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Περίληψη 

Η παγκόσμια οικονομική κρίση των τελευταίων ετών έχει ως αποτέλεσμα την αύξηση του 
χρέους των κρατών σε πολλές χώρες της Ευρώπης, ιδιαίτερα στο μπλοκ του νότου, και έτσι 
η σταθεροποίηση του κόστους αυτού έχει μετατραπεί σε κύριο μέλημα στην ατζέντα 
πολλών χωρών. Σε αυτή τη Διπλωματική Εργασία επικεντρωνόμαστε στο γεγονός ότι οι 
αγορές ασκούν πίεση στα κράτη που φαίνονται ευάλωτα ως προς το μέγεθος του εκάστοτε 
χρέους, αλλά ως και την τάση του, ανοδική ή καθοδική. Αυτές οι πιέσεις αποτυπώνονται με 
τη μορφή των ασφαλίστρων κινδύνου. Εισάγουμε σε αυτή την εργασία έναν συντελεστή 
που αποτελεί ασφάλιστρο κινδύνου, βασισμένο στην τάση του χρέους, μαθηματικά την 
παράγωγο, δηλαδή στο αν το χρέος είναι σταθερό, ή έχει ανοδική ή καθοδική πορεία. Αυτός 
ο συντελεστής, εκτός από την πίεση που ασκούν οι αγορές στα κράτη δανειολήπτες, μπορεί 
και να αποτελέσει μια μορφή επιβράβευσης στις κυβερνήσεις που καταφέρνουν και 
μειώνουν το χρέος τους. Η εισαγωγή ενός τέτοιου συντελεστή εισαγάγει μια ισχυρή μη-
γραμμικότητα στο μαθηματικό μοντέλο μας. Επιπρόσθετα, αναλογιζόμενοι την περίπτωση 
των κρατών-μελών της Ευρωπαΐκής Νομισματικής Ένωσης, εμφανίζεται η εξής 
ιδιαιτερότητα: Τα κράτη-μέλη της ένωσης έχουν μια κοινή νομισματική πολιτική που 
ασκείται κεντρικά από την Ε.Κ.Τ., σε αντίθεση με την οικονομική πολιτική που ασκείται από 
το Υπουργείο Οικονομικών της εκάστοτε χώρας. Αυτή είναι επίσης η περίπτωση και στις 
περισσότερες βιομηχανικές χώρες. Αυτή η ιδιαιτερότητα, μας παρακινεί να προσεγγίσουμε 
την κατάσταση ως ένα Μη-γραμμικό Δυναμικό Παίγνιο Ισορροπίας κατά Nash, μεταξύ δύο 
παικτών, της Κεντρικής Τράπεζας και της Κυβέρνησης-Υπουργείο Οικονομικών. Οι δύο 
αυτές αρχές είναι ανεξάρτητες και μπορεί να μη συνεργάζονται. Για το λόγο αυτό, 
αναλύουμε την περίπτωση του Open-Loop Μη-Συνεταιριστικού Παιγνίου καθώς και την 
περίπτωση του Συνεταιριστικού Παιγνίου. Επίσης ερευνούμε την περίπτωση του 
Πεπερασμένου Ορίζοντα, επιπροσθέτως του Παιγνίου Απείρου Μήκους, καθώς αποτελεί 
μια πιο πρακτική σκοπιά μιας που το γεγονός να είναι κάποιος από τους δύο παίκτες 
δεσμευμένος για πρακτικά τόσο μεγάλο χρονικό διάστημα, δεν έχει πρακτική εφαρμογή. 

  

Λέξεις-κλειδιά: σταθεροποίηση χρέους, παίγνια δύο παικτών, μη-γραμμικά δυναμικά 
συστήματα, ισορροπία κατά Nash, ασφάλιστρα κινδύνου, άπειρος ορίζοντας, πεπερασμένος 
ορίζοντας, οικονομικά δυναμικά συστήματα 
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Abstract 

On the grounds that the global financial crisis during recent years has resulted in a 
significant increment of the government debt, in many OECD countries, especially in the 
“south-block”, government debt stabilization has taken a central stage in issues to be 
addressed. In this paper we focus on the fact that financial markets are adding pressures on 
countries that appear vulnerable when looking at the current levels of debt, as well as the 
current rate of change of the debt. This takes the form of requiring risk premia. The term we 
introduce, that depends on the rate of change of debt, represents apart from another form 
of pressure added by financial markets, can also be used to represent a measure of reward 
given by markets to governments that succeed in decreasing their debts. This term 
associated with the derivative of the governmental debt adds a strong nonlinearity to our 
mathematical model. In addition, when considering the Euro Area, an additional singularity 
arises: the members of the union are have a common monetary policy which is applied 
centrally by the E.C.B, in contrast with fiscal policy which is applied by each member country 
per se. This is also the case in most industrial countries, the size of fiscal deficits and the 
growth of monetary base are selected by two independent authorities. This suggests that we 
are facing a Two-Player Nonlinear Dynamic Nash Game under two modes of play, where the 
two authorities do or do not cooperate. Thus we analyze and solve under the Open-Loop 
Non-Cooperative mode of play and then under the Cooperative mode of play. We also 
investigate the finite time horizon, in addition to the infinite one, taking therefore a more 
practical approach as being bound in a policy for practically a really long time is sometimes 
of no application. 

 

Keywords: debt stabilization, two-player games, nonlinear dynamic systems, dynamic nash 
game, risk premium, infinite horizon, finite horizon, economic dynamics 
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Nash Game between a Financial and a Monetary 
Player in presence of Risk Premia 
 

 

Abstract 
On the grounds that the global financial crisis during recent years has resulted in a significant 

increment of the government debt, in many OECD countries, especially in the “south-block”, 
government debt stabilization has taken a central stage in issues to be addressed. In this paper we 
focus on the fact that financial markets are adding pressures on countries that appear vulnerable 
when looking at the current levels of debt, as well as the current rate of change of the debt. This 
takes the form of requiring risk premia. The term we introduce, that depends on the rate of change 
of debt, represents apart from another form of pressure added by financial markets, can also be used 
to represent a measure of reward given by markets to governments that succeed in decreasing their 
debts. This term associated with the derivative of the governmental debt adds a strong nonlinearity 
to our mathematical model. In addition, when considering the Euro Area, an additional singularity 
arises: the members of the union are have a common monetary policy which is applied centrally by 
the E.C.B, in contrast with fiscal policy which is applied by each member country per se. This is also 
the case in most industrial countries, the size of fiscal deficits and the growth of monetary base are 
selected by two independent authorities. This suggests that we are facing a Two-Player Nonlinear 
Dynamic Nash Game under two modes of play, where the two authorities do or do not cooperate. 
Thus we analyze and solve under the Open-Loop Non-Cooperative mode of play and then under the 
Cooperative mode of play. We also investigate the finite time horizon, in addition to the infinite one, 
taking therefore a more practical approach as being bound in a policy for practically a really long time 
is sometimes of no application. 

Keywords: debt stabilization, two-player games, nonlinear dynamic systems, dynamic nash game, risk 
premium, infinite horizon, finite horizon, economic dynamics 
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1 INTRODUCTION 
Οne of the most significant effects of the global financial crisis during recent years, is the 

increase in the government debt. In many OECD countries, especially in the “south-block”, 
the ensuing economic slowdown, the fiscal balance deterioration, as well as the lack of much 
needed deep reforms are to explain the rigorous rise of debt. Thus, in most OECD countries, 
government debt stabilization has taken a central stage in issues to be addressed. Our 
approach focuses on the fact that financial markets are adding pressures on countries that 
appear vulnerable when looking at the current levels of debt, as well as the current rate of 
change of the debt. This takes the form of requiring risk premia on the aforementioned 
statistics. Furthermore, when considering the Euro Area, an additional singularity arises: the 
members of the union are have a common monetary policy which is applied centrally by the 
E.C.B, in contrast with fiscal policy which is applied by each member country per se. Hence, 
each member cannot finance budgetary deficits. Since, these two authorities are relatively 
independent and subject to different incentives and constraints, it is rational to assume they 
have different objectives. It must be mentioned also, that in most industrial countries, the 
size of fiscal deficits and the growth of monetary base are selected by two independent 
authorities. Thus, the general framework analyzed could be applied in any country working 
in that manner. Specifically, in the United States of America, the monetary policy is applied 
by the Federal Reserve Bank, while the fiscal policy is applied by the government. There is a 
fundamental difference however, between the U.S. (or countries operating in a similar way) 
and the countries of the OECD is that in the former both authorities have an eye on the 
economy and work together by having common interests, while in the latter the E.C.B. 
majorly takes into account statistics that are taken as average values from all the OECD 
countries. That is, E.C.B. has an eye on the overall economy of the union. This could result in 
partially neglecting countries with weak economies as long as there are countries with 
stronger economies that compensate for the former in the average. This paper examines 
how this interaction between the two authorities takes place. It investigates the government 
debt stabilization in the presence of endogenous risk premia from the point of the two 
independent authorities, fiscal and monetary. These two independent authorities are 
considered as two players in a dynamic game. In fact though, the financial players are more 
than one and all interact with the same monetary player. But in this simple approach we will 
not model this case, however this additional problem is encouraged as a future research 
proposal. 

Similar approaches have already been made. G.Tabellini in [1] analyzed a dynamic game 
between fiscal and monetary authorities. In his simple approach the strategic interaction 
between these two authorities, takes the form of a game with a linear model and quadratic 
cost functions. One of his main findings was the benefit of cooperation, which states that 
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when the two policymakers coordinate their efforts a smaller steady-state debt value is 
achieved and this is achieved more rapidly. Another one was that in all equilibria, the time 
path of public debt could be stable even if the real interest rate exceeds the rate of growth 
of real output. Also, decreasing the relative weight each player assigns to the debt 
stabilization assigns more burden to the other player for the adjustment. In a more recent 
approach from J.Enwerda, B.v Aarle et al. in [2], a similar model was used concerning the 
OECD countries. An endogenous risk premium term was introduced denoting the pressure 
added by financial markets. This risk premium term was dependent on the level of debt 
changing the game model to a non-linear one. Their main results are summed up to the fact 
that the differential game has at least one equilibrium point due to the risk premium term 
included, whereas in the Tabellini case there could be no equilibrium in some cases. In 
addition, as the risk premium term increases, the steady-state of debt decreases in both non-
cooperative and cooperative modes of play. Also, they found out that the cooperative case 
is preferable only when the strength of risk premium term is not large, contradicting with 
the result of Tabellini. Furthermore, the presence of risk premium totally changes the 
dynamic game and the optimal strategies found by Tabellini, and in this case the reduction 
of the relative weight a player assign to the debt stabilization does no longer necessarily 
increase the steady-state of debt.  

In this paper, we introduce another risk premium term which is dependent on the rate of 
change of debt. This term represents another form of pressure added by financial markets, 
but also it can be used to represent a measure of reward given by markets to governments 
that succeed in decreasing their debts. Hence, in contrast with the risk premium term 
dependent on the level of debt, this new one can be used as much as a penalty, as a reward. 
It is a suggestion that helps the governments to sustain and decrease their debt levels, either 
by forcing them adopt a stricter approach in order to not let the debt increase, or by helping 
the invigoration and development of economies that are already on a rising direction. For 
example, one can consider Japan, a country with a considerable amount of debt which is 
however sustainable and manageable. Japan also has a strong economy in overall. Thus, 
Japan is able to get favorable interest rates when getting loans. This example serves as a 
justification for our new risk premium term. Another distinction from the aforementioned 
works is that we also investigate the finite time horizon, as well as the infinite one. So this 
can be considered a more practical approach from this point of view, as the steady-state may 
need many years to be achieved and models of this type cannot account for all the 
unpredictable changes and events during that period. Although from an ethical point of view, 
one could say that there is no clear foreseeable future in the economy and this way the study 
of infinity horizon is justified, in our case being bound in a policy for practically a really long 
time is of no application and that justifies the need of investigation and importance of the 
finite horizon case as well. 

Our findings were that in both Non-Cooperative Open-Loop Nash Equilibrium Game and 
Co-operative modes of play, the debt levels achieved are decreasing as the introduced risk 
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premium term increases. In fact concerning the Non-Cooperative Open-Loop Nash 
Equilibrium case, we observed that the new risk premium term had a stronger effect than 
the risk premium term depending on the level of debt. However this inclusion did not change 
the maximum and minimum number of equilibrium points for the non-linear system, and 
thus there is always at least one and at maximum three equilibria. In addition, the effect of 
the risk premium term depending on the rate of change of debt, is evident even in short 
finite horizons and is still beneficial. It is remarkable how much the debt is able to decrease 
in the presence of this mechanism that works both as a penalty and reward. The rewarding 
nature is also being demonstrated by another finding. That is, when the risk premium term 
on the rate of change of debt increases the players become slightly less active. A justification 
of this is that when the debt is declining, the risk premium term 𝑏𝑏 is acting as a reward by 
decreasing the real interest rate. This is helping the debt level to decrease and be contained 
more easily, allowing the players to relax slightly. Regarding now the Co-operative we 
observed similar qualitative behaviors, however there were significant improvements on the 
debt levels achieved comparing to the Non-Cooperative mode. Another interesting 
observation was that the results yielded were better when the one player was stronger than 
the other.  

The outline of this paper is as follows. Section 2 sets up the model used, defines the 
variables and the constants and a brief justification of the values used is presented. Section 
3 deals with the Non-Cooperative Open-Loop Nash Equilibrium case and the effect of the 
two risk premium terms is analyzed. Section 4 presents the Cooperative case, analyzing in 
addition the effect of the bargaining power each player has. Finally, in Section 5 we 
summarize the results produced and point out future research directions. Proofs of some 
theorems follow in the Appendix in the end of the paper. 
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2 MODEL DEFINITION AND PURPOSE 

Our analytical framework is inspired by the debt stabilization game of Tabellini [1] and its 
extension by Engwerda, Van Aarle et al. [2]. In this paper we analyze government debt 
stabilization problems in the presence of risk premia associated with both the levels of debt 
and its rate of change. That is, we introduce extended risk premium terms that depend on 
the levels of debt and its rate of change. A justification for this is that not only the debt level 
should be taken under consideration, but also the way it is handled. That means, a 
government with sustainable debt - which is depicted with a negative rate of change (a 
decreasing debt) or with a zero rate of change (thus a steady debt and under control) - should 
be considered more reliable and hence rewarded with less pressure from financial markets. 
This extension adds a strong non-linearity to our problem. In that game our two players, 
monetary and fiscal policy makers, are engaged in a dynamic conflict of debt stabilization.  
Both authorities are assumed to have their own objective as well as an interest in 
government debt stabilization. Fiscal authorities try to reduce fiscal deficits. This can be 
achieved either by reducing government spending or by increasing taxes. In that way, the 
accumulation of debt is reduced. Monetary authorities on the other hand, are handling the 
monetary financing (money growth) and by increasing it, they also contribute in debt 
reduction. 

The model derived for the debt stabilization game described consists of two players, one 
monetary authority (per say a central bank) responsible for applying the monetary policy, 
and a fiscal authority responsible for applying a country’s fiscal policy. The two players are 
engaged in a dynamic conflict under the government budget constraint that depicts the 
accumulation of the debt and relates government debt, monetary financing, fiscal deficits as 
well as interest payments and risk premia required by financial markets: 

�̇�𝑑(𝑡𝑡) = 𝑟𝑟(𝑡𝑡)𝑑𝑑(𝑡𝑡) + 𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑡𝑡)     (1.a) 

In this differential equation:         
 - 𝑑𝑑 denotes  the  government  debt  as  a  percentage  of  the national output, note that 
negative value of debt denotes that government has obtained a claim on private sector 
assets 
- 𝑢𝑢𝐹𝐹 denotes the primary fiscal deficit as a percentage of the national output, note that 𝑓𝑓 
denotes deficit we can assume that negative values of 𝑓𝑓 denote surplus for the fiscal   
authorities 
- 𝑢𝑢𝑀𝑀 denotes the monetary financing measured as a fraction of aggregate output  
-𝑟𝑟 denotes the real interest rate adjusted for the rate of output growth 

Both control laws belong to appropriate sets 𝑈𝑈𝐹𝐹 𝑎𝑎𝑎𝑎𝑑𝑑 𝑈𝑈𝑀𝑀 respectively. In our case because 
the controls are scalar, these sets are subsets of ℝ. Therefore, without loss of generality we 
can assume that they are intervals of ℝ. Considering that 𝑢𝑢𝐹𝐹 denotes the fiscal deficits, it is 
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normal to assume that there is an upper bound that the authorities are willing to let the 
deficits grow to. Similarly, there is a lower bound for the fiscal deficits, e.g. there is a line to 
the taxes enforced in order to lower fiscal deficits. In similar fashion, there are upper and 
lower bounds for the money growth too. Thus, we could say that the sets are also compact, 
but we will not use that assumption. 

It was stated that fiscal authorities have an objective of their own in addition to being 
interested in the government debt as well. This objective is to contain fiscal deficits around 
a neighborhood of a target fiscal deficit 𝑓𝑓.̅ We depict that in the following loss function that 
the player intends to minimize:  

𝐽𝐽𝐹𝐹 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0    (1.b) 

where 𝑑𝑑𝐹𝐹��� is the fiscal authorities’ target for government debt and 𝛽𝛽𝐹𝐹 is the weight assigned 
to this. It indicates the relative preference concerning debt stabilization of the fiscal 
authority. 

 Monetary authorities have also an objective of their own in addition to being interested 
in the government debt as well. This objective concerns money growth and is to contain it 
around a neighborhood of a target value 𝑚𝑚� . We depict that in the following loss function 
that the player intends to minimize:  

𝐽𝐽𝑀𝑀 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0    (1.c) 

where 𝑑𝑑𝑀𝑀���� denotes the monetary authorities’ target for government debt and 𝛽𝛽𝑀𝑀 is the 
weight assigned to this. It indicates the relative preference concerning debt stabilization of 
the monetary authority. 

 It is clear from these loss functions that the factors that determine the strategies of the 
two players are, the relative weights for debt stabilization, the target values for debt and 
each policy action and the respective initial conditions. The real goal of our players is to 
minimize their respective loss functions by stabilizing government debt at some steady state 
value, using policies that converge to steady states. The parameter 𝜃𝜃 denotes a discount 
factor. 

 Concerning our main extension with respect to the Tabellini model and the one proposed 
from Engwerda and Van Aarle, we have to analyze the real interest rate 𝑟𝑟(𝑡𝑡). In the Tabellini 
model it remained constant, thus leading in a linear first-order differential game with 
quadratic cost functions. In the Engwerda and Van Aarle model, inspired by the global crisis 
hitting the countries of the European South as well as Ireland and several other cases, an 
endogenous risk premia term is introduced depending on the level of government debt. The 
conclusions produced indicate that with the introduction of risk premium the game always 
has at least one equilibrium (and at most three) in contrast to the Tabellini model in which 
we could have no equilibria. Furthermore, equilibrium debt decreases in case the strength 
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of the risk premium parameter increases, but its effect fades off when gone beyond a 
threshold value. Also, from a debt minimization point of view the cooperative case is 
produces better results than the non-cooperative only for values of risk premium parameter 
that are not too large. Else, non-cooperative steady-state of debt is lower than the 
cooperative, in contrast to the Tabellini case where cooperation produces always better 
results. 

 In this paper, as already discussed, we introduce another term of risk premium associated 
with the rate of change of debt, this modifies the real interest rates of the aforementioned 
papers:  

 𝑟𝑟(𝑡𝑡) = �̅�𝑟 + 𝑎𝑎 𝑑𝑑(𝑡𝑡) + 𝑏𝑏 �̇�𝑑(𝑡𝑡)       (1.d) 

In our case, real interest rate consists of three terms: 

- �̅�𝑟 denotes the difference between nominal interest rate and inflation, and we assume 
it to be constant in our approach  

- 𝑎𝑎 denotes the risk premium coefficient depending on the debt level that was 
introduced by Engwerda and Van Aarle  

- 𝑏𝑏 denotes the risk premium coefficient depending on the rate of change of debt  

- both 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 are positive real numbers 

We believe it is justified that interest rate is dependent on the direction of the evolving debt. 
For example, a high debt (as a percent of national output) which decreases rapidly in the last 
years should not be necessarily connected with high interest rate, because it looks to be 
sustainable and that the situation is fully under control. Thus, the government could be 
“rewarded” with lower interest rate. 

Considering the appropriate values for our risk premia parameters, to begin with, 
empirical studies confirm the dependence of sovereign bond risk premia on debt levels as 
much as the way it fluctuates – often described on an impact of a 1% change of debt to GDP 
ratio. De Grauwe and Ji [3] argue that, since the start of the sovereign debt crisis markets 
have been making errors in the direction of overestimating risks, while before crisis they also 
falsely tended to underestimate risks. They found evidence that a large part of the surge in 
the spreads of the periphery countries between 2010 and 2011 was disconnected from 
underlying increases in the debt-to-GDP ratios and current-account positions, and was the 
result of negative market sentiments, even panic, that became very strong starting at the 
end of 2010. That was interpreted in their empirical estimates as a value for 𝑎𝑎 typically 
between 0.02 and 0.08, maybe even more as we’re going deeper into crisis. In addition, 
Engen and Hubbard [4] conclude, according to their preferred metric, that increasing the 
ratio of debt to GDP by 1 percentage point will increase longterm real interest rates by 0.035 
percentage point. Hence, they characterize their results as showing that the marginal effect 
of debt on long-term interest rates is small, but positive. However, the pressures for fiscal 
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discipline, and thus debt accumulation discipline, coming from financial markets will be 
much stronger in the future than they had been before the crisis, as L.Schuknecht, J.von 
Hagen and G.Wolswijk [5] argue. Thus it is normal that values of 𝑎𝑎 could be around and even 
greater the 0.10 threshold, while 𝑏𝑏 could approach the value of 0.20. 

 

 In this paper we aim to analyze the debt stabilization game discussed, in presence of the 
risk premium parameters we just introduced. The model presented will be used and different 
types of equilibria will be considered. First we will consider non-cooperative Open-Loop Nash 
equilibria, and we try to solve the model under this mode of play. Then, we will consider 
cooperative Pareto equilibria, solve model under this mode and compare with the former 
case.  
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3 THE OPEN-LOOP NASH EQUILIBRIUM CASE 

In the first section we consider the game (1.a)-(1.d) under the Non-cooperative Open-
Loop Nash Equilibrium case. That means, the players have no means to communicate with 
each other and have an open-loop information structure (that is, at time 𝑡𝑡 = 0 both players 
have all information about the game and determine their actions, which they are obliged to 
apply for the whole planning horizon).  Also the type of Nash Equilibrium means that our 
players are looking for a pair of strategies (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) such that: 

𝐹𝐹𝐹𝐹𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑤𝑤𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝐹𝐹𝑓𝑓 𝑎𝑎𝑑𝑑𝑚𝑚𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑏𝑏𝑎𝑎𝑒𝑒 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑤𝑤𝑒𝑒𝑠𝑠   
𝑓𝑓𝐹𝐹𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑎𝑎𝑤𝑤𝑟𝑟𝑠𝑠 (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀  ) 𝑎𝑎𝑎𝑎𝑑𝑑 (𝑢𝑢𝐹𝐹  ,𝑢𝑢𝑀𝑀∗) 𝑤𝑤𝑒𝑒 𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎 ℎ𝑎𝑎𝑎𝑎𝑒𝑒:        

𝐽𝐽𝐹𝐹(𝑢𝑢𝐹𝐹  ,𝑢𝑢𝑀𝑀∗) ≥ 𝐽𝐽𝐹𝐹(𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) 𝑎𝑎𝑎𝑎𝑑𝑑 𝐽𝐽𝑀𝑀(𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀  ) ≥ 𝐽𝐽𝑀𝑀(𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) 
𝑇𝑇ℎ𝑎𝑎𝑡𝑡 𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠 𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑡𝑡 𝑎𝑎𝑐𝑐ℎ𝑤𝑤𝑒𝑒𝑎𝑎𝑒𝑒 𝑏𝑏𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑠𝑠𝑢𝑢𝑎𝑎𝑡𝑡𝑠𝑠 𝑤𝑤𝑓𝑓 ℎ𝑒𝑒 𝑑𝑑𝑤𝑤𝑎𝑎𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑠𝑠  
𝑓𝑓𝑟𝑟𝐹𝐹𝑚𝑚 ℎ𝑤𝑤𝑠𝑠 𝑒𝑒𝑒𝑒𝑢𝑢𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏𝑟𝑟𝑤𝑤𝑢𝑢𝑚𝑚 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎,𝑤𝑤ℎ𝑤𝑤𝑎𝑎𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝐹𝐹𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝐹𝐹𝑎𝑎𝑒𝑒 𝑠𝑠𝑡𝑡𝑤𝑤𝑐𝑐𝑠𝑠𝑠𝑠 𝑡𝑡𝐹𝐹 𝑤𝑤𝑡𝑡.  

 
Now that we have set the stage for this section, we attempt to solve the dynamic game 

under Non-cooperative Open-loop Nash Equilibrium. The Open-loop case can be seen as an 
optimal control problem for each player separately and can be solved using Pontryagin’s 
Minimum Principle (A.W.Starr & Y.C.Ho [6]). Combining equations (1.a) and (1.d) we get the 
differential equation to act as a constraint to the minimization problem of our two players: 

�̇�𝑑(𝑡𝑡) =  
�̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 + 𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑡𝑡)

1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)
                                                  (3.1) 

Note 1: It is to be stated, that throughout the remainder of the paper we assume 1 −
𝑏𝑏 𝑑𝑑(𝑡𝑡) ≠ 0. This is in accordance with reality, as 𝑏𝑏 does normally take values around 0.20, 
thus giving a value of 𝑑𝑑 around 5.0 in order for 1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡) to equal zero. This means 
governmental debt should be around 500% of the GDP of the country under consideration, 
and we do not aim to even get near that figure. Consequently, we can assume that 1 −
𝑏𝑏 𝑑𝑑(𝑡𝑡) > 0. 

The players want to minimize their respective loss functions: 

𝐽𝐽𝐹𝐹 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0 = ∫ ℎ𝐹𝐹(𝑡𝑡,𝑑𝑑,𝑢𝑢𝐹𝐹) 𝑑𝑑𝑡𝑡𝑇𝑇

0   (3.2.a) 

𝐽𝐽𝑀𝑀 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0 = ∫ ℎ𝑀𝑀(𝑡𝑡,𝑑𝑑,𝑢𝑢𝑀𝑀) 𝑑𝑑𝑡𝑡𝑇𝑇

0  (3.2.b) 

 
 Assuming a solution exists we make use of Pontryagin’s Minimum Principle and derive 
the necessary conditions that the Nash Equilibrium strategies should satisfy. To find Nash 
Equilibrium solutions we need to simultaneously solve two optimal control problems, where 
the optimal solution of the first enters as a parameter in the second problem, and vice versa. 
 

 It will be showed later on that the game always admits a Nash Equilibrium.  
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In order to solve the Open-Loop Nash Equilibrium problem we make use of Pontryagin’s 
Minimum Principle: 

 Pontryagin’s Minimum Principle is applied for the fiscal authorities: 

• Hamiltonian:  𝐻𝐻𝐹𝐹 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����

2� + 𝜆𝜆𝐹𝐹  �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

    

• 𝜆𝜆�̇�𝐹 =  −𝜕𝜕𝐻𝐻𝐹𝐹 𝜕𝜕𝑑𝑑�   ,  𝜆𝜆𝐹𝐹(𝛵𝛵) = 0 
• 𝑢𝑢𝐹𝐹∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝐹𝐹
{𝐻𝐻𝐹𝐹} 

 
 Working in similar fashion for the monetary authorities: 

• Hamiltonian: 𝐻𝐻𝑀𝑀 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀 −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀�����

2� + 𝜆𝜆𝑀𝑀  �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

   

• 𝜆𝜆�̇�𝑀 =  −𝜕𝜕𝐻𝐻𝑀𝑀 𝜕𝜕𝑑𝑑�   ,  𝜆𝜆𝛭𝛭(𝛵𝛵) = 0 
• 𝑢𝑢𝑀𝑀∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝑀𝑀
{𝐻𝐻𝑀𝑀} 

However, the conditions from Pontryagin’s Minimum Principle are necessary but not 
sufficient. This means that any solutions that provide the aforementioned equilibrium should 
satisfy them, but the solutions satisfying them are not guaranteed to be Nash Equilibrium, 
thus we name them candidate solutions. A rather restrictive yet sufficient condition, in order 
for the candidate solutions, satisfying the conditions of Pontryagin’s Minimum Principle, to 
be a Nash Equilibrium, is given by the following theorem: 

 Theorem 3.1: The sets of strategies 𝑈𝑈𝐹𝐹 ,𝑈𝑈𝑀𝑀 are intervals of ℝ and the Hamiltonians are 
convex in 𝑑𝑑. Then the conditions derived by using Pontryagin’s Minimum Principle are also 
sufficient and thus the pair  (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) satisfying them is a Nash Equilibrium.  
Proof of the above theorem is provided in the Appendix (6.1). 

The convexity of the strategy sets is given as they are intervals of ℝ, while the Hamiltonians 
are proved to be convex in our area of interest, 𝑑𝑑 ∈ (0,𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃). A necessary condition for the 
Hamiltonians to be convex in 𝑑𝑑 is that the area of interest is left of the value that makes the 
denominator of the system equal to zero, namely 1/𝑏𝑏. Given that for the values we 
mentioned in Note 1(pg.18), 1/𝑏𝑏 is much greater than the initial value, and due to the fact 
that we intend to drive the system asymptotically near to the desired values, it is sufficient 
to consider the area (0,𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃) for the convexity of the Hamiltonians. 

 Hence, by Theorem 3.1 from the conditions provided by Pontryagin’s Minimum Principle 
we will obtain optimal policies. Then we use the following substitutions for computational 
ease: 

Define: 𝜇𝜇𝐹𝐹 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹 , 𝜇𝜇𝑀𝑀 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝑀𝑀 , then introduce: 𝜇𝜇 = 𝜇𝜇𝐹𝐹 + 𝜇𝜇𝛭𝛭. This is a transformation 
of the costate variables we used for computational ease. 
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Considering the Finite Horizon problem we prove in the Appendix (6.1) the following 
theorem: 

Theorem 3.2: If (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) is a pair of Open-Loop Nash strategies for the game (3.1)-(3.2), 
there exist a trajectory for debt 𝑑𝑑 

∗ and an associated costate variable 𝜇𝜇 
∗ that satisfy the set 

of non-linear differential equations: 

�̇�𝑑∗(𝑡𝑡) =  1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

��̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 − 𝜇𝜇 1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

+ 𝑓𝑓̅ − 𝑚𝑚��    (3.3.a)  

𝜇𝜇∗̇(𝑡𝑡)
= −�𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹���� + 𝛽𝛽𝛭𝛭�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝛭𝛭������

+  𝜇𝜇 �𝜃𝜃 −
��̅�𝑟 + 2𝑎𝑎 𝑑𝑑(𝑡𝑡)��1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)� + 𝑏𝑏��̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑2 + 𝑓𝑓̅ − 𝑚𝑚��

�1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)�2
�     (3.3. b)

+ 𝜇𝜇2
b

�1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)�3
 

With 𝑑𝑑 
∗(0) = 𝑑𝑑0

 . Also, we proved that the system of differential equations (3.3) admits no 
periodic solutions. 

The corresponding expressions for the optimal control policies are: 

𝑢𝑢𝐹𝐹∗(𝑡𝑡) = 𝑓𝑓̅ − 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹
∗(𝑡𝑡) 1

1−𝑏𝑏 𝑑𝑑(𝜃𝜃)
=  𝑓𝑓̅ − 𝜇𝜇𝐹𝐹∗(𝑡𝑡)

1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

     (3.4.a) 

𝑢𝑢𝑀𝑀∗(𝑡𝑡) = 𝑚𝑚� + 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝑀𝑀
∗(𝑡𝑡) 1

1−𝑏𝑏 𝑑𝑑(𝜃𝜃)
=  𝑚𝑚� + 𝜇𝜇𝑀𝑀∗(𝑡𝑡) 1

1−𝑏𝑏 𝑑𝑑(𝜃𝜃)
    (3.4.b) 

Now let us assume that the finite horizon T is long enough so that the debt trajectory as 
well as the costate variables’ trajectory enters a steady-state path. To find the values of the 
debt and of the costate variable in the steady-state we set the differential equations (3.3) 
simultaneously equal to zero. Denote these Non-Cooperative Open-Loop steady-state values 
of the trajectories by (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 , 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂). Therefore they should satisfy the following equations 
derived by setting the differential equations in (3.3) equal to zero: 

𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂 = −𝑎𝑎 𝑏𝑏 (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)3 + (𝑎𝑎 − 𝑏𝑏 �̅�𝑟) (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 + ��̅�𝑟 −  𝑏𝑏�𝑓𝑓̅ − 𝑚𝑚���  𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + �𝑓𝑓̅ − 𝑚𝑚��         

(3.5) 

And then 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 as the solution of the following cubic polynomial: 

−𝑎𝑎 (2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)3 + �𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 + ��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) −
(𝛽𝛽𝐹𝐹 + 𝛽𝛽𝛭𝛭)� 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + (𝛾𝛾3 + 𝑢𝑢�  𝛾𝛾2) = 0      (3.6) 

Where: 𝛾𝛾1 = 1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 ,   𝛾𝛾2 = 𝜃𝜃 − �̅�𝑟 ,   𝛾𝛾3 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀����  ,   𝑢𝑢� = 𝑓𝑓̅ − 𝑚𝑚�   

As we see the steady-state values are independent of the initial value of debt 𝑑𝑑0. 
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 Let us consider for a moment the Infinite Horizon problem. That is, the costs of the two 
authorities now are:  

𝐽𝐽𝐹𝐹 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����

2� 𝑑𝑑𝑡𝑡∞
0    

𝐽𝐽𝑀𝑀 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡∞
0   

 It should be noted though, that the control policies (3.4), do not imply necessarily the 
existence of solutions for the infinite time case. Papavassilopoulos and Olsder [9] discuss and 
exhibit a class of linear-quadratic Nash games, where while closed-loop no-memory 
strategies for any finite-time interval exist, for the infinite time horizon there might not exist, 
exist many solution or a unique one. Furthermore, the limit of the finite-time horizon 
solution does not necessarily have to converge to the infinite time horizon solution. In 
addition, Mageirou [10] had previously shown for the linear quadratic case, that the solution 
of the algebraic Riccati equation, which coincides with the limit of the solution of the 
dynamic Riccati equation when the time goes to infinity, determines the value of the infinite 
time horizon game. However, the strategies yielded for that particular solution of the 
algebraic Riccati equation are not necessarily in equilibrium. 

Returning to our game and the Infinite Horizon case, one can easily observe that if we use 
again Pontryagin’s Minimum Principle, the same expressions for control policies and costate 
functions are obtained. But, now there is a significant difference. The infinite horizon lacks 
transversality conditions, as the transversality conditions do not extend asymptotically. It is 
easy to prove that the equilibrium equations for the infinite horizon case are identical to the 
set of equations (3.3). This set of equations yields again the decoupled to equations (3.5) and 
(3.6). Therefore, if we assume that there exists a solution to equations (3.6), we obtain a 
steady-state equilibrium point. Then as Haurie claims in [13], the turnpike property makes 
the trajectories of the debt and of the costate variables attracted to those points. Note that 
for both finite and infinite horizon cases, it is natural that only real roots of (3.6) are 
considered and accepted as steady-state values, due to the fact that they represent debt 
value. 

Therefore, one could conjecture that for the Finite Horizon case and for T long enough, 
equations (3.3) become equal to zero. Then there exists T′ < T such that for some t,  t < T′, 
the debt trajectory of the Finite Horizon enters a steady-value path, in the sense that the 
value of debt remains constant. The debt trajectory in both the Finite and Infinite Horizon 
cases is attracted by the same steady-state value as the expressions of the optimal policies 
for both cases are identical and therefore the trajectory of the Finite Horizon can get in a 
neighborhood of the steady-state value of the Infinite Horizon. Then, for T′ ≤ t ≤ T, the 
trajectory of the Finite Horizon deviates from the aforementioned steady-state value as the 
optimal policies for the Finite Horizon deviate from those of the Infinite Horizon because the 
transversality conditions for the costate variables λi(T) = 0, i = F, M need to be met. In fact, 
Haurie in [13] comments that there is also a finite horizon turnpike property in the sense 
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that on a long journey, the optimal trajectory should spend most of the time in the vicinity 
of the turnpike. 

Although we will not address in detail the problem of proving such properties, benchmarks 
show that they might hold as well. We hence claim, that since for horizons long enough, the 
trajectory could enter the steady-path and stays on it for the most part of the debt trajectory 
except for some final time, it is important to study this steady-state path. Thus, during the 
Open-Loop Nash Equilibrium mode of play, we first focus on the steady-state of debt and on 
the effects which the additional risk premium (on the rate of change of debt) might have. 
Then we present as benchmark examples, various values for finite time horizon T and 
compare the results. We will elaborate later that the time needed to achieve the equilibrium 
might be too long to practically consider it a viable solution, however the steady-state 
presents properties that appear as well in smaller horizons, enough to provide a practical 
and viable solution. We will also present comparisons with the infinite horizon game. From 
an ethical point of view, one could say that there is no clear foreseeable future in the 
economy and this way the study of infinity horizon is justified. However, in our case binding 
in a policy for practically a really long time is of no application and thus the finite horizon 
case should be investigated as well. 

Before proceeding with our model, we recall some results for the steady-state proven in 
literature, for the infinite horizon case: 

3.1 THE TABELLINI MODEL: NO RISK PREMIA 
First, for reference we present the results of the Tabellini model. That is, in eq.(3.1) we set 

the parameters 𝑎𝑎 = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 0, and in (3.2) T goes to infinity. Also 𝑑𝑑𝐹𝐹��� = 𝑑𝑑𝑀𝑀���� = 0 was 
considered and the following conclusions had been derived: 

1. This game has a unique set of admissible equilibrium actions that allow for a 
feedback synthesis. 
2. This game has a unique set of admissible equilibrium actions if the policymakers 
are sufficiently impatient, i.e., if 𝜃𝜃 > 2�̅�𝑟. 
3. This game has an infinite number of admissible equilibrium actions if 𝜃𝜃 < 2�̅�𝑟. 
However, all equilibrium actions yield the same closed-loop system. Furthermore, 
equilibrium actions converge to the same steady state. 
4. When 𝑏𝑏 > 0 the game has a unique steady state values of debt for every initial 

𝑑𝑑0, leading to the steady state values of: 𝑑𝑑𝑒𝑒 = 𝛾𝛾0
𝑏𝑏

 ,       𝑓𝑓𝑒𝑒 = 𝛽𝛽𝐹𝐹(�̅�𝑟𝑑𝑑𝐹𝐹����+�̅�𝑓−𝑚𝑚� )
𝑏𝑏

,  

𝑚𝑚𝑒𝑒 = 𝑚𝑚� − 𝛽𝛽𝑀𝑀
𝛽𝛽𝐹𝐹

(𝑓𝑓𝑒𝑒 − 𝑓𝑓)̅. 

5. Also if 𝑏𝑏 < 0 and the players do not care much about the debt (that is 𝜃𝜃 > �̅�𝑟  
and 𝛽𝛽𝐹𝐹 ,𝛽𝛽𝑀𝑀 sufficiently small), then the game admits no Open-Loop Nash 
equilibrium unless 𝑑𝑑0 = 𝑑𝑑𝑒𝑒 = 𝛾𝛾0

𝑏𝑏
. 
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3.2 ENGWERDA AND VAN AARLE: RISK PREMIUM ON DEBT LEVEL 
Engwerda and van Aarle extended the Tabellini model by introducing a parameter of risk 

premium depending on government debt level (in eq. (3.1) 𝑎𝑎 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 =
0, and in (3.2) T goes to infinity). This extension produces at least one and at most three 
steady states of debt. They conclude to a third-order equation of steady state of debt, 𝑑𝑑𝑒𝑒: 

−2𝑎𝑎2𝑑𝑑3 + 𝑎𝑎(𝜃𝜃 − 3�̅�𝑟)𝑑𝑑2 + 𝛾𝛾1𝑑𝑑 + 𝛾𝛾0 = 0 

𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝛾𝛾0 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝑀𝑀𝑑𝑑𝑀𝑀���� + �𝑓𝑓̅ − 𝑚𝑚��(𝜃𝜃 − �̅�𝑟) 𝑎𝑎𝑎𝑎𝑑𝑑 𝛾𝛾1
= −(�̅�𝑟(�̅�𝑟 + 𝜃𝜃) + 𝛽𝛽𝐹𝐹 + 𝛽𝛽𝑀𝑀) − 2𝑎𝑎(𝑓𝑓̅ − 𝑚𝑚�) 

The discriminant is: ℎ(𝑎𝑎) = 8𝛾𝛾13 − 36𝑎𝑎𝛾𝛾1𝛾𝛾0𝑠𝑠 − 40𝑎𝑎𝛾𝛾0𝑠𝑠3 − 108𝑎𝑎2𝛾𝛾02 + 𝛾𝛾12𝑠𝑠2,    𝑠𝑠 = 𝜃𝜃 −
3�̅�𝑟. Hence we obtain: 

1. One steady state of debt if either 𝑤𝑤) ℎ(𝑎𝑎) < 0 𝐹𝐹𝑟𝑟 𝑤𝑤𝑤𝑤) ℎ(𝑎𝑎) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎2𝑠𝑠2 =
3𝛾𝛾1. 

2. Two steady states (from which only one applies as an open loop equilibrium if   
𝑑𝑑0 = 𝑑𝑑𝑒𝑒) if ℎ(𝑎𝑎) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎2𝑠𝑠2 ≠ 3𝛾𝛾1. 

3. Three steady states (from which the middle one applies as an open loop 
equilibrium if  𝑑𝑑0 = 𝑑𝑑𝑒𝑒), if ℎ(𝑎𝑎) > 0. 

4. Of these steady states, at least one is a saddle-point, denoting the impact of 
including risk premia. 

5. Also, they have extracted the conclusion that the steady-state value of debt 
decreases as the value of 𝑎𝑎 becomes larger.  

3.3 INTRODUCING: RISK PREMIUM ON DEBT RATE OF CHANGE: 
First, throughout this section we assume that the horizon T chosen, is long enough so that 

equilibrium value for the debt is attained. For our main model consider again eq.(3.1) now 
with both 𝑎𝑎 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 > 0. From equation (3.6) the equilibrium points are defined. This is 
a cubic polynomial and thus an analytical solution is available. It is natural that only real roots 
of (3.6) are considered and accepted, due to the fact that they represent debt value.  

3.3.1 Effect on Number of Equilibrium Points and Qualitative Behavior 
In the Appendix (Section 6.1.2-6.1.4) we prove the following: 

 If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) is the discriminant of the cubic polynomial (3.6), as a function of the risk 
premium coefficients 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏, then the number of steady state values of debt given by 
(3.6) is subject to the following rule: 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the 
game. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 1 
candidate solution for the game. 
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• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0, there are at least 2 roots coincide and they are all real. That means 
there are either a double real root and distinct single real root, or a triple real root. 
That is we either have 2 or 1 candidate solutions for the game respectively. 
 ��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) − (𝛽𝛽𝐹𝐹 + 𝛽𝛽𝛭𝛭)��𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� + 9𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)(𝛾𝛾3 +
𝑢𝑢�  𝛾𝛾2) = 0   (3.7) 
If (3.7) holds there is 1 triple real root, else there is 1 double root and 1 distinct real 
root. 

 The qualitative behavior of the system near the equilibrium points should be explored. 
This is achieved via the Linearized System around each equilibrium point. Linearizing 
system (3.3) we get: 

�𝑑𝑑(𝑡𝑡)̇

𝜇𝜇(𝑡𝑡)̇
� = �

−𝑎𝑎
𝑏𝑏
− 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
+ 𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2𝑢𝑢�

𝑏𝑏 𝛾𝛾12
− 1

𝛾𝛾12

−(𝛽𝛽𝐹𝐹 + 𝛽𝛽𝑀𝑀) − 2 (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�) 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
+ 3(𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂)2

𝛾𝛾14
𝑎𝑎
𝑏𝑏

+ 𝜃𝜃 + 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
− 𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2𝑢𝑢�

𝑏𝑏 𝛾𝛾12

�  �𝑑𝑑(𝑡𝑡)
𝜇𝜇(𝑡𝑡)� 

 (3.8) 

where (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 , 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂) is the equilibrium point under discussion. 

The eigenvalues of the linearized system (3.7) are: 

𝑒𝑒𝑤𝑤𝑠𝑠1,2 =
(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 𝜃𝜃 ± �(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕

 𝑠𝑠(𝑑𝑑)
𝜕𝜕𝑑𝑑 �

2(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 
               (3.9) 

One can easily observe that the steady states will be one of the following: 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 and 

𝑒𝑒𝑤𝑤𝑠𝑠2 < 0. Thus, the steady state is a saddle point. 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 and 

𝑒𝑒𝑤𝑤𝑠𝑠2 > 0. Thus, the steady state is an unstable node. 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1,2 are complex eigenvalues with 

positive real part. Thus, the steady state is an unstable focus. 
• Last but not least, there is the case an eigenvalue becomes zero. That is, when 

𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 and (3.7) holds (a triple real root). As we have already argued the 
equilibrium point is also a root of the first derivative. It is then straightforward from 
(3.9) that an eigenvalue becomes zero while the other will be positive. This means 
the system matrix has a non-trivial null-space and has an equilibrium subspace than 
an equilibrium point. Due to the positive eigenvalue all trajectories diverge away 
from the equilibrium subspace. 
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 Combining the two previous bullet we conclude to the following proposition: 
Taking into account that the highest order coefficient 𝛿𝛿3 = −𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) of (3.6) is 

always negative since 𝑎𝑎, 𝑏𝑏,𝜃𝜃 > 0, the sign of 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 �  near each equilibrium point 
can be determined. Thus:  

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) > 0, there are 3 distinct real roots. The first and the last are saddle points, 
while the middle one is unstable node or focus. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) < 0, there is 1 distinct real root and 2 complex conjugate roots. The 

derivative 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0 and the equilibrium point is a saddle point. 
• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 and (3.7) does not hold there is 1 double real root and 1 distinct single 

real root, the double root is unstable while the single one is a saddle point. 
• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 and (3.7) does hold there is 1 triple real root and we have an 

equilibrium subspace than an equilibrium point, and all trajectories diverge away 
from the equilibrium subspace. 

Commenting on our analysis, the inclusion of another risk premium term again does give 
at least one steady state saddle point. Also, the maximum number of steady states remains 
the same, but of course now it varies with the values of 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏. Furthermore we have 
explored the case of a zero eigenvalue, and found that there exists an equilibrium subspace 
which acts as a solution of the dynamic game only when the initial value 𝑑𝑑0 is already on that 
subspace. Else, the trajectory diverges away and no solution is obtained. 

3.3.2 Effect on development of the Steady-State Value of Debt 
It is now clear that risk premia coefficients 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 can play major role in defining the 

equilibrium points. It is important then to see how the value of equilibrium of the system 
responds in variations to those coefficients and extract a qualitative conclusion, if possible. 

In order to examine the sign of the derivative of steady state value debt w.r.t. 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏. 

Under the assumption that 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � ≠ 0 at the steady state 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 (for example, not having 
a triple root as we’ve argued before) and that 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏) are continuous 
differentiable in their respective variables we obtain: 

𝜕𝜕  𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕𝑎𝑎 � = −

𝜕𝜕  𝑠𝑠
𝜕𝜕𝑑𝑑 �

𝜕𝜕  𝑠𝑠
𝜕𝜕𝑎𝑎 �

       𝑎𝑎𝑎𝑎𝑑𝑑      𝜕𝜕
 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)

𝜕𝜕𝑏𝑏 � = −
𝜕𝜕  𝑠𝑠

𝜕𝜕𝑑𝑑 �
𝜕𝜕  𝑠𝑠

𝜕𝜕𝑏𝑏 �
 

• 𝜕𝜕  𝑠𝑠
𝜕𝜕𝑑𝑑 � = −3𝑎𝑎(2𝑎𝑎 + 𝑏𝑏𝜃𝜃)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

2 + 2(−3𝑎𝑎�̅�𝑟 + 𝑎𝑎𝜃𝜃 − 𝑏𝑏�̅�𝑟𝜃𝜃)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + �−𝛽𝛽𝐹𝐹 − 𝛽𝛽𝛭𝛭 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏𝜃𝜃) + �̅�𝑟(𝜃𝜃 − �̅�𝑟)�  (3.10) 

• 𝜕𝜕  𝑠𝑠
𝜕𝜕𝑎𝑎 � = −(4𝑎𝑎 + 𝑏𝑏𝜃𝜃)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

3 + (𝜃𝜃 − 3�̅�𝑟)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂
2 + (−2𝑢𝑢�)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

         (3.11) 

• 𝜕𝜕  𝑠𝑠
𝜕𝜕𝑏𝑏 � = −𝑎𝑎 𝜃𝜃𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

3 − �̅�𝑟 𝜃𝜃 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂
2 − 𝑢𝑢�  𝜃𝜃 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

            (3.12) 

Depending on the parameters we can derive the sign of the partial derivatives w.r.t. 
𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏. Furthermore as we analyzed in section 3.3.1 in case we have a unique steady state 
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(a saddle point) the sign of 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � is negative. That is also the case for three distinct 

steady states, as two of them (the first and last are saddle points) have 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0.  

Also, we assume that the steady-state of debt is positive. Thus for example, if 𝜃𝜃 < 3 �̅�𝑟 and 

𝑢𝑢� > 0
 
⇔𝑓𝑓̅ − 𝑚𝑚� > 0, then 𝜕𝜕

 𝑠𝑠
𝜕𝜕𝑎𝑎 � < 0 and consequently: 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕𝑎𝑎 � < 0. This gives us 

the insight that debt decreases as the value of 𝑎𝑎 gets larger. However, for another selection 
of parameters we could observe different behavior. For example, typically 𝜃𝜃 > 3 �̅�𝑟, thus we 
can observe the debt to increase for small values of 𝑎𝑎, but as it gets larger the “positive” 
effect of the second term in (3.11) is balanced by the other two “negative” terms and the 
derivative becomes negative again and the steady state value of debt declines again. This 
means we can except the value of debt to increase for small values of 𝑎𝑎 and decrease again 
as 𝑎𝑎 grows larger. 

Considering now equation (3.12) the only non-negative term could be −𝑢𝑢�  𝜃𝜃 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂
 , when  

𝑢𝑢� < 0
 
⇔𝑓𝑓̅ − 𝑚𝑚� < 0. However, in most benchmarks is not large enough and the derivative 

remains negative. That means, the steady state value of debt will always decrease as 𝑏𝑏 
increases. The decaying of the steady state debt appears to be almost linear with the value 
of 𝑏𝑏. 

As we will show in the next benchmarks, the effect of 𝑎𝑎 to increase steady state value of 
debt for small values, is contained by the risk premium term on rate of change of debt. The 
higher the value of 𝑏𝑏 is, the less this effect is visible.  

3.3.3 Effect on the Steady-State Values of the Monetary and Fiscal Policies 
The impact of risk premium terms is not restricted only on the steady-state value of debt, 

but as expected it affects the steady-state values of the optimal policies too. The steady-
state values of the monetary and fiscal policies are computed in the Appendix by equations 
(6.1.6). We also provide them here for ease: 

𝑢𝑢𝐹𝐹𝑒𝑒 = 𝑓𝑓̅ +
𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����

�̅�𝑟 + 2𝑎𝑎 𝑑𝑑 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑)
    𝑎𝑎𝑎𝑎𝑑𝑑   𝑢𝑢𝑀𝑀𝑒𝑒 = 𝑚𝑚� −

𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀�����
�̅�𝑟 + 2𝑎𝑎 𝑑𝑑 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑)

 

Where 𝑢𝑢𝐹𝐹𝑒𝑒,𝑢𝑢𝑀𝑀𝑒𝑒 are the steady-state values of fiscal and monetary policies respectively. 
We can also assume that when in the steady-state, the debt has an equilibrium value too, 
thus it would be proper to write: 

𝑢𝑢𝐹𝐹𝑒𝑒 = 𝑓𝑓̅ +
𝛽𝛽𝐹𝐹�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝐹𝐹����

�̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)
    𝑎𝑎𝑎𝑎𝑑𝑑   𝑢𝑢𝑀𝑀𝑒𝑒 = 𝑚𝑚� −

𝛽𝛽𝑀𝑀�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝑀𝑀�����
�̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)
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In order to derive assumptions on the effect of risk premia on the steady-state policies, 
we take the respective derivatives w.r.t. 𝑎𝑎: 

𝜕𝜕  𝑢𝑢𝐹𝐹𝑒𝑒(𝑎𝑎)
𝜕𝜕𝑎𝑎 � =

𝛽𝛽𝐹𝐹
𝜕𝜕 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 ��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)� − 𝛽𝛽𝐹𝐹�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝐹𝐹����� �2𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + 2𝑎𝑎 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 + 𝜃𝜃𝑏𝑏 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 �

��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)�
2  

𝜕𝜕  𝑢𝑢𝑀𝑀𝑒𝑒 (𝑎𝑎)
𝜕𝜕𝑎𝑎 � = −

𝛽𝛽𝑀𝑀
𝜕𝜕 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 ��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)� − 𝛽𝛽𝑀𝑀�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝑀𝑀����� �2𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + 2𝑎𝑎 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 + 𝜃𝜃𝑏𝑏 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎)
𝜕𝜕 𝑎𝑎 �

��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)�
2  

Next we differentiate w.r.t. 𝑏𝑏: 

𝜕𝜕 𝑢𝑢𝐹𝐹𝑒𝑒(𝑏𝑏)
𝜕𝜕𝑏𝑏 � =

𝛽𝛽𝐹𝐹
𝜕𝜕  𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕 𝑏𝑏 ��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)� − 𝛽𝛽𝐹𝐹�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝐹𝐹����� �2𝑎𝑎 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕 𝑏𝑏 + 𝜃𝜃𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + 𝜃𝜃𝑏𝑏 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕 𝑏𝑏 �

��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)�
2  

𝜕𝜕 𝑢𝑢𝑀𝑀𝑒𝑒 (𝑏𝑏)
𝜕𝜕𝑏𝑏 � = −

𝛽𝛽𝑀𝑀
𝜕𝜕 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕 𝑏𝑏 ��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)� − 𝛽𝛽𝑀𝑀�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑑𝑑𝑀𝑀����� �2𝑎𝑎 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕  𝑏𝑏 + 𝜃𝜃𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + 𝜃𝜃𝑏𝑏 𝜕𝜕

 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏)
𝜕𝜕  𝑏𝑏 �

��̅�𝑟 + 2𝑎𝑎 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 − 𝜃𝜃(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)�
2  

One can see that if we assign same weights 𝛽𝛽𝐹𝐹 ,𝛽𝛽𝛭𝛭 and same target values for debt to the 

two authorities, we have 𝜕𝜕
 𝑢𝑢𝐹𝐹(𝑎𝑎)
𝜕𝜕 𝑎𝑎

= −𝜕𝜕 𝑢𝑢𝑀𝑀(𝑎𝑎)
𝜕𝜕 𝑎𝑎

 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑢𝑢𝐹𝐹(𝑏𝑏)
𝜕𝜕 𝑏𝑏

= −𝜕𝜕 𝑢𝑢𝑀𝑀(𝑏𝑏)
𝜕𝜕 𝑏𝑏

. A less restrictive, but 
more qualitative result would be to observe that the derivatives of the steady-state policies 
w.r.t. both risk premium terms have opposing signs. We are going to show in the benchmark 
example that follows that the derivative of the policies with respect to 𝑎𝑎 is negative, however 
w.r.t. 𝑏𝑏 it is positive. Keeping in mind that a negative value of fiscal deficits denotes a fiscal 
surplus, we can conclude that as the risk premium on the debt level increase, both the 
policies are being used more actively. In contrast as the risk premium term associated with 
the rate of change of the debt becomes greater, the system looks more independent and so 
the policies are less actively used. However, the impact of 𝑏𝑏 is significantly less than the one 
of 𝑎𝑎. 

3.3.4 Benchmark Examples 
Note 2: We have already argued about the values of 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 that they would be around 0.10 
and 0.20 respectively given the current economic situation. Also, as stated in previous 
literature the weight values that the two authorities put on debt development, 𝛽𝛽𝐹𝐹 𝑎𝑎𝑎𝑎𝑑𝑑 𝛽𝛽𝑀𝑀, 
are of the same order of magnitude, that is 10−3. The parameter 𝜃𝜃, which denotes the 
degree in which the authorities care about the future development of the debt, will take two 
representative values: 𝜃𝜃 = 0.15 when the players do care about the future debt 
development and 𝜃𝜃 = 0.75 when they care less. 

 We choose the following parameters: 

𝛽𝛽𝐹𝐹 = 0.06  ,𝛽𝛽𝑀𝑀 = 0.04  ,𝑑𝑑𝐹𝐹��� = 𝑑𝑑𝑀𝑀���� = 0.5, �̅�𝑟 = 0.03 ,𝜃𝜃 = 0.15 
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The justification of this choice is that in OECD countries for example, even in a non-
cooperative mode there are some basic common lines such as the target of debt. 
Furthermore, the fiscal authorities of each country put greater weight to its governmental 
debt, than the ECB who should oversee the other country-members too. Last, in our first 
example the authorities are interested in the future development of the debt and do not 
play a hasty game. This justifies the value of 𝜃𝜃. Last, the target values of the two authorities 
policies are: 𝑓𝑓̅ = 0.01 𝑎𝑎𝑎𝑎𝑑𝑑 𝑚𝑚� = 0, meaning that the ECB adopts a strict approach for the 
money growth, intending to be zero at steady state, while fiscal authorities care to more 
slowly reduce their deficits leaving a target value of 0.01. A stricter approach might mean 
that they would have to enforce higher taxes. 

3.3.4.1 Trajectories of Debt, Costate Variables and Optimal Policies for the Finite Horizon 
We begin our benchmarks by considering the finite horizon case for various values of T. 

We present the trajectories that the debt and the costate variables follow when solving the 
two point boundary value problem imposed by the use of Pontryagin’s Minimum Principle. 
As we conjectured the debt trajectory is attracted by a steady-value, and either it reaches it 
or not, then it deviates as the transversality conditions have to be met. This is clear in Figures 
3.1 to 3.4. In Fig. 3.2, where the horizon is T=20, there is a subtle suspicion of entering a 
steady-trajectory for a short-time, and for T=30 it is obvious that the trajectory enters a 
steady-path for a while. Then in Figure 3.4 for T=50 it is evident that the trajectory reaches 
the steady-path and remains in it except for some final time. In that time, as the 
transversality conditions have to be met, the control policies deviate from their steady values 
and therefore they affect the debt trajectory as well. Also the two costate variables, 𝜆𝜆𝐹𝐹 , 𝜆𝜆𝛭𝛭, 
are always meeting their respective transversality condition at the end of the horizon. When 
referring to the respective costs at each horizon, of course the longer the horizon is the 
greater the cost for each player, however the increment is not that significant. On the 
grounds that the debt trajectory stays in a vicinity of a steady value for the most time of the 
horizon, then the accumulation that takes place for the cost is minute. For example when 
the horizon is T=20 the cost for the fiscal authorities is J1=1.0845, and for T=50 the cost is 
J1=1.0899.  

 

 

 

 

 

 

 

Figures 3.1 - 3.2: Finite Horizon Trajectories of Debt and Costate Variables or various values of finite horizons 
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Figures 3.3 - 3.4: Finite Horizon Trajectories of Debt and Costate Variables or various values of finite horizons 

 Furthermore, the effect of deviating from the steady path in order to meet the 
transversality conditions, has an obvious effect on the optimal policies too. Recall the 
expressions derived from those policies, equations (3.4): 𝑢𝑢𝐹𝐹∗(𝑡𝑡) = 𝑓𝑓̅ − 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹

∗(𝑡𝑡) 1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

 , 

𝑢𝑢𝑀𝑀∗(𝑡𝑡) = 𝑚𝑚� + 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝑀𝑀
∗(𝑡𝑡) 1

1−𝑏𝑏 𝑑𝑑(𝜃𝜃)
 . When the two costate variables, 𝜆𝜆𝐹𝐹 , 𝜆𝜆𝛭𝛭, meet their 

respective conditions 𝜆𝜆𝐹𝐹(𝑇𝑇) = 0, 𝜆𝜆𝛭𝛭(𝑇𝑇) = 0 then 𝑢𝑢𝐹𝐹∗(𝑇𝑇) = 𝑓𝑓,̅ 𝑢𝑢𝑀𝑀∗(𝑇𝑇) = 𝑚𝑚� . This is exactly 
shown in Figures 3.5-3.8. 

 

 

 

 

 

 

 

 

 

 

Figures 3.5 - 3.6: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons 
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Figures 3.7 - 3.8: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons 

 

3.3.4.2 Effect of the Risk Premium Terms on Steady-Values of Debt 
 The Figures in the previous section were obtained for 𝑎𝑎 = 0.10 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 0.20. What is important 
to find out is how these in these plots, both steady part and final part, are affected by changes in the 
two risk premium terms. In other words, we will investigate the effect of risk premium terms in the 
finite horizon case. As we have already argued at the start of this section, and it is presented here, 
the steady part dominates for most of the time horizon. With this in mind, and also considering that 
practically this is the value in which the debt remains in a particular country for most of the time the 
policy is implemented, we first explore the effect of the risk premia in the steady-part. 

 Starting from a time horizon of T=20 we first explore the effect of varying the risk premium term 
𝑏𝑏 that depends on the rate of change of debt, while keeping 𝑎𝑎 constant at 0.10. Figures 3.5 through 
3.7, first of all show that the relation between the risk premium term 𝑏𝑏 and the steady part of the 
debt trajectory is almost linear. As 𝑏𝑏 increases the value the debt attains decreases too, 
independently of the horizon. This was also what we found out when analyzing theoretically the 
effect of the risk premium on the steady-state value of debt. However there are some differences 
that depend on the length of the horizon T. These differences are mainly attributed to how close to 
the steady path the trajectories tend. The longer the horizon is, the closer the trajectories tend to 
their respective steady values as it was also obvious from Figures 3.1-3.4 in the previous section. As 
the time horizon increases the behavior of these plots should be closer to the steady state trajectory. 
Indeed, T=50 is long enough and the plot is identical with the one from the steady state. One should 
keep in mind from these results, that no matter how close, in fact arbitrarily close, we can get to the 
steady state, the part that represents the steady part of our trajectory behaves always the same as 
𝑏𝑏 varies. We have an almost linear decrease in the steady value of debt as 𝑏𝑏 increases. 
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Figures 3.9 - 3.10: Effect of risk premium term b on steady part of the debt trajectory 

 

 

 

 

 

 

 

 

 

 

 

Figures 3.11: Effect of risk premium term b on steady part of the debt trajectory 

  Next we will investigate the infinite horizon case. That is the exact results obtained from the 
system of equations (3.3) or directly by solving (3.5) for a real valued solution. Figures 3.8 and 3.9 
show two of the results we proposed theoretically in section 3.3.2. First, that the decline in the steady 
state value of debt, as 𝑏𝑏 appears to be linear. Second, for small values of 𝑎𝑎 we have higher steady 
state value of debt. As we can see, the plots are identical except being moved along the vertical axis. 
Another point to focus on, is that figure 3.9 is identical with 3.7 (𝑇𝑇 = 50,𝑎𝑎 = 0.10). This confirms the 
fact that T=50, is a long enough horizon and all the results deduced for steady-state in infinite time 
horizon, apply now to the steady part of the trajectory in finite time. 
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Figures 3.12 & 3.13: Effect of risk premium term b on steady state value of debt  

  We continue to focus our analysis now on the steady-state for a while. In figures 3.10 and 
3.11 we see how the sign of 𝑓𝑓̅ − 𝑚𝑚�  impacts on the steady state. As we expect, when the ECB is willing 
to let a higher money growth and fiscal authorities are stricter with their deficits, the steady state of 
value debt will be lower. Of course the relationship of the steady-state value of debt with the risk 
premium term 𝑏𝑏 remains linear. Another observation to be made, is that as the value of risk premium 
𝑎𝑎 increases, in the second case, debt gets much lower than in the first. In other, words the slope is 
greater in the second case. Intuitively, we could say that when the main objective for each authority, 
namely the target values for money growth and fiscal deficit, are in the general direction of the 
decline of the debt value, the more active use of policies provoked by the greater risk premium terms 
yields lower steady-state debt. 

 

 

 

 

 

 

 

 

 

 

Figures 3.14 & 3.15: Steady state value of debt for 𝑓𝑓̅ > 𝑚𝑚�(𝑎𝑎𝑒𝑒𝑓𝑓𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑓𝑓̅ < 𝑚𝑚�(𝑟𝑟𝑤𝑤𝑠𝑠ℎ𝑡𝑡)   
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3.3.4.3 Effect of the Risk Premium on the Terminal Value Debt 
 However, as well as the steady-state analysis for long enough horizons, the analysis for shorter 
horizons is equivalently important. We’ve already argued that, depending on the global economic 
situation, the authorities might not prefer to bind themselves in such long-term agreements. 
Therefore we explore shorter horizons. We begin by presenting again the trajectories for two cases. 
First for a short horizon T=5 and second for an extended horizon of T=10. In both cases the debt 
neither reaches as low levels as in longer horizons, nor has a clearly steady part in the trajectory. One 
could say that the trajectory of debt here, is attracted by the steady-state but the horizon is too short, 
and it immediately deviates as well as the control policies, in order to meet the transversality 
conditions for the costate variable. To analyze the effect of the risk premium term depending on the 
rate of change of the debt in this case, we will examine what is the impact on the final value of debt. 
This is due to the fact that there is no steady-part long enough to justify domination throughout the 
horizon. 

 

 

 

 

 

 

 

 

 

Figures 3.16 - 3.17: Finite Horizon Trajectories of Debt, Costate Variables for shorter finite horizons 

 

 

 

 

 

 

 

 

 

Figures 3.18 - 3.19: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons 
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The risk premium term we introduced, even in shorter finite horizons, does decrease the level of 
debt as it increases. However, the values reached are not even near the steady state values or the 
ones achieved by longer horizons. An important feat though is how the debt is able to decrease, 
especially as 𝑏𝑏 increases, in such short horizon. Keep also in mind that due to the transversality 
condition, which has to be satisfied, this is not the lowest value of debt throughout the horizon. This 
denotes the significance of the new term introduced, as it implements the pressure that the financial 
markets want to add, but also operates as a supporting mechanism for countries that are active and 
try to decrease their debt levels. 

 

 

 

 

 

 

 

 

 

 

Figures 3.20 - 3.21: Effect of risk premium term b on the debt value at the end of the horizon 

 

 Another parameter to consider now is that of the risk premium term depending on the debt level. 
Engwerda, van Aarle et al [2] investigated this case as we have already mentioned, but now the 
dynamics of the system are changed and it would be appropriate to check again the effect of 𝑎𝑎 on 
the steady state. From Figures 3.16-3.18, the first thing we have to mention is that the effect on the 
steady state value is no more linear as 𝑎𝑎 increases, in contrast to [2]. We can observe easily the 
growth in steady state value of debt for small values of a, and then the decline that we described. 
Interest here focuses on the value of 𝑎𝑎 that makes (3.10) equal to zero. It is there that the above 
curve obtains its maximum. One could argue that it’s a value that should be avoided as it yields the 
maximum steady-state debt in the Open-Loop mode. This value can be obtained by solving the 
quadratic equation w.r.t 𝑎𝑎 and choosing the positive solution. In addition, another fact we stated can 
be observed as well. As the value of 𝑏𝑏 increases, this effect wares off by the dominance of the risk 
premium term depending on the rate of change of debt, on the term depending on the debt level. 
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Figure 3.22, 3.23 & 3.24: Effect of risk premium term a on steady state value of debt for various values of 𝑏𝑏 

 

Next we present the changes as the two players become hasty, i.e. they do not care about the 
future development of the debt. That is for an increased value of 𝜃𝜃,𝜃𝜃 = 0.75. Theoretically we expect 
the steady state of debt to increase as 𝜃𝜃 increases. This is confirmed and depicted in Fig. 3.21. It is 
normal if we take a look at the cost functions (3.2). As 𝜃𝜃 increases the exponential term decreases 
faster. In fact it decreases too fast representing authorities that care significantly less about how the 
state of debt develops in the future. Also, we observe that the effect 𝑎𝑎 has for small values is 
augmented in Fig. 3.21. This can be explained by equation (3.11). The second term containing 𝜃𝜃 − 3�̅�𝑟 
is much greater than the rest, thus dominating and resulting in a positive derivative w.r.t. 𝑎𝑎 with 
relatively greater value than the respective values in the other cases. Thus, the spiking effect is 
enhanced as shown in Fig. 3.21. 
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Figure 3.25, 3.26 & 3.27: Effect of parameter θ on steady state value of debt. 
Left: How it affects the behavior as b varies 

Right: How it affects the behavior as a varies 
Bottom: Direct Effect for 𝑎𝑎 = 0.10 and 𝑏𝑏 = 0.20 

3.3.4.4 Effect of the Risk Premium on the Control Policies 
Last, we provide examples on the effect that risk premia have on the steady-state policies. In the 

previous section it was stated that the more the risk premium term on the level of debt increases, 
the more active the player gets, implying greater values for the respective policy. These behaviors 
are representative not only when the steady-state path is reached, but also for smaller horizons 
where the debt trajectory enters or approaches the steady state for a while. Target values are set to 
𝑓𝑓̅ = 0, 𝑚𝑚� = 0.01 for this simulation. The results derived in the previous section (3.3.3) are depicted 
here. The increase of the term of risk premium depending on the level of debt results in more active 
policies from both players. Intuitively, this represents the fact that, when markets add more pressure 
to the countries by demanding great values of risk premium on the debt level, then the authorities 
are more alert and active trying to restrict the level of debt within acceptable standards. The more 
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this risk premium term increases, the more the players have to lose by maintaining high debt levels, 
and thus they act to lower it (Fig. 3.22).  

 One the other hand, when the risk premium term on the rate of change of debt increases the 
players become slightly less active. A justification of this is that when the debt is declining, the risk 
premium term 𝑏𝑏 is acting as a reward by decreasing the real interest rate. This is helping the debt 
level to decrease and be contained more easily, allowing the players to relax slightly (Fig. 3.23).  

 In significantly smaller horizons where we analyzed the final value for debt, it is straightforward 
from the equations derived for the optimal policies (3.4): 

𝑢𝑢𝐹𝐹∗ = 𝑓𝑓̅ − 𝜇𝜇𝐹𝐹∗
1

1 − 𝑏𝑏 𝑑𝑑
,  𝑢𝑢𝑀𝑀∗ = 𝑚𝑚� + 𝜇𝜇𝑀𝑀∗ 1

1 − 𝑏𝑏 𝑑𝑑
 

At the end of the horizon, where 𝜇𝜇𝐹𝐹(𝑇𝑇) = 𝜇𝜇𝛭𝛭(𝛵𝛵) = 0, the policies reach their respective target 
values 𝑓𝑓,̅ 𝑚𝑚� . 

 

 

 

 

 

 

 

 

 

 

Figure 3.28, 3.29: Impact of risk premia on optimal policy steady-states. 
Left: Impact of risk premium depending on debt level (a) 

Right: Impact of risk premium depending on rate of change of debt (b) 
Red represents fiscal deficits, Blue represents money growth 

 

 

 

 

 

 

 

   37 



4 THE CO-OPERATIVE CASE 

In this section we consider the game (1.a)-(1.d) under the Co-operative case. That means, 
the players communicate and seal agreements to achieve their goals. The cost of each player 
is not defined a priori, but after the cooperative talks take place. That means it is dependent 
on the bargaining strength of each player. In our case, the two-player game we denote the 
bargaining strength of the fiscal authorities with 𝜔𝜔, 0 < 𝜔𝜔 < 1. Consequently the strength 
of monetary authorities is (1 − 𝜔𝜔). Thus, the following parameterized optimal control 
problem is at hand:  

min
𝑢𝑢𝐹𝐹,𝑢𝑢𝑀𝑀

𝐽𝐽,    𝐽𝐽 = 𝜔𝜔 𝐽𝐽𝐹𝐹  + (1 −𝜔𝜔)𝐽𝐽𝑀𝑀      (4.1)   

            

       = 1
2� � 𝑒𝑒−𝜃𝜃𝜃𝜃  𝜔𝜔 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹�����

2� 𝑑𝑑𝑡𝑡
𝑇𝑇

0

+ 1
2� � 𝑒𝑒−𝜃𝜃𝜃𝜃  (1 −𝜔𝜔) �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

 

Subject to the government budget constraint discussed in the previous section: 

�̇�𝑑(𝑡𝑡) =  
�̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 + 𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑡𝑡)

1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)
                  (4.2) 

 
We are looking for Pareto efficient solutions. The equilibrium strategy 𝛾𝛾�, chosen from the 

set of admissible strategies must satisfy: 
                  𝐼𝐼𝑓𝑓 𝑓𝑓𝐹𝐹𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎 𝛾𝛾 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑤𝑤𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝐹𝐹𝑓𝑓 𝑎𝑎𝑑𝑑𝑚𝑚𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑏𝑏𝑎𝑎𝑒𝑒 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑤𝑤𝑒𝑒𝑠𝑠: 

𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝐹𝐹𝑓𝑓 𝑤𝑤𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑤𝑤𝑡𝑡𝑤𝑤𝑒𝑒𝑠𝑠 𝐽𝐽𝑖𝑖(𝛾𝛾) ≤ 𝐽𝐽𝑖𝑖(𝛾𝛾�) , 𝑤𝑤 = 𝐹𝐹,𝑀𝑀 𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑎𝑎𝑡𝑡 𝑎𝑎𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝐹𝐹𝑎𝑎𝑒𝑒 
𝐹𝐹𝑓𝑓 𝑡𝑡ℎ𝑒𝑒𝑚𝑚 𝑏𝑏𝑒𝑒𝑤𝑤𝑎𝑎𝑠𝑠 𝑠𝑠𝑡𝑡𝑟𝑟𝑤𝑤𝑐𝑐𝑡𝑡,ℎ𝑎𝑎𝑠𝑠 𝑎𝑎𝐹𝐹 𝑠𝑠𝐹𝐹𝑎𝑎𝑢𝑢𝑡𝑡𝑤𝑤𝐹𝐹𝑎𝑎 𝑓𝑓𝐹𝐹𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾, 𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎 

𝛾𝛾� 𝑤𝑤𝑠𝑠 𝑃𝑃𝑎𝑎𝑟𝑟𝑒𝑒𝑡𝑡𝐹𝐹 𝐸𝐸𝑓𝑓𝑓𝑓𝑤𝑤𝑐𝑐𝑤𝑤𝑒𝑒𝑎𝑎𝑡𝑡  
 
The dynamic game has now transformed into an optimal control problem from an 

analytical point of view. By solving the optimal control problem (4.1)-(4.2) for every 𝜔𝜔 ∈
(0,1) a curve of Pareto Efficient solutions is obtained. But which curve will be selected by 
the player, is defined by the choice of the parameter ω, i.e. the coordination of the system. 
Note that a Pareto solution is not unique. Since our game under the Co-operative case 
belongs to the class of optimal control problems, it can be solved using Pontryagin’s 
Minimum Principle. As in the Non-Cooperative case we first prove that the conditions of 
Pontryagin’s Minimum Principle are not only necessary but also sufficient for any 𝜔𝜔 ∈ (0,1) 
for which the candidate controls are obtained. 
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 Theorem 4.1: The sets of strategies 𝑈𝑈𝐹𝐹 ,𝑈𝑈𝑀𝑀 are intervals of ℝ and the Hamiltonians are 
convex in 𝑑𝑑. Then the conditions derived by using Pontryagin’s Minimum Principle are also 
sufficient and thus the pair  (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) satisfying them is a Nash Equilibrium.  
Proof of the above theorem is provided in the Appendix (6.2). 
 

 Applying Pontryagin’s Minimum Principle we obtain:  
• Hamiltonian: 

𝐻𝐻 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃𝜔𝜔 ��𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����

2�       

+ 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 (1 − 𝜔𝜔) �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� + 𝜆𝜆 �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

   

• 𝜆𝜆 ̇ =  −𝜕𝜕𝐻𝐻 
𝜕𝜕𝑑𝑑� , 𝜆𝜆(𝛵𝛵) = 0 

• 𝑢𝑢𝐹𝐹∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min
𝑢𝑢𝐹𝐹

{𝐻𝐻 } 

• 𝑢𝑢𝑀𝑀∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min
𝑢𝑢𝑀𝑀

{𝐻𝐻 } 

• �𝑢𝑢𝐹𝐹∗ − 𝑓𝑓�̅ = −1−𝜔𝜔
𝜔𝜔

(𝑢𝑢𝑀𝑀∗ − 𝑚𝑚�) 

As in the previous section we define: 𝜇𝜇 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆. This is a transformation of the costate 
variable we use for computational ease. Using the results from Pontryagin’s Minimum 
Principle we prove the following in the Appendix (6.2): 

Theorem 4.2: If (𝑢𝑢𝐹𝐹∗,𝑢𝑢𝑀𝑀∗) is a set of Pareto Efficient strategies that are obtained for a choice 
of bargaining power 𝜔𝜔 ∈ (0,1) for the optimal control problem (4.1)-(4.2), there exist a 
trajectory for debt 𝑑𝑑 

∗ and an associated costate variable 𝜇𝜇 
∗ that satisfy the set of nonlinear 

differential equations: 

�̇�𝑑∗(𝑡𝑡) =  1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

��̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 − 𝜇𝜇 1
𝜔𝜔(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑(𝜃𝜃))

+ 𝑓𝑓̅ − 𝑚𝑚��                  (4.3.a) 

 

 𝜇𝜇∗̇(𝑡𝑡) = −�𝜔𝜔𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����� + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝛭𝛭������ 

+ 𝜇𝜇 �𝜃𝜃 −  ��̅�𝑟+2𝑎𝑎 𝑑𝑑(𝜃𝜃)��1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�+𝑏𝑏��̅�𝑟 𝑑𝑑(𝜃𝜃)+𝑎𝑎 𝑑𝑑2+𝑓𝑓̅−𝑚𝑚��

�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�2
� + 𝜇𝜇2 b

𝜔𝜔(1−𝜔𝜔)�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�3
   (4.3.b) 

 

And the optimal control laws derived: 𝑢𝑢𝐹𝐹∗ − 𝑢𝑢𝛭𝛭∗ = 𝑓𝑓̅ − 𝑚𝑚� − 𝜇𝜇 1
𝜔𝜔(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑)

      (4.4) 

With 𝑑𝑑 
∗(0) = 𝑑𝑑0

 . Also, the system of differential equations (4.3) admits no periodic 
solutions as we prove in the Appendix (section 6.2). 

Again, now assume that the horizon is long enough so that equilibrium is reached. Then 
the Co-operative equilibrium points are (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂, 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂). These points satisfy the following 
equations: 

𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂 = 𝜔𝜔(1 −𝜔𝜔) �−𝑎𝑎𝑏𝑏(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 + (𝑎𝑎 − 𝑏𝑏�̅�𝑟)(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 + ��̅�𝑟 −  𝑏𝑏�𝑓𝑓̅ − 𝑚𝑚���  𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + �𝑓𝑓̅ − 𝑚𝑚���       (4.5) 
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Now, replacing 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂 to the second equilibrium equation (4.3.b) we get: 

𝛿𝛿3 (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 + 𝛿𝛿2 (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 + 𝛿𝛿1 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + 𝛿𝛿0 = 0          (4.6) 

Defining: 𝛿𝛿3 = −𝜔𝜔(1 − 𝜔𝜔)𝑎𝑎(2𝑎𝑎 + 𝑏𝑏𝜃𝜃), 𝛿𝛿2 = 𝜔𝜔(1 −𝜔𝜔)�𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝛼𝛼 + 𝑏𝑏𝜃𝜃)�, 
𝛿𝛿1 = 𝜔𝜔(1 − 𝜔𝜔)(�̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝛼𝛼 + 𝑏𝑏𝜃𝜃) − (𝜔𝜔𝛽𝛽𝐹𝐹 + (1 −𝜔𝜔)𝛽𝛽𝛭𝛭) , 𝛿𝛿0 = 𝜔𝜔(1 − 𝜔𝜔)𝑢𝑢�  𝛾𝛾2 + 𝜔𝜔𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀���� 

Where: 𝛾𝛾1 = 1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂  ,   𝛾𝛾2 = 𝜃𝜃 − �̅�𝑟 ,   𝛾𝛾3 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀����  ,   𝑢𝑢� = 𝑓𝑓̅ − 𝑚𝑚�  

Equation (4.6), which defines the steady state value of debt, is a cubic equation. It is 
natural that only real roots of (4.6) are considered and accepted as solutions of the game, 
due to the fact that they represent debt value. It is easily observed that when we assign 
𝛽𝛽𝐹𝐹

𝐶𝐶𝑂𝑂 = (1 − 𝜔𝜔)𝛽𝛽𝐹𝐹
𝑂𝑂𝑂𝑂 and 𝛽𝛽𝑀𝑀

𝐶𝐶𝑂𝑂 = 𝜔𝜔𝛽𝛽𝛭𝛭
𝑂𝑂𝑂𝑂 the cooperative equilibrium cubic polynomial 

(4.6) is the open-loop equilibrium cubic polynomial (3.5) multiplied by 𝜔𝜔(1 − 𝜔𝜔). This 
indicates that 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 = 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂  and equilibrium equation (4.5) gives 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂 = 𝜔𝜔(1 − 𝜔𝜔)𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂 . Thus, 
the steady state value debt is the same in both non-cooperative Open-Loop and Cooperative 
case using the aforementioned weights assigned by the two authorities for the development 
of the debt. 

      Also, we speculate that the same conjecture we made in Non-Cooperative case, about 
how the steady-state attracts the trajectory of the state variables, will also apply here. In the 
same way we commented on, on the Non-Cooperative case, the equations from which 
steady-state value of debt is obtained is the same in the Finite Horizon and in the Infinite 
Horizon. Therefore, we hypothesize that there exists T′ < T such that for some t,  t < T′, the 
debt trajectory of the Finite Horizon enters a steady-value path, in the sense that the value 
of debt remains constant. The debt trajectory in both the Finite and Infinite Horizon cases is 
attracted by the same steady-state value as the expressions of the optimal policies for both 
cases are identical and therefore the trajectory of the Finite Horizon can get in a 
neighborhood of the steady-state value of the Infinite Horizon. However again, for some final 
time the trajectory of the Finite Horizon deviates from the aforementioned steady-state 
value as the optimal policies for the Finite Horizon deviate from those of the Infinite Horizon 
because the transversality condition for the costate variable 𝜆𝜆(T) = 0 needs to be met. 
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Again, we focus on the steady state of debt and on the effects which the additional risk 
premium (on the rate of change of debt) might have. Before that we recall the 
aforementioned results from literature: 

4.1 THE TABELLINI MODEL: NO RISK PREMIA 
First, for reference we present the results of the Tabellini model. That is, in our control 

problem (4.1)-(4.2) we set the parameters 𝑎𝑎 = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 0. Also 𝑑𝑑𝐹𝐹��� = 𝑑𝑑𝑀𝑀���� = 0 was 
considered and the following conclusions had been derived: 

1. The co-operative equilibrium has always higher speed of adjustment than the 
Nash equilibrium. 
2. The co-operative equilibrium has always lower steady state value of debt than 
the Nash equilibrium. 
3. There are unique equilibrium policies, for every initial debt, choice of 
parameters and bargaining power of the players. Furthermore, the deviations of 
the policy of each player from their respective targets, are proportional to each 
other (the constant of proportionality being 𝜔𝜔). 
4. Hence, in contrast with the non-cooperative case for every initial parameter the 
problem has a solution. 

4.2 ENGWERDA AND VAN AARLE: RISK PREMIUM ON DEBT LEVEL 
Engwerda and van Aarle extended the Tabellini model by introducing a parameter of risk 

premium depending on government debt level (in eq. (4.2) 𝑎𝑎 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 0). Also, they 
confirm too that when 𝛽𝛽𝐹𝐹

𝐶𝐶𝑂𝑂 = (1 −𝜔𝜔)𝛽𝛽𝐹𝐹
𝑂𝑂𝑂𝑂 and 𝛽𝛽𝑀𝑀

𝐶𝐶𝑂𝑂 = 𝜔𝜔𝛽𝛽𝛭𝛭
𝑂𝑂𝑂𝑂, we have the same steady 

state value of debt. And then, using these values the results for the steady states are the 
same:  

−2𝑎𝑎2𝑑𝑑3 + 𝑎𝑎(𝜃𝜃 − 3�̅�𝑟)𝑑𝑑2 + 𝛾𝛾1𝑑𝑑 + 𝛾𝛾0 = 0 

𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝛾𝛾0 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝑀𝑀𝑑𝑑𝑀𝑀���� + �𝑓𝑓̅ − 𝑚𝑚��(𝜃𝜃 − �̅�𝑟) 𝑎𝑎𝑎𝑎𝑑𝑑 𝛾𝛾1
= (�̅�𝑟(�̅�𝑟 − 𝜃𝜃) − 𝛽𝛽𝐹𝐹 − 𝛽𝛽𝑀𝑀) − 2𝑎𝑎(𝑓𝑓̅ − 𝑚𝑚�) 

With a discriminant: ℎ(𝑎𝑎) = 8𝛾𝛾13 − 36𝑎𝑎𝛾𝛾1𝛾𝛾0𝑠𝑠 − 40𝑎𝑎𝛾𝛾0𝑠𝑠3 − 108𝑎𝑎2𝛾𝛾02 + 𝛾𝛾12𝑠𝑠2,    𝑠𝑠 = 𝜃𝜃 −
3�̅�𝑟. Hence we have: 

1. One steady state of debt if either 𝑤𝑤) ℎ(𝑎𝑎) < 0 𝐹𝐹𝑟𝑟 𝑤𝑤𝑤𝑤) ℎ(𝑎𝑎) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎2𝑠𝑠2 =
3𝛾𝛾1. 

2. Two steady states (from which only one applies as an open loop equilibrium if   
𝑑𝑑0 = 𝑑𝑑𝑒𝑒) if ℎ(𝑎𝑎) = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎2𝑠𝑠2 ≠ 3𝛾𝛾1. 

3. Three steady states (from which the middle one applies as an open loop 
equilibrium if  𝑑𝑑0 = 𝑑𝑑𝑒𝑒), if ℎ(𝑎𝑎) > 0. 

4. Of these steady states, at least one is a saddle-point, denoting the impact of 
including risk premia. 
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4.3 INTRODUCING: RISK PREMIUM ON DEBT RATE OF CHANGE: 
 It is clear that risk premia coefficients a and b can play major role defining the equilibrium 
points in the Co-operative case as well. It is important then to see how the equilibrium of 
the system responds in variations of those to coefficients and extract a qualitative 
conclusion, if possible. We will also explore the effect of the changing bargaining strength ω. 
The equilibrium points are defined by equation (4.6), a cubic polynomial and thus an 
analytical solution is available. 

4.3.1 Effect on Number of Equilibrium Points and Qualitative Behavior 
In the Appendix (Section 6.2.2-6.2.4) we prove the following: 

 If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) is the discriminant of the cubic polynomial (4.6), as a function of the risk 
premium coefficients 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏, then the number of steady state values of debt given by 
(4.6) is subject to the following rule: 
 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for 
the game. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 
1 candidate solution for the game. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) = 0, there are at least 2 roots coincide and they are all real. That means 
there are either a double real root and distinct single real root, or a triple real root. 
That is we either have 2 or 1 candidate solutions for the game respectively. 

�𝜔𝜔(1 − 𝜔𝜔)��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� − (𝜔𝜔𝛽𝛽𝐹𝐹 + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭)� �𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� 
+9𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)�𝜔𝜔𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹���� + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀���� + 𝜔𝜔(1 − 𝜔𝜔)𝑢𝑢�  𝛾𝛾2� = 0      (4.7) 
 
If (4.7) holds there is 1 triple real root, else there is 1 double root and 1 distinct real 
root. 
 

 The qualitative behavior of the system near the equilibrium points should be explored. 
This is achieved via the Linearized System around each equilibrium point. Linearizing 
system (4.3) we get: 

�𝑑𝑑(𝑡𝑡)̇

𝜇𝜇(𝑡𝑡)̇
� = �

−𝑎𝑎
𝑏𝑏
− 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13(1−𝜔𝜔)𝜔𝜔
+ (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�)

𝑏𝑏 𝛾𝛾12
− 1

𝛾𝛾12(1−𝜔𝜔)𝜔𝜔

−(𝜔𝜔𝛽𝛽𝐹𝐹 + (1 − 𝜔𝜔)𝛽𝛽𝑀𝑀) − 2 (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�) 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13
+ 3(𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂)2

𝛾𝛾14(1−𝜔𝜔)𝜔𝜔
𝑎𝑎
𝑏𝑏

+ 𝜃𝜃 + 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13
− (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�)

𝑏𝑏 𝛾𝛾12(1−𝜔𝜔)𝜔𝜔

�  �𝑑𝑑(𝑡𝑡)
𝜇𝜇(𝑡𝑡)�  

              (4.8) 

where (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂, 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂) is the equilibrium point under discussion. 
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The eigenvalues of the linearized system (4.8) are: 

𝑒𝑒𝑤𝑤𝑠𝑠1,2 =

(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 𝜃𝜃 ± �(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)4
𝜔𝜔(1 − 𝜔𝜔) �𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕

 𝑠𝑠(𝑑𝑑)
𝜕𝜕𝑑𝑑 � �

2(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 
       (4.9) 

 

It is pretty straightforward that �1−𝑏𝑏𝑑𝑑𝑒𝑒
𝐶𝐶𝑂𝑂�

4

𝜔𝜔(1−𝜔𝜔)
> 0. Hence, the sign of the quantity under the 

root and consequently the type of equilibria are subject to the following rules: 

• If 𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0,  

then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 < 0. Thus, the steady state is a saddle point. 
 

• If 𝜔𝜔(1 −𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0,  

then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 > 0. Thus, the steady state is an unstable node. 
 

• If 𝜔𝜔(1 −𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1,2 are complex 

eigenvalues with positive real part. Thus, the steady state is an unstable focus. 
 

• Last but not least, there an eigenvalue could become zero. That is, when 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) =
0 and (4.7) holds (a triple real root). As we have already argued the equilibrium point 
is also a root of the first derivative. It is then straightforward from (4.7) that an 
eigenvalue becomes zero while the other will be positive. This means the system 
matrix has a non-trivial null-space and has an equilibrium subspace than an 
equilibrium point. Due to the positive eigenvalue all trajectories diverge away from 
the equilibrium subspace. 
 

 Combining the two previous bullets we conclude to the following proposition: 

The highest order coefficient 𝛿𝛿3 = −𝜔𝜔(1 − 𝜔𝜔)𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) of (4.6) is always negative since  
𝑎𝑎, 𝑏𝑏,𝜃𝜃 > 0 and 𝜔𝜔 ∈ (0,1). Thus, depending on how many equilibrium points we have we can 

determine the sign of 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 �  near each equilibrium point: 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) > 0, there are 3 distinct real roots. The first and the last are saddle 
points, while the middle one is unstable node or focus. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) < 0, there is 1 distinct real root and 2 complex conjugate roots. The 

derivative 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0 and the equilibrium point is a saddle point. 
• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) = 0, and (4.7) does not hold, there is 1 double real root and 1 distinct 

single real root. The double root is unstable while the single one is a saddle point. 
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• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) = 0, and (4.7) does hold there is 1 triple real root and we have an 
equilibrium subspace than an equilibrium point, and all trajectories diverge away 
from the equilibrium subspace. 

As we can see the qualitative behavior when playing under cooperative mode, does not 
change. However, the bargaining power of each authority can alter the number and type of 
equilibrium points, just like the risk premia coefficients, as it appears on both the 
discriminant of the equilibrium equation as well as in its partial derivative w.r.t. 𝑑𝑑.  

4.3.2 Effect on development on Steady-State Value of Debt 
It is now clear that risk premia coefficients 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 can play major role in defining the 

equilibrium points. It is important then to see how the value of equilibrium of the system 
responds in variations to those coefficients and extract a qualitative conclusion, if possible. 

We will want to examine the sign of the derivative of steady state value debt w.r.t. 

𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏. Under the assumption that 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � ≠ 0 at the steady state 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 (for example, 
not having a triple root as we’ve argued before) and that 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂(𝑏𝑏) are continuous 
differentiable in their respective variables we obtain: 

𝜕𝜕 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂(𝑎𝑎)
𝜕𝜕𝑎𝑎 � = −

𝜕𝜕 𝑠𝑠
𝜕𝜕𝑑𝑑 �

𝜕𝜕 𝑠𝑠
𝜕𝜕𝑎𝑎 �

       𝑎𝑎𝑎𝑎𝑑𝑑      𝜕𝜕
 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂(𝑏𝑏)

𝜕𝜕𝑏𝑏 � = −
𝜕𝜕 𝑠𝑠

𝜕𝜕𝑑𝑑 �
𝜕𝜕 𝑠𝑠

𝜕𝜕𝑏𝑏 �
 

Simple calculations show: 

• 𝜕𝜕 𝑠𝑠
𝜕𝜕𝑎𝑎 𝐶𝐶𝑂𝑂� = 𝜔𝜔(1 − 𝜔𝜔)𝜕𝜕

 𝑠𝑠
𝜕𝜕𝑎𝑎 𝑂𝑂𝑂𝑂�        (4.10) 

• 𝜕𝜕 𝑠𝑠
𝜕𝜕𝑏𝑏 𝐶𝐶𝑂𝑂� = 𝜔𝜔(1 − 𝜔𝜔) 𝜕𝜕

 𝑠𝑠
𝜕𝜕𝑏𝑏 𝑂𝑂𝑂𝑂�      (4.11) 

Knowing that 𝜔𝜔(1 −𝜔𝜔) is always positive for 𝜔𝜔 ∈ (0,1), exactly the same analysis as in 
section 3.3.2 applies here. We confirm this in the benchmarks that will follow. 

In addition to the risk premia terms we will explore the effects of the coordination parameter 
𝜔𝜔 of the system, i.e. the bargaining power of each player. Simple calculations on equation 
(4.6) show that: 

𝜕𝜕  𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂
𝜕𝜕𝜔𝜔 � = −

𝜕𝜕  𝑠𝑠
𝜕𝜕𝑑𝑑 �

𝜕𝜕  𝑠𝑠
𝜕𝜕𝜔𝜔 �

 

𝜕𝜕  𝑠𝑠
𝜕𝜕𝜔𝜔 � = −(1 − 2𝜔𝜔)𝑎𝑎(2𝑎𝑎 + 𝑏𝑏𝜃𝜃)(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 + (1 − 2𝜔𝜔)�𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝛼𝛼 + 𝑏𝑏𝜃𝜃)�(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 

+ �(1 − 2𝜔𝜔) �𝑟𝑟� 𝛾𝛾2 − 𝑢𝑢�(2𝛼𝛼 + 𝑏𝑏𝜃𝜃)� − �𝛽𝛽𝐹𝐹 − 𝛽𝛽𝛭𝛭��  𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + (1 − 2𝜔𝜔)𝑢𝑢� 𝛾𝛾2 + 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� − 𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀���� = 0  (4.12) 

As we can see in general, the value of the coordination parameter 𝜔𝜔 plays a major role in 
the sign of (4.12). Also, the target values of each player, along with the respective weights 
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act like an offset value in the derivative. Thus they affect too the way the debt is driven as 𝜔𝜔 
varies. We will confirm numerically that for various set of parameters the steady state of 
debt goes from 𝑑𝑑𝑀𝑀���� (as 𝜔𝜔 starts near zero) to 𝑑𝑑𝐹𝐹��� (as 𝜔𝜔 approaches one), thus the slope with 
respect to 𝜔𝜔, equivalently (4.12), is positive if 𝑑𝑑𝐹𝐹��� > 𝑑𝑑𝑀𝑀����, and negative if 𝑑𝑑𝐹𝐹��� < 𝑑𝑑𝑀𝑀���� and changes 
from positive to negative, as ω goes from zero to one, if 𝑑𝑑𝐹𝐹��� = 𝑑𝑑𝑀𝑀����. 

4.3.3 Benchmark Example 
The parameters for our benchmarks are chosen again in accordance to Note 2 (pg.27). 

That is the values of 𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 would be around 0.10 and 0.20 respectively given the current 
economic situation. Also, as stated in previous literature the weight values that the two 
authorities put on debt development, 𝛽𝛽𝐹𝐹  𝑎𝑎𝑎𝑎𝑑𝑑 𝛽𝛽𝑀𝑀, are of the same order of magnitude, that 
is 10−3. The parameter 𝜃𝜃, which denotes the degree in which the authorities care about the 
future development of the debt, will take two representative values: 𝜃𝜃 = 0.15 when the 
players do care about the future debt development and 𝜃𝜃 = 0.75 when they care less. 

𝛽𝛽𝐹𝐹 = 0.06  ,𝛽𝛽𝑀𝑀 = 0.04  ,𝑑𝑑𝐹𝐹��� = 𝑑𝑑𝑀𝑀���� = 0.5, �̅�𝑟 = 0.03 ,𝜃𝜃 = 0.15 

4.3.3.1 Trajectories of Debt, Costate Variables and Optimal Policies for the Finite Horizon 
First of all, we present the trajectories for various values of the finite horizon T. We expect 

that the Cooperative case would yield better results than the Non-Cooperative. This 
expectation seems to be valid. Comparing Figures 4.1-4.4 with the respective ones from the 
Non-Cooperative case, Figures 3.1-3.4, it is observed that the cooperation yields two benefits 
that show up in these figures. First, the debt levels are lower for any given horizon. This 
decrease is significant as it is around 20% in the final debt value. Second, the trajectory enters 
the steady-state much faster. From T=20 (Fig.4.2) this is already evident, in fact the plot for 
T=20 in the Cooperative mode is quite similar to the one for T=30 in the Non-Cooperative 
mode. These plots were also obtained for 𝑎𝑎 = 0.10 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 0.20, while the bargaining 
power was set to 𝜔𝜔 = 0.3. The bargaining power is chosen in a way to depict the difference 
in power and influence of the monetary authority (ECB) and a particular fiscal authority, 
belonging to a country which could be part of the “south block”.  

In addition, the cost of each player, compared to the ones in the Non-Cooperative case, 
is significantly less, namely more than 50% in the cases we present. For example, for T=5 in 
the Non-Cooperative case the costs were J1=1.0226, J2=0.55978 while in the Cooperative 
case we obtain J1=0.3802, J2=0.25706. Such reduction in the players’ costs is apparent in all 
the other cases we present. Also, it is again evident that the accumulation of the cost as the 
horizon gets longer is significantly small, like in the Non-Cooperative case. This is due to the 
fact that the trajectory, as well as the controls, stay in the vicinity of a turnpike as long as 
possible. Therefore, both players do want to cooperate as they benefit from it (at least when 
ω=0.3, we will examine other cases as well on the next sections). 
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Figures 4.1 - 4.2: Finite Horizon Trajectories of Debt, Costate Variables for finite horizons T=5 and T=20 

 

 

 

 

 

 

 

 

 

Figures 4.3 - 4.4: Finite Horizon Optimal Policies for finite horizons T=5 and T=20 

 

 

 

 

 

 

 

 

 

Figures 4.5 - 4.6: Finite Horizon Trajectories of Debt, Costate Variables for finite horizons T=30 and T=50 
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Figures 4.7 - 4.8: Finite Horizon Optimal Policies for finite horizons T=30 and T=50 

4.3.3.2 Effect of the Risk Premium on Steady-Values of Debt 
Again we will investigate how the varying values of risk premium term 𝑏𝑏 effect the steady 

part and the final part of the debt trajectory. We expect, subject to our theoretical analysis, 
that the effect of the risk premium terms will have similar behavior to that of the Non-
Cooperative case. Figures 4.9 through 4.11 show that the relation between the risk premium 
term 𝑏𝑏 and the steady part of the debt trajectory is almost linear, as in the Non-Cooperative 
case and thus our results are validated. As 𝑏𝑏 increases the value the debt attains decreases 
too, independently of the horizon. However now, it is clear that the value of debt achieved 
is significantly lower comparing to Figs 3.9-3.11. This indicates the benefits of the 
cooperating players. In similar way to the trajectories we observed in the previous section, 
the reduction in debt is again of considerable amount, namely around 30%. 

 

 

 

 

 

 

 

 

 

Figures 4.9 - 4.10: Effect of risk premium term b on steady part of the debt trajectory 
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Figure 4.11: Effect of risk premium term b on steady part of the debt trajectory 

In order to determine how close these results are to the steady-state we examine the 
infinite horizon case. That is the exact results obtained from the system of equations (4.3) or 
directly by solving (4.6) for a real valued solution. We begin by setting 𝜔𝜔 = 0.3 denoting the 
superior bargaining power of the ECB. The target values for debt are now set 𝑑𝑑𝐹𝐹��� = 0.5 =
𝑑𝑑𝑀𝑀����. We do so, in order to compare the results, for exactly the same parameters, during the 
non-cooperative Open-Loop Nash mode of play, and the Cooperative mode of play. Later on, 
we present how different target values can affect the results. Also, we will investigate the 
role of the bargaining power each player has. We will also explore various cases of the 
relative bargaining power between the two authorities. Namely we explore the cases of 𝜔𝜔 =
0.3, 𝜔𝜔 = 0.5 𝑎𝑎𝑎𝑎𝑑𝑑 𝜔𝜔 = 0. Again it is important to compare the results yielded with the ones 
from the Non-Cooperative case. Taking a look to Figures 4.9-4.11 and recalling the respective 
plot from the Non-Cooperative case (Figure 3.9), one can see that for small values of 𝑏𝑏 
cooperation yields better results, i.e. smaller steady-state debt, than when the players are 
not cooperating. However, for larger values of 𝑏𝑏, non-cooperative play yields lower steady 
state value. We should state, that for the value of 𝑏𝑏 around 0.20 (the reference value in crisis 
period) cooperation produces slightly better results, therefore it is suggested that the 
monetary authorities of the union should try and work together with the fiscal authorities of 
a country in benefit of both of them. Also, comparing Fig. 4.8 (where ω=0.3) with Figs 4.5-
4.7 it is evident that for T=50 we have identical plots, meaning the trajectory is well within 
the steady-state, and also for T=30 the trajectory approaches really close to the steady-state 
with the difference being less than 1% of Debt/GDP. In contrast with Figures 3.5-3.7 of the 
Non-Cooperative case, it is clear that in the Cooperative mode of play we get closer to the 
steady-state in less time. This is evident from the fact that even for T=20 the debt levels 
achieved are 30% less and deviate from the steady-state values approximately 6%, whereas 
in the Non-Cooperative case this deviation was around 31% of Debt/GDP. 
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Figures 4.12-4.13: Effect of risk premium term b on steady state value of debt, same target for both players 
Left: ω=0.3, Right: ω=0.7  

 

 

 

 

 

 

 

 

 

Figures 4.14: Effect of risk premium term b on steady state value of debt, same target for both players 
ω=0.5  

4.3.3.3 Effect of the Risk Premium on the Terminal Value Debt 
 It is also of equivalent significance to explore the effects of risk premia in shorter horizons 
when the steady-state is not approached as well as in longer horizons, and thus we cannot 
assume that the infinite case is representative in terms of behavior. We have already argued 
that, depending on the global economic situation, the authorities might not prefer to bind 
themselves in such long-term agreements. Therefore we explore shorter horizons. We begin 
by presenting again the trajectories for two cases. First for a short horizon T=5 and second 
for an extended horizon of T=10. Equivalently with the Non-Cooperative mode of play, the 
terminal value of debt in a short finite horizon neither reaches as low levels as in longer 
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horizons, nor has a clearly steady part in the trajectory. Again the accumulation of the cost 
is small as when T=5 we obtain Jtot=0.63729, J1=0.38023 and J2=0.25706. When T=10 the 
corresponding values for cost are Jtot=0.66662, J1=0.40764 and J2=0.25898. Comparing 
these values to the respective ones from the Non-Cooperative case we verify once more that 
the two players would intend to cooperate as they both benefit. 

 

 

 

 

 

 

 

 

 

Figures 4.15 - 4.16: Finite Horizon Trajectories of Debt, Costate Variables for shorter finite horizons 

 

 

 

 

 

 

 

 

 

 

Figures 4.17 - 4.18: Finite Horizon Optimal Policies for shorter finite horizons 

 To analyze the effect of the risk premium term depending on the rate of change of the 
debt in this case, we will examine what is the impact on the final value of debt as we did in 
the Non-Cooperative case. This is due to the fact that there is no steady-part long enough to 
justify domination throughout the horizon. It is clear even in this case, that the risk premium 
term we introduced does decrease the level of debt as it increases. However, the values 
reached are not even near the steady state values or the ones achieved by longer horizons. 
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Although, comparing them with the Non-Cooperative case, Figs 3.14-3.15 the debt level 
achieved is again significantly lower. This highlights once more the benefits of Cooperation 
in the finite case for shorter horizons, in an even more impressive way. Again this denotes 
the significance of the new term introduced, as it implements the pressure that the financial 
markets want to add, but also operates as a supporting mechanism for countries that are 
active and try to decrease their debt levels. 

 

 

 

 

 

 

 

 

 

 

Figures 4.19 - 4.20: Effect of risk premium term b on the debt value at the end of the horizon 

4.3.3.4 The impact of the Bargaining Strength 
Before presenting some results for risk premium term 𝑎𝑎, we investigate the effect that 

the bargaining power of each player has. Namely, we select two values 𝜔𝜔 = 0.3 𝑎𝑎𝑎𝑎𝑑𝑑 𝜔𝜔 =
0.7. The first value could correspond to an OECD country-member of the “south-block”. Their 
bargaining strength is relatively small when comparing to the ECB. In similar fashion, the 
second value could belong to a more powerful country-member with significant influence.  

The first thing we would want to explore is how the bargaining power affects the steady 
state value of governmental debt. In the first figure we present the direct effect of the 
bargaining power of each player. If one first observes Figure 4.15, it can be seen that the 
more one of the two players is in control, the lower the steady state value debt is. However 
this should not trick us into thinking that dominance of a player gives always better results. 
The current graph has this particular form because the two players have the same target for 
government debt. Figure 4.2 confirms, as it was expected, that the more power has a player, 
the more the debt value tends to the value this particular player has as his target. In Figure 
4.2 fiscal authorities have a target value for debt of 0.5, while the monetary authorities a 
target value of 0.6. As the bargaining power of the fiscal authorities approaches zero, the 
steady state of value debt approaches the target set by monetary authorities. The respective 
phenomenon takes place as 𝜔𝜔 approaches the value of 1.0.  
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Figure 4.21-4.22: Effect of bargaining power ω on steady state value of debt 
Left: Same debt target for both players 

Right: Different debt target for each player 

 Now in order to investigate if the players still benefit from cooperation for various values 
of the bargaining strength we present the respective costs for some cases over a short finite 
horizon. Namely, we set T=10 and explore the cases of a really weak fiscal player (ω=0.1) and 
its counterpart for the monetary player (ω=0.9). Also we explore the cases for values in 
between of the aforementioned. As Figure 4.23 and its counterpart Figure 4.26 suggest, with 
the total dominance of one player both do minimize their costs, with the stronger one getting 
the lowest of the two. For each of the values used we can conclude that both players benefit 
from cooperation and in fact the stronger player gets the lower cost. Therefore we suggest 
that in the majority if not in any case the players have no reason not to cooperate. 

 

 

 

 

 

 

 

 

 

 

Figure 4.23-4.24: Effect of bargaining power ω on debt trajectory and the costs for T=10 
Left: ω=0.1 , Right: ω=0.5 
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Figure 4.25-4.26: Effect of bargaining power ω on debt trajectory and the costs for T=10 
Left: ω=0.7  , Right: ω=0.9 

4.3.3.5 Effect of the Risk Premium Term 𝒂𝒂 
For completion we also present figures that support our theoretical analysis about how 

the steady state value of government debt behaves, in response to variations in the value of 
𝑎𝑎. As we see in Figures 4.8 and 4.9, we have exactly the same behavior we analyzed. The 
variations in 𝑎𝑎 look to have the same effect as in the Non-Cooperative case. Also, another 
benefit produced by the cooperation is that the spiking that was observed for small values 
of 𝑎𝑎 in the Non-Cooperative case seems to have been soothed. Another thing that one also 
expects to be present again, is that for small values of 𝑎𝑎 cooperation yields better results, 
i.e. smaller steady state debt, than when the players are not cooperating. However, for larger 
values of 𝑎𝑎, the risk premium non-linearity grows too strong making the non-cooperative 
play to yield smaller values for debt. 

 

 

 

 

 

 

 

 

 

Figure 4.27 & 4.28: Effect of risk premium term a on steady state value of debt for various values of 𝑏𝑏 
Left: ω=0.3 , Right: ω=0.7 
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5 CONCLUSION 

In this paper we analyzed the impact of an endogenous risk premium on the rate of 
change of debt, in addition to risk premium on the level of debt. We examined the policies 
in a simple dynamic game between the fiscal and monetary authorities in a country. We 
considered both the Non-cooperative Nash Open-Loop and the Cooperative mode of play 
for theoretical results and benchmark examples. As intended we analyzed both Finite and 
Infinite Horizons (in the sense of achieving a steady-state). Furthermore we derived analytic 
expressions for the evolution of debt by a coordinate transformation in the Open-Loop mode 
and solved analytically the Cooperative mode. Unfortunately, it is not possible to track the 
non-cooperative policies analytically. However, we presented that there are cases where 
one can still compute these policies numerically. In addition to that, we solved numerically 
for representative values the Finite Horizon case. The results for the control strategies in 
both cases shows sufficient resemblance, indicated that the limit when time tends to infinity, 
of the Finite Horizon case could exist and attain the values of the Infinite Solution case. 

We showed in both Non-Cooperative and Co-operative modes of play that in the finite 
horizon case, if the horizon T is long enough so that equilibrium equations are satisfied, then 
the trajectory enters the same equilibrium path of the infinite horizon, only to deviate from 
it in the final time. Due to this fact, it is important to study this steady-state path. Thus, 
during the Open-Loop Nash Equilibrium mode of play, we first focused on the steady state 
of debt and on the effects which the additional risk premium (on the rate of change of debt) 
might have, and then we investigated what happens in shorter horizons. 

Concerning the equilibrium points of the game we showed that by including this second 
risk premium term the game always has at least one and at most three equilibria, thus not 
affecting the number of equilibrium points indicated by [2]. The number of equilibrium point 
is affected by the value of both risk premium terms. We derived conditions in order to obtain 
each case of equilibrium points, and proved that at least one of them is a saddle point. 
Another observation was that every cooperative equilibrium could be realized as a non-
cooperative equilibrium for specific weight values concerning the development of the debt. 

A significant result shown in our benchmark cases and examples is that the term of risk 
premium depending on the rate of change of debt has a greater effect on the steady state 
value of debt than the term depending on the level of debt. Specifically, the greater the value 
of risk premium is, the lower the steady state of debt becomes. This is justified if one thinks 
that there is a reward for managing to lower the debt value faster and the greater the value 
of risk premium is, the greater the reward. In similar fashion one could say that there is a 
heavy penalty for letting the debt increase instead of keeping it steady or making it decrease. 
Both the parameters that measure the strength of the risk premium mechanism, are of 
crucial importance in the debt stabilization game. Also, we observed that as 𝑏𝑏 increases the 
value the debt attains decreases too, independently of the horizon. However we observe 
differences in depending on the length of the horizon, which are mainly attributed to how 
close to the steady path the trajectories tend, as the time horizon increases the behavior of 
these trajectories is closer to the steady state trajectory. Regarding the short finite horizons, 
it was evident that even here, the risk premium term we introduced does decrease the level 
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of debt as it increases. However, the values reached were not even near the steady state 
values or the ones achieved by longer horizons. An important feat though was how much 
the debt is able to decrease, especially as 𝑏𝑏 increases, in such short horizon. 

Concerning the actions of each player we observed that the increase of the term of risk 
premium depending on the level of debt results in more active policies from both players. 
Intuitively, this represent the fact that, when markets add more pressure to the countries by 
demanding great values of risk premium on the debt level, then the authorities have to 
restrict it within acceptable standards. The more this risk premium term increases, the more 
the players have to lose by maintaining high debt levels, and thus they act to lower it. One 
the other hand, when the risk premium term on the rate of change of debt increases the 
players become slightly less active. A justification of this is that when the debt is declining, 
the risk premium term 𝑏𝑏 is acting as a reward by decreasing the real interest rate. This is 
helping the debt level to decrease and be contained more easily, allowing the players to relax 
slightly. 

In addition, we observed that the cooperation is beneficial, when the risk premia are not 
beyond a certain threshold value, as shown in our benchmark cases. This was the case for 
both short and long finite horizons, and for the infinite horizon as well. In every benchmark 
computed the cooperative mode produced better results. In fact the decrease was 
significant and also the trajectory entered the steady-state much faster. Again in the short 
finite horizon case the values reached were not even near the steady state values or the ones 
achieved by longer horizons. Although, comparing them with the Non-Cooperative case, 
once more the benefits of Cooperation in the finite case for shorter horizons were 
highlighted in an even more impressive way. Again this denotes the significance of the new 
term introduced, as it implements the pressure that the financial markets want to add, but 
also operates as a supporting mechanism for countries that are active and try to decrease 
their debt levels. An interesting observation that the results in case one of the players was 
superior to the other, were better than the case where the players shared equal bargaining 
strength. We are obliged to mention that for the empirical values that correspond with real 
life models cooperation does give better results and thus it suggested as the beneficial mode 
of play.  

A topic for future research could be how this interaction affected by risk premium is 
depicted when having more than one country, e.g. more fiscal agents. A more interesting 
approach would be to introduce models taking into account the effect of the inflation and 
how it interacts with the risk premium terms added. This could better reflect the role of the 
markets, and could be an adequate representation when having more than one country or 
blocks of countries participating in the game. Our result could be also tested with a model 
consisting of many countries or blocks of countries and analyze the results in that case. Also, 
when it comes to the values of the parameters used, an interesting idea could be to use the 
theory of adaptive control and specifically system identification techniques, using past data 
to identify the parameter values. 
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6 APPENDIX 

6.1 THE NASH OPEN-LOOP CASE: 
Theorem 3.1 (Proof):  

Consider the Hamiltonians: 𝐻𝐻𝑖𝑖 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑖𝑖 − 𝚤𝚤)̅2 + 𝛽𝛽𝑖𝑖�𝑑𝑑 − 𝑑𝑑𝚤𝚤� �

2� + 𝜆𝜆𝑖𝑖  �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

 for 𝑤𝑤=F,M. 
Then as a function of 𝑑𝑑 they are equivalent to: 

𝐻𝐻𝐹𝐹 = 𝐴𝐴 𝑑𝑑2 + 𝜆𝜆𝐹𝐹  �𝐵𝐵
𝑑𝑑

1 − 𝑏𝑏 𝑑𝑑
+ 𝐶𝐶

𝑑𝑑2

1 − 𝑏𝑏 𝑑𝑑
+ 𝐷𝐷

1
1 − 𝑏𝑏 𝑑𝑑

� 

All these terms are convex in any interval lying left of the value that makes the denominator equal 
to zero, namely 1/𝑏𝑏. Restricting now ourselves to any such interval that contains 𝑑𝑑: 
 
Let 𝑢𝑢𝑖𝑖 ∶  [0,𝑇𝑇] → 𝑈𝑈𝑖𝑖  , 𝑤𝑤 = 𝐹𝐹,𝑀𝑀 be any measurable control function. Then 

𝐽𝐽𝑖𝑖(𝑢𝑢)– 𝐽𝐽𝑖𝑖∗(𝑢𝑢∗) = � ℎ𝑖𝑖(𝑡𝑡,𝑑𝑑,𝑢𝑢𝑖𝑖)𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � ℎ𝑖𝑖(𝑡𝑡,𝑑𝑑∗,𝑢𝑢𝑖𝑖∗)𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

= � �𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑,𝑢𝑢𝑖𝑖) − 𝜆𝜆𝑖𝑖  �̇�𝑑(𝑡𝑡)�  𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � �𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑∗,𝑢𝑢𝑖𝑖∗) − 𝜆𝜆𝑖𝑖  𝑑𝑑∗̇(𝑡𝑡)�  𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

 
Since 𝑢𝑢𝑖𝑖∗ satisfies the optimality condition: 𝑢𝑢𝑖𝑖∗ = 𝚤𝚤̅ ∓ 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝑖𝑖

∗ 1
1−𝑏𝑏 𝑑𝑑

  , 𝑤𝑤 = 𝐹𝐹,𝑀𝑀 
One has:    𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑∗,𝑢𝑢𝑖𝑖∗) =  𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑) = 𝐻𝐻𝑚𝑚𝑖𝑖𝑖𝑖  , 𝐻𝐻(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑,𝑢𝑢𝑖𝑖) ≥  𝐻𝐻𝑚𝑚𝑖𝑖𝑖𝑖 
 
Using these inequalities in the cost function expression we obtain: 

𝐽𝐽𝑖𝑖(𝑢𝑢)– 𝐽𝐽𝑖𝑖∗(𝑢𝑢∗) ≥ � �𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑,𝑢𝑢𝑖𝑖) − 𝜆𝜆𝑖𝑖  �̇�𝑑(𝑡𝑡)�  𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � �𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑∗,𝑢𝑢𝑖𝑖∗) − 𝜆𝜆𝑖𝑖  𝑑𝑑∗̇(𝑡𝑡)�  𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

 
If the map 𝑑𝑑 → 𝐻𝐻(𝑡𝑡,𝑑𝑑, 𝜆𝜆) is differentiable, the convexity assumption implies: 

𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑) −𝐻𝐻𝑖𝑖(𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑∗) ≥ 𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑑𝑑� (𝑡𝑡, 𝜆𝜆𝑖𝑖 ,𝑑𝑑∗) �𝑑𝑑(𝑡𝑡) − 𝑑𝑑∗(𝑡𝑡)� = −𝜆𝜆𝚤𝚤 ̇ �𝑑𝑑(𝑡𝑡) −  𝑑𝑑∗(𝑡𝑡)� 

 
Using now this inequality we finally obtain: 

𝐽𝐽𝑖𝑖(𝑢𝑢)– 𝐽𝐽𝑖𝑖∗(𝑢𝑢∗) ≥ � �−𝜆𝜆𝚤𝚤 ̇ �𝑑𝑑(𝑡𝑡) −  𝑑𝑑∗(𝑡𝑡)� − 𝜆𝜆𝑖𝑖  ��̇�𝑑(𝑡𝑡) −  𝑑𝑑∗̇(𝑡𝑡)��  𝑑𝑑𝑡𝑡
𝑇𝑇

0
= 

= −𝜆𝜆𝑖𝑖(𝑇𝑇)�𝑑𝑑(𝑇𝑇) −  𝑑𝑑∗(𝑇𝑇)� − 𝜆𝜆𝑖𝑖(0)�𝑑𝑑(0) −  𝑑𝑑∗(0)� = 0 
Given that: 

𝑑𝑑(0) = 𝑑𝑑∗(0) = 𝑑𝑑0 , 𝜆𝜆𝑖𝑖(𝑇𝑇) = 0 , 𝑤𝑤 = 𝐹𝐹,𝑀𝑀 𝑎𝑎𝑠𝑠 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑤𝑤𝑠𝑠 𝑎𝑎𝐹𝐹 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝐹𝐹𝑠𝑠𝑡𝑡 𝑓𝑓𝑢𝑢𝑎𝑎𝑐𝑐𝑡𝑡𝑤𝑤𝐹𝐹𝑎𝑎. 
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6.1.1 Solution Using Pontryagin’s Minimum Principle 
Theorem 3.2: The Open-loop case can be seen as an optimal control problem for each player separately 
and can be solved using Pontryagin’s Minimum Principle, when the pair of optimal controls (𝑢𝑢𝐹𝐹

∗,𝑢𝑢𝑀𝑀∗) 
belongs to the set of admissible strategies. Combining equations (1.a) and (1.d) we get the differential 
equation to act as a constraint to the minimization problem of our two players: 

�̇�𝑑(𝑡𝑡) =  
�̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 + 𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑡𝑡)

1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)
                                                  (6.1.1) 

While the players want to minimize their respective loss functions: 

𝐽𝐽𝐹𝐹 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹�����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0     (6.1.2.a) 

𝐽𝐽𝑀𝑀 = 1
2� ∫ 𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡𝑇𝑇
0     (6.1.2.b) 

 We apply Pontryagin’s Minimum Principle for the fiscal authorities: 

• Hamiltonian:  𝐻𝐻𝐹𝐹 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 ��𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹�����

2� + 𝜆𝜆𝐹𝐹  �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

  (6.1.3.a) 

• 𝜆𝜆�̇�𝐹 =  −𝜕𝜕𝐻𝐻𝐹𝐹 𝜕𝜕𝑑𝑑�   ,  𝜆𝜆𝐹𝐹(𝛵𝛵) = 0 
• 𝑢𝑢𝐹𝐹∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝐹𝐹
{𝐻𝐻𝐹𝐹} 

Differentiating the Hamiltonian (6.1.3.a) with respect to the state-vector we get: 

           𝜆𝜆�̇�𝐹 = −𝑒𝑒−𝜃𝜃𝜃𝜃𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����� − 𝜆𝜆𝐹𝐹  
(�̅�𝑟 + 2𝑎𝑎 𝑑𝑑)(1 − 𝑏𝑏 𝑑𝑑) + 𝑏𝑏(�̅�𝑟 𝑑𝑑 + 𝑎𝑎 𝑑𝑑2 + 𝑢𝑢𝐹𝐹 − 𝑢𝑢𝑀𝑀)

(1 − 𝑏𝑏 𝑑𝑑)2   

 We introduce 𝜇𝜇𝐹𝐹 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹
 
⇒ 𝜇𝜇𝐹𝐹 =̇ 𝜃𝜃 𝜇𝜇𝐹𝐹 + 𝑒𝑒𝜃𝜃𝜃𝜃�̇�𝜆𝐹𝐹 

 Yielding:  

𝜇𝜇�̇�𝐹 = −𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����� + 𝜇𝜇𝐹𝐹 �𝜃𝜃 −  (�̅�𝑟+2𝑎𝑎 𝑑𝑑)(1−𝑏𝑏 𝑑𝑑)+𝑏𝑏��̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀�
(1−𝑏𝑏 𝑑𝑑)2  �  (6.1.4.a) 

The optimal control for the F - player is: 

𝑢𝑢𝐹𝐹∗ = 𝑓𝑓̅ − 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹
∗ 1
1−𝑏𝑏 𝑑𝑑

=  𝑓𝑓̅ − 𝜇𝜇𝐹𝐹∗
1

1−𝑏𝑏 𝑑𝑑
     (6.1.5.a) 

And the derivative with respect to time, of the optimal control is: 

𝑢𝑢�̇�𝐹∗ = �𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅ �𝜃𝜃 −
�̅�𝑟 + 2𝑎𝑎 𝑑𝑑
1 − 𝑏𝑏 𝑑𝑑

� +
𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹�����

1 − 𝑏𝑏 𝑑𝑑
 

𝑢𝑢�̇�𝐹
∗=0

����� 𝑢𝑢𝐹𝐹∗ = 𝑓𝑓̅ + 𝛽𝛽𝐹𝐹(𝑑𝑑−𝑑𝑑𝐹𝐹����)
�̅�𝑟+2𝑎𝑎 𝑑𝑑−𝜃𝜃(1−𝑏𝑏 𝑑𝑑)

     (6.1.6.a) 
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 Working in similar fashion for the monetary authorities: 

• Hamiltonian:𝐻𝐻𝑀𝑀 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 �(𝑢𝑢𝑀𝑀 −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀�����

2� + 𝜆𝜆𝑀𝑀  �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

  (6.1.3.b) 

• 𝜆𝜆�̇�𝑀 =  −𝜕𝜕𝐻𝐻𝑀𝑀 𝜕𝜕𝑑𝑑�   ,  𝜆𝜆𝑀𝑀(𝛵𝛵) = 0 
• 𝑢𝑢𝑀𝑀∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝑀𝑀
{𝐻𝐻𝑀𝑀} 

 
Differentiating the Hamiltonian (6.1.3.b) with respect to the state-vector we get: 

           𝜆𝜆�̇�𝑀 = −𝑒𝑒−𝜃𝜃𝜃𝜃𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀����� − 𝜆𝜆𝑀𝑀  
(�̅�𝑟 + 2𝑎𝑎 𝑑𝑑)(1 − 𝑏𝑏 𝑑𝑑) + 𝑏𝑏(�̅�𝑟 𝑑𝑑 + 𝑎𝑎 𝑑𝑑2 + 𝑢𝑢𝐹𝐹 − 𝑢𝑢𝑀𝑀)

(1 − 𝑏𝑏 𝑑𝑑)2   

 We introduce 𝜇𝜇𝑀𝑀 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝐹𝐹
 
⇒ 𝜇𝜇𝑀𝑀 =̇ 𝜃𝜃 𝜇𝜇𝑀𝑀 + 𝑒𝑒𝜃𝜃𝜃𝜃�̇�𝜆𝑀𝑀 

 Yielding:  

𝜇𝜇�̇�𝑀 = −𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀����� + 𝜇𝜇𝑀𝑀 �𝜃𝜃 −  (�̅�𝑟+2𝑎𝑎 𝑑𝑑)(1−𝑏𝑏 𝑑𝑑)+𝑏𝑏��̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀�
(1−𝑏𝑏 𝑑𝑑)2  �  

 (6.1.4.b) 

The optimal control for the M - player is: 

𝑢𝑢𝑀𝑀∗ = 𝑚𝑚� + 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆𝑀𝑀
∗ 1
1−𝑏𝑏 𝑑𝑑

=  𝑚𝑚� + 𝜇𝜇𝑀𝑀∗ 1
1−𝑏𝑏 𝑑𝑑

    (6.1.5.b) 

And the derivative with respect to time, of the optimal control is: 

𝑢𝑢�̇�𝛭∗ = (𝑢𝑢𝛭𝛭 −𝑚𝑚�) �𝜃𝜃 −
�̅�𝑟 + 2𝑎𝑎 𝑑𝑑
1 − 𝑏𝑏 𝑑𝑑

� −
𝛽𝛽𝑀𝑀�𝑑𝑑 − 𝑑𝑑𝑀𝑀�����

1 − 𝑏𝑏 𝑑𝑑
 

𝑢𝑢�̇�𝛭
∗=0

����� 𝑢𝑢𝛭𝛭∗ = 𝑚𝑚� − 𝛽𝛽𝑀𝑀(𝑑𝑑−𝑑𝑑𝑀𝑀�����)
�̅�𝑟+2𝑎𝑎 𝑑𝑑−𝜃𝜃(1−𝑏𝑏 𝑑𝑑)

     (6.1.6.b) 

Now we use the following substitution:  𝜇𝜇 = 𝜇𝜇𝐹𝐹 + 𝜇𝜇𝑀𝑀 . Combined with the optimal control laws we 
derived we get: 𝑢𝑢𝐹𝐹∗ − 𝑢𝑢𝛭𝛭∗ = 𝑓𝑓̅ − 𝑚𝑚� − 𝜇𝜇 1

1−𝑏𝑏 𝑑𝑑
  

Replacing those we get the optimal trajectories: 

�̇�𝑑∗(𝑡𝑡) =  1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

��̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 − 𝜇𝜇 1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃) + 𝑓𝑓̅ − 𝑚𝑚��   (6.1.7.a) 

𝜇𝜇∗̇(𝑡𝑡) = −�𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����� + 𝛽𝛽𝛭𝛭�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝛭𝛭������ +  𝜇𝜇 �𝜃𝜃 −

 ��̅�𝑟+2𝑎𝑎 𝑑𝑑(𝜃𝜃)��1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�+𝑏𝑏��̅�𝑟 𝑑𝑑(𝜃𝜃)+𝑎𝑎 𝑑𝑑2+𝑓𝑓̅−𝑚𝑚��

�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�2
� + 𝜇𝜇2 b

�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�3
   (6.1.7.b) 

Checking for periodic solutions we differentiate (6.1.7.a) w.r.t. 𝑑𝑑 and (6.1.7.b) w.r.t. 𝜇𝜇 and adding 

them we get: 𝜕𝜕(�̇�𝑑∗(𝜃𝜃))
𝜕𝜕𝑑𝑑

+ 𝜕𝜕(𝜇𝜇∗̇(𝜃𝜃))
𝜕𝜕𝜇𝜇

= 𝜃𝜃, so from Bendixson’s Criterion we have no periodic solutions if 

𝜃𝜃 ≠ 0. 

 

 

   58 



6.1.2 Exploring Open-Loop Equilibrium Points 
Now let’s assume that the Open-Loop equilibrium points are (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 ,𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂). To find those points we set 
equations (6.1.7) equal to zero: 

�̇�𝑑∗(𝑡𝑡) = 0
 
⇔  �̅�𝑟 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + 𝑎𝑎 (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 − 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

1
1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

+ 𝑓𝑓̅ − 𝑚𝑚� = 0 
 
⇔− 𝑎𝑎 𝑏𝑏 (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)3 + (𝑎𝑎 − 𝑏𝑏 �̅�𝑟) (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 + ��̅�𝑟 −  𝑏𝑏�𝑓𝑓̅ − 𝑚𝑚���  𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + �𝑓𝑓̅ − 𝑚𝑚� − 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂� = 0 

           
 
⇔𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂 = −𝑎𝑎 𝑏𝑏 (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)3 + (𝑎𝑎 − 𝑏𝑏 �̅�𝑟) (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 + ��̅�𝑟 −  𝑏𝑏�𝑓𝑓̅ − 𝑚𝑚���  𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + �𝑓𝑓̅ − 𝑚𝑚��        (6.1.8) 

Now, replacing 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂 to (6.1.8) we get 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 as the solution of the following cubic polynomial: 

−𝑎𝑎 (2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)3 + �𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 + ��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) − (𝛽𝛽𝐹𝐹 + 𝛽𝛽𝛭𝛭)� 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 + (𝛾𝛾3 + 𝑢𝑢�  𝛾𝛾2) = 0 

(6.1.9) 

Where: 𝛾𝛾1 = 1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂  ,   𝛾𝛾2 = 𝜃𝜃 − �̅�𝑟 ,   𝛾𝛾3 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀����  ,   𝑢𝑢� = 𝑓𝑓̅ − 𝑚𝑚�  

Equation (6.1.9), which defines the steady state value of debt, is a cubic equation. It is natural that 
only real roots of (6.1.9) are considered and accepted, due to the fact that they represent debt value. 
The discriminant of the general cubic polynomial: 

𝑠𝑠(𝑥𝑥) = 𝛿𝛿3 𝑥𝑥3 + 𝛿𝛿2𝑥𝑥2 + 𝛿𝛿1𝑥𝑥 + 𝛿𝛿0 

is 𝛥𝛥 = 18 𝛿𝛿3 𝛿𝛿2 𝛿𝛿1𝛿𝛿0 − 4𝛿𝛿2
3𝛿𝛿0 + (𝛿𝛿2𝛿𝛿1)2 − 4𝛿𝛿3𝛿𝛿1

3 − 27(𝛿𝛿3𝛿𝛿0)2. Thus the roots of the polynomial 
in our case are determined as follows: 

𝛿𝛿3 = −𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) ,𝛿𝛿2 = 𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) ,𝛿𝛿1 = �̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) − (𝛽𝛽𝐹𝐹 + 𝛽𝛽𝛭𝛭) , 𝛿𝛿0 = (𝛾𝛾3 + 𝑢𝑢�  𝛾𝛾2) 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the game. 
• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 1 candidate 

solution for the game. 
• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0, there are at least 2 roots coincide and they are all real. That means there are 

either a double real root and distinct single real root, or a triple real root. That is we either 
have 2 or 1 candidate solutions for the game respectively. 

Since a triple root of a cubic polynomial has the property of being also a root of its first and second 
derivative we can derive the condition for a triple root to exist. Let 𝑑𝑑3𝑒𝑒  be a triple root of 𝑠𝑠(𝑑𝑑): 
𝜕𝜕2𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑2� |𝑑𝑑=𝑑𝑑3𝑒𝑒 = 6𝛿𝛿3𝑑𝑑3𝑒𝑒 + 2𝛿𝛿2 = 0
 
⇒ 𝑑𝑑3𝑒𝑒 = −

𝛿𝛿2
3𝛿𝛿3

   (6.1.10.𝑎𝑎) 

𝜕𝜕  𝑠𝑠(𝑑𝑑)
𝜕𝜕𝑑𝑑 � |𝑑𝑑=𝑑𝑑3𝑒𝑒 = 3𝛿𝛿3𝑑𝑑3𝑒𝑒 2 + 2𝛿𝛿2𝑑𝑑3𝑒𝑒 + 𝛿𝛿1 = 0

(6.1.10.𝑎𝑎)
������� 𝛿𝛿1 =

𝛿𝛿2
2

3𝛿𝛿3
 (6.1.10. 𝑏𝑏) 

𝑠𝑠(𝑑𝑑)|𝑑𝑑=𝑑𝑑3𝑒𝑒 = 0
 
⇒ 𝛿𝛿3 𝑑𝑑3𝑒𝑒 3 + 𝛿𝛿2𝑑𝑑3𝑒𝑒 2 + 𝛿𝛿1𝑑𝑑3𝑒𝑒 + 𝛿𝛿0 = 0

(6.1.10.𝑎𝑎),(6.1.10.𝑏𝑏)
���������������𝛿𝛿2

3 = 27𝛿𝛿0
 𝛿𝛿3

2 (6.1.10. 𝑐𝑐) 
(6.1.10. 𝑏𝑏), (6.1.10. 𝑐𝑐)

 
⇒ 𝛿𝛿1𝛿𝛿2 = 9𝛿𝛿0𝛿𝛿3 (6.1.10.𝑑𝑑) 

In our case (6.1.10.d) becomes:  

��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃) − (𝛽𝛽𝐹𝐹 + 𝛽𝛽𝛭𝛭)��𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� + 9𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)(𝛾𝛾3 + 𝑢𝑢�  𝛾𝛾2) = 0   (6.1.11) 

   59 



Thus, if 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 and (6.1.11) holds there is 1 (triple) real root, and hence 1 candidate solution 

(and its value is: 𝑑𝑑3𝑒𝑒 = − 𝛿𝛿2
3𝛿𝛿3

= − 𝑎𝑎 𝛾𝛾2−�̅�𝑟(2𝑎𝑎+𝑏𝑏 𝜃𝜃)
3𝑎𝑎(2𝑎𝑎+𝑏𝑏 𝜃𝜃) ). Else, if (6.1.11) does not hold there is 1 double real 

root and distinct single real root, thus 2 candidate solutions. 

6.1.3 Qualitative Behavior of Equilibrium Points 
The qualitative behavior of the system near the equilibrium points should be explored. This is 
achieved via the Linearized System around each equilibrium point. Linearizing system (3.3) we get: 

�
𝑑𝑑(𝑡𝑡)̇

𝜇𝜇(𝑡𝑡)̇
� = �

−𝑎𝑎
𝑏𝑏
− 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
+ 𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2𝑢𝑢�

𝑏𝑏 𝛾𝛾12
− 1

𝛾𝛾12

−(𝛽𝛽𝐹𝐹 + 𝛽𝛽𝑀𝑀) − 2 (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�) 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
+ 3(𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂)2

𝛾𝛾14
𝑎𝑎
𝑏𝑏

+ 𝜃𝜃 + 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂

𝛾𝛾13
− 𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2𝑢𝑢�

𝑏𝑏 𝛾𝛾12

�  �𝑑𝑑(𝑡𝑡)
𝜇𝜇(𝑡𝑡)� 

 (6.1.12) 

where (𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂 , 𝜇𝜇𝑒𝑒𝑂𝑂𝑂𝑂) is the equilibrium point under discussion. 

The eigenvalues of the linearized system (6.1.12) are: 

𝑒𝑒𝑤𝑤𝑠𝑠1,2 =

(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 𝜃𝜃 ± �
(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 + 4(𝑏𝑏𝑓𝑓 + 𝑏𝑏𝑚𝑚 + 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏𝜃𝜃) − �̅�𝑟𝛾𝛾2)

+12𝑎𝑎(2𝑎𝑎 + 𝑏𝑏𝜃𝜃)𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂
2 − 8�𝛼𝛼𝛾𝛾2 − (2𝑎𝑎 + 𝑏𝑏𝜃𝜃)�𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂

2(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 
 

 
⇔𝑒𝑒𝑤𝑤𝑠𝑠1,2 =

(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 𝜃𝜃 ± �(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 �

2(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂) 
               (6.1.13) 

One can easily observe that the steady states will be one of the following: 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 < 0. 

Thus, the steady state is a saddle point. 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 > 0. 

Thus, the steady state is an unstable node. 

• If (1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1,2 are complex eigenvalues with positive 

real part. Thus, the steady state is an unstable focus. 
• Last but not least, there is the case an eigenvalue becomes zero. That is, when 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 

and (6.1.11) holds (a triple real root). As we have already argued the equilibrium point is also 
a root of the first derivative. It is then straightforward from (6.1.13) that an eigenvalue 
becomes zero while the other will be positive. This means the system matrix has a non-trivial 
null-space and has an equilibrium subspace than an equilibrium point. Due to the positive 
eigenvalue all trajectories diverge away from the equilibrium subspace. 
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6.2 THE CO-OPERATIVE CASE: 
Theorem 4.1 (Proof):  

Consider the Hamiltonian: 

𝐻𝐻 =
1
2
𝑒𝑒−𝜃𝜃𝜃𝜃 �𝜔𝜔 ��𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹�����

2� +  (1 − 𝜔𝜔) �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����
2��

+ 𝜆𝜆 
�̅�𝑟 𝑑𝑑 + 𝑎𝑎 𝑑𝑑2 + 𝑢𝑢𝐹𝐹 − 𝑢𝑢𝑀𝑀

1 − 𝑏𝑏 𝑑𝑑
 

Then as a function of 𝑑𝑑 H is are equivalent to: 

𝐻𝐻 = 𝐴𝐴 𝑑𝑑2 + 𝜆𝜆 �𝐵𝐵
𝑑𝑑

1 − 𝑏𝑏 𝑑𝑑
+ 𝐶𝐶

𝑑𝑑2

1 − 𝑏𝑏 𝑑𝑑
+ 𝐷𝐷

1
1 − 𝑏𝑏 𝑑𝑑

� 

All these terms are convex in any interval lying left of the value that makes the denominator equal 
to zero, namely 1/𝑏𝑏. Restricting now ourselves to any such interval that contains 𝑑𝑑: 
 
Let 𝑢𝑢𝑖𝑖 ∶  [0,𝑇𝑇] → 𝑈𝑈𝑖𝑖  , 𝑤𝑤 = 𝐹𝐹,𝑀𝑀 be any measurable control function. Then 

𝐽𝐽(𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀)– 𝐽𝐽∗(𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) = � ℎ(𝑡𝑡,𝑑𝑑,𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀)𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � ℎ(𝑡𝑡,𝑑𝑑∗,𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ )𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

= � �𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑,𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀) − 𝜆𝜆 �̇�𝑑(𝑡𝑡)�  𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � �𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑∗,𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) − 𝜆𝜆 𝑑𝑑∗̇(𝑡𝑡)�  𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

 
Since 𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗  satisfy their optimality conditions:  

𝑢𝑢𝐹𝐹∗ = 𝑓𝑓̅ − 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆 1
𝜔𝜔(1−𝑏𝑏 𝑑𝑑)

  and 𝑢𝑢𝛭𝛭∗ = 𝑚𝑚� + 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆 1
(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑)

 

 
We obtain:   𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑∗,𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) =  𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑) = 𝐻𝐻𝑚𝑚𝑖𝑖𝑖𝑖  , 𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑,𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀) ≥  𝐻𝐻𝑚𝑚𝑖𝑖𝑖𝑖 
 
Using these inequalities in the cost function expression we obtain: 

𝐽𝐽(𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀)– 𝐽𝐽∗(𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) ≥ � �𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑,𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀) − 𝜆𝜆 �̇�𝑑(𝑡𝑡)�  𝑑𝑑𝑡𝑡
𝑇𝑇

0
− � �𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑∗,𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) − 𝜆𝜆 𝑑𝑑∗̇(𝑡𝑡)�  𝑑𝑑𝑡𝑡

𝑇𝑇

0
 

 
If the map 𝑑𝑑 → 𝐻𝐻(𝑡𝑡,𝑑𝑑, 𝜆𝜆) is differentiable, the convexity assumption implies: 
𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑) − 𝐻𝐻(𝑡𝑡, 𝜆𝜆,𝑑𝑑∗) ≥ 𝜕𝜕𝐻𝐻

𝜕𝜕𝑑𝑑� (𝑡𝑡, 𝜆𝜆,𝑑𝑑∗) �𝑑𝑑(𝑡𝑡) − 𝑑𝑑∗(𝑡𝑡)� = −�̇�𝜆�𝑑𝑑(𝑡𝑡) −  𝑑𝑑∗(𝑡𝑡)� 
 
Using now this inequality we finally obtain: 

𝐽𝐽(𝑢𝑢𝐹𝐹 ,𝑢𝑢𝑀𝑀)– 𝐽𝐽∗(𝑢𝑢𝐹𝐹∗ ,𝑢𝑢𝑀𝑀∗ ) ≥ � �−�̇�𝜆�𝑑𝑑(𝑡𝑡) −  𝑑𝑑∗(𝑡𝑡)� − 𝜆𝜆 ��̇�𝑑(𝑡𝑡) −  𝑑𝑑∗̇(𝑡𝑡)��  𝑑𝑑𝑡𝑡
𝑇𝑇

0
= 

= −𝜆𝜆(𝑇𝑇)�𝑑𝑑(𝑇𝑇) −  𝑑𝑑∗(𝑇𝑇)� − 𝜆𝜆(0)�𝑑𝑑(0) −  𝑑𝑑∗(0)� = 0 
Given that: 

𝑑𝑑(0) = 𝑑𝑑∗(0) = 𝑑𝑑0 , 𝜆𝜆(𝑇𝑇) = 0 𝑎𝑎𝑠𝑠 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑤𝑤𝑠𝑠 𝑎𝑎𝐹𝐹 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝐹𝐹𝑠𝑠𝑡𝑡 𝑓𝑓𝑢𝑢𝑎𝑎𝑐𝑐𝑡𝑡𝑤𝑤𝐹𝐹𝑎𝑎. 
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6.2.1 Solution Using Pontryagin’s Minimum Principle 
Theorem 4.2: The dynamic game has now transformed into an optimal control problem from an 
analytical point of view. By solving the optimal control problem (4.1)-(4.2) for every 𝜔𝜔 ∈ (0,1) a curve 
of Pareto Efficient solutions is obtained. But which curve will be selected by the player, is defined by 
the choice of the parameter ω, i.e. the coordination of the system. Note that a Pareto solution is not 
unique. Since our game under the Co-operative case belongs to the class of optimal control problems, 
it can be solved using Pontrygin’s Minimum Principle. 

min
𝑢𝑢𝐹𝐹,𝑢𝑢𝑀𝑀

𝐽𝐽,    𝐽𝐽 = 𝜔𝜔 𝐽𝐽𝐹𝐹  + (1 −𝜔𝜔)𝐽𝐽𝑀𝑀      (6.2.1)   

            

       = 1
2� � 𝑒𝑒−𝜃𝜃𝜃𝜃  𝜔𝜔 ��𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹�����

2� 𝑑𝑑𝑡𝑡
𝑇𝑇

0

+ 1
2� � 𝑒𝑒−𝜃𝜃𝜃𝜃  (1 −𝜔𝜔) �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� 𝑑𝑑𝑡𝑡
𝑇𝑇

0
 

 

Subject to the government budget constraint discussed in the previous section: 

�̇�𝑑(𝑡𝑡) =  
�̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 + 𝑢𝑢𝐹𝐹(𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑡𝑡)

1 − 𝑏𝑏 𝑑𝑑(𝑡𝑡)
                            (6.2.2) 

 

 Applying Pontryagin’s Minimum Principle we obtain:  
• Hamiltonian: 

𝐻𝐻 = 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃𝜔𝜔 ��𝑢𝑢𝐹𝐹 − 𝑓𝑓�̅2 + 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹�����

2�      (6.2.3) 

+ 1
2
𝑒𝑒−𝜃𝜃𝜃𝜃  (1 − 𝜔𝜔) �(𝑢𝑢𝑀𝑀(𝑡𝑡) −𝑚𝑚�)2 + 𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

2� + 𝜆𝜆 �̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀
1−𝑏𝑏 𝑑𝑑

   

 

• 𝜆𝜆 ̇ =  −𝜕𝜕𝐻𝐻 
𝜕𝜕𝑑𝑑�  , 𝜆𝜆(𝛵𝛵) = 0  

 
• 𝑢𝑢𝐹𝐹∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝐹𝐹
{𝐻𝐻 } 

 
• 𝑢𝑢𝑀𝑀∗ = 𝑎𝑎𝑟𝑟𝑠𝑠min

𝑢𝑢𝑀𝑀
{𝐻𝐻 } 

 

Differentiating the Hamiltonian with respect to the state-vector we get: 

           �̇�𝜆 = −𝑒𝑒−𝜃𝜃𝜃𝜃  𝜔𝜔 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����� − 𝑒𝑒−𝜃𝜃𝜃𝜃  (1 − 𝜔𝜔)𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀�����

− 𝜆𝜆 
(�̅�𝑟 + 2𝑎𝑎 𝑑𝑑)(1 − 𝑏𝑏 𝑑𝑑) + 𝑏𝑏(�̅�𝑟 𝑑𝑑 + 𝑎𝑎 𝑑𝑑2 + 𝑢𝑢𝐹𝐹 − 𝑢𝑢𝑀𝑀)

(1 − 𝑏𝑏 𝑑𝑑)2   
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We introduce 𝜇𝜇 =  𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆
 
⇒ �̇�𝜇 = 𝜃𝜃 𝜇𝜇 + 𝑒𝑒𝜃𝜃𝜃𝜃�̇�𝜆 

Yielding: 

�̇�𝜇 = −𝜔𝜔 𝛽𝛽𝐹𝐹�𝑑𝑑 − 𝑑𝑑𝐹𝐹����� − (1 − 𝜔𝜔)𝛽𝛽𝑀𝑀�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑀𝑀����� + 𝜇𝜇 �𝜃𝜃 −  (�̅�𝑟+2𝑎𝑎 𝑑𝑑)(1−𝑏𝑏 𝑑𝑑)+𝑏𝑏��̅�𝑟 𝑑𝑑+𝑎𝑎 𝑑𝑑2+𝑢𝑢𝐹𝐹−𝑢𝑢𝑀𝑀�
(1−𝑏𝑏 𝑑𝑑)2  �  (6.2.4) 

 

The optimal control for the F - player is: 

𝑢𝑢𝐹𝐹∗ − 𝑓𝑓̅ = −𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆 1
𝜔𝜔(1−𝑏𝑏 𝑑𝑑)

=  −𝜇𝜇 1
𝜔𝜔(1−𝑏𝑏 𝑑𝑑)

     (6.2.5.a) 

The optimal control for the Μ - player is: 

𝑢𝑢𝛭𝛭∗ − 𝑚𝑚� = 𝑒𝑒𝜃𝜃𝜃𝜃𝜆𝜆 1
(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑)

=  𝜇𝜇 1
(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑)

    (6.2.5.b) 

Combining the equations above: 𝑢𝑢𝐹𝐹∗ − 𝑓𝑓̅ = −1−𝜔𝜔
𝜔𝜔

(𝑢𝑢𝛭𝛭∗ − 𝑚𝑚�)      (6.2.6) 

The optimal control laws we derived give: 𝑢𝑢𝐹𝐹∗ − 𝑢𝑢𝛭𝛭∗ = 𝑓𝑓̅ − 𝑚𝑚� − 𝜇𝜇 1
𝜔𝜔(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑)

   

Replacing the optimal controls to equations (6.2.2) and (6.2.4) we obtain the optimal trajectories: 

�̇�𝑑∗(𝑡𝑡) =  1
1−𝑏𝑏 𝑑𝑑(𝜃𝜃)

��̅�𝑟 𝑑𝑑(𝑡𝑡) + 𝑎𝑎 𝑑𝑑(𝑡𝑡)2 − 𝜇𝜇 1
𝜔𝜔(1−𝜔𝜔)(1−𝑏𝑏 𝑑𝑑(𝜃𝜃))

+ 𝑓𝑓̅ − 𝑚𝑚��           (6.2.7.a)         

𝜇𝜇∗̇(𝑡𝑡) = −�𝜔𝜔𝛽𝛽𝐹𝐹�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝐹𝐹����� + (1 −𝜔𝜔)𝛽𝛽𝛭𝛭�𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝛭𝛭������ 

+ 𝜇𝜇 �𝜃𝜃 −  ��̅�𝑟+2𝑎𝑎 𝑑𝑑(𝜃𝜃)��1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�+𝑏𝑏��̅�𝑟 𝑑𝑑(𝜃𝜃)+𝑎𝑎 𝑑𝑑2+𝑓𝑓̅−𝑚𝑚��

�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�2
� + 𝜇𝜇2 b

𝜔𝜔(1−𝜔𝜔)�1−𝑏𝑏 𝑑𝑑(𝜃𝜃)�3
          (6.2.7.b) 

Checking for periodic solutions we differentiate (6.2.7.a) w.r.t. 𝑑𝑑 and (6.2.7.b) w.r.t. 𝜇𝜇 and adding 

them we get: 𝜕𝜕(�̇�𝑑∗(𝜃𝜃))
𝜕𝜕𝑑𝑑

+ 𝜕𝜕(𝜇𝜇∗̇(𝜃𝜃))
𝜕𝜕𝜇𝜇

= 𝜃𝜃, so from Bendixson’s Criterion we have no periodic solutions if 

𝜃𝜃 ≠ 0. 

6.2.2 Exploring Open-Loop Equilibrium Points 
Now let’s assume that the Co-operative equilibrium points are (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂, 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂). To find those points we 
set equations (6.2.7) equal to zero: 

�̇�𝑑(𝑡𝑡) = 0
 
⇔  �̅�𝑟 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + 𝑎𝑎 (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 − 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

1
𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)

+ 𝑓𝑓̅ − 𝑚𝑚� = 0 

 
⇔𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂 = 𝜔𝜔(1 −𝜔𝜔) �−𝑎𝑎𝑏𝑏(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 + (𝑎𝑎 − 𝑏𝑏�̅�𝑟)(𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 + ��̅�𝑟 −  𝑏𝑏�𝑓𝑓̅ − 𝑚𝑚���  𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + �𝑓𝑓̅ − 𝑚𝑚��� = 0    (6.2.8) 

Now, replacing 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂 to the second equilibrium equation we get: 

𝛿𝛿3 (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 + 𝛿𝛿2 (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 + 𝛿𝛿1 𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂 + 𝛿𝛿0 = 0      (6.2.9) 

Defining: 𝛿𝛿3 = −𝜔𝜔(1 − 𝜔𝜔)𝑎𝑎(2𝑎𝑎 + 𝑏𝑏𝜃𝜃), 𝛿𝛿2 = 𝜔𝜔(1 −𝜔𝜔)�𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝛼𝛼 + 𝑏𝑏𝜃𝜃)�, 
𝛿𝛿1 = 𝜔𝜔(1 − 𝜔𝜔)(�̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝛼𝛼 + 𝑏𝑏𝜃𝜃) − (𝜔𝜔𝛽𝛽𝐹𝐹 + (1 −𝜔𝜔)𝛽𝛽𝛭𝛭) , 𝛿𝛿0 = 𝜔𝜔(1 − 𝜔𝜔)𝑢𝑢�  𝛾𝛾2 + 𝜔𝜔𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀���� 

Where: 𝛾𝛾1 = 1 − 𝑏𝑏 𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂  ,   𝛾𝛾2 = 𝜃𝜃 − �̅�𝑟 ,   𝛾𝛾3 = 𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + 𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀����  ,   𝑢𝑢� = 𝑓𝑓̅ − 𝑚𝑚�  
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Equation (6.2.9), which defines the steady state value of debt, is a cubic equation. It is natural that 
only real roots of (6.2.9) are considered and accepted, due to the fact that they represent debt value. 
The discriminant of the general cubic polynomial: 

𝑠𝑠(𝑥𝑥) = 𝛿𝛿3 𝑥𝑥3 + 𝛿𝛿2𝑥𝑥2 + 𝛿𝛿1𝑥𝑥 + 𝛿𝛿0 

is 𝛥𝛥 = 18 𝛿𝛿3 𝛿𝛿2 𝛿𝛿1𝛿𝛿0 − 4𝛿𝛿2
3𝛿𝛿0 + (𝛿𝛿2𝛿𝛿1)2 − 4𝛿𝛿3𝛿𝛿1

3 − 27(𝛿𝛿3𝛿𝛿0)2. Thus the roots of the polynomial 
in our case are determined as follows: 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the 
game. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 1 
candidate solution for the game. 

• If 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) = 0, there are at least 2 roots coincide and they are all real. That means there 
are either a double real root and distinct single real root, or a triple real root. That is we either 
have 2 or 1 candidate solutions for the game respectively. 

Since a triple root of a cubic polynomial has the property of being also a root of its first and second 
derivative we can derive the condition for a triple root to exist. Let 𝑑𝑑3𝑒𝑒  be a triple root of 𝑠𝑠(𝑑𝑑): 
𝜕𝜕2𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑2� |𝑑𝑑=𝑑𝑑3𝑒𝑒 = 6𝛿𝛿3𝑑𝑑3𝑒𝑒 + 2𝛿𝛿2 = 0
 
⇒ 𝑑𝑑3𝑒𝑒 = −

𝛿𝛿2
3𝛿𝛿3

   (6.2.10.𝑎𝑎) 

𝜕𝜕  𝑠𝑠(𝑑𝑑)
𝜕𝜕𝑑𝑑 � |𝑑𝑑=𝑑𝑑3𝑒𝑒 = 3𝛿𝛿3𝑑𝑑3𝑒𝑒 2 + 2𝛿𝛿2𝑑𝑑3𝑒𝑒 + 𝛿𝛿1 = 0

(6.1.10.𝑎𝑎)
������� 𝛿𝛿1 =

𝛿𝛿2
2

3𝛿𝛿3
 (6.2.10. 𝑏𝑏) 

𝑠𝑠(𝑑𝑑)|𝑑𝑑=𝑑𝑑3𝑒𝑒 = 0
 
⇒ 𝛿𝛿3 𝑑𝑑3𝑒𝑒 3 + 𝛿𝛿2𝑑𝑑3𝑒𝑒 2 + 𝛿𝛿1𝑑𝑑3𝑒𝑒 + 𝛿𝛿0 = 0

(6.1.10.𝑎𝑎),(6.1.10.𝑏𝑏)
���������������𝛿𝛿2

3 = 27𝛿𝛿0
 𝛿𝛿3

2 (6.2.10. 𝑐𝑐) 
(6.1.10. 𝑏𝑏), (6.1.10. 𝑐𝑐)

 
⇒ 𝛿𝛿1𝛿𝛿2 = 9𝛿𝛿0𝛿𝛿3 (6.1.10.𝑑𝑑) 

In our case (6.2.10.d) becomes:  

�𝜔𝜔(1 − 𝜔𝜔)��̅�𝑟 𝛾𝛾2 − 𝑢𝑢�(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� − (𝜔𝜔𝛽𝛽𝐹𝐹 + (1 −𝜔𝜔)𝛽𝛽𝛭𝛭)� �𝑎𝑎 𝛾𝛾2 − �̅�𝑟(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)� 

+9𝑎𝑎(2𝑎𝑎 + 𝑏𝑏 𝜃𝜃)�𝜔𝜔𝛽𝛽𝐹𝐹𝑑𝑑𝐹𝐹��� + (1 − 𝜔𝜔)𝛽𝛽𝛭𝛭𝑑𝑑𝑀𝑀���� + 𝜔𝜔(1 − 𝜔𝜔)𝑢𝑢�  𝛾𝛾2� = 0      (6.2.11) 

Thus, if 𝛥𝛥(𝑎𝑎, 𝑏𝑏) = 0 and (6.2.11) holds there is 1 (triple) real root, and hence 1 candidate solution 

(and its value is: 𝑑𝑑3𝑒𝑒 = − 𝛿𝛿2
3𝛿𝛿3

= − 𝑎𝑎 𝛾𝛾2−�̅�𝑟(2𝑎𝑎+𝑏𝑏 𝜃𝜃)
3𝑎𝑎(2𝑎𝑎+𝑏𝑏 𝜃𝜃) ). Else, if (6.2.11) does not hold there is 1 double real 

root and distinct single real root, thus 2 candidate solutions. 

6.2.3 Qualitative Behavior of Equilibrium Points 
The qualitative behavior of the system near the equilibrium points should be explored. This is 
achieved via the Linearized System around each equilibrium point. Linearizing system (4.3) we obtain: 

�𝑑𝑑(𝑡𝑡)̇

𝜇𝜇(𝑡𝑡)̇
� = �

−𝑎𝑎
𝑏𝑏
− 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13(1−𝜔𝜔)𝜔𝜔
+ (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�)

𝑏𝑏 𝛾𝛾12
− 1

𝛾𝛾12(1−𝜔𝜔)𝜔𝜔

−(𝜔𝜔𝛽𝛽𝐹𝐹 + (1 −𝜔𝜔)𝛽𝛽𝑀𝑀) − 2 (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�) 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13
+ 3(𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂)2

𝛾𝛾14(1−𝜔𝜔)𝜔𝜔
𝑎𝑎
𝑏𝑏

+ 𝜃𝜃 + 2 𝑏𝑏 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂

𝛾𝛾13
− (𝑎𝑎+𝑏𝑏 �̅�𝑟+𝑏𝑏2 𝑢𝑢�)

𝑏𝑏 𝛾𝛾12(1−𝜔𝜔)𝜔𝜔

�  �𝑑𝑑(𝑡𝑡)
𝜇𝜇(𝑡𝑡)�  

            (6.2.12) 

where (𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂, 𝜇𝜇𝑒𝑒𝐶𝐶𝑂𝑂) is the equilibrium point under discussion. 
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The eigenvalues of the linearized system (6.2.12) are: 

𝑒𝑒𝑤𝑤𝑠𝑠1,2 =

(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 𝜃𝜃 ± �(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)4
𝜔𝜔(1 − 𝜔𝜔) �𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕

 𝑠𝑠(𝑑𝑑)
𝜕𝜕𝑑𝑑 � �

2(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝐶𝐶𝑂𝑂)3 
       (6.2.13) 

It is pretty straightforward that �1−𝑏𝑏𝑑𝑑𝑒𝑒
𝐶𝐶𝑂𝑂�

4

𝜔𝜔(1−𝜔𝜔)
> 0. Hence, the sign of the quantity under the root and 

consequently the type of equilibria are subject to the following rules: 

• If 𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0,  

then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 < 0. Thus, the steady state is a saddle point. 
 

• If 𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � > 0,  

then 𝑒𝑒𝑤𝑤𝑠𝑠1 > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑤𝑤𝑠𝑠2 > 0. Thus, the steady state is an unstable node. 
 

• If 𝜔𝜔(1 − 𝜔𝜔)(1 − 𝑏𝑏𝑑𝑑𝑒𝑒𝑂𝑂𝑂𝑂)2 𝜃𝜃2 − 4 𝜕𝜕
 𝑠𝑠(𝑑𝑑)

𝜕𝜕𝑑𝑑 � < 0, then 𝑒𝑒𝑤𝑤𝑠𝑠1,2 are complex eigenvalues with 

positive real part. Thus, the steady state is an unstable focus. 
 

• Last but not least, there is the case an eigenvalue becomes zero. That is, when 𝛥𝛥(𝑎𝑎, 𝑏𝑏,𝜔𝜔) =
0 and (6.2.11) holds (a triple real root). As we have already argued the equilibrium point is 
also a root of the first derivative. It is then straightforward from (6.2.13) that an eigenvalue 
becomes zero while the other will be positive. This means the system matrix has a non-trivial 
null-space and has an equilibrium subspace than an equilibrium point. Due to the positive 
eigenvalue all trajectories diverge away from the equilibrium subspace. 
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