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ABSTRACT

The aim of the present thesis is to study in depth adaptive hierarchical refinement
methods in isogeometric analysis. Hierarchical refinement is at this point a very
interesting and promising research topic in the field of isogeometric analysis and
computational mechanics in general. It is a research subject which emerged in the last
few years to enrich isogeometric analysis with procedures already known and used in
finite element theory. It is obvious that isogeometric adaptive refinement couldn’t
have been applied without any progress in local refinement. This progress was firstly
presented by introducing T-Splines. But the widespread technologies of B-Splines and
NURBS made the need of their enrichment with local refinement properties
imperative. In this sense A.\Vuong proposed in 2011 a method based on CAD local
hierarchical geometry refinement suitable for analysis. Since then many other
methods are proposed to take full advantage of Vuong’s method in isogeometric
analysis. Hierarchical refinement is a technique of local enrichment of the
approximation space by refining shape functions. For this reasons the term
“hierarchical” refers only to the relation between shape functions and not to the
formulation of stiffness matrices. In the present thesis some of the isogeometric
adaptive methods are presented in order to compare them in a theoretical basis. Their
properties, advantages, disadvantages and applying techniques are fully explained.
The final goal is to feature their special characteristics which can be combined, leading
to enhancement of problem solution. To quantify some general properties of the
described refinement methods, an algorithm using adaptive hierarchical refinement
is also presented. Algorithm results are compared with results derived from uniform
refinement to highlight adaptive refinement’s advantages.






[TEPIAHWH

IKOMOG TNG mapoloag OMAWHATIKAG eilvat n  euPabuvon otg pebBodoug
TIPOCOPHUOCTLKAG LEPAPXLKNE TTUKVWONG TWV CUVOPTACEWY OXHHATOG OTa TAALoLa TG
LOOYEWMETPLIKAG avaAuong. H tepapyikn emavadlakpltonoinon, €ivat auvtiv tnv
OTLYUN €va armo Ta MAEoV avepXOueva BEpata Epeuvag oTo eSO TNG LOOYEWUETPLKNG
OVAAUONG KOL TNG UTTIOAOYLOTIKNG UNXOVLKNAG YEVIKOTEPQA. Elval éva oxetikd mpdodato
EPEUVNTIKO TESLO TTIOU OTOXEVUEL OTOV EUTMTAOUTIOUO TNG LOOYEWMETPLKNG AVAAUONG LE
AdN yvwotou¢ pUnxaviopolg amo tnv pEBodo Twv menepacuévwy otolxeiwy. Elvatl
cadég mwe Ba Tav adlvato va MPayUATonolnOsl MPOCAPHOOTIK TTUKVWON XWPIg
NV SuvatoTNTA TOTILKNAG EMAVOSLAKPLTOTOINONG LOOYEWMETPLKWY SIKTUWV. To KEVO
TNG TOTILKAG TIUKVWONG OTNV LOOYEWMETPLKA APBav apxka va kaAupouv ot T-Splines.
H épeuva Opwg Sev otapdtnoe ekel, KABWG uTpPXe N avaykn Statumwong Lebodwv
Baolopévwy otig olaitepa Stadedopéveg B-Splines kat NURBS. 2’ auto to mAaiolo to
2011 n A.Vuong eKPETAAAEUOUEVN TNV LEPAPXLKA TIUKVWON YEWUETPLKWY SIKTUWV
(CAD) mpotelve pla péBodo yla tnv aflomoinon toug otnv avaluon. EKToTe €xouv
nmapouaotaotel vée¢ péBodol yla v aflomoinon tng mpotacng tng Vuong otnv
LOOYEWMETPIK avaAuon. H Lepapxlkn TUKVWON  €lval L0 TEXVIKA TOTUKOU
EUMAOUTIONOU TWV OCUVOPTACEWV OXNMOTOG ya tnv PeAtiwon tng Avong. Na
onUelwOel 6w WG 0 OpOC LEPAPXLK AVOPEPETAL ATOKAELOTIKA OTNV LEPAPXLKNA
SLoTUMWON TWV CUVAPTHOEWV OXNUATOC KoL OXL OTNV LEPOPXLK HOpdwaon Tou
UNTPpwoU oTLBapotnTaC. 2tnv Tapovuoa SUTAWHATIKA YiVETOL Tapouciacn Twv
HEBOSWV MPOCAPLOCTIKNC EMAVASLOKPLTOTIONCNC O€ L0 TIPOOTIAOELO VAL UTIAPEEL pLaL
OPXIKN) BewpPNTIKA KAl TIOLOTIKY cUYKPLoN ylo TV afloAdynon touc. Napouaoialovrtal
oL LOLOTNTEG TOUG , TA TIAEOVEKTUATA , TA LELOVEKTHLATA KAl O TPOTOC EPAPUOYNG
ToUG. TeEAKOG 0TOX0G N avadelEn Twv LBlaitepwyv OTOLXELWV TOUG TTOU CUVOUACTIKA
urmopouv va BeAtwoouv tnv emnihluvon mpofAnudtwyv. Mo tov OKOmo autd
napouotaletal kot aAyoplBuog emiluong mpoPAnuatwv pe TNV €dapuoyn NG
TIPOCOAPUOCTIKAG LEPAPXLKNC TTUKVWONG. KOTOC N ouyKplon HE TNV KAaolkn uéBodo
EMAVASLOKPLTOMOLNONG TNG LOOYEWUETPLKN G avaAuonc (eloaywyn KOpUBwv) .
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EKTETAMENH [1EPIAHWH

EIZAFQrH STHN IZOFEQMETPIKH ANAAYZH

H LooyewpeTpikn avaluon ival plo oxeTika véa néBodog. MNpotabnke amo toug Cottrell,
Hughes, Bazilevs 1o 2005 kot amoteAel amod t0te éva medio €€AlpeTIKOU EPEUVNTIKOU
evlladépovtog. H AoyLki TNG LOOYEWUETPLIKN G BepeAlwvetal otnv Wéa tng yepupwong duo
Sladopetikwv texvoroylwy, tng CAD kat CAE. MNa tov okomod autd oL cUVAPTHOELG OXNLOTOG
™¢ YndLakng oxedloong xpnoLomoloUvTal WG CUVAPTHOELS OXNUATOG KAl OTNV avAaAuon.
AmotéAeopa autg TNG WOEAg Elval MWG OTNV LOOYEWHUETPLKN N OVAAUCN YIVETAL TTAVTA HE
™V aKpLBn OpXLK YEWUETPLA, aKOpA KOl Ot TOAU apalég Slakplromotioelg. OL Tio
£6PALWUEVEG CUVAPTIOELG OXOTOG YLa TNV LOOYEWUETPLKN avaAuon elvat ot B-Splines ki ot
NURBS, ol omoieg AOyw TwV KOAWV TOUG LOLOTATWVY UMOpPoUV va XpnollonolnBouv xwpig
ONUOVTLKEG TPOTIOTOLNCEL OTNV €TAUON TPOBANUATWY O KWOKO YLO TIEMEPOOUEVA
otolxeia.

XQPOI PHYSICAL, PARAMETER KAI INDEX

Ta oTolela TOU XPNOLUOTIOOUVTAL OTNV LOOYEWMETPIK availuon pe NURBS eival
LOOTIOPOALETPLKA KOLL LTTOPOUV VA TTOPAoTAB0UV O€ TPELG XWPOUG.

= [lpayuatikog xwpog (physical space)
= TlopapETPLIKOG XWPOG (parameter space)
= Xwpog tTwv delktwv (index space)

O physical space €ival 0 Xwpog TOU TO OVTIKELUEVO EXEL TNV MPAYUATIKA TOU popdr otov
omoio oxedlaletal pe ta mpoypaupota CAD evw o parameter space €ival 0 Xwpog OTov
ormolo yivetat n Stakpltomoinon Tou dopéa Kal N aplOUNTIk oAoKANpwaon ylo tn Hopdwaon
ToU pntpwou otiBapotntac. O xwpog Twv delktwv (index space) emteAel fondNTIKO poAo
otlg ouvaptrioelg NURBS. Xpnowlomoleltal yla tov TMPocSloplopd TwV TAPAUETPLKWY
CUVTETAYMEVWV TWV control points kat yla tnv kaAUtepn enornteia tou Knot Value Vector.

B-SPLINES

OuL ouvaptoelg NURBS eilval plo yevikotepn, pnt popdn pe Bapn, twv B-Splines.
OuolaoTikd armoteAouv TPoPoAEG Toug el emutédou. Amattouvtal n+p+l Un UELOUUEVEG

TIOPAETPLKEG CUVTETAYHEVEG TTou opilouv to knot value vector, E = {il, T S, §n+p+1}

OTou n £ival o aplBUOC TWV CUVAPTACEWV BACEWC KAL P O TTOAUWVUULKOG BaBuog touc. ITto
knot value vector avtiotolyiletal €va knot vector, oto omoio apelouvtal ot emavaANPeLg
TWV BLWV TIHWV Kal arnobnkevovtal povo dlakplta Petafl toug otolxeia.Me Baon to knot
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value vector opifovtal ot cuvaptAoelg Bdong pe tov avadpoukd aiyoplBuo Cox de Boor,
we €A G:

1, ifg <e<t,, 23 Cieprn =S
N (€)= _ =SSN (e
w9 { - otherwise * P70 N Eip G N"”'l@ﬁéhpﬂ-éiﬂ NoapalS), P20
H k mapdywyadg toug mpoacdlopiletal amnd t oxson d ,p(E_,) ( Zak, P ()

Ol B-Splines €xouv tnv 1816TNTA TOU MARPOUC TavUoTIKoU ywvopévou (full tensor product).
Me autd Ttov TPOMO HmopolV va dnuloupynBouv oL CUVAPTACEL, OXNUATOG, KOOwWG
QMOTEAOUV OUVOUQOUO TWV EMIUEPOUC TIOPAUETPLKWY oUVAPTAOEwWV Baong. H i B-Spline
ouvapTNoN oxXNUAToC opileTal we:

RY (&) = N, () oe povobiaotata npofApata,
R (€M) =N, ()M, (n) oe Siddotata Kot

R (EM,6) =N, (E)M;, ()L, () oe tpidractata.
Tig B-Splines xapaktnpi{ouv ol MapaKATw LOLOTNTEG :

= Eivaw pn pndevikég oe meploptopévo Staotnua (support): N; (€) =0 VE¢ [éi,éiﬂm)

" Je& k&Be Sidotnua [ﬁj,?;H) t0 MOAU (p+1) ek Twv ouvaptioewv N, = elval un

N

j=ppre T Vp
=  KaBe ouvaptnon polpaletol HEPN TOU N KNOEVIKOU SLOCTHMOTOC TNG ME 2p AAAEC.
* Ououvaptroels eivat mavtou pn apvntkes N, (€) =0

UNGEVIKEC, Kal oL TOaVEG un undevikeg eivat ot: N,

n
= To dBpolopa Twv CUVAPTACEWV OXNUATOG o omolodAMoTe onueio ivar 1. Z N, &) =1
i=1

* O ouvaptioelg €xouv ouvéxela CP mdvw oe évav kOuPBo moAamAdtntog k kat givat
aneipwc dLapoploLUEG OTO ECWTEPLIKO TOU SLOOTAUATOC UETAEY TWV KOUBWV.

= EKTOC art’ TNV TEPUMTWON TWV CUVAPTACEWV OXNUATOC yla p=0, OAeC oL AAAEC €Xouv
akpLBWC éva péyLoTo.

Ta control points otov MopapeTplkd Xwpo, Pplokovtal oto pécov Tou support TG
ouvVapPTAOEWCG PAcewg mou avtiotolyouv. Me Baon tnv Wwotnta (1) twv B-Spline, ot
TIOPOLLLETPLKEC CUVTETAYUEVEC TOU i control point otov afova € opilovtal wg:

EJ N 0 SLE"H’J + §i+p+1j '
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OL yewpeTpieg Twv B-Splines pmopel va eivat kapmnuAeg (1D), emidaveleg (2D) i dykot (3D)
Kal opilovtal wg To ABPOLoUA TWV CUVAPTACEWV OXAHOTOC TIOAAXTAQCLOOUEVWY UE TIG
OUVTETAYMEVEC TWV avtioTolwv control point. Mia yewpetpia B-Spline opiletal wg

n

(%Y.2)=CE) ={N,, (@} {P}=D N, (P} . §<E<E, . viakawnihn,

(1xn) (nx3) =l (1x3)
(x,¥.2)=SEM =Y S RIED (P} = X YN ON, P, } via embévea
i=1 j=1 (1x3) i=l j=1 (1x3)
Kall €vag OYKOG w¢
(Y. =V(END =YY YR EN D[P} =D N, @N, (N, @) (P,
i=1 j=1 k=1 (1x3) i=1 =L k=1 (1x3)

Ol KaumUAeg B-Splines, Kal KOTA ETTEKTOON OL EMULPAVELEG KAl OL OYKOL, £XOUV UL OELPA aTo
BeULTEG LBLOTNTEG, AMOPPOLA TWV LOLOTATWY TWV CUVOPTACEWV OXAHOTOC OO TLG OTOLEG
dTayvovral.

= Elval pua yevikeuon Twv KopmuAwy Bezier.

= HC(E) elval pa TUNUATIKA TTOAUWVUULKA KOUTTUAR.

= To mpwTto Kal To teAeutaio control point Bplokovtal mavw otn KOUMUAN Kot PaALloTa
elval To pwto kat to tedevtaio onueio g, C(&) =P, kaC(E,,,.,) =P, -

= O KaumUAeg B-Spline éxouv TNV 1610TNTA TO TUAHA TOUG [&ivém) VO TIEPLEXETOAL EVTOG
Tou “Convex Hull” twv control point Piy, . . ., Pi.

= H petakivnon evog control point P aAAdlel emnpedlel pOVO TNV TEPLOXN) KOVTA OTO
control point.

=  To moAUywvo Twv control points elval Pl ypapULKr TIPOCEYYLON TNG KAUTIUANG

= ‘Evag OmolodNmote ouvOUAOUOC YPOUUIKWY — HUETACXNUATIOMWY  HUmopel  va
epapuootel otV KAUMUAN UE TNV edapuoyn Tou cuvduaouou autou ota control
points.

=  Kavéva eminebo Sev €xeL TMEPLOCOTEPEC TOUEC UE TNV KOUTUAN amd OTL PE TO
MoAUywvo twv control points (Ze S16ldoTaTEG KAUMUAEG, Kapio ypapuun &ev €xel
TIEPLOCOTEPEC TOUEG UE TNV KAUTTUAN amd OTL YE To TOAUYwWVO Twv control points).

= C(§) elvar ypoappikog ocuvbuaopog twv Nip(€), €MOUEVWG N CUVEXELX KoL N
TIOPOYWYLOLLOTNTO TNC KOAUTTUANG TIPOKUTITOUV amd TIC OVTIOTOLXEG OUVOPTHOELG
Bdong.

Elvat duvato kot moANEG HOPEG XPHOLUO VA XPNOLUOTIOW)COUE TTOANAAQ control
points pE TLC (OLEC KAPTECLOVEG OUVTETAYUEVEC.

OAeg oL mapamavw LELOTNTEC YeViKeLovTal oTiG 2D emipaveleg kot o€ 3D oTeped CWHATAL.
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NURBS

H kaumuAn NURBS Beswpeitat wg mpoPfoAr tng avtiotolxng KapmuAng B-Spline pe control

X Y.
points P =(X,,Y;,w,) oe éva ouykekplpévo emninedo pe control points P, = [—'—'] KoL

W, W,
BApog wi. ITn YEVIKOTEPN TEPIMTWON, Ula yewpetpion NURBS pmopet va mpoBAnBel and to
pNTO Xwpo d-8laotdoewyv 0to XwWPo Twv B-Splines twv (d+1) dtactdoswy kat avtiotpoda.

H mpoBoArl twv control points twv NURBS oto xwpo twv B-Splines yivetat pe tov
moAAammAaolaopo Tou control point pe to avtiotowo Papog kat pe diaipeon yla tnv
avtiotpodn poBoAn. Ta control points mou avrikouv otig B-Splines ovopdovtal mpoBoAikd
(projective) kot cupBoAiovtal pe P .

(3D — prt6c YGOPOC) (Pl ={X,,Y,,Z} , ue Bapogw, #

(nx3) (nx3)

(4D — pm pnrég xdpoc) {Pw}z{w X, w, Y, W Z,w;}

[ i~
(nx4) (nx4)
Ma va oplotouv ol cuvaptnosl NURBS mpémel va oploTel mpwta pla cuvaptnon Bapouc.
Ou ouvaptnoelg oxnuatog NURBS opilovtat pe tnv mpoBoAn Twv cuvoptioswv B-Splines
avaloya pe Tn S1dotaon Tou XWPou TIou SOUAEUOUUE WG:

1D:
3 oy N
W= 3N, @w, SCRE e
2D:
n m N M.
W= 3 SN @M, R = 2
3D:

WENG =D > N (M, (L () Wi,

i=1 j=1 k=L

|]k Nlp(&)M]q(n)Lkr(C)
W(En,C)

qur (& C) -
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Ot napdywyot twv NURBS mpoKUTtouV amnod tnv mopaywyLon tng cuvaptnong Toug

1D:
i (d&N.p@)jMa) N.p(a)[ éW(a)j
_Ri(é) 2 W;
dg (W())
2D:
N, (&) [WEm-N,, @) Lwien)
o & wenne] Swen)
—RI(EM) = ; Wi Mo ()
gg (W(E) k
( j qu(n)JW(E,. - M,q(m{ AW n)j
—RM(& n) =~ w, N, , (€)

(W(E )’

Kall opoilwg yta tnv 3D mepinmtwon.

AvtioTOolXQ L€ TOV OPLOMO TWV YEWUETPLWV B-Splines, ol yewpetpie¢ pmopel va eivat
kKaumuAeg (1D), emudaveleg (2D) kat oykot (3D) kat opilovial w¢ abpolopa Twv
OUVAPTACEWV OXNUATOG TIOAAOTAQCLOOUEVWY HE TIG OUVIETAYHUEVEG TWV OVILOTOLXWV
control points. Mia yewpetpia NURBS opiletal wg:

KotpurtoAn
(x,y.2)=CE) =N, @) (P} =3N, @R} | <<k,
(1xn) (nx3) i=1 (1x3)
Emudaveia
(Y. D) =SEM =3 Y REEM P = 2 YN ON, () (P}
i=1 j=1 (1x3) i=1 j=1 (1x3)
‘Oykog
(Y. D =VERD =YY YR EMD P = X YN EN,, (NP, )
i=1 j=1 k=1 (1x3) i=1 j=1 k=1 (1x3)

Aoyw Ttou Tpodmou Snuoupyiag twv NURBS armd tig B-Splines, ot NURBS kAnpovopouUv 0Aeg
TIG KAAEC LOLOTNTEC TWV B-Splines mou npoavadépdnkav.
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MHTPQO ZTIBAPOTHTAZ

ITNV LOOYEWMETPLKA avaAuon akolouBeitatl n (Sla AoyLkr) e Ta MEMEPACUEVA OTOLXELD YL
™ Hopdwon tou pntpwou otBapotntag. O dopéag Slakpltomoleital oe oTolyela mou
Snuoupyouvtal and ta knot vectors kal XpnolUOMOLE(Tal aplOUNTIK) OAOKANpwaon Katd
Gauss yLa Tov aplBunTikd UTIOAOYLOUO TO UNTPWO oTRapdtNTAC. AV O HEYOAUTEPOC EK TWV
BaBuwV TwV MOAVWVUUWY OTOUC TTOPAUETPLKOUG AEOVEC €lval p, TOTE aplOUOC Twv Gauss
points katd tov afova os kaBe otolxelo eival:

pyPerknotspan _ P, Yo 1-A mpoBiiuato
e p+1, vy 2-A ,3-A mpoPAnpato

Ou ouvtetaypéveg EF kat ta Bdpn wéR Twv Gauss points cuvaptioel Tou aplOUOU Toug

unapyouv otn BiBAloypadia yia €va didotnua oAokAnpwong (-1,1). Avayovidg TG oto
TIAPAUETPIKO SLAoTNUA Tou KABe oTolyelou, MPOKUTTOUV OL TAPAUETPLKEG CUVIETAYUEVEC
Kall To avtiotowa Bapn:

— (‘:m — E.:i)E.;R + (im + é.)
2
GPE _ (imz_ &I) Wg

g

w

OewPWVTAC YPAUULIKY €AOOTIKOTNTA, UMopel va popdpwBel To pntpwo ehaotikotntag [E]
yla TEPUMTWOELG povodilaotatng (diktuwpatog), Sidtaoctatng (eminedng évraong f eninedng
napapopdwaong) kot IpLdLaotatng EAACTIKOTNTAG.

Truss
[ETruss] =E
(1x1)
Plane Stress
£ 1 v O
[EPIane Stress] = 1—2 v 1 0
(3x3) 4 1-v
0 0 —
L 2
Plane Strain
1-v v 0
[EPIane Strain ] = # v 1-v 0
(3x3) (1+V)(1—2V) 1-2v
0 0 >




3D Elasticity

1-v Y
1-v
v 1-v
E 0 0 0
E astici =T A A~
[ Pt v (L-v)(L-2v)
0 0 0
0 0 0
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0 0
0 0
0 0
0 0
1-2v 0
2
0 1-2v
2

O lakwpLavog mivakag Kot o avtiotpoddg Tou yLa T LETABACELS OO TOV TPAYUATIKO OTOV
TIOPOLLLETPLKO XWPO £ival 0 akOAoUB0G yLa TIG 3 EPUTTWOELG EAACTIKOTNTAC:

1D Elasticity

[]=| o |= (N {P)

)

(1x1) (1xn)  (nx1)
(1x1)
- 1 1
Nt=—=
([M]) [J] det(J])
(1x1)

[ "=

Xy [N

0] - o | {(1xf)}
(2x2) 6_X Q

61’] 6n (1xn)

(2x2) (2xn)

non
B 3, | det[J]
where det[J]=J,,J, —J,J;,

1

|

(2x2)

‘]22

J21

(P}

{Nn}T (nx2)

_‘]12

‘]11

2D Elasticity

3D Elasticity
[ox oy oz ] T
ool |
& & & (10
ox oy oz T
[] = 5 on ol N} HP)
(3x3) n n n (1xn) (nx3)
oX oy oz T
MY 2 iy
L6 L] [ ‘wm
I IO o N L
} b1 I
-1 * * *
[J] = ‘]21 Jzz ‘]23
(3x3) * * *
‘]31 ‘]32 ‘]33

Ta untpwa mapapopdwoew( yla povodiaotatn eAactikotnta 1D eival:
To EMUEPOUC UNTPWOA TTAPAUOPDWONG:

[Bl]:

(Ix1) ‘]11

To 0Alkd puntpwo mapapdépdwong:
[BE)]=[B.(8)][B.(&)]

(Axn)

To pntpwo otfapdtntac:

(1x1)

(1xn)

kat [B,(&)]={R.}

(1xn)

T

(1xn)

[K]=[[B®&] [E][B(&)]Adx = EW [B(E)] [E][B(E)]Adet([1(E)])dE

(nxn) |

(nx1)

(Ix1) (1xn)

(nx1)

(Ix1) (1xn)




XX|Adaptive Hierarchical Refinement in Isogeometric Analysis

Kat n aplBuntiki Tou oAokAfpwon:

(nxn) i=1 (nx1) (Ix1) (Ixn)

[K]= i[ B(&)] E][B(E_,i)]Adet([J(gi)])wiepj
2tnv nepintwon 2D:

J,, -J, O 0

1
[Bl(él ﬂ)] =—7——| 0 0 —J,
& det[ [J] ] S R R O
(2x2) (3x4)
ng 0 Rz,g 0 R N.E 0
[B @ T])]: Rl,n 0 RZ,n 0 RN,n 0
(24x2;\l) Rl,é 0 Rz,g 0 RN,&
0 Rln 0 szn 0 Ry .

[B(& )] =[B,(&n][B,(EN)]

(3x2N) (3x4) (4x2N)

KOlL TO UNTPpWoO oTLBapotnTac:

[K] §+p+1'|‘“m+q+1 B(a n)] [E] [B(E) 1’]) tdet( J(é n) )dEadn

(2Nx2N) (2Nx3) ~ (3x3)  (3x2N)

Kall Le aplBuntiki oAokAnpwon:

nGPQ nGPn

=22\ [BEm)] [ E][ B(&;.m;) ]tdet([I; m; ])witows™

(2N><2N) i=l j=1 (2Nx3) (3x3)  (3x2N)

MNa 3D eAaoTIKOTNTA, TO UNTPWO TAPAHOPPWOEWS Eval:

By ]- o 0 0 0 0 0 J I I
T R e R
16%(2)(; ‘]21 J22 J23 Jll ‘]12 JlS O 0 O
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R, 0 0 R, 0 0 R, 0 0

R, 0 0 R, 0 0 R,, 0 0
R, 0 0 R, 0 0 R,, 0 0
0O R, 0 0 R, 0O 0 R, O
[Byenol=| 0 R, 0 0 R, 0 0 R, O
3 o R, 0 0 R, O 0 R,, O

0 0 R, 0 0 R, 0 0 R,

0o 0 R, 0 0 R, 0 0 R,,

0 0 R, 0 0 R, 0 0 R,

KoL

[BE.O)]=[B,(E.O)][B, (&, 0]

(6x3N) (6x9) (9x3N)

To untpwo otiBapdtntag npoodlopileTal wg:

(K] = [ [ BEm O [E][BE )] det (35, ) )dedndC

(3Nx3N) & & (3Nx6) (6x6)  (6x3N)
Kall Le aplBuntiki oAokAnpwon:

Nepe Nepy Nepe

[K] =>>.>|[B i.,ﬂ,,Ck] [E][ (&m; G) ]det([J(gi,nj,gk]) w o CP P

(3Nx3N) i=1l j=1 k=1 (3Nx6) (6x6) (6x3N)

ZYNOPIAKES 2YNOHKEZ-EZQTEPIKA DOPTIA

Aev glval evkoAo va 800el n duokn onuacia doknong doptiwv ota control points, ylati
kABe control point yevikd 6ev elvat onUELo TNG YEWUETPLAG KAl POPTLON OE AUTO AVTLOTOLXEL
oe ¢option oe pla oAOkAnpn meplox tou dopéa. Otav ouwg emParlovial ¢optia ot
control points Tou cuvopou edapuolovral payuatt oto o onueio Tou popéa Adyw Twv
TMAPEUBOAKWY  CUVAPTACEWY OXNUATOG. 2e  Sladopetik mepimtwon, oOtav  eilvat
KOTAVEUNUEVA TTAVW OToV PpopEa, uTtoAoyilovtal oL LooSUVaUEG SPACELC TTOU 0LOKOUVTOL OTa
control points:

én+p+1 Mm+g+l Clyrsa

{F} =[{Rxy.2}f(xy.2av= | [ | {RE O} (g C)det[7]dCdnde

(Nx3) v (Nx1) (1x3) E m & (Nx1)

OL ouvoplakeg ouvOnkeg epdavilouv avtiotowyn dSuokoAila. Asopelovtog €va control point
SE0UEVETOL HEPLKWC N TIEPLOXN TOU PopEa TToU eMnpealeL.
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2Tn OUVEXELD, adoU €xel popdwOel To untpwo otifapotntag, Exouv emIPANBOel e€WTEPLKES
dopTtioelg kal ocuvoplakég ouvOnkeg, umopel va AuBel n eflowon kat va umtoAoylotouv ol
AYVWOTEC UETOKLVIOELG:

{Le}=[Kq J{Ds} = {Dy} :[Kff]il{l-f}

Me YVWOTEG TIG UETOKLVAOELG UIMOPOUV va TipoodloploBouv ta medla HETAKIVACEWY,
TAOEWV KOl TapapopdwoewVv o€ OAo To popéa:

METaKLVAOELG:

d(&n.0) ={REN.0)} (D}
Napapopd@oeLg:

{e(&n,0)} =[B(&,n.0)]{D}
Taoeg:

{o} =[E][BEN.O)]{D}

ENANAAIAKPITONOIHEH

MNa tnv PBeitiwon t™Ng Abong mou mpoékuPe amd TNV avAAUCn WUITOPOUV va

XpnotuomnotnBouv TEXVLKEC enavadlakplronoinong. Ynapyouv TIEVTE elén
enoavadlakpLtonoinong:

1. h-refinement

2. reverse h-refinement

3. p-refinement

4. reverse p-refinement

5. k-refinement

OAeg oL texvikég emavadlakpitonoinong Bacilovtal otn Aoywkrp OTL TPV KOL UETA TN
MUKVWON N YeWUETpla mapapével n 6o, e kabe mepimtwon Pplokovtal ol VEEG
KQPTEOLAVEG CUVTETAYUEVEG TwV control point wg

{PFine} — [TFine—InitiaI ] {Plnitial }

(mx3) (mxn) (nx3)

kal emavalappavetat n Swadkaocia pépdwong tou pntpwou otifapotntag, emiBoAng
€€WTEPLKWV oLUVONKWV Kal emiAuong.

AvoAUTIKOTEPQL:

h-refinement eivaL n swaywyn kéuPou (knot) mou cuvendyetal kat eloaywyn control
point, uTtdpxeL ocav TteXVIKN kat ota FEA. Elodayovtat knot values oto knot value vector kat
AapBadavovtal VEEG CUVOPTHOELG OXNUATOG KaL control points.
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To reverse h-refinement eival n adpaipeon kOUPwv. Aegv eival mavta duvato va adalpeboiv
KOuBoL, yla To AGyo auto o alyoplBuog yla reverse h-refinement mpémnel apyika va eAéyel
OTL oL KO BoL ou erAéxBnkav mpog adaipeon Mpayuatt adalpolVTaL KoL 0TNV CUVEXEL Va
umtoAoyloel TIG véeg B€aelg Twv control points.

To p-refinement R\ order elevation, eumAoutilel tTn BAon TwV CUVAPTHCEWY OXAUOTOC HE
™V avénon Tou MoAUWVUHLIKOU BaBuou. H dladikaocia meptAapuBavel TNV eloaywyr KOUBwv
(h-refinement) ywa tn petatpomnr oe €va ocUvolo amd Bezier curves, otn OUVEXELD TnV
avénon tou Babuol twv MoAuwWVUHWY Bezier kal katomwv adaipeon Twv mepttwv knot
values yla petatponn ava oe B-Spline. H teAikry TOAAQMAOGTNTA TWV EVOLAUECWY KOUBWV
au&avetal 600 Kal 0 BaBuog Twv MOAUWVUUWY woTe va dtatnpnbel n ouvéxelo oTOUG

KOUBouG.

To reverse p-refinement | order reduction, pewvel 10 BadBud twv mMoAvwvOpwyv. H
Swadikacia eivat avtiotoyn pe to p-refinement. Amodounon twv B-Splines oe Bezier,
uelwon tou Babuou tou moAuwvupou kot fava adaipeon Twv neplttwv knot values wote
va petatparnel fava o B-Spline. Opolwg pe tnv avtiotolyn texvikn reverse h-refinement,
ylvetal €Aeyxog av MpayUaTika Uropet va pelwBel o BabBuocg xwpig va xabel n akpifela otn
YEWUETPLA. Av yiveTal, TOTE HELWVETOL KOL N TEALKN) TOAAAMAGTNTA TWV KOUPBwV oto knot
value vector wote n CUVEXELQ va TTAPAUELVEL N (SLa.

Télog, to k-refinement eival pla véa teXVIKR HOVOSIK OTNV LOOYEWUETPLKA avaAuon.
Edapuoletal apyxika éva p-refinement yia tnv avé¢non tou Babuol twv MOAUWVUHWY Kal
otn ouvéxela éva h-refinement to omnoio ewodyet kKOpBoug pe vPnAn cuvéxela. O AOyog NG
uPNAAG ouvéxelag, ival OtL ol KOpPBol slonxbnoav petd to p-refinement kat €tol Sev
au€nonke n mMoOAAAMAGTNTA TOUC.

[1POZAPMOZTIKH IEPAPXIKH EMANAAIAKPITOMOIHZH

MNépa OuwWC amd TIC TEVIE KAOOOWKEC €KOOXEG emavoadlakpltomoinong Tmou
npoavadEpONKAV UTIAPXOUV KL AAAEC TOTILKOU KOL TIPOCAPHOCTIKOU XapoaKtripa. Exouv yivel
TMPOOTAOELEC WOTE Vo UTIAPXEL SuvatotnTa TOTIKAG TUKVWONG Tou O&IKTUOU ToU
OUVETAYETAL €loaywyn HEWUEVOU oaplOuov control points. H mpoondBsia auth
dnuootomnotBnke apxikd amo tnv A.Vuong to 2011. Ztnv mpodtaon ¢ n A.Vuong uloBetel
TG apXEG TG texvoAoyiag CAD yla Tnv dlakpltomoinon Tng YEWUETPLOG TTPOCAPLOCUEVN OTLG
OVAYKEC TNG LOOYEWWMETPLIKAG avaAuong. Emixelpel emituxwg Omwe amodelkvueTal va
OVTIKATAOTH OEL TOTILKA CUVOPTAOELG OXNLOTOC UE TIUKVOTEPEG WOTE Va BeATLWOEL TNV AUO.

H epapyikn) mOkvwon tou SIKTuou Aowmdy, lval pia TEXVIKH TOTIKOU E€UMAOUTIONOU TOU
UTtOAOYLOTIKOU Ttedilou, KOTA TNV omola ylvetal aviikatdooon PEpoug Tou adpol SikTtuou ue
€va TIUKVOTEPO. Amo 1o 2011 €w¢ KoL ONUEPA OL TPOTELVOUEVEG HEBOSOL lval TTOAAEG KaL
Baollopeveg otnv mpwtapxkn O€a mpoomabouv vo eviomicouv Ttov BEATIOTO KoL TILO
QOB OTIKO UNXAVIOUO TOTILKAG EMAVASLOKPLTOTOLNONG.
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Kowdg yvwpovag OAwv autwv twv peBodwv n datipnon twv WLotntwy Twv BACEWV WOTE
va elval Kat@AAnAeg ylo TIC avaykeG tng avaAluong. Avo am’ autég, lowg Kol ol
ONUOVTIKOTEPEG, €lval N YPAUULIK OVeEEOPTNOLA TWV OUVAPTAOEWV BACEWC Kal Kal n
ETUTAKTLKOTNTA TO AOPOLOUA TWV TLHWV ToUuG o€ KABe onpeio tng Baong va oovtat pe 1. H
npwtn Wotnta efacdaliletal pe xpnon tng Bewplag tou Kraft mou mpaypateveTal tv
TIUKVWON YEWUETPIKWY SIKTUWV. ZTnV SeUTePn LSLOTNTA €YKELTAL KOl N SUCKOALA ETAOYNG
owotn¢ pneBOdou ToMIKAG LepapXlkng emavadlakpitonoinong. OL meploocotepeg pEBodoL
glodyouv kamola PBapn ta omoia moAlamAactdlouv T CUVAPTACEL OXNUATOC WOTE va
Lkavoroleital n teAevtaia dloTNTA.

Itnv mopouca SuTAwpatK efetdotnkav kot kat afloAoynbnkav oe BewpnTikd Kal
TIOLOTIKO €MIMESO KATOLEG QMO OQUTEG TG HEBOSOUC. ITOXOG NTAV N OUYKPLON TWV
XOPOKTNPLOTIKWY ToUuG. Mapougoialovtal Aoutdv ot mpotdoelg tng Gianneli (truncated B-
Splines), twv Bornemann kat Cirak (HB-Splines) kat tou D. Shillinger mou amoteAel €va
uBpidlo Twv mponyoupevwv SVo peBOdwv. Ta TIC Meploocotepeg peBOSoug, Baoikn
npounoBeon amoteAel n Snuoupyla TNG KAAOOLKAG LEPAPXIKNC BAoNG. ZTNV CUVEXELA
ouvnBw¢ akoAouBel pla Stadikacia avayvwplong Twv CUVAPTACEWV TIOU TNV AMOTEAOUY,
KaBw¢ QUTEC TpogpyxovTal ano MoAa cuvexopeva (ouvnBwg) enineda nmukvwong. ‘Enetta,
TIPEMEL VA amotunwBouv Ue akpiBela ol aAANAEMISPACELS AUTWY TWV CUVAPTACEWY KOl Vol
amoBNKEUTOUV HE TPOTIO OPYOVWHEVO Kol EUKOAX ETEEEPYATLUO.

ITIC TIEPLOCOTEPEC ATIO AUTEC TIG HEBOSOUG WE Bapn yLa TNV LKAVOTIOiNoN TG LBLOTNTAC TOU
partition of unity (INi=1 oe kaBe B€on) xpnOLLOTOLOUVTAL EKEIVOL TIOU LKAVOTIOLOUV TNV
dotnta tng unodlaipeong (subdivision property). Z0udwva pe auty v OLOTNTA KAOE
ouvaptNon OXNUATOC HMopel va ypadtel wG YPAUUKOC OUVOUAOHUOC TIUKVOTEPWVY
ouvapTACEWV oXAUATOC. OAeg AOLTTOV OL OTPATNYLKEG TTOU TIAPOUGCLAIOVTAL ETILKEVTPWVOVTOL
oTNV avtlkatdotacn adpwv CUVAPTHCEWV CXNUATOC UE TIUKVOTEPEG TIOU UITOPOUV VAl TLG
ekppaocouv. H 18L0TnTa TNG Ypauukng aveéaptnoiag tkavormoeital pe tTnv adaipeon oAwv
TwWV adpwv OUVAPTACEWV OXAMOTOC TIOU MIMOPOUV va ekdpaoToUV TANPWE OO TLG
TIUKVOTEPEC Tou €xouv eloaxBel. H Giannelli mpoteivel kat tnv adaipeon TUNUATWY
OUVAPTACEWV BACEWY TIOU UIMOPOUV VA €KGPAOTOUV UEPLIKWG ATIO TG TIUKVOTEPEC YLOL TNV
TEPALTEPW PElWON TWV AAANAETIISPACEWVY TWV CUVAPTHCEWV OXHHOTOC IOV EMLBapUVouV TO
untpwo duokappiag pe emumAéov otolxeia. Mapdyovratl SnAadn untpwa pe AlydTEPOUG Un-
UN6evikoUg 0poug, peElwpEVo bandwidth, aAAd kal kaAUtepo conditioning number. O D.
Shillinger pe tv oelpd tou cuvdualovtag Tg SUO TPONYOUEVEG OTPATNYLKEG ETIXELPEL va
SLatnprRoEL TOV TOTIKO XOPAKTH PO TNG LEPAPXLKAG SlakpLtomoinong eL.oayovtag Tig AlyOTEPES
SUVATEC TTUKVOTEPEC OUVOPTHOELG O UATOG.

OAec Opwe oL mopanavw pebBodoloyieg sotialouv povo otnv popdpwon Twv BACEWV TwV
OUVAPTACEWV oxnuatoc. Odnyouv dnAadn otnv HOPPWON TOU EUMAOUTIOUEVOU HNTPWOU
Suokapiag. Itnv mMepPUMTTWON MPOCAPUOOCTIKAG emavadlakpltonoinong n emiluon Ttou
UNTPWOU  OTLRAPOTNTOG TOU TPOKUTITEL amd KABe emimedo TOMIKAG TUKVWONG
enavalappavetat €€ apxns. MNa avtov akplBwg tov Adyo o Wu Kal Ol CUVEPYATEG TOu,
npoTeElvaV Lo peBodoloyia kata TNV Omola TpayuaTomosital emiAucn UIKPOTEPWV
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UNTPWWV oTBapdTnTaG Ta omola avramokpivovtal o kABe eninmedo tng Lepapxiag. M’ auto
TO TpOMo ol Babuol eAeuBepiag mou €xouv amodektd odpdaApa emAuovtal Hovo pia ¢opa
KOl OTN CUVEXELA N EMLPPON TOUC 0TOV POopEQ UETAPEPETAL WG CUVOPLAKEG OUVONKEG OTOUG
BaBuoug eAeuBeplag MOV AVTLOTOLXOUV OTO ELOAYOLEVO TIUKVOTEPO eTtinedo. H peBodoloyia
autr) odnyel TPOKTIKA OE KOTOAKEPUATIONO TOU KOOOAWKOU HUNTPwWOU oTapotntag ot
HLKPOTEPO UNTPWO OTIRAPOTNTAG TA OMoia UImopoUV va eTAUBOUV aveEaptnTa UEV, HE TNV
owotr aAAnAouyia be.

Y& auTO To onueio atilel va SleukpLVLoTEL 0 OpoG ‘lepap)lkny’ emavadLaKpLTOTIONGCN TTOU
xpnotpomnoibnke éwg tTwpa. O 6pog LEpAPXIK OVOPEPETAL ATIOKAELOTIKA KoL HOVO OTNnV
LEPAPXLIKI) OXEOn TOU OLEMEL TIC OUVAPTNAOEL OXAMOTOG KOL TWV OXNUOTIOMO TWwV
EUMAOUTIONEVWY PAocewv. Asv avadpEPETal OTOV LEPAPXIKO OXNUATIONO TOU HNTPWOU
otBapotntag. H tepapykr SLatiMwaon Tou PNTpwou Ba ATav KATL EEALPETIKA XPNOLUO OTNV
TOTIKA TIUKVWON Tou &8iIktuou Kabwg Sev amattel tnv €€apyxng Hopdwon Tou oe KABe
eninedo Slakplromoinong. Ze pila TETola MEPLTWON Kol 0€ cuvdUOOoUO e TNV HEBoSo Tou
Wu n Lepapyikn enavadlakpitonoinon Ba ntav umoloyloTtikd dlaitepa olkovopkn. H
TIAPALETPOG AUTH OUWG ElvOlL KATL OTO OTOL0 eV €XEL UAPEEL OKOUA KATIOLO EPEUVNTLKN
e€ENLEN.

Me yvwpova OAa oca mpoavadépOnkav TpoTeiveTal aAyoplOUOG TPOCAPUOCTLKAG
LEPAPXLKNG emavadlakpltonoinong ya tnv eniluon Siodlactatwy npoPAnudtwy eninedng
gvtaong kot emimedng mopapdépdwonc. H Aoylkp TOU TIPOTEWVOPEVOU OAyOpLOuOoU
ocuvoileTal oTo MAPAKATW SLAypAUUA POAG:

Start

v

Input Data
. y

Initial
Parametrization
Solution |

Error Estimator
NO

T (Emer=€j—— End

y

——
\]/YES

Hierarchical Basis
| Creation i

v

Stiffness Matrix
| Formulation

v

Solution

v

Error Estimator |
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H emavadlakpilronoinon mpaypoatomnoleital Le TNV EMAOYH TWV OTOLXELWV UE TOo UPNnAdTEPO
odalpa. Epocov mpoodloploBouv ta otolxela yla emavadlakpltonoinon, avikadlotwvtat
LE TIUKVOTEPEG CUVAPTIOEL OXNUATOG OAEG OL CUVAPTIOELG OXNMOTOG TIOU SLEPXOVTAL AT
Ta otolyela avtd. Ol cuvapTHoEll Tou  elodyovtal moAamAactalovtal Pe KoAtaAAnAoug
OUVTEAEOTEG WOTE TO AOPOLOHA TWV TIHWV TWV CUVOPTACEWV OXNUOTOG TNG LEPAPXLKNG
Baong va eival mavrta 1. Ou ouveteleotég autol mpoaodlopilovtal amod tnv WLoTNTA TG
unodLaipeong (subdivision property).

p+1

Ni[;p = z Si?k N2£i++1k,p (f)
k=0
onou

g i(p;lj 1 (p+1)!

g " 2° (p+1-k)IK!

Mpoteivovtal emiong KATAAANAOL CUVTEAECTEG YLOL CUVOPTHOELG UELWHIEVNG CUVEXELOG.

E€aodaliletal emiong n ypapuikn aveaptnoia Twv cuvapTHoEWV OXAUOTOC adalpdvtog
OAEC TIC OUVAPTNAOEL( TIOU UMOPOUV va TeplypadolVv TARPWG a0 TI( TUKVOTEPEC
OUVQPTHOELG TIOU €X0UV £loa)OeL.

‘Ooov adopd TNV eloaywyn TwV VEWV CUVAPTHOEWV OXAUATOC Elval LOLaitepa CNUAVTLKO va
Bpebouv oL Boelg twv VEwv control points wote n yewMETpla va mapoapeivel n dia.

AnodelkvUeTal OTL :
ERoY

Omou [S] MUNTPWO METAOYXNMOTIOHOU TO OTOl0 TEPLEXEL TOUC OUVIEAECTEG TIOU
npoavadEPONKAV Kol TIG OXECELS HETAEU TWV OUVAPTACEWV SUO SLASOXIKWY LEPAPYLIKWV
erunédwv. Toviletal Mw¢ TEAIKWG Ol CUVTEAECTEG TTOAAATAQCLALOUV TIG GUVTETAYUEVES TWV
control points KL OXL TIG (OLEC TIC CUVAPTAOELG OXALOTOC.

Me Sebopéva OAa to mapanmdvw Tapouctaletal n olaltepn onuacio TNG EKTLUATELOG
odalpatog mou amnoteAel To KAELSL yla TNV UAomoinon evog alyoplOpou TPOCOPUOOTIKAG
enavadlakplronoinong. Itnv mapovoa OSUTAWUATIKY TIPOTEIVETOL ML QATIAR EKTIUATPLA
odaApato¢ Baoclopévn otig KAloelg tou meblou Twv petatonicewv o€ kABe otoweio. H
ekTipnon oddApatog otolxeiov Sivetal amod Tnv mapakdtw cxéon

1/2
1 2
88 :\78 (-2[|Vu| dQe

TOV OTOOEIKVVETAL TG LGOVTOL LLE

1

£ =W(”{df [B,] [J_1]T[J_1][82]{d}det[J]dégdnj
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omov

|:J__1]: 1 =y Jy 0 0
det[J]| O o J, -J,

Kot ohokAnpoverol aptOuntikd og

.= gaian o2 OV 18T [T [ B et e ™

i=1 j=1

Edv éva otoyeio £xel opdApa 1o omoio Eemepva ¢ TOGOOTO GPAAUATOS EMTL TOL GLVOALKOD
mv otafepd C(%) 1oTe VITOKELTAL GE TOKVWOGT). ZVVOTTIKA 0vTd cvpPaivel OTov

€, >ane£e
1

Téhog mapovoidloviar oVo epapuoyés emimedng évtaong yw v aSloAdynon g
TPOCUPUOCTIKNG LEPUPYIKNG ETOVAIIOKPLTONOINONG GE GYEon He TV KAoowkn pébodo tov h-
Refinement.

Ta anoteAéopata auTwy TwV edpappoywyv cuvoilovtal ota mopakatw Slaypappara.
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1. INTRODUCTION

1.1 FINITE ELEMENT METHOD

1.1.1 Basicldea

The basic idea behind the Finite Element Method is to solve a complex problem of partial
differential equations by converting it into a system of simplified algebraic equations. In
order to accomplish that, FEA computes the solution in discrete and finite points (nodes)
defined over the examined structure. Now, the field of displacements can be approximately
calculated for any internal point of the structure. It is straightforward that due to the
classical equation of elasticity, strains and stresses can be calculated as well. FEA is able to
provide with reliable results, even though it is an approximate and numerical method, a
feature that made it very attractive over the past decades for solving engineering problems
such as heat transfer, static or dynamic analysis of structures, solid-fluid interaction, wave
propagation and even fluid dynamics.

FEA approximates the solution with piecewise polynomial functions, called shape functions
N, which calculate the displacement value {U} at any internal point (x,y,z) of the element
by interpolation of the nodal displacements {d}, where neis the number of the discretized
finite elements over the structure.

(UX,Y,2)} =[N(X, Y, 2)] {d} (1.1)

(3x1) (3x3n,) (3nex1)

It is easy to notice that as the number of elements increases, such are the degrees of
freedom and the accuracy of the approximate solution. Along with the aforementioned
aspects element number increase leads to significant computing cost. It is easily
comprehended that computing cost is not crucial for simple problems with a few degrees of
freedom but for complex and large scale problems.

The problem is directly downsized from infinite unknowns to a finite number of degrees of
freedom. The next step is to define stress and strain matrices and their interconnection. In
the case of linear elastic problems these interconnections are defined by Hooke’s
constitutive law.

{o}=[oyx o0, 0, Oy oy, JZX]T(3DC6.S€) (1.2)
(6x1)
{5}:[‘9){ & &7 Vxy YVyz 7ZX]T(3Dcase) (1.3)
(6x1)

{o}=[E]{e} (1.4)

(6x1)  (6x6) (6x1)
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Deformation matrix [B] evaluates strains from nodal displacements in any material point of
the model with coordinates (x,y,z).

[B(x.Y.2)]=[B,(x.Y,2)}[ B,(x.Y.2)] (1.5)

(6x3ng) (6x9) (9x3ng)

{e(xy,2)}=[B(xy,2) ]} {D} (16)

(6x1) (6x3n,) (3nex1)

where ne is the number of nodes per element.

The local stiffness matrix [k] of each model’s element is given by the following integral.

(k] =J'[B(x, y,z)}T -[E]-[B(x, y,z)}dv (1.7)

(3nex3ny)  V (3nx86) (6x8) (6x3n,)

Distributed loads can be transformed into equivalent nodal loads, according to the next
equation.

()= | INCxy2)T {1 Coy.a)jov w

(3nex1) 3nx3)

The local stiffness matrix [k] of each element is added to the total stiffness matrix [K] of the
structure. The displacement vector is calculated with Gauss elimination by the system:

(R} =[] {D} wa

(3nx1) (3nx3n)  (3nx1)

where n is the model’s total node number.

We observe that shape functions [N] and deformation matrix [B] depend on the Cartesian
coordinates (x,y,z). This leads to iteration problems when complex geometries (e.g. circles
or conic sections in general) are involved. The solution, which contributed to the further
generalization of FEM, along with a more efficient iteration algorithm, is isoparametric
elements. The basic idea is the existence of a parent element in the parameter space, which
can be modeled as a regular shape (e.g. a cube, square or an equilateral triangle). Each
element in the physical space (the “real” modeling space) can be described using a linear
combination of the parent element’s shape functions. Hence, geometry can be
approximated by the same functions used for the solution field. This explains the name
“isoparametric”.
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1.1.2 Method Development

A variety of complex problems were until recently considered unsolved considering the
large computational effort needed. This fact made their analysis practically impossible. The
first application of finite element method was the triangulation of airplane wings, in order to
determine how they are overworked by wind forces. It was the requirement of numerous
hand calculations that made the process inapplicable. The progress of computer technology
and computational methods (computational mechanics & geometry) enabled the evolution
and programming of finite element method to tackle these obstacles by solving complicated
problems in much less time and with far less human effort.

FEA is nowadays so widely spread and accepted by the scientific community for the
following reasons. Firstly FEA can be used in problems that require numerical
approximation, as analytical solution is not attainable. In addition, the enforcement of
complex geometries, physical loads and material properties to the simulated model is
possible, without arising any significant difficulties. It also enables the connection of
complex composite materials, while it can be easily refined and altered to approach the
accuracy requirements of each problem. Finally, the introduction of dynamic analysis and
non-linear material and geometry behavior enables the approximation of real materials and
their actual behavior in numerous cases of physical problems.

The need to apply this innovative technique in industrial scale encouraged the
development of finite element software. These programs needed to adopt a double nature
by supporting both design and analysis process, which is a very difficult task. The
combination of graphical representation and numerical analysis with finite elements would
simplify engineering tasks, as it would focus only on the essential aspects of each problem,
neglecting the need of complex calculations.

Nowadays, commercial software partially incorporates both graphic design and finite
element analysis. State of the art programs are now able to solve a wide range of problems
from soil mechanics and structural analysis to thermodynamics and solid fluid interaction,
covering practically most problems an engineer can encounter. The additional combination
of non-linear behavior and dynamic analysis transforms FEA programs into the proper tool
for every engineer to face sufficiently even the most demanding and cost intensive
problems.

Nowadays the method of finite elements is not only used by engineers. All scientific fields
have become acquainted to this method as it became a very handful tool. For instance,
doctors with aid of engineers analyze blood flow in vessels to determine weak points of the
walls and diagnose and prevent heart diseases (thoracic and abdominal aortic aneurysm). At
the same time, all mechanical tools and substitutes used in surgeries to replace human parts
could be designed via FEA. In general, FEA tends to be the widest utilized tool for all fields of
science.
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1.1.3 Drawbacks

Even though the evolution of finite element method has been rapid since its birth, main
drawbacks have not been overcome yet. For example, exact geometrical representation of
the model is almost impossible. Even isoparametric elements can only produce a more
precise but still approximate mesh of the geometry. The most challenging tasks, that
engineers face today, often require exact geometrical representation in order to achieve
the desired accuracy. Except from mesh generation of CAD design, the initial geometry
plays no role in the analysis. This seems to be wrong, as the accurate geometry is replaced
with an approximate one. As expected, it produces a vast number of issues. The inevitable
geometrical approximation means there will be convergence errors by definition, regardless
of the solution methods and the available computational power. This affects the efficiency
of the solution.

In case a better approximation is required, refinement algorithms will return to the initial
geometry and produce a new and more precise one from the beginning. The new, fine
mesh cannot be directly produced from the previous. This means that procedures already
completed have to be repeated in order to create the new mesh. Precious analysis time is
required and the geometrical differences between the coarse and fine mesh make it difficult
to compare the result. It is obvious that a new approach is needed that will integrate CAD
programs and FEA software. Unfortunately, computational geometry and numerical analysis
have been developed in different eras. Computer aided design has evolved greatly since its
birth. On the other hand, finite element design geometries are unable to follow the rapid
CAD evolution. These problems were always present throughout the history of FEM.
Complicated geometries used in mechanics led to the development of algorithms and
computational methods to minimize this effect. The problem is that the definition of finite
elements does not facilitate the progress towards the full cooperation of design and
analysis.

The solution to the drawback of geometric approach mentioned above is to embrace the

development of Isogeometric Analysis (IGA) using NURBS, T-Splines and subdivision
surfaces, taking advantage of the method’s main idea, which suggests that any shaped
geometry remains intact and the analysis is performed on the exact geometric model. Shape
functions that are used in isogeometric analysis are in fact those used for design. This
breakthrough of IGA allows the analysis of structures with complex geometry, without
making approximations. In addition, a designer is able to draft any object using less control
points (equivalent to the nodes of FEA). When the object is about to undergo analysis, the
engineer can effortless obtain the suitable mesh. Even when refinement procedure is
needed, the engineer does not have to go back to the initial geometry. Refinement is
performed always directly on the imported geometry, following the rules of design.
Consequently, geometry does not change, leading to important time economy by
procedures that will not be performed again.
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1.2 CoMmPUTER AIDED DESIGN

1.2.1 Historical Overview

Computer Aided Design (CAD) emerged in the 1950s from the automotive, shipyard and
aircraft industries. In those times, designers were able to produce accurate drafts by hand,
but when ship cross sections had to be drafted in real-life size, pencils could not help
anymore and things became a bit more complex. The main problem was the definition of a
real-size curve, which smoothly interpolated several predetermined points in order to
create the shell of the ship. This task was usually carried out in the loft of a building, due to
the large amount of space needed. The loftsman, as he was called, used easy-to-bend pieces
of steel or wood, called splines, in order to interpolate the points. In order to maintain the
spline’s shape, he usually put weights on them on certain points.

The development of NURBS arose from the need to effectively represent freeform
surfaces. Two engineers in France stood at the forefront of this approach, Pierre Bezier from
Renault and Paul de Casteljau from Citroen. Bezier’s work was the first to reach publication,
and soon after the CAD industry started using and enhancing Bezier curves. However,
certain disadvantages of Bezier curves led to the search for more convenient forms of
representation. Researchers finally introduced B-Splines, which were similar to Bezier
curves, meaning that the curve was defined by a set of points, called the “control points”,
but their number was independent of the polynomial order of the curve. B-Splines were a
generalization of Bezier curves, but they were also more convenient to edit. Changing a
point didn’t influence the whole curve, but only part of it.

DATE SUBJECT AUTHOR
1912 Bernstein Polynomials Bernstein
1946 Schoenberg coins the name "'SPLine"" Schoenberg
1956 Subdivision seminal ideas Rham
1959 De Casteljau Algorithm De Casteljau

1966-1972 Bezier curves and surfaces Bezier-Faget

1971-1972 Cox-de Boor recursion Cox-de Boor
1972 B-SPLines Riesenfeld
1974 Subdivision seminal ideas Chaikin
1975 NURBS Versprille
1978 Subdivision Surfaces Catmull-Clark and Doo-Sabin
1989 Oslo knot insertion algorithm Oslo
1987 Loop subdivision Loop

1987-1989 Polar forms, blossoms Ramshaw

1996-present Triangular and tetrahedral B-SPLines Lai-Schumaker
1997 SPLine finite elements Sabin
2003 T-SPLines Sederberg
2008 Replace trim.med NURBS :sun‘ace with S —
untrimmed T-SPLines

Figure 1.1.

History of CAD technologies.
(lakovos Antonios 2015)
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Another problem is that even B-Splines cannot produce an exact representation of conic
sections. This is where NURBS came along. Ken Versprille was the first to work with NURBS
on his dissertation in 1975. Later, when he acquired a top position in Computervision, the
company began to support NURBS. Boeing, in its ambitious project to create a single curve
representation that included Bezier curves and conic sections, became the first to
industrialize NURBS. After that, NURBS began to spread across the CAD industry. They
possessed a lot of interesting attributes. The parameterization of the whole curve was
downsized to a few control points coordinates, allowing numerically stable mathematical
procedures and easy modification. Cartoon characters, videogame graphics, ships, cars,
airplanes were designed using NUBRS. This led to major investments from research and
industrial faculties. Graphic designers became accustomed to them and students were
taught about the theory and implementation of NURBS in real-life problems. This cycle’s
milestones presented in Fig. 1.1 led to the increasing popularity of Non-Uniform Rational B-
Splines in the CAD industry.

Today, even though many other forms of more suitable representations exist, such as T-
Splines, Polycube Splines and Subdivision surfaces, NURBS still hold a large share of the
market. Many platforms exist for NURBS and designers still find it easier to use them. Many
handful tools have been developed over the years for them (knot insertion, order elevation,
curve fitting, patching). This makes them more attractive and easy-to-use than newer
techniques with less industry experience behind them.

(c)

Figure 1.2.
Representing an arbitrary geometry with: (a) Subdivision Surfaces, (b) Smooth Subdivision Surfaces, (c) NURBS
surfaces
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1.3 ISOGEOMETRIC ANALYSIS

1.3.1 Introduction

Considering the aforementioned drawbacks of the classical finite element method
researchers worldwide have been trying to overcome them. Their aim was to eliminate the
geometry error that every analysis inherited due to the different mesh of design and
analysis.

It was clear that integration between the two technologies CAD and CAE was necessary, in
order to achieve better numerical results as well as to save valuable computational time in
terms of CPU-time and generation of an analysis suitable mesh. Such were the reasons that
led Professor Hughes and his colleagues to introduce Isogeometric Analysis (IGA) back in
2003 and make a breakthrough in computational mechanics.

At the same time, Isogeometric Analysis was the first successful systematically proposed
method so far, suitable for implementation and programming. IGA has been since then a
great topic for academic research for many engineers around the world as it shown
enormous potential for engineering application that could someday overthrow FEA as the
leading technology in engineering software.

The main idea was to use the same exact mesh that emerged from the design process in
CAD software into the analysis. It is clear that this concept would eliminate completely the
time needed for assembling the approximate finite element mesh.

The time for assembling the analysis mesh is approximately 70% of the total analysis time
in modern applications of FEA in complicated structures. It was the need for reduced
computational time that initially motivated the isogeometric analysis concept in order to
merge geometry design and mesh generation. In FEA software, practically around 80% of
the overall analysis time is consumed in efforts to acquire a satisfactory approximate mesh,
which has to be quite close to the accurate mesh of the geometry and suitable for analysis
purposes.
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1.3.2 Basic ldea

The basic idea behind Isogeometric Analysis was to merge the Computer Aided Design with
the Computer Aided Engineering technology. In order to achieve this goal, the same mesh
for design and analysis was needed. Hughes et al used the shape functions of the design
process directly into the analysis.

While CAD community uses NURBS, T-Splines and subdivision surfaces, the CAE community
generally uses Lagrange polynomials to approximate the geometry. FEA’s approximate mesh
necessitates a re-parameterization of the CAD geometry, which makes labor cost quite
intensive and introduces automatically geometrical error. In 2003, the research on
isogeometric analysis started to focus on the question if finite element analysis could be
done with Non-Uniform Rational B-Splines (NURBS), the most widely used computational
geometry tool in commercial CAD programs.

Recent research on isogeometric analysis uses Non-Uniform Rational B-Splines (NURBS) as
shape functions, because they are extremely popular in engineering design systems. It has
been shown that NURBS-based finite elements are very well suited for computational
analysis, leading to more accurate results in comparison with standard finite elements
based on Lagrange polynomials.

NURBS were until lately the main shape functions used in isogeometric analysis. In 2008, T-
Splines were introduced as a worthy “opponent” that holds all the benefits of NURBS and at
the same time permits local refinement. Water tightness, less control points, more design
capabilities, but also sophisticated nature and complex implementation are its main
features.

Nodes Knots

(b)

Figure 1.3.
Isogeometric Analysis is the powerful generalization of Finite Element Analysis. (a)Finite Element Analysis.
(b) Isogeometric Analysis.
(lakovos Antonios 2015)
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1.3.3 Index, Parameter and Physical Space

Generally, finite element problems are not being handled in their physical form. In most
occasions, the exact solution of a natural problem is neither possible nor necessary. The
actual objective is to find an accurate solution that satisfies a selected convergence
criterion. That means that FEA practitioners have developed methods to ease the numerical
approach of each problem, by converting their true geometry into an analysis and
implementation suitable one. The ultimate challenge for an engineer is to balance between
accuracy and time. Design and analysis of extraordinary geometries is a powerful asset for
modern engineers, who are capable of facing surprisingly more complicated problems. The
assumption of new spaces that would extend beyond the physical dimensions of the
problem became necessary. Accurate geometrical representations of the natural model are
designed in the familiar Cartesian system, called Physical space. Additionally, it is very
helpful to envision a complex structure in an imaginary, basic space, where all geometries
can be represented as lines, rectangles and cuboids. This is Parameter space. This approach
is far from new; it is already known from the isoparametric concept in finite element
methods. The parameter space utilized in isogeometric analysis, however, holds some major
differences. Furthermore, isogeometric analysis also introduces the Index space. This
additional space plays an important role for some kinds of Splines, but it is only auxiliary for
NURBS.

Control mesh —

Physical
space

© Control point VB,‘

"]4 \ \ D
2 Physical mesh

1 . ', parent element
" w, N, )M, (v

e Ry(E) =g

S 2w N E)M; ()

S i

A

Parent

element k

¥ . .ns.
0, » 1> )

g n;
Parameter &
space M
.’15_
Knot vectors Ny
E={§1~§:<§3«§+§5-§6~§7} M
={0.0,0 12 1 L 1} n

I {“1<n:~ns~'h<ﬂs~']s»']7-‘]s} ')],.. . . - - . .

={0. 0,0 13,23 1 L l}A & & & & & & &

Index space

Figure 1.4.

The different mappings and spaces of Isogeometric Analysis.
(Hughes et al 2007)
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1.3.3.1 Physical Space

Physical space is the already known Cartesian space, where the real model is represented.
Simple orthogonal shapes from parameter space are transformed into complex entities in
the physical space. Physical coordinates of the control points play a major role in the
aforementioned mapping, but an equally drastic role is set upon basis functions. In fact, for
a given set of control points, only a single set of basis functions can lead to the same
geometry. We will examine this thoroughly later. Control points can often be seen outside
the model in physical space in contrast to FEM’s nodes which always belong to the mesh as
depicted in Fig. 1.3. It is one of the reasons NURBS and Spline entities in general can
accurately represent multiple types of geometries and the understanding of this peculiarity
is one of the many challenges of isogeometric analysis.

(a) (b)

(e) (f)

Figure 1.5.
(a) B-Spline curve, (b) NURBS curve, (c) B-Spline surface, (d) NURBS surface (e) B-Spline solid, (f) NURBS solid
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1.3.3.2 Parameter Space

Parameter space is a representation of the model with respect to knots. Spline entities are
always represented as orthogonal shapes in parameter space. Only lines, rectangles and
cuboids exist here. In order to transform those simple patterns to virtually unlimited,
complex geometries, the application of a mapping from parameter to physical space is
required. Hence, parameter space is a primitive, abstract representation of physical space.
The mapping between parameter space and physical space is achieved through the Jacobian
matrix and its inverse. This is something widely utilized in FEM as well.

Parameter Space

D Knot TensorProduct
@ ControlPoint TensorProduct

5} @ = @ 3 @ ]

Parameter Axis &
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Parameter Axis § ?
Figure 1.6.

Parameter space in 1D, 2D and 3D applications respectively.

The illustration of basis functions in the parameter space allows for a better understanding
of concepts such as support, control point coordinates and the role of knots in basis
function creation. In parameter space we usually also plot the basis and shape functions as
in this space it is easy to see their support and observe their properties with clarity. Each
knot marks the beginning and the end of a basis function domain. By “domain” we mean the
area in which the basis function is non-zero, as all basis functions are defined throughout
the parameter space, but are non-zero only in specific knot spans. Basis functions sharing
the same domain are overlapping in parameter space and controlling a common part of the
entity in the physical space.
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1.3.3.3 Index Space

Index space is a representation of the model with respect to knot values. It is a line in 1D,
containing the corresponding knot values in equally spaced positions. This space focuses
upon the sequence of knot values rather than their actual numerical content.

Index space describes the contribution of each knot value to the creation of a certain
B-Spline basis function. This helps identify the level of interconnection between basis

functions and the knot value support of each function.

Control points are also evaluated in the index space. In fact, control points are defined as
the center of the support of knot value spans.
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Figure 1.7.
Index space in 1D, 2D and 3D applications respectively.

Expansion to 2D or 3D leads to the creation of rectangles or cuboids respectively. Due to
tensor product properties, everything mentioned about 1D extends and applies to both 2D
and 3D. Thus, index space provides information that can contribute to the comprehension
of a complex representation.

Index space is a line in 1D, a rectangle in 2D and a cuboid in 3D as it is shown in Fig. 1.7.
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2 . B-SPLINES AND NURBS

2.1 B-SPLINE BASIS FUNCTIONS

Given a sequence of non-decreasing numbers, = ={§1 & ... &np Enspsa}, We can evaluate the
B-Spline basis functions at & € I:él, énﬂmj using the Cox-de Boor recursive formula (2.3):

First, for degree p=0 (piecewise constant, box B-Spline)

1 if §<E<&,

. (2.1)
0, otherwise

Ni,o(é) :{

The piecewise constant does not include the right edge &1 in order to ensure partition of
unity, as the next basis function begins at that edge. The last function, however, includes
both left and right edge, in order to be defined for the whole knot span.

1, if &,.,<&E<E ..
N _ n+p n+p+. 22
rin0(5) {0, otherwise (2.2)
Afterwards, for degree p=1,2,... (with the assumption of% =0):
é_a- §i+p+l _é
N;, (&)= — N () +————N;,; 1 (8) (2.3)
P E,~i+p o EJi i E.~i+p+1 B E‘:i+1 w

(b)

(c)
Figure 2.1.
Representation of B-Splines of degree (a) p=0, (b) p=1and (c) p=2
(lakovos Antonios 2015).
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2.2 KNOT VALUE VECTOR

Knots define the boundaries of the model’s basis functions. They represent “switches”
which turn “on” or “off” a certain piece of a B-Spline basis function. In order to acquire the
knots and the basis functions, a knot vector must be defined.

A knot vector = is usually defined in bibliography as a set of § coordinates, with:

&Ji = E.!i+1
It can contain the same number multiple times and generates the basis in a unique way.

In order to improve efficiency and communication between the readers of this thesis, we
define as

e “Knot value vector”: the whole set of non-decreasing coordinates (“knot values”).
e “Knot vector”: the set of unique coordinates (“knots”).
For example, a knot value vector could be
01112233}

where 0,1, 1, 1, 2, 2, 3, 3 are the separate knot values.

The corresponding knot vector is:
{012 3}
where 0,1,2,3 are the separate knots.

Let p be the polynomial degree of the basis function. If the first and the last knots are
repeated p+1 times, the knot value vector is considered “open”, because it has C?
continuity on the edges, creating an open curve that is interpolatory at these points. If knot
values are equally spaced, the knot value vector is considered “uniform”. In CAD
community, non-uniform, open knot value vectors are widely used. An example of a uniform
knot value vector with polynomial degree p= 2 is:

{0000511522533 3}

A knot value vector may contain integers or decimals. In fact, the actual numerical content
of knot values is of no importance. What matters is the relative distance between them. This
means a knot value vector can be multiplied by any number, or have a number added to
every knot value and the resulting basis would still be the same.
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2.3 CONTROL POINTS COEFFICIENTS

Control points exist in all three spaces. Their parametric coordinates are defined as the
center of the support in the index space. Recall that for the i™" basis function of order p the
support is [§;,&i+p+1). The support contains p+1 knot value spans, therefore p+2 knot values
(including the right boundary value §.p+1). For even degrees, the center of the support in the
index space lies between two sequential knot values, i+p/2 and i+p/2+1. As a result, the
coordinate of the control point is defined as the average of these knot values:

Ecr =o.5-(gi+p ‘e, ] (2.4)

i+—+1
2

which means that a control point of even degree can either be on a knot, or in the middle of
a knot span.

For odd degrees, the center of the support is the knot value i+(p+1)/2. Therefore, for odd
degrees, control points are always coincident with knots.

2.4 B-SPLINE FULL TENSOR PRODUCT PROPERTY

B-Spline basis functions are of full-tensor product nature. Consequently, it is easy to
combine B-Splines across different directions, in order to evaluate a multi-directional
B-Spline shape function.

2D B-Spline shape functions can be evaluated as tensor product of basis functions N, (&)
andM, (n):

RPT(Em)=N;;(&)-M,;,(n) (2.5)

3D B-Spline shape functions are a tensor product of basis functions on three directions,

N;(8), Mi, (n) and Ly, (C)

RPK(EM,Q) =N, (€)M, (n) L, (€) (2.6)

It is easily proved that all properties of B-Spline basis functions in one direction are
inherited by the multi-directional shape functions. As a result, comprehension of univariate
B-Spline basis function properties and techniques is very important for understanding
multivariate complex geometries.
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2.5 B-SPLINE BASIS FUNCTION PROPERTIES

B-Spline basis functions possess the following important properties:

= Local support:

N, (&)=0VEe[& &)
= |n any given knot span, at most p+1 functions of order p are non-zero.

= Non-negativity:
Nip(E)>0 ¥ &i,p
= Partition of unity:

SN, ©)=17 5

= CP™ Continuity across knots with m multiplicity.

= N, (&) has exactly one maximum value, except for p=0.

= A non-periodic knot value vector that produces n functions of order p has n+p+1
knot values.

= Every B-Spline basis function shares support with 2p B-Splines.

2.5.1 Local support

Local support means that basis functions are non-zero only in certain knot spans in
parameter space. This can be expressed by

Nivp(é) = O’Vg%l:éiféiﬁ-pﬂ) (27)

Local support is a result of the recursive character of B-Splines. For the creation of a B-
Spline function of degree p, two consecutive B-Spline functions of order p-1 are used. For
the creation of those consecutive basis functions, three consecutive functions of order p-2
are needed. Inductively, p+1 consecutive box basis functions are required.

Each box function has a support of one knot value span. As a result, the support of the final
basis function is defined by the union of the supports of the box functions, hence p+1

consecutive knot value spans.

In Fig. 2.2, the recursive character of B-Splines is presented. Linear functions are combined
for the evaluation of quadratic (p= 2) basis functions. Bear in mind that some linear and box
functions are zero across the entire domain, but still contribute to the evaluation of the
next-order B-Splines.
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Figure 2.2.

Basis function generation (Cox-de Boor recursive formula).

‘ | N, . (€) |

0.5 —
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0.5

Figure 2.3.
B-Splines of degree 0, 1, 2 from bottom to top respectively
(lakovos Antonios 2015)

For example, N412(§) in Fig. 2.3 is created from NM(E) and N5,1(a)- They, in turn, are

evaluated fromN,((§), N4 (€) and Ng,(€) respectively. The corresponding box functions
are non-zero in the knot spans [1,2), [2,3) and [2,3), [3,4), thus creating the support [1,4) of

N,(8).

In a similar fashion, a support can be defined with respect to knot values contributing to
the creation of a B-Spline basis function. These are the p+2 knot values that are contained
in the knot value span support of the function. Both knot value span support and knot value
support are necessary for the understanding of isogeometric methods.
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N5, (5)

0 1 2 3 4 5 6
Figure 2.4.
B-Spline basis functions for knot value vector .z=={0 0000 123455556 6 6 6 6}
1D Shape Function N, (&)

(lakovos Antonios 2015)

In Fig. 2.4, the degree isp =4, so each basis function has a support of p+1= 4+1= 5 knot
value spans. The selected function N;, (), drawn in red, is non-zero only in the knot value

spans [0, 1), [1,2), [2,3), [3,4) and [4,5). The p+2 = 6 knot values that define this function are
{0,1,2,3,4,5}. There are no trivial spans in this B-Spline function, so it is considered a fully
developed basis function.

B-Spline tensor product properties enable the immediate expansion of 1D properties to 2D
and 3D B-Spline shape functions.

2.5.2 Inany given knot span [§,§;:1) at most (p+1) of the functions N,
are nonzero

A box function that is non-zero in one knot span contributes to the evaluation of two
consecutive B-Spline basis functions of order p=1. These two functions lead to the creation
of three consecutive basis functions of order p=2. Inductively, a box function contributes to
the creation of p+1 B-Spline basis functions of order p.

It applies from Cox-de Boor recursive formula that only one box function is non-zero across
a selected knot span. As a result, only the corresponding p+1 B-Spline basis functions of
order p can be non-zero in that specific knot span.

Therefore, at a non-trivial knot value span [§, €&.1) only the basis functions
Ni_p,p(i), Ni_pﬂ,p(@), ey Ni,p(i) are non-zero. This is used efficiently in stiffness matrix

formulation, in order to reduce computational cost.
In Fig. 2.5, two separate knot spans are examined.

For every knot span p+1=3 basis functions are non-zero.

For the first knot span, [0,1)=[£3,€4) basis functions lep (i), Nzyp(g), N3’p(5,) are non-zero.
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For the second knot span, [4,5)=[¢7,€s) basis functions N5’p(5_,), Nelp(i), N7’p(§) are non-

zero.

As a result, in 2D, at a given knot rectangle only the tensor products of the respective non-
zero basis functions are non-zero, namely (p+1)(g+1) shape functions.

Inductively, in 3D, at a given knot cuboid the tensor products of the corresponding non-zero
basis functions create (p+1)(g+1)(r+1) non-zero shape functions.

Figure 2.5.
B-Spline basis functions for knot value vector=={0 0 0 1 2 3 4 5 6 7 7 7}. Basis functions that are non-zero
in knot span [0,1) are drawn in red. Basis functions that are non-zero in knotspan [4,5) are drawn in green.
(lakovos Antonios and Karras Dimitrios 2015)
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Contribution of one box function to non-zero higher-order B-Spline basis functions across knot span [1,2)
(lakovos Antonios and Karras Dimitrios, 2015).
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2.5.3 Non-negativity

It has been established that:

N;, () =0 V &,i,p (2.8)

This is proven by induction on p. It is clearly true for p=0 and we assume it is true for p-1.

By definition
&'é' E.>i+p+l_§
N, (=== N, (O =N, 04 (6).
|,p(§) §i+p_§i w (é) §i+p+l_§i+l , (é)

By the property of local support, either ie[&i,§i+p) and N, (&)=0 Of &e[ai,ihp) in

which case £-§>0 and with the assumption made that Nipi1(§)20, the first term

&5 N;,.(6)=0. The same is true for the second term, MNM,M(@)ZO- Thus

<t:i+p 'éi i+p+l-E.>i+l

N, (&) =0 and is valid for any i, p, €.

IR

Figure 2.7.
B-Spline basis functions for knot value vector
=={000001234567899999}
(lakovos Antonios 2015)

The degree in Fig. 2.7 is p=2. As we see in the picture above, all the basis functions are
positive for every ;. This property is very important for isogeometric analysis and it does not
apply in the classical shape functions of finite element analysis. Naturally, it is easier for the
human mind to work with only positive values, so this attribute simplifies and encourages
the understanding of B-Splines. Non-negativity applies for 2D and 3D shape functions as
well.
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2.5.4 Partition of unity

Partition of unity is expressed by

Zn:Ni,p(E»):l’VE.up (2.9)

Zf——z Nis

Nos Nyis Naz
Nasg

/

by by bo b3 by
ko k1 k2 k3 ky
k_q ks

L

(a)

by by by by ba by by by bs
k_g k-1 ko ky ko ks

(b)

Figure 2.8.
Partition of unity in B-Spline basis for: (a) Open vector basis, (b) Non-open vector basis

Partition of unity is essential in any set of basis functions in any finite element scheme. The
reason is simple. In isogeometric analysis as in the general case of finite elements, the
displacement at a point C(§,n,0)={x,y,z} in the solid model, will be approximated by ZNi(€)ui
where u; are the displacements on the nodes or in the case of isogeometric analysis the
displacements on the control points. If u, =g for all the control points, we have rigid body
displacements (property affine invariance of B-Spline curves) and if those in conjunction
with the laws of the phenomenon we study cause no strain, it is clear that

UZ_;‘ N., () = constant .

In our case of isoparametric elements, where the same functions are used to describe
geometry, it would be necessary that all points are translated byU, thus
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U N, (©)=0=) N, (=1
i=1 i=1
Proof. We will prove it in an arbitrary knot span.

Vié[ii,§i+1),

ZN,,,@ ZN,p(&)—Z[ &5 N, . (E)F MNW@J

i=ip Fp\ SjpS; SivpraSjua (2.10)
i +p+l (t?
— 1(&) J P '+]_ .1(%)
j=i-p éj+p é Jp JZ':P i+ptl él”'l o

Changing variable in the second sum from (i-p) to (i-p+1) and considering that

Ni—p.p-l = Ni+1.p-1 =0 for(t: = [E:. , E:i+l) :

Zn:Nivp(E’) ZI: Lééi éﬁp i] j,p.l(f;): 2 Nj,p.l(E.v) (2.112)

j=i-p+1 j*p E.; é]+p E.> j=i-p+1

Applying the same procedure recursively:

SN©= X Npu®= ¥ Npu@==YN,0=1 @12

j=i-p+l j=i-p+2

Partition of unity applies for multi-dimensional shape functions as well.

In 2D, partition of unity is expressed as

iiRE'ﬁ Zizm:Ni,p(ﬁ)'Mj,q(n)ﬂ (2.13)

i=1 1 i=1 j1
which is a result of tensor product nature:

iiRr;ﬁ=iiNi,p(a>-Mj,q(n>{iNi,p(@j-[iMj,q(n)}l (2.14)

i=1 j=1 i=1 j=1
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In full analogy, 3D shape functions also possess partition of unity:

n m | n m |

YNSRI =NSYN,,(E)M, ()L, (£)=1 (2.15)

i=1 1 k=1 i=1 =1 k=1

Partition of unity is also a property of great importance for the shape functions that are
used in finite element analysis.

&

0 1 2 3 4 5 6 7

Figure 2.9.
B-Spline basis functions for knot value vector=={0 0 0 0 1 2 3 4 5 6 7 7 7 7}.Sum of B-Spline function
value at every €. Partition of unity.
(lakovos Antonios 2015)

The degree for the B-Spline basis functions in Figure 2.9 is p=3. The green horizontal line
represents the sum of B-Spline values at the corresponding ¢, which, of course, is equal to 1

for every €.

For example, B-Spline values have been evaluated for €=4.81, with the following results for
the four non-zero basis functions:

N, ,(4.81) =0.0011
N, ,(4.81) =0.2763
N, ,(4.81) = 0.6340
N, ;(4.81) = 0.0886

The above yields
10
D N,;(4.81) =1
i=1

as expected.
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2.5.5 CPMContinuity

At a knot with multiplicity m, Nip(§) produces p-m continuous derivatives or, in other
words, it has CP™ continuity. Continuity less than C° is not acceptable for internal knots,
which means they can be repeated up to p times. Bear in mind that as continuity decreases,
B-Spline basis functions tend to be more “steep”.

The polynomial order in Fig. 2.10 is p=3. Continuity for a basis function is affected only by
the corresponding knot values. Knot §=4 has multiplicity m=3 with respect to the knot
vector. Its multiplicity with respect to the basis functions depends on each function’s knot
value support.

Figure 2.10.
B-Spline Basis functions for knot value vector
E={00001234445678888}

(lakovos Antonios 2015)

Na3(€), the red fully developed basis function has a knot value support of {0,1,2,3,4}. The
knot €=4 has multiplicity m=1 with respect to the basis function Ns3(£),so this function is
CP-m=C31= C2 continuous in the entire domain.

The magenta basis function, Ns3(§) has a knot value support of {1,2,3,4,4}. The knot in
guestion has multiplicity m=2 with respect to the basis function, which makes Ns3(£)
CPm=C3*2=C! continuous across £=4.

Knot value support for Ng3(€) and N73(§) which are depicted with cyan is {2,3,4,4,4} and
{3,4,4,4,5} respectively. The multiplicity of the knot is m=3 for both basis functions.
Therefore, these functions have ~ CP™= C33= C° continuity across £=4.

Observe that when a B-Spline basis function N;jp(§) has a knot §nwith multiplicity p in the
center of the knot value support, it applies that Nj(§m)=1.

In 2D and 3D cases, continuity per direction is obtained straight from the continuity of the
corresponding one-directional B-Spline basis functions.

Observe that all functions of reduced continuity tend to be more “steep”. This happens
because they contain multiple knot values of the same knot, and therefore develop across
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trivial spans. This “steepness” is the first indication that a basis function has reduced
continuity.

Moreover, internal C° continuity produced exactly the same B-Spline basis functions as C*
continuity on the edge of the knot vector. This means that at every knot with multiplicity
m=p, only one function remains non-zero. Due to partition of unity, that function’s value at
that knot is equal to 1.

In multi-dimensional functions, C° continuity across a knot requires the basis functions per
all directions to be C° continuous at that point. In this case, the value of the multi-
dimensional shape function across this knot is equal to 1.

2.5.6 Linear Independence

Given a finite number of distinct vectors {u1 u ... un}and scalars {a1 a2 ... an}, the subset
S of a vector space V is called linearly independent if the equation ajui+azuz+...+anun=0
leads to the unique solution ai=az=...=an=0. Thus the subset is linearly independent if a
linear combination of the vectors is the zero vector, only for ai=as=...=an=0. The linear
independence in isogeometric analysis applies for the basis functions {N1,p(€§) N2,p(€) ...
Nn,0(€)}. The equation

a, N, ,(&)+a, N, (&) +...+a,-N_ (§)=0 (2.16)

leads to ajui+axuz+...+anun=0. We can reach the conclusion that no B-Spline basis function
can be expressed as a linear combination of the other B-Spline basis functions.

These linearly independent vectors form a basis for the vector space V. Some interesting
attributes of such vectors include:

= The basis of the vector space V can be formed by different sets of linearly
independent vectors. Any set can be used, provided that the vectors are linearly
independent and all the properties above apply for every vector. Thus, in
isogeometric analysis, we can choose different sets of B-Spline basis functions in
order to represent the vector space.

= The number of vectors of any basis chosen is equal to the dimension of V, often
represented as dim(V). In isogeometric analysis dim(V) is equal to the number of
control points and, consequently, the number of basis functions used.

= Let there be a mass of vectors {u1 uz ... un} which form the basis of a vector space
with dim(V) and the numbers{a:1 a2 .. an}, called the coordinates ofy. In
isogeometric analysis, the basis of the vector space is the set of B-Spline basis
functions {N1,p(§) N2,5(§) ... Nnp(§)} and the numbers are the coordinates {X1
X2 X3} of the control points of the curve. A random vector y of the vector space V
can be represented by the equation:
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Uu=a,u, +a,u, +..+a,u, (2.17)

which in isogeometric analysis applies as

CE) =X N, (B)+X;- N, (&) +...+ X, - N, (&) (2.18)
Any vector in V can be described as a linear combination of the basis. The numbers {a1
a2 .. an} are the coordinates of y and they are unique for this specific y and this specific

basis.
Vector space V in R is a mass of vectors with the properties below:

1. Commutativity of addition:

u+v=v+u,vu,veV (2.19)

In isogeometric analysis this property applies as

C1(§)+Cz(§) :CZ(E.\)+C1(EJ) (2.20)

2. Associativity of addition:

u+(v+w)=(u+v)+w,vu,v,weV (2.21)

Respectively in isogeometric analysis,

Cl(&)"’(cz (E;)"' Ca (E;)) = (Cl (§)+ CZ(E..))"‘Cs(E;) (2.22)

3. Identity element of addition: There is an element 0 € V, the zero vector, so that
u+0=u, YueV

In isogeometric analysis the equation applies as

C(E)+0=C(¢) (2.23)

4. Inverse elements of addition: There is an element —u €V such that
u+(-u)=0, vuev

The _y is called the additive inverse of 4. The equivalent in isogeometric analysis is
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CE)+(-C(g) =0 (2.24)

5. ldentity element of scalar multiplication: For the real number 1, it applies:
l.u=u, YueVv
Respectively, in isogeometric analysis
1-C(8) =C(8) (2.25)

6. Distributivity of scalar multiplication with respect to vector addition: va R and
Yu,v eV applies the relation

a-(u+v)=a-u+a-v (2.26)
In isogeometric analysis this equation applies as

a-(C,(€)+C,(€))=a-C, () +a-C,() (2.27)

7. Distributivity of scalar multiplication with respect to field addition: va,beR and
Y u eV applies the relation

(a+b)-u=a-u+b-u (2.28)

which is implemented in isogeometric analysis as

(a+b)-C)=a-C()+b-C(g) (2.29)

8. Compatibility of scalar multiplication with field multiplication: va,beR and Yu eV
applies the equation

a-(b-u)=(a-b)-u (2.30)
Its equivalent in isogeometric analysis is
a-(b-C(g))=(a-b)-C(©) (2.31)

B-Spline basis functions are indeed the basis for a vector space with dim(V), where n is the
number of control points. Control points are the coordinates that transform the basis
functions at any point in the given physical space. Conclusively,

(N, ©E) N, .. N, (&) (2.32)

is the basis of the vector space, while
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X, X, oo X} (2.33)
are the coordinates for a vector C(&) . The familiar linear combination applies:
C(E) = X, - N, (&) + X, - N, (&) +...+ X, - N, , (&) (2.34)

Due to linear independence and vector space properties, it is understood that for a specific
set of basis functions, only one set of control points can yield the appropriate geometry. If
one wants to change the basis functions, the control points have to be shifted accordingly.

2.6 B-SPLINE BASIS FUNCTION DERIVATIVES

Basis function derivatives are widely used in isogeometric analysis. Deformation and
stiffness matrices are built upon the derivatives of shape functions. As a result, the
distribution of stresses and strains across the model is based on those derivatives. The
derivatives of B-Splines, as obtained from the recursive formula, are represented as a linear
combination of previous polynomial order basis functions :

p
N;, (€)= Nip1(€) ———F—"Niyy 1 (8) (2.35)
&.; P E.!Hp _F'.’ i ai+p+1 o &Hl w
This leads to a generalized equation for the k™ derivative:
d* N K
— N, = 2.36
dék |,p(E.>) ( —k) = |+]p k(EJ) ( )
a5, =1 (2.37)
ak—lO
a , =—20 (2.38)
0 E;i+p—k+1 - é;i
Qi —a,
3, =—1—=2 =1 kel (2.39)
§i+p+j—k+l - &Hj
—q 1k
a,, =—— (2.40)
k E.>i+p+l _§i+k

The partial derivatives of two-directional B-Spline shape functions can be easily obtained
by application of the quotient rule:

a P.q
a—gRi,,- (&n)= (dg N, p(a)j M;, () (2.41)
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a p.q
%Ri,j (&n)= N.p(&)[ qu(n)] (2.42)

3D Shape function derivatives per direction can be obtained in the same manner

SRILENO [ M@ M (1)L, (0 243
O Reas (e n.0) =N, (@) M. ()] Ly, () (2.44)
an i,j,k L b i,p dn j.q k,r .
I Rear (e ) =N, (&) M., ()| L, (€) (2.45)
ac’ i,j,k i,p dC k,r .

2.7 B-SPLINE GEOMETRIES

B-Spline geometries can be curves, surfaces or solids and are created with the combination
of B-Spline shape functions and their corresponding control points.

2.7.1 B-Spline Curve.

A pt™h degree curve is defined by

(.2 =CE =[N, @ P} =2 N, @R} . &<E<E, (246

(1xn) (n x3) i=1 (lx3)

where the {P;} are the control points’ Cartesian coordinates of the curve and {N;(£)} the pt
degree B-Spline basis functions defined on the non-periodic open knot value vector  =={¢;,

EZ, ey En+p, £n+p+1 }

2.7.2 B-Spline Surface.

A B-Spline surface is obtained by taking a bidirectional net of control points, two knot
vectors = and H with the respective polynomial degrees p, q and the products of the
univariate B-Spline functions:

n m

(¥, =SEM =3 S RIED P =X YN ON, P} (247)

i=1 j=1 (1x3) i=l j=1 (1x3)



30| Adaptive Hierarchical Refinement in Ilsogeometric Analysis

2.7.3 B-Spline Solid.

In the same fashion, a B-Spline volume is obtained by taking a three directional net of
control points, three knot vectors =, H, Z with the respective polynomial degrees p, g, r and
the products of the univariate B-Spline functions:

(YD) =VEND =3 Y SR END P} =23 YN EON, (IN, @ P
i=1 j=1 k=1 (1x3) i=1 j=L k=1 (1x3)

(2.48)

2.8 POINT INVERSION

Note that the inverse procedure, finding the parametric coordinates &, n, T of a point (x,y,z)
in physical space, is more difficult and may require an iterative procedure.

2.9 B-SPLINE CURVE PROPERTIES

B-Spline curve entities have the following properties, as obtained from Piegl, Tiller:
= B-Spline curves are a generalization of Bezier curves.

= ((§)is a piecewise polynomial curve.

= Each basis function corresponds to a certain control point.

= The first and last control point, as well as internal control points corresponding to
C° continuous basis functions, are interpolatory to the curve.

= B-Spline curves possess strong convex hull property.

= Moving a control point X; only changes part of the curve.

= The control polygon represents a piecewise linear approximation to the curve.

= |tis possible to use multiple control points with the same coordinates.

= Any transformation applied to the curve can be applied directly at the control
points. This property is known as “affine invariance” or “affine covariance”.

= |n every knot span, at most p+1 control points contribute to the definition of the
curve, corresponding to the p+1 non-zero basis functions.

= Since C(§) is a linear combination of N;p(§), curve continuity and differentiability are
obtained straight from the basis functions.

= No line has more intersections with the curve, than with the control polygon.



B-Splines and NURBS |31

2.9.1 Generalization of Bezier curves

B-Spline curves are a generalization of Bezier curves. Given an open knot vector and n=p+1
control points, a Bezier curve is produced. Bezier curves were utilized in CAD methods
before B-Splines. Fig. 2.11 presents a Bezier curve with p=3, an open knot value vector
{0000 111 1}andn=p+1=4 control points. Bezier curves are B-Spline curves defined in
only one knot span. As a result, every basis function is non-zero across the entire parameter
space and control points affect the shape of the entire curve. Bezier surfaces are a special
case of one-rectangle B-Spline surfaces and Bezier solids a special case of one-cuboid B-
Spline solids as well.

09

oa- R
07
o8-
05
04
03-
0.2
<R 1S

(a) (b)
Figure 2.11.
Bezier curve in (a) physical space and (b) basis functions in parameter space. Knot value vector:=={0 0 0 0
011111}

(lakovos Antonios 2015)

2.9.2 C(§) is a piecewise polynomial curve

We can see that through the definition of the curve,

(¥, =CE) =N, @) (P}=3N, @R} , &<E<t, (249)

(1xn) (nx3) =1 (1x3)

We know that the B-Spline basis functions Nip(§) are piecewise polynomials which
multiplied by coefficients {Pi} and then summed, also result in a piecewise polynomial of ¢,
the curve C(€). Of course the tensor product surfaces and solids from combining B-Spline
basis functions along different directions &, n, { are also piecewise polynomials in respect to
those directions. In general they are piecewise polynomials of £, n and .

1.5-

Figure 2.12.
Piecewise polynomials that form a B-Spline basis function.Knots represent the boundaries of the pieces.



32|Adaptive Hierarchical Refinement in Isogeometric Analysis

2.10 CONTROL POINT — BASIS FUNCTION CORRESPONDENCE

Each basis function corresponds to a certain control point. There are n basis functions and
n control points in a B-Spline curve.

1 2 3 4 5 6

(b)

Figure 2.13.
(a) Physical Space and (b) basis functions with the corresponding control points.
(lakovos Antonios 2015)

In Fig. 2.13, control points are represented both in parameter and physical space. Each
point controls a specific basis function. This property also applies for multiple directions.
Every control point of the surface or the solid is tensor product of a control point in
directions €, n and T. By extension, the corresponding B-Spline is tensor product of the basis
functions. In the most general case, there are (n x m x |) control points and basis functions.

2.10.1 Interpolation to the Curve

The endpoint interpolation property states that the first and last control point of the curve
lay upon the curve, on its first and last point. We will support this argument and also
augment it with the statement that for every knot of C° continuity internal to the knot
vector a control point also lies upon the curve.

At points of C° continuity internally to the knot vector and C! continuity at the edges of the
knot vector the shape functions are all zero except one that is 1.

CO=2N,OF) (250

1

(a) (b)

Figure 2.14.
Control point interpolation.(a)B-Spline curve and (b) the reciprocal basis functions

In Fig. 2.14, the first and the last control point, which have C™* continuity, are
interpolatory to the curve. This can be explained with the help of the equation of the curve:
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CE) =X (N©-X}

For £ =0, it applies that:

CO)= YN, ()X

where,
N,,(0)=1
N,L(0)=0,i—2..6
o,
C0)=N,,(0)-X, =X,
And for £ =3:
cE)- Zl N,,(3) X,
N, ,(3)=1
N.,(3)=0,i=1..5
o,

C@3) = Ne,z (3)-Xs =X,

Likewise, the internal control point, with C° continuity across & = 2 is interpolatory to the
curve because:

C(2) =§{Niv2(2)-xi}
N, (2) =1, as this is the only non-zero basis function across g =2
N.,(2)=0,i#4
so,

C(2)= N4,2 (2)-X, =X,

Observe that both the form of the curve and the form of the basis functions indicate that
this geometry could be represented by two different sets of knot vectors and control points,
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with absolutely no deflections from the current representation. This will be examined
thoroughly later.

Interpolation also applies for surfaces and solids, when appropriately reduced continuity is
used for all directions at a knot. C™ continuity is required for external knots and C° for
internal.

In Fig. 2.15, Nsyz(ﬁ) at axis ¢ and Me,z(n) at axis 1 have C° Continuity. Therefore the
control point corresponding to r2z(z,v) is interpolatory to the surface. The external control

points with C™* continuity at both directions are also interpolatory to the surface.

054 —

0 1 2 3 4
(b)
1
05
GO 1I 2 3 4
(c)
Figure 2.15.

(a) B-Spline surface and (b) Basis functions axis &, (c) Basis functions in axis n .
(lakovos Antonios 2015)

In Fig. 2.16 N,,(€) at parametric axis ¢ and M,,(n) at parametric axis 1 have C°

continuity, thus control points corresponding to the shape functions Riﬁ(i,n,(;) and
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Rijijlz (E,.,TI,C), are interpolatory to the solid. As we can see, the external control points are

also interpolatory to the solid, because continuity is reduced to C™.

05

0.5

(b)

0.5

(c)

0.5

(d)

Figure 2.16.

(a) Solid in the physical space with (b) basis functions axis &, (c) basis functions axis n, (d) basis functions axis .

(lakovos Antonios 2015)
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2.10.2 B-Spline convex hull property

The strong convex hull property states that the curve is contained in the convex hull of its
control polygon and more specifically that:

If & e [E_\, ) §i+1) with p<i<n, sothat§is notin the starting and ending (p+1) trivial knot

spans, then C(§) is in the convex hull of the control points PP

The strong convex hull property follows from the properties of non-negativity, partition of
unity and local support of the B-Spline Basis functions.

In Figure 2.17 we demonstrate the strong convex hull property at each knot span and over
the whole curve.

Figure 2.17.
Demonstration of the strong convex hull property in B-Spline curves. Knot Value Vector=={000123 444}
(lakovos Antonios 2015)
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2.10.3 Control Point Local support

Moving a control point X; only changes part of the curve, more specifically the part
corresponding to the [§, &i+p+1) knot value spans. This is a result of the local support of the
corresponding B-Spline function.

Changing the it" control point’s Cartesian coordinate doesn’t matter outside the interval
[&, &+p+1) as only there the corresponding B-Spline Nip(§)#0. Thus outside [§;, &i+p+1) the
contribution N;p(§){Pi} to the curve is zero whether we change the coordinate or not. So
indeed, moving a control point Pi changes only a part of the curve, the mapping of the
interval [§;, §i+p+1) to the physical space.

0.5 =

0 1 2 3 4

(b)

Figure 2.18.
The control point local support in (a) physical and (b) parameter space.Moving a control point affects only part
of the curve.
(lakovos Antonios 2015)

Every control point is associated with a basis function. Support of the control point is
defined by the support of the corresponding basis function. Therefore, control points affect
only part of the curve. In Fig. 2.18, a curve with p=2 and knot value vector
{00012 3 4 4 4} is presented. The control point for i=3 is moved and this affects
partially the entity.

In this example, N3(§) spans from =0 to £=3. The knots act as boundaries of the support.
For €=3, N3 1(€) is switched “off” and Ne2(€) is switched “on”.
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The 3™ B-Spline and the corresponding 3™ control point have support the interval [0,3) and
that is the interval in the physical space that is influenced by the change of the control
point’s Cartesian coordinate. We notice that in the interval [3,4), out of the control points’
support the curve remains intact.

Local support of control points is also expanded by tensor product properties. The local
support of a multi-directional control point is the tensor product of the respective supports.

BSPLine Value

(a)

Figure 2.19.
Local support of 2D control point.Surface (a) in physical and (b) in parameter space.
(lakovos Antonios 2015)

Fig. 2.19 represents the local support in the parametric axis §n of Na2(§) and Ms2(n) B-
Spline curves respectively. In parametric axis ¢ the local support expands throughout the
axis, whereas in parametric axis n the basis function is switched “on” at the second knot
span. The tensor product of the respective supports for ,n is represented in cyan. It spans
across 4 x 3= 12 knot rectangles in total.

The same properties apply for B-Spline solids as well.

Parametric Axis

Figure 2.20.
Local support of a 3D control point.Solid (a) in physical and (b) in parameter space.
(lakovos Antonios 2015)
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Fig. 2.20 presents the local support of N3>(§), Ma2(n) and L1,1(C). In parametric axes &, , the
local support expands at all knot spans, whereas in the parametric axis n the local support
spans between knots 1 and 4. The local support is displayed in cyan and it does not reach all
the knot spans in parametric axis n. A total of 3 x 3 x 1 = 9 knot cuboids represent the
support of the control point.

2.10.4 Control Polygon Approximation

The control polygon represents a piecewise linear approximation to the curve. Due to
convex hull properties, refinement by knot insertion or order elevation brings the control

polygon closer to the curve.
'y

Figure 2.21
Control polygon approximation through refinement.
(lakovos Antonios 2015)

In Fig. 2.21 a curve of degree p=3 is designed. The control polygon already represents a
linear approximation to the curve. When consecutive h- or p- refinements are applied, the
control polygon is brought even closer to the curve. Refined control polygons provide a
general idea of the form of the curve. This property also applies for multiple directions.

Figure 2.22,
Control Net approximation through Surface h-Refinement.
(lakovos Antonios 2015)

For example, in Fig. 2.22, the refinement iterations made, brought the control net
closer to the surface.
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2.11 NON-UNIFORM RATIONAL B-SPLINES

2.11.1 Introduction

Non-uniform rational B-Spline (NURBS) is a mathematical model commonly used in
computer graphics for generating and representing curves and surfaces. It offers great
flexibility and precision for handling both analytic (surfaces defined by common
mathematical formulae) and modeled shapes. NURBS are commonly used in computer-
aided design (CAD), manufacturing (CAM), and engineering (CAE) and are part of numerous
industry standards, such as IGES, STEP, ACIS, and PHIGS. NURBS tools are also found in
various 3D modeling and animation software packages.

They can be handled efficiently by computer software and yet allow easy human
interaction. NURBS surfaces are functions of two parameters, mapping a surface in three-
dimensional space. The shape of the surface is determined by control points. NURBS
surfaces can represent in compact form, simple geometrical shapes. T-splines and
subdivision surfaces are more suitable for complex organic shapes ,as they reduce the
number of control points twofold in comparison with the NURBS surfaces.

In general, editing NURBS curves and surfaces is highly intuitive and predictable. Control
points are always either connected directly to the curve/surface, or act as if they were
connected by a rubber band. Depending on the type of user interface, editing can be
realized via an element’s control points, which are most obvious and common for Bézier
curves, or via higher level tools such as spline modeling or hierarchical editing.

Control Point \/

Figure 2.23.

Illustration of random NURBS surface along with its control polygon.Control points are depicted as small

spheres
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2.11.2 Basic Properties and advantages

A NURBS curve is defined by its order, a set of weighted control points and a knot vector.
NURBS curves and surfaces are generalizations of both B-Splines and Bézier curves and
surfaces. The primary difference is the weighting of control points, which makes NURBS
curves rational (non-rational B-splines are a special case of rational B-Splines). By using a
two-dimensional grid of control points, NURBS surfaces, planar patches and sections of
spheres can be created. These are parametrized with two variables (typically called s and t
or u and v). This can be extended to arbitrary dimensions to create NURBS mapping R"->R".

NURBS have numerous advantages in computational graphics and design that can be
exploited in isogeometric analysis:

= They are invariant under affine transformations: operations like rotations and
translations can be applied to NURBS curves and surfaces by applying them to their

control points.

= They offer one common mathematical form for both standard analytical shapes (e.g.,

conics) and free-form shapes.
= They provide the flexibility to design a large variety of shapes.

= They reduce the memory consumption when storing shapes (compared to simpler

methods).

» They can be evaluated reasonably quickly by numerically stable and accurate

algorithms.

2.11.3 Concept

The projective B-Spline curve C%() is created from the projective 3D control points
XW={Xw yw z%}.

Projection of the curve and control points on the plane z=1 produces the NURBS curve C(€)
and the 2D control points:

X={XY}
where,
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The weights of the NURBS curve are defined as:
w = {ZW}

In generalization, n-dimensional rational B-Splines are projections of (n+1) dimensional

non-rational B-Splines.

2.11.4 NURBS Shape Functions

In order to evaluate NURBS shape functions, the weighting function is defined:

In most engineering applications, weights have positive values. W(§) is in fact the Z-

coordinate of the projective B-Spline curve. Projective transformation is applied by dividing
the other two coordinates of the B-Spline curve with the Z-coordinate. NURBS shape
functions are calculated from

Ni,p(‘i)'wi _ Ni,p(&.:)'wi
W Zn:{ Nr,p(i) ’ Wi’}

RI() =

RP(z) are piecewise rational functions. The expression “the order of NURBS” refers to the
order of the projective B-Spline curve.

NURBS shape functions in multiple directions can be obtained as tensor products of one-
directional basis functions:

Shape functions for two directions:

N, (€)M, ,(n)-w;
Z{N. SO -M, (m)-w, )

R (EM) =

vv(a,n>=ii{N €)My, ()W, )

Similarly, we expand the equations in order to obtain tensor product 3D shape functions:
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Ni, €)- M, ()L, (©)- Wiik

i { N;p(8)-M; ()L, (C) Wi'j’k’}

i'=1 j=1k'=1l

RPK (G Q) ==

The weighting function is now defined as:

W(ﬁ,n,f;)=2n:ii{ Nip (€)M (M) Ly, (©)- Wiy |

=1 j=1 k'

Observe that for Wy, =1, vi, j.k, it applies that NURBS shape functions downgrade to B-

Spline basis functions. Actually, NURBS entities are a generalization of B-Spline entities. All
the B-Spline properties examined in this thesis apply for NURBS as well.

2.11.5 NURBS Shape Function Derivatives

Applying the quotient rule we get the expression for the derivatives of NURBS shape
functions.

W(E..)j

N w N
iRp@ [dg .p(é)j (€)- .p(é)(
dg (W)

In the case of more than one parametric direction we get the partial derivatives in the same
way.

dg

For 2D shape functions:

N, (&) |W N
(&i .p(é)J En)- .p(&)(é

(WE )

W(E, n)j
Rp“(é n)=

Wi,ij,q (m)

0

M W M W
aR’”‘(én) (811 ,q(n)j Em)- ‘:(n)[c’?n (&n)j
on (W(Em)

Ij |p(§)

And for 3D shape functions

W
& (" C)]

( N.p(&)jW(anz;) N.p(a)[
O Rear(en =5

i,j,k Wi,j,ij,q( ) Lkr(C)
a (WERD) g
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. (8‘1 M,q(n)jvv(anz;) M,q(n)[anW(anc)J
- Ripfkr (&n0)= 2 w; 1 Ni, €) Ly (6)
oy e (WEDQ)

[ o Lkr«;)jwoz n0- Lk,(c;)[ W z;)j
TR (En0)= 2 WiiuNip ()M ()
e (WERD) !

2.11.6 NURBS Entities

NURBS entities are created as a linear combination of NURBS shape functions, exactly the
same way as B-Spline entities. The following is the equation for the creation of NURBS

2.11.6.1 Curves:

CE) = Y {RN(E) X}

2.11.6.2 Surfaces:

n m

SEm =23 {Ri (&) X, )

i=1 j=1

2.11.6.3 and Solids:

n m |

S0 =22 D (R (6m.C) X,

i=1 =L k=1

(a) (b)
Figure 2.24.
NURBS Geometries. (a) Curve, (b) Surfac
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3. STIFFNESS MATRIX

3.1 PRELIMINARY STEPS FOR ANALYSIS

The main difference between isogeometric analysis and finite element analysis is
the type of the shape functions used for the approximation of the solution field. The
substitution of Lagrange polynomials with NURBS (widely utilized in the CAD
community) leads to several new special characteristics.

3.1.1 Shape Functions

Finite element method shape functions are usually polynomials (e.g. Lagrange
polynomials). However, they hold certain disadvantages. FEM shape functions are
interpolatory at all nodes, internal and external, and have C*! continuity at the edge.
This results in the incompetence of FEM to define stresses and strains at any
boundary of any element, leading in the introduction of other corrective methods
such as extrapolation, in order to achieve that.

NURBS as shape functions hold an overlapping that is useful, as nearby elements
are strongly connected, thus the simulation provides an improved approach to the
natural problem. Continuous shape function derivatives lead to a continuous stress
and strain field, minimizing the need for application of corrective methods.

3.1.2 Control Points

Classical FEM downsizes the natural problem of infinite unknowns to a finite
number of unknowns, which are the degrees of freedom corresponding to the
nodes. The position of the nodes depends on the element type. As a general rule,
the nodes can be usually found in the corners and middle of the sides of the
elements. They are part of the element and therefore part of the physical model.
Displacements in other areas of the model can be approximated by a linear
combination of displacements on the degrees of freedom. Distribution in the model
is evaluated via the corresponding shape functions. In isoparametric elements, shape
functions and their respective nodes are also used to approximate the geometry,
thus enabling relatively complex shapes to be approximated with Lagrange
polynomials.

In isogeometric analysis, NURBS are chosen as shape functions. The isoparametric
concept is reversed, as geometrical mapping now defines the solution
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approximation. The geometrical representation is achieved through a combination of
control points and their corresponding shape functions. Degrees of freedom at the
control points are now the unknowns.

3.1.3 Elements

Two ingredients of the isogeometric universe correspond to the essence of FEM
“element”. The isogeometric element could be either the patch or the knot span of
the patch. In order to perform exact numerical integration, a certain number of
Gauss points are chosen for the domain of every piece of the polynomial basis
functions. The domain of this piece is the knot span, which resembles the finite
element of FEM. This is the reason why in this thesis knot spans and not patches are
considered isogeometric elements. In IGA, shape functions are not restricted to the
interior of each element (knot span). Instead, they are non-zero across p+1 knot
spans and overlap with more shape functions.

This overlapping results in a denser stiffness matrix than the classical finite element
matrix even in the case of same number of dof. Apart from that, the fact that
B-Spline functions are defined in the whole domain allows integration throughout
the patch without building local element matrices separately. Of course, this would
be time-consuming and it is not advised for advanced software technologies, but
serves well for research purposes, where a flexible quadrature code is needed in
order to test and discover new methods and ideas.

3.1.4 Gauss Points
3.1.1.1 Parametric Coordinates

As mentioned above, Gauss points are chosen for each knot span. Their coordinates
are obtained on a reference element spanning [-1,1] as the roots of the Legendre
polynomial. The next step is to transform the coordinates and weights from the
reference knot span € to the desired knot span [, &.1).

(‘gm _éi)'ﬁR +({}i+1 + ‘r;-)
2

&= (3.1)

GPE _ (Eml - E:.) R

-W

W > £

(3.2)

Full tensor product properties apply here as well, leading in similar equations for
the other two parametric directions:
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n:(n,-+1—m)'ﬂz+(ﬂ,-+1+nj) (3.3)

(Ck+l _Ck)'CR +(Ck+l + Ck)

= (3.4)
5 2
N — M
wePn :M.WE (3.5)
2
WePS = (C.:k+l Qk) 'WE (3.6)
2
Parameter Space
£
E * * *
Q
£
o
&
o o
Parameter Axis &
(a)
Parameter Space
o ® | ® o o
® ¥ @ * ® * @ * ® * @ * ®
< £ < £ < & o
Parameter Axis §
(b)

Figure 3.1. Gauss points

(a) on reference knot span and (b) transferred to parameter space.
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3.1.1.2 Gauss Point Number

Gauss point coordinates and weights are evaluated for every patch. For the exact
integration of a polynomial of degree p, (p+1)/2 or (p+2)/2 Gauss points are required
per knot span for p being odd or even respectively.

For 1D problems, the maximum degree of the deformation matrix is defined from
the derivation of piecewise polynomial shape functions and is p-1.

(Be)] [E][B()]
The aforementioned expression yields to the product of polynomials of maximum

order p-1 resulting in a polynomial of maximum order (p-1)+(p-1=2p-2. Thus, the
minimum number of Gauss points required per knot span for exact integration is:

2D-2)+2
%:p 57)

For 2D and 3D problems, the maximum order of the deformation matrix is
determined by partial derivation of piecewise polynomial shape functions. Therefore
the maximum degree is p for derivation in the remaining directions.

The order of the product [B(a)]T.[E]‘[B(EJ)] is p+p=2p. In order to achieve exact

integration, the minimum number of Gauss points per knot span is:

2p+2

p+1 (3.8)

Conclusively per knot span:

e For 1D problems, p Gauss points per knot span are required.
e For 2D and 3D problems, p+1 Gauss points per knot span are required.

3.1.5 Patches

As mentioned before, patches are used when a change in geometry type or
material occurs. Patches can also be used in any case C* or C° continuity is required.
If separate knot vectors are used for every patch, stiffness matrices will be produced
for every patch. The separate matrices are combined into one via connectivity
arrays. If the connection is watertight, the procedure is the same as the one used in
classical FEM to combine local element matrices to a single, global stiffness matrix.
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3.1.6 Elasticity Matrix

Elasticity matrix types vary depending on the stress and strain field for each case.
Data is obtained straight from classical FEM applications. Elasticity matrices for 1D
elasticity, plane strain, plane stress and 3D elasticity are presented as follows, where
E is the Young’s modulus and v is the Poisson’s ratio.

1D elasticity:
E]=E (3.9)
(1x1
2D elasticity, plane stress:
1 v 0
E
[E]=—5v 1 0 (3.10)
(3x3) 1-v 1—v
0 0 —
L 2
2D elasticity, plane strain:
. 1-v v 0
E|= 1 v 1-v 0 (3.11)
S ey S
0 0
L 2
3D elasticity:
1-v v % 0 0 0 |
v 1-v 0 0 0
% v 1l-v 0 0 0
1-2v
[E]= - 0 00 > 0 0 (3.12)
o) (1-v)-(1-2v) -
o o o0 o0 — o
2
O 0 0 0 0 1_22V
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The corresponding stress and strain vectors are:

1D elasticity:

Gx
e
3x1
Txy
€x
|
3x1
¥xy
3D elasticity:
_GX _ _
Oy
c
{of=| = | {e}=
(6<1) | Oxy | (6x)
Oyz
| Ozx |
F / H
(a)
Figure 3.2.

Stress contour distribution. (a) o,, for plane stress, (b) T,, 3D elasticity

(b)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

4000

-2000
-4000

-6000
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3.2 STIFFNESS MATRIX ASSEMBLY.

3.2.1 General Procedure

The general process for the global stiffness matrix assembly, as obtained from finite
element method, is shown in the following flow chart:

Add Contribution to
> Global Stiffness
Matrix

Patch Loop

Build Local Element-Patch End
Connectivities

»|{ Element Loop

Evaluate Element Gauss
Points and Weights from
reference element

.| Gauss Point
| Loop
Add contribution to Patch
Stiffness Matrix

Evaluate Basis
Calculate Deformation Matrix Functions &
and inverse Jacobian Derivatives

i

Figure 3.3.
Stiffness matrix assembly in finite element method.

There are three loops:
e Patch loop
e Element loop
e Gauss point loop

It is worth mentioning that the element loop in IGA can be avoided. In this case, the
stiffness contribution of each control point pair is added directly to the stiffness
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matrix of the patch. The reason for this is that parameter space is local to patch
rather than elements.

Therefore, an engineer accustomed to the methods of isogeometric analysis knows
that the element loop can be completely avoided, leading to the following flow
chart:

Read Input
Data

Patch Loop

Add Contribution to
Global Stifness
Matrix

v

End

Evaluate Patch Gauss
Points and Weights from
reference element

Gauss Point

Loop

Add contribution to Patch
Stiffness Matrix

A ”
Evaluate Basis

Functions &
Derivatives
Calculate Deformation Matrix
and inverse Jacobian
Figure 3.4.

Stiffness matrix assembly in isogeometric analysis

3.2.1.1 Input Data

Information necessary for the whole process of analysis is given as input at this
point. The information essential for the formulation of the stiffness matrix is divided
into two categories:

e Structural analysis and material
e Computational geometry
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3.3 STIFFNESS MATRIX

3.3.1 Stiffness Matrix 1D

Let us consider a simple 1D application as an example. These applications are
utilized only in truss systems with axial tension, but their significance is mostly
academic. Simplifying the problem, without loss of generality, can lead to a better
understanding of the principles involved. In our research career, we often address
1D analogies for the solution of complex problems and it has always been extremely
helpful.

In such a case, there exists only axial deformation for each point of the truss. This
deformation is u(x) = u(C(€)) = u(§). The respective strain matrix consists of one value:

(o =le.]-| 2 .19

(1x1)

In order to calculate the derivative of u, we must first establish a transition from
physical space to parameter space:

a_(P:a_(P% (3.19)
oX  OE ox '
99 _ 9 x (3.20)
08 ox O '

sul2

where [J] is the Jacobian matrix enabling transition from physical to parameter space
and vice-versa. It can be evaluated with the help of basis functions Ri(¢) and the
control points’ Cartesian coordinates X; as shown:

Xl

XZ
[(E)]=[Ri® Rpe® o o o RO (3.22)
() (1xn) .

_Xn_

(nx1)

where Rivé(ﬁ) = % R.(€).
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In finite element analysis, the reverse transformation is utilized. This is why the
inverse matrix [J] ! is needed.

- 1

[J] _ (3.23)
oy [J]
(1)

Special care has to be taken in order to correctly calculate the Jacobian matrix. The
positive direction of the axes in parameter and physical space must coincide, or the
determinant of the Jacobian will be negative and the matrix [J] irreversible.
Numerical integration on points of singularity, such as two points on parameter
space mapped into the same point on physical space, has to be avoided as well.

The next step is to calculate the matrices [B1] and [Bz]. The matrix [B1] transfers the
strains of the element from parameter to physical space and the matrix [B:] transfers

the nodal displacements of the elements to the strains at the parameter space.
Therefore, the matrices [B1] and [Bz] can be calculated from the equations below:

<{fl}> ) {%} =l [Z_ﬂ (3.24)

[B,(¢)]= L—ﬂ (3.25)

{8} = [Bl]'{ug} (3.26)
) 0 ()
0,
uZ
ou :
{;&}:[Rl,g(a) Rz,g(i) Rn,g(a):l’ . (3.27)
_un_
[B,(8)]=[Ru(®) R,.(®) o o o R,.(®)] (3.28)
()
{u}=[B,]-{dj (3.29)

) (n) (nx)

After that, the Deformation matrix is evaluated.

[B(¢)]=[B.(&)][B.(&)]

(L) () (L)
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Deformation matrix produces strain values anywhere in the model, by utilizing
nodal displacements.

{e(e)}=[B(&)]{d} (3.30)

The stiffness matrix for the patch is evaluated as shown:

[K]= [ [B@] [E}BE}A-deti] .31

nxn) % (x1)  (1xn)

Direct integration is almost never applicable. Numerical integration is used instead,
looping through all the Gauss points of a patch and their respective weights:

[K]= épé{[B(é)T-[E}[B((é; ) A det [J]-w?%} (3.32)

(nx1) (1x1)

where
e A:the area of the cross-section
° GP& : the total number of Gauss points for the specific patch

e & . :the coordinates of the Gauss points

WiGPé : the corresponding weights.

3.3.2 Stiffness Matrix 2D

2D elasticity problems have many applications in modern analysis. The logic is
exactly the same as in 1D problems. The main difference is, obviously, the utilization
of one more dimension. Parameter space is defined on (§,n) and physical space on
(x,y). Displacements per x, y at any point in the entire domain are defined as

u(x,y)=u(S(&,n))=u(&,n) and v(x,y)= v(§,n) respectively.

The strain vector is defined as:

o o,
e OX oX
§ u
=g |=| ¥ |s@=]0 2 H (3:33)
© |, oy (3) ay | LV
oo o o 0
| oy OX | | Oy OX |
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The transformation of a function ¢ between parameter and physical space yields:

Op _ 09 % , 99 n (3.34)
ox 05 X on ox '
Op _0p 35 99 on (3.35)
gy 0goy onoy
O _ 99 X dp oy (3.36)
05 ox OE Oy OE '
O _0p oX  0¢ oy

(3.37)
on oXxon oy on

Thus, the 2D Jacobian matrix can be defined as:

o9 oX oy || op op oQ
o | |og o |ox o .
| |ox oy ||%e] 00| @a|le
on] [on on] Loy on oy

(3.38)

and the inverse mapping:

L | o
[ (3.39)
% (sz]> 9

The Jacobian matrix can be evaluated as shown:

IR @Em) Ry (@m) e Ry(Em)

([zxz])_ R, (En) R, EM .. . .. RN,n(én)] (3.40)

where N=n x m is the total number of control points.
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The inverse Jacobian matrix is used in stiffness matrix calculation:

‘]12:|
‘]ll

[J]—lz{‘]*n ‘]*12}: 1 _{‘]zz -
oo | T | det[d] [-In

The determinant of the Jacobian matrix is also required and is equal to:

det[J] =Jdn =y

(3.41)

(3.42)

In order to calculate the deformation matrix for 2D problems, [B1] and [B;] have to

be evaluated as usual.

To obtain matrix [B1]:

8_u
2§ L [ e 0o
{8}: 5 :det[J]' 0 0 -Jy Iy
ey _‘]21 J11 ‘]22 _‘]12
v
L0y OX]
Hence,
1 J22 —le 0 0
=
&4 _‘]21 ‘]11 ‘]22 _‘]12
To calculate matrix [B2]:
_a_u_
g
6_u Rl,F, 0 Rz,g 0 RN,&
on _ RLn 0 Rz.n 0 e e e R,\Ln
@ 0 Rl,a 0 Rz,g 0 R
o 0 Rl’n RZn 0 R
o
Keull

on

ou

g
ou

ov
og

on |

iy

< ©C < <
N

N

(3.43)

(3.44)

(3.45)
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Hence,
R1va 0 Rz,:, o .. ... .. RN,& 0
R 0 R o .. .. .. R 0
B,(&m)]=| " . . (3.46)
[ ?4(><2N) )] 0 Rl,E, 0 Rzg 0 RN,g
i 0 Rl,n 0 Rz,n 0 RNn
Having determined [B1] and [B;], the deformation matrix is calculated as:
[B(&m)]=[B,(&n)}[B.(&n)] (347)
(3><2N) (3><4) (4><2N)
In order to evaluate the stiffness matrix, integration is required.
Enepsl Mimegel
[K] = [ ] [B(&n)] [E}[B(En)]t-det[J] dnde (3.48)

(2Nx2N) & (2Nx3) (3x38) ~ (3x2N)

Numerical integration procedures for &,n lead to integration of tensor product
Gauss points.

K] =536 (6 )] [E1[B(5n) ool wes wet s
(2N2N) =L = (2Nx3) (3x3) (3x2N)

where:
e t:the thickness of the cross-section

e GP ¢ : the total number of Gauss points per é'; for the specific patch
e GP , - the total number of Gauss points per n for the specific patch

e &, n;: the coordinates of the tensor product Gauss point I, J
e W5, wi'": the corresponding weights

The only difference, at this point, between plane stress and plane strain is the
elasticity matrix which is the result of the utilized constitutive law.

3.3.3 Stiffness Matrix 3D

3D elasticity is merely the extension of 2D elasticity in all directions, with a

complete stress field. Every other problem can be created by downgrading 3D
problems into 2D and 1D problems.

The displacement field for each point in physical space is now defined for x, y, z by

u(x,y,z)=u(S(&,n,0)= u(&,n,7), v(&,n,0), w(&,n,7) respectively. The strain field can now be
defined as:



R2 2R

ou ov
—_— + —_—
oy oX
oV oOw
R + JR—
0z oy
ow ou
+

Lox oz

oz

0
9
oy

0
9
OX
9
0z

0

0
o
o0
EX
39
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o

9
oy
9
OX |

, which leads to the definition of the Jacobian matrix for 3D:

3x3

9}

9| |ox oy | [dg]

g o6 05 O& || ox

do| |x & @l

on| |on on on||oy

do| |x & @l

| oC| [o¢ o oC ] Loz ]

and the inverse Jacobian matrix as well:

_a_(p_ _a_(P
OX o€
Sl 2
oy (3x3) on
9 )
| 07 | O

OX
o

o
0z

Jacobian matrix can be calculated from the derivatives of the shape functions.

Rl,g(?i,n,é) Rz,g(&n.é)
[1]=|R.,(ENL) R, (EMG)
®) 1R,(EM) R, (Em0)

The inverse of the Jacobian matrix is:

(3.53)

RN,@(E»TLC)
RN,n(E,m,C)
RN,Q(E_HTI’C)

X,
X2

Yl
Y2

Z

ZZ

(3.50)

(3.51)

(3.52)
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[B1] is evaluated as:

As for [B;]:

[Bz(é,n,é)] =

(9x3N)

U
[ =% L
R S
‘]Il Jio ‘]Ia 0
0 0 0 I
0 0 0
USRS
T
Ty J J O
0 R, O
0 R,, O
0 R, O
0 0 R,
0 R,
0 R,
R, 0 O
R, 0 0
R, 0 O
(3.56)

O O

O O O O O O

2m

2,6

0O 0 O
Js 0 0
I Iz
J;, 0 0
NSNS
I

Ry

Ry

Ry

0

0

0

0

0

0

As a result, the deformation matrix for 3D elasticity is calculated as:

[B(&n,6)]=[B, &nC][B inC)]

><3N

The corresponding stiffness matrix is produced by integration

(3N><3N)

Enipit Mmaget Cpipa

=] I[Banc

=

Mo

Co

Numerical integration is used in 3D as weII

(3.54)
.
0
Tz
(3.55)
0
J2s
‘]13_
& 0 0 ]
n O 0
¢ 0 0
Ry O
Ry, O
Ry, O
0 Ry
0 Ry,
0 Ry
(3.57)

[B(E_, n.¢) |- det[J] dgdnde  (3.58)

><3N
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GPE GP1 GPC,

[K] =X, [B(gi,nj,gk)T. [E].[B(gi,nj,gk)].det[J].wiGPé SRR

(3Nx3N)  iml j=1 k=1 (3N6) (6x86) (6x3N)

(3.59)

where:
o GP ¢ : the total number of Gauss points per i for the specific patch

e GP , - the total number of Gauss points per n for the specific patch
e GP ¢ : the total number of Gauss points per T for the specific patch
e &, m;, G, :the coordinates of the tensor product Gauss point

o WS, Wi, Wi the corresponding weights of Gauss points

3.4 SOLVING STIFFNESS MATRIX

3.4.1 The Cholesky Method

3.4.1.1 Classical Method

Cholesky method is a variation of the classical Gauss elimination method. This
method is used in order to compute displacements for the external load vectors
which are not known by the time of the initial solution. These cases are usually met
in non-linear analysis and dynamic analysis of structures.

This technique, factorizes the stiffness matrix as following:

[K]=[L][L] (3.60)

where [L] is a lower triangular matrix. This method is applied to symmetrical and
positive matrices.

3.4.1.2 Variation for non-symmetrical matrices

A variation of this method is used mostly to non-symmetrical matrices and has the
form:
[K]=[L]-[V] (3.61)

where [L], [U] are one upper and one lower triangular matrix respectively.
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3.4.1.3 Crout Variation

The Crout variation of the classical Cholesky method, is mainly used for non-linear
analysis of structures. Although this method is slightly different from the classical
one, it is generally more stable and dependent. Thus, it is used in a wide variety of
problems by the computational mechanics society.

The stiffness matrix can be expressed now as:
[K]=[L]-[QI[LT (3.62)

where [L] is a lower triangular matrix with the value 1 over its diagonal and [Q] is
just a diagonal matrix.

After the factorization of the stiffness matrix, solving the matrix equations is
expresses algebraically as:

[D]=[t]" [QI'[LI (R} (3.63)
and it is performed in two steps:

Step 1 Solution of the subproblem

]
() =[LT R 364

Step 2 Solution of the subproblem

[QI[LT D} =) -
{y=[Q]* [ -
(D} =111 v} 56

The calculation of [L] and [Q] values is arising from the solution of equations
presented in the relation (3.68)

(3.6)
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4 EXTERNAL LOADS, BOUNDARY

CONDITIONS AND STRESS FIELD

4.1 ANALYSIS

4.1.1 External Load

After the stiffness matrix assembly, the external load vector has to be calculated.
Concentrated loads can be assigned directly at the degrees of freedom. Distributed
loads f(§,n,{) have to be transformed into equivalent concentrated loads by

integration:
Enipit Mmeget G
Fi= [ [ ] {REOM(EnC)det[s] dednde

() & M G (Nx1) (1)

More specifically, for each case:

1D:
Enipit
(Fl= | {RE)MF(g)det[a]ce
(N) 5 () (1)
2D:
Enipst Mgl
Fi= | | {R(zm)}MF(gn)det[s]dnde
(NG g m (N9 (1)
3D:
Enspit Mmaget Cpapan
F - J R (& Q) (g c) det[s]dcine
N (Nx1) 11

This way, the load vector {F} is assembled.

(4.1)

(4.2)

(4.3)

(4.4)
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4.1.2 Refined Load

If a load vector has already been evaluated for a coarse mesh, there is no need to
apply numerical integration for the new load vector of the fine mesh. New load

values can be evaluated directly from the coarse mesh.

Let {L¢}, {L*} be the load vectors, {N“(€)},{NF(€)} the basis functions and {X‘}, {XF} the
control point Cartesian coordinates for the coarse and fine mesh respectively. Let f(§)

be the load distribution in the physical space. It applies that:

(L) = [ {N“(e)}f(&)de

(nx1) = (nx1) (1)

Both meshes provide the same geometrical representation, resulting in:

(1xn) (nx1)
O

Thus,

(nx1) (nxm)  (mx1)
Therefore,
(N (@ D f={Ne @)X =NE @) [T }{x7) =
(1xm) (mx1) (1xn) (nx1) (1xn) (nxm)  (mx1)
(N @ =N 1]
(1xm) (1xn) (nxm)
This leads to

(N @ =[T] N (2))

mx1 mxn nx1

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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The fine mesh load vector is evaluated by:

“;max

L} = j {NF(e)}-f(e)de =

(mxt) & (mx) (11)
Emax
()= T T TN (@) ()de = @.12)
(mx1) g (mxn) (nx1) (1x1)

T Emax
(=TT [N} (e)de
(ma)  (mxn) & (nx) (1)

In conclusion,

(L} =[T°F]T-{LC} (4.13)

(mx1) (mxn) (nx1)

In the same manner, equivalent loads for reverse-refinement can be defined as:

{Lep=[re] L) (4.14)

(nx1) (nxm) (mx1)

An engineer must always bear in mind the restrictions set for reverse refinement.
Both in geometrical representation and in equivalent load evaluation, this procedure
only works under certain circumstances. More specifically, loads refined from a
coarse mesh can be transformed back to that coarse mesh. On the other hand, loads
created initially from a fine mesh will probably be transformed incorrectly to the
coarse mesh.

4.1.3 Boundary Conditions

Certain degrees of freedom are fixed, in that their displacements are zero. These
are called stationary and the corresponding rows and columns are deleted from the
stiffness matrix and the load vector. This leaves a stiffness matrix and a load vector
having only free degrees of freedom, [K,] and {F} respectively. The solution of

the equation is the final step in analysis:

{F}=[Kq]-{Ds} = (D} =[Ke] " {F) (4.15)

The (zero) displacements for the stationary degrees of freedom are added back to
the result, thus creating the displacement vector {D}.
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4.2 DISPLACEMENT, STRAIN AND STRESS FIELD

4.2.1 Displacement

After the solution of the equation, control point displacements are obtained. Unlike
classical FEM, control points are usually placed outside the area of the model. In
general, displacements of the model differ from the displacements of the
corresponding control points. Conclusively, analysis results are considered “pseudo-
displacements” and play an auxiliary role in calculating the physical model ones. As
mentioned before, the distribution of the displacement field is achieved via shape
functions:

1D:
d(@)=2{Ni(a)-Di}={“:L(N§)}T-§N3}) (4.16)

2D:
d(a,n)=§{Ni(é,n)-Di}={Ni(£éN,)n)}T~§NE31}) (4.17)

3D:
dEmn.Q)= Z{ (&mn.0) }:{Ni((i,N?,z;)}T-ﬁNgg (4.18)

where:

e N, is the shape function i
e D, is the displacement of the corresponding control point

e N is the total number of control points

If a control point C is interpolatory to the curve at (&,,7,,C, ), it follows that:

d(&c’ncig ) Z{ Eac’nc’CJc) Di}zl.Dc:Dc (419)

Displacements of interpolatory control points are physical model’s displacements as
well.
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05+ 4 05-

(b) (c)

Figure 4.1.

(a)Displacement solution is found on control points. (b),(c) Basis functions of axis § and n
respectively.(d) Corresponding 2D shape functions derived from full tensor product of §,n
basis functions. .(e) Displacement field calculated combining nodal displacements and shape
functions

(lakovos Antonios 2015).
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4.2.2 Stress and Strain

The strain vector can be evaluated at any point in the field with the help of control
point displacements and the deformation matrix [B]:

1D
{e(€)}=[B(&)]}{D} (4.20)
@) Ny (v
2D
te(&m)}=[B(&m)] {D} (4.21)
(3x1) (3x2N)  (2Nx)
3D
{e(&n.0)}=[B(&,¢) }{D} (4.22)
(6+1) (6x3N) (3N1)

Applying Hooke’s constitutive law leads to:

1D
{o(8)} =[E}z(2)} =[E}B(%) }D} (4.23)
(1x1) (1) () (1) (xN) (N
2D
{o(&m)} =[E}{e(&n)} =[E}[B(5m) ] {D} (4.24)
(3x1) (3x3) (3x1) (3x3) (3x2N) (2Nx1)
3D
{o(&n.0)f=[El{e(&n.0)} =[E}[B(&n.C) ] {D} (4.25)
(6x1) (6x6) (6x1) 6x6) (6x3N) (3Nx1)

Note that stress and strain vectors are evaluated via the derivatives of the shape
functions. This means that their distribution is going to be one order less than the
displacement distribution. This is why stress and strain continuity cannot be
achieved in FEM models, where shape functions are always C continuous. This
problem is solved when the derivatives of the shape functions are also continuous,

which means using shape functions with C' continuity or higher.
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5 UNIFORM REFINEMENT

5.1 INTRODUCTION

NURBS geometries lie at the forefront of designing technology as they provide
numerous possibilities for representation, while supplying a reliable basis which can
be easily adjusted for the purpose of analysis. Thus, it is commonplace to use a more
complex mesh to obtain better analysis results. The transition from a coarse mesh to
a fine mesh preserves the geometrical features of the model, while providing the
designer the ability to modify specific parts of the entity. In order to efficiently use
refinement in analysis, the engineer has to understand the principles involved and
the ways in which the basis is altered. Refinement is an automated but complicated
process that requires minimal manual effort.

The combination of a limited number of control points with a small polynomial
order is the optimum solution for a designer. This coarse mesh provides exact
geometrical representation with reduced computational cost. It provides a certain
level of understanding and control for the user, who can comprehend the simplified
patterns of the basis and control net. The creation of stiffness matrix is also less
time-consuming, due to the limited number of degrees of freedom and
interconnections involved.

The coarse mesh, however, has flexibility issues. This means that each control point
affects a rather large part of the model, so that small changes to control point
variables reflect to significant changes in geometry. Moreover, basis function
overlapping is reduced in coarse meshes. This makes a coarse mesh unsuitable for
analysis. A feasible approach is the introduction of a coarse mesh for design, and
afterwards refinement of this mesh for analysis purposes.

With the creation of a finer mesh, a detailed, flexible control net is introduced. Each
control point affects a smaller portion of the model and the number of
interconnections is usually increased. Mapping from parameter to physical space
remains unchanged. This is very important in terms of analysis. Stiffness matrix
calculation is more time-consuming, but accuracy per degree of freedom is also
improved.

There are three ways in which a B-Spline basis can be enriched. A different knot
value vector may be selected, the polynomial order may be increased or a
combination of both may occur when the raise of the polynomial order is followed
by the introduction of a richer knot vector. These techniques are referred to as h-, p-
and k- refinement respectively.
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5.2 KNOT VALUE INSERTION

Knot value insertion is the introduction of a finer mesh by enrichment of the
existing knot value vector =. A new knot value vector =* is created, such that=c =".
Only internal knot values can be added; the boundaries have to remain intact. A new
set of B-Spline basis functions is created. The coarse mesh representation is
evaluated, as usual, by:

C(a)=il{N,-,,,(a)-Xj}={N(&)}T-{X}

1xn nx1

whereas the new representation

Ce) = i{Nip(@ X ={N (&)} (X}

(1xm) (mx1)

Therefore, the new set of control points {X} has to be defined. This can be

achieved with the evaluation of a transformation matrix, so that:

b

(mx1)  (mxn) ()

This matrix is formed recursively:

1 Ei E[&jéjﬂ)

0, otherwise

T =

i

* *

q _ E_>i+q _E.aj 'Tq-il 4 E.>j+q+1 _E,ai+q .qul

" EJjJrq _{5 " E.’j+q+1_€::j+l M

,forq=12,...,.p
This technique is called h-refinement.

The B-Spline curve represented in Fig. 5.1.a is refined by knot value insertion in
Fig. 5.1.b. Both geometry and parametric mapping remain intact. This can be
confirmed by the fact that already existing knots have not been moved. For each
new knot value, a basis function and a corresponding control point have been
created. The support is still p+1 knot value spans, but their size has been reduced by
the insertion of new knot values. Therefore, each control point now affects a much

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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smaller part of the curve. The limited area of effect for each control point leads to a
more accurate approximation to the curve.

0.5r

0 0.5 1 1.5 2 25 3 35 4 4.5 5 55 6
(b)
Figure 5.1.

h-refinement applied on a B-Spline curve.(a) Coarse Mesh. Knot Value Vector:
E={0 001234566 6

(b) Fine Mesh. KnotVaIueVector:E:{O 0005115 2 25 3 35 4 45 5 55 6 6 6}
(lakovos Antonios 2015)
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05 4 05
% 025 05 075 1 15 2 % 025 05 075
§ Axis n Axis
(b)
Figure 5.2.

Knot Insertion in multiple directions.(a) Coarse Mesh. Knot Value Vectors:
E={0 00 012 2 2 2

H={0 0 0 0111 1

(b) Fine Mesh. Knot Value Vectors:
E={0 0O 0 0 025 05 05 075 11115 2 2 2 2}

H={0 0 0 0 025 05 05 05 075 1111
(lakovos Antonios 2015)
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Refinement is applicable in multi-directional problems as well. The surface in Fig.
5.2. is refined both per § and n axes. Fig. 5.2 represents basis functions before and

after refinement.

Note that for every univariate (1D) control point per n, a whole set of control points
per ¢ are defined. Each set is refined individually, as shown in Fig. 5.3.a and Fig.
5.3.b. After the insertion of new control points per &, the same process is followed
for refinement per n. The order in which refinement is applied on the parametric
axes is of no importance; due to tensor product properties.

BSPLine Value

BSPLine Value

BSPLine Value

. is
?a‘a‘“e“‘c PR

Figure 5.3.
Basis and Shape Functions for Surface Coarse and Fine Mesh (a) Coarse Mesh. (b) Refinement per ¢

direction.(c) Refinement per n direction. Fine mesh.
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5.3 DEGREE ELEVATION

Instead of adding knot values to an existing knot value vector, the increment of the
polynomial order can also enrich the basis. Apart from geometry, the mapping from
parameter to physical space must also remain unchanged. This is achieved by
keeping the same continuity per knot for both coarse and fine mesh.

In order to increase the degree of a B-Spline curve from p to p*, the new knot value
vector has to be defined first. No new knots are added, but every existing knot’s
multiplicity is increased by p*-p times. The coarse mesh representation is defined as:

C(a)z_il{N,-,p(@-xj} = {N(e))" (X}

(1xn) (nx1)

whereas the fine mesh representation as:

C(&) =i{Nip(é)-X?} ={N'(e)} -{x}

(1xm) (mx1)

This leads to:

The new set of control points {X*}, necessary for the representation, will be defined
through a transformation matrix for p-refinement. There are many efficient
algorithms for degree elevation. The following is a quick, reliable approach that can
be efficiently used.

At first, coarse mesh B-Spline basis functions are evaluated at m points throughout
the patch. Careful selection (such as no points of C° continuity or other irregularities
are involved) is preferred. This way, a B-Spline function matrix [N] is created which
contains the values of the n basis functions for the m selected points.

The same points are used for the evaluation of new basis functions, with the
refined degree and the new knot value vector. Thus, [N*] is created. Since the same
points are evaluated and the parametric mapping remains the same, it applies that:

-1
VT )= b= b= T |
n>1) (nx1) (mxm) (mxn)  (nx1)

(mxm) (nx1) (mxn)

Il
Z
_—
—~——

X
I~
U
—_—
x*
——
Il

(5.6)

(5.7)

(5.8)

(5.9)
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Therefore,

(7] =[[N]TJ1-[N]T

() Gy ) ()

If [N*]" cannot be reversed, a different set of points have to be selected. This
procedure can also be used for h-refinement applications.

The curve in Fig. 5.4 is subjected to p-refinement. Note that knot spans are
unchanged. Geometry and mapping from parameter space remain intact in p-
refinement as well. Continuity remains C' across every internal knot. Curve
approximation by control points is also improved with p-refinement.

Tensor product properties prove that p-refinement can be utilized in multiple
directions.

5 6

m
A

1

b

L

Figure 5.4.
p-refinement on a B-Spline curve, from p=2 to p=4.(a) Coarse mesh. knot value vector:
2={0 00123456 6 6 (b)Finemesh. knot value vector:

E={00000111222...66F6 6 6

(5.10)
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5.4 DEGREE ELEVATION AND KNOT INSERTION

Increasing polynomial degree by p-refinement is an improvement to the basis, but
continuity remains the same as in the coarse mesh. In order to improve this aspect,
k-refinement was introduced by Hughes. The basic idea is that, after p-refinement,
h-refinement can be applied in order to create basis functions of CP™* continuity.
This is a powerful tool that can lead to greater convergence rates for our models.

In Fig. 5.5, p-refinement is performed first, so the order is elevated to p*=3. The C!
continuity that existed in the coarse mesh is maintained. Afterwards, h-refinement is
applied, with the insertion of two extra knot values. Continuity across this knot
values is C?, taking greater advantage of the new polynomial order. The combination
of p- and h- refinement brings their best features together. This is why k-refinement
is considered so effective.

After p-refinement, internal knots still possess C* continuity. Note that only two
basis functions are non-zero across every knot. After h-refinement, two new C?
continuity knots are introduced. Three B-Spline basis functions are non-zero across
these knots, €=2.5 and £=3.5. This way, greater levels of continuity for the new
polynomial order are utilized.

05- 1 ost

D I

0 1 2 3 4 5 6 %

p-refinement h-refinement

(b)

Figure 5.5.
k-refinement on a B-Spline curve. (a) Coarse mesh.z={0001234566 6}
(b) Fine mesh. Polynomial order p=3. Knot value vector B-Spline basis functions for the two stages of
k-Refinement. p-refinement to p=3. Knot valuevector:=={0 0001 12233445566 6 6}

h-refinement. knot valuevector:=={0 00 01122253335445566 6 6}
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5.5 REFINEMENT WITH NURBS

Everything mentioned about refinement is applicable to B-Spline entities. The
guestion is what happens with NURBS. Different weight values and the complexity of
NURBS shape functions prevent the refinement straight at the NURBS entity.
However, every NURBS is created from the projection of a B-Spline; therefore,
NURBS refinement can be achieved by refining the corresponding projective B-
Spline curve.

The first step is to evaluate the projective control points {B¥}, by multiplying every
coordinate with the corresponding weight, as shown below:

XY Z =W YW Z W
Weights are the fourth-coordinate of the projective curve.
Refinement is applied for each set of the four coordinates, {X“* Y% Z% W}.

Afterwards, updated NURBS control point coordinates and weights are obtained by
dividing the Cartesian coordinates with the weights:

{xi Y, Zi}:{x_}"’ Y_IW E}
wWooww,

(b) (c)

Figure 5.6.
(a) Coarse mesh and (b) p-refinement as a part of k-refinement (c) k-refinement for a NURBS surface.

5.6 DRAWBACKS OF GLOBAL REFINEMENT

In contrast with classical FEA implementations, in isogeometric analysis with B-
Splines and NURBS the refinement procedure doesn’t always lead to better and
more accurate results. Especially in the h-refinement technique this phenomenon is
of even greater importance. A serious matter occurs when the tensor product B-

(5.11)

(5.12)
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Splines and their corresponding NURBS are refined. Depending on the geometry of
each structure that is analyzed, refinement for each of the parameter space axes
may cause serious analysis instability. Due to the full tensor product nature the
produced elements and the corresponding shape functions may present an
unsuitable dimension ratio that may be up to 1:10. As we know from the classical
FEA and the isoparametric concept that is being also used in IGA, Jacobian matrix is
unable to represent properly the geometry in the physical space when such
elements and dimensions occur in parameter space.

Even if h-refinement which refers to knot insertion is not the case, p- and k-
refinement have also drawbacks. In most problems the error analysis will indicate
small regions of high error that need to be recomputed and re-meshed. In large scale
problems with thousands or millions degrees of freedom the classical refinement
techniques will eventually lead in an enormous increase of the degrees of freedom.
This increase is for most cases unefficient in terms of the estimated CPU time, as it
introduces new sets of control points and knots in and out of the refined domain.
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6. HIERARCHICAL REFINEMENT

6.1 INTRODUCTION

The fact that classical FEA implementations and by extension IGA are both numerical
methods that provide approximate solutions leads always to solution errors. These errors
may appear in different areas of the structure such as edges, interfaces, discontinuities,
cracks and in regions of significantly altering geometry.

In order to estimate these errors, many error-estimation techniques have been proposed.
These techniques are mainly based on energy theorems and norms to calculate the error of
each element or even each basis function. Most of these error estimators are a-posteriori,
which means that the error is calculated after one at least analysis iteration. Researchers
worldwide are trying to propose a sufficient and stable error-estimator appropriate for IGA
implementations. However, up to the day this thesis is being written, there is no clear
answer which error-estimation technique is the most suitable for adaptive algorithms and
hierarchical refinement implementations in general.

After estimating the errors and locating the areas they appear, there is need of some
techniques to improve the solution. Three refinement techniques where explained in the
previous chapter. In the lines following a brief review of these three methods is presented.

¢ h-refinement
This is the most common refinement type that refers to knot insertion in the basis
of each axis in the parameter space. The major drawback of this technique is that
due to the tensor-product nature of B-Splines, unsuitable analysis meshes with bad
element dimensions ratio may occur in 2D or 3D problems.

e p-refinement
It refers to degree elevation of the basis in order to increase the support and
interaction of the basis functions and thus achieve better results. Overlapping and
bandwidth of stiffness matrix are also increasing.

e k-refinement
Last but not least follows the combination of the two previous methods, k-
refinement, which is a mechanism that exists only in isogeometric analysis. K-
refinement tries to combine successfully p and h refinement in order to achieve
faster and more precise results. Usually p-refinement is applied before h-refinement
in implementations in order to achieve better results.
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As it was already explained the main drawback of these techniques is their full tensor
product nature. A more recent and interesting technique was the hierarchical refinement
proposed by Vuong et al based on the Phd thesis of Kraft (1997). Kraft developed a
methodology for computational geometry applications in order to achieve local refinement
of geometry meshes. What was innovating about this method, was that refinement could be
obtained locally, overcoming completely the obstacle of the tensor product nature. Local
refinement in isogeometric analysis was until then a feature strictly connected to T-Splines.
Briefly, the main idea of Vuong et al was to directly replace the coarse basis functions in the
region of significant errors with a new set of finer basis-functions as Kraft introduced. This
simple idea can be applied by respecting the restriction of a nested nature between the
levels of refinement as Kraft first proposed.

The local nature of this kind of refinement as it is shown in Fig. 6.1 allows the reduction of
errors by inserting fewer new degrees of freedom than those corresponding to the full
tensor-product refinement. This fact suggests that CPU time can be preserved. But it is not
as simple as it seems, as what really matters is the total number of degrees of freedom in
relation to the precision achieved, a crucial parameter that needs to be examined
thoroughly. Using this as the basis for further research, Giannelli, Schillinger, Bornemann-
Cirak, Wu-Huang-Liu-Zuan, Johannessen-Kvamsdal have all proposed their own variations
and methodologies. In general, hierarchical refinement is currently a state of the art subject
of research and much effort has been made by the engineering society in order to use it in
more efficient and systematic ways.

(a) (b) (c) (d)

Figure 6.1.

For a tensor product 2D space in (a), we are interested in refining the area highlighted in (b). In (c) it is obvious
that we cannot directly refine this region, when applying tensor product h-refinement, as it refines regions
that we don’t want to and thus, creating elements with bad size ratio. In (d) the selected region is
hierarchically locally refined and thus the mesh is denser for the region of interest.

(lakovos Antonios, 2015)

To explain and understand Vuong’s proposed refinement technique the theoretical
foundations of this particular method like the Kraft algorithm and the subdivision property
need to be introduced. After pointing out the main features that need to be comprehended
by the reader, other proposed methods of hierarchical refinement will be explained,
constructed and evaluated by their advantages and disadvantages in the following chapter.
In order to support the theoretical base of each technique some lemmas and proofs will be
presented. Key properties of B-Splines turn out to be essential for the successful use of
hierarchical refinement, such as locality, linear independence, partition of unity, nested
spaces, representability of geometry and unified representation.
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6.2 BASIC INGREDIENTS

6.2.1 Kraft Algorithm

6.2.1.1 Tensor Product B-Spline Spaces

Firstly, the properties and the definitions that accompany tensor-product B-Splines should
be clarified. The properties of a bivariate tensor-product B-Spline will be presented in the
following pages. These properties can of course be generalized for the 3D case.

A bivariate tensor-product B-Spline space B is defined by specifying the polynomial degree
(p, q) and the horizontal and vertical knots vectors:

[1]

={§OS"§1S“'S n+p+1} (61)

H ={ < <. STpiga (6.2)
Which contain non-decreasing parametric real values so that,

0<u(E,&)<p+1 (6.3)

0<u(H,7)<q+1 (6.4)

are the multiplicities of the parameter values in the knot vectors (the multiplicity p( X, x ) is
zero if the given value x is not a knot in X).

The space B is spanned by the tensor-product B-Splines.
Ni ;= Ni,p,E(éZ)Nj,q,H(ﬂ) (6.5)

In order to represent basis functions in the parameter space we can consider different
types of anchors like those presented in Fig. 6.2, namely:

l. naive anchors:

o if both degrees are even, each basis function is identified with the central
elementary cell of its support,

e if both degrees are odd, each basis function is identified with the central point
(intersection of knot lines) of its support;
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e in case of mixed degrees (even/odd), each basis function is identified with the
central edge of its support;

Il.  Greville abscissae: the (§, n ) coordinates associated to each basis function Nj; are
defined as averages of subsequent knots.

1 p
==& (6.6)
Pz
and
13
dk=
Which they satisfy the following relations:
n
4 ZZUiNi,p,s(ﬁf) (6.8)
i=0
m
n=2 ViNjqu() (6.9)
j=0
p=2 p=3 p=2

LN PN PPNV

Figure 6.2.

Greville abscissae for three cases. p=g=2, p=2 q=3 and p=3 q=3
(lakovos Antonios and Karras Dimitrios, 2015)

6.2.1.2 The Kraft Algorithm Proposal

Kraft presents in his work “Adaptive and Linear Independent Multi-Level B-Splines” (1997)
a new methodology for successfully handling multi-level local refinement of B-Splines
conserving at the same time the linear independency of their basis.
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The basic new feature of this approach is a simple selection mechanism for B-Splines,
which ensures their linear independence, while allowing complete local control of the
refinement procedure. The use of B-Splines in the isogeometric approach leads to an explicit
correlation between the mesh of B-Spline knots and the surface represented. Moreover, the
multilevel B-Splines are similarly stable as normal tensor product B-Splines. The multilevel
and hierarchical B-Spline basis is weakly stable. The resulting smooth Spline surface has the
same approximation properties as discontinuous polynomial approximations. Furthermore,
with an appropriate multilevel and hierarchical quasi-interpolant, we get the optimal local
approximation order.

It can be shown that this multilevel B-Spline space is very well suited for scattered data
approximation or interpolation. The number of degrees of freedom of the hierarchical
B-Spline space can be locally increased where necessary to better approximate the given
data as shown in Fig. 6.3.

(a)

(b)
Figure 6.3.
(a) Hierarchically refined mesh for p=3 and p=2 respectively (b) Breakdown of the functions that consist the
hierarchical meshes in (a). The support cells for three refinement levels can be seen. As the cells tend to
be smaller, the support is also decreasing.
(lakovos Antonios 2015)
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6.2.1.3 Nested Spaces

We consider a dyadic sequence of grids determined by the scaled lattices

k1 k2

where ( denotes a random level of the hierarchy. The hyi(x) describes the grid-width in the
direction x; at the point o = ({, n). To avoid unnecessary complications we set
he(§) = hn(n) = 1. The extension of the results is straightforward. Kraft made this
simplification in order to ease explanation of the algorithm. In this thesis, h will be referred
as knot span length of each axis, which can differ for the two or three parametric axes and
can also take values different from one.

On the grid of the dyadic level p we denote by:

NI =NL, (6.1) =N, (26 k)N, (2'n-k,) (6.10)

the B-Splines with degree (p,q) and open support:

k, k+p+1,_ k, k,+q+1

supp Ny = (5, =) XG5 =) (6.11)

Figure 6.4.
Breakdown of a hierarchically refined mesh of totally 5 levels.
(Schillinger et al, 2012)
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The recursive application of the refinement step combined with the non-intersection
requirement leads to a sequence of nested refined domains as presented in the example of
Fig. 6.4. Let Q: = Q°2 Q' 2 ... 2 Q", where n is the index of the finest level, be a nested
sequence of domains with the following properties:

Q" = JsuppN; :J c Z? (6.12)

jed

o0 N =0 (6.13)

This means that there is always one cell distance between the boundary of the coarse and
fine grid

From the above properties follows that, for an appropriate set of D,

Q' = [ J suppNy (6.14)
keDf
From the B-Splines N, k € DP we select those with support not contained in Wp.1 as basis-

functions for the hierarchical B-Spline space. In other words, we define the hierarchical
B-Spline set as follows:

I ::{k e 7Z? |supp N < Q',supp Nk(gQ”l} (6.15)

And the multilevel, hierarchical and linear B-Spline space
S, =S5 = Span{B,‘< |[p>0,k el ‘} of the degree (p, q) as the linear span of the B-Splines

B, with p=0, kel’.

As is apparent from this definition, the B-Splines whose support lies in Wy.1 are replaced by
B-Splines Blf on the finer grid and thus can also be represented in the space S. Moreover, a

spline function in S has the representation:
S:R* >R

x> S() =Y bN(x),with:b eR (6.16)

p>0 kel P

In order to clarify the above definitions given by Kraft, examples will be presented and
discussed. Initially, a bivariate parametric space Wy is considered with the following knot
value vectors without multiplicities in their knots==H=[0123 456 7 8 9]. The functions
have degree p=g=2 (quadratic B-Splines). From the tensor product property it occurs that
each B-Spline has a support that consists of (p+1)(q+1) = (p+1)?, for p=q cells. For the given
example the support consists of 9 cells of the parameter space mesh (grid). As it has been
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mentioned before, to address efficiently the functions either naive anchors or Greville
abscissae will be used. In addition, different shapes and colors will be used in order to avoid
confusion on the illustrative examples

Assuming W1 :=[2 3 4 5] x [3 45 6] which is the support of the B-Spline Ng,3 (where the

top index refers to the hierarchy level and the bottom index refers to the down and left knot
of the support) at the level 0. Because of (6.14), this is the smallest domain which we can
use for Wi. To fulfill the condition (6.15) of the index set I°, we have to remove the B-Spline

and we have to insert 16 B-Splines at level 1. The support of the B-Spline Ng,4 for example,

overlaps W1 but is not a subset of it. This means that Ng,4 is not fully contained in it and

thus it cannot be removed completely. In isogeometric analysis implementations this
property isn’t necessary to be valid as it will be discussed later. The explained example is
depicted in Fig. 6.5.

Figure 6.5.
(a) Wo with parametric knot value vectorsZ=H=[0 1 2 3 4 5 6 7 8 9] (b) W11, 2,3,4]x[2,3,4,5]
(c) Basis function Ng3with support W1 (d) Support of basis function Ng4 part of W1

(e) Removal of basis function Ngs and introduction of 16 finer basis functions

(lakovos Antonios 2015)
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6.2.1.4 Recursive Procedure

Due to the B-Spline representation, Spline approximation methods can be implemented
almost as efficiently as non-smooth piecewise polynomial approximations. Optimal order of
accuracy can already be obtained by computing the B-Spline coefficients as a weighted
average of a small number of function values. We have constructed a hierarchical quasi
interpolant which fulfills the optimal local approximation order and is based on the quasi
interpolation of tensor product B-Splines.

In the next step the algorithm tests for each B-Spline in the middle area of its support if the
maximum error between the given data and the spline surface is exceeding the tolerance. If
so, the index of this and only this B-Spline will be removed from the hierarchical B-Spline set
Ip and the indices of the B-Splines at the level p + 1 which are generated by subdividing are
inserted into the hierarchical B-Spline set /p:1. In this way the full amount of degrees of
freedom of the level p + 1 in this area is exactly reached. So the resulting surface after the
next approximation step will be exactly the same in this area as if we used a tensor-product
B-Spline approximation all over Wy with a full grid of this level. If biquadratic B-Splines are
used, this local area will be the rectangle between the two grid-lines in u and v direction
which lies in the support of the B-Spline. To fulfill the conditions (6.12), (6.13) and (6.15) on
the domain W, and on the index-set I,, it must be tested, if the neighbors of these B-Splines
also have to be removed. This is a local operation and therefore it is not very cost-intensive.
This very important step will be later utilized in isogeometric implementations.

6.2.1.5 Conclusions

Kraft has developed a multilevel and hierarchical B-Spline space as a generalization of the
normal tensor-product B-Spline space. The space consists of linearly independent B-Splines,
which are defined on different grid levels and can be derived through subdivision of higher
B-Splines. With this hierarchical B-Spline space, we have complete local control of the
refinement of the spline space. In areas where the indices of all overlapping B-Splines of
level p are members of the hierarchical B-Spline set, we have the same properties, as if we
use only B-Splines of this level.

The use of B-Splines in this approach leads to an explicit correlation between the mesh of
B-Spline knots and the surface represented. Because of the direct relation between the
B-Spline coefficients and the spline surface, the evaluation of the B-Spline surface can be
done fast and it is not cost-intensive.

The visualisation of the surface can also be done in a fast way. These properties imply a
good perfomance for scattered data interpolation or approximation. Kraft has developed an
iterative approximation algorithm with which we can adapt the hierarchical B-Spline space
to the given data.
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6.3 SUBDIVISION PROPERTY OF B-SPLINES AND NURBS

6.3.1 Uniform Basis

Now that the idea of the hierarchical basis is expressed, in a compact and solid way, it is
necessary to introduce and present another basic ingredient of the local hierarchical
refinement in isogeometric analysis, the subdivision property. Subdivision property is a
unique feature of B-Splines and their generalization NURBS, which allows a random B-
Spline of a certain level to be expressed as a linear combination of finer basis functions of
more than one level. This procedure is recursively used in computational graphics in order
to represent finer geometries with more details. Of course the right coefficients must be
used in order to achieve the linear multi-level expression. For that purpose, two-scale
relation (6.17) has been introduced by the researchers of computer graphics and geometry.
For the following units we will consider the one-dimensional problem for B-Splines, but as it
will be shown next, the generalization of the procedure is quite straightforward for the two
or three dimensional cases.

Ni[;p = :zj:si[,)kNZCi:lk,p(g) (6.17)
where
S :2_1P(p7+1j :2_1p(p+(itllz;!k! (6:18)
k=0, 1, 2...p+1

Where p is the polynomial degree of basis functions and k is the necessary number of finer
level basis functions that are needed to represent the coarse B-Spline. Si?k is called

subdivision (or coefficient) matrix and it is a banded sparse non-square matrix. Its
components are independent of the knot index i and the level. More specifically subdivision
matrix has the following properties:

® |t is a non-square matrix, where its rows correspond to the basis functions before
refinement (maternal) while its columns to the refined basis functions (children).
Their number is different. So it is a matrix with i rows and j columns.

= |t is sparse. Each basis function at the coarser level has relations with at most p+2
children bases at the finer level.
m
* The elements in each column constitute a partition of unity. For V] there isZSij =1
i=1
= Each coefficient is non-negative and less or equal to 1.
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We consider the above relation valid for a level { function of a uniform knot vector, where
knots are inserted in the region of the support of the selected B-Splines. Halving the
corresponding knot spans, thus the number 2 is included in the relation. Furthermore, a
generalization of the relation can occur for other equal subdivisions of the support such as
three, four or five. However, splitting the existing knot spans into two smaller seems better
for implementation in the computing of our algorithm, especially in higher dimension
applications such as 2D and 3D, where the data must be handled efficiently. It is clear that
other subdivision schemes would make the implementation more complicated, despite the
fact that they would lead theoretically to an analysis suitable mesh.

Thus, the following relation occurs for the knot span length of the following levels. It is
straightforward that through the different lengths all over the hierarchy of the basis, one
can calculate the support of each basis function effortlessly.

h,=2"-h, 1<k<K (6.19)

From the above relation, one can get also the relation between the supports of two or
more consecutive levels.

supp(£+m) = Zimsupp(ﬂ) (6.20)

Where m is the number of the examined refinement level, h is the initial length of the
uniform case of knot vector and h, is the length of the knot span for a random level k of the

hierarchy. This way, the length can be calculated quickly.

For example:

e fork=0 h.=h
e fork=1 h,=0.5-h
o fork=2 h,=0.25-h

where h can be directly derived from a knot vector {fl,fz,---,fi,---,fn,l,fn} such as,

h=£,-&,i=12,..,n-1 (6.21)

This relation refers to a uniform knot value vector and subsequently to a uniform basis. The
generalization of the two-scale relation for a non-uniform basis which takes into account the
different knot span lengths as well as the reduced continuity or the knot multiplicity in
certain knots will be presented later on.
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An example will be now illustrated in Fig. 6.6 in order to fully understand the nature of this
relation and the result that can occur by using it.

Assuming we have a fully deployed B-Spline basis function that can be derived from the
Cox-de Boor relation. The basis function has a knot vector of [0, 1, 2, 3] and degree p=2. No
other functions are considered for this example, as our aim is to understand the mechanism
behind the previous introduced relations.

In order to address and handle properly the multi-level relations, some terminology is
required. Thus, we will from now consider two categories of basis functions for addressing
the functions of two consecutive levels. First we will refer to the coarse basis functions that
are selected to be refined and belong to level { as maternal B-Spline functions, in the sense
that they are the ones that can generate the finer level functions. Moreover the finer level
( +1 functions will be referred as subsidiary (children) B-Spline functions.

Now that the multi-level relations can be properly handled without being confused, we will
use the algebraic equations.

0.8+ .

0 05 1 15 2 25 3
Figure 6.6.
The example’s maternal function is shown with black color. The children with coefficients 0.25 and 0.75 are
depicted with cyan and blue respectively
(lakovos Antonios and Karras Dimitrios , 2015)

In Fig. 6.6 we can see how the maternal function can be represented from p+2 finer level
functions. In addition the new knot vector is [0, 0.5, 1, 1.5, 2, 2.5, 3]. If we try to input the
new knot vector to the Cox-de Boor relation 4 quadratic subsidiaries will emerge with the
following length of support

supp =(p+1)-h, =(p+1)-0.5-h (6.22)

Where for p=2 and h=1 we get that every one of the subsidiary functions will have length
of support equal to 1.5, which is the half of the maternal basis function.

However, the Cox-de Boor relation gives us the new subsidiary functions, but not their
coefficients. In order to represent the maternal basis function by the set of subsidiaries we
will use the subdivision property two-scale relation.
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So from implementing the relation for p=2 and k=0, the following p+2 coefficients occur,
0.25, 0.75, 0.75, 0.25 respectively for the four subsidiaries starting from left to right. As one
can easily notice, the sum of the subsidiaries at every ¢ that belongs in [0, 3] equals to the
value of the maternal function.

The subdivision property is valid and thus can be applied for more than one level of
refinement, by just following the hierarchy of the levels as well as input the correct

parameters to the aforementioned relations.

Of course, the above theories apply for every polynomial degree p as displayed in Fig. 6.7.

(a) (b)

(c) (d)

(e)
Figure 6.7.
B-Splines subdivision for (a) p=1, (b) p=2, (c) p=3, (d) p=4, (e) p=5 is illustrated. The number of children for

each case is equal to (p+2)
(lakovos Antonios and Karras Dimitrios , 2015)

In Fig. 6.8.a, the coefficients for two consecutive levels are depicted. More specifically
these coefficients connect the finer functions of level 2, of contracted support with the
coarse maternal B-Splines. By summarizing all the values of each column, multiplied by the
coefficients of the previous level the coefficients of the univariate case for refinement level
2 can be derived.
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In Fig. 6.8.b, the coefficients of a bivariate B-Spline of polynomial degree p=2 can be seen.
More specifically these coefficients can be derived by applying the subdivision relation to
each of the parametric local knot values and multiplying them in a full tensor way. So, the
key factor in calculating coefficients in multivariate cases, is to derive the coefficients of
each parametric axis independently. However this must not be confused with a global
tensor product multiplication, as in h-refinement.

0.25 | 0.75 | 0.75 | 0.25
0.25 | 0.75 | 0.75 | 0.25
0.25 | 0.75 | 0.75 | 0.25
0.25 | 0.75 | 0.75 | 0.25

(a)

0.0625 0.1875 0.375 0.1875 0.0625
0.004 | 0.012 | 0.023 | 0.039 | 0.047 | 0.047 | 0.039 | 0.023 | 0.012 | 0.004

0.012 | 0.035 | 0.070 | 0.117 | 0.141 | 0.141 | 0.117 | 0.070 | 0.035 | 0.012
0.023 | 0.070 | 0.141 | 0.234 | 0.281 | 0.281 | 0.234 | 0.141 | 0.070 | 0.023
0.039 | 0.117 | 0.234 | 0.391 | 0.469 | 0.469 | 0.391 | 0.234 | 0.117 | 0.039
0.047 | 0.141 | 0.281 | 0.469 | 0.563 | 0.563 | 0.469 | 0.281 | 0.141 | 0.047
0.047 | 0.141 | 0.281 | 0.469 | 0.563 | 0.563 | 0.469 | 0.281 | 0.141 | 0.047
0.039 | 0.117 | 0.234 | 0.391 | 0.469 | 0.469 | 0.391 | 0.234 | 0.117 | 0.039
0.023 | 0.070 | 0.141 | 0.234 | 0.281 | 0.281 | 0.234 | 0.141 | 0.070 | 0.023
0.012 | 0.035 | 0.070 | 0.117 | 0.141 | 0.141 | 0.117 | 0.070 | 0.035 | 0.012
0.004 | 0.012 | 0.023 | 0.039 | 0.047 | 0.047 | 0.039 | 0.023 | 0.012 | 0.004

(b)

Figure 6.8.

In this figure an easy calculation of the second consecutive level, subdivision coefficients is depicted. In (a) the
recursive computation for 2 level of refinement is shown for the univariate case. In (b) the coefficients for a
bivariate B-Spline of polynomial degree 2 is shown. The coefficients are produced by a tensor product
multiplication of each of the parametric axes
(lakovos Antonios and Karras Dimitrios , 2015)

6.3.2 Non-Uniform Basis

Now that we have investigated the uniform basis case, it is time to generalize the theory
presented in the non-uniform case. The non-uniform case is not only characterized by
different knot-span lengths, but also by cases of reduced continuity along the basis. This
way a full set of necessary tools will be presented in order to handle properly every basis
one may encounter

As the final goal is always programming, the presented knowledge may become easier
interpreted by readers with the illustrative and analytical examples presented in the
following pages. As we mentioned in the previous chapters, a basis might have scattered
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knots or knot multiplicities. These cases are obtained through the CAD representation and
most of the times are not up to the user to decide, unless he chooses to use multiple
patches to handle complicated geometries.

In any case, as the patch interconnection is still a subject of study in NURBS and B-Splines
(lack of watertight connections), in contrary with T-Splines, handling discontinuities or
arbitrary bases is crucial. As presented before, a fully developed maternal basis can be
described by exactly p+2 finer basis functions, by adjusting the right corresponding factors.

The same rules apply on the non-uniform cases for all the fully developed basis functions. A
difference is spotted in the boundaries of a patch, where B-Splines are not fully developed
and hence although they may be of degree p, they are described not by p+2 functions, but
by only 2 in general. Of course in a theoretical approach, the subdivision property is valid,
but for the non-uniform case much more effort is needed in order to acquire the right
coefficients for every spline.

The multiplicity at the two end knots of an open knot vector is always p+1 and their related
basis functions are discontinuous. These boundary basis functions have only two children
basis functions and their coefficients are 1 and 0.5 respectively whatever their degrees are.

In contrast, the internal basis functions are associated with more children bases at the
lower level. Their combinatorial coefficients not only depend on degree p but also the
values of individual knots for non-uniform knot vectors. In detail, the refinement of basis
functions with non-uniform knot vectors can be represented by the following formula.

p+1

N/, (&) =[a][N]= Za,— N (€) (6.23)

For the quadratic basis function that is defined by a span [(fl, 52153,54], the coefficients can

be calculated using its local knot values:

_ égz_étl

a, = —2(53 “2) (6.24)
%%

a, =1 26-c) (6.25)
_1_ 53_‘):2

a, =1 —2(54_52) (6.26)

a4=1—ﬁ (6.27)

2(54 _982)
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e As for the cubic basis function with a local knot vector [51,52,53,54,55] the

coefficients can be identified in the similar way:

52_51 983"'52_251

a1:2(§3—§1) 265 (6.28)
a, =% (6.29)
T e ey
oSt 631)

_Fote =2 s (6.32)

“TTe-8) 2(5-4)

(b)

@ (d)

Figure 6.9.

Subdivision property in for a non-uniform B-Spline of polynomial degree p=3. (a) Maternal basis function.
Course local knot vector [1 2.5 3.75 4.75 5.25] (a) Subsidiary basis functions. Refined bisected local knot
vector [1 1.75 2.5 3.125 3.75 4.25 4.75 5 5.25] (c)Scaled subsidiary basis functions (d) Subdivision property
representation
(lakovos Antonios and Karras Dimitrios , 2015)
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6.3.3 Subdivision of N-Variate B-Spline Shape Functions
After introducing and explaining in depth the subdivision property of B-Spline curves for

the one dimensional case, we can proceed forward by generalizing the theory for the n-
variate case of tensor product B-Splines.

6.3.3.1 2D Case

For the sake of simplicity and to ease notation and examples a bivariate B-Spline of degree
p=2 is considered for both of the parameter axes € and n.

Let B be a tensor product B-Spline that is constructed by two random full developed one

dimensional B-Splines of degree p=2 on ¢ and n axes respectively. Each one dimensional
basis function has a local knot vector and thus a support, as the following.

[51, 52,53,954], from which the Ni[,Z (5) is derived and

[771,772,773,774], from which Nj(,z (77) is derived as well

The corresponding tensor product B-Spline will be:

Ni(,j,z (5177): Nic,z (Sg)Njf,z (77) (6.33)

with support

Supp(Ni(,j,z) = [é:l’ 52’53’54] X[771’7721773’774] (6.34)

From the above equations it is easy to understand that for degree p=q=2 for both axes, the
tensor product bivariate basis function is comprised of (p+1)"=2 cells, which consist its
support.

As it was mentioned in the introduction chapter, hierarchical refinement is the technique
of enriching the approximation space locally by replacing a coarse grid along with its
correspondent basis functions, with finer ones. In this sense, knot insertion is performed in
the local knot vectors in each axis €, n, { for each basis function separately.

By recalling the previous knowledge on local refinement that was presented, we know that
for the one dimensional problem each maternal basis function has p+2 children
(subsidiaries).
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For the n-dimensional, here 2-dimensional problem, the number of children of the tensor
product B-SPLine basis functions equals to

(p+2)(q+2) or (p+2)° (6.35)

for p=0, where p and q are the degree of & and 77 axes respectively.

03

02 06

0 05

(b)

Figure 6.10.
(a) Graphical representation of a bivariate B-Spline’s children (b) Cut along n axis

It is now time to find the coefficients for the tensor product children of the maternal basis
function. By applying the previous subdivision relation for each of the axes separately and
then combine them in a tensor product sense, the final coefficients can be derived.
Consequently, due to their tensor product structure, the generalization of subdivision to
multivariate B-Splines is a straightforward extension of the subdivision property relation and
can be written as:

B*(¢)= Z(li[Z"‘ (pJ—ﬂN (2 - jc)j (6.36)

j\ = ¢

where multi-indices,

o i={ii|

o« P={Puby )

o ¢={0nng]

denote the position in the tensor product structure, the polynomial degree and the
independent variables in each direction ( of the n-dimensional parameter space. The use of
subdivision property for the bivariate case is depicted in Fig. 6.10. Continuing, illustrated
examples will be represented in order to completely understand the procedure of
subdivision. The most widely known application of the aforementioned relations is the
development of highly efficient subdivision algorithms for the fast and accurate
approximation of smooth surfaces by control meshes in computer graphics.
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6.3.3.2 Example for the coefficients of the 2D case B-SPLines

So in order to simplify the explanation, we will present an example to demonstrate how
the subdivision coefficients are generated in the bivariate case for degree p=2 for both the
parameter axes. We assume having a tensor product bivariate B-Spline with (p+1)? cells that
consist its support in the 2D parameter space. When this particular spline is selected for
refinement, the local knot vectors for both axes will change by dividing their corresponding
knot spans in to half and along with them new smaller cells will be generated. By the knot
insertion new children will be introduced with half maternal support.

In Fig. 6.11, the bivariate B-Spline is depicted, along with its random local knot vector on
both parameter axes. After the knot insertion the initial local knot vectors,

5=[§1'§2’§31§4]

H=[m.77,. 15,1, ]

have become:
CEEN- SN2

H' = 70,125,702, 7067737774 |

where the knot values that are marked refer to the newly introduced knots on both axes.

0.6

Figure 6.11.
Bivariate basis function.
(lakovos Antonios 2015)

Now by applying the relation for the n-variate case of tensor product B-Spline curves for
n=2, we can calculate the coefficients for the children that have been created during the
subdivision of the maternal functions. Because of the tensor product nature of the maternal
functions, the number of the children can be derived from equation (6.35).

In our case for p=q=2 the number of children equals to (2+2)2=16 and its coefficients, in
order to describe the maternal function, are as depicted in Fig. 6.12.a. Note that the outer
rows and columns follow the same pattern. In addition to that, the center functions have
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the highest coefficients, which is logical and it directly depends on the relation between the

degrees of the two parameter axes.

For simplicity reasons, although the maternal function has been presented in the
parameter space, the children along with their coefficients will be represented in index
space, due to the fact that B-Splines intersect and interact with p+1 other functions. This

fact would lead to a confusing illustration of the parameter space.

In Fig. 6.12.b the case of cubic B-Splines is depicted. The number of children in this case is

(3+2)%= 25. The scale factors pattern is similar to the one examined for the quadratic

Splines.

0.3

04

025 075 075 0.25 0 0.016 | 0.063 | 0.094 | 0.063 | 0.016

0.0625 0.1875 0.1875 0.0625 0 0.063 | 0.250 0.250 | 0.063

0.1875 0.1875 0 0.094 0.56 0.094

0.1875 0.1875 0 0.063 | 0.250 0.250 | 0.063

0.0625 0.1875 0.1875 0.0625 0 0.016 | 0.063 | 0.094 | 0.063 | 0.016
(a) (b)

Figure 6.12.

Scaled subsidiary shape functions. Scale factors have been produced from the subdivision property relation.
(a) Quadratic B-Splines, (b) Cubic B-Splines.

(lakovos Antonios 2015)
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Figure 6.13.

64

Number of functions derived from 2D subdivision rule for one maternal shape function in relation to

polynomial degree.
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6.4 SUBDIVISION PROPERTY IN NURBS

As we already know, CAD programs do not use B-Splines in their algorithms. Instead they
are using NURBS and thus the previous relations and proofs must be modified properly in
order to be used in NURBS implementations.

It will be shown that, the generalization of the relations is easy and quite straightforward.
In this case the study of B-Splines in the parameter and index space seems sufficient in
order to achieve the desired results. However the modification of the related weights of
each NURBS curve will be also presented for the sake of completeness. After proper
handling of the relations for the one dimensional NURBS, the generalization for higher
degrees will follow.

Subdivision rules for univariate NURBS derive by inserting the two-scale relation of the
classical subdivision relation into the construction rule for NURBS basis functions, which

eventually yields
R p+1 :
wz(p ji,p(25—1)

Ri’p(é)— (6.37)
2PZ;WJ.N”,(§)
J:

According to the isogeometric framework, the geometry is described exactly by the original
unrefined NURBS basis, so that geometry refinement in the same framework of
isogeometric analysis is not required. Therefore, we keep the weight w; and the
corresponding control points P; unchanged and always take the sum of the original B-Splines
N;p in the denominator of the above equation. Nonetheless, using the refined NURBS basis
for enhancing the geometry representation would be of course possible.

A multivariate subdivision rule for NURBS can be derived analogously by substituting the
classical rule for multi variable NURBS to the classical subdivision relation, which will give us
the following expression

p+l d

S (P51

RN (&)= =021 (6.38)
jZ_‘IWij'p({;)

Where the multi-index notation exactly follows the one introduced before for the
multivariate B-Splines that were introduced in the previous chapters. Since the geometry is
not refined the B-Splines N;pand corresponding weights in the denominator of the above
equation refer again to the original B-Spline patch.
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6.5 HIERARCHICAL REFINEMENT FOR NURBS

On the basis of the previous subchapter, we introduce some modifications to the
hierarchical refinement scheme for B-Splines to adapt the case of NURBS. First, the previous
introduced relations are separated for the univariate and the bivariate case in two parts, a
B-Spline part (numerator) and a rational part (denominator), which are treated separately.
The numerator carries out hierarchical refinement on the B-Spline level, so that we can
make full use of the concepts and the algorithms that will be later on introduced. Thus, the
resulting refined NURBS basis is also constructed from a nested sequence of bisected knot
span elements, over which multiple hierarchical overlay levels of repeatedly contracted B-
Splines are defined.

As shown in the previous subchapter, the denominator is always computed with the

original B-Spline basis N?,p (0)

sum(&)=>"w;Nj (&) (6.39)
i

Where the multi-index j includes all B-Splines with support at the parameter space location
{. The basis functions R, of the hierarchical NURBS basis and its derivatives follow as

_ Ni,p(g)
R o (&)= W (6.40)
M_ N. %
Rip (&) _ ag'sum(¢) (%) o¢' (6.41)
o&! sum(f)2

Where we additionally drop the weights w; in the numerator of the first equation for
further simplification. Standard rules for generating higher order derivatives can be adapted
in the same way, for use in colocation for instance. The geometry mapping by way of the
Jacobian matrix and determinant are computed throughout the hierarchical refinement
procedure form the unrefined NURBS basis

NS o ()
x(E)=> w222 (6.42)
( ) ZJ: J sum(f) J

with the initial set of weights W; and control points Pj .
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/ . HIERARCHICAL REFINEMENT
STRATEGIES

7.1 INTRODUCTION

The basic ingredients and tools needed in order to successively apply local hierarchical
refinement in B-Splines and NURBS were presented in chapter 6. Basic terms such as the
Kraft algorithm, nested domains, the subdivision property relation and extensive illustrated
examples have been explained in order to comprehend in depth the rigorous mechanisms
and equations used in the case of local refinement.

In the current chapter it is time to introduce, explain and eventually evaluate some method
variations of hierarchical adaptive refinement introduced during the last few years. It has to
been mentioned that the idea of adaptive refinement in isogeometric analysis is a relatively
recent research topic. The first research ideas on hierarchical refinement have been
publicated by Vuong et al in 2010. In their work they tried to implement R. Kraft’s theory,
presented in his PhD back in 1997, in the frame of isogeometric analysis. The idea emerged
from the need for strictly local refinement in B-Splines and NURBS implementations in IGA,
since the full tensor product nature seemed to be a major drawback for analysis purposes.
An alternative approach to reach a successful and easy implementation of Vuong’s theory
was introduced by Bornemann et al. Later on, Giannelli came up with the truncated B-Spline
concept, a method introducing new tools to optimize what was already proposed by Vuong.
Another addition has been made by D. Schillinger by modifying existing methods in order to
restrict refinement’s area and strengthen its local nature. His proposals where reflected on
the sparseness of stiffness and mass matrices. Just recently, a new kind of B-Splines, named
LR B-Splines, has been introduced by Johannessen and Kvasmdal in order to achieve analysis
suitable meshes and numerical results in local multi-level hierarchical refinement. It has to
be clarified that all the aforementioned refinement strategies focus on the formation of
hierarchical B-Spline and NURBS basis functions and as a result stiffness matrices.

All the aforementioned authors have set a very strong theoretical background for scientific
society and they are still continuing on issuing papers which try to overcome the difficulties
derived from hierarchical adaptive refinement. In this sense, research on local refinement in
isogeometric analysis is still an ongoing issue. Many more ideas and proposals are made by
various researchers in order to improve the existing theories and ease the implementation
effort. In this thesis an algorithmic approach based on the previous knowledge will be
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presented. The aim of this approach is to ease the procedures of the previous theories in
IGA applications.

In the current chapter an extensive presentation will be made, so the reader will
understand in depth the different refinement strategies and their advantages or
disadvantages.

7.2 HIERARCHICAL REFINEMENT PROPOSED BY VUONG ET AL.

Refinement in general and adaptive local refinement in particular is one of the key issues in
isogeometric analysis. Vuong et al. present an adaptive local refinement technique for IGA
based on extensions of hierarchical B-Splines. The theoretical properties of the spline space
are investigated, in order to ensure fundamental properties like linear independence and
partition of unity. Furthermore, well established concepts from classical FEA are used to
fully integrate hierarchical spline spaces into the isogeometric setting. Mesh refinement
based on a-posteriori error estimators is a key ingredient for developing an effective
isogeometric adaptive solver, as it will be described in more detail in the next unit. This is
the main motivation for investigating possible extensions of tensor product splines, which
provide an adaptive local control of the refinement, together with their suitable application
into the analysis phase. Starting with an initial mesh grid, the error estimator iteratively
identifies areas of the mesh, which require local refinement.

In addition to the aforementioned properties, some other definitions will be given. Having
explained nested spaces extensively, it is time to move forward in introducing the method’s
fundamental theoretical principles.

Consider a finite sequence of N bivariate B-Spline spaces (N*),_, , ,Which are assumed to
be nested and L is the number of hierarchical levels.

N cNic..aNH? (7.1)
Together with a finite sequence of N bounded open sets (Q“),_, ,_, with
Ot 2 <. 0P and Qt=0 (7.2)

which define the nested domain for the spline hierarchy.

In order to obtain nested spaces, it is necessary to assume that
,u(E”l,ﬁ)—y(E[,gt)Z p[+1_ pf (7.3)
u(H*n)-u(H n)2a" -qf (7.4)
V¢ nwith(=0,...,L-2.

These conditions are necessary and sufficient. It is usually considered that the polynomial
degree remains constant for all levels of hierarchical refinement, an assumption also
adopted by this thesis.
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At each level, the boundary 9Q°, {=0,..,L-1, may be aligned with the knot lines of N‘™*

which will be referred as strong condition or B which will be referred as weak condition.

(a) (b)

Figure 7.1.
(a) Strong boundary conditions between the subdomains. (b) Weak boundary conditions between the
subdomains.
(Vuong et al, 2011)

Fig. 7.1 depicts the strong and weak boundary conditions between the nested subdomains.
The initial domain QP is an arbitrary 2D parameter space. The refined domain Q! is produced
when the first refinement is conducted, while its parametric cells have the half side
dimension in comparison with the initial domain Q°. Similarly, the refined domain Q? is
produced when the second refinement is conducted, while its parametric cells have the half
side size in comparison with the domain Q2, as the subdivision number is chosen to be equal
to 2.

It is worth mentioning that for the strong boundary conditions between the subdomains
the boundary dQ?! is aligned with the already existed knot lines of the initial domain Q°. On
the other hand, this is not valid for the case of weak boundary conditions. The same pattern
is noticed for the next refinement level. For the algorithmic point of view, the strong
condition is considered better and more robust than the weak one. The case encountered in
this thesis is strictly the one of strong boundary conditions between subdomains.

In hierarchical refinement, although the linear independence is always secured, partition of
unity may be not satisfied directly along the basis. For this reason, we borrow the
terminology used in T-Spline implementations, in order to classify the different hierarchical
bases by the following definition.

B-Spline basis function { N, } will be referred as:

e Standardif Y N; =1 (7.5)

e Semi-Standard if there exists a choice of weights Sj > 0, such that Z siN; =1 (7.6)

e Non-Standard A no choice of Sj> 0 to ensure in any way the partition of unity (7.7)
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In the general case of hierarchical B-Spline basis, the existence of all aforementioned
definitions is allowed. A tensor product mesh will yield a standard basis, as we already
know, but an arbitrary mesh will not have the same behavior. The ultimate goal is to always
define an admissible mesh for analysis, which will at least be a semi-standard one.

N

7.1.1 Constructing the hierarchical basis in a multi-level case

Examples of standard and semi-standard bases are depicted in Fig. 7.2.

Figure 7.2.
(a) Standard basis. (b) Semi-Standard basis.
(lakovos Antonios, 2015)

Now a generic algorithmic relation will be presented, that can be applied recursively
between two consecutive levels of the hierarchy in order to obtain the hierarchical basis and
inherit its desired properties.

The hierarchical spline space is recursively constructed as described below:

I. Initialization:
H°={Ni e N :supp N; ;tO} (7.7)
Il.  Recursive Case:
H™ =H M OHEY, fore=0,...,L-1 (7.8)
Where
HAt={N;eN eH’ suppN; ¢ Q) (7.9)
Hgt = {N N; e N“* suppN CQM} (7.10)

Where M is the number of the total levels.

lll.  Final step
H=H" (7.11)

In step (), the hierarchical basis is initialized, by adding all the functions of the coarse
domain. This happens always for normal parameter spaces, but may differ for arbitrary
ones. The area or areas of interest are selected by estimating their corresponding error. The
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union of these areas forms the domain refinement will take place. The refined domains will
become smaller and smaller, as the number of iterations increases due to the nested
function domain property.

Now that the first domain Q' is constructed, the algorithm proceeds to step (lI). In this
step, the algorithm identifies which functions have the necessary properties in order to be
included to the hierarchical basis. Two distinct groups of basis functions are constructed.
Group (A) includes the functions whose support is not fully contained in the next level’s
finer domain Q"' and thus will remain intact. Group (B) consists only by functions of the
finer level. From those functions only the ones with a support belonging completely to the
next levels domain Q! are kept.

Note that functions contained in group (B) and are consequently included in the

hierarchical basis of level [, may be discarded in the next iteration step if their full support is
part of the refined domain Q2.

To summarize, the recursive definition ensures that the algorithm always selects to include
in the hierarchical basis the appropriate functions. The first step initializes the hierarchical
basis with all the relevant functions of the underlying tensor product basis N°.The recursive
procedure then updates the basis by removing the coarse functions contained inside the
refined region and including finer ones by substituting them.

As a result of the aforementioned definitions and the recursive algorithm, the hierarchical
B-Spline basis and all the associated spaces have the following important properties, which
will be proved later on.

e The functions of the hierarchical basis are linearly independent.

e The spaces spanned by the basis are nested, in a sense that H’ < spanH !

7.1.2 Proof of linear independence

We just have to prove that Z a;N; =0=¢; =0. This sum can be re-arranged as:

NjeH
NjeH~NO NjeH NT NjeH~NLT

Since the functions in H " N° are a subset of N, they are linearly independent as we have
proved in the previous chapters. Only these functions are non-zero onQ°\Q, hence in view

of their local linear independence, we conclude that a =0 forreH ANC,
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Analogously when we consider all next sums in the sequence, we may observe that for

each ¢ =12,...,L—1the functions in H AN’ are linearly independent. Except for functions

already considered in the previous sums, namely in H AN’...H mNH, only the functions in
H AN are non-zero on Q" \Q"™. This implies that a, =0 for reH AN with(=12,...,L-1.

7.1.3 Proof of nested spaces

Lemma: Let H® H?,...,H" be the spline bases considered from the iterative procedure.
Then the following is valid:
spanH ‘ <= spanH “*For (=0,1,...,L—2

It will be proved that every function C(é) € spanH‘ with £=0,1,...,L—2 can be written as:

C(¢)= 2 aN;= > aN; + > aN,  (7.13)
NieH[ NjeH (,SuppNi <ZQ(+1 NjeH (,SuppNngHl

where the first sum in the right-hand side of (7.14) collects all basis functions in H*‘*!
0 L-1

(7.10). In view of the nested nature of the underlying spaces B",..,B , each function

N; € N can be expressed as linear combination of basis functions which belong to N+,
such that:

N/ = > altt, N (7.14)

I 041y 041 (+1 (i'(Ni[). !
Nj ™ eN " supp N csupp Nj

where we denote by a'(:rt‘) the coefficient of N fﬂ in this expansion of Nif . By substituting
i(Nj

the above relation for Ni into the second sum in (7.14), the following is derived:

- (+1 (+1
C)= > aN;j+ > a, > a iy N (7.15)
Nj eHﬁl NjeH ¢ suppNj =’ ™t N J”leN +1 suppN f*lgsupp N

Since SUppN]{Jrl gSUppr ng and observing that additional coefficients of basis functions
) i

Nfﬂ , Whose support is not contained in the support of the function Ni considered in

(7.15) are zero, it can be considered SUpPp NJ{Jr1 QQH and swapping the order of the two

rightmost sums on the above equations leads to:

C(&) = a:N. + a-at, [N (7.16)
d Z:Hl Y Z (+1 ¢ Z PR QTSN
NieHA NJ eN ,suppNJ csupp Nj \ NjeH" ,suppN;jcQ
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which can be written more simply as:

(+1 (+1
NieHg+1 NieHC,suppNng“l

The first sum of (7.18) refers to H f:l and the second to H é+1. so, C(¢) e spanH '™,

7.1.4 A weighted hierarchical basis

The key property of B-Spline representations is that the related curve or surface is a convex
combination of the underlying control points. In order to achieve this, within the framework
of the hierarchical approach, hierarchical basis H may be modified to obtain the same
properties with basis Hw. One such property is partition of unity. Moreover, since B-Spline
functions are non-negative, by defining hierarchical spline basis functions the curve/
surface/ solid will be a convex combination of its control points, implying the convex hull
property.

If the constant function belongs to the span ofHo, we can always represent it by the
hierarchical basis H as:

D sy Ni =1 (7.18)
NjeH

Hence, if for each basis function Ni that belongs to H, we define a related weighted basis

function ¥ = SNi N;, assuming that SNi #0 , we obtain the normalized hierarchical basis.

HM:{‘Pi =sy Ni :NjeHAl= > sNiNi} (7.19)

NjeH

which will ultimately form a partition of unity, as follows

> ¥=1 (7.20)
YieHm
Since N? e spanH?it can be written as:
Y, syNi=1 (7.21)
0

NjeN
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with each Sy; 20 and then

NieNO,Supp Ni<ZQ]' NieNO,Supp Nich
The first sum in the right-hand side of the above relation collects all basis functions in H.

Also, each basis function N; €N” can be expressed as a linear combination of finer level basis

functions, which belong to N? as it has already been proven, so:

N/ = > a’ ', Nj*™ with a™ 20,
VLA (41 o D) ( )
j e ,Supp N j ~<supp Nj

By substituting (7.19) to (7.18), the following relation is derived as:

z a N + > a, > a”™l Ni*|=1 (7.23)

Nj : i,(Nj")
NI eH NfeN0 ,supp Ni[Cﬂl N f+1eN1,supp Nfﬂng

Swapping the order of the two rightmost sums leads to the following:

(+1
ZlalN + ", >, » [ Oz ( aN,fa.(N,) Ni™ =1 (7.24)
N, eH NJ ,suppN'J ng Nij eN™,supp N; ch

z a N+ > bNj*

1 ' (+1 1
N| EH Nf EHB

where b; = > a a( )>O
NiCENO,SUpp]/CQJ' ! N

7.1.5 Active B-Spline basis functions
The set of active basis functions H is defined as follows:

A function N; N of level { is an element of H if

supp N; < Q° (7.25)
and

supp N; « Q“** (7.26)
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This means, that a function is active on a level [, when its support belongs completely to
the level domain, without intersecting with coarser domains. The active functions coincide
with the definition of the hierarchical basis and thus the use of the same identifier
procedure as in H is justified. In addition, the properties proved earlier in this chapter hold
as well: the active basis functions are linearly independent and the original space is a subset
of the refined space defined by the active basis functions.

H° < spanH (7.27)

This implies that it is still possible to represent the exact geometry in the refined space.

Partition of unity can be also preserved with use of scale factors as proved before.
Summarizing, all the essential properties needed for using the basis functions in
isogeometric analysis are ensured by construction.

An example of active basis functions on three consecutive levels is shown in Fig. 7.3 below.

e e

e wm—mmzT
Bt

}‘ T8 ! {1
vAAanppR
(VAR VA TLAVAT AV

0 05 1 15 2

Figure 7.3.
Three consecutive hierarchical refinement levels.
Active basis functions on each level are depicted with red color.
(lakovos Antonios and Dimitrios Karras, 2015)
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7.2 THE BORNEMANN-CIRAK IMPLEMENTATION PROPOSAL

7.2.1 Brief Overview

In 2012, Bornemann and Cirak published their work on classical hierarchical refinement.
The two researchers have continued the work of Vuong et al. They introduced a fast and
accurate method in order to calculate the necessary coefficients Vuong proposed to
overcome the possible lack of partition of unity property.

They tried to introduce a strategy in an algorithmic sense easy to compute and even easier
to handle through the different levels of the hierarchy. Their implementations focus more
on B-Spline applications. However, it is clearly mentioned that the generalization and
therefore the extension of their proposal to NURBS cases might be possible.

Their proposal based on Vuong’s theoretical heritage is enriched with subdivision property
of B-Splines in order to acquire coefficients that are in good agreement between
hierarchical levels. In this unit it will be considered that Vuong’s proposal is valid with all its
proofs and lemmas.

7.2.2 Coefficients handling

As we already know the s; factors are referring to the hierarchical basis and more
specifically to the B-Splines where the evaluation takes place. Instead of applying those
corrective scale factors to basis functions it is possible to define control point coefficients by
applying them directly to the control points. Of course all the calculations are executed by
considering the data and characteristics of the basis.

In this sense, a spline on level [ is defined as the product of the basis function of this level

N ié with the coefficients (control points):
u(&)=>N; (&)uj =N‘u’ (7.28)

And the same spline can be represented in the next finer level [ +1:

u(£)=(s-N“")-u" =N"*(sTu") (7.29)

From (7.30) follows that the coefficients of the refined level are given with the subdivision
relation:

ut=s".uf (7.30)
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The same relations are valid for the n-variate cases and the generalization is actually quite
simple. In this case, the subdivision matrix S and its coefficients are constructed as the
tensor product of univariate subdivision weights. So, 3D subdivision matrix is given by the
following expression:

SP=5P=5/-Sf,-S" (7.31)

The important fact about these relations and expressions is that they manage to represent
exactly the same geometry as the coarse mesh allowing to retrieve more precise analysis
results.

7.2.3 Identifying B-Splines

In order to perform hierarchical refinement it is very important to manipulate the data
connecting different hierarchical levels. Such data is the identity of functions, their
interactions and the grid cells these functions “intersect” with. The task becomes even more
difficult by introducing finer functions and removing courser ones. It is easy to comprehend
that as the dimensions of the examined problem are increasing, the complexity increases
exponentially.

For the success of the identification process, proper indices must be determined. These
indices must have a unigue one way relation with the corresponding functions of the mesh.
Two ways to address them are considered possible. The first way suggests that each
function will be accompanied by its parametric coordinates. This means that one index is
needed for the 1D case and two or three indices for the 2D and 3D cases respectively. The
second way is based on the idea of addressing a single parametric global number to each
function, a parametric function ID.

Figure 7.4.

Identification of the B-Splines with non-zero support over a 2D element (integration cell) as proposed by
Bornemann. 2D B-Spline functions are identified by their lower left knot. The red dots are reference points of
B-Spline functions that have non-zero values over the highlighted element. The colored area represents their

total support
(Antonios lakovos, 2015)
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In order tackle this issue, Bornemann et al introduced the set S; , Which collects the

B-Splines that belong to a certain level [, whose supports have non-empty intersection with
a particular integration (grid) cell and thus are non-zero in this cell such that:

3] Z{i eZ’ |ojc Supprp}={j— P,...r J} (7.32)

The identification of 2D basis functions as proposed by Bornemann is depicted Fig. 7.4.
7.2.4 Refinement procedure

Now that necessary terms and mechanisms have been introduced the next step is to
proceed with the explanation of the refinement procedure. In general, this proposal consists
of three basic steps referred as:

e Refinement, which introduces new finer B-Splines in each level.

e Compilation, which assures the linear independence, by removing the redundant
basis functions.

e Shrinkage, which discards B-Splines at the boundaries, of the area of interest, with a
support not intersecting with the effective domain.

Assume that some shape functions are chosen to be refined by replacing them with finer
functions. In the area of their support a denser grid is produced as a result of their
refinement. It is known that the union of supports of the finer functions constitutes a
domain nested in the coarser one. The 2D case of this procedure is shown in Fig. 7.5.

However, the newly introduced finer functions are not linearly independent in general. So,
the aim of compilation step is to assemble a linearly independent basis by systematically
discarding redundant B-Splines. A key issue for the optimal handling of the functions is to
start from the maternal level and proceed by respecting the sequence of hierarchical levels
in order to simplify the procedure by using relations connecting two consecutive levels. A
coarse B-Spline has to be discarded if it can be represented as linear combination of existing
finer functions. Compilation procedure stops at level L-1.

To summarize B-Splines of level B, have to be discarded when:
supp B < Q‘** (7.33)
After discarding the non-needed functions of each level, we can recall the step (ll) of

Vuong's recursive algorithm in order to construct our hierarchical basis as shown in Figure
7.3.
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Figure 7.5.

Let assume we chose to refine the orange colored 2D element in the top left corner. This is a 2D tensor
product space of polynomial degree p=2. Thus, for every coarse element 9 functions have non-zero support.
Consequently, the intersecting functions must be refined. This leads to a refined area larger than the wanted

one. Unfortunately this is a feature characterizing most of the proposed refinement strategies.
(Antonios lakovos, 2015)

Handling efficiently the boundaries between the levels of the hierarchy seems to be a key
issue in order to have an analysis suitable mesh. As it was previously mentioned, the H-basis
is incomplete in grid cells close to the domain boundary of the previous level. Its polynomial
reproduction properties are compromised, because some functions are missing in certain
boundary cells (from the compilation step). It is straightforward that only the cells, that are
p (polynomial degree) cells away from the boundary of the domain, have the full set of non-
zero B-Splines.

For this purpose, Bornemann et al have introduced a new domain entity, named effective
domain Q. This domain is comprised of cells, which have the complete set of non-zero B-
Splines. According to the authors, the cells between the effective and initial domains may be
regarded as ghost cells. An example of this effective domain is presented in Fig. 7.6.

The effective domain can be determined, by counting the intersecting B-Splines of the cells
on the initial (previous in general) level. If the number of B-Splines in:

7.34
R ={ie A1) < suppN?} {7:34)
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on level 0 is equal to (p+1)¢, where d is the number of dimensions, then a complete basis is
available on the particular cell. The union of all cells with complete basis forms the effective
domain such that:

Q= O where 0°={iez® ||R%|=(p+1)} (7.35)
ic0?

Figure 7.6.
Initial and effective domain in case of quadratic B-Splines (p=2). The effective domain is the union of the
shaded cells
(Antonios lakovos, 2015)

By taking into account all the previous notations and terms, we can express the definition
for active B-Splines. So, the index set A’ for the active B-Splines on a level [ occurs from
the following three conditions in each domain:

Al=iez
{(supp N/ Q) c Qf} (7.36).
and
{(supp N/ NQ) & Q”l} (7.37)
and
{(supp N/ AQ) = @} (7.38)

..The three conditions in the index set AC reflect the procedures of compilation, refinement

and shrinkage. These conditions are complemented with the property of nested
subdomains. The hierarchical tensor product B-Splines on the effective domain form the
space:

Hiy = span{N; |[0< (< (...} where i c A/ (7.39)
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7.2.5 Subdivision Property of HB-Splines

By recursively applying the procedures applied for levels 0 and 1, the generalization can be

easily obtained for any two levels [ and [ +1. To do this, a formal procedure is needed, in
order to inherit the properties of subdivision property.

So, a random Spline C(§) on level 0 can be described as:

C&)= 2 NJ(&)-uf =N°(&)-u° (7.40)

ieN0

The random Spline can be interpolated with hierarchical B-Splines from the space H(Q) :

CE =D > N (&)-uf =D N[ (&)-uy (7.41)

( ieAC[ {

where the vectors N/, and uf, contain the active B-Splines and their coefficients on level [
respectively. Equations (7.41), (7.42) represent the same spline, only when coefficients uf,

are determined with a refinement relation. More specifically, these coefficients are
computed by recalling the classical subdivision property relation. This relation is selectively
applied to the coefficients of inactive (redundant) B-Splines. So, (7.41) can be rewritten as:

0 0 0 0
C(&) =Ny (€)-up+ X, NP (€)-yj (7.42)
ieﬁé)
With the second term, containing the inactive B-Splines on level 0. The coefficients of the

inactive B-Splines are transferred to the B-Splines on level 1 using the subdivision relation.
For example:

icA

The coefficients U% comprise the coefficients of inactive and active HB-Splines on level 1.
After extracting the coefficients u}, of the active B-Splines N}, on level 1, C (§) can be

rewritten as:

C(&)=Ng (&) uh+ N (&) -up+ > N(E)-uf (7.44)
ieﬁt];‘

The last term now holds the inactive B-Splines on level 1, which are next to be replaced
(removed) with HB-Splines on higher refinement levels. The corresponding coefficients can
be recursively determined with the classic subdivision relation. This recursive subdivision
procedure is repeated until all coefficients are determined.
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7.2.6 Subdivision Projection

7.2.6.1 Main Idea

In finite elements that are constructed through hierarchical refinement, the interpolation
within some integration cells, may depend on B-Splines defined across multiple levels. In
addition, the number of degrees of freedom per element (intergration cell) is not constant.
This occurs specifically on the boundaries, between two consecutive domains of the
hierarchy.

In this sense, Bornemann et al have proposed a methodology, in order to efficiently
evaluate the element matrices and vectors, by using a constant number of B-Splines in each
cell. This number depends on the finest level functions that exist in the area of interest. So,
it is possible that regions with different finer level functions will be encountered.

The matrices and vectors are subsequently projected to the correct levels, by using the
subdivision relation along with its corresponding weights. Bornemann et al refer to this
operation, as subdivision projection.

7.2.6.2 Definition of Integration Cells

Before presenting the algorithmic approach, it is necessary to specify accurately how the
finest level of functions will be determined. For this purpose, a scalar variable is defined,
which will be called level width. To construct this variable, the whole mesh must be
scanned, in order to specify the finest level function that has non-zero support over an
integration cell. In this sense, level width will be determined as:

A(f):max[{ﬂszesupp Nf,ieAf} (7.45)

In other words, A(€) is equal to the local maximum of B-Splines refinement level ¢, present
at the random coordinate . Moreover, A(€) is a piecewise constant scalar function, due to
the nested nature of the subdomains.

Now that A has been defined, the integration cells can be also expressed in a more

compact and solid way. Thus, integration cells are defined as the union of cells which are on
the same level A. A formal identification is:

|c’~={iezd |chQ,and:A(Qf):€} (7.46)
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7.2.6.3 Algorithmic Approach

As discussed so far, a B-Spline can be expressed as a linear combination of finer functions
through the subdivision relation. From the previous chapter, we also know that by applying
several refinement levels, a coarse B-Spline can be expressed by functions of any finer level.
Bornemann et al used this observation in order to express all non-zero B-Splines within an
integration cell by using functions from one single level, which happens to be the A level. As
a result, during numerical integration, all element integrals will depend on a fixed number of
functions. The subdivision projection weights are subsequently used to map the fixed size
element vectors and matrices into the hierarchic approximation space.

So, a formal presentation of the subdivision projection technique is needed, along with the
elaboration on the efficient computation of the subdivision projection vectors, which will be
extensively described next. Once again, the non-zero functions of the hierarchical basis over
an integration cell can be expressed as a linear combination of same level B-Splines N*.

N/ =NAs (7.47)

where s* is the subdivision vector, associated with the specific function as

aforementioned. Also, note that always ¢ < A must be valid, in order for the subdivision
vectors to be well defined. A computationally convenient approach to determine the
projection vector is the subdivision refinement relation. To this end, consider the

interpolation of a spline with N." € N, and the finer B-Splines of the finest level A, N* . So:
C(§) =2 N (§)-uf =X N -uj =N"-u® (7.48)
i j

and restricted to the spline segment over the cell DkA, only the B-Splines that are non-zero

on the cell are needed:

U, = ZA N} (&)-uf =Nt (7.49)

jeSk

The coefficients of the finer level A are a linear combination of the coefficients of the

coarser level £ . When the difference between the levels £ and A is one, the subdivision

L,A

projection vector s;"" is a row of the previously introduced subdivision matrix. However,

0,A

when the difference between ¢ and A is more than one, s;" represents the result of

several steps.

In order to calculate si“, the value 1 is assigned to the control point i (and its

corresponding function) at the “coarse” level ¢ and values O to all the other same level
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control points, which interact with the one that is under evaluation. After one or more levels

l,A

of refinement, the coefficients s;* can be collected from the locally refined mesh.

7.2.7 Example

Consider an initial coarse knot value vector (000123456789 101112 12 12] and
polynomial degree p=2 as shown in Fig. 7.7. In reality, refined cells (knot spans) are
identified by an error-estimator along with their corresponding p+1 intersected basis
functions. In this case the refined basis functions are chosen carefully to better understand
the proposed refinement algorithm. The chosen coarse basis functions are three. Two that
interact together (N%4, N%s) and one that lies in a distance where it is not affected by the
refinement of the previous two (N?10). Each basis function’s support knot span is subdivided
in two by knot insertion. So, the hierarchical knot value vector after one refinement step will
be

[00011522533544555567758859951011 12 12 12]

and the knot vector of level 2 after the necessary knot insertion will be later shown:

Figure 7.7.
Basis functions with knot valuevector[0 0 0 1 2 3456 7 8 9 10 11 12 12 12] The red basis functions
N4, N%, N'10 will be refined.
(lakovos Antonios and Karras Dimitrios , 2015)

Every basis function of degree p has (p+2) children whose total support coincides with the
maternal function’s support. When the refined basis functions are close enough it is possible
to share common children basis functions. That is the case of the two first chosen basis
functions which will offer the opportunity to present the way of handling such cases. In
some other cases some of the refined basis functions’ children are able to represent coarse
ones as linear combination. The corresponding course basis functions are then redundant
and have to be removed to meet the property of linear independence of basis functions. It is
obvious that meeting the linear independence property has its cost, which is no other than
the disturbance of local nature feature of hierarchical adaptive refinement. When
refinement is spread more interactions and degrees of freedom have to be taken into
consideration leading to more cost intensive analysis.
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The chosen basis functions that will be refined are N}, N} and Nj, that belong to the

coarsest level 1 and are depicted with red color in Fig. 7.7. Basis functions will be identified
by their parametric ID.
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Figure 7.8.
(a), (b) lllustrate the children of N‘l1 and Né (c) The union of the children (d) the underlying children

1
I:N721 stv Ng’ N120:| of N5
(lakovos Antonios and Karras Dimitrios , 2015)

The next basis function to be refined will be chosen from level 2. These basis functions will

be replaced by a set of finer ones belonging in level 3. The procedure applied will be the
used between levels 1 and 2.

Now it is time to present the active B-Splines indices through the three level. For level 1
(maternal), the active B-Splines are all the existing B-Splines except the ones that have been
chosen to be refined. So the active indices are

A ={N1, N3, N3, N§, N7, Ng, Ng, Nij, Ni, Niz, Ni, |

The active indices may alter during compilation step.
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The parametric ID of the children is determined as 2i—(p+1),2i-p,..,2i, where i is the
parametric ID of their maternal function. Thus, in the current example these indices will be,
{5,6,7,8} for N}, {9,10,11,12} for N§ and {17,18,19,20} for Nj,. These indices can be

easily distinguished by simply accompany them by their level number. In this case the
children sets are the following:

N3 children:| N, N2, N7, N |

NZ children:| N3, N, N3, N2 |

1 ; . 2 2 2 2
N3, children:| N, Nf, Nfy, N2 |

Proceeding now to the compilation step, the coarse functions that can be expressed by a
linear combination of finer level 2 functions have to be identified and consequently
removed. Fig. 7.8 shows that the union of children of N} and N} contains the children of

N2 function. As it can be easily noticed the union is:
L children(Nj, Ng) ={N2,N&, N7, N, Ng, N, N3, NS | (7.51)
where [N? NZ, N&, Nfo] are the children of N1.

As a result N} is redundant and thus will be completely removed. After the removal, the
updated active B-Splines matrix will be:

A = { NI, N5, N3, N7, Nj, Ng, Nig, Npp, Nz, N1, | (7.52)
Moving forward to the next level of the hierarchy, the active B-Spline indices are:

A:Z :{NSZ’ Ng1 N72’ N821 Ng, leo’ N121' N122’ N127’ N1281 N129’ szo} (7.53)

We choose to refine N2 and N2 for the next level as shown in Fig. 7.9.a. Similar as before,

these two functions are being removed immediately from the active functions group.
Additionally, (p+2) children are introduced in level 3 for each of the two functions.

The active indices for level 2 so far are:

2 2 N2 N2 N2 N2 N2 N2 N2
A ={N5’N101N11’N12’N17’N18’N197N20}
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Figure 7.9.
(@) Inrefinementstep2 N2 and NZ are chosen to be refined (b) In compilation step 2 N2 and NZ are

also removed as redundant (c)The children of level 3created by the subdivision of the selected basis
functions of level 2
(b) (lakovos Antonios and Karras Dimitrios , 2015)

The introduced children of the two refined functions are the following:
Ng :{NS, N130’ N131’ N132}

2 3 N3 N3 N3
Ny ={N16'N17’N18’N19}

As can be seen in Fig. 7.9.b, the union of the support of the children in level 3 spans across
an area. As pointed by Bornemann et al, in this case, when a function of the previous level
has its support covered entirely by functions of the next finer level, this function is
considered redundant and must be removed. In this example, along with N2 and NZ, N2

and N2 will also be removed. Thus, the active B-Spline set for level 2 will finally be:

A2 ={N§, N, N7, N, N, N, N, N220}

A key issue of the removal of the redundant B-Splines, that were not initially chosen to be
refined, is that after their removal, the complete set of their children must be introduced.
So, for the removed functions of level 2, the corresponding children will be:

NZ children : {Nfl, N2, N2, Nf’4}
and
Ng children : {N, NZ,, N, N33 |
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their union will form the active B-Spline set for level 3 shown in Fig. 7.9.c, which will be the
last one. From the above indices, it can be notice that the new introduced children are
N2 and N2, which are necessary in order to completely remove the redundant coarse

functions. So, the last set of active B-Splines for level 3 will be:
3 303 N3 N3 N3 NS NS N3 N3 N3
A ={N9’ Nio. N1, Nio, Ni3, Nig, Nig, Nig, Ny, le}
Due to the nested nature of hierarchical refinement it is not important to deal with
relations between level 1 and 3.

All the above procedures end up in forming the final hierarchical basis. Hierarchical basis is
a set of overlaying bases and thus, it is proper to be represented as one. So all the levels will
be projected on the same graph in Fig. 7.10
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Figure 7.10.
The final hierarchical basis can be seen. In the bottom of the figure the level width A is depicted for each
integration cell. The number indicate the finest available set of functions in each integration cell.
(lakovos Antonios and Karras Dimitrios , 2015)

With the hierarchical basis in hand, it is quite easy to notice that the partition of unity is
not satisfied along the basis. This phenomenon is usually observed at the boundaries
between coarser and finer levels. To tackle this problem of hierarchical bases, scale factors
or coefficients have to be introduced to satisfy partition of unity in each integration cell. This
can be done by applying the subdivision projection Bornemann proposed.
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Each and every one integration cell has to be scanned to find its level width A(le), which

is equal to the highest level of basis function that intersects the cell. Thus, we can evaluate
properly all HB-Splines by expressing the coarse B-Splines of level /<A, as linear
combination of the finest available set of functions.

In this example, coefficients will be evaluated at the point & =2.15. This point belongs to
the following knot spans in the three levels of the hierarchy:

e Forlevel 1in knot span [2,3] where Nj has non-zero value.
e Forlevel 2 in knot span [2,2.5] where NZ has non-zero value.
* Inlevel 3 in knot span [2,2.25] where NJ, N3 and N7 have non-zero values.

It is obvious that the coarse functions of levels 1 and 2 should be expressed by a linear
combination of the finest available function set, which happens to be N3, N2 and NJ,.
However, as the finest functions have not been introduced by coarse functions that are
currently active there is need to find a way to relate them properly. By doing so, it is easier
to evaluate the coefficients needed for each function.

Any basis function can be written as a linear combination of its children. The children of the
basis (for uniform basis) have a certain start and end knot. Thus, by identifying one of those
two entities, it is easy to relate the functions of the finest level with the children of the
coarse functions. The evaluation will be made in the finest cell that £ =2.15 belongs to,

which iso®= [2,2.25),

So, the functions are now able to be represented in the specific integration cell as a

combination of[ NS, N3, Nfl].

Function N2 can be represented as:

2,3
)

—
2 |31 w3 N3 N3
Ng —[4’4’0J [Nnglo’Nn]
Also, by applying the subdivision property relation recursively, we can get the coefficients
for N3, which are:

53 3
§!§!E:||:Ng’ N130’ Nl31:|
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The above relation will be explained in a more detailed way, as the recursive procedure
may not be as obvious as it seems.
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Figure 7.11.
(a) The maternal B-Spline is shown.(b) The children for one level of refinement along with their weights.
(c) The children for two level refinement but with unknown weights.
(lakovos Antonios and Karras Dimitrios , 2015)
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(c) [Ni, NS, NS, Nfo] (d) [Ng, N N3, Nfz]

Figure 7.12.
Children of B-Splines in level 3.
The same children may have different weights for different maternal basis functions.
(lakovos Antonios and Karras Dimitrios , 2015)

As it can be seen from the following table in Fig. 7.13, each function is affected by p
maternal of the previous level and their corresponding coefficients have to be added. In Fig.
7.12 are presented the children of level 2 basis functions. It is important to remember that
level 2 basis functions are already multiplied with their scale factors. In fact these scale
factors multiply the control point coefficients. So it is important to multiply scale factors of
level 3 with their corresponding maternal scale factors (level 2) before adding them. The
coefficients that accompany the 1%t column refer to the relation between level 1-2 (Fig.
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7.11). The weights that are scattered in the table are referring to the relation between level
2-3 and finally, the coefficients that are written in the last row express the relation of level 3
children with the maternal function N3 in level 1.

0.25
0.75
0.75
0.25

w’::‘;lts 0.0625 0.1875 0.375 0.625 0.75 0.75 0.625 0.375 0.1875 0.0625

Figure 7.13.
The scaled children of N% after two consecutive refinements.

(lakovos Antonios, 2015.)

The final weights shown in the previous table have been applied in Fig. 7.14, producing the
children of B-Spline N3 in level 3.

3 3 3 3 3 3 3 3 3 3
N12' N13’ N14' N15’ N16’ N17’ N18' N19’ NZO’ N21]

Nl_[l 33533523 3 1}[
° |16'16'8'8'4'4'8'8'16 16

0 025 05 075 1 125 15 175 2 225 25 275 3

Figure 7.14.
The scaled children of Né after two consecutive refinements.

(lakovos Antonios and Karras Dimitrios , 2015)

Finally, the more obvious evaluations, which refer to N3, N3, N2 , is done as follows:

N =[10,0][ NG, N, N3 |
[—
3,3
318
Nio =[0,1,0][ N, Ny, NF |

33
519

N =[0,0,1][ N§, Ny, N3 |
—
2



126 |Adaptive Hierarchical Refinement in Isogeometric Analysis

The evaluation in each cell is different for each coarse function. Thus, the same procedure

must be done several times for the B-Splines of the coarser IeveIsf<A(|:|k). In addition to

that, the existing children in each level have different weights for each coarse function. This
does not allow us to keep the same weights for more than one function and consequently
the evaluations cannot be skipped in any way.

Having evaluated the coefficients for cell[2,2.25], the weights can be addressed e weights

to the control points and form the stiffness matrix. So, in terms of interpolation of a spline
curve C (&), the subdivision projection has the following consequences. The spline segment

over the integration cell o=[2,2.25) uses the following coefficients:

1.1 2 .2 3,3 3 3 3 3

(7.50) can be equally written as following by using the subdivision projection vectors found
previously:

3 03 n3 Tel3d L o232 333, 333 , 333
C(é:)u=[2,2.25) :[N9’ Nio, Nll:”:SB U3 + 857U +Sg™"Ug + 59 Uyg + 517 u11:| (7.54)

The element matrices and vectors are multiplied with subdivision weights during the
assembly stage of the global matrices and vectors. As a result, subdivision projection allows
the reuse of conventional finite element implementations by only using B-Splines at a fixed
level as basis functions.

7.2.8 Conclusions

In conclusion, HB-Spline refinement proceeds by successfully replacing selected functions,
with finer B-Splines that ensure geometry remains the same by following the explained
three step procedure. HB-Spline ensure another very important property which is the linear
independence of basis functions and consequently degrees of freedom. Linear
independence is a key aspect of analysis. The easy implementation of HB-Splines is derived
from the use of subdivision property which connects basis functions from different
hierarchical levels. All the above features of HB-Splines result in sufficient and accurate
solutions with significantly less degrees of freedom than uniform refinement. An also
attractive property of HB-Splines is the lossless transfer of field variables during the
incremental/ iterative solution procedure for non-linear problems.
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7.3 TRUNCATED B-SPLINES AS PROPOSED BY GIANNELLI

7.3.1 Introduction

The technique of hierarchical truncated B-Splines (THB-Splines) has been proposed by
Giannelliin 2012. The aim was to suitably modify the classical hierarchical B-Splines basis to
define basis functions with reduced local support that satisfy partition of unity property.
Truncation decreases the overlapping of basis function’s supports which arise from the
enrichment of the basis with the introduction of finer basis functions. In order to completely
understand the proposed technique, proofs and examples will be given, as well as some
numerical results.

7.3.2 Truncation Technique

Giannelli et al, have based their proposal in the existing knowledge presented by Vuong.
The construction of hierarchical B-Splines can be modified by suitably truncating basis
functions according to finer levels in the hierarchy. It is known that classical hierarchical
refinement schemes have some negative features. One of them is the formation and
solution of linear systems associated to the discrete variational problem, as a result of the
extended overlapping nature of basis functions. Higher number of overlaps suggests denser
system matrices which lead to the increase of needed computational cost.

What really differs truncated hierarchical B-Splines from the classic hierarchical procedures
is that after representing each coarse basis function as linear combination of finer ones
follows the elimination from this representation of the contribution corresponding to the
subset of finer basis functions that are effectively included in the hierarchical basis. All these
lead to the truncation mechanism preserving all the good properties of hierarchical B-
Splines, such as linear independence and non-negativity. In addition, THB-Splines:

e Have smaller support
e Form a partition of unity by their construction, so no weights are needed to maintain
it.

In addition to the aforementioned characteristics, another direct result of the truncated
B-Splines is the reduced sparseness in stiffness and mass matrices due to the decrease of
basis functions’ overlapping. In Giannelli’s proposal some of Kraft’s restrictions are skipped.
An example of this fact is that in truncation, refinement is allowed close to the subdomain
boundaries.

The truncation mechanism works as following:

Let N/ e N* afunction defined at level /and also let:

Nf= > aN* (7.55)
j:Nf*leNGl
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be its representation respect to the fine scale basis associated to level [ +1. The truncation
of N/ with respect to N“** is defined as:

trunc”l(Nf)= Z a, 'Nfﬂf (7.56)
NN

suppNjczQ“'1
From the above relations is clear that the coefficients a, depend not only on the

component Nj—"‘+l they refer to, but also on the function N/ . The truncation as given in (7.56)

is called additive representation. It is also possible to use a subtractive representation,
expressing the truncation as:

YNy ¢ 41 7.57
j:Nf+1eNL+l

suppN j gQ“’l

Both representations lead to the exact same hierarchical truncated basis, but they also
have different advantages and disadvantages, which refer to the procedures of
identification and evaluation. One important observation is that for the 2D or 3D case, the
truncation mechanism may lead to non-rectangular support. The behavior of this property is
a subject still under investigation.

1

05

(b) (c)

Figure 7.15.
(a) Chosen basis function for refinement.(b) Classical hierarchical basis construction (c) Truncated
Hierarchical Basis Construction
(lakovos Antonios 2015)

So by utilizing the above mechanisms, the truncated hierarchical basis can be recursively
constructed by the following three basic steps.
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l. Initialization:

T®=H°, where H refers to the classical hierarchical basis

. Recursive Case:
T =1 0Ts for (=1,...,L-1 where:

o TiM= {trunc‘+l (Ti[) T eT! /\supp(Tif) o Q”l}

° TB[+1=Hé+l

m T=H"

In step (1), we copy the hierarchical basis of level 0 (maternal) to the truncated hierarchical
basis.

In the recursive case, coarse basis functions, whose support has a non-empty overlap with
QO"1, are truncated. Actually, truncation mechanism is activated usually for those functions,
which lie on the boundaries between two subdomains. Another case, where truncation may
be activated, is when random finer B-Splines are introduced, which cannot describe
completely a coarse B-Spline and thus remove it. The other half of this step is the same as in
the classical hierarchical refinement algorithm. The anchors for the classical and truncated
hierarchical basis functions will coincide.

Now that the basic algorithmic procedure has been presented, some extra comments
about the use of either truncation mechanisms will be made. It has been noticed that
programming the two methods yields important differences and consequences.

In a typical finite element code, one has to deal with two important aspects:

e determining which basis functions are active over a given element (cell)
e evaluating such functions at the boundaries between two subdomains.

To address the former aspects, it is essential to find a convenient way to retrieve or store
the support of the functions. In general, the data organizing in hierarchical refinement
seems to be as important as the chosen implementation methodology. In the case of B-
Splines, this is generally easy since the support is identified by the local knot vectors. When
the B-Spline is a standard tensor product and the support is therefore rectangular, this
becomes even easier, since one only needs to check the starting and ending knots of the
local knot vectors, as we aforementioned. However, THB-Splines do not always have
rectangular support making the data organizing more complex than usual.

The subtractive representation (7.57) is unfortunately not very helpful in this sense. This
happens because when a given component is subtracted, it is not automatically guaranteed
that the function itself is vanished in that area.
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Given an element qfesupp(Ni[), we should check if all possible components on that

element are removed in order to know if trunc(Ni‘) has support on o/ or not. So, the

subtractive representation does not allow easy identification of the function’s support.

On the other hand it seems it is more efficient in the evaluation of basis functions.
Evaluating basis functions in an efficient and fast way seems to be a very important issue in
the isogeometric setting. Since Cox-de-Boor algorithm is a typical bottleneck of the code, we
would generally like to perform as few function evaluations as possible.

In this case, subtractive representation is not efficient. In a biquadratic case, a
representation in terms of next-level basis functions comprises (2+2)?=16 children. This
number obviously increases along with the increase of the polynomial degree: 25 for bicubic
functions, 36 for biquartic and so on. Moreover, an additive representation may acquire to
store the function in terms of the finest available scale, which would increase the amount of
needed components.

(b)

(c) (d) (e)

Figure 7.16.

(a) Maternal basis function (b) Corresponding subsidiary fine basis functions (c) Coarse basis function. Part of
its support is common with the support of the introduced subsidiaries (d) Common subsidiaries that have
to be subtracted from the upper right basis function (e) Truncated basis functions after the subtraction of

four basis functions presented in (d)

To give an example, let us recall a biquadratic function. For each of the truncated
hierarchical basis functions only 4 components are removed as in Fig. 7.16.
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This consequently means that in an additive representation 21 fine-scale functions had to

be evaluated in order to compute the value of the chosen B-Spline. In contrast, in a
subtractive representation only five functions would have been evaluated: The original
tensor product B-Spline along with the four children that would be subtracted. To
summarize it is obvious that the additive representation is useful, when determining the
support but inefficient in the function evaluation process.

From the above recursive algorithm derive the following properties:

e The cardinality of the basis is the same for the classical hierarchical and the
truncated basis.

e The spanned spaces are the same.

e The basis functions remain non-negative.

e For each truncated basis function T, introduced at level ¢, there exists one B-Spline

Nf e N’ which satisfies:
Tr' =trunc™ (truncL‘Z...(truncM(Nj‘))...) (7.58)

e The truncated basis functions are linearly independent and form a partition of unity.

Proof: The functions of the truncated basis are linearly independent.

It has to be proven that:

Trier?

The sum on the left can be decomposed, according to the maternal B-Splines introduced at
a certain level ¢:

i ! r_
a;Tr + > ajTry +.+ > aTr; =0 (7.59)
TrJ[ eT ¢ ,mother(Trf )eN 0 TrJ[ eT[ ,mother(Trf )eN1 Trf eT t ,mother(Trf )eN -1

The basis functions collected by the first sum are the only non-zero functions acting on the
region given by Q%0 In virtue of the previous properties and of the local linear
independence of the B-Spline basis, these functions are locally linearly independent on
Q%0 and thus the corresponding coefficients must be zero.

Excluding the functions already considered in this first sum, the basis functions collected by
the second sum are the only non-zero functions which act on Q/Q?. As before, the
corresponding coefficients must be also zero. We can repeat the same argument of sums
related to the basis functions whose maternal B-Splines belongto N¢,¢=2

On the other hand, the basis functions Tr. e TU N represent just the subset of B-

Splines in N-1, whose support is completely contained in Q1. Hence, they are locally linearly
independent on this last subdomain and the coefficients in the last sum must be also zero.
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Proof: The truncated hierarchical B-Spline basis T forms partition of unity.
It has to be proven that:

> Ti=1ton Q= > Tr'=1on Q°
Tt ¢ T Loy

It is known that:

> Nf=1on Q% with (=01,..,L-1

NfeN’

The partition of unity can be shown by induction on the hierarchical level [. The base case
simply follows form the above relation with (= 0.

The inductive step:

> Tr'=1ton Q= > Tr'=1on Q° (7.60)
Thier ¢ T (g o+

can be proved by re-arranging the sums as follows:

Y Ti=1= 3 X alh (T NG (7.61)

TriéeT 4 Tr‘,éeT 4 Nf+lENC+1 J

(7.63) can be further expanded as:

2 T =

Thler !

(+1 4 +1 (+1 4 (+1
= 2 2 a C+1'(Tri )'Nj o > a m'(Tri )'Nj
Tr][eT ! Nf’leNHl,supp Nf+1¢(2(+l J NfJ’leNHl,supp NJC+1QQ[+1 J

_ (+1 ( (+1
= 2 2 at (TR ) NG |+
TI’iCeT ( NJC+1EN C+l,suppr+lczQC+l ]

(+1 4 (+1
NfﬂeNHl,supprﬂgQHl Tr‘,ﬂeT 4
In the first sum of the last equation, the term in brackets is just trunc’™ (Tri[). Moreover by

swapping the order of sums in the first line of the above relation:

N f+l — 1
Nf+1eN[+1
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[+1 4 (41
Ay (41 [Z:(aNfﬂ'(Tr‘ ) Ny =1 (7.62)
NjeN T Thter

So, by comparing the coefficients and by the linear independence of the B-Splines:
041 ‘
D A '(Tfi )=1 (7.63)
Tiler )

for all NfJrl eN" andin particular for each Nf+1 such that supp NjM Q' Finally we

obtain:

1= > trunc“l(Tri‘)+ > N =

Tri(eT ¢ NerleN”l,suppr*ng”l (7-64)
— Z TriC+l + Z Tr.i€+1 — Z Tl’iﬁl (765)
Tri[+1ETA(+1 Tn[+l€-|-B(+l Tn[+1€-|- (+1

In view of the non-negativity of truncated basis functions and of the previous theorem, the
functions in T form a convex partition of unity.

7.3.3 Evaluating Truncation Weights

Yet again, Giannelli’s proposal considers some weights used in both additive and
subtractive representation of the truncation mechanism. As Vuong proposed, these
coefficients are not determined by some mechanism. One idea for evaluating these
coefficients is to adopt the subdivision property relation along with the subdivision
projection technique. When this task has been performed, active finer B-Splines can be
subtracted from the coarse ones in order to create the THB-Splines of each level.

In this sense:

e (Classical hierarchical refinement is performed initially
The entire procedure remains the same until the evaluation step.

e After that, the weights found by the evaluation are used in order to multiply and
then subtract the existing active B-Splines of the finest available level, from the
coarser active functions.

e Having secured that the redundant B-Splines are completely removed from each
level in order to secure linear independence, the subtraction will take place for most
of the cases in the boundaries between Q¢ and Q! with (< A.
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Y — «Q
(a) (b)
Figure 7.17.
(a) lllustration of a complete truncated hierarchical basis, for two consecutive levels of refinement.
(b) Corresponding element mesh. Finer level elements are depicted with darker shade.

(Giannelli et al, 2014)

7.3.4 Brief Comparison with HB-Splines

In this section, numerical results that have been occurred from the implementation of
truncated hierarchical basis are gathered and compared. In general, these results concern
the behavior of stiffness and mass matrices. For example, their condition number, their
sparsity or even their Cholesky factorizations are some features to compare. Quality of
produced meshes along with their hierarchical basis functions can be also examined.

7.3.4.1 Basis functions

For the 1D case, truncation seems to be an ideal technique in order to overcome the
drawbacks of classical hierarchical refinement. More specifically, no weights are needed
anymore in order for the basis to form partition of unity in each knot span or generally in
each integration cell. However, from what the plotting shows, THB-Splines are non-uniform
in general as they span across knot spans of various lengths. The knot spans depending on
their length belong to different levels of the hierarchy and consequently to different nested
domains. This may cause some issues in saving and handling the THB-Splines as their start
and end knots will not be known before the truncation.

1

0.5

.
0 1 2 3 35 4 45 5 55 6 7 8

Figure 7.18.
The pointed THB-Spline of degree p=2 has the non-uniform support [ 2, 3, 3.5, 4 ] and it forms a partition of
unity with the all its overlapping functions.
(lakovos Antonios. 2015)

In 2D and 3D cases, as it is already known, tensor product B-Splines and HB-Splines have
rectangular projections of their support in the planes created by two of the parametric axes.
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However, in truncation, this is not the case as THB-Splines belong to more than one
subdomain and tend to lose their rectangular support due to their truncation.

7.3.4.2 Stiffness matrix

In classical hierarchical refinement every control point can be replaced with (p+2)¢ finer
control points, where p is the polynomial degree and d the number of problem’s dimension.
It is straightforward that, as polynomial degree and number of dimensions increase, the
removal of one control point equals with the introduction of an increasing number of new
control points. New relations between the coarse and fine control points must be taken into
consideration in the formulation of global stiffness matrix.

As it was aforementioned in this chapter, truncation enables functions to reduce their
support as well as to adapt their values in order to satisfy partition of unity across the basis.
The first feature seems to be critical for the comparison between the classical hierarchical
and truncated stiffness matrices. Due to their reduced support, the overlapping between
truncated and finer functions is smaller. As a result stiffness non-zero values are less.
Sparsity and matrix bandwidth are also reduced as shown in Fig. 7.19. All the
aforementioned aspects can lead to reduction of the needed computational cost for the
solution of problems’ equations.
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Figure 7.19.
(a) 1D stiffness matrices for classical hierarchical and truncated hierarchical refinement.
(b) 2D stiffness matrices for classical hierarchical and truncated hierarchical refinement.
(K.A. Johannessen et al. 2015)
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7.4 LOCAL HIERARCHICAL REFINEMENT PROPOSED BY SCHILLINGER
ET AL

7.4.1 Introduction

In continuation to the methods described previously, Schillinger et al proposed an
alternative local refinement technique which is based on the concepts of HB-Splines,
subdivision property and classical FEA knowledge and aims to offer a new straightforward
algorithmic approach for adaptive refinement in isogeometric analysis.

The new aspect Schillinger introduced, is the overlaying of finer basis functions with a
systematic way that does not always lead to the removal of coarser ones. In his proposal
subdivision property is used to connect different hierarchical level basis functions. As it will
be later discussed, a more local refinement can be achieved in comparison to classical
hierarchical or truncated hierarchical methods. Schillinger also suggests that the refinement
should be made to the entity of an element and not of a B-Spline function as in previous
methodologies.

7.4.2 Local refinement methodology
7.4.2.1 1D finer functions patch overlay

The refinement algorithms explained until now, were based on the following assumption.
The error estimator points out the elements (knot span, area, volume) with high error, via
norms or energy theorems. As soon as these elements are identified, the B-Spline functions,
with non-zero values over these cells, are chosen for refinement. These functions are
completely removed from the coarse basis and their children are introduced to the next
finer levels to satisfy the linear independence of basis functions. The only parameter that
remains to be addressed is partition of unity. This procedure was named by D. Schillinger
subdivision refinement, as it utilizes completely the subdivision property of B-Splines in
order to easily satisfy linear independence.

05 4

0 05 1 15 2 25 3 35 45 5 55 6 65 7 75 8

5 4

(a) (b)
Figure 7.20.

Subdivision refinement. In (a) the corresponding refined B-Splines for the selected element (shaded area) are

depicted with dashed lines. In (b) the introduced children from the subdivision relation are illustrated with red

(lakovos Antonios and Karras Dimitrios , 2015)
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Of course, the easy handling of the basis with subdivision refinement comes along with a
cost. More specifically, by refining all the overlapping functions of an element the desired
local nature is diminished as shown in Fig. 7.20. This happens, because a function in IGA
overlaps (p+1)? elements. As the polynomial degree of functions and dimensions of the
problem increase, the area that is collaterally refined increases along with them.
Consequently, more B-Spline evaluations must be made for both classical and truncated
hierarchical refinement in this sense. As it will be presented, Schillinger proposed an
efficient way in order to deal with this side effect of the common refinement algorithms.

The author defines a nucleus operation, from which the development starts the refinement
of one knot span element. As it is known so far, when refining a function, B-Spline children
with contracted support cover the whole support of the refined coarse function. The
children are being superposed by adding their scale factors from subdivision property. This
leads to the complete hierarchical basis in the center of the refinement region, while at the
boundaries the scale factors are used in order to satisfy partition of unity. However, the
direct subdivision refinement strategy results in large spread of the refinement beyond the
bounds of the knot span element that was initially chosen for refinement. This side-effect
obstructs with the local nature we want to achieve.

For this reason, D. Schillinger et al instead of introducing finer children that would emerge
from subdivision property, they added an overlay of a fixed number of p¢ B-Splines as shown
in Fig. 7.21. These finer B-Splines would have reduced knot span width and thus support in
comparison with the functions of the coarse level (the relations for the knot spans can be
found in the previous chapter). Up to this point, no changes to the coarse basis functions are
needed, since we know that for a function to be removed (p+2)¢ children must exist in order
to describe it completely. The hierarchical basis is constructed from the full set of children
and all of the coarse functions. The amplitude of the contracted B-Splines does not need to
change, thus the presence of scaling factors is ignored.
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Figure 7.21.

(a) The selected element is shown in grey, but without refining any coarse level B-Spline.(b) The overlaying
patch is illustrated, along with the p contracted B-Splines

(lakovos Antonios and Karras Dimitrios , 2015)
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Let’s now assume that two consecutive knot span elements are going to be refined.
Recalling the previous paragraph, one patch of finer contracted B-Splines is introduced for
each knot span respectively. As one can easily notice, some of the functions of the two set
of B-Splines may be exact the same. This obviously means that for the specific level, there is
no need to add the same contracted B-Spline for a second time. Having done this, now the
finer functions that have been introduced are (p+2). Consequently, we have just created a
full set of contracted B-Splines, which are able to represent at least one coarse function.
Thus, the coarse function is redundant and has to be removed in order to restore the linear
independence of the hierarchical basis as shown in Fig. 7.22.

In particular, this procedure does not affect the higher-order continuity of the refined
basis, since the first p-1 derivatives of the hierarchical B-Spline basis functions are zero at
their support boundaries. The locality of this method can be accomplished by p children for
each element for each overlay patch. More children would spread the refinement like the
subdivision refinement. Less children would not be able to remove any coarse function.

1

05

N
(a)

0.5+ =

4
(b)
Figure 7.22.
(a) The two refined elements are repsresented by the shaded area. The coarse level B-Spline which will be
removed as redundant when the overlaying patch is introduced is depicted with red color. (b) the overlaying
patch for the first level of refinement
(lakovos Antonios and Karras Dimitrios , 2015)

7.4.2.2 Removing Multiplicities

As in classical hierarchical refinement, an operation is necessary in order to restore
partition of unity at the boundaries between the two overlaying patches. In the
aforementioned refinement proposals this could be achieved with corresponding weights
for each subsidiary B-Spline basis function. Schillinger uses a mechanism similar to
truncation.
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To do this, one must just remove the multiplicities over one element. Starting from ¢ =1
(maternal level), it’s easy to proceed with the following algorithmic procedure. More
specifically, this can be achieved by:

e Checking each hierarchical B-Spline of the next level ¢+1 to determine if it has a
common support with a B-Spline of the current level ¢.

e If it does, it should be checked whether the function of ¢+1is part of linear
combination of subdivision B-Splines that result from the classical subdivision
property relation. It is possible that even though one function may have an overlap
with a coarse function, it may not be a child that is derived from the subdivision
property relation.

e If this happens to be also true and the contracted function under examination can be
obtained by the subdivision algorithm, the finer function is multiplied by its scaling
factor (subdivision weight) from the B-Spline of the coarser level and subtracted
from the coarse one.

(a) (b)
Figure 7.23.
Stiffness matrices for classical hierarchical refinement over the diagonal of a regular parametric space.
(a) Stiffness matrix before the subtraction process. (b) Stiffness matrix after the subtraction.
(Schillinger et al, 2012)

The subtraction procedure of removing the multiplicities has a beneficial effect on the
bandwidth, sparsity and the condition number of the stiffness matrix. This is generally
happening because by subtracting certain parts from the coarser levels, the overlaps
between B-Splines are reduced. Consequently the interactions between control points are
also reduced. The non-zero entries are decreasing as well. A representative example of
stiffness matrices is depicted in Fig. 7.23.

Finally, to exclude any effect from weak boundary conditions, uniform boundary basis
functions are replaced by interpolatory basis functions created from open knot vectors, so
that Dirichlet constraints can be strongly satisfied.

Multi-level hierarchical refinement can be also achieved by recursively applying the
previous procedure. More specifically, in each refinement step, the nucleus operation is
applied to elements of the currently finest level ¢, in order to produce a new overlay patch
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in level ¢+1. The resulting grid consists of a nested sequence of bisected knot span
elements and multiple hierarchical overlay levels of repeatedly contracted uniform B-
Splines. As aforementioned, the selection of elements is the result of an error-estimator.

7.4.2.3 1D Case Example

In this unit, an extensive 1D example based on Schillinger’s methodology will be presented.
In contrast to all previous methods Schillinger identifies elements and not basis functions to
be refined. As aforementioned, the subdivision property is not fully used to create a next
level overlay patch of finer p+2 (the least) contracted functions. More specifically, a patch
with p+2 necessary functions is created only when a set of neighbor refined elements is
chosen to maintain the local nature of hierarchical refinement.

For this example consider a basis with functions of polynomial degree=3 obeying to the
following knot value vector:

E={0 0 0 012 3 4586 7 8 9 10 11 11 11 11}

@

Nt

Figure 7.24.
Coarse basis and to be refined knot spans (shaded areas)
. (lakovos Antonios and Karras Dimitrios , 2015)
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Two consecutive knot spans, [5, 6] and [6, 7], were chosen to be refined. For each of the
refined knot spans, a set of three contracted support B-SPLines is introduced. As it can be
seen in Fig. 7.25 from the two sets introduced, one B-SPLine is common and should be taken
into account just once as shown in Fig. 7.25.c ..
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L ! L L J
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(a) Children set for the first knot span (b) Children set for the second knot span

05

0 4 é 3 4 5 6 7 8 é 10 1"
(c)Union of the two previous children sets

Figure 7.25.
Corresponding contracted children are depicted of the basis depicted in the previous figure.
(lakovos Antonios and Karras Dimitrios , 2015)
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By overlaying the union of the contracted children, in the coarse basis, it is possible to find
which coarse functions are being affected by the introduction of the finer set. Fine B-Splines
have to be subtracted from the coarse ones when they share the same support as shown in
Fig. 7.26.

Figure 7.26.
(a) Overlaying of finer functions of level I-1 is being made.(b) Affected coarse B-Splines are being identified, as
they interact with finer ones. (c)The result of subtraction of the finer B-Splines from the affected coarse ones
(lakovos Antonios and Karras Dimitrios , 2015)

Next, we chose to refine knot span (5.5, 6) of level 2. Once again, we must introduce a set
of finer B-Splines of contracted support in comparison to those of level 2. Thus, we
introduce three new B-Splines that correspond to the depicted with gray knot span to be
refined.
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Figure 7.27.
Second level element to be refined
(lakovos Antonios and Karras Dimitrios , 2015)
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Figure7.28.
Identifying and subtraction procedure, between the second and third levels of the hierarchy.
(lakovos Antonios and Karras Dimitrios , 2015)

Thus the final hierarchical basis for the refinement we applied will be as follows.
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Figure 7.29.
Final hierarchical basis
(lakovos Antonios and Karras Dimitrios , 2015)
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7.4.3 Local Refinement in Multiple Dimensions

Assume there is a d-dimensional B-Spline parameter space (patch), which is generated by d
univariate knot value vectors, one for each parametric direction by using the classical tensor
product relation. An adaptive multi-level basis can be generated by successfully applying the
1D procedures analogously, since the tensor product structure allows for a decoupling of
refinement operations in each parametric direction and subsequent d-dimensional assembly
by multiplication. This is why it is very important to use local knot vectors for each
multivariate B-Spline, as they will help the total implementation effort by producing easily
the local knot vectors of the introduced children.

Now it is time to present the procedure for hierarchical local refinement in multiple
dimension cases. The main idea remains the same, however adjustments are necessary in
order to generalize accurately the 1D case.

e Initially, the adjusted nucleus operation referring to the refinement of one d-
dimensional element of the mesh has to be introduced. Depending on the
polynomial degree of each parametric direction (in this thesis it is considered the
same for both axes), a suitable number of contracted B-Splines is chosen for each
direction.

e The local increase of refinement follows the same concept as described previously,
where the repetition of the nucleus operation in each overlay level ¢ and the
repetition of hierarchical refinement with successively contracted B-Splines for the
generation of the next overlay level (+1 leads to a multi-level B-Spline basis, which
naturally accommodates adaptivity in all dimensions.

e Next step is the recovering linear independence. A linear combination of
multivariate hierarchical B-Splines of the next level (+1 can represent B-Splines of
the current level ¢, in the sense of the multivariate two-scale subdivision relation.
These linear dependencies need to be identified through the multi-level hierarchy
and eliminated by a removal of the corresponding course level B-Splines. In analogy
with the 1D case, this can be achieved by determining in each parametric direction,
if the required p+2 contracted B-Splines of level (+1 exist in the hierarchical
structure.

e Dirichlet boundary conditions can be incorporated weakly by variational methods,
or strongly by a least squares fit of boundary basis functions. Homogeneous
boundary conditions can be imposed strongly by removing all basis functions with
support at the Dirichlet boundary.



144 |Adaptive Hierarchical Refinement in Isogeometric Analysis



Local Solution Method | 145

8. LocAL SOLUTION METHOD

8.1 INTRODUCTION

All the methodologies presented so far, had a common feature despite the mechanism
used each time. They all calculated the global stiffness matrix for the final hierarchical basis
repeating the solution of the whole problem for each refinement iteration. However, in
classical FEA that is not always efficient, as calculating from scratch all the relations that
connect the degrees of freedom for large scale problems is cost intensive.

It is clear that refining state variables and fast solving the equations that govern the
examined problem, are two key issues in isogeometric analysis and more specifically in
adaptive hierarchical refinement.

In computational mechanics, the time for solving a physical problem is consumed mostly
at:

= Discretizing the definition domain.
=  Formulating the stiffness matrix and then reverse it.

= Solving the system of the algebraic equations, which represent the PDE’S of the
problem

For complex and large scale problems that contain millions of degrees of freedom, the size
of the stiffness matrix is enormous and thus the equations need millions of iterations to be
solved. So, the solving process may turn out to be a time-consuming step. For this reason, a
more flexible approach for the solution of hierarchical refinement in isogeometric analysis
was needed. In this direction Huazhong University of Science and Technology and the
research team of Wu, Huang, Liu, Zuo proposed a new technique that demands special
attention. It is a promising method of solving and not assembling the stiffness matrix in
order to reduce the needed CPU time. Inspired by the hierarchical structure of the
subdivided B-Splines and the decoupled idea from classical FEA, their proposal tries to
separately construct and solve the equations of the individual hierarchical levels, instead of
solving the global stiffness matrix.

The core idea of the proposed method is to divide the global stiffness matrix into several
blocks according to the hierarchical refinement levels and to enforce boundary conditions in
each level independently. These boundary conditions can be derived from the solution of
the coarser level, in which the next finer level lies nested. This can happen, by utilizing the
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coefficient matrices in order to describe the relations between the basis functions of
different levels of the hierarchy. Finally the solution of the overall global problem is
composed of the solutions for the individual levels.

8.2 COARSE, REFINED & BOUNDARY DOMAINS

In order to proceed to the local solution methodology Wu et al have discretized the
parametric domain for one level of refinement in two smaller domains. These domains are
two entities with different properties. Each of the subdomains consists of even smaller
domains. More specifically, the whole parametric domain (patch) consists of the coarse
domain and the refined domain. As the names give up, the first domain refers to the
elements that have maintained their original size and the refined domain refers to the
elements that have been contracted. Of course, the union of the two domains composes the

complete mesh of level .

Coarse domain consists of the union of all elements of the initial-coarse domain of level(,
subtracting the union of all refined elements of the next level [+1, which is the refined
subdomain. The remaining lines/ areas/ volumes are the coarse domain. In general, coarse
domain does not always refer to the coarsest domain of the mesh, but it refers to the
coarser element set between two levels of refinement and analogously this applies also for
the refined domain. Thus, by recursively applying hierarchical refinement we can conclude
that, we will always get a set of one coarse and one refined domain for two consecutive
levels [ and [ +1 of the hierarchy.

So, formally the coarse domain would be:

D; = | suppN; —{ | J suppN;™ ~ [ suppN{ (8.1)
ieAl oA icAg

Additionally, refined domain can be further analyzed in two even smaller subdomains. For
the previous discretization, the criterion was the distribution of the different size elements.
Here, the discretization has as a criterion the intersections of the finer level [ +1 B-Splines
with the coarser ones, as well as the union of their supports. More specifically, the refined
domain is consisted of:

The coupled domain, which is defined as the support intersection of the basis functions
that remain after removing the redundant ones between the two consecutive levels of the
hierarchy. Coupled domain can be expressed as:
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D/ = JsuppNi n | J suppN;™ 8.2)
ieAé je/%-"l

The interior domain, which is covered only by the supports of the refined basis functions of
level [+1, but not by those of the previous level(. So, the interior domain can be derived
from:

‘o (+1 4
D= |J suppN;™-D/, (8.3)
ieﬁé-"l
Céursé deaiyn |
LTI
Coupled Domain -
x
o
Interior | | | | = o ° ) 4 5 7 ]
Domain b4 1
3
D
= 05

(a) (b)
Figure 8.1.
Coarse, Coupled and Interior domains for (a) 1D and (b) 2D case respectively.
(lakovos Antonios 2015)

In this sense, the traditional hierarchical refinement method is called global solution
method, as the main goal is formulating and solving the stiffness matrix. The proposed
method is respectively called local solution method.

The last but not least domain entity is the boundary domain. Actually, this domain is also
defined by the intersection relations between the coarse and fine B-Splines of the mesh.
Additionally, boundary domain is nested inside the coarse domain and in this sense it is a
subdomain of the coarse domain. More specifically, boundary domain is defined by the
HB-Splines of the hierarchical basis, which overlap over two levels. The support of them,
which does not share support with the functions of the finer level, is the boundary domain.

Formally, boundary domain can be derived as:

L Y
Dg = U suppN! - D", 8.4
ieAg:suppreng and suppreDé

where the functions used are the active B-Splines of level [ have non-zero values over the
coupled and the coarse domain simultaneously. Another expression for the boundary
domain will be later discussed, as additional knowledge is needed in order to comprehend it
in depth.



148 |Adaptive Hierarchical Refinement in Isogeometric Analysis

Figure 8.2
Hierarchy of the B-Splines in index space for a two level refinement.
(Karaiskos Giorgos , 2015)

8.3 DECOUPLING THE STIFFNESS MATRIX

In this section, the formulation, re-order and decoupling of the global stiffness matrix will
be presented. More specifically, the local solution method will be explained step by step, in
order to accelerate the solution of the algebraic system of equations.

Generally, the linear algebraic equations generated in IGA for a linear PDE with Galerkin
method have the following classic form, no matter whether a uniform or hierarchical
refinement is applied:

{R}lxN :[Kglobal :|NxN '{U}lxN (8.5)

where [Kgiobal] is the global sparse stiffness matrix and {R} is the vector related to boundary
conditions and external loads.

In traditional hierarchical refinement, due to the nesting relations between the domains at
different levels (8.9) can be decomposed into the block form for the case of one refinement
level:

k][] (o] |} (R
[Ka] [Ke] K]
0] [Ke] [Ka]j[{u3}] |{RE)

(]
—~—
c

[y
Il
——
=
N——

(8.6)
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In (8.6):

. . 1
o {ui} are the unknown displacements for the coarse domain Dg
. . 1
. {ulz} are the variables corresponding to coupled Dm and
. . . . 1 .
. {ug} the variables corresponding to interior Djy domain.

. 1 1 . . .
Remember that the union of D/, and Dj;; domains composes the refined domain.
1 2 2 . .
Moreover, the external load vectors Ry, R{ and R at the right hand side of (8.10)
correspond to the aforementioned domains respectively.
Stiffness matrix for one refinement step in the coarse level 1 can be written as follows:

(<] [k ]| {u) | |{R)

(kb ] [k )] iRy

1
! (8.7)
1
2

1
2

[ K}, ] refers to the coarse domain degrees of freedom

[ KZ ] refers to the refined domain degrees of freedom.

= Kllg] and [K%l] refer to the coupled domain degrees of freedom.
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Figure 8.3.
The sub-matrices of the global stiffness matrix for one step of refinement are connected using the
corresponding colors to the areas of degrees of freedom they represent.
(lakovos Antonios 2015)

By using equation (8.7), we obtain initially results for the coarse level. In order to proceed
further, the following assumption is necessary:
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e If the numerical result errors are within the limits set beforehand, the corresponding
sub-domain does not need to be recomputed.

If the resulting errors are exceeding the set boundary value, a global refinement may be
needed firstly. This means that our original mesh is too coarse to implement the local
solution method. However, in these cases, a parametric investigation may be needed in
order to evaluate if it is worth to apply local refinement instead of a full tensor product h-
refinement. This is of course a subject for further investigation.

So, after the refinement step, by ignoring the coarse domain results {ui} , the fundamental

equation (8.6) can be represented as:

1
1

[0]  [o]
i) [ka] (k8] ) || 2] = e

{2}

—
o
—
—~—
c
Ll ]
——
PV

N

where the variables of the first row which correspond to the coarse domain are ignored. The
equation (8.8) can be further reordered in order to achieve decoupling by writing the
equation for the second row such as:

[ {ui o[ K |-+ [ s o = {RE) =
[ o+ [ o) = {RE || i |-{ud)

thus, by replacing (8.9) in (8.8) the decoupled matrix is derived as:

(8.9)

o] [0 [0 || {u] (0}
ful} |=| {RE}-[ k] {ui} (8.10)

2} {Re}

—
o
[—
N7<
I\)N
L 1
NX
OJN
L 1
L]

NN

where the blue matrices refer to the refined domain, and the red ones to the ignored coarse
ones.

Now, by expanding the matrices of (8.7) in a 2x2 system form
i {urp e K et = {RE} @
[ Ko |-{u}+[ Kz ] {ua} = (R} ®)

(8.11)
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By solving (A) for U% :

[t J-fu) (R} =t ] {ub) =
[ ] ([t ~{re)) - {3}

[t} [t ][] (bt} () - {2} =

AR CARC LRI CARGE LR
- [ [t T ) - fra) [ i)l fri) =
RN RN CAR G AN AR
IR CANC R LY CARGE
[ J-[it ]l [ ) (i} -[ i)l ] ()

(8.12)

VD N < N N

(8.13)
So, finally by substituting (8.13) in the first row of (8.10), the global stiffness matrix can be
expressed in its decoupled form as follows:

Ky ]-[KL KL TRE] o) o] |[{ul)] (R [k KL ] (R
o ) [l (R
[0] [Ks?z} [K:fa]_ _{US}_ i {Rzz}

(8.14)

It is obvious that each level can be now solved independently. The procedure explained is
called by Wu et al local solution method.
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Equation (8.14) can be represented in a more simple form:

where:

] ][]
GRS

(8.15)

The (8.15) expression is valid for any two consecutive levels of refinement. For each level,
the coarse and refined domains are changing constantly, as they represent entities of
different levels in each iteration step.

Some very important features are being introduced by using the local solution method.
This method does not provide an actual global stiffness matrix, but a number of smaller
submatrices. The number of these submatrices, equals the number of hierarchical levels.
The relations between stiffness matrices of consecutive levels need to be effectively
handled. More specifically, index sorting of the basis functions from different levels and the
generation of their coupling elements are necessary for the assembly of stiffness matrix.
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8.4 ADJUSTING THE BOUNDARY CONDITIONS

The decoupling of equations for two consecutive levels of refinement has been
theoretically approached. However, in order to achieve a practical implementation of the
theory, it is necessary to introduce a procedure of properly imposing the boundary
conditions to the nested spaces, with respect to the previous coarse domain. The
subdivision property relation seems to be ideal for this purpose. The proposal of Bornemann
et al in evaluating the two-scale coefficients seems to be legit for implementation.

In the local solution method, an intermediate Dirichlet boundary condition is introduced on
the side of the refined domain to decouple the two hierarchical level equations. According
to (8.14) and (8.15), the equation:

‘ 0 ¢
{R} 1xN =[Klevel] NxN {u} 1xN

of level [ can be derived directly by using {uf‘l} {Rf} and {Ré}

{uf‘l} is already known from the solution of the previous level described in the following

relation:

-1 -1 -1
RY o = [Kiever ] " U 1 (8.16)

{Rf}and {Ré} which are the external loads and boundary conditions from equation (8.6)

for the coupled and interior domains are still unknown and have somehow to be found

It is chosen to obtain {Rf} by imposing Dirichlet boundary conditions on the outer side of

the coupled domain. This way leads boundary state variables of current level and results of
the previous level to have the exact same values.
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Figure 8.4.

Boundary domain for (a) 1D and (b) 2D case respectively.
(lakovos Antonios 2015)



154 |Adaptive Hierarchical Refinement in Isogeometric Analysis

For convenience of computation, just as in Bornemann et al algorithm, the boundary
condition values are expressed with the bases at the lower level, because they originally
have a coarser basis expression and the domain covered by these lower bases outside the
refined domain is called boundary domain and is presented in Fig. 8.4.

Supposing a Spline C(€) in the boundary domain, it can be written as the combination of
coarse and fine basis functions, such as:

C(f):(uf‘l)T N“1(§)+(uf)T N‘ (&) (8.17)

where N“? and N are the basis functions, which correspond to the coarse and the
refined of level (-1 and [ respectively.

From the definition of the boundary domain, we know that:

N (£) =0, on the outer side of Dg

and thus, Dirichlet boundary conditions have the following values by using the subdivision
matrix and the values that have been derived from the evaluation process of the hierarchy:

T

c(g):(uf—l)T NL(¢) =(uf—1)T TONY(E)=(u) N(&)  (818)

! . . . (-1 .
U, are the control points obtained by transforming U ~ onto level [. Generating the

stiffness equation (8.6) for the refined domain exclusively, using the basis functions at level
[, leads to the following form:

_v.,
I
—— A ——
e
—_—— ——

L AL LU ] (8.19)
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[Ka] (ke ]| i} || {Re)-[K2J{ue)
(K] [ ]] o] (R}

Actually, vector {ué} represents the boundary value on the inner side of the boundary

(8.20)

domain with a set of control points:
T
( [N (
{Ub} = [ub,llub,z""’ub,m} (8.21)

which do not belong to the control points {uf} of the coupled domain, but can be derived

from {uf‘l} (control points of the coarse domain) as:
{Ué,i} =a; -Up; +(1-ay)-Up; (8.22)

where:
N | =nl
Uyt =] UpgUp oo Up (8.23)

are the control points of the upper (coarser) level that express the solution values on the
boundary. Moreover g; are the coefficients from the classical knot insertion in NURBS,

which give the Cartesian coordinates for the newly introduced finer functions. This way we
can find the finer control point coordinates, in order to use them to decouple the equations.

Since {ué} are used to define the intermediate Dirichlet boundary condition, the

boundary domain can be written as:
Dy =Usupp(Ntf,i)—Dm (8.24)
i
where Né,i are the basis functions associated to the set of control points {ué} .

Due to the characteristic of non-interpolation basis functions Ny ; are not arranged in a

sequence like the way in the traditional FEA implementations. The width WB of the

boundary domain is equal to p. Thus:
Width(Bp ) =W = p (8.25)

Practically this means that boundary domain will always cover p elements around the
perimeter of the refined domain. In other words, W is the number of the control points
along the normal direction of the boundary.
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When two or more discrete areas are being refined, it is obvious that the same number of
boundary domains is created. However, the boundary domains may be related in three
ways: disjoined, adjacent and overlapped as shown in Fig. 8.5.

e For the disjoined domains, each refined domain has its own independent boundary
domain and thus has a separate equation that can be created and solved
independently.

e For the adjacent and overlapped boundary domains with their width W not greater
than p, the refined domains have a part of common boundary and thus only one
equation.

(a)

(b) (c)
Figure 8.5.
(a) Disjointed boundary domains, (b) Adjacent boundary domains, (c) Overlapped boundary domains.
(lakovos Antonios 2015)

8.5 CONCLUSIONS

To summarize, the Wu et al proposal utilized the hierarchical refinement procedure based
on the concept of B-Splines along with the subdivision property in order to provide a local
solution nature for each level. In order to do that, they used the transformation matrix S
between the basis functions of the refined and its previous level. Additionally, the local
solution method was proposed by exploiting the characteristic of hierarchical refinement
structure and applied an error indicator to achieve the adaptive nature, which seems to be
crucial. The refinement for non-uniform representation turns out to be very flexible,
because it is suitable for parameter domains refined with arbitrary node intervals and node
multiplicity.

The local solution method appears to be applicable to hierarchical refinement in IGA. It has
almost the same accuracy as the traditional global solution method, while it bears less
computational cost for the same degrees of freedom
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9. ADAPTIVE REFINEMENT
ALGORITHM

9.1 INTRODUCTION

The adopted by this thesis theoretical and algorithmic approach for adaptive hierarchical
refinement in isogeometric analysis will be presented in the present chapter. The
theoretical aspects described in previous chapters were mainly focused on the 1D case. It
was chosen to describe and explain different adaptive refinement methods in the frame of
one-dimensional problems, as the generalization to multiple dimensions is quite
straightforward. In this chapter elements of the aforementioned hierarchical refinement
methods will be combined to introduce a simple approach for dealing with 2D problems.

It is worth to mention that all the proposed methods lead to hierarchical bases that share
the same properties. Two of them are for example linear independence and partition of
unity. Another important aspect is their form. All the produced bases can be divided in
characteristic areas such as the ones defined in the local solution method. This means that
they can be easily combined to solve the final problem. Optimizing the hierarchical basis
creation and combining it with the local solution method could just be a possible
combination. This combination could be examined for its overall efficiency in solving
problems using the adaptive hierarchical refinement method.

But before proceeding to a combination, such as the one presented previously, it is of
crucial importance to investigate the parametric comparison between classical hierarchical
refinement and uniform refinement. In this sense some 2D examples will be analyzed with
the two main refinement methods (adaptive hierarchical and uniform refinement) so as to
compare their efficiency, opening the way for new research topics concerning the specific
refinement approach.

9.2 THESIS" APPROACH TO HIERARCHICAL REFINEMENT

9.2.1 General procedure

As it is already said, an algorithm of adaptive hierarchical refinement will be presented in
this thesis. This algorithm refers to solution of 2D problems. But it can be easily used for
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one-dimensional and three-dimensional problems respectively. The basic procedure still
remains the same.

The first step is to solve the problem using its initial parametrization. The initial solution is
now used as the input to the iterative procedure of adaptive hierarchical refinement. Each
iteration can be characterized by three main procedures.

The first one is the validation of the existing solution and the identification of areas in need
of refinement. This procedure is in fact the most important of all, as it is always the key
aspect in an adaptive algorithm. To validate solution’s efficiency and to identify regions with
higher error, an efficient and easy to handle error estimator is needed.

The second procedure can be named basis formulation. In this part the hierarchical basis is
constructed. It will be explained thoroughly in the following units how this can be achieved.
In few words in this step the approximation space is enriched in respect to certain
properties (linear independence, partition of unity) with finer shape functions, in order to
increase solution’s precision. The result of the hierarchical basis construction is the
formulation of the corresponding stiffness matrix.

The third important procedure of the iteration step is the solution of the enriched problem.
The precision of the results is the one that defines if another iteration is needed in case the
desired convergence is not achieved.

The general procedure is graphically presented in the following figure.
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Figure 9.1.

Flow chart of adaptive hierarchical refinement algorithm.
(lakovos Antonios 2015)
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9.2.2 Selected entities for refinement

To begin with, it is well known that classical FEM adopts an element viewpoint for all its
procedures and that refinement consists of the geometric division of elements. Things are
not as straightforward as in FEM when it is about isogeometric analysis, as the definition of
elements actually refers to knot spans. Every element of isogeometric analysis shares shape
functions with its neighbor elements. So it is crucial to decide where refinement should be
applied. Refinement could be applied directly to shape functions or indirectly to them by
locating elements that need refinement. In the second case candidate shape functions for
refinement are those that interact with the chosen elements. It is obvious that this way
leads to loss of the desired local nature of hierarchical refinement.

In order to define the entities that need to be refined there has to be a way to evaluate
their corresponding error. For this reason an efficient and easy to handle error estimator is
necessary. Error estimators in isogeometric analysis are still a topic of research. Error can be
evaluated on the viewpoint of elements or on the viewpoint of shape functions. The entity
where the error is estimated is the one that determines the way refinement is applied. It is
obvious that error estimator has a key role in adaptive refinement as it is an indicator for
the iterative refinement procedure. In this thesis the kind of the used error estimator is the
one that refers to element entities. The chosen error estimator will be thoroughly presented
in one of the following units.

So the entities chosen for refinement are elements. It is now important to decide which
shape functions to refine. For the algorithm used in this thesis if an element is marked for
refinement all shape functions that interact with this element are refined. The explained
shape function selection is presented in Fig. 9.2. The drawback of this selection is that if all
interacting shape functions are chosen, the refinement area is far from being characterized
local. Due to the overlapping of shape functions in isogeometric refinement is spread to
elements that are not marked by the error indicator increasing the number of degrees of
freedom. Fortunately there are some ways to receive results of the desired accuracy by
introducing fewer degrees of freedom, as it will be shown clearly in the applications
presented in the next pages.

0.5 /\
3

0 1 2
Figure 9.2.
Example of basis function selection for refinement. The marked knot span for refinement is [2,3). All the basis
functions that intersect with this knot span are to be replaced by finer basis functions. It is obvious that these
basis functions are very spread, not satisfying the desired local nature.
(lakovos Antonios 2015)
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9.2.3 Hierarchical level connection relations

Following the first step of refinement, which is the selection of the shape functions that
have to be refined, it is time to explain how the basis is enriched with finer basis functions.
For the formation of enriched hierarchical bases, subdivision property is used. Each marked
shape function is replaced with its (p+2)9children shape functions that can represent it as
linear combination. In order to satisfy this last condition which is an extension of partition of
unity, each subsidiary shape function is accompanied by a scale factor derived from the
subdivision rule for uniform basis functions and by the use of some other coefficients for
non-uniform cases. The second type of coefficients was also presented in Chapter 6. To
remind them there exist relations for polynomial degree p=2 and polynomial degree p=3 as
presented below.

Coefficients for quadratic basis function defined by a span [g‘l,é‘z,é‘s, 54]:

_ 52_951 a =1 és_éz 1 égs_éz -1 ‘):4_53

t2(¢,-¢) 2T 2(g-¢) T 2(4-8) tT2(4,-8)

As for the cubic basis function with a local knot vector [51, 52 ) 53,54,55] the coefficients

can be identified in the similar way:

a = 52_51 §3+§2_2‘§1 a :§3+§2_2§1
L 2(&-4) 2(5-4) ©o2(4-4)
a. = 64— _§1+§2+§3_§4+ G5 S5 —%tS +§
’ 2(&4_52) 2(64_@) 2(54_52) 2(§s_§2) 4
a :_54_534'255 a :+§4+§3_2§5 S5 — S
Co2A%-%) T2(6-8) 2(5-4)

Note that for uniform local knot value vectors the above relations yield the same scale
factors as the ones derived from the subdivision property. If for example the support of a
guadratic basis function is [0, 1, 2, 3] the corresponding relations give a1=0.25, a;=0.75,
a3=0.75, 04=0.25 which coincide with subdivision scale factors.

So the refinement of basis functions can be described by the following equation.
k = k
+1
N{ (&) =[a]IN] =D a;Ns (&) (9.1)
j=0

The knot values used in this thesis are open knot value vectors. Thus the multiplicity at the
two end knot points is p+1 and the related basis functions are discontinuous. These
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boundary basis functions have only two children and their coefficients are 1 and 0.5
respectively whatever their degree is. Their transformational expression can be written as
follows:

N(&)=IN/"(&) N;"(&)]-¢
N (&) =IN," (&) Nui(&)]-e

where ¢=[1, 0.5]"and m is the index of the basis function at the right side.

(9.2)

Having already introduced the needed scale factors, it is very important to relate maternal
and subsidiary shape function IDs. In this way subsidiaries of a consecutive finer level can be
found. To simplify this connection it is vital to introduce relations for one-dimensional
problems and then expand them to n-dimensional problems. It is known from the
subdivision rule that every function can be described as linear combination of p+2 subsidiary
shape functions. The purpose is to define the global ID of children shape functions when the
global ID of the maternal shape function is known. Every shape function can be written as

Ni' where i is its global ID and / is its corresponding level. Every shape function of level / with

ID i has p+2 children of level [+1 with IDs is =[2im-(p+1), 2i-p, ...., 2i] , where is are the
children’s IDs and im is the ID of the maternal basis function.

Figure 9.3.
Maternal basis function and its corresponding finer level children ID relations.
(lakovos Antonios 2015)

The proposed ID relation can be validated by applying it on the example presented in Fig.
9.3. The polynomial degree of the basis functions is p=2, thus the number of children

corresponding to NS are p+2=4. Using the proposed relation children’s IDs are

[2.5-(2+1), 2.5-2, 2.5-1 2.5]=
[7, 8 9, 10]
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. . : . SR R S
So the corresponding children to maternal basis function Ngare [N; Nz Ng Njlas

shown in Fig. 9.3.b.

Using the above relations it is possible that some children ID’s can be non-positive or
greater than the total number of fine basis functions. This problem can be observed for the
first and last p basis functions respectively. In this case the unacceptable values are
discarded along with their corresponding scale factors that always are equal to zero
according to their calculation relations.

This procedure can be extended in n-dimensional cases by defining the parametric IDs of
shape functions. From the parametric IDs of maternal shape functions derive the parametric
IDs of subsidiary shape functions and consequently their global ID

0

A

\

,‘
Milon0cd

Maternal basis function and its corresponding finer level children ID relations.
(lakovos Antonios 2015)

(a)

In Fig. 9.4.a shape function N103 is chosen for refinement. Its parametric IDs are (3,3).

Applying the relations for each parametric axis the parametric IDs of subsidiary basis
functions can be derived. Their parametric IDs are [3, 4, 5, 6] for both £ and n axis.
Combining the responding parametric IDs the subsidiary local IDs can be derived.The

subsidiary functions corresponding to N103 are:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[N19 N20 N21 NZZ N27 N28 N29 N30 N35 N36 N37 N38 N43 N44 N45 N46]
and are depicted in Fig. 9.4.b with red color.

The relations between two consecutive levels are now well defined, so all the subsidiary
shape functions can be easily identified. Maternal shape functions are then replaced by
them. In this part of the procedure it is time to check if linear independence is satisfied. In
case any shape function in level / can be fully described as linear combination of the
introduced finer shape functions of level /+1, it has to be marked as redundant and totally
removed from the hierarchical basis. This can be checked by comparing their element
supports.
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9.2.4 Evaluation of hierarchical control point coefficients

One key aspect in isogeometric analysis is that even when meshes are refined geometry
always remains the same. Evaluation of control point coefficients is applied taking into
account this restriction. The control point positions have to be updated and placed in such
positions, so that their resulting geometry is identical to the initial one.

Geometry on level | is represented by the following equation
| | T
U ()= N'eno | -{u'} (93)
Respectively in level /+1
T

U (ene) =[N eno)| fu (9.4)

To satisfy the restriction of the same geometry before and after refinement

1+1

u'(n.¢)=u"(en¢) e

[N'(éﬂ,é’)T -{u'}:[N'“((;,n,g)T '{UI+1} (9.5)

Matrix [S] is now introduced. S is a matrix with ns rows and nn, columns, where ns is the
number of subsidiaries and nn, is the number of maternal shape functions. It has been
proven that:

IN“En O =[] [N“Hem o=

(9.6)
[N =[N [s]
By substituting [NX]" in the previous equation
Wieno] i rea] ()=

{ul+1} _ [S]-{u'}
In the simplest case that a one-dimensional maternal basis function is replaced by its p+2
children, transformation matrix [S] is actualy a vector with p+2 rows.

[S1={8; S, -~ SpY (0.8)

In this case control point coefficients are actually calculated as the maternal control point
coefficient multiplied by the corresponding scale factors that derived from the subdivision
property.
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Another possibility is that a subsidiary is child of more than one maternal basis functions.
Then its control point coefficients can be calculated by summing up the weighted maternal
control point coefficients, where subdivision scale factors are again used as corresponding

weights. Such an example is depicted in the transformation matrix [S] of Fig. 9.5. N52 for
example is a common child of N; and Ni. Its coefficients are the sum of the Né

corresponding coefficients multiplied with 0.75 and the Ni coefficients multiplied with 0.25.

N, N, N'; NY, N’ N'g
1 (] (i} (i} 0 0
(] 1 0 (i} 0 (]
0 0 0.25 (] (] 0
(] (i} 0.75 (] 0 (]
0 (i} 0.75 0.25 (] (i
(] (i 0.25 0.75 0 (]
0 (] 0 0.75 (i} 0
(] (i} 0 0.25 0 (]
0 (] (i} (i} 1 0
(] (i} 0 (] 0 1

Figure 9.5.

Typical transformation matrix [S] for quadratic one-dimensional basis functions.
(lakovos Antonios 2015)

9.2.5 Stiffness matrix formulation

The formulation of stiffness matrix follows the procedure explained in Chapter 3

Just to remind 2D stiffness matrix is calculated by the following equation

§n+p+1 nm+q+1

[K] = I J [B(&,n)]T-[E]~[B(g,n)]~t~det[J] dnde (9.10)

(2Nx2N) g% Mo (2Nx3) (3x3) (3x2N)

Numerical integration procedures for ,n lead to integration of tensor product Gauss points
can be applied as follows :.

GP& GPn T
([K])ZZZ[B(éi,nj)] -([E])-[B(éi,n,-)]-t-det[J]-w?Pi-wa" (9.11)
2Nx2N i=1 j=1 (2N><3) 3x3 (3><2N)

The equations remain the same for hierarchical refinement. The only changed variable is
the position of Gauss points. The positions of Gauss points per element are pretty much
predefined. But it is necessary to consider that hierarchical meshes are a union of different
level domains. In areas where only course shape functions exist, their values are evaluated
at the corresponding course Gauss points. The same goes in areas where only fine level
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shape functions exist. Their values are calculated at the fine Gauss points. The question that
arises is what happens in areas where both course and fine shape functions exist. In this
case it is necessary to consider that all the elements that form the support of fine level
shape functions are subdivided. Gauss points are always defined per element. So, in these
special areas where elements are subdivided, course and fine shape functions values are
both calculated at the introduced fine Gauss points. In general it can be said that integration
per element is always applied on Gauss points that correspond to the level of the finest
shape functions that interact with each element.

It has to be mentioned that the number of total Gauss points is increased exponentially
when hierarchical refinement is applied. This drawback could be overcome by using other
collocation methods. Collocation methods are still a running research issue, very handful to
be incorporated in adaptive algorithms in isogeometric analysis, so as to decrease the
computational cost.

L ] L ] L ] [ ] L ] L ]
[ ] S L ] [ ® [ ]
(] L ] L ] [ ] L L
000000 o o o
...ﬁ... ° ° °
® 0o 0 ® o 0
€08 0ee > o o o
Figure 9.6.

Gauss points on hierarchical mesh. All values calculated on elements are defined in Gauss points that
correspond to the level of the finer basis functions interacting with each element.
(lakovos Antonios 2015)

9.2.6 Error estimator

It wouldn’t be excessive to say that error estimator is the most crucial part of an adaptive
algorithm. In such an algorithm adaptive refinement has to be automatic based on error
control. There is need of an objective quantity used as criteria for determining whether a
region should be further refined or not.

Firstly it has to be reminded what solution error is. In IGA, similar to FEA, the error e is
defined as the difference of the exact solution { and the approximate results u.

e=u—-u

The problem is that the exact value U is not known beforehand. So, an error indicator has
to be introduced. A simple gradient based error indicator € is used for this thesis, since its
aim is to capture steep gradients in the solution. For each element the local error €. can be
estimated as:

1/2

1 2
€= gj;e|Vu| dQ, (9.12)

e
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where u is the solution field evaluated from the current mesh of hierarchical level /. The
indicator is evaluated over the domain Qe of each element and subsequently normalized

with respect to the corresponding element volume V.,

The solution field is defined as follows:

u={u(x,y) v(x,y)

The gradient of the solution field is equal to

uy) Luxy)
vuo| T oy T [ u(ey) U, 00y)
0 0 v, (%) Vv, (xy)
a—v(x,y) —V(X,Y)
X OX
SO
VU= Ji2O0y)+ W)+ VA + V3 (X Y)
and
VU =u2 (6 y)+ 00y)+ VAR Y+ VE(XY)
or
u,X
Vo' ={u, u, v, v/} 5
X Y X Y V,x
V,y

u, J,, J, 0 0 u,
uy _ 1 ‘J21 ‘]11 0 0 u,n PN
V.| det[J]| O 0o J, Jio || Ve
Vy L 0 0 _J21 ‘]11 _ Vn

As a result

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)
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Ue
— T = Uy
Vul ={u, u, v v [T [T Vz (9.19)
V,n
But
u,] [N, 0 N, O Ni. 0](d,
u, _ N, O N, O N, O d.2 -
V. 0 N, 0 N, 0 Ni:|]:
v, _O N, , 0 N, 0 Nm_ d,
{uyé u,n Vyé V,n}T:[BZ]{d} (9.20)
So finally

vuf* ={d}"[B,]' [I] [T][B,]{d} (9.21)

The expression of the estimated error per element takes now the following form
1/2
1
=————| | ]{d} T [I][B,]{d} det[J]ded _
i det[J]tdgdnUJ{ J[7] [3][8,){d) det[9]de nj (9.22)

Numerical integration procedures for ,n lead to integration of tensor product Gauss
points.

GPE& GPn

£ = Get[d tdidnzz A" [B,]' [T [T][B. ] {djdet[awFs-wi™ g o)

i=1 j=1

Considering the previous equations the error per element can be calculated numerically. If
€ is larger than the C times sum of errors

g, >C e, (9.24)
1

then the element has to be refined. The introduced constant C is in fact a percentage of the
sum of errors. For example it could be 5%. Any element with error larger than 5% of the
total error is selected for refinement. Parameter C can be adjusted according to the problem
solved.

The value given to C can be handful to restrict the adaptive refinement expanding area by
increasing its value. Increase of C can lead to fewer indicated elements. In first view it can be
said that this would decrease the achieved precision. But it will be shown in applications
that due to the expanded nature of adaptive refinement it can yield the same or equivalent
precision even though the marked for refinement elements are fewer. The overlapping
nature of basis functions tends now to turn itself into a valuable advantage.
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In some cases where the gradient of the exact solution has a large gradient on a region, the
adaptive refinement process may never end. This obstacle is overcome by comparing the
global gradients of two consecutive levels. If the two gradients have a difference small
enough, the global domain will not be refined anymore. Global error is defined by the
following equation:

1/2

[Ivuf do, (9.25)
Q

9 g

1
Sg:\/—

where Qg is the global domain and V; the corresponding volume.

=

Figure 9.7.
Elements indicated by error estimator to be refined in adaptive hierarchical refinement sequence of levels.
(lakovos Antonios 2015)

9.3 VALIDATION OF ADAPTIVE HIERARCHICAL REFINEMENT

Having an adaptive algorithm now in hand, it is time to define some ways to validate its
produced results. In other words it is very important to be able to compare its efficiency
with equivalent methods that are already established and used.

The most common refinement technique that can be used to make a valid comparison is
uniform refinement. This comparison will be also adopted by the present thesis. For this
purpose two new names describing uniform refinement are introduced, to facilitate its
differentiation according to some modifications used in the way they are applied. These two
names are “uniform refinement” and “adaptive uniform refinement”. Their difference will
be explained in the following paragraphs.

“Adaptive uniform refinement” follows the same procedure as hierarchical adaptive
refinement. The initial parameterization of the problem is solved, elements with high error
are indicated by the error estimator and then are refined by inserting new knots in the
parametric knot value vectors. This procedure has an iterative nature until there are no
more elements surpassing the predefined error tolerance.
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The method named simply “uniform refinement” and is applied in this thesis depends on
the results of the adaptive hierarchical refinement. Adaptive hierarchical is first applied on
the parameter domain of the problem. Knots are then inserted in the parametric knot value
vectors using the h-refinement method in order to replicate the local mesh created in the
area where adaptive refinement is expanded. The final purpose is to compare the local
nature of each method and the influence it has on the solution’s precision.

It may sound inaccurate to compare adaptive hierarchical refinement with uniform
refinement as it was introduced previously in this thesis, as their application is not
independent. Adaptive uniform refinement on the other hand sounds as the only legit way
to validate the method’s efficiency. In the frame of the actual results this is true. But
comparing the method with just uniform refinement can be proved less inaccurate than it
can be considered.

As it will be later presented in the unit of applications it is very important to reduce the
area where adaptive refinement is expanded. It may seem more local than uniform
refinement, as it is a method not characterized by the full tensor product property which
leads to the introduction of unnecessary control points increasing the number of degrees of
freedom. But in the case of adaptive refinement full tensor property is sort of replaced by
the interaction of elements. Shape functions expand in more than one element increasing
their influence in the approximation space. So, it will be shown that in the case of adaptive
refinement the same accuracy can be achieved with fewer degrees of freedom, by refining
basis functions whose support is closer to the area of high errors. In this sense it would be
more efficient to suggest that the adaptive influence area could coincide with the area of
high error that is influenced by adaptive uniform refinement.

Another fact that suggests that comparison with uniform refinement can be also
considered efficient is the scale of problems. In large scale problems adaptive influence
areas are too small in comparison to those corresponding to uniform refinement due to the
full tensor product property. So it is legit to say that the in the area of interest the inserted
degrees of freedom by the two techniques are pretty much the same. This can be assumed
as higher errors will not be detected in one or two elements but in a number of elements
that that describe an area. So the expansion of hierarchical shape functions will be
considered less in comparison to the case of small scale problems where the number of
necessary and not necessary basis functions can be comparable.

So, to express the relation between the number of hierarchical and uniform B-Splines in
some pretty small problems it was chosen to introduce the comparison between adaptive
and uniform refinement in addition to the comparison with adaptive uniform refinement. To
clarify all the aforementioned aspects some mesh examples are presented in Fig. 9.8.

Now it is time to validate the efficiency of adaptive hierarchical refinement. The first
examined aspect is convergence tolerance. As it was explained in the unit about error
estimator a constant C is defined so as to check which elements will be indicated for
refinement. This constant C leads to all the elements with error higher than C % of the total
error. So it is vital to apply some parametric analyses in order to predefine this constant. It
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has to be said that constant C is an empirically fine-tune parameter for the specific problem.
By using several convergence tolerances it is easy to define the degrees of freedom-error
relations in order to choose the convergence that yields the same or almost the same
precision with all the other cases but with less degrees of freedom.

The second comparison refers to the relation of degrees of freedom and errors derived from
the three methods that were previously described and explained. This can be considered
the most important comparison of all as it indicates which method yields better results with
less degrees of freedom.

Another aspect that can be examined to validate adaptive hierarchical refinement is the
form of stiffness matrices, their sparsity and bandwidth. Condition numbers could also be
examined but are not taken into account in the present thesis. In this sense it is also very
important to examine how stiffness matrices can be factorized. In this thesis the presented
factorization is LU.

Now that the validation tools are described, they will be applied in the applications
analyzed in Chapter 10.

(a) (b)

(c) (d)

Figure 9.7.
(a) Area marked for refinement. Meshes for (b) Adaptive Hierarchical, (c) Uniform and (d) Adaptive
uniform refinement.
(lakovos Antonios 2015)
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10 . APPLICATIONS

10.1 INTRODUCTION

In this chapter will be presented the application results that derived from the adaptive
refinement algorithm proposed in Chapter 9. Two examples were chosen to validate the
adaptive hierarchical refinement method. The first one is a 2D cantilever to feature the use
of adaptive refinement in a case of concentrated loads. The second application concerns an
L-Shaped domain to feature the application of adaptive refinement in areas where change
of geometry introduces concentrated stresses. Both examples are subjected to plane stress
static isogeometric analysis. Their results proved to be very useful in understanding how
adaptive mechanism works in isogeometric analysis and led to some interesting conclusions
able to help improve the existing procedure.

10.2 CANTILEVER 2D

The first application is a 2D cantilever. The cantilever presented in Fig. 10.1 is subjected to
plane stress. The dimensions of the cantilever are 1 m length and 1 m height. Its third
dimension (thickness) is significantly smaller than the other two (0.1 m). The degrees of
freedom on the left side are all fixed. A concentrated load P=200 kN is applied on the upper
right corner of the cantilever. The purpose of this problem is to feature the use of adaptive
refinement in cases where local refinement is needed. In this case it is expected that error
will be significant higher in the area around the concentrated load where stress
concentration will appear.

The initial parametrization of the cantilever consists of quadratic basis functions on axes ¢,
n. The initial parameter domain is defined by two parametric knot value vectors
==[0 0 0 0.5 1 1 1] andH=[0 0 0 0.5 1 1 1]. Thus there are nine control points whose
weights are considered to be equal to 1. So the initial parametrization consists of four knot
span elements as can be seen in the following figure.
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Figure 10.1.
Initial parametrization of the 2D cantilever subjected to plane stress.
(lakovos Antonios 2015)

The present problem will be analyzed with the three different techniques that where
introduced and analyzed in Chapter 9. These techniques were adaptive hierarchical
refinement, uniform refinement and adaptive uniform refinement.

Starting with adaptive hierarchical refinement it was vital to examine how the convergence
constant C used for the error indicator affects the precision of the analysis. Let’s remind
how constant C is used.

ne
€, > CZ:?,e
1

Constant C expresses in fact what percent of the total error an element has. If this percent
is greater than the one chosen the element is selected for refinement. So it was decided to
apply adaptive refinement for different C constant values to see how problem’s precision
responds. The values of constant C chosen were 2%, 3%, 5% and 7%. The relation of degrees
of freedom and error expressed by the L, norm for different C values is presented in Fig.
10.2.

0,01
——2%
e ——3%
2 5%
~ 0,001
2 ——7%
(]
o
0,0001 Y
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Degrees of Freedom

Figure 10.1.
Error in L2norm for different values of convergence constant C
(lakovos Antonios 2015)
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One should suggest that increasing constant C would increase the precision of the solution.
That is not always the case in adaptive hierarchical refinement in isogeometric refinement.
As shown in Fig. 10.2 precision is not always sensitive to the increase of C. This can be
explained considering the nature of hierarchical refinement. When an element is chosen for
refinement all shape functions interacting with this element are replaced by finer shape
functions. As shape functions in isogeometric analysis have a support of multiple knotspan
elements, the refinement of one element affects the corresponding neighbor elements that
shared the same shape functions. So the solution is enhanced in more than one element
marked or not for refinement by the error indicator. Fig. 10.3 illustrates this case to better
understand how the described mechanism works.

7 !

Figure 10.3.
Subdivided elements for different values of convergence constant C
(lakovos Antonios 2015)

In the above figure the shaded area depicts the elements that were indicated for
refinement for C=2 % in the second level of adaptive refinement. The colored lines present
the union of elements that were subdivided for convergence constants 2% (blue), 3% (red)
and 5 % (green) respectively. Even though the area of influence decreases with the increase
of C the precision remains almost the same. This is justified by the previous figure
representation because the support of shape functions that were refined is containing the
marked element area of convergence 2% in all cases. That is a very important aspect as it
suggests that adaptive refinement can be more localized with only restriction that the
refinement area always contains the area of higher errors. The expansion to neighbor
elements seems no to participate in the improvement of solution. That is a very promising
conclusion for the efficiency of adaptive refinement, as error could be decreased with even
less degrees of freedom.

Now that convergence constant has been examined it is time to move forward to other
useful comparisons. In order to proceed it was decided to examine the case of convergence
constant C= 5 % which vyields better results with fewer degrees of freedom. The same
convergence constant C will be later used in adaptive uniform refinement.

Five levels of adaptive refinement were applied on the present application. As it was
expected and shown in previous figures adaptive refinement was concentrated in the area
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of the concentrated load. The two first levels coincide with the case of global uniform
refinement as all the elements were indicated for refinement. The sequence of indicated
elements and adaptive refinement levels is shown in Fig. 10.4.
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Figure 10.4.

(a) Sequence of elements indicated for refinement in the four first levels (b) Sequence of adaptive
meshes produced for levels 2-5 in respect to the elements marked for refinement in previous levels as

shown in the first row of the figure.
(lakovos Antonios 2015)

Adaptive refinement seems to improve the precision of the analysis as shown in Fig. 10.5.
The diagram depicts the decrease of error, expressed with the L, norm, in every level of the
adaptive hierarchical refinement procedure.
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Figure 10.5
Error in L2norm for convergence constant C= 5%
(lakovos Antonios 2015)
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Some of the displacements and stress contours are presented in the following figure. It is
obvious that in the area of the upper right corner the influence of the concentrated load is
minimized both for displacement and stresses. The contours depict corresponding fields in
the first and fifth level of adaptive refinement
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Figure 10.6.

(a) Displacement X, (b) Displacement Y, (c) Stress oxx, and (d) Stress Von Mises of the deformed cantilever
in first and fifth level respectively
(lakovos Antonios 2015)
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Adaptive refinement is now compared with uniform and adaptive uniform refinement.
Adaptive uniform refinement is executed with the same convergence constant, meaning
C=5 %. Uniform refinement as explained is applied as explained in Chapter 9. Knots were
inserted in knot value vectors £ and n respectively to replicate the mesh in the area of
interest. The corresponding final meshes (level 5) meshes produced with the three
aforementioned methods are presented in Fig. 10.7.

(a) (b) ()
Figure 10.7.
(a) Adaptive hierarchical refinement mesh, (b) Uniform refinement mesh , (c) Adaptive uniform
refinement mesh
(lakovos Antonios 2015)

From the analysis results shown in Fig. 10.8. it seems that adaptive refinement is more
efficient than the other two methods. It can yield same precision solution with less degree
of freedom. It is more obvious when it is compared with uniform refinement for the reasons
explained in the previous chapter. In level 5 the same accuracy can be achieved with 40 %
fewer degrees of freedom. Taking into account that this difference will grow from level to
level because of the increased number of inserted degrees of freedom due to the full tensor
product property of uniform refinement. It is positive that adaptive refinement is even more
efficient than adaptive uniform refinement.
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Figure 10.8.
Comparison between adaptive (blue), uniform (red) and adaptive uniform (green) refinement.
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But precision in adaptive refinement has another cost that has to be taken into account for
the validation of the proposed method. Even though degrees of freedom-error relation
counts as positive for adaptive refinement it is still a method more cost intensive in the
formulation of stiffness matrix. This could not always count as a drawback as the reducing of
computational cost for the solution could affect the needed total cost. For this reason it is
very important to take into consideration the form of stiffness matrices. It will be shown
that adaptive refinement leads to sparse matrices with variable bandwidth.
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Figure 10.9.

Level 5 stiffness matrices
(a) Adaptive hierarchical refinement.1)Stiffness matrix. 2) Stiffness matrix rearranged with Cathill-McKee
Algorithm. 3) Lower LU factorization matrix (b) Uniform refinement. 1) Stiffness matrix. 2) Lower LU
factorization matrix (c) Adaptive uniform refinement. 1) Stiffness matrix. 2) Lower LU factorization matrix
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10.3 L-SHAPE 2D

The second example is a 2D L-Shape subjected to plane stress isogeometric analysis. The L-
Shape is shown in Fig. 10.10.
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Figure 10.10.

Initial parametrization of the 2D cantilever subjected to plane stress.
(lakovos Antonios 2015)

Let’s now describe its geometry. The long sides of the L-Shape are 1 m long and the short
ones 0.5 m respectively. The thickness is considered small enough in comparison to the
other dimensions and is defined to be 0.1 m. The lower side of the L-Shape is fixed along
direction y and the right side fixed along axis x. All the loads are applied on interpolatory
boundary control points as shown in the previous figure. The value of all applied loads is
P=150 kN. This problem was chosen to feature the need of adaptive refinement not only on
areas where concentrated loads are applied but also in areas where the change of geometry
leads to concentration of stresses.

The initial parametrization of the L-shape consists of quadratic basis functions on axes ¢, n.
The initial parameter domain is defined by two parametric knot value vectors
==s[0 0 01/3 2/3 11 1] andH=[0 0 0 1/4 2/4 3/4 1 1 1]. Two pairs of double control
points were used to create the bending corners of the L-Shape. Thus there are thirty control
points whose weights are considered to be equal to 1. So the initial parametrization consists
of twelve knot span elements as can be seen in Fig. 10.10.

The steps of evaluation of adaptive refinement in the case of L-shape are the same used for
the cantilever 2D problem. First it is important to choose a convergence constant C for the
error indicator. It has to be clarified that this process is only applied in order to validate the
sensitivity of error to the constant C. In case one problem has to be solved it is obvious that
this constant C is defined empirically without applying parametric investigations. The chosen
constants are 2%, 3%, 4% and 5%. The results are represented in Fig. 10.11. It seems that
the best results considering the relation degrees of freedom-error are yielded with the use
of convergence constant C=4 %. For C=5 % error seems to stabilize after the second
iteration. This happens because a high error area is missed during refinement selection. The
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result is that the corresponding error to this area is never decreased , cause local shape
functions are not refined. The convergence constant used to proceed to the next
comparisons is finally 3 % as C= 4% might behave exactly as 5 % if another iteration is
executed. C=4 % marks only the area around the inside corner.
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Figure 10.11.
Error in L2norm for different values of convergence constant C
(lakovos Antonios 2015)

Four levels of adaptive refinement were applied on the present application. Error indicator
marked the elements that were expected according to Fig. 10.12.

-

t

(b)

Figure 10.12.
(a) Sequence of elements indicated for refinement in the three first levels (b) Sequence of adaptive
meshes produced for levels 2-4 in respect to the elements marked for refinement in previous levels as
shown in the first row of the figure.
(lakovos Antonios 2015)
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As it was expected the error estimator indicated elements that were near concentrated
loads or the inside corner of the L-shape where stress are concentrated. Some of the results
after four level of adaptive refinement are shown in Fig. 10.13.
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Figure 10.13.

(a) Displacement X, (b) Displacement Y,(c) Stress oxx, and (d) Stress Von Mises of the deformed cantilever
in first and fifth level respectively
(lakovos Antonios 2015)
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Figure 10.14.
(a) Adaptive hierarchical refinement mesh, (b) Uniform refinement mesh, (c) Adaptive uniform
refinement mesh
(lakovos Antonios 2015)

It is now time to compare adaptive hierarchical refinement with uniform and adaptive
uniform refinement. The convergence constant used for adaptive uniform refinement is still
3%. The result meshes of each method are presented in Fig. 10.14.
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Figure 10.15.
Comparison between adaptive (blue), uniform (red) and adaptive uniform (green) refinement.

The analysis results produced by the three different methods are presented in Fig. 10.15.
In this case it is not clear which of the three methods is more efficient. The degrees of
freedom-error curves tend to coincide. This result can be easily explained. The error
indicator marked only some of the areas of higher level. Areas near some concentrated
loads where not indicated for refinement. It would be necessary to decrease the
convergence constant C. But this choice would also lead to similar results. In this case the
refined areas would cover large part of the geometry and the main advantage of adaptive
refinement, which is local nature, would be automatically canceled. If the convergence
constant was decreased to indicate more elements for refinement, results as those
presented for the cantilever, would be possible after a larger number of iterations. The
insertion of unnecessary control points due to the full tensor product property of B-Splines
in combination with the decrease of error by the adaptive refinement applied in all the
areas of interest would lead to results more positive for the adaptive procedure. It has to be
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said that even in the examined case, adaptive refinement tends at least to yield results
similar to the ones corresponding to uniform refinement and adaptive uniform refinement.

Finally it is also important to compare the stiffness matrix properties for each case of
refinement. Yielding the same precision results doesn’t mean that all methods are
equivalent. Their matrices condition, sparsity, bandwidth and of course the needed cost to
formulate them have to be considered. Adaptive refinement for example leads to sparser
matrices with variable bandwidth as was also noticed in the previous example (cantilever
2D). This kind of matrices are not always easy to handle in comparison to the matrices
produced by the other two types of refinement. They are worth for analysis only when they

can lead to the accuracy with far less degrees of freedom so as to balance all the other
disadvantages they have.
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Level 5 stiffness matrices (a) Adaptive hierarchical refinement.1)Stiffness matrix. 2) Stiffness matrix
rearranged with Cathill-McKee Algorithm (b) Uniform refinement. Stiffness matrix. (c) Adaptive
uniform refinement. Stiffness matrix.
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11 . CONCLUSIONS AND PROPOSALS

11.1 GENERAL CONCLUSIONS ON ADAPTIVE HIERARCHICAL REFINEMENT

It is well known that a major drawback of isogeometric analysis was until recently the lack
of a local refinement mechanism. Knot insertion or order elevation alter larger areas of the
approximate space, increasing dramatically the number of degrees of freedom. Due to the
tensor product nature of B-Splines it was impossible to locally refine an area of high error
without introducing unnecessary shape functions. For h-refinement this not only increased
the degrees of freedom, but it also created bad size ratio elements leading to instabilities in
numerical analysis.

The aforementioned aspect in combination with the research effort to enrich isogeometric
analysis with procedures already known from FEM made the need of introducing a local
refinement technique obligatory in order to make isogeometric analysis a competitive
analysis tool.

In this sense researchers introduced hierarchical refinement. Hierarchical refinement, refers
to the hierarchy of the refined levels which are characterized by their nested relation. All its
variations seem to be promising in order to boost not only the accuracy of the solution but
also the CPU time consumption. Even though the formulation of the basis and the stiffness
matrix is a more complex procedure than the corresponding ones used in other classical
refinement methods it can become competitive by yielding same precision results with far
less degrees of freedom. Hierarchical refinement, practically replaces coarse grid basis
functions, with finer ones in order to achieve better local solution. From the initial definition
given by Vuong et al, even though the local refinement in IGA has been accomplished, several
side effects have been presented such as:

= Linear independence of the hierarchical basis.
= Partition of unity property across the hierarchical basis.

= Evaluation procedure of proper weights in order to restore the partition of unity.
= Formulation of new global stiffness matrix in each level of refinement.

= Expansion of the refinement area due to the multi-element support of shape
functions.

Bornemman and Cirak tried to cope with some of the aforementioned issues by introducing
a more algorithmic methodology. They introduced a straightforward way to evaluate shape
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functions scale factors in order to satisfy the partition of unity property. These scale factors
were defined as proposed by Kraft in 1997, applying the subdivision property used in
refinement of CAD geometries. The succeeded to simplify it even more by corresponding
finally the scale factors to the control points and not the shape functions.

But even though the proposed methodologies yielded satisfying results they were
characterized by a very important drawback. Due to the numerous interactions between the
shape functions that remained intact or were inserted during a hierarchical level of
refinement, stiffness matrices’ patterns seemed not so positive. Stiffness matrices were
characterized by increased sparsity and variable bandwidth, properties that increase
computational cost.

To overcome this obstacle, Giannelli introduced truncated B-Splines. The truncation
mechanism managed to reduce the overlapping between the coarser functions and the finer
ones. This has been translated in significantly reduced sparsity of stiffness matrices. The most
important feature of truncation, was that the basis did not need anymore the subdivision
weights in order to satisfy partition of unity and thus, the formulation of the stiffness matrix
was straightforward.

Even though, truncated B-Splines managed to deal with the partition of unity property, they
did not manage to narrow the refined area and thus achieve a more local nature of
hierarchical refinement. D. Schillinger tried to produce meshes where the refinement area
were more local than previous suggested methods. Instead of subdividing shape functions
that were indicated for refinement, he imposed a set of finer shape functions in the area of
interest avoiding the expansion to collateral elements. Then the truncation mechanism was
used to satisfy the properties of linear independence and partition of unity. The combination
of his localization idea with the truncation methodology led to further decrease of degrees of
freedom number and stiffness matrix sparsity.

The conclusions and the methodologies presented till now were based on the formulation
of the hierarchical basis or stiffness matrix consequently. But it is very important to use the
positive aspects of hierarchical refinement to further reduce the needed computational cost
beyond the formulation of hierarchical bases by improving the solution procedures for such
applications. In this frame the present thesis described the local solution method introduced
by Wu et al. This method proposes an efficient way to decouple each hierarchical level’s
equations in order to avoid solving the whole problem all over again in every iteration step of
adaptive refinement. Time consumption for the solution of the classical hierarchical
refinement 1D, 2D and 3D cases stiffness matrices is accelerated dramatically, where at the
same time optimum convergence is achieved.

Summarizing all the aforementioned methodologies the following conclusions can be
derived:
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e Same accuracy can be achieved with less degrees of freedom.

e Hierarchical refinement expands to collateral elements due to shape function
overlapping, losing its local nature.

e Sparsity of stiffness matrices depends on the used refinement strategy. In any case it
yields sparser matrices than those derived from uniform refinement.

e The total CPU time is immediately affected by the evaluation or truncation technique
used in each strategy.

e The Wu et al proposal for solving each level independently, seems to be very
promising in order to accelerate significantly local refinement in isogeometric analysis.

11.2 GENERAL CONCLUSIONS ON APPLICATIONS

Some interesting conclusions have also emerged from the applications presented in Chapter
10. The examples of cantilever and L-shape 2D were subjected to plane stress analysis. The
analysis results were then compared with uniform and adaptive uniform methodologies as
explained in Chapter 9.

Firstly it became apparent that error estimator plays a crucial role in adaptive hierarchical
refinement. Constant C, which defines how strict or not is the selection of elements to be
refined, is an important parameter that can affect the solution. Constant C has to be chosen
very carefully in order to efficiently apply adaptive refinement. In the case of the cantilever
the increase of constant C didn’t affect the precision of the solution. Of course there is always
a bound for its increase. It was observed that in the cantilever application greater values of C
always defined shape functions whose support overlapped the area of higher error. So the
same precision could be provided with the selection of the smallest number of shape
functions interacting and overlapping with the area of interest.

The aforementioned observation is in fact the second conclusion, according to which
adaptive refinement has possibilities to retain its locality by suitable selection of shape
functions. The selection of all shapes functions that interact with elements that surpass the
accepted error may introduce unnecessary shape functions and thus degrees of freedom.
Adaptive refinement localization can thus be further improved.

Another observation is that adaptive hierarchical refinement increases its efficiency as
hierarchical levels increase. That can be easily explained considering its nested property and
the full tensor product property characterizing other methods. As the number of levels
increases the refinement area tends to become smaller to satisfy the nested property of
hierarchical levels. On the other knot insertion continues to overrun all the elements that are
defined by a certain parametric position introducing more and more degrees of freedom. As
the area of high error is now restricted the unnecessary shape functions tend to be even more
than the ones that lead to local improvement of the solution. Vice versa, in the first levels of
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refinement, adaptive refinement’s behavior can be similar to uniform or adaptive uniform
refinement as the majority of shape functions is selected for refinement. This case was
encountered in the example of L-Shape 2D.

Finally, another conclusion that is also presented during the theoretical validation of the
presented methods in the previous unit, concerns the sparsity pattern of stiffness matrices.
It has been shown in the two explained applications that stiffness matrices corresponding to
adaptive refinement lead to sparsity patterns not desirable in analysis. So even though the
degrees of freedom-error relation seems positive for adaptive refinement the patterns of
stiffness matrices can be considered a serious drawback for the effort made to increase
degrees of freedom and computational cost needed for the solution of equations
consequently. It has to be mentioned that the truncation technique was not used in the
presented algorithm.

11.3 PROPOSALS

Conclusions always give birth to new proposals. What is really positive is that adaptive
refinement is a research area which has many possibilities of improvement. Conclusions
indicate the methodology subjects whose modification could lead to better solution.

In this sense it is obvious that adaptive refinement should be modified to retain the local
nature it was meant for. Applications showed that the selection of less shape functions for
refinement could lead to equally precise solution. The purpose is to define the less number
of shape functions whose support van be fully or almost be defined by the high error area.
This could be an efficient way to retain locality, but still has to be validated by adding it in the
present algorithm in order to be applied.

It is also proposed to combine all the positive aspects adaptive hierarchical methods can
provide. More specifically, the final target is to keep all the good properties of each method
and eventually build-up an adaptive algorithm that could effectively tackle the majority of
applications.

So, to this end, it would be an interesting idea to combine truncated B-Splines with the local
solution method. This could be a realistic target, as local solution method is based on the
existence of some characteristic regions of hierarchical bases that can be easily found in every
hierarchical refinement method used until now. This combination could possibly lead to
further reduction of the needed computational cost as both degrees of freedom and sparsity
of stiffness matrices would possibly decrease.

The work presented in this thesis will continue by examining how the truncation mechanism
affects the coarse B-Splines and their corresponding degrees of freedom. This is essential in
order to be able to decouple each level from the other. Some modifications for the existing
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methods should be possibly necessary in order to succeed in the implementation of the
proposed hierarchical refinement scheme.

Another future target is the use of collocation methods to improve the cost intensive
nature of adaptive refinement. Of what is already known collocation methods could boost
adaptive refinement’s efficiency.

11.4 SUBIJECTS FOR FURTHER RESEARCH

Of course the Hierarchical Refinement area cannot be contained in just one thesis, as there
are numerous other things to examine. In order for the method to mature, some of the
following subjects may need further research:

e Use of collocation methods in hierarchical refinement

e Patch interconnectivity after hierarchical refinement.

e Adjusting the external loads and the boundary conditions, after the hierarchical
refinement procedure.

e Evaluation and introduction of more elaborate error estimators.
e Hierarchical formulation of stiffness matrix.

e Conversion between T-SPLines and HB-SPLines, in a more compact manner in order to
compare the two methodologies.

e The generalization of every theory for B-Splines in NURBS.
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