

~ ~ μ · μ , μ μ μ μ μ μ μ . μ μ μ μμ ï μ μ μ μ μ μ μ .

μ μ , μ μ μ . μ μ,

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ 8 (EC8), μ μ μ

.

μ, μμ . μ μμ . ,

μμ μ μ μ (SHAKE2000) μμ μ μ EC8. μ μ μ (PGA_{outcrop rock}) μ .

μ , B D, EC8 μ V_{s,30}. μ μ μ (PGA).

μ μ μ , μ μ μ μ μ . S, μ μ μ . μ μ

μ μ μ μ μ μ μ EC8.

ABSTRACT

Site effects is one of the major factors that influence the seismic responce of a surface's location. In this thesis the influence of the site effects is investigated with pulselike and no-pulselike ground motions. The aim is to compare the relevant responce spectra with those proposed by Eurocode 8 (C8), in orded to evaluate them.

To achieve this goal, we collected recordings at various locations with known geotechnical conditions from various databases. Most of them were recorded on rock outcrop locations and some others on shallow soil layers. In this way it was possible to estimate the bedrock motions of these recordings and used them as input motions for the one-dimensional equivalent linear analyzes (SHAKE 2000 software) in soil profiles which were created in order to represent the soil classes specified in C8. These recordings were divided into three groups according to their peak ground acceleration on the surface of the rock (PGAoutcrop rock), following the seismic zones of Greece.

To check the reliability of the results of the one-dimensional analyses, recordings corresponding to soil classes B to D were collected too. These recordings were classified in the relevant soil category of C8 taking into consideration the value of $V_{s,30}$. The total of the collected recordings within a soil class were divided into three groups according to their peak ground acceleration (PGA).

The surface spectra of both the physical recordings and the predicted analytically, were studied separately for each acceleration group and were used to evaluate the shape of the relevant response spectra of C8. The computation of the soil factor S derived from the results of the analyses.

Moreover, an approximate control process was adopted in order to investigate whether the inelastic response spectra leads to safe design for specific recordings which maked great excesses of the shape of the relevant response spectra of C8.

1			1.
1			1.1
4		μ	1.2
4		1.2.1 µ	
μ μ5	μ	1.2.2 µ	
7			1.3
9		&	1.4
			2.
			2.1
Tyrkey Flat- Steven L.		μ	2.2
		ner	Kram
μ μ	- µ µ		2.3
	8 -		3.
			3.1
EC8 15	μ		3.2
		μ	3.3
			4.
			4.1
000 µ µµ	μμ SH E 2000		4.2
	-	μ	4.3
μ29	μμμ	4.3.1	
μ			4.4

	4.5			μ							53
5.											55
	5.1			•••••							55
	5.2				μ						
				•••••							56
	5.3				μ	-	μ				S
		57									
6.						-					89
	6.1			•••••							89
	6.2			μ				ŀ	l	μ	89
	6.3						μ			8	3
		μ	μ		μ						95
		6.3.1						μ			98
		6.3.2	μ	μ				ł	J		
				•••••							. 124
	6.4		μ								. 125
7.											129
8.											131

μ

μ

μ

μ

μ

,

(:

μ

1.

1.1

μ

μ

μ

μ

μ

μ

μ

μ

μ

ī μ

μ 1.2: μ μ μ μ μ μ (μ) μ (: ,) μ

		μ									μ
μ			μ		μ						
μ											,
					μ						
						μ			•		
μ	μ				μ					μ	
μ				μ	ı		μ	μ	P (Prin	nary)	
						μ		μμ			'
	μ μ						μ,	μ		μ	S
(Secondary	y)		μ		μ	Р		μμ			·
μ	Р				C			μ			
		•	μ		5		μ		μ		
	μ	μ				μ		μ			
	μ,				μ						
									μ		
	μ							μ			
	μ					D		μ		μ	
П	μ, ς				μ	1	μ				
٣	0.		۲		٣			П			
U						1		٣	Ш	Ravle	eiah
۳ U	Love.						٣		P.	. a ji	e.g.
٣											
μ			,	μ	μ	ı		μ	μ	`	
μ	μ		('		ı		μ)	
								I			

.

μμμμ,

1.2	μ						
1.2.1	μ						
μ μ	μ		,	μ ,	μ	μ	
	μ	μ μ	μ μ	μ	μ		μ (α()
P	oison . μ	μ μ	μ G,	μ		μ μ	(%) , µ
μ	μ ,	μ	μ		μ	μ. μ	μ
″μ	н " hh	ب	μ μ (<10	⁻⁵ ÷10 ⁻⁶), µ	ŀ	μ	μ
)	, μ μ μ	D =0,02÷ µ	-0,04. ΄ μ	μ G ₀ G _{max} ,	(µ	μ Vs (G _c =	μ μ μ
	μ μ	μ	μ (10 ⁻⁵ < -	μ <10 ⁻³), μ	 ب 	μ	μ μ μ G
μ μ μ	μ G G/Gmax-	μ D(%	μ) μ	μ D μ	μ	μ	μ
μ	+ 10 ⁻⁴ < <	, 10 ⁻⁵ ,	μ	μ	h hh	μ ,	11
μ	, μ		μ	,	. μ μ	μ , μ	۲
·	μ μ.				1	μ 10 μ	⁴ < <10 ³ , 3/4
	μ μμ -		μ		μ	>10) ⁻³ , µ

μ

. μ,

1

,

μ

μ μ

μ

μμ.	μ						"	11	
						μ			
	μ					μ		μ	
μ						μ	•		μ
		μ	μ		μ				
	I		Ρμ			S	μ		
μ						μ		μ	
μ				μ		μ		ı	

1.2.2 μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ

μ 1.4: μ μ G/Gmax D, μ μ . (Menq, 2003) μ

μ

μ . μ. μ μ μ μ μ μ μμ μ ı T_o. μ μ μ μ V_s, Н μ ۲ ۷s : т

$$T_{0} = \frac{4 \cdot H}{V_{s}}$$
 (Σχέση 1.1)

μμ μ μ μ μ μ μμ, μ 1.2 , h_i n μ V_i.

$$T_o = 4 \cdot \sum_{i=1}^n \frac{h_i}{V_i}$$
 (Σχέση 1.2)

μ 0.2Hz() 10Hz $\mu \quad f_o \ (f_o{=}1/T_o) \ \mu \qquad \qquad \mu$ μ μ μ (μ μ). μ, μ μ μμ μ μ . $V_{s} \\$ 1.3, μ μ μ μ G

$$Vs = \sqrt{\frac{G}{\rho}} \quad (Σχέση 1.3)$$

μ μ μ μ

					μ					ц	μ	μ
	μ		,			ł	ŗ	ı		P	μ	
μ					μ						μ	μ μ
μ				μ	μ				,	μ		
			·							μ	I	μ
					μ	ı		μ	μ			μ
				μ u	u		μ	u			μ	-
		μ	I	μ	S			۳ ا	1	,		
μ	μ	μμ			μμ	μμ		μ		μ		μ
	μ	μ μ	μμ	μ		μ	μ	μ	ı	μ		,
μ		μ	μ μ					μ	μ	I		
			μ	G-	D('	%) - .	ŀ	1	, , ,			
	μ	μ			I	μ	μ		μ	μ		
	μ		μ	ı		μ		PI,	μμ μ	μ	μ - μ	μ μμ
	μ						μ	, L			μ-	μμ
		μ			μ				μ	,		
μ μ		μ			μ	,	μ		μ		ب ,	l

μ μ

.

μ

μ

μ

μ

,

1.3

.

μ

μ,

μ

μ

μ

.

μ

μ μ

1.3

μ

μ

μ.

μ

μ

,

,

.

G D, μμ μ μ μ μ μμ. μ μ μ μ μ μ • SHAKE (Schnabel μ μ μμ μ EERA (Bardet et al.,2000). et al.,1972) 4 μ μ , SHAKE μμ μ μ . μ μ μμ μ μμ μ μμ μ μ μ , μ μ μ . μ μ μ μ μ μ μμ μ μ (-) μ μ μ μ μ. μ μμ ı μ μ μ μ μ μ μ μ μ μ _ μμ μ μ μ μ μ μ μμ , , μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ μ . μ μ , μ μ μμ μ). (. . μ μ μ μ μ μ , . μ , μ μ μ μ μ μ

1.4		&								
μ	μ	μ			μ μ	μ				,
15km	Roc	µ Iriguez-M	µ arek, 200	00)	μ. μ, 20-60km	μ		,	μ	, (10-
μμ		. ,								
	μ	μ	μ		μ				μ	
μ	μ	ı	μ		μ	1		μ	Dop	pler.
			۲.					μ Ο Ι	μ	
μ			,	μ	(forward directiv	vity).		μ	I	μ
μ	I		μ		μ,		μ		ı	
Ц	μ μ		μ u		μ μ	μ u		ı		μ
μ	(Son	nerville	et al, 19	997). µ	μ	F				(strike-
slip), µ,	μ μ							μ	μ	
μ μ		μ μ	, μ		μ μ	,			ı	
			μ			μ	μ			
μ μ	, µ		μ		μ	μ		μ		μμ
		μ μ	μ			(ba µ	ickward	direct	ivity).	,
			μ		(strike-normal), µ (strike-p	μ arallel).	ł	L		μ

0.5sec (Somerville et al, 1997). μ μ μ μ . μ μ (strike-slip) (dip-slip), μ (Somerville et al, 1997). μ μ μ μ μ μ ı μ μ μ

μ		μ	ŀ	L		
μ	μ μ					
μ μ	μ	μ	I			
2.2 µ L. Kramer				Tyrkey	r Flat- Stev	ven
2006 µ			1	μ		
μ	- 1			Turkey Flat,		8km
Parkfield	5km		μ	San Andreas	ŝ	
μ 2.1		Rock	South (R1),	μ Valley Center (V	′1), Valley I	, North
(V2) Rock South (R2).			() ()		,	1
Rock South (R1)	Valley	Center	(V1),			
μ . μ		RI		10	m (D2)	24.00
24III (UT), VT) 1		10	II (D2)	24111
(05)	μz			μ		
μ 		μμ	μ		ſ	μ
μ				•	П	
μ		μ	μ	μμ	Р	
μ,				μ	μ	
μμ ·						
r r µ		μ		,		

2.

11

2.1

2.3				-	μ		μ	μ
		ı	μ			μ	μt	J
μ	μ					,		
μ		μ		,				
μ					μ		μ (2000, C8/Draft
No4-2001,	UBC/97),				μ		μ	μ
,			μ	μ				μμ
μ	μ			μ				
μ		μ		μ			μμ	1
	μ					μ		μ
	μμ						μ	
		μ	,			μ		
μ						(2.2)	
μ			μ				μ	μ (
2.1 & µ	u 2.3).							

			Προτεινόμ	ενα Φά	σματα.	Απόκρισης	Επιτάχονο	545		
Κατηγορί		PG.4	rock<0.2g			PGArock>0.2g				
α Εδάφους	T _B (sec)	Tc (sec)	T _D (sec)	S	ß	TB (sec)	T _c (sec)	$T_D(sec)$	s	ß
	0,05	0,25	1,2	1,0	2,5	0,15	0,4	2,0	1,0	2,5
B1	0,05	0,25	0,5	2,0	3,0	0,15	0,45	0,8	1,6	3,0
B ₂	0,05	0,35	0,7	2,0	3,0	0,2	0,55	1,0	1,3	3,0
Γ	0,1	0,4	0,8	1,7	2,5	0,25	0,7	2,0	1,15	2,5
Γ2	0,1	0,5	0,8	2,0	2,5	0,25	0,8	2,0	1,1	2,5
Γ_3	0,1	0,5	1,2	1,4	2,5	0,25	0,9	2,2	1,0	2,5
41	0,1	0,7	1,2	1,8	2,5	0,25	1,0	2,0	1,2	2,5
42	0,1	0,7	1,2	1,1	2,5	0,25	1,0	2,0	0,85	2,5
13	0,1	0,7	1,2	1,1	2,5	0,25	1,2	2,0	1,0	2,5
E	0,05	0,25	0,4	3,0	3,0	0,1	0,4	0,7	2,0	3,0

2.1: µ µ

K	ατηγορία	Περιγραφή	$T_0(sec)$	Παρατηρήσεις
A	A_1	Υγιείς βραχώδεις σχηματισμοί		$V_s \geq 1500 \text{ m/sec}$
	A2	Ελαφρά αποσαθρωμένοι / κερματισμένοι βραχώδεις σχηματισμοί με την προϋπόθεση ότι το πάχος της ασθενούς, έντονα αποσαθρωμένης επιφανειακής ζώνης είναι μικρότερο των 5m	≤ 0.2	Επιφαν. ζώνη αποσάθρωσης: $V_s \ge 300 \text{ m/sec}$, βραχώδεις σχηματισμοί $V_s \ge 800 \text{m/sec}$
		Γεωλογικοί σχηματισμοί που προσομοιάζουν βραχωδών σχηματισμών από απόψεως μηχανικών ιδιοτήτων και σύστασης (π.χ. κροκαλοπαγή)		$V_s \geq 800$ m/sec
в	B_1	Εντόνως αποσαθρωμένοι βραχώδεις σχηματισμοί με τη ζώνη αποσά- θρωσης να εκτείνεται σε σημαντικό βάθος 5 — 30m	≤ 0.4	ζώνη αποσάθρωσης: $V_{s}^{(2)}$ \geq 300m/s
		Μαλακοί βραχώδεις σχηματισμοί μεγάλου πάχους ή σχηματισμοί που προσομοιάζουν αυτών από απόψεως μηχανικών ιδιοτήτων (π.χ. σκλη- ρές μάργες)		$V_s = 400 - 800$ m/s, $N_{SPT}^{(3)} > 50, S_u^{(4)} > 200$ kPa
		Εδαφικοί σχηματισμοί πολύ πυκνής άμμου – αμμοχάλικου ή/και πολύ στιφρής αργίλου, ομοιογενούς γενικά σύστασης και μικρού πάχους (έως 30m)		$V_s=400-800 {\rm m/s}, N_{SPT}>50, S_u>200 {\rm kPa}$
	B ₂	Εδαφικοί σχηματισμοί πολύ πυκνής άμμου – αμμοχάλικου ή/και πολύ στιφρής αργίλου, ομοιογενούς γενικά σύστασης και ενδιάμεσου πάχους (30 – 60m), με μηχανικές ιδιότητες αντοχής αυξανόμενες με το βάθος	≤ 0.8	
Г	Γ1	Εδαφικοί σχηματισμοί πυκνής έως κατά στρώσεις πολύ πυκνής άμμου – αμμοχάλικου ή/και στιφρής έως πολύ στιφρής αργίλου, μεγάλου πάχους (> 60m), με μηχανικές ιδιότητες αντοχής σταθερές ή/και αυξανόμενες με το βάθος	≤ 1.2	$V_s = 400 - 800$ m/s, $N_{SPT} > 50, S_u > 200$ kPa
	Γ_2	Εδαφικοί σχηματισμοί μέσης πυκνότητας άμμου – αμμοχάλικου ή/και μετρίως στιφρής αργίλου ($PI > 15$, περιεκτικότητα σε λεπτόκοκκα > 30%), ενδιάμεσου πάχους (20–60m)	≤ 1.2	$V_s=200-400 {\rm m/s}, N_{SPT}>20, S_u>70 {\rm kPa}$
	Г3	Εδαφικοί σχηματισμοί της κατηγορίας Γ_2 , μεγάλου πάχους (> 60m), ομοιογενείς ή σε αλληλουχία, χωρίς να διακόπτονται από εδαφικούς σχηματισμούς μεγάλου πάχους (> 5m) και εμφανώς μικρότερης αντο- χής και ταχύτητας V_s	≤ 1.4	$V_s = 200 - 400$ m/s, $N_{SPT} > 20, S_u > 70$ kPa
Δ	Δ_1	Πρόσφατες εδαφικές αποθέσεις ικανού πάχους (έως 60m), όπου επι- κρατεί ο σχηματισμός της μαλακής αργίλου με υψηλό δείκτη πλαστικό- τητας ($PI > 40$), υψηλό ποσοστό υγρασίας και χαμηλές τιμές παρα- μέτρων αντοχής	≤ 2.0	$V_{\mathcal{S}}~<~200 {\rm m/s},~N_{SPT}~<~20$ $S_{u}~<~70 {\rm kPa}$
	Δ_2	Πρόσφατες εδαφικές αποθέσεις ικανού πάχους (έως 60m), όπου επι- κρατούν σχετικά χαλαροί αμμώδεις έως αμμοΐλυώδεις σχηματισμοί με ικανό ποσοστό λεπτόκοκκων (ώστε να μην ανήκουν στα εν δυνάμει ρευ- στοποιήσιμα εδάφη)	≤ 2.0	$V_{s} \leq$ 200m/s, $N_{SPT} <$ 20
	Δ_3	Εδαφικοί σχηματισμοί μεγάλου συνολικού πάχους (> 60m), οι οποίοι χαρακτηρίζονται από την ύπαρξη ενστρώσεων εδαφών κατηγορίας Δ_1 ή Δ_2 μικρού πάχους (5 – 15m), μέχρι βάθους 40m περίπου, εντός εδαφών (αμιωδών ή/και αργιλικών κατηγορίας Γ) εμφανώς μεγάλης αντοχής, με $V_s \geq 300 \text{m/s}$	≤ 1.2	
8	E	Επιφανειακές εδαφικές στρώσεις μικρού πάχους (5 – 20m), μικρής αντοχής και ακαμψίας, δυνάμενες να ενταχθούν από απόψεως γεωτεχνικών ιδιοτήτων στις κατηγορίες Γ και Δ, υπερκείμενοι σχηματισμών της κατηγορίας A ($V_s \geq 800$ m/s)	≤ 0.5	Επιφαν. εδαφικές στρώσεις: V_s = 150 — 300m/s
	x	Χαλαρά λεπτόκοκκα αμμοϊλυώδη εδάφη υπό τον υδάτινο ορίζοντα, που ενδέχεται να ρευστοποιηθούν (εκτός αν ειδική μελέτη αποκλείσει τέτοιο κίνδυνο, ή γίνει βελτίωση των μηχανικών τους ιδιοτήτων). Εδάφη που βρίσκονται δίπλα σε εμφανή τεκτονικά ρήγματα. Απότομες κλιτείς κα- λυπτόμενες με προϊόντα χαλαρών πλευρικών κορημάτων. Χαλαρά κοκ- κώδη ή μαλακά ιλυοαργιλικά εδάφη, εφόσον έχει αποδειχθεί ότι είναι επικίνδυνα από άποψη δυναμικής συμπυκνώσεως ή απώλειας αντοχής. Πρόσφατες χαλαρές επιχωματώσεις (μπάζα). Εδάφη με πολύ υψηλό πο- σοστό οργανικού υλικού		
(1)	Ιδιοπερίοδος εδαφικής στήλης έως το βάθος του βραχώδους υποβάθρο	ου (σχηματισ	μός με V _s ≥800m/sec)
(2	2)	Μέση τιμή, σταθμισμένη με το πάχος των επί μέρους εδαφικών στρώσ	νωз	
(3	3),(4)	Μέση τιμή		

2.2 :

μ

	3.	8 -	
3.1			
	8 6 µ	μ	
	μμ	μ	μ
	μ		
3.2		μ EC8	
EC8		A, B, C, D, E,	
μ	μ		3.1
μ	μ	μ	
	μ.	μμ	
μ		μ μ	μ
μ		μ, μ μ μ	μ
μ	S, T _B , T _C T _D	μ	
П	11 V _{2.20}	μ	
٣	μ / • 5,507	۵cm). V _{s,30} ۲	۳ ۶۲۱ ۴ ا
μ	μ	30m	:
	V _{5.3} =	= <u></u>	
	,	$\sum_{i=1 \div N} \frac{n_i}{v_i}$	
:			
$h_i =$	μ (m)		
$V_i =$	μ	μ μ i (<10 ⁵),	
	μ)		
=	μ	30 m	
	μ	μ	
	S ₁ S ₂ ,	μ μ μ	
	, μ .	μ	

16								3
			S ₁ .			μ	μ	V _s ,
μ				μ	μμ	μ		
μ	μ		μ	μ	ł	L		
	μ		-					
μ	I	μ			μ			
	μ V _s	μ	μ	/				
μ	μ		μ	μ				

3.1 :	μ	μ EC-8

		μ			
	μ	V _{s,30} (m/s)	NSPT cu (kPa)		
	μμ, μ 5m	>800			
	μμ, , μ, μ	360-800	>50 >250		
С	μ .	180-360	15-50 70-250		
D	р н н р (h h р), h	<180	<15 <70		
E	μ μμμV _S C D μ 5m 20m, μ μ μV _S > 800 m/s.				
S ₁	μ 10 m μ / μ (P > 40)	<100 ()	- 10-20		
S ₂	μ μ , , μ μ – S1 – S1				

3.3 µ

μ	μ	C8,	μ μ				
			μ	ı		μ	
		μ	μ				
			μμ	μ	ı	μ	μ
			a _{gR}		μ	μ	
	μ		1, 2, 3	μ			
3.2.							

	_{gR} /g
Z1	0.16
Z2	0.24
Z3	0.36

3.2	:	μ
-----	---	---

μ

 $\begin{array}{cccccccc} \mu & , & \mu & , a_g \, , \\ \mu & a_{gR} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

μ μ μ . μ . μ μ .

> μ , μ S_e(T) :

$$\begin{split} 0 &\leq T \leq T_{B} : \quad S_{e}\left(T\right) = a_{g} \cdot S \cdot \left[1 + \frac{T}{T_{B}} \cdot \left(n \cdot 2.5 - 1\right)\right] \\ T_{B} &\leq \quad \leq \quad C : \quad S_{e}\left(T\right) = a_{g} \cdot S \cdot n \cdot 2.5 \\ T_{C} &\leq \quad D : \quad S_{e}\left(T\right) = a_{g} \cdot S \cdot n \cdot 2.5 \cdot \frac{T_{C}}{T} \\ T_{D} &\leq T \leq 4s : \quad S_{e}\left(T\right) = a_{g} \cdot S \cdot n \cdot 2.5 \cdot \frac{T_{C} \cdot T_{D}}{T^{2}} \end{split}$$

: $S_{e}(T)$: μ S: : , $\mu \mu$ = 1 5% . μ , μ n : $n = \sqrt{\frac{1}{5+\xi}} \ge 0,55$

μ T_B, T_C T_D S, μ μ μ . μ T_B, T_C, T_D S

		μ		μ							μ
				3.3.		I	μ				
	μ	1	μ					μ	:	1	
2.		μ	μ			μ					
		μ									μ
μ			, Ms, µ		5,5,				μ		1.

1,

	S	T _B (s)	T _c (s)	T _D (s)
А	1.0	0.15	0.40	2.5
В	1.2	0.15	0.50	2.5
С	1.15	0.20	0.60	2.5
D	1.35	0.20	0.80	2.5
E	1.40	0.15	0.50	2.5
3.3:	μμ	μ	μ	
		1008-1 . 200	14	

4.1

4.2				μμ	SH	E 2	000		μ		μŀ	I
				1				П				μ
SHAKE2000.		μμ	SH	۴ AKE 2000)	μ	I	μ	μ μμ	μ	0	μн
	μ	ł	ιμ	μ				μ		μ		
μ	ŀ	I	μ		μ	,						μ
μ	I			μ								
								μ	μ			μ

				μ		μ	
μ	μ	μ	μ		μ		
μ		•					

•	×	μ			μ			
	μ		μ		,			
	μ,	μ		μ			μ	
				ı			I	μ
		μ		μ			μ	
			μ			μ	μμ	μ
(μμ SHAKE2000).							μ,

μ μ μ . μ μ μ . μ : • μ

, ц 4 ц 4 ц 4 ц

4.

μ								μ		
		μ 4.1								
	*		μ							
	*		ł	L	μ					μ
		μ	(G _i)	i	μ	(i),			(_i)
			(h _i). µ	I						
	*			μ						
		μ	μ		μ		μ	μ.		
	*		μ μ							μ
			μ,				μ		μ	μ
				μ		(bebrock wi	thin)		μ	μ
					(rock ou	tcrop).			μ	
			μμ				μ			
			μ							
	*	μ	μ							
			μ	μ		μ		μ	μ	μ
		μμ		I					μ	μ
		μ		μ	•	I		μ		
						μ			,	
			μ	μ	(G-)				(-	-)
		μ	μ		μ					
		μ			μµ ,				μ	μ

μμ , .

μ μμ μ μ μ , μ Vs0, μ μ μ , 0 μ μ Ο. μ μ μ μ μ μ μ μ G/Go G μ Vs μ μ μ μ μ μμ μ μ μ μ μ μ . ï μ μ .

•

μ μ μ μ μ μμ , μ μ μ μμ μ μμ , μ μ μ μ 4.2 μμ μ μ SHAKE2000. μ μ μ

μμ.

 μ μ μ . , μ μ μ Discrete Fourier Transform (DFT).

μ μ (transfer functions). μ Fourier μ μ μ μ μ μ ,

	ŀ	ι μμ		μ	μμ	I	
	μ		μ		μ	μ	μ.
	μ	μ		μ	, μ		μ
	μ			ı.			
μ			,			μ	
	μ			,			
		μ		μμ	μ		μ
ı	,				μ	1	
μ	μ			μ	1		μ
μ				ı	ı	μ	
μ			μ			ı	
μ			μ		μ		μ.

μ

4.3 μ μ μ μ μ μ μ μ μ μ μ μ μ« μ ≫, . μ μ μ μ μ μ μ μ μ μ , µ μ μ μ μ μ ı μ 28 μ 4.2 4.3 μ μ : * μ * , * μ μ μ μ * (Joyner – Boore) μ μ μ μ μ μ μ , μ μ . (free field), free field μ μ , (Ambraseys, Simpson Bommer, 1996), μ. μ μ μ 30m μ μ μ, (NEHRP:National Earthquake Hazards Reduction Program UBC: Uniform Building Code) μ μ μ , μμ . μ μ μ EC8.

,

2, µ μ μ (rock outcrop), µ μ μ μ μ μ μ (PGA) μ μ. ' μ μ μ μμ μ 1 μ μ μ. μ μ, μ μ μ μ μ μ μ μ μ , μ 30m . μ . μ μ μ , μ μ μ -30m, -40m, -45m, -50m, μ 60m, -75m, μ ï μ μ μ μμ μ μ μ μ μ μ ı 30m μ μ , µ μ μ μ μ μ. μ, μ μ μ (PGA, μ outcrop rock), μ μ . 4.1 . μ 0.16g, 0.24g, 0.36g. µ , μ μ μ μ SHAKE 2000. µ μμ μ μ μ μ (PGA). 4.4 .

	PGA (g)	PGA (g)
1	0,16g	(0.12g-0.23g)
2	0.24g	(0.24g-0.35g)
3	0.36g	(0.36g-0.50g)

4.1:

μμ

4.2 4.2 μ μ μ ı μ μ μ μ, μ . μ μ , μ μ μ μ (Joyner - Boore), μ , 30 m μ μ μ , μ R, ,μ S

μ μ . μ μ Faccioli et al (2004)

μ μ μ , Bommer Elnashai (1999) μ μ μ μ μ μ 3.0sec. ' , μ μ , μ .

μμ μμ SHAKE2000 μ μ μ μ μ , μ μ μ μ μ

μ μ μ . μ μ , μ μ 5% μ μ μ μμ Seismospect.

 μ
 NGA (Peer Ground

 Motion Database).
 μ

 (
 μ
 μ
).

	#	ב		д			Ъ	R _{IR} (km)	V _{s,30} (m/s)	Rock/ Soil
	-	L			21	SF-21				C
4.2 :	2	san rernando	1/61	Lake Hugnes #9	291	SF-291	0,01	77'/	0/0/00	n
	З	Hollister-03	1974	Gilroy array#1	247	HOL3-247	5,14	66'6	1425,84	R
I	4		0007		67	LPGG-067	сс \			۵
J	2	гота илета	1989	ulitoy - Gavilan Coll.	337	LPGG-337	0,43	۶, IV	/ 30,00	Y
	9		7		000	NOR1-000		(((C
	7	Northridge-UI	1994	vasquez kocks Park	060	NOR1-090	6,09	23,10	946,00	Y
	8	Chi-Chi Taiwan	1999	HWA003	z	Chi-N	7,62	52,46	1438,48	R
	6	Chi-Chi Taiwan	1999	TCU084	z	ChiTC84-N	7,62	00'0	666,02	S
	10				EW	TOT-EW				۵
μ	11		7000	GIONING	NS	TOT-NS	0,0	9,10	1212,03	Y
	12	Tottori lanan			EW	TOTSM10-EW	k k1	1 5 7 8	00100	۵
	13		0007		NS	TOTSM10-NS			721,72	2
	14	Milcota	FOOC	NICO33	EW	NIG-EW	6 62	<u> 75 22</u>	1722 22	۵
	15	мідага	+007		NS	NIG-NS	000	00.07		<
	16	Parkfield-02 CA	2004	PARKEIELD - TURKEV ELAT #1 (DM)	270	PAR-270	6 00	4 66	907 18	Ċ
	17		-		360	PAR-360				1

4

μ
	#	д		л			л	R _{IB} (km)	V _{s,30} (m/s)	Rock/ Soil
2	~	٦	1986	8601	I	KALAMATA	5,90	7,12	474,00	S
1.3 :	2		0007		000	LP-000				۵
	S	LUIIIA FIIELA	1989	oll 0y Array # L.	060	LP-090	0,43	α,α4	470'07H	Y
μ	4	Cape Mendoncino	1992	Petrolia	000	PETROLIA	7,01	0,00	712,80	R
	5		1995	CHR19513	I	KOZANI	5,10	13,30	266,77	S
	9		1005		EW	KOBEEW	00 7		00 6701	C
	7		0661		NS	KOBENS	0, 90	06'0	00,0401	Ľ
μ	8	Kocaeli, Turkey	1999	Gebze	000	GEBZE	7,51	7,57	792,00	R
	6	Kocaeli, Turkey	1999	Izmit	060	IZMIT	7,51	3,62	811,00	R
μ	10	Chi-Chi Taiwan	1999	TCU052	z	TCU052	7,62	0,66	579,10	S
	11	Chi-Chi Taiwan	1999	TCU068	ш	TCU068	7,62	0,32	487,30	S

		3-0,	36g	
#	μ	μ		PGA(g) μ
1	Chi-Chi, Taiwan	TCU084	ChiTC84-N	0,455
2	Niigata	NIG023	NIG-NS	0,405
3	Loma Prieta	Gilroy Array#1	LP-000	0,415
4	Loma Prieta	Gilroy Array#1	LP-090	0,485
5	μ	8601T	KALAMATA	0,386
6	Cape Mendoncino	Petrolia	PETROLIA	0,594
7	Chi-Chi, Taiwan	TCU052	TCU052	0,421
8	Chi-Chi, Taiwan	TCU068	TCU068	0,462

		2-0,	24g	
#	μ	μ		PGA(g) µ
1	Loma Prieta	LPGG-067	0,314	
2	Loma Prieta	Gilroy Gavillan Coll.	LPGG-337	0,339
3	Niigata	NIG023	NIG-EW	0,282
4	Parkfield-02	PARKFIELD-TURKEY FLAT #1	PAR-270	0,245
5	Tottori	SMN015	TOT-EW	0,275
6	Tottori	SMNH10	TOTSM10-EW	0,259
7	Kocaeli	Gebze	GEBZE	0,244
8	Kobe, Japan	Kobe University	KOBE-EW	0,250
9	Kobe, Japan	Kobe University	KOBE-NS	0,348

		1-0,	16g	
#	μ	μ		PGA(g) µ
1	Chi-Chi, Taiwan	HWA003	Chi-N	0,138
2	Hollister-03	Gilroy array#1	HOL3-247	0,141
3	Northridge-01	Vasquez Rocks Park	NOR1-000	0,151
4	Northridge-01	Vasquez Rocks Park	NOR1-090	0,139
5	Parkfield-02	PARKFIELD-TURKEY FLAT #1	PAR-360	0,196
6	San Fernando	Lake Hughes #9	SF-21	0,221
7	San Fernando	Lake Hughes #9	SF-291	0,158
8	Tottori	SMN015	TOT-NS	0,160
9	Tottori	SMNH10	TOTSM10-NS	0,162
10	Kocaeli	Izmit	IZMIT	0,220
11		CHR19513	KOZANI	0,192

.

μ

4

μ HWA003

μ CWB Engineering Geological Database for TSMIP μ μ μ (μ 4.3). μ μ μ Chi-Chi, Taiwan 1999.

μ 4.4: μ Vs μ HWA003

μ μμ μμ μ SHAKE2000 μ: μ

- μ 1,8 t/m³ • 17,66 kN/m³ 0,113 kcf, μ 22,56 kN/m³ 0,144 kcf. 2,3t/m³
- μ μ μ μ 1 μ (Soil,PI=10-20) Vucetic & Dobry μ μμ
- μ Schnabel (1973) . (1991), μ

μ TCU084 *

Engineering Geological Database CWB. μ for TSMIP μ μ μμ μ. μ μ μ 4.6. μ μ μ Chi-Chi, μ μ Taiwan 1999.

μ μ μμ μμ SHAKE2000 μ μ:

1,70 t/m³ μμ • μ μ 16,68kN/m³ 0,106kcf. μ μ μμ μ 1,90t/m³ 18,64kN/m³ 0,119kcf μ 21,58kN/m³ 0,138kcf. µ 2,2t/m³ 30m

μ Vasquez Rock Park

CSMIP Strong Motion Virtual μ μ μ Data Center, 3m μ μ μ V_{S, 30} μ. μ μ 996m/s, μ μ μ μ μ μ μ μ μ μ 4.8. μ μ Northridge, 1994.

- μ 1,7 t/m³
 16,68/ kN/m³. 0,106 kcf, μ
 2,2t/m³
 21,58 kN/m³
 0,138 kcf.
- μ μ μ μ , μ μ , μ μ , μ μ (Clay, PI=20-40) Sun et al (1988), μ μ Schnabel (1973) .
- μ SMN015

	μ			K-NE	ΞT						
			μ			μ	4.9	ī			
				μ				μ	μ	ł	Ļ
,	μ	μ				μ				μ	
μ	V _S ,	30		μ	,	1272,6	63m/s.	μ			μ

μ Tottori, Japan 2000.

μ 4.9:

μ SMN015

(: http://www.kyoshin.bosai.go.jp/kyoshin/db/index_en.html?all)

	μ	μ			μ	μ		μμ
SHAKE2000			μ	μ	:			
•		μ		μ			1,42 t/m ³	
			13,93 kN/m ³ .	0,089 kcf.			μ	

μμ

μ μ μ μ μ (Soil, PI = 10-20) Vucetic & Dobry (1991), μμ μ μ μ μμ μ (Clay, PI=20-40) Sun et al (1988), μ Gravel Average Seed et al (1986), μ μ μ Schnabel (1973)

μ NIG023

K-NET. μ μ 4.10 μ μ μ μ μ μ μ μ μ μ . 1733,33m/s. $V_{S,\ 30}$ μ μ Niigata, Japan 2004. μ

- μ 1,80 t/m³ 17,66kN/m³. 0,113kcf. μ μ 2,10t/m³ 20,60kN/m³ 0,131kcf, μ 2,2t/m³ 21,58kN/m³ 0,138kcf.
- μ μ μ μ μ (Soil,PI=0-10) Vucetic & Dobry (1991), μμ μ Gravel Average Seed et al μ μ (1986), μ Schnabel (1973) μ .
- μ SMNH10

μ K-NET. μ 4.11 , μ μ μ μ μ μ μ μ μ μ . V_{S, 30} , 921,20m/s, μ μ 4m μ 6m 10m μμ μ μ , μ μ μ μ .

μ μ μ μμ SHAKE2000 μ μ μ :

- μ μ μ μ , $\mu\mu$ μ μ $\mu\mu$ Sand Average Seed et al. (1984). μ μ Rockfill-Gazetas-Soil Dynamics and Earthquake Eng.1992 μ μ Schnabel (1973) .

μ Lake Hughes #9

CSMIP Strong Motion μ μ μ Virtual Data Center, μ μ μ V_{S, 30} μ μ 1 670,36m/s, μ μ "Analysis of Vibrations and Infrastructure Deterioration μ μ Caused by High-Speed Rail Transit", Hung Leung Wong μ 2005, μ μ. μ μ , μ μ 4.12. μ μ

✤ µ Parkfield-Turkey Flat#1

36

CSMIP Strong Motion μ μ μ Virtual Data Center, μ Steven L. Kramer: "Analysis of Turkey Flat ground motion prediction experiment lessons learned and implifications for practice", μ μ μ μ 4.13 Rock South. μ μ $V_{S,\ 30}$ 907,18m/s. μ μ Parkfield, 2004. μ

Shear wave velocity, Vs (m/sec)

 μ 4.13 : μ Vs μ Parkfield-Turkey Flat#1 (: "Analysis of Turkey Flat ground motion prediction experiment lessons learned and implifications for practice", Steven L. Kramer)

μ μ μ μμ SHAKE2000 :

- 2,2t/m³
 0,138kcf.
 μ μ μ
 μ μ
- Schnabel (1973)

✤ µ Gilroy Gavilan College Science Bld

μ μ μ μμ SHAKE2000 μ μ : • μ 1,9t/m³ 18,64kN/m³ 0,119kcf, μ

μ Gilroy Array #1

CSMIP. Strong Motion μ μ μ Virtual Data Center "Local Site Effects On Weak and Strong Ground Motion", μ Department of Geological Sciences-University of Southern California USA, μ $V_{S,\;30}$ μ μ µ 1428m/s Vs μ μ μ, μ 4.15. μ Hollister, 1974 Loma Prieta, 1989. μ μ μ µ Loma Prieta μ

μ μ μ μμ SHAKE2000 :

- $\mu \ \mu \ 2,2t/m^3$ 21,58kN/m³ 0,138kcf.
- μ
 μ
 μ
 μ
 β
 β
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
- ✤ µ Gebze
- μ ERD μ μ μ Peer μ V_{S, 30} μ 792m/s. ΄ μ μ μ μ
 - . μ μ 4.16. μ μ μ Kocaeli, 1999 μ

38

- $\mu \ \mu \ 2,2t/m^3$ 21,58kN/m³ 0,138kcf.
- μ
 μ
 μ
 μ
 β
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ

✤ µ Izmit

μ μ μ μμ SHAKE2000 :

- μ μ
 21,58kN/m³ 0,138kcf.
- μ
 μ
 μ
 β
 μ
 β
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ

μ Kobe University

- μ CEOR μ μ μ Peer μ V_{S, 30} μ 1043m/s. μ μ
- . μ μ 4.18. μ μ Kobe, Japan 1995, μ

μ μ μ μμ SHAKE2000 :

- μ μ 2,2t/m³
 21,58kN/m³ 0,138kcf.
- μ
 μ
 μ
 μ
 β
 β
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
- ✤ µ Petrolia

 μ Cape Mendocino 1992, μ .

μ μ μμ μμ SHAKE2000 :

- μ μ 2,2t/m³ • 21,58kN/m³ 0,138kcf.
- µ µ μ μ μ Schnabel (1973) .

μ CHR19513- μ

μ Community Building. μ μ μ μ μ, μ μ μμ μ μ μμ . μ

μ 4.20. : 26 m μμ μμ μ μ μ μ 500 m/s 14 m, μ μ μ 650 m/s. μ μ μ μ 1050 m/s. μ V_{s, 30} μ 596,77m/s. μ Ψ 14 m ,1995, μ

μ μ μμ μ μ : SHAKE2000

1,85t/m³18,15kN/m³μ2,0 t/m₃,19,62 • μμ 0,116kcf, kN/m³ 0,125 kcf.

μ μ μ μ Sand
 Upper Bound, Seed et al,1988, μ μ
 μ Schnabel (1973) .

μ μ μ μμ SHAKE2000 :

٠							μ	
	1,95t/m ³			19,10kN/m ³	0,	122kcf,	μ	μ
	2,2 t/m₃,			21,60 kN/m	3	0,138 kcf.		
٠	μ	μ					μ	
		μμ			μ	Sand Upp	per Bound,	Seed et
	al,1988,		μ		μ	Schna	bel (1973)	

μ μ μ μ μ 4.24. Fengyuan 579,10m/s, μ V_{S, 30} μ μ μ μ μ 4.25. μ

μ μ μ μ μμ SHAKE2000 μ μ : 1,9t/m³ 30m • 18,64kN/m³. 0,119kcf, $2,0t/m^{3}$ 19,62kN/m³ 0,125kcf. μ μ μ μ μ (Soil,PI=10-20) Vucetic & Dobry μ μμ μ Schnabel (1973) (1991), μ μ .

CWB μ Engineering Geological Database for TSMIP μ μ 4.26). μ μ (μ Texas, μ μ (Spectral Analysis of Surface μ μ μ 30 Waves, SASW) μ (μ μ μ 4.27). 487,30m/s, μ μ $V_{S, 30}$ μ μ μ μ . μ 4.28. μ μ μ Chi-Chi, Taiwan 1999, μ .

台中縣石岡國小(TCU068)

μ (Soil,PI=10-20) Vucetic & Dobry μ μμ (1991), μ Schnabel (1973) . μ

46

•

	. μ	μ μ	« ».	С, [μ)	
ł	ι μ μ .	μ C D, μ μ ,	. ΄ μ	μ . μ μ	μ μ S ₁ S ₂ , μ	μ
	*					
	μ μμ ,	1		μ		
μ	, μ 800m/s.	μ 4.5-4.9 5	μ	μ 30 μ μ	m µ µ	μ 360
	V _{s,30}	μ	μ ,		1	μ
μ μ	μ μ μ	μ.μ	5	μ		
	, 1, 2	μ μ 5,	3 4	μ 30m.	μ	40m 5

μ.

			B1	_		_	
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
5,0	16,4	370,00		1213,97	1,90	0,119	260,11
12,0	39,4	380,00	405,51	1246,78	1,90	0,119	274,36
13,0	42,6	450,00		1476,45	1,90	0,119	384,75
10,0	32,8	750,00		2460,75	2,00	0,125	1125,00
10,0	32,8	1000,00		3281,00	2,20	0,138	2200,00
50,0							

4.5: 1

			B2				
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
5,0	16,4	450,00		1476,45	1,90	0,119	384,75
12,0	39,4	580,00	585,89	1902,98	1,90	0,119	639,16
13,0	42,6	670,00		2198,27	1,90	0,119	852,91
10,0	32,8	750,00		2460,75	2,00	0,125	1125,00
10,0	32,8	1000,00		3281,00	2,20	0,138	2200,00
50,0							

4.6: 2

			B3				
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
7,0	23,0	390,00		1279,59	1,90	0,119	288,99
11,0	36,1	450,00	485,85	1476,45	1,90	0,119	384,75
12,0	39,4	620,00		2034,22	2,00	0,125	768,80
10,0	32,8	1000,00		3281,00	2,20	0,138	2200,00
40,0							

4.7: 3

			B4				
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
5,0	16,4	450,00		1476,45	1,90	0,119	384,75
5,0	16,4	560,00	620,49	1837,36	1,90	0,119	595,84
10,0	32,8	660,00		2165,46	1,90	0,119	827,64
10,0	32,8	760,00		2493,56	2,00	0,125	1155,20
10,0	32,8	1000,00		3281,00	2,20	0,138	2200,00
40,0							

4.8: 4

			B5				
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
5,0	16,4	550,00		1804,55	1,90	0,119	574,75
15,0	49,2	710,00	714,59	2329,51	1,90	0,119	957,79
10,0	32,8	850,00		2788,85	2,00	0,125	1445,00
10,0	32,8	950,00		3116,95	2,10	0,131	1895,25
10,0	32,8	1500,00		4921,50	2,20	0,138	4950,00
50,0							

4.9: 5

*			(С						
	μ							μ		
	μ		μμ ,							
	μ		μ				μ	μ	30	m
μ	1	80	360 m/s.			4.10-4	4.12		μ	μ
	μ			μ		3				
μ	μ	,			•		μ			
		μ V _{s,30} .			μ				μ	
			μ							
	1		μ	μ					μ	
45m		C1	C3,			C2	50m.		μ	3

μ.

		_	C1				
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)
8,0	26,2	130,00		426,53	1,80	0,113	30,42
10,0	32,8	330,00	270,20	1115,54	1,80	0,113	208,08
12,0	39,4	650,00		2132,65	1,90	0,119	802,75
15,0	49,2	780,00		2559,18	2,00	0,125	1216,80
15,0	49,2	1000,00		3281,00	2,20	0,138	2200,00
60,0							

4.10 : C1

			C2				
		Vs	V _{s,30}	Vs		(kcf)	G
(m)	(f)	(m/s)	(m/s)	(fps)	(t/m³)		(MPa)
8,0	26,2	130,00		426,53	1,80	0,113	30,42
10,0	32,8	340,00	274,19	1115,54	1,80	0,113	208,08
12,0	39,4	650,00		2132,65	1,90	0,119	802,75
8,0	26,2	650,00		2132,65	1,90	0,119	802,75
12,0	39,4	780,00		2559,18	2,00	0,125	1216,80
10,0	32,8	1000,00		3281,00	2,20	0,138	2200,00
60,0							

4.11: C2

			C3	_			_
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m ³)	(kcf)	G (MPa)
8,0	26,2	130,00	(117.5)	426,53	1,80	0,113	30,42
10,0	32,8	340,00	281,06	1115,54	1,80	0,113	208,08
12,0	39,4	760,00		2493,56	1,90	0,119	1097,44
15,0	49,2	950,00		3116,95	2,00	0,125	1805,00
15,0	49,2	1500,00		4921,50	2,20	0,138	4950,00
60,0							

4.12 : C3

*						D									
				μ											μ
				μ	``			μ				(μ			μ
μ),			μ		μ					
μ					,		μ					μ			μ
			μ			μ	μ	μ	μ						
	μ					μ					μ		,		μ
μ					μ		Ļ	l			μ				
	1			μ						μ	ı				μ
			μ									. µ			
μ			μ		30		m	ŀ				180m/s.			4.13-
4.14				μ		μ			μ					μ	2
		μ						μ							µ
														ı	

4

μ	μ		μ	60m	D1
75m		D2.			

	D1										
		Vs	V _{s,30}	Vs		(kcf)	G				
(m)	(f)	(m/s)	(m/s)	(fps)	(t/m³)		(MPa)				
5,0	16,4	70,00		229,67	1,70	0,106	8,33				
5,0	16,4	100,00	151 71	328,10	1,70	0,106	17,00				
10,0	32,8	200,00	131,/1	656,20	1,80	0,113	72,00				
10,0	32,8	380,00		1246,78	1,80	0,113	259,92				
10,0	32,8	500,00		1640,50	1,80	0,113	450,00				
10,0	32,8	670,00		2198,27	1,90	0,119	852,91				
10,0	32,8	950,00		3116,95	2,00	0,125	1805,00				
10,0	32,8	1000,00		3281,00	2,00	0,125	2000,00				
70,0											

4.13 : D1

	D2										
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)				
10,0	32,8	110,00		360,91	1,70	0,106	20,57				
5,0	16,4	90,00	154.90	295,29	1,70	0,106	13,77				
5,0	16,4	200,00	154,09	656,20	1,80	0,113	72,00				
10,0	32,8	450,00		1476,45	1,80	0,113	364,50				
10,0	32,8	350,00		1148,35	1,80	0,113	220,50				
10,0	32,8	520,00		1706,12	1,90	0,119	513,76				
15,0	49,2	760,00		2493,56	1,90	0,119	1097,44				
10,0	32,8	850,00		2788,85	2,00	0,125	1445,00				
10,0	32,8	1000,00		3281,00	2,00	0,125	2000,00				
85,0											

	*		E						
'			μ u		μ υ υ \	μ Vs	(μ C D	μ
	μ	5m	20m, µ		μ	• 5		μ V _s μ	
	800m/s.		μ				μ	μ.	
	μ				,			ı	
				С,					
	D.				EC		μ	ED.	
μ							μ		

		8m	18m.		4.15-4.18	
μ	μ	μ		μ	4	
μ		μ			µ	ı
		μ		,	μ μ 30m.	

EC1										
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)			
8,0	26,2	200,00	155 26	656,20	1,70	0,106	68,00			
22,0	72,2	850,00	433,30	2788,85	2,00	0,125	1445,00			
20,0	65,6	850,00		2788,85	2,00	0,125	1445,00			
50,0										

4.15 : EC1

EC2										
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m ³)	(kcf)	G (MPa)			
18,0	59,0	350,00	457 (0	1148,35	1,70	0,106	208,25			
12,0	39,4	850,00	457,69	2788,85	2,00	0,125	1445,00			
20,0	65,6	850,00		2788,85	2,00	0,125	1445,00			
50,0										

4.16 : EC2

ED1										
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)			
8,0	26,2	90,00	261.20	295,29	1,70	0,106	13,77			
22,0	72,2	850,00	201,39	2788,85	2,00	0,125	1445,00			
20,0	65,6	850,00		2788,85	2,00	0,125	1445,00			
50,0										

4.17: ED1

ED1									
(m)	(f)	V _s (m/s)	V _{s,30} (m/s)	V _s (fps)	(t/m³)	(kcf)	G (MPa)		
18,0	59,0	170,00	250.00	557,77	1,70	0,106	49,13		
12,0	39,4	850,00	230,00	2788,85	2,00	0,125	1445,00		
20,0	65,6	850,00		2788,85	2,00	0,125	1445,00		
50,0									

4.18 : ED2

4.5 µ

μμ SHAKE 2000 μ μ μ μ μ μμ μ μ μ μ μ μ Seed & Idriss, 1970 (Average Lower Bound). μμ μ μ

 C
 μ

 μμ
 ,
 μμ
 μ

 μ
 .
 μ
 μ
 μ

 μ
 .
 μ
 μ
 μ

 Seed & Idriss, 1970 (Upper
 Average Bound).
 Average Bound).

D μ μ μ μμ μ μ μμ μ (D1) μ (D2), μ μ μμ μ μ μ μ μ . μμ μμ Seed & μ μ μ Idriss, 1970 (Upper Average Bound), μ Sun et al, 1988 (Clay PI>80) Idriss μ μ μ (1990)

μ μ μ μ С μ μμ D, μ μ μ μ μμ μ μ μ Seed & Idriss, 1970 (Upper Average Bound), μ μ μμ μ Sun et al, 1988 (Clay PI>80) μ Idriss (1990) μ μ . μ μ μ μ μ

Schnabel (1973). μ 4.29 4.30 μ μ μ μ μ μ μ .

μ 4.30 : μ μ μ μ μ

μ μ

μ	ı			μμ	L
, µ	γ		μ (V _s	μ G _o) μ	
μ,	μ	μ μ	μ.	ŀ	ц ц ц ц
μ	(μ))	ц ц	μ μ)	μ μ
μ μ	ł	, ц ц	μ	μ	
	μ	μ S	μμ		μ
μ 3,	μ	μ	μ. Σμμ	EC8,	, μ
, μ	μ μ	μ NGA (Peer Ground M	otion Database)	μ μ)	μ μ Β, C D.
	μ.	,	1	μ	μ

5.

5.1

μ

μ

μ

μ

μ			μ												
μ				С8, µ		μ		μ					μ		μ
	μ.		ı	I	μ	μ		μ		C	:8		•		•
			μ			μ									
5.2					μ										
			μ	μ	μ			μ		μ					
μ	μ						ı			μ		μ	μ		
		μ			μ	NGA	(Peer Gr	ound	Mot	ion Da	taba	ase).			
					μμ		μ		M۱)	N > 5,	5)				μ
μ				•		μ	20						μ		μ
				μ		μ	30		μ	, E(o				
				μ						μεί	<i>,</i> 0.	μ			
	и				и				и	и		1	۳ u		
	ľ				F				ľ	r	μ		ľ		
							ı		μ						
				61						(360r	n/s∢	<v. 20<="" td=""><td>~800</td><td>)m/s)</td><td>. 61</td></v.>	~800)m/s)	. 61
					С	(180m/	s <v<sub>s.30<3</v<sub>	360m/	s)	21		3,30	,	,	
		D (V _{s,30} <	180m/s).			-,								
	μ														
μ	μ			μ			(PG	A)							•
ł	μ				μ									μ	
				(0,	16g, 0.	24g	0.36g) EC8					μ			
				μ									μ		
					5.1	Ι.	μ	μ							
					I	μ									
					μ			μ							
μ							μ			μ			5	%	
					μ		μμ	Seis	smo	spect.					

	PGA (g)
1	(0.14g-0.27g)
2	(0.28g-0.41g)
3	(0.42g-0.60g)
	PGA (g)
L	
1	(0.14g-0.26g)
2	(0.27g-0.39g)
3	(0.40g-0.58g)
D	FGA (g)
1	(0.16g-0.30g)
2	(0.31g-0.47g)
3	(0.48g-0.68g)

5.1 :

μ μ

		μ	μ	(rock outcr	тор). ДД	
						٣
μ					1	
·				5.2.		
и		и				
F	μ NGA	F	μ			μ
μμ	μ		(PGA	A),		·
=0sec.					μ	μ
μ μ.	μ	μ				μ
					ł	μ μ
		8,	1		ı.	μ μ
	μ μ			μ	μ PGA:	=a _{gr} ⋅S, S
		ag	_{gr} μ	μ		μ.
		μ				
μ	μ	5%			(free su	ırface),
		, μ (real/ autoron	μ			
μ	μ), II			
	u	μ	μ	u	'	u u
	٣	μ		٣	μ	r r
		μ.		μ		
	μ					:
		S= (PGA) _{free surface}	/ (PGA) _{outcrop}	rock	
			μ	μ		
					S	
	-8.					
		Free surface n	notion			
			notion			
					Rock outcropping motion	
		abau Alang				
		Bedrock motion				
	μ 5.1:			μ	μ	

		μ		μ							:	
*	μ	μ		μ			μ				μ	μ
*		h h hh	μ			μ	I	μ (sec), μ	μ	μ μ 5%	PGA	·
	μ μ		μ		μ		μ.		μh	NGA, -8	μ	μ
*		μ μ υ	μ					(sec),	μ		PGA μ	μ
		μ			,			μ	μ	,	μ	

μ μ .

*

μ

μ B1, B2, B3, B4, B5

(Peer Ground Motion Database).

μ

μ

,

5.2

μ

μμ 5.2 5.9,

μ

	μ μ		5%.				
μ		1	2	3	4	5	
Z1	Chi_N	1,92	2,19	1,22	1,32	1,26	
Z3	ChiTC84_N	1,43	1,98	1,62	1,91	1,16	
Z1	HOL3_247	1,75	1,77	1,72	2,43	2,23	
Z3	LP_000	1,79	2,45	2,22	2,85	2,69	
Z3	LP_090	1,60	2,84	2,83	2,25	2,31	
Z2	LPGG_067	1,87	3,17	2,23	2,30	2,13	
Z2	LPGG_337	1,66	2,53	1,59	2,55	2,24	
Z2	NIG_EW	2,16	2,09	2,21	2,63	2,42	
Z3	NIG_NS	1,53	2,69	2,39	1,87	1,75	
Z1	NOR1_000	2,68	4,67	2,20	2,38	2,57	
Z1	NOR1_090	2,41	2,18	2,57	3,38	3,15	
Z2	PAR_270	1,74	1,74	1,93	2,07	1,81	
Z1	PAR_360	2,50	1,58	1,40	1,73	1,37	
Z1	SF_21	-	1,28	0,99	1,22	0,82	
Z1	SF_291	1,50	1,64	1,08	-	0,89	
Z2	TOT_EW	1,66	-	2,66	2,75	2,84	
Z1	TOT_NS	2,93	2,83	3,09	4,35	4,38	
Z2	TOTSM10_EW	1,45	2,84	2,25	2,88	3,04	
Z1	TOTSM10_NS	2,04	2,37	2,69	2,31	2,21	
Z2	GEZBE	1,68	2,25	1,52	1,49	1,04	
Z1	IZMIT	1,57	2,67	3,00	1,97	1,09	
Z3	KALAMATA	1,73	1,48	1,35	0,84	1,16	
Z2	KOBEEW	1,62	3,16	1,67	1,70	1,71	
Z2	KOBENS	1,44	1,67	1,30	1,34	1,20	
Z1	KOZANI	1,27	1,05	1,30	0,99	0,88	
Z3	PETROLIA	2,21	1,52	1,21	1,34	1,29	
Z3	TCU052	-	1,28	1,14	1,24	1,00	
Z3	TCU068	1,42	2,15	1,92	1,31	1,05	
		1,83	2,23	1,90	2,05	1,85	
		1,97					

5.2 :

5

NGA

.

5%.

B1, B2, B3, B4, B5 Ground Motion Database)

NGA (Peer μ

μ 5.5. μ				
B1, B2, B3, B4, B5			μ	NGA (Peer
Ground Motion Database)	5%	μ		1
(PGAoutcrop rock=0.16g)				

(PGAoutcrop rock=0.24g)

B1, B2, B3, B4, B5 μ NGA (Peer Ground Motion Database) 5% μ 3 (PGAoutcrop rock=0.36g)

μ NGA (Peer Ground Motion Database) 5%.

μ

				μ	:									
				-									u	
						5	5.2,			μ	μ		μ	
			μ		μ1	.97,	μ			•		μ		
	μ		EC8			μ1.	.20.	μ			μ			
μ									μ				μ	
	ı		μ	1 (0.16	g)		S=2	2.06,		μ	2	(0.24	g)
S=2	.06		μ 3	(0.36	6g)		S	=1.7	6.	μ				μ
									μ					
μ	ı					μ			μ		ı		μ	
ŀ	L			μ	μ								μ	μ.
				μ					5%					
				·									μ	NGA,
ł	µ 5.3	-5.5,									μ			
	μ							μ	Z1	(µ	5.3),			
								μ		180%		μ		EC8
		=0.1	5-0.50sec.		μ		μ	I	μ				μ	
Ļ	l						μ			μ	ŀ	L		
	μ										100%	0	23	0%.
				μ	Z2	2 (μ	5.4)	ı					
0	15 0 50				μ		16	0%		μ	EC8			
=0.	. 15-0.50se 	C.	μ	μ		μ					μ		μ	
	μ					μ			ł	1	μ 00%		100	10/
μ					7	२ (55)		7070		100	70.
			П	Р 1009	~_` %	, с ц	٣	5.5 F), C8				=0.15	-0.50sec
и			٣	1007	0	r u		-	00	и	и			0.000007
r	μ	μ	μ	μ		ľ				μ	μ			μ
	I	•		۲	J			μ		μ	1			μ
	μ								1109	%-250%).			
		57	59						1					
	٣	0.7	0.7				u		μ	u	1 (и	5.7).	
		=	0.15sec				Ŀ.			F.	μ	P.	μ	EC8
				1	μ	μ				μ	',		'	
		20%	μ			•		μ		μ				
	3.0		μ	2.5			E	C8.		Т	С			
	μ		μ =0	.40sec	÷μ							Т	_c =0.5	0sec
		EC8.	μ											
μ		μ							μ					
	=0.15-0	.30sec,				μ			μ	>0.6	Osec.			μ
μ		μ						μ			μ			EC8
μ		μ		T=0.3	30se	C.								

μ 2 (μ 5.8), =0.15sec μ μ ΕC8 μμ μ, 32% μ μ 2.5 EC8. 3.3 μ μ μ =0.45sec, T_{C} μ EC8. μ T_c=0.50sec μ μ μ =0.20-0.40sec, μ >0.40sec. μ μ μ μ μ ΕC8, μ T=0.15-0.40sec μ μ =1.10μ μ μ μ 1.50sec μ μ μ μ EC8, μ μ μ 3 (μ 5.9), μ μμ μ =0.30sec, μ μ T_B=0.15sec μ μ EC8. μ μ μ μ 12% µ EC8. µ μ μ μ μ 2.5 EC8. 2.8 T_C μ =0.50sec, μ μ EC8. μ μ μ μ μμ μ >1.10sec. =0.30-1.0sec, μ μ μ ΕC8, μ μ μμ T=0.30-0.50sec µ μ =0.65-0.95sec μ μ μ μ μ μ EC8. μ μ μ μ μ μ μ μ 3, μ μ 1 μ μ μ μ μ μ , т Т_с, μ , T>0.50sec μ μ μ μ μ μ EC8. EC8 μ (T =0.15sec μ μ T_C=0.50sec), >0.50sec EC8 μ μ μ μ μ μ

С

,

μ

μ C1, C2, C3

С

5.3

μ

Ground Motion Database).

μ

	μ		μ	μ
С		μ	5.10	5.17,
μ μ		5%.		
μ		C1	C2	C3
Z1	Chi_N	1,90	2,09	1,83
Z3	ChiTC84_N	1,32	1,49	1,27
Z1	HOL3_247	1,81	1,56	2,02
Z3	LP_000	1,68	1,81	1,60
Z3	LP_090	1,59	1,94	1,55
Z2	LPGG_067	1,68	1,88	1,65
Z2	LPGG_337	1,56	1,74	1,55
Z2	NIG_EW	2,20	2,30	2,08
Z3	NIG_NS	1,77	1,87	1,67
Z1	NOR1_000	2,39	2,61	2,31
Z1	NOR1_090	2,03	1,95	2,13
Z2	PAR_270	1,99	1,99	1,83
Z1	PAR_360	2,23	2,39	2,05
Z1	SF_21	1,20	1,07	1,15
Z1	SF_291	1,41	1,15	1,33
Z2	TOT_EW	1,98	2,04	2,00
Z1	TOT_NS	2,91	2,82	2,76
Z2	TOTSM10_EW	1,96	1,74	2,02
Z1	TOTSM10_NS	2,20	2,19	1,98
Z2	GEZBE	1,39	1,41	1,38
Z1	IZMIT	1,48	1,51	1,48
Z3	KALAMATA	1,37	1,38	1,36
Z2	KOBEEW	1,49	1,53	1,48
Z2	KOBENS	1,37	1,51	1,28
Z1	KOZANI	1,03	0,98	1,26
Z3	PETROLIA	1,56	1,64	1,64
Z3	TCU052	1,80	1,91	1,76
Z3	TCU068	1,44	1,51	1,43
		1,74	1,79	1,71
	С	1,75		

5.3 :

C.

NGA (Peer

Ground Motion Database) 5% µ (PGAoutcrop rock=0.24g)

. . . 2015

5%.

C1, C2, C3

μ NGA (Peer Ground Motion Database) 5% μ 2 (PGAoutcrop rock=0.24g)

μ NGA (Peer Ground Motion Database) 5% μ 3 (PGAoutcrop rock=0.36g)

			<u>μ</u> :					
			-				μ	
			Ę	5.3,	μ	μ		
		Cμ	μ 1.75,	μ			μ	
μ		EC8	μ 1.1	5.				μ
				μ			μ	
	,	μ	1 (0.16g)	S=1.85	ō,	μ	2 (0.24	4g)
S=1.74	1	μ	3 (0.36g)	S=1.60.	μ			μ
					E	3	μ	
		μ	i			μ	μ	ı
	μ	μ		μ	μ			
	μ	μ.						
				EC)/			
			μ	57	/0			
		- 10					μ	NGA,
μ	5.11-	5.13,			74	μ		•
	μ			μ	Ζ1	(µ	5.11),	
				μ	140%	6 F	l	EC8
		=0.20-0.60sed	ε. μ	μμ			μ	
μ				μ		μ		μ
	μ		μ	80%	220%			
			μ Ζ2(μ 5.12),				
			μ 92%	μ	EC8			=0.20-
0.60se	C,							μ
140%		μ	μμ			μ		
		μ	μμ		μ			μ
μ	1:	20%-200%						μ
Z3 (μ 5.13)	,				84%	μ	EC8
		=0.20-0.60)sec, µ	μ		μ	μ	
	μ	μ	μ μ			μ	μ	
μ			μ		μ	μ		
μ	μ		-		114%-1	75%.		
•	F	1						
	μ 5.	15 5.17		μ				
				μ.	μ	1 (µ	5.15),	
		μ		=0.10s	ec µ			
=0.2	20sec	EC8,			1	6%	μ	
	μ	μ			2.9		μ	2.5
	EC8.	T _c			μ		μ	=0.50sec
μ			$T_{c} = 0.60$	Dsec		EC8.	μ	
	μ			μ	μ			
								μ
μ	μ			μ		μ		EC8
μ	μ		T=0.50sec.					

=0.20sec μ 2 (μ 5.16), μ μ ΕC8 μ μ μ, 16% μ 2.9 2.5 μ μ μ μ =0.60sec, EC8. T_{C} μ μ Тс EC8. µ μ μ μ μ =0.15-0.40sec, μ μ >0.40sec. μ μ μ μ μ EC8, µ T=0.35-0.55sec μ μ =1.10-1.50sec μ μ μ μ μ μ EC8, 3 (µ 5.17), μ μ μ μ μ μ =0.40sec, μ μ T_B=0.20sec EC8. μ μ μ 0.20sec<T<0.60sec. =0.75sec, µ T_C μ μ EC8. μ μ μ μ μμ μ =1.00sec, μ >1.00sec. μ μ EC8, µ μ μ μ μ T=0.70-1.00sec μ μ μ μ EC8. С, μ μ μ μ μ μ μ , μ 1 μ μ μ 3, μ μ μ μ , μ μ μ T T_C, μ T>0.50sec μ μ μ μ EC8. μ μ μ μ , μ . EC8 μ $(T = 0.20 \text{sec} - T_c = 0.60 \text{sec})$ μ μ 2, 3. μ 1 μ >0.60sec EC8 μ μ μ μ μ μ

74

*

D

,

μ

μ

D1, D2

D

5.4

μ

μ

Ground Motion Database).

μ

D μ

	μ	μ
μ	5.18	5.25,
5%.		

μ	5	5%.						
μ		D1	D2					
Z1	Chi_N	1,66	1,95					
Z3	ChiTC84_N	0,94	1,14					
Z1	HOL3_247	1,01	0,84					
Z3	LP_000	1,00	1,16					
Z3	LP_090	1,04	1,29					
Z2	LPGG_067	1,23	1,29					
Z2	LPGG_337	0,99	1,00					
Z2	NIG_EW	1,19	1,26					
Z3	NIG_NS	0,93	1,17					
Z1	NOR1_000	2,03	2,24					
Z1	NOR1_090	1,56	1,58					
Z2	PAR_270	1,22	0,99					
Z1	PAR_360	1,64	1,50					
Z1	SF_21	0,65	0,71					
Z1	SF_291	0,82	0,79					
Z2	TOT_EW	0,96	0,96					
Z1	TOT_NS	1,99	2,30					
Z2	TOTSM10_EW	1,20	1,10					
Z1	TOTSM10_NS	1,25	1,12					
Z2	GEZBE	0,93	1,08					
Z1	IZMIT	0,92	1,18					
Z3	KALAMATA	0,88	0,96					
Z2	KOBEEW	1,17	1,40					
Z2	KOBENS	1,27	1,58					
Z1	KOZANI	0,78	2,43					
Z3	PETROLIA	1,17	1,29					
Z3	TCU052	1,84	1,80					
Z3	TCU068	1,11	1,15					
		1,19	1,33					
	D	1,26						

5.4 :

D.

NGA (Peer

5%.

Ground Motion Database)

		<u>µ :</u>				
					μ	
			5.3,	μ	μ	
	Dμ	μ 1.2	6, μ		μ	
μ	EC8	μ 1.	35.			μ
			μ		μ	
1	μ	1 (0.16g) S=1.4	41,	μ 2 (0.	24g)
S=1.16	μ	3 (0.36g)	S=1.18.	μ		μ
				В		μ
	μ	i		I	μ L	,
μ	μ		ł	μμ		
μ	μ.					
		11	ļ	5%		
		٣	·			u NGA
(u 5.1	9-5.21),				и	р
L L			L	J Z1 [u 5.191.	
ľ			u r	148%	u u	EC8
	=0.20-0.80s	ec. µ	μ	μ		J
μ		I	μ		μ	
·	μ	Ļ	' J	69%	450%	
		·	μZ	Ζ2 (μ5	.20),	
			μ	80%	μ	EC8
	=0.20-0.80se	ec. µ	μμ		·	μ
		μ	μμ		μ	·
μμ	128%-	160%			-	
μŻ	Ζ3 (μ 5.21)),				72%
μ EC8	3	=0.20-0	.80sec, µ		μ	μ
μ.	μ	μ	μ	μ		μ
μ	μ			μ	μ	μ
	μ	μ			100%-2	13%.
11	5 23 5 2!	- -				
٣	0.20 0.20		۳ ۱۱	u 1	(u 5.23	3).
	ц		=0.15	ōsec u	(p. 0.2)	- / 1
=0.20sec	EC8			259	% и	
μ	μ			3.13	μ	2.5
EC8.	' T _C			μ	μ	=0.80sec,
μ	μ	μ	EC8.	μ	ı	.,
		μ	μ			μ
		0.25se	c <t<1.35sec,< td=""><td></td><td>μ</td><td>•</td></t<1.35sec,<>		μ	•
		μ	Ļ	l	·	
μ	μ	EC8	μ	μ	T=0.50	sec.

5

μ 2 (µ 5.24), μ μ μ μ =0.30sec, μ μ T_B=0.20sec EC8, 28% μ 3.2 μ 2.5 μ μ μ =0.80sec, EC8. T_C μ EC8. μ μ Тс μ μ μ μ =0.30-0.55sec, μ μ =1.05sec =1.65sec >0.55sec. μ μ μ μ μ μ . >1.65sec μ μ μ EC8 μ μ μ μ 5.25), μ 3 (μ μ μ μ μ =0.40sec, µ μ T_B=0.20sec μ EC8. 0.20sec<T<0.80sec. μ μ μ T_C μ =0.90sec, µ EC8. µ μ μ μμ μ μ =0.40sec =1.30sec, μ μ >1.30sec. μ μ EC8, µ μ μ μ T=0.85-1.60sec μ μ μ ΕC8. μ μ μ D, μ μ μ μ μ μ 1 1 μ μ μ μ , 3, μ μ μ μ μ μ μ Т T_C, μ μ μ μ EC8. μ С μ μ μ μμ EC8 μ μ μ μ μ μ. EC8 μ μ μ μ . $(T = 0.20 \text{sec} - T_c = 0.80 \text{sec})$ μ 1 μ 2, >0.80sec EC8 3. μ μ μ μ μ μ 1 3, μ 2. μ μ μ

*									
	μ							μ	
						EC1, E	EC2, EI	D1, ED2.	
	5.5					μ			
μ			ł	l	μ				
	μ	5.26	5.33,			μ		μ	
	5%								

μ		EC1	EC2	ED1	ED2
Z1	Chi_N	1,20	1,22	1,75	1,92
Z3	ChiTC84_N	1,52	1,56	1,50	1,44
Z1	HOL3_247	2,20	1,64	2,18	1,55
Z3	LP_000	2,47	2,01	1,90	1,70
Z3	LP_090	2,58	2,49	2,22	2,15
Z2	LPGG_067	2,00	2,14	2,19	2,16
Z2	LPGG_337	1,68	1,64	1,88	1,53
Z2	NIG_EW	2,26	2,05	2,32	2,11
Z3	NIG_NS	2,02	2,32	2,74	1,96
Z1	NOR1_000	2,00	2,47	2,72	2,78
Z1	NOR1_090	2,69	2,08	2,30	2,27
Z2	PAR_270	1,69	1,81	1,82	1,68
Z1	PAR_360	1,58	1,61	2,35	2,51
Z1	SF_21	1,08	0,97	1,30	1,18
Z1	SF_291	1,18	0,98	3,58	1,17
Z2	TOT_EW	2,51	2,30	1,77	1,51
Z1	TOT_NS	3,00	2,73	2,76	2,71
Z2	TOTSM10_EW	2,05	1,98	1,76	1,56
Z1	TOTSM10_NS	2,18	2,42	2,07	1,90
Z2	GEZBE	1,48	1,66	1,70	1,68
Z1	IZMIT	1,67	2,79	3,74	1,62
Z3	KALAMATA	1,47	1,36	1,88	1,83
Z2	KOBEEW	1,47	1,87	1,84	1,71
Z2	KOBENS	1,28	1,32	1,25	1,54
Z1	KOZANI	2,03	1,36	2,75	1,36
Z3	PETROLIA	1,22	1,33	1,79	1,65
Z3	TCU052	1,14	1,12	1,52	1,45
Z3	TCU068	1,40	2,00	2,09	1,99
		1,82	1,83	2,13	1,81
	E	1,90			

μ

Ε.

. . . 2015

,

 $\begin{array}{cccc} \mu & 5.26: & \mu & & \\ & & EC1, EC2, ED1, ED2 & 5\%. \end{array}$

(PGAoutcrop rock=0.16g)

⁽PGAoutcrop rock=0.36g)

	μ :			
			μ	
	5.4	μ	μ	
	Εμ μ 1.90, μ	μ		μ
	EC8 μ 1.40. μ μ		μ	
				μ
	μ ,	μ	1 (0.16g)	S=2.04,
	μ 2 (0.24g) S=1.81	μ	3 (0.36g)	S=1.81.
	μ μ			
μ	μ,			μ
	μ, μ μ			μ
μ	μμ.			
	μ 5	5%		
				μ NGA
(μ 5.27-5.29),		μ	
	μ μ	Z1 (µ	ı 5.27),	
	μ	160	%μ	EC8
	=0.15-0.50sec. μ μ μ		Ļ	I
	μ μ	I	μ	
	μ		100%.	
	μ Z2 (μ 5.28),			
	μ 180% μ EC8	3	=	=0.15-0.50sec.
	μ μ μ	μ	μ	
	μμ	μ		μ
	69%	6 14	5%.	
	μ Ζ3 (μ 5.29),			
	μ 90% μ ΕC8		=0.15-0.50s	ec, μ
	μ μ	μ		μ
	μ μ μ	μ	μ	
	μ μ μ		μ	μ
	100%-170%.			
	μ 5.31 5.33 μ			
	μ.	μ	1 (µ	5.31),
	μ μ μ μ			u =0.10sec,
μ	μ T _B =0.15sec		EC8,	
·	12% μ μ		μ	
	2.8 µ 2.5 EC8.		T _C	
	μ μ =0.50sec μ			EC8.
	μ		μ	μ
	μ		=0.30)-1.30sec,
	μ >1.30sec μ .	μ	μ	μ

					μ				μ		E	C8	μ	
μ			T=0.5	0sec										
	μ	2	(μ	5.32	2),				-	=0.15	sec			
		μ	μ		EC8							μ	μ	
	μ	ı							30%		μ			
μ		μ							3.25			μ	2.5	
EC8.			T_C						μ			μ =0).55sec,	
μ						٦	_C =0	5sec				EC8.	μ	
								μ			μ			
		μ							=0.35	sec,			μ	
μ	>0	.35sec				μ		μ					μ	μ
μ		EC	8,			μ		μ					μ	μ
			,		μ				μ			μ		
			=1.10	sec		=1.5sec	1					μ	μ	
	μ													
	μ	3	(μ	5.33	3),				μ	μ	μ			μ
				μ	=0.7	15sec,			μ			μ	$T_{B} = 0.15$	isec
E	EC8.			μ							μ			
μ		μ							μ			μ	μ,	
		10%	μ			μ	E	C8.	μ		μ			
		2.75			μ	2.50			EC8.			T _C		
		μ			μ	=0.50	sec,		μ					EC8
μ				μ							μ		μ	
			μ	μ							=1	.00sec,		
μ			μ	>1.()Usec.				μ		μ	T 0	00 0 50	
	μ	μ		μ	EC	.8, μ						I = 0	.30-0.50s	ec
μ					μ								>2.10sec	3
μ		μ		EC	0	μμ		10	10/					
μ		μ		EU	0,			100	J 70					
					μ						ı		μ	
μ		μ	μ	μ	μ		μ					1		
	μ		μ		1	μ		3,	μ		ł	L		
			1	μ		ŀ	l		— •	, 				μ
	μ			L					I>0.	50sec		500		
	μ							μ	μ			EC8		
EC8	3								μ					
			μ		μ								(T =0.	15sec
$T_{\rm C}=0$	50se	c),				>0.50s	ec	EC8						
	μ	μ				μ		μ		μ				
μ														

μ		μ									μ					
				μ		EC8,			μ			μ		μ		μ
	Ц			и.	μ		U						Ч			
μ	r H			F	ł	r	I		μ	I		EC8				
	٣			μ			μ		μ	I		μ		, I	μ	
			EC8.													
6.2				μ								μ				μ
μ			5.3.				μ		μ		μ					
				μ μ,		μ			μ	μ μ			μ μ			
				μ.				μ		μ		μ				
μ									μ	μ				μ		
	μ μ)		μ		μ) µ		4.	2, 4.3				

, µ

μ

6.1

μ

6.

_

μ

μ

μ

μ

,

.

-

μ

μ

5.3

μ

μ

		μ							μ	
μ μ		μ μ	μ μ		=7.0-7.5		μ	μ	μ μμ	
	μ	μ	1 (0.1) μ	6g). μ		μ μ	μ μ	μ	=5.0-5.5 µ	,
	μ	μ 3 (0.3 μ	μ 36g).	μ	, µ	μ ,		μ	·	
	μ				μ	μ	μ		μ	
μ	μ μ	Z3 (0.3	6g)	, Ч Ч	μ	μ μ		μ μ	1 (0.16g)
μ			μ		μ	μ μ	μ	,	μ	
	μ.		μ μ	μ μ	L		μ		μ	
μ		μ	B	с Ј.						
	, µ	,	μ	μ	500		, µ	μ	μ μ	
3.0		μ	2.5 C D	ب ۲ ۲ ۲	μ	μ μ	μ		μ.	
(0.160	ч a)	μ	μ	μ	μ		u		μ	1
		μ EC8	μ Τ _C	μ	μ	EC8 u	μ u	u		
μ μ	, μ	u , µ	μ	μ	,	μ	r ,	r	μ	
		Ι _Β		μ	μ	μ	μ	C8 µ	μ. μ 1	,
μ		C8.		=7	Г _В					

		μ			μ	2 (0.	24g)	3 (0).36g)	
			μ		μ		ŀ	J L	I	
μ	μ	μ FC8	μ		μ				μ	T _C
						, 			1	
		۲ ک	μ			μ		ŀ	· .	ч ч
	μ	2			μ				۱ ۱۱	ν μ
	μ	μ		μ					μ	μ.
	μ									μ
		Z2	3,						ı	μ
μ			μ					μ		
ł	L	μ			T=1.	00sec	T=1	50sec,		
		μ				μ.	μ		μ	
μ		ı		μ						D,
		μ				μ		μ	μ	μ
С										μ
2			υμ			FC	μ g	μ		-1 00sec-
1.50	sec.	μ			μ	LC	0			-1.00360-
		μ							μ	μ
		-								μ
	μ					μ				-
μ					ı					μ
				μ	μ		μ	μ		μ
ŀ	J		μ					·		μ
			μ	μ		1		μ		μ
		μ	-			μ			μ	μ.
		-	P C			-		C	-	-
			Б , С,					5,		
		μ,	μ				μ			
		μ			μ			μ		•
		D	μ						μ	
	μ					μ	דנ	C	μ 1 75	μ
۔ د_1	260. 26	μ ε_1	00	,		5=1.5	, ,	U, 3	5=1.75,	
5-1.	20	, 3– I B c	. 7 0. _1 20	μ Cs	_1 15	г	µ ۱۰	25		s_1 40
		D 3	-1.20,	0.5	-1.15,	L	5-1.	55		5-1.40.
	ı		1						μ	
μ			μ							
ı	μ		μ,		μ					
		μ	μ			μμ	μ		μ	
						μ				

_

. μ		С			D	
	C U U	μ	D	μμ		µ и
μ	μ μ			С	S.	D
		μ	μ	μ		C D
μ	μ	۲			C D	μ
ц ц ц ц	ŀ	μ		μ μ	EC µ	μ 8
ц ц ц ,	ц ц	ı	μμ			μ
	μ		μ	н , Н		μ
,	(2004a),	ł	μ			2.
μ.	μ		μ	μ	μ	μ
н н -	I	μ	S,		μ ,	μ
μ Mw>5	μ .5 μ	μ EC8		μ	μ μ,	μ μ μ
1. μ μ μ	μ	μ	μ	μ	μ μ	μ
μ	μ μ. , C	D	μ			
ς, μ	μ	μ μ	μ	μ μ	μ. μ.	μ
۴ 6.1	ı 2	8 µ	μμ			11
Ч	μ	μ.			۲	٣

				μμ
	s -Z1 (0.16g)	s -Z2 (0.24g)	s -Z3 (0.36g)	μς
В	2.06	2.06	1.75	2.00
С	1.85	1.74	1.60	1.75
D	1.41	1.16	1.18	1.26
E	2.04	1.81	1.81	1.90

-

6.1 :

μ μμ

μ μ μ μ μ μ μ

				В		μ			
μ		μ	μ		μ	μ	μ		
						μ		,	
	μ	I		μ					μ
=2.5	μ	=3.0.		μ					
	μ		μ	μ					
				μ.					
μ	μ				i			μ	
μ		μ					,		
μμ		ŀ	1			$(_{C} < T < T_{D}),$		ł	μ
		μ	μ						

μ

		С	D			μ	
						μ	μ
EC8	=2.5.	μ		μ			

		μ	μ		μ	μ	μ	
	μ	μ	μ				I	
μ	3 (0.36g)	μ		μ				
	μ	μ	μ	μ	μ			

μ	μ					μ				
				μ			μ	1 (0.16g)		
						μ	μ			
			ı		μ	Τ _B	C٠			
μ		μ	μ			μ	3 (0.36g)	μ		
			μ	В				μ	T _C .	,
			μ		μ	μ				
			μ			μ				

	, µ						T_B	С	
		. μ		D	μ				
		μ	μ	μ	С8 µ µ		μ		
	μ	μ						μ	
	•								
			, C		μ				μ
	μ T _{B C}			μ					
		μ		=2.5	=3.0		μ		
μ	μμ		μ		μ		μ	μ	μ.
			С	μ	μ				
		μ		μ		EC8	μ	μ	
		μ			μ		μ	С	
μ	μ		μ	μ	μ				
	1		D, J	L			μ		
	μ μ		=1	.00sec-	1.50sec			μ	
	,								μ
	1	μ		μ		T_C	0.8	0sec	
	EC8 µ T _C	=0.90sec.							
							μ		
	μ	,			B, C, I	D			
	. 6.2	. µ	μ	μ	μ				μ
μ	μ	M _w >5.5.			•				

		μ		μ μ	
	T _B (sec)	T _c (sec)	T _D (sec)	S	
В	0.15	0.50	2.50	2.00	3.0
С	0.20	0.60	2.50	1.75	2.5
D	0.20	0.90	2.50	1.26	2.5
E	0.15	0.50	2.50	1.90	3.0
6.2 :		μμ		μ	μ
	μμ	μ	μμ		μ

6.3							μ					
8		μ		μ	μ				•			
											μ	
		μ		μ,					ŀ	i h	l	
μ	μ	٣		μ		1						
μ	·				μ						μ	
						μ			μ			
μ		μ		μ		μ				8		
μ	1			C	μ r	μ	μ		μ			μ
٣			٣		1·							
μ			μ		q							
	٣		μ	C	1		μ		μ		μ	
μ			•	μ	•		·				·	
		μ			μ						:	
	•	(μ)					
	•	(μ)					
	μ	EC	8							μ		
μ	q		μ			μ						
		μ		μ								μ,
					3,μ			μ		q,		
		0 <t-< td=""><td><t<sub>B</t<sub></td><td></td><td></td><td>μ</td><td>μμ</td><td>0.0</td><td></td><td></td><td></td><td></td></t-<>	<t<sub>B</t<sub>			μ	μμ	0.0				
μ	I				μο	_d =(2/3)·S·a _g	=0.03	sec.			
μ	μ	EC8,					• 1		μ	μ	μ	μ
Ц		IJ				IJ		μ		μ U		Ц
μ		٣				٣	μ			٣		٣
μ	μ		μ									
		T _d	= 2π	$\sqrt{\frac{m}{e}}$, ó	που ŀ	K _e = 50	0% K	(6.1)			
	μ		2,				μ		μ		EC8	
μ	d ((s)				μ				ı		
			ł	u a _{yo}	$s_d = S_d$	(T _d)	μ			μ		
				μ	∣ ⊦ _d =	⊧m∙ a _{yd}			μ		μ	
					μ,		۲			μ	μ	q.
μ		μ	μ		μ	F _d		μ		μ		
μ				ł	L				μ	μ		

_

ı

			μ			
		,	ł	n h		μ
	μ	μ μ	и	Fv	F _d u	μ. Ro
	r	Γ		1.3	3 1.5.	
	μ				μ	
	μ	μ			μ	F _y =m⋅ _y .
	μ		y= yd' Rd			
		μ	μ		μ 10%-2	K _e 20%
μ	μ	μ	μ.	μ, μ	μ	μ
	μμ	μ		μμ μ	ομ	
				μ	μ μ	μ
		μ	μ			
		T =	$2\sqrt{\frac{S_d}{S_a}} = 2\pi\sqrt{\frac{S_d}{S_a}}$	<u>m</u> (6.2)	
			μ			μ
			μ μ	μμ	μ : 15	i% 20%
	μ	μ.	6.1	6.2	μ	
	μ	т	μ		μ	μ
		·	$n = \sqrt{m}$			
		$\frac{T_{\pi}}{T_{d}} =$	$\frac{\frac{2\pi\sqrt{\kappa_{\rho}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}}} = \sqrt{\frac{2\pi\sqrt{\frac{m}{\kappa_{e}}}}{2\pi\sqrt{\frac{m}{\kappa_{e}}}}}$	$\sqrt{\frac{K_{\rho}}{K_{e}}}$ (6.3)	
		6.3	μ			μμ
		μ:	·			
		µ =0,15		→ √ <u>F</u>	$\frac{K{\rho}}{K_{e}} = 1,826$	
		µ=0,20		→ <u>\</u>	$\frac{K_{\rho}}{K_{e}} = 1,581$	
	μ			μ	μ	μμ
	μ	μμ	μ	μ	·	μ,
		μ,			•	μ.
		μ	μ		d	I LI
		μ	۳ d _y ۴	L	μ	μ , $\mu = y/u$.

|--|

		μ	μ			
	μ	EC8		μ μ		
	μ		μ			
			μ	i		
			μ μ	μ		μ
	μ	μ	EC8. ′		μ	
		μ	μμ	Seismosignal		μ
μ						

							μ		μ	μ
					μ	μ		I		
μ				().			6.3		
μ	ı					μ (Τ.	d)			
μ	μ	μ	μ	μ.						

			μ	q		4 μ		μ		
					: q=2.0, 3	3.0, 4.0 6.	0			
μ				μ		μ	μ			μ
					μ			μ	ŀ	1
			μ		μ					
	μ					6.3				
п		a					()		ш	FC8

 $\begin{array}{ccc} \mu & \mu & q \\ & \mu & = {}_{d}. \end{array}$ μ (_{yd}) μ EC8

	μ q μ μ C8	μ	μ q μ μ EC8	μ	
	3.0 *1.30=3.90	4.0	4.5*1.3=5.85	6.0	
μ	2.0	2.0	3.0	3.0	

6.3 : μ μ

μ

. μ μ μ
_{pd} =1.3, 1.5	2.0.					μ		μ	
Ra 1.0, 1.0	2.0.						(.)
μ				μ		μ		/- Rd'	yd)
μ μ				μ		μ			
μ	У	μ			μ		μ		μ
$(\mu_{recuired})$.	μ	ł	μ	μ	500	μ	μ	μ	
	L provid	had			EC8			μ	. μ
με – α εάν	μ. Γ. > Τ_	jeu.							
μδ – ϥ, εαν	$T_1 = T_C$								
$\mu_{\delta} = 1 + (q$	- 1) - Γ , εά	v T ₁ < T _C							
u u	EC8	u		u	a		α.	a	
μ	q µ	F.		F.	-1		-1,	-1	
				μ	q	μ	μ		
μ								μ	μ
$q_{O.K.} = 1.5 q$.	., q		C	1					
							μ	μ	
						μ			
μ	μ		μ				μ		μ
μ	μ			μ			μ Duch over		
	μ μ	μ	I	, . J	· μ		Fush-over,		
μ	μ μ		•			μ			
	μ		ı						
		μ		μ					
11	μ					μ		11	
μ	٣	μ	μ.				μ	μ	μμ
	μ						μ		
	μ			μ	ŀ	l	μ	μ	
•									
			μ						
μ									
μ									μμ
µ _{recuired} / µ _{prov}	_{∕ided} -T				μ				
μ	EC8			μ	μ				

_

μ μ.

μ

μ. μ.

μμ

1-0,16g

6.4 :

q=2.0, 3.0, 4.0, 6.0 $_{Rd}=1.3$, 1.5, 2.0

-1.5, 1.5, 2.0

EC8			μμ		μ	μ	μ	1, μ
μ		μμ			μ.			
μ			=0.24s,					
	μ		μ		μ	I	μ	
$_{Rd}$ =1.3	1.5.	μ		μ		μ		>0.50s,
μ μ	μ				μμ			μ
	h	ι.	μ	μ	μ		μ 6.4,	μ
				μ	μ		μ	
			ŀ	ιμ				6.5,
		ł	L	μ			μ	
							μ	μ

μ μ μ μ μ μ μ μ μ . μ q Rd، μ μ μ μ μ . μ μ μ S=1.20 S=2.00 =3.00, =2.50 μ μ μ $_{Rd}$ =1.3 1.5 μ

3

4

μμ

2-0,24g

. . . 2015

.

						μμ								6.	6,
				μ			μ					μ			
													μ		μ
μ	I	μ		μ		μ		μ					μ		,
		μ							μ.						μ
			μ	C	1				Rd،						
	μ			μ			μ	I							μ
					μ		μ			μ					
			μ		μ						μ		EC8.		
μ						μ								μ	
							S=1.20)	S=2.00	0					
μ				=2	2.50		=3.00,					μ	μ		
			μ				μ								μ
			μ												

μ 6.7, μμ μ μ μ μ μ μ , EC8 μ μ. μ μ μ μ , μ EC8 μ μ

RSN1176-060 =2.82s RSN768-090 =0.54s μ 6.6 $_{Rd}$ = 1.3 1.5. μ ï μ μ μ μ μ μ μ μ μ q

.

цц ц ц

μμ 6.7, μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ

μ q μ Rd، μ μ μ μ μ Cμ μ S=1.15 S = 1.75μ μ μ μ , μ

μ μ μ ΕC8 .

6

q=2.0 ,3.0 ,4.0 ,6.0 _{Rd}=1.3, 1.5, 2.0 C

μ

6.7 :

μμ

1-0,16g

μ 6.7 : μ μμ 6.8,

		μ		μ			μ					
							μ		μ	ı	μ	
	EC8		μ	ı	μ		μ	μ			μ,	
μ			μ			μ 1						μ
			μ	μ	E	C8				С3-К	OBEEW	
			RSN41	15-090					=	0.42s	=0.8	36s
		ı		μ		_{Rd} =1.3	1.5.				μθ	5.7
			ł	L	μ	μ					μ	
	μ			μ					μ			
	μ		q				I	μ				
	μ			μ	μ						, μ	
				μ								
					μμ						6.8,	
				μ	ŀ	ı			μ			
										μ	μ	
	μ	μ		μ	μ	μ				μ		ï
		μ					μ.				μ	
			μ	q			Rdı					

μ μ μ μ μ Cμ μ μ S=1.15 S=1.75 μ μ μ μ ı μ μ μ

EC8 μ , µ μ μ μ μ EC8 μ μ μ 6.8 μ μ μ μ μ μ μ $_{Rd}$ =1.3 1.5. μ μ μ μ

μμ μ μ μ μ μ μ μ μ q μ μ μ μ μ μ

6.9, μ μ μ μ μ, μ μ . μ >1.00sec μ μ μ μ μ q μ μ μ 6.9,

μ μ μ μ μ μ μ . Rd، μ μ Cμ S=1.15 S=1.75 μ μ μ , μ μ .

С

3-0,36g

6.10, μμ μ μ μ μ μ , μ EC8 μ μ μμ μ μ μ 6.9. μ RSN759-090 =0.64sec. μ μ μ μ μ μ, μ μ EC8 . μμ 6.10, μ μ μ μ μ μ μ μ μ μ μ ı μ μ μ μ EC8. μ μ μ μ D μ μ μ S=1.26, µ S=1.35

μ _c 0.8s 0.9s, μ μ μ μ μ <u>μ</u> μ ΕC8.

6

4

4

q=2.0 ,3.0 ,4.0 ,6.0 _{Rd}=1.3, 1.5, 2.0 D

μμ

1-0,16g

. . . 2015

μ

μ μ EC8. μ μ μ D μ μ μ S=1.26, µ S = 1.350.8s 0.9s, μ С μ μ μ EC8,

μ μ μμ μ μ μ μ μ μ μ μ μ .

6

,

,

q=2.0 ,3.0 ,4.0 ,6.0 _{Rd}=1.3, 1.5, 2.0 D

μ

μ

6.11 :

μμ 2-0,24g

q=2.0 3.0. μ μ Dμ μ S = 1.35S=1.26, 0.8s μ С μ 0.9s, μ μ μ μ μ μ

EC8,

μ μ . μ

ī

_{Rd}=1.3, 1.5, 2.0

q=2.0,3.0,4.0,6.0

D

μ

6.12 :

μμ 3-0,36g 4

μ 6.12: μ 6.13, μμ μ μ μ μ μ μ μ EC8 EC8, μμ μ μ q=2.0, 3.0 4.0. μ μ μ q=6.0 =0.60s-0.80s μ μ μ μ μ μ ı

EC8, μ _{Rd}=1.3 k= 1.5. μ μ μ μ 6.12, μ ED2-IZMIT ED1-Chi-N, μ μ μ μ μ.

μμ 6.13, μ μ μ μ μ μ μ μ μ μ μ

μ μ μ . μ q Rd، μ μ μ μ μ μ μ μ μ S=1.90 S = 1.20μ =2.50 =3.00, μ μ μ μ μ μ μ μ μμμ ,

μ.

q=2,0- EC8

1,5

q=2,0- Προτεινόμενο φάσμα 1,5

. . . 2015

6

q=2,0- EC8

1,5

1,00

μμ

μ

.

.

μ

μ

q

μ

μ

μ

EC8.

μ

μ

.

μ

μ

μ

2,00

T (s)

μ

μμ

μ

μ

3,00

4,00

μ

0,00

μ

μ

μ

μ

EC8

μ

(

μ

μ

μ

μ

μ 6.14)

μ

μ

μ

μ

μ

μμμ

μ 6.14:

μ

6.15,

EC1-TCU068-(T=2,48sec)

EC2-LP_090-(T=0,40sec)

EC2-KALAMATA-(T=0,30sec)

ED2-ChiTC84_N-(T=0,76sec)

ED2-PETROLIA-(T=0,60sec)

ED2-TCU052-(T=1,14sec)

ΕC8 - ΕΔΑΦΟΣ Ε

q=2,0- Προτεινόμενο φάσμα 1,5 Hrecuired / Hprovided γRd=2,0 4

6.3.2	μ	μ				μ				
				μ	μ	ł	L	μ		μ
	μ		μ			,			μ	sh over
			μ		μ	ι μμ	μ		, Pu	SH-OVEL.
μ		μ	I	EC8			μ	μ	μ	μ
	μ		μ			ł	L		μ	
μ		μ	μ			μ				
			I	μ		۲ EC8,		м	μ	٣
	μ			μ		ı			μ	μμ
	μ			500	μ					
	μ		μ	EC8						
			μ					6	.3.1, μ	μ μ
и				μ		uи			u	۲ EC8
F		μZ	22-0.24g.			F F	μ	μ	μ	μ
				μ		, µ			μ	
ł	μ			FCO	μ	μ				
	μ		μ	ECO						(
	,				S=1.20	S=2.	00			μ
		=2.50	=3.	00)			μ			μ
	μ				μ		ı			
μ						μμ	и		.μ	u u
		μ	EC8				P.		F	μ
			С		μ					μ
				μ	μ					μ
μ	μ			μ	EC8		μ			U
				μ		μ		μ		μ
	μ			=0.50s	ec.				μ	μ
	μ	μ	μ		μ	μ,				
S=1.15	μ S=	1.75,	μ			μ		μ	μ	
μ μ		I	u	и			и	μ	μ.	
		ľ		E.			r		T _c	
μ			•							

		D		μ				μ
	μ		μ		μ			μ
μ		μ Ε(C8, μ	μ		1-0.16g	μ	μ
3-0.36g.						μ		
	μ					S=1.35	S=1	.26
						μ		
				μ	μ			μ,
п	Ш	μ			μ			
٣	٣	۳ T _c	μ.	0.80sec	0.90sec	۹ ۱۱		
	μ	L	u u	μ		F	μ	
T=1.0sec.	μ	ſ	r	r			r	
		μ S=1.3	35		μ		Tc	μ
0.90sec.								
			1	1		П		
	u	и	ſ	•		٣	и	
μ	EC	3.	μ			μ	F	μ
μ	μ	μ	μ				,	·
		μ	μ		μ		μ	μ
	μ	(S=	1.40
S=1.90			μ		=2.50	=3.00)		
μ		μ					ł	L
6.4								
0.4		μ						
		μ		μ	μ			
	μ		μ	EC8 µ			μ	μ
					μ	μ	ECO	
μ	μ						EC8.	
U	μ	U				μ		Ц
۳ U	I	٣		u		u		۳ u
F.		μ	μ	F.	μ	F.		F.
		μ	·		·			
		μ		I		μ		μ
u		, M	۲	Ц		UU		Ц
٣	и	' " U		۳		т. т .		L.
μ	F	F	ush-over, ı	J	μ	μ		μ
·μ						·		
-	μ	μ	μ	μ		μ	μ	

								6
				u	IJ			
		μ	μ	٣	٣	μ	μ	μ
μ	EC8.							

μ	T (sec)	μ μ - μ	
1	0.32	Tottori, 2000 - SMN015	B2-TOT-NS
Z1	0.58	Parkfield, 2004 - Slack Canyon	RSN: 4097-090
Z1	1.46	Cape Mendocino, 1992 - Bunker Hill FAA	RSN: 3744-270
70	I		
	0.38	Tottori, 2000 - SMNH10	2-TOTSM10-EW
Z2 Z2	0.38 0.54	Tottori, 2000 - SMNH10 Kocaeli, Turkey, 1999 - Gebze	2-TOTSM10-EW B1-GEZBE
Z2 Z2 Z2	0.38	Tottori, 2000 - SMNH10 Kocaeli, Turkey, 1999 - Gebze Parkfield, 2004 - Slack Canyon	2-TOTSM10-EW B1-GEZBE RSN: 4097-360
Z2 Z2 Z2 Z2 Z2	0.38 0.54 0.64 1.02 2.60	Tottori, 2000 - SMNH10 Kocaeli, Turkey, 1999 - Gebze Parkfield, 2004 - Slack Canyon Northridge-01, 1994 - Jensen Filter Plant Administrative Building	2-TOTSM10-EW B1-GEZBE RSN: 4097-360 RSN: 982-022
Z2 Z2 Z2 Z2 Z2 Z2 Z2	0.38 0.54 0.64 1.02 2.60 1.20	Tottori, 2000 - SMNH10 Kocaeli, Turkey, 1999 - Gebze Parkfield, 2004 - Slack Canyon Northridge-01, 1994 - Jensen Filter Plant Administrative Building Kobe, Japan, 1995 - Kobe University	2-TOTSM10-EW B1-GEZBE RSN: 4097-360 RSN: 982-022 B1-KOBE-NS

6.16 : µ

В

		С	
μ	T (sec)	μ μ - μ	
1	0.54	Loma Prieta, 1989 - Gilroy Array #4	RSN: 768-090
Z1	2.82	Kocaeli, Turkey, 1999 - Yarimca	RSN: 1176-060
Z2	0.42	Kobe, Japan, 1995 - Kobe University	C3-KOBE-EW
Z2	0.86	Parkfield, 2004 - Fault Zone 12	RSN: 4115-090
Z3	1.12	Chi-Chi, Taiwan, 1999 - TCU052	C3-TCU052
Z3	1.80	Superstition Hills-02, 1987 - Parachute Test Site	RSN: 723-022
Z3	2.46	Chi-Chi, Taiwan, 1999 - TCU068	C3-TCU068

-

6.17 : µ

С

	_	D	
μ	T (sec)	μ μ - μ	
1	0.64	Loma Prieta, 1989 - Foster City - APEEL1	RSN: 759-090
Z3	2.44	Chi-Chi, Taiwan, 1999 - TCU068	D2 - TCU068

6.18 : µ

D

		E	
μ	T (sec)	μ μ - μ	
Z1	0.60	Kocaeli, Turkey, 1999 - Izmit	ED2-IZMIT
Z1	0.80	Chi-Chi, Taiwan, 1999 - HWA003	ED1-Chi-N
Z2	0.74	Kobe, Japan, 1995 - Kobe University	ED2-KOBE-EW
Z3	0.76	Chi-Chi, Taiwan, 1999 - TCU084	ED2-ChiTC84-N
Z3	2.48	Chi-Chi, Taiwan, 1999 - TCU068	EC1-TCU068

6.19 :

7.

- Aki K. & Chin B.H., Local site effects on weak and strong ground motion, Dept. of Geological Sciences, University of Southern California, USA
- Bray J.D., Rodriguez-Marek A., Gillie J.L., Design fround motions near active faults, Bulletin of the New Zealand Society for earthquake engineering, Vol. 42, No.1, March 2009
- Consortium of Organizations for Strong Motion Observation Systems, Effects of Strong Motion Processing Procedures on Time Histories, Elastic, and Inelastic Spectra Sponsors, USGS, COSMOS
- Rodriguez-Marek A., Bray J., Characterization of forward-directivity ground motions in the near-fault region, Soil Dynamics and Earthquake Engineering 24 (2004), p.815-825
- Hung Leung Wong, Analysis of vibrations and infrastructure deterioration caused by high-speed rail transit, December 2005, University of Southern California
- Kramer S.L., (1996),. "Geotechnical Earthquake Engineering", Prentice Hall
- Kramer S.L., Analysis of Turkey flat ground motion prediction experiment-Lessons learned and implifications for practice, SMIP09 Seminar Proceedings
- Somerville P.G., Smith N.F., Graves R.W., Abrahamson N.A., Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seismol Res Lett, 68 (1) (1997), p. 199–222
- Users Manual for the PEER Ground Motion Database Web application
- Users Manual SHAKE2000, A Computer Program for the 1 D Analysis of Geotechnical Earthquake Engineering Problems, AmeriTech Engineering.

- Stewart J.P., Chiou S.J., Bray J.D., Graves R.W., Somerville P.G., Abrahamson N.A., Ground Motion Evaluation Procedures for Performance-Based Design, Peer Report 2001/09, University of California Berkeley
- Thompson E., Silva W., Empirical Assessment of Site Amplification and Development of NEHRP Factors for CEUS: Collaborative Research with Pacific Engineering and Tufts University, USGS, COSMOS
- ., μ μ , , 2007
- ., μ μ μ , 2011
- .., μ.., μ, μ, μ, μ, μ, μ
 2007
- μ μ μ
 , 2011

,

- ., ., ., μ
 , 3 μ
 μ , μ 2008.
- ✤ ., µ ,
- .., μ μ μ μ 1
- .., μ μ μ μ
 μ μ μ μ
 2,2010
- http://www.kyoshin.bosai.go.jp/
- http://egdt.ncree.org.tw/news_eng.htm
- http://peer.berkeley.edu/
- ✤ <u>http://strongmotioncenter.org/</u>

130

8.

	RSN	μ		μ	Tp(s)		PGA (g)	Μ	Rjb(km)	V _{s,30} (m/s)	
1	57	San Fernando	1971	Castaic - Old Ridge Route	-	0,21	0,320	6,61	19,33	450,28	Z2
2	57	San Fernando	1971	Castaic - Old Ridge Route	-	291	0,275	6,61	19,33	450,28	Z2
3	70	San Fernando	1971	Lake Hughes #1	-	021	0,151	6,61	22,23	425,34	Z1
4	71	San Fernando	1971	Lake Hughes #12	-	021	0,382	6,61	13,99	602,10	Z2
5	71	San Fernando	1971	Lake Hughes #12	-	291	0,282	6,61	13,99	602,10	Z2
6	78	San Fernando	1971	Palmdale Fire Station	-	210	0,151	6,61	24,16	452,86	Z1
7	139	Tabas, Iran	1978	Dayhook	-	L1	0,324	7,35	0,00	471,53	Z2
8	139	Tabas, Iran	1978	Dayhook	-	T1	0,409	7,35	0,00	471,53	Z2
9	150	Coyote Lake	1979	Gilroy Array #6	1,232	230	0,422	5,74	0,42	663,31	Z3
10	150	Coyote Lake	1979	Gilroy Array #6	1,232	320	0,319	5,74	0,42	663,31	Z2
11	164	Imperial Valley-06	1979	Cerro Prieto	-	147	0,168	6,53	15,19	471,53	Z1
12	164	Imperial Valley-06	1979	Cerro Prieto	-	237	0,157	6,53	15,19	471,53	Z1
13	190	Imperial Valley-06	1979	Superstition Mtn Camera	-	135	0,202	6,53	24,61	362,38	Z1
14	459	Morgan Hill	1984	Gilroy Array #6	1,232	000	0,223	6,19	9,85	663,31	Z1
15	459	Morgan Hill	1984	Gilroy Array #6	1,232	090	0,292	6,19	9,85	663,31	Z2
16	537	N. Palm Springs	1986	Silent Valley - Poppet Flat	-	000	0,145	6,06	16,55	659,09	Z1
17	648	Whittier Narrows-01	1987	La Crescenta - New York	-	180	0,149	5,99	19,28	411,55	Z1
18	675	Whittier Narrows-01	1987	Pasadena - CIT Athenaeum	-	180	0,172	5,99	4,18	415,13	Z1
19	753	Loma Prieta	1989	Corralitos	-	090	0,483	6,93	0,16	462,24	Z3
20	769	Loma Prieta	1989	Gilroy Array #6	-	090	0,171	6,93	17,92	663,31	Z1
		1:		μ			μ	NGA	μ		

	RSN	μ		μ	Tp(s)		PGA (g)	Μ	Rjb(km)	V _{s,30} (m/s)	
21	779	Loma Prieta	1989	LGPC	-	000	0,570	6,93	0,00	594,83	Z3
22	779	Loma Prieta	1989	LGPC	-	090	0,607	6,93	0,00	594,83	Z3
23	802	Loma Prieta	1989	Saratoga - Aloha Ave	4,571	000	0,514	6,93	7,58	380,89	Z3
24	802	Loma Prieta	1989	Saratoga - Aloha Ave	4,571	090	0,326	6,93	7,58	380,89	Z2
25	832	Landers	1992	Amboy	-	090	0,146	7,28	69,21	382,93	Z1
26	982	Northridge-01	1994	Jensen Filter Plant Administrative Building	3,157	022	0,411	6,69	0,00	373,07	Z3
27	983	Northridge-01	1994	Jensen Filter Plant Generator Building	3,535	022	0,571	6,69	0,00	525,79	Z3
28	1013	Northridge-01	1994	LA Dam	1,617	064	0,426	6,69	0,00	628,99	Z3
29	1013	Northridge-01	1994	LA Dam	1,617	334	0,324	6,69	0,00	628,99	Z2
30	1055	Northridge-01	1994	Pasadena - N Sierra Madre	-	180	0,263	6,69	35,77	397,27	Z1
31	1055	Northridge-01	1994	Pasadena - N Sierra Madre	-	270	0,189	6,69	35,77	397,27	Z1
32	1111	Kobe, Japan	1995	Nishi-Akashi	-	000	0,483	6,90	7,08	609,00	Z3
33	1111	Kobe, Japan	1995	Nishi-Akashi	-	090	0,464	6,90	7,08	609,00	Z3
34	1160	Kocaeli, Turkey	1999	Fatih	-	000	0,188	7,51	53,34	386,75	Z1
35	1160	Kocaeli, Turkey	1999	Fatih	-	090	0,162	7,51	53,34	386,75	Z1
36	1482	Chi-Chi, Taiwan	1999	TCU039	9,331	Е	0,197	7,62	19,89	540,66	Z1
37	1499	Chi-Chi, Taiwan	1999	TCU060	-	E	0,201	7,62	8,51	375,42	Z1
38	1500	Chi-Chi, Taiwan	1999	TCU061	-	Ν	0,157	7,62	17,17	379,64	Z1
39	1510	Chi-Chi, Taiwan	1999	TCU075	4,998	E	0,332	7,62	0,89	573,02	Z2
40	1510	Chi-Chi, Taiwan	1999	TCU075	4,998	Ν	0,263	7,62	0,89	573,02	Z1

11:

μ

 μ NGA μ .
	RSN	μ		μ	Tp(s)		PGA (g)	М	Rjb(km)	V _{s,30} (m/s)	
41	1642	Sierra Madre	1991	Cogswell Dam - Right Abutment	-	065	0,264	5,61	17,79	680,37	Z1
42	1642	Sierra Madre	1991	Cogswell Dam - Right Abutment	-	155	0,302	5,61	17,79	680,37	Z2
43	1645	Sierra Madre	1991	Mt Wilson - CIT Seis Sta	-	000	0,276	5,61	2,64	680,37	Z2
44	1645	Sierra Madre	1991	Mt Wilson - CIT Seis Sta	-	090	0,200	5,61	2,64	680,37	Z1
45	1787	Hector Mine	1999	Hector	-	000	0,265	7,13	10,35	726,00	Z1
46	1787	Hector Mine	1999	Hector	-	090	0,328	7,13	10,35	726,00	Z2
47	3473	Chi-Chi, Taiwan-06	1999	TCU078	4,151	Е	0,266	6,30	5,72	443,04	Z1
48	3473	Chi-Chi, Taiwan-06	1999	TCU078	4,151	Ν	0,387	6,30	5,72	443,04	Z2
49	3744	Cape Mendocino	1992	Bunker Hill FAA	5,362	270	0,177	7,01	8,49	566,42	Z1
50	3744	Cape Mendocino	1992	Bunker Hill FAA	5,362	360	0,206	7,01	8,49	566,42	Z1
51	3928	Tottori, Japan	2000	OKYH10	-	NS	0,287	6,61	46,36	553,65	Z2
52	4065	Parkfield-02, CA	2004	PARKFIELD - EADES	1,218	90	0,318	6,00	1,37	383,90	Z2
53	4065	Parkfield-02, CA	2004	PARKFIELD - EADES	1,218	360	0,391	6,00	1,37	383,90	Z2
54	4097	Parkfield-02, CA	2004	Slack Canyon	0,854	090	0,211	6,00	1,60	648,09	Z1
55	4097	Parkfield-02, CA	2004	Slack Canyon	0,854	360	0,349	6,00	1,60	648,09	Z2
56	4101	Parkfield-02, CA	2004	Parkfield - Cholame 3E	0,518	90	0,519	6,00	4,95	397,36	Z3
57	4103	Parkfield-02, CA	2004	Parkfield - Cholame 4W	0,7	90	0,575	6,00	3,30	410,40	Z3
58	4103	Parkfield-02, CA	2004	Parkfield - Cholame 4W	0,7	360	0,515	6,00	3,30	410,40	Z3
59	4113	Parkfield-02, CA	2004	Parkfield - Fault Zone 9	1,134	90	0,153	6,00	1,22	372,26	Z1
60	4227	Niigata, Japan	2004	NIGH10	-	NS	0,218	6,63	39,17	653,28	Z1
61	6060	Big Bear-01	1992	North Palm Springs Fire Sta #36	-	090	0,142	6,46	40,87	367,84	Z1

111 :

μ

 μ NGA μ .

	RSN	μ		μ	Tp(s)		PGA (g)	М	Rjb(km)	Vs30(m/s)	
1	31	Parkfield	1966	Cholame - Shandon Array #8	-	50	0,248	6,19	12,90	256,82	Z1
2	31	Parkfield	1966	Cholame - Shandon Array #8	-	320	0,272	6,19	12,90	256,82	Z2
3	34	Northern Calif-05	1967	Ferndale City Hall	-	224	0,253	5,60	27,36	219,31	Z1
4	147	Coyote Lake	1979	Gilroy Array #2	1,463	50	0,191	5,74	8,47	270,84	Z1
5	147	Coyote Lake	1979	Gilroy Array #2	1,463	140	0,256	5,74	8,47	270,84	Z1
6	148	Coyote Lake	1979	Gilroy Array #3	1,155	50	0,252	5,74	6,75	349,85	Z1
7	148	Coyote Lake	1979	Gilroy Array #3	1,155	140	0,256	5,74	6,75	349,85	Z1
8	149	Coyote Lake	1979	Gilroy Array #4	1,351	360	0,252	5,74	4,79	221,78	Z1
9	266	Victoria, Mexico	1980	Chihuahua	-	102	0,151	6,33	18,53	242,05	Z1
10	314	Westmorland	1981	Brawley Airport	-	225	0,155	5,90	15,28	208,71	Z1
11	314	Westmorland	1981	Brawley Airport	-	315	0,165	5,90	15,28	208,71	Z1
12	315	Westmorland	1981	Niland Fire Station	-	090	0,176	5,90	15,16	212,00	Z1
13	316	Westmorland	1981	Parachute Test Site	4,389	225	0,232	5,90	16,54	348,69	Z1
14	316	Westmorland	1981	Parachute Test Site	4,389	315	0,149	5,90	16,54	348,69	Z1
15	317	Westmorland	1981	Salton Sea Wildlife Refuge	-	225	0,195	5,90	7,57	191,14	Z1
16	317	Westmorland	1981	Salton Sea Wildlife Refuge	-	315	0,182	5,90	7,57	191,14	Z1
17	319	Westmorland	1981	Westmorland Fire Sta	-	090	0,377	5,90	6,18	193,67	Z2
18	319	Westmorland	1981	Westmorland Fire Sta	-	180	0,499	5,90	6,18	193,67	Z3
19	456	Morgan Hill	1984	Gilroy Array #2	-	000	0,162	6,19	13,68	270,84	Z1
20	456	Morgan Hill	1984	Gilroy Array #2	-	090	0,213	6,19	13,68	270,84	Z1
		IV :		μ		С		μ	NGA	μ	

	RSN	μ		μ	Tp(s)		PGA (g)		Rjb(km)	Vs30(m/s)	
21	457	Morgan Hill	1984	Gilroy Array #3	-	000	0,195	6,19	13,01	349,85	Z1
22	457	Morgan Hill	1984	Gilroy Array #3	-	090	0,201	6,19	13,01	349,85	Z1
23	458	Morgan Hill	1984	Gilroy Array #4	-	270	0,224	6,19	11,53	221,78	Z1
24	458	Morgan Hill	1984	Gilroy Array #4	-	360	0,349	6,19	11,53	221,78	Z2
25	460	Morgan Hill	1984	Gilroy Array #7	-	000	0,191	6,19	12,06	333,85	Z1
26	461	Morgan Hill	1984	Halls Valley	-	150	0,156	6,19	3,45	281,61	Z1
27	461	Morgan Hill	1984	Halls Valley	-	240	0,312	6,19	3,45	281,61	Z2
28	503	Taiwan SMART1(40)	1986	SMART1 C00	-	NS	0,233	6,32	58,69	309,41	Z1
29	503	Taiwan SMART1(40)	1986	SMART1 C00	-	EW	0,174	6,32	58,69	309,41	Z1
30	720	Superstition Hills-02	1987	Calipatria Fire Station	-	225	0,190	6,54	27,00	205,78	Z1
31	720	Superstition Hills-02	1987	Calipatria Fire Station	-	315	0,259	6,54	27,00	205,78	Z1
32	721	Superstition Hills-02	1987	El Centro Imp. Co. Cent	-	000	0,357	6,54	18,20	192,05	Z2
33	721	Superstition Hills-02	1987	El Centro Imp. Co. Cent	-	090	0,259	6,54	18,20	192,05	Z1
34	723	Superstition Hills-02	1987	Parachute Test Site	2,394	225	0,432	6,54	0,95	348,69	Z3
35	723	Superstition Hills-02	1987	Parachute Test Site	2,394	315	0,384	6,54	0,95	348,69	Z2
36	725	Superstition Hills-02	1987	Poe Road (temp)	-	270	0,475	6,54	11,16	316,64	Z3
37	725	Superstition Hills-02	1987	Poe Road (temp)	-	360	0,286	6,54	11,16	316,64	Z2
38	728	Superstition Hills-02	1987	Westmorland Fire Sta	-	090	0,173	6,54	13,03	193,67	Z1
39	728	Superstition Hills-02	1987	Westmorland Fire Sta	-	180	0,211	6,54	13,03	193,67	Z1
40	764	Loma Prieta	1989	Gilroy - Historic Bldg.	1,638	296	0,285	6,93	10,27	308,55	Z2
41	764	Loma Prieta	1989	Gilroy - Historic Bldg.	1,638	250	0,242	6,93	10,27	308,55	Z1
L	ν: μ					С		μ	NGA	μ.	

	RSN	μ		μ	Tp(s)		PGA (g)	М	Rjb(km)	Vs30(m/s)	
42	766	Loma Prieta	1989	Gilroy Array #2	1,729	000	0,370	6,93	10,38	270,84	Z2
43	766	Loma Prieta	1989	Gilroy Array #2	1,729	090	0,323	6,93	10,38	270,84	Z2
44	767	Loma Prieta	1989	Gilroy Array #3	2,639	000	0,559	6,93	12,23	349,85	Z3
45	767	Loma Prieta	1989	Gilroy Array #3	2,639	090	0,368	6,93	12,23	349,85	Z2
46	768	Loma Prieta	1989	Gilroy Array #4	-	000	0,419	6,93	13,81	221,78	Z3
47	768	Loma Prieta	1989	Gilroy Array #4	-	090	0,216	6,93	13,81	221,78	Z1
48	949	Northridge-01	1994	Arleta - Nordhoff Fire Sta	-	090	0,345	6,69	3,30	297,71	Z2
49	949	Northridge-01	1994	Arleta - Nordhoff Fire Sta	-	360	0,308	6,69	3,30	297,71	Z2
50	968	Northridge-01	1994	Downey - Co Maint Bldg	-	270	0,158	6,69	43,20	271,90	Z1
51	968	Northridge-01	1994	Downey - Co Maint Bldg	-	090	0,230	6,69	43,20	271,90	Z1
52	1158	Kocaeli, Turkey	1999	Duzce	-	180	0,312	7,51	13,60	281,86	Z2
53	1158	Kocaeli, Turkey	1999	Duzce	-	270	0,364	7,51	13,60	281,86	Z2
54	1176	Kocaeli, Turkey	1999	Yarimca	4,949	060	0,227	7,51	1,38	297,00	Z1
55	1176	Kocaeli, Turkey	1999	Yarimca	4,949	150	0,322	7,51	1,38	297,00	Z2
56	4098	Parkfield-02, CA	2004	Parkfield - Cholame 1E	1,33	090	0,440	6,00	1,66	326,64	Z3
57	4098	Parkfield-02, CA	2004	Parkfield - Cholame 1E	1,33	360	0,361	6,00	1,66	326,64	Z2
58	4102	Parkfield-02, CA	2004	Parkfield - Cholame 3W	1,022	090	0,326	6,00	2,55	230,57	Z2
59	4102	Parkfield-02, CA	2004	Parkfield - Cholame 3W	1,022	360	0,579	6,00	2,55	230,57	Z3
60	4115	Parkfield-02, CA	2004	Parkfield - Fault Zone 12	1,19	090	0,276	6,00	0,88	265,21	Z2
61	4115	Parkfield-02, CA	2004	Parkfield - Fault Zone 12	1,19	360	0,307	6	0,88	265,21	Z2
		VI :		μ		С	μ	NGA	4	μ.	

	RSN	μ		μ	Tp(s)		PGA (g)		Rjb(km)	Vs30(m/s)	
1	178	Imperial Valley-06	1979	El Centro Array #3	4,501	140	0,267	6,53	10,79	162,94	Z1
2	178	Imperial Valley-06	1979	El Centro Array #3	4,501	230	0,223	6,53	10,79	162,94	Z1
3	729	Superstition Hills-02	1987	Imperial Valley Wildlife Array	-	090	0,179	6,54	23,85	179,00	Z1
4	729	Superstition Hills-02	1987	Imperial Valley Wildlife Array	-	360	0,208	6,54	23,85	179,00	Z1
5	732	Loma Prieta	1989	APEEL 2 - Redwood City	-	043	0,274	6,93	43,06	133,11	Z1
6	732	Loma Prieta	1989	APEEL 2 - Redwood City	-	133	0,220	6,93	43,06	133,11	Z1
7	759	Loma Prieta	1989	Foster City - APEEL 1	-	000	0,258	6,93	43,77	116,35	Z1
8	759	Loma Prieta	1989	Foster City - APEEL 1	-	090	0,284	6,93	43,77	116,35	Z1
9	1209	Chi-Chi, Taiwan	1999	CHY047	-	Ν	0,181	7,62	24,13	169,52	Z1
10	1209	Chi-Chi, Taiwan	1999	CHY047	-	W	0,169	7,62	24,13	169,52	Z1
11	3282	Chi-Chi, Taiwan-06	1999	CHY047	-	Ν	0,234	6,30	53,54	169,52	Z1
12	3282	Chi-Chi, Taiwan-06	1999	CHY047	-	W	0,162	6,30	53,54	169,52	Z1
13	3934	Tottori, Japan	2000	SMN002	-	EW	0,179	6,61	16,60	138,76	Z1
14	3934	Tottori, Japan	2000	SMN002	-	NS	0,154	6,61	16,60	138,76	Z1
15	3965	Tottori, Japan	2000	TTR008	1,54	EW	0,391	6,61	6,86	139,21	Z2
16	3965	Tottori, Japan	2000	TTR008	1,54	NS	0,320	6,61	6,86	139,21	Z2
17	4100	Parkfield-02, CA	2004	Parkfield - Cholame 2WA	1,078	090	0,624	6,00	1,63	173,02	Z3
18	4100	Parkfield-02, CA	2004	Parkfield - Cholame 2WA	1,078	360	0,373	6,00	1,63	173,02	Z2
19	4107	Parkfield-02, CA	2004	Parkfield - Fault Zone 1	1,19	090	0,605	6,00	0,02	178,27	Z3
20	5665	Iwate, Japan	2008	MYG006	-	EW	0,237	6,90	30,38	146,72	Z1
21	5665	Iwate, Japan	2008	MYG006	-	NS	0,243	6,90	30,38	146,72	Z1
		VII :		μ		D		μN	GA	μ.	