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Abstract 

 
The optimal suppression of the Kármán vortex street in flow past a circular cylinder, by 

use of either, passive, active open-loop or active feedback control schemes is investigated by 
coupling a CFD solver with an optimization tool. The control action consists of either 
application of slip conditions or mass transpiration on the cylinder surface. The results are 
interepreted by means of local and global instability calculations utilizing an Orr-Sommerfeld 
solver and signal processing based on the Stuart-Landau model, respectively. The study is 
limited to two-dimensional flow at low Reynolds numbers, Re<180, where the non-
manipulated flow is either steady or characterized by vortex shedding. 

Firstly, steady slip conditions are applied on a part or on the entire cylinder surface 
utilizing a passive control scheme.  For slip conditions applied on the entire cylinder surface, 
the present results demonstrate the stabilizing effect of increasing the non-dimensional slip 
length, b*=b/D, b being the slip length and D the cylinder diameter, in agreement with recent 
studies. In particular, the Kármán vortex street is supressed at a critical value of b*, which is 
an increasing function of Re. Further, it is shown that, for the same levels of b*, the wake can 
be stabilized by implementing slip conditions only on a part of the cylinder surface. Guided 
by this observation, the problem of fully or partially suppressing the Kármán vortex street by 
means of a partially hydrophobic cylinder is addressed by formulating a multi-objective 
optimization problem, in which the product of slip length and hydrophobic area quantifies the 
control effort; a second objective function, characterizing flow unsteadiness, is thereby 
introduced. The optimization results demonstrate that, both for full and partial suppression of 
the Kármán vortex street, a proper use of partial hydrophobicity can lead to a significant 
reduction in passive control effort, in comparison to the case of the fully hydrophobic 
cylinder. Computed optimal solutions of the Pareto front are characterized by means of local 
stability calculations based on an Orr-Sommerfeld solver. It is shown that flow stabilization is 
attained when a global intensity of absolute instability, involving local absolute growth rates 
and the streamwise extent of absolute instability, is sufficiently reduced. Further 
characterization of the flow stability is performed by means of transient lift coefficient signal 
analysis in the frame of the Stuart-Landau equation.  

Secondly, steady mass transpiration is introduced on the cylinder surface. Three regimes 
on the cylinder surface are considered: (a) the front stagnation point region, (b) the rear 
stagnation point region, and (c) the region in-between. First, parametric studies are 
performed, by introducing suction or blowing on each of the three regimes, and assessing the 
effects on the global stability of the flow. Guided by these results, a multi-objective 
optimization problem is formulated, aiming at the partial or full suppression of the Kármán 
vortex street, at a minimal control effort. In this setup, blowing is applied on the rear 
stagnation point regime, while suction velocities of different magnitude are considered for the 
front stagnation point and the sideway regimes. A zero net transpiration flow rate is imposed. 
The absolute value of suction/blowing flow rate quantifies the control effort, while a second 
objective function, characterizing flow unsteadiness, is also introduced. The goal of 
optimization is to find proper combinations of the extent of the three regimes, as well as the 
corresponding suction/blowing velocities, which minimize simultaneously the two objective 
functions. The calculation of the optimal flow fields demonstrates that flow stabilization can 
be attained with a control effort substantially lower in comparison to previous literature 
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studies. Optimal solutions are characterized by means of local stability analysis, as well as 
analysis of transient lift signals.  

Finally, in order to attain partial or complete vortex street cancellation, by even lower 
levels of control effort, two proportional feedback control schemes are developed, utilizing 
both control actions introduced above. In the first feedback control scheme, actuation consists 
in time-dependent mass transpiration, while, in the second one, in time-dependent slip 
conditions. In both cases, the feedback signal is generated based on a velocity measurement in 
the near wake. Further, for both feedback control schemes, optimization problems are 
developed, aiming at the partial or full cancelation of the vortex street at a minimal control 
effort. In comparison to passive flow control, a reduction in control effort by two orders of 
magnitude is attained with the present optimized feedback control schemes. 

  



v 
 

Acknowledgments 
 

First of all I would like to express my warm, sincere and deep thanks to my advisor, 
Associate Professor L. Kaiktsis, for the invaluable support he provided me up to the 
completion of my PhD studies. A collaborative relationship of teaching, partnering and 
encouragement has allowed me to achieve the level of knowledge required to accomplish my 
goals. I consider an honour for the National Τechnical University of Athens to have Professor 
Kaiktsis. He enables students to benefit from his experience and expertise, not only in their 
profession but also in life. 
 

Furthermore, my gratitude is also extended to the other two members of the advisory 
committee, Professor G.S. Triantafyllou and Assistant Professor C.I. Papadopoulos, as well as 
to Associate Professor J. Prousalidis of the Department of Naval Architecture and Marine 
Engineering of N.T.U.A., for their substantial support and for fruitfull discussions. I would 
also like to express my special thanks to the other four members of the examination 
committee, Professor P. Koumoutsakos of ETH Zurich, Associate Professor E. Konstantinidis 
of the University of Western Macedonia, and Professor G. Tsabiras and Assistant Professor 
G. Papalambrou of the Department of Naval Architecture and Marine Engineering of 
N.T.U.A. 
 

Many thanks go to D. Kazangas, P. Kontoulis, A. Charitopoulos, Dr. K. Aivalis and Dr. 
D. Fouflias, for their help and friendship during these five memorable years. I am more than 
grateful to my friends and to the people of my family. More precisely, to my friends D. 
Katsiopis, J. Gouzouasis and J. Kagiaftakis, to my cousin and friend A. Arapis, to Vasso, who 
is present patiently beside me, and to my mother Electra for her moral support during all the 
years of my studies. The present work is dedicated to my father Manolis, teacher of 
Mathematics, who passed away last January, for all the things he taught me and for 
contributing to what I am. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 

Contents 
 

Chapter 1: Cylinder wake control problem ......................................................................... 1 

1.1 Bluff body flows and applications............................................................................. 1 

1.2 Flow past a circular cylinder..................................................................................... 1 

1.3 Optimization concepts ............................................................................................. 2 

1.4 Hydrodynamic instability concepts ........................................................................... 5 

1.4.1 Local instability ................................................................................................ 6 

1.4.2 Global instability ............................................................................................ 11 

1.5 Flow control: application to flow past a cylinder ...................................................... 13 

1.6 Flow control methods implemented in the present study ........................................... 14 

Chapter 2 : Computational approach ................................................................................ 17 

2.1 Problem formulation .............................................................................................. 17 

2.2 Resolution tests ..................................................................................................... 20 

2.2.1 Mesh generation – spatial resolution tests ......................................................... 20 

2.2.2 Temporal resolution tests................................................................................. 22 

2.3 Validation tests...................................................................................................... 23 

2.4 Summary of Chapter 2 ........................................................................................... 25 

Chapter 3: Implementation of surface hydrophobicity ....................................................... 27 

3.1 Application of slip on the entire cylinder surface ..................................................... 27 

3.2 Application of slip on part of the cylinder surface .................................................... 31 

3.3 Flow past a partially hydrophobic cylinder: formulation and solution of optimization 
problem ...................................................................................................................... 34 

3.3.1 Design variables and search space .................................................................... 34 

3.3.2 Objective functions ......................................................................................... 34 

3.3.3 Optimization problem ..................................................................................... 35 

3.3.4 Optimization methods ..................................................................................... 35 

3.3.5. Optimization results ....................................................................................... 37 

3.4 Characterization of flow instability ......................................................................... 44 

3.5 Summary of chapter 3 ............................................................................................ 47 

Chapter 4: Flow control by means of mass transpiration .................................................... 49 

4.1. Implementation of piecewise uniform suction/blowing ............................................ 49 

4.1.1 Application of suction and blowing on the front stagnation point region, 0o<θ<40o

 .............................................................................................................................. 51 

4.1.2 Application of suction and blowing on the sideway region, 40o<θ<150o.............. 55 

4.1.3 Application of suction and blowing on the rear stagnation point region, 
150o<θ<180o ........................................................................................................... 58 

4.2 Formulation of optimization problem with piecewise uniform suction/blowing profile63 



viii 
 

4.2.1 Design variables and search space .................................................................... 64 

4.2.2 Objective functions ......................................................................................... 65 

4.2.3 Optimization process ....................................................................................... 65 

4.2.4 Optimization results ........................................................................................ 66 

4.2.5 Optimal solutions: characterization of flow instability ....................................... 75 

4.4 Summary of chapter 4 ............................................................................................ 78 

Chapter 5: Feedback flow control: optimization of control schemes ................................... 79 

5.1 Feedback control using mass transpiration: validation test ........................................ 79 

5.2 Optimization of feedback control with time-dependent mass transpiration ................. 81 

5.2.1 Design variables and search space .................................................................... 82 

5.2.2 Objective functions ......................................................................................... 82 

5.2.3 Optimization problem ..................................................................................... 82 

5.2.4 Optimization results ........................................................................................ 83 

5.3 Feedback control utilizing time-dependent slip conditions ........................................ 86 

5.3.1 Proportional control concept utilizing controllable wetting properties ................. 86 

5.3.2 Application of controllable wettability on the entire cylinder surface .................. 87 

5.4 Optimization of feedback control with time-dependent slip ...................................... 92 

5.4.1 Design variables and search space .................................................................... 93 

5.4.2 Objective functions ......................................................................................... 93 

5.4.3 Optimization problem ..................................................................................... 93 

5.4.4 Optimization results ........................................................................................ 94 

5.5 Summary of chapter 5 ............................................................................................ 97 

Chapter 6: Novelty of the present work and contribution to scientific research .................... 99 

6.1 Proposed methodology........................................................................................... 99 

6.2 New findings of the present thesis......................................................................... 100 

Chapter 7: Conclusions ................................................................................................. 101 

7.1 Conclusions ........................................................................................................ 101 

7.2 Suggestions for future work ................................................................................. 102 

Appendix A: Validation tests of instability analysis calculations ...................................... 105 

A.1 Local linear instability analysis calculations ......................................................... 105 

A.2 Calculations of global linear growth rates ............................................................. 106 

References ................................................................................................................... 107 

 

 
 

 

 



ix 
 

List of Figures 
1. Fig. 1. Sketch of Pareto front for a minimization problem with two objective 

functions. ............................................................................................................. 3 
2. Fig. 2. Operations of: (a) crossover and (b) mutation. .............................................. 4 
3. Fig. 3. Evolutionary algorithm outline. ................................................................... 5 
4. Fig. 4. Sketch of spatio-temporal evolution of a perturbation in a parallel flow: (a) 

absolutely unstable flow and (b) convectively unstable flow. Flow direction: left to 
right..................................................................................................................... 6 

5. Fig. 5. (a) Cylinder wake profiles of the family described by eq. (6) for N=100 (top-
hat profile) and N=2 (parabolic profile), and (b) absolute and convective instability 
regions as a function of the wake velocity profile parameters, R, 1/N (Monkewitz 
1988). .................................................................................................................. 7 

6. Fig. 6. Base flow past a circular cylinder, at Re=90: (a) iso-contours of streamwise 
velocity, U, (b) streamwise velocity profile at x/D=2, and corresponding Orr–
Sommerfeld eigenvalues in terms of isocontours of (c) ωr and (d) ωi, in the complex 
wavenumber plane. Here, 0 0.762 0.195 iω = + ⋅ , corresponding to absolute instability. 10 

7. Fig. 7. Re=60, uncontrolled flow past a circular cylinder: (a) Computed lift coefficient 
signal, CL(t), (b) Lift coefficient magnitude versus time, |CL(t)|, and (c) semi-log plot 
of  lift coefficient versus time, log10|CL(t)|. Here, σr=0.04137, Stg=0.121. ................ 13 

8. Fig. 8. Sketch of the flow domain. ....................................................................... 18 
9. Fig. 9. Definition of slip length, b, in flow past a hydrophobic surface.................... 19 
10. Fig. 10. (a) Application of slip on the entire cylinder surface: sketch of velocity 

profile near the cylinder, for a slip length b. (b) Application of slip on an arc lying 
between θmin and θmax. ......................................................................................... 19 

11. Fig. 11. (a) Application of blowing on a part of the cylinder surface, (b) application of 
suction on a part of the cylinder surface and blowing on the remaining part.  ........... 20 

12. Fig. 12. Decomposition of the flow domain into three, five and eleven sub-domains.
.......................................................................................................................... 21 

13. Fig. 13. Detail of a finite volume mesh close to the cylinder (the number of finite 
volumes osculating to cylinder surface is close to 100). ......................................... 21 

14. Fig. 14. Spatial resolution tests for uncontrolled flow at Re=90. Computed values of 
force coefficients: (a) time-averaged drag coefficient, (b) drag coefficient amplitude, 
and (c) lift coefficient amplitude, versus the number of finite volumes, N. A time step 
value of Δt=0.01 is utilized. ................................................................................. 22 

15. Fig. 15. Temporal resolution tests for uncontrolled flow at Re=90. Computed values 
of force coefficients: (a) time-averaged drag coefficient, (b) drag coefficient 
amplitude, and (c) lift coefficient amplitude, versus the numerical time step, Δt. A 
grid consisting of 54,000 finite volumes is utilized. ............................................... 23 

16. Fig. 16. Variation of computed flow quantities with Reynolds number for 
uncontrolled flow past a circular cylinder, for the present study and literature studies: 
(a) Time-averaged drag coefficient, <CD>, (b) Strouhal number, St. ....................... 24 

17. Fig. 17. Variation of computed flow quantities with Reynolds number for 
uncontrolled base flow past a circular cylinder, for the present study and literature 
studies: (a) Non-dimensional recirculation zone length, xR/D, and (b) separation point 
angle, θs (the reference point is the front stagnation point). .................................... 25 



x 
 

18. Fig. 18. Computational results for Re=120, for uncontrolled flow and for two values 
of b*.  (a) Base flow slip velocity distributions and instantaneous streamline patterns 
of asymptotic flow states.  (b) Drag and lift coefficient signals. Slip is applied at a no 
non-dimensional time of 300 units.  ...................................................................... 29 

19. Fig. 19. Flow quantities versus Re, for different values of b*: (a) non-dimensional 
recirculation length of base flow, (b) base flow separation angle, (c) time-averaged 
drag coefficient, (d) RMS fluctuation intensity of drag coefficient, and (e) RMS 
fluctuation intensity of lift coefficient................................................................... 30 

20. Fig. 20. Re=90, b*=0.17: distribution  of slip velocity, uθ, on the cylinder surface for 
base flow, and lift coefficient signal, for the cases where slip condition is applied: (a) 
on a region extending ±37.5ο  from the front stagnation point, and (b) on a region 
extending ±37.5ο from the rear stagnation point. Slip is applied at t=300. ............... 31 

21. Fig. 21. Sketch of slip condition application on the cylinder surface, for a flow from 
left to right: slip is applied in the arc ranging from θmin to θmax................................ 32 

22. Fig. 22. Re=90, b*=0.17: distribution  of slip velocity, uθ, on the cylinder surface for 
base flow, and lift coefficient signal, for the case where slip condition is applied on 
the entire cylinder surface and for three cases with partial slip. Slip is applied at 
t=300. The corresponding values of base flow separation point angle, θs, are also 
reported. ............................................................................................................ 33 

23. Fig. 23. Optimization flow chart.  ......................................................................... 36 
24. Fig. 24. Re=90: objective function J1 vs. objective function J2, and sketch of the 

corresponding Pareto front. Three cases of full slip are also included and are 
compared to the corresponding optimal cases of partial slip, with the decrease in 
control effort highlighted..................................................................................... 37 

25. Fig. 25. Re=90: computed slip velocity profiles of base flow corresponding to 
solutions 1 to 4, the uncontrolled case and the case of stabilized flow with full slip, 
depicted in Fig. 24 (left column), and color-coded contours of instantaneous vorticity 
in the non-linear flow state (right column). ........................................................... 39 

26. Fig. 26. Re=90: Drag and lift coefficient signals for solutions 1 to 4, the uncontrolled 
case and the case of stabilized flow with full slip, depicted in Fig. 24. Passive control 
is implemented at t=300. ..................................................................................... 40 

27. Fig. 27. Re=90: design variables and separation point angle of base flow versus 
objective function J2, for solutions along the Pareto front. The case of stabilized flow 
with full slip is also included. .............................................................................. 41 

28. Fig. 28. Re=180: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. Four cases of full slip are also included and are compared 
to the corresponding optimal cases of partial slip, with the decrease in control effort 
highlighted. ........................................................................................................ 42 

29. Fig. 29. Re=180: computed slip velocity profiles of base flow corresponding to 
solutions 1 to 4, the uncontrolled case and the full slip case, depicted in Fig. 28 (left 
column), and color-coded contours of instantaneous vorticity in the non-linear flow 
state (right column). ............................................................................................ 43 

30. Fig. 30. Re=90: characterization of streamwise velocity profiles, for solutions 1 to 4, 
the uncontrolled case and the case of stabilized flow with full slip, depicted in Fig. 
24. These solutions correspond to different levels of control effort, expressed in terms 
of the objective function J2. (a) Velocity ratio vs. streamwise coordinate, (b) vorticity 
thickness vs. streamwise coordinate, and (c) velocity ratio vs. profile parameter 1/N.
.......................................................................................................................... 45 



xi 
 

31. Fig. 31. Re=90: values of local stability properties vs. streamwise coordinate, for 
solutions 1 to 4, the uncontrolled case and the case of stabilized flow with full slip, 
depicted in Fig. 24. These solutions correspond to different levels of control effort,  
expressed in terms of the objective function J2. (a) Absolute frequency, and (b) 
absolute growth rate. ........................................................................................... 46 

32. Fig. 32. Sketch of uniform suction and blowing profiles applied on different regions 
of the cylinder surface: (a) front stagnation point region, θ1=0ο<θ<θ2=40ο, (b) sideway 
region, θ1=40ο<θ<θ2=150ο, and (c) rear stagnation point region, θ1=150ο<θ<θ2=180ο.
.......................................................................................................................... 50 

33. Fig. 33. Re=90: flow statistics versus suction coefficient, for suction/blowing applied 
on the front stagnation point region: (a) Strouhal number, St, (b) time-averaged drag 
coefficient, <CD>, (c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag 
coefficient, CD,ampl. .............................................................................................. 51 

34. Fig. 34. Re=90: colour-coded contours of instantaneous vorticity, for different values 
of suction coefficient, Csuc, for suction/blowing applied on the front stagnation point 
region. (Negative values of Csuc correspond to blowing, and positive values to 
suction.) ............................................................................................................. 52 

35. Fig. 35. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow separation 
point angle, θs, vs. suction coefficient, Csuc. .......................................................... 53 

36. Fig. 36. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow velocity 
ratio, R, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing. ................................................................................ 54 

37. Fig. 37. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow vorticity 
thickness, δw/D, vs. streamwise coordinate, for different values of suction coefficient, 
Csuc, for (a) suction, and (b) blowing. ................................................................... 54 

38. Fig. 38. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow velocity 
ratio, R, vs. profile parameter 1/N, for different values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing. Absolute instability boundary is illustrated by the red 
line (Monkewitz and Nguyen, 1987). ................................................................... 54 

39. Fig. 39. Re=90: flow statistics versus suction coefficient, for suction/blowing applied 
on the cylinder sideway region: (a) Strouhal number, St, (b) time-averaged drag 
coefficient, <CD>, (c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag 
coefficient, CD,ampl. .............................................................................................. 55 

40. Fig. 40. Re=90: colour-coded contours of instantaneous vorticity, for different values 
of suction coefficient, Csuc, for suction/blowing applied on the cylinder sideway 
region. (Negative values of Csuc correspond to blowing, and positive values to 
suction.) ............................................................................................................. 56 

41. Fig. 41. Re=90, with suction/blowing applied from θ1=40o to θ2=150o: base flow 
separation point angle, θs, vs. suction coefficient, Csuc. .......................................... 57 

42. Fig. 42. Re=90, suction/blowing is applied from θ1=40o to θ2=150o: base flow velocity 
ratio, R, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for  
(a) suction, and (b) blowing. ................................................................................ 57 

43. Fig. 43. Re=90: suction/blowing applied from θ1=40o to θ2=150o: base flow vorticity 
thickness, δw/D, vs. streamwise coordinate, for different values of suction coefficient, 
Csuc, for (a) suction, and (b) blowing. ................................................................... 58 

44. Fig. 44. Re=90: suction/blowing is applied from θ1=40o to θ2=150o: base flow 
velocity ratio, R, vs. profile parameter 1/N, for different values of suction coefficient, 



xii 
 

Csuc, for (a) suction, and (b) blowing. Absolute instability boundary is illustrated by 
the red line (Monkewitz and Nguyen, 1987). ........................................................ 58 

45. Fig. 45. Re=90: flow statistics versus suction coefficient, for suction/blowing applied 
on the rear stagnation point region: (a) Strouhal number, St, (b) time-averaged drag 
coefficient, <CD>, (c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag 
coefficient, CD,ampl. .............................................................................................. 59 

46. Fig. 46. Re=90: colour-coded contours of instantaneous vorticity, for different values 
of suction coefficient, Csuc, for suction/blowing applied on the rear stagnation point 
region. (Negative values of Csuc correspond to blowing, and positive values to 
suction.) ............................................................................................................. 60 

47. Fig. 47. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow 
separation point angle, θs, vs. suction coefficient, Csuc. .......................................... 61 

48. Fig. 48. Re=90: suction/blowing applied from θ1=150o to θ2=180o: base flow velocity 
ratio, R, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing. ................................................................................ 61 

49. Fig. 49. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow vorticity 
thickness, δw/D, vs. streamwise coordinate, for several values of suction coefficient, 
Csuc, for (a) suction, and (b) blowing. ................................................................... 62 

50. Fig. 50. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow velocity 
ratio R, vs. profile parameter 1/N, for different values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing. Absolute instability boundary is illustrated by the red 
line (Monkewitz and Nguyen, 1987). ................................................................... 62 

51. Fig. 51. Sketch of transpiration velocity profile. .................................................... 64 
52. Fig. 52. Optimization flow chart.  ......................................................................... 66 
53. Fig. 53. Re=90: objective function J1 vs. objective function Csuc (suction coefficient).

.......................................................................................................................... 67 
54. Fig. 54. Re=90: computed transpiration velocity profiles corresponding to solutions 1-

4, depicted in Fig. 53 (left column), and corresponding color-coded contours of 
instantaneous vorticity (right column). The case of uncontrolled flow is also included.
.......................................................................................................................... 68 

55. Fig. 55. Re=90: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 53, 
and for the case of uncontrolled flow. Active open-loop control in terms of 
suction/blowing is implemented at t=300.............................................................. 69 

56. Fig. 56. Re=90: design variables versus objective function Csuc, for solutions along 
the Pareto front. The red square corresponds to stabilized flow at the minimal control 
effort, depicted by Point 4 in Fig. 53. ................................................................... 70 

57. Fig. 57. Re=90: transpiration velocities versus objective function Csuc, for solutions 
along the Pareto front. The red square corresponds to stabilized flow at the minimal 
control effort, depicted by Point 4 in Fig. 53. ........................................................ 71 

58. Fig. 58. Re=180: objective function J1 vs. objective function Csuc (suction coefficient).
.......................................................................................................................... 72 

59. Fig. 59. Re=180: computed transpiration velocity profiles corresponding to solutions 
1-4, depicted in Fig. 58 (left column), and corresponding color-coded contours of 
instantaneous vorticity (right column). The case of uncontrolled flow is also included.
.......................................................................................................................... 73 

60. Fig. 60. Re=180: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 
58, and for the case of uncontrolled flow. Active open-loop control in terms of 
suction/blowing is implemented at t=300.............................................................. 74 



xiii 
 

61. Fig. 61. Re=90: characterization of streamwise velocity profiles, for solutions 1 to 4, 
depicted in Fig. 53, and for the case of uncontrolled flow. (a) Velocity ratio vs. 
streamwise coordinate, (b) vorticity thickness vs. streamwise coordinate, and (c) 
velocity ratio vs. profile parameter 1/N. ................................................................ 76 

62. Fig. 62. Re=90: values of local stability properties vs. streamwise coordinate, for 
solutions 1 to 4, depicted in Fig. 53, and for the case of uncontrolled flow. (a) 
Absolute frequency, and (b) absolute growth rate. ................................................. 77 

63. Fig. 63. Proportional feedback loop control scheme (Park et al., 1994): the location of 
the feedback sensor, xs, the extent of a transpiration slot, delimited by angles θmin and 
θmax, the proportional gain, kp, as well as the control input signal, u(t), are depicted. 80 

64. Fig. 64. Computational results of the present study and of Park et al. (1994) for 
Re=60, kp=0.35, xs=2.75: (a) instantaneous streamline pattern at a large time, and (b) 
signal of stream-wise velocity, u, at x=2.5, y=0.5. In the present simulation active 
feedback control in terms of time-dependent suction/blowing is implemented at 
t=300, and in the one of Park et al. (1994) at t=1200. ............................................ 81 

65. Fig. 65. Re=60, kp=0.35, xs=2.75: drag and lift coefficient signals. Active feedback 
control in terms of time-dependent suction/blowing is implemented at t=300. ......... 81 

66. Fig. 66. Re=60: objective function J1 vs. objective function J2. .............................. 84 
67. Fig. 67. Re=60: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 66. 

Active feedback control in terms of time-dependent suction/blowing is implemented 
at t=300.............................................................................................................. 85 

68. Fig. 68 Re=60: global frequencies for the uncontrolled case (open loop pole), as well 
as for solutions 1-4 (closed loop poles), depicted in Fig. 66. .................................. 85 

69. Fig. 69. Sketch of the present proportional feedback loop control scheme. The non-
dimensional location of the sensor, xs/D, the actuation regime (hydrophobic area 
extends between θmin and θmax), the proportional gain, kp, as well as the control input 
signal, u(t), are depicted. ..................................................................................... 87 

70. Fig. 70.  Re=60: flow quantities versus streamwise sensor location, xs, at a 
proportional gain value of kp=0.5: (a) Lift coefficient amplitude, CL,ampl, (b) time-
averaged drag coefficient, <CD>, and (c) maximum value of non-dimensional slip 
length, b*

max. ....................................................................................................... 89 
71. Fig. 71. Re=60, kp=0.5: lift coefficient and slip length signals, for different 

streamwise locations of the sensor in the near wake. Active feedback control in terms 
of time-dependent slip conditions is implemented at t=300. ................................... 90 

72. Fig. 72. Re=60, kp=0.5: lift coefficient and slip length signals, for different 
streamwise locations of the sensor in the far wake. Active feedback control in terms 
of time-dependent slip conditions is implemented at t=300. ................................... 91 

73. Fig. 73. Re=60: flow quantities versus proportional gain value, kp, when the sensor is 
located at xs=7: (a) Lift coefficient amplitude, CL,ampl, (b) time-averaged drag 
coefficient, <CD>, and (c) maximum value of non-dimensional slip length, b*

max..... 92 
74. Fig. 74. Re=60: objective function J1 vs. objective function J2, and sketch of the 

corresponding Pareto front. ................................................................................. 94 
75. Fig. 75.  Re=60: lift coefficient and slip length signals for optimal solutions 1-4, 

depicted in Fig. 74. Active feedback control in terms of time-dependent slip is 
implemented at t=300. ........................................................................................ 95 

76. Fig. 76. Re=90: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. ................................................................................. 96 



xiv 
 

77. Fig. 77. Re=90: lift coefficient and slip length signals for solutions depicted in Fig. 78 
by Point a and Point b. Active feedback control in terms of time-dependent slip is 
implemented at t=300. ........................................................................................ 97 

78. Fig. 78. Re=90: flow quantities vs. streamwise coordinate, for the base flow field of 
uncontrolled flow: (a) local linear absolute frequency, St0, and (b) local linear 
absolute growth rate, ω0,i. The present results are compared against those of Pier 
(2002). ............................................................................................................. 105 



xv 
 

List of Tables 
1. Table 1 Computed values of statistical flow quantities, at different values of Reynolds 

number, for: (i) uncontrolled flow, (ii) stabilized flow at a critical value of non-
dimensional slip length, also including a previous study (Legendre et al., 2009)...... 28 

2. Table 2. Re=90: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for solutions 1 to 4 and the case of stabilized 
flow with full slip, depicted in Fig. 24. ................................................................. 38 

3. Table 3 Re=90: time-averaged values of drag coefficient, <CD>, and amplitude of lift 
coefficient, CL,ampl, for the uncontrolled case, as well as for solutions 1 to 4 and the 
case of stabilized flow with full slip, depicted in Fig. 24. ....................................... 38 

4. Table 4. Re=180: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for solutions 1 to 4 and the full slip case, depicted 
in Fig. 28............................................................................................................ 44 

5. Table 5. Quantities characterizing the flow local and global stability, for 
representative solutions of the optimization problem at Re=90. .............................. 46 

6. Table 6. Re=90: Computed values of statistical flow quantities, at different values of 
the suction coefficient, Csuc, for the present and a previous study (Delaunay and 
Kaiktsis, 2001); computed values: time-averaged drag coefficient and Strouhal 
number. ............................................................................................................. 49 

7. Table 7. Re = 90: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for solutions 1-4, depicted in Fig. 53. .............. 68 

8. Table 8. Re=180: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for solutions 1-4, depicted in Fig. 58. .............. 72 

9. Table 9. Quantities characterizing the flow local and global stability, for 
representative solutions of the optimization problem at Re=90. .............................. 77 

10. Table 10. Re=60: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for solutions 1-4, depicted in Fig. 66; the values 
of the components of the global frequency, s, i.e. the global linear growth rate, σr, and 
the linear frequency, σi, are also reported. ............................................................. 84 

11. Table 11. Re=60: design variable values and corresponding objective function values, 
for the uncontrolled case, as well as for optimal solutions 1-4, depicted in Fig. 74... 95 

12. Table 12. Re=90: values of design variables and objective functions, for the 
uncontrolled case, for solutions depicted by Points a and b in Fig. 76, as well as for 
solutions corresponding to the passive control scheme, utilizing steady slip conditions 
on a part (Points 1 and 2 of Fig. 24) and on the entire cylinder surface (Legendre et al.  
2009); the values of ½b*φ magnitude, quantifying the control effort, are also reported.
.......................................................................................................................... 97 

13. Table 13. Coefficients of the Stuart-Landau equation at Re=50 and Re=60, 
corresponding to the present (computational) and previous, experimental (Schumm at 
al., 1994) and computational  (Delaunay and Kaiktsis, 2001) studies. ................... 106 

 
 

 



xvi 
 

 

 

 

 

 



1 
 

Chapter 1: Cylinder wake control problem 
 

1.1 Bluff body flows and applications 
 
The practical importance of bluff body flows is remarkable due to their several applications in 
onshore, as well as in offshore applications. Typical examples of onshore applications include 
skyscrapers, high bridges, chimneys, TV antennas and light poles. On the other hand, offshore 
pipelines and oil risers are structures of great importance, exhibiting a bluff body behavior in 
terms of Vortex Induced Vibration (VIV). Further, several classical engineering applications 
exhibit a bluff body behavior, as for example the heat exchanger tubes.    
  

In bluff body flows, the von Kármán vortex street is formed. Due to the resulting large 
fluctuating pressure forces, high amplitude time-dependent loads are exerted on the body. 
This dynamic loading can cause structural fatigue, ultimately leading to structural failure. 
Legendary failures of bluff body structures are the collapse of the Tacoma Narrows Bridge 
(1940) and the collapse of the cooling towers of the Ferrybridge power plant (1965). Thus, 
understanding and controlling the physics of bluff body flows is of high interest for a wide 
series of engineering applications. 
 
1.2 Flow past a circular cylinder 
 
Flow past a circular cylinder is a representative bluff body flow. As highlighted in Fornberg 
(1993), the cylinder wake belongs to those systems that are easy to define, but is difficult to 
solve and understand their behavior, making them only more attractive. During the last 
decades experimental and numerical studies were performed in order to identify the dynamics 
and physical properties of the uncontrolled flow in the steady as well as in the vortex 
shedding regime. Early experimental works were performed by Strouhal (1878) and von 
Kármán (1911). Later, Roshko (1954), Tritton (1959), Acrivos et al. (1968) and more recently 
Hammache and Gharib (1991), Green and Gerrard (1993) performed experimental studies in 
order to evaluate representative quantities characterizing the cylinder wake physics; these 
include the non-dimensional shedding frequency (Strouhal number), drag and lift coefficients, 
separation point angle, as well as length and width of the recirculation zone. Early 
computational studies of flow past a cylinder include the ones of Dennis and Chang (1970), 
Fornberg (1985), and Braza et al. (1986). More recently, the increase in computational power 
enabled three-dimensional Direct Numerical Simulation (DNS) studies. An extensive review 
of the problem, including both computational and experimental studies, was performed by 
Williamson (1996), who has significantly contributed to this field. Flow, flow past a circular 
cylinder has been studied extensively in the framework of local and global flow instability 
theory, as in the works of Jackson (1987), Zebib (1987), Barkley and Henderson (1996), and 
Mittal (2008). Along these lines, Monkewitz and Nguyen (1987), and Monkewitz (1988) 
performed a detailed instability analysis of properly defined families of wake profiles. More 
recently, the dynamics of spatially developing wakes has been interpreted by Pier and Huerre 
(2001), Pier (2002), and Gianneti and Luchini (2007), under the light of the latest findings in 
instability theory.    
 

The dynamics of incompressible uncontrolled flow past a circular cylinder depends only 
on the Reynolds number, Re (commonly defined in terms of free stream velocity, the cylinder 
diameter and the kinematic viscocity of the fluid). Properties of this flow are well known for a 
wide range of Reynolds number, from creeping flows ( 0)Re →  to fully turbulent flows 
(Re≈107). At low Reynolds numbers, Re<190, the flow remains two-dimensional. In more 
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detail, for Re<6, the flow is steady, with only one separation point, coinciding with the rear 
stagnation point (creeping flow). In the range 6<Re<47, the flow is still steady, with a vortex 
pair forming immediately after the cylinder; its recirculation length increases linearly with Re,  
as reported in Takami and Keller (1969), Fornberg (1985) and in the more recent work of 
Gianneti and Luchini (2007). A periodic vortex shedding pattern is excited in the near wake 
as Re increases above a first critical value Re2D,cr=47 (Jackson 1987). This transition 
corresponds to a Hopf bifurcation of the dynamical system (Jackson 1987). For Re>Re2D,cr, 
the flow past a circular cylinder is characterized by global instability, whose non-linear state 
is the Kármán vortex street; the latter consists of a sequence of vortices, which are shed, two 
per shedding cycle. The onset of self-sustained flow oscillations has been commonly 
attributed to the presence of a sufficient intensity of local absolute instability in the near wake 
regime. The latter is expressed in terms of the magnitude of local positive absolute growth 
rates and the extent of the absolutely unstable regime (Chomaz et al. 1990). At Re3D,cr=188.5, 
the cylinder wake undergoes a second bifurcation, and becomes three-dimensional (Barkley 
and Henderson 1996), due to a secondary instability in the spanwise direction. As the 
Reynolds number is further increased above Re3D,cr, a number of other transitions occur. For 
Re>1000, the shear layers emanating from the cylinder become turbulent, resulting in the 
formation of a turbulent wake. Finally, for 5> 5×10Re , the boundary layer becomes 
turbulent. Thus, the separation point is shifted downstream, resulting in the significant 
reduction of drag coefficient (drag crisis).  

 
The present study is performed for the range Re2D,cr<Re<Re3D,cr, where the wake of 

uncontrolled flow exhibits an oscillatory behavior, but remains two-dimensional. 
 

1.3 Optimization concepts  
 
Optimization studies have been broadly employed in the last decades in several fields of 
engineering, including fluid mechanics applications.  The goal of each optimization is to 
identify the values of proper variables (design variables) which maximize or minimize proper 
functions (objective functions). The latter can be associated with forces, performance, 
pollutant emissions, cost, etc. The domain of definition of the design variables forms the 
problem’s search space.    
 

Optimization algorithms can be categorized into gradient based algorithms, algorithms 
based on evolutionary algorithms (EAs) and hybrid algorithms. Gradient based algorithms 
can be characterized by a high convergence speed; however, due to the poor exploration of 
the search space, the solution can converge to a local instead of the global optimum 
(maximum or minimum). EAs are semi-stochastic methods, based on an analogy with 
Darwin’s laws of natural selection. Since EAs belong to the multi-point search methods, a 
solution close to the global optimum can be determined even when the landscape of the 
objective function is multi-modal (characterized by several local minima). Moreover, EAs do 
not require the calculation of the gradient of the objective function; as a result, they can be 
applied to problems whose search space is discrete (in contrast to gradient-based search 
methods). Overall, evolutionary algorithms are very powerful and effective optimization 
tools, especially for multi-objective optimization problems. Finally, hybrid methods combine 
the advantages of both families of algorithms, by utilizing an EA at first in order to identify 
the region of the optimum, and subsequently a gradient based algorithm, to converge fast to 
the optimal solution(s).         

 
Optimization problems can be categorized into Single Objective Optimization (SOO) 

ones, in the case of one objective function, and Multi Objective Optimization (MOO) ones, in 
the case of two or more objective functions.    
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In multi-objective optimization problems, a vector of n design variables, x , is sought, 
which minimizes a vector f



 of k objective functions. The choice of design variables may be 
subject to constraints. Overall, a multi-objective optimization problem can be formulated as 
follows:   
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In multi-objective minimization methodologies, we commonly seek Pareto optimal (or 

dominant) solutions, see Fig. 1. In the case of a minimization problem, a solution 1x  is 

defined as dominant over 2x  when: 
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The collection of all non-dominated solutions is the Pareto front, sketched in Fig. 1 for 

the case of a minimization problem with two objective functions (k = 2).     
 

 

Fig. 1. Sketch of Pareto front for a minimization problem with two objective functions.  

 
Alternatively, multi-objective optimization problems can be solved using a penalty based 

(weighted-sum) single objective optimization approach. Here, the solution corresponds to a 
single point on the Pareto front of the multi-objective strategy. Thus, in order to attain the 
final Pareto front, the single objective optimization problem should be solved for a large 
number of weight values, potentially requiring a substantially larger computational time in 
comparison to the Pareto-ranking multi-objective optimization approach. Another 
disadvantage of weigthed-sum methods is that, in the case of a non-convex Pareto front, a 
large set of optimal solutions cannot be attained (Deb, 2001). Thus, in the present study a 
Pareto-ranking multi-objective optimization strategy utilizing genetic algorithms is adopted. 

 
Genetic algorithms (GAs) belong to the family of evolutionary algorithms. In the genetic 

algorithms terminology, a search point is called an individual (or chromosome). Individuals 
are composed by genes, which are the problem design variables, encoded using a floating 
point representation in the form of bit strings. Commonly, multi-objective optimization with 
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genetic algorithms utilizes the following steps (see Andreadis et al. (2011) and references 
therein).  
 
Step 1: The number of individuals of each generation, n, is chosen. These individuals are 
quasi-randomly initialized within the space of the design variables. As each individual is 
represented by a bit string, each bit can be determined by a random number generator. 
Throughout the present study each generation consists of 20 individuals. 
Step 2: The evaluation code (also called evaluator or analyzer) is used to determine the 
objective functions, f

i
, for each individual. 

Step 3: The ‘Pareto ranking’ index is determined for each candidate solution by counting the 
number of individuals that dominate the examined candidate solution. The Pareto ranking, R, 
is equal to the above number increased by 1. Thus, for a non-dominated solution, the Pareto 
Ranking is equal to 1. Subsequently, a proper index, the ‘fitness value’, is assigned to each 
individual, based on its Pareto ranking and, depending on the algorithm used, on previously 
selected elite solutions. The optimization tool developed in the present work adopts the Non–
dominated Sorting Genetic Algorithm NSGA-II for ranking solutions within a generation 
(Deb et al. 2002). The particular optimization tool utilizes the ParadisEO genetic algorithms 
library (Cahon et al. 2004), enabling, for the purposes of the present study, an effective 
coupling with the evaluator (here, the ANSYS CFX CFD code). 
Step 4: If the terminal condition of the problem is not satisfied, the routine selects the parents 
(Step 5), and uses them to create offspring (Step 6). The optimization procedure stops when a 
prescribed criterion is fulfilled; in the present work, termination is imposed after 50 
generations. 
Step 5: Parent selection takes place using a roulette wheel method. Each roulette wheel slot 
receives an individual from the current population; individuals with better fitness values are 
assigned with a larger wheel slot size. The procedure thus penalizes less fit individuals, still 
giving them the chance to participate in the reproduction process, hence maintaining diversity 
through the generations.  
Step 6: A new individual is created using the operations of crossover and mutation (Fig. 2). 
In the crossover operation, some individuals are randomly selected among the parents 
determined in Step 5. If the operation of mutation is utilized, certain bits of an individual are 
randomly selected, and a new individual is created by reversing the selected bits, resulting in 
a new search point. In the present work the probability of crossover has a value 80%, whereas 
the probability of mutation has a value of 15%. Finally, a percentage of the new generation 
(5% in the present study) can be created by the process of elitism, i.e. by repeating a number 
of highly ranked (low fitness value) individuals.    
 

The entire procedure is presented schematically in Fig. 3. 
 
 

(a) Crossover (b) Mutation 

  

 
Fig. 2. Operations of: (a) crossover and (b) mutation. 
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Fig. 3. Evolutionary algorithm outline.    

 

1.4 Hydrodynamic instability concepts  
 

An extensive presentation of the subject of hydrodynamic instability is given in the book of 
Drazin and Reid (1981), while more recent theoretical advances can be found in the review 
papers of Huerre and Monkewitz (1990) and Chomaz (2005), as well as in the book of 
Schmid and Hennigson (2001). Open shear flows, as wake flows, are spatially developing, i.e. 
the mean velocity profile is not uniform in the streamwise direction. Thus, it is important to 
distinguish between the local and global instability properties, referring to the properties of a 
local velocity profile and the properties of the entire flow, respectively. Linear instability 
theory studies the evolution of small perturbations superimposed on a reference flow. A brief 
outline of concepts of linear local and global instability, used throughout the present study, is 
reported in the following two subsections.    
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1.4.1 Local instability    
 
Local instability analysis can only be considered under the assumption of a parallel or locally 
parallel flow. In a parallel flow, the velocity field is unidirectional, and thus does not depend 
on the streamwise coordinate, as is for example in the case of the flow inside a long pipe. The 
cylinder wake flow, being of main interest in the present study, is a spatially developing flow, 
which is by definition non-parallel. In this case, the assumption of a locally parallel flow is 
valid if the wave-length, λ, of a typical instability is much shorter than the characteristic 
length scale, L, of the spatial evolution of the flow, i.e. λ<<L. Here, L can be defined as 

                                                 
1 1 ( )

( )
d x

L x dx
θ

θ
≈ ⋅                                                        

(3) 

where θ(x) represents a characteristic width. In flow past a cylinder, the vorticity thickness 
can be considered as a proper characteristic width. 
 

Local instability analysis aims at studying the evolution of small amplitude perturbations, 
superimposed on the steady flow solution of a parallel flow, referred to as ‘base flow’. A base 
flow can be characterized using the concepts of local absolute and local convective instability, 
introduced by Twiss (1952). The distinction between absolute and convective instability is 
based on the asymptotic impulse response of an infinitely extended parallel flow. If a linear 
impulse response grows exponentially in the location of its generation, the flow is 
characterized as absolutely unstable (Fig. 4a). If, on the other hand, a linear impulse response 
is convected away from the location of its generation, amplifying as it convects downstream 
(thus leaving the flow undisturbed at large times), the flow is characterized as convectively 
unstable (Fig. 4b). Equivalently, the two flows can be distinguished by the sign of temporal 
growth rate of the mode dominating the response at large times. Positive temporal growth rate 
corresponds to an absolutely unstable flow, whereas negative temporal growth rate 
corresponds to a convectively unstable flow.  

 
(a) (b) 

  
Fig. 4. Sketch of spatio-temporal evolution of a perturbation in a parallel flow: (a) absolutely 
unstable flow and (b) convectively unstable flow. Flow direction: left to right.  
 

In open shear flows, important parameters of a velocity profile determining the 
convectively or absolutely unstable character of the flow are the velocity ratio, R, and and the 
vorticity thickness, δw, defined as follows:       

 
        

( )( ) ( )( )max min max min( ) ( ) / ( )R x U x U x U x U x= − +                      
(4)   

     
    ( ) ( )max min

max

( )( ) ( ) /w
dU xx U x U x

dY
δ

 
= −  

                             
 (5)   

where Umax and Umin are the maximum and minimum velocity values, respectively, at a 
streamwise location x. The velocity ratio, R, highlights the existence, as well as the intensity 
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of back-flow. According to the above definition, for R>1, a velocity profiles includes a region 
of negative velocity, corresponding to back-flow. In particular, in flow past a circular 
cylinder, streamwise velocity profiles extracted from the region of the recirculation zone (see 
Fig. 6) are characterized by backflow; this results in R>1. On the other hand, the vorticity 
thickness characterizes the steepness of the velocity profiles under consideration. An increase 
in vorticity thickness corresponds to smoother velocity profiles, whereas a decrease 
corresponds to steeper profiles. Concerning the flow past a cylinder, in the near wake region 
the profiles are steeper (of the ‘top hat’ type), whereas in the far wake region the profiles 
exhibit are smoother (Fig. 5a).       

As indicated in Monkewitz (1988), local linear instability is associated with the wake 
profile parameters, R, δw. In particular, absolute instability increases with velocity ratio 
(increasing back flow), while it also depends on vorticity thickness. In particular, in 
Monkewitz and Nguyen (1987), a family of velocity profiles was defined parametrically in 
terms of the velocity ratio, R and a parameter N; the latter is associated with the vorticity 
thickness, with steep profiles characterized by high values of N. The wake profile can thus be 
defined as a function of the the transverse coordinate, y, as follows:  

 
( ) 1 2 ( )U y R RF y= − +                                         

 
(6) 

where 
 

12 1( ) 1 sinh ( sinh (1))NF y y
−− = +                                   

 
(7) 

 
For the above wake profiles, Monkewitz and Ngouyen (1987) performed a normal mode 

analysis, in order to identify the region characterized by absolute instability as a function of 
(R, N); the region corresponding to absolute instability is illustrated in Fig. 5b. In the present 
study, the velocity profiles under consideration are extracted from the base flow field, and are 
curve-fitted with the equation (6) calculating the corresponding values of R, 1/N. Further, the 
R, 1/N pairs can be placed on the R-1/N plot (Fig. 5b), thus immediately characterizing the 
nature of local instability (absolute or convective).     

 
(a) (b) 

  

Fig. 5. (a) Cylinder wake profiles of the family described by eq. (6) for N=100 (top-hat 
profile) and N=2 (parabolic profile), and (b) absolute and convective instability regions as a 
function of the wake velocity profile parameters, R, 1/N (Monkewitz, 1988). 

Local instability properties can be calculated from the solution of the Orr-Sommerfeld 
stability equation. The latter is derived from the Navier-Stokes equations, as outlined 
subsequently.    
 

Linear hydrodynamic stability analysis of a shear flow, as the flow past a cylinder,  
considers a base flow, which is mathematically the solution of the steady flow equations. If 
the base flow is perturbed, the resulting instantaneous fields are characterized in two 
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dimensions by the velocity field (u,υ) and the static pressure, p, expressed in terms of the 
coordinates of a cartesian system (x,y) and time, t. The partial differential equations governing 
the evolution of the base flow are the 2D Navier-Stokes equations:  
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(8) 

 
The solution of the Navier-Stokes equations can be considered as a superposition of the 

base flow field (U,V,P) and a perturbation flow field (u΄,υ΄,p΄) as follows (Drazin and Reid, 
1981): 
 

u(x, y,t) = U(x, y) + u (x, y,t)
υ(x, y,t) = V(x, y) + υ (x, y,t)
p(x, y,t) = P(x, y) + p (x, y,t)

′
′
′

                                                
 

(9) 

 
Under the parallel flow assumption, discussed above, the velocity vector of a two-

dimensional base flow reduces to (U(y),0), resulting in a superposition of the following form: 
 

u(x, y,t) = U(y) + u (x, y,t)
υ(x, y,t) = υ (x, y,t)
p(x, y,t) = P(x, y) + p (x, y,t)

′
′

′
                                                

 
(10) 

 
After substituting the above expressions in equations (8), and neglecting the quadratic 

terms of velocity disturbances, the partial differential equations governing the perturbation 
dynamics are derived: 
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+ + = + ∂ ∂ ∂ ∂ ∂ 

                                    
 
(11) 

 
A combination of the previous equations eliminates the pressure contributions and can 

yield a system of two partial differential equations with unknowns the perturbations u΄(x,y,t) 
and υ΄(x,y,t), with coefficients that are functions of only the transverse direction, y. The 
particular solutions for u΄ and υ΄ have the form ( )( ) i kx tF y e ω− , where k=kr+iki and ω=ωr+iωi 
represent the complex wavenumber and frequency, respectively. The real part of the local 
linear complex frequency is the local linear frequency, ωr, whereas its imaginary counterpart 
is the local linear temporal growth rate, ωi. These particular solutions are called ‘normal 
modes’. By considering that u΄ and υ΄ can be derived from the differentiation of a proper 
streamfunction, of the same functional form, the Orr-Sommerfeld stability equation can be 
derived:    
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2 2 4( ) ( ) ( 2 ) 0k U f k f k U f i v f k f k fω ′′ ′′ ′′′′ ′′⋅ − ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ =           (12) 
 
where differentitation of the amplitude function, f, is with respect to the coordinate y.  
 

The Orr-Sommerfeld equation is a fourth order partial differential equation in f, which can 
be solved by imposing appropriate boundary conditions. In the case of wake flows, vanishing 
velocity perturbations can be used as boundary conditions at the profile boundaries, as long as 
the boundaries lie far enough, in a region where the effect of the bluff-body on the 
surrounding flow vanishes. Non-trivial solutions of the equation exist only for particular 
combinations of the parameters k, ω, v. These combinations are expressed by the dispersion 
relation, defined as follows: 
 

( , , ) 0F kν ω =                                                             (13) 
 

Typically, the viscosity, ν, is known; therefore the above equation involves two complex 
unknown eigenvalues. Thus, in local stability calculations, one needs to assign the viscosity 
(equivalently the Reynolds number) and either k or ω, and solve for the eigenvalues of the 
other complex unknown. In the present study, the Orr-Sommerfeld equation is 
computationally solved, by utilizing a numerical solver based on high-order finite differences, 
developed by G.S. Triantafyllou (see Triantafyllou et al., 1986); the dispersion relation, 
ω=ω(k), is thus attained. Further, the local linear absolute complex frequency, ω0, is 
identified as a branch point singularity of the dispersion relation:  
 

0

( ) 0d k
dk k k
ω =

=
                                                        (14) 

The process of identifying the absolute frequency for a representative wake profile (Fig. 
6b), extracted from the cylinder wake base flow (Fig. 6a), is illustrated in terms of the 
isocontours of ωr and ωi of Fig. 6c,d. As illustrated in Fig. 5d, this profile is characterized by 
a positive absolute growth rate, i.e. it is absolutely unstable. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 6. Base flow past a circular cylinder, at Re=90: (a) iso-contours of streamwise velocity, 
U, (b) streamwise velocity profile at x/D=2, and corresponding Orr–Sommerfeld eigenvalues 
in terms of isocontours of (c) ωr and (d) ωi, in the complex wavenumber plane. Here,

0 0.762 0.195 iω = + ⋅ , corresponding to absolute instability.    
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Finally, local instability properties can be correlated with the global flow instability, as 
demonstrated by the work of Chomaz et al. (1990). In spatially developing flows, a sufficient 
intensity of local absolute instability, depending on both the streamwise extent of absolute 
instability and the magnitudes of absolute growth rates, is necessary to trigger global 
instability. This concept is expressed by the criterion of Chomaz et al. (1990) for the onset of 
global instability: 

 
0, ( ) (1)

b

a

x

g i
x

I x dxω= ≥ Ο∫
 

(15) 

where the absolutely unstable region is considered to extend from x=xa to x=xb. The quantity, 
Ig, expresses the global intensity of absolute instability; this quantity must exceed a certain 
threshold to excite unstable global modes. In the present work, the stability of cylinder wakes 
is characterized by stability calculations, validated against literature data; corresponding 
validation studies are presented in Appendix A.1.    
 

1.4.2 Global instability   
 
As has been demonstrated in previous studies (Mathis et al. 1984, Provansal et al. 1987, 
Jackson 1987), the von Kármán vortex street is a direct consequence of a Hopf bifurcation. 
This type of bifurcation is characterized by the continuous growth of an unstable global mode 
towards a limit cycle, at supercritical values of the system parameter (here the Reynolds 
number). At slightly supercritical Reynolds number, the time variation of small disturbances 
superimposed on the steady solution can be divided into three stages. First, disturbances 
organize themselves into the most unstable mode, whereby all but one discrete frequencies 
are being damped. In general, this initial step lasts for a short time, in comparison to the 
second part, where the dominant eigenmode, or unstable global mode, grows exponentially, at 
a rate referred to as the "global" growth rate. The exponential growth of disturbances can be 
observed, as long as these remain small (i.e. if the square of disturbance terms remains 
negligible with respect to the other terms in the governing equations), so that the system 
dynamics is in very good approximation linear around the steady solution. In the third and 
final part, taking place after sufficient time, disturbances reach a non-negligible level, and 
non-linear effects (due to the quadratic terms of fluctuations) tend to moderate their growth,  
until their saturation. As shown in the experimental studies on the circular cylinder wake 
(Mathis et al. 1984, Provansal et al. 1987), the corresponding system dynamics can be 
described in terms of an evolution equation of a characteristic (complex) amplitude, A(t), as 
the Stuart-Landau equation:  
 

 
( )2 5dA sA lA A

dt
Ο Α= − +                                               (16) 

 
In the present study the amplitude, A, can represent any global quantity (e.g. the drag 

coefficient, CD, or the lift coefficient, CL), or a local quantity (e.g. the υ-velocity at a given 
point). The parameters of the Stuart-Landau equation are the global frequency, s = σr+iσi, and 
the Landau constant, l=lr+ili. The real part of the global frequency, σr is referred to as the 
global growth rate, whereas the imaginary part, σi, expresses the linear frequency. The global 
frequency depends, on the value of the bifurcation parameter, in particular the Reynolds 
number for the problems of the present study. While the global frequency, s, is a global (i.e. 
spatially-independent) quantity, the complex Landau constant, l, depends on spatial location 
(i.e. the choice of A), with the ratio lr/li being spatially independent.  
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The procedure for calculating these coefficients from a raw (computational or 
experimental) signal, corresponding to the growth of an unstable mode, is presented in 
Schumm et al. (1994), and can be summarized as follows. For an amplitude represented by a 
proper signal, as that of the lift coefficient, CL(t), the global linear growth rate, σr, and the 
global linear frequency, Stg, can be calculated based on the signal magnitude, |A(t)|, and the 
signal phase, a(t), respectively: 

 
1

r

d A
A dt

σ =                                               (17) 

1
2 2

i
g

daSt
dt

σ
π π

= =                                                  (18) 

 
As outlined in Schumm et al. (1994), to determine the complex signal

( )( ) ( ) ( ) ( ) ia t
r it t iA t A t eΑ Α= + =  from the raw signal, Ar(t), the imaginary part of the signal, 

Ai(t), should be calculated; this can be attained using the Hilbert transform of Ar(t):  
 

( )rHilbert AιΑ =                                                (19) 

An ideal Hilbert transform is an all-pass filter imposing a constant phase shift of 
2

π
; the 

corresponding transfer function in the frequency domain is:    
 

, 0
( )

, 0

i if f
H f

i if f

− >= 
+ <

                                               (20) 

 
Finally, the signal magnitude, |A(t)|, and the signal phase, a(t), are calculated as follows: 
 

2 2( ) r it A AΑ = +                                                (21) 

( ) arctan i

r

Aa t
A

 
=  

 
                                                  (22) 

 
The process of identifying the global linear growth rate, σr, and the global linear 

frequency, Stg, by analyzing the lift coefficient signal, CL(t), of uncontrolled flow past a 
circular cylinder at Re=60 is illustrated in Fig. 7. Based on the computed lift signal, CL(t) (Fig. 
7a), the lift signal magnitude |CL(t)| is calculated (Fig. 7b), by using equations (19, 21). The 
linear region (of exponential growth) is identified by plotting the lift signal magnitude in a 
logarithmic scale (Fig. 7c). Finally, the global linear growth rate, σr, and the global linear 
frequency, Stg, are calculated by applying equations (17) and (18), respectively. 

 
The present methodology and tools developed for calculating global linear growth rate 

and frequency have been validated by comparing results from analyzing computed lift signals 
with literature data; an excellent agreement has been demonstrated (see Appendix A.2).  
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(a) 

 

(b) 

 

(c) 

 
Fig. 7. Re=60, uncontrolled flow past a circular cylinder: (a) Computed lift coefficient signal, 
CL(t), (b) Lift coefficient magnitude versus time, |CL(t)|, and (c) semi-log plot of  lift 
coefficient versus time, log10|CL(t)|. Here, σr=0.04137, Stg=0.121. 

1.5 Flow control: application to flow past a cylinder 
 
Flow control can be defined as the action of manipulating a flow in order to obtain a 
beneficial change. When a control scheme is applied to a dynamical system, an actuator 
performs a control action, which is defined by a controller, in order to achieve a desired 
control goal. As analyzed in Gad-el-Hak (2007), control schemes can be classified in three 
categories: (a) passive control, (b) active open-loop control, and (c) active feedback control.  
In passive control, no energy input is introduced. The flow system is thereby properly 
transformed (e.g. in terms of a geometry modification), in order to achieve a prescribed goal. 
In active open-loop control, a steady energy input is required, in order to implement a 
predefined control action; the latter is independent of the system state. Finally, in active 
feedback control, the state of the system, as represented by one or more signals measured via 
sensors, is fed back to a controller, which determines the control action of an actuator, to 
approach a given control goal; the system state thus guides the control implemented. 
Feedback flow control concepts are analyzed in Aamo and Krstic (2003) and Bewley (2001), 
among others. Modern flow control studies trarget a wide range of applications: drag 
reduction in aircrafts, process control in chemical industries, route control in aircrafts, ships 
and vehicles, etc. Commonly, a control strategy is associated with undesired secondary effects 
(as drag increase with turbulence enhancement). Thus, flow control can be considered from 
an optimization point of view, i.e. achieving the control objective while also minimizing 
negative effects.  
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Regarding flow past a cylinder, several control strategies have been reported in literature 
studies, of all three types outlined above; an extensive review is presented in Choi et al.  
(2008). In particular, passive control studies include the one by Roshko (1955), who placed a 
splitter plate in the cylinder wake, to suppress the vortex street. Strykowski and Sreenivasan 
(1990), Mittal and Raghuvanshi (2001), and Yildirim et al. (2010) investigated the stabilizing 
effects induced by the placement of a smaller cylinder (control wire) in a cylinder wake. More 
recently, the effect of slip conditions on the cylinder surface, enabled by hydrophobic and 
superhydrophobic materials, has been investigated. It was demonstrated that a significant 
reduction in the intensity of lift and drag force oscillations can be attained (You and Moin, 
2007), and even a full suppression of the vortex street (Legendre et al., 2009). Open-loop 
control studies have utilized cylinder rotation, steady or oscillatory, to affect the flow stability 
and dynamics, e.g. Tokumaru and Dimotakis (1991), Tokumaru and Dimotakis (1993), and 
Mittal and Kumar (2003). Wood (1964), Delaunay and Kaiktsis (2002), and Dong et al.  
(2008) have shown that the dynamics of cylinder wake can be substantially affected by means 
of mass transpiration from the cylinder surface. Of particular interest is the work of Milano 
and Koumoutsakos (2001). They have used two types of  actuation in order to control flow 
past a cylinder: (a) steadily and tangentially to the cylinder surface moving belts, and (b) 
steady blowing/suction from the cylinder surface with a zero net mass constraint. Both control 
schemes have been optimized by means of a clustering genetic algorithm, aiming at the 
minimization of drag force. Other open-loop control schemes include cylinder heating 
(Lecordier et al. 1991), as well as the application of a Lorentz force (Chen and Aubry 2003). 
Finally, active feedback control strategies have included acoustic excitation of the wake 
(Roussopoulos 1993), time-dependent mass transpiration (Park et al., 1994, Min and Choi, 
1999) and time-dependent cylinder rotary oscillations (Lee et al., 2009). 

 

1.6 Flow control methods implemented in the present study 
  
The goal of the present study is to achieve partial or full vortex street cancelation, by means 
of a minimal control effort. Since global stability is strongly affected by the local stability 
properties in the near wake region, one may device a control strategy consisting in the proper 
modification of the near wake velocity profiles. For this purpose, two appropriate control 
measures are applied on the cylinder surface, namely: (a) implementation of slip conditions, 
and (b) application of mass transpiration. 
 

Firstly, slip conditions are applied on the surface of the cylinder, in the frame of a passive 
control scheme. The latter can be implemented in practice by hydrophobic and 
superhydrophobic materials. These materials enable fluid slip with respect to the solid 
surface. As indicated in Rothstein (2010), hydrophobic and superhydrophobic surfaces are 
promising candidates for drag reduction and possibly heat transfer enhancement in 
engineering flow applications. You and Moin (2007), Legendre et al. (2009), Muralidhar et al.  
(2011), and Seo and Song (2012) investigated the flow past a hydrophobic cylinder, aiming at 
identifying the effects of the resulting surface hydrophobicity on flow stability and dynamics.  
It was demonstrated that hydrophobicity reduces the intensity of lift and drag force 
oscillations (You and Moin, 2007), and may even lead to a complete suppression of the vortex 
street (Legendre et al., 2009). These effects of slip on flow dynamics can be correlated to the 
modification of the near wake structure of the base flow, and mainly to the decreased extent 
of the two recirculation zones, as highlighted in Muralidhar et al. (2011) and in Seo and Song 
(2012); this affects in turn the non-linear flow state. In flow past a cylinder, a major 
advantage in implementing surface hydrophobicity is the lack of any other intervention in 
terms of either energy input or geometry modification. As the manufacturing of hydrophobic 
and superhydrophobic surfaces is still quite expensive, minimizing the associated cost (e.g. by 
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minimizing the hydrophobic/superhydrophobic area and the material cost per unit area) 
should be a main consideration of a corresponding design. The goal of the present study is 
thus to investigate whether a formal optimization procedure can lead to full or partial 
suppression of the Kármán vortex street by use of substantially lower control effort, in 
comparison to the previous studies. In the present study, this goal is achieved by 
implementing hydrophobicity on a part of the cylinder surface (partial slip), instead of the 
entire cylinder surface (full slip); the extent of this region is identified in the frame of an 
optimization study.  

 
Secondly, steady mass transpiration is applied on the surface of the cylinder, utilizing an 

active open-loop control scheme. The stabilizing/destabilizing effects of steady mass 
transpiration were investigated in the representative previous literature studies of Wood 
(1964), Delaunay and Kaiktsis (2002), and Dong et al. (2008). In particular, the work of 
Delaunay and Kaiktsis (2002) was motivated by the fact that global instability is strongly 
affected by the local instability properties in the near wake region. Thus, suction or blowing 
was applied only in the rear stagnation point region. Delaunay and Kaiktsis (2002) 
demonstrated that vortex street can be completely suppressed, utilizing both suction and 
blowing. However, the suction control effort may be an order of magnitude greater than the 
corresponding blowing control effort, leading to the conclusion that the most effective method 
is blowing (Delaunay and Kaiktsis, 2002). Extending the approach of the above studies, with 
the aim of minimizing the total control effort, in the present work mass transpiration is not 
restricted in the rear stagnation point region, and includes the front stagnation point region, as 
well as in the sideway region. Further, in order to minimize the pumping requirements of 
mass transpiration and the corresponding power input, the minimization of the 
suction/blowing flow rate is of high interest; here, a practically relevant constraint of zero net 
flow rate is considered. To this end, an optimization problem is formulated, in order to arrive 
at optimal solutions corresponding to partial or full vortex street cancellation, at a minimal 
control effort.  
 

The thesis is organized as follows. In chapter (2) we present the computational modeling 
of the problem and the numerical method used. In chapter (3) we present the passive control 
scheme which utilizes surface hydrophobicity, and the corresponding results of the 
optimization problem. In chapter (4) we present the active open-loop control scheme which 
utilizes mass transpiration, and the corresponding optimization results. In both chapters (3) 
and (4) the results are interpreted by stability analysis calculations. In chapter (5) two active 
feedback control schemes are applied, utilizing (a) active mass transpiration, and (b) active 
surface hydrophobicity; the parameters of both control schemes are optimized for minimum 
control effort. Finally, in chapter (6) the novelties of the present work and its contribution to 
scientific research are highlighted, and in chapter (7) the main conclusions are summarized, 
and suggestions are made for future work.   
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Chapter 2 : Computational approach    
 

We consider an infinitely long circular cylinder of diameter D immersed in a uniform cross-
flow of a Newtonian fluid, with free stream velocity Uinf. Two control setups are 
implemented. In the first setup, slip conditions are applied on the cylinder surface, whereas, in 
the second one, mass transpiration is implemented. Both control measures are perfectly 
symmetric with respect to the symmetry axis parallel to the free stream. These control 
measures are applied first on the entire cylinder surface and next on a part of it. In the present 
computational study, Direct Numerical Simulation (DNS) is utilized. The details of problem 
setup and numerical method, as well as results of resolution and validation tests perfomed, are 
given in the present chapter.   
 
2.1 Problem formulation 
 
We consider flow past a cylinder at low values of Reynolds number. The flow is governed by 
the two-dimensional incompressible Navier–Stokes equations, written here in non-
dimensional form: 
  

0u∇ ⋅ =


                                                         (23) 
1u

u u p u
t Re

∇ ∇ ∆
∂

+ ⋅ = − +
∂



  

                                                 (24) 

where ( , )u u υ=
  is the velocity vector and p  the static pressure. ‘∇ ’ denotes ,

x y
 ∂ ∂
 ∂ ∂ 

, 

‘∆ ’ is the Laplace operator, 
2 2

2 2x y
∂ ∂

+
∂ ∂

, and ‘ ⋅ ’ denotes the scalar product. All variables are 

defined in a Cartesian coordinate system (x, y), whose origin is located at the cylinder center.   
Here, physical variables are non–dimensionalized with proper scales based on the cylinder 
diameter, D, the free stream velocity, Uinf, and the fluid density, ρ, whereas frequencies are 

non-dimensionalized as Strouhal numbers,
inf

fD
St

U
= . The Reynolds number is defined as,

infU D
Re

ν
= , where ν is the kinematic viscosity of the fluid.  

 
The numerical solution of the governing equations utilizes the ANSYS CFX CFD code. 

Here, a second-order finite volume approach, with quadrilateral finite volumes, is adopted. 
    

The computational domain, illustrated in Fig. 8, extends 20D upstream from the cylinder 
center and 60D downstream, while the lateral boundaries lie 17D  from y=0, the domain 
centerline (Fig. 8). The adequacy of this domain size has been demonstrated in relevant 
literature studies, as in Kaiktsis et al. (2007), Evangelinos and Karniadakis (1999), and 
Delaunay and Kaiktsis (2001), for uncontrolled flow. Furthermore, Delaunay and Kaiktsis 
(2001) demonstrated that, in the case of mass transpiration, the flow solution is not affected 
for a domain size of the order of the present one or bigger.   
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Fig. 8. Sketch of the flow domain. 

The following conditions are prescribed at the domain boundaries.  

Inflow and lateral boundaries: 1, 0infu U υ= = =    

Outflow boundary: p=0, Neumann velocity boundary condition.   

Depending on the control method, the following boundary conditions are applied on the 
cylinder surface: 

(a) For uncontrolled flow, a no-slip condition is implemented on the cylinder surface: u=υ=0.    

(b) When slip conditions are applied on the entire cylinder surface or on a part of it (see 
chapter 3), the Navier model (Zhang et al. 2012) is adopted. The model assumes that the fluid 
flows against a fictitious (non-hydrophobic) surface, located at a distance b from the actual 
solid boundary; the distance b is called the slip length; a typical sketch demonstrating its 
physical importance is presented in Fig. 9. According to the Navier model, the slip velocity at 
the cylinder surface is proportional to the local values of shear stress and slip length. Thus, in 
the present problem, the boundary conditions on the cylinder surface can be defined in terms 
of the non-dimensional velocity components in the circumferential, uθ, and radial direction, 
ur, as follows: 

        
* * u

u b
r

Re b θ
θ τ

∂
=

∂
= , 0ru =                                                  (25) 

where τ is the non-dimensional wall shear stress and * bb
D

=   is the non-dimensional slip 

length. In the present setup, slip conditions are applied first on the entire cylinder surface 
(Fig. 10a) and next on a part of it, i.e. on an arc lying between θmin and θmax (Fig. 10b); on the 
non-hydrophobic part of the surface, a no-slip condition (u=0, υ=0) is applied. It is noted that 
the value of slip length is assumed to be constant along the entire hydrophobic part of the 
cylinder surface. 
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Fig. 9. Definition of slip length, b, in flow past a hydrophobic surface. 

(a) (b) 

 
 

Fig. 10. (a) Application of slip on the entire cylinder surface: sketch of velocity profile near 
the cylinder, for a slip length b. (b) Application of slip on an arc lying between θmin and θmax.  

(c) When mass transpiration is applied on the cylinder surface, the corresponding suction or 
blowing velocity profile is specified on the cylinder boundary, and the direction of the 
velocity is radial. Here, two cases are considered: (a) suction or blowing is applied on a part 
of the cylinder surface (Fig. 11a), and (b) suction is applied on a part of the cylinder surface,  
whereas blowing is applied on the remaining part (Fig. 11b). In both cases, the control effort 
is quantified based on the suction flow rate, Qsuc, defined as follows: 

  
        

             (26)   

where R is the cylinder radius. Taking into account the reference flow rate, ref infQ U D= , the 

non-dimensional counterpart of Qsuc, the suction coefficient, Csuc, is defined: 

suc
suc

ref
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Q

=           (27) 
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(a) (b) 

 
 

Fig. 11. (a) Application of blowing on a part of the cylinder surface, (b) application of suction 
on a part of the cylinder surface and blowing on the remaining part.  

In flows past bluff bodies, the forces exerted on the body consist a main feature, which is 
of high importance for practical applications. The total force results from the summation of 
the pressure and the viscous force, Total Pressure ViscousF = F + F . The pressure force, FPressure, and 
the viscous force, FViscous, on the cylinder surface are defined as follows: 

        Pr essure Cylinder
F p n dA= − ⋅ ⋅∫



                      (28)   

        Viscous Cylinder
F u n dAµ= ⋅∇ ⋅ ⋅∫

 

                    (29)   

where u∇  : the velocity gradient on the cylinder surface, n : the unitary normal vector to the 
surface, μ: the dynamic viscosity of the fluid. Forces are commonly expressed in non-
dimensional form in terms of the drag and lift coefficients. For FX and FY being, the x and y 
components of the total force per unit length, Ftotal, the drag coefficient, CD, and the lift 
coefficient, CL, are defined as follows:  

         
2
inf

2 X
D
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U Dρ

= ,   2
inf

2 Y
L

FC
U Dρ

=                                        (30)   

Throughout the present study, the drag and lift forces are calculated by processing computed 
instantaneous flow fields. 
 

2.2 Resolution tests 
 
The numerical solution of the discretized Navier-Stokes equations utilizing the finite volume 
method, as presented in the previous section, is obtained by proper spatial discretization of the 
flow domain and temporal discretization of the time domain. In the following sub-sections a 
proper finite volume mesh, as well as a proper value of the numerical time step, are selected, 
by means of spatial and temporal resolution tests. 
 

2.2.1 Mesh generation – spatial resolution tests 
 

In the present study, due to the presence of the cylinder, the generation of a fine mesh can be 
based on the decomposition of the flow domain in sub-domains; here the flow domain is 
divided into three, five and eleven sub-domains (Fig. 12). The spatial resolution tests are 
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performed for a numerical time step value Δt=0.01. For each of the grids considered, force 
coefficients are calculated for an uncontrolled flow at a Reynolds number value of 90, and are 
presented in Fig. 14. The time-averaged value of the drag coefficient, <CD> (Fig. 14a), the 
amplitude of the drag coefficient, CD,ampl (Fig. 14b), and the amplitude of the lift coefficient, 
CL,ampl (Fig. 14c), show practically negligible differences between the highest resolution (11 
sub-domains – total of 113,000 finite volumes) and a medium resolution (5 sub-domains – 
total of 54,000 finite volumes). This demonstrates the adequacy of a spatial resolution 
consisting of 54,000 finite volumes in this range of Reynolds number, and is therefore used 
throughout the main body of the present thesis. It is also noted that, based on spatial 
resolutions tests, a number of about 100 finite volumes osculating to the cylinder surface is 
sufficient; a detail of such a mesh near the cylinder surface is presented in Fig. 13. 

 
 

Fig. 12. Decomposition of the flow domain into three, five and eleven sub-domains. 

 

 
 

Fig. 13. Detail of a finite volume mesh close to the cylinder (the number of finite volumes 
osculating to cylinder surface is close to 100). 



22 
 

 Spatial discritization (Δt=0.01) 

(a) 

 

(b) 

 

(c) 

 
 
Fig. 14. Spatial resolution tests for uncontrolled flow at Re=90. Computed values of force 
coefficients: (a) time-averaged drag coefficient, (b) drag coefficient amplitude, and (c) lift 
coefficient amplitude, versus the number of finite volumes, N. A time step value of Δt=0.01 is 
utilized.  

2.2.2 Temporal resolution tests  
 
In the present sub-section, temporal resolution tests are reported for a grid consisting of 
54,000 finite volumes. Four values of the numerical time step are tested, namely Δt = 0.005, 
0.01, 0.02, and 0.05. The corresponding computed values of force coefficients are presented 
in Fig. 15. The results demonstrate that the deviation between the results of the highest 
resolution (Δt=0.005) and a lower one (Δt=0.01) is in the third decimal point, i.e. the flow 
fields computed for a time step of Δt=0.01 are acceptable; thus, this value of the time step is 
used in all simulations reported subsequently. 
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 Temporal discritization (N=54,000) 

(a) 

 

(b) 

 

(c) 

 
Fig. 15. Temporal resolution tests for uncontrolled flow at Re=90. Computed values of force 
coefficients: (a) time-averaged drag coefficient, (b) drag coefficient amplitude, and (c) lift 
coefficient amplitude, versus the numerical time step, Δt. A grid consisting of 54,000 finite 
volumes is utilized.   
 
 
2.3 Validation tests  
 
The present CFD results are validated by comparing high resolution simulations of the 
uncontrolled flow against published literature data; both the non-linear flow state and the base 
flow are considered. Here, the Reynolds number range Re=10 to 180 is simulated, for which 
the flow remains two-dimensional. First, results regarding the non-linear flow state are 
presented in Fig. 16. In particular, Fig. 16a presents the variation of time-averaged drag 
coefficient with Reynolds number, for the present study and that of Henderson (1995), and 
Fig. 16b the variation of non-dimensional shedding frequency (Strouhal number) for the 
present results and the ones of Barkley and Henderson (1996) and Fey et al. (1998); an 
excellent agreement between the present and the literature results is demonstrated. On the 
other hand, results concerning the base flow are presented in Fig. 17. In particular, Fig. 17a 
presents the variation of non-dimensional length of the recirculation zones with Reynolds 
number, for the present results and the ones of Delaunay and Kaiktsis (2001), and Gianneti 
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and Luchini (2007); the well-known linear dependence is illustrated, with the present results 
being in excellent agreement with the previous studies. Finally, Fig. 17b presents the variation 
of separation point angle with Reynolds number, for the present results and the ones of 
Fornberg (1980), indicating an acceptable agreement. It is noted that, regarding the separation 
point of the base flow, several literature data are available, with deviations of up to 15ο 
degrees between them (Wu et al., 2004); the present results are characterized by values close 
to the middle of the range of reported values.   

 

(a) 
 

 

(b) 

 
Fig. 16. Variation of computed flow quantities with Reynolds number for uncontrolled flow 
past a circular cylinder, for the present study and literature studies: (a) Time-averaged drag 
coefficient, <CD>, (b) Strouhal number, St. 
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(a) 
 

 

(b) 

 
Fig. 17. Variation of computed flow quantities with Reynolds number for uncontrolled base 
flow past a circular cylinder, for the present study and literature studies: (a) Non-dimensional 
recirculation zone length, xR/D, and (b) separation point angle, θs (the reference point is the 
front stagnation point).  
 
 
2.4 Summary of Chapter 2 
 
In this chapter, a computational model of the flow past a circular cylinder was developed. 
First, the geometry of the flow domain of a proper size was generated. Next, the governing 
equations and the boundary conditions of the problem were defined. In particular, regarding 
the cylinder surface, different boundary conditions, corresponding to different control 
approaches, were presented: (a) application of a slip condition, and (b) application of mass 
transpiration. Reference was made to the finite volume method of the ANSYS CFX used in 
the present work. Spatial and temporal resolutions tests were developed, and have 
demonstrated grid and time step independence. Finally, validation tests were performed, for 
both the non-linear and the base flow state, and demonstrated an excellent agreement between 
the present results and the ones of literature studies.  
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Chapter 3: Implementation of surface 
hydrophobicity 
 

In the present chapter, a passive control scheme of a flow past a cylinder is implemented, 
aiming at a full or partial suppression of the Kármán vortex street. First, hydrophobicity is 
applied on the entire cylinder surface (full slip); the present results are in good agreement 
with those of previous literature studies. However, based on numerical experiments, it is 
found that implementing slip either in the front stagnation point region or in the rear 
stagnation point region has a destabilizing effect on the flow. Guided by this observation, slip 
is applied on a part of the cylinder surface (partial slip), and the stabilizing effects are 
compared to the corresponding case of full slip, illustrating the superiority of partial slip. 
Thus, a multi-objective optimization problem is formulated, aiming at arriving at desired 
levels of flow unsteadiness at a minimal control effort in terms of partial slip; this control 
effort is quantified by the product of slip length and hydrophobic area. Optimal solutions of 
the Pareto front correspond to a decrease in control effort of the order of 50%, in comparison 
to full slip. Finally, representative optimal solutions are characterized by means of local and 
global instability calculations.    

 

3.1 Application of slip on the entire cylinder surface 
 

In the present section, a slip condition is applied on the entire cylinder surface, and the 
corresponding computational results are presented; the concept of full slip has been defined in 
section 2.1. For given Reynolds number, the flow is computed for several values of b*, as 
follows: Time dependent simulations are first performed for the uncontrolled case (b*=0), 
until a limit cycle is reached. Subsequently, controlled cases (b*≠0) are simulated, with a field 
on the limit cycle of uncontrolled flow as initial condition. This is equivalent to implementing 
a finite amplitude perturbation, for all controlled flow cases investigated. The corresponding 
base flows are also computed.  

 For all values of Re considered, it is found that the intensity of flow fluctuations 
decreases at increasing slip length, until stabilization of the global flow is attained at a critical 
value of b*. The effects of full slip on the global flow are illustrated in Fig. 18, for a 
representative value of Reynolds number (Re=120). In particular, Fig. 18a shows the 
computed flow structure, for different values of b*, in terms of instantaneous streamline 
patterns, illustrating the decrease of vortex intensity at a b* value of 0.10, and the cancellation 
of the Kármán street at b*=0.20. Slip velocity distributions for the base flow fields, also 
shown in Fig. 18a, demonstrate the increase in slip velocity magnitude at increasing b*, with 
the maximum of distribution appearing at higher values of angle θ, in agreement with a 
corresponding dependence of base flow separation point angle (see below). Further, the drag 
and lift coefficient signals of Fig. 18b demonstrate a substantial decrease in average (drag) 
and fluctuating force components after the onset of slip control (at a non-dimensional time of 
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300 units). Force fluctuations become zero at large times in the case of global flow 
stabilization (b*=0.20).  

Table 1 summarizes important statistical quantities of the uncontrolled flow, as well as the 
critical b* values for stabilization, and the corresponding drag coefficient values. It is verified 
that the control effort for stabilization, expressed by the critical value of b*, is an increasing 
function of Re. The critical b* values found in the present study are in good agreement with 
the ones of Legendre et al. (2009), also presented in Table 1. The computed values of drag 
coefficient, CD, of stabilized flow are substantially lower than the reported time-averaged 
values, <CD>, of uncontrolled flow.  

Table 1 Computed values of statistical flow quantities, at different values of Reynolds 
number, for: (i) uncontrolled flow, (ii) stabilized flow at a critical value of non-dimensional 
slip length, also including a previous study (Legendre et al., 2009).  

 
Uncontrolled flow 

(present study) 
Stabilized flow 
(present study) 

Stabilized flow 
(Legendre et al., 2009) 

Re St <CD> CL,RMS b* CD b* 
60 0.134 1.417 0.089 0.090 1.149 0.088 
90 0.158 1.380 0.202 0.170 0.826 0.169 

120 0.171 1.334 0.294 0.200 0.684 0.204 
180 0.183 1.325 0.429 0.250 0.495 0.251 

 

In more detail, Fig. 19 presents important global quantities of the base flow, as well as 
force RMS fluctuation intensities at the saturated non-linear state, for several combinations of 
the controlling parameters (Re, b*). Fig. 19a demonstrates that the increase in slip length 
reduces the recirculation zone length, xR/D, of the base flow, while maintaining the well-
known linear dependence on Reynolds number of the uncontrolled flow, for low values of b*. 
The observed decrease is, of course, a consequence of the delayed flow separation at 
increasing b*, expressed in terms of the angle θs (Fig. 19b), which is enabled by the higher 
momentum in the boundary layer region. Finally, Fig. 19c, Fig. 19d and Fig. 19e illustrate the 
decrease in force coefficient levels at increasing b*; for all values of b*, fluctuation intensities 
remain increasing functions of Re. In summary, increasing the slip length for a given value of 
Reynolds number results in delayed separation in base flow, which in turn reduces the extent 
of recirculation zones (equivalently: modifies the near wake stability properties). As a result,  
the intensity of flow fluctuations in the saturated non-linear state decreases, and the flow is 
stabilized at a critical value of slip length.  
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Fig. 18. Computational results for Re=120, for uncontrolled flow and for two values of b*.   
(a) Base flow slip velocity distributions and instantaneous streamline patterns of asymptotic 
flow states.  (b) Drag and lift coefficient signals. Slip is applied at a no non-dimensional time 
of 300 units.  



30 
 

 
 

Fig. 19. Flow quantities versus Re, for different values of b*: (a) non-dimensional 
recirculation length of base flow, (b) base flow separation angle, (c) time-averaged drag 
coefficient, (d) RMS fluctuation intensity of drag coefficient, and (e) RMS fluctuation 
intensity of lift coefficient.  
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3.2 Application of slip on part of the cylinder surface 
 
The slip velocity distributions presented in Fig. 18a demonstrate that slip velocity magnitude 
remains at low levels in the front and (even lower) in the rear stagnation point region. To 
further investigate the effect of applying slip in these two regions of low slip velocity, 
simulations are performed for Re=90, in which slip conditions are applied exclusively: (a) on 
a region extending ±37.5ο from the front stagnation point, (b) on a region extending ±37.5ο 
from the rear stagnation point; the extent of ±37.5ο is selected taking into account the slip 
velocity distribution of base flow. In both cases, the representative value of non-dimensional 
slip length b*=0.17 is utilized, which corresponds to global flow stabilization at Re=90 with 
application of full slip. Fig. 20 presents the computed wall slip velocity distributions of base 
flow, as well as lift coefficient time series. For the case of applying slip in the front stagnation 
point region, the results in Fig. 20 illustrate the presence of slip velocities substantially lower 
than the free stream velocity, as well as a slight increase in the lift amplitude, which is 
indicative of a weak destabilizing effect. For the case of applying slip in the rear stagnation 
point region, Fig. 20 demonstrates the presence of negative slip velocities, and an increase in 
lift amplitude. This increase is small in comparison to the lift amplitude of uncontrolled flow, 
nonetheless more pronounced in comparison to the corresponding increase for slip application 
in the front stagnation point region; thus, the destabilizing effect is stronger in the case of 
applying slip in the rear stagnation point region. The presence of negative slip velocities in 
the case of applying slip in the rear stagnation point region suggests that back flow is 
enhanced in the near wake. This contributes to an enhancement of local absolute instability 
(Monkewitz 1988), and thus to an enhancement of global flow instability. In summary, 
applying slip in both the front- and the rear stagnation point region has a destabilizing effect.  
This suggests that utilizing a hydrophobic surface in these areas could be avoided (use of 
partial slip), leading to a lower cost in an actual implementation.  

Case Slip Velocity Distribution Lift Signal 

(a) 
Slip at the 

Front 
Stagnation 

Point 
Region 

  

(b) 
Slip at the 

Rear 
Stagnation 

Point 
Region 

  
Fig. 20. Re=90, b*=0.17: distribution  of slip velocity, uθ, on the cylinder surface for base 
flow, and lift coefficient signal, for the cases where slip condition is applied: (a) on a region 
extending ±37.5ο  from the front stagnation point, and (b) on a region extending ±37.5ο from 
the rear stagnation point. Slip is applied at t=300.  
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To investigate in further detail the effects of implementing partial slip, different variations 
of slip application were tested at Re=90, for the representative value of non-dimensional slip 
length b*=0.17, corresponding to global flow stabilization with application of full slip. Here, it 
is considered that slip is applied on an arc between angles θmin and θmax, both defined with 
respect to the front stagnation point (see Fig. 21). Subsequently, four cases are reported, in 
particular: (a) θmin=0ο, θmax=180ο (full slip), (b) θmin=0ο, θmax=142.5ο (no slip in the rear 
stagnation point region), (c) θmin=37.5 ο, θmax=180 ο (no slip in the front stagnation point 
region), and (d) θmin=37.5 ο, θmax=142.5 ο (no slip in both the front- and the rear stagnation 
point region). Evidently, cases (b) and (c) correspond to equal values of the slip area. Fig. 22 
presents results of all four cases, in terms of the slip velocity distribution of base flow, and of 
the computed lift signal. Fig. 22a, corresponding to full slip, illustrates that the flow becomes 
steady at large times. Nonetheless, as shown in Fig. 22b, convergence to steady flow is faster 
for the case of no slip in the rear stagnation point region, i.e. the stabilizing effect of this 
particular implementation of partial slip is stronger than that of full slip. Fig. 22c shows that,  
in the case of no slip in the front stagnation point region, global flow stabilization is not 
achieved, although a substantial reduction in the amplitude of lift fluctuations, of nearly 90%, 
is attained. Finally, in the case of no slip in both the front and rear stagnation point regimes, 
the lift coefficient amplitude becomes nearly zero (equals 0.005) at large times (see Fig. 22d). 
This shows that, while maintaining the value of non-dimensional slip length, flow 
unsteadiness is practically suppressed by applying slip on an area less than 60% of the full 
cylinder surface. Overall, these results suggest that: (i) partial slip may be even more effective 
than full slip in suppressing the global flow instability, and (ii) in a passive control scheme, 
both angles θmin and θmax should be included as design parameters, for optimizing the control 
effort necessary for full or partial suppression of the Kármán vortex street. 

 

 

Fig. 21. Sketch of slip condition application on the cylinder surface, for a flow from left to 
right: slip is applied in the arc ranging from θmin to θmax.  
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Case Slip Velocity Distribution Lift Signal 

(a) 
 

Full Slip 
θmin=0ο, 

θmax=180.0ο 

 
θs=146 ο 

  

(b) 
 

Partial 
Slip: 

θmin=0ο, 
θmax=142.5ο 

 

θs=146 ο 

   

(c) 
 

Partial 
Slip: 

θmin=37.5ο, 
θmax=180ο 

 
θs=142.5ο 

 

  

(d) 
 

Partial 
Slip: 

θmin=37.5ο, 
θmax=142.5ο 

 
θs=146ο 

 
   

Fig. 22. Re=90, b*=0.17: distribution  of slip velocity, uθ, on the cylinder surface for base 
flow, and lift coefficient signal, for the case where slip condition is applied on the entire 
cylinder surface and for three cases with partial slip. Slip is applied at t=300. The 
corresponding values of base flow separation point angle, θs, are also reported. 

 

Uinf 

Uinf 

Uinf 
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3.3 Flow past a partially hydrophobic cylinder: formulation 
and solution of optimization problem  
    
The main goal of the present section is to attain optimal complete suppression or intensity 
reduction of the Kármán vortex street in flow past a cylinder, by means of a proper 
implementation of partial slip. The partial slip parameters consist of the corresponding 
cylinder arc, defined by θmin and θmax (see Fig. 21), and the corresponding non-dimensional 
slip length, b*. Here, an optimal passive control is sought, associated with attaining desired 
flow states at a minimal control effort. To this end, a two-objective minimization problem is 
formulated. The first objective function is associated with the flow’s global stability, while 
the second one quantifies the control effort, taking into account the slip length, b*, and the 
extent of the slip region, which corresponds to the angle φ=θmax-θmin. Optimization results are 
reported for two values of Reynolds number, Re=90 and Re=180. 

3.3.1 Design variables and search space 
 

Three design variables are utilized in the present implementation: the non-dimensional slip 
length, b*, and the angles θmin and θmax, defining the slip area. The application of slip is 
symmetrical with respect to the domain centerline (y=0). A broad domain of definition is 
considered for each of the three design variables: 

*0 0.5b≤ ≤ ,
 

min0 70oθ≤ ≤ ,
 

max110 180oο θ≤ ≤
 

 (31) 

The selection of search space boundaries was guided by the simulations reported in section 
3.2, corresponding to implementation of full and partial slip.  

3.3.2 Objective functions 
 

Two objective functions are introduced.   

(a) First objective function, J1: 
 

The first objective function, J1, is related to the flow’s global stability. Here, a total of M 
points along the domain centerline (y=0) is considered, and the numerical signal of the 
transverse velocity (V-component) at large times is analyzed, for each point. For a total of N 
data points in time (N being a very large number, corresponding to several flow periods), the 
objective function J1 is defined as the average of the standard deviation values, Sj, of the V-
velocity signals, in the population of M points: 
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(34)   

where ,i jt xV  is the transverse velocity at point xj calculated at time instant it , 
jxV  the 

corresponding time-averaged value, and Sj its standard deviation at point xj. In the present 
study, M=100, corresponding to equidistant points in the wake region 1<x/D<21.  
 

Unsteady wakes are characterized by non-zero instantaneous V-velocities along the wake 
centerline, with the magnitude of velocities being representative of the intensity of the global 
mode. On the other hand, steady wakes are symmetric along their centerline (V=0). Thus, the 
value of J1 is expected to decrease for control actions corresponding to increased stabilizing 
effects, becoming zero for steady flow.  

 
(b) Second objective function, J2: 

The second objective function, J2, defines the control effort, which increases with both the 
non-dimensional slip length, b*, and the normalized half-arc of the slip region. Thus, their 
product is taken as the objective function J2:   

 

* *max min
2

( ) 1
2 2

J b bθ θ ϕ−
= =  (35)          

where φ=θmax - θmin is expressed in radians.    

3.3.3 Optimization problem  
 

The present optimization problem is stated as follows: find the optimum combinations of the 
problem design variables (b*, θmin, θmax), which simultaneously minimize objective functions 
J1, J2. The optimization problem, as formulated here, is solved for two representative values 
of Reynolds number, Re=90 and Re=180, i.e. in a Reynolds number regime where the flow is 
two-dimensional.  

3.3.4 Optimization methods 
 

In the present optimization problem, each individual corresponds to a different slip condition 
(b*), applied on a different part of the cylinder surface (defined by θmin, θmax), and is rated 
based on the resulting values of the problem objective functions. Here, the evaluator, finally 
giving the values of objective functions, is the CFD code ANSYS CFX, which is coupled to 
the optimization tool; the latter utilizes the ParadisEO genetic algorithms library (Cahon et al.  
2004), and adopts the Non–dominated Sorting Genetic Algorithm NSGA-II for ranking 
solutions within a generation (Deb et al. 2002). The entire procedure for optimizing the partial 
slip setup is outlined in Fig. 23. In the present implementation, each generation consisted of 
20 individuals. Each optimization problem converged to the final Pareto front after 22 
generations. An individual CFD run has required approximately 2.5 hours of turnaround time, 
on 24 cores of a parallel cluster.  
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Fig. 23. Optimization flow chart. 
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3.3.5. Optimization results 
 

3.3.5.1 Optimization results for Re=90  
 
The optimization results for Re=90 are presented in Fig. 24, in terms of the values of the 
problem objective functions, J1, J2. Each combination of the problem design variables (b*, 
θmin, θmax) corresponds to a different slip setup, resulting in either unstable or stable flow 
(values of function J1 positive or zero, respectively). Fig. 24 demonstrates that, in the set of 
optimal solutions, an increase in control effort results in a more stable flow (decrease of J1).  
Results for full slip cases have been also added in Fig. 24; the decrease in control effort (J2 
value) of corresponding optimal flow cases (same level of J1) is depicted in Fig. 24.     

 
Fig. 24. Re=90: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. Three cases of full slip are also included and are compared to the 
corresponding optimal cases of partial slip, with the decrease in control effort highlighted.    

Four representative solutions of the Pareto front, as well as the case of uncontrolled flow, 
are highlighted in Fig. 24 with colored squares. The corresponding design variable and 
objective function values are reported in Table 2, also including the case of stabilized flow 
with full slip at minimum b*. Further, the corresponding values of average drag coefficient, 
<CD>, and lift coefficient amplitude, CL,ampl, are presented in Table 3. For these representative 
solutions Fig. 25 presents the distribution of wall slip velocity in the base flow, as well as 
instantaneous vorticity contours, while Fig. 26 presents the computed signals of drag and lift 
coefficient. Fig. 26 demonstrates a rapid decrease of the drag coefficient after implementing 
the slip condition, i.e. by inducing high magitude slip velocities. The latter results in moving 
the separation point toward the rear stagnation point, as well as in a drastic reduction of the 
local values of shear stresses on the cylinder surface. Therefore, an increase in the slip length 
results in: (a) a rapid reduction of the pressure drag force, due to the corresponding decrease 
of the fore-aft asymmetry of the pressure distribution, caused by the increase in the separation 
point angle, and (b) a rapid reduction of the viscous drag force, due to the reduction of the 
local shear stresses. Thus, the steep decrease in drag force is caused by the substantial 
decrease in both of its components. Table 2 indicates that, for the optimal solutions 
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considered, the increase in control effort mainly consists in an increase in slip length, b*. As 
illustrated in Table 3, at increasing control effort, the lift oscillation amplitude decreases, 
becoming zero in the limit of global flow stabilization, while, due to the narrower wakes, a 
corresponding decrease of the average drag is also found. The variation of all three design 
variables along the Pareto front is presented in Fig. 27, in which stabilized flows correspond 
to squares. Fig. 27 verifies a more pronounced increase in the first component of the control 
effort, b*, in comparison to the second one, φ, at increasing total control effort (J2). In 
particular, regarding φ, its increase is due to the rapid increase in θmax, which surpasses an 
average mild increase in θmin. Finally, Fig. 27 illustrates that the increase in control effort 
delays flow separation in the base flow, which in turn reduces fluctuation intensities of the 
non-linear flow, and stabilizes the flow at a critical level of control effort. 

In more detail, the solution giving global flow stabilization at a minimum control effort 
(Point 3 of Fig. 24) has a slip length value of b*=0.207, higher than the one corresponding to 
stabilization with full slip (b*=0.17). The decreased control effort in the former case is 
evidently due to the significant decrease of the hydrophobic region (extending from 
θmin=33.57ο to θmax=146.08ο). Thus, the drawback of a slightly higher value of slip length is 
counterbalanced by the decreased extent of the superhydrophobic surface, giving a reduction 
in control effort of 23%.  

It is noted that, with current technology, a realistic value of slip length using 
superhydrophobic materials is of the order of 100 μm. Thus, in the case of implementing 
steady slip conditions at Re=90, vortex street cancellation is attained for cylinder diameters up 
to about D=0.58 mm for the full slip case (b*=0.17), and up to D=0.48 mm for the optimal 
partial slip case (b*=0.207). 

Table 2. Re=90: design variable values and corresponding objective function values, for the 
uncontrolled case, as well as for solutions 1 to 4 and the case of stabilized flow with full slip, 
depicted in Fig. 24. 

Case b* θmin θmax φ=θmax-θmin J1 J2 
Uncontrolled 0.000 0.00ο 0.00ο 0.00ο 0.319 0.000 

Point 1 0.041 40.89ο 129.19ο 88.29ο 0.261 0.031 
Point 2 0.196 49.10ο 140.16ο 91.06ο 0.112 0.156 
Point 3 0.207 33.57ο  146.08ο 112.51ο 0.000 0.203 
Point 4 0.303 37.31ο 159.80ο 122.49ο 0.000 0.324 

Full slip, 
 stabilized flow 0.170 0.00ο 180.00ο 180.00ο 0.000 0.260 

 
Table 3 Re=90: time-averaged values of drag coefficient, <CD>, and amplitude of lift 
coefficient, CL,ampl, for the uncontrolled case, as well as for solutions 1 to 4 and the case of 
stabilized flow with full slip, depicted in Fig. 24. 

Case <CD> CL,ampl 
Uncontrolled 1.3800 0.352 

Point 1 1.1950 0.224 
Point 2 0.9079 0.025 
Point 3 0.8300 0.000 
Point 4 0.7900 0.000 

Full Slip, Stabilized Flow 0.8260 0.000 
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Fig. 25. Re=90: computed slip velocity profiles of base flow corresponding to solutions 1 to 4, 
the uncontrolled case and the case of stabilized flow with full slip, depicted in Fig. 24 (left 
column), and color-coded contours of instantaneous vorticity in the non-linear flow state 
(right column).   
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Case Drag Signal Lift Signal 

Uncontrolled 

  

Point 1 

  

Point 2 

  

Point 3 

  

Point 4 

  

Full Slip, 
Stabilized 

Flow 

  
Fig. 26. Re=90: Drag and lift coefficient signals for solutions 1 to 4, the uncontrolled case and 
the case of stabilized flow with full slip, depicted in Fig. 24. Passive control is implemented at 
t=300. 
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Fig. 27. Re=90: design variables and separation point angle of base flow versus objective 
function J2, for solutions along the Pareto front. The case of stabilized flow with full slip is 
also included. 
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3.3.5.2 Optimization results for Re=180 
 
Fig. 28 presents the computed objective function values for Re=180, also including a sketch 
of the Pareto front. In comparison to Re=90 (Fig. 24), a higher control effort (J2) to arrive at a 
corresponding flow state, expressed by the value of J1, is confirmed. Four cases 
corresponding to application of full slip have been added in Fig. 28, illustrating an increase in 
the required control effort, in comparison to cases of the Pareto front, to arrive at the same 
level of J1. Further, four representative solutions of the Pareto front, as well as the one 
corresponding to uncontrolled flow, are depicted in Fig. 28. Table 4 includes the values of 
design variables and objective functions of these optimal cases, as well as the values 
corresponding to the case of stabilized flow with full slip at minimum b*; the corresponding 
slip velocity distributions of base flow, as well as vorticity contours of instantaneous non-
linear flow, are presented in Fig. 29. Fig. 29 demonstrates a substantial increase in slip 
velocities at increasing control effort, J2. The vorticity contours are indicative of the 
corresponding return of the flow to a globally stable state.  

 
Regarding global flow stabilization at minimum control effort (Point 3 of Fig. 28), it is 

associated with a slip length of b*=0.298, implemented from θmin=25.09ο to θmax=145.55ο, 
giving J2=0.314 (Table 4); in comparison to the full slip case, the control effort for flow 
stabilization (expressed by J2) is reduced by 20%. A comparison with the optimization results 
for Re=90 (Table 2), shows that, at Re=180, optimal flow stabilization with partial slip 
requires an increase in control effort (J2) of approximately 35%.    

 

 
Fig. 28. Re=180: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. Four cases of full slip are also included and are compared to the 
corresponding optimal cases of partial slip, with the decrease in control effort highlighted. 
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Fig. 29. Re=180: computed slip velocity profiles of base flow corresponding to solutions 1 to 
4, the uncontrolled case and the full slip case, depicted in Fig. 28 (left column), and color-
coded contours of instantaneous vorticity in the non-linear flow state (right column).    
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Table 4. Re=180: design variable values and corresponding objective function values, for the 
uncontrolled case, as well as for solutions 1 to 4 and the full slip case, depicted in Fig. 28. 

Case b* θmin θmax φ=θmax-θmin J1 J2 
Uncontrolled 0.000 0.00 0.00 0.00 0.387 0.000 

Point 1 0.125 46.80 126.41 79.61 0.256 0.087 
Point 2 0.238 23.34 138.19 114.84 0.102 0.238 
Point 3 0.298 25.09 145.55 120.45 0.000 0.314 
Point 4 0.399 3.56 141.12 137.56 0.000 0.479 

Full slip, stabilized 
flow 0.250 0.00 180.00 180.00 0.000 0.393 

 
 
3.4 Characterization of flow instability 
 

In this section, results of linear local and global stability analysis calculations, outlined in 
section 1.4, are presented, for representative base flow fields, at Re=90. In particular, optimal 
solutions corresponding to different levels of control effort, as well as the cases of 
uncontrolled flow and stabilized flow with full slip at a minimum value of b*, are analyzed. 
This analysis aims at a characterization of the stability of controlled flow, at different levels 
of optimal control action.  
 

3.4.1 Linear local instability analysis 
 

Firstly, the local wake profile parameters, i.e. the velocity ratio and the vorticity thickness, 
defined in section 1.4, are calculated. Next, these values are associated with the results of 
Monkewitz and Nguyen (1987) regarding stability of parallel wakes.  

 
In particular, Fig. 30a and Fig. 30b present the values of velocity ratio, R, and non-

dimensional vorticity thickness, δw/D, respectively, at different streamwise locations, x/D. 
Clearly, an increase in control effort, J2, results in decreased velocity ratio values (reduced 
backflow), as well as in a decrease in vorticity thickness; backflow in the near wake is 
decreased due to the delay of separation (increase of separation point angle, θs). Further, the 
velocity profiles extracted from each base flow field, for different streamwise locations, x/D, 
are curve-fitted with reference to a two-parameter (R, N) profile, introduced by Monkewitz 
and Nguyen (1987) (see section 1.4.1). In Fig. 30c, the corresponding pairs (R, 1/N) are 
placed on the plot of Monkewitz and Nguyen (1987), also presented in section 1.4.1 (Fig. 5b); 
this enables the identification of the extent of the region of absolute instability, an provides an 
indication of the relative magnitude of growth rates (distance from the absolute/convective 
instability border). Fig. 30c suggests that both the extent and intensity of absolute instability 
decrease at increasing control effort.  
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(a) 

 

(b) 

 

(c) 

 
Fig. 30. Re=90: characterization of streamwise velocity profiles, for solutions 1 to 4, the 
uncontrolled case and the case of stabilized flow with full slip, depicted in Fig. 24. These 
solutions correspond to different levels of control effort, expressed in terms of the objective 
function J2. (a) Velocity ratio vs. streamwise coordinate, (b) vorticity thickness vs. streamwise 
coordinate, and (c) velocity ratio vs. profile parameter 1/N.    

 
Furthermore, normal mode local stability analysis calculations are performed, based on 

the procedure outlined in section 1.4.1. The computed values of absolute local linear 
frequency, St0=ω0,r/(2π), and asolute growth rate, ω0,i, are presented in Fig. 31. Fig. 31 shows 
that an increase in control effort, J2, results in an increase of local linear frequency; its 
maximum and minimum values in the near wake (x/D < 10), St0,max and St0,min, are presented in 
Table 5. The increasing trend of local linear absolute frequency curve, St0(x/D) with control 
effort, evident in Fig. 31, is in accordance with the corresponding increasing trend of the flow 
Strouhal number, reported in Table 5. Moreover, Fig. 31 demonstrates that the increase in 
control effort results in decreasing both the extent of the absolutely unstable regime, xa - xb, 
and the values of absolute growth rates; the maximum value of each case, ω0,i,max, is reported 
in Table 5. Finally, local instability quantities are associated with global flow unsteadiness by 
applying the criterion of Chomaz et. al (1990), introduced in equation (15) of section 1.4.1; 
the results of Table 5 show that the integral Ig attains a value close to 0.5 for solutions 
corresponding to global flow stabilization.  
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(a) 

 

(b) 

 
Fig. 31. Re=90: values of local stability properties vs. streamwise coordinate, for solutions 1 
to 4, the uncontrolled case and the case of stabilized flow with full slip, depicted in Fig. 24. 
These solutions correspond to different levels of control effort, expressed in terms of the 
objective function J2. (a) Absolute frequency, and (b) absolute growth rate.  

3.4.2 Linear global instability analysis 
 
Transient lift coefficient signals are analyzed following the signal analysis procedure outlined 
in section 1.4.2, yielding the values of global linear growth rate, σr, and global linear 
frequency, σi. Results are presented in Table 5, and are in accordance with the numerical 
simulation results (positive and negative growth rate values for oscillatory and steady flow, 
respectively). Table 5 indicates that the global linear frequency of Pareto front solutions 
increases at increasing control effort, in accordance with the trend in Strouhal number. The 
present results also illustrate the proximity of linear and non-linear global frequency in the 
limit of global flow stabilization.  
  
Table 5. Quantities characterizing the flow local and global stability, for representative 
solutions of the optimization problem at Re=90.  

Case 

Global linear 
frequency, s=σr+iσi
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0,minSt  0,maxSt  ω0,i max xb-xa gI  

Uncontrolled 
Flow 0.0898 0.1282 0.158 0.118 0.165 0.200 5.3 1.89 

Point 1 0.0715 0.1351 0.161 0.135 0.178 0.195 4.1 1.35 
Point 2 0.0002 0.1601 0.163 0.168 0.195 0.140 2.3 0.65 
Point 3 -0.0357 0.1739 - 0.185 0.207 0.145 1.7 0.48 
Point 4 -0.0651 0.1851 - 0.195 0.210 0.120 1.3 0.34 
Full slip -0.0078 0.1754 - 0.178 0.200 0.168 2.1 0.59 
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3.5 Summary of chapter 3 
 
In this chapter we investigated computationally the problem of passive control of flow past a 
circular cylinder at low Reynolds numbers, by means of partial (and full) slip. Guided by 
initial CFD simulations, an optimization problem was formulated aiming at partially or fully 
suppressing the Kármán vortex street at a minimum control effort. To this end, a multi-
objective optimization tool was developed, by coupling a CFD code with an optimization 
code based on genetic algorithms. Here, the control effort has been quantified in terms of the 
product of slip length and the extent of the hydrophobic regime. The optimization results have 
demonstrated that optimal application of partial slip is more effective than full slip in 
suppressing flow unsteadiness. In particular, compared to full slip, optimal application of 
partial slip can result in a decrease of control effort by up to 50%. The stability properties of 
the computed optimal base flow fields have been characterized by both local and global 
stability calculations. It was demonstrated that the increase of the control effort results in 
decreased values of velocity ratio and vorticity thickness in the near wake region. As a 
consequence, both the streamwise extent of absolute instability and local absolute growth 
rates are decreased, leading to suppression of non-linear flow oscillations, and global flow 
stabilization at a critical level of control effort.  
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Chapter 4: Flow control by means of mass 
transpiration   
 
In the present chapter an active open-loop control scheme is implemented by means of mass 
transpiration (suction/blowing) on the cylinder surface. First, suction/blowing is applied on 
three regimes of the cylinder surface, in particular: (a) in the front stagnation point region, (b) 
in the sideway region, and (c) in the rear stagnation point region; the effects of 
suction/blowing on the global flow stability are assessed. Guided by these results, an 
optimization problem is formulated and solved, aiming at the partial or full suppression of the 
Kármán vortex street at a minimal control effort. Here, proper combinations of uniform 
suction and blowing profiles are utilized, under the constraint of a zero net transpiration flow 
rate; the latter is associated with the goal of minimizing the pumping requirements. The goal 
of optimization is to arrive at proper transpiration profiles (on the entire cylinder surface), 
which minimize simultaneously two appropriate objective functions. The first objective 
function characterizes the flow unsteadiness, whereas the second one quantifies the control 
effort in terms of the absolute value of the suction/blowing flow rate. Finally, the computed 
optimal solutions are characterized by means of local and global instability calculations. 
 
4.1. Implementation of piecewise uniform suction/blowing  
 
The present implementation of mass transpiration (suction/blowing) builds on ideas 
introduced in previous literature studies (Delaunay and Kaiktsis, 2001, Dong et al., 2008). In 
order to validate the present control scheme, a steady control action is implemented, 
corresponding to the one of Delaunay and Kaiktsis (2001). In particular, a uniform (top-hat) 
suction/blowing profile is implemented for an angle of ±22.5ο

 with respect to the rear 
stagnation. It is noted that, in the work of Delaunay and Kaiktsis (2001), the suction/blowing 
velocity profile is uniform over most of the arc used, whereas a smooth profile (cubic 
function of the angle, with zero derivatives at the two boundaries) is prescribed close to the 
two boundaries. For Re=90 and blowing implemented in the rear stagnation point regime,  
results of the present simulations are presented in Table 6 in terms of the Strouhal number and 
the time-averaged value of the drag coefficient for four values values of the suction 
coefficient, Csuc, and are compared against those of Delaunay and Kaiktsis (2001). The very 
good agreement obtained validates the present results, and also shows that the two set-ups are 
effectively the same, i.e. the present uniform transpiration velocity profile induces the same 
dynamics as the smooth profile of Delaunay and Kaiktsis (2001).  
  
Table 6. Re=90: Computed values of statistical flow quantities, at different values of the 
suction coefficient, Csuc, for the present and a previous study (Delaunay and Kaiktsis, 2001); 
computed values: time-averaged drag coefficient and Strouhal number. 

 Present study Delaunay and Kaiktsis, 2001 

Csuc <CD> St <CD> St 
0 1.380 0.158 1.392 0.159 

-0.050 1.275 0.151 1.321 0.154 
-0.100 1.210 0.142 1.232 0.144 
-0.145 1.175 - 1.185 - 
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In the present study, a combination of suction and blowing is implemented on the cylinder 
surface, aiming at the cancelation of the vortex street. In particular, three regimes on the 
cylinder surface are considered, whose limits have been identified based on a preliminary 
computational investigation: (a) the front stagnation point region, 0o<θ<40o, (b) the sideway 
region, 40o<θ<150o, and (c) the rear stagnation point region, 150o<θ<180o. Uniform suction 
or blowing is applied on these three regimes, as illustrated in Fig. 32. The suction/blowing 
velocity is specified on the cylinder boundary, i.e., on the circle, and the direction of velocity 
vectors is radial. The overall flow configuration is perfectly symmetric with respect to the 
domain centerline. In Fig. 32a suction/blowing is applied on the front stagnation point region, 
in Fig. 32b on the sideway region, and in Fig. 32c on the rear stagnation point region. Here, 
simulations are performed for a representative value of Reynolds number, Re=90. 
 

Following relative literature studies (Delaunay and Kaiktsis, 2001), we define a suction 
flow rate, Qsuc, a reference flow rate, Qref, and the suction coefficient, Csuc, as follows:          

    
        

                                                      (36)   

    ref infQ U D=   
        

                                                         (37)
                                        

         
                                                  (38)

 

where R is the cylinder radius. A positive suction coefficient corresponds to suction, whereas 
a negative suction coefficient corresponds to blowing.  

 
Fig. 32. Sketch of uniform suction and blowing profiles applied on different regions of the 
cylinder surface: (a) front stagnation point region, θ1=0ο<θ<θ2=40ο, (b) sideway region, 
θ1=40ο<θ<θ2=150ο, and (c) rear stagnation point region, θ1=150ο<θ<θ2=180ο.       

( )sucQ u Rd
π

π
θ θ

−
= −∫
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4.1.1 Application of suction and blowing on the front stagnation point 
region, 0o<θ<40o 
 
When uniform symmetric suction or blowing is applied on the front stagnation point region 
(Fig. 32a), extending (in the upper half plane) between θ1=0o and θ2=40o, the suction 
coefficient, Csuc, and the normalized suction/blowing velocity, U1/Uinf, become:     
 

                              

2

1
1 1

1

1

2 0.698

0.698

1.433

suc

suc
suc

ref inf

suc
inf

Q U Rd U D

Q UC
Q U

U C
U

θ

θ
θ= − = − ⋅ ⋅

− ⋅
= =

= − ⋅

∫
                            (39)  

        
 
       

Here, both the non-linear flow state and the base flow are computed, and results are presented 
subsequently.  

4.1.1.1 Non-linear flow state  
 
Here, the results of non-linear flow state calculations, when suction/blowing is applied on the 
front stagnation point region, are presented. Fig. 33 presents important flow statistics, 
computed by averaging over a number of shedding cycles. As illustrated in Fig. 33a, the 
shedding frequency decreases at increasing blowing flow rate, whereas it exhibits a mild 
increase at increasing suction. Fig. 33b shows that the time-averaged drag decreases at 
increasing blowing, while characterized by a mild increase for small to moderate suction flow 
rates; the trends are consistent with the suppression and enhancement of pressure stresses in 
the front stagnation point region caused by blowing and suction, respectively. Fig. 33c and 
Fig. 33d, presenting the dependence of lift and drag coefficient oscillation amplitude on 
suction coefficient, demonstrate in both cases an increase of force amplitude with blowing 
and a decrease with suction. Thus, these trends show that implementing blowing on the front 
stagnation point region destabilizes the flow, whereas implementing suction has a stabilizing 
effect. These effects on the force statistics are consistent with the intensity of instantaneous 
vorticity distributions, presented in Fig. 34.     

 
Fig. 33. Re=90: flow statistics versus suction coefficient, for suction/blowing applied on the 
front stagnation point region: (a) Strouhal number, St, (b) time-averaged drag coefficient, 
<CD>, (c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag coefficient, CD,ampl.   
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Control Action Csuc Vorticity Isocontours 
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Fig. 34. Re=90: colour-coded contours of instantaneous vorticity, for different values of 
suction coefficient, Csuc, for suction/blowing applied on the front stagnation point region. 
(Negative values of Csuc correspond to blowing, and positive values to suction.)  
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4.1.1.2 Base flow  
 
Here, results of base flow calculations are presented, in terms of important quantities 
characterizing the flow. The separation point angle, θs, is found to be an increasing function 
of Csuc (Fig. 35), indicating that the wake becomes thinner with the increase of suction, and 
thicker with the increase of blowing. This is in accordance with the tendency of decreasing 
velocity ratio, R, with suction, and the corresponding increasing tendency with blowing (Fig. 
36). It is noted that a decreased region of positive velocity ratios (recirculation zone) results at 
increased suction, and the trend is reversed at increased blowing (Fig. 36). The narrower 
wakes corresponding to increased suction are associated with decreased levels of vorticity 
thickness, while the wakes corresponding to increased blowing exhibit higher vorticity 
thickness.    

Further, the local instability properties are characterized, by associating the wake 
parameters with the results reported in Monkewitz and Nguyen (1987); in their work, wake 
profiles have been parametrized in terms of two parameters, R, N, where N is a profile 
parameter, associated with the vorticity thickness (steep profiles are characterized by high 
values of N). For a wide range of profiles corresponding to combinations of R, N, Monkewitz 
and Nguyen (1987) have characterized the profile instability as absolute or convective. In the 
present study, streamwise velocity profiles are extracted from the computed base flow fields, 
and are curve-fitted with the two-parameter (R, N) equation introduced by Monkewitz and 
Nguyen (1987). Here, to characterize the profile stability, the R, N pairs (points) are placed on 
the R-1/N plane, in which the convectively and absolutely unstable regios are identified; 
results are presented in Fig. 38, for data corresponding to the flow regime between x/D=0.5 
(rear stagnation point) and x/D=8. The present results demonstrate that an increase in suction 
results in a decrease of the absolutely unstable area (Fig. 38a), whereas an increase in blowing 
results in a more pronounced increase of absolute instability (Fig. 38b). These observations 
verify the trends of suction/blowing implemented on the front stagnation point region as 
identified by the non-linear flow calculations.  

 

Fig. 35. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow separation point 
angle, θs, vs. suction coefficient, Csuc.  
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Fig. 36. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow velocity ratio, R, vs. 
streamwise coordinate, for different values of suction coefficient, Csuc, for (a) suction, and (b) 
blowing.  
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Fig. 37. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow vorticity thickness, 
δw/D, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for (a) 
suction, and (b) blowing.   
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Action (a) Suction (b) Blowing 

R vs. 1/N 

  

Fig. 38. Re=90, suction/blowing applied from θ1=0o to θ2=40o: base flow velocity ratio, R, vs. 
profile parameter 1/N, for different values of suction coefficient, Csuc, for (a) suction, and (b) 
blowing. Absolute instability boundary is illustrated by the red line (Monkewitz and Nguyen, 
1987).  
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4.1.2 Application of suction and blowing on the sideway region, 
40o<θ<150o 
 
When symmetric uniform suction or blowing is applied on the sideway region (Fig. 32b), 
extending in the upper half plane between θ1=40o and θ2=150o, the suction coefficient, Csuc, 
and the non-dimensional suction/blowing velocity, U2/Uinf, become:   
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(40)   
  

              

4.1.2.1 Non-linear flow state calculations 
 
Here, non-linear flow state calculations are presented for the case where suction/blowing is 
applied on the sideway region. Important flow statistics are presented in Fig. 39. As illustrated 
in Fig. 39a, the Strouhal number is an increasing function of suction coefficient, i.e. it 
decreases at increased blowing and increases with suction. Fig. 39c and Fig. 39d demonstrate 
that force fluctuations increase with blowing and decrease with suction, while they vanish for 
Csuc=0.3 (full cancellation of the vortex street). These trends are the same with those obtained 
for transpiration in the front stagnation point region (Fig. 33c and Fig. 33d). The effects of 
transpiration on force statistics are consistent with the intensity of instantaneous vorticity 
distributions presented in Fig. 40. Finally, Fig. 39b shows a monotonic decrease of time-
averaged drag with suction coefficient.                 
 
                 

 
Fig. 39. Re=90: flow statistics versus suction coefficient, for suction/blowing applied on the 
cylinder sideway region: (a) Strouhal number, St, (b) time-averaged drag coefficient, <CD>, 
(c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag coefficient, CD,ampl. 
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Control Action Csuc Vorticity Isocontours 

Blowing 

-0.3 

 
 

-0.2 

 
 

-0.1 

 
 

---- 0 

 
 

Suction 

0.1 

 
 

0.2 

 
 

0.3 

 
 

Fig. 40. Re=90: colour-coded contours of instantaneous vorticity, for different values of 
suction coefficient, Csuc, for suction/blowing applied on the cylinder sideway region. 
(Negative values of Csuc correspond to blowing, and positive values to suction.) 
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4.1.2.2 Base flow calculations 
 
Here, base flow calculations are performed for the case of suction/blowing application on the 
sideway region. The present results show that the separation point angle, θs, (Fig. 41) is 
increasing with the increase of both suction and blowing flow rate. When suction is increased, 
both the velocity ratio, R, (Fig. 42a) and the vorticity thickness, δw/D, (Fig. 43a) are 
decreased, resulting overall in the formation of a narrower wake, and thus in the stabilization 
of the global flow. It is worth noting, that, at Csuc=0.3, the extent of the area where R>1 
(equivalently: the extent of the recirculation regions) is substantially reduced. This 
observation is in agreement with the corresponding calculations of non-linear flow; the latter 
demonstrate that the vortex street is fully supressed at Csuc=0.3. On the other hand, when 
blowing is increased, both the the velocity ratio, R, (Fig. 42b) and the vorticity thickness, δw, 
(Fig. 43b) increase, resulting overall in the formation of a longer and thicker wake; this 
further destabilizes the flow.   

Furthermore, curve-fitting of the streamwise velocity profiles extracted from the base 
flow field with the two-parameter (R, N) profile equation of Monkewitz and Nguyen (1987), 
and placement of the solutions on the R-1/N plot (Fig. 44) demonstrates that an increase in 
suction in the sideway region results in a significant decrease of the extent of the absolutely 
unstable region, whereas an increase in blowing results in a substantial increase of the extent 
of absolute instability. These results verify the strong stabilizing effects of suction, as well as 
the strong destabilizing effects of blowing.  

 
Fig. 41. Re=90, with suction/blowing applied from θ1=40o to θ2=150o: base flow separation 
point angle, θs, vs. suction coefficient, Csuc. 
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Fig. 42. Re=90, suction/blowing is applied from θ1=40o to θ2=150o: base flow velocity ratio, 
R, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for  
(a) suction, and (b) blowing.   

 

 



58 
 

Control 
Action (a) Suction (b) Blowing 

Vorticity 
Thickness, 
δw/D 

  
Fig. 43. Re=90: suction/blowing applied from θ1=40o to θ2=150o: base flow vorticity 
thickness, δw/D, vs. streamwise coordinate, for different values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing.   
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Fig. 44. Re=90: suction/blowing is applied from θ1=40o to θ2=150o: base flow velocity ratio, 
R, vs. profile parameter 1/N, for different values of suction coefficient, Csuc, for (a) suction, 
and (b) blowing. Absolute instability boundary is illustrated by the red line (Monkewitz and 
Nguyen, 1987).    

4.1.3 Application of suction and blowing on the rear stagnation point 
region, 150o<θ<180o                
 
When symmetric uniform suction or blowing is applied on the rear stagnation point region, 
extending in the upper half plane between θ1=150o and θ2=180o, the suction coefficient, Csuc, 
and the non-dimensional suction/blowing velocity, U3/Uinf, become:         
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4.1.3.1 Non-linear flow state calculations 

Here, non-linear flow state calculations are performed for the case of suction/blowing 
application in the rear stagnation point region, and the corresponding results are presented and 
analyzed. In Fig. 32c, a sketch of the suction and blowing profiles in the rear stagnation point 
regime is presented. Important flow statistics, computed by averaging over a number of 
shedding cycles, are presented in Fig. 45.  As illustrated in Fig. 45a, the shedding frequency 
decreases at increasing blowing flow rate, until vortex street cancellation at 0.2sucC ≈ − , 
whereas it exhibits a similar decrease at increasing suction, for approximately Csuc>0.06. Fig. 
45b shows that the time-averaged drag is characterized by a mild decrease for small to 
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moderate blowing flow rates, while it exhibits a substantial increase for suction. Fig. 45c and 
Fig. 45d, presenting the variation of lift and drag coefficient oscillation amplitude, 
demonstrate an enormous increase of force fluctuations with suction, while also showing the 
wake stabilization at a moderate blowing flow rate ( 0.2sucC ≈ − ). Thus, these trends show that 
implementing suction on the rear stagnation point region destabilizes the non-linear flow, 
whereas implementing blowing has a strong stabilizing effect. These effects on the force 
statistics are in accordance with the intensity of instantaneous vorticity distributions, 
presented in Fig. 46.  
     

 

Fig. 45. Re=90: flow statistics versus suction coefficient, for suction/blowing applied on the 
rear stagnation point region: (a) Strouhal number, St, (b) time-averaged drag coefficient, 
<CD>, (c) amplitude of lift coefficient, CL,ampl, and (d) amplitude of drag coefficient, CD,ampl.  
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Fig. 46. Re=90: colour-coded contours of instantaneous vorticity, for different values of 
suction coefficient, Csuc, for suction/blowing applied on the rear stagnation point region. 
(Negative values of Csuc correspond to blowing, and positive values to suction.)  
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4.1.3.2 Base flow calculations  
 
Here, base flow calculations are performed for the case of implementing suction/blowing on 
the rear stagnation point region. It is found that the separation point angle, θs, (Fig. 47) 
remains practically constant when blowing is increased, while it is a mildly increasing 
function of Csuc. When suction is increased, the extent of the area characterized by velocity 
ratio R>1 (recirculation zones) is reduced, whereas the magnitudes of negative velocities are 
significantly increased (Fig. 48a). The decreased region of backflow corresponds to a 
stabilizing effect. Nonetheless, the higher levels of negative velocities correspond to stronger 
absolute instability, which, as shown by the non-linear calculations reported above, overcome 
the stabilizing effects. On the other hand, as blowing is increased (Fig. 48b), the recirculation 
zones initially tend to be pushed downstream and reduce in size (Csuc = -0.1), while they 
disappear at higher blowing flow rates (Csuc = -0.2, -0.3); as illustrated by the non-linear flow 
calculations, the latter results in stabilization of the global flow. The variation in vorticity 
thickness, presented in Fig. 49, shows that it decreases with suction (Fig. 49a), and increases 
with blowing (Fig. 49b). However, the corresponding range in the profile parameter 1/N is 
such that the change in vorticity thickness is not expected to affect the stability properties of 
these profiles (Fig. 50). The results presented in Fig. 50 demonstrate that an increase in 
suction increases the intensity of absolute instability in the near wake while also reducing the 
extent of the absolutely unstable region (Fig. 50a). On the other hand, an increase in blowing 
decreases both the intensity and the spatial extent of absolute instability (Fig. 50b); no local 
absolute instability is present in the wake of base flow for Csuc ≤ -0.3. It is undelined that the 
effects of implementing suction/blowing in the rear stagnation point region are opposite to 
those associate with implementing mass transpiration in the sideway region, reported in 
section 4.1.2. 

 

Fig. 47. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow separation point 
angle, θs, vs. suction coefficient, Csuc. 
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Fig. 48. Re=90: suction/blowing applied from θ1=150o to θ2=180o: base flow velocity ratio, R, 
vs. streamwise coordinate, for different values of suction coefficient, Csuc, for (a) suction, and 
(b) blowing.  



62 
 

Control 
Action (a) Suction (b) Blowing 

Vorticity 
Thickness, 
δw/D 

  
Fig. 49. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow vorticity 
thickness, δw/D, vs. streamwise coordinate, for several values of suction coefficient, Csuc, for 
(a) suction, and (b) blowing.   
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Fig. 50. Re=90, suction/blowing applied from θ1=150o to θ2=180o: base flow velocity ratio R, 
vs. profile parameter 1/N, for different values of suction coefficient, Csuc, for (a) suction, and 
(b) blowing. Absolute instability boundary is illustrated by the red line (Monkewitz and 
Nguyen, 1987).     

 

4.1.4 Overall evaluation of results for piecewise uniform suction/blowing  
 
In the previous sections, the effects of implementing mass transpiration on different regions 
of the cylinder surface on the flow dynamics and global stability have been assessed. It was 
demonstrated that: (a) application of suction on the front stagnation point region has a mild 
stabilizing effect, (b) application of suction on the sideway region has a strong stabilizing 
effect, and (c) application of blowing on the rear stagnation point region has a strong 
stabilizing effect. An effective control scheme may thus result from the combination of 
suction on the sideway region, as well as on the front stagnation point region, and blowing on 
the rear stagnation point region. Further, from the point of view of an actual implementation, 
it is attractive if mass transpiration is characterized by a zero net flow rate, and thus no net 
pumping requirements. Thus, a passive control scheme is developed next, aiming at the 
optimal (partial or full) cancellation of the vortex street, at a net mass flow rate of zero.  
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4.2 Formulation of optimization problem with piecewise 
uniform suction/blowing profile 
 
The goal in the present section is to determine optimal piecewise uniform suction/blowing 
profiles which suppress (partially or fully) the von Kármán vortex street at a minimal control 
effort. Here, the term optimal is associated with the minimization of properly defined 
objective functions. To this end, a two-objective optimization problem is formulated; the first 
objective function is associated with the flow global stability, while the second one quantifies 
the control effort, in a way related to the mass flow rate of suction/blowing.  
 

The suction/blowing profile is defined parametrically, so as to correspond to a zero total 
net transpiration flow rate. The investigation presented in the previous section has indicated 
that stabilizing effects are induced by applying: (a) suction on the sideway region and on the 
front stagnation point region, and (b) blowing on the rear stagnation point region. For an 
optimal overall effect, a combination of the three control measures is implemented here, in 
order to suppress flow unsteadiness at a minimal control effort. In view of an actual 
implementation without net pumping requirements, the total suction flow rate equals the total 
blowing flow rate. Thus, for Q1 and Q2 being the (suction) flow rates in the front stagnation 
point region and in the sideway region, respectively, and Q3 the (blowing) flow rate in the rear 
stagnation point region: Q1+Q2=Q3. Consequently, in the present setup, a suction coefficient 
can be defined as follows:   
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By denoting with θ1 and θ2 the angles delimiting the sideway region (in the upper half 
plane), U1 and U2 the suction velocities in the front stagnation point region and in the sideway 
region, respectively, and U3 the blowing velocity in the rear stagnation point region, the 
suction/blowing flow rates are readily calculated as follows: 

1 2

1
1 2 1 20

2 2sucQ Q Q U Rd U Rd
θ θ

θ
θ θ= + = +∫ ∫             (43) 

yielding:                    

( )

2

1 1 2 1 2

3 3 2 3

( )

2 ( )

suc

blow

Q U U D

Q Q U Rd U D
π

θ

θ θ θ

θ π θ

= + −

= = = −∫
             (44)                        

The constraint of zero net transpiration flow rate dictates a given relation between the 
flow rates Q1, Q2, or, equivalently, between the suction velocities U1, U2:  

 
1 2U c U= ⋅                     

      
               (45)                       

                                                
where c is a proper constant. Determination of the constant c should account for the finding, 
reported above, that suction on the front stagnation point region should be milder than suction 
on the sideway region.  
 

Thus, a piecewise uniform transpiration velocity profile, as the one illustrated in Fig. 51, 
can be fully defined in terms of four parameters: Csuc, θ1, θ2, c.    
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Fig. 51. Sketch of transpiration velocity profile.  

 

4.2.1 Design variables and search space 
 
As the transpiration velocity profile is symmetric with respect to the domain centerline (y=0), 
it is sufficient if it is defined in the upper x-y plane. Here, the transpiration profile is defined 
in terms of a piecewise constant parametric function, whose parameters form the design 
variables for optimization:  
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Thus, the transpiration velocity profile is defined parametrically in terms of four design 

variables, namely, the suction coefficient, Csuc, the angles delimiting the sideway region, θ1, θ2 
(expressed in radians), and the constant c. It should be noted that θ2 is the angle defining the 
boundary between the suction and the blowing region. In the present implementation, wide 
limits have been considered for the corresponding search space:     

 

                                (48)   

Regarding the selection of the search space of θ2, it is noted that, to avoid a destabilizing 
effect due to blowing, its lower limit has been set higher than the corresponding separation 
angle of the uncontrolled base flow (117ο for Re=90, according to our simulation results).      
 

1

2

0 0.5

0 40

140 165
0 0.5

suc

o

C

c

ο ο

ο

θ

θ

< <

< <

< <
< <



65 
 

4.2.2 Objective functions   
 
Two objective functions are considered.   
 
(a) First objective function:  
 
The first objective function, J1, related to the flow global stability, is the same one introduced 
in the optimization problem studied in Chapter 3 (see eqs. 32, 33, 34).  
 
(b) Second objective function:  
 
The suction coefficient, Csuc (see eq. 38), quantifying the total control effort, is the second 
objective function. 

4.2.3 Optimization process 
 

The present work aims at arriving at states of controlled flow which correspond to partially or 
fully suppressed vortex streets, at a minimal control effort. To this end, a two-objective 
minimization problem is formulated, aiming at a simultaneous minimization of proper 
measures of flow instability and control effort (here:  J1 and Csuc, respectively). Thus, the goal 
of optimization is to find optimum combinations of the design variables (Csuc, θ1, θ2, c), which 
define transpiration profiles that simultaneously minimize objective functions J1 and Csuc. It is 
noted that here Csuc is used both as design variable and objective function.  
 

The final set of optimal solutions for the two-objective minimization problem of the 
present study is obtained by evolving an initial generation of 20 individuals. Here, the same 
genetic algorithm utilized in the optimization problem considered in Chapter 3 was used. All 
generations consisted of 20 individuals; a total 15 generations has been utilized, and 
convergence to the final Pareto verified. The procedure is sketched in Fig. 52. An individual 
CFD run has required approximately 2.5 hours of turnaround time on 24 cores of a parallel 
cluster.      
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Fig. 52. Optimization flow chart. 

4.2.4 Optimization results 
 

4.2.4.1 Optimization results for Re=90   
 
The optimization results for Re=90 are presented in Fig. 53, in terms of the values of the 
problem objective functions, J1, Csuc. Results corresponding to blowing in the rear stagnation 
point region, utilizing the problem setup of Delaunay and Kaiktsis (2001), have been also 
added in Fig. 53. Each combination of the problem design variables (Csuc, θ1, θ2, c) 
corresponds to a different transpiration profile, resulting in either unstable or stable flow 
(values of function J1 positive or zero, respectively). Fig. 53 demonstrates that, in the set of 
optimal solutions, an increase in control effort results in a more stable flow (decrease of J1).   
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Four representative solutions, as well as the case of uncontrolled flow, are highlighted in 
Fig. 53 with colored squares. The corresponding values of design variables and objective 
functions are reported in Table 7. For these representative solutions, Fig. 54 presents the 
distribution of suction/blowing velocity, as well as instantaneous vorticity isocontours, while 
Fig. 55 presents the computed signals of drag and lift coefficient. As illustrated in Fig. 55, at 
increasing control effort, the time-averaged drag coefficient decreases, whereas the drag and 
lift oscillation amplitudes decrease, becoming zero in the limit of global flow stabilization, 
due to the combined stabilizing effects of suction in the sideway and front stagnation point 
regions, and blowing in the rear stagnation point region. The variation of the three design 
variables, as a function of the suction coefficient, Csuc, along the Pareto front is presented in 
Fig. 56 (the red squares correspond to Point 4 of Fig. 53). The corresponding dependence of 
the transpiration velocities is presented in Fig. 57. Fig. 56b shows that at increasing control 
effort (Csuc) the extent of the blowing is reduced; from mass conservation, this corresponds to 
a more pronounced increase of the blowing velocity, U3 (Fig. 57c). 

Thus, the combination of suction in the sideway and front stagnation point regions and 
blowing in the rear stagnation point region enhances the individual stabilizing effects, 
resulting in global flow stabilization (solution depicted by Point 4 in Fig. 53); stabilization is 
attained at the low value of Csuc = 0.102. An important observation regarding solutions in the 
limit of global flow stabilization is that the blowing region has become rather narrow, which 
is associated with strong blowing, in a near wake which is thin due to sideway suction. Thus, 
the minimum control effort required for global flow stabilization using the present approach 
(Csuc = 0.102) is significantly lower than the corresponding one reported in Delaunay and 
Kaiktsis (2001) for the case of pure blowing (|Csuc| = 0.145).  

 

 
Fig. 53. Re=90: objective function J1 vs. objective function Csuc (suction coefficient).   
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Table 7. Re = 90: design variable values and corresponding objective function values, for the 
uncontrolled case, as well as for solutions 1-4, depicted in Fig. 53.  

Case Csuc θ1 θ2 c J1 

Uncontrolled - - - - 0.319 

Point 1 0.023 17.36ο  158.12ο  0.280 0.270 

Point 2 0.058 29.59ο  149.93ο  0.200 0.220 
Point 3 0.096 0.00ο   151.83ο  (0.428) 0.134 

Point 4 0.102 11.57ο  163.87ο  0.380 0.000 

 

Solutions Transpiration 
Velocity Profile Vorticity Isocontours 

Uncontrolled 
Case 

 
 

 

Point 1 
Csuc=0.023 

 
 

 

Point 2 
Csuc=0.058 

 
 

 

Point 3 
Csuc=0.096 

 
 

 

Point 4 
Csuc=0.102 

 
 

 
Fig. 54. Re=90: computed transpiration velocity profiles corresponding to solutions 1-4, 
depicted in Fig. 53 (left column), and corresponding color-coded contours of instantaneous 
vorticity (right column). The case of uncontrolled flow is also included.  



69 
 

Solutions Drag Coefficient, CD Lift Coefficient, CL 

Uncontrolled 
Case 

  

Point 1 
Csuc=0.023 

  

Point 2 
Csuc=0.058 

  

Point 3 
Csuc=0.096 

  

Point 4 
Csuc=0.102 

  
Fig. 55. Re=90: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 53, and for 
the case of uncontrolled flow. Active open-loop control in terms of suction/blowing is 
implemented at t=300.  



70 
 

(a) 

 

(b) 

 

(c) 

 
Fig. 56. Re=90: design variables versus objective function Csuc, for solutions along the Pareto 
front. The red square corresponds to stabilized flow at the minimal control effort, depicted by 
Point 4 in Fig. 53.  
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(a) 
 

 

(b) 

 

(c) 

 
Fig. 57. Re=90: transpiration velocities versus objective function Csuc, for solutions along the 
Pareto front. The red square corresponds to stabilized flow at the minimal control effort,  
depicted by Point 4 in Fig. 53.  

4.5.1.2 Optimization results for Re=180  
 

Fig. 58 presents the computed objective function values for Re=180, also including a 
sketch of the Pareto front. In comparison to Re=90 (Fig. 53), a higher control effort (Csuc) to 
arrive at a corresponding flow state, expressed by the value of J1, is confirmed. Four 
representative solutions of the Pareto front, as well as the one corresponding to uncontrolled 
flow, are depicted in Fig. 58. The corresponding values of design variables and objective 
functions are reported in Table 8. For these representative solutions, Fig. 59 presents the 
spatial distribution of suction/blowing velocity, as well as instantaneous vorticity isocontours, 
while Fig. 60 presents the computed signals of drag and lift coefficient. The optimal 
transpiration profiles (Fig. 59) are similar to the optimal transpiration profiles for Re=90, 
presented in Fig. 54. For solutions close to the limit of global flow stabilization, the blowing 
region is wider in comparison to the corresponding solutions at Re=90. Fig. 60 demonstrates 
that, by increasing control effort, the time-averaged drag coefficient decreases, and so do the 
fluctuating drag and lift components. With reference to the uncontrolled flow, the decrease in 
time-averaged drag is higher than the corresponding one at Re=90. For Re=180, the present 
optimization results have shown that a full cancellation of the vortex street is attained at a 
value of Csuc=0.163 (solution depicted by Point 4 in Fig. 58). In comparison to Re=90, this 
corresponds to an increase in control effort by 37%.    
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Fig. 58. Re=180: objective function J1 vs. objective function Csuc (suction coefficient). 

Table 8. Re=180: design variable values and corresponding objective function values, for the 
uncontrolled case, as well as for solutions 1-4, depicted in Fig. 58. 

Case Csuc θ1 θ2 c J1 

Uncontrolled - - - - 0.387 

Point 1 0.043 30.61ο  150.88ο  0.059 0.343 

Point 2 0.098 18.49ο  145.41ο  0.046 0.242 
Point 3 0.128 22.30ο   145.09ο  0.152 0.179 

Point 4 0.163 25.81ο  144.18ο  0.215 0.000 
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Solutions Transpiration Velocity 
Profile Vorticity Isocontours 

Uncontrolled 
Case 

  
 

Point 1 
Csuc=0.043 

 
 

 

Point 2 
Csuc=0.098 

  
 

Point 3 
Csuc=0.128 

 
 

 

Point 4 
Csuc=0.163 

 
 

 
Fig. 59. Re=180: computed transpiration velocity profiles corresponding to solutions 1-4, 
depicted in Fig. 58 (left column), and corresponding color-coded contours of instantaneous 
vorticity (right column). The case of uncontrolled flow is also included.   
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Solutions Drag Coefficient, CD Lift Coefficient, CL 

Uncontrolled 
Case 

  

Point 1 
Csuc=0.043 

  

Point 2 
Csuc=0.098 

  

Point 3 
Csuc=0.128 

  

Point 4 
Csuc=0.163 

  
Fig. 60. Re=180: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 58, and for 
the case of uncontrolled flow. Active open-loop control in terms of suction/blowing is 
implemented at t=300.  
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4.2.5 Optimal solutions: characterization of flow instability 

 
Base flow calculations are performed for Re=90, for the four representative optimal solutions 
highlighted in Fig. 53 with colored squares, as well as for the case of uncontrolled flow. Fig. 
61a,b presents the values of non-dimensional vorticity thickness, δw/D, and velocity ratio, R, 
at different streamwise locations, x/D. Clearly, an increase in control effort, Csuc, results in a 
mild decrease in vorticity thickness, as well as in a substantial decrease in the velocity ratio 
(reduced backflow). Further, curve-fitting of velocity profiles extracted from the base flow 
field (x/D=0.5 to 8.0) with the two-parameter (R, N) profile equation introduced by 
Monkewitz and Nguyen (1987), and placement of the solutions on the R-1/N plot (Fig. 61c) 
demonstrates a consistent decrease in the intensity and extent of absolute instability at 
increasing control effort.  
 

Next, local instability analysis calculations are performed for these four representative 
base flows, as well as for the uncontrolled base flow. The computed values of absolute local 
linear frequency, St0=ω0,r/(2π), and asolute growth rate, ω0,i, are presented in Fig. 62. Fig. 62a 
shows that an increase in control effort, Csuc, results in an increase of local linear frequency, 
throughout the near wake (x/D < 8); its maximum and minimum values, St0,max and St0,min, are 
reported in Table 9. Fig. 62b demonstrates a substantial decrease of both the extent of the 
absolutely unstable regime and the local absolute growth rates, as the control effort (Csuc) 
increases; stable flow is attained at a critical level of control effort. 

 
Further, the stability of global flow is characterized by analyzing transient lift signals in 

the frame of the Stuart-Landau equation. Results are reported in Table 9 in terms of the global 
growth rate and linear frequency, confirming a negative growth rate for Point 4. The linear 
global frequency is consistently lower than the corresponding non-linear one (St), also 
reported in Table 9. Both global frequencies lie within the range of local linear frequencies, 
for all fields considered in Table 9. Table 9 also shows that the maximum local growth rate, 
ω0i,max, the extent of absolute instability, as well as the integral Ig, are decreasing at increasing 
control effort (Csuc). 
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(a)   

 

(b)   

 

(c)  
  

 
Fig. 61. Re=90: characterization of streamwise velocity profiles, for solutions 1 to 4, depicted 
in Fig. 53, and for the case of uncontrolled flow. (a) Velocity ratio vs. streamwise coordinate, 
(b) vorticity thickness vs. streamwise coordinate, and (c) velocity ratio vs. profile parameter 
1/N.    
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(a) 

 

(b) 

 
Fig. 62. Re=90: values of local stability properties vs. streamwise coordinate, for solutions 1 
to 4, depicted in Fig. 53, and for the case of uncontrolled flow. (a) Absolute frequency, and 
(b) absolute growth rate. 

 
Table 9. Quantities characterizing the flow local and global stability, for representative 
solutions of the optimization problem at Re=90. 

Case 

Global Linear 
Frequency, s=σr+iσi

 

St

 
Local Linear 
Frequency 

Range (x/D<8)
 

0,

0,

( )

( ) 0

b

a

x

g i
x

i

I x dx

x

ω

ω

=

>

∫  

rσ  , 2
i

g lSt
σ
π

=
 0,minSt  0,maxSt  ω0,i max xb-xa gI  

Uncontrolled 
Flow 0.0898 0.128 0.158 0.118 0.165 0.200 5.30 1.89 

Point 1 0.0727 0.127 0.155 0.123 0.178 0.180 5.20 1.72 
Point 2 0.0555 0.129 0.150 0.132 0.188 0.135 4.30 1.09 
Point 3 0.0033 0.120 0.143 0.139 0.192 0.105 3.37 0.61 
Point 4 -0.0151 0.141 - 0.140 0.218 0.075 2.80 0.29 
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4.4 Summary of chapter 4  
 

The present chapter has addressed the problem of optimal suppression of the vortex street in 
flow past a cylinder, at low Reynolds numbers, by means of an active open-loop control 
scheme. Here, a piecewise uniform suction/blowing profile was applied on the entite cylinder 
surface. First, parametric computational studies were performed, regarding application of 
suction/blowing in three regimes of the cylinder surface, namely: (a) the front stagnation 
point region, (b) the sideway region, and (c) the rear stagnation point region. The results have 
demonstrated that application of suction in the sideway or in the front stagnation point region, 
and blowing in the rear stagnation point region induce flow stabilization. Guided by these 
results, an optimization problem was formulated and solved, consisting in the partial or full 
suppression of the Kármán vortex street, at a minimal control effort, under the constraint of 
zero net mass transpiration. Complete vortex street cancelation was attained at a control effort 
30% lower, in comparison to previous studies. Analysis of of the optimal solutions by means 
of local stability calculation has shown a decrease in both the extent and intensity of local 
absolute instability with control effort (Csuc), resulting in stabilization of the global flow at a 
critical level of control effort.   
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Chapter 5: Feedback flow control: optimization 
of control schemes   
                
In the two previous chapters, a passive and an active open-loop control scheme were 
implemented, aiming at suppressing the Kármán vortex street in flow past a circular cylinder. 
The passive control scheme consisted in implementing surface hydrophobicity, whereas the 
active open-loop control scheme consisted in applying mass transpiration. In the context of 
both control schemes, vortex street cancelation has been attained at a minimal control effort,  
by formulating and solving properly defined optimization problems. However, due to the 
substantial costs associated with implementation and operation, it is essential to investigate 
whether a partial or complete suppression of flow unsteadiness can be attained by means of 
even lower levels of control effort. To this end, in the frame of the above control measures, 
two feedback control schemes are developed and optimized, utilizing: (a) time-dependent 
mass transpiration, and (b) time-dependent slip conditions. In both schemes, actuation is 
based on proportional feedback control, utilizing the transverse velocity signal in the wake, at 
a point on the domain centerline. The optimization results demonstrate a substantial reduction 
in control effort with feedback control, in the frame of the present feedback control schemes.     
 
5.1 Feedback control using mass transpiration: validation 
test  
 
In flow control applications, the realization of a feedback control scheme can be achieved by 
implementing: (a) one or more sensors measuring appropriate signals, and (b) actuators 
providing the desired control action. In flow past a cylinder, appropriate quantities to be 
measured are the pressure on the cylinder surface via pressure sensors (Aamo and Krstic, 
2003), or the vector velocity in the near wake regime via hot wire sensors (Roussopoulos, 
1993). Actuation consisting in mass transpiration can be realized by means of tiny holes on 
the cylinder wall, and may utilize zero net mass flux (ZNMF) actuators or micro/synthetic jet 
actuators; for an extensive review see Glezer and Amitay (2002), and Cattafesta and Sheplak 
(2011).    
 

In the present study, we consider a closed loop control scheme, proposed by Park et al. 
(1994), utilizing time-dependent mass transpiration through two slots on the cylinder surface 
(Fig. 63). The slots are located symmetrically around the front stagnation point, on an arc 
extending from θmin=97o to θmax=113o in the upper half plane; the choice of slot location takes 
into account the location of separation point. In the present study, the scheme is tested for 
Re=60, for which separation in base flow corresponds to an angle of θs=120o with respect to 
the front stagnation point (see section 3.1). To control the (antisymmetrical) shedding mode, 
an antisymmetrical transpiration is implemented from the two slots, i.e. the instantaneous 
transpiration flow rate is zero. Uniform transpiration velocity profiles are implemented 
(whereas parabolic profiles have been used in Park et al. (1994)). In practice, the physical 
actuation can be provided by ZNMF actuators (Cattafesta and Sheplak, 2011) properly 
distributed on the area of interest, taking into account the constraint of zero net flow rate. 
Here, the instantaneous velocity of blowing/suction, uSB(t), considered as the control input 
signal, u(t), is calculated based on the proportional feedback control scheme of Park et al. 
(1994), in which the input of a transverse velocity sensor located at (xs, 0), i.e. on the domain 
centerline, is used as the sensor signal. In an actual implementation, the velocity signal can be 
provided by a hot-wire sensor, measuring the vector velocity at the location of its placement 
(Roussopoulos, 1993).  
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In the present work, the feedback control law is defined as follows:    

                  max

( , )( ) ( )
( )

s
SB p

V x tu t u t k
V t

= =
                 

(49) 

( ) max ( , )max st
V t V x

τ
τ

≤
=

                                
(50) 

where V(xs,t) is the instantaneous velocity input, Vmax(t) is its actual maximal absolute value, 
and kp the value of the proportional feedback gain. Since the sensor of the measured signal is 
located on the domain centerline, the feedback action diminishes as the desired state of 
reduced unsteadiness is approached. Evidently, different values of the sensor location, xs, 
correspond to different values of phase shift of the feedback signal.   

 

Fig. 63. Proportional feedback loop control scheme (Park et al., 1994): the location of the 
feedback sensor, xs, the extent of a transpiration slot, delimited by angles θmin and θmax, the 
proportional gain, kp, as well as the control input signal, u(t), are depicted. 

Here, a simulation is performed for flow under feedback control, for the velocity sensor 
located xs=2.75, and a proportional gain value kp=0.35, as in Park et al. (1994). Fig. 64 
presents the results of the present study, as well as those of Park et al. (1994), verifying a very 
good agreement. In particular, Fig. 64a, presenting the streamline pattern at a large time, 
demonstrates the complete cancelation of the Kármán vortex street, as illustrated by the 
formation of the steady recirculation zones. Further, the streamwise velocity signal, u, at 
x=2.5, y=0.5 attains a constant value at large times (Fig. 64b). Finally, the full suppression of 
force fluctuations is verified by the drag and lift coefficient signals, presented in Fig. 65.    
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Case (a) Streamline pattern (b) Streamwise velocity, u, at x=2.5, y=0.5 

Present 
study 

 

 

Park et al. 
(1994) 

 

 
Fig. 64. Computational results of the present study and of Park et al. (1994) for Re=60, 
kp=0.35, xs=2.75: (a) instantaneous streamline pattern at a large time, and (b) signal of stream-
wise velocity, u, at x=2.5, y=0.5. In the present simulation active feedback control in terms of 
time-dependent suction/blowing is implemented at t=300, and in the one of Park et al. (1994) 
at t=1200. 
 

(a) (b) 

  

Fig. 65. Re=60, kp=0.35, xs=2.75: drag and lift coefficient signals. Active feedback control in 
terms of time-dependent suction/blowing is implemented at t=300. 

5.2 Optimization of feedback control with time-dependent 
mass transpiration  
             
Park et al. (1994) performed a large number of simulations, for different values of the 
feedback control parameters, i.e. the sensor location, xs, and the value of proportional gain, kp. 
They concluded that cancelation of the vortex street is only feasible at low Reynolds numbers, 
in particular for Re≤60. However, even in this regime, flow stabilization has been found to be 
extremely sensitive to small modifications of the feedback control parameters. In particular,  
for Re=60 and values of proportional gain kp=0.2 and kp=0.35, vortex street cancelation could 
only be attained for a sensor located within the narrow region 2.7<xs<3.   
 

The goal of the present section is to implement the control scheme proposed by Park et al.  
(1994) within the frame of a systematic optimization approach, and to investigate whether 
improved solutions can be attained. To this end, a two-objective minimization problem is 
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formulated, aiming at partial or complete cancelation of the vortex street, at a minimal control 
effort. Here, the first objective function is associated with the flow global stability, while the 
second one quantifies the control effort. Optimization results are reported for Re=60. 
 

5.2.1 Design variables and search space 
 
Four design variables are utilized in the present implementation: the streamwise location of 
the transverse velocity sensor, xs, the proportional gain, kp, and the arcs θmin and θmax, defining 
the extent of the mass transpiration slots. A broad domain of definition is considered for each 
of the four design variables: 

1 5sx≤ ≤ ,
 
0.1 0.5pk≤ ≤ , min99 104oο θ≤ ≤ , max111.6 120.6oο θ≤ ≤   

 
 (51) 

The selection of the search space boundaries is guided by the results of Park et al. (1994). 

5.2.2 Objective functions 
 
Two objective functions are introduced.   

(a) First objective function, J1: 
 
The first objective function, J1, related to the flow global stability, is the same one introduced 
in the optimization problem studied in Chapter 3 (see eqs. 32, 33, 34).  

(b) Second objective function, J2:  

 

The control effort increases with the transpiration velocity (determined from the product of 
the transverse velocity signal and the proportional feedback gain, kp) and the arc of the 
transpiration slot. Thus, a corresponding objective function, J2, is defined as follows:  

                                                2 max min( )
xsV pJ S k θ θ= −    

               
     (52) 

where the standard deviation of the transverse velocity,
xsVS at the sensor point, xs, is defined 

as:       
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− ∑                                               (53)   

where ,i st xV  is the transverse velocity at the sensor point, xs, calculated at time instant ti. 

5.2.3 Optimization problem  
 
The present optimization problem is stated as follows: find the optimum combinations of the 
problem design variables (xs, kp, θmin, θmax), which simultaneously minimize objective 
functions J1, J2. The optimization problem, as formulated here, is solved for a representative 
Reynolds number value, Re=60 (for which the flow is two-dimensional), also considered in 
the study of Park et al (1994).      
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5.2.4 Optimization results 
 
The results of the optimization problem are presented in Fig. 66, in terms of the problem 
objective functions, J1 and J2. Each combination of the four design variables (kp, θmin, θmax, xs) 
corresponds to a different implementation, resulting in either unstable or stable flow (values 
of function J1 positive or zero, respectively). It is noted that full flow stabilization is feasible 
for Re=60 at very low levels of control effort; the stabilized flow remains stable when 
maintaining the same (low) level of control effort.   
  

In Fig. 66, four stabilized solutions are depicted by Points 1-4; all of them are 
characterized by near zero values for both objective functions. The corresponding values of 
design variables and objective functions are reported in Table 10. Table 10 demonstrates that 
global flow stabilization is feasible for locations of the velocity sensor in the region 
2.879≤xs≤3.168, for proportional gain values in the range 0.138≤kp≤0.413. Thus, the present 
optimization gives a regime for the velocity sensor practically coinciding to the one suggested 
by Park et al. (1994), and a wider kp range. Further, the present results illustrate that a 
reduction of the extent of the transpiration slot (φ= θmax - θmin) from φ=16ο to φ=11ο is feasible 
(solution depicted by Point 4 in Fig. 66). The lift and drag coefficient signals corresponding to 
Points 1-4 verify convergence to stabilized flow after the onset of feedback control (see Fig. 
67). In summary, the present optimization scheme verifies global flow stabilization at Re=60, 
while also extending the range of proper design parameters, in comparison to the results of 
Park et al. (1994).    

 
In order to investigate in more detail the global flow stability of the optimal solutions, 

depicted in Fig. 66 by points 1-4, the corresponding lift coefficient signals, presented in Fig. 
67, are analyzed following the signal analysis procedure outlined in section 1.4.2, yielding the 
components of the global frequency, s=σr+iσi, i.e. the global linear growth rate, σr, and the 
linear frequency, σi; the results are included in Table 10. Following the global linear 
instability analysis and corresponding discussion of Park et al. (1994), in the frame of 
feedback control, global frequencies define the poles of the system. It should be noted that the 
present study considers only the fundamental global frequency (pole), which satisfies the 
Stuart-Landau equation (Schumm et al., 1994). Fig. 68 presents the fundamental global 
frequencies on the complex plane (σr-σi) for the uncontrolled flow (open loop pole), as well as 
for the optimal solutions depicted by Points 1-4 in Fig. 66 (closed loop poles). On one hand, 
considering the uncontrolled flow at Re=60, the positive value of the global linear growth 
rate, σr, verifies the global flow instability. On the other hand, for the optimal solutions 
depicted by Points 1-4 in Fig. 66, the negative values of the global linear growth rate, σr, 
verifiy the complete cancellation of the Kármán vortex street. Further, the substantial 
reduction in the value of σr from Point 1 to Point 4 demonstrates a corresponding increase of 
the stabilizing effects. The latter is in accordance with the corresponding decrease of 
transition time (between the uncontrolled flow and the stabilized flow), as demonstrated by 
the transient lift coefficient signals (Fig. 67). 
 



84 
 

 
Fig. 66. Re=60: objective function J1 vs. objective function J2.  

Table 10. Re=60: design variable values and corresponding objective function values, for the 
uncontrolled flow, as well as for optimal solutions 1-4, depicted in Fig. 66; the values of the 
components of the global linear frequency, s, i.e. the global linear growth rate, σr, and the 
linear frequency, σi, are also reported.      

Case kp θmin θmax xs J1 J2 σr σi 

Uncontrolled - - - - 0.2600000 0.00000000 0.041 0.762 

Point 1 0.253 103o 118o 3.168 0.0033746 0.00027006 -0.014 0.897 

Point 2 0.138 99o 116o 2.986 0.0030299 0.00015949 -0.016 0.785 
Point 3 0.281 104o 119o 2.879 0.0003550 0.00001420 -0.022 0.661 

Point 4 0.413 102o 113o 2.942 0.0000064 0.00000031 -0.026 0.837 
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Case Drag Coefficient, CD Lift Coefficient, CL 

Point 1 

  

Point 2 

  

Point 3 

  

Point 4 

  
Fig. 67. Re=60: drag and lift coefficient signals for solutions 1-4, depicted in Fig. 66. Active 
feedback control in terms of time-dependent suction/blowing is implemented at t=300. 

 

 

Fig. 68. Re=60: global frequencies for the uncontrolled case (open loop pole), as well as for 
optimal solutions 1-4 (closed loop poles), depicted in Fig. 66.  
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5.3 Feedback control utilizing time-dependent slip 
conditions  
5.3.1 Proportional control concept utilizing controllable wetting 
properties 
 
In chapter 3 it was demonstrated that implementing surface hydrophobicity on the entire 
cylinder surface results in decreased drag and lift forces, whereas vortex street cancellation 
can be attained at a critical level of control effort. Furthermore, the corresponding 
optimization study established that an optimal application of slip on a part of the cylinder 
surface may lead to a decrease in control effort of up to 50%, in comparison to implementing 
slip on the entire cylinder surface. Nonetheless, as the manufacturing of hydrophobic and 
superhydrophobic surfaces is still quite expensive, a further reduction in control effort is 
desired.  
 

In order to achieve vortex street cancellation at even lower levels of control effort, using 
materials with controllable wetting properties appears as a possible choice. These materials 
modify their wetting properties when an external forcing is applied, e.g. optical, magnetic, 
mechanical, chemical, thermal or electrical; for an extensive review see Verplanck et al.  
(2007). Among these materials, those with controllable electro-wetting properties have been 
recently used in microelectromechanical systems (MEMS) applications, as for example in 
optical switches, in cooling of electronic circuits and in transport and mixing of micro-drops 
for purposes of printing (Mugele and Baret, 2005). Electrowetting actuators are based on the 
fact that it is possible, using an external electric field, with no mechanical parts, to control 
movement or quick change (within hundredths of a second). Further, it is should be noted that 
electrowetting actuators can be miniaturized to scales of less than a millimeter, and still be 
controlled with great precision using substantially low levels of energy (Mugele and Baret,  
2005). Thus, materials with controllable (electro-)wetting properties can enable the 
application of time-dependent slip conditions on a surface, for feedback control studies. 

      
The work of Park et al. (1994), as well as the results presented here (see previous section), 

demonstrated that in flow past a cylinder the application of an active feedback control scheme 
contributes to a substantial reduction in control effort, in comparison to an active feedforword 
control strategy. Guided by these results, the application of time-dependent slip conditions in 
the context of a feedback control scheme may lead to partial or complete suppression of the 
vortex street at a substantially lower level of control effort, in comparison to the 
corresponding passive control scheme with slip, presented in chapter 3. 
 

In the present feedback control scheme, sketched in Fig. 69, an instantaneous transverse 
velocity at a point along the domain centerline, V(xs,t), is used as the sensor signal. A proper 
value of slip length, b*(t), is used as the control input signal, u(t), calculated based on a 
proportional feedback control law within the frame of the Navier model, as follows: 

                           
 

*
*

1( ) ( ) ( , )p su t b t k V x t
Re τ

= =
⋅

                  (54) 

where kp is the proportional feedback gain value. It should be noted that eq. 70 is in 
accordance with the passive slip condition, introduced in section 2.1 (see eq. 25).  
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Fig. 69. Sketch of the present proportional feedback loop control scheme. The non-
dimensional location of the sensor, xs/D, the actuation regime (hydrophobic area extends 
between θmin and θmax), the proportional gain, kp, as well as the control input signal, u(t), are 
depicted. 

5.3.2 Application of controllable wettability on the entire cylinder 
surface 
 

The feedback control approach of Park et al. (1994), as well as the present optimization 
results (see section 5.2), demonstrated the strong sensitivity of the flow instability to the 
feedback control parameters. Here, the stabilizing effects of the controllable wettability 
properties are first investigated for Re=60, in terms of a parametric study. In particular, the 
sensitivity of results on sensor location, xs, and on the proportional gain value, kp, is studied.  
 

In a first step, the proportional gain is fixed at the representative value of 0.5, and the 
feedback sensor location is considered as a free parameter. Fig. 70 presents representative 
flow quantities as a function of the streamwise coordinate of the control sensor, xs, in 
particular the lift coefficient amplitude, CL,ampl (Fig. 70a), the time-averaged drag coefficient, 
<CD> (Fig. 70b) and the maximal value of the (time-dependent) slip length, b*

max (Fig. 70c). 
Fig. 70a demonstrates the decreasing trend of lift coefficient amplitude, as the sensor is 
moved farther downstream. When the feedback sensor is placed at xs=7, the minimal value of 
the lift coefficient amplitude is attained, corresponding to very low levels of flow 
unsteadiness; however, vortex street is not fully cancelled. For a sensor location xs>7, the 
destabilizing effects are increased. The time-averaged drag coefficient, presented in Fig. 70b, 
is a decreasing function of the sensor location, for xs<5, an increasing function of the sensor 
location, for 5<xs<7, and finally a decreasing function of the sensor location, for xs>7; for 
xs=7, the time-averaged drag coefficient attains a local maximum. Finally, Fig. 70c verifies 
that the maximum value of the (time-dependent) slip length reaches a minimum at xs=7, 
corresponding to the minimization of control effort.   

 
In order to investigate in more detail the influence of the location of feedback sensor on 

the flow stability, we present in Fig. 71 and in Fig. 72 the lift coefficient signal, CL, as well as 
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the time-dependent slip length, b*
time, for several sensor locations (kp=0.5). Fig. 71 verifies 

that, as the sensor is moved downstream within the regime 1<xs<7, the lift signal amplitude, 
as well as the maximum value of slip length, are reduced; the minimal values are attained at 
xs=7. On the other hand, for 7<xs<12, Fig. 72 demonstrates an increasing trend of both the lift 
signal amplitude and the maximum in time of slip length.  
 

In a second step, utilizing the above results, we fix the feedback sensor location at xs=7, 
and vary the proportional gain, kp; computed values of representative flow quantities are 
presented in Fig. 73. Fig. 73a and Fig. 73b demonstrate that the lift signal amplitude, CL,ampl, 
as well as the time-averaged drag coefficient, <CD>, are both decreasing functions of the 
proportional gain. On the other hand, the maximum value of the (time-dependent) slip length,  
b*

max, is an increasing function of the proportional gain (Fig. 73c). It is worth noting that, for 
kp>0.3, further increase of kp results in an imperceptible modification of flow statistics.   

 
The present parametric study thus generally demonstrates that moving the feedback 

sensor location downstream and increasing the proportional gain value contribute to a 
substantial reduction in flow unsteadiness. It is noted that a complete cancelation of flow 
unsteadiness has not been attained; nonetheless, a comparison with our results of passive flow 
control reported in chapter 3 suggests a reduction by two orders of magnitude in control effort 
with feedback control. 
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(a)  

 

(b)  

 

(c)  
 

 

Fig. 70.  Re=60: flow quantities versus streamwise sensor location, xs, at a proportional gain 
value of kp=0.5: (a) Lift coefficient amplitude, CL,ampl, (b) time-averaged drag coefficient, 
<CD>, and (c) maximum value of non-dimensional slip length, b*

max.  
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Location, 

xs/D 
Lift Coefficient signal, CL(t) Slip length, b*

time 

1.0 
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5.0 

  

7.0 

  
Fig. 71. Re=60, kp=0.5: lift coefficient and slip length signals, for different streamwise 
locations of the sensor in the near wake. Active feedback control in terms of time-dependent 
slip conditions is implemented at t=300.  
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Sensor 
Location, 

xs/D 
Lift Coefficient signal, CL(t) Slip length, b*

time 
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Fig. 72. Re=60, kp=0.5: lift coefficient and slip length signals, for different streamwise 
locations of the sensor in the far wake. Active feedback control in terms of time-dependent 
slip conditions is implemented at t=300.   
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(a) 

 

(b)  

 

(c)  

 
Fig. 73. Re=60: flow quantities versus proportional gain value, kp, when the sensor is located 
at xs=7: (a) Lift coefficient amplitude, CL,ampl, (b) time-averaged drag coefficient, <CD>, and 
(c) maximum value of non-dimensional slip length, b*

max. 

 

5.4 Optimization of feedback control with time-dependent 
slip 
 

In the previous section, a feedback control scheme, utilizing time-dependent slip conditions 
on the entire cylinder surface, was parametrically investigated. Due to the high cost of 
implementing controllable surface hydrophobicity, it is of main consideration to reduce the 
extent of the corresponding regime. In the present section, the feedback control parameters, 
i.e. the sensor location, xs, and the proportional gain value, kp, as well as the angles defining 
the hydrophobic region, θmin and θmax, are subject to an optimization procedure, aiming at the 
partial or complete suppression of the Kármán vortex street at a minimal control effort. To 
this end, a two-objective minimization problem is formulated. The first objective function is 
associated with the flow’s global stability, while the second one quantifies the time-dependent 
control effort. Optimization results are reported for Re=60 and for Re=90. 
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5.4.1 Design variables and search space 
 

Four design variables are utilized in the present implementation: the streamwise location of 
the transverse velocity sensor, xs, the proportional gain, kp, and the angles θmin and θmax 
defining the extent of the area where the time-dependent slip condition is applied. A broad 
domain of definition is considered for each of the four design variables:  

1 10sx≤ ≤ ,
 
0 0.5pk≤ ≤ , 0 70o

min
ο θ≤ ≤ , 110 180o

max
ο θ≤ ≤   

 
 (55) 

The selection of the search space boundaries for θmin, θmax was guided by the optimization 
problem with passive slip (see section 3.3.1). Regarding the proportional gain, kp, and the 
sensor location, xs, the definition of search space has been based on the results of the 
parametric analysis reported in section 5.3.  

5.4.2 Objective functions 
 
Two objective functions are introduced.   

(a) First objective function, J1: 
 
The first objective function, J1, related to the flow global stability, is the same one introduced 
in the optimization problem studied in Chapter 3 (see eqs. 32, 33, 34).  

 

(b) Second objective function, J2:  

 

The control effort increases with slip length (determined in terms of the product of the 
transverse velocity at the sensor location and the proportional feedback gain) and the half-arc 
of the slip region. Thus, a corresponding objective function, J2, is defined as follows:  

max min
2

( )
2xsV pJ S k θ θ−

=    
               

                         (56)   

where the standard deviation of the transverse velocity,
 xsVS at the sensor point, xs, is defined 

(at large times) as:       

    
               

    ( )2

,
1

1
1x i ss

N

V t x
i

S V
N =

=
− ∑                                               (57)   

where ,i st xV  is the transverse velocity at the sensor point xs calculated at time instant ti. 

5.4.3 Optimization problem  
 

The optimization problem is stated as follows: find the optimum combinations of the problem 
design variables (xs, kp, θmin, θmax), which simultaneously minimize objective functions J1, J2. 
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The optimization problem, as formulated here, is solved for two representative Reynolds 
number values, Re=60 and Re=90, for which the flow is two-dimensional. 

5.4.4 Optimization results 

5.4.4.1 Optimization results for Re=60 
 
The optimization results for Re=60 are presented in Fig. 74, in terms of the values of the 
problem objective functions, J1, J2. Each combination of the problem design variables (kp, xs, 
θmin, θmax) corresponds to a different implementation of the present feedback control scheme. 
Fig. 74 demonstrates that the application of time-dependent slip condition by means of 
feedback control results in partial suppression of flow unsteadiness. However, it should be 
noted that the control effort used, quantified by the objective function J2, attains near zero 
levels.      
 

Four representative solutions of the Pareto front, as well as the case of uncontrolled flow, 
are depicted in Fig. 74 with colored squares. The corresponding design variables and 
objective function values are reported in Table 11. Table 11 indicates that, for the optimal 
solutions considered, the decrease of flow unsteadiness is a result of the increase of the 
proportional gain value, kp, as well as of the shift of the streamwise sensor location, xs, farther 
downstream. For these representative solutions, Fig. 75 presents the computed signals of lift 
coefficient and slip length. As the control effort increases, the amplitude of the lift signal is 
reduced, reaching its minimal value at the solution depicted by Point 4 in Fig. 74; however 
flow unsteadiness is not fully suppressed. 

 
Fig. 74. Re=60: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. 
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Table 11. Re=60: design variable values and corresponding objective function values, for the 
uncontrolled case, as well as for optimal solutions 1-4, depicted in Fig. 74.   

Case kp θmin θmax xs J1 J2 

Uncontrolled - - - - 0.260 0.00000 

Point 1 0.222 61o  125o  0.853 0.171 0.00017 

Point 2 0.181 53o  120o  4.772 0.106 0.00031 
Point 3 0.385 28o  127o  9.81 0.037   0.00044 

Point 4 0.461 43o  167o  9.95 0.035 0.00064 

 
 
 

Case Lift Coefficient, CL Slip length, b*
time 

Point 1 

  

Point 2 

  

Point 3 

  

Point 4 

  
Fig. 75.  Re=60: lift coefficient and slip length signals for optimal solutions 1-4, depicted in 
Fig. 74. Active feedback control in terms of time-dependent slip is implemented at t=300.
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5.4.4.2 Optimization results for Re=90 
 
Fig. 76 presents the computed values of objective functions for Re=90, accompanied by a 
sketch of the Pareto front. Two representative solutions, namely Point a and Point b, lying on 
the Pareto front, as well as the case of uncontrolled flow, are depicted in Fig. 76; the 
corresponding values of design variables and objective functions are reported in Table 12. 
Table 12 also includes passive control optimal solutions of the partial slip setup (Point 1 and 
Point 2 depicted in Fig. 24) presented in chapter 3; a solution corresponding to steady slip 
conditions on the entire cylinder surface (Legendre et al. 2009) is also reported. Table 11 
indicates that, for the optimal solutions obtained for Re=90, the decrease of flow unsteadiness 
is mainly a result of the increase of the proportional gain value, kp, and of the hydrophobic 
area, and secondarily of the shift of the sensor location, xs, farther downstream. For these 
representative optimal solutions, Fig. 77 presents the computed signals of lift coefficient and 
slip length. It is demonstrated that, for the solution depicted by Point b in Fig. 76, the 
amplitude of lift signal attains a minimal value. 
 

Finally, Table 12 highlights the fact that the control effort, also quantified by the product 
½b*(θmax-θmin) introduced in chapter 3, is reduced by more than two orders of magnitude, in 
comparison to the optimal solutions of the passive control scheme, i.e. flow unsteadiness is 
reduced substantially with very low levels of control effort. To interpret this important result,  
one should consider that, in the case of passive control, the control action is implemented on 
the non-linear flow state, which is characterized by self-sustained oscillations at high 
amplitudes. Thus, a high control effort is necessary. In the case of feedback flow control, the 
control action gradually brings the flow state close to a base flow state. The flow may thus 
exhibit low amplitude fluctuations with reference to this flow state; these fluctuations are 
controlled by the feedback control scheme implemented, using a corresponding (low) control 
effort. 

 
As indicated in chapter 3, a realistic value of slip length with current superhydrophobic 

materials is of the order of 100 μm. The present results have shown that, in the case of 
implementing time-dependent slip conditions, an effective suppression of flow unsteadiness 
can be attained for b*=0.0005 (or lower); this corresponds to cylinder diameters of  about 
D=200 mm.  

 

Fig. 76. Re=90: objective function J1 vs. objective function J2, and sketch of the 
corresponding Pareto front. 
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Table 12. Re=90: values of design variables and objective functions, for the uncontrolled 
case, for solutions depicted by Points a and b in Fig. 76, as well as for solutions 
corresponding to the passive control scheme, utilizing steady slip conditions on a part (Points 
1 and 2 of Fig. 24) and on the entire cylinder surface (Legendre et al. 2009); the values of 
½b*φ magnitude, quantifying the control effort, are also reported.      

Case kp xs θmin θmax J1 J2 b* φ=θmax-θmin 1/2b*φ 
Uncontrolled - - - - 0.319 0.00000 0.00000 0ο 0.0000 
Point a 0.043 8.2 56o  119o  0.261 0.00015 0.00018 63ο 0.0001 
Point b 0.263 8.6 20o  153o  0.112 0.00085 0.00060 133ο 0.0007 
Point 1  - - 41ο 129ο 0.261 - 0.04100 88ο 0.0310 
Point 2  - - 34ο 146ο 0.112 - 0.19600 122ο 0.1560 
b*=0.15 - - 0ο 180ο 0.112 - 0.15000 180ο 0.2350 

 

Case Lift Coefficient, CL Slip length, b*
time 

Point a 

  

Point b 

  
Fig. 77. Re=90: lift coefficient and slip length signals for solutions depicted in Fig. 78 by 
Point a and Point b. Active feedback control in terms of time-dependent slip is implemented 
at t=300. 

5.5 Summary of chapter 5 
 

The present chapter has addressed the problem of optimal suppression of the vortex street in 
flow past a cylinder at low Reynolds numbers, by means of two active feedback control 
schemes; for both schemes the feedback signal was obtained by a proportional control law 
based on the signal of a velocity sensor, properly placed in the near wake. In the first scheme, 
time-dependent mass transpiration was applied through two actuation slots on the cylinder 
surface. The optimization results have demonstrated the sensitivity of global flow stability to 
the choice of control parameters (proportional gain value, sensor location). In the frame of 
optimization, stabilization has been attained for a larger number of combinations of the 
control parameters, in comparison to the approach of Park et al (1994). In the second scheme, 
time-dependent slip conditions have been applied on the entire or on a part of the cylinder 
surface, as enabled by materials with controllable wettability properties. First, in the frame of 
a parametric study, application of controllable hydrophobicity on the entire cylinder surface 
has demonstrated that, by proper selection of the sensor location, as well as of the 
proportional gain value, the vortex street is effectively suppressed, leading to low levels of 
flow unsteadiness. Guided by these simulations, an optimization problem was formulated, 
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aiming at suppressing the vortex street at a minimum control effort. The optimization results 
have demonstrated that vortex street can be suppressed using a control effort two orders of 
magnitude lower than that required in corresponding passive control schemes. 



99 
 

Chapter 6: Novelty of the present work and 
contribution to scientific research 
 
The present computational study addresses the control of global stability in the prototype flow 
past a circular cylinder, for low Reynolds numbers, by optimizing passive, active open-loop 
and active feedback control schemes. A main novelty of the present work consists in 
proposing a systematic methodology for the optimal design of passive and active (both open-
loop and feedback) flow control schemes, also including proper interpretation of results by 
means of stability analysis calculations. The present chapter summarizes the proposed 
methodology and the new findings of this thesis. 
 
6.1 Proposed methodology 
 
For each problem considered, the proposed methodology utilizes the following steps: 
 
Step 1: Formulation of the CFD model 
First, a computational model is developed, taking into account the parameters of the 
uncontrolled flow problem, as well as the parameters defining the control action. In the 
present study, implementation of a control strategy corresponds to a proper (steady or time-
dependent) boundary condition on the cylinder surface. For each control scheme, spatial and 
temporal resolution tests guarantee grid- and time step independence.  
 
Step 2: Parametric analysis 
A parametric CFD analysis is performed in order to investigate the dependence of flow 
stability and the corresponding control effort on the control scheme parameters, and identify a 
proper range of the optimization problem design variables.      
 
Step 3: Formulation and solution of multi-objective optimization problem 
The goal of the present study is to attain partial or complete vortex street cancelation at a 
minimal control effort. To this end, for each control scheme considered, a multi-objective 
optimization problem is formulated and solved; the two optimization goals (vortex street 
cancelation and minimization of control effort) are quantified by proper objective functions. 
The solution of the optimization problems is achieved by coupling a CFD code (here ANSYS 
CFX) with an optimization code based on genetic algorithms. The solution of each 
optimization problem gives the set of optimal solutions (Pareto front).  
 
Step 4: Characterization of optimal flow fields 
Representative optimal solutions of the Pareto front (flow fields and force signals) are further 
processed, yielding flow statistics. These results are correlated to the intensity of flow 
unsteadiness and to the control effort.  
 
Step 5: Local linear instability analysis of optimal solutions 
For representative optimal solutions, local instability analysis of the corresponding base flow 
field is performed, utilizing a normal mode solver. Computed local absolute growth rates and 
frequencies are related to local values of velocity ratio and vorticity thickness, as well as to 
the results of non-linear CFD calculations.  
 
Step 6: Calculation of global linear growth rates of optimal solutions   
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For representative optimal solutions, computed lift coefficient signals are processed in the 
frame of the Stuart-Landau equation, and results are related to those of non-linear CFD 
calculations.  
 
6.2 New findings of the present thesis 
 
The methodology outlined in the previous section has been applied in order to identify 
optimal solutions of four control schemes, in flow past a circular cylinder. The new findings 
for each control scheme can be summarized as follows: 
 
(A) Passive control by means of steady hydrophobicity 
The present thesis has demonstrated for the first time that implementation of hydrophobicity 
in both the front- and the rear stagnation point regime introduces destabilizing effects. This 
suggests that utilizing hydrophobicity in these areas should be avoided in flow stabilization 
schemes (use of partial slip), thus leading to a reduced cost in an actual implementation. 
Guided by this finding, a passive control scheme utilizing surface hydrophobicity on only a 
part of the cylinder surface has been implemented (partial hydrophobicity). The optimal 
extent of the hydrophobic regime on the cylinder surface has been identified for the first time 
by means of a systematic optimization procedure. The optimization results have highlighted a 
substantial decrease of the control effort in comparison to the full slip case, of up to 50%. 

 
(B) Active feedback control by means of time-dependent hydrophobicity 
In the present thesis, the use of materials exhibiting time-dependent wetting properties was 
considered for the first time for flow stabilization. Here, the specific time-dependent 
hydrophobicity of the (entire) cylinder surface has been regulated in the frame of a properly 
designed feedback control scheme, the parameters of which have been optimized. The 
optimization results have demonstrated that flow unsteadiness can be suppressed at a control 
effort reduced by two orders of magnitude, in comparison to the optimal implementation of 
steady hydrophobicity, a reduction which makes the proposed feedback control scheme 
attractive for future implementation in actual applications.   
 
(C) Active open-loop control by means of steady mass transpiration 
In the present thesis, the effects of implementing steady suction/blowing on three regimes of 
the cylinder surface (front stagnation point region, sideway region, and rear stagnation point 
region) have been systematically investigated for the first time. Guided by the results of the 
present investigation, a proper optimization problem was formulated and solved, imposing a 
zero net flow rate, associated with minimal pumping requirements. The optimization results 
give the full profile of mass transpiration on the cylinder surface, and demonstrate a decrease 
in control effort of up to nearly 50%, in comparison to previous literature studies. 
 
(D) Active feedback control by means of time-dependent mass transpiration 
A time-dependent mass transpiration control scheme utilizing feedback control has been 
implemented. For the first time, the control parameters have been identified by a systematic 
optimization study. The optimization results have demonstrated a significant reduction in 
control effort, in comparison to the optimal implementation of steady mass transpiration. 
Further, the present optimized schemes results in an improvement in robustness of literature 
feedback control schemes.  
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Chapter 7: Conclusions  
 

7.1 Conclusions 
 

The present work has investigated computationally the optimal suppression of the Kármán 
vortex street in flow past a circular cylinder at low Reynolds numbers (Re<180), by use of 
passive, active open-loop, and active feedback control schemes. To this end, a multi-objective 
optimization tool has been developed, by coupling a CFD code with an optimization tool 
based on genetic algorithms. Two control measures have been considered in the present work, 
in particular: (a) application of slip conditions, and (b) implementation of mass transpiration 
on the cylinder surface. The optimal results have been interepreted by means of local and 
global instability calculations utilizing an Orr-Sommerfeld solver, as well as force signal 
processing in the frame of the Stuart-Landau model. 

First, the problem of passive control of flow past a circular cylinder has been investigated, 
by means of partial (and full) slip. It has been demonstrated that implementation of 
hydrophobicity in both the front- and the rear stagnation point regimes enhances destabilizing 
effects. Guided by this observation, an optimization problem was formulated aiming at 
partially or fully suppressing the Kármán vortex street at a minimum control effort, in terms 
of partial slip. Here, the control effort has been quantified as the product of the slip length and 
the extent of the hydrophobic regime. The optimization results have demonstrated that 
optimal application of partial slip is substantially more effective than full slip in suppressing 
flow unsteadiness. In particular, compared to full slip, optimal application of partial slip can 
result in a decrease of control effort by up to 50%. The local instability calculations of 
optimal solutions have demonstrated that the increase of the control effort results in decreased 
values of velocity ratio and vorticity thickness in the near wake region. Thus, both the 
streamwise extent of absolute instability and local absolute growth rates are decreased, 
leading to suppression of non-linear flow oscillations, and complete cancelation of the vortex 
street at a critical level of control effort. 

Next, an active open-loop control scheme has been implemented by means of steady mass 
transpiration (suction/blowing) on the cylinder surface. Initially, suction/blowing has been 
applied in three regimes of the cylinder surface, namely: (a) the front stagnation point region, 
(b) the sideway region, and (c) the rear stagnation point region. The results have demonstrated 
that application of suction in the sideway or in the front stagnation point region, and blowing 
in the rear stagnation point region induce flow stabilization. Guided by these results, an 
optimization problem was formulated and solved, aiming at the partial or full suppression of 
the Kármán vortex street, at a minimal control effort, under the constraint of zero net mass 
transpiration. Here, the total control effort has been quantified by the suction coefficient, Csuc. 
Complete vortex street cancelation has been attained at a control effort 30% lower, in 
comparison to previous studies (Delaunay and Kaiktsis, 2001). The results of local instability 
analysis have shown a decrease in both the extent and intensity of local absolute instability 
with control effort (Csuc), resulting in stabilization of the global flow at a critical level of 
control effort.   
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Finally, in order to attain global flow stabilization at even lower levels of control effort 
two feedback control schemes have been developed and optimized, utilizing: (a) time-
dependent mass transpiration, and (b) time-dependent slip conditions. For both schemes, the 
feedback signal has been obtained by a proportional control law based on the signal of a 
transverse velocity sensor, properly placed in the near wake, at a point on the domain 
centerline. In the first feedback scheme, time-dependent mass transpiration has been applied 
through two actuation slots on the cylinder surface. The optimization results have 
demonstrated the sensitivity of global flow stability to the choice of control parameters 
(proportional gain value, sensor location), whereas stabilization has been attained for a larger 
number of combinations of the control parameters, in comparison to the approach of Park et 
al. (1994). In the second feedback scheme, time-dependent slip conditions have been applied 
on the entire or on a part of the cylinder surface, by using materials with controllable wetting 
properties. The initial parametric study has demonstrated that implementation of controllable 
hydrophobicity on the entire cylinder surface may lead to low levels of flow unsteadiness; the 
latter has been attained by a proper selection of the control parameters. Guided by the results 
of the parametric study, an optimization problem was formulated, aiming at suppressing the 
vortex street at a minimal control effort. The optimization results have demonstrated that 
vortex street can be effectively suppressed utilizing a control effort lower by more than two 
orders of magnitude than that required in corresponding optimized passive control schemes. 

 

7.2 Suggestions for future work 
 

The present thesis has investigated computationally the control of flow past a cylinder at low 
Reynolds number values, by means of: (a) surface hydrophobicity, and (b) mass transpiration. 
In the present section, suggestions for future research that arise from the present study are 
proposed. 
 

Firstly, concerning passive control by means of surface hydrophobicity, the present 
computational work can be extended to higher values of Reynolds number, for which the flow 
is three-dimensional. As three-dimensional computations are expected to be substantially 
more expensive, optimization should be as efficient as possible. To this end, hybrid 
optimization schemes, utilizing both genetic algorithms and gradient methods, as well as 
metamodels, can be implemented. In particular, regarding the use of partial slip, it should be 
investigated to what extent the results in terms of flow stabilization are superior in 
comparison to full slip (as has been demonstrated in the present thesis for low Reynolds 
numbers). In all cases, optimal computational solutions can be compared against experimental 
results, based, for example, on Particle Image Velocimetry (PIV).  

   
Secondly, concerning active open-loop control by means of steady mass transpiration, the 

present computational work could also be extended to high Reynolds numbers, utilizing three-
dimensional computations. Here, mass transpiration can depend on the spanwise direction, to 
account for the three-dimensionality of uncontrolled flow. The present scheme of a zero net 
flow rate can be maintained, to minimize pumping requirements. Optimal solutions should be 
compared against experiments.  
 

Thirdly, the active control scheme utilizing materials with controllable wettability 
properties proposed in the present thesis should be elaborated on with experiments, both at 
low and high Reynolds numbers. The drastic reduction in control effort illustrated in the 
present work should be tested in an actual implementation.  
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Finally, it is noted that the systematic methodology for passive and active flow contro l 
proposed in the present thesis can be utilized to optimize control schemes in shear flow 
applications. For wake flows, in particular, such schemes can involve cylinder rotary 
oscillations, proper placement of control wires, and cylinder heating. In this context, it is also 
noted that the present approach, which has focused on flow stabilization, can be utilized to 
attain different control goals, such as maximizing heat transfer rates.  
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Appendix A: Validation tests of instability 
analysis calculations 
 
A.1 Local linear instability analysis calculations 
 
The local linear instability analysis calculations of the present study utilize an Orr-
Sommerfeld solver based on high-order finite differences, developed by G.S. Triantafyllou 
(see Triantafyllou et al., 1986). The calculations are performed for wake profiles of the base 
(unperturbed flow), extending from y=-10D to y=+10D; beyond these limits, the flow is 
found to be irrotational. Here, the present local instability analysis results are compared 
against published literature data. In particular, for an uncontrolled base flow at Re=90, local 
linear absolute frequency, St0, and local linear absolute growth rate, ω0,i, where calculated for 
several streamwise locations of the cylinder wake, x/D. The results, presented in Fig. 79, are 
compared to those of Pier (2002), illustrating an overall very good agreement. 
 

(a) (b) 

  

Fig. 78. Re=90: flow quantities vs. streamwise coordinate, for the base flow field of 
uncontrolled flow: (a) local linear absolute frequency, St0, and (b) local linear absolute growth 
rate, ω0,i. The present results are compared against those of Pier (2002). 
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A.2 Calculations of global linear growth rates  
 
Here, results of the present global linear growth rate calculations are reported for uncontrolled 
flow at Re=50 and Re=60 in Table 13. The results are compared to those of Schumm at al.  
(1994), and Delaunay and Kaiktsis (2001), demonstrating an overall very good agreement.   
 
Table 13. Coefficients of the Stuart-Landau equation at Re=50 and Re=60, corresponding to 
the present (computational) and previous, experimental (Schumm at al., 1994) and 
computational  (Delaunay and Kaiktsis, 2001) studies. 

 Re=50 Re=60 
(σrD2)/ν (present work) 0.73 2.482 

(σrD2)/ν (Delaunay and Kaiktsis, 2001) 0.70 2.90 
(σrD2)/ν (Schumm et al., 1994) 0.69±0.08 2.80±0.1 

(σiD2)/ν (present work) 37.4 45.69 
(σiD2)/ν (Delaunay and Kaiktsis, 2001) 37.1 45 

(σiD2)/ν (Schumm et al., 1994) 35.7±0.6 42.1±0.8 
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