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> 0vToun TeplAndn

O Bloroyind axpiBelc TEOCOUOUOOELS TWV EYXEPANNDY XUTTHpwY dladpauatiCouy evay TOAU o1-
LoV TIXG POAO G TNV XUTAVONON TNS AEtToupY g Tou avdpdmivou eyxepdhou. Ot VEUPOETIG TAULOVES TIG
YENOWOTOLOVY Yiot TNV ToeatAenom xat TV TedBAedn tng eyxepaiixic ocuuncpipopds. H culkeyodue-
V1 TAneogoplor GUUBIAAEL GTIC TPOCTIAUELES TOUC VoL BNULOUEYHOOUV GUOXEVES Yia T BeATion Twy
cLuVInxey dPBiwong atouwy Ye veupohoynd mpoPfAfuata. I't auto 0 AdYo Lo TANUOEA VEURXGDY
Hovtélwy €yel avamtuydel.

Y1 ouyxexpévrn dtmhouotiny epyocta evoc Blohoyixd axpBric TpOCOUOLWTAS TOV XUTTAPWY
e %At ehatog Tou eyxepdhouv Va yehetndel. H xdto elalo Tou avipdmivou eyxepdhou €yel
amodely Vel OTL CUUUETEYEL OTNY Ywe!) avTIAAdT TwV avipdTwy XaL 0Ty IXavoTNTo TOUG Vo YELRi-
Covton unyaviuata. Adyw Tng HEYIANES TOAUTAOXOTNTOC TV BIXTIMY QUTWY TV XUTTARMY, To 0Tolo
amotehoUVTAL om0 TOAE xOTToEo UE TTOAES GUVOETELC UETAEY TOUC, 1) TUPUAANAOTIONGT] TWV YeNol-
UOTIOLOVUEVWY TEOCOUOIWTOV elpavileton we eva yerowo gpyoheio yio T Bedtivwon tng anddoorng
AUTOV TWV EPUPUOYOV.

Kota cuvéneia, 1o x0pio Yéua autric tng Simhowpatixhc elvon 1 yperon tne Intel Many Inte-
grated Core (MIC) apyttextovixrc yioo v extéleon) tou mpocouotwt. Avo Xeon - Xeon Phi

uny vt Yo yenoylonotnoiy xon 1 egapuoyy| Yo yeaptel ye Bdorn telo DLapOpETIXd TEOYPUU-

HOTo T povTéAa TN apyltextovxrc. To poviého avtodhayhc unvuudtwy, Message Passing
Interface (MPI), €yet uhomomdel oe nponyoluevn epyaoio [47] xau ypnotponoteitar otny Teéyouca
OLmALUITIX ¢ 1) Bdon Yio TV vhonoinon popalouevng uviune, ue yerion touv OpenMP  mepi3dn-
hovtog xou Yo Ty uPednr), Hybrid, ukonoinon. H vionoinon popalduevng uviung otoyelel o1
HEAETN TOL TORUAANAIOUOU TNG EQUPUOYAS Xou 1 UBEWBXY LAOTONGT GTNY cUVBUNG TXT| aEloTtolnoT
TV Theovextnudtewy g OpenMP xou tng MPI uhonoinong. To SiapopeTind TpoypouoTio Tixd
Hovtéha cuyxpivovtal PETOED TOUC WC TROC TNV ENBOCT TOUC X0l OVAOEIXVUETAL TO TILO OTOBOTIXO
v v Intel Many Integrated Core (MIC) apyttextovix.

AéZeic Khewdd: Kottopa tne Kdtw Ehaiog, Xeon enelepyoactrc, Xeon Phi enelepyactic,
Movtého avtahhaync punvuudtey, Moviého xowrc uviung, TBewdixd uhonolnon, cuvdeotudTnTo

METOEY TOV XUTTAEWY
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Abstract

Biologically accurate simulations of brain cells play a very important role in the exploration
and understanding of human brain’s function. Neuroscientists use them in order to observe and
predict brain’s behaviour. The collected information assists their efforts in creating devices and
patents to improve the living conditions of people suffering from neurological problems. To this
direction, several neuron models have been developed.

In this thesis, a biologically accurate simulator of the Inferior Olive cells will be studied.
The Inferior Olivary body of human cerebellum has been proved to contribute to human space
perception and motor skills. Due to the significant complexity of the simulated 1O cell networks,
which is due to the large number of cells and their numerous interconnections, parallelisation
of the developed brain cell simulators has emerged as a means to improve the simulation’s
performance.

Therefore, the main subject of this thesis is the porting of the simulator to an Intel Many
Integrated Core (MIC) architecture. Two Xeon - Xeon Phi machines will be utilised and three
different programming models will be studied. The Message Passing Interface (MPI) application
is used as legacy code and serves as the base for development of the OpenMP and the Hybrid
MPI/OpenMP implementation. The OpenMP code focuses on exploring the massive paralleli-
sation of the simulator and the Hybrid application aims at combining the benefits from the MPI
and the OpenMP implementations, to achieve better performance. The different programming
paradigms are compared against each other with Figures detailing each models performance
results. Finally, the most efficient programming paradigm for the simulator on the MIC archi-
tecture is concluded.

Keywords: Inferior Olive, Simulator, Xeon processor, Xeon Phi coprocessor, MPI, OpenMP,
Hybrid MPI/OpenMP, Cell connectivity

111



Contents

1 Introduction

2 Prior Art

2.1 Neuron Modelling. . . . ... ...
2.2 Many-Core Platforms . ... ...
2.3 Programming Paradigms . . . . . .

3 Implementation Specifications

3.1 The Inferior Olivary Nucleus . . .
3.2 Xeon Phi Coprocessor . .. .. ..
3.2.1 System ... ........
3.2.2 Developer Impressions . . .
3.3 Target platforms . . ... .. ...

4 MPI-based Native Implementations

4.1 Development Details . . . . . . ..
4.1.1 The MPI implementation .
4.1.2 The “unpacking” phase . .

4.1.3 The Hybrid implementation
42 Results. . ... ... ... .. ...

5 OpenMP Implementations

5.1 Development Details . . . .. ...
5.1.1 Runtime Configuration . . .
52 Results. . .. ... ... ... ...

6 Conclusion

6.1 General Remarks . . . .. ... ..
6.2 Development Challenges . . . . . .
6.3 Future Work . ... ... ... ..

v

10

12
12
17
17
19
21

23
23
23
24
26
28

32
32
34
36



List of Figures

© 0 N O Ot ks W NN

11
12
13

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

Enineda apaipeonc oo VEURIXE HOVTEADL . . . . . . . . viii
H tofovopia tou Flynn vy tic mohundpnveg apyltextovinée [44] . . . . . . . .. oL L. X
To eNoWonoUHEVO HOVTERD Yol To VEUPXE x0TTopal[36] . . . . . . . . . oL xii
H popgr tou apyeiov e£680u ToU AOIXN GUVBEGWOTNTIC .« .« o« v v v v o v o xiii
Aldypappo pofic ToU x@Oxa TapaywyNS Tou apyelou CUVBECWOTNTAS .« . . . . . . . . .. Xiv
Tuminh TAATEOPUA TNG UEYLTEXTOVIXAC  « + « v v o v o o v e e e e e e e e XV
Aoyég mou yenotpornoolvtal oTn dladwacia Eemaxetaployatos . . . ..o L L L xvii
H Sopn mou mepléyel TIC TOPOUETEOUE TV XUTTAPWV « « « « v v v v v v v o e e o e xvii
Audrypoppo pofic TS PAoNe EEMOMETAPIOUATOS . « . v . v o v o v xix
Arnoteréopata extéreong tnge MPI vhonoinong otov Xeon Phi eneepyacth . . . . . . . XX
Anoteléopata extéheons tng VBEWMC vAomoinone otov Xeon eneepyacts . . . . . .. XX
Arnoteréoparta extéheonc e uBpWxric vAomoinone otov Xeon Phi enelepyocth . . . . . xxi
Arnoteréopata extéreone tng OpenMP vhorolnone . . . . . . . . oo xxiil

Levels of detail in neuron models . . . . . . . . ... oo oo )
Flynn’s taxonomy for multi-core architectures [44] . . . . . . . .. .. .. ... 8
Distributed Memory architecture [26] . . . . . . . . .. ... 9
Shared Memory architecture [26] . . . . . . . . . . . ... Lo 9
Neuron Compartmental Model [36] . . . . . . . . . . .. . ... . ... 13
Brief presentation of dataflow between simulation steps [47] . . . . . . . . ... .. .. 14
Flow diagram for the cell generator code . . . . . . . . . . .. .. ... ... ... 15
The formatting of data in the conductivity file . . . . . . . . .. ... ... 16
Xeon processors and Xeon Phi coprocessors combined in a platform . . . . . . . . . .. 17
Architecture Overview of a MIC architecture core [34] . . . . . . . . .. ... ... .. 18
Software Stack [34] . . . . . ... 19
Structures used in the unpacking phase . . . . . . . . . ..o 25
The cell parameters structure . . . . . . . . . . .. Lo e e e e e 25
Flow diagram of the unpacking phase . . . . . . . . . . . ... ... .. 27



4.4
4.5
4.6

5.1

Execution Results of the MPI implementation on Xeon Phi coprocessor . . . . . . . .. 29

Execution Results of the Hybrid implementation on Xeon processor . . . . . . . . . .. 29
Execution Results of the Hybrid implementation on Xeon Phi coprocessor . . . . . . . . 30
Execution Results of the OpenMP implementation . . . . . . . . . . .. .. ... ... 37

vi



Extetouevn Ilepiindmn

Or Bloroyixd axpiBelc TEOCOUOUDTELS TMOV EYXEPANXDY XUTTHpwY dladpauatiCouv evay TOAU o1-
LoV TIXG PONO GTNV XUTAVONON TNG AELTOLEY (oG Tou avlpmivou eyxepdhou. Ot VEUPOETIG THUOVES TIG
YENOWOTOLOVY Yiot TNV ToeatAenom xat TV TedBAedn tng eyxepaiixic cuuncpipopds. H culkeyoue-
V1 TAneogopior GUUBIAAEL GTIC TPOCTAVELES TOUC VoL BNULOURYHOOUV GUOXEVES Yial T BeATion Twy
cuVInxwy dPiwong atouwy Ye veupohoynd meoPfAfuata. I't auto 0 AdYo Lo TANUOEA VEURIXGDY
Hovtélwy €yel avantuydel.

X1 ouyxexpévn BimhAouotiny epyocia evoac Blohoyxd axpBric TpOCOUOLWTASC TOV XUTTARWY
e x4t ehatog Tou eyxepdhou Vo yehetndel. H xdto elalor Tou avipdmivou eyxepdhou €yel
amodely Vel OTL CUUUETEYEL OTNY Ywe!] avTIAAdN Twv avipdTwy xaL oTNy IXavoTnTo ToUG VoL YELRi-
Covton unyaviuata. Adyw Tng HEYIANC TOAUTAOXOTNTOC TV BIXTOWY AUTWY TV XUTTARMY, To 0Tolo
amoteholVTAL om0 TOANE x0OTToEo UE TOAES GUVBETELC UETAEY TOUC, 1) TUPUAANAOTIOMGT TwV YeNol-
HOTIOLOUHUEVWY TEOCOUOIWTAOVY epavileton we eva yerowo epyohreio yio T Bedtiwon tng anddoorng
ATV TWV EPUPUOYOV.

Kota cuvéneia, to xpio Véua authic tTng Simhwpatixhc eivon 1 yerion e Intel Many Inte-
grated Core (MIC) apyltextovixfic yioo Tnv extéleon tou tpocouoinwtr. Avo Xeon - Xeon Phi

unyoviuato Yo yenoylonondoiv xon 1 egapuoyy| Yo ypaptel ue Bdorn teio Ola@opeTixd TEOYpUU-
HaToTIXd povTéha g apyltextovxnc. To poviého avtodhayrc unvuudtwy, Message Passing
Interface (MPI), éyet vhomowmdel oe npornyoluevn epyooio [47] xou yenowonoleitoan otny Tpéyouca
OLmALUITIX ¢ 1) Bdon Yio TV vhonoinon popalouevng uvAung, ue yerion tou OpenMP  mepiBdn-
AovTog xat Yo Ty UBewdiny), Hybrid, ukonoinorn. H vhonoinon popalouevng uviung otoyelel o1
MEAETN TOL TORUAANAIGUOU TN EQUPUOYAS Xou 1 UBELWOXY LAOTONGY GTNY cUVBLNG TXT| aEloTolnoT
TV Theovextnudtewy tng OpenMP xou tng MPI vhomnoinong. To SiapopeTind TpoypouoTio Tixd
Hovtéha cuyxplvovtal PETHED TOUC MC TROC TNV ENBOCT TOUC X0l OVAOEIXVUETAL TO TILO OTOBOTIXO

v v Intel Many Integrated Core (MIC) apyttextovix.
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1. Nevewd Movtéia Ilpocouoiwong

Ot TpOGOUOLOCELS TWV EYXEPUNXGY XUTTAPwY Pactlovion o VEURLXd LOVTEAL TIOU €YOUV avVa-
mtuydel. Adyw NG TOAUTAOXOTNTAC TWV EYXEPUAXDV PUVOUEVGDY X0k TWV TOIAOY AoviIdvovTwy
OLAOXAOLWDY TTOU AoBAVOLY Y (R Yiol TNV UAOTOINGT) OTOLIGOHTOTE EVERYELNS GTOV ovIpOTIvVO EYXE-
paho, Tor povtéha ywellovton ot dlopopeTind enineda agpaipeonc [7].

Trdpyovy d0o Baoixéc xatnyoplec veupxmy HovTéAwY [7]:

o Yuppatind poviéra: Ta yoviéha auta GTOYEVOUY GTNY AVAAUGT] TV VEURIXOY (QOLVO-
uévwy ue Bdorn toug veupohoyxolg unyaviogols mou miavae odnyoly oe autd. Ilocotixo-

TOLOLYTOL UE YEHON HoINUOTIXOY eELCOOEWY Yiot ToV EAEY Y0 TNE oxelfBeld Toug.

e YrohoyioTixd povtéha: Auth n ot Vewpel TIC AELTOVRYIEC TOU EYXEPSAOL GAY UTO-
AOYLOTIXES OLUBXAGIEG TTOL EPUNVELOUV T1) GUVOALXY| AELTOLRY(O TV VEUROROYIXODY TUNUATODY

TOU Yo TNV ohoxhipwon pag Aettovpyiag [22, 25].

H xatnyoplomoinom twv veLpohoyix®y LOVTEAWY avdhoyo UE To eTMNEDO agaipecone Tou ToL Yo-

caxtnellel, TapouaLdlEToL GTO TUPUXATL Oy AL

Integrate-and-fire models
Describe the characteristics of neurons based on
the synaptic inputs and the input current

Izhikevich models
Observe the relation between the input of a
neuron and its output by taking into
consideration a variety of neuron’s features

Increased level of detail

Conductance-based models
Describe a single neuron as a structure of
multiple interconnected electrically compact
compartments.

¢

Yyfuor 1t Enineda agoipeons oo veupind poviéha

e Movtéla aywyipnotntoag: To poviélo autd Teplypdpouy Evay Hovo VEURMVA 1 Eva Ui-
%00 0OVOAO OO VEUPWVES YE UEYIAN Aemtouépela. H Bour Tou vevpwva mpooeyyiletoun amo

TOMTAG, SLlcUVOEBEUEVAL, NAEXTEWXE AvEEAETNTO TUAUOTAL.

e Movtéla Integrate-and-fire: Ta povtéla autd yenotuomololVTAL Yid TNV TROCOUOIWON
HEYGAOY BIXTOWY VELROVWY ot Bev AauBdvouy utt 6 Toug Tig ahhay€g OToL BUVOULXE TWY

HEUBpavaY TV xuTTdpwy [3].

viil



e Movtéha Izhikevich: To povtélo autd pehetoldv 0 cucyétion petodh tne €660V Xl
TNC EL06B0L EVOC VEUROVA GOl VoL HTAY €VaL oieo xouTl. Xuvoudlouy TNV anodoTIXOTNT THOV

Integrate-and-fire povtéhwv xar to LPNAS eninedo avdALONG TWV LOVTEAWY AYWYOTNTOC

[9].

2. Ilohvenelepyactixeg IThatpdpueg

H 8edtepn Poaoint| mapduetpog 6Ny Topoloo SITAWUATIXT EQYAcio EVal Ol TOAVETEEEQY AT TIXES
mhatpopuee. Tig tedeutaieg dexactiec, o Nopog tou Moore emixpatoloe we 1 Pooixn TopdUeTEOg
xodopLopol e ZEMENG TWV UTOAOYLOTIXMOY CUC TNUETOY X0t TV eTBG0EwY Toug [35]. Biugpuva
ME auUTOV, 0 opiludg Twv TpavlioTop mavw cto chip Oimhaocidletar xdde 18 urveg, xou ovdio-
Yo eToBdheTon xon 1) ETIB0CY TNG UOVOVAHATIXAG EXTEAECTC TWV UTOAOYLOTIXWY CUCTNUATODY. To
emnhéov TeavlicTop Yenouomotinxay ano ToUS apYITEXTOVES UTOAOYIGTOY Yia TNV aLENoT Tou To-
PUAANALOUOU ETUTEBOL EVTIOAMY XATAoXELALOVTAC o ToAVET{Tedo pipelines , ugnAdTepeg TayUTNTES
poloyiov, eneepyaotéc ue out of order extéheom, xoahltepoug TEoBAENTES AAUATOLY, TOAUBodumTéS
OPYLTEXTOVIXES, Xl Yiot TOEIAES GAAEC BEATIOOELS OTO ETUTESO TOU GUGTAUATOS. LNV opyT| OpWS
ToU 210U AOVA, 1) TEYVOROYIXY) xOWOTNTa avTIAAPUNXE OTL oL TEYVohoyixég e€ehilelg Bev pumopovoay
mhéov va axohoudficouv tov Nouo tou Moore. To péyedoc twv tpaviictop dev Htav duvatod vo
uewwel neptocdtepo ool elye Eenepaoatel To bplo Tng VepudTNTOC MO UTOEEL Vo avTEEEL eva Tpav (-
0710p YWwelc TNV eupdvion tpoflinudteny Swpporc peduatoc. Kata cuvénew, to emimiéov tpavlicTtop
dev uropovcay va aZlomotnioly yia TV BEATwon TS LOVOVNUOTIXAC EXTEAECTC TV UTOAOYIC TGV
cuoTnudTwy [44].

Aopfdvovtog ut Oty auTd To SEGOUEVAL, 1) TEYVOROYIXY| XOWVOTNTA GTEAPNUE OE TOIAES TPOCEY-
yioewg yio T Slathenon g EYeL TOTE aUEAVOUEYNC ETBOONEC TWV UTOAOYICTIXWY UG TNUATWY. O
ToUTOYPOVOC ToNUVTaTiopds , Simultaneous Multi-threading (SMT), unfple pio ano ¢ TEMTES
mdavég Aooelg. Auth 1 mpocéyyion xdvel évav Quoixd enelepyaoTh Vo ep@avileTon ooy TOAAA-
mhol hoywol enelepyac TéC ano TN OO TOU AOYLOULXOU, 0o’ TOANATAS Vot LotpdlovTal Toug
ene€epyacTXolg Topoug Tou Quotxol enelepyaoTrh. To vAuata dnulovpyolvto xaL 1 EXTEAEOT
TOUC OPYOVWVETAL avdhoyo pe T dtadeoudtnta twy enclepyastindy nopwy. H enduevn Aoy
TpocEYYLon fTay 1 dnutoupyiot Twv tohvenelepyaoTixdy Yneidwy, Chip Multiprocessors (CMP),
mou cLVEBaAaY xotoploTixd 6TV adENon NG ENiBOCNE TWY UTOAOYICTIXWY UG TNUATWY. O xata-
OXEVAO TEG EMECEQYATTAOV ONUIOVEYNCAY TOAUTUENVOUC ETEEERYAT TEC VAOTOLWVTAS BVO 1) TOQITAve
UTOAOYIO TIXOUE TURHVES G0 (Blo xouudtt tupttiou. Ot BlagpopeTxol uTohoyloTixol muprveg Sladé-
TOLV TOUC BXOUS TOUS EXTEAETTIXOUS XL OPYLTEXTOVIXOUS TOPOUSC %ol UTopolV var Lolpdlovton Lot
MEYSAN %xpu@Y| uvAun LAoTolNuévn Tdvew oto upitio. Ol Tuphveg umopoly vao eopuolouy xal Tou-
TOYPOVO TOAUVNUOTIOUO TEOXEWEVOU Vo ALENCOLY TOV 0ElIUd TWY AOYIXWY EMEEERYUCTOV GE BUO

popéc Tov apiud TV QUOXGOY etelepyaoToy [44, 12].
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To enduevo Brua Yl To UTOAOYIOTIXG CUCTAYNTA NTay 0 GLVBLAoU6S TohhGY CMP  enclep-
YOO TGV OE €Vl GUGTNUA, YEYOVOS TOU OB YNOE GTN YEVVNOT TV TOAUTUENVWY GUGTNUdT®Y. OL
TOAUTOPNVEC TAATPOQUES YENOWOTOOVVTAL €UPUTATA OF Lol TANUMEO UTOAOYIOTIXG OOLTITIXWY
eqopuoyov [21, 6].

Ov mohunbpnveg mhatpodpues ywetlovial oc T€ooeplc xatnYopieg, TN Acyouevr tagovoula Tou

Flynn:

Single Instruction, Single Data (SISD) Anotekel tnv apyttextovixt| T cuvidous cetptoxic

EXTENEOTC, UE T1) LOVAOIXT) POT| BEGOUEVMV XL EVTORGDYV.

Multiple Instruction, Single Data (MISD) Movtélo pe ToMamhy] por) EVIOADY Xal LOVO-

Owxr| por| dedouévmv. To povtého autd yenowonoteitar uovo oe Yewpentind eninedo.

Single Instruction, Multiple Data (SIMD) H opyttextovix auth tepthopufBdver Tnv eqop-
HOYY) EVOC GUVOAOU EVTOADY OE BLUPORETIXES POEC BedoUévwy TauTtdypova. Xenoiwonoteiton

o€ e@apuoYE Ynglonc eneepyaolag CHUATOS XoL TOAUUECHV.

Multiple Instruction, Multiple Data (MIMD) H apyitextovixf] toAhamhfc pofic dedo-
HEVWV XU EVTOAGDY amOTEAEL TNV O GUVAUT 0PYAVWOT TWV TUPIAANAWY UTOAOYLO TIXWOV GU-
CTNUATWY XU TOREYEL T1) SUVITOTNTA EQUOUOYTC DLPORETIXWY POWY EVIOADY OE BLAUPOPETIXG.

GUVOAXL BEBOUEVLV TOUTOY POV

Single Instruction, Single Data  Single Instruction, Multiple Data
(SISD) (SIMD)

Instruction

Data s

Figure 2: H waZovopia tou Flynn yu tic mohurdpnvee opyttextovxés [44]

Oi Xeon Phi ene€epyactinéc mhatpopueg avixouy otny xatnyopio twv MIMD apditextovixv
xot TPy ouy TN SuvaTOTNTa eNe€epYaciog BIUPORETIXMY POWY BEGOUEVLV ATO BLUPORETIXES POEC

evtoh@v. Ou Xeon Phi enegepyaotéc ypnotponolodvial oo enitoyLVTES Yiol Ty avénan tng enidoong

NS EpoppoYc.



3. Ipoypappoatiotixd Epyoieia

Trdpyel YeYdAn TOLAAN TEOYQOUUATIC TIXWY EPYUAEIWY YLl TG TOAUETEEERYUC TIXEC TAUTPOR-
uec. Kdmow amo autd dnutovpyiinxay anoxAeloTixd Y1t XATOIES CUYXEXPUIEVES OEYITEXTOVIXESG XOUL
xdmolar GARa €youv Yevixy Yenon. Avdhoyo UE TNV oQYLTEXTOVIXY| TNG TOAVETEEEQYAOTIXNC TTAAT-
(POPUAS OPLOUEVYL TIROYEAUUUATIC TXE LOVTERA ATOBELXVOOVTOL TO ATOBOTIXA U0 XYTOLX GAAYL TOGO
¢ TPOC TNV ETUBOOT TNS EQPAPUOYTC OGO XaL WS TEOS TN Buoxoilo Tou TpoYpauuaTiIonol. TlapoxdTe

Yo yivel Adyog yio To o Baoind TREOYEUUUATIO TG EpYUAE(D TOAUTIOETVOV JEYITEXTOVIXV:

e Message Passing Interface (MPI): To povtélo avtahhoryfic pnvupdtov eivor évo mpoypau-
HOTIOTIXO UOVTEAD YLO TOV TEOYRUUUATIOUO OQYITEXTOVIXMY XATAVEUNUEVNS pviung. Kdie
eneepyaoTAC OlrdéTel WLTXY tEpapylor UVAUNG X EvaL GUVOEBEUEVOS UE TOUS GANOUC E-
TegepyaoTéC U€ow Bixthou Slolvdeone. Aev umdpyouv uotpaldueva dedouéva UETUED TwY
EMECEQYACTAOV XAl VIOl TNV AVTUAAXYT| OEOOUEVLV AmouTOUVTAL CUPELS XANOELC ATOCTOAAC XAl
Mg toug. TIopdho MOU OL AEYLTEXTOVIXES XATAVEUNUEVNS UVAUNG €lvol BUOXONOTERES GTOV
TEOYROUUATIONO, EUPUVILOUV UEYAAN XAUIXOCWOTNTO O YIAEOES XOUPwY %ot TO UOVTENO
AVTOUAAAY NG UNVUUBTWY YeNOUWOTOLELToL UE UEYIAT ETLTUY I GTOV TROYQOUUATIONS LPNAGY €-
udboewy, High Performance Computing (HPC)[50]. To npétuno avtodhayhc unvupdtwy,
MPI Standard Library, ymopel va ypnowonomiel oc okeg TI¢ UTOAOYIOTIXEG TAATPOPUES
PN entdoong xou utootneilel Tic YAwooeg mpoypopuationot C, C++ Fortran 77 xa
F90 [27].

e OpenMP: Arnotekel éva epyoleio TEOYROUUATIONOD YO AEYITEXTOVIXEC HOLRACOUEVNC UVAUNG,
oTic onoleg oL eneepyaoTég €xouy évay xowvb ywpeo dlevdivoeny [40]. Xto epyaieio autd
0 TEOYPUUUATIOTAC OpilEl PNTA Tol TUAUNTA TOU XMOLXA TOU Yo EXTEAEGTOVY TUPIAANAL XAl
0 PETAYAWTTIOTAC Tou TeplBdAlovTog elvon utedYuvog yior TNV Tapaywy? ToU TapdAANAOU
xwdixa. Ov yAdooeg mpoypoppatiopod nou utootnellovial ano to tedtuno eivon ot C, C4++

xou 1 Fortran [50].

e Threading Building Blocks (TBBs): Auté to npoypoppatiotixd goviého etvar o C++
template BiBAoORxN yior TUREEAANAO TEOYEOUUATIOUO OE AEYIXTEXTOVIXES HOLRAlOUEVNC UV
ung. Avomtbooetan amo v Intel®ano to 2004 xou €lvon avorytod xwdxo amo to 2007.
[Tpoo@épel BIEUXOMOVOELS GTOUC TEOYPUUUATIOTEG aPOL TOREYEL Yot TANVWEN ETOWY TEOG
Yerion meoTiTwY xwdxa xat 1) BIBA0VY XN LAoTOLEl TOV TUEUAANAIGUO TOU O TEOYEOUUATIO THS

oA avopépet [31].

e CUDA C: To npoypoupatioTind auto epyareio elvon éva tepi3dhhoy hoylouxol tou avartiydn-
xe Yy TN Yenon e yaAwoooag C otov mpoypoupatiopd tne CUDA apyttextovixfc yevixod
oxonol g etauplac NVIDIA[39]. O mpoypoppotiotrc xadopilel to Tuiuata ToU xhXA ToU

Yo extereotolv oty CPU o to tpfuata exciva mou Yo extedeatoly oty GPU, xade
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XL TIC PETUPORES TV DEBOUEVODV UETOEY TOUG, YEYOVOC TOU QUEAVEL TNV TROYRUUUATIO TIXT
duoxohio.[38].

4. Ta xOttapa tng Katw EAlalag tou eyxepdiou

O TpoCOPOIWTAC TWV XUTTAPWY TNG X34Tw eAalog TOU EYXEPIAOU TOU YENOULOTOLELTUL GTNY Tta-
poloa epyaocta elvon €vag Blohoyd axpiBric Tpocouotwtg mou Booiletar oTig Blopopinéc e€lomaoELg
Tou povtélou twv Hodgkin xo Huxley [1]. H eqappoy otoyelel otny mpocoyoiwon evéc duxtiou
AUTTAPWY ToL YAEOXTNEIoTIXA Tou omolou xadopllovtar amo tov yenotn. )¢ elcodog mopéyeTton T0
péyedog Tou Bixtdov, To apyeio cUVBESOTNTOC HETOEY TV XUTTAPWY Xt €va apyelo Ye Ta peduaTto
€l06dou o xdde xOTTOPOo ava Brua mpocopoiwonc. O Brohoyxés mopdueteol 6oL Tou BLxTOOoU
umohoyilovton xi amodnxebovion oe xdie Briuc TNS TEOGOUOIKONG Xot YL AUTH TO AGYO 1) TEOCEYYLOT
auTh dtapépet amo Tic cLvAlelS TpooEYYIoES TOL AVTIHETWTILOUV Tor XUTTaPO coy Howpa xouTid [42].

To xdde x0TTapo TNE %At EAAUC TROCOUOLOVETAL UE TN YPNOT TOU TOEoXAT® UOVIEAOU TOU
Yewpel 0Tl To veupixd x0TTopo anotekeiton ano Tpla EeYwEIoTE TUNUATY, UE BlapopeTxés Bloloyixég

Aettoupyleg To xodéva:

e O devdpltng civon To TUAUA TOU XUTTAEOL Tou elvarl LTEKYUVO YLl TNV ETXOWVKVIOL TOU YE Ta
Ghha xOTTOEA Tou Bixtvou. H emxowvmvio tpocopoidveTal ue TNy anodixeucT) Twy TYWOY Tou
BLVAULXOU TWV UEUBROVKY TV BEVORLTOY TwV YEITOVIX®Y XUTTAenY. Ou Twéc autée pall pe
EXEVEC XATOLWY ETUTAESY BLOAOY XDV TUPAUUETEMY Xl TOU PEVUATOS ELGOO0 TOU Xde xUTTAEOU
xadopilouy Toug UTOAOYLOUOUE TOL Buvoxol Tou devdpitn oe xdde Priua Tng Tpocopoiwong
[23].

e To cwua clvor T0 UTOAOYIOTIXG XEVTPO TOU XUTTEEOU. XE QUTO TEOYUATOTOLOUVTAL OL TILO
amoutnTol xaL ypeovoPopol utoloyiopol. To tufAua autd emxowvwvel pe to dhha 600 PEow

Z 7
EMTESWY OLVAULIXOU.

e O d&ovag tou xUTTdPoL anotehel T Vopa €£680U TOU XaL 1) THY Tou BuvauLxoL Tou arodn-
xeveton oe xdde By Tng mpocouolwong. Eivor to Turue Tou xuTttdpou pE TO UXEOTEEO

UTOAOYIOTIXG QOPTIO %o TEAYHATOTIOLEL TIC AELTOVEYIES ELIGHBOU-EE600U TOU.

Dendrites

Yo 3: To yenouonooluevo Hovtého Yo To. VEupixd xOTTapa[36]
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XNV apyn) TNS TEOCOUOIKGNG 1) EQUEUOYT| OECUEVEL YWEO GTN UVAUT Yot TNV amodixeuon Twy
ATAEATNTOY TOPUUETEWY TOU XAUE XUTTAPOU Yid TNV TEocoUolnwaoT. Xe xdide Briua tne mpocouolw-
ong ot devdpitee AauPdvouy we elcodo to pedua eloddou Tou Eyel xadoploTEL OO TOV YEHo TN 1 £Vl
otolepd pevua mou €xel LAomolnUel péoa 6To TEOYEoUUA. XTNY Topoloa epyacio yenotuoTolfinxe
1 0e0TEPN LOoPPT| €lCOBOU POV O TEWTAPYINOS GTOYOE TNG EIVOL 1) HEAETT TNG XAUAXWOWOTNTOC TNG
eQopuoYg 1 omola eV EMNEEALETOL ATO T LOEPY| TOL PEVUATOS ELGOBOV. 3TN CUVEYELX Ol BevdpiTteg
amo¥NrEtouY TIC TYWES TWV SUVOIXOY TWY BEVORLITMY TwV YEITOVIX®OY XUTTdpwy. H clvdeoelg yetadu
TWV XUTTAEwY Tou dixtiou xadopilovtour Péow evog apyelou cuVBECLUOTNTAC Tou xadoplleTal amo
TOV YENOTN, TO 0Tl TEPLEYEL TNV THY TNG Y WYILOTNTAS Yiot xdde oUVEEDT UETAEY BUO XUTTAPWV.
Ye mponyoluevn douled [47] eiye vhonoinlel éva anhd oyfua cuvdeowdtnTog Tou Yewpoloe 6Tt
xdde VELPWVAC CUVDOEETAL UOVO UE TOUG 8 GUECOUC YEITOVEC TOU TV GTO TAEYUN, PE TO O{XTUO
vor avamopio Totan ooy €vag OLOLdo TATog TvaXag. ME ETOUEVT PAOT) TNG TEOCOUOIWoNE, Tal XVTTUQ
AVTUAAGCCOLUY ToL BUVAULIXA TOUC X0l Ol AouBavOUEVES TWES amoUnxebOVTOL GE XUTHAANAAL Sloop-
pouévoug buffers. Metd ) AMdn tov amapoltntov TwOY xdde TUAUS Tou xuTTdpou utohoyilel T
véa Tiun) Tou Suvouixol tou. H Twr tou Suvouixol tou d€ova xdE HUTTAEOL XATAYPAPETOL GTO
apyeio e€ddou tng mpooouolwone.  Auth 1 Sdixacta emavohouBdvetan Uéyel Vo ohoxAnpwiel
TEOGOUOIKOT).

H nopodoo Simhouotiny cuvEBUAE eEXTOC TV GAA®Y, XL GTNV amay X TEWOTN TNE TEOCOUOIWoNS
aro owidotateg totohoyleg. T o oxomd autd dnuouEYNINKe KUTAAANAOG HWOONAG TUARAYWY NS
APYELWY GUVOECHIOTNTOC METAUED TWV XUTTIPWY TIOU AVATIREIG TOUV TELOOLAG TUTEC TOTOAOYLES XUPBXTG
uopprc. H €Zoboc tou xwdxo mopaywYng Tou apyelou CUVBECLUOTNTAC Elvol €Vol .tXt  opyelo
Tou TEPIEYEL Evay BIdoTaTo Tivaxa e (o0 aptiud yoouuwy xou otniov. Kdde ypouurh xow otiin

AVTITPOOWTEVEL XL EVOL XUTTOEO TOU OIXTVO0U, OTWE TAUPOUCIALETOL Xl OTO TUEUXATE Oy 4.

represents a cell
receiving
information

0 j L cellCount - 1
0
conductivity value of the
represents a . connection between the
cell sending . ( cells with ids i and j
information .
i ]

cellCount
number of cells

cellCount - 1

Lyfuo 4: H popgt| tou apyelou e£630u T0U xMdixo GUVdEGHIETNTOS
Ov Tég Tou mivaxo avTITEOCKTEVOUY TNV TN NS AYWYWOTNTAS TNg olvieong UETAC) TwV
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XUTTAPWY TIOL OVTIOTOLY0VY O TNV exdcToTe e€eTalOUev Yeouurh xat oTAAN. Mndevixn T ayoyl-
HoTNTOC oNUolVEL OTL BEV LTdEYEL GUVOEST YETAZ) TV XUTTApwY, eved Twr 0.04 detyver tnv Onapdn
oLvdeone xau etvor 1 default Ty onwe auty tpocdlopileton amo 10 YENOWOTOOVUEVO HOVTENO
VELUPIXWY XUTTHpwY. O pévog Teploplouds mou e@oapuoletor elval oL TWES TNG oy WYLLOTNTAS G TN
Oty @vio Tou Tivaxa v efva Undevixég ool BeV ETUTEENETAUL GOVOEST) EVOC XUTTYEOU UE TOV EAUTO
TouL.

[opaxdte mopatideton Sidypouua pong UE TN AELToURYid TOU XMOOLXA TOEXY WY 0Py ElWY GUVOE-
OWOTNTOC GTNY TEPIMTMON TOU UAOTOLELTAL YXAOUGLOVT Xatavopur) TNy mdavotnta ahvdeang Yetady

TWV XUTTAPWY TOU BXTUOL.

-

Start

Calculate the possible values
of distance between two
cells in the 3D grid

Calculate the corresponding
probabilities for a connection to
exist using the Gaussian distribution

current_cell =0
current_cell++

cell_to_examine =0

Calculate the distance

between the current_cell and cell_to_examine++

the cell_to_examine

|

Generate random
number in [0,1]

l

Yes /R?Fl—t;m <= probability[dista_nce = No No

Conductivity[current_cell][cell_to_examine] Conductivity[current_cell][cell_to_examine]
=0.04 =0.00

| ] No

/// \\\
cell_to_examine = max

Yes

Y.
" —

-
current_cell = max

Yes

v
End

-

Lyfuor 51 Audrypappa potfic Tou xmdixa TapaywYRe Tou apyeiov cuvdEcbTRTAG
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5. H opyittextovixn TV YerNoLULOTOL0VUEV®LY
CLC TNUATWYV

Y ouvéyeta Yo neprypagel 1 Intel Many Integrated Core (MIC) apyrtextovixs n onofa eivon
xa 1) apyttexTovixt| Twv Xeon - Xeon Phi unyavnudtwy mou yenowonomdnxay oe auth| tny epyacio.
Y10 mopoxdtey oyfua napouctdleton war Tumixr Xeon-Xeon Phi miotgopua. H mioatpdpuo meenet
vo Tepléyel 1oco Xeon enelepyactég 6o xan Xeon Phi cuv-enelepyaotég Slocudedeuévoug YeTal
oug. O opriudc Twv Tupvewy Bev ewval xadoplouévog Xt eE0RTATAUL OO TO CUYXEXPUEVO Xdle
popd unydvnuo. Mia Tumxh mhatpopuo anotereiton ano 1-2 Xeon enelepyactég xan 1-8 Xeon Phi
ouv-enelepyaotéc ava Xeon enclepyaoth. Kdde Xeon Phi cuv-enelepyaoctyic diodétel Acttovpyind
ocVotnua Linux xou urootneilel wia mowahio TEOYPOUUATIOTIXWY EQYOUAEOV. 2T CUYXEXPWEVT
Oimhwpatixny Yenouormotfinxay ot uetoryhwttiotée tng C, Tou MPI xou tou OpenMP nepi3dhhovtoc.
O Xeon Phi cuv-eneZepyoaotic elvor cuvdedepévog e Tov Xeon eneepyaocth péow tou PCI Express
bus xou Stodétel plo exxovixry IP diebuvon mou Sivel T SuvatdTnTol GUVOECTC GE AUTOV GaY VoL To

évag x6pfog evog dxThou.

— [ -
4 = (
{—
Xeon

Xeon Phi (l—l\ Host CPU
PCI- Express \ J
\ S——
N IR
_HostCPU \1

gy ) Xeon
N — ‘ y

Lyuor 6: Tumxd| Thatpdpuo TS oEYITEXTOVIXHS

Ta 800 unyaviuota Tou yenotponoltinxay otny epyocio outy eivar to Blue Wonder Phi Cluster
tou Hartree Centre [17] xou évor unydvnua evog vrohoytotixol Xeon-Xeon Phi xéuBou. To cluster
tou Hartree Centre ypnowonom{dnxe yio Ty avdntuén OAmY TwV UAOTOLACEWY TOU TEOCOUOLWTY
agol dLEdeTe OAeg Tig amapattnTeg BiAodrxe xou pyetaryAwttiotés. To unydvnua tou evog xéufou
yenowornotfinxe xuplwg yio Ty avantuén tne OpenMP eqopuoyrc. Ta 800 unyoviuata ‘eyouv

TOA) ToEOUOLO TERBAAAOY YENONG, YEYOVOS TOU BIEUXOAUVE TNV aVATTUEN TV EQUPUOYWY.

XV



6. H YTBewown vionoinon

H TPewdwr; vhonoinon meoxintel aro tnv MPI vhomoinon mou yenowonowdnxe oc auty tnv
epyaoio we mpoundpywy xddxac [49]. Xuyxexpyéva, oepoxd tuiuata tne MPI uhonoinone exte-
AoUvtan amo OpenMP threads oty uPeLdixn Teoxewwévou va auéndel n enldoon tneg extéreong g
EPUpOYTC,

H Boown odhory) mou nparypatotorfdnxe otnv MPI vhomolnon npoxeipévou va uropéaet vou Jeta-
Tpamel TNV UPBEWIY aopd TN Asttoupyio Tou xuplng Bedyou TNE TEOCOUOIWENE TOL TUEOUCIALETAL

TOEOXATE UE TN Lop®T| Peudoxmdxa.

Algorithm 1 The main loop of the simulation in the MPI implementation

1: for stm_step = 0 : max do

2 MPI Isend();

3 MPI Irecv();

4: MPI sync();

5: uncpack voltages

6 for cell =0 : cellCount do

7 compute_new_dendritic_voltage()
8 compute_new_somatic_voltage()
9: compute_new_axonal_voltage()
10: end for

11: end for

Ye xdle Briya Tng TEOCOUOIKONE OL TUPTIVEC TOU YPNOWOTOOUYTOL AVTIOAAACGOUY TIC TWES
BUVOIXOU TV XUTTEEWY TOUS (YPopés 2,3,4), CUYXEVTPMVOLY TIC OTUPAiTNTES TANPOYOP(ES oo Ta
yertovixd xOttapa (Yeauuy 5) xou 1o eotepind nepBdhhov, edv undpyet apyeio el6bBou pEdUUTOC,
xou LTohoYilouv ex VEOUL TIC TOPAUUETEPOUS TWY XUTTAp®Y Touc (Ypouuéc 7,8,9). H avtodloyr twv
duvauxwy yiveton ye yeron twv MPI eviohdv yio anoctol] o Al dedouévwy.

INo ) Behtiwon tng enidoong g mpooouolnong To GELplaxd TUAUATH TOU TOQOTAVE) XWMOLXA
omwe 1 Sladixacio EemaxeTaplouaTog TV TYWOY duvouxou Tou AauBdvel o xdde muphvos xadng
%L oL OLadIXGIEG TOU EX VEOU UTOAOYLOUOU TWV SUVOULXMY TWV XUTTApwV Yo EXTEAEGTOLY amo
TOEAAANASL VAATOL.

H Sduaoio Eemoxetoplogatog oV Ty duvauxol tou €yel Afel o xdle Tuevag ano Toug
yettoveg Tou oty MPI vhomoinon Yo avadudel otn cuvéyeta. Ot Bouéc Tou YeNoLOTOLLYTOL GTNHY
vhornoinon mapovctdlovton 6T Tapaxdtw oyfuate 7 xar 8. H cellCount yetoBAnTty| avamaplotd
ToV apLiud TV xUTTAEWY ToL xdUe Tuprvag Tpocopolmvel. H doury cellStruct nepiéyet yio xdie
%0 TTAUPO TOL TUEHVA TI TREYOVCES TYWES TOU BUVOULXOU TWV YEITOVMY TOU, OTWS PUVETAL GTO YU
7, xou TNV Moo TV TGV Buvaixol Tou o Teéyov xoufog ENafE amo Toug UTOAOLTOUE GE oUTO TO

Briua TN mpooouolwong.
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cell receiving list

parameters head
structure
>
cellid =0,
neighbours Core 0 » Corel —» —» Corek
voltages "t
etc
NULL
cellCount
number of
cellsin
each core
cell id =
cellCount— 1,
neighbours
voltages etc
-
cells_to_raceive (ids) voltages_to_receive
from this core fram this core

Yyfuor 7: Aopég mou yenoorootvan ot duaduaota Eemoxetapiopotog

neighbours_ids |

Cell=0 conductances |

neigh_voltages |

cellStruct

neighbours_ids |

Cell = cellCount - 1 conductances |

neigh_voltages |

L]

total number
of neighbours

Lyfor 8: H Soyr| mou mepéyEL TIC TORAUETROUS TV XUTTUPOY

ITio cuyxexpwéva, otn @don Eenaxetaplopatog, xdde xoufog tng AoTag ye Tic THuée Twv du-
VOX@YV ToL €€0uv Anglel, TOU OVTITPOCWTEVEL EVOV YENOWOTOLOVUEVO TURH VYL, €EETALETOL UE 1|
oelpd. Edv o tpéyov xéufog de AowPdver Tipég duvaixol amo tov uto e&étact xoufo 1 diadixacto
ouveyilel ye tov emduevo x6ufo otn Aoto. Edv Aopfdver tipéc ano tov xoufo nou e&etdletan, xdde

cell id mou mepthopPBdveTon oty cells_to_receive Aiota Tou x6uPou tne Ao tog ye To hao-
VOUEVA SUVOULIXA AVAPERETAL GE €V XUTTORO, TO BUVOULXO TOL OO0 XATOL XV TTAPA TOU TEEYOVTOG
xouPou €youv {nthoet. Kota cuvénela, ol AMoteg pe Toug Yeltovee xde xUTTEEOU TOU TEEYOVTOG
x0uPou dlatpéyovtol TEoXeWEVOL Vo xodoplo Tel v To xUTTaPo Tou xouBou nou e&etdleTon Tweo
elye {nmoet ™ Mdn tne Twrg duvaxol uto e&étaon. ‘Otav e€etactodv 6ot oL YelToveg evig
xUTTdEoL, 1 Bladwacio cuveyilel 6To emduevo. Alagopetixd, 1 avalhtnon yia Ty T tou cell id
umo e&étaon ot Mot pe Toug Yeltoveg Tou xuttdpou cuveyilel amo to onueio mou 1 TEAeUTAN
avalhtnon elye otapatioet. H 16éa autn Baciletan otny nopatripnon 6t oe xdde x6ufo, to cell ids
TWY XUTTAPMY TOU TEOGOUOLOVEL BploxovTal arodnxeuuéva oe adiouca oetpd. Ouoing, oe adiouca

4 7 . Z 7 4 e 4 ’
oepd Beloxovtan ta cell ids péoa oty Aiota Twv Yeltdvwy xdlde xUTTdEou Tou XOUBou, aAAIL Xou
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ot ids TwV XUTTdEY o Toug xOUPoug TNg Mo Tog Ue Tor Suvod Teog AR amo Tov Teéywy Tuprva.
Lvende, 1 aval(tnon uropel Vo TEPLOPLO TEL UOVO G ToL TUAUATA TwV Ao TOV Tou dev €€ouy e&eTao Tel
UEYPTL OTLYUNG, OE x&le oTiyun.

H vhornolnon auth| ebvan apxetd mohOmAoxT xau 6ev unopel edxola va exteheo el mapdhinia. Ilpog
auth TNV xateduvorn mpayuatomoinUnxe ahhayy| TN @dong Cenoxetaplopatog. H véa mpocéyyion

TOEOUGLALETAL GTO OLAYPUUUN POTC TNG EXOVAL 9.

Me v odhayt| Tne @dong Eemoxetaplopatog eivon edxolo va vhomowndel mapdAinia o x0plog
Beoyoc tNg mpocopolwone.  LUYXEXQWEVA, UE TN VEO TEOCEYYLoT), avtl vo Eexwvdel 1 Sodixacio
amo toug xOpfoug Tng Mo Tog Ye ol Buvaixd Teog A, Eextvdel amo Ta xUTTUPA TOU TEEYOVTOG
mupriva. To mheovéxtnua authc Tng meooéyyiong eivar OTL 1 @dor EenaxeTtaplopatog Unopel TAéov
var uhorondel mapdhAnio xou var cuyyYwveLTel og Evay emavaANTTIXG BpdyY0 Ue TOug LTOAOYIGUOUG
TV VEOV TWOV TV duvouxay. O VEog x@dag Tou BAUATOS TeoooUolnong TapoucIdleTol oTr

CUVEYELDL UE T LOPPT| Peudoxmdixa.

Algorithm 2 The main loop of the simulation in the Hybrid implementation

1. for sim_step = 0 : max do

2 MPI Isend();

3 MPI Irecv();

4: MPI_sync();

5: #pragma omp parallel for

6: for cell =0 : cellCount do

7 unpack voltages

8 compute_new_dendritic_voltage()

9: compute_new_somatic_voltage()
10: compute_new_axonal_voltage()
11: end for
12: end for

Xviii



‘ Current cell = -1 ‘

Current cell = current |
cell+1

|

| Neighbour = -1 ‘

!

‘ Neighbour = Neighbour + 1 |<

l

‘Locate the core it belongs to in the I'\st‘

Yes No
4

Copy the requested voltage No
from the cell parameters
structure

h
Search in the cells_to_receive
list of the core for the
requested cell

Yyfuor 9: Audrypappa pofic e ghomng EemaxetopiopaTtog
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AnoteAéopata

To amoteréopata tne extéreong tne MPI vhonoinong napovcidlovtar otny mopoxdte emdva

xa Yo yenowonomdolyv yia obyxpelon pe Ty enidoon tne LBeldixhc vAonoinong.

6

1OX 10
3 -©-Phi 1000 Cells
=3 -®- Phi 2000 Cells
> 8f € Phi 5000 Cells T
IS -~ Phi 10000 Cells
3 6 1
=
<D
2 4 |
=
5
5 2 ]
O
(0]
N R, YRR - afhdl ~ T

0

10° 10' 10°

Number of Ranks (p.u.)

Yyfuo 10: Anoteréopara extéheone e MPI vhorolnone otov Xeon Phi eneZepyoaoth

-©-Xeon 1000 Cells
-(-Xeon 2000 Cells
8000% O Xeon 5000 Cells |
= Xeon 10000 Cells

Execution Time/Simulation step(us)

7 \ v 2 \/
1:24 2:12 5:4 10:2 20:1
Number of Ranks:Threads (p.u.)

Yyfua 11: Anotehéopora extéheong tne UBpixfc Uhonoinong otov Xeon enelepyacth

Ano to mopandve arnoteréopata TN exTéAeonc oTov Xeon encEepY oo T, TEOXUTTEL OTL OL Xoh)-
TEPOL GUVOLAOUOL Yiar TNV UPpLdixt) vhomoinom oe autdy eivan 1 yerorn 2 MPI ranks ye 12 OpenMP
threads to xadévo xou 5 MPI ranks pe 4 OpenMP threads to xadéva agol yia autole TOoug GUY-
BLACPOVE TUPUTNEELTAL O UXEOTEROG YPOVOS EXTENEOTC aval Briua Tpocopoiwong yia xdde uéyedog

outoou mou e€etdotnxe. H xhoxwodtnTo e e@opuoyic Bev ewvot TOA) UEYHAT.
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Eyfuor 12: Anotedéopata extéheone e UBpdxric vhoroinong otov Xeon Phi enelepyactd

Arno To mopondve arnoteréopata e extéleons tne viomnoinong otov Xeon Phi enelepyoaoty,
ToEATNEOVUE OTL 0 YPOVOS eEXTEAECTC aval Briua Tpocouolwang €yel petwiel xato pio T8N pueyédoug
oe oY€om Ue Toug avtioTolyoug ypdvoug extéreons tne MPI egopuoyric otov Xeon Phi, yia oha o
peYEUT BtxTOoL xUTTAPWY ToL e€eTAloUUE. AUTO Elvor €vol TOAD GNUAVTIXG ATOTEAECUA TOL BELYVEL
™ Bertinon g enldoong Tng eqopuoyrc 6tay tpootedel 1 yerion Twv OpenMP threads oty MPI
vhornolnon onwe mepwévaue. O xahdtepog ouvduaopog gaiveton va etvon tor 20 MPI ranks pe 12

OpenMP threads to xadéva.
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7. H vhoroinon poipalduevng Uviung

H vhonoinon popalduevne uviung ve yerion tou OpenMP nepi3dhhovtog, mpoéxulde amo tnv
povovnuatixry vAornoinon nou nophydnxe aro tnv MPI vhonoinorn. Ot duo Bacixéc allayéc mou

eywov otov MPI x@owo yiar vou uetatpoanel o€ uovovnuotixd eivar oL Topoxdte.

o H oapyxr) gdorn otnv MPI vhomoinon xato tnv onola xotaoxeudleton 1 AMoto emxovemviog
€VO¢ xOUPBOU UE TOUC YEITOVEC TOU TEOXEWEVOLU VoL AVTOUAAACGCEL Tal AmoEalTrTOL BEDOUEVA XAUTAL
N didpxeta TG Tpocopoiwone, uropel va amiorotniel. Avti vo dnuiovpyolvton duo AioTeg,
Lo yior Toug xopBoug amo Toug omoloug o TEEYoV xOUPog Yo AdBeL dedouEva xa Uior Yo Exel-
Voug 6Tou¢ oTtoloug Vo GTEIAEL BEBOUEVA, UE YPHOT| TWV XOWVWY UETABANTGY 0TN Lolpalduevn
uvhun, yeealeton povo va dnutovpyniel 1 Aota yior Toug xououg amo Toug omoloug AoufBdvel
OEBOUEVIL O TEEYOV XOUPBOC APou 1) ATOCTOAY TOUG UTOREL Vo YIVEL UE UEST] VALY VWO TWV
eMUILUNTOY TWOV ano TiC Lotpaloueves UETOBANTES PETOEY TV xouBwv. H apyin auty @don

TOEOUGLALETAL GTOV THEOXATE (PELBONDOLXAL:

Algorithm 3 The Initial Communication phase in the OpenMP implementation

1: for row =0 : cellsNumb do > a row is a cell sending voltages
2: for col =0 : cellsNumb do > a column is a cell possibly receiving voltages
3: cond_value = read conductivity value

4: if cond_value == 0 then

5: ; > no connection exists between the cells
6: [

7: else

8: cellStr(col].neigh_ids = alloc_one_more_space(cellStr|col].neigh_ids)

9: cellStr|col].neigh_ids[total neigh] = row
10: cellStr{col].cond = alloc_one_more_space(cellStr{col].cond)
11: cellStr|col].cond[total_neigh| = cond_value
12: cellStr(col].neigh_volts = alloc_one_more_space(cellStr{col].neigh_volts)
13: total_neighlcol] + +
14: ]
15: end if

16: end for
17: end for

H Sour; cellStr meplélel TI¢ TREYOVUOES THES TWV TOROUETPWY TOU TERLYEAPOLY TNV X To-

GTUOY) TOU XGUE XUTTAEOL.

o H GSecltepn adAdyn mpaypatomoinxe oTov %@ Tou exTEAElTon o€ xde Briua TNg Teo-
copolwone. O duo @doelc Tou UTEEYOUY, N QACT) ETXOVWVINS XL 1) PAOT, UTOAOYLOUMDY,
umopoLy va evoroundoiv. IIo cuyxexpiuéva, Aoyw e xeHong wotpalduevemy UeTABANTOY, 1

(pdom emxowvwviag uropel va agonpedel, apol xdde viua urnopel va mpoundeutel o dedouEva

xxil



ToL YeeldlETol amo TG PETUBANTEC TOU TEQLYPAPOUY TNV XATACTACT] TWV XUTTIOWY Xl TIG
TEEYOUGES TWES TOU BLYVIUIXO) TOUG. AVTL AOLTOV Lol Lot AGT AVTUAAAY NG THIWY BUVOUIXOD,
onulovpyettar éva amié for loop 6to omolo xde xuTTdpo amotnxelel TIC TYWES Suvaixo) TKV
YELTOVOY Tou. O Topamdve aAAayeg SleuxoAlvouy Ty TagaAinhonoinor tou Bacixol Bed-
YOU NG TEOCOUOlWwaoNg UE Ypnon Twv pragma directives tou OpenMP repidihovtog xou o

TORUAANAOTOINUEVOS HWOIXAS YIVETOL OTWE TOROUGIALETAUL GTOV THEOXATEL (PELBORDOLXA.

Algorithm 4 The main loop of the simulation in the OpenMP implementation

1: #pragma omp parallel for
2: for cell =0 : numberO fCells do

3: for neighbour = 0 : total_number_of_neighbours do
4: requested_neighbour = cellStruct|cell].neighbours_ids[neighbour]
5: cellSruct|cell].neigh_voltages[neighbour|] = requested_neighbour|voltage]
6: end for
7 compute_new_dendritic_voltage()
8: compute_new_somatic_voltage()
9: compute_new_axonal_voltage()
10: end for
Anoteléopata

—_
N
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= Xeon 10000 Cells

—
o
T

2]
T
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0 10
Number of Threads (p.u.)

Yyfuor 131 Anotedéopata extéheone e OpenMP vhomolnong

e Amo Ty mapamdve exova Yiveton govepd 6t OpenMP vhomoinom etvar 1 o anodotixy| apou
€YEL TOUG UXpOTEROUS YpOVOUC eXTéAEONC aval Brua Tpocouoiwong. Ano tmv MPI ulonoinon

Otapépet xatd 600 TdEelg Yeydoug eV amo TNV UBedur xota pla.

xxiii



e H uvlonoinon ebvar mo anodotixr dtav extereltan otov Xeon Phi enclepyoaoty| napd otov
Xeon apol ot ypdvol eXTEREOTC aval BUC TTEOCOUOIWOTG Elvol UEWUEVOL Yia OAaL Tor UEYEDT
OtOwy mou e€etdotnxay. Autd To anotéleopa Koy avouevopevo agol 1 OpenMP vio-
Toinon alomolel TNV TopoAANAla TN QopuoYrc 1 omolo xan amodidel xahbTepa 6TO Palixd
napdhinio mepBdihov tou Xeon Phi. H eqopuoyr xhpoxmver amodotind péyet xon yior 150

VAUOTAL.

o Ilopatneeiton 611 1 epapuoyy| gaivertar vo efvar o amodotixy) otov Xeon Phi oe oyéon pe
Tov Xeon 600 10 yeyédog tou dixthou auidvel. Auth n mopatrienon etvar ToAD onuavTixy
av AdBoude LT OGPV OTL Ol TPOCOUOLWCEL TWY XUTTAPWY TOU EYXEPIAOU GTOYEDOLY GTNV
TEOGOUOIGY) 0G0 TO BUVITOV UEYUAUTEPWY BIXTOWY Veupwvwy. 1lpog auth Ty xatebduvon,

1 xenomn tou Xeon Phi gatveton mohhd urtocyduevy.
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Chapter 1
Introduction

Many large-scale projects nowadays focus on the exploration of the brain’s unfathomable and
complex functions [2]. Such research can be very beneficial for the understanding of a variety of
mental illnesses. For instance, great effort has been put on the development of implantable chips
that help patients cope with serious diseases such as epilepsy and Parkinson’s disease [53]. To
that direction, brain cell simulations have been proven to be a very useful tool in the hands of
neuroscientists. They provide them with the capability to study and predict the brain activity
and thus, develop the proper devices and mechanisms to assist the improvement of patients
living conditions.

The function of the human brain’s cerebellum still remains mostly obscure for neuroscientists.
Research has proved an association between the cerebellum and cognitive and language skills as
well as motor manipulation [16]. The Inferior Olivary Nucleus is a part of human brain’s olivary
body which provides major input to the cerebellum and is involved in human space perception
and motor skills. Significant research has been conducted to specify the function of this brain
area and important conclusions have been extracted [10].

The Inferior Olive (IO) simulator used in this work is a compartmental model of the 10
neuron, based on the time-driven plausible equations of the Hodgkin-Huxley electrical model of
the neural cell [1]. The cells are considered to be divided in three compartments with different
functionalities, the dendrites, the soma and the axon. The simulation stores the voltage of the
cells” membrane in every simulation step tracking the exchanging of voltage levels and the input
of stimuli to the cells. The simulator aims at simulating a user-defined network. The user,
the neuroscientist, provides the application with the dimensions of the three-dimensional solid
rectangular topology they wish to simulate and the code generates a file specifying the connec-
tivity scheme between the neurons. Thus, the application simulates three-dimensional pieces of
brain matter for as long as the neuroscientist determines. The simulation is very demanding in
terms of computational resources due to the size of the cell network simulated and the neuron

interconnectivity degree. In the light of this observation, the need for parallel execution of the



simulation is essential and great effort has been put to the parallel implementation of the ap-
plication. The simulator has already been ported to various multicore platforms, such as the
Single-chip Cloud Computer (SCC) [47].

This thesis covers the porting of the simulator to a Many Integrated Core Architecture
(MIC) machine. The choice to port the simulator on the MIC architecture was motivated by
the technical features of the architecture that include support of effective hyper-threading and
a variety of available programming paradigms. The Xeon Phi Coprocessor [33] is utilised in
order to explore the parallelism of the IO simulator’s application and achieve the maximum

parallelisation possible by taking advantage of the resources of the coprocessor.

Effort has been made to use as many of the programming models the platform offers as pos-
sible in order to compare our application’s efficiency and scaling capabilities. To that direction,
a previously developed Message Passing Interface (MPI) implementation of the simulator [47]
has been used as the baseline for the creation of an OpenMP implementation. After testing and
running several configurations for both the MPI and OpenMP implementations on the Xeon and
the Xeon Phi, some configurations emerged as the best for each programming model in the as-
pect of performance. The OpenMP and MPI programming models were therefore combined into
a Hybrid MPI/OpenMP implementation aiming to take advantage of the best configurations for

each model individually. As a result a better performance of the application was expected.

In Chapter 2, a brief overview of neuron modelling and the types of models currently used is
presented as well as short history of Many-Core platforms. Their programming paradigms are
elaborated to inform the reader about the variety of programming models for parallel architec-
tures. In Chapter 3, the thesis holds an overview of the Inferior Olivary Nucleus cells and the
simulator used. Information about the data flow of the simulation and the contribution of the
current thesis to the simulator is introduced. The Many Integrated Core (MIC) architecture is
also presented. Basic information about the hardware and software elements of the architecture
is provided along with the programming paradigm of the platform and the author’s experiences.
In Chapter 5 the procedure followed to develop the OpenMP implementation is introduced.
The optimisations developed in order to create a more massively parallel implementation and
thus, take better advantage of the Xeon Phi’s capacities are presented. The efficiency and
scalability measurements on both the Xeon processor and the Xeon Phi coprocessor are pro-
vided. In Chapter 4 the MPI implementation of the simulator is demonstrated along with its
scalability and performance results on the Xeon processor and the Xeon Phi coprocessor. The
Hybrid MPI/OpenMP implementation is introduced as well, in conjunction with its scalability
results. A comparative study of the scalability and efficiency results of the programming models
is presented in Chapter 6. Important conclusions valuable to the reader are discussed, as well
as suggestions for improving the existing work in the future. The Chapter concludes with an

assertion from the author on how the Xeon Phi Coprocessor can be used for future developers



interested in maximising the efficiency of their highly-parallel applications.



Chapter 2

Prior Art

This chapter summarises the prior art in neuron modelling and offers a brief overview of the
Many-Core platforms and their programming paradigms. Neuron simulations have proven to
be very demanding applications in terms of efficiency, performance and computational resources
and thus it is very interesting to explore their possible implementations on Many-Core platforms
[20].

2.1 Neuron Modelling

The phenomena taking place in the human brain are very complex and related to various
underlying computations. As a result, it is essential that the developed neuron models are
capable of providing both experimental results and possible interpretations of these hidden
computations. To this direction, four levels of abstraction in brain organisation have been
developed. The first includes the typical scientific reduction which describes the observable brain
functions and explains them based on descriptions of the functions in lower levels of analysis. The
second constitutes a divide-and-conquer approach based on the synthesis of systems whereby,
each one execute a specific function in order to create a more complex system. The third level
is associated with computational modelling and has a computational, an algorithmic and an
implementational level. Finally, the fourth is based on the idea of the ”levels of processing” that
set an analytical hierarchy among the several brain parts that cooperate during the process of

a stimulus [7].
There are two main categories of neuron models [7]:

e Conventional reductive models

These models are based on the first organisation level, the scientific reduction, and their

main purposes are to describe the neural phenomena and provide explanations build on
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the biological mechanisms that might be responsible for them. The quantification of
these models, although not mandatory, is recommended concerning the need to check the
accuracy of the model in describing the phenomena. The different levels of abstraction
lead to different levels of modelling. The descriptive models demonstrate the behaviour
without taking into consideration the processes in the substrate, whereas the explanatory

models capture the phenomena by reducing them to lower level models.

e Computational interpretive models

This point of view considers the tasks of the brain as computational procedures that
interpret the overall behaviour of the neural components of the system, for the completion
of this task. The basic computations are conducted through representation, storage and
transformations of the stimuli gathered from the outside world by the neural system to a
form that is useful for the satisfaction of the task under examination. The computational
models are often used synthetically in practice. More specifically, networks of neurons
are constructed to perform a computational task. The neurons are described to some
level of abstraction, and the network’s behaviour is compared with the one observed in

physiological experiments in order to examine the correctness of the model [22, 25].

If the level of detail used in neuron models is taken into consideration, the following

classification of neuron models emerges [7]:

Integrate-and-fire models
Describe the characteristics of neurons based on
the synaptic inputs and the input current

Izhikevich models
Observe the relation between the input of a
neuron and its output by taking into
consideration a variety of neuron’s features

Increased level of detail

Conductance-based models
Describe a single neuron as a structure of
multiple interconnected electrically compact
compartments.

¢

Figure 2.1: Levels of detail in neuron models

e Conductance-based models

These models describe a single neuron, or just a few neurons, with a high degree of detail,
by approximating its structure by multiple, interconnected, electrically compact compart-

ments. They aim at explaining phenomena related to spikes, the thresholds initiating



them, active channels and like. Some problems with these models are the lack of accurate
experimental data on the locations of the dendrites and the large number of parameters
they include. The former limits the capability of testing the accuracy of the model and
the latter makes the behaviour of the model unpredictable and depending on the exact
values of the parameters. A project recently conducted to tackle the lack of accurate
experimental data on the locations of neurons is “The NeuroProbes Project”. In this
work, multifunctional probe arrays for neural recording and stimulation are created and
offer the possibility to separately define the position of each probe with respect to single
neurons [14, 19]. An extension of the conductance-based models are the compartmental

models.

e Integrate-and-fire models

Integrate-and-fire models are good for simulating large networks of neurons [7]. They
describe the membrane potential of a neuron based on the synaptic inputs and the input
current it receives. An action potential is generated when the membrane potential exceeds
a threshold value, but the model does not take into account the actual changes associated
with the membrane voltage and the conductances causing the action potential in contrast
to the conductance-based models. The synaptic inputs to the neuron by other neurons
of the network are considered to be stochastic processes and are described as temporally

homogeneous Poisson processes [3].

e Firing-rate models or Izhikevich models

These models observe the relation between the input and the output of neuron networks as
if the neurons themselves were black boxes [7].They combine the efficiency of an integrate-
and-fire model with the transparency of the Hodgkin-Huxley model. However, the actual
equations of the Hodgkin-Huxley model [1] can not be used since they are very computa-
tionally demanding. In their place, a simple spiking model is utilised that is as biologically

plausible as the Hodgkin-Huxley model but much more computationally efficient [9].

The IO Model used in this thesis is based on the Hodgkin-Huxley [1] time driven-differential
equations. It falls under the category of compartmental models, an extension of the

conductance based models. The model will be analysed further in Chapter 3.



2.2 Many-Core Platforms

For decades, Moore’s Law had been the main trend in the evolvement of computer sys-
tems and their increasing performance. According to it, the number of transistors on chip
doubles every 18 months and so does the performance of single-threaded execution [35]. The
extra transistors where used by computer architects to increase the Instruction Level Paral-
lelism (ILP) through making deeper pipelines, faster clock speeds, processors with out-of-order
execution, better branch predictors, superscalar architectures and various other system-level
improvements. Approximately in the dawn of the 21st century, the technological community
realised that Moore’s law could no longer be followed by the the technological advances. The size
of a transistor could not be furthermore reduced since the power limit a transistor can bear was
reached and the additional transistors could no longer be utilised to increase serial performance
since logic became too complex [44].

In the view of this results, the technological society decided to turn to a variety of approaches
to the matter in order to maintain the ever-increasing performance of computing systems. Si-
multaneous Multi-Threading (SMT) emerged as a possible solution. This approach makes a
single hardware processor appear as multiple logical processors from software’s perspective since
multiple threads can share the execution resources of the physical processor. The idea was to
schedule multiple threads and orchestrate their execution according to the availability of un-
occupied resources. The next logical step that contributed dramatically to the performance
of computer processors was chip multiprocessing (CMP). The processor manufacturers created
multi-core processors by implementing two or more “execution cores” within a single die. The
different execution cores have their own executional and architectural resources and they might
share a large on-chip cache, depending on the design. The cores might utilise SMT as well in
order to effectively increase the number of logical processor by twice the number of execution
cores [44, 12].

The next step in computer systems was to combine many CMP processors to a cluster
creating the Many-Core platforms. Many-Core platforms are widely used for a plethora of
computationally demanding applications [21, 6].

The many-core platforms have been divided into four categories, know as the Flynn’s taxon-

omy:
e The single instruction, single data (SISD) machine is the traditional sequential computer.

e The multiple instruction, single data (MISD) machine is only used as a theoretical

model.

e The single instruction, multiple data (SIMD) machines apply a set of instructions to
different data simultaneously and their are useful in digital signal processing, image pro-

cessing and multimedia applications.
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Figure 2.2: Flynn’s taxonomy for multi-core architectures [44]

e The multiple instruction, multiple data (MIMD) machine is the most common parallel
computing platform and is capable of applying a different instruction set to independent

data streams [44].

Another categorisation can be performed based on whether the platform’s architecture is
shared memory or distributed memory. In the first category a group of cores share a part of
their memory and can exchange data by writing their values in the shared address space. In the
second category there is no shared memory between the cores and any data exchange should be
made over the interconnection network by using specific send and receive functions.

The programming techniques are different between the two architectures and require a dif-
ferent approach from the side of the programmer. For instance, in the case of a distributed
memory architecture the programmer has to explicitly declare the data exchange between the
cores by calling the specific send and receive routines of the utilised programming model. Also,
the programmers have to create the necessary data structures to store the incoming data and
the structures used to send the required information, while paying attention to their exact sizes,
since it is a very aspect important for the correct completion of the send-receive process. Fi-
nally, it is on the side of the programmer to ensure the proper synchronisation of the code so
that all exchanged data have arrived to their destination before continuing with the execution.
In the case of shared memory architectures however, the bulk of work on the programmer’s
shoulders is much lighter. They usually only have to declare the parallelism in the regions the
want and the runtime environment of the shared memory programming model will implement
it [13]. Widely-used programming paradigms for the distributed and shared memory architec-
tures are the Message Passing Interface (MPI) standard [27] and the OpenMP framework [40]
respectively, and will be elaborated in the following paragraph.

The Xeon Phi platforms fall under the category of MIMD architectures. They offer the ability

to process different data sets using diverse instruction sets. The Xeon Phi coprocessors are used
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Figure 2.3: Distributed Memory architecture [26]
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Figure 2.4: Shared Memory architecture [26]

as accelerators aiming to increase the performance of the application. The characteristics of the
Xeon Phi architecture will be further examined in the corresponding Chapter 3.

Other Many-Core platforms that are broadly used nowadays and are also based on acceler-
ators, are the CPU - GPU platforms. In these machines, each CPU has its own GPU that is
used to magnify the CPU’s computing power. GPUs are massively parallel processors and can
be used to execute general-purpose computations that are highly parallel, computing intensive
and manipulate large data sets with very limited dependencies between the data. A very pop-
ular parallel architecture for general-purpose programming on GPUs is the CUDA architecture
developed by NVIDIA [37].

Moreover, there is a great variety of many-core platforms that are utilised in the field of
parallel programming. One of them is the Single-chip Cloud Computer (SCC) developed by
Intel®). It offers advanced power management techniques by allowing the programmer to define
the frequency and the voltage under which specific groups of processors will operate, and can

be programmed using both shared memory and message passing paradigms [45].



2.3 Programming Paradigms

There are plenty of programming paradigms for Many-Core systems nowadays. Some of
them are custom built for specific architectures and others are more generic. Depending on the
architecture of the Many-Core platform several programming models have proven to be more
suitable than others in terms of programming difficulty and performance.

Some of the basic parallel programming paradigms will be reviewed.

e Message Passing Interface (MPI): Is a programming paradigm used for Distributed Mem-
ory architectures. Each processor has its own private memory hierarchy and is connected
to the other processors via an interconnection network. There are no shared data among
the processors and explicit calls of send and receive functions are needed to access data
belonging to other cores. Although the distributed memory architectures are more diffi-
cult to program, they scale to thousands of nodes and MPI has been very successful in
high-performance computing [50]. The MPI Library is the only message passing interface
than can be considered a standard and is supported on virtually all high performance com-
puting platforms, replacing all previous message passing libraries. Additionally, there is
little or no need to modify the source code of an application when it is ported to a different
platform that supports the MPI standard. The standard supports the C, C++4-, Fortran
77 and F90 programming languages [27]. The interface includes several commands and
functions that implement its necessary functionalities. An open-source implementation is

the Open Message Passing Interface (OpenMPI) [41].

e OpenMP: It is a framework for programming over shared memory architectures [40]. It
defines a specific API for parallel programmers and not a specific implementation. It
includes compiler directives, environment variables and a suitable run-time library. The
parallel sections have to be explicitly defined by the programmer and the OpenMP com-
piler is then responsible for generating the parallel code. The supported languages are
C/C++ and Fortran. It is usually used when large data structures are utilised in order

to take advantage of the shared memory of the platform [50].

e Cilk: This programming model is a C-based runtime for multithreaded parallel programming
on shared architectures. It includes a few keywords used to define the parallelism in
the program. It is based on strong theoretical results and puts emphasis on the efficient

scheduling of the utilised threads. [54].

e Threading Building Blocks (TBBs): This model is a C++ template library for parallel
programming on shared address space architectures. It has been developed by Intel®since
2004 and is open-source since 2007. It is easily portable to most C++ compilers, operating

systems and architectures. This programming model offers a great deal of help to the
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developers since there is a variety of templates ready to use and the programmer only
declares the parallelism while the library implements it. The model is designed to offer

scalability by utilising a load balancing mechanism among the tasks used [31].

e Unified Parallel C (UPC): Is an ANSI C extension for single-program multiple-data par-
allel programming in both shared and distributed memory platforms. It is based on the
philosophy of the C language as it has the same syntax and the same semantics. This
aspect might be useful for the programmers who are familiar with the C programming

environment [8].

e Charm-++: Is a platform-independent object-oriented programming model supporting the
C/C++ and Fortran programming languages. It is based on the creation of collections of
objects which communicate with each other. The communication is implemented through
invoking methods on remote objects in an object collection. The programmer does not
have to deal with explicit management of cores and threads since the adaptive runtime

system is responsible for organising the execution [5].

e CUDA C: This programming model is a software environment that allows developers to use
the C programming language to program the CUDA general purpose parallel computing
platform, developed by NVIDIA [39]. The programmer has to define the parts of the
code to be executed on GPU and on CPU using function qualifiers. The programming
model has some restrictions about the functions running on the device and the fact that
the programmer has to explicitly declare the data transportations between the devices

increases the level of development difficulty [38].

e OpenCL: Is a low-level API designed for heterogeneous computing and runs on CUDA-
powered GPUs. In contrast with CUDA C, it is an open source standard for cross-
platform parallel programming. It supports C and C++ and is intended to be used for
supercomputers, embedded systems and mobile devices [15]. A disadvantage emerging
when using this programming model is that the programmer might need to modify the

application to achieve high performance for a new processor [50].

In this thesis the MPI and the OpenMP programming models are used. The primal purpose
of this choice is comparing a shared memory programming model with a distributed memory
one to observe the application’s behaviour and also the global recognition and meticulous de-
velopment of these paradigms. MPI and OpenMP both offer the ability to test different aspects
of the application’s behaviour and performance and the author was already familiar with their
use. Moreover, the Intel OpenMP library and the Intel MPI Library were already installed on
the Intel Xeon Phi platforms utilised.
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Chapter 3

Implementation Specifications

3.1 The Inferior Olivary Nucleus

The Inferior Olivary Nucleus cells are a very important group of brain cells and have been
associated with brain functions such as the learning procedure and the synchronisation of move-
ments [10]. The cells are stimulated by the human senses and pass on input to the cerebellar
cortex via the Purkinje cells. In the case that the IO cells suffer any damage, the patient becomes
unable to synchronize their movements. As a result, severe cases of ataxia can be demonstrated
[11] and thus, the great importance of the IO cells motivated the development of a simulator.

The simulator used in this work is a biologically accurate neural cell simulator, based on the
differential equations of the time-driven Hodgkin-Huxley models [1].

The application aims at simulating a user-defined network of 10 cells. The user provides the
size of the network along with a custom input current at each simulation step and a connectivity
scheme. The biological parameters of the entire network are calculated and recorded such as the
voltage levels of each cell as it reacts to the stimuli (input current) as well as other parameters
that define its state. Thus, the application is biologically accurate and transparent which makes
it a lot different from most black-box approaches so far(e.g. neural networks [42]).

The IO cell in this simulation is modelled using a compartmental model. This model falls
under the category of Conductance-based models that were elaborated on Chapter 2. In this
model, each cell comprises of 3 compartments: the dendrite, the soma and the axon. Each

compartment serves a different biological purpose and has different membrane voltage levels.

e The dendrite compartment is responsible for the cell’s communication with the other cells
on the grid. The communication is simulated by saving the dendritic membrane voltage
values of the other cells. These values and other biological parameters, determine the
computations that calculate the dendrite’s potential in each simulation step. Moreover,

the dendrite receives stimuli from the environment as input current. It has been proven
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that brain cell networks demonstrate a great degree of interconnectivity which is influenced

by various parameters such as brain size [23].

e The somatic compartment is the computational center of the cell. It handles the most
demanding and time-consuming calculations and communicates with the other two com-

partments via voltage levels.

e The axonal compartment acts as the output of the cell, and its voltage level is recorded in
each simulation step. It has the lightest computational and communication workload and

performs a lot of I/O operations.

Dendrites

Cell Body

Figure 3.1: Neuron Compartmental Model [36]

At the beginning of the simulation the application allocates enough space in memory for
storing all the necessary parameters for each cell, such as membrane voltage level for each
compartment, various ion concentration levels and communicating cells’ dendrite voltage levels
throughout the simulation. Then, in each simulation step, the dendrites are fed with input
current which represents stimuli from the cell network’s environment. The input current is
provided either by a user-defined input file which details each cell’s input for each step, or by a
hard-coded spike input current. The second and simpler method of input was largely used in this
thesis as the primal objective was to test the scalability of the application which is not affected
by the type of the input provided. The dendrite then stores the dendritic voltage levels of its
communicating cells. Intercommunication in the network is described by another user-defined
file which details the value of conductivity for each connection between two cells. If the value
is zero, it is assumed that there is no connection between the cells. Each dendrite needs the
voltage levels of each cell it communicates with and sends its own voltage level to every cell
that is connected to. In previous work [47], a naive interconnectivity system was simulated. It
was based on the simplistic assumption that each cell communicates only with its immediate
neighbours in an 8 way connectivity scheme which means that the network is represented as a
two-dimensional matrix where each cell is immediately adjacent to a maximum of 8 other cells,

those at the closest grid positions.
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Figure 3.2: Brief presentation of dataflow between simulation steps [47]

The dendritic compartment so far, collects the necessary information from its neighbouring
cells and the cells’ environment in the form of input current. Then, the cells exchange their
voltage levels because the dendrites and the axon require the somatic compartment’s voltage
level and vice versa. The exchanged values are stored in the appropriate buffers and the com-
munication phase is completed. Each compartment then enters the computation phase in which
it re-evaluates its biological parameters. The most important parameter is the voltage level of
each compartment’s membrane. For each axonal compartment, its new voltage level is recorded
in the simulation’s output file and the simulation proceeds to the next step. This process is
repeatedly continued until either the input current file ends, which is indicative of the end of
the desired simulation duration, or the hard-coded input spike (120,000 simulation steps) ends,

in case no input current file is provided.

One contribution of this thesis to the simulator is that it is no longer bound to simulate
two dimensional topologies. The options for the connectivity schemes are two, and consist of a
type of neighbouring interconnectivity, as described above, and a more realistic model such as
a Gaussian distribution [43]. To that direction, a cell generator code has been developed. The
code creates a cubic cell topology which represents a three dimensional piece of brain matter.
The output of the cell generator code is a . txt file including a two-dimensional array with equal
number of rows and columns, each one representing one cell of the grid. The values of the array
correspond to the conductivity value of each cell-to-cell connection. The possible values for the
conductivity are 0.00 and 0.04. A connection with zero conductivity means that no connection
exists between the cells and one with 0.04 is set to the default conductivity value as the 10
model suggests. The only restriction is that the conductivity value in the diagonal of the matrix

is zero and that is because we assume that there is no self-feeding of the cells

The Gaussian distribution connectivity scheme simply means that the conductivity of each
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connection between one cell and every other cell in the network is more likely to be of a significant
value as the distance between the two cells is reduced. In greater detail, the cell generator code
receives as an input the total number of cells in the cube as well as the mean value and the
variance of the Gaussian distribution that will be used. It then proceeds with the calculation
of the possible values of the distance between two cells in the cube. For every distance value it
calculates the probability for a connection to exist using the probability equation of the Gaussian
distribution. Then, it creates an output file with a two dimensional matrix which will include
the conductivity values for each cell connection. For every neuron in the network, every other
cell of the cube is examined. First, the distance between the two cells is calculated using their
coordinates and second, the conductivity value is determined by generating a random number
between 0 and 1. If the number is less of equal to the connection probability for this distance,
the value of the conductivity is set to 0.04. Otherwise, it is set to 0.00 and we assume that no
connection exists between the cells.

The flow diagram in Figure 3.3 illustrates the function of the cell generator code in the case

of the Gaussian interconnectivity scheme in a more detailed way.
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Figure 3.3: Flow diagram for the cell generator code
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In the case of the neighbouring distribution, the code receives as an input the number of cells
in one dimension of the cube. Each neuron is considered to be connected only with its nearest
neurons on the grid, that is those in distance of less than two grid hops. The conductivity
value for the connections with the nearest neighbours is set to the default value of 0.04, and the
conductivity value for every other cell connection is set to zero. The output file includes again
a two dimensional array with the conductivity values for each pair of cells.

The produced conductivity file will serve as input file for the main simulation code and will
determine the number of connections between the simulated neurons. In the following Figure
3.4 a representation of the conductivity array in the produced, by the cell generator code, file is
presented.

represents a cell

receiving
information

i ,J o cellCount -1

U P
0 |
conductivity value of the
represents a : connection between the
cell sending : ’7 cells with ids i and j
information :
i !
cellCount
number of cells
cellCount -1

Figure 3.4: The formatting of data in the conductivity file

16



3.2 Xeon Phi Coprocessor

The Intel®Many Integrated Core (MIC) architecture is a coprocessor computer architec-
ture developed by Intel. The architecture amalgamates earlier work on the 80-core Tera-Scale
Computing Research Program and the Single-chip Cloud Computer research multicore micro-
processor [30].

This Chapter will initially describe the Xeon Phi’s Many Integrated Core (MIC) architecture
and its basic elements. The process of programming will be described, as well as the main ideas

behind the development of parallel applications on Xeon Phi clusters.

3.2.1 System

In the following Figure a typical Xeon - Xeon Phi platform is presented. A platform has to
include both processors and coprocessors and multiple platforms are interconnected in order to

form a cluster.

—_— . —
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Xeon

Xeon Phi (]_l\ Host CPU
PCl- Express \ J
\ \ —
85
_HostcPy ([ h
\.

--.._\___::;>

Figure 3.5: Xeon processors and Xeon Phi coprocessors combined in a platform

The number of cores in an Xeon Phi coprocessor varies according to the particular Intel
configuration, up to the number of 61. “The nodes are connected by a high performance on-die
bidirectional interconnect”. A typical platform consists of 1 to 2 Xeon processors (CPUs) and
1 to 8 coprocessors per host [24].

Every Xeon Phi coprocessor runs a Linux operating system and supports a variety of de-
velopment tools. In this work the C/C++ compiler, MPI and OpenMP compilers and the
debugging and tracing tool VTune Amplifier XE were used. “The coprocessor is connected to
an Intel®Xeon processor, the “host” machine, via the PCI Express (PCle) bus and has a virtual

IP address which allows the coprocessor to be accessed like a network node” [48].
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Figure 3.6: Architecture Overview of a MIC architecture core [34]

The software stack of the Xeon Phi consists of a layered software architecture as displayed
in the following Figure 3.7.

e System-level code:

e Linux* OS: The Linux-based operating system running on the coprocessor.

e Device Driver: The software responsible for managing device initialisation and com-

munication between the host and the target devices.
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Figure 3.7: Software Stack [34]

e Libraries: They reside in user and kernel space and provide basic card management
capabilities such as host-card communication. They additionally provide higher-
level functionalities such as loading executables on the Xeon Phi coprocessor and a

two-way notification mechanism between host and card.

e User-level code: It can be C/C++ or Fortran code using their usual compilers. The

necessary libraries for each programming model are also available.

3.2.2 Developer Impressions

There are various models of running an application on a Xeon - Xeon Phi platform [48].

e Native Mode

Is the simplest model of running an application on either a Xeon node, or a Xeon Phi
node. In the case of a Xeon Native application no changes need to be made for the
compiling and the execution of the code. If the application however is intended to run on
the Xeon Phi node, the —mmic compiler switch is required to generate executable code for
the MIC architecture. The produced binary file has to be copied to the coprocessor and
its execution need to be started there. The programmer can then connect to the MIC card
via the SSH protocol [46] from a Xeon’s terminal which is the host machine. The terminal
environment is very familiar to the programmer and is one of the main advantages of

programming for a Xeon Phi platform.
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e Offload Mode

In this model, regions of C/C++ or Fortran code can be offloaded to the Xeon Phi
coprocessor and be run there. The desired regions are stated using OpenMP-like pragmas
that tell the compiler to generate code for both the Xeon processor and the Xeon Phi
coprocessor. The compiler also generates the code to transfer automatically the data to
the coprocessor although the programmer can interfere to this process by adding data
clauses to the offload pragma. No specific compiler flag is required in this model since the

offload is enabled by default. This model uses the Xeon Phi coprocessor like an accelerator.

e Symmetric Mode

This model refers only to an MPI or a Hybrid MPI/OpenMP application. In this model,
MPI ranks reside both on the Xeon processor and the Xeon Phi coprocessor. The program-
mer should take into account the data transfer overhead over the PCle so it is preferable to
minimise the communication between the CPU and the coprocessor. It is also important
to keep in mind that the coprocessor has a limited amount of memory, a fact that favors
the shared memory approach. So it might be more efficient to spawn more threads on the

coprocessor than placing many MPI ranks.

In this thesis the Native Mode is explored by executing an OpenMP, an MPI and a Hybrid

MPI/OpenMP implementation, on the Xeon processor and the Xeon Phi coprocessor natively.

There is a great variety of sources which provide the developers with helpful information
about Xeon Phi programming. The Intel®Corporation has developed a forum [29] specifically
for the Many Integrated Core architecture where very useful information can be found about a
plethora of issues concerning the architecture and its programming. There are also some very
useful development tutorials to guide the new programmer through the basic programming ideas
[34].
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3.3 Target platforms

To develop and test the simulator’s implementations in this thesis the Blue Wonder Phi
Cluster of the Hartree Centre [17] and a single-node Xeon-Xeon Phi arrangement were utilised.

A typical Xeon - Xeon Phi node in the Blue Wonder Cluster consists of 24 Xeon CPU E5-
2697 v2, 2.70GHz processors [52] with the capability to support 1 threads per processor and
61 cores in the Xeon Phi coprocessor, with a multithreading degree of 4 threads per core. The
Xeon processor node on the single-node Xeon-Xeon Phi arrangement has 4 Xeon CPU E5-2609
v2, 2.50GHz processors [51] and 57 cores in the Xeon Phi coprocessor with a total number of
228 threads to utilise for the native parallel simulations. The Intel Xeon processors of the Blue
Wonder cluster are of a newer generation and have more storage and performance capabilities.

The Blue Wonder Phi Cluster was used for the development of all the application’s imple-
mentations. It was properly equipped with all the necessary MPI and OpenMP libraries and
compilers. The single-node machine was utilised mainly for the OpenMP implementation since
the Intel MPI Library could not be available.

The two machines utilised offer very similar working environments, a fact that facilitates the

programmer’s effort to concurrently develop applications for both.

e When a programmer requests access to the Blue Wonder cluster via the ssh protocol, they
are connected to a Xeon hosting node. If they wish to use a Xeon Phi coprocessor they
have to request a Xeon Phi hosting node with the bsub -q phiq -Is bash command [4].
In order to develop an application on a Xeon-Phi node, the programmer has to load the
appropriate modules. The available modules can be seen by typing the module avail
command on the Xeon host terminal. For the compilation of either a MPI or an OpenMP
program for example, the intel mpi/5.0.3_mic compiler module has to be loaded to the
environment of the Xeon processor host. If the programmer wishes to be informed about
the list of modules currently loaded in the system, the module list command will print

the loaded modules in the terminal window.

The cluster offers various ways of running an application including direct execution on the
MIC card and dispatching jobs in the Phi queue. The user can write bash scripts to facili-
tate dispatching jobs to the Xeon Phi queue [18]. The results are printed in appropriately

defined output and error files and thus, the procedure of execution is simplified.
The single-node Xeon-Xeon Phi arrangement utilised, offers only direct execution for all

Xeon Phi applications.

e The user is connected via the ssh protocol to the Xeon node which is in direct communi-
cation with the Xeon Phi coprocessor. The only available way of running an application

on the MIC card is copying the executable file and all the necessary input files to the card

21



via the scp <executable/input file> micO: command. The programmer then, has to
connect directly to the MIC card using the ssh micO command, set the appropriate envi-
ronmental variables, if needed, and run the application. A more detailed reference to the

specific OpenMP environment variables will be presented in the corresponding chapter,
Chapter 5.
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Chapter 4

MPI-based Native Implementations

4.1 Development Details

4.1.1 The MPI implementation

The MPI implementation of the InfOli simulator is provided as legacy code to this thesis
[49]. Tt has been used as the baseline to develop the OpenMP and the Hybrid MPI/OpenMP
implementations. In the Hybrid MPI/OpenMP implementation a number of MPI ranks is
utilised and each rank spawns an equal number of OpenMP threads to run some previously

serial parts of the code in parallel regions, and thus increase the performance of the simulation.

In the following paragraph a brief description of the code’s function will be provided. The
MPI implementation receives as an input the total number of cells to simulate, the conductivity
file produced by the cell generator code, described in Chapter 3, and an optional input current
file including the stimuli provided to cells from the outside environment in every simulation step.
Then, an equal number of grid cells is assigned to each one of the available cores. It is therefore
important that the total number of cells is divided by the number of utilised cores. Each core
allocates the necessary memory space to store the parameters of its cells, like membrane voltages
and ion conductivities, and other structures needed for the simulation. A phase follows where
each core creates a list of nodes including information about all the other cores related to the
cells’ voltages that the current core needs to receive from the other utilised cores. At this point,
the conductivity file is read in order to define whether there is a connection between two cells
and subsequently between the cores that process them. In the following algorithm, the main

simulation loop is presented.
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Algorithm 5 The main loop of the simulation in the MPI implementation

1: for sim_step = 0 : max do

MPI Isend();

MPI Trecv();

MPI sync();

uncpack voltages

for cell =0 : cellCount do
compute_new_dendritic_voltage()
compute_new_somatic_voltage()
compute_new_axonal _voltage()

10: end for

11: end for

In every simulation step, the cores exchange the voltage values of their cells (lines 2, 3,
4), accumulate the necessary information from the neighbouring cells (line 5) and the outside
environment, if there is an input current file, and recalculate the parameters of their cells (lines
7,8,9). The voltage exchange procedure is based on the MPI commands for sending and receiving
messages.

In order to increase the performance of the execution, a Hybrid MPI/OpenMP implemen-
tation was developed. More specifically, the serial parts of the MPI code including finding the
neighbours’ voltage values and the new voltage level calculations will be executed in parallel

regions by spawning OpenMP threads.

4.1.2 The “unpacking” phase

The MPI implementation includes a function called in every simulation step that deals with
the voltage exchange procedure and the assignment of the received voltage levels to each core’s
cell that needs them [47]. The first part of the function consists of a send-receive phase in which
each core sends to every core its voltage values requested by the latter, and receives the voltages
it needs from all the other cores. After the exchange, a syncing command is required in order to
ensure that all cores have stored the voltages they need before moving on to the next step. The
syncing point can not be omitted although it might add a delay in the execution. The following
phase however, in which each core unpacks the received voltages and assigns them to its cells,
can be executed in parallel since each cell of the current core is fully independent from the other.

At this point it is important to analyse further the “unpacking” procedure of the received
voltages. In the MPI implementation there are several data structures that are used in this
phase and are demonstrated in Figure 4.1, where the cellCount variable represents the number
of cells simulated by each core. There is the cell parameters structure (cellStruct) in which each
cell holds the current voltage levels of its neighbours, as shown in Figure 4.2, and the receiving

list for each core which includes the voltage levels the core received in this simulation step. The
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unpacking phase examines each core’s cells and assigns them the received voltage levels from the
cells they neighbour with. This procedure if operated naively would have had a time complexity
of O(n3), where n is the number of cells in the grid. That is because, for each cell in a core, for
each cell voltage it needs, the node receiving list would have to be traversed in order to find the
corresponding voltage value. This would have been a very time consuming implementation and
so the aim was to reduce it to O(n?).

This goal has been achieved in the MPI implementation using a very effective but rather

complex and compact code that is not easily executed in parallel [49].
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Figure 4.1: Structures used in the unpacking phase
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“unpacking” phase processes every node of the

More specifically, in this implementation the
receiving list one after the other. Each node corresponds to a utilised core. If the current core
does not receive any cell voltages from the core under examination, the process moves to the
next list node. If it does, every cell id stored in the cells_to_receive list of the receiving list’s
node refers to a cell that some of the current core’s cells have required its voltage. Consequently,
every cell’s list of neighbours belonging to a cell in the current core is examined in order to find
out whether the cell has requested for the voltage value under process. If all the neighbours
of a cell are covered the process moves to the next one. Otherwise, the search for the cell id
under examination starts from the point the last search has stopped in the neighbours list of the
current cell. This idea is based on the fact that in each core, the cell ids it possesses are sorted
in an increasing order. Similarly, the cell ids in the cell id lists of the receiving list’s nodes and
the cell ids in the neighbours list of each cell, are sorted as well. Thus the search can be limited
only to the remaining cell ids in the lists. When all cells of the receiving list are processed a

final phase follows in which information from the current core’s cell voltage values is passed to

its cells.

4.1.3 The Hybrid implementation

In the Hybrid implementation however, changes in this phase should be made in order to
facilitate the parallelisation of the code. To this direction, the code of the “unpacking” phase was
altered. Instead of processing the receiving list’s nodes first, the unpacking phase now starts the
process from the cells the specific core is assigned to simulate. The advantage of this approach
is that it can be executed easily in parallel since the cells of each core are independent and do
not need information from the other cells. Moreover, this way the “unpacking” phase can be
merged in one for loop with the computation phase of every simulation step and thus minimise
the number of times the threads have to be spawned in the code, to one.

The main code of the each simulation step of the Hybrid implementation follows in the form

of pseudocode:

Algorithm 6 The main loop of the simulation in the Hybrid implementation

1: for sim_step = 0 : max do

2 MPT Isend();

3 MPI Irecv();

4: MPI_sync();

o: #pragma omp parallel for

6: for cell =0 : cellCount do

7 unpack voltages

8 compute_new_dendritic_voltage()

9: compute_new_somatic_voltage()
10: compute_new_axonal_voltage()
11: end for
12: end for
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The main idea of the “unpacking” phase remains the same and takes advantage of the sorted
lists including the cells to receive from each core. In more detail, the process is displayed in the
flow diagram of Figure 4.3.

The complexity of this altered code still remains O(n?) due to the fact that for every cell
in the current core, for each one of its neighbours the cells_to_receive list of the receiving list’s
corresponding node is passed through only once.

These are the main changes applied on the MPI implementation in order to maximise the

parallelisation level of the code and implement the Hybrid model more effectively.
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Figure 4.3: Flow diagram of the unpacking phase
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4.2 Results

Several configurations where examined in order to explore the performance of the Hybrid
implementation. The results will be presented and elaborated in the current paragraph. Infor-
mation about the bash scripts developed for running the application will also be provided.

The bash scripts for dispatching the execution to a node in the Phi queue of the Blue Wonder
Cluster include some specific information. First, the output and error files of the execution are
determined along with the necessary modules to be loaded in the environment. Second, the
compiling of the implementation’s code is conducted followed by the proper declaration of the
OpenMP runtime variables that are necessary for defining the number of threads each rank will
spawn in the parallel regions of the code and their placement on the Xeon Phi coprocessor.
Finally, the execution is started on the coprocessor, defining the number of utilised MPI ranks.
The total number of OpenMP threads, which is equal to the number of MPI ranks multiplied by
the number of OpenMP threads opened in every rank, should not exceed the number of cores
in the Xeon Phi coprocessor multiplied by 4, since this is the maximum number of threads the
coprocessor can offer.

A variety of configurations about the number of ranks and the corresponding threads have
been executed. In the following Figures 4.5 and 4.6 the performance results on the Xeon proces-
sor and the Xeon Phi coprocessor of the Hybrid MPI/OpenMP implementation are displayed
for several combinations. The application simulates 5 seconds of brain time and implements a
Gaussian distribution connectivity scheme, with zero mean value and standard deviation equal
to 5, because at this value there is a peak to the average connectivity between the neurons. For
each network size, the same input conductivity file has been used so that the connectivity scheme
will not be changed across the platforms. This is very important since different connectivity
files could probably result to an alternate number of connections between the cells a fact that
would affect the simulations performance.

First, the results of the MPI Native execution on the Xeon Phi coprocessor will be presented.
The aim of the Hybrid MPI/OpenMP implementations was to exceed the performance of the

MPI Native implementation and reduce the execution time per simulation step.
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Figure 4.4: Execution Results of the MPI implementation on Xeon Phi coprocessor
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Figure 4.5: Execution Results of the Hybrid implementation on Xeon processor

The Xeon processor has 24 physical processors each one supporting one execution thread,
hence, there are 24 available physical and logical processors. This is also the maximum number
of threads and ranks that could be utilised in this platform. To this direction, the configurations
used where 1:24, 2:12, 5:4, 10:2 and 20:1 MPI ranks to OpenMP threads per rank. Some of them
might not take advantage of the maximum number of offered threads but there was also another
parameter that had to be considered in determining the configurations. This parameter was the
size of the network and whether the number of utilised MPI ranks divided it. For instance, it
was not possible to run the configuration 24:1 since the numbers of network sizes 1000, 2000,
5000 and 10000 are not divided by 24. The affinity variable for the OpenMP environment was

set to the value balanced in order to distribute the application’s workload as evenly as possible.
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The results on the Xeon processor indicate that the best configurations for the Hybrid
MPI/OpenMP implementation when being executed on the processor is the combination of 2
MPI ranks to 12 OpenMP threads or the one of 5 MPI ranks to 4 OpenMP threads, since for
every network size, these configurations have displayed the lowest execution time per simulation
step. This result demonstrates that these configurations take better advantage of the number of
threads offered by the Xeon processor and their balanced distribution across the platfrom. The
10:2 and 20:1 configurations probably face the problem of the communication overhead between
the MPI ranks and the limited parallelism in the parallel regions due to the small number of
threads per rank.

The scaling of the application is not very satisfactory except for the significance reduce of the
execution time when 2 MPI ranks are utilised as opposed to 1 MPI rank, which is an expected
observation.

The results of the execution of the Hybrid implementation on the Xeon Phi coprocessor are

displayed in the following Figure:

N
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Figure 4.6: Execution Results of the Hybrid implementation on Xeon Phi coprocessor

The Xeon Phi coprocessor has 61 cores available for native execution with a multithreading
degree of 4 threads per core. Hence, the maximum number of utilised threads could be 244 for
the application’s execution. The configurations executed where 1:240, 2:120, 5:48, 10:24, 20:12
and 50:4 as it had been observed that for greater numbers of MPI ranks the performance of the
simulation was not improving but was actually decreasing. In this implementation the parameter
of the network size also affected the chosen configurations leading to the 50:4 configuration and
not a 60:4 since the network sizes 1000, 2000, 5000 and 10000 cells are not divided by the number
60.

As it can be observed, the execution time per simulation step is lot lower than the execution

times of the MPI native implementation, presented in Figure 4.4. This is a very important
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result and shows the compelling improvement of the application’s performance through the
combination of the two programming models. The application displays better performance
when the number of MPI ranks and OpenMP threads are not very different in the terms of
order of magnitude. The best configuration seems to be the 20 MPI ranks with 12 OpenMP
threads each, due to the lowest execution times for three out of four network sizes.

Another point is that the Hybrid MPI/OpenMP implementation on the Xeon processor
displays lower execution time per simulation step that the application when natively executed
on the Xeon Phi. This is due to the fact that in order to fully utilise the capabilities of the
Xeon Phi platform, vectorization techniques should be manipulated a fact that has not been
implemented in the current work. Should these techniques be implemented, the performance of

the Xeon Phi coprocessor would be significantly improved.
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Chapter 5

OpenMP Implementations

5.1 Development Details

The OpenMP implementation was based on a single-threaded implementation extracted by
the existing MPI implementation [47]. All the MPI commands and directives were removed and
replaced by simpler serial code performing the same operations.

More specifically, in the MPI implementation there is an initial phase in which the commu-
nication list for each core is created, as it has been mentioned in Chapter 4. The list consists
of the necessary information the core needs to exchange with every other utilised core. Two
functions are implemented in this phase. The first creates the list with the data the core has
to send to other cores and the second the data the core receives from other cores. In the first
function, the list is composed of a node for each core employed that contains the core’s id, a
list with the cell ids to send, their dendritic voltages, their total number and a pointer to the
next node in the list. The second list includes a node for each core with the core’s id, the list
of cell ids that the core receives voltages from, the corresponding dendritic voltages, the cells’

total number and a pointer to the next node of the list.

However, since OpenMP is a shared memory programming model, this initial phase can be
more easily performed by using shared variables instead of sending messages. Thus, this phase

is narrowed down to two nested for loops as displayed in the following pseudocode:
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Algorithm 7 The Initial Communication phase in the OpenMP implementation

1: for row =0 : cellsNumb do > a row is a cell sending voltages
2: for col =0 : cellsNumb do > a column is a cell possibly receiving voltages
3: cond_value = read conductivity value

4: if cond_value == 0 then

5: ; > no connection exists between the cells
6: [

7: else

8: cellStr(col].neigh_ids = alloc_one_more_space(cellStr|col].neigh_ids)

9: cellStr(col].neigh_ids[total neigh| = row
10: cellStr{col].cond = alloc_one_more_space(cellStr{col].cond)

11: cellStr{col].cond[total _neigh| = cond_value

12: cellStr|col].neigh_volts = alloc_one_more_space(cellStr(col].neigh_volts)
13: total _neighlcol] + +
14: ]
15: end if

16: end for

17: end for

In this implementation only the receiving part of the list needs to be created since the
sending part can be easily implemented by copying the voltage values directly from the shared
structures. Moreover, no list is really necessary to be used since there is a structure that holds
all the values of the current state of the cells (cel1Str). This structure contains information for
each cell including a list with its neighbours’ ids, their dendritic voltages and the conductivity
value of the connection between the current cell and its neighbours [47]. Therefore in the initial
phase for every cell pair that a connection exists, an additional node is added to the list of
neighbour ids and to the list of dendritic values of the corresponding cell. These lists are stored

in the cell parameters structure of the code.

The second change that had to be made in order to transform the MPI implementation
into the single threaded, was the main loop of the simulation step. In each simulation step
in the MPI implementation there is a communication phase and a computation phase. In the
communication phase, the cells exchanged their dendritic voltages based on the communication
lists created in the initial communication phase. The dendritic voltages of the cells to be send are
sent using the MPI_Isend command and the receiving voltages are received using the MPI_Irecv
command. After the exchange phase, each core assignes the received voltages to their cells that

had required them. The communication phase was further analysed in Chapter 4.

Due to the shared memory model used in the OpenMP implementation however, the com-
munication phase can be omitted. The procedure is simplified to a single for loop that transfers

the necessary dendrite voltages to the cells they request them directly from the shared cell pa-
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rameter structure. The arising loop is also merged with the computation’s loop for each cell in
order to increase the parallelism level of the implementation. In this way in every simulation
step for every cell in the grid, the dendritic voltages it requires are copied to its node in the
cell parameters structure directly from the nodes of its neighbouring cells. Then, the new so-
matic, dendritic and axonal voltages of each cell are computed and stored in the cell parameters
structure for the next simulation step.

After making the changes mentioned above, the single threaded implementation was ready
to be transformed into the OpenMP implementation. To that direction, the OpenMP #pragma
omp parallel for directive was used in order for the main loop of the simulation step to
run in parallel. The variables inside the parallel region where defined as shared, private and
firstprivate according to their roles [32]. The OpenMP environmental variables were set accord-
ing to Intel®’s instructions [28], and the application was tested on both the Xeon processor
and the Xeon Phi coprocessor by setting the OpenMP environment accordingly. The following

pseudocode presents the main loop of the OpenMP implementation, as described above:

Algorithm 8 The main loop of the simulation in the OpenMP implementation

1: #pragma omp parallel for

2: for cell = 0 : numberO fCells do

for neighbour = 0 : total_number_of _neighbours do
requested_neighbour = cellStruct|cell].neighbours_ids[neighbour]
cellSruct[cell].neigh_voltages[neighbour| = requested_neighbour[voltage]

end for

compute_new_dendritic_voltage()

compute_new_somatic_voltage()

9: compute_new_axonal_voltage()

10: end for

5.1.1 Runtime Configuration

In order for the application to run on the Xeon Phi coprocessor, the LD_LIBRARY PATH
variable had to be appended with the path of the shared libraries necessary for the OpenMP*
environment. Then, the KMP_AFFINITY environmental variable of the Phi OpenMP runtime had
to be set. This variable controls the binding of threads to physical processing units. [32] The
types of affinity used in this implementation are’“balanced” and “compact”. The balanced type
places the threads as evenly as possible on the nodes. The compact type places one thread as
close to the previous one as possible. After a first set of measurements to estimate which affinity
type was more suitable for the application, the performance of the execution was proved better

when balanced affinity was utilised. As a result, this type was therefore used in the performance
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results presented in this thesis. The verbose modifier before the affinity type might be used
to ask the OpenMP runtime to print information about the binding of the requested threads
to the cores of the current machine [28]. These two types of affinity were explored in order
to see which best fits out application. Another runtime variable was KMP_PLACE_THREADS which
defines the topology that is going to be used and more specifically the number of cores requested
and the number of threads per core. The OMP_NUM_THREADS variable determines the number of
threads that will be spawned in the parallel region. The same runtime variables except for the
KMP_PLACE_THREADS variable are also available on the Xeon processors.

The same OpenMP runtime configuration is used for the Hybrid implementation as well, as

described in Chapter 4.
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5.2 Results

Multiple configurations of the application were executed on the Xeon processor and the
Xeon Phi coprocessor in order to evaluate the performance of the OpenMP implementation.
The results will be presented and a possible interpretation will be attempted. Some information
about the bash scripts developed for running the application will be provided.

The bash scripts for dispatching the execution to a node in the Phi queue of the Blue Wonder
Cluster include some specific information similar to those mentioned for the execution of the
Hybrid MPI/OpenMP implementation in the corresponding Chapter 4. First, the output and
error files of the execution are determined along with the necessary modules to be loaded in
the environment. Second, the compiling of the implementation’s code is conducted followed
by the proper declaration of the OpenMP runtime variables that are necessary for defining the
number of threads that will be used in the parallel regions, and their placement on the Xeon
Phi coprocessor. The execution is started on the coprocessor. The total number of OpenMP
threads on the Xeon Phi coprocessor can not exceed the number of its cores multiplied by 4,
since this is the maximum number of threads the coprocessor can offer. Similarly, when the
OpenMP implementation is executed on the Xeon processor, the number of utilised threads can

not be greater than the number of its cores multiplied by 1.

In the following Figure 5.1 the execution results of both the Xeon processor and the Xeon Phi
coprocessor are be presented. The application simulates 5 seconds of brain time and implements
a Gaussian distribution connectivity scheme, with zero mean value and standard deviation equal
to 5, because at this value there is a peak to the average connectivity between the neurons. All
the execution instances on both platforms are using the same connectivity input files for the
corresponding network sizes, to reassure that there will be no variations in the execution time
due to different application’s workload. The connectivity file affects the number of connections

between the neurons on the grid and therefore the computational demand of the simulation.
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Figure 5.1: Execution Results of the OpenMP implementation

The maximum number of threads that can be utilised in the Xeon processor is 24 and 244 in
the Xeon Phi coprocessor as it has been mentioned in the previous chapter 4. In this application,
5, 10, and 24 threads were used on the Xeon processor and 50, 100, 150 and 240 on the Xeon

Phi coprocessor.

It can be seen from the above figure that the OpenMP implementation presents a com-
pellingly smaller execution time per simulation step than every other implementation presented.

Moreover, the application, while executed on the Xeon Phi coprocessor is faster than when
being executed on the Xeon processor. This result was expected since the OpenMP implementa-
tion is based on massive parallelism and should take advantage of the corresponding capabilities
of the Xeon Phi coprocessor. As a result, the application scales effectively up to 150 threads,
which is the maximum number of utilised threads in the configurations presented for which
the application’s performance is improved compared with the previous which was utilising 100
threads.

Another point worth mentioning is that the application, while executed on the Xeon Phi
coprocessor, seems to be more effective compared to its execution on the Xeon processor, as the
network size increases. This observation is very important taking into consideration that brain
cell simulations aim at studying as much brain cells as possible interconnected in a network. To
this direction, the Xeon Phi coprocessor’s enhanced performance in the OpenMP imlementation,

compared to the Xeon processor’s one, can be proved a very useful tool.
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Chapter 6

Conclusion

6.1 General Remarks

It can be generally stated that the current thesis has achieved its goal since the implemen-
tations developed managed to improve the legacy MPI code’s performance to a great amount.

Altering the topology of the simulated cell networks from two-dimensional regions to three-
dimensional pieces of brain matter contributes significantly to the direction of implementing more
realistic brain cell simulations that have a greater physical meaning for the neuroscientists.

Furthermore, the Hybrid MPI/OpenMP implementation’s results confirmed the hypothesis
that the performance of the application would be improved by utilising OpenMP threads in each
MPI rank for the execution of some previously serial parts of the code. Indeed, the performance
of the Hybrid implementation on both the Xeon processor and the Xeon Phi coprocessor was
advanced by an order of magnitude compared to the MPI native implementation. The imple-
mentation scales significantly when the number of the utilised OpenMP threads becomes similar
to the number of the MPI ranks used. The best configurations that emerged were 20 MPI ranks
with 12 OpenMP threads and 10 MPI ranks with 24 OpenMP threads per rank for the Xeon
Phi coprocessor. For the Xeon processor, the best configurations were proven to be the one with
2 MPI ranks and 12 OpenMP threads and the one with 5 MPI ranks and 4 OpenMP threads
per rank.

Finally, the OpenMP implementation, succeeded in achieving the lowest execution time per
simulation step among the other implementations both on the Xeon processor and on the Xeon
Phi coprocessor. This fact indicates the massively parallel aspect of our Inferior Olive simu-
lation’s application which had not been efficiently explored and effectively used so far. The
application is considered to be a message-based application but in single-node systems the over-
head introduced by the MPI runtime due to buffer initialisations and process communication
is overwhelming the OpenMP overhead caused by the cache coherence protocols. Additionally,

the satisfying performance of the implementation as the network size increases is very promis-
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ing for the effort towards simulating bigger brain cell networks. The Xeon Phi coprocessor’s
parallel capabilities have proven to be very effective and worth exploring in order to enhance
the performance of our application comparing to the limited capabilities of the Xeon processor
alone in simulating large cell networks as it has been shown by the performance results of the

OpenMP implementation.

6.2 Development Challenges

The challenges the author had to face in the Hybrid implementation were various. First,
developing a better way to rewrite the unpacking phase to increase the parallelisation of the
code was a very demanding aspect. Furthermore, there was some difficulty in creating the bash
scripts required to run the application since the environment variables of the OpenMP runtime,
further elaborated in Chapter 5, had to be carefully set to the desired values.

During working on the OpenMP implementation there were also some challenges. It was
essential to properly locate the OpenMP shared libraries since it was impossible to run the
application without setting the corresponding variable. Moreover, the programmer had to be
very cautious with the variables in the parallel region and how to declare them since this was
very important for the correct execution of the application. Finally, the programmer had to
meticulously examine their code to ensure that they have obtained maximum parallelism of the

application.

6.3 Future Work

The current work can be expanded towards various directions:

An urging matter that requires further examination is a memory leak problem that has been
observed. Excessive memory demand has been noticed in the MPI-based implementations that
do not use the extra memory allocated. This is due probably to an existing bug and affects
the execution of large jobs leading implementations to crash occasionally, due to Phi’s limited
memory.

Exploring the vectorization capabilities of the Xeon Phi architecture will contribute to the
efficient enhancement of the application’s performance when executed on the Xeon Phi copro-
cessor, since the full spectrum of optimization techniques offered by the platform will have been
utilised. This optimizations can be applied on the current OpenMP and Hybrid implementa-
tions. Another direction can be the development of an implementation based on the offload
programming model of the architecture in order to study the performance of this programming

paradigm as well.
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The cell generator code can be expanded to include a broader variety of three-dimensional
topologies such as a spheric or a cylindric topology. The connectivity schemes can also be en-
riched and involve the user of the application to a greater amount in determining the connections
between the neurons of the grid.

A graphic three-dimensional representation of the results of the simulation over execution
time can be developed in order to provide visual material to the neuroscientists about the
simulation’s progress.

Finally, multi-node approaches can be explored in order to further examine the Xeon - Xeon

Phi architecture’s capabilities to bolster the applications performance.
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