣ	-1154,9	-663,466	-172,865
ΑΘΡΟΙΣΜΑ (ΚΝ)	-9857,14	-5252,234	-994,118
ΒΑΡΟΣ ΟΡΟΦΟΥ (KN)	5599,025	4258,116	994,118
MAZA (KNm ⁻¹ sec ²)	559,903	425,812	99,412
m	985.714		

 m tot
 985,714

 Πίνακας 5-6 Υπολογισμός ταλαντούμενης μάζας κτιρίου με Α.Ε.Θ

5.2.3.2 Προσδιορισμός επιτάχυνσης

Για τις οριζόντιες συνιστώσες της σεισμικής δράσης, το ελαστικό φάσμα απόκρισης $S_e(T)$ καθορίζεται από τις ακόλουθες εκφράσεις:

$$0 \le T \le T_B : S_e(T) = a_g * S * [1 + \frac{T}{T_B} * (\eta * 2, 5 - 1)]$$

$$T_B \le T \le T_C : S_e(T) = a_g * S * \eta * 2, 5$$

$$T_C \le T \le T_D : S_e(T) = a_g * S * \eta * 2, 5 * \frac{T_C}{T}$$

$$T_D \le T \le 4sec : S_e(T) = a_g * S * \eta * 2, 5 * \frac{T_C * T_D}{T^2}$$

Όπου:

S_e(T) είναι το ελαστικό φάσμα απόκρισης T είναι η περίοδος ταλάντωσης ενός γραμμικού συστήματος μίας ελευθερίας κίνησης

 a_g είναι η εδαφική επιτάχυνση σχεδιασμού σε έδαφος κατηγορίας A ($a_g = \gamma_1 * a_{gR}$)

Τ_Β είναι η περίοδος κάτω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης

Τς είναι η περίοδος άνω ορίου του κλάδου σταθερής φασματικής επιτάχυνσης

Τ_D είναι η τιμή της περιόδου που ορίζει την αρχή της περιοχής σταθερής μετακίνησης του φάσματος

S είναι ο συντελεστής εδάφους

Στο παρακάτω σχήμα δίνεται ο χάρτης των τριών σεισμικών ζωνών Z1, Z2, Z3 που ισχύει για την Ελλάδα. Σε κάθε σεισμική ζώνη ορίζεται μια τιμή αναφοράς α_{gR} της μέγιστης εδαφικής επιτάχυνσης σε έδαφος κατηγορίας Α, η οποία αντιστοιχεί στην τιμή αναφοράς της περιόδου επαναφοράς T_{NCR}=475 έτη.

Εικόνα 5-9 Χάρτης σεισμικής επικινδυνότητας Ελλάδος

Ζώνη	a_{gR}/g
Z1	0,16
Z2	0,24
Z3	0,36

Πίνακας 5-7 Επιτάχυνση agr/g για κάθε ζώνη σεισμικής επικινδυνότητας

Κατηγορία Εδάφους	Περιγραφή στρωματογραφίας	Παράμετροι		
		v _{s,30} (m/s)	NSPT (spoints:730 cm)	c _u (kPa)
A	Βράχος ή άλλος βραχόδης γεωλογικός σχηματισμός, που περιλαμβάνει το πολύ 5 m ασθενέστερου επιφανειακού υλικού.	> 800	27	
В	Αποθέσεις πολύ πυκνής άμμου, χαλίκων, ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτεν με το βάθος.	360 - 800	> 50	> 250
С	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου, χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντάδες μέτρων.	180 - 360	15 - 50	70 - 250
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη συνεκτικών υλικών (με ή χωρίς κάποια μαλακά στρώματα συνεκτικών υλικών), ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά.	< 180	< 15	< 70
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές ν, κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ περίπου 5m και 20m, με υπόστρωμα από πιο σκληρό υλικό με ν ₂ > 800 m/s.			
<i>S</i> ₁	Αποθέπεις που αποτελούνται, ή που περιέχουν ένα στρώμα πάχους τουλάχιστον 10 m μαλακών αργίλων/ιλών με υψηλό δείκτη πλαστικότητας (PI > 40) και υψηλή περιεκτικότητα σε νερό.	< 100 (ενδεικτικό)	-	10 - 20
S ₂	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων, ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α – Ε ή S.			

Πίνακας 5-8 Κατηγορίες Εδάφους

Κατηγορία Εδάφους	S	$T_{\rm B}(s)$	$T_{\rm C}(s)$	$T_{\rm D}(s)$
A	1,0	0,15	0,4	2,5
В	1,2	0,15	0,5	2,5
С	1,15	0,20	0,6	2,5
D	1,35	0,20	0,8	2,5
Е	1,4	0,15	0,5	2,5

Πίνακας 5-9 Τιμές παραμέτρων που καθορίζουν το οριζόντιο φάσμα ελαστικής απόκρισης (Τύπου 1)

Κατηγορία Σπουδαιότητας	Ι	П	III	IV
Συντελεστής Σπουδαιότητας γι	0,80	1,00	1,20	1,40

Πίνακας 5-10 Τιμές συντελεστή σπουδαιότητας γι

5.2.3.3 Προσδιορισμός τέμνουσας βάσης

- 4 Ο νομός Κεφαλληνίας κατατάσσεται στη Ζώνη 3 → α_{gR}=0.36g
- \clubsuit Το έδαφος είναι B \rightarrow S=1,2 , T_B=0.15sec , T_c=0,50sec, T_D=2.5sec
- 🖊 Για θεμελιώδεις ιδιομορφές Τ_Χ και Τ_Υ όπως προέκυψαν στην ιδιομορφική ανάλυση
- 4 λ: συντελεστής διόρθωσης, η τιμή του οποίου ισούται με λ = 0,85 εάν T₁ < 2 T_c και το κτίριο έχει πάνω από δύο ορόφους

Έχουμε:

T _x	0,244
Tγ	0,283
Se(Tx)	10,8
Se(Ty)	10,8
λ	0,85
F _{b,x}	9519,547
F _{b,y}	9519,547

T _x	0,318
Τ _y	0,373
Se(Tx)	10,8
Se(Ty)	10,8
λ	0,85
F _{b,x}	9048,855
F _{b,y}	9048 <i>,</i> 855

Πίνακας 5-11 Υπολογισμός τέμνουσας βάσης-Πακτωμένος φορέας

Πίνακας 5-12 Υπολογισμός τέμνουσας βάσης-Φορέας με Α.Ε.Θ

5.2.3.4 Κατανομή οριζόντιων σεισμικών φορτίων στους ορόφους

Αρχικά, υπολογίζεται το κέντρο βάρους κάθε ορόφου. **4** Κέντρο βάρους οροφής ισογείου

ΠΛΑΚΑ	E (m²)	Xc (m)	Yc (m)	Xci * Ei	Yci * Ei
П1	163,165	9,446	3,43	1541,26	559,66
П2	17,335	6,475	9,45	112,24	163,82
П3	22,278	11,157	9,512	248,56	211,91
П3,А	17,35	15,135	11,411	262,59	197,98
П4	12,932	18,599	12,33	240,52	159,45
П5	30,15	10,05	-0,75	303,01	-22,61
П7	6,615	21,273	12,43	140,72	82,22

П6	15,445	4,78	12,678	73,83	195,81
П11	6,093	11,541	12,865	70,32	78,39
Σ _{Ei}	291,363			2993,05	1626,62
			K.B	10,27	5,58
				Х	Y

Πίνακας 5-13 Υπολογισμός κέντρου βάρους οροφής ισογείου

ΠΛΑΚΑ	E (m ²)	X _c (m)	Y _c (m)	X _{ci} * E _i	Y _{ci} * E _i
Π1	24,247	2,088	3,325	50,63	80,62
П2	25,955	6,232	3,4	161,75	88,25
П3	23,456	10,331	3,375	242,32	79,16
П3.А	17,35	15,135	11,411	262,59	197,98
П4	20,642	13,939	3,516	287,73	72,58
П5	29,116	14,813	3,455	431,30	100,60
П6	19,678	2,081	9,107	40,95	179,21
Π7	17,631	6,475	9,45	114,16	166,61
П8	22,491	11,157	9,512	250,93	213,93
П9	14,997	18,599	12,33	278,93	184,91
П10	15,161	4,78	12,678	72,47	192,21
П11	30,45	10,05	-0,75	306,02	-22,84
П12	6,24	21,273	12,43	132,74	77,56
П16	6,093	11,541	12,865	70,32	78,39
Σ _{Ei}	273,507			2702,85	1689,18
			K.B.	9,88	6,18
				Х	γ

</u> Κέντρο βάρους οροφής 1^{ου} ορόφου

Πίνακας 5-14 Υπολογισμός κέντρου βάρους οροφής Α ορόφου

 Κέντρο βάρους οροφής 2^{ου} ορόφου

		Хс	Yc		
ΠΛΑΚΑ	E (m²)	(m)	(m)	Xci * Ei	Yci * Ei
1	117,81	9,55	3 <i>,</i> 35	1125,086	394,6635
2	6,93	19,6	2 <i>,</i> 675	135,828	18,53775
3	7	13,9	6,845	97,3	47,915
4	17,552	2,103	9,04	36,91186	158,6701
5	20,923	6,494	9,075	135,874	189,8762
6	10,36	17,05	8,8	176,638	91,168
Σ _{Εi}	180,575			1707,637	900,8306
			K.B.	9,457	4,989
				х	Y

Πίνακας 5-15 Υπολογισμός κέντρου μάζας οροφής Β ορόφου

Έπειτα, για ιδιομορφική ανάλυση βρίσκονται στο πρόγραμμα οι μετακινήσεις των κέντρων μάζας των ορόφων.

	Tx	Τ _Υ
οροφή	S _{ix}	S _{iy}
ισογείου	0,0108	0,0121
1 ^{ου} ορόφου	0,0263	0,0300
2 ^{ου} ορόφου	0,0402	0,0439

	T _X	Τ _Υ
οροφή	S _{ix}	S _{iy}
ισογείου	0,0133	-0,0157
1 ^{ου} ορόφου	0,0232	-0,0295
2ου ορόφου	0,0338	-0,0377

Πίνακας 5-16 Μετακινήσεις κέντρων μάζας-Πακτωμένος φορέας

Πίνακας 5-17 Μετακινήσεις κέντρων μάζας-Φορέας με Α.Ε.Θ

Τέλος, εφαρμόζεται η σχέση κατανομής της οριζόντιας σεισμικής δύναμης κάθε διεύθυνσης και υπολογίζεται πόση κατανέμεται σε κάθε όροφο. (διάφραγμα)

ΔΙΕΥΘΥΝΣ	НХ				
F _{b,x}	9380,58				
ОРОФН	S _{ix}	mi	S _{ix} * m _i	E _{ix}	Κατανομή
ισογείου	0,0108	5890,73	63,620	2745,08	
1 ^{ou}	0,0263	4327,77	113,820	4911,14	ΤΡΙΓΩΝΙΚΗ ΚΑΤΑΝΟΜΗ
					**Επιβολή χειροκίνητα-
2 ^{ou}	0,0402	994,12	39,964	1724,36	δεν υπάρχει διάφραγμα

ΔΙΕΥΘΥΝΣ	ΔΙΕΥΘΥΝΣΗ Υ								
F _{b,γ}	9380,58								
ОРОФН	S _{iy}	m _i	S _{iy} * m _i	E _{iy}	Κατανομή				
ισογείου	0,0121	5890,727	71,278	2731,85					
1 ^{ou}	0,03	4327,774	129,833	4976,09	ΤΡΙΓΩΝΙΚΗ ΚΑΤΑΝΟΜΗ				
					**Επιβολή χειροκίνητα-				
2 ^{ou}	0,0439	994,121	43,642	1672,65	δεν υπάρχει διάφραγμα				

Πίνακας 5-18 Κατανομή σεισμικών δυνάμεων καθ' ύψος του κτιρίου- Πακτωμένος φορέας

II. Φορέας με θεμελίωση

ΔΙΕΥΘΥΝΣ	ΗΧ				
F _{b,x}	9048,86				
ОРОФН	S _{ix}	m _i	S _{ix} * m _i	E _{ix}	Είδος κατανομής
ισογείου	0,0133	5773,01	76,781	3486,26	
1 ^{ou}	0,0232	4084,13	94,752	4302,22	ΤΡΙΓΩΝΙΚΗ ΚΑΤΑΝΟΜΗ
					***Επιβολή χειροκίνητα-
2 ^{ou}	0,0338	821,256	27,758	1260,38	δεν υπάρχει διάφραγμα

ΔΙΕΥΘΥΝΣ	ΗY				
F _{b,y}	9048,86				
ОРОФН	S _{iy}	m _i	S _{iy} * m _i	E _{iy}	Είδος κατανομής
ισογείου	0,0157	5773,01	90,636	3387,96	
1 ^{ou}	0,0295	4084,13	120,482	4503,57	ΤΡΙΓΩΝΙΚΗ ΚΑΤΑΝΟΜΗ
					***Επιβολή χειροκίνητα-
2 ^{ου}	0,0377	821,256	30,961	1157,33	δεν υπάρχει διάφραγμα

Πίνακας 5-19 Κατανομή σεισμικών δυνάμεων καθ΄ ύψος του κτιρίου - Φορέας με Α.Ε.Θ

5.2.3.5 Σεισμικοί συνδυασμοί φόρτισης

Κατά την αποτίμηση και τον ανασχεδιασμό των υφιστάμενων δομημάτων, επιτρέπεται να εφαρμοσθούν απλούστεροι κανόνες επαλληλίας των συνιστωσών του σεισμού, οπότε δημιουργούνται οι παρακάτω 8 σεισμικοί συνδυασμοί. Σε αυτούς γίνεται η απλοϊκή θεώρηση της ταυτόχρονης δράσης του σεισμού στις δύο κύριες διευθύνσεις X (E_x) και Y (E_Y) σε ποσοστά 100% και 30%.

- 1. G+0.30·Q+E_x+0.30·E_Y
- 2. G+0.30·Q+E_x-0.30· E_Y
- 3. G+0.30·Q-E_x+0.30· E_Y
- 4. G+0.30·Q-E_x-0.30· E_Y
- 5. G+0.30·Q+0.30·E_x+ E_Y
- 6. G+0.30·Q+0.30·E_x- E_Y
- 7. G+0.30·Q-0.30·E_x+ E_Y
- 8. G+0.30·Q-0.30·E_x- E_y

Eντολές: Define \rightarrow Load Pattern \rightarrow Add New Load Pattern (E_x, E_y) \rightarrow User Loads (E_x, E_y)

oad Combinations	Click to:
1,35G+1.5Q	Add New Combo
G+0.3Q G+0.3Q+Ex+0.3Ey G+0.3Q+Ex-0.3Ey G+0.3Q-Ex-0.3Ey G+0.3Q-Ex+0.3Ey G+0.3Q+0.3Ex+Ey G+0.3Q+0.3Ex+Ey G+0.3Q+0.3Ex-Ey	Add Copy of Combo
	Modify/Show Combo
	Delete Combo
G+0.3Q-0.3Ex+Ey G+0.3Q-0.3Ex+Ey	Add Default Design Combos
	Convert Combos to Nonlinear Cases.

Εικόνα 5-11 Συνδυασμοί φόρτισης

Load Case Mallie	-		Notes	Load Case Type
Ex	Set D	ef Name	Modify/Show	Static Design.
Stiffness to Use				Analysis Type
Zero Initial Condition	ons - Unstres	sed State		• Linear
C Stiffness at End of	Nonlinear Ca	ase	· ·	C Nonlinear
Important Note: L	oads from th i the current	e Nonlinear Case case	e are NOT included	C Nonlinear Staged Construction
Loads Applied				1
Loads Applied Load Type L	oad Name	Scale Factor	r	
Loads Applied Load Type L Load Patterr VEx	oad Name	Scale Factor	<u>r</u>	
Loads Applied Load Type L Load Patterr V Ex Load Pattern Ex	oad Name	Scale Factor	Add	
Loads Applied Load Type L Load Patterr V Ex Load Pattern Ex	oad Name	Scale Factor	Add Modifu	
Load SApplied Load Type L Load Patterr Ex Load Pattern Ex	oad Name	Scale Factor	Add	
Load Spplied Load Type L Load Patterr Ex Load Pattern Ex	oad Name	Scale Factor	Add	OK

Εικόνα 5-12 Δημιουργία Load Case σεισμού κατά Χ

5.2.3.6 Δείκτες ανεπάρκειας (λ) ελαστικής στατικής ανάλυσης

Το λογισμικό προσομοίωσης SAP2000 εμφανίζει τους δείκτες ανεπάρκειας των επιλεγέντων στοιχείων, οι οποίοι προκύπτουν από το δυσμενέστερο συνδυασμό φόρτισης καθενός. Έτσι, προκύπτουν τα εξής αποτελέσματα για τα δυο προσομοιώματα των φορέων.

		Ισόγειο	1 ^{oç}	όροφος	2°	^ς όροφος
A/A	$\lambda_{I\Sigma O \Gamma E I O Y}$	Σχόλιο	λ_{1ou}	Σχόλιο	λ_{2ou}	Σχόλιο
К1	3,65	See Err	2,81	See Err	0,79	See Err
К2	1,83	See Err	2,18	See Err	0,54	See Err
К3	1,68	See Err	1,91	See Err	2,04	See Err
К4	1,52	See Err	1,98	See Err	0,77	See Err
К5	1,52	See Err	1,8	See Err	0,31	See Err
К6	1,87	See Err	1,85	See Err	0,34	See Err
К7	5,94	See Err	1,63	See Err	0,57	See Err
К8	3,41	See Err	2,04	See Err	1,52	See Err
К9	3,05	See Err	2,45	See Err	1,7	See Err
K10	2,07	See Err	1,24	See Err	6,79	See Err
K11	3,59	See Err	4	See Err	1,24	Overstressed
K12	1,88	See Err	2,86	See Err	0,58	No message
K13	2,28	See Err	2,59	See Err	1,35	Overstressed
K14	5,43	See Err	2,84	Overstressed	0,51	See Err
K15	2,04	Overstressed	2,75	Overstressed	1,29	Overstressed
K16	1,17	See Err	1,28	See Err	0,31	See Err
K17	3,49	See Err	2,44	Overstressed	8,84	See Err
K17.A	1,92	Overstressed	1,5	See Err	-	-
K18	1,57	Overstressed	1,19	Overstressed	-	-
K19	1,26	Overstressed	0,68	No message	-	-
K20	1,11	Overstressed	1,24	Overstressed	-	-
K21	0,73	See Err	1,07	Overstressed	-	-

Πακτωμένος φορέας

Πίνακας 5-20 Δείκτες ανεπάρκειας υποστυλωμάτων για ελαστική στατική ανάλυση – Πακτωμένος φορέας

Από τους παραπάνω δείκτες καμπτικής ανεπάρκειας των κατακόρυφων στοιχείων γίνεται αντιληπτό ότι το κτίριο παρουσιάζει στο σύνολό του μειωμένη φέρουσα ικανότητα σε κάμψη. Μάλιστα, τα περισσότερα υποστυλώματα- τοιχώματα έχουν πρόβλημα και σε διάτμηση (μήνυμα See Err).

II. Φορέας με θεμελίωση

		Ισόγειο	1 ^{oç}	όροφος	2°	^ς όροφος
A/A	λ _{ιδογείου}	Σχόλιο	λ_{1ou}	Σχόλιο	λ_{2ou}	Σχόλιο
K1	4,37	See Err	2,88	See Err	0,85	See Err
К2	2,55	See Err	2,29	See Err	0,68	See Err
К3	2,45	See Err	2,04	See Err	1,8	See Err
К4	2,36	See Err	2,05	See Err	0,9	See Err
К5	2,29	See Err	1,83	See Err	0,34	See Err
К6	2,23	See Err	1,87	See Err	0,45	See Err
К7	1,89	See Err	2,17	See Err	0,63	See Err
К8	3,86	See Err	2,18	See Err	1,77	See Err
К9	1,38	See Err	2,91	See Err	1,86	See Err
K10	1,41	See Err	2,04	See Err	5,64	See Err
K11	2,09	See Err	5,02	See Err	1,32	Overstressed
K12	2	See Err	2,93	See Err	0,36	No message
K13	2,83	See Err	2,91	See Err	1,38	Overstressed
K14	4,71	See Err	2,52	See Err	0,42	See Err
K15	2,71	Overstressed	2,76	Overstressed	1,27	Overstressed
K16	1,33	See Err	1,57	See Err	0,47	See Err
K17	2,49	See Err	1,54	Overstressed	6,78	See Err
K17.A	1,38	See Err	2,04	See Err		-
K18	1,51	Overstressed	0,95	Overstressed		-
K19	1,26	Overstressed	0,74	No message		-
К20	1,12	Overstressed	1,48	See Err		-
K21	1,13	Overstressed	1,05	Overstressed		-

Πίνακας 5-21 Δείκτες ανεπάρκειας υποστυλωμάτων για ελαστική στατική ανάλυση - Φορέας με Α.Ε.Θ

Ο φορέας που λαμβάνει υπόψη την αλληλεπίδραση του εδάφους με τη θεμελίωση παρουσιάζει παρόμοια εικόνα με τον πακτωμένο. Ωστόσο, όπως ήταν αναμενόμενο, οι δείκτες ανεπάρκειας των στοιχείων προκύπτουν λίγο μεγαλύτεροι. Αυτό οφείλεται στο γεγονός ότι στην περίπτωση του δεύτερου φορέα ανακουφίζεται η θεμελίωση (μέσω της απελευθέρωσης των βαθμών ελευθερίας u_z,r_x,r_y) και εντείνεται ο φορέας παραπάνω από την άνω στάθμη του υπογείου και πάνω.

5.2.3.7 Συνεκτίμηση στρέψης

Σύμφωνα με τον ΚΑΝ.ΕΠΕ η αύξηση (ή μείωση) των δυνάμεων και μετακινήσεων λόγω στρέψης θα υπολογίζεται σε όλες τις περιπτώσεις, εκτός αν έχουμε ευπαραμόρφωτα διαφράγματα. Στην ελαστική στατική μέθοδο, οι δυνάμεις και οι μμετακινήσεις λόγω τυχηματικής στρέψης πρέπει να επαυξάνονται με βάση τον συντελεστή (η/1,2)2 ≤3, όταν ο συντελεστής επαύξησης των μετακινήσεων 'η' υπερβαίνει την τιμή 1.2 σε οιονδήποτε όροφο. Σε κάθε περίπτωση, εφόσον μία αρχική αποτίμηση χωρίς συνεκτίμηση της τυχηματικής στρέψης δείξει ανεπάρκεια, δεν απαιτείται περαιτέρω έλεγχος κατά την φάση αυτή. Άρα, στο στάδιο αυτό που είναι εμφανής η ανεπάρκεια της κατασκευής δεν θα ελεγχθούν τα δομικά στοιχεία συνεκτιμώντας τη στρέψη.

5.2.4 Ελαστική δυναμική ανάλυση

5.2.4.1 Γενικά περί ελαστικής δυναμικής ανάλυσης

Σύμφωνα με τον ΚΑΝ.ΕΠΕ, γενικώς χρησιμοποιούνται τα φάσματα απόκρισης σε όρους επιτάχυνσης, κατά ΕC8, συναρτήσει της ιδιοπεριόδου T του κτιρίου και του ποσοστού κρίσιμης ιξώδους απόσβεσης ξ ή του δείκτη συμπεριφοράς q. Το ποσοστό απόσβεσης ζ διαφοροποιείται αναλόγως του υλικού των πρωτευόντων (υπό σεισμό) στοιχείων του κτιρίου. Σε περίπτωση εφαρμογής γραμμικών μεθόδων ανάλυσης, χρησιμοποιούνται τα τροποποιημένα «φάσματα σχεδιασμού», S_d(T). Για T_c<T<T_D: S_d (T) = $\gamma_I a_{gR} S \frac{2.5}{q} \frac{T_c}{T}$

5.2.4.2 Ενιαίος δείκτης συμπεριφοράς q

Ο ενιαίος δείκτης συμπεριφοράς διαφέρει αναλόγως και του αν το κτίριο έχει ή δεν έχει αρχικώς σχεδιασθεί αντισεισμικώς με την λογική του δείκτη συμπεριφοράς. Κατά τη φάση της αποτίμησης του κτιρίου, η επιλογή της τιμής του δείκτη συμπεριφοράς του κτιρίου γίνεται λαμβάνοντας υπόψη τα εξής:

- Την επάρκεια των Κανονισμών κατά την περίοδο μελέτης και κατασκευής του
- Την ύπαρξη ουσιωδών βλαβών (και φθορών), κυρίως σε πρωτεύοντα δομικά στοιχεία.
 Ουσιώδεις βλάβες (και φθορές) θεωρούνται αυτές που έχουν οδηγήσει σε απομείωση φέρουσας ικανότητας μεγαλύτερη του 25% (r_R ≤ 0,75)
- Την κανονικότητα κατανομής των εντός ορόφου αλλά και κατ' όροφο υπεραντοχών (καθ΄ ύψος του δομήματος) και τον βαθμό αποκλεισμού δημιουργίας «μαλακού» ορόφου (π.χ., η πιλοτή θεωρείται και είναι γενικώς «μαλακός» ή «ασθενής» όροφος)
- Το πλήθος δομικών στοιχείων στα οποία αναμένεται να εμφανισθούν πλαστικές αρθρώσεις, και το οποίο εξαρτάται από την υπερστατικότητα και την κανονικότητα του δομήματος
- Την ιεράρχηση της εμφάνισης αστοχιών και τον βαθμό αποκλεισμού τους στα πρωτεύοντα κατακόρυφα φέροντα στοιχεία και στους κόμβους
- Τους τρόπους αστοχίας (πλάστιμοι ή ψαθυροί)
- Τη διαθέσιμη τοπική πλαστιμότητα στις κρίσιμες περιοχές του κάθε δομικού στοιχείου, και
- Τους διαθέσιμους επικουρικούς και βοηθητικούς μηχανισμούς αντισεισμικής συμπεριφοράς όπως είναι οι τοιχοπληρώσεις, τα διαφράγματα κ.λπ.

Όταν δεν διατίθενται λεπτομερέστερα στοιχεία επιτρέπεται να εφαρμοστούν ως μέγιστες οι τιμές του **πίνακα του ΚΑΝ.ΕΠΕ** αναλόγως των βλαβών και των τοιχοπληρώσεων (στο σύνολο του κτιρίου)

Εφαρμοσθέντες Κανονισμοί μελέτης (και	Ευμενής πα απους τοιχοπληρώ	ρουσία ή σία σεων (1)	Δυσμενής (γενικώς) παρουσία τοιχοπληρώσεων (1) Ουσιώδεις βλάβες σε πρωτεύοντα στοιχεία	
κατασκευής)	Ουσιώδεις β πρωτεύοντα	λάβες σε στοιχεία		
	Όχι Ναι 3,0 2,3 2,3 1,7		Οχι	Ναι
1995<			2,3	1,7
1985<<1995(2)			1,7	1,3
<1985	1,7	1,3	1,3	1,1

Πίνακας 5-22 Τιμές του δείκτη συμπεριφοράς για τη στάθμη επιτελεστικότητας Β

Το υπό μελέτη κτίριο το οποίο κατασκευάστηκε πριν το 1985, με δυσμενή παρουσία τοιχοπληρώσεων, και ουσιώδεις βλάβες σε πρωτεύοντα στοιχεία εκτιμάται ότι έχει ενιαίο συντελεστή συμπεριφοράς ίσο με 1,1.

5.2.4.3 Προσομοίωση φάσματος ΕC8 στο πρόγραμμα

Αρχικά, εισάγουμε το φάσμα του EC8 Εντολές: Define → Function → Response Spectrum

Εικόνα 5-13 Προσομοίωση φάσματος απόκρισης κατά ΕC8

Σχόλιο: Το είδος του φάσματος (spectrum type) είναι 1 για Ms>5,5 (σύμφωνα με τον EC8)

Εικόνα 5-14 Εισαγωγή σεισμικών παραμέτρων στο φάσμα απόκρισης
Load Case Name		Notes	Load Case Type	
RSPx	Set Def Name	Modify/Show	Response Spectrum	👻 Design.
Modal Combination			Directional Combination	
GQC SQC SQC	GMC	n 1.	SRSS	
C SRSS	GMC	12 0	C CQC3	
C Absolute			C Absolute	
C GMC	Periodic + Rigid Ty	pe 5855 <u>•</u>	Scale Factor	
C NRC 10 Percent				
C Double Sum				
Modal Load Case Use Modes from this M Loads Applied	odal Load Case	MODAL]	
Modal Load Case Use Modes from this M Loads Applied Load Type Lo	odal Load Case	MODAL -		
Modal Load Case Use Modes from this M Loads Applied Load Type Lo Accel U1	odal Load Case ad Name Functio	MODAL		
Modal Load Case Use Modes from this M Loads Applied Load Type Lc Accel U1 Accel U1	odal Load Case ad Name Function RSP_EC8 RSP_EC8	MODAL Scale Factor 9,81 9,31	Add	
Modal Load Case Use Modes from this M Loads Applied Load Type Lo Accel U1 Accel U1	odal Load Case ad Name Functio X RSP_EC8	MODAL Scale Factor (3,81 3,91	Add	
Modal Load Case Use Modes from this M Loads Applied Load Type Lo Accel U1 Accel U1	odal Load Case ad Name Functio RSP_EC8	MODAL Scale Factor (9,81 (9,91)	Add Modify	
Modal Load Case Use Modes from this M Loads Applied Load Type Lo Accel U1 Accel U1	ad Name Functio	MODAL n Scale Factor 9,81 9,91	Add Modify Delete	
Modal Load Case Use Modes from this M Loads Applied Load Type Accel U1 Accel U1 Show Advanced L	ad Name Functio	MODAL	Add Modify Delete	
Modal Load Case Use Modes from this M Loads Applied Load Type Lo Accel U1 Accel U1 Accel U1 Show Advanced L Other Parameters	ad Name Function STATESTICS RSP_ECS Cod Parameters	MODAL	Add Modify Delete	

Εικόνα 5-15 Εισαγωγή φάσματος ΕC8 κατά Χ

Perio	GMC f	1 1. 2 0.	Directional Comb	ination
Peric	GMC f GMC f	1 1.	Directional Comb	ination
Peric	GMC f GMC f	1 1. 2 0.	CQC3	
Peric	GMC f	2 0,	- <u>C</u> CQC3	
Perio	dic + Bigid Tup	- 1		
Perio	die + Biaid Lup	0000	T C Absolute	
	aic + nigia ryp	e 5H55 💆	Scale Fact	tor
Load Name	Function	Scale Facto	<u>n</u>	
2	BSP ECS	9.91		
	1101 200	0,01	Add	
			Modify	
			Delete	
	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
d Load Param	neters			
d Load Param	neters	~		
	Modal Load Load Name 12	Modal Load Case Load Name Function 2 RSP_EC8 2 RSP_EC8	Modal Load Case MODAL Load Name Function Scale Factor 2 RSP_EC8 9.81 2 RSP_EC8 9.81	Modal Load Case MODAL Load Name Function Scale Factor RSP_EC8 S.81 Add Modify

Εικόνα 5-16 Εισαγωγή φάσματος ΕC8 κατά Υ

5.2.4.4 Συνεκτίμηση στρεπτικών επιδράσεων

Όταν χρησιμοποιείται χωρικό προσομοίωμα για την ανάλυση, οι τυχηματικές στρεπτικές επιδράσεις μπορούν να καθοριστούν ως περιβάλλουσα των εντατικών μεγεθών στατικών φορτίσεων, που αποτελούνται από ομάδα στρεπτικών ροπών M_{ai} περί τον κατακόρυφο άξονα κάθε ορόφου i: $M_{ai} = e_{ai} * F_i$ Όπου:

M_{ai} είναι η στρεπτική ροπή που εφαρμόζεται στον όροφο i περί τον κατακόρυφο άξονά του

- e_{ai} είναι η τυχηματική εκκεντρότητα της μάζας του ορόφου i στην αντίστοιχη απαιτούμενη διεύθυνση. Λαμβάνεται τιμή ίση με 0,05L_i.
- Fi είναι το οριζόντιο φορτίο που δρα στον όροφο i σε διεύθυνση κάθετη προς εκείνη της eai.

Τα εντατικά μεγέθη των φορτίσεων αυτών πρέπει να λαμβάνονται υπόψη με θετικά και αρνητικά πρόσημα (το ίδιο πρόσημο για όλους τους ορόφους).

Στο υπό μελέτη κτίριο έχουμε L_{ix}=22m και L_{iy}=16.16m. Οπότε, e_{ix}=0,808 και e_{iy}=1,1

Ι. Πακτωμένου Φορέα

ΔΙΕΥΘΥΝΣ	нх			
Οροφή	F _{σεισμική}	L _i (m)	e (m)	Μστρεπτική
ισογείου	2745,08	16,16	0,808	2218,02
1ου	4911,14	16,16	0,808	3968,20
200	1724,36	11,7	0,585	1008,75

ΔΙΕΥΘΥΝΣ	ΗΥ			
Οροφή	F _{σεισμική}	L _i (m)	e (m)	Μστρεπτική
ισογείου	2731,85	22	1,1	3005,03
1ου	4976,08516	22	1,1	5473,69
2ου	1672,65258	22	1,1	1839,92

Πίνακας 5-23 Υπολογισμός στρεπτικής ροπής διαφραγμάτων- Πακτωμένος φορέας

II. Φορέα με Α.Ε.Θ

ΔΙΕΥΘΥΝΣ	ΗΧ			
Οροφή	F _{σεισμική}	L _i (m)	e (m)	Μστρεπτική
ισογείου	3257,53	16,16	0,808	2632,08
1ου	4321,45	16,16	0,808	3491,74
2ου	1469,87	11,7	0,585	859,87
ΔΙΕΥΘΥΝΣ	ΗΥ			
Οροφή	Fσεισμική	L _i (m)	e (m)	Μστρεπτική
ισογείου	3257,53	22	1,1	3583,28
1ου	4321,45	22	1,1	4753,60
2ου	1469,87	22	1,1	1616,86

Πίνακας 5-24 Υπολογισμός στρεπτικής ροπής διαφραγμάτων - Φορέας με Α.Ε.Θ.

Στο λογισμικό προσομοίωσης του φορέα δημιουργούμε τις δύο φορτιστικές καταστάσεις των στρεπτικών επιδράσεων. Η μία αφορά τη διεύθυνση X (M_{zx}) και η άλλη την Y (M_{zy}). Εντολές: Define \rightarrow Load Pattern \rightarrow Add New Load Pattern \rightarrow User Loads, Modify Lateral Load Pattern

Εικόνα 5-17 Δημιουργία στρεπτικής φόρτισης Mz,x και Mz,y ως Load Pattern

5.2.4.5 Σεισμικοί συνδυασμοί φόρτισης

Οι συνδυασμοί φόρτισης που προσομοιώθηκαν, λαμβάνοντας υπόψη και την τυχηματική εκκεντρότητα είναι οι παρακάτω. Σε αυτούς γίνεται η απλοϊκή θεώρηση της ταυτόχρονης δράσης του σεισμού (φάσμα) στις δύο κύριες διευθύνσεις Χ (RSP_x) και Υ (RSP_y) σε ποσοστά 100% και 30%.

- 1) G+0.3Q+RSP_x+0.3RSP_y+M_{Z,x}
- 2) G+0.3Q+RSP_x+0.3RSP_y-M_{Z,X}
- 3) G+0.3Q+RSP_x+0.3RSP_y+M_{Z,Y}
- 4) G+0.3Q+RSP_x+0.3RSP_y-M_{Z,Y}
- 5) G+0.3Q+0.3RSP_x+RSP_y+M_{Z,x}
- 6) G+0.3Q+0.3RSP_x+RSP_y-M_{Z,X}
- 7) G+0.3Q+0.3RSP_x+RSP_y+ $M_{Z,Y}$
- 8) G+0.3Q+0.3RSP_x+RSP_y-M_{Z,Y}
- 9) ENVELOPE (περιβάλλουσα)

Eντολές: Define \rightarrow Load Combinations \rightarrow Add New Combo

	Load	Combination	n Data		1	Load Combinatio	on Data	
Load Combinat Notes	ion Name (User-G	enerated)	G+0.3Q+RSPx+0 Modify/Sho	1.3RSPy+Mzx w Notes	Load Combination	on Name (User-Generated)	G+0.3Q+RSPx+ Modify/Sh	0.3RSPy-Mzx
Load Combination	Туре		Linear Add	•	Load Combination	Туре	Linear Add	•
Define Combinatio	n of Load Case Res Name L	ults oad Case Type	Scale Factor		- Define Combination Load Case	of Load Case Results	Scale Factor	-
Mz,x MONIMA KINHTA RSPx RSPy	✓ Linear Linear Linear Respo Respo	Static Static Static onse Spectrum onse Spectrum	0,3 1, 0,3 1, 0,3	Add	Mz,x G+0,3Q RSPx RSPy Mz,x	✓ Linear Static Combination Response Spectrum Linear Static	-1,00 1, 1, 0,3	Add Modify
Mz,x	Linear	Static	0.3	Delete				Delete
	OK		Cancel			ОК	Cancel	

	ame (User-Generated)	G+0.3Q+RSPx+0.3RS	Py-Mzy
lotes		Modify/Show No	utes
oad Combination Type	1	Linear Add	•
Convert to User Loa	ad Combo Create No	nlinear Load Case from Loa	d Combo
Convert to User Loa efine Combination of Lo Load Case Name Mz.y	ad Combo Create No oad Case Results e Load Case Type Linear Static	nlinear Load Case from Loa Scale Factor	d Combo
Convert to User Los efine Combination of Lu Load Case Name Mz.y G+0,3Q RSPx RSPx RSP	ad Combo Create No oad Case Results e Load Case Type Cinear Static Combination Response Spectrum Besponse Spectrum	niinear Load Case from Loa	d Combo
Convert to User Los efine Combination of L- Load Case Name Mz.y G+0.3Q RSPx RSPy Mzy	ad Combo Create No oad Case Results e Load Case Type Clinear Static Combination Response Spectrum Linear Static	nlinear Load Case from Loa	d Combo

Load Combination Data

G+0.3Q0.3RSPx+RSPy+Mzy Load Combination Name (User-Generated) Notes Modify/Show Notes. • Load Combination Type Linear Add Options Convert to User Load Combo Create Nonlinear Load Case from Load Combo Define Combination of Load Case Results-Load Case Name Load Case Type Scale Factor Mz,y ✓ Linear Static G+0,3Q RSPx RSPy Combination Response Spectrum Response Spectrum 0,3 Add Modify Delete OK Cancel

Load Combination Data

	User-Generated)	ENVELOPE	
lotes		Modify/Show	v Notes
.oad Combination Type		Envelope	•
ptions Convert to User Load Com	bo Create Nonli	near Load Case from I	Load Combo
efine Combination of Load Ca	se Results		
Land Case Name	Land Care Trees	Conta Franks	
Load Case Name G+0.30+0.3RSPx+RSP\ ▼	Load Case Type	Scale Factor	
Load Case Name 6+0.3Q+0.3RSPx+RSP3 6+0.3Q+0.3RSPx+RSP3+M 6+0.3Q+RSPx+0.3RSPy+M 6+0.3Q+RSPx+0.3RSPy+Mz 6+0.3Q0.3RSPx+RSP3/Mz 6+0.3Q0.3RSPx+RSP3/Mz 6+0.3Q0+RSPx+0.3RSPy-M2 6+0.3Q+RSPx+0.3RSPy-M2	Load Case Type Combination Combination Combination Combination Combination Combination Combination Combination	Scale Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Add Modify

5.2.4.6 Δείκτες ανεπάρκειας

Όπως στην ελαστική στατική, έτσι και στη δυναμική φασματική προκύπτουν από την περιβάλλουσα των ροπών οι δυσμενέστεροι δείκτες ανεπάρκειας κάθε στοιχείου. Για τους παραπάνω συνδυασμούς φόρτισης και για τα δύο προσομοιώματα είναι οι εξής:

Ι. Πακτωμένος φορέας

	le	σόγειο	1 ⁰⁰	δροφος	2 ^o	^ς όροφος
A/A	$\lambda_{I\Sigma O \Gamma E I O Y}$	Σχόλιο	λ_{1ou}	Σχόλιο	λ_{2ou}	Σχόλιο
K1	4,12	See Err	2,59	See Err	1,03	See Err
К2	1,82	See Err	2	See Err	1,15	See Err
КЗ	1,7	See Err	1,91	See Err	1,11	See Err
К4	1,52	See Err	1,88	See Err	1,15	See Err
K5	1,6	See Err	1,82	See Err	2,06	See Err
К6	2,88	See Err	1,96	See Err	1,13	See Err
K7	5,13	See Err	2,42	See Err	1,76	See Err
K8	3,65	See Err	1,02	See Err	1,05	See Err
К9	3,21	See Err	2,05	See Err	1,44	See Err
K10	1,73	See Err	2,2	See Err	2,55	See Err
K11	3,26	See Err	3,31	See Err	6,21	See Err
K12	3,12	See Err	2,05	See Err	2,47	See Err
K13	2,28	See Err	2	See Err	5,17	See Err
K14	4,14	See Err	2,7	See Err	1,54	See Err
K15	2,14	Overstressed	2,85	Overstressed	2,19	Overstressed
K16	1,26	See Err	1,41	See Err	1,2	See Err
K17	3,02	See Err	2,08	Overstressed	2,05	Overstressed
K17.A	1,94	See Err	1,76	See Err	-	-
K18	2,57	Overstressed	1,44	Overstressed	-	-
K19	1,84	Overstressed	0,68	No message	-	-
K20	1,56	Overstressed	1,67	See Err	-	-
K21	1,01	Overstressed	1,38	Overstressed	-	-

Πίνακας 5-25 Δείκτες ανεπάρκειας δυναμικής φασματικής ανάλυσης - Πακτωμένος φορέα

Εικόνα 5-18 Ανεπάρκεια πακτωμένου φορέα - Δυναμική φασματική ανάλυση

		σόγειο	1 ^{0ς} (όροφος	2	^{ος} όροφος
A/A	λ _{ιδογείου}	Σχόλιο	λ_{1ou}	Σχόλιο	λ_{2ou}	Σχόλιο
K1	6,1	See Err	3,51	See Err	1,22	See Err
К2	3,01	See Err	2,78	See Err	1,34	See Err
К3	2,86	See Err	2,58	See Err	1,19	See Err
К4	2,67	See Err	2,57	See Err	1,34	See Err
К5	2,73	See Err	2,23	See Err	1,45	See Err
К6	4,34	See Err	2,48	See Err	1,09	See Err
К7	2,74	See Err	3,39	See Err	1,71	See Err
К8	4,92	See Err	2,72	See Err	1,42	See Err
К9	1,15	See Err	2,1	See Err	1,66	See Err
K10	1,48	See Err	2,7	See Err	2,4	See Err
K11	3,06	See Err	4,16	See Err	4,68	Overstressed
K12	4,48	See Err	2,73	See Err	2,15	Overstressed
K13	2,98	See Err	2,98	See Err	3,65	Overstressed
K14	4,68	See Err	3,27	See Err	1,38	See Err
K15	3,93	See Err	3,73	See Err	2,46	Overstressed
K16	1,48	See Err	1,99	See Err	1,34	See Err
K17	3,15	See Err	2,74	See Err	1,82	Overstressed
K17.A	1,66	See Err	2,52	See Err	-	-
K18	2,57	Overstressed	1,29	Overstressed	-	-
К19	1,87	Overstressed	0,92	No message	-	-
К20	1,65	Overstressed	2,46	See Err	-	-
K21	1,73	Overstressed	1,72	Overstressed	-	-

II. Φορέας με Α.Ε.Θ

Πίνακας 5-26 Δείκτες ανεπάρκειας φορέα με Α.Ε.Θ. - Δυναμική φασματική ανάλυση

Εικόνα 5-19 Ανεπάρκεια φορέα με Α.Ε.Θ. - Δυναμική φασματική ανάλυση

Όπως φαίνεται παραπάνω όλα τα κατακόρυφα στοιχεία που εξετάστηκαν εμφανίζουν δείκτη καμπτικής ανεπάρκειας μεγαλύτερο της μονάδας, πράγμα που σημαίνει ότι είναι ανεπαρκή σε κάμψη, αλλά και σε διάτμηση, αφού εμφανίζεται το μήνυμα "See Err". Αξίζει να σημειωθεί ότι και σ' αυτή την ανάλυση (δυναμική φασματική) τα στοιχεία του φορέα που λαμβάνει υπόψη την Α.ΕΘ. έχουν μεγαλύτερο δείκτη ανεπάρκειας.

5.2.5 Συμπεράσματα ελαστικών αναλύσεων

Από τις παραπάνω προκαταρκτικές ελαστικές αναλύσεις έχει καταστεί σαφές ότι τα δομικά στοιχεία του υφιστάμενου κτιρίου παρουσιάζουν μεγάλες ανεπάρκειες τόσο σε επίπεδο κάμψης όσο και σε επίπεδο διάτμησης. Ιδιαίτερα στο φορέα που προσομοιώθηκε η αλληλεπίδραση του εδάφους με τη θεμελίωση της κατασκευής και μάλιστα στη δυναμική φασματική ανάλυση προέκυψαν αρκετά μεγάλοι δείκτες ανεπάρκειας στα κατακόρυφα δομικά μέλη. Αυτό οφείλεται στο γεγονός ότι στην περίπτωση του πακτωμένου φορέα, η θεμελίωση (ως πακτώσεις) δέχεται μεγάλο φορτίο, ανακουφίζοντας έτσι την ανωδομή. Αντίθετα, στο φορέα που προσομοιώνεται η θεμελίωση με ελατήρια και απελευθερώνονται κάποιοι βαθμοί ελευθερίας, εκείνη δεν μπορεί να παραλάβει όσο πριν, οδηγώντας έτσι την επιβάρυνση της ανωδομής.

Συνολικά προκύπτει και για τις 2 αναλύσεις και για τους 2 φορείς μειωμένη φέρουσα ικανότητα έναντι κάμψης και μεγάλη πιθανότητα σοβαρών βλαβών σε έναν επόμενο σεισμό. Βάσει των παραπάνω αποτελεσμάτων και των προϋποθέσεων που ορίζει ο ΚΑΝ.ΕΠΕ. θα μπορούσε σ' αυτό το σημείο να ολοκληρωθεί η αποτίμηση και να προχωρήσουμε σε ενισχύσεις. Ωστόσο, για λόγους πληρότητας της εργασίας και επειδή θέλουμε να διερευνήσουμε το επίπεδο βλαβών στο οποίο θα μπορούσε να φτάσει η υφιστάμενη κατασκευή, προχωράμε σε στατική μη γραμμική ανάλυση αυτής.

6 Ανελαστική στατική ανάλυση – Pushover analysis

Κύριος στόχος της ανελαστικής στατικής ανάλυσης είναι η εκτίμηση του μεγέθους των ανελαστικών παραμορφώσεων που θα αναπτυχθούν στα δομικά στοιχεία, όταν το κτίριο υπόκειται στη σεισμική δράση για την οποία γίνεται η αποτίμηση ή ο ανασχεδιασμός. Η μέθοδος αναφέρεται ενίοτε και ως μέθοδος ελέγχου των μετακινήσεων. Εκτός από τις τιμές των ανελαστικών παραμορφώσεων, η μέθοδος δίνει και τιμές των δυνάμεων (εντατικών μεγεθών) στα δομικά στοιχεία που έχουν εισέλθει στην μετελαστική περιοχή της απόκρισής τους. Οι τιμές αυτές είναι εν γένει πιο αξιόπιστες από εκείνες που υπολογίζονται με βάση τις ελαστικές μεθόδους (και τυχόν ικανοτικούς ελέγχους).

6.1 Γενικά – Βασικοί Ορισμοί

6.1.1 Προϋποθέσεις εφαρμογής

Ο ΚΑΝ.ΕΠΕ. ορίζει δυο βασικές προϋποθέσεις για να εφαρμοστεί η ανελαστική στατική ανάλυση. Αυτές είναι:

Ι. Να διασφαλίζεται τουλάχιστον «Ικανοποιητική» ΣΑΔ. Όλες οι μέθοδοι ανάλυσης είναι πρακτικώς εξίσου ευαίσθητες στη διακύμανση των τιμών των βασικών δεδομένων (υπενθυμίζεται ότι τα δεδομένα αντοχής επηρεάζουν και την σύμφωνα με τον παρόντα Κανονισμό διεξαγόμενη ελαστική ανάλυση, αφού, οι δυσκαμψίες των στοιχείων εξαρτώνται από τη ροπή διαρροής τους), ενώ το ίδιο ισχύει εν γένει και για τους συνακόλουθους ελέγχους ασφαλείας. Συνιστάται ωστόσο, όταν εφαρμόζεται η ανελαστική στατική μέθοδος, να διασφαλίζεται τουλάχιστον «Ικανοποιητική» ΣΑΔ, δεδομένου ότι είναι ευρύτατα διαδεδομένο ότι μία υψηλής στάθμης ανάλυση οφείλει να βασίζεται σε αντίστοιχης στάθμης δεδομένα.

II. Η στατική ανελαστική μέθοδος εφαρμόζεται σε κτίρια στα οποία η επιρροή των ανώτερων ιδιομορφών δεν είναι σημαντική. Για τον έλεγχο της προϋπόθεσης αυτής απαιτείται μία αρχική δυναμική ελαστική ανάλυση όπου θα συνεκτιμώνται οι ιδιομορφές οι οποίες συνεισφέρουν τουλάχιστον το 90% της συνολικής μάζας. Κατόπιν θα γίνεται δεύτερη δυναμική ελαστική ανάλυση με βάση μόνο την πρώτη ιδιομορφή (σε κάθε διεύθυνση). Η επιρροή των ανώτερων ιδιομορφών μπορεί να θεωρείται ότι είναι σημαντική όταν η τέμνουσα σε κάθε όροφο που προκύπτει από την πρώτη ανάλυση υπερβαίνει το 130% εκείνης από τη δεύτερη ανάλυση. Για τις πιο πάνω δυναμικές αναλύσεις γίνεται χρήση του ελαστικού φάσματος του ΕΚ 8-1 (q=1). Όσον αφορά το υφιστάμενο κτίριο, έχει αποδειχτεί ότι ικανοποιείται το πρώτο κριτήριο, αφού η Σ.Α.Δ. είναι «Ικανοποιητική». Σχετικά με τη επιρροή των ανώτερων ιδιομορφών, πρέπει να γίνει δυναμική ελαστική ανάλυση, δηλαδή φασματική, λαμβάνοντας υπόψη τον απαιτούμενο αριθμό ιδιομορφών. Οι συνδυασμοί που πρέπει να χρησιμοποιηθούν είναι:

4 G+0.3Q+RSPx+0.3RSPy

G+0.3Q+0.3RSPx+RSPy

Όπου:

 RSP_x και RSP_y τα φάσματα απόκρισης του EC8 στη διεύθυνση X και Y αντίστοιχα.

Δεδομένων των αποτελεσμάτων της ιδιομορφικής ανάλυσης, πρέπει στην 1ⁿ ανάλυση να συνεκτιμηθούν οι ιδιομορφές οι οποίες συνεισφέρουν τουλάχιστον το 90% της συνολικής μάζας, δηλαδή οι 34 πρώτες και στη 2ⁿ ανάλυση οι τρεις πρώτες αφού η πρώτη, που θα έπρεπε να ληφθεί σύμφωνα με το παραπάνω κριτήριο, δεν θεωρήθηκε θεμελιώδης κατά X ή Y. Ωστόσο, στο συγκεκριμένο λογισμικό προσομοίωσης, όταν εισάγεται το φάσμα απόκρισης, αυτόματα δίνει σεισμική φόρτιση στη διεύθυνση X κατά +X και –X. Όμοια και στην άλλη διεύθυνση. Συνεπώς, οι τέμνουσες που προκύπτουν αποτελούν αποτέλεσμα εναλλασσόμενης φοράς φορτίου και δεν μπορούν να αθροιστούν, προκειμένου να υπολογιστεί η συνολική τέμνουσα κάθε ορόφου. Απ' την άλλη πλευρά, αυτό το πρόβλημα θα μπορούσε να λυθεί με χρήση ελαστικής στατικής ανάλυσης, η οποία όμως δεν λαμβάνει υπόψη τις ιδιομορφές. Συνεπώς, είναι αδύνατο να ελεγχθεί η επιρροή των ανώτερων ιδιομορφών.

Έστω ότι η επιρροή τους ήταν σημαντική. Σύμφωνα με τον ΚΑΝ.ΕΠΕ. στην περίπτωση αυτή, επιτρέπεται να εφαρμόζεται η στατική ανελαστική ανάλυση, υπό τον όρο ότι θα εφαρμόζεται σε συνδυασμό με μία συμπληρωματική δυναμική ελαστική ανάλυση, ανεξαρτήτως δε των λοιπών προϋποθέσεων εφαρμογής της δυναμικής ελαστικής μεθόδου. Στην περίπτωση αυτή, διεξάγονται όλοι οι έλεγχοι και με τις δύο μεθόδους, ενώ επιτρέπεται μία αύξηση κατά 25% των τιμών των παραμέτρων που υπεισέρχονται στα κριτήρια ελέγχου και των δύο μεθόδων.

6.1.2 Βασικά χαρακτηριστικά μηχανικής συμπεριφοράς δομικών στοιχείων

6.1.2.1 Καμπύλη εντατικού μεγέθους - παραμόρφωσης "F-δ"

Η μηχανική συμπεριφορά ενός δομικού στοιχείου περιγράφεται μέσω ενός διαγράμματος εντατικού μεγέθους "F" συναρτήσει της παραμόρφωσης ή σχετικής μετακίνησης "δ". Το είδος, η διεύθυνση κ.λπ. του μεγέθους F επιλέγονται έτσι ώστε να χαρακτηρίζουν το κύριο μέρος της έντασης την οποία προκαλεί η σεισμική δράση στο στοιχείο. Η παραμόρφωση δ επιλέγεται έτσι ώστε, σε συνδυασμό με το εντατικό μέγεθος F, να εκφράζει την ενέργεια παραμόρφωσης του στοιχείου. Όπου καθοριστική της ανελαστικής συμπεριφοράς είναι η κάμψη, κατάλληλα μεγέθη F και δ είναι η ροπή κάμψης M και η καμπυλότητα 1/r. Αν καθοριστική της ανελαστικής συμπεριφοράς είναι η τέμνουσα δύναμη V και η γωνιακή (διατμητική) παραμόρφωση γ. Επειδή στα στοιχεία ΟΣ οι καμπτικές παραμορφώσεις συνυπάρχουν με τις διατμητικές και με τις στροφές των ακραίων διατομών λόγω εξόλκευσης των οπλισμών στην αγκύρωση πέραν του άκρου του στοιχείου, η καταλληλότερη επιλογή F και δ είναι η ροπή Μ και η στοιχείου, όπου η θ περιλαμβάνει το σύνολο των καμπτικών και διατμητικών παραμορφώσεων, καθώς και τη στροφή των άκρων λόγω εξόλκευσης οπλισμών.

Σύμφωνα με τον ΚΑΝ.ΕΠΕ. η μηχανική συμπεριφορά περιγράφεται από την περιβάλλουσα των εξασθενημένων αποκρίσεων F, μετά από πλήρως ανακυκλιζόμενη επιβαλλόμενη παραμόρφωση ±δ, μέχρι και την απώλεια της ικανότητας του δομικού στοιχείου να φέρει τα φορτία βαρύτητας. Η απώλεια της φέρουσας ικανότητας ή αντίστασης έναντι κατακόρυφων φορτίων σηματοδοτεί το τελικό στάδιο της αστοχίας του στοιχείου. Κατά κανόνα, αυτή συμβαίνει σε τιμές της παραμόρφωσης δ πολύ πέραν από αυτές που προκαλούν απώλεια ή ουσιαστική μείωση της αντίστασης του στοιχείου έναντι της σεισμικής έντασης. Συνήθως, λαμβάνονται υπόψη τρείς πλήρεις ανακυκλίσεις σε κάθε επιβαλλόμενη παραμόρφωση "δ".

Διάγραμμα 6-1 Διάγραμμα F-δ υπό ανακυκλιζόμενη ένταση

6.1.2.2 Οιονεί ελαστικός κλάδος και διαρροή

Η προσέγγιση της πραγματικής καμπύλης F-δ μέσω ενός πολυγραμμικού διαγράμματος είναι γενικώς επαρκής. Ο πρώτος ευθύγραμμος κλάδος εκτείνεται από την αρχή των αξόνων μέχρι τη συμβατική (ή ενεργό) "διαρροή" του στοιχείου μετά την οποία η καμπύλη F-δ μπορεί να

λαμβάνεται περίπου οριζόντια. Οι απλοί κανόνες για τον υπολογισμό της σεισμικής απόκρισης με ψευδό-ελαστικές μεθόδους προϋποθέτουν διγραμμική περιβάλλουσα καμπύλη συνολικών δυνάμεων-μετακινήσεων F-δ του δομήματος (π.χ. καμπύλη τέμνουσας βάσης-μετάθεσης κορυφής), με τον οιονεί ελαστικό κλάδο να φθάνει μέχρι τη διαρροή. Η μορφή των καμπυλών F-δ των επιμέρους προσομοιωμάτων για στοιχεία ή περιοχές του δομήματος, πρέπει να είναι τέτοια ώστε τελικώς να προκύπτει περίπου διγραμμική καμπύλη F-δ για το σύνολο του δομήματος. Έτσι, σε στοιχεία από οπλισμένο σκυρόδεμα, ο οιονεί ελαστικός κλάδος παρακάμπτει την ρηγμάτωση και κατευθύνεται στη διαρροή του στοιχείου.

Η αντίσταση διαρροής F_y μπορεί να ληφθεί ίση με την οριακή αντίσταση για τον κρίσιμο τρόπο αστοχίας. Έτσι, μπορούν να διακριθούν οι εξής περιπτώσεις:

- 븆 Σε ένα <u>μέλος που αστοχεί από κάμψη</u> με ροπή στο άκρο ίση με Μ_u, θα λαμβάνεται:
 - F_y=M_u, εφόσον οι F εκφράζονται σε όρους ροπών είτε
 - F_y=V_{Mu} (η τέμνουσα, την στιγμή της καμπτικής αστοχίας), εφόσον οι F εκφράζονται σε όρους τεμνουσών.
- 🖊 Σε ένα μ<u>έλος που αστοχεί από τέμνουσα</u>, όταν δηλαδή V_u<V_{Mu}, θα λαμβάνεται:
 - F_y=M_{vu} (η ροπή, την στιγμή της διατμητικής αστοχίας), εφόσον οι F εκφράζονται σε όρους ροπών,
 - Είτε F_y=V_u, εφόσον οι F εκφράζονται σε όρους τεμνουσών.

Είναι: V_{Mu}=Mu/(α_{s*}h), όπου α_s=M/(V*h) ο "λόγος διατμήσεως" της υπόψη περιοχής κατά την υπό εξέταση εντατική κατάσταση. Η τιμή της παραμόρφωσης στη διαρροή, δ_γ, πρέπει να λαμβάνει υπόψη όλες τις παραμορφώσεις κατά τη διαρροή του στοιχείου (καμπτικές, διατμητικές, λόγω εξόλκευσης οπλισμών). Σημειώνεται ότι, η έννοια "διαρροής" δομικού στοιχείου, είναι ευρύτερη εκείνης που προκαλείται αποκλειστικώς απ' την διαρροή οπλισμού.

Η οιονεί ελαστική δυσκαμψία Κ που χρησιμοποιείται στην ανάλυση του δομικού συστήματος ορίζεται και υπολογίζεται ως:

$$\mathsf{K} = \frac{F_{\mathcal{Y}}}{\delta_{\mathcal{Y}}}$$

ΣΗΜΕΙΩΣΗ:

Ο υπολογισμός της οιονεί ελαστικής δυσκαμψίας Κ βασίζεται στις μέσες τιμές ιδιοτήτων των υλικών.

6.1.2.3 Μετελαστικός κλάδος

Στις περιπτώσεις όπου αναμένεται ορισμένη αξιόπιστη πλαστιμότητα των κρίσιμων περιοχών, είναι αποδεκτό να λαμβάνεται ο μετελαστικός κλάδος της καμπύλης F-δ ως οριζόντιος μέχρι την παραμόρφωση αστοχίας του στοιχείου, δ_u. Η εκτίμηση της ανελαστικής σεισμικής απόκρισης δεν επηρεάζεται ουσιωδώς αν αγνοηθεί η λόγω κράτυνσης θετική κλίση του μετελαστικού κλάδου. Πάντως ο μετελαστικός κλάδος μπορεί να λαμβάνεται με μικρή θετική κλίση για λόγους αριθμητικής ευστάθειας της ανάλυσης. Προκειμένου να ληφθεί υπόψη τυχόν αναμενόμενη έντονη εξασθένηση της απόκρισης με την ανακύκλιση της παραμόρφωσης, ή φαινόμενα 2ας τάξεως, ο μετελαστικός κλάδος οφείλει να λαμβάνεται με αρνητική κλίση. Αν χρησιμοποιείται ανελαστική μέθοδος ανάλυσης της σεισμικής απόκρισης, η χρήση αρνητικής κλίσης της καμπύλης F-δ μπορεί να οδηγήσει σε αριθμητικά προβλήματα και λανθασμένα αποτελέσματα. Έτσι, σε αυτές τις περιπτώσεις, συνιστάται μία κατάλληλη μείωση της F_y, ώστε ένας συντηρητικότερος οριζόντιος μετελαστικός κλάδος, να λαμβάνει προσεγγιστικώς υπόψη και την εξασθένιση απόκρισης υπό μεγαλύτερες παραμορφώσεις.

6.1.2.4 Απομένουσα αντίσταση

Μετά την παραμόρφωση αστοχίας, δ_u, μειώνεται σημαντικά η απόκριση του στοιχείου σε ένταση λόγω σεισμικής δράσης υπό αυξανόμενη παραμόρφωση δ, αλλά συνήθως δεν μηδενίζεται. Η απόκριση αυτή μπορεί να θεωρηθεί περίπου σταθερή μέχρι την παραμόρφωση που προκαλεί απώλεια της αντίστασης έναντι φορτίων βαρύτητας, ονομάζεται δε απομένουσα αντίσταση F_{res}. Η τιμή της απομένουσας αντίστασης ενδιαφέρει μόνο για λόγους προσομοίωσης της ανελαστικής απόκρισης πλάστιμων στοιχείων.

6.1.2.5 Πλάστιμη και ψαθυρή συμπεριφορά

Αν η διαθέσιμη τιμή του δείκτη πλαστιμότητας μ₀ ενός δομικού στοιχείου ξεπερνά ένα ορισμένο όριο, η συμπεριφορά χαρακτηρίζεται ως πλάστιμη, οπότε η ανίσωση ασφαλείας του θα εκφράζεται σε όρους παραμορφώσεων δ. Διαφορετικά, η συμπεριφορά χαρακτηρίζεται ως ψαθυρή, οπότε η ανίσωση ασφαλείας θα εκφράζεται σε όρους δυνάμεων F. Το όριο μεταξύ πλάστιμης και ψαθυρής συμπεριφοράς λαμβάνεται συμβατικά ίσο με 2,0, όταν αναφέρεται σε διαθέσιμη τιμή δείκτη πλαστιμότητας σχετικών μετακινήσεων, μ_δ ή μ_θ. Όταν αναφέρεται σε διαθέσιμη τιμή δείκτη πλαστιμότητας καμπυλοτήτων, μ1/r, το συμβατικό όριο λαμβάνεται ίσο με 3,0. Στοιχεία ΟΣ που διαρρέουν σε διάτμηση πριν απ' τη διαρροή σε κάμψη θεωρείται ότι έχουν ψαθυρή συμπεριφορά. Στοιχεία που διαρρέουν σε κάμψη πριν απ' τη διαρροή σε διάτμηση (δηλαδή όταν η $V_{Mu}=M_u/(\alpha_s*h)$ είναι μικρότερη της Vu) μπορεί να θεωρηθούν ότι έχουν πλάστιμη συμπεριφορά, με εξαίρεση στοιχεία με χαμηλό λόγο διάτμησης (π.χ. α_s = (M/(V*h)) < 2), των οποίων η συμπεριφορά μπορεί να ληφθεί ως ψαθυρή, χωρίς υπολογισμό και έλεγχο της διαθέσιμης τιμής του δείκτη πλαστιμότητας. Αν χρησιμοποιείται ελαστική ανάλυση χωρίς ενιαίο δείκτη συμπεριφοράς q, η ανίσωση ασφαλείας μπορεί να εφαρμόζεται σε όρους δυνάμεων, αρκεί η ένταση F να συγκρίνεται με την αντοχή F_v (≈ F_u) του στοιχείου, αφού διαιρεθεί με κατάλληλο τοπικό δείκτη πλαστιμότητας m, ο οποίος συνδέεται με τη διαθέσιμη τιμή του δείκτη πλαστιμότητας παραμορφώσεων μ_δ του υπόψη στοιχείου.

6.1.3 Αντίσταση και ικανότητα παραμόρφωσης υφιστάμενων στοιχείων

6.1.3.1 Εντατικό μέγεθος αντίστασης διαρροής ή αστοχίας στοιχείου

Η αντίσταση διαρροής F_v μπορεί να λαμβάνεται ίση με την οριακή αντοχή (για το οπλισμένο σκυρόδεμα όπως αυτή υπολογίζεται κατά τις διατάξεις του EC2), με χρήση όμως των μέσων τιμών της αντοχής των υλικών, αντί των τιμών σχεδιασμού. Ειδικώς στην περίπτωση όπου η τιμή της αντίστασης διαρροής χρησιμοποιείται για τον έλεγχο κριτηρίων επιτελεστικότητας ψαθυρών τρόπων αστοχίας, η τιμή της υπολογίζεται με τις αντιπροσωπευτικές τιμές ιδιοτήτων των υλικών και συντελεστές ασφαλείας. Αν η αξονική δύναμη είναι υψηλή, η αστοχία του σκυροδέματος της θλιβόμενης ζώνης μπορεί να προηγηθεί της διαρροής του εφελκυόμενου οπλισμού, οπότε η καμπύλη F-δ δεν εμφανίζει σαφές όριο διαρροής. Σ' αυτή την περίπτωση, αντί της χρήσης ελαστοπλαστικής-καμπύλης F-δ με εντατικό μέγεθος διαρροής που προκύπτει από την τιμή καμπτικής αντοχής κατά τις διατάξεις του EC2, συνιστάται η κατασκευή διαγράμματος M-(1/r) και η προσαρμογή σ' αυτό μιας "ισοδύναμης" ελαστοπλαστικής καμπύλης F-δ, με βάση την αρχή των ίσων εμβαδών.

Προκειμένου περί πλακοδοκών, η ροπή αστοχίας (ή διαρροής) για εφελκυσμό στην πλάκα πρέπει να υπολογίζεται προσμετρώντας και τους παράλληλους στη δοκό οπλισμούς της πλάκας οι οποίοι βρίσκονται μέσα στο συνεργαζόμενο σε εφελκυσμό πλάτος της πλάκας, και είναι επαρκώς αγκυρωμένοι πέραν της διατομής στήριξης της δοκού. Το συνεργαζόμενο σε εφελκυσμό πλάτος της πλάκας σε κάθε πλευρά του κορμού μπορεί να ληφθεί ίσο με το ένα τέταρτο του ανοίγματος της δοκού, ή με το μισό της απόστασης μέχρι την πρώτη παράλληλη δοκό, όποιο είναι μικρότερο. Η ροπή αντοχής ή διαρροής πλακοδοκών εν γένει δεν επηρεάζεται ουσιωδώς από την τιμή του συνεργαζόμενου πλάτους σε θλίψη, είναι όμως ευαίσθητη στην αντίστοιχη τιμή σε εφελκυσμό. Η υποτίμηση της καμπτικής αντοχής πλακοδοκών, με υιοθέτηση χαμηλής τιμής συνεργαζόμενου πλάτους σε βάρος της ασφαλείας, εάν οδηγεί στο εσφαλμένο συμπέρασμα ότι η πλακοδοκών διαρρέει σε κάμψη προτού αστοχήσει σε τέμνουσα ή ότι σχηματίζονται πλαστικές αρθρώσεις στις δοκούς αντί στα υποστυλώματα.

6.1.3.2 Παραμόρφωση διαρροής στοιχείου

Στον υπολογισμό της παραμόρφωσης πρέπει να λαμβάνεται υπόψη η συμβολή και της κάμψης και της διάτμησης. Η συμβολή της κάμψης στην παραμόρφωση διαρροής μμπορεί να εκτιμηθεί με βάση την τιμή της καμπυλότητας διαρροής, (1/r)_γ , η οποία μπορεί να υπολογισθεί με βάση την υπόθεση επιπεδότητας διατομών και με γραμμικό νόμο σ-ε του χάλυβα και του σκυροδέματος σε θλίψη, για μηδενική εφελκυστική αντοχή του σκυροδέματος. Εάν οι παραμορφώσεις "δ" αναφέρονται στο σύνολο του μήκους $L_s=\alpha_sh$ στο άκρο δομικού στοιχείου (π.χ. όταν ως δ χρησιμοποιείται η γωνία στροφής χορδής θ), τότε στη φάση της καμπτικής διαρροής το τμήμα της θ_v που οφείλεται στην κάμψη, μπορεί να ληφθεί ίσο με (1/r)y(L_s + a_{v*}z)/3, όπου ο όρος a_vz εκφράζει την επιρροή του «μήκους μετάθεσης» των ροπών κάμψης σ' αυτές, z είναι ο μοχλοβραχίονας εσωτερικών δυνάμεων, ο δε συντελεστής av ισούται με 1 εάν η τέμνουσα, VR1, που προκαλεί λοξή ρηγμάτωση του στοιχείου, υπολείπεται της τιμής της τέμνουσας κατά την καμπτική διαρροή $V_{Mu}=M_y/L_s$, και με 0 αν είναι μεγαλύτερη. Στην τιμή αυτή χρειάζεται να προστεθεί η συμβολή της στροφής της ακραίας διατομής λόγω εξόλκευσης του τμήματος των ράβδων πέραν της ακραίας διατομής του στοιχείου. Χρειάζεται επίσης να προστεθεί η συμβολή των διατμητικών παραμορφώσεων στη θ_v . Το μήκος L_s είναι ο λόγος M/V στην ακραία διατομή του στοιχείου, δηλαδή η απόσταση της ακραίας διατομής από το σημείο μηδενισμού των ροπών. Η εξόλκευση του τμήματος των ράβδων πέραν της διατομής στήριξης είναι ανάλογη:

της μήκυνσης του χάλυβα στη διαρροή

του μήκους που απαιτείται για την αγκύρωση των ράβδων.

Εάν δεν υπάρχουν ακριβέστερα στοιχεία, η γωνία στροφής χορδής θ_γ στην καμπτική διαρροή στοιχείων μπορεί να εκτιμηθεί από την ακόλουθη έκφραση:

🖊 Για δοκούς ή υποστυλώματα:

$$\theta_{y} = (\frac{1}{r})_{y} * \frac{L_{s} + a_{v} * z}{3} + 0.0014 * \left(1 + 1.5 * \frac{h}{L_{s}}\right) + \frac{(\frac{1}{r})_{y} * d_{b} * f_{y}}{8 * \sqrt{f_{c}}}$$

4 Για τοιχώματα:

$$\theta_y = (\frac{1}{r})_y * \frac{L_s + a_v * z}{3} + 0.0013 * \left(1 + 1.5 * \frac{h}{L_s}\right) + \frac{(\frac{1}{r})_y * d_b * f_y}{8 * \sqrt{f_c}}$$

Στις εξισώσεις αυτές ο $1^{\circ c}$ όρος εκφράζει την συμβολή των καμπτικών παραμορφώσεων, ο $2^{\circ c}$ όρος τις μέσες διατμητικές παραμορφώσεις στο μήκος L_s, ενώ ο $3^{\circ c}$ την επιρροή της εξόλκευσης του τμήματος των ράβδων πέραν της ακραίας διατομής του στοιχείου.

Αν η τέμνουσα αντοχής του στοιχείου V_R υπολείπεται της τιμής της τέμνουσας κατά την καμπτική διαρροή, $V_{Mu}=M_y/L_s$, τότε καθοριστική της διαρροής είναι η διάτμηση, οπότε η παραμόρφωση

διαρροής υπολογίζεται ως το γινόμενο της $(1/r)_y$ ή της θ_y επί V_RL_s/M_y, ανάλογα με το νόημα της δ (ως 1/r ή ως θ).

6.1.4 Ενεργός δυσκαμψία στοιχείων οπλισμένου σκυροδέματος

Η ενεργός δυσκαμψία του μήκους L_s στοιχείου ισούται με:

$$K = \frac{My * Ls}{3\theta y}$$

Όπου M_y και θ_y η τιμή της ροπής και της γωνίας στροφής χορδής, αντίστοιχα, στη διαρροή της ακραίας διατομής του στοιχείου.

Η εξίσωση εφαρμόζεται για τον υπολογισμό της ενεργού δυσκαμψίας, ακόμη και αν η διατμητική αστοχία του στοιχείου προηγείται της καμπτικής διαρροής του άκρου του. Η ενεργός δυσκαμψία Κ του συνολικού μήκους του στοιχείου μπορεί να λαμβάνεται ίση με τον μέσο όρο των τιμών στις δύο ακραίες διατομές το στοιχείου. Αν οι διατομές αυτές έχουν μη- συμμετρικό σχήμα ή οπλισμό (δηλαδή, διαφορετικό για θετική ή αρνητική ροπή κάμψης), λαμβάνονται οι μέσοι όροι των τιμών του Κ για τις δύο φορές της κάμψης (θετική ή αρνητική). Ο υπολογισμός της δυσκαμψίας μέσω των Μ_γ, θ_γ μπορεί να βασίζεται σε σταθερή τιμή του L_s, ως εξής:

- Σε δοκούς που συνδέονται και στα δύο άκρα με κατακόρυφα στοιχεία, το L_s μπορεί να λαμβάνεται ίσο με το μισό του καθαρού ανοίγματος της δοκού. - Σε δοκούς που συνδέονται με κατακόρυφο στοιχείο μόνο στο ένα άκρο, το L_s μπορεί να λαμβάνεται ίσο με το συνολικό καθαρό άνοιγμα της δοκού.

- Σε υποστυλώματα, το L_s μπορεί να λαμβάνεται ως το μισό του καθαρού ύψους μεταξύ δοκών με τις οποίες το υποστύλωμα συνδέεται μονολιθικά μέσα στο υπόψη επίπεδο της κάμψης.

- Στα τοιχώματα, το L_s μπορεί να λαμβάνεται σε κάθε όροφο διαφορετικό και ίσο με το μισό της απόστασης της διατομής βάσης ορόφου από την κορυφή του τοιχώματος στο κτίριο.

6.1.5 Παραμορφώσεις αστοχίας στοιχείων οπλισμένου σκυροδέματος

6.1.5.1 Παραμορφώσεις κατά την αστοχία από κάμψη

Καμπυλότητα διατομής ΟΣ κατά την αστοχία

Η καμπυλότητα αστοχίας διατομής οπλισμένου σκυροδέματος μπορεί να υπολογισθεί συντάσσοντας διάγραμμα ροπών- καμπυλοτήτων της διατομής μέχρι την "αστοχία", λαμβάνοντας υπόψη ότι η διατομή μπορεί να αστοχήσει είτε λόγω θραύσης του εφελκυόμενου οπλισμού είτε λόγω αστοχίας του σκυροδέματος σε θλίψη, και μάλιστα (ανάλογα με την περίσφιγξη της θλιβόμενης ζώνης) πριν ή μετά την αποφλοίωση του απερίσφιγκτου τμήματος της διατομής.

Για αστοχία πριν απ' την αποφλοίωση, η καμπυλότητα αστοχίας λόγω θραύσης του εφελκυόμενου χάλυβα είναι:

$$(\frac{1}{r})_{su} = \frac{\varepsilon_{su}}{(1 - \xi_{su}) * d}$$

🖊 ενώ λόγω αστοχίας θλιβόμενου σκυροδέματος είναι:

$$(\frac{1}{r})_{cu} = \frac{\varepsilon_{cu}}{\xi_{cu} * d}$$

Όπου

ξ_{su} και ξ_{cu} είναι το ανηγμένο στο d ύψος της θλιβόμενης ζώνης κατά την αστοχία του χάλυβα και του σκυροδέματος αντίστοιχα

ε_{su} η ομοιόμορφη μήκυνση αστοχίας του εφελκυόμενου οπλισμού και

 $ε_{cu}$ η βράχυνση αστοχίας της ακραίας θλιβόμενης ίνας σκυροδέματος.

Η βράχυνση αστοχίας της ακραίας ίνας του περισφιγμένου πυρήνα ε_{cu} μπορεί να εκτιμηθεί ως:

$$\varepsilon_{cu} = 0.0035 + 0.1 * a * \omega_w$$

Όπου ω_w είναι το μηχανικό ογκομετρικό ποσοστό του οπλισμού περίσφιγξης και α ο συντελεστής αποδοτικότητάς της, ως εξής:

$$a = \left(1 - \frac{s_h}{2b_c}\right) * \left(1 - \frac{s_h}{2h_c}\right) * \left(1 - \frac{\sum b_i^2}{6 * b_c h_c}\right)$$

Όπου:

sh η (καθαρή) απόσταση συνδετήρων

 b_c και h_c οι διαστάσεις του πυρήνα (με $h_c < 1.5 \div 2.0 bc$)

b_i οι (περίπου ίσες) αποστάσεις μεταξύ διαμηκών ράβδων που συγκρατούνται από συνδετήρα ή άγκιστρο σιγμοειδούς εγκάρσιου συνδέσμου, κατά την περίμετρο της διατομής.

Εναλλακτικώς, μπορεί να χρησιμοποιηθεί αντί του h_c το ύψος της θλιβόμενης ζώνης εντός του περισφιγμένου πυρήνα, οπότε ως b_i θα λαμβάνονται οι αποστάσεις μεταξύ διαμηκών ράβδων κατά την εξωτερική περίμετρο της θλιβόμενης ζώνης, με αφετηρία τον ουδέτερο άξονα. Αν οι συνδετήρες δεν κλείνουν με άγκιστρο προς το εσωτερικό του σκυροδέματος (≥135° στις γωνίες και ≥90° στο ενδιάμεσο των πλευρών), συνιστάται να αμελείται η περίσφιγξη (ο συντελεστής α να λαμβάνεται ίσος με 0).

Πλαστική γωνία στροφής χορδής και συνολική γωνία στροφής χορδής

Η διαθέσιμη γωνία πλαστικής στροφής θ_{upl}μιας κρίσιμης περιοχής και η διαθέσιμη συνολική γωνία στροφής θ_u στο άκρο δομικού στοιχείου πρέπει να υπολογίζονται λαμβάνοντας υπόψη όλες τις υπεισερχόμενες παραμέτρους των μεγεθών αυτών, πάντως δε συνεκτιμώντας υπέρ της ασφαλείας και όλες τις σχετικές πηγές αβεβαιότητας. Είναι δυνατή η εμπειρική εκτίμηση της διαθέσιμης τιμής της πλαστικής γωνίας στροφής ή της συνολικής γωνίας στροφής χορδής στοιχείων ΟΣ συναρτήσει των γεωμετρικών και μηχανικών χαρακτηριστικών των στοιχείων και των οπλισμών τους, με τη βοήθεια εμπειρικών σχέσεων ή πινάκων. Ως τέτοιες σχέσεις επιτρέπεται να χρησιμοποιούνται οι εξής, εφόσον οι διαμήκεις οπλισμοί είναι νευροχάλυβες:

Για τη μέση τιμή της γωνίας στροφής χορδής κατά την αστοχία δοκών ή υποστυλωμάτων που έχουν διαστασιολογηθεί και κατασκευασθεί με τις μετά το 1985 διατάξεις για αντισεισμικότητα:

 $\theta_{um} = 0.016 \cdot (0.3^{v}) \cdot [(max(0.01; \omega')/max(0.01; \omega)) \cdot f_c]^{0,225} \cdot a_s^{0,35} \cdot 25^{(a \cdot ps \cdot fyw/fc)} \cdot 1.25^{100 \cdot pd}$

Όπου:

ν = N/(b*h*f_c): η ανηγμένη αξονική δύναμη

- ω, ω΄: το μηχανικό ποσοστό εφελκυόμενου και θλιβόμενου οπλισμού (ο ενδιάμεσος διαμήκης οπλισμός μεταξύ εφελκυόμενου και θλιβόμενου πέλματος θεωρείται ως εφελκυόμενος)
- $\alpha_s = M/(V^*h): ο λόγος διάτμησης$
- $\alpha = (1-s_h/(2b_c))\cdot(1-sh/(2\cdot hc))\cdot(1-\Sigma di2/(6\cdot bc\cdot hc)):$ ο συντελεστής αποδοτικότητας της περίσφιγξης
- ρ_s = Ash/(b_w*s_h): το γεωμετρικό ποσοστό εγκάρσιου οπλισμού παράλληλα στη διεύθυνση της φόρτισης

ρ_d: το γεωμετρικό ποσοστό τυχόν δισδιαγώνιου οπλισμού

Fια τη μέση τιμή του πλαστικού τμήματος της μέσης γωνίας στροφής χορδής κατά την αστοχία του στοιχείου :

$$\theta_{um}^{pl} = \theta_u - \theta_y = 0.0145 \cdot 0.25^{\nu} \cdot \left[\frac{\max(0.01;\omega')}{\max(0.01;\omega)}\right]^{0.3} \cdot f_c^{0.2} \cdot \alpha_s^{0.35} \cdot 25^{\left[a \cdot \rho_s \cdot \frac{f_{yw}}{f_c}\right]} \cdot 1.275^{1000 \cdot \rho_d}$$

ΣΗΜΕΙΩΣΕΙΣ

- ✓ Για τοιχώματα που έχουν διαστασιολογηθεί και κατασκευασθεί με τις μετά το 1985 διατάξεις για αντισεισμικότητα, το 2ο μέλος της εξίσωσης χρειάζεται να πολλαπλασιάσει επί 0,58 (ο συντελεστής γίνεται 0,009), ενώ το 2ο μέλος της χρειάζεται να πολλαπλασιαστεί επί 0,56 (ο συντελεστής γίνεται 0,008).
- ✓ Σε στοιχεία που έχουν διαστασιολογηθεί και κατασκευασθεί με βάση τα ισχύοντα στην Ελλάδα προ του 1985, με χρήση νευροχαλύβων, οι τιμές που υπολογίζονται με βάση τα ανωτέρω χρειάζεται να διαιρεθούν δια 1,2.
- ✓ Σε στοιχεία που έχουν διαστασιολογηθεί και κατασκευασθεί με βάση τα ισχύοντα στην Ελλάδα προ του 1985 με χρήση λείων ράβδων, η μέση τιμή της γωνίας στροφής χορδής στην αστοχία, θ_{um}, υπολογίζεται ως το 95% της τιμής που προκύπτει κατά τα ανωτέρω.

6.1.5.2 Παραμόρφωση κατά την αστοχία από τέμνουσα

Εάν το στοιχείο αστοχεί από τέμνουσα προτού διαρρεύσει σε κάμψη, δηλαδή αν V_R < V_{My}, τότε επιτρέπεται να λαμβάνεται πλαστική γωνία στροφής στο άκρο του μετά την εξάντληση της διατμητικής αντοχής ίση με το 40% της αντίστοιχης γωνίας στροφής χορδής στην καμπτική διαρροή, θ_y. Κατά τις μετελαστικές ανακυκλίσεις, η σταδιακή εξασθένηση της αντίστασης V_R σε τέμνουσα, ενδέχεται να προκαλέσει αστοχία από τέμνουσα ακόμη και στην περίπτωση όπου αρχικώς ήταν V_R>V_{Mu}. Για να ληφθεί επαρκώς υπόψη το ενδεχόμενο αυτό, απαιτείται η εκτίμηση αυτής της εξασθένησης της V_R συναρτήσει του απαιτούμενου για τον σχεδιασμό δείκτη πλαστιμότητας επιβαλλόμενων μετακινήσεων, μ_δ=μθ=θ_u/θ_y

Διάγραμμα 6-3 Διάγραμμα εξασθένισης διατμητικής αντοχής λόγω ανακύκλισης

Η εξασθένηση της διατμητικής αντοχής με την ανακύκλιση οφείλεται στο συνδυασμό πολλών μηχανισμών, όπως:

- Η λειοτρίβηση των επιφανειών των ρωγμών και η εξασθένιση του μηχανισμού αλληλεμπλοκής αδρανών.
- Η διεύρυνση των ρωγμών με τη συσσώρευση ανελαστικών παραμορφώσεων (μήκυνσης) στους συνδετήρες, η μείωση των τάσεων συνάφειας κατά μήκος τους λόγω της ανακύκλισης, καθώς και η επακόλουθη πρόσθετη εξασθένιση του μηχανισμού αλληλεμπλοκής αδρανών.
- Η εξασθένιση της δράσης βλήτρου (των διαμήκων οπλισμών) με την ανακύκλιση της έντασης.
- Η ανάπτυξη διαμπερών καμπτικών ρωγμών με την ανακύκλιση και τη μείωση της αντίστασης σε τέμνουσα της θλιβόμενης ζώνης.

Κανονικά, ο έλεγχος της διατμητικής αντοχής κάθε μέλους γίνεται με τιμές αξονικής δύναμης και λόγου διάτμησης οι οποίες παρουσιάζονται σταδιακώς κατά τις φορτίσεις που λαμβάνονται υπόψη στη σύνταξη της καμπύλης αντίστασης. Απλοποιητικώς, επιτρέπεται να γίνεται ο έλεγχος αυτός σε κάθε μέλος με τιμές αξονικής δύναμης και λόγου διάτμησης ίσες με εκείνες που συμβαίνουν στο μέλος αυτό κατά τη στιγμή της κρίσιμης μετακίνησης του δομήματος. Όσον αφορά την αξονική δύναμη, μόνον στην περίπτωση χθαμαλών κτιρίων, στα οποία η σεισμική δράση δεν συνεπάγεται συνήθως μεταβολή αξονικών δυνάμεων στα κατακόρυφα στοιχεία, είναι δυνατόν να χρησιμοποιηθεί τιμή αξονικής δύναμης που οφείλεται μόνον στα κατακόρυφα φορτία. Όσον αφορά την αξονική του λόγου διάτμησης, μόνον σε κατακόρυφα στοιχεία μπορεί να χρησιμοποιείται σταθερή τιμή του λόγου διάτμησης καθ' όλη την διάρκεια της απόκρισης. Σε δοκούς, γενικώς κρίσιμο έναντι αστοχίας σε διάτμηση είναι ένα άκρο όταν εφελκύεται το πάνω πέλμα. Τότε, το μήκος διάτμησης υπολογίζεται ως ο εκάστοτε λόγος M/V στη διατομή στήριξης.

Όταν δε διατίθεται ένα ακριβέστερο προσομοίωμα, η εξασθένιση της αντοχής σε τέμνουσα, όπως αυτή καθορίζεται από τη διαρροή των συνδετήρων, επιτρέπεται να εκτιμάται με βάση την παρακάτω σχέση:

 $V_{R} = ((h-x)/(2 \cdot L_{s})) \cdot \min(N; 0.55 \cdot A_{c} \cdot f_{c}) + (1 - 0.05 \cdot \min(5; \mu_{\theta}^{pl})) \cdot [0.16 \cdot \max(0.5; 100 \cdot \rho_{tot}) \cdot (1 - 0.16 \cdot \min(5; \alpha_{s})) \cdot f_{c}^{0.5 \cdot} A_{c} + V_{w}]$

Όπου:

h: ύψος διατομής (ίσο με τη διάμετρο D για τις κυκλικές διατομές)

x: ύψος της θλιβόμενης ζώνης

Ν: αξονικό φορτίο (θετικό για θλίψη, μηδενικό για εφελκυσμό)

Ας: εμβαδόν της διατομής σκυροδέματος

f_c: θλιπτική αντοχή σκυροδέματος σε MPa

ρ_{tot}: συνολικό ποσοστό διαμήκους οπλισμού (εφελκυόμενου, θλιβόμενου, και ενδιάμεσου) α_s: λόγος διάτμησης

V_w: συμβολή εγκάρσιου οπλισμού στη διατμητική αντοχή

Για <u>ορθογωνικές διατομές</u>: $V_w = \rho_w \cdot b_w \cdot z \cdot f_{yw}$ όπου:

- ρ_w: το ποσοστού εγκάρσιου οπλισμού
- z: ο μοχλοβραχίονας εσωτερικών δυνάμεων
- ο f_{yw}: η τάση διαρροής του εγκάρσιου οπλισμού

Για κυκλικές διατομές: $V_w = ((\pi \cdot A_{sw})/(2 \cdot s)) \cdot f_{yw}^*(D-2c)$, όπου:

- Asw: το εμβαδόν διατομής ενός κυκλικού συνδετήρα
- s: η απόσταση μεταξύ διαδοχικών συνδετήρων
- c: η επικάλυψη του οπλισμού

6.1.6 Έλεγχοι ασφαλείας αναλόγως της στάθμης επιτελεστικότητας

Με βάση όσα προβλέπονται στα κεφάλαια 2,4,7 και 9 του ΚΑΝ.ΕΠΕ, οι έλεγχοι ασφαλείας μπορούν να παρουσιαστούν εποπτικά κατά το συνημμένο σκελετικό διάγραμμα συμπεριφοράς ανάλογα με τη στάθμη επιτελεστικότητας και του ελέγχου σε όρους παραμορφώσεων μέσω της παραμόρφωσης σχεδιασμού. Όσο αφορά τα χαρακτηριστικά της συμπεριφοράς στη φάση εξασθένησης της αντίστασης των στοιχείων, μετά την οιονεί-αστοχία (F_u και d_u), η οποία ενδιαφέρει μόνον για αναλύσεις και ελέγχους με μη-γραμμικές (ανελαστικές) μεθόδους, και – μάλιστα –μόνον για δομικά στοιχεία με σαφώς πλάστιμη συμπεριφορά, και μόνον για στάθμη επιτελεστικότητας», ισχύουν τα εξής:

- Η απομένουσα αντίσταση F_{res}, που είναι πολύ δύσκολο να εκτιμηθεί, μπορεί να λαμβάνεται ίση με ποσοστό της οριακής αντοχής του στοιχείου F_u(=F_y), δηλ. F_{res} = α*F_y, βλ. διάγραμμα. Για στοιχεία οπλισμένου σκυροδέματος, το ποσοστό α μπορεί να ληφθεί ίσο με 25%.
- Η μέγιστη παραμόρφωση d_{max}, υπό την οποία επέρχεται πλήρης απώλεια των αντιστάσεων του στοιχείου, και υπό τα φορτία βαρύτητας, δεν μπορεί να εκτιμηθεί με αξιοπιστία. Πάντως, μπορεί να θεωρηθεί το πολύ ίση με το διπλάσιο της παραμόρφωσης αστοχίας. Για στοιχεία οπλισμένου σκυροδέματος, και μόνον για λόγους προσέγγισης της απόκρισης του όλου κτιρίου μετά τη διαδοχική οιονεί-κατάρρευση επιμέρους στοιχείων του (δευτερευόντων, κυρίως), ο πολλαπλασιαστικός συντελεστής β μπορεί να ληφθεί ίσος με 1,5.

Διάγραμμα 6-4 Σκελετικό διάγραμμα συμπεριφοράς

6.2 Υπολογισμός χαρακτηριστικών μηχανικής συμπεριφοράς δομικών στοιχείων κτιρίου

Παρακάτω δίνονται οι αναλυτικοί υπολογισμοί των γωνιών στροφής θ_u, θ_y και του λόγου K_{eff}/K_y των υποστυλωμάτων του ισογείου και έπειτα ακολουθούν τα συγκεντρωτικά αποτελέσματα όλων των υποστυλωμάτων.

									010	νισμός										
					blly	х∥ч	Ed	ϸελκυόμενος	Ω	ιβόμενος	Ev	νδιάμεσς	ې د				Ποσ	οστά οπλισμού		Αξονική
	ЧХЧ	Η _{υποστυλ} .	h _{δοκού}	Η _{υποσ} καθαρό	b υποστ.	h _{υποστ} .	d _b ^{eф.}	As ^{εΦ.} (m ²)	d _b ^{θλιβ.}	A _s ^{өռ.թ.} (m²)	d _b ^{ενδ.}	η _b ενδιαμ.	As ^{evő.}	d//x	x//,p	۶'	p×	P'×	Pv	N _{sd}
	20X100	3,20	0,66	2,54	1,00	0,2	10	0,0009424778	10	0,000942478	0	0	0	0,175	0,025	0,142857	0,005386	0,005386	0	343,689
_	55X30	3,20	0,66	2,54	0,30	0,55	20	0,001256637	20	0,001256637	0	0	0	0,52	0,03	0,057692	0,008055	0,008055	0	603,742
_	55X30	3,20	0,66	2,54	0,30	0,55	20	0,001256637	20	0,001256637	0	0	0	0,52	0,03	0,057692	0,008055	0,008055	0	586,263
_	55X30	3,20	0,66	2,54	0,30	0,55	20	0,001256637	20	0,001256637	0	0	0	0,52	0,03	0,057692	0,008055	0,008055	0	596,447
_	55X30	3,20	0,66	2,54	0,30	0,55	20	0,001256637	20	0,001256637	0	0	0	0,52	0,03	0,057692	0,008055	0,008055	0	623,77
_	20X100	3,20	0,66	2,54	1,00	0,2	10	0,0009424778	10	0,000942478	0	0	0	0,175	0,025	0,142857	0,005386	0,005386	0	340,991
	160X20	3,20	0,66	2,54	0,20	1,6	10	0,001021018	10	0,001021018	0	0	0	1,575	0,025	0,015873	0,003241	0,003241	0	428,769
_	20X100	3,20	0,66	2,54	1,00	0,2	10	0,000942478	10	0,000942478	0	0	0	0,175	0,025	0,142857	0,005386	0,005386	0	422,363
-	20X100	3,20	0,56	2,64	1,00	0,2	10	0,0009424778	10	0,000942478	0	0	0	0,175	0,025	0,142857	0,005386	0,005386	0	860,767
_	70X25	3,20	0,66	2,54	0,25	0,7	20	0,001256637	20	0,001256637	0	0	0	0,67	0,03	0,044776	0,007502	0,007502	0	780,553
_	40X20	3,20	0,71	2,49	0,20	0,4	16	0,000603186	16	0,000603186	0	0	0	0,372	0,028	0,075269	0,008107	0,008107	0	349,626
_	25X40	3,20	0,71	2,49	0,40	0,25	20	0,000628319	20	0,000628319	0	0	0	0,22	0,03	0,136364	0,007140	0,007140	0	119,919
_	40X20	3,20	0,6	2,6	0,20	0,4	20	0,000942478	20	0,000942478	0	0	0	0,37	0,03	0,081081	0,012736	0,012736	0	249,686
	160X20	3,20	0,6	2,6	0,20	1,6	10	0,001021018	10	0,001021018	0	0	0	1,575	0,025	0,015873	0,003241	0,003241	0	348,282
	30X30	3,20	0,66	2,54	0,30	0,3	20	0,000628319	20	0,000628319	0	0	0	0,27	0,03	0,111111	0,007757	0,007757	0	254,763
_	55X30	3,20	0,66	2,54	0,30	0,55	20	0,001256637	20	0,001256637	0	0	0	0,52	0,03	0,057692	0,008055	0,008055	0	517,732
_	30X80	3,20	0,6	2,6	0,80	0,3	20	0,000628319	20	0,000628319	0	0	0	0,27	0,03	0,111111	0,002909	0,002909	0	519,958
_	20X80	3,20	0,6	2,6	0,80	0,2	20	0,000628319	20	0,000628319	0	0	0	0,17	0,03	0,176471	0,004620	0,004620	0	334,645
_	30X40	3,20	0,6	2,6	0,40	0,3	16	0,001030442	16	0,001030442	0	0	0	0,272	0,028	0,102941	0,009471	0,009471	0	146,673
	60X20	3,20	0,6	2,6	0,20	0,6	20	0,00082938	20	0,000829380	0	0	0	0,57	0,03	0,052632	0,007275	0,007275	0	146,27
_	20X60	3,20	0,65	2,55	0,60	0,2	20	0,000628319	20	0,000628319	0	0	0	0,17	0,03	0,176471	0,006160	0,006160	0	261,854
	30X40	3,20	0,65	2,55	0,40	0,3	16	0,001030442	16	0,001030442	0	0	0	0,272	0,028	0,102941	0,009471	0,009471	0	249,067

	z	0,150	0,490	0,490	0,490	0,490	0,150	1,550	0,150	0,150	0,640	0,344	0,190	0,340	1,550	0,240	0,490	0,240	0,140	0,244	0,540	0,140	0,244
	άν	0	-	-	-	ч	0	-	0	0	ч	н	-	-	н		-	0	0	-	-	0	1
	V_{Rd1}	83,11	125,20	122,97	124,27	127,75	82,86	37,67	90,33	130,61	148,02	70,04	16,04	60,38	34,69	61,49	114,22	134,16	69,18	20,26	17,21	69,65	73,30
	V _{Rd1**}	118,72	139,11	136,63	138,07	141,95	118,37	150,66	129,05	186,59	164,47	77,82	53,45	61,09	138,78	68,33	126,91	149,06	98,83	67,52	57,36	77,39	81,45
	^	0,1181	0,2516	0,2443	0,2485	0,2599	0,1172	0,0921	0,1452	0,2959	0,3066	0,3005	0,0824	0,2146	0,0748	0,1946	0,2157	0,1489	0,1438	0,0840	0,0838	0,1500	0,1427
	σ _{cp}	1,7184	3,6590	3,5531	3,6148	3,7804	1,7050	1,3399	2,1118	4,3038	4,4603	4,3703	1,1992	3,1211	1,0884	2,8307	3,1378	2,1665	2,0915	1,2223	1,2189	2,1821	2,0756
	PI	0,0054	0,0081	0,0081	0,0081	0,0081	0,0054	0,0032	0,0054	0,0054	0,0075	0,0081	0,0071	0,0127	0,0032	0,0078	0,0081	0,0029	0,0046	0,0095	0,0073	0,0062	0,0095
	k	1,425	1,080	1,080	1,080	1,080	1,425	1,000	1,425	1,425	1,000	1,228	1,380	1,230	1,000	1,330	1,080	1,330	1,430	1,328	1,030	1,430	1,328
	V _{Mu}	63,80922	251,3263	251,7317	251,4934	250,883	63,65188	654,8076	68,36617	78,0143	334,9321	86,44203	45,65331	103,4683	600,9956	65,57249	253,4959	91,36262	47,05397	83,60157	148,5253	42,97112	94,06257
	Ls	1,27	1,27	1,27	1,27	1,27	1,27	1,27	1,27	1,32	1,27	1,245	1,245	1,3	1,3	1,27	1,27	1,3	1,3	1,3	1,3	1,275	1,275
	My	81,038	319,184	319,699	319,397	318,621	80,838	831,606	86,825	102,979	425,364	107,620	56,838	134,509	781,294	83,277	321,940	118,771	61,170	108,682	193,083	54,788	119,930
	ξy	0,31817	0,38799	0,38350	0,38611	0,39321	0,31765	0,26223	0,33255	0,43110	0,41633	0,42604	0,31325	0,39961	0,24987	0,36657	0,36636	0,30827	0,33041	0,32662	0,30113	0,34632	0,35217
	(1/r)γ Ημιεμπειρικά	0,01409	0,00512	0,00512	0,00512	0,00512	0,01409	0,00176	0,01409	0,01409	0,00403	0,00705	0,01127	0,00705	0,00176	0,00939	0,00512	0,00939	0,01409	0,00939	0,00470	0,01409	0,00939
	(1/r) _{γ,δι} ατομής	0,01524	0,00512	0,00518	0,00515	0,00506	0,01523	0,00156	0,01557	0,01370	0,00371	0,00652	0,01203	0,00699	0,00154	0,01044	0,00543	0,00974	0,01597	0,00993	0,00456	0,01636	0,01032
	(1/r) _{γ,σκυροδ} .	0,01956	0,00512	0,00518	0,00515	0,00506	0,01960	0,00287	0,01852	0,01370	0,00371	0,00652	0,01554	0,00699	0,00299	0,01044	0,00543	0,01384	0,01932	0,01188	0,00630	0,01793	0,01090
ακυρόδεμο	ξ _{γ,σκυ ροδ} .	0,30189	0,38799	0,38350	0,38611	0,39321	0,30132	0,22884	0,31898	0,43110	0,41633	0,42604	0,30236	0,39961	0,21925	0,36657	0,36636	0,27656	0,31475	0,31975	0,28806	0,33907	0,34875
θλιβόμενο	Β _{σκυρ} οδ.	0,00615	0,00852	0,00852	0,00852	0,00852	0,00615	0,00329	0,00615	0,00615	0,00784	0,00872	0,00811	0,01377	0,00329	0,00862	0,00852	0,00323	0,00544	0,01045	0,00766	0,00725	0,01045
	Α _{σκυ ροδ} .	0,00127	-0,00261	-0,00207	-0,00238	-0,00323	0,00135	-0,00010	06000'0-	-0,01302	-0,00754	-0,00652	0,00769	0,00915	0,00113	0,00030	0,00006	-0,00583	-0,00266	0,01242	0,00834	-0,00010	0,00787
ός	(1/r) _{γ,χάλυ} βα	0,01524	0,00562	0,00560	0,00561	0,00565	0,01523	0,00156	0,01557	0,01725	0,00446	0,00812	0,01203	0,00803	0,00154	0,01061	0,00551	0,00974	0,01597	0,00993	0,00456	0,01636	0,01032
νος οπλισμ	ξ _{γχάλυ} βα	0,31817	0,37803	0,37544	0,37695	0,38095	0,31765	0,26223	0,33255	0,39773	0,39222	0,39816	0,31325	0,38837	0,24987	0,36517	0,36498	0,30827	0,33041	0,32662	0,30113	0,34632	0,35217
εφεγκηόμε	Βχάλυβα	0,01156	0,01916	0,01885	0,01903	0,01952	0,01151	0,00704	0,01279	0,01968	0,02065	0,02164	0,01186	0,02305	0,00633	0,01727	0,01765	0,00985	0,01220	0,01415	0,01119	0,01431	0,01674
	Αχάλυβα	0,01617	0,02675	0,02645	0,02663	0,02711	0,01613	0,01023	0,01741	0,02430	0,02782	0,02914	0,01803	0,03475	0,00952	0,02416	0,02524	0,01244	0,01601	0,02265	0,01808	0,01938	0,02524

		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	1,25 ^{100pd}	1	1	÷	Ļ	1	1	ti	1	÷	1	÷	ti	1	÷	ti	Ļ	4	Ļ	1	÷	1	1
	Pd	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	25 ^{apsfyw/fc}	1	1	1	Ч	1	1	Ч	1	L	1	1	Ч	1	1	Ч	Ч	Ч	Ч	1	L	1	1
	Ρs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Σbi ²	1,85	0,595	0,595	0,595	0,595	1,85	4,85	1,85	1,85	0,891	0,278	0,303	0,27	4,85	0,23	0,595	1,21	1,134	0,356	0,622	0,622	0,356
	×//'q	0,15	0,49	0,49	0,49	0,49	0,15	1,55	0,15	0,15	0,64	0,344	0,19	0,34	1,55	0,24	0,49	0,24	0,14	0,244	0,54	0,14	0,244
	h//y	0,95	0,24	0,24	0,24	0,24	0,95	0,15	0,95	0,95	0,19	0,144	0,34	0,14	0,15	0,24	0,24	0,74	0,74	0,344	0,14	0,54	0,344
	b _c	0,32	0,26	0,26	0,26	0,26	0,32	0,16	0,32	0,32	0,21	0,16	0,36	0,16	0,16	0,26	0,26	0,52	0,32	0,36	0,16	0,32	0,36
	hc	0,160	0,510	0,510	0,510	0,510	0,160	0,320	0,160	0,160	0,420	0,320	0,210	0,320	0,320	0,260	0,510	0,260	0,160	0,260	0,320	0,160	0,260
	bc'	96'0	0,26	0,26	0,26	0,26	96'0	0,16	96'0	96'0	0,21	0,16	0,36	0,16	0,16	0,26	0,26	0,76	0,76	0,36	0,16	0,56	0,36
	α _s ^{0,35}	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458	0,78458
	α	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
((max(0,01;w')/	max(0,01;w))*fc) 0,225	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647	1,82647
	max(0,01; ω)	0,11781	0,19040	0,19040	0,19040	0,19040	0,11781	0,07977	0,11781	0,11781	0,17952	0,18850	0,15708	0,29452	0,07977	0,17453	0,19040	0,06545	0,09817	0,21468	0,17279	0,13090	0,21468
	max(0,01;w')	0,11781	0,19040	0,19040	0,19040	0,19040	0,11781	0,07977	0,11781	0,11781	0,17952	0,18850	0,15708	0,29452	0,07977	0,17453	0,19040	0,06545	0,09817	0,21468	0,17279	0,13090	0,21468
	3	0,11781	0,19040	0,19040	0,19040	0,19040	0,11781	0,07977	0,11781	0,11781	0,17952	0,18850	0,15708	0,29452	0,07977	0,17453	0,19040	0,06545	0,09817	0,21468	0,17279	0,13090	0,21468
	з	0,11781	0,19040	0,19040	0,19040	0,19040	0,11781	0,07977	0,11781	0,11781	0,17952	0,18850	0,15708	0,29452	0,07977	0,17453	0,19040	0,06545	0,09817	0,21468	0,17279	0,13090	0,21468
	0,016*0,3	0,01388	0,01182	0,01192	0,01186	0,01170	0,01389	0,01432	0,01343	0,01120	0,01106	0,01114	0,01449	0,01236	0,01462	0,01266	0,01234	0,01337	0,01346	0,01446	0,01446	0,01336	0,01347
	θy	0,00957	0,00654	0,00659	0,00656	0,00648	0,00956	0,00296	0,00974	0,00896	0,00580	0,00677	0,01045	0,00753	0,00295	0,00964	0,00679	0,00842	0,01203	0,00889	0,00626	0,01258	60600'0
	((1/r)y*db*fy)/ (8*fc^0,5)	0,00182	0,00122	0,00124	0,00123	0,00120	0,00181	0,00019	0,00186	0,00163	0,00088	0,00124	0,00287	0,00167	0,00018	0,00249	0,00129	0,00232	0,00381	0,00189	0,00109	0,00390	0,00197
	0,0014* (1+1,5*h/Ls)	0,00130	0,00231	0,00231	0,00231	0,00231	0,00130	0,00130	0,00130	0,00130	0,00256	0,00207	0,00182	0,00205	0,00130	0,00190	0,00231	0,00188	0,00130	0,00188	0,00237	0,00173	0,00189
	(1/r)y* Ls+αv*z)/3)	0,00645	0,00301	0,00304	0,00302	0,00297	0,00645	0,00147	0,00659	0,00603	0,00236	0,00345	0,00576	0,00382	0,00146	0,00526	0,00318	0,00422	0,00692	0,00511	0,00280	0,00695	0,00522

	Απομειωμένη									
θ	θ	$\theta_{u,pl}$	V _{Rd,1}	۷d	V_{cd}	V _{wd}	K _{eff}	١	E _{cle1}	K _{eff} /E _{ciel}
0,01989	0,01574	0,00618	93,153	0,008	23,288	0	3585,9657	0,0007	16886,6667	0,2124
0,01694	0,01341	0,00687	118,109	0,017	35,433	0	20672,7708	0,0042	105356,9688	0,1962
0,01709	0,01353	0,00694	115,630	0,016	34,689	0	20550,3654	0,0042	105356,9688	0,1951
0,01700	0,01346	0,00690	117,075	0,016	35,122	0	20621,5166	0,0042	105356,9688	0,1957
0,01677	0,01327	0,00679	120,950	0,017	36,285	0	20814,6968	0,0042	105356,9688	0,1976
0,01991	0,01576	0,00620	92,799	0,008	23,200	0	3579,4471	0,0007	16886,6667	0,2120
0,02052	0,01625	0,01329	123,954	0,006	30,989	0	119042,4249	0,0683	1729194,6667	0,0688
0,01925	0,01524	0,00550	103,479	0,010	25,870	0	3771,8320	0,0007	16886,6667	0,2234
0,01606	0,01271	0,00375	161,020	0,020	40,255	0	5056,2608	0,0007	16886,6667	0,2994
0,01585	0,01255	0,00675	144,358	0,020	43,307	0	31047,0320	0,0071	181003,9583	0,1715
0,01597	0,01264	0,00587	66,391	0,020	19,917	0	6594,4151	0,0011	27018,6667	0,2441
0,02076	0,01644	0,00599	39,239	0,005	11,772	0	2257,9518	0,0005	13192,7083	0,1712
0,01771	0,01402	0,00648	52,222	0,014	15,667	0	7736,3726	0,0011	27018,6667	0,2863
0,02095	0,01659	0,01364	112,070	0,005	28,017	0	114945,3697	0,0683	1729194,6667	0,0665
0,01814	0,01436	0,00472	55,164	0,013	16,549	0	3656,2878	0,0007	17097,7500	0,2138
0,01768	0,01400	0,00721	105,912	0,014	31,773	0	20084,1824	0,0042	105356,9688	0,1906
0,01916	0,01517	0,00675	125,495	0,010	37,649	0	6109,9173	0,0018	45594,0000	0,1340
0,01928	0,01527	0,00324	80,126	0,010	20,031	0	2203,6210	0,0005	13509,3333	0,1631
0,02072	0,01641	0,00752	47,822	0,006	14,347	0	5299,6431	6000'0	22797,0000	0,2325
0,02073	0,01641	0,01015	43,480	0,006	13,044	0	13372,9763	0,0036	91188,0000	0,1467
0,01914	0,01515	0,00257	61,495	0,010	18,448	0	1850,4931	0,0004	10132,0000	0,1826
0,01931	0,01529	0,00620	61,747	0,009	18,524	0	5609,6399	0,0009	22797,0000	0,2461

Συγκεντρωτικά αποτελέσματα υποστυλωμάτων για κάθε διεύθυνση σεισμού

1) Για σεισμό στη διεύθυνση Χ(2)- κάμψη περί τον Υ(3)

			Οπλις	zhóc																
		Εφ	ελκυόμενος	ολιβό	ύμενο ς		ΑξονικήΝ ,	g		θγ		Атор	เยเมน์รับท	9u		0u,pl			¢ _{eff} /E _{clel}	
Ki	ЧХЧ	d _b ^{εφ.}	Α _s ^{εφ.} (m ²)	d _b ^{өչվե.}	A _s ^{θλιβ.} (m ²)	ισογείου	1° ⁰	2 ^{ou}	ισογείου	1 ⁰⁰	2 ^{ou}	ισογείου	1 ^{ou}	2 ^{ou}	ισογείου	1°∪	2 ^{ou}	ισογείου	100	2 ⁰⁰
K1	20X100	10	6000'0	10	0,000	343,69	160,21	32,68	9600'0	0,0095	0,0087	0,0157	0,0170	0,0179	0,0062	0,0075	0,0092	0,2124	0,1674	0,1431
K2	55X30	20	0,0013	20	0,0013	603,74	289,43	50,84	0,0065	0,0065	0,0062	0,0134	0,0157	0,0177	0,0053	0,0092	0,0115	0,1962	0,1630	0,1301
K3	55X30	20	0,0013	20	0,0013	586,26	286,00	54,57	0,0066	0,0065	0,0062	0,0135	0,0157	0,0177	0,0053	0,0092	0,0115	0,1951	0,1627	0,1304
K4	55X30	20	0,0013	20	0,0013	596,45	303,33	54,81	0,0066	0,0065	0,0062	0,0135	0,0156	0,0177	0,0053	0,0091	0,0115	0,1957	0,1642	0,1304
K5	55X30	20	0,0013	20	0,0013	623,77	313,69	51,12	0,0065	0,0065	0,0062	0,0133	0,0155	0,0177	0,0052	0600,0	0,0115	0,1976	0,1652	0,1301
K6	20X100	10	0,0009	10	0,0009	340,99	182,91	31,71	0,0096	0,0096	0,0087	0,0158	0,0168	0,0179	0,0062	0,0073	0,0092	0,2120	0,1707	0,1430
К7	160X20	10	0,0010	10	0,0010	428,77	158,62	32,04	0,0030	0,0028	0,0030	0,0162	0,0174	0,0180	0,0063	0,0146	0,0150	0,0688	0,0540	0,0633
K8	20X100	10	0,0009	10	0,0009	422,36	204,22	33,51	0,0097	0,0096	0,0093	0,0152	0,0167	0,0179	0,0055	0,0071	0,0086	0,2234	0,1737	0,1496
K9	20X100	10	0,0009	10	0,0009	860,77	413,41	55,28	0600'0	0,0094	0,0093	0,0127	0,0153	0,0177	0,0038	0,0059	0,0084	0,2994	0,2180	0,1530
K10	70X25	20	0,0013	20	0,0013	780,55	416,26	48,43	0,0058	0,0061	0,0058	0,0125	0,0149	0,0177	0,0039	0,0088	0,0120	0,1715	0, 1426	0,1161
K11	40X20	16	0,0006	16	0,0006	349,63	256,81	39,42	0,0068	0,0073	0,0070	0,0126	0,0139	0,0174	0,0030	0,0066	0,0105	0,2441	0,2201	0,1754
K12	25X40	20	0,0006	20	0,0006	119,92	84,40	30,84	0,0104	0,0101	0,0099	0,0164	0,0169	0,0177	0600,0	0,0068	0,0078	0,1712	0,1604	0,1507
K13	40X20	20	0,0009	20	0,0009	249,69	150,99	28,70	0,0075	0,0079	0,0073	0,0140	0,0155	0,0176	0,0029	0,0077	0,0103	0,2863	0,2582	0,2202
K14	160X20	10	0,0010	10	0,0010	348,28	195,02	40,39	0,0029	0,0028	0,0027	0,0166	0,0173	0,0180	0,0067	0,0144	0,0152	0,0665	0,0557	0,0451
K15	30X30	20	0,0006	20	0,0006	254,76	117,36	25,48	0,0096	0,0000	0,0084	0,0144	0,0163	0,0177	0,0047	0,0073	0,0094	0,2138	0,1798	0,1509
K16	55X30	20	0,0013	20	0,0013	517,73	245,44	59,23	0,0068	0,0065	0,0062	0,0140	0,0160	0,0176	0,0047	0,0096	0,0115	0,1906	0,1590	0,1309
K17	30X80	20	0,0006	20	0,0006	519,96	306,48	38,08	0,0084	0,0085	0,0077	0,0152	0,0163	0,0179	0,0094	0,0078	0,0102	0,1340	0,0972	0,0649
K17.A	20X80	20	0,0006	20	0,0006	334,65	195,78		0,0120	0,0117		0,0153	0,0164		0,0108	0,0047		0,1631	0,1287	
K18	30X40	16	0,0010	16	0,0010	146,67	81,42		0,0089	0,0084		0,0164	0,0172		0,0075	0,0087		0,2325	0,2112	
K19	60X20	20	0,0008	20	0,0008	146,27	68,49		0,0063	0,0061		0,0164	0,0173		0,0032	0,0113		0,1467	0,1268	
K20	20X60	20	0,0006	20	0,0006	261,85	131,83		0,0126	0,0122		0,0152	0,0166		0,0088	0,0044		0,1826	0, 1434	
K21	30X40	16	0,0010	16	0,0010	249,07	110,52		0,0091	0,0084		0,0153	0,0168		0,0062	0,0084		0,2461	0,2133	

2) Για σεισμό στη διεύθυνση Υ(3)- κάμψη περί τον Χ(2)

			Οπλιι	zμός																
		Ē	ελκυόμενος	Θλιβ	όμενος	1	Αξονική			θγ		Апор	ເພມຮັບຖ	θu		0u,pl			<pre>Ceff/Eclel</pre>	
Ki	hXh	d _b ^{εφ.}	Α _s ^{εφ.} (m ²)	d _b ^{θλιβ.}	$A_{s}^{\theta\lambda\iota\beta}.(m^{2})$	ισογείου	1 ^{ou}	2 ^{0U}	ισογείου	1°∪	2 ^{0U}	ισογείου	100	2 ^{0U} 1	σογείου	100	2 ^{0U}	ισογείου	100	2 ^{0U}
K1	20X100	10	0,000	10	0,000	343,69	160,21	32,68	0,0036	0,0034	0,0032	0,0157	0,0170	0,00323	0,0122	0,0136	0,0147	0,1261	0,1056	0,0881
K2	55X30	20	0,0013	20	0,0013	603,74	289,43	50,84	0,0081	0,0092	0,0062	0,0134	0,0157	0,00844	0,0053	0,0065	0,0093	0,2627	0,1993	0,1627
K3	55X30	20	0,0013	20	0,0013	586,26	286,00	54,57	0,0082	0,0092	0,0062	0,0135	0,0157	0,00845	0,0053	0,0065	0,0092	0,2605	0,1989	0,1631
K4	55X30	20	0,0013	20	0,0013	596,45	303,33	54,81	0,0081	0,0093	0,0062	0,0135	0,0156	0,00845	0,0053	0,0063	0,0092	0,2618	0,2007	0,1631
K5	55X30	20	0,0013	20	0,0013	623,77	313,69	51,12	0,0080	0,0093	0,0062	0,0133	0,0155	0,00844	0,0052	0,0062	0,0092	0,2652	0,2018	0,1627
K6	20X100	10	0,0009	10	0,000	340,99	182,91	31,71	0,0036	0,0034	0,0032	0,0158	0,0168	0,00323	0,0122	0,0134	0,0147	0,1259	0,1076	0,0880
K7	160X20	10	0,0010	10	0,0010	428,77	158,62	32,04	0,0099	0,0091	0,0030	0,0162	0,0174	0,01112	0,0063	0,0084	0,0069	0,1487	0,1191	0,1201
K8	20X100	10	0,000	10	0,000	422,36	204,22	33,51	0,0036	0,0034	0,0033	0,0152	0,0167	0,00333	0,0116	0,0133	0,0146	0,1326	0,1095	0,0953
K9	20X100	10	0,0009	10	0,000	860,77	413,41	55,28	0,0028	0,0035	0,0035	0,0089	0,0129	0,00352	0,0061	0,0094	0,0138	0,2846	0,2244	0,1829
K10	70X25	20	0,0013	20	0,0013	780,55	416,26	48,43	0,0087	0,0101	0,0058	0,0125	0,0149	0,01006	0,0039	0,0048	0,0077	0,2765	0,2219	0,1672
K11	40X20	16	0,0006	16	0,0006	349,63	256,81	39,42	0,0096	0,0105	0,0070	0,0126	0,0139	0,0116	0,0030	0,0034	0,0058	0,2987	0,2625	0,1911
K12	25X40	20	0,0006	20	0,0006	119,92	84,40	30,84	0,0075	0,0073	0,0099	0,0164	0,0169	0,00716	0600'0	0,0096	0,0105	0,1582	0,1475	0,1391
K13	40X20	20	0,000	20	0,000	249,69	150,99	28,70	0,0111	0,0117	0,0073	0,0140	0,0155	0,01242	0,0029	0,0038	0,0052	0,3175	0,2830	0,2316
K14	160X20	10	0,0010	10	0,0010	348,28	195,02	40,39	0,0099	0,0091	0,0027	0,0166	0,0173	0,00839	0,0067	0,0081	0,0096	0,1423	0,1228	0,1026
K15	30X30	20	0,0006	20	0,0006	254,76	117,36	25,48	0,0096	0,0000	0,0084	0,0144	0,0163	0,00837	0,0047	0,0073	0,0094	0,2138	0,1798	0,1509
K16	55X30	20	0,0013	20	0,0013	517,73	245,44	59,23	0,0093	0,0091	0,0062	0,0140	0,0160	0,00846	0,0047	0,0069	0,0092	0,2305	0,1945	0,1637
K17	30X80	20	0,0006	20	0,0006	519,96	306,48	38,08	0,0058	0,0056	0,0077	0,0152	0,0163	0,0054	0,0094	0,0107	0,0125	0,0766	0,0585	0,0375
K17.A	20X80	20	0,0006	20	0,0006	334,65	195,78		0,0044	0,0042		0,0153	0,0164		0,0108	0,0122		0,1224	0,1013	
K18	30X40	16	0,0010	16	0,0010	146,67	81,42		0,0074	0,0070		0,0164	0,0172		0,0091	0,0101		0,2175	0,1960	
K19	60X20	20	0,0008	20	0,0008	146,27	68,49		0,0132	0,0123		0,0164	0,0173		0,0032	0,0050		0,1843	0,1639	
K20	20X60	20	0,0006	20	0,0006	261,85	131,83		0,0064	0,0061		0,0152	0,0166		0,0088	0,0105		0,1333	0,1078	
K21	30X40	16	0,0010	16	0,0010	249,07	110,52		0,0075	0,0071		0,0153	0,0168		0,0078	0,0098		0,2300	0,1976	

					Στοιγ	εία δοκοι	'n			Еф	ελκυ	όμενος	Οπλι Θλ	σμό μβό	ις μενος	Ενδιά	μεσος			
ð eu fe	A	Ίνα		L		L	,				елко	ο εφ. (²)	0λ	ι ρ υ β.	θλιβ. (2)	ενδ.	. ενδ.		ai.	51
Δοκος	Διατομη	Εφελκυσμού	L _{i,δοκού}	D _{αρ} +D _{δεξ}	ι καθ,δοκού	D θλιβομ.	Dw	η _{δοκού}	n _f	a _b		A _s (m)	ab		A _s (m	db	As	a	a	0
		Κάτω Αριστερά Πάνω Αριστερά	3,875	0,375	3,500	0,20	0,20	0,66	0,26	16 16	0	0,00040	16 16	8	0,00050	0	0	0,632	0,028	0,044
Δ1	20X60	Κάτω Δεξιά	3,875	0,375	3,500	0,20	0,20	0,66	0,26	16	0	0,00040	20	8	0,00050	0	0	0,632	0,028	0,044
		Πάνω Δεξιά Κάτω Δουστερά	3,875	0,375	3,500	0,20	0,20	0,66	0,26	20	8	0,00050	16	0	0,00040	0	0	0,633	0,027	0,043
42	20760	Πάνω Αριστερά	4,05	0,550	3,500	0,20	0,20	0,66	0,20	16	8	0,00040	16	0	0,00030	0	0	0,634	0,028	0,044
- 12	20/00	Κάτω Δεξιά Πάγκι Δεξιά	4,05	0,550	3,500	0,20	0,20	0,66	0,26	16	0	0,00040	16	8	0,00050	0	0	0,632	0,028	0,044
		Κάτω Αριστερά	3,845	0,550	3,295	0,20	0,20	0,66	0,26	16	0	0,00030	16	8	0,00040	0	0	0,632	0,020	0,041
Δ3	20X60	Πάνω Αριστερά	3,845	0,550	3,295	0,20	0,20	0,66	0,26	16	8	0,00050	16	0	0,00040	0	0	0,634	0,026	0,041
		κατω Δεξια Πάνω Δεξιά	3,845	0,550	3,295	0,20	0,20	0,66	0,26	16	8	0,00040	16	8 0	0,00050	0	0	0,632	0,028	0,044
		Κάτω Αριστερά	3,95	0,550	3,400	0,20	0,20	0,66	0,26	16	0	0,00040	16	8	0,00050	0	0	0,632	0,028	0,044
Δ4	20X60	Πάνω Αριστερά Κάτω Δεξιά	3,95	0,550	3,400	0,20	0,20	0,66	0,26	16 16	8	0,00050	16 16	0	0,00040	0	0	0,634	0,026	0,041
		Πάνω Δεξιά	3,95	0,550	3,400	0,20	0,20	0,66	0,26	16	8	0,00050	16	0	0,00040	0	0	0,634	0,026	0,041
		Κάτω Αριστερά Πάνω Αριστερά	4,275	0,375	3,900	0,20	0,20	0,66	0,26	16	0	0,00040	16 16	8 0	0,00050	0	0	0,632	0,028	0,044
Δ5	20X60	Κάτω Δεξιά	4,275	0,375	3,900	0,20	0,20	0,66	0,26	16	0	0,00040	16	8	0,00050	0	0	0,632	0,028	0,044
		Πάνω Δεξιά Κάτω Δοιστερά	4,275	0,375	3,900	0,20	0,20	0,66	0,26	16	8	0,00050	16	0	0,00040	0	0	0,634	0,026	0,041
46	100830	Πάνω Αριστερά	4,575	0,450	4,125	1,00	1,00	0,53	0,26	20	0	0,00063	20	0	0,00063	0	0	0,500	0,030	0,06
20	100/050	Κάτω Δεξιά Πάνω Δεξιά	4,575	0,450	4,125	1,00	1,00	0,53	0,26	20	0	0,00063	20	0	0,00063	0	0	0,500	0,030	0,06
		Κάτω Αριστερά	3,425	0,350	3,075	0,20	0,20	0,63	0,26	16	0	0,00040	16	8	0,00050	0	0	0,602	0,028	0,047
Δ7	20X60	Πάνω Αριστερά	3,425	0,350	3,075	0,20	0,20	0,63	0,26	16	8	0,00050	16	0	0,00040	0	0	0,604	0,026	0,043
		Κάτω Δεξιά Πάνω Δεξιά	3,425	0,350	3,075	0,20	0,20	0,63	0,26	16 16	0	0,00040	16 16	8	0,00050	0	0	0,602	0,028	0,047
		Κάτω Αριστερά	3,64	0,325	3,315	0,20	0,20	0,71	0,26	16	0	0,00060	16	0	0,00040	0	0	0,682	0,028	0,041
Δ8	20X65	Πάνω Αριστερά Κάτω Λεξιά	3,64	0,325	3,315	0,20	0,20	0,71	0,26	16 16	0	0,00040	16 16	0	0,00060	0	0	0,682	0,028	0,041
		Πάνω Δεξιά	3,64	0,325	3,315	0,20	0,20	0,71	0,26	16	0	0,00040	16	0	0,00060	0	0	0,682	0,028	0,041
		Κάτω Αριστερά Πάνω Αριστερ	4,16	0,425	3,735	0,30	0,30	0,66	0,26	16	0	0,00040	16 16	8	0,00050	0	0	0,632	0,028	0,044
Δ9	30X60	Κάτω Δεξιά	4,10	0,425	3,735	0,30	0,30	0,66	0,20	16	0	0,00040	16	8	0,00050	0	0	0,632	0,028	0,044
		Πάνω Δεξιά	4,16	0,425	3,735	0,30	0,30	0,66	0,26	16	8	0,00050	16	0	0,00040	0	0	0,634	0,026	0,041
410	20260	κατω Αριστερα Πάνω Αριστερά	4,49	0,425	4,065	0,30	0,30	0,6	0,2	16	8	0,00040	16	8 0	0,00050	0	0	0,572	0,028	0,049
210	50,00	Κάτω Δεξιά	4,49	0,425	4,065	0,30	0,30	0,6	0,2	16	0	0,00040	16	8	0,00050	0	0	0,572	0,028	0,049
		Γιανω Δεςια Κάτω Αριστερά	5,025	0,425	4,065	0,30	0,30	0,6	0,2	16	0	0,00050	16	0	0,00040	0	0	0,574	0,028	0,045
Δ10.A	20X60	Πάνω Αριστερά	5,025	0,250	4,775	0,20	0,20	0,6	0,2	16	0	0,00040	16	0	0,00060	0	0	0,572	0,028	0,049
		Πάνω Δεξιά	5,025	0,250	4,775	0,20	0,20	0,6	0,2	16	0	0,00080	16	0	0,00040	0	0	0,572	0,028	0,049
		Κάτω Αριστερά	3,64	1,000	2,640	0,20	0,20	0,6	0,2	16	0	0,00060	16	0	0,00040	0	0	0,572	0,028	0,049
Δ11	20X60	Γιάνω Αριστερά Κάτω Δεξιά	3,64	1,000	2,640	0,20	0,20	0,6	0,2	16	0	0,00040	16	0	0,00060	0	0	0,572	0,028	0,049
		Πάνω Δεξιά	3,64	1,000	2,640	0,20	0,20	0,6	0,2	16	0	0,00040	16	0	0,00060	0	0	0,572	0,028	0,049
412	20200	κατω Αριστερα Πάνω Αριστερά	3,425	0,450	2,975	0,20	0,20	0,6	0,2	20	0	0,00063	20	0	0,00126	0	0	0,570	0,030	0,053
412	20,00	Κάτω Δεξιά	3,425	0,450	2,975	0,20	0,20	0,6	0,2	20	0	0,00063	20	0	0,00126	0	0	0,570	0,030	0,053
		Τιανω Δεξία Κάτω Αριστερά	3,425	0,450	2,975	0,20	0,20	0,6	0,2	20	0	0,00126	20	0	0,00063	0	0	0,570	0,030	0,053
Δ12.A	20X60	Πάνω Αριστερά	1,6	0,300	1,300	0,20	0,20	0,6	0,2	20	0	0,00126	20	0	0,00063	0	0	0,570	0,030	0,053
		κάτω Δεξιά Πάνω Δεξιά	1,6	0,300	1,300	0,20	0,20	0,6	0,2	20	0	0,00063	20	0	0,00126	0	0	0,570	0,030	0,053
		Κάτω Αριστερά	3,605	0,250	3,355	0,20	0,20	0,65	0,2	20	0	0,00126	20	0	0,00063	0	0	0,620	0,030	0,048
Δ13	20X65	Κάτω Δεξιά	3,605	0,250	3,355	0,20	0,20	0,65	0,2	20	0	0,00126	20	0	0,000120	0	0	0,620	0,030	0,048
		Πάνω Δεξιά	3,605	0,250	3,355	0,20	0,20	0,65	0,2	20	0	0,00063	20	0	0,00126	0	0	0,620	0,030	0,048
A14	20160	Πάνω Αριστερά	5,9	1,000	4,900	0,20	0,20	0,66	0,20	16	8	0,00040	16	0	0,00030	0	0	0,634	0,028	0,044
414	20/00	Κάτω Δεξιά	5,9	1,000	4,900	0,20	0,20	0,66	0,26	16	0	0,00040	16	8	0,00050	0	0	0,632	0,028	0,044
		Γιανω Δεςια Κάτω Αριστερά	4,75	0,650	4,900	0,20	0,20	0,66	0,26	16	0	0,00030	16	8	0,00040	0	0	0,632	0,028	0,041
Δ15	20X60	Πάνω Αριστερά	4,75	0,650	4,100	0,20	0,20	0,66	0,26	16	8	0,00050	16	0	0,00040	0	0	0,634	0,026	0,041
		πατω Δεξιά Πάνω Δεξιά	4,75	0,650	4,100	0,20	0,20	0,66	0,26	16	8	0,00040	10	° 0	0,00050	0	0	0,632	0,028	0,044
		Κάτω Αριστερά	4,55	0,650	3,900	0,30	0,30	0,63	0,26	16	0	0,00060	16	0	0,00040	0	0	0,602	0,028	0,047
Δ16	30X60	Κάτω Δεξιά	4,55	0,650	3,900	0,30	0,30	0,63	0,26	16	0	0,00040	16	0	0,00080	0	0	0,602	0,028	0,047
		Πάνω Δεξιά	4,55	0,650	3,900	0,30	0,30	0,63	0,26	16	0	0,00040	16	0	0,00060	0	0	0,602	0,028	0,047
	201/05	Πάνω Αριστερά	5,24	0,525	4,715	0,20	0,20	0,65	0,2	16	8	0,00040	16	0	0,00030	0	0	0,622	0,028	0,045
Δ17	20865	Κάτω Δεξιά	5,24	0,525	4,715	0,20	0,20	0,65	0,2	16	0	0,00040	16	8	0,00050	0	0	0,622	0,028	0,045
		Τιανω Δεξία Κάτω Αριστερά	2,62	0,525	2,020	0,20	0,20	0,65	0,2	16	8	0,00050	16	8	0,00040	0	0	0,624	0,026	0,042
Δ18	25X60	Πάνω Αριστερά	2,62	0,600	2,020	0,25	0,25	0,6	0,2	16	8	0,00050	16	0	0,00040	0	0	0,574	0,026	0,045
		κατω Δεξια Πάνω Δεξιά	2,62	0,600	2,020	0,25	0,25	0,6	0,2	16	8	0,00040	16	8 0	0,00050	0	0	0,572	0,028	0,049
		Κάτω Αριστερά	2,84	0,400	2,440	0,20	0,20	0,65	0,2	16	0	0,00040	16	8	0,00050	0	0	0,622	0,028	0,045
Δ18.A	20X65	Πανω Αριστερα Κάτω Δεξιά	2,84	0,400	2,440	0,20	0,20	0,65	0,2	16	8	0,00050	16 16	0 8	0,00040	0	0	0,624	0,026	0,042
		Πάνω Δεξιά	2,84	0,400	2,440	0,20	0,20	0,65	0,2	16	8	0,00050	16	0	0,00040	0	0	0,624	0,026	0,042
		Κατω Αριστερα Πάνω Αριστερά	2,62	0,400	2,220	0,20	0,20	0,6	0,2	16	0 8	0,00040	16 16	8 0	0,00050	0	0	0,572	0,028	0,049
Δ18.B	20X60	Κάτω Δεξιά	2,62	0,400	2,220	0,20	0,20	0,6	0,2	16	0	0,00040	16	8	0,00050	0	0	0,572	0,028	0,049
		Πανω Δεξιά Κάτω Αριστερή	2,62 4,16	0,400	2,220 3,860	0,20 0,25	0,20 0,25	0,6	0,2	16 20	8	0,00050	16 20	0	0,00040	0	0	0,574 0,670	0,026 0,030	0,045 0,045
Δ19	25X70	Πάνω Αριστερά	4,16	0,300	3,860	0,25	0,25	0,7	0,2	20	0	0,00063	20	0	0,00126	0	0	0,670	0,030	0,045
		Κάτω Δεξιά Πάνω Δεξιά	4,16 4,16	0,300 0,300	3,860 3,860	0,25	0,25	0,7 0,7	0,2 0,2	20 20	0	0,00126	20 20	0	0,00063	0	0	0,670 0,670	0,030 0,030	0,045 0,045
		Κάτω Αριστερά	3,64	0,600	3,040	0,20	0,20	0,66	0,26	16	0	0,00060	16	0	0,00040	0	0	0,632	0,028	0,044
Δ20	20X60	Πάνω Αριστερά Κάτω Λεξιά	3,64	0,600	3,040 3.040	0,20	0,20	0,66	0,26	16 16	0	0,00040	16 16	0	0,00060	0	0	0,632	0,028	0,044
		Πάνω Δεξιά	3,64	0,600	3,040	0,20	0,20	0,66	0,26	16	0	0,00040	16	0	0,00060	0	0	0,632	0,028	0,044
		Κάτω Αριστερά Πάνω Αριστερά	1,975	0,300	1,675	0,20	0,20	0,71	0,26	16 16	0	0,00060	16 16	0	0,00040	0	0	0,682	0,028	0,041
Δ21	20X65	Κάτω Δεξιά	1,975	0,300	1,675	0,20	0,20	0,71	0,26	16	0	0,00060	16	0	0,00040	0	0	0,682	0,028	0,041
		Πάνω Δεξιά Κάτω Αριστερά	1,975	0,300	1,675	0,20	0,20	0,71	0,26	16 20	0	0,00040	16 20	0	0,00060	0	0	0,682	0,028	0,041
Δ22	25865	Πάνω Αριστερά	4,16	0,300	3,860	0,25	0,25	0,65	0,2	20	0	0,00063	20	0	0,00126	0	0	0,620	0,030	0,048
		Κάτω Δεξιά Πάνω Δεξιό	4,16	0,300	3,860 3,860	0,25	0,25	0,65	0,2	20 20	0	0,00126	20 20	0	0,00063	0	0	0,620 0.620	0,030	0,048

Потос	πάοπλισμ	ιού	Αξονική	80	φελκυόμε	νος οπλι	σμός		θλιβόμεν	ο σκυρόδ	εμα					Έλεγχος
			Ν.	A	B	£	(1/1)	Δ.	в.	ε.	(1/r)	(1/1)	(1/r)v	5	s *d	θλιβομ.
P	۲	Pv		Ωχαλυβα.	^ω χα λυβα	∿y,χ≊/ωβα	(*/*/yga/ujia	Mexupab.	Wexupeò.	' γ,σκυραδ.	\+/ * Ιγ,σκυροδ.	1+/·/y,bratowy	1 */ * 11 Hµas µn.		~~~	ζώνης
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0052	0.0032	0	0,00	0.0072	0,0034	0,1808	0.0036	0,0072	0.0054	0,1806	0,0091	0.0035	0,0043	0,1806	0,1141	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0040	0	0,00	0.0072	0,0034	0,1806	0,0035	0.0072	0.0034	0,1806	0,0091	0.0035	0,0043	0,1806	0,1141	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0.0040	0.0032	0	0.00	0.0072	0.0041	0,1808	0.0035	0.0071	0.0041	0,1808	0,0031	0.0035	0.0043	0.2041	0.1294	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0013	0,0013	0	0,00	0.0025	0,0013	0,1265	0,0042	0,0025	0,0013	0,1265	0.0163	0.0042	0,0053	0,1265	0.0633	OK
0,0013	0,0013	0	0,00	0,0025	0,0013	0,1265	0,0042	0,0025	0,0013	0,1265	0,0163	0,0042	0,0053	0,1265	0,0633	OK
0,0013	0,0013	0	0,00	0,0025	0,0013	0,1265	0,0042	0,0025	0,0013	0,1265	0,0163	0,0042	0,0053	0,1265	0,0633	OK
0,0033	0,0042	0	0,00	0,0075	0,0035	0,1842	0,0037	0,0075	0,0035	0,1842	0,0093	0,0037	0,0045	0,1842	0,1109	OK
0,0042	0,0033	0	0,00	0,0075	0,0043	0,2082	0,0038	0,0075	0,0043	0,2082	0,0082	0,0038	0,0045	0,2082	0,1258	OK
0,0033	0,0042	0	0,00	0,0075	0,0035	0,1842	0,0037	0,0075	0,0035	0,1842	0,0093	0,0037	0,0045	0,1842	0,1109	OK
0.0044	0.0029	0	0,00	0.0074	0.0045	0.2159	0.0034	0.0074	0.0045	0,2002	0,0070	0.0038	0.0040	0,2159	0.1472	OK
0,0029	0,0044	0	0,00	0,0074	0,0031	0,1716	0,0032	0,0074	0,0031	0,1716	0,0088	0,0032	0,0040	0,1716	0,1170	OK
0,0044	0,0029	0	0,00	0,0074	0,0045	0,2159	0,0034	0,0074	0,0045	0,2159	0,0070	0,0034	0,0040	0,2159	0,1472	OK
0,0029	0,0044	0	0,00	0,0074	0,0031	0,1716	0,0032	0,0074	0,0031	0,1716	0,0088	0,0032	0,0040	0,1716	0,1170	OK
0,0021	0,0027	0	0,00	0,0048	0,0022	0,1541	0,0034	0,0048	0,0022	0,1541	0,0106	0.0034	0,0043	0,1541	0,0974	OK
0,0021	0,0027	0	0,00	0,0048	0,0022	0,1541	0,0034	0,0048	0,0022	0,1541	0,0106	0,0033	0,0043	0,1541	0,0974	OK
0,0026	0,0021	0	0,00	0,0048	0,0027	0,1734	0,0035	0,0048	0,0027	0,1734	0,0094	0,0035	0,0043	0,1734	0,1099	OK
0,0023	0,0029	0	0,00	0,0053	0,0025	0,1609	0,0038	0,0053	0,0025	0,1609	0,0112	0,0038	0,0047	0,1609	0,0920	OK
0,0029	0,0023	0	0,00	0,0053	0,0030	0,1810	0,0039	0,0053	0,0030	0,1810	0,0100	0,0039	0,0047	0,1810	0,1039	OK
0,0023	0,0029	0	0,00	0,0053	0,0025	0,1609	0,0038	0,0053	0,0025	0,1609	0,0112	0,0038	0,0047	0,1609	0,0920	OK
0,0053	0,0035	0	0,00	0,0088	0,0054	0,2319	0,0033	0,0088	0,0054	0,2319	0,0078	0,0010	0,0047	0,2319	0,1327	OK
0,0035	0,0053	0	0,00	0,0088	0,0038	0,1844	0,0039	0,0088	0,0038	0,1844	0,0098	0,0039	0,0047	0,1844	0,1055	OK
0,0053	0,0035	0	0,00	0,0088	0,0054	0,2319	0,0041	0,0088	0,0054	0,2319	0,0078	0,0041	0,0047	0,2319	0,1327	OK
0,0035	0,0053	0	0,00	0,0088	0,0038	0,1844	0,0039	0,0088	0,0038	0,1844	0,0098	0,0039	0,0047	0,1844	0,1055	OK
0,0053	0,0035	0	0,00	0,0088	0,0054	0,2319	0,0041	0,0088	0,0054	0,2319	0,0078	0,0041	0,0047	0,2319	0,1327	OK
0,0053	0,0035	0	0,00	0,0088	0,0054	0,2319	0,0041	0,0088	0,0054	0,2319	0,0078	0,0041	0,0047	0,2319	0,1327	OK
0,0035	0,0053	0	0,00	0,0088	0,0038	0,1844	0,0039	0,0088	0,0038	0,1844	0,0098	0,0039	0,0047	0,1844	0,1055	OK
0,0055	0,0110	0	0,00	0,0165	0,0061	0,2060	0,0040	0,0165	0,0061	0,2060	0,0088	0,0040	0,0047	0,2060	0,1174	OK
0,0110	0,0055	0	0,00	0,0165	0,0113	0,3118	0,0046	0,0165	0,0113	0,3118	0,0058	0,0046	0,0047	0,3118	0,1777	OK
0,0085	0,0110	0	0,00	0,0165	0,0081	0,2080	0,0040	0,0165	0,0081	0,2080	0,0058	0,0040	0,0047	0,2080	0,1174	OK
0,0055	0,0110	0	0,00	0,0165	0,0061	0,2060	0,0040	0,0165	0,0061	0,2060	0,0088	0,0040	0,0047	0,2060	0,1174	OK
0,0110	0,0055	0	0,00	0,0165	0,0113	0,3118	0,0046	0,0165	0,0113	0,3118	0,0058	0,0046	0,0047	0,3118	0,1777	OK
0,0055	0,0110	0	0,00	0,0165	0,0061	0,2060	0,0040	0,0165	0,0061	0,2060	0,0088	0,0040	0,0047	0,2060	0,1174	OK
0,0110	0,0055	0	0,00	0,0165	0,0113	0,3118	0,0046	0,0165	0,0113	0,3118	0,0058	0,0046	0,0047	0,3118	0,1777	OK
0.0051	0.0101	0	0,00	0.0152	0.0056	0,3022	0,0042	0.0152	0.0056	0,3022	0.0084	0.0042	0,0043	0,5022	0,1874	OK
0,0101	0,0051	0	0,00	0,0152	0,0104	0,3022	0,0042	0,0152	0,0104	0,3022	0,0055	0,0042	0,0043	0,3022	0,1874	OK
0,0051	0,0101	0	0,00	0,0152	0,0056	0,1996	0,0037	0,0152	0,0056	0,1996	0,0084	0,0037	0,0043	0,1996	0,1238	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0032	0	0,00	0,0072	0,0034	0,1808	0,0035	0,0071	0,0034	0,1808	0,0031	0,0035	0,0043	0,1808	0,1191	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,0071	0,0041	0,2041	0,0036	0,0071	0,0041	0,2041	0,0080	0,0036	0,0043	0,2041	0,1294	OK
0,0032	0,0040	0	0,00	0,0072	0,0034	0,1806	0,0035	0,0072	0,0034	0,1806	0,0091	0,0035	0,0043	0,1806	0,1141	OK
0,0040	0,0032	0	0,00	0,00/1	0,0041	0,2041	0,0036	0,00/1	0,0041	0,2041	0,0080	0,0036	0.0045	0,2041	0,1294	OK
0,0022	0,0022	0	0,00	0,0056	0,0024	0,1549	0,0036	0,0056	0,0024	0,1549	0,0111	0,0036	0,0045	0,1549	0,0933	OK
0,0033	0,0022	0	0,00	0,0056	0,0034	0,1933	0,0037	0,0056	0,0034	0,1933	0,0089	0,0037	0,0045	0,1933	0,1164	ОК
0,0022	0,0033	0	0,00	0,0056	0,0024	0,1549	0,0036	0,0056	0,0024	0,1549	0,0111	0,0036	0,0045	0,1549	0,0933	OK
0,0032	0,0040	0	0,00	0,0073	0.0042	0.2054	0,0036	0,0073	0.0042	0.2054	0,0091	0,0036	0,0043	0.2054	0,1131	OK
0,0032	0,0040	0	0,00	0,0073	0,0034	0,1818	0,0036	0,0073	0,0034	0,1818	0,0091	0,0036	0,0043	0,1818	0,1131	OK
0,0040	0,0032	0	0,00	0,0072	0,0042	0,2054	0,0037	0,0072	0,0042	0,2054	0,0081	0,0037	0,0043	0,2054	0,1282	OK
0,0028	0,0035	0	0,00	0,0063	0,0030	0,1728	0,0038	0,0063	0,0030	0,1728	0,0105	0,0038	0,0047	0,1728	0,0988	OK
0,0035	0,0028	0	0,00	0,0063	0,0036	0,1948	0,0039	0,0063	0,0036	0,1948	0,0092	0,0039	0,0047	0,1948	0,1118	OK
0,0028	0,0035	0	0,00	0,0063	0.0030	0,1/28	0,0038	0,0063	0,0030	0,1/28	0,0105	0,0038	0,0047	0,1728	0,0988	OK
0,0032	0,0040	ō	0,00	0,0073	0,0034	0,1818	0,0036	0,0073	0,0034	0,1818	0,0091	0,0036	0,0043	0,1818	0,1131	OK
0,0040	0,0032	0	0,00	0,0072	0,0042	0,2054	0,0037	0,0072	0,0042	0,2054	0,0081	0,0037	0,0043	0,2054	0,1282	OK
0,0032	0,0040	0	0,00	0,0073	0,0034	0,1818	0,0036	0,0073	0,0034	0,1818	0,0091	0,0036	0,0043	0,1818	0,1131	OK
0,0040	0,0032	0	0,00	0,0072	0,0042	0,2054	0,0037	0,0072	0,0042	0,2054	0,0081	0,0037	0,0043	0,2054	0,1282	OK
0,0035	0.0035	0	0,00	0.0079	0.003/	0,1882	0.0039	0,0079	0.0045	0,1882	0,0096	0.0039	0.0047	0,1882	0,1076	OK
0,0035	0,0044	ō	0,00	0,0079	0,0037	0,1882	0,0039	0,0079	0,0037	0,1882	0,0096	0,0039	0,0047	0,1882	0,1076	ОК
0,0044	0,0035	0	0,00	0,0079	0,0045	0,2126	0,0040	0,0079	0,0045	0,2126	0,0085	0,0040	0,0047	0,2126	0,1220	OK
0,0075	0,0038	0	0,00	0,0113	0,0077	0,2703	0,0037	0,0113	0,0077	0,2703	0,0057	0,0037	0,0040	0,2703	0,1811	OK
0,0038	0,0075	0	0,00	0,0113	0,0041	0,1803	0,0033	0,0113	0,0041	0,1803	0,0086	0,0033	0,0040	0,1803	0,1208	OK
0,0038	0,0075	0	0,00	0,0113	0,0041	0,1803	0,0033	0,0113	0,0041	0,1803	0,0086	0,0033	0,0040	0,1803	0,1208	OK
0,0048	0,0032	0	0,00	0,0080	0,0049	0,2227	0,0037	0,0080	0,0049	0,2227	0,0073	0,0037	0,0043	0,2227	0,1408	OK
0,0032	0,0048	0	0,00	0,0080	0,0034	0,1770	0,0035	0,0080	0,0034	0,1770	0,0092	0,0035	0,0043	0,1770	0,1119	OK
0,0048	0,0032	0	0,00	0,0080	0,0049	0,2227	0,0037	0,0080	0,0049	0,2227	0,0073	0,0037	0,0043	0,2227	0,1408	OK
0,0032	0,0048	0	0,00	0,0080	0.0045	0.2159	0,0035	0,0080	0.0045	0.2159	0,0092	0,0035	0,0043	0,1/70	0,1119	OK
0,0029	0,0044	0	0,00	0,0074	0,0031	0,1716	0,0032	0,0074	0,0031	0,1716	0,0088	0,0032	0,0040	0,1716	0,1170	OK
0,0044	0,0029	0	0,00	0,0074	0,0045	0,2159	0,0034	0,0074	0,0045	0,2159	0,0070	0,0034	0,0040	0,2159	0,1472	OK
0,0029	0,0044	0	0,00	0,0074	0,0031	0,1716	0,0032	0,0074	0,0031	0,1716	0,0088	0,0032	0,0040	0,1716	0,1170	OK
0,0081	0,0041	0	0,00	0,0122	0,0083	0,2786	0,0041	0,0122	0,0083	0,2786	0,0060	0,0041	0,0043	0,2786	0,1727	OK
0,0041	0,0081	0	0,00	0.0122	0.0087	0,1858	0,0036	0,0122	0,0044	0,1858	0,0090	0.0036	0,0043	0,1858	0,1152	OK
0,0041	0,0081	0	0,00	0,0122	0,0044	0,1858	0,0036	0,0122	0,0044	0,1858	0,0090	0,0036	0,0043	0,1858	0,1152	OK

Му	Ls	V _{Mu}	k	ρι	σ _{cp}	v	V _{Rd1} **	V _{Rd1}	αv	z	(1/r)y* ((Ls+αv *z)/3)	0,0014* (1+1,5* h/Ls)	((1/r) _y *d _b *f _y) /(8*f _c ^0,5)	θγ	0,016*0,3 ^v	ω	ω'	max(0,01; ω')	max(0,01; ω)
87,158	1,75	49,805	1	0,0032	0	0	52,482	15,745	1	0,604	0,0028	0,0022	0,0007	0,00562	0,016	0,07616	0,09520	0,09520	0,07616
87,158	1,75	49,805	1	0,0032	0	0	52,482	15,745	1	0,604	0,0028	0,0022	0,0007	0,00562	0,016	0,07616	0,09520	0,09520	0,07616
108,299	1,75	61,885	1	0,0040	0	0	53,815	16,145	1	0,606	0,0028	0,0022	0,0006	0,00563	0,016	0,09520	0,07616	0,07616	0,09520
87,158	1,75	49,805	1	0.0032	0	0	52,482	16,167	1	0,604	0,0028	0,0022	0.0007	0.00552	0,016	0.09520	0.09520	0,09520	0.09520
87,158	1,75	49,805	1	0,0032	0	0	52,482	15,745	1	0,604	0,0028	0,0022	0,0007	0,00562	0,016	0,07616	0,09520	0,09520	0,07616
108,514	1,75	62,008	1	0,0040	0	0	53,890	16,167	1	0,608	0,0028	0,0022	0,0005	0,00554	0,016	0,09520	0,07616	0,07616	0,09520
87,158	1,65	52,903	1	0,0032	0	0	52,482	15,745	1	0,604	0,0026	0,0022	0,0007	0,00555	0,016	0,07616	0,09520	0,09520	0,07616
87,158	1,65	52,903	1	0,0032	0	0	52,482	15,745	1	0,604	0,0026	0,0022	0,0007	0,00555	0,016	0,07616	0,09520	0,09520	0,07616
108,514	1,65	65,866	1	0,0040	0	0	53,890	16,167	1	0,608	0,0027	0,0022	0,0005	0,00547	0,016	0,09520	0,07616	0,07616	0,09520
87,158	1,70	63.832	1	0,0032	0	0	52,482	15,745	1	0,604	0.0027	0.0022	0,0007	0,00558	0,016	0.09520	0,09520	0,09520	0,07616
87,158	1,70	51,269	1	0,0032	0	0	52,482	15,745	1	0,604	0,0027	0,0022	0,0007	0,00558	0,016	0,07616	0,09520	0,09520	0,07616
108,514	1,70	63,832	1	0,0040	0	0	53,890	16,167	1	0,608	0,0028	0,0022	0,0005	0,00550	0,016	0,09520	0,07616	0,07616	0,09520
87,158	1,95	55.648	1	0.0032	0	0	52,482	16,167	1	0,604	0.0030	0,0021	0.0007	0.00577	0,016	0.09520	0.09520	0,09520	0.09520
87,158	1,95	44,696	1	0,0032	0	0	52,482	15,745	1	0,604	0,0030	0,0021	0,0007	0,00577	0,016	0,07616	0,09520	0,09520	0,07616
108,514	1,95	55,648	1	0,0040	0	0	53,890	16,167	1	0,608	0,0031	0,0021	0,0005	0,00570	0,016	0,09520	0,07616	0,07616	0,09520
109,266	2,06	52,977	1,1	0.0013	0	0	215,118	64,535	0	0,470	0.0029	0,0019	0,0010	0.00579	0,016	0.02964	0.02964	0,02964	0.02964
109,266	2,06	52,977	1,1	0,0013	0	0	215,118	64,535	0	0,470	0,0029	0,0019	0,0010	0,00579	0,016	0,02964	0,02964	0,02964	0,02964
109,266	2,06	52,977	1,1	0,0013	0	0	215,118	64,535	0	0,470	0,0029	0,0019	0,0010	0,00579	0,016	0,02964	0,02964	0,02964	0,02964
82,899	1,54	53,918	1	0,0033	0	0	50,230	15,069	1	0,574	0,0026	0,0023	0,0007	0,00557	0,016	0,07979	0,09973	0,09973	0,07979
82,899	1,54	53,918	1	0,0042	0	0	50,230	15,069	1	0,574	0,0026	0,0023	0,0007	0,00557	0,016	0,07979	0,09973	0,09973	0,07979
103,225	1,54	67,138	1	0,0042	0	0	51,638	15,491	1	0,578	0,0027	0,0023	0,0005	0,00549	0,016	0,09973	0,07979	0,07979	0,09973
139,512	1,66	84,17	1	0,0044	0	0	58,752	17,626	1	0,654	0,0026	0,0023	0,0006	0,00557	0,016	0,10619	0,07080	0,07080	0,10619
139,512	1,66	84,17	1	0,0044	0	0	58,752	17,626	1	0,654	0,0026	0,0023	0,0006	0,00557	0,016	0,10619	0,07080	0,07080	0,10619
94,403	1,66	56,955	1	0,0029	0	0	56,236	16,871	1	0,654	0,0025	0,0023	0,0006	0,00539	0,016	0,07080	0,10619	0,10619	0,07080
87,775	1,87	47,001	1	0,0021	0	0	76,207	22,862	1	0,604	0,0028	0,0021	0,0006	0,00559	0,016	0,05077	0,06347	0,06347	0,05077
87,775	1,87	47,001	1	0,0021	0	0	76,207	22,862	1	0,604	0,0028	0,0021	0,0006	0,00559	0,016	0,05077	0,06347	0,06347	0,05077
109,435	1,87	58,6	1	0,0026	0	0	77,691	23,307	1	0,608	0,0029	0,0021	0,0005	0,00550	0,016	0,06347	0,05077	0,05077	0,06347
79,222	2,03	38,978	1	0,0023	0	0	71,395	21,418	1	0,544	0,0033	0,0020	0,0007	0,00600	0,016	0,05585	0,06981	0,06981	0,05585
79,222	2,03	38,978	1	0,0023	0	0	71,395	21,055	1	0,544	0,0033	0,0020	0,0007	0,00600	0,016	0,05585	0,06981	0,06981	0,05585
98,798	2,03	48,609	1	0,0029	0	0	72,778	21,833	1	0,548	0,0033	0,0020	0,0006	0,00590	0,016	0,06981	0,05585	0,05585	0,06981
116,328	2,39	48,724	1	0,0053	0	0	51,907	15,572	1	0,544	0,0040	0,0019	0,0008	0,00676	0,016	0,12566	0,08378	0,08378	0,12566
116,328	2,39	48,724	1	0,0053	0	0	51,907	15,572	1	0,544	0,0030	0,0019	0,0008	0,00676	0,010	0,12566	0,08378	0,08378	0,12566
78,762	2,39	32,989	1	0,0035	0	0	49,321	14,796	1	0,544	0,0038	0,0019	0,0007	0,00648	0,016	0,08378	0,12566	0,12566	0,08378
116,328	1,32	88,127	1	0,0053	0	0	51,907	15,572	1	0,544	0,0026	0,0024	0,0008	0,00572	0,016	0,12566	0,08378	0,08378	0,12566
116,328	1,32	88,127	1	0,0053	0	0	51,907	15,572	1	0,544	0,0024	0,0024	0,0007	0,00572	0,010	0,12566	0,08378	0,08378	0,08378
78,762	1,32	59,668	1	0,0035	0	0	49,321	14,796	1	0,544	0,0024	0,0024	0,0007	0,00552	0,016	0,08378	0,12566	0,12566	0,08378
122,098	1,49	82,083	1	0,0055	0	0	52,177	15,653	1	0,540	0,0027	0,0022	0,0010	0,00592	0,016	0,13090	0,26180	0,26180	0,13090
122,098	1,49	82,083	1	0,00110	0	0	52,177	15,653	1	0,540	0,0031	0,0022	0,0011	0,00048	0,010	0,13090	0,26180	0,26180	0,13090
235,910	1,49	158,6	1	0,0110	0	0	60,276	18,083	1	0,540	0,0031	0,0022	0,0011	0,00648	0,016	0,26180	0,13090	0,13090	0,26180
122,098	1,30	93,922	1	0,0055	0	0	52,177	15,653	1	0,540	0,0025	0,0024	0,0010	0,00579	0,016	0,13090	0,26180	0,26180	0,13090
122,098	1,30	93,922	1	0,0055	0	0	52,177	15,653	1	0,540	0,0025	0,0024	0,0010	0,00579	0,016	0,13090	0,26180	0,26180	0,13090
235,910	1,30	181,47	1	0,0110	0	0	60,276	18,083	1	0,540	0,0028	0,0024	0,0011	0,00632	0,016	0,26180	0,13090	0,13090	0,26180
257,470	1,68	153,48	1	0,0101	0	0	62,274 54,412	18,682	1	0,590	0,0032	0,0022	0,0010	0,00639	0,016	0,24166	0,12083	0,12083	0,24166
257,470	1,68	153,48	1	0,0101	0	0	62,274	18,682	1	0,590	0,0032	0,0022	0,0010	0,00639	0,016	0,24166	0,12083	0,12083	0,24166
133,203	1,68	79,406	1	0,0051	0	0	54,412	16,324	1	0,590	0,0028	0,0022	0,0009	0,00586	0,016	0,12083	0,24166	0,24166	0,12083
87,158	2,45	44.292	1	0,0032	0	0	52,482	15,745	1	0,604	0,0036	0,0020	0,0007	0,00621	0,016	0.07616	0.09520	0,09520	0,07616
87,158	2,45	35,575	1	0,0032	0	0	52,482	15,745	1	0,604	0,0036	0,0020	0,0007	0,00621	0,016	0,07616	0,09520	0,09520	0,07616
108,514	2,45	44,292	1	0,0040	0	0	53,890	16,167	1	0,608	0,0037	0,0020	0,0005	0,00615	0,016	0,09520	0,07616	0,07616	0,09520
87,158	2,05	42,516 52,934	1	0,0032	0	0	52,482	16,167	1	0,604	0,0031	0,0021	0,0007	0,00585	0,016	0,07616	0,09520	0,09520	0,07616
87,158	2,05	42,516	1	0,0032	0	0	52,482	15,745	1	0,604	0,0031	0,0021	0,0007	0,00585	0,016	0,07616	0,09520	0,09520	0,07616
108,514	2,05	52,934	1	0,0040	0	0	53,890	16,167	1	0,608	0,0032	0,0021	0,0005	0,00578	0,016	0,09520	0,07616	0,07616	0,09520
83,570	1,95	42,856	1	0,0033	0	0	72,829	22,003	1	0,574	0,0032	0,0021	0,0007	0,00594	0,016	0,05319	0,05319	0,05319	0,05319
123,820	1,95	63,498	1	0,0033	0	0	75,345	22,603	1	0,574	0,0032	0,0021	0,0007	0,00594	0,016	0,07979	0,05319	0,05319	0,07979
83,570	1,95	42,856	1	0,0022	0	0	72,829	21,849	1	0,574	0,0030	0,0021	0,0007	0,00577	0,016	0,05319	0,07979	0,07979	0,05319
106,751	2,30	45,281	1	0,0032	0	0	53,140	15,942	1	0,598	0,0036	0,0020	0,0005	0,00612	0,016	0,09666	0,07733	0,07733	0,09666
85,738	2,36	36,368	1	0,0032	0	0	51,731	15,519	1	0,594	0,0035	0,0020	0,0007	0,00618	0,016	0,07733	0,09666	0,09666	0,07733
106,751	2,36	45,281	1	0,0040	0	0	53,140	15,942	1	0,598	0,0036	0,0020	0,0005	0,00612	0,016	0,09666	0,07733	0,07733	0,09666
98,412	1,01	97,438	1	0,0035	0	0	61,724	18,517	1	0,548	0,0020	0,0026	0,0006	0,00525	0,016	0,08378	0,06702	0,06702	0,08378
78,959	1,01	78,178	1	0,0028	0	0	60,358	18,107	1	0,544	0,0020	0,0026	0,0007	0,00537	0,016	0,06702	0,08378	0,08378	0,06702
98,412	1,01	97,438	1	0,0035	0	0	61,724 51 731	18,517	1	0,548	0,0020	0,0026	0,0006	0,00525	0,016	0,08378	0,06702	0,06702	0,08378
106,751	1,22	87,501	1	0,0040	0	0	53,140	15,942	1	0,598	0,0022	0,0025	0,0005	0,00527	0,016	0,09666	0,07733	0,07733	0,09666
85,738	1,22	70,277	1	0,0032	0	0	51,731	15,519	1	0,594	0,0022	0,0025	0,0007	0,00536	0,016	0,07733	0,09666	0,09666	0,07733
106,751	1,22	87,501	1	0,0040	0	0	53,140 49.321	15,942	1	0,598	0,0022	0,0025	0,0005	0,00527	0,016	0,09666	0,07733	0,07733	0,09666
97,939	1,11	88,233	1	0,0044	0	0	50,670	15,201	1	0,548	0,0022	0,0025	0,0006	0,00533	0,016	0,10472	0,08378	0,08378	0,10472
78,643	1,11	70,849	1	0,0035	0	0	49,321	14,796	1	0,544	0,0022	0,0025	0,0007	0,00544	0,016	0,08378	0,10472	0,10472	0,08378
97,939	1,11	88,233 72 725	1	0,0044	0	0	50,670	15,201	1	0,548	0,0022	0,0025	0,0006	0.00533	0,016	0,10472	0.08378	0.08378	0,10472
144,657	3,86	37,476	1	0,0038	0	0	70,742	21,222	1	0,640	0,0050	0,0018	0,0008	0,00754	0,016	0,08976	0,17952	0,17952	0,08976
280,719	3,86	72,725	1	0,0075	0	0	78,604	23,581	1	0,640	0,0056	0,0018	0,0009	0,00825	0,016	0,17952	0,08976	0,08976	0,17952
144,657	3,86	37,476	1	0,0038	0	0	70,742	21,222	1	0,640	0,0050	0,0018	0,0008	0,00754	0,016	0,08976	0,17952	0,17952	0,08976
87,291	1,52	57,428	1	0,0032	0	0	52,482	15,745	1	0,604	0,0025	0,0023	0,0007	0,00545	0,016	0,07616	0,11424	0,11424	0,07616
128,966	1,52	84,846	1	0,0048	0	0	54,998	16,499	1	0,604	0,0026	0,0023	0,0007	0,00564	0,016	0,11424	0,07616	0,07616	0,11424
87,291	1,52	57,428	1	0.0032	0	0	52,482	15,745	1	0,604	0,0025	0.0023	0,0007	0.00545	0,016	0,07616	0.07080	0.07080	0,07616
94,403	0,84	112,72	1	0,0029	0	0	56,236	16,871	1	0,654	0,0016	0,0032	0,0006	0,00539	0,016	0,07080	0,10619	0,10619	0,07080
139,512	0,84	166,58	1	0,0044	0	0	58,752	17,626	1	0,654	0,0017	0,0032	0,0006	0,00552	0,016	0,10619	0,07080	0,07080	0,10619
94,403	0,84	112,72	1	0.0029	0	0	56,236	16,871	1	0,654	0.0016	0.0032	0,0006	0.00539	0,016	0,07080	0.09666	0,10619	0,07080
133,531	1,93	69,187	1	0,0041	0	0	66,049	19,815	1	0,590	0,0030	0,0021	0,0009	0,00599	0,016	0,09666	0,19333	0,19333	0,09666
259,014	1,93	134,2	1	0,0081	0	0	73,911	22,173	1	0,590	0,0034	0,0021	0,0010	0,00649	0,016	0,19333	0,09666	0,09666	0,19333
133,531	1,93	9,187 פט	1	0,0041	U	0	00,049	19,815	1	0,590	0,0030	0,0021	0,0009	0,00599	0,016	0,09666	0,19333	0,19333	0,09666

Il maxi0 0111																	
((max(0,01;ω))*fc	~	0,35	6.1	ь.			ni		5b. ²	~		25 apstyw/tc		1.25 ^{100pd}		Απομειωμένη	A
J ^{0,225}	a:	elle i	DC'	nc					201	α	P	23	Ра	1,0	00	θυ	Ou.pl
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01347
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01172
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,146	0,774102	0	0	1	0	1	0,024109	0,01909	0,01347
1,73704	0,5	0,78458	0,16	0,320	0,146	0,61	0,61	0,144	0,774102	0	0	1	0	1	0,021806	0,01726	0,01163
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,0134/
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	ō	0	1	0	1	0,024109	0,01909	0,01347
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01172
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01354
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01180
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0.61	0,148	0,777112	0	0	1	0	1	0.021806	0.01909	0.01354
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01351
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01176
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01351
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01176
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01332
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01156
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01156
1,82647	0,5	0,78458	0,96	0,490	0,94	0,48	0,48	0,94	2,21845	0	0	1	0	1	0,022928	0,01815	0,01236
1,82647	0,5	0,78458	0,96	0,490	0,94	0,48	0,48	0,94	2,21845	0	0	1	0	1	0,022928	0,01815	0,01236
1,82647	0,5	0,78458	0,96	0,490	0,94	0,48	0,48	0,94	2,21845	0	0	1	0	1	0,022928	0,01815	0,01236
1,8264/	0,5	0,78458	0,96	0,490	0,94	0,48	0,48	0,94	2,21845	0	0	1	0	1	0,022928	0,01815	0,01236
1,92052	0,5	0,78458	0,16	0,320	0,144	0,58	0,58	0,148	0,706192	0	0	1	0	1	0,024109	0,01909	0,01351
1,73704	0,5	0,78458	0,16	0,320	0,148	0,58	0,58	0,144	0,706192	0	0	1	0	1	0,021806	0,01726	0.01178
1,73704	0,5	0,78458	0,16	0,320	0,148	0,58	0,58	0,144	0,706192	ō	0	1	ō	1	0,021806	0,01726	0,01178
1,66722	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0,144	0,9074	0	0	1	0	1	0,020929	0,01657	0,01100
2,00094	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0,144	0,9074	0	0	1	0	1	0,025118	0,01989	0,01449
1,66722	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0,144	0,9074	0	0	1	0	1	0,020929	0,01657	0,01100
2,00094	0,5	0.78458	0.26	0,320	0.244	0,66	0,66	0.249	0,9074	0	0	1	0	1	0,025118	0,01989	0,013/9
1,73704	0.5	0,78458	0,26	0,520	0,248	0,61	0,61	0,244	0,855512	0	0	1	0	1	0,021806	0,01726	0,01176
1,92052	0,5	0,78458	0,26	0,520	0,244	0,61	0,61	0,248	0,855512	0	0	1	0	1	0,024109	0,01909	0,01349
1,73704	0,5	0,78458	0,26	0,520	0,248	0,61	0,61	0,244	0,855512	0	0	1	0	1	0,021806	0,01726	0,01176
1,92052	0,5	0,78458	0,26	0,520	0,244	0,55	0,55	0,248	0,717272	0	0	1	0	1	0,024109	0,01909	0,01309
1,73704	0,5	0,78458	0,26	0,520	0,248	0,55	0,55	0,244	0,717272	0	0	1	0	1	0,021806	0,01726	0,01136
1,92052	0,5	0,78458	0,26	0,520	0,244	0,55	0,55	0,248	0,717272	0	0	1	0	1	0,024109	0,01909	0,01309
1,75704	0,5	0,78458	0,20	0,320	0,240	0,55	0,55	0,244	0.64208	0	0	1	0	1	0.020929	0,01728	0.00981
2,00094	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0,025118	0,01989	0,01341
1,66722	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0,020929	0,01657	0,00981
2,00094	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0,025118	0,01989	0,01341
1,66722	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0,020929	0,01657	0,01085
2,00094	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0,025118	0,01989	0,01437
2 00094	0,5	0,78458	0,16	0,320	0 144	0,55	0,55	0,144	0,64208	0	0	1	0	1	0.025118	0,0183/	0.01035
2,13474	0,5	0,78458	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,026798	0,02122	0,01530
1,56272	0,5	0,78458	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,019617	0,01553	0,00905
2,13474	0,5	0,78458	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,026798	0,02122	0,01530
1,56272	0,5	0,78458	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,019617	0,01553	0,00905
2,134/4	1	1,00000	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,034156	0,02704	0,02125
2,13474	1	1,00000	0,10	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,034156	0,02704	0,01348
1,56272	1	1,00000	0,16	0,320	0,14	0,55	0,55	0,14	0,63325	0	0	1	0	1	0,025004	0,01979	0,01348
1,56272	0,5	0,78458	0,16	0,320	0,14	0,6	0,6	0,14	0,74725	0	0	1	0	1	0,019617	0,01553	0,00914
2,13474	0,5	0,78458	0,16	0,320	0,14	0,6	0,6	0,14	0,74725	0	0	1	0	1	0,026798	0,02122	0,01536
1,56272	0,5	0,78458	0,16	0,320	0,14	0,6	0,6	0,14	0,74725	0	0	1	0	1	0,019617	0,01553	0,00914
2,134/4	0,5	0,70458	0,16	0,320	0,14	0,6	0,6	0,14	0,74725	0	0	1	0	1	0,026798	0,02122	0,01536
1,73704	0,5	0,78458	0,16	0,320	0.148	0.61	0.61	0,148	0,777112	0	0	1	0	1	0.021806	0.01726	0.01111
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01288
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01111
1,92052	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,148	0,777112	0	0	1	0	1	0,024109	0,01909	0,01323
1,73704	0,5	0,78458	0,16	0,320	0,148	0,61	0,61	0,144	0,777112	0	0	1	0	1	0,021806	0,01726	0,01148
1,52052	0,5	0,78458	0,16	0,320	0,149	0,61	0,61	0,148	0.777112	0	0	1	0	1	0.021805	0.01726	0.01148
1,66722	0,5	0,78458	0,26	0,520	0,244	0,58	0,58	0,244	0,78724	ō	ō	1	ō	1	0,020929	0,01657	0,01063
2,00094	0,5	0,78458	0,26	0,520	0,244	0,58	0,58	0,244	0,78724	0	0	1	0	1	0,025118	0,01989	0,01412
1,66722	0,5	0,78458	0,26	0,520	0,244	0,58	0,58	0,244	0,78724	0	0	1	0	1	0,020929	0,01657	0,01063
2,00094	0,5	0,78458	0,26	0,520	0,244	0,58	0,58	0,244	0,78724	0	0	1	0	1	0,025118	0,01989	0,01412
1,52052	0,5	0,78458	0.16	0,520	0.149	0.6	0.6	0.148	0,753072	0	0	1	0	1	0.021806	0,01509	0.01115
1,92052	0,5	0,78458	0,16	0,320	0,144	0,6	0,6	0,148	0,753072	0	0	1	0	1	0,024109	0,01909	0,01291
1,73704	0,5	0,78458	0,16	0,320	0,148	0,6	0,6	0,144	0,753072	0	0	1	0	1	0,021806	0,01726	0,01115
1,92052	0,5	0,78458	0,21	0,420	0,194	0,55	0,55	0,198	0,673072	0	0	1	0	1	0,024109	0,01909	0,01372
1,73704	0,5	0,78458	0,21	0,420	0,198	0,55	0,55	0,194	0,673072	0	0	1	0	1	0,021806	0,01726	0,01201
1,92052	0,5	0,78458	0,21	0,420	0,194	0,55	0,55	0,198	0,673072	0	0	1	0	1	0,024109	0,01909	0.01372
1.92052	0.5	0,78458	0.16	0.320	0.144	0.6	0.6	0.148	0,753072	0	0	1	0	1	0.024109	0,01726	0.01373
1,73704	0,5	0,78458	0,16	0,320	0,148	0,6	0,6	0,144	0,753072	0	0	1	0	1	0,021806	0,01726	0,01200
1,92052	0,5	0,78458	0,16	0,320	0,144	0,6	0,6	0,148	0,753072	0	0	1	0	1	0,024109	0,01909	0,01373
1,73704	0,5	0,78458	0,16	0,320	0,148	0,6	0,6	0,144	0,753072	0	0	1	0	1	0,021806	0,01726	0,01200
1,92052	0,5	0,78458	0,16	0,320	0,144	0,55	0,55	0,148	0,638872	0	0	1	0	1	0,024109	0,01909	0,01365
1,73704	0,5	0,78458	0,16	0,320	0,148	0,55	0.55	0,144	0,638872	0	0	1	0	1	0.021806	0,01726	0,01193
1,73704	0,5	0,78458	0,16	0,320	0,148	0,55	0,55	0,144	0,638872	õ	ō	1	ō	1	0,021806	0,01726	0,01193
1,56272	1	1,00000	0,21	0,420	0,19	0,65	0,65	0,19	0,90425	0	0	1	0	1	0,025004	0,01979	0,01155
2,13474	1	1,00000	0,21	0,420	0,19	0,65	0,65	0,19	0,90425	0	0	1	0	1	0,034156	0,02704	0,01950
1,56272	1	1,00000	0,21	0,420	0,19	0,65	0,65	0,19	0,90425	0	0	1	0	1	0,025004	0,01979	0,01155
2,13474	1	1,00000	0,21	0,420	0,19	0,65	0,65	0,19	0,90425	0	0	1	0	1	0,034156	0,02704	0,01950
1,66722	0,5	0,78458	U,16	0,320	0,144	0,61	0,61	0,144	0,7808	0	0	1	0	1	0,020929	0,01657	0,01093
1.66722	0.5	0,78458	0.16	0.320	0.144	0.61	0.61	0.144	0.7808	0	0	1	0	1	0,020929	0,01565	0,01093
2,00094	0,5	0,78458	0,16	0,320	0,144	0,61	0,61	0,144	0,7808	0	0	1	0	1	0,025118	0,01989	0,01443
1,66722	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0,144	0,9074	0	0	1	0	1	0,020929	0,01657	0,01105
2,00094	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0,144	0,9074	0	0	1	0	1	0,025118	0,01989	0,01449
1,66/22	0,5	0,78458	0,16	0,320	0,144	0,66	0,66	0.144	0,9074	0	0	1	0	1	0,020929	0,01657	0.01449
1.562.72	0,5	0,78458	0.21	0,520	0.19	0.6	0.6	0.19	0,78025	0	0	1	0	1	0.019617	0,01553	0.00904
2,13474	0,5	0,78458	0,21	0,420	0,19	0,6	0,6	0,19	0,78025	ō	ō	1	ō	1	0,026798	0,02122	0,01522
1,56272	0,5	0,78458	0,21	0,420	0,19	0,6	0,6	0,19	0,78025	0	0	1	0	1	0,019617	0,01553	0,00904
2,13474	0,5	0,78458	0,21	0,420	0,19	0,6	0,6	0,19	0,78025	0	0	1	0	1	0,026798	0,02122	0,01522

						ΈΛΕΓΧ	ΟΣ ΣΕ ΤΕ	ΜΝΟΥΣΑ	Ç.					
μ _{ϑ,pi}	1- 0,05*min(5;μϑ, _{pl})	0,16max(0,5 ;100ρ _{tot})	1-0,16*min(5; a ₅)* fc ^{0,5} *Ac)	V _R	V _{Rd,1}	Vd	V _{cd}	V _{wd}	V _{Rd}	K _{eff}	Iy	E _{clel}	K _{eff} /E _{clei}	ΜΕΣΟΣ ΟΡΟΣ
2,3983	0,880083	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	9052,521	0,005	121371,228	0,075	
2,1163	0,894183	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	11427,128	0,005	121371,228	0,094	0,08394
2,3983	0.896678	0,080	0,961	0.069	24,33	0.00	7,30	0.00	7,30	11221.852	0,005	121371,228	0.075	
2,3983	0,880083	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	9052,521	0,005	121371,228	0,075	
2,1163	0,894183	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	11427,128	0,005	121371,228	0,094	0,08437
2,3983	0,880083	0,080	0,961	0.069	24,33	0.00	7,30	0.00	7,30	11427.128	0.005	121371,228	0,075	
2,4416	0,877918	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	8630,919	0,005	121371,228	0,071	
2,1584	0,892078	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	10903,152	0,005	121371,228	0,090	0,08047
2,4416	0,877918	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	8630,919	0,005	1213/1,228	0,071	
2,4198	0,879011	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	8849,372	0,005	121371,228	0,073	
2,1372	0,893142	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	11174,794	0,005	121371,228	0,092	0,08249
2,4198	0,879011	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	8849,372	0,005	1213/1,228	0,073	
2,3083	0,884584	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	9819,886	0,005	121371,228	0,081	
2,0294	0,898530	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	12377,841	0,005	121371,228	0,102	0,09145
2,3083	0,884584	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	9819,886	0,005	121371,228	0,081	
2,1327	0,893363	0,080	0,847	0,061	105,82	0,00	31,74	0,00	31,74	12964,797	0,012	314254,534	0,102	
2,1327	0,893363	0,080	0,847	0,061	105,82	0,00	31,74	0,00	31,74	12964,797	0,012	314254,534	0,041	0.04126
2,1327	0,893363	0,080	0,847	0,061	105,82	0,00	31,74	0,00	31,74	12964,797	0,012	314254,534	0,041	-,
2,1327	0,893363	0,080	0,847	0,061	23 18	0,00	6 95	0,00	6 95	7624 413	0,012	105561 509	0,041	
2,1472	0,892639	0,080	0,963	0,069	23,26	0,00	6,98	0,00	6,98	9644,838	0,004	105561,509	0,091	0.09190
2,4252	0,878742	0,080	0,963	0,068	23,18	0,00	6,95	0,00	6,95	7624,413	0,004	105561,509	0,072	0,08180
2,1472	0,892639	0,080	0,963	0,069	23,26	0,00	6,98	0,00	6,98	9644,838	0,004	105561,509	0,091	
2,6874	0,865632	0,080	0,958	0,069	26,27	0,00	7,88	0,00	7,88	9671,542	0,006	151098,094	0,092	
1,9759	0,901203	0,080	0,958	0,069	26,27	0,00	7,88	0,00	7,88	13844,310	0,006	151098,094	0,092	0,07782
2,6874	0,865632	0,080	0,958	0,066	26,26	0,00	7,88	0,00	7,88	9671,542	0,006	151098,094	0,064	
2,4129	0,879356	0,080	0,942	0,066	36,49	0,00	10,95 10 98	0,00	10,95	9770,395	0,007	182056,842	0,054	
2,4129	0,879356	0,080	0,942	0,066	36,49	0,00	10,95	0,00	10,95	9770,395	0,007	182056,842	0,054	0,06084
2,1380	0,893102	0,080	0,942	0,067	36,61	0,00	10,98	0,00	10,98	12383,226	0,007	182056,842	0,068	
2,1834	0,890829	0,080	0,948	0,068	33,95	0,00	10,19	0,00	10,19	8952,186	0,005	136782,000	0,065	
2,1834	0,890829	0,080	0,947	0,068	33,95	0,00	10,20	0,00	10,20	8952,186	0,005	136782,000	0,085	0,07420
1,9260	0,903698	0,080	0,947	0,068	34,01	0,00	10,20	0,00	10,20	11345,543	0,005	136782,000	0,083	
1,4507	0,927466	0,080	0,965	0,072	22,66	0,00	6,80	0,00	6,80	13693,031	0,004	91188,000	0,150	
1.4507	0,896543	0,080	0,965	0.059	22,64	0,00	6,79	0,00	6,79	9674,281 13693.031	0,004	91188,000	0,106	0,12813
2,0691	0,896543	0,080	0,965	0,069	22,64	0,00	6,79	0,00	6,79	9674,281	0,004	91188,000	0,106	
1,8991	0,905043	0,080	0,965	0,070	22,66	0,00	6,80	0,00	6,80	8955,956	0,004	91188,000	0,098	
2,6030	0,869851	0,080	0,965	0,067	22,64	0,00	6,79	0,00	6,79	6279,026	0,004	91188,000	0,069	0,08354
2,6030	0,869851	0,080	0,965	0,067	22,64	0,00	6,79	0,00	6,79	6279,026	0,004	91188,000	0,069	
2,5839	0,870804	0,080	0,965	0,067	22,62	0,00	6,79	0,00	6,79	10227,180	0,004	91188,000	0,112	
1,3950	0,930249	0,080	0,965	0,072	22,66	0,00	6,80	0,00	6,80	18038,746	0,004	91188,000	0,198	0,15499
1,3950	0,930249	0,080	0,965	0,087	22,62	0,00	6,80	0,00	6,80	18038,746	0,004	91188,000	0,112	
3,6696	0,816520	0,080	0,930	0,061	22,62	0,00	6,79	0,00	6,79	9137,002	0,004	91188,000	0,100	
2,1335	0,893323	0,080	0,930	0,066	22,66	0,00	6,80	0,00	6,80	16183,036	0,004	91188,000	0,177	0,13883
2.1335	0,816520	0,080	0,930	0.061	22,62	0.00	6,79	0.00	6,79	16183.036	0,004	91188,000	0,100	
1,4296	0,928520	0,080	0,962	0,071	23,93	0,00	7,18	0,00	7,18	22522,641	0,005	115937,521	0,194	
2,6226	0,868870	0,080	0,962	0,067	23,89	0,00	7,17	0,00	7,17	12718,294	0,005	115937,521	0,110	0,15198
2,6226	0,868870	0,080	0,962	0,071	23,95	0,00	7,18	0,00	7,18	12718,294	0,005	115937,521	0,194	
2,0738	0,896308	0,080	0,961	0,069	24,33	0,00	7,30	0,00	7,30	11463,351	0,005	121371,228	0,094	
1,8052	0,909741	0,080	0,961	0,070	24,42	0,00	7,33	0,00	7,33	14400,598	0,005	121371,228	0,119	0,10655
1.8052	0,896308	0,080	0,961	0.059	24,33	0,00	7,30	0.00	7,30	11463,351	0,005	121371,228	0,094	
2,2618	0,886912	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	10178,174	0,005	121371,228	0,084	
1,9846	0,900768	0,080	0,961	0,069	24,42	0,00	7,33	0,00	7,33	12820,389	0,005	121371,228	0,106	0,09474
2,2618	0,886912	0,080	0,961	0,068	24,33	0,00	7,30	0,00	7,30	101/8,1/4	0,005	1213/1,228	0,084	
1,7882	0,910590	0,080	0,945	0,069	34,77	0,00	10,43	0,00	10,43	13543,632	0,006	158342,263	0,086	
2,4483	0,877586	0,080	0,945	0,066	34,76	0,00	10,43	0,00	10,43	9419,532	0,006	158342,263	0,059	0,07251
1,7882	0,910590	0,080	0,945	0,069	34,77	0,00	10,43	0,00	10,43	9419 532	0,006	158342,263	0,086	
2,0909	0,895456	0,080	0,962	0,069	23,95	0,00	7,18	0,00	7,18	10911,067	0,005	115937,521	0,094	
1,8225	0,908876	0,080	0,962	0,070	24,03	0,00	7,21	0,00	7,21	13715,787	0,005	115937,521	0,118	0.10621
2,0909	0,895456	0,080	0,962	0,069	23,95	0,00	7,18	0,00	7,18	10911,067	0,005	115937,521	0,094	-,
2.5537	0,908870	0,080	0,952	0.067	28.30	0.00	8.49	0.00	8.49	4949.570	0,005	113937,321	0,118	
2,2863	0,885686	0,080	0,956	0,068	28,35	0,00	8,50	0,00	8,50	6307,301	0,005	113985,000	0,055	0.04938
2,5537	0,872314	0,080	0,956	0,067	28,30	0,00	8,49	0,00	8,49	4949,570	0,005	113985,000	0,043	-,
2,2803	0,883080	0,080	0,950	0,008	23,95	0,00	7,18	0,00	7,18	6504,670	0,005	115937,521	0,055	
2,2784	0,886079	0,080	0,962	0,068	24,03	0,00	7,21	0,00	7,21	8244,466	0,005	115937,521	0,071	0.06361
2,5607	0,871966	0,080	0,962	0,067	23,95	0,00	7,18	0,00	7,18	6504,670	0,005	115937,521	0,056	0,00501
2,2784	0,886079	0,080	0,962	0.068	24,03	0.00	6.79	0.00	6.79	5348,426	0.005	91188.000	0.059	
2,2366	0,888172	0,080	0,965	0,069	22,68	0,00	6,81	0,00	6,81	6794,068	0,004	91188,000	0,075	0.06659
2,5082	0,874589	0,080	0,965	0,068	22,64	0,00	6,79	0,00	6,79	5348,426	0,004	91188,000	0,059	3,00038
2,2366	0,888172	0,080	0,965	0,069	22,68	0,00	6,81 9.60	0,00	6,81 9,69	6/94,068 43801 780	0,004	91188,000 181003 050	0,075	
2,5882	0,870589	0,080	0,898	0,063	32,25	0,00	9,68	0,00	9,68	24698,932	0,007	181003,958	0,136	0.19032
1,4005	0,929976	0,080	0,898	0,067	32,29	0,00	9,69	0,00	9,69	43801,780	0,007	181003,958	0,242	0,18922
2,5882	0,870589	0,080	0,898	0,063	32,25	0,00	9,68	0,00	9,68	24698,932	0,007	181003,958	0,136	
2,6464	0,867680	0,080	0,961	0,069	24,35	0,00	7,30	0,00	7,30	8109,965	0,005	121371,228	0,095	0.000
1,9387	0,903064	0,080	0,961	0,069	24,35	0,00	7,30	0,00	7,30	11589,461	0,005	121371,228	0,095	0,08115
2,6464	0,867680	0,080	0,961	0,067	24,33	0,00	7,30	0,00	7,30	8109,965	0,005	121371,228	0,067	
2,0021	0.899893	0.080	0,958	0,066	26,27	0.00	7,88	0.00	7,88	4885.829	0.006	151098,094	0.047	
2,0021	0,899893	0,080	0,958	0,069	26,27	0,00	7,88	0,00	7,88	7056,832	0,006	151098,094	0,047	0,03952
2,6866	0,865670	0,080	0,958	0,066	26,26	0,00	7,88	0,00	7,88	4885,829	0,006	151098,094	0,032	
2 5410	0,930368	0,080	0,953	0,071	29,89	0,00	8,97 8 95	0,00	8,97 8 05	256/1,588	0,006	144921,901	0,177	
1,3926	0,930368	0,080	0,953	0,071	29,89	0,00	8,97	0,00	8,97	25671,588	0,006	144921,901	0,177	0,13804
2,5410	0,872950	0,080	0,953	0,067	29,85	0,00	8,95	0,00	8,95	14338,292	0,006	144921,901	0,099	

	(ΟΡΟΦΗ ΙΣΟΓΕΙΟΥ		
Δοκός	Διατομή	Keff/Eclel	ΜΕΣΟΣ ΟΡΟΣ	Δ14
		0,074585		
Δ1		0,094150	0.083945	
		0,074585		Δ15
		0,092459		
	-	0,074585		
Δ2		0,094150	0,084368	
		0,074585	<u> </u>	Δ16
		0,094150		
		0,071112		
Δ3		0.071112	0,080472	۸17
		0.089833	- 1	
		0.072912		
		0,092071		
Δ4		0,072912	0,082491	Δ18
	-	0,092071		
		0,080908		
A.F.		0,101983	0.001446	
Δ5		0,080908	0,091446	Δ18.4
	_	0,101983		
		0,041256	_	
٨6		0,041256	0.041256	A10 F
		0,041256	0,011200	Δ18.6
		0,041256		
	-	0,072227		
Δ7		0,091367	0,081797	Δ19
		0,072227	<u> </u>	
		0,091507		
		0.064008		
Δ8		0.091625	0,077817	Δ20
	•	0,064008	-	
		0,053667		
		0,068018		421
Δ9		0,053667	0,060843	
	_	0,068018		
	_	0,065449	_	
۸10		0,082946	0 074197	Δ22
		0,065449	0,07 1157	
		0,082946	_	
	_	0,150163	_	
Δ10.A		0,106092	0,128127	
		0,150163		
		0,100092	+	
		0,050214	-	
Δ11		0.098214	0,083536	
	•	0.068858	I	
		0.112155		
		0,197819		
Δ12		0,112155	0,154987	
	•	0,197819	7	
		0,100200		
A12 A		0,177469	0 120024	
Δ12.Α		0,100200	0,138834	
		0,177469		
		0,194265	_	
۸13		0,109700	0 151982	
115		0,194265		
		0,109700		

		0,094449	
A14		0,118649	0 106540
Δ14		0,094449	0,100549
	_	0,118649	
		0,083860	
A15		0,105630	0.004745
415		0,083860	0,094745
	_	0,105630	
		0,085534	
A16		0,059488	0.072511
410		0,085534	0,072511
	_	0,059488	
		0,094112	
A17		0,118303	0 106207
Δ17		0,094112	0,106207
		0,118303	
		0,043423	
A10		0,055334	0.040270
110		0,043423	0,049379
	-	0,055334	
		0,056105	
A10 A		0,071111	0.062608
<u> 110.</u> А		0,056105	0,003008
	-	0,071111	
		0,058653	
A10 D		0,074506	0.066570
110.D		0,058653	0,000579
	_	0,074506	
		0,241993	
A10		0,136455	0 1 9 0 2 2 4
Δ19		0,241993	0,189224
	Δ20	0,136455	
		0,095488	
120		0,066820	0.001154
420		0,095488	0,081134
	_	0,066820	
		0,046704	
٨21		0,032335	0.020520
121		0,046704	0,059520
		0,032335	
		0,177141	
422		0,098938	0 129020
022		0,177141	0,138039
		0,098938	

	ΟΡΟΦ	Η ΠΡΩΤΟΥ ΟΡΟΦ	or
Δοκός	Διατομή	Keff/Eclel	ΜΕΣΟΣ ΟΡΟΣ
		0,040865	
۸1	T	0,136675	0.003/127
- 21		0,059492	0,093427
		0,136675	
		0,059416	
^2	T	0,136675	0.009065
Δz		0,059492	0,098005
	_	0,136675	
		0,050144	
٧3	T	0,130831	0.000535
23		0,050336	0,050555
		0,130831	
		0,051571	
A4	T	0,133864	0 105567
4		0,102970	0,105507
	_	0,133864	
		0,113364	
۸ ۲	T	0,147212	0 112204
72		0,041788	0,112394
		0,147212	
		0,064967	
۸6	T	0,182616	0 12/126
Δ0		0,066345	0,124130
	-	0,182616	
		0,047299	
A7	T	0,132499	0.007172
Δ/		0,036395	0,087173
	-	0,132499	1
		0,058993	
	F	0,110252	0.004633
Δ8		0,058993	0,084622
	•	0,110252	
		0,034367	
40	T	0,099202	0.00000
Δ9		0,045950	0,069680
	-	0,099202	
		0,048633	
410	T	0,105018	0.076552
210		0,047544	0,070553
		0,105018	
		0,119247	
A10 A		0,106092	0 112660
510.A		0,119247	0,112009
		0,106092	
		0,051745	
A11	Г	0,091835	0.071700
411		0,051745	0,071790
		0,091835	
		0,089064	
412		0,197819	0 1 4 2 4 4 2
Δ12		0,089064	0,143442
		0,197819]
		0,079570	
		0,177469	0.420520
Δ12.A		0,079570	0,128520
	-	0,177469	1
		0,084797	
	F	0,221128	0.4570.46
Δ13		0,104734	0,157946
		0,221128	1

		0,063624	
۸14		0,180497	0 1 2 4 5 4 0
Δ14		0,073578	0,124549
	-	0,180497	
		0,068635	
		0,152090	0.407026
Δ15		0,058888	0,107926
	•	0.152090	
		0.045970	
		0.122757	
Δ16		0.040649	0,083033
	•	0.122757	
		0.030123	
		0.197117	
Δ17		0.058406	0,120691
		0 197117	
		0,13/11/	
		0,054380	
Δ18		0,003331	0,049958
		0,054380	
		0,00000	
		0,0059993	
Δ18.A		0,096181	0,068087
		0,039993	
		0,096181	
	_	0,046763	
Δ18.B		0,087761	0.067262
		0,046763	-,
		0,087761	
		0,157465	
۸19		0,192669	0 175067
		0,157465	0,175007
		0,192669	
		0,056860	
A20		0,103096	0 070078
120		0,056860	0,079978
	_	0,103096	
		0,028035	
A21		0,042642	0 025228
021		0,028035	0,033338
	_	0,042642	
		0,073967	
422	T	0,019796	0.046992
ΔΖΖ		0,073967	0,040882
		0,019796	
		0,038797	
	T	0,172287	0 4 4 4 5 0
Δ23		0,061259	0,111158
	-	0,172287	
		0,087050	
		0,267315	
Δ24		0.073290	0,173742
	•	0.267315	
		0.044309	
		0.267315	
Δ25		0.044309	0,155812
	•	0.267315	
		0.079356	
		0 3/8306	
Δ26		0,040350	0,213876
		0.249306	
		0,040090	
		0.284024	
Δ27		0,284621	0,174017
		0,063413	
	1	0,284621	

ΟΡΟΦΗ ΔΕΥΤΕΡΟΥ ΟΡΟΦΟΥ					
Δοκός	Διατομή	Keff/Eclel	ΜΕΣΟΣ ΟΡΟΣ		
		0,125551			
• •		0,175520	0.450506		
Δ1		0,125551	0,150536		
	•	0,175520	1		
		0,125551			
Δ2		0,175520	0.450500		
		0,125551	0,150536		
	•	0,175520	1		
Δ3		0,120023			
		0,167954			
		0,120023	0,143989		
	•	0,167954			
		0,122889			
		0,171878			
Δ4		0,122889	0,147384		
	•	0.171878	1		
		0,135579			
		0.189220			
Δ5		0.135579	0,162399		
		0 189220			
	I	0 140815			
		0 196362			
Δ6		0.140815	0,168589		
		0,140813			
	I	0,130302			
		0,113772	1		
Δ7		0,133385	0,136578		
		0,113772	1		
		0,139383			
Δ8		0,120373	1		
		0,100710	0,144642		
		0,1203/3	1		
		0,100/10			
Δ9		0.164005			
		0,104090	0,127614		
		0,091132			
		0,104095			
		0,050070			
Δ10		0,1/3/31	0,135200		
		0,096670			
		0,1/3/31			
		0,100351	•		
Δ11		0,140940	0,120646		
		0,100351			
		0,140940			
		0,127634			
Δ14		0,178369	0,153002		
		0,127634	-,		
	-	0,178369			

		1	
	_	0,092291	
Δ14.A		0,129831	0.111061
		0,092291	0,222002
		0,129831	
	_	0,203153	
Δ15		0,280761	0.241957
		0,203153	-,
		0,280761	
	_	0,093170	
Δ16		0,132002	0.112586
		0,093170	-,
		0,132002	
	_	0,138192	
Δ17		0,193119	0.165655
		0,138192	-,
		0,193119	
	_	0,123748	
٨20		0,173054	0 148401
120		0,123748	0,1,0,101
		0,173054	
	_	0,074258	
A21		0,104880	0 089569
021		0,074258	0,005505
	_	0,104880	
		0,132547	
A22		0,185082	0 1 5 9 9 1 5
625		0,132547	0,136613
	-	0,185082	
		0,214880	
424		0,296520	0.255700
Δ24		0,214880	0,255700
		0,296520	
		0,117366	
		0,164313	0 1 40 9 2 0
Δ24.A		0,117366	0,140839
	-	0,164313	
		0,217356	
A 3 F		0,299844	0.250000
Δ25		0,217356	0,258600
	-	0,299844	
		0,115309	
		0,161494	0.120.401
Δ25.A	^	0,115309	0,138401
	-	0,161494	
		0,214880	
		0,296520	
Δ26		0,214880	0,255700
	•	0,296520	1
		0.120382	
		0.168446	
Δ26.A		0.120382	0,144414
		0.168446	
		0,217356	
		0.299844	t
Δ27		0.217356	0,258600
		0.299844	t
		0,233044	
		0,130202	ł
Δ27.A	7.A	0,209142	0,179672
		0,130202	ł
		0,209142	

6.3 Προσομοίωση μοντέλου για ανελαστικές αναλύσεις

Πολύ μεγάλο ενδιαφέρον παρουσιάζει η προσομοίωση στο SAP 2000 v.15 των στοιχείων που είναι πιθανό να συμπεριφερθούν μη γραμμικά κατά την ανάλυση. Οι θέσεις που αναμένεται να αναπτύξουν ανελαστική συμπεριφορά βρίσκονται στη βάση και την κορυφή των υποστυλωμάτων και στα άκρα και στο μέσο των δοκών. Ωστόσο, στο SAP θα προσομοιωθούν μόνο οι πλαστικές αρθρώσεις των άκρων. Εφόσον τα υποστυλώματα και οι δοκοί έχουν διαφορετικά χαρακτηριστικά από όροφο σε όροφο θα διαφέρουν και οι πλαστικές αρθρώσεις καθ' ύψος του κτιρίου. Αρχικά, δημιουργούνται οι πλαστικές αρθρώσεις των δοκών και έπειτα των υποστυλωμάτων προσδίδοντάς τους τις ιδιότητες που υπολογίστηκαν πριν οριστούν στα αντίστοιχα στοιχεία. Ο ορισμός των θέσεων των πλαστικών αρθρώσεων που ακολουθεί γίνεται με εύκολο τρόπο, απλά θέτοντας τα ανηγμένα μήκη 0 (x/I = 0/I = 0) και 1 (x/I = I/I = 1) για την αρχή και το πέρας των στοιχείων όταν ζητηθούν. Αναλυτικά:

6.3.1 Προσομοίωση πλαστικών αρθρώσεων δοκών

Σε κάθε διεύθυνση οι ορθογωνικές δοκοί και οι πλακοδοκοί κάμπτονται περί τον τοπικό άξονα 3. Συνεπώς, η συμπεριφορά της πλαστικής άρθρωσης καθορίζεται από την M₃. Λόγω της διαφορετικής προσομοίωσης των δοκών σε κάθε όροφο, οι πλαστικές αρθρώσεις και τα χαρακτηριστικά τους θα διαφέρουν από όροφο σε όροφο. Τα χαρακτηριστικά αυτών εισάγονται ως εξής:

Eντολές: Define \rightarrow Section Properties \rightarrow Hinge Properties \rightarrow Add New Property \rightarrow Hinge Type: Moment M_3

Εικόνα 6-1 Προσομοίωση πλαστικών αρθρώσεων δοκών

efined Hinge Props	Click to:	
Name	Add New Property	Hinge Property Name
DA1		DA1
DA2	Add Copy of Property	IDAI
DA3	Meditu /Show Prepartu	
DA4	Modily/Snow Property	- Hinge Type
DA5	Delete Property	
DA6		C Force Controlled (Brittle)
DA7		C. D. Ganadian Cambrillad (Dentilla)
DA8	Show Hinge Details	 Deformation Controlled (Ductile)
DA9	Show Generated Props	
DA10	· · · · · · · · · · · · · · · · · · ·	Moment M3
DA10.4		
DA11		Modifu/Show Hinde Property
DA12		Modily/Show Hinge Lioperty
DA12.A		
DA13	OK	
DA14		OK Cancel
DA15	Lancei	
DA16	·	

Εικόνα 6-2 Δημιουργία πλαστικών αρθρώσεων δοκών

Εικόνα 6-3 Δημιουργία πλαστικών αρθρώσεων δοκών τύπου M3

Για κάθε πλαστική άρθρωση προσομοιώνουμε την αναμενόμενη στροφή διαρροής, τη στροφή αστοχίας και ορίζουμε πάνω στην καμπύλη τα παραπάνω μεγέθη συναρτήσει των στάθμεων επιτελεστικότητας. Πρέπει να σημειωθούν τα εξής:

- Θετική ροπή (positive moment SF) θεωρείται αυτή που εφελκύει την κάτω ίνα και αρνητική αυτή που εφελκύει την πάνω.
- Το SAP δεν δέχεται στην στάθμη επιτελεστικότητας Α μηδενική στροφή. Γι' αυτό βάζουμε 0,0001.
- \blacksquare Θεωρώντας $F_y \approx F_u \rightarrow \theta_B = \theta_C$
- $\clubsuit \ \theta_E = 1.50 * \theta_D$
- $\stackrel{-}{=} \tilde{M_D} = 0.25 * M_C$

placement	Control Parameters -			
Daint	Manant/CE	Datation /CE		- Type
Foint	MULLERIZ SF	0.01750		(Moment - Hotation
D.	-0,25	-0,01733		C Moment - Curvature
C.	-0,25	.0.01172		Hinge Length
R	.1	0,01112		Relative Length
Δ	0	0		IV melauve Lengur
B	1	0		Hysteresis Type And Parameters
С	1	0.01347		
D	0,25	0.01347	E Communit	Hysteresis Type Isotropic _
E.	0,25	0,02020	j symmetric	No Parameters Are Required For This
caling for l	Moment and Rotation			
caling for I	Moment and Rotation	Positive ent SF 87,158	Negative 108,514	
caling forl ☐ Use Y ☑ Use Y (Steel	Moment and Rotation ield Moment Mom ield Rotation Rota Objects Only)	Positive lent SF 87,158 ltion SF	Negative 108,514	
caling for I Use Y Vse Y (Steel cceptance	Moment and Rotation ield Moment Mom ield Rotation Rota Objects Only) a Criteria (Plastic Rota	Positive ent SF 87,158 ation SF Positive	Negative 108,514 Negative	
caling for I Use Y Vse Y (Steel cceptance	Moment and Rotation ield Moment Mom objects Only) e Criteria (Plastic Rota ediate Occupancy	Positive eent SF 87,158 tion SF stion/SF Positive 0,00010	Negative 108,514 Negative -0.00010	
caling for I Use Y Vse Y (Steel cceptance Imme	Moment and Rotation ield Moment Mom ield Rotation Rota Dojects Only) s Criteria (Plastic Rota ediate Occupancy Safety	Positive ent SF 87,158 tition SF 4 ation/SF) Positive 0,00010 0,00374	Negative 108,514 Negative -0.00010 -0.00326	OK Cancel
caling for I Use Y Vse Y (Steel ccceptance Imm Life	Moment and Rotation ield Moment Mom ield Rotation Rota Dbjects Only) a Criteria (Plastic Rota ediate Occupancy Safety apse Prevention	Positive ent SF 87,158 tion SF 90 0,00010 0,00374 0,00748	Negative 108,514 Negative -0,00010 -0,00326 -0,00651	OK Cancel

Εικόνα 6-4 Προσομοίωση συμπεριφοράς πλαστικών αρθρώσεων δοκού

6.3.2 Προσομοίωση πλαστικών αρθρώσεων υποστυλωμάτων

6.3.2.1 Μόρφωση διαγραμμάτων αλληλεπίδρασης υποστυλωμάτων

Για κάθε υποστύλωμα θα πρέπει να προσδιοριστεί και να εισαχθεί στο πρόγραμμα το διάγραμμα αλληλεπίδρασης του υπό διαξονική κάμψη (M₂-M₃) και μεταβαλλόμενη αξονική (P). Ωστόσο, κάτι τέτοιο αυξάνει πολύ την πολυπλοκότητα του προβλήματος, καθώς απαιτεί πολύ μεγάλο αριθμό πλαστικών αρθρώσεων και χρόνο για την εξαγωγή αποτελεσμάτων. Γι' αυτό, θεωρούμε απλοποιητικά ότι το υποστύλωμα καθ' ύψος διατηρεί σταθερή αξονική, πράγμα που δεν απέχει πολύ απ' την πραγματικότητα, αφού οι μεταβολές των αξονικών δυνάμεων των υποστυλωμάτων είναι ελάχιστες και δεν επηρεάζουν την αξιοπιστία των αποτελεσμάτων. Τελικά, προσδιορίζεται για κάθε υποστύλωμα το διαξονικό διάγραμμα αλληλεπίδρασης υπό σταθερή αξονική. Η αξονική αυτή βρίσκεται από την ανάλυση G+0.3Q NONLINEAR και ισούται με το μέσο όρο της αξονικής του άνω και κάτω άκρου του υποστυλώματος. Παρακάτω παρατίθενται οι μέσες αξονικές των υποστυλωμάτων.

		Αξονική N _{sd}	
Ki	ισογείου	1ου	2ου
K1	-343,689	-160,212	-32,682
К2	-603,742	-289,428	-50,839
К3	-586,263	-286,003	-54,572
К4	-596,447	-303,328	-54,808
K5	-623,77	-313,694	-51,118
К6	-340,991	-182,906	-31,709
К7	-428,769	-158,622	-32,04
K8	-422,363	-204,217	-33,508
К9	-860,767	-413,414	-55,279
K10	-780,553	-416,258	-48,428
K11	-349,626	-256,811	-39,418
K12	-119,919	-84,398	-30,838
K13	-249,686	-150,992	-28,701
K14	-348,282	-195,016	-40,389
K15	-254,763	-117,355	-25,476
K16	-517,732	-245,439	-59,225
K17	-519,958	-306,48	-38,075
K17.A	-334,645	-195,784	
K18	-146,673	-81,419	
K19	-146,27	-68,492	
K20	-261,854	-131,828	
K21	-249,067	-110,517	

Πίνακας 6-1 Μέσες αξονικές δυνάμεις υποστυλωμάτων υπό φόρτιση G+0.3Q (NONLINEAR)

Η δημιουργία των διαξονικών διαγραμμάτων αλληλεπίδρασης M₂-M₃ στο SAP2000 γίνεται βάσει EC2 (με τους συντελεστές ασφαλείας υλικών που ορίζει εκείνος) και όχι βάσει ΚΑΝ.ΕΠΕ. Έγινε, λοιπόν, χρήση άλλου προγράμματος, ειδικό στο σχεδιασμό διαγραμμάτων αλληλεπίδρασης. Αυτό είναι το «MYBIAXIAL». Παρακάτω ακολουθεί η μεθοδολογία εισαγωγής των απαιτούμενων στοιχείων στο πρόγραμμα για τη δημιουργία του διαγράμματος αλληλεπίδρασης.

4 Εισαγωγή υλικών με τους συντελεστές ασφαλείας βάσει ΚΑΝ.ΕΠΕ.

Εικόνα 6-6 Χαρακτηριστικά σκυροδέματος στο MYBYAXIAL

IONE 400, 1, 15 (MPa)	Graph	Details					
5355, 1.1 (MPa) 5460, 1.15 (MPa)			Name:	S400,paagi	iota 1.1(MPa)	Color	
.20, 1.5 (MPa) .30, 0.85, 1.5 (MPa)	Young's modulus: Yield strength: Minimum streim: Reach of minimum streim means falue: Maximum streim: Reach of minimum streim means falue:		200000				
C_RODRIGUEZ2			363.636			Change Color	
5500, 1.15 (MPa) EXAMPLE 3, EE360, 1.10 (MPa)			. 01 True .01 True				
EXAMPLE 3, BOLT, 1.25 (MPa)							
EXAMPLE 3-1, PE360, 1.10 (MPa) EXAMPLE 3-1, BOLT, 1.25 (MPa)							
EXAMPLE 4, SOIL (KPa) KERKYRA, BOLT 360, 1.25 (MPa)							
ELEUSINA, BOLT (MPa) ELEUSINA, KONIA (MPa)		Stres	s - strain data:	#	Strain (K)	Stress (Y)	Next segment type
EX5, BOLT (MPa)				1	01	-363.636	1
EX5, KONIA (MPa) 4.2 Vagias E30/37 (MPa)				2	- 00181818	-363.636	1
4.2 Vagias S355 (MPa)				3	0	0	1
GEFYRA S500, 1.15 (MPa)				4	.00181818	363.636	1
S235, ELENH 1(MPa) S400 peagota 1 1(MPa)				5	.01	363.636	
C8,panagiota 1.1 (MPa)				-			

Εικόνα 6-8 Χαρακτηριστικά χάλυβα στο MYBYAXIAL

Αφού ορίσουμε τα υλικά, εισάγουμε μια-μια τις διατομές σχεδιασμένες στο AutoCAD σε διαστάσεις mm και μορφή dxf. Εντολές: *File* → Import →διατομή Y/Σ

Εικόνα 6-9 Διατομή τοιχώματος στο MYBYAXIAL

Όπως εισαχθεί η διατομή δημιουργούνται αυτόματα τα CL POLYGONS καθένα από τα οποία αντιστοιχεί σε ένα στοιχείο της διατομής (κάθε ράβδος χάλυβα & σκυρόδεμα). Ορίζουμε το σκυρόδεμα (CL Polygon1) ως foreground material C8, χωρίς background material και τις ράβδους χάλυβα μια μια (από το CL Polygon 2 έως το CL Polygon 19) ως foreground material S400 και background material C8.
CLPolygon 1	Property	Value	
CLPolygon 2 CLPolygon 3 CLPolygon 4 CLPolygon 5 CLPolygon 5 CLPolygon 7 CLPolygon 8 CLPolygon 9 CLPolygon 9 CLPolygon 10	Name	CLPolygon 1	
	Foreground Material	C8,panagiota 1.1 (MPa)	
	Background Material	NONE	
	Area	200000	
	Centroid Y (UCS)	0	
LPolygon 11	Centroid Z (UCS)	0	
CLPolygon 12 CLPolygon 13	1st Moment YY (UCS)	-0.84	
LPolygon 14	1st Moment ZZ (UCS)	0	
CLPolygon 16	2nd Moment YY (UCS)	16666666666666	
LPolygon 17 Polygon 18	2nd Moment ZZ (UCS)	666666666.667	
CLPolygon 19	2nd Moment ZY (UCS)	0	
CLPOIVGON 19	2nd Moment YY (Centroid)	16666666666666	
	2nd Moment ZZ (Centroid)	6666666666666 0 0 1595.941 752.809	
	2nd Moment YZ (Centroid)		
	Main CS Angle (CW Deg - Centroid)		
	Centroid Y (WCS)		
	Centroid Z (WCS)		
	1st Moment YY (WCS)	150561868	
	1st Moment ZZ (WCS)	319188207.2	
	2nd Moment YY (WCS)	130011047144.914	
	2nd Moment ZZ (WCS)	510072224744.417	
	2nd Moment YZ (WCS)	240287863598.015	

Εικόνα 6-11 Εισαγωγή σκυροδέματος στη διατομή

CLPolygon 1	Property	Value	
CLPolygon 2 CLPolygon 3	Name	CLPolygon 2	
CLPolygon 4 CLPolygon 5 CLPolygon 6 CLPolygon 7 CLPolygon 8 CLPolygon 9 CLPolygon 10	Foreground Material	S400,paagiota 1.1(MPa)	
	Background Material	C8,panagiota 1.1 (MPa)	
	Area	314.159	
	Centroid Y (UCS)	-70	
LPolygon 11	Centroid Z (UCS)	470	
LPolygon 12 LPolygon 13	1st Moment YY (UCS)	147654.871	
CLPolygon 14	1st Moment ZZ (UCS)	-21991.151	
CLPolygon 15 CLPolygon 16	2nd Moment YY (UCS)	69405642.683	
CLPolygon 17 CLPolygon 18	2nd Moment ZZ (UCS)	1547234.565	
LPolygon 19	2nd Moment ZY (UCS)	-10335840.963	
	2nd Moment YY (Centroid)	7853.982	
	2nd Moment ZZ (Centroid)	7853.982 0	
	2nd Moment YZ (Centroid)		
	Main CS Angle (CW Deg - Centroid)	0.009	
	Centroid Y (WCS)	1525.941	
	Centroid Z (WCS)	1222.809	
	1st Moment YY (WCS)	384157.158	
	1st Moment ZZ (WCS)	479388.857	
	2nd Moment YY (WCS)	469758814.933	
	2nd Moment ZZ (WCS)	731526983.057	
	2nd Moment YZ (WCS)	586201171.809	

Εικόνα 6-12 Εισαγωγή χάλυβα στη διατομή

Για κάθε υποστύλωμα ή τοίχωμα δίνουμε την αξονική του και ορίζουμε ανά πόσες μοίρες θέλουμε ζεύγος (M₂,M₃). Για τα υποστυλώματα είναι 45⁰ ενώ για τα τοιχώματα 30⁰. Επίσης, πρέπει να δοθεί ο λόγος $\frac{1}{H_{\kappa\alpha\theta.}}$ όπου Η το ύψος του υποστυλώματος και να γίνει μια μικρή διόρθωση στις μονάδες. Για να πάρουμε ροπή σε KN*m πρέπει να εισάγουμε τον συντελεστή 0,000001 ως unit conversion factor (B. Moment) και για να πάρουμε δύναμη σε kN να εισάγουμε το συντελεστή 0,001 ως unit conversion factor (Force).

Eντολές: Calculations → Interaction Curve → Unit conversion factor (B. Moment): 0,000001 Unit conversion factor (Force): 0,001 Angle Step: 30(τοιχώματα), 45 (υποστυλώματα)

Conversions		Conversions	
Unit Conversion Factor (B. Moment) :	.000001	Unit Conversion Factor (B. Moment) :	.000001
Unit Conversion Factor (Force) :	.001	Unit Conversion Factor (Force) :	.001
lata		Data	
Angle step (degrees):	30	Angle step (degrees):	45
Farget Axial Load:	-343.689	Target Axial Load:	-603.742
initial Curvature Step (1/length) :	.0003937	Initial Curvature Step (1/length) :	0.0003937
Max Axial Load Error :	1	Max Axial Load Error :	1
Min Primary Moment Increment :	0	Min Primary Moment Increment :	0
			Chow Regult
Calculate	Show Results	Calculate	
Calculate	Clase		Close

τοιχώματος

ση υποστυλώματος

Με τον ίδιο τρόπο εισάγονται όλες οι διατομές των υποστυλωμάτων των τριών ορόφων και προκύπτουν τα διαγράμματα αλληλεπίδρασης αυτών. Σημειώνεται ότι στο MYBYAXIAL οι άξονες ορίζονται ως εξής:

- Ο οριζόντιος άξονας ορίζεται ως Υ και αντιστοιχεί στον άξονα (2) του SAP. Συνεπώς, η ροπή Μ_{yy} είναι η M₂ σύμφωνα με το SAP.
- Ο κατακόρυφος άξονας ορίζεται ως Υ και αντιστοιχεί στον άξονα (3) του SAP. Συνεπώς, η ροπή M_{zz} είναι η M₃ σύμφωνα με το SAP

			Σημείο 1		Σημε	είο 2	Σημε	είο 3	Σημείο 4	
Υ/Σ	Αξονική (KN)	Angle Step	M ₂	M ₃						
K1	-343,689	30	742,856	0	735,714	6,667	699,999	26,667	0	106,666
К2	-603,742	45	372	0	313	69,4	-	-	0	187
К3	-586,263	45	372	0	311	70,2	-	-	0	189
К4	-596,447	45	371	0	312	71	-	-	0	188
K5	-623,77	45	371	0	314	69,4	-	-	0	189
К6	-340,991	30	752	0	745	8,16	714	23,7	0	108
K7	-428,769	30	986	0	98,2	81,6	955	20,4	0	106
К8	-422,363	30	769	0	763	7,35	734	22,9	0	110
К9	-860,767	30	846	0	839	7,35	814	20,4	0	117
K10	-780,553	45	421	0	393	34,3	-	-	0	149
K11	-349,626	45	95,1	0	79,9	17,1	-	-	0	53,9
K12	-119,919	45	77,9	0	38,5	95,5	-	-	0	126
K13	-249,686	45	92,4	0	78,5	16,5	-	-	0	50
K14	-348,282	30	944	0	939	8,16	915	20,4	0	102
K15	-254,763	45	83,2	0	49,5	50,2	-	-	0	84,5
K16	-517,732	45	367	0	310	70,2	-	-	0	189
K17	-519,958	45	145	0	43	357	-	-	0	390
K17.A	-334,645	30	75	0	22,8	297	6,69	327	0	330
K18	-146,673	45	173	0	129	65,3	-	-	0	131
K19	-146,27	45	192	0	173	16,7	-	-	0	56,3
K20	-261,854	45	68,5	0	16,6	198	-	-	0	214
K21	-249,067	45	181	0	133	66,9	-	-	0	135

Πίνακας 6-2 Διαγράμματα αλληλεπίδρασης υποστυλωμάτων ισογείου

			Σημ	είο 1	Σημε	είο 2	Σημ	είο 3	Σημ	είο 4
Υ/Σ	Αξονική (KN)	Angle Step	M ₂	M ₃						
K1	-160,21	30	694	0	687	8,98	658	23,7	0	101
K2	-289,43	45	346	0	297	66,9	-	-	0	176
К3	-286	45	344	0	296	66,1	-	-	0	176
K4	-303,33	45	347	0	297	66,9	-	-	0	178
K5	-313,69	45	349	0	298	66,1	-	-	0	178
K6	-182,91	30	700	0	694	8,16	665	24,5	0	103
K7	-158,62	30	828	0	82,5	16	803	19,2	0	87,8
K8	-204,22	30	709	0	705	7,35	669	20,4	0	104
K9	-413,41	30	767	0	761	9,8	729	20,4	0	110
K10	-416,26	45	39,7	0	364	36,7	-	-	0	140
K11	-256,81	45	92,2	0	78,7	17,1	-	-	0	49,8
K12	-84,398	45	74,9	0	37,4	93,9	-	-	0	123
K13	-150,99	45	88,8	0	74,5	16,9	-	-	0	44,1
K14	-195,02	30	852	0	848	8,16	825	20	0	90,2
K15	-117,36	45	69,6	0	45,8	46,5	-	-	0	70,2
K16	-245,44	45	342	0	292	66,9	-	-	0	174
K17	-306,48	45	169	0	126	64,5	-	-	0	127
K17.A	-195,78	30	65,6	0	23,5	269	8,14	294	0	297
K18	-81,419	45	169	0	126	64,5	-	-	0	127
K19	-68,492	45	177	0	154	15,5	-	-	0	50,6
K20	-131,83	45	20,2	0	17,5	176	-	-	0	203

			Σημεί	o 1	Σημ	είο 2	Σημ	είο 3	Ση	μείο 4
K _i	Αξονική (KN)	Angle Step	M ₂	M ₃						
K1	-32,682	30	642	0	640	9,8	615	24,5	0	95,1
К2	-50,839	45	320	0	270	68,1	-	-	0	162
К3	-54,572	45	320	0	271	66,9	-	-	0	164
К4	-54,808	45	320	0	273	66,1	-	-	0	164
К5	-51,118	45	320	0	271	66,1	-	-	0	162
К6	-31,709	30	644	0	640	9,39	613	24,9	0	95,5
K7	-32,04	30	743	0	741	7,76	725	21,1	0	78,8
К8	-33,508	30	644	0	640	8,98	313	25,3	0	95,1
К9	-55,279	30	649	0	647	9,8	622	24,1	0	96,3
K10	-48,428	45	346	0	319	35,9	-	-	0	118
K11	-39,418	45	79,7	0	64,4	16,8	-	-	0	36,6
K12	-30,838	45	69,8	0	36,7	92,2	-	-	0	119
K13	-28,701	45	78,1	0	63,7	17	-	-	0	35,8
K14	-40,389	30	749	0	745	7,76	727	20,8	0	79,6
K15	-25,476	45	59,3	0	44,1	44,9	-	-	0	60,4
K16	-59,225	45	321	0	271	67,8	-	-	0	164
K17	-38,075	45	90,4	0	43,4	243	-	-	0	263

Πίνακας 6-4 Διαγράμματα αλληλεπίδρασης υποστυλωμάτων δευτέρου ορόφου

6.3.2.2 Εισαγωγή διαγραμμάτων αλληλεπίδρασης και στροφών διαρροής & αστοχίας στο SAP2000

Απαιτείται ιδιαίτερη προσοχή στην εισαγωγή των γωνιών στροφής όσον αφορά τους άξονες. Στο SAP ο δείκτης της ροπής δείχνει τον άξονα περί τον οποίο έχουμε κάμψη. Ακόμη, εφόσον οι στροφές είναι ομόρροπες των ροπών, η στροφή θιοφείλεται στη ροπή Μι. Δηλαδή:

- ★ Σεισμός κατά X (2) → Κάμψη περί Y (3) M₃ → Στροφή θ₃ F₂→M₃,θ₃
- ★ Σεισμός κατά Υ (3) → Κάμψη περί Χ (2) M₂ → Στροφή θ₂ F_3 →M₂, θ₂

Αφού μορφωθούν τα διαγράμματα αλληλεπίδρασης εισάγονται μαζί με τα χαρακτηριστικά των πλαστικών αρθρώσεων.

Evτoλές: Define → Section properties → Hinge Properties → Add New Property → Name, Interacting M_2 - M_3

Εικόνα 6-18 Ορισμός πλαστικών αρθρώσεων κατακόρυφων στοιχείων

Hinge Property Name	Click to:		ned Hinge Props
	Add New Property		Name
KA1			KA1
	Add Copy of Property		KA2
- Hinge Type			КАЗ
	Modity/Show Property		KA4
C Force Controlled (Brittle)	Delete Property		KA5
Deformation Controlled (Duct)			KA6
			KA7
Interacting M2-M3	Show Hinge Details		KA8
	C Show Generated Props		KA9
Modifu/Show Hinge Props			KA10
			KA11
			KA12
			KA13
OK Car			KA14
			KA15
	Canad 1		KA16
			KA17
		•	KA17.A

Cancel στικής άρθρωσης γή διαγράμματος

rty Data

-

Εικόνα 6-19 Λίστα πλαστικών αρθρώσεων υποστυλωμάτων

Σημειώνεται ότι οι πλαστικές αρθρώσεις των υποστυλωμάτων διαφέρουν από όροφο σε όροφο διότι μεταβάλλεται η αξονική δύναμη καθ' ύψος. Ονομάζουμε τις πλαστικές αρθρώσεις αυτών Kij, όπου i ο όροφος (Α=ισόγειο, Β=1°ς , C=2°ς) και j ο αριθμός του υποστυλώματος.

Τα διαγράμματα αλληλεπίδρασης καθώς επίσης και τα χαρακτηριστικά των πλαστικών αρθρώσεων κάθε υποστυλωμάτων εισάγονται με την εντολή Modify/ Show Hinge Property. Σ' αυτό το σημείο προσδιορίζουμε τη συμμετρία του διαγράμματος αλληλεπίδρασης που στην περίπτωση μας είναι διπλή (συμμετρικός ο Χ με τον -Χ και ο Υ με τον -Υ, χωρίς όμως οι τιμές στον Χ και Υ να είναι ίσες).

Hinge Specification Type	Scale Factor for Rotation (SF)
Moment - Rotation Moment - Curvature Hissa Lagath	SF is Yield Rotation per FEMA 356 Eqn. 5-2 (Steel Objects Only) (© User SF 1.
Relative Length	Load Carrying Capacity Beyond Point E Torps To Zero C Is Extrapolated
Symmetry Condition	
C Moment Rotation Dependence is C	ircular M3 190°
 Moment Rotation Dependence is D 	roubly Symmetric about M2 and M3
C Moment Botation Dependence has	No Summetru
C Moment Rotation Dependence has	No Symmetry
C Moment Rotation Dependence has <u>Requirements for Specified Symm</u>	No Symmetry 0* 270*
 Moment Rotation Dependence has <u>Requirements for Specified Symm</u> Specify curves at angles of 0° and 	No Symmetry 0* 270* 90*.
 Moment Rotation Dependence has Requirements for Specified Symm Specify curves at angles of 0° and If desired, specify additional intermediation 	No Symmetry netry Condition 90°. ediate curves where: 0° < curve angle < 90°.
C Moment Rotation Dependence has Requirements for Specified Symm 1. Specify curves at angles of 0° and 2. If desired, specify additional interm Axial Forces for Moment Rotation Curves	No Symmetry netry Condition 90°. ediate curves where: 0° < curve angle < 90°. s Curve Angles for Moment Rotation Curves
Moment Rotation Dependence has <u>Requirements for Specified Symm</u> 1. Specify curves at angles of 0° and 2. If desired, specify additional interme Axial Forces for Moment Rotation Curves Number of Axial Forces NA.	No Symmetry
Moment Rotation Dependence has Requirements for Specified Symm Specify curves at angles of 0* and If desired, specify additional interm Axial Forces for Moment Rotation Curves Number of Axial Forces MA. Modify/Show Axial Force Values.	No Symmetry netry Condition 90°. ediate curves where: 0° < curve angle < 90°. Curve Angles for Moment Rotation Curves Number of Angles 2 Modify/Show Angles
Moment Rotation Dependence has Requirements for Specified Symm Specify curves at angles of 0° and If desired, specify additional interm Axial Forces for Moment Rotation Curves Number of Axial Forces N.A. Modify/Show Axial Force Values. Modify/Show Axial Force Values.	No Symmetry
Moment Rotation Dependence has Requirements for Specified Symm Specify curves at angles of 0* and If desired, specify additional interm Axial Forces for Moment Rotation Curves Number of Axial Forces Modify/Show Axial Force Values. Modify/Show Axial Force Values.	No Symmetry

Εικόνα 6-21 Εισαγωγή διαγράμματος αλληλεπίδρασης υποστυλώματος

Εισάγουμε το διάγραμμα αλληλεπίδρασης του κάθε υποστυλώματος

Eντολές: Modify/Show M₂-M₃ Interaction Surface Data→ Double Symmetric about M₂ and M₃→ Number of MM Definition Points: 3 για υποστύλωμα και 4 για τοίχωμα

User Interaction Curve Options	Interaction	n Curve Data (P :	= -343,689)	
C Circular Symmetry	Point	M2	M3	Insert Point
Doubly Symmetric about M2 and M3	1	742,856	0,	
C No Symmetry	2	735,714	6,667	Delete Point
Number of MM Definition Points	3	699,999	26,667	
	4	0,	106,666	
Scale Factors				
M2 M3				
1. 1.				
Linclude Seale Easters in Plat				
				Check Curve
Interaction Curve Requirements - Doubly Symmetric				
1. A minimum of 3 M2-M3 points are specified.				
2 First point has M2 > 0 and M3 = 0	Interaction	n Curve Plot ——		
2. Then all intermediate points have M2 \ 0 and		M3	🔽 Highlight (Current Point
M3>0.				
4. Last point has M2 = 0 and M3 > 0.			12	
 As the point number increases, M3 should increase and M2 should decrease. 			•	
6. The M2-M3 interaction curve must be convex (no dimples in			M2	
surface).			MZ	
	1	3 .	M3	1
		a 1		

Εικόνα 6-22 Σχεδιασμός διαγράμματος αλληλεπίδρασης Μ2 - Μ3

Για την εισαγωγή των στροφών διαρροής και αστοχίας $θ_2$ και $θ_3$ αντίστοιχα και των χαρακτηριστικών τους απαιτείται στη μια περίπτωση για τη στροφή περί τον άξονα 2 να θέσουμε στο Angle:0 και στην περίπτωση στροφής περί τον 3 να θέσουμε 90. Επίσης, όπως στην προσομοίωση των πλαστικών αρθρώσεων στις δοκούς, έτσι και εδώ ισχύουν τα παρακάτω:

- 4 Το SAP2000 δεν δέχεται στην στάθμη επιτελεστικότητας Α μηδενική στροφή. Γι' αυτό βάζουμε 0,0001.
- \blacksquare Θεωρώντας $M_y \approx M_u \rightarrow \theta_B = \theta_C$
- $\theta_E = 1.50 * \theta_D$
- $M_D = 0.25 * M_C$

Εικόνα 6-23 Προσομοίωση συμπεριφοράς πλαστικής άρθρωσης υποστυλώματος – Διεύθυνση 2

Εικόνα 6-24 Προσομοίωση συμπεριφοράς πλαστικής άρθρωσης υποστυλώματος - Διεύθυνση 3

6.3.3 Εισαγωγή απομειωμένων δυσκαμψιών

Η προσομοίωση των περισσότερων στοιχείων έγινε με γραμμικά στοιχεία των οποίων η δυσκαμψία απομειώθηκε κατά ΚΑΝ.ΕΠΕ. (παρ. 4.4.1.4) για τις παραπάνω ελαστικές αναλύσεις.

A/A	Δομικό Στοιχείο	Δυσκαμψία
1.1	Υποστύλωμα εσωτερικό	0,8*(E _c I _g)
1.2	Υποστύλωμα περιμετρικό	0,6*(E _c I _g)
2.1	Τοίχωμα μη ρηγματωμένο	0,7*(E _c I _g)
2.2	Τοίχωμα ρηγματωμένο	0,5*(E _c I _g)
3	Δοκός	0,4*(E _c I _g)

Πίνακας 6-5 Συντελεστές απομείωσης δυσκαμψίας κατά ΚΑΝ. ΕΠΕ για ελαστικές αναλύσεις

Ειδικά για την <u>ανελαστική στατική ανάλυση</u> υπολογίστηκαν οι ακριβείς απομειώσεις δυσκαμψίας βάσει της σχέσης:

$$\kappa = \frac{M_y * L_s}{3 * \theta_y}$$

οι οποίες και θα εισαχθούν σε κάθε διατομή ως συντελεστές απομείωσης δυσκαμψίας. Στα υποστυλώματα και στα τοιχεία η απομείωση θα γίνει περί τους άξονες 2 και 3, ενώ στις δοκούς περί τον 3 μόνο.

ocation Assignments	Loads Design	
lentification		×
abel 5	Design Procedu	ure Concrete Frame 🔄
Section Property	K 20×100	
Property Modifiers		
12	0,1261	
13	0,2124	
Material Overwrite	None	- KN, m, L 💽
Releases	None	
Partial Fixity Springs	None	Reset All
Local Axes	Default	
Insertion Point	Default	
End Length Offsets	None	
Min. Number Stations	3	
Station at Elm Intersect	Yes	
Station at Conc Loads	Yes	
P-Delta Force	None	He data Diratan
T/C Limits	None	Opuale Display
Nonlinear Hinge		Modify Display
Hinge Name	5H1(KA1)	
Specified Rel Location	0,	OK
Specified Abs Location	0,	
Actual Abs Location	0.	↓ Cancel

ocation Assignments	Loads Design	n
entification		
La EA	D. :- D.	
abei J4	Design Pro	
Section Property	∆1a 20×40	
Property Modifiers		
13	0,0934	
Mass	0,	IN
Weight	0,	
Material Overwrite	None	
Releases	None	Reset All
Partial Fixity Springs	None	
Local Axes	Default	
Insertion Point	Default	
End Length Offsets	None	
Max. Station Spacing	0,5	
Station at Elm Intersect	Yes	
Station at Conc Loads	Yes	Lindate Display
P-Delta Force	None	
T/C Limits	None	Modify Display
Nonlinear Hinges	None	
Hinge Overwrites	None	OK
Line Springs	None	
Line Mass	None	Cancel
ويحجر المحاط ملاطن والمكام والطروح	بمناهد العرابية فتعتد	

Εικόνα 6-25 Απομείωση δυσκαμψίας σε διατομή υποστυλώματος

Εικόνα 6-27 Φορέας με απομειωμένη δυσκαμψία βάσει ΚΑΝ.ΕΠΕ για ανελαστική στατική ανάλυση

Στο επόμενο σχήμα φαίνονται όλες οι πλαστικές αρθρώσεις που έχουν εισαχθεί στο μοντέλο για να γίνει η ανάλυση Pushover.

Εικόνα 6-28 Τρισδιάστατο μοντέλο φορέα με πλαστικές αρθρώσεις

6.4 Ανελαστική στατική ανάλυση κτιρίου στο SAP

Στο παρόν κεφάλαιο παρουσιάζεται βήμα προς βήμα αναλυτικά η διαδικασία εκτέλεσης της ανελαστικής ανάλυσης στο πρόγραμμα SAP2000 καθώς επίσης και τα αποτελέσματα αυτής προκειμένου να γίνει η αποτίμηση του φορέα με αυτή τη μέθοδο.

6.4.1 Ορισμός κατανομών οριζόντιων φορτίων καθ' ύψος του κτιρίου

Προκειμένου να αντιμετωπισθεί ρεαλιστικά το θέμα της κατανομής των φορτίων, απαιτείται η εφαρμογή των δυο διαφορετικών καθ' ύψος κατανομών βάσει ΚΑΝ.ΕΠΕ. Ως πρώτη κατανομή εφαρμόζεται η ορθογωνική (ομοιόμορφη) κατανομή των φορτίων καθ' ύψος. Ως δεύτερη κατανομή επιλέγεται η κατανομή των φορτίων καθ' ύψος σύμφωνα με το σχήμα της πρώτης ιδιομορφής στη θεωρούμενη διεύθυνση («ιδιομορφική»). Έτσι, σ' αυτήν την περίπτωση, η στατική ανελαστική ανάλυση κατά Χ δουλεύει με την 3η ιδιομορφή, που είναι η κύρια μεταφορική σε αυτή τη διεύθυνση, ενώ η στατική ανελαστική ανάλυση κατά Χ δουλεύει με την 3η ιδιομορφή, που είναι η κύρια μεταφορική σε αυτή τη διεύθυνση, ενώ η στατική ανελαστική ανάλυση κατά Υ δουλεύει με τη 2η ιδιομορφή, που αντίστοιχα είναι η κύρια μεταφορική ιδιομορφή στην Υ διεύθυνση. Επίσης, ο ΚΑΝ.ΕΠΕ. ορίζει ότι τα οριζόντια φορτία θα πρέπει να εφαρμόζονται εν γένει σε δύο αντίθετες διευθύνσεις («θετική» - «αρνητική») και ο έλεγχος θα γίνεται για τα δυσμενέστερα εντατικά μεγέθη που προκύπτουν σε κάθε στοιχείο. Πρέπει να σημειωθεί ότι εφαρμόζονται απλούστεροι κανόνες επαλληλίας των συνιστωσών του σεισμού. Σε αυτούς γίνεται η απλοϊκή θεώρηση της ταυτόχρονης δράσης του σεισμού στις δύο κύριες διευθύνσεις Χ και Υ σε ποσοστά 100% και 30%. Έτσι, προέκυψαν τελικά 8 διαφορετικές ανελαστικές στατικές αναλύσεις.

- 1) X+0,3Y
- 2) X-0,3Y
- 3) -X+0,3Y
- 4) -X-0,3Y
- 5) 0,3X+Y
- 6) 0,3X-Y
- 7) -0,3X+Y
- 8) -0,3X-Y

Αρχικά, εφαρμόζονται τα φορτία βαρύτητας μη γραμμικά, δηλαδή βήμα προς βήμα προκειμένου να ελέγξουμε μήπως κάποιο μέλος αστοχεί πρόωρα πριν ακόμα ασκηθεί η σεισμική δύναμη.

Load Case Name		Notes	Load Case Type
MONIMA	Set Def Name	Modify/Show	Static
Initial Conditions Carolinium from State Important Note: Los Al Modal Load Case Al Modal Load Applied Load Applied Load Patter MDN Load Pattern MDN	a - Start from Unstressed at End of Norifinear Cass End of Norifinear Casse Use Modes from Case ad Name Scale Fac MA ↓ 1.	State 2 are included in the MODAL • Add Modfy Delete	Analysis Type C Linear K Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters C None C PDelta C PDelta plus Large Displacements
Other Parameters	Full oad	Modifu/Show	
Loop Appledition	Final State Oak	Modily/Show	
Results Saved	rindi state only	mouly show	Lancei

Εικόνα 6-29 Μη γραμμική επιβολή μόνιμων φορτίων

Εικόνα 6-31 Επιβολή σεισμικού συνδυασμού μη γραμμικά

Εικόνα 6-32 Ορισμός βημάτων επιβολής κατακόρυφων φορτίων

.oad Combinatio	n Name (User-Generated)	G+0,3Q NL Modify/Show Notes		
.oad Combination T	уре	Linear Add	•	
Convert to User efine Combination Load Case N	of Load Combo Create No	nlinear Load Case from	n Load Combo	
Convert to User efine Combination Load Case N MONIMA	Create No of Load Case Results lame Load Case Type V Nonlinear Static	nlinear Load Case from	n Load Combo	
Convert to User lefine Combination Load Case N MONIMA MONIMA KINHTA	Load Combo Create No fLoad Case Results Iame Load Case Type Vonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static	Scale Factor	n Load Combo	
Convert to User Load Case N MONIMA MONIMA KINHTA	Create No Create No Create No Create No Coad Case Results Load Case Type Vonlinear Static Nonlinear Static Nonlinear Static	nlinear Load Case from Scale Factor 1, 0,3	Add Modify	

Εικόνα 6-33 Συνδυασμός μη γραμμικής φόρτισης κατακόρυφων φορτίων

Όσον αφορά τη συμπεριφορά των πλαστικών αρθρώσεων κατά την εκτέλεση των ανελαστικών αναλύσεων στο SAP2000 χρησιμοποιήθηκε η μέθοδος «*Apply Local Redistribution*» κατά την οποία η πλαστική άρθρωση συμπεριφέρεται πιο αξιόπιστα, θεωρείται λιγότερο πιθανό να αποτύχει και επιπλέον προσομοιώνει καλύτερα τις ανακυκλιζόμενες συνθήκες φόρτισης των πλαστικών αρθρώσεων λόγω σεισμικών δράσεων. Ωστόσο, απαιτείται μεγάλος αριθμός βημάτων ανάλυσης, τόσο των total όσο και των null steps. Μετά από δοκιμές αποδείχτηκε ότι επαρκούν 1000 συνολικά βήματα και 200 null.

Εικόνα 6-34 Συμπεριφορά πλαστικής άρθρωσης στη μέθοδο "Apply Local Distribution "

Αξίζει να σημειωθεί ότι στο SAP2000 οι πλαστικές αρθρώσεις που ξεπερνούν το σημείο C που αντιστοιχεί στην αστοχία δε συμπεριφέρονται σωστά ακόμα και στη μέθοδο « Apply Local Redistribution», όπως φαίνεται και στην παραπάνω εικόνα. Γι' αυτό, επιλέγουμε να τρέξουμε κάθε συνδυασμό φόρτισης μέχρι τη μετακίνηση του κόμβου ελέγχου που οδηγεί στην πρώτη κίτρινη πλαστική άρθρωση, δηλαδή το σημείο C.

Εικόνα 6-35 Προσομοίωση πλαστικής άρθρωσης με τη μέθοδο «Apply Local Redistribution»

Material Nonlinearity Parameters	Solution Control	
Frame Element Tension/Compression Only	Maximum Total Steps per Stage	1000
🔽 Frame Element Hinge	Maximum Null (Zero) Steps per Stage	200
Cable Element Tension Only	Maximum Constant-Stiff Iterations per Step	10
Link Gap/Hook/Spring Nonlinear Properties	Maximum Newton-Raphson Iter, per Step	40
🔽 Link Other Nonlinear Properties	Iteration Convergence Tolerance (Relative)	1,000E-04
Time Dependent Material Properties	Use Event-to-event Stepping	Yes 💌
	Event Lumping Tolerance (Relative)	0,01
	Max Line Searches per Iteration	20
	Line-search Acceptance Tol. (Relative)	0,1
	Line-search Step Factor	1,618
Hinge Unloading Method	Target Force Iteration	
 Unload Entire Structure 	Maximum Iterations per Stage	10
Apply Local Redistribution	Convergence Tolerance (Relative)	0,01
C Restart Using Secant Stiffness	Acceleration Factor	1,
	Continue Analysis If No Convergence	No 💌

Εικόνα 6-36 Παράμετροι ανελαστικών στατικών αναλύσεων

4 <u>ОМОІОМОРФН КАТАNOMH</u>

Ως πρώτη κατανομή θεωρούμε την ομοιόμορφη. Στην κατανομή αυτή μας ενδιαφέρει η αναλογία των μαζών. Γι' αυτό σε κάθε διάφραγμα του ορόφου i με μάζα m_i ασκούμε μια δύναμη:

$$F_i = \frac{m_i}{m_{o\lambda\iota\kappa\delta}}$$

Όπου m_{ολικό} η συνολική ταλαντούμενη μάζα του κτιρίου υπό το σεισμικό συνδυασμό G+0.3Q (nonlinear combination).

oad Patterns	-	Self Weight	Auto Lateral	Click To: Add New Load Pattern
KINHTA				Modify Load Pattern
KINHTA MONIMA OM_X OM_Y	LIVE DEAD QUAKE QUAKE	0 1 0 0	User Loads	Modify Lateral Load Pattern Delete Load Pattern
			<u> </u>	Show Load Pattern Notes

piaphiagin (Diaphragm Z	FX	FY	MZ	X	Y
diafragma2	6,2	0,3860	0,	0,		
diafragma1	3,2	0,5254	0,	0,		
fiafragma z0	0,	0,	0,	0,		
0.00						

Εικόνα 6-38 Ομοιόμορφη κατανομή κατά Χ – ΟΜ_Χ

diafragma2 6,2 0, 0,3860 0, diafragma1 3,2 0, 0,5254 0, diafragma 2 0, 0, 0 0, 0	
diafragma1 3.2 0. 0.5254 0. diafragma 20 0. 0. 0. 0 0.	
diafragma 20 0, 0, 0, 0, 0, 0,	
Image: sector	
	24

Εικόνα 6-39 Ομοιόμορφη κατανομή κατά Υ – ΟΜ_Υ

Load Case Data - Nonlinea	ir Static	Load Case Data - Nonline	ar Static
Load Case Name Notes OM_X Set Def Name Modify/Show	Load Case Type	Load Case Name Notes Modify/Show	Load Case Type Static Design.
Initial Conditions - Start from Unstressed State Continues from Stare at End of Nonineer Case Important Note: Loads from this previous case are included in the current Case	Analysis Type C Linear C Nonlinear C Nonlinear Staged Construction	Initial Conditions - Start from Unstressed State Contrinue from State at End of Nominear Case Important Note: Loads from this previous case are included in the current case	Analysis Type C Linear Nonlinear C Nonlinear Staged Construction
Modal Load Case Al Modal Load Applied Use Modes from Case MDDAL ▼ Load Applied Load Patter ▼ DM_X ▼ 1. Load Patter 0M_X ♥ 1. Load P	Geonetric Nonlinearly Parameters G None C POella C POella C POella plus Large Displacements	All Model Load Care All Model Loads Applied Use Modes from Case MDDAL Loads Applied Load Type Load Name Scale Factor Load Pattern DM_Y T, Load Fattern DM_Y T, Load Fattern DM_Y Delete	Geometric Nortinearity Parameters None Poela Poela plus Large Displacements
Other Parameters Load Application Full Load Results Saved Multiple States Nonlinear Parameters User Defined	Cancel	Other Parameters Load Application Results Saved Multiple States Modity/Show Noninear Parameters User Defined Modity/Show	Cancel

Εικόνα 6-40 Δημιουργία Load Case OM_X

Εικόνα 6-41 Δημιουργία Load Case OM_Υ

Οι συνδυασμοί φόρτισης που έχουν εισαχθεί ως load cases και όχι load combinations είναι οι παρακάτω:

Εικόνα 6-42 Συνδυασμοί Μη γραμμικής ανάλυσης

Ενδεικτικά παρατίθεται οι καρτέλες των δεδομένων των συνδυασμών OM_X+0,3Y και OM_0,3X+Y για να γίνει εμφανής η διαφορά προσομοίωσης των φορτίσεων κατά X και Y στην ανελαστική στατική ανάλυση.

12.3	d Applicat	ion Control-			
C	Full Load	1			
e	Displace	ment Contro	1		
Con	ntrol Displa	cement			
С	Use Con	jugate Displa	acement		
•	Use Mor	nitored Displa	acement		
Loa	ad to a Mo	initored Disp	lacement M	agnitude of	0,032
dor	nitored Dis	placement -			
	DOF	U1	•	at Joint	126
•	DUF				

Εικόνα 6-44 Δεδομένα εισαγωγής στο **Load Application**

Load Case Name Notes OM 0.3X+Y Set Def Name Modify/Show	Load Case Type	Load Application Control
Initial Conditions C Zero Initial Conditions - Start from Unstressed State C Continue from State at End of Nonlinear Case G +0.30 NL Important Note: Loads from this previous case are included in the current case Modal Load Case All Modal Loads Applied Use Modes from Case MODAL Load Type Load Name Scale Factor Load Pattern DM_X 0.3 Load Pattern DM_Y Delete	Analysis Type C Linear C Nonlinear C Nonlinear Staged Construction Geometric Nonlinearity Parameters C None C P-Delta C P-Delta plus Large Displacements	Full Load Full Load Full Load O Displacement Control Control Displacement Use Conjugate Displacement Use Monitored Displacement Load to a Monitored Displacement Magnitude of O.1 Monitored Displacement ODF U2 at Joint 126 Generalized Displacement Cancel
Dither Parameters Load Application Displ Control Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters User Defined Modify/Show	Cancel	Εικόνα 6-46 Δεδομένα εισαγωγής στα Load Application

Εικόνα 6-43 Δεδομένα Load Case OM_X+0.3Y

Εικόνα 6-45 Δεδομένα Load Case OM_0.3X+Y

\rm ΙΔΙΟΜΟΡΦΙΚΗ ΚΑΤΑΝΟΜΗ

Ως δεύτερη κατανομή θεωρούμε την ιδιομορφική βάσει της οποίας λαμβάνονται υπόψη οι θεμελιώδεις ιδιοπερίοδοι της κατασκευής κατά τη διεύθυνση Χ και Υ του νέου μοντέλου προσομοίωσης. Από την ιδιομορφική ανάλυση υπό το σεισμικό συνδυασμό G+0.3Q - NONLINEAR προκύπτουν οι σημαντικότερες ιδιομορφές.

- 🖶 2^η ιδιομορφή: Τ₂ = 0,350sec, η οποία είναι μεταφορική κατά τη διεύθυνση Υ με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 46,07%.
- 🖊 3^η ιδιομορφή: Τ₃ = 0,314sec, η οποία είναι μεταφορική κατά τη διεύθυνση Χ με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 33,96% και ταυτόχρονα στροφική με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 20,28%.

TABLE: Mod	al Participa	ting Mass	Ratios					
OutputCase	StepNum	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	1	0,5987	0,18770	0,09927	0,00097	0,18770	0,09927	0,00097
MODAL	2	0,3501	0,07955	0,46071	0,19278	0,26726	0,55997	0,19375
MODAL	3	0,3136	0,33960	0,00027	0,20275	0,60686	0,56024	0,39650
MODAL	4	0,2683	0,00721	0,02800	0,07401	0,61407	0,58824	0,47051
MODAL	5	0,2490	0,01490	0,00040	0,00573	0,62897	0,58864	0,47624
MODAL	6	0,2289	0,07758	0,07373	0,15939	0,70655	0,66237	0,63563
MODAL	7	0,2260	0,03039	0,02677	0,07757	0,73694	0,68914	0,71320
MODAL	8	0,2150	0,05268	0,12075	0,02589	0,78962	0,80989	0,73909
MODAL	9	0,2004	0,00031	0,00643	0,00109	0,78993	0,81632	0,74018
MODAL	10	0,1866	0,04284	0,00546	0,06139	0,83277	0,82178	0,80157
MODAL	11	0,1629	0,02407	0,00304	0,00455	0,85684	0,82482	0,80612
MODAL	12	0,1421	0,00000	0,00106	0,00101	0,85684	0,82588	0,80713
MODAL	13	0,1386	0,01292	0,00001	0,00167	0,86976	0,82589	0,80880
MODAL	14	0,1361	0,00580	0,00026	0,00688	0,87555	0,82616	0,81568
MODAL	15	0,1273	0,00035	0,00012	0,00066	0,87590	0,82628	0,81634
MODAL	16	0,1257	0,00284	0,00535	0,00080	0,87875	0,83163	0,81714
MODAL	17	0,1239	0,00002	0,00041	0,00021	0,87877	0,83204	0,81735
MODAL	18	0,1203	0,00231	0,00093	0,00009	0,88107	0,83297	0,81744
MODAL	19	0,1179	0,00002	0,00011	0,00001	0,88109	0,83307	0,81745
MODAL	20	0,1139	0,02181	0,00010	0,00915	0,90290	0,83317	0,82660
MODAL	21	0,1089	0,00003	0,00133	0,00110	0,90294	0,83450	0,82770
MODAL	22	0,1077	0,00000	0,00010	0,00010	0,90294	0,83461	0,82780
MODAL	23	0,1071	0,00040	0,00437	0,00270	0,90334	0,83898	0,83050
MODAL	24	0,1069	0,00000	0,00105	0,00079	0,90334	0,84003	0,83130
MODAL	25	0,1005	0,00003	0,00000	0,00000	0,90337	0,84003	0,83130
MODAL	26	0,1002	0,00005	0,00005	0,00000	0,90342	0,84008	0,83130
MODAL	27	0,0988	0,00276	0,00057	0,00025	0,90618	0,84065	0,83155
MODAL	28	0,0963	0,00216	0,00110	0,00001	0,90833	0,84175	0,83156
MODAL	29	0,0931	0,00025	0,00006	0,00000	0,90859	0,84181	0,83156
MODAL	30	0,0916	0,01657	0,00275	0,00178	0,92516	0,84456	0,83334
MODAL	31	0,0899	0,04149	0,01038	0,00271	0,96665	0,85494	0,83605
MODAL	32	0,0879	0,00000	0,00001	0,00000	0,96665	0,85495	0,83605
MODAL	33	0,0840	0,00376	0,00726	0,00118	0,97041	0,86221	0,83723
MODAL	34	0,0816	0,00136	0,00008	0,00034	0,97177	0,86229	0,83757
MODAL	35	0,0806	0,00001	0,00026	0,00016	0,97178	0,86255	0,83773
MODAL	36	0,0791	0,00021	0,00187	0,00247	0,97199	0,86442	0,84020
MODAL	37	0,0776	0,00028	0,00001	0,00006	0,97227	0,86443	0,84025
MODAL	38	0,0771	0,00062	0,03001	0,03230	0,97289	0,89444	0,87256
MODAL	39	0,0763	0,00130	0,03254	0,03670	0,97418	0,92697	0,90926

Πίνακας 6-6 Ιδιομορφές και ποσοστά ταλαντούμενης μάζας κτιρίου

Παρατηρούμε ότι δεν υπάρχει κάποια ιδιομορφή η οποία να είναι ξεκάθαρα μεταφορική κατά τη διεύθυνση Χ. Η τρίτη αν και ενεργοποιεί μεγάλο ποσοστό μάζας κατά τη διεύθυνση αυτή, είναι ταυτόχρονα στροφική και μάλιστα σε μεγάλο ποσοστό. Το γεγονός αυτό σε συνδυασμό με το ότι ο κόμβος ελέγχου βρίσκεται στην οροφή του πρώτου, πράγμα που επιτρέπει στην οροφή του δεύτερου να αναπτύσσει πολύ μεγαλύτερες μετατοπίσεις από τη στοχευόμενη (σε αρκετούς συνδυασμούς φόρτισης τα στοιχεία του 2^{ου} εμφάνιζαν μετακίνηση μεγαλύτερη των 30cm), οδήγησε σε πρόωρες αστοχίες στοιχείων της τάξεως των 8-9mm και αριθμητικά προβλήματα στο λογισμικό προσομοίωσης του φορέα (ατέρμονες επιλύσεις). Τελικά, αποφασίσαμε να αφαιρέσουμε τις πλαστικές αρθρώσεις των μελών της οροφής του δευτέρου ορόφου και να αρκεστούμε στα αποτελέσματα που δίνει η ανάλυση μέχρι την πρώτη αστοχία μέλους.

oad Cases ——		Click to:
Load Case Nam	ne Load Case Type	Add New Load Case
MODAL KINHTA MONIMA G+0.3Q NL PI_X+0.3Y PI_X+0.3Y PI_X+0.3Y PI_X+0.3Y	Modal Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static	Add Copy of Load Case Modify/Show Load Case Delete Load Case
PI_X-0.31 PI_0.3X+Y PI_0.3X+Y PI0.3X+Y PI0.3X+Y	Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static	Display Load Cases Show Load Case Tree

Load Case Name PI_X+0.3Y	Sel	Def Name	Notes Modify/Show	Load Case Type Static Design
Initial Conditions C Zero Initial Con Continue from Important Note	ditions - Start State at End o : Loads from current cas	from Unstressed S f Nonlinear Case this previous case e	tate G+0.30 NL e are included in the	Analysis Type C Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters
All Modal Loads A Loads Applied Load Type	oplied Use Mo Load Name	des from Case	MODAL 💌	 None P-Delta P-Delta plus Large Displacements
Mode 💌	3	1,		
Mode Mode	2	1, 0,3	Add Modify Delete	
Other Parameters	Di	spl Control	Modify/Show	
Other Parameters Load Application Results Saved	Di	spl Control Itiple States	Modify/Show	

Εικόνα 6-48 Δεδομένα Load Case PI-x+0.3y

Load Applicat	ion Control	
C Full Load	I	
 Displace 	ment Control	
Control Displa	cement	
C Use Con	jugate Displacement	
 Use Mor 	nitored Displacement	
 Use Mor Load to a Mo 	nitored Displacement	
Ise Mor Load to a Mo Monitored Dis	nitored Displacement nitored Displacement Magnitude of 0,03 placement	
Use Mor Load to a Mo Monitored Dis ODF	nitored Displacement nitored Displacement Magnitude of 0,03 placement U1 - at Joint 126	
Use Mor Load to a Mo Monitored Dis ODF C Generali	Intored Displacement Initored Displacement Magnitude of 0,03 placement U1	

Εικόνα 6-49 Δεδομένα εισαγωγής Load Application

Load Case Name-			Notes	Load Case Type	
PI_0.3X+Y	Set	Def Name	Modify/Show	Static	✓ Design
Initial Conditions	iditions - Start fr	om Unstressec	l State	Analysis Type	
 Continue from Important Note 	State at End of Loads from the current case	Nonlinear Cas his previous ca	e G+0.3Q NL 💌	 Nonlinear Nonlinear Stag 	ed Construction
Modal Load Case -				- Geometric Nonlineari	y Parameters
All Modal Loads A	oplied Use Mod	les from Case	MODAL 💌	None	
Loads Applied				C P-Delta	
Load Type	Load Name	Scale Fac	stor	C P-Delta plus Larg	e Displacements
Mode 💌	3	0,3			
Mode	3	0.3	Add		
Mode	2	6	11.00		
			Modify		
			Delete		
Other Parameters				_	
Other Parameters	Dis	pl Control	Modify/Show		0K
Other Parameters Load Application Results Saved	Dis Multi	pl Control	Modify/Show	C	OK

Εικόνα 6-50 Δεδομένα Load Case PI_0.3X+Y

Load Applica	ion Control
C Full Load	ł
 Displace 	ment Control
Control Displa	cement
C Use Cor	iugate Displacement
COLUMN STORES	lagate prepiacement
Use Mor	nitored Displacement
Use More	nitored Displacement
 Use Mor Load to a Mor 	nitored Displacement
 Use Mor Load to a Mo Monitored Dis 	nitored Displacement mitored Displacement Magnitude of 0.1
Use Mor Load to a Mo Monitored Dis ODF	placement Initiate of Initiate
Use Mor Load to a Mo Monitored Dis DOF Generali	intored Displacement intored Displacement Magnitude of 0,1 placement U2 at Joint 126 zed Displacement

Εικόνα 6-51 Δεδομένα εισαγωγής στο Load Application

6.4.2 Καμπύλες αντίστασης φορέα υπό σεισμική φόρτιση

Για κάθε κατανομή φόρτισης και κάθε συνδυασμό ορίζουμε την επιβαλλόμενη μετακίνηση του κόμβου ελέγχου. Το ζητούμενο είναι να επιβάλλουμε τόση μετακίνηση όση απαιτείται μέχρι να αστοχήσει εντελώς ένα στοιχείο. Ξεκινάμε με την τιμή 0,10m και αν διαπιστωθεί ότι ο φορέας έχει καταρρεύσει σε πολύ μικρότερη μετακίνηση, με αποτέλεσμα πολλές πλαστικές αρθρώσεις να έχουν ξεπεράσει το σημείο C, τη μειώνουμε.

Παρακάτω ακολουθεί πίνακας με τους συνδυασμούς φόρτισης για **ομοιόμορφη κατανομή**, οι τελικά επιβαλλόμενες μετακινήσεις του κόμβου ελέγχου και ο αριθμός των πλαστικών αρθρώσεων που δημιουργήθηκαν μέχρι βήμα αυτό.

Συνδυασμός φόρτισης	δ_{top}	Αριθμός πλαστικών αρθρώσεων
ΣΥΝΔΥΑΣΜΟΙ ΚΑΤΑ Χ		
1.OM_X+0.3Y	3,196cm	22
2.OM_X-0.3Y	3,500cm	32
3.OMX+0.3Y	2,704cm	20
4.OMX-0.3Y	2 <i>,</i> 938cm	18
ΣΥΝΔΥΑΣΜΟΙ ΚΑΤΑ Υ		
5.OM_0.3X+Y	2,011cm	8
6.OM_0.3X-Y	2,889cm	13
7.OM0.3X+Y	2,711cm	15
8.OM0.3X-Y	2,289cm	11

Πίνακας 6-7 Συνδυασμοί φόρτισης - Μετατοπίσεις κόμβου ελέγχου

1) Συνδυασμός X: OM_X+0,3Y

TABLE: Pu	shover Curve -	OM_X+03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00004	0	278	0	2	0	0	0	0	0	280
1	0,00103	366,627	277	1	2	0	0	0	0	0	280
2	0,00558	1881,959	273	1	6	0	0	0	0	0	280
3	0,01030	3420,706	272	0	8	0	0	0	0	0	280
4	0,01566	5159,341	270	1	8	1	0	0	0	0	280
5	0,01915	6269,516	267	1	10	2	0	0	0	0	280
6	0,02283	7425,146	264	1	12	3	0	0	0	0	280
7	0,02726	8807,055	261	1	11	6	1	0	0	0	280
8	0,03071	9873,374	258	2	10	8	2	0	0	0	280
9	0,03196	10255,45	258	0	12	8	1	1	0	0	280

Εικόνα 6-52 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα – Συνδυασμός OM_X+0,3Y

Σχήμα 6-1 Καμπύλη αντίστασης φορέα συνδυασμού φόρτισης OM_X+0,3Y

Εικόνα 6-53 Πλαστικές αρθρώσεις φορέα - Συνδυασμός OM_X+0,3Y

2) Συνδυασμός X: OM_X-0,3Y

TABLE: Pu	shover Curve -	OM_X - 03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	0,0000	0,000	278	0	2	0	0	0	0	0	280
1	0,0009	281,594	277	1	2	0	0	0	0	0	280
2	0,0062	1761,918	275	0	5	0	0	0	0	0	280
3	0,0128	3568,205	272	0	8	0	0	0	0	0	280
4	0,0166	4599,316	269	1	10	0	0	0	0	0	280
5	0,0232	6380,552	267	0	8	5	0	0	0	0	280
6	0,0274	7478,095	263	1	10	5	1	0	0	0	280
7	0,0310	8400,134	256	2	15	4	3	0	0	0	280
8	0,0350	9357,533	248	2	19	8	2	1	0	0	280

Σχήμα 6-2 Καμπύλη αντίστασης φορέα - Συνδυασμός ΟΜ_Χ-0,3Υ

Εικόνα 6-54 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_0,3Χ-Υ

3) Συνδυασμός Χ: ΟΜ_-Χ+0,3Υ

TABLE: Pu	shover Curve -	OMX+03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	278	0	2	0	0	0	0	0	280
1	0,002744	778,405	278	0	2	0	0	0	0	0	280
2	0,005182	1481,247	277	1	2	0	0	0	0	0	280
3	0,009652	2733,797	275	0	5	0	0	0	0	0	280
4	0,013481	3798,121	273	1	6	0	0	0	0	0	280
5	0,016202	4543,187	271	1	8	0	0	0	0	0	280
6	0,019528	5441,072	265	2	12	1	0	0	0	0	280
7	0,022842	6311,710	262	1	14	2	1	0	0	0	280
8	0,026612	7285,333	260	0	14	5	0	1	0	0	280
9	0,027044	7396,441	260	0	13	6	0	1	0	0	280

Σχήμα 6-3 Καμπύλη αντίστασης φορέα συνδυασμού φόρτισης OM_-X+0,3Y

Εικόνα 6-55 Πλαστικές αρθρώσεις φορέα - Συνδυασμός OM_-X+0,3Y

4) Συνδυασμός X: -X-0,3Y

TABLE: PL	shover Curve -	OMX-03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	278	0	2	0	0	0	0	0	280
1	0,002978	1000,728	278	0	2	0	0	0	0	0	280
2	0,005505	1862,607	276	2	2	0	0	0	0	0	280
3	0,008660	2903,864	275	0	5	0	0	0	0	0	280
4	0,011853	3952,351	272	1	7	0	0	0	0	0	280
5	0,016044	5300,142	271	0	9	0	0	0	0	0	280
6	0,019411	6379,309	270	0	8	2	0	0	0	0	280
7	0,022362	7313,337	264	3	10	3	0	0	0	0	280
8	0,025296	8224,479	264	0	10	4	2	0	0	0	280
9	0,029340	9478,697	262	1	9	5	2	1	0	0	280
10	0,029384	9492,360	262	1	9	5	2	1	0	0	280

Εικόνα 6-56 Πλαστικές αρθρώσεις φορέα - Συνδυασμός φόρτισης ΟΜ_-Χ-0,3Υ

5) Συνδυασμός Y: OM_0,3X+Y

TABLE: Pu	shover Curve -	OM_03X+Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	278	0	2	0	0	0	0	0	280
1	0,001213	722,247	278	0	2	0	0	0	0	0	280
2	0,002347	1112,274	277	1	2	0	0	0	0	0	280
3	0,004447	1834,449	277	0	3	0	0	0	0	0	280
4	0,006547	2556,623	277	0	3	0	0	0	0	0	280
5	0,008647	3278,797	276	1	3	0	0	0	0	0	280
6	0,010747	4000,185	276	0	4	0	0	0	0	0	280
7	0,012847	4721,573	276	0	3	1	0	0	0	0	280
8	0,015761	5722,778	275	1	2	1	1	0	0	0	280
9	0,018166	6546,814	274	0	4	1	0	1	0	0	280
10	0,020113	7209,607	272	2	4	1	0	1	0	0	280

Σχήμα 6-5 Καμπύλη αντίστασης φορέα συνδυασμού φόρτισης OM_0,3X+Y

Εικόνα 6-58 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_03Χ+Υ

6) Συνδυασμός Y: OM_0,3X-Y

TABLE: Pu	shover Curve -	OM_03X-Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	278	0	2	0	0	0	0	0	280
1	0,002569	432,237	277	1	2	0	0	0	0	0	280
2	0,006064	1324,375	275	1	4	0	0	0	0	0	280
3	0,008864	2033,210	275	0	5	0	0	0	0	0	280
4	0,011664	2742,046	275	0	5	0	0	0	0	0	280
5	0,014464	3450,881	275	0	5	0	0	0	0	0	280
6	0,017264	4159,716	275	0	5	0	0	0	0	0	280
7	0,020938	5089,314	274	0	5	1	0	0	0	0	280
8	0,024294	5936,655	272	1	6	0	1	0	0	0	280
9	0,027878	6813,353	268	2	9	0	1	0	0	0	280
10	0,028887	7052,744	267	2	9	1	0	1	0	0	280

Σχήμα 6-6 Καμπύλη αντίστασης φορέα - Συνδυασμός φόρτισης ΟΜ_0,3Χ-Υ

Εικόνα 6-59 Πλαστικές αρθρώσεις φορέα- Συνδυασμός ΟΜ_0,3Χ-Υ

7) Συνδυασμός Y: OM_-0,3X+Y

TABLE: PL	ABLE: Pushover Curve - OM03X+Y													
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total			
	m	KN												
0	-0,000887	0,000	278	0	2	0	0	0	0	0	280			
1	0,001913	719,372	278	0	2	0	0	0	0	0	280			
2	0,004713	1438,744	278	0	2	0	0	0	0	0	280			
3	0,006330	1854,058	277	1	2	0	0	0	0	0	280			
4	0,011355	3139,544	276	0	4	0	0	0	0	0	280			
5	0,015305	4145,577	274	1	5	0	0	0	0	0	280			
6	0,018105	4851,952	274	0	5	1	0	0	0	0	280			
7	0,020905	5558,328	274	0	5	0	1	0	0	0	280			
8	0,023738	6263,273	268	2	8	1	1	0	0	0	280			
9	0,027047	7041,889	265	1	12	1	0	1	0	0	280			
10	0,027113	7057,391	265	1	12	1	0	1	0	0	280			

Πίνακας 6-12 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός ΟΜ_-0,3X+Y

Σχήμα 6-7 Καμπύλη αντίστασης φορέα - Συνδυασμός φόρτισης ΟΜ_-0,3X+Υ

Εικόνα 6-60 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-0,3X+Υ

8) Συνδυασμός Y: OM_-0,3X-Y

TABLE: Pushover Curve - OM03X-Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00089	0,000	278	0	2	0	0	0	0	0	280
1	0,00309	756,939	278	0	2	0	0	0	0	0	280
2	0,00529	1513,877	278	0	2	0	0	0	0	0	280
3	0,00749	2270,816	277	1	2	0	0	0	0	0	280
4	0,00969	3027,053	277	1	2	0	0	0	0	0	280
5	0,01189	3783,290	277	0	3	0	0	0	0	0	280
6	0,01304	4180,451	275	2	3	0	0	0	0	0	280
7	0,01538	4982,648	273	3	3	1	0	0	0	0	280
8	0,01758	5734,301	273	1	5	0	1	0	0	0	280
9	0,01978	6485,955	271	2	6	0	1	0	0	0	280
10	0,02289	7542,574	269	0	10	0	0	1	0	0	280

Πίνακας 6-13 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός OM_-0,3X-Y

Εικόνα 6-61 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-0,3Χ-Υ

Ακολουθεί πίνακας με τους συνδυασμούς φόρτισης για **ιδιομορφική κατανομή**, οι τελικά επιβαλλόμενες μετακινήσεις του κόμβου ελέγχου και ο αριθμός των πλαστικών αρθρώσεων που δημιουργήθηκαν μέχρι το βήμα αυτό.

Συνδυασμός φόρτισης	δ_{top}	Αριθμός πλαστικών αρθρώσεων			
ΣΥΝΔΥΑΣΜΟΙ ΚΑΤΑ Χ					
1.PI_X+0.3Y	3,004cm	38			
2.PI_X-0.3Y	2,204cm	30			
3.PIX+0.3Y	1,990cm	29			
4.PIX-0.3Y	2,475cm	30			
ΣΥΝΔΥΑΣΜΟΙ ΚΑΤΑ Υ					
5.PI_0.3X+Y	3,089cm	36			
6.PI_0.3X-Y	1,804cm	15			
7.PI0.3X+Y	2,089cm	15			
8.PI0.3X-Y	2,211cm	27			

1) PI_X+0,3Y

TABLE: Pushover Curve - PI_X+03Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	200	0	2	0	0	0	0	0	202
1	0,003044	1167,537	200	0	2	0	0	0	0	0	202
2	0,00364	1399,476	199	1	2	0	0	0	0	0	202
3	0,007073	2746,894	196	1	5	0	0	0	0	0	202
4	0,011796	4541,923	193	0	6	3	0	0	0	0	202
5	0,015244	5838,327	190	1	7	2	2	0	0	0	202
6	0,018289	6981,360	186	1	10	2	2	1	0	0	202
7	0,021462	8155,078	182	1	10	5	2	2	0	0	202
8	0,02481	9372,782	177	2	12	6	2	3	0	0	202
9	0,02834	10640,459	167	3	17	5	5	5	0	0	202
10	0,030044	11237,104	164	1	19	7	6	5	0	0	202

Πίνακας 6-14 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα – Συνδυαμός φόρτισης PI_X+0,3Y

Εικόνα 6-62 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_Χ+0,3Υ

2) PI_X-0,3Y

TABLE: Pushover Curve - PI_X - 03Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	200	0	2	0	0	0	0	0	202
1	0,001598	679,099	199	1	2	0	0	0	0	0	202
2	0,003892	1680,548	197	2	3	0	0	0	0	0	202
3	0,006867	2985,842	195	1	5	1	0	0	0	0	202
4	0,010584	4574,575	191	1	6	4	0	0	0	0	202
5	0,013093	5634,675	185	2	9	5	1	0	0	0	202
6	0,016327	6991,604	184	0	9	6	2	1	0	0	202
7	0,018651	7969,260	180	1	9	4	5	3	0	0	202
8	0,021451	9116,629	172	2	12	7	5	4	0	0	202
9	0,022044	9358,106	172	0	14	6	5	5	0	0	202

Πίνακας 6-15 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός PI_X-0,3Y

Σχήμα 6-10 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_Χ-0,3Υ

Εικόνα 6-63 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_Χ-03Υ

3) PI_-X+0,3Y

TABLE: Pushover Curve - PIX+03Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	200	0	2	0	0	0	0	0	202
1	0,001208	549,869	199	1	2	0	0	0	0	0	202
2	0,003208	1422,927	199	0	3	0	0	0	0	0	202
3	0,005383	2356,088	195	2	5	0	0	0	0	0	202
4	0,007383	3215,906	195	0	6	1	0	0	0	0	202
5	0,009772	4232,117	191	2	8	1	0	0	0	0	202
6	0,012013	5174,558	186	1	13	2	0	0	0	0	202
7	0,014077	6029,799	182	3	12	5	0	0	0	0	202
8	0,016817	7158,406	177	1	13	7	4	0	0	0	202
9	0,019708	8351,783	176	1	9	7	7	2	0	0	202
10	0,019897	8411,619	173	3	10	7	5	4	0	0	202

Πίνακας 6-16 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα – Συνδυασμός ΡΙ_-Χ+0,3Υ

Σχήμα 6-11 Καμπύλη αντίστασης φορέα - Συνδυασμός φόρτισης PI_-X+03Y

Εικόνα 6-64 Πλαστικές αρθρώσεις φορέα - Συνδυασμός PI_-X+0,3Y

4) PI_-X-0,3Y

TABLE: Pushover Curve - PIX-03Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000044	0,000	200	0	2	0	0	0	0	0	202
1	0,001405	564,421	199	1	2	0	0	0	0	0	202
2	0,004405	1726,758	199	0	3	0	0	0	0	0	202
3	0,008811	3415,871	193	1	8	0	0	0	0	0	202
4	0,012016	4634,391	189	3	9	1	0	0	0	0	202
5	0,016183	6200,087	183	1	16	2	0	0	0	0	202
6	0,020004	7611,452	179	1	14	6	2	0	0	0	202
7	0,023205	8782,542	175	3	10	7	6	1	0	0	202
8	0,024752	9346,019	172	2	14	5	7	2	0	0	202

Πίνακας 6-17 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός PI_-X-0,3Y

Σχήμα 6-12 Καμπύλη αντίστασης φορέα - Συνδυασμός φόρτισης PI_-X-0,3Y

Εικόνα 6-65 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_-Χ-0,3Υ

5) PI_0,3X+Y

TABLE: Pushover Curve - PI_03X+Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	200	0	2	0	0	0	0	0	202
1	0,003887	1136,059	200	0	2	0	0	0	0	0	202
2	0,005601	1785,177	199	1	2	0	0	0	0	0	202
3	0,009901	3395,035	196	1	4	1	0	0	0	0	202
4	0,013144	4602,307	194	1	6	1	0	0	0	0	202
5	0,016955	6026,698	189	1	9	3	0	0	0	0	202
6	0,020384	7308,633	184	3	12	1	2	0	0	0	202
7	0,024041	8666,695	178	2	15	4	3	0	0	0	202
8	0,027659	9952,586	175	2	16	5	4	0	0	0	202
9	0,030887	11061,415	166	1	20	9	5	1	0	0	202

Πίνακας 6-18 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός PI_0,3X+Y

Εικόνα 6-66 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_0,3Χ+Υ

6) PI_0,3X-Y

TABLE: Pushover Curve - PI_03X-Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	200	0	2	0	0	0	0	0	202
1	0,000144	367,060	199	1	2	0	0	0	0	0	202
2	0,001844	971,883	199	0	3	0	0	0	0	0	202
3	0,003544	1576,706	199	0	2	1	0	0	0	0	202
4	0,005244	2181,529	199	0	2	1	0	0	0	0	202
5	0,008486	3333,765	198	0	3	1	0	0	0	0	202
6	0,010694	4115,451	195	2	3	2	0	0	0	0	202
7	0,012440	4722,679	192	1	6	2	1	0	0	0	202
8	0,014140	5307,768	191	1	7	1	2	0	0	0	202
9	0,015878	5899,311	187	1	11	1	1	1	0	0	202
10	0,018037	6687,655	187	1	11	1	1	1	0	0	202

Πίνακας 6-19 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός ΡΙ_0,3Χ-Υ

Σχήμα 6-14 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_0,3Χ-Υ

Εικόνα 6-67 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_0,3Χ-Υ

7) PI_-0,3X+Y

TABLE: Pushover Curve - PI03X+Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	200	0	2	0	0	0	0	0	202
1	0,002887	713,073	200	0	2	0	0	0	0	0	202
2	0,004887	1426,146	200	0	2	0	0	0	0	0	202
3	0,006887	2139,219	200	0	1	1	0	0	0	0	202
4	0,007920	2507,601	199	1	1	1	0	0	0	0	202
5	0,010287	3343,254	197	1	3	1	0	0	0	0	202
6	0,012311	4056,941	192	4	5	1	0	0	0	0	202
7	0,014436	4800,444	191	1	8	1	1	0	0	0	202
8	0,016436	5498,652	191	0	9	0	2	0	0	0	202
9	0,019200	6463,696	189	1	8	2	1	1	0	0	202
10	0,020887	7050,386	187	2	9	2	1	1	0	0	202

Πίνακας 6-20Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός ΡΙ_-0,3Χ+Υ

Εικόνα 6-68 Πλαστικές αρθρώσεις φορέα - Συνδυασμός PI_-0,3X+Y

8) PI_-0,3X-Y

TABLE: Pushover Curve - PI03X-Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000887	0,000	200	0	2	0	0	0	0	0	202
1	0,000511	528,790	199	1	2	0	0	0	0	0	202
2	0,004196	1924,183	198	0	4	0	0	0	0	0	202
3	0,008043	3376,116	195	0	6	1	0	0	0	0	202
4	0,011269	4575,298	190	1	10	1	0	0	0	0	202
5	0,014031	5598,599	188	1	11	2	0	0	0	0	202
6	0,016908	6658,374	183	2	13	4	0	0	0	0	202
7	0,020978	8142,893	177	2	16	4	3	0	0	0	202
8	0,022113	8547,941	175	0	20	3	4	0	0	0	202

Πίνακας 6-21 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - PI_-0,3X-Y

Σχήμα 6-16 Καμπύλη αντίστασης φορέα - Συνδυασμός PI_-0,3X-Υ

Εικόνα 6-69 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_-0,3Χ-Υ

6.4.3 Διγραμμικοποίηση καμπυλών αντίστασης – Στοχευόμενη μετακίνηση

Από τις παραπάνω αναλύσεις προκύπτουν συνοπτικά οι παρακάτω καμπύλες αντίστασης του φορέα για την κύρια συνιστώσα του σεισμού στη διεύθυνση Χ και Υ. Έχει γίνει διγραμμικοποίηση αυτών και έχει υπολογιστεί για κάθε συνδυασμό φόρτισης η στοχευόμενη μετακίνηση.

Συνδυασμός φόρτισης	Ομοιόμορφη κατανομή	Ιδιομορφική κατανομή
1. X+0,3Y	6,54cm	6,17cm
2. X-0,3Y	6 <i>,</i> 43cm	5,99cm
3. –X+0,3Y	6.30cm	6,46cm
4. –X-0,3Y	6,27cm	6,35cm
5. 0,3X+Y	5,89cm	4,70cm
6. 0,3X-Y	3,67cm	6,45cm
70,3X+Y	6,42cm	4,12cm
80,3X-Y	4,03cm	6,23cm

METAKINSH KOMBOY EAERXOY Δ_{top}

Σχήμα 6-18 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός OM_X+0,3Y

Σχήμα 6-19 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός OM_X-0,3Y

Σχήμα 6-20 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός OM_-X+0,3Y

Σχήμα 6-21 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός ΟΜ_-Χ-0,3Υ

Σχήμα 6-22 Καμπύλες αντίστασης στη διεύθυνση Υ - Ομοιόμορφη Κατανομή

Σχήμα 6-23 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός ΟΜ_0,3X+Υ

Σχήμα 6-24 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός ΟΜ_0,3Χ-Υ

Σχήμα 6-25 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός OM_-0,3X+Y

Σχήμα 6-26 Διγραμμικοποίηση Καμπύλης αντίστασης - Συνδυασμός OM_-0,3X-Y

Σχήμα 6-27 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός ΡΙ_Χ+0,3Υ

Σχήμα 6-28 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός PI_X-0,3Y

Σχήμα 6-29 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός PI_-X+0,3Y

Σχήμα 6-30 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός - ΡΙ_-Χ-0,3Υ

Σχήμα 6-31 Καμπύλες Αντίστασης στη διεύθυνση Υ - Ιδιομορφική Κατανομή

Σχήμα 6-32 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός PI_0,3X+Y

Σχήμα 6-33 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός PI_0,3X-Y

Σχήμα 6-34 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός PI_-0,3X+Y

Σχήμα 6-35 Διγραμμικοποίηση Καμπύλης Αντίστασης - Συνδυασμός ΡΙ_-0,3Χ-Υ

6.4.3.1 Συμπεράσματα ανελαστικής ανάλυσης

Στην αρχική φάση της ανελαστικής ανάλυσης εκτελέστηκαν 16 διαφορετικές ανελαστικές αναλύσεις του φορέα σύμφωνα με τους ανωτέρω συνδυασμούς οριζόντιων φορτίσεων (ομοιόμορφη και ιδιομορφικές κατά Χ, -Χ, Υ, -Υ) σύμφωνα με τον Ευρωκώδικα και τον ΚΑΝ. ΕΠΕ. Κατά την μη γραμμική επιβολή των κατακόρυφων φορτίων, η οποία χρησιμοποιείται ως σημείο εκκίνησης των υπολοίπων, εμφανίζεται αυξημένο πλήθος πλαστικών αρθρώσεων οι οποίες βρίσκονται στη φάση διαρροής- Προστασία Ζωής. Κανονικά αναμένεται στην αρχική ανάλυση να εμφανιστούν είτε μικρός αριθμός πλαστικών αρθρώσεων, είτε καθόλου. Γίνεται η εικασία λοιπόν ότι το ίδιο βάρος του φορέα είναι δυσανάλογα μεγάλο για την ορθή εκτέλεση της ομοιόμορφης ανελαστικής ανάλυσης. Αυτό το συμπέρασμα προέκυψε αφού αποκλείστηκε πρώτα μια σειρά πιθανών αιτιών/ σφαλμάτων:

- Πραγματοποιήθηκε επανέλεγχος των φορτίων που αποδόθηκαν στο φορέα, ο οποίος επαλήθευσε τους αρχικούς υπολογισμούς.
- Ελέγχθηκε ο φορέας κατά την εντατική κατάσταση σχεδιασμού 1,35G+1,50Q και δεν παρουσιάζει αξιόλογες παραμορφώσεις.
- Πραγματοποιήθηκε έλεγχος επάρκειας οπλισμών σε στοιχεία που παρουσιάζουν πλαστικές αρθρώσεις κατά την αρχική ανελαστική ανάλυση και αποκλείστηκε σαν αίτιο ο εσφαλμένος αρχικός σχεδιασμός και μελέτη του φορέα. Τα υποστυλώματα μάλιστα είναι πλήρως οπλισμένα με κύριο οπλισμό.

Όσον αφορά τις αναλύσεις με ομοιόμορφη κατανομή φορτίων υπήρξε ανάπτυξη πλαστικών αρθρώσεων κυρίως στα υποστυλώματα και ελάχιστες στις δοκούς. Παρατηρείται συγκέντρωση αυτών στο τμήμα περί των κλιμακοστασίων και του ανελκυστήρα και μάλιστα για τους συνδυασμούς φορτίσεων με κύρια διεύθυνση σεισμικής φόρτισης X το πρώτο μέλος το οποίο αστοχούσε στους 4 συνδυασμούς και σταματούσαμε την ανάλυση ήταν το υποστύλωμα K11. Είναι αξιοσημείωτο ότι κατά τις ελαστικές αναλύσεις που πραγματοποιήθηκαν σε προηγούμενο κεφάλαιο το υποστύλωμα αυτό είχε εμφανίσει και το μέγιστο συντελεστή ανεπάρκειας (λ=6). Σχετικά με τη διεύθυνση Y στους τέσσερις (4) συνδυασμούς αστόχησε πρώτη δοκός που συνδεόταν με τον ανελκυστήρα. Τελικά, η μέγιστη μετακίνηση στην οποία παρουσιάστηκε μέλος να αστοχεί πλήρως στη διεύθυνση X ήταν τα 3,5cm ενώ στην Y τα 2,89cm. Ταυτόχρονα, η στοχευόμενη

μετακίνηση για το σεισμό του EC8 προέκυψε στη μεν διεύθυνση X ίση με 6.54cm, στη δε Y ίση με 6.42cm, σχεδόν διπλάσιες μετακινήσεις από αυτές που αντέχει το κτίριο.

Παρόμοια αποτελέσματα είχαμε και στις ιδιομορφικές αναλύσεις με τη διαφορά όμως ότι δεν επιτρέψαμε να αναπτυχθούν πλαστικές αρθρώσεις στον δεύτερο όροφο. Συνεπώς, οι πλαστικές αρθρώσεις περιορίστηκαν στους άλλους δυο ορόφους. Σ' αυτές τις αναλύσεις παρατηρήθηκαν περισσότερες πλαστικές αρθρώσεις στις δοκούς απ' ότι στα υποστυλώματα, χωρίς αυτό να σημαίνει ότι υπήρξαν λίγες σ' αυτά. Μάλιστα, θα μπορούσε κανείς να πει ότι μέχρι την πρώτη αστοχία μέλους αναπτύχθηκαν πολλές πλαστικές αρθρώσεις (περί τις 40 ενώ στις ομοιόμορφες αναλύσεις αναπτύσσονταν γύρω στις 20). Τέλος, και γι' αυτή την κατανομή φορτίων επήλθε πλήρης αστοχία μέλους στα 3cm στη διεύθυνση X και στα 3,1cm στη διεύθυνση Y με στοχευόμενη μετακίνηση βάσει KAN. ΕΠΕ. για το ελαστικό φάσμα του ΕC8 ίση με 6.46cm στη X και 6.23cm στην Y.

Σύμφωνα με το σεισμικό έλεγχο που παρουσιάστηκε παραπάνω το κτίριο δεν είναι ικανό να παραλάβει τα σεισμικά φορτία που απαιτούνται για εδαφική επιτάχυνση 0,36g. Το κτίριο έχει σοβαρά προβλήματα σε σεισμικά φορτία με βάσει το σημερινό αντισεισμικό κανονισμό. Εντοπίζονται υπερβάσεις πλαστικών ροπών σε δοκούς και υποστυλώματα και δημιουργία μηχανισμών για πολύ μικρή μετακίνηση του κόμβου ελέγχου. Με βάση αυτά τα δεδομένα φαίνεται και η μεγάλη διαφορά στα σεισμικά φορτία με τα οποία έχουν υπολογιστεί οι παλαιές κατασκευές σε σύγκριση με αυτά που αναμένονται σε ενδεχόμενο σεισμό με βάση τα σημερινά δεδομένα. Βάσει των αποτελεσμάτων κρίνεται αναγκαία η ενίσχυση του δομήματος συνολικά. Πρωταρχικός στόχος είναι η αλλαγή του συστήματος δυσκαμψίας του κτιρίου προκειμένου να συμπεριφέρεται όσο το δυνατόν πιο μεταφορικά παρά στροφικά, η ενίσχυση στοιχείων με ποικίλους τρόπους σε κάμψη και τελικά, η ενίσχυση των περισσότερων στοιχείων του κτιρίου σε διάτμηση αφού οι υπάρχοντες συνδετήρες λόγω σοβαρών κατασκευαστικών ατελειών δε συμμετέχουν στην παραλαβή τέμνουσας δύναμης.

7 Ενίσχυση υφιστάμενου δομήματος

7.1 Γενικά – Στόχος επεμβάσεων

Λαμβάνοντας υπόψη τις πραγματικές βλάβες, όπως έχουν αυτές καταγραφεί, καθώς επίσης και την ανεπάρκεια των μελών, όπως εμφανίζονται στα παραπάνω κεφάλαια, κρίνεται απαραίτητη η λήψη αποφάσεων για την αύξηση της φέρουσας ικανότητας του κτιρίου. Οι επεμβάσεις αυτές λαμβάνονται συνεκτιμώντας πολλούς παράγοντες. Γενικά, ως Μηχανικοί καλούμαστε να σταθμίσουμε τις οικονομοτεχνικές συνθήκες, τη σπουδαιότητα του κτηρίου, την προσδοκώμενη σεισμική συμπεριφορά αλλά και τις απαιτήσεις του κυρίου του έργου ως προς το αισθητικό και αρχιτεκτονικό αντίκτυπο των επεμβάσεων. Ένα σημαντικό κριτήριο που επίσης πρέπει να ληφθεί υπόψη είναι η επιθυμία του ιδιοκτήτη για επέμβαση ή ενίσχυση του δομήματος.

Επέμβαση, είναι η ευρύτερη διαδικασία που αφορά είτε την επισκευή της κατασκευής είτε την ενίσχυσή της, ή ακόμα και την κατεδάφισή της και την ανέγερση νέας.

Επισκευή, είναι η διαδικασία επέμβασης σε ένα δόμημα που έχει βλάβες από οποιαδήποτε αιτία, η οποία αποκαθιστά τα προ βλάβης μηχανικά χαρακτηριστικά των δομικών στοιχείων του δομήματος και το επαναφέρει στην αρχική του φέρουσα ικανότητα.

Ενίσχυση, είναι η διαδικασία επέμβασης σε μία κατασκευή με ή χωρίς βλάβες, η οποία αυξάνει τη φέρουσα ικανότητα του φορέα σε επίπεδο υψηλότερο από αυτό του αρχικού σχεδιασμού. Στη διαδικασία αυτή περιλαμβάνονται όλα τα μέτρα αναβάθμισης των μηχανικών χαρακτηριστικών (αντοχή, δυσκαμψία, πλαστιμότητα, κ.λπ.) ενός φορέα μέχρι το προσδοκώμενο σημείο επιτελεστικότητας. Τέλος η ενίσχυση είναι μια διαδικασία που λαμβάνει χώρα είτε έχουν εμφανιστεί βλάβες είτε όχι, προληπτικά (προσεισμική ενίσχυση). Στην περίπτωση που έχουν εμφανιστεί βλάβες, είναι αναγκαίο να προηγείται η επισκευή τους.

Όπως αναφέρεται παραπάνω, οι σημαντικότερες αιτίες για την παρούσα σεισμική συμπεριφορά της κατασκευής, είναι απόρροια των κανονιστικών διατάξεων που κυριαρχούσαν κατά την αρχική μελέτη κατασκευής, οι οποίες υποεκτιμούν την σεισμική δράση και την δρώσα τέμνουσα σχεδιασμού, την απουσία ικανοτικού σχεδιασμού δοκών και υποστυλωμάτων, την άγνοια του της έννοιας της πλαστιμότητας και των απαιτούμενων κατασκευαστικών λεπτομερειών, ειδικά στις κρίσιμες περιοχές των δομικών στοιχείων. Στόχος, λοιπόν, των επεμβάσεων είναι η αναβάθμιση της απόκρισης του φορέα ώστε να εναρμονίζεται με τις αντισεισμικές απαιτήσεις του ισχύοντα κανονισμού.

7.2 Επιλογή και διαστασιολόγηση ενισχύσεων υφιστάμενου κτιρίου

Στα παραπάνω κεφάλαια διαπιστώθηκε σοβαρή ανεπάρκεια στα περισσότερα μέλη της κατασκευής, με αποτέλεσμα να προκύπτει μειωμένη φέρουσα ικανότητα του κτιρίου. Σ' αυτό, λοιπόν, το κεφάλαιο γίνεται μια προσπάθεια ενίσχυσης της κατασκευής με όσον το δυνατόν λιγότερες επεμβάσεις, που όμως θα είναι αρκετές και ικανές να φέρουν την κατασκευή σε ένα επίπεδο ικανοποιητικό όσον αφορά τις απαιτήσεις των σύγχρονων κανονισμών. Αυτό σημαίνει ότι η διαστασιολόγηση των τα μεν νέων στοιχείων θα γίνει βάσει ΕC8 και ΕΚΩΣ2000, των δε υφιστάμενων βάσει ΚΑΝ.ΕΠΕ. Επειδή πρόκειται για πραγματική κατασκευή, είναι σημαντικό να διατηρηθεί το κτίριο αισθητικά και αρχιτεκτονικά ως έχει, ενώ είναι αναγκαίο να τροποποιηθεί το στατικό του σύστημα. Καταρχήν, επελέγη να τοποθετηθούν επτά (7) νέα τοιχώματα διαστάσεων 180X30 και 150X30 στο ισόγειο και στον πρώτο όροφο, όπως φαίνεται στο παρακάτω σχέδιο. Η επιλογή της διάταξης και της θέσης αυτών έγινε με στόχο την επίτευξη μιας πιο μεταφορικής συμπεριφοράς του ενισχυμένου κτιρίου σε σχέση με αυτή του υφιστάμενου. Αρχικά, η συγκεντρωμένη δυσκαμψία στην περιοχή περί το κλιμακοστάσιο και τον ανελκυστήρα μετέφερε το κέντρο δυσκαμψίας μακριά από το κέντρο μάζας, με αποτέλεσμα να δημιουργείται εκκεντρότητα. Η εκκεντρότητα αυτή ήταν ο λόγος που εμφανιζόταν τόσο μεγάλο ποσοστό ταλαντούμενης μάζας να στρέφεται. Έπειτα ενισχύθηκε η πλάκα Π1 και Π4 της οροφής ισογείου με μανδύα εκτοξευόμενου σκυροδέματος πάχους 10cm και το φρεάτιο του ανελκυστήρα στη στάθμη του ισογείου με μανδύα πάχους 7cm. Επιπρόσθετα, ενισχύθηκαν τα υποστυλώματα Κ1, K6, K7, K11, K14, K18 με μανδύα πάχους 10cm. Τέλος, όλα τα υποστυλώματα σε όλους τους ορόφους, εκτός από αυτά στα οποία τοποθετήθηκε μανδύας ΩΣ, ενισχύθηκαν με ανθρακοΰφασμα δυο στρώσεων. Παρακάτω ακολουθούν λεπτομερή σχέδια όπλισης των νέων τοιχωμάτων και των υφιστάμενων υποστυλωμάτων.

7.2.1 Όπλιση νέων τοιχωμάτων

Για την όπλιση των καινούριων τοιχωμάτων ακολουθήθηκαν οι διατάξεις του ΕΚΩΣ2000, βάσει των οποίων απαιτείται περισφιγμένη ζώνη στα δυο άκρα αυτών, κατάλληλη όπλιση αυτών αλλά και του κορμού. Χρησιμοποιείται σκυρόδεμα C25/30 και χάλυβας B500C. Στα περισφιγμένα άκρα τοποθετούνται Φ20/150, ενώ στον κορμό Φ10/100. Η επικάλυψη αυτών είναι 50mm και οι συνδετήρες Φ10/100. Οι έλεγχοι αυτών σε κάμψη και διάτμηση γίνονται όπως και τον υπόλοιπων στοιχείων (κάμψη στο SAP, διάτμηση σε EXCEL).

Σχήμα 7-1 Τομή τοιχίου Τ1 180Χ30

Σχήμα 7-2 Τομή τοιχίου T2 180X30

Σχήμα 7-4 Τομή τοιχίου T4 30X150

Σχήμα 7-5 Τομή τοιχίου Τ5 150Χ30

Σχήμα 7-6 Τομή τοιχίου Τ6 30X150

Σχήμα 7-7 Τομή τοιχίου T7 30X150

7.2.2 Όπλιση και διαστασιολόγηση μανδύα ΩΣ υποστυλωμάτων

Τα υποστυλώματα K1, K6, K7, K11, K14 και K18 που εμφάνιζαν μεγάλες ανεπάρκειες ακόμα και μετά τη δημιουργία των τοιχωμάτων, ενισχύθηκαν με μανδύα οπλισμένου σκυροδέματος πάχους 10cm. Η επικάλυψη είναι 30mm, οι οπλισμοί Φ20/100 και συνδετήρες Φ10/10. Οι έλεγχοι αυτών σε κάμψη έγιναν στο SAP, ενώ σε διάτμηση στο EXCEL.

7.3 Προσομοίωση υφιστάμενου δομήματος για ελαστικές αναλύσεις

7.3.1 Προσομοίωση υφιστάμενων και νέων υλικών

Η αντοχή των υφιστάμενων υλικών, τα οποία θα χρησιμοποιηθούν για να προσομοιωθεί ο μανδύας, πολλαπλασιάζεται με το συντελεστή αντοχής βάσει ΚΑΝ.ΕΠΕ, δηλαδή 0,90, ενώ η αντοχή των νέων υλικών δεν απομειώνεται. Τα υλικά που χρησιμοποιούνται για τα νέα τοιχώματα και το μανδύα ΩΣ είναι τα εξής:

- </u> Νέα τοιχώματα
- Σκυρόδεμα C25/30, χωρίς απομείωση της αντοχής του.
- Χάλυβας B500C, χωρίς απομείωση της αντοχής του
- </u> Υποστυλώματα με μανδύα ΩΣ
- Σκυρόδεμα C25/30 με απομείωση της αντοχής του κατά 10%
- Χάλυβας B500C με απομείωση της αντοχής του κατά 10%

Material Pro	репу Data	Material P	roperty Data
General Data Material Name and Display Color Material Type Material Notes	C25/30 Concrete	⊂ General Data Material Name and Display Color Material Type Material Notes	B500C Rebar <u>*</u> Modify/Show Notes
Weight and Mass Weight per Unit Volume 25 Mass per Unit Volume 2,5485	KN, m, C	Weight and Mass Weight per Unit Volume Mass per Unit Volume 0,	Units
Isotropic Property Data Modulus of Elasticity, E Poisson's Ratio, U Coefficient of Thermal Expansion, A Shear Modulus, G	31000000 0.2 5.500E-06 12916667	Uniaxial Property Data Modulus of Elasticity, E Poisson's Ratio, U Coefficient of Thermal Expansion, A Shear Modulus, G	2.000E+08 0. 1.170E-05 0.
Other Properties for Concrete Materials Specified Concrete Compressive Strengt Lightweight Concrete Shear Strength Reduction Factor	h, l'e 25000,	Other Properties for Rebar Materials Minimum Yield Stress, Fy Minimum Tensile Stress, Fu Expected Yield Stress, Fye Expected Tensile Stress, Fye	500000, 500000, 500000, 500000,
Switch To Advanced Property Display		Expected Tensile Stress, Fue	500000, ay Cancel

Εικόνα 7-1 Εισαγωγή νέου σκυροδέματος C25/30

Εικόνα 7-2 Εισαγωγή νέου χάλυβα Β500C

Seneral Data			– General Data	
Material Name and Display Color	B500C-APOMEIWMENO		Material Name and Display Color	C25/30-APOMEIWMENO
Material Type	Rebar	-	Material Type	Concrete
Material Notes	Modify/Show Notes.		Material Notes	Modify/Show Notes
Weight and Mass			Weight and Mass	
Weight per Unit Volume 🛛 🔟	KN, m, C	•	Weight per Unit Volume 🛛 🔯	KN, m, C 🔻
Mass per Unit Volume 0,			Mass per Unit Volume	493
Jniaxial Property Data			Isotropic Property Data	
Modulus of Elasticity, E	2,000E+08	3	Modulus of Elasticity, E	31000000
Poisson's Ratio, U	0,		Poisson's Ratio, U	0,2
Coefficient of Thermal Expansion, A	1,170E-05		Coefficient of Thermal Expansion, A	5,500E-06
Shear Modulus, G	0,		Shear Modulus, G	12916667
)ther Properties for Rebar Materials —			Other Properties for Concrete Materia	als
Minimum Yield Stress, Fy	450000,		Specified Concrete Compressive Str	ength, f'c 22500,
Minimum Tensile Stress, Fu	450000,		Lightweight Concrete	
Expected Yield Stress, Fye	450000,		Shear Strength Reduction Facto	DI
Expected Tensile Stress, Fue	450000,			
Switch To Advanced Property Displa	ay Cancel		Switch To Advanced Property Disp	olay Corocal

Εικόνα 7-3 Εισαγωγή απομειωμένου χάλυβα μανδύα

Εικόνα 7-4 Εισαγωγή απομειωμένου σκυροδέματος μανδύα

7.3.2 Προσομοίωση νέων τοιχωμάτων στο SAP2000

Όλες οι διατομές των νέων τοιχωμάτων σχεδιάζονται στο Section Designer

Εικόνα 7-5 Τοίχωμα Τ180Χ30 στο Section Designer

Εικόνα 7-6 Τοίχωμα Τ150Χ30 στο Section Designer

Η δυσκαμψία των νέων αυτών τοιχωμάτων απομειώνεται σύμφωνα με τον ΚΑΝ.ΕΠΕ για τοιχώματα μη ρηγματωμένα κατά 30%.

SD Section Data	Frame Property/Stiffness Modification Factors
Section Name T 30X180 Section Notes Modify/Show Notes Base Material + C25/30 Design Type C No Check/Design © General Steel Section © Concrete Column Concrete Column Check/Design © Reinforcement to be Checked	Property/Stiffness Modifiers for Analysis Cross-section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Torsional Constant 1 Moment of Inertia about 2 axis 0,7 Mass 1 Weight 1
C Reinforcement to be Designed Define/Edit/Show Section Section Designer Section Properties Property Modifiers Set Modifiers Display Color	Εικόνα 7-9 Απομείωση δυσκαμψίας νέων τοιχωμάτων στο SAP

Εικόνα 7-8 Τοίχωμα Τ30Χ180

Cancel

7.3.3 Προσομοίωση υποστυλωμάτων με μανδύα ΩΣ στο SAP2000

Τα υφιστάμενα υποστυλώματα που ενισχύονται με μανδύα ΩΣ σχεδιάζονται στο Section Designer. Οι συντελεστές απομείωσης της δυσκαμψίας για ελαστική δυναμική ανάλυση μειώνεται κατά 20% και στην προσομοίωση των υλικών του μανδύα μπαίνουν αυτά με τη μειωμένη κατά 10% της χαρακτηριστικής.

Εικόνα 7-10 Δημιουργία ενισχυμένου τοιχώματος K200X1000 με μανδύα ΩΣ στο Section Designer

Εικόνα 7-12 Δημιουργία ενισχυμένου υποστυλώματος με μανδύα ΩΣ στο Section Designer

Εικόνα 7-13 Δημιουργία ενισχυμένου υποστυλώματος με μανδύα ΩΣ στο Section Designer

Η δυσκαμψία των υφιστάμενων υποστυλωμάτων που έχουν ενισχυθεί με μανδύα ΩΣ απομειώνεται με το συντελεστή μονολιθικότητας δυσκαμψίας που είναι ίσος με 0,80.

Section Name	K18 30×40
Section Notes	Modify/Show Notes
Base Material	+ beton
Design Type	
C No Check/Desi	ign
c General Steel S	ection
 Concrete Colum 	nn
Concrete Column Ch	eck/Design
Reinforcement	to be Checked
C Reinforcement	to be Designed
Define/Edit/Show S	ection
	Section Designer
Section Properties	Property Modifiers
Properties	Set Modifiers

Εικόνα 7-14 Υποστύλωμα Κ18 30Χ40 με μανδύα ΩΣ

operty/Stiffness Modifiers for Analysis	÷
Cross-section (axial) Area	1
ihear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	0,8
Moment of Inertia about 3 axis	0,8
Mass	1
Weight	1

Εικόνα 7-15 Απομείωση δυσκαμψίας υποστυλώματος με μανδύα

7.3.4 Τρισδιάστατες εικόνες ενισχυμένου φορέα

Εικόνα 7-16 Τρισδιάστατη εικόνα ενισχυμένου φορέα

Εικόνα 7-17 Νέα τοιχώματα φορέα

Εικόνα 7-18 Τρισδιάστατος φορέας σε Extruded View

Εικόνα 7-19 Φορέας σε 3D

Εικόνα 7-20 Φορέα σε 3D

7.4 Ελαστικές αναλύσεις ενισχυμένου φορέα

7.4.1 Ιδιομορφική ανάλυση ενισχυμένου φορέα

Στον παρακάτω πίνακα φαίνονται οι 50 πρώτες ιδιομορφές του κτιρίου. Οι σημαντικότερες από αυτές είναι:

- 1^η ιδιομορφή: Τ₁ = 0,225sec, η οποία είναι μεταφορική κατά τη διεύθυνση Υ με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 32,97% και ταυτόχρονα στροφική με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 26,21%.
- 4 2^η ιδιομορφή: T₂ = 0,213sec, η οποία είναι μεταφορική κατά τη διεύθυνση X με ποσοστό ενεργοποιούμενης μάζας του κτιρίου 62,91%.

Άρα, οι θεμελιώδεις ιδιοπερίοδοι είναι: $T_x=0,213sec$ και $T_y=0,225sec$.

Παρόλο που ενισχύεται ο φορέας με μεγάλα δύσκαμπτα τοιχώματα σε στοχευόμενες θέσεις, μακριά κυρίως από την περιοχή του ανελκυστήρα και των κλιμακοστασίων όπου δημιουργείται το πρόβλημα, εξακολουθεί να παρουσιάζει μεγάλη στροφική κίνηση, αποτρέποντας το φορέα να συμπεριφερθεί καθαρά μεταφορικά. Ωστόσο, η δεδομένη μορφή αυτού ούτως ή άλλως δεν έχει πολλά περιθώρια αλλαγής του στατικού του μοντέλου. Οπότε θα μπορούσε κανείς να θεωρήσει σημαντική αλλαγή την παραπάνω και να προχωρήσει στις ελαστικές και ανελαστικές αναλύσεις, προκειμένου να διαπιστωθεί αν επαρκούν τα παραπάνω μέτρα ενίσχυσης.

		TABLE:	Modal Pa	rticipating	Mass Rati	ios		
OutputCase	StepNum	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	1	0,2323	0,0598	0,4718	0,2244	0,0598	0,4718	0,2244
MODAL	2	0,2208	0,2140	0,0054	0,0170	0,2739	0,4772	0,2414
MODAL	3	0,2034	0,3589	0,1027	0,0264	0,6328	0,5798	0,2677
MODAL	4	0,1771	0,0633	0,1070	0,4108	0,6961	0,6868	0,6786
MODAL	5	0,1641	0,0314	0,0182	0,0112	0,7275	0,7050	0,6898
MODAL	6	0,1382	0,0005	0,0272	0,0145	0,7280	0,7322	0,7043
MODAL	7	0,1334	0,0003	0,0172	0,0015	0,7283	0,7494	0,7058
MODAL	8	0,1280	0,0081	0,0129	0,0010	0,7364	0,7623	0,7068
MODAL	9	0,1271	0,0419	0,0049	0,0185	0,7782	0,7673	0,7253
MODAL	10	0,1152	0,0050	0,0209	0,0358	0,7832	0,7881	0,7611
MODAL	11	0,1115	0,0008	0,0005	0,0072	0,7840	0,7886	0,7683
MODAL	12	0,1034	0,0044	0,0002	0,0035	0,7884	0,7888	0,7718

MODAL	13	0,1011	0,0098	0,0013	0,0079	0,7982	0,7901	0,7796
MODAL	14	0,0986	0,0004	0,0001	0,0003	0,7986	0,7902	0,7800
MODAL	15	0,0926	0,0000	0,0001	0,0001	0,7986	0,7903	0,7801
MODAL	16	0,0909	0,0016	0,0000	0,0010	0,8002	0,7903	0,7811
MODAL	17	0,0856	0,0000	0,0000	0,0000	0,8002	0,7903	0,7811
MODAL	18	0,0853	0,0011	0,0002	0,0003	0,8013	0,7904	0,7813
MODAL	19	0,0808	0,0003	0,0140	0,0111	0,8016	0,8044	0,7924
MODAL	20	0,0800	0,0000	0,0123	0,0000	0,8016	0,8167	0,7925
MODAL	21	0,0786	0,0000	0,0006	0,0002	0,8016	0,8173	0,7927
MODAL	22	0,0730	0,0040	0,0016	0,0005	0,8056	0,8189	0,7932
MODAL	23	0,0706	0,0076	0,0003	0,0014	0,8132	0,8192	0,7946
MODAL	24	0,0706	0,0046	0,0031	0,0066	0,8178	0,8222	0,8011
MODAL	25	0,0695	0,0064	0,0002	0,0013	0,8242	0,8224	0,8024
MODAL	26	0,0678	0,0005	0,0000	0,0007	0,8246	0,8225	0,8031
MODAL	27	0,0677	0,0018	0,0002	0,0001	0,8264	0,8226	0,8031
MODAL	28	0,0640	0,0001	0,0007	0,0010	0,8265	0,8233	0,8041
MODAL	29	0,0635	0,0025	0,0001	0,0005	0,8290	0,8233	0,8046
MODAL	30	0,0622	0,0295	0,0000	0,0056	0,8584	0,8233	0,8101
MODAL	31	0,0619	0,0010	0,0001	0,0003	0,8594	0,8235	0,8104
MODAL	32	0,0615	0,0006	0,0005	0,0016	0,8600	0,8240	0,8120
MODAL	33	0,0611	0,0019	0,0002	0,0006	0,8619	0,8242	0,8126
MODAL	34	0,0603	0,0004	0,0004	0,0000	0,8623	0,8246	0,8126
MODAL	35	0,0597	0,0004	0,0000	0,0005	0,8627	0,8246	0,8131
MODAL	36	0,0584	0,0011	0,0000	0,0010	0,8638	0,8246	0,8141
MODAL	37	0,0579	0,0000	0,0000	0,0000	0,8638	0,8246	0,8141
MODAL	38	0,0572	0,0377	0,0000	0,0151	0,9015	0,8247	0,8292
MODAL	39	0,0564	0,0009	0,0002	0,0014	0,9024	0,8249	0,8306
MODAL	40	0,0555	0,0003	0,0000	0,0003	0,9027	0,8249	0,8309
MODAL	41	0,0552	0,0001	0,0026	0,0011	0,9028	0,8274	0,8320
MODAL	42	0,0550	0,0000	0,0029	0,0007	0,9029	0,8303	0,8326
MODAL	43	0,0535	0,0000	0,0004	0,0003	0,9029	0,8307	0,8330
MODAL	44	0,0535	0,0000	0,0020	0,0012	0,9029	0,8327	0,8342
MODAL	45	0,0524	0,0000	0,0003	0,0004	0,9029	0,8329	0,8346
MODAL	46	0,0518	0,0000	0,0000	0,0000	0,9030	0,8329	0,8346
MODAL	47	0,0510	0,0004	0,0080	0,0018	0,9033	0,8409	0,8364
MODAL	48	0,0507	0,0009	0,0899	0,0396	0,9042	0,9308	0,8760
MODAL	49	0,0497	0,0001	0,0011	0,0003	0,9043	0,9318	0,8763
MODAL	50	0,0493	0,0000	0,0018	0,0004	0,9043	0,9337	0,8767

Πίνακας 7-1 Ιδιοπερίοδοι και ποσοστά ταλαντούμενης μάζας ενισχυμένου κτιρίου

Ακολουθούν εικόνες του παραμορφωμένου φορέα στις τρεις πρώτες ιδιομορφές ταλάντωσης του.

Εικόνα 7-21 Πρώτη ιδιομορφή ενισχυμένου κτιρίου

Εικόνα 7-22 Δεύτερη ιδιομορφή ενισχυμένο κτιρίου

Εικόνα 7-23 Τρίτη ιδιομορφή ενισχυμένου κτιρίου

7.4.2 Ελαστική δυναμική ανάλυση ενισχυμένου φορέα

Μετά την επιλογή των τελικών μέτρων ενίσχυσης ελέγχουμε τους δείκτες ανεπάρκειας των κατακόρυφων στοιχείων. Πρέπει να σημειωθεί ότι πριν από αυτό το βήμα έγινε μια αρχική διαστασιολόγηση του ενισχυμένου φορέα χωρίς ενίσχυση των παραπάνω υποστυλωμάτων με μανδύα οπλισμένου σκυροδέματος. Όσα εμφάνιζαν μεγάλες ανεπάρκειες (λ>2) ήταν αναγκαίο να ενισχυθούν με μανδύα. Οι παρακάτω δείκτες προκύπτουν μα βάση τα τελικά μέτρα ενίσχυσης.

	ΔΕΙΚΤΕΣ ΑΝΕΠΑΡΚΕΙΑΣ ΔΥΝΑΜΙΚΗΣ ΦΑΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ								
	ΙΣΟΙ	EIO	1° ^ς OP	ΟΦΟΣ	2°ς ΟΡΟΦΟΣ				
Υ/Σ	Υφιστάμενος	Ενισχυμένος	Υφιστάμενος	Ενισχυμένος	Υφιστάμενος	Ενισχυμένος			
K1	4,12	1,32	2,59	0,33	1,03	0,35			
К2	1,82	0,65	2,00	0,59	1,15	0,73			
КЗ	1,70	0,73	1,91	0,60	1,11	0,64			
К4	1,52	0,77	1,88	0,67	1,15	0,76			
K5	1,60	0,76	1,82	0,64	2,06	0,72			
K6	2,88	0,99	1,96	0,50	1,13	0,40			
К7	5,13	1,82	2,42	0,44	1,76	0,77			
K8	3,65	1,04	2,02	0,66	1,05	0,55			
К9	3,21	1,33	2,05	0,88	1,44	0,54			
К10	1,73	1,40	2,20	0,78	2,55	0,82			
K11	3,26	0,79	3,31	0,59	6,21	1,42			
K12	3,12	0,94	2,05	1,63	2,47	1,06			
K13	2,28	1,26	2,27	0,91	5,17	1,99			
K14	4,14	1,69	2,70	0,17	1,54	0,78			
K15	2,14	1,07	2,85	0,87	2,19	0,63			
K16	1,26	0,46	1,41	0,41	1,20	0,50			
K17	3,02	1,64	2,08	0,82	2,05	0,96			
K17.A	1,94	0,98	1,76	0,76					
K18	2,57	0,59	1,44	0,26					
К19	1,84	1,16	0,68	0,33					
К20	1,56	0,90	1,67	0,67					
K21	1,01	0,42	1,38	0,50					
MAX	5,13	1,82	3,31	1,63	6,21	1,99			

Πίνακας 7-2 Συγκριτικός πίνακας με τους δείκτες ανεπάρκειας (κατακόρυφων στοιχείων) δυναμικής φασματικής ανάλυσης υφιστάμενου και ενισχυμένου κτιρίου

Μπορεί να παρατηρήσει κανείς κάποια δομικά στοιχεία πλησίον των νέων τοιχωμάτων να αστοχούν σε κάμψη, αφού υπερβαίνει ο δείκτης ανεπάρκειας τους τη μονάδα. Το αποτέλεσμα αυτό ήταν αναμενόμενο, αφού οι περιοχές αυτές είναι οι πιο δύσκαμπτες της κατασκευής, όπου και αναμένεται να συγκεντρωθεί η ένταση του φορέα. Ωστόσο, δεν μας ανησυχεί γιατί τα νέα τοιχώματα οπλισμένου σκυροδέματος είναι ικανά να παραλάβουν την ένταση μετά από μια πιθανή ανακατανομή λόγω αστοχίας των υπολοίπων.

7.5 Ἐλεγχος υποστυλωμἀτων κτιρίου σε διἀτμηση και ενἰσχυση αυτών

7.5.1 Έλεγχος των υποστυλωμάτων του ενισχυμένου κτιρίου σε διάτμηση

Αφού επελέγησαν τα μέτρα ενίσχυσης της κατασκευής, έγινε η ελαστική δυναμική ανάλυση του φορέα και προέκυψε επάρκεια όλων των κατακόρυφων στοιχείων του κτιρίου σε κάμψη, οριστικοποιήθηκαν αυτά και μένει να γίνει έλεγχος έναντι τέμνουσας. Παρακάτω ακολουθεί έλεγχος των υποστυλωμάτων και των τοιχωμάτων του φορέα σε όλους τους ορόφους βάσει ΕΚΩΣ, για σεισμικούς και μη σεισμικούς συνδυασμούς.

7.5.1.1 Έλεγχος υποστυλωμάτων ισογείου σε διάτμηση

Από το δυσμενέστερο συνδυασμό φορτίσεων προέκυψαν οι τέμνουσες των υποστυλωμάτων (V₂, V₃) του ισογείου σε κάθε διεύθυνση καθώς επίσης και η αξονική δύναμη αυτών.

Υποστύλωμα	ΤΕΜΝΟΥΣΑ V3 (KN)	TEMNOYΣA V2 (KN)	AEONIKH (KN)
K1	684,129	147,957	-1338,243
К2	30,146	63,533	-552,395
КЗ	31,948	59,108	-664,393
К4	31,746	59,156	-725,824
К5	28,938	60,947	-717,170
К6	490,601	142,954	-1125,138
К7	200,711	1578,970	-268,266
К8	192,606	22,216	-338,051
К9	237,489	23,169	-786,872
K10	34,365	142,544	-1067,862
K11	60,163	240,706	-854,331
K12	33,454	60,920	-207,737
K13	15,075	13,426	-539,954
K14	42,317	1673,136	-334,098
K15	22,028	16,612	-441,335
K16	26,390	54,624	-312,673
K17	179,215	40,620	-836,117
K17.A	97,175	18,690	-158,782
K18	85,017	111,770	-1391,586
К19	9,924	8,286	-484,731
К20	54,136	15,996	-286,914
K21	26,745	22,574	-104,233

Πίνακας 7-3 Τέμνουσες δυνάμεις υποστυλωμάτων ισογείου

Αρχικά, εισάγονται στο excel όλα τα χαρακτηριστικά των υποστυλωμάτων (διαστάσεις, επικάλυψη, οπλισμοί που δουλεύουν στη κάθε διεύθυνση φόρτισης 2-2 και 3-3) καθώς και τα παραπάνω εντατικά μεγέθη που καταπονούν το κάθε στοιχείο. Παρακάτω δίνονται αναλυτικά τα αποτελέσματα από τον έλεγχο που έγινε για τη διεύθυνση 3 και συνοπτικά όσα προέκυψαν για τη 2.

				Διαμ. Εφ	ελκ.Οπλ.	Διαμ.Θλιβόμ. Οπλ.				
Ki	bw (m)	h(m)	c(m)	$A_{sl}(m^2)$	ρι	A_{s2} (m ²)	d (m)	z (m)	N _{ed} (KN)	V _{Ed} (KN)
K1	0,20	1,00	0,02	0,00094	0,00483	0,00094	0,975	0,878	1338,24	684,129
K2	0,55	0,30	0,02	0,00126	0,00846	0,00126	0,27	0,243	552,395	30,146
К3	0,55	0,30	0,02	0,00126	0,00846	0,00126	0,27	0,243	664,393	31,948
К4	0,55	0,30	0,02	0,00126	0,00846	0,00126	0,27	0,243	725,824	31,746
К5	0,55	0,30	0,02	0,00126	0,00846	0,00126	0,27	0,243	717,17	28,938
K6	0,20	1,00	0,02	0,00094	0,00483	0,00094	0,975	0,878	1125,14	490,601
K7	1,60	0,20	0,02	0,00102	0,00365	0,00102	0,175	0,158	268,266	200,711
K8	0,20	1,00	0,02	0,00094	0,00483	0,00094	0,975	0,878	338,051	192,606
К9	0,20	1,00	0,02	0,00094	0,00483	0,00094	0,975	0,878	786,872	237,489
K10	0,70	0,25	0,02	0,00126	0,00816	0,00126	0,22	0,198	1067,86	34,365
K11	0,40	0,20	0,02	0,00060	0,00877	0,00060	0,172	0,155	854,331	60,163
K12	0,24	0,40	0,02	0,00063	0,00708	0,00063	0,37	0,333	207,737	33,454
K13	0,40	0,20	0,02	0,00094	0,01386	0,00094	0,17	0,153	539,954	15,075
K14	1,60	0,20	0,02	0,00102	0,00365	0,00102	0,175	0,158	334,098	42,317
K15	0,30	0,30	0,02	0,00063	0,00776	0,00063	0,27	0,243	441,335	22,028
K16	0,55	0,30	0,02	0,00126	0,00846	0,00126	0,27	0,243	312,673	26,39
K17	0,30	0,80	0,02	0,00063	0,00272	0,00063	0,77	0,693	836,117	179,215
K17.A	0,20	0,80	0,02	0,00063	0,00408	0,00063	0,77	0,693	158,782	97,175
K18	0,30	0,40	0,02	0,00103	0,00923	0,00103	0,372	0,335	1391,59	85,017
K19	0,60	0,20	0,02	0,00083	0,00813	0,00083	0,17	0,153	484,731	9,924
K20	0,20	0,60	0,02	0,00063	0,00551	0,00063	0,57	0,513	286,914	54,136
K21	0,30	0,40	0,02	0,00103	0,00923	0,00103	0,372	0,335	104,233	26,745

Πίνακας 7-4 Δεδομένα υποστυλωμάτων ισογείου

	1) Έλε	εγχος έναν	τι τέμνουσ	ας αντοχής λόγω λο <i>ξής θλίψης κορμού V _{Rd2,red}</i>
K _i	V _{Rd2}	σ _{cp,ef}	V _{Rd2,red}	Επάρκεια
K1	449,28	5,052	276,473	ΑΝΕΠΑΡΚΕΙΑ ΛΟΓΩ ΛΟΞΗΣ ΘΛΙΨΗΣ ΚΟΡΜΟΥ
K2	342,14	0,699	342,144	ОК
К3	342,14	1,378	342,144	ОК
К4	342,14	1,750	342,144	ОК
K5	342,14	1,697	342,144	ОК
K6	449,28	3,987	376,406	ΑΝΕΠΑΡΚΕΙΑ ΛΟΓΩ ΛΟΞΗΣ ΘΛΙΨΗΣ ΚΟΡΜΟΥ
K7	645,12	-0,271	645,120	ОК
K8	449,28	0,051	449,280	ОК
К9	449,28	2,295	449,280	ОК
К10	354,82	3,604	325,572	ОК
K11	158,52	8,057	-1,873	ΑΝΕΠΑΡΚΕΙΑ ΛΟΓΩ ΛΟΞΗΣ ΘΛΙΨΗΣ ΚΟΡΜΟΥ
K12	204,60	-0,113	204,595	ОК
K13	156,67	2,652	156,672	ОК
K14	645,12	-0,066	645,120	ОК
K15	186,62	2,475	186,624	ОК
K16	342,14	-0,754	342,144	ОК
K17	532,22	2,573	532,224	ОК
K17.A	354,82	-0,374	354,816	ОК
K18	257,13	8,610	-32,729	ΑΝΕΠΑΡΚΕΙΑ ΛΟΓΩ ΛΟΞΗΣ ΘΛΙΨΗΣ ΚΟΡΜΟΥ
K19	235,01	1,635	235,008	ОК
К20	262,66	0,570	262,656	ОК
K21	257,13	-2,118	257,126	ОК

Πίνακας 7-5 Έλεγχος έναντι τέμνουσας λόγω λοξής θλίψης κορμού

	2) Έλεγχος έναντι αντοχής σε τέμνουσα									
	ί. Αντοχή	σκυροδέμ	ατος σε τέμν	ουσα V _{Rd1}	ii. Αντοχή Εγκ.Οπλισμού V _{wd}					
Ki	τ _{Rd}	k	σ _{cp} (Mpa)	V _{Rd1}	A _{sw} /s	V _{Wd} (KN)				
K1	0,18	1	6,691	244,624	0,0000	0,000				
K2	0,18	1,33	3,348	129,268	0,0000	0,000				
К3	0,18	1,33	4,027	144,388	0,0000	0,000				
К4	0,18	1,33	4,399	152,681	0,0000	0,000				
K5	0,18	1,33	4,346	151,513	0,0000	0,000				
K6	0,18	1	5,626	213,457	0,0000	0,000				
K7	0,18	1,425	0,838	131,870	0,0000	0,000				
K8	0,18	1	1,690	98,346	0,0000	0,000				
К9	0,18	1	3,934	163,986	0,0000	0,000				
K10	0,18	1,38	6,102	199,348	0,0000	0,000				
K11	0,18	1,428	10,679	137,632	0,0000	0,000				
K12	0,18	1,23	2,164	57,980	0,0000	0,000				
K13	0,18	1,43	6,749	99,552	0,0000	0,000				
K14	0,18	1,425	1,044	140,510	0,0000	0,000				
K15	0,18	1,33	4,904	88,867	0,0000	0,000				
K16	0,18	1,33	1,895	96,905	0,0000	0,000				
K17	0,18	1	3,484	175,134	0,0000	0,000				
K17.A	0,18	1	0,992	60,712	0,0000	0,000				
K18	0,18	1,228	11,597	232,839	0,0000	0,000				
K19	0,18	1,43	4,039	101,848	0,0000	0,000				
K20	0,18	1,03	2,391	70,908	0,0000	0,000				
K21	0,18	1,228	0,869	53,253	0,0000	0,000				

Πίνακας 7-6 Έλεγχος αστοχίας σε τέμνουσα

				ANTO)	(Η ΣΕ ΔΙΑΤ	ΜΗΣΗ					
	N	ΙΗ Σεισμικοί	συνδυασμα	ρί	Σεισμικοί συνδυασμοί						
K _i	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	V _d	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
K1	244,624	244,624	ΕΝΙΣΧΥΣΗ	439,5051	0,836	220,161	220,161	ΕΝΙΣΧΥΣΗ	463,968		
K2	129,268	129,268	ОК	0	0,418	116,341	116,341	ОК	0,000		
K3	144,388	144,388	ОК	0	0,503	129,949	129,949	ОК	0,000		
К4	152,681	152,681	ОК	0	0,550	137,413	137,413	ОК	0,000		
K5	151,513	151,513	ОК	0	0,543	136,361	136,361	ОК	0,000		
K6	213,457	213,457	ΕΝΙΣΧΥΣΗ	277,1437	0,703	192,112	192,112	ΕΝΙΣΧΥΣΗ	298,489		
K7	131,870	131,870	ΕΝΙΣΧΥΣΗ	68,84145	0,105	118,683	118,683	ΕΝΙΣΧΥΣΗ	82,028		
K8	98,346	98,346	ΕΝΙΣΧΥΣΗ	94,2602	0,211	88,511	88,511	ΕΝΙΣΧΥΣΗ	104,095		
К9	163,986	163,986	ΕΝΙΣΧΥΣΗ	73,50313	0,492	147,587	147,587	ΕΝΙΣΧΥΣΗ	89,902		
K10	199,348	199,348	ОК	0	0,763	179,413	179,413	ОК	0,000		
K11	137,632	137,632	ОК	0	1,335	123,868	123,868	ОК	0,000		
K12	57,980	57,980	ОК	0	0,270	52,182	52,182	ОК	0,000		
K13	99,552	99,552	ОК	0	0,844	89,597	89,597	ОК	0,000		
К14	140,510	140,510	ОК	0	0,131	126,459	126,459	ОК	0,000		
K15	88,867	88,867	ОК	0	0,613	79,980	79,980	ОК	0,000		
K16	96,905	96,905	ОК	0	0,237	87,215	87,215	ОК	0,000		
K17	175,134	175,134	ΕΝΙΣΧΥΣΗ	4,080715	0,435	157,621	157,621	ΕΝΙΣΧΥΣΗ	21,594		
K17.A	60,712	60,712	ΕΝΙΣΧΥΣΗ	36,46296	0,124	54,641	54,641	ΕΝΙΣΧΥΣΗ	42,534		
K18	232,839	232,839	ОК	0	1,450	209,555	209,555	ОК	0,000		
К19	101,848	101,848	ОК	0	0,505	91,663	91,663	ОК	0,000		
K20	70,908	70,908	ОК	0	0,299	63,817	63,817	ОК	0,000		
K21	53,253	53,253	ОК	0	0,109	47,928	47,928	ОК	0,000		

Πίνακας 7-7 Τελική αντοχή υποστυλωμάτων σε τέμνουσα ∨₃

				ΑΝΤΟΧΗ ΣΕ	ΔΙΑΤΜΗΣ	н					
		ΜΗ Σεισμικοί συνδ	υασμοί		Σεισμικοί συνδυασμοί						
Ki	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	Vd	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
K1	239,179	239,179	ОК	0	0,836	215,261	215,261	OK	0,000		
K2	124,503	124,503	ОК	0	0,418	112,053	112,053	ОК	0,000		
K3	140,386	140,386	ОК	0	0,503	126,348	126,348	ОК	0,000		
К4	149,098	149,098	ОК	0	0,550	134,188	134,188	ОК	0,000		
K5	147,871	147,871	ОК	0	0,543	133,084	133,084	ОК	0,000		
K6	211,209	211,209	ОК	0	0,703	190,088	190,088	ОК	0,000		
K7	115,002	115,002	ΕΝΙΣΧΥΣΗ	1463,968	0,105	103,502	103,502	ΕΝΙΣΧΥΣΗ	1475,468		
K8	107,904	107,904	ОК	0	0,211	97,114	97,114	ОК	0,000		
К9	166,812	166,812	ОК	0	0,492	150,131	150,131	ОК	0,000		
K10	198,542	198,542	ОК	0	0,763	178,688	178,688	ОК	0,000		
K11	144,247	144,247	ΕΝΙΣΧΥΣΗ	96,45925	1,335	129,822	129,822	ΕΝΙΣΧΥΣΗ	110,884		
K12	61,038	61,038	ОК	0	0,270	54,934	54,934	ΕΝΙΣΧΥΣΗ	5,986		
K13	102,926	102,926	ОК	0	0,844	92,633	92,633	ОК	0,000		
K14	124,723	124,723	ΕΝΙΣΧΥΣΗ	1548,413	0,131	112,251	112,251	ΕΝΙΣΧΥΣΗ	1560,885		
K15	88,867	88,867	ОК	0	0,613	79,980	79,980	ОК	0,000		
K16	90,506	90,506	ОК	0	0,237	81,455	81,455	ОК	0,000		
K17	180,945	180,945	ОК	0	0,435	162,851	162,851	ОК	0,000		
K17.A	68,722	68,722	ОК	0	0,124	61,849	61,849	ОК	0,000		
K18	230,317	230,317	ОК	0	1,450	207,286	207,286	ОК	0,000		
K19	100,588	100,588	ОК	0	0,505	90,529	90,529	ОК	0,000		
K20	74,556	74,556	ОК	0	0,299	67,101	67,101	ОК	0,000		
K21	55,237	55,237	ОК	0	0,109	49,714	49,714	ОК	0,000		

Με τον ίδιο τρόπο γίνεται έλεγχος έναντι τέμνουσας V2. Παρακάτω παρατίθενται τα αποτελέσματα
αυτού.

Πίνακας 7-8 Έλεγχος σε τέμνουσα V2

Όπως φαίνεται παραπάνω, κάποια υποστυλώματα εμφανίζουν ανεπάρκεια στη διεύθυνση δύο (2) και κάποια στην τρία (3) με αποτέλεσμα να απαιτείται ενίσχυση σε καθένα από αυτά τουλάχιστον στη μια διεύθυνση. Πρέπει να σημειωθεί ότι τα υποστυλώματα K1, K6, K11, K18 έχουν ανεπάρκεια λόγω λοξής θλίψης κορμού και επιβάλλεται βάσει ΕΚΩΣ και ΕC8 να γίνει αλλαγή διατομή. Αυτός είναι ένας ακόμα λόγος για τον οποίο, σ' αυτά τα υποστυλώματα ήταν επιτακτική η προσθήκη μανδύας 10cm.

7.5.1.2 Έλεγχος υποστυλωμάτων πρώτου ορόφου σε διάτμηση

Ακολουθείται η ίδια διαδικασία με παραπάνω και παρατίθενται για λόγους πληρότητας τα αποτελέσματα γι' αυτόν τον όροφο.

Υποστύλωμα	TEMNOYΣA V3 (KN)	<u>ΤΕΜΝΟΥΣΑ</u> V2 (KN)	AEONIKH (KN)
K1	236,332	120,829	-728,126
К2	43,547	93,195	-306,395
К3	45,666	73,778	-319,038
К4	52,876	75,324	-358,861
К5	38,080	83,006	-364,555
К6	240,122	126,153	-571,389
К7	181,850	153,116	-85,175
K8	220,629	25,291	-200,320
К9	178,956	30,242	-442,968
K10	46,931	136,906	-551,863
K11	52,535	320,034	-428,149
K12	50,015	87,529	-244,355
K13	22,014	33,775	-108,204
K14	79,473	145,259	-343,719
K15	30,272	15,311	-324,515
K16	33,149	74,762	-134,320
K17	141,028	45,562	-388,367
K17.A	118,891	23,977	-184,381
K18	64,660	41,142	-611,246
К19	10,952	6,586	-76,515
K20	56,843	21,808	-148,382
K21	39,257	29,690	-32,381

Πίνακας 7-9 Τέμνουσες και αξονική υποστυλωμάτων 1° ορόφου

Τα χαρακτηριστικά των υποστυλωμάτων του πρώτου ορόφου είναι ακριβώς με αυτά των υποστυλωμάτων του ισογείου.

	1) Έλεγχο	ς έναντι τέ	μνουσας α	ντοχής λόγω	2) Έλεγχος έναντι αντοχής σε τέμνουσα							
	λο	ξής θ λίψηο	; κορμού V	Rd2,red	ί. Αντοχή	σκυροδέμ	ατος σε τέμν	ουσα V _{Rd1}	ίι. Αντοχή Εγκ.	Οπλισμού V _{Wd}		
K _i	V _{Rd2}	σ _{cp,ef}	V _{Rd2,red}	Επάρκεια	τ _{Rd}	k	σ _{cp} (Mpa)	V _{Rd1}	A _{sw} /s	V _{wd} (KN)		
K1	449,28	2,002	449,280	ОК	0,18	1	3,641	155,394	0,0000	0,000		
K2	342,14	-0,792	342,144	ОК	0,18	1,33	1,857	96,058	0,0000	0,000		
K3	342,14	-0,715	342,144	ОК	0,18	1,33	1,934	97,765	0,0000	0,000		
К4	342,14	-0,474	342,144	ОК	0,18	1,33	2,175	103,141	0,0000	0,000		
K5	342,14	-0,440	342,144	ОК	0,18	1,33	2,209	103,910	0,0000	0,000		
K6	449,28	1,218	449,280	ОК	0,18	1	2,857	132,471	0,0000	0,000		
K7	645,12	-0,844	645,120	ОК	0,18	1,425	0,266	107,839	0,0000	0,000		
K8	449,28	-0,637	449,280	ОК	0,18	1	1,002	78,203	0,0000	0,000		
К9	449,28	0,576	449,280	ОК	0,18	1	2,215	113,690	0,0000	0,000		
K10	354,82	0,656	354,816	ОК	0,18	1,38	3,154	131,236	0,0000	0,000		
K11	158,52	2,729	158,515	ОК	0,18	1,428	5,352	82,654	0,0000	0,000		
K12	204,60	0,269	204,595	ОК	0,18	1,23	2,545	63,061	0,0000	0,000		
K13	156,67	-2,745	156,672	ОК	0,18	1,43	1,353	44,504	0,0000	0,000		
K14	645,12	-0,036	645,120	ОК	0,18	1,425	1,074	141,773	0,0000	0,000		
K15	186,62	1,177	186,624	ОК	0,18	1,33	3,606	73,096	0,0000	0,000		
K16	342,14	-1,835	342,144	ОК	0,18	1,33	0,814	72,828	0,0000	0,000		
K17	532,22	0,708	532,224	ОК	0,18	1	1,618	110,490	0,0000	0,000		
K17.A	354,82	-0,214	354,816	ОК	0,18	1	1,152	64,408	0,0000	0,000		
K18	257,13	2,107	257,126	ОК	0,18	1,228	5,094	123,981	0,0000	0,000		
K19	235,01	-1,766	235,008	OK	0,18	1,43	0,638	49,801	0,0000	0,000		
K20	262,66	-0,585	262,656	OK	0,18	1,03	1,237	51,167	0,0000	0,000		
K21	257,13	-2,717	257,126	ОК	0,18	1,228	0,270	43,230	0,0000	0,000		

		ΑΝΤΟΧΗ ΣΕ ΔΙΑΤΜΗΣΗ									
		ΜΗ Σεισμικοί συνδ	υασμοί		Σεισμικοί συνδυασμοί						
K _i	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	v _d	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
K1	155,394	155,394	ΕΝΙΣΧΥΣΗ	80,938	0,455	139,855	139,855	ΕΝΙΣΧΥΣΗ	96,477		
K2	96,058	96,058	ОК	0,000	0,232	86,452	86,452	ОК	0,000		
К3	97,765	97,765	ОК	0,000	0,242	87,988	87,988	ОК	0,000		
К4	103,141	103,141	ОК	0,000	0,272	92,827	92,827	ОК	0,000		
К5	103,910	103,910	ОК	0,000	0,276	93,519	93,519	ОК	0,000		
K6	132,471	132,471	ΕΝΙΣΧΥΣΗ	107,651	0,357	119,224	119,224	ΕΝΙΣΧΥΣΗ	120,898		
K7	107,839	107,839	ΕΝΙΣΧΥΣΗ	74,011	0,033	32,352	32,352	ΕΝΙΣΧΥΣΗ	149,498		
K8	78,203	78,203	ΕΝΙΣΧΥΣΗ	142,426	0,125	70,382	70,382	ΕΝΙΣΧΥΣΗ	150,247		
К9	113,690	113,690	ΕΝΙΣΧΥΣΗ	65,266	0,277	102,321	102,321	ΕΝΙΣΧΥΣΗ	76,635		
K10	131,236	131,236	ОК	0,000	0,394	118,113	118,113	ОК	0,000		
K11	82,654	82,654	ОК	0,000	0,669	74,389	74,389	ОК	0,000		
K12	63,061	63,061	ОК	0,000	0,318	56,755	56,755	ОК	0,000		
K13	44,504	44,504	ОК	0,000	0,169	40,053	40,053	ОК	0,000		
K14	141,773	141,773	ОК	0,000	0,134	127,595	127,595	ОК	0,000		
K15	73,096	73,096	ОК	0,000	0,451	65,786	65,786	ОК	0,000		
K16	72,828	72,828	ОК	0,000	0,102	65,545	65,545	ОК	0,000		
K17	110,490	110,490	ΕΝΙΣΧΥΣΗ	30,538	0,202	99,441	99,441	ΕΝΙΣΧΥΣΗ	41,587		
K17.A	64,408	64,408	ΕΝΙΣΧΥΣΗ	54,483	0,144	57,967	57,967	ΕΝΙΣΧΥΣΗ	60,924		
K18	123,981	123,981	ОК	0,000	0,637	111,583	111,583	ОК	0,000		
K19	49,801	49,801	ОК	0,000	0,080	14,940	14,940	ОК	0,000		
K20	51,167	51,167	ΕΝΙΣΧΥΣΗ	5,676	0,155	46,050	46,050	ΕΝΙΣΧΥΣΗ	10,793		
K21	43,230	43,230	ОК	0,000	0,034	12,969	12,969	ΕΝΙΣΧΥΣΗ	26,288		

				ΑΝΤΟΧΗ ΣΙ	ΔΙΑΤΜΗΣ	н					
		ΜΗ Σεισμικοί συνδ	υασμοί		Σεισμικοί συνδυασμοί						
K _i	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	v _d	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
К1	159,101	159,101	ОК	0	0,455	143,191	143,191	OK	0,000		
К2	89,616	89,616	ΕΝΙΣΧΥΣΗ	3,579328	0,232	80,654	80,654	ΕΝΙΣΧΥΣΗ	12,541		
К3	91,409	91,409	ОК	0	0,242	82,268	82,268	ОК	0,000		
К4	97,056	97,056	ОК	0	0,272	87,351	87,351	ОК	0,000		
К5	97,864	97,864	ОК	0	0,276	88,077	88,077	ОК	0,000		
К6	138,530	138,530	ОК	0	0,357	124,677	124,677	ΕΝΙΣΧΥΣΗ	1,476		
К7	87,968	87,968	ΕΝΙΣΧΥΣΗ	65,14805	0,033	26,390	26,390	ΕΝΙΣΧΥΣΗ	126,726		
К8	89,827	89,827	ОК	0	0,125	80,844	80,844	ОК	0,000		
К9	121,674	121,674	ОК	0	0,277	109,507	109,507	ОК	0,000		
К10	124,460	124,460	ΕΝΙΣΧΥΣΗ	12,44645	0,394	112,014	112,014	ΕΝΙΣΧΥΣΗ	24,892		
K11	84,794	84,794	ΕΝΙΣΧΥΣΗ	235,2396	0,669	76,315	76,315	ΕΝΙΣΧΥΣΗ	243,719		
K12	66,073	66,073	ΕΝΙΣΧΥΣΗ	21,45617	0,318	59,466	59,466	ΕΝΙΣΧΥΣΗ	28,063		
K13	43,020	43,020	ОК	0	0,169	38,718	38,718	OK	0,000		
K14	126,144	126,144	ΕΝΙΣΧΥΣΗ	19,11541	0,134	113,529	113,529	ΕΝΙΣΧΥΣΗ	31,730		
K15	73,096	73,096	ОК	0	0,451	65,786	65,786	ОК	0,000		
K16	65,212	65,212	ΕΝΙΣΧΥΣΗ	9,549692	0,102	58,691	58,691	ΕΝΙΣΧΥΣΗ	16,071		
K17	120,499	120,499	ОК	0	0,202	108,449	108,449	ОК	0,000		
K17.A	71,985	71,985	ОК	0	0,144	64,787	64,787	ОК	0,000		
K18	124,191	124,191	ОК	0	0,637	111,772	111,772	ОК	0,000		
К19	42,417	42,417	ОК	0	0,080	12,725	12,725	ОК	0,000		
К20	56,894	56,894	ОК	0	0,155	51,204	51,204	ОК	0,000		
K21	45,466	45,466	ОК	0	0,034	13,640	13,640	ΕΝΙΣΧΥΣΗ	16,050		

Η εικόνα των υποστυλωμάτων του πρώτου ορόφου, όσον αφορά τη διάτμηση, είναι όμοια με αυτή του ισογείου. Τα περισσότερα υποστυλώματα χρειάζονται ενίσχυση είτε στη μία διεύθυνση είτε στην άλλη. Βέβαια, αξίζει να σημειωθεί ότι κανένα στοιχείο δεν εμφανίζει ανεπάρκεια λόγω λοξής θλίψης κορμού.

7.5.1.3 Έλεγχος υποστυλωμάτων δευτέρου ορόφου σε διάτμηση

Τέλος, γίνεται έλεγχος των υποστυλωμάτων του δευτέρου ορόφου σε διάτμηση όπου και προκύπτουν πολύ μεγαλύτερες ανεπάρκειες.

Υποστύλωμα	TEMNOYΣA V3 (KN)	TEMNOYΣA V2 (KN)	AEONIKH (KN)
K1	40,503	21,301	-71,531
К2	60,414	81,693	-83,072
К3	51,303	73,866	-68,833
K4	62,983	73,544	-81,278
К5	56,937	74,614	-67,540
К6	96,605	20,706	-78,054
К7	28,244	65,258	-45,372
К8	75,487	16,595	-49,983
К9	124,421	24,674	-81,038
K10	51,399	70,951	-98,580
K11	34,836	52,005	-76,609
K12	67,012	32,126	-51,231
K13	38,100	42,330	-54,438
K14	34,769	68,948	-51,611
K15	24,283	22,722	-38,188
K16	36,003	83,342	-68,420
K17	99,831	52,104	-32,497
K17.A			
K18			
K19			
К20			
K21			

Πίνακας 7-10 Τέμνουσες και αξονική υποστυλωμάτων 2°υ ορόφου

	 Έλεγχο 	ς έναντι τέ	έμνουσας α	ιντοχής λόγω	2) Έλεγχος έναντι αντοχής σε τέμνουσα							
	λο	ξής θλίψη	ς κορμού Ν	Rd2,red	ί. Αντοχή ο	σκυροδέμ	ατος σε τέμνα	ii. Αντοχή Εγκ.Οπλισμού V _{wd}				
K	V _{Rd2}	σ _{cp,ef}	V _{Rd2,red}	Επάρκεια	τ _{Rd}	k	σ _{cp} (Mpa)	V _{Rd1}	A _{sw} /s	V _{wd} (KN)		
K1	449,28	-1,281	449,280	ОК	0,18	1	0,358	59,367	0,0000	0,000		
K2	342,14	-2,146	342,144	ОК	0,18	1,33	0,503	65,909	0,0000	0,000		
K3	342,14	-2,232	342,144	ОК	0,18	1,33	0,417	63,987	0,0000	0,000		
K4	342,14	-2,156	342,144	ОК	0,18	1,33	0,493	65,667	0,0000	0,000		
K5	342,14	-2,240	342,144	ОК	0,18	1,33	0,409	63,813	0,0000	0,000		
K6	449,28	-1,249	449,280	ОК	0,18	1	0,390	60,321	0,0000	0,000		
K7	645,12	-0,968	645,120	ОК	0,18	1,425	0,142	102,615	0,0000	0,000		
K8	449,28	-1,389	449,280	ОК	0,18	1	0,250	56,216	0,0000	0,000		
К9	449,28	-1,234	449,280	ОК	0,18	1	0,405	60,758	0,0000	0,000		
K10	354,82	-1,934	354,816	ОК	0,18	1,38	0,563	71,403	0,0000	0,000		
K11	158,52	-1,665	158,515	ОК	0,18	1,428	0,958	37,305	0,0000	0,000		
K12	204,60	-1,743	204,595	ОК	0,18	1,23	0,534	36,265	0,0000	0,000		
K13	156,67	-3,417	156,672	ОК	0,18	1,43	0,680	37,648	0,0000	0,000		
K14	645,12	-0,949	645,120	ОК	0,18	1,425	0,161	103,434	0,0000	0,000		
K15	186,62	-2,004	186,624	ОК	0,18	1,33	0,424	34,442	0,0000	0,000		
K16	342,14	-2,234	342,144	ОК	0,18	1,33	0,415	63,931	0,0000	0,000		
K17	532,22	-0,775	532,224	ОК	0,18	1	0,135	59,112	0,0000	0,000		

Πίνακας 7-11 Έλεγχος σε διάτμηση υποστυλωμάτων 2°υ ορόφου

				ΑΝΤΟΧΗ ΣΙ	ΔΙΑΤΜΗΣ	н					
		ΜΗ Σεισμικοί συνδ	υασμοί		Σεισμικοί συνδυασμοί						
K _i	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	v _d	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
K1	59,367	59,367	ОК	0,000	0,045	17,810	17,810	ΕΝΙΣΧΥΣΗ	22,693		
K2	65,909	65,909	ОК	0,000	0,063	19,773	19,773	ΕΝΙΣΧΥΣΗ	40,641		
К3	63,987	63,987	ОК	0,000	0,052	19,196	19,196	ΕΝΙΣΧΥΣΗ	32,107		
К4	65,667	65,667	ОК	0,000	0,062	19,700	19,700	ΕΝΙΣΧΥΣΗ	43,283		
K5	63,813	63,813	ОК	0,000	0,051	19,144	19,144	ΕΝΙΣΧΥΣΗ	37,793		
К6	60,321	60,321	ΕΝΙΣΧΥΣΗ	36,284	0,049	18,096	18,096	ΕΝΙΣΧΥΣΗ	78,509		
K7	102,615	102,615	ОК	0,000	0,018	30,784	30,784	ОК	0,000		
K8	56,216	56,216	ΕΝΙΣΧΥΣΗ	19,271	0,031	16,865	16,865	ΕΝΙΣΧΥΣΗ	58,622		
К9	60,758	60,758	ΕΝΙΣΧΥΣΗ	63,663	0,051	18,227	18,227	ΕΝΙΣΧΥΣΗ	106,194		
К10	71,403	71,403	ОК	0,000	0,070	21,421	21,421	ΕΝΙΣΧΥΣΗ	29,978		
K11	37,305	37,305	ОК	0,000	0,120	33,575	33,575	ΕΝΙΣΧΥΣΗ	1,261		
K12	36,265	36,265	ΕΝΙΣΧΥΣΗ	30,747	0,067	10,880	10,880	ΕΝΙΣΧΥΣΗ	56,132		
K13	37,648	37,648	ΕΝΙΣΧΥΣΗ	0,452	0,085	11,295	11,295	ΕΝΙΣΧΥΣΗ	26,805		
K14	103,434	103,434	ОК	0,000	0,020	31,030	31,030	ΕΝΙΣΧΥΣΗ	3,739		
K15	34,442	34,442	ОК	0,000	0,053	10,333	10,333	ΕΝΙΣΧΥΣΗ	13,950		
K16	63,931	63,931	ОК	0,000	0,052	19,179	19,179	ΕΝΙΣΧΥΣΗ	16,824		
K17	59,112	59,112	ΕΝΙΣΧΥΣΗ	40,719	0,017	17,733	17,733	ΕΝΙΣΧΥΣΗ	82,098		

Εικόνα 7-2 4	4 Έλεγχος σε	ε διάτμηση	υποστυλω	μάτων 2ου	ορόφου

				ΑΝΤΟΧΗ ΣΕ	ΔΙΑΤΜΗΣ	н					
		ΜΗ Σεισμικοί συνδ	υασμοί		Σεισμικοί συνδυασμοί						
K _i	V _{cd}	V _{Rd}	Έλεγχος	ΔV (KN)	V _d	V_{cd}	V _{Rd}	Έλεγχος	ΔV (KN)		
K1	72,923	72,923	ОК	0	0,045	21,877	21,877	ОК	0,000		
K2	57,944	57,944	ΕΝΙΣΧΥΣΗ	23,74859	0,063	17,383	17,383	ΕΝΙΣΧΥΣΗ	64,310		
К3	55,925	55,925	ΕΝΙΣΧΥΣΗ	17,94094	0,052	16,778	16,778	ΕΝΙΣΧΥΣΗ	57,088		
К4	57,690	57,690	ΕΝΙΣΧΥΣΗ	15,85401	0,062	17,307	17,307	ΕΝΙΣΧΥΣΗ	56,237		
K5	55,742	55,742	ΕΝΙΣΧΥΣΗ	18,87231	0,051	16,723	16,723	ΕΝΙΣΧΥΣΗ	57,891		
K6	73,779	73,779	ОК	0	0,049	22,134	22,134	ОК	0,000		
K7	82,091	82,091	ОК	0	0,018	24,627	24,627	ΕΝΙΣΧΥΣΗ	40,631		
K8	70,095	70,095	ОК	0	0,031	21,029	21,029	ОК	0,000		
К9	74,171	74,171	ОК	0	0,051	22,251	22,251	ΕΝΙΣΧΥΣΗ	2,423		
K10	59,381	59,381	ΕΝΙΣΧΥΣΗ	11,56994	0,070	17,814	17,814	ΕΝΙΣΧΥΣΗ	53,137		
K11	35,755	35,755	ΕΝΙΣΧΥΣΗ	16,25047	0,120	32,179	32,179	ΕΝΙΣΧΥΣΗ	19,826		
K12	39,518	39,518	ОК	0	0,067	11,855	11,855	ΕΝΙΣΧΥΣΗ	20,271		
K13	35,560	35,560	ΕΝΙΣΧΥΣΗ	6,769824	0,085	10,668	10,668	ΕΝΙΣΧΥΣΗ	31,662		
K14	83,012	83,012	ОК	0	0,020	24,904	24,904	ΕΝΙΣΧΥΣΗ	44,044		
K15	34,442	34,442	ОК	0	0,053	10,333	10,333	ΕΝΙΣΧΥΣΗ	12,389		
K16	55,866	55,866	ΕΝΙΣΧΥΣΗ	27,47551	0,052	16,760	16,760	ΕΝΙΣΧΥΣΗ	66,582		
K17	72,456	72,456	ОК	0	0,017	21,737	21,737	ΕΝΙΣΧΥΣΗ	30,367		

Πίνακας 7-12 Έλεγχος σε διάτμηση υποστυλωμάτων 2°υ ορόφου

Έχει καταστεί σαφές πλέον ότι το κτίριο αυτό υποφέρει σε διάτμηση, πράγμα που ήταν αναμενόμενο αφού δεν διαθέτει καθόλου οπλισμό διάτμησης. Κρίνεται, λοιπόν, αναγκαίο να ενισχυθούν τα στοιχεία του, προκειμένου να αυξηθεί η φέρουσα ικανότητα του σε διάτμηση όλης της κατασκευής.

7.5.2 Ενίσχυση έναντι τέμνουσας με χρήση σύνθετων υλικών

7.5.2.1 Ανεπάρκεια έναντι λοξής θλίψης κορμού

Η ανεπάρκεια ενός στοιχείου Ω.Σ. σε τέμνουσα λόγω λοξής θλίψης (V_{sd}>V_{Rd,max}, όπου V_{Rd,max} όπως ορίζεται στον EC2) αντιμετωπίζεται είτε με περίσφιγξη είτε με προσθήκη νέων στρώσεων σκυροδέματος, κατά προτίμηση με τη μορφή μανδύα. Στην περίπτωση εφαρμογής περίσφιγξης, η τέμνουσα σχεδιασμού λόγω λοξής θλίψης V_{Rd,max} υπολογίζεται σύμφωνα με τα αναφερόμενα στον EC2(§ 6.2.3) με χρήση της αυξημένης θλιπτικής αντοχής του περισφιγμένου σκυροδέματος υπολογιζόμενης με βάση τα αναφερόμενα στην § 6.2 του ΚΑΝ.ΕΠΕ.

Όταν η κατασκευή μανδύα (δηλ. "κλειστή ενίσχυση") είναι ανέφικτη, η προσθήκη νέων στρώσεων σκυροδέματος ως "ανοικτή" ενίσχυση, πρέπει να καλύπτει τουλάχιστον 3 πλευρές του αρχικού στοιχείου. Σ' αυτήν την περίπτωση πρέπει να αποδεικνύεται υπολογιστικώς ότι εξασφαλίζεται επαρκής αγκύρωση των άκρων των συνδετήρων του μανδύα στα υφιστάμενα στοιχεία σκυροδέματος, ελέγχοντας και όλους τους ενδεχόμενους τρόπους αστοχίας των στοιχείων αγκύρωσης και των στηριγμάτων τους.

Εικόνα 7-25 Ενδεικτικοί τρόποι ενίσχυσης σε διάτμηση έναντι ανεπάρκειας σε λοξή θλίψη: (α) Κλειστές ενισχύσεις και (β) Ανοικτές ενισχύσεις με ισχυρή σύνδεση στα άκρα

Στην περίπτωση προσθήκης νέων στρώσεων ή μανδύα σκυροδέματος, ελέγχεται η ανίσωση ασφαλείας:

$$V_{Sd} \le \frac{V_{Rd,r} + V_{RM}}{\gamma_{Rd}}$$

Όπου:

V_{Rd,r} η αντίσταση τέμνουσας V_{Rd,max} του αρχικού δομικού στοιχείου.

 V_{RM} η αντίσταση σε τέμνουσα $V_{\text{Rd,max}}$ των πρόσθετων στρώσεων ή του μανδύα.

V_{sd} η δρώσα τέμνουσα σχεδιασμού.

γ_{Rd} συντελεστής ο οποίος καλύπτει τις αβεβαιότητες που σχετίζονται με τη σύγχρονη επιστράτευση των δύο αντιστάσεων. Μπορεί να ληφθεί γ_{Rd} =1,25.

7.5.2.2 Ανεπάρκεια οπλισμού διάτμησης

Η ενίσχυση έναντι τέμνουσας ενός στοιχείου Ο.Σ. η οποία απαιτείται λόγω ανεπάρκειας του οπλισμού διάτμησης (V_{Sd}> V_{Rd3}), μπορεί να γίνει είτε με μανδύες οπλισμένου σκυροδέματος, είτε με εξωτερικά στοιχεία από χάλυβα ή ινοπλισμένα πολυμερή τα οποία επικολλώνται πλήρως επί του στοιχείου, αναλαμβάνοντας ρόλο οπλισμού διάτμησης, ανάλογου με αυτόν του αντίστοιχου συμβατικού οπλισμού. Τα εξωτερικά στοιχεία μπορούν να έχουν την μορφή επικολλητών φύλλων ή κολλάρων (εξωτερικοί συνδετήρες). Στην περίπτωση χρήσης χάλυβα, τα κολλάρα μπορεί να είναι ράβδοι ή ελάσματα, ενώ στην περίπτωση χρήσης ινοπλισμένου πολυμερούς είναι λωρίδες από υφάσματα ή ελάσματα. Συνιστάται η επιδίωξη "κλειστών" ενισχύσεων με την μορφή ολόπλευρων μανδυών ή κολλάρων που περιβάλλουν ολόκληρη τη διατομή του στοιχείου. Στην περίπτωση που αυτό δεν είναι εφικτό, απαιτείται η πλήρης αγκύρωση του διατμητικού οπλισμού της "ανοικτής"

ενίσχυσης στο υφιστάμενο σκυρόδεμα με πρόσθετα στοιχεία σύνδεσης, με επαρκή ικανότητα για την μεταφορά των δυνάμεων στο αρχικό στοιχείο. Πάντως δεν επιτρέπονται "ανοικτές" ενισχύσεις με ανεξάρτητα ελάσματα ή υφάσματα ΙΟΠ επικολλημένα στις παρειές του στοιχείου: "Ανοικτές" ενισχύσεις επιτρέπονται μόνο υπό μορφή συνεχούς U.

Ειδικά στην περίπτωση ενίσχυσης με εξωτερικά στοιχεία από χάλυβα ή ινοπλισμένα πολυμερή, η τέμνουσα αντοχής σχεδιασμού λόγω οπλισμού διάτμησης ($V_{Rd,tot}$) υπολογίζεται από τη σχέση:

$$V_{Rd,tot} = V_{Rd,s} + V_{jd}$$

Όπου:

 $V_{Rd,s}$ είναι η τέμνουσα που αναλαμβάνουν οι συνδετήρες του αρχικού στοιχείου. V_{jd} είναι η τέμνουσα που αναλαμβάνει ο νέος οπλισμός διάτμησης. Ισχύει:

$$V_{jd} = \sigma_{jd} * \rho_j * b_w * h_{j,eff} * (\cot\theta + \cot\alpha) * \sin^2 a$$

Όπου:

 σ_{jd} είναι η τιμή σχεδιασμού της ενεργού τάσης του εξωτερικού οπλισμού διάτμησης ρ_j είναι το γεωμετρικό ποσοστό του εξωτερικού οπλισμού και ορίζεται ως:

$$\rho_j = \frac{2*A_j}{s_j b_w sina}$$

 $A_j = t_j w_j$

t_i το πάχος του εξωτερικού οπλισμού

w_i το πλάτος του εξωτερικού οπλισμού

 s_i η αξονική απόσταση του εξωτερικού οπλισμού στην περίπτωση λωρίδων

Για συνεχή φύλλα $t_j = \frac{A_j}{s_j}$ και $w_j = s_j$

 $h_{j,eff}$ είναι το ενεργό ύψος της ενίσχυσης. Μπορεί να θεωρηθεί $h_{j,eff}$ = $\frac{2}{3}$ d

θη γωνία μεταξύ του άξονα του στοιχείου και της διεύθυνσης των αναμενόμενων λοξών ρωγμών, η οποία μπορεί να θεωρηθεί ίση προς 45°

α η γωνία του εξωτερικού οπλισμού διάτμησης ως προς το διαμήκη άξονα του στοιχείου.

 b_w είναι το πλάτος της διατομής

Η τιμή σχεδιασμού της ενεργού τάσεως σ_{jd} του νέου οπλισμού διάτμησης, εκτιμάται με βάση μια κρίσιμη τιμή της τάσης σ_{j,crit} ή της παραμορφώσεως ε_{rit j} του υλικού ενίσχυσης, η οποία εξαρτάται από τη μορφή αστοχίας. Ως τιμή σχεδιασμού σjd θεωρείται αυτή που αντιστοιχεί στη δυσμενέστερη από τις ακόλουθες δυο μορφές αστοχίας:

a <u>Αστοχία του ιδίου του υλικού ενίσχυσης.</u>

Έναντι αυτής, πρέπει :

$$\sigma_{jd} \leq \frac{f_{jk}}{\gamma_m}$$

Όπου:

 f_{jk} είναι η χαρακτηριστική τιμή αντοχής του υλικού ενίσχυσης. Ισχύει $f_{jk} = E_j * \varepsilon_{j,crit}$ γ_m είναι ο συντελεστής ασφαλείας για το υλικό ενίσχυσης

Όταν χρησιμοποιείται ΙΟΠ, η αστοχία του υλικού μπορεί να συμβεί υπό παραμορφώσεις σημαντικά μικρότερες της συμβατικής παραμόρφωσης αστοχίας του υλικού (όπως αυτή προκύπτει από τις δοκιμές αξονικού εφελκυσμού), λόγω τοπικής υπερκαταπόνισης στην θέση όπου γεφυρώνεται το μεγαλύτερο άνοιγμα μιας κρίσιμης διατμητικής ρωγμής. Έναντι αυτού του δυσμενούς ενδεχομένου, λαμβάνεται :

$$\varepsilon_{j,crit} = k_v * \varepsilon_{j,max}$$

Όπου:

 k_v συντελεστής που εκφράζει την περίπου τριγωνική κατανομή των παραμορφώσεων κατά μήκος της κρίσιμης λοξής ρωγμής και λαμβάνεται $k_v = \frac{1}{2}$

$$\varepsilon_{j,max} = \varepsilon_{ju} * \psi \le 1,5\%$$

Όπου:

*ε*_{ju} είναι η μέγιστη εφελκυστική παραμόρφωση του υλικού Ψ είναι ο μειωτικός συντελεστής πολλών στρώσεων

Η μέγιστη τιμή $\varepsilon_{j,max} = 1,5\%$ στοχεύει στον περιορισμό του ανοίγματος μιας κρίσιμης λοξής ρωγμής πέραν της οποίας μειώνεται η συμβολή του σκυροδέματος (V_c) στην διατμητική αντοχή του μέλους, η δε αστοχία συμβαίνει πριν από την εξάντληση της αντοχής του υλικού ενίσχυσης.

🖊 <u>Πρόωρη αποκόλληση του υλικού ενίσχυσης λόγω ανεπαρκούς αγκύρωσης των άκρων του.</u>

Έναντι αυτής της αστοχίας πρέπει:

$$\sigma_{jd} \leq \sigma_{j,crit} * \gamma_{Rd}$$

Όπου:

 γ_{Rd} είναι κατάλληλος συντελεστής αβεβαιότητας του προσομοιώματος.

Αυτή η μορφή αστοχίας αφορά μόνο τις κατά παρέκκλιση επιτρεπόμενες ανοικτές ενισχύσεις που δεν έχουν πρόσθετα ακραία στοιχεία αγκύρωσης, και η αγκύρωση των άκρων τους εξασφαλίζεται μόνο με πρόσφυση μέσω εποξειδικής κόλλας.

Στην περίπτωση "κλειστών" ενισχύσεων, η αστοχία αυτή αποφεύγεται εξασφαλίζοντας την περιμετρική συνέχεια του στοιχείου ενίσχυσης. Αν το υλικό του στοιχείου ενίσχυσης είναι ΙΟΠ, η περιμετρική συνέχεια θεωρείται ότι εξασφαλίζεται μέσω επαρκούς (της τάξεως των 150mm) υπερκάλυψης των δύο άκρων του υφάσματος ΙΟΠ. Αν το υλικό είναι χάλυβας, η συνέχεια θεωρείται ότι εξασφαλίζεται μέσω ηλεκτροσυγκολλήσεων ή μηχανικών συνδέσμων, η αντοχή των οποίων σε κάθε περίπτωση θα πρέπει να ελέγχεται υπολογιστικώς.

"Ανοικτές" ενισχύσεις μπορεί να θεωρηθούν ως οιονεί "κλειστές", εάν εξασφαλίζεται η πλήρης αγκύρωση των άκρων τους στα υφιστάμενα στοιχεία σκυροδέματος, ελέγχοντας και όλους τους ενδεχόμενους τρόπους αστοχίας των στοιχείων αγκύρωσης.

Ο συντελεστής αβεβαιότητας του προσομοιώματος γ_{Rd} λαμβάνεται ίσος με 1,2. Οι τιμές των σ_{j,crit} ή ε_{j,crit} προσδιορίζονται με χρήση αξιόπιστων δεδομένων της διεθνούς βιβλιογραφίας. Ελλείψει τέτοιων δεδομένων μπορεί να θεωρηθεί:

$$\sigma_{j,crit} = k_v * \sigma_{j,max}$$

με $k_v = 0.40 + 0.25\lambda \le 0.65$ Όπου:

 $L_{av} = h_{j.ef}$ είναι το διατιθέμενο μήκος αγκύρωσης του οπλισμού ενίσχυσης

L_e είναι το αντίστοιχο ενεργό μήκος αγκύρωσης (δηλ. το μήκος αγκύρωσης πέραν του οποίου η αναλαμβανόμενη δύναμη από το υλικό ενίσχυσης δεν αυξάνεται) και μπορεί να ληφθεί από την σχέση:

$$L_e = \sqrt{\frac{E_j t_j}{2f_{ctm}}}$$
 (MPa, mm)
$$\sigma_{j,max} = \beta \, \frac{\tau_b^{\alpha \pi o \kappa}}{t_j} \, L_e$$
$$\tau_b^{\alpha \pi o \kappa} \cong f_{ctm}$$

Όπου:

- t_j είναι το πάχος του υλικού ενίσχυσης. Στην περίπτωση που χρησιμοποιούνται k επάλληλες στρώσεις υλικού ενίσχυσης πάχους t_{j1} λαμβάνεται $t_j = \psi k t_{j1}$, όπου ψ<1 είναι ο μειωτικός συντελεστής πολλών στρώσεων
- $\beta = \beta_w \beta_L$ διορθωτικός συντελεστής

$$β_w = \sqrt{\frac{2 - \frac{w_j}{s_j} sina}{1 + \frac{w_j}{s_j} sina}}$$
 συντελεστής επιρροής πλάτους οπλισμού ενίσχυσης, ίσος με $\frac{1}{\sqrt{2}}$ για ενίσχυση με

συνεχή φύλλα ή υφάσματα

 $\beta_L = \sin(\frac{\pi\lambda}{2}) \cong \lambda(\lambda - 2)$ συντελεστής επιρροής διατιθέμενου μήκους αγκύρωσης με β_L =1 αν $\lambda \ge 1,0$

7.5.2.3 Ενίσχυση υφιστάμενων υποστυλωμάτων σε διάτμηση

Όσα υποστυλώματα θα ενισχυθούν με μανδύα ΩΣ δεν έχει νόημα να ενισχυθούν και με κάποιον άλλο πρόσθετο τρόπο. Όλα τα υπόλοιπα, ακόμα και αυτά που δεν εμφανίζουν πρόβλημα σε διάτμηση, ενισχύονται με σύνθετα υλικά. Η επιλογή αυτή έγινε για πολλούς λόγους. Παρατίθενται κάποιοι από αυτούς, όπως:

- Απαιτείται μικρή προετοιμασία στο εργοτάξιο. Η εκκένωση του χώρου δεν είναι αναγκαία και η όχληση στους χρήστες είναι ελάχιστη. Η προετοιμασία των προς ενίσχυση στοιχείων είναι μικρή και σύντομη.
- Η εφαρμογή των σύνθετων υλικών είναι απλή.
- Οι διαστάσεις του ενισχυόμενου δομικού στοιχείου παραμένουν ουσιαστικά αμετάβλητες, λόγω του μικρού πάχους του σύνθετου υλικού.
- Η τοποθέτηση των σύνθετων υλικών είναι δυνατή ακόμα και σε περιπτώσεις που υπάρχει περιορισμός του χώρου εργασίας (π.χ. υποστυλώματα σε μεσοτοιχία).
- Το βάρος των σύνθετων υλικό είναι μικρό και για την τοποθέτησή τους δεν απαιτείται βαρύς ή ειδικός εξοπλισμός.
- Τα σύνθετα υλικά μπορούν να επιχριστούν και να χρωματιστούν σύμφωνα με τις αισθητικές απαιτήσεις του έργου.
- Τα αρχιτεκτονικά χαρακτηριστικά των κατασκευών παραμένουν πρακτικά αμετάβλητα.
- Το κόστος εφαρμογής των σύνθετων υλικών είναι ανάλογο των παραδοσιακών μεθόδων επισκευής και ενίσχυσης.

Όσον αφορά το είδος του σύνθετου υλικού επελέγη ανθρακοΰφασμα δύο στρώσεων πλάτους λωρίδας 50cm και πάχους 0,17mm με τα παρακάτω χαρακτηριστικά:

- Μέτρο Ελαστικότητας Σύνθετων Υλικών Ε_j=240000MPa
- Μέγιστη Εφελκυστική Παραμόρφωση Σύνθετων Υλικών ε_{ju}=1,50%
- Συντελεστής Ασφαλείας Σύνθετων Υλικών γ_m=1,20
- Μέγιστη Εφελκυστική Παραμόρφωση Σύνθετων Υλικών σε Διάτμηση ε_{jmax}=1,50%
 (Σελίδα 8-30 ΚΑΝΕΠΕ)
- Κρίσιμη Εφελκυστική Παραμόρφωση Σύνθετων Υλικών ε_{jcrit}=0,75%
- Χαρακτηριστική Τιμή Αντοχής Σύνθετων Υλικών f_{jk}=1800MPa
- Τιμή Σχεδιασμού Ενεργού Τάσης Σύνθετων Υλικών σ_{jd}=1500MPa

Το ανθρακοΰφασμα περιβάλει κάθε υποστύλωμα καθ' ύψος και έχει ίδιο αριθμό στρώσεων και ίδιο πλάτος στις τέσσερις πλευρές του στοιχείου. Παρακάτω παρατίθενται αναλυτικά οι υπολογισμοί και τα αποτελέσματα της ενίσχυσης των επιλεγέντων υποστυλωμάτων του ισογείου για τέμνουσα V₃. Ίδια είναι για τη διεύθυνση 2 και γι' αυτό δίνονται μόνο τα αποτελέσματα αυτής.

							П	ά <mark>χος</mark> Στρώ	οσης (mn	ר)	
Ki	d (m)	h _{j,ef}	V _{j,Ed} (KN)	w _j (m)	s _j (m)	t _{j1}	t _{j2}	t _{j3}	t _{j4}	t _{j5}	t _{j6}
К2	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
КЗ	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К4	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К5	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К8	0,975	0,65	104,095	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К9	0,975	0,65	89,902	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К10	0,22	0,15	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K12	0,37	0,25	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K13	0,17	0,11	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K15	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К16	0,27	0,18	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K17	0,77	0,51	21,594	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K17.A	0,77	0,51	42,534	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
К19	0,17	0,11	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K20	0,57	0,38	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000
K21	0,372	0,25	0,000	0,500	0,500	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000

Πίνακας 7-13 Δεδομένα για την ενίσχυση υποστυλωμάτων ισογείου σε διάτμηση με σύνθετα υλικά

	M	ειωτικός	Συντελεσ	τής Αντοχή	<mark>ής Στρώ</mark> α	ης		Ал	ομειωμένο	Πάχος Στρώα	σης		Απομ. Συν. Πάχος
Ki	ψ1	ψ2	ψ3	ψ4	ψ5	ψ6	tj1,απομ	tj2,απομ	tj3,απομ	tj4,απομ	tj5,απομ	tj6,απομ	tj,απομ
К2	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
КЗ	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К4	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К5	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К8	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К9	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К10	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K12	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К13	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K15	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K16	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K17	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K17.A	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К19	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
К20	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400
K21	1,0000	1,0000	1,0000	0,7071	0,6687	0,6389	0,1700	0,1700	0,0000	0,0000	0,0000	0,0000	0,3400

Πίνακας 7-14 Μειωτικοί συντελεστές και πάχη στρώσεων σύνθετων υλικών

			Τελική Διατμι	ητική Αντοχή
			ΜΗ σεισμικοί	Σεισμικοί
			συνδυασμοί	συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
K2	183,600	ОК	312,868	299,941
К3	183,600	ОК	327,988	313,549
К4	183,600	ОК	336,281	321,013
К5	183,600	ОК	335,113	319,961
К8	663,000	ОК	761,346	751,511
К9	663,000	ОК	826,986	810,587
K10	149,600	ОК	348,948	329,013
K12	251,600	ОК	309,580	303,782
K13	115,600	ОК	215,152	205,197
K15	183,600	ОК	272,467	263,580
K16	183,600	ОК	280,505	270,815
K17	523,600	ОК	698,734	681,221
K17.A	523,600	ОК	584,312	578,241
K19	115,600	ОК	217,448	207,263
K20	387,600	ОК	458,508	451,417
K21	252,960	ОК	306,213	300,888

Πίνακας 7-15 Έλεγχος επάρκειας ενίσχυσης υποστυλωμάτων ισογείου έναντι ∨₃ με σύνθετα υλικά

			Τελική Διατμη	τική Αντοχή
			ΜΗ σεισμικοί συνδυασμοί	Σεισμικοί συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
K2	353,600	ОК	482,868	465,653
К3	353,600	ОК	497,988	479,948
К4	353,600	ОК	506,281	487,788
К5	353,600	ОК	505,113	486,684
К8	119,000	ОК	217,346	216,114
К9	119,000	ОК	282,986	269,131
K10	455,600	ОК	654,948	634,288
K12	149,600	ОК	207,580	204,534
K13	251,600	ОК	351,152	344,233
K15	183,600	ОК	272,467	263,580
K16	353,600	ОК	450,505	435,055
K17	183,600	ОК	358,734	346,451
K17.A	115,600	ОК	176,312	177,449
K19	387,600	ОК	489,448	478,129
K20	115,600	ОК	186,508	182,701
K21	184,960	ОК	238,213	234,674

Πίνακας 7-16 Έλεγχος επάρκειας ενίσχυσης υποστυλωμάτων ισογείου έναντι V2 με σύνθετα υλικά

Η ίδια διαδικασία ακολουθείται και στους υπόλοιπους ορόφους από όπου προκύπτουν τα εξής αποτελέσματα.

			Τελική Διατμι	ητική Αντοχή
			ΜΗ σεισμικοί	Σεισμικοί
			συνδυασμοί	συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
К2	183,600	ОК	279,658	270,052
К3	183,600	ОК	281,365	271,588
К4	183,600	ОК	286,741	276,427
К5	183,600	ОК	287,510	277,119
К8	663,000	ОК	741,203	733,382
К9	663,000	ОК	776,690	765,321
K10	149,600	ОК	280,836	267,713
K12	251,600	ОК	314,661	308,355
K13	115,600	ОК	160,104	155,653
K15	183,600	ОК	256,696	249,386
K16	183,600	ОК	256,428	249,145
K17	523,600	ОК	634,090	623,041
K17.A	523,600	ОК	588,008	581,567
K19	115,600	ОК	165,401	130,540
K20	387,600	ОК	438,767	433,650
K21	252,960	ОК	296,190	265,929

Πίνακας 7-17 Έλεγχος επάρκειας ενίσχυσης υποστυλωμάτων 1⁰ ορόφου έναντι ∨₃ με σύνθετα υλικά

			Τελική Διατ	μητική Αντοχή
			ΜΗ σεισμικοί συνδυασμοί	Σεισμικοί συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
К2	353,600	ОК	449,658	434,254
К3	353,600	ОК	451,365	435,868
К4	353,600	ОК	456,741	440,951
К5	353,600	ОК	457,510	441,677
К8	119,000	ОК	197,203	199,844
К9	119,000	ОК	232,690	228,507
К10	455,600	ОК	586,836	567,614
K12	149,600	ОК	212,661	209,066
K13	251,600	ОК	296,104	290,318
K15	183,600	ОК	256,696	249,386
K16	353,600	ОК	426,428	412,291
K17	183,600	ОК	294,090	292,049
K17.A	115,600	ОК	180,008	180,387
К19	387,600	ОК	437,401	400,325
К20	115,600	ОК	166,767	166,804
K21	184,960	ОК	228,190	198,600

Πίνακας 7-18 Έλεγχος επάρκειας ενίσχυσης υποστυλωμάτων 2ου ορόφου έναντι V2 με σύνθετα υλικά

			Τελική Διατμ	ητική Αντοχή
			ΜΗ σεισμικοί συνδυασμοί	Σεισμικοί συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
К1	663,000	ОК	722,367	680,810
К2	183,600	ОК	249,509	203,373
К3	183,600	ОК	247,587	202,796
К4	183,600	ОК	249,267	203,300
К5	183,600	ОК	247,413	202,744
К6	663,000	ОК	723,321	681,096
К7	119,000	ОК	221,615	149,784
К8	663,000	ОК	719,216	679,865
К9	663,000	ОК	723,758	681,227
K10	149,600	ОК	221,003	171,021
K11	116,960	ОК	154,265	150,535
K12	251,600	ОК	287,865	262,480
K13	115,600	ОК	153,248	126,895
K14	119,000	ОК	222,434	150,030
K15	183,600	ОК	218,042	193,933
K16	183,600	ОК	247,531	202,779
K17	523,600	ОК	582,712	541,333

Πίνακας 7-19 Έλεγχος επάρκειας ενίσχυσης υποστυλωμάτων 2⁰ ορόφου έναντι ∨₃ με σύνθετα υλικά

			Τελική Διατμ	ητική Αντοχή
			ΜΗ σεισμικοί συνδυασμοί	Σεισμικοί συνδυασμοί
Ki	VjRd (KN)	ΕΛΕΓΧΟΣ	V _{Rd} (KN)	V _{Rd} (KN)
K1	119,000	ОК	191,923	140,877
K2	353,600	ОК	419,509	370,983
К3	353,600	ОК	417,587	370,378
К4	353,600	ОК	419,267	370,907
К5	353,600	ОК	417,413	370,323
К6	119,000	ОК	179,321	141,134
K7	1071,000	ОК	1173,615	1095,627
K8	119,000	ОК	175,216	140,029
К9	119,000	ОК	179,758	141,251
K10	455,600	ОК	527,003	473,414
K11	252,960	ОК	290,265	285,139
K12	149,600	ОК	185,865	161,455
K13	251,600	ОК	289,248	262,268
К14	1071,000	ОК	1174,434	1095,904
K15	183,600	ОК	218,042	193,933
K16	353,600	ОК	417,531	370,360
K17	183,600	ОК	242,712	205,337

Πίνακας 7-20 Έλεγχος ενίσχυσης υποστυλωμάτων 2°
υ ορόφου έναντι V2 με σύνθετα υλικά

7.6 Στατική μη γραμμική ανάλυση ενισχυμένου φορέα

7.6.1 Δεδομένα εισαγωγής για την ανελαστική ανάλυση του φορέα

Η προσομοίωση των στοιχείων που είναι πιθανό να συμπεριφερθούν μη γραμμικά κατά την ανελαστική ανάλυση του ενισχυμένου φορέα στο SAP 2000 v.15 γίνεται με τρόπο παρόμοιο με την προσομοίωση αυτών του υφιστάμενου. Οι θέσεις που αναμένεται να αναπτύξουν ανελαστική συμπεριφορά βρίσκονται στη βάση και την κορυφή των υποστυλωμάτων και στα άκρα και στο μέσο των δοκών. Ωστόσο, και πάλι στο SAP θα προσομοιωθούν μόνο οι πλαστικές αρθρώσεις των άκρων. Εφόσον τα υποστυλώματα και οι δοκοί έχουν διαφορετικά χαρακτηριστικά από όροφο σε όροφο θα διαφέρουν και οι πλαστικές αρθρώσεις καθ' ύψος του κτιρίου. Αρχικά, οι πλαστικές αρθρώσεις των δοκών δεν μεταβάλλονται διότι δεν έγινε κάποια ενίσχυση σε εκείνες, τα μεγέθη από τα οποία εξαρτώνται δεν αλλάζουν σε σχέση με τον υφιστάμενο φορέα και δεν υπάρχει αλλαγή στην απομείωση της δυσκαμψίας αυτών.

7.6.1.1 Μέσες αξονικές υποστυλωμάτων και τοιχωμάτων

Για κάθε κατακόρυφο στοιχείο θα πρέπει να προσδιοριστεί και να εισαχθεί στο πρόγραμμα το διάγραμμα αλληλεπίδρασης του υπό διαξονική κάμψη (M₂-M₃) και μεταβαλλόμενη αξονική (P). Όπως έγινε και στην ανελαστική ανάλυση του υφιστάμενου φορέα, έτσι και στον ενισχυμένο, θεωρούμε απλοποιητικά ότι τα στοιχεία διατηρούν σταθερή αξονική καθ' ύψος. Έτσι, προσδιορίζεται για κάθε υποστύλωμα το διαξονικό διάγραμμα αλληλεπίδρασης υπό σταθερή αξονική. Η αξονική αυτή βρίσκεται από τη μη γραμμική φόρτιση G+0.3Q-NO LINEAR και ισούται με το μέσο όρο της αξονικής του άνω και κάτω άκρου του στοιχείου. Παρακάτω παρατίθενται οι μέσες αξονικές των υποστυλωμάτων. Διευκρινίζεται ότι προσομοιώνονται από την αρχή μόνο τα μη γραμμικά χαρακτηριστικά των υποστυλωμάτων και τοιχωμάτων των οποίων μεταβάλλεται η αξονικήν δύναμη. (τάξη μεγέθους 10-15KN). Όπως φαίνεται και παρακάτω η μεταβολή των αξονικών δυνάμεων των υποστυλωμάτων και τοιχίων του δεύτερου ορόφου μεταβάλλονται ελάχιστα. Ακόμη, στον όροφο αυτό δεν προβλέφθηκαν μέτρα ενίσχυσης. Γι' αυτό και δεν προσομοιώθηκαν νέες πλαστικές αρθρώσεις, ούτε έγινε κάποια αλλαγή στην απομείωση της δυσκαμψίας των στοιχείων αυτού του ορόφου.

	Αξονική	N _{sd} (KN)				
Ti	Ισόγειο 1ος					
T1	-290,671	-94,504				
T2	-303,246	-108,212				
Т3	-283,08	-102,375				
T4	-205,394	-76,281				
T5	-301,908	-118,898				
Т6	-207,194	-102,556				
T7	-262,959	-108,164				

Πίνακας 7-21 Μέσες αξονικές νέων τοιχωμάτων

			Αξον	ική N _{sd}			
	ισο	γείου	1 ^{ou} 0	ρόφου	2 ^{ου} ορ	όφου	
Ki	Ενισχυμένος	Υφιστάμενος	Ενισχυμένος	Υφιστάμενος	Ενισχυμένος	Υφιστάμενος	
K1	-175,841	-167,848	-124,511 -35,701		-39,99	7,308	
K2	-516,011 -87,731		-263,456	-25,972	-57,15	6,311	
К3	-601,316	15,053	-289,213	3,21	-59,22	4,648	
К4	-594,657	-1,79	-299,185	-4,143	-58,938	4,13	
K5	-539,724	-84,046	-287,089	-26,605	-57,02	5,902	
К6	-170,627	-170,364	-129,194	-53,712	-38,939	7,23	
K7	-414,58	-14,189	-160,589	1,967	-50,262	18,222	
K8	-239,262	-183,101	-143,253	-60,964	-44,604	11,096	
К9	-837,087	-23,68	-411,49	-1,924	-73,394	18,115	
К10	-778,298	-2,255	-421,919	5,661	-60,362	11,934	
K11	-471,252	121,626	-311,08	54,269	-45,611	6,193	
K12	-81,811	-38,108	-88,586	4,188	-30,561	-0,277	
K13	-235,16	-14,526	-156,723	5,731	-28,665	-0,036	
K14	-337,775	-10,507	-205,355	10,339	-52,802	12,413	
K15	-39,821	-214,942	-44,256	-73,099	-28,939	3,463	
K16	-454,118	-63,614	-221,177	-24,262	-64,566	5,341	
K17	-530,012	10,054	-312,87	6,39	-45,957	7,882	
K17.A	-339,333	4,688	-202,736	6,952			
К18	-213,098	66,425	-122,332	40,913			
К19	-138,691	-7,579	-70,441	1,949			
К20	-267,885	6,031	-131,19	-0,638			
K21	-190,559	-58,508	-87,37	-23,147			

Πίνακας 7-22 Μέσες αξονικές δυνάμεις υφιστάμενων υποστυλωμάτων

7.6.1.2 Διαγράμματα αλληλεπίδρασης

Η δημιουργία των διαξονικών διαγραμμάτων αλληλεπίδρασης M₂-M₃ έγινε όπως στον υφιστάμενο, έτσι και τον ενισχυμένο στα MYAXIAL. Ακολουθούν τα αποτελέσματα για τους δυο ορόφους.

Υποστυλώματα ισογείου

							Σημείο 1		Σημείο 2		είο 3	Σημείο 4	
Ki	Διατομή	Αξονική (KN)	Η _{καθ} (m)	1/H (mm)	Angle Step	M _{yy}	Mzz	M _{yy}	M _{zz}	M _{yy}	Mzz	M _{yy}	M _{zz}
K1	40X120	-175,841	2,54	0,0003937	30	150,000	0,000	145,000	80,000	130,000	215,000	0,000	480,000
K2	55X30	-516,011	2,54	0,0003937	45	370,000	0,000	320,000	65,000	-	-	0,000	187,000
K5	55X30	-539,724	2,54	0,0003937	45	360,000	0,000	300,000	65,000	-	-	0,000	190,000
К6	40X120	-170,627	2,54	0,0003937	30	150,000	0,000	145,000	80,000	130,000	215,000	0,000	480,000
К8	20X100	-239,262	2,54	0,0003937	30	70,000	0,000	67,000	10,000	65,000	13,000	0,000	105,000
K11	60X40	-471,252	2,49	0,0004016	45	430,000	0,000	330,000	140,000	-	-	0,000	290,000
K15	30X30	-39,821	2,54	0,0003937	45	62,000	0,000	46,000	48,000	-	-	0,000	60,000
K16	55X30	-454,118	2,54	0,0003937	45	360,000	0,000	305,000	65,000	-	-	0,000	184,000
K18	50X60	-213,098	2,60	0,0003846	45	500,000	0,000	340,000	250,000	-	-	0,000	440,000
K21	30X40	-190,559	2,55	0,0003922	45	178,000	0,000	130,000	70,000	-	-	0,000	135,000

Πίνακας 7-23 Διαγράμματα αλληλεπίδρασης υποστυλωμάτων ισογείου

Υποστυλώματα 1^{ου} ορόφου

						Σημείο 1		Σημείο 2		Σημείο 3		Σημείο 4	
K _i	Διατομή	Αξονική (KN)	Η _{καθ} (m)	1/H (mm)	Angle Step	M _{yy}	M _{zz}						
К1	40X120	-124,511	2,54	0,0003937	30	140,000	0,000	145,000	80,000	130,000	215,000	0,000	480,000
К2	55X30	-263,456	2,54	0,0003937	45	280,000	0,000	300,000	65,000	-	-	0,000	187,000
К5	55X30	-287,089	2,54	0,0003937	45	300,000	0,000	300,000	65,000	-	-	0,000	178,000
К6	40X120	-129,194	2,54	0,0003937	30	140,000	0,000	145,000	80,000	130,000	215,000	0,000	480,000
К8	20X100	-143,253	2,54	0,0003937	30	68,000	0,000	66,000	10,000	64,000	24,000	0,000	100,000
K11	60X40	-311,08	2,49	0,0004016	45	415,000	0,000	320,000	140,000	-	-	0,000	280,000
K15	30X30	-44,256	2,54	0,0003937	45	62,000	0,000	46,000	48,000	-	-	0,000	60,000
K16	55X30	-221,177	2,54	0,0003937	45	340,000	0,000	296,000	65,000	-	-	0,000	174,000
K18	50X60	-122,332	2,60	0,0003846	45	480,000	0,000	345,000	250,000	-	-	0,000	420,000
K21	30X40	-87,37	2,55	0,0003922	45	170,000	0,000	130,000	70,000	-	-	0,000	125,000

Πίνακας 7-24 Διαγράμματα αλληλεπίδρασης υποστυλωμάτων 1°
υ ορόφου

^{7.6.1.3} Απομειωμένες δυσκαμψίες κατακόρυφων στοιχείων και στροφές διαρροής & αστοχίας αυτών

	μείωση 12)	1 ^{ou}	0,0732	0,1965	0,1990	0,0733	0,1829	0,1920	0,1639	0,1918	0,1408	0,1941
	K _{eff} /E _{clel} (I	ισογείου	0,0782	0,2304	0,2330	0,0780	0,1977	0,2091	0,1687	0,2237	0,1561	0,2214
	pl	1°U	0,0147	0,0067	0,0065	0,0147	0,0136	0,0092	0,0087	0,0072	0,0117	0,0101
	θu,	ισογείου	0,0145	0,0047	0,0047	0,0145	0,0128	0,0080	0,0086	0,0049	0,0112	0,0085
	ué ηνàι	100	0,0178	0,0159	0,0157	0,0178	0,0171	0,0163	0,0174	0,0162	0,0175	0,0171
	ΑπομειωΙ	ισογείου	0,0176	0,0140	0,0138	0,0176	0,0164	0,0154	0,0175	0,0145	0,0171	0,0159
		1^{ou}	0,0031	0,0092	0,0092	0,0031	0,0035	0,0071	0,0087	0,0091	0,0058	0,0070
	θγ	ισογείου	0,0031	0,0093	0,0092	0,0031	0,0036	0,0074	0,0089	0,0096	0,0060	0,0074
	้าหทุ่	noT	124,51	263,46	287,09	129,19	143,25	311,08	44,26	221,18	122,33	87,37
	Αξον	ισογείου	175,84	516,01	539,72	170,63	239,26	471,25	39,82	454,12	213,10	190,56
	όμενος	A _s ^{θλιβ.} (m ²)	0,0019	0,0013	0,0013	0,0019	0,0019	0,0019	0,0006	0,0013	0,0023	0,0010
ισμός	Θλιβ	d _b ^{θλιβ.}	10	20	20	10	10	16	20	20	16	16
ОпЛ	κυόμενος	$A_s^{\epsilon\phi}$. (m ²)	0,0019	0,0013	0,0013	0,0019	0,0019	0,0019	0,0006	0,0013	0,0023	0,0010
	Εφελι	d _b ^{εφ.}	10	20	20	10	10	16	20	20	16	16
		hXd	40X120	55X30	55X30	40X120	20X100	60X40	30X30	55X30	50X60	30X40
		Ki	K1	K2	K5	K6	K8	K11	K15	K16	K18	K21

Πίνακας 7-25 Νέα χαρακτηριστικά υποστυλωμάτων – Άξονας 2

			Οπλιο	νή											
		Εφελ	κυόμενος	Θλιξ	ξόμενος	Αξονι	kń N _{sd}	θγ		Απομειωι	tέvη θu	θu, p	1	K _{eff} /E	clel
Ki	ЧХЧ	d _b ^{ɛф.}	A _s ^{ɛф.} (m²)	d _b ^{θλιβ.}	A _{s^{θλιβ.} (m²)}	ισογείου	1 ⁰⁰	ισογείου	100	ισογείου	1 ⁰⁰	ισογείου	100	ισογείου	100
K1	40X120	10	0,0031	10	0,0031	175,84	124,51	0,0057	0,0055	0,0176	0,0178	0,0120	0,0123	0,195	0,187
K2	55X30	20	0,0013	20	0,0013	516,01	263,46	0,0068	0,0065	0,0140	0,0159	0,0072	0,0094	0,191	0,161
K5	55X30	20	0,0013	20	0,0013	539,72	287,09	0,0067	0,0065	0,0138	0,0157	0,0071	0,0092	0,192	0,163
K6	40X120	10	0,0031	10	0,0031	170,63	129,19	0,0057	0,0055	0,0176	0,0178	0,0120	0,0123	0,195	0,187
K8	20X100	10	0,0031	10	0,0031	239,26	143,25	0,0104	0,0104	0,0164	0,0171	0,0060	0,0067	0,426	0,409
K11	60X40	16	0,0015	16	0,0015	471,25	311,08	0,0061	0,0060	0,0154	0,0163	0,0093	0,0104	0,152	0,137
K15	30X30	20	0,0006	20	0,0006	39,82	44,26	0,0089	0,0087	0,0175	0,0174	0,0086	0,0087	0,169	0,164
K16	55X30	20	0,0013	20	0,0013	454,12	221,18	0,0068	0,0064	0,0145	0,0162	0,0077	0,0098	0,186	0,157
K18	50X60	16	0,0023	16	0,0023	213,10	122,33	0,0064	0,0062	0,0171	0,0175	0,0107	0,0113	0,172	0,157
K21	30X40	16	0,0010	16	0,0010	190,56	87,37	0,0089	0,0084	0,0159	0,0171	0,0070	0,0087	0,237	0,210

Πίνακας 7-26 Νέα χαρακτηριστικά υποστυλωμάτων - Άξονας 3

7.6.2 Καμπύλες αντίστασης φορέα

Για κάθε κατανομή φόρτισης και κάθε συνδυασμό ορίζουμε την επιβαλλόμενη μετακίνηση του κόμβου ελέγχου. Το ζητούμενο είναι επιβάλλουμε τόση μετακίνηση όση απαιτείται μέχρι να αστοχήσει εντελώς ένα στοιχείο.

Παρακάτω ακολουθούν πίνακες για κάθε συνδυασμό φόρτισης για **ιδιομορφική κατανομή** αρχικά με τον αριθμό των πλαστικών αρθρώσεων που δημιουργούνται σε κάθε βήμα και την τέμνουσα βάσης κάθε φόρα έτσι ώστε να προκύψει η καμπύλη αντίστασης του φορέα.

1) PI_X+0,3Y

TABLE: Pu	shover Curve -	PI_X+03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000081	0	211	2	2	0	0	0	0	0	215
1	0,000216	108	210	3	2	0	0	0	0	0	215
2	0,004048	2613	207	3	5	0	0	0	0	0	215
3	0,00913	5813	204	0	11	0	0	0	0	0	215
4	0,012616	7945	193	3	19	0	0	0	0	0	215
5	0,016014	9946	185	4	26	0	0	0	0	0	215
6	0,019419	11935	181	3	28	3	0	0	0	0	215
7	0,022807	13874	176	3	28	7	1	0	0	0	215
8	0,026271	15831	171	3	30	9	2	0	0	0	215
9	0,02979	17795	164	5	28	15	2	1	0	0	215
10	0,03632	21402	160	1	29	17	5	3	0	0	215
11	0,039953	23412	157	3	27	16	9	3	0	0	215
12	0,043415	24292	154	2	25	20	8	6	0	0	215
13	0,046765	25071	152	3	25	17	10	8	0	0	215
14	0,050081	25431	149	4	23	17	14	8	0	0	215

Πίνακας 7-27 Εξέλιξη Πλαστικών Αρθρώσεων - Συνδυασμός ΡΙ_Χ+0,3Υ

Σχήμα 7-8 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_Χ+Ο3Υ

Εικόνα 7-26 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_Χ+0,3Υ

2) PI_X-0,3Y

TABLE: Pu	shover Curve -	PI_X - 03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000081	0	211	2	2	0	0	0	0	0	215
1	0,000205	98	210	3	2	0	0	0	0	0	215
2	0,006	3763	207	2	6	0	0	0	0	0	215
3	0,00958	5941	203	2	10	0	0	0	0	0	215
4	0,014695	8933	193	1	19	2	0	0	0	0	215
5	0,018084	10890	188	3	20	4	0	0	0	0	215
6	0,022775	13556	184	1	21	7	2	0	0	0	215
7	0,02644	15608	175	6	24	7	2	1	0	0	215
8	0,030154	17651	170	3	22	14	4	2	0	0	215
9	0,033848	19656	164	5	22	14	7	3	0	0	215
10	0,03739	21568	160	4	22	18	6	5	0	0	215
11	0,041132	23327	157	5	22	18	5	8	0	0	215
12	0,044465	24266	156	4	23	16	8	8	0	0	215
13	0,048148	25182	153	4	24	13	13	8	0	0	215
14	0,050081	25400	151	4	22	15	15	8	0	0	215

Εικόνα 7-27 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_ Χ-0,3Υ

3) PIX·	+0,3Y										
TABLE: Pu	shover Curve -	PIX+03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000081	0	211	2	2	0	0	0	0	0	215
1	0,000197	211	210	1	4	0	0	0	0	0	215
2	0,004255	2721	208	0	7	0	0	0	0	0	215
3	0,008381	5226	203	1	11	0	0	0	0	0	215
4	0,01384	8437	195	1	19	0	0	0	0	0	215
5	0,019355	11572	185	1	25	3	1	0	0	0	215
6	0,023307	13775	182	2	22	6	3	0	0	0	215
7	0,027661	16180	178	1	17	16	1	2	0	0	215
8	0,031293	18170	170	5	16	19	2	3	0	0	215
9	0,035283	20323	163	5	22	14	6	5	0	0	215
10	0,039022	22289	162	5	19	16	7	6	0	0	215
11	0,044989	23439	159	4	20	14	10	8	0	0	215
12	0,048977	24115	151	7	20	16	12	9	0	0	215
13	0,049919	24301	151	6	20	15	14	9	0	0	215

Πίνακας 7-29 Εξέλιξη πλαστικών αρθρώσεων - Συνδυασμός PI_-X+0,3Y

Σχήμα 7-10 Καμπύλη αντίστασης φορέα - Συνδυασμός PI_-X+0,3Y

Σχήμα 7-11 Πλαστικές αρθρώσεις φορέα - Συνδυασμός PI_-X+0,3Y

4) PI_-X-0,3Y

TABLE: PL	shover Curve -	PIX-03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,000081	0,000	211	2	2	0	0	0	0	0	215
1	0,00019	211,767	210	1	4	0	0	0	0	0	215
2	0,003647	2411,870	206	2	7	0	0	0	0	0	215
3	0,009116	5789,888	201	1	13	0	0	0	0	0	215
4	0,012553	7874,991	193	4	18	0	0	0	0	0	215
5	0,016431	10159,110	186	3	24	2	0	0	0	0	215
6	0,019862	12135,279	179	3	28	5	0	0	0	0	215
7	0,023235	14068,397	174	3	31	5	2	0	0	0	215
8	0,028002	16757,993	167	2	27	17	1	1	0	0	215
9	0,03198	18963,866	161	2	29	17	4	2	0	0	215
10	0,037746	22136,387	160	1	27	17	7	3	0	0	215
11	0,041832	24379,475	155	3	23	19	10	5	0	0	215
12	0,046564	25901,216	150	2	23	22	10	8	0	0	215
13	0,049897	26377,895	148	4	22	20	12	9	0	0	215
14	0,049919	26459,715	148	4	22	20	12	9	0	0	215

Πίνακας 7-30 Εξέλιξη πλαστικών αρθρώσεων - Συνδυασμός PI_-X-0,3Y

Εικόνα 7-32 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_-Χ-0,3Υ

5) PI_0,3X+Y

TABLE: Pu	shover Curve -	PI_03X+Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00032	0,000	211	2	2	0	0	0	0	0	215
1	0,000526	169,528	210	3	2	0	0	0	0	0	215
2	0,003532	2708,570	205	3	7	0	0	0	0	0	215
3	0,006431	5104,367	199	3	13	0	0	0	0	0	215
4	0,010413	8371,729	191	2	21	1	0	0	0	0	215
5	0,013398	10783,540	181	4	28	2	0	0	0	0	215
6	0,016654	13428,251	172	2	32	7	2	0	0	0	215
7	0,019864	16091,734	165	1	32	15	2	0	0	0	215
8	0,022731	18458,924	163	1	30	16	4	1	0	0	215
9	0,025991	21138,157	161	1	23	21	8	1	0	0	215
10	0,029136	23674,252	158	1	17	25	11	3	0	0	215
11	0,032003	26052,566	151	5	17	19	19	4	0	0	215
12	0,034942	27485,351	147	4	19	17	23	5	0	0	215
13	0,038163	28198,762	141	6	19	17	22	10	0	0	215
14	0,04032	28670,352	140	4	20	16	21	14	0	0	215

Πίνακας 7-33 Εξέλιξη πλαστικών αρθρώσεων - Συνδυασμός PI_0,3X+Y

Σχήμα 7-12 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_0,3Χ+Υ

Εικόνα 7-28 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_0,3Χ+Υ

6) PI_0,3X-Y

TABLE: Pu	shover Curve -	PI_03X-Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00032	0	211	2	2	0	0	0	0	0	215
1	0,001036	935	210	3	2	0	0	0	0	0	215
2	0,003787	2.829	202	7	5	1	0	0	0	0	215
3	0,007841	5.575	192	2	18	3	0	0	0	0	215
4	0,010762	7.540	189	3	17	5	1	0	0	0	215
5	0,013934	9.658	185	4	16	6	4	0	0	0	215
6	0,017495	12.000	183	2	14	9	5	2	0	0	215
7	0,020692	14.087	182	3	13	8	6	3	0	0	215
8	0,023418	15.855	178	5	11	11	4	6	0	0	215
9	0,027258	18.357	172	3	16	9	9	6	0	0	215
10	0,030056	20.174	168	5	18	8	8	8	0	0	215
11	0,033222	22.246	166	7	16	9	7	10	0	0	215
12	0,036275	23.269	161	9	17	8	8	12	0	0	215
13	0,039094	24.134	158	10	16	9	8	13	1	0	215
14	0,03968	24.316	156	10	18	9	8	13	0	1	215

Πίνακας 7-34 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός ΡΙ_0,3Χ-Υ

Σχήμα 7-13 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_0,3-Υ

Εικόνα 7-29 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_0,3Χ-Υ

7) PI_-0,3X+Y

TABLE: Pu	shover Curve -	PI03X+Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00032	0	211	2	2	0	0	0	0	0	215
1	0,001471	795	210	1	4	0	0	0	0	0	215
2	0,004542	2.902	204	3	8	0	0	0	0	0	215
3	0,007629	4.980	196	1	17	1	0	0	0	0	215
4	0,010512	6.921	192	1	20	2	0	0	0	0	215
5	0,013854	9.155	188	1	17	7	2	0	0	0	215
6	0,019136	12.618	182	2	18	8	4	1	0	0	215
7	0,021946	14.443	180	3	15	7	7	3	0	0	215
8	0,025712	16.896	175	4	16	10	4	6	0	0	215
9	0,029351	19.286	172	4	15	12	5	7	0	0	215
10	0,032242	21.183	166	7	18	10	5	9	0	0	215
11	0,034908	22.924	165	6	18	11	6	9	0	0	215
12	0,038135	23.525	159	9	17	10	8	12	0	0	215
13	0,04032	23.660	154	11	19	8	9	13	0	1	215

Σχήμα 7-14 Καμπύλη αντίστασης φορέα - Συνδυασμός ΡΙ_-03Χ+Υ

Εικόνα 7-30 Πλαστικές αρθρώσεις φορέα - Συνδυασμός PI_-0,3X+Y

8) PI_-0,3X-Y

TABLE: Pu	shover Curve -	PI03X-Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00032	0	211	2	2	0	0	0	0	0	215
1	0,000586	270	210	2	3	0	0	0	0	0	215
2	0,00423	3.825	202	1	11	1	0	0	0	0	215
3	0,00768	6.702	192	1	21	1	0	0	0	0	215
4	0,011425	9.747	186	1	23	5	0	0	0	0	215
5	0,01421	12.018	178	2	27	5	3	0	0	0	215
6	0,017045	14.347	169	2	31	9	4	0	0	0	215
7	0,020428	17.112	165	1	30	13	5	1	0	0	215
8	0,023832	19.894	163	1	21	23	6	1	0	0	215
9	0,026601	22.137	162	1	15	28	6	3	0	0	215
10	0,029937	24.902	154	2	16	23	17	3	0	0	215
11	0,033007	27.428	149	4	17	17	23	5	0	0	215
12	0,036074	29.983	146	3	19	14	26	7	0	0	215
13	0,039526	30.920	142	3	20	14	21	15	0	0	215
14	0,03968	31.054	142	3	20	13	20	17	0	0	215

Πίνακας 7-36 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός PI_-0,3X-Y

Εικόνα 7-31 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΡΙ_-0,3Χ-Υ

Παρακάτω ακολουθούν πίνακες για κάθε συνδυασμό φόρτισης για **ομοιόμορφη κατανομή** αρχικά με τον αριθμό των πλαστικών αρθρώσεων που δημιουργούνται σε κάθε βήμα και την τέμνουσα βάσης κάθε φόρα έτσι ώστε να προκύψει η καμπύλη αντίστασης του φορέα.

1) OM_X+0,3Y

TABLE: Pu	shover Curve -	OM_X+03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,00008	0	211	2	2	0	0	0	0	0	215
1	0,000129	193	210	1	4	0	0	0	0	0	215
2	0,00352	2.676	206	1	8	0	0	0	0	0	215
3	0,008145	5.942	203	1	11	0	0	0	0	0	215
4	0,012076	8.652	194	2	19	0	0	0	0	0	215
5	0,015541	10.980	187	3	24	1	0	0	0	0	215
6	0,020193	13.906	173	3	34	5	0	0	0	0	215
7	0,024041	16.262	169	2	34	10	0	0	0	0	215
8	0,027489	18.348	166	1	31	14	3	0	0	0	215
9	0,031285	20.576	161	2	27	21	4	0	0	0	215
10	0,035024	22.690	153	2	29	26	5	0	0	0	215
11	0,038792	24.653	151	0	28	24	11	1	0	0	215
12	0,042913	25.794	149	2	17	30	14	3	0	0	215
13	0,048081	26.447	146	1	12	30	19	7	0	0	215
14	0,04992	26.586	144	0	14	27	20	10	0	0	215

Σχήμα 7-16 Καμπύλη αντίστασης φορέα - Συνδυασμός ΟΜ_X+0,3Υ

Εικόνα 7-32 Πλαστικές αρθρώσεις φορέα - Συνδυασμός OM_X+0,3Y

2) OM_X-0,3Y

TABLE: Pu	shover Curve -	OM_X - 03Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0,0008	0	211	2	2	0	0	0	0	0	215
1	0,000122	171	210	1	4	0	0	0	0	0	215
2	0,002784	1.982	207	2	6	0	0	0	0	0	215
3	0,005536	3.809	202	1	12	0	0	0	0	0	215
4	0,008281	5.551	196	2	17	0	0	0	0	0	215
5	0,011398	7.437	192	1	22	0	0	0	0	0	215
6	0,01509	9.586	183	1	30	1	0	0	0	0	215
7	0,018233	11.350	178	2	31	4	0	0	0	0	215
8	0,021927	13.388	174	1	27	13	0	0	0	0	215
9	0,024428	14.738	165	6	23	19	2	0	0	0	215
10	0,026863	15.992	156	3	33	18	5	0	0	0	215
11	0,02973	17.352	151	1	36	19	8	0	0	0	215
12	0,033129	17.772	149	0	35	16	13	2	0	0	215
13	0,03492	17.904	148	0	30	20	15	2	0	0	215

Σχήμα 7-17 Καμπύλη αντίστασης φορέα - Συνδυασμός ΟΜ_Χ-0,3Υ

3) OM_-X+0,3Y

TABLE: Pushover Curve - OMX+03Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00008	0	211	2	2	0	0	0	0	0	215	
1	0,000239	137	210	3	2	0	0	0	0	0	215	
2	0,003827	2.615	206	5	4	0	0	0	0	0	215	
3	0,006619	4.493	200	3	12	0	0	0	0	0	215	
4	0,009399	6.266	194	3	18	0	0	0	0	0	215	
5	0,01239	8.075	189	3	23	0	0	0	0	0	215	
6	0,015719	10.019	180	1	32	2	0	0	0	0	215	
7	0,018498	11.567	173	2	35	5	0	0	0	0	215	
8	0,021165	13.032	172	2	31	10	0	0	0	0	215	
9	0,024518	14.824	168	1	28	16	2	0	0	0	215	
10	0,027649	16.441	160	3	27	20	5	0	0	0	215	
11	0,03053	17.592	150	6	29	22	8	0	0	0	215	
12	0,033325	18.142	148	2	32	18	13	2	0	0	215	
13	0,035992	18.440	148	0	25	22	18	2	0	0	215	
14	0,04008	18.705	147	0	18	24	21	5	0	0	215	

Σχήμα 7-18 Καμπύλη αντίστασης φορέα - Συνδυασμός OM_-X+0,3Y

Εικόνα 7-33 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-Χ+0,3Υ

4) OM_-X-0,3Y

TABLE: Pushover Curve - OMX-03Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00008	0	211	2	2	0	0	0	0	0	215	
1	0,000214	126	210	3	2	0	0	0	0	0	215	
2	0,002791	2.052	206	5	4	0	0	0	0	0	215	
3	0,006255	4.593	205	3	7	0	0	0	0	0	215	
4	0,009004	6.560	203	3	9	0	0	0	0	0	215	
5	0,012105	8.706	194	2	19	0	0	0	0	0	215	
6	0,014933	10.608	189	2	24	0	0	0	0	0	215	
7	0,0175	12.263	178	5	31	1	0	0	0	0	215	
8	0,020187	13.931	172	2	37	4	0	0	0	0	215	
9	0,022721	15.488	172	0	36	7	0	0	0	0	215	
10	0,026159	17.580	168	1	35	11	0	0	0	0	215	
11	0,030416	20.110	165	0	29	18	3	0	0	0	215	
12	0,033052	21.145	158	3	33	16	5	0	0	0	215	
13	0,03564	22.081	154	2	29	22	8	0	0	0	215	
14	0,03808	22.554	153	0	29	20	13	0	0	0	215	

Εικόνα 7-35 Καμπύλη αντίστασης φορέα - Συνδυασμός ΟΜ_-Χ-0,3Υ

Εικόνα 7-36 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-Χ-0,3Υ

TABLE: Pushover Curve - PI_03X+Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00032	0	211	2	2	0	0	0	0	0	215	
1	0,000676	730	210	3	2	0	0	0	0	0	215	
2	0,003157	2.544	206	5	4	0	0	0	0	0	215	
3	0,00528	4.045	199	9	7	0	0	0	0	0	215	
4	0,00743	5.494	195	4	16	0	0	0	0	0	215	
5	0,0105	7.508	192	2	20	1	0	0	0	0	215	
6	0,012989	9.086	187	3	23	2	0	0	0	0	215	
7	0,015802	10.846	185	2	26	2	0	0	0	0	215	
8	0,017802	12.092	184	2	27	2	0	0	0	0	215	
9	0,02042	13.678	182	1	27	5	0	0	0	0	215	
10	0,022767	15.086	179	4	23	9	0	0	0	0	215	
11	0,025754	16.878	176	3	25	10	1	0	0	0	215	
12	0,027788	17.313	173	2	25	14	1	0	0	0	215	
13	0,02968	17.533	172	2	24	16	1	0	0	0	215	

5) OM_0,3X+Y

Πίνακας 7-40 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα – Συνδυασμός ΟΜ_0,3X+Y

6) OM_0,3X-Y

TABLE: Pushover Curve - PI_03X-Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00032	0	211	2	2	0	0	0	0	0	215	
1	0,000881	359	210	1	4	0	0	0	0	0	215	
2	0,004194	2.429	207	2	6	0	0	0	0	0	215	
3	0,006816	3.953	200	2	13	0	0	0	0	0	215	
4	0,009321	5.314	199	0	16	0	0	0	0	0	215	
5	0,012768	7.161	196	1	18	0	0	0	0	0	215	
6	0,015531	8.627	192	1	22	0	0	0	0	0	215	
7	0,020152	10.982	185	1	24	5	0	0	0	0	215	
8	0,022619	12.193	179	3	24	9	0	0	0	0	215	
9	0,025389	13.418	176	2	27	10	0	0	0	0	215	
10	0,029986	15.358	174	1	27	11	2	0	0	0	215	
11	0,033702	15.906	173	1	25	9	7	0	0	0	215	
12	0,03532	16.074	173	1	20	13	8	0	0	0	215	

Πίνακας 7-41 Εξέλιξη πλαστικών αρθρώσεων - Συνδυασμός ΟΜ_0,3Χ-Υ

Σχήμα 7-20 Καμπύλη αντίστασης φορέα - Συνδυασμός ΟΜ_0,3Χ-Υ

Εικόνα 7-38 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_0,3Χ-Υ

7) OM_-0,3X+Y

TABLE: Pushover Curve - PI03X+Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00032	0	211	2	2	0	0	0	0	0	215	
1	0,000157	308	210	3	2	0	0	0	0	0	215	
2	0,002831	1.997	208	4	3	0	0	0	0	0	215	
3	0,006146	3.963	199	5	11	0	0	0	0	0	215	
4	0,01068	6.448	196	3	15	1	0	0	0	0	215	
5	0,013352	7.858	191	3	20	1	0	0	0	0	215	
6	0,016116	9.302	188	2	22	3	0	0	0	0	215	
7	0,018803	10.658	185	2	22	5	1	0	0	0	215	
8	0,022043	12.275	181	2	21	10	1	0	0	0	215	
9	0,025374	13.778	175	2	25	12	1	0	0	0	215	
10	0,030228	15.777	172	0	27	12	4	0	0	0	215	
11	0,033204	16.297	169	1	27	10	8	0	0	0	215	
12	0,037306	16.636	166	1	25	13	9	1	0	0	215	
13	0,03968	16.848	165	0	21	15	13	1	0	0	215	

Πίνακας 7-42 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός OM_-0,3X+Y

Εικόνα 7-39 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-0,3X+Υ

8) OM_-0,3X-Y

TABLE: Pushover Curve - PI03X+Y												
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total	
	m	KN										
0	-0,00032	0	211	2	2	0	0	0	0	0	215	
1	0,000158	308	210	3	2	0	0	0	0	0	215	
2	0,002831	1.996	208	4	3	0	0	0	0	0	215	
3	0,006147	3.964	199	5	11	0	0	0	0	0	215	
4	0,010678	6.446	196	3	15	1	0	0	0	0	215	
5	0,013352	7.858	191	3	20	1	0	0	0	0	215	
6	0,016115	9.300	188	2	22	3	0	0	0	0	215	
7	0,018809	10.659	185	2	22	5	1	0	0	0	215	
8	0,022031	12.267	181	2	21	10	1	0	0	0	215	
9	0,025329	13.726	175	2	25	12	1	0	0	0	215	
10	0,030148	15.738	172	0	27	12	4	0	0	0	215	
11	0,033292	16.923	169	1	26	11	8	0	0	0	215	
12	0,037344	17.441	166	1	25	12	10	1	0	0	215	
13	0,03968	17.737	165	0	21	15	13	1	0	0	215	

Πίνακας 7-43 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα - Συνδυασμός OM_-0,3X-Y

Εικόνα 7-40 Πλαστικές αρθρώσεις φορέα - Συνδυασμός ΟΜ_-0,3Χ-Υ

7.6.3 Υπολογισμός στοχευόμενης μετακίνησης

Καμτ	τύλη Αντίσ	πασης	Διγραμμικ	ή Καμπύλη	Αντίστασης			
-dx	V	Area		V	dx			
-8,1E-05	0	-		0	0			
0,000216	108,134	0,016058	0,60*Vy	12690,000	0,020549			
0,004048	2612,586	5,212900	Vy	21150,000	0,034248			
0,00913	5812,817	21,408949	Vmax	25430,626	0,0501			
0,012616	7945,459	23,980675	Area		730,92238			
0,016014	9945,811	30,397268	K	(e	617546,163			
0,019419	11934,72	37,251607	α*	'Ke	270368,733			
0,022807	13874,47	43,720764		α	0,438			
0,026271	15830,53	51,449055	K	(0	364087,542			
0,02979	17794,9	59,163946	Т		0,224			
0,03632	21402,22	127,978600	Те		0,17200			
0,039953	23412,09	81,405203						
0,043415	24292,11	82,575968						
0,046765	25071,07	82,683310	Αριθμός	Ορόφων	2			
0,050081	25430,63	83,731804	C	ò	1,2			
Total	Area	730,97611	Т	۲ с	0,5	(ЕС8-1Е.П.П.3)		
			Se	(Te)	10,80000	(ΕC8-1παρ	.3.2.2.2)	
			¢	De	12,96000			
			Vy	/w	0,15	(0,10πλαια	πακό/0,15	μεικτό)
			C	m	0,85			
				R	7,48624			
			(21	2,65232			
			(2	1,30000	(κανέπε	Π.Σ5.1Σελ.	5-37)
			0	3	1,0			
			δt	(m)	0,033485			

Εικόνα 7-41 Διαδικασία υπολογισμού στοχευόμενης μετακίνησης

Σχήμα 7-23 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_X+0,3Y

Σχήμα 7-24 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_X-0,3Y

Σχήμα 7-25 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_-X+0,3Y

Σχήμα 7-26 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_-X-0,3Y

Σχήμα 7-27 Καμπύλες αντίστασης - Διεύθυνση Υ - Ιδιομορφική Κατανομή

Σχήμα 7-28 Διγραμμικοποίηση Καμπύλης αντίστασης συνδυασμού ID_0.3X+Y

Σχήμα 7-29 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_0.3X-Y

Σχήμα 7-30 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού ID_-0.3X+Y

Σχήμα 7-31 Διγραμμικοποίηση Καμπύλης αντίστασης συνδυασμού ID_-0.3X-Y

Σχήμα 7-32 Καμπύλες αντίστασης -Διεύθυνση Χ - Ομοιόμορφη κατανομή

Σχήμα 7-33 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού OM_X+0,3Y

Σχήμα 7-34 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού OM_X-0,3Y

Σχήμα 7-35 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού OM_-X+0,3Y

Σχήμα 7-36 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού OM_-X-0,3Y

Σχήμα 7-37 Διγραμμικοποίηση καμπύλης αντίστασης συνδυασμού OM_0,3X+Y

Σχήμα 7-38 Διγραμμικοποίηση Καμπύλης αντίστασης συνδυασμού ΟΜ_0,3Χ-Υ

Σχήμα 7-39 Διγραμμικοποίηση Καμπύλης αντίστασης συνδυασμού ΟΜ_-0,3X+Y

Σχήμα 7-40 Διγραμμικοποίηση Καμπύλης Αντίστασης συνδυασμού 0M_-0,3X-Y

Παρατίθενται συνοπτικά οι συνδυασμοί φόρτισης και οι στοχευόμενες μετακινήσεις που προέκυψαν για καθένα απ' αυτούς.

Συνδυασμός φόρτισης	Ιδιομορφική Κατανομή	Ομοιόμορφη κατανομή
1. X+0,3Y	3,35cm	5,07cm
2. X-0,3Y	3,26cm	5,06cm
3. –X+0,3Y	5,01cm	3,52cm
4. –X-0,3Y	4,99cm	3,29cm
5. 0,3X+Y	3,54cm	5,33cm
6. 0,3X-Y	5,27cm	3,65cm
70,3X+Y	4,24cm	5,16cm
80,3X-Y	3,03cm	5,42cm

7.6.4 Συμπεράσματα ανελαστικής ανάλυσης ενισχυμένου κτιρίου

Η παραπάνω μη γραμμική ανάλυση του ενισχυμένου φορέα αποδεικνύει μεν την βελτίωση της συμπεριφοράς του κτιρίου σε σχέση με πριν, αλλά δεν είναι ικανή να δώσει πάλι αξιόπιστα αποτελέσματα όσον αφορά την μετελαστική συμπεριφορά του κτιρίου, αφού το λογισμικό προσομοίωσης αντιμετωπίζει σοβαρά αριθμητικά προβλήματα μετά την εμφάνιση της πρώτης κίτρινης πλαστικής άρθρωσης. Επιπρόσθετα, δεν μπορεί να αγνοήσει κανείς τη μεγάλη συμβολή της στρεπτικής ταλάντωσης του φορέα η οποία συνυπάρχει με τη δεσπόζουσα μεταφορική κατά Χ.

7.6.5 Τροποποιημένες καμπύλες αντίστασης φορέων

Σ' αυτό το σημείο, προκειμένου να εξάγουμε μια καμπύλη αντίστασης με σημαντικά μεγαλύτερο μετελαστικό κλάδο, ιδίως για τις ανάγκες εφαρμογής της μεθοδολογίας HAZUS αλλά και την σύγκριση των φορέων (υφιστάμενος- ενισχυμένος), αποφασίζουμε να επεκτείνουμε το σημείο αστοχίας των πλαστικών αρθρώσεων (Ε), αγνοώντας την πτώση έπειτα από τον σημείο C. Έτσι, προσομοιώνουμε τη συμπεριφορά όλων των πλαστικών αρθρώσεων μέσω του οριζόντιου και σταθερού τους μόνο κλάδου.

7.6.5.1 Καμπύλες αντίστασης υφιστάμενου φορέα

Σχήμα 7-41 Καμπύλη αντίστασης υφιστάμενου φορέα - Διεύθυνση Χ

Σχήμα 7-42 Διγραμμικοποιημένη καμπύλη αντίστασης υφιστάμενου φορέα - Διεύθυνση Χ

Σχήμα 7-43 Καμπύλη αντίστασης υφιστάμενου φορέα - Διεύθυνση Υ

Σχήμα 7-44 Διγραμμικοποιημένη καμπύλη αντίστασης υφιστάμενου φορέα - Διεύθυνση Υ

7.6.5.2 Καμπύλες αντίστασης ενισχυμένου φορέα

Σχήμα 7-45 Καμπύλη αντίστασης ενισχυμένου φορέα - Διεύθυνση Χ

Σχήμα 7-46 Διγραμμικοποιημένη καμπύλη αντίστασης ενισχυμένου φορέα - Διεύθυνση Χ

7.6.5.3 Συμπεράσματα – Σύγκριση φορέων

Από τις παραπάνω διγραμμικοποιήσεις των καμπυλών αντίστασης του υφιστάμενου και του ενισχυμένου φορέα προκύπτουν οι εξής στοχευόμενες μετακινήσεις. Είναι προφανές ότι στον ενισχυμένο φορέα η στοχευόμενη μετακίνηση προκύπτει πολύ μικρότερη, αφού και ο φορέας έχει γίνει πλέον πιο δύσκαμπτος.

Στοχευόμενη μετακίνηση	Διεύθυνση Χ	Διεύθυνση Υ
Υφιστάμενος	9,3cm	9,9cm
Ενισχυμένος	5,4cm	6,2cm

Πινακάς 7-44 Ζιθχευθμένες μειακινήθεις φυρέων πριν & μεια την ενιοχυ	Πίνακας 7-44	Στοχευόμενες	μετακινήσεις	φορέων πρ	ιν &	μετά την	ενίσχυσι
--	--------------	--------------	--------------	-----------	------	----------	----------

Σχήμα 7-49 Καμπύλες αντίστασης φορέα πριν & μετά την ενίσχυση -Διεύθυνση Χ

Στη διεύθυνση Χ φαίνεται ότι υπήρξε σημαντική αύξηση της αντοχής του φορέα, της δυσκαμψίας του, αλλά και της πλαστιμότητας. Παρόμοια εικόνα εμφανίζει το κτίριο και στη διεύθυνση Υ. Ωστόσο, η αντοχή του δεν αυξήθηκε πολύ. Αυτό συνέβη επειδή εξαρχής το κτίριο είχε μεγαλύτερη αντοχή σ΄ αυτή τη διεύθυνση και γι' αυτό το λόγο δεν προσανατολίσαμε πολλά τοιχεία σ' αυτή.

8 Αξιολόγηση βλαβών κτιρίου με τη μέθοδο HAZUS

8.1 Ανάγκη εκτίμησης σεισμικής διακινδύνευσης

Κάθε φορά που συμβαίνει μια φυσική καταστροφή, όπως η πρόσφατη των σεισμών στην Κεφαλλονιά, έρχονται στο φως όλες οι αδυναμίες τόσο από πλευράς κρατικού μηχανισμού, που αδυνατεί να αντιδράσει και να προστατεύσει τον πολίτη, όσο φυσικά και των ίδιων των ιδιοκτητών κατοικιών και επιχειρήσεων να αντιμετωπίσουν μια πιθανή καταστροφή στην περιουσία τους. Επίσης, σε κάθε περίπτωση αναζητούνται ευθύνες στους μελετητές, τους κατασκευαστές, την πολιτεία κ.ά. για το ποιος φταίει για τις ζημιές που προκλήθηκαν. Υποδομές στρατηγικής σημασίας, όπως, κυβερνητικά κτίρια, αεροδρόμια, γέφυρες και κεντρικές εγκαταστάσεις μεγάλων εταιρειών αποτελούν συχνά στόχο τρομοκρατικών ενεργειών. Επίσης, βλάβες σε τέτοιες υποδομές μπορεί να καταγραφούν μετά από φυσικές καταστροφές.

Η διαδικασία της αξιολόγησης βλαβών σε κατασκευές μέχρι σήμερα, όποια και αν είναι η γενεσιουργός αιτία, βασίζεται κυρίως στην επιθεώρηση από εξειδικευμένους μηχανικούς. Οι κατασκευές, εν γένει, μετά από ισχυρές καταπονήσεις φθάνουν ή ξεπερνάνε τα όρια αντοχής ή λειτουργικότητάς τους, εκδηλώνοντας βλάβες που μπορεί να είναι είτε ορατές και εντοπίσιμες, είτε υπαρκτές, αλλά χωρίς να εκδηλωθούν έντονα σημάδια φθοράς στην κατασκευή. Όταν οι βλάβες στις κατασκευές είναι τέτοιου βαθμού που δεν επιτρέπουν ασφαλή συμπεράσματα ως προς την καταπόνηση των κατασκευών, είναι υποχρεωτική η περαιτέρω μελέτη και ανάλυσή τους, με αποτέλεσμα να καθίσταται η πληγείσα κατασκευή μη λειτουργική για μεγάλο χρονικό διάστημα.

Προβάλλει, λοιπόν, επιτακτική η ανάγκη ύπαρξης ενός ορθολογιστικού εργαλείου στη διάθεση των επαγγελματικών ομάδων που εργάζονται προς την κατεύθυνση άμβλυνσης των επιπτώσεων του σεισμικού φαινομένου. Η αξιόπιστη και συνεχής καταγραφή βλαβών στις κατασκευές μέσω ενός τέτοιου συστήματος ελέγχου θα μπορούσε να αποτελέσει μια αποτελεσματική λύση για την αντιμετώπιση πολλών προβλημάτων και να προσφέρει σημαντικά αποτελέσματα, τόσο για την κοινωνία όσο και για την οικονομία, όπως συνοψίζονται παρακάτω:

- 🖊 Οι εργασίες επισκευών σε περίπτωση καταστροφών θα ξεκινούν πολύ νωρίτερα.
- Τα συνεργεία εκτάκτου ανάγκης θα έχουν στη διάθεσή τους σημαντικές πληροφορίες σχετικά με την κατάσταση των ζημιών σε εγκαταστάσεις.
- Το κόστος των καταστροφών αναμένεται να μειωθεί, καθώς θα αποφεύγεται έγκαιρα η κατάρρευση επιρρεπών υποδομών, προστατεύοντας έτσι γειτονικές κατασκευές αλλά και διαφυλάττοντας την ασφάλεια των πολιτών σε περιπτώσεις πυκνοκατοικημένων περιοχών.
- 븆 Θα γίνεται πιο γρήγορα γνωστή η ανάγκη κατεδάφισης εγκαταστάσεων.
- Η γνώση της στατικής κατάστασης των υποδομών θα μειώσει το χρονικό διάστημα που τα κτίρια παραμένουν μη λειτουργικά και ταυτόχρονα τις οικονομικές απώλειες από την παύση των δραστηριοτήτων τους.
- Θα γίνεται άμεση εκτίμηση της κατάστασης κρίσιμων κρατικών υποδομών (π.χ. νοσοκομεία, υπουργεία, κ.τ.λ.) ούτως ώστε να τίθενται πιο γρήγορα στη διάθεση των αρχών στα πλαίσια αντιμετώπισης κρίσεων.

Ένας τρόπος κωδικοποίησης των σεισμικών απωλειών επιτυγχάνεται με την χρήση της έννοιας « Σεισμική Διακινδύνευση » (Seismic Risk). Η σεισμική διακινδύνευση αποτελεί μια έκφραση του αναμενόμενου βαθμού απωλειών όλων των υπό διακινδύνευση στοιχείων. Η αποτίμηση σε όρους διακινδύνευσης επιτρέπει τον προσδιορισμό των εν γένει απωλειών (άμεσων ή έμμεσων) φέρει όμως το μειονέκτημα του δυσχερώς αξιοποιήσιμου αποτελέσματος με την μάλλον ποιοτική παρά ποσοτική απεικόνιση που παρέχει. Για την ποσοτική της έκφραση έχουν διατυπωθεί ποικίλες προτάσεις, όλες όμως έχουν γνώμονα την εξάρτηση από τον Σεισμικό Κίνδυνο (Seismic Hazard) και την Τρωτότητα (Vulnerability). Σε μία πιθανοτικού τύπου διαδικασία αποτίμησης, όπως είναι η ανάλυση τρωτότητας, το ζητούμενο είναι η εκτίμηση του πιθανού (αναμενόμενου) βαθμού των απωλειών ή των βλαβών. Η σχέση που συνδέει την πιθανότητα υπέρβασης μίας συγκεκριμένης στάθμης βλάβης (εκφρασμένης μέσω μιας κατάλληλης παραμέτρου βλάβης) για δεδομένη στάθμη της σεισμικής έντασης ονομάζεται πιθανοτική καμπύλη τρωτότητας (fragility curve), και αποτελεί τον συνηθέστερο τρόπο έκφρασης της σεισμικής τρωτότητας μίας κατασκευής.

8.2 Μεθοδολογία HAZUS

8.2.1 Γενικά

Στην παρούσα διπλωματική εργασία γίνεται μια προσπάθεια προσδιορισμού του βαθμού των βλαβών του υφιστάμενου και ενισχυμένου κτιρίου για δεδομένη στάθμη σεισμικής έντασης μέσω της προτεινόμενης από το αμερικανικό ομοσπονδιακό γραφείο διαχείρισης εκτάκτων αναγκών (Federal Emergency Management Agency-FEMA), μεθόδου που υιοθετεί την μεθοδολογία του ινστιτούτου κτιριακών επιστημών (National Institute of Building Sciences-NIBS) των ΗΠΑ. Η FEMA/NIBS μεθοδολογία εκτίμησης βλαβών, γνωστή ως HAZUS, είναι μια σύνθετη συλλογή στοιχείων που σκοπό έχει να εκτιμήσει τις λειτουργικές απώλειες και τις οικονομικές επιπτώσεις σε μια περιοχή λόγω ενός σεισμικού σεναρίου. Η έρευνα για την δημιουργία του HAZUS ξεκίνησε το 1993 με την πρώτη έκδοση να ολοκληρώνεται το 1997, φτάνοντας σήμερα στην τελευταία έκδοση του προγράμματος που περιλαμβάνει εκτός του <u>σεισμού</u> άλλες δυο φυσικές καταστροφές όπως <u>πλημμύρες</u> και <u>τυφώνες</u>.

Στόχος των σχεδιαστών του προγράμματος ήταν το HAZUS να καταστεί ένα ορθολογιστικό εργαλείο στην διάθεση των επαγγελματικών ομάδων που εργάζονται προς την κατεύθυνση άμβλυνσης των επιπτώσεων του σεισμικού φαινομένου. Τα πορίσματα ενδιαφέρουν άμεσα τις ιατρικές υπηρεσίες, τις νοσοκομειακές μονάδες, τους φορείς τοπικής αυτοδιοίκησης και διαχείρισης καταστάσεων εκτάκτου ανάγκης καθώς και σώματα ασφαλείας όπως η Πυροσβεστική, Αστυνομία, κτλ. προκειμένου να προετοιμάσουν την άμεση ανταπόκρισή τους σε περιοχές αυξημένης διακινδύνευσης ή να κατανείμουν αναλόγως τις δυνάμεις τους σε πιθανές πληγείσες περιοχές στις οποίες αναμένεται να προκύψει η μεγαλύτερη ανάγκη παροχής βοήθειας ειδικά κατά το πρώτο εικοσιτετράωρο του επεισοδίου. Τα αποτελέσματα αφορούν επίσης Μηχανικούς καθότι τέτοιες μελέτες αναδεικνύουν τις περισσότερο σεισμικά τρωτές περιοχές (ή ομάδες στοιχείων) που χρήζουν άμεσης αντισεισμικής θωράκισης.

Εν κατακλείδι, ο κύριος σκοπός της μεθοδολογίας του HAZUS είναι να παρέχει για συγκεκριμένα κτίρια τα απαραίτητα εργαλεία εκτίμησης των βλαβών από σεισμούς τα οποία χρησιμοποιούνται από μηχανικούς με ειδίκευση στο αντικείμενο των σεισμών. Για να παράγουν ακριβή αποτελέσματα οι μηχανικοί θα πρέπει να είναι σε θέση να κάνουν μια σχετικά πολύπλοκη pushover ανάλυση - μια διαδικασία που περιγράφεται παρακάτω. Η κύρια λοιπόν προσέγγιση της μεθοδολογίας είναι να παραχθεί ένας συνδυασμός ανάμεσα στην μη γραμμική στατική ανάλυση (pushover) και στις μεθόδους εκτίμησης των απωλειών. Οι μηχανικοί πλέον παρουσιάζοντας μια λεπτομερή pushover ανάλυση μπορούν να εξάγουν χρήσιμα συμπεράσματα και να έχουν πιο κατανοητά αποτελέσματα για τα πιθανά μοντέλα αστοχίας του κτιρίου, για την ολική απόκριση της κατασκευής -τόσο στα δομικά όσο και στα μη δομικά συστήματα, αλλά και για το κόστος και τον χρόνο που απαιτείται για την επισκευή των κατεστραμμένων στοιχείων του κτιρίου.

8.2.2 Επισκόπηση μεθοδολογίας HAZUS

Σύμφωνα με τη μεθοδολογία HAZUS, όπως φαίνεται και στο επόμενο σχήμα, προκειμένου να προσδιοριστούν οι κτιριακές βλάβες είναι απαραίτητο να γνωρίζουμε την εδαφική κίνηση και τις πιθανές μορφές εδαφικής αστοχίας, οι οποίες εξαρτώνται από τις μόνιμες εδαφικές παραμορφώσεις. Με την σειρά της η εκτίμηση των κτιριακών βλαβών χρησιμοποιείται ως δεδομένο εισόδου για την εκτίμηση άλλων ενοτήτων ζημιών που έχουν σχέση με τους κινδύνους από τις υλικές εγκαταστάσεις και τη πρόκληση βλαβών αλλά και με την πιθανή επιρροή τους στα

μέσα μεταφοράς και στα συστήματα ζωτικών δικτύων. Για να εκτιμηθούν οι άμεσες οικονομικές απώλειες, τα ανθρώπινα θύματα οι μετακινήσεις νοικοκυριών, η απώλεια λειτουργιών έκτακτης ανάγκης, ο χρόνος που χάνεται για την αποκατάσταση των βλαβών και της απώλειας λειτουργιών καθώς επίσης και η εύρεση βραχυπρόθεσμου καταφυγίου απαιτούνται ως δεδομένα οι ζημιές.

Εικόνα 8-1 Ροή μεθοδολογίας HAZUS

Η μεθοδολογία του HAZUS σε συνάρτηση με την εδαφική κίνηση έχει δύο βασικές συνιστώσες:

Την καμπύλη ικανότητας (capacity curve): Η καμπύλη ικανότητας της κατασκευής βασίζεται σε μηχανικές παραμέτρους, όπως η τέμνουσα διαρροής και η τέμνουσα αστοχίας του κτιρίου, που χαρακτηρίζουν την μη γραμμική συμπεριφορά του. Αντιστοιχεί στην πλευρική κατανομή των φορτίων σε συνάρτηση με την χαρακτηριστική πλευρική μετακίνηση της κατασκευής δηλαδή ένα διάγραμμα δύναμης-και πλευρικής εκτροπής. Το διάγραμμα της καμπύλης ικανότητας προέρχεται από την καμπύλη pushover, από την καμπύλη δηλαδή που παρουσιάζει την στατικά ισοδύναμη κατανομή της τέμνουσας σε συνάρτηση με την μετακίνηση οροφής του κτιρίου, προκειμένου όμως να είναι πιο εύκολη η σύγκριση της pushover με το φάσμα απόκρισης, η κατανομή της τέμνουσας βάσης μετατρέπεται με την χρήση κατάλληλων συντελεστών σε φασματική επιτάχυνση και η μετακίνηση οροφής μετατρέπεται σε φασματική μετακίνηση, χρησιμοποιώντας προδιαγραφές που αντιπροσωπεύουν την απόκριση της pushover.

Τις καμπύλες τρωτότητας (fragility curves): Οι καμπύλες τρωτότητας περιγράφουν την πιθανότητα να έχουμε ένα συγκεκριμένο επίπεδο βλαβών στο κτίριο, που μπορεί να αντιστοιχούν σε βλάβες τόσο στα δομικά όσο και στα μη δομικά μέλη της κατασκευής.

Τα μη δομικά μέλη διακρίνονται στα ευπαθή στις μετακινήσεις και στα ευπαθή στην επιτάχυνση. Για μια δεδομένη σεισμική απόκριση λοιπόν οι καμπύλες τρωτότητας κυμαίνονται μεταξύ τεσσάρων φυσικών επιπέδων ζημιάς: Μικρή, Μέτρια, Εκτεταμένη και τέλος Ολοκληρωτική. Οι απώλειες λόγω σεισμού εξαιτίας των κτιριακών ζημιών βασίζονται στα φυσικά επίπεδα ζημιάς τα οποία κρίνονται ως τα πιο κατάλληλα και πιο σημαντικά για να συνεισφέρουν στην εκτίμηση του συγκεκριμένου τύπου απώλειας. Για παράδειγμα, οι θάνατοι βασίζονται πρώτιστα στο επίπεδο ολοκληρωτικής ζημιάς των δομικών στοιχείων της κατασκευής, αφού η μερική ή η ολική κατάρρευση της κατασκευής θεωρείται ότι κυριαρχεί σε αυτόν τον τύπο απώλειας. Αντίθετα οι άμεσες οικονομικές απώλειες όπως π.χ κόστος ανακατασκευής, αντικατάστασης κλπ, συσσωρεύονται από όλα τα επίπεδα ζημιάς τόσο στα δομικά όσο και στα μη δομικά μέλη της κατασκευής, αφού όλα συνεισφέρουν στην οικονομική απώλεια.

Spectral Displacement (inches)

Σχήμα 8-1 Η Capacity Curve για ένα κτίριο και τα δυο σημεία ελέγχου

Το σημείο διαρροής αναπαριστά την πλευρική δύναμη του κτιρίου, που υπολογίζεται λαμβάνοντας υπόψη την δύναμη σχεδιασμού και την υπεραντοχή της κατασκευής. Η δύναμη σχεδιασμού για ένα μοντέλο κτιριακού τύπου βασίζεται είτε στις απαιτήσεις του ισχύοντα σεισμικού κανονισμού είτε για κτίρια τα οποία δεν σχεδιάζονται για σεισμικά φορτία, στην εκτίμηση της πλευρικής δύναμης, από την μέγιστη καταπόνηση που δέχονται. Πιο συγκεκριμένα υπάρχουν κτίρια τα οποία σχεδιάζονται για άνεμο, όπως είναι τα πολύ ψηλά κτίρια που βρίσκονται σε περιοχές με πολύ μικρή ή μέτρια σεισμικότητα. Τα κτίρια αυτά είναι πολύ πιθανό να έχουν πλευρική δύναμη σχεδιασμού λόγω φορτίο ανέμου, η οποία θα είναι αρκετά μεγαλύτερη από αυτή που θα προέκυπτε από τον ισχύοντα αντισεισμικό κανονισμό και για τον λόγο αυτό, λαμβάνουμε και αυτή υπόψη μας στο προσδιορισμό του σημείου διαρροής.

Το σημείο αστοχίας αναπαριστά την μέγιστη δύναμη που μπορεί να φέρει το κτίριο όταν το γενικό δομικό σύστημα είναι πλέον μηχανισμός. Τυπικά ένα κτίριο μπορεί να παραμορφωθεί και πέρα από το σημείο αστοχίας, αλλά η κατασκευή δεν μπορεί να προσφέρει καμία αντίσταση στην πλευρική σεισμική δράση. Μέχρι το σημείο διαρροής η καμπύλη ικανότητας είναι γραμμική, με δυσκαμψία βασισμένη στην εκτιμώμενη περίοδο της κατασκευής, ενώ πάνω από το σημείο αστοχίας η καμπύλη ικανότητας μεταβαίνει με μια κλίση από τον ελαστικό κλάδο στον πλαστικό. Η καμπύλη θεωρείται ότι παραμένει στον ελαστικό κλάδο μετά από το σημείο αστοχίας.

Η απαιτούμενη μετακίνηση της κατασκευής καθορίζεται ως το σημείο τομής του φάσματος απαίτησης για τον σεισμό που δρα και της καμπύλης ικανότητας του κτιρίου. Στο Σχήμα 8-2 που ακολουθεί φαίνονται ενδεικτικά τρία παραδείγματα φασμάτων απαίτησης για σεισμούς, που αντιστοιχούν σε αδύναμη, μέτρια και σε ισχυρή εδαφική κίνηση και δύο παραδείγματα καμπύλων ικανότητας που αντιπροσωπεύουν μια αδύναμη και μια ισχυρή κατασκευή. Όπως λοιπόν μπορούμε να δούμε και από το σχήμα, η ισχυρότερη και περισσότερο άκαμπτη κατασκευή μετατοπίζεται λιγότερο σε σχέση με αδύναμη και περισσότερο εύκαμπτη, αναφερόμενοι πάντα στο ίδιο σεισμικό φάσμα σχεδιασμού, ενώ αναμένουμε λιγότερες ζημιές για τα δομικά και για τα μη δομικά μέλη, τα ευπαθή στις μετακινήσεις. Επιπλέον, η ισχυρή και περισσότερο άκαμπτη κατασκευή επειδή η κίνηση της αντιστοιχεί σε μεγαλύτερα επίπεδα επιτάχυνσης αναμένονται περισσότερες ζημιές στα μη δομικά συστήματα, τα ευπαθή όμως στην επιτάχυνση.

Spectral Displacement (inches)

Σχήμα 8-2 Παράδειγμα προσδιορισμού σημείων απόκρισης για 3 διαφορετικά φάσματα σεισμού σχεδιασμού και 2 καμπύλες ικανότητας

8.2.3 Επίπεδα βλάβης

Για την περιγραφή της έκτασης των ζημιών ορίζονται τέσσερα επίπεδα βλάβης. Το αποτέλεσμα εκφράζεται μέσω της πιθανότητας μια ομάδα κτιρίων να υποστεί βλάβες που αντιστοιχούν σε μια από τις τέσσερις προκαθορισμένες στάθμες βλάβης - ελαφριές, μέτριες, εκτεταμένες και πλήρεις, ενώ η κατάρρευση θεωρείται ως ένα υποσύνολο της πλήρους βλάβης του δομικού συστήματος. Βέβαια στην πραγματικότητα πρέπει να τονίσουμε ότι η βλάβη ποικίλει ανάλογα με τις απαιτήσεις του σεισμού. Λόγω της μεγάλης ανομοιομορφίας που παρουσιάζουν οι δομικοί τύποι των κτιρίων, κυρίως της οικιστικής χρήσης, το αποτέλεσμα αυτών των μελετών προτιμότερο είναι να λαμβάνεται υπόψη ως πρόβλεψη των βλαβών παρά ως ένδειξη ΄ το αποτέλεσμα είναι περισσότερο αξιόπιστο όσο αυξάνει το πλήθος των κτιρίων της μελέτης. Μετά από ένα σεισμικό επεισόδιο παρατηρούνται απώλειες τόσο των δομικών όσο και των μη δομικώς σλάβες ενώ γίνεται περαιτέρω διαχωρισμός για τις μη δομικές μεταξύ των στοιχείων που είναι ευπαθή στις μετακινήσεις (drift sensitive-τοιχοπληρώσεις) και στην επιτάχυνση (acceleration sensitive-μηχανολογικοί εξοπλισμοί).

Για κάθε είδος βλάβης διατίθενται ξεχωριστές καμπύλες τρωτότητας. Ένα ευρύτερο πεδίο τιμών ζημιάς χρησιμοποιείται από τους χρήστες για να περιγράψει τις κτιριακές ζημιές, δεδομένου ότι δεν είναι πρακτικό να υπάρχει μια συνεχής κλίματα ταξινόμησης των βλαβών. Τα επίπεδα βλαβών παρέχουν στον χρήστη την ικανότητα να κατανοεί καλύτερα τις φυσικές ιδιότητες του κτιρίου, ενώ οι λειτουργικές απώλειες συσχετίζουν τις φυσικές ιδιότητες του κτιρίου με ποίκιλες παραμέτρους απωλειών (όπως οικονομικές απώλειες, ανθρώπινα θύματα κτλ.) για παράδειγμα οι άμεσες οικονομικές απώλειες που αντιστοιχούν στο μέτριο επίπεδο βλάβης, θεωρείται ότι αντιπροσωπεύουν κατά μέσο όρο, το 10% της αξίας αντικατάστασης των δομικών και μη δομικών συστημάτων.

Damage	e State	Description
	Slight	Small plaster cracks at corners of door and window openings and wall- ceiling intersections; small cracks in masonry chimneys and masonry veneers. Small cracks are assumed to be visible with a maximum width of less than 1/8 inch (cracks wider than 1/8 inch are referred to as "large" cracks).
	Moderate	Large plaster or gypsum-board cracks at corners of door and window openings; small diagonal cracks across shear wall panels exhibited by small cracks in stucco and gypsum wall panels; large cracks in brick chimneys; toppling of tall masonry chimneys.
	Extensive	Large diagonal cracks across shear wall panels or large cracks at plywood joints; permanent lateral movement of floors and roof; toppling of most brick chimneys; cracks in foundations; splitting of wood sill plates and/or slippage of structure over foundations.
	Complete	Structure may have large permanent lateral displacement or be in imminent danger of collapse due to cripple wall failure or failure of the lateral load resisting system; some structures may slip and fall off the foundation; large foundation cracks. Three percent of the total area of buildings with Complete damage is expected to be collapsed, on average.

Πίνακας 8-1 Παραδείγματα επιπέδων βλαβών για ένα κτίριο

Στο σχήμα που ακολουθεί δίδεται ένα παράδειγμα από καμπύλες τρωτότητας για τα τέσσερα επίπεδα ζημιάς που χρησιμοποιούνται στη μεθοδολογία της FEMA/NIBS και επεξηγείται ο τρόπος με τον οποίο προσδιορίζουμε τις πιθανότητες να έχουμε ένα επίπεδο βλάβης.

Σχήμα 8-3 Παραδείγματα καμπυλών τρωτότητας για μικρή, μέτρια, εκτεταμένη και ολοκληρωτική ζημιά

Όπως φαίνεται και παρακάτω, η καμπύλη ικανότητας επεκτείνεται και πέρα από το σημείο αστοχίας, D_u, το οποίο ορίζει το σημείο στο οποίο το κτίριο έχει μπει στον πλαστικό κλάδο αλλά δεν έχει ακόμα καταρρεύσει και έχει αντοχή να παραλάβει κατακόρυφα φορτία. Το σχήμα 8.4 αντιστοιχεί σε κατασκευή στην οποία έχουμε διατμητική αστοχία και μείωση των φορτίων για έναν αριθμό στοιχείων σε διάφορα στάδια της φασματικής μετακίνησης. Η διατμητική αστοχία των συνιστωσών του κτιρίου δημιουργεί την μορφή «δοντιών» στην καμπύλη ικανότητας

Σχήμα 8-4 Καμπύλη Pushover για διατμητική αστοχία

Οι καμπύλες τρωτότητας καθορίζουν τα όρια μεταξύ των επιπέδων βλάβης. Δηλαδή, η μέση τιμή του επιπέδου βλάβης που μας ενδιαφέρει καθορίζει το μέσο όρο για την υπέρβαση της στάθμης επιτελεστικότητας, και αυτό το επίπεδο υπολογίζεται ότι θα υπάρχει μέχρι το επόμενο επίπεδο βλάβης. Η περιγραφή αυτή απεικονίζεται στο παρακάτω σχήμα, το οποίο περιλαμβάνει καμπύλες τρωτότητας για ελαφρές, μέτριες, εκτεταμένες και πλήρεις δομικές ζημιές. Σε αυτήν την εικόνα, μια σκιασμένη περιοχή δείχνει το χώρο της πιθανότητα απόκρισης που σχετίζεται με Μέτριες ζημιές. Τα όρια στα αριστερά της σκιασμένης περιοχής ορίζονται από την καμπύλη τρωτότητας για Μέτρια (ή μεγαλύτερη) δομική βλάβη. Η πιθανότητα της Μέτριας βλάβης σε ένα δεδομένο επίπεδο απόκρισης φάσματος υπολογίζεται ως η διαφορά της πιθανότητας Μέτριας (ή μεγαλύτερης) ζημιάς μείον την πιθανότητα για Εκτεταμένες (ή μεγαλύτερες) βλάβες. Η κλίση της καμπύλης τρωτότητας ελέγχεται από την τυπική απόκλιση (Beta). Όσο μικρότερη είναι η τιμή της Beta, τόσο λιγότερο μεταβλητό το επίπεδο βλαβών, καθώς και πιο απότομη η καμπύλη τρωτότητας. Όσο μεγαλύτερη είναι η τιμή της Beta, τόσο πιο μεταβλητό το επίπεδο βλαβών και πιο πεπλατυσμένη η καμπύλη ευπάθειας.

Αρχικά, σύμφωνα με τη μεθοδολογία HAZUS και το κριτήριο No 1 αυτής, θα πρέπει ο φορέας του κτιρίου που θέλουμε να αξιολογήσουμε να φτάσει σε σημείο τέτοιο ώστε το 50% των πλαστικών αρθρώσεων του να έχουν φτάσει (ή ξεπεράσει) το σημείο C που αντιστοιχεί στην αστοχία αυτών. Η μετακίνηση στην οποία θα συμβεί αυτό θα αντιστοιχεί στη μέση τιμή της φασματικής μετακίνησης που θα ορίζει το επίπεδο των ολοκληρωτικών βλαβών. Έπειτα, μπορούν να οριστούν οι ενδιάμεσες στάθμες βλαβών (ελαφριές, μέτριες, εκτεταμένες). Συγκεκριμένα, η στάθμη των ελαφρών βλαβών ορίζεται στο σημείο που θα βρεθεί τουλάχιστον μία πλαστική άρθρωση στην αστοχία, των μέτριων όταν βρεθεί τουλάχιστον το 5% αυτών και των εκτεταμένων όταν βρεθεί το 25%, όπως φαίνεται και στον παρακάτω πίνακα.

Damage	Compone	Component (Criteria Set No. 1) ¹			Component (Criteria Set No. 2) ¹		
State	Fraction ²	Limit ³	Factor ⁴	Fraction ²	Limit ³	Factor ⁴	
Slight	> 0%	С	1.0	50%	В	1.0	
Moderate	≥ 5%	С	1.0	50%	В	1.5	
Extensive	≥ 25%	С	1.0	50%	В	4.5	
Complete	≥ 50%	Е	1.0 - 1.5 ⁵	50%	В	12	

Πίνακας 8-2 Κριτήρια μεθοδολογίας HAZUS για τον ορισμό των επιπέδων βλαβών

Παρακάτω φαίνεται η συμπεριφορά της πλαστικής άρθρωσης καθώς επίσης και τα χαρακτηριστικά σημεία B, C, E στα οποία στηρίζονται τα κριτήρια του HAZUS για τον ορισμό των διάφορων επιπέδων βλαβών.

Deformation or Deformation Ratio

Σχήμα 8-6 Συμπεριφορά πλαστικής άρθρωσης

Οι καμπύλες τρωτότητας κατανέμουν την ζημιά στα τέσσερα επίπεδα, όπως αναφέραμε και παραπάνω: στην ελαφριά, στη μέτρια, στην εκτεταμένη και στην πλήρη ζημιά. Για μια δεδομένη, λοιπόν, τιμή φασματικής απόκρισης η πιθανότητα να έχουμε ένα συγκεκριμένο επίπεδο ζημιάς, ορίζεται ως η διαφορά των αθροιστικών πιθανοτήτων που αντιστοιχούν στο να φτάσουμε ή ακόμα και στο να υπερβούμε τα δύο αυτά διαδοχικά επίπεδα ζημιάς. Κάθε μία από αυτές τις καμπύλες καθορίζεται από μια διάμεση τιμή της φασματικής μετακίνησης, (S_{d,ds}) και από μια τυπική απόκλιση που σχετίζεται με το συγκεκριμένο επίπεδο ζημιάς.

Η πιθανότητα βλάβης της κατασκευής δίνεται από την συνάρτηση κατανομής πιθανότητας της λογαριθμοκανονικής κατανομής:

$$P[d_s / S_d] = \Phi \left[\frac{1}{\beta_{ds}} * \ln(\frac{S_d}{S_{d,ds}})\right]$$

Όπου:

ds η κάθε στάθμη βλάβης

S_{d,ds} η διάμεση τιμή της φασματικής μετατόπισης

B_{ds} η τυπική απόκλιση του φυσικού λογαρίθμου της φασματικής μετακίνησης για στάθμη βλάβης Φ η συνάρτηση κατανομής πιθανότητας της κανονικής κατανομής

ΣΗΜΕΙΩΣΗ

Η τυπική απόκλιση του φυσικού λογαρίθμου της φασματικής μετακίνησης για στάθμη βλάβης παίρνει τιμές 0,4 , 0,6 , 0,8 , 1, 1,20.

8.3 Ανάπτυξη καμπυλών τρωτότητας υφιστάμενου και ενισχυμένου κτιρίου

Παρακάτω ακολουθεί η ανάπτυξη των καμπυλών τρωτότητας με τη μεθοδολογία HAZUS για την εκτίμηση των βλαβών τόσο στον υφιστάμενο φορέα, όσο και στον ενισχυμένο. Για το μεν πρώτο φορέα θα αξιολογήσουμε κατά πόσο η μέθοδος δίνει αποτελέσματα που συνάδουν με την πραγματικότητα (βάσει των βλαβών που διαπιστώθηκαν στο σεισμό της Κεφαλλονιάς), για το δε ενισχυμένο θα ελέγξουμε την ορθότητα και επάρκεια των μέτρων ενίσχυσης. Είναι σημαντικό το γεγονός ότι μ' αυτή τη μέθοδο μπορεί κανείς να συγκρίνει τις ζημιές που μπορεί να υποστεί ένα κτίσμα πριν και μετά την ενίσχυση και μέσω αυτής τη να βελτιώσει σε μεγάλο βαθμό το τελικό αποτέλεσμα.

Σ' αυτό το σημείο πρέπει να σημειωθεί ότι από τη μεθοδολογία του HAZUS χρησιμοποιήθηκε το πρώτο κριτήριο για τον ορισμό των damage states. Βάσει αυτού για να οριστεί ακόμα και η τελευταία στάθμη βλαβών (Complete Damage) θα πρέπει να έχουν φτάσει στο σημείο C τουλάχιστον το 50% των πλαστικών αρθρώσεων. Δεδομένου ότι στο SAP2000 μόλις οι πλαστικές αρθρώσεις ξεπεράσουν το C, αδυνατώντας να προσομοιάσουν την απότομη πτώση της αντοχής τους, συμπεριφέρονται περίεργα, έγινε η παραδοχή (και η κατάλληλη προσομοίωση) ότι παραμορφώνονται απεριόριστα μέχρι να φτάσουν και να αποκτήσουν στροφή αστοχίας ίση με την πενταπλάσια αυτής που έχει υπολογιστεί κανονικά. Μ' αυτόν τον τρόπο, καταφέραμε να φτάσουμε την καμπύλη pushover αρκετά μακριά. Βέβαια, με τη διορθωμένη καμπύλη pushover μορφώνεται και η νέα διγραμμικοποιημένη της και από τον υπολογισμός της νέας στοχευόμενης μετακίνησης προκύπτει ότι η αρχική ήταν μια πολύ καλή προσέγγιση, αφού οι δυο στοχευόμενες μετακινήσεις προκύπτουν πολύ κοντά η μια στην άλλη.

Παρακάτω ακολουθεί αναλυτικά η διαδικασία για τη μόρφωση των καμπυλών τρωτότητας του υφιστάμενου και ενισχυμένου κτιρίου.

8.3.1 Καμπύλες τρωτότητας υφιστάμενου κτιρίου

8.3.1.1 Διεύθυνση Χ

Η μετακίνηση στην οποία οδηγήθηκε η κατασκευή προκειμένου να εμφανίσει 109 πλαστικές αρθρώσεις, δηλαδή 50,70% επί του συνολικού αριθμού πλαστικών αρθρώσεων, είναι τα 13,70cm.

TABLE: Pushover Curve						
Step	Displacement	BaseForce	CtoD	Total	ποσοστό π.α. που ξεπερνούν το C	Έλεγχος κριτηρίου
	m	KN				HAZUS
0	0,000	0	0	215	0,00%	
1	0,000	206	0	215	0,00%	
2	0,010	4.216	0	215	0,00%	
3	0,017	7.370,3	0	215	0,00%	
4	0,021	9.526,4	0	215	0,00%	
5	0,030	14.253,8	0	215	0,00%	
6	0,044	21.726,3	8	215	3,72%	>0%
7	0,051	22.598,1	10	215	4,65%	
8	0,058	22.999,9	10	215	4,65%	
9	0,065	23.110,6	16	215	7,44%	>5%
10	0,071	23.299,0	30	215	13,95%	
11	0,079	23.357,1	37	215	17,21%	
12	0,084	23.480,1	40	215	18,60%	
13	0,091	23.900,0	54	215	25,12%	>25%
14	0,098	23.987,9	72	215	33,49%	
15	0,113	24.315,0	83	215	38,60%	
16	0,125	24.649,0	95	215	44,19%	
17	0 137	24 964 6	109	215	50 70%	>50%

Πίνακας 8-3 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα

Βλάβες	<i>S_{d,ds}</i> (m)
Ελαφριές	0,044
Μέτριες	0,065
Εκτεταμένες	0,091
Ολοκληρωτικές	0,137

Πίνακας 8-4 Μετακινήσεις κόμβου ελέγχου σε κάθε στάθμη βλαβών

Σχήμα 8-7 Καμπύλη Pushover υφιστάμενου κτιρίου - Διεύθυνση Χ

Η διγραμμικοποιημένη καμπύλη είναι η παρακάτω από την οποία προκύπτει και η στοχευόμενη μετακίνηση του κτιρίου στη διεύθυνση X ίση με 9,34cm.

Σχήμα 8-8 Διγραμμικοποίηση καμπύλης Pushover υφιστάμενου κτιρίου-Διεύθυνση Χ

Παρακάτω ακολουθούν οι καμπύλες τρωτότητας για τα διάφορα επίπεδα βλαβών. Κάθε καμπύλη έχει υπολογιστεί σύμφωνα με τη συνάρτηση κατανομής πιθανότητας της λογαριθμοκανονικής κατανομής που δίνεται από τη σχέση:

$$P[d_s / S_d] = \Phi \left[\frac{1}{\beta_{ds}} * \ln(\frac{S_d}{S_{d,ds}})\right]$$

Όπου:

 β_{ds} : Τυπική απόκλιση του φυσικού λογαρίθμου της φασματικής μετακίνησης για δεδομένη στάθμη βλαβών. Παίρνει τις τιμές 0.4, 0.6, 0.8, 1.0 για ελαφριές, μέτριες, εκτεταμένες και ολοκληρωτικές βλάβες αντίστοιχα.

 $S_{d,ds}$: Μετακίνηση κόμβου ελέγχου για δεδομένη στάθμη βλαβών (πίνακας 8-4) S_d : Μετακίνηση κόμβου ελέγχου που παίρνει τιμές 0- S_{d,max}

S _d (m)	Z	$P[d_s/S_d]$
0,01	-3,718	0,01%
0,02	-1,985	2,36%
0,03	-0,972	16,56%
0,04	-0,252	40,03%
0,05	0,305	62,00%
0,06	0,761	77,67%
0,07	1,147	87,42%
0,08	1,480	93,06%
0,09	1,775	96,20%
0,1	2,038	97,92%
0,11	2,277	98,86%
0,12	2,494	99,37%
0,13	2,694	99,65%
0,14	2,879	99,80%
0,093393	1,867	96,91%

Damage	Slight	
β_{ds}	0,4	
S _{d,ds}	0,044251	

Σχήμα 8-9 Καμπύλη τρωτότητας για Slight Damage

Sd (m)	Z	P[ds/Sd]
0,01	-3,123	0,09%
0,02	-1,967	2,46%
0,03	-1,292	9,82%
0,04	-0,812	20,83%
0,05	-0,440	32,98%
0,06	-0,136	44,57%
0,07	0,120	54,79%
0,08	0,343	63,42%
0,09	0,539	70,52%
0,1	0,715	76,27%
0,11	0,874	80,89%
0,12	1,019	84,58%
0,13	1,152	87,54%
0,14	1,276	89,90%
0,093393	0,601	72,61%

Damage	Moderate	
β_{ds}	0,6	
S _{d,ds}	0,06512	

Sd (m)	Z	P[ds/Sd]
0,01	-2,760	0,29%
0,02	-1,894	2,91%
0,03	-1,387	8,27%
0,04	-1,027	15,21%
0,05	-0,749	22,71%
0,06	-0,521	30,13%
0,07	-0,328	37,15%
0,08	-0,161	43,60%
0,09	-0,014	49,45%
0,1	0,118	54,69%
0,11	0,237	59,37%
0,12	0,346	63,52%
0,13	0,446	67,21%
0,14	0,538	70,49%
0,093393	0,032	51,29%

Damage	Extensive		
βds	0,8		
Sd,ds	0,091		

Σχήμα 8-11 Καμπύλη τρωτότητας για Extensive Damage

Sd (m)	Z	P[ds/Sd]
0,01	-3,276	0,05%
0,02	-2,410	0,80%
0,03	-1,903	2,85%
0,04	-1,543	6,14%
0,05	-1,264	10,30%
0,06	-1,037	15,00%
0,07	-0,844	19,94%
0,08	-0,677	24,92%
0,09	-0,530	29,82%
0,1	-0,398	34,53%
0,11	-0,279	39,02%
0,12	-0,170	43,25%
0,13	-0,070	47,21%
0,14	0,023	50,90%
0,093393	-0,483	31,44%

Damage Complete	
βds	0,8
Sd,ds	0,137495

Σχήμα 8-12 Καμπύλη τρωτότητας για Complete Damage

Ακολουθούν συγκεντρωτικά οι καμπύλες τρωτότητας της υφιστάμενης κατασκευής στη διεύθυνση Χ, όπως προέκυψαν παραπάνω.

Σχήμα 8-13 Καμπύλες τρωτότητας - Διεύθυνση Χ

	ΥΦΙΣΤΑΜΕΝΟΣ ΦΟΡΕΑΣ			
	Διεύθυνση Χ			
	Στοχευόμενη μετακίνηση (m)	0,093		
չր ն	Ελαφριές βλάβες	96,91%		
ότη ίνια	Μέτριες βλάβες	72,61%		
θαν Ιφό	Εκτενείς βλάβες	51,29%		
μ β Π	Ολοκληρωτική βλάβη	31,44%		

Πίνακας 8-5 Πιθανότητες εμφάνισης βλαβών για τη στοχευόμενη μετακίνηση

8.3.1.2 Διεύθυνση Υ

Η μετακίνηση στην οποία οδηγήθηκε η κατασκευή προκειμένου να εμφανίσει 106 πλαστικές αρθρώσεις, δηλαδή 49,30% επί του συνολικού αριθμού πλαστικών αρθρώσεων, είναι τα 11,15cm.

Το ποσοστό αυτό είναι πολύ κοντά στο 50% που απαιτεί η HAZUS και δεδομένων των δυσκολιών του προγράμματος να τρέξει έναν τέτοιο φορέα θεωρήσαμε ότι μας ικανοποιεί.

	TABLE: Pushover Curve					
Step	Displacement	BaseForce	CtoD	Total	ποσοστό π.α. που ξεπερνούν το C	Έλεγχος κριτηρίου
	m	KN				HAZUS
0	0,000	0	0	215	0,00%	
1	0,000	206	0	215	0,00%	
2	0,010	6.216	0	215	0,00%	
3	0,014	8.490,4	0	215	0,00%	
4	0,019	10.926,4	0	215	0,00%	
5	0,023	12.653,8	0	215	0,00%	
6	0,034	17.254,3	1	215	0,47%	>0%
7	0,041	19.175,3	9	215	4,19%	
8	0,052	20.598,1	10	215	4,65%	
9	0,058	20.999,9	11	215	5,12%	>5%
10	0,063	21.310,6	14	215	6,51%	
11	0,069	21.599,0	20	215	9,30%	
12	0,078	21.957,1	31	215	14,42%	
13	0,084	22.150,1	56	215	26,05%	>25%
14	0,089	22.351,0	62	215	28,84%	
15	0,094	22.567,9	69	215	32,09%	
16	0,098	22.815,0	79	215	36,74%	
17	0,105	23.049,0	86	215	40,00%	
18	0,111	23.164,6	106	215	49,30%	>50%

Πίνακας 8-6 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα

Σχήμα 8-14 Καμπύλη Pushover υφιστάμενου κτιρίου - Διεύθυνση Υ

S _d (m)	Z	P[d _s /S _d]
0,01	-3,024	0,12%
0,02	-1,291	9,83%
0,03	-0,277	39,08%
0,04	0,442	67,07%
0,05	1,000	84,13%
0,06	1,456	92,72%
0,07	1,841	96,72%
0,08	2,175	98,52%
0,09	2,469	99,32%
0,1	2,733	99,69%
0,11	2,971	99,85%
0,12	3,188	99,93%
0,13	3,388	99,96%
0,14	3,574	99,98%
0,097788	2,677	99,63%

Damage	Slight	
β_{ds}	0,4	
S _{d,ds}	0,03352	

Σχήμα 8-16 Καμπύλη τρωτότητας για Slight Damage

Sd (m)	Z	P[ds/Sd]
0,01	-2,933	0,17%
0,02	-1,778	3,77%
0,03	-1,102	13,51%
0,04	-0,623	26,66%
0,05	-0,251	40,09%
0,06	0,053	52,10%
0,07	0,310	62,16%
0,08	0,532	70,27%
0,09	0,729	76,69%
0,1	0,904	81,70%
0,11	1,063	85,61%
0,12	1,208	88,65%
0,13	1,341	91,01%
0,14	1,465	92,85%
0,097788	0,867	80,70%

Damage	Moderate	
β_{ds}	0,6	
S _{d,ds}	0,05813	

Sd (m)	Z	P[ds/Sd]
0,01	-2,661	0,39%
0,02	-1,794	3,64%
0,03	-1,288	9,89%
0,04	-0,928	17,67%
0,05	-0,649	25,81%
0,06	-0,421	33,68%
0,07	-0,229	40,96%
0,08	-0,062	47,54%
0,09	0,086	53,41%
0,1	0,217	58,60%
0,11	0,336	63,17%
0,12	0,445	67,19%
0,13	0,545	70,72%
0,14	0,638	73,82%
0,097788	0,189	57,51%

Damage	Extensive	
βds	0,8	
Sd,ds	0,084042	

Σχήμα 8-18 Καμπύλη τρωτότητας για Extensive Damage

Sd (m)	Z	P[ds/Sd]
0,01	-3,014	0,13%
0,02	-2,148	1,59%
0,03	-1,641	5,04%
0,04	-1,281	10,00%
0,05	-1,002	15,81%
0,06	-0,775	21,93%
0,07	-0,582	28,03%
0,08	-0,415	33,91%
0,09	-0,268	39,45%
0,1	-0,136	44,59%
0,11	-0,017	49,33%
0,12	0,092	53,66%
0,13	0,192	57,61%
0,14	0,285	61,20%
0.097788	-0.164	43.49%

Damage	Complete
βds	0,8
Sd,ds	0,111495

Σχήμα 8-20 Καμπύλες τρωτότητας υφιστάμενου κτιρίου - Διεύθυνση Υ

ΥΦΙΣΤΑΜΕΝΟΣ ΦΟΡΕΑΣ		
Διεύθυνση Υ		
	Στοχευόμενη μετακίνηση (m)	0,098
յ եզ	Ελαφριές βλάβες	99,63%
λανότη φάνισ	Μέτριες βλάβες	80,70%
	Εκτενείς βλάβες	57,51%
μ εh	Ολοκληρωτική βλάβη	43,49%

Πίνακας 8-7 Πιθανότητες εμφάνισης βλαβών για τη στοχευόμενη μετακίνηση – Διεύθυνση Υ

8.3.2 Καμπύλες τρωτότητας ενισχυμένου κτιρίου

8.3.2.1 Διεύθυνση X

	TABLE	Pushover C	Curve			
					ποσοστό π.α. που	
Step	Displacement	BaseForce	CtoD	Total	ξεπερνούν το C	
	m	KN				HAZUS
0	0,00	0	0	215	0,00%	
1	0,00	193	0	215	0,00%	
2	0,01	7.411	0	215	0,00%	
3	0,02	15.370	0	215	0,00%	
4	0,03	21.526	0	215	0,00%	
5	0,04	27.254	1	215	0,47%	>0%
6	0,05	32.726	5	215	2,33%	
7	0,06	37.600	20	215	9,30%	>5%
8	0,09	48.110	40	215	18,60%	
9	0,10	54.202	44	215	20,47%	
10	0,11	60.775	52	215	24,19%	
11	0,13	63.952	56	215	26,05%	>25%
12	0,15	67.570	57	215	26,51%	
13	0,15	68.895	58	215	26,98%	
14	0,18	71.995	65	215	30,23%	
15	0,20	75.045	74	215	34,42%	
16	0,22	77.095	80	215	37,21%	
17	0,23	78.095	85	215	39,53%	
18	0,24	78.495	97	215	45,12%	
19	0,25	78.845	110	215	51,16%	>50%

Πίνακας 8-8 Εξέλιξη πλαστικών αρθρώσεων ανά βήμα

Σχήμα 8-22 Διγραμμικοποιημένη καμπύλη αντίστασης ενισχυμένου κτιρίου - Διεύθυνση Χ

S _d (m)	Z	P[d _s /S _d]
0,02	-1,960	2,50%
0,04	-0,227	41,03%
0,06	0,787	78,43%
0,08	1,506	93,40%
0,1	2,064	98,05%
0,12	2,520	99,41%
0,14	2,905	99,82%
0,16	3,239	99,94%
0,18	3,533	99,98%
0,2	3,797	99,99%
0,22	4,035	100,00%
0,24	4,253	100,00%
0,26	4,453	100,00%
0,28	4,638	100,00%
0,053639	0,507	69,38%

Damage	Slight
β_{ds}	0,4
S _{d,ds}	0,0438

Σχήμα 8-23 Καμπύλη τρωτότητας για Slight Damage

Sd (m)	Z	P[ds/Sd]
0,02	-1,946	2,58%
0,04	-0,791	21,45%
0,06	-0,115	45,42%
0,08	0,364	64,22%
0,1	0,736	76,92%
0,12	1,040	85,09%
0,14	1,297	90,27%
0,16	1,520	93,57%
0,18	1,716	95,69%
0,2	1,892	97,07%
0,22	2,050	97,98%
0,24	2,195	98,59%
0,26	2,329	99,01%
0,28	2,452	99,29%
0,053639	-0,302	38,14%

Damage	Moderate
β_{ds}	0,6
S _{d,ds}	0,064289

Σχήμα 8-24 Καμπύλη τρωτότητας για Moderate Damage

Sd (m)	Z	P[ds/Sd]
0,02	-2,325	1,00%
0,04	-1,459	7,23%
0,06	-0,952	17,06%
0,08	-0,592	27,68%
0,1	-0,313	37,70%
0,12	-0,085	46,59%
0,14	0,107	54,27%
0,16	0,274	60,80%
0,18	0,421	66,32%
0,2	0,553	70,99%
0,22	0,672	74,93%
0,24	0,781	78,26%
0,26	0,881	81,08%
0,28	0,974	83,49%
0,053639	-1,092	13,74%

Damage	Extensive
βds	0,8
Sd,ds	0,128495

Σχήμα 8-25 Καμπύλη τρωτότητας για Extensive Damage

Sd (m)	Z	P[ds/Sd]
0,02	-3,154	0,08%
0,04	-2,287	1,11%
0,06	-1,780	3,75%
0,08	-1,421	7,77%
0,1	-1,142	12,67%
0,12	-0,914	18,03%
0,14	-0,721	23,53%
0,16	-0,554	28,96%
0,18	-0,407	34,19%
0,2	-0,276	39,15%
0,22	-0,156	43,79%
0,24	-0,048	48,10%
0,26	0,052	52,09%
0,28	0,145	55,77%
0,053639	-1,921	2,74%

Damage	Complete
βds	0,8
Sd,ds	0,24932

Σχήμα 8-26 Καμπύλη τρωτότητας για Complete Damage

Σχήμα 8-27 Καμπύλες τρωτότητας ενισχυμένου κτιρίου - Διεύθυνση Χ

ΕΝΙΣΧΥΜΕΝΟΣ ΦΟΡΕΑΣ		
Διεύθυνση Χ		
	Στοχευόμενη μετακίνηση (m)	0,054
յ եα	Ελαφριές βλάβες	69,38%
θανότη Ιφάνισ	Μέτριες βλάβες	38,14%
	Εκτενείς βλάβες	13,74%
rt תו€	Ολοκληρωτική βλάβη	2,74%

Πίνακας 8-9 Πιθανότητες εμφάνισης βλαβών για τη στοχευόμενη μετακίνηση

8.3.2.2 Διεύθυνση Υ

	TABLE: I	Pushover Cu	rve			
Step	Displacement	BaseForce	CtoD	Total	ποσοστό π.α. που ξεπερνούν το C	Έλεγχος κριτηρίου ΗΔΖΙΙς
	m	KN				
0	0,000	0	0	215	0,00%	
1	0,001	730	0	215	0,00%	
2	0,003	2.544	0	215	0,00%	
3	0,005	4.045	0	215	0,00%	
4	0,007	5.494	0	215	0,00%	
5	0,011	7.508	0	215	0,00%	
6	0,013	9.086	0	215	0,00%	
7	0,016	10.846	0	215	0,00%	
8	0,019	12.092	0	215	0,00%	
9	0,021	13.678	0	215	0,00%	
10	0,037	20438	6	215	2,79%	>0%
11	0,050	24.054	9	215	4,19%	
12	0,057	24.895	15	215	6,98%	>5%
13	0,064	25.155	23	215	10,70%	
14	0,073	25.655	30	215	13,95%	
15	0,082	26.055	37	215	17,21%	
16	0,096	26.555	48	215	22,33%	
17	0,116	27.055	50	215	23,26%	
18	0,139	27.756	59	215	27,44%	>25%
19	0,145	28.057	57	215	26,51%	
20	0,167	28.557	69	215	32,09%	
21	0,190	29.057	85	215	39,53%	
22	0,199	29.214	95	215	44,19%	>50%

Πίνακας 8-10 Ανάπτυξη πλαστικών αρθρώσεων ενισχυμένου φορέα – Διεύθυνση Υ

Πίνακας 8-11 Διγραμμικοποίηση καμπύλης Pushover ενισχυμένου κτιρίου - Διεύθυνση Υ

S _d (m)	Z	P[d _s /S _d]
0,001	-9,027	0,00%
0,021	-1,416	7,84%
0,041	0,257	60,13%
0,061	1,250	89,43%
0,081	1,959	97,49%
0,101	2,511	99,40%
0,121	2,962	99,85%
0,141	3,345	99,96%
0,161	3,676	99,99%
0,181	3,969	100,00%
0,201	4,231	100,00%
0,062378	1,306	90,42%

Damage	Slight
β_{ds}	0,4
S _{d,ds}	0,037

Σχήμα 8-28 Καμπύλη τρωτότητας για Slight Damage

Sd (m)	Z	P[ds/Sd]
0,001	-6,743	0,00%
0,021	-1,669	4,76%
0,041	-0,554	28,99%
0,061	0,108	54,31%
0,081	0,581	71,94%
0,101	0,949	82,86%
0,121	1,250	89,43%
0,141	1,505	93,38%
0,161	1,726	95,78%
0,181	1,921	97,26%
0,201	2,096	98,19%
0,062378	0,146	55,79%

Damage	Moderate
β_{ds}	0,6
S _{d,ds}	0,05716

Σχήμα 8-29 Καμπύλη τρωτότητας για Moderate Damage

Sd (m)	Z	P[ds/Sd]
0,001	-6,167	0,00%
0,021	-2,362	0,91%
0,041	-1,525	6,36%
0,061	-1,029	15,18%
0,081	-0,674	25,01%
0,101	-0,398	34,52%
0,121	-0,172	43,15%
0,141	0,019	50,75%
0,161	0,185	57,32%
0,181	0,331	62,97%
0,201	0,462	67,79%
0,062378	-1,001	15,85%

Damage	Extensive
βds	0,8
Sd,ds	0,1389

Sd (m)	Z	P[ds/Sd]
0,001	-5,293	0,00%
0,021	-2,248	1,23%
0,041	-1,579	5,71%
0,061	-1,182	11,86%
0,081	-0,898	18,45%
0,101	-0,678	24,90%
0,121	-0,497	30,96%
0,141	-0,344	36,54%
0,161	-0,211	41,63%
0,181	-0,094	46,24%
0,201	0,011	50,42%
0,062	-1,160	12,31%

Damage	Complete
βds	1
Sd,ds	0,1989

Σχήμα 8-31 Καμπύλη τρωτότητας για Complete Damage

Σχήμα 8-32 Καμπύλες τρωτότητας ενισχυμένου κτιρίου - Διεύθυνση Υ

Διεύθυνση Υ				
	Στοχευόμενη μετακίνηση (m)	0,062		
ի ն	Ελαφριές βλάβες	90,42%		
ότη ίνια	Μέτριες βλάβες	55,79%		
αν Φό	Εκτενείς βλάβες	15,85%		
μ εµ	Ολοκληρωτική βλάβη	12,31%		

Πίνακας 8-12 Πιθανότητες εμφάνισης βλαβών για τη στοχευόμενη μετακίνηση

8.3.3 Συμπεράσματα αξιολόγησης βλαβών

8.3.3.1 Διεύθυνση Χ

Αρχικά, μπορεί να παρατηρήσει κανείς ότι η στοχευόμενη μετακίνηση στον ενισχυμένο φορέα μειώθηκε κατά 42,57%, γεγονός που ήταν αναμενόμενο αφού έγινε πολύ πιο δύσκαμπτος με την εφαρμογών των τοιχωμάτων. Έπειτα, οι πιθανότητες να βρεθεί το κτίριο σε οποιαδήποτε στάθμη βλαβών μειώθηκαν σε πολύ μεγάλο βαθμό. Μάλιστα, το σημαντικότερο όλων είναι ότι η πιθανότητα να βρεθεί η κατασκευή σε κατάσταση ολοκληρωτικών βλαβών υπό δεδομένο σεισμικό σενάριο (σεισμός ΕC8) ελαχιστοποιήθηκε φτάνοντας στο 2,74%, πιθανότητα εξαιρετικά μικρή. Εξάγεται, λοιπόν, το συμπέρασμα ότι στη διεύθυνση X οι ενισχύσεις είναι αρκετές και ο ενισχυμένος φορέας μπορεί πλέον να παραλάβει με ασφάλεια τα σεισμικά φορτία που θα επιβληθούν και θα κατανεμηθούν σ' αυτή τη διεύθυνση.

ΥΦΙΣΤΑΜΕΝΟΣ ΦΟΡΕΑΣ					
	Διεύθυνση Χ				
	Στοχευόμενη μετακίνηση (m) 0,09				
յ եα	Ελαφριές βλάβες	96,91%			
ότη ίνισ	Μέτριες βλάβες	72,61%			
θαν Ιφό	Εκτενείς βλάβες	51,29%			
<u>в</u> г П(6	Ολοκληρωτική βλάβη	31,44%			

ΕΝΙΣΧΥΜΕΝΟΣ ΦΟΡΕΑΣ				
Διεύθυνση Χ				
	Στοχευόμενη μετακίνηση (m)	0,054		
ի ն	Ελαφριές βλάβες	69,38%		
θανότη ιφάνισ	Μέτριες βλάβες	38,14%		
	Εκτενείς βλάβες	13,74%		
р 13	Ολοκληρωτική βλάβη	2,74%		

Σχήμα 8-33 Συγκεντρωτικά αποτελέσματα - Διεύθυνση Χ

8.3.3.2 Διεύθυνση Υ

Παρόμοια συμπεράσματα θα μπορούσε κανείς να εξάγει και σ' αυτή τη διεύθυνση τόσο στο θέμα της στοχευόμενης μετακίνησης, όσο και στην πιθανότητα εμφάνισης ολοκληρωτικών βλαβών. Σ' αυτήν την περίπτωση, η πιθανότητα να βρεθεί η κατασκευή στο υψηλότερο επίπεδο βλαβών (Complete Damage) δεν μειώθηκε τόσο όσο πριν, αλλά πλησιάζει το 10% που ορίζει ο Ευρωκώδικας ως πιθανότητα κατάρρευσης για περίοδο επαναφοράς τα 50 χρόνια. Επιπρόσθετα, αξίζει να σημειωθεί ότι εξ' αρχής η διεύθυνση αυτή εμφάνιζε περισσότερες ζημιές απ' ότι η αντίθετη δίνοντας ποσοστό ολοκληρωτικών βλαβών στον υφιστάμενο 43,49%. Οπότε, θα ήταν εξαιρετικά δύσκολο ούτως ή άλλως να πέσει κάτω από το 10%.

ΥΦΙΣΤΑΜΕΝΟΣ ΦΟΡΕΑΣ			
Διεύθυνση Υ			
	Στοχευόμενη μετακίνηση (m)	0,098	
Πιθανότητα εμφάνισης	Ελαφριές βλάβες	99,63%	
	Μέτριες βλάβες	80,70%	
	Εκτενείς βλάβες	57,51%	
	Ολοκληρωτική βλάβη	43,49%	

ΕΝΙΣΧΥΜΕΝΟΣ ΦΟΡΕΑΣ			
Διεύθυνση Υ			
	Στοχευόμενη μετακίνηση (m)	0,062	
Πιθανότητα εμφάνισης	Ελαφριές βλάβες	90,42%	
	Μέτριες βλάβες	55,79%	
	Εκτενείς βλάβες	15,85%	
	Ολοκληρωτική βλάβη	12,31%	

Πιθανότητες Εμφάνισης Βλαβών - Διεύθυνση Υ

Σχήμα 8-34 Συγκεντρωτικά αποτελέσματα - Διεύθυνση Υ

9 Συμπεράσματα

Μετά τη θεωρητική προσέγγιση των κανονιστικών διατάξεων που διέπουν τον ευαίσθητο τομέα των επεμβάσεων στον ελληνικό χώρο, στην παρούσα εργασία πραγματοποιήθηκε μία πλήρης αποτίμηση της υφιστάμενης κατάστασης του υπό εξέταση ξενοδοχείου. Η διαδικασία αποτίμησης προσεγγίστηκε σύμφωνα με όσα ορίζουν τόσο το τελικό κείμενο του ΚΑΝ.ΕΠΕ. όσο και το αντίστοιχο μέρος του ευρωπαϊκού προτύπου που αφορά στον αντισεισμικό σχεδιασμό (ΕC8 – 3) και την ακολούθησε η πρόταση, η υποθετική εφαρμογή και ο έλεγχος ορισμένου συστήματος επεμβάσεων. Αυτό περιλάμβανε την κατασκευή επτά (7) νέων τοιχωμάτων οπλισμένου σκυροδέματος προσανατολισμένα τόσο στη διεύθυνση Χ, όσο και στην Υ, την αύξηση της διατομής ορισμένων υποστυλωμάτων με την εφαρμογή ολόσωμου κλειστού μανδύα οπλισμένου σκυροδέματος καθώς και την τοποθέτηση και κατάλληλη αγκύρωση σύνθετων υφασμάτων στα υπόλοιπα υφιστάμενα υποστυλώματα για την παραλαβή της αυξημένης δρώσας τέμνουσας σχεδιασμού. Τα συμπεράσματα που συνοψίζονται από όλη την παραπάνω διαδικασία παρουσιάζονται κάτωθι:

Το κτίριο έχει κατασκευαστεί τη δεκαετία του '70 σύμφωνα με τις διατάξεις του κανονισμού οπλισμένου σκυροδέματος του 1954 και του Αντισεισμικού σχεδιασμού του 1959, οι οποίοι στερούνταν την αυστηρότητα των σύγχρονων κανονισμών. Έτσι, εμφανίστηκαν οι εξής αδυναμίες: Χαμηλή ποιότητα υλικών και απουσία ποιοτικού ελέγχου, Χαμηλή στάθμη σεισμικής διέγερσης, χαμηλή πλαστιμότητα, ανεπαρκείς διαμήκεις και εγκάρσιοι οπλισμόν, απουσία κρυφοϋποστυλωμάτων στα τοιχώματα, απουσία κατασκευαστικών – αντισεισμικών λεπτομερειών στις κρίσιμες περιοχές, απουσία ικανοτικού σχεδιασμού, κτήριο τύπου "Pilotis" – δυσμενής παρουσία τοιχοπληρώσεων.

Η δυσκαμψία κάθε ορόφου ήταν συγκεντρωμένη στην περιοχή πλησίον του ανελκυστήρα μακριά από το κέντρο μάζας του. Το γεγονός αυτό σε συνδυασμό με τις κεκλιμένες δοκούς οπλισμένου σκυροδέματος στην οροφή του κτιρίου δημιούργησαν ένα στρεπτικά ευαίσθητο κτίριο με μεγάλο ποσοστό στροφικής ταλάντωσης. Μάλιστα, η ταλάντωση αυτή συνυπήρχε σε όλες τις αναλύσεις με τη δεσπόζουσα κατά Χ, πράγμα που δυσχέρανε τις επιλύσεις, μείωνε την αξιοπιστία εφαρμογής των μεθόδων και των αποτελεσμάτων.

Οι προκαταρκτικές ελαστικές αναλύσεις απέδειξαν και για τα δυο προσομοιώματα (πακτωμένος & φορέας με Α.Ε.Θ) σοβαρές ανεπάρκειες σε κάμψη και διάτμηση σχεδόν σε όλα τα κατακόρυφα δομικά στοιχεία. Έπειτα, στη μη γραμμική στατική μέθοδο το κτίριο κατέρρεε πολύ πριν φτάσει στη στοχευόμενη μετακίνηση. Είναι αξιοσημείωτο ότι αρκετά στοιχεία ξεπερνούσαν την « Προστασία Ζωής» από το πρώτο κιόλας βήμα της ανάλυσης, υπό τη φόρτιση των κατακόρυφων φορτίων.

Πρωταρχικό μέλημα κατά τη διαδικασία ενίσχυσης του κτιρίου ήταν η μεταβολή του στατικού του συστήματος. Τα καινούρια τοιχώματα τοποθετήθηκαν σε τέτοιες θέσεις, ώστε το κέντρο ελαστικής στροφής να βρίσκεται όσο το δυνατόν πλησιέστερα στο κέντρο μάζας κάθε ορόφου. Έτσι, μειώθηκε η συμβολή των στρεπτικών ιδιομορφών του κτιρίου. Τα τοιχώματα αυτά διαστασιολογήθηκαν σύμφωνα με τους νέους κανονισμούς που επιβάλλουν τη χρήση κρυφοϋποστυλωμάτων και ιδιαίτερη όπλιση του κορμού.

Αρκετά υποστυλώματα, ακόμα και μετά την τοποθέτηση των επτά (7) νέων τοιχωμάτων, εμφάνιζαν ανεπάρκεια σε κάμψη, αλλά ταυτόχρονα πρόβλημα και σε λοξή θλίψη κορμού. Η χρήση μανδυών για την ενίσχυση τους ήταν αναπόφευκτη. Ειδικά σ' αυτά τα υποστυλώματα δεν χρειάστηκε να γίνει εφαρμογή σύνθετων υλικών.

Τελικά, η διαδικασία αξιολόγησης των βλαβών απέδειξε σημαντική μείωση της πιθανότητας εμφάνισης ολοκληρωτικών βλαβών στον ενισχυμένο φορέα. Και στις δυο διευθύνσεις (X & Y) ο φορέας δεν παρουσιάζει πιθανότητα κατάρρευσης πάνω από 10%, όση επιβάλλει δηλαδή ο EC8 για περίοδο επαναφοράς 50 χρόνια σε μια νέα κατασκευή όταν διαστασιολογείται

Συμπερασματικά , βάσει των αποτελεσμάτων και βλαβών που προέκυψαν στο υφιστάμενο κτίριο σε σύγκριση με τα αντίστοιχα στον ενισχυμένο, η ενίσχυση στο σύνολο της κατασκευής κρίνεται επιτυχής.

Βιβλιογραφία

- 🖊 Ο.Α.Σ.Π. (1^η Αναθεώρηση Ιούλιος 2013), «Κανονισμός Επεμβάσεων (ΚΑΝ.ΕΠΕ.)
- Eurocode 8: Design of Structures for Earthquake Resistance Part 3: Assessment and Retrofitting of Buildings (EN 1998 – 3: 2005)
- Eurocode 8: Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions and Rules for Buildings (EN 1998 – 1: 2004)
- 🖊 Σπυράκος Κ. (2004), «Ενίσχυση Κατασκευών για Σεισμικά Φορτία», Τ.Ε.Ε., Αθήνα
- 🖶 Τάσιος Θ. Π. (2009), «Θεωρία Σχεδιασμού Επισκευών και Ενισχύσεων», Ε.Μ.Π., Αθήνα
- Ψυχάρης Ν. Γ.(2010), «Αντισεισμικός Σχεδιασμός με Στάθμες Επιτελεστικότητας», σημειώσεις για το μάθημα του 9^{ου} εξαμήνου Αντισεισμική Τεχνολογία 2, Τμήμα Πολιτικών Μηχανικών, Ε.Μ.Π.
- Ψυχάρης Ν. Γ. (2011), «Design of Structures for Earthquake Loads», σημειώσεις για το μάθημα του εαρινού εξαμήνου Ειδικά Θέματα Αντισεισμικής Τεχνολογίας, Δ.Π.Μ.Σ. – Δ.Σ.Α.Κ.
- Chopra A. K. (2003), «Dynamics of Structures: Theory and Applications to Earthquake Engineering», Second edition, University of California at Berkeley
- "ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΕΔΑΦΟΥΣ-ΚΑΤΑΣΚΕΥΗΣ" Εγχειρίδιον Μαθήματος, ΕΜΠ (τελευταία έκδοση 2010)
- Κανονισμός Ωπλισμένου Σκυροδέματος (1954), Εφημερίδα της Κυβέρνησης του Βασιλείου της Ελλάδος, Τεύχος πρώτον, Αρ. Φύλλου 160
- Β. Δ. 19/26 (02/1959), « Περί αντισεισμικού κανονισμού οικοδομικών έργων», Εφημερίδα της Κυβέρνησης του Βασιλείου της Ελλάδος
- Φ Ο.Α.Σ.Π. (2005), «Ελληνικός Κανονισμός Ωπλισμένου Σκυροδέματος (Ε.Κ.Ω.Σ. 2000)», Αθήνα
- 🖶 Ο.Α.Σ.Π. (2006), «Ελληνικός Αντισεισμικός Κανονισμός (Ε.Α.Κ. 2000)», Αθήνα
- COMPUTERS & STRUCTURES INC. (2005), «C.S.I. Analysis Reference Manual», Berkeley, California
- Multi-hazard Loss Estimation Methology Earthquake Model, Hazus-MH MR1, Advanced engineering building module», Department of Homeland Security Emergency Preparedness and Response Directorate FEMA.
- Αποτίμηση Υφιστάμενης Κατασκευής και Ανασχεδιασμός Σχολικού Κτιρίου από Οπλισμένο Σκυρόδεμα στη Ν. Σμύρνη, Μπροκαλάκη Σ. Ελένη, Μεταπτυχιακή Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Πολιτικών Μηχανικών, ΔΠΜΣ, Αθήνα 2011
- Αποτίμηση εξαώροφου κτηρίου Ω/Σ με βάση την ανελαστική στατική μέθοδο του ΚΑΝ.ΕΠΕ και προτάσεις ενίσχυσης (με έμφαση στη σταδιακή δόμηση των νέων τοιχωμάτων), Δήμητρα Γ. Μουστακάτου, Μεταπτυχιακή Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Πολιτικών Μηχανικών, ΔΠΜΣ, Αθήνα 2011
- Αποτίμηση ανελαστικής συμπεριφοράς πολυώροφου κτιρίου από οπλισμένο σκυρόδεμα,
 Βασιλειάνα Μαρία Ζηκίδη, Μεταπτυχιακή Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή
 Πολιτικών Μηχανικών , ΔΠΜΣ, Αθήνα 2012
- Αποτίμηση φέρουσας ικανότητας και προτάσεις ενίσχυσης σεισμόπληκτης κατοικίας, Χατζηττοφής Χρίστος, Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Πολιτικών Μηχανικών, Αθήνα 2014
- 4 Αξιολόγηση Συμπεριφοράς Σεισμόπληκτου Κτιρίου (Σεισμός Κεφαλλονιάς 2014), Φασούλα Αλίκη, Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Πολιτικών Μηχανικών, Νοέμβριος 2014