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ITepiAndm

Yny napovoa Simhnuatix epyacio yehetdue évay single bit Digital to Digital Con-
verter (DD) . To ofjua e10680u Tou eivan éva Ynproxd ofua, pLa axohovdia anotelol-
uevn amd TOAAG bits evey oty €£060 Tou TO oo aUTO amelxoviletan and plo axoAoU-
Oio v evée pohic bit, {+1, —1}. To xépdoc am auth ) Swpdppwon Tou oruatog
elvar ot ypouuxdtnTa oL TEooddel 1 éZodoc {41, —1}, emtpénovtac pog €tot va
nopaielpoupe tov multi-bit Digital to Analog Converter (DAC). H avéxtnon tou
apyxol ohupatog umopel va yivelr povo ue éva Lowpass Filter. Kadwe o multi-bit
DAC éyouv €€ opiopol moAAd eninedo xBavTiogol, oL OTOIES ATENELES GTO AVUAOYIXO
wépog (TuxvmTtéc,avTioTdoels) Yo dAAOLOCOLY TNV T TWY ETUTEDWY ELCAYEYOVTIS U1
YOS POrVOUEVAL XAtk ETUBARUVOVTAS XUT UTOV TOV TROTO TOV BLAopPKTH. {6T0C0
UE WO 800 ETUMEDN XBAVTIONOU TO GOANUA OTNV OVATORAGC TACT, TOL oTjuatog Va etvor
moh) yeydho. T v avtiotdduion tou udniol opdiuatog amanteiton TOAD LUPNAT
TayOTnTo SerypatoAndioc.

[o Ty vAomoinon Tou AY SlopopPwTH BeEV YENOHLOTOLEITOL XAToLd EVPEWS dlode-
douévn tomohoyior odll& o Multi-Step Look-Ahead (MSLA) AY Swpoppwthc, uia
véa TpoTaoT ToL didoxTopo gottnty| Xdern Mroacéta xou Tou emBAETovTa ol Ny Nt
% Yowtewddn. H dipopd ye tov oupfotind AX eivon 6Tt 0 utohoyiopdg tne e€66ou
{+1, —1} mpoximtel am TRV EAXYLOTOTOLAON LIS CUVAPTNONS XOOTOUC XOLTMVTOS Br-
Mot umpooTd. XNy nopovoa epyacio e€etdleton o MSLA yia 800 Bruoto unpooTd.
Enlong nopouctdleton 1 BEATIOTN Boun| yior TNV EQPUEUOYY dUTO) TOU BLOORPULTH Xo-
V¢ eniong yivetow xow pior extevic avdhuon yia TOV UTOAOYLOUSO TOU ool Twv
bits yio xdde oy OOTE 1 EPAPUOYT TOU OE TEAYUATING XUXAWUA VAL EIVOL ATOBOTIXT.
Téhog vhoToAoAUUE TOV GLUYXEXEWEVO A Blopoppn T Tdvw ot fpga xow 5Tov avaluty
(PACUATOC EIDAUUE TOL ATOTEAECUOTAL.

AéEeic KAeoud
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Abstract

In this paper we study a single bit AX Digital to Digital Converter (DD).
Its input is a digital signal, a sequence consisting of many bits while in its
output this signal is depicted from a sequence of one just bit, {+1,—1}.
The gain from this signal modulation is the given linearity from the output
{+1, -1}, allowing us to forget the multi-bit Digital to Analog Converter
(DAC). Recovery of the original signal can be done with just a lowpass filter.
As multi-bit DAC by definition consists of many quantization levels, any
imperfections in the analog part (capacitors, resistors) will affect the value
of the levels entering nonlinear phenomena and attributing in this way the
modulator. However with just two quantization levels, the error in the signal
representation will be very large. To offset the high error is required very
high sampling rate.

For the implementation of the AX modulator is not used any widespread
topology but the Multi-Step Look-Ahead (MSLA) AX modulator, a new pro-
posal by the PhD student Charis Basetas and the assistant prof. Paul-Peter
Sotiriadi. The difference to conventional AX is that the calculation of out-
put {+1, —1} results from the minimization of a cost function looking steps
ahead. This paper examines the MSLA for two steps ahead. Also shows
the optimal architecture for the implementation of this modulator and also a
comprehensive analysis is made for the calculation of the number of bits for
each signal in order to its application in real circuit to be efficient. Finally we
implemented the specific AX modulator on fpga and we observed the results
in the spectrum analyzer.

Key Words

AXY, XA, Modulator, Multi Step Look Ahead, MSLA, Look Ahead, Implemen-
tation, Bits, Bit-width, FPGA , CIDF, Cascade Integrators Distributed Feedback
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Chapter 1

Introduction

Nowadays the tendency is to digitalize each and every analog part of a sys-
tem or an analog signal. The simplicity in processing a digital signal as well
as the reduced noise renders them preferable compared to an analog one. It
is not strange that big effort is made to restrict every analog part of a sys-
tem resulting in the all digital systems. Year by year, the speed and density
of digital integrated circuits (ICs) is increased, enhancing the dominance of
digital methods in almost all areas of communications and consumer prod-
ucts. Therefore always there will be the need for converting the analog signal
in digitalized form and consequently data converters are necessary. As the
speed and capability of Digital Signal Processing (DSP) cores increases, so
too must the speed and accuracy of the converters associated with them.

In fig. 1.1 is depicted the block diagram of a signal processing. The analog
input is driven to an Analog to Digital Converter (ADC), next is inserted in
the DSP core that is the engine that undertook the processing of the signal
and finally through an ADC the analog form of signal is recovered. However
if a single bit Digital to Digital Converted (DDC) replaces the DAC then
just a LPF is adequate to recover the analog signal. A single bit DDC is
preferable compared to the DAC since the latter due to analog mismatches
may introduce no negligible non-linear effects.

In Chapter 2 initially it will be examined some popular topologies of
Modulators. Next it is analysed the noise shaping of Modulators and the
usefulness of Oversampling ratio in the effective operation of them.

In Chapter 3, the linearised model of AX Modulators for a better sta-
bility examination, is presented. Finally some non-linear phenomenons are
analysed in depth.

11
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input output

— ADC ~ DSP DAC ——
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Figure 1.1: Digital Signal Processing

In Chapter 4 is given the analytical equations of MSLA Modulator for
step equals two. After that we compute our Modulator i.e. we define its
transfer functions. Finally a comparison with conventional AX modulators is
presented.

In Chapter 5 is given the architecture of our AX modulator. Subsequently
we compute the scale factors for each signal in fixed point representation and
next the quantization of signals is made. Finally after calculating the signal
to quantization noise, we determine the bit-width for each and every signal.

In Chapter 6 the results of FPGA implementation are represented as well
as the code of verilog hardware language is given.

12



Chapter 2

Topologies of Digital to Digital
Converter

The analysis is related to DDC but almost the same results are hold for ADC
and DAC. The difference between them is due to different form of input and
ouput (analog/digital). Thus, the suitable transformation has to be taken
place when one is fed back to the other.

2.1 Delta Modulator

Introduction to ADCs begin with an obsolete Modulator which is called Delta
Modulator. The reference to that is made for historical reasons since it was
one of the first ADC converters. A Delta Modulator is illustrated in fig.
2.1a. The presence of the quantizer is responsible renders the system non-
linear which in turn results in difficulties in mathematical analysis. Simple
qualitative understanding of its operation can, however, be gained by using
a linearised model which is depicted in fig. 2.1b. The quantizer has been
replaced with its input plus an error signal which is the difference between
input and output.

13
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Figure 2.1: Transfer Functions

Substituting (2.1) into (2.2) it arises :

Y(2)=X(2) —G(2)Y(2) + E(z) (2.3)
1 1

“Trae O e P .

In the right-hand equation the factor of X(z) is the Signal Transfer Func-
tion (STF) since it filters only the input X(z) while the factor of E(z) is the
Noise Transfer Function (NTF) as it filters only the error (or noise) E(z).
Here STF = NTF = 1/(1+ G(z)). That means that filtering of input and
noise for whole band of frequencies is the same.In turn it implies that it is
impossible to attenuate NTF retaining the same time STF close to 1. Due
to this important disadvantage Delta modulators have been abandoned. It
is worth to stress that one of elementary roles of a converter is to pass the
signal as much possible as unchanged. That is we are interested in a mod-
ulator with STF=1 and NTF=0 within the signal band of frequencies that
operates.

2.2 AY modulator

2.2.1 Special Case

The new suggestion was to change the position of Loopfilter. As shown
in fig. 2.2 the filter instead of lying in feedback path it moved in forward
path resulting in AX Modulators. The latter is a concurrent and dominant
converter nowadays.

14
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Figure 2.2: AX Modulator

Substituting the quantizer with an error source as in fig. 2.1b the de-
scribed equations are given below :

V(z) = (X(2) = Y(2))G(2) (2.5)

=V(2)+ E(2) (2.6)

)~<
X
=

Substituting (2.5) into (2.6) it arises :

Y(2) = X(2)G(z2) = Y(2)G(z) + E(z) (2.7)
Y(z) = 1+2@X”+T135E@ (2.8)

Now STF = G(z)/(14+ G(2)) and NTF = 1/(1+ G(z)). It is clear that
STF and NTF are different. A suitable choice of G(z) can give desirable
characteristics in STF and NTF within the signal band. However this topol-
ogy is just a case of the general structure of single bit AX modulator. It was
presented so as to be clear the difference with Delta modulator.

2.2.2 General Case

The general structure of high order single bit AX modulator is illustrated in
fig. 2.3. Our goal is to express the output of quantizer Y as a function of
input X and its error E in order to specify the STF and NTF. So we have a
system with two inputs (X,V) and one output Y.

V=L X+ LY (2.9)
Also applying the linearised model :

Y=V+E (2.10)

15
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Figure 2.3: AX Modulator

,it is obtained :

Y =L X+ LY +FE (2.11)
Lo 1
Y = X E 2.12
1—-L1 + 1—-L1 (2.12)
For Ly = L; = G result in the special case that examined above. Back

in general case we see that it gives the absolute freedom in STF and NTF
choice.

2.2.3 Error Feedback AYX Modulator

A very interesting topology is the 1-bit SD error Feedback modulator. It s

shown in fig. 2.4 .
X \% Y
—H0— G() aéf T+

v

Figure 2.4: Error Feedback

Applying the superposition theorem the input X is filtered by 1+G(z)
and the output of Quantizer Y is filtered by -G(z). Hence Ly = 1 + G(z)
and L; = —G(z). Having these filters easily is verified that STF = 1 and

16



NTF =1/(1+ G(z)). Hence

1

(2.13)
As it can be seen STF=1 no matter is the choice of filter G(z). Thus, our
thoughts are eliminated in specification of filter G(z) meaning NTF. This
topology constitutes the basis for the introduction to 1-bit Multi-Step Look-

Ahead (MSLA) AX Modulator in Chapter 4 which is a new suggestion of AX
modulators.

2.3 Cascade AX Modulators (M ASH)

— L Filter

Y jj Hi(2) _’®_Y’

» L Filter 1
B 4
@:
Eq .
» Lo Filter
\Y Y
:|: » Hy(2)
» Ly Filter

Figure 2.5: Multi Stage AX Modulator

Another interesting topology is the multi-stage-noise-shaping Modulator.
It includes a lot of stages instead of just one. The MASH is depicted for two

17



stages, in fig. 2.5. The quantization error of the first stage is inserted in the
second stage and it outputs a quantized estimation of the error. That output
is filtered and added to the filtered output of the first AX Modulator in order
to eliminate the quantization error. The equation for the first AX modulator
is :

Yi(z) = STFi(2)X(2) + NTF\(2)E(2) (2.14)

and for the second one is :
Yo(2) = STFy(2)Ey(2) + NTFy(2)Es(2) (2.15)
The output is formed as (z variable is omitted for presentation reasons) :

Y = HY, — HyYs (2.16)
Y = HiSTF X + (HLNTF, — HySTF,)E, — HyNTF,E, (2.17)

Consequently the error E; can be cancelled if H{NTF, — HySTF, = 0.
A familiar choice of filters is Hy = STF, and Hy = NTF;. Then output Y
is gained as :

Y = STF,STF,X — NTF,NTF,E, (2.18)
Y =STF-X — NTF - E, (2.19)

where STF = STF,STF, and NTF = NTF,NTF,.

If STF,, STF is just a delay then |STF| = 1 while if the NTFy, NTF,
is of the form (1 — 271" i=12 (where N;,N, the order of NTF;, NTF,
respectively) then NTF = (1 — 271Nz Ag it will be seen in the section
2.4 that is desirable because the noise is shifted more in high frequencies
namely a better noise shaping is succeeded (fig. 2.6b).

2.4 Noise Shaping and Oversampling

It should be noted that AYX modulators are working well in the ranges of
frequencies where the absolute value of STF is near 1 and NTF is close to 0.
It can be succeeded by a good noise shaping namely shifting the noise out of
the interested band, keeping it low within the band and high out of that. The
interested band characterize the modulators as lowpass or bandpass when
that band is a low or a zone band of frequencies respectively. Without loss of

18
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generality it will be considered that modulators operate in low frequencies.
Then possible choices and widely known classes are :

STF, =z %
NTF, = (1—zHY

(2.20)
(2.21)

where N is the order of filter L; and N+k the order of filter Lj.

Taking into account the transformation from Laplace to Z domain z = e ™7,
z =1 for Q = 0. Hence in low frequencies indeed |STF| =1 and [NTF| =0
(|ISTF| = 1 in each and every frequency). In fig. 2.6a,2.6b are plotted 2
diagrams. The first one depict the absolute value of STF which is 1 for every
k and the second one depict the absolute values of NTF for N=1,2,3 both
in function of frequency €). For higher order filter the noise is suppressed
more in low frequencies and it is shifted in regions out of the band that AX
modulator operates.

—STF— —NTF—

——-N=1

N=2|
N=3

e

L L L L L L L L L 0 L L L L L L L
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized frequency x = rad/s

(a) STF for every k

Normalized frequency x = rad/s

(b) NTF for N=1,2,3

Figure 2.6: Transfer Functions

It will be examined now in what way oversampling affects positively the
lowpass modulators. In fig. 2.6a,2.6b, (2.20) and (2.21) are plotted in func-
tion of frequency (2. It is clear the closer to 0 for €2 the closer to 1 for STF
and closer to 0 for NTF. Assuming that f, is the frequency bandwidth of in-
put and f, is the sampling frequency, OverSampling Ratio (OSR) is defined

19



as follow :
OSR = 18 (2.22)
~2fb '
Assuming that input analog signal x with amplitude A has frequency f;, ,
the sampled signal x, will have frequency f,/f;. Writing it by equations we

have:

x = Asin(27 fyt)

xs = Asin (ZW%n) = Asin (Oan) (2.23)
Therefore the frequency of sampled signal is given as :
T
N=—— 2.24
OSR (2:24)

Obviously the frequency of sampled signal depends exclusively on OSR. In-
creased OSR is equivalent to lower 2 and hence better behaviour of STF and
NTEF. It’s worth to note however that if f, is high then it is hard to retain a
high OSR since the sampling frequency fs has to be increased proportionally
(see (2.22)).
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Chapter 3

Modeling of Single-Bit
Single-Stage AYX Modulators

3.1 Linear Modeling of AX Modulators

In Chapter 2 for our analysis the quantizer was represented as its input
and an error source. For the latter a white noise approximation was given.
Unfortunately, the quantizers used in AX modulators hardly ever match the
requirements to validate that approximation:
e The number of quantization levels is usually very small.
e The quantizer can be in overload.
e The input signal of the quantizer is generally not a random (white) signal.
Although adding a dither signal could satisfy the latter requirement, the low
resolution of the quantizers renders the model invalid. A one-bit quantizer
in particular cannot be modeled by the addition of independent noise. A
technique to study more accurately the behaviour of a AX modulator about
stability is to insert a gain factor as depicted in fig. 3.1.

The equation for NTF is now :

1
NTF = —— = (3.1)
If the quantization levels of the quantizer are more than two, the gain (k)
of this can be determined uniquely as depicted in fig. 3.2a. The reason is
that a certain gain (k) choice offers the least divergence between quantizer
input and output, giving the minimized error in aforementioned linear model

and restricting that way the non-linear effect due to the quantizer. In other
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Figure 3.1: Linear Model

words the linear model is more accurate for a specific value of the gain k.
Notice merely that this gain is embedded in the quantizer operation meaning
when a quantization is happening the gain factor implicitly is applied. In
the other hand when there are only two quantization levels i.e. the quantizer
output is single bit (fig. 3.1) ,the gain cannot be determined directly. The
error minimization depend on the input type into the quantizer. Therefore
for different inputs an alternate k is chosen so as the non-linear effect (the
error sequence) to be restricted. Two lines are plotted in fig. 3.2b, showing
the gain choice is not readily obtained.

(a) Easy computation of k

Figure 3.2:
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(b) k is dependent on input type
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The computation task for the gain is given right now. If the statistical
averages indices of y are known, an optimality criterion for k is to minimize
the mean square value (namely the average power) of the error sequence e.
This is defined as the expected (or mean) value of e?:

yfn] = Jim (%Zam)b(n)) (3.2)

n=0

Since e = v — ky , the average power of e can be written as
07 = (e.e) = (v —ky,v — ky) = (v,0) — 2k(v, y) + K*(y,y) (3.3)

Taking the partial derivative, k for minimizing the variance is obtained

(v,y) _ E{lyl}
ds/dk =0 = —2(v,y) + 2k(y,y) =0 —> k = - 3.4
/ )+ 2k y) vy~ By Y
since the output of quantizer is the sign of y(n) it follows v(n)y(n) =

ly(n)].

A more sophisticate and complicate model for calculating the quantiza-
tion noise was suggested by Ardalan and Paulos. They introduced a sepa-
rate gain for the signal and the quantization noise. Although fitting a more
elaborate model to the non-linear quantizer can result in more accurate pre-
dictions, it does not give significantly more insight in the behaviour of the
single-bit AX.

3.2 Stability

It is clear that in the feedback path only L; exists meaning it is nearly the
exclusive factor in stability issues. Once NTF = 1/(1 — kL;) the same holds
for NTF. Because of the non-linear behaviour and nature of AX modulator
an accurate criterion to predict the stability characteristics do not exist. The
linear models are merely ways to approach and study a non-linear system.
Nevertheless a lot of methods in order to ensure stability have been obtained.
The most widely-used criterion is that of Lee which says :

A single-bit modulator is likely to be stable if max(NTF) < c. Lee’s
authentic criterion says that ¢ = 2 but an edited criterion says that ¢ depends
on the order of NTF and is decreased up to 1.4 as the order of modulator
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is increased. Another interesting criterion is about computing the mean-
squared value of the magnitude response of the NTF (noise amplification
factor) requiring :

1 )
A= 2—|NTF(619)|2d9 <25 (3.5)
s

Note that these criteria are neither necessary nor sufficient. Nevertheless,
due to its simplicity, they offer a quick and simple first view about modulator
stability. For more accurate details extensive simulations in environments
such as matlab are necessary.

It should be noted also, the out of band gain does not impact the efficiency
of modulator (as aforementioned) but a high value in the out of band gain
overload the quantizer forcing the system to be unstable. Provided that the
out of band gain is considerable in high order filters (see fig. 2.6b), such
filters cause instability and hence there is a restriction in choosing the order
of a filter.

A AX Modulator in a stable operation is depicted in fig. 3.3a. The output
density, {+1,—1} is higher at the region around the peaks of the sinusoidal
signal. However this is not occurred in fig. 3.3b meaning that AX modulator
is in an unstable mode. The result is long sequences of consecutive +1 or
-1, i.e. the output sequence no longer tracks the input signal due to the
overloaded quantizer.

Input and output of DS Modulator Input and output of DS Modulator
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o

Figure 3.3: filters
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To overcome an unstable mode of AX modulator a stabilization technique
could be applied. However in that case the Signal to Noise Ratio (SNR)
is significantly decreased requiring concurrently a reasonable time period to
return in the normal mode. Therefore the conclusion is that it is preferable to
ensure that modulator will never become unstable rather than a stabilization
technique to be applied.

3.3 Idle Patterns, Dead Zones and Tones

The repetitive patterns that are founded in the output of the modulator under
zero input signal constitute in substance a limit cycle, termed idling pattern.
To obtain a view of this phenomenon assume a modulator which consists of
just one accumulator for which holds that Ly = L1 = z7!/(1 — 27!). Lets
xo where 0 < xg < 1 be the initial state of the filter. Once the first input
in the quantizer is xq its output will equal to 1. So its next input will be
xo — 1 < 0 and therefore its next output will be —1. Its next input now will
be (g — 1) + 1 = xy and hence its output will be again 1 and so on. Thus
the sequence 1,-1,1,-1,.. takes place with frequency f,/2 since every second
sample there is change in sequence. Idle pattern itself is not a problem since
we supposed a zero input. The problem is occurred when input changes to
a non-zero type and the idle pattern cannot be broken. This is happening
for small input amplitudes which is called that belong in the dead zone i.e.
a zone of inputs that modulator cannot decode. As an example consider a
sinusoidal input u[n] = Asin(QW%n) where [, is the frequency bandwidth of
input signal and f; = 1/T} is the frequency sampling. For numerous samples,
m > 1 and for high OSR, f; > f; the following approximation can be done

m mT.
s A o

Z uln] ~ Ts/ Asin(27 fit)dt = J [cos(27 fi,Tsm) — 1] (3.6)

Clearly the maximum value is

Afs

sum_max = 27:;1) >0 (3.7)
Therefore in order to cancel idle pattern one of 2 following cases must hold :
xo + sum-maxr < 0 = sum_-maxr < —xo or (3.8)
(rg — 1) + sum_mazxr >0 = sum_maz > (1 — xg) (3.9)
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Remember that initially zp > 0 and (zo — 1) < 0. So the aforementioned
equations ensure that idle pattern is broken avoiding in that way the dead
zone. Provided that sum_maz,zo > 0 only (3.9) holds and the worst case is
for xy = 0. From (3.7),(3.9) for the worst case it arises :

27 fi, T

Af,
1 A = 1
o hy >1 = A> 7 OSR (3.10)

The equation gives the minimum value of sinusoidal amplitude so as a
limit cycle to be avoided :
2w fb
[s

Notice that a higher f, demands a higher amplitude A,,;, to overcome the
dead-zone. Consequently dead zone effect is more intense in high frequencies
within the signal band. A similar procedure should be followed for higher
order loop filters. The higher gain in the loop filter gives the ability the
modulator to “recognise” smaller signals restricting as much the dead-zone
as idle pattern to be considered an ignored and unimportant effect. The
appearance of an idle pattern is translated into tones in frequency domain
and can easily be detected from the human ear or eye in an audio or video
application.

Ain = (3.11)
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Chapter 4

Single-bit Two-Step
Look-Ahead Modulator

4.1 Analytical Equations of 2-SLA XA Mod-
ulator

To retain our analysis simple we will examine the Multi-Step Look-Ahead
(MSLA) for step k=2. For the remainder of this assignment it will be men-
tioned as 2-Step Look-Ahead (2-SLA) Modulator. However, the general proof
is given in [1]. Moreover the system that examined is about a step k=2, hence
more depth in analysis may confuse the reader. It has been proved that the
optimal 1-bit output sequence for a given input sequence and filter is ob-
tained by Viterbi decoding the input sequence over the convolutional code
generated by the filter. Yet, Viterbi decoding becomes exponentially complex
with the length of the input sequence. It has been also proved that the error-
feedback AX modulator produces the optimal 1-bit output sequence when a
first-order loop filter is used. Therefore, this AX modulator topology forms
the basis for the development of the MSLA modulator. The general form of
G(z) is

_ Zi’:l bz
G(z) = T35 aa (4.1)

where [, m are the orders of the numerator and the denominator respectively.

Here for the purposes of our system and for reasons of simplicity we
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Figure 4.1: Error Feedback as an optimization problem

eliminate the order of G(z) to 3. From inspection of fig. 4.1 :

M EEE)

(4.2)

where X(z), Y(z), E(z) and G(z) are the z-transforms of the input, output,
filter output and loop filter impulse response sequences respectively.
From (4.1) and (4.2) with [ = m = 3 it arises :

E(z) bz bz 4 by
X(2)=Y(2) 14+azt+az2+azz=3

(4.3)
Hence in time domain easily verified that :

e[n] + are[n — 1] + aze[n — 2] + aze[n — 3] = by(z[n — 1] — y[n — 1])
+ bo(z[n — 2] —y[n —2]) + bs(z[n — 3] —y[n —3]) (4.4)

This equation will be useful next.
The topology now could be seen as an optimization problem. It is known that
the output is single bit. It means that when the quantizer input (x[n]+e[n])
is positive, the output is 1 and if it is not positive, the output is -1. Con-
sequently every time the negative value of the possible output, —v tends to
bring the sum (x[n]+e[n]) toward zero. By equations it means that consid-
ering the cost function

S = |z[n] + e[n] — v| (4.5)

the role of v = £1 is to minimize it. The choice of that v is the output y[n].
Therefore :

y[n] = argmin S (4.6)

vexl
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From 4.6 it is concluded that the output of the error-feedback AX mod-
ulator is determined by the instantaneous minimization of the quantization
error within the bandwidth of the loop filter. The optimal solution would be
the minimization of the total time-domain quantization error shaped by the
loop filter. The latter would require Viterbi decoding and is impossible for
an infinite input sequence. A compromise between the optimal solution and
hardware complexity is possible if the minimization of the quantization error
is restricted to the current and the next 2 (here) future input samples.

S1=|zn—1]+e[n—1] — v (4.8)

Sy = |z[n] + e[n] — vy (4.9)
y[n — 2] = argmin | min (Sp+ 51 + S2)| (5) (4.10)
voE€E1 v1,v2€+1

Thus the calculation of y[n—2] requires the knowledge of e[n—2], e[n—1], e[n].
The latter can be expressed in function of previous values if in (4.4) the
suitable timing shift is applied. In addition we must note that the outputs
y[n — 2], y[n — 1] are expressed as vy, v; respectively since they have not be
defined yet.

e[n — 2] = by(z[n — 3] — y[n — 3]) + ba(z[n — 4] — y[n — 4])
+ bs(z[n — 5] — y[n — 5]) — are[n — 3] — aze[n — 4] — age[n — 5] (4.11)

eln — 1] = by(z[n — 2] — vg) + ba(z[n — 3] — y[n — 3])
+ bs(z[n — 4] — y[n —4]) — are[n — 2] — aze[n — 3] — aze[n — 4] (4.12)

eln] = by(zln — 1] — vy) + ba(x[n — 2] — vy)
+ bs(z[n — 3] — y[n — 3]) — are[n — 1] — aze[n — 2] — age[n — 3] (4.13)

Extensive simulations have shown that keeping the last cost function term
of the sum in 4.10 (S3) does not typically impact performance. In fact,
in many cases it offers superior stability than calculating the output using
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all terms, while fewer terms lead to lower hardware complexity. Thus, the
following simplification of the decision rule is proposed.

y[n] = argmin( min 52) (4.14)

vo€+1 v1,v2€£1

Substituting the (4.13) into (4.9) we have :

Sy = |z[n] + biz[n — 1] + box[n — 2] + bs3(x[n — 3] — y[n — 3])
—are[n — 1] — aze[n — 2] — age[n — 3] — bovg — byvg — vo| (4.15)
Our goal is to write Sy as linear combination of vy, v1, v9. So e[n — 1] from
(4.12) has to be substituted in (4.15) since the first one contains the variable

vg. The (4.11) is useless since this does not contain some of minimized
variable vy, vq, V.

Sy = |z[n]+biz[n—1]+ (by— a1by )x[n— 2]+ (bs — arbe)x[n— 3] — a1bsz[n — 4]
— (bs — a1by)y[n — 3] 4+ a1bsy[n — 4]
+ (ara; — ag)e[n — 2] + (aras — az)e[n — 3| + araze[n — 4]
— (by — a1by)vg — byvy — vo| (4.16)

Defining the signal u[n| as
uln] = zn]+bixn—1]+ (by—a1by )z [n—2]+ (bs —arb)x[n—3] —arbsx[n—4]

— (bs — a1b)y[n — 3] + a1bsy[n — 4]
+ (a1a1 — ag)e[n — 2] + (a1as — as)e[n — 3] + ajaze[n — 4] (4.17)

the (4.16) can be written as
SQ = |U[TL] - (bg - albl)vo - b1v1 - U2| (418)

Well now it looks similar to the cost function in (4.5) (namely the Error-
Feedback modulator) with the minimization variables to be 3 instead of 1
i.e. vy, vy, Us.

Taking the z-Transform of (4.17) it gives :

U(z) = (1 +biz7" + (by — arb))z 2 + (by — arby)z > — a1bsz*) X (2)

—|—(—(bg—a1b2)2_3+a1bgz_4)Y(z)—l—((a1a1—ag)z_Q—i—(alag—a3)z_3—|—a1a32_4)E 2)
(4.19)

30



Substituting the output filter, E(z) from (4.3) into the (4.19) we have

U(z) = (1 +biz7" + (ba — arby)z > + (b3 — arba)z > — arbsz™*) X (2)
+ (= (b3 — arbo)z ™ + arbsz )Y (2)+
blz_l + b22_2 + b32_3

X(2)-Y
1+ aiz7t +asz72 4+ azz—3 (2)-Y(2))

(4.20)

((a1a1—a2)z 2 +(ayas—as) 2 *4ayazz™*)

Setting

blz*1 —+ b22’72 —+ b32*3

14+ a1z27t +agz 2+ azz—3
(4.21)

A= ((a1a1 —a2)2_2+ (a1a2 —CL3)Z_3+G1(132_4)

we have :

U(Z) = (1 + blz_l + (b2 - a1b1)2_2 + (bg - a1b2)2_3 — a1b32_4 + A)X(Z)
+ (—(bg - CL1b2)Zﬁ3 + CL1b3Zﬁ4 - A)Y(Z) (422)

After the trivial algebraic calculations the final equation is simplified. Our
result is about the signal y[n-2], thus replacing Y'(z) with 2?Y(z) the final
result related to signal y[n] is obtained :

U(z) = L+ (a1 +0)27" + (ag +2)27° + (a5 + boar + b5 = azb1)2_3X(z)
1+ az7t +az™2 +agz™3
— (a3by — agby — ayby + bs)z ™' + (ayasby — asby — asby)z* + (arasby — asby)z™?

1+a1z7t +ayz=2+azz=3

Y (2)
(4.23)

4.2 Computation of our Examined 2-SLA Mod-
ulator
Choosing as NTF
NTF = (1—z1)? (4.24)
G(z) is readily calculated :

B 1—-NTF B 3271 32,724,738

G =
(2) NTF 1—32z143272— 23

(4.25)

31



Hence comparing with the general form of G(z) in (4.1) the factors are ob-
tained

by =3,by=—3,by=1 (4.26)
ap = —3, g — 3, as — -1 (427)

Substituting these values into the general form of 2-SLA in (4.23) our exam-
ined 2-SLA AX Modulator is obtained :

1

10271 — 15272 46273
L = — 4.29
1(2) (1 _ 271)3 ( )
and
S ’ 273
= 4.
TE 14+ 7271 —12272 45273 (4.30)
/ 1—z1)3
NTF = (=27 (4.31)

14+ 7271 —12272 45273

In fig.4.2 is plotted the absolute values of our STF' and NTF' in com-
parison with the familiar class of STF = z~* where k is depend on the order
of the filter Ly, and NTF = (1 — 271)3. We observe a better behaviour in
the very low frequencies for |[NTF’| compared to that of |[NTF| since the
former is closer to 0.

4.3 The Effect of Look-Ahead Steps in Sta-
bility

In (4.10) it was found the decision rule for 2-SLA modulator. For MSLA
with the number of steps to be k the decision rule is generalized :

y[n] = arg min [ min Z Sj] (4.32)

vo€+1 v1,V2,..., 0 €E1

=

The performance of MSLA modulators has been verified using extensive
MATLAB simulations. It has been observed that in many cases a better
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Figure 4.2: Transfer Functions

output dynamic range may be obtained when the last or the last two metrics
Sk and Si_1,, in (4.32) are taken into account for the computation of the
output, thus greatly simplifying the hardware complexity at the same time.
Several different loop filters and associated NTF's have been simulated and
results have been obtained, which demonstrate the improvement of the sta-
bility characteristics of the modulator as the number of look-ahead steps k
is increasing. The maximum sinusoidal input amplitude resulting in stable
operation of the modulator is chosen as the stability measure.

NTFs which are stable when employed in a conventional AX modulator,
remain stable for higher input amplitudes with higher values of k, while
unstable NTFs may offer stable operation when £ is increased.

The attained results are shown in Fig. 4.3, while the corresponding fil-
ters are shown in Table 4.1. The stability was determined by MATLAB
simulations of 2 - 10° input samples. For the low-pass filters 1-4 the signal
x, = Asin (27 - 0.0041482n) was used as the input, whereas for the band-pass
filter 5 the input signal was in the form x,, = Asin (27 - 0.365n). The effect
of the look-ahead steps k in the increase of the maximum stable sinusoidal
input amplitude is evident. Conclusively, the MSLA modulator offers higher
input dynamic range than a conventional AX modulator with the same NTF.

The main consideration for the selection of the NTF poles are the stability
requirements of the conventional AX modulator. The NTFs 4-5 do not have
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Figure 4.3: Maximum stable sinusoidal input amplitude for different look-
ahead steps k and NTFs (shown in Table 4.1)

any poles for the reduction of the out-of-band gain of the corresponding
loop filters and are unstable when used in a conventional AX modulator.
The obtained simulation results demonstrate that such NTFs may be used
in a MSLA modulator and offer stable operation for a wide range of input
amplitudes when the value of k is sufficiently large (> 2). Thus, the design
space of the NTF is greatly increased allowing for the selection of the zeros
and poles of the NTF based on other design criteria apart from stability.
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Table 4.1: Filter transfer functions of Fig. 4.3

Transfer function

NTF 1| o lriie e e vt
NTF 2 o BT r
NTF 3 (170.665;—21_)Eigfggle—tioz.t)afszz,gz—?)
NTF 4 (1—2z71)3

NTF 5 (1 — cos (27 - 0.365)z7L 4 272)°
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Chapter 5

Implementation Analysis of
2-SLA Modulator

5.1 Cascaded Integrator with Distributed Feed-
back

In this section we present the structure of our 2-SLA modulator . It is
constructed by cascaded integrators with distributed feedback (CIDF). The
schematic diagram is in fig. 5.1.

Figure 5.1: CIDF architecture for the construction of our 2-SLA Modulator

This architecture offers a lot of positive characteristics. As it is shown
every integrator is related with just prior values and not older than them.
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In other words each of them needs only one register for memory purposes.
Furthermore no multiplications are required. Provided that V' = +1, the
factors aq,aq,a3 will be either a positive or a negative constant. That is an
7if” statement for choosing the suitable value can be used.

By writing the equations it will be verified that filters with input X or
V and output Y equal (4.28) and (4.29) respectively calculating at the same
time the factors aq,as,a;3.
Assuming V=0 and X the only one input the ratio Y/V will be found.

Vi=X+Yiz! (5.1)
Yo=Yzt + Yot (5.2)
Yy =Yor '+ Yzt (5.3)
Y =Yz ! (5.4)
Solving each equation for Y7, Y5, Y3 it arises :
X
Y1 = 5.5
L T (5.5)
Viz™!
Y, = 5.6
N T (5.6)
Yoz ™!
Ya = 5.7
3T 1 (5.7)
Y = Yzz ! (5.8)
With successive substitutions from (5.8) toward (5.5) it arises :
Y- -2 )% -3 X -3
y=-2_- 1 _____°F (5.9)
l—2t (1—2H2 (1—2z713
Therefore v s
SR E— (5.10)

X (1-z13
As it is seen the the above filter equals Lo(z) filter of (4.28). The factor 23

is just three delays and its existence does impact the filter behaviour.
Assuming now X=0 and V the only one input the ratio Y/V will be found.

Vi =a,V +Yiz™! (5.11)

Yo =aV + Y1zt + Yor ! (5.12)
Y3 =asV + Yoz ' 4+ Y3zt (5.13)
Y =Yz ! (5.14)
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Solving each equation for Y;(1 — 271), Y5(1 — 271), Y3(1 — 271) it arises :

Yi(l—z Y =aV (5.15)
Ya(l — 271 = aoV 4 Yzt (5.16)
Y3(1— 27" = a3V + Yoz ! (5.17)

Y =Yzt (5.18)

Multiplying (5.18) with (1 — 27') and combining this with (5.17) we have :
Y(1 -z =a3Ve + Yoz ? (5.19)

Multiplying the above equation with (1—271) and combining this with (5.16)
we have :

Y(1—-z') =aVe ' (1—z )4 aVe?+Y23 (5.20)

Finally we multiply the above equation with (1 —2z71) and combine this with
(5.15) :

Y-z =aVe ' (1 — 2 ) +aVe 21—z ) +a V2

YV azz ' (-2 +az?(1—27) 4 a27?

Vo (1 —271)3
Yy azz™ ' + (ay — 2a3)272 + (a1 — as + az)z > (5.21)
Vv (1 —z71)3

Comparing with L;(z) in (4.29), the factors aq,as,a3 are calculated :

a3:—10
as —2a3 =15 — ay = —5H (522)
ap—as+a3=—-6 = a3 =-—1

5.2 Scaling Factor for the Fixed Point Rep-
resentation

For the representation of signals the Fixed Point Representation (FPR) is
used. Every signal in this representation is considered to be a fraction where a
scale factor implicitly accompany it. If we multiply the fraction number with
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the scale factor the actual value of the signal is obtained. In an implemented
system now every signal is a stream of bits which represent the fraction
number. The scale factor (which is almost always power of two) defines the
range of signal while the number of bits of stream defines the precision for
that scale factor. Caution must be given in the choice of the scale factor so
as the whole range of a signal can be represented as well as not having a
high value which results in lower precision. Let’s represent now the 2-SLA of
fig. 5.1 in FPR. A generalized solution would be to examine the maximum
value of all signals, next choose the minimum scale factor which can represent
that value and eventually applying in each and every signal that scale factor.
The maximum value can be found inserting as input the Maximum Stable
Amplitude input for a given frequency (MSA) i.e. the maximum input for
which stability is guaranteed. However, a more efficient solution is to apply in
each of three integrators a different scale factor. Finding the maximum value
for every one the least scale factor is applied to the corresponding integrator.
The widest range for every one arises from theirs outputs y[n|,y2[n],y3[n]
(moreover the range of y; is smaller than y, and y, smaller than y3). By
observing the fig. 5.2a-5.2c, in the first integrator a scale factor SEF = 2% is
chosen, in the second integrator a SF = 2° is chosen while in the last one a
SF = 26 is chosen.

Let’s assume now an input to the modulator within the range —1 <z < 1
with a scale factor of 2°. Shifting it right 4 bits a scale factor of s; = 2% is
obtained for all signals in modulator. Since the input to second stage has a
scale factor of 2%, shifting it right 1 bit a scale factor of sy = 2° is obtained
for all signals in second and third stage. Finally similarly shifting one bit
the input to third stage a scale factor of s3 = 2% is obtained for the third
stage. In the fig. 5.3 the CIDF structure with shift operations is given.
This solution is better because in every integrator the minimum scale factor
is applied allowing in that way a higher precision. Notice that in feedback
path the factors are affected (symbolised as a;, as, a3) due to shifts operations
S1, S, 3 (namely gains) but it will be discussed in section 5.4.

5.3 Quantization of the Signals

No discussion made for the precision of signals. Lets quantize our system. In
fig. 5.4 the blocks @)1, @2, Q3 are each of them a Quantizer which truncates
the signal keeping only a certain number of bits for every one. As showed
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Figure 5.3: CIDF architecture with different scale factor for each integrator
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Figure 5.4: CIDF architecture with Quantizers (real system)

in section 3.1 a multi-bit quantizer can be represented by a gain factor plus
an error source (fig. 5.5). Assuming that ¢, g2, g3 are the gains of quantizers

Q1, Q2, Q3 respectively then :

(5.23)

J<

Figure 5.5: CIDF structure. Quantizers replaced by theirs linear model

In a first place we are interested in examining how the introduction of
gains change the range i.e the weight factor of signals in FPR affecting hence
the balance in the whole system and in which way the same analogy between
them could be recovered resulting thus in an equivalent system. In order a
comparison between fig. 5.1 and fig. 5.5 to be achievable, the error sources
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have to be zeroed. Fortunately the described model of the system is linear,
thus the theorem of superposition can be applied. Firstly error sources are
zeroed, next searching for an equivalent system to that of fig. 5.1 (namely
specifying factors ay, ay,ay of fig. 5.5) and finally adding the error sources
back.

5.4 Equivalent System after the Introduction
of Gains

The following matrix describe the system of fig. 5.1

Yi 1 0 ay 1
Y, =T Yi-zbV [+ |a | V+]0|X
YES F )/Q’Z_l as 0

while the next matrix describes the fig.5.3 (with now s — p,ss —
m,s3 — n) i.e. takes into consideration the inserted gains from the deter-
mination of scale factor for each integrator as well as from the quantization
of signals. Every signal as well as the gain of amplifiers aq,as,a3 are chang-
ing value. Symbol " after a variable shows that it is a new variable. To
remind that our goal is to calculate the factors a),asy,as in order to acquire
an equivalent architecture with the initial one (fig. 5.1).

!/
0 a,

n 1 , , p
Y, g mY, -zt |+ ay |- V+|[0]|X
Yy —F nY, - 27! ay 0

We know that Q(Y(2)) = Q(rY (=) <= Q(¥s(z — 1)) = Q(r¥s(z — 1))
where 1 is a positive integer since the sign remains the same. So our goal
is to show Y; = rY3. For Y; = rY3 comparing the third row of first and
second matrix we find that Y, have to equal Y, = r/n - Y, and ag = 7 - as.
Substituting these values in the second matrix we have :

/

Yy 1 0 a p
(r/n)Ysy | = o mY; -2V 4+ | ay | V] 0| X
rYs — rYy -zt ras 0
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Now the values of ¥; and a, have to be equal to Y; = r/(nm)Y; and
ay = 1/n - ay. Substituting these values in the previous matrix we have :

(rfrm)Yi 1 0 d y

(r/n)Yy, | = e (r/m)Yi-z7V | + | (r/n)ay | -V +|0|X
rYs - F Yy 271 ras 0

Now the values of p and a) have to be equal to p = r/(nm) and a) =

r/(nm) - a;. Substituting these values in the previous matrix we have :

r/(nm)Y; 1 0 r/(nm) - ay r/(nm)

(r/n)Yy, | = T (r/n)Yy-z71 | + (r/n)as -V + 0 X
rYs —F rYy - z71 ras 0

That was the proof of equivalence of two systems. Variable r is cancelled and
it implies that Y3' equals Y3. Next, multiplication with knm is made so as to
return in the initial matrix. Therefore :

kYi 1 0 kzal k
EmY, | = T kmYy-z7t |+ | kmas | -V+ |0 | X
kmnYs —F kmnYs - 271 kmnas 0

Eventually renaming the variables it arises :

/

Yi 1 0 k-al k
Y, =1 mY; -2V |+ | kmeay | V4]0 | X
Y, —F nY, -z kmn - ag 0

Therefore the values of a’l,a;,a; in function of a;,as,a3 and gains k,m,n are
obtained analytically.
a, =k-al

ay = km - a2 (5.24)

/
as = kmn - a3
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5.5 Defining the Number of Bits for each Sig-
nal

Now the affection of each quantizer @)1, ()2, Q3 to the output of modulator is
studied. As it has been said a quantizer can be replaced by an error source
(see fig. 5.5). Our goal is the calculation of transfer functions for each error
source . In that way we are informed to what extent each source affects the
output of AX modulator. Applying the principle of superposition inputs X,V
and two error sources are setting every time to zero retaining active only one
error source. This task is repeated for every error source. Fig. 5.6a-5.6¢
depicts it.

Eq

YEl

Figure 5.6: Error sources

Easily can be obtained

Y: 273
H="=__—_ 5.25
B (1—21)3 (5:25)
YE 2_2
Hy=-=>2_-__~ 5.26
TR Q- (5:26)
YE3 Z_l
= = 5.27
ST R 11—zt (5:27)
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where Yg,,Yg,,Yg, is the output due to each error signal E, Es, E'3 respec-
tively. Comparing to (2.9) the output now is calculated by involving also the
YE,,YE,,Yr, components in the calculation of Y :

Y=Ly X+L-V+Yg +Yg +Yg (5.28)
Y=Ly-X+L -V+H -E +H, Ey+ Hs- Es (5.29)

Provided that V =Y + FE from (5.29) we have :

V:LOX+L1V+H1E1+H2E2+H3E3+E (530)

L H H H 1
S Xt BByt > Fa+

V=
1+ L1 1+ L1 1+ L1 1+ L1 1+ L1

E (5.31)

where Ly(2),L1(z) are derived from (4.28) and (4.29). As we see the transfer
functions (TF) of Ey(z),E2(2),Es(z) are respectively :

TFE, = o (5.32)
"T14 L 14721 —12224 523 '
H, 2721 —27h)
TFE, = - : 5.33
T 14L;, 1472 1—1222+52°3 (5:33)
H -1 1— —1\2
TFEy = —> = B Gk (5.34)

1+Ly 1+7z71—12272+ 5273

These Transfer Functions (TF) give a very useful information. For frequen-
cies €2 near 0 the TF of error F; equals approximately 1 while TFs of errors
Es, E5 equal roughly 0. However T'F'E5 has only one zero whilst T'F'E3 has
two zeroes in DC frequency. Consequently T'F'E; amplifies more than T'F' E,
and T FFEy amplifies more than T F E3 their errors. Hence, the significance
of the errors F4,FE5,F5 for an efficient operation of the Modulator is in the
order that are written. Based in this fact, the highest to lowest priority in
determination of bit-widths is X;,Xs,X5(see fig.5.4). The method that we
followed is to dedicate the same number of bits for each signal X;,X5, X3 and
calculate the Signal to Quantization Noise Ratio (SQNR) in function of bits.
The latter is given by :

2
SQN R = 10logs [”—p} (5.35)

(vip — vfp)?
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where v;, is the output of 2-SLA Modulator with infinite precision (double
precision of Matlab) while vy, is the finite precision corresponding to given
bits each time. This measure expresses how good is the implemented system
according to the ideal. From this information we are able to choose the bit-
width of the signal with the highest priority i.e. X;. It is plotted in fig.5.7a.
For more than 15 bits we observe a hard converge. Hence, 15 bits is an
adequately good and safe choice. Subsequently keeping the signal X; in 15
bits and changing the number of bits for signals X,,X3 (same number for
both each time) ,and after examining again the SQNR, the determination
of bit-width for X5 is possible (second in order of priority).It is plotted in
fig.5.7b and 12 bits seems perfect. Eventually since the definition of signals
X, and X5 is done, the SQNR is plotted in function of the number of bits for
the signal X3 which has the lowest priority fig.5.7c. The calculation task of
bit-widths is completed after the final bit-width choice for signal X3 where 7
bits are good enough.

The final CIDF architecture (ready for implementation on a board!) is
presented in fig. 5.8 including the number of bits for signals as well as the
gains (s1, $2, s3) in every integrator as calculated in section 5.2 . For the
computation of gains (a;, ay, as) the (5.24) is used. The gains of Quantizers
Q1,Q2, Q3 equal ¢; = 2%, g, = 273, g3 = 27° where the exponential number
15 is given from the bit-width of X; signal while the exponential numbers
-3 and -5 are obtained by subtracting the bit-width of the output from the
input for )2, @3 quantizers respectively (see fig. 5.4 and 5.8). Hence from
(5.23) we have that p = 2" m = 274 n = 27%. Eventually from (5.24) :

a; = 2% (=1) = —2048
ay = 21274 (=5) = —640 (5.36)
ag = 21274970 . (—10) = —20
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Figure 5.8: CIDF architecture for the construction of our 2-SLA Modulator
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Chapter 6

FPGA Implementation of
2-SLA Modulator

6.1 Verilog Hardware Language

Verilog Hardware Language was written in PLANAHEAD program for the
programming of our 2-SLA Modulator on FPGA board. The FPGA model
is Xilinx Spartan xc3s500e. The verilog code is :

‘timescale 1ns / 1ps

module 2SLA (i_data_in,clock4,reset,out);

localparam bits_yl
localparam bits_y2
localparam bits_y3

15;
12;
7,

input reset,clock4;
input [bits_y1-1:0] i_data_in;
output out,

reg
reg
reg
reg

signed [3:0] al ;
signed [4:0] a2 ;
signed [5:0] a3 ;

out;
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wire

wire
wire
wire

assign

compl ;

signed [(bits_y1-1):0] y1_D, y1_D_part ,y1_Q , y1_Q_shift,i_data_in_Q;
signed [(bits_y2-1):0] y2_D , y2_Q , y2_Q_shift ,y2_D_part , y1_Q_shift_q ;
signed [(bits_y3-1):0] y3_D , y3_D_part, y3_Q , y2_Q_shift_q;

assign yl_D_part

assign

assign y2_D_part

assign

assign y3_D_part

assign

Dff
Dff
Dff
Dff

assign
assign

assign
assign

#(bits_yl)
#(bits_yl)
#(bits_y2)
#(bits_y3)

always @ (y3_Q)

begin

y1_D = y1_

compl = “i_data_in_Q[bits_y1-1];

= {a1[3:1], compl ,i_data_in_Q[(bits_y1-1-4):0]};
D_part + y1_Q ;

= {a2 + y1_Q_shift_q[bits_y2-1:bits_y2-5], y1_Q_shift_q[bits_y2-5-1:0]1} ;

y2_D = y2_D_part + y2_Q;

= {a3 + y2_Q_shift_q[bits_y3-1:bits_y3-6] , y2_Q_shift_q[bits_y3-6-1:0]};

y3_D = y3_D_part + y3_Q;

FFi_data_in (.Q(i_data_in_Q), .D(i_data_in), .reset(reset), .clk(clock4));
FFyl (.Q(y1_Q), .D(y1_D), .reset(reset), .clk(clock4));
FFy2 (.Q(y2_Q), .D(y2_D), .reset(reset), .clk(clock4));
FFy3 (.Q(y3_Q), .D(y3_D), .reset(reset), .clk(clock4d));

y1_Q_shift = y1_Q >>>1;
y1_Q_shift_q =

y1_Q_shift[bits_yl-1:bits_yl-bits_y2];

y2_Q_shift = y2_Q >>>1;
y2_Q_shift_q =

y2_Q_shift[bits_y2-1:bits_y2-bits_y3];

out = y3_Q[bits_y3-1];
if (y3_Q[bits_y3-11)

begin

al
a2
a3

end

els

begin

e

4°b0001;
5’b00101;
6°b001010;
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al
a2
a3
end
end

4’°b1111;
5’b11011;
6°b110110;

endmodule

and the verilog code for D flip flop module for the synchronization with
the clock is :

‘timescale 1 ns/ 1 ps

module Dff #(parameter N=8)
(

output reg [N-1 : 0] Q,
input [N-1 : 0] D,

input reset, clk

);

always @ (posedge clk)
begin
if (reset == 1°b1)
Q <= {N-1 {1°b0}};
else
Q <= D;
end

endmodule

The RTL schematic is given below :
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6.2 QOutput Spectrum

In fig. 6.2a-6.2d are depicted four spectres of our 2-SLA AX modulator. The
four inputs derived from :

T
— 0.45si ( ) 6.1

T sin | 5p" (6.1)
where OSR takes four different values (are given below). The machine that
displays the spectrum is called Spectrum Analyzer (fig 6.1). The Resolution
bandwidth of the output spectrum is 3kHz. If f;, is the frequency of the
input signal then easily it can be found from (2.23) :

_
2-0OSR

Hence for OSR = 64,128,512, 2048 and for f, = 50M H z the input frequency
fp is 390.6,195.3,48.8,12.2 kHz respectively. These values agree with the

frequency of the displayed diracs (Z Transformation of sinusoidal signals) in
the fig. 6.2a-6.2d.

Jo

(6.2)
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