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INEPIAHYH

AvTtikeipevo TG TapoVoag SIMAWUATIKNG EPYACLNG E(VALT) LEAETN TG ATIOKPLOTG
Se€apevav amobNKeLoNG VYPWV HE EOIKN EUQPAOT] OE QALVOUEVA KOVTLVOU
medlov. H klvnon tov vypov efetaletal pe Baon TiG OepeAelwSels apxég g
vépoduvauknig kat mapovolaletal 1 pebodoroyia evpeons avaAALTIKNIG AVOTG.
Kavovtag xprion TpaypaTik®y ETITAXUVOLOYPAPUATWY, KAl HECW TNG TEXVIKNG
tov Taxéwg Metaoynuatiopov dovplé vumoAoyilovtal To EVTATIKA HeEYEDN
(téuvovoa Paong, pom Kol TiEON €Ml TWV TOYWUATWY) KAl TO UYPoG TOU
Kupatiopov. ESkn epgaocn SISetal 0T ouvelo@opd TG SeUTEPNS LBLOLOPPTG.
MeAetatal og BaBog 1 ox€on HETAEY TOV GUYVOTIKOU TIEPLEXOUEVOU TNG ESAPIKNG
Klvnong kat ™m¢ SEyepong Twv SLA@opwV BOPOPPWV TAAGVTWONG, Kol TA
amoTeEAéopaTa NG gpyaciag cvoxeti{ovtal PE TIG TAPASOXEG TWV LOYVOVTIWV
QVTIOELOULKWYV KAVOVIOLWOV.



ABSTRACT

The aim of this dissertation is to study the behavior of liquid-containing tanks
under seismic excitations with particular focus on near-fault phenomena. The
fluid mechanics of sloshing are examined form first principles and their analytic
treatment is given. Through the use of Fast Fourier Transform techniques and
starting with accelerograms, we calculate force, pressure, moment, and height of
the wave as functions of time. Particular emphasis on the contribution of the
second convective mode to the above quantities is given. The relationship
between the frequency content of seismic motion and the excitation of different
hydrodynamic oscillatory modes (impulsive mode and convective modes) is
studied. Findings of the present work are compared with the provisions of the
Eurocode.
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1 Introduction

The aim of the dissertation is to study the behavior of liquid-containing
tanks under seismic excitations. Special emphasis is given to the analysis
of near-fault phenomena and their impact on the excitation of various
modes of hydrodynamical oscillations. This is accomplished through an
analytic treatment of the fluid-mechanical problem leading to expres-
sions describing various dynamical quantities (force, pressure, moment)
as well as the height of the wave. The relationship between the fre-
quency content of the seismic motion and the excitation of the various
oscillatory modes of fluid motion is studied in detail.

In section 2 we review the history of various seismic events with
particular emphasis on the behavior of tanks. It becomes clear that
the study of sloshing motion is important in the efficient design of such
tanks.

Section 3 deals with fluid mechanics. In subsection 3.1 we review
the main hydrodynamical assumptions, namely that the liquid adheres
to the mechanics of incompressible, inviscid, irrotational flow. These as-
sumptions lead, as is well-known, to the fact that the velocity potential
obeys the Laplace equation. In subsection 3.2 we introduce the bound-
ary conditions appropriate to the case of a fixed tank obeyed by the
velocity potential on the tank walls and at the free surface and state
the crucial assumption of small-amplitude waves. In subsection 3.3 we
solve the Laplace equation and identify the normal modes. In subsec-
tion 3.4 we write the energy (kinetic plus gravitational potential) of a
small-amplitude but otherwise arbitrary wave disturbance. In subsec-
tion 3.5 we consider the case of a tank accelerating in the = direction
(the acceleration of gravity is in the z direction) and write down the
boundary conditions appropriate to that case. The fact that the accel-
eration vanishes in the third direction restricts the number of modes we
have to consider. In subsection 3.6 we write down expressions for the
pressure, force and moment pertaining to a superposition of such modes.
In subsection 3.7 we consider the response to sinusoidal lateral tank ac-
celeration. In subsection 3.8 we consider a lateral excitation that is an
arbitrary function of time using the methods of (i) the Duhamel integral,
(ii) Fourier transformation. In the second method we take special care
to ensure that the correct initial conditions at time ¢ = 0 be obeyed. In
the course of the argument we identify a natural splitting of the force to
impulsive and convective components. In subsection 3.9 we review facts
relate to the Fast Fourier Transform (FFT) method which is essential in
the handling of time-histories.

In section 4 we compare the findings of section 3 with the provisions
of the Eurocode.



In section 5 we apply the procedure developed in section 3 to the
calculation of the response under (a) simplified pulses that simulate spe-
cific earthquakes, (b) original accelerograms of near-fault earthquakes.
We look at three earthquakes and perform the analysis for four different
values of the parameter H/R. One of the specific objectives is to analyze
the importance of the second convective mode which is usually neglected
in most provisions of the codes.



2 The behavior of liquid-containing tanks in major
seismic events

2.1 Introduction

Storage tanks are widely used in many industrial facilities, and espe-
cially in the oil and gas industry. The consequences in the case of serious
damage go beyond the economic value of the structure, to the harmful
environment, business interruption..etc) apart from the economic value
of the structure, in the case of water tanks water supply is immediately
essential, following to the destructive earthquakes, not only to cope with
possible subsequent fires, but also to avoid outbreaks of disease. There-
fore, due to the requirement of remaining functional after a major earth-
quake event, the seismic performance of liquid storage tanks has been a
matter of special importance.

The design of tanks can vary according to its use and construction
limitations. Various types of tanks include concrete or steel, cylindrical,
rectangular or spherical, vertical or horizontal, above or underground,
ground supported or elevated. A typical tank consists of the steel cylin-
drical shells, a base plate, a roof, and roof support members. The be-
havior of the tank during an earthquake is a result of several different
factors including the structural details of the tank (type of tank, ma-
terial and size, foundation, supporting system etc.), the characteristics
of the seismic motion and post-earthquake ground movements that may
take place (such as ground sliding, liquefaction etc.) and the properties
of the soil. The observation of the main damages in some major seis-
mic events can give an insight about the various failure modes and the
possible areas where the design process may need special attention . Of-
ten however such observations cannot lead to the evaluation of current
design practice, since most events that demonstrated the importance of
tank failures in the past concern tanks that were constructed prior to
the existing regulation. Ohta and Zama (2005) documented fourteen
cases of tank damage due to liquid sloshing (Figure 1). According to the
report of Zama et al. (2012) damage to oil storage tanks is classified into
three types on the basis of external forces (tsunami waves), long-period
ground motions, and short-period strong ground motions. The effects of
these three parameters in six major seismic events will be discussed in
detail in the following subsection.



Earthquake Year My, Damage Far-source? Reference

Kmnto 1923 79" 6,000 t oil tank No Hirano (1982)

Long Beach 1933 6.2 Water tank Yes? Steinbrugge (1970)

Ken County 1952 15 Ol tanks Yes? Steinbrugge and Moran (1954)
Alnska | 964 92 Many oil tanks, fires Yes Rimne (1967)

Nigata 1964 76" Many oil tanks, fires Yes FDMA ( 1965)

Central Chile 1965 A (il tnks Yes Shibata { 1974)

San Femando 1971 6.6 (il tank Yes Shibata ( 1971)
Miyagi-oki 1978 74 Ohl tanks Short period FDMA (1979)

Imperial Valley 1979 6.5 Onl tank No Horoun ( 1983)

Coalinga 1953 6.2 Many oil tanks No Manos and Clough (1985)
Japan Sea 1953 1.7 Many oil tanks, fire Yes Yoshiwara et al. (1984)
Kocael 1999 1.6 Many o1l anks, fires No JSCE ( 200:0)

Chi-Chi 1999 1.7 Onl tanks Yes Yoshida et al. (2000)
Tokachi-oki 2003 83 Many oil tnks, fires Yes Ohta and Zama (2005)

The moment magnitudes were retrieved from the USGS earthquake database except for * Wald and Somerville (1995), ® Ruff and
Kanamori (1983), © M., “ Seno et al. (1980), and ° Dziewonski et al. (1983).

Figure 1: List of tank damage by liquid sloshing (Ohta and Zama 2005)

2.2 The response of liquid-containing tanks

2.2.1 The Great Alaskan Earthquake and Tsunami, 27 March
1964

One of the first earthquakes that triggered the interest in the investi-
gation of the seismic response of storage tanks was the earthquake that
struck the south coastal area of Alaska on March 27 in 1964, causing ex-
tensive damage to tanks and other structures. The epicenter was in the
Northern part of Prince William Sound, about 120 km east of Anchorage
and the magnitude of the earthquake was 9.2 Mw. The strong shaking
was followed by the generation of a tsunami, causing fires and inunda-
tion in many waterfront areas. The main damages associated with tank
failure took place in the following sites:

(i) At the time of the earthquake in the airport and the dock areas
of Anchorage oil storage tanks of 13-37 m diameter and 13-16 m height
were in existence. The soils in the dock area consisted mainly of silts and
of a thick lens of "Bootlegger Cove Clay" . As observed from the data
presented in Figure 2 full or nearly full tanks with ratio diameter/height
(d/H) greater than 1.5 suffered mainly from damage to top shell and
buckling of floating roof, whereas many with ratio d/H < 1 suffered
from bottom shell buckling or collapsed (as it was reported, tanks less
than half-full were not damaged by the earthquake) (Figure 3).

(ii) In Valdez (85 km from the epicenter) two tank farms with rel-



Tank | Diametard | Height H
m (ft) m (ft)

£

Damage Observed

A 9.1 (30) 146 (48) | 063 | Collapsad, failed
B 305(100) | 96(32) 1 | Damage to roof top shell and
| | columns
C 13.7 (45) 96 (32) 1.4 Dmmrool'lopmlim
_ . | buckied R

D WE(120) | 96(32) aa Dlmln- o rnu'l'iup shelland

S _| columns
H | 2T4(90) | 86(32) | 28 [No dllllgn_n_bgpl ﬂuttlng mn
I

187(55) | 70 p.}] 1.7 | Damage lo top shall and rafters

JKL | 91(30) | 122 (40) | 0.75 | Extensive bottom shell buckling
M_| B85(28) | 122(40) | 070 | Collapsed, falled
N | 128(42) | 122(40) | 1.05 | Bottom shell buckliing
0 6.1(20) | 122(40) | 0.50 | Bottomn shell bucking, broken
_ - ____ | shelibottom weld
P | 43 91144] 171(56) | 26 Floating roof buckled_ large waves
[ Q [341(112) | 17.1(56) | 20 | Fioating roof B
R | 149(49) | 146 (48) | 102 | Botlom buckied, 12-in uplift
5 274(90) | 146(48) | 19 |4 ful mafwmoumudlmag-

Figure 2: Anchorage tank properties and damage (National Institute of
Science and Technology, 1997)

Figure 3: Tank with “elephant’s foot” buckle at the base in the 1964 An-
chorage, Alaska earthquake (http://www.fema.gov/ earthquake/fema-
e-T4-reducing-risks-nonstructural-earthquake-damage-31, PEER, Stein-
brugge Collection, No. S2508)



atively small tanks and d/H ratios between 1.0 and 2.0 were damaged
by the fire. Tanks were submerged by a landslide that occurred close to
the shoreline .

(iii) In Whittier (60 km from epicenter) facilities and oil tanks were
also destroyed by seismic sea waves and the spreading of flammable
liquids along the waterfront

(iv) In Seward, located on the Gulf of Alaska about 135 km from the
epicenter, the tsunami waves caused the sliding of a section of waterfront
into the bay, followed by extensive fire destroying or badly damaging 18
of the 23 tanks that located on the site (Goto 2008).

(v) Nikiska, on the Kenai Peninsula, about 219 km from the epicenter
is used by two oil refineries for the storage of LPG and crude oil. Tanks
reported (National Institute of Science and Technology 1997) to have
been damaged by the earthquake had diameters ranging from 8.5 m to
43.9 m and heights from 9.1m to 17.1m. Three tanks out of four with
ratio d/H < 1 failed (one showing severe elephant foot buckling), and
all five tanks with d/H about or above 1.5 had roof damage, but showed
no buckling (some of them less than half-full).

Although much of the damage was caused by tsunami waves and
post-tsunami widespread fires an important part of the damage was di-
rectly structural; under the same seismic conditions, the degree of dam-
age and buckling of tank wall and roof differed according to d/H ratio
and liquid level. Main observed types of failure included roof buckling,
roof-column damage, roof-to-shell connection damage, shell buckling,
and total collapse. In general, based on the reported data of Figure 4, it
can be concluded that tanks nearly empty or partially full did not suffer
great damage. Tanks with ratio d/H < 1 proved prone to bottom shell
buckling type of failure (or "elephant’s foot" bulge), and tanks with d/H
ratio > 1.5 (in full conditions) to roof damage.

2.2.2 The Niigata Earthquake and Tsunami, 16 June 1964

On June 16, 1964 an earthquake of magnitude about 7.5 Mw occurred
near the city of Niigata, north of middle Japan, causing widespread
liquefaction which, along with the accompanying tsunami, led to major
destruction along the coast of Japan.

The Showa Oil Co Niigata refinery plant located in the area com-
prised large crude oil tanks, including three floating roof-type 30,000 kl
ones (51.1 m diameter by 14.5 m height) and two 45,000 kl ones (62
m diameter by 16.5 m height). The tanks were situated on roller com-
pacted ground. The underlying soil consisted of loose, coarse dune sand
and sedimentary deposits to a depth of 15 m, followed by a fine sand of
sea-bed origin. The water table is shallow and is estimated to be about



Tank | Diameterd | Height H diH Damage Observed
km (ft) km (ft)
R200 9.1 (30) 14.6 (48) 0.63 | Water, full, failed

R1i62 27.4 (90) 14.6 (48) 1.87 | Full, cone roof damage no
elephant foot buckling
R1683 | 27.4(90) 14,6 (48) 1.87 | Full, cone roof damage no
elephant foot buckling
R100 | 341(112) | 17.1(58) 2.00 | Floating roof, 1/6 full, roof

damage

R120 | 21.3(70) 14.6 (48) 1.46 | Floating roof, 1/3 full, roof
damage

R110 | 43.9(144) | 17.1 (56) 2.57 | Floating roof, roof damage, 39 ft
level

R140 14.9 (49) 14.5 (48) 1.02 | Elephant fool buckling, no failure
AA4 3.2 (10.5) 8.1 (30) 0.35 1/3 full, walked, no damage
AAT 12.1 (40) | 13.0 (42.5) 0.94 | Severe elephant foot buckling,
failed

AAS B5(28) | 122 (40) 0.70 | Failure, collapsed
R designation believed to be Nikiska Refinery; AA is Anchorage Airport

Figure 4: (National Institute of Science and Technology 1997)

3m below the surface of the compacted mound.

The site is located about 56 km from the epicenter and peak accel-
eration was approximately 0.162 g in the North-South direction, 0.158
g in the East-West direction (Hausler and Sitar qwerty). The 4 m-high
tsunami that followed the earthquake caused additional damage to stor-
age tanks, spreading objects and leaking oil into the harbor, and inundat-
ing land. Burning crude oil spread over the water that flooded the area,
causing the extension of the fire to other flammable parts of the plant
and into residential areas, leading to massive destruction. (Iwabuchi et
al., 2006).

The content of the tanks was subjected to large amplitude sloshing
due to the long - period ground motion resulting from local liquefaction.
Along with the uneven settlement caused by ground liquefaction, this re-
sulted in ignition of the oil by sparks generated by the collision between
the floating roof and the side wall. The sparks were generated by the
metal touch sealing between the floating roof and the side wall (Akat-
suka and Kobayashi qwerty). As a result five storage tanks caught fire
including the large 30,000 kl tank which was full of oil. However little
damage to tank bases was observed. Their settlements were estimated
20 to 30 cm, while tanks that were constructed on a thinner sand mound
(30 cm) without contraction showed a significant settlement (about 50
cm) and tilt (Figure 5).

The Niigata earthquake was one of the first major seismic events to
draw attention to the design of tanks against the combined action of



Figure 5: Settlement of tank on unimproved ground (Watanabe 1966)

various earthquake-related geo-hazards, such as ground shaking, exces-
sive ground deformation caused by liquefaction, and inundation and fire
caused by tsunami waves.

2.2.3 The Imperial Valley Earthquake, 17 October 1979

The Imperial Valley earthquake had a magnitude of 6.5 Mw and caused
significant damage to a number of storage tanks located about 30 km
from the epicenter. The Imperial fault, which was about 5 km east of
the location of the tanks, generated surface movement in the proximity
of the tanks.

Two tanks at the Imperial Irrigation District power plant, which were
full at the time, sustained roof damage. Failure of the fixed steel-plate
roof and separation of the perimeter weld around the roof allowed oil to
spill over the top. Both tanks had a d/H ratio near 3, and the largest
one that had 41.2 m diameter, 13.7 m height and a d/H ratio of 3 showed
signs of uplifting.

A total number of eighteen unanchored tanks were located at the
Southern Pacific Pipe Lines Inc. terminal, all constructed according
to API 650 that was in effect at the time. The tanks’ diameter var-
ied between 6m and 24m and the ratio d/H was between 0.8 and 1.6.
Four of them sustained damage in the form of a moderate elephant-foot
buckling, and almost all had secondary problems such as roof seal dam-



TANKNO | DIAMETERd | HEIGHT | dH | Huo PER FDN | ROOF
m (f) Hwx () UNIT
m () FULL
1 24.4(80) | 146(48) | 167 | (20.3) 43 E | F
2 24.4 (80) 146 (48) | 167 | (23.4) 49 E| F
3 204 (67) | 12.3(40.5) | 1.65 | (15.7) 39 E| C
4 14.6 (48) 146(48) | 1.0 | (25.5 53 E| F
5 14.6 (48) 146 (48) | 1.0 | (34.9) 73 E | F
6 | 13.0(425 | 122(40) | 1.06 | (15.2) 38 C | F
7 13.0 (42.5) | 12.2(40) | 1.06 | (15.7) 40 c | c
8 24.7 (81) 14.6 (48) | 1.53 | (39.4) 82 C | F
9 13.0 42.5) | 12.2(40) | 1.06 | (25.8) 65 c | F
10 13.0(425) | 122(40) | 1.06 | (30.5) 76 C| F
11 142 (465 | 122(40) | 1.16 | (34.4) 86 c |l c |
12 13.0 (425 | 12.2(40) | 1.06 | (34.5) 86 C| F
13 12.6 (41.25) | 14.9(49) | 0.84 | (43.5) 70 c | cP
14 . | 147(482) | 149(49) | 0.84 | (29.9) 61 C | cPp
15 15.2(49.8) | 14.9(49) | 1.0 | (29.8) 61 c | cp
16 14.6 (48 146(48) | 10 | (39.9) 83 cC | cP
C1 65(2125 | 73(241) | 0.88 | (7.1) 30 E | cP
C-2 6.5(21.25) | 7.3(24) | 0.88 | (9.4) 39 E| F
FDN: E-ON EARTH (ROCK BASE), C-CONCRETE RINGWALL
ROOF: F-FLOATING ROOF, C-CONE, CIP-CONE/INTERNAL PAN
- MAJOR DAMAGE

Figure 6: Details of the tanks located at the Southern Pacific Pipe Lines
Inc. terminal (dimensions, fluid heights, type of foundation and roof
design) (National Institute of Science and Technology 1997)

age, broken anti-rotation devices, relief piping damage, grounding cable
pulled off, settlement and roof strain, and swing line damage. The tank
that suffered greatest damage had a cone roof with an internal floating
pan, a concrete ring wall foundation and was 70% full at the time of
the earthquake. The damage consisted of a severe elephant foot buck-
ling (with an arc over 90 degrees) and a 10 cm weld separation at the
shell-bottom plate joint causing a gasoline leakage. Two other cone roof
tanks (one with internal floating pan and one without) that were over
70% full suffered also significant damage. The details (dimensions, fluid
heights, type of foundation and roof design) of the eighteen tanks of the
site are presented in Figure 6.

The performance of these various types of tanks shows both the vul-
nerability and survivability of tanks subject to strong shaking. Among
the tanks with earth foundation the one that suffered major damage had
a much higher liquid height than the others. Tanks with cone roof and
internal pan are the most vulnerable (out of five tanks with cone roof and
internal pan two sustained major damage, whereas among the thirteen



Figure 7: Collapse of a steel tank during the 1979 Imperial Valley Earth-
quake. (http://nisee.berkeley.edu/jpg/6257 3021 0662/IMG0037.jpg,
Steinbrugge Collection, Earthquake Engineering Research Center, UC
Berkeley )

without internal pan only one was severely damaged). Regarding the
foundation system "compression buckles were more prominent in tanks
supported on concrete ring walls than those on gravel fill" (EERI 1986).
According to the National Institute of Science and Technology 1997 re-
port it is possible that some type of anchorage would have prevented a
number of the above failures.

Minor to moderate damage was also reported in two elevated tanks.
A 380,000 1 water tank (30 m high by 9 m base) water tank with four
tubular legs braced with tiers of diagonal rods collapsed during the earth-
quake.(EERI 1986) (Figure 7).

A brief description of the structural and nonstructural damages of
unanchored tanks during the 1979 Imperial Valley earthquake is pre-
sented by Haroun (1983). He reports that buckling of the bottom of
tank shells due to excessive compressive stresses, damage to fixed roofs
due to liquid sloshing and failure of attached pipes due to their inability
to allow for the shell movement occurred.
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2.2.4 The Coalinga Earthquake, 2 May 1983

On May 2, 1983 an earthquake of magnitude 6.7 Mw shook the town of
Coalinga, California causing serious damage throughout the epicentral
region. A number of large diameter (over 31 m) oil storage tanks were
located at several sites, labeled below by A to F, within a relatively short
distance (about 6.5 km) from the epicenter. The peak acceleration in
the area was estimated between 0.60 g and 0.82 g, and the foundation
soil consisted mainly of alluvium deposits. The tanks were of cylindrical
shape, ground supported and unanchored, and most of them had floating
roofs (National Institute of Science and Technology 1997). The main
observed damages and structural details of oil storage tanks in various
sites within the epicentral region included:

(i) site A (6 km east of the epicenter): out of nineteen tanks (built
70 years before the earthquake) only the two largest tanks, which were
at the moment nearly full, suffered floating roof damage.

(i) site B (5 km north-east of the epicenter): tanks of 43 m diameter
and 14.8 m height with concrete ring foundations, 1/4 inch bottom plate,
constructed in 1956 according to API Standard 650 sustained some sec-
ondary roof seal damage (which occurred also to one which was nearly
empty), with oil splashing over the top.

(iii) site C (4.5 km southwest of the epicenter): a mainline crude oil
pumping station used four large tanks with 61.5 m diameter by 14.8 m
height, built to the API Standard 650. Two tanks were built in the mid
1960s and had 1/4 inch bottom plate, and two were built in the mid
1970s and had % inch annular rings. None had concrete ring foundations
and all were set on gravel pads. All tanks (nearly full or nearly empty)
incurred roof seal damage (90 degrees or more bending of the seal in the
NE-SW direction). One tank which contained 10.7 m (out of 14.8 m)
crude oil pounded into the foundation soil and splashed oil over the top.
A water-draw bottom plate weld broke due to uplifting, allowing leakage
of crude oil and bending a pipe support on the west side.

(iv) site D (3.2 m north of the epicenter): one of the two tanks
suffered failure of the top riveted ring due to buckling. Figure 8 shows
a bolted tank which pounded into the ground. Figure 9 shows oil roof
spillage of a bolted tank located 16 km north of the epicenter.

(v) site E, where a gathering station with two bolted production
tanks about 2 km south of the epicenter, with tanks of small d/H and
set on crushed rock foundations, was located. Main damage consisted
of broken cast iron valves and fittings, pulling of pipes out of Dresser
Couplings, and a minor soil/tank settlement.

(vi) site F: a crude oil treatment facility about 6.5 km west off epicen-
ter in which two bolted tanks of 17m diameter by 10m height that were

11



Figure 8: Settlement of the tank base
(http://nisee.berkeley.edu/elibrary /Image/S5824, Karl V. Steinbrugge
Collection: S5824)
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Figure 9: Damage to Shell Oil tanks, Chevron Coalinga Station
#4, north of Coalinga (http://nisee.berkeley.edu/elibrary /Image/S5813,
Karl V. Steinbrugge Collection: S5813)

about three quarters full suffered elephant foot buckling, while other
tanks that were less or equal to half-full had leakage at bolt holes and
other minor damage.

Generally it was observed that large (about 60 m diameter) tanks are
prone to uplift, that sloshing causes damage to the floating roof mecha-
nism, and that smaller tanks can be susceptible to elephant foot buck-
ling. Quoting Manos and Clough 1985: "current U.S. practice under-
estimates the sloshing response of tanks with floating roofs and does
not adequately address the uplifting mechanism of unanchored ground
supported tanks."

2.2.5 The Kocaeli Earthquake, Turkey, 17 August 1999

On August 17, 1999 an earthquake of 7.4 Mw struck the Kocaeli province
or northwestern Turkey. The epicenter of the earthquake was 7 km
southeast of Izmit (capitak of Kocaeli) and 80 km east of Istanbul.
(Yazici and Cili, 2008)

Nearly half of the country’s heavy industry is located in the Gulf
of Izmit, which is in close proximity to the epicenter. The widespread
damage of mechanical, electrical and plumbing facilities generated sig-
nificant economic losses for the country. A number of petrochemical
facilities that were damaged were located within 15 km from the epicen-
ter where the levels of ground shaking were moderate to high.

(i) The Tupras oil refinery

13



The Tupras oil refinery, responsible for about one third of Turkey’s
total oil production, was constructed in 1961 according to the U.S. stan-
dards in effect at the time (Danis 1999), and expanded in size in 1974
and 1983. There were over 100 unanchored above-ground liquid stor-
age tanks of various sizes in the refinery, many of which had floating
roofs (Bendimerad et al, 2000). General earthquake response of tanks
included buckling of tank walls, poor performance of floating roof sys-
tems, and fire related damages. The major fire occured in a floating-roof
tank that contained naphtha (a highly volatile flammable liquid mixture
distilled from petroleum). Excessive sloshing of the floating roof gave
rise to sparks, due to the metal-to-metal contact between the metallic
seal and tank wall, that ignited the naptha fuel. Four naptha tanks
with diameters of 20-25 m and two with diameters of 10 m were burned
down (Hamada, 1999). The fire later spread to crude and product oil,
jet fuel and gasoline tanks damaging 30 of the 45 floating roof tanks
in the crude and product oil storage area (Johnson, 2000). The fires
caused an immediate evacuation and the multiple ruptures of the main
water pipeline lead to a three day delay in their extinguishment. Danis
(1999) reported substantial damage to a large number of tanks (304) in
the farm; the inability of perimeter seals to retain the sloshing fluid in
the tanks resulted in failure or sinking of these floating roofs. Each of
these damaged floating roofs required repair or replacement before the
tanks could be returned to service. Sloshing of fluid caused overtopping
in the tank of Figure 10 and extensive damage to the walls of the tanks
of Figure 11. Although none of the tanks were anchored no significant
sliding of the tanks was evident. Appreciable movement of the tanks
would have caused failures of the hard piping that was attached to the
base, but no such failures were observed. (ASCE 1997).

The near-fault ground motion observed near the tank damaged by
the 1999 Kocaeli earthquake, which is the middle trace of the right-hand
panel in gqwerty Fig. 1, shows considerable later phases, which resulted
in motion of longer duration compared to the other traces. This may be
because of the long causative fault and site effect, and may have caused
the exceptional tank damage.

(ii) The Habas plant

The Habas gas plant in Izmit provides liquefied gas for regional com-
mercial plants and medical facilities. Primary damage consisted of the
collapse of two of the three identical cylindrical elevated liquid storage
tanks due to failure of their support structures, as shown in Figure 12.
The three 14.63 m-diameter tanks were built in 1995. Each tank was
made of two concentric stainless steel shells, an inside shell with a diam-
eter of 12.80 m and an outer shell with a diameter of 14.63 m. The gap
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Figure 10: Overtopping of tank wall due to sloshing and failure of
perimeter seals (http://nisee.berkeley.edu/turkey /Fturkch4.pdf)
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Figure 11: View of tank wall damage.
(http://nisee.berkeley.edu/turkey /Fturkch4.pdf)
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Figure 12: Liquid gas plants at the Habas plant
(http://nisee.berkeley.edu/turkey /Fturkch4.pdf)
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Figure 13: Buckling of the outer stainless steel shell in liquid oxygen
tank (http://nisee.berkeley.edu/turkey /Fturkch4.pdf)

between the shells was filled with insulation material. Both shells were
supported on a 1.07 m-thick reinforced concrete slab that was supported
by sixteen identical reinforced concrete columns of 200 mm-diameter
and qwerty 2.54 height. Columns were reinforced with sixteen 16 mm-
diameter longitudinal bars and 8 mm-diameter spiral ties with a spacing
of 100 mm. The two collapsed tanks containing liquid oxygen are shown
in Figure 12. The two tanks containing liquid nitrogen were undamaged,
and so was the supporting structure except for some hairline cracks in
the columns. The two oxygen-containing damaged tanks were reported
to be 85% full while the third nitrogen-containing tank was 25% (Sezen
and Whittaker (2006), Hamada (1999)). The outer shells of the collapsed
tanks buckled (Figure 13). Photographs of some of the failed columns
beneath one of the liquid nitrogen tanks are presented in Figure 14.

2.2.6 Tohoku Earthquake and Tsunami, Japan, 11 March 2011

On 11 March 2011 a strong earthquake of Mw 9.0 that occurred off
the Pacific coast of Tohoku shook Miyagi Prefecture and generated a
tsunami wave causing extensive damage to oil storage tanks and to other
hazardous materials facilities in the petrochemical industrial complex.
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Figure 14: Failed columns beneath slab under liquid oxygen tank, Habas
facility (http://nisee.berkeley.edu/turkey/Fturkch4.pdf)
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Oil storage tanks and pipelines on the Pacific coast of northeast Japan
were led by the tsunami to drift and collapse. On the Japan Sea coast of
northwest Japan and Tokyo Bay area long-period strong ground motions
excited large liquid sloshing of oil storage tanks and caused sinking of
floating roofs. Although PGA more than 0.5 g was observed near tank
sites along the coast of northeast Japan, oil storage tanks were damaged
indirectly by liquefaction of soil rather than directly. About 1,404 haz-
ardous materials facilities were damaged by the strong ground motion
and 1,807 hazardous materials facilities were damaged by the tsunami
(Nishi 2012) (accounting for 1.6% of the total surveyed hazardous ma-
terials facilities in the east Japan area). A total of 284 fires spawned by
the tsunami occurred in 42 facilities (FDMA 2012) including two major
oil refineries (Scawthorn 2013).

Due to the tsunami one empty tank submerged and many pipelines
were bent. The latter caused substantial oil spill in the Sendai dyke.
A section of the Sendai refinery housing gasoline, asphalt and molten
sulfur tanks was burnt-down. The probable cause is the collision of tank
lorries against oil handling facilities, which was caused by the tsunami.
In Kesennuma city 22 out of 23 oil storage tanks were washed away
resulting to leakage of heavy oil, kerosene, diesel fuel and gasoline. The
total amount of liquid lost is estimated at about 12,000 kl. In Kuji city
underground oil tanks escaped damage whereas all aboveground tanks
were destroyed.

Oil storage tanks suffered damages such as sinking of inner roof, leak-
age of oil onto deck, deformation of gauge pole, and fracture of pontoon.
These were caused by long period ground motion that excited the slosh-
ing mode in the tanks. The complete breaking down of a gasoline tank
in Sakata city is attributed by Zama et al. (2012) to the excitement
of the sloshing mode; the authors estimate the period of the first order
mode at 4.19 sec.

Zama et al. (2012) report that short period ground motions (0.3 - 0.5
Hz) caused elephant foot bulge of a water tank at Sendai and extraction
of anchor bolts of an oil storage tank at Kashima. According to the press
release of August 2011 by Cosmo Oil Company (http://www.cosmo-
oil.co.jp/eng/press/110802/) regarding the disaster at the Ichihara re-
finery, an LPG tank happened to be filled with water at the time of
the earthquake, rather than with the lighter LPG (the tank was in the
process of being cleaned and inspected). The first earthquake exerted
heavy load on the braces and some of them were fractured (Figure 15).
As a result of the second earthquake, about one and a half hour later,
the tank collapsed leading to damage of several pipes near the tank and
to subsequent LPG leakage. The company has been unable to identify
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Figure 15: Braces broke that supported the legs holding the LPG tank
(http://www.cosmo-oil.co.jp/eng/press/110802/)
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Figure 16: Tank settlement due to liquefaction around the foundation
(Zama S et al. 2012)

the cause of the ignition of the leaked LPG tank. The diameter of the
largest fire ball in the explosions was about 600 m. Many fragments of
the LPG tanks were scattered as a result of the explosions spreading the
fire to the asphalt tanks, the control room and the neighboring factory.
Metal sheets flew to adjacent inhabited areas leading to an evacuation
order.

In Iwaki city damage inflicted to tanks was due to liquefaction caused
by strong ground motions. Figure 16 shows the valve of a tank almost
touching the ground due to liquefaction around its foundations. Fur-
thermore the center part of bottom plate was uplifted about 50cm high
owing to the lateral flow of neighboring soil of the tank, and the welding
area of the bottom plate cracked and oil leaked.

2.3 Discussion

The preceding subsections lead to the conclusion that the behavior of
a storage tank during an earthquake depends on several different fac-
tors including the structural details of the tank (type of tank, material
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Figure 17: Elephant-foot bulge (Hosseinzadeh (2008))

and size, foundation, supporting system etc.), the characteristics of the
seismic motion and post-earthquake ground movements that may take
place (such as ground sliding, liquefaction etc.) and the properties of the
soil. Folowing Priestley, Wood and Davidson (1986), Barros(2004),and
the report of the Task Committee on Seismic Evaluation and Design of
the Petrochemical Committee of the Energy Division of the American
Society of Civil Engineers (2011) we identify various observed types of
failure:

1. Buckling of tank wall above base known as "elephant foot bulge"
(Figure 17), which typically occurs around the perimeter of unanchored
tanks due to large compressive stress of the tank wall. Another less
common (and less damaging) buckling mode of the tank shell is the
"diamond shape" buckling, usually associated with taller tanks with
very thin shells.

2. Damage of the upper shell of the tank wall and/or roof as well
as failure of frangible joints between wall and roof due to long-period
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Figure 18: Diamond-shaped buckling (Barros 2004))

24



Figure 19: Roof damage by liquid sloshing (Hosseinzadeh (2008))

sloshing of fluid and hydrodynamic pressure (Figure 19).

3. Weld failure between the bottom plate and the tank shell as a
result of high-tension forces during uplift.

4. Breakage of piping connected to the tank shell or bottom plate due
to lack of flexibility in the piping system to accommodate the resulting
uplift (Figure 20).

5. Foundation failure by differential settlements associated with lig-
uefaction of soils.

6. Failure of inner supporting columns leading to roof buckling for
fixed roof tanks and failure of the tank support system for elevated tanks.

7. Tearing of the tank shell or failure of the anchorage due to non-
ductile anchorage

connection details for anchored tanks.

8. Tearing of tank shell or bottom plate due to over-constrained
stairway, ladder, or piping anchored at a foundation and at the tank
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Figure 20: Failure of connections between piping and tank wall (Seyed-
Razzaghi and Eshghi (2004))
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shell. Tearing of tank shell due to over-constrained walkways connecting
two tanks experiencing differential movement.

9. Sliding/rocking/overturning of tank.

10. Splitting of tank shells subsequent leakage due to high tensile
hoop stress in bolted or riveted tanks.
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3 Dynamics of a fluid in a tank

3.1 Generalities

In this chapter we study the mechanics of a fluid in a container sub-
ject to a given acceleration. The first study of the distribution of water
pressure in a rectangular tank caused by a simulated earthquake is pre-
sented in Hoskins and Jacobsen (1934), where experimental data are
also given. The authors work in the impulsive approximation, i. e. they
neglect the second term in the left hand side of (6); they also neglect
the g-dependent term in the right hand side of (6), the reasoning being
that their treatment addresses the motion of the fluid short after the
external excitation has acted and before gravity waves are set up. A
treatment of the somewhat similar problem of earthquake-produced wa-
ter waves in a basin and of the subsequent pressure exerted on a dam
is presented in Westergaard (1931). A more thorough treatment of wa-
ter waves in an accelerating tank, again in the impulsive approximation
but now including the case of cylindrical geometry, is given in Jacob-
sen (1949). Inclusion of both impulsive and convective terms in (6) was
first presented in three papers by Housner in 1954,1957 and 1963. He
uses a simplified hydrodynamical model, the benefit being that the re-
sults do not involve Bessel functions. In his study he also takes into
account the flexibility of the tank walls. In his treatment of tanks with
rigid walls, Housner provided a mechanical analog that has been widely
used ever since: the total fluid mass is divided in two parts, one that
does not participate in oscillations, and a few (typically at most four)
oscillating masses attached to the wall at different heights by springs
of different spring constants. We review his results in subsection 2.8.4
below. Haroun (who was Housner’s student) treats cylindrical contain-
ers with flexible walls based on assumptions A1 to A5 below. Veletsos
(1984) gives a full treatment of both impulsive and convective terms for
cylindrical tanks following mainstream methods of hydrodynamics. Fur-
ther to the above developments that sprang from the civil engineering
community, it must be noted that the problem of sloshing in cylindri-
cal containers has been widely studied by the rocket science community
since the 1950s (we refer to the sloshing of the propellant inside a rocket
tank subject to acceleration). Important contributors include Abram-
son, Ransleben, Bauer and Ibrahim and references are given in Ibrahim’s
book (2005).

Following Haroun we present the fundamental fluid-mechanical as-
sumptions Al to A4:

A1 No sources or sinks are anywhere in the flow field.

Clearly this assumption is certainly valid in the situations we are

28



going to consider. As a result we may write down the continuity equation
valid throughout the flow field:

%—i—v-(pv)zo. (1)

A2 The fluid is inviscid.

The absence of viscosity means that no energy is dissipated to heat.
In thermodynamic terms this means that entropy stays constant (isen-
tropic flow). In the case of a gas constancy of entropy, i.e. absence
of heat flow, implies that pressure and density are connected via the
adiabatic law p =const-p?, where 7 = ¢, /c,.

A3 Liquids are taken to be incompressible.

Incompressibility, i.e. density being constant in space as well as in
time, means that we neglect sound waves in the liquid. This is probably
a good assumption at least as long as velocities are small, i.e. smaller
than the speed of sound in the liquid. As a result of this assumption
equation (1) simplifies greatly since (a) dp/0t = 0, (b) p can be taken
outside the divergence. Thus the continuity equation reads:

V. v=0. (2)

A4 The flow field is irrotational.

This means that no vortices appear. Given the way that a tank is
excited by the earthquake this is probably a good assumption. Mathe-
matically it is equivalent to the vanishing of the curl of the velocity:

V x v =0. (3)

This in turn means that the velocity can be written as the gradient of a
potential (the velocity potential):

v=Vo. (4)
We substitute (4) in (2) to deduce:
V20 = 0. (5)

Thus the velocity potential ®(x,y, z,t) obeys Laplace’s equation. Our
main task in this chapter is to solve (5) subject to boundary conditions
that shall be discussed below.

3.2 Fluid mechanics in a fixed tank

The motion of a fluid is governed by Newton’s law. If the only external
force acting on the fluid is gravity (the acceleration of gravity pointing
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downwards along the z axis) then Newton’s law reads (see chapter 2 of
Curle and Davies (1968))

ov 1
oy ) _ _ ok
BT +(v-V)v pr gk, (6)

where is the unit vector along the z axis and p is the gauge pressure (the
difference between fluid pressure and atmospheric pressure). We use the
well-known vector identity

%v (1?) =vx (V x V) + (v V)V, (7)

together with V x v =0 to rewrite (6) in the form

ov 1 1

_ — 2 e i
5 + 2V (v ) pr gk, (8)
or, using (4),
3@ 1 ) P .
V(at—l—Q(V(I))—l—p—l—g(z—H))_O, 9)

where H is the height of the liquid at rest. Physically, writing g (z — H)
instead of gz means that we take gravitational potential energy to be zero
at the surface of the liquid at equilibrium. The fact that the parenthesis
in (9) has zero gradient means that the former is a constant that can be
taken to be zero (strictly speaking it can be any function of time but it
is easily shown in fluid mechanics textbooks that it can in fact be set
equal to zero). Thus,

a@ 1 ) P .
8t+2(v®> —|—p—|—g(z—H)—O. (10)

This is Bernoulli’s equation valid at all instants and at all points in
space.

In the case of a fixed wall the boundary condition that accompanies
(5) is that the velocity of the fluid normal to the surface vanishes, i.e.
there is no penetration of fluid into the surface:

n-v =0, (11)

where n is the unit vector normal to the surface. In terms of the velocity
potential the above reads:

n . Vo=0. (12)
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Figure 21: Tank geometry

This equation is to be applied at the bottom and at the sides of the tank.

We now have to impose boundary conditions at the free surface of the
liquid. One requirement is that the velocity of the surface at a certain
point coincides with the velocity of a liquid particle at the same point.
This is the so-called kinematic boundary condition. To formulate it in
a precise way we take the case of a cylindrical tank and introduce a
coordinate system Ozyz with the z axis coinciding with the axis of a
cylinder and the plane x — y coinciding with the bottom base of the
cylinder (see Figure 21). The liquid surface is described by the function
&(z,y,t) that gives the deviation from the equilibrium level:

€($7y>t):Z_H' (13)
The kinematic boundary condition assumes the form (see Appendix A):

o 0B 0DOE 0B
ot Vovor T agay  9: (14)

A further boundary condition is provided by the requirement that the
pressure at the surface be equal to the atmospheric, i.e. that the gauge

pressure be zero. This is the so-called dynamic boundary condition.
Setting p = 0 in (10) we obtain

0 1, 5
S+ 5 (Ve +ge=o. (15)

At this point following Haroun we introduce a further assumption
A5:

Deviations from equilibrium are small (linear approximation). Ne-
glecting quadratic terms some of the above equations simplify greatly.
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Bernoulli’s equation (10) reads

od p
Z —H) = 1
at—l—erg(z ) =0, (16)

the kinematic boundary condition (14) reads

o6 b
il U (17)

and the dynamic boundary condition (15) reads

0P
o +g§ = 0. (18)

We combine (17) and (18) to obtain

P> 9D

oz 99 T
This is a surface boundary condition expressed wholly in terms of P,
and in the spirit of the linear approximation it is to be applied at the
equilibrium level z = H.

0. (19)

3.3 Solution of the Laplace equation subject to the
boundary conditions previously derived

A sloshing mode ®(z,y, z,t) is a solution of Laplace equation subject to
boundary conditions (12) and (19). We introduce cylindrical coordinates
r, ¥ (see Figure 21):

r=+/22+4+19y2%, x=rcost, y=rsind. (20)

Laplace’s equation in cylindrical coordinates reads (see chapter 7 of
Spiegel (1959))

g PP 102 10%0 50

o "o TiEge T o T 21)

From here to equation (30) we follow Appendix I-c of Haroun (1980).
We solve (21) by the method of separation of variables, i. e. we write

O(r,9, 2,t) = T(HOW)R(r)Z(2), (22)

where T, ©, R, Z are functions of ¢, 9, r, z respectively. We obtain for
O:

O(9) = ay, cos(nd) + 3, sin(nd), (23)
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where n is a non-negative integer. We note that (i) the function R must
obviously be non-singular at » = 0 and (ii) boundary condition (12)
applied at the bottom of the tank reads

dz

dz_O at z = 0. (24)

Conditions (i) and (ii) are satisfied by the following form of RZ
R(r)Z(z) = J, (kr) cosh (kz) , (25)

where J,, is the Bessel function of order n (non-singular at r = 0), n is
the integer appearing in (23) and & is a positive number. The function
J, satisfies the Bessel equation:

,d*R dR ~
P o+ (K —n’) R=0. (26)
We now turn to boundary condition (12) and apply it at the side-walls
of the tank (i.e. at r = R). By expressing V& in cylindrical coordinates
0d. 109 - 8<I>

VO = o) (27)

we obtain

0D
or

In terms of solution (25) this reads

=0 at r=R. (28)

J(kr) =0 at r =R, (29)

where the prime in (29) denotes derivative with respect to the argument.
For a certain value of the index n we denote by A, the zeros of J!. Then
equation (29) gives

)\nm
nm — . 30
fom = 2 (30)
For a certain value of the index n = 0,1,2,.. equation (30) gives the
allowed values of m = 1,2,.. . The integers n, m label the sloshing

modes of a rigid cylindrical tank. In Appendix B we quote the first five
zeros for n =0,1,2 and m = 1, 2,..,5.

We combine (22), (23), (25) and (30) to write down the velocity
potential for a mode (n,m):

Dy = T (£) W, (31)
U = (v, cos (nd) + B, sin (nd)) J, ()\nm%> cosh <)\nm%> . (32)
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To determine 7T},,, we use the last remaining boundary condition (19) at
z = H which, in terms of (31), (32), reads

d*T, 3
Tl oo TN n G, TIN5 o (33
e R R R

This is the equation of an harmonic oscillator. If we write
T (1) = Apn €08 (Wpmt) (34)

where A,,,, is the amplitude and where we made a choice of phase, then
the angular frequency for the (n,m) mode is given by the expression

H
Wi = )\nm% tanh ()\nmﬁ) i (35)

For example for a tank of radius R = 15 m and height of wetted surface
H = 7.5 m the period of the (1,1) mode is 6.7 s. For a saucepan of
radius R = 0.1 m and height H = 0.02 m the period of the (1,1) mode
is 0.8 s. In terms of the period 7,,, = 27 /W, equation (35) takes the

form )
Tnm g .

1 H
where the left hand side is obviously dimensionless. In Figure 22 we plot
the angular frequency as a function of H/R.

For a tank with given R we observe that as the height of the lig-
uid increases, the angular frequencies of the various modes approach
asymptotically constant values. For the first mode, the approach to the
asymptotic value starts when H becomes somewhat larger than R. For
higher modes, the asymptotic value is achieved for much smaller heights.
Using (34) in (31) we write down the full expression for the (n, m) mode:

D@y = A €08 (Wamt) (o, cos (n) + 5, sin (nd)) J, <)\nm}%> cosh (Anm%> )

(37)
The constants A, o, (3, are determined from the initial conditions.
The surface displacement is obtained from (18) (valid at z = H):

1 H
Em (1,0, 1) = gwnmAnm cosh (/\nmﬁ) sin (Wpmt)

X (a, cos (nY) + B, sin (nd))) J, <)\ (38)

7
nmR .
It shall be seen in following subsections that lateral acceleration (accel-
eration along the x—axis) excites the (1, m) modes with 5, = 0. It may
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Figure 22: Scaled frequencies of the first three convective modes vs H/R
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Figure 23: Plot of &, (r,v)

thus be of interest to provide plots for the surface displacements &4,
€19y €15 (Figures 23 to 25). In each figure, the bottom plane coincides
with the horizontal plane, and the elevation £ is measured along the third
axis. The scale in this plot is arbitrary. In the case where 3, = 0,y # 0,
a;21 = 0 the extreme displacements take place along the horizontal axis
(¥ = 0) and the displacement always vanishes for © = 7/2 (the y axis
is the line of nodes). 1t is explained after (63) that these are the modes
relevant to lateral excitation along the x axis. The intersections of the
red curve with the = axis determine the mode frequencies. The shape
of the first eigenmode (see Figure ) is described by the portion of the
blue curve between the origin and the first zero, the shape of the second
eigenmode (see Figure ) is described by the portion of the blue curve
between the origin and the second zero etc.

The pressure corresponding to an (n,m) mode is obtained from the
Bernoulli equation (16)

Dam (1,0, 2, 1) (39)
= pg(H — 2) + pwpmAnm sin (wpmt)

X (ay, cos (nd) + S, sin (n)) J,, ()\nm}%) cosh (Anm%> ,

where the first term is the usual hydrostatic pressure.
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Figure 24: Plot of £5(r,¥)

Figure 25: Plot of &,5(r, 1)
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3.4 General expression for the fluid energy in a
fixed tank

In this subsection we derive general expressions for the total kinetic K
and gravitational potential V' energies of the fluid. To calculate V' we
divide the fluid to columns of base area d.S and height z. The potential
energy of one column is (mass pzdS) x (acceleration of gravity g) x
(height of center of mass of column z/2):

1
V= §pg/d322 (40)
S

where S is the cross-section of the cylinder. In terms of £ (13):

1

V= §pg/ds (&€ +2¢H + H?). (41)
S

The third term in the above integral leads to a contribution equal to

TR?*H?0g/2 = mygH /2, and this is the potential energy of the fluid at

rest. Measuring potential energy differences with respect to the fluid at
rest this term can be dropped. Using eqn (18) we obtain

V= 29 dS( ) / dS— (42)

The kinetic energy of the fluid is

1
K = §g/dVv2, (43)

where v is the magnitude of the velocity and where we took into account
that due to incompressibility the density is uniform and can be taken
outside the integral sign. The integration in (43) is over the whole volume
of the fluid. In terms of the velocity potential

K= %g/dV (VD). (44)

We integrate the above by parts to obtain a volume term and a surface
term:

1 1
K:—§Q/dV<I>V2<I>+§p / ds (- V), (45)

boundary

where the surface integral is over the whole boundary of the fluid and
i is the outer normal to the boundary. We note that (a) the volume

38



Figure 26: Fixed and accelerated coordinate systems

integral vanishes due to Laplace’s eqn (5), (b) the surface integral over
the base and the walls of the tank vanishes due to boundary condition
(12). We are thus left with the surface integral over the free surface of
the fluid. In the linear approximation where the height of the wave is
small compared to wavelength we can set

ﬁzkéﬁ-V@zk-VCI):a—@.
0z
Hence, the kinetic energy takes the form
1 0P
K=-p|dS—® 46
s [as e, (46)
S

and the final expression for the total energy is

1 b p 0D\ ? b
S S S

3.5 Fluid mechanics in an accelerating tank

We consider a rigid tank performing accelerated translational motion
along the Ox axis. The coordinate system Oxyz is fixed at the tank and
is defined as previously (O is the center of the tank’s circular base). We
consider an inertial frame O'x'y’2’" with axes O'z’, O'y’, O'2' respectively
parallel to Ox, Oy, Oz (Figure 26). We intend to describe the sloshing
modes from the point of view of an observer accelerating with the tank.

Let X be the position vector of the center of the base with respect
to the inertial frame, V¢ its velocity and ag its acceleration. If f is any
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mechanical quantity (either scalar or component of a vector) then

of _(of
(E)incrtial B <E>tank B VO . Vf (48)

and
of _of of _of of _of o)
ox'  ox’ Oy Oy 07 0z
where by definition
dXo
Vo=—7-—.
°7 at
Newton’s law (6) refers to the inertial frame and reads
ov 1
== -V)v=—--Vp-—gk. 50
( ot )inertial i (V ) v P P ( )
We use (48) and (49) to rewrite the above
0 1
(—V> —(Vo-V)v+(v-V)v=—-Vp—gk. (51)
ot tank P

In what follows time derivatives shall always refer to the tank and the
subscript shall be omitted. We express the fluid velocity as a sum of the
tank velocity and of a relative velocity

V(m7y727t) :VO(t)_’_VTel(xay?Zat)) (52)
and substitute in (51) to obtain

aV7"el

ot

1
+ (Vrel'V) Viyel = _;Vp - gk - aO(t)' (53>

Equation (53) is probably obvious: comparing with equation (6) we see
that as far as relative motion is concerned the acceleration of the tank is
equivalent to a gravitational field in the direction opposite to that of the
acceleration. We can now consider small displacements and velocities of
the liquid relative to the tank and simplify the above:

8Vrel

1
5 = —;Vp—gk—ao(t)- (54)

In what follows we shall take motion of the tank along the xr—axis and

thus write
aVrel

ot

1
= —;Vp - gk—ao(t)i. (55)
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From (52) we see that V x v = 0 implies that V x v, = 0, so we can
introduce a velocity potential for v,.;:

Vel = VO. (56)
Then equation (55) reads
OAYA 1
——— = —=Vp—gk—ap(t)i
5 SVp—yg ao(b)i, (57)
or 00
V(—+£+g(z—H)+ao(t)x) =0. (58)
at  p
Hence Bernoulli’s equation for an accelerated tank reads:
0P
=+ % +g(z — H) + ao(t)z = 0. (59)

From (56) and (2) we obtain Laplace’s equation (5) valid for the rela-
tive velocity potential. As previously, this has to be solved subject to
appropriate boundary conditions.

Equations (12), (24) and (28) are still valid. Physically they reflect
the fact that the relative velocity has no component perpendicular to the
walls of the tank. The solution to Laplace’s equation under these bound-
ary conditions still has the form (31), (32). It is shown in Appendix A
that the kinematic boundary condition still has the form (17). Thus, the
acceptable sloshing modes are of the form ®,,,, given from (31). However
the dynamic boundary condition obtained from Bernoulli’s equation now
reads (setting p = 0 in (59)):

%—(f+g§+ao(t)x:0 at z=H. (60)
Equation (59) agrees with equation (2.2d) of Ibrahim (2005). We differ-
entiate (60) with respect to time and combine with (17) to deduce the
surface boundary condition appropriate for an accelerating tank

2

%—s—i—gg—f—kao(?ﬁ)xzo at z=H, (61)

where a dot indicates derivative with respect to time. Equation (61)
agrees with equation (2.3) of Ibrahim (2005). It is important to observe
that boundary condition (61) is non-homogeneous. We thus express the
velocity potential ® as a superposition

¢:§3§3ﬂmmm“ (62)

n=0 m=1
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where T, are certainly different from T\m and are to be determined.
Note that the units of T}, are meter?/second. We substitute (62) in

(61) to obtain:

= = dzTnm . r H
Z Z o (cv, cos (nd) + f3,, sin (nd})) J, (Anmﬁ> cosh (AnmE) +

3

=0 m=1
g o0 (e ¢] ' r . H
= Z Z A T (ai, cos (nd) 4 3, sin (nd)) J,, <)\nm}—%> sinh <)\nm§> +

n=0 m=1
ao(t)rcosv = 0. (63)

Equation (63) must be valid for all 0 < ¢ < 27 and the only way
that this can happen is if a,, = 0 and 8, = 0 for n # 1 and 3, = 0,
aj # 0. Thus (63) simplifies to

o
Z %Jl <)\1m}%) cosh (Alm%> +

m=1

- Ty . HY .
}% mZ:l A Tim i (Almﬁ> sinh (/\mﬁ) +ao(t)r =0. (64)

Further progress is made if we use the Fourier-Bessel expansion (178)

forz=r/R

= 2R r
T = Jl (Alm_) s (65)
2 0, Ao
and substitute it in (64) to obtain

mi:l 7 (Alm}%> X

2Ty, H\ ¢ H 2R

h{ Apn— =T A sinh | Ay, — 10(t) p = 0.

X{ - (1 R>+R1 P (1 R>+(A§m_1)J1<Alm)aO()}
(66)

Because J; (A1,,7/R) are a set of orthogonal functions equation (66) can
Ty, N\ H
——— CoS m—
di? ™R

g . H 2R .
+=TimAmsinh | Ay— | + t)=0 67
R 1mA1m S ( 1 R) ()\?m — 1) 7 (A1m>a0( ) ( )

only be satisfied if
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for each m separately. In the notation (35) the above reads

d*Ty,,

A +wi Tim +C,a0(t) =0, (68)
where -
o = 69
(W — 1) J1(Aam) cosh (A ) (69)
is a length.

The conclusion from the above calculation is that in the case of lat-
eral excitation only the n = 1 modes are excited. Haroun (1980) however
points out that this conclusion is valid for strictly circular tanks and that
small deviations from the perfect circle (which are in practice unavoid-
able) lead to non-negligible excitations of the n # 1 modes. Under this
simplification the velocity potential (62) reads using (31), (32)

_y r z
d = mZ:lTlm cos V.J; (AlmR) cosh (AlmR> , (70)

where the constant oy has been absorbed in T},,. Equation (68) shows
that each (1, m) mode corresponds to a forced harmonic oscillator. The
time dependence in 77,,(t) is determined once a specific form for ap(t)
is known.

The height of the wave as a function of space and time is obtained
from the dynamic boundary condition (60):

109 ao(t)x
g ot g

(71)

We substitute (70) for the velocity potential and (88) for the acceleration
in the above to express it in terms of dT,,/dt:

= —— cosé1 Z dTlm <)\1mR> cosh (Alm%) - #. (72)

3.6 Expressions for the pressure, force, and mo-
ment exerted by the liquid on the tank

The pressure can be expressed using Bernoulli’s equation (59) after sub-
stituting ® from (70) and z from (20):

= —pcos? Z dTlm ()\lmR> cosh (AlmR)—l—gp(H z)—a,(t)pr cos¥.
(73)
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For r = R in (73) we obtain the pressure against the tank walls:

dTm
= —gcosﬁz tm 1. (A1m) cosh (Alm )—l—gp(H—z)—ao(t)pRcosﬁ.

(74)
We consider a small element of the cylindrical wall of width dz at a height
z from the base (see Figure 27). As shown, the area is dA = RdJdz and
the force along the z-axis acting on the element is pd A cosv). Hence, the
total force in the x direction can be obtained by computing the integral

H 27
F, = / / pR cos¥didz (75)
2=0 J9=0

R

or

:_QRZ

ng/ / H — z) cos¥didz — pa,(t RQ/ / cos? ¥didz.
z=0 J 9= z=0 J 9=

dTm
L J1 (A1m) / / cos ﬁcosh AlmR) dddz+
V=

(76)
The integrations in (76) are elementary and the result is:
J1 /\1m . H\ dTiy,
F,=- A s | o,
myao(t Z . < 1 R) It (77)

where m; is the liquid mass. To calculate the total force acting in the
y direction we return to the remark made in the lines following (74)
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and note that the force along the y- axis acting on the surface element
is pdAsin, hence the total force acting in the y direction is (compare

with (75))
/ / pR sin ¥didz. (78)
z2=0 JI9=0

We now see from expression (74) that the angular integration in (78)
gives zero:

F, =0, (79)

The bending moment immediately above the tank bottom (which
includes only the contributions of pressures on the walls) can be easily
calculated through the integral

H 2w
M, = / / pR cos Izdidz (80)
o Jo
to give:
ATy J1 (A im)
My = —ml—CLO my Z d;j 1)\2 ! (81)

. A1'rn, >\1m R R
x(smh( 7 )Alm—cosh< 7 )E—i-ﬁ)

From (81) we see that the d” Alembert force provides a moment as if the
force is exerted at the center of mass of the liquid at equilibrium. The
pressure on the tank base is obtained by setting z = 0 in equation (73):

p= —@Zd
m=1

In Figure 28 we consider a small element of the tank base of area dA =
rdddr. The force acting on each element of the base is dF' = prdddr,
and generates a moment about the Oy axis given by the integral:

Tlm T
e 9J (Almﬁ> + gpH — a,(t)pr cos . (82)

2
Myase,y = /0 /190 r cos Iprdddr, (83)



where 7 cos ¥ is the lever-arm of the force dF. Equation (83) gives

/ro/ﬁ r? cos 19J1 AlmR) dddr  (84)

—o0a,(t / / r3 cos? ¥didr.
r=0 J 9=

Using equation (176) of Appendix C to calculate the integral

/T : r2J; </\1m R) dr (85)

dTlm

Mbase,y =

we have

J )\ m) dTm
Mabove base,y — —@ (t)ml_ - mlH Z 1 : : . (86)

In order to check the tank against overturning, one would have to calcu-
late the moment just below the bottom plate of the tank, Mpycow base,y-
This includes the bending moment exerted on the tank walls and the
moment due to the pressures acting on the base plate:

H R?
Mbelow base,y — — 1M ( 9 4H> <t>

AT J1 (Aim) (. AmH AmH\ R
_mlz 7 )\2 (smh( 7 )Alm—cosh( 7 >ﬁ+

3.7 The tank under a lateral sinusoidal excitation
3.7.1 Generalities

We consider the case of a ground acceleration of the form
ao(t) = Acos Q. (88)
Equation (68) is then written

d*Tipm,
dt?

+w? Ty — AQC,, sin Qt = 0. (89)

The solution of the above differential equation for the initial conditions
T1(0) = 0 and L= (0) = 0 is

AQL, (

Q
Tin(t) = —5— oz sin Qt — —sinwlmt> . (90)
im

Wim
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3.7.2 Expressions for pressure, force, and moment

We substitute T}, in (73) and get the expression for the pressure:

1
R R) m (COS Ot — cos wlmt)
im

+gp(H — z) — prAcosd cos Q. (91)

p=—pA0N? cosV i (¢, cosh ()\lmi> J1 <)\1m1
m=1

Expression (77) for the force combines with (90) to give

2RAN? SN tanh (/\1m%)

F, = —m;AcosQt—m
l CH A, (N, 1), -

(cos Qt — coswipt) .

(92)
In a model that includes viscosity the terms proportional to coswq,,t
will represent transient oscillations and will be damped. To obtain the
expression for the bending moment immediately above the base of the
tank we substitute (90) in (81):

H
Mabove base,y — _mlgaO <t) (93)
. tanh (x\lmﬂ) 1
—m;2RAQ? f
ml Z Alm()\%m - 1) w%m -

m=1

1 — cosh (A2
X <1+ cosh (A ) )(coth—coswlmt),

Alm% sinh (/\lm%)

which agrees with (130).
3.7.3 The height of the wave
We use (88) and (90) in general expression (72) to obtain

> Ji (M%) 0?
§= —ZER cos ¥ Z 0 = 1)J1R()\1 oz (cos QU — cos wipt)
m=1 m m m
—?T cos ¥ cos §2t. (94)

3.8 The response of the tank under an arbitrary
lateral excitation

3.8.1 The differential equation

One of the aims of the present chapter is to examine the response of the
tank under ground motion dictated either by a pulse of known mathe-
matical form or by a seismic signal. In both cases the ground acceleration
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ao(t) either vanishes before a certain time ¢y or, as in the case of the
Gabor pulse, is exponentially small as ¢ — 0. In the second case we shall
again choose an initial time ¢y at which the ground acceleration is small
enough for all practical purposes. Differential equation (68) describes
(for each m) a forced harmonic oscillator. It is convenient to introduce
new quantities G,,, having units of length defined by

Tlm
Gm = ) 95
wlmgm ( )
Then equation (68) reads
1m

Once Ti,, are calculated either analytically or numerically the behaviour
of the system is completely known. For example the velocity potential
is calculated through (70), the height of the wave through (72), and
pressure, force and moment through (73), (77), and (128) respectively.
To specify the boundary conditions that accompany (96) we note that
at time t = t; the velocity of the wave must vanish and hence, according
to (62), T1,, must vanish. Thus from (95):

Gm(to) = 0. (97)

Similarly pressure, force and moment must vanish at ¢ = ¢, and accord-
ing to (73), (77) and (95), and (128):

G(to) = 0. (98)

3.8.2 Solution via the Duhamel integral

The solution of (96) subject to boundary conditions (97) and (98) is
given by the well-known Duhamel integral (see e. g. Chopra (2007)):

Gn(t) = — ! / deaO(T) sin (w1 (t— 7)) . (99)

2
Wim Jio dr

We integrate (99) by parts:

1 , e I d .
G (t) = ———[ao(7) sin (wim (t — T))]Tzfo—l—T drao(T)— sin (wim, (t — 7)) .
im Wim Jio dr
(100)
The first term vanishes for 7 = ¢ and we obtain:
1 , 1 /[t
Gn(t) = —5—ao (to) sin (Wi (t — to)) ——— / drao(T) cos (Wi, (t — 7))
wlm Wim to
(101)
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Pressure, force and moment depend on d7T},,/dt and to obtain an ex-
pression for the latter we differentiate (101) with respect to t:

1

Gm(t) = an (to) cos (w1 (t — tg))—iao(t)—i—/t drao(7) sin (Wi, (t — 7)) .
' (102)

Note that the above derivation assumes that the function ag (¢) does not
have any Heaviside-type discontinuities for ¢ > ¢y, else (102) contains
further terms resulting from the integration by parts. If ap (t) does not
have a Heaviside-type discontinuity at ¢ = to, i. e. if ap (t9) = 0, then
the first term in (102) is absent. In what follows we shall assume that
this is always the case:

ao (to) = 0. (103)
Then
G(t) = —iao(t) + /t drao(T)sin (Wi, (t— 7)) . (104)

3.8.3 Solution via the Fourier transformation

Notation: In what follows given a function y(t) we denote by ~ its Fourier

transform
—+o00

() = /_ e~y (1) dt. (105)

o0

The technicalities of the Fourier transform are easier in the case of an
oscillator with damping. In the present problem damping comes about
as a result of viscosity as well as of friction between liquid and walls.
These factors have been neglected in the hydrodynamical treatment;
however damping can be put in by hand in (96) by writing it in the form
(see e.g. Meirovitch (2001))

G + 20,01 G + W2, G + wido(t) = 0. (106)
Im
We use the notation 7,, since in a proper hydrodynamical treatment
each mode may well have its own damping factor. However in a following
subsection where we will consider accelerograms we shall take ,, = 0.005
for all modes.

We first look for solutions g, (t) that satisfy (106) but not the bound-
ary conditions (97) and (98). According to the standard theory (see
Chopra (2007) and Meirovitch (2001)) the response g,,(t) under damp-
ing is

1 oo ao(w)
1) = — iwt , dw, 107
gm(1) 2TW1m /oo ‘ —w? + Wi, + 121, W1mw “ (107)
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and the integral, if ao(w) is simple enough, can be evaluated exactly. In
a following subsection the integral (107) will be evaluated via the FFT.
We use the well-known property (see Boggess and Narcowich (2009))

-~

ao(w) = iwap(w)

to obtain

i too w
gm(t) = — /_ e do(w)dw  (108)

2TWim J oo —w? + w4 i2n,,wimw

as one solution of (106). From the above we obtain

400 w2
am(t) = ! / et do(w)dw.  (109)

— _ a
2TW1m J o —w? + Wi, +i2n,,Wwimw

We now turn to the initial conditions and note that equations (108)
and (109) determine the values ¢,,(0), §,,(0). The requisite solutions
G (t) are obtained if to g,,(t) we add solutions of the homogeneous
differential equations:

Gn(t) = gm(t) + Aje” 1t cos (wlm 1- nfnt> (110)

+B,, e m®@imt gin (wlm 1-— n%nt) )

In the present case of small 7, we may neglect the square roots in (110)
and write

Gn(t) = gm(t) + Ape ™ coswypt + Bpe ™t sinwy,,t. (111)

The last two terms in (111) are called transients since they die away at
large times. Initial condition (97) gives

Ay = —9m(0). (112)
Differentiating (111) we obtain

Gon(t) = Gm(t) — (A + Bum,,) wime 1t sinwyt + - (113)

@iml 008 wWmt.

(Bm - Amnm) wlmeinm
Applying initial condition (98) in (113) we obtain

B= 30 _ o oy, (114)

Wim
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Thus the final expressions for G, (t), Gm(t) are:
Gn(t) = gm(t) — gm(0)e "1 cos wy,,t (115)

Im (0 )
— (g 0) + gm(())nm> e tmrmt §in Wit

Wim

im

Gm(t)=gm(t) + (gm(O) I3 ( )77m) Wppe MmOt sin .t (116)
w
—Gm (0)e M cos Wyt

where we neglected a term proportional to 7?2, .
Another way to express the above results for G,,(t), G,,(t) is as fol-
lows. We rewrite (109) in the form

1 +oo . w%
Im(t) = — w1 - " Q dw,
grm(t) 2TWim /_oo ¢ ( —w? +w? +22nmw1mw) Go(w)dw
(117)
and use the inverse Fourier transform in the first term together with the

abbreviation

1 [T . 1
Im(t) = — wt i dw, 118
) 2m /—oo R +w?  + i2nmw1mwao<w) “ (118)
to obtain .
Im(t) = as( ) + Wil (t). (119)
1m

Note that the quantities [, have dimensions of length and according to
(118) describe the response of an harmonic oscillator to a forcing term
that coincides with ap (). In that sense they are identical to the oscil-
lators first introduced by Housner. The separation in (119) essentially
amounts to the distinction between impulsive and convective modes and
its consequences will be seen in the calculation of the force.

From (119) and (103) we obtain

9m(0) = wimln(0), (120)
hence
Gon(t) = gm(t) — gm(0)e "1 cos Wyt (121)
- (lm(O) + gm(o)nm) e—nmwmt Sinwlmta
s _ ao (t) —1N,,Wimt o
Gm(t)=— + Wil () + (gm(0) + 1, (0)7,,,) Wime ™1™ sin wyy,t
Im
~Wimlm (0)e" M1 cog Wyt (122)

Equations (115), (116), (121), and (122) are the central results of this
subsection.
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3.8.4 Calculation of the force

The lateral force is given by the combination of (77) and (95). In terms
of G (t)

F, = —mao (t) = Y ft@1mGml(t), (123)
m=1

where we introduced

= Oum) oy ()\1 E) ¢

Fm =0 ™ Nom R
2R H 1
=my— tanh [ A\, —= | ———. 124
Mg ( : R) M (N2, — 1) (124)
We use equation (122) for G,,(t) and write
Fu(t) = =600 () = > prnt} Lin (1), (125)
m=1

where 11 is defined as the impulsive mass,

Ho = 1y — Z )
m=1

Lin(t) = Ln(t)+(gm(0) + 1, (0)n,,,) "< sin wy,t—1,,, (0)e "9 cos wyppt.
(126)

The interpretation of (125) justifies the picture advocated by Housner

(1957). If the excitation is such that ap (tg) = 0 then the system behaves

as if it consists of an impulsive mass rigidly following the tank and of

convective masses [, connected to springs of constants K,

Ky = p1,,03 (127)

giving rise to elastic forces £ proportional to stretchings instanta-
neously given by the Duhamel integrals. Housner’s development was
based on a simplified model of the fluid. Veletsos in various publica-
tions (notably Veletsos and Yang (1977)) further developed this picture
starting with the full hydrodynamical model for an inviscid fluid and sep-
arating the velocity potential to impulsive and convective components.
The dependence of impulsive and convective masses on H/R is given in
Figure 29.

The spring analog is further illustrated in Figure 30 where the masses
are attached at heights h,, given by (128) so that the moments of the
spring forces coincide with the moments given by (130).
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Figure 28: Illustration of the spring-mass analog
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Figure 29: Plot of h,,/H vs H/R

We turn to the calculation of other quantities. In order to calculate
the bending moment immediately above the bottom plate of the tank
we substitute (122), (95) and (69) into (81) For each mode m we define
a constants N, , iy, via

h 1 — cosh (Almﬂ)
=14 . L 128
7 A sinh (1) (128)
and .
him 2 — mhm
L my 2 mel H (129)
H Ho
then expression (81) for the bending moment reads
M, (t) = —himppigao (t) — Z hmﬂmw%mim- (130)
m=1

In other words the force i,,w?, Ly, provides a moment as if it is exerted
at a height h,, from the base, while the first term gives the impulsive
contribution. In Figure 11 we plot h,,/H versus H/R for the first four
modes. We observe that for a given H/R the value of h,,,/H increases as
the order of the mode gets higher. This is explained as follows: the pres-
ence of the factor cosh(\y,,2/R) in (74) means that the pressure profile
concentrates on higher values of z as the order of the mode increases.
Similarly we calculate the moment just below the bottom plate of the
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tank by substituting (122), (95) and (69) into (87). For each mode m
we now define a constant h,, via

!/

hy, h 1
m _ Om : 131
HH At 2% sinh (Ayp, %) (131)

and then expression (87) for the moment reads

: H_ R =
My == < ( ) Z o, m) + Z hmlumwlm
(132)
To obtain the pressure distribution we substitute (122), (95) and (69)
into (73)

r

p(r, z,0,t) =ao (t) pRcosV (TnZZI Cin(r, 2) — E) (133)
—pR cos? Z Co(r, 2)w? Lin(t) + gp(H — 2),
where we abbreviated
- r
- L 134
C(r.2) =) Culr2) - 3 (134)

2 cosh ()\lm%> Jl ()\lm%)
(Al — 1) cosh (A1) J1 (Aim)”
For future use we identify the first, second, and third terms as impulsive,
convective and hydrostatic respectively. In Figure 12 we plot the im-

pulsive pressure on the tank walls (setting » = R in (133)) as a function
of z for four different values of H/R. It is important to note that

Ch(r,2z) = (135)

C(r, H) = 0. (136)

This is immediately seen using (134), (135) and (178).
We substitute (122), (95) and (69) in (72) to obtain the displacement
of the surface

£(r,0,t) = ——Rcosq? Z Con(r, H)w?, Ly (1), (137)
m=1
where we used (136). Note that convective components only contribute

to &.
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Figure 30: Height vs impulsive pressure on the wall scaled by paR.
According to (134) this is a plot of C(R, z).
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Before ending this subsection we return to the expression of the force
(92) in the case of sinusoidal lateral excitation and express it in terms
of impulsive and convective masses:

(o.9] oo 2

w

F, = —pgAcosQt—A Z [y, COS W1 t—A Z umﬁ (cos Qt — coswipt) .
w J—
m=1 Im

" (138)

3.9 Calculation of the response given the accelero-
gram: the Discrete Fourier transform (DFT)

To calculate the various dynamical quantities we need [,,(t) and g,,(0)
obtainable via the inverse Fourier transforms (118) and (108) respec-
tively. The accelerogram gives the ground acceleration at discrete times
and the above mentioned inverse F'I's are to be calculated via the Dis-
crete Fourier Transform (DFT method).

The accelerogram ao(t') extends from an initial time ¢ = 0 to some
final time which, for example in the case of the Imperial Valley earth-
quake, equals 39.98 s. Values in this case are given at 0.005 s intervals;
this defines the time-step At. We thus have a total of 39.98/0.005=7996
intervals and 7997 data points. These data points are stored in a MAPLE
Array. MAPLE, as is the case with all modern mathematical packages,
handles the DFT via the Fast Fourier transform algorithm (FFT). The
latter stipulates that the size of an Array must equal a power of 2. The
total number of data points must be sufficienty large so that the damping
reduces the response to a negligible value. (DFT works with periodic
signals so take must be taken that the acceleration at ¢ = 0 as given
by the accelerogram indeed vanishes.) In the present case we choose
N = 2% = 65536 data points and fill the remaining 65536 — 7997 data
entries with zeros. We denote by

L= NAt (139)

the total length of time and then

dO(w)::L/focﬁe“”aO(ﬂ zzngcﬁe“”ao(ﬂ. (140)

[e.o]

We further approximate the area represented by the integral by a sum
of rectangles to obtain

L N N
&O(w) = / dte—iwtao(t) = At Z ao(tk)e—iwtk — At Z ao(tk)e_WkL/N,
° k=1

= (141)
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where tj, is the left end-point of each interval:
ty = kAt = kL/N. (142)
We further define the discrete angular frequencies
wp =2mn/L , n=1.N, (143)

and hence obtain from (141):

N
~ L —1i27n,
ao(wp) = N Zao(tk)e 2mnk/N (144)

DFT guarantees that if ap(tx) is a periodic signal then so is ap(wy).
The quantity appearing in the above equation without the L factor
is the FFT of the Array ap(tx) and is evaluated in MAPLE by typing
the FastFourierTransform command. The result is given as an array
do (wn)

To calculate [,,(t) we proceed in three steps as follows:

e From the array ap(ty) we calculate via FFT the array

N
1 )
N E ao (tk)e_ﬂﬂnkﬂv. (145)

The presence of 1/N means that we adopt the FullNormalization
option of the MAPLE package.

e We multiply the above by the transfer function at the discrete
points w,, to obtain the Array

R 1
ln(wn) = —

i (w,). 146
—w2 4+ Wi, + 2in,,Wnim Go(wn) (146)

To obtain the discretized version of (118) we approximate it by a
sum of rectangles:

Aw X - 1.
In(t) = 5= In(wn)e™ = = " (wy )™, (147)

The right hand side of the above equation without the 1/L factor is
the inverse DFT of [,,(w,). Note that the L factors in (144) and (147)
cancel out. Hence the third step:
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e Through InverseFourierTransform we evaluate the inverse DF'T
of l,,(wy) to arrive at the response function [,,(#;) evaluated at
discrete times.

In a similar manner we calculate g,,(t):

e We use the quantity (145).
e We multiply by the transfer function to obtain the array
1 Wn,

_ o (w, 148
Wim —w2 + w? 4+ 2in,,wnWinm Go(wn) (148)

e Through inverse DFT we calculate g,,(t;).

Using expression (126) we obtain L, through which we can cal-
culate all quantities of interest.
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4 Comparison with codes

4.1 Introduction

In this section we will discuss how current design guidelines treat the
problem of liquid-containing tanks subject to earthquake motion. A
rigorous analysis of the seismic response of tanks should include the
hydrodynamic pressures on the tank wall and base, the liquid-shell in-
teraction, the deformation of the tank walls and the deformability of the
foundation soil, and the modification of the response due to soil-structure
interaction. The complexity of this problem requires high computational
and analytical effort. The seismic codes propose several analysis proce-
dures, valid for specific design situations. The treatment of the several
aspects that should be taken into account may vary among the existing
design codes, while some codes deal with only specific types of tanks.
Although the general features regarding the calculation of the design
forces are maintained, the policies they employ may vary, thus leading
to notably different results in some cases.

In this section we will concentrate on the treatment of the hydrody-
namic response of rigid vertical circular tanks on-ground, fixed to the
foundation. Special emphasis will be given to the procedure analysis pro-
posed by Eurocode 8 (EC8), Earthquake Resistant Design of Structures,
Part 4: Tanks, Silos and Pipelines (1).

4.2 Results and discussion

The model used for the seismic analysis of liquid storage tanks should
be able to accurately reproduce the stiffness, the strength, the damp-
ing and the geometrical properties of the structure, and account for the
hydrodynamic response of the contained liquid, and, if relevant, for the
effects of the interaction with the foundation soil. Eurocode 8 and the
other widely used codes such as ACI 350.3, AWWA standards, API 650
(USA), NZSEE (New Zealand) refer to the spring-mass analog intro-
duced in Subsection 2.8 and the subsequent separation to impulsive and
convective modes.

According to the review by Jaiswal, Rai and Jain (2007), Eurocode
8 and NZSEE guidelines use the hydrodynamical model of Veletsos and
Yang (1977) and ACI 350.3, AWWA standards and API 650 use the
mechanical model of Housner (1963) with modifications of Wozniak and
Mitchell (1978). The derivation of the mechanical spring-mass analogue
used in Eurocode 8 is explained in Subsection 2.8. Tanks are generally
analysed using linear elastic response. Eurocode 8 allows for the use of
'modal response spectrum’ analysis and for the use of dynamic time his-
tory analysis in order to evaluate the design forces referring to the tank.
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Concerning damping, we note: (i) structural damping in the ultimate
limit state: 5%, (ii) contents damping: 0.5 % (for water and other lig-
uids). Eurocode 8 suggests the following procedure as a general method
of analysis.

The first step is to calculate the impulsive pressure under a given
ground acceleration time history, A,(t). In our case the impulsive pres-
sure is given by the first term in eqn (133) with the coefficients C,,(r, 2)
being given by equation (135). Eurocode gives the impulsive pressure in
the form

pi(§7g7ﬁvt) = Oi(€7g)pHCOSQ9A9(t)7 (149)

where &, ¢ are the nondimensional coordinates ¢ = /R, s = z/H respec-
tively, and C;(&,<) is a coefficient introduced by Veletsos (1984):

Ci(E. —22 I, o /,Y 7 cos () (%g) (150)

in which v,, = #5571 , v = H/R , I, and I] denote the modified Bessel
function of first order and its derivative. In Figure 33 we show that our
expression is equivalent to Veletsos to a very good approximation (the
two results are identical if one sums an infinite number of modes).
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The variation of the pressure with depth is given in Figure 33. The
impulsive base shear is given by

Qi(t) = miAy(t),

where m; is the impulsive mass, which in the case of Veletsos (1984) is
given by

= m2y Z i 1y (va/7) (151)

(vn/y) V3

where m = or R2H us the total contained mass of the fluid. Agreement
is shown in Figure 33. Concerning the impulsive force, see also remark
following equation (157).

‘Regarding the moment, Furocode makes a distinction between the
moment immediately above the bottom plate of the tank (denoted by
M;), and the moment immediately below the bottom plate of the tank
(denoted by M/). Eurocode stipulates that the former should be used
for the calculation of the stresses and stress resultants in the tank walls
and at the connection to the base, while the later should be used for
stability against overturning.

M(t) = mih; Ay(t), (152)
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where

Up+2(—=1)" L (v /7)
2+ 2 Z I’(Vn/v)v14
h, = H (153)
Li(wn/v)
2y Z T/ 2

and
where
(1) (v /) .
Z T Wa(=1)" = 1)
ho— HTO . (155)
I( l/n/'y
I vn/w)v3
n=0

Concerning our calculation of the moment see remark following equation
(158).

The next step is the calculation of the convective pressure, base shear,
and moment components. The expression for the convective pressure is

pe(&,6,0,1) = p Y 1, cosh(An76) J1(An) cos Ay (1), (156)
n=1
where R
Un = (X2 =1) Jy (M) cosh(A7)° (157)

Expression (156) exactly coincides with the second term of our (?7).
Note that our results for the convective and impulsive forces are formu-
lated in terms of convective masses m,, only, and there is no need to
calculate the coefficients appearing in (151) (denoted by a; in Veletsos
(1984)). A..(t) in (156) represents the response acceleration of an oscil-
lator of angular frequency w,, (given by (35) and plotted in Figure 34
afainst H/R) subject to an external excitation). Eurocode asserts that
only the first sloshing mode needs to be taken into account for design
purposes and one of the objectives of this thesis is to verify this assertion.
The convective base shear is calculated through

- io: mancn (t)
n=1
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where m,, is the nth modal convective mass coinciding with our result
(??). The moment in the tank wall immediately below the bottom plate
of the tank is

!

Mé(t) - Z mancn(t)h::n - Z Qen () e,
n=1 n=1

where ) O
= 1 (14 22 h0)
An7y sinh(A,7)
and the moment in the tank wall immediately above the bottom plate
of the tank is

M) =S o Ao = 3 Qi) (158)
n=1 n=1

where h,,, coincides with our expression (128). The Eurocode expressions
for impulsive and convective moments coincide with the first and second
terms of our (?7?) respectively. Note that our results are expressed in
terms of h,, and m,, and there is no need to calculate the complicated
summation (155). The estimation of the necessary freeboard is based
on the height of the sloshing wave. The Eurocode assumes that the
dominant contribution comes from the first mode, whose maximum, in
accordance with the remarks preceding (39), occurs at the wall:

dmax = 0.84RS.(T.1)/ 9,

which is obtained from Veletsos’ (1984) equation (C-37) for r = R.
Se(Te1) is the elastic response spectral acceleration at the 1st convective
mode.

The contribution of the second mode is examined in a following sec-
tion.

In the calculation of the total force, pressure and moment the iner-
tia of the tank walls must be taken into account (which is negligible in
the case of steel tanks but not so in the case of concrete tanks). The
behaviour factor used for the calculation of the design forces differs for
the impulsive and convective components. The convective response is
not associated with energy dissipation, whereas the hysteretic energy
dissipation that may accompany the impulsive and inertia components
is expressed through the use modification of the elastic response spec-
trum by the behaviour factor ¢ that may be equal to or higher than 1.5
(whereas g=1 must be used for the convective design forces). According
to the above procedure, the total design forces are obtained through the
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addition of the convective first mode time-history and impulsive time-
history (including the inertia components). When the response spectrum
approach is used instead, Eurocode, together with ASCE 7 suggests that
the calculation of the maximum dynamic response is obtained through
the use of absolute summation rule. Other codes such as ACI 350.3,
D-110, D-115, API 650 and NZSEE use the SRSS rule.
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5 Application to the analysis of near-fault phenom-
ena

5.1 Introduction

Liquid storage tanks fall in the class of structures (together with high-
rise buildings and suspension bridges) with large fundamental period.
For example for a tank of radius R = 10 m and H = 25 m the period
of the first (m = 1) mode is 4.67 seconds (according to equation (36)).
It is thus of interest to consider excitations with long-period compo-
nents. Long-period ground motion can be generated by far-source large
crustal earthquakes through the help of path effects, or by near-fault
earthquakes through forward rupture directivity and fling-step effects
(Koketsu & Miyake (2008), Shuang and Li-li (2007)). A description of
the above mechanisms and details on their mathematical modelling can
be found in Dabaghi & Der Kiureghian (2014). In fact, in the abscence
of seismograms, long-period ground motions can be identified through
the damaged caused to tanks by liquid sloshing. An example of near-
fault long-period ground motion is provided by the 1979 Imperial Valley
earthquake, whose impact on liquid storage tanks are detailed in section
2; the response of tanks of various H/R ratios shall be examined later
on in this chapter using the formalism developed in section 3.

A characteristic of near-fault ground motions is the presense of one
or more pulse-type wave shapes in the velocity (or less often in the
acceleration and displacement) time-history, high ratio of peak ground
velocity to peak ground, acceleration (vpg/ap), and sometimes large
permanent ground displacements generated by the directivity. In this
section we will examine the behaviour of tanks of four different H/R
ratios (0.3, 0.5, 1.0, 2.5) in near-fault phenomena by applying time-
history analysis in (a) synthetic wavelets and (b) original accelograms.
These results will be compared with results of analyses for three far-fault
accelerograms.

5.2 Pulses

An insight in the response of a structure modelled as a set of oscillators
may be obtained by using synthetic wavelets that involve a minimum
number of input parameters while at the same time allow enough flexi-
bility to represent reasonably accurately near-source pulses. The Gabor
wavelet has been used in this context and consists of a harmonic oscilla-
tion enveloped by a Gaussian (bell-shaped) function. The Gabor wavelet
is defined by four parameters: the amplitude A, the prevailing angular
frequency w,, a constant y that characterizes the decay rate (big v means
slow decay), and a constant n that characterizes the overall phase. The
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latter shall be taken as zero in what follows. Thus under a Gabor pulse
the ground velocity is given by

w3t?

vo(t) = Aexp (—%) cos (wpt) . (159)

The Gabor pulse is discussed in and an alternative is offered by Mavroei-
dis and Papageorgiou (2003). Their pulse has the form

volt) = ? <1 + cos (% (t - E))) cos (wy (t—17) +n),  (160)

where A, w,, and 7 have the same physical meaning as in the Gabor
pulse, f the time at which the enveloping function attains its maximum,
and n the phase of the amplitude-modulated harmonic. Note however
that the Mavroeidis-Papageorgiou (MP) pulse has no exponential to
force its decrease so one has to stipulate when the pulse is switched
on and off. Mthematically this is easily taken care of by mulpipyingby
a Heaviside function. The pulse is taken to exist for times

- <<y T (161)

The ground acceleration is obtained by differentiating (160) with respect
to time:

ap(t) = —éwp (% sin (%t) coswpyt + <1 + cos (%t)) sinwpt) :
(162)
We are interested in the contribution of the second mode whose angu-
lar frequency, for values H/R between 0.2 and 3.0, varies from 2.029 to
2.286 (according to (35)). From Table 3 of MP we see that the Imper-
ial Valley (Station EMO-SN component), Northridge (Station JFA- SN
component) and Erzincan (Station ERZ- SN component) earthquakes
provide resonance near these values, while their magnitude is between
6.5 and 6.7 Mw hence making them relevant to greek reality. We con-
sider pulses with parameters A, w,, v, n and t as suggested by MP to
simulate the above earthquakes.
For the Imperial Valley earthquake we use A = 78cm/sec,y =
2.3,n = 0.0,w, = 2.136, = 4.95.We apply (161) and obtain

1.57 < t < 8.32 (163)

Figures 35 and 36 show the velocity and acceleration pulses respec-
tively. According to (162) ap(to) = 0 and the first term in (102) vanishes.
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In a typical MAPLE worksheet we compute ao(t) and then employ the
method of paragraphs 3.8.3, 3.8.4 to calculate the response L,,. In what
follows we keep no more than two convective modes. We then compute
pressure, force, and height of the wave through (73), (77) and (??) re-
spectively. The procedure is repeated for the four different values of H/R
and for the earthquakes mentioned in the previous subsection; results are
quoted for the Imperial Valley earthquake only.

In Figure 47, 48 we plot the oscillator responses L;, L vs time in
the case H/R = 1.. Note that in this particular case the responses are
of the same order of magnitude; this could have been seen from the
Fourier spectrum of the accceleration. In Figure 38 we show the force
contributions using equation (125). We note that:

(a) The extrema of the impulsive contribution occur at the same
times as the extrema of the acceleration since the two are in phase.

(b) The magnitude of the convective contribution of the 2nd mode is
quite smaller than the magnitude of the 1st mode despite the fact that
the oscillator responses are comparable.This is due to the fact that the
convective mass of the 2nd is correspondingly smaller than the convective
mass of the 1st (see Figure 31).

In Figure 39 we plot the moment above base as function of time using
equation (130).
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Figure 31: Acceleration graph of the Imperial Valley pulse
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Figure 32: Oscillator responses Ly, Ly for the Imperial Valley pulse
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Figure 33: Contributions to F'/(m;A) for the Imperial Valley pulse

= Total moment
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Figure 34: Contributions to (moment above base)/(m;A) for the Impe-
rial Valley pulse
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In Figure 40 we plot the moment below base as function of time using
equation (132). Note that the total below base moment achives higher
values than the above base one due to the fact that the former is subject
to an extra contribution from the impulsive force (red curve in Figure
38).

In Figure 41 we plot pressure versus height at t = 11.970 s This is
approximately the moment when the maximum value of pressure occurs.
The increase in pressure as one moves towards the surface is due to the
presence of the hyperbolic cosine in the convective modes (see (135),
(133)). The fact that the coefficient in front of z in the second convective
mode is larger than that in the first (A2 > A1;) makes the effect more
pronounced when the second mode is substantial.

In Figure 42 we plot the shape of the surface at the moment of that
the height of the sloshing wave is maxmum. Note that the maximum
height occurs at the moment of maximum convective presssure on the
tank walls. This is always true as can be seen by comparing (137)
and (133). In the present case it happens that the times of maximum
convective pressure and maximum convective plus impulsive pressure
coincide; however it will be seen that the latter is by no means generally
true.

In Figure 43 (as well as in Figure 42) we plot the surface displacement
along the radial direction at times where the former is quite pronounced.
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Figure 35: Plot of p/(ApR) vs height. Hydrostatic pressure is not in-
cluded.
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t=11970

Figure 36: Surface displacement X—%vs the normalized radial direction
S=3

We see from Figures 23, 24 that the occurrence of a minimum of the
wave-pattern in Figure 42 is due exclusively to the inclusion of the second
mode. The fact that the maximum in Figure 43 occurs away from the
wall is again due to the second mode.

Results for pulses corresponding to other earthquakes for various
values of H/R are summarized and discussed in a following section.

5.3 Original accelerograms of near-fault earthquakes
5.3.1 Oscillator responses

We apply the procedure described in paragraphs 3.8.3, 3.8.4 and in Sub-
section 3.9 to the accelerograms corresponding to the earthquakes Im-
perial Valley (Station EMO-SN component), Northridge (Station JFA-
SN component) and Erzincan (Station ERZ- SN component) (source:
PEER Gound Motion Database). We present in detail the analysis of
the Imperial Valley earthquake for H/R = 1. The accelerogram is shown
in Figure 44 and the power spectrum is given in Figures 45 and 46.

We observe that the power spectrum has two nearby maxima at
w=2.388 s71 and w = 3.707s~1. On the other hand we note that in the
range of H/R from 0.3 to 2.5 the angular frequency of the first mode
ranges from 0.952 s™! to 1.340 s~! and that of the second mode ranges
from 2.194 s7! to 2.286 s™!.. So we are near resonance and sloshing
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Figure 38: Power spectrum of the accelerogram of Figure 43

Figure 39: Magnified power spectrum
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Figure 40: Oscillator response Ly

effects are of interest in the case of this particular earthquake. The
responses L1, Ly as functions of time are given in Figures 47 and 48 for
the case H/R = 1.0.

We observe that the maxima L;, L, are of comparable magnitude.
We also note the profiles of L, L, are free of noise. This is due to the fact
that each oscillator acts as a low-pass filter cutting off high frequency
noise (see the transfer funtion in equation (146)). The faster decay of L,
is due to the stronger exponential decrease according to equation (126).
Based on L, L, we calculate force, pressure, moment and height of the
wave as functions of time. From now on we denote by the subscripts
0, 1, 2 the contributions of the impulsive, first convective and second
convective modes respectively. The sum of these three terms gives the
total force, pressure and moment.

5.3.2 Force

Figures 49 to 53 show Fj, Fi, Iy and total forcel” respectively as func-
tions of time. Results are given in the SI and, as far as the force is
concerned, per unit mass of the liquid. Recall that according to the re-
mark made before equation (139) we had to calculate the response for a
time interval 65536 x 0.005 s~ = 327.5 s~ 1.

We observe the following:

1. The impulsive force Fy is proportional to the ground acceleration
and hence vanishes for times greater than 40 s. On the other hand,
theconvective contributions Fy, Fy are proportional to the responses L,
L, and decay accordingly.

2. Concerning the relative magnitude of the maximum values of
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Figure 43: Magnified view of Fj vs time
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Figure 44: Convective F;/m; vs time
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Figure 45: Convective Fy/m; vs time

Figure 46: Total F' vs time
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Fy and F; we note that for H/R = 1 the impulsive mass mg and the
convective mass of the first mode m; are almost equal according to
Figure 29. Comparing the maximum ground acceleration from Figure
44 to the maximum acceleration w?, L; deduced from Figure 47 and
using wi,, = 1.31 s7! we deduce that the maximum of F; is about one
order of magnitude less than the maximum of Fj. This is indeed borne
out by comparing Figures 50 and 51.

3.The smallness of the maximum of F5 compared that of F} is ex-
plained by the smallness of convective mass my compared to m; (see
Figure 29 and equation (125)).

To appreciate the orders of magnitude involved, note:

FOmaX/(FOmax + Flmax + F2max) = 885%7

Flmax/<F0max + Flmax + FQmaX) = 93%7

F2max/<F0rnax + Flmax + F2max) = 22%7

Fomax/ Fmax = 87.6%

F1max/ Fnax = 9.19%

Fymax/ Finax = 2.16%

It is clear that despite the that we are near resonance with the second
convective mode, its contribution to the total force is negligible.

5.3.3 Pressure

According to the discussion in Section 3 the maximum of the impulsive
pressure occurs at the bottom of the tank (z = 0), while the maximum of
the convective occurs at top (z = H). In Figures 54 to 58 we plot scaled
by pR vs time. Figures 54, 55 show the impulsive pressure at the bottom
vs time. Figures 56, 57 show the pressure at the top of the wall due to
the first and second convective modes respectively (convective pressures
at the bottom are negligible). We observe that the maximum impulsive
contribution is larger than the maixima of p; and p, by a factor of ten,
which was to be expected given the similar situation with the forces.
Convective pressues p; and ps are of comparable order of magnitude.
This is to be understood as follows. We have already mentioned that
the responses L;, Lo are of comparable magnitude. According to equa-
tion (133) the convective pressure depends on C,,w3,, and w3, roughly
cancels with A}, — 1 present in the denominator of (135).

It is evident from the orders of magnitude involved in the graphs of
the Figures 54 to 57 that the maximum pressure occurs at the bottom
of the tank and is due mainly to the impulsive contribution. 58 shows
the pressure at the bottom as a function of time. Figure 59 shows the
pressure profile along the z-axis at the moment of maximum impulsive
pressure (i. e. at the moment of maximum acceleration). Note that
the contribution of the convective modes. However, before discarding
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Figure 47: Impulsive pressure py/(pR) at bottom vs time

the importance of convective pressures p; and p, for design purposes
one should take into account the fact that these pressures act for a long
time (much longer than the duration of acceleration), in contrast to the
impulsive pressure.

5.3.4 Moments

Observations similar to the force can be made regarding moments. We
show only the total contributions to moment above and moment below
base.

5.3.5 Displacement of the surface

In Figure 62 we plot the height of the wave vs radial distance at a
moment when the former is quite pronounced. Note that the wave has
a maximum at about r/R = 0.42. The fact that the maximum does
not occur on the wall (and that the hump in the Figure is so obvious)
is a manifestation of the importance of the second convective mode (a
similar remark has been made in the discussion of pulses).

In Figure 63 we choose r/R = 0.42 (where the maximum in Figure
62 occurs) and plot the height of the wave vs time.

If we ignore the contribution of the second mode we can show that
the maximum height (now occurring at » = R) equals about 0.05 (in
the units of Figure 63). We thus observe that (a) the contribution of
the second mode to the height of the wave amounts to 20% of that of
the first mode, (b) taking into account the second mode the maximum
occurs about half-way between axis and walls.
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Figure 49: Convective pressure p;/(pR) at top vs time
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Figure 50: Convective pressure p, at top vs time

Figure 51: Total pressure (py + p1 + p2)/(pR) at bottom vs time
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Figure 53: Total moment above base//(pR) vs time
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Figure 54: Total moment below base/(pR) vs time
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Figure 55: The height of the wave x¢g/R vs radial distance
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Figure 56: Height of the wave xg/R vs time at r/R = 0.42

5.4 Discussion of the results for three earthquakes
and for four values of the parameter H/R

In the previous subsection we discussed at length the predictions for
force, pressure, moments and height of the wave in the case of the Im-
perial Valley earthquake in the case of H/R = 1. We have carried out
similar analyses for the Northridge and Erzincan earthquakes. As men-
tioned in the introduction to the present section the three earthquakes
were analyzed for H/R = 0.3, 0.5, 1, 2.5.

In the graphs below whenever we refer to a quantity (force or height
of the wave) we mean its mazimum value over time computed via the
methods of the previous paragraph. When we use the adjective average
we mean the average over the three earthquakes.

In Figure 64 we plot the average responses Li, Ly corresponding to
the first and second convective modes as a function of H/R. It is evident
that the magnitude of the response of the second mode is substantially
higher than that of the first mode (by a factor 2.7). This is a consequence
of the fact that the selected earthquakes are at resonance with the second
convective mode (this is evident in the power spectrum of the Imperial
Valley accelerogram). In the analysis that follows we will examine how
this resonance is manifested in two fundamental quantities of interest,
base shear and height of the sloshing wave.

We conclude that:

1. The response is dominated by the impulsive mode with the con-
tribution of the first mode being relatively small

2. Despite the fact that the earthquake is in resonance with the
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second convective mode the smallness of convective mass p, compared
to impulsive mass p, and first convective mass j; result to a small force
contribution of the second convective mode (3% of the total at most).

3. The total force increases as H/R increases because fi, increases.

Figure 66 shows the participation of each component — impulsive
mode and the two convective modes- to the overall force. The values
shown are the ratios of the average maxima of each component to the
average maximum of the total force. Note that summing up these max-
ima (i. e. using the absolute summation rule) does not result to the
maximum of the total force. For this reason we also show the ratio of
this sum to the actual total force. The following observation can be
made:

The contribution of the convective component is relatively low (about
30% at most) compared to the contribution of the impulsive component,
and decreases as we move to higher values of H/R. This can be explained
as follows: for small values of H/R, where p; > p, the acceleration
w%il of the first oscillator is significantly lower than the peak ground
acceleration ap (values of L are low, as expected by the power spectra of
the earthquakes, and values of w; are also low in this range of H/R). For
larger values of H/R (larger than 1), while the response acceleration rises
to values comparable to ap (due to the higher value of wy), p; decreases
and i, increases, thus resulting to the domination of the impulsive force
for all H/R values.

The contribution of the second mode is more pronounced in the cal-
culation of the height of the sloshing wave (where there is no impulsive
component). The consideration of the 1st mode only, as proposed by Eu-
rocode 8, significantly underestimates the height of the sloshing wave.
For instance, for H/R = 0.5 and H/R = 0.3 this underestimation ranges
from 30% to 50%, respectively, as shown in Figure 67 Consideration of
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Average max height of the sloshing wave in near--fault earthquakes
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the second mode is thus significant for the estmation at the design stage
of the necessary height of the free board.

Observing the same plot we may conclude that the contribution of
the second mode decreases as the ratio H/R increases. This is attributed
to the factor in front of L in the equation that gives the height of the
wave. We calculate the ratio £2/£1. The multiplier of L2/L1consists of
a constant (<1), the dependence of /R, and a function of H/R(which
decreases as H/Rincreases).

Furthermore, it should be noted that the dominance of the second
mode results to a corresponding profile of the free surface (see profiles
of the second modes in Section 3). This is demonstrated by plot 68 that
shows, in terms of /R, the point at which the height of the wave has a
maximum.

Note that considering the only the first mode, the maximum height
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of the wave occurs at the tank wall (r = R). However, the contribution
of the second mode significantly changes the profile of the wave. We see
that for small values of H/R (<1) the maximum height occurs closer
more towards the center (r/R is below 0.5, approaching the value 0.37,
where the second profile of the Bessel function has a maximum). This
may pose a question regarding the design of the tank roof (especially in
the case of floating roofs). As we move towards higher values of H/R
the behavior of the surface approaches the profile of the first mode (r/R
approaches 1.0), something expected since the overall contribution of the
second mode decreases.

Futher discussion of these issues is included in a paper in progress.
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6 Appendix A The boundary conditions at the free
surface

We derive the kinematic boundary condition following Debnath (2005).
We first consider a fixed tank. The free surface is described by equation
(13):

z—&(x,y,t) = H. (164)

Two points at the surface separated in space by dx, dy, dz and in
time by dt satisfy (taking the differential of the above):

0& 0& 0& B
dz  0fdr 0fdy 0§
dt Ordt Oydt Ot 0 (165)
In terms of velocities the above reads
0¢ 0¢ % =0, (166)

UV, — — Uy — — U, —
ox oy Y ot
and in terms of the velocity potential

0D 90D OL0D  OF
dz Ordxr Oydy Ot 0 (167)

This is equation (14).

In the case of a moving tank we take the surface to be described again
by (164) where the coordinates z, y, z now refer to the moving frame
(see Figure). We thus arrive at (165) where quantities dx/dt, dy/dt,
dz/dt stand for velocities relative to the moving frame. Equation (166)

now reads:
03 & o3

Urel,z — %Urel,x - ay”rel,y - a =

We express the above in terms of the velocity potential (56) to arrive
again at (167).

0. (168)
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7 Appendix B The zeros )\, of J/

The mth root of the Bessel derivative J! is denoted in the text by A,
(see second line after (29)). In the table below we give the first five roots
for the Bessel function derivatives J§, Ji, J5 (Weisstein 2014):

Jo Ul /5
Ist  3.831 1.841 3.054
2nd 7.015 5.331  6.706
3rd  10.173 8.536  9.969
4th  13.323 11.706 13.170
5th  16.470 14.863 16.347

It is shown in the text that the roots of .J| are of particular interest.
The plot of J; is easily obtained in MAPLE (Figure ).

By making use of the zoom facility of MAPLE we can compute some
further zeros of J;. We obtain A\jg ~ 18.015, A7 ~ 21.164, A5 ~ 24.311,
A9 ~ 27.457.
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8 Appendix C The Fourier-Bessel expansion

Let a function f(x) be defined for 0 < x < 1. As in the text, A,,,denote
the zeros of J/. Then f(x) can be expanded in the so-called Fourier-
Bessel series:

=Y Apdu(Anm), (169)
m=1

where the coefficients A,, are given by

2

1
A, = / rf(z)Jn(Anmax)de. (170)
(1= ) 72 0m) Jo
We apply the expansion for the case n =1, f(z) = z, to obtain
= ApJi(\m2). (171)
m=1
The integral
1
/ 221 (A )da (172)
0
is evaluated using Maple to give:
A Atm) — 2J1(A
Ao ( 1m)2 J1( A1) (173)
A
1m
On the other hand, it is well known that
/ Ji(t
Ty (t) = Jo(t) — lt( ) (174)
Applying the above for ¢ = \y,,, we obtain that
At
Jo(Aim) = J1§\ - >, (175)
1m
and substituting (175) in (173) we obtain
/ Ji (A )dz = ‘]1(31’”). (176)
0 )\1m
Substituting (176) in (170) we obtain
A, = 2 (177)
" (A = 1) T (i)
Hence
- 2
T = J1(Aimx). 178
2 =) Oy "



9 Appendix D The integrals in F(!"™)

We define

I = / dSv? .
c
The surface element dS reads in polar coordinates

dS = rdrdd.

We use (32) to write (recall that v is absorbed in Ti,,):

R 21
H
I, = cosh? (Almﬁ> / dr / A9 cos? 9.J2 (Alm}%> .
0 0

The v integral is elementary and gives 7:

R
H r
I; = 7 cosh? (Almﬁ) /drrJf (Almﬁ) .
0

To compute the above integral we change variable to

(179)

(180)

(181)

(182)

r
rT = —
R
and obtain
1
2 H 2 2
I, = mcosh Almﬁ R [ dzxJi(Aimz).
0
Using Maple we obtain
1
/d.TIEJIQ(/\lme’) _ %Almt]g()\lm> + /\1mJ12(/\)\1m) - 2J0()\1m)J1()\1m)
im

0

Using (175) the above is simplified to

1
1 1
2 >\1m
0

Hence

T 1 a
I = §R2 <1 — E) cosh? (Almﬁ) I (M)



We define

2

R
I, = /dS\II = cosh <)\1m ) /drrJ1 )\1m /di? cos V.
C 0

0

The v integral vanishes and
I, =0. (184)

We define

ov
I;= [dSy, ——im
/Slde
C

Substituting from (32) we obtain

R 2
H H
I3 = )q?m cosh <A1m§> sinh (Almﬁ) /d?“/dl%" cos? 9.J? </\1m%> =
0 0

T 1 H\ . H
= §A1m (1 - E) R cosh (Almﬁ) sinh <)\1m§> JE(Am).  (185)

96



10 Appendix E Transfer function and the Fourier
transform

Consider the harmonic oscillator
mi + cu + ku = p(t), (186)

where m, ¢, k are the mas, viscous damping, and spring constants re-
spectively, p is the external force, and w is the oscillator’s response. The
transfer function is a function of the angular frequency defined by (see
Chopra (2007)): ,

—mw? + iwe + k-
Then the response of the oscillator under an arbitrary external force p(t)
can be computed in the following threee steps:

(i) We first take the FT of the external force:

pw) = / h dte™“'p(t). (188)

o0

H(w) =

(187)

(ii) We multiply p(w) by the transfer function H(w) to obtain the
FT of the response:
i(w) = H(w)p(w). (189)
(iii) We take the inverse FT of @(w) to obtain the response as a
function of time: -
u(t) = —/ dwe™ a(w). (190)
Note however that this provides one solution of differential equation
(186). Suppose however that we wish the solution to satisfy boundary
conditions
Ulto) = U'(ty) = 0. (191)
Let then wuy(t), uz(t) be the solutions of the homogeneous version of
(186) (i. e. with the right hand side equal to zero). Then the function
U(t)
U(t) = u(t) + Aui(t) + Bus(t) (192)

satisfies (186) and can be made to satisfy boundary conditions (191) if
A, B satisfy the linear system:

U(to) + Aul(t[)) -+ B’l@(to) = 0, (193)
u'(to) + Auy(to) + Bugy(te) = 0. (194)

Finally note that a solution of (186) satisfying given boundary con-
ditions is more often obtained via the Laplace transform. In the present
case we prefer the F'T since it can be readily adapted to the discrete case
via the Discrete Fourier Transform.
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