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Abstract

The present Ph.D. thesis aims at developing simulation tools for the integrated analysis of offshore

wind turbines detailed in two parts.

The first part concludes hGAST, a general fully coupled hydro-servo-aero-elastic simulation platform
for offshore wind turbines. It is formulated within the framework of analytic dynamics for mechanical
systems. Each of its building modules, namely the aerodynamic, hydrodynamic, structural, dynamics
and control, is considered separately and nonlinear couplings are applied between the interfaces.
The structural part is based on the multibody dynamic formulation. Each member, or part of it in the
sub-body approach, is modeled as a Timoshenko beam and solved using the Finite Element Method
(FEM). The aerodynamic loads are calculated based on the Blade Element Momentum Theory (BEMT)
or the free wake vortex particle method GenUVP, while hydrodynamic loading is considered either
using potential theory or Morison’s equation. A dynamic mooring line model is adopted in the case of
floating Wind Turbines (WT) using co-rotating truss elements defined in the FEM context as well. Any
variable speed / variable pitch controller can be considered either defined by external subroutines or
Dynamic Link Library (DLL) files, in most cases corresponding to linear control elements (PID). hGAST
performs nonlinear time domain simulations, as well as modal and stability analysis based on a
consistent linearization process. By defining the environmental conditions (wind, wave and sea

current states), fatigue and extreme loads are estimated within the framework of the IEC standard.

hGAST can consistently model all bottom based and floating offshore Wind Turbine (OWT) concepts
for both horizontal and vertical axis rotors and is verified by code-to-code comparisons for a
monopile, a jacket, a semi-submersible and a spar-buoy floater for the NREL 5MW Reference WT
related to the OC3 and OC4 IEA Annexes.

In engineering science terms, the present thesis:

- Assesses the 3D aerodynamic effects on the behavior of offshore wind turbines by comparing
the BEMT and the free wake method in the case of the spar-buoy. The main differences
appear in asymmetric inflow conditions, while BEMT is on the safe side in damage equivalent

loads (DELs) estimation for this concept.

- Assesses the geometric nonlinear effects due to large deflections by comparing the 1st order
baseline beam model to the 2nd order beam model and the sub-bodies model both
accounting for geometric nonlinearities. It is concluded that the bending-torsion coupling is
identified as the main drive of the differences between linear and nonlinear modeling
predictions. The linear (1st order) beam modeling is still acceptable except for the torsion of
the blade.

The second part concerns the development of two hydrodynamic solvers. The first one, freFLOW is a
hybrid integral equation method for the solution of the wave-body interaction hydrodynamic
problem in the frequency domain. It is based on the Boundary Element Method (BEM), while the
analytic solution is imposed at the matching boundary following a variational formulation. freFLOW
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can be used either as a preprocessor for hGAST providing the linear hydrodynamic operators
(excitation force, added mass and damping coefficients) or as a floater design tool defining the
natural frequencies and RAOs’ of the coupled floating system. The method is verified compared

against numerical simulations.

The second hydrodynamic tool, hFLOW is a fully nonlinear, inviscid, two dimensional solver
(numerical wave tank) that solves the complete wave-body-current interaction problem. It is based
on BEM and the mixed Eulerian-Lagrangian method. The wave is generated either by simulating the
wave generator’s physical motion or by matching along the inflow vertical boundary the steam
function wave solution. In the latter case, the modified implementation of the matching procedure
permits the generation and the propagation of strongly nonlinear periodic waves (~¥90% of maximum
height) in shallow, intermediate and deep water depths for more than 100 wave periods, with or
without the inclusion of a steady current. Wave absorption at the end of the tank is added using
damping layers. Moreover, the simulation of free-floating bodies is performed using the iterative
method which determines the body acceleration. The motions and the drift force of a free-floating
barge subjected to wave excitation are well compared against other numerical results and
experiments. Moreover the method simulates overturning waves up to the breaking point by
adopting linear distributions and plane elements in BEM, without applying any smoothing scheme.

The solver is verified compared against theoretical, numerical and experimental data.
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NepiAnyn

O oKomog TtNng OLBOKTOPIKAC SLatplPrg elval n OVATTUEN UTIOAOYLOTIKWY EPYOAELWVY yla TNV

OAOKANPWHEVN AVAAUGH UTTEPAKTLWVY OVELLOYEVVNTPLWY, aroteAoUevn amo §Uo Pépn.

J0 MPWTO PEPOC. OTO MAAICLO TNG AVOAUTIKAG UNXOVIKNG £PapUolOUEVNC OE UNXOVIKA CUCTHUOTA
avarntuxdnke to hGAST, w¢ yevikn TMAatdopua ya tThy USpo-c€pPo-aEpo-eAAOTIKN TTIPOoopoiwan
TWV UTEPAKTIWY OVEUOYEVVNTPLWY. To €MUEPOUG TPOTUTIAL TOU TV amaptilouv, SnAadn Tto
QEPOSUVOULKO, TO USPOSUVAULKO, TO EAACTO-SUVAULKO TIPOTUTIO KAl TO TPOTUTIO OLUTOMOTOU EAEYXOU
efetalovral XwpLoTA KAl 0T CUVEXELa ouvtiBevtal emiBAaAAovtag KATAANAN UN-YPAUUKY oUleuén
ota onueia aAAnAeniSpaong touc. KaBe S10KPLTO €AAOTIKO TUAUA TNG KATOOKEUNG 1 LEPOG AUTHG
povtelomoleital pe Baon tn Bewpla Sokol Timoshenko kat emlletal pe tn HEBOSO TwV
TIEMEPACHUEVWY oTOoLXElwY. Ta aegpoduvapikd doptia umoloyilovrtol site pe ™ HEBodo tou Siokou
0puNG elte pe TN Aemrtopepéotepn HEB0SO Twv oToLXElWV oTpoPAoTnTaG Pe eAelBepo opdppou. Ta
udpoduvapika doptio urtoAdoyilovtal HEow ETUAUTH TWV YPAUUIKWY EELOWOEWV TNG USPOSUVALKNG
Baclopévo otn HEBOSO TWV CUVOPLAKWY OTOLXELWV 1] XPNOLUOTIOLWVTAC TOV NILEUTIELPLKO TUTIO TOU
Morison. To cUotnpa aykupwaong otny epimtwon MAWTAS avepoyevvATpLlag SlakpLtomoleital P pn-
VPOLLLKG OTOLXELQ TIOU UTIOKELVTOL HOVO Ot eAKUOTIKA dopTia. To cUOTAUA AUTOUATOU EAEYXOU
petafAntwv otpodwv / petaPAntov BAuotog AopPavetal umdPn ouvnBwg pe KATAAAnAn
npocapuoyn e€wteplkwv apxeiwv oe popdn BLBALoONRKNG (apxeia DLL) kal ulomolel eEAeYKTEG TUTIOU
Pl kot kataAAnAa ¢idtpa. To Aoylopikd hGAST MpayUaTOmoLEl UN-YPAUULKOUG UTTOAOYLOUOUG OTO
nedio tou Xpovou, kaBwg kot blodlavuopatik avdluon kal avdluon suotaBelag otn Bdon
ouvenoUg dladikaoiag ypappikomnoinong. Kabopilovtag tnv efwtepikn meptfarloviikr) Stéyepon
(ouvBnkeg aépa, kOpOtog Kal Baldcowou pelpOTOG) oL umoloylopol oto medlo tou Ypovou
ETILTPEMOUV TNV EKTIUNON TWV KOTIWTIKWY KAl TwV akpaiwv GopTiwv TNG KOTACKEUNG KATA To SLebvn

kavoviouo (IEC standard).

To hGAST povtehomnolel 6Aa Ta umapyovta idn Bacswv otrnpLEng oto BuBo KaBWE Kal TAWTAPEC yLa
opllovtiou Kot KatakopUdou AGfova QVEUOYEVVHTPLEG, EVW TILOTOTOLE(TOL 0t oUYKPLON HE AMa
UTIOAOYLOTIKA epyoleia ota TAaioclo twv gpsuvnTikwv Spaotnplotntwv tng IEA OC3 kat OC4.
E€etalovral meputtwoelg otnpléng pe povokoppato muAwva (monopile), xwpodiktvwua (jacket),
AWt nuBLBLoPEVN MAatdopua (semi-submersible) kat MAwtpa TOMOU «spar-buoy» 6moU emavw

toug edpaletal n NREL 5MW avepoyevvhtpla avadpopdg.
Ao texvoloyikn anoyn, n mapovuca SlatplPn:

- Afloloyel tn onuaocia Twv TPLSLAoTATWY aePOSUVAULKWY GALVOUEVWY OTn ocuuTepldopd
UTIEPGKTLWY OVEUOYEVVNTPLWV cuyKpivovtoag T pebodoloyiec tou Siokou opung KoL TwV OToLXElWV
OTPOBNOTNTOC OTNV TMEPIMTWON TMAWTAC OAVEUOYEWNTPLAG Ot spar-buoy mAwtrpa. Ou KUpLeC
Sladopéc epdavilovral oe cuvBNKeG ACUUUETPNG ELOEPXOUEVNC PONC. EMuTA£ov Slamiotwvetat OtL N
Bewpla Slokou opuNg sival otnv achoair MAeupd 6oov adpopd TOV UTIOAOYLOMO TWV KOTIWTLKWV

doptiwv.
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- Aflohoyel TN oOnuocia TWV YEWUETPLKWYV  HUN-YPOUUIKOTATWY gfautiag peyaAwv
TapapopdWOEWV TOU TITEPUYIOU, CUYKPILVOVTOC €va TUTILKO, TIPWTNG TAENG LOVTEAD SokoU He éva
6eltepng TaAfNg povtého SokoU Kal €va PBoolopévo otnv unodlalpeon Twv TTEPUYIWV o€
«umoowpota» (sub-bodies), omou ta OSU0 Tteleutaior Sioxelpilovial TIC YEWHETPKEG HN-
VPOAUULKOTNTEC. ZUUTTEPALVETAL WG TO YPAUULIKO HOVTEAO SOKOU TOPAUEVEL QAELOTILOTO UE HOVOSLIKN
efaipeon tnv mpoPAsPn tng otpedng Tou mrepuyiou. H kUpla attia dtadopomnoinong petaly Tou
YPAUUKOU (MpwTng Tagnc) LOovIéAou Kal Twv SU0 avwTtePNE TAENG Elval TO UN-YPOUULKO ALVOUEVO

oUleuéng petaty kapyng kat otpéPng mou Sev AapPBavetat umtoPn oTo MPWTNG TAENC LovtEAo SokoU.

To 8eUtepo pépog adopd TV avamntuén dVo vdpoduvapikwy emAutwy. O pwtog (freFLOW) emidlel
to Tplodldotato USpoSUVOUIKO TIPOPBANUA  aAANAemidpacnG OWHATOC-KUUATOG oto Tedio
ouxvotnTag e xprnon tng Lebodou cuvoplakwy OTOLXELWV KAl LKAVOTIOINGN TNG avaAUTIKAG AUong
0TO oUVOPO CUVAPHOYNC LECW HeTaBoAikng Statunwong. H uéBodog npoadlopiletl ta udpoduvapika
XOPAKTNPLOTIKA TwV MAWTAPWY Ta omoia slodyovtal otov Kwdikae hGAST yla thv avdAuon twv
TMAWTWVY avepoyevwntplwyv. Eniong mpoodlopilel tig 1610CUXVOTNTEG KAl TIG KLWVNOELG TNG TAWTAG
KOTAOKEUNG - BOOIKEG TTAPAUETPOL OXESLOOUOU MAWTWY KATAoKeEUWVY. H miotomoinon tg pebodou

yivetal og oUykpLon LLE QVTIOTOLXOUG 0pLlBUNTIKOUG UTIOAOYLOMOUG.

O &eltepog emAUTng (hFLOW) emdlel TO0 pn-ypappikd, pn OUvektikd, Sitodldotato mpoBAnpa
oAANAeTidpaong KUUATOC-OWUATOG-pEVLATOG Baclopévog otn HEB0SO TWV CUVOPLOKWY OTOLXELWV
Kol tnv petktr Eulerian-Lagrangian SiwatUmwon. To kKU Snploupysital €ite MPOCOUOLWVOVTAC TN
duaolkn Klvnon tou Kupatlothpa eite B£tovtag oto cUvopo eloodou tn AUon and tn stream function
Bewpla. IXeTKA He TN SeUTEPN €MAOYN N TPOTOMOLNKEVN UAOTIOINGN TNG CUVAPUOYNE OTO GUVOPO
glo0bou, emutpenel tn Snuioupyia kat S1adoon oXUPA UN-YPOUULKWY TIEPLOSIKWY KUPATWY (~90%
ToU péylotou UPoug) Ue N xwpic otabepd pelpa og OAa ta BAON vepoU yia peydlo aplBpo neplddwv.
O XElPLOUOC TWV CLUVONKWVY OTO AMELPO TPAYUOTOMOLETAL EloAyovTag Opoug TexvNTAC andoPeonc.
Mo tnv mpooopolwon tg Kivnong ehelBepa MAWTWY CWUATWY XPNOLUOTIOLELTOL EMAVOANTITIKA
Sladkaoia mpoodloplopol TNG EMITAXUVONG TOU CWHATOG, TTIoU Tipoodlopilel tig drift Suvapelg pe
OUVETELA. EmiimAéov n péBoSoG mpooopolwvel avadutAolpeva KUUOTA HEXPL TO OpLo Bpaliong omou
N Kopuodr Tou KUPOTOG AKOUMTIAEL TNV eAeVBepn emidavela. H motomnoinon tng pebddou yivetal o

oUYKpLon He BewpnTIKA, aplOUNTIKA Kot Telpapatikd Sedopéva.
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Chapter 1

Introduction

In this introductory charter, the context of the present thesis is defined. Aiming at developing
simulation tools capable of concurrently taking into account all the underlying physical mechanismes,
first the motivation for undertaking this task is given in connection to the current technology
knowhow and practice. In support to that an overview of the simulations tools available as

background is given and an outline of the contributions of the present work are listed.

1.1 Motivation and Aims

Wind Energy moves offshore quite noticeably for the simple reason that in the sea there is high wind
potential [1]. The successful path Wind Energy took onshore over the last 30 years was substantiated
by a consistent development and validation of design tools alongside with the consolidation of
standards for safety and reliability [2]. So, within the Wind Energy community it is clear that if the
transition to offshore installations is to become successful, design tools are a definite prerequisite. To
this end the logical step is to upgrade the existing tools so as to also take into account the extra

features that are present in an offshore operation of wind turbines.

The first generation of offshore wind turbines consisted of bottom mounted installation which to a
certain degree is a direct extension of onshore designs [Figure 1.1]. The tower gets longer, but not
that much since friction over the surface of the sea is lower and the thickness of the atmospheric
boundary layer smaller. Also turbulence intensity is expected to be lower which allows some savings
on the fatigue loading and by that a less demanding design. Since part of the structure is submerged,
the coupled system is subjected to hydrodynamic loading rising from water waves and currents. This
is probably the most important additional contribution to the loads compared to onshore
applications. There are several challenges associated with wave and current loading. Extra design
load cases (dlcs) are added to assure safety with respect to extreme and fatigue loads, while the
design of the foundation requires a more careful consideration given the different characteristics of

the soil at the seabed.
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Figure 1.1: Overview of the different bottom based support structures for offshore WTs

At present, bottom mounted offshore wind turbines cover the majority of the existing installations
[Figure 1.2]. In shallow waters, monopile, gravity based or tripod substructures are used, but at
increasing depths the dominating design is the jacket which resembles to a truss tower used in the
early days of wind energy development. Of course the design of a jacket is different, first because it is
subjected to extra loads and second because of the presence of a transition piece that connects the

jacket with the tower of the wind turbine.
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Figure 1.2: Share of substructure types for online wind farms, end 2012 (UNITS)



At sea depths above 50m bottom based support structures applicability is questionable due to the
increased cost and because of that floating wind turbines have been proposed for the so called deep-
sea applications [Figure 1.3]. In this respect, the support structure includes the floater and its
moorings. Depending on how the roll and pitch restoring is achieved, the floater can be categorized
into three types as: tension leg platforms (TLP), semi-submersible and spar-buoy floaters. In TLP
floaters restoring comes from the pretensioned tendons, in semi-submersible floaters from the
buoyancy force distributed over the free surface and in spar-buoy floaters from the gravity force on
the ballast at low drafts. Clearly a successful design should minimize the excitation induced by the
incoming waves and currents and in turn minimize the motions of the floater at the minimum cost.
One of the main goals within the offshore wind energy field in next years is to come up with an

optimized floating concept in terms of cost and performance.

Semi-Sub

Monopile Jacket/Tripod Floating Structures Floating Structures
0-30m, 1-2 MW 25-50m, 2-5 MW =50m, 5-10 MW >120m, 5-10 MW

Source: Principle Power

Figure 1.3: Overview of the offshore WT concepts for increasing water depth

As already mentioned, in view of advancing wind energy exploitation into offshore, suitable design

tools are necessary. Such tools should meet two targets:

- Include all of the underlying mechanisms that affect the operation of wind turbines and

challenge their reliability and safety.

- Have a level of accuracy and consistency that allows verification of the different offshore

design concepts within the framework of properly defined standards.

The mechanisms involved include: the aerodynamic and hydrodynamic flows, the structural
dynamics of the system taking into account elastic deformations, the moorings together with their

sea-bed support and the control system.



As discussed in the next section, each of these mechanisms can be modeled at various levels of
sophistication. Although modeling sophistication is often linked to fidelity, consistency is often
overlooked especially in complex system involving multi-physics simulations. So when adding
sophistication in one of the sub-models it is important to check its contribution to the overall
improvement of the accuracy of the complete model. For example upgrading the aerodynamic model
from Blade Element Momentum theory to Reynolds Averaged Navier Stokes (RANS) solvers will not
necessarily improve the aeroelastic analysis results obtained by using beam theory. Of equal
importance is to also take into account the significance to the engineering aspect of the problem.
Modeling sophistication will always increase the computational cost which in many cases can render

an advanced model not affordable for design purposes.

In view of combining consistency, accuracy and engineering practice, the usual approach is to start
with a baseline model that can include all the basic physics and then proceed to the improvement of
the models. The context in which these improvements are considered is defined by the engineering
requirements. In the present thesis, the modeling of offshore wind turbines in stand-alone operation

conditions is considered.

Along these lines the present thesis aimed at formulating a fully coupled hydro-servo-aero-elastic
tool capable of simulating the behavior of all existing bottom based and floating offshore support
structures for both horizontal and vertical axis wind turbines. This has led to hGAST. The form
concluded within the present thesis, incorporates the experience and expertise that has been
accumulated over more than 20 years of wind energy research at NTUA. In this connection, the
previous onshore version has been completed with all the necessary modeling associated to offshore
operation of wind turbines, while at the same time existing parts have been advanced.

In order to combine concurrent engineering state-of-art with future modeling advancements, hGAST
has modular structure. In most of its modules, there is a default option which corresponds to
comprehensive engineering modeling which is supplemented with more advanced modeling. For
example besides the Blade Element Momentum Theory (BEMT) aerodynamic modeling, a vortex
based 3D flow solver has been implemented. Also for the structure, in addition to the usual 1** order
beam model, a sub-body model has been added in view of taking into account large displacements
and rotations. Similarly in the hydrodynamic part potential theory as well as Morison’s equation is
implemented, while for the moorings linear and nonlinear dynamic modeling options have been
added. Then in order to facilitate advanced modeling, parallel programming in OpenMP [3] and MPI

[4] has been implemented.

Moreover a hybrid integral equation method for the solution of the wave-body interaction
hydrodynamic problem in the frequency domain has been formulated. The method provides hGAST
the linear hydrodynamic operators and in addition is a floater design tool defining the natural

frequencies and the RAOs’ of the coupled floating system.

Finally, the present thesis also aimed at addressing the nonlinear hydrodynamic problem which is

relevant to the response of offshore wind turbines (OWT) in extreme sea states. In this connection



the case of a 2D moored floating barge has been chosen as generic problem and a fully nonlinear

hydrodynamic solver was developed that is extendable in 3D.

1.2 State of the art in offshore and wind energy

A complete simulation tool for offshore wind turbines should combine various physical models in
strong coupling. The proper general framework is that of analytic dynamics in which aerodynamics,
hydrodynamics, structural dynamics and control can be brought together. Modeling in each of these
aspects can take several forms of varying complexity and fidelity. So in order to facilitate the present
survey, the existing modeling options for each of the main physical mechanisms are first considered.
Then the coupled tools are categorized based on the modeling method that is adopted for each
building block.

1.2.1 Aerodynamics

The main challenges in aerodynamics include: the unsteady nature of the flow due to wind shear and
yaw misalighment; the onset of stall, a crucial flow feature especially in stand still conditions; the
effect of a 3D wake development; the loading augmentation due to rotation; and finally the
nonlinear aeroelastic coupling. This is a quite demanding mix far more complicated than in other
applications so that a newcomer would expect to find in use advanced aerodynamic models.
However this is not the case. As explained next, the use of engineering aerodynamic models based
on the Blade Element Momentum Theory (BEMT) is compulsory at least in wind turbine design.
Other more sophisticated models do exist including vortex and CFD models. But their use is restricted
to research, targeting a better understanding of the underlying physics and an assessment of BEMT
based models. In general aerodynamic models can be classified according to their complexity which
in several cases is connected to fidelity, a conjecture not always well supported. BEMT based models
belong to the low-complexity class, vortex methods to the medium-complexity class and CFD to the

high complexity one.

BEMT based modeling was the first considered already by Froude [5], Betz [6, 7] and Glauert [8] (see
also [9-12]). Its main advantage is the very low cost compared to any other model ever developed or
proposed. Even though computational speed has increased by several orders of magnitudes and the
user time has equally decreased, BEMT remains the absolute winner. The main reason for that is that
the design process of wind turbines requires a substantially more extensive list of load cases
compared to any other aerodynamically dominated sector. The environment in which wind turbines
operate is by far more complicated and more extreme which increases the number of load cases
needed in order to reproduce the complete design load spectrum. A rough estimation of the
computational time given in [13] indicates that 7 1076 time steps or approximately 81 days of

simulations are required if each step lasts 1 sec. Note that this corresponds to one of the several



design cycles that are carried out. Therefore, any aerodynamic model that requires more than 1 sec

per time step is out of question.

Although BEMT appears to be a must, this does not imply that BEMT is either accurate or rigorous.
There are several parts in the modeling that apply empirical corrections in combination with critical
simplifying assumptions. BEMT models solve the axial and angular momentum equations in stream
tubes that are assumed independent the one from the other. Making use of simple aerodynamic
considerations, the flow characteristics through a stream tube are correlated to aerodynamic loads
that are obtained from 2D look-up tables for the lift-drag and moment coefficients. The output of the
model is the axial and circumferential induced velocities. Because there is no link amongst the
stream tubes, there is no specific account on any 3D feature of the real flow. In particular at the root
and at the tip the theory fails to give satisfactory results, which has led to the so called root and tip
corrections. Furthermore in its original form only axial and steady inflow conditions are considered

and so dynamic inflow effects as in the case of yaw need special treatment.

There exist various versions of BEMT based models that differ in their details some related to purely
implementation aspects [11, 14]. Although there is no complete consensus, still there is good
agreement on the quality of predictions obtained with BEMT models if properly calibrated. The latter
is not necessarily negative. Semi-empirical models although not strictly predictive, they are tunable
and can indeed become very good design tools. In fact since BEMT modeling is in use for long,
research has judiciously improved and generalized the corrections that are applied [15]. Of course
each time the design context changes, everything must be checked and eventually redone. For
example by increasing the size of the rotor, there is a significant shift in the Reynolds number, the
airfoils become thicker and various flow features such as transition and compressibility might
become important. Recognizing the knowledge gap issues in these respects, the recently launched
EU project AVATAR [16] addresses the validation, improvement and eventual recalibration of BEMT
models. In this connection the shortcomings of BEMT are addressed through comparisons with more
advanced aerodynamic theories such as vortex theory or CFD. In particular dynamic inflow, operation
in heavy loading and operation in stand still conditions constitute some of the aspects that need
reconsideration in BEMT theory [17].

The next alternative to BEMT concerns the so called vortex methods [18]. Vortex theory is quite old
and is part of the classical aerodynamic theory. The most well-known examples are the lifting-line
and lifting surface theories that were developed in the early 60’s for fixed wing aircrafts [19]. Vortex
models are 3D by construction with strong coupling along the span which is completely absent in
BEMT. In Vortex models tip and/or root corrections are no longer needed while the assumption of
infinite number of blades is dropped. Also in the free wake formulation of these models the response

to dynamic inflow is straightforward.

The most detailed version of vortex methods is the one that considers the exact 3D geometry and is
linked to potential theory and panel methods. [20-24]. Although vortex methods address most of
BEMT shortcomings, they still rely on 2D aerodynamics and look up tables for correcting the loads for
viscous effects. One thing that vortex methods are expected to do well is the calculation of the so-



called induction from the wake [25]. Of course these improvements have certain side effects. In
particular the cost of vortex models is substantially higher compared to BEMT especially when the
wake is left free to evolve. Cost reduction techniques have been implemented which have rendered
long simulations feasible. On one hand the Particle Mesh technique introduced in [26] and further
extended in [27, 28], together with the so-called hybrid wake techniques [29-31] have substantially
reduced the cost. Nevertheless switching to vortex methods in the design phase is still impractical.
However taking into account that vortex methods are easily parallelized and the progress in multi-
processor computing, it will not be long before vortex models become a true competitor of BEMT

modeling.

Models based on CFD are regarded as the best choice in terms of completeness and accuracy. The
most frequent option is to solve the Reynolds Averaged Navier Stokes (RANS) equations
supplemented with appropriate turbulence closure and transition modeling. Out of the variety of
turbulence closures, eddy viscosity models are most frequently used, such as the Spalart-Almaras [32]
and the k-w [33, 34]. As regards transition, there are models based on flat-plate boundary layer
theory, on stability considerations as in the e" method [35], and on similarity theory as the Reg-y
model [36, 37]. Compared to other models, RANS requires the least of external input or ad-hoc
modeling. They can reproduce the complete 3D flow around a wind turbine including the estimation
of loads. RANS simulations are regarded to be of high-fidelity. Recently Sorensen [38] published a
very good survey on current status of CFD wind turbine aerodynamics pointing out the achievements
and the open issues. Clearly the most important issue concerns the cost which is directly linked to
the size of the grid and the stiffness of the problem. High Reynolds flows with the eventual onset of
separation do not favor compromises in terms of cost, while in cases inherent unsteadiness of the
flow becomes important RANS modeling is not enough and even more demanding formulations of
the DES (Detached Eddy Simulation) or the LES (Large Eddy Simulation) are required. However
despite of the existing open issues, it has been shown that RANS models clearly outperform all other
less complex models [39]. Aiming at reducing the cost of CFD based models without compromising
the accuracy, recently hybrid vortex-CFD models have been proposed with quite promising results
[40].

1.2.2 Hydrodynamics

The majority of hydrodynamic models are based on potential theory. Linear as well as nonlinear
models can be formulated depending on the characteristics of the sea state. Linear modeling is well
established and numerous examples can be found with respect to offshore platform and ship
applications (see Chapter 4). All formulations solve the Laplace equation subjected to solid and free
surface boundary conditions and combined with far-field conditions. Within the context of potential
theory, there are two alternative formulations: the first uses the full space Green function, while the
other uses the so called free surface Green function which satisfies by construction the free surface
and far field conditions. When the full space Green function is used matching with the far-field

solution provided by Garret [41] is necessary. If modeling is restricted to only linear theory, these



two alternatives are more or less equivalent despite the significant implementation differences. In
the free surface Green option, only the solid boundaries are discretized while in the full-space Green
option discretization includes the free-surface together with the far-field matching boundary.
However the cost of calculating the convolution integrals of the free-surface Green functions is
substantially higher and the procedure by far more complicated. Furthermore if extension to

nonlinear is also sought, then the full space Green function is the only choice.

An alternative to the above options consists of solving the Laplace equation in variational
formulation using the finite element method. The method requires matching with a far-field solution
as in the case of the full space Green method and is also extendable to nonlinear problems. Detailed
references with respect to the solution of the nonlinear hydrodynamic problem are given in Chapter
5.

With respect to offshore wind energy applications, two methods are widely used for estimating the
hydrodynamic loading. The first is based on linear potential theory and the second on Morison’s

empirical equation.

Linear potential theory accounts for wave excitation, diffraction and radiation (added mass and
added damping) terms. In order to account for the viscous damping, the quadratic damping term
appearing in Morison’s equation is usually added on top. Linear potential theory has solid theoretical
background within the range of its validity and requires no calibration, except for the damping
coefficient from the Morison’s equation. The wave kinematics is based on the Airy linear theory and
is applied up to the mean sea water level (MSL). Although linear potential solvers require some non-
negligible computational effort, their overall cost remains low. This is because within the linear
context, the hydrodynamic problem is solved in the frequency domain only once, providing the
necessary operators (exciting loads, added mass and damping coefficients) that are input into the
dynamic equations of the full model. Potential theory can be also extended to 2" order considering
the quadratic transfer functions, in order to include mean drift forces or 2" order difference and/or
sum frequency loads. These loads are proportional to the square of the wave amplitude A and could
be of significant importance in case of increased wave steepness (H/A) at low or high wave
frequencies [42]. Often only the difference frequency loads are considered using Newman’s
approximation [43] which only requires the mean drift forces from the solution of the 1* order

hydrodynamic problem [44].

On the other hand, Morison’s semi-empirical equation [45, 46] applies to slender bodies and is valid
in case the ratio A/D>5, where D is the characteristic length of the body (i.e. the diameter) and A the
wave length. In order to estimate the wave loads two hydrodynamic coefficients (inertia and drag
coefficients) should be defined. Morison’s equation accounts for wave excitation, diffraction,
hydrodynamic added mass and viscous effects. The linear radiation hydrodynamic damping is not
accounted for. Since Morison’s equation is subjected to calibration is approximate by definition and
introduces a certain level of uncertainty. Regarding its accuracy, it depends a lot on the context of
the calibration followed. At engineering level, if the empirical parameters are fitted based on

measured data, then higher order wave theories such as the stream function [47, 48], can be used. In



this respect, loads from nonlinear wave theories at the instantaneous water level (IWL) and the

instantaneous position (IP) of the body can be computed.

Currently for bottom mounted support structures the hydrodynamic modeling is exclusively
performed by Morison’s equation, while in case of floating wind turbine both the potential theory

and Morison’s equation are applied.

1.2.3  Structural dynamics

Structural modeling of wind turbines is almost exclusively based on beam theory [49]. Full 3D FEM
structural modeling is only applied to certain areas such as the hub and the nacelle where beam
theory fails to provide design information. All early developments considered linear classical beam
modeling. Making ad hoc additions or corrections certain nonlinearities were included, as for
example the centrifugal stiffening due to the rotation of the blades. But the basic modeling remained
linear giving relatively stiff designs. In this context linear models provided sufficiently good
predictions so there was no need to consider more advanced structural modeling. However, as the
size of commercial turbines increased beyond the MW scale, and the pressure for cost reduction
became critical, blades started to become more flexible and the validity of linear beam theory was
put in doubt. Larger deflections were anticipated leading to significant nonlinear coupling effects and

potentially unfavorable blade loading [50-52].

So, over the last few years, a number of advanced nonlinear beam models have been implemented in
the new generation of aeroelastic design tools. Options in this respect, include nonlinear intrinsic
formulations (generalized Timoshenko methods) [53], multi-body formulations [54, 55] and
truncation methodologies [56, 57]. Methods in the first category apply an extended form of
Hamilton’s variational principle. However, instead of expressing variations in terms of displacement
and rotation variables, they adopt an intrinsic formulation of beam theory, see [58]. The formulation
is intrinsic if not tied to a specific choice of displacement and rotation variables. Methods in the
second category, divide each component into a number of interconnected elements that are either
considered as (flexible) beams or as rigid bodies. In the case of rigid elements, concentrated springs
can be added at the connection points in order to account for the flexibility of the component in
different directions. For the flexible beams, all types of models have been used, ranging from simple
linear to geometrically exact and nonlinear ones. Finally, the last category comprises methods in
which the nonlinear dynamic equations of the deformed beam are derived by following a consistent
ordering scheme where higher order terms beyond a certain degree of accuracy are truncated [59].
In deriving the dynamic equations, the assumption of homogenous isotropic material is usually
made. In this way, the necessary input is limited to the standard set of structural properties (bending
stiffness in flapwise and edgewise direction, torsional stiffness etc.). Recently a number of methods
have been developed in which the full stiffness matrix of the composite lay-up is taken into account
[60, 61]. Methods of this type need as input the detailed inner structure of the composite materials
in order to derive appropriate equivalent beam structural properties. Such models become attractive

as passive load alleviation based on the structural tailoring of the inner structure of the blades [60], is
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gaining attention. Furthermore, in some of the newly developed tools the possibility to simulate

nonlinear material behavior and the structural damping characteristics [53] is also offered.

Amongst the existing design tools, some directly apply the finite element method (FEM) to the full
dynamic system of equations [62-64] while others adopt reduced order models based on various
order reduction techniques, as the linear modal expansion [65, 66] or the Craig-Bampton method
[67]. In the latter case the aim is to substantially reduce computational effort in view of the long list
of simulations required by the IEC standard [68, 69]. Reduction of computational cost has also led

most modal codes to suppress torsion [65] assuming that blades are rather stiff in torsion.

1.2.4 Mooring lines

Modeling of the mooring lines is performed by either applying quasi-static or dynamic mooring line
modeling. The former solves in every time step the static catenary equations without considering
inertial effects or hydrodynamic loading (see for example [46, 70]). The latter solves the dynamic
equilibrium equations of the mooring lines, as performed for any flexible part of the WT. Inertia of
the mooring line and gravity load, as well as hydrodynamic loads are considered usually using
Morison’s equation. The interaction of the mooring line and the seabed should be taken into
account. Methods that follow the FEM context (see section 2.3.2) or multibody models have been
developed. Finally some codes model the mooring lines by using preprocessed data derived by a line
analysis method. The simplest way is to model the mooring line as generalized springs (a 6x6 stiffness
matrix) and a constant force corresponding to gravity or pretension directly applied at the degrees of
freedom (dofs) of the floater. An improvement is to consider nonlinear springs through force-
displacement relationship either referring to the degrees of freedom of the floater or at the fairlead
of each line. The latter simplified case permits the estimation of the tension at each mooring line,
while the former two options only estimate the total effect of the mooring line at the dofs of the
floater. These thee simplified options were available in the Offshore Code Comparison Collaboration

project [71].

1.2.5 Synthetic tools

Hydro-servo-aero-elastic tools can be classified depending on the methods adopted for the modeling
of each building block (hydro, servo, aero, elastic) as presented in the previous sections. In this
connection, the first classification concerns the structural modeling. Two main classes/groups of
codes exist: the FEM based and the modal based. FEM codes usually consider a large number of
degrees of freedom, while modal codes end up having a small number of degrees of freedom. FEM
models are regarded superior mainly because they can be extended to nonlinear formulations.
Otherwise, in case of small strains as is the usual one, reduced order models (ROM) based on modal
representation by component can be accurate in an engineering context. Models that use global
modes are by default linear and therefore they necessarily suppress nonlinear coupling that is still

present in ROM based on a modal representation at the component level.
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The second classification concerns the way hydrodynamic loads are calculated. Two different
methods are widely used in case of floating wind turbines: the potential theory and Morison’s

equation.

The third classification refers to the modeling of the mooring lines. As already discussed two
modeling options are widely used, the quasi-static and the dynamic mooring lines modeling which is
of higher fidelity.

Finally, the forth classification is related to the modeling of the aerodynamic loads. The default
option is to use BEMT alongside with corrections and add-on’s. Figure 1.4 presents the list of the
state-of-the-art tools that participated in OC4 phase Il project. All participants in OC4 (and also in
0C3) use BEMT aerodynamic modeling. Due to its semi-empirical character, the performance of
BEMT models depends on the specific implementation and corrections followed which are not

always clear.

Previous attempts to include more sophisticated aerodynamic models have not ended up to a
complete aeroelastic simulation tool. The first successful model in this respect was made at NTUA by
coupling GAST with GENUVP [56]. In particular the hybrid wake modeling together with the
application of the particle mesh method allowed conducting complete 10min simulations with
turbulent wind inflow in the context of the IEC standard. Clearly the cost is by far higher but feasible,

especially on multi-processor computers using parallel computing.

Finally, in addition to the already presented building blocks, the complete hydro-servo-aero-elastic
tools should be able to model the controlling system as well as the environmental excitation. Current
wind turbines are speed and pitch controlled. Usually baseline controllers are incorporated into the
codes, while advanced controllers can be loaded using external subroutines as DLL files. The
environmental excitation refers to the wind, the wave and sea current, as well as the soil properties
in case that modeling of the foundation is carried out (bottom based support structures or mooring
lines). Various inflow conditions are defined in order to simulate the dlcs defined in the IEC
regulation, for example steady or turbulent wind, vertical shear, extreme gust cases, direction
change etc. Regular and irregular wave conditions are defined usually based on the Airy theory. If
Morison’s equation is used then stream function theory is often applied in order to accurately
consider nonlinear wave kinematics for extreme wave height cases, valid up to the instantaneous
water level. Steady sea currents are widely used exponentially decaying with the water depth.
Modeling of the foundation is performed by properly defining linear as well as nonlinear springs (see
section 2.3.4.3 and [72]).
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Code Structural Mooring
Code D v 0C4 Participant Dynamics Aerodynam ics Hydrodynamics Model
MREL, CENTEC, T: Mod/iMB
FAST NREL IST, Goldwind, CSIC ‘ P: Rigid (BEM or GOW +DS PF + QD + (QTF) Qs
FAST w8 NREL MREL TPMg?g.fﬂB (BEM or GDW +DS PF + ME Qs
CHARM3D+ TAMU+ T: Mod/MB PF + ME + {MD +
FAST NREL () ‘ P: Rigid (EEILICT ) B NAJ + {IP + IWL) A3
OPASS+ CENER+ T: Mod/MB
FAST MREL CENER P: Rigid (BEM or GDW DS PF + ME LMDy
- - T: Mod/MB
UOU+FAST UOU+NREL University of Ulsan P: Rigid (BEM or GDW DS PF + QD Qs
GH, CGC, T: Mod/iMB
Bladed GH POSTECH P MB (BEM or GDW DS ME + (W L+ IP) Qs
Bladed Advanced T: Mod/MB
Hydro Beta GH GH \ e (BEM or GDW 1+DS PF + ME + (/L) Qs
OreaFlex Orcina 4Subsea PT:RFEEM BEM, GDW, or FDT PF + ME LM/Dyn
T: MB/FE
HAWC2 DTU DTU ‘ P: MBIFE (BEM or GDW +DS ME FE/Dyn
hydro-GAST NTUA NTUA T: MB/FE BEM or FWV PF + ME + (IP) FE/Dyn
P: MB/FE
Simo+Riflex+ MARINTEK+ T: FE
AscaDiyn NREL Ca305 ‘ P FE (BEM or GDW #+DS PF+ME FE/Dyn
Riflex-Coupled MARINTEK MARINTEK PT:RFigEid BEM+FDT PF + ME + {IWL) FE/Dyn
T
3Dflcat IFE-UMB IFE [ LEEE} oo sted) BEM+FDT ME + (IWL) FE/Dyn
T: FE+Mod/MB
SWT SAMTECH SAMTECH & IREC P FE +Mod/MB BEM or GDW ME + {IWL) FE/Dyn
. PRINCIPIA- T: FE PF + ME + {MD +
DeapLinesWT \FPEN PRINCIP 1A P:FE BEM+DS QTF/NA) + (IP + IWL) FE/Dyn
SIMPACK+ T: Mod/MB
HydraDyn SIMPACK SWE P: Rigid BEM or GDW PF + QD Qs
University of . . T: FE
CAsT Toki University of Tokyo W: FE BEM ME Qs
. T Ni&
Wavec2Win WavEC WavEC A NIA PF + QD Qs
F: Rigid
T Ni&
WAMSIM DHI DHI [ P: Rigid MNiA PF + QD as
PF = potential flow theory
st rhing BEM = blade-element/momentum 12 ST aq.
P = platfom GDW = lized d . K MD = mean drift Qs = i-stati
Mad = modal S QTF = quadratic transfer function v e
MB = multi-body FOT 'f'lt_ ﬂm'c ic thrust MA = Newman's approximation LM Y-I'll =L CHTEINTC:
FE = finite element FW_V '_Bfr eramlcrt s IP = instantaneous position Slltampedineiss
N/A = not applicable STO6 WA I Al WL = instantanecus water level
QD = quadratic drag

Figure 1.4: Overview of state-of-the-art codes participated in OC4 phase Il [taken from [73]]

1.3 Contribution of the thesis

The thesis concerns the development and verification of design tools related to Offshore WT one of
which is hGAST. The specific software is a descendent of GAST which was originally developed for
onshore wind turbines at NTUA. The original version [63, 74, 75] used BEMT aerodynamic modeling,
linear Euler-Bernoulli beam theory for the structure while from the beginning the dynamics was
formulated in a multi-body context. Since then GAST went through several revisions and extensions.
With respect to structural modeling, in [56] 2" order beam theory was added as an alternative to
classical Euler-Bernoulli beam modeling while in the course of the present thesis [51, 76] the
Timoshenko beam was implemented together with sub body discretization. With respect to
aerodynamic modeling GenUVP was first added in [56]. In [77, 78] linear and nonlinear aeroelastic
stability analysis was formulated and validation was carried out for models of varying complexity.
BEMT as well as vortex aerodynamic models were combined with 1% and 2™ order beam theory
indicating the superiority of the more complex models. Finally in [79] controls were added leading to

a complete servo-aero-elastic tool.
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The onshore version of hGAST has been extensively validated against measured data in the past
within the framework of several EU research projects such as MOUNTURB [80], COMTERID [81],
VEWTDC [82], STABCON [83] and UPWIND [84] (see for example [56, 74]).

Within the present thesis in addition to the implementation of the Timoshenko beam model and the
incorporation of the sub-body technique, the 3D vortex aerodynamic model GENUVP has been

successfully coupled. By completely reprogramming GAST a parallel version has been concluded.
In this respect hGAST as finalized within the present thesis can perform:

e Eigenvalue analysis providing the natural frequencies and damping ratios of the fully coupled

system.
e Linear aeroelastic stability analysis.
e Time domain calculations and provide extreme and fatigue loads.

All of the above can be carried out using: either BEMT aerodynamic modeling or free-wake vortex
modeling; either plain 1* order beam theory model or 2" order beam theory or sub-body modeling
that takes into account large displacements and rotations. Furthermore the following new
capabilities have been added: a consistent Reduced Order dynamic Model (ROM) [85], the complete
modeling of Vertical Axis Wind Turbines (VAWT) [86] and the generalization of the control module to
also accept controllers defined as DLL. In all of the developments regarding hGAST, special care was
given so that the interfaces between the physical sub-models are conservative and of general

applicability.

In parallel to these developments the present thesis has addressed the hydrodynamic effects and any
additional couplings appearing in offshore designs. They include the jacket and floater modules as
well as the mooring lines module in which the extra dynamics due to the interaction with waves and
currents are included. The jacket module refers to the structural modeling of multi-member
configurations while the floater module refers to the modeling of the dynamics connected to the 6
rigid body motions of the floater. Then as regards the hydrodynamic loading two options are offered:
the application of Morison’s equation and the use of hydrodynamic operators (added mass, added
damping, exciting loads and mean drift forces) that are pre-calculated based on linear potential
theory. Also the mooring module offers two options: an engineering one which amounts to a
generalized stiffness matrix and a dynamic mooring line model using co-rotating truss elements

together with a seabed interaction model.

In addition to the work done in hGAST, a 3D frequency domain hydrodynamic solver has been
developed and used as a pre-processor to hGAST providing the necessary hydrodynamic operators.

Also it is a design tool for floaters during the preliminary stages [87].

Finally, in view of further advancing hydrodynamic modeling, the 2D nonlinear hydrodynamic
problem has been addressed and a time domain solver has been finalized. This development
constitutes the first step towards a fully nonlinear solver for offshore wind turbines with respect to

wave and current loading. The developed solver has been validated against theoretical and measured
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data and other numerical predictions in an extensive list of generic problems that end up with a

floating moored 2D barge.

1.4 Outline

In Chapter 2 the theory of the developed hydro-servo-aero-elastic simulation platform hGAST is
presented. It includes the framework taken from analytic dynamics and the modeling of the
structural dynamics, the aerodynamics, the hydrodynamics and the mooring lines, as well as of the

wind and the wave excitation.

In Chapter 3 the verification of the hGAST capabilities for various offshore wind turbine concepts is
presented. This part is based on comparisons against other simulation results that were part of the
IEA OC3 and OC4 international activity on code-to-code comparisons. Furthermore in the same
chapter assessment of two important design aspects are considered. The first assesses the nonlinear
coupling between the dynamic wake effects and the floater motions while the second concerns the

geometrical nonlinearities that are expected to play an important role in future more flexible designs.

In Chapter 4 the 3D wave-body interaction hydrodynamic problem is solved in the frequency domain
by means of a hybrid integral equation method. Verification of the method is carried out in

comparison to numerical results for the OC3 spar-buoy and the OC4 semi-submersible floaters.

In Chapter 5 the modeling of the fully nonlinear wave-body-current interaction hydrodynamic
problem is considered. A 2D solver is developed based on BEM and the mixed Eulerian-Lagrangian

formulation which is validated against theoretical, numerical and experimental data.

In Chapter 6 the thesis is concluded summarizing the work and indicating topics for future research.
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Chapter 2

Coupled hydro-servo-aero-elastic analysis: Theory

The present chapter provides the theoretical background of hGAST. The coupled problem for the
complete system is formulated in the context of analytic dynamics and derives from the identification
of the different underlying physical mechanisms that define the building blocks of hGAST. This
includes aerodynamics, hydrodynamics, structural dynamics, elasticity and control. First the overall
modeling context is described and then each of the building blocks is considered separately. In its
present form, hGAST can handle all the known offshore concepts (bottom mounted monopile, tripod
and jacket support structures or spar buoy, semi-submersible and TLP floating ones) and offers
options of varying complexity ranging from comprehensive up to advanced modeling procedures.
hGAST surpasses the currently available state of art tools in terms of unsteady aerodynamic modeling
and geometrical structural nonlinearities, while uses the potential theory or Morison’s equation for
hydrodynamics and a dynamic mooring line method for modeling catenary or TLP mooring systems.
hGAST has a flexible modular structure with generalized interfaces and therefore is regarded as a

simulation platform rather than single software.

2.1 Introduction

hGAST is a fully coupled hydro-servo-aero-elastic simulation tool for Offshore Wind Turbines that has
been built in modular form in order to accommodate models of varying complexity for its basic
building blocks; namely the hydro- and aero-(dynamic) modules, as well as the elastic one which also
includes the system dynamics and the control module. In this respect the modeling context is the
most general possible and so are the interfaces that bring together in one single package the
separate modules. In principle any kind of model for each of the separate modules can fit into the
hGAST platform. For example in addition to the standard BEMT, a 3D free wake vortex particle
method of higher fidelity has been also implemented. So in this respect hGAST acts not only as a
specific simulation tool but also as a modeling platform that can accommodate other modeling

options in future.
Outline of the chapter:

- InSection 2.2 the modeling framework is defined.



16

In Section 2.3 the details on the structural modeling are given. This section explains the
multi-body approach followed; the formulation of the Timoshenko beam model; the

modeling of the mooring lines and the coupled solution procedure.

In Section 2.4 a brief account is given on how the dynamic equations of the control system

are introduced and coupled to the complete system.

In Section 2.5 the two aerodynamic models that are available in hGAST are described, namely

a Blade Element Momentum (BEMT) model and a 3D vortex particle free wake one.

In Section 2.6 the modeling of hydrodynamic loads is presented. It contains a brief account
on linear theory together with the formulation of Morison’s equation. Here the aim is to
explain how the hydrodynamic loads enter into the dynamic equations. A detailed
formulation of the linear theory and a description of the associated numerical tools that have

been developed are given in Chapter 4.

In Section 2.7 the modeling of the external conditions, namely the wind and sea state, are

briefly presented.

Comparison to other existing simulation tools is carried out in Chapter 3 in connection to the

verification of hGAST as a whole. At modular level, specific discussion on how hGAST’s basic modules

compare to other existing ones is given in the subsections through references.

2.2 The modeling framework

hGAST is formulated within the framework of dynamic systems. The complete system is considered

as a combination of interacting components seen in a generalized context. This combination includes:

1.

the air flow which is developed by the wind inflow and interacts with the part of the

structure above the sea

the water flow which is developed by the incoming waves and currents and interacts with

the submerged fixed or floating structure of the system

the solid structure of the system which interacts on one hand with the air and water flows
and on the other with the generator (and eventually the electrical grid) and the control

system

the structure of the sea bed which interacts with the mooring lines of floating wind turbines

or with the substructure of bottom mounted wind turbines

the control system which specifies the pitch for every blade and the generator torque based

on response input and by that interacts with the structure

the electrical system which provides the generator’s operating conditions
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The behavior of each component and of the system as a whole is defined by its state which includes
all the necessary degrees of freedom. The governing equations of the system take the form of a set

of 1* order evolution equations,
d . o~
d—u+A(u) u=f (2.1)
t

where U denotes collectively all of the degrees of freedom, A(.) is a properly defined operator that
includes all inter-component interactions and f contains all external excitation terms. The

dependence on U signifies the eventual nonlinearity of the problem.

Let subscripts Iz{a, h,s, c, e, b} denote a set of indices that make reference to the various
components: a=the air flow, h (hydro)=the water flow, s=the dynamics of the structure, c=the control
system, e=the electrical grid and b=the sea-bed conditions respectively. Then,
u={u}, A=[Aij] and f={f},i,j I,

A(D) o, =) A,(@) 0, (2.2)
j

In the general case of a nonlinear problem, (2.1) is solved iteratively. For the sake of simplicity it will
be assumed that time integration is carried out with a 1** order Euler scheme. Let U° denotes the
state at the previous time step and U a prediction of the current state. Then,

=0 +6u (2.3)

defines linearization with respect to the known current state U so that,

A(b) 0z (A(u*)+aA(a*) 5&)-(&* +5a)

* * * * * (2.4)
= A(U) 0 +(A@)+0A@) 0 60
By substituting into (2.1), the following incremental formulation is obtained,
1 * * * * * a*_ﬁo
—+(A(u )+O0Au)u )du=f-A@u)u — (2.5)
(AW +oA@) ) (@) ——

Evaluation of OA(U') is often difficult, so depending on the stiffness of the problem an approximate
form is used. The usual approximation is to only keep the “diagonal” term. This means that for every

component,
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oA, ..

OA(') 0| =—"a, 2.6
() p= (2.6)

i

Provided that convergence is achieved, i.e. 5U— 0, such an approximation will not affect the

solution.

Not all component equations are initially formulated as 1* order problems. Speaking of loads and
dynamic equilibrium the usual formulation in structural dynamics leads to 2" order equations of the

form:
Mu+Cu+Ku=f (2.7)

where M, C, K denote mass, damping and stiffness, u denotes the displacements and f the external
loading. By augmenting the set of degrees of freedom to also include velocities, U ={u,0} a 1* order
formulation is readily obtained which, besides leading to a uniform expression, is needed in

aeroelastic stability analysis.

For a mechanical dynamic system, the interaction between components is defined in terms of
kinematics and dynamics. Kinematics is related to displacements and rotations while dynamics is
related to load transfer involving forces and moments. For a system in dynamic equilibrium,
continuity constraints are set for both kinematics and dynamics. In mathematical terms, the two
correspond to the essential and natural conditions of the associated problems. This means that if
several components interact, then one component provides the kinematics while all other feed-back
loads. In all of the interactions defined on a floating wind turbine this rule applies except for the
control system for which this concept of interaction is interpreted in a generalized state space

context.

Taking each component separately, the degrees of freedom and the interactions that are defined are

as follows:

1. Air flow: The degrees of freedom are related to the associated aerodynamic loads. As
explained in the sequel, the air flow interaction with the rotor that provides the aerodynamic
loads is simulated either by the Blade Element Momentum Theory (BEMT) or by vortex
theory. In BEMT, the degrees of freedom are the axial and circumferential induction factors
which specify the flow kinematics. In vortex theory, the degrees of freedom are the bound
dipole intensities on the blades which are also of kinematic nature. In both cases the
governing equations are 1% order in time. In BEMT the equations correspond to the
momentum and moment of momentum conservation in stream tubes, while in vortex theory
the equations correspond to the Bernoulli equation that translates the dipole distributions
into pressure and thereby into loads. In this case the no-penetration condition that defines

the dipole distribution acts as kinematic constraint.
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The “air flow” component interacts with the blades by providing the aerodynamic loads while
receiving from the structural part the updated blade geometry as well as the associated body
velocity distribution. Both of the latter are introduced in the kinematic conditions that define

the aerodynamic loads.

Note: In both aerodynamic models, the estimation of the loads also includes the so called
dynamic stall corrections. It consists of a separate model within the basic one which is

formulated as a set of dynamic equations.

2. Water flow: The water flow is connected to water waves and eventually the sea current. The
current together with the incoming surface waves constitute external excitations while the
radiated waves generated by the response of the sub structure are internally generated
excitations. In the present state of art, the water flow is considered within the context of
linear hydrodynamic theory which largely simplifies the whole formulation. Linear theory(l)

allows solving the problem in the frequency domain and through that defining explicitly the

necessary operators, namely the added mass, damping and stiffness operators plus the
excitation forces, without any need of having specific degrees of freedom except for those

defining the motion of the floating body, if applicable.

Extension to potential nonlinear theory would require solving the corresponding flow
equations. As indicated in Chapter 5, in such a modeling context, the degrees of freedom
needed are the boundary (surface) potential distributions which as in the case of air flow will
appear in the Bernoulli equation that defines the pressure field and the free surface
elevation. The application of the Bernoulli equation on the wetted surface of the structure
will define the loading, while its application to the free surface will determine the elevation

together with the kinematic condition.

The water flow interacts with the structure by providing the loading while receiving from the
sub structure its updated geometry as well as the associated velocity distribution. Both are
needed in order to fulfill the no penetration condition which as in the air flow case acts as

constraint.

3. Solid structure: The solid structure includes as sub-components: the blades, the drivetrain,
the tower, the substructure and the mooring lines, in the case of a floating wind turbine. All
sub-components are modeled with 1D models based on either beam theory or truss
elements. The degrees of freedom refer to displacements and rotations that include elastic
as well as rigid body motions. The structure interacts with the air and water flows over the
corresponding wetted surfaces. The structural degrees of freedom together with their time
derivatives provide the current geometry of these surfaces and the associated velocities that
are considered in the corresponding flow boundary conditions. Rigid body motions are

introduced either through the control system or as constrained floater motions.

! But also 2™ order theory



20

4. Control system: The control system in most cases has as degrees of freedom the pitch angle
of the blades and the generator torque. Other possibilities include the flap deflection in case
the blades are equipped with deformable trailing edges, the yaw angle if actively regulated in
view of optimizing the performance of a wind turbine in a wind park etc. Input to the control
system are specific sensor readings which by comparing them to targeted conditions, the

output controller variables are updated and fed back into the system.

5. Structure of the sea bed: This part is related to the foundation of either the support structure

itself or of the attachments of the mooring lines. Based on soil characterization, the stiffness
and the damping of the foundation is provided which constraints the kinematics at the sea-

bed connection points of the system.

6. Electrical system: At the end of the drive drain the torque of the generator is specified as

provided by its electrical model. Because the electrical frequencies are by far larger than the
mechanical ones, the modeling of the electrical system which includes the generator and the
connection to the grid ends up giving a characteristic function for the generator torque. But
in principle a fully coupled model is possible. In fact in [88] the full coupling was tested and

results fully supported the validity of neglecting it.

2.3 Structural dynamics

Structural modeling in hGAST is formulated using the multi-component description of the complete
system, as outlined in Section 2.2 and first implemented with respect to structural dynamics in [63,
74]. This includes the kinematics of the system and the associated equilibrium equations. First the
solid structure of the wind turbine is divided into its components as listed below. In between,

connection points are defined at which kinematic and dynamic coupling is carried out.
The solid structure of an offshore wind turbine includes:
- The components of the wind turbine: the blades, the drive train and the tower

- The support structure that can be one of the following: a monopile tower extension up to the

seabed, a tripod, a jacket or a floater
- The mooring lines if present

Unless otherwise specified, all of the above components are considered flexible. Almost exclusively
all flexible components are modeled as beam structures subjected to bending in two directions
including shear, tension and torsion. This applies to slender components such as the blades, the
tower, the brackets of the jacket etc. Certain parts clearly do not fit to the assumptions of beam
theory. This is true for example for the hub, the gear box, the buoyant elements of the floater etc. In
such cases, the common approach is to introduce concentrated structural properties, namely masses,
dampers and springs. In general the above properties are defined as operators involving all 6 motions

(3 displacements and 3 rotations). This option allows easy modeling of rigid bodies as in the case of
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voluminous floaters in which only the mass matrix is needed. Finally, particularly for the mooring
lines the usual modeling considers them as a collection of truss elements only transmitting axial loads.

In order to allow large rotations, co-rotating nonlinear truss elements are used [89].

Currently, there exist two beam models in hGAST: a 2" order Euler Bernoulli beam model [56] and a
linear Timoshenko beam model [51]. In order to account for large displacements and rotations, a
“sub-body” modeling approach has been introduced [76]. Beams are divided into a number of inter-
connected “sub-bodies”, each having its own coordinate system and with respect to which elastic
deformations are defined. Dynamic and kinematic conditions are imposed at the connecting points.

In this way, nonlinear geometric effects due to large displacements are taken into account.

2.3.1 Modeling of the Wind Turbine components

2.3.1.1 Multibody and sub-body modeling

Following the multi-body formulation, the dynamic behavior of the wind turbine is analyzed by
considering a number of interconnected sub-components/bodies. Each sub-component may
represent a physical structure of the wind turbine (i.e. the tower, the shaft, a blade, the sub-
structure and a mooring line) or a part of it (part of the jacket support structure or part of the blade).
A local coordinate system [Oxyz] is assigned to the beginning of each sub-component, with respect
to which the local elastic displacements are defined. This local frame is allowed to move subjected to
rigid body motions, i.e., 3 rotations and 3 translations assigned to the beginning of each sub
component. The rigid body motions can be zero (i.e. the cantilevered tower bottom at the ground),
prescribed (i.e. the rotation of the shaft with constant rotational speed), controlled (i.e. the rotation
of the shaft or the pitch of the blade based on the controller system demand) or dynamically
constrained through the system solution (i.e. the motion of the tower root is defined by the dynamic
equations of the floater in case of a floating wind turbine; the elastic motion of a sub component
follows the elastic motion of the previous bodies). For example, the blades are subjected to pitch
motion (a rigid body motion directly imposed to the blade by the control system), azimuthal rotation
and yaw rotation (rigid body motions indirectly imposed to the blades through the drive train and the
nacelle) and the elastic translational and rotational motions of the drive train and of the tower. Seen
from a sub component stand point, these constitute extra motions that generate extra inertial terms,

which must be added in the equilibrium equations.

Let R* denote the position vector of the origin [Oxyz] of the “k” component and T“ the local to global
rotation matrix (see Figure 2.1); then the position of a point on the k-th component with respect to

the inertial (global) frame [OgXgYesZal, re* and its first and the second time derivatives are defined as,
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ry=R“+T"r"
Ff =R 4+ T r 4T ¢ (2.8)

=R T 2 T T
while the acceleration expressed in local coordinates is defined as,

(T = (YR 4 (T) A 2 (1)

g v
accelerationof theorigin  centrifugal acceleration Coriolis acceleration

(2.9)

Equation (2.9) contains the centrifugal and Coriolis acceleration terms that appear through the time

derivatives of T.

Figure 2.1: Definition of a multibody configuration and the global and local coordinate systems

R“ and T* are defined as a sequence of displacements and rotations d; and t; that connect the local

frame [Oxyz] of k-th component to the global frame [OgXeYszal,
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ri=d_+t, -{...[dz +t, -(d1 +t, -rk)]} =

J(k) (2.10)
R =d, +t,-{.[d,+t,-d ]}, T'=]]¢,

j=1

Each of d; and t; is connected to either a single displacement or a single rotation in a certain direction.
By collecting all displacements and rotations that are involved in the definition of R* and T, for all
sub components, the vector of kinematic degrees of freedom (dof’s) q is introduced. Each element of
q is associated to a certain direction of rotation or translation and so d;j=d;(q,;dir,) corresponds to a
g, displacement in the dir, direction and similarly for t,. In general the elements of q are time
dependent and therefore Rk=Rk(k;t) and Tk=Tk(qk;t) where q, denotes the restriction of q for the k-th
component. If g, refers to a controlled rigid body motion, then the corresponding dynamic equation
is added to the system in the control system part. If g, is an already existing elastic dof then a simple
assignment equation is added. For example, the blades follow the elastic motion of the tower [Figure
2.2, left] and so the tower top deflections are included in q. Furthermore the blades will follow the
yawing of the nacelle, the rotation of the shaft and the pitch rotation, which are all included in q as
dof’s of controlled motions. The motions of the supporting structure of a floating wind turbine and

the teetering angle of two bladed rotors are also included as dof’s in q [Figure 2.2 right].

u flapwlse P y
bending

qgenerator

tower for aft
bending
rotation

4 Qfoundation
7 X, X 2 Xa, X

Figure 2.2: Examples of effective couplings in multi-body configurations. Left: Tower fore-aft bending induces a flapwise
deflection of the blades; Right: Pitch and teeter rotations add rigid body motions to the blades
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In addition to the kinematic conditions that are imposed at the connection points, loading conditions
are also satisfied. In particular, at every connection point, one of the connected bodies contributes
the displacements and rotations to all others, which in turn contribute their internal (reaction) loads.

So, in the previous example the tower will receive the loads from the nacelle.

The advantage of the above formulation in comparison to other multibody formulations that apply
Lagrange multipliers is that the resulting dynamic equations of motion can be easily linearized
analytically and thereafter linear eigenvalue stability analysis can be performed with respect to a
possibly highly deflected steady or periodic state. The nonlinear kinematics defined in (2.9), will
render the dynamic equations of the system nonlinear irrespective of whether the beam model is
linear or not. The nonlinearity is due to the dependency of T, R and of their time derivatives on q.
By assuming small perturbations 8q about the reference state q°, q and its time derivatives (velocity

and acceleration), are approximated as,
q=q"+38q, =9 +59, 4=4°+3q (2.12)

and so R* and similarly T can be linearized as follows (superscript “k” has been omitted for the sake

of simplicity),

R(a) = R(q’) +OR(q")-8q

R(a) = 0R(q°)-4’ +0,R(a°)-4; -3q, +OR(Q")- 84,

R(q) = OR(q°)-4] +0,R(Q")-G; - +0,,,R(A°)- 4, -G -3q; +
9,R(9°)-6; -6q; +20,R(q°)- G, - 64, + OR(q°)- 64

(2.12)

(.) denote 1st, 2nd, 3rd derivative

with respect to the corresponding q’s. Expressions for T are similar. By introducing the linearized

In (2.12) repeated indices mean summation while 0,(.), 9, (.), 0,

expressions for R and T¢in (2.9) and retaining terms up to 1% order, (2.9) is linearized.

Another advantage is that linear constraints are avoided. Constraint equations increase the stiffness
of the system matrix and slow down convergence. The same multibody formulation can be also
extended to the component level. In this way, major flexible sub components undergoing large
deflections, such as the blades, are divided into a number of interconnected sub-bodies, each
considered as a separate beam element or as an assembly of beam elements. Every sub-body has its
own coordinate system [Oxyz], which follows the deflection of the body. The first end (P1) of the
sub-body is considered as the origin O while the second end (P2) is considered as a free end. As
illustrated in Figure 2.3, the coordinate system [Oxyz] of the v-th sub-body of the k-th body is defined
with respect to the coordinate system [O\xyx2zk] of the component by the position vector of its origin

R¥ and a rotation matrix 'ka. Large deflections and rotations are gradually built and nonlinear

v

dynamics are introduced by imposing to each sub-body, the deflections and rotations of the

preceding sub-bodies as rigid body motions. In particular, a vector ﬁ'; is defined for each v-th sub-
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body of the k-th body that contains the deflections (translations and rotations of the free ends) of

the preceding sub-bodies: RS =R(q';t) and T =T(q’;1).

If a sub component is divided into a sufficiently large number of sub-bodies, then deflections and
rotations, with respect to the sub-body system, are considered small and linear beam equations can
be employed. The position vector of the arbitrary point on the v-th sub-body of the k-th body is

written with respect to the inertial frame [OgXgYsZg] as,
it =R (q,;t)+ T (a, ;1) {RE (@0 + T (@l 0) - (2.13)

where I‘Vk is defined through (2.14). Dynamic coupling of the sub-bodies is introduced by
communicating the reaction loads (3 forces and 3 moments) at the first node of each sub-body to the

free node of the previous sub-body as external load [Figure 2.3].

Zy

body k

o Tlagt)
R” (q,;t)

>

Xg

Figure 2.3: Realization of multibody kinematics at the level of the component
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2.3.1.2 Timoshenko beam theory

For the derivation of the model equations, the loads equilibrium based on Newton’s 2" law is used,
although Hamilton’s principle leads to identical expressions. The procedure can be described by the

following steps,
a) definition of the deformation kinematics and by that definition of the strains
b) introduction of the stress-strain relations and calculation of the internal loads

¢) formulation of the dynamic equilibrium differential equations

undeformed elastic axis

Figure 2.4: Coordinate systems definition of the beam

Let [Oxyz] denote the coordinate system with respect to which the beam axis in the un-deformed
state coincides with the y-axis Figure 2.4. Axes x, z correspond to the two lateral bending directions.
A beam structure subjected to combined bending in the two lateral directions x and z including shear
and torsion and tension in y direction is considered. In the context of 1% order linear theory, the
position r of any point P(x, y, z) in the deformed state is defined with respect to displacements and

rotation angles as follows,
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u
v
100 0 2z O
w
r(r,;t)=r, +U(r,;t) =r, +S(x,,z,)-uly,;t)=r, +|0 1 0 -z, 0 X, 9 (2.14)
001 0 -x "
'9)’
1V

N

ro = (Xo Vo 2,)" denotes the position of P in the undeformed state and u(y,,, t) = (u, v, w, U, 0, g,
contains the two bending displacements u, w, the axial displacement v, the torsion angle §, and the
bending rotation angles 8,, 8, which include the shear deflections. The above expression defines the
displacement field U = (U, V, W)" with respect to which strains are defined. Note that matrix S
depends only on x,, z, while u on y, and time. By integrating over the beam cross section, the
dependence of strains on x,, z, will subsequently define the sectional properties of the beam and so

the derivation will only contain derivatives in the y direction which are denoted with a prime (.)’.

Using the definition of Green’s strains and Hooke’s law for the stress-strain relation of an isotropic

material, the following equations for the stresses are derived:

V . . .
o, :E-syy:E-a—:E-v —E-z,-0,+E-x, -0,
oy,
ou oV - -
Txy:Gx.yxy:Gx‘(E-i_aT]:Gx‘u +Gx.ZO‘6V+GX.0Z (215)
0 0
ov ow . ,
Tyz :Gz'yyz :Gz' Tt :GZ.W _GZ.XO.I?}/—GZ-I?X
0z, Oy,

where €,,, v, V,, denote the Green’s strains and o,,, T,, and 1, the corresponding stresses [Figure 2.5],

E is the Young’s modulus and G,, G, the shear modulus in x and z directions respectively.

Figure 2.5: Normal and shear stress definition



28

By integrating the stresses over any cross section of the beam structure, the internal forces and

moments are obtained which will be later on introduced in the dynamic equilibrium equations,

= IrxydA = I(Gxu' +G,z,0, +G,0, )dA
A A
F,= onydA = I(Ev' -Ez,9, +Ex,0U, )dA
A A
F,=[r,dA= j (6w -G,x,0,-G,0, JdA
A

M, =—jo z,dA= IEzv -Ez, 19+Exzz9)dA

(2.16)
M, I T2 T, % dA =
= I[ Gz, +G,x, )19y +G,zu +G, 2,9, -G x,Ww +G,x,0, ]dA
A
M, = onyxodA = J(EXOV' -Ez,x, 9, +Ex,’9, )dA
A A
The sectional stiffness properties of the beam structure are defined as,
EA= [EdA, EAx=[Ez,dA,  EAz=[Ex,dA
A A
Elxx = [ Ez3dA, Eixz = [Ex,2,dA, Elzz = [Ex;dA
A A A
G/= (6,2, +G,x,')dA (2.17)
A
GxA=[G,dA, GzA=[G,dA,
GxAx = [ G, z,dA, GzAz =[G x,dA,
A A

For a differential beam element dy of cross section A and end points (P1), (P2), the balance of forces
and moments with respect to point (P1) in the [Oxyz] coordinate system takes the following

differential form (see Figure 2.6),
fidy=dF +fedy: f'=[p¥ da, f°=[pgda+L (2.18)
A A

m'dy =dM+dr, x(F+dF)+m‘dy: m' =fp(rpx'r')dA,

2.19
m¢ jp g)dA+r,xL (2:19)
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Figure 2.6: Loads equilibrium for a differential beam element

In equations (2.18) and (2.19) L=(L,, L,, L,)" corresponds to the external force vector per unit length
acting on the element (i.e. aerodynamic, hydrodynamic), F = (F, F,, F,) and M = (M,, M, M,)" are the
net elastic internal (reaction) forces and moments, g = (g, gy, g,)" is the acceleration of gravity, F+dF
is the vector of the resultant elastic force at the end point (P2), r. is the position vector of a point on

the deformed elastic axis,

0 u
r,=9yr+yVv (2.20)
0 w

)_p (

1), r.=(x,, 0, z,)" denote the local
(1)

Let re(l’z) denote the position vectors of the two ends, dre=re‘2 -fe

position of the external forces center with respect to the elastic axis of the beam and rp=r-r.
By introducing (2.16) and (2.17) in equations (2.18) and (2.19) and writing them in condensed matrix

form, the final set of equations expressing Newton’s Law is obtained,

[odans i =[kuT +[Ku] +[Ku]+[Ku]+ [pdA N T g+11, L (2.21)
A A

where the matrices in (2.21) are defined as,
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(2.23)

(2.24)

0 00 GAz 0 GAx

~N
N
o
N N N
x N
o o X o N
& L w
PN N
o Lo 3o
© ©
X x N
o X o X o X
H W H
N
<< <<
o o ~NO o
G} G}
x N
OnA._O_._A._O_m_A._
1
>
AXOOOAXO
2 G
1l
Kl

0 GA-F, 0 -GAz 0

0

0 -GA O

0

F,-GA 0

(2.25)

GA 0 0

0 0O

K, =

(2.26)

(2.27)

0
0
0

za
0
- Xa

1 0 0O
01 0O
0 01O
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In the above equations, although a standard 1st order linear beam is employed, the nonlinear
rotational stiffening terms F,-w’ and F,-u’ in the x and z moment equations, are retained due to their

significant loading contribution.

Similarly to the stiffness sectional stiffness properties obtained in (2.17), integration over the beam

cross section A will give the following inertial/mass properties,

m= J.pdA, mx = J-pzodA, mz= .[pxodA
A A A
mixx = IpzédA, mixz = IpxozodA, mizz = jpxédA (2.28)
A A A

Ip =_|.p(zo2 +x02)dA
A

Extension of the above formulation into the case of a moving beam is straightforward. It consists of
introducing (2.9) into the left hand side of (2.21) expressing the balance of forces and moments. In
doing so several nonlinear inertial terms will appear which in addition to the dof’s included in u will
also contain the dof’s contained in q. As explained in Section 2.3.1.1 g provides the means to
kinematically couple components and sub-bodies into a complete dynamic setup. Further details are

given in this respect in section 2.3.3.

2.3.1.3 Finite Element Discrete formulation

The system of dynamic equations (2.21) after introducing the expression for the total acceleration

(2.9) is reformulated in variational form by applying the principle of virtual work,

L
jéuTIpdA s (T%,) dy +
0

A

L L L L
J(éu')T K, u dy+_[(5u')T K, u dy—J-éuT K, u' dy—J-cSuT K, udy= (2.29)
0 0 0 0

L L L
jéu’jpdA T g dy+j5u’ I, L dy+[(6u’)’ K, u'+K, u]}
0 A 0 0
where 6u denotes the virtual displacement and the last term on the right hand side corresponds to

boundary terms that appear after integration by parts is performed.

(2.29) is discretized based on Finite Element (FE) approximations [90]. It consists of expressing the
displacement field u and its kinematically admissible virtual displacement &du with respect to the

same discrete function basis. At the element level (denoted by the subscript “e”),
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u,(y,t)=N(y)u,(t); bu,(y,t)=N(y)60,(t) (2.30)

where N(y) denotes the matrix of shape functions and G, the vector of the discrete dof’s. By

choosing a 15 dof finite element with 3 internal nodes [Figure 2.7], G_ and N(y) are defined,

0, =(',v',w',9,,0,,0,v,0 v uvw,o;,00,0,) (2.31)
N, 0 0 O 0O N, O O O N, O O o o N, |
0 N o0 0 0 0O N O N o N o 0O 0 o
No| 000 Nbe, N, 0O O 0 O O 0 O Ny, N, 0 0
0 0 Nigo Npg O 0 0 0 O 0 0 N, N, O 0 (2.32)
0 0 0 0O N O 0 N © 0 0 0 0 N o0
[Npoo: O 0 0 0 Ny, 0 0 0 Ny, 0 0 0 0 N |

In (2.32) 3 order C° approximation shape functions are considered for v (tension),

N (€) =0.125(1 — £)[—10+9((2 — 1) +1)]
N2 (§) =4.5(1-€)&( 2—3¢)

N (§) =4.5(1—€)€(-1+3¢)

N?(€) = 0.1256[—10 +9((2€ —1)* +1)]

(2.33)

2" order C° approximation shape functions for 9, (torsion),

N; (§)=-(1-8)26-1)
N; (§) =4(1-¢&)¢ (2.34)
N; (€)=¢€(2¢ - 1)

and modified Hermitian shape functions for the two bending modes u, w defined as,
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NE,, () =1-ED,, 3670, +26°0,,
Nyo =1=Nyo, (€)

Np1 () =L(—€ +0.56D,, +0.56°D , + 26’0, —£°D )
Nf,l,x (€)=L +0.5¢0 ,— 0_552(1)X1 n ‘fz(sz _‘fgq)xz)

Nll70,1?z (E) = 6€L71q)x1 (1 - f)

Nio,ﬁz (f) = _NllJO,l?z (6)

N;p o () =1+E[-O,, + @, (4 +3€)
N

o 8)= -0, +D,,(-2+3¢)

(2.35)

12 Elzz 1
(px == q) = qDX csz =
1+,

Expressions in (2.35) correspond to the bending in the x direction. By switching x and z variables in
(2.35), similar expressions for the other bending direction z are derived. The bars over Elzz, GXA
denote the average structural properties of the element, while the modification weighting functions

@ prevent shear locking.

Shape functions (2.33)-(2.35) are defined with respect to the non-dimensional length of the element

£€[0,1] and include in their definition the length of the element L.

u,v,w u,v,w
ﬁx, 13},, l?z v 1911 v ﬁx, 0}” 192
G e e ©
1 3 5 4 2

Figure 2.7: Definition of a 15x15 FEM with 3 internal nodes (dofs correspondence to nodes)

After introducing (2.30) and (2.9) in (2.29), eliminating the virtual displacements &0, and performing

linearization, the nonlinear system of equations at element level is derived,

Mbu+Cou+Kdu+M, 69q+C, 6q+K, 6q=Q (2.36)

where subscript e has been omitted from du, du, dU that denote the perturbation of the elastic

dof’s of the element, defined by linearizing the element dof’s as in (2.11),
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uzu’+8u, uz=u’+du, Uz=u’+su (2.37)

Projection of the global acceleration on the local coordinate system Oxyz of the element after

introducing (2.14) in (2.9) yields,

T E=Su+2T TSu+T TSu+T R+T Tr, (2.38)

which is linearized based on (2.11), (2.12) and (2.37). The matrices in (2.36) are defined as,
1
M :L“pdA N" 1S N dy
0A

1
C =L“2pdA N' 11 (T"T)° S N dy
0A

“pdA N I (TTF)° SNdy+LJ.(N) K, N' dy

0A

j(N) K, N dy - LIN K, (N) dy— LIN K, N dy

1 nq
- jszdA N' 11 [ 0,(TTT), S N u®+0,(T'R), +8,(T'T), r, |dy
0=l A

(2.39)

(@]
Q
||
o'-—,»a
&MQ

j dA N’ II[Z@(TT)SNu +0,(T'T), SN u° +a(TR)+a(TT)r]

J' dANTII[Za(TT)SNu +0,(T™¥), S Nu® +0,(T'R), +0,(T"¥), r]

I 3
ERN M‘Q
L'—.

pdAN" 110 (T"), g dy

i
4

IR
JuN

1 1
Q :L”pdA N IT g dy+LJ.NT I, L dy
0A 0

1
—L”pdA N"I[SNG+2(TT)° SN +(TF)° S Nu’+(TR) +(T1)° r, ]dy

0A

1 1 1 1
—LI(N')T K, N' u° dy+LJ.(N')T K, N u° dy—LjNT K, (N) u dy—LJ.NT K, Nu dy
0 0 0

where nqg denotes the total number of q dof’s.

The dimension of local element matrices M, C, K is 15x15, of M, C,, K, 15xng and of Q 15x1. The

boundary terms that would normally appear when integration by parts is applied, are eliminated due
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to the admissibility conditions on &G, . The integration over the element is carried out using a 6
point Gaussian quadrature which involves the shape functions, but also the material properties

(equations (2.17) and (2.28)) that can linearly depend on &.

Note that extra mass, damping and stiffness terms can be introduced as the damping term that
models structural damping (section 2.3.4.1), the added mass and damping terms in Morison’s
equation (section 2.6.2) and the stiffness term originating from the linearization of the buoyancy

force (section2.6.3).

2.3.2 Modeling of the mooring lines

A 3D dynamic mooring line model is presented, based on the finite element method. Truss elements
that only transfer axial loading are used. Each element is subjected to inertial, gravitational and
hydrodynamic loading, calculated by means of Morison’s equation. The seabed interaction is
modeled with appropriately stiffness and damping terms. For the coupled analysis, the floater
imposes the displacements at the connection points while the mooring lines feedback the
corresponding loading. Both catenary mooring lines and tendons for tension leg platforms (TLP) can
be modeled. The derivation is based on the nonlinear truss element presented by [89] and also used

in [91], here based on the standard engineering strain.
2.3.2.1 Geometry and the strain-displacement relation of the truss element

Each mooring line is divided into truss elements exhibiting a geometric nonlinear behavior. Such
elements transfer only the tensile forces while their compression stiffness is zero. In Figure 2.8 a
truss element PyQq of initial undeformed length L, is shown. As a result of rigid body motion and
elastic deformation, the truss element will move to a new position PQ so the length becomes L. The
non-dimensional coordinate £€[0, 1] defines the position of any point R along the element. The

position vector r of a point along the element is defined as,

final position

Figure 2.8: Definitions of the geometry and the kinematics of a single truss element.
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r=r,+u (2.40)

where in a total Lagrangian formulation r, corresponds to the position vector of the initial
configuration, while u represents the displacement due to both the elastic deflection and the rigid
body motion of the element. Equation (2.40) for the coordinates of the two end nodes takes the

form,

X=X,+Pp,

x0: X01 yOl zOl XOZ y02 z02

node P node Q

T

(2.41)
X=X Y, 2, XY, 7

node P node Q

p=qU, v, W, U, V, W,
— —

node P node Q

where xo, X denote the position of the node in the undeformed and the deformed state respectively

and p the vector of displacements (elastic deflections and the rigid body motions).

By considering linear elements and by taking as degrees of freedom the displacements of the two

end nodes, the displacement of any intermediate point along the element is written as,

u=N-p (2.42)
(1-¢) o0 0 ¢ 00

N= 0 (1) 0 0 ¢ O (2.43)
0 0 (1§ o0 0 ¢

where N is the matrix of the shape functions. In a similar manner (using the same linear interpolation
functions) the coordinates of the arbitrary point R, along the un-deformed element can be defined,
based on the known coordinates of the end points Py and Q,

r,=N-x, (2.44)

The standard engineering strain is defined as,
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L
e=— =1, L=\bon )+ ) +za) =\ DK DX (2.45)
0

while Dx,, Dx and Dp are expressed as,

Dx ={x,X,, ¥,¥,, 2,-2,}' =A-x
Dx, :{on'xmr YooVYour 202'201}T =A-X, (2.46)

Dp ={u,-u, v,-v,, w,-w,}' =A-p

and the matrix A is defined as,

-1 0 01 0O
A=/0 -1 0 0 1 O (2.47)
0 0 -1 0 01
The variation in length 6L is defined as,
SL=t"-5(Dx)=t"-A-6p, t=Dx/L (2.48)
where t is the unit vector tangent to the element.
Using (2.48) the variation of the strain ¢ is determined as,
oL
be=—=[;t"-A-6p (2.49)
LO
while the variation of the tangent unit vector 6t is,
1, .
5t=z{l-t-t }-A-6p (2.50)

and | is the unit 3x3 matrix.

2.3.2.2 \Variational formulation and Finite Element analysis

Application of the virtual work principle [89] leads to the dynamic equations of a truss element in

space. The principle requires that, for an arbitrary virtual displacement field éu,



38

joaedv —IéuT(qe—q’)d€=O

Yo Lo

(2.51)

where: ' and g° are the inertial and external (hydrodynamic, gravitational and buoyancy) forces per
unit length that act on the element; o and &¢ are the axial stress and the variation of the axial strain
caused by the relative motion of the element ends P and Q; and V, and L, are the volume and the

length of the un-deformed element.

The stress field is defined by the stress-strain relations and so by assuming a linear elastic material,

Hooke’s law specifies that,

o=Ee¢ (2.52)

where E denotes the Young’s modulus.
By introducing (2.49) and (2.52) into (2.51) and assuming that the cross section remains unchanged

and equal to Ap so that dV = A, dl, the following system of nonlinear dynamic equations is obtained,

jNT(qe—q") L, dE =FA, e AT -t=f (2.53)

0

Nonlinear equations (2.53) are next expressed in perturbed form (i.e. linearization about a reference
deflected position po) and then solved iteratively, until perturbations converge to zero. Taylor’s
expansion of the nonlinear expression of the internal loads f about a reference deflected position p°

yields,
f——f(x +p°)+—-6p——f(x +p°)+K -6p (2.54)
’ op ° ‘ '

Thereby, making use of (2.49) and (2.50) the element tangent stiffness matrix K, is obtained,

EA EA
Kt:TSAT-{I—t-tT}-A+L—AT-{t-tT}-A (2.55)

0

If the density of the material p is assumed constant along the element then the inertia terms become,

1 1 1
jNTqi L, d€ :jNT(pAO)u L, d€ :j(NT (A, )N) L, dE p=M- (2.56)
0 0 0
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where pA, is the linear mass distribution of the mooring line. Analytic integration of the mass matrix

gives,

[pAL, /3 0 0 pAL, /6 0 0
0 pA,L, /3 0 0 pAL, /6 pAL,/6
me| 0 pAL, /3 0 0 0 0.57)
pAL, /6 0 0 pAL, /3 0 0
0 pAL, /6 0 0 pAL, /3 0
.o 0 pAL, /6 0 0 PAL, /3]

The external loads denoted by Q, comprise the hydrodynamic and hydrostatic (buoyancy) forces on
the element, the gravity loads as well as the force from the seabed contact. They are expressed in
the following form,

1 1 1 12
Q=[Na’L,dé =Q,, +Q, +Qq = [N'q,,L,dé + [N'q,LdE + [N'qy,l" dé (2.58)
0 0 0 11

It is convenient to define the weight of the mooring line in the water per unit length F,, which
actually takes into account the gravity and the buoyancy external loading. Then analytic integration
of Q,,, gives,

(2.59)

_szLO / 2

The hydrodynamic loads are calculated based on Morison’s equation (see section 2.6.2, eq. (2.134).)
and after linearization about a reference state, additional mass and damping terms are defined. Note
that the hydrodynamic loads are applied along the deformed length of the element as indicated in

the second integral in (2.58) where the actual length L is used. Numerical integration is performed.

The effect of the seabed contact is modeled through distributed stiffness and damping terms which
are activated when the element approaches the seabed. Their magnitude is linearly increasing inside
a vertical buffer zone extending from the seabed to z,,4 The vertical force per unit length exerted on

each element is defined as,
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F, =k, 2 4 Coup 2 ;= k,z*+c,z z (2.60)
Zour Zour

where,

kosy and ¢y, denote the seabed stiffness and the damping,

ks» and ¢, denote the modified seabed stiffness and the damping including the z,,4

Z,5 denotes the vertical length of the buffer area in which the seabed contract is activated.

The variation of this force is defined as,

OF, =2k ,z 6z+c,z 6z +c,z 62 (2.61)

When present in the left hand side, contributes the corresponding stiffness and damping terms. The
integration length of the associated virtual work is properly adjusted in order to handle the situation
of having part of the element outside the buffer area, as indicated by the third integral in (2.58)
where L'denotes the active length defined by the ends /1 and /2. The integration is carried out

analytically using a symbolic software i.e. Mathematica [92].

In addition to the above-mentioned force terms, an additional force proportional to the time
derivative of the strain in the direction tangent to the element is introduced, in order to model the

structural damping of the truss element. It takes the form,
F,=c(t' -Dx)t=c(t-t")-A-p (2.62)

where ¢ denotes the damping coefficient. The variation of the damping force is,

dF, =%[(tT-D)'() |+t-DxT}-[l—t~tT]-A~6p+c(t-tT)~A-6p (2.63)

The final linearized form of the dynamic equation of a truss element is derived by introducing the
linearized expressions for the internal, inertial and external loading, as well as the structural damping
termsin (2.53),

(M+M,))-6p +(C,+C,,+C,,)-6p+(K,+K_,+K,)-6p=Q—-M-p° —f° —-Q] (2.64)

where

M denotes the mass matrix (eq. (2.57))



41

f, K,, the internal force vector and the associated tangent stiffness matrix (eq. (2.53), (2.55))

M, and Cy denote the mass and damping matrices due to the linearization of the hydrodynamic

loading from Morison’s equation (eq.(2.134))

Cys, Ky, Qg denote the damping and stiffness matrices and the force vector from the structural
damping (derived by integration of (2.62) and (2.63))

C., Ksp, denote the damping and stiffness terms due to the seabed interaction modeling (derived by
integration of (2.61))

Q denotes the total external force vector including gravity, buoyancy, hydrodynamics and reaction
force due to the seabed contact (eq. (2.59), (2.132) and integration of (2.60))

For multi-element modeling of mooring lines, the local matrices of the various elements are
assembled to global matrices for the full configuration in the standard FEM way. This assembling
procedure does not require any coordinate transformation because the dynamic equations (2.64) of

the single element have been expressed with respect to inertial frame.

2.3.3 Assembly of the coupled system

2.3.3.1 The coupled operators

The vector of the unknown dof’s X can be split in 3 parts: The 1% part contains the local deformations
u that are associated to the components modeled as beam structures; the 2™ part contains the
global deformations p associated to the mooring lines; and the 3" part contains the q dof’s that
realize the coupling amongst the components (or sub-bodies). Thus the total vector of the unknown

variables is,
6X" =(6u,6p,6q)" (2.65)

The first two parts have been extensively presented in sections 2.3.1.3 (eq. (2.36)) and 2.3.2.2 (eq.
(2.64)). Next the equations for the q dof’s that were introduced in 2.3.1.1 are further detailed.

In q, the 6 rigid body motions of the floater, the azimuth angle of the shaft and the yaw angle of the
nacelle are included as independent dof’s. Each of these dof’s is determined by solving a dynamic

equation.

If the floater is assumed rigid, the 6 dynamic equations are defined as in (2.126). A similar approach
is also followed when the floater is considered flexible. Then the motions of the floater are defined
based on the reaction forces that are applied at the point of reference i.e. the reaction loads at the

bottom of the tower and those at the upper part of the flexible floater.

The rotation of the shaft is defined by the dynamic equilibrium of moments at its starting node. The

balance concerns on one hand the rotor torque acting at the end of the drive train and on the other
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the generator torque while in between the flexibility and the inertias of the drive train are present.

This dynamic equation provides the instant azimuth angle, the rotational speed and its acceleration.

The same approach is followed for the yaw mechanism which is modeled as a concentrated spring
and a concentrated damper introduced in the yaw rotation equation (0z). The dynamic equilibrium is
considered at the top of the tower (position of the main bearing). The reaction moment of the
nacelle on one hand and the spring and the damper of the yaw mechanism on the other define the

yaw angle along with its velocity and acceleration.

In addition to the above-mentioned q dof’s, at the 1°* and the last node of every component (or sub-
body), 6 g’s are defined that allow realizing the kinematic coupling conditions. At the 1* node
Dirichlet conditions are set and therefore the local deformations and rotations are set equal to zero.
The only exception to this rule is the blade root where the blade pitch angle must be explicitly set. At
the last node the set of 6 q's are set equal to the local deformation and rotation. As already
mentioned in this way the components follow the deformed geometry and an inherent nonlinearity
is introduced, expressed through the position vectors, the rotation matrices and their time

derivatives (section 2.3.1.1) that depend on g’s.

2.3.3.2 Boundary conditions

Based on the multibody formulation, Dirichlet and Newman boundary conditions are imposed at the
connection points. Kinematic couplings defined through q, are combined with zero boundary
conditions for the 6 dof’s at the first element of every component. In multi-component structures
without any g dof (see section 2.3.4.4), the kinematic boundary conditions are applied to the dof’s of
the connection node. The same also holds for the end nodes of every mooring line. At the seabed,

fixed conditions are imposed, while at fairlead point the floater imposes the kinematics.

In addition to the kinematic boundary conditions, dynamic conditions are also required at the
connections points of a multibody configuration. This consists of adding the reaction forces obtained
from the contributing components. As explained in 2.3.1.1 when more than one component is
connected to a point, one body is selected to provide the kinematics while all others feedback the
reaction loads. Based on (2.36) or (2.64), expressions for the reaction loads are derived for a beam or
a truss element, by adding the virtual work of the reaction loads. For all the components except for
the mooring lines, the reaction loads are given with respect to the local system of the contributing
component or sub-body. Therefore in order to obtain the corresponding virtual work, the reaction
loads must be projected on the local system of the receiving component. Along the mooring lines the
reaction loads are given in the global coordinate system, so their virtual work is directly obtained. If
there is an offset, the corresponding moments of the forces must be also added.

2.3.3.3 Assembling procedure

In order to assemble all the equations into the final system, the following procedure is followed:
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1. First the element matrices are introduced according to a preset sequence. This sequence
respects the loading flow, so for a wind turbine system, blades appear first, then the drive train,
the tower, and if applicable the support structure followed by the mooring line equations. The
terms related to the body dof’s will give a block diagonal structure to the assembled mass,
damping and stiffness matrices. The additional terms that depend on the g dof’s defined in the
kinematic couplings are kept separately and appear in the right most columns.

2. Next the dynamic conditions are introduced. They will give lower off-diagonal terms as indicated
in Figure 2.9. For the specific configuration, loading couplings are introduced at the end of the
drive train, at the end of the tower and at the 6 q’s of the floater. The system thus obtained is
completed with the dynamic equations for the q dof’s that appear in the last block of rows.
Depending of the nature of each g, the equation can take either the form of a simple assignment
to an already existing dof as in the case of deflections at the top of the tower or the hub or the
form of a complete dynamic equation as in the cases of the motions of a rigid floater, of the
azimuth and of the yaw angles.

3. Dirichlet boundary conditions are imposed on the dof’s by properly modifying the lines that

correspond to the virtual work associated to the selected dof’s.

Blade 1
Blade 2
Blade 3 2
o E
= Q
o +
oo
loads communicated from Shaft g c
the 3 blades to the shaft c s
3 [ ~ 3
loads Tower O
T communicated
from the shaft to
. the tower
Dy'namlc — Mooring line 1
coupling terms _ Mooring line 2
loads communicated from the o
tower and the 3 mooring lines ooring line(3
to the floater L.
L] HEEEN
Equations for gs

Figure 2.9: Form of the global matrices
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The system thus obtained will have the usual form:

M&EX +COX+KEX=Q (2.66)

where X denotes the complete vector of unknowns defined in (2.65). The mass, damping and
stiffness matrices, M, C, K as well as the external forcing Q will depend on X and its time derivatives

which will render the system nonlinearity.

2.3.3.4 Solution

Time integration

The final set of dynamic equations (2.66) is integrated in time using the Newmark second order
implicit scheme [90]. X and X based on Taylor expansions over the previous time step values,

denoted with subscript P yields,

X=X, +dtX, +dt*(0.5-6)X, +Bdt*X =X, + 6dt’X

X=X, +dt(1-y)X, +ydtX =X, +ydtX

PR (2.67)

where 8, y denote the Newmark constants. For 2™ order accuracy y=0.5 and for numerical stability
B2y/2. Xope and X,

expressions in (2.67) are linearized about a reference state based on (2.37), then the first expression

contain the known contribution from the previous time step. If both

PRE E

solved for 6X and the second for §X and introduced in (2.66) a linear system of equations is formed,

1 y XO—X .. . . %
M+——C+K [6X=Q—-| ——R_X° IM—| X,.. - X°+—(X°=X__.)|C (2.68
[Bdtz Bdt j e ( Bdt’ J ( " 6dt PRE)) 12:68)

and is solved with LU decomposition method. In every time step of the simulation, the equations are

solved iteratively until 6X goes to zero by applying a full Newton-Rapshon iterative scheme.
Static Solution

At the beginning of the simulation, a static solution of (2.66) is performed in order to estimate the

initial deformations, instead of consider them zero and so transient is reduced.
Modal analysis

In order to solve the eigenvalue problem for the coupled structure and define its natural frequencies
the corresponding modes and the damping ratios, the 2" order in time differential system of

equations (2.66) is transformed into a 1** order differential equations system with twice as many dofs,
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X,] [cm® Kkm](x .
g P1=0SY+AY=0 (2:69)
X, | 0 1

where X, =X, X, =X and Y is the increased vector of unknowns.

The eigenvalue problem det(A +M) =0 will provide the eigenvalues that can in general be complex.

2.3.4 Special Modeling aspects

2.3.4.1 Structural damping of beam members

The beam model presented in section 2.3.1.2 does not take into account the damping of the material.

There are two alternatives in this respect.

1. Rayleigh damping: A proportional damping matrix is defined in the form,

C=c,M+cK (2.70)

where c¢; and ¢, denote the damping coefficients, while M and K are the mass and the stiffness

matrices of the component.

2. Modal damping: If the damping ratio of every component is assumed known e.g. from vibration

tests, the eigenvalue problem per component,
|A2M+K|:O, (AM+K)d, =0 (2.71)

Is solved to provide the eigenvalues /\j and the corresponding eigenmodes ¢jwhich collectively

define a modal matrix @, . The modal mass matrix My is a diagonal matrix defined as,
M,=0' MO (2.72)

The modal damping matrix Cq4 is also a diagonal matrix. Every element i corresponding to a specific

eigenvalue is defined as,

C,=2{wM, (2.73)

where {; and w;=2rtA; denotes the damping ratio and the angular frequency of the mode i respectively.

The damping matrix is expressed with respect to the FE dof’s as,
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c=(@")'c, 0" (2.74)

and is directly applied to the global matrix.

2.3.4.2 Concentrated inertia, damping and stiffness properties

In structural modeling, there is often a need to include concentrated mass, damping and stiffness
properties. For example the hub, the nacelle, the generator’s inertia, the flange of the tower, the
transition piece of the jacket etc. are modeled as concentrated masses and inertias. Modeling of the
foundation is performed by concentrated stiffness, while the yaw mechanism is modeled as a
concentrated spring and a damper. In general concentrated properties are introduced by means of
Dirac functions that specify the placement of the properties at any point within a specific FE. Once
this is done, the integration takes care that the correct virtual work is obtained. Concentrated mass,
damping and stiffness properties are introduced by 6x6 matrices. For example for a concentrated

mass placed at y, of a specific FE, the following virtual work is added to (2.29),
L
[ou [pdan. s (T7%) 8(y—y,) dy (2.75)
0 A

In which a more general form of (2.26) is defined for llc and S,

T

1 0 O O zoff +ZO _yoff _yo
. =S{ =[0 1 0 -z, +2 0 Xopr + X, (2.76)
0 0 1 yu+tVy —Xuz—X 0

that contains all the inertial properties of a concentrated mass (first — second moments). Xoz, Vo and
Z.5s denote the offset of the concentrated mass/inertia with respect to the elastic axis. Note that the
inertial loading of a concentrated mass/inertia considers the total acceleration as defined in (2.9).
Moreover a gravity force and the corresponding moments due to the offsets are applied as external

concentrated loading at the position y,.

The 6x6 matrix for concentrated damping or stiffness properties applies to all motions. Directions in

which no stiffness of damping contribution is considered are excluded by inserting zeros.

2.3.4.3 Foundation

The default option for bottom mounted support structures is to assume the end nodes clamped to
the ground, so fixed boundary conditions are imposed. Alternatively, modeling of the foundation is
performed leading to a slight reduction of the tower lateral frequencies, depending on the soil
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properties. Three foundation models have been implemented and verified in hGAST, as proposed in

the offshore code comparison (OC3) phase Il [72, 93].

1. The apparently fixed (AF) model, in which the structure extends under the ground level. No springs
are defined, while the structural properties of the extra part which is embedded to the ground are

chosen to reproduce the effect of the foundation. At the bottom end fixed conditions are applied.

2. The concentrated spring (CS) model, in which the structure does not extend below the ground
level but instead a 6x6 stiffness matrix is defined. In general, springs are defined in all 6 dofs. If the
springs are only imposed in the lateral directions, then fixed conditions should be imposed in the

vertical direction (z motion and yaw rotation).

3. The distributed spring (DS) model, in which the structure again extends below the ground level.
The difference compared to the AF model is that the structural properties should be defined based
on the actual foundation. Also springs are defined in the two lateral directions based on the soil
properties. At the bottom end, fixed conditions are applied only for the vertical motion and the yaw

rotation, while the lateral dof’s are free.

The DS model is by definition more detailed, but all three models provide very similar results if they
are properly calibrated. Moreover, in the DS model it is straight forward to define springs of variable

stiffness based on given p-y curves, since the solver is nonlinear.

Apparent Fixity Model Coupled Springs Model Distributed Springs Model

5
5

WA
WA
WA
WA

Figure 2.10: Definition of the three foundation models the AP, CS and DS [figure taken from [94]]

? v ¢ ¢

2.3.4.4 Tripod or Jacket support structure

Modeling of a multimember support structure such as a tripod or a jacket is carried out in
accordance to the basic principles already set. The members are modeled as beams undergoing
combined bending including shear, torsion and tension and coupling conditions are added at the
nodes. However due to the complexity of the jacket configuration, the equations for the jacket
members are simplified by assuming that all deformations are small compared to the un-deformed
(or static) state. This means that passage from one member to another involves rotation matrices

that are fixed in time. As a consequence there is no need to add any q’s at the connections for the
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kinematic coupling which becomes straightforward by assigning one set of degrees of freedom per
node. The transfer of loads is also straightforward. As already mentioned, one member of the

connection point provides the deflections, while all the others contribute the loading.

2.3.4.5 Partial Pitch, Tip Brake

By taking advantage of the sub-body formulation, modeling of the partial pitch of the blade or of the
tip brake is straightforward. By dividing the blade in sub-bodies the pitch motion can be imposed at

the beginning of any sub-body so the dynamics are consistently simulated.

2.3.4.6 Reduced Order Modeling

The dimension of the final system in the case of a complete offshore wind turbine can become large.
For engineering purposes it is desirable to reduce the size of the system by formulating Reduced
Order Models (ROM’s). Size reduction is equivalent to a projection operation from a high
dimensional space, already used in the FEM, to one of significantly smaller dimension. In FEM the
function basis is defined by the shape functions, but in principle any other complete discrete basis
can be used. In structural mechanics an alternative basis is that of the eigenmodes. Depending on the
system properties the set of eigenmodes can be truncated to a relatively small number and thus

significant size reduction can be accomplished.

For a multi-component system, the eigenmode basis must be properly chosen so that nonlinear
couplings are retained. To this end, instead of obtaining the eigenmodes of the complete system?,
the eigenmode set per component is chosen. The synthesis to the complete system will still follow
the procedure with the q dof’s already presented, but with reference to the eigenmode function

basis of the corresponding component.
More specifically,

- Consider one of the main components (for example one of the blades) and let My, K,

denote the component mass and stiffness matrices.

- The eigenvalue problem for this component,
|A2M+K| =0, (AM+K)¢, =0 (2.77)

will provide the eigenvalues /\j and the corresponding eigenmodes ¢oj which collectively will define a
modal matrix @, . Let u denote the vector of unknown displacements and rotations and c the vector

of the modal coefficients that correspond to the specific analysis. Then,

2Approximate eigenmodes of nonlinear systems can be obtained by means of Proper Orthogonal
Decomposition [95].
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m
u =2 bc=0, c (2.78)
= o o
nx1 J nxm mx1

where m denotes the number of modes retained. By introducing this expression into the system,

OMDC+O'KD c =D
VV_,%,(L (2.79)

MROM KROM QROM

In most cases m can be significantly smaller than n. For example a typical blade FEM approximation

leads to 150dof’s while m can be reduced to 4 - 9.

In the multi component case a compound modal @ will be needed made of the modal matrices of
every component @, along its diagonal. The procedure is simple, the complete mass, damping,
stiffness and loading matrices are left multiplied by @'. Note that for the last block containing the
equations for the q dof’s the corresponding modal matrix is the unit matrix. Also the mass, damping
and stiffness matrices are right multiplied by @ . This ROM procedure has been applied and verified

to offshore wind turbines [85].

2.4 Control

Current wind turbines are speed and pitch regulated. The yaw angle of the nacelle is also controlled,
but usually in aero-elastic simulations is assumed fixed within the time scale of the simulation.
Recent proposed concepts also include actively moving trailing edge flaps. With respect to modeling,
the control system is described by a set of differential equations expressed for the output control
variables, such as the pitch angle (possibly different for every blade as in the individual pitch control
case), the torque demand of the generator, the flap deflection angle and the yaw of nacelle (if it is

controlled), as well as additional differential equations for the considered filters.

In order to include the control system in the coupled solution, i.e. for stability analysis in closed loop
operation, the output control variables and those correspond to the associated filters must be
included in q, as in [79]. If g. denotes the subset of dof’s that are associated to the control system,
the modification to the system is straightforward. By introducing q. a set of dynamic equations is
appended as part of the equations for the g dof. The form of these equations depends on the
controller structure which contains filters, dampers, models of the actuators etc. In most cases they
correspond to linear control elements (PID). Typical examples are given in Figure 2.11. Details can be
found in [96, 97], including the logic that is used in order to switch between the modes of control. A
common approach is to vary the rotor speed at conditions below rated and then switch to variable
pitch part keeping the rotational speed at its nominal value. Usually around rated conditions a

transient mode ensures smooth switching between the two main modes.
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Another possibility is to call in every time step an external controller subroutine provided as DLL.
Such a subroutine independently solves the control equations and provides the pitch and the
generator demand values. The actual pitch angle (i.e. the angle provided by the actuator) is imposed
at the corresponding g, while the actual generator torque (i.e. after the generator internal lag
modeling is applied) is added to the dynamic equilibrium equation for the rotation of the drive train.
This is the case for example of the NREL 5MW reference wind turbine [98] or the DTU 10MW
reference wind turbine [99] which both are paper case machines that are used by the wind energy

research community.

In open loop operation the solver ignores the control equations and fixed values are given for the
pitch angles and the rotor speed. Finally in parked operation the rotor is idling with a pitch angle
close to 90°. In this case, the drivetrain equation is still solved providing the instantaneous rotational

speed, but the generator torque is zero.

e
@, l
notch -
. : Mt
5 +2-d,-@, -s+a, A
{ F+2d 0,5+,
] ‘min
o v+ P-I T,
g A gen
—_S < Kf’ P-I :
KS = A st o e _ Aeroelastic
.7 Aeroelastic Og ki & System 7
N System 5 £
DTD
I P S Tp’an rated
F+2-dom @5+ @ | Lpp S -
DTD
2 Koy o 5
5 +2-dp - Oy S+ | - DTD

Figure 2.11: (Left) Block diagram of the speed controller regulated by the generator torque T, also includes a drive train
damper (DTD). (Right) Block diagram of the pitch regulation targeting the rated generator torque, also includes a notch
filter. In both cases the controller is a PI.

2.5 Aerodynamics

In the present section the aerodynamic methods in hGAST are briefly presented. The Blade Element
momentum theory (BEMT) model was initially introduced in [100] while the 3D free wake vortex
particle method GenUVP in [101] and [102], while in [74] the ONERA dynamic stall model [103] was

introduced.
2.5.1 The Blade Element Momentum model
2.5.1.1 The baseline model

The most famous and widely used method for the calculation of the aerodynamic loading on the

blades of a wind turbine is the so called blade element momentum theory (BEMT). BEMT is the
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simplest aerodynamic theory that can describe the energy extraction process and is exclusively used
by the industry for design and certification purposes. The actuator disk theory and the blade element

theory are combined, leading to two nonlinear equations which are solved iteratively:

UZ
dT = N%(CL cos@+C,sing)cdr =4npU2a(1—a)rdr
(2.80)

2

V)
dQ= N%(CL sing —C, cos@)crdr = 4mpQU, a'(1—a)r’dr

The first expression in both equations is derived from the blade element theory which is based on 2D
polars provided either by experimental measurements or CFD calculations. The second expression is
derived from the actuator disk theory which is based on the conservation of the linear and the
angular momentum along the potential, steady, axisymmetric and 1 dimensional flow through a
stream tube, expressed for the axial and the circumferential induction factors a and a’. The axial

velocity on the rotor is equal to U_(1—a) while the circumferential is equal to Qr(1+3).

In (2.80) dT and dQ denote the thrust and the torque of an annular tube of width dr, N the number of
the blades, p the air density, U.s the magnitude of the effective velocity, U, the magnitude of the
undisturbed wind velocity, C;, and C, the lift and the drag coefficients provided from look up tables, ¢
the angle between the effective velocity and the rotor plane, r the radial position of each blade

element with respect to the hub, ¢ the local chord length and Q the rotational speed.

The axial induction factor a expresses the reduction of the wind speed as it passes through the disk,
while the circumferential induction factor a’ the rotation which is added to the flow by the rotor. The

effective speed U and the angle ¢ are defined as [Figure 2.12],

U, =JlU, (1-a))® +(Qr(1+3) (2.81)
—wn4-E1§i5- 2.82
¢= (1+a) Qr (2.82)

while the angle of attack o which is needed in order to define the C,, C, data from the lookup tables

is,
a=¢-9,-9, (2.83)

where U; and U, denote the local twist angle and the blade pitch angle respectively.
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Figure 2.12: Definition of the effective inflow conditions

2.5.1.2 Corrections and add-on’s

In practice the BEMT method is enhanced with empirical add-on’s and corrections in order to

account for the following effects which originally are not supported by the theory, but are crucial for

the accurate estimation of the aerodynamic loads:

U..(1-a)

To this end, when the aforementioned aspects are accounted for (2.80) is written as,

where in (2.84) R denotes the radius of the rotor, ¢. the cone angle of the blade, C,, C; the normal

and the tangential to the rotor disk local force coefficients defined as,

unsteadiness of the flow

correction of the thrust coefficient C; for highly loaded rotors

reduction of energy extraction due to tip loses

skewedness of the flow in case of inclined flow (yaw, tilt)
consideration of the deformation velocities in case of aeroelastic coupling

dynamic stall modeling in order to capture the unsteady C,, Cp, Cys loops

U 2U°

o0

2
oCtUeff

all-af =————
8QrU_ cosg,

C,=C,cosp+C,sing
C,=C,sinp—C,cosep

2
JReose. f (%}HCT _9CUz
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Cr denotes the thrust coefficient including the correction for high induction factor a [104] and is

defined as,

C, =4a(l-a)F a<0.33

(2.86)
C, =(0.425+1.39a)F a>0.33

fo term originates from the integration of the unsteady momentum equation and accounts for the

inertia of the wake [105] and is defined as,

2n (1 —LCOS (pazjdcpaz
L(Lj=2n I R (2.87)

2 3/2
0 r r
1+|—| —2—cos
NP

where @, is the azimuth angle,

F denotes the tip loss coefficient factor originally developed by Prandtl [106] defined as,

2 ., N R—r
F(r)==cos™(e”), f(r)=—— (2.88)
T 2 rsing
o denotes the local solidity defined as,
Nc
o=—— (2.89)
2nr

In case there is yaw misalignment and/or blade coning as well as deformation velocities from the

aeroelastic coupling, equations (2.81) and (2.82) become [Figure 2.13],

U, = \/((Uw cosp, —u, —U,)(1—-a)cosg,)’ +((w, —U,sing, sing, )(1+a")’ (2.90)
1-a)- w,, —U_sing, sin
@=tan” (—( 3) ,COS(P‘J x, = e~ SN, ,(p‘" (2.91)
(1+a')-x, U,cosp, —u, —d,
a=¢-0,-9,+9, (2.92)

where ¢, denotes the yaw angle, u,,, W,, the deformation velocities in the out-of-plane and the in-

plane directions and ¥, the torsion angle. The rotational term Qr has been included in We, .The
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velocity term u; denotes the axial induced velocity due to the skewedness of the wake because of the
wind yaw angle and is defined as [100, 107, 108],

u=u, (1—fu(r/R)tangcoscpaz...+O(2cpaz))

3 5
r r r
f.(r/ R):EHM(EJ +0'4(Ej (2.93)
U _sin
—tan[ U5
Uwcosqoy —u,

where the coefficients have been calibrated based on experimental data and calculations using

advanced aerodynamic methods.
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Figure 2.13: Definition of the effective inflow conditions in case of yawed inflow and aeroelastic coupling

Once the iterative process converges the normal and the tangential force and the pitching moment

along the blade span-wise direction are calculated as,

F = gCntffcdr = g(CL cos@+C, sing)UZ cdr

P 2 P . 2
F, = ECtUefder = E(CL sing —C, coso)U_,cdr (2.94)
M zgc,v,Ujﬁc2 dr

In is noted that in case a dynamic stall model is considered, the coefficients C;, C, and Cy do not
retain their steady values based on the angle of attack g, but are defined by solving the ONERA [103]

or the Beddoes - Leishman [109] dynamic stall model equations. Details can be found in [74].
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2.5.2 The vortex flow model

2.5.2.1 Formulation of the problem

The unsteady flow of an inviscid, incompressible fluid around a combination of N three-dimensional
bodies B, (blades) with boundaries S;, k = 1, N that form the configuration of a wind turbine rotor is
considered. Each component of the configuration is regarded as an infinitely thin lifting body. In
order to describe the geometry of the flow, a fixed co-ordinate system is introduced. All the flow

guantities are defined with respect to this system.

Let D denote the flow field, S its boundary and v the outward unit normal vector to surface S [Figure
2.14]. The presence of the lifting bodies B, generate wake. The surface of the wake is considered as
an active boundary of the problem. So if Sy, k = 1, N are the surfaces of the vortex sheets generated

by the N blades [Figure 2.14] and vy the unit normal vectors to Sy, then the boundary surface is,

Npg N
op=Ss={Js, +( Js.. (2.95)
k=1

k=1

Figure 2.14: Basic notations, definition of surface panels of lifting bodies and near wake and the corresponding normal unit

vectors

According to Helmholtz decomposition theorem, the velocity field u(x; t) takes the form,



56

u(x;t)=u_(x;t)+Ve(x;t)+u (x;t), xeD, t=0 (2.96)

where u_(x;t) is the infinite velocity field, ¢(x;t) is the disturbance velocity potential and u_(x;t)

is the velocity induced by the free vorticity of the wake.

Within the framework of the potential theory, the velocity potential can be represented by means of
surface singularity distributions. For the case of thin blades, dipole distributions are defined over
their solid surface and the corresponding wake. A dipole distribution u(x), x €S defined on a

surface S, introduces a discontinuity of the scalar potential [Figure 2.15]

ux)=-[ellx), xeSs (2.97)

where [¢] denotes the potential jump over S.

dS""'m

Figure 2.15: Definitions for the surface dipole distribution

The potential itself at a point x, of the domain D is given by,

u(x;t) - v(x)-(x, —x)
<p(xo;t)=—£ PRI ds(x) (2.98)

By differentiation of (2.98), the corresponding field u,(-; t) is obtained. After application of Stokes

theorem, u,(-; t) takes the form,

V u(x;t) x v(x) < (x, — di(x) % (x, —x)

3
4n|x0 —x|

u, (x5;t) = Velxy;t) = |

X)
dS(x)+ ® u(x;t)
S 4n|x0 —x|3 E'E

(2.99)

where 0Sis the boundary of S and dl the infinitesimal vector tangent to 0S [Figure 2.15]. V()

denotes differentiation with respect to x, and VS(-) denotes surface differentiation.
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As x, approaches S the velocity becomes discontinuous. In particular if [u,] denotes the velocity jump
defined on S, then

[u,](x,;t)-v(x,)=0, X, €S

2.100
V(X)X [0, 10Ky3t) = V oo 1) V(X,) = V(X 3t), X, €S (2:100)

where y(-; t) denotes the intensity of the surface vorticity and V() =(V()-t,) T, the superficial
differential operator only appeared in (2.99). t, is the unit vector tangent to S in the direction of the
surface vorticity y. Equations (2.99) and (2.100) state that a surface on which a dipole distribution is

defined corresponds to a vortex sheet, i.e. a surface with tangential velocity discontinuity.

Following representation (2.98), the disturbance velocity potential ¢(-; t) on D, including the solid

bodies and the wake dipole distributions is written as,

Pxgit) == [ 10 w9 - 3 [ e X e oy g

klsk | | klsk 7T|X —X|

where, (- t) is the dipole distribution of the k-th thin lifting surface (1** term) and pw(:; t) is the
dipole distribution of the vortex sheet originating from the k-th lifting body (2" term).

Due to the unsteadiness of the flow, the unknown distributions p(-; t) and uw(-; t) are time
dependent. Besides that, as the vortex sheets Sy are freely moving material surfaces, the geometry
of the problem is also time dependent. Consequently the problem to be solved is a free boundary
evolution problem with unknowns the surface distributions p(:; t) and pwl-; t), as well as the
geometry of the vortex sheets Sy,. In order to determine the unknown fields two types of conditions

are disposed.

(a) the kinematic conditions and more specifically the non-entry condition on all the solid surfaces

and the conditions describing the material motion (evolution) of the vortex sheets.

(b) the dynamic conditions, i.e. the requirement for zero pressure jump throughout the vortex

sheets.

Let up(-; t) denote the body velocity distribution on the blades that includes both the rigid body
velocity component and the elastic movement component. Then the non-entry conditions on the

solid surfaces take the form,
o
Vo(x,;t)-vi(x,;t) :5—(x0;t) :(uBk -u, —uw)-v(xo;t), X, €S, k=1,N, (2.102)
v

For the calculation of the perturbation velocity field, equation (2.99) is used, which takes a more
flexible form if a piecewise constant approximation of the dipole distributions is chosen. In this case
the first term in the right hand side of (2.99) is equal to zero. The remaining term is the contribution

of a line vorticity distribution (usually termed as vortex lattice) defined on the boundary 0S of S.
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Let,

x,€S,: x,=x,(,,¢,;t), €€[-0,1], §,20, t=0 (2.103)

denote a parametric representation of a vortex sheet Sy, shed from a lifting body along its trailing
edge and possibly its tip edges (i.e. the vorticity emission line) [Figure 2.16]. Sy, can be regarded as a
surface formed by the sequence of material lines leaving the emission line. In order to keep track
with the history of the vortex shedding, a point x,,(§;,,; t) is identified as the position at time t of a
material element that was shed at time &, < t from the emission point ;. Consequently, x,,(&;,t; t),
represents the current position of the emission line. Moreover, the lines §;= ct are formed by the

material elements shed from the same point on the emission line.

The evolution of the wake Sy(t) in time is determined through the following kinematic equation,

dxv;(t&;t) =u_(x,;t)=u_(x,;t)+Ve(x,;t)+u,(x,;t), §=(,E) (2.104)

where u,,(x,;t) is the mean velocity on the wake sheet.

Figure 2.16: Notation of the wake of a lifting surface

By applying Bernoulli’s equation to the two faces of Sy, and taking into account the dynamic

condition that the pressure jump is zero over the wake, [p](x,;t) =0,

%+um(xw;t)-[uu](xw;t):0 (2.105)

where [u,](x,;t) is the velocity jump on the wake surface.

Using (2.97) and (2.100) it follows that,
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K, (&) =-[ol(§t) , [u,l(§t)=V,u, (&) (2.106)
Thus if,
dn()_00) 0 vy
e +(u, -V )() (2.107)

is the superficial material time derivative, then (2.105) yields the following condition,

Int ) _ (2.108)
dt

From condition (2.108) it follows that the dipole distribution defining a vortex sheet is materially
conserved and that this condition is equivalent to Kelvin’s theorem. As regards the case of a vortex
sheet Sy/(t) shed from a lifting body, condition (2.108) can be used in two ways. At first, in accordance
with the time history defined by (2.103),

u,(x, (&, &t)t) =u,(x,(,€,:¢,):€,) (2.109)

Equation (2.109) simply states that the intensity of the dipole distribution carried by the material

element § is equal to the value this element had when it first shed from the emission line of the body.

At second, condition (2.109) can be used in order to determine the intensity of the vorticity shed
from the emission line at any time. In the case of a piecewise constant approximation of the dipole
distributions, condition (2.109) leads to equal values of p(:; t) and u(:; t) for two points on the body

and the wake respectively, adjacent to the emission line.

Theoretical results as well as experimental and numerical evidence suggest that in time, a free vortex
sheet loses its smoothness because of the singular character of the integrals involved in the
calculation of Ve(x, ;t). In order to overcome this difficulty a generalization of the vorticity is
introduced. Based on (2.100) the generalized vorticity field associated with a vortex sheet can be

defined as,

w, (x;t)=Vxu, (x;t)=58, (x—xg,)-[VL, (X, ;t)x v(Xg,;t)]

surface term

(2.110)
+ 6OSW (x - x()Sw) ’ t(XOSw;t) ’ “w (XSw;t)

line term

where 6, () and 84, (") denote the surface and line Dirac functions defined on the interior and the

boundary of Sy, (t) respectively and t(-; t) the unit tangential to dSy,(t) vector [Figure 2.17]. It is
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noted that if a piecewise constant dipole distribution is assumed, the surface term of (2.110) is
eliminated. The above generalized form allows the application of a vortex particle approximation for

the wake.

Figure 2.17: Notations of the grid on the bodies and their wake.

2.5.2.2 The numerical model

On every body S, and its wake Sy, a grid is defined, dividing the body and the wake in a number of
panel elements Sg,e =1, E and Sy ,e = 1, Ey respectively (where E, and Ey, denote the
number of elements considered on a body and its wake) with boundaries dSg and 9Sy;, [Figure 2.17].
On every element of the body and the wake constant dipole distribution puy (:;t) and pyy (5 t) is
defined. Thus, the velocity induced by a lifting surface is obtained as a summation of the
contributions of the vortex lattices corresponding to the elements of the grid used for S, and Sy,.

According to the above remark the kinematic condition (2.102) takes the form,

vt 23 qu% DRI L

3
k=1 e=1 | k=1 e=1 |X0 —X|

(2.111)

+V(Xo;t) - (U (X,5t) -, (X,5t) —u, (X,;t))

Condition (2.111) provides the discrete equations for the unknown intensities uj (+; t). This is done by
applying (2.111) to the centers xj of the elements that form the solid boundaries S, i.e. for x, = xi.
The dipole intensities uj (; t) of the wake are calculated from the dynamic condition (2.109). Given
that a piecewise constant approximation is used, application of the condition (2.109) on the wake
elements Sy, results in the reduction of the unknown d.o.f to the dipole intensities carried by the
elements that have been recently shed and they are distributed along the emission line. The value of
the rest of the wake dof is considered known from previous times. Moreover, as already mentioned

condition (2.108), demands equal dipole intensities uj, and iy for the body and the wake elements
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adjacent to the emission line. The above remarks complete the system of equations for the unknown

intensities py and uyyy -

Since the problem is formulated in time, a time marching scheme is defined. Let At denote the time
step of the scheme. According to the previous analysis, all information concerning the vortex sheets
of the flow is known from the previous steps, except for the near part, i.e. the part generated during
the current time step. Consequently different approximations can be used for the near (“new” part)
and the far (“old” part) region of the free vortex sheets. More specifically the vortex sheet
assumption is retained only for the near region of every wake. On the contrary the rest is

transformed into free spatial vorticity in the sense that a vortex particle approximation is introduced.
In this connection, let Sﬁ/k and Sy, be the near and far part respectively of the vortex sheet of the k-
th lifting body. Accordingly the wake potential (2™ term in (2.101)) is decomposed into two parts: the
potential (pﬁ/(-, t) induced by the near parts and the potential ¢y, (-, t) induced by the far parts of all
the vortex sheets. Thus the total induced potential is written as,

Px;t) = @ (X;t) + @, (:t) + @y, (X;1) (2.112)

where,

Ng
@5 (X;t) =D @ ;1)
k=1

NB
@ (1) =D @, (X;t) (2.113)
k=1

Ny
@ (%) =D @y (X;1)

k=1

where @, (; t) is the potential induced by the bodies.

As regards the velocity calculation, it follows from (2.100) and (2.110) that Vey,(;;t) can be
identified to the rotational part of the flow u,(:; t),

w, (x;t)x(x, —x)

u,(;t)= |

5— dD(x) (2.114)
o AT[X, =X

where D, (t) denotes the support of the free vorticity w,(-; t), given by (see (2.110)),

NB Ewk

w,, (x;t)=Vxu,(x;t) = ZZ&M (X=X, ) T, (X, 5t) 1, (8) (2.115)

k=1 e=1

Note that as already mentioned in (2.115) only the line vorticity terms are included due to the

piecewise constant approximation of the dipole distributions pj, (*; t). The above interpretation of
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Vo (5 t), leads to some modifications in (2.101) and (2.111). The contribution of the wake should
be restricted only to the near parts Slﬁ,k, while the ¢y, (-, t) and u,(; t) components should be taken
into account. In (2.111) u,(-; t) corresponds to the contribution of the far wake and is included in the

right hand side of the equation.

As regards the discrete approximation of wy,(+; t) by means of vortex particles, it is given as,

w, (6Gt)= D Q(t)-7_(x—Z,(t) (2.116)

Jjel(t)

where Q,(t) and Zj(t) denote the intensity and the position of the vortex particles, J(t) the index set for

the vortex particles and Z,(r) the cut-off function, defined as,
3
1 di
{.(r)=—exp —(—j ;o :|x—Z/.(t)| (2.117)
£ £

Using (2.116), u,(-; t) takes the form,

u, (x;t)= > Q,(t)xx=2,{t) I1—exp —(HJ (2.118)

3
jelit) 4n|x—Zj| 3

Thus instead of calculating the geometry of the vortex sheets and the dipole distributions they carry,

the evolution of the vortex particles is defined by the following dynamic equations,

9z, (t) =u(Z ;t), jelt) (2.119)
dt !
a0, t) =(Q,(t)-V)-u(z;;t), jelt) (2.120)

Dt
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Qe convect near wake integrate s\/{orticity
to get new particle

Figure 2.18: The hybrid scheme of the wave.

Equations (2.119) and (2.120) concern the evolution of the far parts of the wakes. As the near parts
still retain their vortex sheet form, their determination is different. Let u.,, denotes the mean velocity
at a point X., along the vorticity emission line of a lifting body. The geometry of the near part of the

corresponding wake Sﬁ, is determined kinematically through,
Xt =X, +At-u, (2.121)

where X* - X.n, is the width of Sﬁ,k in vectorial form [Figure 2.18]. Finally the intensity of the dipole

distribution of S5, is determined by means of condition (2.108).

Due to the time dependent character of the problem the free vortex particles of the far wake are
generated gradually at every time step, from the integration of the surface vorticity, carried by the
near wake elements. In order to initially determine the intensity Q;t) and the position Z(t) of every

new generated vortex particle, the following relations are used,
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Q= .[ w, ds, , Q,xZ, = .[ w, xx ds, (2.122)

S,

wk

S,

wk

where S3%,, e = 1, EL, are the elements that constitute the near wake of the k-th body. In this way,

the vorticity of each near wake element is integrated to produce one vortex particle [Figure 2.18].

2.5.2.3 Loads calculation

The aerodynamic loads on every lifting surface are calculated directly by application of Bernoulli’s
equation for two adjacent points on the blade surface, the first located on the upper side and other
on the lower side of the thin blade. Then the following expression of the pressure jump distribution
[p](.; t) over the blade is derived,

ALty +u, (x5t) -Tulost) = — 2 (2.123)
ot o)

where u = -[¢] is the dipole distribution on the blade, u,, and [u]=V[@]=—Vu [u] are the mean
velocity and the velocity jump of the two sides respectively. Since a piecewise constant dipole
distribution is adopted, the Vu is calculated in terms of finite differences along the 2 surface

directions.

In the discrete problem (2.123) is applied to the control points (i.e. the centers of the elements). Let
[pl%, e = 1,Ex and k = 1, Ng be the pressure discontinuity on the e-th element of the k-th body,
the aerodynamic force on the element will be given by F(t) =v; -[p]; - S . Integration of the

elementary forces over the blade strip gives the distribution of loads along the blade span,
F™° () =D v; [pl; S; (2.124)
Accordingly the local ¢ /4 pitching moment of a blade strip is given by,

M ()= > (e x V5 ) [Pl S; (2.125)

e

where r: is the distance vector of the position of the control point on the e-th element with respect

to the blade quarter chord where the moment is calculated.

Due to the inherently inviscid character of the method, the loads calculated through the application
of Bernoulli’s equation do not include the viscous effects related to the skin friction and the flow

separation. A way to take into account these effects is through the implementation of an a-posteriori
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correction scheme to the loads, based on the steady C;, C;, and Cy or on the ONERA dynamic stall
model [74], as in the BEMT case.

2.6 Hydrodynamic modeling

In the present section the hydrodynamic methods in hGAST based on potential theory or Morison’s

equation are presented (see also section 1.2.2).
2.6.1 Linear potential flow modeling

For rigid floaters, the 6 equations of motion in time domain take the following form, based on the

impulse response function method [110],

+FWT+Fvisc+6l3(B-W) (2126)

t
(M + aoo )q + IR(t-I‘)q(t)dI’ + (KH+KG +KMoor )q = F;)1(1+Fe()2<l+FMoor
0
where

g denotes the vector containing the 3 displacements and the 3 rotations of the floater. Dots denote

time derivatives.
M denotes the 6x6 generalized mass matrix of the floater, defined in (4.27)

a, denotes the added mass matrix corresponding to infinite wave frequency, while the added mass

matrix is defined in (4.25a).

R(t) denotes the retardation matrix appearing in the convolution which allows capturing the

hydrodynamic damping due to memory effects. Its elements are defined as,
2 o0
Ry (t)==[ b,(w)cos(wt)dw (2.127)
n 0

where b; denote the elements of the added damping matrix b defined in (4.25a).

Ky and Kg denote the hydrostatic stiffness matrix and the restoring stiffness matrix due to gravity
defined in (4.28) and (4.31) respectively.

Kvoor denotes the linear stiffness matrix that accounts for the mooring lines (zero if the dynamic

mooring line model is used).

F) denotes the 1* order wave exciting force accounting for the wave force and diffraction effects,
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exc

n (1)
Fo(t)=) A {%} cos(,(w,)-wt+e), A =2S(w,)dw
i=1

Foo (t) = A{%} cos(¢(w)-wt)
(2.128)

In (2.128) the first expression is valid for a single Airy wave of height 2A, while the second expression
is valid for an irregular wave described by a spectrum with spectral density S(w). The term in square
brackets and the angle ¢(w) correspond to the magnitude (per wave amplitude) and the phase of the
exciting force calculated in the frequency domain and is defined in (4.24), while ¢; is the random

phase angle of each wave component i uniformly distributed over [0, 2m].

Fg{l denotes the 2™ order wave induced force proportional to the square of the wave amplitude A
and derived by the interaction of a pair of regular waves with frequencies w; and w;. If the complete
2" order hydrodynamic problem is solved, then low frequency loads of frequency |w; - w;| and high
frequency loads of frequency w; + w; are generated. The low frequency loads are referred as
difference frequency loads, while the high frequency as sum frequency. Currently in hGAST only the

difference terms loads are considered using the Newman’s approximation formula [43],

2

= F,.(w
Fo(t)=| DA 2{%} cos(-wt+e,)
i=1

L Forife (w;)>0

(2.129)

r 2

%} cos(-w;t+e;) , A =2S5w,)dw

L Fonge (w;)<0

where Fg is the mean drift force.
Fumoor is the force exerted on the floater from the mooring system.
Fwr is the force exerted on the floater from the wind turbine.

Fyisc is the viscous quadratic force from the Morison’s equation (see section 2.6.2) which adds extra

damping to the system defined as,

o)
FVisc(t) = ECdS

u,,(t)| u,,(t) (2.130)

where C, is the drag coefficient, S the surface normal to the flow and u,, the relative velocity normal

to the floater surface.

B and W are the buoyancy and the weight of the floater, only applied at the third equation which

corresponds to the force equation in the vertical direction.
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Note that the hydrodynamic properties added mass-damping matrices, wave exciting force and
mean drift force vectors are calculated by solving the 1% order hydrodynamic problem in the

frequency domain.

2.6.2 Morison’s equation

The hydrodynamic force per unit length for an inclined submerged moving member based on the

relative form of Morison’s equation [45] takes the following form,

df /dL= pdVa,+C,pdVa,-C,pdV G, +05C,pdS |u—ql, (u—q),
%f_/

Froude Krylov Diffraction Added mass Drag term

(2.131)

where

a and u denote the total (wave and current) induced acceleration and velocity, based on the
considered wave theory (i.e. Airy regular (see section 5.3.7.1) or irregular theory (see section 2.7.2),

stream function (see section 5.3.7.2)). The subscript n denotes the normal to the surface component.
g, g denote the acceleration and the velocity of the member/body.
C, and C, are the added mass coefficient and the drag coefficient.

dV and dS denote the infinitesimal volume and normal to the flow surface (i.e. for a cylinder of radius
R, dV=rtR*dL and dS=2RdL).

p denotes the density of the water.

In (2.131) the total force is the sum of the Froude Krylov force, the diffraction force, the added mass
force and the drag force. The force is valid if A/D > 5. The wave kinematics is evaluated at the center

of each component (i.e. at the center of the circle in case of a cylinder).

By defining the inertia coefficient C,,=1+C,, then (2.131) becomes,
df/dL=C pdVa —-C,pdV g, +05C,pdS |u—qg]|,(u—q), (2.132)
The normal to the surface component of a vector X can be written as,
X =X-X,=X— (t'-X)t=(1-t-t") X (2.133)

where t is the unit tangent vector and I the unit 3x3 matrix. Subscripts n and t denote the normal and

the tangent components. Then, the perturbation of the force is,

6F=—C,pdV (I-t-t)6-0.5C, p dS |u—g|, (1-t-t")5¢ (2.134)
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It is noted that the variation of the tangent unit vector t is not considered in (2.134). By moving
(2.134) to the left hand side, additional mass and damping terms appear that reduce the stiffness of
the problem (and so helps the convergence). The implementation in hGAST is based on (2.132),
(2.133) and (2.134).

The Froude Krylov force as considered in Morison’s equation is valid only for fully submerged bodies,
as reported for example in [46]. In case of a floating wind turbine and in order to correctly introduce
the hydrodynamic loading in the heave direction, the Froude Krylov force is expressed in terms of the
dynamic pressure p,. Equation (2.132) equation is still valid for the horizontal force components, but
not for the vertical because of the surface piercing structure. To this end Morison’s equation in heave
direction for a plate which represents the bottom part of the floater is written as,

n

F,= Sp, +C,pVa,-CpV§+05C,pS |lu—gl,(u-d), (2.135)

Froude Krylov Diffraction Added mass Drag term

where S denotes the area of the plate and V the volume of the structure that corresponds to each

plate.

2.6.3 Buoyancy calculation

In case the floater is considered rigid, the total buoyancy (concentrated load) and the hydrostatic
stiffness terms are directly considered in the equation of motion (see (2.126)). On the contrary if the
substructure is considered flexible, the distributed buoyancy force is applied along the flexible
members. When conical members are used, the pressure integration over the wet side surface leads

to the following force and moment per unit length, expressed in local coordinates,

pgST,, cosT, PgSRT,, siny,
dF, /dL={—P(pgz,+p,)sind ;dL, dM,/dL= 0 dlL (2.136)
pgST,, cosT, —pgSRT,,sinT,

where S, P and R denote the area, the circumference and the radius of the member at the point
where the buoyancy force is evaluated, z, the global vertical coordinate of the center of the section,
pq the dynamic pressure, 9. the cone angle of the member and T; the elements of the local to global
transformation matrix. Note that in the local coordinate system the y-axis corresponds to the beam

axis.

In the local frame, the buoyancy at the end nodes, i.e. at the bottom of floater, is normal to the

surface and defined as,

F,, =p9z,5 (2.137)



69

The dynamic pressure term in (2.137) is omitted, since is already considered in (2.135). The total
hydrodynamic force at the end nodes is the sum of (2.135) and (2.137).

In the case of multimember structures with complex geometry, the buoyancy force sometimes is
modeled as an opposite gravity force per unit length equal to,

dF, / dL=pgST, ..dL (2.138)

3,13

If the buoyancy force is calculated based on (2.136) and (2.137), then is called “pressure integration
method”, while if based on (2.138) “volume method”. Note that according to the volume method, no

end nodes integration should be introduced. Both methods are implemented in hGAST.

The surface integration method is considered to be more accurate, because buoyancy is applied at
the exact position where it acts. Multi-member jacket structures, with complicated geometry should
be treated with care, in order to correctly consider the wet surfaces at the connecting points. On the
contrary the volume method assumes that the buoyancy is a field force, although in reality it is a
surface force. There is an inconsistency in this approach, since the force is assumed to act all over the
wetted volume, and not over the wet surface. Due to its simplicity, the volume method is preferred

for complex multimember geometries.

Note that by linearizing the above expression for the rotation matrix T and the global position z, the
convergence is improved. In this way the hydrostatic stiffness is indirectly introduced in the floater
equation of motion, i.e. in case Morison’s equation is applied along the flexible members of the

floater.

2.7 Wind and wave excitation

Both wind and wave are considered stochastic. The principle in defining them is similar. By assuming
a specific power spectral density function S(w) for the defining parameter, statistically equivalent
time series are generated using random phases uniformly distributed over [0,2m]. The details are

given next for each of the two main environmental features in offshore wind energy field.

2.7.1 Wind conditions

The wind conditions are defined with respect to the wind velocity components (u, v, w) that
correspond to space directions (x, y, z). The wind field is usually decomposed into its deterministic
and stochastic parts. The deterministic part, here denoted with capital letters as (U, V, W) is usually

referenced at hub height. If x, y and z denote the mean wind speed direction, the lateral and the
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vertical directions respectively, and V=W=0, at y=0* while U follows a vertical shear profile given in

exponential form then,

Ulz)=U,, [ij (2.139)

zHub

In certain cases horizontal shear and vertical veer are also added, so in general U, V, W may depend
on y and z but not on x. With respect to time, two possibilities are considered: the presence of a
deterministic gust in which case Uy, will vary in time; and a wind direction change in which case (U, V,

W) are appropriately rotated. Details on the definition of (U, V, W) are given in the IEC standard [68].

Coming to the stochastic part of the wind field, fluctuations u’, v/, w' in all three components are
considered. They are defined in a y-z plane: u'=u'(t,y,z). By applying Taylor's hypothesis,
dependence on time is transformed into x dependence: x=t U, and the information on the
turbulent fluctuations defines a so called turbulent box that is transported at constant velocity Uy. In
order to obtain such a box, a specific theoretical PSD is defined for each of the three components at
one point (usually the hub center) alongside with a spatial correlation function Coh. A usual choice is

the von Karman spectrum,

fSulf)_ A(fL/U,)
o, (1+c0(f Lu/UW)z)a

s AU LIu)(ve(fLru,))

g (1+Cz (fL,/U,) )6 (2.140)
o st
o, (1+c2(f LW/UW)Z)B

where f is the frequency, L, denotes the length scales and o the variance of each component. The
constants ¢,,c,,c,,a,8 in the above expressions are calibrated using measured data as proposed in

[111]. The spectrums are combined with Davenport’s exponential coherence,

(2.141)
w

Chr, f
Cohy = exp (U—’k]

>In complex terrain a vertical inclination is added which is not included here, but is easy to introduce.
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where C is the coefficient of the exponential decay and Arjk the distance between the two points
considered. Also of exponential form is the correlation between the velocity components as
proposed in [112, 113].

Based on the above spectral information, a turbulent box can be generated by first factorizing the
complete spectral matrix S that includes the spectral information of all three components together
with their spatial correlation and then adding random phases as proposed in [114] and assessed in
[115].

2.7.2 Wave and current conditions

A similar approach is applied to the generation of the wave input. The spectrum concerns the height
of the wave and is defined i.e. by the Pierson-Moskowitz or the JONSWAP* spectra Spy and Sjs, given

by the following equations,

-4
S 2 4 s 5| w

S, (w)=—H:w w” exp| ——| —

) 16 ° ° P 4(%]

2
w-w,
ex{—o.s[ P ] }
ow,

(2.142)

Ss(w)=S,,(w)(1-0.287In(y)) v

where:

w is the angular spectral frequency

Hs is the significant wave height

w, is the angular spectral peak frequency at which the wave energy spectrum is maximum

o is the spectral width parameter defined as [69],

@) 0.07 forw<w,
olw)= 2.143
0.09 forw>w, ( )

y is the dimensionless peak shape parameter defined as [69],

4 Any other site specific spectrum can be used instead.
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T
5 for—2—<3.6
S
T, Tp
y=<exp| 5.75-1.15 for3.6< <5 (2.144)
VHS VHS
T
1 for—£=>5
VHS

T, is the peak period corresponding to w,

The Pierson-Moskowitz spectrum is recommended for fully developed sea, while the JONSWAP for
limited fetch [46]. In Figure 2.19 the above-mentioned spectra are compared for the case the

significant wave height is H;=6m and the peak period is T,=10s.
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Figure 2.19: Pierson-Moskowitz and JONSWAP wave spectra comparison for significant wave height H;=6m and peak period
T,=10s.

If the wave field is defined based on Airy theory then the wave elevation of an irregular sea described

by the spectrum S(w) is,

7" (x;t) = ZA,. cos(kx, —wit+g;), A =25w,)dw (2.145)

i=1

where similar to (2.128) &; denotes the random phase angle of each wave component i uniformly
distributed over [0, 2r] and k; the wave number of each wave component i provided by solving the

dispersion relation (see section 5.3.7.1 for details about the Airy theory).
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Chapter 3

Coupled hydro-servo-aero-elastic analysis: Results

In the present chapter, coupled hydro-servo-aero-elastic simulations using hGAST are performed
considering the NREL 5MW reference WT. At first selected load cases are taken from the OC3 and
OC4 IEA Annexes concerning a bottom based jacket support structure, a monopile with rigid or
flexible foundation, a semi-submersible and a spar-buoy floating wind turbine. The comparison
against other simulated results on one hand shows the completeness of the modeling followed in
hGAST and on the other proves the capability of hGAST to consistently simulate all offshore concepts.
Moreover, assessment of the 3D aerodynamic effects on the behavior of offshore wind turbines (OWT)
is carried out by comparing the blade element momentum theory (BEMT) and the free wake vortex
aerodynamic method GenUVP, in the case of the spar-buoy. It is concluded that the main differences
appear in asymmetric inflow conditions and that the BEMT model predicts increased damage
equivalent loads, so is on the safe side for this concept. Finally, assessment of the geometric nonlinear
effects due to large deflections is performed by comparing the 1st order baseline beam model, the
2nd order beam model and the sub-bodies modeling presented in section 2.3. It is concluded that
bending-torsion coupling is identified as the main drive of the differences between linear and
nonlinear modeling predictions. The linear (1st order) beam modeling is still acceptable except with

respect to blade torsion.

3.1 Introduction

The present chapter examines the performance of the hydro-servo-aero-elastic results produced by
hGAST and addresses certain aspects in the modeling options the specific software offers. The

chapter is divided into three sections.

In section 3.2 hGAST simulations are verified in comparison to other state of the art tools. This part is
connected to NTUA’s participation in the IEA Annex 30 “offshore code comparison collaboration
continuation” (OC4) [116] on code-to-code comparisons for offshore Wind Turbine (OWT) design
verification codes. In OC4, a bottom mounted jacket support structure was examined in Phase | and a
semi-submersible floating WT in Phase Il. Two more concepts a monopile support structure and a
spar-buoy floating WT are also considered. Both have been studied in the “Offshore Code

Comparison Collaboration” (OC3) [94]. For the aforementioned simulations the BEMT version of
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hGAST (see section 2.5.1) has been used. The choice of BEMT as aerodynamic model was made in
order to comply with the rest of the software that were considered in OC4. Results and findings from
the OC4 annex have been published in [73, 117].

In section 3.3, assessment of the 3D aerodynamic effects on the behavior of OWT is carried out
through comparison between the BEMT and the Vortex aerodynamic methods (see section 2.5), in
the case of the spar-buoy OWT [118].

Finally in section 3.4, assessment of the geometric nonlinear effects due to large deflections is
performed, by comparing the 1st order baseline beam model, the 2nd order beam model and the

sub-bodies modeling (see section 2.3) [51].

Moreover in [76, 119] the effect of the initial curvature of the blade in both directions (pre-bend:
normal to rotor disk, pre-sweep: tangential to rotor disk) has been studied with respect to the
reduction of the blade loading. Also hGAST has been used in [120] for the modeling of a TLP floater,
while in [121] the coupled analysis of the TLP floating WT with an Oscillating Water Column (OWC)
device for wave energy extraction has been performed. Finally in [44] the 2™ order hydrodynamic
loads using Newman’s approximation have been introduced and their effect has been assessed

compared to the first order wave exciting loads.

3.2 Representative results from OC3 and OC4 activities

In order wind energy to move offshore there is a clear need for developing and validating coupled
simulation tools known as hydro-servo-aero-elastic codes. In the beginning, due to lack of

experimental data, code-to-code comparison was the only option.

The Offshore Code Comparison Collaboration (OC3) project was the first to specifically address the
development and verification of design tools for Offshore Wind turbines. OC3 started in 2006 and
was operated under the International Energy Agency (IEA) Wind Task 23. Universities, research
institutes and companies participated in a code-to-code benchmark study. The aim was to develop
and verify advanced hydro-servo-aero-elastic tools, capable of modeling different offshore wind
turbine concepts. Design load cases (dlcs) with increasing complexity were defined and predictions
were compared. The 3 bladed 5MW reference wind turbine (RWT) [98] designed by NREL was
mounted on 3 different support structures. In phase | the wind turbine was mounted on a monopile
with rigid foundation at 20m depth. In phase Il, 3 different foundation models were considered for
the same monopile: an apparently fixed (AF) model, a concentrated spring (CS) model and a
distributed spring (DS) model. In phase Ill a tripod at 45m depth was used. Finally in phase IV a spar-

buoy floater with catenary mooring lines at 320m depth was examined.

The OC4 project was an extension of OC3 which started in 2010 under the IEA Wind Task 30, named
Offshore Code Comparison Collaboration Continuation (OC4). In phase | the RWT was mounted on a

bottom based jacket at 50m depth, while in phase Il on a semi-submersible floater with catenary
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mooring lines at 200m depth. NTUA participated in the OC4 project with hGAST in both phases,

delivering results for the two offshore concepts [73, 117].

In the following sections, representative results from OC3 and OC4 are presented as part of the
verification of hGAST in offshore applications. Comparisons between the results predicted with
hGAST and those delivered by other organizations are performed, in terms of natural frequencies,
time series and power spectral densities (PSD). In Table 3.1 the total design load cases (dlcs) matrix
that will be considered in the next sections is defined, consisted of selected dlcs from the OC3 and

the OC4 annexes.

As already discussed in Chapter 1 hydro-servo-aero-elastic tools can be classified depending on the
methods adopted for the modeling of each building block (hydro, servo, aero, elastic). The first (and
most important) classification concerns the structural modeling which can be either based on FEM or
modal based codes. The second classification concerns the way hydrodynamic loading is estimated.
Two options exist: the Morison’s equation or potential theory. For bottom mounted support
structures (monopile, tripod and jacket) Morison’s equation is widely used. The third classification is
specific to floating WT and concerns the modeling of the mooring lines which is either based on the
quasi static or the dynamic mooring lines model. Finally, the forth classification is related to the
modeling of the aerodynamic loads. The default option is to use BEMT theory alongside with
corrections and add-on’s. Recently attention was given in also implementing free-wake 3D models
that were developed for onshore WTs. In this respect the most advanced and in fact the only
aerodynamic model in this class that has been fully coupled into a complete design software is
GenUVP [56].

An overview of the state-of-the-art codes participated in OC4 phase Il is given in Figure 1.4. All
participants in OC3 and OC4 used BEMT aerodynamic modeling. Due to its semi-empirical character,
the performance of BEMT models depends on the specific implementation and corrections followed
which are not always clear. So in all previous assessments comparisons are made in reference to
specific codes rather than specific modeling choices. Codes following the finite element method
(FEM) for the structural modeling of the WT and adopting a dynamic mooring line modeling are

preferred, in order to compare hGAST results against those formulated on similar basis.
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Table 3.1: Dlcs definition, taken from OC3 and OC4

DicID |Compare Wind Wave Other conditions
Natural no gravity, .
1.1 frequencies |~ - no structural damping,
9 stand still (brake is applied)
gravity,
1.2 :Ztuur::\cies - - structural damping,
q stand still (brake is applied)
Airy: foundation and flexible substructure,
2.1 Time series |- H=6m, stiff rotor and drive train,
T=10s stand still (brake is applied)
. . Sm/s' Alry: all dofs enabled (elastic, control, floater*,
3.1 Time series |uniform, [H=6m, foundation®)
no shear | T=10s
8m/s, Strearn
. . . function: .
3.2 Time series |uniform, H=8m all dofs enabled (elastic, control)
no shear T=10s
Pierson-
41 PSDs 11.4m/s, | Moskowitz: all dofs enabled (elastic, control, foundation*)
turbulent | H;=6m,
T,=10s
Jonswap:
4.2 PSDs 11.4m/s, H.=6m, all dofs enabled (elastic, control, floater)
turbulent
T,=10s
*enabled if the corresponding dofs are defined in the model description
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3.2.1 The jacket case (OC4 phase )

3.2.1.1 Introduction

In OC4 phase | the NREL 5MW RWT [98] is mounted on a bottom based jacket support structure at
50m water depth. Detailed description of the jacket and of the tower is given in [122] while the list of
the load cases and of the output recorded sensors can be found in [123]. The sensors on the jacket

are shown in Figure 3.1.

Blade 50%
span

Generator

Blade root

High speed
shaft

Tower top

speed shaft
at main bearing

—

i, e

,_h.‘.__.
A

mudbracel4
mudlinel1

mudlinel4

Figure 3.1: Placement of sensors on jacket support structure (left) and wind turbine (right) [figure taken from [117]]

The jacket is formed by 4 vertical legs free flooded up to MSL which are constrained by one
horizontal bracer and 4 “X-bracer” connections. From z=-49.5m to -45.5m the legs are connected to
the piles and concrete is placed in between. Marine growth is applied from z=-40m to -2m to all
jacket members leading to an increase of the mass and of the external diameter. The tower is
connected to the jacket at z=20.15m through a concrete transition piece. As a simplification, in OC4,
the nodes connecting crossed members are defined at the intersection of the two elastic axes. This
leads to an artificial mass increase, although in hGAST and other codes a more accurate modeling is

available.

The specific offshore WT concept requires the modeling of: the WT; the jackets; the marine growth;
the transition peace; the leg — pile connections; the free-flooded members. In hGAST, the jacket is
modeled using 117 different members. The marine growth and the leg-pile connection are modeled
by properly modifying the structural properties of the corresponding members. Marine growth does
not influence the stiffness, but reduces the eigenvalues due to the extra mass added and thereby

influences the dynamics of the coupled structure. In addition, marine growth increases the
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hydrodynamic loading, because of the increased outer diameter. The leg-pile members are modeled
as beams with very high stiffness, considering the total distributed mass of the pile, the grout and the
leg. The transition peace is modeled as a concentrated generalized mass. Moreover at 20.15m height,
4 stiff diagonal elements connect each leg with point (0, 0, 20.15) where the tower is mounted. The
water inside the flooded members reduces the buoyancy and contributes extra inertial terms, of
minor importance though because the deflections are small. The flooded water mass has not been
modeled by modifying the structural properties, because the axial loads of the flooded legs that
apply to the seabed level would increase by the weight of the flooded water. The WT blades are

modeled using 9 sub-bodies and the tower using 1 sub-body and 20 elements.

Due to the complexity of the system and its modeling 4 or 5 revisions were needed in order to detect
interpretation errors and modeling deficiencies. In the following comparisons out of the list of all
OC4 phase | participating codes, tree codes have been selected and referred in the sequel as Codel,
Code2 and Code3. All codes use BEMT aerodynamic modeling and Morison’s equation for
hydrodynamic modeling. Codel follows similar to hGAST FEM structural modeling while Code2 and
Code3 adopt the modal approach. Wave kinematics in Morison’s equation is calculated up to the

instantaneous water level using Wheeler stretching method [124] (see section 5.3.7.1).

3.2.1.2 Natural frequencies

In Table 3.2, the natural frequencies of the coupled structure from dic1.1 [Table 3.1] are compared,
which corresponds to dlc1.0b from OC4 phase I. The influence of gravity and of structural damping is
not taken into account. The predictions are in very good agreement. This is an indication that the
modeling of the structure is consistent and that the dynamics are well captured. The influence of
gravity and structural damping is recorded by presenting hGAST predictions from dlcl.2 which
corresponds to load case 1.0d from OC4 phase | and are denoted as hGAST* in Table 3.2. As also
reported in [117], the influence of gravity and structural damping on the eigenvalues is in general
very small; much less than 1.5% a fact that is confirmed. The highest relative reduction is visible in

the global fore-aft and side-to-side modes.
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Table 3.2: Natural frequencies [Hz] comparison of the jacket coupled OWT of OC4 phase |

Mode description hGAST | Codel | Code2 | Code3 | hGAST*
1* global fore-aft 0.312 0.319 0.315 0.316 0.307
1* global side-to-side 0.309 0.317 0.312 0.314 0.304
1* drive train torsion 0.604 0.601 0.605 0.602 0.604

1+ asymmetric flapwise pitch 0.671 0.659 0.664 0.700 0.669

1°*" asymmetric flapwise yaw 0.625 0.625 0.629 0.647 0.627

1** flapwise collective 0.711 0.697 0.699 0.737 0.710

1°*" asymmetric edgewise pitch | 1.073 1.070 1.074 1.078 1.074

1°* asymmetric edgewise yaw 1.083 1.080 1.084 1.066 1.081

2" global fore-aft 1.177 1.193 1.217 1.215 1.172

2" global side-to-side 1.194 1.214 1.205 1.237 1.189

2 asymmetric flapwise yaw 1.620 1.640 1.653 1.646 1.622

2 asymmetric flapwise pitch 1.910 1.882 1.906 1.987 1.908

2 flapwise collective 2.002 1.969 1.972 2.061 2.001
1** global torsion 2.804 - 2.861 2.793 2.804
2" edgewise collective 2.749 2.755 2.787 2.708 2.750

3.2.1.3 Time series

Time series of the recorded sensors are compared for the dlc3.2 [Table 3.1] which corresponds to the
dlc5.6 from OC4 phase I. A constant uniform inflow of 8m/s and a 9™ order stream function wave
with period 10sec and height 8m at 50m depth are considered. All elastic degrees of freedom are
enabled and the controller is switched on in the variable speed option. The blade pitch remains zero

since the wind speed is well below the rated one of 11.4m/s.

In the present simulation the buoyancy force is calculated with the volume method in hGAST, due to
the complex geometry of the jacket structure (see section 2.6.3). No dynamic pressure or drag terms
are considered at the end nodes of the jacket members. Morison’s equation is applied up to the
actual instantaneous wet position, since wave kinematics is defined based on the stream function

theory.

In Figure 3.2 the global loads (3 forces and 3 moments) are compared, as obtained from a post
processing procedure. The force on each leg is transferred to the center of the jacket as a
combination of a force and a moment. In this way the global forcing acting on the structure is
recorded. The fore-aft force and moment are in a very good agreement both in terms of mean value
and amplitude. The wave period of 10sec is clearly depicted and the overturning moment due to the

aerodynamic thrust compares well. The side-to-side signals are driven by the control system because
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the wind and wave are aligned with the x-axis and so no significant loading is applied in the lateral y-
axis direction, except of the rotor torque. The mean values are almost the same, while differences
appear in the amplitudes due to the high sensitivity to the implementation of damping. The presence
of high frequencies in one simulation that also appear in other signals is not straight forward to
explain. They have no relation to either the wave or the rotor frequencies, but on the other hand
they do not influence the results since the mean value, the amplitude and the main frequencies are
correctly represented. The mean value of the global vertical force is defined by the difference of the
weight minus the calculated buoyancy. Although the buoyancy is a constant force and in this respect
does not contribute to the dynamic loading, still different implementations can lead to mean value
differences in the jacket loads and deflections. This was a finding of the OC4 project where the two
different methods were used; the volume method and the surface integration method (see section
2.6.3).

The mean value of the vertical force in Figure 3.2 is well predicted, while the different amplitude and
phase are probably caused by the different modeling of the buoyancy force. It is not clear how each
partner has calculated the buoyancy force. Differences could be also attributed to different modeling
of the flooded legs. The yaw moment excitation is caused by the aerodynamics due to inflow
asymmetries caused by the blade deflections, the cone and the tilt angles. No wave yaw excitation
occurs because of the symmetry of the structure and of the loading. So the yaw moment at the
tower top, is transferred through the tower and then through the jacket to the piles. It is known that
modal based codes face difficulties in accurately predicting the yaw moment. Because of modal
reduction structural couplings are not accounted for and in certain cases blade and tower torsion

dofs are excluded. This was reported in the OC3 project as well [94].

In Figure 3.3, the local axial force on the 2" and the 4" leg is compared at 3 different vertical heights;
at 4.378m, at -38.25m and at -44.001m. Above MSL the tower frequency is excited, while below MSL
the wave frequency is dominant. All the codes predict almost the same amplitude, but results are
separated into two groups in terms of mean values. As already mentioned, this could be linked to the
different calculation of the buoyancy or the different modeling of the flooded members. If the
structural mass of the legs is increased in order to include the contained water mass, then higher

negative axial forces will appear.

In Figure 3.4 the out of plane deflections in the fore-aft and in the side-to-side directions at the
connection points X,S,, X,S; at -1.958m depth and at the connection points X,S,, X;S; at -33.373m
depth are compared. Predictions agree well both in the mean value and the amplitude except for the
side-to-side direction at X;S; where the mean value is different most probably due to the already
mentioned different buoyancy or flooded members modeling. As expected, fore-aft deflection is
higher (both in mean value and amplitude) compared to side-to-side, due to the wave excitation. It is

remarkable that deflections of 1mm are so consistently captured.

In Figure 3.5, the tower top moments and deflections are compared. Again the predictions are found
in very good agreement. Comments related to the side-to-side and yaw directions from Figure 3.2

also apply to the tower top moments and deflections, because no other excitation in these directions
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is present in between the tower top and the mudline. hGAST predicts slightly less fore-aft deflection
compared to the other three codes. The yaw angle attains very small values, so the opposite sign

obtained could be just an artifact.

In Figure 3.6, time series of the shaft torque and the bending moment at the main bearing position
are well compared, as defined in the rotating frame. A phase shift in the hGAST bending moment
results is due to different azimuthal synchronizing. The electrical power and the rotational speed are
compared in Figure 3.7, where predictions are consistent. Differences are small given the scale of the

vertical axis.

In Figure 3.8, the blade root moments and the main blade tip deflections are presented. As expected,
the in-plane moment is identical and the FEM codes predict almost the same in-plane deflection
because both signals are driven by gravity. A zero mean value in the in-plane deflection possibly
justifies the absence of the mass offset in the beam equation. Differences in the out-of-plane
moment are small given the scale. Out-of-plane deflections follow the trend of the mean value
differences of the out-of-plane moment and of the rotational speed of the rotor. hGAST and Code3
predict almost the same pitching moment and torsion angle while the amplitude from Codel is

bigger. Code2 does not include the torsion degree of freedom.
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Figure 3.2: Comparison of global jacket loads calculated at (0, 0, -50). The loads are the sum of the reaction force of all legs
(dlc3.2 [Table 3.1]: Nonlinear wave (stream function) H=8m, T=10s, uniform inflow at 8m/s)
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Figure 3.3: Comparison of Jacket axial force at K;L,, K;L,4 (4.378m), at middle of braces 59 and 61 (-38.25m) and at mud
brace level (-44.001m) (dIc3.2 [Table 3.1]: Nonlinear wave (stream function) H=8m, T=10s, uniform inflow at 8m/s)
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H=8m, T=10s, uniform inflow at 8m/s)



88

3.2.2 The semi-submersible floating case (OC4 phase II)

3.2.2.1 Introduction

In the OC4 phase Il, the RWT is mounted on the steel DeepCwind semi-submersible floater at 200m
depth. The draft of the floater is 20m and the deck clearance is 12m. The main structure is formed by
the main column and 3 offset columns [Figure 3.9]. The tower is mounted in the middle of the
structure, on top of the main column of 6.5m diameter. The diameter of the lower part of the offset
columns is 24m and of the upper part is 12m. Both parts are partially filled with water (the sloshing is
neglected). The 4 columns are connected by “Y”, “delta” and “crossed” connections, using 15
pontoons in total. Catenary mooring lines are used. Detailed description of the semi-submersible
floater, the mooring lines, the tower and the modifications in the controller is given in [125], the
description of the NREL RWT and the baseline controlling system is given in [98], while the definition
of the load cases in [116].

pontoons main
column

Cross
braces

offset
column<

Figure 3.9: Description of the semi-submersible floater of the OC4 [figure taken from [125]]

In the following comparisons out of the list of all OC4 phase |l participating codes, four codes have
been selected and referred in the sequel as Codel, Code2, Code3 and Code4. All codes use BEMT
aerodynamic modeling. hGAST, Codel and Code4 are FEM based codes and also adopt dynamic
mooring line modeling, while Code2 and Code3 are modal based codes with quasi static mooring line
modeling. Codel and Code2 use Morison’s equation for the hydrodynamic modeling, while Code3
and Code4 potential theory. Both hydrodynamic models are implemented in hGAST. Solid blue lines
correspond to results using potential hydrodynamic theory, while blue dashed and dotted lines
correspond to simulations using Morison’s equation. Wave kinematics in hGAST’s Morison module is
always calculated in the instantaneous position (IP) of the body. Dotted lines correspond to Airy
wave kinematics calculated up to mean sea level (MSL), while dashed lines correspond to Airy wave
kinematics calculated up to the instantaneous water level (IWL) by applying Wheeler’s stretching

method.

It is noted that the hydrodynamic coefficients in Morison’s equation have been calibrated on the

basis of the linear theory. Because the Airy theory is applied at the MSL and at the mean body



89

position, application of Morison’s equation at the instantaneous body position and at the
instantaneous water level is questionable. The best choice would be to estimate the hydrodynamic
coefficients based on experimental data. The above-mentioned nonlinear options (calculation at the
instantaneous position of the body and at the instantaneous water level) were found during the OC4

project to cause drift effects [73].

For the hGAST simulations performed with Morison’s equation the buoyancy force is calculated using

the surface integration method (see section 2.6.3).

3.2.2.2 Natural frequencies

In Table 3.3, the Natural frequencies of the coupled semi-submersible OWT dlIc1.2 [Table 3.1] which
corresponds to dlcl.1 from OC4 phase Il are presented. Gravity and structural damping contributions
are considered. In general the agreement is good which indicates consistent modeling of the WT and
of the semi-submersible floater. It also proves that the dynamics of the floating system are well
captured. Rigid body modes of the floater are similar. The Morison’s equation version of hGAST and
Codel predict slightly reduced surge and sway frequencies 0.0088Hz compared to 0.0093Hz
predicted by the other codes, including the potential version of hGAST. Both versions of hGAST
predict slightly bigger frequencies for the roll and pitch rigid body motions of the floater in
comparison to the others. Code4 predicts higher tower bending and drive train torsional frequencies.
1* blade modes are consistent, except that Codel predicts lower blade asymmetric pitch and yaw

frequencies in the edgewise direction.

Expected differences between modal (Code2 and Code3) and FEM codes (hGAST, Codel and Code4)
are found in the 2™ tower fore-aft and side-to-side bending modes and the 2™ blade asymmetric yaw
mode in the flapwise direction [Table 3.3]. Modal codes overestimate the frequency of the
aforementioned modes. For example Code3 over predicts the 2" tower side-to-side bending mode at
5Hz, while the other codes predict it at ~3.5 Hz. Also both modal codes overestimate the 2" plade
asymmetric yaw mode in the flapwise direction giving ~1.9 Hz instead of 1.68 Hz predicted by hGAST
and Code4 and 1.61 Hz predicted by Codel.

The effect of the different hydrodynamic modeling on the natural frequencies is identified by
comparing the 2 different approaches of hGAST. Clearly the WT frequencies remain unchained, while
small differences are found in the 6 floater rigid modes. In the present case, application of Morison’s
equation gives slightly lower frequencies for the 6 floater motions which are in agreement with the
Codel results, but since the Morison’s equation is subjected to calibration a firm conclusion cannot

be drawn.
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Table 3.3: Natural frequencies [Hz] comparison of the semi-submersible coupled OWT of OC4 phase Il

Mode description hGASTp | hGASTm | Codel | Code2 | Code3 | Coded
Platform surge 0.0093 0.0088 | 0.0086 | 0.0094 | 0.0093 | 0.0093
Platform sway 0.0093 0.0088 | 0.0088 | 0.0092 | 0.0093 | 0.0093
Platform heave 0.0583 0.0574 | 0.0573 | 0.0581 | 0.0581 | 0.0556
Platform roll 0.0413 0.0404 | 0.0384 | 0.0397 | 0.0392 | 0.0385
Platform pitch 0.0413 0.0404 | 0.0384 | 0.0397 | 0.0392 | 0.0385
Platform yaw 0.0131 0.0126 | 0.0132 | 0.0136 | 0.0132 | 0.0127
1* tower fore-aft 0.424 0.423 | 0.424 | 0.425| 0.426| 0.465
1% tower side-to-side 0.415 0.414 | 0.415| 0.417 | 0.418 | 0.458
1% drivetrain torsion 0.622 0.622 | 0.608 | 0.623 | 0.628 | 0.672
1* blade collective flap 0.717 0.717 | 0.686 | 0.706 | 0.704 | 0.692

1* asymmetric flapwise pitch 0.677 0.677 | 0.618 | 0.641 | 0.670 | 0.664

1* asymmetric flapwise yaw 0.639 0.639 | 0.648 | 0.670 | 0.667 | 0.635

1* asymmetric edgewise pitch 1.079 1.079 | 1.002 | 1.080| 1.079| 1.095

1* asymmetric edgewise yaw 1.092 1.092 | 1.015| 1.091| 1.092 | 1.103

2" tower fore-aft 3.417 3.415| 3.314 | 3.864 | 3.898 | 3.405
2" tower side-to-side 3.540 3.537 | 3.494 | 3.437 | 5.012| 3.875
2" collective flap 2.000 2.000 | 1.840| 1.972| 2.023 | 1.928

2" asymmetric flapwise pitch 1.876 1.876 | 1.739 | 1.718 | 1914 | 1.829

2“dasymmetricﬂapwiseyaw 1.681 1681 | 1.609| 1.870 | 1.934 | 1.672

*hGASTp: potential theory is applied, hGASTm: Morison’s equation is applied

3.2.2.3 Time series

Similar to the jacket case, results from dlc3.1 [Table 3.1], which correspond to OC4 phase Il dlc3.1,
are presented considering all the flexibilities of the structure enabled. Wind speed is 8m/s and an
Airy wave of 6m height and 10s period aligned to wind and x—axis is considered at 200m depth. The
Airy wave is selected, instead of the stream function wave of the jacket case, so that the linear
potential theory can be applied. The controller is operating in variable speed mode. The provided

results are compared in terms of time series.

In Figure 3.10, the rigid body motions of the floater are presented and in general the agreement is
good. Only the surge, heave and pitch motions are directly excited by the wave. In the corresponding
signals the wave period of 10sec is well represented. In sway, roll and yaw motions the wave period
is also depicted due to couplings, but the amplitudes are much smaller. As reported in [73]

differences in the surge mean value are attributed to nonlinear hydrodynamic effects. In the
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Morison’s equation approach, drift effects are caused by applying the hydrodynamic loads at the
instantaneous position (IP) of the body or at the instantaneous water level (IWL) using Wheeler’s
stretching or by combining the two. When the potential theory is applied, drift effects are revealed if
2" order terms are included either directly through the solution of the 2™ order problem or through
Newman’s approximation [43]. Different aerodynamic thrust could also affect the mean surge
position, although the above conclusion was initially drawn from simplified load cases with no wind
excitation. Code3 and the potential version of hGAST that both apply 1% order potential theory
predict almost identical surge motion. It is noted that a difference in the surge mean value signal is
not expected to influence the other signals. The pitch signals are very similar and the mean value
determined by the aerodynamic thrust is consistent. The amplitude of the pitch motion predicted by
Code2 is about 0.5° higher. Although sway, roll and yaw motions attain small values, the agreement
is very good. These motions are less damped so in certain cases the provided results have not
completely reached a periodic state. The positive roll angle is set by the torque of the rotor. It is not
straightforward to explain the differences in the sway sign because of the very small values attained.
Heave motion is well represented. Again some of the codes using Morison’s equation predict higher
amplitudes. By comparing hGAST potential (solid blue line) and the two Morison based results
(dotted blue line corresponding to IP+MSL and dashed blue line corresponding to IP+IWL) minor
differences are found in the surge and the pitch motion. Both versions of Morison’s equation predict
a negative drift effect in the surge motion. In the IP+IWL approach the mean surge is 0.3m lower and
in the IP+MSL version is 0.4m lower as compared to the results based on potential theory that do not
include drift effects. Both versions of Morison’s equation predict a minor increase in the pitch mean
value by ~0.2°.

In Figure 3.11, the tensions of the mooring lines at fairlead 1 and 2 are compared. The mean values
are identical, while phase shift and higher frequencies appear in the codes that adopt the dynamic
mooring lines modeling, compared to those that adopt the quasi static approach. These differences
do not seem to influence the dynamics of the coupled floating WT system, but will possibly affect the
DELs of the mooring lines, as also reported in [73]. They could be of crucial importance for the

mooring lines and the foundation design.

In Figure 3.12, deflections at the tower top and moments at the tower bottom are compared. As
expected, loads and deflections in the same directions depict similar behavior. Signals in the side-to-
side direction are driven by the torque of the rotor and indirectly by the controller. The 1* tower
mode is mainly excited (period about 2.5sec). The wave period is also depicted due to couplings with
the sway and the roll motions. Mean values are very similar. Because of the absence of side
excitation, the side signals are very sensitive to the modeling of damping which partially explain the
differences. On the other hand, signals in the fore-aft direction are mainly affected by the wave
excitation. Higher amplitude predictions in Morison based codes are explained from the higher
amplitudes of the pitch motion. Although the already mentioned difference in the mean value of the
tower yaw moment between FEM and modal based codes is still present (see section 3.2.1.3), it is
masked by the increase in amplitude due to the rigid motions of the floater. The twist angle, which

corresponds to the torsion degree of freedom of the tower, is only considered in hGAST, Codel and
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Code2. Although its value is very small about 0.01°, hGAST and Codel predictions are very similar,
while the increased mean value in Code2 is explained by the already mentioned mean value

difference in the yaw moment.

In Figure 3.13, the torque of the shaft and the bending moment at the main bearing are compared.
Differences in the torque signal are less that 5% but pronounced because of the scale in the figure.
Higher frequencies appear in modal based codes predictions. This indicates a possible difference in
the damping implementation but could be also associated to different modeling of the drive train or
to the application of a drive train damper as a means to avoid instabilities induced by the controller
that are not usually triggered in modal codes. FEM codes approximate the drive train as a beam
structure while in modal codes it is introduced as a torsion spring. The bending moment at the

position of the main bearing is well represented.

In Figure 3.14, the electrical power and the rotational speed are presented, both exhibiting similar
form. The electrical power is directly affected by the rotational speed of the rotor which in turn is
influenced by the pitch motion of the floater. Results again agree well, while differences seem
amplified given the scale in the figures. The wave excited pitch motion of the floater is clearly
depicted in the rotational speed as defined by the baseline controller defined in the OC4 project. This
implies a need for more advanced controllers capable of reducing the floater motion. For example in
[126] the OC4 controller was enhanced with an extra Pl which added a feedback torque based on the

filtered tower top acceleration

In Figure 3.15, moments at the root and deflections at the tip of the 1st blade are presented. Similar
to the tower signals, loads and deflections in the same direction should be linked. Signals in the in-
plane direction are almost identical, since they are driven by gravity. The rotor period of about 6sec
is clearly depicted. Bending moment and deflection in the out-of-plane direction are consistent,
although differences are bigger compared to the in-plane signals. As expected, the out-of-plane
signals are mainly affected by the presence of the wave, leading to increased amplitudes as
compared to the jacket case (see Figure 3.8). Both wave and rotor frequencies are depicted. Code2
increased amplitudes are linked to the increased amplitudes in the pitch motion. The torsion
moment is similar, while hGAST underpredicts its amplitude. The bigger differences are seen in the
torsion angle. hGAST and Codel that both account for geometric nonlinear effects, predict similar
results with the same phase, but with different mean value and amplitude [52]. In Code2 results, the
difference in the torsion angle and the smaller amplitude is possibly explained by the use of a
simplified beam model. This point is detailed in section 3.4 where geometrical nonlinear effects due
to large deflections are addressed.
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Figure 3.10: Comparison of platform motions (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at 8m/s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.11: Comparison of tension at fairleads 1 and 2 (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at 8m/s).
**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.12: Comparison of tower top deflections and tower bottom loads (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s,
uniform inflow at 8m/s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.13: Comparison of shaft loads (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at 8m/s).
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Figure 3.14: Comparison of electrical power and shaft rotation speed (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform
inflow at 8m/s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.15: Comparison of blade root loads and blade tip deflections comparison (dlc3.1 [Table 3.1]: Airy Wave H=6m,
T=10s, uniform inflow at 8m/s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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3.2.2.4 Power spectral densities

Results from the dlc4.2 [Table 3.1], which correspond to dlc3.2 of the OC4 phase Il are compared in
terms of power spectral densities (PSDs), since stochastic wind and wave excitation is considered.
Wind conditions correspond to a zero yaw angle turbulent inflow at rated wind speed of 11.4m/s
with turbulence intensity Ti=0.147 and shear exponent a=0.14 corresponding to normal turbulence
model (NTM) conditions. Wave conditions are defined based on an irregular Airy wave described
following Jonswap’s spectrum with peak period T,=10s (peak frequency 0.1Hz), significant wave
height H;=6m and dimensionless peak shape parameter y=2.87 at a water depth of 200m with zero
wave heading angle, corresponding to normal sea state conditions. All the elastic degrees of freedom
are enabled and the controller is switched on, operating in both the variable speed and the variable
pitch modes. One hour simulations are performed considering both hydrodynamic methods in hGAST
(blue solid lines correspond to potential theory, blue dotted lines to Morison’s equation applied at IP

and MSL, while blue dashed lines to Morison’s equation applied at IP and IWL).

In general the agreement for all the examined signals is very good. In Figure 3.16, the PSD of the rigid
body motions of the floater are presented. Only the surge, heave and pitch motions are directly
excited by the wave. In the corresponding signals the wave peak frequency of 0.1Hz (peak period of
10sec) is clearly depicted. In sway, roll and yaw motions the wave frequency is also excited due to
couplings, but the energy is much smaller. At low frequencies in all the PSDs the corresponding rigid
body natural frequencies (see Table 3.3) are clearly excited and the agreement is almost perfect. The
surge-pitch and the sway-roll couplings are identified as double peaks in the corresponding figures.
At the frequency range [0.2 — 06Hz] increased energy appears in hGAST predictions based on
Morison’s equation compared to those based on potential theory. The former results agree with
those by Codel also using Morison’s eq., while the latter with Code3 and Code4 which are based on
potential theory. It is noted that the energy in this frequency range is about 4 orders of magnitude

lower with respect to the maximum, so differences could be of minor importance.

In Figure 3.17, the PSD of the mooring line tension at fairlead 1 and 2 are compared. As already
mentioned in section 3.2.2.3 the implementation of a different mooring line model is clearly
identified. Although the peak at the wave frequency of 0.1Hz is almost identical, codes that adopt the
dynamic mooring line predict excitation in a wider frequency range from 0.1Hz to 0.7Hz that do not
influence the dynamics of the coupled floating WT. This conclusion follows by comparing the PSD of
the 6 rigid body modes [Figure 3.16]. The already discussed difference between predictions of codes

based on Morison eq. and potential theory is visible at 0.4Hz.

In Figure 3.18, the PSDs of the deflections at the tower top and the moments at the tower bottom
are compared. As expected, loads and deflections in the same directions exhibit similar behavior. In
the side-to-side PSDs the tower frequency at 0.42Hz is more excited followed by the sway and roll
rigid body modes and the 3P, 6P and 9P at 0.6Hz, 1.2Hz and 1.8Hz respectively. It is noted that hGAST
predicts less energy at 1.8Hz due to the application of the drive train damper at 1.75Hz as clearly
seen in the PSD of the torque of the shaft in Figure 3.19. In the fore-aft direction the wave frequency

is more excited because it coincides with the wave propagation direction. The rotor frequencies 3P,
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6P and 9P are pronounced in the fore-aft and the yaw directions. Agreement between the codes is
fine. The difference between predictions of codes based on Morison eq. and potential theory is

clearly visible at 0.4Hz in the fore-aft signals that are directly excited by the wave.

In Figure 3.19, the PSD of the torque of the shaft and of the bending moment at the main bearing
(defined in the rotating frame) are compared. As already mentioned hGAST predicts lower peak in
the PSD of the torque at the drive train free-free natural frequency (~ 1.75Hz) due to the drive train
damper. Good agreement is found in the bending moment where the main excitation is at 1P

frequency of 0.2Hz and 2P at 0.4Hz respectively.

In Figure 3.20 the PSD of the blade pitch and of the rotor speed are compared. The wave frequency is
clearly excited, similar to section 3.2.2.3 in both control variables. The 3P frequency is also depicted

as well as the 2™ flapwise and the drive train free-free (about 1.75Hz). Again the agreement is fine.

In Figure 3.21, the PSD of moments at the root and of deflections at the tip of the 1* blade are
compared. Similar to the tower signals, loads and deflections in the same direction should be linked.
The 1P rotor frequency of 0.2Hz is the most excited one for all blade signals. In the in-plane and the
yaw directions the edgewise natural frequency at about 1.1Hz is clearly depicted, while in the out-of-
plane direction the wave frequency is 0.1Hz. Codel predicts increased wave excitation and a shift in

the edgewise frequency also derived from Table 3.3, in comparison to the other codes.



100

—hGAST — HAWCZ2 — Code2 — Code3 — Coded

—hGAST — HAWCZ2 — Code2 — Code3 — Coded

10 T T T
10° : : :
10°
10°
£ = °
E o i
) = 10°
I+ 2 ll}d
E E B
= B 10
] x| 10° ; : :
ll}.ﬂ R ISR
ID.J-:- L L L
oo 0.2 04 0e 08
frequancy [Hz frequancy [Hz
(a) Platform surge motion [mZ/Hz] (d) Platform roll motion [degZ/Hz]
— h3AST — HAWCZ2 — Code2 — Code3 — Coded — h3AST — HAWCZ2 — Code2 — Code3 — Coded
¢
10 :
10° _
10? i
¥ : =z
10° : e
£ : L
E ll}d E—
g 10”7 = 2
G 10° : ]
10° :
ID.J-:- | | |
oo 0.2 04 0e 08
frequancy [Hz frequancy [Hz
(b) Platform sway motion [m%/Hz] (e) Platform pitch motion [degZ/Hz]
— h3AST — HAWCZ2 — Code2 — Code3 — Coded — h3AST — HAWCZ2 — Code2 — Code3 — Coded
10 1’
10° ¢
10? 10
10° 10°
= iy = 10’
& Wl w1
E
. 10° E’ _ 10
| 10° z iy
E 10”7 : E 10°
2 10* - 2 10°
2w : 2w
10° i i
10! I I I 10°
oo 0.2 04 0e 08 oo 0.2 04 0e 0.8
frequency [Hz frequency [Hz
(c) Platform heave motion [mZ/Hz] (f)  Platform yaw motion [degZ/Hz]

Figure 3.16: PSDs comparison of platform motions (dlc4.2 [Table 3.1]: NTM at 11.4m/s, Jonswap spectrum H;=6m, T,=10s).
**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.17: PSDs comparison of tension at fairlead 1 and 2 (dlc4.2 [Table 3.1]: NTM at 11.4m/s, Jonswap spectrum H,=6m,
T,=10s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.18: PSDs comparison of Tower top deflections and of tower bottom loads (dlc4.2 [Table 3.1]: NTM at 11.4m/s,
Jonswap spectrum H,=6m, T,=10s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.20: PSDs comparison of pitch angle and of shaft rotation speed (dlc4.2 [Table 3.1]: NTM at 11.4m/s, Jonswap
spectrum H=6m, T,=10s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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Figure 3.21: PSDs comparison of blade root loads and of blade tip deflections (dlc4.2 [Table 3.1]: NTM at 11.4m/s, Jonswap
spectrum H=6m, T,=10s).

**hGAST blue solid line: potential theory, blue dotted line: Morison IP+MSL, blue dashed line: Morison IP+IWL.
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3.2.3 The monopile case (OC3 phase |, Il)

3.2.3.1 Introduction

In the OC3 phase | and Il, the RWT is mounted on a steel bottom based monopile support structure
at 20m depth. In phase | the monopile is assumed cantilevered to the sea bed where fixed conditions
are applied, while in phase Il 3 foundation models are examined: the apparently fixed (AF) model, the
concentrated spring (CS) model and the distributed springs (DS) model (see Section 2.3.4.3). Detailed
description of the monopile and of the load cases is given in [94], while of the foundation models in

[93]. The description of the NREL RWT and the baseline controlling system is given in [98]].

In the following comparisons out of the list of all OC3 phase | and Il participating codes, HAWC2 from
DTU, ADAMS and FAST from NREL and BLADED from GH have been selected. All codes use BEMT
aerodynamic modeling and Morison’s equation for the hydrodynamic modeling, while HAWC2 and
ADAMS follow similar to hGAST FEM structural modeling and FAST and BLADED adopt the modal
approach. The wave kinematics in Morison’s equation are calculated up to the instantaneous water

level using Wheeler stretching method [124] (see section 5.3.7.1).

3.2.3.2 Natural frequencies

In Table 3.4, the natural frequencies of the coupled structure mounted on a bottom based monopile
support structure from dlcl.2 [Table 3.1], which corresponds to OC3 phase | and phase Il dlc1.2 are
compared. The influence of the gravity and the structural damping has been taken into account. The
predictions are in excellent agreement which indicates consistent modeling. Codes that adopt similar
FEM structural modeling to hGAST (namely ADAMS and HAWC2) are selected in the comparison that

follows.

The consideration of the foundation: reduces the 1* tower bending frequencies by 12% from 0.27Hz
to 0.24Hz; reduces the 2" tower fore-aft and side-to-side bending frequencies by 33% and 24%
respectively from 2.35Hz to 1.59Hz and from 2.22Hz to 1.70Hz; and increases the 2 asymmetric
flapwise pitch frequency by 10% from 1.80Hz to 1.98Hz. All other modes are not affected and
differences are less than 1%. The concentrated spring model in HAWC2 predicts increased 2" tower
and 2™ asymmetric flapwise pitch natural frequencies. Otherwise the frequencies determined with

the 3 different foundation models are almost identical.
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Table 3.4: Natural frequencies [Hz] comparison of the monopile of OC3 with rigid foundation (phase 1) and 3 foundation

models namely the apparently fixed (AF), the concentrated spring (CS) and the distributed springs (DS)

Mode description hGAST ADAMS HAWC2

Rigid| AF | CS | DS |Rigid| AF | CS | DS [Rigid| AF | CS | DS
1* tower fore-aft 0.27 |0.24|0.24|0.24|0.27 |0.24|0.24|0.24)0.27 |0.24|0.24 (0.24
1° tower side-to-side 0.27 (0.24|0.24|0.24|0.27 |0.24|0.24|0.24)0.28 |0.24|0.24|0.24
1% drivetrain torsion 0.60 [0.59(0.59(0.59|0.60 |0.590.59|0.59]0.60 |0.600.60|0.60
1% blade collective flap 0.71 (0.71(0.71|0.71]0.70 |0.70|0.700.70]0.70 |0.69|0.70|0.69

1% asymmetric flapwise pitch [0.67 |0.66 |0.66 |[0.66|0.66 |0.66 [0.66 |0.66|0.66 [0.66 |0.66|0.66
1* asymmetric flapwise yaw [0.63 [0.62|0.63|0.62|0.62 |0.62|0.62[0.62[0.62 [0.62|0.63|0.62
1* asymmetric edgewise pitch |[1.08 [1.08|1.08(1.08|1.07 |1.07 |1.07 [1.07 [1.07 |1.07|1.07|1.07
1* asymmetric edgewise yaw [1.09 [1.09]1.09(1.09|1.08 |1.08|1.08 [1.08(1.09 [1.08|1.09(1.08

2" tower fore-aft 2.35 (1.59/1.59(1.59(2.37 |1.59|1.59(1.59|2.34 ({1.57 |1.76 |1.55
2" tower side-to-side 2.22 |1.70|1.70(1.69(2.25 (1.71(1.71|1.71|2.30 |1.70|2.15|1.67
2" blade collective flap 2.00 (2.02(2.02(2.02(1.96 {1.95|1.95|1.95|1.94 |2.00|1.96|2.00

2" asymmetric flapwise pitch [1.80 [1.98(1.98(1.98(1.79 (2.01(2.01|2.01(1.78 |1.94 |2.24(1.94
2" asymmetric flapwise yaw |1.64 [1.63|1.64(1.62]1.61 [1.60|1.61|1.59]1.65 |1.63|1.64|1.61

3.2.3.3 Time series

Results from dIc3.1 [Table 3.1], which corresponds to OC3 phase | dlc5.1 are presented considering
all the flexibilities of the structure enabled. Uniform wind speed is 8m/s and an Airy wave of 6m
height and 10s period with zero wave heading are considered at 20m depth. The controller is

operating in the variable speed mode. The provided results are compared in terms of time series.

Since a detailed comparison of all the considered sensors have been performed in previous sections
for the jacket and the semi-submersible floater, only a few representative signals are presented for
the monopile with the rigid foundation. In addition to the FEM codes hGAST, HAWC2 and ADAMS
predictions by the modal based codes BLADED and FAST have been included.

In Figure 3.22a and b the tower top deflection and the monopile bending moment at the seabed
level in the fore-aft direction compare well. The rotation frequency and the wave frequency are
depicted in the tower top deflection, while the wave frequency is dominant in the bending moment
at the seabed level. In Figure 3.22c and d, the blade tip deflection and the root bending moment in
the out-of-plane directions are presented. A small mean value difference in the deflection is due to
differences in the aerodynamic loading estimation and is consistent with the mean values of the root
bending moments. In Figure 3.22e the rotor speed has reached an almost steady value. The
controller operates in variable speed mode and small differences in the mean value can be again
linked to aerodynamics. In Figure 3.22f the blade tip twist angle is compared. Only the FEM codes are
compared since the modal based codes do not include the torsion degree of freedom in the
structural modeling. hGAST and ADAMS predictions are in good agreement, while HAWC2 predicts

almost 0.5° smaller mean values and slightly increased amplitudes.
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In Figure 3.23 the monopile bending moment and deflection at the seabed level at -20m in the fore-
aft direction are compared for the 3 foundation models, namely the apparently fixed, the
concentrated spring and the distributed springs. The simulations correspond to dlc2.1 [Table 3.1],
which are the OC3 phase Il dlc4.1, in which the blades and the drive train are assumed stiff and an
Airy wave of H=6m and T=10s is considered. In the absence of wind, the rotor is assumed fixed (i.e.

the brake is applied).

Although the distributed spring model is of higher fidelity compared to the apparently fixed and the
concentrated spring models, similar results are obtained for all 3 foundation models as it is also
indicated through the eigenvalues comparison [Table 3.4]. All predictions agree well. ADAMS code
predicts higher frequencies, not straight forward to explain, but this does not affect the mean value
and the amplitude of the moment and of the deflection. The wave frequency is clearly depicted in all

the figures.
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Figure 3.22: Comparison of monopile with rigid foundation (dIc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at

8m/s)
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Figure 3.23: Comparison of monopile with flexible foundation fore-aft bending moment at seabed (left column) and fore-aft
deflection at seabed (right column) for the 3 foundation models AF, CS and DS (dlc2.1 [Table 3.1]: Airy Wave H=6m, T=10s,
no wind, stiff drive train and stiff blades)
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3.2.3.4 Power spectral densities

Results from dic4.1 [Table 3.1], which corresponds to dlc5.2 of the OC3 phase | and Il are compared
in terms of power spectral densities (PSDs), since stochastic wind and wave excitation is considered.
Wind conditions correspond to a zero yaw angle turbulent inflow at rated wind speed of 11.4m/s
with turbulence intensity Ti=0.174 and shear exponent=0.14. Irregular Airy wave conditions are
considered based on the Pierson-Moskowitz spectrum with peak period T,=10s (peak frequency
0.1Hz), significant wave height H=6m at the water depth of 20m and zero wave heading angle,
corresponding to normal sea state conditions. All the elastic degrees of freedom are enabled and the

controller is switched on, operating in both the variable speed and the variable pitch modes.

In Figure 3.24, the PSDs of the monopile fore-aft bending moment at the seabed is compared
considering 4 foundation types; the rigid foundation, the apparently fixed, the concentrated spring

and the distributed springs model. The agreement is fine for all foundation types.

In order to assess the influence of the foundation modeling on the WT loads, in Figure 3.25 the PSDs
of the moments at the blade root and the monopile at the seabed level for the 4 foundation options
are compared as predicted by hGAST. On the left side of the figure the PSDs of the blade moments
remain unaffected, so does the PSD of the monopile yawing moment [Figure 3.25f]. In the PSDs of
the fore-aft and the side-to-side bending moments there is a shift in the 2" tower bending mode as
also indicated in Table 3.4 from 2.2Hz to 1.6Hz. In the side-to-side signal shift of the 1* tower
bending mode from 0.27Hz to 0.24Hz is also visible. It was found that only the tower moments and
deflections are affected if the foundation modeling is considered, while all the other signals remain

the same.
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Figure 3.24: PSDs comparison of the fore-aft bending moment at seabed for the monopile with rigid foundation, and the AF,
CS and DS models (dlc4.1 [Table 3.1]: turbulent wind at 11.4m/s, Pierson-Moskowitz spectrum H=6m, T,=10s)
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Figure 3.25: hGAST PSD comparison of the blade root and the monopile base moments for monopile with rigid foundation
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3.2.4 The spar-buoy floating case (OC3 phase IV)

3.2.4.1 Introduction

In the OC3 phase IV, the RWT is mounted on the steel spar-buoy floater [Figure 3.26] at 320m depth.
The draft of the floater is 120m, while the tower is mounted at z=10m. Catenary mooring lines are
used. Detailed description of the floater, the mooring lines, the tower and the modifications in the
controller is given in [71], the description of the NREL RWT and the baseline controlling system is

given in [98], while the definition of the load cases in [94].

Figure 3.26: lllustration of the OC3 phase IV spar-buoy OWT [figure taken from [94]]

In the following comparisons out of the list of all OC3 phase IV participating codes, ADAMS and FAST
from NREL have been selected. All three codes use BEMT aerodynamic modeling and potential
hydrodynamic theory. As already mentioned, hGAST and ADAMS are FEM based codes, while FAST is
modal based. hGAST adopts dynamic mooring line modeling, while FAST and BLADED quasi static

mooring line models.

3.2.4.2 Natural frequencies

In Table 3.5, the Natural frequencies of the coupled spar-buoy OWT from dlc1.2 [Table 3.1], which
corresponds to OC3 phase IV dicl.1 are presented, similar to Table 3.3 which presents the natural
frequencies of the semi-submersible OWT. Gravity and structural damping contributions are

considered.

The excellent agreement indicates consistent modeling of the coupled structure. hGAST and ADAMS
(FEM codes) results differ by less than 2%, while expected differences between the modal based
code FAST and the FEM codes hGAST and ADAMS are found in both 2™ tower fore-aft and side-to-
side bending modes and the 2™ blade asymmetric yaw mode in the flapwise direction. FAST code
overestimates the frequency of the aforementioned modes, as already discussed in previous sections

(see section 3.2.2.2).
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By comparing hGAST predictions for the spar-buoy floater [Table 3.5] to those for the semi-
submersible [Table 3.3], the main differences appear in the 1st tower bending modes (~0.46Hz -
0.47Hz to 0.42Hz) and the 1st Blade Asymmetric Flapwise Yaw mode (0.67Hz to 0.64Hz). It is noted
that both floater concepts have the same rotor nacelle assembly and tower, so the differences are

exclusively related to the floater design and the associated mooring line system.

Table 3.5: Natural frequencies [Hz] comparison of the spar-buoy coupled OWT of OC3 phase IV

Mode description hGAST | ADAMS | FAST
Platform surge 0.008 0.009 | 0.008
Platform sway 0.008 0.008 | 0.008
Platform heave 0.032 0.031 | 0.032
Platform roll 0.035 0.034 | 0.034
Platform pitch 0.035 0.034 | 0.034
Platform yaw 0.120 0.120 | 0.121
1* tower fore-aft 0.473 | 0.473|0.473
1* tower side-to-side 0.455 | 0.456 | 0.457
1% drivetrain torsion 0.643 0.642 | 0.650
1* blade collective flap 0.721| 0.710 | 0.710
1* blade asymmetric flapwise pitch 0.683 0.677 | 0.678
1* blade asymmetric flapwise yaw 0.666 0.661 | 0.695
1* blade asymmetric edgewise pitch 1.081 1.078 | 1.081
1* blade asymmetric edgewise yaw 1.094 1.089 | 1.093
2" tower fore-aft 3.465 3.522 | 3.751
2" tower side-to-side 3.601 3.697 | 4.263
2" blade collective flap 2.000 1.962 | 2.023
2" blade asymmetric flapwise pitch 1.879 1.868 | 1.933
2" blade asymmetric flapwise yaw 1.705 1.675 | 1.957

3.2.4.3 Time series

Results from dlc3.1 [Table 3.1], which corresponds to OC3 phase IV dIc5.1 are presented considering
all the flexibilities of the structure enabled. Wind speed of 8m/s and an Airy wave of 6m height and
10s period are considered at 320m depth. Wind and wave are aligned to x-axis. The controller is
operating in the variable speed mode. The provided results are compared in terms of time series. The

environmental conditions are the same as in section 3.2.2.3 but at a different water depth.

In Figure 3.27, the rigid body motions of the floater are presented. In general the agreement is good.
Surge, heave and pitch motions that are directly excited by the wave are consistent. hGAST predicts
slightly lower mean surge and pitch mean value due to a lower aerodynamic thrust. The wave period
of 10sec is well represented in all 6 rigid body motion signals. In sway, roll and yaw motions that are

not directly excited by the wave, its period is also depicted is the signals due to couplings but the
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amplitudes are much smaller. Although sway, roll and yaw motions attain small values, the
agreement is very good. The small difference in the yaw motion originates from the different

aerodynamic loading.

In Figure 3.28, the tension of the mooring lines at fairlead 1 and 2 are compared. The mean values
are identical, while a phase shift between the quasi static and the dynamic mooring line model is

found, as already discussed in section 3.2.2.3.

In Figure 3.29, deflections at the tower top and moments at the tower bottom are compared. As
expected, loads and deflections in the same directions exhibit similar behavior. Signals in the side-to-
side direction are driven by the torque of the rotor and indirectly by the controller. The 1* tower
mode is mainly excited (period about 2.2sec). The wave period is also depicted, coming from the
sway and the roll motions through coupling effects. Mean values are very similar. Because of the
absence of side excitation, the side signals are very sensitive to the modeling of damping which
explains the differences obtained. On the other hand, signals in the fore-aft direction are mainly
affected by the wave and an almost perfect agreement is obtained. Although the same difference in
the mean value of the tower yaw moment between FEM and modal based codes is still present, it is
masked by the increase in the amplitudes due to the rigid motions of the floater. The twist angle,
which corresponds to the torsion degree of freedom of the tower, is only considered in hGAST and
ADAMS and attains very small values. The time series of the yaw deflection is consistent with the yaw

moment.

In Figure 3.30, the torque of the shaft and the bending moment at the main bearing are compared.
Differences in the torque signal are less that 5%. Absence of higher frequencies in hGAST’s signal
indicates the application of a drive train damper in view of avoiding instabilities induced by the

controller, as in the semi-submersible floater case. The bending moment is well represented.

In Figure 3.31, the electrical power is directly affected by the rotational speed of the rotor which in
turn is influenced by the pitch motion of the floater. Results again agree well, while the wave

frequency excites the baseline controller as already stated in section 3.2.2.3.

In Figure 3.32, the moments at the blade root and the deflections at the blade tip are presented.
Signals in the in-plane direction are almost identical, since they are driven by gravity. The rotor
period of about 6sec is clearly depicted. The Bending moment and the deflection in the out-of-plane
direction are consistent, although differences are bigger compared to the in-plane signals. The
torsion moment is similar, while hGAST underpredicts its amplitude as in semi-submersible case.
Contrary to the semi-submersible case a very good agreement in the torsion angle of the blade is

observed.
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Figure 3.27: Platform motions comparison (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at 8m/s)
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Figure 3.28: Comparison of tension at fairleads 1 and 2 (dIc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform inflow at 8m/s)
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Figure 3.29: Comparison of tower top deflections and tower bottom loads (dIc3.1 [Table 3.1]: Airy Wave H=6m, T=10s,
uniform inflow at 8m/s)
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Figure 3.30: Comparison of shaft loads (OC3 phase IV — dlc3.1: Airy Wave H=6m, T=10s, uniform inflow at 8m/s)
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Figure 3.31: Comparison of electrical power and shaft rotation speed (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform
inflow at 8m/s)
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Figure 3.32: Comparison of blade root loads and blade tip deflections (dlc3.1 [Table 3.1]: Airy Wave H=6m, T=10s, uniform
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3.2.5 Overall assessment

In the present simulations, the structural integrator follows the multibody formulation using the sub-
bodies approach with 1* order Timoshenko beam models while the mooring lines are modeled using
the dynamic mooring line method. The aerodynamic loads are introduced using the BEMT
aerodynamic method with ONERA dynamic stall model and dynamic inflow. The hydrodynamic loads
are estimated using Morison’s equation or linear potential theory. Regular and irregular Airy and

stream function wave kinematics have been considered.

The comparisons presented prove that hGAST can accurately simulate offshore WTs either mounted
on bottom based support structures (monopile or jacket) or on floating structures (semi-submersible
or spar-buoy floater). The foundation is consistently modeled using the apparently fixed, the
concentrated spring and the distributed spring models. The loads and the deflections at the
monopile and the jacket members and the motions of the spar-buoy and of the semi-submersible as
well as the tension of the mooring lines are well compared to other state-of-the-art tools. Consistent
predictions are also produced for the other sensors of the coupled system placed at the tip and root
of the blade, the shaft, the controller (generator and pitch mechanism) as well as at the tower top
and bottom points, monitoring the corresponding loads, deflections, rotational speed and electrical

power. The natural frequencies of the coupled offshore structures are also accurately determined.
Then in technical terms, the comparisons show that:

1. Modal based codes overpredict some 2" natural frequencies which also have an impact on
the tower yawing moment.

2. The torsion dof of the blade is the signal with the higher uncertainty.

The buoyancy force is found to provoke the main difference in the jacket case.

4. The 3 foundation models (AF, CS and DS) exhibit similar behavior, while their effect is only
visible in the tower signals.

5. Morison based codes can provide similar results to those obtained from potential theory (if
properly calibrated) as concluded by comparing hGAST simulations using both hydrodynamic
methods.

6. The Froude Krylov term in Morison’s equation in the heave direction should be expressed in
terms of the dynamic pressure when applied to floating WT, especially for floaters with low
draft.

7. Drift effects are not only introduced by the consideration of the quadratic transfer function
(potential theory), but also by applying Morison’s equation at the instantaneous position of
the body and/or at the instantaneous water level.

8. Quasi static mooring line models predict different PSD plots for the tension compared to the
more advanced dynamic mooring line models. However, the differences do not affect the

dynamic behavior of the floating structure.
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3.3 Assessment of 3D aerodynamic effects on the behavior of floating WT

3.3.1 Rationale

While current state-of-the-art models for offshore wind turbines differ in many aspects, they all use
the BEMT aerodynamic modeling. BEMT is known to be in many aspects simplistic and empirical. So
far, verification of BEMT aerodynamic modeling has been carried out almost exclusively for ground
based wind turbines. Studies of this sort have concluded that BEMT has difficulty in simulating
asymmetric and time varying inflow, unless appropriate calibration is introduced that depends on the
specific operational characteristics. Floating wind turbines constitute a relatively new concept that
has not been analyzed in depth partially due to lack of measurements. The new features of floating
wind turbines refer mainly to the motions of the floater that eventually introduce additional

dynamics to the relative inflow with respect to the rotor.

In the present section, simulations using BEMT modeling [section 2.5.1] are compared to those
provided by the GENUVP vortex 3D model [section 2.5.2] in view of assessing the significance of
adopting complex aerodynamic modeling for estimating the response of a floating WT. Both
aerodynamic models are similarly coupled in hGAST and therefore the two sets of simulations share
the same hydro, servo and structural modeling. All simulations concern the NREL 5MW mounted on
the OC3 spar-buoy floater which was already presented in section 3.2.4 where the BEMT based

predictions were verified against other current state-of art results.

A matrix of deterministic and stochastic load cases is defined and the signals obtained from BEMT
and GENUVP based simulations are compared in terms of mean value and amplitude. Anticipating
that significant differences could occur in cases with strong asymmetric inflow, yaw misalighment,

strong shear and wave direction are selected as main parameters in this study.

The results are divided into three groups. The first set of results focuses on deterministic cases in
which 3D aerodynamic effects such as wind shear and yaw misalignment are known to have an
important role [Table 3.6]. In this set the controller has been switched off, in order to confine
attention on the aerodynamic effects. Next, in the second set of results, the controller is enabled,
and selected cases from the first set are recalculated. In the first 2 groups, the signals obtained from
BEMT and GENUVP based simulations are compared in terms of mean value and amplitude. Finally in
the third set, BEMT and GENUVP based stochastic simulations for the OC3 dlc5.2 and 5.3 cases are

compared in terms of statistics and damage equivalent loads [Table 3.7].



Table 3.6: Deterministic cases

wave direction

wave direction

wave direction

Uniform Wind shear exp 0.2 |yaw +15 yaw -15
0°%/30° 0°%/30° 0°%/30° 0°/30°
8m/s
wave direction |wave direction wave direction |wave direction
0°%/30° 0°%/30° 0°%/30° 0°/30°
11.4m/s

wave direction

* the underlined cases have been considered in the 2" set of results as well (controller ON)

+ Wave characteristics: Airy wave with T=10sec and height=8m.

Table 3.7: OC3 Phase IV load cases considered for the stochastic simulations

Dlc |Wind Condition

Wave Condition

5.2

NTM: Vi = 11.4m/s, |, = 0.14 (B),

turbulence model = Mann

NSS: Irregular Airy,

Hs=6m, T, =10s

53

NTM: Vi = 18m/5,

turbulence model = Mann

lres = 0.14 (B),

NSS: Irregular Airy,

Hs=6m, T, =10s

3.3.2 Deterministic load cases without controller

123

Two different wind speeds are considered at 8m/s and 11.4m/s and constant rotational speeds of

9rpm and 12rpm respectively. The pitch angle is set to 0°. Results are presented in terms of mean
value and amplitude in Table 3.8 and Table 3.9. “B” stands for BEMT and “G” for GENUVP, while “e”

is the absolute relative difference with respect to GENUVP results.

In general, BEMT predicts higher aerodynamic thrust, which in turn increases the mean values of the

floater’s surge and pitch motions. Increased surge motion (at positive x) reduces the length of the

two moorings sitting on the sea bed, so the moorings actual weight is increased, leading to reduced

mean value of the heave motion. The difference of the mean values of the floater motions is ~10%,

while the amplitudes of the motions are almost the same for all the floater motions except yaw

which in any case attains small absolute values. The specific wind shear and yaw misalighment have

small effect on the floater motions.
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Table 3.8: Deterministic results for 0° wave angle — no controller

Uniform Uniform Shear Shear Yaw+15° Yaw+15° Yaw-15° Yaw-15°

8m/s 11.4m/s 8m/s 11.4m/s 8m/s 11.4m/s 8m/s 11.4m/s

mean [amp |mean [amp |mean |amp |mean |amp |mean [amp [mean |amp |mean |amp |mean [Amp

Floater |[B|12.6 |4.5 25.2 |43 129 (43 25.2 |40 123 (43 243 |41 124 4.2 243 |41

surge G|11.2 |45 [22.8 |42 117 (43  |228 |40 |11.4 |42 (224 |40 |115 |41 |22.4 |40
[m]

e(0.13 (0.01 |0.11 |0.03 |[0.10 [0.01 |(0.11 |0.01 |0.08 |0.03 |0.08 [0.01 (0.08 |(0.02 |0.09 |0.03

Floater |B|-0.198|0.759 |-0.593(0.822 |-0.201|0.723 |{-0.591|0.773 |-0.176/0.700 |-0.538(0.693 |[-0.198|0.704 |-0.578(0.691

heave || o 169/0.754 |-0.497|0.838 |-0.172|0.725 |-0.521[0.799 |-0.165|0.690 |-0.468|0.707 |-0.175|0.688 |-0.496/0.693
[m]

e(0.17 (0.01 |0.19 |0.02 |[0.17 |0.00 |(0.14 (0.03 |0.07 |0.01 |0.15 [0.02 |(0.14 |(0.02 |0.17 |0.00

Floater |B|2.58 |2.16 |5.04 |(2.11 |2.58 [2.15 |[5.03 |2.11 |2.46 (2.14 |4.81 [2.10 |[2.46 |2.16 |4.81 |2.11

pitch G(2.33 |2.14 4.55 12.08 2.43 (2.13 4.55 |2.08 2.27 (2.12 4.42 12.07 2.29 |2.12 4.44 12.07
[deg]

e(0.10 (0.01 |0.11 |0.01 |[0.06 [0.01 |(0.11 |0.01 |0.08 |0.01 |0.09 [0.02 (0.07 |(0.02 |0.08 |0.02

Floater |B|-0.069|0.837 |-0.132|0.809 |0.057 [0.927 [0.158 |1.026 |[-0.462|0.554 |-0.778|0.398 |0.331 |1.253 |0.497 [1.217

yaw G|(-0.107(0.995 |-0.242|0.868 [0.014 [1.245 |-0.052|1.292 |-0.229|1.167 |-0.562(1.169 |0.018 (0.850 |0.066 |0.547
[deg]

e(0.35 (0.16 |0.45 |0.07 (3.19 [0.26 (4.01 |0.21 |1.02 |0.53 |0.38 [0.66 (17.71 |0.47 |6.49 |1.22

Flap-wise B |5738 |4032 |10440|4983 |5662 (3971 [10286(4973 |[5470 |3736 (9931 |4845 |5489 |4758 |10015(6281

moment |gis474 (4865 |9873 [5498 |5410 |4681 |9754 |5298 |5353 |4559 |9631 [5641 |[5355 |5187 9634 |6070
[kNm]

e(0.05 (0.17 |0.06 |0.09 |[0.05 [0.15 |0.05 |0.06 |0.02 |0.18 |0.03 [0.14 (0.02 |(0.08 |0.04 |0.03

Side-to- B|2836 (3725 |5701 |4822 (3398 |3583 |6823 (4354 (2496 |3792 |5258 |4382 |2698 |3903 (5145 |4481
side
moment G|2695 |3992 (5276 |4383 |3246 (3942 |6162 |4266 |2775 |3931 |5628 (3913 (2436 |3968 |4210 (4142

[kNm]  |elo.05 [0.07 [0.08 |0.10 [0.05 |0.09 |0.11 [0.02 |0.20 |0.04 |0.07 [0.12 |0.11 [0.02 [0.22 |0.08

Fore-aft |B|44869|123106|88921(116679|45187|123564(89294|116989|42565|123835(84693(118391|42633|123535|84608 (114826

moment | 10435(124515|79808|119523|45500|125101|80580|120005|39070 | 124564|77188| 120030|39716|124480| 77915 | 118622
[kNm]

e(0.11 (0.01 |0.11 |0.02 |[0.01 [0.01 |(0.11 |0.03 |0.09 |0.01 |0.10 [0.01 (0.07 |0.01 |0.09 |0.03

Yawing |[B|-137 |498 -456 |658 104 |656 281 |678 -890 (469 -1509 (702 632 930 938 |805

moment || 505 (649 |-640 |731 |-44 |979 |-120 |1042 |-441 |855 |-1093|720 |29 [s69 112|512
[kNm]

e(0.34 (0.23 |0.29 |0.10 (3.37 [0.33 (3.34 (035 |1.02 |0.45 |0.38 [0.03 (20.46 (0.64 |7.41 |0.57

B|2032 |2729 |4185 [3910 (1983 (2771 |4074 |3945 |1852 (2711 (3850 (3810 |1852 |2608 |3834 |3768

Torque
[kNm] G|2015 (3224 (4100 |4359 [1913 (3326 |3999 (4402 (1910 (3217 |3880 (4257 |1919 |3194 (3880 |4301

e(0.01 (0.15 |0.02 |0.10 |[0.04 [0.17 |0.02 |0.10 |0.03 |0.16 |0.01 [0.11 (0.04 |(0.18 |0.01 |0.12

In terms of loads, BEMT predicts higher mean loads compared to GENUVP with differences that
range from 1% to more than 100%. Differences higher than 10% concern the yawing moment. BEMT
predicts 2%-5% higher mean values for the flap-wise bending moment on the blade, while GENUVP
predicts about 10% higher amplitudes. Amplitude differences are higher at 8m/s, while shear and
yaw reduce them in comparison to the uniform wind inflow case. For the tower bottom bending

moments, a 10% difference in the mean value is observed, while the amplitudes are the same when
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the motion is driven from the wave (i.e. the fore-aft direction and the side-to-side direction when the
wave angle is 30°). About 10% difference is observed for the amplitude of the side-to-side bending
moment for the zero wave angle cases. The two models give similar mean values of the shaft torque
while GENUVP predicts 10%-18% higher amplitudes. The edge-wise bending moment and the
pitching moment at the root of the blade, are almost the same, and are not showed in the tables.
Taking into account the formulation of the two models, these differences are associated to the

different wake modeling.

The 30° wave direction mainly alters the side loads and floater motions. Because the wave drives the
fore-aft and the side-to-side motions of the floater, the effect of modeling differences is reduced.
The differences in the yaw moment and motion are eliminated, because of the couplings between
the motions. The yawing moment is still the load with the maximum divergence, especially for the
shear and yaw cases in which the wake induced effects are not as pronounced in the BEMT results.
For all cases except the yaw+15 at 8m/s, BEMT predicts slightly higher mean values for the side-to-
side tower moment, while the amplitudes are identical. The wave misalignment reduces the
differences in the floater yaw motion, but not in the surge, the heave and the pitch which remain the

same.

3.3.3 Deterministic load cases with controller

The 2™ set of results corresponds to selected cases from Table 3.6 with the controller enabled. The
results are given in Table 3.10, for O wave direction. At the below rated wind speed, the controller
activates the rotational speed variation. GENUVP predicts higher amplitudes for the rotational speed,
while the mean values are the same. The differences between BEMT and GENUVP results agree with

the previous “no controller” cases.

At the rated wind speed of 11.4m/s, due to pitch control, the rotational speed reaches its nominal
value. Now high differences are noted in blade pitch which masks the differences due to the different
aerodynamic methods. The differences in the flap-wise bending moment and shaft torque are

eliminated, while the differences in the tower yawing and side-to-side moments persist.
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Table 3.9: Deterministic results for 30° wave angle — no controller

Uniform Uniform Shear Shear Yaw+15°  |Yaw+15°  |Yaw-15° Yaw-15°
8m/s 11.4m/s 8m/s 11.4m/s 8m/s 11.4m/s 8m/s 11.4m/s
mean [amp mean [amp mean [amp mean |amp mean |amp mean |amp mean |amp mean |amp
Floater [B [126 |38 [253 (3.9 [12.8 [3.9 [251 |[3.4 123 (3.7 [243 [35 |124 3.6 [244 |36
surge |G (113 (3.8 [229 [3.7 |17 |39 [228 (3.4  |115 (3.9 [225 |34 |17 [3.7 [225 |35
fe] e (011 [0.02 [0.10 |0.05 [0.09 [0.01 |0.10 [0.00 [0.08 [0.03 [0.08 [0.01 [0.06 [0.03 [0.08 |0.04
Floater |B |-0.204|0.723 |-0.594|0.823 |-0.201|0.697 |-0.595|0.703 |-0.178|0.695 |-0.537(0.718 |-0.202(0.697 |[-0.582|0.698
heave |G |0.184]0.707 |-0.498/0.821 |-0.184/0.733 |-0.530{0.697 |-0.174]0.710 |-0.4740.724 |-0.178|0.709 |-0.503|0.694
(] e (011 [0.02 [0.19 |0.00 [0.09 [0.05 |0.12 [0.01 [0.02 [0.02 |0.13 [0.01 [0.14 |0.02 |[0.16 [0.01
Floater [B [2.60 |1.90 |[5.06 [1.86 [2.59 [1.88 |5.05 |1.83 (247 [1.89 [4.82 |1.85 [2.46 |1.87 [4.82 |1.84
pitch |G 1237 |1.88 |459 [1.83 (237 186 457 [1.81 [230 [186 |445 |1.82 (231 |1.86 |4.45 [1.82
[deg] e 010 [001 [0.10 |0.01 [0.09 [0.01 |0.10 [0.01 [0.07 [0.02 |0.08 [0.02 [0.07 |0.01 [0.08 [0.01
Floater |B |-0.046/2.380 |-0.086|3.916 |0.065 [2.377 |0.164 |3.815 |-0.452|1.734 |-0.748(3.013 |0.330 [2.509 [0.518 |3.846
yaw G |-0.087|2.168 |-0.200(3.117 |-0.025|2.235 |-0.050(3.096 |-0.221|2.070 |-0.546(2.909 |0.013 |1.835 [0.070 |2.618
ldegl 0.48 [0.10 [0.57 [0.26 [3.62 [0.06 [4.32 |0.23 [1.05 |0.16 [0.37 |0.04 (2521(0.37 |6.43 |0.47
FI‘:"p' B |5777 4063 |10475|5474 |5683 (3979 [10312|5345 |5505 (3424 [9953 |5063 [5506 |4757 |10035|6497
:::nente 5532 (4670 9942 |5543 |5461 (4492 [9803 |5439 |5412 [4388 [9713 |5241 (5392 |4950 (9673 |6015
[kNm] le |0.04 |0.13 |0.05 [0.01 [0.04 [0.11 [0.05 [0.02 [0.02 |0.22 [0.02 [0.03 [0.02 [0.04 [0.04 |0.08
Sfde't°' B (2915 |66011 |6416 |61920 |3520 |64399 |6167 |62732 |2644 |65112 |6075 (62899 (2798 |62998 |5705 |58740
:i;ente 2634 (66587 |5580 |62459 (3255 |64736 5674 (62194 |2735 |64198 |5881 (62319 (2418 |64363 (4546 |60793
[kNm] le |p11 |0.01 [0.15 [0.01 [0.08 [0.01 [0.09 [0.01 [0.03 [0.01 [0.03 [0.01 [0.16 [0.02 [0.25 [0.03
Fore-aft |B |45506|107182|89764|102633|45756|107381|89586 |103033 |43074(107208|84765 |105078|43097 |108017|85405 |101808
moment| |41587108071|80862|104934|41841|108559|81029 | 105207 40024 |108216|77932 |105225|40306|108005| 78613 105314
flNe] e [0.10 [001 [0.11 |0.02 [0.09 [0.01 |0.11 [0.02 [0.08 [0.01 |0.09 [0.00 [0.07 [0.00 [0.09 [0.03
Yawing |B |-129 [612 |-275 [1921 |121 (607 |105 |4124 |-874 |717  |-1633 (3699 |643 |[552 (937 |1586
moments | 197 (681 |-475 (1931 |48 [721 |-278 3570 |-425 (533  |-1230 [3474 |42 572 112 |[2018
(kR e (035 [0.10 [0.42 |0.01 (355 [0.16 |1.38 |0.16 [1.06 [0.35 |0.33 [0.06 [14.16 [0.03 (7.38 [0.21
Toraue B (2020 (2506 [4175 (3518 |1966 |2523 [4084 |3500 |1838 (2480 (3836 3566 (1831 2402 (3830 |3407
[kN:1] G [2005 |2893 |4107 |3893 |1966 (2963 |3985 3889 |1906 [2846 (3885 (3694 |1895 (2845 (3874 (3894
e [0.01 [013 [0.02 |0.10 [0.00 [0.15 |0.02 [0.10 [0.04 [0.13 |0.01 [0.03 [0.03 |0.16 [0.01 [0.13




Table 3.10: Deterministic results for 0° wave angle — controller enabled
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Uniform Uniform Shear Shear Yaw+15° Yaw+15°

8m/s 11.4m/s 8m/s 11.4m/s 8m/s 11.4m/s

mean |amp mean |(amp mean |amp mean amp mean |amp mean |amp
Floater |[B |13.3 [4.1 21.4 |37 125 |43 219 3.8 125 |4.2 231 [3.8
surge G 121 |42 19.9 (4.0 11.2 |43 203 4.0 11.7 4.2 209 |41
[} e 010 [0.01 [0.07 (006 [0.12 (001 [0.08 [0.04 0.07 [0.01 |0.10 [0.08
Floater |B |-0.193 [0.784 |-0.437 [0.817 |-0.177 [0.707 |-0.457 |0.826  |-0.163 [0.900 |-0.482 [0.887
heave |G |.0.165(0.788 |-0.393 |0.813 |[-0.163 |0.709 |-0.432 |0.812 |-0.153 [0.887 |-0.406 |0.871
o] e 017 |[0.00 011 (001 009 [0.00 |0.06 |0.02 0.06 [0.01 [0.19 [0.02
Floater [B (2.67 (218 |427 [1.92 260 (230 |440 |[1.89 247 (219 |456 [1.98
pitch G 243 216 |4.02 (193 [235 (227 |414 |1.96 231 [218 |414 |2.01
[deg] e |0.10 (001 [0.06 (001 010 [0.01 [0.06 |0.03 0.07 [0.01 [0.10 |0.01
Floater |B |-0.073 [0.417 |-0.218 [0.944 |0.059 [0.560 |0.154 [0.825 |-0.478 |0.136 |-0.701 |0.558
yaw G |-0.105 |0.652 |-0.253 [1.061 |-0.035 [0.875 |-0.018 |0.846 |-0.229 |0.878 |-0.525 |1.092
[deg] 031 (036 [0.14 |0.11 [2.66 [0.36 [9.40 [0.03 1.09 [0.85 [0.33 |0.49
Flap-wise [B |5933 (4049 (8937 [6301 |5780 [4372 [9073 |[7113 (5527 (3925 (9512 |6172
moment ¢ 5654 (4886 (8843 [6526 [5532 |5114 |8974 [7080  |5427 |4827 |9167 |6315
[kNm] 0.05 [0.17 [0.01 [0.03 |[0.04 [0.15 |[0.01 |0.00 0.02 [0.19 |0.04 [0.02
S_ide'm' B [2745 |721  |5163 |[5050 |3167 [1463 (6436 (8273  |2416 (2172 |[5269 |7358
:::nent 2647 |753 4733 (9823 (3047 |1844 [5667 |5761  [2712 |1533 |5346 |3467
[kNm] e (004 [0.04 (009 [049 [0.04 [0.21 |0.14 |0.44 0.11 (042 |0.01 |[1.12
Fore-aft |B |46263 (120818 (74919 131268 |46016 [127020 78010 |129486 |42843 122446 80306 122084
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3.3.4 Stochastic simulations

Results from the two stochastic load cases of the OC3 are compared in Table 3.11 in terms of 1Hz
damage equivalent loads (DEL) and statistics. The DELs are calculated at the blade root (m=12), at the
tower bottom (m=4) and at the main bearing (m=8) and also presented in Figure 3.33. Although in
the previous test cases the action of the controller seemed to eliminate the differences between the
two models, BEMT overestimates the flap-wise bending moment by 15% compared to the GENUVP

results. The tower bottom fore-aft moment is overestimated for only 2%.The present indicative

results suggest that BEMT predictions for the specific load cases lay on the safe side.

Table 3.11: Equivalent loads and Statistics

DEL Mean Value Standard Deviation
dic Loads [kNm]
BEMT | GEN e BEMT | GEN e BEMT | GEN e
Edgewise moment 7063 6969 -0.01 | 918 1005 0.09 | 2528 2516 0.00
Flapwise moment 8473 7481 -0.13 | 8632 8725 0.01 | 1918 1739 -0.10
Pitching moment 131 134 002 | 4 -5 0.19 | 35 36 0.03
N
ki Side-to-side moment | 7794 8017 0.03 | 6318 6184 -0.02 | 3098 3235 0.04
T
Fore-aft moment 63765 | 62412 | -0.02 | 74478 | 71323 | -0.04 | 26602 | 25902 | -0.03
Yawing moment 4124 4176 0.01 | -322 -615 0.48 | 1707 1677 -0.02
Shaft Torque 1201 1172 -0.02 | 3686 3716 0.01 | 562 527 -0.07
Edgewise moment 7519 7337 -0.02 | 240 251 0.04 | 2485 2515 0.01
Flapwise moment 11646 | 9938 -0.17 | 4735 5211 0.09 | 2657 2336 -0.14
Pitching moment 148 147 -0.01 | -32 -32 -0.02 | 34 33 -0.01
M
ki Side-to-side moment | 14694 | 14015 | -0.05 | 8917 8211 -0.09 | 5097 4642 -0.10
T
Fore-aft moment 74981 | 73436 | -0.02 | 45977 | 43527 | -0.06 | 28462 | 28143 | -0.01
Yawing moment 6105 5641 -0.08 | -461 -434 -0.06 | 2543 2176 -0.17
Shaft Torque 1096 1017 -0.08 | 4180 4180 0.00 | 242 228 -0.06
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Figure 3.33: DELs comparison between BEMT and free wake (Vortex) for the OC3 spar-buoy floating WT at 11.4 and 18m/s

3.3.5 Concluding remarks

The BEMT and GENUVP (free-wake) aerodynamic models in hGAST are used in order to analyze the

3D aerodynamic effects on spar-buoy floating wind turbines performing various deterministic and

stochastic loads. Out of these comparisons the following conclusions can be drawn:

1.

Application of the BEMT aerodynamic modeling to a spar-buoy floating WT is found to provide
higher loads and therefore is on the safe side. This is important especially since the difference in
cost between BEMT and GENUVP is substantial. When turbulent wind inflow is considered, the

difference in run time is in the order of 50.

The averaged difference between the two models is ~15% for the blade loading and ~5% for the
tower loading. Disregarding the various uncertainties in modeling, such a difference may have an

impact on the cost and therefore should be further checked.

As expected the highest differences appear in asymmetric inflow conditions. Assuming that free-
wake modeling is of higher fidelity, then one possible use of more sophisticated models is to
provide the basis for better calibrating the modeling of yaw and shear in BEMT. Note that a yaw
misalignment of 15° corresponds to the limit beyond which yaw correction is activated. Higher

yaw angles should be considered in view of assessing also extreme / fault load cases.
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4. In the present study, BEMT and GENUVP aerodynamic models are compared considering normal
sea state, within the context of linear hydrodynamic theory, applied to the spar-buoy floater case.

Other floating concepts as well as different sea states should be checked in future studies.

5. Of particular importance is the role of the controller. Results indicate that the controller can
reduce the differences, indicating that a better tuned controller or an adaptive controller can

substantially reduce loading and limit the level of uncertainties.

Clearly the above conclusions are subjected to the limited number of load cases considered. A full
load spectrum and an estimation of extreme loads is needed in order to firmly conclude that BEMT
remains on the safe side and estimate the relevant safety margin in case of floating wind turbines.
Then as regards the adaptation of more advanced modeling the results suggest that it may offer the
context for reducing the cost of Offshore Wind Energy and therefore should be further pursued in

future research.
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3.4 Assessing the Importance of Geometric Nonlinear Effects in the Prediction of
Wind Turbine Blade Loads

3.4.1 Rationale

As the size of commercial wind turbines increases, new blade designs become more flexible in order
to comply with the requirement for reduced weights. In normal operation conditions, flexible blades
undergo large bending deflections, which exceed 10% of their radius, while significant torsion angles

towards the tip of the blade are obtained, which potentially affect performance and stability.

In the present section, the effects on the loads of a wind turbine from structural non linearities
induced by large deflections of the blades are assessed, based on simulations carried out for the
NREL 5 MW wind turbine. hGAST is used in its BEMT version in terms of aerodynamic modeling. As
regards the structural part the two nonlinear beam models, a second order (2nd order) model [51, 56]
and the sub-body model (see section 2.3.1.1) that both account for geometric nonlinear structural

effects, are compared to a first order (1st order) beam model.

The 2nd order model is derived by applying a truncating (ordering) scheme to the beam equations
and by retaining nonlinear terms up to 2nd order. The equilibrium equations are formulated with
reference to the deflected beam axis and thereby geometric nonlinearities are inherently accounted
for. A clear advantage of this formulation is that due to the analytic derivations, the nonlinear terms

are clearly identified and the effect of each one of them is easily quantified.

The sub-body option, as indicated by its name, consists of dividing the component into sub-bodies,
which are subsequently treated as (beam) components of the system subjected to global
displacements and rotations. At the sub-body level, local deflections and rotations are assumed small,
and thus the use of a linear beam model is justified. By imposing kinematic and dynamic continuity
between consecutive sub-bodies at their connection points, large deflections and rotations are

gradually built

Deflections and loads produced by FEM based aeroelastic simulations using these three models show
that the bending-torsion coupling is the main nonlinear effect that drives differences on loads. The
main effect on fatigue loads is the over 100% increase of the torsion moment, having obvious
implications on the design of the pitch bearings. In addition, nonlinearity leads to a clear shift in the

frequencies of the second edgewise modes.

A three steps analysis is performed. In the first, static loading of a single blade is considered. The
deflection field of the blade is recorded and the nonlinear couplings are identified as the external
loading of the blade is gradually increased. In the second step, dynamic loading of the isolated rotor
in normal operation and uniform inflow conditions is examined. In the last step, the analysis of the
full wind turbine in turbulent wind is performed and the fatigue damage loads are calculated.
Geometric nonlinearities are assessed through the comparison of the results of the nonlinear against
the linear structural modeling options. By assuming that the material is isotropic, nonlinear structural

coupling effects associated with the direction dependent behavior of the material are not addressed.



132

Within the context of investigating nonlinear effects, the aim is to signify the importance of the
geometric nonlinear coupling effects on the loading of wind turbine blades. The importance of
geometric nonlinearities has been also analyzed by Kallesge [50]. The emphasis in that work was
mainly put on the aeroelastic stability of the blades and in particular the effect that large flapwise
deflections have on the damping of the edgewise modes. The present investigation elaborates on the
resulting blade deflection distributions in the presence of geometric structural couplings and

assesses their effects on loads.

3.4.2 Structural characterization of the NREL 5MW reference wind turbine (RWT)

Regarding the suitability of the RWT mounted on the monopile support structure (see section 3.2.3)
for analyzing nonlinearities and structural coupling effects triggered by large deflections, the
following remarks can be made on the natural frequencies of the RWT at standstill (see Table 3.12)
including the structural damping but with zero gravity. The first tower bending frequencies (fore-aft
and side-to-side) are found in the vicinity of 1.5 P as in most commercial 3-bladed wind turbines (the
nominal rotational frequency of the turbine is 0.2Hz). Also, the values of the first rotor flapwise and
edgewise natural frequencies are according to common design practice i.e. 3-4 P for the asymmetric
rotor flap frequencies, 3.5P for the symmetric rotor flap frequency and near 5.5P for the
asymmetric rotor edgewise frequencies. So, in terms of natural frequencies, the RWT wind turbine is
a rather standard 3-bladed design. However, since the weight of the blades is relatively low
(17.740tn) in comparison to earlier designs in the MW-scale they are also expected to be very flexible.
In Figure 3.34 the mean blade flap and lag deflections, as functions of the wind speed are shown. The
maximum mean flapwise deflection (at rated conditions) is found to be almost 10% of the rotor
radius. Also in full load conditions, torsion angles of about 2.5 are encountered. The above recorded

values are relatively high as compared to earlier MW scale designs.

The above results clearly demonstrate that the RWT can establish a basis for analyzing nonlinear
effects due to large deflections. Structural nonlinearities are expected to be predominant near rated
wind conditions where maximum flapwise deflections are obtained and presumably at high wind
speeds where blade torsion angles become large. In addition, the equivalent beam characteristics of
the RWT blade have been defined on the basis of the assumption of the isotropic material and

therefore are well suited to the considered models.



Table 3.12: RWT free-fixed and free-free natural frequencies at standstill (pitch=0 deg).
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Free-fixed Free-free
Mode Description Frequency Structural Frequency Structural
[Hz] Damping [%] [Hz] Damping [%]
1% tower fore-aft 0.276 0.32 0.278 0.34
1% tower side-to-side 0.278 0.34 0.282 0.33
1* drivetrain torsion 0.600 0.32 1.732 0.15
1* blade asymmetric flapwise yaw 0.617 0.43 0.614 0.46
1* blade asymmetric flapwise pitch 0.658 0.47 0.658 0.47
1* blade Collective Flap 0.700 0.45 0.694 0.47
1* blade asymmetric edgewise pitch 1.084 0.48 1.084 0.48
1*" blade asymmetric edgewise yaw 1.099 0.47 1.099 0.47
2" blade asymmetric flapwise yaw 1.626 0.40 1.626 0.40
2" blade asymmetric flapwise pitch 1.790 0.49 1.790 0.49
2" blade collective flap 1.971 0.47 1.971 0.47
2" tower side-to-side 2.233 0.71 2.291 0.78
2" tower fore-aft 2.352 0.69 2.352 0.69
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Figure 3.34: Mean blade tip deflections of the NREL 5MW RWT from cut in to cut out wind speeds.
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3.4.3 Static loading results

In the first step of the analysis the RWT blade is clamped at its root (cantilever beam case) and
subjected to a uniformly distributed external, time invariant (static) load with increasing magnitude.
First, the load is applied only in the flapwise direction (i.e. the (un-twisted) local z axis of the blade);
the force is pointing towards the suction side and acts on the elastic axis of the beam. It is allowed to
follow the deflected elastic axis of the blade, which means that it is re-directed as the blade deflects.
Then, the complexity of the loading state is gradually increased by applying: (a) the load on the mass
center (with an offset with respect to the elastic axis) and (b) a combined flapwise and edgewise load
(45 degree angle). The distributed load varies from 1kN/m to 10kN/m, with a step-increase of 1kN/m.
The self-weight of the beam is ignored. The blade is divided into 31 finite elements. In the sub-body
analysis each of the 31 elements is considered as a sub-body consisting of one finite element. Grid
independency analysis (not presented herein) indicated that this is a sufficient number of elements

to obtain converged solution.

In Figure 3.36 to Figure 3.38 the torsion angle, the blade extension and the flapwise deflection along
the blade span are plotted for the case of a 10kN/m flapwise load, acting on the elastic axis (highest
loading). In Figure 3.36, the linear 1st order model predicts zero torsion angle, while the two
nonlinear models predict a non-zero nose up angle that increases towards the tip. At the tip, the
torsion angle reaches a value of 0.6°-0.8°. The agreement of the two nonlinear models is good up to
the radius of 40-45m. Further outboard the 2nd order model predicts an almost constant torsion
angle while in the sub-body model the torsion angle continues to increase (with a decreasing rate
though). In this case of high flapwise loading, torsion deformation develops as a result of bending-
torsion coupling driven by the high flapwise deformation (10m at the tip as shown in Figure 3.38). As
the flapwise bending displacement of the blade increases, the local bending moment M; generates a
torsion moment about the undeformed blade axis y, as illustrated in Figure 3.35. The magnitude of
the twisting moment depends primarily on the spatial derivative w’, which is directly linked to the
blade curvature. In the absence of external twisting moment, the 1st order model will necessarily

predict zero torsion deformation.

Figure 3.39 presents the torsion angle at the tip of the blade as function of the tip flapwise deflection
for increasing external loading ranging from 1-10kN/m (each point corresponds to a 1kN/m step). As
expected, the 1st order model predicts zero torsion angle, regardless of the magnitude of the
flapwise deflection. On the contrary, the two nonlinear models predict torsion angles that gradually
increase with the flapwise deflection. The dependency of the torsion angle on flapwise deflection is
nonlinear and the rate of increase is higher as flapwise deflections get higher. As already mentioned,
the 2nd order model predicts slightly lower tip torsion angles compared to the sub-bodies model, as
well as a lower torsion angle increase, especially for the higher flapwise deflections. However, the
shape of the dependency predicted by the two nonlinear models is very similar. It is noted that in the
2nd order model, higher order terms are suppressed. This partially explains the increasing deviations

for increasing flapwise deflections.
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In Figure 3.37, the blade extension for the case of the 10kN/m flapwise loading is presented. Again
the 1st order model predicts zero extension. The two higher order models predict an increasing
extension deformation along the blade towards the value of 1.4m at the tip. Again the agreement of
the two nonlinear models is perfect up to the radius of 40m while small deviations are seen further
outboard. Large bending deflections give rise to virtual axial displacements of the blade; so, there is

an effective reduction of the blade length driven by the high flapwise deflection.

Figure 3.38 presents the flapwise deflection along the blade span for the same case. A perfect
agreement is noted between the 1st and the 2nd order model. This indicates that higher order terms
in the equation of the flapwise direction have negligible contribution. On the other hand, the sub-
body model predicts slightly lower flapwise deflection for the same load. The reason for this
difference is that the sub-bodies follow the deflected axis of the blade and therefore the external
loading is applied at a displaced position. Due to the effective shortening of the blade (induced by
the increasing flapwise deformation), lower flapwise moments will develop along the blade. This
effect is not taken into account in the 2nd order model although this is possible by displacing the
nodes of the original finite element grid. As illustrated in Figure 3.39, for low values of the external
load, the flapwise deflections predicted by the 2nd order model and the sub-body model are in good
agreement. Deviations begin when the load exceeds 3kN/m leading to flapwise deflections of about

3m.

Next, the flapwise load is applied with an offset with respect to the elastic axis. The load is applied at
the mass center of the various cross sections and by that an exaggerated effect from inertial and
gravitational loads is simulated. Figure 3.40 gives the blade torsion angle along the blade span for the
case of the 10kN/m flapwise loading. In this case where the load is applied with an offset with
respect to the elastic axis, a twisting moment develops along the blade that gives rise to a nose down
twisting of the blade cross sections. The twisting angle predicted by the 1st order model reaches 2.5°
at the blade tip. The two nonlinear models predict a ~1° lower torsion angle as a result of the
contribution of the bending-torsion coupling that tends to twist the blade in the opposite direction
(nose up). As in the previous case, the agreement of the 2nd order model and the sub-body model is
very good up to the radius of 40-45m, while the 2nd order model again predicts lower nose up

torsion angles (driven by the bending torsion coupling) towards the tip.

Figure 3.41 and Figure 3.42 show the blade tip axial displacement and torsion angle versus blade tip
flapwise deflection. As previously, the axial displacement of the tip goes up to 1.4m-1.5m for a
flapwise deflection of about 10m. Good agreement is found between the 2nd order and the sub-
body models when the load is low, while deviations start to develop as soon as the load exceeds
5kN/m. The 1st order model predicts a linear increase of the blade tip torsion angle with the flapwise
deflection. This implies that in the linear model, both the flapwise deflection and the torsion
deformation increase linearly with the external load. In the two nonlinear models, the dependency of
the torsion deformation on the flapwise deflection is clearly nonlinear. As the flapwise deflection
increases, the torsion angle also increases but at a lower rate, determined by the bending-torsion

coupling. Although the 2nd order model predicts higher nose down torsion angles than the sub-body



136

model (it is closer to the linear case), the shape of the curves predicted by the two models are very

similar.

Next, a combined flapwise and edgewise load is applied on the elastic axis of the blade. Figure 3.43
presents the torsion angle along the blade for the loading case of 10kN/m. The resulting torsion
deformation attains higher values (goes up to 5° for the 2nd order model) because both bending

moments contribute to the torsion moment.

In this case a notable difference of half a degree is obtained between the 2nd order and the sub-
body model. However, the shape of the blade deformation is similar in both models. It follows that
the torsion angle increases up to the radius of 53m and thereafter remains almost constant. As
opposed to the previous case where the load only acted in the flapwise direction, now the 2nd order
model predicts higher torsion deformations. In Figure 3.44 the dependency of the torsion angle to
the total bending deflection is shown for the combined loading case. The agreement between the
two nonlinear models is very good. The rate at which torsion angle increases with the bending
deflection is very similar in both models (again reaches an almost constant value at high bending
deflections). However it is also noted that for the same load, the 2nd order model predicts slightly
higher blade tip bending deflections as well as blade tip torsion angles. Higher bending deflections
were also noted earlier when the load was applied solely in the flapwise direction (explanation is

already provided above).

X

Figure 3.35: Bending-torsion coupling effect due to high bending deformation.
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3.4.4 Normal operation — uniform and turbulent inflow results

In the second step geometric nonlinearities are identified through aeroelastic simulations on the
RWT, at normal operation conditions. First the problem of the isolated rotor is addressed. Given that
the response to a spatially and time varying inflow may conceal the differences associated with
higher order nonlinear effects, a simple uniform inflow with no wind shear, no yaw misalighnment, no
rotor tilt, no blade cone angle, no turbulence and no tower shadow effects is first considered. In this
way, the energy of the 1 P response (response to the rotational frequency) becomes much smaller; it

is only driven by gravitational and inertial loads.

The rotor is operated at fixed rotational speed and pitch angle (open loop operation, i.e. the
controller is not active) corresponding to average operating conditions at a certain wind speed.
Results are presented for two wind speeds: 11.4m/s (rated wind speed) and 18m/s (full load region)
respectively. As indicated in section 3.4.2 the first test point is characterized by the large flapwise
deflections due to high thrust force, while the second is selected because of the big torsion angles

obtained at high wind speeds.

Comparisons at the level of the blade deflections and loads are provided for: (a) the baseline 1st
order beam model, (b) the 2nd order beam model and (c) the sub-bodies model. Especially with
regard to the 2nd order model, identification of nonlinearities can be easily performed by gradually
switching off the various nonlinear terms towards the 1st order model. Three variants of the 2nd
order beam model are examined: (a) the “2nd order beam-0” model in which dynamic equations are
formulated with respect to the deformed blade state (as opposed to the 1st order model where
equations are developed with respect to the un-deformed elastic axis) but only the structural
coupling terms appearing in the baseline 1st order model are retained, (b) the “2nd order beam-1”,
which in addition to the previous one, includes the tension-torsion coupling terms and (c) the “2nd
order beam-2”, which is the full model (it also includes the bending-torsion coupling terms) (see [51]
for details). As previously, a grid of 31 finite elements is used in all simulations. Results are presented,

in the form of time-series for four rotor revolutions, after periodicity has been reached.

Figure 3.46, presents the blade tip torsion angle for the 11.4m/s case. The two nonlinear models (2nd
order beam-2 and sub-bodies models) predict significantly higher amplitudes of the torsion angle
variation as compared to the 1st order model. Although the increase in amplitude as predicted by
the sub-bodies model is lower than that of the 2nd order beam model, the phase characteristics of
the two signals are in perfect agreement. Also there is only a small shift in the mean value. The
increase in the amplitude of the torsion angle also affects the flapwise deflection of the blade
(through the corresponding change in the effective angle of attack) shown in Figure 3.47. The phase
of the signal is shifted in such a way that almost coincides with the phase of the signal of the torsion
angle. So the phase of the flapwise deflection signal is mainly affected by the large oscillations in the
angle of attack and less by gravitational/inertial loads. The 2nd order beam-2 model also predicts a

slight increase in amplitude not seen in the predictions of the sub-bodies model.

Coming now to the identification of the effect of the various terms in the 2nd order model, Figure

3.46 indicates that the variations in the torsion angle as predicted by the 1st order beam, the 2nd
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order beam-0 and the 2nd order beam-1 model are similar in shape (a very small difference in the
amplitude is noted) but different in level. The mean value of the torsion angle is 0.5° higher in the
2nd order beam-0 model as compared to the 1st order model. As specified in Figure 3.45, when the
mass center of the section is offset with respect to the elastic axis, the increase in the flapwise
bending deflection will give rise to a higher component of the centrifugal force, perpendicular to the
deformed blade axis, which in turn will produce extra twisting moment. If the mass center is located
aft (towards the trailing edge) of the elastic axis then this twisting moment will generate a nose up
(as in the present case) rotation of the section. The opposite occurs when the mass center is fore
(towards the leading edge) of the beam axis. A nose up rotation of the sections leads to higher
effective angles of attack and consequently higher flapwise directions as shown in Figure 3.47. The
above effect has been also identified by Lobitz and Veers in [127] as the “tennis racket” effect. The
introduction of the tension—torsion coupling terms (model variant 2nd order beam-1) gives rise to a
counter acting — nose down — pitching moment and therefore torsion angles decrease by about 0.2°.
A reduction is also noted in the mean flapwise deflection as a result of the lower effective angle of
attack. The nonlinear coupling term with the highest significance is that of the bending—torsion
coupling. By introducing the corresponding terms (2nd order beam-2), the amplitudes of the
torsional deformations at 11.4m/s significantly increase while the mean value of the torsion angle
further drops in comparison to the 2nd order beam-1 results. As already mentioned in section 3.4.3,
the torsion moment produced by the internal bending loads of a highly deflected blade, depends on

u” and w” (directly linked to blade curvature).

Regarding the loads, at the wind speed of 11.4m/s the nonlinear models predict considerably higher
amplitude of the blade root torsion moment due to bending-torsion coupling, as seen in Figure 3.48.
The 1st order model predicts an almost constant torsion moment independent of the azimuth
position of the rotor. As opposed to flapwise deflections, the amplitude of the flapwise bending
moment at the blade root is clearly affected by the increase in the amplitude of the torsion angle in
Figure 3.49. This is depicted in the results of both nonlinear models. A good agreement between
these two models is obtained in the phase of the signal (which again follows the phase of the torsion
angle variation) while there is small difference in the amplitude, being consistent with the lower

amplitude of the torsion angle variation predicted by the sub-bodies model.

At the wind speed of 18 m/s the differences between the 1st order and the higher order models are
much smaller as shown in Figure 3.50 to Figure 3.52. At this wind speed, the flapwise deflections are
expected to be lower since thrust is lower, while the mean torsion angle will be high as indicated in
Figure 3.34. The differences in the deflections are marginal. The 2nd order beam-2 model predicts a
0.1° lower mean torsion angle as a result of the tension-torsion coupling effect. The same effect is
not seen in the sub-bodies model, which predicts slightly higher mean torsion angle. Even smaller
differences between the different models are found in the flapwise deflection. Also a slight increase
in the amplitude of the torsion moment is obtained, which is similarly predicted by both higher order
models. As a general remark it can be said that the differences between the models are mainly
triggered by high flapwise deflections and that high torsion angles do not seem to provoke any

significant nonlinear structural effect.
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Figure 3.45: Centrifugal force effect on blade pitch due to large bending.
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Figure 3.46: Time series of blade tip torsion angle,

uniform inflow, wind speed 11.4m/s (rotational speed
12rpm and pitch at zero degrees).
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Figure 3.48: Time series of blade root torsion
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uniform inflow, wind speed 11.4m/s
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Figure 3.47: Time series of blade tip flapwise
deflection, uniform inflow, wind speed 11.4m/s
(rotational speed 12rpm and pitch at zero degrees).
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Figure 3.52: Time series of blade root torsion moment,
uniform inflow, wind speed 18m/s (rotational speed
12.1rpm and pitch at 15 degrees).

Next the full wind turbine configuration is analyzed in turbulent inflow conditions. The aim of the
analysis is to assess the effect nonlinearities have on the fatigue loads of the wind turbine. The
modeling of the stochastic wind inflow is based on the specifications of the IEC standard [68] for
normal turbulent conditions (NTM) and for wind turbine class IA. This exceeds the design limits of the
NREL RWT, which has been designed for IB. The high turbulence level class has been chosen on
purpose in order to assess the maximum range of the nonlinear effects in actual wind turbine designs.
As opposed to the simulations presented earlier, the effects of wind shear, tower shadow and rotor
tilt and cone are now taken into account. Also, the wind turbine is operated in closed loop. Ten-

minute simulations are performed for wind speeds of 8, 11.4 and 18m/s.

The equivalent fatigue damage loads (DELs), of the various components, as predicted by the 1st
order, the 2nd order and the sub-bodies model, are summarized in Table 3.13. The loads of the 2nd

order and the sub-bodies model are presented as percentage variations with respect to the loads of
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the 1st order model. Big differences are only noted in the blade root torsion moment. The 2nd order
model predicts a 40%-185% increase while the predicted increase in the sub-bodies model results is
considerably lower; about 25-120%. This is in agreement with the findings of the uniform inflow
analyses in which it was concluded that at the wind speed of 11.4m/s the 2nd order model over-
predicts the amplitude of the torsion moment as compared to the sub-bodies model. The highest
increase is found at the wind speed of 11.4m/s where flapwise deflections are bigger and therefore
bending-torsion coupling is excited. A 5%-7% reduction is seen in the two bending moments of the
shaft.

Table 3.13: DELs comparison for wind speeds: 8 m/s, 11.4 m/s and 18 m/s. sub-bodies model (sb), (1st) 1st order model
(1st), 2nd order model (2nd)

8m/s 11.4m/s 18m/s

1st 2nd sb 1st 2nd sb 1st 2nd sb
[kNm] | [%] |[%] |[kNm] |[%] |[%] [[kNm] |[%] | [%]

Blade root edge-wise
7085 -2 -2 7571 -3 -3 7956 -1 -1
bending moment

Blade root flap-wise
4981 0 1 7227 -1 0 10820 1 1
bending moment

Blade root pitching
37 185 | 118 78 105 65 116 39 25
moment

Tower base side-to-side

3992 0 -1 5615 -3 -2 15526 0 1
bending moment
Tower base fore-aft

15235 0 0 21404 -1 0 36195 2 3
bending moment
Tower base yawing

2551 -1 -1 4145 -1 0 6749 0 1
moment [KNm]
Shaft torque (LSpd) 823 -1 0 761 0 0 57 1 2
Shaft bending moment

5409 -4 -2 6903 -6 -5 10440 1 1
0 deg at main bearing
Shaft bending moment

5398 -4 -3 7005 -7 -5 10496 1 2

90 deg at main bearing

In Figure 3.53, the time series of the blade tip torsion angle and the torsion moment at the root of
the blade are shown for the wind speed of 11.4 m/s. For wind speeds below the rated speed of

11.4 m/s, the amplitude of the 1 P variation of the torsion angle (about 5s period) is much higher in
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the results of the two nonlinear models. The same holds for the blade root torsion moment. Within
the time interval of 400 s - 420 s, where the wind speed remains well above the rated value (pitch
regulation region), the differences between the 1st order and the nonlinear models get smaller. This

is clearly associated to the reduced flapwise deflections obtained when the blades start to pitch.

In Figure 3.54 and Figure 3.55, the PSD plots of the blade tip torsion angle and the blade root torsion
moment are shown. In addition to the higher 1 P (0.2Hz) peak, already seen in the time series, some
additional peaks are observed that are not excited in the 1st order simulation. For example in the
torsion angle signal, a high peak is seen at the frequency of 3.4Hz and a second, lower one, at the
frequency of 2.8Hz. The corresponding peaks are both predicted by the nonlinear models while they
are not seen in the results of the 1st order model. They correspond to the 2nd edgewise symmetric
and asymmetric modes of the rotor lying in the [3 - 4Hz] frequency range. Also, a close to 1Hz peak
corresponding to the frequencies of the two asymmetric edgewise modes (see Table 3.12) is excited
in the blade root torsion moment. Excitation of the edgewise modes in the signals of the torsion
moment and torsion deformation comes in support to the argument that in the occurrence of
excessive flapwise deflections, the edgewise bending moment of the highly deflected blade will
produce a significant twisting moment component. The 3.4Hz and 2.8Hz peaks are also seen in the
PSD plot of the blade root edgewise moment in Figure 3.56. They are found to be shifted with
respect to the corresponding peaks as predicted by the 1st order model, indicating that nonlinear

structural effects give rise to a shifting of the 2nd edgewise modes natural frequencies.
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Figure 3.56: PSD of blade root edgewise bending,
turbulent inflow, mean wind speed 11.4m/s, Ti=0.16.

3.4.5 Concluding remarks

A step by step assessment of the importance geometric nonlinear effects have on the aeroelastic
response of WT has been carried out on the basis of static and time domain simulations for the NREL
5MW RWT. Three versions of the Euler Bernoulli beam model were compared: the standard linear

1st order model, a 2nd order beam model and a sub-body model.

The main indicator of nonlinear effects in the response is the increase of the flapwise blade
deflection. It attains its highest value near rated operation conditions at which thrust is maximum.
Bending-torsion coupling is identified as the main drive of the differences between linear and
nonlinear modeling predictions. The specific coupling depends on bending curvature that explicitly
appears in the nonlinear terms. The consequence of such a coupling is that the torsion moment at
the pitch bearing is more than doubled. Moreover, under turbulent wind inflow, peaks of the 1st

edgewise asymmetric, 2nd edgewise symmetric and asymmetric frequencies at 1Hz, 2.8Hz and 3.2Hz
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respectively are only predicted by the nonlinear beam modes in the blade root torsion moment. The
above mentioned differences could be important in the design of the pitch mechanism and the
controlling system. The frequency of the corresponding modes is clearly shifted as a result of the
geometric nonlinearity. However at the DEL level, for this particular machine, it was found that linear
(1st order) beam modeling is still acceptable except for the torsion moment at blade root. The latter
is also related to the differences in torsion angle along the blade. These differences are not expected

to affect the overall performance of the rotor since they will be compensated by the controller.

Finally, regarding the future needs in structural modeling, the present work indicates that linear
models are actually close to their limits. The 5SMW RWT represents a rather intermediate design
stage towards light weighted slender blades that will appear on future multi MW WTs, possibly
exceeding the 10MW level soon. So adopting nonlinear structural models will become mandatory. In
this respect it is noted that the required modifications for switching to a sub-bodies modeling of the
blades are rather limited and the extra computational cost is manageable. The situation with higher
order models is less straightforward but still manageable since at least in the context of FEM

approximations the modifications are confined at the element level.
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Chapter 4

Linear frequency domain solver in 3D

In the present chapter, freFLOW, a hybrid integral equation method is formulated for the solution of
the 1°" order diffraction and radiation hydrodynamic problems in the frequency domain. Loads and
motions of one or more floating bodies are determined. Hydrodynamic excitation loads, added mass
and damping coefficients of the spar buoy floater defined in the Offshore Code Comparison
Collaboration project (OC3) [94] and the semi-submersible floater defined in the Offshore Code
Comparison Collaboration project (0C4) [116] are compared against those obtained with WAMIT. In
addition, the first order motions [RAOS] of the semi-submersible floater are estimated by considering
the linearized contributions of the wind turbine and the mooring lines in the equation of motion.
Comparison of the estimated RAOS against those provided by hGAST justifies the applicability of the
method in the design process of floaters. The present solver also serves as a preprocessor to hGAST

that provides the excitation force and the added mass and damping matrices.

4.1 Introduction

In offshore applications, the estimation of the hydrodynamic loading is of great importance for safety
and cost reasons. In order to simplify the problem and reduce the computational cost in the
preliminary design of large offshore platforms, viscosity is usually neglected and the wave amplitude

I”

as well as the motions of the structure are assumed “small”. Under these assumptions linear theory

applies and the hydrodynamic problem is decomposed into the diffraction and the radiation ones.

Garrett [41] solved the diffraction problem for a floating cylinder using the semi-analytical method of
matched axisymmetric eigenfunction expansions , which was based on previous work by Miles and
Gilbert [128]. Based on the same method, Yeung [129] and Sabuncu and Calisal [130] solved the
radiation problem for a floating cylinder. The method was extended to account for vertical
axisymmetric bodies by Kiyokawa, Kobayashi and Hino [131] who solved the diffraction problem and
by Kokkinowrachos, Mavrakos, Asorakos [132] who solved both the diffraction and the radiation
problems. Mavrakos and Koumoutsakos [133] and Mavrakos [134] solved the diffraction and
radiation problems respectively for groups of interacting vertical axisymmetric bodies. Amongst
others, the matched axisymmetric eigenfunction expansions method was also used by Isaacson [135]
and Mclver and Evans [136].
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In the case of arbitrary shaped bodies, three methods are widely used as reported by Mei [137]: the
free surface Green function method, the boundary element method and the finite element method.
In the first class already used by Garrison [138], Hogben and Standing [139], Faltinsen and Michelsen
[140] and Eatock-Taylor [141], the free-surface Green function satisfies the Laplace equation and all
the boundary conditions (at the free surface, the sea bed and at infinity) except that on the wetted
surface of the moving body. So the problem is solved by only satisfying the boundary condition on
the body surface. The convenience in using this method is that only the body surface is required. On
the other hand, the computational cost gained by reducing the number of equations is counteracted
by the calculation of the influence matrices which are full and complex. The cost is further penalized
because the influence matrices must be recalculated for every frequency value. Another clear
disadvantage of this method is the presence of irregular frequencies, as reported in [142]. To
circumvent these frequencies special treatment is required as implemented in the commercial code
WAMIT [143].

The finite element method which is widely applied in structural mechanics can be applied in
hydrodynamic problems as done by Chenault [144], Newton, Chenault and Smith [145] and Bai [146],
[147]. The method is based on either a variational formulation or a weak formulation of Galerkin
type. The whole domain of interest must be discretized and the matrices produced are in general
symmetric and sparse. The method does not suffer from irregular frequencies, but the application of
the radiation condition at infinity requires special treatment. An elegant way to overcome the issues
concerning the radiation condition is to adopt a hybrid method in which the inner domain around the
body is solved using the FEM method while the flow in the outer domain is described based on an
analytical or semi-analytical solution. Across the outer boundary of the FEM domain, matching of the
two solutions should be performed according to Berkhoff [148], Chen & Mei [149], Bai and Yeung
[150], Chenot [151] and Yeu, Chen and Mei [152]. In the hybrid approach, the inner domain is
reduced and the only requirement is to contain the considered bodies. A disadvantage of the FEM
method, as compared to the boundary element method, is the need to discretize the full flow

domain instead of only the boundaries.

The third class of numeral methods, similar to the first one, uses the free space Green function and
solves the problem by means of the boundary element method. The difference compared to the first
class, lies in the choice of the Green function. The boundary domain is defined by the body surface,
the free surface, the sea bed and the far field, where the radiation condition is applied as described
in Bai and Yeung [150], Ferdinande and Kritis [153] and Au and Brebbia [154]. The increased
computational cost due to the extra boundary surfaces, as compared to the free-surface Green
function method, is compensated by the simple calculations of real valued influence matrices. The
influence matrices only depend on the geometry and therefore are only calculated once for all
frequencies. In addition, no irregular frequencies appear. Similar to the FEM method, a hybrid
scheme can be also adopted, in order to reduce the extension of the outer boundary. The hybrid
integral equation method was originally proposed by Yeung [155] in 2D and extended in 3D by
Matsui, Kato and Shirai [156] and Yuen and Chau [157] assuming a constant depth infinite domain. In
the linear context, Zhang and Miao [158] studied the varying bathymetry using a hybrid integral



151

equation method in conjunction with the mild-slope equation, while Belibassakis [159] did that in

conjunction with the coupled-mode theory by Athanasoulis and Belibassakis [160, 161].

The present method is similar to [156] where the depth of the infinite domain is assumed constant.
The only difference lies in the implementation of the matching at the outer boundary with the semi-
analytical solution. In the aforementioned methods [156, 157] the number of panels used at the
matching boundary must be equal to the number of the unknown truncated coefficients of the semi
analytical solution, while in the present method this is not mandatory thanks to a projection
operation. Although this method cannot be considered novel, the coupling of the hydrodynamic
problem with wind turbine dynamics still presents a challenge. The coupled dynamic behavior of
floating wind turbines can be analyzed over the range of the wave frequencies by adding the
contribution of the wind turbine and the mooring lines in the coupled dynamic equations of the
floater motion, following a linearization process. More specifically, additional mass, damping and
stiffness matrices contribute the aerodynamic, gravity and inertia-gyroscopic loads of the wind
turbine and the mooring lines [44, 120, 121]. In this respect, the present method can be used for the
design of a floating support structure carrying a wind turbine. Finally, the frequency domain method
serves as a preprocessor for the time domain hydro-servo-aero-elastic code hGAST, by providing the

hydrodynamic excitation force and the added mass and added damping coefficients.

4.2 Mathematical formulation

The potential, irrotational flow of an incompressible fluid, without surface tension is considered in
the presence of one or multiple floating bodies. The outer domain D* extends to infinity, while the
inner domain D is formed by the free surface boundary Sis, the body boundaries Sgo, the seabed
boundary Ssz and the outer cylindrical boundary, called matching boundary Sy [Figure 4.1]. In D the
geometry of the seabed can be arbitrary, but must reach a constant depth at the intersection with
the matching boundary which should contain all the bodies. The distance between the body and the
matching boundary can be arbitrary small since the matching also accounts for the evanescent
modes. The Cartesian and the cylindrical global, fixed coordinate systems Og,,, and Ogs, are placed in
the middle of the matching boundary at the mean water level with the z-axis pointing upwards. A
second Cartesian coordinate system O, is defined for each body, with respect to which the body
motions are defined. It is assumed that the bodies are carrying out small amplitude periodic motions
over their mean position in response to incident regular Airy waves with amplitude A and frequency

w.

Following standard linear hydrodynamic theory (see for example [46, 162, 163]), the vector of the

generalized motion of each body and the velocity potential are written in the frequency domain as,

X(t)=Re[x e™"] (4.1)



152

O(x,y,z;t)=Re[e(x,y,z) e™'] (4.2)

where X, @ are the complex amplitudes of the generalized motion vector and the velocity potential
respectively. Each component of X corresponds to one mode of motion; surge, sway, heave, roll,
pitch and yaw. In the case of multiple bodies, vector X is extended to X in order to contain

collectively the 6 modes of motion of all the bodies, i.e. 6*nb in total, where nb denotes the number

of bodies. In the sequel, the potential ¢(x,y,z) will be simply written as .

Figure 4.1: Definition of the inner domain D, the boundary surfaces, the outer domain D* and the coordinate systems

By applying superposition and assuming that every motion is independent on the others, the velocity

potential is decomposed into the following three components,

6nb 6nb |
O =Q+P,+P=P+P,-iw Y X, O, =P+ X, @, (4.3)
=1 =1

_ _ig_A COSh[k(Z+d)] eik(xc056+ysin6)

"W cosh[kd] (4.43)
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igA
__igA,

_ kzeik(xc056+ysin6)[deep water] (4.4b)
w

where:
@, denotes the potential of the incident Airy wave without the presence of any body,

@y denotes the scattered potential which corresponds to the boundary value problem

assuming fixed bodies subjected to incident waves,
@r denotes the total radiation potential,

@p denotes the diffraction potential and defined as the sum of the incident and the scattered

potentials

@, j=1,2,.,6*nb denote the radiation potentials which correspond to the 6*nb boundary value

problems assuming calm water and a unit oscillation in the j-th mode of motion.

In (4.4a) k denotes the wavenumber, d the water depth (absolute value), 8 the wave incidence angle

relative to Ox-axis and g the acceleration due to gravity. Equation (4.4b) is valid for deep water.

The diffraction problem when solved for the scattered potential is mathematically and physically
related to the radiation one [164]. They are both formulated as a radiation type problem. Within the
linear context, the aforementioned boundary value problems take the general form (¢, = 0

corresponds to diffraction problem, while ¢,= 1,2,...,6*nb to radiation problems),

Ap,=0,inD (4.5)
op, w’
E-?(Pk =0, on SFS (4.6)
0
%:gk, onsS,, (4.7)
0
%: h., onSg (4.8)
0
%Jrr[cpk] =0, ons,, (4.9)

The governing Laplace equation (4.5) describes mass conservation in the flow domain D with
boundaries collectively denoted as S. Equation (4.6) is the linearized free surface boundary condition
of Robin type, in which the kinematic and the dynamic equations have been combined. Equation (4.7)
provides the forcing to the system of equations (4.5) to (4.9) and both equations (4.7), (4.8), describe

the no flow condition. g, and h, are defined as follows,
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op
gO:hO:__' (4.10)

on
g,=n, & h =0, fork=1,2,...,6*nb (4.11)
(ﬁ(ib—1)+1'ﬁ(ib—1)+2'ﬁ(ib—1)+3)=nib' (ﬁ(ib—1)+4'ﬁ(ib—1)+5'ﬁ(ib—1)+6)=rib Xny (4.12)

where n or ny, is the normal vector to the boundary with direction from the boundary to the inner
domain D [Figure 4.1], and r or ry, is the position vector with respect to the origin of each body at
which the unit rotations are defined. In case of multiple bodies, equation (4.12) applies to all bodies
(ib=1:nb) in order to define the total generalized normal vector n that corresponds to X . In addition

n={n,,n,,..,n_ }where n, is the generalized unit vector of the body ib.

The potential in the outer domain D* is represented by its eigenfunction expansion in cylindrical

coordinates (r, &, z) and takes the following form,

@*(r,8,2)=) ) R,,(1) Z,(2)[F,, cosm8+G, sinm8], r>r, (4.13)
m=0 a=0
H (kr)/H (kr ,fora=0
R (r)= nlk,r)/H, (k1) (4.14)
K _(k,r)/K (k,r,) ,fora>1
cosh(k(z+d)) fora=0
1 sinh2kd
_ 1+7
) 2 2kd
Z (2)= (4.15a)
cos(k, (z+d)) fora>1
1 sin2k,d
_ 1_’_7
2 2k d
kz
Z = f =
. (2) , for a =0 [deep water] (4.15b)

2kd

where:
Fma» Gma  are unknown coefficients,

indices m and a correspond to the infinite series expansions in the azimuthal and the vertical

directions respectively,
H,, is the Hankel function of the first kind of order m,

K., isthe modified Bessel function of the second kind of order m,
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ro is the radius of the matching boundary,

The set of numbers (ik, k4,..,k,) denotes the eigenvalues of the regular Sturm-Liouville problem in

the vertical direction.
Zne denotes the corresponding normalized eigenvectors,

More specifically, k is the wavenumber - the index 0 is usually omitted - that corresponds to the
propagating mode, while k, for a>1 corresponds to the evanescent modes. The eigenvalues k, are

given as roots of the dispersion relation,

w’ =—gk, tank,d (4.16a)

Substitution of the 0™ term which is equal to ik in (4.16a) gives,

w’ =gktanhkd (4.16b)

Equation (4.15b) is valid for deep water and the wavenumber is given as k=w?/g.

The operator T[] in equation (4.9) is an appropriate Dirichlet-to-Neumann map, ensuring the
complete matching of the solution between the inner and the outer domain D and D* respectively. In
this connection, the potential as well as its normal (radial in the present set up) derivative on the
matching boundary Syg at r=ro must be continuous. These two (matching) conditions depend on the
same unknown coefficients F,, Gn,. SO by adopting a variational formulation of one of them and
making use of the orthogonality of the eigenvectors, expressions for the coefficients F,,,, and G,,, are
derived. These expressions are next introduced in the other matching condition that leads to the

definition of the matching operator T[¢\],

2

BT

© 0 0
Tlo, 1= Z Z L. Z/(z) {cosmﬁj fwk(ro,y,f) cosmy Z,(¢) d{ dy +
e e o (4.17)
+sinm0f Jcpk(ro,y,z) sinmy Z,(0) d{ dy}
0 —-d
k R (r))e
[ =-—2m 0 m e =1, g =2 4.18
mao zn_d m=0 m>1 ( )

where y and { are used instead of ¢ and z inside the integrals, while (‘) in (4.18) denotes the

derivative with respect to r.

The same approach was also used by Garrett [41] in order to match the solution between the
exterior domain (infinite) and the interior domain (under the cylinder). In his case, the solution in the

azimuthal direction in both domains was expressed by Fourier series. In the exterior domain, the



156

solution in the vertical direction is expressed by an eigenfunction expansion, while in the interior by

the Fourier series.

Finally, it is noted that the Somerfield radiation condition is satisfied in the outer domain D* - the
potential is defined in (4.13) — and so the complete matching between the D and D* domains ensures

that the radiation condition is satisfied in D as well.

4.3 Numerical implementation

4.3.1 Integral form of the Laplace equation and its numerical solution

The boundary integral equation for the Laplace equation takes the following form,

P(Xo) = [ G(X)G (XX, )dS(x) (4.19)

G(x;x0)=-4im , r=||x-xo|| (4.20)

where G(x, Xo) is the Green function, x, denotes any field point in domain D, x any point along S and r

the distance between x, Xo.

By applying the boundary conditions (4.6) to (4.9), the resulting boundary value problem is
numerically solved using the boundary element method (BEM), for the unknown strength of the
piecewise constant source distributions. The collocation points are placed at the centroids where the
equations are evaluated. Assuming plane panels, the integrations in (4.19) are carried out analytically
[165]. The discrete form of (4.19) forms a linear system of equations, which is solved by means of LU
decomposition. The influence matrices are calculated once and used for every frequency. Application
of equation (4.17) requires the truncation of the infinite expansions in z and & directions. The
integrations along the matching boundary surface in equation (4.17) - integrals in the z and &
directions - are carried out by introducing local piecewise constant or linear interpolating functions at
the centers of the panels. The dispersion relation defined in equations (4.16a), (4.16b) is solved using

the method of bisection.

In order to speed up calculations the OPENMP library is used. Parallelization in shared memory
environment is applied during the solution of the linear system and for all panel-to-panel

computations.

4.3.2 Symmetry consideration

When bodies are symmetric about one or two planes of symmetry (x=0 or y=0) the computational

cost can be significantly reduced by solving for half or a quarter of the domain D. Two problems are
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solved in case of one plane of symmetry and four in case of two planes of symmetry, for the
complete solution of the hydrodynamic problem (diffraction problem for arbitrary incidence angle
and all 6 radiation problems). If one plane of symmetry is considered, the symmetric and the anti-
symmetric problems are solved. The mirror potentials in the symmetric case are equal, while in the
anti-symmetric case are of opposite sign. In case of two planes of symmetry, all possible
combinations are considered: the potential being symmetric about y=0 plane and anti-symmetric
about x=0, symmetric about x=0 plane and anti-symmetric about y=0, symmetric about both planes

x=0 and y=0 and anti-symmetric about both planes x=0 and y=0.

Surge and pitch motions are symmetric about y=0 and anti-symmetric about x=0, sway and roll
motions are symmetric about x=0 and anti-symmetric about y=0, heave motion is symmetric about
both x=0 and y=0, while yaw motion is anti-symmetric about both x=0 and y=0 planes. The scattered
potential for an arbitrary incidence angle, although neither symmetric nor anti-symmetric, can be still
decomposed into two or four components based on the aforementioned problems and solved in the
same way, as in the radiation problems. If P(x,y,z), P«(x,y,2), Py(x,y,z) and P,,(x,y,z) are image points

with respect to x=0, y=0 or both then,
P(x,y,2)=P(-x,y,2)=P,(x,-y,2) =P, (-x,-y,2) (4.21)

The scattered, the incident and the diffraction potentials can be decomposed into (here presented

for the diffraction potential),

@5 (P) = 1/2[¢p, (P)+¢p, (P, )] + 1/2[(¢0, (P)-¢p;, (P, )] (4.22a)
@, (P) = 1/2[¢, (P)+¢p, (P,)] + 1/2[(¢p, (P)-4p, (P, )] (4.22b)

®,(P) = 1/4[@, (P)— @, (P,) — ¢, (P, ) + @, (P,)] +
1/4[@,(P)+ @, (P,) — @, (P,, ) — ¢, (P,)] +
1/41¢, (P)+ @, (P,) + ¢, (P, ) + ¢, (P, )] +
1/41¢, (P)— @, (P,) + @, (P, ) — @, (P, )]

(4.22¢)

Terms in square brackets [] correspond to the solved boundary value problems assuming symmetric
or anti-symmetric potential with respect to the plane/s of symmetry. Equation (4.22a) applies when
x=0 is a plane of symmetry, (4.22b) when y=0 is a plane of symmetry and (4.22c) if both x=0 and y=0
are planes of symmetry. The symmetry should be also considered in equation (4.13) by appropriate

elimination of part of coefficients F,,,, G, as shown in Table 4.1.
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Table 4.1: Symmetry simplifications for the coefficients of the expansions of the outer solution

validfor | x=0 | y=0 | Fp, Gma

S-R,H S 0, forodd m 0, foreven m
S-P,Y A 0, forevenm | 0, forodd m
S-P,H S 0, for allm
SR, Y A 0, forallm

S-pP A S 0, forevenm | O, for allm
S-R S A 0, forallm 0, foreven m
H S S 0, forodd m 0, for allm

Y A A 0, forallm 0, forodd m

*S-R: sway —roll, S-P: surge-pitch, H: heave, Y: yaw, S: symmetry, A: anti-symmetry

4.4 Loads calculation

Once the diffraction and the radiation problems are solved, the unknown strengths of the sources
along the boundary S are determined and the potential ¢ can be calculated from (4.19). Then the
excitation and the reaction forces are calculated by integrating the surface pressure over the body

solid surface. The pressure itself is calculated using the linearized Bernoulli equation,

op _. ,

p=-p—=iwpp = F=—_[pnd5=—/ij<pnd5 (4.23)

ot s <
Foxe, /A=—iwp [ (0+0,),dS k=1:6 (4.24)

S
, - ~ i ,
FREACTk=—prI¢Rnkd5=—w2p_[xj¢jnkd5 :wz(akj +;bkjjxj , k=1:6, j=1:6*nb (4.25a)
N S
i ~ .
(akj +Zbkjj :—pfwjnkds , k=1:6, j=1:6*nb (4.25b)
N

where p denotes the pressure along the body surface, p the density of the fluid, Fg the generalized
excitation force vector, Freacr the generalized reaction force and ay, by; the elements of the added
mass and added damping coefficient matrices. The excitation force is calculated for unit wave
amplitude, while the added mass and damping coefficients for unit oscillations in each mode of

motion. It is noted that in the above expressions the hydrostatic terms have been excluded.
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4.5 Equation of motion

The 1° order motions per unit wave amplitude A, of a standalone floating body are estimated by
solving the complex linear 6x6 system that is formed from the dynamic equation of motion

expressed in the frequency domain,
~ . -1
X((J.))/A=[FEXC((.U)/A]|:‘(JJ2 (M+a(w) + MEXT)-|w(b(w)+CEXT)+(KH+KG+KEXT)] (4.26)

where
X(w)/A is the Response Amplitude Operator (RAO) of the 6 motions of the body,
M denotes the structural mass matrix of the floater,

Ky and K;  denote the hydrostatic stiffness matrix and the restoring stiffness matrix due to

gravity,

w is the frequency of the wave and of the motions (in the linear context the motions

have the same frequency with the wave),
[Fexc/A] is the 1* order wave induced force for unit wave amplitude defined in (4.24),
aandb are the added mass and damping coefficients defined in (4.25b) and

Mgy, Cexr and Keyr are external mass, damping and stiffness matrices independent of the

frequency w.

The linearized contribution of the wind turbine is considered through the external matrices. In Kgxr
the mooring lines contribution is also added. If the external matrices are zero, then the motions of

the free floating floater are estimated.

The mass matrix M for a floater with mass m, center of gravity x; and inertias |;; is defined as,

m 0 0 0 mz, —my,
0 -mz, 0 mx
0 0 m my, —mx, 0
M= © ¢ (4.27)
0 —mz; myg Ixx IXY Ixz
mz; 0 —MmX; IYX IYY IYZ
—my; mxg 0 sz IZY Izz

while the restoring matrix Kg due to gravity is defined as,
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0 0O 0 0 0

0 0O 0 0 0

K = 0 0O 0 0 0
° |0 0 0 -mgz, 0 mgx,
0 0O 0 -mgz; mgy,

0 0O 0 0 0

(4.28)

The hydrostatic properties of the floater are calculated as surface integrals using Gauss’ divergence

theorem. For example the volume V is defined as,

V= ngoa—ax(x)dv :vs[, %(y)dv :v;[, %(z)dv =SBjO nxds = n yds = j n,zds

SBO 5 0

Similarly the center of buoyancy xg is calculated as,

1 2 1 2 1 2
x,=— | nxdS , =— | nydS , z,=— | n,z°dS
g vt Ve zvS!O a4 s v,

while the nonzero elements of the hydrostatic stiffness matrix K, are defined as,

K,,=pg [ nds : Ko,=pg [nyds . K, =pg [ nxds
Se0 Sso Sgo

KH44 =-pg J- nzyzds + ngZB , KH45 = pg J- nZXde , KH4e :-ngXB
Sso Seo

Ky, =Pg I nx’dS+pgvz, , K. =-PgVys

SBO

Elements K3, K153 and Kys, are equal to their symmetric Kyza, Kiyss and Kyss respectively.

(4.29)

(4.30)

(4.31)

In the case of multiple floating bodies, equation (4.26) is extended to include the dynamic equations

of all bodies. Then the system of equations is 6nb x 6nb and the relevant matrices are accordingly

augmented.

The added mass and damping matrices contribute to the coupling terms between the motions of

different bodies.
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4.6 Surface elevation

After solving the boundary value problems for diffraction and radiation and estimating the
corresponding RAOs, the free surface elevation ( is calculated for unit wave amplitude A. By
introducing the expression for the total potential (4.3) in the linearized dynamic equation, { is

obtained on the panels of the free surface,

2 6nb

{/A Zi?w[q?/A] =%[¢D/A]+%Z[XJ/A] @, ,0n S atz=0 (4.32)
=1
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4.7 Numerical Results — Validation

Validation of freFLOW in comparison to results obtained with WAMIT [143] is given. The results
concern the spar buoy floater of the OC3 [71] and the semi-submersible floater of the OC4 [125].

4.7.1 The OC3 spar buoy

The linear diffraction and radiation hydrodynamic problems are solved considering the spar buoy
floater defined in OC3 [94] [Figure 4.2]. The draft of the floater is 120m, while the diameter is 9.4m
for-120m <z < -12m, 6.5m for z>-4 and in between linearly reduces. Analysis is performed for water
depth equal to 320m. The floater is symmetric about both axis x=0 and y=0 and so the unknowns of
the problem can be reduced to one quarter. In addition, because of the cylindrical shape, only 2 of
the 4 problems are solved [i.e. axis x=0 anti-symmetry — axis y=0 symmetry and both axis x=0 and y=0
symmetry]. Structured grids are used in the present analysis having a total number of degrees of
freedom equal to 11025, while the infinite expansions in the outer domain in z and & directions are

truncated to 100 and 1 modes respectively. 1 mode is enough because of the cylindrical shape.

Figure 4.2: Description of the spar buoy floater of the OC3

In Figure 4.3 the magnitude and the phase of the non-zero generalized excitation force for 0° wave
heading angles are compared, while in Figure 4.4 and Figure 4.5 non-zero added mass and damping
coefficients are presented. As expected, the two sets are in very good agreement since both methods
adopt the same theory (1* order linear hydrodynamics), despite the difference in the formulation —
WAMIT uses the free-surface Green function method while freFLOW is a hybrid boundary integral
method based on the free space Green function. Differences in the added mass coefficients are

regarded small, although pronounced because of the figure scale.
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Figure 4.3: Magnitude and phase of the diffraction surge and heave forces and pitch moment for zero wave heading of the

OC3 spar buoy floater
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Figure 4.5: Hydrodynamic added mass and added damping coefficients Ass and Bss of the OC3 spar buoy floater

4.7.2 The 0C4 semi-submersible case

Similarly to the spar buy case, the linear diffraction and radiation hydrodynamic problems are solved
considering the semi-submersible floater defined in OC4 [Figure 4.6]. A brief description of the
floater was given in section 3.2.2.1, while a detailed description can be found in [125]. The analysis in
this case is performed for water depth equal to 200m. The floater is symmetric about the y=0 axis
and so the unknowns of the problem are reduced to half. Both the symmetric and the anti-symmetric
problems are solved. In order to handle the complex geometry, for the free surface an unstructured
grid is used [Figure 4.7], created with ANSYS ICEM grid generator, while structured grids are used for
the other boundaries including the floater [Figure 4.8]. The total number of degrees of freedom is
equal to 27487, while the infinite expansions in the outer domain in z and & directions are truncated

to 50 and 20 modes respectively.

main

pontoons
column

Cross
braces

offset
column

Figure 4.6: Description of the semi-submersible floater of the OC4 [figure taken from [125]]
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Figure 4.7: Unstructured grid of the free surface of 11588 elements

Figure 4.8: Structured grid of the surface boundary of the semi-submersible floater

The non-zero generalized excitation forces for 0 and 30 degrees wave heading angles are compared
in Figure 4.9, Figure 4.10 and Figure 4.11, while in Figure 4.12 and Figure 4.13 the non-zero added
mass and damping coefficients are presented. Similarly to the spar buoy case, the two sets are in

very good agreement.

In order to estimate the RAOS of the coupled semi-submersible floating wind turbine, using the
frequency domain method, the contribution of the wind turbine and the mooring lines are

introduced in the equation of motion (2.126), following a linearization process. Inertial/gyroscopic,
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gravitational and aerodynamic loads of the wind turbine are considered through additional mass,
damping and stiffness matrices. Details of the linearization can be found in [44, 120, 121]. A linear
stiffness matrix is used for the mooring lines consideration. The viscous damping is not considered in

the frequency domain case.

A validation of the 1** order RAOs estimated in frequency domain is performed, by comparing with
the RAOs estimated by time domain simulations using hGAST. hGAST uses the same hydrodynamic
loads, calculated in frequency domain and transformed into the time domain, while including extra
viscous damping in Morison’s equation. In addition, nonlinear aerodynamic and dynamic terms,
elasticity of the flexible members, nonlinear stiffness from the dynamic mooring lines and the

variable speed variable pitch controller are considered.

Similar comparisons between RAOs predicted using frequency domain and time domain methods can
be found in [166], for the OC3 spar buoy and in [44, 120, 121] for a TLP floater. In the latter case, the
roll and the pitch modes of the floater are strongly coupled with the two bending modes of the
tower in the fore-aft and the lateral direction. This coupling leads to a frequency reduction of the roll
and the pitch frequency from 0.3Hz to 0.25Hz, which is clearly seen in the roll and pitch RAOs. Such
an effect is not expected in the conventional semi-submersible floater because is constrained by

catenary mooring lines.

The RAQ’s can be estimated from time series data using the following equation, as in [120],

ny(w
RAO(w)zT

)| (4.33)
)

XX

where P,, is the auto power spectral density and P,, is the cross spectral density. Py, Py, are
calculated using Welch’s method [167] with a sufficient number of data split and 50% overlap
between the split data parts. x refers to the input (wave elevation) and y to the output (one for every
motion). The simulations corresponded to 3600sec - the first 600sec were excluded — assuming a

uniform wind speed and white noise waves of 1m significant wave height.

In Figure 4.14 four sets of results are presented in logarithmic scale. Blue and red lines correspond to
RAOs obtained with the frequency domain method (fd) at zero and at rated wind speed of 11.4m/s,
while black and green lines correspond to RAOs obtained with time domain simulations (td) for the
same wind conditions. In the zero wind speed case the rotor does not rotate (i.e. the brake is
activated). The 30deg wave heading case is presented in which all the 6 motions are excited. The
frequency axis is presented in Hz in order to better identify the eigen frequencies which are
calculated with hGAST for a flexible and a stiff wind turbine [Table 4.2]. As expected the elastic

degrees of freedom do not change the 6 natural frequencies of the floater.

In general both simulations give similar RAOs. In Figure 4.14a, b the frequency domain method
predicts a 2nd peak at 0.041Hz in the surge and sway motions. The additional peak corresponds to

the roll and pitch natural frequency. In the time domain results the surge-pitch and sway-roll
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couplings are not so pronounced. In Figure 4.14c the heave RAO is in excellent agreement, at 0
frequency the RAO is equal to 1 as expected, while differences for frequencies higher than 0.3Hz
(2rad/s) which are small in value they can be explained by the fact that the heave exciting force is
zero [Figure 4.10e)]. The influence of the aerodynamic damping is only depicted in the roll and the
pitch RAOs [Figure 4.14d, e], where the peak amplitudes of the roll and pitch motions at 0.041Hz are
reduced with the presence of the wind. Moreover, peak amplitudes predicted with the time domain
method are 10 times less, which is due to viscous damping. The flexibility of the tower is only visible
in the roll and the pitch RAOs at 0.43Hz, but does not influence the corresponding RAOs, since the 6
natural frequencies of the floater do not change. In the yaw RAO [Figure 4.14f] gyroscopic effects are
clearly predicted by both methods. The peak amplitude of the yaw natural frequency at 0.013Hz is
increased when the wind together with the rotation of the rotor are considered. Contrary to the roll
and pitch amplitudes, time domain calculations predict higher amplitudes. At 0.15Hz and 0.3Hz local

maxima are driven by the wave excitation yaw moment (see Figure 4.11e).

Table 4.2: Natural frequencies [Hz] of the semi-submersible coupled OWT of OC4 phase Il for a flexible and a rigid WT

Mode description hGAST flex | hGAST rigid

Platform Surge 0.0093 0.0093
Platform Sway 0.0093 0.0093
Platform Heave 0.0583 0.0583
Platform Roll 0.0413 0.0417
Platform Pitch 0.0413 0.0417
Platform Yaw 0.0131 0.0131

1st Tower Fore-Aft 0.424 -

1st Tower Side-Side | 0.415 -
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Figure 4.11: Magnitude and phase of the diffraction roll, pitch and yaw moments for 30 degrees wave heading of the OC4
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Chapter 5

Fully nonlinear potential time domain solver in 2D

In the present chapter, hFLOW, a fully nonlinear, inviscid two dimensional solver (numerical wave
tank) is formulated for the solution of the wave-body-current interaction problem, based on BEM and
mixed Eulerian-Lagrangian method. The wave is either generated by simulating the wave generator’s
physical motion or by matching along the inflow vertical boundary the steam function wave solution
with or without the inclusion of a steady current. Wave absorption at the end of the tank is added
using damping layers. The simulation of free-floating bodies is performed using the iterative method
which determines the body acceleration. Numerical results are presented and discussed addressing:
the generation and absorption of nonlinear stream function period waves in shallow, intermediate
and deep water depths with or without the presence of a steady current; the evolution of a highly
overturning solitary wave generated by a piston wave maker; the generation, shoaling and breaking
of a solitary wave; the calculation of the loading on a submerged cylinder undergoing a large
amplitude motion; the calculation of the wave induced motion of a free-floating cylinder; and the
calculation of the loads and the motion of a fixed and a free-floating surface piercing barge.

Comparisons with linearized solutions assess the importance of the nonlinear terms.

5.1 Introduction

As already mentioned in Chapter 4, the design of offshore structures and ships is mainly based on the
linear theory. The random wave is usually considered as a Gaussian process and the response of the
structure linear. By using 2" order theory the area of validity of the linearized approach is extended,
but still safety factors are introduced in order to account for the higher order nonlinear wave effects.
In order to reduce the uncertainty of the design and in turn reduce safety factors and cost, more
advanced numerical models should be formulated. To this end, the so called numerical wave tanks in
correspondence to the physical wave tanks have been defined. The aim is simple; reproduce the
experimental results using numerical simulations. In this respect the methods should be capable of
accurately simulating the wave generation and absorption as well as the dynamic behavior and the

loading on fixed or free floating structures.

The associated fluid-structure interaction problem must be solved as in aeroelasticity. However the

presence of the free surface further complicates the problem and is the main reason why
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hydrodynamic solvers are less advanced compared to the aerodynamic ones. Since the geometry of
the free surface in not known a priori, but is part of the solution, adds an implicit nonlinearity while
wave breaking further complicates the problem. A detailed overview of recent advances in numerical
simulation of nonlinear water waves can be found in [168], where models that also account for
viscosity and/or wave breaking are presented (CFD, SPH). In the present literature review, only works

relative to the fully nonlinear potential wave problem will be presented.

The first pioneer work was the development of the mixed Eulerian Lagrangian (MEL) method by
Longuet-Higgins and Cokelet [169]. Based on this method, the evolution of the free surface was
consistently reproduced in the Lagrangian frame by stepwise integrating the two nonlinear free
surface boundary conditions. The unknown normal velocity on the Lagrangian markers of the free

surface is calculated in the Eulerian frame (see section 5.3.1).

The second pioneer work was by Vinje and Brevig [170]. They were the first to introduce the
acceleration field in order to accurately estimate the pressure distribution and in turn the
hydrodynamic loading over the wet moving solid surfaces, which is necessary since the time
derivative of the velocity potential ¢; appears in Bernoulli equation. Solving for ¢; requires an
appropriate boundary condition that, in accordance to that for ¢, requires the normal to the body
acceleration which is however unknown. In order to solve this implicit loop, Vinje and Brevig
developed the mode decomposition method. It was the first consistent method for the nonlinear
simulation of free floating bodies. The mode decomposition method was also used by Cointe et al
[171] and Koo and Kim [172]. There are three more methods that can treat the aforementioned
implicit loop; the iterative method proposed by Sen [173] and Cao et al [174], the indirect method
proposed by Wu and Eatock-Taylor [175] and the implicit method by van Daalen [176] and Tanizawa
[177).

Another important aspect is the treatment of the far-field radiation condition. By truncating the
domain at finite distance, at the corresponding open/free boundary any condition should be non-
reflecting. At first Longuet-Higgins and Cokelet [169] used periodic conditions so no radiation
condition was needed, while in the subsequent early developments the Sommerfeld/Orlanski
boundary condition was employed [178]. Romate [179] reviewed the methods based on this
approach. This kind of boundary condition seemed to face numerical instabilities especially in

transient flows due to irregular waves or the presence of flow disturbances.

A different approach is to absorb the waves and avoid reflections following the experimental wave
tank practice. Two possibilities are available in this respect: the modeling of a physical wave absorber
or the introduction of artificial dissipative terms in the evolution equations. Along the first option,
Bessho [180] and Naito [181] studied the plunger type physical wave absorber, while Clément [182]
considered the piston type physical absorber suitable for long waves. Along the second option Baker
et al [183] and Cointe et al [171] followed the idea of Israeli and Orszag [184] and Le Méhauté [185]
and introduced dissipative terms in the dynamic and the kinematic free surface boundary conditions.
Differences in the implementation exist with respect to the choice of damping function, the variable

to which damping is applied (i.e. the potential or its normal derivative in the dynamic equation) and
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the conditions at which dissipation is added (in both free surface equations or only in one). A
combination of the two methods was proposed by Clément [182] and further extended by Grilli and
Horrillo [186].

Many works have been published along the aforementioned guidelines i.e. by Dommermuth et al
[187] who first compared the numerical results against experimental data and proven the ability of
the fully nonlinear potential theory to accurately model the physics of wave breaking, and by Boo
and Kim [188] who simulated the nonlinear diffraction force on a vertical cylinder. Detailed review of
the work on the fully potential nonlinear solvers can be found in Kim, Clément and Tanizawa [189],
Tanizawa [190], Tsai and Yue [191] and Grilli [192], most of which are connected to the boundary
element method (BEM).

The nonlinear wave-current interaction has been studied by Ryu, Kim and Lynett [193] and the wave—
current-body interaction by Ferrant [194] and Kim, Celebi and Kim [195] in 3D for a bottom mounted
cylinder and by Koo and Kim [196] in 2D for a free floating barge. Wave kinematics based on the
stream function theory by Dean [47] and Rienecker and Fenton [48] have been considered in the
inflow boundary by Grilli and Horrillo [186] and by Ferrant [194].

The method developed in this work concerns the solution of the complete fully nonlinear problem in
2D. It has been validated by direct comparison against experimental data, analytical data or other

published results in the following problems:

1. Generation, propagation and absorption of highly nonlinear stream function periodic waves
in deep, intermediate and shallow water depths with or without a steady current,

2. Generation, propagation and breaking of solitary waves,
Shoaling of a periodic wave over a submerged bar,

4. Nonlinear diffraction and radiation of submerged or surface piercing bodies.

The method developed considers:

- The direct boundary integral formulations for ¢ and ¢;, which are approximated by means of
plane linear boundary elements,

- The mixed Lagrangian-Eulerian formulation of the free-surface conditions which are solved
with an explicit 4™ order Runge-Kutta time integration scheme,

- Nonlinear incoming waves generated either by modeling the motion of the wave maker or by
consistently matching the inlet conditions to a stream function based wave field,

- Submerged or surface piercing moored free floating bodies by solving their equations in fully
coupled mode,

- Farfield conditions by means of a damping layer (non-reflecting boundary condition).

Compared to previous works, the contribution of the present work can be summarized as follows:
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1. Implementation of the matching with stream function waves including a steady uniform current. In
this connection, accurate solutions have been obtained for very high wave steepness (up to ~90% of

the maximum) that remains stable after many wave periods.
2. Accurate simulation of overturning/breaking waves by periodically re-gridding the free-surface.

3. Accurate formulation of the expression for 0, ¢ on free floating bodies in the presence of a

steady current.

4. Accurate and consistent calculation of the drift force on a floating barge.
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5.2 Mathematical formulation

The potential, irrotational flow of an incompressible fluid without surface tension is considered in the
physical flow domain D(t), with boundaries collectively denoted as S(t) [Figure 5.1]. The 2D problem
is considered in the vertical plane (x, z), with the global coordinate system Og located at the free
surface mean water level. The z axis is pointing upwards and the x axis is pointing along the wave
propagation to the right. Sis(t) denotes the free surface boundary, Se(t) the seabed boundary, Syg(t)
and Sge(t) the vertical boundaries on the wave generator side and the absorbing beach side
respectively and Sgo(t) denotes the boundary surface of any fully or partially submerged solid body.
Bodies are allowed to either move in a prescribed way or freely floating under the action of the
hydrodynamic loads. In the present derivation wave generation is defined on the left side of D(t), and

wave absorption on the right. The total scalar potential @(x; t) is defined as,

O(x;t) = @(x;t)+U, x (5.1)

where @(x; t) is the unsteady wave potential and U, the velocity of the steady uniform current.
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Figure 5.1: Layout of the numerical wave tank

Mass conservation is expressed by the Laplace equation for the total potential @(x; t). The problem is
formulated for the wave potential ¢(x; t), while the contribution of the current field is directly

applied to the entire field. The scalar wave potential ¢(x; t) also satisfies the Laplace equation (5.2),

Ap =0, in D(t) (5.2)

On the instantaneous free surface position at z = {(x; t), the Bernoulli equation (5.3), also known as
the dynamic boundary condition, assures pressure continuity across the interface between fluids

with different densities (i.e. water and air). Written for the wave potential ¢(x, z=; t) reads,
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op U
——gZ——|V | — a—f—?o—%—dampl, on S.(t) at z={(x;t) (5.3)

o
ot

In (5.3) g denotes the acceleration due to gravity, p, a known reference pressure (i.e. the
atmospheric which can be set equal to zero) and p the fluid density in domain D(t). The time varying
integration constant that originally appears in Bernoulli equation has been eliminated leading to a
proper redefinition of ¢(x; t). The kinetic energy current term Ug /2, although constant should be

retained in order to accurately simulate surface piercing bodies.

The unknown free surface geometry is determined by a second nonlinear equation; the kinematic

boundary condition (5.4),

%X - vopv-u, %2

~ a+g—dampz, on S.(t) at z=(x;t) (5.4)

which states that the fluid particles on the free surface will always move along the free surface.

The free surface dynamic and kinematic boundary conditions in equations (5.3) and (5.4) are
expressed in Eulerian form, while damp; terms correspond to artificial dissipation terms (see
equations (5.12), (5.13)).

The free surface conditions can be equivalently expressed in Lagrangian form,

do 1, p U
—=—g{+-|V ——°———dam ,onS. (t)at z=C(x;t (5.5)
= 9¢ 2| 9| ) Py, on Si(t) 7(x;t)

ax

EZV("HUO 6, —damp, 6,,, on S.(t) at z={(x;t) (5.6)

or in ‘semi-Lagrangian’ form,

do 1, p op U: d7 0p p
—~=—gq-=|Vo| -U,——2LL+2.—Z -2 _damp,, on S..(t) at z=7(x;t (5.7)
dt 9¢ 2| <p| x 2 dt 6z p & wlt) it)

d? ol O

E:— VZ-U a—+5—dampz, on S (t) at z={(x;t) (5.8)

where 6; denotes the delta of Kronecker and d(.)/dt = 0(.)/0t + Uy - V(.) the material derivative. For
the derivation of the above-mentioned approaches, the velocity of the marker U, has been set equal
to the total velocity VO (including the current effect) in the Lagrangian formulation and equal to
(0, 0, dZ/dt) in the semi-Lagrangian formulation. It is noted that in the Lagrangian formulation the

damping term of the kinematic boundary condition is only applied to the equation for the vertical
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velocity component and the current term only appears in the evolution equation for the horizontal

space variable x.

On the solid boundaries, namely the sea bed Ssz(t) and any fully or partially submerged body Sgo(t),

the no-penetration condition is applied,

g—(‘o=)'(G ‘n=V(U, x)=V,, —U, n_, on S,(t) and on S,,(t) (5.9)
n

where X denotes the velocity of points on the body surface as defined in section 5.3.3, n denotes
the normal to the surface boundary unit vector always pointing towards the flow domain, n, is the
horizontal component of n and Vg, denotes the magnitude of the normal body velocity. It is noted
that the seabed velocity is zero, unless the generation of long waves is examined by modeling a

moving bottom (i.e. earthquake or land sliding).

Boundary conditions should be specified along the vertical boundaries as well, in order to get a well
posed problem, which moreover should ensure accurate and valid wave generation and absorption.
In the present method, the wave is introduced in 3 different ways: a) by modeling a physical wave
maker as a moving boundary; b) by matching a valid wave solution along the inflow boundary (based
for example on the stream function theory); c) by imposing the potential and the wave elevation
along the free surface nodes which corresponds to an initial value problem. In either case the normal
velocity along the vertical boundary at the wave generator side is assumed known and a Newmann
boundary condition is imposed. Moreover both vertical boundaries should allow the current pass

through.

op

9@ __ ¥ (x_it) or =g, 0 8,(t) (5.10)
n

on X

The 1% expression in (5.10) applies when a known wave field is matched at the inflow boundary,
while the 2™ expression applies when the motion of the physical wave maker is simulated. Details

about wave generation are presented in section 5.3.7.

Wave absorption is achieved by means of dissipation. In this respect, the right vertical boundary Sgg(t)

is assumed fixed allowing only the current to cross out of the flow domain D(t),

a—CP:O, on S, (t) (5.11)
on

In addition, on the beach side a “sponge layer” is defined, usually extending to 1 to 2 wavelengths.
Within this layer, gradually increasing damping terms are introduced in both free surface boundary
conditions. In open sea conditions, a sponge layer is also applied to the wave maker side. This
prevents back-reflection of waves. The damp; terms added in the free surface boundary conditions

are defined as,
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Wave

damp, =v,(x)(0,—0,¢"""), forthe dynamic boundary condition (5.12)

damp, =v,(x)({-¢"") , for the kinematic boundary condition (5.13)

where both 8n(pW‘”e and ZW‘M are defined based on the known incident wave field, i.e. the stream
function theory. They are introduced in order to dissipate only the reflected waves instead of the
total wave at the wave generator side. As already mentioned in the introduction, the damping term
in the dynamic equation can be either proportional to ¢ or to 0,¢ . Both alternatives have been
implemented, but the 0 ¢ choice performs better. At the beach side 8n<pW"V9 and Zwave are zero in

order to absorb the total wave, while v;(x) is a function of space of the form,

|x—xe

b;
v,(x)= a,w[—} (5.14)
Ld

The absolute value is added in order to ensure positive v(x) on both sides while exponents higher
than 1 give an increasing damping effect as the outer boundaries are approached. w is the wave
frequency, L4 is the length of each damping layer, x. defines the position where the damping layer
ends or starts, while a; and b; are tuning coefficients which usually take the values: a;=(1/2k,) for

0, ora;=1for @, a,=1, b= b,=2. ky is the local wave number at the damping layer depth.
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5.3 Numerical implementation

5.3.1 Mixed Eulerian Lagrangian method for the nonlinear wave problem

Based on the mixed Eulerian-Lagrangian formulation [169] the solution of the nonlinear wave
problem is obtained by considering either the full-Lagrangian or the semi-Lagrangian form of the free

surface boundary conditions defined in equations (5.5) and (5.6) or (5.7) and (5.8) respectively.

For given x or { (depending on the formulation) and ¢ over the free surface, explicit time integration
of the two evolution equations defines the new position and potential of the free surface particles,
forming the Lagrangian part of the formulation. In the purely Lagrangian description the markers on
the free surface are tracked as material particles using their full velocity, while in the semi-Lagrangian
description the markers are only allowed to move in the vertical direction. Initially, zero ¢ and a free

surface at rest (equal to the mean water level) are set, unless an initial wave solution is available.

In either formulation the Laplace equation acts as a constraint, and is conveniently introduced in the
form of an integral boundary equation, connecting the Neumann and Dirichlet data over the entire
S(t), as detailed next in section 5.3.2. This is the Eulerian part of the MEL method.

It is noted that the Lagrangian and semi-Lagrangian formulations are equivalent, provided that the
surface elevation is a single valued function. On the contrary, only the Lagrangian formulation can

handle breaking waves and this until an overturning wave crest contacts the free surface.

5.3.2 Integral form of the Laplace equation and its numerical solution

The boundary integral equation (BIE) for the Laplace equation takes the following form,

aly)-9lxg) = | [G(x;xo)- 909 _ o) M} asx) (5.15)
S on on
G(x;x )—iln|x—x | (5.16)
7770 _2]'[ 0 .

where G(x, Xo) is the Green function, x, denotes any field point D(t), x any point in S(t) and a(x,) the
solid angle associated to xo. For points in D(t), a(Xe) =2m, while for points on S(t), a(x,) is directly
calculated by defining the following simplified boundary value problem, assuming uniform boundary

data 0, =0 and ¢=1. Then the solid angle is calculated as,

I-a(X,)=—

I %dﬂx) (5.17)

S

For the solution of (5.15) either ¢ (Dirichlet data) or 0,¢ (Neumann data) on every part of S(t) is

prescribed. Along the free surface a Dirichlet condition is imposed while over all other boundaries a



184

Neumann one. The resulting mixed problem is numerically solved using the boundary element
method with piecewise linear approximations for ¢ and 0, ¢ . The collocation points are placed at
the nodes of the surface grid. By assuming plane panels, the integrations in (5.15) are carried out
analytically [Appendix A]. The discrete form of (5.15) is solved with the LU decomposition method. It

is noted that in their discrete form (5.15) and (5.17) have the same influence matrices.

The tangent velocity 05(,0 on S(t) and the gradient of the surface elevation GXZ that are needed in
(5.8) and in the calculation of the loading on solid bodies, are obtained at the boundary surface grid

nodes by means of 2™ order finite difference approximations.

Special treatment is required at the end nodes of the free surface where the boundary condition
switches from Dirichlet to Neumann (i.e. at the intersection between the free surface and the vertical
walls or between the free surface and surface piercing bodies). In order to uniquely define the
velocity and prevent the onset of saw-tooth instabilities, these particular nodes are considered as
“double nodes” [197], [190]. At the double node points, the velocity is expressed in terms of the two
known normal components 6n(pD and 8n(/)N defined at the end points of the Dirichlet and the
Newmann boundaries respectively. At the Dirichlet boundary 5n(pD (free surface) is obtained as part
of the solution of the BIE (5.15), while at the Newmann boundary Gn(pN (lateral boundary or surface
piercing body) is assumed known from the boundary data. Based on this information, the velocity at
the double node u = (u,, u,) is obtained by solving the following 2x2 linear system instead of using the
numerically obtained tangential velocity component.
u n, +u,-n,=u-n,=0¢"
(5.18)

_ _ N
ux .an +uz .nNz _u.nN _anq)

Another important point when solving BIE (5.15), concerns the need for regridding the free surface in
the Lagrangian formulation context. Regridding is based on spline fitting and is decided by
monitoring the ratio between the maximum and the minimum free surface panel lengths within
certain pre-selected limits usually set in between 1.1 and 1.5. In this way the panels of the free
surface retain an almost uniform spacing which is important in BEM calculation. Also for numerical
consistency and accuracy, regridding of all Newmann boundaries is performed in order to ensure
that S(t) remains a closed surface. The lateral boundaries and the boundaries of surface piercing
bodies are also modified based on the instantaneous surface elevation. Finally when a physical
moving piston wave maker is considered the sea bed boundary is changed according to the
prescribed motion of the wave maker. In practice regridding of the Newmann boundaries is carried

out at every time step.
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5.3.3 Rigid Body Kinematics

The solid body undergoes a combined translation and rotation, defined with respect to a body-fitted
system Og. Let xg(t) denote the position of the origin Og in time and U;(t) the rotation angle of Og

with respect to the global reference Og coordinate system.

Every point on the body surface is defined by its local position r_ and its global position, velocity and

acceleration Xg,Xg,X; that are expressed as,
X (65,1 5t) =X, (D+A(T, (1) -1, = Xg =X, +A -1, =X, =X, +A -1, (5.19)

The generalized position, velocity and acceleration vectors of each body incorporating the surge,

heave and pitch motions in 2D are defined as,
Egz{xglag}r €B={)'(B IéB}I EB ={XB 153} (520)
A(l?B) denotes the rotation matrix and the first and second time derivatives are defined as,

. . dA .
A(ﬁB,ﬁB):Fﬁ

B

=A'8,, A(9,,0,,5,)=A"5,+A" % (5.21)
In equations (5.19) to (5.21) dots denote time derivative.

5.3.4 Body force and solution of BIE for ¢,

The forces acting on the body are calculated by integrating the pressure given from Bernoulli’s
equation,

1 op U
p=—p(ep, +—|V(p|2+U0—(p+—°+gz) (5.22)
2 ox 2

As reported in [190], [198], the calculation of the unsteady term ¢, by means of finite difference
schemes becomes unstable, especially when the problem involves moving bodies. Instead as noted in
[176], the Laplace equation for ¢; can be solved which takes full account of the kinematics of the
flow and by that the correct dynamics are added on the body either standing or freely floating. The
boundary value problem for ¢, is defined similarly to that for ¢ except that now time derivatives are

used,

Ad=0, in D(t) (5.23)
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®.=—g {—%|V(p|z -U, g—f—%;—%—dampl, on S.(t) (5.24)
6(’: =0, on S,.(t) and on S,(t) (5.25)

a(";t =X, -n+q(x;), on S, (t) (5.26)
%:—a)‘f’”ve(xG;t) or 6(;: =X, -n+q(x;), on S, (t) (5.27)

The Dirichlet data on the free surface (5.24) and the Newmann data on the moving bodies (5.26) and
(5.27) can be defined only after the boundary value problem for the velocity potential is solved, so

that 0, at the free surface and the potential ¢ at the body surface have been determined.

Xs, )'(G, XG denote the position, velocity and acceleration of points on the body surface as defined in
section 5.3.3 and g(x¢) is the contribution of the velocity potential to the calculation of the normal
body acceleration. In order to express g(xg), a body fitted curvilinear system (s, n) is introduced with
s, n being the tangential and the normal to the surface unit vectors. Based on the derivation provided
by van Daalen [176] and also used in [199] in 2D, the g(xg) term is further elaborated [Appendix B] in

order to account for the steady current. The expression for g(xg) in this case is,

qix;) = (%, -s—3,0—2U,0 x) &,
—(k 0.0+2k U,0,x+0,.0+U,0,x)X,-5) (5.28)
—(k,0,0+ kU,0,x—03,0—U,0,.x)(X.-n), on S,,(t)

_0,x0,2-0,20,x
" (0,x+0,2)"*

(5.29)

where ¥, 53, 53 are the pitch angle, angular velocity and angular acceleration of the body. k, is the

local curvature of the surface.

Local tangent derivatives 0.9, 0@, 0,9, 0.x, 0_X, 0,z, 0z are calculated numerically along the
body surface using 2" order finite differences valid for non-uniform grids. The corresponding

boundary integral equation is defined similarly to (5.15) as,

o9, (x)

. 0G(X;X,)
®,(x) o

a(Xo)- (%) = j {G(X;xo)- }dS(x) (5.30)

N

The extra computational cost of solving (5.30) is considered small, since the same influence matrix
with (5.15) is used and the LU decomposition direct method is selected. Only the right hand side of

the corresponding system will be different.
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In the definition of the boundary value problem for ¢, in equations (5.23) to (5.27) the seabed is
assumed fixed. If instead the seabed is moving then it is modeled as a moving body subjected to a
boundary condition similar to (5.26). The same is followed in the 2 expression in (5.27) in case a

physical wave maker is modeled.

5.3.5 The free-floating case

The motions of freely floating bodies are part of the solution and are obtained from the
corresponding dynamic equilibrium equations. Gravity and hydrodynamic loading are acting as
external forcing. In order to determine the hydrodynamic loading on the free floating bodies, a
boundary value problem for ¢, is solved (see section 5.3.4). However neither ¢, nor 0 ¢, are known
on the body surface. As already mentioned in section 5.1 there are four widely used methods for
solving this implicit problem [190]: the iterative method, the modal decomposition method, the
indirect method and the implicit boundary condition method. In the present work, the iterative
method [173, 174] is adopted.

The iteration loop is initiated by assuming the body acceleration EB equal to that of the previous
time step. 0, ¢, on the body is then defined from (5.26) and so the BIE for ¢, can be solved. Once ¢,
is obtained and the hydrodynamic loading is determined, EB is updated from the equation of body

motion,
€ =M {F—C-§, K-} (531)

In equation (5.31) M is the mass matrix of the body defined with respect to the center of gravity, C
and K are external damping and stiffness terms (i.e. from mooring lines) and F corresponds to the
hydrodynamic plus the gravity loading. §; and éB are also determined by integrating the following

equations,

d§, .
—28 _ .32
" & (5.32)
ng ..

= 5.33
a9t & (5.33)

It is noted that the body acceleration EB only influences the calculation of ¢, by modifying the
Newmann boundary conditions (5.26) and (5.27), while the boundary geometry and the velocity
potential ¢ remain unchanged. So in the aforementioned iterative process, the solution of the BIE for
®: (5.30) always involves the same decomposed influence matrix and updates only concern the right
hand side.
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5.3.6 Time integration

Let u(t) denote the vector of the unknowns (i.e. the potential ¢rs on the free surface, the geometry

of the free surface xrs, and the generalized position and velocity of free floating bodies & and éB

respectively),

u(t)z{(PFs Xes 'EB 'éB}

(5.34)

Then based on the explicit Runge-Kutta 4™ order method, integration in time is carried out using the

following scheme:

s
ut+dt=ut+zbi 'ki

i=1
t, =t+c, -dt

du
k1=dt~E(ut; t,)

I
)

(5.35)

k=dt -3—‘:(ut+{a satkiabi ), 2<i<S

For S=4 (4th order), the coefficients a;j, b; and c; are given in Table 5.1.

Table 5.1: Coefficients for the standard 4™ order Runge-Kutta explicit integration method

0

C

Cs3

Cq

0
ax 1/2
03 03 1/2
Qg1 Qgz Qa3 1

1/2
0 1/2
0 0 1

by b, by by

1/6 1/3 1/3 1/6



189

5.3.7 Wave generation

The physical wave generator is modeled either as a piston or as a flap moving wave maker. In the
piston case, the horizontal component xg(t) of the generalized vector &(t) (5.20) is prescribed while

in the flap moving case the rotation J;(t) defined around the seabed corner is defined.

In open sea conditions, the incoming wave is defined based on a valid wave theory. The complete
field is assumed known at every time step on the left boundary Swe(t) of D(t). Based on that, 0,¢ is
set along the left lateral boundary. In case the fully nonlinear equations are solved, wave kinematics
are defined based on the nonlinear stream function theory [47, 48]. If the free surface is linearized
(see section 5.3.9) the Airy theory is applied. Both theories can properly account for the interaction

between the wave and the steady uniform current.

It is noted that the generation and the propagation of nonlinear waves that retain a constant form in
the flow domain D(t), is only possible when an accurate nonlinear wave solution is imposed, such as
that stream function theory provides. Airy or even Stokes theories are based on expansions that
retain terms up to a certain order. So for a given depth if the wave steepness is higher than a certain
level, either of the two is no longer valid and resonant nonlinear interactions create higher-order
harmonic modulation of the wave shape. The same phenomenon is also observed in water tank tests

since the motion of the wave generator is defined based on linear or 2" order solutions [200-202].

5.3.7.1 Wave kinematics based on 1* order Airy theory

In the Airy wave theory, the expressions of the surface elevation ¢, the wave potential ¢, the

Wave and the horizontal acceleration a”?® that also account for a uniform

X X

current are[[203], p.66],

horizontal velocity u

ZWave (XG,'t) — gcos(kXG - (Ut) (536)
H g  coshlk(z,+d)F] .

Wave X t)=— G sin(kx. - wt .
O kUy) coshika) e %
u)lj\/avtE(XG;t) :ﬂ gk COSh[k(ZG+d)F] COS(kXG —wt) (538)

2 (w—kU,)  cosh(kd)
2 (1) = H gkw cosh[k(z,+d)F] sin(kx, - wt) (5.39)

2 (w—kU,) cosh(kd)

where H denotes the current affected wave height, w the wave frequency, g the acceleration due to

gravity, d the water depth and k the wave number defined from the modified dispersion relation,

(w-kU,)* =gktanh(kd) (5.40)
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The current affected wave height can be estimated based on the conservation of wave action [204]

as,

H=H, [——2-% (5.41)

where ¢, is the group velocity and Hp and ¢, denote the current-free wave height and group velocity.
Expression (5.41) is a general one which is not only valid within the Airy theory, but also applies to

the stream function theory.

F denotes the scale factor that is applied in the vertical direction in order to extend the area of
validity of the linear theory. If F=1 the standard formulas based on the Airy theory are derived, valid
for zge[-d, 0]. If F=d/(d+Q) is defined based on Wheeler stretching [124] then the vertical field is
scaled and is valid for zz€[-d, Z]. It is noted that any stretching method (i.e. vertical, linear or Wheeler)

is an engineering approach, not derived by the conservation laws.

5.3.7.2 Wave kinematics based on the stream function theory

A short description of the stream function theory first introduced by Dean [47] and further extended
by Rienecker and Fenton [48] is given. The present implementation follows Fenton’s [205] approach

where details can be found.

The 2D, incompressible, irrotational flow is considered in a frame moving with the wave celerity c.
The wave is assumed symmetric and periodic. A depth-uniform current U, is also accounted for. A
stream function ¢ exists that satisfies the Laplace equation, the bottom kinematic boundary
condition and the free surface dynamic and kinematic boundary conditions, all applied to the exact
instantaneous free surface position. The core of the method is the expansion of ¢ in Fourier series
and the pointwise representation of the free surface. The only approximation of the method is the
truncation of the infinite Fourier series up to N terms. The selected expression for ¢ identically
satisfies the bottom boundary condition and the Laplace equation, so ¢ should satisfy the two
nonlinear free surface equations evaluated at N+1 equispaced points and 8 additional simple
geometric or kinematic equations (see [205]). The nonlinear system of equations is solved with
Newton’s method. The estimated unknowns are the wave number k or the wave period T, the
Bernoulli constant R, the volume flux Q, the free surface elevation at N+1 points and the N+1 Fourier
coefficients. The velocity potential, the horizontal velocity and the horizontal acceleration expressed

in the physical frame x¢ are,

Z cosh jk(zg+d) . | U’

Wave(x t)={U. x)+ ——— % sinjk(x. —ct)—(R—— gt‘ 5.42
@"" (xg;t) = (Upx) 2 cosh jkd Jkixg —ct)—( z)k (5.42)
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N h jk(z.+d) .
u e (x;t)={(U, Y+ g B.COS—Gcos k(x. —ct
v (xgit) = (U, ) k;j’ cosh jcd Jk(x, —ct) (5.43)
N hjk(z.+d) . .
aV®e(x.;t)=gc 2B,COS—Gsm k(x. —ct 5.44
: (G)g;!, wosh jk(xg —ct) (5.44)

In the above equations B, are the Fourier coefficients. The current term U, appears as expressed from
the stream function theory (terms in brackets), but it is not imposed along the inflow boundary. As
already mentioned, only the wave potential ¢ is introduced not the total potential @. The current
field is directly added into the flow domain (see section 5.2). The last term of (5.42) is the integration
constant from the unsteady Bernoulli equation and U denotes the mean fluid speed in the frame of

the wave defined as U =c — U, =—B, . c denotes the wave celerity.

In nonlinear wave theory, the mean wave mass transport is not zero, as in Airy theory. Fluid mass is
transported in the direction of propagation, called Stokes drift. In this case, extra mass flow will cross
the inflow boundary Swe(t) over a wave period, that would gradually increase the fluid volume.
Consequently inaccurate results will be obtained especially in long time simulations. A simple way to
cancel the Stokes drift is to require zero net mass flux over the wave period as an extra constraint in
the solution of the stream function method that defines an opposite to the direction of propagation
uniform current. This can be achieved by setting equal to zero the vertically integrated mean
transport velocity Us, also called Stokes current, which is accounted for i.e. in Fenton’s

implementation [205].

In Grilli and Horrillo [186] who have used stream function waves in their fully nonlinear BEM, the
inflow boundary Swg(t) was not fixed but moved following the position of the 1* node of the free
surface, based on its Lagrangian velocity. In order to achieve zero mean mass flow over the period
and also account for the movement of the inflow boundary, Grilli and Horrillo calculated the opposite
current based on the Lagrangian wave period iteratively. It is noted that the current field was not
separated from the wave potential ¢, so the problem was solved for the total potential @. Also in
their approach the damping term was only applied to the dynamic boundary condition at the beach

side, proportional to 0,¢ .

In the present implementation the horizontal position of the inflow boundary is held fixed. The 1*
node of the free surface is allowed to move vertically as in the semi-Lagrangian formulation (5.8),
even though the rest of the free surface particles follow the Lagrangian one. In order to overcome
the mass increase from the inflow boundary due to the Stokes drift, the boundary condition on the

beach side (5.11) is modified to allow the extra net mass to leave the domain D(t),

o _ -U, - % _ -U,+U,, on S, (t) (5.45)

on " on
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where Us is the vertically integrated mean transport velocity and the orientation of the normal unit

vector to the beach side has been considered [Figure 5.1].

In this way any stream function wave can be imposed, not only those that account for zero mass
transport that is a special case. Moreover by introducing the current terms in the free surface
equations (see section 5.2) the wave-current interaction problem is accounted for. It is noted that if
the physical wave maker is modeled and the current velocity U,=0 then no extra mass will enter the

domain D(t) since the no penetration boundary condition is applied on the wave maker solid surface.

The Lagrangian approach (equations (5.5) and (5.6)) is found to be more robust compared to the
semi Lagrangian (equations (5.7) and (5.8)) for high current velocity, most probably because of the
terms U,0,¢@ and U,0,{ which only appear in the semi Lagrangian approach and are both
calculated numerically. In the Lagrangian approach, since the free surface nodes are tracked with the
total velocity (current velocity Uy is included) the time step, the free surface grid spacing and the
control of the regridding algorithm must be properly selected in order not to permit the 2™ free
surface node to leave the domain from either vertical side (inflow boundary or beach side) that will

cause numerical instability.

After many tests it was concluded that the damping terms should be applied at both free surface
equations because the performance of the damping layer is much optimized. Also in the dynamic
equation the damping should be applied to 0,¢ and not to ¢ because it performs better in the
whole water depth range. A damping layer at the inflow side of 1 wavelength length ensures that the
imposed wave field along the inflow is consistent to the free surface elevation and potential,
important for highly nonlinear cases. The ramp function as already mentioned is applied at both the

inflow wave field and the current.

It is noted that the damp, damping term (5.13) in the kinematic boundary condition indirectly
accounts for the mass increase due to the Stokes drift, because the fluid particles tend to
concentrate on the beach side where the water level gradually increases. Since the damping term
keeps the surface elevation to an almost zero level the extra mass is eliminated. For low wave
steepness and insignificant Stokes drift effect, even if equation (5.11) is used instead of (5.45) long
time simulations can be performed. For high wave steepness equation (5.11) will lead to inaccurate
results, although the water level will be almost zero because of the inconsistent modeling of the

physical problem.

The advantages by matching a stream function wave are that a numerically exact wave solution is
imposed, valid in the whole water depth and wave height range, without the need to apply any
stretching since the method is valid up to the instantaneous wave height. Since the stream function
wave theory and the fully nonlinear BEM solver are based on the same assumption of potential flow,
no other simplification is made except the truncation of the Fourier series and the discretization of
the boundary surface. So a wave of constant form will be transmitted without modulation of its
shape, given that grid independence has been performed. Also the steady uniform current is

consistently accounted for.
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Numerical results for wave generation and absorption of nonlinear waves based on the stream

function theory are presented in Section 5.5.1.

5.3.7.3 Generation of 1% order sinusoidal waves with a physical wave maker

Based on 1% order wave making theory, sinusoidal waves of height H can be generated by subjecting
the wave maker to a forced harmonic motion. In the case of a piston wave maker, the amplitude of
the horizontal motion A, is [[203], p.177],

A _ﬂsinh(de)+2kd

*= 3 Asink (kd) (5.46)
while in the case of a flap wave maker the amplitude of the rotation is [[203], p.177],
A, =atan? H  kd sinh(2kd)+2kd d (5.47)
2 4sinh(kd) kd sinh(kd)-cosh(kd)+1

where k is the linear dispersion relation given in (5.40) and d the water depth. The frequency of the

wave maker motion is equal to the wave frequency w.

5.3.7.4 Generation of 1% order solitary waves with a piston wave maker

In order to generate a 1* order solitary waves of height H with a piston wave maker, the horizontal

position, velocity and acceleration X, X;,X; are,

xé(t’):IZ—[tanh X()+ tanhk'], x(t) =k (C't'— X, ()~ A) (5.48)
./ ! ! ’ 1
XtV =HN1I+H —— = (5.49)

cosh” x(t')+H'

cosh® x(t')sinh x(t")
(cosh® x(t')+H')’

R () =~BH(1+H) (5.50)

For the derivation of (5.48) the permanent wave solution of the Boussinesq equations is used [[203],

p.315] with the surface elevation { defined as,

'(x,t')=H'sech’ [k.(x; -c't')], with k. =~/3H' /2, ¢'=~/1+H’ (5.51)
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In equations (5.48) to (5.51) () denotes non-dimensional variables (space is hon-dimensionalized by
water depth d and acceleration by gravity acceleration g), c is the wave celerity, k. is a coefficient
defined in (5.51) and 2A is the wave length of the truncated solitary wave. Truncation is necessary
because theoretically both sides of a solitary wave extend to infinity. Following Goring’s approach
[206], also described in [192] A is defined as,

_arcosh(e™?)
_k—

[o

A (5.52)

where € is the truncation parameter such that {'=eH’ on both sides at x’=2A’ and set equal to 0.002 as

proposed in [192].

Equation (5.48) is derived from the mass conservation during the generation of long waves by a
piston wave maker (see [206], [192]) and is iteratively solved in every time step with Newton’s
method. Solitary waves with wave height up to H’=0.2 can be generated that retain their form. For
higher wave heights the potential and the free surface elevation must be initially imposed at the free

surface, based on a nonlinear solution (i.e. Tanaka [207]).

5.3.7.5 Ramp function

Initially the free surface is at rest, unless an initial solution is applied. In order to avoid the so-called
“cold start” and the huge accelerations that could trigger the corner weak singularity of the
intersection between the free surface and the inflow boundary, a ramp or tapered weighting
function Frgmp(t) is introduced. Frym,(t) varies from 0 to 1 and usually spans over 2 to 3 wave periods.

Framp(t) is applied to either the prescribed wave generator motion,
EB = EB'L-ramp(t) = §B = £B":ramp(t) + £B'L'-ramp(t) = §B = EB":ramp(t) + 2EBFramp (t) + EB'Eramp (t) (553)

or the matched wave field at the inflow boundary,

0,0 = U2 (K5t )F oo (t) = 8,00, == (K 5t)F, gy (£) — U2 (X 1) () (5.54)
The following “tanh” type function is used,
Framp(t) = tanh(ﬂt)
F oo (t) = sech?(ut
amp () = Hsech™ (ut) . 555
E 1 (6) =248 sech ut)tanh(ut), w=——
ramp

where Ti,mp is equal to 2 to 3 wave periods.
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The ramp function is also applied to the current velocity U,.

5.3.8 Accuracy check

At every time step, the volume and the energy errors are estimated in order to monitor the stability
and accuracy of the solution procedure. The volume error checks mass conservation, while the
energy error checks the momentum and energy conservation. The Volume V and the total energy E
are calculated in BEM as,

V=Jdv=jz-nzd5 (5.56)
Q

N

1 2 6<p U2

E=|lgz +=|Vo| +U,—+—2 |dV
;[( 2| | “ox 2

] , ] (5.57)

- (Eg z’n, S0 o0.0+U, ¢ n, +EZU§andS

The corresponding relative volume and energy errors are defined with respect to the initial volume

and the initial potential energy.

5.3.9 Linearized approaches; ‘body nonlinear’ and linear formulations

In the present method, two nonlinearities are mainly accounted for: the free surface nonlinearity and
the moving body nonlinearity. The two free surface boundary conditions are applied at the exact free
surface geometry (implicit nonlinearity), and their nonlinear form is retained (explicit nonlinearity).
Also boundary conditions on moving bodies are applied at their exact position. Two simplifications
can be made in the present method that speed up the calculations and provide a consistent way to

identify the importance of the nonlinear terms.

The first simplification, also known as body nonlinear approach, only accounts for the body
nonlinearity. Free surface boundary conditions are applied at the mean water level, and nonlinear

terms are eliminated.

The second simplification, also known as the linear approach, is formed if in addition to the linearized
free surface, moving bodies are considered at their mean position. The g(x) term in equation (5.26) is
set equal to zero and the influence matrices are only calculated once, since the geometry in BEM
remains unchanged. If free floating bodies are considered, the structural (gravity) and the
hydrodynamic stiffness terms in heave and pitch motions should be added to the linear stiffness

matrix.
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When the free surface is linearized, the Eulerian form of the evolution equations is used as defined in
equations (5.3) and (5.4) by dropping the nonlinear terms. Also, the matching field on the inflow

boundary is based on the Airy theory in the case of artificial wave generation.

5.4 Description of the solver

The core of the solver contains four steps which define all the necessary tasks that are performed at

every sub step t; (5.35) of the time integrator [Figure 5.2]:
1. Definition of the boundary S(t)
2. Solution of the BIE for ¢(5.15) and calculation of dgrs/dt, dxes/dt, @«s and g(x) terms

3. Solution of the BIE for ¢; (5.30), calculation of body forces, and body acceleration EB [free
floating case]

4. Time integration

In step 1 the free surface geometry and the moving bodies geometry are updated based on u(t) as
defined by the time integrator or based on the prescribed motion. Also regridding of all the

Newmann boundaries is performed and if needed of the free surface.

In step 2 the influence matrices and the Dirichlet or Newmann data for the BIE for ¢ are calculated.
The linear system is formed and solved providing ¢, at the free surface nodes. The tangential
derivatives of ¢ and z of the free surface are calculated by means of finite differences. Next, the total
time derivatives of ¢ and x of the free surface are calculated, as well as, ¢; from equation (5.22)
which is the Dirichlet boundary condition on the free surface for the BIE for ¢,. Finally the g(x) term
in the 0, ¢, equation (5.26) is calculated from (5.28) for all the points of the moving boundaries.
Tangent derivatives along body surfaces 0.9, 0.®, 0,9, 0.x, 0_.X, 0.z, 0.z needed for the

calculation of g(xg) are also calculated by means of finite differences.

In step 3 the Newmann data 8n(pt along the moving bodies are calculated from (5.26). The BIE for ¢
is solved and the hydrodynamic force is calculated by integrating the pressure. Only in the case of

free floating bodies, step 3 is repeated until the body acceleration EB from (5.31) converges.

In step 4 time integration of u(t) is performed based on the calculated total derivatives of u(t) in step
2 for the free surface and in step 3 for the body based on Runge-Kutta definition in (5.35). The

updated solution vector is then used in the next Range-Kutta sub step.
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Figure 5.2: Description of the algorithm

5.5 Numerical Results — Validation
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The main building blocks of the method presented in section 5.3, are validated by comparing the

results against known analytical solutions, already published results and experimental data. The

following cases are considered:

Wave generation by matching a stream function wave including a steady uniform current and

wave absorption using damping layers

Evolution of a highly overturning solitary wave generated by a piston wave maker

Generation, shoaling and breaking of solitary waves over a gentle slope

Interaction of periodic waves with a trapezoid, submerged bar

Nonlinear radiation of a submerged cylinder undergoing large amplitude prescribed motion

Nonlinear diffraction and radiation of a moored, submerged cylinder

Nonlinear diffraction of a surface piercing barge

Nonlinear diffraction and radiation of a moored, surface piercing barge

Nonlinear diffraction and radiation of a moored surface piercing barge in the presence of a

steady current
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5.5.1 Wave generation by matching a stream function wave including a steady uniform current
and wave absorption using damping layers

z A
5
g Damping Zone Damping Zone
o |————— ————
3 A —] ———2tor34
@ -
g X
c —t» d=1
L%}
e
Q
£
| L =6A or 7A |

Figure 5.3: Definition of the BEM computational domain in the case of generation and absorption of stream function waves.

The first test case concerns on one hand the verification of wave generation procedure described in
section 5.3.7.2 by matching a stream function wave - also accounting for a steady current - and on
the other hand the verification of the absorption of the wave in terms of dissipation. The square
computational domain is shown in Figure 5.3. Results are presented in non-dimensional form; space

is non-dimensionalized by the water depth d and acceleration by the gravity g, so that time is non-
dimensionalized by /g /¢ -

In order to demonstrate the accuracy and the robustness of the proposed method, waves with very
high wave steepness (wave heights 90% of the maximum value) are generated in deep, intermediate
and shallow water depths. The same simulations are also performed for wave heights 60% of the
maximum and finally the wave-current interaction problem is examined by considering an opposing

and a coplanar steady current.

In all simulations a small time step equal to dt=T/100 has been used. For the higher wave heights, the
length of the domain is L=7A and the damping layer at the beach side is defined for 3 wave lengths
L4,=3A, while for the rest cases L=6A and L,,=2A. The damping at the inflow side is L;;=A in all the
cases. Initially the water is at rest, so zero surface elevation and potential initial conditions are
imposed. In order to avoid the wave breaking due to initial transients of the high wave steepness, the
ramp function is specified for 25 wave periods. The wave properties and the numerical parameters

for the considered cases are presented in Table 5.2.
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Table 5.2: Wave properties and numerical parameters for the generation and absorption of stream function waves

Height 90% of maximum Height 60% of maximum Current case

Deep In(ti?;tn;e- Shallow | Deep In;?ant:e' Shallow %"'/ZF U(‘;./ ;= US'/ ;=
d/A 0.968 0.309 0.077 | 1.063 0.325 0.081 | 1.809 | 1.085 | 0.798
H/A 0.126 0.121 0.05 | 0.085 0.081 0.036 | 0.109 | 0.065 | 0.048
max 89% 91% 88% | 60% 60% 60% 77% | 46% 34%
Lgzi/A 1 1 1 1 1 1 1.8 1 0.8
Laz/A 3 3 3 2 2 2 7.3 4 3.2
L/A 7 7 7 6 6 6 10.9 6 4.8
time/T 130 100 100 25 25 25 66 66 66
T/dt 100 100 100 100 100 100 100 100 100
Nes 800 800 1100 700 700 700 500 500 500
Ngg 300 300 300 300 300 300 200 200 200
Nsipe 90 90 90 60 60 60 30 30 30
Tram/ T 25 25 10 5 2 2 5 5 5

In Figure 5.4a, Figure 5.5a, Figure 5.6a the time series of the free surface elevation as predicted by
the nonlinear BEM method hFLOW, are compared against the stream function solution which is
imposed on the inflow boundary for deep, intermediate and shallow water depths respectively. The
numerical wave gauge is placed just before the damping layer on the beach side, about 4 wave
lengths from the inflow boundary. The simulations are stable even after 100 wave periods. The effect
of the ramp function is seen in the beginning of the simulation. The specified damping layer absorbs
the waves very efficiently. In the shallow water case a denser grid is used on the free surface but still

the wave height is slightly lower than that of the stream function solution.

In Figure 5.4b, Figure 5.5b, Figure 5.6b the time series of the relative error in volume [section 5.3.8] is
presented. In all water depths, once the periodic state has been reached, the mean value of the error

remains constant and close to zero which is an evidence of a stable and consistent simulation.

Figure 5.4c, Figure 5.5c¢, Figure 5.6c zoom into the last 3 wave periods. The agreement between the
nonlinear BEM and the stream function solution is excellent for the deep water case and very good
for the intermediate and the shallow water ones. The slight time shift in the last two cases is noted in
the comparison of snapshots over the last section of the simulations, after 100 wave periods. The
BEM method predicts slightly shorter waves compared to the stream function solution, but the
differences are very small given the large wave length of these waves. Note the scale difference in

the horizontal and the vertical direction.

Similar to these comparisons, in Figure 5.7 the snapshots of the free surface elevation are presented
for the case the wave height is set equal to 60% of the maximum value for every depth after 26 wave

periods. It is noted that this wave height still corresponds to high wave steepness. Contrary to the
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previous case, the comparison for all 3 water depths is excellent. The damping layer defined for 2

wave lengths performs well.

Finally the wave-current interaction problem is examined. The zero current case corresponds to a
deep water wave of height equal to 46% of the maximum [Table 5.2]. The non-dimensional current
velocity is equal to Uy/c=0.2. An opposing and a coplanar current are considered. The same
computational domain and the same boundary discretization are used for both current directions
and the zero current case so the results are presented together. In Figure 5.8a the snapshot of the
free surface after 66 wave periods is presented for the 3 current velocities and compared against the
imposed stream function solution. The results are in excellent agreement. In Figure 5.8b the time
series of the surface elevation at x'=3.85 is also in excellent agreement between hFLOW and the
stream function. As expected the opposing current leads to a steeper and a shorter wave, while the
coplanar current has the opposite effect. It is noted that the current affected wave height is imposed

and considered equal for the 3 cases.

The present test case proves the consistency of the generation of periodic stream function waves
including a steady current in the whole water depth range. The solver provides accurate solution of
the nonlinear water wave problem. The implementation of the damping layer is also very efficient, so
it does not seem necessary to implement a piston absorber. On the implementation side, as the
wave height increases the damping layer must be longer and also the cnoidal waves require a finer

free surface discretization per wave length compared to the deep and the intermediate cases.
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Figure 5.4: Generation and absorption of a stream function wave with d/A=0.968 and H/A=0.126 corresponding to deep
water depth and a high wave height 89% of the maximum.
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Figure 5.5: Generation and absorption of a stream function wave with d/A=0.309 and H/A=0.121 corresponding to
intermediate water depth and a high wave height 91% of the maximum.
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Figure 5.6: Generation and absorption of a stream function wave with d/A=0.077 and H/A=0.05 corresponding to shallow
water depth and a high wave height 88% of the maximum.
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Figure 5.8: Generation and absorption of stream function waves with d/A=1.085 and H/A=0.065 corresponding to wave
height 46% of the maximum (in the absence of the current) interacting with a positive and a negative steady, uniform
current of Uy/c=0.2 (solid lines correspond to fully nonlinear solution and dashed lines to stream function solution).
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5.5.2 Evolution of a high overturning solitary wave generated by a piston wave maker

N
>

>

d'=1

Piston wave maker

I'=8 |

Figure 5.9: Definition of the BEM computational domain in case of solitary wave generation, shoaling and breaking.

The second test case concerns a very high solitary wave generated in a square domain by a piston
wave maker, as described in section 5.3.7.4. The non-dimensional wave height H’=2 and the
horizontal length of the domain L’=8, in order to include the breaking that occurs at x'=7.1. Grilli and
Subramanya [208] have simulated the same case using a higher order nonlinear BEM. The length is

non-dimensionalized by the depth d and the acceleration by g.

For the calculations 400 nodes along the free surface are used, 200 at the seabed and 60 at the
vertical boundaries, while the time step dt’=0.004. Regridding of the free surface is performed if
AdSmax/dSmin>1.2. Zero initial conditions for both the free surface elevation and the free surface
potential are considered. The parameter €=0.0001 in (5.52) in order to avoid huge initial acceleration
at the first time step and by that eventual numerical instability. In [208] €=0.002 was set that reduced

the simulation time, together with linearized initial conditions.

In Figure 5.10 snapshots of the surface profiles at several time instances are compared to those
reported in [208]. The vertical lines correspond to the wave generator position, which is initially at

x’'=0. For the comparison all the results are synchronized with respect to the first wave profile.

The agreement between the a-d surface profiles is excellent, while for the e-h profiles although the
wave jets are almost identical, differences appear near the wave maker. The reason is that in [208]
the free surface grid resolution near the wave maker is not fine enough as the time passes, because
the free surface nodes tend to drift away of the wave maker wall as they are moved with their
Lagrangian velocity. In hFLOW this is treated by regridding every several time steps. Finally, in the
last two profiles (i and j) minor differences appear, as a result of the different regridding strategy.

hFLOW predicts the breaking of the wave slightly later.

The selection of the time and the space discretization is crucial for the calculation of the overturning
wave up to the breaking point. In order to achieve grid independent solution, the overturning jet

should be discretized by a dense boundary grid, which in turn requires a reduction of the time-step.
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The regridding scheme is also important, because free surface particles tend to drift away of the
wave maker. Furthermore the calculation of the self-induced potential and velocity, as well as that
between elements on the overturning jet, which get too close, must be treated consistently in order
to avoid numerical instabilities. We are not aware of any other nonlinear BEM employing linear
distributions for the geometry and the field variables capable of providing accurate results up to the
breaking point. It is also noted that no artificial smoothening is applied, as for example the widely
used Chebychev 5 or 7 points smoothening scheme, first reported by Longuet-Higgins and Cokelet
[169].

This case proves the capability of hFLOW to accurately generate waves by moving the inlet boundary
and to study highly nonlinear overturning waves until the wave jet reaches the free surface, which is

the theoretical limitation of the method.

"hWFLOW ——
Grilli 1996

z/d

Figure 5.10: Free surface wave profiles of a solitary wave with H'=2 generated by a piston wave maker. Time of profiles t’ is

a:2.152, b: 2.776, c: 3.556, d: 4.092, e: 4.724, f: 5.064, g: 5.392, h: 5.648, i: 5.904, j: 6.152.
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5.5.3 Generation, shoaling and breaking of solitary waves over a gentle slope
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Figure 5.11: Definition of the BEM computational domain in case of solitary wave generation, shoaling and breaking.

The present test case examines solitary waves of non-dimensional height H’ equal to 0.1, 0.15, 0.2,
0.25, 0.3 and 0.4 which are generated by a piston wave maker, as in section 5.5.2. Furthermore,
shoaling over a gentle slope s = 1:35 up to the breaking point is considered. The computational
domain is shown in Figure 5.11. Results obtained by hFLOW are compared to experimental and

simulation data from Grilli and Svendsen [209] who use a nonlinear higher order BEM.

As already concluded in 5.5.2 a fine discretization of the free surface and a small time step are
necessary in order to accurately capture the overturning wave jet. For this reason 2600 nodes are
placed at the free surface, 480 at the seabed and 20 at the wave generator surface. The non-
dimensional time step dt’ is initially equal to 0.05, but when the wave starts to overturn, dt’ is
reduced by a factor of 10. Regridding of the free surface is performed if the ds,q./dsmi»>1.2. Zero
initial conditions for both the free surface elevation and the free surface potential are imposed. The
parameter in (5.52) is set equal to 0.002. It is noted that a much coarser grid could had been
considered at the free surface, if an adaptive algorithm was implemented that increases the grid

resolution near the overturning wave jet, in order to reduce the computational cost.

In Figure 5.12 the local non-dimensional wave height at the upper part of the slope is compared for
different initial wave heights from 0.1 to 0.4 (curves a to f). It is defined as the maximum wave height
at each horizontal position divided by the local depth. The sudden drop of the height corresponds to
the breaking point. Good agreement is observed for all wave heights between the two BEM methods
and the experiment. For the smaller ones (a and b curves) the present method predicts almost the
same wave heights compared to the nonlinear BEM by Grilli et al [209]. For the wave height 0.2
(curve c) hFLOW predicts slightly higher heights, while for the higher wave amplitudes (d to f) the
present method predicts smaller wave heights. An explanation of this mixed behavior could be the
different wave generation method used in [209] for wave heights greater than 0.2 (d to f), where the
nonlinear solution by Tanaka [207] is initially applied along the free surface nodes instead of the

wave generated by the piston wave maker.
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Both the calculated and the measured maximum wave heights, which vary from 1.36 to 1.57 for
curves f to a, are dramatically above the highest stable wave heights, which according to [207] should
be about 0.78 to 0.8. As also reported in [209], the reason is that the aforementioned limit is valid for
symmetric solitary waves propagating over a constant depth. The asymmetry due to shoaling is the

reason that the breaking limit is increased.
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Figure 5.12: Local non-dimensional wave heights of solitary waves in the upper part of a slope 1:35. Initial wave heights H’

area: 0.1, b:0.15,¢c: 0.2,d: 0.25, e: 0.3, f: 0.4.

Next the calculated free surface elevation for the case the initial wave height H'=0.2 is compared to
the experimental data from [209]. The gauge g0 is located at x'=-5, before the slope, in order to
compare the generated wave, while the other gauges g1 to g9 are placed at the upper part of the
slope, in order to capture the surface elevation before the breaking point. The results are
synchronized with respect to the signal of gauge g0. In Figure 5.13a a stable and accurate solitary
wave of height H’'=0.2 is generated using the piston wave maker. A small increase in the water level
for t'>25, about 0.008 corresponds to reflections from the slope, also predicted by Grilli et al and
recorded in the measurements. In Figure 5.13b there is excellent agreement between the measured
and the computed wave profiles up to the breaking point. As reported in [209] this proves the ability

of the potential theory to accurately simulate the shoaling of solitary waves over gentle slopes.
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(b) Gauges at the top of the slope, just before wave breaking takes place.

Figure 5.13: Time series of the surface elevation of a solitary wave of initial height H'=0.2, shoaling on a slope 1:35. The

horizontal position of the gauges x’ is g0: -5, g1:20.96, g3: 22.55, g5: 23.68, g7: 24.68, g9:25.91
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5.5.4 Interaction of periodic waves with a trapezoid, submerged bar
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Figure 5.14: Definition of the BEM computational domain in case of periodic waves interacting with a submerged bar

The present test case considers the interaction of periodic waves with a trapezoid, submerged bar.
The setup of the tests conducted Beji and Battjes [210] is shown in Figure 5.14 (depth d=0.4m and
length L=30m). A periodic wave of height H=1.905cm and period T=2.02s is considered. These are
corrected values to the intended ones: H=2cm, T=2s, that were matched to the actual recordings at
the 1% station located upstream of the bar at x=5.7m. Due to shoaling, energy is transferred at higher
harmonics in the shoaling region which however remains bounded. These higher harmonics are

released in the deepening part after the bar, creating an irregular pattern.

A grid independence study has led to: 1800 nodes along the free surface, 650 at the seabed and 30 at
the side boundaries, and a time step dt=T/200=0.0101s. This dense discretization is used in order to
capture the generated higher harmonics. A stream function wave has been matched along the inflow
boundary and the length of the damping layer has been set to 4m at the wave generator side and 8m

at the absorbing beach side. The ramp function has been defined for 2 periods.

In Figure 5.15 series of the free surface profiles are compared against the experimental data at
specific stations (1 to 7). A linear solution is also plotted in order to demonstrate the importance of
nonlinearities. In general the agreement is very good. The higher frequencies that appear initially at
the first station are the main source of minor differences at the following ones. The linear theory
clearly fails to reproduce the present phenomenon. The present test verifies the expected
capabilities of the fully nonlinear potential solver to accurately simulate nonlinear and dispersive
phenomena. From the agreement between the numerical and the experimental data it is derived
that the viscous effects and the vorticity do not seem to affect the free surface elevation for the

examined non-breaking wave height.
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Figure 5.15: Free Surface profiles of a periodic wave with H=1.905cm and T=2.02s, interacting with a submerged bar.
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5.5.5 Nonlinear radiation of a submerged cylinder undergoing large amplitude prescribed
motion
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Figure 5.16: Definition of the BEM computational domain in case of a heaving submerged cylinder.

In the present test case, the nonlinear radiation problem of a submerged cylinder is examined. The
calculation of the hydrodynamic loading exerted on submerged bodies is performed which depends
on the solution of a 2™ boundary value problem for ¢, [section5.3.4]. The correct implementation of
the boundary condition for 0,,¢p on the moving body defined in (5.26) and (5.28) and the solution of
the boundary value problem for ¢, are verified. This is the first step in order to simulate the motion

of free floating bodies since the accurate estimation of the loading is needed.

In a square domain of depth d=6m (kd=60 corresponding to deep water) and length L=7m (L/A=11), a
cylinder of radius R=0.1m is initially submerged at z=-3R=-0.3 m [Figure 5.16]. The cylinder undergoes
large amplitude heaving motion with non-dimensional amplitude A/R varying from 0 to 1.75 and
period T=0.63s (or kR=1). Damping layers of length L;=1.3m on both ends have been added.
Discretization of the boundaries amounting 700 nodes (63 per wave length) at the free surface, 200
(18 per wave length) at the seabed, 20 at the vertical boundaries and 80 at the cylinder, and a time
step dt=T/100 have been set. Two sets of results are simulated with hFLOW: the first adopts the body
nonlinear approach [section 5.3.9] while the second the fully nonlinear Lagrangian approach. The
body nonlinear case is compared against the analytical solution given by Wu [211] for infinite depth.
In [211] the free surface equations had been linearized, the body boundary condition was applied at
the exact position and the nonlinear Bernoulli equation was used for the calculation of the
hydrodynamic loads. On the other hand, the fully nonlinear simulation is compared against the
nonlinear higher order BEM of Guerber, Benoit, Grilli and Clément [199] and the results provided by
Kent and Choi [212]. In [212] the free surface equations are valid to 3" order, the body boundary
condition is applied at the exact position and the nonlinear Bernoulli equation is used for the

calculation of the hydrodynamic loads.
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The vertical hydrodynamic force of the cylinder after 6 periods is expressed in Fourier series and non-
dimensionalized with (pAnR’w?). The first 8 terms are compared for different non-dimensional
amplitudes of the motion from 0 to 1.75 in Figure 5.17. The agreement between the semi analytic
results by Wu with those of the present body nonlinear approach is perfect up to the 7 term. This
verifies the implementation of the body boundary condition and the calculation of the hydrodynamic
loads. Kent and Choi unfortunately simulated only the A/R=0.2 and A/R=0.8 amplitudes, while
Guerber et al only presented the 3 first terms. In general the fully nonlinear results are in good
agreement with those provided by Kent and Choi and Guerber et al. In most terms the nonlinearity of
the free surface becomes important for A/R>0.6 which also leads to reduced amplitudes of the

higher harmonics.
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Figure 5.17: Fourier components of the non-dimensional vertical force Fz/(pAnszz) of a heaving cylinder with kR = 1, for

increasing motion amplitudes A/R.
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5.5.6 Nonlinear diffraction and radiation of a moored submerged cylinder
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Figure 5.18: Definition of the BEM computational domain in case of a moored, submerged cylinder.

In the present test case a free floating submerged cylinder, constrained by 2 springs is examined.
Since the calculation of the hydrodynamic loads on the submerged cylinder undergoing a prescribed
motion has been verified in the previous section, the next step is to allow the submerged body to
move under the action of the hydrodynamic loads and calculate the wave induced motion. The so
called “Bristol cylinder” was studied in the context of the linear theory by Evans et al [213]. According
to Evans et al, the trajectory of a moored cylinder will be circular if the stiffness k and the damping ¢

of the mooring system in both heave and surge directions are defined as,
k=wM+a,(w,)], c=b,(w,) (5.58)

In the above, wy is a tuning angular frequency, a;(w,) and b;(w,) the linear added mass and damping
coefficients at the tuning frequency w, while the mass M is defined such that the cylinder is
neutrally buoyant. Then in infinite water depth and under the action of regular waves, the trajectory

of the center of the cylinder is a circle of radius R, defined as:

R, pg2b,(w)/ w

(?) T k—w (M+a, (w)+ wi(c + b, (w))

(5.59)

where w and A denote the wave frequency and amplitude and a;(w) and b;(w) the linear added mass

and damping coefficients at the wave frequency w.

A cylinder of radius R=0.05m and its center initially placed at z.=-0.0625m is considered, a case also
studied by Guerber et al [199] using a high order nonlinear BEM. In order to compare the predictions
against the analytic expression (5.59) which is valid in the linear regime, very low wave steepness
H/A=0.05% is considered. The tuning frequency is w,=10rad/s (kR=0.51) and waves with non-

dimensional wave frequency kR varying from 0.1 to 1.5 are considered.
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The depth of the square domain is kd=25, adaptively set for each wave frequency in order to satisfy
the infinite depth condition, the length of the domain is L=6A and the length of the damping layer at
the right side is L4=1.5A. Discretization of the boundaries amounting 100 nodes per wavelength at the
free surface, 50 nodes per wavelength at the seabed, 150 at the vertical boundaries and 80 at the

cylinder, and a time step dt=T/100 have been set. The ramp function has been defined for 2 periods.

At first the linear radiation problem in time domain is solved in order to estimate the linear added
mass and added damping coefficients, appeared in (5.59) and also needed in order to estimate the
damping and the stiffness of the mooring system based on (5.58). The computed added mass and
damping coefficients using the linearized approach of hFLOW are well compared in Figure 5.19a
against the results of Frank [214]. In Figure 5.19b, the computed mean normalized radius of the
trajectory of the moored free floating cylinder is in perfect agreement with the linear analytic theory

of Evans et al for all the examined wave frequencies.

As also reported in [199] the trajectory of the cylinder is not perfectly circular. The eccentricity e of

the trajectory is defined as,

(5.60)

where R.yin and Renax are the minimum and the maximum radius of the cylinder trajectory over the
last wave period. Zero eccentricity corresponds to a circular trajectory. In Figure 5.19c the
eccentricity as a function of kR is compared against the fully nonlinear computations by Guerber et al
[199]. Similar values are obtained while the 14% maximum eccentricity corresponds to
Remin/Remax=0.99.

Finally in Figure 5.19d, the normalized position of the moored free floating cylinder is compared to
Evans et al linear analytic solution, as a function of time. The case that the wave frequency is equal to
the tuned frequency kR=0.51 is selected, at which the radius R, attains its maximum value. Initially
the cylinder is at rest x.=z.=0 with respect to a body fitted coordinate system, while the radius R, of
the trajectory gradually increases following the increase of the wave height which increases based on

the ramp function. After about 3 wave periods the trajectory becomes almost circular, as expected.
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5.5.7 Nonlinear diffraction of a surface piercing barge
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Figure 5.20: Definition of the BEM computational domain in case of a fixed surface piercing barge.

The present test case considers the diffraction problem of a surface piercing barge. This constitutes a
necessary verification step before solving the freely floating surface piercing body case. Having the
body fixed, it is possible to verify the calculation of the hydrodynamic loads. Regridding of the body
surface and the double nodes representation at the intersections between the body and the free

surface are crucial and are verified in the present test case.

A fixed surface piercing barge of draft d,=0.25m, base B=0.5m, radius of round corner r=0.064m and
center of mass z.,,=-0.115m is considered in the square domain of depth d and length L [Figure 5.20].
A stream function periodic wave is imposed along the inflow boundary, with A=H/2 denoting the
wave amplitude. The non-dimensional wave frequency é=w”B/2g varies from 0.2 to 1.75 [Table 5.3].
The depth and the length of the domain are adaptively set for each wave frequency so that d=A and
L=8A, while the length of the damping layers at both sides is Lq=2A. Regridding is applied if
AdSmax/ dSmin>1.5.

For the simulations, the free surface is discretized by 400 nodes, the seabed by 200 nodes, the
vertical boundaries by 30 nodes and the barge by 100 nodes, while the time step dt=7T/100 and the
initial ramp function is applied for 3 wave periods. In order to quantify the significance of the wave
steepness (H/A), linear simulations [section 5.3.9] are compared to fully nonlinear Lagrangian ones
for wave heights 0.01 and 0.07 m. For the short wave of H=0.01m the linear results were almost
identical to the nonlinear ones and because of that they are not presented. However this indicates

that the nonlinear approach is consistent.
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Table 5.3: Incident wave inputs for the barge simulations

n | &w’B/2g w(lrad/s] | T[s] |A[m] H/A, H/A,
H=1cm H=7cm
1 0.20 2.8009 | 2.2432 | 7.8540 | 0.0013 | 0.0089
2 0.25 3.1316 | 2.0064 | 6.2832 | 0.0016 | 0.0111
3 0.35 3.7053 | 1.6957 | 4.4880 | 0.0022 | 0.0156
4 0.40 3.9611 | 1.5862 | 3.9270 | 0.0025 | 0.0178
5 0.50 4.4287 | 1.4187 | 3.1416 | 0.0032 | 0.0223
6 0.55 4.6448 | 1.3527 | 2.8560 | 0.0035 | 0.0245
7 0.60 4.8514 | 1.2951 | 2.6180 | 0.0038 | 0.0267
8 0.65 5.0495 | 1.2443 | 2.4166 | 0.0041 | 0.0290
9 0.70 5.2401 | 1.1991 | 2.2440 | 0.0045 | 0.0312
10 0.75 5.4240 | 1.1584 | 2.0944 | 0.0048 | 0.0334
11 0.82 5.6715 | 1.1079 | 1.9156 | 0.0052 | 0.0365
12 1.00 6.2631 | 1.0032 | 1.5708 | 0.0064 | 0.0446
13 1.25 7.0024 | 0.8973 | 1.2566 | 0.0080 | 0.0557
14 1.50 7.6707 | 0.8191 | 1.0472 | 0.0095 | 0.0668
15 1.75 8.2853 | 0.7584 | 0.8976 | 0.0111 | 0.0780
16 2.00 8.8574 | 0.7094 | 0.7854 | 0.0127 | 0.0891

In Figure 5.21 the 1** harmonic of the hydrodynamic loads and the horizontal mean drift force as
predicted by hFLOW are compared against experimental measurements by Nojiri and Murayama
[215], numerical simulations by Tanizawa and Minani [216] and Koo and Kim [198] who used fully
nonlinear BEMs and 2™ order results of Maruo [217]. Tanizawa and Nimani use a linear panel BEM,
while Koo and Kim use a constant panel BEM. The experimental and numerical results correspond to
the 0.07m wave height case. The presented Fourier series are calculated over the last 5 wave periods
(25 to 29) of the time series.

Forces: For wave frequencies up to approximately é=1 good agreement is found between the linear
and the nonlinear results while in all simulations Fx is underpredicted in comparison to the measured
data. At higher frequencies and wave steepness (see Table 5.3) linear predictions gradually deviate
from the nonlinear ones. There is good agreement among the three nonlinear results. hRFLOW slightly
over estimates Fx in comparison to the other two codes which get closer to the measured data. In Fz
good agreement between the present results and those by Koo and Kim is found which are slightly
higher from the nonlinear results of Tanizawa. For frequencies £&>1.5 the deviations between all
predictions and measurements become significant. They are attributed to viscous effects and wave

breaking that are not considered in any of the numerical methods considered.

Moment: Linear results for My start to deviate from the nonlinear ones already at <0.5. There is

good agreement amongst the three set of nonlinear results. However all three sets overestimate My
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in comparison to the measured data. In fact they all predict higher My compared to that obtained

with the linear method which is closer to the measured data.

Drift force: There is good agreement between simulations and measurements. Small deviations do
exist without showing a clear trend. For the calculation of the drift force all BEM codes integrate the
pressure distribution. Predictions by hFLOW are more close to the 2" order results of Maruo for both
wave heights 0.01m and 0.07m. Tanizawa reported [216] that by using the pressure integration
method the drift force was not consistently calculated, contrary to the present experience. Instead
he also estimated the drift force from the wave reflection coefficient. It is noted that the calculation
of the drift force is very sensitive to the time step and the convergence of the time series to a steady

periodic state.

In Figure 5.22 the 1%, 2" and 3™ harmonics of the hydrodynamic loads are compared with those
provided by Koo and Kim [198]. The agreement is very good. The only difference is that hFLOW

predicts higher 2" harmonics of the vertical force above &=1.5.

In the horizontal force and the moment the 1" harmonic is clearly higher than the 2™ and the 3™. On
the other hand, the 2™ harmonic of the vertical force is bigger than the 1* harmonic above é=1.25.
This is a nonlinear effect caused by a slowly-decaying 2" harmonic pressure field in case of standing
waves on the upstream side of the barge in case of short waves. As also reported in [198], fully

nonlinear BEM codes predict this nonlinear effect, originally studied in [218-220].
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Figure 5.21: Non-dimensional diffraction loads comparison of a fixed surface piercing barge for wave height H=0.07m.
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Figure 5.22: 1%, 2™ and 3™ hydrodynamics loads harmonics comparison of a surface piercing barge for nonlinear

calculations for wave height H=0.07m.

In Figure 5.23 time series of the normalized hydrodynamic loads for the non-dimensional wave
frequency é=1.5 are compared for the linear and the fully nonlinear simulations for wave heights
0.01m and 0.07m. The selected wave frequency corresponds to a high wave steepness (1/15) so
higher order nonlinear terms are clearly excited. In the high wave height case of 0.07m, nonlinear
terms are present in all load signals, but get more pronounced in the vertical force, as shown in
Figure 5.22. These terms also lead to a phase shift. Nonlinear terms are also excited in the short
nonlinear wave case of 0.01m height in comparison to the linear results. They are more pronounced
in the vertical force, but are also present in the horizontal force signal where the mean drift force is
non-zero due to the small asymmetry of the time series with respect to the horizontal axis (also

shown in Figure 5.21d).
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Figure 5.23: Time series of the hydrodynamic loads of a fixed surface piercing barge for wave frequency é=1.5.
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5.5.8 Nonlinear diffraction and radiation of a moored surface piercing barge
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Figure 5.24: Definition of the BEM computational domain in case of a moored, surface piercing floating barge.

The present test case concerns moored, surface piercing floating bodies. This case is similar to the
previous one, except that the barge is free to move under the action of the wave excitation and
constrained by the mooring in the horizontal direction. The mass of the barge is 125kg, the inertia
with respect to the center of gravity is 4.05kgm? and the stiffness and the damping of the mooring
line in the horizontal direction are 197.58N/m and 19.8N/(ms) respectively. The other parameters
remain unchanged and so do the space and time discretization. The duration of the simulations has
been increased in order to damp the initial transients and arrive at a steady periodic state. Similarly
to the fixed case, a stream function periodic wave of height H=0.01m or H=0.07m and of non-

dimensional frequency é=w’B/2g varying from 0.2 to 1.75 are considered as inflow conditions.

In Figure 5.25 hFLOW predictions of the 1* harmonic of the 3 rigid body motions (surge, heave, pitch)
and the horizontal mean drift force are compared to the experimental data by Nojiri and Murayama
[215] and to the simulations by Tanizawa and Minami [216] and Koo and Kim [172] for 0.07m wave
height. Fourier series are calculated over the last 5 wave periods of the time series. In order to
indicate the effect of wave steepness, results for H=0.01m are also included. In these conditions, the

nonlinear solution is close to the linear one.

Away from resonance, the agreement between the BEM codes is perfect for all three motions [Figure
5.25a, b, c]. Close to resonance in the frequency range of 0.5<¢<0.7, nonlinear terms become
important as indicated by the difference between the results for H=0.01lm and H=0.07m. In high
wave steepness case (H=0.07m) surge, heave and pitch are reduced as also found in the experiments.
Although in general the numerical results agree with the experimental data, viscous effects probably
further reduce the pitch motion and in turn the surge through the surge-pitch coupling. This is case
at frequencies £=0.35 and 0.5. Thorough comparison amongst the three BEM results was not possible
since Tanizawa and Nimani do not provide results for this frequency range, while Koo and Kim only

provide results at é=0.6. Otherwise, the present experience is that the devised method can robustly
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perform simulations in the vicinity of the resonance at é&=0.5 to 0.6 where the amplitude of the pitch

motion exceeds 30°.

Concerning the drift force results [Figure 5.25d], Maruo’s 2™ order results have been added as a
means to verify the present method. The results obtained by hFLOW for H=0.01m are identical to
those of Maruo (simulations were performed with a 0.1 frequency step and therefore the apparent
deviation in the 0.4<£<0.5 range is an artifact). In the H=0.07m case, the present results only deviate
from Maruo’s in the resonance frequency range giving higher drift force values that remain however
significantly lower as compared to those by Koo and Kim. Over this frequency range the measured
drift force values are consistently lower compared to those of Maruo. This could be attributed to
viscous effects since near resonance the pitch motion attains high values which are not captured by
the potential methods. Outside the resonance area, the present results agree well with the
experimental data up to &=1.25. At higher frequencies a gradual over-prediction builds up which
however remains smaller than that found in the other two simulated results and again could be

explained by viscous effects or wave breaking.

Similar to the fixed barge case (see Figure 5.22), in Figure 5.26 the 1%, 2" and 3™ harmonics of the
hydrodynamic loads are compared with those provided by Koo and Kim [172]. There is perfect
agreement with respect to Fz and My. With respect to Fx while the agreement is good, hFLOW
predicts, slightly lower 1°* harmonic values at frequencies £&0.75 and lower 2" and 3™ harmonic
values close to the resonance. Both methods predict higher values of 2" harmonic of Fx and Fz than
those of the corresponding 1° harmonics. For Fx the switch appears at £&=0.6 while for Fz at £&>=1.5.
This is the nonlinear effect already discussed in the previous section, which is however less

pronounced in the floating case.

In Figure 5.27 time series of the loads and the motions of the floating barge are presented after the
transients have been damped. The high wave height of 0.07m is selected for 3 wave frequencies
£=0.25, 0.75 and 1.75. The lowest frequency £=0.25 is within the linear regime and as expected leads
to almost harmonic signals. Mild nonlinear effects start to show at £=0.75 while at £&=1.75 these
effects become stronger and are clearly depicted in both heave force and motion signals, as expected
from Figure 5.26b.

In Figure 5.28 time series of the loads and the motions are presented in the resonance frequency
range for £=0.5, 0.55 and 0.6. Highly nonlinear effects appear in the surge force and motion, most
pronounced at £ = 0.6 where the surge motion takes a cnoidal form, as also expected from Figure
5.26a. The highly nonlinear surge motion is triggered by the very large pitch motion of ~30°, through
the surge-pitch coupling.

Although viscous pitch damping correction could had been added, which is crucial in large amplitude
motions near resonance, this was not considered in the present study, in order to better assess the

capabilities of a potential solver.
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Figure 5.25: 1° harmonic of the 3 rigid body motions (surge, heave, pitch) and the horizontal mean drift force of a floating

surface piercing barge for wave height H=0.07m.
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calculations for wave height H=0.07m
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Figure 5.27: Time series of the loads and the motions of a floating surface piercing barge for wave frequencies §=0.25, 0.75

and 1.75 and wave height H=0.07m.
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Figure 5.28: Time series of the loads and the motions of a floating surface piercing barge near the resonance for wave

frequencies £=0.5, 0.55 and 0.6 and wave height H=0.07m.
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5.5.9 Nonlinear diffraction and radiation of a moored surface piercing barge in the presence of a

steady current

2 A mm

Damping Zone 'S R Damping Zone
2A i i 24

| M 0.115m
0.25m &

>

Incident wave + current

Figure 5.29: Definition of the BEM computational domain in case of a moored, surface piercing floating barge.

In the final test case the nonlinear wave-body-current interaction problem is solved, considering the
free floating surface piercing barge of the previous section, in which the current-free case was
studied. All numerical parameters remain the same. Ten non-dimensional current velocities kU,/w
are considered varying from -0.15 to 0.15. The modified wave height H is set for the generation of
stream function waves as defined by (5.41) and shown in Table 5.4. Three non-dimensional wave
frequencies are considered: £=0.25, 0.75 and 1.00. The same case was studied in [196], but the
current terms in (5.28) (see Appendix B) and the kinetic energy term Uo%/2 in Bernoulli equation (5.3)

were not considered.

Table 5.4: Modified wave heights for the considered current velocities for wave height H,=0.07m

kU,/w H

-0.150 0.0858
-0.125 0.0820
-0.100 0.0789
-0.075 0.0762
-0.050 0.0739
0 0.0700
0.050 0.0668
0.075 0.0654
0.100 0.0641
0.125 0.0629
0.150 0.0618
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In Figure 5.30 the 1* harmonic of the 3 rigid body motions (surge, heave, pitch) and the horizontal
mean drift force are presented as a function of the current speed, for wave frequencies é=0.25, 0.75
and 1.00, while the same plots have been presented in Figure 5.25 as a function of the non-
dimensional wave frequency £ for the current-free case. In most of the cases, as the current velocity
increases the variation of the motions follows the trend of reducing frequency £ and vice versa (see
Figure 5.25). An opposing current reduces the wave length while a coplanar current increases it. The
clearest example is the pitch motion which reduces at é&=0.25 as the current velocity is increasing
while the opposite is found at £&=1.00, being consistent with the slope of the pitch motion (see Figure
5.25c¢). In case the motion lies in the vicinity of mild slopes in Figure 5.25 the dependence of the
motion on the current speed is almost negligible, as for example the surge motion at £&=0.75, or may
follow an opposing trend, as for example the surge motion at £=0.25. On the other hand the drift
force consistently follows the trend of Figure 5.25d being almost zero at £=0.25, while increasing for

increasing current velocities at £&=0.75 and £=1.00.

In Figure 5.31 the 1%, 2" and 3™ harmonics of the hydrodynamic loads Fx and Fz are presented as a
function of the current speed, for wave frequencies £=0.25, 0.75 and 1.00, while the plots that
correspond to the current-free case have been presented in Figure 5.26 as a function of the non-
dimensional wave frequency €. The loads clearly increase when approaching resonance at about
£=0.6, which corresponds to opposing currents at £=0.25 (frequency below resonance) and for
coplanar currents at £=0.75 and £=1.00 (frequencies above resonance). At £&=0.25 nonlinear effects
are almost negligible (see also Figure 5.27) since the 2™ and 3™ harmonics are almost zero for both
Fx and Fz. At £=0.75 Fx1 decreases for increasing current velocity while on the other hand Fx2 and
Fx3 increase, following consistently the predictions of Figure 5.26a. In the present case Fx2 is half Fx1
at €=0.75 and kU,/w=0.1. At the same frequency, Fz1 and Fz2 consistently increase for increasing
current velocity while Fz3 remains almost zero, as expected from Figure 5.26b. A similar trend is
observed at £=1.00 for all harmonics except for FxI which slightly increases for increasing current

velocity.
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Figure 5.30: 1* harmonic of the 3 rigid body motions (surge, heave, pitch) and horizontal mean drift force of a floating
surface piercing barge — nonlinear calculations for wave height H=0.07m including a steady current for non-dimensional

frequencies £€=0.25, 0.75 and 1.00.
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Figure 5.31: 1%, 2" and 3" hydrodynamic loads harmonics of a floating surface piercing barge - nonlinear calculations for

wave height H=0.07m including a steady current for non-dimensional frequencies £=0.25, 0.75 and 1.00.
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Chapter 6

Overview and Outlook

In this final chapter, the present thesis is concluded summarizing the work and indicating topics for

future research.

6.1 Overview

The present thesis had three main objectives:

1.

To conclude a fully coupled hydro-servo-aero-elastic simulation tool for offshore wind
turbines capable of conducting all the necessary design verification simulations for a variety
of support structure concepts

To formulate a 3D frequency domain linear potential solver of the wave-body interaction
problem

To formulate a 2D fully nonlinear solver of the wave-body-current interaction problem

With respect to the 1% objective, hGAST as described and formulated in Chapter 2 has been

concluded. The software produced,

is based on multi-body dynamics and FEM approximations

uses the linear Timoshenko beam model [section 2.3.1.2] in its usual or sub-body form
[section2.3.1.1] which accounts for geometric nonlinearities due to large deflections and
rotations

is equipped with two aerodynamic modeling options: the BEMT aerodynamic modeling
[section 2.5.1] and the free wake vortex particle 3D flow solver [section 2.5.2],

is equipped with two hydrodynamic modeling options: one based on linear potential theory
[section 2.6.1] and another applying Morison’s equation [section 2.6.2],

uses nonlinear dynamic mooring line modeling [section 2.3.2],

can handle any king of controlling system either as a user defined subroutine on as a DLL file,
accommodates all the modeling requirements related to design verification procedures,

can model all offshore concepts: monopile [section 3.2.3] and jacket [section 3.2.1] bottom
based support structures as well as semi-submersible [section 3.2.2] and spar-buoy [section

3.2.4] floaters for both horizontal and vertical axis wind turbines,
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has been parallelized using OpenMP or MPI libraries,
has been thoroughly verified against other state of the art design tools [section 3.2],
offers consistent Reduced Order dynamic Modeling at varying levels, based on component

modes.

In engineering terms,

in section 3.3 the two aerodynamic models in hGAST have been compared in connection to
the OC3 spar-buoy floater. It was found that BEMT predicts higher damage equivalent loads
and therefore is on the safe side and that the highest differences appear in asymmetric
inflow conditions.

in section 3.4 the baseline linear beam model has been compared to a 2" order beam model
and the sub-body model both accounting for geometric nonlinear effects. It was found that
the bending-torsion coupling is the main drive of the differences between linear and
nonlinear modeling predictions. The linear (1st order) beam modeling is still acceptable with

the exception of torsion.

With respect to the 2" objective, freFLOW as described and formulated in Chapter 4 has been

concluded. The method produced,

is a hybrid integral equation method based on BEM; the analytic solution is imposed at the
matching boundary following a variational formulation; and in case of symmetric structures
one or two planes of symmetry can be defined which reduces the computational cost.
calculates the linear hydrodynamic operators (exciting force vector, added mass and
damping coefficient matrices) and has been validated against WAMIT analyzing the OC3 spar-
buoy floater [section 4.7.1] and the OC4 semi-submersible floater [section 4.7.2].

estimates the 1% order response amplitude operators of coupled floating wind turbine
systems in the frequency domain, by considering the contribution of the WT and the mooring

lines using external linear mass, damping and stiffness matrices.

The method has been verified compared to the RAO’s provided by hGAST from time domain

simulations for the OC4 semi-submersible floater [section 4.7.2].

With respect to the 3™ objective, hFLOW as described and formulated in Chapter 5 has been

concluded. The method produced,

is a fully nonlinear potential time domain solver in 2D, based on mixed Eulerian — Lagrangian
method and BEM with linear distributions and plane elements,

generates waves by either simulating the wave generator’s physical motion or by matching
along the inflow vertical boundary the steam function wave solution including a steady

current,
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- simulates overturning waves up to the breaking point,
- absorbs the waves at the end of the tank using damping layers,
- estimates the hydrodynamic loading and the motion of submerged or surface piercing bodies,

- has been validated against reference data originating from theory, other numerical results

and measurements in a series of generic cases all linked to the so called numerical wave tank
problem. The list includes: the generation and absorption of nonlinear periodic waves with or
without the presence of a steady current in shallow, intermediate and deep water depths
[section 5.5.1] , the evolution of an overturning solitary wave generated by a piston wave
maker [section 5.5.2], the generation, shoaling and breaking of solitary waves over a gentle
slope [section 5.5.3], the interaction with a submerged obstacle [section 5.5.4], the nonlinear
radiation problem of an oscillating cylinder [section 5.5.5], the complete nonlinear problem
of a moored submerged cylinder [section 5.5.6], the nonlinear diffraction and/or radiation
problem of a fixed or a moored free-floating surface piercing barge [sections 5.5.7, 5.5.8] and

the nonlinear wave-body-current interaction problem of a free-floating barge [section 5.5.9].

Novelties

In engineering terms relevant to offshore WTs, hGAST besides being a complete design tool in which

several implementation details have been revised and cross checked,

1.

is the only tool that has efficiently implemented free-wake aerodynamic modeling which in the
case of VAWTs is the only realistic and physically advanced tool,

is amongst the very few tools that consider all couplings as nonlinear, can take into account
geometric nonlinear effects due to large deflections and rotations and is equipped with a
nonlinear dynamic modeling of the mooring lines,

is amongst the very few tools that consistently apply linearization schemes that on one hand
permit the effective nonlinear solution of the coupled dynamic system of equations and on the
other hand permit eigenvalue and stability analysis with respect to a possibly highly deflected
steady or periodic state to be performed.

is the only tool that offers consistent Reduced Order dynamic Modeling based on component
modes and the number of modes (dofs) is not defined a priori, but can be chosen based on the

application needs.

In technical/modeling terms, in the nonlinear hydrodynamic solver in 2D,

1.

the modified implementation of the matching of stream function waves along the inflow
boundary permits the consistent and stable generation and propagation of strongly nonlinear
periodic waves (~90% of maximum height) with or without the inclusion of a steady current in
shallow, intermediate and deep water depths for more than 100 wave periods.

overturning waves are consistently simulated up to the breaking point (until the jet reaches the
free surface) using piecewise linear approximations and plane elements in BEM without need of

smoothening
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3. a valid expression of the ¢;, on moving solid boundaries has been considered, taking into
account the steady current term as well, which defines the Newman boundary condition for
solving Laplace equation for the time derivative of the velocity potential ¢,,.

4. the motion and the drift force of a floating barge are consistently estimated even in the

frequency range where pitch resonance occurs and the rotation exceeds 30°,

6.2 Outlook

Having concluded a complete hydro-servo-aero-elastic design tool for offshore WTs, a natural follow
up would include its use in engineering investigations related to design and verification specific

issues. In this respect future research could include:

- Further support the findings and conclusions drawn in section 3.3 with respect to the
conservativeness of BEMT simulations. By comparing BEMT against vortex aerodynamic
modeling on a spar-buoy it was found that on average BEMT gives ~15% more loading.
However the number of DLCs considered was limited and only in normal sea states. So a full
load spectrum should be performed. Also other floater concepts besides the spar-buoy
should be considered in the same context. Along this line simulations are currently under
way within the AVRA [221] and POSEIDON [222] projects.

- Further support the findings and conclusions drawn in section 3.4 with respect to the
nonlinear structural modeling. The indication was that 1** order beam theory is approaching
its validity limits. As designs tend to give more flexible blades, extension of the investigation
in this respect should be pursued. In this respect in the AVATAR EU project [16], research on
structural tailoring in view of reducing loads is scheduled in 2016.

- Based on the findings of section 3.3, the vortex version of hGAST can be used as a basis for
calibrating the empirical relations in BEMT modeling in asymmetric operating conditions.

- Along the same research line, there can be contribution to the assessment of modeling
uncertainties when using BEMT modeling in certification procedures. This exercise could also
help in defining best practices for design verifications.

- Also the vortex version of hGAST is suitable for investigating the operation of WTs in partial
wake effect. Work in this respect is currently in progress within the AVATAR project.

- Due to its low cost, hGAST is suitable for design based on evolutionary algorithms. Such an
activity could refer to one part of the design (i.e. the blade planform or the floater), but also
the complete WT system. In this connection activity is under way in THALIS [223] and
INNWIND EU [224] projects. In this direction of particular importance is the design
optimization of advanced controllers in view of reducing the loads on floating WT as in [126,
225],
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Future research can be also directed to specific modeling improvements. In this respect, the

following topics are relevant,

- Implement the Generalized Timoshenko beam model and add structural anisotropy.
Development along this line is currently under way within a collaborative research between
the Schools of Civil and Mechanical Engineering at NTUA [223].

- Implement wake generation from floating support structures in view of including viscous
damping at large scale. To this end the required fast vortex method has been developed by
Papadakis [28].

- Upgrade the linear frequency domain hydrodynamic solver. In this respect, the current
version can be extended to also include the calculation of the drift forces using either
pressure integration or momentum conservation method, the effect of a steady current and
the solution of the 2™ order hydrodynamic problem so that to obtain the full quadratic
transfer functions.

- Extend the 2D nonlinear hydrodynamic solver into 3D, facing the challenge of high
computational cost by using tree algorithms and adopting parallel computing.

- Include a third option in aerodynamic modeling by coupling the recently developed CFD
codes MaPFlow (RANS CFD) and HoPFlow (Eulerian — Lagrangian hybrid method) [28] in
order to investigate cases that lay outside the validity of less demanding models, as for

example the behavior at parked / idling conditions.
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Appendix A

Analytic calculation of Integrals

In the present appendix analytic expression of the integrals in the boundary integral equations (5.15)
or (5.30) is given in case straight elements with linear distributions are considered. Expressions are
defined in the local coordinate system of the element x(x, z) when evaluating at a point Xe(xo, zo)
[Figure A.1], while details can be found in [226]:

X, 1
1= [Inylx, =)’ + 2= [ Inn = o Inn, +20(%; =8,) = b, — x,)] (A1)

X1

Xz 1 r Z_r 2
I, = jxlnwl(xo —x)? +2z2dx :E(rzz Inr,—r’Inr, +%J+/lxo (A.2)

X2

-7 1
l,=| —2—dx=—--(8,-9,) A3
: ;[(xo—x)erzé 2 ¢! (A3)
I ZT—_XZO dx:—iz In2 4+ /.x (A.4)
N Xl(xo—x)2+z§ 2 ° o, 7

For computational stability the vertical distance is subjected to the following limit |z| > €&, where € is
a small parameter, which is set equal to 1.e-10. This limit does not allow the integrals to become

singular. Index k refers to the end nodes 1, 2 of the panel, while r,

X

e =Xo—X., 9, =tan"(zy, x, —x,), (=X, — %, ) + 2z, k=1,2 (A.5)

k,ﬁk, I [Figure A.1] are defined as,
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Appendix B

An expression for ¢;, on the body including the steady
current

In the present appendix the expression for ¢, on the body including the steady current term U, is
derived. The derivation follows that by van Daalen [176] in terms of an orthogonal curvilinear
coordinate system (s;, s,, n). The expression provided by van Daalen [equation A.28 in [176]] for

0,,¢ should hold for the total velocity potential @ as well,

9, D =%, -n
+ (%5, =0, D) (5 -s,)— (X, -5, — 0, D) (B -s,)
—~(k,0, ®+0,, ®) (% -s,)—(k,0, D+, D) (X, -s,)
+[0,, D+, ®—(k, +k)3,0] (X, -n)

(B.1)

In (B.1) k; and k, denote the curvature along s; and s, (see [176])

From the definition of the total velocity potential ® (see (5.1))
atn(p = 8tnq) - atn (UoX) = atn(D - ant (Vx-n)= atncD - Uoﬁtnx (B.2)
The term O,n, is written as,

o,n,=d.n —xVn (B.3)

where d; denotes the material derivative of a scalar function. The first term of (B.3) is written as,
d.n =GG xn =GG x(s, X52)=(és ‘s,)'s, —(GG ‘s,)s, (B.4)
while the second term of (B.3) by making use of equation A8, A13 and A14 from [176] yields,
Vn, =-ks, s, —k,s,.s, (B.5)

By introducing (B.4) and (B.5) into (B.3),
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atnx = (eG 'sz) Six ~ (eG '51) Sy T k151x (XG : 51) + kzszx().(e 'sz) (B.6)

while by introducing (B.1) and (B.6) into (B.2) the final expression for 0, ¢ including the current term

is derived,

0,p=Xs-N
+(%s 5, =0, ®—U,s,,) B,-5,)— (s s, —0, D-U,s,,) (B -s,)
—(k,0, D+, D+U,k;s,,) (kg -s,) (k0 D+0,, D+Uk,s,,) (X, -s,)
+[0,, @+, ®—(k, +k)0,0] (X, -n)

(B.7)

(B.7) is valid for 3D. By making use of (5.1) and also retaining only the terms which are valid for 2D,

the final expression in 2D is derived,

0,p=Xs N
+(%,-s—0,0—2U,0.x) 8,
—(k,0.0+2k U0 x+0,,0+U,0, X)X -5)
—(k 0,0+ kU,0,x—0_p—U,d_x)(X-n)

(B.8)
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Kedalatio 1.

Elcaywyn

2TO TapoV ELOaYywWYLKO Ke@adato mapouotaletal to mAaiolo the StatpiBric. Ztoyevovrac otnv
avantuén umodoyloTikwv epyadeiwv mou Tautoypova Ja AauBavouv umoyn 0Aoug Touc QUOIKOUC
UNXQVIOUOUC, OQpXIKA TIAPOUCIAIETAL TO KIVATPO Kol Ol OTOYoL O OUVOEOn LE TNV TPEYouo
TEXVOAOYIKN) Yvwaon Kol TPAKTIKY. 2Tn ouvéxela mopouvotalovral ta Stadéoiuo UTTOAOYIOTIKA

epyaleia kadwce kat n StapBpowaon tne dtatpibrig.

1.1 Kivntpo ko ZtoxoL

H aloAwkn evépyela otadlaka sykabiotatal oe umepaktleg tomoBecieg e€autiag tou dadBOovou
0LOALKOU SUVOLLKOU KOl TNG AEPAVTNG AVEKUETAAAEUTNG €KTaonC TtnG BdAaocoag [1]. H emtuxnuévn
nopeia mou kateypade n altoAwkr svépyela to tedeutaia 30 xpovia otnpixbnke otnv avamntuén kot
Vv enBefaiwon Twv UTTOAOYLOTIKWY epyaieiwv oxeSlacpol, mapAdAAnAa Le TNV BEoTLoN MPOTUTIWY
yla tnv aoddaAela kal tnv aflomotia [2]. Etol, otnv Kowotnta tng ALOALKAG EVEPYELAG lval cadEg
TIWG YLOL VO KATAOTEL ETUTUXAC N LETAPOON OTLG UTIEPAKTLEG EDAPHOYEG Ta epyaleia oxeSlaopo eival
arnapaitntn npoinoBeon. MNa to okomd auto to Aoyikd BAua sivat n avaBaduion Twv uPLOTAPEVWY
urtoAoyloTikwy epyaleiwy, €tol wote va AndBolv umoyPn to emMUMTAEOV XOPAKTNPLOTIKA TIOU

UTLELOEPXOVTOL OTO TIPOPBANUO €attiog TNE EYKATAOTOONG TWV QVELOYEWNTPLWVY 0T BdAacoa.

H Mpwtn yevIA TwWV UTEPAKTIWY OVEUOYEVVNTPLWY OTTOTEAEITAL ATIO KATAOKEVEG e BAOELG OTNPLENG
oto BuBo [Zxnua 1.1], oL omoleg ouCLAOTIKA AMOTEAOUV AUEDN EMEKTACN TNG XEPOALOC TEXVOAOYLAG
HE au€non Tou UPoug Tou Upyou. Av kal otn Bahacoa n évtacn tng TUPPNC elval LIKPOTEPN, OMOTE
QVOUEVOVTOL HLKPOTEPA KOTIWTIKA ¢doptiat tpogpXOUeEVa OO TOV AVEUO, EVTOUTOLS TO BPeXOUEVO
TUAUA TNG KATOOKEUNG UTIOKELTAL o€ uSpoduvaplky ddption mpoepxopevn amd ta Baldooila KUpato
Kol pebpato. Autr elval n onUAvVTkOTEPn TPOCOETN cuvioTwoda oto GopTia TNG KATAOKEUNG OF
OXEON LE TIG XEPOOLEG EYKATOOTACELG, YEYOVOG TIOU TIPOKAAEL ETULIMAEOV TTPOKANCELG. ATtO TN Hia otov
OPLOPO TwV ouvBnkwv Tou Ba mpénel va etetalovrtal wote va efacdaiiletal n aodpdalela kal n
ermupiwon TNG KOTAOKEUNG O akpaio doptia Kal KOmwon, kat and tnv dAAn oto oXeSLAOUO TNG
Bepeliwong mou efaptdtal GUECA QMO TNV TIEPLOXN] EYKATAOTAONG AOYW TWV SLadOoPETIKWY EL6WV

ebadoug tou Bubod.



0O

Monopile Gravity-based Structure (GBS)

Space Frame (Tripod) Space Frame (Jacket) Space Frame (Tri-pile)
Source: EWEA

IxAua 1.1: TumoL otnpifewv UMEPAKTIWY avepOYEVWNTPLWY edpaldpevwy ato Bubd

JAUEPQ TIOU OKOUO BPLOKOUAOTE OE MPWLLO OTASLO OVATITUENG TNG UTIEPAKTLOC OLOALKAC EVEPYELAC, N
mAcloPndia TwV EYKATAOTACEWV ATOTEAEITAL ATIO AVEUOYEVVATPLEG e BATELG oTNPLENG eSpalOUeVEG
oto BuBo [IxNua 1.2]. Ita o pnxd Babn, xpnoluomnolouvral BAceLg oTAPLENG e Eva TTUAWVA, BACELG
Baputntag n tpimodeg, evw og Alyo peyaAltepa BAON TA XWPOSIKTUWLATO OITOTEAOUV TO EMLKPATOUV
POTUTIO oXedlaouou.

Tripod N/A
29 6
2% 0%
Tripile Floating
47 4
3% 0%
Jacket

91
5%

Gravity Based
Foundation

302
16%

Monopile
1376

74%

Source: EWEA

IXAua 1.2: Kotavour Ty EyKaTtaoTnUEVWY UTIEPAKTLWY AVELOYEVVNTPLWY OE OXEON LE To €i60g oTApLEng Toug (2012)

MNa Babn peyolutepa twv 50m n otnpln otov mubuéva elval umd Silepelvnon efattiog Tou

auvénuévou kbéotoug. Etal, yla epapuoyEg oe peyaha Padn £xel mpotabel n AVon Twv MAWTWV



avepoyewntplwy [ZxNua 1.3]. ITnv mepintwon auth, N QVELOYEVWNTPLA oTnpileTal o MAWTNPA UE
KataAnAo cuotnua ayklpwonc. O otdxog mou £xeL TeBel amo TNV KOWOTNTA TNG OLLOALKNG EVEPYELAG
yla Ta EMOPEVA XPOVLA £lval 0 OXeSLAOUOC BEATIOTWY MAWTWY AVEUOYEVWNTPLWY cuvdualovtag Thv

KaAUTepn Suvartr anodoon oTo EAAXLOTO KOOTOG.

Semi-Sub

Monopile Jacket/Tripod Floating Structures Floating Structures
0-30m, 1-2 MW 25-50m, 2-5 MW >50m, 5-10 MW >120m, 5-10 MW

Source: Principle Power

IxAua 1.3: TUoL Baoewv oTHPLENG UTIEPAKTLWY OVELOYEVVNTPLWY cuvapTroEL Tou Baboug

Ta umoAoylotikd epyaleio mou avaAlouv Tn cupnepldpopd TWV AVEUOYEWNTPLWV Ba TpEMEL va

LkavoTtolouv SU0 BacKA KpLTHpLO:

- Na mneplapfavouv OAoug TOUG MNXAVIOHOUC ToU emnpedlouv T Aswtoupyla Twv

QVELOYEVVNTPLWYV Kal amelAoUV TNV acdpAAela Kal TV enBiwor) Touc.

- Na €xouv €va emninedo akpiPelag KoL CUVETELAG TIOU VA ETILTPETEL TNV TILOTOMOLNGN TWV

SL0pOpwV UTIEPAKTLWY OXESLOOUWY oTa TTAaicLlo 0pOd KABOPLOUEVWY KAVOVIOUWV.

Ot gpmAekopevol dpuaotkol pnyaviopol mepAapBavouv TNV agpodUVALKA KaL TNV USpoSUVALLKN pon,
TN OUVOULK TOU OUOCTAUOTOC OCUMMEPAOUPBAVOUEVNCG KOL TNG EAAOTIKOTNTACG, TOUG KAASOUG
aykUpwong Ue tn Bepeliwon toug oto Pubd Kal To cuoTnua eAEyXou. 2TO TAALOLO QVAAUGCNG TWV
UTIEPAKTLWY OVELOYEVWNTPLWY Ol TIOPATAVW HNXaviopoi mpémet va alnAemibdpolv pe Loxupn

ouleuln.

H mapoloa epyoocia €xeL TPeLG OTOXOUC. MPWTAPXIKOC OTOXOC €lval n OavATTUEén &vOg TANPWG
ouleuypévou USpo-oepPo-aepo-eAaoTikol epyaleiou yla TNV avdluon TNG oupmePLdOpPAC
UTLEPAKTLWY OVELIOYEVVNTPLWY, LKAVOU VA TIPOCOUOWWOEL OAa ta £(6n Pacswv otnpleéng Kot
TMAWTNPWV KaBwG Kot 6AouC Tou¢ TUTIOUC aveUoyevwnTpLwy (opllovtiou kat katakopudou atova). Qg

Baon xpnolwpomolnbnke n mMA£ov Twv 20 €TWV EPEUVNTIKA EUMELpia Kal Texvoyvwoia oto EMM. O



kwdikag hGAST mou avamtuxbnke otnpixBnke oe mpoyevéotepn UAOMOLNGCN TIOU TIPOCOUOLWVE
Xepoaieg avepoyewntpleg. Evowpotwbnkav OAa ta amapaitnto HEPn yla TNV OVAAUCnH Twv
UTLEPAKTLWY OVEHOYEWNTPLWY KaBwg Kal efedixBnoav mpoUmdapyxovta TUAUATO WOTE va

oupBadilouy e TIC AMALTHOELS TNG CUVEXOUG AUENCNC TOU HeYEBOUG TV SPOUEWV.

AeUtepog 0TOXOC TNG epyaciog eival n avamtuén nebodou emiluong oto medio Tng cuxvdTNTAG TOU
tplobdlactatov udpoduvapikol mpofAnuatog aAAnAenidpacng cwpotog-kupatog. H pebodoloyia
npooblopilel apevog Ta USPOSUVAULKA XOPAKTNPLOTIKA MAWTAPWY SLadpOpWV YEWUETPLWY Ta ool
Kal elodyovtal otov kwdika hGAST yla TNV avdAluon Twv MAWTWY OVEUOYEVVNTPLWY, Kal adeTEPOU
TG BLOOUXVOTNTEG KOl TIG KIVAOEL TMAWTWY KATAOKEUWYV, TIOU OTOTEAOUV BOCLKEG TTAPAUETPOL

oxXedLlaoHOoU.

T£€Nog, Tpitog oToxoC TG epyaciag eival n emiluon tou todldctatou pUn-ypappLkol udpoduvaplkou
nipoPARuatog pe péBodo emektdolun otic 3 Slaotdoelg. Ita mAaiola thg mapolong spyaciag, n
pebodoAoyia mou avamtuxBnke xpnoluomnolndnke otn Slepelivnon TNG ONUAGCLOG TWV UN-YPAUULKWY
dawopévwy Tou  AauBdvouv  Xwpo OTNV  TEPIMTWON TNMAWTWV KATAOKEUWV (mpoPAnuata

OAANAETS pOONC CWUATOG-KULATOG KAL CWOTOG-KU LATOG-PEV LATOG).

1.2 Avadopad otig pe@odoug eniluong

‘Eva. oOAOKANPWHEVO UTIOAOYLOTIKO €PYOAELO YLOL TNV OVAAUCH TWV UTIEPAKTLWY OVELOYEVVNTPLWY Ba
TPETIEL VAL EVOWHATWVEL TLG EMUUEPOUC OUVIOTWOEG HE Loxupn oUeuEn oTo MAALOLO TNG OVAAUTIKAG
Suvopikng. Mo kaBéva amd ta mpotuna (EUMAEKOUEVOUG GUOLKOUG LNXAVIOUOUG) UTIApXOUV
TLEPLOOOTEPEG EMAOYEC HOVTEAOTIOINONG. TN CUVEXELX ETILYPOUMOTIKA SlvovTol Ol ETUKPATECTEPEG
ekbOYEG, evw ekTeVNG BLBALoypadikr avaokomnnon Sivetal oto ayyALlko KEIEVO TN Epyaciag wg mpog
TNV eniAuon tou USpo-oépBo-agpo-eAaotikol poPfAnuatog (kebdAato 1) Kal wg mpog TNV eniAuon
TOU YpOUUKOU (Keddalalo 4) kot Tou pn-ypapptkol (kedpdlato 5) udpoduvapikol TpoBARUATOC

avtiotouya.

21a UOPOo-0€PPo-aEpo-eAaOTIKA epyadeia ouvnBwWG N agpoduvaplky poviehonoleital pe tn pébodo
Tou Slokou OpuUNAG CUVOUOOUEVN HE TN Bewpla AEPOTOUWV EVW OMOVIOTEPA XPNOLUOTOLOUVTOL
otpoP\ég ueBobdoroyieg mpodiayeypappévou | eAevBepou opoppou. Ta udpoduvauka doptia
AapBavovrtol urodn pe Xprnon tou nULEUELpkol TUou tou Morison i péow tng emiluong Tou
udpoduvapikol poBARpatog Wavikol peuotol oto medio tng ouxvotnTag. H eAaoTikoTtnTa OXESOV
QTTOKAELOTIKA AapBavetal urogn pe xprion tng Bewplag Sokou, evw n dLakplon adopd oTnv TAN Kat
1o £(60¢ TOU povtélou Sokou. Avahoya pe to TANBoG Twv Babuwv eleuBeplag mou Bewpouv, ta
UTtOAOYLOTIKA epyaleia Slakpivovtal oe auTd ou eMAUOUV TO TTANPEG CUCTNHA AYVWOTWY (KWOLKES
FEM) kol tot povtéda XapnAng taéng, Omou mpayuotomnoleital peiwon tou mARBoug toug (.. He
Baon Ttig SlopopdEC TNG KATAOKEUNG N TOU KAOs owuotog EexwpLotd) He okomd Tn Heiwon Tou
umoAoyLoTikoU xpovou (kwdlkeg modal). H povtelomoinon Tou cuotuatog aykUupwaonc yivetal pe
XPNon tng quasi static pebddou 1 pe xprion SUVOUIKWY POVTEAWY avaAuong Bacllopévwy ouvnBwg

otn UEBO0SO TWV MEeMepACUEVWY OTOolXElwv. TéEAOG To oclotnua eAéyxou adopd otn puBLLoN TG



ywviog PAMOATOC TOU TTEPUYIOU KAl TwV OTpodwv TNEG YEWNTPLAC KAl ouvnBwC €LoAyETOL ME
npocappoyn KataAMnAwv efwtepkwv BLPALOONKWY TIou cuvodelouv TNV KABE avepoysvvATpLa Kal

TPAKTIKA cuVSUAlouV eAeyKTEC TUTIOU Pl Kol KaTAAANAQ diATpa.

210 IxNua 1.4 mapouotalovtal eVOELKTIKA UTIOAOYLOTIKA epyaAeio mou cuppeteiyav oto Offshore
Code Comparison Collaboration Continuation (OC4), epguvnTikO €py0 OTIOU CUMMETELXE KoL To EMI

e oTOXO0 TNV BeATiwon Kal LOTOMOoiNon TwV UTTOAOYLOTIKWY €pYaAEiwv.

Code Structural Mooring
Code D loper 0C4 Participant Dymamics Aerodynam ics Hydrodynamics Modal
MREL, CENTEC, T: Mod/MB
FAST MREL ERCI s ‘ P: Rigid (BEM or GOW +DS PF + QD + (QTF) Qs
FAST 8 NREL NREL T:P"_“'aggﬂ (BEM or GDW +DS PF + ME as
CHARM3D+ TAMU+ T: Mod/MB PF + ME + (MD +
FAST NREL — ‘ P: Rigid LG E R B NA) + (IP + IWL) AZep
OPASS+ CENER+ T: Mod/iMB
FAST MREL CEMER P: Rigid (BEM or GDW +DS PF + ME LM/Dyn
- - T: Mod/MB
UOU+FAST UoU+NREL University of Ulsan P: Rigid (BEM or GOW +DS PF + QD Qs
GH, CGC, T: Mod/MB
Bladed GH POSTECH P ME (BEM or GDW +DS ME + (W L+ IP) Qs
Bladed Advanced T: Mod/MB
Hydro Beta GH GH l P: MB (BEM or GDW DS PF + ME + (WL} Qs
OreaFlex Orcina 4Subsea PT:RFEEM BEM, GDW, or FDT PF + ME LM/Dyn
T: MB/FE
HAWC2 oTuU DTU ‘ P: MBIFE (BEM or GDW #+DS ME FE/Dyn
hydro-GAST NTUA NTUA T: MB/FE BEM or FWV PF +ME + (IP) FE/Dyn
P: MB/FE
Simo+Riflex+ MARINTEK+ T: FE
AeroDyn NREL CaS0S5 ‘ P FE (BEM or GDW #+DS PF+ME FE/Dyn
Riflex-Coupled MARINTEK MARINTEK PT:F\'.FigEid BEM+FDT PF + ME + {IWL) FE/Dyn
T
3Dfloat IFE-UMB IFE [ TEFE E,:,‘;Etam] BEM+FDT ME + (IWL) FE/Dyn
T: FE+Mod/MB
SWT SAMTECH SAMTECH & IREC P FE+Mod/MB BEM or GDW ME + {IWL) FE/Dyn
. PRINCIPIA- T: FE PF + ME + (MD +
DeapLinesWT |\FPEN PRIMNCIP 1A P:FE BEM+DS QTF/NA) + (IP + IWL) FE/Dyn
SIMPACK+ T: Mod/iMB
HydroDyn SIMPACK SWE P: Rigid BEM or GDW PF + QD Qs
University of . . T: FE
CAsT Tokio University of Tokyo W FE BEM ME Qs
. T NiA
Wavec2Wine WavEC WavEC s M PF+ QD Qs
P: Rigid
T: Ni&
WAMSIM DHI OHI [ P: Rigid MNiA PF + QD Qs
PF = potential flow theory
T = turbine _ ME = Morison eq.
P = platform GBE\::' :hhd&ﬁl_e;nﬂe:ﬂmorr_lentu;n MD = mean drift as = i-stati
Mod = modal e e QTF = guadratic transfer funetion e =
MB = multi-body FOT 'f'lt_ ﬁ ic thrust NA = Newman's approximation LME I_ Y
FE = finite element FW_V |-efr eramn:n a IP = instantaneous position Sl pesdingi s
Ni& = not applicable SN TEEWaRBIr oK WL = instantanecus water level
QD = quadratic drag

sxnua 1.4: Nepypodn Twv Kwdikwy mou cuppeteixav otn 2" ddon tou OC4 [rivakag amnd [3]]

1.3 AwdpBpwon tng StatpBng

Jto Kepahalo 2 mapouclaleTal cUVONTIKA N Bewpla tng culevyuévng LEPO-CEPPO-AEPO-EAACTIKNG
HeBOdou evw oto Keddhalo 3 n mopandvw HEB0SOC MLOTOTIOLEITOL CUYKPLVOUEVN e AAa avtioTola
Aoylopka. 2to kedpahalo 4 mapoucialetal n péBodog emiluong Tou Tplodldotatou uSpoduvapuLlkou
npoBAnuartog oto nedio g cuyvotntog, evw oto KedpdAalo 5 n avriotolyn nEBodog emiluong Tou
pUn-ypauukou, Slodldotatou udpoduvaplkol mpoPAnuoatog. TéEAog oto kedpdAalo 6 yivetal n

anotipunon tng epyaciag Kal mopouctalovtol TPOTACELS YLa LEANOVTLKH €pEuval.






Kedalatio 2.

Zuleuypuévn UO6po-o€pPo-acpo-eAaotiky avaAuvon:
Qtwpia

JT0 mapov kepaldato mapousialetal to Jewpntiko unoBadpo tou USpo-cEpBo-aEpo-gAaatikoU
AoytouikoU hGAST. Alatunwvetal To oUlEUYUEVO MTPOBANLA oTo MAQiOL0 TNC AVAAUTIKAC UNYAVIKNG
Ko mapouotalovtal To MPOTUTTAL TTOU TO amapTi{ouV, TO AEPOSUVAUIKO, TO EAXOTIKO, TO SUVOULKO, TO

UbpPOSUVALLKO KL TO TTPOTUTIO TWV AYKUPWOEWV.

Nepypadn Twv BAGKWV CUVIOTWOWV TOU AoyLloptkoU hGAST

To Aoylopiko hGAST Baoiletal otn cUleuén TWV MAPAKATW EMUEPOUC TIPOTUTIWV:

1. Tou agpoduvapikol PoTUTOU
Tou eAaCTIKOU MPOTUTIOU

Tou Suvapikol PoTUNIoU

Tou udpoduvaptkol MPOTUToU
Tou mpoTUTIoU ayKUPWONG

vk wnN

2.1 To agpoduvalLko MPOTUTIO

To hGAST &LaBétel SUo peBoOdoug uToAoylopoU Twv agpoduvapkwy dopTiwv: To mpotuTno Siokou
opung mou cuvdualetal pe tn pebodoloyia otolxeiwv nteplywong [4] kal To oclVBeTo TpLodLAcTATO
npotunto eAeVBepou opodppou [5, 6]. To MpOTUTIO TOU eAEUBEPOU OUOPPOU TaPOUCLAlETOL OTO

ayYYALKO Kelpevo, evw oTn cuvexela eplypddetal n pebodoloyia Tou diokou oppng.

H Bewpla otnv omoila PBaociletal, amoteAel T Paocikr emdoyn avaluong kot oxediaong mou
XpNoLllomoleital amdé tn Blopnyovia Kol TOuG OpYyovVIoHOUG TILOTOTOLNCNG QVEUOYEVVNTPLWV.
Baoiletal otn Bewpia diokou opung cuudwva e tnv onoia N won dT kal pomt dQ og €va SakTuALlo

gVpou¢ dr Sivetal amo tig oXEoELC:



UZ
dT = N%(CL cos@+C,sing)cdr =4npUz2a(1—a)rdr
(2.1)

2

U
dQ= NP—ZE”(CL sing —C, cos @) crdr =4mpQu, a'(1—a)r’dr

Ornou N o aptBuog mrepuyiwy, p N MUKVOTNTA TOU AEPA, Ugs TO LETPO TNG OXETLKAG TaxUTNTAG OTO
ntepLyLo, U, To HETPO TNG TaXUTNTAC Tou avépou, C; Kot Cp Ol CUVTEAEOTEG AVWONG KAl avTioTaong
mou Sivovtal w¢ SlodlaoTata YOpoKTNPLOTIKA G TIVAKEG WC TPOC TN ywvia Mpontwong, ¢ n ywvia
HETAEL TNG OXETIKNG TAXUTNTOG KAl TOU £TUMESOU TOU SpOUEQ, r N AKTWIKA B€on, ¢ TO UAKOG TNG
TOTUKNG X0PdNg, Q n toxuTNTA TEPLOTPOPNG KOl a, @’ OL CUVTEAEOTEC AEOVIKNG KAl TTEPLDEPELAKAG
enaywyrg mou opi{ouv TG CUVLOTWOES TNG OXeTKAG Taxutntag U (1—a) kat Qr(1+a’) otnv afovikn

Ko tepLpepeLakn katevBuvon avtiotowa. Ta Ues kal ¢ Sivovtoal ano Tig oxeoelg [Zxiua 2.1],

U, = U, (1-a))° +(Qr(1+a)) (2.2)
_wn4_glﬂ£& (2.3)
®= (1+a) Qr '

H ywvia mpoéomtwon o mou xpnolwlomoleital ya tov mpoodloplopd twv C, Cp amd TIVAKES

Sedopévwy yla kABe TUTIO AEPOTOUNC, oplleTal amo tn oxéon,

a=¢-9,-9, (2.4)

Ur kaw 9, eival n Tomkn ywvio cuotpodng kat Brpatog aviiotowya.

G

U(1-a)

Ueff

»

Qr(1+a')

IxAua 2.1: Tpiywvo taxutAtwy Kat cupuBoAiopol



TNV NpAa&n To LOVIEAO ETMEKTEIVETAL WOTE VO UmopoLV va AapBavovtal unoyn,
e H un HovuoTNTA TNG PONG AVELOU
e HAswtoupyia o peyahn ¢poption omou SlopBwvetal o cuvteAeoTG wong Cr
e  OLanwAsleg akpomtepuyiou
e H Asttoupyla pe amokALon TG pong tou avéuou (yaw, tilt)

e H mepimtwon mnapaudppwong Twv TTEPUYIWV oOmote TmpootiBetal n  TaxluTnTa
napapopdwong

e Huotépnon twv cuvteheotwv C;, Cp, Cyy OTNV MEPIMTWON UN-UOVILNG OLEPOSUVAULKNG

Ztnv KatevBuvon autn n (2.1) maipvel tn popdn,

R , oC U’ cos’ @,
4ﬂfu r a+CT:ff—2<p
u R 2U

o0 0

, (2.5)
oCtUeff

a(l-a)f =——
8QrU_ cosg,

‘Omou R eival n aktiva tou dpopéa, ¢, n ywvia kwvou, C,, C; 0 KABeTOC Kal HAMTOUEVIKOG 0TO Sloko

Tou Spopéa cuvteheotng ¢poOpTLOoNG o opilovtal amo TIC OXEOTELC,

C,=C,cosp+C,sing

. (2.6)
C,=C,sinp—C,cosep
O ouvteheotng wong Cr Slopbwvetal avaloya He TNV Evtacn Tng ¢popTiong we eENG,
C, =4a(l-a)F a<0.33 2.7)
2.7
C, =(0.425+1.39a)F a>0.33
O ouvteAeoTNG f, TPOKUTITEL ATIO OAOKANPWON,
o -1
r
2n (1 ——Cos cpazjd(paz
r R
L(_]ZZn | : — (2.8)
§ ’ 1+ r —2Lcos<p
R R az

Omou @, N ywvia allpoubiovu,
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F elval 0 oOUVTEAEDTNG TWV AMWAELWV AKPOTITEPUYIOU,

2 N R—r
F(r)==cos™(e”), flr)=—— (2.9)
m 2 rsing
KoL g €lval n TOMLKH OTEPEOTNTA,
Nc
o=—-o (2.10)
2nr

Y& meplmTwon anokAlong tng pong Kabwg kat Bewpnong Twv eA0OTIKWY TapapopPwoswy, ot (2.2),

(2.3) kat (2.4) petatpenovral we €N [ZxAua 2.2],

U, = \/((Uw cosp, —u, —U,)(1—-a)cos,)’ +((w,, —U,sing, sing,,)(1+a)° (2.11)
1-2a)- w_, —U_sing,sin
p=tan’ [—( 3) ICOS(PCJ x, = e~ SING, ,(P‘" (2.12)
(1+a')-x, U, cosp, —u, —u,
a=¢-9,-9,+9, (2.13)

omou @, n ywvia opuovtiag anokAong, U, , W, oL TaxUTnTeg mapapdpdwong otnv KABeTn Kot
epantopevikil wg mpo¢ To Sioko tou Spopéa katevBuvon kal ., n ywvia otpédPnc. O 6pog u;

QVTLOTOLXEL oTNV emayopevn afovikn TaxUuTnTa Kal Svetal amo tn oxéon,

u =u, (1—fu(r/R)tangcoupaz...+O(2cpaz))

3 5
r r r
U_sin
x=tan’ _ ZSney,
U, cosp, —uy,

Onou ol ouvteleoTeg £xouv BabuovounBel pe Baon melpapatikd dedopéva Kal UTTOAOYLOUOUG LE

e€eAlyéva LOVTEAQL
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2 G080 / - -
4] ui1:8)cosec

-

“el1-a)cospc

U..cose,(1-a)cospc

U.sing,singg,(1+a’)

—

Wel (1+a‘)

IxApa 2.2: OpLopoG TwWY CUVONKWVY PONG OTN TMEPLIMTWON AMOKALONG KAl AEPOEAAOTIKAG OUTELENG

MEeTA ToV UTIOAOYLOUO TWV CUVTEAECTWYV EMAYWYNG, Ta agpoduvauika doptia, dnAadn n kabetn Kat
n epantopeviky oto Sioko SUvapN KAl N POTr oTNV AKTWIKA KateuBuvon umnoAoyilovtal amd Tig

OXEOELG,

Fo = %CnUeszCdr N g(CL cos g+ Cp sing)Ucdr

F =§CtUjffcdr=§(CLsin(p—CD cosd)UZ cdr (2.15)

P 2 2
M :ECMUeffC dr
INUELWVETAL OTL OTNV TIEPIMTWON KN LOVLUNG ELopon¢ avépou, Ta C;, Cp kat Cy, dlopBwvovtal pe Baon

To povtélo ONERA [7] 1 Beddoes - Leishman [8] (yia Aemttopépeteg BA [9]).

2.2 To €AQOTLKO MPOTUTO

To ehaotikd mpodtuTo Baociletal otn Bewpia dokou tou Timoshenko. Ag eival [Oxyz] to cuotnua
OUVTETAYHUEVWVY TNG S0KOU W TIPOG TO OMOLo OTNV anapapopdwtn Katdotacn o atovag tng Sokou
ouumnintel e tov atova y [ZxAua 2.3]. Ot afoveg x, z avtiotolyouv otig dUo kaupelg evw otov afova
y NG 6okou opiletal o epeAKUOUOC KOl N oTPEYN. 2To MAAICLO TNG YPOUULIKNG Bewplag av r gival n

B€on evog onpeiou P(x, y, z) otnv Mapapopdwpévn Kataotoon,
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u
v
100 0 2z O
w
r(ry;t)=r, +U(r,;t)=r, +S(x,,z,)-uly,;t)=r,+|0 1 0 -z, 0 Xx, 9 (2.16)
001 0 -x, O ¥
ﬁy
1%

N

OmoU Iy = (X0 Vo 2o)" N ApXKH B€on Tou P kat u(y,; t) = (U, v, w, O, U, 9,)" oL pETaKWVAOELS Kot
OTPOGEC LIE TIG U, W VA AVTLOTOLXOUV OTLG U0 KAUWELS, TNV V va avTLOTOLXEL oTtnv afovikn HeTakivnon,
TNV 8, otn otpéPn Kat TG G, ¥, OTLG KAUTTIKEG OTPOPEG emiong mepthapBdvovtog tn Stdtpnon. Ztnv
nopandvw oxéon pe U = (U, V, W)™ cupBolileTat to Stdvuopa tTng petakivnong pe Bdon to omoio

opilovtal oL TpomEg.

undeformed elastic axis

Ixfpa 2.3: To cUOTNUA CUVTETAYUEVWV KoL 0 KABOoPLOUOG TNG KLVNUATLKAG otn Bewpia Sokol

Me Bdon tnv tpomr katd Green Kol To VOO Tou Hooke, TPpOKUTITOUV OL OXEOELG VLA TLG TAOELG:

6V ' il ]
o,=E-g, =E-—=E-v—E-2,-0,+E-x,U,
oy,
ou ov . .
TXyZGX-VXy:GX-[E-FaT]:GX-U +GX‘ZO.0y+Gx'ﬁz (217)
0 0
Vv ow . :
T, :Gz'yyz =Gz' a_+a_ =Gz'W _Gz 'Xo‘ﬁy_Gz'ax
0z, 0y,
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OTIOU £y, Vxy, Vy OL TPOTLEG KAL Oy, Ty, Ty, OL QVTLOTOLXEG TACELG 0TN Statoun [IxAua 2.4], E eival to

HETPO TOoU Young Kal G,, G, €lval oL GUVTEAEOTEG SLATUNONG OTLG X, Z KATeUBUVOELG avTioTolya.

IxAMa 2.4: OpBEG Kal SLOTUNTIKEG TAOELG

Me oAokApwon Twv TACEWY OTN SLATOWN TTPOKUTITOUV TA ECWTEPLKA dopTia,

r,dA=[(Gu +G,2,0,+G,03, jdA
A

o, dA= I(Ev -E2,8, +Ex, 9, JdA
A

F = jryZdA = I(sz' -G,x,0,-G,0, )dA
A

A

M, = Io z,dA= IEzv -Ez*9, +Ex,z,0, )dA (2.18)

j ) )dA=

A

= j[ Gz, +G,x, )0y +G,zu +G, 2,9, -G x,w +G,x,9, ]dA
A

M, = I 0, X,0A = J-(Exov' -Ez,x,0, +Ex,*0, )dA
A

A
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Evw ol 181otNnteg tng dratoung divovral amnod TG oXECELG,

EA=[EdA, EAx=[Ez,dA,  EAz=[Ex,dA
Elxx :A [Ezida, Elxz = }ExozodA, Elzz = }ExédA
GJ= j (Ac-;xzo2 +G,x, )dA A A (2.19)
GxA : [G.da, GzA= [G,dA,
GxAX :A [G.2,0, GzAz =A [6.x,04,
y y

Ma éva tunua dy tng Sokou pe Statoun A kat akpa (P1), (P2), n loopporia SUVAPEWY KAl POTIWV WG

npog to onueio (P1) oto [Oxyz] cUotnua Sivel [Zxua 2.5],
fidy =dF +fdy: f‘=jp'r' dA, f‘-’=jpgdA+L (2.20)
A A

m'dy =dM +dr, x(F+dF)+m*dy: m'=[p(r,x¥)da,
A

mesz(rpxg)dA+raxL 221
A

/J undeformed elastic axis

IxfAMa 2.5: loopporia SUVAUEWV Kol POTtWV Yo StadopLlkol UrKoug TR Sokou.

Onov L=(L, L, L,)" n efwtepikA SOvapn avd povada uAkoug (r.x. agpoduvapiky i udpoduvauikr), F
= (Fy F, F,)' xat M = (M,, M,, M,)" oL E0WTEPLKEG ENAOTIKEG SUVAELS KAl POTIEG, § = (G gy, J.)' TO
Slavuopa tng emttayuvong tng Baputntag, F+dF n ecwtepikn duvapn oto onueio (P2), r. n B€on evog

onueiov Tou mapapopdwUEVOU EAaOTIKOU atova,
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0 u
L=y +qv (2.22)
0 w

re(1,2) )_p (

elval ot B€oelg Twv SV0 AKPWV TOU TUAUATOC, dr.=r?-r, Y ra=(X,, 0, z.)' €lvaL n B¢on Tou

onueiov edpappoyng Twy efwteplkwy poptiwv Kat rp:r—re(l).

re

Juvdualovtag Ta mopaAAavw, ol SUVAULKEG EELOWOELG LOOPPOTILAC TTalpvouv TN popdn,

[odans=[kuT +[Ku] +[Ku]+[Ku]+ [odA 1T g+, L (2.23)
A A
Orov,
[ GA 0 0 0 GAx O
0O EA 0 -EAx O EAz
0O 0 GA 0 -=GAz 0
“Tl o Eax 0 Ex 0 B (2.24)
GAx 0 -GAz 0 G/ O
0 EAz 0 -Elxz 0 Elzz |
(0 00 0 O GA]
000 O 0 O
000 -GA 0 0
K, = (2.25)
000 O 0 O
0 00 GAz 0 GAx
000 0 0 0 |
0 0 0O 0 0 O]
0o 0 0 O 0
o 0 0 o0 0
“=l o o GA-F 0 -GAz 0 (2.26)
o 0 0 0 0 0
F-GAO 0 0 -GA 0]
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0 00 0 0 0]
000 O 0 O
K, = 000 0O 0 O 0.27)
000 GA O ©
000 0O 0 O
000 0 0 -GA]
0 0 z 0]
IN1=s" = -z, 0 X (2.28)
01 0 -x, O
1000 z Of
=0 1 00 0 O (2.29)
0 01 0 -x O

AvtioTolya PE TO pUNTpwo Suokapilog MPOKUTITEL Kal TO UNTpwo Palag, pe Baon TIg akoAouBeg

aSpaVELAKEC LBLOTNTEC TNE SlaToung,

m= 'fpdA, mx = J'pzodA, mz= ~[prdA
A A A
mixx = IpzSdA, mixz = IpxozodA, mizz = IpxgdA (2.30)
A A A

Ip= J'p(zo2 +x02)dA
A

H eméktaon ¢ mopandvw SLoTUMWonG Twv €§LlOWOEWY OTNV TEPIMTWON KVoUUevnG §okou elval
Aaueon: apkel va mpooteBolv oL emUTAEoV adpaveloKol 6poL TIou MPOKUMTouY e€attiag tng Kivnonc.
INUELWVETOL OTL OTNV TEPIMTWON cUVOUOOUOU TEPLOCOTEPWY SOKWV, TIPOKUTITOUV UN-YPOMLKES

ouleV&elg amod tn oLVEEoT TOoUG, OTWG e€nyeital otn cuVEXELa.

2.3 To Suvapko mpdtuno

To Suvauikod mpotumo PBaciletal otn Bewpnon MoAAanmAwv cwudtwyv (multibody formulation). Zto
mAaiolo autd n OUVOALKN KOTAOKEUN Oloxwplletal os €MIUEPOUC OUVIOTWOEG. KdBe ouvictwoa
UTIOPEL VO QVTLOTOLXEL O €va OTOLXELO TNG KATAOKEUNG (T.X. TO MTEPUYLO, TO AOVIKO cUoTNUA KATT) 1
o€ éva TuAua tou. H g0tepn ekSoxN AVILOTOLXEL OTNV MEPLTTTWGN TIOU £€va EUKAUTTO OTOLXE(D OMWG

eival ta mrepuyla, xwpiletal os neploocotepo tunpato (sub-bodies) wote va AapBavovtatl urtogn
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VEWUETPIKEG LN-YPAUUKOTNTEG e€auTiog HEYAAWY HETAKIVACEWY Kal oTtpodwv. Na kaBs cuvictwoa
opiletal €va TOMIKO OUOTNUO CUVIETAYUEVWY WG TIPOC TO ONolo avadEpovtal oL EAAOTLKEC
HETAKLVNOELS. 2e KABe ouVIOTWOA UTIAPXEL N duvatdtnTa YEVIKAG Kivnong Tng OTOo XWPOo Tou
TepAaUPAVEL 3 LETAKLVNOELG KOl 3 OTPOPEG.

Eotw R* n B&on TNG apxriC TOU TOTKOU CUGTHAUOTOC GUVTETOYHEVWY [OXyz] Tng ouviotwoog “K” kat T
TO UNTPWO OTPOPNG WC TPOG TO YeVIKO (akivnto/adpavelako) cuotnua avadpopds. [OeXeYsZs] [ZXAHA
2.6]. H Bé0on rg* evog onpeiov tng ouviotwoag k we mpog T0 [OeXsYeZs] KAOWC KoL OL QVTIOTOLKES

TaXUTNTEG KOl ETUTAXVUVOELS YpAdOoVTaL WG:

re=R“+T".r*
=R T+ T (2.31)

B=R T 2. T+ T
Evw n enitdyuvon wg mpog To TOMIKO cUCTNUA TTaipVEL TN Hopdn:

(T) = ()R & (1) T w2 (T) T

V© V©
accelerationof theorigin  centrifugal acceleration Coriolis acceleration

(2.32)

IXAua 2.6: Ta cuoTAUATA CUVTETAYUEVWY 0T Bewpnon moAamAwv cwpdtwy (multibody Bswpnon)

Ta R* ko T opiovtar wg akoAouBie HETOKIVACEWY Kat oTPodbwyY d; kai t; ta onoia cuvdEouv to

€KAOTOTE TOTILKO |LE TO YEVIKO cuotnua Kot Sivovtal wg e€nc:
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er=dm+tm-{...[d2+t2-(d1+t1~rk)}}:>

J(k) (2.33)
R =d,+t,-{.[d,+t,-d,]}, T"=]]t,

j=1

KaBe d; kat t; adopd oe petakivnon kot oTpodr) 0€ CUYKEKPLUEVN KATELBUVON. ZUYKEVIPWVOVTOG
OAEG TIC METOKLVNOELG KAl TIG OTPOGEC Yl OAEG TI OUVIOTWOEC TOU CUOTAUOTOG opiletal €va
Siavuopa Babuwv eheuBepiag q. MNa kabe q, n avriotown katevBuvon cupBoAiletal pe dir, omote
di=d;(q,;dir,) kot avtiotowya yia Ta t;. ITn yevikr nepintwon 1o q HEToBAAAETOL OTO XpOVO OTOTE KOl
ta R*=R¥(;t), T=T"(qi;t). ENELWVETOL OTL 0TO SLAVUGHA TEPNAHBAVOVTOL TOOO OL ENACTIKEC KIVATELC
ota onpela oUleuéng 00O Kal KLWWNOELS TIOU OUVOEoVTAL HE TN A£lToupyla TOU CUOCTHMOTOC Kal
aroteAouV HetaBAnTéG eAéyxou (TLY. N ywvia BRpatog twv nmrepuyiwy). Ao napadsiypota Sivovrat
oTo ZYAMa 2.7. ITNV MEPIMTWON MAWTAG UNXAVAC OL KWVAOEL TOU MAWTNpa meplAapBdavovtol oto
Sdwavuopa q.

u fIapw.ise 4 v
bending

Qgenerator

tower for aft
bending
rotation

Gfoundation
Xg, X a XG, X

IxApa 2.7: Napadeiypata oculevewv: (aplotepd) 2UTeuen TG SLapnKoug KA NG Tou mUPYOU LE TNV MTEPUYLON TWV

nitepuyiwy, (6€€1d) 20Zeuén g ywviag BALATOC Kat TNG ywviag aAlvépounaong (teeter) twv mrepuyilwy dimtepou dpopéa.
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EKTOC amod TIC KIVNUATIKEG oUVONKeG oUTELENC TTOU ELCAYOVTAL HECW TOU SLaVUOUOTOC g, 0T ONUEla
ouleuéng emiBaAAovtal Kal SUVALKEG CUVONKEG. ZUYKEKPLUEVA O KABe onueio ouleuéng, £va amo ta
ouvbedpeva UEpn opilel TIC KWVNOELG TOU onueiou oUleuéng Mou amoTEAOUV CUVOPLOKEG CUVOINKEC

yla OAa ta dAa ta omola LeTadEPOUV TIG AVILOPACELS TOUC.

JUVETELA TNG BEWwpPNONC AUTAG lval N ONUAVTLKY OITAOTIOINGN TNG YPAUULKOTIONONG TwV €€loWoEWY
TIOU QTMALTETAL TOOO yla TNV aplBuntiky emiluon Twv SuVOUKWY £ELOWOEWY, 00O Kal ylo TNV
avaAucon TG OEPOEAAOTIKAC €uOTABElG TOU ouoTAUatog. ELSIkOTEpA, E£L0AYOVTOC HUKPEC

SloTapaxc 8q yUpw omod pia katdotaon avodopdc q°,
q=q°+38q, 4=q"+59, 4=4°+3q (2.34)
Onorte,

R(q) =R(q°) +R(q’)-8q,

R(q)=dR(q°)-a) +0,R(q°)-4 -8q, +IR(q°)- 84,

R(a)= OR(@")-G) +0,R(@")-& &7 +0,,R(a")-&, & -5q, +
0,R(9°)-8; -6q; +20,R(q°)-¢; - 64, + OR(q°)-64;

(2.35)

ItV napandvw oxéon ot teheotes 0,(.), 0, (.), 0y, () cupPoliZouv mapaywyion wg mpog ta g mou

QVTLOTOL(OUV 6TOUC SeikTeC. MApOHOLEC EKPPATELS TPOKUTITOUV Kat yia To T .

‘Eva aKOpO TTAEOVEKTNUAO TNG OUYKEKPLUEVNG Bewpnong eivat n duvototnta Slaywplopol ULag
OUVIOTWOOG TOU OUOTHUATOC Ot TUAUOTO Ta omoia otn Sdladikacia emiluong slodyovial wg
avefdptnta «unmoowpata» (sub-bodies). KabBwg oL oxgoelg oUvdeong (KWVNUATIKEG KOL SUVOULKEG)
elval yevikég, Aappavouv Ut OYPn HEYAAEG UETOKLVAOELS KOL OTPOGEC TIOU TIPOKUTTOUV OTNV
TMEPIMTWON EVKAUMTWY OTOLXElWV. XTO MAaiolo autd KABe TUAHUA £XEL TO SLKO TOU TOTIKO cUOTNUA
avadopdg [Oxyz], To onoio akoAouBel tnv napapopdwor) tou. Etol n apxn (P1) Tou KABE TUARATOC
opileL tnv apxn O evw to TEAOG TOU (P2) €lOAYETAL WG OPXI) TOU EMOUEVOU CUMMEPAAUBAVOVTAS TIG
napapopdwoelg. Eival akplPwe n cwpeuTiKn aBpolon TN MapapopPwaonG mMou ELOAYEL TIG LEYAAEC

LETAKLVNOELG Kal oTpodEC [Zxnua 2.8].
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Y
Zk

L CHI

RE(ES;t).
Ry

By

body k

. Tiaet)

Xk

IxfAHa 2.8: H Slaxeiplon HeyGAwWY HETAKLVAOEWY KAl 0TPODWY HECW TOU SLaXWPLOMOU HLOC GUVIOTWONG TOU GUOTHATOG O

TuApata (sub bodies)

2.4 To udpoduvauko npdtumno

210 hGAST oL uSpoSuVaULKEG SUVAUELG AapPBdavovtal UTtoYn e xprion eite Tou TUMou Tou Morison
elte Twv USpOSUVAULIKWY TEAEOTWY OTO MeSio TOU XpOVOU, TIOU TIPOKUTITOUV amd TNV eniAucn tou
udpoduvaplkol mpoBAnpatog oto medio TNG ouxvotntag yla LOeatd PeUCTO. TN GCUVEXELQ
TapoUCLAETAL N TIPOCAPUOYN TWV USPOSUVALLKWY TEAECTWY OTLG SUVOULKEG EELOWOELG Kivnong Tou
mAwtnpa, evw n eniluon tou udpoduvapikol mpoPAAHATog oto Tmedlo TNG ouxvotnTag

mapouoLaletal oto kepalato 4.kaL o TUIoG Tou Morison otnv napaypado 2.5 (BA. e€lowon (2.61)).
2.4.1 H efiowon Kivnong tou nAwtpa oto nedio Tou xpovou

H eflowon kivnong evog anapapdopdwtou MAwTAPaA oto edio Tou XpOvVou OMwWG MPOKUTITEL amd Th

HEBOSO TMAAULKN G KPOUOTLKAG amokplong tou Cummins [10] iva,

t
(M + aoo )q + IR(t_r)q(T)dr + (KH+KG +KMoor )q = Fe()l(i+Fe_£)2(Z+FMoor +FWT+Fvisc +6t3(B_W) (236)
0
Omnov,

g eival to diavuopa Twv Babuwyv ehevBepiag Tou MAwTAPA (3 HETAKIVATELS Kal 3 oTPpodEC), Evw oL

teleiec SNAWVOUV TIG AVTIOTOLXEG XPOVLKEG TTOPOYWYOUC

M sival To 6x6 UNTPWO YEVIKEUUEVNC LATAC TOU TIAWTHPA
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a_ eivol o pntpwo npooBeTng Ao Yo Amelpn cuxvotTnTo KURATOG Onwg opiletat otnv (4.23b)

R(t) elval To uNTPWO TNE XPOVIKNG LoToplag mou epdaviletal otov 0po TG CUVEALENG Kal opileTal wg,

R,(t)= 2 j b, (w)cos(wt)dw (2.37)
n 0

omou b; elval ta otolkeia Tou uNTpwou nPocBetng anooPeong b 6mwg opiletal otnv (4.23b).
Ky kot Kg gival ta ypappikd pntpwa Suckoapiag ubpooTtatikng Kol BapuTIKNG TPOEAEUCEWG
Knioor €lvaL To pntpwo duokapiag AOyw Twv ayKUpWoEwWV

FY eivat n mpwrotdfia Svvapn Séyepong mou mep\opBAvel T ouvelsdopd e SUVOUNG TOU

exc

KOpaToG KaBwg Kat TNV enibpacn Adyw tng mapouaciag Tou cwpatog (mepibBAaaon) kat opiletal wg,

Fgg(t):{%}osw(w)-wt)

o (2.38)

Fl(t)=) A {FMT(U’)} cos(@,(w,)-wt+e), A =42S(w,)dw
i=1

O mpwto¢ 6po¢ edbapUOlETAL OTNV TEPIMTWON EVOG LOVOXPWHOTIKOU appovikoU Airy KUpatog Upoug
2A,evw 0 SeUTEPOG OTNV TEPUMTWON KUUATWY ouvexoug ddaopatog S(w) (irregular waves). O 6pog
oTNV aYKUAN Kat n ywvia ¢@(w) adopolv oTo HETPO ava eUpog KUUATOG TNG SUVOUNG KAl 0T ywvia
daong tne duvaung avtiotolya Kat umoAoyilovtal oto medio tng ouxvotnTag Onwe opiletal otnv
(4.22), evw g; gival n tuxaia ¢paon tng KaBe cuviotwooc i Tou KOUATOoG Bswpoluevn opolopopda

KoToveunuévn oto dtaotnua [0, 2m).

Fe(fi elvat n deutepotatia Suvapn SLEyepong availoyn ToU TETPAYWVOU TOU EUPOUG TOU KULATOG Kall
odeiletal otnv aAAnAenidpacn 600 APUOVIKWY KUMATWY HE CUXVOTNTEG w; Kat w;. Me emiAuon tou
TANpoug Seutepotdliou uSpoduvaplkoU TIPOPAAUATOC TPOKUMTOUY XapnAdouxvol kat ugiouyvol
OpoL SUVAEWV TIOU QVTLOTOLXOUV OTLG CUXVOTNTES |w; - w;| Kal w; + w; avtioToa. IToV Kwdlka
hGAST Aappavovral urmtoPn povo ol XaunAOcuXVeG SUVANELG OTIwC Ipoceyyilovtal and Tov TUTo Tou

Newman [11],

B 2

4 F . (w
Fo(t)= ZA, 2{%} cos(-wt+e,)

- - Farife (@;)>0

r 2 (2.39)
o Fdrlft(wi)

-1 DA -2 o cos(-w;t+g;) , A =25(w,)dw

i=1

- Forire (@;)<0

omou Fg. elvat n péon drift SOvapn
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Fumoor ElvVaL TO SLAVUOUA TWV GOPTIWY TTOU ACKOUVTOL OTOV MAWTHPA ard To cUCTNUA AyKUPWongG
Fwr glval to Sldvuopa Twv Gpoptiwv mou aokoUVToL 6TOV MAWTAPA ad TNV OVELOYEVVHTPLO

Fuisc €lval to &ldvuopa twv Suvdpewv avtiotaong AOYW OUVEKTIKWY (AWVOUEVWY, OTWG

npooeyyiletal anod tov tumno tou Morison (BA. oxéon (2.61)) kal mpooBEtel andoPfeon oTo cUOTNUA,

Fie (1) =§cds u,, (1) u,,(t) (2.40)

omnou C, eival o ouvteAeoTC avtiotaong, S n KABeTn pog tn pon eMLPAVEL KAL U,, N KAOETN OXETIKN

TaxUTNTA OTOoV MAWTAPA

B kot W eival ot SuvapeLlg avwaong Kot Bapoug Tou mAwTthpa Kat epdavilovral povo otnv eélowaon g

Katakopudnc Suvaung

INUELWVETOL TTWE TA KNTPWA TTPOoBeTNG Halag Kat andoBeong Kabwe Kat oL Suvapelc Siéyepong Kat
drift mpoodlopilovtal pe TNV emilucn Tou nMpwtota&lou udpoduvapkol TPofANaTog oTo Medio TNG

ouxvoTnTa .

2.5 To mPATUTO TWV AYKUPWOEWV

To obotnua aykupwong povtelomoleital pe tn duvauikn péBodo (o avtldblacTtoAn pe tnv quasi-
static). Ta otolyeia NG aykUPwWoNG MPooopolwvovtal w¢ aAAnAouyia Sokwv Tou petadEpouv Kal
napolapBavouv povo afovikn ¢option. e kdBs kAAdo aykUpwong Aappavovtal umoyn
adpavelakd, Paputikd kol udpoduvaulkd doptia, evw n emiluon yivetal pe tn HEBodO TWV

TIETEPACUEVWYV OTOLXELWY, OTIWC KOl yla OAQ TA UTTOAOLTTAL LEPN TNG OVELOYEVVNTPLAG.

‘Eotw €va euBuypappo otolxeio PyQy pe apxiko (amapapopdwto) unkog Ly [Zxnua 2.9].To otolxeio
Ba petakwvnBel otn Bon PQ €xovrtag pnkog L, wg anotéAeoua Tng Kivnong Kat Tng mapapopdwong
tou. H adldotatn ouvtetaypévn £€[0, 1] xpnolonoleital yla tnv Tautonoinon tTwv onpeiwv R kata

UNKoG Tou otolxeiou. To Slavuopa B€ang r evog onpeiou Tou otolyelou ypadetal wg,

r=r,+u (2.41)

omou I, eivat n opxw B€on Tou onueiou kat U to Sldvuopa TG GUVOAIKAG UETaKivnong,
ouunephapBavopévng tng kivnong kat Tng moapapopdwons. H mapandavw eflowaon ypapuUEvn yLa TG

OUVTETAYHEVEC TWV aKpalwV KOUPBwWVY ypadeTal wg,

X=Xo+P, Xe =Xy Viq Zey Xey Yoy Zay g, P=U V, W, U, V, W, (2.42)
— —

node P node Q node P node Q
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omou X« elval n B€on Tou kOUPou eite otnv apxikn B€on (*=0) eite otnv TPEYovca mapapopdwuEvn

Béon (*=" ‘) koL p lval To SLAVUOUO TWV PETAKLVAOEWV (KLVNOELG KaL TTAPAUOPDWOELS).

final position

IxAHa 2.9: Kwynuatikr Tou otolxeiou (truss element)

OwpwVTag YPau LKA otolxela kat w¢ Babuolg eAeuBeplag TIC LETAKLVAOELS TWV 2 akpoiwv KOUPwv,

N HeTakivnon evog evoLAUECOU ONUEIOU KATA LNKOC TOU OTOLXEloU ypadeTal WG,

u=N-p (2.43)
(1) 0 0 €00
N=| 0 (16) 0 0 & O (2.44)
0 0 (1-6) 0 0 ¢

omou N eival o mivakag pe otolxela TIg ocuvaptnoel popdng (shape functions). Avtictolxa ot
OUVTETOYUEVEG €VOC onueiou Ry, otnv apylki yewpetplo meplypdadovial pe BAon T YVWOTECG

OUVTETOYHUEVEC TWV KOUBWV Py Kat Qq,

r,=N-x, (2.45)

H tpomn opiletal wg,

L
6= 0 :L__l' L= \/(Xz-xl)z +(y2-y1)2 +(zz-zl)2 = \/DxT -Dx (2.46)
0

evw ta Dx« ka Dp ekdpalovral we,
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T
Dx* = {X*z _X*l’ y*z 'y*l, 2*2 -z*l} = A * x*

T (2.47)
Dp ={u,-u,, v,-v,, w,-w,} =A-p
Kal o Ttivakag A opiletal wg,
-1 0 01 0O
A={0 -1 0 01 O (2.48)
0O 0 -1 0 01
H petafoAn tou unkoug 8L opiletal wg,
SL=t"-5(Dx)=t"-A-6p, t=Dx/L (2.49)
omnou t eival to povadiaio dtavuopa napdAAnlo mpog to otolxelo.
XpNOLUOTOLWVTOC TNV TAPATIAVW OXECN N LETABOAN TNG TpoThG S oplleTal wg,
oL
be=—=[7t"-A-6p (2.50)
LO
evw N petoPfoln tou povadilaiou epamtopevikol Sltavuouatog ot eival,
1 T
6t:Z{I—t-t }-A-6p (2.51)

pe | tov povadiaio 3x3 mivoka.

Ot SuvapkEG e€LOWOELG TOU OTOLXELOU TtapAyovTaL amo thv epappoyn TG apxng duvatwy Epywv,

joaedv —jduT(qE—q’)dzzo

Yo Ly

(2.52)

Onou dun Suvatr petakivnon, q' koL ° Ta adpavelokd kat e§wteplkd doptia (uSpoSuvauikd,
BapuTikd Kot Avwon) ava povada HAKoug, G Kat 0 n afovikr Tdon Kol LeTaBOoAr TNG TPOTIG TTOU
odeidetal otnv oAhayry UAKoug Tou otolxelou Kat V, kal L, 0 OyKOC KAl TO HAKOC TOU

anapapopdwtou otolyeiou.

Me edpappoyr tou vopou tou Hooke kaBopiletal n taon o wg,

o=Ee¢ (2.53)
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ormnou E sival To HETpo eAaoTIKOTNTAC TOU Young

Elodyovtag T oX£0elg yla tnv taon (2.53) kat tn petaBoln tng tpomng (2.50) otnv apxn Suvatwv
£pywv (2.52) kat Bewpwvrtag tn datopn otabepn Kat ion pe Ay £toL wote dV = A, dl, mpokUnteL To

OUOTNUA TWV 1N YPOUULKWY SUVOULKWY EELOWOEWY,

jNT(qe—q') L, dE=FA, e AT -t=f

0

(2.54)

Ol un ypouupikég €lowoelg (2.54) ypapuikomoouvtal yupw amd uwa B8éon avadopdg p° kat otn
OUVEXELA AUvoVTal EMAVOANTITIKA HEXPL T odpAApata va yivouv apkoUVIwG UIKPd, pe Pdon to
KpLTNPLO oUYKALoNG. To avdamtuypa Taylor tng ékdpaong Twv ecwtepikwy dpoptiwv f ylpw amd to

p° Sivey,

of
f=f(xo+p°)+a—-6p=f(x0+p°)+Kt-5p (2.55)
p
Me xpnon twv (2.50) kat (2.51) mpokumtel To untpwo duokapdiag K, [12],
EA EA
Kt:TsAT-{I—t-tT}-A-l—L—AT-{t-tT}'A (2.56)

0

Av n TUKVOTNTA TOU UALKOU p BewpnBel otabepr] Katd UNRKog Tou otolxeiou oL adpavelakol dpot

opilovtal wg,
1 ) 1 1
[N'd L, € = [N (A, ) iiL,d€ = [(N"(pA, )N) L, dE =M} (2.57)
0 0 0

Omou n moodtnTta pA, ekdpdlel TNV avad povAada HAKoug pala Tou otolxelou. Me avoAuTiKi

OAOKANPWGN MPOKUTTEL TO UNTPWO UALaC WG,

[pAL, /3 0 0 pAL, /6 0 0
0 pAL, /3 0 0 pAL, /6 PpAL,/6
v-| © 0 PAL, /3 0 0 0 0.58)
PAL, /6 0 0 pAL, /3 0 0
0 pAL, /6 0 0 pAL, /3 0
0 0 pAL, /6 0 0 PAL, /3]

To Siavuopa Twv eEWTePKWV dopTiwv mou cupPoliletal pe Q, amoteAeital and ta uSpodSuvaplka

Kal Ta udpootatikd doptia (dvwaon) tou otolxelou, tTn duvaun efattiag Tng BaputnTag, KABWG Ko
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Vv avtidpaon tou edadoug otnv nepintwon enadng pe to BubO. Etol avallovtal OTIC MoPaKATW

OUVIOTWOEG,
1 1 1 12
Q=[N'q'L,dé=Q,, +Q, +Qg = [N'q,, L, dé + [N'q,LdE + [N'q,L dE (2.59)
0 0 0 11

Oswpwvtag To BAPOG ava povada PNKoug TG aykupwaong oto vepd F,, Aaupdavovtal tautoxpova

urtodn ot eTdpAcelg Tou PAPOUG KAL TNG AVWONG, EVW OVAAUTIKH oAoKARpwaon tou Q,, Sivel,

“F. L /2

zw 0

Q, = (2.60)

_szLO / 2

Ta vbpoduvauika doptia ava povada PNRKoug Tou otolyeiou L umoAoyilovtal pe tov TUMO TOU
Morison [13],

df,, /dL= pdVa,+C,pdVa,-C,pdV g, +05C,pdS |u—qg]|,(u—qg),

%/_/
Froude Krylov Diffraction Added mass Drag term

(2.61)

omou:

a KoL U €lval N OUVOALKN ETIAYOMEVN ETULTAXUVON KoL TAXUTNTA OTIWG TIPOKUTITOUV TIY OO KAELOTEG
OX£0€Lg TIY amod TN Bewplo TWV apUOVIKWY KUPATWY Airy n amo tn Beswpia twv stream function

KUUATWV. To cUPBOAO N SNAWVEL TNV KABETN CUVIOTWOA TOU AVTIOTOLXOU SLaVUCHATOC OTO oTolXElo.
g, g sivain ouvolikn (kivnon kat mopapopdwaon) emtayuvon Kot taxUTtnTa Tou otolxeiou
C, xat C4 lval oL cUVTEAEOTEG TPOOBeTNG MAlaG KOl aVTioTOoNG TOU UTTOKELVTAL o€ BaBpovounon

dV kal dS lval o anelpootog 0ykog Kal emtpavelo kaBetn otn pon (my yla Eva KUALVOPLKO OTOoLKELo
aktivag R toyUet dV=rtR*dL ko dS=2RdL).

p €lval n MUKvoTNTA TOoU peUCTOU VEPOU

Onwce ¢aivetal otnv (2.61) n ouvoAlkn vdpoduvapikn duvaun eival To aBpolopa Tng SUvapng Tou
kOuatog Froude Krylov, tng 8Uvapng mepiBAaong, tng duvaung Aoyw mpooBetng HAlag Kol tng
SUvaung avtiotaong. O tumog tou Morison Tapgxet aglomiota anoteAéopoata av A/D > 5, érou A to
HUNKOG KUMOTOG KoL D éva XapoKTNPLOTIKO UAKOG TL.Y. N SLAUETPOC TOU OTOLXEIOU, EVW N KLVNUATIKN

TOU KUPATOC UTtoAOYLETOL OTO KEVTPO TOU KABE otolyeiou yla kaBe Siatoun.
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H kaBetn ouviotwoa evog dlavuopatog X ypadetal wg,
X, =X-X,=X- (t"-X)t=(1-t-t") X (2.62)

omou t ival To povadilaio edpamntopeviko diavuopa oto otolxeio kat | o povadiaiog mivakag 3x3. Ta
oUuBoAa n kat t dnAwvouv TNV KABEeTNn Kal tnv edamtopevikn SevBbuvon tou Slavuopatog. H

petapoln tng udpoduvapikng Suvaung ypadetal wg,
6F, =—C, pdV (1-t-t)64-0.5C, pdS |u—q|, (I-t-t')6q (2.63)

Ao tn oxéon (2.63) mpokumTouv MPooBeTa pntpwa palag kal anooPfeong otav petadepbel oto
TIPWTO UEPOC TWV €ELOWOEWVY TIOU SLEUKOAUVOUV TN CUYKALGTN TOU [N YPOUULKOU GUOTAUATOG KATA TN
Slapkela Twv emavoAPewy. INUeElWVETAL WG N HLeTaBoAr tou povadiaiou t ev cupmepAndOnke

oTnV apanavw s¢lowon.

H olokArpwon Twv udpoduvapikwy doptiwv (2°° dpog otn (2.59)) yivetal aplBuntikd otn oTypLaio

B€on kat Aappavovtag umon To TPEXOV KOG L Tou oTolxeiou.

AkolouBwvtag mapopola Aoywknp AapPavovtatl umoyn n ouvelopopd tng emadng tou kAadou
aykupwong pe to BuBo kabwg Kal emumAéov Gpol mou poviehomololv tn Sopikn andoPfeon tou
UALKOU. Autd obnyel oe mpocBeta pntpwa amocBeong kot SuokapPia¢ oto TMpwto HEAOC Twv
SUVOULIKWY €ELOWOEWYV OUVOSEUOUEVA [IE TOUG OVTIOTOLXOUG OpouG SUVAUEWV OTo SeUTEPO PEAOG

(yra Aemtopépeleg BA. To ayyALKO Kelpevo).

H mAnpng nopdn Tou yPaUULKOTIOLNMEVOU CUCTIHATOS TWV SUVAULKWY EELCWOEWV Yla €va oToLxElo

sival,
(M+M,,)-6p +(C,+C,+C,,)-6p+ (K, +K_+K,)-6p=Q—-M-p° —f° - Q" (2.64)

onov,
M eival to untpwo palag
f, K,, elval to dtavuopa Twv ecwTEPLKWY SUVALEWY KAl TO avTioTolxo untpwo duokaupiog

M, kat Cy elvat mpooBeta untpwa Palag Kal anooBeons MPoePXOUEVA ATIO TN YPALLKOTIOINGN TWV

udpoduvapLkwy GopTiwv arod Tov TUTo Tou Morison

Cy, Ky, Qq elval pntpwa andoBeonc kat Suokapiag kal diavuopa GopTiou TPoePXOLEVA ATIO TOV

UTIOAOYLOUO TNG SOULKAG amOoBEonG TOu UALKOU Tou KAASOU ayKUpwaong

Co, Ko €lval ta avtiotoya pntpwa amoocPBeong kot Suokaupiog mpospyoOueva amo tnv

povteAomoinon tng enadng tou kKAadou aykUpwong Le To fubo

Q eival to cuvoAlkd Slavuopa Twv eEwteplkwv doptiwv mou cupmneplapPBdavel 6poug Baputntag,

avwong, ubpoduvaplkwy ¢optiwv kal tnv avtidpaon tou BuBol Aoyw emadng
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H napanavw efiowon adopd oto KAOe oToXElO, EVW YL TNV HOVTEAOTOINON TOU GUVOALKOU KAASou

QayKUPpWoNG, Ta TOTUKA NTPWA TIOU Ttapdyovtal TomoBetolvral KaTAAnAa ota avtiotola KaBoAlKd

OMw¢ yivetal mapadoolokd otn PEB0SO Twv Memepaouévwy otolxeiwv [14]. H Swadikaocia Sev

QTTALTEL LETOTPOTTH CUCTNUATWY CUVTETAYUEVWY, adoU 0T CUYKEKPLUEVN aVAAUOH OL EELCWOELSG TOU

KABe otolyeiou elval ekdppoopéveg oto KaBoAikd cloThua.

2.6 H ouvBeon yLa to culeuypévo cuoTNHA

H ouvBeon AWV TwV EMPUEPOUG EELOWOEWV TIPOKUTITEL WG £ENG:

1.

Apxlkd yla KaBe ocuvictwoa umoloyilovtal ta untpwoa palag, amooPfeong kot Suokappiog
KaBwg kot ta Staviopata ewteplkng ¢optong. Ta oTolxela oUTA E£L0AYOVTIAL OTO TEALKO
cuotnua pe Baocn pia npokaBoplopévn akohouBia dtadoyxng mou cuudwvel pe tn porn dopTIONG
(otnv mepintwon pLag avepoyevvntplag n akoAouBia autr Eekva amnod ta mrepuyla Kol cuveyilet
HE To afovLko oUOTNUA, ToV TUPYO, TN BACH OTAPLENG KL TEAELWVEL LE TIC AYKUPWOELG). XTO TEAOG
TOU BrAUATOC AUToU To cUOTNUA apoucoLaletal katd tunpata dtaywvio (block diagonal) [ZxAua
2.10].

JTN GUVEXELX ELOAYOVTAL Ol KIVNUOTIKEG OUVONKECG TIou oXeTi{ovtal Ue Toug Babuoug eAeubepiag
g. OL 6pot avtoi cupmAnpwvouv To g€l TUAKO TWV UNTPWV TOU cuoThuaTog [XxAua 2.10].

210 3° BAMO cupmAnpwvovtoL ol SuvapLkés ouvBrkeg ou Ba eudavilovtal oto aplotepd KdTw
MEPOG TOU Sloywviou TUAMATOC TWV UNTPWWV Kal oxeTilovtal pe th petadopd Twv doptiwv
METAEL TWV CWHATWV.

TéAoC TO oUOTNUA CUUMANPWVETAL HE TIG eflowoel Twv PBabuwv eleubeplag q. 2 autég
neplappavovrtal ite amA£g oxEoELG avTlotoixlong (m.x. evog ehaotikou Babuol eAeuBeplog pe
TOV QVTIOTOLYO KIVNUOATIKO) £ite SUVAULKEG €ELOWOELG OIWG OTNV TEPIMITWON TWV KLVGEWV TOU
mAwtpa Kobwe Kat Twv Babuwv eheuBbepiag tou cuothpatog ehéyxou (ywvia allpoubiou tou

a€oVIKoU GUOTHMATOC 1 Ywvia Brpatog Twy ntepuyiwy).

To TeAKO cUoTnUa £XEL TN ouVAON Hopdh YL LNXOVIKA SUVAULKA cUoTAUATA,

MX+CX+KX=Q (2.65)

omou X elval To Slavuopa Twv ayvwotwy. Ta untpwa palog, anocBeong kat Suokauiag, M, C, K

kaBw¢ kat n efwtepikn dpoption Q e€aptwvral amo To X Kal TIG XPOVIKEC TTAPAywyous ToU ONoOTE TO

TeEAlkO ovotnuo eival pn-ypoppko. MNa tnv emniluon tou akolouBeitat n idia Sladikaocia

ypappikonoinong pe autr mou utoBetriBnke yia ta . Onote av X =X, + 06X, ya kabéva and ta M,

C, K koL Q, 6a woyvel,
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M(X,X,X)=M, +0,M, -6X+0,M, -6X+0,M, -6X (2.66)

Onou o Seiktng «o» cupPoAilel umohoylopols pe BAaon o yvwotd X, kat TG mopaywyous Tou.
Elodyovtag TIG ekdpACEL] ypaUULKoToinong, tTo clotnua Ba ypddetal mapdpola oAAd pE Ta
avtiotoya untpwa M, C, K kat Q mou mpokUMITouV amo Tn YPApULKoTioinon we mpog tig dLopbwoelg
X,

MGSX + CoX+K6X=Q (2.67)
To teAko mAéov oUoTna OAOKANPWVETAL OTO XPOVO Xpnotpomnolwvtoag éva 2™ taénc oxfiua Newmark.

KaBwg n eniluon yivetatl wg npog ti¢ Slopbwoelg 6X amattovvral emavahfPel wéxpL N vopua Tou

6X yivel emapkwe pkpr.

Blade 1
Blade 2
Blade 3 2
o E
= Q
o +
. £ w
loads communicated from Shaft o £
the 3 blades to the shaft c s
3 ~ 3
loads Tower ]
T communicated
from the shaft to
. the tower
Dynamic . Mooring line 1
coupling terms _ Mooring line 2
N loads communicated from t ) ]
tower and the 3 mooring lines poring line| 3
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Ixfiua 2.10: Mopdoloyia Twv HNTPWY TOU TEALKOU CUCTHATOG
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Kedalatio 3.

ZuleuypEvn VOpO-oEPPO-0EPO-EALOTIKN avaAvon:
AnoteAéopata

2To mapov kepdaAaio mapouaialovral anoteAéouata ™G ouleUyLUEVNG UPO-CEPBO-AEPO-EAQOTIKNG
uedobdou hGAST yia tnv NREL 5MW aveuoysvwntpla avapopdc tomodetnuevn otov nut-Budiouévo

mAwtnpa tou OC4, ouykpivovTac LE MTPOAEEELC QVTIOTOLYWV UTTOAOYLOTIKWY EPYAAEIWV.

3.1 O nu-BuBopévog mMAwtnpag ano tn ¢aon Il tou OC4

3.1.1 Ewaywyn

Ztn ¢aon Il tou OC4 [15], n avepoysvvAtpla avodopds tomobeteital otov DeepCwind nut-
BuBlopévog mMAwthApa pe ocupPBatikoug kKAadoug aykUpwong ota 200m PBdaboc. To BuBlopa Ttou
mAwTNpPa sival 20m, evw ekteivetatl 12m mdvw omd tn péon otdadbun tng Badlaccag. O MAwTAPAG
anoteAeital anmd tov Keviplkd KUAWVSpo Slapétpou 6.5m oOmou endvw e6paletal n pnxavh Kat 3
£KKEVTPOUG KUALIVEpoUG pe Slapetpo 24m otn Bacon Toug Kat 12m oto emavw pépog [Zxnua 3.1]. Ou
£KKEVTPOL KUALVEpOL £lval LEPIKWG YEULOUEVOL LE VEPO. H KATAOKEUH cUYKPOTELTAL OO 15 0pL{OVTLEG
Kot Slaywvieg papsdoug. Asmttopepng eplypadn tng kotaokeung divetal ota [16], [17] koL Twv umd

g€étoon neputtwoswy oto [15].

main
column

pontoons

offset
column<

IxAua 3.1: O nui-Bublopévog mMwtrpag tou OC4 [eikdva amd [16]]
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JTIC EMEPXOUEVEG OUYKPLOELG ammd OAOUG TOUG CUUUETEXOVTEG Ttapoucotalovral to anoteAéopata 3

kwdikwv rou Ba avadépovrtal wg Codel, Code2 kat Code3.

OMot oL KwOLKEG Ypnollomolovy tn HEBodo Tou O&IoKOU OPHNG YloL TOV UTIOAOYLOUO TWwV
aepoSUVOIKWY dopTiwv. EmutAéov ol kwdikeg hGAST, Codel kal Code4d eival kwdilkeg FEM kat
EMioNg xpnolpomnolouv Suvaplkr HEBoSo HoVTEAOTIOINONG TWV AYKUPWOEWY, eVvw oL kKwdikeg Code2
kat Code3 eival modal kwbdikeg mou Paoilovtal otn peiwon twv Badbuwv eheuBepiag pe Baon Tig
SLopopdEC TNG KATAOKEUNG KAl XpnoLpomnoloUv quasi-static povtelomoinon twv aykupwoswyv. TEAOG
oL Kwoikeg Codel kat Code2 xpnoipomololv Tov TUTIO Tou Morison ylo TOV UTIOAOYLOPO TwvV
udpoduvapikwy duvapewv, evw ol kwdikeg Code3 kat Coded tnv emiluon tou udpoduvaplkou
npoBAnuartog Wbavikol peuotol oto nedio cuxvotntag. O kwdikag hGAST xpnollomolel Kat Tig 2
HEBOBOUC KOl CUYKEKPLUEVA OL CUVEXELG UTTAE KaumUAEC avTiotolyoUv otn Bswplo tbavikol peuaotou,

£VW oL 2 SlakeKoUUEVEC oTov TUTO Tou Morison.

310 hGAST Tl KUMATIKA XOpOKTNPLOTIKA uTtoAoyilovtal Aappdvovtag umon tn otypaio 8£€on tou
MAWTNPA Tou v ocuvtopia avadépetal wg (IP). H dtadopomnoinon HeTall Twv 2 SLAKEKOUUEVWY
KaUMUAWV adopad otov Kad’ UPog UTIOAOYLOUO TWV KUMOTIKWY XOPAKTNPLOTIKWY. Ot KAUTTUAEG HE TLG
teleleg umoAoyilouv Ta KUMOTIKA XAPAKTNPLOTIKA oTn Héon otddun tng Bdalacocag (MSL), evw ot
KOUTTUAEG PE TIC TAUAEC €we TN oTyplaia avipwaon tng eAevBepng emidavetag (IWL) pe xprnon tng

puebodou Wheeler's stretching.

3.1.2 16lo0UXVOTNTEG

2tov Mivaka 3.3 mapouctalovtal oL BLocUXVOTNTEG TNG CUTEUYUEVNG KATAOKEUNG Aappavovtog
urtodn tn Bapltnta Kot tn SOULKH andoBeon TwV CWHATWY. MEVIKWG Tapatnpeital koA cuudwvia
TLOU TULOTOTIOLEL KOl TN GUVETH] HOVTEAOTIOINON TNG QVEUOYEVVHTPLOC KOL TNG SUVAULKAG TOU MAWTHPA.
OL 181ocUXVOTNTEG TWV 6 KIVAOEWV TOU TAWTHPA €lval og KAl cupdwvia. Tuykekpluéva n €kdoon
tou hGAST pe tov tumo tou Morison [hGASTm] kat o Codel mpoBAEMoUV eAAXLOTA HIKPOTEPEG surge
Kot sway wSloouxvotnteg ota 0.0088Hz, avti 0.0093Hz mou mMPOPAEMOUV OL UTIOAOLTIOL KWOLKEG
oupnepAappavopévou kat tou hGAST pe xprion tng Bewpiag Wbavikou peuotol [hGASTp]. Emiong ot
SU0 ekdooelg tou hGAST npoPAémouv Alyo peyahUtepeg roll kat pitch Wloouyvotnteg, evw o Coded
TiPOoBAETEL AUENUEVEG LOLOCUXVOTNTEG TTUPYOU Kal afoVIKOU cuotnuatog. Ol MpwTeg LBLOCUXVOTNTEG
TwV Nrepuyiwv elval oe koA ocupdwvia pe e€aipeon tov Codel mou TpoPAEMEL UIKPOTEPES

0oUUUETPEC LBloouXVOTNTEC oTNV edgewise katevBuvaon.

Ot modal kwdikec (Code2, Code3) uMEPEKTIHOUV TG 2% KOUTTTIKES LSLOCUXVOTNTECG TOU TTIUPYOU KAl Th
2" aocUppetpn flapwise yaw Sloouyvotnta twv mtepuyiwv [MNivakag 3.3] os oxéon pe toug FEM
kwdikee (hGAST, Codel, Code4). Mapadeiypatoc xdpn o Code3 mpoPAémel tn 2" TMAEUPIKA
dloouyvoTnTa TOou TUpYoU ota 5Hz, evw ol utoAoLnol KwdLkeg Tepinou ota 3.5Hz. Emiong ot KWEIKEG
Code2 kal Code3 umepektipouv TNV acUppetpn flapwise yaw tSloouyxvotnta ota ~1.9Hz avti ota

1.68Hz mou npoPA£mnetal anod to hGAST kat o Code4 kat ta 1.61Hz ano tov Codel.
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H enibpaon mou €xouv oTIg LELOOUXVOTNTEC TNC OLUIEVYUEVNG KOTOOKEUNG oL SladopeTikég péBodol
UTIOAOYLOHOU TwV USPOSUVAUIKWY POPTIWY ATMOTIUATAL amo T oUYKplon Twv 2 SLadOopETIKWY
ekb0oewv Tou hGAST. Ot L8LOCUXVOTNTEG TNG OVEUOYEVVNTPLOG TIAPAUEVOUV OUETAPBANTEG, EVW N
£€kdoon He xpron Tou tUTou tou Morison, mou eivat oe cupudwvia pe tov Codel, mpoPAénel Aiyo

ULKPOTEPEC LOLOOUXVOTNTEC VLA TLG 6 KIVAOELG TOU MAWTHPA.

NMivakag 3.1: ZUykplon Wlocuxvotrtwy [Hz] yia to culeuypévo cuotnua tou nuL-Bublopévou mMwtrpa tou OC4

Mode description hGASTp | hGASTm | Codel | Code2 | Code3 | Code4d
Platform surge 0.0093 0.0088 | 0.0086 | 0.0094 | 0.0093 | 0.0093
Platform sway 0.0093 0.0088 | 0.0088 | 0.0092 | 0.0093 | 0.0093
Platform heave 0.0583 0.0574 | 0.0573 | 0.0581 | 0.0581 | 0.0556
Platform roll 0.0413 0.0404 | 0.0384 | 0.0397 | 0.0392 | 0.0385
Platform pitch 0.0413 0.0404 | 0.0384 | 0.0397 | 0.0392 | 0.0385
Platform yaw 0.0131 0.0126 | 0.0132 | 0.0136 | 0.0132 | 0.0127
1% tower fore-aft 0.424 0.423 | 0.424 | 0.425| 0.426| 0.465
1% tower side-to-side 0.415 0.414 | 0.415| 0.417 | 0.418 | 0.458
1% drivetrain torsion 0.622 0.622 | 0.608 | 0.623 | 0.628 | 0.672
1* blade collective flap 0.717 0.717 | 0.686 | 0.706 | 0.704 | 0.692

1* asymmetric flapwise pitch 0.677 0.677 | 0.618 | 0.641 | 0.670 | 0.664

1°** asymmetric flapwise yaw 0.639 0.639 | 0.648 | 0.670 | 0.667 | 0.635

1* asymmetric edgewise pitch 1.079 1.079 | 1.002 | 1.080| 1.079 | 1.095

1** asymmetric edgewise yaw 1.092 1.092 | 1.015| 1.091| 1.092| 1.103

2" tower fore-aft 3.417 3.415 | 3.314| 3.864 | 3.898 | 3.405
2" tower side-to-side 3.540 3.537 3.494 3.437 5.012 3.875
2™ collective flap 2.000 2.000 | 1.840| 1.972 | 2.023| 1.928

Z”dasymmetricflapwisepitch 1.876 1.876 | 1.739| 1.718 | 1.914 | 1.829

2“dasymmetricﬂapwiseyaw 1.681 1681 | 1.609| 1.870 | 1.934 | 1.672

3.1.3 Xpovooelpég

3TN OUYKEKPLUEVN Tapaypado Tapouactalovial CUYKPIOELS XpOVOOELpwY amod tnv nepintwon dlc3.1
¢ 2™ ddong Tou OC4, Mou AVTLOTOLKEL 08 GUVORKEG OpoLOpopdoU avépou 8m/s kot Airy KOUATOG
UPoug 6m Kkal reptodou 10s o BaBog 200m. H katevBuvon SLadoong Tou KUHOTOG KAl TOU QVEUOU
oupmintel pe tov afova x. OAot oL PaBuol eheuBepiag eival evepyomolnuévol Kal To cUoThua

eAéyxou Aeltoupyel oTnV MepLoyr) TWV UETOPANTWY oTpodwv.
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210 Ixnua 3.2 oL 6 KIVAOELG TOU MAWTAPA Elval YeVIKWG g KaAn cupdwvia. O Kwvnoelg surge, heave
Kal pitch Sleyeipovtal Gueca amd to KOpa Kal gival epdavng n ouxvotntd tou tTwv 10s, eVw OTIS
Kwnoelg sway, roll kat yaw epdaviletal pewwpévn Kupotikn Sléyepon Aoyw ouleuéng. Omwg
avadpépBnke oto [3] Stadopég otn LEN TLUA TNG surge Kivnong MPOKaAs(TaL amod Un-ypappilkoug
udpoduvapikolg opoug (drift effects). Ytnv mepimtwon edappoyng tou tUMOU Ttou Morison
sudavifovral otav ta doptia untoloyiovtal otn otyplaia Oéon tou ocwpoatog (IP: instantaneous
position) /Kot OTAV TOL KUUATIKA XOPAKTNPLOTIKA uTtoAoyi{ovtal oTto otypaio Bpexdpevo uog (IWL:
instantaneous water level). 2tnv nepimtwon xpnong tng Bewplag Wavikol peuatol (potential theory)
UN-YPOUULKA dawvopeva Aappavovtal untdpn otav cupneplapBdavovtatl 6pot 2" td€ng m.yx. HEow
Tou tumou tou Newman [11]. O kwdikag Code3 kat n Bacllopevn otn Bewpnon Suvauwou (potential)
€kboon tou hGAST rou edpapuolouv tnv ypapuiks Bswpia (1™ tdénc) mpoPAénouvv duola surge
Kivnon. ZnUELWVETAL WG N LECN TIUN TG surge Kivnong Sev avauEVeTal va EMNPEACEL KATIOLO GAAO
onua. H pitch kivnon eival oe kaAn cupdwvia Katl n LEon T TN kabopiletal e CUVENELA OO TNV
agpobuvapky won. O kwdwkag Code2 mpoAéyel mepimou 0.5° peyaAUtepo €Upog. Mapdho Tou ot
Kwnoelg sway, roll kot yaw Aappavouv TOAU HIKPEG OMOAUTEC TIUEC N cupdwvia peTall Twv
Kwdikwv elval kaAn. OL KWNOELC OUTEC elval AlyOTepo QMOOPEVUEVEC OMOTE OE OPLOHUEVEC
TMEPIMTWOELG Sev €xel emMENDeL oUykAlon og TePLOSIKA AUCH, YEYOVOG TIOU eVOEXOUEVWG EENYEL TIg
Sltadopec otn sway kivnon. H Betikn ywvia roll cwotd kabopiletal and tn pomr tou Spopéa. H
kivnon heave eival emiong oe moAU kaAf cupdwvia pe tov Morison kwdika Code2 va mpoPAEmel
HeYOaAUTEPO €UPOG. Zuykpivovtag TiG 3 ekdoxeg Tou kwdika hGAST pikpég Sladopég eudavilovrat
otnVv surge Kol tTnv pitch kivnon. OL 8Uo ekdbOoelg MoOU XpnolUomolouv Tov TUMo tou Morison
TIPOPBAETIOUV UIKPOTEPN HMEON TIUA Kotd 0.3-0.4m otn surge Kivnon kot mepinou 0.2° peyaAltepn
péon TR otnv pitch kivnon oe oxéon pe tnv potential €kdoon, w¢ OmMOTEAECUA TWV

npoavadepBEVTWY UN-YPOUULKWY GALVOUEVWV.

Jto IxNua 3.3 ouykpivetal n tdon Twv KAadwv aykUpwong 1 kal 2 oto onpeio mpoodeong Toug Ue
ToVv MAwTNPA. H péon TN Twv onudtwy eival og MANpn ocupdwvia, evw eivat epdavng n dtadopad
daong kat n eudavion emmAéov UPioCUXVWV CUXVOTATWY OTOUG KWOLKEG TIOU XPNOLUOTOLOUV
Suvapikr pébodo mpooopoiwaong Tou cuotAuaTog ayklpwaong. OL Sladopég autég dev emnpedlouv
TIC KIVAOELG TOU TMAWTAPA OpwG TiBavotata Ba 0dnynoouv oe SLOPOPETIKA KOTIWTIKA ¢opTia oTOUg

KAadou¢ aykupwaong [3] kal kot eméktaon og evoexOUeVo dLopopeTikol oxedLoouol TOuC.

Jto Ixnua 3.4, cuykpivovtal ol mapapopdWOoEL; TNV Kopudr ToU MUPYOU KOl Ol AVTIOTOLYEG POTIEG
otn Baon tou. Onwg avapévetal, poptia Kal mapapopdwaoelg otny dla dtevBuvon £xouv MapopoLla
oupneplpopad. Ta oripata otnv eykapota StelBuvon kabopilovtal amo tn porr Tou Spopéa Kat dpa
supéowg and tov controller. Kupiwg Steyeipstat n 1" tSloouyvdtnta tou rupyou (nepiodoc mepinou
2.5sec) evw elval emiong epudavig n cuxvoTnTA TOoU KUHOTOG UEow oUTleuéng He TG sway kat roll
Kwvnoelg. OL péoeg TIWEG elval o KaAn oUpmtwon, evw e€attiag tng amouaoiag Sléyepong otnv
geykapola Olevbuvon To €UPOC TwWV ONUATWY €ivol MOAU euaicBnto otn povieAomoinon Tng
anodofeong, yeyovog mou Tubavwg e€nyel T dadopéc. Ta onuota otn Slapnkn katevuBuvon

ennpedlovtol kupiwg amd to Kuua. H mpoPAen Sleyépocwv pe peyoAUTEPA EUPN OE OPLOUEVOUG
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KWOLKEG TIOU KAVOUV Xpraon tou TUTou Tou Morison g€nysital amod ta aviiotolya HeyaAUTepa Upn

NG pitch kivhonc.

210 IxAua 3.5, ouykpivovtal n pomr otov dfova Kal N KAUTTIK POT) OTO CNUELD TOU Kupiwg
e6pavou. OL StadopEg otn pomn eival HIKpOTEPEC amd 5% aAAd peyeBUvovtal amnod tnv KAlpako Tou
Slaypapparog. Ot modal kwdikeg mpoPAEnmouv auénuéveg UPIOUXVEG OUXVOTNTEG TIOU GAVEPWVOUV
Sladopd otn povtelomoinon NG amodcoPfeong, tou afovikol ouCTHUOTOC 1 Tou ¢iAtpou ToU

controller (drive train damper). H kountikr pomnr eivot o€ oAU KoAr cupdwvia.

210 IXAMA 3.6, TAPOUCLATETAL N TTAPAYOUEVN NAEKTPLKI LOXUE KOL N YWVLAK TaxUTNTA MEPLOTPODNC
Tou Spopéa mou epdavilouv mapopola cupmnepidopd. H nAekTpikr LoXUG ennpedletal AUeca amno
NV TaxUTNTA MEPLOTPOGDNG TIOU HE TN CELPA TNG emnpedletal and tnv pitch kivnon tou mAwtnpa. Ot
ouykploelc eival oe kaln ocupdwvia, svw ol Sladopég evioxlovtal amd TNV KAMOKA Twv
Slaypoppdtwy. H mepiodog tou kbpatog paivetal otnv taxUTNTA TEPLOTPODAC TTOU AVASELKVUEL TNV

avaykn avantuéng e€eAlyLEVWV cuoTNUATWY EAEYXOU.

210 Ixnua 3.7, cuykpivovtal ol pomég oth pila Tou mrepuyiou Kol oL avTioToLXeG MapapopPWOELS OTO
AaKpo Tou. Onmwce Kal ota Hey€Bn tou mupyou, doptia Kal mapapopdwoel otnv iSla katevBuvon
napouoLalouv mapopola cupnepldopd. Ta peyédn oto emninedo tou Spopéa (in-plane) kabopilovral
ard to BApoCg Kal ival oxeSOV TAVOUOLOTUTIA, VW Elval epdavig n epiodoc TN eplotpodng Tou
Spopéa mepimou ota 6sec. OL TPOPALEPELC TNC KOUITTIKAC POTING KAl TNC avtioTtolyng mopapdpdwaong
otnv Stopnkn katevBuvon kabeta oto eminedo 1o Spopéa (out-of-plane) eival cuvenelg, av Kat
eudavilovral pkpég Stadopec. Emeldn n dlapnkng kateuBuUVON CUUTIMTEL Pe auTr tng Sladoong tou
KUUOTOG, Ttapatnpolvtal auénuéva eupn efattiag tng pitch kivnong. EmumAéov eival tautoxpova
eudaveic kal ol SUo ouxvoTNTEG epLoTPodnG kat KUpatog. H ponr otpéPng eival mapdpola, pe To
hGAST va mpoBA£mel To HIKPOTEPO gUpoC. OL peyaAltepeg Sadopéc mopoucidlovtal oth ywvia
otpeYPng oTo Akpo tou mrepuyiou. Ol kwdikeg hGAST kot Codel mou Aapfdavouv umdyn TOug Un-
VPOLULKA YEWUETPIKA doatvopeva e€attiag peydlwyv nmopapopdwoswy [18] mpoPfAnouy Sl daon,

OAAQ pe SLadOopETIKA LEDTN TLUN KOl EVPOC.
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(e) Pitch kivnon tou mMwtrpa [deg]
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(ot) Yaw kivnon tou mwtnpa [deg]

IXAua 3.2: ZUYKPLON TWV KWHOEWV Tou TMAwTApa: Airy kOpo H=6m, T=10s, opolopopdog Avepog 8m/s).

**hGAST umAe ouvexng ypouun: potential theory, pmhe Siakekoppévn ypapun (teleieg): Morison IP+MSL, prAe

SlaKeEKOUUEVN Ypappn (malAeg): Morison IP+IWL.



37
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Ixfpa 3.3: TUyKpLon TG Tdong Twv KAGSwv aykUpwong 1 kat 2: Airy kOpa H=6m, T=10s, opoldpopdog dvepog 8m/s).
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(B) Awaprkng port otn Bdon [kNm] (6) Awapnkng napapopdwon otnv kopudn [m]

IxAua 3.4: TUyKpLON TWV POTIWV 0Tn BAch Tou MUPYOU Kol TWV MAPAUOPPWOEWY otV Kopudr Tou: Airy kUpa H=6m, T=10s,
opolopopdog avepog 8m/s).

**hGAST umAe ouvexng ypouun: potential theory, pmhe 6Siakekoppévn ypapun (teheieg): Morison IP+MSL, pmAe
SlaKeKOUUEVN Ypappn (malAeg): Morison IP+IWL.
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—h5A5T —Codel —Cpde? — Code3 —Coded —h5A5T —Codel —Cpde? — Code3 —Coded
2150 5000 . . .
2100 4000
E 3000
! =
£ 250 T 2000
= 2000 5
} ..i 1000
= 1950 o o
E S -1000
5 1900 B
+ E —2000
+ 1850 V £ —3000
1800 T _apo00
] ] 5 10 15 20
time [sac time [sac
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IXAua 3.5: TUyKPLON TNG OTPEMTLIKAG KAL TNG KAMITTIKAG POTAG Tou Gfova: Airy kUpa H=6m, T=10s, opolopopdog Avepog
8m/s).
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IXAua 3.6: UyKkpLon TG NAEKTPLKAG LOXUOG Kol TV YWVLAKAG Taxutntag: Airy KOpa H=6m, T=10s, opoldpopdog Gvepog
8m/s).

**hGAST umAe ouvexng ypauun: potential theory, pmAe Siakekoppévn ypouun (teleieg): Morison IP+MSL, pmAe
SLokeKOUUEVN Ypappn (mavAeg): Morison IP+IWL.
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IxAua 3.7: TUYKPLON TWV POTIWV OTh PLlat TOU TITEPUYIOU KOl TWV MOPAUopdWOEWY 0TO AKPo Tou: Airy KUpa H=6m, T=10s,

opolopopdog dvepog 8my/s).

**hGAST UmAe ouvexng ypauun: potential theory, pme &iakekoppévn ypapun (teleieg): Morison IP+MSL, prAe

SlakekoUEVN Ypappn (mavAeg): Morison IP+IWL.
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Kedalatio 4.

PO LKOC USPOSUVAULKAC ETUAUTNC oTig 3A

270 mapov kepaldato avantuoostal n vBpldikn uédobdoc oAokAnpwrikwy eflowoswyv freFLOW yia tnv
emiAlvon tou mpwtotaélovu tplobdiaotarou udpoduvapikou mpoBAnuatoc (mpoBAnuata mepiBAaonc
kot aktivoBoldiag) oto mebdio ouxvotntag, YpPnolUomolwvVTac Tt UEY0O0 CUVOPLOKWY OTOLYEIWV
Baolouévn atnv Euueon SLIATUNWON UE TUNUATIKA OTAOEPEC MNYEC Kal EMineda oTolyEla. STO UVOPO
ouvapuoyncg emBaAdetat n avadutikn Avon puéow petaBoAiknic dtatunwong. H uedodoc avadvel tnv
aAAnAenibpaon KUUATOC-CWUATOC KOl XPNOLUOTIOLEITAL YLX TOV UTTOAOYLOUO TWV QOPTIWV KAl TwWV
Kwnoewv mAwtwv ocwuatwyv. H motortoinon tn¢ uedodou yivetat avalvovrac tov nui-Budiouévo
mAwtnpa tou OC4 kal ouykpivovTag TOUC CUVTEAEOTEC mpoodetne palog kat amooBeong kat Ti¢

duvapueic S1€yepanc UE Ti¢ avtioTolyeg mpoAééeic tou WAMIT.

4.1 MaOnuatiki dtatunwon

H u€Bodog em\UeL TNV aoTPOBIAN, acuuTieotn por YUpw amd MAWTAPES YEVIKAG YEWHETplag. Omnwg
napoucotaletal oto IxAua 4.1, o ouvoAlKOG XWPOoG amoteAsital amd 1o e€wTeplko TUAUO D* mou
EKTEIVETOL OTO AMELPO KOL TO ECWTEPLKO TUAMUA D Tou opiletal amo tnv eAeUBepn emibAveld Ses, TIG
OTEPEEC ETULDAVELEC TWV CWHATWV Sgg, TOV TTUOUEVA Seg KoL TO EEWTEPLKO KUALVEPLKO OUVOPO Sye. 2TO

D o muBuévag unopel va elvat petaBAntoc evw oto D* mpénel va eival eminedoc.

YioBetwvtag tn ouvnodn mepypadn [19-21] yla TG KIVAOELG TOU MAWTHPA )?(t) KOL TO SUVOULKO TNG

ponic O(x,y,z;t) ([19-21]) oto nedio tng ouxvOTNTAG LOXVEL,

X(t)=Re[x e™"] (4.1)

D(x,y,z;t)=Re[p(x,y,z) e™] (4.2)

omou X, ¢ Ta avtiotowa pyadka eupn.
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Ixfpna 4.1: OpLopdg tou Xwplou emilucng KoL TOU GUVOPOU

KaBwc to mpoBAnua eivat ypapiko oxveL n apxn tng emaAAnAiag onote,

6 6 .
P = QHOFOEP TP TWD K O =P+ X @, (4.3)

=1 =1

_ _ig_A COSh[k(Z+d)] eik(xc056+ysin6)

" w  cosh[kd] (4.43)

|
i A i +ysin . 4
©=- g ekzelk(XCOSB y 6)[Baeu VEpO] (44b)
|
w

omou:
®; TO SUVAULKO TOU TIPOOCTIIMTOVTOG OPUOVLKOU KUHMATOG Airy eUpoug A Kal cuxvoTnToC W,
@, To SuvauLlko okédaong efattiag Tng mapouoiag Twv CWHATWY Bewpolpeva akivnta,
(Pr TO GUVOALKO SUVALKO akTvoPoAiag,

@p TO SUVAULKO TTePIBAAONG TTOU OVTLOTOLXEL 0TO ABPOLOUA TOU TIPOOTIIMTOVTOC KAl TOU

okedalopevou duvapLkou
@, j=1,2,..,6 ta duvapikd aktivoBoAiag mou avtotoouv oTLg 6 KLVAOELG TOU MAWTAPO

JTIC TAPATIAVW OXECELC k gival o kupataplBuog, d To Babog, 8 n ywvia Tou MPOCTMTOVTOC KUUOTOG

WG P0G TN KateuBuvon Ox-kal g n emtayuveon tng Baputntag.

J1a mAaiola tng ypoppLkng Bewplog ta mpofAnpata ya toug dtddopoug 6poug Suvapkol maipvouv

NV akoAouBn yevikn popdn:
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Ay =0,inD (4.5)

op, w’

E-?(Pk :0, on SFS (46)
%:gk, onS;, (4.7)
%= h., onSg (4.8)

%Jr Tle.]=0, onS,, (4.9)

‘Omnou ¢ k= 0 avtiotolxel oto mpoPAnua nepibAaong evw @k 1,2,...,6 ota mpoPAnuata aktivoBoliag,

g,=h =22 (4.10)

on
g,=n. & h =0, fork=1,2,...,6 (4.11)
(n,,n,,n,)=n, (n,,n,n;)=r xn (4.12)

n 1N ny gival To kABeto oto avtiotowko oclvopo Slavuoua Pe KAateuBuvon MPOC TO ECWTEPLKO TOU

Xwplou D, kat r eival n B£€on onueiov TOU CWHATOC W TIPOC TO TOTIKO 0 AUTO cloTnua [Oxyz].

To Sduvauko oto e€wteplkd xwpio D* avamapiotatal o€ KUAVOPIKEG CUVTETAYUEVES (r, &, z) otnv

0KOAoUON popdr avamTUyuaToC WG,

@*(r,9,2)=Y > R,,(1) Z,(2)[F,, cosmB+G, sinm8], r>r, (4.13)
m=0 a=0
H (kr)/H (kr ,fora=0
R, (r)= lkar )/ Hy o) (4.14)
K.(k,r)/K, (k,r,) ,fora>1
cosh(k(z+d)) fora=0
1( sinh2kdj
- 1+7
" 2 2kd
Z (2)= (4.15a)
cos(k,(z+d)) fora>1
1 sin2k,d
1+
2 2k d
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e
V4 = ———, fora =0 [deep water
’"“(z) 1 [ pw ] 4.15b

2kd

onou:

Fra Gma  ELVOL OL AYVWOTOL CUVTEAECTEG TOU OVATTTUYLATOG,

OL S€IKTEC M KL & OVTLOTOLXOUV OTOUG OPOUC TWV AVOTTTUYUATWY OE OELPA oTNV allpouBLakn) Kot
TNV Katakopudn kateuBuvon avtiotolya,

H,, eivaln cuvdptnon Hankel 1°° eiSouc tdénc m,

K, eilval n tponornolnpévn cuvaptnon Bessel 2 eidouc, tdéne m,

Io N OKTLVa TNG KUALVOPLKAC EMLDAVELOG CUVAPHOYNG,

Ou apBpot (ik, kq,..,k,) elvatl ot Wblotipég tou mpoPAnuartog Sturm-Liouville otnv katakdpudn
KateVBuVON. ATO TIG LOLOTIUEG QUTEG N kp = k elval 0 KUPOTAPLOPOG TTou avadépetal otn Stadoon
TWV KUPOTWV €VW oL k, yla a>1 avtlotolyoUV OTOUC KUUATAPLOUOUG TwV OmocBEVOUEVWY
Slopopdwv. Ot I8LoTIHEG k, amoTteAoLV TS pileg TN e€lowong SlaoTopdg,

w? =—gk_ tank d (4.16a)

‘Omou yla Tov UNSeVIKO 0po ik TTPOKUTITEL N oXEoN,

w’ =gktanhkd (4.16b)

TIou yia Padu vepd Sivel k=w?/g.

Zme €lval Ta kavovikomolnuéva wblodlaviouarta,

TéNog o teAeoTnG T[] avTloTolXel oTNV KATAAANAN SLATUTIWON TNG CUVAPHOYAG LE TO EEWTEPLKO
npoPANpa n omola efaodahilel mApn ocuvéxela petafl tnc AUonc ota xwpio D, D°. H
OUYKEKPLUEVN amaitnon ooSuvapel Pe Tn OUVEXELD TWUNG KAl KABETNG MOPOYWYOU OTO Syg.
KaBwe ta @ * kat 8n(p* opilovtal amo6 to (6o oUvolo cuvteheotwv F., G, Slvetal n
Sduvatotnta aocBevol¢ Slatumwong tng amaitnong ouvéxelag mpoBaliovtog tn Auon Tou
€0WTEPLKOU TPOoPANUatog otn PBdaocn Tou efwtepkol. Me TO TPOMO QUTO TIPOKUTITOUV OL
€€LOWOELC yLa Ta Fp, KOL G,q. ELOIKOTEPQ,

2n 0

T[‘Pk]:Z Z L.Z,2) {cosmz?j j¢k(ro,y,z) cosmy Z,(C) d{ dy +
m=0 a=0 0 -d
e (4.17)
+sinm19j. J¢k(r0,V,Z) sinmy Z,(¢) d¢ dy}
0 —d
L kRulile, o (4.18)

ma 271d m=0"



45

‘Omou y kat { xpnotomnotlouvtal avti twv ¥ kot z wote va anoocadnviletal n Stadikacia oAokAnpwong

Kal (‘) avtiotol el og mapaywyLon wg mpog r.

InUelwveTOL OTL HE TNV TOPOMAVW TPOoApUoyn, n ouvenkn oktwoBoAiag tou Somerfield

€MAAnNBeVETAL TAUTOTIKA KABWG MEPIAAUPBAVETAL EK KATOOKEUNG OTO AVATTTUYHA TNG AUoNG oto D*.

4.2 ApOuntiki vAomoinon

Ma tnv aplBunTIkn eniAucn Tou TPOoPANATOC XPNOLLOTIOLELTAL N AVOTTOPACTACH TOU SUVALKOU amo

ETULPAVELAKI) KATAVOLN TINYWV,

P(Xo) = [ G(X)G(X;X,)dS(x) (4.19)

G(x;xo)=-4im , r=[x=x, | (4.20)

omou S cupBoAilel to cuvopo tou D.

4.3 YnoAoylopog SUVAUEWV

Metad tnv eniluon Twv mpoPAnuatwyv nepiBAaong kat akTvoBoAilag, Umopouv va UTIOAOYLOTOUV oL
Suvapelg oto OteEped ouvopa UE OAOKANPWON TwV TUECEWV p. XPNOLUOTMOLWVIAC TN
ypapukonolnpévn e§iowon Bernoulli, ot yevikevuéveg Suvdpelg Stéyepong F, . kat amokpong Feg,or
KatBwg Ka To oToXElo TwV HNTPWWV TPOCOETNG pHATag Kot andoBeong ay;, by TPOKUTITOUV wG EEAG:

op . :
p=-p—<p=/wp<p = F=-Jpnd5=-/ijcpnd5 (4.21)
ot ‘ <
Fox, /A== iwp [ (0+¢,)A,dS k=1:6 (4.22)
N
. ~ - i )
Feeacr, =—/ijande=—w2pIxj¢jnde =w2(akj +Zbkjjxj , k=1:6, j=1:6 (4.23a)
S S
i - .
(akj +Zbkj] =—pj¢jnkd5 , k=1:6, j=1:6 (4.23b)
N

O duvapelg dtéyepong Sivovral yla povadiaio eUpog KUPOTOG EVW OL CUVTEAEOTEG POOBOETNC LAlog
Kol andofeoncg ylwa povadiaio TaAdvtwon Kivnong. INUELWVETAL OTL OTLG MOPATAVW OXECELG Ol

udpootatikol 6pot Sev mephapufavovral.
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4.4 E&lowoelg Kkivnong

Ol KwNoelg yla povadlaio evpog KOPOTog A evog mAwtnpa Slvovtal €melta and tnv emilucn Tou

ULy SIKOU YPAUUIKOU CUCTAATOC TwV SUVAHLKWY €ELl0WOewV Kivnong oto nedio Tng cuxvotnToc we,
- ) -1
X(w)/A=[F.,(w)/A] [-wz (M+a(w) + My, )-iw(b(w)+Cpyr )+(K, K +Kyr )] (4.24)

Ormov,

[Fexc/A] elvol n mpwtotdéia Suvapn Stéyepaong avd elpog KUpatog A

M &ival To 6x6 UNTPWO YEVIKEVUEVNG LATOG TOU TAWTA PO

a, b elval ta pntpwa mpocBeTNG LAlog Kal anocBeong

Ky kot Kg gival ta ypappikd pntpwa Suckoapiag ubpooTtatikig Kol BapuTIKNG TPOEAEUCEWS

Mexr, Cexr Kal Kexr elval pntpwa palog, anoofeong kot Suokapiag aveédptnta anod tn ocuxvotnta
TOU KUMATOC KOL XPNOLLOTIOLOUVIOL OTNV EVOWUATWON EMUTAEOV CUVELOGOpPWV TULY. OO ThV

OVEPOYEVVNTPLA 1 TOUG KAASOUG ayKUPWong

4.5 AvOYwon eAevBepng emipavelag

Télog n katavopn tng avuPwong tng ehelBepng emipavelag yla povadiaio eUpog KUUOTOG

umoloyiletal adou £xouv PooSLopLOTEL oL KIVAOELG amod TV (4.24) and Thv MapaKATw oXEon,

2 6nb

7/A =i?w[<p/A] =i?w[ch/A]+%Z[>?j/A] @, ,onS, atz=0 (4.25)

=1
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4.6 AplOuntka anoteAéopata - Motonoinon

H miotomnoinon tng pebodou freFLOW emituyxAvetal cuyKpivovtag UTOAOYLOMOUG LE OVTLOTOLYOUG
Tou WAMIT [22] ywa tov nui-publopévo miwtnpa tou OC4 [16] [IxAua 4.2]. ZUVOMTIKA O
OUYKEKPLUEVOC TAWTAPAC Tapouclaotnke otnv mapaypado 3.1.1. Ta ypappkd mpoPAnpata
nepiBAaong kat aktwvoBoliag emlUovtal ota 200m BaBog. Aappdavovrag umtodn tn CUPUETpia Tou
mMAWTAPA YUpw amd 10 y=0 0 0plOUOC TWV AYVWOTWY UELWVETAL OTO MLOO yla £€olkovopnon
UTLOAOYLOTIKOU XPOVoU. TNV €AelBepn emidpavela xpnollomoldnke pun-6ounpévo mMAEyua [Ixnua
4.3], evw oto undlouma cuvopa cupnepAapPfavopévou Tou mMAwtThpa [ZxApa 4.4] Sounpéva. O
OUVOALKOG aplBuog Babuwv eleubepiag eival 27487, evw ota avamtlyuata TnG eEWTEPIKAG AUong

kpatiOnkav 50 kat 20 6pol Katd z kat & katevBuvon avtiotowa.

main
column

pontoons

Cross
T braces

offset
(‘olumn<

= . (3

IxAmna 4.2: Nepypadn tou nui-Bubilopévou mwtrpa tou OC4 [ekdva amno [16]]

IxAmna 4.3: Mn-8ounuévo mAéypa tng eAelBepng emubavelag amoteAoUpevo ano 11588 otolyeia
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IxAua 4.4: Aopnpévo MAEya Tou MAWTHPA

Ot pn-pndevikoi Gpol twv Suvapswv SlEyepong yla ywvieg kOpatog 0° kat 30° ouykpivovral ota
oxnuota 4.5-4.7, evw ota oxnuoata 4.8 kat 4.9 mopouctalovtal Ta PN-pUndeviKA otolxeia Ttwv
UNTpwwv mpocBetng palag kol anooPfeons. OnMwe avapPeVOTAV OL CUYKPLOELG €lval og TTOAU KaAn
oupdwvia epodocov ot SU0 KWSEIKEC xpnotpomowovv thv Sla Bewpla (1™ tdénc), moapdio mou
vloBeteital Sladopetiky Slatunwon pe to pev WAMIT va xpnowomolel t HEBoSO 1NG
eheuBepoenidavelakng ocuvaptnong Green, evw n mapovca HEBOSOC AVAKEL OTNV Katnyopla twv
UBPLSIKWY cuvoplakwy HEBOSWY xpnollomolwvag tnv mapadooiakrn cuvaptnon Green otig 3
Slootdoelc. Aladopeg OTOUG OUVTEAEOTEG TpooBetng palog kpivovtal MIKPEC TAPOAO TOU

gvioxvovtal and TNV KAHako Twv SLaypoppaTwy.
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IxAua 4.5: Métpo Kat pdon twv Suvdpewv Stéyeponc otn StelBuvon surge, heave kat pitch yia 0° ywvio kOpATog Tou Nut-

BuBlopévou mwtrpa tou OC4.
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Ixfua 4.6: Métpo kat pdon twv Suvapewv Stéyepong otn StelBuvan surge, sway kat heave yia 30° ywvia KOpATog Tou
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— freFLOW — WAMIT
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BuBlopévou mwtrpa tou OC4.



52

WAMIT

12 T T T
11 : : :
1.0
0.9
0.8
0.7
0.6
0.5

Added Mass ALl [kl

04 L Y
0.0 0.5 10 15 2.0

frequency [rad,/sl
(a) NpodoBetn pala Ay

WaMIT

—0.6 T T T T

—0.7
—0.8
—-0.9
-1.0

-1.1

Added Mass ALS [kgm /rad)|

-1.2

AP N S
0.0 05 1.0 15 2.0
frequency [rad/sl

(c) NpdoBetn pdlo Ags

WAMIT

25

1.54 ! ! ! !
152 ' : :
1.50
1.48
1.46
1.44

Added Mass A33 [kl

14z

1.40 . L
0.0 0.5 10 15 2.0

frequency [rad/sl

(e) NpdoBetn pdla Ass

IxAua 4.8: Tuvteheoteg MPOoBetng palag kat arnooPeons Aqy, Ags, Ass, Big, Bis Kot B3z Tou nui-pubilopévou miwtrpa tou

OC4.

2.5

Added Damping B11 [kg/'s|

Added Damping B 15 [kgm,/rad 5|

Added Damping B33 [kg/'s|

(b)

s L L 1 I

(d)

(f)

leg — freFLOW — WAMIT
7 T
= :
5_
4_
3 -
2_
1 e
0 | | | |
0.0 05 1.0 15 2.0 2.5

frequency [rad,/sl
MpooBetn andofeon By

— freFLOW — WAMIT
1 T T T T

0.0 0.5 10 15 20 2.5

frequency [rad/sl
MpooBetn andofeon Bs

I —freFLOW — WAMIT
I I I I

= o
T
|

Ped
[
|

| =

0 | |
0.0 0.5 10 15 20 25

frequency [rad/s|
MpooBetn andofeon Bss



53

159 — freFLOW — WAMIT 128 — freFLOW — WAMIT
8.2 T T T T . 8 T T T T
: . : : ) . . . .
ﬁ 8.0 'E Tr -1
-'_--. ]’_B -.-|-- E I~ 7]
3 |E E:I
B 75 = 5 .
T :l£
74 & 4t =
i
3 70 5 2t :
i 638 S Gt TN
6.6 | | | | E 0 | | | fo
0.0 0.5 10 15 2.0 2.5 0.0 0.5 10 15 2.0 2.5
frequency [rad/s| frequency [rad,/sl
(a) NpdoBetn pala Ass (b) NpboBetn anooPeon Bss
lelg ~ — FEFLOW — WAMIT 19 — freFLOW — WAMIT
10 T T T T . = T T T T
: : : : A : : : :
i I:I_g I B -E 5 —
._..-I-- 0E = 4
& 2
=07 = 3r
% o
g 06 g2
(=8
% 0.5 éE. 1k
£ 04 : : AV - 0 S A
k] | | | | E -1 | | | |
0.0 05 10 15 2.0 2.5 0.0 05 10 15 2.0 2.5
frequency [rad/s| frequency [rad,/sl
(c) NpdoBetn pala Ags (d) Npoéobetn anooPeon Bes

IXAua 4.9: SuvTeAeoTEG TPOOOETNG LATaG Kot amdoBeong Ass, Ags, Bss, Kal Bgg Tou nui-Bublopévou mlwtripa tou OC4.
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Kedalato 5.

Mn-yPOUULKOG UEPOSUVAMLKOG ETIAUTNG OTLC 2A

2T0 napov kepddato avarmtuooetal n puéGodoc hFLOW mou emtAveL to SLodldotato, Un-ypouuLko
ubpodbuvauiko mpoBAnua aAAnAemibpacnc CWUATOC-KUUATOG-PEUUNTOC Yl OQVIKO PeUcTO. To
Aoylouiko Baoiletar otn péGodo TwvV OUVOPLAKWY OTOLYEiWV Kot TN UEIKT Lagrangian-Eulerian
Statunwon. Ta kuuata SNULOUPYOUVTOL EITE TTPOCOLOLWVOVTAC TN QUOLKN Kivnon TOU KUUATIOTHPO
eite 9€tovtag oto ouvopo Loddou t Avon tnc stream function Sewpiag. O xelplouoc twv ocuvinkwv
OTO ATTELPO TPAYUATOTOLEITAL ELOAYOVTAG OPOUC TEXVNTIC AmooBeonc, evw yLa TNV mpooouoiwaon tne
kivnong eAevBepa nAwtwv cwudtwy xpnotuomoleital emavaAnntikn dtadikaoia mpocdloplouol tne
EMTAYUVONG ToUG. Ta aptIUNTIKA AIMOTEAECUATY TTOU TTaPOoUaLa{ovTalL oQOPOoUV MAWTO OWUA, EVW N
mTLotToroinon tn¢ UeBOS0U YIVETOL CUYKPIVOVTOG MEIPAUATIKY KOl aptIUNTIKA AITOTEAECUAT, OTTOU

EMTiONC avaSEIKVUOVTAL KOIL QUITOTIUWVTOL TO UN-YPOAUULIKA POLVOUEVA.

5.1 MaBnpatikn Statunwon Tou PoBARMATOG

H péBobog emilUel tnv aoTtpoBiAn, aouumieotn pon xwpig va Aaupavetal unodn n embavelakn
Taon, oto puolkd xwplo D(t) mou opiletal amd to ouvopo S(t) [ZxAua 5.1]. ITn OCUYKEKPLUEVN
vlomoinon, enhletal to Stodlactato MPOoPANUa oto Katakopudo eminedo (x, z) He TO KOOOALKO
ouoTnua cuvtetayuévwy Og va TomoBeteital otn péon otadun tng eAelBepng emipavetag. O afovag
Z €XelL kateuBuvon TPOG Ta EMAVW Kal 0 afovag x mpog ta 6e€ld, Katd UAKOG TNG KatelBuvong
SLtadoong tou KUpatog. Q¢ Ses(t) oplletal To cuvopo tng eAcUBepng emidavelac, we Ssa(t) Tou Buboy,
WG¢ Swe(t) kat Sge(t) Ta katakdpuda cuvopa oTa aPLOTEPA OTIOU SnULloupyeital To KUPa Kal oto Sefla
TOU Xwplou Omou yivetal amoppodnon Tou KUUATOG avTtioTolxa, evw w¢ Sgo(t) cupPoAilovral ot
emibAveleg MAWTWY N Bublopévwy cwpdtwy. Ta cwpata KwvolvTal €ite Pe TpoSlayeypappévn
Kivnon eite mAéouv ehelBepa UTO TNV emidpaon Twv udpoduvaplkwy doptiwv. To oAlkd BabBuwtd

Suvauikd @(x; t) opiletal wg,

O(x;t) = o(x;t) + U, x (5.1)

omou @(x; t) lval TO UN-HOVIHO KUUOTLKO SUVOULKO Kat Uy n TaxytnTa Tou povipou, otabepol kob’

U og pevpaTOoC.
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IxfApa 5.1: OpLopdg tou xwpiou emilucng KoL Tou GUVOPOU

H &latnpnon tng palog ekdpaletal ano tnv e€iowon Laplace yia 1o oAiko duvauiko Q(x; t) - mapoho
TIOU OTHN CUVEXELO TO TIPOBANUO TTEPLYPAPETAL VLA TO KUUATIKO SUVALKO @(X; t) - evw n cuvelodopa
TOU KUPOTOG pootiBetal ansuBeiag oto nedio. To KUHATIKO Suvaulko @(x; t) emiong Lkavomolel Tnv

eflowon Laplace (5.2),

A =0, oto D(t) (5.2)

Y& KABe onpeio z = {(x; t) Tou cuvopou mou amaptilel TNV eAelBepn erudavela n eiowon Bernoulli
(5.3), yvwotn kal wg Suvaplkn cuvoplakr cuvenkn, e€aodalilel cUVEXELD TILECEWV OTh SLETILDAVELD
HeTalL U0 peuotwv SLadopPeTIKAG TUKVOTNTAC (T.X. HETAEU vepoU Kal aépa). Mpappévn yla to

KUUOTIKO SUVOULKO,

0 1 op U’
@ _ —g Z—E|V<p|2 -U, —(p——o—&—dampl, 010 S, (t) 6mou z ={(x;t) (5.3)

ot ox 2 p

OToV g €lval n emLtdyuvon tng Baputntog, p, Kia yvwaotr mieon avadopdg (m.x. n atpoodatlpikr mou
pmnopel va tebel kal ton pe pndév) Kat p n MUKVOTNTA Tou peuotou oto nedio D(t). H e€aptwpevn and
TO XpOvo otaBepd oAokAnpwong mou apxlka epdaviletal otnv e€icwon Bernoulli anaieidetal

odnywvtag og KATAAANAO emavopLopo tou @(x; t).
H ayvwotn yewpetpia tng eAelBepng emidpavelag npoodlopiletal amo TN UN-YPOUULKA KIVNUOTIKA
ouvoplakn ocuvenkn (5.4),

@ =—Ve-V{-U, %+2—f—dampz, oTo S(t) omou z ={(x;t) (5.4)

ot

mou efaodalilel mwg ta otolyeia peuotol otnv eAelBepn emidpavela Ba Kivolvtal TAPOUEVOVTOS

OUVEXWG OE OUTH.
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H Suvoapikn KaL n KWvnUatikn cuvoplakr cuvlnkn otig e€lowoelg (5.3) kat (5.4) ival ekbpaouEveg oe
Eulerian popdn, evw ol 6pol damp; apopolv GpoUG TEXVNTNG CUVEKTIKOTNTAG KAl avaAUOVIAL OTh
ouvexela (PBA. e€lowoelg (5.12), (5.13)).

Ol e€lowoelg TG eAelBepnc emibavelag ypadovtal loodUvapa os Lagrangian popédn wg,

U2
—=—q Z+—|V<p| —7———damp1, 0T0 S, (t) omou z ={(x;t) (5.5)

ax

P Ve +U, 6, —damp, 6, oto S.(t) omou z ={(x;t) (5.6)

iz’

n oe «nAuL-Lagrangian» (semi-Lagrangian) popon,

do 1, p op U: dZ op p ,

—=—g (Vo[ -U,———L+—=.———=2_damp,, oto S.(t) 6mou z=(x;t (5.7)

dt 9¢ 2| <p| ox 2 dt &z p P slt) ¢beit)
ﬂz—V(p-VZ—UO §+a—(p—damp2, oto S, (t) omou z ={(x;t) (5.8)
dt ox 0z

omou 6; elvar to &éAta tou Kronecker kat d(.)/dt =0(.)/0t+Up-V(.) o TteAeotng OAKAg

TapaywyLong.

JTa oTeped ouvopa Tou PuBol Se(t) Kal TwV CWHATWV Sgo(t), edapuoletal n ouvlnkn un

gloxwpnong,

op .
a—(p:xG ‘n=V(U, x)=V,,—U, n,, oto S, (t) kar S,,(t) (5.9)
n

omou X; elvat n taxutnta oe kdBe onupeio TNG ouvoplakng emipdavelag OMwg opiletal otnv
napaypado 5.2.3, n eival 1o kAdBeto povadlaio Slavuopa otnv EMLPAVELD TOU OCWHOTOC HE
katewBuvon mpog to medio pong Kat Vg, €lval To HETPO TNG KABETNG TaxlTNTAaG 0 KABE onueio TG

emdAVELAC TOU CWHOTOG.

JuvoplakéG ouvonkeg opilovtal eniong ota kKatakopuda clvopa yla va €ival cwoTtd OpLOREVO TO
npoBAnUa, ot onoieg mpénel va e€aopaiilouv cuvenr Snuloupyia Kal anoppodnon TwWV KUUATWV.
Jtnv mapovoa pEBodo To KLU Snuloupyeital pe 3 TPOMOUG: O) HOVIEAOTIOLWVTAG TOV GUGCLKO
KUUOTLOTAPO WG €va KWYoUUEVO owpo, B) BEtovtag Katd KOG Tou cuvopou gloodou tn Alon tng
stream function Bswplog, y) B£tovtog apxikd to SuVOIKO Kal TNV avOuwon otoug KOUBoUG tne
eAelBepng emipaveLaG. e OAEC TIC MEPUTTWOELG N KABTN TaxUTNTA KOTA HAKOC TOU KATAKOPUGOU
ouvopou otnv eicodo Bewpeital Sedopévn, kabopilovtag pia Neumann ouvoplokr cuvenkn.
ErutAéov Kkatl Ta 2 katakopuda clvopa el00Sou-e£060U Ba MPETEL VA ETUTPEMOUV OTO PEUMA VA TA

Samepva.
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0 )

E}—q):xG ‘n , 010 S, (t)

a" (5.10)
9@ _ —u""*(x4;t), 0T0 S,,6(t)

on

H 1" ékdppaon otnv (5.10) avtiotoyel otnv nepintwon a), evw n 2" otnv nepintwon B). AETTOUEPELEG

WG TPOG TN SNpLoLPYLa TWV KUPATIOPWY Sivovtal otnv mapdypado 5.3.7 Tou ayyAwKoU KeLLEVOU.

H amoppdodnon Twv KUPATWY ETUTUYXAVETAL PE XPrON 0PpWV TEXVNTNG OUVEKTIKOTNTAC. ETOoL 0TO Skl
Katokopudo cuvopo e€66ou edappoleTal N cuvOnKN LN-ELCXWPENOCNG TIOU ETUTPETEL LOVO OTO PEVUUA

va dLamepva To cuvopo,
0
6_(::0' 0to S, (t) (5.11)

EmumAéov oto 6efla tunpa tou mebiou opiletal n {wvn amocPeong, n MePLOXN OMOU Yyivetal n
amnoppodnaon Tou KUPATOC cuvNBWC EKkTaong 1-2 pAKN KUUATOG. 3TN GUYKEKPLUEVN TIEPLOXN OTASLAKA
gvepyomolouvtal oL Opol amocoPeong Twv 2 eflowoelg tnG eAelBepng erudavelag. Emiong {wvn
andoPeong oplleTal KOl OTNV APLOTEPN TTAEUPA TOU XWPLOU, WOTE VO ATIOTPETIOVTAL OVAKAAOELG Ao
Tov kupatiotnpa. OL 6pot anooBeong damp; oTig eELOWOELG TNG eAeVBepNG emidpaveLag opilovTal wg,

Wave )

damp, =v,(x)(0.¢—0,0"™), ylon SuvauLkr cuvBrkn (5.12)

damp, =v,(x)(-¢""¢) , ywatnv Kvnpatikn cuvBikn (5.13)

Wave

P Wave . I3 I ' ' .
Omou ta 0,¢ kat { Bewpolvtal yvwoTd Kol €lodyovtal WoTe va armoppodolvtal Hovo Ta
OVOKAWMEVA KUUATA OTNV TEPLOXN TOU KUHOTLOTAPA, €vw otnv meploxn €€odou tiBevtal 0. O

OUVTEAEOTNAC Vi(x) opiletal wg,

|x—xe

b;
v,(x)= a,w[—} (5.14)
Ld

OToU W €lval n ocuxvotnTa Tou KUMATOG, Ly To PAKOG TNG KABe Twvng amodoPeong, x. n 6€on mou
TeAelwVEL 1 apyilel n wvn anodoPeong, evw o; Kal b; elval pubuLoTIKOL cUVTEAETTEG OTOU cuvNBwWg
AapBavouv tic akoAouBeg TéG: a,=(1/2ky), a=1 kat b,= b,=2. k, elvatl o KupoTtaplBUO OTO TOTLKO

BaBog tng kabe Lwvng anooBeonc.



59

5.2 AplOuntikn vAomnoinon

5.2.1 Meuwtn Eulerian - Lagrangian pé6obog

Me Bdon tn pelktr Eulerian-Lagrangian Statumnwaon [23] emttuyxavetal n emiAUcH TOU UN-YPAUULKOU
udpoduvapikol mpoPAnuatog Bewpwvtog ite TIg Lagrangian eite Tig NUL- Lagrangian cuvBnkeg otnv

eAelBepn emupavela, OTwg opilotnkav otig e€lowoelg (5.5), (5.6) f (5.7), (5.8) avtiotowa.

MNna 6edopévo x n ¢ (avaloya pe tn Slatumwon) Kot SUVOHLKO @ KATA UAKOG TOU GUVOPOU TNG
eAeVBepng emidavelag, aplOuntik oAoKANPwWaon oTto XPOVo Twv SU0 e€eAIKTIKWY €ELOWOEWV TNG
eAelBepng emidavelag npoodlopilet tn véa B€on kat Suvaplko. Auto amotelel To Lagrangian pépog
™Nn¢ nebodou. Itnv Lagrangian Statumwon ol kopPol Tig eAeUBepng emidavelog Kivolvtal e Baon Tn
OUVOALKA ToXUTNTA TOUG, EVWw otnVv NUL-Lagrangian ot koppol Kvouvtal povo katakopuda. Katd tnv
€kkivnon tng eniAvong tibevral PndevIKEG TIHEG yla Ta { Kal ¢, eKTOG KL av pia apxikr Avon eivat

SlaBaiun.

Kal otig 2 datunwoelg n e€icwon Laplace, mou elodyetal pe tn popdrn 0AOKANPWTIKWY EELCWOEWVY,
Aewtoupyel w¢ meploplopog cuvdéovtag ta Neumann dedopéva pe ta Dirichlet oe oAdkAnpo to
ouvopo S(t), omwg AemMTopepwg Napouctaletal otnv mapdypado 5.2.3. Autod amoteAel to Eulerian

HEPOG TN HeBObOoU.

Inuewwvetol mwe ot Svo Slatunwoelc (Lagrangian kot Api-Lagrangian) sivat oodUvapeg otnv
mepintwon mou n popdn tng eAevBepnc emipdvelag TePLypAdETAl omd KATOW CUVAPTNON.
AvtlO€twg, povo n mARpwe Lagrangian Slatunmwon emUtpénel Thv mpocopoiwon avadutAolpevwy
KUMATWVY UEXPL TN Bpalon Toug, T oty SnAadn mou n kopudr Tou avadutAoUUEVOU KUMOTOG
OKOUUTAEL OTnv €AelBepn emipavela. Auto elval kol To BewpnTikd 0Oplo €dapUOYNG TNG

OUYKEKPLUEVNG LeEBOSOU.

5.2.2 OAokAnpwrtikn popdn tng e§iowong Laplace kot n apOuntiki enilvon tng

H oAokAnpwtikn e€lowaon yla tnv e€icwaon Laplace €xel tnv akdAoudn popdn,

al,)-¢,) = | [G(x;xo)- W09 _ o M} as(x) (5.15)
t on on
G(x;x )—iln|x—x | (5.16)
N on 0 .

omou G(x, Xp) €lvaL n ocuvaptnon Green, X, omolodnmnote onueio tou medio D(t), x omolodnmote
onueio Tou ouvopou S(t) kal a(xe) N ywvia mou oxetiletol Ye TO Xo. Mo onuela oto D(t), a(xe) =2m,
EVW Yyl onueila tou ouvopou S(t), n a(xe) umoAoyiletal aneuBeiag emAlovtag £va AmAOMOLNUEVO
TPOPBANUO CUVOPLAKWY THWY, Bewpwvtag opotopopde; ouvoplakeég ouvBrikeg 0,9 =0 kau @=1.

‘EtoL n ywvia a(xe) umoAoyiletal wg,
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IaG(X;XO)

a(x,)=- ds(x) (5.17)

N

Ma tnv enilvon g (5.15) 1o ¢ (Dirichlet 8edopévo) i to 0,¢p (Neumann dedouévo) Bewpeital
YVWOoTO oe KABe TURpa Tou ouvopou S(t). Zto oclvopo tng eAelBepng srudadvelag tiBetal Dirichlet
ouvoploK ouvenkn, evw ota umolouta oUvopa Neumann. To TPOKUMTOV MELWKTO TPOPAnUA
eMAVETAL PE TN HEBOSO TWV CUVOPLAKWY OTOLXELWV ULOBETWVTAG THNMOTIKA YPOUMLKEG KATAVOUES @
kav 0, upe enineda otoweia. Ta onueia Omou kavomoloUvtal ot OAOKANPWTKEG EELOWOELS
opilovtal otoug akpaioug KOPBouUG KABe otolxeiou, evw oL anapaitnteg oAokAnpwoelg otnv (5.15)
vivovtat avalutikd. H Swakpity popdn tng (5.15) emthUetol pe t péBodo LU decomposition.

ZNUELWVETOL WG 0TN SLakpLtr Toug popdn ot (5.15) kat (5.17) xpnotuomnolovy Ta idla pntpwa.

Enuthéov n edamtopevikr taxttnta 0,0 0To cUVOPO S(t) Kat oL XWPLKEG TLapAywyoL TNG aviPwong
g elelBepng emubdvelag 0, mou umeloépxovtal otny (5.8), KABWE KAl OTOV UTTOAOYLOHO TwV
SUVAPEWY TWV OWHATwY AopBavovtal otoug KOPBoOuC Tou OuVOpoU apPBUNTIKA WPE Xpnon

nenepacpévwy dtadopwv 2™ tdénc.

Elbik petaxeiplon amalteital otoug oakpaioug kOpBoug tng eAelBepng emipAvelOG OMOU N
ouvoplakn ocuvenkn aAAdlel amno Dirichlet oe Neumann. o TOV LOVOGT LOVTO KAl GUVETL OPLOUO TNG
TOXUTNTOC Kal TNV amoduyr eudaviong tng Aeyopevng “saw-tooth” aotdbelag ol koppol auvtoi
Bewpouvtat duthoi (“double nodes” [24], [25]). EtoL n toxutnta u = (U, U,) oplletal péow Twv 2
YVWOTWV KABETWV OUVIOTWOWV ﬁn(pD Kol angpN OoToUG akpaioug kopPBoug tou Dirichlet kat tou

Neumann ouvopou avtiotolya Kal uTtoAoyileTal AUVOVTOG TO MAPAKATW 2X2 YPOUULKO cUoTNUA,

_ _ D
ux 'an +uz 'nDz _u.nD _an¢

(5.18)

— . — N
ux .an +uz .nNz =u nN —8,,(0

EmutAéov yla va mpokUPoUV CUVETH QMOTEAECUATA Ot HEYAANG SLAPKELAG TIPOCOUOLWOELG lval
ONUAVTLKA N EMAVATTAEYUOTONOLNON ToU cUVOpPOoU S(t). Ma To pev cUvopo TNG eAeUBepng emidbaveLag
xpnolgoroleital moapepBoAn spline, evw ywo T umoloumta oUvopa  YPOUMLK TtapeUBoAn

e€aodalilovrag nwe kaBes xpovikn oTLyUn To cUvopo S(t) moapapével KAELOTO.
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5.2.3 Kwnuatiki Twv CWHATWV

To OTEPEA CWHATA UTIOKELVTAL 08 cUVOUAOUEVN LETOPOPLKN Kal TIEPLOTPOPLKN Kivnon, ou opiletal
WG TPOC TO oWHATOSeTO cuotnua Og. Av Xg(t) elvat To Stdvuopa Béong tou Og, Fs(t) N ywvia twv
afovwy Tou Oz WE IPOoG To KABoAKO cuotnua Og Kat KABe onpeio oto cUVOPo Tou CWHATOG opileTal
and to Tomko Slavuopa Béong r, tote ta Slaviopoata Bong, taxUTNTAC KOl EMITAXUVONG OTO

KaBoAo cvotnua X, , X, X, opilovtat wg,
X (€, 1 ;t) =%, (1) +A(T,(t)) 1, = X =X, +A -1, = X =X, +A 1, (5.19)

Evw ta yevikevpéva dlavuopata B£ong, TaxUTNTOG KAl EMITAXUVONG TOU KAOE CWHATOG, TIOU OTLG 2

Slaotdoslg amotedovvtal amnod tn surge, heave Kat pitch kateBuvon opilovtal wg,
Egz{xglag}r €B={XBI1§B}I Egz{iglég} (520)
A(3;) eival to pntpwo otpodrig, eV N PWTN Kaw n SeUTEPN Mapdywyos Tou opiloviat wg,

9A

A@9,,9,)= 5 =A'8,, A(9,,0,,5,)=A"5,+A" & (5.21)

B

2116 e€lowoelg (5.19) £wg (5.21) ol tedeieg SnAwvouv XpoviKr mapdywyo.

5.2.4 Alvapn TwV CWRATWVY Kot eniAuon th oAoKANPWTIKIG e§iowong yla To ¢,

Ol duvapelg Tou aokoUVTaL 0To WA UTtoAoyilovtal e OAOKANPWON TWV TIECEWV LECW TNG UN-
vpauukng e€lcwang Bernoulli ypappévng wg mpog tnv mieon,

1 op U
p=—p(ep, +E|ch|2+uo—(p+7°+gz) (5.22)

OX

Onwe avadépetal ota [25], [26], 0 UMOAOYLOMOC TOU WN-HOVIMOU OpoU (; HE oxnuata
TMENMEPACUEVWY Sladopwy OTO XPOVO TIPOKAAEL aplBUNTIKEG aoTABeleg, WOlaitepa otnV Mepintwon
KIVOULEVWV CWHATWV. EvaAdaktikd onwg avadépetat oto [27], n e€lowon Laplace yia to ¢, pmopet
va ertAuBel AapBavovrtag umoyn TNV KVNUATLKA TG pong. Auto odnyel og akplPr mpocopoilwaon tng
SUVOULKAG TWV CWUATWY, KIVOUREVWY N Un. To TPOBANUA CUVOPLOKWY TWMWV yla To @; opiletal

OHOoLa UE QUTO VLA TO ¢ OV TIOPOYWYLOTOUV OL OVTIOTOLXEG CUVONKEC WC TTPOC TO XPOVO,
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Ad=0, oto D(t) (5.23)
1 op U
@, =—g{-=|V |2 —Uo—w——o—&—dampl, oto S,(t) (5.24)
2 ox 2 p
P _0, otas,,(t) koS, (t 5.25
an , ota Sy, (t) ko S, (t) (5.25)
0 ..
L =X, -n+q(x;), oto S,,(t) (5.26)
n
o, =X, -n+q(x;), 010 S, (t)
5 (5.27)
P —a.""(x4;t) ,010 S, (t)
on

To Dirichlet 6edouévo otnv eAevBepn emipavela (5.24) kot to Neumann dgdopévo ota KvoUpEeva
owpata (5.26) kat (5.27), opilovtal HeTd TNV EMiAUCN TOU GUVOPLAKOU TIPOPBANUATOC YLot TO SUVAULKO
®, WOTe va €xouv poodloplotel to 0,¢ otnv eAelBepn emdAvela KaL TO SUVALKO ¢ OTO GUVOPO

TWV CWHATWV.

Enuthéov X, X, X, elval ta Staviopata Béong, taxitntog Kat EMITEXUVONG OTO OUVOPO TWV
CWUATWYV ONWG oplotnkav otnv mapdypado 5.2.3 Kat g(Xg) eival to eaptwpevo and to Suvauikd @
HEPOG TNG KABETNG OTO CWHA EMITAXUVONG. Ma v UTIOAOYLOTEL TO g(Xg), ELOAYETAL EVa CWHATOSETO,
KOUTIUAOYPAULO CUCTNLOL CUVTETAYUEVWY (S, n) ME S, n TO ePAMTOUEVIKO Kal KABeto povadiaio
Slavuopa otnv empavela Tou cwpoto¢. Me Baon tnv anddeltn tou van Daalen [27], mou emiong
xpnotgornoifnke oto [28] yla TIg 2 SLAOTACELS, 0 0pOoC g(Xs) avamtuxBnke MepALTEPW WOTE va
Aappavel umoyn toug 6poug tou otabepou peupatog [Appendix B Tou ayyAwol kelévou]. H teAkn

ékdpaon oTig 2 SLaoTACELS Yl To g(Xg) glval,

qix.)= (X, -s—0,0—2U,0.x) I,
—(k 0. +2k U,0.x+0,p+U,0,x)(x;"S) (5.28)
—(k, 0,0+ kU,0,x—0.p—U,0.x)(X;-n), oto Sy, (t)

_0,x0,2-0.20,x
" (0,x+0,2)"*

(5.29)

omou G, 9,, ¥, elvar n pitch ywvia, taxdtnta kat €mrdyuvon TOU CWHATOG Kat k, N TOTKA

KOUTTUAOTNTA TNG ETULPAVELNG TOU CWHLATOC.

Ot epanrtopevikeg mapdywyot 0.9, 0. @, 0, ¢, 0.X, 0_X, 0.z, 0 .Z unohoyilovtat apOunTKd Le
xprion menepacpévwy Stadopwv 2™ TdEng yia avopodpopda mAéyuata. H avtiotowyn oAoKANPWTIKA

eflowon opiletal opola pe tnv (5.15) wg,
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o9, (x)
n ®,(x)

a(Xo)- (%) = j {G(x;xo)- ds(x) (5.30)

8G(x;xo)}
: on

To emutAéov UumoAoylOTIKO KOOTO¢ yla tnv emiluon tn¢ (5.30) kplvetalr WIkpo, edooov
xpnotgormnotovuvtal ta dla untpwa pe tnv (5.15) kat xpnolpomnoleitat n péBodog LU decomposition

otnv omnola povo to Sel HEAOG TOU ypap kol cuotiuatog Ba eivat SlapopeTiko.

5.2.5 EAel0gpa MAwTtd cwpata

OL Kwnoelg ehelBepa MAWTWY OWHATWY eival emumAéov dyvwotol Pabuol eleuBepiag tou
npoBAnuatog. O mpoodloplopog toug Paciletal oty SUVOULIKEG €ELOWOELG Kivnong Kol amoTeAel
HEPOC TNG eMiAuoNG. YSPOSUVAULKEG SUVANELG KAl SUVAUELS BaplTNTAG AmMoTEAOUV TNV €EWTEPIKN
Sléyepon Twv ocwudatwv. Onwcg avadépdnke otnv mapaypado 5.2.4, ta ubdpoduvaulkd doptia
umoAoyilovtal emAUovtag eMMAEOV TO TPOPBANUA GUVOPLOKWY TLLWVY YLA TN XPOVLKI TApAywyo Tou
Suvaukol @,. Itnv mepintwon ehevBepa MAWTWY CWUATWY OHWE, KAVEVA EK TV @, KaL O, P, Sev
elval apxkad yvwoto, onote Sev pmopel va kaboplotel n amapaitntn cuvoploky cuvlnkn yla tnv
emiluon tou TPOPANUATOC CUVOPLAKWY TILWV yla To @ MNa va {enepaotel n mapandvw SuckoAia
edpapudletal pia emavainmrikn Stadikaoia [29, 30], 6mou os KABe Bripa n EMLTAXUVON TOU CWHOTOG
EB TiBetal apylka ion Ue auth TOu MPONYOUUEVOU XpovikoU Brpatog. ETol yivetal ektipnon tou
0.®, péow tng (5.26) kot kabiotatal eMAUOLUO TO TTPOPANKA CUVOPLOKWY TIUWV YL TO @r. MO
TPoobLopLOTEL TO ¢; OTO OUVOPO TWV CWHATWY KAl UTTOAOYLOTOUV Ta USpoduvaplkd ¢optia, n

ETULTAYUVON TOU CWHATOG AVAVEWVETAL Ao tnv e€iocwaon Kivhong wg,
EB:M_l{F_C'EB_K'gs} (5.31)

omou otnv (5.31) M eival To YeVIKEUPEVO UNTPWO UATOC TOU CWHOTOC OPLOUEVO WG TIPOC TO KEVTPO
Bapoug tou, C kat K eival e€wtepikd pntpwa andéoPeonc kat duokaupiog (m.x. and 1o clotnua
aykupwong) kat F eival ta udpoduvauikd kat Baputikad doptia. Ot emavalnPelc cuveyilovral péxpt

Va LKAVOTIoLNBel TO KPLTNPLO GUYKALONG YLOL TNV EMITAXUVON TOU CWLATOG.

Ta Staviopata B€ong kat TaxuTNTAG TWV CWHATWY §; Kat SB npoodlopilovral pe oAokARpwaon oto

XPOVO TWV TTAPOKATW EELOWOEWVY,

d§, .
" =€, (5.32)
dgs =§, (5.33)

dt
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INUELWVETAL TIWE N EMLTAXUVON TOU CWHATOG EMNPEATEL LOVO TOV UTTOAOYLOUO TOU (; EMavopilovtag
uévo tig Neumann oplakéc ouvOrkeg (5.26) kat (5.27) yia to 2° mpOBANUa CUVOPLOKWY TLLWV YL TO
@i, EVW N YEWHETPLA TOU OUVOPOU KOBWC KOl TO SUVOUIKO ¢ Tapapévouv auetdBAnta. ETol n
npoavadepBeioa enavalnmuikn Stadikacio dev aufdvel To UTIOAOYLOTIKO KOOTOC, adouU armarltel

HOvVOo TNV emnilucon Tou TPOPANUATOC GUVOPLOKWY TIHWV yla To ¢@; (5.30) xpnotluomolwvtag ta nén

OVTECTPOUUEVA UNTPWO, OVAVEWVOVTACS LOVO To Sefl péNoG.

5.2.6 OMAokApwon oto Xpovo

Av ue u(t) cupBoAicoupe To SLAvVUOUA TWV AYVWOTWY TToU EPIAOUPAVEL TO SUVALKO oTnV eAeUBepn

eTLPAVELA Qrs, TG B€0elg mou opilouv Tn yewpetpla TNG €AeUBepng emPAVELOG Xps KOl Ta

yevikeupeva Staviopata BEong Kat TaxVTNTag Twv eAeVBepa MAWTWY owHdTwV § Kat §; avtictoa

U(t)={(st ers I£B ISB}

(5.34)

4

Téte pe Bdon t péBodo Runge-Kutta 4™ ta€ng yivetal ohokAfnpwon oto xpdvo aklouBwvtag ta

akolouBa pruara,

s
ut+dt=ut+zbi 'ki

i=1

t,=t+c -dt
du
k1=dt~E(ut; t,)

k=dt -3—‘:(ut Ha, ka1 ), 2<0<S

Omou yla S=4 (4" td€n), ol cuvteheoTtég a;j, b; kau ¢; Sivovtal otov Mivaka 5.1.

Nivakag 5.1: ZuvteAeotés TG HeBSS0U oAokAfpwonc Runge-Kutta 4™ tdéng

0 0
C | On 1/2 | 1/2
Cc3 | a1 as; 1/2 10 1/2
Cal|l Qs Qa Qs 1 0 0 1
by b, bs by 1/6 1/3 1/3 1/6

(5.35)
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5.2.7 ‘EAeyxog akpipelag

Y& KABe xpovikd Bripa umoAoyilovtal Ta opAaApaTo OYKOU Kol EVEPYELAC, w¢ evOeifelg oTtabepng kat
akplBoucg apBuntikng emihuong. To odpdApa Oykou eléyxel tnv dlatipnon tng palag, evw TO
odAAPA TNG EVEPYELAG TNV SLOTAPNON TNG OPUNG KOL TNG EVEPYELXG. TN HEBOSO TwV ouVOPLAKWV

otolxelwv o 0ykog V Kal n oUVOALKN evépyela E urtoAoyilovtal wg,

V=IdV=Iz-nzdS (5.36)
Q

N

1 2 acp U2
E= z +=|Vo|[ +U,—+—2 |dV
i[g 2| o +U, ox 2 J (5.3

Il
”—

1 ., 1 1 .,
—gzn,+—@o,e+U, @ n,+—zU,n, |dS
(2 z 2 4] X 2 0"z
Ta avtiotolyo OXETIKA OPAAPOTO OYKOU Kal eVEPYELAC opllovTal wWE TTPOG TG OPXLKEG TILEC TOUC.

5.2.8 T[POHULKOTIOLNUEVEG SLOTUTIWOELG

H mapoloa péBodog AapBdavel umoyPn TG 2 UN-YPAUUKOTNTEG TOU TPOPAAUATOC: AUTH TIOU
oxeTiletal pe TNV eAeUBepn eMLDAVELA KOL QUTH TTOU OXETI{ETAL e TA KIVOUEVA owpoTa. Onwg £XeL
nén mepypadel ot MponyoUpeveg mapaypddoug, oL ouvbnkeg otnv eAelBepn emudpdvela
edappolovral otnv oTiypLaia B€on tng (memAeyuévn Un-ypappkotnta), Statnpwvtag 0Aoug Toug Un-
YPOAUULIKOUC OpoUC TwV €§loWoewV (pNTA HN-YPOUUKOTNTA), Kal To (6lo cupBaivel PE TIC OPLAKES
OUVONKEG oTa KWVOUHEVO cwpata mou edpapudlovrol otnv okplfry B€on toug. AUVO ATMAOMOLACELG
UTItopoUuV va eloaxBolv Tou aro tn Uia EMITOXUVOUV TOUG UTTOAOYLOHOUG Kal oo TNV GAAN apéxouv

TN SuvaToTNTO AMOTINCNG TG ONUACLOG TWV UN-YPAUULKOTATWV.

H mpwtn amAonoinon ouxva avadépetal wg ‘body nonlinear’ Statunwon kat AapBdavel untdyn poévo
TN UN-yPAPULKOTNTO €faltia TwV CWHATWY, &VW OL 2 CUVOPLOKEC OUVONKeg otnv eAeuBepn
empavela epapudlovral otn péon otabun, amaleidpoviag Toug Un-ypappitkolug opoug. H deltepn
armAomolnon eKTOG amo TN YPOUULKOTOLNUEVN AeVBePN emidavela, emmAéov Bewpel Ta KivoUpeva

owpoata otn péon O€on touc.
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5.3 ApOuntikad anoteAéopata: Mn-ypappiki aAAnAenidpaon KUpatog-eAeUBepa

TAWTOU CWHATOG

Damping Zone T Damping Zone
2A i i 2A

<V

0.25m &

Incident wave
I
v

IXAua 5.2: Oplopdg Tou umoloylotikoU Xxwpiou otn pEB0S0 CUVOPLOKWY OTOLKELWY Yl TNV Tiepimtwon tou eAelBepa

TMAWTOU CWHATOG.

Ztnv napoloa nmopaypado eetaletal oe opBoywvio UTIOAOYLOTLKO Xwplo BaBoug d kat unkoug L éva
eAeVBepa MAWTO CWUA TIOU TEUVEL TNV eAeVBepn emidpavela [ZxAua 5.20]. OL KIVAOELC TOU CWHOTOG
kaBopilovtal and tnv Spdon Twv KUPATWY, EVW AUTO CUYKPATEITAL amd €va eAATnplo TIou evepyel
otnv opllovtia kateuBuvon x. To BuBLopa Tou cwpatog sivat d,=0.25m, n Baon tou B=0.5m, n
OKTlva TNG KUKALKAC ywviag r=0.064m, n pala tou m=125kg, n adpAvela wg mpog To KEVTPO HAlog
1,=4.05kgm’, 10 KévTpo WALAG Zym=-0.115m kot n Suokapdia kol amdoPeon Tou ehatnpiou
k=197.58N/m kat c=19.8N/(ms) avtiotowya [ZxAua 5.2].

Ta kOpota ebpoug A=H/2 slodyovtol oto nedio armd To apLoTEPO GUVOPO, OTIOU YIVETOL CUVAPHOYH
He TN stream function AUon, evw n adtdotatn cuxvotnta é=w’B/2g petaBdMetat ano 0.2 éwg 1.75
[Mivakag 5.3]. MNa kaBe ocuxvotnta pubuiletal kataAnAa to xwplo wote d=A kal L=8A, evw ot {wveg
andoPeong £xouv HAKOG Lg=2A Kal oTa 2 dKpa.

H Slakpttomoinon tou ouvopou mepthappavetl 400 kOpUPoug otnv eAslBepn emidavela, 200 oto Bubo,

30 ota katakopuda cuvopa kol 100 oTo CWUA, EVW TO XPOVIKO Bripa opiletal yia kaBe ouyxvotnta
oo pe dt=T/100.
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Mivakag 5.2: Elogpyopeva KUMATA YLa TV TTPOCOUOLWoN TOU MAWTOU CWHOTOG

N | &w’B/2g w(lrad/s] | T[s] |A[m] H/A, H/A,
H=1cm H=7cm
1 0.20 2.8009 | 2.2432 | 7.8540 | 0.0013 | 0.0089
2 0.25 3.1316 | 2.0064 | 6.2832 | 0.0016 | 0.0111
3 0.35 3.7053 | 1.6957 | 4.4880 | 0.0022 | 0.0156
4 0.40 3.9611 | 1.5862 | 3.9270 | 0.0025 | 0.0178
5 0.50 4.4287 | 1.4187 | 3.1416 | 0.0032 | 0.0223
6 0.55 4.6448 | 1.3527 | 2.8560 | 0.0035 | 0.0245
7 0.60 4.8514 | 1.2951 | 2.6180 | 0.0038 | 0.0267
8 0.65 5.0495 | 1.2443 | 2.4166 | 0.0041 | 0.0290
9 0.70 5.2401 | 1.1991 | 2.2440 | 0.0045 | 0.0312
10 0.75 5.4240 | 1.1584 | 2.0944 | 0.0048 | 0.0334
11 0.82 5.6715 | 1.1079 | 1.9156 | 0.0052 | 0.0365
12 1.00 6.2631 | 1.0032 | 1.5708 | 0.0064 | 0.0446
13 1.25 7.0024 | 0.8973 | 1.2566 | 0.0080 | 0.0557
14 1.50 7.6707 | 0.8191 | 1.0472 | 0.0095 | 0.0668
15 1.75 8.2853 | 0.7584 | 0.8976 | 0.0111 | 0.0780
16 2.00 8.8574 | 0.7094 | 0.7854 | 0.0127 | 0.0891

210 IxNUa 5.3 ouykpivovtal pUn-ypopUKEG TPOAEEELG TNG HeBOSou hFLOW yla Thv TpWwTn OpUOVLKN
TWV 3 KIVAOEWV TOU owpoTog (surge, heave, pitch) kat yla tnv opllovria drift Suvaun Ue PETPAOELS
Ttwv Nojiri kat Murayama [31], kaBw¢ kal urtoAoyLlopoUg amo toug Tanizawa kat Minami [32] kal toug
Koo kat Kim [33] yta 0{og kUpatog H=0.07m, Ttou €miong XpNOLLOTIOLOUV UN-YPAPUIKOUC ETUAUTEC E
Baon tn nEBodo cuvoplakwy otolxelwv. Ma va yivel Stepelivnon TNG onUAcLag TNG MOPAUETPOU N-
YpOpULKOTNTAG (Wave steepness H/A) £ywvav umohoyilopoi pe to hFLOW kat ywa H=0.01m, émou n pn-
YPOUULKN AUon &ev Stadépel TTOAD oo T YPOILK.

Makpld ard To onUelo cuVTOVIoHOU N cupdwvia Twv 3 StadopeTikwy Kwdikwy gival apLotn Kal yLo
TI¢ 3 Kwnoelg [2xAua 5.3a, b, c]. Kovtd oto cuvtoviopd oto eUpog cuxvotntwy 0.5<6<0.7 oL pn-
VYPOUULKOL OpoL gival onuovtikol, omweg mpokUmtel and tn Sladopd TwV AMOTEAECUATWY UETALY
H=0.01m kat H=0.07m. Itnv mepimtwon H=0.07m ta €0pn TwV Kwnoswv surge, heave kot pitch
LELWVOVTAL OTIWG OTO Ttelpapa. NMapOAo OV YEVIKWE OL UTIOAOYLOUOL CUGWVOUV LE TA TTELPAUATIKA
QIMOTEAEOUATA, N CUVEKTIKOTNTA MLBOVOTATA LELWVEL AKOUO TIEPLOCOTEPO TNV pitch otpodn kat kat’
EMEKTOON TNV surge kivnon péow tng surge-pitch oculeuéng otig ouyvotnteg €=0.35 kat 0.5. TUyKplon
TWV UTIOAOYLOTIKWY £PYAAEiWY OTNV TIEPLOXT TOU cuvtoviopoU Sev eival Suvartr, kabwg ot Tanizawa
kat Nimani 6ev 8ivouv amoteAéopata og autd To VP0G CUXVOTATWY, evw ol Koo kat Kim Sivouv pévo
yla €=0.6. Napoda autd 1o hFLOW Sivel cuven amoteAéopato 0TO GUVTOVIOMO yia =0.5 £wg 0.6,

Omou To £0POG NG pitch kivnong Eemepva tig 30°.
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Jtn ouykplon twv duvapewv drift [Ixnuo 5.3d], €xel mpooteBel kol n MOPTOKAAL KOUMUANR TOU
avtiotolyel otoug 2™ td€ng umoloylopols katd Maruo, w¢ pia emumAéov mnyn muotonoinong. Ta
anoteAéopata tou hFLOW ywa H=0.01lm elval o aplotn oupdwvia pe autd tou Maruo (ot
umoloylopol €ywvav pe BrApa adldotatng cuxvotntag dé=0.1 kat dpa n diadopormnoinon oto eUpog
0.4<€<0.5 odeiletal oe autd). Itnv mepimtwon omou H=0.07m, ta oamoteAécpatra tou hFLOW
Sladépouv and autd tou Maruo POvVo oTnv TIEPLOXH TOU GUVTOVIOHOU, TipOAEyovTag UeYaAUTEPN
Suvapun drift, WS oNUAVTIKA pLKPOTEPN Ao autr Twv Koo kal Kim. Itnv mepLoxr Tou GUVToVIoHoU
N LeTpnUévn Suvaun drift elval cuoTNUATIKA ULKPOTEPN amd auTr Tou Maruo mibavwg efattiag tng
OUVEKTLKOTNTAC TIoU &€&V LOVIEAOTOLE(TAL AMO TLG MOPOUOEC aplOuNnTIkEC uebBddouc. ITnv meploxn
OUXVOTNTWV €KTOC TOU OUVTIOVIOMOU Kol pEXpL €=1.25 ta amoteAéopata tng mapolooag peBodou
oupdpwvolv pe To Telpapa. Na peyoltepeg ouxvotntee otadlakd n péBodog mpoPAEmel
peyohUtepeg Suvauelg drift oe oxéon He TIC UETPAOELS, TIOU OUWC Elval HIKPOTEPEC ATO TIG
nipoBAEY el Twv 8U0 AAwv peBOSWV Kal og MANPN cupdwvia Ue Tov UTIOAOYLoUO Katd Maruo. Auth
n Sladopomnoinon pe To Teipapa evOeXopEVWE va odelAETAL OTN OUVEKTIKOTNTA 1 TNV TBavn

Bpauvon Twv KUPATWV.

210 IXAMa 5.4 cuykpilvovtal oL 3 TPWTEG OPLOVIKEG TwV USPOSUVAKWY GOPTIWV HE TIC aVTIOTOLYESG
nipoBAEY el Twv Koo kat Kim [33]. H ocupdwvia otnv kotakdpudn duvapn Fz kat tn porn My elval
aplotn, evw otnv opllovtia duvaun Fx elvat koAf. Zuykekplpuéva to hFLOW mpoPAémel Alyo
pkpotepn 1" appovikn yia ouxvotnteg £€>0.75 Kat pkpotepeC 2" kot 3" apUOVIKEG oTNnV TEPLOXH TOU

OUVTOVLOHOU.

Mapoha autd, Kat ot 2 pEBodol mpoBAEMOUV HEYOAUTEPEC 2°° APUOVIKEG Ot 1% OTIC TIEPUTTWOELG TNG
opllovTlag Kol Katakopudng Suvaung Fx kot Fz, mou elval €vdelfn evepyomoinong Twv Hn-
VPAUUKOTATWY. Mo TNV Fx autd cupPaivel oto cuvtoviopd yla €=0.6 omou to ocwpa odnysital os
LEYAAEG OTPOdEC, evw yla TNV Fz yla £&=1.5 kat adopd otdcipa KUUATA TOU avantlooovTol otnv
apLoTEPN TIAEUPA TOU CWHOTOG QMO TOUC EMEPXOMEVOUC KUUOTIOMOUG Tou Sdnpoupyolv éva apyd
dBivov kab’ vPog Seutepotallo medio MEcswy, OTMwWE avadEpetal Kal oto [26] kal £xel peAetnOel
ota [34-36].

210 IxAua 5.5 mapouclalovtal XpovooelpEg Twv GopTiwV Kal TWV KIVACEWV TOU CWHATOCG UETA TO
MEPOG TWV PeTafatikwy datvopevwy pe 1o hFLOW. H mepintwon 6mou to UPog Tou KUpaTog ival
H=0.07m em\éxbnke yla 3 ouyxvotnteg €=0.25, 0.75 kat 1.75 mou KOoAUTTOUV OAO TO €UPOG
OUXVOTATWV, EKTOG TOU ouvtoviopou. H xapnAotepn cuxvotnta §=0.25 Bploketal ato 6pLo oxvog NG
YPOUULKNG Bewplag kol w¢ €k Ttoutou divel oxedov OpHOVIKA onuata. 2tn ouyvotnta é=0.75
OTAOLOKA €VEPYOTIOLOUVTOL Ol MN-YpOoupKol Opol, evw yla €=1.75 amoktoUv onupocio Kal sival
Kupilwg epdaveic otn SUvaun kal Ttnv Kivnon otnv katakopudn SievBuvaon heave, ONwe avapevotay

KoL ard to IxAua 5.4b.

TéNog oto IxAua 5.6 mopouctdlovtal Ol aVTIOTOLXEG XPOVOOELPEC SUVOUEWY KOl KLWWAOEWV OThV
TEPLOXA TOU ouvtoviopol yla cuxvotnteg £=0.5, 0.55 kat 0.6. ISwaitepa Loxupd pN-YPOHLLKA
dawopeva spdaviovral otnv optloviia SUvaun Kal Kivnon Kal yla Tig 3 ouxvotntec. Meplocotepo

LOXUPEG €lval oL pn-ypappikotntag ya &€ = 0.6 6mou n opllovila Kivnon surge amoTUTIWVETOL WG
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‘cnoidal’ popdn, 6nwg eniong avapevotav and TIC CUYKPLOEL oTo IxNUa 5.4a. INUELWVETAL TTWE N
LOXUPA KN-YPOUHLKN opl{ovTLa Kivnon Sleyeipetal amno Tty moAl peydin ywvia pitch tng tadéewg twv
30°, néow NG oLTEVENG TWV SUO KIVAOEWV.

Av kal Ba pnopoloe va npooteBel ocuvektikr S10pBwaon atnv pitch kivnon, mou elval onUavTiki otnv

TMEPIMTWON TWV PEYAAWY OTPOPWV OTNV TIEPLOXH TOU CUVTOVIOUOU, SV EYLVE OTNV Mapoloa availuon

WOTE Va YIVEL amoTipNnon Twv SuvatoTATWVY TNG LEBGSOU yLa IN-OUVEKTLKO PEVUCTO.
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(c) zTpoodr pitch (d) Opwovria Suvapn drift

Ixfiua 5.3: 1" appovikd Twv 3 KvAoewv (surge, heave, pitch) kat optovtia drift SUvapn tou eEAelBepa MAWTOU GWHATOG Yia

UYog kupatog H=0.07m.
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Kedalatio 6.

Anotipnon Ko LeAAOVTIKA €peuva

6.1 Anotipnon

H mapouoa epyacia eixe tpelg Bactkol¢ 0TOXOUG:

1.

Tn oluvBeon evog TMANPwWG oculeuypévou USPo-cEpPo-aépo-eAaotikol epyaleiou yla tnv
OVAAUGT TWV UTEPAKTLWY AVELOYEVVNTPLWY

TNV avVAantuén evog tplodlaotatou udpoduvautkol emAUTN oTo MeSlo TG CUXVOTNTAG YL TO
MPOBANUA aAANAETIS paoNG CWHOTOG-KUUOTOG

TNV avantuén evog S1odlacTatou pn-ypaupkol udpoduvapikol emAUTN yla To TpoBAnUa

oAANAemniSpaong KUUOTOG-CWUATOG-PEVLATOC

Te oxéon pe tov 1° otd)o, To Aoylopikd hGAST rtou avarmrtuxdnke:

Baoiletal otn SuvapLkn TOAAATMAWY CWHUATWV Kal TN LEB0SO TwV MEMEPATUEVWY OTOLXEIWY
XPNOLUOTOlElL TO YPOUMIKO HovTéAo SokoU Timoshenko kat pe tn dlatunwon Twv UTO-
owpatwy (sub-bodies) AapBavovtal umoPn YEWUETPLKEG UN-YPOUULKOTNTEG

Sl00étel 2 agpoduvapikeg peBodoug: tn LEBodo tou diokou opung Kot Th otpoBLAn nEbobdo
eAeuBépou oudppou

SlaBetel 2 ubpoduvaplkég pebodoug: n mpwtn Paciletal otn ypaupkn Bewpia Savikol
peuotou Kal n eutepn edpapuodlet Tov TUMO Tou Morison

XPNOLUOTIOLEL UN-YPAUULIKO SUVAULKO LOVTEAO ETHAUONG TWV AYKUPWOEWV

umnopel va evowpatwbel onolodnmote clotnpa eAéyxou

TPAYHOTOTOLEL GAOUG TOUC aImapaiTtnToOUC YLa TNV TILOTOMOLNON UTTOAOYLOUOUG

povtehomolel OAa ta £ibn Pdoswv otiplnc oe opllovtiou Kat katakopldou dfova
OVELOYEVVITPLEG

TILOTOTOL|BNKE CUYKPLVOUEVO LIE AGANQL UTIOAOYLOTLKA Epyaleia

TLAPEXEL EVA CUVETEG LOVTEAO XOUNANG TAENG, e BAon TIC LBLopopdEC TOU KABE oCwHATOG
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Ze oxéon pe to 2° otdxo, n HéBodog freFLOW mou avartlxonke,

- €MAUVEL TO YPOUULKO USPOSUVAULKO TIPOPRANUA dAANAETiSpaong KUUATOG-OWHATOG OTLC 34,

LKOVOTIOLWVTAG TNV OplaKkh ouvlnkn oTo oUVOPOo GCUVAPHUOYNG XPNOLUOTIOWVTIAG Hia

peTaBoALkn dlatunwon

- TILOTOMOLNONKE CUYKPLVOUEVN LLE TO AoYLoUIKO WAMIT

Ze oxéon pe tov 3° otdyo, N néBodoc hFLOW mou avartUxOnke:

- EMAUVELTO UN-YPOUULKO USPOSUVOULKO TTPOBANUA KUUATOG-CWHATOG-PEVLATOG OTLG 2A

- TUOTOTOLNBNKE CUYKPLVOUEVN HE BEWPNTIKA, UTTOAOYLOTIKA KOl TIELPAPOTIKA SeSopEVa

MpwTtoTuUNa GNUELA

Y& oxéon Ue To oAokAnpwpévo epyaleio oxeSlaopol hGAST mou oxeTileTal Pe TNV EMLOTAUN TOU

LNXOVLKOU OTOV TOMEN TWV UTIEPAKTLWY QVELOYEVVNTPLWY,

1.

elval to povadiko epyaleio oto omoio £xel amodotikd uhomotnBel n agpoduvapikn pEBodog Tou
eAeUBEPOU OUOPPOU, OTIOU OTNV TIEPIMTWON TWV AVEUOYEVVNTPLWY KatakopUdou afova eival n
Hovn aflomiotn HEBodog uToAoyLoHOU TwV aEPOSUVIULKWY popTiwy

glval amo ta eAdylota UTTOAOYLOTIKA epyaleia mou og dAa ta onpela culeuénc AopBavel urtoyn
TOU TIC VEWUETPIKEG UN-yPaUULKOTNTEG e€olTiog HeEyAAWY TIOPAUOPPWOEWY Kol oTPodwY Kot
£XEL EVOWHATWHUEVO EVA UN-YPOUULKO SUVAULKO TTPOTUTIO aVAAUGONG TWV AYKUPWOEWV

Silvel Tn duvatdTnTa CUVEMOUC YPALULKOTIOINONG TIOU €KTOG Ao TN SLEUKOAUVON KOTA Tn Un-
YPOUMLKN eTiAuon oto medio Tou Xpovou, EMLTPEMEL KAl TNV LOLOSLAVUCUATIKY) avdAucon Kal Thv
QvVAAUGN EUOTABELAC TOU TTARPOUC CUCTHOTOG

glval To povo epyaleio mou £xel uhomolnpEvVo éva ovtENo XapnAng Ttaéng oto eninedo tou KAOe

OWHOTOC, e Suvatotnta emAoyng Tou apldpol Twv Babuwv eheuBepiog avd cwpa

Je oX€0N HE TOV 2A UN-YPOUULKO USPOSUVOULKO eTUAUTN hFLOW,

1.

n tpomomolnuévn ulomoinon tng ouvappoyng tng stream function AUong oto cuUvopo Ttou
UTTOAOYLOTIKOU XWPLou EMITPEMEL TN CUVEMN Kol otabepr dnuoupyia kot Stadoon mepLlodikwv
UN-YPOUULKWV KUPATWY UE 1 Xwpig otabepd pedpoa o OAa ta Ba6n vepou

ovadutAoUpeva KU LOTO TIPOCOUOLWVOVTOL HEXPL TO 0pLo Bpaliong TOUG UE TUNHATIKA YPOUULKEG
KOTAVOUEC LolopopdLwv Kol emineda otoleia otn HEB0SO TWV cUVOPLAKWY OTOLXELWY, Xwplg va
amaltteitat n xprion kamotwou ¢iAtpou

xpnowdorolel tnv akpPn €kdpacn ywa TO @ OTNV eMPAVELD KIVOUUEVWY OCWHATWY
Aappavovtag umoyn Kol Toug Opou¢ Tou otaBepol PEeVUOTOC TIOU QMALTE(TAL yla ToV
poodloplopd tng Neumann oplakng ouvbnkng katd tnv enihuon tng e€lowong Laplace yia thv
TIAPAYWYO TOU SUVALKOU @,

uTtoAoyilovtal pe cuvemela ol drift SuvapeLg, akopa Kal otnv MepIMTwon MAWTOU CWHOTOC OTNV

TIEPLOXI) TOU GUVTOVIOPOU, OTou n pitch kivnon &emepvad tig 30°
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6.2 MseAAovtikn €pguva

‘Exovtag ohokAnpwoel €va TANPeG USPO-0€PPO-AEPO-EAAOTIKO UTIOAOYLOTIKO gpyaAeio n uolkn

ouvéxela eival n epapuoyn tou o mpoPAnuata oxedlaocpolU Kol TILOTOMOLNONG AVEUOYEVVNTPLWV.

‘EtoL peAAovTIKN £peuva Og aUTH TNV KotebBuvon adopad:

otnv nepattépw Slepelivnon tng aflomiotiog tng ueBodou tou diokou opuUng KabBwg Kal otnv
KAtaAANAn BaBuovounon tng pe Pdaon tn Aentopepéotepn LEBoSo eAeuBEépou oudppou

OTNV TIEPALTEPW SLEPEVVNON TNE ONUACLOC TWV SOULKWV YEWHUETPLKWV UN-YPOUULKWY

otn Slepelivnon Twv afeBatoTATwy Kat TN SLatuTwon MPOTUNIWV HeEBOSwV oXeSLACHOU

otn Slepevivnon tnN¢ ouumepldopdg Tou Spopéa Katd tn Asttoupyla tou umd TNV enidpaon
TOU OUOPPOU MIPONYOULEVNC OVELIOYEVVATPLAG

otnv edpappoyn BéAtiotou oxedlacpol TUNUATWY TNC AVEUOYEWNTPLOG (Y. TNG SOUIKAG

cUOoTAOoNG TOU MTEPUYIOU 1) Tou MAWTAPA) 1 TNG TANPWE GUIEVYHUEVNG OVELLOYEVVHTPLAG

MeM\ovtikn épeuva oe oxéon Ue tn BeAtiwon/avaBaduion twv UTIOAOYLOTIKWY EpYaAEiwY adopd:

otnv avaBadulon tou povtéhou Sokou (m.X. Generalized Timoshenko) kaBwg kat otnv
povteAomoinon TNS avicoTPoTmiag TWV UALKWY

otnv ovaBadpion tou uSpoSuvapLKoU LOVIEAOU WOTE VA LOVTEAOTIOLEITAL O OUOPPOUG TOU
TAWTNPA KAl KOT EMEKTOON OL avtioTtolyol 0pol andoPeong

otnv avaBabuion tou tplodlactatou udpoSuvapikol emMAUTN wOTe va umoAoyilovtal ot
Sduvapelg drift, n enidpacn tou BaAdoolou pelpATOC KOl va eMAUETOL TO SeuTtepOTALLo
npopAnua

OTNV EMEKTAON TOU SLoSLACTATOU UN-YPOppLKoU emAUTN ot 3 SLaoTAoELS, KABLoTWVTAG
TAUTOXPOVO. SLOXELPIOLUO TOV QUENUEVO OMALTOUEVO UTTOAOYLOTLKO XpOVO

OTNV EVOWHATWON AEMTOUEPECTEPWY OEPOSUVOUIKWY HeBOSWYV TNG UMOAOYLOTIKAG
PEUCTOUNXOVIKAG, XPNOLomolwvtag Toug Kwdikeg MaPFlow (RANS CFD) kat HoPFlow
(Eulerian — Lagrangian uPpidikn pébodog) [37]
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