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epikndn

H SwtpBn auty| e€etdler oplopéva Yewpntind Vépato otrn Yewpla Twv Auvouixey
[owyviewy, €yovtac we xivnteo xou mdovr) TEQLOYT) EPUEUOYHAC TN LOVIEAOTONOT TV
AYOPWOY NAEXTEIXAC EVERYELNG ol TwV VLY dixTOwY. H datplh ywelletou oe tpla
wepn.

[Tewto Mépog:  Apywd mopouctdloviol xdmolo amoTEAECUITA Yol CUC TAUNTO UE

Yeouuxr) Suvouxy xar Mopxofavd dhugoto (MILS), oto omoio 1 oducida Markov
EYEL VO YEVIXO YWPO XAUTAOTAONG, EMEXTEVOVTAC Tol avTioTOLYa AmMOTEAEOUOTA TN
BiBhoypaplag yior Bloxpttd yhpo xotdotacne (Tencpacuévo 1 aprduroya dretpo). Xu-
YUEXPUEVQL, YopoxTnelleton 1 U€oT TETEAYWVIXY) ELCTAVELN TV GUOTNUGTWY AUTMOY Kol
emAleTon t0 TEOPBANUa Tou Fpopuixold Tetpaywvixol (LQ) eléyyou oe menepacpévo
xaL dmepo ypovixd opllovta.

X ouvéyeta, avahbovtar povtéha Auvouxdv Iayvioy ota onola mapouctdleton
Tuyaio €lcodog ToUXTOY. Xuyxexpiéva, Yewpolue Eva TaixTn Ue dmElpo Yeovixd opi-
Covta (major player) xat oe xdde ypovix otiyun éva tuyaio aprdud and moixteg ye
TENEPACUEVOUC YpovixoUs opilovtee (minor players), Twv onolwv 1 elcodog nepLypdgpeTon
an6 wa aAvcido Markov. H avdiuorn yivetan oe éva I'ooppind Tetporywvind miaioto.
Mehetdton xou yoapoxtneiletar 1 wooppornia Nash pe yperion oculevyuévwv eZlo@oewy
tUmou Riccati yio MILS, eve epgaon diveton 6tny meplntwor nonyviwy pe Tohd yeydho
aprduo minor players.

Aceltepo Y€pog: X1o pépog autd avaibovton Ltatid xon Auvouixd mowyvidia oto

oTola Ol GUUUETEYOVTES OAANAETOPOVY TdvVw GE Xxdmoto ueydro Aixtuo. Oewpolye 6Tt
OL TUXTES OEV EYOLY TATEY YVOOT] TV YUQUXTNPIC TIXWY TOU OXTLOU TwV UAANAETLOEE-
CEWY, OUTE TWYV TEOTWACERY TWV TOUXTOY TOU GUUUETEYOLY. AVt autol Yewpolue 6T
OLrd€TOLY GTATIO TWES TANPOPOELES YL TO BIXTLO AAANAETOPACEWY, XS oL XATOLES
ToTxég mAnpogopleg. Oplouéveg évvoleg amd TN Ltatiotixry Puowr yenoylonototvton
yior Vo oplo el Wior Evvola xotd TavoTnTo TEOCEY Yo TIXAC Lo0peOTiag O maky vidla Ue
HEYGAO optdud TouxT@Y, Ve oplleTon xaL Yol EVvolo TANEOPoRIx S TOAUTAOXOTNTAS.
Avohbovton, téhog, Oidpopo mapadelypota Ty Viov Ue GAANAETLOPACEL, GE UEYHAN
olxtua, omee Lrotind xou [pouixd Tetpaywvind Auvopxd Towyvidio ot tuyado yeapn-
uato tonou Erdos-Renyi, Ytoatind Tetporywvixd Houyvidio oe mhéyuorta xan Toopuixd
Tetparywvixd matyvidlor o€ daxTUAOUC.

Tpelto yépog: Yto Teleutalo Y€pog Tng BlaTe3hc UEAETATOL 1) BUVATOTNTO EEANATNONG
O€ XATACTACEL OTEATNYXNAS SuVoLXC aAANAETBpooNS Ywele TAHET SoUxT TANPOpO-
plo, oTNV TEPIMTWON OV Ol TUUXTES YPNOWOTOLOVY CTEAUTNYIXES TEOCUPUOY S/ EXUd-
Unone. IHapdderypo tétolog ahAnAenidpaong ivol 0 avToyWVIOUOS HETAEY TOQOY WYY
NAEXTEXNG EVERYELS, OTIOU 0 XAUE ToEAYWYOS YVWEILEL TO Bxd TOU XOCTOC, EVE OEV
YVWEILEL TO XOOTOC TWV ANV TOEOY YWYV,

Apyxd, SlortuedvovTon XpLtrpta Yot TNV oLOAGYNOT| TWY SUVUUIXMY XOVOVKY. XTT|
CUVEYELD, ETXEVIPWVOUPE OF Lol UTOXATNYORIo OTEATNYIX®Y e€andTtnone Ti¢ omoleg

XUAOUUE OTRUTNYIXES UTOXELOLAG X VUAUOLUE xdmota Tavd AmOTEAEGUATA TNG OTEO-



TYwic ahAnAeTidpaong, otav €vag 1 TEpLocoTEpoL TakxTeg uToxpivovTal. IlpoxUmtel
OTL 0TV TEPITTWOT) TOL EVAC POVO TN TNG UTOXEIVETAL Yo UTARYEL apxeTH ofeBondtna,
16TE TO amoTéAeoya elvan (810 PE TNV TEPITTWOT TOL 0 TUXTNG TOU UTOXEIVETAL HTOY
Stackelberg apynyoc. Enilong mpoxintel 6Tt oe mouyvidia pe mohholg, Tepimou 1ood0vo-
Houg, Taixteg To dpehog and TNy vnoxploio etvan uixed. Téhog, uehetdue epopuoyeéc oe
HOVTENA aYOp®Y NAEXTEIXAC EVERYELNS Xl TPOGOLopilovTal TEPITTMOELS OTI OTOIES T
eCandtnon evioy Vel TN cuvepyaoio UETAED TWV TOXTOV Xl JAAES OTIC OToleC VoY VEL

TOV OVTOY WVLOUO.



Abstract

We study some theoretical topics on the theory of Dynamic Games, having as motivation
and possible application area the modeling of Electricity Markets and the Smart Grid. The
thesis is divided into three parts.

First Part: At first, some results on the theory of Markov Jump Linear Systems (MJLS),
in which the Markov chain has a general state space are presented, extending the existing
literature for discrete (finite or countably infinite) state space. Particularly, the mean square
stability of the MJLS is characterized and the Linear Quadratic (LQ) control problems for
the finite and infinite time horizon are solved, using appropriate Riccati type equations.

We then analyze Dynamic Games in which there is a random entrance of players.
Particularly, we consider an infinite time horizon player called the major player interacting
with a random number of minor players having finite time horizons, the entrance of whom is
governed by a Markov chain. The analysis is made in a LQ framework. The Nash equilibria
are characterized using a set of coupled Riccati type equations for MJLS. An emphasis is
paid on the large number of players case, in which the Mean Field (MF) approximation is
used.

Second Part: In this part, Static and Dynamic games involving agents interacting on a
large graph are studied. We assume that the players do not know the graph of interactions
precisely nor the other players preferences. Instead, we assume that each player possesses
statistical information about the network of interactions, as well as some local information.
Some notions from the Statistical Physics domain are modified to define a Probabilistic
Approximate Nash (PAN) equilibrium concept. Furthermore, we define an informational
complexity notion. Some special cases are then analyzed, involving Static and LQ games on
Erdos-Renyi Random Graphs or Small World Networks, Static Quadratic games on Lattices
and LQ games on rings.

Third Part: In the last part of the thesis, the possibility of cheating Dynamic rules (such
as learning or adaptation), when applied to Repeated or Dynamic Game situations with
incomplete structural information, is studied. An example of such a game situation is the
repeated reaction of the energy producing firms, where each one does not know precisely
the production cost of its opponents.

At first, two criteria to assess the Dynamic rules are stated. Then, we concentrate
to a subclass of cheating strategies, called pretenders strategies and study some possible
outcomes, when a player or all the players are pretending. If only one player pretends and
there is enough uncertainty the outcome would be the same as if the pretending player
were the Stackelberg leader. Furthermore, in games with a large number of equivalent
players, the gain from pretending is small and the optimal pretended values are close to the
actual. Finally, we study applications to Electricity Market models. Cases where pretending

enhances cooperation or competition are identified.






Euyaplotieg

OEAe VoL EUYUELO THOW TdEa TOAD Tov emPBAEnovTo xodny T wou x. Iidpyo HoamaBactio-
mouho Yl 600 Aoyouc.  Agevoc, Uou TpocEgepe éva TEQIBAAOV PEYIANG aXAOTUAIXNC
ehevdeplag To omolo GUVEBAAAE TOAD OTN BLIUOPPEWOT) TNE TUEOVUCAS EQYAGTAG KoL UoU ETETEEYE
VoL EY W T1 YUEd TNG ONULoueYiag XL ApETEEOU YIal TIG LOEEC TTOU TARXL ATO AUTOV TaL TEASUTOLL
TOMAG ypovia. Oa Rieha eniong va evyaplothon ta YeAn tng Towerolg xan Entoaperoic
EMTEPOTNC TNG Otatelfric auTrC.

[Swiitepeg evyapiotieg ogeliw oto Ap. AréCavdpo Xoahauidn yio tny toAdTYn Bordeld,
TIC UUPOVAECS, TN GUVERY UGN OTO ETOLEO €0Y0, TIC TOAAEG cLULNTHOELC TToU elyae xS
XL TY) CUVEIGPORE TOU OTN) UEAETH Tou Teheutalou VEuatog Tng mopoloog dltedhc. XTo
tereuTalo Yépog Tng datpl3g ouveloégepay emtiong xau ot um. Ap. Tavayustng Kovroyidpyog
xou Nixog Xpuocaviémovhog, toug onoloug eniong Yo Hleda vo euyaploTiow.

Oa flela eniong va evyoapiothow Tic ut. Ap. Ntopa KapBouviden xar Negérn KoxaBd
yioo 1 Borjlela Tou TOAAES POPEC UOU TEOCEPEPAY XATA TN OLEIPXELL TNG EXTOVNONG TNG
oltpLfric auThC.

LYEDOY ATOXAELG TIXA TINY 1) Y ENUATOBOTNONG XATE TN BLdEXELX TN EXTLOVNONG TNE OLaTEUBTC

auTAg anotéheoe urotpogio and Tov Eidwd Aoyaptacud Kovouliwy Eeeuvag tou Idptuaroc.
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Kepdhoo 1

Fioaywyn

H Satp3) auty| pehetd oplopéva Yewpntind Yéuato otn Yewmplo twv Auvvouxdv oy viev.
Kivnteo xan mavr meployn egapuoync anotelel 1 LOVIEAOTOINCT TV Ayop(MY NAEXTEIXNC
EVEQYELIC XL TV EVPUMY OIXTOWY. XTo TEKOTO PEPOS NG epyaociog, avarlovtor Auvouxd
Hatyvior oto omola €youue tuyaio €lcodo TouxT®V, VG EMADOVTAL XAl OPLOUEVA GUVIQT
TeoPAfuoTa MtoyacTtinod Eréyyou. Yto deltepo épog, e€etdlovtan mouy vidio oto omola ot
TUXTEC OAANAETLOPOUY TV GE Eval HEYEAO AlXTUO %ot UEAETOVTOL EVVOLEC TPOCEYYLOTIXNC
loopEOTG, TANEOPORIUC X TOAUTAOXOTATAC. XT0 Tpito Uépog eCeTdleTan 1) SUVATOTNTA
e€amdTNONG OE XATACTICELC TaLyVIoU, OTNY TEPITTWOT TOL Ol TOUXTES YENOWOTOL00Y BuVa-
UX0UC XAVOVES TIPOGUPUOYHS/exudinonc.

To Kegdhawo 2 yehetd cuothupoto ue ypopuuxn Suvapixr xot Mopxofiovd dhpata (MILS),
oto onofa 1) ahuotda Markov €yel €va yevind ywpeo xatdotaong, enextelvovtog ta aviioToya
omoteréopota e Ploypapiog yio Blaxpltd YHeo XATICTUoNS (TENERAUCUEVO 1 oprduriotua
o’mapo). Kivnteo yioo v UEAETN TETOLWY CGUCTNUATOWY OTOTEAECE O YUPUXTNEIOUOS TNG
looppoTiaC O YPoUUXd TETEUYwVIXE Tofyvia Ue Tuyala elcodo mauxTav. Apyxd, UeheTdton
T0 TEOPBANUA TNG pEoNG TETPAYWVIX G EuoTdELag xou emAleTon TO TEOBANUA Tou I'pauuixol
Tetpoywvixol (LQ) ehéyyou oe memepacpévo xou dmelpo ypovixd opilovta, ue t Bondeto
XUTIAANALY edlonoewy ToTou Riccati. To anoteAéopota auTd, av xou TEYVIXOD YapaxTrod,
enexteivouy TIC eQupuoyéc Twv MILS. Yav nopdderypa, mapouctdletal Ui EQUEUOYY| TV
MILS pe yevixd y0po xotdoTaong O YRUUUXE CUC THUNTA EAEY Y OUEVA UECK EVOS OXTLOU
ETUXOLVWVIOV.

Y10 Kegdhowo 3, avahbovton povtéha Auvvouxoy Towyviev ye tuyaio elcodo mouxtdv.
Yuyxexpyéva, Yewmpolue évo malxtn pe dnepo ypovixd opllovto (major player) o oe xde
Yeovixh oTiyur| évor Tuyoko apriud amd TUXTES UE TEMEPUCUEVOUS Ypovixols optlovtes (minor
players), towv onoiwv 1 elcodog teprypdpeton and po ahuoida Markov. Kivnteo yio tn uehétn
TETOLWY YPOVIXWY OANAETORACEWY OE Tafy Vol Evol BIAPOPES TRUXTIXES XATACTAUCELS OTKG 1)
aANAETBPOT) EVOS BNUOCLOU POREN TIOEAY WY Y|G EVEQYELIS UE TOUG TRy WY 0V AVUVEWGIING

evépyelag xou 1 ahAnhemidpoot woag Tedmelac e Toug daveloAfmtec. H avdhuon yiveton oe
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éva 'ooppind Tetporywvind mhaloto. Eugoaor divetar xou otny meplntwon naryvioy ye Told)
peydro aprdud minor players. H meplntowon autrh avodleton UE YPHOTN TNG TROCEYYLONG
Méoovu Ilediou (MF) xou TopouctdlovTal xdmolo amoTEAEGUOTH UTTORENG XAl TEOCEYYIOTIXNC
QCUUTTWTIXS LOOPEOTAC.

Y10 xe@dhano 4 ovahbovton Ltortixd xan Auvopixd oty Vil 0Ta 0Toldl 0L GUUUETEYOVTES
OANAETIBE0UY Téve ot xdmoto peydho Aixtuo. Kivnteo yio T uehétn auth elvon didpopeg
TEUXTIXEC TEQITTWOELS OTEATNYIXNAG AAANAETIOPAUOTC TAVE GE UEYIAN BiXTUN, OTWS 1) AAATAE-
TBEAON TWY DEPOPWY TOPAYWYWY X0l XATAVOAWTOV 1 TOV EUGUOY UxE6-OXTUwY (smart
micro-grids) névew oto NAEXTEIXO B{XTUO 1) OL CTEUTNYIXEC AAANAETULOPUOELS OE XOVWVIX
OlxTua.

OewpoLUE OTL OL TUXTEC OEV €YOLUV TANRY YVWOT TWV YUQUXTNEIOTIXGY TOU BixTO0U
TV OAANAETUORACEWY, 0UTE TWV TEOTUNOEWY TWV TOUXTMV TOU CUUMETEYOLY. AVT autol
Vewpolpe 6Tt Blad€Touy OTATIOTINES TATPOPORIES Yot TO BiXTUO AAANAETORACEWY, xaMS Xal
xdmoteg Tomxég TAnpogoplec. Kdmoleg Evvoleg TpooeYYIoTIN G TEQLYPAUPNG UUXQOCKOTIXMY
CUCTNUATWY amtd TN LtaTioTxr) Puoixr| YENoYOTOVVTHL YLt VoL 0PLOTEL Lol EVVOLXL TTROGEY-
YIOTXAC Llo0ppOoTag Ot Towy Vidla e UEYEAO aprdud TanxTov. 2Tr cuvéyelo oplCeton uLor Evvola
TANROPOELUXTG TOAUTAOXOTNTOG, WG 1) EAAYIOTY TocdTNT TANPOQOpiag Tou elvon avaryxado
yioe TV Umapdn TEOCEYYLIOTIXNC LOOPEOTAC.

Avolbovton Sudpopa mapadelypoto oy Viwy Ue ahANAeTOpdoelS GE ueydha BixTua, OTwWe
Yrotind o Tpoquuind Tetporywvind Auvvaixd Touyvidio oe tuyala ypaghuoata totou Erdos-
Renyi, Ytotwnd Tetpaywvixd oy vidwa oe tAeypato xon Ioouuixd Tetporywvixd mouyvidw oe
daxtuAfoug. Ou Bacixol Adyol yio Ty Omopdn youniic ToAuTAOXOTNTUC OTA TaPAdElyUaTY
TouL avohbinxay efvon xdmoLol VOUoL UEYIAWY aptiucY, 1) CUGTOMXOTNTA TNG ATEXOVIONG TNG
BérTioTng amdxplong (best response), N ouvepyaola YeTadd TV TUXTOVY 1) Uixpd x€edn o
ATOUAUXPUOUEVOUC TIOUXTEC.

270 *EPAAUO D UEASTOVTAL XATACTACELS GTEAUTNYIXNAG OUVAUIXG XAANAETDpO S Ywelg
TATien Sopw) TAnpogopla. Tlapdderyua tétotag aAANAETIBEAoTC Evor O AVTAYWVIOUOC UETAEY
TORAY YWY NAEXTEIXTC EVEQYELNS, OTOL 0 xdle TopaynYos Yvweilel To 8xd Tou x60Tog
eve Oev Yvwpilel 10 x00T0C TV GAALY Tapaywy®y. MeAeThVTaL XATOlES OTRUTNYIXES
TpocopuoYhc/exudinone. Téroec otpoatnyiéc ev yéver dev eivan ot woppomior Nash. Mehe-
TdTO, GUVETHE, 1) BLYATOTNTA EEUTATNONG, ONAADT] T1) BUVATOTNTU EXPETIAAEUCTC TNS Y VOO
NG OTEATNYIXNAS TOU EVOG T T amd ToUg GANOUG xa TEOTEVOVTOL XATOLA XQELTHELAL Vi TNV
a&LOAGY 0N TEOGUQUOC TV G TOUTNYIXOV.

2T CUVEYEL ETXEVTROVOUUE GE L0l UTOXATIYORIol GTRATNYXOY EATATNONG TIC OTOlES
XUNOVUUE OTEAUTNYIXEG UTOXELOLOG Xo ovaALOUNE xdmota Tidovd amoTEAECUATO TNG COTEUTNYL-
NG ahhnAenidpoone, 6tav Evag N teplocotepol akxteg utoxpivovtan. IlpoxOnter étL oty
TeplnTwon mou évag povo maixtng umoxplvetar xon umdpyel apxeTy| afefoudTnTa, TOTE TO
amotéheoya ebvon {Blo e TNV mepinTtwon mou o malxtng mou umoxpiveton Htay Stackelberg

apynyoc. Emiong mpoximtel ot o mawyvidla ye mohholg, epinou LloodLYOUOUS, TaiXTES TO
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ogpehog and v umoxplolo etvon uxed. Téhog, pehetdue QupUOYEC G HOVTEAN OyOPMY
NAEXTEIXTC EVERYELNG %ol TPOODLOPILOVTOL TEPITTMOOELS OTIC OToleg 1) eCAndTNoT EVIoYVEL TN
cLVepYaola PETOEY TWV TUXTWY X0 JAAEC GTIC OTIO(EC EVIOYUEL TOV AVTOYWVIGUO.

To anotéheoya ne épeuvag mou mapouatdlovto, €youy dnuoateutel ata [KP14a] (Kegd-
houo 2) xon [KP15] (Kegdhouo 3), [KP]' (Kegdhano 4). Tpoxartopxtixéc uoppéc twv tapamdve
epyaotv fav ot [KP11], [KP12], [KP13b], [KP13a], [KP14b].

To undroimo tou xegaiaiou opyavoveTon axorodiwe: Xto Eddglo 1.1, yivetan pia cuvo-
TTIXY ETOXOTNCT TV Baoxev eVvolwy Tng Yewplag mouyviwy pe ugoaor oo duvouxd
modyvie.  XTn cuvéyela, mopovoldlovial oploUévee Tpdopates e€eMelc ot Vewplo TwV
Touyvieov e Yeydho aprdud mouxtodv, oto Eddgo 1.2. 3to Eddgio 1.3, mapoucidleta 7
YeNon BuVaUXGY xovOVLY exudinong oe xatactdoeg towyviou. Télog, oto Eddgio 1.4
mopouctdlovial T TEoPAAuaTa UE Ta omolo acyoheiton 1 mapolow dtatelPr, xaddg xou

GUYOTITIXG ToL XVPLAL ATOTENEOUATOL.

1.1 Auvouxd Hodyvia

1.1.1  Ileprypogn

H Yewplo mawyviwy yehetd pordnuatind povtéha Tng APng amo@dcenmy ot xotao TUOEL GTEOTY-
i oAANAETBpaoTC aVAUECH O AVEEHPTNTEC OVIOTNTES (maixtee, decision makers) [BO99],
[Myel3], [Owe69], [OR94], [FT91a], [SLBO8]. H Baocwur unddeon nou yivetow elvor 6T ot
Talxteg elvon TAeLC 1) pepd opdohoyioTixol (rational), ONAadY| 1 Opdom Toug Umopel va
neptypagel ye Bdon tn Pehtiotonolnon 1 v amomelpa BeATioTonoinong xdmolou xpitnpelou
(cost function, payoff function, or utility). "Eugoon diveton otor duvouixd modyvia, Snhody
ot mabywvior ot omola oL T TEG AdUBdvouV amogdoElc GE Bldopa Yeovxd onuela xou 1
oglpd ue v omolo Aopfdvovton ol amogdoelg eivon oTUaVTIXT ([BO99], [SH69Db], [SH69a],
[SCJ73b],[SCI73a]).

To Baowd otovyelo yia TNV Teptypopr| evog mouywidtod ebvar: To clvoro Twv TuxT®Y,
T0 6UVOAO TwV TV Bpdoewy Tou XAUe TalXTY, Ol CUVIPTACELC XOGTOUC, 1) BUVOLXT),
o opilovtac (¥ ot opilovieg), BnAadh To BIECTNU OTO OO0 OL TUUXTES GUUPETEYOUV OTO
mouy VoL xou 1) Stodéotun TAnpogoplo o xdie mokxTy).

21N ouVEYELX BIVETAL O OPLOUOGC TWV VIETEPUIVIOTIXMY OUVOUIXWY LY VIWY GE OLaXELTO

YEOVO.

Optouoc 1: "Eva duvopuixd, VIETEpUVIoTInO Touy vidL ue N maixteg amotehelton omo:
(i) 'Eva obvoho nawxteov N ={1,...,N}.

(i) "Eva oOvoho ypovixwv onueiwv T = {1,...,T}, émou 1o T eivor o opilovtog Tou

TowY VIOLOO X0 UTIOREL VO EYEL TENEQUOUEVT] 1| ATELEN TLUY).

'Under Review
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(iii) 'Eva yweo xoatdotaong X otov onolo avixel 1 xaTtdoTooT T Tou makyvidol, xdie

oTyun k.

(iv) 'Eva cOvolo dpdoewy U,ﬁ (menepaoUévo 1) dmelpo) mou anotehe(tar and TIC ETUTPENTES
dpdoeic Tou xdle maixtn, oc xdde ypovinh otiyun. H dpdorn tou malxtn @ T yeovixy

otyuh k cuuPolileton uj.
(v) M ouvéptnon fi: X x UL x -+ x UY — X, éto1 @ote:

Tk+1 = fk(xku ullgu oo 7u}]cv)7

1 omolo expedleL TN BUVOLXT] TOU ToUYVLBLOU Xal Lot oy r) cuvirnn o1 € X.

(vi) 20volo Y,j mov expedlouvy T TWAVES ToEATNEYOEC TOU TodX TN ¢ TN YPOVIXT| OTLYUT
k xou ouvaptioeic hy : X — Y} étoL hote 1 mapatienon v Tou modxTn @ T Ypovixh
otiypn k va diveton omo:

Yp. = hi. ().

N / i 1 1 N N 1 1 N N
(vil) "Eva utooOvoho I} ToU {UYi, . oy Yo v s Ul s oo s Yp s Uly e e vy Up 1yyeney Uy ey Up 1}

Tou ex@edlel TN dardéoiun oTov Talx T ¢ TANPoQopla TN YeoviXh oTiyur k.

(viil) M xhdon IY, and emtpentéc ouvaptioewc v, : I — ul € Ui H omewdvion ' =

{7, ... e} Yo xodetton 1) oTpaTy XA TOU TTadXTY i
(ix) Zvvopthceg xootoug J': [, (X x Ul x --- x UY) = R.

H évvoua tou povtéhou autol ebvar 6Tt 0 xdlde TalxTne ¢ CUUTEPLPERETAL UE TEOTIO TETOLO
(OoTE Vo emLyELpel VoL ENIoTOTOIAOEL TO xboTOC J¥, ETAEYOVTOC Lo ETLTPETTH OTEUTNYIXH
7' Trdpyouv Sidpopot tpdToL vor Yivel autd, oL omolol 0dNYolV ot BlapopETIXéC EVVOLES
AOoNG, XATOLES a6 TIC OTOlEC TAUPOUCLALOVTOL GTT) GUVEYELD.

To x60TN TWV TUXTOV UTOPOLY VoL EXPEACTOUY GUVIPTACEL TV CTRAUTIYIXWY, AVTIXA-
NOTOVTAG TIC TWES TOU EAEYYOL TOU TEOXOTTOUV OO TS OTRUTNYIXES ok OTN BUVOULXY)
elowon. Ye auth TV TepinTeoT To Towy vidt £pyeTal 0T ASYOUEVT XavVoViXY] LOPQN.

To povtého autd unopel vo emextadel xar 6Tn oTOYUCTIXY TERiTTWOT), OTNV TEp(TTWON
ONAadY Tou 1 BuVaLXT) xon T X6OTY ECUETHOVTAL amd XAmoleg Tuyaieg petoSAntéc. ‘Evog
TEOTOG Vo Yivel auTo elvon var Yewpnlel evag emmAcov madxTng, XUAOUUEVOS <1 QUOT», OL
OPYOELS TOLU OTOlOL UTOEOVY VA TEQLYEAUPOUY ATO XATOIES Y VWO TES GTOUC TOUXTES XUTAVOUES.
To x6o1n, oty TEPInTWON AUTY, UToEOVY VAL AVTIXATUOTHIOUY Omd TIG EXTWWMOUEVES THES
TOUC.

Yy epyaocio auth) Yo acyolnolue pe TeocVeTind X60TN O Hop®T:

i 7 1 N
J' = § gk(xknuk?--'vuk axk-i-l)
k<T
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1.1.2 'Evvoiec Abonc

Trdpyouv Bidpopec €vvoleg mou emtyelpoly vo Teptypddouy/mpofiédouy to anotéhecya
xdmotag oTpatnyxic oAAnhenidpoone (xotdotaone mowyviov). H cuvniéoteen and autée
elvon 1) wooppotia Nash. IIpog ydpwv amhdtntag, otny utonapdypago auty| divoval oL oplopol
yioo Todyvior ue 000 TakxTeC.

Optopde 2 (Béhtiotn Andxpion): Mu otpatnyxd| v amotehel BéAtiotn amdxplon ot pio:

otpatny v* tou madxtn 2 av 4t € argmin e J(71, 7?). To o0volo v oTpaTyIXdY
Tou TadxTn 1 Tou amoTeEAOUV BEATIOTN amOXEIOT OTN CTEATNYLXN At da ouufBohileton e
BR(*).

Optopdc 3 (Ioopporniar Nash): "Eva Ceuydpr otpotnyoy v, 42V

elvoaw oe LooppoTia

Nash, av n xodepior Toug efvon wor Bértiotn amdxpion oty dhin dnhadr, ¥4 € BR(7*Y)
xor v € BR(yHY).

2e €va 6LUYOAO OTEAUTNYXWY oL amotehoLy toopporio Nash, xavévag naixtng dev €yel
©vNTEO Vo AANGEEL HOVOUERKS CTEUTNYIXT.

Hapatrpnon 1: H wopponia Nash etvan o apxetd guoixr} évvola hoong. H Omopén
¢ woppomioc Nash €yet anodeydei oe nencpaouéva maryvidio (ETEXTENVOVTIC TO YHPO TWV
OTEATNYIXWY Ylot Vo TEPLAUUBAVEL TIC UELXTES OTRAUTNYIXES) [NT50] xou oe %VETA oLy vidla
[Ros65]. ¥to Suvopxd mawyvidia 1 Umopeén tne toopporioc Nash Sev €yet yapoxtneloTel
TATROC, EVE UTIEEYOLY BLAPOEa UERIXE ATOTEAECUATOL.

Ye ToAEC TEQIMTOOELS, €xEl eVOLUPEPoY Vo UEAETNUOUY Ol TROCEYYLIOTIXEG LOOPEOTES
Nash.

Optopée 4: 'Eva Leuydpt otpatnyixdv vt v anoteholy pio e-Nash iooppotior av 1oy Vel
T2 < JHALA?) + e xan JA(yA?) < J2(vHA2) + €, Yo onoteodhinote otpatnyinég
372

Y1nv woppotia Nash, ot pdhot Ty Touxt®v eivon GUUPETEIXOL. e BLAPOPEC TEPLTTOELS,
oL Taixteg €youv acOUUETEN ETEEOY, 1) xdmolog elvon xavog var deoueutel va Eyel xdmola
MEAAOVTIXT| CUUTIERLPORE, EVE OF XAMOLEG GAAEC TEQLTTWOELS O EVOG ToUXTNG Opa TELY Amtd
TOV GANO. X QUTEC TIC TEQITTMOES O TOUXTNG TOU OVOXOWWMVEL TEMTOG T1| CTEUTNYLXY
TOU €YEL EVAL TASOVEXTNUA OE OYECT UE TNV TEPITTWOT TOU OVUXOLVVOUY TUUTOYEOVA TIG
otpatnyés toug. O maixtng autég Yo ovoudleton apynyoc Stackelberg, evey o dAlog
madxtne axolovdoc. MTr cuvéyeln mapouctdleTal 1 évvola Tne looppotiag Stackelberg,
omofo Biver Wit Evvola Aoong yiot TV TEOBAEdT TOU OMOTEAECUATOC TETOUWY XATUO TAGEWY
OTEUTNYWAC OAANAETBPaONS.

1,51
)

Optopée 5 (Ioopporior Stackelberg): "Eva Leuydipt 6 tpotnytedv ¥25F amotehel 1oop-

poria Stackelberg , pe tov moixtn 1 opyny6, av v%5F € BR(yM51) xou 4151 € argmin,
{max,2cpry J (7', 7%)}-
Hapathpnon 2: Ye Oheg TIC TMEQINTMOOELS O dpyNYdc otny woppotia Stackelberg €yel

UxEOTERO xO0TOC ot oyeor pe Tty toopporia Nash. O axdrlouvdog ot xdmoleg TEQITTOOELS
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ogeleiton oe oyéon ue TNV oopponio Nash, evey oe dAheg BAdnteton. EmnAéoy, etvor mdavov
evag TalxTng vor TeoTd var etvar axdhouvdog amd apynyog [Bas73].

Ta anoteréopota otig oopponicc Nash xou Stackelberg, dev etvon nédvto amodotixd. e
OLAPOPEC MEQITTWOELS UToE0UV OAOL Ot TUXTES, cuVTOVIoVToC TN 6pdCELS TOUC, Va BEATIOGOUY
TNV ambd0GT TOUG O OyEoT Ue xdmola looppoTia. Mo evolagépouvoa évvola Aorng elvon to
oUVOAO TV oruelwy oTa omtola Oev elvar duvatoy va Peedel xdmolog cuVBUACUOS BEACEWY
€TOL WOTE VO PELWVETUL TO XOGTOS OAWY TwV TaxTV.To olvoho Twv onueiny autodv AeyeTo
oUvoho Pareto.

Optopéc 6 (L0voho Pareto): ‘Eva Ceuydipt otpatnyxay 1, v* avixel 6to ohvoho Pareto

av dev umdpyouv 71,72 étor wote JH(YL, %) < JH(yHA2), JA(FL AP < JE(v 7)) wa

TOUAytoToY plor amd Tig 800 AVIOOTNTES VA Loy UEL AUoTNEAL.

1.1.3  IIknpogopia xou Xpovixy| Yuvénetla

Trdpyouv ddgopol mavol TpdToL Ue Toug omoloug oL Taixteg AoBdvouy TAnpogopla. Mua
mdoavotnTa ebvon var yvwpllouv pévo tny apyixr xatdotoor.  Evalhaxtxd, unopodv va
HETEOLY TO BLdvuoua xoTdoTaong ¥ 0 xdle malxtng var €YEL Lol OLUPORETIXT HETENON ULoG
oLVAETNONG TOL BlaviouaTog xatdoTaons. Ot SlapopeTnés douée TAnpogoplac 0dNyoLy ce
OLUPOPETINE GUVORA G TRUTNYIXGY XL CUVETKS OE THIoVOY BLAPORETIXES EVVOLEC ADoTNC. XTOV
axohoudo oploud Topouctdlovtal xAmoleg dopés TAnpopopiag.

Oplopog 7: 37 éva duvaixd Tony Vil oe BLloxettd Yeovo 1 dour| Thnpogopiag Tou Talx T

v ebvou:
(i) Avowxtol Bedyou (open loop) av I} = {z1}.
(i) Khiewotol Bpdyou (closed loop) av I} = {z1,..., x4}
(iii) Avddpaone ywelc wviun (feedback no memory) ov I = {xy}.

(iv) Khewoto0 Bedyou ue pétpnon e€édou (closed loop imperfect state information) av I =
{yi ... yi}.

ALpope TIXES TEYVIXES €y 0V avamTUYVEL Yio TOV UTOAOYIOUO TGV IGOPPOTILMY OE Tty Vidta
ue mAnpogopior avoxtol 1 xAetotol Bedyou (m.y. [SHO9b]). T mopdderyua, oe mavyvidio
ue mAnpogopia avowtol Bedyou n apyr Tou Pontryagin umopel va yenoylomomdel eved yia
TAnpogopia xhelotol Bedyou, o duvauixds Teoypaupationss (e€lohaoec HIB yia to ouveyh
YPOVO).

'Oty yenolotolodvTaL GTRATNYIXES TOU EEXQTOVTIL A6 TUAUOTERES THIES TOL BLovUoUo-
TOC XATAGTAONG, UTOPEL Var UTEEEEL Uiot TAELAON amd LoOPEOTIES 1} TPOCEY YIGTIXES LOOPEOTIES
(folk theorems ex. [FT91a] ch. 5, [PCJ80], [Bas74], [Rad80], [Pap89a]). Xtic epyooiec autég
1 XPNHON TWV TEONYOUUEVRY TGV TOU BLaVOOUATOS XATAOTUAOTG 1) TWV 0pACEWY TwV GAAWY

TOUXTWV ETUTEETEL TNV UTOEEN EVOC TOAD UEYEAOU GUVOAOU AUCEWY. Y€ XAMOLES amd TIC
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NOOEIC EVIoYVUETOL 1) OLUVERYAOTA UETOED TWY TUXTMY EVK O GAAES EmPBAAAeTOL ptar AOOT) TTOU
elvol 6T0 AmOAUTO GUUPEPOV XYTOLOU TTakXTY).

‘Eva xpithplo o Ti¢ oTpatnynég otar Suvoxd modyvia efvon 1) <yeovixy| CUVETELLY. XTOV
EMOUEVO OPIOUO ELCAYOVTOL Ol EVVOLEC TNG AoUevolg Xal LoYUREHG YPOVIXTG CUVETELIS.

Optopéc 8: "Evo 0Ovoho oTpatnytxddv 7' mou anoteholy tooppoTior ot évor oy vidt efvou:

(i) Aoclevie ypovixd cuvenéc (weakly time consistent) av yia onowadnnote otiyu t < T'
oL oTpATNYIXEC ¥ amoTEAOUY Lo0ppOTial Y10l TO Ty VidL Tou EeXIVEEL T YpoViXH oLy

t, dedouévou 6Tl uéypt T oTrypr exelvn elyav egopuooTel oL otpaTnyXéS Y.

(ii) Ioyupd yeovixd cuvenéc (strongly time consistent) oy yio omoldr|note oty t < 1" ol
otpatnyXéc 7" amoteroly Lopporia Yo To Touyvidl Tou Eexwvdel T ypovixh oty ¢,

OTIOLECONTOTE OTRUTNYIXES XL VO £YOUV EQUPUOCTEL UEYPL TN oTLyuN L.

YNy epyaocio auTr| aoYOAOVUAC TE G TEATIYIXES TTOU LXAVOTIOLOVY TO SUVOULXO TIEOY QOUUATL-
oUo xou etvan Loy ued yeovixd ouverelc. Ot loopponiec, amOTEAOVUEVES ATtd TETOLEC CTRUTNYIXES,

o xohovtan oto e€hc xan «téhetec» (perfect).

1.2 Ilodyvia pe peydho aprdud naxtoyv : MEFGs

Yy nopdypago auth yivetow o olvToun emoxdTnon e Yewplag Twv monyviwy Ye ueydho
aprdud maxtov. To evdgpepov Yo TéTolo mony vidta ebvon opxetd taatd. Eva yovtélo yiu
looppoTia oe dixTua xUXAOPORLAG PE Eva GLUVEYES amd YEYoTES BlorTuTUNXE oTo [War52], eve
€VOL LOVTENO Yol YORES, VEWPOVTOC £Var GUVEYEC amd TaixTeS, TopouctdoTnxe oTo [Aum64]
(emionc [Owe69], Ch. X). Xtn cuvepyatixh Yewpla maryviwy, pehethdnxay to oceanic games
[MS78], mouyvidia pe €va ouveyeg amd malxteg xou unohoylotnxav ot Shapley Tweg toug.
Auvopxd Tolyvio e €vo GUVEYES amd T TES OE BLoxpELtd Yeovo uehethinxay oo [JRE8] xou
[BB92]. H npocéyyion uécou nediou yenoyomotinxe yio TNV avIAUGT) BLIXQLTY DUVOHUXOY
Touyviwv 6to [WBVROS] xou oplotnxe 1 €vvol tou Oblivious Equilibrium.

To tehevtala ypdvio UTEEYEL EVTOVT EQEUVNTIXT BEUCTNELOTNTA OTA OTOYACTLXG DUVOLXY
Ty Vo UE YeYGAo apriud mauxTov xan €youv mpotadel Vo apxeTd cuvagelc Tpooeyyioels.
H uwor ovopdletan modyvia yéoou nediou (Mean Field Games (MGF)) [LLO7], [GLL10] evé) 1
ocUtepn Nash Certain Equivalence (NCE) [HMCO5], [HMCO6].

Y1ic mpooeyyioel autéc o xdle TalxTNg GAANAETLORG UE TN UEla TV GAADY TUXTMV 1
omoio npooeyyileton and éva ouveyéc. H 6éa aut) mpoépyeton and TNy TEOCEYYIOT UECOU
medlou ot otatoTiny guotxy|. Kdtw amd xatdAinieg mpolnovioelg, nalpvovtag o 6plo
xodg 0 apiUdC TWY TUXTOVY TEVEL OTO AMEWRO, 1) CUUTERLPOES TNG UALaC TWY TOUXTOV
YIVETOU AOUUTTOTING VIETEPUIVIOTIXT. ALITUTWOVETOL, CUVETCS, Eva (euydiot amd ouleUYHEVES
eZIGMOELS TOU TEPLYPAPOLY T1 CUUTERLPOEE TV Toux TV, H mpdtn amd autée expedlet

TO YEYOVOG OTL oL oTpaTnyixr] Tou xde moixtn elvon BEATIOT, doopévng tng e€éhing Tou
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HECOL TEBIOU TV BLUYUOUATOY XATAOTAONG TWV GAAWY TOUXTCV. XTO GUVEYT| YPOVO elot Lo
e&lowon Hamilton-Jacobi-Bellman xon AOvetar amd to téhog mpog Ty apyr|. H dhin e&iowon
meptypdpel TNV e€EMEN TOU UEGOU TEBIOU TV BLUVUCUATLY XUTACTUONG TOV TUXTOV XUl UTO
xatdAAnAeg cuvinixeg ebvon pa e€lowor Kolmogorov-Focker-Plank.

H avdhuon twv maryviov pe yeydho aprdud mouxtdyv Ue tn yeHon TS TeooEYYions Tou
p€oou TEdiOU, OE MOAAEG TEQIMTWOELS, UTAOTOIEL ONUAVTIXG TNV XATAoTAoT), XaddS XdveL
OLVLTH TNV ATOBEEY) AMOTEAEOUATWY UTORENS KO OF XATOLEC MEQITTWOELS TOV UTOAOYLOUO
TWV GTRUTNYIXWOY IGOPEOTIAC. 2T CUVEYELY, UEAETMVTAL OL OTEATNYIXEC Tou €youv efoy el
UE TNV TPOCEYYLoT TOL UEcou Tedlou, 6ty epapuélovion oe Eva oy VoL e TOANOUS oAAY
TEMEQUOUEVOUG TakxTeG. 2Ly Ve, Umopel var amodetyVel 6Tl oL OTEATNYIXES AUTES ATOTEAODY
e-woopponia, ye € — 0 xododc 0 opriudc TV TUXTOV TEVEL OTO AMEWRO, YEYOVOS TOU
OuxatoloYel TN Yprion TNG TEOCEYYIOTC.

21N ouvéyela avapEpoval xAToLES epYacieg Tou oyetiovtal dusoa ue T dlatElPT| auTH,
®o S AL HATOLEG EMEXTACELS TWV Ty Viwy Yécou medlou. oopuixnd tetpaywvind tatyvio Ue
ueYdho apriud maxtady ueietovion otig pyaoiec: [HCMO7L,[HCMI12], [Barl2], [BSYY14]
xou [Papl4]. Iowyvidio ye risk-sensitive xpitriplor x60Toug, xadde xan olevapd maryvidlo
avovovton oTic epyaoiec: [TZBT11], [BTBT12]. Mo apxetd yevin| npocéyyilon Bactouévn
ot Yewplo Teheot®y, Tapoucidleton oty epyacio [KLY11]. Iatyvia tou tepthauBdvouy éva
onuovtixd moixtn (major player), tapouctdlovtar otic [HualO], [NH12], [NC13], [WZ12].
Yy epyaoto [Tem11a] tapoustdlovrar Sidpopec emextdoelc Tng Vewplog Twv mony viwy uécou

Tedlou OTwe 1) GOVBEST) TKVY TEOPANUATWY GUVEY OV XAl BLUXELTOL YEOVOU.

1.3 Auvouixol Kavovee Exudinonc/Ipocapuoyic

Y10 €dd@ro 1.1.2, mopouctdotnxay xdmoleg Evvoleg AOong BACIOUEVES GTNV LOEX NG LOOPEOT-
oc. H wopporio npolmodéter dtL ol maixteg €youv xdmota «xowvy yvohony» (common know-
ledge). o mopdderypo Vo mpémet vo CUUPWVOLY GTO €(80¢ NG tooppoTiag Tou tailouv (..
av eivon Stackelberg moloc etvan apynydc) xou Yo meéner o xadévac v yvwpiler To x60T0C
TOU GANOL TEX TN 1| OTN) OTOYACTIXY TEQITTWOT), TNV XxuTovoun and TNV onola £yel TpoéheL.
Emunpoc¥étng, oe duvauixd mouyvidia elvor TOAAES Qopeg TOMD BUOXOAO VoL UTOAOYLOTEL 1|
looppoTia, 1dlwe ot TEoPAAuaTa e EAATH TANPOgORia.

‘Evoc evahhoxtindg teo1og npéﬁ)\sqmg/nspwpacpf]g NG CUUTEQLPOPES TWV TOUXTWY OF
emavohaBavoueva 1 Suvoxd Taky vidta etvat 1) SLTOTWOT) XETOLWY VIETEQUIVIG TIXAY 1| GTOYO-
CTXWY QUVOIXGDY XOVOVKY Yo TN CUUTEQLPORd Ty Touxtwyv. Kivnteo yio tn dwtinwon
TETOLWY XavOVRY eivan oLV iwe 1 TpooTdleta TepLypaPrc TNG EXUAUINONG TV TOUXTLY, TNG
TEOGUPUOYNC TWV GTEUTNYWAOY 1| TNg dtadactog tne e€éhine. TIoAkd and autd o povtéla
ovTavoholy TNV «Teptoptolévr opBohoyxdtntay (bounded rationality) twv mawxtédv, dnhadh
TNV TEPLOPLOEVN tXavOTNTS Toug Vo AUvouv duoxola mpofBAirjuota [Sim72], [Sel01]. O

OLdpoEOL BUVOLXOL XAUVOVES DLUPEQOUY GTNY TOAUTTAOXOTNTS TOUG xS XAk GTNY TANEOPOpEin
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Tou amoutelTan Yo TNV VAomoinor) toug. H uehétn twv Suvopixmy xovdvey cuviteg eoTidle
OTNV QCUUTTWTIXY| TOUC CUUTERLPORY. 2TT) CUVEYELN TTEQPLYRAPOVTOL CUVOTTIXE UEQIXOl TETOLOL
xavovee. H mapotoa obvoln Bacileton otig avagopés [FLIS], [FLO9], [YouO4], [SLBOS] ch.
7 wou [LT11].

O mokdTepog %on {owE 0 o ATAGS BUVAUIXOS XavOVaG Efval 1) YerioT TNE BEATIOTNG amdxpl-

one ané xdde moixty (best response map (Cournot, 1838)). O xdie moixtng emiéyer v
src_o'psvn 0pdion Tou VEWEOVTUC OTL Ol UTOAOLTIOL TEOXELTOL VoL BLTNEHOOLY GTO UEANOV TIC
Tpéyouoeg dpdoelg Toug. H duadixaota autr enavaroufdvetar oe xdie Briya, Towtdypova amnd
6houg Tou maixtec. Aidpopeg Tpomonolioelg €youv potadel, dtwg N aclyypovn (Trdavov
oTOoY Ao TIXY) EQOPUOYY| TV Brudtonv and Toug TaXTES, 1 yenon Wwag xahiTepng avti Tng
BérTiotng amdxplong, xadde xou 1) Yo OPICUEVEY TOAUOTEQWY TWUMOY TWV OPUCEWY GTOV
uTohoytopo Tng BErtio g amoxplong. Edv umdpyel olhyxhion, TOTE oL 6TRUTNYNES GTO OpLO
elvon oe 1oopporia Nash. H cOyxhion €xel amodery el yio xdmoleg TEQITTWOELS TENERAUCUEVWY
rouyviwy (weakly acyclic [You04]), étav ov anewxovioelg e BélTioTne amdxplong elvan
CUGTONXEG, EVE DLAPORES TORUAXYES TNG ATEMOVIONG BEATIOTNG UTOXPLONG GE TETEUYWVIXY
oy vida €yer amodetydel 6t ouyxhivouv ([Pap86]).

‘Evag, enlong xhaoxdg, SuVoxog xovovag Yo ETOVIAUUBUVOUEVN TETEQUOUEVL TTaky VIDLX
elvon to Fictitious Play. O xdie maixtne umodétel 6ti ot dhhot malxtec axoroutolv xdmola
HEWXTH oTpaTNYWr) oTodeRY| 0TO Ypedvo. e xde Bruc, Topatneel TIC EUTELINES XATAVOUES
TWY BPACEWY TWV GAAWY TOUXTOVY Xou ETAEYEL TN BEATIOTN amdxplon 0Ty xotavour) outr. Av
Ol EUTIELPIXES XATAVOUESC GLUYXAVOUY TOTE GTO Oplo anoteroly woopponio Nash. ITapdha owtd
7o fictitious play 6e cuYAivVEL TEVTAL, €V £Y0UV TEOCOLOPIGTEL XATOLES XATNYOPIES ToLY VIDUDY
Tou oLYXAIVEL (Touyvidlo undevixol adtpolopatog, potential games xat meMEPUCUEVL oLy VidLoL
ota omola 0 évog TaXTNG €EL U6VO BVO OTPATNYIXES).

Mo dAAn xotnyopla BUVOIXDY XoVOVKVY VAL Ol GTEUTNYIXES EVIOYLUTXNS exudinong
(Reinforcement Learning). e outéc TIC oTpatrnyixéc, ol maixTeg emA€youv xdmola amd
TIC O1dpopeS GpdoELC TOUC UE Xdmolor TavoTNTOL  XT1 GUVEYELNL QUEAVOLY 1) UELDOVOLY TNV
mdovotnTo Vo eAEYoLY TNV xdle Bpdom Ue avdAOYX PE TO xOGTOG Tou elyay dTaV TNV
enéheav. Tétowol xavovee €youy egupuootel ot emavalopBovoueva mowy vidla (TE.X. [Pap89b])
xou o€ o ToY oo TS mouy vidla (.. [SPGO3]). Apxetd cuvagelc eivon xou oL XUVOVES TPOCUPUO-
Y1ic o€ Buvoxd Towy vidia tou Bacilovto oTov TpocupuocTixd éheyyo (t.y. [Pap88], [YP94]
[LZHMD14] ch. 6) xou oe enavohopfovoueve dretpa tavyvidio (m.y. [FKB12]).

M apxetd cuvnhouévn xotnyoplor Suvoux®dy xovovwy otn Yewpio Tne exudinong oc
mouy vidio Bactleton oty évvola Tou “regret”. Tl xodepio Spdom, o xdde maixtne opilet
To regret , Onhadr TO TOCO TAPAUTEVE AOOTOG EYEL OE GUYXPLOT UE TO Vo €moule CUVEYELX
™ Opdom auth. Trdpyouv duvouxol xavéveg mou eCac@aiilouy To uéco regret vo TElVEL
OTO UNBEV YLoL UEYGAOUC Ypdvous. yia Oheg Tig Blodéales Spdoelc (no regret learning). e
TEMEQUOUEVAL ETUVUANUPBAVOUEVA Touy VDL, TETOLOL XAVOVES CUYXAIVOUY GE xdmolo €0 amd

CUCYETIOUEVES LOOPPOTIEC.
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Ynuovtiny| and Yewmpnuinfc mhevpds ebvon ot 1 Yewpio Tou rational (Bayesian) learning
[KL93]. O xde maixtne oynuatilel wa temoldnon (belief) yia tic otpatnynéc tov dhhwy
TouxTOV.  Xe xdde Brua yenowomolel Tov xovéva tou Bayes yia vo avoveE®oeL TG TNV
Tenolinot| Tou xou emA€yeL TN BEATIO TN andxpior oty Tenolinon autr. Me enovarauPovoue-
VoL, TETEQUOUEVO Touy ViBLa, XdTw omd xdmoteg TEYVIXES oUVITXES (AMONUTY GUVEYELD TV
XAUTAVOUWY OTIC TavES 16 ToplEC TOL TPOXUTTOUY av oL Tenotlfoels Ytav aandeic we mpog
TUC TIPAY HOITIXES XUTOVOUEC), UTOPEL VoL amoBeLy Vel 4Tt 0L o TEATNYIXES GUYXAIVOLY GTOYUC TIXE,
oe xdmota looppotia Nash tou enavahauBavéuevou mouyviou. Tlap’ 6t nunddeon yia amdhutn
CLVEYELXL Elval APXETE TEQLOPLO TLXT ot OTL TO GUVOAD TwV LooppoTiy Nash tou emavokouBovo-
uevou mouyviou elvon tepdoTio, 1 Yewpla Tou rational learning elvon onuoavTixy emeldy] ety vel
oUyxAion oe Jia looppotia Nash o mpofhAuata ue ey TAnpogopla.

Lnuavtixég amd Vewpentxhc mhevpds etvar xou ov gpyaoteg [FYO03], [FYT06] ot omolec
£ZeTdlouY OPLOUEVOUC GTOYAGTIXOUS XAVOVES EXUAINCTNC OE ENUVUAUUBOVOUEVH TETEQUCUEVL
oy vidie. To povtého exudinone tepthopBdver yuor “xorhepwuévn’ dpdon (status-quo) 1 onoio
avardewpeitar ot apand Tuyako ypovixd dlacThAuata. Av dev Yewpenlel emopxds xohh auth N
0pdion emhéyetan o GAAn xotd Toyn. Amodexvietan 1 dadixaota auth Yo Peloxeton pe
HEYSAN miavoTnT TOAD XOVTE OE UIdl LOOPEOTEN TOU OTUTIXOU TokyWLOL00, YLol HEYEAOUS
Yeovouc.

Mo ouvapric xatnyopla SuvoXY xavovey eéetdleton oty E&ehxting Ocwpela Ionyviev
(Evolutionary Game Theory) [Smi82], [HS98]. H EZehuxtiny| Ocwpla [Taryviwv eunvéeton and
™ Vewpla Tng EEEMENC xou oipynd BLaTuTINHES TEOXEWEVOL VoL TEPLY PAEL TIC CUUTERLPORES
oe TANHuoOUG BLaPOEWY EWBWY GE XATAC TACELS UAANAETDEUONG, EVE GTY) GUVEYELX EQPURUO-
oTNXE €UPUTEPY Xt GE dhheg meptoyéc. To apriuntind xpLtrplo evoc mouyvidlon (xpmr']pto
x60T0UC) avtiototy(leton ue Ty e€ehixtind xatahhnhotnta (fitness) xou cuumeptpopés (Spdoelc
1 o TEATNYIXEC) oL oTtoleg euvoovTal eEelxTd emexteivovTat. O o cuYNIOUEVOS BUVOIXOC
XAVOVAC Vo 1) «OUVOLXT TNG OVTLY PAUPNCY (Replicator Dynamics), eve HLOL ONUOVTLXT| EVVOLXL
TOL BLTUTOVETOL v 1) eEEMXTINY EucTADELL.

Y1 ouvéyela tapouotdlovTon To TPOBAAUATY UE To OTola Aoy OAELTOL 1 TopoUca EQY AT

X0l GUVOTITIXG. XYTOLOL OO TOL ATOTEAECUATOL.

1.4 Teapuixd Xuothuota e Mopxofiavd ‘Aluarto
210 Kegdhouo 2 yeheteHvion CUSTAUNTY OTT) LOPPY):

Trr = Alyr)zr + B(yr)us + wy,
yr © Aluolda Markov, (1.1)

Vewpdvtag 6T 1 ahuoido Markov gy, €yet évor yevind ywpeo xotdotaone D (mdavdy unocivoro
evoc Eweldelov ywpov). X BBhoypapla Eyel yehetniel n meplntwon mov o yhpog

xatdotaong D elvan temepacuévog 1) apriufotuo dmelpoc.
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C

Yyfuo 1.1: Yotnuo eAeyyOUeVO UETE) BIXTOOU ETUXOVWVLMDY

Kivnteo yioe T HEAETN TETOWWY CUOTNUATWY ATOTEAECE 1) AVAAUGCT] Y QOUULXMY TETOOY VL
XV Ty VOOV PE Tuyado elcodo mouxTtev. Trdpyouv Oume TOAAES TAVES EQUOUOYES OTIC
omotec unopel vo epgaviovton cvothuote ot poper (1.1). T napdderypa évor ypauuxd
CUCTNUA TIOU EAEYYETU PECE EVOC DIXTUOU ETUXOWVOVIGY, OTwe tTng Ewxdvag 1.1, 6mouv P
(plant) eivon éva ypauuixd cUOTNUO CUVEYOUC YE6VOU, S €vac BELYUATONATTNG, Y) Elvor 1)
xaduoTtépnon Tou ewdyeTal amd TO CLOTNUA eTXOVWVIWY, C evag eheyxTthAg xow H évag
ovyxpotntic undevixol Paduol (zero order hold). Evo dho napdderyua etvon évor oféfato
Yoouuixd cOoTnua, 6oL oL Ttivaxeg avrixouy ot éva Tohledpo. H elcoywyt) wag popxoflovic
doprc oty of3efardtnTa 0dnyel oe MILS ue ywpo xatdotaong o tohledpo autd. H avdiuon
mdovov vor 0dnyel o AydTERO GUVTNENTIXG ATOTEAECUATO EVOTAVELIC.

To Boowxd anoteléopata opopolv Ty uéon tetparywvixy (exdetiny|) euotdieia Tétowwy
ouoTNUdT®Y, dnhadh cuvdfxec étol wote Elzfzy] — 0 exdetnd, xadde k — 0o xu to
YEUUUXO TETEAYWVIXO EAEYYO. 1o CUYHEXQUIEVAL, APOU YUQUXTNELOTEL 1) UECT) TETEOY VLX)
ex¥eTinr) euotdieio U€ow NG QuopaTiXG axTivag EVOC TEAEOTY|, ATOBEYUOVTOL IXUVES XAl
avoryxoleg cuvITxeg Tou ebvan o EUXOAO Vo EAEYYVOUV. DUYHEXQUIEVAL

[Tpbtaom 1: T évar cboTnua oTn Yop
Th1 = A(Ye) Tk,
Tar axdAouda ebvon LloodUVaUL:
(i) To obotnua eivon exdetind euotadéc UTd TN Péon TETEAYWVIXY EVvola.

(ii) YTrdpyer otadepd a € (0,1) xon axépanog ko étor wote Elaf 2k, < axd o, yio oo ta

Zo-
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(iii) Do éva Yetind optopévo mivaxa and cuvaptiioelc Q(y) undpyet évac Yetxd optouévog

v amd cuvapthoelg M ETol KoTe:

AT () E[M (y1)lyo = y]Aly) — M(y) = —Q(y),

vy 6oty € D.

H ouvifun (iii) tepthopfBdvel Ty entluon plag yeouuxic ohoxinewtixic e€icwong Timou
Fredholm o 1 cuvdrun (ii) uropet vor e€etaotel xdvovtag uTtoloylouols avadpouxd oo ky
X0 GUVETIOC, €lvar Buvatdv var eheyy Doy aptiuntixd.

21N CUVEYELL UEASTOVTAL TROBANUUTO YEUUUIXOU TETEUYWVIXOU EAEYYOU. XTOV ATEWO
optlovta to mEdPAnua eivon 1 ehayioToToinon Tou xpLtnpeiou:

o

Z vy Qi) + g Rlyk)ur) | (1.2)

k=

émou a € (0, 1) wo mopduetpog andoBeonc.
O Béhtiotoc eheyx g (€dv UTdpyet) UTOpEl VoL EXPEACTEL PESw TNS ADONE TNG TOEAXATE

ohoxinpwtixhc e&lowaorne Riccati.

K(y) = Q(y) + A" (y)[aA(y) — aA(y) B(y)-
- (R(y)/a+ B (y)A(y)B(y)) ' By)" Ay)]Aly) (1.3)

OTOU:
Ay) = E[K (yrr1)|ye = ] (1.4)

Mropetl v amoderydel ot
Ipbtaom 2: Av undpyetl Eleyyog avddpaorg mou xdvel To J tenepaocuévo téTe 10 PEATIOTO

%00TOC UTOPEL Vo YRAPTEL 0G:
T (2,y) = " K(y)z + c(y),
%o 0 BENTIOTOC EAEYXTHC BiveTon omo:
u, = Lyi)we = —(B" (yn) Ay) Bye) + Rye)/a) ™ B (ye) Alye) Alyn ),

émou K, A amoteholv hoon tov (1.3),(1.4).

1.5 TIlodyvia pe Tuyado Elcodo Touxtov

210 Kegdhowo 3 pehetorvton monyvidia ye Tuyola €lood0 Touxt®y oL 0Tolol GUUUETEYOUY OTO
oy VEBL Yol OLOPORETIXG DLUCTAUATOL LUYREXPWEVA, VEWPOUUE OTL UTdEYEL EVag TakxTng Tou
uéEveL oTo Touy vidl yia dmelpo yeovixd opllovta Tov omolo xoholue major player xat Toihol

TOUXTEC UE TETEPAOUEVOUS Ypovixols oplloviec mou xahoUvton minor players.
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Trdpyouv didpopa TEaxTxd TapadelypaTa oTa ool UTEEYEL VoG ONUAVTIXOS TafXTNg
0 omolog €yel TOAD PEYGAO ypovixd opilovia xou aAANAETORd Ye éva apriud omd maixTeg
UE WXPOTERN ETEEOY, EVK O YEOVOS TG oAANAeTidpaonc pe Tov xadéva and autolc Toug
moixteg elvon oyetnd puxpede. o mopdderyua, o€ pio aneAeudepUEVT ayopd EVERYELIS O
OnuoéoLog popéag TopaywYNe urtopet vo Yewmpniel o major player ue dnelpo ypovind opilovta,
EVE Ol ETLYEIPNOELS TORAYWYNS OVAVEDCUNG EVERYELOC, TTOL Taipvouy ddeta va eloéltouy 6To
cloTNnua yior Eva uxed TEoxadoploévo Yeovixd OLdc TNud, Utopoly vo Yewendoly minor
players. "Evo dA\o mopdderyua etvon par tednela 1 omolo €yel TOA) ueydho ypovixd opllovta
%ot OAANAETLORY UE TTOANOUG DAVELOANTITES, OL OTIOLOL €Y 0LV UXPOTEQO TEOXUVOPIOUEVO YEOVIXO
optlovta. 'Evo tpito mopdderypo eivon €vol TAVETIGTAULO TO OTOlo €yel UEYEAO YPOVIXO
optlovTa xow IAMNAETLORE UE TOUE POLTNTES TOL XAVE EEUURVOU TOU E€YOLY CNUAVTIXE UXEOTERO
Yeovixo optlovta.

‘Eva mopdderyua CUPUETOYAC TV Tauxtov qolvetar otny exova 1.2, H elcodog twv

TOUXTWY UTopel var teprypagel and po ahuotda Markov:
e = (N2, ..., N ™Y /s, (1.5)

6Tou N,i ebvon 0 apriuoe Twv maxtoy Tou elohhioy 6To Touyvidl T yeovix otiyuh k —1, T
0 ypovixdc optlovtac Twv minor players xat s, 0 péytotog mdovog aprdude twv maxtoy. H
OUVOLXT) EIVOL YEUUUIXT) X0 TOL XOGTY) TETRUYWVLXAL.

To mpoBhnua e Tuyadoag el0660L TaxT®Y peTaoynuatileton oe cUlELYUEVAL YEuUUIXS
TeTPAYWVIXA TEoPBAAaTa ehéyyou Y MILS. O woppotia Nash yoapoxtnptleton cuvenoe
am6 oulevypuévee e€lonaoelc Riccati yioo MILS.

Y1n ouvéyela e€etdleTon 1) TERIMTOON TOL LTdEYEL Evag TOAD UeYdAog aprdudc amd minor
players. H ahuoida Markov (1.5) 1 omofo €yet Sloprtd oAAd TOND PEYANO Y RO XATAoTUONC,

mpooeyyiletar amd Uiol GAAN HE CUVEYY| YWEO XATACTACTC:

D = (yo,uwyT_l)ERT5Z?Ji§1;inO=

Axololiwe, avalbeton To TakyVio UE TNV TROCEYYIGT| TOU UEGOU TEBIOL Xou BLUTUTILVOVTOL
Toe culeuyuéva TeoBAuaTa BEATIGTOU EAEYYOU, GTO Ol xo®E O aEtdudS Tewv minor players
tebvel oto dmewo. H Adon twv mpofAnudtwy autkv egopudleton o mowyvidio UE UEYAAO
(renepoaopévo) aprdud minor players xou omodetxvieton 6TL anotelel € woppotio Nash, ue
e — 0 xaddc o apriude Twv Touxtoyv Telvel oto dneipo. H amddeiln €yel evoeyouéveme xa
ave€dptnTo evdlapépov xou maovotdleton otny Hopdypago 3.8. Me tnv npocéyyion tou
uéoou mediou ebvon dBuVITOV VoL amodeLyYolv xou xdmot anoTeAEopaTa UTapdng.

Téhoc mpoteiveton €vag alyoprduog vl Tov urohoylopd Tng toopporiog Nash. Eva

Topddelypo and sample paths nopoucidleton oty Ewdva 1.3.
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Yyfua 1.3: Kdmoteg tpoyiég

1.6 Tlatywia o Meydira Alxtua

Y10 Kegdhao 4 peketayvtan malyvio ot omolol oL makxteg aAANAETLOPOLY Tévey o€ €var ueYdho
dlxtuo. Tmdpyouv mOAAG xivrtear yioo TN PEAETN TETOWWY Touyviwy. Evo yopoxtneiotixd
ToEddEryUo Ebvan 1) GAANAETIOEOOT TWVY BLAPOEWY TOEUYWYMY, XATAVIADTOV XAl EVQUGDY
UXEO-OXTUOY Téve 0To BixTUO UETopopdc/Slavourc nhexteixic evépyelac. Yndpyouy, eni-
OMNG, TOMAGL TOPUBELYUOTO XATAC TACEWY TOLYVIOU GE XOWWVIXA dixTua, OTwe 1) avalATnon
epyooiog, 1 eMAOYH TEOIOVTOY (T.)Y. THAETXOWVWVLIXOU Tapdyou), 1 anodoy)| 1 Oyt eV,
1) GUUMETOYY| OE OLAPOPES OUADES, 1) EUTAOXY| OE EYXANUAUTIXY CUUTERLPORE X.ATl. OTIC OTOLEC
1 anégauct Tou xdde maixTn €upTdTal TOGO Umd TIC TEOTWHACEIS TOL Wiou 600 ot amd Tic
ATOPACELS TOV «PIAwVY Tou. TTdpyouy emlong SLUPOPES OLXOVOUXES XATAC TUOELS OTIC OTOlES
TOEUTNEELTAL TOTUXOS ARG o1 EVPUTEROC AVTUYWVICHOS O omtofog umopel var tapac tadel and
OAANAETORAOELS TV OE Eva BixTLO.

Trovetoupe 6Tt oL TaixTeg BEV EYOLV TARRT YVOOT TOU OIXTUOU TV AAANAETLORACEWY.

Awrd€Touy Ouwe Piar OTUTIOTIX TEPLYPa@T] TOU OXTUOL T.y. Tuyaio yedenua tOTou Erdos—
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0 E

(B) H ouvohxrp evépyewr otnv
(o) Mt otatiotixs) cUANOYH XAVOVIXY) GUANOYT).

Yyfuo 1.4: Avedoyio ye ) otatioting Puoiny

Renyi, small world network, mAéyua, x.An. Emmpooiétne, urodétoupe o6t dtardétouy xan
xdmotar Tomxr] TAnpogopla, dnhadr 6Tt yvwellouy TIC cuVBECES TOL BTUOU, XaddS xal
TIC TPOTYWNOEIC TV TaXT®OY o ot Yettowd toug. H Booun epwtnomn mou avakieton efvan
und moleg mpolnotéoeic eivon duvath 1 Utapdn H/xa 0 UTONOYLOHOS WIOC TROCEYYIOTIXNG
looppoTiag ot TETOW TaLy ViDLaL.

Apyxd oplleton piar €vvolo TEOCEYYIGTIXNG IGOPEOTIOC EUTVEUCUEVY] a6 EVVOLEC TNG
OTUTIOTIMNG QUOIXNG. XTI OTATICTIXT| QUOLXY|, YL TNV TEQLYPUPT] EVOC UOXQOCKOTUXOV
CUCTAUNTOC, Elvan adUVaTOV Vo ueTendolv ol apyxéc cuvirixeg (n.x. Yéoeic non TO(XOTY]TEQ)
and éva ToND peydho opdud (my. ~ 10%) copatdiov xu va emAudolv ot duvopixéc
edlonoelg yio Ty e€€MEN Toug. To medfinua autd avteToiletar YpdvTag Wiot GUANOYN
a6 VONTLIXS avTlypapal TOU GUC THUOTOS TIOU €Y 0UV DLUPORETIXES dPYIXEC CLVITXES, 1) oTolu
xoelton oTaTioTixr) cUMOYT (statistical ensemble, m.y. Ewdva 1.4a). Audgpopes poxpo-
OXOTUXEG WLOTNTEG EYOLUV TIUH TOAY XOVTE OF WO VIETEQUIVIOTIXY| GToeRd yiar OAol To
CUCTAUNTA OTY) OTATICTIXY] CUALOYY|, EXTOC Tavoy amd €val GOVORO GUOTNUATKY UE TOAD
uxen mdavotta (m.y. Ewdva 1.407). Mo avahoyio ye tnv xatdotoon mou anetxovileto
otnv Ewova 1.40" yenowonoteiton yioo voo oploTel yiot Evvola TpooeY Yo TXhG LoopeoTiag 1
omoia Yo ovopdleton xatd miavoTnd mpooeyylo Tt woppotio Nash (Probabilistic Approxi-
mate Nash (PAN) equilibrium).

211N CUVEYELL 0O ONOVUUOTE UE TO TOROUXATEL EQMTIAL

Eewtnon: Ilow eivon 1 eAdyiotn mocodTNnTo TANEOQORING TOU TEETEL VoL £YOLY Ol TTalXTES
€T0L WOTE VoL UTGPYEL £Val GUVOAO GTRATIYIXWY OF TROGEYYLOTIXT LOOPEOTIA.

Me Bdon v andvinon otny epwtnon auTh oplleTan Lol EVVOLd TANPOQOELIXHAC TOAUTAOXO-

o (necessary information complexity (NIC)), w¢ 1 ehdytotn nocdtnto TAnpogopias Tou
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Yyuo 1.5: H mohumhoxdtnta yio Sdpopoa Btacthpota Tne mavotntac oOvoeonc.

elvor amapadTnTN Yo TNV UTtapdn TS TEOCEY YO TIXNC [0OPEOTaC.

Axohotdwe, avahbovton xAACES ALY VIBWWY OTIC OTO(ES 1) TOAUTAOXOTNTO EfVOL YOUNAT.
Eivow, dnhadt|, epuxti| €0pE0T TEOCEY YIOTXHS LOOPEOTIAS UTOVETOVTAG UOVO ULl QY| TOGO-
TNTO A6 TOTUXY| XU OTATIOTIXY TANeogopia. Enextelvetar, cuveng, n Yewmplo twv moryviwy

uéoou medlou (MFG) xau o€ Teptntdoelc Tou oL aAANAETLORAOELC BeV elval GUUUETPIXEC.

[Topadelypotor TETOWWY HAACEWY VUL TOL OTUTIXG XL XATOLOL YEOUUXS TETEOY VXY OU-
vod oy vidto og Tuyada ypagruoata tutou Erdos—Renyi. Tao molyvio autd ebvon amhd dtory
n moavéTnTo 6vdEsNC eivon Tou TLY oL YpuPHUUTOC Elvor HEYEAT. T'ior Tor Tt oy vidLa,
1 ToALTAOXOTNTO Tapovatdletan oty Ewdva 1.5. Tapoduola anotehéouata loybouy xaL oTny

nepintwon alknienidpaong o eva Small World Network.

Mo dedtepn edwr teplntwon mou avakleton efvar Tor TETEAYWVIXE TodyVia UE TolxTES
TOU AAANAETULOPOUV OE €Val TOAUDLACTUTO TAEYUQ. € QUTYH TNV TEPINTWOY UTopoly va
XATUOAEVAC TOUV TPOCEY YIO TIXES LOOPPOTUES, YPNOULOTOLOVTUS ETUVELANUUEVA TNV ATEXOVIO
Bértiotng amoxplong. 'Etot, 1 mAnpogoplaxt| TohuThoxdTNTA EiVol TOAUGVUULXT X0 1) TEEN
TOU TOAUWVVUUOL TowTIeTon YE T1) BLAG TUOT) TOL TAEYHATOC.

2T GUVEYELOL AVUADETOL EVOL TURADELY A OTO OTOLO Ot TAXTEG AAANAETLOPOUY TV GE £Vt
O TUALO X0 £Y0uV U TeTpaywvixd x6otr. H Béhtiotn andxplon oto mapdderypo autod etval
yooTr). ‘Ouwe, Umopoly Vo XUTUCKEVUOTOUY GTRATNYIXEG TTOU ATOTEAOUY TROCEYYLOTIXT
LOOPEOTIXL 0V OL TIOUXTES €Y0LV la (E0Tw xou Pixpr) cuvepyasio.

Téhoc avahbeTon opriunTixnd Vol TUPABELY UL YROUULXY TETEAY VXY ToUY VIWV UE TOUXTES
TOU GAANAETULOPOLY TAVEL OE €val BUXTUMO.  MTRUTNYXES TOU AmOTEAOVY TPOGEYYICTIXT
LlOOPEOTOL XATAOKEVALOVTOL UE Wi TEYVIXT avaywYTc. Apyxd o xdlde maixtng Yewpel éva
UuxeoTeRo Touy vidt, oTn cuvéyelo Poloxel Wi oTEUTYINY WooppoTiag 0TO Toky VIOl auUTO.
Téhoc, epapuodlel Tn oTeaTnY aLTH 0To oy Touy vidl. H avaywyy| gatvetar otnyv Eudva
1.6.

H Swpopd petald tng anddoong Tng TeooeYYoTx\G oTeaTnyixis xou Tng PéATioTng

(umoVétovtag 6Tt oL GANOL TIOUXTES YENOWOTOWUY THY TEOCEYYIOTIXY), WS CUVAETNOT TNG
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Yyfuor 1.6: O maixtng pr Vewpel 6Tt ouppetéyel o éva mawyvidl uévo Ue Toug maixTeg
P2, P3; DN—1, PN—2 VEWEOVTOC Ui VEX GUVOEST) HETALY P3 avd Py —2.

oJ B
—5—5=0.1
—6—s=0.2
—6—s=0.3
—6—s=0.5
10° | —4—$=0.8
3 , ——s=1
S ‘ —6—s=1.5
3 S 5 —6—s=2
-10 ’ S 9 * ——8=2,6
10 '+ S S { 5 s=3
N o S
O o S @ % 9
2 4 6 8 10 12 14 n

Syfua 1.7: H Sapopd J*(u™, u™"") — min,, J*(u, u™"") w¢ ouvdptnon tou n

OLIOTAONC TOU OVIYUEVOU ToUy VIOV, Yid OIAPOPES TUES TWV TUQUUETEWY, QlvETAL TNV
Ewévo 1.7.

Yt mopadetyuata Tou avahlovTal, ol factxol Adyol Tou 0dnyoly oe yYaunhl ToAUThOXO-
T ebvan xdmolol VOUOL HEYSAWY aptiudY, 1) GUGTOAXOTNTO TNG ATEXOVIONS TNG BEATIOTNG
ond- xplone (best response map), 1 cuvepyooior PETHEY TV TUXTOV 1 uxed xE€pdn oe

ATOUOXPUOUE- YOUG TAXTEC.
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1.7 Auvvouxol Kavovee xar ECamdtnon

To Kegpdhowo 5 e€etdlel 0 yer\on BUVOUXOY XAVOVOY GE XATACTAGELS TawyViou Ue EAAMTN
dopr) Thnpogopio. Ou duvauixol XUVOVEG avTAVUXAODY TNV TEQLOPLOUEVT] 0pYohOYIXOTNTY
TV TUXTOY X Yuropel vo expedlouy mpocopuoYt, CEMEN 1 expdinoT. Eva xiviteo yio
MERETY BUVAUIXWY XAVOVWY EVOL 1 LOVTEAOTIOMNOT) TWV ETOUVOAUBAVOUEVLY GAANAETLORACEWY
AVAUESA OF TapPay®Y0US NAEXTEWXNC eVEpYElaS. Aouixd oTtotyela yio Tov xdle ToixTr), Onwe
TO ®O0TOC TUPAYWYNC, OV Elval TAEWS YVWOTE GTOUC UTOAOITOUC TAEXTEC. LUVETMS 1)
YENON SUVOLXAY XoVOVKY Elvar EDAOYT.

O dLdpopol duvopLxol xavoveg otny TUTXY| TepinTwon dev Peloxovtou ot oopporio Nash.
LUVETHS av xdmolog mokxTng YVemeilel Tov SUVOUIXG XAVOVOL TKV aVTITGAWY Tou, €YEL 1
BLVATOTNTOL VoL TOUC ECUMATACEL XoU VoL EXUETUAAEVTEL T1) YVworn auth. O facixéc epmThoec

mou e&etaler o Kegdhono 5 ebvou:

® Y€ TOLEC TEPLNTAOOELS Vol GUVOAD a6 BUVOIXOUE XUVOVES Elvar txavoToinTixy TeoBhedn

Yl Lo xotdo oot oy viou.

o Ilotx etvor 1 enidpaon Tng duvaTOTNTAC ECANETNONS GTO UMOTENEGUA TOU oLy viou.

Avogopind ue TNV TEMTN EEWTNOT SLUTUTIGVOVTOL VO XELTHRLYL YLl TNV AELOAGYNOT TV
BLVOXAY xoVOVeY. To xpitrplo Tng euxoplag, e€eTdlel xatd TOG0 Vo UELDYOVTAY TO XO0TOG
EVOC TAXTN oV YENOWOTOOVUGE TNV BEATIOTN OmOXELOT) OTI OTEATNYIXT TWV AVTITGAWY TOU.
To Sebtepo xpithplo eCoptdton and Ty adEnon Tou x60Toug eVOC UTO e€ETooT TodXTY OTaY
avTl yior To BuVaULXG XaVOVAL, O AVTITUAOG YENOWOTOLEL TN BEATIOTY amoOXELOT).

Y1 ouvéyelo e€etdleTan Pl UToxaTnyopla TV oTeaTnyxwy e€andTnong, TNy onola
ovoudlouUe oTpaTNYXES uToxploioc. Xe auTyh TNV TEpinTwor xdnotog madxtng 1) xdmotot
TOUXTES YENOWOTOOVY TOUG BUVOHIX0UG XAVOVES TOUC OOV VoL Efyaty %dmolo dLapopeTind TOTO
(mpotiwhoelg). Ltnv mepintwon mou undpyet apxetrh offeBoudtnTa xou povo évag maxTng
UTOXEIVETOL, TROXUTITEL OTL UTOREL VoL £YEL TO {010 XOGTOC UE TNV TERITTMOT TOL ATAUY AP NYOS
Stackelberg. Y11 cuvéyeta Yewpolue TNy tepinTtwon otny onola Ghot oL TtalxTeg uToxpivovTaL
xou xataoxeudlouue Eva Bonintind maryvidt To onoio xwAolue Tory VoL Twv uToxeltky. Me
™ Bordetar autol Tou oy viou, SlaTUTOVOUUE Uar TEOBAEDT Yo To apyd Touyvidl. Téhog
eZetdletan €val ToRADELY U TOU UTIEEY 0LV TOAKOL LIGOBUVIUOL TUXTES. 2TV TERITTWOT aUTH,
10 %bvnTeo Yioo uToxptota ebvar TOAD wxEd, xou 1 BEATIOTN uToxpiota Yo xdle ol ebvan
TOA) XOVTY OTNV TEAYUAUTIXOTNTO.

Y ouvvéyelo e€etdlovial xdmola OVTEAD Yol oyOpEC NAEXTEIXNC evépyetag. Apyixd
avoAveTal €va Lovtého ohryonwiiou Cournot, dnhadr evog ohyonwiiou 6To omolo oL Tapay K-
yol evépyelug amogacilouv yla Ty evépyela mou Vo TeocPEEoLy, VG 1) TYLT| e€apTdToL omd
) {ATNoM ot TN GUVORLXY) TEOGPORE. LTV TERITTWOT AUTH OL ToEAYWYOol £Y0UV GUUPEROV
Vo cupTEpLpepUolY cav Vo efyay uxpdTEpo %60To¢ and To mpayuatixd touc. ‘Etol o

AVTOYWVIOUOS LUETAED Toug evioyVetat. 'Evo mopdderyua, oto omoio unolétoude yoouuxr
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ivaxag 1.1: Yupueteind ohryomwhio ue 2 moixteg

Ipoomoeiton | ¢ G2 L, Lo P
Koaveic 04 04 —0.16 —0.16 1.2
Haixtne 1 06 0.3 —0.18 —0.09 1.1
Hoabxtng 2 0.3 0.6 —0.09 —0.18 1.1
Kot ot 600 | 0.48 048 —0.1152 —-0.1152 1.04

ouvdpTtnon {Rtnong, diveton otov mivaxa 1.1. Ov tocdtntee mou mopdyovton cuyfoiilovton
UE g1 %Ol Ga, 1) TWn U p xan e Ly, Lo cuuBoiiCoviar T X60TN TV ToXTOV.

Ye éva dAAo ovTELO ary0pdc, oL TaiXTEG UTOBAAOLY TEOPORES GV YEUUUIXEG CUVIPTHOELS
noocétnroc-tunc (Supply Function model). Ytnv nepintwon avth n egondtnon odnyel tnv
TWn VPNAOTERA X0 TO XOOTOC TWV TAUXTWY YaUNnAoTepa. Yo TNV €vvola auTh| 1) e€amdtnon
OTN CUYXEXQUWEVT TEPITTWOoT elvar Uiar TEAEN TOU EVIOYUEL TN CUVERYUCIO AVAUESH GTOUC
TOEOLY Y 0UG.

Téhog avahbetan évog unyaviopods and ) Pioypeagio ([RT14]). Xty nepintwon auty
Lo XY oplar Xovovwy e€amdtnong xAvel Tig TYWES Vo auEdvovToL AmEQLOPLOTA, XAVOVTOS TO

OUVOAXO GUGTNUO VoL NV DOUAEVEL.
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Chapter 2

Stability and LQ Control of MJLS

This chapter studies the mean square stability and the LQ control of discrete time Markov Jump
Linear Systems where the Markov chain has a general state space. The mean square stability
is characterized by the spectral radius of an operator describing the evolution of the second
moment of the state vector. Two equivalent tests for the mean square stability are obtained based
on the existence of a positive definite solution to a Lyapunov equation and a uniformity result
respectively. An algorithm for testing the mean square stability is also developed based on the
uniformity result. The finite and infinite horizon LQ problems are considered and their solutions
are characterized by appropriate Riccati integral equations. An application to Networked Control

Systems (NCS) is finally presented and a simple example is studied via simulation.

2.1 Introduction

Markov Jump Linear Systems (MJLS) are linear dynamic models where the matrices describing
the evolution of the state vector, depend on the state of a Markov chain. The existing results on
the stability and LQ control of MJLS are dealing with Markov chains having a discrete state
space, i.e. finite or countably infinite. However, in several applications, the natural choice for
the state space of the Markov chain is not discrete. Some examples of Markov chains with
continuous state space are given in chapters 1 and 2 of [MT93]. In this chapter, we extend the
stability analysis and the LQ control of discrete time MJLS to a more general state space Markov
chain case, including the continuous state space case.

An example of such applications is the study of systems with dependent random communication
delays, such as Networked Control Systems [GC10],[Nil98]. The amount of time delay stands
for the state variable of the Markov chain. A natural choice for the Markov chain state space is
an uncountable subset of the real numbers, such as a closed interval. Another example could be a
dynamic linear economic model, having coefficients depending on the price of some asset traded
in a stock market. The price of a stock market is usually modeled as a geometric Brownian motion

[BS73]. The state space of this Markov chain, is the positive real numbers. Examples of MJLS
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with continuous state space also arise in the study of gain scheduling control of nonlinear systems
with a Markovian desired trajectory or a Markovian measurable disturbance. More generally,
several systems have been modeled as linear uncertain systems, where the matrices describing
the evolution of the state vector, belong to a compact polyhedron [BGFB94]. Assuming that
there exists a Markovian model for the uncertainty, design problems involving MJLS with
continuous state space Markov chain will be obtained and will lead to less conservative stability
conditions. Another example, which also motivates the current work, comes from the optimal
control problems, arising in the mean field approximation of LQ games involving a large number
of randomly entering players, where the players are considered to belong to a continuum (see
chapter 3).

The first work studying the mean square stability of MJLS with finite state space Markov
chain was [Bha61]. Other contributions include [BP93] where the stochastic additive case was
studied and [JC90],[CF93],[FL02] where necessary and sufficient conditions involving Lyapunov
equations were derived. The mean square stability for MJLS with a countably infinite Markov
chain was studied in [CF95], using an operator theoretic point of view. Some problems related to
the mean square stability of MJLS with general state space were studied in [Mou98], [HKMO02]
under some ergodicity assumptions. The relation among several notions of stochastic stability
for MJLS was studied in [FLO2].

The first work studying LQ control problems related to MJLS was in a continuous time
setting [Swo69]. A lot of work has been done on the Linear Quadratic control of the discrete
time MJLS as well. The finite horizon LQ control problem for the finite state space Markov
chain case was solved in [BS75] and its infinite horizon counterpart in [CWC86]. The existence
of a solution was first studied using controllability notions in [JC88] and testable conditions were
derived in [JC90]. A related work with infinite horizon ergodic criterion and safety constraints is
[HAK1O0]. Filtering problems for MJLS are studied in [SBA99] and a review of several results is
given in the books [CFMO05] and [Bou05]. The LQ control problem, for a system involving a
Markov chain with countably infinite state space was studied in [CF95].

The contribution of the work in this chapter is twofold. The first part, is the study of the mean
square stability of MJLS when the Markov chain has a general state space. The mean square
exponential stability notion is characterized by the spectral radius of a certain operator. Then,
testable equivalent conditions are derived based on the operator theoretic result. The second part
of the contribution of this work is the extension of the solution of finite and infinite horizon LQ
problems to MJLS with general state space. The basic difference between the current work and
the literature is that the techniques applied for the stability analysis of MJLS with discrete state
space could not be directly extended to the continuous or general state space. In a comparison to
older results, a more general class of models could be analyzed. Examples of models of Markov
chains with general state spaces could be found in [MT93]

The following notation is used. The probability is denoted by Pr(-) and the expectation by

E[-]. The value of the Markov chain is denoted by vy, and its state space is the metric space
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D. Denote by B(D) the c-algebra of Borelian subsets of D. The evolution yy, is described
by the notion of stochastic kernel, i.e. a function K(-,-) : D x B(D) — [0, 1] such that

Pr(yrs1 € Blyy = y) = K(y, B). A matrix function @ : D — R"™ " will be called strictly
positive definite, if there exists a positive constant ¢ such that Q(y) > ¢/, for any y € D. Finally,
the spectral radius of an operator 7" is denoted by (7).

2.2 Problem Description

The system under consideration is the following:
T = Ayr)zr + Byr)ur + wy (2.1)

where 2, € R” is the state vector, u;, € R™ is the control input, A(-) and B(-) are Borel
measurable, bounded matrix functions of appropriate dimensions and wy, are zero mean i.i.d.
random variables with finite second moments.

Two types of problems are considered. The first type is the stability problem and it is stated
as follows:

Stability problem: “Under which conditions the free system:

is stable". The notions of stochastic stability that we study in the current work are given in the

following definition.
Definition 1. The system given by (2.2) is:
(i) Pointwise mean square stable, if E[x} x;] — 0, for any zo € R,yo € D .

(ii) Mean square stable, if E[z} x}] — 0 for any xo, yo random variables, such that F[x} z¢] <

Q.

(iii) Mean square exponentially stable, if for any o, yo random variables, such that E[x} x| <
oo, there exist constants r € (0,1) and M > 0 such that it holds E[zFx,] < Mr*, for any

positive integer k.

(iv) Stochastically mean square stable, if for any x, yo random variables, such that E|xlz,] <

oq, it holds Y e, x} xp < oo
(v) Almost surely stable, if Pr(z, — 0) = 1, for any x, yo random variables.

The second type of problems considered is the LQ control problems. These problems are

stated in a finite or an infinite horizon setting as follows:
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Finite Horizon LQ Control Problem: “Find the control law uy, = y(x, yx, k), that minimizes
the LQ criterion:

E x]j:f+1QN+1(yN+1)xN+1+

N
k::O

Infinite Horizon LQ Control Problem: “Find the control law uj, = ~(z, yx) (if any), that

minimizes the LQ criterion:

o

E | a* (2 Qys)wr + uj R(yk)uk)] 7 (2.4)

k=0

The standard assumptions are made on the matrices involved in the cost functions. More
specifically, we assume that () and () are positive semidefinite, bounded matrix functions and
Ry, and R are strictly positive definite bounded matrix functions. For the discount factor it holds

€ (0,1).

2.3 Stability Analysis

In order to examine the mean square stability of a system in the form (2.2), let us introduce the

following quantity:
Py(C) = Elwyry Xypec] (2.5)

for C' any Borelian subset of D. For any k, P(-) is a set function Py : B(D) — R™*". It will be
shown that P;(-) is a symmetric matrix of signed measures.

The stability analysis is based on the evolution of the quantity Py(-). Thus, we introduce the
space in which Py (-) belongs. Denote by X' the space of signed measures on (D, B(D)) and by
|-| the total variation norm. Then, the space of symmetric matrices of signed measures is defined
as X = H n(mtD/2 X1 Let us introduce on X, the norm ||-||, where ||[12;;]]] = 327, Z;‘:l | il
i.e. the sum of total variations. With this norm, X becomes a Banach space.

The evolution of P;(-) is described using a linear operator T' = Ty  : X — X. It will be
shown that 7" has the form:

Yy / A (y, B)P(dy) 2.6)

=1 m=1

where P'™ is the [, m element of P and the formulae for the matrices A, ,,(y) are given in the
proof of Theorem 1 (see Section 2.8).
The stability properties for a system in the form (2.2) depend on the spectral radius r(7")

([Arv02]) of the operator 71" as, shown in the following theorem.
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Theorem 1. The quantity Py(-) is a symmetric matrix of signed measures and its evolution is

given by equation (2.6). Furthermore, the following hold:
(i) The system is mean square exponentially stable if r(T) < 1.
(ii) If r(T) > 1 then the system is not mean square stable.
(iii) The system is mean square stochastically stable if and only if r(T) < 1.
(iv) The system is mean square exponentially stable then r(T) < 1.
Proof. See Section 2.8. 0

The conditions of Theorem 1 involve the spectral radius of an infinite dimensional operator
and thus, they are not easy to check. Based on Theorem 1, we are going to study further properties
of exponentially stable systems that will allow us to obtain conditions that are easier to check.

The next proposition studies the uniformity of the exponential mean square stability on the
initial conditions. Particularly, it is shown that in an exponential mean square stabile system,
E[z} 2] is going to be small in a finite number of steps irrespectively of the initial condition .

It is also shown that the converse is true.
Proposition 1. The following are equivalent:
(i) The system is exponentially mean square stable.

(ii) There exist a positive constant M > 0 and a € (0, 1) such that E|xlzy] < Ma"E[zl ]

for any x, yo random variables.

(iii) There exist an o € (0, 1) and a positive integer ko such that E[x] xy,] < ax{x, for any

X0, Yo hon-random initial conditions.
Proof. See Section 2.8. [

Condition (i1) of Proposition 1 has a stronger formulation than the definition of the mean
square exponential stability, because the constants M and a are independent of the initial
conditions, i.e. the exponential convergence to 0 is uniform on the initial conditions. Part (iii) of
Proposition 1 shows that the mean square exponential stability is equivalent to the fact that the

function V(z) = 27

x is a “ko-step Lyapunov function" for (2.2). Furthermore, Proposition 1,
shows that a system which is not mean square exponentially stable could not be uniformly mean
square stable.

This result also leads to a computational test for mean square exponential stability. The
following Algorithm uses recursive computations to decide if F[z] x| < azl x, for any zq, yo
non-random initial conditions.

Formula (2.7), computes recursively the matrix E[AT (yo) ... AT (yro—1) A(Yro—1) - - - A(v0)]

and thus Algorithm 1, is valid due to Proposition 1 (iii).
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Algorithm 1 Stability Test
I: Set Lyew(y) = I and Cnt = 1.

2: Set L(y) = Lnew(y).
3: Compute:

Lyew(y) = / AT (y" )Ly AW ) K (y, dy) 2.7)

4: If Lyew < I for any y € D then return “The system is exponentially mean square stable" and
halt.

5:SetCnt =Cnt + 1

6: If Cnt > MaxCnt then halt. Else go to Step 2.

The algorithm does not necessarily halt. Thus, a maximum number of steps MaxzCnt is
introduced.

An alternative way to deal with the stability problem is to study the system using “one
step quadratic Lyapunov functions" of the form V (z,y) = 27 M(y)z. In Proposition 2 the
exponential mean square stability is proved to be equivalent to the existence of a positive definite

solution to a Lyapunov equation.

Proposition 2. Consider a strictly positive definite matrix function Q)(y). The following are

equivalent:
(i) The system is exponentially mean square stable

(ii) There exists a bounded, strictly positive definite matrix function M (y) that satisfies the

Lyapunov equation:
AT (Y E[M (y1)|yo = yJA(y) — M(y) = —Q(y) 2.8)
Proof. See Section 2.8. [

Let us note that if the stochastic kernel is continuous, i.e. it could be described using densities,
the Lyapunov equation (2.8) becomes a linear vector integral equation of Fredholm type. Thus,

in several cases (2.8) could be solved numerically.

Remark 1. The techniques applied to study the mean square stability of MJLS with discrete state
space, could not be applied to a MJLS with general state space. More precisely, the quantity
involved in the stability analysis of MJLS with discrete state space is, in several cases, identically
zero when applied to MJLS with general state space. Thus, it is not appropriate for stability

analysis.

Another interesting notion is stabilizability, i.e. the existence of a stabilizing control law. It

refers to a system under control in the form:

Ty = A(yr) i + B(yr)us (2.9)

Let us define stabilizability:
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Definition 2. The system under control (2.9) is stabilizable, if there exists a bounded matrix

function L(y) such that the closed loop system given by:

Tr1 = [A(yx) + Byx) L(yr)] (2.10)

is mean square exponentially stable. In this case, the pair (A(-), B(-)) will be called stabilizable.

2.4 Relations among the Stability Notions and
Relations to other Control Problems

The relations among the stability notions of Definition 1 are then studied. Theorem 1 shows that
(1ii) < (iv) = (i1) = (i). Next lemma shows that (iii) = (v).

Lemma 1. Exponential mean square stability implies almost sure stability.
Proof. See Section 2.8. [

An example of a system which is almost sure stable but not mean square stable is given
in [JC90]. Thus, (v) # (i) and (v) # (i7). In [CF95] an example is given, showing that
The following example shows that (i) # (i7).

Example 1. Let D = N be the state space of the Markov chain. The evolution of vy, is given by
Uk+1 = Yr + 1 and the function (sequence) A(-) is given by (3,0,3,3,0,3,3,3,0,...).

The system is pointwise mean square stable, since for any non-random initial condition, it
holds E[xlxy] — 0 in finite steps. To see that the system is not mean square stable, take an
initial condition with distribution Pr(yy = 1i,) = 1/2¥, where i, is the first element after v zeros.

It is easy to see that E|xi x| — oo. Hence, the system is not mean square stable.
The following example shows that (i) # (v).

Example 2. Consider the infinite graph shown in Figure 2.1: Each node corresponds to a state
of the state space of the Markov chain. The number inside the node is the value of the function
A(-) on that member of the state space. The numbers on the arrows correspond to the transition
probabilities. On any part of the tree that does not have any forks the product of the members is
1/2. For any non-random initial condition it holds E|x!xzy] — 0. However, for xo = 1 and y
the root, it holds:

Pr (limsupxk = 1) =1
k

Thus, (1) # (v). It remains open whether or not (i1) % (v).
The results are summarized in the following corollary.

Corollary 1. The stability notions are related as follows:
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Figure 2.1: Evolution of the system in Example 2

(i) It holds: (v) < (iii) < (iv) = (ii) = (i).

(ii) It holds: (v) # (i), (v) # (i7), (i1) # (di7) and (i) % (v).

In the following examples, some problems related to control theory are stated in terms of
MILS.

Example 3. Uniform asymptotic stability of linear time varying systems.

Consider a linear time varying system:
Ty = App.

The uniform asymptotic stability [Kha02] for this system is equivalent to the mean square
stability of the MJLS:

Tp41 = A(yk)l’k,

where Yy, is a Markov chain with state space D = N and deterministic transition Yy, 1 = yi + 1

and the matrix function A(-) satisfies A(y) = A,

Example 4. Uniform asymptotic stability of linear uncertain systems.

Consider the linear uncertain system:
Tk+1 = A(H)xlm

where § € D C RL. The uniform asymptotic stability of the uncertain system is equivalent to the
mean square stability of the MJLS:

Tit+1 = A(Z/k)xk,

where yy. is a Markov chain with state space D and transition yi1 = yy, and the matrix function

A(") satisfies A(y) = A(y).

Example 5. Convergence to zero of all periodic products of two matrices..

This problem was stated in a connection with the finiteness conjecture [BTV03]. Consider two

matrices Ay and As. Consider also the set S of finite sequences of 1's and 2's. Consider finally
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the set D = {(s,m) : s € S,m € Nand m € dom(s)} which will serve as the state space of
the Markov chain. The transition of the Markov chain if yx, = (s, m) is given by:

(s,m+ 1) if mis not the last element of the sequence
Yk+1 = ) )
(s,m') otherwise.

where m/ is the first element of the sequence. The value of fl(yk) is given by:

~ A1 lme =1
A(yk) = ’
A2 lme =2

The pointwise mean square stability of the MJLS is equivalent to the convergence to zero of all

periodic products of the two matrices.

Example 6. Uniform asymptotic stability of switched linear systems under arbitrary switching
[LM99].

Consider a set of matrices Ay, . .., Ap,. Consider also the following switched system:

Tir1 = Aa(k)xk

where o (k) is the switching signal. The system is uniformly asymptotically stable under arbitrary
switching iff there exist a positive integer N such that ||xy| < € < 1 for any xy such that
|xo|| = 1 and any switching signal o(k) : N — {1,...,m}.

Consider also the logistic map f : [0, 1] — [0, 1] with f(z) = 4z(1—z). Let m be a minimum
positive integer that 2™ > m. The proof is based on the following fact:

Fact 1. For any switching sequence, o1, . ..oy, there exist a real number, z, € [0, 1] such

0'1—1 g1
cl—H=1,
oc [ 5)

e | Bt 22,

that:

2m 7 m

_ —1 0
(N=1)m IN N

2
f™[S:] =10,1] foranyi=1,...,2™

Consider now the function A : [0, 1] — R™ ™ with:

Let us denote by S; = [%, QLm) The Fact 1 could be proved inductively and uses that

_ A, ifyGSi,izl,...,m—l
Aly) =

A,, otherwise
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The uniform asymptotic stability of the switched linear system, is equivalent with the

exponential mean square stability of the following system:

Tp41 = A(yk>$k

Yer1 = ™ (k)

The transition of the variable vy, is deterministic and thus it is a Markov chain with state

space [0, 1]. Fact 1 and Proposition 1 complete the proof.

2.5 Optimal Control Problems

At first, the finite horizon linear quadratic control problem is studied. The system under control

is slightly more general than the system given by (2.1):
Tpt1 = Apxy + Brug, + wy 2.11)

i.e. time varying matrices A and B are allowed. The problem under consideration is to find a
control law u; = ~y(x, y;, t) that minimizes the cost function given by (2.3). The solution to the

finite horizon linear quadratic control problem is given recursively by the following equations:

Kni(yvi1) = Qni1(yn+1) (2.12)

A1 (i) =E[ K1 (Yr+1|ye)]

/ K1 (y) K (yx, dy') (2.13)

Ky, = Qi + A [Mpr1 — M1 B - (R+ Bf A1 Br) 7' B A | Ay, (2.14)
Ly = —(R+ B"Ap1 Bi) 7' B{ A1 Ay, (2.15)

ur = Li(yr)xk (2.16)

Proposition 3. Consider the system given by (2.11) and the cost criterion (2.3). Then, the

control law computed recursively using the equations (2.12) - (2.16) is optimal.
Proof. Application of dynamic programming. 0

Let us now study the infinite horizon linear quadratic control problem, i.e. minimize (2.4)

subject to (2.1). The solution of this problem depends on the following Riccati integral equation:

K(y) = Qy) + A" (y)[aA(y) — aA(y) B(y)-
- (R(y)/a+ B" (y)Ay)B(y)) "' Bly)"Aly)]Ay) (2.17)
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where:

Aly) = EIK (sl = o] = /D K(y)K(y,dy) 2.18)

The following Theorem 2 characterizes the optimal control policy in terms of the solution of
the Riccati equation (2.17). Before stating Theorem 2, let us denote by .J,,(z, y) the value of the
cost function (2.4) when uy, = p(xy, yr, k) and xg = z, yo = y. Let us also denote by J*(x,y),
the optimal value of the cost function (2.4).

Theorem 2. Consider the system given by equation (2.1) and the cost function (2.4). Then:

(i) Assume that there exists a policy (i that makes the criterion (2.4), finite i.e. J,(z,y) < 0o
for any x,vy. Then, optimal cost has the form J*(z,y) = 7 K (y)x + c(y), where K (y)

satisfies the Riccati equation (2.17). Furthermore, the optimal control is given by:

we = L(yr)ze = —(B" (ye) Myr) B(yr) + R(y)/a) " - BT (ye) Aye) Aly) i (2.19)

(ii) Conversely, assume that a bounded function K (y) satisfies the Riccati equation (2.17).

Assume that the undisturbed closed loop system given by:

Tr1 = (A(yr) + B(ye) L(yr)) (2.20)

is mean square exponentially stable. Then the policy given by (2.19) is optimal.

Proof. The proof shares many ideas with [CFMO05] or [CF95]. The basic difference is the proof
of the finiteness of the cost when the controller given by (2.19) it is used. That proof uses
essentially the results of Section 2.3. The differences are, however, of a technical character and
thus the detailed proof is omitted. O

Theorem 2 characterizes the optimal control law when a € (0, 1). However, the equations

(2.17) - (2.19) provide also the optimal controller when a = 1 and wy, = 0.

Remark 2. (i) The existence of a policy y that makes J,,(z,y) finite for any x, y, is implied
by the stabilizability of the pair (\/aA(-), B(+))). Furthermore, it is equivalent if Q) is
strictly positive definite.

(ii) Equation (2.17), is a new form of Riccati equation. Specifically, it is a nonlinear vector
integral equation. The solution of equation (2.17) could be approximated using the value
iteration method (ex. [Ber07]).

(iii) If the matrices A(-), B(-), Q(-), R(-) are continuous and the stochastic kernel is strongly
Feller [MT93], then any solution of (2.17) is continuous.
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C

Figure 2.2: Networked Control System

2.6 An Application

In this section, we study a simple example of application of MJLS with general state space
Markov chain on systems with random delays. Examples of such systems include Networked
Control Systems (NCS) (ex. [GC10], [Nil98], [HBSWO07] and [LHNO9]) and distributed
optimization algorithms (ex. [BP93]). Particularly, we study a simple model of NCS with
dependent delays. Furthermore, a simple numerical example is given, illustrating the solvability
of the equations derived in sections 2.3 and 2.5.

Consider a NCS as in Figure 2.2 ([LHNO09] or [HBSWO07]). The continuous time plant P
is controlled by a controller C'. The sampler .S works at a constant rate and the time intervals
among the sampling times have length 7". The information is transmitted from the sampler to the
controller through a communication channel, which introduces a random delay. Let us denote
the delay of the transmission of the £-th measurement as y;. In order to keep the model as simple
as possible, we consider time delays only from the sampler to controller and we assume that
the time delay introduced by the channel, is less than the sampling time, i.e. y, € [0,T]. A
Markovian model for the time delay is introduced, i.e. there exists a stochastic kernel K (-, -)
such that K (y, B) = Pr(yx + 1 € Bly, = y). Finally, assume that the zero order hold H is
event triggered, i.e. it holds the old value of the control until the new value comes.

The system under control P, is linear and its equation is given by:
i, = Acx. + B.u, (2.21)

We will study the discretization of the system (2.21) on the time steps ¢ = kT, for k =
0,1,.... Letus, thus, define x, = z.(kT) and uy = u.(kT + yx), i.e. the control value obtained

using the measurement of ;. The system (2.21) has an input u.(¢) = uy_1, on the time interval
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t € [kT,kT + yi) and u.(t) = uy on the interval t € [kT + yy, (k + 1)T). Thus, in order to

describe the evolution of z;, we use the augmented state vector 7, = 7 ul]”. The evolution of

Ty 1s given by:

Try1 = Aa(Yr)Tr + Ba(ye)u (2.22)
where:
[ oA [Uk LA(T-T)B dr
A = 0 c ,
(k) K 0
[ rT—y AC(Tfyka)B d
e caT
Ba(yr) = s ; (2.23)

Thus, the problem is reduced to the design of a controller for the MJLS (2.22) and the techniques
of sections 2.3 and 2.5 could be applied. In the following example, a controller is designed for a

simple system under control P.
Example 7. Consider the plant P described by:
T, = 2T, + U,

Assume that T' = 1, the maximum delay is 0.5 and the stochastic kernel is described using the
density function:

4z /y f0<z<y<05

fy(z) =<4 if0<y=2<05

41-22)/(1—-2y) if0<y<z<0.5

ie. K(y,B) = [ » fy(2)dz. The matrices of the discretized system (2.22) are given by:

e e*(1—e)/2
0 0

(e~ 1)/2

A p—
¢ 1

7Bd:

A LQ control law is designed. The matrices describing the quadratic criterion (2) are given
by Q(yx) = diag(3,0) and R(yx) = 1. For the matrix functions A(y), B(y), Q(y) and R(y),
the Riccati integral equation (2.17) is solved using the value iteration method [Ber07]. The
components of the gain vector L(yy) = [ Li(yx) La(yk) ] are plotted in Figure 2.3.

The closed loop system is simulated and several sample paths are presented in Figure 2.4.

Remark 3. (i) Example 7 was considered, in order to illustrate that equations of section 2.5
could be used to design LQ control laws for NCS. with dependent time delays described
by a Markov chain with continuous state space. It is worth noting that this model for the

delays is more general than the models used in the literature.

(ii) The model used is as simple as possible Thus it can be generalized in several directions.
For example the hypothesis y,, < T' could be dropped, a time delay from the controller to
the ZOH can be considered or packet losses could be studied.
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2.7 Conclusion

The class of MJLS with general state space was studied. The mean square exponential stability is
characterized by the spectral radius of an infinite dimensional operator and proved to be uniform.
An algorithm for testing stability was derived based on the uniformity result. The mean square
exponential stability is also proved to be equivalent to the existence of a positive definite solution
of a vector integral equation of Fredholdm type: the Lyapunov integral equation. The solution to
the LQ control problem is characterized by a Riccati integral equation. The results derived, were
used to design a controller to N.C.S. with dependent random delays. The model of the random

delays is more general than those used in the literature.

2.8 Proofs

2.8.1 Proof of Theorem 1

Let us first show that Py is a matrix of signed measures. It holds P ({)) = 0. In order to show that
each element of the matrix P is a signed measure, it suffices to show o-additivity. For a sequence
of disjoint sets (A,,)%°
fi’f]’»m = el rpale; XyeUr, 4, and dominated convergence theorem ([Bil08]).
In order to derive the formula for 7', we make the following computations:

o-additivity could be shown using the functions f;; Fm () — R with

m=1>

Pk+1(B) (yk)¢(yk)A (yk)ka+1€B]
/ Ay)o () AT (5) K (y. B (dy)

where, ¢(yx) is a version of E[z;xi|yx] and py is the distribution of y,. Let ¢;,, and Pli’m
be the [, m, elements of ¢ and P respectively. Let also fll,m(y) be functions such that
Ao AT (y) = S0, > Aim(y)dim(y). Thus, since ¢, is the Radon - Nikodym
derivative dPy"™ /dyuy, it holds:

Pa(B) =33 / A K (y, B)P™ (dy)

=1 m=1

which completes the proof of equation (2.6).

Assuming that r(7") < 1 spectral formula implies || Py(-)|| — 0 exponentially. Thus, the
inequality F[x] zx] < || Px(+)|| completes the proof of (i).

To prove (ii) let us assume that r(7') > 1. Then there exists an initial value P such that
TP — oo as k — oo. Let P*, P~ be the Hahn decomposition of P. Without loss of generality
T* Pt — oo as k — oo. It is not difficult to show that there exist z, yo random variables such

that P*(B) = E[zozlxy,ep]. The proof of (ii) is completed using the following fact:
1Pl < 2nElwy 4]
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To prove (iii) let us observe that the “only if" part of (iii) is a direct consequence of [Kub85]
Lemma 1 and the “if part" is a consequence of (i).

The proof of (iv) follows directly from (iii).

2.8.2 Proof of Proposition 1

We first show that (i) implies (ii). Using Fact 1, it is not difficult to show that £ [xka] <
2nE[xlzo]||T*||. The spectral formula implies that there exist an integer kq and a positive
constant € such that || 7% || < 1 — e. Thus using Euclidian division of k by k, we conclude to the
desired result:

Bz} zy) < Ma*E[x] z]

.....

The fact that (i1) implies (iii), is obvious.

It remains to show that (iii) implies (i). Let us introduce the following quantities:

Di(y) = E[AT(?JO) e AT(yz'-ko)A(yi-ko)AT(yU)]

i,e, the expectation of the product of 2ik, matrices. It could be shown inductively that ®,(y) <
a’l. Let N be a positive integer such that 2na’ = @ < 1. Then for every z, 3o random variables

itholds: Efz{ ywy,.n] < oV E[x{xo) and using Fact 1 we obtain:
1Py ()| < 20E (2, ywvngn] < aBlwgzo] < @l Po(-)l|

Thus, 7(T) < @'/ < 1 which completes the proof.

2.8.3 Proof of Proposition 2

We first show that (i) implies (ii). Let us consider a sequence of matrix functions My _x(y) given
by:

i My_jx, = E

N
Z xtTQ(yt)xt’l'ta yt]
t=k

and their limit M (y) = limy_,oo My_x(y). The matrix function () is bounded, thus there exists

a positive constant ¢ such that Q(y) < ¢I. It holds:

N
T cM
T, x| < Tn Lo
t 1 —a 0
=0

where M and a satisfy the Proposition 1 (ii). Thus M (y) is bounded. Furthermore, it holds:

.CL’(Z;MN.CEO S ckE

iUoTMN(yo)OUo — Elr1 My 17120, o] = 10Q(y0)To
Taking limits, we conclude to Equation (2.8).

50



It remains to show that (ii) implies (i). Following the same steps as Theorem 2.1 of [JC90]
we conclude that:

Elatz] < z—lakE[xgmo]
2

where ¢; and ¢, are positive constants such that ¢;7 < Q(y) < coI and

i (@)
o= Q)

Thus, Proposition 1 (iii) completes the proof.

}e(0,1)

2.8.4 Proof of Lemma 1

Consider the sets:
Bk,l = {w eQ: Hl’kH > 1/[}

Markov inequality implies Y .-  Pr(Bj,;) < occ. Thus, using Borel-Cantelli lemma we obtain:
Pr (lim sup Bk,l) =0.
k

Hence:
Pr({weQ:az, —0}°) = Pr (Ufil lim sup Bk,l) =0,
k

which completes the proof.
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Chapter 3

LQ Nash Games with Random
Entrance.

This chapter studies Dynamic Games with randomly entering players, staying in the game for
different lengths of time. Particularly, a class of Discrete Time Linear Quadratic (LQ) Games,
involving a major player who has an infinite time horizon and a random number of minor players
is considered. The number of the new minor players, entering at some instant of time, is random
and it is described by a Markov chain. The problem of the characterization of a Nash equilibrium,
consisting of Linear Feedback Strategies, is reformulated as a set of coupled finite and infinite
horizon LQ optimal control problems for Markov Jump Linear Systems (MJLS). Sufficient
conditions characterizing Nash equilibrium are then derived. The problem of Games involving
a large number of minor players is then addressed using a Mean Field (MF) approach and
asymptotic € - Nash equilibrium results are derived. Sufficient conditions for the existence of a

MF Nash equilibrium are finally stated.

3.1 Introduction

For the most of the dynamic game models, the time interval during which the players are involved
in the game, as well as the number of players that participate in the game at each instant of time
are quite structured. For example, in finite or infinite horizon dynamic games (e.x. [SH69b],
[BO99]) all the players participate in the game for identical time intervals. In overlapping
generation games ([Sam58], [BS80], [JY99]), a known number of players of a new generation
enters into the game at each time step and stays for a certain period of time. Several attempts to
impose less structure on the players’ time intervals or on the number of players that participate
in the game have been made. For example, in games with population uncertainty or in Poisson
games [Mye98] the number of players that participate in the game is not known a priori. Games
with random horizon have been studied in a repeated game setting in [AUOS] and in a differential

game setting in [YP11]. In this class of games, the time intervals in which the players are
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involved in the game are identical; however, the duration of the game is random. In [JY05], a
game with overlapping generations involving players which remain in the game for two time

steps is considered. The number of players of each generation is however random.

The current work studies games with random entrance in a LQ setting and imposes less
structure on the time intervals during which the players participate in the game, as well as on the
number of the active players at each time step. In particular we, consider a player with infinite
time horizon, called the major player and many players with finite time horizons, called minor
players. The number of new players entering the game at any time step is a random variable
that has a distribution which depends only on the number of active players at that moment. The
random entrance is, thus, described by a Markov chain. The problem considered here is the
characterization of the Perfect Nash equilibria. After that, we study the case where the number of
minor players is very large. A Mean Field (MF) approximation is used to characterize strategies,
which are asymptotically optimal as the number of new minor players in each step tends to
infinity. The equations derived using MF approximation are often much easier.

The structure proposed for the participation of the minor players in the game is not unusual
in practice. There are several examples of game situations where there is a long living agent
or institution which, at each time step, interacts with a number of agents and the interaction
with each agent is maintained for a certain, rather small amount of time. For instance, a bank
that gives loans to households may be considered as a major player with an infinite horizon
and each person that assumes a loan as a minor player with a finite pre-specified time horizon.
Another example is a liberalized energy market in which there is a public power corporation with
an infinite time horizon and many renewable energy producers that have a permission to enter
the system for a certain amount of time [KP10]. A third example is University-Student Games
[Pap12], where the students of each semester stand for the minor players and the university
as a major player. Cases involving players with different time horizons were studied also in
[JPAK12], [PAKJ13]. Other examples involve the study of repeated games with long-run and
short run-players [FKM90], such as the chain store game and the study of reputation effects (ex.
[KW82], [FT91b]).

In the current work, the problem of random entrance is reduced to the study of coupled finite
and infinite horizon LQ problems for Markov Jump Linear Systems (MJLS). Thus, the Nash
equilibria are characterized using appropriate coupled Riccati type equations. There are two
types of coupling; the first corresponds to the Markov Jump character of the optimal control
problems and the second to the LQ Game coupling. In the case of a large number of players, the
Mean Field approach involves the statement of approximate optimal control problems assuming
an infinity of players. In that case, ¢ - equilibrium results are proved. The method used to prove
the € - equilibrium results is based on some results connecting the stability and the LQ control of
MILS with the convergence of a sequence of Markov chains. These results are proved in the

Section 3.8 and are also of independent interest.

The rest of the paper is organized as follows: In section 3.2, the dynamics and the cost
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functions of major and minor players are defined. In Section 3.3, the optimal control problems
that the participants of the game face are reformulated as a set of coupled finite and infinite
horizon LQ problems for MJLS. In Section 3.4, sufficient conditions on a set of linear feedback
strategies to constitute a Nash equilibrium are derived. In Section 3.5, the problem with a large
number of players is approximated using a Mean Field model. Then some ¢ - Nash equilibrium
results are obtained. In Section 3.6, an algorithm for computing a Nash equilibrium is stated
and it is shown to converge under certain conditions. Furthermore, some numerical examples
are studied. In Section 3.7, we conclude. The proofs of some results in the text are relegated to
Section 3.8.

denotes the usual 2-norm. The underlying probability space is denoted by (2, F, Pr) and the

Notation: The transpose of a matrix is denoted by -7 In all the text, except Section 3.6.2,

spectral radius of a matrix or an operator by 7(+). The Borelian subsets of a set D are denoted by
B(D). The notion of a stochastic kernel is also used to describe the evolution of a Markov chain.
Particularly, for a Markov chain yj, with state space D, we denote by K (-,-) : D x B(D) — R
the stochastic kernel, i.e. K(y, B) = Pr(yps1 € Blyx = y), fory € D and B € B(D). The
fact that the random variable y has probability distribution F' is denoted by y ~ F' and the weak
convergence of probability measures is denoted by “ = ”. The Kronecker delta 9;; is also used,
where 0;; = 1if ¢ = j and ¢;; = 0 otherwise. A matrix function A : D — R™" is called strictly
positive definite if there exists a positive constant ¢ such that A(y) > c¢I for any y € D. Finally,
the 7, j element of a matrix A is denoted by A*’. The dependence of a function on the Markov

chain state variable y; will be omitted, in several points in the text.

3.2 Description of the Game

At first, the random entrance of the minor players is described. The minor players have time
horizon 7', i.e. each one of them stays in the game for 7" time steps. Consider a countably infinite
set of minor players A = {1,2,... }. For any minor player i € A, let¢; : {2 — N be a stopping
time describing the time step at which the player 7 enters the game. At the time step k, the
number of the minor players that participate in the game may be described by the vector:

ye = (NJ, ..., N7 /s, 3.1)

where N} = #I! and I} is the set of players with entrance time k — [ and and s., which
will be called the ’scale variable’, is the maximum possible number of active players, i.e.
Se = max{N{ +---+ N, kT ~!1 . Let us finally denote by Iy, the set of active players at time step
k.

The number of new minor players that enter the game at the time step k£ + 1 is a random
variable with a distribution depending on y;. Thus, the random entrance is modeled by the

Markov chain ;. having a finite state space. Let 1,2, ..., M be an enumeration of the state space
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and II = [p;;| the transition matrix of the Markov chain, where p;; is the ij entry of the matrix II.
We shall use the vector form (3.1) and the enumeration interchangeably.

Each player participating in the game has its own dynamic equation. The evolution of the
state vector of each player depends on the state vectors of the currently active players in a
symmetric manner. The dynamic equation of the major player is given by:

Mk +1) = AMaM (k) + Sl > FMat(k) + BMuM (k) + w (k), (3.2)

¢ 1€y

where 2 and 2 are the state vectors of the major player and minor player 7 respectively. The
stochastic disturbances w?! (k) are zero mean, finite variance, i.i.d. random variables, independent
of the state vectors. The initial condition for the major player is given by 2 (0) = w™ (—1).

The dynamics of the minor player ¢ is described by:

o'(k+1) = A’ (k) + Y Fa(k)/s. + Ga™ (k) + Bu' (k) + w'(k), (3.3)
g€l
where the stochastic disturbances w’ (k) are zero mean finite variance random variables, independent
of the state vectors ™ (k) and z'(k), i € I. The initial values of the state vectors of the minor
players are given by z'(¢;) = w'(t; — 1). The dependence of w'(k) with w’(k), i # j is not
disallowed.
In order to define the cost functions of the players, let us introduce the mean field quantities

k)= It 7'(k)/s. and the vector of the mean field quantities:

The cost function of the major player is given by:

Mg {f; [ ®)" 77 ®)] Q" )

k=0
[y ]+ R | | G

where QM (y),y € {1,..., M} and RM are positive semidefinite and positive definite matrices
of appropriate dimensions respectively and a € (0, 1) a discount factor.

For the minor player ¢, the cost function is given by:

J'=E {(fi(ti + 1) Qp(yer) T (ti + T)+

Z_ (@ (k)" Q(yr) T (k) + (ui(/c))TRui(k)} , (3.5)

k=t;

where ¢ = [(zM)T 2T (29)T)T, Q;(y) and Q(y) positive semidefinite matrices of appropriate
dimensions for any y € {1,..., M} and R positive definite matrix of appropriate dimensions.

Let us note that (3.5) indicates that the minor players have symmetric cost functions.
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The problem considered here is the characterization of a Nash equilibrium that satisfies
the Dynamic Programming (Perfect equilibrium [Sel75]). We shall focus on Linear Feedback
Strategies (i.e. strategies with no memory; see [BO99], Def 5.2). Furthermore, due to the
symmetry of the dynamic equations and cost functions, we shall further concentrate to strategies

in the following form:

T;-1
' = LMk —tiy)2 + Lk — b, )2
=0
+ L(k — tg,yp)2' (k), (3.6)

and:
T-1
uM = LMM(y )M 4 Z LML, yp) 2. (3.7)
1=0
The equations (3.6) and (3.7) serve only as a general form of the feedback strategies. Equations
characterizing the gains L'M | L, L, LM™ and LM are determined in the next sections.

For the compactness of the presentation, the following notation will be used:

LM(y) = [LMM () LM (0,y) ... LM(T = 1,y)] (3.8)
L(y) = [Lo(y), ..., Lr-1(y)] (3.9)

Remark 4. A set of strategies in the form (3.6), (3.7) has two types of symmetries. At first, the
feedback gains are the same for all the minor players. Consider a strategy in that form. Then the
control values depend on the mean field quantities z'. Thus, the feedback gains corresponding to
the players of the same entrance time are the same, which is a second form of symmetry. These

symmetry assumptions are justified by the structure of the dynamics and the cost functions. []

Remark S. Although we know that for Linear Quadratic games, closed loop Nash equilibria in
nonlinear strategies may also exist, it is only the linear ones that survive if we introduce noise in
the state equation or the measurements [Bas75]. This is the reason due to which we restrict our

attention to Linear Feedback Nash equilibria. U

Remark 6. An interesting extension is to study games involving minor players with different
time horizons'. This does not make the problem more difficult and all the results in this work can

be immediately generalized to that case.

Remark 7. The major player may be viewed as a coordinator helping the stabilization of the

overall system. An interesting alternative is to see the major player as a common adversary of

'In fact, the first version of this work involved several types of minor players having different time horizons.
However, for simplicity and clarity of the presentation reasons, after reviewers’ recommendation, we restrict
ourselves to the case where all the minor players have the same time horizon.
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all the minor players in the spirit of [BTBT12]*. The techniques used in the current work should,

however, be adapted in order to study this alternative.

Remark 8. An interesting extension would involve the continuous time analog of the current
formulation. This can be done either by taking the limit of the discrete problems as the
discretization time tends to zero in the spirit of [TH11] or by stating the corresponding problem

in continuous time directly.

Remark 9. The study of Stackelberg equilibria with the major player as a leader is a related
interesting problem. The same techniques can be used in order to characterize feedback

Stackelberg equilibria.

Remark 10. The only necessary measurements for a player to implement a strategy in the form
of (3.6) or (3.7) are the value of the state vector of the major player ™, the mean field quantities
Z(k), the value of its own state vector and the value of the Markov chain state variable yy. Thus,

we shall make the following assumption:

Assumption 1. All the players have access to the current values of ™, Z and v,,. Furthermore,

each player can measure its own state vector. 0]

3.3 Optimal control problems

The problem of the Nash equilibrium characterization for LQ games with random entrance is
converted to the problem of finding a solution to a set of coupled LQ control problems for MJLS.
Particularly, the optimal control problems are stated in spaces of smaller dimensions and the
random entrance problem is transformed to a random coefficients problem of a linear dynamic
equation, depending on the Markov chain given by (3.1). This reduction is possible, due to the
symmetric form of the dynamic equations, the cost functions and the control strategies. We shall

assume that the players follow strategies in the general form (3.6), (3.7).

3.3.1 Optimal Control Problem for the Major Player

The evolution of the state vector of 2 and the cost function J* depend only on 2, % and u.
Assuming that the minor players use the strategies in the general form (3.6), the evolution of the
components 2., of Z depend only on and = and Z, as well. Hence, symmetry implies that the the

evolution of the quantities in the cost function (3.4) can be described by a state vector of smaller

dimension: [(z*)T, ZT]T. The dynamics, after straightforward manipulations, is given by:
oMk +1) . oM (k) BM
=AM + u™ (k) + WM (k), 3.10
[ e | =3 [ [ |, o)

2This alternative was proposed by an anonymous reviewer.
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where:

AM AM M
Axlwzl\l Ax]\/lzl,o Ax]b[zp,T
AM AJ\J M
M - S0pM 50,0 20,T
AV () = . ;
AM AM AM
Aronw Ao - A

T = T — 1. The entries of the first row of the matrix are given by: AM, ,, = AM and
fli‘{wzl = FM_ The second row consists of zeros. For the rest of the entries it holds:

- N!
AN v = S_k(G + BL*(l,y)), and

N , ]

AM
I+1
z Se

v
The matrix A depends on 7, through the terms N} /s.. Thus, the study of the optimal
control problem of the major player, under the random entrance of the minor players is reduced
to the study of the following infinite horizon LQ control problem for a MJLS:
OC Problem I: “Minimize the cost function (3.4) subject to the dynamics (3.10) and (3.1)".
U

3.3.2 Optimal Control Problem for the Minor Players

For the minor players, a similar reasoning applies. Consider a minor player i, with entrance
time ¢;,. Assume that the other players use the feedback strategies in the general form (3.6) and
(3.7). The evolution of the state vector and the cost of the player ¢y depend only on the quantities:
oM z%, 7 and y. Thus, the cost function of player i, can be described using the state vector

7 = [(2M)T 2T (2%)T]T, which evolves according to:

70 (k 4+ 1) = A(k — tiy, yp) 30 (k) +

+ B(k — tiy, y)u' + W(k), (3.11)
where:
-AxMxM A:BMZO e AxMzT AeriO-
Azoxl\l /Lozo . AZOZT Azomio
AZTIJM AZTZO c /LTZT A1 i
AI’LOIA{ AxiOZO “e . Axio ZT AxiOxiO

T =T — 1. The entries of the matrix are computed by simple but lengthy calculations. For the

first row, it holds:

AZ]\/[mIM =AM BMLMM(yk),
Ay =FM 4 BMIM(1 y,).
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The entries of the second row are zero. For the rest of the rows except the last one, the entries

are given by:

N N! 01 by
Asign = —E(G + BL™M(1, ) — —=0 BLIM(] y,),

Sc Sc

- Nt _
AzH—lzl’ = (Sul (A + S—kBL(l, yk)> +
N : ,
+ 3_(F + BL(U', L, yx)) = BL(U', L, yk) O -1, / Scs

~ 01, k—t
Zl+lx7l0 = —

S BL(L,yx).

Sc

The entries of the last row are determined by (3.3). Thus, Axiox]\/l = G, flxi%z = I and

Agiogio = A.
The B matrix is given by:

B(k —ti,,yx) = [0 BL ... BL., BT]T,

where B_i+1 = OLk—t;, B/s,.

The matrix A is time varying and depends on the Markov chain through the terms N} /s...
Hence, the random entrance problem is transformed to a MJLS problem for the minor players,
as well. The optimal control problem that a minor player faces is the following finite LQ control
problem for a MJLS:

OC Problem 2: “Minimize the cost function (3.5) subject to the dynamics (3.11) and (3.1)".
UJ

Remark 11. The state vectors of the dynamics of the major and minor players (3.10) and
(3.11) have a much smaller dimention than the state vector consisting of all the active players.

Furthermore, the dimensions of the state vectors do not depend on the number of players. [

Remark 12. The Markov jump character of the OC problems has two origins. The first is the
random entrance and affects several terms such as A%lx > through the factor N} /s.. The
second is the dependence of the () matrices on yy. Hence, the dependence of the () matrices on

Yk, does not make the problem more difficult. 0

3.4 Optimality Conditions and Nash Equilibrium

The optimality conditions for the OC Problems 1 and 2 are derived and then used to characterize
a perfect Nash equilibrium. The general form of the solutions of the finite and infinite horizon
discounted LQ control problems for MJLS can be found in [KP14a].

For the infinite horizon OC Problem 1, the optimality conditions are given in terms of a set

of coupled Riccati type equations. Particularly, let us consider a set of matrices K (y), A(y), for
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y =1,..., M such that:
M) = QM 4 (AM)T [QAM — aAMBM.

. (RM/a + (BM)TAMBM>_1 (BM)TAM} AM (3.12)
AM(y) = BIKM (g lye = ] = prKM (3.13)

Let us also consider the control law given by:
u (k) = LY (yo) [« (k)" 27 (k)] (3.14)
where:
DM (y) = — ((BY)TAMBM 4 RV /a>1 AMAM. (3.15)

The control law given by (3.14) is optimal, provided that it makes the cost function (3.4)
finite. The criterion for the finiteness of the cost function (3.4) is given in terms of the closed
loop matrix:

AM — AM _ pM [ M, (3.16)

The finiteness criterion is based on the existence of a positive definite solution to a set of
coupled Lyapunov equations (see equation (2.8)).
Finiteness Criterion 1: There exist positive definite matrices S(i),7 = 1,..., M that solve

the following set of coupled Lyapunov equations:

apij(A TS(H)AM (i) =1, (3.17)

M:

Jj=1

fori =1,..., M. U
The optimality conditions for a minor player ¢, are given in terms of the solution of the

following set of coupled Riccati type difference equations:

Kr(y) = Qs (y), (3.18)
Ak+1(?/) = E[Kk+1(yk+l+ti0)lyk-i-tio]

= pyiKi(j), (3.19)
Ki(y) = Q + (A(k) A1 — Ayt B(R + BTAj 1 B) BT Ay 1A, (3.20)
for k=T —1,...,0. The optimal control law is then given by:

Wk +ty,) = Lo (k +t,,), (3.21)
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where:
Li(y) = —(R+ BTAj 1 B) ' Ay A (3.22)

We are interested in Nash equilibria, i.e. a set of strategies, each of which is optimal given
the others. Therefore, we define the notion of a consistent set of strategies.

Definition 3. Consider a set of strategies in the general form (3.6), (3.7), with gains L and L™
and the set of matrices AM (y) and A(k,y) fork =0,...,Tandy =1,..., M. Then, the set of

strategies is called consistent if:

(i) There exists a set of matrices K™ (), AM (y) fory = 1,..., M that satisfies (3.12), (3.13).

Moreover, it holds:
LM (y) = LM*(y), (3.23)
foranyy=1,... M.
(ii) The Finiteness Criterion 1 is satisfyied.

(iii) It holds:

L(y) = [Li(y) - L1 ()], (3.24)
foranyy=1,... M. [

It is not difficult to show that a consistent set of strategies constitutes a perfect Nash

equilibrium.

Proposition 4. Consider a consistent set of strategies in the general form (3.6) and (3.7). Then

it constitutes a Perfect Nash equilibrium.

M
cl

Proof: The strategies of the minor players are optimal. Using equation (2.8), with y/a A in
the place of the A matrix, we conclude that equation (3.17) implies the finiteness of the total cost
of the Major player and thus the optimality of the control law (3.14). Thus, the strategy of each
player is optimal and the consistent set of strategies constitutes a Nash equilibrium. Furthermore,
the strategies of the players satisfy the Dynamic Programming and thus the Nash equilibrium is
perfect. U

Sufficient conditions for the existence of a Nash equilibrium are given in Section 3.6, for a
special case. They are expressed as sufficient conditions for the convergence of an algorithm

approximating the Nash equilibrium.

Remark 13. The optimality conditions given by the equations (3.12)-(3.15) and (3.18)-(3.22)
are Riccati type equations with two kinds of coupling. The first is due to the involvement of the
gains in the A matrices and has the same nature as the coupled Riccati equations of the LQ
games [SH69D], [PMC79]. The second kind of coupling is through the A\ matrices and it has
the same nature as the interconnected Riccati equations in the study of LQ control of MJLS
[AKFJ95]. ([l
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3.5 Large Number of Players Case

In this section we use a Mean Field approximation in order to study games with a very large
number of players. This approach assumes a continuum of players. A set of optimal control
problems that correspond to the limit of those in section 3.3, as the scale variable tends to infinity,
is then stated. The Markov chain with a large number of states is approximated by a Markov
chain with a continuum of states and thus a notion of convergence of Markov chains is first
recalled in the subsection 3.5.1. Then the solution of the approximate optimal control problems
for the major and minor players is characterized by appropriate Riccati integral equations and
consistency conditions analogous of those of Section 3.4 are stated. Finally, it is proved that a set
of feedback strategies satisfying those consistency conditions constitutes an € - Nash equilibrium,
for a game with a very large number of players.

Another motivation for the use of the continuous approximation is computational. The state
space of the Markov chain that describes the random entrance grows fast as the maximum number
of players increases. For example if the minor players have a time horizon 5 and the new minor
players in each step belong to the set 1,2,...,N then the state space of the Markov chain describing
the entrance has N° points. Thus, the equations characterizing a Nash equilibrium depend on
many parameters and therfore, they are very complicated. On the other hand, in several cases the

situation is much simplified using the continuous approximation.

3.5.1 Convergence of Markov Chains

In this section the vector representation of y; will be used. The state space of the Markov chain

is contained in the set:

T-1
Dz{(yO,...,yT1)eRT:Zyi§1,yizo,}. (3.25)
i=0
The continuous approximation will be defined on the set D.

A Markov chain could be described using the notion of the stochastic kernel.

Definition 4. Let D' = {d;,...,dy} C D and P = [p;;] be an M x M stochastic matrix. The
stochastic kernel that corresponds to the Markov chain with state space D' and transition matrix
P is defined as:

K(y,B) = Pr(yes1 € Blye =y) = Y _ pyj, (3.26)
j:d;€B
where i = min{argmin/{||y — d|| : d € D'}}, y € D and B a Borel subset of D. O

Let us then recall a notion of convergence of stochastic kernels from [Kar75] and a notion of
continuity from [MT93].
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Definition 5. (i) We shall say that a sequence of stochastic kernels K, converges weakly to a
stochastic kernel K if for any sequence v, of elements of D converging to an element v of

D and any (bounded) continuous function g, it holds:
/ 9K (YY) — / 9y ) K(y.y) (3.27)
D D

(ii) A stochastic kernel K is called Feller continuous if K (y,,-) = K(y,-) when y, — y. O

Let us turn back to games described by the relationships (3.2) - (3.5) and a large number of
minor players. To do so, we consider a sequence g” of games with increasing number of minor
players; i.e. for the scale variable we assume s. — oo as ¥ — oo. The state of the Markov chain
describing the entrance is denoted by ¥, the number of states of the Markov chain by M" and
the corresponding stochastic kernel is denoted by K.

Conclusions about the final part of this sequence of games are obtained under the assumption
that the sequence of stochastic kernels K* converges weakly to a to a Feller continuous stochastic
kernel K. The stochastic kernel K, hence, approximates the final part of the sequence of Markov
chains. We finally assume that the matrix functions Q" (-), Q;(-), Q(-) are continuous.

The following example shows that the continuum approximation often simplifies a lot the

description of the random entrance.

Example 8. Consider games involving only one type of minor players of time horizon 2. At
each time step each one of v players enters the game with probability p. Thus, the number of
new minor players at each step follows a binomial distribution. The entrance dynamics is thus
described by the Markov chain y! = [N N"|/sY, s. = 2v and

v : LA v—i
Pz =iy = (1 )pa -

The random variable N, o /s. converges weakly to the deterministic constant p/2. Thus, the
Markov chain with large v may be approximated by a Markov chain with continuous state space
and a stochastic kernel given by K ((y1,12),-) = 0(p/2, y1), where § denotes the Dirac measure.
Thus, for a large number of players, the approximate description of the Markov chain is much

simpler than the original. 0

3.5.2 Approximate Optimal Control Problems

The approximate optimal control problems are then stated. These problems correspond to the
limits of the OC Problems 1 and 2 of section 3.3 as the scale variable tends to infinity.

The reduced order dynamics for the major player, given by (3.10), remains unchanged under
the limiting procedure. Thus, the limit optimal control problem for the major player is stated as

follows:
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OC Problem 3: “Minimize the cost function (3.4) subject to the dynamics (3.10) and yx1 ~
K(yg, )" O
The solution of the optimal control Problem 3 depends on the solution of a Riccati integral
equation given by:
Aﬂ%w::QM+«AMV[mMW—aAMBM-

~ (RM Ja + (BM)TAMBM)_l (BM)TAM} AM (3.28)

A (y) = BIEM (gl = 9] = /D KM ()R (y, dy). (3.29)

Consider the matrix functions K (-), A(-) satisfying the Riccati integral equation (3.28), (3.29).
Then the control law given by:

uM (k) = LM (ye) (2™ (k)" 27 (k)" (3.30)
where:
LM*(y) = — ((BM)TABM + RM/a>_1 AAM, (3.31)

solves the optimal control Problem 3, under the following finiteness criterion:

Finiteness Criterion 2: Consider the closed loop matrix given by:
AM = AM g
There exists a strictly positive definite matrix function S(-) satisfying:
| A @) W) A )R . dy) - S@) = -1 (3.32)
y'eD

forany y € D. U
The reduced order dynamics for a minor player is simplified under the limiting procedure.

Specifically, consider a minor player 7( with entrance time ¢;,. The limit dynamics is given by:
+ B(k — tiy, ye)u' + W (k). (3.33)

The entries of the matrix are computed by simple but lengthy calculations. The entries of the

first row are given by:
Agnigy = AM 4 BMLMM (4,
Agua = F 4+ BYLM(L yy).
The entries of the second row are zero. For the rest of the rows except the last one, the entries
are given by:
A = yh(G + BL™ (1, yy)),
A =60 (A+ ypBL(Lyk)) + (F + BL(I', 1 yi) )y

Azl+lri0 - O.
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The entries of the last row remain the same, i.e. Ao, = G, Ay = F and A0 = A.
The limit optimal control problem for a minor player 1, is, thus, the following:
OC Problem 4: “Minimize the cost function (3.5) subject to the dynamics (3.33) and yx+1 ~
K (Y, )" O
The solution of the limit optimal control Problem 4 depends on the following Riccati type

difference integral equaitons.

Kr(y) = Qy(y), (3.34)
Aki1(y) = E[Ky (yk—i-l—i-tlo )Yk,
/ K1 () K (y, dy)), (3.35)
Ki(y) + (AR) Mgy — Ak B-
-(R+B A1 B)'BT A4 A (3.36)

The optimal control law is then given by:
uZ()(k + tio) L* Zo(k + tio)’ (3.37)
where:

Li(y) = —(R+ BTAk1 B) 'Ap A (3.38)

3.5.3 Consistency Conditions and < - Nash Equilibrium

The consistency conditions for the solutions of the OC Problems 3 and 4 are stated and then used

to characterize approximate Nash equilibrium.

Definition 6. Consider a set of strategies that belong in the general form (3.6), (3.7) with gains
L and LM. Assume that they depend continuously on y € D. Compute the matrix functions
AM (y) and A(y). The set of strategies will be called consistent if-

(i) There exist continuous matrix functions K™ (y), AM (y) satisfying (3.28), (3.29). Moreover
it holds:
LM = [Mx (3.39)

where EM’*(y) is given by (3.31).
(ii) The closed loop matrix flé\f (y) satisfies the Finiteness Criterion 2.

(iii) The matrix functions I:Z(y) computed by (3.34) - (3.38) satisfy:

L(y) = [Lj(y), - - L1 ()], (3.40)

foranyy € D. 0
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Let us consider a game with a large number of players g”, where the participants use a set of
approximately consistent strategies, characterized by gains L and L™ . Under certain conditions,
this set of strategies is shown to constitute an € - Nash equilibrium, i.e. the cost of any player is
at most ¢ - far from the optimal cost. This property is illustrated by the following Theorem 3 and
its Corollary 2. Before stating the Theorem 3, let us introduce some notation:

Notation: For the game g”, let us denote by J**(7; ;1) and J*"(7; ;) be the values of
the cost functions, (3.4) and (3.5), when all the players use the policies given by (3.6) and (3.7)
with gains L, LM.

Let also (J"*(m; _,,))* be the minimum value of the cost function of the major player,
assuming that the other players use the policies given by (3.6) with gains L. Finally, denote by
(J%"(mf pm _;))* the minimum value of the cost function of the player i, assuming that the other

players use the strategies given by (3.6) and (3.7) with gains L, LM, U

Theorem 3. Consider an approximately consistent set of strategies given by (3.6) and (3.7)

with gains L,LM. Then for any positive constant e, there exists a positive integer vy such that:

JMY () < (JMY(rp )+ e (3.41)
T (mp ) < (I (g e, —1))+
+e(1+ E[(&(t:))%]), (3.42)

for all the minor players i € A and any v > 1.

Structure of the Proof: The proof of the second inequality is based on the fact that the optimal
policies for a minor player involve continuous functions of the state vector and the Markov chain
and some properties of the weak convergence.

A basic step in the proof of the first inequality is given in Section 3.8.1, where it is shown that
some stability properties of the MJLS are preserved under weak convergence. It is then shown
that the final part of the series involved in the cost function is small in some sense, uniformly in
the initial conditions, and thus it suffices to compare finite series. The result for finite series is
similar to the proof of the second inequality. The detailed proof is relegated to Section 3.8. More
general results are first shown in section 3.8.2 and particularly in Propositions 7 and 8. Theorem

1 is then proved as a consequence of the Propositions of section 3.8.2. U

Corollary 2. Consider a set of strategies in the form (3.6), (3.7). In addition to the assumptions
of Theorem 3, assume that the closed loop system is mean square exponentially stable, i.e. the

following Lyapunov equation,
| @@ S6)AY R @) - S) = -1,
y'e

admits a strictly positive definite solution S(-). Then for any positive constant €, there exists a

positive integer vy such that (3.6) and (3.7) constitute an € - Nash equilibrium for any v > v,
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i.e. it holds:

JMY (g ) < (JMV () + e (3.43)
J (g par) < (T (g par )" + e (3.44)

Proof: The inequality (3.44) is a consequence of the inequality (3.42) and the mean square
stability. 0

Remark 14. The approximate consistency conditions (Def. 6) involve nonlinear matrix integral
equations and in general are not simpler than the consistency conditions of Section 3.4. However,
in several cases the situation is extremely simplified as illustrated in the Example 3 of the next

section. O

3.6 Computing the Nash Equilibria

An algorithm for solving the consistency conditions derived in Section 3.4, is described in
subsection A. Conditions under which the algorithm converges are stated and thus sufficient
conditions for the existence of a Nash equilibrium are then derived. In the third subsection, some

numerical examples are given.

3.6.1 Algorithm

The algorithm initially guesses a value for the feedback gains. With the assumed values, it
computes the matrices for the optimal control problems. Then, the optimal control problems are
solved and new feedback gains are computed. The new feedback gains are then used to compute
the system matrices and solve the optimal control problems and so forth. This algorithm is
presented in Algorithm 2 table.

Algorithm 2

: Guess L, LM,

: Compute the matrices A(-, -) using (3.11).

: Compute the new values for the gains E{, ceey f)}fl, using equations (3.18) - (3.22).
Set L = [L%,...,L5_|]

: Compute the matrix AM using (3.10).

: Set LM, = LM,

: Compute matrices KM (), AM(-) to satisfy (3.12), (3.13).

: Use (3.15) to update the values of L™, i.e. set LM = LM*,

. If the difference max, || L™ — L,|| is small enough then halt. Else go to Step 2.

© o NO LA W~

An analogous algorithm can be used for the Mean field case, as well.

Remark 15. Step 7 of the algorithm may be implemented in several ways. Probably the simpler
one is to use the value iteration algorithm. A variant of the algorithm would involve the use of a

single step of the value iteration method, instead of the steps 7 and 8 of the Algorithm 2. 0
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3.6.2 Convergence of the Algorithm

The convergence of the Algorithm 2 depends on the existence of a Nash solution, as well as
on some stability properties. Such problems are hard to solve and remain open even in simpler
settings (ex. [FJAK96]).

In this subsection, we study the convergence of the Mean Field variant of Algorithm 2.
Particularly, sufficient conditions for convergence of the algorithm and hence, the existence of
a Mean Field Nash solution are stated, based on contraction mapping ideas. A special class of
games is analyzed. Specifically, it is assumed that there are only minor players coupled only
though costs having state vectors of dimension one. The time horizon of the players is three.

In what follows, for vectors || - || denotes the 1-norm, for a matrix A, || A|| denotes the induced
I-norm and for a matrix function A(-), || A|| denotes the essential supremum of the induced

I-norm. Assuming that A = o, B = 1 and r = 1, the matrices A and B take the form:

0 0 0 0

Ao o+ (200,0) + L(0))yy L(1,0)y} L(2,0)yp 0
L(0, 1)y} a+ (L(1,1) + L())y L2, )y 0]

0 0 0«

B=1[0001]". Let us denote by:
LA = [L4(0), LA(1)] =
= [[£(0,0) L(1,0) L(2,0) L(0)};
[L(0,1) L(1,1) L(2,1) L(1)]],

i.e. all the entries of L that affect A.

We consider the following mappings:

> RER (A; ) I (14) (3.45)

This mappings compute the best response of a player if the other players use strategies described

Ay

2

Ky

Ko

pAm, ([1;

by LA. Sufficient conditions for the contractivity of the mapping 1" = T} o 15 o T are then
derived.

The mappings 77 and 75 are computed according to the following equations:

+ AT[A3 — AsBBTAs/(1 + A3Y)]A,
+ AT[Ay — AyBBT Ay /(1 + ASYA,

Ai(y =/ Ki(y)K(y,dy')
y'eD

The mapping 75 is given by:

Q
Q

(LA = ———r A A, i=0,1 (3.46)
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Lemma 2. It holds:

<K (y) — K'(y)ll

| ) - K@) K

Proof: Immediate ]

The mapping 75 is, thus, non-expansive (weakly contractive). Sufficient conditions for the

contractivity of 7" are found using the following technical result.

Lemma 3. If ||A], || A]| < di, | K|, |K'|| < de and [|[A — A'|| < ¢, | K — K'|| < o, then it
holds:

||f(A, K) - f(A,, K/)H < 2(d1d2 + dldg)cl + d%(l + d% + 2d2 + CQ)CQ,

where: f(A,K) = Q + AT[K — KBBTK/(1 + K**%)A.

Proof: The proof is long but straightforward. It uses repeatedly the matrix identity XY —
XY = (X - X")Y + X'(Y — Y’) and the sub-multiplicative property of the matrix norm. [J

For a constant 0 < p < 1, aregion, R, containing O that the mapping 7" is p-contractive, will
be determined. Assuming that the algorithm starts with zero gains, LA = 0, after the application

of T" we have:
(LY < 8=
= 2q0 + o’ (¢ + (1 + ®) (g5 + q7) + (¢ + *(gr + ¢7))%),

where ¢ = ||Q|| and ¢f = ||@Q||. This inequality can be derived using the sub-multiplicative

property of the matrix norm. If after a number of iterations of 7', L remains in R, then it holds:

1LY < B/(1 = p),
|A|| <dy =a+B/(1—p) and
)]+

Ko

where:

dy = 2q + di(g+ (1 +di)(gr + q7) + (a + dilar + 47))")-
The last inequality is also shown using the sub-multiplicative property of the matrix norm.
Proposition S. Assume that the parameters o, q, g5 are such that:

4(dydy+dyd3) + 2d3[1 + d + 2dy+
-+ 2(d1d2 -+ dldg)ﬁ](dldz + dldg) < pP1. (347)

Furthermore, assume that ps = dy + do + 2d;ds is such that:
p=(1+p1)p2 <1 (3.48)

Then T is p-contractive, the Algorithm 2 converges and there exists a MF Nash solution for the

game.
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Proof: We first determine a Lipschitz constant for T,. Assuming that |14 — L'4|| < ¢,

Lemma 3 implies:

[As — Ayl < [|K; — K| < 2(dda + dids)e,
| K — Ki” < 2(dydy + d1d§)c—|—
+ 2d3 (1 + d3 + 2dy + 2(dids + dido)c)(dyds + did3)e.

Hence, inequality (3.47) implies that:
[0 = Kl + ([ = K| < pac.

Thus, 7} has Lipschitz constant less than 1 + p;. Using (3.46) and the sub-multiplicative
property, it is straightforward to show that 75 is p, - contractive. These, in combination with the

non-expansive property of 75, complete the proof. U

Remark 16. The generalization to the many steps case does not add any further difficulties. The
existence of a dynamic coupling except the cost coupling makes the matrix A, time varying. The
generalization to the multi-dimensional case is also immediate. However, only this special case

is analyzed in order to keep the results as simple as possible.

Example 9. In this example major and minor players have scalar state equations. The minor
players have time horizon 2 and the maximum possible number of minor players participating in
the game at some time step is 4. The number of new minor players that enter the game at each
instant of time is either 1 or 2. Thus, the entrance dynamics is described by a Markov chain
with state space: (%, 1), (1,2), (3, 1) and (3, 2).For the states of the Markov chain, we shall
use the enumeration 1,2, 3, 4 respectively. The entrance dynamics is described by the following

transition matrix:

09 0 01 0
02 0 08 0
0 03 0 0.7
0 08 0 0.2

The dynamic equation of the major player is given by:
Mk+1) =a™ Zx (k) + w (k),
lGIk
and for a minor player by:
r'(k+1) = Z 27 (k) + cra™ (k)u' (k) 4+ w' (k),
JEIk

where by ¢y, we denote all the coupling coefficients of the dynamic equations. Thus, the
parameters of the state equations are givenby AM = BM = A=B=1and FM =G =F =

C1.
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Table 3.1: Gain matrices for the major player, ¢c; = c; =1

ye | DM (ye)  LM(0,y,)  LM(0, yx)
1 -0.6411 -0.6618 -0.6326
2 -0.6560 -0.6787 -0.6467
3 -0.7338 -0.7211 -0.7240
4 -0.6825 -0.6682 -0.6715

The cost function matrices Q for the major player are given by Q™ (1) = QM (2) = QM (3) =
I3 and QM(4) = (1 + ¢3)I3. The cost matrices Q" for the minor players are all units, i.e.
Qy) = Qs(y) =I,and R = RM = 1.

For example, if c; = co = 1, after 30 steps of the Algorithm 2, the gain matrices change less
than 10~ The feedback gains for the major player are gain in Table I.

In what follows, we study the dependence of the feedback gains on the coupling parameters
¢y and co. Let us first consider the case where co = 0 and ¢y # 0. Then, each player will interact
dynamically with an unknown number of minor players. The distribution of the number of the
minor players in the next step depends on y. Thus, the dependence of the feedback gains on y is
larger, for larger values of |c,|. The dependence of LMM (y) fory =1,...,4 on c; is illustrated
in Fig. 1.

We next assume no dynamic coupling, i.e. c; = 0 and cy # 0. The dependence of LMM (y)
fory=1,...,40n cyis illustrated in Fig. 2. Again, the dependence on yy, is larger, for larger
values of |cs|.

The Algorithm 2 does not always converge. For example, for c; = co = 10, the Algorithm 2
does not converge.

Finally we fix a dynamics and cost function for the participants of the game and present
the sample paths of a run. The dynamics of the players are as before, with c; = 1 and the cost

functions slightly different. Particularly, QM (y) = I3, R™ =1, R = 0.75 and:

10 0 0 —-10
0O 00 O
Qu=W=1 . ., ol
—-10 0 0 10
The sample paths are shown in Figure 3.3. U

The following example studies a very simple game with a large number of minor players. It
illustrates that, in certain cases, the mean field approximation simplifies very much the analysis

of the game. For simplicity reasons, we assume that there is no major player.

Example 10. There is only one type of minor players with time horizon two. At each time step,

each one of v minor players tosses a fair coin and with probability 1/2 enters the game.
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Table 3.2: Gain matrices computation

y | Li(y)  Le(y) Lsly) Laly) Ls(y)  Ley)
J | —0813 —0.68 —05 —05 —0667 —05
v | 0813 —0.68 —0.444 —0.444 —0.667 —0.444
y | —0.754 —0.66 —0.444 —0.444 —0.626 —0.444

The dynamic equation of the minor players is given by:

w(k+1) =a'(k) + Y 2’ (k)/sc +u' (k) + w' (k).
J€l,
The cost function matrices are given by Q¢ = 4y' I3, Q = 12yy" I3 and R = 1 (where the
notation Qg,Q, R, y',y° is used instead of Q}, Q", R', y"*, y"°).
The scale variable has a value s. = 2v and the approximate description of the Markov chain

when v — o0 is given by the stochastic kernel:

K((ylv y2)7 ) = 6(1/47111)(')7
where ¢ is the Dirac measure.
Due to the absence of a major player the approximate consistency conditions involve only

(3.33) - (3.36). The unknown quantities can be expressed in terms of the functions L(y) =
L(0,0,y), La(y) = L(1,0,y), Ls(y) = L(0,1,y), La(y) = L(1,1,y), Ls(y) = L(0,y) and

Due to the special form of the stochastic kernel, the integral equation (3.35) becomes:

Aey1((W1,92) = K (U, 1),

where § = 1/4. Hence, the form of the stochastic kernel implies a decoupling in the consistency
conditions. Particularly, for j = (i, 1), the consistency conditions do not depend on the other
values of y. Writing the consistency conditions for some y' = (y, 1), the equations depend
only on L1(y'),...,Le(y") and L1(9), ..., L¢(y). Furthermore, for some y = (yi1,Yy2), the
consistency conditions depend only on L(y), ..., Ls(y) and L1(y'), ..., Ls(y).

This structure of the consistency conditions suggests the following procedure: Compute the
values of Ly, . .. Lg on 1, solving six equations with six unknowns. Then, for each y' = (4, y1),
compute the values of L, ... Lg on y'. Finally, for any y = (y1,y2), compute the values of

Ly, ... Lgony, again, by solving six equations with six unknowns involving L1, ... Lg on y and

/

Y.
As an example, we compute the values of the feedback gains on y = (0.2,0.6). The
computations are shown in Table II.

It remains to show the stability of the limit system. For k > 3, it holds y, = vy a.s.

0 0
AM () = .
a (9) [0.88 0.08]

Furthermore, it holds:
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Thus, Corollary 2 applies, i.e. for any € > 0 the strategies computed constitute an € - Nash

equilibrium for large v. U

Remark 17. Example 10 shows that when the random entrance is independent, the approximate
consistency conditions are decoupled. The solutions to the approximate optimal control problems

could, thus, be obtained using this special form. U

3.7 Conclusion

Games with a major player and Randomly Entering minor players were considered. The
problem of the characterization of Symmetric Linear Feedback Strategies that constitute a Nash
equilibrium, was converted to a set of coupled finite and infinite horizon LQ control problems for
MILS. Appropriate coupled Riccati type equations were derived to characterize Nash equilibrium.
The case where there exists a very large number of minor players was addressed using a Mean
Field approach. Particularly, the evolution of the number of players is approximately described
using a Markov chain having a continuum of states. Some limit optimal control problems were
then stated. A set of Symmetric Linear Feedback Strategies that solves the limit optimal control
problems was proved to constitute an € - Nash equilibrium, when the scale is sufficiently large.
A sufficient condition for the existence of a Mean Field Nash equilibrium was derived using
contraction mapping ideas. Numerical examples were also presented. It occurs that, in several

cases, the Mean Field approximation simplifies considerably the analysis.

3.8 Proofs

3.8.1 Weak Convergence and Mean Square Stability

Consider a sequence of systems:
i = AW} i ~ KV ), (3.49)
and a limit system:

Trr1 = Alr) Tk, Yerr ~ K(yr, ). (3.50)

Assume that K — K weakly, K is Feller continuous and that A(-) is a continuous matrix
function. Assume also that the limit system, given by (3.50), is exponentially mean square stable.
The basic topic of this section is to show that the system given by (3.49) is exponentially mean
square stable, for large v.

For any a € (0, 1), there exists an integer & such that:
Elx} ;] < aB[x o], (3.51)
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for any x, yo initial conditions. Choosing x( to be any nonrandom initial condition, the last

inequality becomes:
al — E[AT (yo) ... AT (yr—1) A(yr_1) - - - A(yo)] > 0. (3.52)

The positive definiteness of this matrix is equivalent, due to the Sylvester criterion, to a set of

inequalities in the form:

fl(y07 cee ayk’—l)
il E : > 0, (3.53)

fn2 (y07 s 7yk71)

forj =1,...,n, where f;,i =1,...,n? correspond to the elements of the matrix in (3.52) and
are continuous and f; are the multinomials derived using the Sylvester criterion.

The inverse procedure shows that the conditions in (3.53) imply the mean square exponential
stability of the limit system (3.50).

Let us then state the basic result of this section.

Proposition 6. Under the assumptions stated above, there exists a positive integer vy such that

r(Tagv) <1, forany v > 1.

Before proving the proposition, a lemma will be stated. This lemma illustrates a uniformity
property of the weak convergence. The uniformity is expressed in terms of the Bounded Lipschitz
metric ([Pan08] section 17) which is defined by:

B(P, By) = sup {‘ / fap, - / fdp,

N fllez < 1},

where Py, P, are probability measures on D and || f|| g = sup,ep{f(y)}+inf{L : f is L - Lipschitz}.
The metric 5(, ) metrizes the weak convergence, due to the fact that D is seperable ([Pan08]
section 17).

In order to state the lemma, let us consider the functions:
ELE(D - ) = (DY), B),

where I1(D¥) is the space of probability measures on D* and for any C' € B(D¥) the functions
=¥ have the form =" (y)(C) = Pr((zo, ..., zk—1) € C), where 2, has a distribution concentrated
ony and z;,1 ~ K”(z;,-). In the same way the values of = are defined. Thus, = maps the initial
condition ¥, to the distribution of (yo, ..., Yx_1)-

Due to the Feller continuity of K, it is not difficult to show that the function = is continuous
([Kar75]). The following lemma illustrates a uniformity property of the convergence of =" to =.

Particularly, it is shown that for the same initial condition yg = vy, and large v, the distribution of

(Y&, yy_q)is B - close to (yo, . . ., Yx—1), uniformly in yq.
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Lemma 4. Under the assumptions stated above, for any € > 0, there exists a positive integer vy
such that 5(Z"(y),E(y)) < e forany v > vy and any y € D.

Proof: To contradict, assume that there is a positive constant € such that for any vy € N,
there exists av > vy and ay € D with 5(2"(y),=(y)) > €. Then there exist sequences m,,, Y,
such that m, > v, m, > m,_1 and (™ (Y, ), Z(Ym,)) > €. The compactness of D implies
the existence of a further subsequence y,,,, that converges to a value y. Theorem 1 of [Kar75]
implies that 5(Z™ (ym,, ), E(¥)) — 0.

However, the triangle inequality implies:

BE™ (Y, ), Z(G)) = BE™ Ym,, ) E(Ym,, )
_B<E(ymul)7 E(gj))
> e = B(EWYm, ), E(1)).

The continuity of = implies that 3(Z™ (y,,, ), Z(¥)) > €/2, which contradicts 5(Z™ (y,n,, ),
=(y)) — 0. O

Remark 18. If the functions Z¥ are continuous for large v, the proof of Lemma 4 becomes trivial.
U

Let us then turn back to the proof of Proposition 6.

Proof of Proposition 6: The quantities:

filvo, - Yk—1)
9i(wo) = fi | E : , (3.54)

Jnz (o5 Yk—1)
are continuous functions of yy. Thus, due to the compactness of D, there is a constant €; > 0,
with g;(y) > ey forany y € D and any j = 1,...,n. The functions f;(-) are uniformly
continuous in D and thus there exists a positive constant d; such that f; (v1) > & implies

fi(va) > 0, for any vy € D* with ||[v; — vo|| < 0y andany j = 1,...,n.

Choose yy = 4. The entries of the functions f;, i.e. E[fi(y4,...,y% 1)) and E[f;(vo, .- -,

Yr_1)],7 = 1,...,n? can be written in the form:

/ F(w) (E(yo))(dw) and / Fiw) (E (o)) (dw).

We claim that:
Claim I: For large v, it holds:

‘/fi(w)(E(yo))(dw) —/ﬁ(w)(E”(yo))(dw)‘ < di/n?,

forany yo € Dandanyi = 1,...,n%
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In order to prove the Claim 1, recall that any uniformly continuous function may be
approximated by a Lipschitz one. Let f/ : D — R, i = 1,...,n? be Lipschitz functions
such that || f/ — fi|| < 01/(4n?). Denote by L the maximum bounded Lipschitz norm of the

‘ [ Rw)Ew) ) - [ ﬁ-(w)(E”(yo))(dw)] <
< / i) = FL(w)] (E(wo) + * (y0))(duw) +
+ \ [ ) - | ﬁ(w)(%@)(dw)].

The first term is bounded by ¢, /(2n?), due to the fact that =(y0)(+) and =”(yo)(-) are probability
measures. To bound the second term, let us observe that Lemma 4 implies the existence of a
positive integer 1 such that (=" (yo), Z(vo)) < 81/(2n2L), for any v > 1. This completes the
proof of Claim 1.

Therefore, for v > 1 it holds:

Fi(v, - y)

fn2(y(]yv S 71%?—1)

forany yg € Dand j = 1,...,n. Hence,

El(x})" o lxg, y] < alag)" a5
Integrating over the distribution of z(, y;, we conclude:
E[(x})"ay] < aB[(xg)" 5], (3.55)
for any initial condition and any v > 1, which completes the proof of the proposition. U

Let us then state a corollary of the Proposition 6, dealing with systems having also additive

stochastic disturbance. Particularly, consider the systems given by:

i = AW)rg + i v~ K, (3.56)
and:

T = Alye)Te + wey Y1 ~ Ky, ), (3.57)
where w}, and wy, are zero mean i.i.d. random variables with finite variances.

Corollary 3. Consider the systems described by (3.56) and (3.57). Assume that KV — K

weakly and that K is Feller continuous. Let a < 1 and assume that T = Ty g has spectral
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radius less than 1/a. Then for any € > 0, there exist positive integers ko, vy such that:

E|) ak(xk>Tx;] <e(1+E [(zf) =) (3.58)
| k=ko

E Z a xkxk] <e(1+E[ztwo)), (3.59)
| k=ko

forany v > v.

Proof: The proof is straightforward and uses equation (2.5), as well as the bound (3.55) and
techniques form Chapter 2. U

3.8.2 Weak Convergence and = - Optimality

In what follows, we assume that K — K weakly, K is Feller continuous and the functions
A¥(y, k), Ay, k), A(y) are continuous on their y argument. Let us then introduce some notation,
needed in order to state the basic results.

Notation: Consider the system given by:

Tp41 = A/(yk, /f)xk + B(yk)uk + Wk, Ykt1 ™~ K/(ym ')7

and the feedback control law uy = Ly (yx)zx. Then, we denote by:

_ _ T
JK,,kmA,’“k:Lk(yk)mk (x07 yO) =L xko+1Qk0+1xk0+1 +

Za PILE (ye) R(yr) Lic(y) + Q(yi) |k

I

and J: K ko A7 (%0, yo) the optimal value, where K’ can take the values K or KV and the time
horizon is allowed to take the infinity value. We use the notation Jz i v, — 1., (ye)z, @0d J%, (:co, Yo)
for Al(yk, k‘) = A(yk) [

The basic topic of this section is the proof of the following two propositions about the ¢ -

optimality in the finite and infinite horizon LQ control problems respectively.

Proposition 7. Assume that A" (yx, k) — A(yx, k) as v — oo. Let us denote by uy, = Ly, (yx)xy,

the optimal control law that attains the minimum J. . Then for any € > (0 there exists a

A(ykak)vkﬂ
positive integer vy such that:

J[_{Vvk(JyAV(yk7k)7uk:Lk’(yk)zk (x[)’ yo) < J;('V ko, A(yk k)+

+e(1 + xd o), (3.60)
forany v > v,. 0]
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Proposition 8. Let us denote by uy, = L(y;.)xy the feedback strategy that attains the minimum

JI*—(’OO. Then, for any € > ( there exists a positive integer v such that:

JI_(V,oo,uk:L(yk)xk (Qfo, yO) < J;E'upo + 8(1 + xng)v (361)
forany v > v,. 0]
The proof of the Propositions 7 and 8 depends on the following lemmas.

Lemma 5. Consider a feedback control law uy, = Ly (yy) which is continuous in yy. Then for

any € > 0, there exists a positive integer vy such that:

‘JI_(,ko,uk:Lk (yk)xk (x()? yo) - JI_(V,ko,uk:Lk (yk)xk (x[)? yo) | <

< 5(1 + .Tgl’o
forany v > 1.

Proof: The proof is a direct consequence of the properties of the weak convergence [Kar75].
O

Lemma 6. Let f, : D — R be a sequence of continuous functions and [ their pointwise limit.
Then, it holds:

/Dfu(y’)ff”(y,dy’)—>/Df(y’)ff(y,dy’)

as v — oQ.

Proof: The proof is a direct consequence of the compactness of D and the properties of the

weak convergence. U
Lemma 7. For any € > 0, there exists a positive integer v, such that:

I ko (20, 0) — Jf{v,ko,(%, yo)| < e(14 xdxo)
forany v > v,.

Proof: The proof proceeds backwards in time from the step % to 0. At each step the Dynamic
programming equations, as well as the Lemma 6 are used. U
We then proceed to the proof of the basic results of the current section.

Proof of Proposition 7: Lemma 5 implies the existence of a positive integer vy, such that:

‘]k"u,ko,uk:Lk(yk)wk (.I’(), yO) <

= J% ko (w0, yo) + (1 + 2 mo), (3.62)
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for any v > vg1. On the other hand, Lemma 7 implies the existence of a positive integer vy, such
that:

Tt 1o @0, 40) < Jiw g (w0, 40) + (1 + xd 20) (3.63)
for any v > 1. Inequalities (3.62) and (3.62) imply the desired result for vy = max{vy, vos }-
U

Proof of Proposition 8: In order to complete the proof, the following series of comparisons is
made:

JK”@Q%ZM%)%’ JK”,ko7uk=L(yk)fEk7 JK:k07uk:L(yk)xk’ J;?,oo’ J??,ké’ J;(V,k{)’ J;?V,oo
Particularly, each of these quantities is compared to the next one. It is shown that each of
these quantities is at most slightly larger than the next.

At first let us compare J ;. with Jgv o =1 Corollary 3 implies that for

,00,up=L(yg )Tk Yk )Tk *

any € > 0 there exist integers ko and vy such that:

JK”,oo,uk:L(yk):z:;C ($0, yO) << JK”,ko,ukzL(yk)xk ('T()? yO) + 5(1 + l’gx0>/4,

for any v > 1.

Lemma 5 implies the existence of a positive integer 1/ such that:

JI_(V,kO,uk:L(yk)xk (:C07 yO) < Jl_(7k0,uk:L(yk)xk (l’o, yO) + 5(1 + xng)/47

for any v > 1492, which serves as the second comparison.

Comparison three holds as an inequality, i.e.:

IR ko =Ly (T0,Y0) < Tk o (To, Yo)-

To derive an inequality for the fourth comparison, let us observe that K, — K and ¢, — ¢
uniformly as k — oo, where K, I, ¢;, and c are as in Proposition 3 and Theorem 2 of [KP14a].
It also holds J7 , = 28 K. (yo)zo + ¢ and Jer o= 28 K (yo)xo + c. Thus, for any £ > 0, there

exists a positive integer &, such that:
Ji 00(0,Y0) < Jz*’(,kg) (w0, yo) + (1 + 2 x) /4.
Lemma 7 implies the existence of a positive integer 13 such that:
I 1y, (T05 Yo) < J;’(u,% (20, yo) + (1 + z§ x0) /4,

for any v > 143. This inequality shows the fifth comparison.

The last comparison holds as an inequality, i.e.:

J;{V’ké (0, %0) < Jiv oo (0, Y0)-

Hence, choosing vy = max{ vy, Vo2, o3} the desired result is shown. d

3.8.3 Proof of Theorem 1

The proof is a direct consequence of the Propositions 7 and 8 and the continuity of the functions

involved.
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Chapter 4

Games on Large Networks:
Information and Complexity.

This chapter studies Static and Dynamic Games on large Networks of interacting agents
assuming that the players have some statistical description of the interaction graph, as well
as some local information. Inspired by Statistical Physics, we consider statistical ensembles
of games and define a Probabilistic Approximate Equilibrium notion for ensembles of games.
A Necessary Information Complexity notion is also introduced, quantifying the minimum
amount of information needed in order to exist a Probabilistic Approximate equilibrium. Some
classes of games are then analyzed and upper and lower bounds for the complexity are found.
Particularly, static and dynamic games on random graphs are considered and it is shown to have
high complexity for low connectivity and low complexity for high connectivity. In the latter
case, Probabilistic Approximate equilibrium strategies are computed. Static games on lattices are
then considered and upper and lower bounds for the complexity were derived using contraction
mapping ideas. A LQ game on a large ring is also studied numerically and an upper bound for

the complexity is found to be approximately linear.

4.1 Introduction

In the last decade, a lot attention has been devoted to the study of games with large number of
players under the name of Mean Field Games (MFGs) [GLL10]. These models study situations
where each individual interacts with the mass of the other players (mean field interaction).
Asymptotic Nash equilibrium results are usually obtained using the assumption that each player
can measure only her state variable and also knows the statistical distribution of the types and
state variables of the rest of the players. This work aims to study more general interaction
structures, in which it is possible to have an approximate equilibrium assuming only local and
statistical information.

In several game situations involving many agents, the strategic interactions depend on a large
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interaction structure such as a network. An example is an electricity transmission grid where
several entities, such as producers, consumers or smart micro-grids are connected in different
places of the network and local, as well as global cooperation and/or competition arises (ex.
[SHPB12]). Several examples involve interactions over social networks [Jac08], [DE10], such
as the selection of a telecommunication company, the opinion about an idea or a product, the
selection of fashion group and the engagement in criminal behavior. In these examples, the
choice of each agent depends on her preferences, as well as the choices of her friends. There
are also several examples of non-social interaction structures, such as the interaction among
the owners of stores for renting and the gas station prices, where there exists a local, as well
as a global competition. Several features characterizing Systems of Systems [KH11], such as
operational and managerial independence, geographical distribution, heterogeneity of systems

and networks of systems can be also captured by Dynamic Games on Networks models.

Two kinds of approach have been mainly used to predict the behavior of the participants in
large games. The first approach is based on equilibrium concepts and the dominant notion in
this approach is the Nash equilibrium. The knowledge of a large amount of information is often
needed in order to be possible to determine equilibrium or approximate equilibrium. The second
kind of approach assumes limited (bounded) rationality for the participants [Sim72], [SelO1]
and it is based on dynamic formulations. In particular, some deterministic or stochastic rules
describing the future actions of the agents as a function of their current actions are postulated and
then evaluated theoretically or experimentally. Examples of dynamic rules include evolutionary

dynamics, learning, adaptive control laws and best response.

This second kind of approach does not require a complete knowledge of the game. However,
the dynamic rules used are not universal, in the sense that there is no reason to believe that all the
players will follow some specified rule to determine their future actions. Furthermore, there is
also the cheating problem [KP14b], i.e. that the knowledge of the dynamic/adaptation rule of a
player may be exploited by the others, leading probably to different outcomes from the predicted.

Which kind of approach should be used in order to describe/predict the behavior of the players
in a large game? The full rationality assumption for the players should depend on the difficulty
of the problem they have to solve, as well as the informational requirements. In this work, we
define an informational complexity concept, for a certain class of games, as the minimum amount
of information needed in order to be achievable a certain form of approximate equilibrium. This
complexity notion is studied asymptotically for large games. If the complexity is small, then
the participants of a large game can use strategies that are in approximate equilibrium without
assuming a lot of information. In a large game with very high complexity, it is reasonable to
assume that the players would use a dynamic rule. In this sense, our approach aims at the one
hand to identify classes of large games which admit approximate equilibrium solutions assuming
only a small portion of the information and on the other hand to identify some informational
limitations of the applicability of equilibrium concepts in static or dynamic games with a large

number of players.
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4.1.1 Contribution

We study Dynamic Games on Large Networks, assuming some stochastic description of the
Graph such as Random Graph, Grid, Small World Network etc. The stochasticity is divided
into two parts. The first part describes the structural stochasticity and corresponds to the lack
of knowledge of the players the and the second corresponds to the lack of predictability of the
future.

Instead of studying a single game, inspired by ideas arisen in the Statistical Physics domain,
an ensemble (collection) of games is considered, assuming that a statistical model on that
ensemble is available to the players. Furthermore, the information contained in a neighborhood
of a certain order of each player is assumed to be available to that player. As the order of
neighborhoods increases the information varies from only statistical to perfect. An analogy with
a situation common in the Statistical Physics literature is used in order to define a Probabilistic
Approximate Nash (PAN) equilibrium concept for ensembles of games. A complexity function
is then defined for an ensemble of games as the minimum amount of information needed in order
to be achievable a PAN equilibrium. This complexity function is studied asymptotically as the
number of the participants of the game becomes large.

Special cases of games where upper or lower bounds for the complexity can be obtained are
then analyzed. A class of static games on Random Graphs is shown to be simple under some
connectivity assumptions and complex under other connectivity assumptions. A LQ opinion
game on a Random Graph is also analyzed and approximate equilibrium strategies are computed,
generalizing older work about consensus [NCMH13].

Quadratic Games on ordered interaction Structures (Grids or Rings) are then analyzed. They
are found to have polynomial complexity functions where the order of the polynomial depends
on the dimension of the interaction structure. A class of non-quadratic games on rings having
chaotic best response maps are analyzed and shown to have a relatively low complexity. The
approximate equilibrium is possible due to some cooperation among the players. Finally, a LQ
game on a ring is studied numerically. Approximate equilibrium strategies are computed, using
a reduced game and an upper bound for the complexity function is found to be approximately
linear.

In the special cases analyzed, we established low complexity results using one of the following
properties: a law of large numbers, contractivity of the best response maps, cooperation among

the players or low gains assigned to distant players.

4.1.2 Related Topics

The interest for the games with large number of players is not new. Probably the first works
dealing with games involving a continuum of players are [Aum64] and [MS78]. [Aum64]
analyzes a market with a continuum of players and [MS78] studies games with a continuum

of players, called Oceanic Games and introduces and a value for such games. The Mean Field
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Games [GLL10] have been recently introduced to study static and dynamic games with large
number of players. The closely related methodology of Nash Certainty Equivalence was also
developed, in order to obtain asymptotic approximate Nash equilibrium results, as the number
of players tends to infinity [HMCO05],[HMCO06]. These works study games, where each player
interacts with the mass of the other players, which is approximated by a continuum. Large games
involving a coordinator (major player) were studied in [HualO]. Several extensions of the Mean
Field game theory on models describing more general interactions are presented in [Tem11b].

Another related topic is Games with Local Interactions, in which each player interacts with
some players important to her on some organized structure. In [BHOO06], equilibria for complete
and incomplete information Local Interaction Games were found, based on contraction mapping
ideas. The dynamic game counterpart is presented in [BO11]. Models with discrete choice were
introduced in [BDO1].

Games where players move on a graph were analyzed in [OP88], [BB90] and finite games
on graphs, where each node corresponds to a participant of the game, were studied in [KLSO1].
Repeated games with random matching of the opponents were introduced in [Kan92], in the
context of sustainability of cooperation and social norms. The probability of existence of a
Nash equilibrium for games on random graphs is studied in [DDM11]. A quadratic game on
networks is studied in [BCAZO06], using centrality notions. Games on networks with incomplete
information are studied in [GGJ " 10]. Dynamic games on evolving state dependent graphs were
studied in [BB10] and stochastic games in [NABO9]. A review of network games is given in
[JZng].

Dynamic rules for updating the actions of the agents on lattices were studied in the context of
Interacting Particle Systems [Lig85] and in [BIu93]. Several dynamic rules for games on graphs
were introduced and studied analytically and computationally in [SFO7]. Several sociological
applications of evolutionary games on graphs were studied in [Sky03].

The impact of the quality of information that the agents receive on their costs is studied in
[TP85] in the LQG Game framework. It was shown that, as the number of players or the time
horizon becomes large, better information becomes beneficial for the all the participants of the
game. The notion of the price of uncertainty was introduced in [BBM09] and [GJC10], in order
to describe the difference in the costs of the players under different information structure using
dynamic and equilibrium formulations respectively. The price of information was introduced
in [BZ11] to describe the difference of the cost that the players have in deterministic dynamic

games under different information patterns, i.e. feedback and open loop.

4.1.3 Notation

The underlying probability space is denoted by (€2, F, P). For a random variable X, denote by
0(X) the o algebra generated by X, i.e. the coarsest o algebra such that X is o (X )-measureable.
A directed or undirected graph will be denoted by G = (V, E), where V is the set of
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vertices and F the set of edges (ex. [Wes01], [ME10]). For a vertex v € V, the neighborhood
of v is defined as N, (G) = {v' € V : (v/,v) € E} and the closed neighborhood of v as
N,(G) = {v}u{v €V : (¥, v)or(v,0') € E}. The closed neighborhood of order n of v is
defined as NJ(G) = Ujcx, N~ (G). For a subset A of V, denote by G4 = (A, {(v/,v) €
E :v,v € A}), the largest subgraph of G with set of vertices A. With |G’| we denote the
number of nodes of a graph G’.

The indeterminacy § is resolved as 0. An ordered tuple (', ..., ") is denoted by (+*); and
the ordered tuple (7!, ..., 71 v ... 4N) by 77 By [-] we denote the integer part. The
asymptotic notation will be also used. For real functions f and g, we write f(x) € O(g(z)), if
there exists a constant ¢ > 0, such that 0 < f(x) < cg(x) for large x and f(z) € o(g(z)), if for
any ¢ > 0 itholds 0 < f(x) < cg(z), for large z. We write f(x) € w(g(x)) if for any ¢ > 0 it
holds 0 < ¢g(z) < f(x) for large x and f(x) € ©(g(x)) if there exist constants ¢; and ¢, such
that 0 < c19(x) < f(x) < cog(x) for large x. Finally, f(x) € Q(g(z)) if for some constant c, it
holds f(x) > cg(x), for large .

In what follows, we assume that all the functions involved are measurable within appropriate

measurable spaces.

4.1.4 Organization

The rest of the current work is organized as follows. Section 4.2 describes the notion of an
ensemble of static or dynamic games. In Section 4.3, the Probabilistic Approximate Nash
equilibrium is introduced and compared with the Bayesian Nash equilibrium. Furthermore,
the Necessary Information Complexity and the Asymptotic Necessary Information Complexity
functions are defined. Several special cases are then analyzed. Particularly, static games on large
Erdos-Renyi random graphs are studied in section 4.4.1. In section 4.4.3 the LQ dynamic game
counterpart is considered. Section 4.5 studies static games on organized structures. Particularly,
Subsection 4.5.1 studies static quadratic games on lattices and Subsection 4.5.2 studies games
with chaotic best response maps on rings. LQ games on rings are considered and studied

numerically in Section 4.6.2. Finally, Section 4.7 concludes.

4.2 Description

We first describe the general form of the structure of interactions among the players. For any
given interaction structure S, a game ¢° is defined. Then, an ensemble of interaction structures
(or equivalently an ensemble of games) £ is defined assuming that the players have a common
probabilistic description for the interaction structures S in €.

Let us first describe the general form of an interaction structure. There is a set of players
p1,...,pn. Each player p; has a type 6; belonging to a set of possible types O. The interaction
structure depends on a graph G = (V, E), directed or not. Each vertex of the graph v € V
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corresponds to a player p, and each edge (v',v) € E to the influence of the player p,/ to the

player p,. The interaction structure is described in compact form by:
S = (I, G), 4.1)

where IT = ((p1,601), ..., (pn,0n)). Let us denote by F¥ = o(.9), the structural information.
For a given interaction structure S, a discrete time dynamic game ¢g° among the players is

described. Each player p; has a state variable x* the evolution of which is affected by the actions

and the state variables of the other players. The influence of the neighboring players is different

than the other players. The dynamics for the player p; is given by:

6; § : 91,9
‘/Ek—&-l - f (xkaukawka f kaxk?uk?uk)
JEN;(G)

91,9
Z (%, xkzu U Uk)) (4.2)
JeV
where u} € U is the action of player p; at time step k, w} are random variables with known
distributions, NV;(G) is the neighbourhood of player p; and V' the set of all players. The initial
conditions are random variables, possibly dependent on the interaction structure.

The cost functions, given the interaction structure, are given by:

k 6;( i i 0,05 i 3 i ]
E p g (xkuuku g1 (%afckauka“k),
=0 JEN;(G)

95" (. . uf ) ) ‘ fs} , (43)
jEV

where the time horizon 7" can be finite or infinite, ¢ > 0 and p € (0, 1] is the discount factor.
The cost function of the player p;, also, depends differently on the players with whom she has a
direct connection, than the rest of the players.

The players do not know the interaction structure characterizing the game that they are
involved. Instead, they consider a statistical ensemble £ of possible interaction structures, i.e.
a collection of mental copies of the game having different interaction structures. With a slight
abuse of notation, the corresponding ensemble of games is also denoted by £. We assume that
all the players consider the same ensemble and that they assume the same probability structure
on that ensemble. That is, the players assume the same distribution of the random variable .S in
E. Let us denote by )(+) that distribution.

Apart form the statistical model of the interaction structure (£, ()), the players possess some
local information. The local information of a player p; consists of the structural facts and the
state variables of the players contained in a neighborhood of order n of that player. Particularly,
we assume that each player knows her type and can measure her own state variable. Furthermore,
each player knows the interaction structure of a neighborhood of order n around her, that is she

knows the types of the players and the subgraph and she can also measure the state variables of
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the players in that neighborhood. Thus, the local information available to the player p; at time
step k is:

L™ = Gy (0))jexricrs (@) o) (4.4)
where N*(() was defined in Section 4.1.3 and denotes the neighborhood of order n of player p;
and G ~r(c) 1s the corresponding subgraph. The total information available a player p; at time
step kis (£,Q,I}").

Due to the fact that the players do not know which is the actual interaction structure S, they
use strategies that can be applied in any member of the ensemble £. The strategy of each agent
can, however, depend on the local information available to her. We consider symmetric sets of
strategies, where players with the same information (and hence type) behave in the same way.
Furthermore, we focus on feedback strategies (strategies without memory). The strategies under

consideration have, thus, the form:
up = ("), (4.5)
where:
L= (Grn(ays (0)jexm @y (Ii)je/vg(e))- (4.6)
The following classes of strategies will be useful in the next section.

Strategy Classes:

(i) The class of Feedback Local Information Strategies for player i is given by:
TP =y = (i d, ) iy I = Uk =1,2,..}.

If necessary, I'/,)/ will be used in the place of I'/*' to indicate the order n of the

information neighborhoods.

(i) The class of Closed Loop Perfect Information Strategies for player i is given by:

={7' =007 ) o I

k=1,2,...}

FC’LPI SN U,

where I = (G, (0;);ev, (x])2)), G is the interaction graph and V is the set of all the

players. 0
Remark 19. (i) The dynamics and the cost functions given by equations (4.2) and (4.3) describe

two types of interactions. The first sum corresponds to local interactions and the second term to

mean field interactions.

(ii) There are two types of stochasticity presented in the model. The first is due to the lack of
predictability and it is described by the random variables w',. The second is the uncertainty
due to the lack of information (knowledge) and it is described the random variable S

which contains the structural features of the game. There some other works which divide
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the uncertainty to lack of knowledge and lack of predictability. For example, in [ABO6]
incomplete information is treated using robust optimization and the stochasticity due to

the randomization of the players using the expectation.

(iii) The members of the ensemble do not need to have the same number of players and the

ensemble do not need to be finite.

(iv) Models involving graphs with information on their edges could also be studied, as well as
structures more general than the graphs relating more than two agents (ex.[ GZCN09]).

For simplicity reasons, we study only the model defined in this section. ([l

The model described borrows some ideas from the Statistical Physics and Network Science.
In Statistical Physics the inability to know the initial conditions of the system under consideration
precisely, as well as the fact that it is very difficult to solve a huge number of equations describing
individual particles, is coped by considering a collection of mental copies of the system having
different initial conditions, called a statistical ensemble [HuaO1]. Several macroscopic properties
are then shown to have values close to a deterministic constant for all the systems in the ensemble,
except possibly of a set of systems with very low probability. Similar results have been also
obtained in the Network Science, such as results about Percolation, connectivity of large Random
Graphs, etc [Jac08], [DE10].

In the following section, we study sets of strategies which constitute an approximate Nash
equilibrium for the games corresponding to all the interaction structures of the ensemble, except
possibly of a set of interaction structures with very low probability. Following some ideas from
Statistical Physics and Network science, in order to study games with large number of players,
we consider a sequence of ensembles of games &, with increasing number of players and we

study the tail of the sequence.

4.3 Approximate Equilibrium and Complexity

Consider a large game in which the actions of the players depend only on local and statistical
information. Due to the fact that the agents do not know in which game they participate in, it
is reasonable to expect that a set of strategies in the form (4.5) could not typically constitute a
Nash equilibrium. A Probabilistic Approximate Nash (PAN) equilibrium concept is thus defined,
based on the concept of € - Nash equilibrium. We first recall the definition of the € - Nash

equilibrium for a single game.

Definition 7. Consider a game g° with S € & and the set of dynamics and cost functions
given by (4.2) and (4.3). Then a set of strategies (¥'); with v € TFEL constitutes an ¢ - Nash
equilibrium, if for every player p; it holds:

(v, — min {Ji(v,7 )} <, 4.7)

~EDCLPI
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where the minimum is considered within the class of full information closed loop strategies. []

An approximate equilibrium concept is then defined for the ensemble of games. We are
interested to characterize a set of strategies constituting an ¢ - Nash equilibrium for the games

¢° that correspond to the most of the interaction structures in S € &.

Definition 8. Consider an ensemble of interaction structures £ and the set of dynamics and
cost functions as before. Then a set of strategies (v'); with ' € T is an e-Probabilistic

Approximate Nash equilibrium (c-PAN equilibrium) for that ensemble if:
P({S € £ : (v"); is € - Nash equilibrium of g°}) > 1 — ¢, (4.8)

i.e. (v'); constitutes an € - Nash equilibrium with high probability. The probability of the event
in (4.8) can be computed using the distribution (). U

The reason for studying sets of strategies constituting an e-PAN equilibrium with small ¢
is that, with a very high probability, no player has non-negligible benefit from changing her

strategy, even if she had access to all the available information at any time step.

Remark 20. An alternative way to express inequality (4.8) of the manuscript is to use the Ky
Fan metric among random variables (ex. [Dud02]) defined as follows. The distance d between

random variables X, and X5 is defined as:
d(Xl,XQ) :inf{5>O:P(|X1—X2\ >€) Sé} 4.9)
Thus, inequality (4.8) can be stated equivalently as:

d(J' (v, inf J(vhy) <e (4.10)

~E€DCLPI

in terms of the Ky Fan metric. U
Lemma 8. The =-PAN equilibrium has the following properties:

(i) Consider a set of strategies (7'); constituting an e-PAN equilibrium. If the players
receive more information, i.e. the information neighborhoods have order n' > n and
I > I'"™ then the set of strategies (v"); remains an e-PAN equilibrium. That is, the

e-PAN equilibrium is insensitive to new information.

(ii) An € - PAN equilibrium of a static game remains an < - PAN for the corresponding repeated

game.

Proof: (i) It holds 4 € T'F'LY c T'FLI Furthermore, (4.8) holds and thus (v%); is an e-PAN

2,n i,n’

equilibrium for the ensemble of games where the players have information 7",
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(ii) Consider an ensemble of static games with cost functions J; and a set of strategies (")
constituting an e—PAN equilibrium. For a discount factor p € (0, 1), an ensemble of repeated

games can be considered having cost functions:

Ti=E|[(1=p)> o577
k=0

]—'S] . 4.11)

The set of strategies (7"); with 3* = (31,74, ...) and 5., = ~* constitutes an e—PAN equilibrium
for the ensemble of repeated games. 0

Let us now compare the e-PAN equilibrium with the notion of Bayesian Nash equilibrium
(see ex. [FT91b])).

Remark 21. Some differences among the two approaches involve:

(i) It is very difficult to compute a Bayesian Nash equilibrium even for simple dynamic
games. In the case of LQ stochastic Dynamic Games with imperfect state feedback
information, Nash equilibria have been computed only for special information patterns
[Pap82]. [GNLBI4]. In the case where the structural information is also incomplete,
the optimization problems are vey difficult even for single person games (optimal control
problems), due to the fact that the dual control problem arises [Wit02].

(ii) If there is only structural uncertainty, in contrast to Bayesian Nash equilibrium, an < -

PAN set of strategies is insensitive to the risk profile of the players.

(iii) In contrast to Bayesian Nash equilibrium, an € - PAN set of strategies satisfies the properties
(i),(ii) of Lemma 8.

(iv) In some examples, we may have PAN equilibrium, even if the players have different prior
probabilities on the ensemble. In these cases, the common prior assumption can be
weakened (ex. Sec. 1IV). [l

Consider a set of strategies constituting an e-PAN equilibrium. Each player is interested and
responds to a different set of players and in this sense, each player is involved in (perceives) a
different game. For example, consider the game of in Figure 4.1. Each player is affected by
her neighbors in the graph through the terms f;, g; and by the rest of the players through f,
g2- Assume also that there is an e-PAN equilibrium assuming information neighbourhoods of
order 1. Then, player p; acts as if he is involved in a game only with the players p», p3 and ps,
the player ps in a game with py, p» and p; and so on.

If the order of the information neighborhoods of the players is small then it is probably not

possible to have an e-PAN equilibrium. Thus, the following question is quite interesting:

Question 1. “Given a positive constant €, what is the minimum amount of information that the

agents need to have in order to achieve an c-PAN set of strategies?" U
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Figure 4.1: The information neighborhoods of players 1 and 5 withn = 1.

Based on the answer to this question, the Necessary Information Complexity (NIC) function

with respect to the PAN equilibrium is defined for the ensemble of games.

Definition 9. (i) Consider an ensemble of games as described above. Let us define the

(ii)

following function:

n(m) = inf{n € N : 3 set of strategies (v"); with
7' € TEH in the form (4.5) which is 2~™-PAN}. (4.12)

im0

The Necessary Information Complexity (NIC) function with respect to the PAN equilibrium
is defined as:

C(m) = max{|N;""™]}, (4.13)

where the maximum is considered over the several players and over the games of the

ensemble where (v'); is a 2~™ - Nash equilibrium.

Consider a sequence of ensembles £, with cost functions J! and dynamics described
by f1°, f3"". Denote by C(-) the NIC function of the v-th ensemble. The Asymptotic
Necessary Information Complexity (ANIC) function with respect to the PAN equilibrium is
given by:

Cu(m) = limsup C”(m). (4.14)

v—00

The sequence of ensembles will be called asymptotically simple if the function Cy,(m) is

bounded and asymptotically complex if for some m € N it holds C,(m) = oc. U

In Definition 9, the informational complexity with respect to PAN equilibrium is introduced.

The function n(m) quantifies the minimum order of the information neighborhood that the

players need to have for the existence of a 2= — PAN equilibrium. The NIC function C'(m)

quantifies the maximum number of players in a neighborhood of order 72(m) or equivalently the

maximum number of players that is required to be observed by a single player, in order for a
2™ — PAN equilibrium to exist.
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Remark 22. Several static and dynamic games, that have only mean field interactions, have
been studied in the literature [GLLIO], [HMCO05], [HMCO6]. In these cases, under some
conditions, each player interacts with the mass of the other players which behaves asymptotically
deterministically, as the number of players increases. Thus, each player needs to know only her
type and state variable, in order to behave nearly optimally. Thus, the Mean Field Games is a

first example of asymptotically simple games. 0

Classes of games, where it is possible to find upper and lower bounds for the NIC and ANIC
functions, are analyzed in the following sections.

4.4 Games on Random Graphs

In this section, ensembles of games where the players interact on large random graphs are
studied. It is shown that the complexity of the ensemble varies, depending on the connection
probability of the random graph. In the high connectivity regime the effects of the neighbors
of any player can be approximated by a mean value. Using this approximation, appropriate
consistency conditions are derived and then used to characterize a set of strategies which is
shown to be e-PAN for the large number of players case.

The first subsection considers static games and the second Linear Quadratic games.

4.4.1 Static Games on Random Graphs

Let us first describe the game for a given interaction structure. Each player has a type 6; € [0, L]

and the cost functions are given by:

i i 1 - j
Ji:g(ei—u)—i—g(u _mzdi]’u]> ; (4.15)

j=1
where g is a smooth, strictly convex function with ¢(0) = ¢’(0) = 0 and d;; = 1, if there is an
edge between vertexes ¢ and j and zero otherwise.

In order to describe the ensemble of games, a stochastic structure on ¢; and the graph is
described. We assume that 6; are i.i.d. random variables uniformly distributed in [0, L]. The
graph is an Erdos-Renyi random graph with connection probability cy, i.e. each edge appears
independently of the other edges with probability cy. We further assume that the random
variables d;; and 6; are mutually independent.

We first focus on strategies depending only on statistical information, assuming no knowledge
about the neighbors of each player. The strategies under consideration have the form u’ = ~v(6;).

A technique to derive strategies in this form is to approximate the terms in the cost function

by their mean values. Specifically, we shall use the approximation:

U~

1 L
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forall: =1,..., N.
With this approximation, the cost functions depend only on statistical information. The

strategies that minimize the approximate cost functions have the form:
u' = h(b;, @) = argmin{g(u — 6;) + g(u — @)}. (4.17)

The function i will be shown to be well defined.
With the strategies given by equation (4.17), the mean value of the actions should satisfy the

following compatibility condition:

1 /L
u= —/ h(o,u)do. (4.18)
L J

The following proposition shows that if connectivity is high, then the strategies described by
(4.17), (4.18) constitute an e-PAN equilibrium, for large N. The asymptotic notation used in the
following proposition was defined in section 4.1.3.

Proposition 9. Under the specified assumptions it holds:

(i) Equation (4.18) has a unique solution.

(ii) If cy € w (%), then the strategies given by (4.17) constitute an e-PAN equilibrium of

the ensemble of games, for large N.
(ii) If cy € w (%), then C,(m) = 1 and the ensemble of games is asymptotically simple.

Proof: (i) The strict convexity and the lower boundedness of g imply that the function 4 is

well defined. The function i (6, @) can be expressed as the solution to the following equation:
folu,u) = g'(u —w) + ¢'(u—6) =0,
with respect to u. Thus it holds:
min{f,u} < h(f,u) < max{0,u}. (4.19)

Consider the mapping:
1 /L
u— Tu= —/ h(o,u)do.
L Jo

Inequalities in (4.19) imply that 7L < L and 70 > 0. Thus, due to the intermediate value
theorem, there is a «* such that u* = Tu*.

The derivative of h with respect to « can be expressed, using the implicit function theorem
as:

Oh _ _ (@_f) Ofs
ou ou ou

h(0,u),

B g"(h(0,u) —u

g"(h(0,a) —a) + g"(h(

~— &I

< 1.

)

,ﬂ)—e)
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Thus, the solution @* is unique. In what follows, the unique solution of (4.18) will be denoted by
U.

(i1) The functions g and h are continuous. Using the strategies given by (4.17), the arguments
of the functions belong to compact intervals. In those intervals, g and h are uniformly continuous.
Thus, in order to show that the set of strategies given by (4.17) constitute an € - PAN equilibrium,

for large N, it suffices to show that for any €, > 0 it holds:

N
1 .
Pl3i:|lu— ——— di; v’ >0 | <e,
( i W) 2 )

for large V.
It holds:
JR— 1 &
u— diju’| <|u—— > h(0;,ua)+
TGP ¥ 2 H
1 & 1 &
+ NZh(ej,a) ~ Nes > diwd | +
7=1 7=1
1 & R
+l— ) dij! — ——— Y diju’ (4.20)
Vox 22" = i@ 2

It holds u = fOL h(o,u)/Ldo. Due to the Glivenko-Cantelli theorem [Bil08], the empirical
distribution, Zf\il 5, /N converges a.s. to the uniform distribution as N — oco. Thus, there

exists an integer Ny, such that:

N

w— Y h(0;,u)/N

Jj=1

<9/3,

with probability larger than 1 — /3 for any N > Np;.
For the second term of the right hand side of (4.20) using (4.17) and Lemma 10 of the
Appendix 4.8.1 it holds:

! > (en — dij)h(z;, )

Nep 4
Jj=1

' < 60/3,

with probability larger than 1 — ¢/3, for any N > Ny,.

Lemma 11 of the Appendix 4.8.1 implies that the third term of (4.20) is less than §/3 with
probability larger than 1 — ¢/3, for any N > Ny;.

This completes the proof of (ii).

(i11)) An immediate consequence of (ii) ]

Remark 23. In the proof of Proposition 9 it is used only the fact that the random variables

(dij)j-v:l are independent, for any i. Thus, the same result holds also for a more general class
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than the Erdos-Renyi random graph. A particular example is games on random directed graphs.
Furthermore, there is no need for all the players to assume the same connection probability
cn or exactly the same random graph model. Thus, the “common prior” assumption can be

weakened.

Example 11. If the function g has the form g(z) = 2% the strategies given by (4.17) can be
computed explicitly. It holds:
h(0,u) = (0 +u)/2. (4.21)

Equation (4.18) implies that u = L/2 and the set of strategies given by:

u' =0;/2+ L/4, 4.22)

constitute an £-PAN equilibrium for large N, if cy € w (%) u

The following proposition studies the case of low connectivity.

Proposition 10. For any integer p, if cy € 0 (m) then C,(m) < 1 and the ensemble of

games is asymptotically simple.

Proof: If ¢y € o (57—7) then with probability approaching 1, as N — oo, the random
graph has no connected components having more than ;. nodes ([Bol98] ch. 4).

We shall show that there is a Nash equilibrium such that each player uses only the information
contained in her connected component. Consider a player p; and the connected component in
the graph which contains i denoted by G;. Consider also the game with |C_¥Z—| players among the
players of G; denoted by géi, assuming that the actions of the players are restricted to belong to
0, L].

Each of the games ¢, due to the convexity of the function g(+), satisfy the conditions of
Theorem 1 of [Ros65]. Thus, it has a Nash equilibrium. This equilibrium, due to (4.19), is also a
Nash equilibrium for the corresponding game with unrestricted strategies. Thus, with probability
approaching 1 as N — oo, there exists a Nash equilibrium of the original game such that each
player uses only the knowledge of her connected component. Thus, C,(m) < p and the game is

asymptotically simple. 0

Remark 24. The upper bound for the complexity function C,(m) increases as i increases and
1/N#/ =Y approaches 1/N. O

The following proposition deals with the intermediate connectivity case.

Proposition 11. Ifcy € w (%) and cy € o (IHTN) then the ensemble of games is asymptotically

complex.

Proof: Due to the fact that ¢y € w (1/N), the maximum number of edges adjacent to a node
grows unbounded with N. Thus, it suffices to show that n(m) > 1, for some integer m. To

contradict, assume that n(m) = 0.
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Figure 4.2: The complexity of the ensemble of games for the various connectivity intervals.

Due to the fact that cy € o (In N/N) there exists an isolated node with probability approaching
1 as N — oo [Bol98]. In fact, the expected number of such nodes grows unbounded with N.

For such a node the optimal cost is 0. The function g(-) is strictly convex and g(0) = ¢’(0) =
0. Thus, for any ¢ > 0 there exists a d = d(¢) > 0 with () — 0 as € — 0, such that g(z) < ¢
implies |z| < 6.

The assumption 72(m) = 0 implies that I* = {6,} and that:

v(0) — 0] <9, (4.23)

127" <e.
It is not difficult to see that with probability approaching 1 as N — oo there exists a player
pi such that 6; < L/8 and >, () 7(0;) > L/4. For such a player if m is large enough, a
strategy satisfying (4.23) is not 2~™ optimal. This fact contradicts n(m) = 0. U
The results proved are summarized in the following corollary. The situation is depicted

graphically in Figure 4.2

Corollary 4. If cy € o <m> for some integer | or if cy € w (%) the ensemble of

games is asymptotically simple. If cy € w (%) andcy € o (IHTN) then the ensemble of games is

asymptotically complex. 0

4.4.2 Static Games on Small World Networks

This example studies a game involving players interacting on a small world network. The small
world network model was first introduced in [WS98]. However, for simplicity we use the model
described in [NW99]

Let us first describe a stochastic model for the interaction graph. There are N players placed
on a circle. Initially each one of them is connected with 2k players closer to her. Then, each one
of the remaining edges appears in the graph with probability py independently of the existence
of the other edges. It is required that N > k = ky > In N > 1 and py = 2kn/(N — 2ky).
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Let us denote by G the network. The cost function for each player is given by:
2
. ) ) ) 1 .
T 7 7\ 2 7
Ji= (u' —0")* + U—E‘Z w | (4.24)
JENI(G)
where N;(G) consists of the players in the neighborhood of player p;.

We assume that the types 6’ are random and they are given by:

0" = {1 + sin (%)] r (4.25)

where 7’ are i.i.d. random variables uniformly distributed in [0, 1].

We first derive a set of strategies which will be shown to be e— PAN, for large /N, under
specified conditions. In order to do so, let us consider two quantities: %’ and u. The first stands
for the local mean of the actions of the players that are close to player 7 on the circle. The second
quantity stands for the mean of the actions of all the players. The following approximation will

be shown to be valid:

’ 1 , 1 :
alz% Z u’ anda:%.z . (4.26)
li—j|<k JENI(G)
J# li—jl>k

Using these approximations the cost functions satisfy:

a4+ a\’
J e~ (uh — ) + (ui— 5 ) . (4.27)

The approximate best response map is given by:

) 291 =1 7
oo rtu Ty (4.28)
4
Taking the local mean around ¢ we obtain:
. 200 @
u' = = 4.29
U=t (4.29)
where i
14 sin (=
0 = M (4.30)

2
Taking the mean of %’ we obtain 4 = § = 1/2. Thus, the desired strategy is given by:
0 sin (%) 1

i 2 AN D 431
vE=g Tt T Ty @30

The strategy given by (4.31) depends on player’s type and on local as well as

emphglobal averages.

Proposition 12. Ifpy € w <%> and py € o(1) then the set of strategies given by (4.31) are

e-PAN for large N. Furthermore, the ensemble of games described is asymptotically simple.
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Proof. 1t is sufficient to show that for any positive constant ¢, it holds:

Pl la—-—=— Z w| <6, foranyi=1,...,N | >1-9, (4.32)

1 ; .
Pl jia—o > W< foranyi=1,... N |>1-34 (4.33)

for large V.
It holds:

1 , 1 2rd — 1 Tk
;L il b .
oo 2 VS g 2 T |t ey
li—j|<k li—j|<k
J#i J#
Theorem 4 and Lemma 9 imply that (4.67) holds for large /V.
For each player 4, we divide set of players j such that |j — i| > k to A equal circle sectors

A1, ..., Ax. For each sector [ we choose a representative player ;. It holds:

by A 3
1 I TS (RS I QRE 4
JEN;(G) =1 =1 JeEN
li—jl>k

where d;; = 1 if there is an edge among ¢ and j and 0 otherwise.The first term is less than §/2

with probability 1, assuming that \ is large. For the second term it holds:

A : 1 .
_\ =
a5y > Wdy| = g [ D (e — Wdy)
jeA X N-2 |jen
1 1  sing r; (146r;)sing; 1
<—Z{pk<—+ )—(—]+ : + = ) dy ||+
= N2k 2k ij
2 | 2" 3 2 12 1
1 1
T Nk 2k Zdiji
X N-2k |jen;

where ¢; = Q“TA’ Theorem 4 can be applied to both terms of the last inequality. Then Lemma 9
completes the proof. 0

Remark 25. Several extensions are possible. For example, different network model, the LQ

dynamic counterpart or static non-quadratic games can be studied using the same tools. 0
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4.4.3 LQ games on Random Graphs

This section describes an opinion dynamics game, involving players having some amount of
stubbornness, i.e. the players tend to insist to their initial (intrinsic opinion) (ex. [GS13]). A large
number NN of players interact on a random graph G = (V, E) having a connection probability
cn, 1.e. each link have a probability to exist equal to ¢y independent of the existence of the
other links. The state variable of player p;, =} represents her opinion at time step k. The type
0; is her initial (intrinsic) opinion and x, = ;. The random variables 6; are i.i.d. with uniform
distribution in [0, L].

Each player has the ability to influence her own opinion in order to come closer to the mean
value of her neighbors or closer to her initial opinion. Furthermore, the state variables are

influenced by random disturbances. The dynamics is given by:
Thq = T + uj, + wj, (4.35)

where u}, is the control variable of player p; and w} are zero mean i.i.d. Gaussian random

variables with variance o2.

The cost functions are given by:

2

. b . 1 .
J =E k i J
2 AN A ey 2 )

JEN(G)

s (xh —0)7 +r(ul)? || F (4.36)

where p € (0,1) is the discount factor, s > 0 the amount of stubbornness and 7 a positive

constant.

We then study when it is possible to have an e-PAN set of strategies assuming that each
player has only statistical information. A set of approximate optimal control problems is thus
stated. For player p; the approximate optimal control problem is:

Minimize:
J = E {Z o (k= 0)" 4 s (ah — )"+ r(up)?] } , (437)
k=0

where § = E[0;] = L/2,
Subject to (4.35).

Using the change of variables:
A A (4.38)
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where 0/ = 2505 the optimal control problem becomes the following LQ problem:

1+s °
Minimize:
Jie— B {Z o [(1+ 5)(3)? + ()] } +
k=0
8(§ — (91)2
_—, (4.39)
(14 5)(1=p)
Subject to:
Ty = T} + uj, + wj.. (4.40)

The control law which minimizes the approximate optimal control problem is given by:

K

V= —p———— 1 4.41
where K is the positive solution of the Riccati equation:
2 172
p K
K =pK — 1 . 4.42
p Py +(1+s) (4.42)

The closed loop dynamic equation for player p; is given by:
T}y = afj + wj, (4.43)

where a = 1 — pK/(pK +r)and a € (0,1).
The following proposition identifies a class of games where the set of strategies described by
(4.41) is e-PAN.

Proposition 13. Assume that ¢y € w(%) Then:
(i) The set of strategies given by (4.41) constitute an c-PAN set of strategies, for large N.
(ii) It holds C,(m) = 1 and the sequence of the ensembles of games is asymptotically simple.

Proof: See Appendix 4.8.2 0
If the stubbornness of the players is zero, then the long time average of the opinions of the

players reach a consensus.

Proposition 14. If s = 0 and the players use the strategies given by (4.41) then:
1
P(lim n Sai=0)=1 (4.44)

Proof: See Appendix 4.8.3. ([
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4.5 Static Games on Organized Structures

4.5.1 AQuadratic Games on Lattices

In this section, we study quadratic games on j-dimensional lattices. It is shown that the ANIC
function is polynomial with degree equal to .

There are N = N{' players on a p-dimensional lattice (hypercube). For each node i a set
of coordinates (cy, ..., c,) is introduced, indicating the place of the node in the lattice. Each
coordinate satisfies ¢, € {1,..., Ny}. Each player interacts with her immediate neighbors, i.e. a
player with coordinates (cy, . .., ¢,) interacts with every player with coordinates (¢, ..., ¢, £
1,...,¢,), for v = 1,..., u. For the nodes on the faces of the hypercube, the convention
No+ 1 = 11is used.

Each player p; has a type 6; € [—L, L]. The cost of player p; is given by:

2

4 | . . 5
Ji=alu—o ol |+ (uh—6:), (4.45)
JENI(G)
where « is a positive constant.
In order to describe the ensemble of games it remains to determine a probability structure on
the types of the players. We assume that 6; are i.i.d. random variables with uniform distribution.

Let us consider the following iterative scheme:

| | 1
z’(t+1):m NP+ —6, (4.46)

2'(0) = 0.

Equation (4.46) corresponds to the best response of player p; if the other players use v/ = 27.

It will be shown that the ANIC of the ensemble is at most polynomial using the fact that the
mapping:
T:z(t) = 2(t+1), (4.47)

where 2(t) = [21(t),..., 2V (t)], is a contraction (Lipschitz with a constant less than 1).

Proposition 15. (i) For any € > 0, there exists an n € N such that the set of strategies u' = z'(n)
constitute an -PAN equilibrium.
(ii) The ensemble of games has an ANIC satisfying C,(m) € O(m*).

Proof: (1) It holds:

Ji(2'(t), 27(8)) — min{Ji(u, 27 ()} =
= (a+1)(z"(t) — 2" (t+1))? (4.48)
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The mapping T : (RY, ] - |l) — (RY,] - |ls) is contractive, with a Lipschitz constant
a/(a+ 1). Hence,

l2(t +1) — 2(8)]| < L( ¢ )t.

a+1
Therefore,
2n
1)L? < 4.49
@ (L) < (.49
implies that u* = 2'(n) is e-PAN equilibrium.
(i1) Using (4.49) with ¢ = 27 we have:
_ m 2log, L +logy(a + 1)
n(m) < atl : a—02—1
2log, (54 2log, (“37)
Furthermore, |N*| < (272)*. Thus, C,(m) € O(m*). O

A polynomial lower bound can also be derived.
Proposition 16. The asymptotic complexity function C,(m) satisfies C,(m) € Q(m*).

Proof: Consider a game in the ensemble and a set of actions (u');. Due to the contractivity
of T, there exists a unique Nash equilibrium of the game. Denote by (u*"); that equilibrium.
Let us use (4.46) with 2(0) = u’. Due to (4.48), if (u?); is an e-Nash equilibrium then:
€
a+1

[2(1) = 2(0)[0 <
Thus, due to contractivity of 7', it holds:

max{|u’ — u"|} < v/(a + 1)e.

The unique Nash equilibrium can be expressed as:

. / / / / /
uz,N — E peir- CM961+61 ..... CM+CH’

where ¢y, ..., ¢, are the coordinates corresponding to player p;. It is not difficult to show that
the constants b satisfy:
Bt o L It
a+1 ’

where A = m

Consider now a set of strategies in the form u! = ~(/*"~1). Consider a player p; with
coordinates ¢y, . .., ¢,. Then, with a probability larger than 1/2 the player p; with coordinates
c1+n,...,c,hasatype |0;| > L/2. Thus, with probability larger than 1/4, it holds [u’ —u™"| >
A/ (a+1).

Therefore, using an information neighborhood of order n — 1, an A\**/(a + 1)? - PAN
equilibrium is not attainable. Hence:

In2 3In(a+1)

—2InA  —2In)

Thus, C,(m) € Q(mH). O

n(m) >m
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Corollary 5. The ANIC function satisfies C,(m) € ©(mH).

Remark 26. The properties proved do not depend on the assumption that the hypercube has the

same length Ny in all the dimensions nor on the nonlocal topological properties of the lattice. []

The result about the upper bound of the ANIC function can be generalized to ensembles of

games on graphs with known maximum degree, using exactly the same arguments.

Proposition 17. Consider an ensemble of games with cost function (4.45) and interaction graphs

which with probability one have maximum degree less than . Then, C,(1) € O(m*).

Proof: The proof uses essentially the same ideas as Proposition 15, i.e. the contractivity of
the best response maps is used. U

The bound of Proposition 15 is much sharper than the bound of Proposition 17, when applied
to a Lattice, due to the fact that the Lattice is highly clustered.

4.5.2 A non-Quadratic Game on a Ring

In this subsection we study an example of an ensemble of games, where a PAN equilibrium can
be obtained, using some form of cooperation among the players. The best response maps in this
example are chaotic. Let us note that the use of chaotic maps is not unusual in the modeling of
erratic behavior in economics (ex. [BD81]).

There are N players interacting on a ring. The type of each player has the form 6; = (&;, 1)
and &; has two possible values 1 and 2. The cost function of each player, except player py, is
given by:

Ji = (u' — fS(uh))2 (4.50)

The functions f! and f2 have the form:

; z/a; if0<z<q
=47
1—a;

)
ifa; <2<1

where a; = 1/3 and a, = 2/3. The functions f! and f? are variants of the tent map [ASY96]

and their plots are shown in figure 4.3. For the player py the cost is:
Jo = (u® — fouM)? + (up — 1)% (4.51)

In order to describe the ensemble it remains to determine a stochastic structure on &;. We
assume that &; are i.i.d. random variables, taking values 1 and 2 with equal probabilities.
The best response map for player p; is given by u’ = f% (u’~!). This map is not contractive.

In fact it is chaotic. However, the following proposition shows that ANIC is at most linear.
Proposition 18. The ANIC function of the ensemble of games satisfies C,(m) € O(m).
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Figure 4.3: The plot of f! and f2

Proof: The proof is constructive. It is not difficult to show that, for any positive integer /i,
any finite sequence sy, ...,s, s; € {1,2} and any z € [0, 1] there exists a z € [0, 1] such that
2=z <1 (2)"and f** o+ o fo(2) = 0.5. Let us denote by h,(so, ..., s,, 2) the minimal
such point z € [0, 1].

In order to construct the strategies of the players we consider distinct cases. For a player p;,
i ¢ {0, (u—1)[N/pu], u[N/pu]} such that i = 0(modp):

u' = h,(&, ... &au,0.5). (4.52)
For the player p(,—1)[n/u:
Wt = By v (G- i, 0.5). (4.53)
For any player p;, such that ¢ # 0(modpu),i < (u — 1)[N/pl:
ut = fE(fE(L L fREE0.5))). (4.54)
For the players p,—1)N/u+15 - - PN-1:
ul = fe(fSr(.. . fUm DIV 5))). (4.55)

For the player py:
u' = h, (&, ..., & 1,0.75). (4.56)

It is not difficult to see that the set of strategies (4.52)- (4.56) constitute an % (g)“ -PAN set of

strategies. Thus, C,(m) < m and the proof is complete. O

Remark 27. The game has a lot of Nash equilibria. In a Nash equilibrium, the following

equations hold:

u

o_ L, JOUS (4 w))
2 2
u' = fS(uh). (4.58)

(4.57)

106



The equation (4.57) has approximately N/2 solutions. The strategies of the players for any
Nash equilibrium are given by (4.58). Thus, a full knowledge of the information is needed. The
e-PAN set of strategies, described in the proof of Proposition 18 is far from any Nash equilibrium.
0J

Remark 28. The c-PAN set of strategies is in some sense cooperative. Particularly, a player
Di, © = L can improve her performance based on her own information. However, these agents
help the others have a predictable best response with local information only and thus to behave
optimally. If such a player changes her action to the optimal response, then she would expect
that the other players would also use their best responses. Due to the chaoticity of the maps
I, 2 we would expect that for a long amount of time the best responses would not converge.

This would make the situation worse for these players. 0

4.6 LQ Games on a Ring

4.6.1 A finite horizon LQ game on a Ring

This section studies an example of a game with a known number of players N = v lying
on a ring having interactions only with their nearest neighbors. Specifically, there is a set of
players p1, ..., pny and each player p; has a connection with p;_; and p;;1, where the convention
N + [ = lis used. Each agent p; has a type 6; € [0, 1]. The random variables 6; are independent
and distributed uniformly on [0, 1].

The dynamics of the state vector of the player 7 is described by the following equation:
Th 4 = axl, + uj, + wj, (4.59)

where 2 is the scalar state variable of the agent i, u}, the control variable of the agent 7 and w},
are zero mean i.i.d. random variables with finite second moments. The initial conditions are
given by z{ = w' ;.

The cost function for the player 7 is given by:

T-1
Ji= { ) uk)z]}, (4.60)

k=0

where r; = (1 + 6;)/2 and
zp=ap — Mo o). (4.61)

Thus, a Linear Quadratic game with coupling only through the cost functions is considered.

Remark 29. The random variables 0; are defined on (€, A, Q) and the disturbances w, on
(Q,F,P).
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It will be shown that the ANIC is at most linear under some specified conditions. To do so,
we shall use simultaneous dynamic programming from the time step £ = 7" — 1, backwards to
k = 0. Consider the last step of the simultaneous dynamic programming. The cost functions are
given by:

Jooa = B (o) + (= A (@i + i)’
i 2
+7r; (UT_1) |£L‘T_1] ) (4.62)

It is not difficult to see that the equilibrium condition is given by:

wp_y = Wi_ (W) X), (4.63)

j=1
where the mapping W:}_l((ujf_l);-vzl) is given by:

A
1 ‘|‘ T
[—ah ) + Mo, + 28] (4.64)

W%—l((uz.-r—l)évd) = [UiT__ll + Uép__ll} +

+

147 i
The proof of the following Proposition 19 is based on the contractivity of the following
mapping:

W (e )N0) = (Wi ()N )) (4.65)

Analogous mappings are then defined for the other time steps 7' — 2, ..., 0.

Proposition 19. For small coupling constant )\, the ANIC of the ensemble of games described
by (4.59) and (4.60) is at most linear, i.e. C,(m) € O(m).

Proof. For simplicity reasons the proof is given for 7' = 2. The proof starts at k = 1 and then
moves backwards to & = 0. If |\| < 1/2, then the mapping given by (4.65) is contractive for the
infinity norm. Consider the feedback strategies obtained after m iterations of (4.65) with zero

initial strategies. These strategies have the form:
up™ = > kgt (4.66)

Then the equation (4.65) is also a contraction in the space of the vectors of feedback gains with

the infinity norm, i.e. the mapping (k""™)N | — (K" 1)N is a contraction. Therefore:

=1

th“ﬁr4mhﬁﬂméLT;LQ§> (467)

Before going back to the step k& = 0, let us compute the form of the cost functions J{ when in

the last step the strategies with feedback gains (kilm)f\il are applied. Equation (4.62) implies:

m 2 m 2
- (3 a) o (30w e

l=—m l=—m
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where:

fi’l = aél,O — )\a(5111+5l,_1) + ki’l’m—

It is not difficult to show that it holds:

Zqz 11,02 it it (4.69)

l1,l2

where ¢/ = gbh gtk < prplltiel and B > 0. Furthermore, 3 — 0 as A — 0. Let us
now go back one step to £ = 0 and assume that the players at time step £ = 1 will follow the

strategies with feedback gains given by k;‘llm The cost functions have the form:

Jo= (A + it ri(u)? + 3 g Patthgith (4.70)

l1,l2

The equilibrium condition is, thus, given by:

1,0,l2 z+l 1,0,l2 z+l2
> " agy 2+ g ]

Iy 10

1
(™" + )

i—_
UO—

and the mapping in the feedback gains by:

1

olm/+1
ko - ,0,0
((h +74)

1570

For small 3, the mapping (4.71) is contractive with Lipschitz constant 2M 5/(1 — ). Therefore:

To complete the proof, let us introduce some quantities. Let jli’m(xl) be the minimum cost to go

il,m/+1 i, L,m!
| i, — ),

for player ¢ at time step k = 1, assuming that the other players use the strategies given by (4.66),
Jf’m(xl) be the cost to go if all the players use the strategies given by (4.66) and:

m( 1)z (0)];
" (a)|=(0),

where we assume that the other players use the strategies given by (4.66).

Jo™ (o, uh) = (2)” + (uh)® + E|
Jo™" (wo, up) = (20)% + (uh)” + E[Jy

};

—=

The proof is based on the following facts:

Fact 1. Let v > (2)\/1.5)% For large m it holds:

T (1) < T (@) A"+ 2 m):

where || 11| coim = maz{|z]| : j =i —m,... i+ m}.

The proof of Fact 1 is immediate from equations (4.62) and (4.67).
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Fact 2. Let v > (2)\/1.5)% For large m it holds:
min J"" (2o, up) < min J" (2o, up) + 7™ (1 + (202 im)-

T K2
Uo Uo

To prove Fact 2, let us observe that:
ng('rOv u6> - (z6>2 + (u6>2 + Jf’m(f(x(h u%))) + Co,

where f(xg,ub)) is the expected value of T, given x if the player i uses u}, and the other players

use the strategies given by (4.66). Furthermore, it holds:
Ty™ (o, up) = (26) + (up)® + Jy™ (f (w0, up)) + Co.

Fact 1 implies that |co — ¢o| < Y™, for large m. Denoting by v(x) the value of uy that minimizes
Jo™ (0, ul) we have:
min Jy"™ (w,up) < J5™ (2, )
up

< min Jy"™ (o, up) + 29" (1 + [|20]1 % 1.m)-

00,1,m
1
U

And using a small abuse of notation (choosing a smaller value for ) we conclude to Fact 2.

Fact 3. Let m > (2M /(1 — 3))*. For large m it holds:

m

i,m i,lm i+l
Jo" (o, E kg gt <

l=—m

< min Jy™ (o, up) + 7™ (1 + [[0][Z1m)-

ui 00,1,m
The proof of Fact 3 is immediate from (4.72).
For a small value of )\, there exist a constant ¥ > maz{(2M3/(1 — 3))?, (2X/1.5)*} and
74 < 1 such that Facts 2 and 3 apply with v = 7. Thus, if 4y > 7, for large m it holds:

m

i,m 2 : ,lm il

l=—m

<FE {min Jo™ (x0, ué)} + 5™
up

Thus, the strategies given by the feedback gains k;" and £, are 4™ - fine for large m. Thus,

the ANIC function is at most linear. ]

4.6.2 A Numerical Study of a LQ Game on a Ring

In this section we study numerically LQ games on large rings. We assume that there are N
players placed on a ring, such that each player p; interacts with the players p;., and p;_;. The
convention N + 1 = 1 is used as before. Each of the players has her own dynamic equation
given by:

T =)+ Moy o) + g, (4.73)
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New Edge

Figure 4.4: Player p; considers only the players ps, ps, pv—1, py—2 and himself and assumes the
existence of a new edge between players ps and py_o.

where ) is a constant describing the coupling through the state equation and z, are zero mean

1.1.d. random variables with variance equal to 1. The cost functions are given by:

o0 i 1N 2

Ji = [(mﬁc)Q + s (xz I —; Zk 1) + r(uﬁc)Q] : (4.74)
k=1

where s denotes the coupling through the cost functions.

A very simple technique is used to obtain approximate equilibrium policies using small
information neighborhoods. Assume that the players have information neighborhoods of order n.
The approximate equilibrium policy is derived using the following procedure:

Step 1: Each player p; considers a reduced ring game with 2n + 1 players, i.e. the players
Di—n, - - - Pitn. That is, she assumes the existence of an edge between players p;_,, and p;.,,.
Figure 4.4 shows the reduced game that player p; perceives in case where n = 2.

Step 2: Player p; computes a Nash equilibrium of the reduced game. Let us denote by %"
the Nash strategy of the player ¢ in the reduced (2n + 1 players) game.

Step 3: Apply 7" in the original N players game.

We then compare J* (7", uy—i,n) and min, J*(y,y~""). Figures 4.5, 4.6 and 4.7 illustrate
the difference J*(7*", v~*") — min, J*(y,y~"") in logarithmic scale for different values of

and s. The simulation was performed with » = 1 and N = 101.

Remark 30. Figures 4.5-4.7 illustrate that the complexity is approximately at most linear. The
reason for this low complexity in the current example is that the Nash strategies of the reduced
order games " assign low gains to distant players. Note that none of the reasons for low
complexity existing in the previous examples, is present. That is, this low complexity is not due to
a law of large numbers, the best response maps are not contractive and there is no cooperation

among the players. U
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Figure 4.5: The difference J*(u"", u™*") — min,, J*(u,u~") for A\ = 0 as a function of n
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Figure 4.7: The difference J*(u"", u~"") — min,, J*(u,u~"") for A = —0.2 as a function of n
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4.7 Conclusion

Games on Large Networks of interacting agents were considered. A framework involving
ensembles of games instead of a single game was introduced, motivated by ideas from the
statistical physics. The Probabilistic Approximate Nash equilibrium concept was then defined
and compared to the Bayesian Nash equilibrium. Some properties were also proved. The NIC
and ANIC functions were defined to quantify the informational complexity of an ensemble of
games.

Several special cases were then analyzed. Static games on large Erdos-Renyi random graphs
were shown to have different complexity in different regions of the connectivity parameter. A
class of LQ games on Erdos-Renyi random graphs were then proved to be simple for the high
connectivity regime and an -PAN set of strategies was computed. Static games on lattices were
then considered and it was shown, using contraction mapping ideas, that they have polynomial
complexity where the leading term of the polynomial has the same exponent as the dimension of
the lattice. A class of games on ring having chaotic best response maps was then shown to have at
most linear complexity, using strategies involving some form of cooperation among the players.
LQ games on a ring were finally considered numerically and found to have approximately linear
complexity, using a reduction to a smaller game.

In all the cases with low complexity, strategies constituting probabilistic approximate Nash
equilibrium where found. The reasons for low complexity in the examples analyzed were laws
of large numbers, contractive best response maps, cooperation among the players and low gains

to distant players.

4.8 Appendix: Omitted Proofs

4.8.1 Some Probability Inequalities

The following results will be repeatedly used throughout the proof of Propositions and.. 13.

Theorem 4 (Bernstein Inequality). Let X1, ..., Xy be zero mean, independent random variables
such that | X;| < M. Denoting by ¢° = + SN Var{X;}, foranyt > 0 it holds:

N

1 N¢?
Pl |= X >t] <2 —_—— 4.75
(‘N; = )— eXp( 262+2Mt/3) (473)

Lemma 9. For a finite or infinite sequence of events Ay, As, . .. it holds:

P( () A)>1- > P(A).

i=1,2,... i=1,2,...

Theorem 4, called Bernstein inequality, falls into the class of concentration inequalities [Sri].

Lemma 9, has immediate proof.
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Lemma 10. Let X;;, i, 7 € N be a set of zero mean random variables absolutely bounded by
a constant M. Assume that X;1, X2, ... are mutually independent. Assume also that for any
N € N there is a constant cy such that ¢y € w(+/In N/N) Then, for any ¢, > 0, it holds:

N

1
P Xij

<€1,f0ranyz':1,2,...) >1—eq,

for large N.

Proof: Applying Bernstein inequality with ¢ = ¢y, we obtain:

Nc3e?
P > <2 — Nl
( 51’) = eXp( 2M2+2MCN€1/3)

Applying Lemma (9) we have:

1 N
" <‘NCN ZXU

J=1

Nc3e?
>1—2N — Nl
= P ( OM? + 2Meye, /3)

1 N
NCN ZXZ]

j=1

<€y, foranyi:1,2,...> >

The fact that ¢4 > In N/N completes the proof U

Lemma 11. Consider an Erdos Renyi random graph with connection probability cy. Let d;; be
a random variable with d;; = 1 if there is an edge between i and j and d;; = 0 otherwise. Then,
if cy € w(ln N/v/N) for any 61, e, > 0 it holds:

NCN
P( @

< 01, for every 2) >1— ey,
for large N.

Proof: For any 0; > 0 there is an d5 = d2(d;) > 0 such that: ’% — 1’ < 0§y implies

Ney
A 1‘ < 0. Furthermore,

N
Ni(G)] 1
— 1= — dij — :
NCN NCN ;( J CN)
Applying Lemma 10 with X;; = d;; — cy we conclude to the desired result. 0

4.8.2 Proof of Proposition 13

(1) It holds:

. . s _ 1 .
JI< T+ E ph e - } Fe
2 [Ni(G)] 2

k=0
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The second term of the right hand side is less than the summation of the following terms

00 N
1 A
E|Y o 0- ~ > (097 + d¥ap)
k=0 i=1

2

D

F° (4.76)

[ N N 2
E Zp Z ‘;—%ZﬁjfnLa ] Fe 4.77)
k=0 7j=1 j=1

oo B N 2
1 .
E > o N Z(dij—cN)xi] Fe (4.78)
k=0 L 7j=1 ]
E f: | (Hex —1 iixj F (4.79)
P \\IN(@)] ) N ™ |

We shall show that the expressions (4.76) - (4.79) are small for all 7 = 1, ..., N with high
probability if N is large enough. In the expressions (4.76) - (4.79), the expectation and the
summation over k are interchangeable due to Bepo Levi theorem [Bil08]. The terms (4.76) and

(4.77) are common among the players.

The term (4.76)

It holds:

N

_ 1 - , s+aF
0 — — 97+ k.Jy —
N;( + a"z}) 1T s

Thus the term (4.76) is bounded by:
1 N7

which due to the weak law of large numbers ([Bil08]) is smaller than £ with probability larger
than 1 — .

The term (4.77)

Fixing k, it holds:

| LDk '
:NZQ: —gF - xo):NZZatwi_t_l

Due to independence we have F[X?] < Thus,

o2
N(l—a)"®

2

2 BN v ga

k=0

Hence, term (4.77) is less than ¢ for large V.
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The term (4.78)

It holds: .
1
v = afxl + (9]f+2awktl (4.80)
=0
Denoting by X% = ]]VCCN Y] =a"(0; — 0) - é;fgj and & = Y1) a'wl_, |, for the term
(4.78) we have:
o) 1 N 2
k J s
E dij — cn)x Fl =
515 | e ot - vl

2

F? (4.81)

The random variables X% and Y,g are J° measurable and 5% are zero mean and independent
for any fixed k. Thus,

N
E| XY +&)| | F| =
j=1
12 N
_ ZXHYJ _|_Z [(Xi’j)zE [(gi)2|‘/—_'s}} <
Lj=1 Jj=1
12 2 N
’L] ] Z]
< _;X Y/ 1_a2; [(x* (4.82)

For any fixed k, applying Lemma 10 to the set of random variables Ncy X% ij with 1 =
(1 — p)g/2 we have:

N

> XYY

=1

r <((1=p)E/2)’ <(1-p)E/2]| >

>1—-(1—-p)E/2>1-¢/2.
Using the fact that [Ney X%| < 1 and ¢y € w(1/+/N), the last term of the right hand side of
the inequality (4.82) is smaller than £/2 with probability 1 for large V.
Thus, due to (4.81), the term (4.78) is less than € with probability larger than 1 — ¢.
The term (4.79)
Using equation (4.80) we have:

0 i N 1 , o
o [ 2:: ] <1—{4L T Na |
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The right hand side of the inequality is less than 5% /(1 — p), for large N.

2
Using Lemma 11 and the fact that <| Jﬁc(f(\;)l — 1) is F*® measurable, we conclude that the
term (4.79) is less than £ with probability larger than 1 — &, for large N.

The choice & = ¢/4 completes the proof.

(ii) Immediate. u

4.8.3 Proof of Proposition 14

For any i = 1,..., N, it holds "/ = . The random variable Zf:o a*zi /T converges to 0
almost surely. Thus, due to (4.80), it remains to show that the sequence of random variables:

N

-1 k-1
i atwi
T k—t—1

N

Xi =

e
Il

1

~+
Il
o

converges almost surely to 0. The random variable X% can be written as:

T-2 T-1

) 1 )
i k+1—v, 1
Xr = E g 5 a wy,.
v=0 k=v+1
;. . . . : 2
Hence, X/ is zero mean and Gaussian satisfying Var(X7.) < (1"_@% = 0%, Thus,

P(IX}| > 1/1) < exp (—1/(lor)?).

Denote by Br; = {w € Q : | X4 > 1/1}. Itis not difficult to see that Y 7 | P(Br;) < oc.
Therefore, using the 1st Borel-Cantelli Lemma [Bil08], we have: P(limsup; Br;) = 0. Hence,

P{w: X, —=0})="P (U lim sup BT,l) = 0.
T

=1

Thus, X — 0 almost surely and the proof is completed. |
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Chapter >

Dynamic Rules and Cheating in
Games. Application to Electricity
Markets

This chapter studies Dynamic Game situations with incomplete structural information, motivated
by problems arising in electricity market modeling. Some Adaptive / Learning strategies are
considered as an expression of the Bounded Rationality of the participants of the game. The
Adaptive strategies are typically not in Nash equilibrium. Thus, the possibility of cheating, i.e.
the use of the dynamic rule of the opponent in order to manipulate her, appears. In order to assess
Adaptive / Learning strategies, two criteria are stated: Firstly, how far the cost of each player is
from the cost of her best response in the sense of the Nash equilibrium. Secondly, we consider
the case where the first player follows the adaptive strategy and the second player implements
the best response to the first player. Then, the criterion depends on the difference of the cost of
the first player comparing with the cost in case where both players follow their adaptive control

laws. This difference may be positive or negative.

We then examine a smaller class of strategies, called the pretender strategies, where each
player acts as if she had different, not real, preferences. It turns out that under certain technical
conditions, if only one player is pretending, she can achieve the same cost as if she were the
Stackelberg leader. The situation where all the players are pretending is then considered and an
auxiliary game, called the pretenders game, is introduced. The effects of adaptation and cheating,
when the number of players in the game becomes large, are examined in a simple example. It
turns out that, the incentive to cheat is quite small, in the case where there is a large number of

relatively weak players.

Models for competitive Electricity Markets are then considered. Particularly, a Cournot
oligopoly model, a supply function model and a mechanism form the literature (Rasouli
Teneketzis mechanism) are studied. It turns out that cheating some times increases competition,

other times enhances cooperation and in the case of Rasouli-Teneketzis mechanism makes the
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system not working at all.

5.1 Introduction

In a number of real game situations there is a number of decision makers that interact strategically
over time but each one of them has only a partial knowledge of the intentions of the others.
A particular example is an electricity market where several producer firms are competing
repeatedly over time and each firm knows its own costs but not the costs of the other firms ex.
[GCF'12], [SVP02]. Such strategic interactions over time can be described by dynamic games
with incomplete structural information.

Quite often is very difficult to find a Nash equilibrium for dynamic or repeated games with
incomplete information. Two difficult problems may arise; the first is due to the “Witsenhausen
effect” [Wit68], i.e. the current action of each player affects the future state estimation of the
other players. The second is due to the “Dual Control effect" [Fel60], i.e. that the current action
of a player affects the quality of his own future parameter estimation. Due to the later difficulty,
the Optimization problem has not been solved analytically even for the single player (control)
case, except only of a few special cases [Wit02].

In this context, it has been proposed that the players, instead of trying to find the equilibrium
strategies, they use some simple deterministic or stochastic dynamic rules which determine the
future actions of the players based on their past actions. The use of such rules, usually, reflect the
bounded rationality [Sim72], [SelO1] of the participants of the game, i.e. their inability to solve
very difficult problems. These rules can be models of learning, adaptation, evolution or imitation
[FLI98], [YouO4], [SLBO8] ch. 7, [LT11], [CC83] [Pap88], [CC83]. Most of the research on
dynamic rules focuses on convergence issues. However, a set of such strategies is not typically
in Nash equilibrium.

Are these adaptive/learning strategies a reasonable prediction for the evolution of the game?
Particularly, if the players knew that they are going to implement those strategies, would they
stick on them? When a player is implementing an adaptive control law, she may be viewed by
another player as a system under control. That is, the other player may “cheat”, i.e. use the
knowledge of the adaptation law of the first player to manipulate her. The topic of this chapter
is to study phenomena like “cheating” and the implications that may have to the costs of the
participants of the game.

At first, two criteria to assess dynamic rules are stated. The first is based on the opportunities
that appear; that is, how far is a dynamic rule from being optimal. We then assume that the other
player has adopted the best response with respect to the former player’s strategy. The second
criterion depends on how much the former player may loose, in that case. The assessment, as
well as the computational problems arise are illustrated through a very simple numerical example.
Then a smaller class of “cheating” strategies is considered, called the “pretender’s” strategies.

The cheating player implements her learning/adaptation rule as if she had a different, not real
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type (preferences). The case, where all the players are pretending, is then studied and some
possible limit points are identified, using an auxiliary game called the “pretenders’ game”. The
relationship of cheating and Stackelberg leadership is also examined. The phenomena described
are illustrated in a simple class of quadratic opinion games. The effects of cheating are, finally,
studied in competitive electricity market models.

The rest of this chapter is organized as follows: In section 2, the criteria for the assessment
of the dynamic rules are stated. The pretenders’ strategies are studied in section 3. The opinion
quadratic game examples are given in Section 4. Section 5 studies some electricity market games.
Particularly, Section 5.1 considers a Cournot duopoly, Section 5.2 a supply function model and

Section 5.3 a mechanism from the literature. Finally, Section 6 concludes.

5.2 Adaptive Strategies and Assessment

In this section, we define two criteria in order to assess a set of adaptive strategies. At first, a
general form of strategies is considered. For simplicity reasons, the criteria are stated for two
player games.

Let us first define formally the game. There are two players of types 61, 6>. Each player
knows her own type and 6, 6, are part of a random vector § = [0, 0, 0] € O©=0,x60,x06
having a commonly known distribution.

The dynamics have the form:
xk’-i—l - f(xk’aéa uiauszk‘)a (51)

where ., u? are the action variables of the players and w;, a random disturbance.

The cost functions have the form:

J,=E

T

k=0

where p € (0, 1] is a discount parameter and 7" can have a finite or infinite value. An alternative

formula for the costs is:

T—o00

T

1

TE Li(xk,ei,u;,uz)] . (5.3)
k=0

Equations (5.1), (5.2) or (5.1), (5.3) can describe dynamic games as well as repeated static
games.

Each player receives at each time step an information vector according to:
Information Structure 1: I, = (x,u._,), or

Information Structure 2: ;""" = (xy, uf_1,u;" ).

The information that each player possesses at time step & has the form I} = (Ig", ..., ;™).
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Let us now describe a general form of strategies of the players: s' = (7i,7%,...),i = 1,2,

where 7} is a function having the form:
Vi (@0, 21, - ap, 0) >l € U

We shall focus on “state feedback”™ strategies, where all the previous information is used only

for “adaptation”, assuming that the players have full access to the state vector. Specifically,

where QA}C is the adapted parameter of player .. We assume that the adapted parameter evolves

according to a dynamic equation:
liﬂ+1 = (bl( zkvjlz:ﬁiwvel) (55)

For infinite horizon games, the following property is quite interesting see for example [YP94]:
Property 1: The adapted values 6}, 62 converge to some limits 6!, §2 , such that the feedback

001 Voos
(no memory) strategies i (z, 0;, égo), 1 = 1,2 constitute a Perfect Nash equilibrium for the
complete information game.

The criteria depend on the best response of each player to the opponent’s strategy. Thus, in
order to state the criteria, the best response 5, i = 1,2 of each player given the strategy of the
other player s, is considered.

The first criterion states that each player does not have a lot to gain from moving to her best
response. We call it the opportunity criterion.

Opportunity Criterion with parameter a: For some a > 0 it holds:
Ji(s', s < J(5, 57 +a, (5.6)

forany 6;,7 =1, 2.
The second criterion states that if the other player moves to her best response, the first player
does not have a lot to lose. Let us call it the conservative criterion.

Conservative Criterion with parameter b: For some b > 0, it holds:
Ji(s', 57" < JU(s', 87 + b, (5.7
forany 6;,7 =1, 2.

Definition 10. A pair of strategies s*, s is a, b - not sensitive to cheating if either the Opportunity

Criterion with parameter a or the Conservative Criterion with parameter b holds.

Remark 31. Definition 10 borrows some ideas form satisficing based decision making [Sim72],

where the values of a, b have roles related to the satisfactory levels.
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Remark 32. Definition 10 corresponds to conservative players. Particularly, it states that each
player believes either that the opponent will not have enough motivation to change her strategy
or that if she has, this change would not increase the cost of the former player a lot. For
less conservative players, the “either, or” of the definition should be replaced by “and”. An

alternative definition would involve any “better response” 5' instead of the best response 5'.

Remark 33. A class of games which satisfy Definition 1 is Team Games. More generally, if

max|Ji(s1, s2) — Jo(S2, s2)| < max{a, b}, then the game is a, b not sensitive to cheating.

The verification of Definition 10 is not easy due to the fact that the optimal control problems

involved are quite difficult.

5.3 Pretenders Strategies

In this section we focus on a special class of cheating strategies called the pretenders’ strategies.
Particularly, the cheating player pretends to have a false type, probably in a response of the other
players’ actions. For simplicity, we assume that the # is commonly known, i.e. © = {0}. In
what follows, only games with infinite horizon will be considered.

The general form of a pretender’s strategy that corresponds to (5.4) is:
uf = i (o, 077, 00), (5.8)
where the pretended type 92”’ " is given as an output of a system:

2oy = O (2, TN, 0,), (5.9)

017" = (60, 25). (5.10)

Equations (5.8)-(5.10) represent a cheating player who pretends to have a type that depends on
her real type and a new, probably augmented, adapted parameter 2. That is, in order to pretend
adequately, it is probably useful to accumulate more information.

In what follows, we consider the stationary cases where one of the players or both the players
are pretending. These stationary outcomes are be possible limit points of learning/adaptation

rules, when the players are pretending.

5.3.1 Optimal Stationary Pretending

We consider the possible limit points of the pretending strategies, assuming games with infinite
horizon and long run average cost. We assume that only player 1 is pretending. In the spirit of
Property 1, we analyze the following situation. Player 1 has revealed all the useful information
for 0, and the pretended type of player 1 has converged to 617", Player 2 reacts to a player

A

of type 017", Furthermore, the pair of strategies 7! (x4, 017", 61), 72 (s, 02, 0% ) constitute a

oo ) Y00

Perfect Nash equilibrium for the game with full information and types 67" 6s.
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In order to define the Optimal Stationary Pretending, the following assumption is made:
Assumption 1: For any pair of types 61, 05, there exist a unique Perfect Nash equilibrium of the
full information game. Let us denote by 7;;%2 (xx), ¢ = 1,2 the pair of strategies constituting
the Nash equilibrium. Assumption 1 is not unusual in static or dynamic games.

The optimal pretending for the player 1 is given by:

17p7“ _ . 1,N 27N
05" = arg Inin NV 0, Vo0 0,) (5.11)

It is interesting to compare the cost that the cheating player 1 attains with the cost of the full
information game having 1 as Stackelberg leader. Let us denote by 7@;‘?92, 1 = 1,2, a pair of

strategies constituting a feedback Stackelberg equilibrium with 1 as leader.

Proposition 20. If player I pretends optimally, then:

1,5 28 1,N 2,N
T ) < T 2 6.12

An equality is attained is there exist a 6, € ©, such that 791{5;2 = vé’]\g .
’ 1,V2

Proof. The proof is immediate. 0

Remark 34. Proposition I roughly says that if there is enough uncertainty and only one player
pretends, then:

“The pretender becomes the leader”.

5.3.2 The Pretenders’ Game

The case where both players are pretending is then analyzed. Under the Assumption 1, an

auxiliary game, called the pretenders’ game can be defined.

Definition 11. For the game described by (5.1), (5.3), under assumption 1, the corresponding
pretenders’ game involves the same players, the actions of player i is 0*P" and the cost is given
by:

jiwi’pr’ 0—i,pr> = Ji(fY;ﬁqgfi,pm V&ii\fefi,prv 9i)7 (5.13)

where 0, is the actual type.

An interesting point is the Nash equilibrium of the pretenders’ game. This point can serve as

a prediction of the outcome of the original game.

Definition 12. For the game described by (5.1), (5.3), under assumption 1, a Nash pretenders’

. . . 1.N 2.N . e .
outcome is the pair of strategies (v oo g2 Vylor 92%), where (0LP7 0%P") is an equilibrium of
oo oo oo oo

the corresponding pretenders’ game.

The Nash pretenders’ outcome is interesting as a possible limit point of a learning/adaptive

algorithm, where each of the players pretends dynamically to have a false type.
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Remark 35. The definitions and the reasoning of Section 3 can be extended to the many players

case.

Remark 36. Let us comment on the relationship with the work in [AAEA10]. This work identifies
an interesting phenomenon in routing games with partially altruistic players: in some cases
“When a user increases its degree of cooperation while other users keep their degree of cooperation
unchanged, leads to performance improvement of that user”. To be more precise, if J' is the
“selfish” cost of player i, [AAEA10] considers the case where the players are partially altruistic,

that is each player tries to minimize:
J =1 —a)J 4 a7, (5.14)

where a; is the degree of cooperation. It is then shown numerically that, when the players apply
strategies constituting a Nash equilibrium of the game described by (5.14), it is possible J' to
decrease when a; increases. This phenomenon is called the “ Paradox in cooperation”. In this
context the notion of the price of unilateral altruism was introduced [AM11].

Consider such a situation where the degree of cooperation of player 2 is commonly known,
whereas the degree of cooperation of player 1 is known only to player 1 and that there is a
“Paradox in cooperation”. Then, player I has an incentive to pretend to be more altruistic than
she actually is. Furthermore, even if player 2 knew the actual degree of cooperation of player 1,
she has an incentive to accept that player 1 is more altruistic, otherwise she is going to induce a
less altruistic behavior to player 1 and thus hurt herself. Finally, player 2 cannot discriminate
among the case where player 1 is trying to reach a Nash equilibrium and she is more competitive

and the case where player 1 is less competitive and pretends.

5.4 Quadratic Opinion Games

In this section, a very simple class of repeated, quadratic games where exact results are easily

obtained, is analyzed. The results of this section help us to get some intuition.

5.4.1 Two Player Games

A two players opinion game, is studied. The cost function is given by (5.3) and the instantaneous

costs by:
Ly = (u' — 6,)* + (u' — u?)?, (5.15)
Ly = (u® — 05)* + (u® — u')?, (5.16)

where (61, 63) € R?. We assume an information structure of type 2. The full information (static)

game has a unique Nash equilibrium:

21
N 2942 =12 5.17
" 37t T 3vh T 17
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Several adaptive (iterative) techniques for the incomplete information game were studied in

[Pap86]. Probably, the simplest one is the best response map:

uj = (0; +6;,)/2, (5.18)
0 =u’,. (5.19)

If both players follow their best response maps, their actions will converge to the Nash
equilibrium of the full information static game.

Let us then analyze the situation of player 1 cheating against player 2 and player 2 following
(5.18), (5.19). Due to the fact that the map ¢, — u" in (5.17) is onto, Proposition 1 applies.
Thus, the feedback Stackelberg cost for player 1 is feasible through pretending.

The optimal pretending for player 1 is given by:

6 1
l,pr = — —_ —
0" = 261 — s, (5.20)

Player 1 can use several ways to learn 6, in order to implement her cheating policy. One way

is to use only the last iteration. Particularly:

=27, (5.21)

2 = g, (5.22)
. 6.1

07" = =0 - g(zuz,l — ). (5.23)

An alternative way is to use Recursive Least Squares (RLS).

Figure 1 shows the action trajectories when no player, one player and both players are
pretending. The parameters are ¢; = 1 and 6, = —1.3. If no player is pretending, then the
dynamic rules lead to the Nash equilibrium. If a single player is pretending, the dynamic rule
converges to the Stackelberg equilibrium having the pretending player as a leader. Finally, in
the case, where both players are pretending the dynamic rule converges to the Nash pretenders’

outcome.

Example 12. In this example we study a dynamic game which represents the repeated version of
a static Stackelberg game. Particularly, player 1 acts at time instants 1,3, 5, ... and player 2 at
2,4,6, . ... The feedback Nash equilibrium of the dynamic game corresponds to the Stackelberg
equilibrium of the static game.

The instant costs are given by:

LY(k) = (z), — 1)* + 01 (zp — up)?, k=2,4,... and 0 otherwise, (5.24)
L*(k) = (uj — 2)* + 0oz — ui)?, k =2,4,... and O otherwise, (5.25)

and the state equation by:

ul o ifk=1,3,5,...
T =4 " s (5.26)
1] ifk=2,4,6
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Figure 5.1: The blue line corresponds to best response with no pretending players, the red with
player 1 pretending, the purple with player 2 and the green with both players pretending.

The Nash equilibrium (which coincides with the Stackelberg equilibrium of the static game) is

given by:
L (1+69)*+ 26,
= k=1 e 5.27
Uy, (1+92)2+91 ) 7375 ( )
2
2 = 20t k=246, (5.28)

1+ 0,

A simple dynamic rule that leads to the Nash equilibrium is given by:

(14 6,)2 + 26,

uy, = - ., k=1,35... (5.29)
(1+60,)2+ 0,
2+921‘k
2 _Z =7 k=246... 5.30
uk 1+92 I )y ( )

where él is the least squares estimate of 05 based on (5.28).
A very simple cheating rule for player 2 is to use (5.30) with Qi’pr = (e — 1) in the place of
0o, where ¢ is a small positive constant. Using these rules, after two time steps, the actions of the

players will converge to:

2420
o= (53
2
2 e +¢e+ 201

This pair of strategies approaches (2,2), as € approaches 0. Furthermore, the cost of player

2 approaches Q.

Remark 37. In the Example 12, the Stackelberg leader behaves approximately as the follower
wants her to behave. The situation is quite similar with an inverse Stackelberg game with player

2 as the leader [HLOS82]. Thus, player 2 can achieve a very strong form of leadership and in
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this sense, we may conclude that:
“At least in some cases, regarding leadership, the best use of the information available is much

more important than the commitment or the timing of the game.”

Remark 38. In the Example 12, player 2 can achieve approximately the same cost, as if she was
acting on player 1’ behalf. An interesting question arises: “In which sense does this outcome

expresses the ‘free will’ of the player 1”?

5.4.2 Many Players Games

We then move to a slightly more general case, where there are /N symmetrically interacting

players. The instantaneous costs have the form:

2
Li=(u'"—0,)*+ (u - ﬁ Zu3> : (5.33)

J#i
The unique feedback Nash equilibrium of the full information game has the form:

Y ON — 1

(5.34)

We then consider the pretenders’ game. The costs are given by:

2
~ 1 ) . ) . )
Ji=—— || NO"" 7P — (2N —1)0" N —1)0""" — 6"
v (Yo e e ) (v )
J#i J#i
(5.35)
The equilibrium of the pretenders’ game is characterized by the following equations:

, 2N? — N - 1 .
g = 6" Z 67, (5.36)
i

ON2 2N +1  2N2 2N +1

Hence, the equilibrium of the pretenders’ game is given by:
gor — (14 2 \go L > o (5.37)
2N 2N(N — 1) &=
JFi
Remark 39. Equation (5.37) shows that, when there is a symmetric interaction, the players tend
to pretend less as the number of the players increases. Furthermore, the value of pretending

decreases and the Nash pretenders outcome approaches the Nash equilibrium, as the number of

players increases.

5.5 Electricity Market Models

In this section three competitive market models are analyzed. The first considers a Cournot

duopoly and analytical results for the Nash pretenders outcome are presented. It is shown that
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pretending enhances the competition among the players. The second example is a linear supply
function duopoly. A simple pretending algorithm is proposed and numerical results show that
the pretending is cooperative and the price increases. The third example is a mechanism from the
literature [RT14]. It is shown numerically that cheating may make the mechanism not working
at all.

5.5.1 A Cournot Duopoly

In this subsection, we study a Cournot duopoly of electric power producing firms. Each player

decides the amount of energy that produces. The instantaneous cost of the players is given by:

Li(Qla (]2) = Ci(%’) — Pq;, (5.38)

where C;(g;) is the production cost, p is the price and ¢; is the quantity produced by player i. We

assume constant marginal cost, i.e. C;(¢;) = ¢;¢; and linear demand curve, i.e. p = A— B(q1+¢2).

Furthermore, we assume that the quantities produced are non-negative and that ¢; < A,7 = 1, 2.
The Nash equilibrium has one of the following forms:

N_A—261—|—CQ
O = %55

3B
A—2c+c
N 2 1
= 5.39
q2 SB ) ( )
ifA+CQ > 2¢4 andA—l—cl > 2¢o,
A—c
N 1
QI - 2B ’
¢ =0, (5.40)
ifca > and A + c1 < 2cy, O
g =0,
A—c
N 2
= 5.41
qQ QB ) ( )

if co > ¢y and A + ¢o < 2¢;. The form (5.39) is more interesting than the other forms of the
equilibrium, due to the fact that both players are producing in the equilibrium. Thus, we assume
that A + ¢y > 2¢; and A + ¢; > 2c¢s.
Let us first consider the case where only player 1 is pretending. The optimal stationary
pretending for player 1 is given by:
o fa—d-e if 2¢+ A>3 5.42)
2c9 — A, if 2¢; + A <3¢y
Remark 40. If A+ cy > 2¢; and A+ ¢y > 2c¢, then it holds ¢ < ¢y. Thus, producer 1 pretends
to be cheaper than she actually is. Furthermore, in the second brunch of (5.42) producer 1 is
pretending to have a cost such that the second producer is not producing. In both cases, the

pretending player improves her cost, while player 2 gets worse.
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Table 5.1: Symmetric Cournot duopoly outcomes with cheating

Pretends G q2 Ly Lo P
No player | 0.4 04 —0.16 —0.16 1.2
Player1 | 0.6 0.3  —0.18 —0.09 1.1
Player2 | 0.3 0.6  —0.09 —0.18 1.1
Both 048 048 —0.1152 —0.1152 1.04

We then consider the case where both the players are pretending. We further assume that
no player is interested to pretend to have a production cost, such that it makes the other player
not to produce, i.e. that it holds 2¢; + A > 3¢, and 2¢; + A > 3c¢y. Then, the Nash pretenders

outcome is given by:

v _ 241 — 34— 6oy

1 15 )
24ce — 3A — 6
&= =" (5.43)

Remark 41. (i) It is not difficult to see that under the aforementioned assumptions, the
pretended production costs are smaller than the actual. Thus, pretending enhances the

competition.

(ii) For higher values of A, the players tend to seem cheaper, i.e. if the demand increases the

producers appear to have a lower cost.

(iii) The cost that each player seems to have increases with a factor 1.6 (grater than 1) with

respect to the actual cost.

Example 13. This example studies a symmetric Cournot duopoly. We assume that A =2, B =1
and ¢y = co = 0.8. The quantities, the costs, as well as the price is illustrated in the Table 5.1,
when no player, one player or both players are pretending. Table 5.1 shows that pretending
is a non-cooperative action and that the Nash pretenders’ outcome is worse for both of the
players than the Nash equilibrium. However, the price is smaller if one or both of the players are

pretending and thus, the consumers are improving.
Example 14.

5.5.2 Linear Supply Function Model

In this subsection, we assume that each player proposes a linear supply function, that is at each
price level an energy quantity proportional to that price. We also consider linear demand of the

form ¢ = A — Bp. The instantaneous cost of each player is given by:
L; = ¢iq; — pas- (5.44)
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Each player chooses a constant u; such that ¢; = w;p. Simple manipulations show that:

A
= 5.45
p Ul + U + B7 ( )

and: )
Li=a2 GUi U (5.46)

(Ul “+ U9 +B)2.

The best response maps are given by:

B -+ Ug
+ = 5.47
U 2C1U2 + QClB + 1’ ( )
B
- ! (5.48)

2CQU1 + QCQB +1

It is easy to see that the best response map is contractive with respect to the infinity norm. Thus,
these equations can be used repeatedly to find the Nash equilibrium.

A simple cheating algorithm for player 1 is then described.

Algorithm 3

I: Choose ¢y™" = ¢.
2: At time step k choose u; according to (5.47) with C}C’p " in the place of ¢;.
3: Estimate ¢, from the last M measurements according to (5.48) using least squares.
. Lpr _ 1pr
4: Setcy s = ¢
5: For some small constant ¢, with probability 1 — ¢, jump to Step 2.
6: Implement repeatedly (5.47)-(5.48) with the estimated value of ¢, on a grid of several ¢y
values.

7: Choose ci’f’i the value of ¢; which minimizes the actual cost and jump to Step 2.

A similar pretending algorithm may be used by player 2.

Example 15. Assume that A = 1, B = 0.5, ¢y = 1, ¢co = 1.2. Player 1 implements the Algorithm
3 and player 2 uses the best response until time step 100 and the Algorithm 3 afterwards. The

results are illustrated in the Figures 5.2 - 5.4.

Remark 42. The example shows that the pretending is a cooperative action, i.e. each player
prefers the other player to cheat than not to cheat. Both the players pretend to have a higher

cost than her actual cost.

Example 16. In this example, we assume that the production costs are commonly known and
player 1 pretends to be partially altruistic. Thus, the cost of player 1, as perceived by player 2
has the form:

I (1 —a)(ciu? — uy) + a(cau3 — ug)
L=

: 5.49
(Ul + U2 + B)2 ( )

where a is the amount of altruism.
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Figure 5.2: The pretended production costs ¢, ¢*P"
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Figure 5.3: The time evolution of the price
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Figure 5.5: The utility of player 1 (—L;) for various values of a.
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Figure 5.6: The utility of player 2 (—L-) for various values of a.

The constants have values c; = co = A =1, B = 0.1. Figures 5.5, 5.5 illustrate the utilities
and Figure 5.7 illustrates the production quantities of the players for various values of the
amount of altruism a.

The optimal value for a corresponds to a player which is interested about the other player
27.5% and for itself 72.5%. The increase in the utility of player 1 is 9.35%.

5.5.3 The Rasouli-Teneketzis Mechanism

In this subsection we analyze an example of an electricity market having many competing
producers. At first, a mechanism described in [RT14] is reviewed. An algorithm to converge to
the Nash equilibrium is then proposed and tested numerically. The ability of the participants to
cheat is then studied.

There are N energy producers Py, ..., Py. Each one of them produces an amount ¢; of
energy and proposes a price p;. Let us denote the total demand by Dy > 0. The cost of the
production is given by a convex, increasing function C; : R — R with C'(0) = 0. The utility
of each player is given by:

ui(gi, ti) = ti — Cilai), (5.50)
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Figure 5.7: The quantities for various values of a

where ¢; is the payment to the producer ¢ by the mechanism. The payment ¢; is given by:

ti = piv1gi — (pi — pis1)” — 2piC, (5.51)
where py.1 = p; and:
N
C=Do—> a (5.52)
i=1

[RT14] study the nontrivial Nash equilibria of the game, i.e. the Nash equilibria such that it
does not hold ¢; = - - - = ¢y = 0. It is shown that in any such equilibrium the demand is exactly
covered, the proposed prices are identical and the total energy is produced with the smallest total
cost (the sum of C; is minimum). Furthermore a non-trivial Nash equilibrium always exits.

We then propose a very simple algorithm. This algorithm is found numerically to converge
asymptotically to a non-trivial Nash equilibrium of the game. In what follows, we assume a very

simple form for the costs of the players:
C; = a;q? (5.53)
The energy production at the time step & is the best response i.e.:
a; = argmin{pii; — Cila)} (5.54)

The proposed prices evolve according to the following rule. If { < 0, increase the prices by a

constant step d, i.e. pFt?

)

= pf + 01, where 0, is a positive scalar. If { < 0, the new values of the

proposed prices move towards the best responses:
pE = (1 — 6)pF + dqarg Hzl)in{(pi — i)+ 2pi(¢F)?, (5.55)

where 0, € (0,1).
It is not difficult to show that if the algorithm converges then it converges to a non-trivial

Nash equilibrium of the game. To do so observe that the trivial Nash equilibrium is not a fixed
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Figure 5.8: Prices evolution
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Figure 5.9: Production evolution

point of the proposed dynamics and that in any fixed point the energy productions ¢; and the
prices p; are a best response of the actions of the other players.

Figures 5.8 and 5.9 illustrate the evolution of the energy production and the proposed prices
in an example with four producers having parameters: a; = 0.5, a2 = 2, a3 = 3, a4 = 10.

A very simple cheating strategy is then described. A cheating player 7, implements the
algorithm given by (5.54), (5.55) as if she had a false cost a}”. The pretended type is updated

rarely but periodically according to the rule:

Ui(t) — Uit — 1)

Prit+1)=a"(t i . 5.56

a; ( + ) a; ()+p8@[ L,L] (a]lor(t)_afr(t_l) ( )

A simple example with eight producers is illustrated in figures 5.10 and 5.11. We assume
that only player 1 (having the smaller a;) is cheating.

Figures 5.12 and 5.13 illustrate the situation when all the players are pretending. The price

grows unbounded. So the mechanism in this case does not work at all.
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Figure 5.13: The evolution of the energy production. All the players are pretending

5.6 Conclusion

We studied the possibility of cheating the dynamic rules in dynamic/repeated game situations.
Tow criteria were stated in order to assess dynamic rules. We then concentrated to the smaller
class of pretenders’ strategies and defined the auxiliary pretenders’ game. It was shown that if
there is enough uncertainty and there is only one player pretending, this player can get the same
outcome as if she was a Stackelberg leader.

We then moved to the study of some special cases. At first we studied quadratic repeated
games and the relations of pretending and leadership. We then moved to simple models of
electricity markets. A Cournot duopoly was first analyzed and it was shown that pretending
enhances the competition. We then moved to a Linear supply function model and it was shown
that pretending is a cooperative action. Finally, the effects of cheating on the Rasouli-Teneketzis
mechanism were examined. It was shown that if all the players are allowed to cheat in a certain

manner, the prices diverge and thus the system does not work at all.
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Kepdhoo §

Erniioyoc: Merhoviixéc Kateuivoelg

X SwTeldr) auth peAeTHUNXay Sdpopa TEoPBAAuaTa 0T Yewplol TRV BUVOIXGOY Ty VIWY.
Avapopxd e To TeMTO YEpog, Selloue OTL 1) UEAETN TWV YRUUUIXMY TETPAYWVIXMY Ty ViKY
oto ontola 1) €lc0d0o¢ TwV TtV eivon Tuyaior unopet var avorydel otn uerétn oulevyPEveY
TeoPBAnudTeY BErTiotou eAéyyou Yo MILS. Iapduola tpocéyyion unopet va yenowonowndet
xaL 0 JAAEC TEQITTOOELS Tuyadag SLUUUETOY S 0To Towy vidL. T'ar mapddetyua, umopel malxteg
vor umadvouy xon va Byadvouy tuyaio. To teyvind uépoc mou mapovoidotnxe oto Kepdhao 2,
umopet eniong va €yel TOMES EQUQUOYES X0l ETEXTACELS, T.). CUCTAUNTA UE TUYUES YPOVIXES
xaduotepr|oelg, aEfona CUOTAUATA X.AT.

Y270 0eUTERPO Uépog e€eTdo TNy TokyVia 6T OTolor oL TodXTEG AAANAETLOPOVY TdvVw OE éva
HEYSAO BixTUO o opilovTon Evvoleg TIAVOTIXAC TEOCEYYIOTIXHAC LOOPEOTINC Xat TOAUTAOXO-
mrac.  Tmdpyouv OLdpopes evilapépouces EMEXTACE.  Apyixd, umopolv vo ueietndolyv
evalhoxtixol optopol tng mohumhoxotntag. Mia dhin xoatedduvorn ebvon 1 uehétn mawyviwy
oto omola 1) ahAnAeTidpaot e€apTdTon amd TNV xatdoTocT Tou xdde Talxtn. Enlong, Vo elye
evolapépoy v eETAOTEL Xou 1) oTOY Ao TIXY ECEMEN TOU YRUPHUATOS TV UAANAETLOPACEWY
xou mdavov 1 e€dptnorn and pa ahucido Markov. e auth v xatedduvor, Yo urnopolioe
VoL GUVOLOOTEL X0 JE TOL LOVTERA T1) TUYOLUC CUPUETOYAC TOUXTWY, XoMC XOL UE T UEAETT
TV Ypovixd e€ehocduevmy oToyaoTixdy dxtiwy (1.y. Scale Free Networks). Ymdpyouv
TENOG xaL TOAEG THAVES EQUPUOYES, OTIWS OE ELPUT| BIXTLA, OLEBOGCT| LOEWY 1| TEOLOVTWY GE
XOWVOVIXE OIXTUN X.AT.

Y70 Tpito Yépog e€eTAG TNXE 1) BuVITOTNTA E€ATATNONG XS Xou oL TWIUVES TNG ETUTTWOELS,
OTNV TEPIMTWOT TOU Ol TUXTES EPapUOlouV XAmotoug BuVAUIXOUE xavoves. Eivou evolapépov
Vo €EETACTOUV Ol BLdpopol BUVOIXOL XAVOVEC WE TEOC TIC BUVATOTATEC TOU BivouV Yia
eComdTNoT XU EVOEYOUEVWS VoL OYEDAOTOUY GAAOL BUVIULIXOL XaVOVES oL Vol TEOGPEEOLY
MyoTepec TéTolEG duvatotntec. ‘Eva dAho pyehhoviind epeuvntind Briua umopel var elvon 1
£Z€TAOT TUO TEAXTIXWOV UOVTEADY TWV 0yop®Y NAEXTEIXNC EVERYELIS, hopfdvovtag utt 6gn
N YVwor mou eyel o xde naixtng. M dhhn epeuvnTind| xotebuvor ebvon vo peietriolv

duvoxol xavdvee exudinone/mpocapuoyric ot maiyvio oo omola ot TaixTeC CAANAETLEPOUY
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o€ Eva UEYIAO BixTUO. YE auTY| TNV TERIMTWOT EYEL EVOLAPEEOY 1) OYECT) TIOU EYEL 1) BUVATOTNTA

eCandtnone pe v ‘xevtpxdtnro’ (centrality) mou éyet o xdle maixtne.
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Zuvtouo Bloypadwko Znueiwpa: 1. Kopdwvng

O I. Kopddvng vevvhdbnke 1o 1986 xal 1o 2004 €10)ABe OTn OXOAN HMMY
Tou EIM. Koatd& Tn SLAPKELX TWV TPOHTUX LAKOV Omouddyv Tou eméiefe TNV
KATeUOUVON HAEKTPOVLIKAC KAl JUuoctnu&Tov kKol eiyxe 1dltaltepo evdiLapépov
via 1tov Autéuato EAsyxo. XTn OLTAQUAT LKA TOU egpyaolia ooxoANOnke ue
TNV €QOPUOYN TEXVLIKOV TOU Un  VYPUUULKOU €Aféyxou oOg PBLlOLATPLKRA
IPORANRNTH.

To 2009 e€1L0)ABe oT10 dLdakTOpPLlKO HPOYPUUUX TNG OXOANG HMMY tou EMII
und tnv eniBAeyn Tou kKab. I'.II. HomoaPaoclAdmouiou. Katd 1n dL&pKeELA TV
HeETAITUX LaKOY  omouddv Tou evioyxuoe 10 Beopnitikd Tou undPabpo
TOPAKOAOUBOVING O Ldpopa pabhuata. Epeuvnt k& aoxoAnbnke ue 1n Ocwpla
TV Auvoptlkeov Toatyviev roBOdc Kol opLlopéva OpoRARPNATA TTOXAOT LKOU
eNéYXOU.

Ta epeuvnNTLKE TOU eVvdLlapépovia meplAaupfdvouv OewpnT LKA OéuaTa OTd
Auvop LKE Tlalyvia KoL TO OTOXOXOTLKO £EAEYyXO KAl E€QAPUOYEC O Ayopécg
NAEKIPLKAG gvépyeLacg.
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