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Abstract 
 

 

 

  The scope of this thesis is the numerical evaluation of isogeometric analysis 

methodologies. Isogeometric analysis, introduced by J. Austin Cottrell, Thomas J.R. 

Hughes and Yuri Bazilevs, evolves from the finite element method and implements the 

revolutionary idea of complete CAD-CAE (Computer Aided Design-Computer Aided 

Engineering) integration. Properties of Non-Uniform Rational B-splines are examined 

thoroughly, in order to establish the theoretical framework for geometric representation. 

As far as analysis is concerned, the current study focuses on two formulations, Galerkin 

and collocation. Stiffness matrix and external load vector are formed in both methods. 

The comparison between the corresponding procedures points out the advantages and 

weaknesses of each scheme. Issues of convergence and computational cost are 

approached by linear static 2D and 3D applications, where the total number of degrees 

of freedom is the measure of cost. The code used for analysis purposes was developed 

in MATLAB, a programming environment which enables easy matrix manipulation 

and interactive simulation. 
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Σύνοψη 
 

 

 

  Ο σκοπός της παρούσας διπλωματικής εργασίας είναι η αξιολόγηση των 

μεθοδολογιών της ισογεωμετρικής ανάλυσης. Η ισογεωμετρική ανάλυση, η οποία 

προτάθηκε από τους J. Austin Cottrell, Thomas J.R. Hughes και Yuri Bazilevs, 

αποτελεί εξέλιξη της μεθόδου των πεπερασμένων στοιχείων και υλοποιεί την 

επαναστατική ιδέα της ενοποίησης των τεχνολογιών CAD-CAE (Computer Aided 

Design-Computer Aided Engineering). Οι ιδιότητες του σχεδιαστικού εργαλείου Non-

Uniform Rational B-splines μελετώνται λεπτομερώς, έτσι ώστε να θεμελιωθεί το 

θεωρητικό υπόβαθρο για τη γεωμετρική αναπαράσταση. Όσον αφορά την ανάλυση, η 

συγκεκριμένη εργασία εστιάζει σε δύο μεθόδους, τη μέθοδο Galerkin και τη μέθοδο 

collocation. Το μητρώο στιβαρότητας και το διάνυσμα των εξωτερικών φορτίων 

μορφώνονται και με τους δύο σχηματισμούς. Από τη σύγκριση των αντίστοιχων 

διαδικασιών καταδεικνύονται τα πλεονεκτήματα και οι αδυναμίες της κάθε μεθόδου. 

Ζητήματα όπως αυτό της ακρίβειας και του υπολογιστικού κόστους προσεγγίζονται 

από δισδιάστατες και τρισδιάστατες εφαρμογές γραμμικής στατικής ανάλυσης, όπου η 

αξιολόγηση γίνεται με βάση τον συνολικό αριθμό βαθμών ελευθερίας. Ο κώδικας που 

χρησιμοποιήθηκε έχει αναπτυχθεί σε MATLAB, ένα διαδραστικό προγραμματιστικό 

περιβάλλον που διευκολύνει τις πράξεις με μητρώα. 
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1 The concept of Isogeometric 

Analysis 
 

 

 

1.1 Introduction 
 

 

  Isogeometric Analysis (IGA) was first introduced in 2003 by Thomas J.R. Hughes, 

Professor of Aerospace Engineering and Engineering Mechanics of the University of 

Texas at Austin. The proposed method became immediately the focus of attention of 

the whole academic and research community globally and a wide range of relevant 

publications have already managed to establish isogeometric analysis as a breakthrough 

in computational mechanics. It constitutes an innovative evolution of the standard 

Finite Element Method (FEM), considering that it has borrowed FEM’s abstract 

framework and it adopts the same steps in the analysis process. The main difference 

between the two methods lies at the mesh generation. While the usual technique was so 

far to build an approximate mesh to the physical model for analysis purposes, IGA 

optimizes all the available information behind the geometrical representation and uses 

the design mesh as an analysis model. This means IGA works with the exact 

geometrical mesh, thus the corresponding error is eliminated.  

 

 

 
 

Fig. 1.1. Thomas Joseph Robert Hughes 
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  Through the revolutionary concept of isogeometric analysis, a complete integration of 

CAD (Computer Aided Design) and CAE (Computer Aided Engineering) industries is 

achieved. Despite the fact that computational engineering is strongly dependent on 

CAD, an immediate interconnection between these two fields had not ever been 

accomplished before IGA. A wide range of commercial software has been developed 

in order to serve the needs of each industry, representing economies of billion dollars. 

It is noteworthy that CAD market is expected to grow to $8.7 billion in 2016, while 

CAE will reach $3.4 billion in the same year. 

 

  CAE packages are devoted to the analysis of FEM models. They were first destined 

for aerospace engineering, however they soon spread to other engineering and scientific 

disciplines. NASTRAN, a widely used FEM platform, was originally developed by 

NASA in the 1960s and the release of similar packages such as Abaqus, ADINA and 

FEMAP followed afterwards. These programs can deal with both linear and non-linear 

problems, while they have applications in static and dynamic analysis, heat transfer, 

compressible and incompressible flows. A special category of analysis platforms is 

exclusively adapted to the requirements of civil engineering. ATENA, for instance, 

standing for Advanced Tool for Engineering Non-Linear Analysis, is specialized in 

reinforced concrete structures, while SOFiSTIK, first used in 1987, is directed towards 

bridge linear and non-linear analysis.  

 

  CAD software appeared later, in the 1970s and 1980s, when the technique for 

geometric representations in finite element analysis had already been established. This 

is probably one of the reasons why the mesh generation in CAE programs is completely 

separate from the model design of CAD programs. Some of the most prevalent products 

of CAD industry are AutoCAD, 3DS Max, Maya and Rhinoceros. These programs are 

able to efficiently represent any complicated geometry for both 2D and 3D drafting. 

They communicate with the CAE software, so as to provide information concerning the 

geometry, however they are not immediately connected to the analysis process. In 

particular, the engineering design is built from the beginning, attempting to approach 

the CAD representation. This may result in FEM performing badly, especially when 

complex structures are concerned. 

 

  It becomes clear that bridging the gap between CAE and CAD technologies was of 

great importance for the efficiency of FEA and troubled for a long time the research 

community. It was an especially challenging task, as it finally took the analysis to be 

reconstituted within the geometric framework of CAD tools. This venture was 

encouraged by the newer technologies emanating from the computational geometry 

research literature, which permit to exploit the functions used for the exact geometrical 

representation in order to describe the solution field. 

 

  The first candidate was NURBS, which had already started to spread across CAD 

industry. The pioneers of this technology are Pierre Bézier, a Renault engineer and Paul 

de Casteljau, a Citroen’s physicist and mathematician, who introduced the so-called 
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Bézier curves. This tool was widely used to model smooth curves, however they were 

not convenient enough to manipulate. Soon, the research directed to new alternatives 

and finally initiated B-splines. These curves were also defined by a set of points, called 

the “control points”, but their number was independent of the polynomial order of the 

curve. Additionally, they enabled a richer behavior of the model, since an alteration to 

a control point would only affect a specific part of the curve and not the whole entity. 

Nevertheless, B-splines were still not a remedy for all geometric representations, 

provided that they do not correspond well to the modeling of conic sections. At this 

point NURBS were developed in order to precisely produce shapes such as circles and 

ellipses. Ken Versprille was the first to work with NURBS on his dissertation in 1975. 

Boeing, in its ambitious project to create a single curve representation that included 

Bezier curves and conic sections, became the first to industrialize NURBS. After that 

they dominated the CAD applications and they successfully claimed a large market 

share of the corresponding industry. 

 

 

 

 
 

Fig. 1.2. Objects created with NURBS 

 

 

 

  After NURBS, even more evolved technologies emerged that appeal as well to the 

concept of isogeometric analysis. T-splines, polycube splines, subdivision surfaces are 

some of the representation tools proposing themselves to the new analysis method. 

They are all numerically stable mathematical procedures, they enable easy adjustments 

and modifications and they ensure that the analysis is performed on the exact geometric 

model. With T-splines in particular the parameterization of the whole structure is 

downsized to few control point coordinates, hence the problem can be solved at the 

lowest possible computational cost. Subdivision surfaces define the smooth curve or 

surface via successive refinements applied to an initial coarser piecewise linear polygon 

mesh. They are widely used in animation.  
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(a) 

 

 

 

(b) 
 

Fig. 1.3. Objects created with (a) T-splines, (b) subdivision surfaces 

 

 

1.2 Finite element analysis 
 

1.2.1 Evolution 
 

  The method of finite element analysis has its origins in the need for solving partial 

differential equations in the framework of complex elasticity and structural analysis 

problems. FEM achieves an approximation to the exact solution and in that sense it 

adopts its principles from the Galerkin method. The concept of the mesh discretization, 

which implies that the continuum domain is divided into a set of discrete sub-domains 

in order to define the displacement, stress and strain fields, was conceived by 

Hrennikoff and Courant. In particular the first one introduced the so called framework 

method, while the German mathematician Courant dealt with the problem of torsion 

initiating the triangular elements, in 1943. 

 

  The pioneers of the method represented mainly the aerospace industry. This is not 

coincidental, provided that the relevant ideas and applications were only supported by 

digital computation. Of course only large industrial companies were able to afford 
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mainframe computers during the 1950s. M. J. Turner, who worked at Boeing over the 

period 1950-1962, generalized and perfected the Direct Stiffness Method. B.M Irons 

invented the isoparametric models and the frontal solvers, an approach to solving sparse 

linear systems. R. J. Melosh recognized the Rayleigh-Ritz link and systematized the 

variational derivation of stiffness elements. 

 

  In 1943, the Royal Aeronautical Society of London met the problem of simulating the 

aircraft’s swept-back wings. It was a really challenging issue, since none of the known 

methods could ensure the accurate representation of the inclined geometry. The task 

was assigned to John Argyris, the Greek civil engineer who became one of the creators 

of the finite element method. Argyris came up with the use of triangular elements that 

would exactly fit the desired geometry and held its first implementation in the electro-

mechanical computing device the Society had just acquired and could solve equations 

with up to 64 unknowns. Analysis results were very close to the experimental results, 

with a deviation of approximately 8%. This breakthrough is considered as the birth of 

the finite analysis method. 

 

 

 
 

Fig. 1.4. John Argyris 

 

 

  The “Matrix Force and Displacement Method”, later established as “Finite Element 

Method”, was promptly transferred from the aerospace industry to a wider field of 

engineering applications during the 1950s and 1960s, mostly by J. H. Argyris, R. W. 

Clough, H.C. Martin and O. C. Zienkiewicz. Clough and Martin published in 1953 a 

paper which is widely considered as the start of the present FEM. Clough baptized the 

method in 1960 and formed a research group at the University of California Berkeley, 

in order to adjust the idea in civil engineering problems. In 1967, Olenk Zienkiewicz 

wrote the first book on the subject and headed another important civil engineering 

research group in the University of Wales at Swansea. In the years that followed, a large 

amount of publications and books overwhelmed the research community, proposing 

techniques to evolve and enhance the method. Nowadays FEM is the most famous 

computational tool for performing engineering analysis and its implementations pertain 
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to linear or non-linear response, solid or fluid structure systems, static or transient 

dynamic loading. 

 

 

1.2.2 Basic idea 
 

  FEM relies on the discrete representation of a physical continuum. Responses are 

sought only at chosen and countable points which are known as nodes. The unknown 

displacements correspond to degrees of freedom attributed to these nodes. The first step 

in the analysis procedure is to define the geometry of the problem. The mesh is created 

with respect to the CAD representation by computer algorithms called mesh generators. 

What follows is to define material properties, such as modulus of elasticity, Poisson’s 

ratio and density (only if dynamics problems are concerned). Then, boundary and 

continuity conditions as well as applied loads are determined. It should be noted that 

both distributed and body forces are converted to nodal forces in a FE software. 

 

  In order to ensure reliable analysis results, special attention should be paid to the 

number and geometry of elements. As the complexity of the geometry increases, the 

discretization should become denser with the aim to achieve the desired convergence. 

The highly skewed elements should be avoided, as they lead to considerable 

inaccuracies. In cases that their use is obligatory, they should at least be surrounded by 

healthy elements. This way the unfavorable consequences will be limited. 

Undoubtedly, the stress results in the vicinity of the defective element will still be 

inaccurate, however they will be improved significantly in a small distance. Another 

factor that plays an important role in the efficiency of the method is the aspect ratio, 

which is the proportional relationship between element’s width and height. The ideal 

aspect ratio is set to 1, while for increased values it reduces the quality of the simulation 

and therefore the quality of the results. 

 

 

 
 

Fig. 1.5. Aspect ratio of finite elements 

 

 

  The approximation of the solution field is realized via piecewise polynomial functions, 

called the shape functions N. The displacement value {d} at any internal point (x,y,z) 

of the element is calculated by interpolation of the nodal displacements {D}: 
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 ee3×1 3n ×13×3n

D(x,y,z) = N(x,y,z) d  

 

where 𝑛𝑒 is the number of nodes per element. 

 

Then, stress and strain vectors, which are connected through Hooke’s constitutive law 

are defined. 

 

 
T

x y z xy yz zxσ = σ  σ  σ  σ  σ  σ    

 

 
T

x y z xy yz zxε = ε  ε  ε ε  ε  ε    

 

    σ = Ε ε  

 

Deformation matrix [B] evaluates strains anywhere in the model from nodal 

displacements. 

 

  
 

 
 

 
 ee
3n ×16×1 6×3n

ε x,y,z = B x,y,z D    

 

The stiffness matrix [k] is evaluated on an element level as follows: 

 

 
 

 
 

 
 

 
 e e e e

T

3n 3n 3n 6 6 6 6 3nV

k B E B dV
   

   

 

Distributed loads are transformed into equivalent nodal loads: 

 

 
 

 
 

 
 e e

T

3n 1 3 13n 3V

r N f dV
 

   

 

The final step of the procedure is to build the global stiffness matrix [K] and force vector 

{R} adding each element’s contribution. The displacement vector {D} can now be 

calculated from: 

 

 
 

 
 

 
 3n 1 3n 13n 3n

R K D
 

   

 

where n is the total number of nodes. 

 

  The above relation is formulated with respect to Cartesian coordinates. However, the 

calculations in the natural space may prove to be extremely demanding, when complex 

geometries are concerned (nonrectangular elements with curved sides). FEM manages 

to overcome this difficulty incorporating the isoparametric method. The term 

isoparametric is derived from the use of the same shape functions (or interpolating 
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functions) N to represent the element’s shape and to define the displacements within 

the element. Each element is projected on another space, called parameter space, where 

it has a regular shape (e.g. a cube, square or an equilateral triangle). The local 

coordinates of the isoparametric element range from -1 to 1 and in these limits, shape 

functions values and their derivatives are calculated. This variation range was chosen 

to facilitate use of standard Gauss integration formulas. 

 

  Actually, products of deformation B and elasticity E matrices need to be integrated 

over the element area or volume. The integrals are evaluated by numerical quadrature 

rules. Gauss quadrature is the most popular in FEM applications, since it suits perfectly 

to the method’s features. A minimum number of required Gauss points are defined over 

each element and the value of the quantity to integrate is calculated at their parametric 

coordinates. The final system matrix is the sum of all Gauss points’ contributions. The 

technique will be described thoroughly later. 

 

 

1.2.3 Drawbacks 
 

  Despite the fact that a tremendous evolution has taken place in FEM applications and 

the method is now able to correspond to very demanding problems, there are still some 

crucial weaknesses to be solved. Without a doubt the major issue is the fact that FEM 

works with an approximate geometry mesh and not the actual geometry. The initial 

model is just used as a pattern for the mesh generation and afterwards it does not 

participate at all in the analysis process. Isoparametric elements take on the task of the 

representation, however what they offer is only an approach to the accurate figure. This 

means that the FE procedure is charged by birth with an error, the geometric one. After 

the calculations are completed, the analysis error has to be counted too. Analysis error 

is unavoidable considering that the analytical solution to the differential equations is 

not possible to be defined and only approximations can be achieved. Therefore, the total 

error may reach to not acceptable values when a high level of convergence is required. 

 

  As the complexity of the geometry increases, the results tend to be less accurate and 

thus refinement techniques have to be marshaled. The approximate geometry may 

conceal some of the shape’s details and only a denser mesh will restore the distortion. 

This would not be the case if the calculations were held with respect to the exact 

geometry. Focusing on the refinement, it should be mentioned that it is a laborious 

procedure, since the fine mesh cannot be directly produced from the coarse mesh. 

Refinement algorithms will return to the initial geometry and produce a different 

approximation. Functions already completed will have to repeat from the beginning, 

instead of adjusting to the new conditions. This approach is time-consuming, while it 

involves the danger of design errors. This problem gets even more challenging when 

complex and innovative structures are concerned, as their behavior has not been 
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adequately studied yet and engineers cannot base on expected results in order to check 

the analysis performance. 

 

Fig. 1.6 depicts a wine glass. In order to create this object, a designer has to define the 

following variables: 

 

 degree of shape functions at each parametric axis, 

 knot value vector at each parametric axis, 

 control points (Cartesian coordinates and weights). 

 

 

 
 

Fig. 1.6. Wine glass: geometry design 

 

 

 
 

Fig. 1.7. Wine glass: initial geometry mesh  
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  In FEM the smooth geometry of the cup is introduced as input into the FEA software 

and thereafter it is represented by quad finite elements. In IGA, on the contrary, the 

geometry remains intact and the mesh is the exact geometrical model. Fig. 1.8 shows a 

finer mesh of the wine glass for both cases. 

 

 

 
 

Fig. 1.8. Wine glass: fine FEA mesh (left), fine IGA mesh (right) 

 

 

1.3 Isogeometric analysis 
 

  The compatibility between present CAD and FEM formulas is unreachable, since the 

two technologies evolved in different ways. A model is created for CAD representation 

and then a different one is built for the FEM solution. After the mesh is generated and 

the analyst obtains the first results, he informs the designer of the appropriate changes 

in the geometry. The designer updates the CAD model and gives it back to the engineer, 

who has to regenerate the FEM model and a new mesh all over again. This constant 

interaction between designer and engineer can increase dramatically the whole time of 

the procedure. In particular, when complex designs are concerned, where each design 

constitutes of numerous CAD entities combined together, the integration process is 

estimated to take up at around 80% of the whole analysis time. 

 

  Of course, the automatic CAD-CAE communication troubled the research community 

for a very long time. However, Thomas J.R. Hughes managed to approach the issue 

from a different perspective. He realized that instead of trying to connect current CAD 

and CAE formulas, they should be reinvented in ways that enable the integration. The 

basic idea is to use the same smooth and higher order basis functions both for the 

representation of the exact CAD geometry and for the approximation of the FEA 
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solution fields. Isogeometric analysis extends, in essence, isoparametric elements, but 

the process of altering geometry for the sake of the solution approximation is reversed. 

 

  IGA exhibits increased accuracy and robustness on a per degree of freedom basis in 

comparison to standard finite element methods. In FEM, classical and hierarchical 

Lagrange basis functions are usually met. Every function can be represented as a linear 

combination of the standard Lagrange basis as well as by a set of hierarchical basis 

functions, where the higher order basis contain all lower order functions. FEM’s 

functions are defined exclusively in the interior of the element and achieve 0C  

continuity at the inter-element boundary. Within the isoparametric context 0C  applies 

to both the geometry and the unknown displacement field. IGA invests on new 

technologies, such as NURBS or T-splines. The corresponding basis are defined 

globally on a patch and each function has support on more than one elements, enabling 

higher continuity and interconnectivity. Thus, a much richer behavior is obtained, 

which represents better the natural response of the object. 

 

 

 
 

Fig. 1.9. NURBS object consisting of two patches for the two different materials (wood and steel) 

 

 

  IGA occupies the exact geometry model, hence it ensures accurate results even when 

coarse meshes are used. As far as mesh refinement is concerned, it simplifies the 

procedure because the geometry is fixed at the coarsest level of refinement and is 

unchanged throughout the process. This eliminates geometrical errors and the necessity 

of linking the refinement procedure to a CAD representation of the geometry, as in 

classical FEA. Both order elevation and knot insertion or even a combination of these 

techniques are supported by IGA. Isogeometric method also appeals to hierarchical 

structures, since they can easily be developed straight from the geometrical model. 
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  Without a doubt IGA outperforms FEM in terms of accuracy. However, the 

computational cost of the new method is markedly increased. The first suspect to blame 

for this reduced efficiency is numerical quadrature. IGA inherited all the techniques 

developed within the FEA framework, however not all of them suit to the needs of the 

new method. In particular, FEA adopts the Galerkin method in order to solve the partial 

differential equations. Galerkin formulation leads to integrals, which are evaluated by 

numerical quadrature rules. Gauss rules are optimal for one-dimensional polynomials 

and have been used extensively for quadrilateral and hexahedral elements. As a result, 

the application of Gauss quadrature to the elements of isogeometric analysis was the 

prevailing option. Nevertheless, it turned out that the higher order NURBS and B-

splines with the smooth properties across element boundaries and the overlapping of 

the corresponding basis functions increase by orders of magnitude the analysis cost.  

 

  It is clear that alternative formulations which will fit more appropriately to the concept 

of IGA have to be called on during the analysis process. In this thesis the method of 

collocation is examined and compared to the Galerkin performance. Collocation seems 

to be really promising as far as computational cost is concerned, however the choice 

between the two methods is not obvious, considering that collocation deals with some 

accuracy and application issues. 

 



 

2 NURBS-Based Isogeometric 

Analysis 
 

 

 

2.1 Introduction 
 

 

  The basic concept of isogeometric analysis is to extract the mesh for analysis purposes 

straight from the model’s design. Classical FEA and the previous methods suggest that 

an approximate mesh is created instead of taking advantage of the existing accurate 

one. In cases that an error has to be corrected or a modification to take place, the 

intervention to the initial mesh is not an option. The standard procedure implies that a 

new mesh should be formed over again each time that an alteration is to be imposed. 

This way, the analysis process becomes time-consuming, while it also deprives of a 

high level of flexibility and accuracy, considering that the additional geometry error 

has to be counted too. On the contrary, IGA always works with the accurate geometry 

grid, thus the geometry error is eliminated. This observation seems now very obvious, 

but it took years of research until 2003, when Thomas J.R. Hughes and his research 

team succeeded to cut the gordian knot of CAD–CAE integration. 

 

The node mesh is divided into two separate meshes, which derive directly from the 

geometrical representation, that are the control point mesh and the knot mesh. 

 

 The control point mesh defines the geometry, it does not conform though to the 

structure. It consists of multilinear elements depending on the dimensions of the 

problem. The degrees of freedom, called as control variables, lie at the control 

points and they are the unknowns of the final linear system of equations. The 

control point mesh can “protect” and preserve the physical geometry, even when 

it is highly distorted, unlike a typical finite element mesh. Besides, continuity is 

determined by the basis functions, hence control points can be modified without 

influencing the curve’s continuity. 

 

 The knot mesh provides the discretization of the model, considering that knots 

constitute the boundaries of knot spans, or else elements. Knots are also the 

points where the piecewise polynomial basis functions change formula. Thus, 

numerical integration is conveniently accomplished at a knot span level. Apart 
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from that, the knot mesh is additionally used to define the support of each shape 

function. 

 

  The abstract framework and the numerical applications which are developed in this 

thesis, are based exclusively on Non-Uniform Rational B-splines (NURBS), as they are 

so far the most commonly used design tool. They are quite simple in their definition 

and they are able to represent with accuracy smooth curves and all conic sections. Of 

course more advanced technologies have emerged in the field of computational 

geometry in the last years, such as T-splines and subdivision surfaces. These models 

reduce the required number of control points and as a result they respond better to 

complicated geometries, while they accommodate local refinement techniques. 

Nevertheless, the efficiency of NURBS is undoubted and considering that they have 

been adopted in a wide range of applications, they still have a significant lead.  

 

 

2.2 Index, parameter and physical space 
 

 

  Physical space hosts accurate geometrical representations of the natural model, 

designed in the familiar Cartesian system. However, in order to accurately simulate 

complex models with curved boundaries, the isoparametric concept, which is adopted 

in both FEA and IGA, introduces an imaginary, basic space, where all geometries can 

be represented as lines, rectangles and cuboids. This is parameter space. Finally, there 

exist index space too, which may only play an auxiliary role for NURBS-based 

isogeometric analysis, it is essential though for other kinds of splines. 

 

 

 
                                      (a)                                                                  (b) 
 

Fig. 2.1. B-spline solid: (a) index space, (b) physical space 
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2.2.1 Index space 
 

  In index space each knot is uniquely identified, even if it has a multiplicity greater 

than one. Knot values are located at equally spaced positions, so that axis calibration 

refers to their sequence rather their numerical content. Index space is a key to 

understanding NURBS, since it helps to identify which knot value spans are influenced 

by each basis function and thus apprehend support and overlapping issues. Control 

points are also depicted in index space at the center of the support of basis functions. 

 

  Expansion to 2D or 3D leads to the creation of rectangles or cuboids respectively. Due 

to tensor product properties, everything mentioned about 1D extends and applies to 

both 2D and 3D. Therefore, index space provides information that can contribute to the 

handling of a complex representation. 

 

 

 
(a) 

 

 

 
(b) 

 

Fig. 2.2. (a) Curve and (b) solid represented in index space 
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2.2.2 Parameter space 
 

  Parameter space is a representation of the model with respects to knots, which takes 

place at the parametric coordinate system (ξ,η,ζ). The computation of the entries of the 

stiffness matrix requires the mapping of the Cartesian system (x,y,z) to the parametric 

system. The transfer between the two spaces is achieved through the Jacobian matrix 

and its inverse. In parameter space, all spline entities, regardless the complexity of their 

pattern, are represented as orthogonal shapes. 

 

  The illustration of B-spline basis functions in parameter space reveals that they are 

non-zero only in specific knot spans, despite the fact they are defined throughout the 

space. These knot spans constitute the domain of each basis function. Each knot span 

belongs to the domain of more than one functions, provided that each knot denotes the 

start of one domain and the end of another. The highly localized phenomenon of 

overlapping points out which functions control a common part of the structure in 

physical space, while it is reflected at the density of the stiffness matrix. 

 

 

 
(a) 

 
(b) 

 

Fig. 2.3. (a) Surface and (b) solid represented in parameter space 
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2.2.3 Physical space 
 

  Physical space is where the actual geometry is represented by a linear combination of 

the basis functions and the control points. The fact that the control points do not belong 

to the model in Cartesian space, but they suitably surround it, is the reason why NURBS 

and spline entities achieve accurate representations. Of course the contribution of B-

spline basis functions is crucial too. For a given set of control points, the final geometry 

is determined by the choice of the set of basis functions. In contrast to finite element 

functions, in NURBS the basis functions are usually not interpolating the control points. 

 

  In physical mesh the actual geometry is decomposed into elements either with the 

approach of a patch or with the approach of a knot span. The predominant strategy is to 

consider as patch a subdomain that consists of many knot spans. Indeed, it is more 

convenient to attribute the role of element to knot spans, since the functions are C  

within knot spans and their continuity is reduced only along knot lines where different 

“pieces” join. In addition, many complicated domains can be exactly represented by a 

single patch, as well as all the geometries which will be considered in this thesis. This 

aspect cannot conform to our familiar perception of an element. 

 

 

 
(a) 

 

 

 
(b) 

 

Fig. 2.4. (a) Curve and (b) solid represented in physical space 
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2.3 B-splines 
 

2.3.1 Knot vector 
 

  A B-spline consists of n polynomial basis functions of degree p. In order to acquire 

these functions, the corresponding knot vector should first be defined. A knot vector is 

defined in bibliography as a non-decreasing set of parametric coordinates 

 1 2 1, ,..., n p      , where i   is the thi  knot value. It can contain the same 

number multiple times and generates the basis in a unique way. To prevent any potential 

confusion, let us assume that the “knot value vector” comprises the whole set of non-

decreasing values, while the “knot vector” includes the set of unique coordinates. For 

example, a knot value vector could be {0 1 1 1 2 2 3 3} where 0, 1, 1, 1, 2, 2, 3, 3, are 

the separate knot values. The corresponding knot vector is {0 1 2 3} where 0, 1, 2, 3 

are the separate knots. 

 

  If the knot values are equally spaced in parameter space, the knot value vector is 

considered uniform, or else it is non-uniform. If the first and the last knot are repeated 

p+1 times, the knot value vector is said to be open, as it forces the functions to have 
1C  continuity at the edges, creating this way an open curve that is interpolatory at the 

corresponding knots. In general, the basis functions are not interpolating the interior 

knots.  

 

  A knot value vector may contain integers or decimals. In fact, the actual numerical 

content of knot values is of no importance. What matters is the relative distance between 

them. This means a knot value vector can be multiplied by any number, or have a 

number added to every knot value and the resulting basis would still be the same.  

 

  As it has already been mentioned, control points are located at the center of the support 

in index space. Provided that for the thi  basis function of order p the support refers to 

the interval 1,i i p   



, it is obvious that the support of each basis function includes p+1 

knot value spans, therefore p+2 knot values. For even degrees the center of the support 

lies between the sequential knot values 
2

p
i   and 1

2

p
i   , while for odd degrees it is 

coincident with the knot value 
1

2

p
i


 . Consequently, control points in index space 

are located directly at a knot for odd p and either at a knot or in the middle of a knot 

span for even p. 
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2.3.2 Basis functions 
 

  Given a knot value vector  1 2 1, ,..., n p      , the B-spline basis functions can be 

evaluated at 
1 1, n p    

    using the Cox-de Boor recursive formula as described in 

[3]. The piecewise constants are defined for p=0 by 

 

i i 1

i,0

1, if
N ( )

0, otherwise

     
  


 

 

  The piecewise constant does not include the right edge i+1ξ  in order to ensure partition 

of unity, as the next basis function begins from the specific edge. The last function, 

however, includes both left and right edge, so as to be defined across the whole knot 

span. 

 

For p=1, 2, 3,… functions are defined by 

 

i p 1i
i,p i,p-1 i 1,p-1

i p i i p 1 i 1

--
N ( ) N ( ) N ( )

- -

 



   

  
    

   
 

 

If the denominators of the above factors are equal to zero, the whole factor is set to 

zero. 

 

  B-spline basis functions comply with the nature of full tensor product, in order to form 

multidimensional B-spline shape functions. Therefore, the evaluations of basis 

functions in each parametric direction are associated through a linear combination 

producing curves, surfaces and solids in 
d
 space. The properties of the final 

geometries follow directly from the properties of their basis functions.  

 

2D B-spline shape functions can be evaluated as tensor product of basis functions 

i,pN ( )  and  j,qM  : 

 

 p,q

i, j i,p j,qR , N ( )M ( )      

 

3D B-spline shape functions are a tensor product of basis functions on three directions, 

i,pN ( ) ,  j,qM   and  k,rL  : 

 

   p,q,r

i, j,k i,p j,q k,rR ( , , ) N ( )M L        
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2.3.3 Properties 
 

  B-spline basis functions possess some important properties, as they are described in 

[3]. Most of them follow by induction from the recursive relation and they constitute 

the theoretical background of NURBS-based isogeometric analysis. 

 

1. Partition of unity 

n

i,p

i 1

N ( ) 1


   , p . 

 

  It is obvious in following figures that the basis forms a partition of unity for every 

point ξ and every polynomial degree p. In other words the sum of B-spline values at 

any parametric coordinate is equal to 1 regardless the discretization order. It should be 

noted that in Fig. 2.5a, where p=0, the value at internal knots is equal to zero when the 

left knot span is concerned, and equal to one when the right knot span is concerned. 

This is imposed by the open interval 1,i i    , as it was underlined in the previous 

section. 

 

 
(a) 

 

 
(b) 

 

Fig. 2.5. Sum of B-spline basis function value for every   

 (a)  0 1 2 3 4   

(b)  0 0 0 1 2 3 4 5 6 7 8 8 8   
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2. Local support 

 

  Each B-spline basis function has a local support of p+1 knot value spans. This property 

arises from the recursive character of the Cox-de Boor formula. Functions are built 

gradually and hierarchically beginning from p=0 to the desired polynomial degree. 

Each box function has a support of one knot value span. Therefore it is convenient to 

establish the number of box functions required as a measure of the local support.  

 

  In order to form a function of order p, two consecutive functions of order p-1 are 

required. Each one of them uses two consecutive functions of order p-2. However, the 

two functions of p-1 share one of these subordinate functions, making a total of three 

functions of order equal to p-2. This procedure involves p steps until the zero degree is 

reached. At each step, where the degree is gradually reduced, the number of functions 

is increased by one. Apparently, the computations lead to p+1 box functions used to 

form the final function of degree p. This thought process is illustrated in the figure 

below. 

 

 

 
 

Fig. 2.6. Lower-order basis functions required for the creation of 
5,3N ( )   

 

 

  In Fig. 2.7 the box functions, drawn in red, are required in order to build the linear 

basis functions, drawn in green. That means that 4,1N  and 5,1N  are evaluated from      

4,0N , 5,0N  and 5,0N , 6,0N  respectively. Then the linear functions 4,1N  and 5,1N  are 

combined for the evaluation of the quadratic 4,2N . The support of 4,2N  is extended to 

the interval 1,4 , including the p+1=3 knot spans where the involved box functions 

are non-zero. 
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Fig. 2.7. B-spline recursive character: 

Basis functions required for the evaluation of a quadratic B-spline function 

 

 

  It should be noted that trivial spans, which are formed when the knot values are 

repeated, are also taken into consideration. Fig. 2.8 presents the support of three 

consecutive basis functions emanating from the knot value vector 

 0 0 0 1 2 3 4 5 5 5  . All the three of them have a support of p+1=2+1=3 knot value 

spans. However, only the third is fully developed, since the first two are related to the 

span 0,0 . 

 

 

 
 

Fig. 2.8. Support of trivial knot value spans 
 

Support of first basis function:      0,0 , 0,0 , 0,1  

Support of second basis function:      0,0 , 0,1 , 1,2  

Support of third basis function:      0,1 , 1,2 , 2,3  
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  The full tensor product property sets the local support of a two-dimensional shape 

function to   1 1p q   knot value spans, where p and q are the discretization orders 

in the parametric axes ksi and heta respectively. In Fig. 2.9 the 2D shape function 

 2,2

5,5R ,   is formed by the evaluations of 5,2N ( )  and  5,2M  . The value of the 

bidirectional B-spline is represented in the third axis of the graph and by projection of 

the contour in the 2D plane. Both one-dimensional functions are quadratic, hence their 

support is extended to p+1=2+1=3 knot value spans. It was thus expected that the 

corresponding shape function would affect the domain defined by the combination of 

these knot spans lying across each direction. The support occupies a total area of 

3 3 9   knot value rectangles. 

 

 

 

 
 

Fig. 2.9. Shape function  p,q 2,2

i, j 5,5R R ,    as a tensor product of 
5,2N ( )  and  5,2M   

Ξ={0 0 0 1 2 3 4 5 6 6 6} 

Η={0 0 0 1 2 3 4 5 5 5} 

 

 

  3D B-spline shape functions can be represented as in Fig. 2.10. Shape functions for ξ 

are drawn in the ξ-η plane, functions for η in the η-ζ plane and functions for ζ in the ζ-

ξ plane. Their tensor product value has been calculated as a function of two parametric 

directions at the control point coordinate of the remaining direction. The resulting 

contour is projected on a plane that is parallel to the two directions and intersects with 

the tensor product control point. This process is repeated for all three possible 

combinations, thus creating contours at all three planes. 
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Fig. 2.10. Shape function  p,q,r 2,2,1

i, j,k 3,3,1R R , ,     as tensor product of 
3,2N ( ) ,  3,2M  , 

1,1L ( )  
 

Ξ={0 0 0 1 2 2 2} 

H={0 0 0 1 2 2 2} 

Z={0 0 1 2 2} 

 

 

 

3. Non-zero functions per knot span 

 

  The maximum number of basis functions that are non-zero across a knot span is p+1. 

This outcome flows from the Cox-de Boor recursive formula as well and addresses the 

“decomposition” process of basis functions of order p. In particular, one box function 

that is non-zero over a specific knot span participates to the evaluation of two 

consecutive functions of order p=1. These linear functions contribute to the creation of 

three consecutive basis functions of order p=2. In general, one box function is involved 

in the formation of p+1 functions of order p.  

 

  At this point it should be underlined that over a knot span only one box function has 

non-zero values. Therefore, the pth degree basis functions that are non-zero at a specific 

knot span are exclusively the p+1 functions which are built based on the corresponding 

box function. Specifically, at a non-trivial knot value span  i i 1,    only the basis 

functions i p,p i p 1,p i,pN ( ),  N ( ),  ...,  N ( )      are non-zero. This property is used efficiently 

in stiffness matrix formulation, in order to reduce the computational cost. 

 

  The maximum number of shape functions that are non-zero across a two-dimensional 

or three-dimensional knot span is   1 1p q   and    1 1 1p q r    respectively. 
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Fig. 2.11. Contribution of one box function 

to the creation of higher-order B-spline basis functions 

 

 

 
 

Fig. 2.12. Contribution of one box function to non-zero higher-order 

 B-spline basis functions across knot span [1,2) 
 

 

4. Non-negativity 

 

i,pN ( ) 0 ,i,p     

 

  In contrast to finite element basis functions where negative values appear, B-spline 

basis functions are always positive or equal to zero for every ξ, p. This enables the 

computations to be less complicated and more numerically stable. 
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Fig. 2.13. B-spline basis functions for knot value vector 

Ξ={0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9} 

 

 

5. Shared support 

 

  Each B-spline basis function shares support with 2p functions, which is p on each side. 

This leads to a bandwidth equal to 2p+1 (including the function in question). 

Surprisingly, the increasing support of B-splines compared to standard finite element 

basis functions does not result in increased bandwidths in a numerical method. The 

shared support of 2p+1 corresponds to both methods as well. The difference between 

IGA and FEA lies at the density of the stiffness matrix. The overlapping in FEA is 

caused by corner or edge nodes, which are involved in more than one elements. Internal 

nodes affect exclusively their own elements. In IGA on the contrary, each control point 

associates with p+1 knot spans (elements), thus more positions in the stiffness matrix 

are occupied and the density increases markedly with respect to p, especially in multi-

dimensional cases. 

 

 

 
 

Fig. 2.14. Shared support for 
7,3N ( )  

Ξ={0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9} 
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  7,3N ( )  interacts with p=3 basis functions on each side, 4,3N ( ) , 5,3N ( )  and 6,3N ( )  on 

the left, 8,3N ( ) , 9,3N ( ) , 10,3N ( )  on the right. As a result, the respective positions in the 

stiffness matrix will be non-zero. 

 

 

6.  Continuityp mC   

 

  B-spline basis functions have p mC   continuity across a knot with multiplicity m. That 

means that p-m continuous derivatives can be defined over the knot in question. In the 

interior of knot spans, where the basis functions are smooth polynomials, the continuity 

is always C . As the level of C  decreases, B-splines tend to be steeper. Indeed, the 

reduced continuity indicates multiple repetitions of knots, therefore the corresponding 

functions cannot be fully developed, since their domain includes trivial spans. When 

the multiplicity of a knot value is exactly p, the basis is interpolatory at that knot. Knots 

with multiplicity p+1 are responsible for discontinuities and they take the role of patch 

boundaries. In the patch interior, continuity less than 0C  is not acceptable, so the 

internal knots can be repeated up to p times. 

 

 

 
 

Fig. 2.15. Continuity across interior element boundaries 

Ξ={0 0 0 0 0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5} 

 

 

  In 2D and 3D cases, continuity at each direction is obtained straight from the 

continuity of the corresponding one-directional B-spline basis functions. In Fig. 2.16a, 

 2,2

5,4R ,   is tensor product of 5,2N ( )  and  4,2M  . 5,2N ( )  has p m 2 2 0C C C    

continuity across ξ=3 and  4,2M   has p m 2 1 1C C C    continuity across η=2. 

Therefore,  2,2

5,4R ,   has 0C  continuity with respect to ξ and 1C  continuity with respect 

to η across    , 3,2   . 
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  In Fig. 2.16b,  2,2

5,5R ,   is tensor product of 5,2N ( )  and  5,2M  . Both B-spline basis 

functions have 0C  continuity across ξ=3, η=3 respectively. As a result,  2,2

5,5R ,   has 

0C  continuity across    , 3,3   . In general, in multi-dimensional functions 0C , 

continuity across a knot requires the basis functions per all directions to be 0C  

continuous at that point. 

 

 

 
 

(a) 

 
 

 
(b) 

 
Fig. 2.16. NURBS shape functions for directions ξ, η 

 

(a) Shape Function  p,q 2,2

i, j 5,4R R ,    as tensor product of 
5,2N ( )  and  4,2M   

Ξ={0 0 0 1 2 3 3 4 5 6 6 6} 

Η={0 0 0 1 2 3 4 5 5 5} 
 

 (b) Shape Function  p,q 2,2

i, j 5,5R R ,    as tensor product of 
5,2N ( )  and  5,2M   

Ξ={0 0 0 1 2 3 3 4 5 6 6 6} 

Η={0 0 0 1 2 3 3 4 5 5 5}  
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7. Number of knot values 

 

  The evaluation of n basis functions of polynomial order p requires n+p+1 knot values. 

According to the property pertaining to the local support, each control point has a 

support of p+1 knot value spans, which is p+2 knot values. n control points lead to the 

sum of  1n p   knot values. However one knot value belongs to the support of more 

than one control points. There are p+1 knot values repeated in n-1 control point 

interconnections. Therefore, the total number of knot values is: 

 

    2 1 1 2 1 1n p n p np n np n p n p              

 

 

2.3.4 Basis function derivatives 
 

  The definition of B-spline basis functions derivatives is of great importance for 

isogeometric analysis. The values of derivatives calculated at Gauss points form the 

entries of the deformation and the stiffness matrix, thus they determine the 

displacement, stress and strain fields. Given a polynomial order p and a knot value 

vector  1 2 1, ,..., n p      , the derivative of the thi  basis function is represented as a 

linear combination of basis functions of previous polynomial order [1]: 

 

i,p i,p-1 i+1,p-1

i+p i i+p+1 i+1

d p p
N (ξ)= N (ξ)- N (ξ)

dξ ξ -ξ ξ -ξ
 

 

This equation can be generalized for the kth derivative as follows: 

 

                                     
k k

i,p k,j i+j,p-kk
j=0

d p!
N (ξ)= a N (ξ)

dξ (p-k)!
  

0,0

k-1,0

k,0

i+p-k+1 i

k-1,j k-1,j-1

k,j

i+p+j-k+1 i+j

k-1,k-1

k,k

i+p+1 i+k

a =1

a
a =

ξ -ξ

a -a
a = ,  j=1, . . . , k-1, 

ξ -ξ

-a
a =

ξ -ξ

 

 

Two-dimensional shape functions give the following partial derivatives: 

 

 p,q

i,j i,p j,q

d
R ξ,η = N (ξ) M (η)

ξ dξ
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 p,q

i,j i,p j,q

d
R ξ,η =N (ξ) M (η)

η dη

 
 

  
 

 

3D shape function derivatives per direction can be obtained in like manner: 

 

   p,q,r

i,j,k i,p j,q k,r

d
R (ξ,η,ζ)= N (ξ) M η L ζ

ξ dξ

 
 

  
 

   p,q,r

i,j,k i,p j,q k,r

d
R (ξ,η,ζ)=N (ξ) M η L ζ

η dη

 
 

  
 

   p,q,r

i,j,k i,p j,q k,r

d
R (ξ,η,ζ)=N (ξ)M η L ζ

ζ dζ

 
 

  
 

 

 

2.3.5 B-spline curves 
 

  B-spline curves constitute a linear combination of B-spline basis functions and each 

one of them is related to a set of coordinates, the so-called control points  i i i= X ,Y ,Z .iX  

Given n basis functions and the coefficients Xi of the corresponding control points, the 

B-spline curve is evaluated at every   as follows: 

 

 
n

i,p i

i=1

C(ξ)= N (ξ)X  

 

As far as the two-dimensional B-spline surfaces and the three-dimensional B-spline 

solids are concerned, the procedure is analogous to the curve case respectively: 

 

   
n m n m

p,q

i,p j,q i,j i,j i,j

i=1 j=1 i=1 j=1

S(ξ,η)= N (ξ)M (η)X = R X   

    
n m l n m l

p,q,r

i,p j,q k,q i,j,k i,j,k i,j,k

i=1 j=1 k=1 i=1 j=1 k=1

S(ξ,η,ζ)= N (ξ)M (η)L (ζ)X = R ξ,η,ζ X   

 

 

 
(a)                                            (b)                                                  (c) 

 

Fig. 2.17. B-spline objects: (a) curve, (b) surface, (c) solid  
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2.3.6 B-spline curve properties 
 

The properties of B-spline curves are described in [3]. Plenty of them are inherited by 

the basis functions participating to their evaluation. 

 

1. Generalization of Bézier curves 

 

  Bézier curves were until recently widely used in computer graphics in order to 

represent smooth curves. Their difference with B-splines is that they are all defined 

across the same knot span and as a result they are non-zero across the entire domain. A 

possible alteration to a control point affects the whole model and not just a part of it. 

Fig. 2.18 presents the physical space and the basis functions of a Bézier curve based on 

the knot value vector {0 0 0 0 1 1 1 1}. 

 

 

 
(a) 

 

 
 

(b) 
 

Fig. 2.18. B-spline as generalization of Bézier curves: 

 (a) physical space, (b) basis functions 
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2. Control point – basis function correspondence 

 

  A B-spline curve is defined by n control points and n basis functions and the 

correspondence between them is unique. That means that each basis function is 

associated with a certain control point, despite the fact that other control points belong 

to its domain of influence too. This property is valid for surfaces and solids as well. In 

these occasions B-spline is a tensor product of basis functions across ξ, η and ζ. Each 

one of them is controlled by a specific one-dimensional point. The tensor product of 

these points constitutes the two-dimensional or the three-dimensional point which 

controls the B-spline surface or solid respectively. 

 

In Fig. 2.19 the pairs of control points and their corresponding basis functions are 

presented in different colors. 

 

 

 
(a) 

 

 

 
(b) 

 

Fig. 2.19. Control point-basis function correspondence: 

(a) physical space and (b) basis functions with the corresponding control points 

 

  



2 NURBS-Based Isogeometric Analysis                                                                                  33 

 

3. Endpoint interpolation 

 

  The first and last control points are interpolatory to the curve. Any internal control 

point corresponding to 0C  continuous basis function is also interpolatory to the curve. 

In Fig. 2.20 the first and the last control points have 1C  continuity, while the internal 

control point lying at ξ=3 has 0C  continuity. 

 

 

 
(a) 

 

 
(b) 

 

Fig. 2.20. Control point interpolation: 

 (a) B-spline curve, (b) the corresponding basis functions 

 

 

4. Affine invariance 

 

  Any affine transformation destined for the B-spline curve, can be applied directly to 

the control points. By the term affine transformations, translations, rotations, scalings 

and uniform stretchings and shearings are meant. Affine invariance, or else affine 

covariance, arises from the partition of unity property of B-spline basis functions. The 

transformation is denoted by Φ: 3 3  and has the form 

 

 Φ x =Ax+v  

 

where A is a 3x3 matrix and v is a vector. 
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5. Control point local support 

 

  Each control point is associated with a certain B-spline basis function. This function 

is non-zero exclusively across its local support, which includes p+1 knot value spans. 

The corresponding control point shares the same local support with the function, and 

thus its domain of influence is defined. That is, moving a control point Xi, only the 

interval 1,i i p   



 will “perceive” the alteration. 

 

In Fig. 2.21 the control point lying at ξ=1.5 is moved and the curve is partially affected. 

The support of the control point is shown in the chart with the B-spline values. 

 

 

 
(a) 

 

 
(b) 

 

Fig. 2.21. Control point local support: 

 (a) physical space, (b) B-spline basis functions 

 

 

6. Convex hull 

 

  A B-spline curve is completely contained in the convex hull defined by its control 

points. This follows from the non-negativity and partition of unity properties of the 

basis, as well as the support of p+1 spans for every function. Given a curve of degree p 

the convex hull is formed by merging the convex hulls created by p+1 consecutive 

control points. 
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  In Fig. 2.22 the convex hull is built gradually for a curve of degree p=2, connecting 

each control point with its p=2 subsequent ones. It is apparent that the convex hull 

encloses the curve, while it describes its general form. 

 

 

 

 

 

 
 

Fig. 2.22. Step-by-step convex hull creation for a B-spline curve 

 

 

2.4 Non-Uniform Rational B-splines 
 

2.4.1 The basic concept 
 

  Non uniform rational B-splines, NURBS, are piecewise rational polynomials built 

from B-splines. The term non uniform denotes the use of non-uniform knot value 

vectors. These vectors enable the engineer or the designer to intervene in the continuity 

of the function across knots by increasing their multiplicity, therefore a better 

approximation to the physical model is achieved. The term rational implies that two 

polynomials are involved in the formation of NURBS, which are produced by the basis 

functions and certain weighting functions.  

 

  NURBS can exactly represent a wide range of objects, especially conic sections such 

as circles and ellipses. Second-order Lagrange polynomials on quadrilateral elements 
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in standard FEA would require an increased number of nodes in order to mimic the 

curved behavior and eliminate the angles that successive elements form. NURBS 

instead use elements that fit exactly the curve’s shape, thus they work with a minimum 

number of nodes. For instance, a circle can be exactly represented by only nine points. 

It is clear that NURBS suit perfectly to the concept of isogeometric analysis, that is to 

use the same mathematical model for both design and analysis, since they provide 

accuracy, robustness and flexibility.  

 

  The basic idea is the principles of B-splines to be adopted by NURBS, so that they 

can be handled in a similar way. Indeed NURBS curves, surfaces and solids are 

generated by a linear combination of basis functions and control points, and as a result 

all the properties of B-splines are efficiently transferred to NURBS products. The final 

NURBS object is produced from the actual section of a cone with a plane. As shown in 

Fig. 2.38, the projective B-spline curve ( )w
C  is created from the projective 3D control 

points  w w wX Y Zw
X . 

 

 
 

Fig. 2.23. B-spline curve and projective transformation to NURBS curve  
 

 

Projection of the curve and control points on the plane z=1 produces the NURBS curve 

C(ξ)  and the 2D control points: 

 

 X YX  

where, 

 
w w

i i
i i w w

i i

X Y
X Y

Z Z

 
  
 

 

 

The weights of the NURBS curve are defined as: 

 

 ww Z  

 

In general n-dimensional rational B-splines are projections of  1n  -dimensional non 

rational B-splines.  
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2.4.2 Shape functions 
 

  In order to evaluate NURBS shape functions, the weighting function is defined: 

 

    
n

i,p i

i 1

W N w


     

 

  In most engineering applications, weights have positive values. Unless otherwise 

stated, they will be considered positive for the scope of this thesis. W( )  is in fact the 

Z-coordinate of the projective B-spline curve. Projective transformation is applied by 

dividing the other two coordinates of the B-spline curve with the Z-coordinate. NURBS 

shape functions are calculated from 

 

 

i,p i i,p ip

i n

i ,p i

i 1

N ( ) w N ( ) w
R ( )

W( )
N ( ) w 



   
  


 

 

 
p

iR ( )  are piecewise rational functions. The expression “the order of NURBS” refers 

to the order of the projective B-SPLine curve. 

 

NURBS shape functions in multiple directions can be obtained as tensor products of 

one-directional basis functions. Shape functions for two directions: 

 

 

i,p j,q ijp,q

i, j n m

i ,p j ,q i j

i 1 j 1

N ( ) M ( ) w
R ( , )

N ( ) M ( ) w   

  

   
  

   
 

 
n m

i ,p j ,q i j

i 1 j 1

W( , ) N ( ) M ( ) w   

  

        

 

Similarly, the equations are extended in three directions:  

 

 

i,p j,q k,r ijkp,q,r

i, j,k n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

N ( ) M ( ) L ( ) w
R ( , , )

N ( ) M ( ) L ( ) w     

    

     
   

     
 

 

The weighting function is now defined as: 

 

 
n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

W( , , ) N ( ) M ( ) L ( ) w     

    

           

 

  Observe that for ijkw 1 , i, j, k , it applies that NURBS shape functions downgrade 

to B-spline basis functions. Actually, NURBS entities are a generalization of B-spline 

entities. All the B-spline properties examined in this thesis apply for NURBS as well. 
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2.4.3 Shape function derivatives 
 

Simple application of the quotient rule yields the derivatives of NURBS shape functions 

for one and multiple directions. 

 

 

i,p i,p

p

i i 2

d d
N ( ) W( ) W( ) N ( )

d dd
R ( ) w

d W( )

   
         

      
 

 

where 

   
n

i,p i

i 1

d d
W N w

d d

 
    

  
  

 

For bidirectional shape functions: 
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p,q

i, j ij 2

d
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d
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p,q

i, j ij 2

d
N ( ) M ( ) W( , ) W( , ) N ( ) M ( )

d
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W( , )

   
               

        
    

 
Derivatives of 3D shape functions per direction are evaluated as shown 
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2.4.4 Entities 
 

  NURBS entities are created as a linear combination of NURBS shape functions, 

exactly the same way as B-spline entities. The following is the equation for the creation 

of NURBS curves: 

 

 
n

p

i i

i 1

C( ) R ( ) X


     

 

surfaces: 

  
n m

p,q

i, j i, j

i 1 j 1

S( , ) R , X
 

       

 

and solids: 

  
n m l

p,q,r

i, j,k i, j,k

i 1 j 1 k 1

S( , , ) R , , X
  

         

 

 

 
                                          (a)                                                       (b) 

 
(c) 

 

Fig. 2.24. NURBS circle of different polynomial degrees. Weight values for each control point. 
 

(a) Quadratic basis functions 

 0 0 0 1 1 2 2 3 3 4 4 4   

(b) Cubic basis functions 

 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4   

(c) Quadric basis functions 

 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4   





 

3 Numerical Integration 

Schemes 
 

 

 

3.1 The method of weighted residuals 
 

 

  In order to solve differential equations and define a satisfying approach to the actual 

solution, the method of weighted residuals (MWR) is widely used. The basic concept 

is to approximate the actual solution by a linear combination of basis functions chosen 

from a linearly independent set. Suppose we have a linear differential operator D  acting 

on a function u to produce function p. 

 

    D u x p x  

 

The exact solution u is approximated by a set of functions �̃� so that 

 

1

n

i i

i

u u a


   

 

When substituted into the initial equation an error or residual will occur 

 

         0E x R x D u x p x     

 

The method of weighted residuals pursues to minimize that error and forces the residual 

to zero in some average sense over the domain through the equation: 

 

  0i

x

R x W dx    1,2,...,i n  

 

Wi are called weight functions and since their number is equal to the number of 

unknown constants αi in �̃�, the integral results in a system of n algebraic equations for 

αi. 

 

  There exist variant techniques in order to define these test functions and each one of 

them constitutes a MWR sub-method. Collocation, sub-domain, least squares, Galerkin 

and method of moments are some of the most popular ones. For the scope of this thesis   
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collocation and Galerkin method are examined in particular and their efficiency for 

NURBS based isogeometric analysis is under investigation. 

 

 

3.2 The Boundary Value Problem (BVP) 
 

 

Suppose we have a boundary value problem defined in strong form as 

 

 L u f   in Ω             

Du u   on ΓD                                      

D u h  n   on ΓΝ                              

 

where L  denotes a linear operator, D  is the diffusion coefficient, f  is a source term 

and n represents the unit outward normal along Γ. The function 𝑢𝐷 specifies the solution 

of u on the Dirichlet boundary ΓD, while function h specifies the normal flux on the 

Neumann boundary ΓΝ. 

 

According to the method of weighted residuals the approximate solution 𝑢∗ is of the 

form: 

 

   *

1

n

D i i

i

u u N c


 x x  

 

where Ni are the NURBS basis functions described in Chapter 2 and 𝑐𝑖 are the unknown 

displacement control variables. The function �̃�𝐷 is considered as an extension to the 

prescribed boundary condition, that is, it is defined on   and satisfies the Dirichlet 

boundary condition when evaluated on ΓD. 

 

  In order to minimize the error that arises with the substitution of 𝑢∗ into the equations 

that form the boundary value problem in   and on ΓΝ, the unknown coefficients 𝑐𝑖 are 

calculated with respect to the following equation: 

 

    * * 0L u f d D u h d 



 

 

        n                           (1) 

 

  It is worth mentioning that Dirichlet boundary ΓD is not taken into consideration, since 

the corresponding boundary conditions are exactly satisfied a priori. Functions 𝜔𝛺 and 

𝜔𝛤 are test functions defined according to the selected numerical method (here Galerkin 

and collocation) over the domain   and the Neumann boundary ΓΝ respectively. 

  



3 Numerical Integration Schemes                                                                                             43 

 

3.3 Galerkin 
 

3.3.1 Test functions 
 

  Galerkin is the most widely used numerical method in FEA, hence its implementation 

to the advanced method of isogeometric analysis constitutes an obvious alternative. 

Galerkin procedure adopts the same basis functions for the approximate solution and 

the weighting function approach. In other words, test functions 𝜔𝛺 and 𝜔𝛤 identify with 

the approximation 𝑢∗ of the solution, while on ΓD they are equal to zero. 

 

 
1

ˆ
n

i iN c


  



  x  

 

The mathematical formulation forces the weighted residual defined in Eq. (1) to be 

orthogonal to each basis function 𝜔𝑖 as follows 

 

         * * 0i iL u f d D u h d 

 

          x x n x x  

 

  The above equation indicates that Galerkin supports the weak form of the boundary 

value problem. As it has already been proved in section 2.3.3, Galerkin test functions 

have a local support of p+1 knot value spans, which implies that integrals are non-zero 

in more than one point 𝑥𝑖 and thus they cannot be eliminated from the discretized 

variational statement. Consequently, numerical quadrature rules of the form 

 

   k k

k

g d g w


  x x  

 

are required, so as to covert the continuous integral into a sum of several point 

evaluations multiplied by corresponding weights 𝑤𝑘 in each element. This procedure 

concerns Gauss points, which are chosen for the domain of every piece of the 

polynomial basis function. 

 

 

3.3.2 Gauss points 
 

  Despite the fact there are two ingredients of isogeometric analysis that could play the 

role of FEM element, the patch or the knot span, in this thesis the second alternative is 

adopted, since it serves better the needs of numerical integration. Knot span 

corresponds to the domain of every piece of the polynomial basis function, where Gauss 

points are defined, thus resembles the element of FEM. 
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  Gauss points’ parametric coordinates are obtained as the roots of the Legendre 

Polynomial on a reference element spanning [-1,1]. The next step is to transform the 

coordinates and weights from the reference knot span 𝜉𝑅 to the desired knot span 

 i i 1,   . 

 

   R

i 1 i i 1 i-

2

       
   

 

 i 1 iGP R
-

w w
2





 
  

 

Full tensor product properties apply here as well, leading in similar equations for the 

other two parametric directions: 
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j 1 j j 1 j-

2

      
  ,    
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k 1 k k 1 k-

2
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-

w w
2





 
 ,       k 1 kGP R
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w w

2





 
  

 

 
(a) 

 

 
(b) 

 

Fig. 3.1. Gauss points in parameter space: 

(a) surface, (b) solid 
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  In order to achieve exact numerical integration of a polynomial of degree p, 
1

2

p 
 or 

2

2

p 
 Gauss points are required on its domain, for p odd and even respectively. B-

spline basis functions consist of various polynomials, thus the appropriate number of 

Gauss points at each knot span is determined by the degree of the amount to integrate. 

According to [4] numerical quadrature with respect to stiffness matrix has to calculate 

the integral 

 

     
2ˆ

i jR R d    


   

 

where i and j are two-dimensional multi-indices, 𝑅𝑖 and 𝑅𝑗 are NURBS shape functions 

and   is the space-dependent factor that is responsible for alterations in geometry. In 

other words, it represents the Jacobian of the geometry map and, possibly, the 

derivatives of its inverse.  

 

  In one-dimensional cases, this product yields to a polynomial of maximum degree 

   -1 -1 2 - 2q p p p   , considering that the derivative of each basis function is of 

degree p-1. Therefore, the minimum number of Gauss points per knot span required for 

exact integration is: 

 
2 2 2 2

2 2

q p
p

  
   

 

  For 2D problems, the evaluation of the gradients forces the basis function of one 

direction (degree: p) to be multiplied with the derivative of the basis function in the 

other direction (degree: p-1). After this product is squared, the polynomial that arises is 

of maximum degree q=p+p=2p. In order to achieve exact integration, the minimum 

number of Gauss points per knot span is 

 

2 2 2
1

2 2

q p
p

 
    

 

 

In a similar way it can be proved that 3D cases also require p+1 Gauss points per knot 

span for exact integration.  

 
 

3.3.3 Computational efficiency 
 

 

  Classical FEM downsizes the natural problem of infinite unknowns to a finite number 

of unknowns, which are the degrees of freedom of the nodes. The position of the nodes 

depends on the element type. As a general rule, the nodes can be usually found in the 
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corners and middle of the sides of the elements. They are part of the element and 

therefore part of the physical model. Displacements in other areas of the model can be 

approximated by a linear combination of displacements on the degrees of freedom. 

Distribution in the model is evaluated via the corresponding shape functions. In 

isoparametric elements, shape functions and their respective nodes are also used to 

approximate the geometry, thus enabling relatively complex shapes to be approximated 

with Lagrange polynomials. 

 

  In isogeometric analysis, NURBS are often chosen as shape functions. The 

isoparametric concept is reversed, as geometrical mapping now defines the solution 

approximation. The geometrical representation is achieved through a combination of 

control points and their corresponding shape functions. Degrees of freedom at the 

control points are now the unknowns. 

 

  A major difference between the two methods is that in FEA basis functions are 

restricted to the interior of each element, while in IGA they are non-zero across p+1 

knot spans (elements) and overlap with more basis functions. That implies that in the 

first case Gauss points are influenced only by the nodes of their own elements. In the 

second case instead each Gauss point is involved in computations with control points 

that are extended to a significant larger area than a knot span, that is  1
d

p  , where d 

is the dimension of the problem. 

 

  Fig. 3.2 depicts the areas influenced by a control point with respect to the polynomial 

degree p in 1D case. Fig 3.3 focuses on 2D cases and illustrates the difference with the 

classical FEM. A distinction between even and odd p is essential, since for even degrees 

control points are located in the middle of the knot spans in parameter space, while for 

odd degrees they coincide with knots. 

 

 

 
 

 
 

 
 

 
 

 
 
 

 
 

Fig. 3.2.  IGA 1D domains of influence of control points 

  

p=2 

p=3 



3 Numerical Integration Schemes                                                                                             47 

 

 
 

(a) 
 

 

 
(b) 

 

Fig. 3.3. 2D domains of influence of control points: 

(a) IGA (p odd and even respectively), (b) FEA 

 

 

 

  The large amount of control point interactions is the reason why IGA has denser 

stiffness matrices than FEA, despite the fact that the bandwidth is the same between the 

two methods when meshes with the same degrees of freedom are concerned. It leads to 

highly localized overlapping of shape functions, therefore consecutive elements occupy 

same positions of global stiffness matrix. Apart from that, the areas influenced by a 

control point also reveal the amount of control point-Gauss point correlations, which is 

of great importance for the computational cost of each method. Apparently, this number 

is significantly increased in IGA. This conclusion is underlined in the following figure, 

depicting control points/nodes influenced by a Gauss point in IGA/FEA. 
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(a) 

 
 

 
(b) 

 

Fig. 3.4. Control points/nodes influenced by a Gauss point: 

(a) IGA (p odd and even respectively), (b) FEA 

 

 

  Table 3.1 calculates the total number of elements and Gauss points in IGA and FEA 

for 121 control points/nodes in each axis and various values of order p. A p+1 

integration rule is adopted in both methods. As a result the number of Gauss points per 

element is the same for the two formulations. The increasing ratio in the last column is 

due to the different set up of elements in each method according to the available 

knots/nodes. 
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          n=121 Total elements Total Gauss points Ratio 

  p GP per element IGA FEA IGA FEA   

2D 1 4 14.400 14.400 57.600 57.600 1 

  2 9 14.161 3.600 127.449 32.400 3,9 

  3 16 13.924 1.600 222.784 25.600 8,7 

  4 25 13.689 900 342.225 22.500 15,2 

  5 36 13.456 576 484.416 20.736 23,4 

               

3D 1 8 1.728.000 1.728.000 13.824.000 13.824.000 1 

  2 27 1.685.159 216.000 45.499.293 5.832.000 7,8 

  3 64 1.643.032 64.000 105.154.048 4.096.000 25,7 

  4 125 1.601.613 27.000 200.201.625 3.375.000 59,3 

  5 216 1.560.896 13.824 337.153.536 2.985.984 112,9 
 

Table 3.1. Total number of elements and Gauss points in IGA and FEA, 

for n=121 control points/nodes 

 

 

For the same number of degrees of freedom, IGA occupies orders of magnitude more 

quadrature points than FEA. The quantitative comparison is illustrated in the following 

charts. 

 

 
 

 

Fig. 3.5. Total number of Gauss points in IGA and FEA for different p 
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Let us thoroughly elaborate the calculations of Table 3.1. 

 

 2D, p=1 

 
 

Gauss points per element: In two-dimensional cases the required number of quadrature 

points per element is determined by the rule  
2

1p  . For    
2 2

1 1 1 1 4.p p       

 

Total elements in IGA: The number of knot values k is related to the number of control 

points n and the polynomial degree p via the equation 𝑘 = 𝑛 + 𝑝 + 1, which is applied 

to each parametric direction. In the current example knot values across axis ξ and axis 

η are equal to k=121+1+1=123. Due to the open vector nature of the knot vector, the 

first and the last knot values are repeated p+1 times, that is 2. Considering that the 

internal knots have continuity 
1C  (their multiplicity is equal to 1), it becomes clear that 

there are 123-2=121 knots and therefore 120 knot spans at each parametric axis. The 

adaptation to 2D parameter space yields 2120 =14400elements. 

 

Total elements in FEA: Provided that p=1, one-dimensional elements are formed by 2 

nodes. Axes ξ and η are divided in 120 spans, thus there 2120 =14400  two-dimensional 

elements. 

 

Total Gauss points in IGA: This size arises from the multiplication of the number of 

Gauss points per element with the total number of elements in IGA. Indeed, 

4x14400=57600. 

 

Total Gauss points in FEA: In a similar way, total Gauss points in FEA are equal to 

the number of Gauss points per element multiplied with the total number of elements 

in FEA. 4x14400=57600. 

 

 

 2D, p=2 

 
 

Gauss points per element: The minimum number of quadrature points per element for 

efficient numerical integration is equal to    
2 2

1 2 1 9p    . 

 

Total elements in IGA: k=n+p+1=121+2+1=124 knot values at each axis. The first and 

the last knot values appear p+1=2+1=3 times, thus there exist 124-2x2=120 knots 

across ξ and 120 knots across η, which means 119 knot spans at each direction. The 

total number of elements is equal to 2119 =14161 . 

 

Total elements in FEA: In order to form a quadratic one-dimensional element in 

classical FEM, three nodes are required. Now that 121 nodes are available, the 

corresponding elements across each axis are 60. The total number of two-dimensional 

elements is equal to 260 =3600 . 
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Total Gauss points in IGA: The multiplication of the number of Gauss points per 

element with the total number of elements in IGA yields 9x14161=127449. 

 

Total Gauss points in FEA: The multiplication of the number of Gauss points per 

element with the total number of elements in FEA yields 9x3600=32400. 

 

  The computations of the following rows of Table 3.1 are continued in the same way. 

This table points out the difference between the elements of the two methods. In 

classical FEA each element of degree p occupies p+1 nodes. Thus, for a given number 

of nodes and an increasing p, the total number of elements tends to be reduced in a 

significantly high rate.  

 

 

              

(a) 

 

         

(b) 
 

Fig. 3.6. Visual comparison between IGA (left column) and FEA (right column)  

for the same number of control points 

(a) p=2, (b) p=3  
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  In IGA, on the other hand, the one-dimensional element is always defined by two 

knots regardless the value of the discretization degree. The role of p is limited to 

determining the repetitions of the first and the last knot values, which affect up to a 

point the number of knots, the difference though between consecutive orders 

considering a standard amount of control points is negligible. As a result, the total 

number of elements remains at the same levels, despite the increase of p.  

 

  The overlapping of basis functions in IGA increases the number of elements and 

therefore, the number of Gauss points which influence a control point compared to 

FEM. Tables 3.2 and 3.3 calculate the corresponding correlations for FEA and IGA 

respectively. 

 

  

p GP per 

element 

Nodes influenced 

by GP/element 

Elements influencing 

 a node 

Gauss points 

influencing 

 a node 

min max min max 

2D 1 4 4 4 4 16 16 

  2 9 9 1 4 9 36 

  3 16 16 1 4 16 64 

  4 25 25 1 4 25 100 

  5 36 36 1 4 36 144 

                

3D 1 8 8 8 8 64 64 

  2 27 27 1 8 27 216 

  3 64 64 1 8 64 512 

  4 125 125 1 8 125 1000 

  5 216 216 1 8 216 1728 
 

Table 3.2. Correlations of nodes with elements and Gauss points for FEA 

 

Gauss points per element: This number is determined by the integration rule  1 ,
d

p   

where d is the dimension of the problem.  

 

Nodes influenced by GP/element: In classical FEM one element of degree p is formed 

by p+1 nodes in each parametric direction. For instance, a quadratic element in 2D 

simulation requires  
2 22+1 =3 =9  nodes. 

 

Elements influencing a node: The number of elements that each node communicate 

with, depends on the position of the node. Corner nodes in 2D and 3D problems 

participate in 4 and 8 elements respectively, while internal nodes are only influenced 

by the element they belong to. Nodes lying at the edges/sides are in-between. 

Apparently, at elements with p=1, corner nodes are met exclusively, therefore a min 

and max tabulation is pointless. 

 

Gauss points influencing a node: It is determined by the number of elements that 

influence the node and the number of Gauss points that influence each element. The 

classification to min/max is thus inherited by the previous column.  
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p GP per element Control points 

influenced  

by GP/element 

Elements 

influencing  

a control point 

Gauss points 

influencing  

a control point 

2D 1 4 4 4 16 

  2 9 9 9 81 

  3 16 16 16 256 

  4 25 25 25 625 

  5 36 36 36 1296 

            

3D 1 8 8 8 64 

  2 27 27 27 729 

  3 64 64 64 4096 

  4 125 125 125 15625 

  5 216 216 216 46656 
 

Table 3.3. Correlations of control points with elements and Gauss points for IGA 
 

 

Gauss points per element: The integration rule  1
d

p   is adopted here as well. 

 

Control points influenced by GP/element: Each one-dimensional span is affected by 

p+1 basis functions. Therefore, one Gauss point that belongs to a two-dimensional or a 

three-dimensional element, influences  
2

1p   or  
3

1p   control points respectively. 

 

Elements influencing a control point: Due to the overlapping of shape functions, each 

control point is influenced by  1
d

p   elements. 

 

Gauss points influencing a control point: Each control point intervenes in  1
d

p   

elements, while each one of them is integrated by  1
d

p   quadrature points. 

Therefore, the number of Gauss points-control points correlations is equal to  
2

1 .
d

p  

 

  The number of control points affected by each Gauss point in IGA is the same as the 

number of influenced nodes per element in FEA. However, in FEA each Gauss point 

affects the nodes within its own element, while in IGA each Gauss point affects 

surroundings areas (range depending on p). Each control point is affected by more 

elements in IGA than in FEA and consequently by a lot more Gauss points. The 

following table shows the number of Gauss points influencing a control point/node with 

respect to p, demonstrating the growth rate. 

 

Gauss points influencing a control point/node 

Problem type IGA FEA min FEA max 

1D (p+1)2 (p+1)1 21(p+1)1 

2D (p+1)4 (p+1)2 22(p+1)2 

3D (p+1)6 (p+1)3 23(p+1)3 
 

Table 3.4. Number of Gauss points influencing a control point/node with respect to p  
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Fig. 3.7. Number of Gauss points influencing a control point/node with respect to p 

 

 

3.3.4 Efficient quadrature 
 

 

  From the above section it can be concluded that the correlations between Gauss points 

and control points as well as the total number of Gauss points required is extremely 

increased in IGA compared to FEA. However Galerkin method neglects the important 

factor of continuity and that is why it is perfectly suitable for standard 0C -continuous 

finite elements.  

 

  In IGA basis functions are of continuity p mC   across knots where p is the degree of 

the polynomial and m is the multiplicity of each knot. This property enables increased 

continuity unlike FEA 0C  and encourages smoothness across element boundaries, in 

case of knots with reduced multiplicity. Considering the already known equation that 

relates the number of knot values k with the number of control points n 
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it can be shown that the higher continuity stands for less control points and therefore 

less basis functions. 

 

  As it is suggested in [4] the number of quadrature points should depend mainly on 

number of degrees of freedom and less on polynomial degree p. A simple example is 

described, in order to illustrate that increased continuity results in improved quadrature 

rules. 

 

  Consider a biunit interval [-1,1] consisting of two unit subintervals (“elements”)      [-

1,0] and [0,1]. A basis of piecewise quadratic polynomials defined on [-1,1], though 

with no continuity at {0}, could be composed from the following functions: 

 

 

 𝜑1(𝜉) = 1,   ∀𝜉 ∈ [−1,1]   
 

 
 

 

 𝜑2(𝜉) = {
−1,   ∀𝜉 ∈ [−1,0)

1,   ∀𝜉 ∈ (0,1]
 

 

 
 

 

 𝜑3(𝜉) = 𝜉,   ∀𝜉 ∈ [−1,1] 

 

 

-1

1

-1 0 1

φ1

-1

1

-1 0 1

φ2

-1

1

-1 0 1

φ3
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 𝜑4(𝜉) = {
−𝜉,   ∀𝜉 ∈ [−1,0)

𝜉,   ∀𝜉 ∈ (0,1]
 

 

 
 

 

 𝜑5(𝜉) = 𝜉
2,   ∀𝜉 ∈ [−1,1]  

 

 
 

 

 𝜑6(𝜉) = {
−𝜉2,   ∀𝜉 ∈ [−1,0)

𝜉2,   ∀𝜉 ∈ (0,1]
 

 

 
 

 

  𝜑1, 𝜑4 and 𝜑5 are even functions, while 𝜑2, 𝜑3 and 𝜑6 are odd functions. The basis 

is discontinuous  1C  at 0 because of 𝜑2. The number of required quadrature points 

is defined by applying the 
2

2

p 
 rule on each subinterval separately. Substitution of p 

with 2 yields two points on each subinterval, for the total of four quadrature points. 

With the removal of 𝜑2 0C -continuity is achieved across 0 and now the piecewise 

quadratic basis has dimension five. According to the three point Gauss rule, in case of 

odd number of points as the case shown in Fig. 3.8, origin will automatically be one 

-1

1

-1 0 1

φ4

-1

1

-1 0 1

φ5

-1

1

-1 0 1

φ6
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Gauss point and the other Gauss points are symmetrically arranged with respect to the 

origin. 

 
 

Fig. 3.8. Gauss quadrature with three points 

 

 For the continuity to be further increased at 
1C , another basis function should be 

removed, specifically 𝜑4. Now the 
2

2

p 
 rule is directed at the whole interval [-1,1], 

considering that the remaining functions 𝜑1, 𝜑3 and 𝜑5 are continuous and not 

piecewise polynomials at their domain. As far as 𝜑6 is concerned, it should be noted 

that the integral of an odd function over a symmetric interval is equal to zero. Therefore, 

only two points can exactly integrate the basis of the four functions. This example 

demonstrates that increased continuity at 0 enables optimal quadrature rules with fewer 

quadrature points compared to a Gauss rule on each knot span. 

 

  Since the Galerkin method is the prevalent numerical procedure in FEA computations, 

its adjustment to IGA peculiarities was the first candidate to be studied and 

implemented. Even though it constitutes a reasonable choice, it does not mean that it is 

the most suitable one too. The fact that IGA ends up to denser system matrices and 

requires more computational effort should not be interpreted as a weakness of the new 

very promising method. It just indicates that Galerkin technique does not fit well at the 

increased overlapping and smoothness properties of IGA and direct the research to 

alternative numerical integration schemes that combine accuracy with computational 

efficiency. 

 

 

3.4 Collocation 
 

3.4.1 Test functions 
 

  As mentioned in [6] in the collocation method two sets of Dirac δ functions represent 

test functions 𝜔𝛺(𝑥) and 𝜔𝛤(𝑥), which can be formally constructed as the limit of a 

sequence of smooth functions with compact support that converge to a distribution, 

satisfying the so-called sifting property  
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     i ig d g  



   x x x x  

     i ig d g  



   x x x x  

 

provided that gΩ is a continuous function about the point 𝒙𝑖 ∈ 𝛺 and gΓ is a continuous 

function on the boundary about the point 𝑥𝑖 ∈ 𝛤. 

 

The two sets of Dirac δ functions refer to interior points and points across boundary ΓΝ 

separately.  

 

 
1

ˆ
k

i i

i

c  



  x x  

 

are defined at k interior points in   with coordinates  𝒙𝑖, 1,...,i k  while  

 

 
1

ˆ
k

i i

i

c  



  x x  

 

are defined at n-k boundary points on ΓΝ with coordinates 𝒙𝑖, 1,...,i k n  , where n 

represents the total number of basis functions. Collocation points lying across ΓD do not 

have to be taken into consideration since the Dirichlet boundary condition is enforced 

a priori. Substitution of the previous two equations into the weak form of Eq. (1) yields  

 

         
1 1 1 1

ˆ ˆ 0
k k n n

i D i j i j i i j i j i

i j i k j k

c L u N c f c D N c h
     

    
           

    
   i

x x x n x x  

 

  Thanks to the sifting property of the Dirac δ test functions, the integrals are eliminated 

and thus collocation supports the discretization of the strong form of the governing 

partial differential equations. In other words collocation forces the strong form of the 

residual to be zero at specific points of the domain, which are collocation points. 

 

 

3.4.2 Collocation points 
 

  The choice of suitable collocation points affects in a large scale the efficiency of the 

method. Literature suggests various options for NURBS-based collocation schemes 

such as orthogonal collocation on Gauss-type quadrature points, the maxima of spline 

basis functions, the Demko abscissae and the Greville abscissae. Demko points in 

particular are proved to be stable for any mesh and degree. They are the extrema of the 

Chebyshev splines and they are obtained by an iterative algorithm. 
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  In the present study Greville abscissae is preferred, since the location of the points is 

defined in a simple way and it is very competitive from the aspect of accuracy. It is 

proved to be stable up to degree 3, while examples of instability appear for degrees 

higher than 19 concerning mainly non-uniform meshes. 

 

Given a knot value vector  Ξ={ξ1, ξ2,…,ξn+p+1} Greville abscissae can be easily be 

computed as 
 

i+1 i+p

i

ξ +...+ξ
ξ̂ = ,

p
  1,...,i n  

 

where n denotes the number of basis functions on axis ξ. 
 

Analogously given a knot value vector H={η1, η2,...,ηm+p+1} Greville points are defined 

as 
 

j+1 j+p

j

η +...+η
η̂ = ,

p
  1,...,j m  

 

where m denotes the number of basis functions on axis η. Note that 𝜉1 = �̂�1 = 0, 𝜉𝑚 =

�̂�𝑚 = 1, while all the remaining points belong to (0,1). The collocation points ,
ˆ

î j   

are defined by the tensor product structure 

 

 ˆ ˆˆˆ ,ij i j    ,   ˆij ijF    for 1,...,i n  and 1,...,j m . 

 
 

 
(a) 

 

 
(b) 

 

Fig. 3.9. Collocation points in parameter space: 

(a) p=2 (even), (b) p=3 (odd)  
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(a) 

 

 
(b) 

 

Fig. 3.10. Collocation points in parameter space: 

(a) p=2 (even), (b) p=3 (odd) 

 

 

 

The isogeometric collocation problem is formulated as: find unm such that 

 

    nm ij ijL u f  ,  2,..., 1i n  ,  2,..., 1j m   

   nm ij ijn D u h    ,           , 1, 1,..., 1,..., 1,i j n m n m     

 

  The scheme is based on the strong form of the partial differential equations and thus 

it demands the evaluation of higher derivatives, those that the operator of the problem 

indicates. As a matter of fact, it appeals to smoothness properties and inter-element 

continuity of shape functions used in isogeometric analysis. 

 

  The equal number of collocation and control points may remind the one-point 

quadrature, which is accused for rank deficiency of the discrete system. Sometimes one 

or more deformation modes happen to display zero strain at all quadrature points of an 
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element, when those are less than the required ones. The resulting [𝑘𝑒] will have no 

resistance to that deformation mode ending up to singularities. This phenomenon is the 

famous “hourglass mode” and it has created the need for ad-hoc stabilization 

techniques, which are time-consuming and still cannot guarantee an accurate result free 

of instabilities. 

 

 

 
                                (a)                             (b)                           (c)                          (d) 

Fig. 3.11. (a) Undeformed plane 2 by 2 four-node square elements, 

(b), (c), (d) “instability” displacement modes 

 

 

  However this is not the case for the collocation scheme. It can easily been shown that 

for quadratic and higher-order NURBS, with uniform knot vectors and a suitable choice 

of collocation points, the operator produced by collocation is rank sufficient in all 

dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

4 Stiffness Matrix 
 

 

 

4.1 Galerkin 
 

 

4.1.1 Introduction 
 

  Based on the BVP defined in section 3.2 the stiffness matrix K and the load vector F 

are defined as  

 

   ij i j i jK N N d N D N d
 

       a  

N

i i iF N fd N hd
 

     

 

The general process for the global stiffness matrix assembly, as obtained from the finite 

element method, is shown in the following flow chart: 

 

 

Fig. 4.1. Stiffness matrix assembly in finite element method  
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  The procedure consists of three loops, one on a patch, one on an element and one on a 

Gauss point level. Indeed, stiffness matrices in both FEA and IGA are sparse matrices, 

since the support of each function is highly localized. As a consequence it is favorable 

to first build dense element stiffness matrices, which consider just the non-zero basis 

functions at the specific element (knot span) and they are composed from the 

contributions of the appropriate Gauss points. 

 

  In isogeometric analysis, however, the element loop can be neglected. Integration is 

enabled throughout the patch without building local element matrices separately, since 

B-spline functions are defined in a domain, which exceeds the limits of a single knot 

span. Therefore, the flow chart takes the form of: 

 

 

 

Fig. 4.2. Stiffness matrix assembly in isogeometric analysis 

 

 

  This alternative is released from the computation of the connectivity matrix, which is 

required for the transition from local to global level. Nevertheless, it is time-consuming 

and it is not recommended for advanced software technologies, as it implies big 

matrices that constrain storage, while the major part of their entries is equal to zero. It 

should be mentioned though that it serves well for research purposes, where a flexible 

quadrature code is needed in order to test and discover new methods and ideas. 

  



3 Numerical Integration Schemes                                                                                             65 

 

4.1.2 Stiffness matrix 2D 
 

  Stiffness matrix should be expressed in terms of physical coordinates, while NURBS 

shape functions are initially defined with respect to parametric coordinates, thus a 

transition between the two spaces is required. For this purpose Jacobian matrix exists 

and it is evaluated as follows: 

 

1 1

2 2

1, 2, N,

1, 2. N,

N N

ˆ ˆx y

ˆ ˆx y

R R ... ... ... R . .

R R ... ... ... R . .

. .

ˆ ˆx y

J
  

  

 
 
 
  

   
   

 
 
  

 

 

where N is the total number of shape functions and {�̂�𝑖, �̂�𝑖} are the physical coordinates 

of the ith control point. 

 

In order to calculate the deformation matrix for 2D problems, B1 and B2 have to be 

computed as usual. 

 

 

22 12

1 21 11

21 11 22 12

J -J 0 0
1

B = 0 0 -J J
det J

-J J J -J

 
 
 
  

 

 

1,ξ 2,ξ N,ξ

1,η 2,η N,η

2

1,ξ 2,ξ N,ξ

1,η 2,η N,η

R 0 R 0 ... ... ... R 0

R 0 R 0 ... ... ... R 0
B =

0 R 0 R ... ... ... 0 R

0 R 0 R ... ... ... 0 R

 
 
 
 
 
  

 

 

Having determined B1 and B2 the deformation matrix B is defined as 

 

B= B1 B2 

 

In order to evaluate the stiffness matrix, integration is required. 

 

 
n+p+1 m+q+1

0 0

ξ η

T

ξ η

K= B EBtdet J dηdξ   

 

Numerical integration procedures for ξ, η lead to integration for tensor product Gauss 

points. 

 
GPξ GPη

T GPξ GPη

i j

i=1 j=1

K= B EBtdet J w w  
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where t is the thickness of the cross-section, GPξ and GPη is the total number of Gauss 

points per ξ and per η respectively and 𝑤
𝑖

𝐺𝑃𝜉
, 𝑤

𝑗

𝐺𝑃𝜂
 are the corresponding weights. E  

stands for elasticity matrix and its form depends on the plane stress or plane strain 

nature of the problem. 
 

2D elasticity, plane stress: 
 

2

1 ν 0
E

E= ν 1 0
1-ν

1-ν
0 0

2

 
 
 
 
 
 
 

 

 

2D elasticity, plane strain: 
 

   

1-ν ν 0
E

E= ν 1-ν 0
1-ν 1-2ν

1-2ν
0 0

2

 
 
 
 
 
 
 

 

 

 

4.1.3 Stiffness matrix 3D 
 

  3D elasticity is merely the extension of 2D elasticity in all directions, with a complete 

stress field. Jacobian matrix is calculated in a similar way from the derivatives of the 

shape functions. 

 

1 1 1

2 2 2

1,ξ 2,ξ N,ξ

1,η 2.η N,η

1,ζ 2,ζ N,ζ

N N N

ˆ ˆ ˆx y z

ˆ ˆ ˆx y z
R R ... ... ... R

. . .
J= R R ... ... ... R

. . .
R R ... ... ... R

. . .

ˆ ˆ ˆx y z

 
 
  
  
  
  

   
 
  

 

 

where N is the total number of shape functions and {�̂�𝑖, �̂�𝑖, �̂�𝑖} are the physical 

coordinates of the ith control point. 

 

The inverse of the Jacobian Matrix is formulated as: 
 

* * *

11 12 13

-1 * * *

21 22 23

* * *

31 32 33

J J J

J = J J J

J J J
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and it is used at the evaluation of B1: 

 
* * *

11 12 13

* * *

21 22 23

* * *

31 32 33

1 * * * * * *

21 22 23 11 12 13

* * * * * *

31 32 33 21 22 23

* * * * * *

31 32 33 11 12 13

J J J 0 0 0 0 0 0

0 0 0 J J J 0 0 0

0 0 0 0 0 0 J J J
B =

J J J J J J 0 0 0

0 0 0 J J J J J J

J J J 0 0 0 J J J

 
 
 
 
 
 
 
 
  

 

 

 

As for B2: 

 

1,ξ 2,ξ N,ξ

1,η 2,η N,η

1,ζ 2,ζ N,ζ

1,ξ 2,ξ N,ξ

1,η 2,η N,η

1,ζ 2,ζ N,ζ

2

R 0 0 R 0 0 ... ... ... R 0 0

R 0 0 R 0 0 ... ... ... R 0 0

R 0 0 R 0 0 ... ... ... R 0 0

0 R 0 0 R 0 ... ... ... 0 R 0

0 R 0 0 R 0 ... ... ... 0 R 0

0 R 0 0 R 0 ... ... ... 0 R 0
B =

... ... ... ... ... ... ... ... ... ... ... ..

1,ξ 2,ξ N,ξ

1,η 2,η N,η

1,ζ 2,ζ N,ζ

.

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

0 0 R 0 0 R ... ... ... 0 0 R

0 0 R 0 0 R ... ... ... 0 0 R

0 0 R 0 0 R ... ... ... 0 0 R

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Deformation matrix for 3D elasticity is calculated as: 

 

B=B1 B2 

 

The corresponding stiffness matrix is produced by integration 

 

 
n+p+1 m+q+1 l+r+1

0 0 0

ξ η ζ

T

ξ η ζ

K= B EBdet J dζdηdξ    

 

Numerical integration is used in 3D as well 

 

 
GPξ GPη GPζ

T GPξ GPη GPζ

i j k

i=1 j=1 k=1

K= B EBdet J w w w  

 

where GPξ, GPη, and GPζ, is the total number of Gauss points per ξ, per η and per ζ 

respectively and 𝑤
𝑖

𝐺𝑃𝜉
, 𝑤

𝑗

𝐺𝑃𝜂
 and 𝑤𝑘

𝐺𝑃𝜁
are the corresponding weights. 
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Elasticity matrix Ε in 3-dimensional cases is of the form 

 

   

1-ν ν ν 0 0 0

ν 1-ν ν 0 0 0

ν ν 1-ν 0 0 0

1-2νE 0 0 0 0 0E= 21-ν 1-2ν
1-2ν

0 0 0 0 0
2

1-2ν
0 0 0 0 0

2

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

4.2 Collocation 
 

4.2.1 Introduction 
 

According to [6] the elements of the stiffness matrix K and load vector F at collocation 

method are defined as  

 

𝐾𝑖𝑗 = {
𝐿 (𝑁𝑗(𝒙𝑖)) , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘,

𝒏𝑖 ∙ 𝐷∇𝑁𝑗(𝒙𝑖),   𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛
 

 

𝐹𝑖 = {
−𝐿(𝑢�̃�(𝒙𝑖)) + 𝑓(𝒙𝑖),   𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘,

−𝒏𝑖 ∙ 𝐷∇𝑢𝐷(𝒙𝑖) + ℎ(𝒙𝑖),   𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛
 

 

where n represents the total number of basis functions, k the number of interior points 

in   and n-k the number of boundary points on ΓΝ. 

 

  The rows of stiffness matrix correspond to collocation points, while columns refer to 

shape functions. Interior points, where the PDE is enforced, come first to computations, 

while boundary points, where flux condition is enforced, occupy the last rows. It should 

be noted that stiffness matrix is generally non-symmetric. 

 

  As far as the load vector is concerned, it is worth-mentioning that it does not require 

demanding calculations. Provided that initial displacement �̃�𝐷(𝒙) is equal to zero, it 

simply includes the value of the distribution of the body force f or the surface traction 

h at each collocation point. 

 

  In case of elasticity problems the formulation of stiffness matrix is based on Navier’s 

equations for elasticity, which are given expressed in terms of displacement. 
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where λ and μ are called Lamé constants and their value depends on Young’s modulus 

E and Poisson’s ratio ν. 

  

νΕ
λ=

1+ν 1-2ν
 

 

Ε
μ=

2 1+ν
 

 

Considering the following general form of a boundary value problem 

 

𝐿𝑢 = 𝑓  𝑖𝑛 𝛺 
𝐵ℎ𝑢 = ℎ  𝑜𝑛 𝜕𝛺ℎ 
𝐵𝑔𝑢 = 𝑔  𝑜𝑛 𝜕𝛺𝑔 
 

where Ω is the problem domain, 𝜕𝛺ℎ is the Neumann boundary and 𝜕𝛺𝑔 is the Dirichlet 

boundary, it becomes clear that differential operators L and 𝐵ℎ compose stiffness 

matrix. Operator 𝐵𝑔 is already known since it is equal in every occasion with the 

identity matrix I. 

 

 

4.2.2 Stiffness matrix 2D 
 

  Both standard Galerkin and collocation require the computation of first derivatives in 

the physical space. The procedure for the definition of the Jacobian matrix has already 

been proven in section 4.1.2. The final form of the matrix is 

 

j,ξ j j,η j

j,ξ j j,η j

ˆ ˆR x R x
J=

ˆ ˆR y R y

 
 
 

 

 

considering that index j runs over all shape functions and �̂�𝑗 = {�̂�𝑗 , �̂�𝑗}
𝑇
 denote the 

physical coordinates of control points. The transformation from parameter to physical 

space is realized through the equation 

 

x ξJ =R R  

 

where Rx and Rξ denote the vectors of derivatives {𝑅𝑥, 𝑅𝑦}
𝑇
 and {𝑅𝜉 , 𝑅𝜂}

𝑇
 with respect 

to physical and parametric coordinates, respectively. 
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  In collocation technique second derivatives of shape functions additionally have to be 

transformed in the physical space. For this purpose the hessian matrix H and the matrix 

of squared first derivatives J2 are required. The matrix of squared first derivatives 

contains various combinations of squared entries of the Jacobian matrix J, as it can be 

seen from the following definitions. 

 

 

j,ξξ j j,ξη j j,ηη j

j,ξξ j j,ξη j j,ηη j

ˆ ˆ ˆR x R x R x
H=

ˆ ˆ ˆR y R y R y

 
 
 

 

 

 
2 2

11 11 12 12

2 11 21 11 22 12 21 12 22

2 2

21 21 22 22

J J J J

J = 2J J J J +J J 2J J

J J J J

 
 
 
 
 

 

 

 

The transformation from parameter to physical space is realized through the equation 

 
T

2 xx ξξ xJ = -HR R R  

 

where Rxx and Rξξ represent the vectors {𝑅𝑥𝑥, 𝑅𝑥𝑦,, 𝑅𝑦𝑦}
𝑇
 and {𝑅𝜉𝜉 , 𝑅𝜉𝜂 , 𝑅𝜂𝜂}

𝑇
 of second 

and mixed derivatives with respect to physical and parametric coordinates, respectively. 

 

After first and second derivatives of NURBS shape functions have been defined in the 

physical space, the formulation of differential operators L and 𝐵ℎ is the next step.  
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where 𝑛𝑥 and 𝑛𝑦 are the direction cosines of the outward normal 𝒏 along Γ. Further 

information about the formation of 𝐵ℎ and the well definition of 𝒏 is provided in section 

7.2.2. 
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4.2.3 Stiffness matrix 3D 
 

  In 3-dimensional cases, the same pattern has to be followed enriched with the required 

adjustments. Jacobian matrix J, Hessian matrix H and the matrix of squared first 

derivatives J2 have as well to be computed for the transformation to the physical space. 
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ˆ ˆ ˆ
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R x R x R x R x R x R x
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R z R z R z R z R z R z
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J
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13 12 33 32 13

21 31 22 32 23 33 21 32 31 22 21 33 31 23 22 33 32 23

J J J J J

J J J J J J J J J J J J J J J J J J

 
 
 
 
 
 
 
 
    

 

 

 

The above matrices are used in the following equations 

 

x ξJ =R R  
 

T

2 xx ξξ xJ = -HR R R  

 

𝑹𝑥 = {𝑅𝑥, 𝑅𝑦, 𝑅𝑧}
𝑇
 and 𝑹𝜉 = {𝑅𝜉 , 𝑅𝜂 , 𝑅𝜁}

𝑇
denote the vectors of first derivatives 

expressed in physical and parametric coordinates, respectively. In a similar way, 𝑹𝒙𝑥 =

{𝑅𝑥𝑥, 𝑅𝑦𝑦, 𝑅𝑧𝑧 , 𝑅𝑥𝑦, 𝑅𝑥𝑧 , 𝑅𝑦𝑧}
𝑇
 and 𝑹𝜉𝜉 = {𝑅𝜉𝜉 , 𝑅𝜂𝜂 , 𝑅𝜁𝜁 , 𝑅𝜉𝜂 , 𝑅𝜉𝜁 , 𝑅𝜂𝜁}

𝑇
  denote the 

vectors of second derivatives expressed in physical and parametric coordinates, 

respectively. 
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Differential operators L and 𝐵ℎ in 3D cases are defined as 
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4.3 Comparison 
 

4.3.1 Computational cost 
 

  After the methodology of the two techniques has been described, a comparison of the 

cost required for the formation and assembly of stiffness matrix is possible. A full 

oversight can be provided by counting the number of operations, with respect to the 

polynomial degree p, at one quadrature/collocation point for IGA Galerkin (IGA-G) 

and IGA Collocation (IGA-C) respectively. For confusions to be avoided, each 

multiplication and each addition is considered as one full floating point operation. In 

this section each collocation point is an interior one and not a point on the Neumann 

boundary, since the computation of interior points involves second derivatives and thus 

it is more time-consuming. Results for FEA Galerkin (FEA-G) are also presented for 

the sake of integrity. It should be noted that the tables of this section are based on [6]. 

 

  Consider an elasticity problem in one, two and three dimensions. Table 4.1 presents 

the number of operations at one quadrature and one collocation point for all the 

successive steps from the evaluation of basis function in tensor product form to the 

transformation of first and second derivatives in physical coordinates. The cost for 

computation of basis function values in parametric directions is neglected, assuming it 

is small and comparable between methods. 
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d   IGA-C   IGA-G   FEA-G 

    1. Form tensor product: 

1   -    -   - 

2   6(p+1)2   3(p+1)2   3(p+1)2 

3   20(p+1)3   8(p+1)3   8(p+1)3 

    2. Multiply each B-spline basis function with corresponding weight: 

1   3(p+1)   2(p+1)   -  

2   6(p+1)2   3(p+1)2   -  

3   10(p+1)3   4(p+1)3   -  

    3. Compute sums of B-spline basis functions: 

1   3(p+1)   2(p+1)   -  

2   6(p+1)2   3(p+1)2   -  

3   10(p+1)3   4(p+1)3   -  

  

  4. Compute NURBS basis functions and its derivatives with respect to 

       parametric coordinates: 

  

  Function, first and  

  second derivatives 

  Function and first  

  derivatives    

1   21(p+1)   6(p+1)   -  

2   57(p+1)2   11(p+1)2   -  

3   109(p+1)3   16(p+1)3   -  

    5. Compute Jacobian matrix: 

1   2(p+1)   2(p+1)   2(p+1) 

2   8(p+1)2   8(p+1)2   8(p+1)2 

3   18(p+1)3   18(p+1)3   18(p+1)3 

    6. Compute Hessian and the matrix of squared first derivatives:  

1   2(p+1)+2   -    -  

2   12(p+1)2+13   -    -  

3   36(p+1)3+63   -    -  

    7. Solve for first derivatives: 

1   (p+1)   (p+1)   (p+1) 

2   5(p+1)2+4   5(p+1)2+4   5(p+1)2+4 

3   12(p+1)3+20   12(p+1)3+20   12(p+1)3+20 

    8. Solve for second derivatives: 

1   3(p+1)   -    -  

2   24(p+1)2+20   -    -  

3   87(p+1)3+140   -    -  

    Total number of operations per point: 

1   35(p+1)+2   13(p+1)   3(p+1) 

2   124(p+1)2+37   33(p+1)2+4   16(p+1)2+4 

3   302(p+1)3+223   62(p+1)3+20   35(p+1)3+20 
 

Table 4.1. Operations for the computation of NURBS basis functions  

per collocation/quadrature point in IGA-C/IGA-G, FEA-G 
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  It is obvious that second derivatives initiate new steps and more complicated 

calculations in case of IGA-C, increasing the total number of operations per point in 

comparison with IGA-G and FEA-G. However this divergence is not representative of 

the final cost for stiffness matrix formulation. As it can be seen in Table 4.1, IGA-C 

absorbs the procedure of assembly and all the computations correlated to the product 

J wT
B EB , that turn out to be the main expense for the Galerkin method. 

 

  So far the standard technique is to first build the local stiffness matrix of each element 

by adding the contributions of all Gauss points affected by the element. Then each local 

matrix is appended to the global stiffness matrix in the appropriate positions. This 

process refers to the steps of formulation and assembly. In collocation the operations 

for one collocation point correspond to the entries of one row of the final system matrix, 

thus the assembly step is skipped. The total number of operations shown in the last rows 

of Table 4.2 confirms that the formation of stiffness matrix in IGA-G and FEA-G is 

orders of magnitude more expensive than in IGA-C. 

 

 

d   IGA-C   IGA-G   FEA-G 

    1. Operations per point transferred from Table 1: 

1   35(p+1)+2  13(p+1)  3(p+1) 

2   124(p+1)2+37  33(p+1)2+4  16(p+1)2+4 

3   302(p+1)3+223  62(p+1)3+20  38(p+1)3+20 

    2. Set up local stiffness matrix: 

  

  No local stiffness 

  matrix required. 
Evaluate BTEB|J|w 

1   -   2(p+1)2+(p+1)  2(p+1)2+(p+1) 

2   -   20(p+1)4+36(p+1)2  20(p+1)4+36(p+1)2 

3   -   99(p+1)6+216(p+1)3  99(p+1)6+216(p+1)3 

  

  3. Evaluate Navier's  

      eqs. on global level 

  3. Add to local element stiffness matrix: 

      (Final assembly to global matrix is neglected) 

1   (p+1)   (p+1)2   (p+1)2 

2   12(p+1)2   4(p+1)4   4(p+1)4 

3   21(p+1)3   9(p+1)6   9(p+1)6 

    Total operations: 

1   36(p+1)+2   3(p+1)2+14(p+1)   3(p+1)2+4(p+1) 

2   136(p+1)2+37   24(p+1)4+69(p+1)2+4   24(p+1)4+52(p+1)2+4 

3   323(p+1)3+223 108(p+1)6+278(p+1)3+20 108(p+1)6+254(p+1)3+20 
 

Table 4.2. Operations for the formation and assembly of the stiffness matrix  

per collocation/quadrature point in IGA-C/IGA-G, FEA-G 
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Fig. 4.3. Number of operations for the formation  

of the stiffness matrix per collocation/quadrature point 

 

 

  Table 4.2 refers to the required operations for stiffness matrix formulation. The 

number of operations per quadrature/collocation point should be multiplied with the 

total number of quadrature/collocation points respectively and the overall cost will 

arise. The total number of collocation points in a model discretization is equal to 𝑁𝑑 

(where N the number of control points and d the dimension of the problem) and the 

total number of quadrature points is equal to    1
d d

N p p  . Should these counts be 

expressed in terms of n, p and d, where n is the number of elements, we will have 

 

Number of quadrature/collocation points in the model discretization  

IGA-C    (n+p)d      

IGA-G    nd(p+1)d      

FEA-G    nd(p+1)d      
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4.3.2 Bandwidth 
 

  In IGA-G as in FEA-G as well, the bandwidth of the stiffness matrix depends on the 

interaction of basis functions. Each one of them has a domain of influence of p+1 knot 

value spans. These knot value spans, however, belong to the domain of influence of 

other basis functions too. Therefore, each function shares support with 2p+1 functions 

including itself. This statement is illustrated in Fig. 4.4 depicting some cubic B-spline 

basis functions. As it can be seen the function in green has overlapping support with 

the functions in pink as well as with itself, satisfying the count 2p+1=7. 

 

 

 
 

Fig. 4.4. Overlapping support of basis functions 

Ξ={0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9} 

 

 

  Provided that p is increased, more degrees of freedom will collaborate resulting in 

larger bandwidth. Finally, the bandwidth of the Galerkin method is equal to 2p+1 for 

one-dimensional cases and  2 1
d

p  for 2D and 3D problems. 

 

  In collocation, however, the bandwidth is equal to p or p+1 for p odd or even, 

respectively, in one-dimensional cases. In stiffness matrices that collocation yields the 

rows correspond to collocation points and the columns to basis functions, thus the 

bandwidth is not determined by functions’ interaction. What matters in that occasion is 

the number of functions that affect through their first and second derivatives each 

collocation point. The Greville points are located in the center of a knot span for even 

p and directly at a knot for odd p, so the number of non-zero spline basis functions at a 

collocation point is p+1 in the first case and p in the second, as it is shown in Fig. 4.5. 

This means that the same number of non-zero entries at one row of the stiffness matrix 

corresponds both to an even degree p and to the next higher degree p+1. 
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(a) 

 

 
 

(b) 
 

Fig. 4.5. Number of non-zero B-spline basis function over a collocation point 

(a) p=2 (even), (b) p=3 (odd) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

5 External Loads 
 

 

 

5.1 External load vector 
 

 

5.1.1 Galerkin 
 

  From a general point of view, the procedure for the formation of the external load 

vector in IGA follows the same steps as in FEM. In both methods, external loads of the 

structure should finally be attributed to the degrees of freedom. The main difference 

lies on the fact that in finite element analysis, degrees of freedom correlate with the 

nodes, which are material points, while in isogeometric analysis they refer to control 

points, which do not belong to the structure. In particular, they are placed around the 

object and define its geometry. Consequently, provided that external loads cannot act 

on control points immediately, an appropriate transfer through shape functions is 

necessary. Distributed loads f have to be transformed into equivalent concentrated loads 

by integration for 2D and 3D cases respectively: 

 
 

 
n+p+1 m+q+1

0 0

ξ η

ξ η

F= Rfdet J dηdξ   

 

 
n+p+1 m+q+1 l+r+1

0 0 0

ξ η ζ

ξ η ζ

F= Rfdet J dζdηdξ    

 
 

  Quadrature rules are adopted for the elimination of integrals in the equations above. 

A new set of Gauss points is defined for each external load case, different from the one 

used in the stiffness matrix formulation. Stiffness matrix requires quadrature points that 

extend over the whole area of the interior of the patch, without the boundaries included. 

In external load cases, on the other hand, Gauss points are defined exclusively over the 

domain of the load distribution. For surface loads, Gauss points lying on the relevant 

boundary are used, while for body forces, quadrature rules address to the internal 

surface or volume of the structure for two-dimensional and three-dimensional cases 

respectively. The final external load vector for each load case is calculated by 
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assembling the contributions of the corresponding Gauss points. This is illustrated at 

the following relations 

 

 
a b

i j

i=1 j=1

F= Rftdet J w w  

 

 
a b c

i j k

i=1 j=1 k=1

F= Rfdet J w w w  

 

where a, b and c denote the total number of Gauss points defined for each load case on 

axis ξ, η and ζ respectively, while 𝑤𝑖, 𝑤𝑗 and 𝑤𝑘 are the corresponding weights. 

Suppose that more than one load distributions act on a specific patch, the total external 

load vector is merely the sum of the individual vectors. This addition is enabled 

regardless of the number and position of Gauss points that each load case uses, since it 

takes place on a control point level. 

 

 

 
 

Fig. 5.1. Plate with hole: physical space with linear load 

 

 

5.1.2 Collocation 
 

  The fundamental idea of the collocation method consists of the discretization of the 

governing partial differential equations in strong form. The boundary value problem is 

strongly imposed on collocation points and thus, the external load vector constitutes of 

the value of the load distribution at each one of them. Let us remind the equation 

formulated at Chapter 4: 

 

𝐹𝑖 = {
𝑓(𝒙𝑖)           𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘

    ℎ(𝒙𝑖)       𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑖 ≤ 𝑛
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where 𝒙𝑖 represents the interior collocation points in Ω for 1 i k  , and the boundary 

collocation points on ΓΝ for 1k i n   . When two dimensional problems are 

concerned, f denotes a load per unit surface and h a load per unit length, while in three 

dimensional cases f denotes a load per unit volume and h a load per unit surface. It 

becomes clear that body forces and surface tractions are handled separately in 

collocation method, since the first pertain to the governing differential equation of the 

problem, whereas the second to Neumann conditions.  

 

  The fact that the external load vector is formed with respect to collocation points and 

not to control points does not cause any confusion to the analysis process. The unknown 

displacements are still control point variables and this claim is ensured by the concept 

of the collocation scheme. In particular, the method of weighted residuals considers 

approximations 𝑢∗ to the exact solution 𝑢 of the form  

 

 *

1

n

j i j

j

u N c


 x  

 

where c is the vector of control variables associated to the discrete displacement. So, 

the unknown approximate solution 𝑢∗ is expressed as a combination of the unknown 

control points displacements, which will be determined through the equation 𝐾𝑐 = 𝐹. 

 

  From the above it can be concluded that the collocation technique requires no 

computations for the formulation of the external load vector. The whole procedure for 

each collocation point is confined to the fill of the corresponding rows of the vector 

with the appropriate value of the load at each direction. 

 

  Table 5.1 presents the number of operations at each collocation/quadrature point for 

the evaluation of the external load vector in IGA-C, IGA-G and FEA-G. The number 

of operations in IGA-C arises from the number of rows that each collocation point 

occupies depending on the dimensions of the problem. 

 

 

d   IGA-C   IGA-G   FEA-G 

  

 Evaluate external load 

 vector 

Evaluate external load vector 

Rf|J|w 

1 1   2(p+1)+2   2(p+1)+2 

2     2   4(p+1)2+3   4(p+1)2+3 

3 3   6(p+1)3+4   6(p+1)3+4 
 

Table 5.1. Operations for the formation of external load vector  

per collocation/quadrature point in IGA-C/IGA-G, FEA-G 

 

  Apparently the operations required for the formation of the final linear system        

𝐾𝑢 = 𝐹 are orders of magnitude more expensive in the Galerkin method than in the 
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collocation formulation. Consequently, suppose that the computational cost is the 

criterion, IGA-C is a much more efficient method compared with IGA-G for the 

computation of displacements.  

 

 

5.2 Boundary conditions 
 

 

  Certain degrees of freedom are fixed, in that their displacements are zero. These are 

called stationary and the corresponding rows and columns are erased from the stiffness 

matrix and the load vector. This leaves a stiffness matrix and a load vector having only 

free degrees of freedom,  ffK  and  fF  respectively. The solution of the equation is 

the final step in analysis: 

 

           
1

f ff f f ff fF K D D K F


      

 

The (zero) displacements for the stationary degrees of freedom are added back to the 

result, thus creating the displacement vector  D . 

 

 

5.3 Displacement 
 

 

  As it was previously underlined control points do not mainly belong to the model, thus 

their displacements do not identify with the displacements of the material points. 

Analysis results are called “pseudo-displacements” and they play an auxiliary role in 

defining the displacement field of the structure. The distribution is achieved once again 

via shape functions: 

 

 

  1D: 
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  3D: 

 

     
 

 
 

N
T

i i i

N 1i 1 1 N

d( , , ) R , , D R , , D
 

              

 

where N is the total number of control points and 𝐷𝑖 is the displacement of the ith control 

point. 

 

Control points that are interpolatory to the curve at (ξc, ηc ,ζc) belong to the physical 

model and as a result their variables correspond to actual displacements. 

  
N

c c c i c c c i c c

i=1

d(ξ ,η ,ζ )= R ξ ,η ,ζ D =1 D =D   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

6 Applications 
 

 

 

6.1 Plane strain plate 
 

 

  The plate below is presented under plane strain conditions. The dimension across axis 

Z (thickness) is significantly bigger compared to the other two directions, while loads 

act on the plane XY. Each edge has length equal to 1m. E=100 kPa and v=0.3 are 

considered for the computations. 

 

  In order to emphasize the different handling of interior collocation points in Ω and 

boundary collocation points on ΓΝ, the plate will be solved twice. In the first case all 

four edges will be fully supported and therefore no Neumann boundary collocation 

points will exist. In the second case the support will remain only across the left edge 

and the plate will act as a cantilever. Points lying across the other three edges will 

occupy the last rows of the stiffness matrix, where the strong imposition of Neumann 

conditions will take place. 

 

  In Fig. 6.1 the plate is divided into 9 knot spans in each direction, making a total of 81 

two-dimensional knot spans (elements). Element boundaries are displayed in yellow. 

 
 

 
 

Fig. 6.1. Plane strain plate: physical space 
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  The polynomial order is equal to 3. The same knot value vector is defined in both 

parametric directions: Ξ=Η={0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9}. The corresponding basis 

functions are depicted below. 

 

 

 

 
 

Fig. 6.2. B-spline basis functions over axes ξ, η 

 

 

  Stiffness matrix will be formed for both Galerkin and collocation method. Gauss 

quadrature suggests that    
2

1 3 1 16
d

p     Gauss points per element are defined. 

This makes a total of 81×16=1296 Gauss points over the entire domain. As far as 

collocation points are concerned, their number is equal to the number of control points. 

There are n=m=12 control points on each parametric axis, so collocation points amount 

to 12×12=144.  

 

  Collocation encourages one point evaluation per basis function. Dirichlet boundary 

conditions are satisfied strongly by the displacement approximation 𝑢∗ that the method 

of weighted residuals introduces. Therefore, Greville points located on ΓD do not have 

to be taken into account. Besides, the degrees of freedom of the corresponding control 

points are supported and as a result they do not participate in the final stiffness matrix 

either. The procedure is familiar. Rows and columns representing supported degrees of 

freedom are erased. The only difference at the collocation scheme is that now rows refer 

to collocation and not control points. However, the fact that they are both treated in the 

same way (they are neglected) ensures that the process yields a square matrix. This is 

vital for the calculation of displacements. 
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                                                                          (a) 

 

 

 
                                                                          (b) 
 

                                        Fig. 6.3. Plane strain plate: parameter space 

                                             (a) Gauss points, (b) collocation points 
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  Fig. 6.4 presents stiffness matrix based on (a) Galerkin and (b) collocation method. 

The non-zero elements in the first case are equal to 13456, while in the second case 

they are only 3558. In addition, the bandwidth is markedly reduced in collocation. 

 

 

 
(a) 

 
(b) 

 

Fig. 6.4. Plane strain plate supported on four edges: 

stiffness matrix in (a) Galerkin, (b) collocation 
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  The sub-matrices in color in Fig. 6.4a stand for consecutive knot spans across ξ. Their 

overlapping is due to the fact that they activate same degrees of freedom. In the example 

in question each element is affected by    
2

1 3 1 16
d

p     control points. Two 

successive elements involve the same one-dimensional knot spans across one 

parametric direction and they just differ by one across the other. This means that only 

 
1

1 4p    different control points correspond to the second element, while the rest of 

them (12) are the same with the previous one. Stiffness matrix is formed by associating 

degrees of freedom representing rows with those degrees of freedom representing 

columns that they are involved with over the same elements. Consequently, successive 

elements occupy same positions in the system matrix and the phenomenon of 

overlapping appears. 

 

  This phenomenon is eliminated in collocation. In Fig. 6.4b the first twenty rows 

correspond to the first Greville point across ξ, the following twenty to the second point 

across ξ and so on. Respectively, the first two rows correlate with the first point across 

η, the following two correlate with the second point across η and so on. The two rows 

related to every collocation point are explained by the two-dimensional problem. It is 

obvious that the operator L is formed for each point separately and it contains all entries 

for the corresponding rows of the system matrix. There is no interaction between points 

and thus no overlapping. 

 

  Suppose now that the plate is supported on the left edge and that it is subjected to 

volume load, 
25 kN/mv

xf  , 
25 kN/mv

yf  . The domain discretization remains the 

same and the polynomial order is here also equal to 3. 

 

 

 
 

(a)                                                                              (b) 
 

Fig. 6.5. Plane strain plate supported on the left edge: 

stiffness matrix in (a) Galerkin, (b) collocation  
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  In Fig. 6.5b the first 200 rows correspond to interior collocation points in Ω and the 

rest of them to boundary collocation points lying across bottom, upper and right edge. 

The strong form of the differential equation is satisfied at the first category of points, 

while strong imposition of Neumann conditions takes place at the second. Despite the 

“not normal” form of collocation matrix, its bandwidth is still reduced compared to 

Galerkin matrix (p instead of 2p+1). Additionally, the non-zero elements in Galerkin 

are more than four times the non-zero entries in collocation. 

 

  In order to better illustrate the differences in the matrix of the two methods, Fig. 6.6 

presents the stiffness matrices for polynomial degree ranging from 2 to 5, for a standard 

number of degrees of freedom (288 in total, 264 free). 

 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

Fig. 6.6. Stiffness matrix in Galerkin (left column) and collocation (right column) 

(a) p=2, (b) p=3, (c) p=4, (d) p=5 

 

 
  In collocation it is obvious that basis functions of even polynomial degrees lead to the 

same bandwidth as those of the next higher odd p. The matrix of p=2 has the same 

bandwidth with the matrix of p=3 (p+1 and p respectively). This outcome applies for p 

equal to 4 and 5 as well.  

 

  Matrices representing both methods tend to be significantly denser as the 

discretization order increases. Greater degree implies that the domain of influence of 

each function is extended to a larger area. In case of Galerkin this is reflected in more 

intense interaction between elements and therefore more intense overlapping. In terms 
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of collocation this is associated with the fact that the number of basis functions having 

non-zero value over each collocation point, or else the number of non-zero entries at 

each row, is increased with the order elevation. In both methods the increasingly denser 

structure of the system matrix is completely justified. 

 

  Next, displacements are calculated for meshes of 4x4, 6x6, 9x9, 12x12 and 14x14 

control points, using quadratic B-spline basis functions. The calculations will then be 

repeated for cubic basis. For each case the total time and the displacement error are 

recorded. Total time pertains to the operations required for the formation of the stiffness 

matrix and external load vector until displacements are defined. The code used for the 

analysis purposes was written in MatLab. 

 

  It should be underlined that no program optimization has been considered, therefore 

the results presented below are not representative of real times. In case of IGA-G in 

particular there are solvers, compatible to parallelization techniques, which can 

drastically accelerate computations occupying in the same time less storage space [5]. 

Apart from that, the factor of symmetry in the Galerkin method has been neglected. It 

is known that the utilization of the symmetry properties can reduce the operations 

required at each quadrature point, since in this case only the upper triangular part of the 

local stiffness matrix has to be formed. It follows from the above that the Galerkin times 

presented in this section could probably be decreased by orders of magnitude. 

 

  However, isogeometric collocation also looks really promising for parallel 

implementations. Undoubtedly, optimization algorithms adapted to the needs of the 

method will improve its efficiency and even better computing times will be reached. 

Consequently, the “simplified” code used in this thesis serves the fair treatment of the 

two formulations and the acquired times are indicative of the attitude of each one of 

them. Of course both methods have to be programmed in the optimum way in order to 

end up with a reliable conclusion. 

 

  For the present example, no closed-form solution is available, thus a reference solution 

is computed for a mesh with degree 3 in both parametric directions and 14x14 control 

points solved with the Galerkin method. The normalized displacement error in the 𝐿2 

norm is evaluated as follows 

 

2

2

2

Re

L

ref

f L

ref

L

e



u u

u
 

 

where 𝒖𝒓𝒆𝒇 is the reference displacement solution. 

 

  It should be mentioned that the “collocation points” column of Table 6.1 refers to 

those Greville points that are involved in the formation of the stiffness matrix. This 
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means that points located on ΓD are not taken into account. As far as Gauss points are 

concerned, their calculation follows the rule of  1
d

p   points per element.  

 

 

Mesh ndof  
Gauss/collocation 

points  
Total time (s) 

 
 L2 norm 

      Galerkin Collocation   Galerkin Collocation   Galerkin Collocation 

4x4 32  36 12  0,36 0,15  0,037 0,050 

6x6 72  144 30  1,00 0,19  0,010 0,020 

9x9 162  441 72  4,76 0,42  0,003 0,006 

12x12 288  900 132  16,42 0,94  0,002 0,005 

14x14 392   1296 182   57,74 2,24   - 0,003 

 

Table 6.1. Plane strain plate with discretization order equal to 2: 

computing times and displacement errors for IGA-G, IGA-C 

 

 

  It can certainly be claimed that IGA-C is a faster method than IGA-G. For sparse 

discretization and low order, the time the two schemes consume is comparable. In more 

complicated problems, however, where denser meshes or larger p is used, IGA-C 

increasingly dominates over IGA-G, since the cost of the first is invariant to the number 

of unknowns per node. The number of Gauss points and consequently the 

computational cost of IGA-G is increased in a significantly fast rate with the knot 

insertion. 

 
 

 

 
 

Fig. 6.7. Computing times for the formation and solution of the system KD=F 
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  With respect to the convergence properties, collocation approaches the performance 

of IGA-G for discretization of degree 2. As the mesh becomes denser the corresponding 

errors tend to be equal. These results are hopeful enough, still the method should also 

be tested in more complex and large-scale problems. Besides it will later be shown that 

in three-dimensional applications, as well as in two dimensional cases of p=3 the 

divergence between the errors of the two methods is significantly increased. 

 

 

 
 

Fig. 6.8. Displacement error in L2 norm vs. degrees of freedom 
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(b) 
 

Fig. 6.9. Plane strain plate: vertical displacement 

(a) p=2, 4x4 control points, (b) p=2, 12x12 control points 

 

 

 

  Displacement contours corresponding to the mesh of 6x6 control points are presented 

below for both horizontal and vertical direction. The level of convergence that each 

mesh density reaches ranges between small numbers and the difference cannot be 

clearly caught by this type of graphs. As a result, the contours of the specific mesh can 

be thought as representative of the graphs of all the five occasions, which are omitted 

for the sake of brevity. 

 

 

 
(a) 

 

 
 

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

1

3
6

6

7
3

1

1
0

9
6

1
4

6
1

1
8

2
6

2
1

9
1

2
5

5
6

2
9

2
1

3
2

8
6

3
6

5
1

4
0

1
6

4
3

8
1

4
7

4
6

5
1

1
1

5
4

7
6

5
8

4
1

6
2

0
6

6
5

7
1

6
9

3
6

7
3

0
1

7
6

6
6

8
0

3
1

8
3

9
6

8
7

6
1

9
1

2
6

9
4

9
1

9
8

5
6

V
er

ti
ca

l D
is

p
la

cm
ee

n
t 

(m
) 

p=2 - 12x12 control points

Reference solution Galerkin Collocation



96                                       Numerical Evaluation of Isogeometric Analysis Methodologies 

 

 
(b) 

 

Fig. 6.10. Displacement contour in Galerkin (left column) and collocation (right column) 

 (a) horizontal displacement, (b) vertical displacement  

p=2, 6x6 control points 

 

 

The above examples are now repeated for polynomial order equal to 3. The number of 

degrees of freedom remains the same in each case. 

 

 

Mesh ndof  
Gauss/collocation 

points  
Total time (s) 

 
 L2 norm 

      Galerkin Collocation   Galerkin Collocation   Galerkin Collocation 

4x4 32  16 12  0,3 0,15  0,026 0,391 

6x6 72  144 30  1,00 0,19  0,007 0,023 

9x9 162  576 72  6,28 0,42  0,002 0,017 

12x12 288  1296 132  24,00 0,94  4,11x 10-4 0,012 

14x14 392   1936 182   138,00 2,24    - 0,010 

 

Table 6.2. Plane strain plate with discretization order equal to 3: 

computing times and displacement errors for IGA-G, IGA-C 

 

 

  The analysis procedure is more time-consuming in case of cubic functions as far as 

Galerkin is concerned. This follows from the increased number of quadrature points 

compared to the corresponding mesh of quadratic splines. Indeed, Gauss points per 

element are now equal to    
2

1 3 1 16
d

p    , while in the previous calculations they 

were equal to    
2

1 2 1 9
d

p    . Of course, it should also be kept in mind that for 

the same number of degrees of freedom p=3 produces less elements than p=2. 

Otherwise, an even more pronounced difference between consecutive orders would be 

noted. On the other hand, collocation’s cost keeps the same values, since it is not 
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affected by p. The number of Greville points is equal to the number of control points, 

which remains unchanged in problems sharing the same degrees of freedom. 

 

 

 
 

 

 
 

Fig. 6.11. Computing times for the formation and solution of the system KD=F 

 

 

  As it was expected, Galerkin succeeds better accuracy as the polynomial order 

increases. In case of collocation though, higher displacement errors are observed. In 

general, IGA-C is said to be more efficient for even than odd degrees, so this could 

probably be a reason for this misbehavior. 
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Fig. 6.12. Displacement error in L2 norm vs. degrees of freedom  

 

 

 

(a) 
 

 

(b) 
 

Fig. 6.13. Plane strain plate: vertical displacement 

(a) p=3, 4x4 control points, (b) p=3, 12x12 control points 
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Displacement contours are displayed in the following figures in order to illustrate the 

response of IGA-G and IGA-C in both sparse and dense meshes. 
 
 

 

 
(a) 

 
(b) 

Fig. 6.14. Displacement contour in Galerkin (left column) and collocation (right column) 

 (a) horizontal displacement, (b) vertical displacement  

p=3, 4x4 control points 

 

 
(a) 
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(b) 

Fig. 6.15 Displacement contour in Galerkin (left column) and collocation (right column) 

 (a) horizontal displacement, (b) vertical displacement  

 p=3, 12x12 control points 

 

 

  As the degrees of freedom increase, Galerkin becomes much more expensive than 

collocation. However, Galerkin can reach a certain level of accuracy even in sparse 

meshes, where few degrees of freedom are defined. Collocation on the other hand, will 

need to use refinement techniques so as to approach Galerkin results. Even under these 

circumstances though, it is still not clear which method outperforms as far as 

computational cost is concerned. 

 

  A thorough comparison between the two methods would entail the estimation of the 

time required by each one of them in order to achieve a specified level of accuracy 

regardless of the polynomial degree and the number of degrees of freedom.  
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(b) 
 

Fig. 6.16. Displacement error in L2 norm vs. degrees of freedom for various p 

(a) Galerkin, (b) collocation  

 

 

 
 

Fig. 6.17. Displacement error in L2 norm vs. time 

 

 

  Fig. 6.17 demonstrates a superiority of IGA-C compared to IGA-G, considering that 

it offers the best accuracy to computing time ratios. Nevertheless, more reliable results 

will arise provided that the above charts are enriched with more polynomial degrees 

and number of degrees of freedom. Besides for small p the cost between the methods 

is expected to be comparable under optimization techniques. It is the increase of 

 1
d

p   (number of gauss points per element) that makes the assembly of the stiffness 

matrix a computationally demanding task. 
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6.2 Plane strain cantilever 
 

 

  The cantilever presented in Fig. 6.18 obeys to plane strain conditions. Its length is 

equal to 0.9 m and its width is equal to 0.3 m. It is subjected to a surface load of 40 

kN/m on its upper edge. E=8000 kPa and v=0.3. 

 

 

 
 

Fig. 6.18. Plane strain cantilever: physical space 

 

 

  The control points defining the geometry are shown in blue. There are 15 control 

points across axis ξ and 5 control points across axis η. The polynomial order is equal to 

3. This makes a total of 384 Gauss points and 75 collocation points. 

 

 

 

(a) 



6 Applications                                                                                                                         103 

 

 

 
(b) 

 

Fig. 6.19. B-spline basis functions over (a) axis ξ, (b) axis η 

 

 

 
(a) 

 
(b) 

 

Fig. 6.20. Plane strain cantilever: parameter space 

(a) Gauss points, (b) collocation points 
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  The stiffness matrix deriving from the Galerkin formulation has 7912 non-zero 

elements, while the corresponding number for the collocation scheme is just 2526. The 

relative displacement error between the two methods is defined in the 𝐿2 norm and it is 

equal to 7×10-3. 

 

 

 
(a) 

 

 
(b) 

 

Fig. 6.21. Plane strain cantilever: 

stiffness matrix in (a) Galerkin, (b) collocation 
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(a) 

 
(b) 

 

Fig. 6.22. Horizontal displacement contour in (a) Galerkin, (b) collocation 

 

 

 
(a) 

 
(b) 

 

Fig. 6.23. Vertical displacement contour in (a) Galerkin, (b) collocation 
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6.3 Cube 
 

 

  The cube of Fig. 6.24 has sides of length 1m and it rests on the left side. It is subjected 

to a volume load with values 
330 kN/mv

xf  , 
330 kN/mv

yf   and 
330 kN/mv

zf  . 

E=1000 kPa and v=0.3. 

 
 

Fig. 6.24. Cube: physical space and the corresponding control points 

 

 

  3 knot spans are defined at each parametric direction. This number in combination 

with quadratic basis functions yields 5 control points per axis. The minimum number 

of required Gauss points rises to 729, while there are 125 collocation points. Those 

lying on the left side (25 Greville points) are used for the strong imposition of Dirichlet 

boundary conditions, consequently only 100 contribute to the formation of the stiffness 

matrix. The problem is specified by 375 degrees of freedom.  

 

 

 
 

Fig. 6.25. B-spline basis functions over axes ξ, η and ζ 

Ξ=Η=Ζ={0 0 0 1 2 3 3 3} 
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(a) 

 

 

 
(b) 

 

Fig. 6.26. Cube: parameter space 

(a) Gauss points, (b) collocation points 
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  In this example no reference solution is defined. Based on the high accuracy that IGA-

G offers, the relative error of the two methods is calculated in the 𝐿2 norm as an 

indicator for the approximation power and convergence properties of IGA-C. 
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where 𝒖𝑐 is the collocation displacement solution and 𝒖𝐺 is the Galerkin displacement 

solution. All the information relevant to the analysis procedure is outlined in the 

following table. 

 

 

Method Galerkin Collocation 

Degrees of  

freedom 
375 

Gauss/collocation  

points 
729 100 

Total time (s) 18,64 1,40 

Norm 0,041 

 

 

  Stiffness matrix has the same features as in two-dimensional cases. In Galerkin the 

increased density reflects the overlapping of basis functions, which is connected to the 
1C  continuity across element boundaries. In collocation, each Greville point holds three 

consecutive rows corresponding to 𝑢𝑥 , 𝑢𝑦 and 𝑢𝑧 displacements. Interior and boundary 

points are treated in a different way. 

 

 

 
                                        (a)                                                                               (b) 
 

Fig. 6.27. Cube: 

stiffness matrix in (a) Galerkin, (b) collocation 
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Fig. 6.28. Cube: vertical displacement 

 

 

 
                  Vertical Displacement                                   Vertical Displacement 

 
                                         (a)                                                                          (b) 

 

Fig. 6.29. Vertical displacement contour in (a) Galerkin, (b) collocation 
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6.4 Cantilever 3D 
 

 

The cantilever has length 2,5m, while its width and height are equal to 1m. It is 

subjected to a volume load at z direction, 
310 kN/mv

zf  . E=5000 kPa and v=0.3. 

 

 

 
 

Figure 6.30. Cantilever 3D: physical space and the corresponding control points 

 

 

  Quadratic B-splines are used here as well. 10 control points are defined across axis ξ 

and 4 across the remaining two axes. This makes a total of 480 degrees of freedom, 864 

Gauss points and 160 collocation points (16 of them belong to the supported side). The 

displacement error is here deteriorated compared the previous three-dimensional 

example. This is probably attributed to the fact that in the current problem the ratio 

between boundary collocation points to the total number of collocation points is 

increased. As it will be mentioned in the next chapter the strong imposition of Neumann 

conditions may lead to inaccuracies in some occasions. 

 

 

Method Galerkin Collocation 

Degrees of  

freedom 
480 

Gauss/collocation  

points 
864 144 

Total time (s) 30 2 

Norm 0,1146 
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                            (a)                                                                            (b)  
 

Figure 6.31. B-spline basis functions over axes (a) ξ, (b) η, ζ 

Ξ={0 0 0 1 2 3 4 5 6 7 8 8 8} 

 Η=Ζ={0 0 0 1 2 2 2} 
 

 

 
(a) 

 
(b) 

 

Figure 6.32. Cantilever 3D: parameter space 

(a) Gauss points, (b) collocation points 
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(a) 

 

 
(b) 

 

Fig. 6.33. Cantilever 3D: 

stiffness matrix in (a) Galerkin, (b) collocation 

 

 

  Observe that Galerkin matrix have almost 4,5 times more non-zero elements than the 

matrix deriving from collocation. The form of the second matrix becomes more and 

more unfamiliar as the number of boundary collocation points increases. Yet it 

completely complies with the principles of the methodology in question. The entries of 
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the first rows of the global array are the non-zero values of NURBS shape functions 

second derivatives over each interior collocation point with respect to the pattern of L 

operator. Rows from 100 to 432 refer to Greville points located on ΓN. This time the 

first derivatives of NURBS shape functions are inserted at suitable positions of the 

stiffness matrix under the layout of 𝐵ℎ operator. 

 

 

 
 

Fig. 6.34. Cantilever 3D: vertical displacement 

 

 

 

         Vertical Displacement 

 
(a) 
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       Vertical Displacement 

 
(b) 

 

Fig. 6.35. Vertical displacement contour in (a) Galerkin, (b) collocation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 Drawbacks of Collocation 

Scheme 
 

 

 

7.1 Accuracy 
 

 

  As it can be concluded from the previous chapters, collocation formulation in 

isogeometric analysis outperforms IGA-G and FEA-G from the aspect of computational 

cost. The strong imposition of the boundary value problem eliminates integrals and the 

need for numerical quadrature and simplifies the procedure for the stiffness matrix 

formation. However, for the efficiency of one method to be decided, the crucial 

parameter of accuracy should also be taken into consideration. Engineering problems 

in particular, that the aforementioned numerical schemes are meant to serve, exhibit 

very small tolerance in accuracy issues and they are highly sensitive in instabilities. 

 

  Unfortunately, the theoretical background of the isogeometric collocation method has 

only been established for the one-dimensional case. In [8] it is demonstrated that if the 

collocation points are chosen suitably, the collocation method converges with optimal 

rate, while proofs of stability and error estimates are also included. For 2 and 3-

dimensional cases some individual attempts have only been realized, which cannot 

compose an abstract mathematical framework able to support a thorough numerical 

analysis of collocation methods. As a consequence, convergence results for 2D and 3D 

NURBS discretization, that are currently available, derive only from numerical studies. 

 

  Accuracy issues are under investigation via a 3D elasticity problem in [6]. Of course 

the success of a collocation method mostly depends on the choice of collocation points. 

Greville abscissae is adopted here too. Assuming the PDE system of linear elasticity, a 

set of exact smooth and rough solutions are defined over a cube Ω=[0,1]3. The 

corresponding smooth and rough solution, respectively, reads 

 

     sin 2 sin 2 sin 2u v w x y z                                         (1) 

      
1

2 2 2 41 1 1u v w xyz x y z                                      (2) 
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  Substitution of the above equations into Navier’s equations of elasticity yields the 

body forces 𝑓𝑥 , 𝑓𝑦 and 𝑓𝑧 for the two sets of displacement fields. In the first case, 

homogenous Dirichlet boundary conditions are considered over all surfaces of the cube. 

For the rough case, Neumann boundary conditions need to partially be imposed at the 

surfaces x=1, y=1 and z=1. They can be derived by inserting Eq. (2) in the strain-

displacement and constitutive relations. For the computations, Young’s modulus E=1 

and Poisson’s ratio ν=0.3 were assumed. 

 

  The problem was solved many times for different polynomial degrees of the 

discretization functions. In addition the degrees of freedom were gradually increased 

from about 200 to about 200.000 by consecutive uniform mesh refinements. For each 

resolution the relative displacement errors of the three methods (IGA-C, IGA-G, FEA-

G) were recorded in the 𝐿2 norm, which is evaluated as follows 

 

2

2

2

L
L

L

e



u u

u
 

 

𝒖 denotes the actual solution, while �̃� is the approximation to the actual solution. The 

convergence results with respect to the degrees of freedom are shown in Fig. 7.1 for the 

smooth elasticity problem and in Fig. 7.2 for the rough elasticity problem. 

 
 

 
 

Fig. 7.1. Smooth 3D elasticity: L2 error vs. degrees of freedom 
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Fig. 7.2. Rough 3D elasticity: L2 error vs. degrees of freedom 

 

 

  It is obvious that IGA-G achieves the best performance compared to FEA-G and IGA-

C for both smooth and rough 3D elasticity problems. In the first case, in particular, 

IGA-G can be proud of very small normalized displacement errors, while it approaches 

the exact solution with a convergence rate of O(p+1). IGA-C, on the other hand, proves 

to be inferior of the other two methods in accuracy issues, since it always lags behind 

them. It should be mentioned that IGA-C performs better for even than odd polynomial 

degrees, considering that even degrees come with a convergence rate of O(p) in contrast 

to O(p-1) of odd degrees. In addition, the efficiency of the method tends to improve for 

higher order functions, as it can be concluded from the Fig. 7.1 focusing on charts for 

p=4 and p=5. However, this is not comforting enough, as the standard analysis 

procedure is to begin with a solution generated on a coarse mesh with a low-order basis. 

Provided that this solution does not satisfy the desired level of accuracy, then 

refinement strategies are applied, which may involve an order elevation. 

 

  Fig. 7.2, which refers to rough vector problems, reveals considerably lower rates of 

convergence in all methods. This phenomenon was expected, since the derivatives of 

the exact rough solution exhibit a singularity in the corner {x,y,z}={1,1,1}. However, 

IGA-G accomplishes again the most accurate results, while the reliability of IGA-C is 
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restored gradually as degree p is increased and its results tend to approach the attitude 

of FEA-G. 

 

  In defense of collocation method, what frequently matters in practical problems is the 

computing time required in order to achieve a specified level of accuracy. Besides, it 

can be claimed that for higher orders (𝑝 > 3), IGA-C offers the best accuracy-to-

computing-time ratios, as far as displacements and stresses are concerned. 

 

 

7.2 Neumann boundary conditions 
 

7.2.1 Introduction 
 

  As it has already been mentioned in Chapter 4, Neumann boundary conditions are 

strongly imposed on boundary collocation points in the isogeometric collocation 

method. According to [7], however, this treatment may cause a significant loss of 

accuracy in some problems, especially when a reduced regularity of the solution is met 

and when non-uniform meshes are used. In the same paper two alternative techniques 

are proposed, promising to reach better accuracy while preserving the computational 

cost at the initial level. 

 

  For the sake of simplicity a small-strain linear elasticity problem will be considered at 

this section, since the extension to 3-dimensional situations is analogous. The 

elastostatic problem in strong form is defined by 

 

 Sdiv  u f = 0   in Ω 

u g    on Γg 

 S = u n p    on Γp 

 

where f represents body forces, g represents prescribed displacements on a portion of 

the boundary Γg and p denotes prescribed tractions (possibly zero) on the remaining 

portion Γp. Thus g p     is the boundary of the domain and g p   . In addition, 

u(x) is the unknown displacement field, S  is the symmetric part of the gradient 

operator,  is the fourth-order elasticity tensor, div is the divergence operator, and n 

is the outward unit normal to the boundary of the domain. 

 

  Consider a 2-dimensional domain determined by N=nm control points, where n and m 

are the number of control points in the parametric axis ξ and in the parametric axis η, 

respectively. It is clear that the definition of the unknown control point displacements 

requires 2Ν scalar equations. Greville abscissae as well as Demko abscissae yield Ν 
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collocation points 𝜏𝑘𝑙, k={1,…,n}, l={1,…,m} located at the tensor product structure of 

the knot vectors. Different sets of equations are destined for the interior collocation 

points and the collocation points on the Neumann boundary Γp. Having chosen as test 

functions the Dirac δ functions, the interior collocation points 𝜏𝑘𝑙, k={2,…,n-1}, 

l={2,…,m-1}, should satisfy the equations 

 

    0S h

kldiv    
 

u f          𝜏𝑘𝑙⊂Ω 

 

Collocation points on the Dirichlet boundary do not have to be defined, as it is imposed 

a priori that 𝑢𝑖
ℎ(𝜏𝑘𝑙) = 𝑔𝑖(𝜏𝑘𝑙). 

 

 

7.2.2 Basic collocation treatment 
 

  Before the two new proppsed techniques are described, it would be helpful to recall 

and further explain the “basic collocation” (BC) treatment, as it is addressed to in [7]. 

The evaluation of Neumann conditions at boundary and interface collocation points 

supposes that the outward unit normal n is well-defined. Therefore, a special treatment 

should be predicted for collocation points lying on areas with reduced regularity, such 

as corners or sharp edges where one or more planes are involved. Such a point and the 

corresponding outward normal vectors n'  and n''  are depicted in Fig. 7.3. It should 

be noted that this case is restricted to a single patch domain. Considering a geometry 

composed of multiple patches, attention should be paid in a similar way at points that 

belong to the common boundary of two patches, or to the common corner of two or 

more patches. 

 

 

 
 

Fig. 7.3. Boundary collocation point types in a domain described by a single patch 
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The types shown in Fig. 7.3 refer to the following cases: 

 
 

   (I)  point 𝜏𝑘𝑙 is on the boundary of a single patch domain and it is not a corner 

   (II) point 𝜏𝑘𝑙 is on the boundary of a single patch and it is a corner 

 
 

  For the points of type (II) the procedure indicates that the evaluation of the Neumann 

condition should take place for each one of the planes that are crossed at the corner or 

at the sharp edge, as a different outward normal n is defined at each one of them. The 

final contribution to the stiffness matrix constitutes an average of the above evaluations. 

Therefore, for collocation points located at the edges (k=1,n and l={2,…,m-1}, or l=1,m 

and k={2,…,n-1}) the strong imposition of the Neumann bcs is of the form 

 

    0S

h kl-   
 

u n p      𝜏𝑘𝑙⊂edge⊂Γp 

 

For collocation points located at corners (k=1,n and l=1,m) [11] showed that the suitable 

equations are 

 

        0S S

h kl h kl- -       
   

u n' p' u n'' p''      𝜏𝑘𝑙 ≡edge⊂Γp 

 

where 𝒑′ and 𝒑′′ are the tractions imposed on the edges meeting at the corner. 

 

 

7.2.3 Hybrid collocation treatment 
 

  Hybrid collocation (HC) as described at [7] suggests that the Galerkin treatment is 

adopted for the equations at the Neumann boundary, while the operations up to this 

point continue complying with the collocation rules. Some of the shape functions used 

for the problem discretization are used as test functions and thus the integrations are 

not eliminated. Specifically, these shape functions pertain to the control points located 

at the edges of the patch domain. For instance, edges with 1,k k n   and  2,... 1l m   

stimulate 2(m-2) equations of the form 

 
 

    0

pk

S h S h

b bk k
div R d R d

 

         
    u f u n p                      (3) 

 
 

where 𝛤𝑝�̅� denotes the considered edge within the Neumann boundary and 𝒏�̅� and 𝒑�̅� 

are the respective outward unit normal and applied traction. Index b is equal to 

 1m k l  , with the assumption that the counting runs first the parametric axis η and 



7 Drawbacks of Collocation Scheme                                                                                     121 

 

then moves to the next point of the parametric axis ξ. In a similar way, the points at 

edges with 1,l l m   and  2,... 1k n   should satisfy the 2(n-2) equations 

 

    0

pl

S h S h

c cl l
div R d R d

 

         
    u f u n p                    (4) 

 

where  𝛤𝑝𝑙̅ denotes the considered edge within the Neumann boundary and 𝒏�̅� and 𝒑�̅� 

are the respective outward unit normal and applied traction. Index c is equal to 

 1m k l  . 

 

  Note that integration is required over both the area and edge domains. The integrals 

can be evaluated with Gauss-Legendre quadrature. It should be mentioned that the 

shape functions Rb and Rc, which are involved in Eqs. (3) and (4) correspond to the 

control points lying on the Neumann edges of the patch domain. Due to the nature of 

the open knot vector, where the first and the last knot are repeated p+1 times creating 

this way trivial knot value spans, Rb and Rc have a reduced support relative to 

(p+1)(q+1) knot value spans. In particular, shape functions Rb have support over 

(1)(q+1) knot value spans, while shape functions Rc have support over (p+1)(1) knot 

value spans, where p and q are the polynomial degrees in axes ξ and η, respectively. 

Consequently, the number of Gauss points, which will participate in the numerical 

quadrature, is reduced. 

 

 

 

 
 

(a) 
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(b) 
 

Fig. 7.4. Reduced support of shape functions:  
 

(a) p,q 2,2

i, j 1,4R R  with a support of (1)(q+1)=1(2+1)=3 elements 

(b) p,q 2,2

i, j 3,1R R  with a support of (p+1)(1)=(2+1)(1)=3 elements 

 

 

 

  Without a doubt, the insertion of integrals in the resolution process increases the 

computational cost in comparison with the BC approach. However, the hybrid 

treatment still benefits from the advantageous, from the aspect of time, terms of the 

traditional collocation method in the majority of points. Furthermore, it leads to better 

accuracy than the BC in certain occasions of non-uniform meshes. 

 

 

7.2.4 Enhanced collocation treatment 
 

  Still, another approach, which aims at the accuracy of the Galerkin scheme via the 

cost of the pure collocation technique, is proposed at [7] as an enhanced collocation 

treatment. The procedure is free of integrals, it tries to comply though with the results 

of HC with the help of a suitable constant C*. As in the HC case, the Neumann bcs are 

written considering a combination of both area and edge terms, as follows 

 

       
*

0S h S h

kl kl

C
div f -

h
        

   
u u n p      𝜏𝑘𝑙⊂edge⊂Γp           (5) 

 

where h is the mesh size in the direction perpendicular to the edge. This size is here 

computed as the distance between the first two collocation points encountered starting 

from the edge and traveling in the parametric direction perpendicular to the edge. It 
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should be noted that the first term of Eq. (5) involves the evaluation of the second-order 

operator for the boundary collocation points too, while it was so far required only for 

interior points. As a result, the minimum continuity of 1C  on the Neumann boundary, 

that assures the well-definition of the first derivatives of the shape functions, should be 

now raised at 2C . 

 

  As far as the constant C* is concerned, it is defined so as to minimize the divergence 

of the results with respect to those obtained with the classical Galerkin formulation. 

Some simple and typical problems are solved with both the Galerkin method and the 

enhanced collocation treatment as a function of C* as well. Then the displacement error 

relative to the Galerkin solution, defined as 

 

2

2

2

h h

GGal L

L h

G
L

e



u u

u
, 

 

is computed for various values of the constant C*. The optimal value of C* is estimated 

when the norm 2

Gal

L
e  exhibits a definite minimum and therefore the best convergence is 

achieved. This optimal value is considered to be operator-dependent but no problem-

dependent, consequently it is expected to suit all problems of the same type. 

 

 

7.2.5 Performance 
 

  A crucial factor for the collocation efficiency is the geometry of the mesh. The strong 

enforcement of Neumann bcs leads to inaccurate results when the distance between 

consecutive collocation points perpendicular to the boundary is sufficiently larger than 

parallel to the boundary. This proportion is determined by the ratio of control points in 

each direction. Numerical examples showed that BC exhibits significant spurious 

oscillations as the aspect ratio increases, while HC and EC have a stable performance 

in all occasions. This phenomenon of oscillations tends to diminish when denser meshes 

are used. However it can still be distinguishable at BC results, mainly in the vicinity of 

the corners, while it disappears when HC or EC are used. 

 

  Undoubtedly, the Galerkin method outperforms basic collocation technique and its 

improved variations regardless of the degree and the mesh aspect ratio. EC and HC 

achieve a satisfying approach to the Galerkin performance for high orders (higher than 

4). EC, though, delivers the same level of accuracy, at a significantly lower 

computational cost. Thus EC appears as the best choice among collocation methods as 

the polynomial order increases with respect to both accuracy and computational cost. 

  Probably, the efficiency of EC treatment should be dealt with cautiousness due to the 

need of calibration of the constant C*. This constant may be expected to depend 
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exclusively on the operator and not on the problem, but this prediction cannot be 

confirmed, since the method has not been tested yet in a wide range of examples. 

Besides, the relative paper addresses exclusively the small-deformation elasticity 

operator. Equivalent thorough numerical studies are required in order to enable EC to 

be applicable in other operator types as well, such as temperature variation and 

electromagnetism. Of course the success is not guaranteed. 

 

  Apart from that, suppose that EC has a good perspective in all conditions, the problem 

of increased inaccuracy for low discretization orders still remains. According to the 

numerical applications HC and EC have no gains compared to BC for p=2 and p=3. As 

it has already been explained though, these degrees are of major importance for the 

analysis strategy. 

 

 

7.3 Required continuity 
 

 

  Galerkin scheme forms the stiffness matrix via the numerical quadrature of integrals, 

thus the minimum continuity required by the basis functions is reduced to 0C . This is 

why Galerkin has dominated over the standard 0C -continuous FEA technology. 

Besides, Gauss points lie at the interior of each element where C  is ensured due to 

the polynomial nature of the basis. Computations over inter-element boundaries are not 

involved in the analysis procedure. Therefore, the continuity over knots is allowed to 

be as minimum as possible without affecting the result. 

 

  On the other hand, collocation collaborates with the strong form of the PDE system. 

Higher derivatives have to be well-defined at each collocation point, thus basis 

functions with specific smoothness properties are required. These properties should 

enable the evaluation of the highest differential operator that appears at each PDE. 

Despite the fact that isogeometric analysis comes with some degree of smoothness 

across element boundaries, the use of high discretization orders is neither convenient 

nor desirable for the analysis purposes. 

 

  For the scope of this thesis small-strain linear elasticity problems were studied, which 

correspond to the second-order operator L. Consequently, the basis functions should be 

at least 2C  at interior collocation points and at least 1C  on the Neumann boundary. 

Assuming that other types of problems are considered, it is possible that the demands 

for high continuity will be increased. For instance, the Bernoulli-Euler beam and 

Kirchhoff plate models represent thin structural problems, where the differential 

equation governing the boundary value system is of fourth-order. In this case, the 

collocation scheme would require a basis of polynomial degree at least equal to 4. 
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  In order to be more precise, it should be noted that the requisite smoothness properties 

differ slightly from odd to even degrees. When odd degrees are called on, collocation 

points are located directly at knots, therefore the continuity should identify with the 

order of the operator. Provided that a linear elasticity problem is concerned and p is 

odd, the continuity should be set at least to 2C  at all interior collocation points. Even 

degrees on the contrary situate collocation points in the center of a knot span, thus 1C  

would be sufficient for the example of elasticity. Probably, someone would expect that 
0C  would also be suitable, considering the C  continuity in the element interior. 

However this is not the case, since the regularity of the knots determines the location 

of collocation points. If a knot is repeated up to p times, the Greville formula yields a 

collocation point on the specific knot. Clearly 0C  continuity does not support the 

evaluation of the differential operator and it is thus excluded from collocation 

formulations. 

 
 

To better illustrate this, consider the following quadratic basis functions: 

 

 

𝑁0,2 = (1 − 𝜉)2                            0 ≤ 𝜉 < 1 

 

𝑁1,2 = {
2𝜉 − 3 2⁄ 𝜉2                    0 ≤ 𝜉 < 1

1
2⁄ (2 − 𝜉)2                   1 ≤ 𝜉 < 2

 

 

𝑁2,2 =

{
 

 
1
2⁄ 𝜉2                             0 ≤ 𝜉 < 1

−3 2⁄ + 3𝜉 − 𝜉2          1 ≤ 𝜉 < 2

1
2⁄ (3 − 𝜉)2                 2 ≤ 𝜉 < 3

 

 

𝑁3,2 =

{
 

 
1
2⁄ (𝜉 − 1)2                 1 ≤ 𝜉 < 2

−11 2⁄ + 5𝜉 − 𝜉2       2 ≤ 𝜉 < 3

1
2⁄ (4 − 𝜉)2                 3 ≤ 𝜉 < 4

 

 

𝑁4,2 = {
1
2⁄ (𝜉 − 2)2                   2 ≤ 𝜉 < 3

−16 + 10𝜉 − 3 2⁄ 𝜉2    3 ≤ 𝜉 < 4
 

 

𝑁5,2 = {
(𝜉 − 3)2                           3 ≤ 𝜉 < 4

(5 − 𝜉)2                           4 ≤ 𝜉 < 5
 

 

𝑁6,2 = 2(𝜉 − 4)(5 − 𝜉)              4 ≤ 𝜉 < 5 

 

𝑁7,2 = (𝜉 − 4)2                             4 ≤ 𝜉 < 5 
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(a) 

 

 

 

(b) 
 

Fig. 7.5. Alteration to collocation points in case of 0C  continuity 

(a) Ξ={0 0 0 1 2 3 4 5 5 5} 

(b) Ξ={0 0 0 1 2 3 4 4 5 5 5} 

 

 

  Observe that the repetition of the knot with parametric coordinate ξ=4, creates the 

need for one additional control point and therefore one additional collocation point. The 

extra collocation point lies at ξ=4, while the rest of them are located in the middle of 

the corresponding elements. The fact that the curve is interpolatory at that point 

indicates that not even the first derivative is well defined. This claim is further 

supported by the following computation: 

 

𝑑𝑁5,2
𝑑𝑢

|
𝜉=4

= {
2(𝜉 − 3)      3 ≤ 𝑢 < 4

−2(5 − 𝜉)   4 ≤ 𝑢 < 5
|
𝜉=4

= {
2
−2
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  In general, in collocation formulations the level of continuity should always comply 

with the order of the highest differential operator. This may lead to overdone 

polynomial degrees, even in problems where the desired accuracy could be achieved 

with much lower basis order. 

 

  It also becomes clear that collocation offers no practical usefulness to the finite 

element method. FEA lacks of smoothness, as it addresses exclusively to 0C -

continuous basis functions. It cannot support the development of methods based on the 

strong form of differential equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

8 Conclusions 
 

 

 

Isogeometric analysis 

 

  Isogeometric analysis is an innovative evolution of the standard FEM that manages to 

bridge the gap between CAD and CAE technologies. The exact geometrical mesh and 

not an approximation to the physical model feeds the analysis process, while all the 

required alterations to the geometry are adapted to the initial representation. The 

geometric error is thus eliminated and the method outperforms FEM in terms of 

accuracy. 

 

  The concept of IGA is implemented through the technologies used to describe the 

solution filed. NURBS and B-splines have dominated CAD industry and they are fairly 

the first candidate for isogeometric applications. Local support and p mC   continuity 

across each knot are some major properties that differentiate current basis functions 

from those used in classical FEA. These properties imply that shape functions hold an 

overlapping that leads to greater interconnectivity among elements and they also enable 

a more accurate approach to the natural response of an object, since 0C  continuity is 

not met in a continuum model. 

 

 

 
 

Fig. 8.1. Shape function  p,q 2,2

i, j 5,5R R ,    as a tensor product of 
5,2N ( )  and  5,2M   

Ξ={0 0 0 1 2 3 4 5 6 6 6} 

Η={0 0 0 1 2 3 4 5 5 5} 

 

  The price of higher accuracy per degree of freedom compared to finite element 

analysis is the increased computational cost for the formation and assembly of the 
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stiffness matrix. Overlapping comes with denser system matrices, therefore more 

elaborate and time-consuming calculations are required. 

 

Numerical quadrature 

 

  The blame for the high cost of isogeometric analysis is imputed to numerical 

integration. Galerkin scheme, adopted in both FEM and IGA in order to approximate 

solutions to the boundary value problems, introduces integrals which have to be 

evaluated by numerical quadrature rules. Gauss rules suggest that  1
d

p   points per 

knot span are defined for two and three dimensional cases. This applies to both 

methods, however the number of control point-Gauss point correlations is significantly 

increased in IGA due to the overlapping of basis functions. Overlapping raises the 

number of elements and subsequently the number of Gauss points influencing a specific 

control point by orders of magnitude compared to FEA. Besides, IGA produces quite 

more elements than FEA for the same number of degrees of freedom, because of its 

higher inter-element continuity. This means that the total number of Gauss points is 

dramatically increased. 
 

 

 
(a) 

 

 
 

Fig. 8.2. Number of Gauss points influencing a control point/node with respect to p 
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  Apparently, efficient quadrature for NURBS-based isogeometric analysis is not 

translated into the use of standard element-wise Gauss rules. Recently proposed 

integration rules recommend that the number of quadrature points complies with the 

number of degrees of freedom and it is no more so closely related to the polynomial 

order p. These methodologies respect the smoothness properties of B-splines across 

element boundaries and pursue an optimal number of point evaluations. 

 

Collocation scheme 

 

  Collocation scheme is an alternative to Galerkin, which supports the discretization of 

the strong form of the governing partial differential equations. This means that integrals 

are eliminated and no quadrature techniques are required. The number of collocation 

points is equal to the number of control points, so IGA-C achieves one point evaluation 

per basis function. The calculations over each Greville point correspond to the entries 

of one row of the global stiffness matrix. The procedure of assembly is now pointless, 

something that leads to a profound reduction of the operations required for the system 

matrix formation. The final matrix is generally non symmetric, considering that rows 

refer to collocation points and columns to shape functions. This also affects bandwidth, 

which is reduced in case of IGA-C.  

 

 

 
 

(b)                                                                              (b) 
 

Fig. 8.3. Plane strain plate supported on the left edge: 

stiffness matrix in (a) Galerkin, (b) collocation 
 

 

  Collocation entails the evaluation of the differential operators of the PDE, as a result 

basis functions have to come with specific smoothness properties depending on the 

problem. 0C  continuity is not permitted under any circumstances, while low 

discretization orders are excluded from a wide range of problems, where higher 

derivatives are required. 



132                                       Numerical Evaluation of Isogeometric Analysis Methodologies 

 

Comparison with Galerkin 

 

  Galerkin formulation achieves better accuracy per degree of freedom compared to 

IGA-C. Displacement errors in the 𝐿2 norm prove that isogeometric collocation will 

need much more degrees of freedom than FEA-G in order to reach a certain level of 

accuracy.  

 

 

 
 

Fig. 8.4. Displacement error in L2 norm vs. degrees of freedom  

 

 

  As far as computing time is concerned, IGA-C is expected to be faster than IGA-G, 

despite the fact it may require denser meshes in order to ensure the desired convergence. 

This conclusion mostly applies to high orders (p>3). 

 

 

 
 

Fig. 8.5. Displacement error in L2 norm vs. time  
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  Of course the conclusions concerning computational cost are based on a primary effort 

to evaluate the two methodologies, which does not take advantage of existing 

optimization algorithms and thus not the optimum efficiency is acquired. Nevertheless, 

these results offer a clue of each method’s prospects and they stimulate further 

theoretical and numerical research on stability and convergence behavior of collocation 

scheme.  

 

Future research 

 

  Isogeometric collocation seems to be really promising for engineering analysis with 

many significant potential benefits. Its major advantage is the reduced number of 

evaluation points, therefore it can dominate fields where the efficiency of the analysis 

technology is closely related to the cost of quadrature. Explicit structural dynamics is a 

perfect match for the above description, considering that the calculation of the residual 

of the force vector via stress divergence evaluation at quadrature points consumes the 

larger part of the total analysis time. A first approach to dynamic cases has already been 

achieved for one-dimensional and two-dimensional configurations. However, a 

complete mathematical analysis has not been reached yet, while much research is 

demanded for the extension to three-dimensional solids. 

 

  In addition to that, the methodology of isogeometric collocation should be adapted to 

hierarchical refinement techniques. Hierarchical building of NURBS basis functions 

proves to be of major importance for improving the performance of IGA, as it opens 

the door to local refinement of NURBS parameterizations. Unfortunately, collocation 

as described in the present study fails to serve the needs of a hierarchical basis. Greville 

points of different levels may be coincident and in this case linear independence is 

unavoidable. For this reason the option of a weighted collocation scheme should be 

explored. A scheme like that suggests that the evaluation of the PDE takes place at 

several collocation points and then a weighted average of their contributions is used. 

This treatment will not impact the privilege of a minimum number of point evaluations, 

since it will be restricted to the transition regions. 

 

  Finally, IGA-C is expected to have a great performance in parallel implementations, 

considering that it does not involve the procedure of assembly. During this procedure 

rows of the element stiffness matrices are sent to the processor of the global array and 

complications are possible to arise. Probably, IGA-C subjected to parallelization 

techniques will be able to reach even greater performance as far as computation cost is 

concerned, while it will offer advantages for minimizing memory storage and access. 
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