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Note to the reader

The present PhD thesis has been originally written in English and is accompanied by
an extended summary in Greek (Annex A). The Greek summary may be considered as
a stand-alone text and presents all research achievements. The references are only
presented in English at the end of the core text of the thesis.

INUEiwpa TPOG TOV aVayvwoTh

H Tevikn Zuvéleuon tng XIxoAng Xnuikwv Mnxavikwv (cuvedpioaon 23/04/2015),
oplog, oclpdwva pe TG dlatdselg tou apbp. 9 map. 4.y Tou N.3685/08, TNV ayyAkn
w¢ YAwooa ouyypadng tng mapovoag Awdaktopikng Awatping. H Swatpn
ouvodeleTal amod ektetapévn nepiAndPn ota eAAnvika (Annex A), n omoia amoteAel
OUTOVOMO KEIPEVO Kal TIEPLEXEL OAQ T EPEVVNTIKA amoteAéopata tng Statppng. H
BBAloypadia mapatiBetal 0To TEAOG TOU ayyALKOU KELHEVOU HOVO.
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Abstract

Test results should be reliable and accepted by all interested parties so that they reduce
risks, shorten time to market and demonstrate the quality and safety of fuel products. The
quality of a result and its fitness for purpose is directly related to the estimation of
measurement uncertainty. The estimation of measurement uncertainty following
recognized and valid methodologies is also a key requirement for laboratories or other
organizations accredited or seeking accreditation according to international standards such
as ISO/IEC 17025, 1SO 15189, ISO/IEC 17043 or ISO Guide 34. The measurement uncertainty
provides a quantitative indication of the quality of a measurement result and has
implications for the interpretation of analytical results in the context of regulatory
compliance or conformity assessment. There are two broad types of approaches for the
estimation of uncertainty, modeling and empirical. Several of these approaches, which
employ the use of statistical and numerical methods are considered. The work presented in
this thesis concerns the estimation and use of measurement uncertainty in all parts of the
measurement cycle: pre-analytical (sampling), analytical (including measurement processes
using a calibration curve) and post-analytical (conformity assessment of products using test
results).

Sampling is an important part of any measurement process and is therefore recognized as
an important contributor to the measurement uncertainty. A reliable estimation of the
uncertainty arising from sampling of fuels leads to a better control of risks associated with
decisions concerning whether product specifications are met or not. Three empirical
statistical methodologies (classical ANOVA, robust ANOVA and range statistics) using data
from a balanced experimental design, which includes duplicate samples analyzed in
duplicate from 104 sampling targets (petroleum retail stations), are described and
compared. These methodologies are used for the estimation of the uncertainty arising from
the manual sampling of fuel (automotive diesel) and the subsequent sulfur mass content
determination. The results of the three methodologies statistically differ, with the expanded
uncertainty of sampling being in the range of 0.34 — 0.40 mg kg”, while the relative
expanded uncertainty lying in the range of 4.8 - 5.1%, depending on the methodology used.
The estimation of robust ANOVA (sampling expanded uncertainty of 0.34 mg kg™ or 4.8% in
relative terms) is considered more reliable, because of the presence of outliers within the
104 datasets used for the calculations.

The Guide to the Expression of Uncertainty in Measurement (GUM) approach and the
adaptive Monte Carlo method (MCM) provide two alternative approaches for the
propagation stage of the uncertainty estimation of a measurement procedure. These two
approaches are implemented and compared concerning the 95% coverage interval
estimation of the measurement of Gross Heat of Combustion (GHC) of an automotive diesel
fuel by bomb calorimetry. The GUM approach, which assumes either a Gaussian or a t-
distribution for the output quantity (GHC) gives half width intervals of 0.28 MJ kg™ or 66 cal
g (Gaussian distribution) and 0.29 MJ kg™ or 70 cal g™ (t- distribution). On the other hand,
MCM, which provides a reliable probability density function of GHC through numerical
approximation, gives a half width interval of 0.32 MJ kg™ or 75 cal g". Thus, the GUM
approach underestimates the calculated uncertainties and coverage intervals by up to 7 —
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12%. The main reasons of these differences are the approximations and the assumptions
introduced by the GUM approach i.e. assumption for the GHC probability distribution and
overestimation of effective degrees of freedom by the Welch-Satterwaite formula. Only if
the GUM approach is combined with a Bayesian treatment of Type A uncertainties, the
results are comparable with the MCM results. Moreover, the estimation and the use of
sensitivity coefficients and uncertainty budget within GUM and MCM approaches are
examined. Finally, it is shown that an initial estimate of measurement uncertainty may be
obtained using the proficiency testing data.

The construction of a calibration curve using least square linear regression is common in
many analytical measurements and comprises an important uncertainty component of the
whole analytical procedure uncertainty. Various methodologies are applied concerning the
estimation of the standard uncertainty of a calibration curve used for the determination of
sulfur mass concentration in fuels. The methodologies applied include the GUM approach,
the Kragten numerical method, the MCM as well as the approximate equation calculating
the standard error of prediction. The standard uncertainty results obtained by all
methodologies agree well (0.172 - 0.175 ng uL"). Aspects of inappropriate use of the
approximate equation of the standard error of prediction, which leads to overestimation or
underestimation of the calculated uncertainty, are discussed. Moreover, the importance of
the correlation between the calibration curve parameters (slope and intercept) within GUM,
MCM and Kragten approaches is examined.

In order to use a test result to decide whether it indicates compliance or non-compliance, it
is necessary to take into account the dispersion of the values that can be attributed to the
measurand. When dealing with conformity assessment of automotive fuel samples against
European Union specification limits, this dispersion may be represented by uncertainty
estimates based on either standard method precision data (ISO 4259 approach) or within
laboratory precision data (intermediate precision approach). Possible decision rules based
on these approaches are directly related to the required or acceptable level of probability of
making a wrong decision. Acceptance limits for 95% and 99% confidence levels calculated
for all the properties of automotive fuels, are presented. Moreover, the effect of different
approaches for defining guard bands, different levels of confidence or different number of
replicate measurements is investigated using the results of the analyses of 769 diesel fuel
samples for the determination of sulfur mass concentration.
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Z0vtoun Nepinyn (Abstract in Greek)

To amotedéopata Twv avaAlUoewv Twv Kauoipwv Ba mpémel va eival aflomota Kot
amodeKTA amno oAa ta evoladepOpeva HEPN, £TOL WOTE vVa PelwBoUV oL kivduvol mpoidovtwv
£KTOG TpodLaypadwy, Vo CUVTOUEVUTEL 0 XpOVoC SLABeoNng TwWV KOUGIHWY oTNV ayopd Kol va
amoSelkvUETAL N TToLOTNTA Kal N aodalela avtwyv. H afloAdynon tng «kataAAnAoAntag yla
Xprion» Hwg avaAutikng uebodou eival dppnkta cuvdedepévn LE TNV EKTIMNON TG
apfefatdtntag tng HETPNONG N OMOIO OUGCLOOTIKA XOPOKTNPilel TNV moldtnta €VOG
OITOTEAECUATOC GUVUTTOAOYI{OVTOC TOOO CUOTNUATIKA 600 Kol Tuxaia opalparta. EmumAéov n
EKTIUNON TNC 0PEPALOTNTAG TWV UETPHOEWVY UE TN XPNON HLOC ETILOTNHOVLKA TEKUNPLWUEVNG
Kol éykupng peBobdoloyiog sival pla Baotkh amaitnon cUYKEKPLUEVWY SLeBvwv potunwy
nowdtntag Baocsl twv omoiwv Slamiotevovtol epyacthplo kot ¢opeic (ISO/IEC 17025, ISO
15189, ISO/IEC 17043 1} ISO Guide 34). Yta keddhala Tng mapolooc ALSaKTopIKAC AlatplBig
mapouctaletal N avamtuén kot ebappoy OTOTIOTIKWY Kol oplOunTtkwy pLebddwv yla tnv
EKTIUNON KoL XpAon tng afeBaldtntag LETPHOEWY OE CUYKEKPLUEVA OTASLO TOU KUKAOU TNG
METPNONG TWV KOUOCIHWV: Tpo-avaAutikd (SelypatoAnyia), avoAutikd (Kuplwg peTpnTIKA
Sladkaoia) Kol HETo-avaAuTIKA (afloAoynon Tng ouppopdwong PACEL EpyaoTnPLOKWY
OTMOTEAECUATWVY).

H &ewypatoAnyPia omotedel €va Paoclkd OTASI0 TWV METPNTIKWY Sladlkacuwv Kot
OUVELOPEPEL ONUAVTIKA OTNV afeBaldTNTO TWV £PyACTNPLOKWY UETPHOEWY. Mia aflomotn
ekTipnon tng apfePfatotntag Aoyw detypotoAniog pnopel va odnynoet oe KaAUTEpPO EAeyX0
TWV KWdUVWV Tou cuvbéovtal e anodacelg mepl cUPPOPPWONG 1 U, EVvOg KAucipou He
npodlaypadéc mou emPdaAel n vopoBeoia. Ita mAaiola TNG TMapoucag ALSAKTOPLKAC
AlatplBic  meplypddovial Kol CUYKpIvovIal w¢ TPOC TA OIMOTEAECHUATA TOUC, TPELG
EUTELPIKEG oTOTLoTIKEC peBodoloyieg («kAaotk» ANOVA, avBektiky ANOVA Kal OTATIOTIKN
g€UPOUC TWWV) Xpnolpomotlwvtag Ssdopéva evog LOOPPOTNUEVOU TELPAUATIKOU oXeSiou
(balanced experimental design). Ot tpelg peBodoloyisg xpnoomololvTaL yla Thv ektipnon
™m¢ afefadtnrag Adyw SeypatoAnpioc kavoipou (vtnleh kivnong) kat Adyw tng
avoAutikng Sladikaciog Tpoodloplopoy  TEPLEKTIKOTNTOG o0 Beio. H  Sleupupévn
apepatotnta e detypoatoAnpiac kupaivetat amd 0,34 ewe 0,40 mg kg™, evw n OXETWKA
Sleupupévn aPfeBaitdtnta ano 4,8 ewg 5,1%, avdloya pe tn otatiotikn peBodoloyia mou
xpnowlornow0nke. Ta anoteAéopata tng avBektikng ANOVA (Steupupévn aBeBatotnta tng
SetypotoAniac 0,34 mg kg), n onoia Sev ennpedletal and TNV Mopousia Hkpoy aplOpol
okpaiwv (éktonwv) Twwv ota Oebopéva, umopolv vo Bswpnbolv wW¢ TEPLOCOTEPO
alomota.

Kowa amodekty peBodoloyia yla tnv ektipnon tng ofefaldtnrtag ULoG METPNTIKAG
Stadkaoiag slval autrh mou meplypadetal otnv Odnyila ISO GUM “Guide to the Expression
of Uncertainty in Measurement”. Qotoco, n npoacéyylon GUM mapouotldlel epLopLoOUoUg
otnv edapuoyn TNG, TOU UMOpoUV va EEMEPAOTOUV UE TNV £bOpUOYn TNG APLOUNTLIKAG
puebodou Monte Carlo (MCM). H ektipnon tng apeBaldtntoag e Tn xpron tng pebodoloyiog
Monte Carlo Paociletat otnv teXvikR O61ad00NnN¢ Katavopwyv Tlavotntag Kal Oxt
ofefalotiTwy OMWE LOYXUEL OTNV KAAOOLWKA Tpoogyylon katd GUM. Ot Suo avwiépw
TPOOEYYIoELC XpNoomololVTaL ylo. TNV TOPAAANAN ekTiunon the apepatdtntag HETPNONg
™¢ Beppoyovou SUvoung metpelaiou kivnong pe t xpnon Bepuidopétpou OApou. H
Steupupévn  afePfatdtnta (Yl mBavotnta KAAuPng 95%) ekTunOnke HEow  TNG
pebodoloyiac GUM (umoBétovtac kavoviky kotavopr) ota 0,28 MJ kg™ 1 66,3 cal g'. H
TR auth elvat 12% pkpdtepn amd tnv TR mou eédwoe n edappoyn tng nebodoloyiag
MCM (0,32 MJ kg™* rj 75,3 cal g'). Xpnowpomowwvtag t pebodoroyict GUM g GUVSUAGHO e
v efiowon Welch-Satterthwaite ylwa tov umoloylopd Bobuwv eheuBepiag kal otn
ouvéxela, anodidovtag pla katavoun t - student oto petpolpevo péyebog odnyoluaote o€
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auénuévn (oe oxéon He TNV UTIOBEON TNG KAVOVIKNG Katavopng) Steupupévn aBefatdotnta
(0,29 MJ kg™ 1j 70,4 cal g"), aA\d& kat TEAL Katd 7% YapnAdtepn oméd auth Tou Sivel n
npoocgyylon MCM. Autég ol Sladopég pnopolv va armodoBouv ot UKPH N YPOLLKOTNTA
TOU HOVTEAOU PETPNONG KAl OTN TPOOEYYLOTIKN dUon tng e€lowong Welch-Satterthwaite, n
XPNon TG omolag oTnV MPOKELUEVN TIEPITTTWON UTIEPEKTLUA TOUC Babpolg eAeuBepiag. Movo
oTnNV MeplmTwon xpnong tng Mneidllavng mMpooéyyLong yla Thv ektipnon twv afeBalothtwyv
TUTIOU A KOl 0TN CUVEXELA XPRONG Toug oto Looluylo afePfatotitwy tng pebBodoroyiag GUM
TO amoTeEAéopATA CUMGWVOUV HE TO amoteAéopata tng mpooeyylong MCM. EmutAéov, n
ofePfadtnTa tNg HETPNONG tng Beppoyovou SUvapng eKTUAONKeE KalL He TN XPHon
Seb0oPEVWV ATIO SLEPYAOTNPLAKES CUYKPLTIKEG SOKLUEG LKAVOTNTOC (EUTIELPLKA TIPOCEYYLON).

H dadikaoia tng Babpovounong (LECw TNG KATAOKEUNG KOUMUANG BaBuovounong) ivat
£va amopaitnTto otddlo o MOAMEG XNULKEC ovaAUGCELS TToU adpopoUV GTOV MPOCSSLOPLOUO TNG
OUYKEVTPWONG HLOC ouciag pe Baon tnv amokplon (oAua) evog opydvou. Yta mAaiola tng
napovoag Adaktoplkng AwatplBrg, sdopuolovral kol cuykpivovtat 4 pebBodoloyieg
ekTiuNong t¢ apepadtnrag (GUM, MCM, Kragten, e€icwon tumkol oddaApatog) Aoyw
KQUTUANG BaOUovounong mou XpNoLUOTIOLE(TAL YLl TOV TIPOCGSLOPLOUO TNG TIEPLEKTLKOTNTOG
Kavoipwyv o Beio cupdwva pe tn pEBodo umepuwdoug dpBoplopol (ISO 20846, ASTM
D5453). Ta amoteAéopota OAwvV Twv peBodoloylwv cupdpwvolv petafl TOoug (TUTKA
apepatotnta 0,172 — 0,175 ng pL?). Mpaypatomowibnkav €miong Kat UTOAOYLOMOL
ayvowvtag Tn ouvdlakupovon HeTaty kAlong kol Tetayuevng (Ue tig pebodoloyieg GUM,
MCM kai Kragten) omou ¢aivetat 6Tl yivetal katd 62% uTepeKTipnon tng apepatdtnrag. Av
OTO QIOTEAECA TN TIPOOEYYLOTIKAG £€l0WONG TOU TUTILKOU odAApaToc dev mpooteBel Kat n
TUTIKA ofefalotnTa tng amokpLong, odnyoUaoTe TOTE O UTIOEKTIUNGN TNG afePfalotntag
Kotd 22%. EmutAéov, Sedopévou OTL N eKTiPnOn Twv 2 TAPAUETPWYV HLAG KOUTTUANG
BaBuovounong Baciletal os €va HOVIEAO PETPNONG UE TIOAAATAG €€€pXOUEVA UETPOUUEVAL
MeYEDN (kAlon, tetayuévn), sdpoapuolovral Kal ol BOCIKEG APXEC TNG CUMTMANPWUOTIKNAG
odnylag tou GUM (Supplement 2 - Extension to any number of output quantities).

TéAog, n afloAdynon tng cupUOpdwWong evog MPoidvtog otav PacileTal O EPYAOTNPLOKEG
peTpnoelg, Ba mpémel va Aappavel umoyn OtL Kapla pEtpnon Sev eivatl 100% akplBng,
KOBWC n TpOyHATIKA TWWA KABe petpolpevou pey£Boug kot  Tuxov odAApata Tou
oxetiovral pe tn pétpnon Sev umopolv va sival yvwotd. ISlaitepa, 6Tov TO AMOTEAECUO TG
METPNONG €lval KOVIA oTo Oplo Kamolog mpodlaypadnc, HoOvo He Tt Xprnon tng Bswplag
TOavoTATWY Kal KATOAANAWY KovOvwy amodaonc Unopel Kavelg va £xeL Tov €Aeyxo emi tng
mbavotntag va AdaBet pla AavBaocuévn amodoaon (pioko). Xta mAaiola tng mopoloog
Awdaktoptknc Alatppig avaAlovtal SUo Slobéotpeg mpooeyyioslc (Le xprion Sedopévwv
mototntag  pueBodwv  kat  xpnon  ektipnong ofePfaiotntag) mou  umopolV  va
xpnotpomnotnBouv yla va urnootnpifouv aflomioteg anopAoelg OXETIKA Ue TNV afloAdynon
NG CUPPOPGWONG TWV Kauoipwy. Ta amoteAéopata Twv avaAUoswv 769 Selypdtwy vinleh
kivnong amnd avtiotowo aplBud mpatnpiwyv yla Tov MPocSLlopLopo TNE TIEPLEKTIKOTNTAS OF
Belo xpnolpomolnOnkav yla va yivel n ouykpLlon Twv SLopopeTIKWY Tpooeyyloswv oplopol
KOVOVWV amodaong yla tnv afloAdynon tn¢ cuppopPpwaong Toug O OXEON LLE TO VOUODBETIKO
4po Twv 10 mg kg, Xpnowomnowvtag kavoves APng amoddoewy mou Pacilovrat otn
xpnon {wvwv mpootaciag mavw f KATw ond to 0plo tTng mpodlaypadng odnyolaote ot
aplBud pun ocuppopdoUUEVWY OElyMATWY E€lTE WIKPOTEPO («eAaoTikn» amodoxn) elte
peyaAUtepo («auotnpn» anodoyxn) oe oxéon Ue tn KN xpnon {wvwv. O akpLPAg aplBpog twv
UN CUUHOPDOUHEVWY OTIOTEAECUATWY EEQPTATAL ATIO TO EMAEYUEVO EMINMESO EUMLOTOCUVNG
KOL TOV OPLOUO EMAVAANTITIKWY EPYAOTNPLOKWY LETProswy. EMutAéov umoAloyiotnkav opla
anodaong ylo OAEG TIG MAPAUETPOUG - TipoSlaypadEg mou meplypadovtal ota mpotuma EN
228 (ooAuBdN Bevtivn) kat EN 590 (vtnleA kivnong).
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Euxoapilotieg

Oa nBela va euxaplotiow Tov eniBAeénovta kabnyntri pou, @avouplo Zavviko Kkatapxnv yLo
TO YEYOVO( OTL Hou €8woe TNV gukalpla va ekmoviow auth Tn Aldaktopikn Alatplpn kabwg
Yyl TNV METEMELTA QIMOTEAECHOATIKI] UTOOTNAPLEN Kol KaBodnynon €wg To TEAOG NG
EPEUVNTIKNG Hou gpyaciag. Mou €dwaoe tnv eAeubepia vo epfabivw G GUYKEKPLUEVOUG
EPEVVNTIKOUG TOUELG XWPIC aVTLPPAOELS, EVW OL CUINTHOELS KOG YLO TNV EPyacio Hou NTav
TLAVTA XPOLUEG KOl EMOLKOSOUNTIKEG. Oa Bela emiong va euxaplotiow ta Vo aAa pHEAn
™G TPWEAOUC cUUBOUAEUTIKAG pou emitpomig, thv Kabnyntpla Kwvotavtiva TUd kat tov
Avarminpwtr KaBnyntr Anuntplo Kapwvn, yla ta XpAolpa oXOAld TOUG Kol TO ELALKPLVEG
evbladépov mou €6elfav yla TNV MPOoodo TNG €PEUVNTIKAG Hou Souleldc. Eva peydio
EUXAPLOTW ETiONG 0 OAa ta PEAN Tou Epyaotnpiou Texvoloyilog Kauolpwy kat AUTavTikwy
mou Slakatexovrav tavra and Gk Stabeon kal mpobupia va BonBrioouv.

ISlatépwg Ba NBela va euxaplotow tn oUIUYO HoU AvTa yla TV ayarmn, Thv UTIooTHPLEN
KoL tnv evBappuvon tng kad '0An tn SldpKela TNG EKOVNONG TNG AlSakToplkng Atotplpng.
Eniong Ba ntav aduvaro va akoAoubrow auto To §popo Xwpei¢ ta moAuTtipa epodia mou
pou €dwoe n oTAPLEN KOL N Oyamn Twv yoviwv Hou. Téhog B€Aw va guxapLotiow Tnv
ayamnuévn Kopn Hou Jodia n omoia yevwwnbnke Tov MPWTO XPOVO TNG €KMOVNONG TNG
ALSoKTOPLKAG ALOTPLBNC KoL £KTOTE OMOTEAOUCE TAVIO ML TINYR EUTMVEUONC aAAA Kal
PuxtkAg xoAdpwong (divovtag Hou akOuUn Kol «KOUVOTOUES» EPUNVEIEG TWV SlaypapudTwy
tou MATLAB pe TG Katavouég Gauss va eival ta Bouvd kol n mMpooouoiwaon onueiwv
SLUHEeTABANTAG KOTAVOUN 0 NALOG.... )
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Measurement uncertainty under a philosophical perspective...

The Allegory of the Cave is presented by the Greek philosopher Plato in his work “The
Republic” (380 BC). Plato has Socrates describe a gathering of people who have lived
chained to the wall of a cave all of their lives, facing a blank wall. People watch shadows
projected on the wall by things passing in front of a fire behind them. Socrates suggests that
the shadows constitute reality for the prisoners because they have never seen anything else;
they do not realize that what they see are shadows of objects in front of a fire, much less
that these objects are inspired by real living things outside the cave. They can’t see the real
things unless they leave the cave.

Relocating the allegory from the world of philosophy into the world of measurements, we
could liken the shadows on the wall to the results of measurements, the fire to the
measurement model, and the real objects to the true value of measured quantities. The
estimation of uncertainty is, in a 3
sense, a conquest of liberty =~ N — j
because allows us to have a o
clearer picture of the range
where the measurement’s true
values lie.

Ll o g

ABeBandtnta tng pEtpnong Kat plthocodia...

H NoAtteila tou MAdtwva (380 1.X) mepthappavet tnv AAAnyopla Tou omnAaiou, e TV omola
o N\atwv e€nyel p€ow Tou Zwkpadtn tn Oswpia Twv I6ewv Tou. € éva omnAalo, KATw amnod Tn
yn, Bpiokovtal pepikoi avBpwrmol aAucoSepEVOL HE TETOLO TPOTIO, WOTE VA UIMOPoUV va Souv
MOVO ToV amévavtl Toug Toixo. Miow Toug wotdaoo ival avappévn pla dwtd. Etol otibnmnote
ekbNAwveTal Tiow oo TV MAATN TOUC OVATIOPLOTAVETAL WC OKLA OTOV QTTEVAVTL TOUG TOixO.
Emeldn ol avBpwmol autol oe oAokAnpn tn {wh Toug Ta Hova MPAyUaTa Tou £xouv el
glval ol OKLEG TWV TTPAYUATWY, €XOUV TNV EVIUTWON OTL Ol OKLEG ToUu PAEMOUV TIAVW OTOV
tolyo elvat ta (Sla T mpaypotoa. EAv OpwC KATOOG ONMO TOUC AAUCOSEUEVOUG
avBpwroug Tou onmnAaiouv katopBwoel va eleuBepwBel, va Pyel amod tTn omnAld KoL va
avEBeL TAVW OTN yN Kal, KATw amnod 1o ¢wg tou AALou Aoy, St Ta mpdypata, Ba kataAdBet
TNV MAAvn otnv onoia {ovoe 600 fTav HESA OTh OTINALA.

MetadEpovtag tnv aAAnyopia amo tov KOopo tnG dpthocodiag oToV KOOUO TWV UETPHOEWV
Ba pmopoloe KAVELS VO TIOPOMOLACEL TI( OKLEG OTOV TOlXO HME T QMOTEAECUATO TWV
METPNOEWY, TN GWTLA HE TO UNXOVIOMO HETPNONG (UETPNTIKO HOVIEAO), TO TPOYUATIKA
OVTIKE(UEVA HME TNV oAnBn TUH TwV PETPOUPEVWY HPEYEBWV KAl TNV KATAKINGN TNG
eleuBeplag pe TNV ektipnon tng aPePoaldTNTOG MOU HOC ETUTPETEL VA €XOUHE LA TILO
£ekaBopn KOVA LA TO EUPOC OTO OTOL0 PPIlOKETAL N TPAYLATIKH TLL AUTOU TIOU UETPALLE.
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1. Introduction

Test results should be reliable and accepted by all interested parties so that they reduce
risks, shorten time to market and demonstrate the quality and safety of fuel products.
The quality of a result and its fitness for purpose is directly related to the estimation of
measurement uncertainty. The estimation of measurement uncertainty following
recognized and valid methodologies is also a key requirement for laboratories or other
organizations accredited or seeking accreditation according to international standards
such as ISO/IEC 17025, ISO 15189, ISO/IEC 17043 or ISO Guide 34. Measurement
uncertainty is defined as the “non-negative parameter characterizing the dispersion of
the quantity values being attributed to a measurand, based on the information used”. A
consistent and transferable evaluation of measurement uncertainty should follow the
basic principles described in the document “Guide to the Expression of Uncertainty in
Measurement” (GUM) produced by the Joint Committee for Guides in Metrology (JCGM).
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1. INTRODUCTION

1.1 Motivation and objectives

The market of fuels and related products becomes more diverse and sophisticated,
turning quality control of fuels into an essential risk management activity for
producers, traders and distributors. The fuels produced and placed on market should
comply with strict requirements introduced by relevant legislation. In European
Union (EU), for example, several directives [1,2] set technical specifications for
automotive fuels used with positive ignition engines (petrol) or with compression
ignition engines (diesel). Several test methods are used for the evaluation and
assessment of the physical, mechanical, rheological, thermal, and chemical
properties of crude oils, lubricating grease/oils, automobile and aviation gasoline,
hydrocarbons, and other naturally occurring energy resources used for various
industrial applications. These products are tested for their composition, purity,
density, toxicity, thermal stability and miscibility / compatibility with other fluids and
materials, among others. Test results should be reliable and accepted by all
interested parties so that they reduce risks, shorten time to market and demonstrate
the quality and safety of fuel products.

In general, laboratories produce results that are passed on to someone else (e.g. the
customer) who will use them to solve a problem or answer questions. The social and
economic impact of the laboratory getting a wrong result and the customer
consequently reaching a false conclusion can be enormous. Thus, the laboratory
should provide a high quality service to its customers. Quality in this context is not
necessarily getting the most accurate results. Quality is providing results that are “fit
for purpose”, i.e. match the service with the requirements of the customer. This is
achieved by providing results that:

* meet the specific needs of the customer,

e attract the confidence of the customer and all others who make use of the

results, and

e represent value for money.

The judgement of “fitness for purpose” of a test method is inseparably related to the
estimation of the measurement uncertainty which actually characterizes the quality
of a result by accounting for both systematic and random errors. Pre-analysis,
analysis and post-analysis are essential parts of the measurement cycle from client
issue to decision on measurement result. In the various pre-analytical, analytical
and post-analytical steps, the measurement uncertainty has to be either estimated

or taken into account. Figure 1.1 shows the various steps of measurement cycle,
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1. INTRODUCTION

indicating the steps that measurement uncertainty has be estimated or taken into
account, as well as the chapters of the thesis that deal with measurement

uncertainty estimation and use.

CLIENT
Chapter 6 / x

Decision on result

Cliert lssue

Data Evaluaion Define l=ue

r———""- e |
| |
I Report on | Decizion on CLIENT — LABORATORY
- :_ = T | memuement |7 T T T T T T 7| meswement | ~ T INTERFACE
| T |
| I
: I x
| Evaluation : ! Sampling
|
. <
: \ | |
| Analysis : :
: Chapters4, 5 : : Chapter 3
LABORATORY

Measurement uncertainty has to be determined or
taken into account

|
' | Relevant chapter of Phd thesis

Figure 1.1 Measurement cycle

1.2 Quality management systems

Laboratories performing tests and calibrations as well as other organizations that
support laboratories in their activities (e.g. proficiency testing providers, reference
material producers) should implement quality management systems specifically
designed to prove their technical competence. This competence is often confirmed
by an independent authorative third party (accreditation body). The main standards

against which, accreditation bodies accredit organizations are:
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1. INTRODUCTION

e ISO/IEC 17025 [3], for testing and calibration laboratories
e |SO 15189 [4], for medical laboratories,
e ISO/IEC 17043 [5], for proficiency testing providers,

e [SO Guide 34 [6], for reference material producers.

These standards define what is required by an organization in order for it to
demonstrate both technical competence of personnel and the availability of all the
technical resources needed to deliver reliable and fit for purpose services and/or
products. In addition to the technical requirements, there is a second major
component of the standards which requires that the management systems of the

organizations meet the principles of ISO 9001 [7].

A key requirement for laboratories or other organizations accredited or seeking
accreditation according to standards mentioned above is the estimation of
measurement uncertainty following recognized and valid methodologies, which in
most of the cases involve measurement data analysis. Table 1.1 presents the
requirements of the accreditation standards concerning uncertainty estimation as

stated in certain clauses.

Table 1.1 Requirements of accreditation standards making reference to uncertainty

estimation

Standard

Clause

Requirement

ISO/IEC 17025

54.1

The laboratory shall use appropriate methods and procedures for all
tests and/or calibrations within its scope. These include sampling,
handling, transport, storage and preparation of items to be tested
and/or calibrated, and, where appropriate, an estimation of the
measurement uncertainty as well as statistical techniques for analysis
of test and/or calibration data.

546.1

A calibration laboratory, or a testing laboratory performing its own
calibrations, shall have and shall apply a procedure to estimate the
uncertainty of measurement for all calibrations and types of
calibrations.

5.46.2

Testing laboratories shall have and shall apply procedures for
estimating uncertainty of measurement. In certain cases the nature
of the test method may preclude rigorous, metrologically and
statistically valid, calculation of uncertainty of measurement. In these
cases the laboratory shall at least attempt to identify all the
components of uncertainty and make a reasonable estimation, and
shall ensure that the form of reporting of the result does not give a
wrong impression of the uncertainty. Reasonable estimation shall be
based on knowledge of the performance of the method and on the
measurement scope and shall make use of, for example, previous
experience and validation data.
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Standard

Clause

Requirement

54.6.3

When estimating the uncertainty of measurement, all uncertainty
components which are of importance in the given situation shall be
taken into account using appropriate methods of analysis.

5.10.3.1

..test reports shall, where necessary for the interpretation of the test
results, include the following:

c) where applicable, a statement on the estimated uncertainty of
measurement; information on uncertainty is needed in test reports
when it is relevant to the validity or application of the test results,
when a customer's instruction so requires, or when the uncertainty
affects compliance to a specification limit;

5.104.1

...calibration certificates shall include the following, where necessary
for the interpretation of calibration results:

b) the uncertainty of measurement and/or a statement of compliance
with an identified metrological specification or clauses thereof;

5.10.4.2

When statements of compliance are made, the uncertainty of
measurement shall be taken into account.

ISO 15189

55.14

The laboratory shall determine measurement uncertainty for each
measurement procedure in the examination phase used to report
measured quantity values on patients’ samples. The laboratory shall
define the performance requirements for the measurement
uncertainty of each measurement procedure and regularly review
estimates of measurement uncertainty. The laboratory shall consider
measurement uncertainty when interpreting measured quantity
values. Upon request, the laboratory shall make its estimates of
measurement uncertainty available to laboratory users. Where
examinations include a measurement step but do not report a
measured quantity value, the laboratory should calculate the
uncertainty of the measurement step where it has utility in assessing
the reliability of the examination procedure or has influence on the
reported result.

ISO/IEC 17043

4.45.1

The proficiency testing provider shall document the procedure for
determining the assigned values for the measurands or characteristics
in a particular proficiency testing scheme. This procedure shall take
into account the metrological traceability and measurement
uncertainty required to demonstrate that the proficiency testing
scheme is fit for its purpose.

4.45.2

Proficiency testing schemes in the area of calibration shall have
assigned values with metrological traceability, including measurement
uncertainty.

4.45.3

For proficiency testing schemes in areas other than calibration, the
relevance, needs and feasibility for metrological traceability and
associated measurement uncertainty of the assigned value shall be
determined by taking into account specified requirements of
participants or other interested parties, or by the design of the
proficiency testing scheme.

4.45.4

When a consensus value is used as the assigned value, the proficiency
testing provider shall document the reason for that selection and shall
estimate the uncertainty of the assigned value as described in the
plan for the proficiency testing scheme.

46.1.2

The proficiency testing provider shall give detailed documented
instructions to all participants. Instructions to participants shall
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Standard

Clause

Requirement

include:

f) specific and detailed instructions on the manner of recording and
reporting test or measurement results and associated uncertainties. If
the instructions include reporting of the uncertainty of the reported
result or measurement, this shall include the coverage factor and,
whenever practicable, the coverage probability;

4.8.2

Reports shall include the following, unless it is not applicable or the
proficiency testing provider has valid reasons for not doing so:

m) details of the metrological traceability and measurement
uncertainty of any assigned value;

ISO Guide 34

5.4.3

In planning the production processes, the reference material producer
shall have procedures and service facilities, for

m) establishing uncertainty budgets and estimating uncertainties of
the assigned property values, if applicable;

n) defining acceptance criteria for verifying that uncertainty estimates
are applicable for replacement batches of reference materials
produced...

5.9.1

The reference material producer shall meet the requirements of
ISO/IEC 17025 with respect to tests, calibrations and measurements
under their responsibility (including preparation of items, sampling,
handling, preservation, storage, packaging, transport to
subcontractors, estimation of measurement uncertainty and analysis
of measurement data).

5.14.2

The stability of the reference material shall be assessed... In case of
detectable degradation, both the degradation and its uncertainty
shall be included in the assessment...

5.16.2

An important aspect of establishing the property values of the
reference material being produced is an assessment of their
uncertainties. The reference material producer shall carry out an
assessment of the measurement uncertainties to be included in the
assighment of the property values in accordance with the
requirements of the GUM (ISO/IEC Guide 98-3). In the process of
estimating uncertainties of the property values of interest, any
uncertainties resulting from between-unit variations and/or from
possible doubts on stability (both during storage and during
transportation) shall be assessed in accordance with I1SO Guide 35 and
shall be included in the assigned uncertainty.

A statement of the measurement uncertainty is mandatory for
certified values. In case values are assigned to non-certified reference
materials (e.g. “indicative values” or “information values”), a
statement of uncertainties is highly recommended to improve the use
of the material.

5.18.4

The reference material producer shall employ best efforts to notify
customers of any change to the assigned value or uncertainty for any
products not expired.
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1.3 What is uncertainty of measurement?

The purpose of a measurement is to provide information about a quantity of interest
(a measurand). Unfortunately, no measurement is exact and many factors (visible or
invisible) can undermine that measurement. When a quantity is measured, the
outcome depends on the item being measured, the measuring system, the
measurement procedure, the skill of the operator, the environment, sampling issues
or other effects. These effects give rise to uncertainty in measurement due to
measurement errors that can be either systematic or random. A systematic error (an
estimate of which is known as a measurement bias) is associated with the fact that a
measured quantity value contains an offset. A random error is associated with the
fact that when a measurement is repeated it will generally provide a measured

guantity value that is different.

Prior to the introduction of the ISO Guide to the Expression of Uncertainty in
Measurement (GUM) [8], it was common to express systematic and random error
values relating to the measurement, along with a best estimate of the measurand, in
order to express what is learned about the measurand. The GUM provided a
different way of thinking about measurement, in particular about how to express the
perceived quality of the result of a measurement. Rather than expressing the result
of a measurement by providing a best estimate of the measurand, along with
information about systematic and random error values, the GUM approach
expresses the result of a measurement as a best estimate of the measurand, along
with an associated measurement uncertainty. Using the GUM approach, it is possible
to characterize the quality of a measurement by accounting for both systematic and
random errors on a comparable footing, and a method is provided for doing that.
This method refines the information previously provided in an “error analysis”, and

puts it on a probabilistic basis through the concept of measurement uncertainty.

The definition the term uncertainty of measurement is provided by the International
Vocabulary of Metrology (VIM) [9]:

“non-negative parameter characterizing the dispersion of the quantity values being

attributed to a measurand, based on the information used.”

Notes to the VIM definition additionally indicate that measurement uncertainty
includes components arising from systematic effects, such as components associated

with corrections and the assigned quantity values of measurement standards, as well
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1. INTRODUCTION

as the definitional uncertainty. Sometimes estimated systematic effects are not
corrected for, but instead, associated measurement uncertainty components are
incorporated. The parameter characterizing the dispersion of the quantity values
may be, for example, a standard deviation called standard measurement uncertainty
(or a specified multiple of it), or the half-width of an interval, having a stated

coverage probability.

Measurement uncertainty comprises, in general, many components. Some of these
may be evaluated by Type A evaluation of measurement uncertainty from the
statistical distribution of the quantity values from a series of measurements and can
be characterized by standard deviations. The other components, which may be
evaluated by Type B evaluation of measurement uncertainty, can also be
characterized by standard deviations, evaluated from probability density functions
based on experience or other information. In general, for a given set of information,
the measurement uncertainty is associated with a stated quantity value attributed to
the measurand. A modification of this value results in a modification of the
associated uncertainty. Figure 1.2 presents a concept diagram intended to provide a
visual presentation of the relations between the various measurement uncertainty

concepts defined and termed in VIM.

2.10 measured

quantity 2.33 uncertainty (evaluation of 2.29 typeB
2.32 relative value budget measurement evaluation of
standard / (see Fig.A.4) uncertainty measurement
measurement component) uncertainty
uncertainty
2.34 target 2.10 measured 3 2.28 typeA

quantity evaluation of
value measurement
{ _ uncertainty

measurement

uncertainty 2.26 measurement

uncertainty

2.35 expanded
measurement 2.30 standard

uncertainty measurement

A uncertainty
" I 2.9 measurement
| result
231 combined |
/ I

standard
1.19 quantity

measurement
value

uncertainty 2.27 definitional 4.24 instrumental 5.18 reference
uncertainty measurement quantity
uncertainty value
2.38 coverage 2.48 measurement 1
factor model

$ 2.3 measurand
2.49 measurement
v function

2.36 coverage 211 true

r "
interval quantity
/ value
2.37 coverage
probability

212 conventional
quantity
value

Figure 1.2 Concept diagram for measurement uncertainty [9]
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A statement of measurement uncertainty is indispensable in judging the fitness for
purpose of a measured quantity value and plays a central role in quality assessment
and quality standards. Paul De Bievre [10] has given a definition of the quality of
measurement result established by metrological criteria:

“Quality of a measurement result is the fitness-for intended- use of that result,
expressed by its metrological traceability including a comparison of the ensuing

measurement uncertainty to a pre-set target measurement uncertainty”

Measurement uncertainty enables users of a measured quantity value to make
comparisons, in the context of conformity assessment, to obtain the probability of
making an incorrect decision based on the measurement, and to manage the

consequential risks.

1.4 Historical background

In 1977, recognizing the lack of international consensus on the expression of
uncertainty in measurement, the world's highest authority in metrology, the Comité
International des Poids et Mesures (CIPM), requested the Bureau International des
Poids et Mesures (BIPM) to address the problem in conjunction with the national
standards laboratories and to make a recommendation. The recognized need to
arrive at an internationally accepted procedure for expressing measurement
uncertainty and for combining individual uncertainty components into a single total
uncertainty resulted in the Recommendation INC-1 (1980), “Expression of
experimental uncertainties” [11], of the Working Group on the Statement of
Uncertainties, convened in 1980 by the Bureau International des Poids et Mesures
(BIPM). The CIPM approved the Recommendation in 1981 [12], and reaffirmed it in
1986 [13].

The responsibility for developing a detailed guide based on the Working Group
Recommendation was given to the Technical Advisory Group on Metrology (TAG4) of
the International Organization for Standardization (ISO), in which six other
international organizations were represented, namely, the BIPM, the International
Electrotechnical Commission (IEC), the International Federation of Clinical Chemistry
and Laboratory Medicine (IFCC), the International Union of Pure and Applied
Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP) and
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the International Organization of Legal Metrology (OIML). The resulting document

was published in 1993 and reprinted with minor corrections in 1995 [8].

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director
of the BIPM, was created by the seven international organizations that had originally
in 1993 prepared the “Guide to the expression of uncertainty in measurement'
(GUM) and the ‘International vocabulary of metrology - basic and general concepts
and associated terms” (VIM). The JCGM assumed responsibility for these two
documents from the ISO Technical Advisory Group 4 (TAG4). In 1998 one more
organization joined these seven international organizations, namely, the
International Laboratory Accreditation Cooperation (ILAC). The JCGM has two
Working Groups. Working Group 1, “Expression of uncertainty in measurement”, has
the task of promoting the use of the GUM and preparing supplements for its broad
application. Working Group 2, “Working Group on International Vocabulary of Basic
and General Terms in Metrology (VIM)”, has the task of revising and promoting the
use of the VIM.

Following wide international dissemination of the GUM over several years, it has
been decided to supplement the Guide with a number of documents. These
documents comprise an introductory document, a document concerned with
concepts and basic principles, four supplements to the GUM, and two documents
concerned with the use of measurement uncertainty in the context of conformance
to specified requirements and the application of the method of least squares. The
titles of the documents, under the banner “Evaluation of measurement data”, are:

(i) JCGM 104:2009 - Evaluation of measurement data — An introduction to the
"Guide to the expression of uncertainty in measurement" and related
documents [14]

(i)  JCGM 101:2008 - Evaluation of measurement data — Supplement 1 to the
"Guide to the expression of uncertainty in measurement" — Propagation of
distributions using a Monte Carlo method [15]

(iii)  JCGM 102:2011 - Evaluation of measurement data — Supplement 2 to the
"Guide to the expression of uncertainty in measurement" — Extension to any
number of output quantities [16]

(iv) JCGM 106:2012 -  Evaluation of measurement data — The role of
measurement uncertainty in conformity assessment [17]

(v) JCGM 105 - Evaluation of measurement data — Concepts, principles and

methods for the evaluation of measurement uncertainty
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(vi)  JCGM 103 - Evaluation of measurement data — Supplement 3 to the "Guide to
the expression of uncertainty in measurement" — Developing and using
measurement models

(vii)  JCGM 107 - Evaluation of measurement data — Applications of the least-
squares method

(viii)  JCGM 108 - Evaluation of measurement data — Supplement 4 to the “Guide

to the expression of uncertainty in measurement” — Bayesian methods

The first four of these documents have been approved and are available for the

scientific community, while the others are in the stage of preparation.

Moreover, there are other general guides available for uncertainty estimation, such
as those produced by National Metrology Institutes (e.g NPL [18,19], NIST [20]) and
accreditation bodies/organizations (e.g. UKAS [21], ILAC [22], EA [23,24]). There are
also sector specific guides such as those produced by EURACHEM [25] or Nordtest
[26]. These guides, even if sometimes employ the application of empirical
approaches, remain compliant with the basic principles of GUM, resulting in

consistent and transferable evaluation of measurement uncertainty.

1.5 Thesis outline

The chapters of the thesis deal with statistical and numerical methods concerning
the estimation and use the measurement uncertainty in certain parts of the
measurement cycle (Figure 1.1). In particular:
e Chapter 2 provides the background theory concerning the approaches for the
estimation and use of uncertainty.
e Chapter 3 presents the development and application of methodologies for
the estimation of measurement uncertainty arising from sampling.
e Chapter 4 focuses on the estimation of measurement uncertainty of an
analytical procedure using ISO GUM and Monte Carlo Method.
e Chapter 5 considers uncertainty estimation in analytical methods employing
the construction of a calibration function using linear regression.
e Chapter 6 investigates the use of measurement uncertainty and precision
data in conformity assessment of automotive fuel products.
e Chapter 7 summarizes the achieved results and proposes some future work.
Each of Chapters 3, 4, 5 and 6 can be read independently having their own summary,

introduction and conclusions. Nevertheless all together give the integrated picture
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about the statistical and numerical techniques that have been developed and

applied in all the parts of the measurement cycle for the estimation or use of

measurement uncertainty.
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2. Theoretical background

The measurement uncertainty provides a quantitative indication of the quality of a
measurement result and has implications for the interpretation of analytical results in the
context of regulatory compliance or conformity assessment. There are two broad
approaches for the estimation of uncertainty, modeling and empirical.

The “modeling approach” quantifies all sources of uncertainty individually, and then
combines (propagates) them through a mathematical model. The most widely
understood modelling approach is described in the “Guide to the Expression of
Uncertainty in Measurement”, known as the GUM. An alternative approach to
uncertainty evaluation is Monte Carlo simulation, where the propagation of uncertainties
is undertaken numerically rather than analytically. Such techniques are useful for
validating the results returned by the application of the GUM, as well as in circumstances
where the assumptions made by the GUM do not apply. The principles for the
uncertainty of the modelling approaches can be extended to the evaluation of
uncertainties associated with measurement models with two stages and/or involving
multiple output quantities.

On the other hand, there are “empirical approaches”, which are based on whole-method
performance investigations designed and conducted so as to comprise the effects from
as many relevant uncertainty sources as possible. Empirical approaches are particularly
appropriate where major contributions to uncertainty cannot readily be modelled in
terms of measurable input quantities, and where many laboratories use essentially
identical test methods and equipment.

When prior knowledge (before a measurement is made) is available, Bayesian statistics
can be used. Type A uncertainties or uncertainties near zero may be evaluated through a
Bayesian approach.

Different approaches exist for the assessment of laboratory and measurement procedure
bias and its treatment related to the evaluation of uncertainty. Uncorrected bias and its
uncertainty should be incorporated into measurement uncertainty.

PhD Thesis — D. Theodorou
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2.1 Introduction

The main purpose of measurement is to enable decisions to be made. The reliability
of these decisions depends on knowing the uncertainty of the measurement results.
If the uncertainty of measurements is underestimated, for example because the
sampling is not taken into account, then erroneous decisions may be made that can
have large financial consequences. The fitness for purpose of measurement results
can only be judged by having reliable estimates of their uncertainty. For this reason
it is essential that effective procedures are available for estimating the uncertainties
arising from all parts of the measurement process. These must include uncertainties
arising from any relevant sampling and physical preparation, and within laboratory
measurement procedures. Measurement uncertainty interacts closely with decision
making. Therefore, in order to utilize a result to decide whether it indicates
compliance or non-compliance with a specification, it is necessary to take into
account the measurement uncertainty. Fig. 2.1 shows the correlation between the

measurement process stages and the work presented in the various thesis chapters.

REPORTING
MEASUREMENT RESULTS AND
AMPLIN >
> G PROCEDURE ASSESSING
CONFORMITY
Chapter 3 Chapter 4 Chapter 6
Estimation of sampling Estimation of the Use of measurement
uncertainty uncertainty of a typical uncertainty in conformity
measurement procedure assessment

Chapter 5

Estimation of the
uncertainty of a
measurement procedure
involving the construction
of a calibration curve

Figure 2.1 Measurement process stages and correlation with thesis chapters

The present Chapter sets the theoretical basis and outlines the statistical and

numerical methods used in the work presented in Chapters 3, 4, 5 and 6.
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2.2 Uncertainty — An overview

The “Guide to the Expression of Uncertainty in Measurement”, known as the
GUMI8], is acknowledged as the master document on measurement uncertainty
throughout the scientific community. Through this document, certain principles have
been established that require that:
e uncertainty evaluation is comprehensive, accounting for all relevant sources
of measurement error
e uncertainties arising from random and systematic effects are treated alike,
i.e. are expressed and combined as variances of associated probability
distributions
e statistical evaluation of measurements (Type A) and alternative techniques,
based on other data / information (Type B), are recognized and utilized as
equally valid tools
e uncertainties of final results are expressed as standard deviations (standard
uncertainty) or by multiples of standard deviations (expanded uncertainty)

with a specified numerical factor (coverage factor).

There are two broad methodologies for the estimation of uncertainty, the modeling
approach and the empirical approach. The “modeling approach” which is consistent
with GUM and is described as a “bottom up” approach, quantifies all sources of
uncertainty individually, and then combines (propagates) them through a
mathematical model. On the other hand, there are “empirical approaches”, which
are based on whole-method performance investigations designed and conducted so
as to comprise the effects from as many relevant uncertainty sources as possible.
The data utilized in these approaches are typically precision and bias data obtained
from within-laboratory validation studies, quality control, interlaboratory method
validation studies, or proficiency tests (PTs) [27].

Figure 2.2 shows a classification of uncertainty approaches based on a distinction
between uncertainty estimation using data produced by the laboratory itself (called
intralaboratory approach) and uncertainty estimation based on data produced by

collaborative studies (called interlaboratory approach).
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Figure 2.2 Uncertainty estimation approaches [27]

2.3 Basic concepts and terms

2.3.1 Measurement

According to the International Vocabulary of Metrology (VIM) [9] measurement is

the process of experimentally obtaining one or more quantity values that can

reasonably be attributed to a quantity. The measurement result is the outcome of

any measurement activity and is what is reported to the end-user, be it a regulatory

body, an accreditation body or a commercial customer.

A measurement result is generally expressed as a single measured quantity value

accompanied by a measurement uncertainty. This can be interpreted as a “set of

quantity values”, meaning that any value, within the interval defined by the
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measurement uncertainty is a possible value for the measurand. This information
provides the end-user with sufficient information on the reliability of the
measurement result, to be taken into account when for example it is to be compared
with a stated limit. The measurement uncertainty and the level of confidence

associated with it are part of a measurement result.

2.3.2 Accuracy, trueness and precision

The action of measuring introduces changes in the system subjected to
measurement. This leads to a measurement error, affecting each individual
measurement. In principle, the measurement error is represented by the difference
between the measured quantity value and a reference quantity value. In practice, for
an individual measurement on a test sample/ item, the measurement error is
unknowable. This is because, in this case, the reference quantity value is the
unknown true quantity value for the measurand. The measurement error consists of
two components, systematic and random, which represent respectively, the
constant or predictable variation and the unpredictable variation in a series of

replicate measurements.

The concepts of measurement error, random measurement error and systematic
measurement error are illustrated in Figure 2.3, where y; indicates an individual
measured value of the measurand. A histogram is also shown in the figure for a set
of such individual measured values, where the area of each rectangle of the
histogram represents the number of times that an individual measured value was

obtained within the interval defined by the width of the rectangle. And then a fit to
the histogram data is shown by the black curve, and 9 is the location of the

maximum of the curve. The unknown true value, yi.. that is desired to be obtained

from the measurement is plotted to the left in the figure.
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measurand: particular quantity subject to measurement

systematic error >

fit to histogram data
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Figure 2.3 lllustration of the concept of measurement error and its components,
random measurement error and systematic measurement error [28].

Systematic and random errors are terms closely related to measurement trueness
and measurement precision, respectively. Measurement trueness is defined as the
closeness of agreement between average of an infinite number of replicate
measured quantity values and a reference quantity value. Measurement trueness
expresses the hypothetical ability of a measurement procedure to yield results close
to expected reference quantity values, such as the value of a certified reference
material (CRM). Trueness is not a quantity and therefore cannot be expressed
numerically. However, trueness is inversely related to systematic measurement
error (component of measurement error that in replicate measurements remains
constant or varies in a predictable manner). The systematic measurement error may

be estimated as measurement bias.

Measurement precision is defined as the closeness of agreement between
indications or measured quantity values obtained by replicate measurements on the
same or similar objects under specified conditions. Measurement precision is related
to random measurement error and is a measure of how close results are to one
another. Measurement results cannot be corrected to remove the effect of random
error but the size of the random error can be reduced by making replicate
measurements and calculating the mean value. Measurement precision is expressed
numerically using measures of imprecision such as the standard deviation calculated
from results obtained by carrying out replicate measurements on a suitable material
under specified conditions. VIM defines three measurement conditions: repeatability

condition, intermediate precision condition and reproducibility condition. Estimates
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of measurement repeatability and intermediate measurement precision are
obtained in a single laboratory. Repeatability condition of measurement refers to
measurements being made on portions of the same material by a single analyst,
using the same procedure, under the same operating conditions over a short time
period. Measurement repeatability is often used to provide an estimate of within-
batch variability in results. Under intermediate measurement conditions,
measurements are made on portions of the same material using the same
procedure, but over an extended time period and possibly by different analysts who
may be using different pieces of equipment. Intermediate measurement precision is
often used to provide an estimate of between batch variability. Intermediate
measurement conditions are user-defined and the conditions used should always be
recorded. Estimates of measurement reproducibility are obtained from
measurement results produced at different laboratories. Reproducibility condition
of measurement refers to measurements being made on portions of the same

material by different analysts working in different locations.

The effect of both precision and trueness are included in accuracy. Measurement
accuracy describes how close a single measurement result is to the true quantity
value. Accuracy cannot be given a numerical value but measurement results are said
to be “more accurate” when the measurement errors and the measurement
uncertainty, are reduced. Figure 2.4 illustrates trueness, precision and accuracy,
through the use of the “target model”. The “shots” on the target represent
individual measurement results; the reference quantity value (true value) is the
centre of the target. The best accuracy is achieved in case b) where the individual
results are all close to the reference value. In cases a) and b) there is no significant
bias as the results are all clustered in the centre of the target. However, the
precision is poorer in case a) as the results are more widely scattered. The precision
in case d) is similar to that in case b). However, there is a significant bias in case d) as
all the results are off-set from the centre in the same area of the target. The
accuracy is poorest in case c) as the results are widely scattered and are off-set to
the right of the target. Measurement accuracy cannot be used to give a quantitative
indication of the reliability of measurement results. An estimate of measurement

uncertainty is required for this reason.
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improving trueness

improving precision

Figure 2.4 Target model to illustrate trueness, precision and accuracy.

2.3.3 Measurement uncertainty

The measurement uncertainty provides a quantitative indication of the quality of a
measurement result. It is defined in VIM as a “non-negative parameter
characterizing the dispersion of the quantity values being attributed to a measurand,
based on the information used”. This definition expresses the fact that parameters
used to describe the dispersion of distributions, e.g. standard deviations, are usually
positive. The statement, “based on the information used”, explains why it is
necessary to declare what is included in the estimate of measurement uncertainty.
This does not mean that one can choose what to include and what to leave out.
There are certain approaches to evaluating measurement uncertainty and these are
described in the following sections. The result of a measurement consists of two
quantitative parts: i) the measured quantity value, often an average or median of
individual measurements, and ii) the measurement uncertainty. If, when the result is
reported the uncertainty is included, it can be presented in the format (value *
uncertainty) and units. The uncertainty is interpreted as providing an interval within

which the value of the measurand is believed to lie.

Estimates of measurement uncertainty can be expressed in a number of different
ways, e.g. as a standard deviation or a confidence interval. However, in order to be
able to combine uncertainty estimates they must be expressed in the same form, so

some conversion may be necessary. Following GUM guidelines, uncertainty
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estimates should be expressed as standard measurement uncertainties before they

are combined. There are different forms of uncertainty:

u(xj) — the standard measurement uncertainty for quantity x; is an
uncertainty expressed as a standard deviation.

u(y) — the combined standard measurement uncertainty for the measurand
Y, is a mathematical combination of several individual standard measurement
uncertainties.

U — the expanded measurement uncertainty is normally what the laboratory
reports to the customer. The expanded uncertainty provides an interval
within which the value of the measurand is believed to lie with a higher level
of confidence. The value of U is obtained by multiplying the combined
standard measurement uncertainty u(y) by a coverage factor k, i.e. U = k-u(y).

The choice of the factor k is based on the level of confidence desired.

2.4 Modelling approach

2.4.1 GUM uncertainty framework

The most widely understood modelling approach to evaluation of uncertainty is

described in GUM. This procedure is based on a mathematical-measurement model

formulated to account for the interrelation of all the influence quantities that

significantly affect the measurand. Corrections are assumed to be included in the

model to account for all recognized, significant systematic effects. The application of

the law of propagation of uncertainty enables evaluation of the combined

uncertainty on the result. The steps to be followed for evaluating and expressing the

uncertainty of the result of a measurement as presented in GUM are summarized in
Table 2.1 and Figure 2.5.
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Table 2.1 Procedure for evaluating and expressing the uncertainty according to GUM
uncertainty framework [8, 21].

No Step Comments
1 Determine the mathematical relationship | The set of input quantities X;, X5,...,Xy
between the values of the input | may be categorized as:
quantities, X;, X, Xy and that of the e quantities whose values and
measurand, Y: uncertainties are directly
determined in the current
Y = (X, X, Xy) measurement
e quantities whose values and
uncertainties are brought into
the measurement from external
sources
2 Identify all corrections that have to be | The function f should contain every
applied to the results of measurements | quantity, including all corrections and
of quantity (measurand) for the stated | correction factors that can contribute a
conditions of measurement. significant component of uncertainty to
the result of the measurement.
3 Determine x;, the estimated value of
input quantity X;, either on the basis of
the statistical analysis of series of
observations or by other means.
4 Calculate the standard uncertainty u(x;) | In a Type A, evaluation the standard

of each input estimate x;.

For an input estimate obtained from the
statistical  analysis of series of
observations, the standard uncertainty is
evaluated using Type A evaluation of
standard uncertainty.

For an input estimate obtained by other
means, the standard uncertainty u(x;) is
evaluated using Type B evaluation of
standard uncertainty.

uncertainty u(x;) is calculated as the
standard deviation s(x;) of the mean of m
measurements. The degrees of freedom
associated with Type A standard
uncertainties based on m measurements
arevi=m-—1.

In a Type B, evaluation the standard
uncertainty u(x;) is evaluated by scientific
judgment based on information such as
previous measurement data, experience
with or general knowledge of materials
and instruments involved,
manufacturer’s specifications, calibration
data etc.

When Type B uncertainties are used, it
may be necessary to convert an interval
into a standard uncertainty using
information about the distribution of the
value and the degrees of freedom (see
Table 2.2).
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No Step Comments
5 Evaluate the covariances associated with | The degree of correlation between x; and
any input estimates that are correlated. x; is characterized by the estimated
correlation coefficient:
r(xi , Xj) = M
u(xu(x;)
where  u(x;,X;)=u(X;,%) is the
estimated covariance associated with x;
and x;
6 Calculate the result of the measurement, | In some cases, the estimate y is taken as
that is, the estimate y of the measurand | the arithmetic mean or average of a
Y, from the functional relationship f using | series of independent determinations,
for the input quantities X; the estimates x; | each determination having the same
obtained in step 3. uncertainty and each being based on a
complete set of observed values of the
input quantities X; obtained at the same
time.
7 Determine the combined standard | If the estimates x; and x; are independent

uncertainty u(y) of the measurement
result y from the standard uncertainties
and covariances associated with the
input estimates, using the law of
propagation of uncertainty:

UZ(Y)=ZCi2U2(Xi)+
2> cic u(x ux;)r(x;, x;)

i<j

where ¢ is the partial derivative:
oF _a
8Xi aXixl,x2 ..... XN

(also known as sensitivity coefficient).

then r(x;,X;)=0 and the combined

standard uncertainty is given by:

U (y) = Y cru?(x)

For the very special case where all of the
input estimates are correlated with

correlation coefficients r(x;,X;)=1 the

combined standard uncertainty is given
by:

Uz(y) = |:Zci U(Xi)}

i.e. the combined standard uncertainty
u(y) is simply a linear sum of terms
representing the variation of the output
estimate y generated by the standard
uncertainty of each input estimate x.
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No Step Comments
8 Obtain the expanded uncertainty U by | In some cases it may not be practical to
multiplying the combined standard | base the Type A evaluation on a large
uncertainty u(y) by a coverage factor k | number of readings, which could result
depending on the level of confidence | in the coverage probability being
required: for normal distribution, a value | significantly less than 95% if a coverage
k=2 corresponds to an approximate | factor of k= 2 is used. In such cases a t-
confidence level (coverage probability) of | distribution is assumed and the degrees
95%, and k=3 of 99.7 %. of freedom, v, associated with u(y) are
calculated using the Welch-Satterthwaite
formula:
4
__u(y)
eff — 4
Z u; (y)
i Vi
where v; corresponds to the degrees of
freedom of u(x;).
1
measurement T o ] T [] I I
Inputs function ¥ — L‘:stlLll:'l.t_L:\ Tlyeo EN .«Lzu][{lnrd uncertainties| 1 degrees of coverage
LD, CTOT Xw) of X1,..., Xy u(z)ye, u(zy) 1 |freedom v1,... vy probability p
| :
n
partial derivatives .
of model '
:
| :
n
n
1
sensitivity coefficients '
Clyonn, cN :
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1
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Outputs |estimate y = f(xq,...,2z5) of §'| |:;t:m<1:1rcl uncertainty n[y}| H
:
.................................................... mmepmenl
| effective degrees of freedom |
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Output | coverage interval y £ U7 for ¥V |

Figure 2.5 Measurement uncertainty evaluation using the GUM uncertainty
framework. The top-left part of the figure, bounded by broken lines relates to
obtaining an estimate y of the output quantity Y and the associated standard
uncertainty u(y), and the remainder relates to the determination of a coverage
interval for Y [14].
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Table 2.2 Typical assumed probability distributions for input quantities and
evaluation of their standard uncertainties [15,21]

Assumed probability Expression used to obtain Comments
distribution (and the standard uncertainty
illustration)
Rectangular b—«a C If the only available
ux,)=——=— . . .
2.3 43 information  regarding a

[ ——

-

quantity X; is a lower limit a
and an upper limit b (range
b-a = 2c¢) with a < b, then,
according to the principle of
maximum entropy, a
rectangular distribution R(a,
b) over the interval [a, b]

would be assigned to X;.

U-shaped

‘ o

u(x)— =

S
e

If a quantity X; is known to
cycle  sinusoidally,  with
unknown phase @, between
specified limits a and b
(range b- a = 2¢), with a < b,
then, according to the
principle of maximum
entropy, a  rectangular
distribution R(0, 2m) would
to X. The
distribution assigned to X; is
the arc sine (U-shaped)

distribution U(a, b).

be assigned

Triangular

U
Q.)

u(x,) = =

If a quantity X; is known to lie
between specified limits a
and b (range b- a = 2c), with
o < b, but there is reason to
expect that extreme values
are unlikely, it is normally
appropriate to assume a
triangular distribution T(a, b)
over the interval [a, b].
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Assumed probability Expression used to obtain Comments
distribution (and the standard uncertainty

illustration)

Gaussian (Normal) Single measurement: Where the uncertainty

(from repeated component was evaluated

measurements) u(x,) =s(x) experimentally from the

dispersion  of  repeated

measurements, it can readily

Results subjected to | be expressed as a standard

averaging: deviation. For the

), \_ contribution to uncertainty

s(x.) in single measurements, the

U(Xi) :TI standard  uncertainty s

m simply the observed

standard  deviation; for

results subjected to

averaging (m replicates), the
standard deviation of the

Gaussian (Normal)
(from a calibration

certificate)

U(Xi):%

mean.

A calibration certificate
normally guotes an
expanded uncertainty U at a
specified, high coverage
probability. A  coverage

factor, k, will have been used

to obtain this expanded
uncertainty from the
combination of standard

uncertainties. It is therefore
necessary to divide the
expanded uncertainty by the
same coverage factor to
obtain the standard
uncertainty.
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Assumed probability Expression used to obtain Comments
distribution (and the standard uncertainty
illustration)
Gaussian (Normal) tolerance Some manufacturers’
(from a manufacturer’s ( i) :T specifications are quoted at
specification) a given coverage probability

(sometimes referred to as
“confidence level”), e.g. 95%
or 99%. In such cases, a
normal distribution can be
assumed and the tolerance
limit is divided by the
/A coverage factor k for the
J stated coverage probability.
For a coverage probability of
95%, k = 2 and for a
coverage probability of 99%,
k=2.58.

If a coverage probability is

not stated then a rectangular
distribution should be

assumed.

t-distribution n-1 s(x.) When the uncertainty
1

(from repeated U(Xi):\/—3 \/— component was evaluated
measurements) m

experimentally from the
dispersion of a small number
of repeated measurements
and a Gaussian distribution
I cannot be assumed then a

I scaled and shifted t-
SN distribution t (x,s?/m)with
v=m — 1 degrees of freedom
is assigned for X;, where X

ands’ are the average and
the  variance of the
measurement results,
respectively.
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Assumed probability Expression used to obtain Comments
distribution (and the standard uncertainty
illustration)
t-distribution §] If the source of information
(from a calibration u(x;) = k_p about a quantity X is a
certificate) P calibration certificate  in

which a best estimate x;, the
M expanded uncertainty U,
I the coverage factor k, and
N the effective degrees of
freedom v are stated, then
a scaled and shifted t-
distribution tv(x;,(Up/kp)z)
with v = v degrees of
freedom is assigned to X..

It has to be noted that the law of propagation of uncertainty in the GUM uncertainty
framework applies exactly for a linear measurement model, since it is obtained from
the formula for the variance of a linear combination of random variables given the
variances and covariances of those variables. However, determination of a coverage
interval requires knowledge of the probability density function for the measurand Y.
In the GUM uncertainty framework it is assumed that this probability density
function is Gaussian, or Student’s t for a specific degrees-of-freedom parameter. The
probability density function has Gaussian form when the input quantities are
independent and Gaussian, or when they are multivariate Gaussian, or when the
central limit theorem practically holds. For a non-linear model there is a further
condition for the GUM uncertainty framework to apply: the model can be well
approximated locally by a linear model within several standard deviations of the best
estimates of the input quantities [29].

The situations where the GUM uncertainty framework might not be satisfactory, are
summarized as follows:

(i) the measurement function is non-linear,

(i)  the probability distributions for the input quantities are asymmetric,

(iii)  the uncertainty contributions are not of approximately the same magnitude,
(iv)  the probability distribution for the output quantity is either asymmetric, or

not a Gaussian or a t-distribution.
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2.4.2 Monte Carlo method

Sampling techniques, such as Monte Carlo simulation, provide an alternative
approach to uncertainty evaluation in which the propagation of uncertainties is
undertaken numerically rather than analytically. Such techniques are useful for
validating the results returned by the application of the GUM uncertainty
framework, as well as in circumstances where the assumptions made by the GUM
uncertainty framework do not apply. In fact, these techniques are able to provide
much richer information, by propagating the distributions (rather than just the
uncertainties) of the inputs, X; through the measurement model f to provide the
distribution of the output Y [15, 21].

The Monte Carlo method (MCM) for uncertainty evaluation is straightforward to
apply in the sense that the only interaction with the measurement model is in terms
of evaluating the model and sensitivity coefficients are not required. A further
feature of the method is that it is a general and broadly applicable approach to the
propagation of distributions because it makes no assumption about the
measurement model (e.g., that it is only mildly non-linear), no assumption about the
probability distributions for the input quantities (e.g., that no one distribution
dominates), and no assumption about the distribution for the output quantity (e.g.,
that it takes a particular form). Although the method always produces an
approximate solution to the propagation of distributions, the quality of the

approximation can be controlled by the number of Monte Carlo trials [30].

In a Monte Carlo simulation the mathematical model of the underlying
measurement system is run over and over again, each time using a different set of
random numbers representing the input variables. Each of these sets of random
numbers combines via the model to represent a different outcome. Each run of the
model is called a simulation, or trial, and at the end of each trial the outcome of the
process is recorded. Each different outcome arises, through the measurement
model, corresponding to a particular set of random numbers being applied to it. If
the model is a good representation of the real -world system, then, by running a
large enough number of trials (each with a different set of random numbers), the
whole range of possible outputs can be produced; these form the distribution of the
output. The Monte Carlo numerical simulation tends to require up to 10° trials for
calculating a 95% coverage interval which is correct to one or two significant
decimals digits. In fact, it is often more reliable to implement an adaptive Monte

Carlo procedure which involves carrying out an increasing number of trials until the
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results have stabilized in a statistical sense [15]. Coverage intervals (either shortest
or probabilistically equal) and other statistical information can then
straightforwardly be produced from the PDF of the output quantity. The estimate y
of the output quantity Y is estimated by the average of the M MCM trials which
produce M measurement model values (y,, r=1, ..., M):

y==—">y, (2.1)

From the output distribution confidence intervals can be produced, as can other
statistical information. The standard uncertainty u(y) associated with y is estimated

as the standard deviation of the M model values:

u(y) = \/ﬁg(yr -y) 2.2)

The 95% coverage interval for the output can be obtained by the 2.5- and 97.5-
percentiles of the distribution of MCM results (probabilistically equal coverage
interval). The GUM Supplement 1 [15] provides guidance for an alternative coverage,
the “shortest coverage interval.” This interval is the shortest among all possible
intervals for a distribution of MCM results where each interval has the same
coverage probability (95%). Figures 2.6 and 2.7 illustrate the way the MCM works for
a measurement model f consisting of input quantities (Xy,...,Xy) which are used for
estimating the output quantity Y.

Chapter 4 presents the estimation of measurement uncertainty of an analytical
procedure using GUM and MCM.
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Figure 2.6 Measurement uncertainty evaluation using a Monte Carlo method, where
the left part of the figure (left of the broken line) relates to obtaining an estimate y
of the output quantity Y and the associated standard uncertainty u(y), and the
remainder relates to the determination of a coverage interval for Y [14].
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Figure 2.7 The basic principle of the Monte Carlo method. Samples are drawn from

the distributions of the input quantities (Xy,...,Xy) and through the measurement
model f a distribution for the measurand Y is generated.

2.4.3 Kragten approximation

The Kragten approximation is recommended in the Eurachem/CITAC Guide [25] and

provides an approximation of the first derivative required by the GUM’s first-order
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formula (Table 2.1 — Step No7). This approach uses a numerical method of

differentiation and relies on the approximation:

o ru(x)) - f(x)
ox, u(x,)

(2.3)

where x; and u(x;) are the value of an influence quantity and the corresponding
standard uncertainty and y is the value of the measurand inferred from a
measurement model Y=f(X;). Since the GUM’s first-order formula gives the
corresponding standard uncertainty ui(y) in y as the partial derivative multiplied by

u(x;) this approximation leads to the very simple form:
of
u; (y) =cu(x) = a_u(xi) = f(x +u(x)) - f(x) (2.4)
Xi

The approximation is quite good enough for a fit for purpose estimate required of
testing laboratories where uncertainties are small and f(X;) close to linear (the
conditions assumed by the first-order GUM formula). Moreover, as discussed by
Ellison [31], in certain cases, while the Kragten estimate may be a poor
approximation to the first derivative at the estimate, the result can, paradoxically,
provide a better indication of the correct standard uncertainty than a good first-
order calculation. Reference [32] discusses the point of Kragten approach
assumptions more fully and suggests methods of checking the validity of the

assumptions.

In Chapter 5 the Kragten approximate numerical method is applied for the
estimation of the uncertainty associated with the construction and use of a
calibration curve used for the determination of sulfur mass concentration in fuels.
The results of the estimations are compared with the results of the GUM uncertainty
framework and the MCM approach.

2.5 Empirical approaches

Empirical approaches, which include interlaboratory comparisons and method
validation studies, are particularly appropriate where major contributions to
uncertainty cannot readily be modelled in terms of measurable input quantities, and

where many laboratories use essentially identical test methods and equipment. The
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ISO/IEC 17025 standard [3] accordingly references ISO 5725 series of standards
“Accuracy (trueness and precision) of measurement methods and results” [33-38], as
well as the GUM, among its uncertainty evaluation requirements applicable to
testing laboratories. When applying empirical approaches, it is however, important
to retain the consistency provided by adherence to the GUM concepts and
recommendations. Careful application of the different approaches can ensure that
all the different approaches remain compliant with the basic principles of the GUM
[27].While GUM (modelling approach) uses mathematical measurement models,

empirical approaches use statistical models as the basis for data analysis.

As shown in Figure 2.1 empirical approaches may be classified either as
interlaboratory or intralaboratory depending on the source and the type of the data
used. The intralaboratory empirical approaches use data from single laboratory
method validation studies. The interlaboratory empirical approaches use data from
collaborative method performance data or from interlaboratory comparisons
(proficiency testing). Table 2.3 presents the basic principles of the 3 main categories

of empirical approaches.

Table 2.3 Basic principles of the main categories of empirical approaches.

Approach Basic principles

Single laboratory | The major sources of variability are assessed by method validation
validation approach study. Estimates of bias, repeatability, and within laboratory
reproducibility can be obtained by organizing experimental work
inside the laboratory. Information can also be obtained from quality
control data (control charts). Combined with experimental
investigation of important individual effects, this approach provides
essentially all of the data required for uncertainty estimation.

Interlaboratory The major sources of variability are assessed by interlaboratory
validation approach studies which provide estimates of repeatability (repeatability
standard deviation), reproducibility (reproducibility standard
deviation and (sometimes) trueness of the method (measured as a
bias with respect to a known reference value). I1ISO 21748 [39]
provides guidance for the use of repeatability, reproducibility and
trueness estimates in measurement uncertainty estimation.
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Proficiency testing | If the same method is used by all the participants to the Proficiency
approach Testing scheme, the standard deviation is equivalent to an estimate
of interlaboratory reproducibility and can, in principle, be used in
the same way as the reproducibility standard deviation obtained
from collaborative study (interlaboratory validation). Further, over
several rounds, the deviations of laboratory results from the
assigned value can provide a preliminary evaluation of the bias for
that laboratory.

In analytical methods, certain empirical approaches are widely used for the
estimation of uncertainty arising from sampling, when it is difficult or costly to
establish mathematical models reflecting the influence of the various uncertainty
contributions. The empirical approaches use repeated sampling and analysis, under
various conditions, to quantify the effects caused by factors such as the
heterogeneity of the analyte in the sampling target and variations in the application
of one or more sampling protocols. Data obtained from repeated sampling and
analysis protocols are then analyzed using suitable statistical methods.

In Chapter 3 three statistical methods used for the estimation of the uncertainty
caused by manual sampling of fuels from petroleum retail stations are developed,
applied and compared. Moreover, in Chapter 4 data from interlaboratory
comparisons (proficiency testing) are used for the estimation of uncertainty and the

result is compared with the results of other approaches.

2.6 Bayesian uncertainty analysis

Another method of uncertainty analysis is by the use of Bayesian statistics. This is
based on the concept of degree of belief. Bayes’ theorem gives the “posterior” odds
on the correctness of a belief (given the new evidence that has just been observed),
making use of the “prior” odds that the belief is correct, i.e. an estimate of the
plausibility of the belief before one has the new data. A concept of likelihood ratio
allows the “prior” odds to be adjusted according to the each piece of new evidence
[21]. In Bayesian statistics, the measurement data are constants and the value of the
measurand is a random variable. The probability distribution for the value of the
measurand is a “state of knowledge distribution” that describes the degrees of belief
about all possible values that could be attributed to the value of the measurand. The

degrees of belief are based on all available information including scientific
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judgement, current measurements, and ancillary knowledge. Similar state of
knowledge probability distributions apply to the other unknown quantities involved

in measurement.

A Bayesian uncertainty analysis starts with prior distributions, which represent the
states of knowledge before measurements are made, for the values of unknown
quantities. Negligible prior knowledge is expressed by using non-informative
probability distributions. The measurements are then used to update the prior
distributions using Bayes’ theorem to obtain posterior distributions. The posterior
distribution for the value of the measurand is a probability distribution that could
reasonably be attributed to the value of the measurand after measurements are
made. A measure of centrality (such as the expected value) and a measure of
dispersion (such as the standard deviation) of the Bayesian posterior distribution
quantify, respectively, the result of measurement and its associated standard
uncertainty [40].

The GUM contains elements from both classical and Bayesian statistics. For example,
in a Type B uncertainty evaluation probability distributions are used to express one’s
state of knowledge about the quantities concerned. Proceeding in such a way is
related to a Bayesian point of view. On the other hand, the Type A evaluation of
standard uncertainty associated with the mean of repeated observations can be
understood as an estimate of the standard deviation of the corresponding sampling
distribution and hence relates to classical statistics. Moreover, although GUM-
Supplement 1 [15] and GUM-Supplement 2 [16] do not explicitly apply Bayes’
theorem, these supplements appear to adopt a Bayesian point of view. For example,
the introduction of GUM-Supplement 1 says: “The use of PDFs as described in this
Supplement is generally consistent with the concepts underlying the GUM. The PDF
for a quantity expresses the state of knowledge about the quantity, i.e. it quantifies
the degree of belief about the values that can be assigned to the quantity based on
the available information. The information usually consists of raw statistical data,
results of measurement, or other relevant scientific statements, as well as
professional judgement” This intention is clearly associated with a Bayesian view,
and the distributions obtained by the application of GUM-Supplement 1 may equal

those derived in a Bayesian uncertainty analysis [41-43].

Type A uncertainties can be evaluated through a Bayesian approach. Under classical
approach the standard uncertainty u(x;) is calculated as the standard deviation s(x;)

of the mean of m measurements. When the number m of measurements is small,
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the standard deviation s(x;) is uncertain leading to unreliable estimations. Even, the
application of Welch-Satterthwaite formula described in GUM, Section G4 may lead
to incorrect results. Under the Bayesian approach the standard uncertainty u(x;) is

calculated as:

uBayes (Xi) = m_;s(xi) (25)

m —

As the number m of mutually independent and normally distributed measurements
increases, the t-distribution tends to normal distribution. The uncertainty u(x;) = s(x;)
from classical statistics may be interpreted as an approximation to the Bayesian

uncertainty. The approximation is poor when m is small but improves as m increases.

The factor \/(m—l)/(m—3) built into the Bayesian uncertainty accounts for the

statistical uncertainty that arises from a small number of measurements. It turns out
that the estimates from a classical statistical analysis are either equal or
approximately equal to the corresponding estimates from a Bayesian analysis with
non-informative prior probability distributions [44]. The results of the application of
the Bayesian approach in Type A uncertainties and the comparison with the results
of other approaches are presented in Chapter 4.

Bayesian statistics may also be used to provide expanded uncertainty estimates near
zero [25]. If the expanded uncertainty has been calculated using classical statistics,
the interval — including any part lying below zero — will, by definition, have 95 %
coverage. However, since the (true) value of the measurand cannot lie outside the
possible range, it is possible to simply truncate this interval at the edge of the
possible range and yet retain the required 95 % coverage. This truncated classical

confidence interval therefore maintains exact 95 % coverage (Figure 2.8).
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Figure 2.8 Example of truncating classical confidence intervals close to zero. The
solid, partial bars show the reported uncertainty interval after truncation [25]

In the case of a quantity known to be limited to lie above zero and a measurement
which provides information in the form of a t-distribution, it can be shown [45] that
the resulting distribution of possible values is approximately a truncated t-
distribution. To obtain a minimally biased result and an expanded uncertainty
interval with appropriate coverage, it is recommended that:

i. The mode of the posterior distribution be reported. For a truncated t-
distribution, this is either the observed mean value or zero if the observed
mean value is below zero.

ii. The expanded uncertainty interval is calculated as the maximum density
interval containing the required fraction of the posterior distribution. The
maximum density interval is also the shortest interval that contains the

required fraction of the distribution.

The Bayesian interval provides the same minimal bias as the classical approach, with
the useful property that as the observed mean value falls further below zero, the
reported uncertainty increases (Figure 2.9). This makes it particularly appropriate for
reporting results which are expected to fall consistently very close to a limit such as

zero or 100 %, such as in the estimation of purity for highly pure materials [25].
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Figure 2.9 Example of bayesian maximum density interval (solid lines) for 5 degrees
of freedom as a function of x. The dashed line shows the corresponding classical
interval [25].

2.7 Treatment of bias in estimating uncertainty

Whereas intermediate precision and repeatability are estimated as standard
deviations and are included as contributions to the uncertainty budget, different
approaches exist for the assessment of laboratory and measurement procedure bias
and its treatment related to the evaluation of uncertainty [46, 47]. Nevertheless,
consistent treatment of measurement bias, including the question of whether or not
to correct measurement results for bias, is essential for the comparability of

measurement results [48].

A prerequisite for the application of the GUM is that “the result of a measurement
has been corrected for all recognized significant systematic effects” (GUM 3.2.4). In
practice, however, correction for potential bias is not always possible or justifiable.
The bias may not be statistically significant. The bias magnitude may, or may not, be
significant compared with the required uncertainty. Even where a bias is detectable
on a related material (such as a reference material), the cause of the bias may not be

known, and without a known mechanism, it may be unsafe to apply a correction
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based on studies of another material. It may, as GUM paragraph F2.4.5 recognizes,

not be economical, practical or even possible to investigate this bias in detail.

If a single test item with a reference value x.f is used to assess the bias and the
mean value X, is obtained with p replicates x; using the measurement procedure

under any of the specified conditions above, the bias can be calculated as follows:

. _ X

bias =X - X, = L— - (2.6)
p

An example of the estimation of bias as the difference between the mean value of

several measurement results and a reference quantity value is shown in Figure 2.10.

Mean i
Bias

»
>

— Reference quantity _,)
value

[ I'IHI'I

Figure 2.10 Schematic illustration of the estimation of measurement bias. The mean
of several measurement results is compared with a reference quantity value.

If a CRM is used in the bias estimation, then the bias uncertainty, u(bias), can be

calculated:

u(bias) = /%+ u2(x.,,) (2.7)

where u(x.f ) is the standard uncertainty in the certified value of the CRM and s, is
the sample standard deviation of the p replicate results of the CRM analysis. The

estimated bias is tested for its significance. The bias is not significant when:

|bias| < ku(bias) (2.8)
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where k is usually a value of the coverage factor if the number of effective degrees
of freedom is high enough. Sometimes it is more precisely required to replace k by
the two-tailed value from Student’s t-distribution for the effective degrees of

freedom associated to u(bias) at a given level of confidence.

When the systematic error is assumed to be relative, recovery, R, is calculated

X
X

R =

r (2.9)

ref

and its difference from 1 is tested on significance:

IR-1 < ku(R) (2.10)

where u(R) is the uncertainty of R, which can be estimated by analogy with Equation
(2.7). When the systematic error is statistically significant all observed results, yobs,

measured on routine samples should be corrected by using the determined value of

bias or R:

Yeorr = Yops — DI8S (2.11)
or

Yoo =22 (2.12)

where y.r denotes the measurement results after the correction. The standard
uncertainty of bias or recovery is then included in the evaluation of the combined

standard uncertainty of the corrected result.

When the systematic error is not statistically significant, or it is statistically significant
but the analyst decides not to apply a correction, then the uncorrected bias should
be incorporated into the expanded uncertainty. Table 2.4 presents the main

approaches to increase uncertainty in the presence of bias information [48].
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Table 2.4 Approaches to increase uncertainty in the presence of bias information

Uncertainty increase strategy | Abbreviation | Remark | References
Correction applied
U= k\/u(yom)z +u(bias)2 GUM Requi'red for significant bias. GUM [8]
Covariance assumed equal to
zero
U= k\/u(yObs)z +u(bias)2 EURACHEM u(bl.as).llncluded |rr.espect|ve EURACHEM [5]
of significance of bias
Correction not applied
U = kyJU(Yop )% +bias? +u(bias)? RSSu [L;r;]& Wogler
Nordtest [26],
NIST [49]
bias 2 RSSU IUPAC [50],
U =K [u(y,,)? +() +u(bias)? Barwick et al.
k [51]
U, = max(O, k\/u(yobs)2 N u(bias)2 n bias) SUmMu Asymr.netricallinterval. NIST [52]
Equation applies when
ku(y,,) < bias
U = max(O, k\/u(yobs)2 +u(bias)? —bias)
U= k\/u(yObs)z +u(bias)2 +\bias\ SUMU yiax Also described in GUM F 2.4.5 | IUPAC [50],
Maroto et al.
(53]
U = kyJU(Yq,)? +U(bias)? +Elpias| Ue For y Synek [54]
1as
where E is dependent on the bias and ‘ ‘ >0.8
is in the range 0-2 \/U(yobs)2 +u(bias)®
U may also be calculated
using:
U =1.65\/U(Yyy,)° +U(bias)? +
+ |pias|

2.8 Using measurement uncertainty in decision-making and conformity assessment

Regulatory compliance (or conformity assessment) often requires that a measurand,
is shown to be within particular limits. Measurement uncertainty clearly has
implications for the interpretation of analytical results in this context. Detailed
guidance on how to take uncertainty into account when assessing compliance is
given in the EURACHEM Guide “Use of uncertainty information in compliance
assessment” [55] and JCGM 106 “Evaluation of measurement data — The role of

measurement uncertainty in conformity assessment” [17].

According to Pendrill [56] the essential steps in conformity assessment are:
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Vi.

Define entity and its quality characteristics to be assessed for conformity with
specified requirements.

Set corresponding specifications on the measurement methods and their
quality characteristics (such as maximum permissible uncertainty and
minimum measurement capability) required by the entity assessment at
hand

Produce test results by performing measurements of the quality
characteristics together with expressions of measurement uncertainty.
Decide if test results indicate that the entity and the measurements
themselves are within specified requirements or not.

Assess risks of incorrect decisions of conformity.

Assess the conformity of entity to specified requirements in terms of impact.

More simply, the basic requirements for deciding whether or not to accept the test

item are:

A specification giving upper and/or lower permitted limits of the
characteristics (measurands) being controlled.

A decision rule that describes how the measurement uncertainty will be
taken into account with regard to accepting or rejecting a product according
to its specification and the result of a measurement.

The limit(s) of the acceptance or rejection zone (i.e. the range of results),
derived from the decision rule, which leads to acceptance or rejection when

the measurement result is within the appropriate zone.

For example, a decision rule that is currently widely used is that a result implies non

compliance with an upper limit if the measured value exceeds the limit by the

expanded uncertainty. With this decision rule, then only case (i) in Figure 2.11 would

imply non compliance. Similarly, for a decision rule that a result implies compliance

only if it is below the limit by the expanded uncertainty, only case (iv) would imply

compliance.

The use of uncertainty in conformity assessment is further discussed in Chapter 6 of

the thesis, where measurement uncertainty and precision data are used in

conformity assessment of automotive fuel products.
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Figure 2.11 Uncertainty and compliance limits

2.9 Uncertainty of measurement models with two stages involving multiple output
qguantities — Uncertainty of a calibration curve

Until recently there has been a focus on the estimation of uncertainty of simple
measurement models consisting of one stage and having a single output quantity
(univariate scalar models). There are measurement models, however, where: (i) the
output quantities from previous stages become input quantities for subsequent
stages (multistage measurement models) and, (ii) have more than one output
quantity, depending on a common set of input quantities. The principles for the
uncertainty estimation described in the GUM and its Supplement describing the
application of Monte Carlo method can be extended to the evaluation of
uncertainties associated with vector estimates of multivariate output quantities. In
2011, JCGM has published GUM Supplement 2 [16] which provides guidance
concerning the application of a generalized of GUM uncertainty framework and

MCM in measurement models with any number of output quantities.

A typical multistage measurement model, that also includes a measurement stage
with more than one output quantity is the calculation of the coefficients of a
calibration curve, constructed by means of least squares regression and the
subsequent use this calibration curve for the estimation of a quantity value. In
analytical chemistry, linear regression is very often used in the construction of
calibration functions required for techniques such as liquid or gas chromatography
and atomic absorption spectrometry. Calibration establishes a relationship between

the values of a standard (reference values) and the output quantities (response of
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the instrument). Once this relationship (often assumed to be represented by a
straight line) is established, the calibration model is used in reverse, that is, to
predict a value from an instrument response [57-59]. Figure 2.12 illustrates the two-
stage measurement model involving construction and use of a calibration function.
As with most statistics, calibration curve coefficients (slope and intercept for linear
calibration model) are only estimates based on a finite number of measurements,
and therefore, their values are associated with uncertainties. This leads to an
uncertainty of the predicted value as well.

| 1% stage of the
measurement model

Quantity values provided by measurement
(calibration) standards and corresponding

instrument indications (‘signals’) Measurement model
with multiple output

quantities

\ 4
Estimation of the parameters (e.g slope and
intercept) of the calibration function (relation

between the indication and the quantity value)

—— e =]

e
I 2" stageofthe |
I measurement model |
I
| |
| Analysis of an unknown I
| sample, indication I
| |
| A 4 I
o . . I
| Estimation of the quantity value, corresponding |
| to the unknown sample indication |
I
L ____________________________ |

Figure 2.12 Two-stage measurement model involving the estimation of the
parameters of a calibration function (1*' stage of the measurement model having
multiple output quantities) and the use of a calibration function for the estimation of
a quantity value (2" stage of the measurement model)

In Chapter 5 the uncertainty of a calibration curve is estimated. The slope and the
intercept of the calibration curve are treated as a vector output quantity
characterized by a joint probability distribution and two types of coverage regions

are estimated.
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3. Measurement uncertainty arising from sampling

Sampling is an important part of any measurement process and is therefore recognized
as an important contributor to the measurement uncertainty. A reliable estimation of the
uncertainty arising from sampling of fuels leads to a better control of risks associated
with decisions concerning whether product specifications are met or not. The present
chapter of the thesis describes and compares the results of three empirical statistical
methodologies (classical ANOVA, robust ANOVA and range statistics) using data from a
balanced experimental design, which includes duplicate samples analyzed in duplicate
from 104 sampling targets (petroleum retail stations). These methodologies are used for
the estimation of the uncertainty arising from the manual sampling of fuel (automotive
diesel) and the subsequent sulfur mass content determination. The results of the three
methodologies statistically differ, with the expanded uncertainty of sampling being in the
range of 0.34 — 0.40 mg kg™, while the relative expanded uncertainty lying in the range of
4.8 - 5.1%, depending on the methodology used. The estimation of robust ANOVA
(sampling expanded uncertainty of 0.34 mg kg™ or 4.8% in relative terms) is considered
more reliable, because of the presence of outliers within the 104 datasets used for the
calculations. Robust ANOVA, in contrast to classical ANOVA and range statistics,
accommodates outlying values, lessening their effects on the produced estimates. The
results of the work presented in this chapter also show that, in the case of manual
sampling of fuels, the main contributor to the whole measurement uncertainty is the
analytical measurement uncertainty, with the sampling uncertainty accounting only for
the 29% of the total measurement uncertainty.
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3. MEASUREMENT UNCERTAINTY ARISING FROM SAMPLING

3.1 Introduction

The aim of sampling is to obtain a small portion of material (sample) from a selected
system (sampling target) within a container which is representative of the material in
that system [60,61]. The sampling process should ensure that the sample is an
unbiased reflection of the composition of the sampling target [60]. Representative
samples of petroleum and petroleum products are required for the determination of
their chemical and physical properties, which are often used to establish compliance

with commercial and regulatory specifications [61].

When a measurement result is compared with specified limits in order to make a
decision relating to conformance or compliance, it is very likely that measurement
uncertainty will have implications for the interpretation of the result. Not accounting
for the uncertainty (deterministic approach) may lead to incorrect decisions i.e. false
positive or false negative classifications that may have financial, health,
environmental or other consequences [62,63]. Figure 3.1 shows the four situations
apparent for a case of compliance with an upper limit and the conclusions drawn
under the probabilistic and deterministic approach (assuming that an upper limit is
set with no allowance for uncertainty). EURACHEM/ CITAC Guide “Use of uncertainty

information in compliance assessment” [55] covers the above matters extensively.

Sampling becomes extremely important when considering the uncertainty of
measurement. Until recently a “metrological gap” existed between analysts and end-
users concerning the interpretation of measurement results and their associated
uncertainties. Analysts concentrated on the analytical measurement process and
estimated the uncertainty of the measurand of the sample received at the laboratory
while the end user naturally interpreted the measurement result together with its
uncertainty in order to characterize the sampling target as a whole [65,66].
Therefore, the end user needs to know a precise estimate of an uncertainty that
includes the uncertainty caused by sampling i.e. the combined uncertainty from
sampling and analysis [65,67,68]. Reliable estimations of the uncertainties of fuel
sampling and analysis are important as they are associated with the application of
legal requirements and the identification of events of cross contamination of

incompatible fuels and fuel adulteration.
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Figure 3.1 Deterministic and probabilistic classification for compliance assessment
against an upper limit. Adapted from [64].

Sampling uncertainty is defined as the part of the total measurement uncertainty
attributable to sampling [62,66]. Principles and procedures for estimating the
uncertainty of measurement arising from sampling are described in the Guide
published by Eurachem and CITAC [69] as well as in the Nordtest handbook [66]

which is intended for practical applications.

There are two broad approaches for the estimation of uncertainty, the modeling
method and the empirical method [68,70,71]. The modeling approach which is
consistent with ISO GUM [8] and is described as a “bottom up” approach [72],
guantifies all sources of uncertainty individually, and then combines (propagates)
them through a mathematical model. The implementation of the modeling approach
reveals difficulties in establishing reliable estimates for the input variables of the
model [70]. On the other hand the empirical approach, which is described as “top
down” approach [72], uses replicated measurements in order to obtain a reliable
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estimate of the uncertainty, without necessarily knowing any of the sources
individually [69-71]. One of the most commonly used empirical methods is the
duplicate method with a balanced experimental design. This method involves the
formation of duplicate samples from the sampling targets by applying the same
sampling protocol and duplicate analysis of samples under repeatability conditions.
Appropriate statistical analysis applied to the resulting data leads to the estimation

of the sampling uncertainty.

The aim of the work of this chapter is to present and compare three statistical
approaches used for the estimation of the uncertainty caused by manual sampling of
fuels from petroleum retail stations, utilizing the duplicate sampling method.
Duplicate samples of automotive diesel from 104 petroleum retail stations (10.9% of
the petroleum retail stations monitored for fuel quality purposes) were analyzed in
duplicate for the determination of sulfur content according to ASTM D 5453 [73].
The sulfur mass content is one of the most critical parameters associated with
automotive diesel specifications. The results of the measurements of the samples
were analyzed using three statistical approaches, classical ANOVA, robust ANOVA
and range statistics [66,74] and the sampling uncertainty under each approach was

calculated. Sampling (and analytical) bias has been assumed to be zero in this study.

3.2 Sampling protocol and experimental design

A balanced nested experimental design was used. Duplicate samples were taken
from 104 petroleum retail stations, which were selected at random and comprised
the 10.9% of the 950 petroleum retail stations monitored by the laboratory. The
scheme of sampling is shown in Figure 3.2. The duplicated samples were taken by
repeating the same sampling protocol. The sampling protocol used was consistent
with the standard method ASTM D 4057 [61] concerning the manual sampling of
petroleum and petroleum products. Instructions were given to the samplers to
introduce variations to the sampling process provided that they do not violate any
requirement of the sampling protocol. These variations actually represent variations
which may arise due to the random nature of the sampling process. All automotive
diesel samples were maintained in special closed containers. During transport and
storage samples were protected to prevent weathering or degradation from light,

heat or other potential detrimental condition.
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Figure 3.2 Balanced experimental design employed for the estimation of sampling
uncertainty

3.3 Experimental work

The duplicated samples were analyzed in duplicate under repeatability conditions for
sulful mass content determination. An ANTEK 9000S sulfur analyzer equipped with
an automatic sampler was employed in the work presented in this chapter. This
analyzer fully complies with ASTM D 5453 [73] and ISO 20846 [75]. Table 3.1
presents the operating conditions of the instrument. The sample sulfur content in ng
uL was calculated using a calibration curve. Six calibration standards (VHG Labs,
Petrochemical Test Standard, Range set 1) with concentrations of 0, 1.00, 2.50, 5.01,
7.50 and 10.0 ng uL’1 were analyzed in triplicate. The instrument responses were
recorded and a calibration curve with 18 points was constructed. The samples and
the calibration standards were injected using a 10 pL syringe. Using density
measurements the results were converted into mg kg™ (ppm m/m). The majority of
the automotive diesel sample measurement results were found to be under or close

to 10 mg kg™ which is the EU regulatory limit for sulfur mass content.
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Table 3.1 Instrument parameters used for total sulfur determination in petroleum
products

Parameter Value
Volume injected (pL) 10
Syringe drive rate (uLs™) 1
Furnace temperature (°C) 1080
Furnace oxygen flowmeter setting (mL min™) 470
Inlet oxygen flowmeter setting (mL min™) 15
Inlet carrier (Argon) flowmeter setting (mL 150
min™")

3.4 Data analysis methods

3.4.1 Statistical model of the empirical approach and estimation of uncertainties

The statistical model describing the relationship between the measured and the true
values of analyte concentration based on a single measurement, x, has the following
form [69]:

=X, .t+E&

e (3.1)

true sampling analysis

where Xie, is the true average concentration of the analyte at the sampling target,
Esampling, 15 the total error due to sampling, associated with a variance of ozsamp"ng and
Eanalysis, 1S the total analytical error, associated with a variance of Gzanalysis- If the
sources of variation are independent [76], then the total variance of the
measurement, ozmeasurement, for a single sampling target is given by:

2 _ 2 2
Umeasurement - Gsampling + Ganalysis (32)

If statistical estimates, s°, are used to approximate variances, ¢, then Equation (3.2)

becomes:

s2 =52 +82 (3.3)

measurement sampling analysis

The components of measurement variation, the sampling and the analytical

variance, which represent the corresponding uncertainties, can be separated and
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estimated using appropriate statistical methods, such as the statistical approaches

presented in this chapter.

In order to obtain a coverage interval (expanded uncertainty) corresponding to an
approximately 95% coverage probability, standard deviations, s, are multiplied by a
coverage factor of two. The expanded uncertainties for the measurement, sampling
and analysis, Umeasurements Usampiing @nd Uanaiysis, respectively, are calculated using the

following equations.

U measurement 28measurement (3'4)
Usampling = 23salmpling (35)
U =2s (3.6)

analysis analysis

The expanded uncertainties can also be expressed relative to the reported value x

(as a percentage), as relative expanded uncertainties U(%):

2 3.7
U measurement (%) = 100M% ( )
X

2s (3.8)
(/O) 100 sampllng 0/
X

sampllng

2s (3.9)
(A)) 100 analy5|s 0/
X

analy5|s

3.4.2 Estimation of uncertainty using classical Analysis of Variance

Classical ANOVA (Analysis of Variance) is a statistical technique by which variations
associated with different sources can be isolated and estimated [77]. The simplest
type of classical ANOVA is the one-way classical ANOVA, which deals with one
independent variable and one dependent variable. Classical ANOVA may be applied
to the data produced by the implementation of the balanced experimental design in
order to estimate the sampling uncertainty. Classical ANOVA estimations are based

on the differences from the mean values, not on the range as in the approach of the
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range statistics. Table 3.2 presents the one way classical ANOVA calculations used for

the estimation of sampling and analytical uncertainty.

Table 3.2 Calculation of sampling and analysis uncertainty components by one-way
classical ANOVA using data from measurements from a balanced experimental
design with n targets (i=1,2,...,n), 2 samples (j=A, B) from each target and 2 analyses
(k=1, 2) of each sample [66,70].

Source of variation
Sampling Analytical
Differences fromb the Di(?) - ‘Y. —Xia| = ‘Xl ~ Xig Do = ‘XiAl —iiA‘ = ‘xiAz —;iA‘
mean values (D)™™
DiB(?) = ‘XiBl - XiB‘ = ‘Xisz - XiB‘
2 2 2
Sum of Squares (SS) SS campling = 42 Di(;) SS alysis = 22 (DiA(;) — DiB()T))
i i
Degrees of freedom | 2n—n=n 2:2n - 2n=2n
(df)
Mean e LRl (MS) MS _ SSsampling MS _ SSanalysis
sampling — df analysis df
sampling analysis
Variances (V) Vv _ Mssampling - MsanalySiS Vanalysis = Msanalysis
sampling — 2
Uncertalnty Ssampling = \/Vsampling Sanalysis = Y, “ analysis
parameter (s)

a

Xi : mean value of target i (two samples — four analyses)
b —
Xij : mean value of the 2 analyses of sample j (A or B) of target i

[

Xjj : measured value from target /, sample j and split (analysis) k (1 or 2)

3.4.3 Estimation of uncertainty using robust Analysis of Variance

The term “robustness” in the statistics is used to describe methods designed to be
insensitive to distributional assumptions (such as normality) and tolerate a certain
amount of unusual observations (outliers). Robust statistics are characterized by the
accommodation rather than the rejection of outlying values within a certain dataset,
avoiding the risk — often associated with classical statistics - of skewing the statistics

[71,78]. The valid application of classical ANOVA is based on three assumptions
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summarized by Ramsey et. al [79] as: (i) the variances should be independent, (ii)
each level of variance should be homogeneous, not varying systematically within one
level and (iii) the distribution of errors within each level of variance should be
approximately Gaussian. The application of robust ANOVA which utilizes robust
statistics has been shown to be particularly appropriate for providing estimated of
variances, in cases where the validity of classical ANOVA is doubtful [69]. Robust
ANOVA uses robust estimates of the mean and standard deviation which are
calculated by an iterative process [78,79]. In this process, also known as Huber’s
method, extreme values that exceed a certain distance (product of a constant ¢ and
the standard deviation) from the sample mean are downweighted or brought in.
Actually these data are assigned a new value equal to that distance. A value of c=1.5
is widely accepted as optimal for datasets containing a small proportion of outliers
(up to 10% of outliers). Initial values for sample mean and standard deviation
estimates can be obtained by classical or robust statistics (e.g. median, mean
absolute deviation). After the population has been modified, new sample mean and
standard deviation are estimated. This process is repeated until the estimated values
converge to the so called robust estimates. In the present work, robust ANOVA was
implemented using a specifically written computer program called, Roban.exe,
developed from the Analytical Methods Committee (AMC) in Great Britain [80].

3.4.4 Estimation of uncertainty using range statistics

Range statistics may also be used for calculating standard deviations by treating data
produced by a balanced experimental design [64,81]. Range statistics, like classical
ANOVA assume normal distribution and the calculations are done from the
differences between duplicate measurements. The relation between standard
deviation and differences requires the application of a certain factor depending on
the replication chosen, e.g. 1.128 for duplicate, 1.693 for triplicate etc. [82]. Actually
the variance of sampling is calculated indirectly as the difference of the variances of
measurement and analysis. Table 3.3 presents the range statistics calculations used

for the estimation of sampling and analytical uncertainty.
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Table 3.3 Calculation of sampling and analysis uncertainty components by range
statistics using data from measurements from measurements from a balanced
experimental design with n targets (i=1,2,...,n), 2 samples (j=A, B) from each target
and 2 analyses (k=1, 2) of each sample [64].

Parameter Equation of calculation
Differences of duplicates of sample A (Dj)° D, = |)(iA1 — xiA2|
Differences of duplicates of sample B (Dj)? D, = |XiBl — xiB2|
Differences of the means of the two Di _ ‘XiA ~ Xig

measurements (D;)°

Mean range of measurement (Dmeasurement) Z D,
D =
measurement n
Mean range of analysis (Danalysis) . Z D 2 Dy
D, veic =—| — + -
analysis 2 n n
Standard deviation of analysis (Sanalysis) Danalysis
S =

analysis 1 128

Standard deviation of measurement D
S — measurement
(Smeasurement) measurement 1128
Standard deviation of sampling (Ssampiing) >
_ 2 Sanalysis
Ssampling =,4/3

measurement /—2

The s,naysis is divided by a square root of 2
because the result of the analysis of each
sample is the mean of two measurements —
standard error of the mean.

Xy : measured value from target /, sample j and split (analysis) k (1 or 2)

b —
Xij : mean value of the 2 analyses of sample j (A or B) of target i

3.5 Results and discussion

The main objective of the work presented in this chapter was to estimate the
uncertainty components resulting from sampling of fuels from petroleum retail
stations. The results of the evaluation of the measurement results (104 duplicate

sample analyzed twice) using three statistical methodologies are presented in Table
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3.4 and Figure 3.3. The expanded uncertainty of sampling is in the range of 0.34 —
0.40 mg kg™, while relative expanded uncertainty lies in the range of 4.8 - 5.1%,

depending on the statistical methodology used.

Table 3.4 Results calculated using range statistics, classical ANOVA and robust
ANOVA. All uncertainties U are estimated using a coverage of 2 which corresponds
to an approximately 95% coverage probability.

Range statistics Classical ANOVA Robust ANOVA
Mean (mg kg™) 7.988 7.988 7.079
Sanalysis (Mg kg'l) 0.205 0.378 0.265
Scampiing (Mg kg™ 0.202 0.200 0.169
Smeasurement (ME kg'l) 0.288 0.427 0.314
Uanaiysis (Mg kg™) 0.411 0.755 0.529
Uanalysis (%) 5.1 9.5 7.5
Usampiing (Mg kg'™) 0.404 0.401 0.337
Usampling (%) 5.1 5.0 4.8
Uneasurement (Mg kg™ 0.576 0.855 0.628
Uneasurement (%) 7.2 10.7 8.9
Analysis uncertainty 51 78 71
contribution (%)
Sampling 49 22 29
uncertainty
contribution (%)

12%

10%

8%

Range Statistics
m Classical ANOVA
m Robust ANOVA

6% -

uncertainty

4% +—

Relative sampling expanded

2% +—

0% -
analysis sampling measurement

Figure 3.3 Graphical comparison of the relative uncertainty estimates obtained by
range statistics, classical ANOVA and robust ANOVA. The relative uncertainties are
estimated using a coverage of 2 which correspond to an approximately 95%
coverage probability
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The differences between the results of the 3 methodologies concerning sampling
and analysis variances were evaluated using F-test (with 208 and 104 degrees of
freedom for the variances of analysis and sampling, respectively). Table 3.5 presents
the results of the F-tests performed. F-test results should be treated with caution as
the test is used “out-of-its-scope” and possibly some of its assumptions (e.g.
normality, independence) are violated. Nevertheless, it may provide a quick and
gross evaluation of the significance of the differences of the estimated variances.
The differences are statistically significant for all cases compared, with the exception
of the sampling variances estimated by range statistics and classical ANOVA. Classical
ANOVA and range statistics are typical tools of classical statistics that are strongly
affected by the presence of outlying values. Indeed, as shown in the Boxplot diagram
(produced by PASW 18 [83]) of Figure 3.4 created using the averages of the 104
datasets used for the calculations, there exist seven outliers and extreme values
(between target outliers). These seven values, were also confirmed as outliers by
applying the Grubbs test. Moreover, three datasets were identified as analytical or
sampling outlier by applying the Cochran test. In total 9 out of 104 datasets (8.7%)
were flagged by the outlier tests (one dataset was flagged by both Cochran and
Grubbs test). Therefore, the results of robust ANOVA, which is insensitive to small
number of outliers (less than 10%) can be considered as more reliable than the

results of range statistics and classical ANOVA.

Table 3.5 Results of the F-test used for the comparison of the results of the three
statistical methodologies

Methodologies F-statistic for analysis F-statistic for sampling
compared variances (Probability) variances (Probability)
Range Statistics — 3.38 1.01
Classical ANOVA (<0.001) (0.470)
Robust ANOVA 2.04° 1.41
Classical ANOVA (0.001) (0.039)
Range Statistics — 1.66 1.43
Robust ANOVA (0.001) (0.034)

*Indicating significant difference (probability<0.05)

It is obvious from the results of robust ANOVA that the measurement uncertainty is
dominated by the analytical variance. In fact the analysis uncertainty accounts for
the 71 % of the measurement uncertainty. This leaves “room” for an effective
reduction of the measurement uncertainty. Uncertainty reduction may be

accomplished by making more measurements and calculating their average, instead

PhD Thesis — D. Theodorou 56



3. MEASUREMENT UNCERTAINTY ARISING FROM SAMPLING

of making a single measurement. Then the standard deviation of the mean gets
smaller as the number of data increases leading to smaller random error uncertainty
contributions. It has to be noted that multiple samplings and analyses required for
collecting data used in uncertainty calculations are often associated with
unreasonably high costs. These costs cost may be reduced, if the classical ANOVA
and robust ANOVA are implemented using results from an unbalanced design
[69,84], which is more economical as it requires 33% less analyses. Moreover, it has
been shown that a minimum of eight duplicate samples leads to uncertainty

estimates that are often fit for purpose [70].
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Figure 3.4 Box Plot of the average values of the 104 datasets (produced by PASW 18
[83]). The box length represents the interquantile range. Values which are more than
three box lengths from either end of the box are extreme values are denoted by an
asterisk. Values which are between one and a half and three box lengths from either
end of the box are extreme values and are denoted by a circle.

For the purposes of the work presented, sampling bias has not been considered. It is
widely accepted that it is difficult to establish the presence of bias in a sampling
protocol because it is difficult to define a reference sampling method or a reference

sampling target. This often leads to the characterization of the sampling methods as
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“empirical” (by analogy to empirical analytical method). This means that the results
are dependent on the method (and are usually reported with reference to the
method), which by definition is associated with a zero bias [65]. It has to be noted
though that there are methods available that may be used for the estimation and
the inclusion of analytical or sampling bias in the sampling uncertainty estimates
[69,85].

3.6 Conclusions

Three alternative statistical approaches for data analysis concerning the estimation
of measurement uncertainty of manual sampling of fuel were described and
compared in the work presented in this chapter. A balanced experimental design
was used, which included duplicate samples of automotive diesel from 104
petroleum retail stations (10.9% of the petroleum retail stations monitored for fuel
quality purposes) and duplicate analyses of these samples for sulfur mass content
determination. The sulfur mass content is a critical fuel quality parameter associated
with automotive diesel specifications and is often used for identifying fuel cross
contamination or fuel adulteration incidents. The results were treated using classical
ANOVA, robust ANOVA and range statistics. The three methodologies gave
statistically different estimates with the expanded uncertainty of sampling being in
the range of 0.34 — 0.40 mg kg*, while the relative expanded uncertainty lying in the
range of 4.8 - 5.1%. The fact that the robust ANOVA leads to different results
compared to the other two methodologies is an indication that the assumptions of
classical ANOVA and range statistics are not justified. This fact is also confirmed by
the presence of a small but unignorable number of outliers (8.7%) within the data
used for the calculations. Therefore, robust ANOVA, which is not influenced by less
than 10% outliers, is considered as the method providing the most reliable estimates
for the sampling expanded uncertainty (0.34 mg kg™ or 4.8% in relative terms). The
results of robust ANOVA show that the analytical measurement uncertainty accounts
for the 71%, while the sampling measurement uncertainty accounts only for the 29%
of the total measurement uncertainty. Thus, minimizing or reducing repeatability
errors may lead to substantial reduction of the total measurement uncertainty.
Finally, it has to be noted that besides providing realistic estimates of uncertainty
which allow end users make more informed decisions, the estimates of sampling and
analytical variance may be also used for establishing an internal quality control
method that will monitor the whole measurement procedure, including sampling,

ensuring that it remains in statistical control.
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4. Measurement uncertainty estimation of an
analytical procedure

The Guide to Expression of Uncertainty in Measurement (GUM) approach and the
adaptive Monte Carlo method (MCM) provide two alternative approaches for the
propagation stage of the uncertainty estimation. These two approaches are implemented
and compared concerning the 95% coverage interval estimation of the measurement of
Gross Heat of Combustion (GHC) of an automotive diesel fuel by bomb calorimetry. The
GUM approach, which assumes either a Gaussian or a t- distribution for the output
quantity (GHC) gives half width intervals of 0.28 MJ kg' or 66 cal g'(Gaussian
distribution) and 0.29 MJ kg™ or 70 cal g" (t- distribution). On the other hand, MCM,
which provides a reliable probability density function of GHC through numerical
approximation, gives a half width interval of 0.32 MJ kg™ or 75 cal g". Thus, the GUM
approach underestimates the calculated uncertainties and coverage intervals by up to 7 —
12%. The main reasons of these differences are the approximations and the assumptions
introduced by GUM approach i.e. assumption for the GHC probability distribution and
overestimation of effective degrees of freedom by the Welch-Satterwaite formula. Only if
the GUM approach is combined with a Bayesian treatment of Type A uncertainties, the
results are comparable with the MCM results. Moreover, the estimation and the use of
sensitivity coefficients and uncertainty budget within GUM and MCM approaches are
examined. Finally, it is shown that an initial estimate of measurement uncertainty may be
obtained using the proficiency testing data.

PhD Thesis — D. Theodorou

59
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4.1 Introduction

Bomb calorimetry is widely accepted as one of the most reliable and accurate
methods for the determination of the heat of combustion of materials. Many
procedures applied for the determination of the heat of combustion are based on
standards issued by standardization organizations like ISO, CEN, DIN or ASTM. Bomb
calorimetry is a test method which is directly related to many areas of science and
engineering such as the production and utilization of solid and liquid fuels, the
incineration of waste and refuse materials, the production of explosives, the
formulation of energy balances or the implementation of thermodynamic studies
[86].

Correct utilization of the result of any measurement requires some quantitative
indication of its quality and reliability [87]. The result of heat of combustion
determination is no exception. Fuels in particular, are characterized by their heat of
combustion for technological, environmental and financial purposes. Heat of
combustion of fuels represents the energy available and comprises an input
parameter for planning and control of generators. It is also used for efficiency
calculations and plays an important role in the estimation of greenhouse gas

emission factors under the European Union Emissions Trading Scheme (EU ETS) [88].

The uncertainty of a measurement result is an index of its quality and its estimation
is a key requirement of the international standard ISO/IEC 17025 [3], used for the
accreditation of laboratories. As no measurement is exact, the true value of any
measured quantity or any errors associated with the measurement cannot be known
exactly [89]. The concept of uncertainty, which is relatively new in measurement
history, reflects this lack of knowledge. The Guide to the Expression of Uncertainty in
Measurement (GUM) [8], first published in 1993 describes an internationally agreed
approach to the estimation and expression of measurement uncertainty, applicable
to a wide range of measurements [89,90]. The ultimate goal is the estimation of a
coverage interval for the measurand which according to International Vocabulary of
Metrology (VIM) [9] is defined as “an interval containing the set of true quantity
values of a measurand with a stated probability, based on the information available”.

Working Group 1 (WG1) of the Joint Committee for Guides in Metrology (JCGM)
which has the responsibility for maintaining the GUM, has decided to supplement
the guide with a series of documents. Two of these supplementary that documents
have been already approved are: the introduction to the "Guide to the expression of
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uncertainty in measurement"” and related documents [14] and the Supplement 1 to
the "Guide to the expression of uncertainty in measurement" — Propagation of
distributions using a Monte Carlo method (JCGM 101) [15]. The latter document
describes a general numerical approach using Monte Carlo method (MCM) for
carrying out the calculations required for the process of uncertainty estimation as a

practical alternative to GUM.

In the present chapter of the thesis, the two methodologies for the estimation of
uncertainty described in GUM and Supplement 1 to GUM (MCM) are compared. The
two methodologies are used for the estimation of the uncertainty of the Gross Heat
of Combustion (GHC) (or Higher Calorific Value) determination of a diesel fuel using a
bomb calorimeter and following the standard method ASTM D240 [91]. ASTM D240
describes a widely accepted standard procedure for the determination of GHC in
liquid fuel samples. It has to be noted though that ASTM D240 is used for routine
technical measurements and not scientific ones that may have high precision
requirements. MCM algorithm was implemented in the mathematical program
MATLAB® [92]. As MCM performs random sampling from probability distributions,
the quality of the results depends on the number of Monte Carlo trials made.
Therefore, the implementation of an adaptive Monte Carlo procedure is
recommended, that involves carrying out an increasing number of Monte Carlo trials
until the various results of interest reach the desired degree of numerical accuracy
[15]. This part of the thesis presents the results of MCM employing both fixed
number of trials and number of trials selected adaptively. Furthermore, the concepts
of uncertainty budget and sensitivity coefficients within the application of GUM and
MCM are examined. The use of Bayesian statistics within GUM approach and the

estimation of uncertainty using proficiency testing data are also discussed.

4.2 Main stages of uncertainty evaluation

Formulation, propagation and summarizing (statement of the complete
measurement result) comprise the main stages of uncertainty evaluation (Figure 4.1)
[15].
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Formulation

- Definition of the output quantity (measurand)

- Determination of the input quantities (sources of
uncertainty)

- Development of a model relating the output quantity
with the input quantities

- Assignment of PDFs to the input quantities on the
basis of available knowledge

Propagation
- Propagation of the PDFs of the input quantities through
the model to obtain the PDF for the output quantity

Summarizing

- Use of the PDF of the output quantity to obtain the
expectation (measurement result) of the output quantity
- Use of the PDF of the output quantity to obtain the
standard uncertainty associated with expectation

- Use of the PDF of the output quantity to obtain a
coverage interval containing the output quantity with a
specified probability

PDF: Probability Density Function

Figure 4.1 Flowchart depicting the main stages of measurement uncertainty
evaluation [15].

The propagation stage of uncertainty evaluation can be implemented using one of

the following approaches [15]:

e analytic methods, in which mathematical analysis is used to derive an algebraic
form for the probability distribution for the output quantity. This approach is exact
(introduces no approximations) but is applicable to relatively simple cases only.

e the GUM uncertainty framework, which involves the application of the law of
propagation of uncertainty (based on a first-order Taylor series approximation) and
the characterization of the output quantity by a Gaussian or a t-distribution,

e 3 Monte Carlo method (MCM), in which an approximation to the distribution
function for the output quantity is established numerically by making random
draws from the probability distributions of the input quantities, and evaluating the
model at the resulting values. This approach provides a solution with a numerical

accuracy that can be controlled.
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4.3 Measurement procedure and identification of uncertainty sources

4.3.1 Experimental work

The GHC of 20 diesel fuel samples were determined by a Parr® 6200 calorimeter
equipped with a Parr® 1108 Oxygen Bomb and a Parr® 6510 water handling system.
The Parr® 6200 is the evolution of the two new automatic isoperibol calorimeters
(1271 and 1281) which were introduced by Parr® in 1992-1994 [86]. The
determinations were carried out under reproducibility conditions (measurements of

2 analysts over a period of approximately one month).

The calorimeter was calibrated by the combustion of one gram pellets of
standardized benzoic acid purchased from Parr®, having combustion energy of 6318
+ 2.1 cal g* (26452.2 + 9.0 J g) and being traceable to SRM 39 Benzoic Acid,
National Institute of Standards and Technology. According to Parr®, the value of the
benzoic acid is referenced to the following standard bomb conditions: combustion
reaction referred to 25 K, sample burned in a bomb of constant volume in pure
oxygen at an initial absolute pressure of 3.0 MPa measured at 25 K, the number of
grams of the sample burned is equal to three times the volume of the bomb in liters
and the number of grams of water placed in bomb is equal to three times the
volume of the bomb in liters. Seven pre-weighted benzoic acid samples of size
around one gram were tested according to standard procedures described in ASTM
D240 and Parr® Instruction Manual [93] and the energy equivalent of the
calorimeter, W, calculated was 10093.57 J K (2410.81 cal K™). The fuel samples
were placed directly in a stainless steel capsule (Parr® 43AS, 2.5 cm of diameter and
1 cm of deep) and burned with oxygen at a pressure of 3.0 MPa. Table 4.1 presents
the experimental data of the energy equivalent determination. Relevant quantities

are explained in Table 4.3.

Concerning the 20 diesel fuel samples, approximately 0.6 g of sample were placed
inside the sample cup in a pressure vessel (oxygen bomb) which was in contact with
an ignition wire (Parr® 45C10 nickel - chromium fuse wire) connected to two
electrodes. The bomb was then sealed, purged, and pressurized up to 3.0 MPa with
pure oxygen. The sealed bomb was placed inside a 2 It water bath which is inside a
controlled temperature jacket. Once the jacket temperature stabilized and came

within 0.5 K of 30 K, the sample was ignited and completely combusted.
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Table 4.1 Experimental data of the energy equivalent determination

Benzoic acid | Benzoic acid | Temperature Fixed Corrections Energy
sample heat of rise Equivalent
combustion

g'(g) Q (cal/g) t’ (K) e,’ (cal) e,’ (cal) W (cal/g)
0.9589 6318 2.5625 10 50 2387.6411
0.9845 6318 2.6134 10 50 2403.0271
0.9971 6318 2.6361 10 50 2412.5328
0.9818 6318 2.5961 10 50 2412.4696
0.9957 6318 2.6315 10 50 2413.3888
0.9328 6318 2.4474 10 50 2432.5531
0.9845 6318 2.6009 10 50 2414.5761
Average 2410.8077

St. deviation 13.5194

Note: Raw data are presented with the units provided by the instrument (1 cal = 4.1868 J)

The GHC of the sample at room temperature was calculated from the temperature
rise of the water bath, which is typically a few degrees Kelvin, the energy equivalent
of the calorimeter and the mass of the sample. Three correction factors were also
taken into account, to compensate for the heat of combustion of the ignition wire
and the heat of formation of acids (nitric and sulphuric acid). For benzoic acid and
fuel measurements, fixed corrections for fuse wire (e,’, e3) and nitric acid (e,’, e1) of
50 cal (209.34 J) and 10 cal (41.868 J), respectively, were used in accordance with
Parr® Operating Instruction Manual. Table 4.2 presents the experimental data of the

gross heat of combustion determinations.
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Table 4.2 Experimental data of the gross heat of combustion determinations

Reproducibility Experiment

Mass sample Temperature Corrections Energy GHC
rise Equivalent
g (g) t (K) e; (cal) e, (cal) | es(cal) W (cal/K) Q, (cal)

0.6105 2.7725 10 0.0285 50 2410.8077 10850.00
0.6096 2.7550 10 0.0285 50 2410.8077 10797.00
0.5757 2.6085 10 0.0285 50 2410.8077 10819.25
0.5797 2.6164 10 0.0285 50 2410.8077 10777.35
0.5774 2.6113 10 0.0285 50 2410.8077 10798.80
0.5781 2.6142 10 0.0285 50 2410.8077 10797.76
0.5739 2.5921 10 0.0285 50 2410.8077 10783.99
0.5739 2.5899 10 0.0285 50 2410.8077 10774.89
0.5740 2.5951 10 0.0285 50 2410.8077 10794.97
0.5746 2.5993 10 0.0285 50 2410.8077 10801.31
0.5697 2.5835 10 0.0285 50 2410.8077 10827.39
0.5768 2.6160 10 0.0285 50 2410.8077 10830.02
0.5904 2.6686 10 0.0285 50 2410.8077 10795.28
0.5833 2.6282 10 0.0285 50 2410.8077 10759.57
0.5946 2.6844 10 0.0285 50 2410.8077 10783.04
0.5989 2.7002 10 0.0285 50 2410.8077 10769.00
0.5931 2.6794 10 0.0285 50 2410.8077 10790.02
0.6087 2.7515 10 0.0285 50 2410.8077 10799.04
0.5922 2.6795 10 0.0285 50 2410.8077 10806.56
0.6079 2.7391 10 0.0285 50 2410.8077 10763.83

St. deviation 22.93

Sample Measurement
Mass sample Temperature Corrections Energy GHC
rise Equivalent
g(g) t (K) e; (cal) e,(cal) | es(cal) W (cal/K) Q, (cal)

0.5872 2.6541 10 0.0285 50 2410.8077 10794.44

Note: Raw data are presented with the units provided by the instrument (1 cal = 4.1868 J)

4.3.2 Measurement system modeling

The formulation of a model relating measured or influence quantities (the input

quantities) and measurand (the output quantity) is the first critical stage of

uncertainty evaluation [15].
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GHC of a liquid non-volatile fuel (measurand) using bomb calorimetry is calculated
using Equations (4.1)-(4.3). Various quantities of the equations are defined in Table
4.3.

Q =—— +3, (4.2)

o' (4.2)

e,=58-S-¢ (4.3)

The automotive diesel fuel sample was tested under reproducibility conditions
(twenty measurements, one measurement per day) in order to estimate uncertainty
contributions arising from random variations of the influence parameters. The
measurement result i.e. the estimate of the measurand was calculated 45194.17 J g*

(10794.44 cal g') (one measurement).

Table 4.3 List of quantities of Equations (4.1)-(4.3) (measurement model of GHC
using bomb calorimetry).

Quantity Units Definition
Qq Jgt Gross heat of combustion at constant volume
t K Temperature rise
w JK? Energy equivalent of calorimeter
e; J Correction for heat of formation of nitric acid
e, J Correction for heat of formation of sulphuric acid
e; J Correction for heat of combustion of fire wire
g g Weight of sample
Orep J g'1 Zero factor used to incorporate the reproducibility component of uncertainty

into the uncertainty calculation of Q,

t’ Temperature rise during benzoic acid combustion
Q Igt Heat of combustion of standard benzoic acid
e’; Correction for heat of formation of nitric acid

Weight of benzoic acid sample

K
g
J
e’ J Correction for heat of combustion of fire wire
g
K

Zero factor used to incorporate the repeatability component of uncertainty
into the estimation of W

S % Percentage of sulphur in sample
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4.4 GUM uncertainty framework

4.4.1 Basic concepts of GUM uncertainty framework

The Guide to the Expression of Uncertainty in Measurement (GUM) introduces a
method to unify the evaluation and the statement of measurement uncertainties
[8,89]. The GUM uncertainty framework estimates the overall uncertainty by
identifying, quantifying and combining all the sources of uncertainty associated with
the measurement (bottom up approach) [27]. The method used for the evaluation of
measurement uncertainty requires the formulation of one or more algebraic
relationships between the measurand Y (output quantity) and the parameters or

individual factors X; that have an influence on the measurand (input quantities).
Y = (X, X, X,) (4.4)

Each input quantity is described by a probability density function (PDF). The
expectation value of that PDF is a best estimate for the value of quantity, and the
standard deviation of the PDF is the standard uncertainty associated with the

estimate.

Therefore, an estimate, y, of the measurand Y is determined by substituting the best

estimates x, X,,..., X, for X3, X5,..., X, in Equation (4.4). Thus:

y=f(X,Xp,0s X)) (4.5)
The standard uncertainty of y, u(y), often called combined uncertainty, is obtained
by appropriately combining the standard uncertainties of the input estimates x;,
Xo,..., Xp, denoted by u(x;), u(xz),..., u(x,). This is performed using the so called “law of

propagation of uncertainty” which is based on a first-order Taylor series
approximation of the Equation (4.4). Thus:

Y = £ (X X g X ) ® V(X Xg e X0 ) + DG X (4.6)
i=1

where ¢; is the so called sensitivity coefficient of x;:

PhD Thesis — D. Theodorou 67



4. MEASUREMENT UNCERTAINTY ESTIMATION OF AN ANALYTICAL PROCEDURE

¢ =t o (4.7)
ox X,

1 1x1,x2,...,xn

A change caused by the standard uncertainty u(x;) leads to a variation uy) of the
estimate y (Equation 4.8), which is called the contribution to uncertainty u(y) from

u(x;):
U; (y) = Ciu(xi) (4.8)
The law of propagation of uncertainty leads to the expression:

u?(y) =Y clu?(x;)+2D cic,u(x u(x;)r(x;, x;) (4.9)

i<j

where r(x; x;) is the coefficient of correlation (also called the correlation coefficient)
between X; and X; for i, j = 1,2,..., n. Standard uncertainties u(x;) may be evaluated
either by observation of repeated experiments (Type A evaluation) or by other
means (Type B evaluation). In a Type A evaluation the standard uncertainty u(x;) is
calculated as the standard deviation s(x;) of the mean of m measurements. The
degrees of freedom associated with Type A standard uncertainties based on m
measurements are v;=m — 1. In a Type B evaluation the standard uncertainty u(x;) is
evaluated by scientific judgment based on information such as previous
measurement data, experience with or general knowledge of materials and
instruments involved, manufacturer’s specifications, calibration data etc. When Type
B uncertainties are used, it may be necessary to convert an interval into a standard
uncertainty using information about the distribution of the value and the degrees of
freedom. If no information is available, the distribution can be assumed to be
rectangular. The degrees of freedom associated with Type B standard uncertainties

may be taken to be infinite.

The GUM uncertainty framework makes the assumption that the probability
distribution of the output quantity is a Gaussian distribution or a t-distribution. The
expanded uncertainty U is obtained by multiplying the combined standard
uncertainty u(y) by a coverage factor k depending on the level of confidence
required: for normal distribution, a value k=2 corresponds to an approximate

confidence level (coverage probability) of 95%, and k=3 of 99.7 %.
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In some cases the evaluation of a Type A standard uncertainty may not be based on
a large number of readings or Type A uncertainty may be the dominant source of
uncertainty. This could result in the coverage probability being significantly less than
95% if a coverage factor of k = 2 is used. In such cases a t-distribution is assumed and
the degrees of freedom, v.g, associated with u(y) are calculated using the Welch-
Satterthwaite formula [8,21]:

v, = _utly) (4.10)

zuf(Y)

iV
where v; corresponds to the degrees of freedom of u(x;) The value of k, often
denoted as k,, where p is the coverage probability, will now give an expanded
uncertainty, U, that maintains the coverage probability at approximately the

required level p.

4.4.2 Application of GUM uncertainty framework

According to GUM approach [8], the definition of the measurand (in our case Q) is
followed by the identification and quantification of all uncertainty sources. All the
parameters involved in Equations (4.1) — (4.3), are regarded as uncertainty sources.
It has to be noted that these uncertainty sources are associated with the application
of ASTM D240 standard method which is intended for routine technical
measurements. Other highly precision methods which may be used for scientific
measurements are subject to different limitations and parameter determinations. In
this case different or additional uncertainty components have to be taken into
account. Zero factors 6, and 6”.., have uncertainties that require Type A evaluation
with 19 and 6 degrees of freedom, respectively. All other parameters have
uncertainties based on Type B evaluations with infinite degrees of freedom. Table
4.4 presents the method of estimation as well as the mathematical formulas used for
the estimation of the standard uncertainties of the various factors. Best estimates,
half width intervals of the estimates and attributed probability distributions of each
input quantity are presented in Table 4.5. For Type B evaluations, a certain divisor is
selected in order to estimate standard uncertainty uix) from half width interval,
according to the distribution of each input quantity. The uncertainty contribution
ui(y) is then estimated as the product of standard uncertainty ui(x) multiplied by
sensitivity coefficient, which is calculated as a partial derivative (Equations (4.7)-
(4.8)). Results of these calculations are also presented in Table 4.5 (uncertainty

budget for the measurand Q).
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Table 4.4 Quantification of uncertainty sources and calculation of standard uncertainties.

i | Uncertainty source Symbol | Method of estimation Mathematical formula

1 | Reproducibility Orep The uncertainty due to random variations is | The standard uncertainty is calculated as the sample
component of estimated as a Type A uncertainty from twenty | standard deviation, s(Qg), of the 20 measurements.
uncertainty independent determinations of gross heat of

U(Srep) = 8(Qy)

estimation of Q, combustion of a stable automotive diesel sample.
The determinations were carried out under Sensitivity coefficient:
reproducibility conditions (measurements of 2

analysts over a period of approximately one month). c. = oQ, -1

1
00
2 | Temperature rise t Temperature rise is calculated as the difference of | Having in mind that combination of two identical
(sample two temperature measurements, each of which has | rectangular distributions leads to a triangular
measurement) an expanded uncertainty of 0.00005 K (caused by distribution, the temperature rise standard uncertainty
rounding) can be calculated from an expanded uncertainty of U=

0.0001 K assuming triangular distribution i.e. dividing
the expanded uncertainty by square root of 6.

Ut
u(t)_—6

NG

Sensitivity coefficient:

Q, W
“TTU Ty
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i | Uncertainty source Symbol | Method of estimation Mathematical formula
3 | Correction for heat of e; The fixed value of 41.868 J (10 cal) used for the | Assuming rectangular distribution, the standard
formation of nitric correction for the heat of formation of nitric acid, has | uncertainty of the correction for heat of formation of
acid (sample an expanded uncertainty U.,; of 12.560 J (3 cal) | Nitric a_C|d is calculated by dividing the expanded
measurement) (based on manufacturer information). uncertainty by square root of 3.
u(e,) = a
)= —
NE)
Sensitivity coefficient:
Q, 1
C3 = = —
oe, ¢
4 | Correction for heat of ez The fixed value of 209.34 J (50 cal) used for the | Assuming rectangular distribution, the standard
combustion of fire correction for the heat of combustion of fire wire has | uncertainty of the correction for heat of combustion of
wire (sample an expanded uncertainty U,;of 20.934 J (5 cal) (based | fire wire is calculated by dividing the expanded
. . uncertainty by square root of 3.
measurement) on manufacturer information).

U,

u(es) :E

Sensitivity coefficient:

_Q 1

S oe, ¢

C,
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i | Uncertainty source Symbol | Method of estimation Mathematical formula
5 | Weight of sample g The mass measurement uncertainty is obtained from | Substitution of the value of the sample mass, g, to the
data of the calibration certificate of the balance used. | balance uncertainty equation gives the expanded
According to the certificate, the expanded uncertainty of the weight of the sample U, which
. " L divided by a coverage factor of 2 gives the
uncertainty of a weighing result is given by the ' .
) . corresponding standard uncertainty.
following equation:
6 Ug
Us; =0.00002 + 8.8714-10° G u(g) = 7
where Ug is the expanded uncertainty of the Sensitivity coefficient:
weighing result calculated for a confidence level of
approximately 95% (k=2) and G is the mass of the - 0Q, _t-W-e —e,
sample weighted. oy g°
6 | Percentage of sulphur S Sulphur content determination was carried out using | The expanded uncertainty of the sulphur content

in sample

an energy dispersive X-ray fluorescence (EDXRF) test
method, which has an estimated maximum expanded
uncertainty Us (95%, k=2) of 6 ppm (0.0006%) at the
level of interest (35 ppm).

determination divided by a coverage factor of 2, gives
the corresponding standard uncertainty.

u(S)=U7S

Sensitivity coefficient:

_ Ry _9Q, de,

] =58
oS e, S
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i | Uncertainty source Symbol | Method of estimation Mathematical formula
7 | Weight of benzoic acid g' The mass measurement uncertainty is obtained from | Substitution of the value of benzoic acid sample mass,
sample data of the calibration certificate of the balance used. | g, gives the expanded uncertainty of the weight of the

According to the certificate, the expanded sample Ug., which divided by a coverage factor of 2
uncertainty of a weighing result is given by the | gives the corresponding standard uncertainty.

following equation:
. u(g')=—>
Us = 0.00002 + 8.8714 -10° G 2

where Ug is the expanded uncertainty of the Sensitivity coefficient:

weighing result calculated for a confidence level of aQ 0Q. oW Ot
approximately 95% (k=2) and G is the mass of the | ¢7 = 89? = 8V\j oq = tg
sample weighted.

8 | Heat of combustion of Q The expanded uncertainty of the certified heat of | The standard uncertainty of the certified heat of
standard benzoic acid combustion of benzoic acid, Ug, is provided by the | combustion of benzoic acid is calculated using
uncertainty information from the manufacturer’s
certificate, assuming rectangular distribution, i.e.
dividing the expanded uncertainty U, by square root of
3

manufacturer’s certificate 8.99Jg™ (2.1 calg")

_Ye
uQ =7

7

Sensitivity coefficient:

~0Q, QoW g

C, = = ‘-t
Q0 oW oQ t.g
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i | Uncertainty source Symbol | Method of estimation Mathematical formula
9 | Correction for heat of e’; The fixed value of 41.868 J (10 cal) used for the | Assuming rectangular distribution, the standard
formation of nitric correction for the heat of formation of nitric acid, has | uncertainty of the correction for heat of formation of
acid (benzoic acid an expanded uncertainty U,; of 12.560 J (3 cal) | Nitric a_C|d is calculated by dividing the expanded
measurement) (based on manufacturer information). uncertainty by square root of 3.
u.
u(ell ) =—F
3
Sensitivity coefficient:
c _0Qy Qg oW _ t
° e, oW oe, t.g
10 | Correction for heat of e’, The fixed value of 209.34 J (50 cal) used for the | Assuming rectangular distribution, the standard
combustion of fire correction for the heat of combustion of fire wire has | uncertainty of the correction for heat of combustion of
wire (benzoic acid an expanded uncertainty U,, of 20.934 J (5 cal) | fire wire is calculated by dividing the expanded
. . uncertainty by square root of 3.
measurement) (based on manufacturer information).

u(elz) :U_e-32

NG

Sensitivity coefficient:

_0Q, 0Q, oW
oe', OW oe,

C10 -

t
t.g
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i | Uncertainty source Symbol | Method of estimation Mathematical formula
11 | Temperature rise t’ Temperature rise is calculated as the difference of | Having in mind that combination of two identical
(benzoic acid two temperature measurements, each of which has | rectangular distributions leads to a triangular
measurement) an expanded uncertainty of 0.00005 K (caused by distribution, the temperature rise standard uncertainty
rounding) can be calculated from an expanded uncertainty of U=
0.0001 K assuming triangular distribution i.e. dividing
the expanded uncertainty by square root of 6.
U.
u(t)y=—->=
V6
Sensitivity coefficient:
L _0Q, QoW _w.t
Yot oW ot thg
12 | Repeatability 6’rep | The wuncertainty due to random variations is | The standard uncertainty is calculated as the standard
component of estimated as a Type A uncertainty from seven | deviation of the mean, s(W), of the 7 measurements.
uncertainty independent determinations of energy equivalent
estimation of W values using benzoic acid samples. The

determinations were carried out under repeatability (s, ) = s(W)
conditions. rep J7

Sensitivity coefficient:

Q, Q, oW _t

Cp = =—

38y OW 05, g

rep
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Table 4.5 Uncertainty budget for the measurand Q,

i | Quantity | Estimate, x; | Half width interval Probability Standard Sensitivity Uncertainty Degrees of
of the estimate distribution uncertainty, u;(x) coefficient, c; contribution, u;(y) freedom, v;
(divisor)
olg’ o 96.0Jg" 96.0Jg™"
1 Orep (0 cal g'l) t- distribution (22.9 cal g"l) 1.000 (22.9 cal g'l) 19
Triangular 17189.32 ) g' k! 07)g"!
2 t 2.6541 K 0.00010 K (\/E) 0.00004 K (4105.6 cal g"l K"l) (0.17 cal g'l)
41.9) 12.6 Rectangular 7.3) 1 123Jg"
3 e (10 cal) (3 cal) (v3) (1.7 cal) 1.703¢ (2.95 cal g)
209.3) 20.9 Rectangular 12.1) 1 206J)¢g"
4 €3 (50 cal) (5 cal) (\/5) (2.9 cal) 17038 (4.92 cal g™
Normal 76966 g~ 791g"!
5 g 0.5872 g 0.00021 g ) 0.0001 g (18383 cal £ (188 cal g7)
Normal 58.00J (% g)™ 0.02)g"
0, 0, 0, oo
6 S 0.0035 % 0.0006 % 2) 0.0003 % (13.85 % J (% g)'l) (0.004 cal g—l)
, Normal 46270.11)g" 481g"
7 g 0.9765 g 0.00021 g ) 0.0001 g (1105143 cal £7) (1.15 cal )
g Q 26452.2 ) g™ 9.0lg" Rectangular 52)g"! 171 89l)g" -
(6318 cal g"l) (2.1 cal g"l) (\@) (1.2 cal g"l) ) (2.12 cal g'l)
9 o 41.9) 12.6 Rectangular 7.3) 175 g 12.7)g" -
! (10 cal) (3 cal) (\@) (1.7 cal) /28 (3.03 calg™)
, 209.3 20.9) Rectangular 12.1) 1 21.1)¢g"
101 e (50 cal) (5 cal) (v3) (2.9 cal) 1758 (5.05 cal g)
’ Triangular 17655.64 1 g K* 07)g"
11 t 2.5840 K 0.00010 K (\/E) 0.00004 K (4216.98 cal g'l K'l) (0.17 cal g'l)
, 1 o 21.41K* 1 96.71g"
12 6 rep 0JK t- distribution (5.1 cal K"l) 452Kg (23.1cal g'l) 6
) 1525 g*
Covariance term (8.70 cal® g'z)
141.7)g"

Combined standard uncertainty, u(Qy)

(33.84 calg?)
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Having quantified all the main uncertainty contributions, the standard uncertainty of
the measurand u(Q,) (combined uncertainty) can be estimated using the law of
propagation of uncertainties (Equation (4.9)). The mass of the sample, g, and the
mass of the benzoic acid, g’, are determined using the same analytical balance,
therefore a significant correlation between these two input quantities exists.
Assuming a correlation coefficient r(g,g’)=1, a covariance term (second term of
Equation (4.9)) of 152.49 J? g'2 (8.70 cal® g'z) is calculated. The correlation between
the temperature rise of the sample combustion, t, and the temperature rise of the
benzoic acid combustion, t’, has negligible effect to the standard uncertainty
estimation of Qg (covariance term equal to 1 J 2g2). The calculations give a standard
uncertainty u(Qq) equal to 141.7 ) g™ (33.84 cal g'). Figure 4.2 presents the combined
uncertainty of the measurand together with the uncertainty contributions (last

column of uncertainty budget presented in Table 4.5).

COMBINED UNCERTAINTY #

12. Random error W ]

11. Temperature ris e calibration

10. Correction (wire) calibration | ]

9. Correction (niticacid) calibration -:I
8. Heat of combustion (berzoicacid) _:I

7.Weight (berzoicacid) [

8. Sulphur content of sample ]

5. Weight of sample ]

1
4. Correction (wire)
3. Correction (niticacid)

2. Temperaturerise

1. Random error Qg ] : ; ; : ]
T T T T

0 20 40 60 80 100 120 140 160
Jig

Figure 4.2 Combined uncertainty of the measurand and uncertainty contributions.

If the probability distribution of Qg is taken as a Gaussian distribution the expanded
uncertainty U(Qy) may be obtained by multiplying the standard uncertainty u(Qg) by
a coverage factor k=1.96, which corresponds to a 95% level of confidence. The
resulting expanded uncertainty is 277.7 ) g™ (66.3 cal g).

However, a closer look at the uncertainty budget (Table 4.5 and Figure 4.2) shows
that the combined uncertainty is dominated by two components (8,, and 6’rep)
which are based on Type A uncertainty evaluation with a limited number of

measurements. The reproducibility component of uncertainty, 6,p, is calculated
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from the standard deviation of twenty fuel sample measurements. The
reproducibility component of uncertainty, 6., is calculated from the standard
deviation of twenty fuel sample measurements under reproducibility conditions,
while the repeatability uncertainty component of the energy equivalent
determination, &y, is calculated from the standard deviation of the mean of seven
energy equivalent determinations using benzoic acid under reproducibility
conditions. Therefore, according to GUM, it is reasonable to assume that the value of
the coverage factor, k, should be based on a t-distribution rather than a Gaussian
distribution. This value will give an expanded uncertainty that maintains the

coverage probability at approximately the required level (95%).

Using as a coverage factor the two sided t tabulated value for the 95 % level of
confidence and the effective degrees of freedom, v.g, calculated using the Welch-
Satterthwaite formula (Equation (4.10)) increases the resulting expanded
uncertainty. The Welch-Satterthwaite formula gives 21.16 effective degrees of
freedom which, for a coverage probability p=95%, correspond to a coverage factor k,

equal to 2.08. The resulting expanded uncertainty using k, is 294.6 J g1(70.4 cal g™).

4.5 Monte Carlo method

4.5.1 Basic concepts of Monte Carlo method

Monte Carlo method (MCM) is actually any technique that uses pseudo-random
numbers to solve a problem. It can be applied to problems which are characterized
by the establishment of a formal equivalence between the desired result and the
expected behaviour of a stochastic system. Monte Carlo methods have been

successfully introduced to many scientific and engineering applications [94].

MCM comprises also an alternative method for calculating uncertainty. This method
is described in the first supplement of GUM and involves no restrictions for valid
application concerning the linearity of the measurement model and the applicability
of Central Limit Theorem [87]. MCM carries out propagation of the probability
density functions (PDF’s) (not just the uncertainties like GUM) of the input quantities
Xj through the measurement model f to provide the PDF of the measurand Y. In case
of pairs of input quantities that are not independent (non zero covariance),

multivariate distributions are used.
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Figures 4.3 and 4.4 illustrate examples of the propagation of distributions (MCM)
and the propagation of uncertainties (GUM), respectively, for a measurement model
with three independent parameters. The major difference of the two methodologies
is clear. Within GUM approach the standard uncertainty of the output is estimated
and then distribution is assumed, while within MCM approach a distribution of the
output is directly estimated. The GUM approach introduces approximations when
estimating the coverage interval for the measurand. Information needed to
determine the standard deviation of the estimate of the output quantity and a
coverage interval (corresponding to a specified level of confidence) for the
measurand is quite different. The mean and standard deviation can be determined

knowing the distribution of the output, but the converse is not true.

/\—»
PDF for X,
A —» Y = (X,X2,X3) —»
PDF for X,
PDF for Y
/\
PDF for X;

Figure 4.3 Propagation of distributions for three independent input quantities (MCM
approach)

PhD Thesis — D. Theodorou 79



4. MEASUREMENT UNCERTAINTY ESTIMATION OF AN ANALYTICAL PROCEDURE

X1, U(Xy) ———

X2, U(X2) ——— Y =f(X0.X0.Xs) —— Yy, u(y)-—-->

Assumed PDF for Y

X3, U(Xg) ——>

Figure 4.4 Propagation of uncertainties for three independent input quantities (GUM
approach)

The Monte Carlo numerical simulation tends to require up to 10° trials for calculating
a 95% coverage interval which is correct to one or two significant decimals digits. In
fact, it is often more reliable to implement an adaptive Monte Carlo procedure
which involves carrying out an increasing number of trials until the results have
stabilized in a statistical sense [15]. Coverage intervals (either shortest or
probabilistically equal) and other statistical information can then straightforwardly

be produced from the PDF of the output quantity.

The estimate y of the output quantity Y is estimated by the average of the M MCM
trials which produce M measurement model values (y,, r=1,...,M):

1 M
y=1r 2 (4.12)
r=1

while the standard uncertainty u(y) associated with y is estimated as the standard

deviation of the M model values

u(y) =Jﬁ2(yr _yy? (.12)
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The 95% coverage interval for the output can be obtained by the 2.5- and 97.5-
percentiles of the distribution of MCM results (probabilistically equal coverage
interval). The GUM Supplement 1 [15] provides guidance for an alternative coverage,
the “shortest coverage interval”. This interval is the shortest among all possible
intervals for a distribution of MCM results where each interval has the same
coverage probability (95%). When the distribution is symmetric, the two types of

coverage intervals are identical [95].

One of the uses of MCM may also be the validation of the results of the GUM
uncertainty framework. Since there are fewer restrictions for the validity of MCM
compared to GUM uncertainty framework, it is recommended that both approaches
are applied and the results compared. When adaptive MCM is used for validation
purposes, a numerical tolerance 8= 6 / 5 is selected (6 denoting the numerical
tolerance associated with standard uncertainty u(y)). In order to validate GUM
results the absolute difference of the endpoints of GUM and MCM coverage
intervals (lower and upper) are calculated. Then, if both differences (for lower and
upper endpoints) are no larger than the numerical tolerance 6, then the GUM

approach is considered validated [15].

4.5.2 Calculation algorithm of the adaptive Monte Carlo method

The calculation algorithm of the adaptive MCM has the following steps [15, 96]:
(i)  Choose the desired coverage probability p for the interval to be obtained.
(i)  Choose the number of significant decimal digits ngiz for the uncertainty u(y)
(normally 1 or 2).
(iii)  Choose the number M of trials to perform in each sequence of the

application of the process.

100 4
M = — 10 )
max[l_ ) J (4.13)

(iv)  The variable h counts the number of MCM simulations. In order to carry out
the first one, h = 1 is established.

(v)  For each h sequence, M trials or evaluations of the model are carried out,
which gives the values y, (r = 1,.., M) and the following estimated
parameters:

- Average is taken as an estimate y of Y:
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(vi)

(vii)

1
y"==3"y, (4.14)

- Standard deviation is taken as the standard uncertainty u(y) associated with

y.

1 M
U(y(h))=\/m2(yr -y)* (4.15)
4=l

- Let g the integer part of pM+1/2. Sorting the values y, (r = 1,..., M) in a non-
decreasing order yy (r = 1,..., M), the probabilistically symmetric coverage
interval for Y will be [y(h)low, y(h)high]. The interval extremes are y(h)k)w: yinand
y”’)high= Yir+q» Where ris the integer part of (M - q)/2 + 1/2. If the desired
result is the shortest coverage interval, the value r* should be determined

such that y~q) - Y9 < V(rq) - Yir) for each of the values r=1,..., (M - q).

In order to analyze the variability of the parameters, more than one
sequence is required, thus if h = 1, it should be increased by one unit and
then return to step (v).

After every sequence, the average and standard deviation of these
parameters must be calculated:

- For the estimate:

h .
y® (4.16)
i=1

j=y-t
h

_ # - () o\2
Sg _\/h(h—l)z(y y) (4.17)

i=1

- For the standard uncertainty:

u(y) =+ Y u(y") (4.18)
1 & o
Saqy) = \/m;(u(y('))—uw)) (4.19)

- For the lowest extreme of the coverage interval:

A LI
Y tow :EZ yl(O\)N (4.20)
i=1
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(viii)

(ix)

(x)

Sy = \/ )Z(yl(c;\)/v Y1)’ (4.21)

- For the highest extreme of the coverage interval:

yhlgh Z yr(:.g;h (4.22)

1 h i N
Sflhigh = \/h(h——l);(yfgléh - yhigh)z (4.23)

In order to apply the stabilization criterion to the results, the numerical
tolerance 6 related to the standard uncertainty u(y) must be calculated. The
uncertainty u(y) is calculated as in step (v), but using all the values h-M of the
model. The tolerance is simply half of the last significant digit of the
uncertainty. For its computer calculation, the uncertainty must be expressed
in the form u(y) = ¢-10% where ¢ is an ngig decimal digit integer and d an
integer. Then, the related numerical tolerance is:

S= %10d (4.24)

The stabilization criterion for the results establishes that if any of the values

of 2sg, 2s; 2s, or 25yhigh are greater than 6, h should be increased by

acy)” y.o

one unit and step (v) should be repeated.

Once the stabilization criterion has been verified, all the values h-M of the
model should be used to calculate yjo and ynign in the same way that it was
done in step (v) for each sequence. The values of y and u(y) have already

been calculated in steps (vii) and (viii), respectively.

4.5.3 Programming in MATLAB®

MATLAB® [96] is a high-level language and interactive environment for numerical

computation, visualization, and programming. Using MATLAB®, one can analyze

data, develop algorithms, and create models and applications. The language, tools,

and built-in math functions may be reach a solution faster than with spreadsheets or

traditional programming languages. A program in MATLAB®, as in any programming

language, consists of a series of instructions that run sequentially, with the possibility
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of containing certain instructions that control those which will run in each

circumstance.

Implementation of the Monte Carlo method in MATLAB®, according to the algorithm
described in 4.5.2 and summarized in the flow diagram shown in Figure 4.5, requires
the user to enter a series of information: the functional relation of the measurement
process, the probability distributions of the input quantities, their parameters, the
required coverage probability, whether the coverage interval being sought is
probabilistically symmetrical or the shortest and the number of significant decimal

digits for the standard uncertainty.

4.5.4 Application of Monte Carlo method

The adaptive MCM performs the Monte Carlo simulation divided into h sequences of
M’ trials until twice the standard deviation associated with certain parameters
(estimate, standard uncertainty, lowest extreme of the coverage interval, highest
extreme of the coverage interval) is less than the chosen numerical tolerance, 6 or
&', of the standard uncertainty, u(y). In our case, M’ was set to 10 for a coverage
probability of 95%. The numerical tolerance 6 was set to 0.5. The standard

uncertainty u(y) was calculated using all the values, M, of the model (M=h M’).

The algorithm of the adaptive MCM was implemented in MATLAB®. Table 4.6 details
the program developed for the calculation of uncertainty. The MATLAB® code used,
simulated samples from the distributions of the input quantities t, e, €3, g, 6rep, t', Q,
e’1, €2, 9’, 6'p and S of the measurement model. Univariate distributions were used
for the input parameters, except for the cases which involved correlation (pairs g — g’
and t — t’) where multivariate distributions were used. These draws were then used
to obtain the distributions of the interim quantities W and e, and the distribution of
the measurand, Qg. The whole process stabilized after 3.5 10° evaluations and gave
the estimate Q; =45194.4) g™ (10794.5 cal g'*) with associated standard uncertainty
u(Qg) = 160.0J gt (38.2 calg") and a 95% coverage interval [44877.8, 45510.2] J g*
([10718.9, 10869.9] cal g*). The PDF obtained by MCM is bell-shaped and
symmetrical, which leads to almost identical shortest and probabilistically equal

coverage intervals.
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Establishment of the process parameters and the . *
i Lines 3-7
default values of the control variables
Creation of M size row vectors for each of the input . %
variables Lines 8-49
Evaluation of the model. M size file vector Lines 50-53*
Calculation of the average, standard deviation and .
ot ge, Lines 54-58*
symmetrical interval of the M value sequence
Shortest interval? Lines 59-61*
YES: Interval=1
Iculation of the shor r interval of the M .
Calculation of the shortest coverage interval of the Lines 62-67*
value sequence
N|
Lines 68-70*
YES: h=1

Value matrices and parameter vectors are formed Lines 71-73*
Add row to value matrices and parameter vectors Lines 74-76*
Calculation of the standard deviation of the . %

parameters Lines 77-81
Calculation of the total standard deviation Lines 82-83*
Calculation of the numerical tolerance related to the . *

standard deviation Lines 84-97

Lines 98-103*

YES: comp=1

Calculation of the average and the symmetrical
coverage interval of all the values

Shortest interval?

YES: Interval=1

Lines 104-108*

Lines 109-110*

Calculation of the shortest coverage interval of all the Lines 111-117*
values
Show results Lines 118-132*

*MATLAB code presented in Table 4.6

Figure 4.5 Flow diagram of the Adaptive Monte Carlo algorithm implemented in
MATLAB®
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Table 4.6 Implementation program of Adaptive Monte Carlo Method in MATLAB®

Line MATLAB Code

1 function y=MC_adapt_Qg

2 Tic

3 % ESTABLISHMENT OF PROCESS PARAMETERS

4 p=0.95; n_digit=2;

5 tol_divisor=1l; % (set 1 for 5=0.5, set 5 for 5=0.1)

6 interval=0; % (1 "shortest”, other value "symmetric")

7 M=max((100/1-p),10000); comp=0; h=0;

8 whille comp==0 % Stabilization index (comp=1 when stabilized)

9 h=h+1; % hth application of MCM

10

11 % MODEL INPUTS

12 S=normrnd(0.0035,0.0003,1,M); % simulate sample of S

13

14 % simulate sample of g and g° (correlated)

15 %covariance matrix (SIGMA)

16 L=[0.0001026"2 0.0001026*0.0001043; 0.0001026*0.0001043
0.0001043"2];

17 %mean matrix (MU)

18 K=[0.5872 0.9765];

19 % simulate g,g" from joint pdf

20 J=mvnrnd(K,L,M); % Mx2 matrix

21 9=J3(:,1); % 1st column of Mx2 matrix

22 g=transpose(Q);

23 g _i=3(:,2); % 2nd column of Mx2 matrix

24 g_i=transpose(g_i);

25

26 e2=(58/4.1868)*S.*qg; % Obtain e2 draws

27

28 drep_i=5.1099*random("t",6,1,M); % simulate sample of drep”

29 [a,b]=triang_param(2.5840,0.00004082); % simulate sample of t~

30 c=(a+b)/2;

31 t_i=trirnd(a,c,b,M);

32 [a,b]=unif_param(50,2.8867); % simulate sample of e2*"

33 e2_i=unifrnd(a,b,1,M);

34 [a,b]=unif_param(10,1.7320); % simulate sample of el”

35 el _i=unifrnd(a,b,1,M);

36

37 [a,b]=unif_param(6318,1.2401); % simulate sample of Q

38 Q=unifrnd(a,b,1,M);

39

40 W=((Q.*g_i+el_i+e2_i)./t_i)+drep_i; % obtain W draws

41

42 [a,b]=unif_param(50,2.8867); % simulate sample of e3

43 e3=unifrnd(a,b,1,M);

44 [a,b]=unif_param(10,1.7320); % simulate sample of el

45 el=unifrnd(a,b,1,M);

46 [a,b]=triang_param(2.6541,0.00004082); % simulate sample of t

47 c=(a+b)/2;

48 t=trirnd(a,c,b,M);

49 drep=22_.9347*random("t",19,1,M); % simulate sample of drep

50 % MODEL EVALUATION

51 Qo=((W.*t-el-e2-e3)./g)+drep; % obtain Qg draws

52 y=Qg;

53 y=sort(y);

54 % CALCULATION OF AVERAGE, STANDARD DEVIATION AND PERCENTILES

55 y_mean=mean(y);

56 y_std=std(y);

57 g=round(p*M); r=round((M-q)/2);

58 y_low=y(r); y_high=y(r+q);

59 % CALCULATION OF THE SHORTEST INTERVAL

60 if interval==

61 r=1;

62 while r<=(M-q)

63 if y(r+q)-y(r)<=y_high-y low;
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Line MATLAB Code

64 y_low=y(r); y_high=y(r+q);

65 End

66 r=r+l;

67 End

68 End

69

70 if h==1 % when h=1 value matrices and parameter vectors are
formed

71 Y=y;

72 Y_mean=y_mean; Y_std=y std; Y_low=y low; Y_high=y_high;

73 else % when h>1 a new row is added to matrices and vectors

74 Y=[Y:;y1;

75 Y_mean=[Y_mean;y_mean]; Y_std=[Y_std;y _std];

76 Y_low=[Y_low;y low]; Y _high=[Y_high;y high];

7 % CALCULATES STANDARD DEVIATION OF PARAMETERS

78 y_mean_std=std(Y_mean)/(h"0.5);

79 y_std_std=std(Y_std)/(h"™0.5);

80 y_low_std=std(Y_low)/(h"™0.5);

81 y_high_std=std(Y_high)/(h"0.5);

82 y_values=reshape(Y,1,h*M); % Transforms Y into 1xhM matrix

83 y_standard=std(y_values); % Calculates the TOTAL standard
deviation

84 % CALCULATION OF NUMERICAL TOLERANCE REL ATED TO TOTAL STANDARD
DEVIATION

85 a=y_standard; b=0;

86 if a>=10"n_digit

87 whille a>=10"n_digit

88 a=a/10; b=b+1;

89 End

90 tol=(0.5/tol_divisor)*107b;

91 elseif a<10”(n_digit-1)

92 while a<10”n(n_digit-1)

93 a=a*10; b=b+1;

94 End

95 tol=(0.5/tol_divisor)*10™-b;

96 else tol=(0.5/tol_divisor);

97 End

98 % STABILIZATION CRITERION

99 if (2*y_mean_std<tol & 2*y std_std<tol & 2*y low_std<tol &
2*y high_std<tol)

100 comp=1;

101 End

102 End

103 End

104 % CALCULATION OF THE AVERAGE AND THE SYMMETRICAL COVERAGE INTERVAL

105 y_values=sort(y_values);

106 y_mean=mean(y_values);

107 g=round(p*h*M); r=round((h*M-q)/2);

108 y_limit_low=y values(r); y_limit_high=y_values(r+q);

109 if interval==

110 r=1;

111 while r<=(h*M-q)

112 if y values(r+q)-y_values(r)<=y_limit_high-y_limit_low;

113 y_limit_low=y values(r); y_limit_high=y_values(r+q);

114 End

115 r=r+l1;

116 End

117 End

118 % Show Results

119 Toc

120 trials=h*M;

121 y_mean, y standard, y_limit_low, y limit_high, trials

122 lower=min(y_values)-y_mean; upper=max(y_values)-y _mean;

123 xc=lower : (upper-lower)/499:upper;

124 y_values=y values-y_mean;

125 y_mean=0;
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Line MATLAB Code

126 n=hist(y_values,xc);

127 bar(xc,n./(((upper-lower)/499)*h*M),1);

128 hold on;

129 Z=normpdf(y_values,y mean,33.8395); % GUM Gaussian pdf

130 T=tpdf((y_values-y_mean)/ 33.8395,21.85)/ 33.8395; % GUM t-
distribution pdf

131 plot(y_values,Z,"-.r",y_values,T,"-g")

132 end

133 function [a,b]=unif_param(m,v)

134 % A function to obtain the parameters of the uniform (rectangular)
135 % distribution given its mean and standard deviation

136 b=m+v*sqrt(12)/2;
137 a=2*m-b;

138 end

139 function [a,b]=triang_param(m,v)

140 % A function to obtain the parameters of the triangular
141 % distribution given its mean and standard deviation

142 b=m+v*sqrt(6);
143 a=2*m-b;

144 end

145 function X=trirnd(a,c,b,N)

146 % This function generates a vector of triangular distributed

147 % continuous random variable. By specifying minimum value(a),

148 % maximum value(b), mode(c), and number of variables to be
generated(n),

149 % the function gives a vector of random variables as output (X).

150 X=zeros(1,N);

151 for i=1:N

152 %Assume a<x<c

153 z=rand;

154 it sqrt(z*(b-a)*(c-a))+a<c

155 X(i)=sqgrt(z*(b-a)*(c-a))+a;

156 else

157 X(1)=b-sqrt((1-z)*(b-a)*(b-c));
158 end

159 end %for
160 end %function

The algorithm of adaptive MCM was also implemented with a numerical tolerance
6’=0.1 (one fifth of §), in order to validate the results of the GUM approach. 5.65-10°
MCM trials were required, while the results produced an estimate Q; = 45194.1 ) g'1
(10794.4 cal g*) with associated standard uncertainty u(Q,) =160.0 J g'(38.2 cal g
and a 95% coverage interval [44878.5, 45509.8] J g'1 ([10719.0, 10869.8] cal g'l). The
PDF obtained by MCM is again bell-shaped and symmetrical, which leads to identical

shortest coverage interval and the probabilistically equal shortest interval.

Furthermore, an algorithm of MCM was implemented using a fixed number of trials
(M=106). The MATLAB code for the implementation of MCM using fixed number of
trial is presented in Table 4.7. The results compared to adaptive show no significant
differences. Final results in MJ kg and cal g* are summarized in the Table 4.11 of

Section 4.8 (Discussion).
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Table 4.7 Implementation program of Monte Carlo Method in MATLAB using fixed
number of trials

Line MATLAB Code

1 function [Qg]=MC_Qg_2 correlation(N)

2 tic

3 S=normrnd(0.0035,0.0003,1,N); % simulate sample of S

4

5 % simulate sample of g and g (correlated)

6 %covariance matrix (SIGMA)

7 L=[0.000102672 0.0001026*0.0001043; 0.0001026*0.0001043
0.0001043"2];

8 %mean matrix (MU)

9 K=[0.5872 0.9765];

10 % simulate g,g" from joint pdf

11 J=mvnrnd(K,L,N); % Nx2 matrix

12 0=J3(:,1); % 1st column of Nx2 matrix

13 g=transpose(Qg);

14 0_i=3(:,2); % 2nd column of Nx2 matrix

15 g_i=transpose(g_i);

16

17 e2=(58/4.1868)*S.*qg; % Obtain e2 draws

18

19 drep_i=5.1099*random("t",6,1,N); % simulate sample of drep”

20 [a,b]=triang_param(2.5840,0.00004082); % simulate sample of t~

21 c=(a+b)/2;

22 t_i=trirnd(a,c,b,N);

23 [a,b]=unif_param(50,2.8867); % simulate sample of e2”

24 e2_i=unifrnd(a,b,1,N);

25 [a,b]=unif_param(10,1.7320); % simulate sample of el”

26 el i=unifrnd(a,b,1,N);

27

28 [a,b]=unif_param(6318,1.2401); % simulate sample of Q

29 Q=unifrnd(a,b,1,N);

30

31 W=((Q-*g_i+el_i+e2_i)./t_i)+drep_i; % obtain W draws

32

33 [a,b]=unif_param(50,2.8867); % simulate sample of e3

34 e3=unifrnd(a,b,1,N);

35 [a,b]=unif_param(10,1.7320); % simulate sample of el

36 el=unifrnd(a,b,1,N);

37 [a,b]=triang_param(2.6541,0.00004082); % simulate sample of t

38 c=(a+b)/2;

39 t=trirnd(a,c,b,N);

40 drep=22.9347*random("t",19,1,N); % simulate sample of drep

41

42 Qo=((W.*t-el-e2-e3)./g)+drep; % obtain Qg draws

43 Qu=sort(Qg);

44 toc

45 Gross_Heat=mean(Qg)

46 Standard_Uncertainty=std(Qg)

47 g=round(0.95*N); r=round((N-q)/2);

48 Qg_0_025=Qg(r) % Symmetric Interval (low end point)

49 Qg_0_975=Qg(r+q) % Symmetric Interval (upper end point)

50 % Shortest Interval

51 r=1; g=0.95*N; Qg_low=Qg_0_025; Qg_high=Qg_0_975;

52 while r<=(N-q)

53 it Qg(r+q)-Qg(r)<=Qg_high-Qg_low;

54 Qg_low=Qg(r); Qg_high=Qg(r+q);

55 end

56 r=r+l;

57 end

58 disp(["Shortest Interval: ", num2str(Qg_Hlow), * - *°,
num2str(Qg_high)]);

59

60 % Qg=(Qg-Gross_Heat);
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Line MATLAB Code

61 hist(Qg,100)

63 end

65 function [a,b]=unif_param(m,v)

66 % A function to obtain the parameters of the uniform (rectangular)
67 % distribution given its mean and standard deviation

68 b=m+v*sqrt(12)/2;

69 a=2*m-b;

70 end

71 function [a,b]=triang_param(m,v)

72 % A function to obtain the parameters of the triangular
73 % distribution given its mean and standard deviation

74 b=m+v*sqrt(6);

75 a=2*m-b;

76 end

77 function X=trirnd(a,c,b,N)

78 % This function generates a vector of triangular distributed

79 % continuous random variable. By specifying minimum value(a),

80 % maximum value(b), mode(c), and number of variables to be
generated(n),

81 % the function gives a vector of random variables as output (X).

82 X=zeros(1,N);

83 for i=1:N

84 %Assume a<X<c

85 Zz=rand;

86 if sgrt(z*(b-a)*(c-a))+a<c

87 X(i)=sqrt(z*(b-a)*(c-a))+a;

88 else

89 X(1)=b-sgrt((1-z)*(b-a)*(b-c));
90 end

91 end %for
92 %hist(X,50); Remove this comment % to look at histogram of X
93 end %function

4.5.5 Sensitivity coefficients / uncertainty budget

The calculation of the uncertainty contributions ui(y) of the input quantities as the
product of the standard uncertainty multiplied by the sensitivity coefficient
(Equation (4.8)) is a necessary step when evaluating uncertainty using the GUM
uncertainty framework. These uncertainty contributions listed in the uncertainty
budget (Table 4.5) are also a valuable tool, revealing dominant uncertainty sources,
i.e. the degree of the contribution of the uncertainty of each input quantity to the
estimate of the uncertainty of the output quantity [97]. On the other hand,
propagation of distributions and its implementation using MCM do not involve the
calculation of sensitivity coefficient and consequently of uncertainty contributions,
at any point. However, this “limitation” of MCM can be overcome, as, by simply
holding all input quantities but one fixed at their best estimates, MCM provides the
PDF for the output quantity for the model having just that input quantity as a
variable. Then the sensitivity coefficient can be estimated as the ratio of the
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standard deviation of the resulting model values, sy; and the standard uncertainty

associated with the best estimate of the relevant input quantity, u(x;) [15].

c, = S (4.25)
u(x;)

It has to be noted, though, that for a nonlinear model, sensitivity coefficients are in

general approximate, the quality of the approximations being less reliable with

increased standard deviations for the input PDF’s. [97]. Table 4.8 presents the results

of the application of MCM (10° trials) for the estimation of sensitivity coefficient of

all input quantities.

Table 4.8 Results of the application of MCM for the estimation of sensitivity
coefficients

Input quantity Standard Standard uncertainty Sensitivity
deviation of Q,, sy; ! of input quantity u(x;) coefficient, ¢;
rep 101.5681302J g™ 101.5681302J g™ 1.00
t 0.7013953 ) g" 0.0000408 K 17189.32) g K"
e 12.3497478 g™ 7.2517719) 1.70g"
es 20.5860067 J g™ 12.0881031 J 1.70g"
g 7.8898975) g 0.0001025 g 76965.89 ) g”*
S 0.0173783Jg" 0.0002996 % 58.00%Jg"
g' 4.8283460) g" 0.0001044 g 46270.11
Q 8.8754566) g 5.1961267 ) g" 1.71
e’ 12.6819466 J g™ 7.2501534 ) 1.75g"
e’, 21.1396086 ) g " 12.0853218 J 1.75g"
t' 0.7208433 1 g" 0.0000408 K 17655.64 1 g K"
brep’ 118.3137066 ) g 26.1760328 J K 452Kg"
\/? 160.20J g™
- Yi

! standard deviation of the values of a measurement model having just input quantity X; as variable
and all other input quantities fixed at their best estimates.
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4.6 Uncertainty evaluated from Bayesian statistics

Bayesian methods allow the combination of information from measurements with
prior information about the possible (or likely) distribution of values of the
measurand. The approach combines a “prior” distribution with a likelihood (the
distribution inferred from the measurement results alone) to obtain a “posterior
distribution” which describes the distribution of values reasonably attributable to

the measurand.

Under the classical statistics approach the Type A standard uncertainty associated
with x; is u(x;)= s(x;). When the number m of measurements is small, the classical
uncertainty is uncertain. The uncertainty in s(x;) arising from small m is a statistical

uncertainty, which is accounted for by the degrees of freedom (GUM, section E.4.3).

Under the Bayesian approach a Type A standard uncertainty u(x;) is calculated as:

m=Lsx) (4.26)
m-3

uBayes(Xi) =

where m is the number of independent measurements and s(x;) is the experimental

standard deviation. The factor \/(m—l) /(m—=3) built into the Bayesian uncertainty

accounts for the statistical uncertainty that arises from a small number of
measurements. It turns out that the estimates from a classical statistical analysis are
either equal or approximately equal to the corresponding estimates from a Bayesian

analysis with non-informative prior probability distributions [44].

The measurement model studied in this chapter includes, two components (6., and
6’rep) Which are based on Type A uncertainty evaluation with a limited number of
measurements. Table 4.9 presents the calculations of Type A standard uncertainties
associated with these two components. The inclusion of the Bayesian statistics
estimates in the ISO GUM uncertainty budget (Table 4.5) gives a combined standard
uncertainty u(Qg) of 160.7 J.g™t (38 cal g). This leads to a 95% coverage interval
[44.88 — 45.51] MJ kg’1 or [10719 — 10870] cal g’l. These results are consistent with
the results of the Monte Carlo method, presented in Table 4.11.
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Table 4.9 Type A standard uncertainties estimations under classical and Bayesian
statistics

Uncertainty Source | Symbol | Classical statistics Bayesian statistics approach
approach
Reproducibility Orep The standard uncertainty
component of is calculated as the sample
uncertainty standard deviation, s(Q,), 20-1
estimation of Q, of the 20 measurements, | Usaes (9€P) = ms(Qg) -
101.5J¢g*
u(arep) =s(Q,) = (24.2 cal g™)
96.0Jg"
(229 calg™)
Repeatability 6rep The standard uncertainty U (S'rep) = 7-1sW) _
component of is calculated as the Bayes 7-3 7
uncertainty standard deviation of the 26.2 ) K*
estimation of W mean, s(W), of the 7 (6.3 cal K™
measurements.
: s(W)
u(s'rep) = 7
21.4)K*
(5.1 cal K

4.7 Uncertainty evaluated from proficiency testing data

An empirical approach utilizing data from a proficiency testing scheme (PTS) was also
used to estimate the measurement uncertainty of the test method. The
reproducibility standard deviation between laboratories, sg is normally given directly
in reports from the PTS provider. These data may well be used by a laboratory
(having performed satisfactorily in the comparisons) as a first estimation of the
standard uncertainty of the analysed parameter, provided that the comparison
covers all relevant uncertainty components and steps.

In order to estimate the uncertainty of the measurement of Gross Heat of
Combustion (GHC) by bomb calorimetry, data from several rounds of a PTS were
used (Table 4.10). The PTS provider is accredited according to ISO/IEC 17043 [5] and
most of the participants used the standard method ASTM D240 [91] for the
measurement. The precision data of this method are also used by the PTS provider
for the evaluation of the performance of the participants.
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Table 4.10 Proficiency testing data concerning the measurement of Gross Heat of
Combustion (GHC) by bomb calorimetry.

_ Nur.nl?er _°f Reproducibility

Round, / Year Ipartlapa-t 1t standard deviation, s®

aboratories, /; R
1 2014 99 0.132
2 2013 85 0.157
3 2012 56 0.193
4 2011 42 0.115
5 2010 32 0.148
6 2009 34 0.182
7 2008 32 0.188
8 2006b 14 0.075
9 2006a 60 0.118

The standard uncertainty was estimated as the pooled reproducibility standard
deviation between laboratories:

$°[0, -0
pooled __ i=1
Sg = 2 (4.27)

-z

i=1

Where SS) is the reproducibility standard deviation of round i, /; is the number of
participating laboratories in round i, and z is the number of rounds. The application
of the Equation 4.27 gave an s =0.15 MJ kg™ (36 cal g"!), which multiplied by a
coverage factor k=1.96 leads to an 95% expanded uncertainty of 0.30 MJ kg (71 cal

g). Using the experimental results of Section 4.3.1, the estimated 95% coverage
interval is [44.90 — 45.49] MJ kg™ or [10724 — 10865] cal g™.

4.8 Discussion

MCM and GUM results for all cases examined are summarized in Table 4.11. All of
the GUM and MCM approaches gave almost identical results for the estimate of Q.
On the other hand, appreciable differences exist regarding the estimated coverage

intervals between MCM and GUM results. Figure 4.6 shows the assumed PDF’s of
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the GUM approaches (broken line curve for Gaussian distribution, dotted line curve
for t-distribution), the scaled frequency distribution obtained by MCM in the form of
an histogram as well as the endpoints of the probabilistically symmetric 95%
coverage interval provided by these approaches. The inner pair of broken vertical
lines indicates the probabilistically symmetric 95% coverage intervals provided by
GUM when assuming a Gaussian distribution. The outer pair of continuous vertical
lines indicates the probabilistically symmetric 95% coverage interval provided by
MCM. The pair of dotted vertical lines indicates the probabilistically symmetric 95%

coverage interval provided by GUM when assuming a t- distribution.

Table 4.11 Results of the application of GUM and MCM to the estimation of the
uncertainty of Gross Heat of Combustion determination

Method MCM Time Measurand Standard 95% Coverage | Number of Numerical
trials, required ! estimate, Q; | uncertainty, interval significant | tolerance,
M u(Qy) digits
GUM - - - 45.19MJ kg™ | 0.14MJkg" | [44.92-145.47] - -
Gaussian (10794 cal g (34 cal g™) MJ kg™
distribution [10728 — 10861]
cal g'1
GUM - t- - - 4519 MJ kg™ | 0.14 Mikg® | [44.90-45.49] - -
Student (10794 cal g'l) (34 cal g"l) M) kg'1
distribution [10724 — 10865]
calg’
MCM 10° 1.04sec | 45.19MJkg™ | 0.16 MJkg" | [44.88—145.51] - -
(10794 cal g (38 cal g™) MJ kg™
[10719 — 10870]
cal g'1
Adaptive 3.5.10° | 0.60sec | 45.19MJkg" | 0.16 MIkg" | [44.88-45.51] 2 0.005 MJ kg™
MCM (10794 calg') | (38calg?) Ml kg (0.5 cal g’
[10719 - 10870]
cal g'1
Adaptive 5.7.10° | 39.9sec | 45.19Mikg™ | 0.16 MJkg" | [44.88—45.51] 2 0.001 MJ kg™
MCM (10794 cal gt (38 cal g™) MJ kg™ (0.1calg™)
[10719 — 10870]
calg’

s using a PC equipped with Intel® Core™ i3 M330, 2.13GHz, 4GB RAM

The probabilistically symmetric 95% coverage interval provided by GUM when
assuming a Gaussian distribution is shorter than that obtained by MCM. Using the
Welch-Satterthwaite formula to calculate the effective degrees of freedom vz, and
then assigning a t-distribution to the measurand leads to an increased width of

coverage interval but still more optimistic than that provided by MCM.
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Figure 4.6 Probability Density Function of the measurand provided by GUM —
Gaussian distribution, GUM —t - distribution and MCM

Specifically, the semi-width of the coverage interval (expanded uncertainty for 95%
coverage probability) provided by GUM assuming Gaussian distribution (0.28 MJ kg™
or 66.3 cal g%) is 12% smaller than the value (0.32 MJ kg™ or 75.3 cal g?) returned by
MCM. When a t - distribution is assumed, the semi-width of the coverage interval
provided by GUM (0.29 MJ kg™ or 70.4 cal g*) is underestimated by 7%, compared to
the value returned by MCM. These differences may be attributed to the slight non
linearity of the measurement model and to the approximations introduced by the
use of the Welch-Satterthwaite formula. The Welch-Satterthwaite formula, as it has
been pointed out by other work [98,99], does not provide an adequate
approximation, as it overestimates the effective degrees of freedom, when there are
dominant uncertainty contribution terms with relatively few degrees of freedom.
This unavoidably leads to significantly underestimated coverage intervals. There is
good agreement between estimates and coverage intervals determined by adaptive
MCM and that provided by MCM with a priori chosen number of trials (M=10°).

Furthermore, both GUM approaches are not validated using MCM, since the
magnitudes of the coverage intervals endpoints differences djow, dhign are larger than
the numerical tolerance, 6, associated with the uncertainty of the measurand (Table
4.12).
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Table 4.12 Results of the validation of GUM approaches

GUM - GUM - t- GUM
Gaussian distribution validated
distribution (6=0.5)

d 0w = | low endpoint (GUM) - low 38.0Jg" 21.0)g" No
endpoint (MCM . )

g ( ) | (9.1 calgl) (5.0 calgl)
d igh = | high endpoint (GUM) — high 3791g" 21.0Jg" No
endpoint (MCM . }

g ( ) | (9.1calg™) (5.0calg?)

If the GUM approach is combined with a Bayesian treatment of Type A uncertainties,
the results are comparable with the MCM results (see Section 4.5.4). Actually, as
stated by Kacker and Jones [44] GUM contains an inconsistency, as it recommends
classical (frequentist) statistics for evaluating the Type A components of uncertainty,
but it interprets the combined uncertainty from a Bayesian viewpoint. In order to
overcome this inconsistency, it is suggested that all Type A uncertainties should be
evaluated through a Bayesian approach.

Sensitivity coefficients calculated by differentiating the function with respect to each
input quantity (GUM approach) are identical to the sensitivity coefficients indirectly
estimated by implementing MCM with one input quantity as a variable each time
and all other input quantities fixed at their best estimates (Table 4.5, Table 4.8). The
“non linear” sensitivity coefficients produced by MCM may be used in an uncertainty
budget for the measurement. As the standard uncertainty of the output quantity is
almost equal to the square root of the sum of the individual uncertainty
contributions (Table 4.8), it is concluded that there are not contributions to u(Qy)
that cannot be assigned to any individual input quantity and therefore uncertainty

budget can be reliably used to detect dominant terms [97].

The uncertainty of GHC is dominated by the reproducibility component of
uncertainty (calculated as the standard deviation of twenty fuel sample
measurements under reproducibility conditions) and the repeatability uncertainty
component of the energy equivalent determination (calculated as the standard
deviation of the mean of seven energy equivalent determinations using benzoic
acid). The magnitude of the estimated uncertainty is fit for purpose, especially
considering the fact that there is no specification limit for the GHC of fuels.

Therefore, due to practical reasons, it is acceptable for a single measurement to be
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made, even though it is known that the method has imperfect repeatability and
reproducibility. Nevertheless, a smaller uncertainty can be obtained by decreasing
the uncertainty contributions of the dominant factors. By making more GHC
measurements and calculating their average, instead of making a single
measurement, a better estimate of the true value is obtained with smaller standard
deviation of the mean (standard uncertainty of the reproducibility uncertainty
component, &,.,). The standard deviation of the mean gets smaller as the number of
data increases. For example, if the result of the GHC is the average of four
measurements instead of one, the standard uncertainty is halved (the standard
deviation divided by square root of four) and the resulting expanded uncertainty is

about 15 % smaller.

The measurement uncertainty derived from proficiency data (0.30 MJ kg™ or 71
cal g') is smaller than that obtained by the MCM (Section 4.5.5). Nevertheless, if the
demand on uncertainty is low, then the reproducibility standard deviation between
laboratories from a proficiency testing scheme can provide an uncertainty estimate
that is fit for purpose. Generally, it has to be noted that such an empirical approach
should be used with caution as it may give overestimated results depending on the
quality of the participating laboratories — worst case scenario or underestimated

results due to sample inhomogeneity or matrix variations [27].

4.9 Conclusions

Gross Heat of Combustion (GHC) is an important characteristic of fuels. It is
determined using standard methods, like ASTM D 240 which describes a GHC
determination procedure using a bomb calorimeter. The results of the determination
are used for a wide range of technological, environmental and financial reasons,
including the calculation of green house gas emissions under the European Union
Emissions Trading Scheme (EU ETS). These calculations require accurate

measurements accompanied with reliable uncertainty estimates.

Two alternative uncertainty estimation approaches were presented and compared,
GUM and MCM (Supplement 1 to GUM). GUM approach propagates the
uncertainties of the input quantities through a linearized model, while MCM
provides an alternative approach in which the PDF’s of the input quantities are
propagated through the model. A coverage interval is obtained from the PDF of the

output quantity without making a Gaussian or any other assumption concerning the
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form of this distribution. Variations of both approaches were applied in the
estimation of the uncertainty of the Gross Heat of Combustion (GHC) determination
of a diesel fuel by bomb calorimetry. Appreciable differences were observed
between the results of GUM and MCM approaches. These differences are
inextricably related to the particular uncertainty sources used in this work and are
aligned to the measurement parameters described to ASTM D240. If another
method is used (e.g. more precise) the uncertainty sources may be different. The
half width interval or expanded uncertainty results (at 95% level of confidence)
obtained by GUM assuming Gaussian distribution, GUM assuming t-distribution and
MCM were 0.28 MJ kg™ (66 cal g), 0.29 MJ kg™ (70 cal g*) and 0.32 MJ kg™ (75
cal g), respectively. This means that GUM approaches are optimistic concerning the
magnitude of the coverage interval of the GHC determination. This may be
attributed to the slight non linearity of the measurement model and to the
limitations involved in the use of the Welch-Satterthwaite formula (calculation of
effective degrees of freedom of the assigned t-distribution) when dominant terms
with relatively few degrees of freedom exist. Although, MCM does not need to
calculate uncertainty contributions and sensitivity coefficients, these parameters
which are necessary for the construction of an uncertainty budget and the
identification of dominant uncertainty sources can be easily obtained by MCM. In
our case the uncertainty is dominated by the reproducibility component of
uncertainty and the repeatability uncertainty component of the energy equivalent
determination. Only if the GUM approach is combined with a Bayesian treatment of
Type A uncertainties the results are consistent with the results of the Monte Carlo
method. Overall, MCM proves to be a more reliable tool for the estimation of the
uncertainty of the determination of the GHC of diesel fuel, as it is not based on
approximations or assumptions and it does not have the limitations of the GUM
approach. The differences of uncertainty estimates using different methodologies
might be significant for some uses of GHC results, especially when these results are
equivalent to amounts of money, for example when selling and buying emission

allowances under the EU ETS.

If the demand on uncertainty is low, it can be possible to directly use the
reproducibility standard deviation between laboratories from a proficiency testing
scheme as an approximation of the standard uncertainty. The expanded uncertainty

(half width interval) obtained may be often fit for the intended use.
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5. Estimation of the standard uncertainty of a
calibration curve

The construction of a calibration curve using least square linear regression is common in
many analytical measurements and it comprises an important uncertainty component of
the whole analytical procedure uncertainty. In the present chapter of the thesis various
methodologies are applied concerning the estimation of the standard uncertainty of a
calibration curve used for the determination of sulfur mass concentration in fuels. The
methodologies applied include the GUM uncertainty framework, the Kragten numerical
method, the Monte Carlo method (MCM) as well as the approximate equation calculating
the standard error of prediction. The standard uncertainty results obtained by all
methodologies agree well (0.172 - 0.175 ng pLY). Aspects of inappropriate use of the
approximate equation of the standard error of prediction, which leads to overestimation
or underestimation of calculated uncertainty, are discussed. Moreover, the importance
of the correlation between calibration curve parameters (slope and intercept) within
GUM, MCM and Kragten approaches is examined.
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5.1 Introduction

The calibration process is an essential stage of many chemical analyses which involve
the prediction of an analyte concentration from a single instrumental response.
Calibration establishes a relationship between the value of a standard (reference
value) and the output quantity (response of the instrument). Once this relationship
(often assumed to be represented by a straight line) is established, the calibration

model is used in reverse, i.e. to predict a value from an instrument response [58-59].

As with most statistics, the slope and the intercept of a linear calibration model are
only estimates based on a finite number of measurements and therefore their values
are associated with uncertainties. This leads to an uncertainty of the predicted value
as well. This uncertainty, also known as prediction interval, can be estimated using
various methods and approximations. As calibration often comprises an important
uncertainty component of the uncertainty of the whole analytical procedure, a

reliable estimation of its uncertainty is crucial.

The sulfur content in petroleum products is determined using various spectrometric
techniques, which almost always involve the construction and use of a calibration
curve. The total sulfur content in petroleum products is a significant variable, as
sulfur compounds are associated with problems of storage, processing,
transportation and quality of fuel products. Sulfur also causes atmospheric pollution
as the oxidation of sulfur compounds releases large quantities of SO, into the
atmosphere. For this reason European Union and many countries worldwide have
legislation which specifies maximum sulfur content for automotive or other fuels. In
order to use a result to decide whether it indicates compliance or non-compliance
with a regulatory limit, it is necessary to take into account the measurement
uncertainty [55]. Therefore, correct decisions have as prerequisite a reliable

uncertainty estimation of the result.

In the present part of the thesis several methodologies are applied in order to
estimate the uncertainty associated with the calibration curve used for the
determination of sulfur mass concentration in fuels. In particular, the methodologies
described in the Guide to the expression of uncertainty in measurement (GUM) [8]
and the Supplement 1 to GUM (Monte Carlo method - MCM) [15] as well as the
approximate numerical method Kragten [25,32] and the approximate equation
giving the standard error of the estimate are applied and their results are compared.

Moreover, as the estimation of the slope and the intercept of a calibration curve is
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based on a measurement model of multiple outputs, the basic principles of
Supplement 2 to GUM (Extension to any number of output quantities) [16] are
applied, as well. All sulfur mass concentration measurements follow the standard
test methods ASTM D5453 [100] and ISO 20846 [75] which describe the
determination of the total sulfur in fuels and oil by ultraviolet fluorescence.

5.2 Experimental work

An ANTEK 9000S sulfur analyzer equipped with an automatic sampler was employed
in this work. This analyzer fully complies with ASTM D 5453. Table 5.1 presents the
operating conditions of the instrument. Six calibration standards (VHG Labs,
Petrochemical Test Standard, Range set 1) with concentrations of 0, 1.00, 2.51, 5.00,
7.50 and 10.0 ng uL’1 were analyzed in triplicate. The instrument responses were
recorded and a calibration curve with 18 points was constructed. Then a diesel
sample with sulfur content near the EU regulatory limit (10 mg kg') and a density of
0.830¢g ml™ was measured and its sulfur mass concentration in ng uL’1 was predicted
using the calibration curve constructed. The sample and the calibration standards

were injected using a 10 uL syringe. Data produced are presented in Table 5.2.

Table 5.1 Instrument parameters used for total sulfur determination in petroleum
products

Parameter Value
Volume injected (pL) 10
Syringe drive rate (uLs™) 1
Furnace temperature (°C) 1080
Furnace oxygen flowmeter setting (mL min™) 470
Inlet oxygen flowmeter setting (mL min™) 15
Inlet carrier (Argon) flowmeter setting (mL min™) 150

Table 5.2 Calibration and sample measerement raw data

Response (y)
Concentration 1 2 3
(x)
0.00 14649 | 1558.4 | 1594.8
1.00 2882.7 | 2851.6 | 2844.3
2.51 4889.8 | 4925.3 | 4917.3
5.00 6852.5 | 6934.5 | 7150.1
7.50 9344.5 | 9466.2 | 9265.8
10.00 13253.4 | 13567 | 13277.7
Unknown sample
Response y, 10603.0
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5.3 Linear calibration by least square regression

The establishment of a calibration function is a common procedure in many
guantitative analyses. The main purpose is to obtain a function that allows one to
calculate the value of a measurand - in chemistry often the concentration of the
analyte - as a function of an instrumental signal. A set of standards are prepared
containing a known amount of the analyte of interest and the instrument response
of each standard is measured. Then a relationship is established between the
instrument response and the analyte concentration. The most frequent type of
calibration in chemical analyses is the indirect calibration, where the equipment
gives a value (signal or instrument response), which has a different quantity from

that of the standard (reference value) [59].

Calibration data (pairs of analyte concentrations, x; and instrument responses, y;)
are used as an input to the least square regression analysis which fits a
predetermined measurement model to these data. The simplest measurement

model is the one described by the linear function:
Y =b, +b,x (5.1)

where Y is the instrument response (dependent variable), x is the analyte
concentration (independent variable) and by and b, are the coefficients of the model
known as the intercept and slope, respectively.

The slope and the intercept are calculated from the calibration data (x;, y;) by the

following equations:

3 [ix )y, -y

b, == (5.2)

Zn: (Xi - i)z

i=1

b =y —b x (5.3)

where n is the number of calibration data (pairs of x;, y;), X is the average

concentration of all standards used and vy is the average of all measured responses.
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It has to be noted that least square regression process can validly be applied under
the following conditions [57,58,101]:
a) The linear model holds for the data (i.e. the response does indeed vary
linearly with concentration).
b) The errors in the independent variable are insignificant compared with those
of the dependent variable.
c) These errors are normally distributed and independent of the values of the
dependent variable (i.e. the data are homoscedastic).

Only when these conditions hold, the application of linear least square regression is
expected to realize the best fit to the calibration data. Table 5.3 in Section 5.5.1

presents the information that a typical regression analysis produces.

When analyzing unknown test samples the relationship of Equation (5.1) is used in

reverse in order to predict a value from an instrument response:

Xpred = (5.4)

where y; is the instrument response of the unknown test sample and Xxpreq is the
prediction (or estimation) of the measurement model concerning the true value of

the measurand (e.g. analyte concentration)

5.4 Uncertainty estimation methods

The result obtained from a calibration curve is actually an estimate of the true value
of the measurand. Therefore, it is associated with an uncertainty due to lack of fit of
the linear model to the data, which leads to uncertainties (standard errors) of the
parameters by and b;. This is actually a typical example of measurement model of
multiple outputs, which involves correlated data. Some approaches used to estimate

the uncertainty of the predicted value xpreq are presented in the following Sections.

5.4.1 Propagation of uncertainties — GUM

The Guide to the Expression of the Uncertainty in Measurement (GUM) provides an

uncertainty estimation framework which uses as information the best estimates and
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the standard uncertainties of the input quantities (bo, by, yo). This information is
propagated, using the law of propagation of uncertainty through a first-order Taylor
series approximation to the measurement model (Equation (5.4)) to provide the
estimate of the output quantity xpreq and the standard uncertainty u(xyreq) associated
with Xpreq [14]. Thus, the standard uncertainty u(xpreq) Of the value Xgeq due to

variations of by, by and yg is given by the expression:

U(Xores) = y[eou () + [cu(0) ] + [c,u(yo) T +2¢,e,u(b, )u(b,)r (b, by) (5.5)

where co, ¢1 and ¢, are the sensitivity coefficients of by, by and yo, u(bo), u(b1) and
u(yo) are the standard uncertainties of bg, by and yo and r(bo,b;) is the correlation

coefficient of bg and b1.

The sensitivity coefficients describe how the output estimate varies with changes in

the values of input estimates and are calculated as partial derivatives:

.= @(ﬂ - 21 (5.6)
b, b,
aX re _b
Cl et pred = — yo 2 0 (5.7)
ab, b,
OX
C, = = bi (5.8)
Y, h

The standard uncertainties u(bg) and u(b;) are provided by the regression statistics
as standard error of intercept, SE(bo), and slope, SE(b;), respectively. The standard
uncertainty of the instrument response can be obtained from manufacturer

specification (+ 2% tolerance).

The correlation coefficient r(bo, b1) is calculated by the following equation:

Zn:Xi

r(by,b,) = ——=— (5.9)

PhD Thesis — D. Theodorou 106



5. ESTIMATION OF THE STANDARD UNCERTAINTY OF A CALIBRATION CURVE

5.4.2 Kragten approach

A slightly modified approach for propagating uncertainties is provided by Kragten
[25,32]. This approach uses an approximate numerical method of differentiation and
is valid when the measurement model is linear or the standard uncertainties of the
input quantities are small compared to the value of the respective input quantity.
According to Kragten approach the sensitivity coefficients (partial derivatives) in
Equation (5.5) can be approximated by:

_ aXpred - Xpred (bo + u(bo )) - Xpred (bo)

. - - 5.10

0 ob, u(by,) | )

, = 8Xpred < Xpred (b1 + u(bl)) - Xpred (bl) (5.11)
b, u(b,)

, - OX pred  Xored (Yo +U(Y0)) = Xprea (¥o) (5.12)

o u(yo)

Multiplying co, c1 and ¢, by u(bo), u(b1) and u(y,), respectively, in order to obtain the

uncertainty contributions u(xpreq, bo), U(Xpred, b1) and u(Xpred, Vo) gives:

u(Xpred ! bo) = Cou(bo) = Xpred ((bo + u(bo ))! bl’ yo) B Xpred (bo ! bl! yo) (513)
u(Xpred ! bl) = Clu(bl) = Xpred (bo ! (bl + u(bl))’ yo) - Xpred (bo ! bl! yo) (514)
U(Xprea s Yo) = Co (Vo) = Xpreg (06,01, (Yo +U(Y0))) = Xprea (00, B, Yo) (5.15)

In this way each uncertainty contribution is calculated by a difference between two
values of xgeq. The square root of the sum of the squares of the uncertainty
contributions, provided that an extra term is added to account for the correlation

between by and b, gives an estimate of the standard uncertainty u(xpreq).

u(xpred) = \/U(Xpred ' bO)2 + u(Xpred ! bl)z + U(Xpred’ yO)2 + 2u(xpred ' bo)u(xpred ! bl)r(bO’bl)
(5.16)

PhD Thesis — D. Theodorou 107



5. ESTIMATION OF THE STANDARD UNCERTAINTY OF A CALIBRATION CURVE

Kragten approach can be easily implemented using a spreadsheet software.
EURACHEM/ CITAC Guide “Quantifying Uncertainty in Analytical Measurement” [25]
provides a detailed description of the actions required for the set up of a

spreadsheet.

5.4.3 Propagation of distributions — Monte Carlo method

Monte Carlo method (MCM) comprises an alternative method for calculating
uncertainty. This method is described in the first supplement of GUM [15] and
involves no restrictions for valid application concerning the linearity of the
measurement model and the applicability of Central Limit Theorem [87]. The MCM
actually combines and propagates distributions rather than propagating
uncertainties as in the GUM uncertainty framework. Uncertainty estimation is based
on a probabilistic approach that combines the whole distribution of the input
parameters and is not just based on their best estimates and standard uncertainties.
It has to be noted though that MCM requires prior knowledge concerning the type of
the probability distribution assigned to each input parameter.

The MCM consists of simulating draws from the distribution of the output quantity
(Xprea), based on simulated draws from the distributions of the input quantities (b,
b1, yo). In the present case two input quantities (bo, b1) are not independent (non
zero covariance) and therefore multivariate distribution is used for the draws. The
Monte Carlo numerical simulation tends to require up to 10° trials for calculating a
standard uncertainty or a coverage interval which is correct to one or two significant

decimals digits.

The estimate of the output quantity xyreq is estimated by the average of the M MCM

trials which produce M measurement model values (X pred “‘), k=1,..,M):
X —iix“) (5.17)
pred — pred .
M=

while the standard uncertainty u(Xprq) associated with xqeq is estimated as the

standard deviation of the M model values:
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1 M
u(Xpred) = \/ M 12 (Xg:'gd - Xpred )2 (518)
4 k=1

5.4.4 Standard error of prediction

The estimation of the uncertainty of a result from a linear calibration is very often
approximated through the so called error of prediction, s(xpreq) Which is given by the

following equation:

s(xpred):SIEfeg$i°n 1+i+(3n’0;9)2

b, n N blzz(xi_;)z

(5.19)

where N is the number of repeated measurements made on the unknown test
sample.

The derivation of the Equation (5.19) is described in detail by Hibbert [57]. Ellison
has also presented some modified equations for the calculation of the standard error
of prediction as a function of the correlation coefficient [102]. It has to be noted that
Equation (5.19) actually calculates the combined uncertainty of the regression line
and the uncertainty compound due to the repeatability of the response. The latter

has a variance which is estimated as:

2

SEregression
Var(yo):T (5.20)

If we want to calculate the uncertainty of the regression line only, then the term 1/N
in Equation (5.19) should be omitted. This leads to the expression:

SEregrsson LrM

by n bfzn:(xi - x)2

' (Xprea) = (5.21)

The above expression does not take into account the uncertainty u(y,) of the
response yg which is an input parameter of the measurement model (Equation (5.4)).

This may lead to results underestimated and not comparable with the results of the
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other methodologies. The standard uncertainty of the predicted value including the

uncertainty of the response is given by the equation:

u(xpred) = \/S'(Xpred)2 + [Czu(yo)]z (522)

5.5 Results and discussion

5.5.1 Calibration results

A least square linear regression was carried out for the calibration data using the
LINEST function of Microsoft® Excel. The results of the regression analysis are
presented in Table 5.3. The coefficient of determination for the straight line, r?, is
0.989, and the regression ANOVA gave a Fisher — Snedecor value F equal to 1398
with a significance (p — value) of 5.3 10™. This implies a strong linear relationship
between concentration and instrument response values. Figure 5.1 shows the plot

produced by the calibration data and the fitted line.

Table 5.3 Results of least square linear regression

Symbol Description Value

b, by The estimates of the slope and the intercept. 1118.89 counts ng uL,
1651.87 counts

SE(by) The standard error of the value of the intercept. 167.75 counts

SE(b;) The standard error of the value of the slope. 29.92 counts ngplL

r The coefficient of determination. It is a measure of 0.989

the significance of the degree of correlation between
Y and x values.

SE egression | The standard error of regression (or residual standard 451.25 counts
deviation). It is a statistical measure of the deviation
of the data from the fitted regression line.

F The F statistic, or the Fisher — Snedecor F-value. It is 1398
used to determine whether the observed relationship
between the dependent and independent variables
occurs by chance.

df The degrees of freedom. 16

SSregression | The regression sum of squares. It represents the 284674634 counts®
variability in the data that can be accounted for by
the fitted regression line.

5SS esidual The residual sum of squares. It represents the 3258057counts’
variability that can be accounted for by the observed
residuals.
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Figure 5.1 Calibration graph

5.5.2 Uncertainty estimation results

The application of the GUM uncertainty framework (described in Section 5.4.1) gave
the results presented in Table 5.4 (uncertainty budget). The calculations gave a
standard uncertainty u(xpreq) equal to 0.175 ng uL®. In order to show the importance
of the existing correlation between by and b;, which is often neglected when
applying GUM, the standard uncertainty was also calculated without taking into
account the covariance term. The calculations gave a standard uncertainty u(Xpred)
equal to 0.283 ng uL™. Thus, when applying the GUM uncertainty framework,
ignoring the correlation leads to a 62 % overestimation of the standard uncertainty.
It has to be pointed out though that the uncertainty overestimation when neglecting
correlation between input parameters is not always the case. There are cases where

the inclusion of the correlation results in higher uncertainties.
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Table 5.4 Uncertainty budget for Xpreq

Quantity Estimate Probability Standard Sensitivity Uncertainty
distribution | uncertainty | coefficient contribution

Instrument

response, 122.43 0.0008937

Yo 10603.01 Rectangular | counts counts™ ng uL’1 0.1094 ng uL’1

Intercept, 1651.87 167.75 0.0008937

b counts Normal counts counts ngpL™ | 0.1499 ngpuL™
1118.89 29.92 0.0071499

Slope, b, counts ng'uL | Normal counts ng'uL | counts™ ng’uL? | 0.2140 ngpuL*

Combined standard uncertainty
(no correlation included)

0.283 ngpL*

Covariance term

-0.0496 ng” L™

Combined standard uncertainty

0.175 ngpL*

The implementation of Kragten spreadsheet approach (Figure 5.2) according to the

procedure described in Section 5.4.2 gave results very close to the results of the

GUM uncertainty framework. The standard uncertainty u(xpreq) Was calculated 0.172

ng L' when the correlation term was included and 0.279 ng pL' without the

inclusion of the correlation term. This closeness of the results was rather expected as

the assumptions for linearity and small standard uncertainties compared to the

value of the respective input quantities are valid in our case.

uyo) u(b o) u(b4)
122,43 167,75 29,92
Yo 10603,0 | 10725,43 | 10603,00 | 10603,00
bo 1651,87 | 1651,87 | 1819,62 | 1651,87
b, 1118,89 | 1118,89 | 1118,89 | 1148,81
[ Yo bo by
X pred 8,000 8,109 7,850 7,792
U(Xpreds 1) -0,109 0,150 0,208
U(X preds i)? 0,012 0,022 0,043
zU(Xpredy i)z 0,078
Results
Standard uncertainty without accounting for correlation
U(X pred) 0,279
Standard uncertainty accounting for correlation
r(bo,b 1) -0,773
correlation term -0,048
U(X pred) 0,172

Figure 5.2 Kragten approach spreadsheet implementation
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The algorithm of Monte Carlo method (described in Section 5.4.3) was implemented
in MATLAB® [92] using a fixed number of trials (M=10°). MATLAB® code is presented
in Table 5.5. Samples for by and b; were drawn from a bivariate (or joint) Gaussian
distribution N(E,V) characterized by the expectation and the covariance (or

uncertainty) matrices, E and V, respectively:

E= b° 5.23

=l (5.23)

v | Uuty) ulbyby) | SE?(by) r(0o,b)SE(O)SED) | o
u(by,b,) u’(b) | | r(byb)SE(b,)SE(b,) SE?(b,) '

Sample for yg was drawn from rectangular (uniform) distribution R(yo-\/3u(y0), y0+\/3

u(yo)).

Table 5.5 Implementation program of Monte Carlo method in MATLAB®

Line MATLAB Code
1 function [x_pred]=regression_cov(N)
2
3 covar=2; % (1 “"covariance no", other value "covariance yes"®)
4
5 % Calibration Data
6 x1=0; x2=1; x3=2.51; x4=5; x5=7.5; x6=10; x7=0; x8=1; x9=2.51; x10=5;
x11=7.5; x12=10; x13=0; x14=1; x15=2.51; x16=5; x17=7.5; x18=10;
7
8 y1=1464.9; y2=2882.7; y3=4889.8; y4=6852.5; y5=9344.5; y6=13253.4;
y7=1558_4; y8=2851.6; y9=4925.3; y10=6934.5; yl11=9466.2; yl12=13567;
y13=1594_.8; y14=2844_.3; y15=4917.3; y16=7150.1; y17=9265.8; yl18=13277.7;
9
10 %mean of all concentrations
11 X_av=(X1+X2+x3+X4+X5+X6+X7+Xx8+X9+x10+Xx11+x12+x13+x14+x15+x16+x17+x18)/18;
12
13 % mean of all responses
14 y_av=(yl+y2+y3+yd+y5+y6+y7+y8+y9+y10+yl11+y12+y13+y14+y15+y16+y17+y18)/18;
15
16 % Obtain estimates for the slope and the intercept
17 Xi=[x1; x2; x3; x4; x5; x6; xX7; x8; x9; x10; x11; x12; x13; x14; x15;
x16; x17; x18];
18
19 Yi=[yl; y2; y3; y4; y5; y6; y7; y8; y9; yl0; yll; yl12; yi3; yl4; yi5;
y16; y17; y18];
20
21 bl=sum((Xi-x_av) - *(Yi-y_av))./sum((Xi-x_av) .-"2)
22 bO=y_av-bl.*x_av
23
24 %standard errors of slope and intercept
25 u_b1=29.92494948;
26 u_b0=167.7533433;
27 if covar==1 % ignore covariance
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Line MATLAB Code
28 % simulate bl

29 Bl=normrnd(bl,u_b1l,1,N);

30 Bl=transpose(Bl);

31

32 % simulate bO

33 BO=normrnd(bO,u_b0,1,N);

34 BO=transpose(B0);

35

36 else % do not ignore covariance

37 r_blb0=-0.773305935; % correlation coefficient
38 u_b1bO=u_bl*u_bO*r_b1lbO;

39

40 %covariance matrix

41 V=[u_bi”2 u_blb0; u_blb0 u_b0”2];

42

43 %mean matrix

44

45 E=[b1; b0];

46

47 % simulate bl,b0 from joint pdf

48

49 X=mvnrnd(E,V,N); % Nx2 matrix

50

51 B1=X(:,1); % 1st column of Nx2 matrix
52

53 BO=X(:,2); % 2nd collumn of Nx2 matrix
54 end

55

56 % simulate sample of yO

57 [a,b]=unif_param(10603.0087,122.4329981);
58 yO=unifrnd(a,b,N,1);

59 % obtain x_pred

60 X_pred=(y0-B0)./B1;

61 % Results

62 X_pred=sort(x_pred);

63 Mean_Value=mean(x_pred)

64 Standard_Uncertainty=std(x_pred)

65

66 figure;

67 lower=min(x_pred);

68 upper=max(x_pred);

69 xc=lower : (upper-lower)/499:upper;

70 n=hist(x_pred,xc);

71 bar(xc,n./(((upper-lower)/499)*N),1);

72 hold on;

73 Z=normpdf(x_pred,8.000,0.175);

74 plot(x_pred,Z,"-.r")

75 %ESTIMATE AND PLOT COVERAGE REGIONS FOR bl, bO
76 data=[BO B1];

77

78 figure; % 95% rectangular and elliptical coverage region
79

80 %Plot the original data

81 plot(data(:,1), data(:,2), “k.");

82 %mindata = min(min(data));

83 %maxdata = max(max(data));

84 xbhim([min(B0)-50, max(B0)+50]);

85 ylim([min(B1)-50, max(B1)+50]);

86 hold on;

87

88 % Set the axis labels

89 hXLabel = xlabel("b0");

90 hYLabel = ylabel("bl");

91 % Plot 95% rectangular coverage region

92

93 rectangle("Position”,[b0-2.24*u_b0, bl-2_.24*u_bl, 2*2.24*u_bO,
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Line MATLAB Code
2*2.24*u_bl], “Linestyle®, "--7)

94 Plot 95% rectangular and elliptical coverage region

95

96

97 % Calculate the eigenvectors and eigenvalues

98 covariance = cov(data);

99 [eigenvec, eigenval ] = eig(covariance);

100

101 % Get the index of the largest eigenvector

102 [largest_eigenvec_ind_c, r] = find(eigenval == max(max(eigenval)));

103 largest_eigenvec = eigenvec(:, largest_eigenvec_ind_c);

104

105 % Get the largest eigenvalue

106 largest_eigenval = max(max(eigenval));

107

108 % Get the smallest eigenvector and eigenvalue

109 if(largest_eigenvec_ind_c == 1)

110 smallest_eigenval = max(eigenval(:,2))

111 smallest_eigenvec = eigenvec(:,2);

112 else

113 smallest_eigenval = max(eigenval(:,1))

114 smallest_eigenvec = eigenvec(l,:);

115 end

116

117 % Calculate the angle between the x-axis and the largest eigenvector

118 angle = atan2(largest_eigenvec(2), largest_eigenvec(l));
119

120 % This angle is between -pi and pi.

121 % Shift it such that the angle is between 0 and 2pi
122 if(angle < 0)

123 angle = angle + 2*pi;

124 end

125 % Get the coordinates of the data mean

126 avg = mean(data);

127

128 % Get the 95% confidence interval error ellipse

129 chisquare_val = 2.4477;

130 theta_grid = linspace(0,2*pi);

131 phi = angle;

132 X0=avg(1l);

133 Y0=avg(2);

134 a=chisquare_val*sqrt(largest_eigenval);
135 b=chisquare_val*sqgrt(smallest_eigenval);
136

137 % the ellipse in x and y coordinates

138 ellipse_x_r
139 ellipse y r

a*cos( theta grid );
b*sin( theta_grid );

140

141 %Define a rotation matrix

142 R = [ cos(phi) sin(phi); -sin(phi) cos(phi) ];
143

144 %Rotate the ellipse to some angle phi

145 r_ellipse = [ellipse_x_r;ellipse y r]* * R;

146

147 % Draw the error ellipse

148 plot(r_ellipse(:,1) + X0,r_ellipse(:,2) + Y0, "k-%)

149 figure % marginal probabilities of b0, bl
150

151 subplot(1,2,1);

152 Bl=sort(Bl);

153 Mean_value=mean(B1l);

154 lower=min(B1)

155 upper=max(B1)

156 xc=lower : (upper-lower)/199:upper;

157 n=hist(B1,xc);
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Line MATLAB Code

158 bar(xc,n./(((upper-lower)/199)*N),1);
159 hold on;

160 Z=normpdf(B1l,bl,u_bl);

161 plot(B1,Z,"-.r")

162 title("bl")

163

164 subplot(1,2,2);

165 BO=sort(B0);

166 Mean_value=mean(B0) ;

167 lower=min(B0O)

168 upper=max(B0)

169 xc=lower : (upper-lower)/199:upper;

170 n=hist(B0O,xc);

171 bar(xc,n./(((upper-lower)/199)*N),1);
172 hold on;

173 Z=normpdf(BO,b0,u_b0);

174 plot(B0O,Z,"-.r")

175 title("b0")

176

177 end

178 function [a,b]=unif_param(m,v)

179 % A function to obtain the parameters of the uniform (rectangular)
180 % distribution given its mean and standard deviation

181 b=m+v*sqrt(12)/2;
182 a=2*m-b;
183 end

The results produced by the implementation of MCM were an estimate Xpreq =8.003
ng uL™ with an associated standard uncertainty u(Xpreq) =0.175 ng uL™. Figure 5.3
presents the probability density function of xpeq provided by GUM — Gaussian
distribution and MCM. MCM was also implemented assuming zero covariance
between by and b, drawing samples from two independent Gaussian distributions,
N(bo, SE(bo)) and N(b,, SE(b1)). The MCM algorithm gave an estimate xyreq =8.005 ng

uL? with an associated standard uncertainty U(Xpreq) =0.284 ng uL?,
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Figure 5.3 Probability density function of xueq provided by GUM — Gaussian
distribution and MCM

Concerning the use of the approximate equation (Section 5.4.4), the application of
the Equations (5.21) and (5.22) to our calibration data provides an estimate of the
standard uncertainty u(xpreq) equal to 0.175 ng uL? which agrees well with the results
of the other methodologies. The application of Equation (5.19) with N=1 would lead
to a falsely overestimated result of 0.426 ng pL™". This overestimation is due to the
fact that Equation (5.19) includes the estimation of the variance of the observed
instrument response (repeatability component), Var(yo) as the variance of the
regression (squared standard error of regression). On the other hand, the response
Yo has a standard uncertainty u(yo), which if omitted, setting u(xpreq) €qual to s”(Xpred),
leads to a 22% underestimated result (0.137 ng pL™). Results of all approaches are

summarized in Table 5.6.
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Table 5.6 Results of the application of various approaches to the estimation of
uncertainty of the calibration curve used for the determination of sulfur mass
concentration in fuels.

Standard uncertainty
Mean value (ng pL?) (ng uL?)

GUM (correlation included) 8.000 0.175
Kragten method (correlation included) 8.000 0.172
MCM (correlation included) 8.003 0.175
Standard error of prediction equation

(including response uncertainty) 8.000 0.175
Standard error of prediction equation

(no response uncertainty included) 8.000 0.137
GUM (no correlation included) 8.000 0.283
Kragten method (no correlation

included) 8.000 0.279
MCM (no correlation included) 8.005 0.284

5.5.3 Treating calibration curve as a bivariate measurement model

The estimation of the slope and the intercept of a calibration curve is based on a
measurement model of multiple outputs, which involves correlated data. Given an
estimate of the output quantity E (Equation 5.23), its associated covariance matrix V
(Equation 5.24) and a coverage probability p, and once the probability density
function (PDF) is established (bivariate Gaussian in our case) a coverage region can
be determined. A coverage region specifies a region in 2-dimensional space that

contains E with probability p. Two types of coverage region can be considered [16]:

e rectangle centered coverage region (separately determined coverage
intervals for by and by).

e ellipse centered coverage region
The rectangle centered coverage region (sides parallel to the axes) is determined by
the marginal PDFs of b; and by and the coverage intervals are: by * kq u(b1) and by +
kq u(bo). For coverage probability p=0.95, a coverage factor kq = 2.24, is used.

The ellipse centered coverage region is determined as:

(n-E)'V'(n-E) =k, (5.25)
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or

i T uy) ulb)] Tro-be] .
[no bo n, b1]|:U(b0,bl) Uz(bl)} {nl—bj_kp (5'26)

where n = (no, n1)" is a vector variable describing possible values of the output

quantity E. For coverage probability p=0.95, a coverage factor k, = 2.45, is used.
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Figure 5.4 Marginal distributions of the slope (b;) and the intercept (bo)

Figure 5.4 shows the marginal distributions for the slope (b1) and the intercept (bo)
produced by the application of MCM. Figure 5.5 shows elliptical and rectangular
coverage regions (coverage probability p=0.95) for the bivariate quantity E
characterized by a Gaussian probability distribution for which the component
guantities b; and by are correlated. 1000 draws were carried out (instead of 106) for
illustration purposes.

As in our case the two outputs of the measurement model (b; and bg) are mutually
correlated, the ellipse centered coverage region is more appropriate than the
rectangular one. Generally the ellipse is the smallest coverage region for the
stipulated probability, while the rectangle does not reflect at all the correlation
between component quantities. Therefore, the rectangular coverage region might
be considered inappropriate as a coverage region (the coverage probability for the
rectangular region exceeds 0.95). A rectangle with sides parallel to the axes of the

ellipse would have smaller area and might be considered more appropriate, but
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might be inconvenient since it would be expressed in terms of variables that would

be artificial in terms of the application.

Figure 5.6 shows elliptical and rectangular coverage regions (coverage probability
p=0.95) for the bivariate quantity E characterized by a Gaussian probability
distribution not taking into account the correlation between b; and bq. Finally, Figure
5.7 depicts, in the form of contour lines, elliptical coverage regions (for various
coverage probabilities p). The parameters k, that were used (Equation 5.25) were

calculated from the chi-squared distribution so that:
p=Pr(y; <k}) (5.27)

where ;(22 has a chi-squared distribution with two degrees of freedom.
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Figure 5.5 Elliptical and rectangular coverage regions (coverage probability p=0.95)
of the joint probability density function of the slope, b; and the intercept,bg.

PhD Thesis — D. Theodorou 120



5. ESTIMATION OF THE STANDARD UNCERTAINTY OF A CALIBRATION CURVE

1250 - B

1200 | e . -

1150 - *

slope, uLing

LR LVIVR

1050 -

1000 - B

1 1 1 1 1 1 1 1 1 1 1
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
intecept, counts

Figure 5.6 Elliptical and rectangular coverage regions (coverage probability p=0.95)
of the joint probability density function of the slope, b; and the intercept,bo, ignoring
the correlation between b; and by .
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Figure 5.7 Elliptical coverage regions (for various coverage probabilities p) of the
joint probability density function of the slope, b, and the intercept,bo.
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5.6 Conclusions

Many analytical procedures involve the construction and the use of a calibration
curve in order to determine the value of the measurand (e.g. analyte concentration).
As the linear calibration function is defined by the slope and the intercept, we
actually have to deal with a measurement model of multiple (two) outputs, which
also involves correlated data. The work presented in this part of the thesis compared
different methodologies concerning the estimation of the uncertainty of a
calibration curve used for the determination of sulfur mass concentration in fuels.
The methodologies applied included: the GUM uncertainty framework, the Kragten
numerical method, the Monte Carlo Method (MCM) as well as the approximate

equation calculating the standard error of prediction.

The standard uncertainty results obtained by the four methodologies (0.172 — 0.175
ng uL™) agree well, as there is no appreciable non linearity in the measurement
model and there are no dominant parameters whose distributions are far from
normal. The use of the approximate equation calculating the standard error of
prediction leads to correct results only if it used appropriately i.e. omitting the term
1/N accounting for the repeatability of the response and including its standard

uncertainty estimated from manufacturer information.

When applying GUM, MCM or Kragten approach, the correlation between
calibration curve parameters (slope and intercept) is a significant component of
uncertainty and cannot be ignored. The data for the calculation of correlation terms
and/or covariance matrices are readily available or easily calculated. As correlation
between slope and intercept reduce the uncertainty, if it is ignored, it leads to 62 %

overestimated standard uncertainties of the predicted value, Xyreq.

The calculations shown in this chapter are applicable to the most of the cases of
calibration curve construction using least square linear regression. However, more
general regression models that take account of significant uncertainties of the
dependent parameters or correlations between the dependent and independent
variables require special treatment, which can be found in ISO TS 28037,

Determination and use of straight-line calibration functions [103].
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6. The use of measurement uncertainty and precision
data in conformity assessment

In order to use a test result to decide whether it indicates compliance or non-compliance,
it is necessary to take into account the dispersion of the values that can be attributed to
the measurand. When dealing with conformity assessment of automotive fuel samples
against European Union specification limits, this dispersion may be represented by
uncertainty estimates based on either standard method precision data (ISO 4259
approach) or within laboratory precision data (intermediate precision approach). The
present part of the thesis presents possible decision rules based on these approaches
and directly related to the required or acceptable level of probability of making a wrong
decision. Acceptance limits for 95% and 99% confidence levels are calculated for all the
properties of automotive fuels. Moreover, the effect of different approaches for defining
guard bands, different levels of confidence or different number of replicate
measurements is investigated using the results of the analyses of 769 diesel fuel samples
for the determination of sulfur mass concentration.
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6.1 Introduction

The automotive fuels placed on market should comply with strict requirements
introduced by relevant legislation. In European Union (EU), several directives [1,2]
set technical specifications for fuels used with positive ignition engines (petrol) or
with compression ignition engines (diesel). These directives aim at the reduction of
direct and indirect health and environmental risks and are supported by documents
prepared by CEN (European Committee for Standardization) such as EN 228:2008
[104] and EN 590:2009 [105] that specify requirements as well as test methods for

marketed and delivered unleaded petrol and automotive diesel.

Evaluation of conformity with specified requirements should provide adequate
confidence that the product under test fulfills (or not) these requirements [106],
minimizing the risk of incorrect decisions, which often have financial consequences
[107]. As no measurement is exact, the true value of any measured quantity or any
errors associated with the measurement cannot be known exactly and the
measurement result is actually only an estimate. This estimate should be
accompanied by an uncertainty statement or a coverage interval, which summarizes
the knowledge of the possible values of the measured quantity [8]. Therefore, the
assessment of conformity with specified requirements, especially when the
measurement result is close to a specification limit, is closely related to the
probability density function of the measurement data and should be approached
using the probability theory [17]. In these cases, appropriate decision rules may

permit a control over the probability of taking the wrong decision [108].

In the present part of the thesis an insight is given to the available approaches that
can be used to support reliable decisions - expressed by a certain confidence level -
in conformity assessment of fuels. These approaches are applied and compared for
the assessment of conformity of automotive diesel fuel samples against the EU sulfur
mass concentration specification. The results of the analyses of diesel fuel samples
from 769 petroleum retail stations, monitored for fuel quality purposes, are used for

the calculations.

6.2 Evaluation of conformity with specified requirements

The evaluation of conformity (or conformity assessment) has the objective to

determine whether specified requirements relating to a product, process, system,
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person or body are fulfilled or not [17,106,109]. Often, a conformity test is involved
in the activity of the conformity assessment, which actually has three distinct stages:
measurement of the property of interest, comparison of the measurement result
with the specified requirement (or tolerance limit) and finally, decision on the action
that will follow. The measurement result has to be obtained using a validated
procedure, which should guarantee its metrological traceability [10]. The
subsequent comparison of the result with the specified requirements should be
based on predefined decision rules, which are of key importance when the result is
close to the tolerance limit. The decision rules take into account the measurement
process variability (expressed as standard deviation or uncertainty) in order to
determine acceptance and rejection zones or intervals [55,110]. Figures 6.1 and 6.2
show acceptance intervals and their relation to the tolerance intervals defined by
upper and lower specification limits, Ty and T, respectively. Figure 6.1 shows a case
which involves an acceptance interval constructed by reducing the tolerance interval
on either side by a guard band of width, w (guarded or stringent acceptance). On the
other hand, Figure 6.2 shows a case which involves an acceptance interval
constructed by increasing the tolerance interval on either side by a guard band of
width, w (relaxed acceptance or guarded rejection) [111,112]. The guard bands are
defined as the magnitude of the offset from a specification limit to the acceptance
interval boundary [112]. The selected decision rules should minimize the
consequences of an incorrect decision and are thus indispensably related to the
determination of a minimum acceptable level of probability that the measurand lies

within or outside specification limits [113].

Lower Upper
specification Guard band specification

limit, T.~—, / width, w \ &« imit, Ty

Acceptance interval

Tolerance interval

Figure 6.1 Symmetric two-sided acceptance interval created by reducing tolerance
interval, defined by the lower specification limit T, and the upper specification limit
Ty, on either side by a guard band of width, w (guarded or stringent acceptance)
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Figure 6.2 Symmetric two-sided acceptance interval created by expanding the
tolerance interval, defined by the lower specification limit T, and the upper
specification limit Ty, on either side by a guard band of width, w (guarded rejection
or relaxed acceptance)

There are two types of possible errors in the conformity assessment procedure, Type
| and Type Il. In Type | errors, conforming products are incorrectly rejected.
Minimizing Type | error of a conformity assessment test means minimizing the
probability of the measurand lying within specification when the test result is
outside the specification limit. On the other hand, in Type Il errors, non conforming
products are incorrectly accepted. Minimizing Type Il error of a conformity
assessment test means minimizing the probability of the measurand lying outside

the specification when the test result is inside the specification limit [110,114].

Guidance regarding the design and use of decision rules is provided by several
documents [55,111,115-117]. Although many of them are sector specific, the
principles they describe, may be applied in any kind of conformity assessment.
Decision rules may be based either on the simple acceptance/ rejection or on guard
bands. Applying simple acceptance/ rejection decision rules means that Figures 6.1
and 6.2 would present a situation with guard bands of zero magnitude and
acceptance and tolerance intervals that coincide with each other. This decision rule
is insufficient as it can lead to high (up to 50%) probabilities of Type | and Type Il
errors when a measured value is close to the specification limit. These probabilities
can be controlled or reduced by using acceptance intervals that differ by tolerance
intervals. The acceptance interval can be inside the tolerance interval (Figure 6.1)
leading to reduced probability of false acceptance (Type Il error). Alternatively, the
acceptance interval may be wider than the tolerance interval (Figure 6.2) leading to

reduced of probability of false rejection (Type | error). The reduction of these
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probabilities is proportional to the width of the guard band, w. It has to be noted
though, that the probability of Type | error is reduced at the cost of increasing the
probability of Type Il error and vice versa. Therefore the risks associated with
making the wrong decision have to be taken into account when formulating decision
rules [17,112].

6.3 Probability of conformity

6.3.1 General

Probability density function (PDF), gy(n), may be employed to describe the
dispersion of probable values n of a measurand Y about the best estimate y, given a
measured value . In many cases, this PDF is or can be approximated by a normal

distribution, described by the Gaussian function:

_ 1 1(n-yY
gy(nlnm)—smexp{ 2(—5 j} (6.1)

where y=y(nm) and s is the standard deviation associated to the best estimate. In
many cases there is little or no knowledge of Y before the measurement, that it can

be assumedy =7, [17]. The probability that Y lies in the interval [a,b] is given by

the equation:

b
b- a—
Pra<Y <b)= [ g, (7f1.)d7 :Q(TyJ - (D(Tyj (6.2)
a
where @(z) is the cumulative density function (CDF) of the standard normal
distribution which gives the probability of the random variable z falling in the interval
[_ool t]

(2) = —=— [exp(—t* 12)ct (6.3)

Jor

When the dispersion of the values of the measurand can be described by a normal
distribution, Equation (6.2) may be used to calculate the maximum probabilities of

Type | or Type Il errors in the case of guarded rejection or guarded acceptance
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decision rules. These maximum probabilities occur when the measurement result
(best estimate, y) coincides with the boundary of an acceptance interval. Figures 6.3
and 6.4 show guarded acceptance decision rules for upper and lower specification
limits and display the maximum probability of false acceptance (Type Il error) when a
guard band of width w is used. These maximum probabilities are calculated by the

following equations:

T, - (T, —w
Upper specification limit: Pr(Y >T,)=1- @(%} =1- CD(%) (6.4)
T -
Lower specification limit: Pr(Y <T ) = @(Mj = CD(— ﬂj (6.5)
S S
Upper

<«—— specification
limit, Ty

Guard band

/ width, w

Maximum
probability
(risk) of false
acceptance

Acceptance interval

Figure 6.3 Guarded acceptance decision rule for an upper specification limit Ty and
maximum probability of false acceptance (Type Il error) when a guard band of width
w is used.
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Lower
specification —>»
limit, T,

Guard band
width, w

Maximum
probability
(risk) of false
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Acceptance interval

Figure 6.4 Guarded acceptance decision rule for a lower specification limit 7, and

maximum probability of false acceptance (Type Il error) when a guard band of width
w is used.

Figures 6.5 and 6.6 show guarded rejection decision rules for upper and lower
specification limits and display the maximum probability of false rejection (Type I)
when a guard band of width w is used. These maximum probabilities are calculated

by the following equations:

T, - (T, +w
Upper specification limit: Pr(Y <T,) = @[%] = d)[—%j (6.6)
T, —(T, -
Lower specification limit: Pr(Y >T ) = 1—CD(M) =1- d)[ﬂj (6.7)
S S
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|

Acceptance interval i

Figure 6.5 Guarded rejection decision rule for an upper specification limit Ty and
maximum probability of false rejection (Type | error) when a guard band of width w
is used.

Lower
<«—— specification
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Guard band

| width, w
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probability
(risk) of false
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|
1
| .
I Acceptance interval
|

Figure 6.6 Guarded rejection decision rule for a lower limit T, and maximum
probability of false rejection (Type | error) when a guard band of width w is used.

In the present part of the thesis we are concerned with “specific” conformity
assessment, which is related to the decision for conformity based on testing single
fuels samples from petroleum retails stations and not from a production process. In

III

the case of samples from a production process, “global” conformity assessment
would be more appropriate as it would take into account the variability of both the

measuring system and the process [17,114].
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The final decision of the conformity assessment and the way it will be stated,
depends on the type of test performed and whether it is a test of conformity or a
test for non-conformity. This distinction is discussed in detail by Desimoni and
Brunetti [112,118].

6.3.2 The between laboratory precision data approach (I1SO 4259 approach)

Fuels are generally bought and sold in accordance with certain specifications, and
sales terms refer to the test methods that should be used in case of a quality
dispute. For example, European Union legislation for automotive fuels, that adopts
the requirements referred in EN 590:2009 and EN 228:2008, makes reference to ISO
4259 [119] for dispute resolution. ISO 4259 describes the application of test data and
precision data (repeatability and reproducibility) in order decide whether a fuel
product meets the specifications. Suppliers and recipients of fuel products may use
information provided in I1ISO 4259 to judge their quality based on either single or

multiple results.

Based on a single test result n,, for a certain parameter, when officially monitoring
fuel quality (guarded rejection), a fuel product shall be considered out of the
specification, with 95% confidence, only if the test result is such that, in the case of

an upper specification limit (Ty):

Nm > Ty + 0.59R (6.8)

and in the case of a lower specification limit (T):

Nm < T, — 0.59R (6.9)

where R is the reproducibility limit of the test method used to measure the

parameter compared with the specification limit.

On the other hand, based again on a single test result n,, when receiving fuel
products (guarded acceptance) and in order to ensure compliance with absolute
limits and avoid disputes and extra test costs, the fuel has to be accepted from the
supplier as compliant with 95% confidence only if the test result is such that, in the

case of an upper specification limit (Ty):
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Nnm < Ty-0.59R (6.10)
and in the case of a lower specification limit (T,):
N, =T +0.59R (6.11)

When the decision considering acceptance or rejection is based on multiple test
results with the n, being the average of k number of acceptable results, the
reproducibility limit R in the expressions (6.8), (6.9), (6.10) and (6.11) has to be
replaced by the variable Ry, which is given by the following equation:

Rl = \/RZ — I’Z(l—ij
k

where r is the repeatability limit of the test method used to measure the parameter

(6.12)

compared with the specification limit.

Moreover, if a level of confidence of 99% is required for the compliance assessment
decisions, then a coefficient of 0.83 instead of 0.59, has to be used in expressions
(6.8), (6.9), (6.10) and (6.11). The expressions described above are summarized in
Table 6.1.

Table 6.1 Expressions for calculating acceptance limits according to I1SO 4259
approach for 95% and 99% confidence levels.

Acceptance limits when
Acceptance limits when receiving officially assessing fuel
fuel conformity
(guarded acceptance) (guarded rejection)
95% 99% 95% 99%
confidence confidence confidence confidence
level level level level
Lower
specification T.+0.59R T.+0.83R T.-0.59R T.-0.83R
limit
Upper T,—0.59R T,—0.83R T,+0.59R T,+0.83R
specification
limit

Note: The expressions of this table are applicable when a single test result is available. In case of
multiple test results the reproducibility limit R has to be replaced by R; (Eq. (6.12))
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The expressions of Table 6.1 have been applied for all the parameters related to
automotive fuel quality referred in EN 590:2009 and EN 228:2008 and the
acceptance limits were calculated using the precision data of the relevant test

methods. The results are presented in Tables 6.2 and 6.3.
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Table 6.2 Acceptance limits for automotive diesel according to ISO 4259 approach based on the requirements specified in EN 590

Acceptance limits when receiving fuel

Acceptance limits when officially
assessing fuel conformity (guarded

Method (guarded acceptance) rejection)
reproducibility 95% confidence 99% confidence 95% confidence 99% confidence
Limits (EN 590) limit at: level level level level
Property Units min max Test method min max min max min max min max min max
Cetane number ® 51 - ISO 5165:1998 4.2 - 53 - 54 - 49 48
EN 15195:2007 3.2 53 54 49 48
Cetane index” 46 - ISO 4264:2007 not applicable
. [} a .
Density at 15 °C kg/m3 220 245 I1SO 3675:1998 1.2 1.2 820.7 844.3 821.0 844.0 819.3 845.7 819.0 846.0
1SO 12185:1996 0.5 0.5 820.3 844.7 820.4 844.6 | 819.7 845.3 819.6 845.4
Polycyclic aromatic
hydrocarbons e %(m/m) - 11 EN 12916:2006 - 0.80 - 10.5 - 10.3 - 11.5 - 11.7
Sulfur content ? mg/kg 10 1SO 20846:2011 - 2.24 - 8.7 - 8.1 - 11.3 - 11.9
Flash point °c 55 ISO 2719:2002 3.91 - 57 - 58 - 53 - 52 -
Carbon residue (on 10%
distillation residue) %(m/m) - 0.30 1SO 10370:1993 - 0.110 - 0.24 - 0.21 - 0.36 - 0.39
Ash content %(m/m) - 0.01 ISO 6245:2001 - 0.005 - 0.007 - 0.006 - 0.013 - 0.014
Water content mg/kg - 200 1SO 12937:2000 - 0.97 - 199 - 199 - 201 - 201
Total contamination mg/kg - 24 EN 12662:2008 - 7.2 - 20 - 18 - 28 - 30
Copper strip corrosion (3h at
50°C) rating class 1 ISO 2160:1998 not applicable
Fatty acid methyl ester (FAME)
content ® %(V/V) - 7 EN 14078:2009 - 0.5 - 6.7 - 6.6 - 7.3 - 7.4
g/m3 - 25 1ISO 12205:1995 - 13.3 - 17 - 14 - 33 - 36
Oxidation stability h 20 - EN 15751:2009 4.2 - 22 - 23 - 18 17 -
Lubricity, corrected wear scar
diameter at 60°C pm - 460 ISO 12156-1:2006 - 102 - 400 - 375 - 520 - 545
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Table 6.2 (continued)

Acceptance limits when receiving fuel

Acceptance limits when officially
assessing fuel conformity (guarded

Method (guarded acceptance) rejection)
reproducibility 95% confidence 99% confidence 95% confidence 99% confidence
Limits (EN 590) limit at: level level level level
Property Units min max Test method min max min max min max min max min max
Viscocity at 40°C mm?/s 2 4.5 ISO 3104:1994 0.01 0.03 2.0 4.5 2.0 4.5 2.0 4.5 2.0 4.5
Distillation® %(V/V)
- % recovered at 250 °C - 65 - 2.66 - 63 - 63 - 67 - 67
- o 0
% recovered at 550 "C %(V/V) 85 ) 266 87 ) 87 83 83 )
- 95% recovered at ° °c - 360 ISO 3405:2011 - 9.31 - 355 - 352 - 365 - 368
°C EN 116:1997
5 - 2.1 - 4 - 3 - 6 - 7
CFPP® 0 - 2.6 - -2 - -2 - 2 - 2
Grade A 5 3.1 7 8 3 2
Grade B . . - . . . . . . . .
Grade C -10 - 3.6 - -12 - -13 - -8 - -7
Grade D
Grade E -15 - 4.1 - -17 - -18 - -13 - -12
Grade F -20 - 4.6 - -23 - -24 - -17 - -16

® Requirement referred to the European Fuels Directive 98/70/EC, including Amendment 2003/17/EC.
® The precision of the cetane index equation is dependent on the precision of the original density and distillation recovery temperature determinations which enter into the

calculation

¢ precision data for Total Aromatic Hydrocarbons
4 precision limits taken from the equivalent method ASTM D86 (precision not dependent on the rate of change of temperature)
€ Climate related requirement - Limits presented are applicable to temperate climates
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Table 6.3 Acceptance limits for unleaded petrol (gasoline) according to ISO 4259 approach based on the requirements specified in EN 228

Acceptance limits when officially
Acceptance limits when receiving fuel assessing fuel conformity (guarded
Method (guarded acceptance) rejection)
Limits (EN reproducibility 95% confidence 99% confidence 95% confidence 99% confidence
228) limit at: level level level level
Property Units min max Test method min max min max min max min max min max
Research Octane Number, RON ? - 95 - ISO 5164:2005 0.7 - 95.4 - 95.6 - 94.6 - 94.4 -
Motor Octane Number, MON *° - 85 - ISO 5163:2005 0.9 - 85.5 - 85.7 - 84.5 - 84.3 -
Lead content ? mg/| - 5 EN 237:2004 - 0.62 - 4.6 - 4.5 - 5.4 - 5.5
Density (at 15°C) kg/m3 720 775 I1SO 3675:1998 1.2 - 774.3 - 774.0 - 775.7 - 776.0
I1SO 12185:1996 - 0.5 - 774.7 - 774.6 - 775.3 - 775.4
Sulfur content ® mg/kg - 10 1SO 20846:2011 - 2.71 - 8.4 - 7.8 - 11.6 - 12.2
Oxidation stability minutes 360 - ISO 7536:1994 36 - 381.2 - 389.9 - 338.8 - 330.1 -
Existent gum content (solvent
washed) mg/100ml - 5 ISO 6246:1995 - 3.84 - 2.7 - 1.8 - 7.3 - 8.2
Copper strip corrosion (3h at
50°C) rating class 1 EN 2160:1998 not applicable
clear and
Appearance - bright visual inspection not applicable
Hydrocarbon type content ®
. - 18 - 4.6 - 15.3 - 14.2 - 20.7 - 21.8
- olefins
- aromatics % (V/V) - 35 EN 15553:2007 - 3.7 - 32.8 - 31.9 - 37.2 - 38.1
0.17/
Benzene content ® EN 238:1996 - 0.3 - 0.9 - 0.9 - 1.2 - 1.2
% (V/V) - 1 EN 12177:1998 - 0.1 - 0.94 - 0.92 - 1.06 - 1.08
Oxygen content ° EN 1601:1997
%(m/m) 2.7 EN 13132:2000 - 0.3 - 2.52 - 2.45 - 2.88 - 2.95
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Table 6.3 (continued)

Acceptance limits when receiving fuel

Acceptance limits when officially
assessing fuel conformity (guarded

Method (guarded acceptance) rejection)
Limits (EN reproducibility 95% confidence 99% confidence 95% confidence 99% confidence
228) limit at: level level level level
Property Units min max Test method min max min max min max min max min max
Oxygenates content: %(V/V) EN 1601:1997
- methanol - 3.0 EN 13132:2000 - 0.3/0.4 - 2.8 - 2.8 - 3.2 - 3.3
- ethanol - 5.0 - 0.4/0.5 - 4.8 - 4.7 - 5.3 - 5.4
- iso-propyl alcohol - 10.0 - 0.8 - 9.5 - 9.3 - 10.5 - 10.7
- iso-butyl alcohol - 10.0 - 0.8 - 9.5 - 9.3 - 10.5 - 10.7
- tert-butyl alcohol - 7.0 - 0.5/0.6 - 6.7 - 6.6 - 7.4 - 7.5
- ethers (5 or more C atoms) - 15.0 - 1 - 14.4 - 14.2 - 15.6 - 15.8
- other oxygenates - 10.0 - 0.8 - 9.5 - 9.3 - 10.5 - 10.7
Vapour pressure (DVPE) ab kPa EN 13016-1:2007
-class A 45.0 60.0 2.75 2.75 46.6 58.4 47.3 57.7 43.4 61.6 42.7 62.3
- class B 45.0 70.0 2.75 2.75 46.6 68.4 47.3 67.7 43.4 71.6 42.7 72.3
- class C/C1 50.0 80.0 2.75 2.75 51.6 78.4 52.3 77.7 48.4 81.6 47.7 82.3
- class D/D1 60.0 90.0 2.75 2.75 61.6 88.4 62.3 87.7 58.4 91.6 57.7 92.3
- class E/E1 65.0 95.0 2.75 2.75 66.6 93.4 67.3 92.7 63.4 96.6 62.7 97.3
- class F/F1 70.0 | 100.0 2.75 2.75 71.6 98.4 72.3 97.7 68.4 101.6 67.7 102.3
Distillation ®* ISO 3405:2011
- % evaporated at 70 °C % (VIV)
- classes A/B 20 48 2.6 2.04 21.5 46.8 22.2 46.3 18.5 49.2 17.8 49.7
- classes C/C1/D/D1/E/E1/F/F1 22 50 2.56 2 235 48.8 24.1 48.3 20.5 51.2 19.9 51.7
- % evaporated at 100 °C ° % (V/V) 46.0 71.0 2.08 1.58 47.2 70.1 47.7 69.7 44.8 71.9 44.3 72.3
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Table 6.3 (continued)

Acceptance limits when officially
Acceptance limits when receiving fuel assessing fuel conformity (guarded
Method (guarded acceptance) rejection)
Limits (EN reproducibility 95% confidence 99% confidence 95% confidence 99% confidence
228) limit at: level level level level
Property Units min max Test method min max min max min max min max min max
- % evaporated at 150 °C® % (V/V) 75.0 - 1.5 - 75.9 - 76.2 - 74.1 - 73.8 -
- Final Boiling Point (FBP) °c - 210 - 6.78 - 206.0 - 204.4 - 214.0 - 215.6
Vapour Lock Index (VLI) bd
- classes C/D/E/F - -
- class C1 - 1050
- class D1 - 1150
- class E1 - 1200 | calculation
- class F1 - 1250 | method not applicable

® Requirement referred to the European Fuels Directive 98/70/EC

® Climate related requirement

, including Amendment 2003/17/EC

¢ Precision limits taken from the equivalent method ASTM D86 (precision not dependent on the rate of change of temperature)
4 The precision of the vapour lock index equation is dependent on the precision of the original vapour pressure and distillation evaporated volume determinations which enter into the

calculation
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6.3.3 The intermediate precision approach

The needs of the laboratories for guidance on reliable compliance assessment
decisions led to the development of the Guide “Use of uncertainty information in
compliance assessment” [55] by the Working Group on Measurement Uncertainty
and Traceability of EURACHEM/CITAC. The key concept of the EURACHEM/CITAC
Guide is the use of decision rules for the determination of acceptance and rejection
zones that take into account the measurement uncertainty [113]. Therefore, whereas
the ISO 4259 defines the guard bands using solely the test method precision data, the
EURACHEM/CITAC guide is more generic and defines the guard bands using
measurement uncertainty estimates. The laboratory may use any accepted
methodology for estimating its measurement uncertainty. In the present part of the
thesis, intermediate precision data (standard deviation) calculated using robust
ANOVA were used. The size of the guard band, w, is actually a multiple of the
standard uncertainty u. This uncertainty should ideally include sampling uncertainty,
as well. If the distribution of the likely values of the measurand is approximately
normal, then a value of 1.64u may enable a confidence level of 95% concerning
correct rejection or correct acceptance (depending on the decision rule selected). If a
level of confidence of 99% is required for the compliance assessment decision, then a
guard band of width 2.33u, has to be used. The expressions that may be used in fuel
compliance assessment using measurement uncertainty information are summarized
in Table 6.4.

Table 6.4 Acceptance limits according to the intermediate precision approach for 95%
and 99% confidence levels.

Acceptance limits when
officially assessing fuel
Acceptance limits when receiving conformity
fuel (guarded acceptance) (guarded rejection)
99% 95% 99%
95% confidence confidence confidence
confidence level level level level
Lower
specification
limit T.+ 1.64u T.+2.33u T.-1.64u T.-2.33u
Upper
specification Tu—1.64u Tu—2.33u Tu+ 1.64u Tu+2.33u
limit
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An interesting aspect of this approach is that the larger the value of the standard
uncertainty u, the larger the number of samples that will be assessed incorrectly. This
highlights the need for a target measurement uncertainty based on the acceptable
probability of making an incorrect decision of compliance [110]. On the other hand,
smaller uncertainty values are associated with high cost of analysis. Therefore, a
balance between expenditure in higher accuracy measurements and potential costs

associated with incorrect decisions, is needed [114,120-122].

6.4 Experimental work

Automotive diesel fuel samples were taken from 769 petroleum retail stations and
their sulfur mass content was determined in order to assess their compliance with the
EU regulatory limit of 10 mg kg'l. The samples were analyzed in triplicate under
repeatability conditions for sulfur mass concentration determination. An ANTEK
9000S sulfur analyzer equipped with an automatic sampler was employed in this
work. This analyzer fully complies with 15020846 [75] and ASTM 5453 [73]. The
uncertainty of the measurement method has been previously estimated using
replicated measurements of an extended nested experimental design (top down
approach) and robust analysis of variance. The results of this estimation, which are
described in detail in Chapter 3, gave a sampling standard uncertainty, Usampling, Of
0.169 mg kg'1 and an analysis standard uncertainty, Uanalysis, of 0.265 mg kg'l. The
measurement standard uncertainty, u, which is the combination of both analytical
and sampling uncertainties, is 0.314 mg kg™. The analysis standard uncertainty counts
for the 71% of the measurement uncertainty. This means that the measurement
uncertainty can be substantially reduced if the analysis uncertainty is decreased i.e.
by making more measurements and calculating their average. In this case the analysis
standard uncertainty is divided by the square root of the number, k, of repeated

measurements leading to reduced measurement uncertainty, u:

2
u .
u= uszampling +( a”al)’S'S} (613)

Jk

For k=2 the sulfur mass concentration measurement uncertainty was estimated at
0.252 mg kg™, while for k=3 at 0.228 mg kg™
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6.5 Results and discussion

An overview of the range and the dispersion of the sulfur mass content determination
results is shown in the Boxplot diagram (produced by PASW 18 [83] of Figure 6.7 using
the average values of the triplicate measurements of the fuel samples.
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Figure 6.7 Box Plot of the average values of the 769 datasets (produced by PASW 18
[83]). The box length represents the interquantile range. Values which are more than
three box lengths from either end of the box are denoted by an asterisk. Values which
are between one and a half and three box lengths from either end of the box are
denoted by a circle.

The majority of the samples comply with the specification of 10 mg kg™, while there
are some results, that beyond any reasonable doubt can be considered non-
compliant. There are some measurements (close to the specification limit) though,
that require the application of certain decision rules in order to be classified as

compliant or non-compliant.
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The type of the decision rule and whether it will be based on guarded acceptance or
guarded rejection, depends on the risks, related to making a wrong decision, that the
interested parties are willing take. The approaches described in Sections 6.3.2 and
6.3.3 have been applied in the sulfur mass concentration determination results for
both cases i.e. when receiving fuel (guarded acceptance) and when officially assessing
fuel conformity (guarded rejection). Moreover some additional calculations have
been made using Equation (6.12) (for ISO 4259 approach) and Equation (6.13) (for
intermediate precision approach), in order to study the effect of multiple
measurements. For these calculations, the values used for the assessment were
treated as if they were obtained from either duplicate measurement (k=2) or

triplicate measurements (k=3).

Tables 6.5 and 6.6 present the guard band widths, the estimated decision limits as
well as the number and the percentage of non-compliant results for both 95% and 99
% confidence levels. If no guard band (or a guard band of zero magnitude) is used,
then 47 (6.1%) results can be considered non-compliant. Using decision rules based
on guard bands leads to either smaller (guarded rejection) or higher (guarded
acceptance) number of non-compliant results. The exact number of non compliant
results depends on the level of confidence used and the number of replicate

measurements on each sample.
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Table 6.5 Guard band widths, estimated decision limits and number of non-compliant results for both 95% and 99 % confidence level
according to ISO 4259 approach.

Acceptance limits when officially assessing Acceptance limits when receiving fuel
fuel conformity (guarded rejection) (guarded acceptance)
Guard band Number of non -
Level of Number of width, w Decision limit Number of non - Decision limit compliant
Confidence | measurements, k (mg kg™) (mg kg™) compliant results (mg kg™) results
50% any number 0.00 10.00 47 (6.1%) 10.00 47 (6.1%)
95% 1 1.32 11.32 25 (3.3%) 8.68 124 (16.1%)
2 1.24 11.24 25 (3.3%) 8.76 114 (14.8%)
3 1.21 11.21 25 (3.3%) 8.79 113 (14.7%)
99% 1 1.86 11.86 22 (2.9%) 8.14 173 (22.5%)
2 1.74 11.74 22 (2.9%) 8.26 159  (20.7%)
3 1.70 11.70 22 (2.9%) 8.30 156  (20.3%)

Table 6.6 Guard band widths, estimated decision limits and number of non-compliant results for both 95% and 99 % confidence level
according to intermediate precision approach.

Acceptance limits when officially assessing Acceptance limits when receiving fuel
fuel conformity (guarded rejection) (guarded acceptance)
Guard band Number of non Number of non
Level of Number of width, w Decision limit - compliant Decision limit - compliant
Confidence | measurements, k (mg kg™ (mg kg™) results (mg kg™) results

50% any number 0.00 10.00 47  (6.1%) 10.00 47  (6.1%)
95% 1 0.51 10.51 39 (5.1%) 9.49 63  (8.2%)
2 0.41 10.41 41 (5.3%) 9.59 58  (7.5%)

3 0.37 10.37 42 (5.5%) 9.63 57  (7.4%)

99% 1 0.73 10.73 35 (4.6%) 9.27 72 (9.4%)
2 0.59 10.59 36 (4.7%) 9.41 66  (8.6%)

3 0.53 10.53 39 (5.1%) 9.47 64  (8.3%)
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Using the ISO 4259 approach (Table 6.5), guard band widths ranging from 1.21 mg
kg™ (95 % confidence level, 3 measurements) to 1.86 mg kg™ (99 % confidence level,
1 measurement) are calculated. Using these guard bands to define decision limits for
guarded rejection (official assessment of fuel conformity) leads to 25 (or 3.3%) and
22 (or 2.9%) non-compliant results, respectively. On the other hand, if these guard
bands are used for defining guarded acceptance decision rules (reduce the
probability of receiving a non-compliant fuel) then the number of non-compliant
results is 113 (14.7%) and 173 (22.5%), respectively.

The use of the intermediate precision approach (Table 6.6), leads to considerably
narrower guard bands with widths ranging from 0.37 mg kg™ (95 % confidence level,
3 measurements) to 0.73 mg kg™ (99 % confidence level, 1 measurement). Using
these two extremes of guard bands (0.37 and 0.73 mg kg™) to define decision limits
for guarded rejection (official assessment of fuel conformity) leads to 42 (or 5.5 %)
and 35 (or 4.6 %) non-compliant results, respectively. On the other hand, if these
guard bands are used for defining guarded acceptance decision rules (reduce the
probability of receiving a non-compliant fuel) then the number of non-compliant
results is 57 (7.4%) and 72 (9.4%), respectively. Compared to the I1SO 4259 approach,
the intermediate precision approach leads to smaller number of non-compliant
results for guarded acceptance and higher number of non-compliant results for

guarded rejection.

In all cases (with the exception of guarded rejection with the 1ISO 4259 approach), as
the number of replicate measurements increases, the guard band width becomes
smaller leading to changes in the number of test results classified as non-compliant.
This effect is more intense in the case of guarded acceptance, because the decision

limit is below the tolerance limit in a region where many test results are clustered.

It has to be noted that, the larger the width of the guard band used, the larger the
proportion of samples that will be judged incorrectly. For example, in the case of
guarded rejection for a confidence level of 95% with 3 measurements, there is a
difference of 17 (42 minus 25) test results considered non-compliant between the
intermediate precision and the ISO 4259 approach. Similarly, in the case of guarded
acceptance again for a confidence level of 95% with 3 measurements, there is a
difference of 56 (113 minus 57) test results considered non-compliant between the
two approaches. The intermediate precision approach uses uncertainty estimates for
defining the width of the guard bands. These estimates represent more precisely the

dispersion of the values of the measurand. Therefore, the differences in the
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calculations of the two approaches reflect a possible number of samples judged
incorrectly when using the 1SO 4259 approach (17 possibly non-conforming samples
accepted as conforming in the guarded rejection case or 56 possibly conforming
samples rejected as non-conforming, in the case of guarded acceptance). Minimizing
the guard band width by reducing the measurement uncertainty (more replicates,
more accurate measurement method) leads to fewer cases of false acceptance or
false rejection decisions, reducing as well the costs associated with these decisions.
As at the same time the cost of analysis becomes higher, there is a need that these
two costs are balanced against each other in order to find an optimum measurement
uncertainty [114,120-122]. Of course, fuel product quality failures are associated
with high costs [123], which justify the investment in preventive actions like the use
of more expensive - but at the same time more accurate — compliance assessment

test methods or procedures.

6.6 Conclusions

Most analytical measurements are carried out in order to decide whether the result
indicates compliance or non-compliance with a regulatory limit or specification.
When the result is close to the limit, the decision cannot be that straightforward and
certain decision rules have to be used. These rules, which should be accepted by all
interested parties, are based on the acceptable level of the probability of making a
wrong decision. The conformity assessment of automotive fuel samples against
specifications set by EU directives and listed in EN 590 (for automotive diesel) and
EN 228 (for unleaded petrol), is presented in this chapter. Two approaches for
defining decision rules, utilizing the concept of guard bands, are presented, based
on uncertainty estimates using either standard method precision data (ISO 4259
approach) or within laboratory precision data (intermediate precision approach).
Under the ISO 4259 approach, acceptance limits for guarded acceptance and
guarded rejection for 95% and 99% confidence levels were calculated. Moreover, the
results of the analyses of 769 diesel fuel samples for the determination of sulfur
mass concentration were used to highlight the differences in the resulting number of
non-conforming results when using different approaches for defining guard bands,
different levels of confidence or different number of replicate measurements. As the
ISO 4259 approach employs “wider” guard bands compared to the intermediate
precision approach, it leads to considerable more non-compliant results in the case
of guarded acceptance and less non-compliant results in the case guarded rejection.

The guard bands defined under the intermediate precision approach offer safer
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decision rules because of the fact that they use uncertainty estimates which
represent the “true” dispersion of the values of the measurand (sulfur mass
concentration). On the other hand the ISO 4259 approach may result in large
number of samples classified incorrectly as compliant or non-compliant.
Nevertheless, this approach may be useful for end users of fuel sample analysis

results when uncertainty estimates are not available.
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The work presented in this thesis dealt with statistical and numerical methods
concerning the estimation and use the measurement uncertainty in all parts of the
measurement cycle. The development and application of methodologies for the
estimation of measurement uncertainty arising from sampling was presented in Chapter
3. Chapter 4 focused on the estimation of measurement uncertainty of an analytical
procedure using ISO GUM and Monte Carlo method. The uncertainty estimation in
analytical methods employing the construction of a calibration function, using linear
regression was considered in Chapter 5. Chapter 6 investigated the use of measurement
uncertainty and precision data in conformity assessment of automotive fuel products.

The program codes developed in MATLAB in order to apply the Monte Carlo method
(adaptive and fixed trials) and the empirical approaches for the estimation of sampling
uncertainty may be used in any type of measurement. Moreover, based on the work
presented in Chapter 6 the requirements and the key features of a software for the
evaluation of conformity of fuel products were defined. Concerning future work, a focus
should be put on the development of statistical tools that will establish a coherent
uncertainty estimation framework based on Bayesian analysis. Moreover, more research
is required for conformity assessment of qualitative and subjective properties and
conformity assessment that takes into account the variability of both the measuring
system and the production system as well as economic impacts.
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7.1 Summary of thesis achievements

7.1.1 Outline

The judgement of “fitness for purpose” of a test method is inseparably related to the
estimation of the measurement uncertainty which actually characterizes the quality
of a result by accounting for both systematic and random errors. In the various
pre-analysis, analysis and post - analysis steps of the measurement cycle, the
measurement uncertainty has to be either estimated or taken into account. The
measurement uncertainty has implications for the interpretation of analytical results
in the context of regulatory compliance or conformity assessment. The estimation of
measurement uncertainty following recognized and valid methodologies is also a key
requirement for laboratories or other organizations accredited or seeking
accreditation according to standards like 1ISO/IEC 17025, I1SO 15189, ISO/IEC 17043 and
ISO Guide 34. This, in most of the cases, involves measurement data analysis. A
consistent and transferable evaluation of measurement uncertainty should follow
the basic principles described in the document “Guide to the expression of
uncertainty in measurement” (GUM) produced by the Joint Committee for Guides in
Metrology (JCGM). The work presented in this thesis dealt with statistical and
numerical methods concerning the estimation and use the measurement uncertainty

in all parts of the measurement cycle.

7.1.2 Estimation of sampling uncertainty

The development and application of methodologies for the estimation of
measurement uncertainty arising from sampling was presented in Chapter 3. Three
alternative statistical approaches for data analysis concerning the estimation of
measurement uncertainty of manual sampling of fuel were described and compared.
A balanced experimental design was used, which included duplicate samples of
automotive diesel from 104 petroleum retail stations and duplicate analyses of these
samples for sulfur mass content determination. The results were treated using
classical ANOVA, robust ANOVA and range statistics. The three methodologies gave
statistically different estimates with the expanded uncertainty of sampling being in
the range of 0.34 — 0.40 mg kg™. The fact that the robust ANOVA leads to different
results compared to the other two methodologies is an indication that the
assumptions of classical ANOVA and range statistics are not justified. The estimation
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of robust ANOVA is considered more reliable, because of the presence of outliers

within the 104 datasets used for the calculations.

7.1.3 Estimation of the uncertainty of a typical measurement procedure

Chapter 4 focused on the estimation of measurement uncertainty of an analytical
procedure using ISO GUM and Monte Carlo method (MCM). The GUM approach
propagates the uncertainties of the input quantities through a linearized model,
while MCM provides an alternative approach in which the probability density
functions (PDF’s) of the input quantities are propagated through the model.
Variations of both approaches were applied for the estimation of the uncertainty of
the Gross Heat of Combustion (GHC) determination of a diesel fuel by bomb
calorimetry. Appreciable differences were observed between the results of GUM and
MCM approaches. The half width interval or expanded uncertainty results (at 95%
level of confidence) obtained by GUM assuming Gaussian distribution, GUM
assuming t-distribution and MCM were 0.28 MJ kg (66 cal g™), 0.29 MJ kg™ (70 cal
g™) and 0.32 MJ kg™ (75 cal g*), respectively. This means that GUM approaches are
optimistic concerning the magnitude of the coverage interval of the GHC
determination. This may be attributed to the slight non linearity of the measurement
model and to the limitations involved in the use of the Welch-Satterthwaite formula
(calculation of effective degrees of freedom of the assigned t-distribution) when
dominant terms with relatively few degrees of freedom exist. When the GUM
approach was combined with a Bayesian treatment of Type A uncertainties, the
results were consistent with the results of the MCM. Overall, MCM proved to be a
more reliable tool for the estimation of the uncertainty of the determination of the
GHC of diesel fuel, as it is not based on approximations or assumptions and it does

not have the limitations of the GUM approach.

7.1.4 Estimation of the uncertainty of a measurement procedure involving the

construction of a calibration curve

The uncertainty estimation of the construction of a calibration function, used for the
determination of sulfur mass concentration in fuels, using linear regression was
considered in Chapter 5. As the linear calibration function is defined by the slope
and the intercept, we actually had to deal with a measurement model of multiple

(two) outputs, which also involves correlated data. The slope and the intercept were
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described by a bivariate (or joint) Gaussian distribution characterized by the
expectation and the covariance. Two types of coverage regions were considered: a
rectangle centered coverage region and an ellipse centered coverage region. It was
shown that the ellipse centered coverage region was the most appropriate one.
Different methodologies were compared concerning the estimation of the
uncertainty of a calibration curve used for the determination of sulfur mass
concentration in fuels. The methodologies applied included: the GUM uncertainty
framework, the Kragten numerical method, the Monte Carlo method (MCM) as well
as the approximate equation calculating the standard error of prediction. The
standard uncertainty results obtained by the four methodologies (0.172 — 0.175 ng
uL') agreed well, as there is no appreciable non linearity in the measurement model
and there are no dominant parameters whose distributions are far from normal. The
use of the approximate equation calculating the standard error of prediction leads to
correct results only if it used appropriately i.e. omitting the term accounting for the
repeatability of the response and including its standard uncertainty estimated from
manufacturer information. When applying GUM, MCM or Kragten approach, the
correlation between calibration curve parameters (slope and intercept) was a
significant component of uncertainty and if it is ignored, it leads to 62%

overestimated standard uncertainties of the predicted value.

7.1.5 Use of measurement uncertainty in conformity assessment

Chapter 6 investigated the use of measurement uncertainty and precision data in
conformity assessment of automotive fuel products. The conformity assessment of
automotive fuel samples against specifications set by EU directives and listed in EN
590 (for automotive diesel) and EN 228 (for unleaded petrol), was presented in this
chapter. Two approaches for defining decision rules, utilizing the concept of guard
bands, were presented, based on uncertainty estimates using either standard
method precision data (ISO 4259 approach) or within laboratory precision data
(intermediate precision approach). Under the 1SO 4259 approach, acceptance limits
for guarded acceptance and guarded rejection for 95% and 99% confidence levels
were calculated. Moreover, the results of the analyses of 769 diesel fuel samples for
the determination of sulfur mass concentration were used to highlight the
differences in the resulting number of non-conforming results when using different
approaches for defining guard bands, different levels of confidence or different
number of replicate measurements. As the I1SO 4259 approach employed “wider”

guard bands compared to the intermediate precision approach, it led to considerable
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more non-compliant results in the case of guarded acceptance and less non-
compliant results in the case guarded rejection. The guard bands defined under the
intermediate precision approach offered safer decision rules because of the fact that
they use uncertainty estimates which represent the “true” dispersion of the values
of the measurand (sulfur mass concentration). On the other hand the I1SO 4259
approach may result in large number of samples classified incorrectly as compliant
or non-compliant. Nevertheless, that approach may be useful for end users of fuel

sample analysis results when uncertainty estimates are not available.

7.2 Applications

The program codes developed in MATLAB in order to apply the Monte Carlo method
(adaptive and fixed trials) may be used in any type of measurement, if the
mathematical model of the measurement is known and is inserted in the code
(Chapters 4 and 5). Moreover the empirical approaches for the estimation of
measurement uncertainty arising from sampling are also applicable to all

measurement methods involving sampling (Chapter 3).

Based on the work presented in Chapter 6 the requirements and the key features of
a software named “Decision Support System for the Evaluation of Conformity of Fuel
Products” were defined. This software aims to support those who deliver, receive or
for any reason, check fuel products and based on laboratory measurements should
determine whether they comply with legislative requirements. The potential users of
the software may belong in any stage of the supply chain of fuel (refineries,
distribution companies, petroleum retail stations, large consumers, industries,
airlines, shipping companies, etc.) and may have a buyer role (receiving fuel product)
or seller role (delivering fuel product) or both. In addition, the software can be used

by authorities carrying out official assessment of fuel conformity.

The key features of the software are as follows:
e The software will be available online (website) and available for installation
on a PC or a Tablet / Smartphone (application)
e The user will enter the results of the laboratory measurements and will
receive as information the probability of the fuel product compliance (or non

compliance) with the relevant specifications (Figure 7.1).
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Figure 7.1 Example calculations of the probability of compliance or non-compliance.

e Depending on the type of user (buyer, seller, authority) different decision
rules may be defined.

e The software will have already imported all the specifications of different
types of fuels derived from the relevant legislation and standards (eg EN 228,
EN 590) as well as the precision data of the standard methods (ISO, EN,
ASTM) used for the determination of the fuel properties. The specifications
and data will be updated every time there is a change either in the legislation
or in a standard method.

e The software will keep a log of previous analysis results and export statistics.

e The software will enable the user to create validated official reports, with

information on the quality of the tested fuel.

7.3 Future work

7.3.1 Bayesian uncertainty analysis

The GUM mixes elements from both Bayesian and classical statistics. Furthermore,
the supplements 1 and 2 to the GUM made a shift towards the Bayesian point of
view (they produce a probability distribution that shall encode one's state of
knowledge about the measurand). It was shown in Chapter 4 that Bayesian
treatment of Type A uncertainties “corrects” the underestimation of measurement
uncertainty of the GUM approaches compared to the Monte Carlo method.
Nevertheless, the “Bayesian scope” of GUM and its supplements is limited, and key

features of a Bayesian uncertainty analysis, such as the use of informative prior
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distributions, are missing. In order to utilize those features explicit use of Bayes'
theorem is required and, consequently, different and more involved numerical

techniques would have to be developed and employed.

7.3.2 Conformity assessment

In Chapter 6 we were concerned with “specific” conformity assessment, which was
related to the decision for conformity based on testing single fuels samples from
petroleum retails stations and not from a production process. In the case of samples
from a production process, a “global” conformity assessment can be implemented
that would take into account the variability of both the measuring system and the
process (production system). Moreover, adding measures of economic impact, such
as the costs of measurement and the costs incorrect decisions, can give more
objective and more readily appreciated bases for decisions for all parties concerned.
Such costs are associated with a variety of consequences, such as unnecessary re-
manufacturing by the supplier as well as various consequences for the customer,
arising from incorrect measures of quantity, poor product performance etc. Finally, it
is recognized that common tool of statistics work readily for traditional quantitative
measurements. Nevertheless, there is a growing need for development of statistical
methodologies concerning the evaluation of measurement uncertainty and
assessment of conformity, in the measurement of qualitative and subjective

properties.

7.3.3 Sampling bias

In Chapter 3 we were concerned with sampling uncertainty without accounting for
sampling bias. Although it is difficult to establish the presence of bias in a sampling
protocol as it requires the definition of a reference sampling method or a reference
sampling target, it would be useful to develop and apply methods that may be used
for the estimation and the inclusion of analytical or sampling bias in the sampling

uncertainty estimates.
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A. EIZATQIH

A.1 Kivntpa kat otoyot

KaBwg n ayopd Twv Kavuoipwv yivetal 6Ao kal meploocotepo Stadopomolnuévn, o
€AEYXOC TNG TIOLOTNTAG TWV KAUGIHWY €XEL PeTaTpanel o€ pa Baotkn kot uPnANg
npootifgpevng afiac Spaotnplotnta Kabwg cupBAAEL 0T SLOXELPLON TWV KWVSUVWY
yla mopaywyoug, EUNOPOUC, SLOVOUELG KOl KATAVOAWTEG — TEALKOUG XPNoTeS. Ta
KaUolua Tou Tapdyovtal kot diatiBevtal otnv ayopd mpEMEL va cuppopdwvovtal
LUE QUOTNPEC OUMOLTNOELG TToU Tipodlaypadovtal amo Tn OXETKR vouoBeoia. Itnv
Evpwnaiky ‘Evwon vy mopadelypa, OSadopec odnyleg OETOUV  TEXVIKEC
npodlaypadeg ya TO KOUOWO TWV QUTOKWATWY TIOU XPNOLUOTIOLOUVTIAL OF
Kwntipeg emBarropevng avadAeéng (Bevlivn) n oe kwninpeg avapAeéng pe
oupurnigeon (vtnlel).

Méow tnG edapuoyng eupelag ykapag pebodwv avaluong yivetat afloAdynon kat
EKTIUNON TWV GUOIKWY, HUNXOVIKWV, PEOAOYIKWY, BEPULIKWY Kal XNUIKWV ELOTATWY
Tou opyol metpelaiov Twv mpoloviwv emnefepyaciag tou (Autaviikd, Bevlivec,
VINZeA, agpomoplkd kavolua, polout), Kabwg Kot AAAWY KOUGIHWYV (TT.X. OTEPEWV,
OEPLWV) KOl EVEPYELAKWY TIOPWV TIOU XphotpomololvTal we Kavotpa (m.x. Blopala).
To AMOTEAECUATA TWV AVOAUCEWV TWV KOUOLIHWY Ba mpémel va eival aflomiota Kot
arnodektd amo oAa ta evoladpepopeva PEPN, €TOL WOTE va pelwBolv ol kivéuvol
TPOIOVTWV €KTOC Tipodlaypadwy, Vo CUVTOUEVTEL 0 XPOVOG SLABEONG TWV KAUGIUWVY

OTNV ayopa Kal va armodelKVUETAL N TTOLOTNTA KAl N aoPpAAELD AUTWV.

levikd, ta epyaotipla  Slevepyolv avaAUoelg, OOKLUEG Kol €AEyXoug T
OTTOTEAECLLOTO TWV OTIOLWV TIAPEXOVTAL O KATIOLOV TPLTO (TT.X. ToV TEAATN), 0 omolog
o To XPNOLUOTIOL)OEL Yylo. va. EMAUCEL KATOLo TIPOPBANMA i yla va KoTtoAnéel os
KArmolo cupmnépacpa. Eva AdBog anotéAeopa Unopel va €XEL TEPAOTLEG OLKOVOULKEG
N KOWWVIKEG ETUMTWOELG KABwWG gival TOavov va €xeL w¢g oUVETELA TN AQYPNG ULag
eopoaApévng amodaons. Kotd ouvémela, €va epyootnplo Ba MPEMEL va TapEXEL
VPNAARG oLOTNTAG UTNPECLEG OTOUG TEAATEG Tou. H €vvola «moldtnta» o€ éva
epyaotnplo dev gival kat avaykn n mapoxn amoTeAECUATWY TOU Xapaktnpilovral
amo tn Heylwotn duvatr akpifela. MowdTNTA CNUOLVEL N TIAPOXN EPYOOTNPLAKWY
OTOTEAECUATWY TIOU €lval KataAnAa yia tn okomoupevn xpnon (fit for purpose).
AuTO emTUYXAVETAL LECW:

® TNGKAAUYNG TWV ESIKWV ATIOUTACEWY TWV TTEAATWV.
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e TNG epuduonNOoNG EUMLOTOOUVNG OTO TEAATN Kal 0 OAa Ta evlladepoueva
HEPN TOU Ba KAVOUV XPAON TWV EPYNOTNPLAKWY OTTOTEAECUATWV.
e 1n BeAtloTonmoinon TNG OXEONG TLUAC — TTOLOTNTOG.
H afloAdynon tg «kataAAnAoAntag yia xprnon» upoGg pebodou Sokwung eival
appnkta ouvéedepévn Pe TNV eKTUNON tTNC afefaldtnTac TNG HETPNONG N oMol
OUCLOOTLKA XopakTnpilel TNV moLdTNTA €VOG AMOTEAECHATOG CUVUTIOAOYi{ovVTag TO0O

OUOTNMOTIKA 000 Kal Ttuxaia opaApata.

O KUKAOC MlOC METPNONG &eKWvA OO MO amaitnon Tmou SLaTUTIWVETAL YL
OUYKEKPLUEVO AOYO o Tov TeEAATN Kal KAElvel e tnv AnPn pag anodaong Baocet
TWV EPYNOTNPLAKWY OTMOTEAECUATWY. € QAUTO TOV KUKAO UTIAPXOUV GCNHOVTLKA
otadla (Mpo-ovaAUTIKA, OVOAUTIKA KoL HETA-OVAAUTIKA) Omou n afefaldotnta Tng
HETPNONG EUMAEKETAL 0 peyAAo Babuod. To ZxAua A.1 deixvel ta Stadopa otddla
TOU KUKAOU PETPNONG, UTIOSELKVUOVTOG T 0TASLA OTToU N aBeBatldtnTa TG LETPNONG
TPEMEL £lTe va ekTIUNBel elte va AndBet umtoYn, kabBwc kat Ta avriotowa kedpalala
¢ nmapovooag Atdaktoplkng AlatpBrig mou mepltAapBavouv BEpaTa OXETIKA HE TNV

EKTLNON KaL TN Xpron Tng afefatdtntac.
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EPTAZTHPIO

H afeBadtnra pétpnong npénstL va extpunBein va
AndBsi umadn

I
! I Ixetiko keddhawo tng MAub aktopukrc Auxtpifrig

Ixnua A.1 KOkAog pétpnong. Ztadta omou n aBefaltdtnta tng HETPNONG MPETIEL £lTE
va ekTiunBet gite va AndBel umoPn — T0vdeon pe Ta avrtiotoa Kedalala TG
napovoag Adaktoplkng AlatpLpng.
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A.2 Juotiuarta ditaxeiplong moLotnTag

Ta epyootipla mou Slevepyolv OoKIMEC Kal SlakplBwoelg kabwg kat allot
opyaviopol mou umootnpilouv Tta gpyacthipla ot dpactnpldtnTEG TOug (TUX.
SlopyavwTég SlepyaoTnpLakwY SOKLUWVY LKAVOTNTAG, Tapaywyol UALkwy avadopdg)
nipenel va epappolouv cuothpata SLaxeiplong moLoTNTAC TOU WG OTOXO €XOUV TNV
anodel€n tng TEXVIKAG Toug emapkelag. H opbn edappoyn evog TETOLOU CUCTAUATOG

nioldtnTag emuPBefatwvetal and Evav aveEdptnto opyaviopud (popéa dlamiotevong).

Ta Baolka mpotuma pe ta omoia ol ¢opeig Stamiotevong dieBvwe, damiotevouv
EPYOOTAPLA KAL OPYAVIOUOUG Elva:
e 10 ISO/IEC 17025, yia ta epyaotripla SOKLHwY Kal StakplBwoswv
e 710 IS0 15189, yla Ta LOTPLKA EPYACTHPLOL
e 710 ISO/IEC 17043, ywo Ttoug Olopyavwtég OlepyaoTnplakwy  SOKIUWV
LKAVOTNTOG

e 710 ISO Guide 34, yLa Toug mapaywyoug UALKWY avadopag

Mta Baolkn anaitnon Twv mapanavw MPoTUNwWVY Slamioteuong elval n ektipnon tg
ofefaldtnTtog TWV UETPACEWV HE TN XPHAON EMLOTNHOVIKA TEKUNPLWHEVNG KoL
€ykupng peBobdoloyiag. H ektipnon oauth otn MAELOVOTNTA TWV TEPUTTWOEWV

amottel petafly aAwv enetepyacio EpyooTnpLOUKWY LETPHOEWV.

A.3 Aoun Stbaktopiknc dtatpiBrc

Zta kedpdaAata Tng mapouong Atbaktoptkng AlatpLBng mapouotdleTal N avarmtuén Kat
epappoyn OTATIOTIKWY Kal aplOuntikwy PeBOdwV yla TNV ekTipnon Kat xpnon tng
oBeBaLOTNTOG LETPIOEWV OE CUYKEKPLUEVO OTASLA TOU KUKAOU TNG HETPNONG (IXNHa
A.1). ZuyKeKpLEVQL:

e To Keddlaio 2 meplypddel to Bswpntikd umoBabpo ocov adopd TIg
nipooeyyioelg-uebodoloyieg yl TNV EKTIMNON KAl TN XPAon INng
oBeBalotnrac.

e To Kedpdaharo 3 mapouoialet tnv avamtuén kot edappoyn pebodoloylwv yla
NV eKTiEnon tnc afefaltdtnTac mou MPoKUMTEL AOyw SetypatoAnyiog.

e To Keddlawo 4 EeTIKEVIPWVETAL OTNV EKTIUNON TNG afefaldtntac Mg
HeTpNTkAG Stadikaciag xpnowonowwvtag tn nEBodo GUM kat tn pebodo
npooopoiwong Monte Carlo.
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To Kepdhawo 5 fetalel tnv ektipnon tng aBePfaltdtntag o AVAAUTIKEC
HEBOSOUG TOU XpnolpomoloUV  KaumUAn PBabuovounong n omola €xet
KATAOKEVAOTEL LEOW YPAUULKAG TIAALVEPOUNONG.

To KedpaAaro 6 Siepeuva tn xprion tng afeBaldtnTog TWV LETPACEWV KAL TWV
6ebopévwy emnidoong Twv peBoOdwv otnv afloAdynon tTng CURUOPPWONG TwV
TipolOVTWV.

To Kepalawo 7 cuvoyilel ta amoteAéopata Tmou £Xouv emiteuxBel Kot

TIPOTELVEL TIEPLOXEG LEAAOVTLKAG EPELVNTIKNAG SpaoTNPLOTNTAG.

A.4 Niota dnuootevoswv

Jta mAailowa TG Topoloag SBaKToplkAG SlaTplBric mpaypatomoidnkav ot

napakdtw dnpootevoelg o Slebvr TePLOSIKA e KPLTEG:

(i)

(ii)

(i)

(iv)

(v)

D. Theodorou, Y. Zannikou, G. Anastopoulos, F. Zannikos. Coverage interval estimation
of the measurement of Gross Heat of Combustion of fuel by bomb calorimetry:
Comparison of ISO GUM and adaptive Monte Carlo method. (2011) Thermochimica
Acta 526:122—-129

D. Theodorou, Y. Zannikou, F. Zannikos. Estimation of the standard uncertainty of a
calibration curve: application to sulfur mass concentration determination in fuels.
Accreditation and Quality Assurance (2012) 17: 275-281

D. Theodorou, N. Liapis, F. Zannikos. Estimation of measurement uncertainty arising
from manual sampling of fuels. Talanta (2013) 105: 360-365

D. Theodorovu, F. Zannikos. The use of measurement uncertainty and precision data in
conformity assessment of automotive fuel products. Measurement (2014) 50: 141-
151

D. Theodorou, Y. Zannikou, F. Zannikos. Components of measurement uncertainty
from a measurement model with two stages involving two output quantities.
Chemometrics and Intelligent Laboratory Systems (2015) 146: 305312
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B. EKTIMHZH ABEBAIOTHTAZ - TENIKA

B.1 ABeBatotnta kat petpnon

H afloAdynon t¢ opBotntag Tou amOTEAECMATOG MLAG METPNONG ATtAoXOAEL
Sloxpovikd OAoug TOouG KAASOUG Twv EMOTNUWV. XTo TOpPeABOvV, TnyEg
CUOTNUATIKWY KOL TUXOUWV METPNTIKWYV odalpdtwyv Bswpolvtav n attia tou
Alyotepo 1) epLocOTEPO akpLBoUG MPoodloplopol pLag moootnTag. Bacel autig tng
anoyPng Ta LETPNTIKA opAApaTa TtEPLYpAdOUV TNV AOKALON LaG LETPNONG ATIO TNV
«TIPOYMOTIKA TWWA» Hlag moootntag. AsSOHEVOU OUWC OTL 0 TPOCGSLOPLOUOC TNG
«TIPOYMOTIKAG TIUAC» MLOC TTOCOTNTAG £lval KOL O OKOTOG TPAYUATONONoNG TG
HETPNONG, O OPLOMOG TWV UETPNTIKWY OPOAPATWY OE OXECN UE AUTH TNV AyvVWwoTn
«TPAYUOTIKA TLUA» TIPOKAAEl €vvoloAoylkd TpoBAApATA OTNV KATtovonon Tng
opBotntag tou amoteAéopartog. Avayvwpilovtog autd to nmpoBAnua kabwg emiong
KOl TO YEYOVOG OTL OEV UTIAPXEL €VOG KO LovaSIKOG TPOTIOG TTIOCOTIKNG €kdpaong TNG
apdBoAiag ywa tnv opBotnta €vOG UETPNTIKOU amoteAéopatog, N AEBvAg
Yuvélevon Metpwv kat 2tabuwv (CIPM), tou gival n avwtotn entponn yla 8épata
peTpoAoyiag, to 1978 {ntnoe amod To eKTEAECTIKO TNG Opyavo, To AleBvég Mpadeio
Méetpwv kot Ztabuwv (BIPM), va kaBopioel cupdpwvnuéveg BepeAlwdelg apxEg mou
Ba adopovoav oto MpoBANUa EkPpacnc Ko UTIOAOYLOUOU TNE SLOOTIOPAC TWV TLUWV
€VOG peTpolpevou peyeBoug (measurand) o oxéon HE TNV KOAUTEPN EKTIUNGT TOU.
Tautoxpova, uoBeTAONKE 0 Opog «aBefaldtnTa HETPNONG» yla TNV Teplypadn
auTtNG t™NG SlooToPAg TWV TWWV. AMOTEAECHA QUTAG TNG Tpoondbelag Atav n
€kdoon tn¢ ovotaong INC-1 to 1980. OL yeVIKEC apPXEC TIOU TIEPLEXOVTAV OTNV
napandvw cvotacn StapopdwBnKav otn CUVEXELD OE Uit TIPAKTLKN TEXVLKNA odnyia
and tnv Texvikn ZupPoudeutikn Emttponn otnv Metpoloyia (TAG 4) tou SteBvolg
opyaviopoU ISO oe ouvepyoaoia pe to BIPM, to IEC kat to OIML kat to 1993

ek&60nke To “Guide to the Expression of Uncertainty in Measurement” i “GUM”.

H afeBaidtnta cupdwva kat pe to Ae€ikd Opwv Metpoloyiag (ISO VIM) opiletal wg
«ULOL TIAPAHETPOG (N apvnTIKN) TIou Xapaktnpilel tTnv Slacmopd Twv THwWV Ttou Ba
umopovoav va anodoBouv otnv METPOUMEVN Toootnta Paocel tng Sabéoung
mAnpodopiag yla auti». ZRUepa elval Kowad amodekto OTL Hla TOoOTIKA SHAwon
OXETIKN UE omolodnmote petpolpevo pEyebog Sev pumopel va eival mAnpng eav dev
epAapPAVEL, EKTOC QMO TO ATMOTEAECUA TNC HETPNONG, Kal pia avadopd otnv
afefatdtnta mou cuvodelEL TO AMOTEAECUA QUTO. To va cupneplapPfavetal n
ofeBaotnta  otig mAnpodopie¢ TOOOTIKOU TPOCaSloplopoU  evog  UeyEBoug

gfunnpetel éva OITTO okomo: adevocg emonuaiveTal oto Xprotn tng METPNONG N
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mubavotnta UTaPéNG oPaAUATWY, EPLOTWVTAG TNV TIPOCOXN TOU OTOV TEMEPAOHUEVO
XQPOKTAPA TNEG YVWONG HOC YLO KLOL CUYKEKPLUEVN TTOCOTNTA, adeTépou Sivetal pLa
TLOOOTLKI €KTIHNON TOU SLAOTAMOTOC MECO OTO OTOLo TIEPLEXETAL N AAnOnC T Tou
HETpOUUEVOU HeYEBOUG, kaBwg Kkal Tng mBavotnTag va Ppioketal n aAnbnig autn
TR O Ml OUYKEKPLUEVN TEPLOX Tou OSlaothpatog oautou. EmutAéov, n
oBeBalotnta emnpedlel TNV EPUNVELN TWV OMOTEAECUATWY OTAV YLO TTAPASELY A, LE
6ebopévo TO QMOTEAEOUA MLAG EPYOOTNPLAKAG METpNONG afloloyeital n
OUMUOPPWON A LN, EVOG TTPOTOVTOG OE OXEON UE KAoLla podlaypadn.

H aBefatdotnta tng pETpnong Oa MPEMEL VOl EKTIUATAL 1) VO XPNOLUOTIOLELTAL 08 OAaL
Ta otadla plag HeTpnTkAg Stadikaciog amd tnv dewypatoAnyia €wg Kat tnv
avadopd — aflohoynon twv amoteAeoudtwyv. 2to Ixnua B.1 amewkovilovtal ta
Baolka otadlo TNG METPNTIKACG Sladlkaciog Kol n CUCXETION TOUG UE avtiotola

kedpaAata tnG AtdakToplkig AlatpLpng.

ANAOOPA
ANOTEAEZMATQN
AEITMATOAHWIA AIAAIKAZIA » KAI AzZIOAOIHZH
METPHZHZ
THZ

SYMMOPOQIHZ
Chapter 3 / Annex A ap. I Chapter 4 / Annex A tap. A Chapter 6 / Annex A tap. 3T
Extipnon ¢ aBePardtnrag Ektipnon t¢ afePatotnrag Xprion g aBePardtntag otnv
SeypatoAniog L0l TUTTLKA G LETPNTLKAC agohdynon g

Stadikaoiog ouppdpdwong

Chapter 5 / Annex A ntap. E
Extipunon tg apeBatotnrog
pla LeTpnTIKNG Stadkaoiag
TIoU T PN BAVEL KATAOKEUT
KAUTUANG Babuovopunong

Ixnua B.1 Baolkd otadla tng HETPNTIKAG Sladlkaoiag Kal cuoxXETion WLE avtioTolya
kedpaAata tnG Adaktoplkig AlatpLpng.

B.2 lpoosyyioeic ektiunon¢ aBeBaiotntocg

Yrdpyouv U0 YeVIKEG Tpooeyyiloelc-pEBodol yla TNV ektipnon tng apfefaitdtntag, n
HEB0SOC TNG povtedomolnong Kal n eUmelpkn Hebodog.

H «uéBodog povtehomoinong» mpoodlopilel OAeG TG tNYES afefatdtntag EExwpLoTa,

oL omoieg otn ouvéxela ouvdualovtal (Stadidovral) péow €vOC HABNUATIKOU
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povtéhou. H euputepa katavont peEBodog povtelomnoinong Baciletal otnv Odnyia
GUM. 20pdpwva pe t Odnyla GUM, n aBefaltdtnTta o0To OMOTEAEGHA LLOC LETPNONG
OTOTEAEITOL  YEVIKA OmO TOAEG OUVIOTWOEG, OL OMOole¢ Mmopouv  va
katnyoplomownBouv o€ SUo €ibn avaloya He TOV TPOTIO UTOAOYLOMOU TOUG: OTLG
afePfaidtnteg Tumou A, mou umoAoyilovtal e OTATIOTIKEG HeBOSOUG, Kal OTLG
oBeBatotntec Tumou B, mou unmoAoyilovtal pe GAAa péoa. H katnyoplomoinon autn
bev avtiotolyel otn Stakplon peTtafl «TuXalwvV» KAl «CUCTNUATIKWYY afEBaloTATWV.
OL ouvioctwoeg Tumou A mpokuntouv amnd tn dtakvpavon (variance) TNV TUTUKA
amokAlon (standard deviation) kat toug BaBuolg eAeuBepiac Tou AMOTEAECUATOG,
evw elval ouxva amapaitntn Kot n yvwon tn¢ ocuvdlaklupavong (covariance). Ot
ouvlotwoeg Tumou B, moapd 1o OTL Oev mpokUTTouv ameuBeiag amd Kamola
otatlotik emefepyacia, odeilouv va Tmopouctdlovial HE OPOUG  TUTIKNAG
oBeBatotntag. H tumikn avtn) aBsBatdotnta pnopei va BewpnBel wg mpooéyylon tng
avtiotolng Stakvpavong, n vmapén tng omoiag udiotatal wg undBeon. H teAkn
ouvbuaopévn afeBatdtnta (combined uncertainty) mpokUTTEL Amd T0 cUVSUOCUO
OAWV TWV EMUEPOUG OUVIOTWOWV, eKOPAlOUEVWV HE TN HOopdr TUTIKWV

OTIOKALOEWV.

Mapoho mou n ¢oocodia tng 0Obnyiag GUM otnpiletal otnv xpnon ng
ouvlUAOHEVNG TUTIKAG oBEBALOTNTOG WG LA YEVIKA TIOPAUETPO XOUPAKTNPLOUOU TNG
moldTNTAg TG HETPNONG, OTNV TEPIMTWON TNG TEKUNPLlwoNg tng cupupopdwong n
mapdpetpog auty &ev elvat n 1o KATtAAAnAn &edopévou OtTL emutAéov eival
amopaitntoc o kaBoplopdg evog eVPOUC OTO omoio Ba epmeplEXeTaLl Eva PEYAAO
Moo0ooTo (.. 95%) Twv €ayOUEVWY TIHWV Y, CUUPBATWY HE TIG CUVONRKEG HETPNONG
TOU HETpOUUEVOU HeyEBoug Y. To eUpog autd eival amapaitnto Wlaitepa otnv
neptmtwon AnPncg amodpdcewv mou adopolv TNV acPAAELd, TNV UYEla Kol TIG
EUMOPLKEG ouvallayéG. Mo toug mapamavw Aoyoug otnv pebodoloyia GUM
kaBlepwOnke n xprion tng amokaAoluevng dteupupevng afeBaitdtntag, U, n onoia
Slvetal amo 1o ywopevo tng cuvduaouevng TUTILKAG afeBatdtntag u(y) pe Evav Eva
ouvteheotn kalung k, U=k-u(y), £€tol wote va opiletal €va dtaotnua mbavotitwy
[y-U, y+U] ekatépwBev tng €€ayOpeVNG €KTLUNONG Yy OTO OTOLO EUMEPLEXETAL TO
QTALTOUEVO LEYAAO TTOCOOTO TLUWV TOU HETPOUEVOU HeyEBOUG. To Sldotnua autod
avtlotolyel oe pla mBavotnta kaAudng i enimedo gpmiotoolvng p. Mo KAmolo
emu{ntovpevo enimedo epmiotoolvnG p, 0 GUVTEAEOTNC KAAUYPNG k TIPOKUTTEL Ao
TV Katavoun t-student yla ouykekpluévo aplOud Pabuwv eleuBepiag v, OnA.
k=tp(v).
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‘Evag evaAAaKTIKOG TPOTOG yla TNV ektipnon tng apefalotntag eival pe t xpnon
npooopoiwong Monte Carlo. Ita mAaiowa epappoync tng mpooopoiwong Monte
Carlo (mBavokpatiky HEOBOSOC) TPAYUATOMOLEITOL OUVSUOOUOC  KOTOVOUWV
TOavoTATWY HEOW aplOUNTIKAG Tpooopoiwong o€ avtiBeon Me T KAQOOLKNA
nebBodoloyia GUM (vietepuiviotikn pEBodog) dmou mpayuatomnoleital cuvOUAOHOG
oBeBaotitwv. H péBodog Monte Carlo eival xpriolun yla TNV €mKUPWON TWV
anoteAeopatwy Tou Sivel n peBodoloyia GUM, kaBwg Kal yLa TIG TEPUTTWOELG OTIOU
bev oxvouv oL mapadoxeg mou yivovtal katd tnv edappoyn tng peBodoloyiag
GUM. Ot BaolKEG OPXEG yLaL TNV EKTIUNON TNG aBeBatotntag pEow TG HeBodou g
povtelomnoinong (epapuolovrag eite péBodo GUM eite mpooopoiwon Monte Carlo)
UIopoUV va eMeKTAO0OUV KOl 0TNV EKTLLNON TNG aBERALOTNTOG LETPNTIKWY LOVTEAWY
mou nepAapBavouv moANAAG oTddia PETPNONG 1 / KoL EUIEPLEXOUV TTIEPLOCOTEPA

TOU £VOC UETPOUEVA LEYEDN.

Amo tnv AGAAN MAEUPA, UTIAPXOUV KEUTIELPLKEG TIPOCEYYIOELGY, OL omoieg Bacoilovtal
oe bebopéva embooswv Twv HEBOSwv, T omoia yla va Swoouv afLOTLOTEG
EKTIUNOELC afeBatotnTag Oa MPEMEL va £X0UV EVOWUOTWOEL ETLOPACELS Ao 000 TO
duvatov neplocotepeg mNyeG apefatotntag. OL EUMELIPLIKEG TIPOCEYYIOELS, OL OTIOLEG
Sivouv amoteAéopata cupBata pe tnv Odnyia GUM, eivat blaitepa KATAAANAEG yLa
TIC TIEPUTTWOELC OTIOU ONUAVTIKEC OUVELOPOPEC otnv afeBatotnta Sev eival eUKoAo
Vol EVOWHATWOOUV 0TO HOONUATIKO UETPNTIKO HOVTEAO 1 OTIOU TIOAAA €pyaoThpla

XPNOLLOTIOLOUV OUCLACTIKA TAUTOONUEG LEBOSOUG KAl EEOTIALOUO.

ZTLG TIEPUTTWOELG OTIOU €K TWV TIPOTEPWV (prior) yVWoeLG KOl TIETOLOAOELG OXETKA HE
Ha pe petpnon eival Sltabéoiueg, autég pumopolv va alomolnBouv pe tn xprion
Mneillaving (Bayesian) otatiotiking pebodoloyiag, n omoia o cuvduaopd HE TO
amotéAeopa Kat tnv afefatdtnta tng HETpnong a pag Swoel pia aflomotn K Twv
UOTEPWV (posterior) kKatavoun ylo To PeTpoupevo peyebog. OL aBeBatdtnteg TuTou
A 1 oL aPfeBaldtnteg Kovtd OTO0 WUNSEV UMOPOUV val EKTUNOOUV MPEOW HLOG

Mmnei{lavng mpooEyyLong.

Yrniapxouv SLddopeg mpooeyyloelg yla TNV afloAdynon Twv €pyacTnpLoKwY Kal
HUETPNTIKWY CUOTNUATIKWY odaApdtwy (bias) kaBwg Kot yla TNV LETOXELPLOT) TOUG OF
oxéon He TNV eKtipnon ¢ aBefadtntag. To oUOTNUATIKO OPAApO KoL N
afefatdotnta uMoAoylopoU Tou, Otav Oev Tpaypoatomoleitat Sopbwon  Tou

OTIOTEAECHOTOC, TIPETIEL VOL EVOWMOTWVETOL 0TNV afeBatotnta TG HETPNONC.
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210 Kedpalawo 2 tng mapovoag Albaktopikig Alatpng meplypddetal mARpwE To
Bewpntikd UTOBABpo Goov adopd TIC Mpooeyyioelg-peBodoAoyieg yla TV ekTipnon

Kall TN xprnon t¢ apefatotnrac.

. EKTIMHZH ABEBAIOTHTAZ AEIFTMATOAHWIAZ KAYZIMQN

I.1 Eioaywyn

H dewypatoAnyia amoteAel éva Baockd otddlo Twv METPNTIKWY Sladikaclwy Kal
OUVELODEPEL ONUAVTIKA OTNV aBefaloTnTa TWV EPYACTNPLOKWY HETPACEWV. Mia
alomiotn ektipnon tng apefatdotntag Adyw SetypatoAnyiog pmopei va odnynoet os
KAAUTEPO EAEYXO TWV KWSUVWV Tou cuvdeovtal pe anmodAoeLlg tept CUUHOPPWONG R
un, €vog kavoipou pe mpodiaypadeg mou emPBaAel n vopobeoia. Zto KepdAato 3
¢ mapoloag ASaKTopLkAG AlatplBig meplypadovTal Kal cuyKpivovTal we Pog Ta
QTMOTEAECHATA TOUG, TPELG EUTIELPLIKEG OTATLOTIKEG LeBodoAoyieg («kAaown» ANOVA,
avOektiki ANOVA Kal OTOTLOTIK €UPOUG TIHWV) xpnolponowwvtag dedopeva evog
Llooppomnuévou melpapotikol oxedlou (balanced experimental design). OuL Tpelg
neBodoloyleg xpnolgomolouvtal ywo. TNV eKTipnon ¢ aBepfatdotntag Aoyw
SdeypatoAnyiag kavoipou (vinlel kivnong) kat Adyw tng avoAutikig Stadwkaoiag

TPOoOoSLOPLOHOU TIEPLEKTIKOTNTOG o€ Belo.

I.2 MpwtokoAAo SetyuaroAniac kot oxebLaoUo¢ UETPAOEWY

YAomoliOnke €va LOOPPOTINUEVO TELPAUATIKO 0XESL0. AuTtAd Selypata eAndOnoav
anod 104 mpatipla LYpWV KAUGiwyY, Ta omoia eTAEXONKav Tuxaia kal anoteAovoav
10 10,9% twv 950 mpatnplwv CUYKEKPLUEVNG ETALPELOG TOL oTtoia mapakoAouBouvtal
oo TO EPYAOTAPLO O cuatnuatikn Baon. To cuotnua deypatoAniag — availuong
TIou xpnoluomnolnke mapouotaletat oto ZxApa 1. Ta Sutha delypata eAndOnoav
enavoAappdavovtag to 8lo mMPwTOkoAAo SeypatoAnyiag. To TPWTOKOAAO
SewypotoAnyiog mou xpnowuomow}Bnke Atav Baclopévo otnv mpotunn péBodo
ASTM D 4057 (2012a) nou nieplypdadel pebodoloyieg pn avtopatng detypatoAniog

TeETPEAQLOU Kal TPoilovTwy neTpeAaiou.
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/ AvdaAuon Al
Agiypa A

\ AvdAuon A2

210X 0G
AgiypatoAnyiag

/ AvdaAuon Bl
Acgiypa B

\ AvdAuon B2

Ixnua .1 looppomnpuévo MEPAUATIKO oXESLO yla TNV ektipnon tng apefalotntag
™¢ SelypatoAnyiag.

Ta O&utAd  Selypata  avaAubnkoav € SutAoUV  KATW OO OUVONKEC
enavoAnyuotntag. Mo tov mpoodloplopd 1TNG TEPLEKTIKOTNTOG Ot Oelo
xpnowornow|Bnke o avaAutng Belou ANTEK 9000S, €fomALOMEVOG HE QAUTOMATO
SetypoatoAnmtn. O e€oMALOUOG AUTOC CUHMOPPWVETAL TARPWE HE Ta tpotura. ASTM
D 5453 (2012b) kat I1ISO 20846 (2011) yia tov mpocdloplopd Osiou oe kavoua
autokvATwy. H mAeloPndia Twv amoTEAEOUATWY TWV UETPACEWY TWV SELYUATWV
Bpebnke va mepiéxet Beio Aydtepo amd f oAy kovtd ota 10 mg kg™, to omoio eivat

TO VOMOBOETIKO (Avw) 0pLo tn¢ EE yla tnv meplektikoTnTa TOU VINleA Kivnong ot Beio.

I.3 MeSBoboAoyisc avaAuong beboucvwv

To oOTaTIOTIKO HOVTEAO TOU Teplypddel TN oxéon MeTaED HETPOUMEVNG Kall
TIPAYUATIKNA G TIUAG TNG CUYKEVIPWONG LLOC ouoiag, BAoEL pla PETpnong, X, EXEL TV

oKOAoubn popdn:

X=X, +&

true sampling

+& (r.1)

analysis

OTOU  Xiye, ELVOL N TPAYUATIKA HEON OUYKEVIPWON TNG OUCLAG OTO OnUElo
SetypatoAnPiag, Esamping, ElvVaL TO OUVOAKO opdApa Aoyw SeiypatoAnydiog, mou
ekppaletal amo pla Stakupavon azsamp“ng KOl Eanalysis, ELVAL TO CUVOALKO QVOAUTLKO
oddlpa, mou ekdpadaletat amd pa Stakvpavon, Gzanalysis- Av oL Tnyég NG
StakVpavong elvat avedptnteg, TOTE n OUVOAWKN Slakvpavon TG HETPNONG,

0% measurement, yla éva onpeio SetypatoAnyiog divetat amnod tn oxéon:

PhD Thesis — D. Theodorou All



ANNEX A: EXTENDED ABSTRACT IN GREEK

2 2
measurement Gmpling

2
+ 0 aysis (r.2)

o
AV XpNoLHOTONBOUV Ol OTATIOTIKEG EKTIUATPLEG, S°, YLt TV TIPOGEYYLON TWV
SlaKupAvVoEWY, 02, TOTe N eflowon (I.2) yivetat:

+g2 (r.3)

analysis

:Sz

Sr?]easurement sampling

Ta cuoTaTIKA TNE SLAKUAVONG TNG KETPNONG, Ol SLOKUUAVOELG TNG SelypatoAnyiog

KOl TNG AVAAUGCNG, TIOU AVIUTPOCWITEVOUV TIC aVTIOTOXEC aBeBaldTnTES, Umopouv va

SloXwpLoTOUV  Kal vo  €KTUNOOUV  XPNOLUOTIOLWVTOG KOTAAANAEG OTOTLOTIKEG

nebodoug:

o «KAaowkri» ANOVA. H ANOVA (avdAuon &lakupavong) €ival pia ototloTikA
TEXVIKN UE TNV omola ol SLAKUHAVOELG TTOU TIPOEPXOVTAL ATlO SLOPOPETIKEC TINYEC
UIopOoUV va amopovwBouv Kal va ektipunBouv. O mo amAocg tumog ANOVA eival n
ANOVA katd €va mapdyovta (one way), n omoia efetalel pia avefaptnin
petapAnTi kot pia e€aptnuévn petapAnti. H ANOVA umnopet va epoppootel ota
6ebopéva mou mopdyovtol amd TNV €daApUOyn] EVOC  LOOPPOTINHEVOU
TEPapOTIKOU  oxediou, Tpokelwévoy va  ektiunBelt n  afeBaidtnTa
SdewypatoAnyiag. Ou ektiunoelg tng ANOVA Baocilovtal otig Stadopeg amo Tig
UEOEG TIUEC.

o AvOektikn ANOVA. H edappoyn tng avBektiknic ANOVA mou xpnoluorolel
OVOEKTIKA OTATIOTIKA PEVEDN £xel amodekBel OTL elval Wdlaitepa KATAAANAN yLa
TNV EKTIINON SLOKUPAVOEWY, OE TIEPUTTWOELG OTIOU N EYKUPOTNTA TNG «KAQGLKAGY»
ANOVA cival apdiofntiown (m.x Aoyw Umapéng akpoiwv Tlpwv). H avOektikn
ANOVA xpnotluomolel avOEeKTIKEC EKTIUNOELG TOU UECOU OPOU KAl TNG TUTIKNG
amokALong ou untoAoyilovtal amno pla emavaAnmriky Stadikaocia.

e JTATIOTIKA €UPOUC TIUWV. H OTOTIOTIKA €UPOUC TLHWV, OTIWE KOL N «KAQOLKN»
ANOVA kavel tn napadoxn UMapéng KAVOVIKAG KATOVOMNG EVW OL UTTOAOYLOMOL
yivovtat ypnowomnowvtag Oladopeg HeTAEL SUTAWV  UETPHOEWV. TNV
mpaypatkotnta n dtakvpaveon tng deypatoAnpiag umoAoyiletal EQpeca we n

Sladopd twv SLaKUUAVOEWY TNG LETPNONG KOL TNG AVAAUCNG.

Na va umoloylotel éva Swdotnua kaAuyng (Steupupévn aBePfatdtnta) mou
avtotolxel oe mBavotnta KAAuYNg mepimou 95%, oL TUTUKEG OMOKALCELS, s,

noAAarmAaotdlovtal pe €va ouvteleotr KaAuyng mou looutat pe Suvo (2). H
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Oleupupévn aPePaldtnta pmopel emiong va ekppootel o€ oxéon HE TNV

avadepOUevn TIUN X (WG TOC0OTO), WC OXETIKN Sleupupévn afeBatotnta U (%).

I.4 AnoteAéouara

Ta amoteAéopata TG eneéepyaciag Twv UETPAOEWV (glg Suthouv avaAvoelg 104
Sudwv  Selypdtwy) ME TN XPAON TWV TPWV OTATIOTIKWY UeBodoloylwy
napovaotalovrtat otov Mivaka .1 kat oto ZxAua .2. H Steupupévn aBefatdotnta g
Sewypatohniac kupaivetal and 0,34 ewe 0,40 mg kg, evid n oxetkr Steupupévn
afefadtnta and 4,8 swg 5,1%, avaloya pe tn otatotiki peBodoloyia mou
xpnoluomnow|Bnke. OAeg oL aBefalotnteg U €xouv ektiunBel pe xprion ouvteAeotn

KaAuPnc oo pe 2 mou avtiotol el os eninedo gpmiotoolvng 95% mepimou.

Metal Twv 6eS0UEVWY UTIAPXOUV EMTA OKPALEG (EKTOTIEG) TIUEG METAEL onueiwv
SewypatoAnyiog, ot omoieg emiPePfawwbdnkav wg tetolec edpapuolovtog To TEOT
Grubbs. EmunmAéov, Tpelg opddeg Sedopcvwy avayvwploTnKav we akKpaleg TILES AOYyw
avaiuong n dewypatoAnyiog edpapuolovrag to teot Cochran. ZuvoAlkd, 9 amo Tig
104 opadeg debopévwy (8,7%) avayvwploTnKayv OTATIOTIKA WG AKPALEG TIUEG. Q¢ €K
ToUTOU, Ta amoteAéopata tng avOektikng ANOVA, n omolia dev ennpedletal amno
HKPO aplOpo akpaiwv Tipwv (Ayotepo amd 10%), umopel va BewpnBouv wg
TIEPLOOOTEPO QLOTILOTA OE CUYKPLON ME TO QNMOTEAEOHATA TNG ZTATLOTIKAG EVUPOUG

TIHWV Kal TnG «kKAaotknc» ANOVA.

Elval pavepo and ta amoteAéopata tng avOektikig ANOVA otL n afeBatdtnta tng
HETPNONG TIPOEPXETAL KUPLWGE amd tnv Slakupavon TG avaAuonc. ZUYKEKPLUEVA, N
ofeBatotnTa TNG AVAAUGCNC QVTLTPOOWTEVEL TO 71% TNG GUVOALKAG afeBalotnTag
™G METPNONG. Auto acdrivel meplBwpla yla TNV AMOTEAECUATIK HElwon TG
OUVOALKAG aBefatotntag, n omoia pmopel va emiteuxBel KAVOVTOG TEPLOCOTEPES
HUETPAOELC Kal urtoAoyilovtag Tn HEON TN TOUG, avti yia Tn SLEVEPYELD ULAG LOVIC
HETPNONG. Z€ QUTA TNV MEPUTTWON, N TUTIKA aTOKALON TNG HEONG TIUAG EAATTWVETAL
odnywvtag o€ UKPOTEPEG ouvelopopeg otnv  afePfatdotnta Adyw tuxaiou
odaipatoc.

PhD Thesis — D. Theodorou Al13



ANNEX A: EXTENDED ABSTRACT IN GREEK

Nivakag l.1: AMOTEA£CHOTO UTIOAOYIOUWY ME XPNON OTATIOTIKAG €UPOUC TLUWV,

«kAaoknc» ANOVA kat avBektikiic ANOVA.

4,00% -

2,00% -

Ztatiotikf EUpoug «KAaowkri» ANOVA AvBOektiki ANOVA
THwv
Méon T (mg kg™) 7,988 7,988 7,079
Sanalysis (Mg kg™) 0,205 0,378 0,265
Ssampling (Mg kg™) 0,202 0,200 0,169
Smeasurement (Mg kg™) 0,288 0,427 0,314
Usnanysis (Mg kg™) 0,411 0,755 0,529
Usnaiysis (%) 51 9,5 7,5
Usampiing (Mg kg?) 0,404 0,401 0,337
Usampling (%) 5,1 5,0 4,8
Unmeasurement (Mg kg™) 0,576 0,855 0,628
Uneasurement (%) 7,2 10,7 8,9
Juvelopopd otnv 51 78 71
opefalotnta Adyw
avaAuong (%)
Juvelodpopd otnv 49 22 29
apePfalotnta Adyw
SetypatoAnyiag (%)
12,00%

5 10,00%

£

9

3 800%

o

‘}é 5 00% Range Statistics

g BANOVA

2 mRobustANOVA

a

=

5

0,00%

ANAAYZH

AEIFTMATOAHYIA  ZYNOAIKH METPHZH

IxAua .2 Z0yKplon TwV OXETIKWV OLEUPUPEVWY aBEBALOTATWY OTMWG OUTES

EKTIUAONKAV HE XPrON OTATIOTIKAG EUPOUG TLUWYV,

avOektikig ANOVA.

«KAOLOLKAG»

ANOVA ko
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A. EKTIMHZH ABEBAIOTHTAZ METPHTIKHZ AIAAIKAZIAZ

A.1 Eioaywyn

H extipnon tng apefalotntag kat n KabBLEpwaon PETPOAOYIKNG LxvnAaoLludtnTag ival
oUVUDAOUEVEG HE TNV OELOTILOTIA TWV QAVOAUTIKWY UETPNoEWV. Kowd amodektn
pneBodoloyla yla tnVv ektipnon tng aBefaltdotnTag eival autr) mou nepLlypadeTaL oTNV
Oényia ISO “Guide to the Expression of Uncertainty in Measurement - GUM”.
Qotooo, n npoogyylon GUM mapouctdlel mePLOPLOUOUG otV edapuoyn TG, Tou
OXETI{OVTAL HE TNV YPOAUMULKOTNTA TOU POVTEAOU PETPNONC, TNV LOXU TOU BEWPUATOG
KEVIPIKOU Oplou KoL TOV UTIOAOYLOHO Pabuwv eAlsubeplog. Mpokelpévou va
EemepaoOTOUV OL AVWTEPW TEPLOPLOMOL EkEOONKE amod tnv emttponr) Joint Committee
for Guides in Metrology (JCGM) pia cupmAnpwpatiky odnyio tou GUM omou
neplypadetal n epappoyn ¢ aplOuntikng pebodou Monte Carlo (MCM) wg
evaAaktikig Stadlkaciag yla tnv ektipnon ¢ apefaotntag. H extipnon tng
afePfatotntog pe t xprnon tng pebodoloyiag Monte Carlo Baoiletal otnv TeXVIKA
Stadoong katavouwv mbavotntag kat oxt ofeBoalotitwy (KATL TOU LWOXVUEL OTNV
KAOLOOLKN Tpoogyylon katd GUM). Ito KedpaAawo 4 tng mapoloas AlSAKTOPLKNC
AwatpBig ol SU0 AVWTEPW TPOOCEYYLOELG XPNOLUOTOLOUVTAL Ylat TNV TIApPAAAnAn
ektipnon tng afeBatotnrag HETtpnong g Beppoyovou duvapng netpelaiov Kivnong
LE TN Xprion BepboUETPOU OApOU.

A.2 Extiunon tn¢ aBeBaitotntac pe xprion pedodoAoyioac GUM kau pe npooouoiwon
Monte Carlo (MCM)

Jta mAaiowa tng mpoogyylong GUM ektipatal n turikn ofeBaotnta, u(y), tou
e€epxopevou peyéBoug Y Kal OTn OUVEXELX yivetol n mavia umobeon OTL To
efepxopuevo peyebog akoAouBel kavoviky koatavopr f koatavour t-Student. Ztnv
npoogyylwon Monte Carlo, avtiBétwg, mpoodlopiletal anevubeiag n katavoun tou
e€epyopevou peyeboug xwplc va yivetal kamola untobeon n mapadoxn yla to £idog
™G Zto ZxAua A.1 Sivetal éva mapadelypa edappoyng twv 2 pebodoloylwv yla
€VOL LOVTEAD PETPNONG ME 3 aveEApTNTEG ELOEPXOUEVEG LETOPANTEG.
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Xp, U(Xy) ——
PDF for X;

A e Y= Xy X Xe) A Xo, U(Xz) ——>] Y =1 (XiXoXs) ——> Y, U(y)—————> /\

PDF for X,
PDF for Y Assumed PDF for Y

/\ X3, U(X3) ———>

PDF for Xa

Ixqna A.1 a. Awddoon katavopwv TmBavotntag 3 avedptntwv HeTABANTWY
(Mpooéyylon Monte Carlo) B. Aladoon aBeBatotntwyv 3 aveédptnTtwv HeTaBAnTwv
(Mpooéyylon GUM)

H mpooéyylon Monte Carlo yevikd amattei 10° emavainmrikéc detypotoAndieg otig
KATAVOUEG TWV ELOEPYXOUEVWY MeEYEBWVY yla va mpoodlopioel pe aflomotio éva
Swaotnua kaAvuyncg pe mubavotnta kalvuPpng 95% kol pe akpifela evog i dvo
onuavtikwy Pndiwv. Ztnv npdén eivatl mpotiuntéo va edpappootel pa dStadikacia
pooapUooTIkAG (adaptive) Monte Carlo katd tnv omola mpaypatonoleital €vag
ouvexwg oaufovouevoG aplOHOG  emAvVOANTTIKWY  SslypotoAnPuwv  péxpL  To
OTMOTEAECUOTO  (OVOEVOUEVN TR, TUTIKA afefaldotnta, Oplo  SLOOTAUATOG
kKaAung) va «otabepomolnbouv» otatlotikd. Me BAon TNV cuvAPTNON KOTOVOUNG
mulavotntag tou eepxOUEVOU PeEYEBOUG UmopoUV va TiPooSLopLloTOUV OTATLOTLKES

TIAPAETPOL OTIWE To StaoTtnua KaAuvPnc.

A.3 Epapuoyn puedobdodoyiwv GUM kot MCM - AnoteAéouata

Ita mAaiowa tng mpoofyywong GUM avayvwplotnkav pEOWw TOU paBnuaTikoU
HOVTEAOU TNG METPNONG OAOL TO ELOEPXOUEVA UEYEON TOU OUVELODEPOUV OTNV
afepatdtnTa. ITO HETPNTIKO HOVIEAO EvOowHaTWONKAVY Kot 2 undevikol 6pot, brep Kat
T0 6rep’, Yl VO ElCAYOUV TNV aBeBalotnta AOyw tuxaiwv oPaApATWY KATA TN
HETpnon kal katd tn Pabpovounon. Ot TumikéG afeBaldTNTEG TWV ELOEPXOUEVWVY
HeyeOBwWV ekTLUNONKaV eite BAoeL PLETPOEWV KAl EPOPHOYNC OTATIOTIKWY HEOOSWV
(TOmou A) eite pe aAAa péoa, onwe Slabéoiueg mMAnpodopieg amd MOTOMOLNTKA
SlakpiBwong, XapaKTNPLOTIKA TOU opydvou, ponyoupeva dedopéva KA. (Tumou B).

TN OUVEXElD MEOW UTIOAOYLOMOU TWV OUVTIEAEOTWV egvooBnoiag yua Kkabe
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elogpyopevo péyebog, umoAoyiotnke n ouvelodopd otnv afefaidtnta. TEAoG,
epapuolovtag to vopo badoong twv ofeBalotAtwy, EKTIUABONKE N TUTIKNA
(cuvbuaopevn) apeBatdtnta, u(Qy), Tou eepxopevou peyeBoug Q, (Beppoyovog
duvaun), n Oevpupévn afePatdtnta (yia mBavotnta kdAuyng 95%) kal To
avtiotolyo Sldotnua  kAAuyng. H Olevupupévn aPBepatdtnta  umoAoyiotnke
Bewpwvtag ite kKavovikn Katavopr (cuvteheotng kalung k=1,96), site katavoun
t-Student pe 21 Pabupoug eAeuBeplag mou umoloyiotnkav He edappoyn TG
eflowong Welch-Satterwaite (ouvteAeotg kaAuvyng k,=2,08). Ito Ixnua A.2
daivovtal ol eKTIUAOELS TNG cuvduaopévng afeBatdtntag KoL oL CUVELOPOPEC OTNV

oBeBaloTnNTo OAWV TWV ELOEPYXOUEVWV HEYEOWV.

TuvBuaayuévn aBepaidrma #

Tuyaio opdApa Badpovopnang ]
Deppokpamakn Sopopd (Babuovopnan)
Lud pBuwon olpparog kauang (Babuovopnan) ]

LudpBwonvirpikol o&og (Babpovapnon) ——
Seppoyévac Sivopn BeviokoloEfog -:I

IMdfa Bevioikol oEEog -:I

MepelkTikérmro oe Beio 1

MaZa Seiyparag 1

1
LubpAwon obpuaro ¢ KGuang
LudpBuwonwirpikol oEfog -:I
Bepuokpadiakn Spopd 1

Tuyoio opdhpa pETprnong : : : : ]
T T T T

20 40 60 a0 100 120 140 160
Jig

()

IxAna A.2 Tuvbuaopévn afefatotnta Beppoyovou SUvaung kal cuveloPopEG oTnV
afefaiotnra.

H néBodog Monte Carlo ulomot|Onke oto meptBAaAAov Tou padnuatikol AoyLopLtkoU
MATLAB. O kwdéwkag mou avamtuxdnke Olevipynoe SeypatoAnyieg amo TG
KOTOVOUEC TWV ELOEPYXOUEVWY HeyeBwv. Mo OAa ta pey£On xpnolpomolndnkov
HLOVOUETABANTEC KOTOVOUEG, e e€aipeon (evyn HeyeBwv mou epudavilouv GUOYETLON
Aoyw Kowng xpnong e§omAlopol omou ol delypatoAnyieg Eywvav amod SLueTafAnTES
KatavopEg (joint distributions). H peBodoloyia Monte Carlo epapudotnke téoo Ue
TN MpooapuooTikn (adaptive) tng popdn yla 2 emineda aplOUNTIKWY AVOXWV 000 Kol
Ue a priori emi\eypévo apBpd emavaliPewy (10°). O Nivakag A.1 kat to SxAua A.3

eudavifouv ta anoteAéopata OAwV Twv peBodoloyLwv.
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Ixqna A.3 Koatavopég mbavotntag

npooeyyioewv Monte Carlo, GUM (kavovikry katavour) kat GUM (katavoun t-
student).

Q 0.20

M.IikA

Kol

Slootnpata

St

.....
T

040

Mente Carlo method
GUM - Gaussian
GUM t-distribution

SO T T 7 P

080

kaAuPng 95%

Twv

Nivakag A.1 AnoteAéopata edpoappoync pebodoloyiwv GUM kat MCM yua tnv
ektipnon tnc afePfaitdtnrag pétpnong tng Oeppoyovou Suvapng metpelaiou

Klvnong.
Mé£Bodog ApLOpog AnattoV- | EKTIpoUpevn Turukn Awdotnua AplOpoG | AplOuntiki
enavaAn- LEVOG T, Q, ABeBardtnta, KaAuvyng 95% ONHOVTL- avoyn, 6
TTLKWV XpOvoG u(Qy) KWV
Selyparo- umtoAoyL- Unoiwv
Anbwv, M opev
GUM - - 45,19 MJ kg 0,14 MJ kg™ [44,92 — 45,47] -
Gaussian (10794 cal g'l) (34 cal g'l) M) kg'1
distribution [10728 — 10861]
cal g'1
GUM - - - 45,19 MJ kg 0,14 MJ kg [44,90 — 45,49] -
t-Student (10794 cal g'l) (34 cal g'l) M) kg'1
distribution [10724 — 10865]
calg’
MCM 10° 1,04 sec | 45,19 MJkg" 0,16 MJ kg™ [44,88 — 45,51] -
(10794 cal g (38 cal g™) MJ kg™
[10719 - 10870]
cal g'1
Adaptive 3.5.10° 0,60sec | 45,19 MJ kg™ 0,16 MJ kg (44,88 — 45,51] 0,005 MJ
MCM (10794 cal g (38 calg™) MJ kg kg™
[10719 — 10870] (0,5calg?
calg’
Adaptive 5.7-10° 39,9sec | 45,19 MJkg" 0,16 MJ kg™ (44,88 — 45,51] 0,001 MJ
MCM (10794 cal g (38 cal g™) MJ kg™ kg™
[10719 — 10870] (0,1cal g’
cal g'1

T Xpnotpomotionke H/Y pe ta e€Ac xapaktnplotikd: Intel® Core™ i3 M330, 2.13GHz, 4GB RAM
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OAeg oL peBoboloyieg GUM kot MCM £€6woav TauTtOonUa AmOTEAECUATA OE OXEON
HE TNV EKTWHOUMEVN TN yla tn Beppoydvo duvaun, Q. Amd Tnv AAAn mAgupd,
ONUAVTLKEG SLaPOPEC MAPATNPOUVTAL OE OXECH HE TIC SLEUPUHEVEG 0BeBaLOTNTEC KaL
Ta ekTHWHEvVA Staothpata KAALPNG METAlL Twv amoteAeopdtwy MCM kat GUM.
Zuykekpléva, n Sleupupevn afePatdtnta (yia mBavotnta  kaAudng 95%)
EKTIUNONKE péow NG peBodoloyiag GUM (umoB£tovtog KOVOVIKA KATavopr) oto
0,28 MJ kg™ 1 66,3 cal g™. H Tuurj ot eivat 12% pikpdtepn amod Tnv T mou 8woe
n ebappoyr T peodohoyioc MCM (0,32 MJ kg 1y 75,3 cal g?). Xpnotpomowwvrac
™ peBodoloyio GUM oe ocuvbuaouod pe tnv eflowon Welch-Satterthwaite yia tov
UTIOAOYLOMO PaBuwv eAeuBeplog Kal oTn cUVEXELA, amodidovTag P Katavoun t -
student oto petpoupevo peEyebog odnyolpoaote oe auénuevn (o€ oxeon He TNV
UTIOBEGN TNC KAWOVIKAG Katavoprc) Steupupévn aBepatdtnta (0,29 MJ kg™ fi 70,4
cal gh), aA\& ka AL katd 7% xapnAotepn and auth mou Sivel n pocéyyion MCM.
Autég oL Sladopég umopouv va amodoBouv oTn WKPA HUN YPOAUULKOTNTA TOU
HOVTEAOU PETPNONG KOL OTN IPOOEYYLOTIKA duon tng e§lowong Welch-Satterthwaite,
TIOU OTNV TIPOKELUEVN TIEPUMTWON UNMEPEKTIUA Toug BaBuolg eAeuBepiag. TEAOG, amo
To amoteAéopata paivetal OTL UTAPXEL CUMPWVIO HETAEY TWV QTMOTEAECUATWY TNG
npoogyylong Monte Carlo 1600 otnv npocappootikn (adaptive) tng popdn 6oco otn
Hopdr TG Ue a priori emheypévo aptBpd emavalfdbewy (10°).

A.4 YrioAoyiouoi ouvteAsotwy evaitodnoiag

O umoAoylopog ouvtedeotwv gvalobnoiag kalt twv ocuvelodopwv TOUu KAOE
eloepxopevou peyeboug otnv teAkn afePfaitdtnta dev eival amapaitntog otav
epapuolel kaveig tnv texVik Monte Carlo (oe avtiBeon pe TV MPOCEyyLoN KOTA
GUM omou amattolvtal yla TV KATaoKeur tou tooluyiou aBefatotitwy). Napoia
QUTA O UTIOAOYLOMOG TwV ouvelohopwv Twv afeBalotnTwv XpnolpeVEL OTO va
TPOooSLoPLOTOUV Kuplapxol mapayovteg aefalotntag. To KUELOVEKTNUOY» QUTO TNG
npooéyylong Monte Carlo pmopet gUkoAa va Eemepaotel adol He Pl ULKPA
Tpornomnoinon Tou alyoplBuou Kal tnv epapuoyn Tou yla KABe eLloepXOUEVO LEYEDOG
UOpoUV VO UTIOAOYLOTOUV OL TLUEG TWV OUVIEAEOTWV evualobnoiag kat ot
ouvelodopég otnv aBefaldotnta. Amo Ta OMOTEAECUATA QUTWV TWV UTTOAOYLOUWV
daivetal 6tL ot U0 Kuplapxol mapdyovteg eivarl ta LeYEDN &rep KaL TO byep” T OTIOLL
ouvbEovtal Ue Ta tuxaia opaApata TnG LETPNONG Kat TnG Babuovounong (BA. Zxnua
A.2).
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A.5 Extipunon aBeBatotntwy Tunou A uéow Mneillavi¢ npooéyyLong

Me xprion tNC «KAQOOLKNC» OTATIOTIKNG, N Turmikn afefaidtnta Tumou A evog
HEYEOBOUC X; EKTILATAL WG N TUTIKA aTtOKALON oo €MOVAAAUBOVOUEVESG LETPAOELG
OnA. u(x;)= s(x;). Otav o aplBOPog Twv EMAVOANTITIKWY UETPNCEWV M, €ival HLKPOG
outn N ektipnon kaBiotatol apketd avallomiotn (otatiotika afEBatn) Kat yio auto

TO AOYyO yivetal xprion twv Babuwv eAevBeplag.

Méow tn¢ Mnebllavng mpoo£yyLonc n Tutikn afefatdotnta TUMOU A EKTIHATOL WC:

m_13(xi) (8.1)

uBayes(Xi) = m—3

O OuVTEAEOTAC \/(m—l) /I(m-3) mou eivar evowpatwpévog otn Mmedliavn
nipooeyylon e§aleidel ovolaotikd TN oTatloTk aBefaldtnTa mMou MPOKUTITEL Ao

€Va ULKPO 0pLOUO LETPHOEWV.

TNV Mepimtwon tng ekTinong tng afeBatdtntag g HETPNOonG tng Ogppoyovou
SdUvapng, ot duo kupiapyol mapdyovieg afepfatdtnTag eivat Ta HeYEDN brep KOL TO
brep’ TOL OTIOlL oUVEEOVTAL pe Ta TuXaia odalpata tng Pabpovopnong kat Tng
HETPNONG KOl ekTlpwvTal w¢ aBefaiotnteg Tumou A. H xpnion tng Mmedliavng
TIPOCEYYLONG yla TNV ektiunon autwv afeBatot)twyv TUMou A KOl OTn CUVEXELX N
Xpnon toug oto oollylo afeBaotitwv TG peBodoloyiag GUM €dwoes pla
ocuvbuaopevn afeBatdtnta u(Qg) 160,7 J gl f 38 cal g' mou avtiotowel oe 95%
Sudotnua kéAung [44,88 — 45,51] MJ kg' 1§ [10719 — 10870] cal g'. Ta

OTTOTEAECHOTO QLUTA CUUPWVOUV UE TO OMOTEAEGUATA TNG IPOoEyylong MCM.

A.6 Extiunon t¢ aBeBaiotntac ue xpnon bcbouévwv amo SlEpyaoTnpLaKES

OUYKPLTIKEC SOKIUEC LKAVOTNTOC

H afeBatdotnta tng HETpnong tng Beppoyovou dUvapng EKTUABONKE Kol e TN XprRon
6cbopévV amO  OLEPYAOTNPLOKEC OUYKPLTIKEC OOKIUEC KOVOTNTOG (EUTIELPLKN
npooéyylon). Xpnotporowwvtag Sedopéva amd 9 KUKAOUG €VOC CUYKEKPLUEVOU

Slepyaotnplakol POoyPAUMATOC, EKTIUNONKE N cuvoAlKn (pooled) Tumikn amokALon

00led

0€ OUVOAKEG aVamapaywypotnTag, S, tng Heboddou pétpnong tng Beppoyovou

Suvaung kauoipwy. Ot uroloylopol édwoav % =0,15 MJ kg™ (36 cal g*), To
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omoio moMamAaclalopevo He €va ouvteheotn kaAudng  k=1,96 Oilvel
Steupupévn apepatdtnta 0,30 MJ kg™ 1§ 71 cal g™. H extipnon auty sival wikpdtepn
Qo Ta AmoTeAéopaTa TNE poogyylong MCM. Mapola autd o€ TTOANEG EPUTTWOELG
OTIOU OL QmoUTAOELS OKPIBELOG TwV XPNOTWV €lval XOMNAEG, MLl €KTiUNON
afefaotntog amo Sebopéva SlepyaoTNPLOKAG QVOTTAPAYWYLLOTNTAG MMOPEL va

amodelytel kat@AAnAn yla T okomoupevn xpnon (fit for purpose).
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E. EKTIMHZH TYNIKHZ ABEBAIOTHTAZ KAMINYAHZ BAOMONOMHZzH2

E.1 Eilcaywyn

H Sadikaoia tng Babuovounong eival éva amapaitnto otddlo o€ MOANEG XNULKEG
avaAuoelg mou adopolv otov TPOooSLoploUd TNG CUYKEVIPWONG HLAG OUCLOG HE
Baon tnv amokplon (onua) evog opyavou. H BaBupovounon Snuoupyel pla oxeon
METAEL TNG TLUAG EVOG TTPOTUTIOU (T avadopdg) Kal TG LETPOUUEVNE TTOCOTNTAS
(amokplon tou opydvou). MOALg dnuoupynBel authi n oxéon, n omoia cuvRBwg
neplypadetal amd .  eubBeia ypappn (YpOAUULKO HOVTEAO), TO MOVTEAO
BaBuovopunong XpnOLLOTIOLEITOL AVECTPOUUEVA, E OTOXO Vo TIPOPBAEPEL pLa TN

amnod pia anokplon Tou opyavou.

Ma TNV KATOOKEUN TNG KAUMUANG BaBuovopunong cuxva XpnNOLOTIOLELTAL N YPOUULKN
HEBoboG mpooapuoyng eAaxiotwy tetpaywvwy (linear least square regression) amno
TNV omoia TpoKUTTouv n KAloOn KoL n TETAYUEVN TOU YPOMULKOU HOVTEAOU.
OnwGg Kal JE T TIEPLOCOTEPA OTATIOTIKA UEYEDN, Ol APLOUNTIKEG TLUEC TNG KALONC KoL
NG TETAYHUEVNG AMOTEAOUV HOVO EKTIUNOELG TTou Bacilovtol o €vav TEMEPACUEVO
oplOud pETPRoEWY Kal WG €K ToUTOU cuvodelovtal and aBefoatdtnta. Autd OUWG
oényel kat og pla ofeBaldtnTO OTNV PETPNON ULAG TTOCOTNTAG (TT.X. CUYKEVTPWONC)
HE TN Xpnon KapumuAng Babuovounong. Auti n afeBalotnta, Umopel va ektipunOet
xpnowonowwvtag Siddopeg nebodoug kal mpooeyyioels. Kabwg n Babuovounon
QMOTEAEL OUXVA ML ONMOVTLKA OUVIOTWOO TNG OCUVOAWKNAG aBefoaldtntag tng

HETPNONG, Lo a€LOTILOTN EKTIUNON QUTNC Elval Kplowng onuaoiag.

O mpoolloplopog TNG TEPLEKTIKOTNTAG ot Oelo Twv mpoildviwv mnetpelaiov
npoodlopiletal ocuvnBwg pe T Xprion 61adopwv GACUATOUETPIKWY TEXVIKWY, OL
omolie¢ nephapBavouv oxedoOv mMAVTA TNV KATOOKEUN KAl TN XPron Hlog KapmoAng
BaBuovounong. 2to KedpdAawo 5 1tng mapovoag Awdaktopkng Atatplpng,
edappolovral kat cuykpivovtal 4 pebodoloyieg ektipnong tng afefatdtntog Adyw
KQUMUANG PBabpovopunong mou  XPNOLUOTOLETAL Yl TOV TPOoSLoplopd NG
TepLleKTIKOTNTAG o BOeglo oe kavowa ovpdwva pe t™ MHEB0SO umeplwbdoug
¢Boplopov (ISO 20846, ASTM D5453). EmutA€ov, Sebopévou OTL N ektipnon Twv 2
TIAPOUETPWY HLaC KAUTIUANC BaBuovopnong Baaoiletal o €va LOVTEAO HETPNONG UE
oA\ amAa e€epxopeva petpoleva HeyEOn (kAlon, tetayuévn), epapuolovtal Kal ot
BaolkEG apxEG TNG CUMMANPWHATIKAG odnyiag Tou GUM (Supplement 2 - Extension

to any number of output quantities).
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E.2 Kataokeun kaumnuAng Baduovounong

Ma TNV KATAOKEUN TNG KAUmMUANG Pabuovopnong xpnolpomolnonkav mpotuma
Selypata yvwotAG (MLoTOMOoLNUEVNG) OUYKEVTPWONG T omoia avaAubnkav €Lg
TputhoUv. Me Sebopéva TG CUYKEVIPWOEL TWV TIPOTUTIWY, X; KOL TLG OVTLOTOLXEG
amokploelg tou €fOmMALOMOU, Vi, KOTOOKEUAOTNKE KaumuAn PBabuovounong 18
onueiwv n omola otn ouVEXeEla xpnolporol)Onke ywa va petpnBel éva Selypa
kavoipou vinlel. H e§iowon tng kapmuAng Babuovounong ntav g Lopdng:

Y =b, +b,x (E.1)

omou Y elvalt n amokpwon tou opydvou (e€aptnuévn petafAntn), x eivat n
OUYKEVTPWON Tou avoAutn (avefdptntn petafAntd) kat by kot by elval ot
OUVTEAEOTEG TOU MOVTEAOU, YVWOTOL W¢ TETAyUEVN Kot KAlon, avtiotowa. Kata tnv
ovaAluon Tou ayvwotou Oelypatoc n mopamavw eflowon  XpnoLUOToLELTaL
OVECTPAMMEVN, WOTE VO UTIOAOYLOTEL N OUYKEVIPWON Xpred, HE OebOpévn TNV

QToKpLON, Yo, TOU OPYAVOU:

Xpred = (E.Z)

E.3 Med0oboAoyiec ektiunong tn¢ aBeBatotnracg

E.3.1 MeBoboAoyia GUM

H O&ényla GUM (Guide to the Expression of Uncertainty in Measurement)
neplypddel éva mAaiolo ektipnong tng afeBaldtntag to omoio XpnolUomolel wg
TIANPOJOPLEG TG EKTUATPLEG KAL TIG TUTILKEG OPePBALOTNTEG TWV ELCEPXOUEVWV
ueyedwv (bg, b1, Yo) TOU PETPNTIKOU HOVTEAOU. 3TN CUVEXELX, XPNOLUOTIOLWVTOG TO
vopo tng Sadoong twv afeBalotATwv HECW TPOOCEYYLONG TOU HOVIEAOU HE
avarntuypa oslpdg Taylor 1" td€ng e€dyetol n ektipnon Tou HETPOUHEVOU PEYEBOUG
Xpred KOIL N TUTUKN oBEPBAOTNTA U(Xpred) TTIOU OEiAETAL OTLG SLOKUUAVOELG TWV by, b1

KOl Yo:
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W) =y [Eou(o) ] + [cu() ] +[c,uly) F + 2cc,u(by)uby)r (b, ) (E.3)

OTIOU Co, €1 KAl C; €lval oL CUVTEAEOTEC evalobnoiag Twv bg, b1 KAl yo, U(bg), u(by) kat
u(yo) elvat ot TUTIIKEC aBeBaldTnTeC TwWV by, by KAl yo, Kal r(bg, b1) elval o cuvteAeotnig

OUOXETLONG TWV bg KaL by.

E.3.2 MeBoboAoyia Kragten

H pébodog Kragten, Baociletol otnv MPOCEYYLON TWV UEPIKWV TAPOYWYWV HE
TIEMEPACUEVEC SLadOPEG HE OTOXO TOV UTIOAOYLOMO TWV CUVTEAECTWV gvalobnoiag
otn oxéon umoAoylopou tng afefaitdtntag pétpnong. Me Bdon tnv MPOGCEyYyYLoN
auth, N HEBodog elodyel Evav aplBuntikd TpoOmo UToAoyLlopoU TG cuvduaoUEVNG
oBeBalotntog pETPNONG. H aplBunTIk TPOCEyyLon OVALPEL TNV AVAYKN AVOAUTIKWY

UTTOAOYLOWYV TWV KEPLKWY TIOPAYWYWV.

H aplBuntiki MPooEyylon TwV HEPLKWV TOPAYWYWY TNE CUVAPTNONG TIOU TIOPEXEL
TNV TIUA TOU METPOUHEVOU HEYEOOUG WG TPOG TIC EMUEPOUG METAPANTEG, HE
avtiotolxeg memepaopéveg Sladopeg, ulomoleital Aaupdvovtag tn Swadopd —

Satapayn 6x, lon e tnv avtiotolyn Tumkn apepototnta u(x):

aXpred - 5Xpred _ Xpred (bO + u(bo)) - Xpred (bo)

T, T u(b,) &4
c = 8Xpred ~ é‘Xpred _ Xpred (bl + u(bl)) - Xpred (bl) (ES)
©oob u(by)

C2 aXpred - 5Xpred _ Xpred(yo + u(yo)) - Xpred(yO) (E6)

B u(y,)

E.3.3 MeBoboAoyia Monte Carlo

H pébodog Monte Carlo (MCM) umoloyilel TNV KOTOVOUN TNG METPOUUEVNC
TOOOTNTOG (Xpred), ME Pdon SelypatoAnyieg mou Stevepyolvtal OTLG KOTAVOUEG TWV
ELOEPXOUEVWV PEYEBWV (bg, b1, Vo). ZTNV TIPOKELUEVN TIEPLMTWON, SVO ELOEPYXOUEVEG
noootnteg (by, by) dev eival aveaptnteg (Un pndevikn ocuvdlaklupavon) Kal wg €K
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ToUTOU Xpnoldomoleital ya Tig SewypatoAnyieg pa amd Kowou KATavoun

mbavotntag (joint probability distribution).

H ektipnon tng LETPOUUEVNG TOCOTNTAG (Xpred) UTOAOYIZETOL QIO TO HECO OPO TV M
SetypatoAnuwyv mou napayouv M TUEG (X pred W k=1,.,M):

Xy =23 X (E.7)
pred pred .
M=

EVW N TUTIKA aBeBatdTNTa U(Xpred) TIOU CUVOEETOL PE TO Xpreq UTIOAOYiETOL WG N

TUTTLKN QITOKALON TWV M TIUWV:

1 M
)= T ) €8
T4 k=1

E.3.4 Xprion e€iowong turmikoU o@aAuatog

H afeBaldtnta tnNg OUYKEVIPWONG TOU UTOAOYI(eETal HEOW HLAC KOMTTUANG
BaBuovopunong pmopel va ektiunBet kol amo v Bewpntikn e€lowon Tou TUTLKOU

odAaApatoc:

Fr [1, o3

b t—3 - (E.9)
b1 Z(Xi _X)

S' (Xpred ) =

OTOU SE egression ELVAL TO TUTIKO 0HAAMA EKTIHNONG, N O APLOUOG TWV TIELPOUOTIKWY
bdedopévwv (Levyn X, yi), X, N HEON TLUA TWV CUYKEVIPWOEWV TWV TPOTUTIWV Kal Y,

N HEON TLUN TWV OMOKPLoEWV.

H mapanavw ekppaon dev AapBavel umton tnv afeBatotnta u(y) tTnNg anokpong,
Yo, TOU dAyvwotou Selypatog, n omola eival eloepXOUevo HEyeBOC TOU HOVTEAOU
HETPNONG. AUTO UTIOPEL VoL 06NYNOEL OE OTTOTEAECHOTO TIOU £XOUV UTIOEKTIUNBOEL Kat
Sev eival ouvykpiowa pe Ta amoteAéopata tTwv AAwv peBodoloylwy. H TUTIKN
afepatdtnTa TNG LETPOVUUEVNG TLUNG Xpred, CUMTEPAOUBaVOUEVNG TNG aBEBaLOTNTOG

™G amokpLlong divetal and tnv e§iowon:
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U(Xpes) = /S () + [C2U(Y0) (E.10)

E.4 AnoteAéouara

Ta amoteAéopota Twy Tecoapwyv pebodoloywwv cuvoilovtat otov Mivaka E.1. Ta
anoteAéopota  OAwv  Twv  peBodoloywv  cupdwvolv  petafl  TOUG.
MpaypatomouiOnkav emiong kot UutoAoywopol un  Aapfdavovtag umoyn 1n
ouvdlakupavon Petafl KAlong Kol Tetayuevng (Me TG pe Tig pebodoloyiec GUM,
MCM, Kragten) omou daivetat OTL yivetal Katd 62% umepektipnon g
aBeBaiotntag. Eniong av oto anotéAeopa tng MPOCEYYLOTIKAG ££L0WONG TOU TUTILKOU
odalpatog Sev mpooteOel Kot TUTIKN aBefaldotnTa tng amokpLlong 08nNyoUOOTE O

UTtoekTipnon tng aBeBatotntag Kata 22%.

Nivakag E.1 AmoteAéopata tng edoappoync Stadopwv pebodoloylwv yla tnv
ektipnon tng afeBatdotnTac TNG KAUMUANG Babpovounong mou XpnoLlomnoLeital yla
ToV MPOaSLOPLOUO TNG CUYKEVTPWONG Tou Belou og kKavoLpa.

Turukn apefaidtnta,
Méon tlp"’]l Xpred u(xpred)
(ngpL?) (ngpL?)
GUM (ue ouvSlokupavon) 8,000 0,175
MéBodoc Kragten (pe ouvSlakipavon) 8,000 0,172
MCM (ue cuvSlakupaven) 8,003 0,175
E€lowon TUTILKOU odaAparog (ue
afefatdotnTa anokpLong) 8,000 0,175
E€lowon Ttumikol odalpatog  (xwplg
afepatdtnTa anokpLong) 8,000 0,137
GUM (xwpig ouvdlakupaven) 8,000 0,283
MéBobog Kragten method (xwplg
cuvdLlakupavaon) 8,000 0,279
MCM (xwpic cuvSLakupavaon) 8,005 0,284

E.5 H kaunuAn BaSuovounonc we¢ HETPNTIKO UOVTEAD oAAanmAwyv e§6dwv

H énuoocieuon tng cupmAnpwpatikng Odnyiag GUM S2 (Supplement 2 - Extension to
any number of output quantities), 6ivel Tn duvatoTNTA ULOG ATTOTEAECUATIKOTEPNG
KOl LETPOAOYIKA 0pBOTEPNC AMOTIUNONG TOU ATMOTEAECUATOC HLOG UETPNONG, OTOV
0UTO ouvioTatal O TEPLOCOTEPA TOU €VOG, CUOXETI{OPEVA LETOEL Toug dedopéva,

otn PBdaon Twv OSlABECUWY EKTIUACEWV TWV ELOEPXOUEVWY UeyEBwY, Twv
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ofefalotATwy MOV XOPOKTNPL{OUV TIG EKTLUNOCELS QUTEG, KaBwG emiong kal Twv

opolBaiwv apfeBatotHtwyv Adyw cuvSLlaKUAVOoNG.

H kataokeun Mg YPAUUIKAG KOMTUANG PBabuovounong €ival ouclooTikd €va
HETPNTIKO MOVTEAO TOAAAMAWV €€006wv. To amoTéAeopa TG «UETPNONG» €lval ol
OUVTEAEOTEG by Kal by, TNG €€lowaong TG KAUMUANG. To «oVTEAD METPNONG» €lval O
HUNXAVLIOUOG UTIOAOYLOMOU TwV bg KoL by amo T MPWTOyevh Tepapatika dedopéva
™G Babupovopnong (ouykevipwoelg kal amokpioelg). Ou TWEG Twv by Kal by
xapoaktnpilovtal ano Tig avriotolxeg aBePatotnteg u(by) kat u(b1), kKabBwg Kat amod
NV HETalL toug ouvdlakupavon u(be,b1). Aedopévou OTL MPOKeLTaL Yot SIUETAPANTO
HOVTEAO HETPNONG, TO Staotnua KAAVYNG £xeL Tn popdn duadildotatng mePLOXnG 0To

emninedo mou kaBopiletal anod Toug AEOVES TLUWV TWV bg Kal by.

Yrnidpxouv 2 TUMoL mePLoXwV KAAU Y NG TTOU UIMOPOUV VO KATOLOKEUOLOTOUV:
e H opBoywvikn meploxn KaAung pe kEvipo to onpeio (bg , b1)

e H eA\euttikn eploxn KaALPng pe KEvtpo to onpelo (bg, b1)

KaBwc otnv mepilmtwon Tou HETPNTIKOU HOVTEAOU TNG KAUMUANG Babuovounong ta
6uo efepxopeva  HeyEOn  (kAion koL  TETOyPEVN)  xopaktnpilovtal  amo
ouvSlakOpavon, n eAAETTTKN TepLoXn KAALYNG €ival MeEPLOCOTEPO KATAAANAN oo
Vv opBoywvikn. Tevikd, n eAAeuttiki eploxn KAAudng €ival n pkpotepn duvatn
TepLoxn KAALYPNG ylol pla CUYKEKPLUEVN TiBavotnta KAAuyng, evw n opBoywvikn
neploxy kaAuyng &ev  avtikatomtpilel kaBOAou TNV OUOXETIOn METOEL TWV
HETpOUUEVWY MeyeBwV kabBwg opiletal Bswpwvrtag Sduo Slakpltd Sloothuota

KAAunc ylo To by Kal To by.

Ito ZxApa E.1 daivovtal ta opla tnG €AAEUTTKAG TEPLOXNG KAAuyng (ouvexng
ypapun), poll pe ta opla tNG opBoywvikng meploxng kaAuvyng (Stakekoppévn
ypapun) yia mbavotnta kaludng p=0,95. Ito b0 oxnua €xouv tomoBetnBOel
evOEIKTIKA Kol onueia ta omoia €xouv mpokuel pe tn Borbsla mpooopoiwong
Monte Carlo, Bewpwvtag StuetafAnTr KOVOVIKN Katavoun. 2to Zxnua E.2 paivovtal
TO Opla. EAAEUTTIKWV TiEploXwv KAAuyng yia diadopec mibavotnteg kaiuvyng.
AvTioTolyoL UTTOAOYLOHOL KOl OTIELKOVIOELG £YLVOV KOL lyVOWVTOG TNG ouVSLaKULavon

HETAEL by Kal by,

PhD Thesis — D. Theodorou A27



ANNEX A: EXTENDED ABSTRACT IN GREEK

1250 - B
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slope pling

1100 -
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1000 - q

1 1 1 1 1 1
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IxAua E.1 EAMAeuttiky kot opBoywvikn meploxy kaAuvyng (mbavotnta kaAuyng
p=0,95) TG amo KowoU CuVAPTNONG TIUKVOTNTAG TIBAVOTNTOG TNG KALONG KoL TNG
TETAYHUEVNC.

1250 - b

+ Data

1200

1160 -

slope, pling

1100

1060 -

1000 - b

1 1 Il 1 Il 1
1000 1200 1400 1600 1800 2000 2200
intercept, counts

IxAua E.2 EAAeuttikec meplox€g kaludng (yia Stadopeg mbBavotnteg kaAudng p) tng
OTto KOWVOU GUVAPTNONG IMUKVOTNTOC MIBavotnTag TG KALoNG Kol TG TETAYUEVNC.
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2T. XPHZH THZ ABEBAIOTHTAZ KAl TON AEAOMENQN EMNIAOzZHZ
MEOOAQN 2THN AZIOAOIHzZH THZ ZYMMOPODQZHZ

2T.1 Elcaywyn

H afloAdynon tng cuppdpdwong evog mPoloviog e CUYKEKPLUEVEG TtpodlaypadEg
Ba mpénel va yivetal pe peBodoloyieg mou MapEXOUV EMAPKN EUMLOTOOUVN OTL TO
UTO e€€taion mpoiov mAnpol (1 Oxt) autég tic mpodlaypadEg, EAAXLOTOMOLWVTAC TOV
Kivbuvo Ttwv eodaApévwy amodpAoEwV, OL OMOLEG OCUXVA EXOUV OLKOVOWLKEG
ermuntwoelg. Ewdikd, otav n afloAoynon PBaociletal o€ €pyactnpLlOKEG LETPAOELS, N
Stadkaoia ¢ afloAdynong tng cuppopdwaong Ba mpémel va AapBavel urmtogn otL
Kapla pétpnon 6ev eivat 100% akplBrig, KaBwC n TPAYUATIKA Tl Kabe
HETPOUUEVOU UEYEDOUG KAl TUXOV opaApata mou oxetilovtal Pe tn peETpnon Sev
UImopouV va eival yvwotd. ISlaitepa, 0tav To anmotéAeopa TG LETPNONG Elval Kovta
oto oOpo Tmpodlaypadng, HOVO HE TN Xpnon tng Bswplag mBavotATwv Kal
KataAAAAwV Kavovwy amodaong HUMopel Kavelg vo €XEL TOV EAEyxo E€mi NG

mubavotntag va Adfet puia AavBaopévn anddaon (pioko).

Y10 KeddAaio 6 tng mapovoag Atdaktoptkng Alatplpig avaAvovtal ot SLaBEoLueg
TIPOOEYYIOELG TTIOU UTTOPOUV va XpnolpomotnBouv yla va urootnpifouv a&lomioteg
omodACELG OXETIKA HE TNV afloAdynon Tn¢ CUHHOPpdWONG Twv Kouolpwyv. O
TPOOEYYIloEl auTtéc edappolovtal Kol ouykpivovtal ywa v aflohoynon tng
oUUUOpdwong Selypdtwy vinleh kivnong ta omola eAéyxovtal pe Baon TNV
npodlaypadn t¢ Eupwraikng Evwong yla tTnv TEPLEKTIKOTNTA Toug o€ Belo. Ta
OTOTEAECHOTO TWV AVOAUCEWY TwV Selypdtwy vinleA kivnong amod 769 mpatnplo

KaUO{LWV XpNnoLlomolidnkayv yLo Toug UTIOAOYLoOUG.

2T.2 A§loAdynon tng ocupuopewong

Eva petpolpevo peyeBog Y upmopel mdvra va meplypadel amd pio katavoun
TOavotATwWy, N omola €lvol AVIUTPOCWITEVUTIKN Kol cuppaty pe tov Babuod yvwong
Tou peyeBoug. H kaAltepn ektipnon y vy to MEyeOOG MPOKUTITEL QMO ThV
avapevopevn Tt (expectation) E[Y] ¢ katavoung, evw n afefaidtnta tng
EKTLLETAL QIO TNV TUTILKA amdKALoN TNC KaTavounc we u’(y)= VarlY], émou VarlY]
elvat n Slakvpavon (variance) TNG. Zuxv@, OTI( EPYOOTNPLAKEG UETPrOELG OL

OVOAUEVOUEVEG TIUEG EVOG UETPOUEVOU UEYEDOUG TEpLypAdOVTOL UE TNV KAVOVLKA
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katavoun (Gaussian distribution). Etol, €xovtag wg Sedopéva 1o amotéAeopa tng
HETPNONG Kal tnv mBavr dtakupovon tTwv Tipwv (apfeBatdtnta) pmopel Kaveilg va
urtoAoyioel TV TBavOoTNTA N TPAYUATIKN T TOU HETPOUUEVOU HeYEBoUG va eival
TIAVW 1 KATW Ao €VOL OUYKEKPLUEVO Oplo. Me Tov TPOTo aUTO UTtoAOYileTaL KAl N
muBavotnta Peuvdoug anodoxns f Yeudol g andppung evog mPoloviog o OXEN e

karoLa podiaypadn.

MpoUmoBeon yla tnv edappoyn TWV MAPATIAVW ATIOTEAEL N XPrioN KATOLOU Kavova
anodaong o onoiog Ba mPEMEL va £xel cupdpwvnOel i KowvomolnBel oToucg XPrOTEG
TWV ATIOTEAEOUATWY TWV HETpAoEWV. OL Kavoveg anodaong cuvnBwe opilouv pla
{wvn mpootaoiag mMavw N KATW oo To 0pLo pag mpodilaypadnig LETATPEMOVTAG TO
Sldotnua amodoxng €vog mpoidvtog elte O0€ TEPLOOOTEPO QAUOTNPO E€lte o€
TIEPLOCOTEPO €ANOOTIKO O OXEON HE To Sldotnua mou oplletal amod Ta opla TwvV
npodlaypadwyv. Ita IxAuata 2T.1 kat 2XT.2 mapouclalovtol TEPUTTWOELG
EAAOTIKOTEPWY N aUOTNPOTEPWY SlaoTnuATwy amodoxng kot amelkoviovtal ot
péylotec mBavotnteg AnPng AavBoaopévng amodoaong (Peudouc amodppung n
Peuboug amodoxnc).

Karwtepo épio Avwrepo 6plo
Tipodiaypagig, T Tpodiaypagic, Ty

Zuwn
TIpoaTaCiag

TAdTougw T T—— |

Méyiatn
moavarnTa
(pioko)
weudolg
aTIoppIYNg

: MiGoTnua armodoxnc

|
Ixnua IT.1 Amewkovion péylotng mbavotntag Yeudoug andppudng evog mpoiovtog
TOU OToiou N METPNON CUYKPIVETOL HE TO AVW N TO KATW OPLO OUYKEKPLUEVNG
npodlaypadng otnv nepimtwon «eAaotikig» anodoxng (relaxed acceptance).
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Karurepo dplo
Tpodiaypagnic, Tu

Avwrepo éplo
Tipodiaypagng, Tu

Zuwn Zuwn
TIpoaTaagiag TIpogTagiag
TIAdTOoUC W

/ TIAGTOUG W

Méyiomn Méyiomn
mBavéTnTa mBavarnra
(pioko) (pioko)
Weudoug weudolg
aTtodoxng arTodoxng

K o
| I
| I

Midgarnua ammodoync

IxAua IT.2 Anewkovion peylotng mbavotntag Peudoug amodoxng evog mpoiovtog
TOU OToiou N METPNON CUYKPIVETOL HE TO AVW N TO KATW OPLO OCUYKEKPLUEVNG
npodlaypadng otnv nepimtwaon «oauotnpng» anodoxncg (stringent acceptance).

Ot mBavotntec Yeudoug amodoxng n Yeudoug amoppupng evog mMPOIOVTOG
oxetilovtal pe ta odpdApata Tumou | kat Tomou Il. Ita opdApata Tomou |,
cuppopdolpeva mpoidvta eodalpeva amoppimtovtat. H glaylotomoinon Ttwv
obalpatwv Tumou | katd@ tnv afloAdynon NG OUHHOPIWONG ONUOLVEL
ghaylotomnoinon tng mlavotnTag N MPAYUATIKN TR TNG LETPOULEVNG TTAPAUETPOU
va Bploketal eviog Twv npodlaypadwv étav to anotédeopa tng Sokiung eivat €Ew
and ta opla mpodiaypadnig. And tnv AAAn mAeupd, ota opdApata Tomou I, un
ocuppopdolpeva mpoiovta eopaApéva yivovtal amodektda. H shaylotomnoinon twv
oddApatwyv Tumou Il katd tnv afloAdynon NG ouupdpdwong onpaivel
elaxlotomoinon tng mBavotnNTAg N MPAYUATIKA T TNG LETPOUKEVNG TTAPAUETPOU
va BploKkeTol eKTOG TwV Podlaypadwy, OTaV TO AMOTEAECHA TNG SOKLUAG Elval péoa

ota opLa podlaypadnc.

2T.3 MedoboAoyiec aéioAdynonc tn¢ cuupuopewong

2T.3.1 A&ioAdynon ouuudppwong ue xprion dedouévwy mototntag uedodwv (1SO
4259)

Ta kavowa ayopalovral Kot mwAouvtal, cUUPWVA LE CUYKEKPLUEVEC TIpOSLayPadEC
Kol OpouUG TTWANONG, EVW CUXVA yivetal kot avadopd ot pebodoug SoKLUwWY Tou
TIPETIEL VAL XPNOLUOTIOLoUVTaL O€ mepinmtwon eniluong Stadopwv MwANTn — ayopaotn
yla Oépata motdtntag. MNa napadeypa, n vopobeoia tng Eupwnaikig Evwong yla ta

KAUOLLA QUTOKLVATWY, TIOU ULOOETEL TIG amattoeLg mou avadEpovrtal ota mpoTuna
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EN 590 kat EN 228, kavelL avadopa oto npoédtumo ISO 4259 ywa tv eniduon
Sladpopwv. To mpotumo ISO 4259 nepiypadetl pla pebodoloyia cupdwva pe TNV
omola TOo amotéAeopa Mo Soklung pmopel va ouvduaotel pe ta dedopéva
mototntag tng peBOdou  Sokwwng  (0pla  emavaAnyudtntag  r,  opla
ovamapaywyluotnta R), mpokewévou va amodaolotel katd mooov éva Seiypa
KOUOLUOU TIANpol CUYKEKPLUEVEG TtpodlaypadEG. OL MPOUNBEUTEC KoL OL ATTOSEKTEC
TWV TPOIOVIWV KOUGIUWY HUMmopoUV va xpnollomnolioouv T mAnpodopieg mou
nepthapfdvovtal oto mpotumo ISO 4259 yua va afloAoyrncouv TNV moLoTNTA TOUG
Baollopevol os pla ) MEPLOCOTEPEC EPYOOTNPLOKEG UETPNOELG. Xtov Mivaka XT.1
nmapoucotalovtol oL HOBONUOTIKEG EKPPACELC YLOL TOV UTIOAOYLOMO €AOOTIKOTEPWVY N

auotnpotepwv opiwv amodoxng cuudwva pe 6oa ipoPAenovtal oto ISO 4259.

Nivakag IT.1 EELOWOELG Yyl TOV UTOAOYLOMO opiwv amodoxng yia 95% kat 99%
enineda epniotoovvng oL upwva e to ISO 4259.

‘OpLa amodoxn G Katd Thv ‘OpLa amodoxn G KAaTd Tov
napalapn KAUGIPWV enionpo EAEyXO KOWOiHWV
(«avotnpr» arodoxn) («ehaoTik» artodoxn)
95% 99% 95% 99%
eninedo eninedo eninedo eninedo
EUMLOTOOUVNG EUMIOTOOUVNG | EMMIOTOOUVNG | EUTLOTOCUVNG
Katwrepo T, +0,59R T, +0,83R T,-0,59R T.-0,83R
6plo
Avwtepo Tu—0,59R Ty—0,83R Ty + 0,59R Ty +0,83R
6plo

OL ekdpdoelg TOU TaApAMAVW Tivaka edopudlovtal  otnv  MEPLTTWON
QTMOTEAECUATWY ATIO UEUOVWHUEVEG UETPAOELS. Z€ TMEPLMTWON ATMOTEAEOUATWY TIOU
TMPOKUTITOUV WG UECOG  Opo¢  ToAamlwv (k) petpnoswv, TO  Oplo

QVATIOPAYWYLLOTNTOG R TTPEMEL val avTlkataotabel and to:
2 2 1
R=,R-r [1——] (5T.1)

Me Bdon ti§ ekppdoelg Tou Mivaka IT.1 umtoAoyiotnkav opLa anddaong ylo OAEG TLG
TIAPAUETPOUG TIOU Teplypadovtal ota npoturna EN 228 (apuoAuBon Beviivn) kat EN
590 (vtnleA kivnong) (BA Mivaka IT.2). Ita mpotuma autd kabopilovtal T6co ol
nipodlaypadeg 600 Kat oL IPoTuTeg LEBodoL SokLpwy pe oclUdwvA UE TIG oToieg Oa

TIPEMEL TA KOUOWO va eAéyxovtal. Amd Tt Kelpeva Twv MPOTUTWY HEBOSWV
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eAndOBnoav ta Sedopéva MOTOTNTAG TTOU XPNOLUOTIOWONKAV YL TOV UTIOAOYLOMO

TWV oplwv amodoxnc.

Nivakag IT.2 I610TNTEC KAUGLUWY QUTOKLWVATWY Yyl TG OTtoieg €xouv kaboplotel

npodlaypadeg Baoel twv EN 590 kat EN 228.

1616tnTEG VTRTeA kivhong - EN 590

1816TNTEG ApOAUBENG BevTivng - EN 228

AplBuo¢ ketaviou

(@]

Agiktng keTaviov

NMukvétnto otouc 15 °C

o O

MoAukukAwKol apwpatikol
ubpoyovavepakeg
MeplektikotnTa O€ Beio

Inueio avadieéng

AvBpakoUyo urtoAeLupa (emtt 10%
UTIOAE L LOTOG AMOOTAEEWC)
MeplekTikOTNTA O TEDpQ
MePLEKTIKOTNTA OE VEPO

Alwpolpeva cwuatibia

O O O O

AldBpwaon xaAkivou eAdopartog (3 wpeg
oe 50 °C)

MeplektikotnTa o FAME

Avtoxn otnv ofeldwon

Amavtikotnta, SlopBwpévn SLAUETPOC
dBopag odatpldiov otoug 60°C

1Ewdeg oTtoug 40°C

Oepuokpacia anodppdtewc Puxpou
diktpou

0 Andotaén
- % oUUTUKVW A 0TouG 250 °C
- % GUMTUKVWLO 6TouG 550 °C
- oupmUKVWHA 95% (v/v) otoug

0 Epeuvntikog aplBudc oktaviou, RON
Ap1Bud¢ oktaviou kwvntipa, MON
MNeplekTikOTNTA O LOAUB SO
Mukvétnta (otoug 15°C)
MNeplekTikoTnNTA O€ Beio

Avtoyxn otnv ofeibwon

MeplexOUeVa KOUULWEN

O O O O o o o

AwdBpwon xaAkivou eAdopartog (3 wpeg
oe 50 °C)

0 Avdluon uSpoyovavBpakwv

- oAediveg

- APWHATIKEG EVWOELG

MNeplektikoTNTA 08 BeViOoAlo
MeplektikoTnTa 08 0EUYOVO

Taon atuwv (DVPE)

Agiktng atpuodppadéng (VLI)

O€uyovoUXEG EVWOELG:

- ueBavohn

- alBavoin

- LOOTPOTIUALKA OAKOOAN

- LooBouUTUALK aAKOOAN

- TpLToTaynG BOUTUALKA OAKOOAN

- aBépeg (ue 5 N neplocotepa atopa C)
- AAAeG 0€UYOVOUXEC EVWOELS

0 Anodotaén:

- % amootaypa otoug 70 °C

- % andotaypo otouc 100 °C

- % anootaypa otoug 150 °C
- TeAKO onpeio Bpaopou (FBP)

o O O O O

2T.3.2 AéioAoynon ouuuopewanc Ue xprion ektiunonc aBeBaiotntoc

H Obnyia EURACHEM/CITAC “Use of uncertainty information in compliance
assessment” meplypddeL Tn Xprion Twv Kavovwv anddaong yla tov kabopLopo opiwv
amodoxnc kot amoppwpng AapBavovrtag umoyn kot tnv aBefadtnta Twv
uetpiocwv. Etol, evw to mpotumo ISO 4259 kaBopilel {wveg mpootaciog mavw n

KATw amd ta opla mpodlaypadnc XPnOLUOTOLWVTAG OTOKAELOTIKA OeSopéva
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TULOTOTNTOG TWV MPOTUNWY HEBOSwv Sokwv, n Odnyia tng EURACHEM / CITAC
elval mo yevik otnv edappoyn tnG Kal Kabopilel tic Iwveg TPOOTAOCLOG
XPNOLUOTIOLWVTAC TIG EKTIUNOELG TNC aBePaLOTNTAG TNC UETPNONG. ZUYKEKPLUEVA TO
mAdtog TnGg lwvng Tmpootaciag opiletal wg €va TOAAMAACLO TNG TUTILKAG
(ouvbuaopévng) apfeBatdtntag, u, avaloya e TO eminedo eumioTtoolvnG MOU EXEL
emAexOel kal to omolo otnv mpatn ekdppalel T pEylotn TBavotnta ARYNG

AavOaopuévng anddaong (Peudoug amodoxng n Peudoug anoppudnc).

H tunikn afeBatdotnta mou Ba xpnotpomnotnBei, tdavika Oa mpémnet va mepthapBavet
1600 ™V afefadtnta TG OAVOAUTIKAG OLadlkaolag,  Uanaysis, 00O KoL TNV
afepatdotnta Aoyw SelypotoAnPiag, Usampiing: ZTNV TMEPLMTWON AMOTEAECUATOG TOU
Silvetal wg pécog 0pog MoANamAwy (k) LETPNOEWV N CUVOALKR TuTlKY afeBaldtnTa

Slvetal amnod tn oxéon:

(3T.2)

2
u .
2 analysis
u=./us . +[
sampling /—k ]

Ztov MNivaka 2T.3 mapouotalovtol oL HaBnUATIKEG EKPPATELS YLOL TOV UTIOAOYLOMO
€A\AOTIKOTEPWV N QUOTNPOTEPWVY Opilwv amodoxnc AapBavovtag unmoPn EKTIUNOELS

oBeBatotiTwy.

Nivakag IT.3 E€lowoelg ylia tov UToAoylopo oplwv amodoxng ywa 95% kat 99%
enineda epniotoolvng, Aappavovtag umodn ekTUAoeLg afeBatothTwy.

‘OpLa amodoxn G Katd Thv ‘OpLa amodoxn G KaTd Tov
napalaph KAUGIpWV enionpo EAEyX0 KOWOiHWV
(«avotnpri» arodoxn) («ehaoTtik» artodoxn)
95% 99% 95% 99%
eninedo eninedo eninedo eninedo
EUMLOTOOUVNG E€UMIOTOOUVNG | EMMIOTOOUVNG | EUMLOTOCUVNG
Katwrepo T, +1,64u T +2,33u T.—1,64u T.—2,33u
6plo
Avarepo Tu—1,64u Tu-2,33u T+ 1,64u Tu+2,33u
6plo

2T.4 Epappuoyn kat oUykpion uedododoyiwv aétoAdynonc tnc cuppuopewong

Ta amoteAéopata TwV avalUoswv 769 dslypatwv vinlel kivnong amoé avtiotolyo

oplOuod mpatnpiwv ywo TOV TPOOSLOPOUO TNG TEPLEKTIKOTNTOG ot Oelo
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xpnowonow|Bnkav ywa va yivel n ouykplon twv OSladopeETIKWY TPooeyyioewy
OXETIKA HE TOV OPLOUO KAVOVWV amodaong yla Tnv afloAdynon thg cuppopdwaong

TOUC O€ OX£0N LE TO VOUOBETIKO OpLo Twv 10 mg kg™.

Av bev yivel xprion ebikwv Kavovwy anddaong Kol To anoteAéopata cuykplBoluv
OTAQ HE TO VOUOBETIKO Oplo (undevikn {wvn npootaociag), tote 47 delypata (6,1%)
Bewpolvtal pn cuppopdolpeva. Xpnollomolwvtag kavoveg AnPng amopdoewv
nou Baocilovtat otn xprion {wvwv mpootaciog mMAvw N KATW omd To OpLo TNG
npodlaypadng odnyovpoote oe aplOpd pUn CUUHOPPOUHEVWY OELYUATWV ElTE
HKPOTEPO («eAaoTikin» anodoxn) eite peyaAutepo («auvotnpn» anodoxn). O akpBng
oplOPOC TWV PN CURPOPPOUUEVWY ATIOTEAECUATWY €EQPTATAL OO TO ETUAEYUEVO

emninedo gumioTtooUvng KoL Tov aplOpd EMAVOANTITIKWY EPYACTNPLOKWY UETPHOEWV.

Aebopévou OTL n mpoogyylon tou ISO 4259 ypnolpormolel «guputepes» TWVEG
TMPOOTACLOG O OXEON WE TNV TIPOOEYYLON TIOU KAVEL XPHON EKTIUNOCEWV
afePfaotntag, kKotaAfyel o€ auvfnuévo  oaplOud  pn  cuPpopdOUUEVWV
QTOTEAEOUATWY OTNV TEPIMTTWON TNG «AUOTNPAC» aAmoSOoXAC KAl OF UELWMEVO
oplOuo Un CUUHOPPOUHUEVWY QATIOTEAECUATWY OTNV TIEPUTTWON TNG «EAONOTLKAGH
arnodoxne. Ot Lwveg mpootaciog mou opilovtatl Aaupdavovtag umogn TG EKTIUAOCELS
aBeBatotitwy npoodépouv acharéctepouc kKavoves ANYPng anoddacewyv, AOyw Tou
YEYOVOTOG OTL Ol €KTIUNOELG aBefaldtntag aviutpoowrnelouv TV «aAndwn»
Sloomopd TWV TIWWV TOU HETPOUPEVOU HeyEBoug (meplektikotnta o Oegio). Ot
Slapopeg Twv SUo mpooeyyioewv oplopol {wvwv mpootaciag kal opiwv amodoxng
oAAG Kot n emidpacn Tou aplOpol TWV EMAVAANTTIKWY UETPNOEwWV ival Wlaitepa
€Vtovn OTNV TEPIMTWON TNG «OUOTNPAC» amodoXAC OMou To Oplo andPacng
Bploketal xaunAotepa tou opiou tng Tpodlaypadnig oe Ml TEPLOXH OTOU
OUOOWPEVOVTOL OPKETA OTMOTEAECUOTO HETPAOEWV. XToug Mivakeg 3T.4 kot 2T.5

mapoucotalovtol To AMOTEAEGUATA OO TNV epappoyr) OAWV TwWV TPOCEYYIoEWV.
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Nivakag¢ 2T.4 NAatn (wvwv Tpootaciag,

opla  amdoxng Kot

aplBuog  un

OUUHOPDOUUEVWV SELYUATWV TIOU €XOUV EKTLUNOEL pe Xprion 6€80UEVWYV TILOTOTNTAG

nebodwy (I1SO 4259).

‘OpLa artodoxn G Kot Tov enionpuo

OpLa artodoxn G Katd tnv

MAdTog €A\EYXO KAUGIUWV napaAafr KAUGipwWy
{ovne («eAaotiki» anodoxn) («auotnpi» arnodoxn)
ApLOpog npootaoiog, Opo ApLOUAG pn Opo ApLOMOG un
Eninedo ENAVAANTITIKWV w anodoxri | ouppopdolpevwy | andoxng | cuppopdolpevwvY
gMmoToolVNG | METPAOEWV, k (mg kg™) (mg kg™) Selypatwyv (mg kg™) Selypdtwv
50% omnotoobnnote 0,00 10,00 47 (6,1%) 10,00 47 (6,1%)
95% 1 1,32 11,32 25 (3,3%) 8,68 124 (16,1%)
2 1,24 11,24 25 (3,3%) 8,76 114 (14,8%)
3 1,21 11,21 25 (3,3%) 8,79 113 (14,7%)
99% 1 1,86 11,86 22 (2,9%) 8,14 173 (22,5%)
2 1,74 11,74 22 (2,9%) 8,26 159 (20,7%)
3 1,70 11,70 22 (2,9%) 8,30 156 (20,3%)

Nivakag IT.5 MAdtn Iwvwv mpootaciag,
ocuppopdoluevwyY  SelyudTwy TIOU

€XOUV  eKTLUNOEL

opla amodoxng kot aplOuoég un

HE XPNON EKTUACEWV

oBeBalotnrac.
Opla anodoxng Katd Tov enionuo Opla anodoxng Katd Tnv
NAdtog €A\EYXO KAUGIPWV napaAafr KAUGipwWy
{wvng («ehaotiki» anodoxn) («avotnpi» arodoxn)
AplOuog npootaociog, Oplo ApLOUOG Un Oplo ApOUoG pn
Eninedo EMOAVAANTITIKWVY w arnodoxng | cuppopdolpevwy | amodoxng | cupupopdovpevwy
gpruotoolvng | petproswy, k (mg kg™) (mg kg™) Selypatwv (mg kg™ Seypdtwyv
50% omnotoodbnnote 0,00 10,00 47 (6,1%) 10,00 47 (6,1%)
95% 1 0,51 10,51 39 (5,1%) 9,49 63 (8,2%)
2 0,41 10,41 41 (5,3%) 9,59 58 (7,5%)
3 0,37 10,37 42 (5,5%) 9,63 57 (7,4%)
99% 1 0,73 10,73 35 (4,6%) 9,27 72 (9,4%)
2 0,59 10,59 36 (4,7%) 9,41 66 (8,6%)
3 0,53 10,53 39 (5,1%) 9,47 64 (8,3%)

IT.5 NpodlaypadeC AUTOMATOMOLNUEVOU AOYLOMIKOU yldl TOV UTOAOYLOMO TNG

mBavotntag cUHOpPwWonG KUGLUOU HE TpodLaypadEq

To Aoylopikd «Ymootnpng Amodaocewv mepl Juppopdwonsg Kavolpwv wg mpog

Mpodlaypadeg» ExeL wG 0TOXO va uTtootnpifel 6ooug mapadidouv, mapaiapfdavouv

A ylo omolodnmote AOyo EAEyXOUV TIPOIOVTIA KOUGIHWY Kol TIPETEL Baol{Ouevol o€

EPYAOTNPLAKEG UETPNOELG VA AmodACioOUV KATA OGO AUTA CUUUOPHUWVOVTAL HE

VOUOBOETIKEG amattioelg. OL XPr)OTEC TOU AOYLOUIKOU UITOPEL va TPOEPXOVTAL Ao

oAa ta otadia tng epodlactikig aluoidag Twv Kauoipwy (SALoTApLa, ETALPELES
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eunopliag — Stakivnong, mpatipla, PEYAAOL KATAVOAWTEG, BLOUNXOVIES, AEPOTIOPLKEG
ETOLPELEC, VOUTIAOKEG €TALPE(EG KATL.) KOl MMOPEL va €Xouv pOAO ayopaotn
(mapaAapBavovtog) ) mwAnth (mapadidovrog) 1 kat ta Svo. EmutAéov, To AOYLOUKO
UIopel va xpnotpomotnBel kat amd eAeYKTIKEG apxEG TIou SlevepyoUv TOV €MionUo
EAEYXO TWV KOUOIMWV. Ta BACIKA XapAKTNPLOTLKA TOU AOYLOMLKOU glval Ta €€AG:

- To Aoylopkd Oa esivat SwaBéowo OStadiktuakd aMd kat Slabéowo yla
EYKATAOTOON OE MPOOWTILKO uTtoAoyLotr i o Tablet / Smartphone (application)

- O xprotng Ba €LoAYEL AMOTEAECHATA EPYACTNPLOKWY UETPAOEWV Kal Ba AapBavel
W¢ amotéAsopa TNV bavotnta To UTo e€£tacn mPoiov va CURMOoPdWVETAL 1} OXL LE

TIC avTioToleg podlaypadeg.

IxAua IT.3: Napadelypo umoloywopwv mOavotntag ouppopdwons 1 un
ouppopdwong.

- Avaloya pe to €idog tou xpnotn (ayopaotng, MwANTAG, €AeykTkn apxn) Oa
UITOpOoUV va opil{ovTal Kol CUYKEKPLUEVOL KAVOVEC amodaong.

- 210 Aoylopikd Ba eival elonypéveg ol mpodlaypadég dtadpopwy €8wWV Kaucipwy
OTWG TPOKUTITOUV armd TN OXETWKA vopoBeoia kot mpotuna (m.x. EN 228, EN 590)
oANG Kot Ta SeSopéva TLOTOTNTOG TWV TpoTtUTtwy HeBodwv (ISO, EN, ASTM) Baoetl
TwV omolwv gAéyxovtal ta kavoa. O mpodlaypadeg kat ta dedopéva auvtd Ba
ETUKALpOTIOLOUVTAL KABE popd Tou umdpxel petaPfoAn eite otn vopobeoia eite o€
KaroLa mpotuTn Hébodo.

- To Aoywoukd Ba mapexel tn duvatdtnta TAPNONG LOTOPWKOU OAVOAUCEWV Kol
€€aywynG OTATLOTIKWV.

- To Aoywouilkd Ba Sivel tn duvatotnta oto Xprotn vo SnULoupyel eTiONUEG
ETUKUPWHUEVEC avodopeC, HE TANPOPOPIEC yla TNV TOLOTNTA TOU UTO €AEYXO

KOUGLUOU.
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E. ZYMMEPAZMATA

H afloAdynon ¢ «KataAAnAOANTaG yloo xpron» Hlag ovaAuTiknG pebodou eival
appnkta ouvdedepévn e TNV eKTiPNON TG afefodtnTag tne LETPNONG n omolia
OUCLOOTLKA XopakTnpilel TNV moLOTNTA €VOG AMOTEAECHATOG CUVUTIOAOY{ovTag TO0O
OUOTNHATIKA 000 Kot Tuxaio opaipata. EmutAéov n extipnon tng apefatotntag Twv
UETPACEWV HE TN XPNON HLAC EMIOTNUOVIKA TEKUNPLWHEVNG KOL £YKUPNC
neboboloylag eival pa Paociky amaitnon OCUYKEKPLUEVWY SleBvwv mpoTunwy
nolotnTag BAoeL Twv omoilwv Starmiotevovtal epyacthpla kat popeis (ISO/IEC 17025,
ISO 15189, ISO/IEC 17043 ) ISO Guide 34). Itnv mopouoa Aldaktopikn Alatpifn
napouotaletol N avamtuén kot epapuoyn OTOTIOTIKWY KoL aplOuntikwv pebodwv
yla TV ektipnon kat xpron tng ofefaldtntog LETPHOEWY OE CUYKEKPLUEVA OTASLA
TOU KUKAOU TNG METPNONG TWV KOUCIMWV: Tipo-avoAutika (SeypoatoAnyia),
OVOAUTIKA (Kuplwg petpnTikn Swadikaoia) kal PeTa-ovaAutikd (a€loAoynon tng

ouppopdwong Pacel epyactnplakwy anoteAecpatwy) (BA. xnuoa B.1).

Jto Kepalawo 3 (Mapaypadog I Extetapévng MepiAngng), efetaletol n
dewypatoAnyia, n omoia ouvelodpépel onuOvIIKA otV  afefadotnta  Twv
EPYAOTNPLOKWY HUETPACEWV KOOWC amoteAel éva BookO OTASIO TwWV HUETPNTLIKWV
Stadkaowwv. Neplypadovtal Kal CUYKPLVOVTAL WE TIPOG TA ATOTEAEGUATA TOUG, TPELG
EUMELPIKEG OTATIOTIKEC peBobdoloyieg («khaoki» ANOVA, avOsktikp ANOVA kot
OTATIOTIK €UPOUG TIMWV) xpnoluomowwvtag O&edopéva €vOg LOOPPOTINUEVOU
nelpapatikov oxediou (balanced experimental design). Ou tpelg pebBodoloyieg
Xpnowomowouvtal ywa TtV ektipnon ¢ apefaidtntac Adyw SeypatoAnyiog
kavoipou (vtileA kivnong) kot Adyw tng avoaAutikig Stadlkaciog mpoodloplopou
neplektikoTnNTalG o€ BOeio. H OSievupupévn afefadtnta tng SelypatoAnyiog
kupaivetal amd 0,34 ewc 0,40 mg kg™, evd n oxetkr Stevpupévn afeBatdtnta arnd
4,8 ew¢ 5,1%, avaloyo He Tn otaTOTK peBodoloyia mou xpnowuomownke. Ta
anoteAéopata NG avOektikic ANOVA  (Sieupupévn  aPeBatdtnta g
Setypatohniac 0,34 mg kg), n omola Sev emnpedletatl and TNV MAPOUGLial HKPOU
oplOpol akpaiwv (éktomwv) THwWV ota dedopéva, pmopouv va BswpnBolv wg

TiepLooOTEPO afLoTLoTA.

Y10 Kepahawo 4 (Mapaypadog A Extetapevng Nepidndng) e€etaletal n ektipnon tng
oBeBalOTNTOG MLOC TUTIKAG METPNTIKAG OStadikaciag. H pebBodoloyia yia tnv
EKTIMNON TNG aBefadtnTag Hlag HETPNTKAG dtadikaciag onwg meplypadetal otnv
Odbnyla I1ISO GUM “Guide to the Expression of Uncertainty in Measurement” kat n
oplOuntikn pEBodog¢ Monte Carlo (MCM) xpnolpomolouvtol yla TNV mopdAAnAn
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eKTiNON TNG afePfatotntag KETPNONG TNG Beppoyovou duvaung metpeAaiou kivnong
He tn xpnon Beputdopétpou OApou. H Steupupévn afeBatotnta (yia mbavotnta
KaAupng 95%) ektiunbnke péow tng pebodoloyiag GUM (umoBEtovtacg Kavovikn
katavour) ota 0,28 MJ kg™ 1} 66,3 cal g, H tur) auth eivat 12% pukpdtepn amd Ty
T mou €8woe n edapuoyn TG pebodohoyiac MCM (0,32 MJ kg™ i 75,3 cal g?).
Xpnotpornowwvtag t peBodoroyia GUM o ocuvbuaouo pe tnv sfiowon Welch-
Satterthwaite yiwa tov umoloywopd  PBabBuwv eleubeplag koL oOTn CUVEXELQ,
amobidovtag pla katavoun t - student oto petpoupevo pEyebBog odnyolpaote oe
auvénuévn (oe oxéon pe TNV UMOBEOn TNG KAVOVIKNG KATAVOWNG) SlEUpUMEVN
apeBatdtnta (0,29 MJ kg fj 70,4 cal g?), aM\d& kat TdAL katd 7% xapnhdtepn and
autn 1ou bivel n mpooéyylon MCM. Autég ol Stadopég pmopouv va anodoBolv otn
HKPA KN YPOUULKOTNTA TOU HOVTIEAOU UETPNONG KOL OTN TPOCEYYLOTIKN PUoN TNG
eflowonc Welch-Satterthwaite, n xprion tng omolag oTNV TPOKELUEVN TEPLTTWON
UTIEPEKTLMA TOUG Pabuoug eAeuBeplag. Movo otnv mepimtwon XpAong Ing
Mne0{lavAg TPooEyyLong yla TNV ektipnon twv afefatotitwy Tomou A Kot otn
OUVEXELXL Xprnong toug oto woluylo aPBefatotntwy tng pebodoloyiag GUM ta
OTMOTEAECOTO CUUPWVOUV LE TA AOTEAECHATA TN TPooEyyLlong MCM. EmutAgoy, n
afefatdtnta ™G HETPNONG TNG Bgpoyovou Suvapng eKTUABONKE KoL e T XPHon
6c6opéVV amO OLEPYAOTNPLOKEC OUYKPLTIKEC OOKIUEC KOVOTNTOG (EUTIELPLKN

T(POCEyyLon).

210 Kedpahawo 5 (Mapaypadog E Ektetapevng Nepidndng) e€etdletal n ektipnon tg
oBeBatotnta pag el8IKAG Katnyoplag LETPNTIKAC Stadikaoiag mou meplthapBAavel kat
TN KATAOKEUN KAUTUANG PBabpovopnong. Edapuodlovtal Kot ocuykpivovtal 4
nebodoloyieg ektipnong tng afefaitdtnrag (GUM, MCM, Kragten, e§iowon Turmikou
odpaApatog) Aoyw KapmUAnGg PBabuovopnong Tmou XPNOLUOTOLETAlL Yyl ToV
TPOOSLOPLOUO TNG TEPLEKTIKOTNTOG Kauoipuwv o Belo ovpudwva pe tn pEbodo
urnteptwdou¢ ¢Boplopol (ISO 20846, ASTM D5453). Ta amoteAéopata OAwWvV TwvV
HeBoSohoyLwv cupbwvVolY PeTAfy Toug (Turkh aBepatdtnta 0,172 — 0,175 ng uL™).
Mpaypatomolndnkav miong Kol UTTOAOYLOHOL alyvowvTaG TN cuvdlakupaveon HeTal
KAlong kat tetayuevng (pe Tig pe tig pebodoloyieg GUM, MCM kat Kragten) omou
datvetal OtL yivetal katd 62% unepektipnon tng apefalotntag. Av 01O AMOTEAECUA
TNG MPOOCEYYLOTIKNG €lowWoNC Tou TUTLKOU 0dAApaTog v MPooTeOeL KAl n TUTILKA
oBeBatotnta NG Anokplong, odnyoUAOTE TOTE O UTIOEKTIUNGN TNG afeBatotntag
Katd 22%. EmutAéov, dedopévou OTL N eKTiHNON TwV 2 TAPAUETPWY ULAG KOUTTUANG
BaBuovounong PBaociletal oe €va POVIEAO HETPNONG HE TOAAOMAQ e€epyOpeva

pHeTpolpeva PeYEDN (kAlon, tetayuevn), edapuolovtal Kal ol BACLKEG apXEC TNG
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CUMMANPwWHATIKAG odnyiag tou GUM (Supplement 2 - Extension to any number of

output quantities).

Téhog, oto Kepdalawo 6 (Mapaypadog 2T Extetapevng MepiAndng) e€etaletal n
afloAdoynon tng oupuopdwong evog mpoidvtog (kavoipou) mou Baociletal o€
£PYAOTNPLOKEG HETPNOElS. Edapudlovtal Svo Slabéolpeg mpooeyyioelg (Le xprion
bebopevwy mototntag peBOdwv kal xpnon extipnong oafefaitdtntag) yu va
urnootnpiouv aflomioteg anodAceLlg OXETIKA e TNV afloAdynon tnG CURHOPPWONG
TWV Kauolpwy. Ta amoteAéopata twv avoAloswv 769 Selypdtwv vinlel kivnong
oo avtiotolyo aplOpo mpatnpiwv yla Tov TPoodloploptd TNG TMEPLEKTIKOTNTOC OF
Belo xpnowomnow}Bnkav ya va yivel n oclykplon twv SLadopeTIKWV TPOCEYYICEWV
0pPLOMOU Kavovwy amodaong yla thv a§loAoynaon TG cuppopdwong Toug o€ oxEon
HE TO VOMOPeTkd Opo Twv 10 mg kg, Xpnotwomowhvrac kavovec ARYNC
anoddacewv mou Bacilovral otn xprion {wvwyv MPOCTACLOG AVW 1 KATW amnod To 0plo
¢ mpodlaypadng obnyovuacte o€ aplBuo pun cuppopdoUuEVWY SELYUATWY ElTe
HIKPOTEPO («EAaoTikn» amodoxn) eite peyalutepo («avotnpn» amodoxr) o oxéon
He ™ un xpnon wvwv. O akpPBAg aplBpog twv pn  cURHoPdOUUEVWV
anoteAeopdtwy eoptdtal and to eMAEyUEVO emimedo eumiotoouvng Kal Tov
oplOUO EMOVAANTITIKWY EPYOOTNPLOKWY UETPOEWV. EMumAéov umoloylotnkav opLo
anodaonc ylo OAEC TIC TAPAUETPOUC TIoU meplypadovtal ota mpoturma EN 228

(apuOAuBSEN Beviivn) kat EN 590 (vtrleA kivnong).
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