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NepiAnyn

H mayKOO LA OLKOVOLLKI Kpion TwV TEAEUTALWY ETWV EXEL WG ATMOTEAECHLO TNV AUnon Tou
XPEOUG TWV KPATWV O€ TIOAAEG XWPEC TG Eupwring, 8laitepa oTo HITAOK TOU VOTOU, Kal £T0L
n otabepornoinon Tou KOOTOUG QUTOU €XEL METATPANEL 0 KUPLO MEANUA otnv atlévia
TIOAAWV XWpwV. Ze autr TN AUTAwHATIK Epyacio eMKEVIPWVOUAOTE OTO YEYOVOG OTL Ol
QYOpPECG aoKOUV TILEDN OTa KPATN Tou daivovial EVAAWTA WG P0G TO PEYEBOC TOU EKACTOTE
XPEOUC, OAAQ WG KaL TNV TAON ToU, avodikn i KaBodikr. AUTEC OL TILECELG ATTOTUTIWVOVTAL UE
™ popdn tTwv aopoAiotpwyv Kwvduvou. Elodyoupe og autr TV gpyacia £vav ocuvteAeotn
mou amoteAel aopAaAloTpo KvdUvVou, BACLOUEVO OTNV TACH TOU XPEOUC, LABNUATIKA TV
mapaywyo, SnAadr oto av To XpEog eivat otabepo, f €xel avodikn 1 kaBodikr mopeia. Autog
0 OUVTEAEOTHC, EKTOC OO TNV TILEGN TIOU 0LOKOUV OL alyOPEC 0T KPATH SAVELOANTITEC, UMOopEL
KOl vo armoteAeéoel pa popdn emBpafeuong ot KUBEPVAOELS TTOU KaTadEPVOUV Kol
MELWVOUV TO XPEOG TOUG. H €loaywyn €VOG TETOLOU CUVTIEAEDTH ELOAYAYEL LOL LOXUPN UN-
YPOUULKOTNTA OTO HABNUATIKO HOVTEAD paG. EmumpooBeta, avaloyl{OPeEVOL TNV TTEPIMTWON
TwV Kpatwv-peAwv tng Eupwmaikng Nouptopatikng Evwong, epdaviletar n  €€Ag
WOlattepotnta: Ta KPATN-HEAN TNG €Vwong €XOUV HLOL KOLWVA VOULOUOTLKY TIOALTLKA TIOU
ooKelTal KeVTpLKa amo tnv E.K.T., og avtiBeon Ye TNV OLKOVOULKI) TIOALTLKA TIOU OlOKE(TOL OO
To Yrmoupyeio OLKOVOULKWY TNG EKACTOTE XWPOAC. AuTh £lval emiong n mepimTtwon Kol oTLg
TIEPLOOOTEPEG PLOUNXOAVIKEG XWPEG. AUTH N LELALTEPOTNTA, LOG TTOPOKLVEL VO TIPOCEYYIOOUE
TNV KATAoTaon wg éva Mn-ypapptkd Auvaputkd Matyvio loopporiag katd Nash, petagu duo
naktwy, NG Kevtpikng Tpamelag kat tng KuPBépvnong-Yrmoupyeio Owkovoukwv. Ot Suo
QUTEC apXEG elval ave€aptnteg Kol Umopel va pn ouvepyalovtat. Na to Adyo auto,
avaAUou e tnv mepimtwon tou Open-Loop Mn-XuvetatlplotikoU Matyviou kaBwg Kot Tnv
TEPUMTWON TOU JuvetalplotikoU [Matyviou. Emiong epeuvolpe TNV TEPIMTWON TOU
Nenepacpévou Opilovta, emumpooBETwg Tou Matyviou Ameipou Mnrkouc, kKaBwg amoteAet
HLOL TILO TIPOIKTLKN OKOTILA MLOG TIOU TO YEYOVOG VAl €lval KATIOLOG oo Toug SU0 TALKTEC
SECEVEVOG YLOL TIPAKTIKA TOOO EYANO XPOVIKO Sldotnua, Sev EXEL TTPOKTLKN Edappoyn.

NE€elc-KAELBLA: oTtaBepomoinon xpEoug, moaiyvia U0 TOLKTWY, HUN-YPAUUKA SUVaLKA
ocuotnuata, Looppomia katd Nash, acpaiiotpa kivdUvou, anelpog opilovtag, MEMEPACUEVOC
opilovtac, olKOVOULKA SUVOHLKA CUOTAOTO
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Abstract

On the grounds that the global financial crisis during recent years has resulted in a
significant increment of the government debt, in many OECD countries, especially in the
“south-block”, government debt stabilization has taken a central stage in issues to be
addressed. In this paper we focus on the fact that financial markets are adding pressures on
countries that appear vulnerable when looking at the current levels of debt, as well as the
current rate of change of the debt. This takes the form of requiring risk premia. The term we
introduce, that depends on the rate of change of debt, represents apart from another form
of pressure added by financial markets, can also be used to represent a measure of reward
given by markets to governments that succeed in decreasing their debts. This term
associated with the derivative of the governmental debt adds a strong nonlinearity to our
mathematical model. In addition, when considering the Euro Area, an additional singularity
arises: the members of the union are have a common monetary policy which is applied
centrally by the E.C.B, in contrast with fiscal policy which is applied by each member country
per se. This is also the case in most industrial countries, the size of fiscal deficits and the
growth of monetary base are selected by two independent authorities. This suggests that we
are facing a Two-Player Nonlinear Dynamic Nash Game under two modes of play, where the
two authorities do or do not cooperate. Thus we analyze and solve under the Open-Loop
Non-Cooperative mode of play and then under the Cooperative mode of play. We also
investigate the finite time horizon, in addition to the infinite one, taking therefore a more
practical approach as being bound in a policy for practically a really long time is sometimes
of no application.

Keywords: debt stabilization, two-player games, nonlinear dynamic systems, dynamic nash
game, risk premium, infinite horizon, finite horizon, economic dynamics
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Modeling and Study of a Debt Stabilization Dynamic
Nash Game between a Financial and a Monetary
Player in presence of Risk Premia

Abstract

On the grounds that the global financial crisis during recent years has resulted in a significant
increment of the government debt, in many OECD countries, especially in the “south-block”,
government debt stabilization has taken a central stage in issues to be addressed. In this paper we
focus on the fact that financial markets are adding pressures on countries that appear vulnerable
when looking at the current levels of debt, as well as the current rate of change of the debt. This
takes the form of requiring risk premia. The term we introduce, that depends on the rate of change
of debt, represents apart from another form of pressure added by financial markets, can also be used
to represent a measure of reward given by markets to governments that succeed in decreasing their
debts. This term associated with the derivative of the governmental debt adds a strong nonlinearity
to our mathematical model. In addition, when considering the Euro Area, an additional singularity
arises: the members of the union are have a common monetary policy which is applied centrally by
the E.C.B, in contrast with fiscal policy which is applied by each member country per se. This is also
the case in most industrial countries, the size of fiscal deficits and the growth of monetary base are
selected by two independent authorities. This suggests that we are facing a Two-Player Nonlinear
Dynamic Nash Game under two modes of play, where the two authorities do or do not cooperate.
Thus we analyze and solve under the Open-Loop Non-Cooperative mode of play and then under the
Cooperative mode of play. We also investigate the finite time horizon, in addition to the infinite one,
taking therefore a more practical approach as being bound in a policy for practically a really long time
is sometimes of no application.

Keywords: debt stabilization, two-player games, nonlinear dynamic systems, dynamic nash game, risk
premium, infinite horizon, finite horizon, economic dynamics
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INTRODUCTION

One of the most significant effects of the global financial crisis during recent years, is the
increase in the government debt. In many OECD countries, especially in the “south-block”,
the ensuing economic slowdown, the fiscal balance deterioration, as well as the lack of much
needed deep reforms are to explain the rigorous rise of debt. Thus, in most OECD countries,
government debt stabilization has taken a central stage in issues to be addressed. Our
approach focuses on the fact that financial markets are adding pressures on countries that
appear vulnerable when looking at the current levels of debt, as well as the current rate of
change of the debt. This takes the form of requiring risk premia on the aforementioned
statistics. Furthermore, when considering the Euro Area, an additional singularity arises: the
members of the union are have a common monetary policy which is applied centrally by the
E.C.B, in contrast with fiscal policy which is applied by each member country per se. Hence,
each member cannot finance budgetary deficits. Since, these two authorities are relatively
independent and subject to different incentives and constraints, it is rational to assume they
have different objectives. It must be mentioned also, that in most industrial countries, the
size of fiscal deficits and the growth of monetary base are selected by two independent
authorities. Thus, the general framework analyzed could be applied in any country working
in that manner. Specifically, in the United States of America, the monetary policy is applied
by the Federal Reserve Bank, while the fiscal policy is applied by the government. There is a
fundamental difference however, between the U.S. (or countries operating in a similar way)
and the countries of the OECD is that in the former both authorities have an eye on the
economy and work together by having common interests, while in the latter the E.C.B.
majorly takes into account statistics that are taken as average values from all the OECD
countries. That is, E.C.B. has an eye on the overall economy of the union. This could result in
partially neglecting countries with weak economies as long as there are countries with
stronger economies that compensate for the former in the average. This paper examines
how this interaction between the two authorities takes place. It investigates the government
debt stabilization in the presence of endogenous risk premia from the point of the two
independent authorities, fiscal and monetary. These two independent authorities are
considered as two players in a dynamic game. In fact though, the financial players are more
than one and all interact with the same monetary player. But in this simple approach we will
not model this case, however this additional problem is encouraged as a future research
proposal.

Similar approaches have already been made. G.Tabellini in [1] analyzed a dynamic game
between fiscal and monetary authorities. In his simple approach the strategic interaction
between these two authorities, takes the form of a game with a linear model and quadratic
cost functions. One of his main findings was the benefit of cooperation, which states that
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when the two policymakers coordinate their efforts a smaller steady-state debt value is
achieved and this is achieved more rapidly. Another one was that in all equilibria, the time
path of public debt could be stable even if the real interest rate exceeds the rate of growth
of real output. Also, decreasing the relative weight each player assigns to the debt
stabilization assigns more burden to the other player for the adjustment. In a more recent
approach from J.Enwerda, B.v Aarle et al. in [2], a similar model was used concerning the
OECD countries. An endogenous risk premium term was introduced denoting the pressure
added by financial markets. This risk premium term was dependent on the level of debt
changing the game model to a non-linear one. Their main results are summed up to the fact
that the differential game has at least one equilibrium point due to the risk premium term
included, whereas in the Tabellini case there could be no equilibrium in some cases. In
addition, as the risk premium term increases, the steady-state of debt decreases in both non-
cooperative and cooperative modes of play. Also, they found out that the cooperative case
is preferable only when the strength of risk premium term is not large, contradicting with
the result of Tabellini. Furthermore, the presence of risk premium totally changes the
dynamic game and the optimal strategies found by Tabellini, and in this case the reduction
of the relative weight a player assign to the debt stabilization does no longer necessarily
increase the steady-state of debt.

In this paper, we introduce another risk premium term which is dependent on the rate of
change of debt. This term represents another form of pressure added by financial markets,
but also it can be used to represent a measure of reward given by markets to governments
that succeed in decreasing their debts. Hence, in contrast with the risk premium term
dependent on the level of debt, this new one can be used as much as a penalty, as a reward.
It is a suggestion that helps the governments to sustain and decrease their debt levels, either
by forcing them adopt a stricter approach in order to not let the debt increase, or by helping
the invigoration and development of economies that are already on a rising direction. For
example, one can consider Japan, a country with a considerable amount of debt which is
however sustainable and manageable. Japan also has a strong economy in overall. Thus,
Japan is able to get favorable interest rates when getting loans. This example serves as a
justification for our new risk premium term. Another distinction from the aforementioned
works is that we also investigate the finite time horizon, as well as the infinite one. So this
can be considered a more practical approach from this point of view, as the steady-state may
need many years to be achieved and models of this type cannot account for all the
unpredictable changes and events during that period. Although from an ethical point of view,
one could say that there is no clear foreseeable future in the economy and this way the study
of infinity horizon is justified, in our case being bound in a policy for practically a really long
time is of no application and that justifies the need of investigation and importance of the
finite horizon case as well.

Our findings were that in both Non-Cooperative Open-Loop Nash Equilibrium Game and
Co-operative modes of play, the debt levels achieved are decreasing as the introduced risk
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premium term increases. In fact concerning the Non-Cooperative Open-Loop Nash
Equilibrium case, we observed that the new risk premium term had a stronger effect than
the risk premium term depending on the level of debt. However this inclusion did not change
the maximum and minimum number of equilibrium points for the non-linear system, and
thus there is always at least one and at maximum three equilibria. In addition, the effect of
the risk premium term depending on the rate of change of debt, is evident even in short
finite horizons and is still beneficial. It is remarkable how much the debt is able to decrease
in the presence of this mechanism that works both as a penalty and reward. The rewarding
nature is also being demonstrated by another finding. That is, when the risk premium term
on the rate of change of debt increases the players become slightly less active. A justification
of this is that when the debt is declining, the risk premium term b is acting as a reward by
decreasing the real interest rate. This is helping the debt level to decrease and be contained
more easily, allowing the players to relax slightly. Regarding now the Co-operative we
observed similar qualitative behaviors, however there were significant improvements on the
debt levels achieved comparing to the Non-Cooperative mode. Another interesting
observation was that the results yielded were better when the one player was stronger than
the other.

The outline of this paper is as follows. Section 2 sets up the model used, defines the
variables and the constants and a brief justification of the values used is presented. Section
3 deals with the Non-Cooperative Open-Loop Nash Equilibrium case and the effect of the
two risk premium terms is analyzed. Section 4 presents the Cooperative case, analyzing in
addition the effect of the bargaining power each player has. Finally, in Section 5 we
summarize the results produced and point out future research directions. Proofs of some
theorems follow in the Appendix in the end of the paper.

——
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MODEL DEFINITION AND PURPOSE

Our analytical framework is inspired by the debt stabilization game of Tabellini [1] and its
extension by Engwerda, Van Aarle et al. [2]. In this paper we analyze government debt
stabilization problems in the presence of risk premia associated with both the levels of debt
and its rate of change. That is, we introduce extended risk premium terms that depend on
the levels of debt and its rate of change. A justification for this is that not only the debt level
should be taken under consideration, but also the way it is handled. That means, a
government with sustainable debt - which is depicted with a negative rate of change (a
decreasing debt) or with a zero rate of change (thus a steady debt and under control) - should
be considered more reliable and hence rewarded with less pressure from financial markets.
This extension adds a strong non-linearity to our problem. In that game our two players,
monetary and fiscal policy makers, are engaged in a dynamic conflict of debt stabilization.
Both authorities are assumed to have their own objective as well as an interest in
government debt stabilization. Fiscal authorities try to reduce fiscal deficits. This can be
achieved either by reducing government spending or by increasing taxes. In that way, the
accumulation of debt is reduced. Monetary authorities on the other hand, are handling the
monetary financing (money growth) and by increasing it, they also contribute in debt
reduction.

The model derived for the debt stabilization game described consists of two players, one
monetary authority (per say a central bank) responsible for applying the monetary policy,
and a fiscal authority responsible for applying a country’s fiscal policy. The two players are
engaged in a dynamic conflict under the government budget constraint that depicts the
accumulation of the debt and relates government debt, monetary financing, fiscal deficits as
well as interest payments and risk premia required by financial markets:

d(t) = r(®)d(t) + up(t) — uy(t) (1.a)

In this differential equation:

- d denotes the government debt as a percentage of the national output, note that
negative value of debt denotes that government has obtained a claim on private sector
assets

- up denotes the primary fiscal deficit as a percentage of the national output, note that f
denotes deficit we can assume that negative values of f denote surplus for the fiscal
authorities

- uy denotes the monetary financing measured as a fraction of aggregate output

-r denotes the real interest rate adjusted for the rate of output growth

Both control laws belong to appropriate sets Ur and Uy, respectively. In our case because
the controls are scalar, these sets are subsets of R. Therefore, without loss of generality we
can assume that they are intervals of R. Considering that ur denotes the fiscal deficits, it is
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normal to assume that there is an upper bound that the authorities are willing to let the
deficits grow to. Similarly, there is a lower bound for the fiscal deficits, e.g. there is a line to
the taxes enforced in order to lower fiscal deficits. In similar fashion, there are upper and
lower bounds for the money growth too. Thus, we could say that the sets are also compact,
but we will not use that assumption.

It was stated that fiscal authorities have an objective of their own in addition to being
interested in the government debt as well. This objective is to contain fiscal deficits around
a neighborhood of a target fiscal deficit f We depict that in the following loss function that
the player intends to minimize:

Je =Y Iy e ((up(®) = )" + Be(d(®) = &) ) ae (1.b)

where d_F is the fiscal authorities’ target for government debt and Sy is the weight assigned
to this. It indicates the relative preference concerning debt stabilization of the fiscal
authority.

Monetary authorities have also an objective of their own in addition to being interested
in the government debt as well. This objective concerns money growth and is to contain it
around a neighborhood of a target value m. We depict that in the following loss function
that the player intends to minimize:

Ju =Yy Jy e (Qup (0 = )2 + By (d(©) — dyy)) dt (1)

where d,, denotes the monetary authorities’ target for government debt and f3, is the
weight assigned to this. It indicates the relative preference concerning debt stabilization of
the monetary authority.

It is clear from these loss functions that the factors that determine the strategies of the
two players are, the relative weights for debt stabilization, the target values for debt and
each policy action and the respective initial conditions. The real goal of our players is to
minimize their respective loss functions by stabilizing government debt at some steady state
value, using policies that converge to steady states. The parameter 8 denotes a discount
factor.

Concerning our main extension with respect to the Tabellini model and the one proposed
from Engwerda and Van Aarle, we have to analyze the real interest rate r(t). In the Tabellini
model it remained constant, thus leading in a linear first-order differential game with
guadratic cost functions. In the Engwerda and Van Aarle model, inspired by the global crisis
hitting the countries of the European South as well as Ireland and several other cases, an
endogenous risk premia term is introduced depending on the level of government debt. The
conclusions produced indicate that with the introduction of risk premium the game always
has at least one equilibrium (and at most three) in contrast to the Tabellini model in which
we could have no equilibria. Furthermore, equilibrium debt decreases in case the strength

——
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of the risk premium parameter increases, but its effect fades off when gone beyond a
threshold value. Also, from a debt minimization point of view the cooperative case is
produces better results than the non-cooperative only for values of risk premium parameter
that are not too large. Else, non-cooperative steady-state of debt is lower than the
cooperative, in contrast to the Tabellini case where cooperation produces always better
results.

In this paper, as already discussed, we introduce another term of risk premium associated
with the rate of change of debt, this modifies the real interest rates of the aforementioned
papers:

r(t) =7+ ad(t)+bd(t) (1.d)
In our case, real interest rate consists of three terms:

-7 denotes the difference between nominal interest rate and inflation, and we assume
it to be constant in our approach

- a denotes the risk premium coefficient depending on the debt level that was
introduced by Engwerda and Van Aarle

- b denotes the risk premium coefficient depending on the rate of change of debt
- both a and b are positive real numbers

We believe it is justified that interest rate is dependent on the direction of the evolving debt.
For example, a high debt (as a percent of national output) which decreases rapidly in the last
years should not be necessarily connected with high interest rate, because it looks to be
sustainable and that the situation is fully under control. Thus, the government could be
“rewarded” with lower interest rate.

Considering the appropriate values for our risk premia parameters, to begin with,
empirical studies confirm the dependence of sovereign bond risk premia on debt levels as
much as the way it fluctuates — often described on an impact of a 1% change of debt to GDP
ratio. De Grauwe and Ji [3] argue that, since the start of the sovereign debt crisis markets
have been making errors in the direction of overestimating risks, while before crisis they also
falsely tended to underestimate risks. They found evidence that a large part of the surge in
the spreads of the periphery countries between 2010 and 2011 was disconnected from
underlying increases in the debt-to-GDP ratios and current-account positions, and was the
result of negative market sentiments, even panic, that became very strong starting at the
end of 2010. That was interpreted in their empirical estimates as a value for a typically
between 0.02 and 0.08, maybe even more as we’re going deeper into crisis. In addition,
Engen and Hubbard [4] conclude, according to their preferred metric, that increasing the
ratio of debt to GDP by 1 percentage point will increase longterm real interest rates by 0.035
percentage point. Hence, they characterize their results as showing that the marginal effect
of debt on long-term interest rates is small, but positive. However, the pressures for fiscal
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discipline, and thus debt accumulation discipline, coming from financial markets will be
much stronger in the future than they had been before the crisis, as L.Schuknecht, J.von
Hagen and G.Wolswijk [5] argue. Thus it is normal that values of a could be around and even
greater the 0.10 threshold, while b could approach the value of 0.20.

In this paper we aim to analyze the debt stabilization game discussed, in presence of the
risk premium parameters we just introduced. The model presented will be used and different
types of equilibria will be considered. First we will consider non-cooperative Open-Loop Nash
equilibria, and we try to solve the model under this mode of play. Then, we will consider
cooperative Pareto equilibria, solve model under this mode and compare with the former
case.

——
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3 THE OPEN-LOOP NASH EQuILIBRIUM CASE

In the first section we consider the game (1.a)-(1.d) under the Non-cooperative Open-
Loop Nash Equilibrium case. That means, the players have no means to communicate with
each other and have an open-loop information structure (that is, at time t = 0 both players
have all information about the game and determine their actions, which they are obliged to
apply for the whole planning horizon). Also the type of Nash Equilibrium means that our
players are looking for a pair of strategies (uz", uy ™) such that:

For any other strategy within the set of admissible strategies
for the pairs (ug*,uy ) and (ug,uy™) we will have:
JrQup,uy™) = Jr(ue, uy™) and Jy (up™, upy ) = Jy(ue®, uy™)
That means a player cannot achieve better results if he diverges
from his equilibrium strategy, while the other one sticks to it.

Now that we have set the stage for this section, we attempt to solve the dynamic game
under Non-cooperative Open-loop Nash Equilibrium. The Open-loop case can be seen as an
optimal control problem for each player separately and can be solved using Pontryagin’s
Minimum Principle (A.W.Starr & Y.C.Ho [6]). Combining equations (1.a) and (1.d) we get the
differential equation to act as a constraint to the minimization problem of our two players:

7d(t) + ad(t)? + up(t) —uy(t)
1—-bd(t)

d(t) = (3.1)
Note 1: It is to be stated, that throughout the remainder of the paper we assume 1 —
b d(t) # 0. This is in accordance with reality, as b does normally take values around 0.20,
thus giving a value of d around 5.0 in order for 1 — b d(t) to equal zero. This means
governmental debt should be around 500% of the GDP of the country under consideration,
and we do not aim to even get near that figure. Consequently, we can assume that 1 —
bd(t) > 0.

The players want to minimize their respective loss functions:

Jr =15 Jy e ((ur(®) = £)” + Be(d(®) — dr)”) dt = [} hy(t,d,up) dt (3.2.2)
Ju = 1/2 fOTe_et ((uM(t) —m)? + B (d(t) — @)2) dt = fOT hy (t, d, uyy) dt (3.2.b)

Assuming a solution exists we make use of Pontryagin’s Minimum Principle and derive
the necessary conditions that the Nash Equilibrium strategies should satisfy. To find Nash
Equilibrium solutions we need to simultaneously solve two optimal control problems, where
the optimal solution of the first enters as a parameter in the second problem, and vice versa.

It will be showed later on that the game always admits a Nash Equilibrium.
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In order to solve the Open-Loop Nash Equilibrium problem we make use of Pontryagin’s
Minimum Principle:

» Pontryagin’s Minimum Principle is applied for the fiscal authorities:
I 1 _ 2 —\2
e Hamiltonian: Hp = >e ot ((uF —f) + Br(d —dr) ) + Ap
: 0H
* Ap=— F/ad,AF(T)=0

o up* = argmin{Hy}

7 d+a d®+up—uy
1-bd

» Working in similar fashion for the monetary authorities:
e Hamiltonian: Hy, = %e‘et ((uM —m)? + By(d — @)2) + Ay

7 d+a d?+up—uy
1-bd

: J0H

* uy’ = argmin{Hy}

However, the conditions from Pontryagin’s Minimum Principle are necessary but not
sufficient. This means that any solutions that provide the aforementioned equilibrium should
satisfy them, but the solutions satisfying them are not guaranteed to be Nash Equilibrium,
thus we name them candidate solutions. A rather restrictive yet sufficient condition, in order
for the candidate solutions, satisfying the conditions of Pontryagin’s Minimum Principle, to
be a Nash Equilibrium, is given by the following theorem:

Theorem 3.1: The sets of strategies Ug, Uy, are intervals of R and the Hamiltonians are
convex in d. Then the conditions derived by using Pontryagin’s Minimum Principle are also
sufficient and thus the pair (ug*,u,*) satisfying them is a Nash Equilibrium.

Proof of the above theorem is provided in the Appendix (6.1).

The convexity of the strategy sets is given as they are intervals of R, while the Hamiltonians
are proved to be convex in our area of interest, d € (0, d;,;;). A necessary condition for the
Hamiltonians to be convex in d is that the area of interest is left of the value that makes the
denominator of the system equal to zero, namely 1/b. Given that for the values we
mentioned in Note 1(pg.18), 1/b is much greater than the initial value, and due to the fact
that we intend to drive the system asymptotically near to the desired values, it is sufficient
to consider the area (0, d;y;;) for the convexity of the Hamiltonians.

Hence, by Theorem 3.1 from the conditions provided by Pontryagin’s Minimum Principle
we will obtain optimal policies. Then we use the following substitutions for computational
ease:

Define: up = €% g,y = €%, , then introduce: i = up + piy,. This is a transformation
of the costate variables we used for computational ease.
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Considering the Finite Horizon problem we prove in the Appendix (6.1) the following
theorem:

Theorem 3.2: If (ug*,uy™) is a pair of Open-Loop Nash strategies for the game (3.1)-(3.2),
there exist a trajectory for debt d * and an associated costate variable u* that satisfy the set
of non-linear differential equations:

1 = _
T +f — m) (3.3.a)

d*(t) = (f d(t) +ad(t)? — pu

1-b d(t)

wi(e)

= — (Br(d(©) = @r) + Bu (d(0) — D) )

s (9 _(F+2ad@®)(1-bd®) +b(Fd(t) +ad? + f —m)
3 (1-bd())*

) (3.3.b)

) b
+pt——
(1-bd(®))
With d *(0) = d, . Also, we proved that the system of differential equations (3.3) admits no
periodic solutions.

The corresponding expressions for the optimal control policies are:

* ra * 1 = * 1
up' () = f = %" () ao =055 (3.4.3)

* — * 1 — * 1
wuy () =m+e% 2, (0) Tan = M O 5ag (3.4.b)

Now let us assume that the finite horizon T is long enough so that the debt trajectory as
well as the costate variables’ trajectory enters a steady-state path. To find the values of the
debt and of the costate variable in the steady-state we set the differential equations (3.3)
simultaneously equal to zero. Denote these Non-Cooperative Open-Loop steady-state values
of the trajectories by (d9%, u9%). Therefore they should satisfy the following equations
derived by setting the differential equations in (3.3) equal to zero:

ugh = —ab (d2)? + (a—b7) (@21)? + (F— b(f —m)) d2* + (f — )
(3.5)
And then d2* as the solution of the following cubic polynomial:

—a (2a+b8) (A")3 + (ay, —7(2a+ b 6)) (d%)? + (Fy, —u(Ra+ b 6) —
(Br + BM)) A"+ (y3+1y,) =0 (3.6)

Where:y; =1—bdd:, vy, =0 —7, y3=Ppdp+Pudy , u=f—m

As we see the steady-state values are independent of the initial value of debt d.
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Let us consider for a moment the Infinite Horizon problem. That is, the costs of the two
authorities now are:

Jr = 1/2 fooo e % ((up(t) - f)z + Br(d(®) - d_F)Z) dt
Ju =515 €70 (Quaa (6) = 7% + By (d(6) — )" )

It should be noted though, that the control policies (3.4), do not imply necessarily the
existence of solutions for the infinite time case. Papavassilopoulos and Olsder [9] discuss and
exhibit a class of linear-quadratic Nash games, where while closed-loop no-memory
strategies for any finite-time interval exist, for the infinite time horizon there might not exist,
exist many solution or a unique one. Furthermore, the limit of the finite-time horizon
solution does not necessarily have to converge to the infinite time horizon solution. In
addition, Mageirou [10] had previously shown for the linear quadratic case, that the solution
of the algebraic Riccati equation, which coincides with the limit of the solution of the
dynamic Riccati equation when the time goes to infinity, determines the value of the infinite
time horizon game. However, the strategies yielded for that particular solution of the
algebraic Riccati equation are not necessarily in equilibrium.

Returning to our game and the Infinite Horizon case, one can easily observe that if we use
again Pontryagin’s Minimum Principle, the same expressions for control policies and costate
functions are obtained. But, now there is a significant difference. The infinite horizon lacks
transversality conditions, as the transversality conditions do not extend asymptotically. It is
easy to prove that the equilibrium equations for the infinite horizon case are identical to the
set of equations (3.3). This set of equations yields again the decoupled to equations (3.5) and
(3.6). Therefore, if we assume that there exists a solution to equations (3.6), we obtain a
steady-state equilibrium point. Then as Haurie claims in [13], the turnpike property makes
the trajectories of the debt and of the costate variables attracted to those points. Note that
for both finite and infinite horizon cases, it is natural that only real roots of (3.6) are
considered and accepted as steady-state values, due to the fact that they represent debt
value.

Therefore, one could conjecture that for the Finite Horizon case and for T long enough,
equations (3.3) become equal to zero. Then there exists T' < T such that for somet, t < T’,
the debt trajectory of the Finite Horizon enters a steady-value path, in the sense that the
value of debt remains constant. The debt trajectory in both the Finite and Infinite Horizon
cases is attracted by the same steady-state value as the expressions of the optimal policies
for both cases are identical and therefore the trajectory of the Finite Horizon can get in a
neighborhood of the steady-state value of the Infinite Horizon. Then, for T' <t < T, the
trajectory of the Finite Horizon deviates from the aforementioned steady-state value as the
optimal policies for the Finite Horizon deviate from those of the Infinite Horizon because the
transversality conditions for the costate variables A;(T) = 0,i = F, M need to be met. In fact,
Haurie in [13] comments that there is also a finite horizon turnpike property in the sense
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that on a long journey, the optimal trajectory should spend most of the time in the vicinity
of the turnpike.

Although we will not address in detail the problem of proving such properties, benchmarks
show that they might hold as well. We hence claim, that since for horizons long enough, the
trajectory could enter the steady-path and stays on it for the most part of the debt trajectory
except for some final time, it is important to study this steady-state path. Thus, during the
Open-Loop Nash Equilibrium mode of play, we first focus on the steady-state of debt and on
the effects which the additional risk premium (on the rate of change of debt) might have.
Then we present as benchmark examples, various values for finite time horizon T and
compare the results. We will elaborate later that the time needed to achieve the equilibrium
might be too long to practically consider it a viable solution, however the steady-state
presents properties that appear as well in smaller horizons, enough to provide a practical
and viable solution. We will also present comparisons with the infinite horizon game. From
an ethical point of view, one could say that there is no clear foreseeable future in the
economy and this way the study of infinity horizon is justified. However, in our case binding
in a policy for practically a really long time is of no application and thus the finite horizon
case should be investigated as well.

Before proceeding with our model, we recall some results for the steady-state proven in
literature, for the infinite horizon case:

3.1 THE TABELLINI MODEL: NO RISK PREMIA
First, for reference we present the results of the Tabellini model. That is, in eq.(3.1) we set
the parameters a = 0 and b = 0, and in (3.2) T goes to infinity. Also dr = d,; = 0 was
considered and the following conclusions had been derived:

1. This game has a unique set of admissible equilibrium actions that allow for a
feedback synthesis.

2. This game has a unique set of admissible equilibrium actions if the policymakers
are sufficiently impatient, i.e., if 8 > 2r.

3. This game has an infinite number of admissible equilibrium actions if 8 < 27.
However, all equilibrium actions yield the same closed-loop system. Furthermore,
equilibrium actions converge to the same steady state.

4. When b > 0 the game has a unique steady state values of debt for every initial
dy, leading to the steady state values of: d¢ = Yo, fe= w,

b
_ B =
me = m -2 (pe — ).
5. Also if b < 0 and the players do not care much about the debt (thatis 8 > 1

and g, By sufficiently small), then the game admits no Open-Loop Nash
Yo

equilibrium unless dy, = d°€ = >
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3.2 ENGWERDA AND VAN AARLE: Risk PREMIUM ON DEBT LEVEL
Engwerda and van Aarle extended the Tabellini model by introducing a parameter of risk
premium depending on government debt level (in eq. (3.1) a>0andb =
0,and in (3.2) T goes to infinity). This extension produces at least one and at most three
steady states of debt. They conclude to a third-order equation of steady state of debt, d°:

—2a?d®+a(@ —3r)d*+y,d+y,=0

withyy = Bedp + Budy + (f —m)(6 —7) and v,
= —(F(F + 6) + Br + Bu) — 2a(f — M)

The discriminant is: h(a) = 8y;3 — 36ay,y,s — 40ay,s® — 108a?y,? + y,%s2%, s =0 —
37. Hence we obtain:

1. One steady state of debt if either i) h(a) < 0 or ii) h(a) = 0 and a?s? =
3y;.

2. Two steady states (from which only one applies as an open loop equilibrium if
dy, = d®)if h(a) = 0 and a?s? # 3y;.

3. Three steady states (from which the middle one applies as an open loop
equilibrium if dy, = d°), if h(a) > 0.

4. Of these steady states, at least one is a saddle-point, denoting the impact of
including risk premia.

5. Also, they have extracted the conclusion that the steady-state value of debt
decreases as the value of a becomes larger.

3.3 INTRODUCING: Risk PREMIUM ON DEBT RATE OF CHANGE:

First, throughout this section we assume that the horizon T chosen, is long enough so that
equilibrium value for the debt is attained. For our main model consider again eq.(3.1) now
with both a > 0 and b > 0. From equation (3.6) the equilibrium points are defined. This is
a cubic polynomial and thus an analytical solution is available. It is natural that only real roots
of (3.6) are considered and accepted, due to the fact that they represent debt value.

3.3.1 Effect on Number of Equilibrium Points and Qualitative Behavior
In the Appendix (Section 6.1.2-6.1.4) we prove the following:

» If A(a,b) is the discriminant of the cubic polynomial (3.6), as a function of the risk
premium coefficients a and b, then the number of steady state values of debt given by
(3.6) is subject to the following rule:

e |If A(a,b) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the
game.

e If A(a,b) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 1
candidate solution for the game.

——

]
23 |



e |If A(a,b) = 0, there are at least 2 roots coincide and they are all real. That means
there are either a double real root and distinct single real root, or a triple real root.
That is we either have 2 or 1 candidate solutions for the game respectively.

(F Y, —u(Ra+b0)— (Br + ﬁM))(a Y, —t(2a+b 0)) +9a(2a+ b 6)(y; +

ay,) =0 (3.7)
If (3.7) holds there is 1 triple real root, else there is 1 double root and 1 distinct real
root.

» The qualitative behavior of the system near the equilibrium points should be explored.
This is achieved via the Linearized System around each equilibrium point. Linearizing
system (3.3) we get:

. _a_2bpd"  a+bi+b?u 1
<d(t)> _ b Y13 by,? Y12 (d(t)>
g - 74 p2 7y 4 OL OLy2 oL o
u(t) - _2(arbreb?mpgt | 30w a o 2bpft  awbreb?u [ \u(t)
B + Fn) ¥a® T p YT by,?

(3.8)
where (d9%, udh) is the equilibrium point under discussion.
The eigenvalues of the linearized system (3.7) are:
dg(d
o (1-bd2") 6 J_r\/(1 —pd2ty2 92 —429D/
1.2 = 2(1 — bd%%)

(3.9)

One can easily observe that the steady states will be one of the following:

o It (1-bd2ty202—429Dy/ > 0ana ® 9/, <0, then eig, >0 and
eig, < 0. Thus, the steady state is a saddle point.

e If (1-bdih)? 02 _40g(d)/ad > 0 and ag(d)/ad > 0, then eig; >0 and
eig, > 0. Thus, the steady state is an unstable node.

e If (1-bdo)?0% - 49 g(d)/(')d < 0, then eig,, are complex eigenvalues with

positive real part. Thus, the steady state is an unstable focus.

e Last but not least, there is the case an eigenvalue becomes zero. That is, when
A(a,b) =0 and (3.7) holds (a triple real root). As we have already argued the
equilibrium point is also a root of the first derivative. It is then straightforward from
(3.9) that an eigenvalue becomes zero while the other will be positive. This means
the system matrix has a non-trivial null-space and has an equilibrium subspace than
an equilibrium point. Due to the positive eigenvalue all trajectories diverge away
from the equilibrium subspace.
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» Combining the two previous bullet we conclude to the following proposition:
Taking into account that the highest order coefficient §5 = —a(2a + b 8) of (3.6) is

always negative since a, b, 8 > 0, the sign of 0 g(d)/ad near each equilibrium point

can be determined. Thus:
e IfA(a,b) > 0, there are 3 distinct real roots. The first and the last are saddle points,
while the middle one is unstable node or focus.
e |If A(a,b) <0, there is 1 distinct real root and 2 complex conjugate roots. The

derivative 0 g(d)/ad < 0 and the equilibrium point is a saddle point.

e If A(a,b) = 0 and (3.7) does not hold there is 1 double real root and 1 distinct single
real root, the double root is unstable while the single one is a saddle point.

e |If A(a,b) =0 and (3.7) does hold there is 1 triple real root and we have an
equilibrium subspace than an equilibrium point, and all trajectories diverge away
from the equilibrium subspace.

Commenting on our analysis, the inclusion of another risk premium term again does give
at least one steady state saddle point. Also, the maximum number of steady states remains
the same, but of course now it varies with the values of a and b. Furthermore we have
explored the case of a zero eigenvalue, and found that there exists an equilibrium subspace
which acts as a solution of the dynamic game only when the initial value d,, is already on that
subspace. Else, the trajectory diverges away and no solution is obtained.

3.3.2 Effect on development of the Steady-State Value of Debt
It is now clear that risk premia coefficients a and b can play major role in defining the
equilibrium points. It is important then to see how the value of equilibrium of the system
responds in variations to those coefficients and extract a qualitative conclusion, if possible.

In order to examine the sign of the derivative of steady state value debt w.r.t. a and b.

Under the assumption that 0 g(d)/ad # 0 at the steady state d9* (for example, not having

a triple root as we've argued before) and that d2:(a) and d9%(b) are continuous
differentiable in their respective variables we obtain:

dg / dg /
OL OL
d d2(a) /2a = od g 0de (b)/ab ____'od

? Y5a ? o
o O g/ad = —3a(2a + b0)d9:* + 2(~3a7 + ab — br0)dS" + (—Br — B — W(2a + b6) + 7(6 — 7)) (3.10)
e 09/ = —(4a+bO)dY + (0 - 3P)dIL + (~2m)dZ: (3.11)
e 99/, =-a0d? 7049 —updlt (3.12)

Depending on the parameters we can derive the sign of the partial derivatives w.r.t.
a and b. Furthermore as we analyzed in section 3.3.1 in case we have a unique steady state
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(a saddle point) the sign of 9 g(d)/ad is negative. That is also the case for three distinct

steady states, as two of them (the first and last are saddle points) have 9 g(d)/ad <0.

Also, we assume that the steady-state of debt is positive. Thus for example, if 8 < 3 r and

i>0ef—m>0,then J g/aa < 0 and consequently: J dgL(a)/aa < 0. This gives us
the insight that debt decreases as the value of a gets larger. However, for another selection
of parameters we could observe different behavior. For example, typically 8 > 3 7, thus we
can observe the debt to increase for small values of a, but as it gets larger the “positive”
effect of the second term in (3.11) is balanced by the other two “negative” terms and the
derivative becomes negative again and the steady state value of debt declines again. This
means we can except the value of debt to increase for small values of a and decrease again
as a grows larger.

Considering now equation (3.12) the only non-negative term could be —7 8 d9L , when
u<le f— m < 0. However, in most benchmarks is not large enough and the derivative
remains negative. That means, the steady state value of debt will always decrease as b

increases. The decaying of the steady state debt appears to be almost linear with the value
of b.

As we will show in the next benchmarks, the effect of a to increase steady state value of
debt for small values, is contained by the risk premium term on rate of change of debt. The
higher the value of b is, the less this effect is visible.

3.3.3 Effect on the Steady-State Values of the Monetary and Fiscal Policies
The impact of risk premium terms is not restricted only on the steady-state value of debt,
but as expected it affects the steady-state values of the optimal policies too. The steady-
state values of the monetary and fiscal policies are computed in the Appendix by equations
(6.1.6). We also provide them here for ease:

Br(d —d)
F+2ad—6(1—bd)

_ Pu(d — du)
e — _
and uy" =M= A= 00—bd)

upe=f+

Where uz¢, uy,® are the steady-state values of fiscal and monetary policies respectively.
We can also assume that when in the steady-state, the debt has an equilibrium value too,
thus it would be proper to write:

e=/E+ ﬁF(dgL_d_F)
7+ 2ad% —0(1 — b d%)

Bu(d2" — dy)
F+2ad —6(1— b doh)

Up and uy®=m—

——

]
2% |



In order to derive assumptions on the effect of risk premia on the steady-state policies,
we take the respective derivatives w.r.t. a:

2d%(a) — 0 d%(a) 0 d%(a)
9u5@), Br—%a (r+2ad§L—9(1—bdeOL))—ﬁp(dgL—dF)(2d2L+2a St ob—5— )
da — 2
“ (F+2ad2" —6(1-bdh))
adg"(a) (. oL oL oL _ 7 oL dd2"(a) dd2"(a)
ey BT+ 2048t~ 601 b dgh) — Buld —dM)(Zde +202% () 4 gy 0 )
da —

2
(7 +2adg" - 01— b d2"))

Next we differentiate w.r.t. b:

oL _ oL oL
g, L (B) dg b(b) (F+2ad?* —6(1 —bdl")) — Be(d2" —dr) (ma d(;’ b(b) +0dg" + o 9 (b))

9 us(b) /o = ab

2
(F+2ad2 —6(1 - b d»)

a.d2"(b)
DUy P

_ ——\ (., 0dZ (b 9 d2*(b
(F+2adZ*—6(1 —bdd")) — Bu(do* —dy) (Za 519( )} 049" + 6b 519( ))

2
(F+2ad2 —6(1—ba»))

One can see that if we assign same weights f, Sy and same target values for debt to the

. ) ) 0 up(b d up(b .
two authorities, we have up@) _ _0um@ g 9ur®) __ 2um®) p oo restrictive, but
da da ab dob

more qualitative result would be to observe that the derivatives of the steady-state policies
w.r.t. both risk premium terms have opposing signs. We are going to show in the benchmark
example that follows that the derivative of the policies with respect to a is negative, however
w.r.t. b it is positive. Keeping in mind that a negative value of fiscal deficits denotes a fiscal
surplus, we can conclude that as the risk premium on the debt level increase, both the
policies are being used more actively. In contrast as the risk premium term associated with
the rate of change of the debt becomes greater, the system looks more independent and so
the policies are less actively used. However, the impact of b is significantly less than the one
of a.

3.3.4 Benchmark Examples

Note 2: We have already argued about the values of a and b that they would be around 0.10
and 0.20 respectively given the current economic situation. Also, as stated in previous
literature the weight values that the two authorities put on debt development, Sz and Sy,
are of the same order of magnitude, that is 1073, The parameter 6, which denotes the
degree in which the authorities care about the future development of the debt, will take two
representative values: 8 = 0.15 when the players do care about the future debt
development and 8 = 0.75 when they care less.

We choose the following parameters:

Br = 0.06 ,By = 0.04 ,dr =d, = 0.5,7 =0.03,0 = 0.15
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Percentage of GOP

The justification of this choice is that in OECD countries for example, even in a non-
cooperative mode there are some basic common lines such as the target of debt.
Furthermore, the fiscal authorities of each country put greater weight to its governmental
debt, than the ECB who should oversee the other country-members too. Last, in our first
example the authorities are interested in the future development of the debt and do not
play a hasty game. This justifies the value of 6. Last, the target values of the two authorities
policies are: f = 0.01 and m = 0, meaning that the ECB adopts a strict approach for the
money growth, intending to be zero at steady state, while fiscal authorities care to more
slowly reduce their deficits leaving a target value of 0.01. A stricter approach might mean
that they would have to enforce higher taxes.

3.3.4.1 Trajectories of Debt, Costate Variables and Optimal Policies for the Finite Horizon

Lo
W

=
m

0.4rF

0.z

We begin our benchmarks by considering the finite horizon case for various values of T.
We present the trajectories that the debt and the costate variables follow when solving the
two point boundary value problem imposed by the use of Pontryagin’s Minimum Principle.
As we conjectured the debt trajectory is attracted by a steady-value, and either it reaches it
or not, then it deviates as the transversality conditions have to be met. This is clear in Figures
3.1 to 3.4. In Fig. 3.2, where the horizon is T=20, there is a subtle suspicion of entering a
steady-trajectory for a short-time, and for T=30 it is obvious that the trajectory enters a
steady-path for a while. Then in Figure 3.4 for T=50 it is evident that the trajectory reaches
the steady-path and remains in it except for some final time. In that time, as the
transversality conditions have to be met, the control policies deviate from their steady values
and therefore they affect the debt trajectory as well. Also the two costate variables, Az, Ay,
are always meeting their respective transversality condition at the end of the horizon. When
referring to the respective costs at each horizon, of course the longer the horizon is the
greater the cost for each player, however the increment is not that significant. On the
grounds that the debt trajectory stays in a vicinity of a steady value for the most time of the
horizon, then the accumulation that takes place for the cost is minute. For example when
the horizon is T=20 the cost for the fiscal authorities is J1=1.0845, and for T=50 the cost is
11=1.0899.

Finite Horizon For T=5 Finite Horizon For T=20

]

Final cost is: J1=1.0226 rFinal cngt is: J1=1.0845
Final cost is: J2=055975 Final cost 5. J2=055773
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Figures 3.1 - 3.2: Finite Horizon Trajectories of Debt and Costate Variables or various values of finite horizons
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Finite Horizon For T=30 Finite Horizon For T=50
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Figures 3.3 - 3.4: Finite Horizon Trajectories of Debt and Costate Variables or various values of finite horizons

Furthermore, the effect of deviating from the steady path in order to meet the
transversality conditions, has an obvious effect on the optimal policies too. Recall the

expressions derived from those policies, equations (3.4): ug*(t) = f — eetlp*(t)#d(t) ’
1

T0d0 When the two costate variables, Az, 4);, meet their

respective conditions A (T) = 0,1, (T) = 0 then uz*(T) = £, uy,*(T) = m. This is exactly
shown in Figures 3.5-3.8.

uy () =m+e% 2, (©)

Finite Harizan For T=5 Finite Harizon For T=20
02r 02r

Percentage of GDP

Figures 3.5 - 3.6: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons
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Figures 3.7 - 3.8: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons

3.3.4.2 Effect of the Risk Premium Terms on Steady-Values of Debt

The Figures in the previous section were obtained for a = 0.10 and b = 0.20. What is important
to find out is how these in these plots, both steady part and final part, are affected by changes in the
two risk premium terms. In other words, we will investigate the effect of risk premium terms in the
finite horizon case. As we have already argued at the start of this section, and it is presented here,
the steady part dominates for most of the time horizon. With this in mind, and also considering that
practically this is the value in which the debt remains in a particular country for most of the time the
policy is implemented, we first explore the effect of the risk premia in the steady-part.

Starting from a time horizon of T=20 we first explore the effect of varying the risk premium term
b that depends on the rate of change of debt, while keeping a constant at 0.10. Figures 3.5 through
3.7, first of all show that the relation between the risk premium term b and the steady part of the
debt trajectory is almost linear. As b increases the value the debt attains decreases too,
independently of the horizon. This was also what we found out when analyzing theoretically the
effect of the risk premium on the steady-state value of debt. However there are some differences
that depend on the length of the horizon T. These differences are mainly attributed to how close to
the steady path the trajectories tend. The longer the horizon is, the closer the trajectories tend to
their respective steady values as it was also obvious from Figures 3.1-3.4 in the previous section. As
the time horizon increases the behavior of these plots should be closer to the steady state trajectory.
Indeed, T=50 is long enough and the plot is identical with the one from the steady state. One should
keep in mind from these results, that no matter how close, in fact arbitrarily close, we can get to the
steady state, the part that represents the steady part of our trajectory behaves always the same as
b varies. We have an almost linear decrease in the steady value of debt as b increases.
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Figures 3.9 - 3.10: Effect of risk premium term b on steady part of the debt trajectory
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Figures 3.11: Effect of risk premium term b on steady part of the debt trajectory

Next we will investigate the infinite horizon case. That is the exact results obtained from the
system of equations (3.3) or directly by solving (3.5) for a real valued solution. Figures 3.8 and 3.9
show two of the results we proposed theoretically in section 3.3.2. First, that the decline in the steady
state value of debt, as b appears to be linear. Second, for small values of a we have higher steady
state value of debt. As we can see, the plots are identical except being moved along the vertical axis.
Another point to focus on, is that figure 3.9 is identical with 3.7 (T = 50, a = 0.10). This confirms the
fact that T=50, is a long enough horizon and all the results deduced for steady-state in infinite time
horizon, apply now to the steady part of the trajectory in finite time.
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Figures 3.12 & 3.13: Effect of risk premium term b on steady state value of debt
We continue to focus our analysis now on the steady-state for a while. In figures 3.10 and
3.11 we see how the sign off — m impacts on the steady state. As we expect, when the ECB is willing
to let a higher money growth and fiscal authorities are stricter with their deficits, the steady state of
value debt will be lower. Of course the relationship of the steady-state value of debt with the risk
premium term b remains linear. Another observation to be made, is that as the value of risk premium
a increases, in the second case, debt gets much lower than in the first. In other, words the slope is
greater in the second case. Intuitively, we could say that when the main objective for each authority,
namely the target values for money growth and fiscal deficit, are in the general direction of the
decline of the debt value, the more active use of policies provoked by the greater risk premium terms
yields lower steady-state debt.
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Figures 3.14 & 3.15: Steady state value of debt for f > m(left) and f < m(right)




3.3.4.3 Effect of the Risk Premium on the Terminal Value Debt

However, as well as the steady-state analysis for long enough horizons, the analysis for shorter
horizons is equivalently important. We've already argued that, depending on the global economic
situation, the authorities might not prefer to bind themselves in such long-term agreements.
Therefore we explore shorter horizons. We begin by presenting again the trajectories for two cases.
First for a short horizon T=5 and second for an extended horizon of T=10. In both cases the debt
neither reaches as low levels as in longer horizons, nor has a clearly steady part in the trajectory. One
could say that the trajectory of debt here, is attracted by the steady-state but the horizon is too short,
and it immediately deviates as well as the control policies, in order to meet the transversality
conditions for the costate variable. To analyze the effect of the risk premium term depending on the
rate of change of the debt in this case, we will examine what is the impact on the final value of debt.
This is due to the fact that there is no steady-part long enough to justify domination throughout the
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Figures 3.16 - 3.17: Finite Horizon Trajectories of Debt, Costate Variables for shorter finite horizons
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Figures 3.18 - 3.19: Finite Horizon Trajectories of Optimal Policies for various values of finite horizons
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Debt/GDP

The risk premium term we introduced, even in shorter finite horizons, does decrease the level of
debt as it increases. However, the values reached are not even near the steady state values or the

ones achieved by longer horizons. An important feat though is how the debt is able to decrease,
especially as b increases, in such short horizon. Keep also in mind that due to the transversality
condition, which has to be satisfied, this is not the lowest value of debt throughout the horizon. This

denotes the significance of the new term introduced, as it implements the pressure that the financial
markets want to add, but also operates as a supporting mechanism for countries that are active and

try to decrease their debt levels.
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Figures 3.20 - 3.21: Effect of risk premium term b on the debt value at the end of the horizon

0.35

0.4

Another parameter to consider now is that of the risk premium term depending on the debt level.
Engwerda, van Aarle et al [2] investigated this case as we have already mentioned, but now the

dynamics of the system are changed and it would be appropriate to check again the effect of a on
the steady state. From Figures 3.16-3.18, the first thing we have to mention is that the effect on the
steady state value is no more linear as a increases, in contrast to [2]. We can observe easily the
growth in steady state value of debt for small values of a, and then the decline that we described.
Interest here focuses on the value of a that makes (3.10) equal to zero. It is there that the above
curve obtains its maximum. One could argue that it’s a value that should be avoided as it yields the

maximum steady-state debt in the Open-Loop mode. This value can be obtained by solving the
guadratic equation w.r.t a and choosing the positive solution. In addition, another fact we stated can
be observed as well. As the value of b increases, this effect wares off by the dominance of the risk

premium term depending on the rate of change of debt, on the term depending on the debt level.
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Figure 3.22, 3.23 & 3.24: Effect of risk premium term a on steady state value of debt for various values of b

Next we present the changes as the two players become hasty, i.e. they do not care about the
future development of the debt. That is for an increased value of 8,8 = 0.75. Theoretically we expect
the steady state of debt to increase as 0 increases. This is confirmed and depicted in Fig. 3.21. It is
normal if we take a look at the cost functions (3.2). As 0 increases the exponential term decreases
faster. In fact it decreases too fast representing authorities that care significantly less about how the
state of debt develops in the future. Also, we observe that the effect a has for small values is
augmented in Fig. 3.21. This can be explained by equation (3.11). The second term containing 6 — 37
is much greater than the rest, thus dominating and resulting in a positive derivative w.r.t. a with
relatively greater value than the respective values in the other cases. Thus, the spiking effect is
enhanced as shown in Fig. 3.21.
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Figure 3.25, 3.26 & 3.27: Effect of parameter ¢ on steady state value of debt.
Left: How it affects the behavior as b varies
Right: How it affects the behavior as a varies
Bottom: Direct Effect for a = 0.10 and b = 0.20

3.3.4.4 Effect of the Risk Premium on the Control Policies

Last, we provide examples on the effect that risk premia have on the steady-state policies. In the
previous section it was stated that the more the risk premium term on the level of debt increases,
the more active the player gets, implying greater values for the respective policy. These behaviors
are representative not only when the steady-state path is reached, but also for smaller horizons
where the debt trajectory enters or approaches the steady state for a while. Target values are set to
f = 0, m = 0.01 for this simulation. The results derived in the previous section (3.3.3) are depicted
here. The increase of the term of risk premium depending on the level of debt results in more active
policies from both players. Intuitively, this represents the fact that, when markets add more pressure
to the countries by demanding great values of risk premium on the debt level, then the authorities

are more alert and active trying to restrict the level of debt within acceptable standards. The more
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Policies as percentage of GDP

this risk premium term increases, the more the players have to lose by maintaining high debt levels,
and thus they act to lower it (Fig. 3.22).

One the other hand, when the risk premium term on the rate of change of debt increases the
players become slightly less active. A justification of this is that when the debt is declining, the risk
premium term b is acting as a reward by decreasing the real interest rate. This is helping the debt
level to decrease and be contained more easily, allowing the players to relax slightly (Fig. 3.23).

In significantly smaller horizons where we analyzed the final value for debt, it is straightforward
from the equations derived for the optimal policies (3.4):

_ 1 1
up' = f o g un =Mty

At the end of the horizon, where g (T) = uy (T) = 0, the policies reach their respective target
values f, m.

Policy Steady-State Policy Steady-State

Fuolicies as percentage of GDP
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Figure 3.28, 3.29: Impact of risk premia on optimal policy steady-states.
Left: Impact of risk premium depending on debt level (a)
Right: Impact of risk premium depending on rate of change of debt (b)
Red represents fiscal deficits, Blue represents money growth
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4 THE CO-OPERATIVE CASE

In this section we consider the game (1.a)-(1.d) under the Co-operative case. That means,
the players communicate and seal agreements to achieve their goals. The cost of each player
is not defined a priori, but after the cooperative talks take place. That means it is dependent
on the bargaining strength of each player. In our case, the two-player game we denote the
bargaining strength of the fiscal authorities with w,0 < w < 1. Consequently the strength
of monetary authorities is (1 — w). Thus, the following parameterized optimal control
problem is at hand:

min], J=wjp + =)y (4.1)

T
= 1/2f0 e ((uF(t) — )+ Be(d(® —d_p)z) dt

T
1y [ e (1) (0a® 2 + fu(a(©) ~ ) )

Subject to the government budget constraint discussed in the previous section:

Fd(t) +ad(t)? + up(t) —uy(t)

d() = 1-bd@)

(4.2)

We are looking for Pareto efficient solutions. The equilibrium strategy 7, chosen from the
set of admissible strategies must satisfy:
If for any other strategy y within the set of admissible strategies:
the set of inequalities J;(y) < J;(7),i = F, M with at least one
of them being strict, has no solution for any y, then strategy
y is Pareto Ef ficient

The dynamic game has now transformed into an optimal control problem from an
analytical point of view. By solving the optimal control problem (4.1)-(4.2) for every w €
(0,1) a curve of Pareto Efficient solutions is obtained. But which curve will be selected by
the player, is defined by the choice of the parameter w, i.e. the coordination of the system.
Note that a Pareto solution is not unique. Since our game under the Co-operative case
belongs to the class of optimal control problems, it can be solved using Pontryagin’s
Minimum Principle. As in the Non-Cooperative case we first prove that the conditions of
Pontryagin’s Minimum Principle are not only necessary but also sufficient for any w € (0,1)
for which the candidate controls are obtained.

——
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Theorem 4.1: The sets of strategies Ug, Uy, are intervals of R and the Hamiltonians are
convex in d. Then the conditions derived by using Pontryagin’s Minimum Principle are also
sufficient and thus the pair (ug*,uy ™) satisfying them is a Nash Equilibrium.

Proof of the above theorem is provided in the Appendix (6.2).

» Applying Pontryagin’s Minimum Principle we obtain:
e Hamiltonian:

H= %e‘etw ((up - f)z + Br(d - d_F)Z)
367 (1 - @) ((uw () = )2 + By (d(6) = dyy)*) + 2 L
e A=y =0

e u"=arg min{H}

o Uy’ —argmm{H}
o (u f)———(uM —m)

As in the previous section we define: u = e?%A. This is a transformation of the costate
variable we use for computational ease. Using the results from Pontryagin’s Minimum
Principle we prove the following in the Appendix (6.2):

Theorem 4.2: If (up™, uy ™) is a set of Pareto Efficient strategies that are obtained for a choice
of bargaining power w € (0,1) for the optimal control problem (4.1)-(4.2), there exist a
trajectory for debt d * and an associated costate variable u* that satisfy the set of nonlinear
differential equations:

d*(t) = (Fd® +ad®)? - p——"—e+ f — ) (4.3.3)

1- bd(t) w(1-w)(1-b d(t)) tf-m

i (©) = = (@Bp(d(0) — dr) + (1 — ) (d(O) — dy) )

_ (f+2aa®)(1-b d(®))+b(7 d(t)+a d2+f—171)) 2 b
TH (9 (1-b ()’ w(1-w)(1-b d(1))’ (43.6)
And the optimal control laws derived: up* —uy* = f —m — L (4.4)

w(l-w)(1-b d)

With d*(0) =d,. Also, the system of differential equations (4.3) admits no periodic
solutions as we prove in the Appendix (section 6.2).

Again, now assume that the horizon is long enough so that equilibrium is reached. Then
the Co-operative equilibrium points are (dS9,uS®). These points satisfy the following
equations:

10 = w(1 - ) (—ab(d£0)3 + (a - b7)(dE°)* + (f - b(f - m)) ag? +(f - m)) (42)
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Now, replacing u$° to the second equilibrium equation (4.3.b) we get:
83 (dS9)3 + 6, (dS2)2 +6,d5° +6,=0 (4.6)

Defining: §3 = —w(1 — w)a(2a + bO), 5, = w(1 — a))(a Yy, —7Qa + bH)),
81 =w(l— )Ty, —uQa+b0) — (wfr + (1 — w)By), 8 = w(1 — Wiy, + wPpdr + (1 — w)Bydy

Where:y; =1—=bdo%, y, =0 -7, y,=B,dp+B,dy , U=f—m

Equation (4.6), which defines the steady state value of debt, is a cubic equation. It is
natural that only real roots of (4.6) are considered and accepted as solutions of the game,
due to the fact that they represent debt value. It is easily observed that when we assign
ﬁFCO =(1- a))BFOL and ,BMCO = a),BMOL the cooperative equilibrium cubic polynomial
(4.6) is the open-loop equilibrium cubic polynomial (3.5) multiplied by w(1 — w). This
indicates that d5° = d2° and equilibrium equation (4.5) gives u$® = w(1 — w)ufr . Thus,
the steady state value debt is the same in both non-cooperative Open-Loop and Cooperative
case using the aforementioned weights assigned by the two authorities for the development
of the debt.

Also, we speculate that the same conjecture we made in Non-Cooperative case, about
how the steady-state attracts the trajectory of the state variables, will also apply here. In the
same way we commented on, on the Non-Cooperative case, the equations from which
steady-state value of debt is obtained is the same in the Finite Horizon and in the Infinite
Horizon. Therefore, we hypothesize that there exists T' < T such that for somet, t < T', the
debt trajectory of the Finite Horizon enters a steady-value path, in the sense that the value
of debt remains constant. The debt trajectory in both the Finite and Infinite Horizon cases is
attracted by the same steady-state value as the expressions of the optimal policies for both
cases are identical and therefore the trajectory of the Finite Horizon can get in a
neighborhood of the steady-state value of the Infinite Horizon. However again, for some final
time the trajectory of the Finite Horizon deviates from the aforementioned steady-state
value as the optimal policies for the Finite Horizon deviate from those of the Infinite Horizon
because the transversality condition for the costate variable A(T) = 0 needs to be met.
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Again, we focus on the steady state of debt and on the effects which the additional risk
premium (on the rate of change of debt) might have. Before that we recall the
aforementioned results from literature:

4.1 THE TABELLINI MODEL: NO RISk PREMIA
First, for reference we present the results of the Tabellini model. That is, in our control
problem (4.1)-(4.2) we set the parameters a=0and b = 0. Also dr = d, = 0 was
considered and the following conclusions had been derived:

1. The co-operative equilibrium has always higher speed of adjustment than the
Nash equilibrium.

2. The co-operative equilibrium has always lower steady state value of debt than
the Nash equilibrium.

3. There are unique equilibrium policies, for every initial debt, choice of
parameters and bargaining power of the players. Furthermore, the deviations of
the policy of each player from their respective targets, are proportional to each
other (the constant of proportionality being w).

4. Hence, in contrast with the non-cooperative case for every initial parameter the
problem has a solution.

4.2 ENGWERDA AND VAN AARLE: RISk PREMIUM ON DEBT LEVEL
Engwerda and van Aarle extended the Tabellini model by introducing a parameter of risk
premium depending on government debt level (in eq. (4.2) a > 0 and b = 0). Also, they
confirm too that when ﬁFCO =(1- a))ﬁFOL and ,BMCO = a),BMOL, we have the same steady
state value of debt. And then, using these values the results for the steady states are the
same:

—2a*d®+a(@ —3rd*+y,d+y,=0

withy, = Brdr + Budy + (f —m)(6 — ) and y,
= (F(F — 0) — Br — Pu) — 2a(f — m)

With a discriminant: h(a) = 8y,3 — 36ay,y,s — 40ay,s3 — 108a%y,% + y,%s%, s =6 —
37. Hence we have:

1. One steady state of debt if either i) h(a) < 0 or ii) h(a) = 0 and a?s? =
3Y1-

2. Two steady states (from which only one applies as an open loop equilibrium if
dy, = d®)if h(a) = 0 and a?s? # 3y;.

3. Three steady states (from which the middle one applies as an open loop
equilibrium if dy, = d¢), if h(a) > 0.

4. Of these steady states, at least one is a saddle-point, denoting the impact of
including risk premia.
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4.3 INTRODUCING: RISk PREMIUM ON DEBT RATE OF CHANGE:

It is clear that risk premia coefficients a and b can play major role defining the equilibrium
points in the Co-operative case as well. It is important then to see how the equilibrium of
the system responds in variations of those to coefficients and extract a qualitative
conclusion, if possible. We will also explore the effect of the changing bargaining strength w.
The equilibrium points are defined by equation (4.6), a cubic polynomial and thus an
analytical solution is available.

4.3.1 Effect on Number of Equilibrium Points and Qualitative Behavior
In the Appendix (Section 6.2.2-6.2.4) we prove the following:

» |If A(a,b) is the discriminant of the cubic polynomial (4.6), as a function of the risk
premium coefficients a and b, then the number of steady state values of debt given by
(4.6) is subject to the following rule:

e If A(a,b,w) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for
the game.

e IfA(a,b,w) < 0, there is 1 distinct real root and 2 complex conjugate roots. Hence,
1 candidate solution for the game.

e IfA(a,b,w) = 0, there are at least 2 roots coincide and they are all real. That means
there are either a double real root and distinct single real root, or a triple real root.
That is we either have 2 or 1 candidate solutions for the game respectively.

(0 = w)(Fy, —1Qa +b 6)) = (@ + (1 - w)pu)) (ay2 — 7(2a + b 6))
+9a(2a + b 8)(wPpdr + (1 — w)Bydy + w(1 — w)hy,) =0 (4.7)

If (4.7) holds there is 1 triple real root, else there is 1 double root and 1 distinct real
root.

> The qualitative behavior of the system near the equilibrium points should be explored.
This is achieved via the Linearized System around each equilibrium point. Linearizing
system (4.3) we get:

) _a_ 2buf° (a+b F+b2 W) _ 1
(d(t)> _ b P -0e bys? 2 -0w <d(t)>
; - = 7 ,,CO CO~2 co Z1h2 a7
u(t) _ _ _ 2(a+b 7+b* W) g 3(b u§9) a 2bpg®  (a+b7+b* W) u(t)
(@B + (1 = @)fu) y18 nt(l-w)o b O+ 18 by12(1-w)w
(4.8)

where (d59, u$°) is the equilibrium point under discussion.
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The eigenvalues of the linearized system (4.8) are:

_ co
(1-bdg)° 0 + \/%(w(l — w)(1 - bd<0)2 2 — 49 g(d)/ad)
€912 = 2(1 — bdC0)3 (4.9)
(1-baso)"*

It is pretty straightforward that > (. Hence, the sign of the quantity under the

w(1l-w)
root and consequently the type of equilibria are subject to the following rules:

o Ifw(1l—w)(1—bdoh)2 9% — 46g(d)/ad > 0and ? g(d)/ad <0,
then eig; > 0 and eig, < 0. Thus, the steady state is a saddle point.

o Ifw(l—w)(1-bdoh)?e2— 49 g(d)/ad > 0 and ag(d)/ad > 0,
then eig, > 0 and eig, > 0. Thus, the steady state is an unstable node.

e If w(l-w)(1-bdi")?0%— 40 g(d)/ad <0, then eig;, are complex

eigenvalues with positive real part. Thus, the steady state is an unstable focus.

e Last but not least, there an eigenvalue could become zero. Thatis, when 4(a, b, w) =
0 and (4.7) holds (a triple real root). As we have already argued the equilibrium point
is also a root of the first derivative. It is then straightforward from (4.7) that an
eigenvalue becomes zero while the other will be positive. This means the system
matrix has a non-trivial null-space and has an equilibrium subspace than an
equilibrium point. Due to the positive eigenvalue all trajectories diverge away from
the equilibrium subspace.

» Combining the two previous bullets we conclude to the following proposition:

The highest order coefficient §5 = —w(1 — w)a(2a + b ) of (4.6) is always negative since
a,b,0 > 0and w € (0,1). Thus, depending on how many equilibrium points we have we can

determine the sign of g g(d)/ad near each equilibrium point:

e If A(a,b,w) > 0, there are 3 distinct real roots. The first and the last are saddle
points, while the middle one is unstable node or focus.
e If A(a,b,w) < 0, there is 1 distinct real root and 2 complex conjugate roots. The

derivative 9 g(d)/ad < 0 and the equilibrium point is a saddle point.

e IfA(a,b,w) =0, and (4.7) does not hold, there is 1 double real root and 1 distinct
single real root. The double root is unstable while the single one is a saddle point.
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e If A(a,b,w) =0, and (4.7) does hold there is 1 triple real root and we have an
equilibrium subspace than an equilibrium point, and all trajectories diverge away
from the equilibrium subspace.

As we can see the qualitative behavior when playing under cooperative mode, does not
change. However, the bargaining power of each authority can alter the number and type of
equilibrium points, just like the risk premia coefficients, as it appears on both the
discriminant of the equilibrium equation as well as in its partial derivative w.r.t. d.

4.3.2 Effect on development on Steady-State Value of Debt
It is now clear that risk premia coefficients a and b can play major role in defining the
equilibrium points. It is important then to see how the value of equilibrium of the system
responds in variations to those coefficients and extract a qualitative conclusion, if possible.

We will want to examine the sign of the derivative of steady state value debt w.r.t.

a and b. Under the assumption that 0 g(d)/ad # 0 at the steady state d9* (for example,

not having a triple root as we’ve argued before) and that d9%(a) and d9*(b) are continuous
differentiable in their respective variables we obtain:

ag/ ag/
co co
dd; (a)/aa _ dd and ddg (b)/ab _ dad

ag ag
/aa /ab
Simple calculations show:
d d
i g/aa co =w(1l—-w) g/aa oL (4.10)
d d
® g/ab co =w(l - w) g/ab oL (4.11)

Knowing that w(1 — w) is always positive for w € (0,1), exactly the same analysis as in
section 3.3.2 applies here. We confirm this in the benchmarks that will follow.

In addition to the risk premia terms we will explore the effects of the coordination parameter
w of the system, i.e. the bargaining power of each player. Simple calculations on equation
(4.6) show that:

0
— g/ad

0.de?) _
dw

? Y30 = —(1—2w)a(2a +bO)(dS°)? + (1 - 2w)(ay, — 7(2a + b0))(dS0)?

+ ((1 — 2w) (? y, - i(2a + be)) - (8, - ﬁM)> dS° + (1 - 20)uy, + B,d; — B dy =0 (4.12)

As we can see in general, the value of the coordination parameter w plays a major role in
the sign of (4.12). Also, the target values of each player, along with the respective weights
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act like an offset value in the derivative. Thus they affect too the way the debt is driven as w
varies. We will confirm numerically that for various set of parameters the steady state of
debt goes from d,; (as w starts near zero) to dy (as w approaches one), thus the slope with
respect to w, equivalently (4.12), is positive ifd_F > @, and negative ifd_F < @ and changes
from positive to negative, as w goes from zero to one, if dr = d,,.

4.3.3 Benchmark Example

The parameters for our benchmarks are chosen again in accordance to Note 2 (pg.27).
That is the values of a and b would be around 0.10 and 0.20 respectively given the current
economic situation. Also, as stated in previous literature the weight values that the two
authorities put on debt development, S and [, are of the same order of magnitude, that
is 1073, The parameter @, which denotes the degree in which the authorities care about the
future development of the debt, will take two representative values: 8 = 0.15 when the
players do care about the future debt development and 8 = 0.75 when they care less.

fr = 0.06 ,By = 0.04 ,dr =d,, =0.5,7=0.03,0 =0.15

4.3.3.1 Trajectories of Debt, Costate Variables and Optimal Policies for the Finite Horizon

First of all, we present the trajectories for various values of the finite horizon T. We expect
that the Cooperative case would vyield better results than the Non-Cooperative. This
expectation seems to be valid. Comparing Figures 4.1-4.4 with the respective ones from the
Non-Cooperative case, Figures 3.1-3.4, it is observed that the cooperation yields two benefits
that show up in these figures. First, the debt levels are lower for any given horizon. This
decrease is significant as itis around 20% in the final debt value. Second, the trajectory enters
the steady-state much faster. From T=20 (Fig.4.2) this is already evident, in fact the plot for
T=20 in the Cooperative mode is quite similar to the one for T=30 in the Non-Cooperative
mode. These plots were also obtained for a = 0.10 and b = 0.20, while the bargaining
power was set to w = 0.3. The bargaining power is chosen in a way to depict the difference
in power and influence of the monetary authority (ECB) and a particular fiscal authority,
belonging to a country which could be part of the “south block”.

In addition, the cost of each player, compared to the ones in the Non-Cooperative case,
is significantly less, namely more than 50% in the cases we present. For example, for T=5 in
the Non-Cooperative case the costs were J1=1.0226, J2=0.55978 while in the Cooperative
case we obtain J1=0.3802, J2=0.25706. Such reduction in the players’ costs is apparent in all
the other cases we present. Also, it is again evident that the accumulation of the cost as the
horizon gets longer is significantly small, like in the Non-Cooperative case. This is due to the
fact that the trajectory, as well as the controls, stay in the vicinity of a turnpike as long as
possible. Therefore, both players do want to cooperate as they benefit from it (at least when
w=0.3, we will examine other cases as well on the next sections).
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Figures 4.1 - 4.2: Finite Horizon Trajectories of Debt, Costate Variables for finite horizons T=5 and T=20
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Figures 4.5 - 4.6: Finite Horizon Trajectories of Debt, Costate Variables for finite horizons T=30 and T=50
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Figures 4.7 - 4.8: Finite Horizon Optimal Policies for finite horizons T=30 and T=50

4.3.3.2 Effect of the Risk Premium on Steady-Values of Debt

deC0 (Debt/GDP)

Again we will investigate how the varying values of risk premium term b effect the steady
part and the final part of the debt trajectory. We expect, subject to our theoretical analysis,
that the effect of the risk premium terms will have similar behavior to that of the Non-
Cooperative case. Figures 4.9 through 4.11 show that the relation between the risk premium
term b and the steady part of the debt trajectory is almost linear, as in the Non-Cooperative
case and thus our results are validated. As b increases the value the debt attains decreases
too, independently of the horizon. However now, it is clear that the value of debt achieved
is significantly lower comparing to Figs 3.9-3.11. This indicates the benefits of the
cooperating players. In similar way to the trajectories we observed in the previous section,
the reduction in debt is again of considerable amount, namely around 30%.
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Figures 4.9 - 4.10: Effect of risk premium term b on steady part of the debt trajectory
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Figure 4.11: Effect of risk premium term b on steady part of the debt trajectory

In order to determine how close these results are to the steady-state we examine the
infinite horizon case. That is the exact results obtained from the system of equations (4.3) or
directly by solving (4.6) for a real valued solution. We begin by setting w = 0.3 denoting the
superior bargaining power of the ECB. The target values for debt are now set dr = 0.5 =
@. We do so, in order to compare the results, for exactly the same parameters, during the
non-cooperative Open-Loop Nash mode of play, and the Cooperative mode of play. Later on,
we present how different target values can affect the results. Also, we will investigate the
role of the bargaining power each player has. We will also explore various cases of the
relative bargaining power between the two authorities. Namely we explore the cases of w =
0.3, w = 0.5 and w = 0. Again it is important to compare the results yielded with the ones
from the Non-Cooperative case. Taking a look to Figures 4.9-4.11 and recalling the respective
plot from the Non-Cooperative case (Figure 3.9), one can see that for small values of b
cooperation yields better results, i.e. smaller steady-state debt, than when the players are
not cooperating. However, for larger values of b, non-cooperative play yields lower steady
state value. We should state, that for the value of b around 0.20 (the reference value in crisis
period) cooperation produces slightly better results, therefore it is suggested that the
monetary authorities of the union should try and work together with the fiscal authorities of
a country in benefit of both of them. Also, comparing Fig. 4.8 (where w=0.3) with Figs 4.5-
4.7 it is evident that for T=50 we have identical plots, meaning the trajectory is well within
the steady-state, and also for T=30 the trajectory approaches really close to the steady-state
with the difference being less than 1% of Debt/GDP. In contrast with Figures 3.5-3.7 of the
Non-Cooperative case, it is clear that in the Cooperative mode of play we get closer to the
steady-state in less time. This is evident from the fact that even for T=20 the debt levels
achieved are 30% less and deviate from the steady-state values approximately 6%, whereas
in the Non-Cooperative case this deviation was around 31% of Debt/GDP.
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Figures 4.14: Effect of risk premium term b on steady state value of debt, same target for both players

w=0.5

4.3.3.3 Effect of the Risk Premium on the Terminal Value Debt

It is also of equivalent significance to explore the effects of risk premia in shorter horizons
when the steady-state is not approached as well as in longer horizons, and thus we cannot
assume that the infinite case is representative in terms of behavior. We have already argued
that, depending on the global economic situation, the authorities might not prefer to bind
themselves in such long-term agreements. Therefore we explore shorter horizons. We begin
by presenting again the trajectories for two cases. First for a short horizon T=5 and second
for an extended horizon of T=10. Equivalently with the Non-Cooperative mode of play, the
terminal value of debt in a short finite horizon neither reaches as low levels as in longer
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Percentage of GDP

horizons, nor has a clearly steady part in the trajectory. Again the accumulation of the cost
is small as when T=5 we obtain Jtot=0.63729, J1=0.38023 and J2=0.25706. When T=10 the
corresponding values for cost are Jtot=0.66662, J1=0.40764 and J2=0.25898. Comparing
these values to the respective ones from the Non-Cooperative case we verify once more that
the two players would intend to cooperate as they both benefit.
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Figures 4.15 - 4.16: Finite Horizon Trajectories of Debt, Costate Variables for shorter finite horizons
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Figures 4.17 - 4.18: Finite Horizon Optimal Policies for shorter finite horizons

To analyze the effect of the risk premium term depending on the rate of change of the
debt in this case, we will examine what is the impact on the final value of debt as we did in
the Non-Cooperative case. This is due to the fact that there is no steady-part long enough to
justify domination throughout the horizon. It is clear even in this case, that the risk premium
term we introduced does decrease the level of debt as it increases. However, the values
reached are not even near the steady state values or the ones achieved by longer horizons.




Although, comparing them with the Non-Cooperative case, Figs 3.14-3.15 the debt level
achieved is again significantly lower. This highlights once more the benefits of Cooperation
in the finite case for shorter horizons, in an even more impressive way. Again this denotes
the significance of the new term introduced, as it implements the pressure that the financial
markets want to add, but also operates as a supporting mechanism for countries that are
active and try to decrease their debt levels.
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Figures 4.19 - 4.20: Effect of risk premium term b on the debt value at the end of the horizon

4.3.3.4 The impact of the Bargaining Strength
Before presenting some results for risk premium term a, we investigate the effect that
the bargaining power of each player has. Namely, we select two values w = 0.3 and w =
0.7. The first value could correspond to an OECD country-member of the “south-block”. Their
bargaining strength is relatively small when comparing to the ECB. In similar fashion, the
second value could belong to a more powerful country-member with significant influence.

The first thing we would want to explore is how the bargaining power affects the steady
state value of governmental debt. In the first figure we present the direct effect of the
bargaining power of each player. If one first observes Figure 4.15, it can be seen that the
more one of the two players is in control, the lower the steady state value debt is. However
this should not trick us into thinking that dominance of a player gives always better results.
The current graph has this particular form because the two players have the same target for
government debt. Figure 4.2 confirms, as it was expected, that the more power has a player,
the more the debt value tends to the value this particular player has as his target. In Figure
4.2 fiscal authorities have a target value for debt of 0.5, while the monetary authorities a
target value of 0.6. As the bargaining power of the fiscal authorities approaches zero, the
steady state of value debt approaches the target set by monetary authorities. The respective
phenomenon takes place as w approaches the value of 1.0.
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Figure 4.21-4.22: Effect of bargaining power w on steady state value of debt
Left: Same debt target for both players
Right: Different debt target for each player

Now in order to investigate if the players still benefit from cooperation for various values
of the bargaining strength we present the respective costs for some cases over a short finite
horizon. Namely, we set T=10 and explore the cases of a really weak fiscal player (w=0.1) and
its counterpart for the monetary player (w=0.9). Also we explore the cases for values in
between of the aforementioned. As Figure 4.23 and its counterpart Figure 4.26 suggest, with
the total dominance of one player both do minimize their costs, with the stronger one getting
the lowest of the two. For each of the values used we can conclude that both players benefit
from cooperation and in fact the stronger player gets the lower cost. Therefore we suggest
that in the majority if not in any case the players have no reason not to cooperate.
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Figure 4.23-4.24.: Effect of bargaining power w on debt trajectory and the costs for T=10
Left: w=0.1, Right: w=0.5
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Figure 4.25-4.26: Effect of bargaining power w on debt trajectory and the costs for T=10
Left: w=0.7 , Right: w=0.9
4.3.3.5 Effect of the Risk Premium Term a

For completion we also present figures that support our theoretical analysis about how
the steady state value of government debt behaves, in response to variations in the value of
a. As we see in Figures 4.8 and 4.9, we have exactly the same behavior we analyzed. The
variations in a look to have the same effect as in the Non-Cooperative case. Also, another
benefit produced by the cooperation is that the spiking that was observed for small values
of a in the Non-Cooperative case seems to have been soothed. Another thing that one also
expects to be present again, is that for small values of a cooperation yields better results,
i.e. smaller steady state debt, than when the players are not cooperating. However, for larger
values of a, the risk premium non-linearity grows too strong making the non-cooperative
play to yield smaller values for debt.
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Figure 4.27 & 4.28: Effect of risk premium term a on steady state value of debt for various values of b
Left: w=0.3, Right: w=0.7




CONCLUSION

In this paper we analyzed the impact of an endogenous risk premium on the rate of
change of debt, in addition to risk premium on the level of debt. We examined the policies
in a simple dynamic game between the fiscal and monetary authorities in a country. We
considered both the Non-cooperative Nash Open-Loop and the Cooperative mode of play
for theoretical results and benchmark examples. As intended we analyzed both Finite and
Infinite Horizons (in the sense of achieving a steady-state). Furthermore we derived analytic
expressions for the evolution of debt by a coordinate transformation in the Open-Loop mode
and solved analytically the Cooperative mode. Unfortunately, it is not possible to track the
non-cooperative policies analytically. However, we presented that there are cases where
one can still compute these policies numerically. In addition to that, we solved numerically
for representative values the Finite Horizon case. The results for the control strategies in
both cases shows sufficient resemblance, indicated that the limit when time tends to infinity,
of the Finite Horizon case could exist and attain the values of the Infinite Solution case.

We showed in both Non-Cooperative and Co-operative modes of play that in the finite
horizon case, if the horizon T is long enough so that equilibrium equations are satisfied, then
the trajectory enters the same equilibrium path of the infinite horizon, only to deviate from
it in the final time. Due to this fact, it is important to study this steady-state path. Thus,
during the Open-Loop Nash Equilibrium mode of play, we first focused on the steady state
of debt and on the effects which the additional risk premium (on the rate of change of debt)
might have, and then we investigated what happens in shorter horizons.

Concerning the equilibrium points of the game we showed that by including this second
risk premium term the game always has at least one and at most three equilibria, thus not
affecting the number of equilibrium points indicated by [2]. The number of equilibrium point
is affected by the value of both risk premium terms. We derived conditions in order to obtain
each case of equilibrium points, and proved that at least one of them is a saddle point.
Another observation was that every cooperative equilibrium could be realized as a non-
cooperative equilibrium for specific weight values concerning the development of the debt.

A significant result shown in our benchmark cases and examples is that the term of risk
premium depending on the rate of change of debt has a greater effect on the steady state
value of debt than the term depending on the level of debt. Specifically, the greater the value
of risk premium is, the lower the steady state of debt becomes. This is justified if one thinks
that there is a reward for managing to lower the debt value faster and the greater the value
of risk premium is, the greater the reward. In similar fashion one could say that there is a
heavy penalty for letting the debt increase instead of keeping it steady or making it decrease.
Both the parameters that measure the strength of the risk premium mechanism, are of
crucial importance in the debt stabilization game. Also, we observed that as b increases the
value the debt attains decreases too, independently of the horizon. However we observe
differences in depending on the length of the horizon, which are mainly attributed to how
close to the steady path the trajectories tend, as the time horizon increases the behavior of
these trajectories is closer to the steady state trajectory. Regarding the short finite horizons,
it was evident that even here, the risk premium term we introduced does decrease the level
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of debt as it increases. However, the values reached were not even near the steady state
values or the ones achieved by longer horizons. An important feat though was how much
the debt is able to decrease, especially as b increases, in such short horizon.

Concerning the actions of each player we observed that the increase of the term of risk
premium depending on the level of debt results in more active policies from both players.
Intuitively, this represent the fact that, when markets add more pressure to the countries by
demanding great values of risk premium on the debt level, then the authorities have to
restrict it within acceptable standards. The more this risk premium term increases, the more
the players have to lose by maintaining high debt levels, and thus they act to lower it. One
the other hand, when the risk premium term on the rate of change of debt increases the
players become slightly less active. A justification of this is that when the debt is declining,
the risk premium term b is acting as a reward by decreasing the real interest rate. This is
helping the debt level to decrease and be contained more easily, allowing the players to relax
slightly.

In addition, we observed that the cooperation is beneficial, when the risk premia are not
beyond a certain threshold value, as shown in our benchmark cases. This was the case for
both short and long finite horizons, and for the infinite horizon as well. In every benchmark
computed the cooperative mode produced better results. In fact the decrease was
significant and also the trajectory entered the steady-state much faster. Again in the short
finite horizon case the values reached were not even near the steady state values or the ones
achieved by longer horizons. Although, comparing them with the Non-Cooperative case,
once more the benefits of Cooperation in the finite case for shorter horizons were
highlighted in an even more impressive way. Again this denotes the significance of the new
term introduced, as it implements the pressure that the financial markets want to add, but
also operates as a supporting mechanism for countries that are active and try to decrease
their debt levels. An interesting observation that the results in case one of the players was
superior to the other, were better than the case where the players shared equal bargaining
strength. We are obliged to mention that for the empirical values that correspond with real
life models cooperation does give better results and thus it suggested as the beneficial mode
of play.

A topic for future research could be how this interaction affected by risk premium is
depicted when having more than one country, e.g. more fiscal agents. A more interesting
approach would be to introduce models taking into account the effect of the inflation and
how it interacts with the risk premium terms added. This could better reflect the role of the
markets, and could be an adequate representation when having more than one country or
blocks of countries participating in the game. Our result could be also tested with a model
consisting of many countries or blocks of countries and analyze the results in that case. Also,
when it comes to the values of the parameters used, an interesting idea could be to use the
theory of adaptive control and specifically system identification techniques, using past data
to identify the parameter values.
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6 APPENDIX

6.1 THE NASH OPEN-LOOP CASE:
Theorem 3.1 (Proof):

—2 o 2 —
Consider the Hamiltonians: H; = %e‘et ((ui -2+ p(d-4d) ) + A Whr i=F,M.

Then as a function of d they are equivalent to:

H, =Ad?+ 1, |B d +C @ +D !
F= F\"1-bd 1—bd 1—bd

All these terms are convex in any interval lying left of the value that makes the denominator equal
to zero, namely 1/b. Restricting now ourselves to any such interval that contains d:

Letu; : [0,T] = U;,i = F, M be any measurable control function. Then

T T
Jiw)-J; (") =f hi(t,d,u;)dt —f hi(t, d”,u;)dt
0 0

= fOT (Hi(t: Apd,wy) — A d(t)) dt — J(.)T (Hl-(t, A dhul) — A d*(t)) dt

Since u; satisfies the optimality condition: u;* = TF e%t1;" 1_1b S L=EM
One has: Hi(t,)ti,d*,uf) = Hi(t,/h',d) = Hmin , H(t,/ll-,d,ul-) = Hmin

Using these inequalities in the cost function expression we obtain:

T T
J0-; @) = [ (it A d,u) = 2 d©) de = [ (Hit 2o du) = 21 d(©) de
0 0

If the map d — H(t,d, A) is differentiable, the convexity assumption implies:
Hy(t, Ay, d) = Hy (6, 23,d") = 7'/ 54 (8, 2,d7) (d(0) — d* (1)) = =A4,(d() — d* (1))

Using now this inequality we finally obtain:
T
J-1; @) = [ (<A@ = ¢°©) - 4 (40 - d'(®)) de =
0
= —2,(T)(d(T) — d*(T)) — 2;(0)(d(0) — d*(0)) =0
Given that:
d(0) =d*(0) =dy, 2,(T) =0,i = F,M as there is no terminal cost function.

——
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6.1.1  Solution Using Pontryagin’s Minimum Principle

Theorem 3.2: The Open-loop case can be seen as an optimal control problem for each player separately
and can be solved using Pontryagin’s Minimum Principle, when the pair of optimal controls (uz", uy*)
belongs to the set of admissible strategies. Combining equations (1.a) and (1.d) we get the differential
equation to act as a constraint to the minimization problem of our two players:

7dt) +ad(®)? +up(t) — uy(t)

d(t) = b d0 (6.1.1)
While the players want to minimize their respective loss functions:
Je =15 fy e ((up(®) = F)° + Be(d(®) - dr)*) dt (6.1.2.2)
Ju =15 Iy 70 ((un(®) = ) + By (d(®) — dyy)” ) dt (6.1.2.b)
» We apply Pontryagin’s Minimum Principle for the fiscal authorities:
e Hamiltonian: Hp = %e‘et ((up — f)z + Br(d - d_p)z) + Ap % (6.1.3.a)

. 0H
o Ap= — F/ad,AF(T)ZO

* u' = argmin{H}

Differentiating the Hamiltonian (6.1.3.a) with respect to the state-vector we get:

(F+2ad)(1—bd)+bFd+ad?+us—uy)

Ap=—eB(d—dp) — A

(1—>bd)2
We introduce pip = €% Ay = pp = 0 up + % iy
Yielding:
. — (F+2a d)(1-b d)+b(7 d+a d?+up—uy)
Ur = _ﬁp(d - dF) + 125 (9 - (1-b d)2 illiha ) (6143)

The optimal control for the F - player is:

* a « 1 = « 1
Ur =f_thAF 1-b d = f_qu m (6153)

And the derivative with respect to time, of the optimal control is:

L Ft2ady Be(d—dy)
uF_(uF_f—)(H_l—bd) 1-bd

up”=0 7. Brld—dp)
—t * = —_—
u =f+ F+2a d—6(1-b d)

(6.1.6.a)

——
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» Working in similar fashion for the monetary authorities:
e Hamiltonian:H,, = %e‘et ((uM —m)? + By (d - @)2) + Ay

: oH
o« A==/ aym =0

* uy’ = argmin{Hy}

Fd+a d?+up—upy

UMM (6.1.3.b)

Differentiating the Hamiltonian (6.1.3.b) with respect to the state-vector we get:

(F+2ad)(1—bd)+bFd+ad?+ur—uy)

Ay = —e 0By (d—dy) — Ay d-ba?

We introduce py = e Ap = uy = 6 py + %ty

Yielding:
— (d _ @) . (6 _ (F+2ad)(1-b d()l-l-_bb(:;;i;a d?+up-uy) )
(6.1.4.b)
The optimal control for the M - player is:
Uyt =m+ e"tAM*l_bd = M+ " (6.1.5.b)
And the derivative with respect to time, of the optimal control is:
. _ (o Tt+2ady fu(d—dy)
o =(”M_m)(9_ 1—bd>_ 1-bd
=0y = 7 — =) (6.1.6.b)

7+2a d—6(1-b d)

Now we use the following substitution: u = up + pp, . Combined with the optimal control laws we
1

1-bd

derived weget: up* —uy* = f—m—u

Replacing those we get the optimal trajectories:

1
1-b d(t)

1
1-b d(t)
e (0 = = (Be(d() = ) + B (4O = &) ) + 1 (0 -
(F+2a d(®))(1-b d(®))+b(F d(t)+a d2+f—m)) 2 b

(1-b a(t))® (1-b a(t))’

d*(t) =

(Fd® +ad®)?-p +f —m) (6.1.7.a)

(6.1.7.b)

Checking for periodic solutions we differentiate (6.1.7.a) w.r.t. d and (6.1.7.b) w.r.t. u and adding

ad (t)) |, a(t)
ad + u

them we get:

0 + 0.

= 6, so from Bendixson’s Criterion we have no periodic solutions if

——
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6.1.2 Exploring Open-Loop Equilibrium Points
Now let’s assume that the Open-Loop equilibrium points are (d2*, u9*). To find those points we set
equations (6.1.7) equal to zero:

d*(t) =0 7d9 +a (a9%)? — uot deL+f

& —ab (%) + (a—b7) (d2)2 + (r— b(f—m)) Aot + (F—m—ult) =0
S ut = —ab (@’ +(a—b7) (AW?+(F— b(f—m)) d2 + (F-m)  (6.18)
Now, replacing u9" to (6.1.8) we get d2* as the solution of the following cubic polynomial:
—a(a+b8) ()3 + (ay, —7(2a+b8)) (A1) + (Fy, —uRa+b0) — (Br + Pu)) d* + (y3 +Uy,) =0
(6.1.9)
Where:y; =1—-bd", vy, =6 -7, Vs = Bpdp + Bydy u=f-m

Equation (6.1.9), which defines the steady state value of debt, is a cubic equation. It is natural that
only real roots of (6.1.9) are considered and accepted, due to the fact that they represent debt value.
The discriminant of the general cubic polynomial:

gx) =63 x3 + 8,x% + §,x + 6,

is A =18 685 8, 5,60 — 48,°8y + (8,61)% — 4638,° — 27(836,)2. Thus the roots of the polynomial
in our case are determined as follows:

e IfA(a,b) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the game.

e IfA(a,b) < 0,thereis 1 distinct real root and 2 complex conjugate roots. Hence, 1 candidate
solution for the game.

e If A(a,b) = 0, there are at least 2 roots coincide and they are all real. That means there are
either a double real root and distinct single real root, or a triple real root. That is we either
have 2 or 1 candidate solutions for the game respectively.

Since a triple root of a cubic polynomial has the property of being also a root of its first and second
derivative we can derive the condition for a triple root to exist. Let d5, be a triple root of g(d):
2
d g(d)/adz la=a,, = 683d3, + 26, =0=>d3, = 3663 (6.1.10.a)
(6.1.10.a)

dg(d 5,2
g( )/ad laa,, = 383d3,” + 28,d5, + 8, = 0 === 6, = 2 (6.110.5)
3

_ 3 2 _(6110.0),(6.1.10.b)
g(d)|d=d39 =0= 63 d3e + 62d3e + 61d3e + 60 = O=}é‘ - 2760 63 (6 1.10. C)

(6.1.10.b), (6.1.10.¢) = 8,8, = 98,85 (6.1.10.d)

In our case (6.1.10.d) becomes:

(Fy,—uQa+b0)— B+ Pu))(ay, —72a+b0))+9a(a+b ) (ys +uy,) =0 (6.1.11)




Thus, if A(a,b) = 0 and (6.1.11) holds there is 1 (triple) real root, and hence 1 candidate solution

L —w). Else, if (6.1.11) does not hold there is 1 double real
383 3a(2a+b 6)

root and distinct single real root, thus 2 candidate solutions.

(and its value is: d3, =

6.1.3 Qualitative Behavior of Equilibrium Points
The qualitative behavior of the system near the equilibrium points should be explored. This is
achieved via the Linearized System around each equilibrium point. Linearizing system (3.3) we get:

) _a_2bud"  a+bT+b?u 1
<d(t)> — b 13 by,? ¥1? (d(t)>
u(t) _ _ 2(a+bF+bim pdt 3 pdhH?  a 0 2bpdt  a+bi+b?u | \u(t)
('BF + 'BM) Y13 + y1t b to+ ¥4 by.?
(6.1.12)

where (d9%, u9%) is the equilibrium point under discussion.

The eigenvalues of the linearized system (6.1.12) are:

(1 —bd9%)2 62 + 4(bf + bm + u(2a + bO) — 7y,)

1—bd%4) 6 +
( e j +12a(2a + b0)d%-* — 8(ay, — (2a + b6))do"

€12 = 2(1 — pd%h)
(1—bddh) 6 + \/(1 — bd9L)2 92 — 49 g(d)/a
Seig, = 2(1= %) (6.1.13)

One can easily observe that the steady states will be one of the following:

e If (1-bd?)%6% - 48 g(d)/ad > 0 and g g(d)/ad < 0, then eig; > 0 and eig, < 0.
Thus, the steady state is a saddle point.

e If (1-bdd")?0% - 4a g(d)/ad > 0 and 0 g(d)/ad > 0, then eig; > 0 and eig, > 0.
Thus, the steady state is an unstable node.

e If (1-bdd")? 6% - 46 g(d)/c')d < 0, then eig,, are complex eigenvalues with positive

real part. Thus, the steady state is an unstable focus.

e Llast but not least, there is the case an eigenvalue becomes zero. That is, when A(a,b) = 0
and (6.1.11) holds (a triple real root). As we have already argued the equilibrium point is also
a root of the first derivative. It is then straightforward from (6.1.13) that an eigenvalue
becomes zero while the other will be positive. This means the system matrix has a non-trivial
null-space and has an equilibrium subspace than an equilibrium point. Due to the positive
eigenvalue all trajectories diverge away from the equilibrium subspace.




6.2 THE CO-OPERATIVE CASE:
Theorem 4.1 (Proof):

Consider the Hamiltonian:

Ll 10 00 ot -7

Fd+ad?+up—uy

1-bd
Then as a function of d H is are equivalent to:
H=Ad*+1|B d +C 4 +D !
B 1-bd ~1-bd ~1-bd

All these terms are convex in any interval lying left of the value that makes the denominator equal
to zero, namely 1/b. Restricting now ourselves to any such interval that contains d:

Letu; : [0,T] = U;,i = F, M be any measurable control function. Then

T
J g tag)- ] (i ) = fo
= J;T (H(t, A d,up,uy) — A d(t)) dt — fOT (H(t, A d*ubul) — A d*(t)) dt

T
h(t,d, up, up)dt — f h(t,d*, up, uy)dt
0

Since up, uy, satisfy their optimality conditions:
up* = f —e%2 !

(1-w)(1-b d)

* o ot
(D d) anduy " =m+e’A1

We obtain: H(t, A, d*, up,uy) = Hit,A,d) = Hypin , Ht, A, d, up, up) = Hpin

Using these inequalities in the cost function expression we obtain:

J gy wpg)-J (U, wly) = fT (H(t, A d, up, uy) — A d(t)) dt — fT (H(t, Adhus ) — A d*(t)) dt
0

0

If the map d = H(t,d, A) is differentiable, the convexity assumption implies:
H(t, A d) —H(t,A,d) = aH/ad (t,A,d") (d@®) — d*(t)) = —A(d(t) — d* (D)

Using now this inequality we finally obtain:
T
Jur ) up i) = [ (=A(d@ - @@) = 2(d0) - d©)) de =
0
= —A(T)(d(T) — d*(T)) — 2(0)(d(0) — d*(0)) =0

Given that:
d(0) = d*(0) =dy, A(T) = 0 as there is no terminal cost function.

——
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6.2.1  Solution Using Pontryagin’s Minimum Principle
Theorem 4.2: The dynamic game has now transformed into an optimal control problem from an
analytical point of view. By solving the optimal control problem (4.1)-(4.2) for every w € (0,1) a curve
of Pareto Efficient solutions is obtained. But which curve will be selected by the player, is defined by
the choice of the parameter w, i.e. the coordination of the system. Note that a Pareto solution is not
unique. Since our game under the Co-operative case belongs to the class of optimal control problems,
it can be solved using Pontrygin’s Minimum Principle.
min/, J=w/r + (1 —w)/y (6.2.1)

Ur,upm

T
_ 1/2f0 e o ((up(®) — 1)’ + Be(d® - @5)7) dt

T
1y [ e 1) (Ga® 2 + fu(d(©) ~ ) )

Subject to the government budget constraint discussed in the previous section:

Fdt) +ad(t)?® +up(t) —uy(t)

dt) = 6.2.2
> Applying Pontryagin’s Minimum Principle we obtain:
e Hamiltonian:
H=2e" (e — ) + pe(d - dr)") (6.2.3)
=3 F F F L
PR = 2 _
+2e7% (1 — ) ((un(t) = )2 + By (d(t) — dyy)” ) + 2 20t

o ,‘i=_aH/ad,,1(T)=0
e uz* =argmin{H}

ur
e uy" =argmin{H}

um

Differentiating the Hamiltonian with respect to the state-vector we get:

A=—-e"w BF(d _d_F) —e (1 w)BM(d(t) - @)
L G20 d)(1-bd) +b(Fd +ad® +up —uy)
B (1-bd)?




Weintroduce u = e A= =0 u + %1

Yielding:
. - —— (F+2a d)(1-b d)+b(7 d+a d?+up—
f=—0 fp(d—dp) — (1 — w)Bu(d(®) — dyy) + (6 — == (P;QZ“ “F“W) (6.2.4)
The optimal control for the F - player is:
x _ £ _ _ 0ty 1 1
ug"—f =-—e /'lw(l_b i uw(l_b > (6.2.5.3)
The optimal control for the M - player is:
wy* —m = eft)— = p—" (6.2.5.b)
M (1-w)(1-b d) (1-w)(1-b d) e
Combining the equations above: uz* — f = —1_Tw (up ™ —m) (6.2.6)

. . . . « _F_ = 1
The optimal control laws we derived give: ug* —uy* = f —m—u P EPSTTEr
Replacing the optimal controls to equations (6.2.2) and (6.2.4) we obtain the optimal trajectories:

1 1

cﬁa)=,kbﬂﬂ(fda)+ad@92—uza:563555+f1-m) (6.2.7.a)
e (®) = — (0Br (d®) — &) + (1 — ) (d(®) — du))

_ (f+2ad®)(1-b d(®))+b(7 d(t)+a d*+f-n) 2 b
TH (9 (1-b d(®)* ) TH w(1-w)(1-b d(©))’ (6.2.7.b)

Checking for periodic solutions we differentiate (6.2.7.a) w.r.t. d and (6.2.7.b) w.r.t. u and adding

ad (1) + (1)
ad u

them we get:

0 + 0.

= 6, so from Bendixson’s Criterion we have no periodic solutions if

6.2.2 Exploring Open-Loop Equilibrium Points
Now let’s assume that the Co-operative equilibrium points are (d5°, uS°). To find those points we
set equations (6.2.7) equal to zero:

d(t) =0 7dC° + q (d€9)2 — €0 +
@ FAE +a (dE)? —uE? e

S usl = w1l - w) (—ab(dgo)3 + (a — b7)(dS9)* + (f - b(f - 771)) dso +(f - 771)) =0 (6.2.8)

f-m=0

Now, replacing u5° to the second equilibrium equation we get:
83 (dS9)3 + 6, (dS2)2 +6,d5° + 6, =0 (6.2.9)

Defining: 65 = —w(1 — w)a(2a + bO), 5, = w(1 — a))(a Yy, —7Qa + bH)),
81 =w(l— )Ty, —uQa+b0) — (wfr + (1 — w)By), 8 = w(1 — Wiy, + wPpdr + (1 — w)Bydy

Where:y; =1—=bdd", v, =0 -7, y,=B,dr+B,dy , i=f—m

——
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Equation (6.2.9), which defines the steady state value of debt, is a cubic equation. It is natural that
only real roots of (6.2.9) are considered and accepted, due to the fact that they represent debt value.
The discriminant of the general cubic polynomial:

gx) =63 x3 + 8,x% + §;x + 6,

is A =18 85 8, 6,6, — 46,38y + (6,61)% — 4636,° — 27(836,)2. Thus the roots of the polynomial
in our case are determined as follows:

e If A(a,b,w) > 0, there are 3 distinct real roots and hence, 3 candidate solutions for the
game.

o If A(a,b,w) <0, there is 1 distinct real root and 2 complex conjugate roots. Hence, 1
candidate solution for the game.

e If A(a,b,w) = 0, there are at least 2 roots coincide and they are all real. That means there
are either a double real root and distinct single real root, or a triple real root. That is we either
have 2 or 1 candidate solutions for the game respectively.

Since a triple root of a cubic polynomial has the property of being also a root of its first and second
derivative we can derive the condition for a triple root to exist. Let d5, be a triple root of g(d):
2
g g(d)/ad2 la=a,, = 683d3, + 28, = 0= dj, = —35—(;3 (6.2.10. )
2
09D g, = 363d5.% +28,d5, + 6, = 0 3 6, = fji(g (6.2.10.b)
3 2 (6.1.10.a),(6.13.10.b) 3 2
g(d)ld:d3e =0=03ds3,” + 0,d3," + 61d3, + §) = 0 ——0," = 275, 63" (6.2.10.¢)
(6.1.10.b), (6.1.10.c) = 6,6, = 96,05 (6.1.10.d)

In our case (6.2.10.d) becomes:

(01— w)(Fy, —Qa+b 6)) = (W + (1 - w)pu)) (a v, — 7(2a + b 6))
+9a(2a + b 0)(wp,dr + (1 — w)B,dy + w(1 — W) y,) =0 (6.2.11)

Thus, if A(a,b) = 0 and (6.2.11) holds there is 1 (triple) real root, and hence 1 candidate solution

L T —M). Else, if (6.2.11) does not hold there is 1 double real
383 3a(2a+b 6)

root and distinct single real root, thus 2 candidate solutions.

(and its value is: d3, =

6.2.3 Qualitative Behavior of Equilibrium Points
The qualitative behavior of the system near the equilibrium points should be explored. This is
achieved via the Linearized System around each equilibrium point. Linearizing system (4.3) we obtain:

) _a_ 2bug° (a+b 7+b% ) 1
(d(t)> _ b vP-we | byi? M -wo (d(t))
u(t) _ _ _ 2(a+b b2 W) pufO | 3 pE%? a 2buf®  (a+b7+b2 W) u(t)
(@B + (1 = )f) 713 n*l-w)o b T+ r13 by12(1-w)w
(6.2.12)

where (dS9, u§?) is the equilibrium point under discussion.

——
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The eigenvalues of the linearized system (6.2.12) are:

_ co
(1-bd¢?)® 6 + J% (01 — )1 = bdS0)2 62 — 49 g(d)/ad)

2(1 — bd§9)3

eigy , = (6.2.13)
(1-bag)*
w(l-w)
consequently the type of equilibria are subject to the following rules:

It is pretty straightforward that > 0. Hence, the sign of the quantity under the root and

dg(d
e Ifw(l—w)(1—bdoL)2p2 — 49 g(d)/ad > 0 and 99¢ )/ad <0,
then eig; > 0 and eig, < 0. Thus, the steady state is a saddle point.

dg(d
o o -w)(1-bd2)2e2-499@)/ > 0and 9y >,
then eig; > 0 and eig, > 0. Thus, the steady state is an unstable node.

e Ifw(dl—w)(1->bd?*)?0% -4 0 g(d)/ad < 0, then eig, , are complex eigenvalues with

positive real part. Thus, the steady state is an unstable focus.

e Last but not least, there is the case an eigenvalue becomes zero. That is, when A(a, b, w) =
0 and (6.2.11) holds (a triple real root). As we have already argued the equilibrium point is
also a root of the first derivative. It is then straightforward from (6.2.13) that an eigenvalue
becomes zero while the other will be positive. This means the system matrix has a non-trivial
null-space and has an equilibrium subspace than an equilibrium point. Due to the positive
eigenvalue all trajectories diverge away from the equilibrium subspace.
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