o)

<>

TANE

7

o>

ok
g

oL

ah
3) A
e
7 NPOMHOEVS .
Y
N
-lj'!l !!Pq’oro

{n,

EOQviko Metoofio [Todvteyveio

>xoAn HiektpoAdywv Mnyoavikdv
Kot Mnyavikadyv YmoAoylotov

Topéag Texvoroyliog ITAnpoopikng kot
YmoAoylotov

Yxedrxopog kat Yhomoinon evog Popntod Mnyaviopod
Yvuyxpoviopot Apyxeiwv oe [lepifpdAlov AoOnkevtikod

Népoug

AIITAQMATIKH EPTAYIA

BAXYIAEIOY 'EPAKAPHX

EmipArénwv : Nektdprog Koldpng

Kabnyntig E.M.IL.

ABNva, ZemtépPprog 2015

» EOQviko Metoofio [Todvteyveio

>xoAn HiektpoAdywv Mnyoavikdv
Kot Mnyavikadyv YmoAoylotov

Topéag Texvoroyliog ITAnpoopikng kot
YmoAoylotov

W

. j,f
=
Db
7 npomp
X :
nvp$opo

S22
OEVS .
Bl

&

Yxedrxopog kat Yhomoinon evog Popntod Mnyaviopod
Yvuyxpoviopov Apxeiwv og IlepifadAdov AtoOnkevtikod
Négoug

AIIIAQMATIKH EPTAXIA

BAXYIAEIOY 'EPAKAPHX

Emiprénwv : Nektdprog Kolvpng
Kabnyntng E.M.IL.

EyxpiOnke od v tpipein e€etaotikn emttpornn tnv 2n Zemtepfpiov 2015.

Nextéprog Kolopng NuwoAaog Iamacmdpov Tewpylog I'kodpog
KaOnyntg E.M.IL Av. Kabnynrig E.M.IL Aéxtopag E.MIL

ABNva, ZemtépPprog 2015

Baoihelog I'epaxdpng
Authwpatovyog HAektpoddyog Mnyovikog kot Mnyoavikog Yrnoroyiotov E.MIL

Copyright © Baoilelog I'epakdpng, 2015.
Me empOAa€n mavtog Sikoumdpartog. All rights reserved.

AmayopeveTon 1) avtiypogr], amobrjkevor koL SLavopr Tng mapovcas epyaciog, €€ oAoKANpoU 1
TUAHOTOG QUTAG, Yo epmopLkd okomd. Emtpénetan 1) avatdnwon, amobrkevon kat Stovopr] yio
OKOTO U1 KeEPOOOKOTLKO, EKTTALOEVTIKNG 1] EPELVNTIKNG POOTG, LTS TNV TPoLTTOOEST) Vo avoupépeTon
1 mtnyn mpoélevong kat va dwatnpeital To mapdv privopa. Epotripate mov agopodv tn xprion g
epyooiag yla kepdookomikd GKOMTO TPETeL Vo orteLOOVOVTAL TTPOG TOV GLYYPOPEX.

Ot amdPelg Ko Tor GUUTTEPAGHATA TTOL TEPLEXOVTOL GE QLUTO TO £YYPOPO eKPPElOLY TOV GLYYPAPEX
Ko dev mpémel va epunvevbel 6TL avtimpoowtebovy Tig enionpeg Béoelg Tov EOvikod Metodfiov
IoAvteyveiov.

epiAnyn

H avEnpévn ypron twv Ewcovikov Mnyovov otig Sibpopeg vrnpeoieg vépoug odrjynoe ot on-
povpyio evog peydhov aplBpod apyeimv elkOVOY KoL GTLYHLOTOTTOV ELKOVIKOV pxovov. TevvrOnke
ETOL 1) avayKn Yo évor c€LOTLETO Kol atodoTIKO TPOTTO GUYXPOVIGHOD TV APYELOV LTV PeTaED
SLoLPOPETIKAOV LTTOAOYLETOV. YTLAPYOLVY 181 AOYLGHLKA TTOV LAOTTOLOVY GUYYPOVIGHO ap)ELwV, dAAL
Kovéva dev eivon QTioypévo etdikd yU avtd to okomd. Meletdvrtag ko katovoovtag to iaitepa
XOPOAKTNPLOTLKA QVTAG TNG HOPYPTG apyelwv, dNAadr) To Yeyovog mtwg eival peydha oe péyebog kot
€xouv TOAAX KOV dedopéva petaEd Toug, pag emitpénel va PeAtioTomolcoue tn didikacio cuy-
XPOVLGHOV TOVG.

O o1d)0g avThg NG SIMAWUATIKNG epyasiog eival va tapovoidoel T oxediaon piog PLpAto-
Onkng otn yAdooo Python, yia To cuyxpoviopd pHeyOAwV OLOLOHOPP®OV CLPXELWDV [E XPTOT) LTT)-
PECLOV aoBnKeLTLKOL VEPOLG. MeAeTyte TIC LTLAPYOVOEG LAOTIOLNGELS YLt GLYYPOVIGHO apxeiwy,
KOTOVOOUE TIG OYEDLUGTLKEG ETMLAOYEG TTLOW OITO LT KOLL TOL ETTEKTELVOVE TLEPAULTEPW, € VEES PeA-
Tiotornotfoels. Ilpoteivoupe éva adyoplBpo cuyxpoviopot ov aviyvedel ko xelpileTon evnpepo-
oelg oe apyeia amodotikd ko aLomiota. Ilpoteivoupe emiong T XprioT aAQULPETIKOV KAXGEWV Y
TNV AVOITOPAGTACT) TOV OPXELWV, TOV TOTKOV KATUAOYWV opXeiV KAl TV TTPOYPAPHATIOTIKOV
Stemapdv epappoy®v (API) tov vinpeoidv amobnkevticod vépoug. Ta API mov exkBétovv oL ma-
POTTAV® OPULPETLKEG KAQGELG emLTpémoLY peyadbtepr evelEia otn PipAiodnn, divovtdag tou 1
SuvaToTNTA VO AELTOVPYNGEL TTAVLD G SLOPOPETLKA AELTOLPYLIKG GLGTARATA KoL LT PeTieg amobn-
KELTLKOV VEPOUG,.

Metd v mopovsiact tng apxiknig oxedioong, mpoteivovpe kot vAomototpe Sidpopeg PeAti-
OTOTOLOELG TTOU PEATLOVOLY TTEPALTEPW TNV AITO0OT) TG SLadLKAGLAG GLYYPOVIOHOD KOl TTPOLYLOL-
TOTOLOVILE GUYKPLTIKEG KELOAOYTGELG MOTE VoL LETPTIOOVE TV ENTOPAOT) TOVG GTO XPOVO EKTEAEDTC.
H xprion vipétwv yio Tnv Tevtd)pov AmoGToAN OLTHHATWY GTOV TOHXKPUGHEVO eEVTNPETNTY
pewdveL v emtidpoon g kabuotépnong Tov SikTOOoL, EVEH 1) XPHOT) HNYXOVIGHOV TapakolovOnong
TOU KTaAOYoL apxeimv (01wg To inotify) éxeL wg amotéheopa TNV Toryelo koL amrodotiky aviyvevon
TV TpoTTOTOLNUEVRVY apyeiwv. Eotidlovtag meplocdtepo 6T0 GeVAPLO XProTG TV HEYGAWY OpoLO-
HopPwv apyelwv, TpoTeivovpe TNV TomikT] aofrkevon twv block Twv apyeiwv, ®ote va petagop-
TAOVOVTOL PHOVO T KOPHATLX IOV SLapépouvv outd tov e€umnpetn Ty, Kati mov tpocpépet afloonpei-
T PeATIOOT) GTO XPOVO PETAPOPTWOTNG TOV apYElwV. TENOG, TPOKELPEVOL VO AVTLHETWITIGOVE TIG
ovayKkeg emTAéov amofnKevTLKOD XMPOUL TTOVL eLoyoye 1) Tedevtaio feATioTOMOLNOT), TPOTELVOLLE
N Xprion evog unxoviopod cuoThipatog apxeiwv ot meptpdirov xpriotn (FUSE) mov Ba emitpémel
NV ewkovikr dnptovpyia ko tpocPact oto apyeio, eved kdbe povadikd block apyeiov Bo amdOn-
KeveToL Pl Popa, KaL ag elval KOLVOXPTOTO ATTO TEPLOCOTEP OPYELDL.

o Tedevtaio PéPN TNG STAWHATIKNG EPYOCLAG, GCUYKPLVOUHE T TPOTELVOHEVX OTOLYELOL KOl
v artddoot] tng PLPALodnKNg pe avtd StodpwV SHOPIADVY AOYLOHLKOV KXL TTOUKETWV CUYYPOVL-
OHOV apyelwV KoL £TTELTO KPLVOUPE TNV KOTOAANAOTNTH TOL KOBEVOG YioL TO GEVAPLO XPTIOTIG TTOV
neprypaonke. Ipoteivovpe pepikég emmAéov PeAtioTomotoelg ot dadikacio GUYPOVIGHOD, oL
oroieg éxovv poypoppatioTel yior To pEAAOV, ALK dev éxouv okOpn vAoToinOel.

AéEerg kAerdri

Amobnkevtikd Négog, Ynnpeoieg Népoug, Ewkovikég Mnyavég, Zuyxpoviopog apyeiowv, Meydia
Opowopopypa Apyeia, Ipoypappatioticég Atemopég Epappoyov

Abstract

The increased use of Virtual Machines in cloud service infrastructures has resulted in a large volume
of disk image and snapshot files. As a result, a reliable and efficient way of synchronising those
files between different computers is needed. Software applications that achieve file synchronisation
already exist, but none is tailored specifically for this task. Understanding the special characteristics
of the files in question, the fact that they are large in size and have most of their data in commmon,
allows us optimise the synchronisation process for that use case.

The aim of this dissertation is to present the design of a synchronisation framework for large
similar files, using cloud storage services, written in Python. We study existing implementations of
file syncing, understand the underlying design choices and make further improvements on them.
We propose a synchronisation algorithm that reliably and efficiently detects and handles updates.
We also propose the use of abstract classes to represent files, local directories and cloud storage
service APIs. The APIs exposed by those classes allow more flexibility to the framework, so it can
operate over different OSs and cloud storage services.

After the presentation of the initial design, we propose and implement several optimisations
that further improve the performance of the synchronisation process and benchmark their effects
on the execution time. The use of threads to concurrently request resources from a remote server
reduces the effect of network latency and the use of directory monitoring mechanisms (such as
inotify) results in fast and efficient discovery of modified files. Further focusing on the use case of
large, similar files, we propose local storage of the files’ blocks so only the parts that differ can be
downloaded from the server, which boasts a significant improvement in download times. Finally, in
order to alleviate the storage space needs that the last improvement introduces, we propose the use
of a Filesystem in Userspace (FUSE) mechanism to virtually create and access files, while storing
each shared block only once.

In the final parts of this dissertation, we compare the proposed features and performance with
that of several synchronisation software and packages and discuss their suitability for the use case
described. We also propose further improvements in the synchronisation process that have been

planned but not yet thoroughly designed and implemented.

Key words

Cloud storage, Cloud services, Virtual Machines, File synchronisation, Large Similar Files, Applica-

tion Programming Interfaces

Evxaprotieg

H napodoa dimAwpatikn epyacio onpoaivel Tnv oAOKApwoT) VOG GTHAVTIKOD KEPAAXLOL TNG ok
dnpoiknc pov mopeiag. Oo el 6TO ONELO AVTO VL ELYOPLOTHOW OPLOPEVOLS VBPHOITOVS TTOL e
BorBnooav otn dtadpopr) awr.

Apxkd Ba §Beda va evyoplotiow tov kabnynty pov Nektapro Kolopn, mov pov emétpee va
aoxoAn0w® pe éva oOyypovo Bépa mov mapovotdlel Wiaitepo mpaktikd evdiapépov. Opeidw emiong
éva peyddo evxoploted oto Apa Bayyédn Kovkn, yia tnv opodr] pog cuvepyaoio, Tnv emLGTNHOVIKT]
koBodnynon xat tnv evB&ppuvor) mov pov mpocépepe KATA T1 SLAPKELX TNG SUTAWIKTIKAG epya-
olog, OTwg emiong Ko yior To YeYovog Twg pe TIG SLahéEeLg TOV evioxVoe GTHOVTIKE TO eVOLPEPOV
MOV € QUTO TOV TOHEQL.

Oa Nela emioNg VO EVXAPLOTIOW TOVG CUHPOLTNTEG, GUVEPYATES KoL PIAOVLS TTOL OHOPPLVOLY
ONHaVTLKA Ta XpoVIX TG poitnot|g pov, EAévn, Tpnyopn, Opéotn A., Awovidor, AAéEavdpo, Etépyto,
Yoopia, Opéotn B., Anuitpn, Niko, ©dieia, Mavddn, Avdia kow Eiprivr) 6mteg ko toug @ilovg pov
Topyo, Edeva, MwAiva, Zmopo, Niko kot Tiva ko pkeTodg akOpn mov i6wg quTr] T OTLYHT Vo
pov dtoupedyouv.

Télog, B NOedar va evyaploTrow Tovg Yoveic pov, AAEEavdpo kot Xapd, kot Tov adeppo pov,

Ytahpo, yla T ouveXT] LITOGTHPLEN KOL CUPTOPAGTOGT] TTOV POV TTPOCEPEPOLY EOG TOPAL.
Baoiletog T'epakdpng,

Abnva, 2n ZemtepPpiov 2015

H epyacio avtr eivor entiong dtabéoipn wg Texvikr Avagpopd DT2015-0248, EOvikd MetodPro ITodvteyveio,
Sxohr} Hiektpohoywv Mnyavikev ko Mnyavikodv Yroioyiotov, Topéag Texvoroyiag ITAnpogopikng Ko
Yrnoloyiotdv, Epyactipio Yroloylotikev Svotnpudtov, Sentépfprog 2015.

Contents

IIepiANYm o o e e e e e
Abstract e e e e e e
EuoXoaplotieg o . L e e e e e
Contents e e e e e
Listof Tables e e e
Listof Figures e
1. Ewoaymyn o e
1.1 KIvNTpo . . oo e
1.2 ZUVEIGQOPA TNG EPYOOLOG « v v v v e v e e e e e e e e e e e e e e e e e

1.3 OPYOVOOT KELHEVOD « v v v v v v v v e

1. Introduction e e e e
1.1 Motivation e e e e e e e e
1.2 Thesis contribution e
1.3 Chapteroutline e

2. Background
2.1 Data Synchronisation e
2.2 FileHosting Service e
221 Dropbox

222 GoogleDrive e

223 ownCloud e

2.3 Cloud Computing and Storage Services
2.3.1 Application Programming Interface

232 OpenStack L

233 Synnefo

2.3.4 Amazon Web Services

24 ETag e
241 Hashfunction e e

2.5 Database

11

13

15

17
17
18
18

21
21
22
22

23
23
23
23
24
24
24
24
25
25
25
26
26
27

11

25.1 Relationaldatabase L L L L o

2.5.2 Transactional database L ...

253 Structured Query Language L L

254 SQLite

3. Design & Implementationo Lo oo
3.1 Syncing Algorithm L L
3.1.1 Knownalgorithms

3.1.2 Proposed Algorithm

3.2 BasicClasses /AP e
3.21 FileStat.

322 StateDB

3.23 LocalDirectory

324 CloudClient e

325 SYNCEI L e e e e e

4. Syncer Optimisationso Lo
41 Requestqueuing
411 Benchmarks L

4.2 Directory monitoring e e
421 Benchmarks

43 Localblockstorage e
431 Benchmarks

44 Local deduplication-FUSE

5. Comparisons with existing software oL,
5.1 ISYNC . . v vt o e e e e e e e

52 ownCloud

53 Dropboxo e

54 GoogleDrive

6. Future Work
6.1 Local deduplication - FUSE Implementation

6.2 Peer-to-peer syncing with direct L2 frame exchange
Bibliography

12

29
29
29
30
33
33
34
35
36
37

39
39
39
40
41
43
44
45

47
47
48
48
49

51
51
51

53

List of Tables

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

Syncing actions based onfilestates L o Lo L. 30
File change detection between two pointsintime 30
Benchmark setups specs L e 39
Upload speedup by queuing, relative to # of threads 40
Upload speedup by using queue with 4 threads, relative to file size 40
MBP local directory get_modified_objects_fstat() times, relative to # of files modified 42

VM local directory get_modified_objects_fstat() times, relative to # of files modified 42
MBP file download times, relative to # of modified blocks 44

13

List of Figures

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

Decision tree for local directory files. oL, 31
Decision tree for StateDBentries Lo Lo L 32
Decision tree for remote serverfiles L o Lo L. 32
FileStat UML class description i 33
StateDB 34
LocalDirectory UML class description 35
CloudClient - PithosClient UML class description 36
Syncer UML class description Lo o . 37
WatchdogDirectory e 41
MPB Speedup relative to number of modified files 42
VM Speedup relative to number of modifiedfileso L. 43
CloudClient with local block storage feature 44
MBP file download times, relative to # of modified blocks 45

15

Chapter 1

Elcaymyn

Ye autr)) SutAwpartikn epyocic, mopovotdletot éva cross-platform framework tov oyedidotnie
OoTe va Aettovpyel e SlpopeTikég LINPecieg AoONKeVTIKOD VEPOLG. ZuLNTANE TIG AAYOPLOpLKEG
KoL oXedlooTikég emloyég mov AdPaype katd tnv avamtuén tov framework ko ectidlovpe oo
OEVAPLO TOL GUYXPOVIOHOD HEYAAWY OUOLOHOPP®V apxeiwv, OT®G eival To GTLYHLOTUTTO KAl TOL

apyxeio elkovag exovikdv unyavev (Virtual Machines - VM).

1.1 Kivntpo

O ovyxpoviopdg apyeinv eivor pia Sitadikaoic mov eEacporilel Ttwg Tao apyeia oe 00 1) TEPLOGOTEPES
tomobeoieg evnuepovovTon yioo aAdayés, akorovddvtag kémotovg kavoveg. H diadwkaoio avth
XPNOLHOTOLELTOL OAOEVXL KOl GUYVOTEPQ, KUPLWG YLt TNV AVTLYPOPT] apxeiwV PETAED SLOUPOPETIKGOV
UVTOAOYLOTOV 1] yio T Snpovpyeio vty pdpwv acpaieiog (backups). To tpofAnpa tov a€LdmoTov
(xwplc opdipata), arodotikov kat cross-platform (Aertovpyel oe doepopeTicd AeLTOVPYLKE GLOTHHATAL)
OULYXPOVIOROD ap)EiwV evémvevoe TN dnpovpyia peydAov e0pPOVG EPAPHOYDV TOV LKAVOTTOLOVV TNV
avaykn owTh, 0mwg eivat To Dropbox kot to ownCloud. To e0pog avtd Twv eQappoydV ekTeiveTon
amtd ePappoYEG CLYXPOVIOROD YEVIKOD GKOTTOV, DG KOl EPAPHOYEG TTOL 6 TLALOLY GE TTOAD CUYKEKPLUEVO
pop@dTLTTO Ap)ElWV 1) cevapla Xpriong. Qotdcoo, amd 660 yvwpilovpe, dev LITAPYEL EQOPUOYN T
BPALoBn K TTOU VO ELOLKEVETAL GTO GLYXPOVIOUO HEYKRAWY OHOLOHO PPV aLpXELWV, OTTOG TOL GTLYILOTUITAL
KoL T apyela etcovag VM.

To tedevtaio xpovia, 1 XPrioT) TOV ELKOVIKOV pYovev éxel emektabdel onpovtikd. To yeyovog
avTo opeileTon ev pépel ot SLAd0GT) LTINPEGLOV LITOAOYLGTIKOD VEPOULS, OTtwG To AWS Tng Amazon
kot to ~okeanos Tov GRNet. To 710 Pooicd HOVTENO TTaApOXHG LTINPEGLOY VEPOUS, TO YTTOSOpN-WG-
Ynnpeoia (Infrastructure-as-a-Service, IaaS) mopéyel 6ToUG X pr)oTEG ELKOVIKES HITXOVES KOL VTTOAOYLOTLKOUG
TOPOLS, GTOVG OTTOLOVG HITOPODY AUTOL Vo EKTEAEGOVV TOVG LITOAOYLGHOVG TOUG 1] vau aevatOEouv
T1g Sikég TOUG ePappoyEG kal vrnpecieg. O oAoéva avEavopevog aplBpOg ELKOVIKOV HITXOVOV TOU
XPNOoTOLODVTAL, OTIWG ETTLGTG Kot 1) TANODPA TV OTIYHOTOTT®WV 1oL dtatnpoivtot (arodrjkevon
NG KATAGTOOT HLOG ELKOVIKAG Pnyavig pia dedopévr) xpovikn otiypr]) kabiotodv avaykoaic tnv
e€evpeot) evog afLlOTLETOL KAl AT0dOTLKOD TPOTTOL GLYYPOVIGHOD.

O ovyxpoviopdg apyeinv amotedeital ord TOAAEG TEPLOGOTEPEG CLVIGTOOEG OITO ALTTAT] HETOPOPA
apxelwv oo Kot Tpog Eva aopakpucévo eEumnpetntr). H 0moapEn ToAAGV TeEAXTOV-TEPUATIKOV
onpaivel Twg 1 dtadikacio o pémel va katapépel va cuyxpovicel OAOLG HETOED TOVGS, AVLYVEDOVTAG
Ko petapépovrog Tig adhayég oe 6hovg. To yeyovdg mwg moAdol meddteg pmopel va emLyelpoov

oAhayéc oto dto apyelo dnpovpyel kataotdoelg kovpoag (race conditions), kot 1 e@appoyr Bo

17

TIPETIEL VAL UTTOPEL VAL TLG aevLYVEDEL KL var TLG eLADEL aELOTLIoTO, XWplg va mpokaAeital dioupBopd
TV JeSOpHEVOV 1] ATl TV dAAXYDdV. Ol KATAAOYOL PAKEAWDV TTPOG GLYYPOVIOUO MITOpEL Vi
gpmepLExouy pHeydho aplBpd apyeiwv, omdTe eival amopaitnth 1) LAOTOINGT) EVOG PNYOVIGHOD Tary D
EVTOTILOHOV 0AAY®V o€ kKaolo apyelo. EmmpooBétwg, kata t diadikacio cvyypoviopot apyeiwv
elvat laitepa onpavticd va yiveton ammodotikd 1) petakivior dedopévwv 6to dikTuo, KT TPoTipnon
HETOUPEPOVTAG HOVO T KOPHATIX TWV apxelwv mov egumepléyovv Tig adlayéc. H onpacio avtod
YLVETOU TTEPLEGOTEPO EPPAVIG OV LVALAOYLG TOVHE TO GEVAPLO X PT)OTIG TTOV TEPLY PAPTKE TTPOTYOUHEVG:
pioc addoyn Alywv bytes va mpokadécel petopopa pepik®dv GB amotedel pn awodektn cupmepupopi
and dmoym amddoong.

Mepiég amd tig Srobéoijeg epoppoyEéG LAOTOLODV KATTOLO OO TO TTALPOTTAV® XALPOLKTIPLOTLKA
Kot emutAéov elodyovy PedtioTomolnoelg dukol Toug oxedGpOD. AV LTTAPYEL EOG TOPA YVOOTH
EPOPIOYT] OLVOLYTOD KOSLKX TTOV VOl ENMLTPETEL TO GUYXPOVIGHO e XPTIOT) SLOPOPETIKGDV VITNPEGLOV
arofnkevtikod vépoug. To framework mov oyxedidotnke pmopel vo Aettovpyrioel pe n diemogn
TPOYPAPHATIOHOV epappoy®dV (Application Programming Interface, API) oowcdnmote vinpesiog
amodnkevtikod vépoug, apkel var vAomonBovv oL péBodot mov TEPLYPAPOVTAL OTNV TOPAYPOPO
3.2.4. TIpoteivoupe emiong tn xprion tomikrng amoemikaAvyng dedopévwv (data deduplication) pe
xpromn evog pnxaviopot Svotrpatog Apyeiwv oe Xdpo Xpriotn (Filesystem in Userspace, FUSE). H
TEXVIKT] QUTH EMLTPETEL TNV TTOAD 00d0TLKT toOKEVOT) HEYGRAWY OHOLOHO PPV CLPXELWV, HELOVOVTAG
ONHOVTIKA TNV avayKT otofnkevuTikod xhpov, oot amobniedovtor povo ta diapopetikd block
mov astaptiCouv ta apyeia. H PeAtiotonoinon awth, dev amavtator oe kavéva amd to Stabéoipo

AOYLOHIKG GUYXPOVIGHOD apxelmv.

1.2 Xvvewocpopd Tng epyccicg
OL x0pLeg GLVELGPOPEG TNG EPYOLTLAG ELVAL OL TTUPOKAT:

1. Zxediaopdg xatl vAomoinon evdg cross-platform framework mov pmopei va Aertovpyei pia

droupopetikég vmnpecieg amobnkevTikoL vépoug.

2. Zxedaopog Kot LAOTTOINGT) EVOG TTPOYPAUHUATOG-TTEANTT) YLOL TO GLYXPOVIGHO ap)eiwv pe xprion
tov API g vnpeciag oumobnkevtikod vépoug Pithos tov ~okeanos IaaS kaBdg ko picg

SOKIPOOGTIKAG EPaPHOYNG TTOL Bl TPOYHATOTOLEL TO GLYYPOVIGHO.

3. Zxedioopog ko vAomoinom fedticTonotoewy IOV oTr Stadikacio cuYXpoVIGHOD Kol EKTEAEDT)

petprioewv enidoong (benchmarks) yix v pavel 1 cuvelspopd twv PeAtiotonoioewy.

4. J0OYKpLOT) HE VTTAPYOVTO AOYLOHLKY GUYXPOVIOHOD apXeiwV KoL TOPOLGINGT) OHOLOTHTMV Kot

dLoupopwV oTIG oYESUGTLKEG ETLAOYEG KOL OTO YOLPOLK T PLOTLKA.

1.3 Opyavwon keipévou

3to ke@dAouwo 2, mapovoidlovpe to Bewpntikd vOPabpo mov Bewpeital amapaitnTo yio Tov
QVOLYVOGTI), TTPOKELPEVOL VO KATAVOT|OEL €VVOLEG KOl OPLOHODG OV TOPOLGLALOVTAL ETELTX GTN)

duthopatikn epyacio. ITio cvykekpipéva, meprypaPoupe TNV £VvoLo TOL GUYYPOVIGHOD dedopévmv,

18

Suapopeg dradiktvakés vINpecieg KoL AOYLOHKA TOU AVTIHETOITILOVY TO TPOPANHA aLTO, KOOGS
KO(L GUYKEKPLUEVEG KOLPLEG AETITOPEPELEG TV DAOTIOLIGEWV

370 KEQPAAOLO 3, OVOPEPOUE TOVG YVWOTOUG AAYOopiBpovg GLYXPOVIGHOV ap)EiwVY, TPOTEiVOLpLE
70 SO pag adyoplBuo kot e€nyolpe Tovg AOYoUg oL 03N YNCAV G GUYKEKPLUEVEG OYEDLUOTLKEG
eMAOYEG. 270 de0TEPO GO TOVL KEPAAALOL TAPOLGLALOLE TO KUPLAL OTpeElot KOl TIG KAAGELS TOV
framework, ko eme€nyotpe Tig cvvaptioelg mov ekBétel To API Tov.

310 kepdhoto 4, meplyplpouvpe T PeATIOTOTOGELS OV OYESLATTNKAY Kot LAoToOnko
oto framework avto, eEnyovrtag Tig oxediaoTikég emhoyég Tng k&Be piog. Xto kedAalo avTd
EPTTEPLEXOVTOL KOLL T CLTTOTEAECHATH TWV PETPTOEWV €TLOOONC, TA 0ol GLVOSEVOVTAL KL oTTd
TIG LVTIOTOLYEG YPOAPLKES TTAPACTACELS KXL CXOALAOHO TV ATOTEAEGHATWV.

310 kepahalo 5, cuykpivoupe To framework pog e Tig SNHOPIAEGTEPEG EQUPHOYES GUYXPOVIGHOD
apxelwv tng ayopds. Zuykpivoupe peta€l Toug pe Baon To StatBéo o Xapok T PLOTLKE TTOL TTPOGPEPOVTOL
KO AVOUPEPOPAOTE OTNV KATOAANAOTN T Kl 6To TV TpofApata Tov Hiropody va tpokvjou
OTO GEVAPLO XPNOTIG TV HEYRAW®Y OHOLOHOPP®Y OpXEimV.

3T0 KEQAAALO 6, AVAPEPOUAGTE GTIG TPOYPOPUATIOPEVES HEANOVTIKEG PEATIOTOTOLGELS TOV
framework ko Tpoteivoupe Ty Tpoc Ok emUTAEOV XaPoK TNPLOTLKOV TTOL Bt TPOGPEPOLY KAAVTEPT

anddoor o1n SadLkacicr GUYYXPOVIGHOD.

19

Chapter 1

Introduction

This dissertation presents a cross-platform file synchronisation framework that works with mul-
tiple cloud storage services. We discuss the algorithm and design choices behind the framework and
focus on the synchronisation of large, similar files, such as Virtual Machine (VM) images and snap-

shots.

1.1 Motivation

File synchronisation is a process that ensures that files in two or more different locations remain
updated, following certain rules. This process is becoming increasingly common and can be used to
copy files between different computers or for backup purposes. The problem of reliable (less error-
prone), efficient and cross-platform file synchronisation is important and has led to the development
of a large variety of software to cover that need, such as Dropbox and ownCloud. This software
variety ranges from general-purpose synchronisation software to software focusing on very specific
use cases. Despite this fact, to the best of my knowledge, there is no software or library specialising
in the synchronisation of large, similar files, such as VM images and snapshots.

The last few years, the use of VMs has significantly increased, assisted by the spread of cloud
computing services such as AWS from Amazon or ~okeanos from GRNet. The most basic cloud-
service model, Infrastructure-as-a-Service (IaaS) provides users with VMs and resources to use for
their computations or to deploy their own services. With the ever-growing number of VM images
used, as well as the various VM snapshots taken (that store the state of a VM at a specific point in
time), the need for efficient and reliable synchronisation becomes apparent.

File syncing consists of much more than simply transfering files to and from a remote server.
Since there are possibly many clients, the process tries to reconcile directories in multiple different
computers, detecting and propagating changes to everyone. Multiple clients accessing the same re-
source lead to race conditions, and the software should be able to detect them and reliably resolve
those cases, without corrupting data or losing changes. The directories to be synchronised can poten-
tially contain a large number of files, so there a mechanism to quickly identify those changes needs
to be implemented. Furthermore, care should be taken to optimimise the amount of data moved over
the network, transferring only the necessary parts of files to apply the changes. This is especially
important for the use case described; a modification of a few bytes causing a transfer of several GB
of data is a behaviour that has unacceptable performance.

Some of the available software implement a number of the aforementioned features, introduc-

ing other optimisations of their own design. So far though, there is no known application that is

21

free/open source and able to manage the synchronisation with different object storage services.
Our framework’s API enables extensibility to work with any cloud storage AP, as long as the few
methods described in section 3.2.4 are implemented. Furthermore, we propose a local deduplication
feature that allows for very efficient storage of large similar files, using a FUSE mechanism. This fea-
ture reduces the size required for storage to the size of different blocks found in all the files, greatly
reducing storage space in the use case of VM snapshots and images, and is not present in any of the

currently available software.

1.2 Thesis contribution

The main contributions of this work are the following:

1. Design and implementation of an cross-platform synchronisation framework that is able to

operate with different cloud storage services.

2. Design and implementation of a syncing client for the Pithos object storage service of the

~okeanos laaS and a demo application to perform the synchronisation.

3. Design and implementation of various optimisations on the synchronisation process and exe-

cution of benchmarks to showcase their performance gains.

4. Comparison with existing synchronisation software, hilighting design and feature similarities

and differences.

1.3 Chapter outline

In chapter 2, we present the theoretical background which is considered important for a reader
to know, in order to comprehend the concepts and terminologies introduced later in the dissertation.
More specifially, we present the concept of data synchronisation, various web services and software
that are aimed at this problem as well as some implementation intrinsic details.

In chapter 3, we discuss the known synchronisation algorithms, propose our own and describe
the reasoning behind our design decisions. In the second part of the chapter, the core classes of the
implementation are presented, with explanation on the API functions exposed by the framework.

In chapter 4, we describe the optimisations designed and implemented in this framework, ex-
plaining the design choices for each one. We also include the results of benchmark runs, and accom-
pany them with graphical representations and comments.

In chapter 5, we compare our synchronisation framework with existing popular synchronisation
software. We compare and contrast the features offered between them and discuss the suitability and
expected problems for the use case of large similar files.

In chapter 6, we list planned improvements to the framework and propose additional features

that will offer performance gains to the synchronisation process.

22

Chapter 2

Background

2.1 Data Synchronisation

Data synchronisation is the process of establishing consistency among data from a source to
a target data storage and vice versa and the continuous harmonisation of the data over time. The
problem that the framework we developed tries to solve, is file synchronisation.

File Synchronisation (or syncing) is the process of ensuring that files in two or more locations
are updated by certain rules. In one-way file synchronisation, also called mirroring, updated files are
copied from a ‘source’ location to one or more ‘target’ locations, but no files are copied back to the
source location. In two-way file synchronisation, updated files are copied in both directions, usually
with the purpose of keeping the two locations identical to each other

The most common way that file synchronisation is achieved nowadays is by using a file hosting

service.

2.2 File Hosting Service

A file hosting service[1] or cloud storage service, is an Internet hosting service specifically de-
signed to host user files. It allows users to upload files that could then be accessed over the internet
from a different computer, tablet, smart phone or other networked device, by the same user or pos-
sibly by other users, after a password or other authentication is provided. File hosting services often
offer file sync and sharing services, most notable consumer products being Dropbox and Google

Drive.

2.2.1 Dropbox

Dropbox offers cloud storage, file synchronisation, personal cloud, and client software. Drop-
box synchronises a directory so that it appears to be the same (with the same contents) regardless
of which computer is used to view it. Files placed in this folder are also accessible via the Dropbox
website. Dropbox is multi-platform, and is working on all major desktop and mobile OS. Originally,
both the server and client software were primarily written in Python; since 2013 Dropbox has began
migrating its backend infrastructure to Go. Dropbox depends on rsync, ships the librsync binary-
delta library (which is written in C) and utilises delta encoding technology. When a file in a user’s
Dropbox folder is changed, Dropbox only uploads the pieces of the file that are changed when syn-

chronising, when possible. It currently uses Amazon’s S3 storage system to store the files. Dropbox

23

also provides a technology called LAN sync, which allows computers on a local area network to se-
curely download files locally from each other instead of always hitting the central servers, improving

syncing speed.

2.2.2 Google Drive

Google Drive is a file storage and synchronisation service created by Google. The Google Drive
client communicates with Google Drive to cause updates on one side to be propagated to the other
so they both normally contain the same data. Google Drive is also multi-platform, though there is no
official Linux client software. The implementation and syncing algorithm underlying Google Drive

are mostly unknown, due to the software being closed source.

2.2.3 ownCloud

ownCloud[2] is a suite of client-server software for creating file hosting services and using them.
ownCloud allows synchronisation of directories, similar to the way Dropbox operates. It is a free
and open-source software and is multi-platform, with clients available for all major desktop and
mobile OS. The server software is written in PHP and JavaScript languages. ownCloud’s desktop
syncing client depends and ships with csync[3], which is a lightweight utility to synchronise files
between two directories on a system or between multiple systems. The software does not currently

support delta-sync (syncing only file changes).

2.3 Cloud Computing and Storage Services

The framework we designed does not use a file hosting service like the aforementioned ones,
but is designed to sync files stored in an object storage service of a cloud provider. The way to
communicate and perform actions on those services is by accessing the Application Programming

Interface they expose.

2.3.1 Application Programming Interface

Application programming interface (API) is a set of routines, protocols, and tools for building
software applications. An API expresses a software component in terms of its operations, inputs,
outputs, and underlying types. An API defines functionalities that are independent of their respec-
tive implementations, which allows definitions and implementations to vary without compromising
the interface. APIs often come in the form of a library that includes specifications for routines, data
structures, object classes, and variables. In other cases, such as REST services, an API is simply a

specification of remote calls exposed to the API consumers.

Representational state transfer

Representational State Transfer (REST) is a software architecture style for building scalable web
services[4] REST gives a coordinated set of constraints to the design of components in a distributed
hypermedia system that can lead to a more performant and maintainable architecture[5]. RESTful

systems typically, but not always, communicate over the Hypertext Transfer Protocol with the same

24

HTTP verbs (GET, POST, PUT, DELETE, etc.) which web browsers use to retrieve web pages and to

send data to remote servers.

2.3.2 OpenStack

OpenStack[6] is a free and open source cloud operating system that controls large pools of
compute, storage, and networking resources throughout a data centre. Users can manage those
resources through a web-based dashboard, command-line tools, or a RESTful APL It is primarily
being deployed as an infrastructure-as-a-service (IaaS). OpenStack offers support for both Object
Storage and Block Storage.Object Storage is ideal for cost effective, scale-out storage. It provides a
fully distributed, API-accessible storage platform that can be integrated directly into applications
or used for backup, archiving and data retention. Block Storage allows block devices to be exposed
and connected to compute instances for expanded storage, better performance and integration with

enterprise storage platforms.

Object Storage - Swift

OpenStack Object Storage (Swift) is a scalable redundant storage system. Objects and files are
written to multiple disk drives spread throughout servers in the data centre, with the OpenStack soft-
ware responsible for ensuring data replication and integrity across the cluster. Because OpenStack
uses software logic to ensure data replication and distribution across different devices, inexpensive

commodity hard drives and servers can be used.

2.3.3 Synnefo

Synnefo[7] is an open source cloud stack, which offers Compute, Network, Image, Volume and
Storage services, similar to the ones offered by OpenStack. Synnefo is written in Python and to
improve third-party compatibility, it exposes the OpenStack APIs to users[8]. It is the software used
for ~okeanos[9], an Infrastructure as a Service (IaaS) cloud service, provided by the Greek Research
and Technology Network (GRNET) for the Greek Research and Academic Community. ~okeanos
offers a virtual compute/network service called Cyclades as well as a virtual storage service, called
Pithos+.

Pithos+

Pithos+ is the Virtual Storage service of ~okeanos, featuring cloud storage as well as file synchro-
nisation and sharing services. Files stored in Pithos+ are accessible via the web UI or with the client
software, which exists for Windows, MacOS and iOS systems. Linux users can access the files using
kamaki, the command line client for ~okeanos resources. It is powered by the Pithos (File/Object

Storage) services of synnefo.

2.3.4 Amazon Web Services

Amazon Web Services (AWS) is a collection of remote computing services, also called web ser-

vices, that make up a cloud-computing platform offered by Amazon.The most central and well-

25

known of these services arguably include Amazon Elastic Compute Cloud (Amazon EC2) and Ama-

zon Simple Storage Service (Amazon S3).

Amazon S3

Amazon S3[10] (Simple Storage Service) is an online file storage web service offered by Amazon
Web Services. Amazon S3 provides storage through web services interfaces (REST, SOAP, and Bit-
Torrent). It provides developers and IT teams with secure, durable, highly-scalable object storage,
for a wide variety of use cases including cloud applications, content distribution, backup and archiv-
ing, disaster recovery, and big data analytics. Amazon S3 stores arbitrary objects up to 5 terabytes
in size, each accompanied by up to 2 kilobytes of metadata. Objects are organised into buckets (each

owned by an AWS account), and identified within each bucket by a unique, user-assigned key.

2.4 ETag

During file synchronisation, the need to uniquely refer to a specific file or resource arises often.
This is done by specifying the file’s ETag.

The ETag or Entity Tag is a string identifier assigned to a resource, usually a file or block, that
describe exactly one specific version of it. Whenever there is a change on the file, the ETag should
be changed as well. ETags can be used for optimistic concurrency control[11], which is a method
where shared data resources are being used without a transaction acquiring locks on them; before
the transaction commits, it verifies that no other transaction has modified the data, otherwise it rolls
back the changes. Hash function digests, usually using the SHA-256 algorithm, are commonly used
as ETag identifiers, since the algorithm is secure and collision resistant, in contrast to MD5 digests,

where collisions can be computed.

2.4.1 Hash function

A hash function is any function that can be used to map digital data of arbitrary size to digital
data of fixed size. The values returned by a hash function are called hash values, hash codes, hash
sums, or simply hashes. Hash functions accelerate table or database lookup by detecting duplicated
records in a large file. Good hash functions should satisfy certain properties. Firstly, the function
must be deterministic, meaning that for a given input value it must always generate the same hash
value. A good hash function should map the expected inputs as evenly as possible over its output
range - this property is called uniformity. This property minimises the chance of hash collisions
(pairs of inputs that are mapped to the same hash value). For hash functions used in data search, it is
desirable that the output of the function has fixed size, measured in bits. For our framework, we use
the SHA-256 algorithm for ETag generation and comparison and the xxhash algorithm to generate

path file digests used as (integer) primary keys in our database for more efficient indexing.

SHA-256

The Secure Hash Algorithm is a family of cryptographic hash functions published by the Na-
tional Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Stan-
dard (FIPS). SHA-2 is a family of two similar hash functions, with different block sizes, known as

26

SHA-256 and SHA-512. They differ in the word size, with SHA-256 using 32-bit words where SHA-
512 uses 64-bit words and have a hash value (digest) of 256 and 512 bits, respectively. They are
considered to be secure and collision resistant, with SHA-256 having a collision probability of about

4.3 * 1079 when digesting one billion (10°) different messages.

xxhash

xxHash[12] is a non-cryptographic hash function designed around speed by Yann Collet. It suc-
cessfully completes the SMHasher test suite which evaluates collision, dispersion and randomness
qualities of hash functions. xxHash’s digests can be returned as bytes, integers or hex numbers and

can be of 32 or 64 bit size.

2.5 Database

A database-management system (DBMS) [13] is a collection of interrelated data and a set of pro-
grams to access those data. The collection of data, is referred to as the database. For the framework,
we need a DBMS that satisfies the ACID properties, to store the downloaded files’ metadata.

2.5.1 Relational database

A relational database uses a collection of tables to represent both data and the relationships
among those data. Each table represents a relation variable, has multiple columns and each column
has a unique name. The columns define the attributes and each row is an instance of the variable.

The rows are uniquely identified by a certain attribute, called the primary key.

2.5.2 Transactional database

A transactional database is one in which all changes and queries have the ACID [14] (Atomic-
ity, Consistency, Isolation, Durability) set of properties. Those properties guarantee that database

transactions are processed reliably even in the event of a transaction interruption.

Atomicity

The atomicity property ensures that in a transaction, a series of database operations either all
occur, or nothing occurs. An atomic system must guarantee atomicity in every situation, including
power failures, errors, and crashes. To the outside world, a committed transaction appears (by its
effects on the database) to be indivisible ("atomic”), and an aborted transaction does not happen at
all.

Consistency

The consistency property ensures that any transaction will bring the database from one valid
state to another. Any data written to the database must be valid according to all defined rules,
including constraints, cascades, triggers, and any combination thereof. This does not guarantee cor-

rectness of the transaction in all ways the application programmer might have wanted (that is the

27

responsibility of application-level code) but merely that any programming errors cannot result in

the violation of any defined rules.

Isolation

The isolation property ensures that the concurrent execution of transactions results in a system
state that would be obtained if transactions were executed serially. Providing isolation is the main
goal of concurrency control. Depending on concurrency control method, the effects of an incomplete

transaction might not even be visible to another transaction.

Durability

Durability means that once a transaction has been committed, it will remain so, even in the event
of power loss, crashes, or errors. In a relational database, once a group of SQL statements execute,
the results need to be stored permanently (even if the database crashes immediately thereafter). To

defend against power loss, transactions (or their effects) must be recorded in a non-volatile memory.

2.5.3 Structured Query Language

The way to communicate with a DBMS is by issuing SQL queries and statements. Structured
Query Language (SQL) is a special-purpose programming language designed for managing data
held in a relational database management system (RDBMS). The most important elements of the
SQL language are the Statements, which may have a persistent effect on schemata and data, or may
control transactions, program flow, connections, sessions, or diagnostics and the Queries, which

retrieve data from the database, based on specific criteria.

2.54 SQLite

SQLite[15] is an open source, cross-platform RDBMS contained in a C programming library that
offers a full SQL implementation. In contrast to many other database management systems, SQLite
is not a client-server database engine. Rather, it is embedded into the end program and reads and
writes directly to ordinary disk files. SQLite is transactional and as such, ACID-compliant. SQLite

has a small code footprint and is widely used on memory and disk space constrained cases.

28

Chapter 3

Design & Implementation

3.1 Syncing Algorithm

3.1.1 Known algorithms

The process of synchronising two filesystem trees (henceforth called “A” and “B”) can be com-
plex to perform correctly, if some needed information is missing. Differences in files can be detected
by comparing their hash digests, which is often used as an ETag. While this is the most secure and
reliable way to detect changes, computing the hash digest of a file, especially when using a cryp-
tographically secure function) is a computationally expensive procedure that takes significant time
for large files. The last modification time is a fast and cheap way to detect file changes, but since it
is a property that can be manipulated by software, improper or malicious manipulation can result

in failure to detect changes.

First of all, history data for those two trees are very important, as illustrated in the following

example. There are generally three cases when synchronising two trees:
1. File exists on both and is identical
2. File exists on both and is different
3. File exists on A but not on B (or vice-versa)

Case 1 is easily handled, since there is no action to be taken. Without history information, the other
two cases would require user input in order to be handled correctly. In case 2, the files should be
merged, but cannot be done automatically - and asking regular users how to merge files is undesir-
able. In case 3, the file might be a newly created, or a recently deleted one and should be copied to
tree B or deleted from A, respectively. While the safe choice is to assume the file is new and copy it
to tree B, it is often not the right thing to do. It is therefore clear that without file history data the

syncing algorithm makes wrong assumtions and fails to handle correctly the most common cases.

With file history present in the form of metadata, a more proper synchronisation is achievable.
By checking what changes occured and when between the times 7} and 75, it is possible to deter-

mine the action that should be taken, based on table 3.1:

29

’ File replica A ‘ File replica B Action
No Change No Change No Action
Created (ETag =]) | Created (Etag =]) No Action
Created (ETag =]) | Created (Etag = K) Merge*
Deleted Deleted No Action
Deleted No Change Delete B
Modified No Change Update B
Modified (ETag = J) | Modified (ETag = K) | Merge*

Table 3.1: Syncing actions based on file states

[*] In this table, Merge refers to a situation where files A and B become identical. One way this can
be achieved is by generating diffs and patching the files, requiring user input if a conflict arises - this
is the way most Version Control Systems (VCS), like git and Mercurial, work. A different way, that
requires no immediate user interaction is to accept one file version (e.g. File A) and propagating its
changes to all other trees, while also renaming the conflicting files, so the conflicts can be manually
merged later.

For any given time, detecting what happened between the times 7 and 75, is straightforward,
and described in 3.2:

’ Time T} ‘ Time T5 ‘ Change
Does not Exist Exists Created
Exists Does not Exist Deleted
Exists (ETag =J) | Exists (Etag =]) | No Change
Exists (Etag =J) | Exists (Etag = K) | Modified

Table 3.2: File change detection between two points in time

While this algorithm is significantly better than the previous one, it still has limitations, the
most important of which is the failure to detect renames. This can become possible by comparing
file digests, but doing so for all files in a directory or for very large files is computationally expen-
sive and slows down the sync process. An even harder problem is the detection of a file that has
been renamed and modified, hence having a different hash digest than the original one, a case most

syncing algorithms fail to handle efficiently.

3.1.2 Proposed Algorithm

At this point we propose a new sychronisation algorithm, one which is efficient, fast and reliable.
We assume a service that uses a central metadata server, which maintains information about each
version of an uploaded object. We also assume the usage of a local state database, henceforth called
StateDB, which locally stores the metadata of all files in the local directory, as they were during
the last synchronisation with the server. More specifically, a path hash is used as a file identifier,
and other important metadata saved are the file name (“path”), the inode, last modification time

(“modtime”), and the file’s hash digest(“Etag”). Now the problem of reconcilation between the local

30

directory replicas (“Local”) and the remote server replicas (“Remote”) can be now handled in three

steps.

Step 1: Detect updates from Local Directory

For each file in the local directory, the necessary action can be derived from the decision tree in

Figure 3.1.
phash exists
in StateDB?
% \0\
Local modtime == inode exists
StateDB modtime? in StateDB?
yes no \
No local File exists File exists
Renamed
change on Remote? on remote?

yes no yes no

StateDB ETag

it ol 1
== Remote Etag? modified onthe local file

yes no

Figure 3.1: Decision tree for local directory files

Step 2: Detect updates from StateDB

For each entries in the StateDB, the necessary action can be derived from the decision tree in

Figure 3.2.

31

File exists on
local/remote?

Local doesn’t exist,
Remote doesn’t exist

Local exists, Local doesn’t exist,

Remote exists

Remote exists

Local exists,
Remote doesn’t exist

inode exists
in StateDB?

No change Deleted

no

yes

Renamed
/ Deleted

Remote ETag ==
StateDB Etag?

no

yes
Remote

Figure 3.2: Decision tree for StateDB entries

Step 3: Detect updates from Remote Server

Local modtime ==
StateDB modtime?

yes no

Local
modified

In accordance to the previous steps, the necessary action for each file in the remote server can

be derived from the decision tree in Figure 3.3

phash exists
in StateDB?

yes

Remote ETag ==
StateDB ETag?

remote file

yes no

No remote

Local modtime ==

changes StateDB modtime?

yes no

nodifi

Figure 3.3: Decision tree for remote server files

32

Notes on the syncing algorithm

o This algorithm offers a resilient synchronisation process. Since it completely processes each

file, there is no problem if a partial sync is made because of an interruption.

e For update detection between Local and StateDB, we use modtime, since it is faster. For update
detection between StateDB and Remote, we use the ETag, since it is the most reliable way and
is readily available without hashing the file - it is stored in both cases and available with only

a lookup.

e When the file is updated on Local but deleted on Remote, we decide to upload the modified

file again, since it is the safe option.

e If conflict is detected, that means that the both the Local file and the Remote one have been
updated since the last sync was completed. In that case we propose to rename the local one to
“<filename>-conflicting_copy.<extension>" and download the remote one. Filenames ending

in “-conflicting_copy” are excluded from Step 1 of the syncing algorithm.

e In step 2, figure 3.2, “No change” means that there is no action to be taken at this point. There
might be changes in the files, but they will be handled by steps 1 and 3.

e In step 2, figure 3.2, “Renamed / Deleted” means that we are unsure whether the file has
been renamed or deleted. If a FileID info (a string, created once at the creation time of the
file that changes over the file’s lifetime) is supported and available from the remote server
(as ownCloud does), it should be easy to decide which of the two possible actions should be
taken. Without this information, we suggest an alternative way to handle this case, without
performing a costly reverse-inode lookup. When a file falls in this category during step 2, we
add its inode to a delete_set. During step 1, for each file in the local directory, we discard its
inode from the delete_set, if it exists. When the algorithm reaches step 2 again, all remaining
files in the delete_set should be deleted.

3.2 Basic Classes / API

3.2.1 FileStat

FileStat
phash: int
path: str
inode: int
modtime: int
type: int

m

Figure 3.4: FileStat UML class description

FileStat is the core class used in this framework to represent a file object’s status. The StateDB
stores entries with this format and the other classes and methods use instances of this class to refer
to files.

33

e phash (int): The hash digest of the relative path string. Currently uses the xxh64 hash function,

for the reasons explained below. It is the main identifier of a file.
e path (str): The path of the file, relative to the root synchronisation directory.
e inode (int): The index node of the file on the file system. Used mostly for rename detection.

e modtime (int): The last modification time of a file. It is stored in the POSIX format (UNIX

epoch), for accurate and timezone-independent representation.

e type (int): The type of the file. Added for possible future features, depending on the file type
(document, image, binary object, etc).

Currently only the following two values are used: {0 = Regular file, 1 = Directory}.

e etag (str): The ETag of the file. Current implementation uses the SHA-256 digest of the file.

Hashing is not done locally, but uses the hashed value produced and stored on the server.

Path hash algorithm selection

We needed the path hash (phash) algorithm to be consistent and provide hash values that are
both collision resistant and large enough (in bits) as to provide a large enough set of permissible
outputs and prevent collisions occuring from the birthday problem. Generating the hash of a path
occurs often, so a fast hash function is preferable to a cryptographic but slower one. The most notable
hash functions that fit this description were MurmurHash 3 and xxHash[16], and we decided to use

the latter, because it was faster and a better Python library was available to use in the framework.

3.2.2 StateDB

StateDB metadata <schema>
db: str. (PK) phash INTEGER(8)
db_api: module path VARCHAR(4096)
+ create_db inode INTEGER

+ file_stat_from_phash(int phash) .
+ file_stat_from_inode(int inode) modtime INTEGER
+ fetch_all_entries() type INTEGER(1)

+ atomically_update(dict data, str action) etag VARCHAR(64)

(a) StateDB UML class description (b) StateDB schema

Figure 3.5: StateDB

StateDB is the class that manages the state database, which stores the metadata of the files
during the time each was last synchronised. The current implementation uses the SQLite library
with the sqlite3 module, because it is reliable, fast and lightweight, properties that are important
for the framework. SQLite also offers a row_factory attribute, enabling us to return the results as
FileStat objects, instead of rows (tuples). Nevertheless, the class has been designed to be easily used
with a different database engine, and just needs any python module that conforms to the Python
Database API Specification v2.0 (PEP-249)[17]. The schema used for the database, as seen in figure

34

3.5b, has the same attributes as the FileStat object. A brief explanation of StateDB attributes and

methods follows:

o db: The full path of the database file (sqlite3 uses files to store the database)

db_api: Any PEP 249-compliant DB API module.

e create_db: Creates the metadata database, if it doesn’t already exist, using the schema in figure
3.5b.

o file_stat_from_phash: Returns a FileStat object for the given phash if it exists, else returns

None.
o file_stat_from_inode: Returns a FileStat object for the given inode if it exists, else returns None.

o fetch_all_entries: Returns all entries in the StateDB as FileStat objects. Uses a generator that

fetches 1000 entries at a time, in order to reduce memory footprint in cases of large databases.

e atomically_update: Atomically updates the StateDB, using the data and action specified in
the arguments. For sqlite, we use a 2-phase commit mechanism, copying the database to a
temporary location, updating the copy and then moving the updated copy back to the original’s

location, in order to emulate an atomic commit.

3.2.3 LocalDirectory

LocalDirectory
sync_dir: str
+ get_all_objects_fstat()
+ get_modified_objects_fstat()
+ get_file_fstat(str path)

Figure 3.6: LocalDirectory UML class description

LocalDirectory is the base Class that represents the local sync directory. A brief explanation of

LocalDirectory attributes and methods follows:

e sync_dir: The full path of the root directory to be synchronised.

e get_all_objects_fstat: Returns all local files’ metadata as FileStat objects. Uses a generator to

reduce memory footprint.

e get_modified_objects_fstat: Return file metadata only for the files that were modified since the
last sync. On the base implementation it returns all files in the directory, as if get_all_objects_fstat()

was called.

o get_file_fstat: Returns the FileStat object for the file path if it exists, else returns None.

35

3.2.4 CloudClient

CloudClient

PithosClient

+ get_object_fstat(str path)

+ get_all_objects_fstat()

+ download_object(str path, file fd)

+ upload_object(str rel_path, str sync_dir)

+ update_object(str rel_path, str sync_dir, str etag)
+ delete_object(str path)

+ rename_object(str old_path, str new_path)

pithos: PithosClient

+ init(str auth_URL, str auth_token, str ca_certs_path)
- _modtime_from_remote(dict remote_obj)

- _is_directory_from_remote(dict remote_obj)

- _etag_from_remote(dict remote_obj)

- _fstat_from_metadata(dict obj_metadata, str path)

Figure 3.7: CloudClient - PithosClient UML class description

CloudClient is the base class for representing an Object Storage service client. None of the meth-

ods shown in 3.7 are implemented on the base class and just serve as an API designation. Derived

classes should implement those methods and extend the class with their own, where necessary. In

this dissertation, we show an example subclass with Pithos (File/Object Storage) services of syn-

nefo, as used in the ~okeanos IaaS. A brief explanation of CloudClient and PithosClient attributes

and methods follows:

CloudClient

e get_object_fstat: Returns the metadata of the file path stored on the remote server as a FileStat

object.

e get_all_objects_fstat: Returns the metadata of all files stored on the remote server as FileStat

objects.
e download_object: Downloads the file path, saving its contents to the file desciptor fd.

e upload_object: Uploads the local file from rel_path to the remote server. Fails if the file already

exists on the server.

e update_object: Updates the the remote server replica with the changes in local file rel_path.
Checks for race condition, updating only if the etag matches the one stored in StateDB, else

fails.
e delete_object: Deletes the remote server file path.

e rename_object: Renames the remote server file old_path to new_path. Fails if new_path exists

on the server.

PithosClient

e pithos: An authenticated client which calls the Pithos API functions of the service, when

needed.

e init: Uses auth_URL and auth_token to authenticate a pithos client with Astakos (the Identity

Management Service), then prepares it for use.

36

_modtime_from_remote: Static method that returns the modtime in POSIX format (UNIX
epoch timestamp), given the remote file metadata response remote_obj. Used for disambigua-

tion, since the json responses of pithos service follow two different formats.

_is_directory_from_remote: Static method that returns True if the object is a folder, given the

remote object metadata response remote_obj. Used for disambiguation.

_etag_from_remote: Static method that returns the etag, given the remote file metadata re-

sponse remote_obj. Used for disambiguation.

e _fstat from_metadata: Returns the FileStat object of a file, given its metadata response re-
mote_obj.
3.2.5 Syncer

Syncer

sync_dir: str

local_dir: LocalDirectory

cloud: CloudClient

db: StateDB

+ sync()

+ reconcile_local()

+ updates_from_local_dir(list object_list)
+ updates_from_statedb(list object_list)

+ updates_from_remote(list object_list)

Figure 3.8: Syncer UML class description

Syncer is the class that manages the synchronisation process between a local directory and a

remote object storage service. A brief explanation of Syncer attributes and methods follows:

sync_dir: The full path of the root directory to be synchronised.
local_dir: The LocalDirectory object to be used during sync.
cloud: The authenticated CloudClient object to be used during sync.

db: The StateDB object to be used during sync.

sync: Executes a full local-remote sync, using the 3-step algorithm described in section 3.1.2.

reconcile_local: Checks all files in the local directory for updates and performs the necessary

actions for their synchronisation, as described in figure 3.1.

updates_from_local_dir: Checks all files in the object_list for updates and performs the nec-

essary actions for their synchronisation, as described in figure 3.1.

37

38

e updates_from_statedb: Checks all files in the object_list for updates and performs the nec-
essary actions for their synchronisation, as described in figure 3.2. object_list is generated by
fetching all entries in the StateDB.

e updates_from_remote: Checks all files in the object_list for updates and performs the neces-
sary actions for their synchronisation, as described in figure 3.3. object_list is generated by

fetching all remote files’ metadata.

Chapter 4

Syncer Optimisations

In this chapter, we improve on the initial design of the framework described in chapter 3. We
run benchmarks on the optimisations proposed, and present the results. The specifications of the

two setups used for testing are shown in table 4.1.

MacBook Pro 2011 ~okeanos Virtual Machine
Operating System | OS X 10.10.4 (Yosemite) Operating System | Ubuntu Linux 14.04.2 LTS (Trusty)
Processor | 2.3 GHz Intel Core i5 Processor | 2.1 GHz Virtual CPU QEMU v2.1.2
Memory | 8 GB 1333 MHz DDR3 Memory | 4 GB Virtual RAM
Storage | 256GB SSD Crucial m4 Storage | 80 GB (DRBD)
Network Speed | 24.4/2.5 Mbit/s Network Speed | 344.6/137.3 Mbit/s
(a) MBP (b) VM

Table 4.1: Benchmark setups specs

4.1 Request queuing

After using the framework with the help of a profiler, it became apparent that a bottleneck ex-
isted whenever there was a need for multiple requests on the remote server, due to the latency and
the round-trip times. Additionally, during the transfer (download or upload) of a large file, the syn-
chronisation process was being unnecessarily stalled until the tranfer finished. To overcome these
issues, a request queuing system was implemented, dispatching the requests to different threads,
while the main thread continued the execution of the sync. There was also a dramatic speedup
when step 2 of the syncing algorithm was modified to request all objects’ metadata from the remote
server together, instead of individually for each file. To ensure correctness in the synchronisation
process, the program should wait until all threads executing requests for a step of an algorithm (as
described in section 3.1.2) have finished, before starting a different step. A more efficient solution
would be to implement a locking mechanism and disallow actions on files already being processed

by a spawned thread, but this would require substantial changes in the framework code.
4.1.1 Benchmarks

Upload time relative to number of threads

For the first benchmark, we tried to upload 100 files of 150 bytes each sequentially (denoted as
“0” threads in table 4.2) and again by using a different number of threads. The files were always

being randomly generated, because Pithos+ stores the blocks that are uploaded, and we needed to

39

evade that caching for accurate measurements. Each batch of uploads was executed 10 times, and
the results presented are the average of those tries. The results are statistically accurate, having a

standard deviation of 04 = 1.1.

of threads
0 1 2 4 8 12 16 20 24 28 32
time (s) 92.55 91.51 48.33 33.42 29.79 29.80 30.85 30.79 30.95 30.68 31.23
speedup (%) N/A 1.51 47.78 63.89 67.81 67.80 66.67 66.73 66.56 66.85 66.25
(a) MBP
of threads
0 1 2 4 8 12 16 20 24 28 32
time (s) 76.24 72.79 43.92 33.82 29.90 33.52 34.85 33.18 33.01 33.98 32.26
speedup (%) N/A -0.21 39.54 53.44 58.84 53.85 52.03 54.31 54.55 53.21 55.58
(b) VM
Table 4.2: Upload speedup by queuing, relative to # of threads
As seen in table 4.2, there is a considerable speedup when using multiple threads to upload the
files, with the uploads completing in less than half the time on the VM, when 4 or more threads were
used. It is worth mentioning that the pithos service used raised exceptions on some requests when
using 8 or more threads. Since reliability is a core element of a synchronisation framework, the use
of 4 or less threads is recommended when using this feature.
File Size File Size
150B | 150 KB | 1.5 MB 150B | 150 KB | 1.5 MB
Sequential upload time (s) | 92.55 | 153.32 | 636.48 Sequential upload time (s) | 76.24 | 86.71 106.54
4 threads upload time (s) | 33.82 | 68.12 569.43 4 threads upload time (s) | 33.82 | 38.15 38.83
speedup (%) 63.46 | 55.57 10.54 speedup (%) 55.64 | 56.01 63.55
(2) MBP (b) VM

Table 4.3: Upload speedup by using queue with 4 threads, relative to file size

From table 4.3 we observe that the percentage of speed improvement gained using threads is de-
pendent on the network bandwidth. As the sequential upload of files get closer to the max through-
put of the network, the speed improvement of request queuing becomes less significant. It still re-
mains a considerable improvement when synchronising smaller files or using networks with large

bandwidth, but the performance gain while transfering VM images or snapshots is relatively small.

4.2 Directory monitoring

Detecting file changes on the original algorithm meant that each file in the directory would
have to be individually checked for updates, a process that scales linearly with the number of files
present. Even at a speed of about 1000 files scanned per second on an SSD (MBP), each sync would
need over 100 seconds for the local directory only, which is highly undesirable. The solution to this
problem is to use the filesystem monitoring mechanisms that exist for the Operating Systems (OS),
to quickly produce a substantially smaller set of files that have potentially changed. Such utilities

and functions exist for the most common OS and are:

40

e inotify (Linux 2.6 or later)

e FSEvents (Mac OS X)

e kqueue (FreeBSD, BSD, OS X)

e ReadDirectoryChangesW function (Windows)

To implement this in the framework, the watchdog Python library was used, which provides
easy access to the aforementioned utilities. Two functions, start() and stop() were added to the
LocalDirectory class, and then inherited to the WatchdogDirectory subclass. Those two functions
are a no-op in the original implementation. To avoid the risk of an incorrect synchronisation if
some files were modified while the monitoring was not active, the framework always perform
a full local scan on startup, using the get all objects_fstat() function, and uses the more efficient

get_modified_objects_fstat() for all subsequent scans, while the application remains active.

LocalDirectory WatchdogDirectory
sync_dir: str changed_set: set
+ start() observer: watchdog.observers.Observer
+ stop() + start()
+ get_all_objects_fstat() <F—— + stop()
+ get_modified_objects_fstat() + get_modified_objects_fstat()
+ get_file_fstat(str path)

Figure 4.1: WatchdogDirectory

e changed_set: The set containing all files that were created, modified or renamed, since the last
time get_modified_objects_fstat() was called.

e observer: The thread that monitors the sync directory for changes.

e start: Starts the observer thread.
e stop: Stops the observer thread.

e get_modified_objects_fstat: Returns the metadata of the files in the changed_set as FileStat
objects. Clears the changed_set.

421 Benchmarks

For this benchmark, we created a directory containing 1.000.000 files (1000 directories of 1000
files each). A LocalDirectory and a WatchdogDirectory instance were created and started and then
a number of files were modified. Immidiately afterwards, a list of the modified files was requested
and we the response time was timed. Each test was executed 5 times, and the average of the results

are shown on the tables 4.4, 4.5 and graphed on figures 4.2, 4.3.

41

files modified

0 10 100 1000 10000 100000 1000000 default
time (s) 1.06E-5 0.004 0.038 0.339 1.618 12.907 90.003 108.110
speedup (%) 100.000 99.996 99.965 99.687 98.503 92.825 16.749 N/A

Table 4.4: MBP local directory get_modified_objects_fstat() times, relative to # of files modified

files modified

0

10

100

1000

10000

100000

1000000

default

time (s)

9.00E-5

5.85E-4

0.004

0.039

0.383

4.200

41.230

48.600

speedup (%)

100.000

99.999

99.992

99.919

99.212

91.358

15.164

N/A

Table 4.5: VM local directory get_modified_objects_fstat() times, relative to # of files modified

1009
99
98
97
96
95
94
93
92

Execution Speedup (%)

17
16
15

42

PO

109

Figure 4.2: MPB Speedup relative to number of modified files

101

102

103

104

of files modified

10°

108

107

100¢ e &
99
98
97
96
95
94
93
92
91 \

Execution Speedup (%)

17 |
16 |
15 .

109 10! 102 10° 104 10° 109 107
of files modified

Figure 4.3: VM Speedup relative to number of modified files

From the results displayed in tables 4.4, 4.5, it is obvious that using a directory monitoring mech-
anism can result in very significant speed gains. This is more apparent in directories with a large
number of files; by using this optimisation the time to detect file changes scales linearly with the

number of modified files, rather than the total number of files present in the directory.

4.3 Local block storage

As mentioned before, the motivation behind the creation of this framework was the synchroni-
sation of Virtual Machine images and snapshots. All those files are relatively large in size, usually
several GB, and they have many similarities in their data; they are often referred to as large similar
files. Those similarities can be exploited from local clients in order to improve download speeds, if
such a file is already present on the system.

In this framework, we propose and implement a way to benefit from that characteristic of large
similar files. We use a directory on the local filesystem to save the blocks of all the files present
in the sync directory. To further improve speed, we take advantage of the caching capabilities of
the OS, by creating a structure of 65536 directories, 256 folders containing 256 folders each, named
using a hex number from “00” to “ff”. A block is stored at the directory indicated by the first four
characters of its hash value. For example, a block with hash value abcdef1234567890 would be saved
to <block_directory>/ab/cd/ef1234567890.

Whenever a file should be downloaded from the remote server, the client first asks for a list
containing the hash values of its blocks, and downloads only the ones that do not already exist in
the block directory. The file is constructed afterwards, using the stored blocks. To ensure that the
block directory contains all the new blocks when a file modification occurs on local, the blocks are
stored immediately after a successful object upload or update request at the server. The changes on
the CloudClient class are shown in figure 4.4, hilighting the methods that should be modified on

43

derived classes to implement this feature.

CloudClient

+ str: blocks_dir

+ get_object_fstat(str path)

+ get_all_objects_fstat()

+ download_object(str path, file fd)

+ download_missing_blocks(str path, list(str) hashes, int bl_size)
+ upload_object(str rel_path, str sync_dir)

+ update_object(str rel_path, str sync_dir, str etag)

+ delete_object(str path)

+ rename_object(str old_path, str new_path)

+ _construct_file_from_blocks(list(str) hashes, file fd)

Figure 4.4: CloudClient with local block storage feature

blocks_dir: The full path of the directory where file blocks are stored. Optional argument,

whose existence denotes the use of the feature.

e download_object: Checks the hash list of the remote object and downloads only the blocks

that are missing, constructing the file from its hashmap afterwards.

e download_missing_blocks: Downloads the blocks in ‘hashes’ list that do not already exist on
the block directory.

e upload_object: Uploads a file to the remote server and stores its blocks to the block directory.
e update_object: Updates a file at the remote server and stores its blocks to the block directory.
e _construct_file_from_blocks: Static method that constructs and saves a file to the file descrip-
tor ‘fd’, given its hash list ‘hashes’.
4.3.1 Benchmarks

To test the performance of this optimisation, we created a text file of 40 MiB (41,943,040 Bytes) in
size which is exactly equal to 10 blocks of 4MiB (4194304 Bytes) each, and uploaded it on the remote
server. We then modified some blocks, uploaded the change on the remote, and measured the time
needed to download the file. Each benchmark ran five times, the average of which is presented on

the results, shown in the table 4.6 and graphed on figure 4.5.

of modified blocks
0 1 2 3 4 5 6 7 8 9 10
time (s) 0.37 2.59 4.49 6.44 8.98 10.12 12.23 13.60 15.65 17.59 19.61
speedup (%) 98.1 86.8 77.1 67.2 54.2 48.4 37.7 30.7 20.2 10.3 N/A

Table 4.6: MBP file download times, relative to # of modified blocks

44

20 |- :

16

14

12

10

Download time (s)

0 1 2 3 4 5 6 7 8 9 10
Blocks modified

Figure 4.5: MBP file download times, relative to # of modified blocks

We can see from figure 4.5 that the results of the benchmarks very closely approximate a linear
correlation. Therefore, the results confirm the hypothesis that the the time needed to download a
file is proportional to the number of the blocks that do not exist in the local block directory (and
hence, have to be downloaded). This is very important for the main use case that this framework
was created for, since it allows considerably faster downloads of large similar files. The performance

gain achieved on a file download by this optimisation is approximately:

_# of new blocks
Total # of blocks

>><10O

Performance gain % = (

4.4 Local deduplication - FUSE

As mentioned on section 4.3, we can implement local block storage, to improve download speeds
for large similar files. Even using this method, storing many VM snapshots or images requires large
amounts of disk space, since the files are being constructed from their blocks, taking space in the
file system. Since those files consist of a significant amount of same blocks, very efficient data com-
pression can be achieved by using deduplication techniques on the local file system.

The solution proposed is to only store the blocks in the block directory and not reconstruct
the files in the syncing directory, but link a file’s hash list to the corresponding blocks in the block
directory instead. This solution requires modifications to most existing file systems, so either a kernel
module or a Filesystem in Userspace (FUSE) mechanism is required, of which we propose the latter.
This mechanism should modify the calls to fstat(), open(), read() and write() system calls, to use the
blocks a file is consisted of. The design should follow the “Write once, Read many, Update never”

45

practice, which suggests never modifying a block in the block directory, but instead use the Copy
on Write (CoW) strategy, to create new blocks when changes are required. This ensures that the
original resources remain unchanged on the disk, so different files sharing this block will not get
corrupted.

This method effectively implements deduplication on the local file system, reducing storage

space required by approximately

n
block_size x Z [(# of files sharing block i — 1]
i=1
which can be a significant amount of space, when storing large similar files.

Apart from the space reduction, a FUSE mechanism implementation provides additional benefits
for a file synchronisation framework. File copying within the directory managed by FUSE becomes
a very fast and computationaly light procedure, since only a file’s hash list needs to be copied to the
new location. Furthermore, this optimisation works well in tandem with the file monitoring optimi-
sation described in section 4.2. Being in control of the filesystem means we are able to immediately
detect changes to files and process only those during the synchronisation. At the time of writing,

the FUSE mechanism has been extensively design, but not yet implemented.

46

Chapter 5

Comparisons with existing software

To the extent of my knowledge and research, there is no publicly available application, commer-
cial or free, that was designed specifically for the sychronisation of large similar files, such as VM
images and snapshots. Therefore, the following comparisons are with the most commonly used file
synchronisation software and services for regular files. For the proprietary software, since there is
no way to access the source code, empirical comparisons will be made, based on the results of some

benchmarks aimed at feature detection.

5.1 rsync

rsync is a file mirroring utility, hence it offers one-way sychronisation by default; to handle up-
dates from both replicas of a distributed directory, third-party applications such as Unison have been
developed. As a utility, it is not automated and only executes the synchronisation when invoked, so
it is often paired with a job scheduler such as cron or launchd, to achieve automated backups/syncs.
rsync does not feature directory monitoring, so it has to process all files in a directory to determine
which should be updated on the other replica, performing relatively poorly on directories contain-
ing large numbers of files. Update detection is done by checking the modification time and size of a
filename by default, but an option to do a more comprehensive search using checksums is available.
The algorithm is unable to detect renames, moves, and when using the default detection method, it
is possible to miss some special cases, where a file is modified without changing its size or modtime.
The md5 algorithm used for comparing file checksums is also insecure, since it has been proven not
to be collision resistant.

Despite those shortcomings, the algorithm used by rsync to determine which parts of a file have
changed offers impressive performance. By using a weaker rolling hash that is easy to compute
(Adler32) to detect same chunks and a stronger hash algorithm (md5) to verify that the chunks are
indeed identical, it is possible to quickly and reliably generate file deltas with the changes, even
for very large files. Sending and applying only the changes described in the deltas allows for fast
file synchronisation, and, unlike the framework proposed in this dissertation, efficiently handles
cases where similar chunks exist, but are not aligned in blocks. This is an inherent limitation of the
framework though, since most Object Storage services operate using blocks and do not accept file
deltas. Another useful feature of rsync is that it completes the mirroring using only one round-trip,
regardless of the number of files, minimising the effect of high network latency. As a utility, it does
not implement local file deduplication, and (to the best of my knowledge) neither does any of the

available applications using rsync, so storage needs would be very high in the use case of VM images

47

and snapshots synchronisation.

5.2 ownCloud

ownCloud is considered one of the most famous open source synchronisation software suites. As
mentioned in section 2.2.3, the owncloud client (previously called mirall) is powered by the csync
utility. Its biggest drawback for the use case we examine is that it does not support delta-sync;
the client needs to upload/download the whole file, even if a small number of bytes is modified or
appended to it. This is highly undesirable, especially when dealing with large similar files, where
we’d like to transfer the least possible amount of data. Additionally, while cross-platform, ownCloud
restricts and silently ignores files with names containing specific characters that are not allowed in
Windows (|, 2, >’, ‘<’ and ‘?’), which forces the use of a naming scheme that avoids the colon **’
character on timestamps (e.g. of VM snapshots).

The client implements a directory monitoring mechanism and is fast to detect file changes, but
due to limitations in the implementation of that mechanism, the client performs a full local directory
scan every few (5) minutes. Those frequent local scans can be detrimental to the speed performance
on directories containing large numbers of files, while also consuming valuable CPU time during
their execution. Finally, it does not implement local file deduplication, so storage needs would be

very high in the use case of VM images and snapshots synchronisation.

5.3 Dropbox

Dropbox uses the librsync library that implements the rolling-checksum algorithm of remote
file synchronization that was popularized by the rsync utility and therefore benefits from the many
innovations of that algorithm. Feature-probing benchmarks showed that dropbox uses remote dedu-
plication with blocks of 4 MB size, so uploading similar files is fast. Dropbox claims to locally store
blocks of the downloaded and recently deleted files and check them before downloading a block from
its servers. While this is often the case, there were instances where modifying older files caused the
whole file to be downloaded. This observation, the fact that there is no apparent structure on the
local FS where blocks are stored, and the idea that it would be impractical to occupy around double
the disk space to separately store files and their blocks (when files are mostly different), point to-
wards the hypothesis of a local block cache. This behaviour could be explained if only the most used
and/or the most recently used and deleted blocks were stored in a local block cache, thus improving
transfer speed in most cases, without wasting large amounts of storage space.

Dropbox also implements numerous implementations, such as directory monitoring for change
detection and the use of file deltas for file modifications, which are sent compressed to further im-
prove performance. Since July 2014, dropbox used streaming sync[18], a method where multiple
clients to download (prefetch) blocks while another client is uploading a file containing them, so the
changes would appear a lot faster at the downloading clients. This overlapping work of the clients
is claimed to offer speed gains of 25-50% on large files.

A big drawback of Dropbox is that it’s commercial, closed source, software, and as such it cannot
be deployed on personal cloud storage infrastractures. Furthermore, it only works with its own

service, and is unable to work with other cloud storage APIs such as Amazon S3. It also does not

48

implement local file deduplication, so storage needs would be very high in the use case of VM images

and snapshots synchronisation.

5.4 Google Drive

Not much is known about how the Google Drive client works, due to the propriatery and closed
source nature of it, but the probing benchmarks indicated some features, or the lack thereof. The
most notable feature present on the client, is the use of directory monitoring, which is fast and
accurate on modification detection.

That being said, the file synchronisation algorithm seems to lack some important optimisations.
There does not appear to be a delta sync mechanism nor a stored block check, neither on the server
nor on the client, resulting in the need to fully upload or download a file, even if small changes
happen in a file. This alone is enough to render Google Drive highly unsuitable for VM images and
snapshots sychronisation. For completeness sake, the client only works with its own service and
cannot be used with other cloud storage APIs or deployed on private cloud storage infrastractures.
Finally, the client does not feature local file deduplication, so storage needs would be very high in

the use case of VM images and snapshots synchronisation.

49

Chapter 6

Future Work

6.1 Local deduplication - FUSE Implementation

As mentioned in section 4.4, the FUSE mechanism has been designed, but not yet fully imple-
mented. We decided to use the fusepy Python module that provides a simple interface to FUSE. Calls
to the write() system call are handled according to the following procedure: If the block accessed by
the write call does not exist in the block directory;, it is created and the write happens directly to it.
If it already exists, it is copied according to the CoW strategy and the write() call happens on the
copied block. The files are afterwards uploaded, and the “new” blocks are hashed and stored in the
block directory. The old blocks remain there, since they might be shared by other files.

It is worth mentioning that the directory does not actually exist on the disk. On the application
data folder of the framework there is a folder (currently named “dir_structure”) that mirrors the
structure of the synchronisation directory. For each file <sync_dir>/diri/file1 that should reside in it
there is a file <appdata_dir)>/dir_structure/dir1/file1that contains the metadata needed to reconstruct
the file using FUSE. It is a mapping mechanism similar to the page table encountered in operating
systems. That way, when asked about the size or contents of a file, the mechanism consults the
contents of the corresponding file in the dir_structure, which contain the size and the blocks of the

requested file.

6.2 Peer-to-peer syncing with direct L2 frame exchange

In most cases, LAN transfer speeds are substantially faster than WAN ones. It is possible to
improve file synchronisation speed by requesting a resource from a computer in the same LAN rather
than download it from the remote server. It is an optimisation already implemented by Dropbox, and
we can use a finer granularity and detect and transfer blocks instead of whole files.

This optimisation requires a way to detect other machines in the LAN running an application
that uses the framework. A simple way would be to have the clients monitor the Link Layer (L2)
Multicast address (an address having a value of 1 in the least-significant bit of the first octet) for
such requests and respond accordingly. Multicast address was chosen instead of broadcast, because
the latter is not defined in the IPv6 protocol, if we ever chose to extend the implementation to use
the Internet Layer (L3) to request blocks from connected networks.

When a client A wants to download a file from the remote server, after getting the hash list and
generates the missing blocks list, it sends a request containing the missing blocks to the multicast

address and waits momentarily for responses. Other clients within the network, respond if they

51

have the block available. After a small time, client A requests the blocks he got responses for from
the other clients in the LAN and asks for the ones not found in the network from the remote server.
It is very important to verify that the blocks downloaded from the LAN clients match the advertised

etag, as a malicious client could easily send specifically crafted blocks as a response to such requests.

52

Bibliography

[1] Wikipedia: File hosting service. https://en.wikipedia.org/wiki/File_hosting_

service. [Online, accessed July 2015].
[2] Owncloud. https://owncloud.org/faq. [Online, accessed August 2015].
[3] csync. https://www.csync.org/about/. [Online, accessed August 2015].

[4] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture. In
Proceedings of the 22nd international conference on Software engineering, ICSE ’00, pages 407—
416, 2000.

[5] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[6] Openstack: The open source cloud operating system. https://www.openstack.org/
software/. [Online, accessed July 2015].

[7] Synnefo. https://www.synnefo.org/about/. [Online, accessed August 2015].

[8] Synnefo rest api guide. https://www.synnefo.org/docs/synnefo/latest/
api-guide.html. [Online, accessed August 2015].

[9] ~okeanos. https://okeanos.grnet.gr/about/what/. [Online, accessed August 2015].
[10] Amazon s3. https://aws.amazon.com/s3/. [Online, accessed July 2015].

[11] H.T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Trans-
actions on Database Systems, 6(2), June 1981.

[12] Yann Collet. xxhash. https://github.com/Cyan4973/xxHash. [Online, accessed August
2015].

[13] Henry Korth Abraham Silberschatz and S. Sudarshan. Database System Concepts. McGraw-Hill
Higher Education, 6th edition, 2010.

[14] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287-317, December 1983.

[15] About sqlite. https://sqlite.org/about.html. [Online, accessed July 2015].

[16] Yann Collet. Selecting a checksum algorithm. http://fastcompression.blogspot.gr/
2012/04/selecting-checksum-algorithm.html. [Online, accessed August 2015].

53

https://en.wikipedia.org/wiki/File_hosting_service
https://en.wikipedia.org/wiki/File_hosting_service
https://owncloud.org/faq
https://www.csync.org/about/
https://www.openstack.org/software/
https://www.openstack.org/software/
https://www.synnefo.org/about/
https://www.synnefo.org/docs/synnefo/latest/api-guide.html
https://www.synnefo.org/docs/synnefo/latest/api-guide.html
https://okeanos.grnet.gr/about/what/
https://aws.amazon.com/s3/
https://github.com/Cyan4973/xxHash
https://sqlite.org/about.html
http://fastcompression.blogspot.gr/2012/04/selecting-checksum-algorithm.html
http://fastcompression.blogspot.gr/2012/04/selecting-checksum-algorithm.html

[17] Marc-André Lemburg. Python database api specification v2.0. https://www.python.org/
dev/peps/pep-0249/. [Online, accessed June 2015].

[18] Nippun Koorapati. Streaming file synchronization. https://blogs.dropbox.com/tech/
2014/07/streaming-file-synchronization. [Online, accessed August 2015].

[19] Wikipedia: Openstack. https://en.wikipedia.org/wiki/OpenStack. [Online, ac-
cessed July 2015].

[20] Wikipedia: Amazon s3. https://en.wikipedia.org/wiki/Amazon_S3. [Online, ac-
cessed July 2015].

[21] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, The Aus-

tralian National University, Irvine.

54

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/
https://blogs.dropbox.com/tech/2014/07/streaming-file-synchronization
https://blogs.dropbox.com/tech/2014/07/streaming-file-synchronization
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Amazon_S3

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Tables
	List of Figures
	Εισαγωγή
	Κίνητρο
	Συνεισφορά της εργασίας
	Οργάνωση κειμένου

	Introduction
	Motivation
	Thesis contribution
	Chapter outline

	Background
	Data Synchronisation
	File Hosting Service
	Dropbox
	Google Drive
	ownCloud

	Cloud Computing and Storage Services
	Application Programming Interface
	OpenStack
	Synnefo
	Amazon Web Services

	ETag
	Hash function

	Database
	Relational database
	Transactional database
	Structured Query Language
	SQLite

	Design & Implementation
	Syncing Algorithm
	Known algorithms
	Proposed Algorithm

	Basic Classes / API
	FileStat
	StateDB
	LocalDirectory
	CloudClient
	Syncer

	Syncer Optimisations
	Request queuing
	Benchmarks

	Directory monitoring
	Benchmarks

	Local block storage
	Benchmarks

	Local deduplication - FUSE

	Comparisons with existing software
	rsync
	ownCloud
	Dropbox
	Google Drive

	Future Work
	Local deduplication - FUSE Implementation
	Peer-to-peer syncing with direct L2 frame exchange

	Bibliography

