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Amayopeletar 1 avtiypagr), amodrixeuon xou Savour Tng mopolog gpyaciog, €& OAOXAHEOU N
TUAUUTOS AUTAS, Yia eumtopixd oxomd. Emrtpéneton 1 avatinwor, amovixeuon xou dlavour| yia
OXOTO 1) XEEOOOHOTUXO, EXTIUBEVTIXAC 1| EPELVITIXAC PUOTC, LUTO TNV TeoLTOUEST] VoL avopépeTon
1 YY) TEOEAEUOTC o VoL Dlatneeltan To ooy ufvupa. EpwtAuata mou agopolv tn yerion tng
gpyaoiog Yoo x€pd0oX0TXO 00T TEETEL VoL ameLYOVOVTAL TPOG TOV CUYYQPOPED.

Ou améelc xa T CUUTEPACHTA TOU TERLEYOVTOL GE OUTO TO EYYEAUPO EXPEALOLY TOV CUYYRUPEN
xou OeV TEETEL Vo epunveudel OTL avTimpoowrebouy Ti¢ enlonueg Yéoeic Tou Edvixod Metodfiou
IToAuteyvelou.



Abstract

Communication time is an integral part of the execution time of large-scale applications and
depends on a wide set of factors, including system architecture and software, application’s fea-
tures and obscure network effects. Its prediction is a subject which was studied by many from
various perspectives. With our work, we wish to contribute and add a novel approach to this
matter. We propose a machine-learning scheme to predict the total communication time of
parallel applications. We define a set of features extracted from application’s characteristics,
allocation size, process mapping and system’s architecture, and devise a simple benchmark
which sweeps over the parameter space and provides valuable insight on the network effects.
Forests of extremely randomized trees - a supervised learning algorithm - is applied to per-
form regression analysis on communication data, derived from the benchmark, and application
execution time. Our prediction model achieves noteworthy results in making predictions for
two different communication kernels with various problem sizes and system configurations, and
successfully selects optimal execution configurations in a decision-making scenario. Finally, ex-
cept for making predictions, our work succeeded in identifying the culprits behind performance

variability for two dissimilar network architectures.

Keywords: performance prediction, communication time, MPI applications, large-scale sys-

tems, machine learning.
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ITepiAndm

O ypdvog emxowvwviag elvon €vo avamOOTACTO XOUUATL TOU GUVONXOU YPOVOU EXTENECTC EQUO-
HOY®Y UEYAANG MAlpoag xon e€opTdton amd Evar eupl YA TURAYOVTGY, CUUTERLAUUBUVOUEVGY
NG AEYITEXTOVIXNAS XAl TOU AOYIOUIXOU TOU GUCTAUNTOS, TO YUPUXTNEWOTIXG TNG EQUQUOYHC %ol
duovonTa dixtuoxd govopeve. H mpoBiedn tou xdoToug emixotvwviag etvon évor (ATnUa Tou €yet
pehetniel and moArolg amd BLdpopeg OTTIXES YwVieg. Me Tr OOUAELd Yog ATOCXOTOVUE VO GUVEL-
OWEPOUNE OE QUTH| TNV TEOCTAUEL X0l VO TUPOUGIAGOUUE Uldl TPWTOTOPLIX T TEOGEYYLOT) AUTOU TOU
Vépatog. Ipotetvouue uio machine learning yetdodolroyla yio Ty mpdBiedn Tou cuvolixol yedvou
emxovwviag TopdAANALY epoapuoyny. Oplooue €vo GOVORO amd TUPAUUETEOUS, TEOEPYOUEVES UTO
TOL YOEOXTNPLO TG TNG EQUPUOYTC, TO UEYEVOC TV YPNOUOTOLOUUEVWY TOPWY, TNV AVTLoToly Mo
TWY DLEQYACLOY GTOUG TURTVES TOU GUC TAUNTOS X0l TNV AEYITEXTOVLXY Tou dixTUou. Kotdmy, cuy-
AEVIPWVOVTAS UETPNOELS, TOU XOAUTTOUV OAO TO QAU TWV YETNOULOTOLOUUEVLY TUQUUETOWY, UE
TNV EXTEAEOT) LOC UTATC YEVIXEUMEVNC EQPUEUOY TS, ATOXTHOUUE Uid EOVOL TNG CUUTERLPORES TOU
uno e&étaor dixtiou. O alyopriuog forests of extremely randomized trees ypnowwonomjinxe yia
vo TpofBAEoule Tov yedvo emixotvwviag oTNELlOUEVOL OTo BEBOUEVY ETUXOWVOVING TOU GUAAELOUE
ue Vv mponyoLuevn dwdxacta. To yovtého mpdfredng poag netuyoivel aloonUElTA ATOTENEGHO-
ot oTNY TEOPRAedn enidoone 800 SLIPOPETIUMY EQPUPUOY®Y Yio TouxiAa UeYEDT TEOBAUATOC Xou
ouluicelc cuotiuatoc. Erione, dwéyoupe emtuywe Tic BéATIoTeC puluioeic extéheone o éva
oevdplo Midng amogdoewy. Téhog, mépa and Tic TEOPBAEPELS, 1) BOUAELS MG TETUYOIVEL VoL 0VO-
yYvweloel to aftioe TNg drapoporoinong tng enidoong oe BU0 apxeTA BLapopETING BixTUA UEYIANG

xhiponog.

Aé&eig-xherdid: pdPAedn enidoong, yedvog emxowvmviog, MPI eqopuoyée, ueydhng xhiaxag

ouvothuata, machine learning.
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Euvyopiotieg

Oa Hieha va euyaplothiow Vepud tov emBAénovia xodnynth g epyociog auvtrg, x.Nextdpo
Kolben, vy ) cuveyn xadodriynoy| tou xou tnyv xodoploTixr) cUUBOAY Tou GTrn GUVEYLOY NG

oXAONUAEXAS HoL ToPELaG.

N v avéyxn va euyopiothon wiautépwe tov x.Iedpyio I'volua yio To evdlagépoy Tou xou
TIc oLYPOVAEC Tou Wou Topelye Tar 600 TEAeLTAlY YEOVIA, XM XAl Yol TNV CUVOROUT| TOU GTNV

ETAOYY| TNG TOPOUGUS X UEAAOVTIXAC ETLOTNUOVIXAC oL XATEVVUVOTC.

Oa flela var euyapLOTACW axodpa Tov x.Avopéa-I'edpyio Ltaguiondtn tou Swtéhece uéhog tng

TEWENOUG ETUTPOTNAS [UOL.

‘Eva 1btaltepo euyapto 1o ogethw otny urodrglo dddxtopa Nuéha Hoamadorodhou yio tny ouépet-
ot Borleld tng xan yiow TNV dpio T cuveEpYasia TOL ElyaUE XoTd T BLIEXEL TNG EXTOVNONS TNG

ToE00ouS BITAWUATIXAG EpYaciog.

Téhog, Vo fideha vor euyaploTow WBIATEPO TNV OLXOYEVELS OV Yl T1) Bloex ) OTARIEN TNG KoL TOUG

pihoug pou Yo 6oo tepdoaue uall xotd Tr) Sidpxelo TS POITNTIXAC Uag Cwng.
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Extevig nepiindn

O olyypovol uTepUTOAOYIOTEG AUEAVOLY CUVEY WS ot Uéyedog xal uTohoyloTixy oyl. AucTu-
YOS OUWS AUTES Ol QUEAVOUEVESC BUVATOTNTEC BEV UmopolV va yenoudonondoly TAHewe Aoy
TEOBANUATOY GUUPOENOTNS Tou TEOoXVOTTOLY oo dixTua Blachvdeone. To xboTog emxowvwviag ot
uepixéc meptntwoelg anotehel uéypt o o 40% Tou GUVOAXOU YEOVOU EXTENEONS ONULOUEY V-
TOC TEOPBAAUATO XAUAXWOOTNTAS. DUVETWS, 1 TROBAEYn Tou x0GTOUS EMIXOVWVING OE PUEYEANG
xh{poag ToupdAANAES eapuoYEg YiveTonw OAo xon TEpIoGOTERY amopaitnTr TOGO Yo TNV ahyopLduL-
x1) OYEDLUOT OGO XAl VLol ATOPACELS TOU APOPOLY TOUC YENOTES TWV UNYAVNUATOY AN X0l TOUG

YOVOBROUOAOYNTEG TOU GUC THUATOC.

H npoomndieio mou €yel yivel mpog tnv emiteudn axpBoic meolAedne Tou EmXOVWVINXOU YpbVOoU
oev ebvan emoapxrc xan TARENG xou olyoupa eV elvon avtioTolyn e auTtAY Tou €yel yiver yio To
UTIOAOYIO TXO XOUUATL. OEACUUE AOLTOY VO GUVELCPEPOUUE UE TN OELRA UaS o1 Onutoupyio evog
HoVTELOL TEORBAEPNE Yiot TO YPOVO ETUOWVOVING TURIAANAWY EQUOUOY®Y UEYIANG XAfuaxac. Xorn-
olonooae ddpopa Yvmplouata, To ontola divouv Toiheg TANEOPORIEC OYETXE UE TNV EQUPUOYN
TOU TEEYOUUE, TOL YUQUXTNELO TIXG TOU UNYAVARATOC XL TOV TPOTO EXTENEONG TN EQPUPUOYHC OTO
oVotnua. Extehéooue axdpo Uior GELRE UXEOY TROYEUUUATGY oVTOAAYHC UNVUUETWY GTO UTO
eZétoon unydvnua. Me to amoTteAéoUaTo AUTOY TOV EXTEAECEWY XUl YENOWOTOWWVTAS TA Y V(-
ployara mou opicaue, exToudEdCUUE EVOL LOVTERO TTIOL XATUPEEVEL Vo TROPBAEDEL ETITUY DS TO x6GTOC
ETXOWVOVIAC Yiot 800 SLUPOPETINEC EPUPUOYES XU Vo EVTOoTioel TN BEATIOTY, and dmodn yedvou

exTéAEONC, ETMAOYT TOPWY OE Eva TEOBANUL ATOPACTC.

O ypovoc extéleone Tng emxovwviaxc @done uiog epopuoync e€uptdtar omd TOIAES ToQa-
uétpoug. Ipwta and dha, 1 enidoor enneedletor and TNV KEYLTEXTOVIXT| TOLU UTO €£E€TAOT OLXTUOU
XOU TOL YORAXTNELO TIXA TOU OTwS To €Upog LOvng ot o ypdvog andxpione. Emmiéov, to hoylout-
%0 TOU CUCTAPNTOS ETNEEALEL TNV amddoaoT). Ot pulUIcEC TOU YEOVOBEOUOAOYNTH %ol TO YU
N xatavounc Topnmy xadopllouy Ta ETINEdH CUUPOENONS OTO BIXTUO XoL XAT ETEXTUON TO YEOVO
emxowvwviag. To mAloc Ty Bnudtwy Ty Toxétnv oTo 8ixTuo, N avToAhoy T UNVURATOY YeTald
TWY TUEY VWY eVHS x6ufou xadng xot 1 uhoToinoT Twy BBAoINXOY TapdAAnhou TEOYEUUUATICHOD
OLOLOPPVOUY XL AUTE UE T1) OELd TOUG TO TEAXO amotéleopa. TEhog, elvon mpopavég 6Tl xou Ta
YAEUXTNEO TS o 1 OGT TNE EQOEUOYTS BLadpauaTiCouV XATOAUTIXG PONO G BLUUORPKGCT) TOU

ETUXOLVOVIOXO) XOCTOUC.
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AuoTuy S UTdEY oLV Xdmole BuoXOMESC oL oTtoleg Yag eunodilouy amd To Vo xEVoUUE Wla Tdpa To-
NG o3| TedBAedn. Ao Ty pla, €youde TNV TUEEUTOOIOT TNG EXTEAEOTC TNS EQPUPUOYHC UAS OO
GAAeC TOU TEEYOLY TORdAANAA PE EPdC. Av mapdhhnia oTov (Blo 1| oe Tapanhfcto xouBo e udc
TEEYEL wlar EQapuoYr) Tou TEPLAOUBAVEL GUVEYT %ot EVTOVT AVTOAAXYY| UNVUUATOV TOTE AVATOPEU-
xta Vo emnpeac el apvnTixd 1 enidooT TN SLAAC UAS EQUPUOY TS AOYW TNE ETULTAEOY GUUPOENOTG.
Or eminpooietec xaduoteprioeic Aoyw tne mopeuforrc elvon Tohd 80oxoho va meofBhegpdoly 6edo-
uévou 61t oyetiCovian pe eCwyevelg mopdyovtes. Ilépa amd v napeuBoir xar o Y6puPog and v

TOEEUBACT) TOL AELTOURYIXOU GUCTHUNTOS UTtopel Vo Tpoc¥éatl emnpdoleTteg SBuoKOAiES.

Audpopar povtéla €youv mpotadel yia TNV TEOPAedn Tou x6oTOUS avTOANAYHC UnVuUdTeY. Mio
Baow xotnyopio mepthouBdver avaluTind povtéla mou dev meTuyaivouy atofadpacTr axplBela
xou ahrnpolv xdmoleg hentopépeleg Tou v TEAEL aAAALouY To x60To¢ emovwviag. H yenowdtnra
TOUG £YXELTOL OTNV OLEUXOALVOT) TN aVATTUENG OAYORIDUMY YO GTNY XATAVOTOT) XATOLWY LOLOTH TGV
TV OWTOLY xou Oyt oTny oxplBeta mpoBiedne. Kdmolol dhhot yenowonoincay machine learning
TEYVIXES o TETUY Y Woktepar oxpifeic mpofBiédeic. Amautoloav dung mhnpogopieg Srdéoyleg
XUTY TNV EXTENECT) TNG EQPUPUOYTC. LUVETGS, AUTEG OL TEYVIXES OEV EYOLY TEAXTIXO EVOLAPEROY (G
TEOG TO XOUUATL TNG TEOBAEPNC. By eTnd Ue TNV OLxLd UaS CUVELTPORE, TETUY oUE xahUTERT) oxplfBeta
Ao T AVUAUTIXG LOVTEAD YENOWOTOLOVTOG OEOOUEVA TTOU HTay OLadETLUN TTELY TNV EXTEAEDCT] TNG
epappoyfc. H pedodoroylo pog epoupudotnxe ue emtuyia o€ 500 BLUPOPETING UMY VAUXTY X0t dpoL
UTOPOUUE Vo UTOVECOUUE OTL BEV ECUQTATOL UTO XATOLX CUYXEXPWEVT) UEYLTEXTOVIXY|, OTWS Loy VEL

Xou yior XAmoleg amé TiC Tmpoavapepleloes epyaoiee.

Xenowonotinxay 600 unyaviuato ue apxeTég dtapopes. To mpwto eivon to Vilje mou elvon €vag
UTEPUTOAOYLOTAG UE €Val eVIoYUUEVO LTEEx Vo w¢ dixTuo dlaclvoeone. Kdle yetaywyéoc elvou
oLVOEdEUEVOS e 18 %duPouc xadévag and toug omoloug €yel 16 muprivec. H dpouordynon yiveto
VIETEPUIVIOTIXG. Xl omb To GUVTOUOTERO Yovordtt. To dhho unydvnuoe ivon to Piz Daint . Q¢
dixtuo Blacvvoeorng €yet Ty dragonfly tonoloylo. H Spopordynon twv toxétwy ennpedletar amd
TOL (POUVOUEVAL GUUPOENOTG Xou OEV EIVAL VIETEPUIVIOTIXT, EVEK X3P 0TO apxeTd €0pog (WVNG Tou

unyovidotog teptoptlovtal TOAD Tar QUUVOUEVO GUUPOENOTG.

O mopdryovteg mou emneedlouv To Yeovo Emixovmviag eivon Tdpa TOMOL X GUVETKOS elvor GYEBOY
aBVUVOITO VO XUTOGHEVAGOUPE EVOL avahuTIXG UovTELO TEOPBAedNG peyding oxpifetoc. KotahnZopue
AOLTOV 6TO Vi €EQYOUPE €val HOVTENO TEOPBAedNC amd dedopéva extéreons. l¢ Pooixd povtéro

TEOPAedNG yenoyomo|inxay Tor BEVTEU AmOPACENY, BEBOUEVOU OTL XAVOUV OUTOUATOTOWUEVN
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ETAOYT] TOEAUUETEMY, OEV OMOUTOVY YROUUIXT CUOYETION METOED TWY METUBANTOVY o lvor €0X0AO
var xororvon ooy xou vor gpunveuiolv. O cuVBUNGUOS TOAAGDY TETOLWY BEVTPWY UaC OiVEL €V TEAEL
evar Toh0 xaho amotéreopa. H pedodoc mou tehind yenowonotdnxe elvon n extremely randomized

trees.

Xenowonotinxay TOAES YETELXES YIUL VUL TOGOTIXOTIOLOOUY TIG OLUPORETIXES TUPUUETEOTOMOELS
NS €QapuoYc xou Tou cuoThuatos. Katapyde, éyouue to mAlog Twv xouBwy xou Tov aptdud Tev
Olepyaolwy avd xouPBo. Katdmy, €youue tic oyeTil(OUeVeES Ue TNV EQUPUOYT| HETEIXES, ToU Elvon TO
mAfvog o To u€yedog TwV PNVUUATKY Tou oTéAvovTal. Axoholdwe, €youv OpLoTEl UETPIXES TTOU
oyetiCovton UE TNV XUTOVOUY| TV BLEQYACLOY GTOUC TURNVES Tou cuoTAUATOC. ‘Eyouue to mAfdog
TV bytes xou unvupdtowy mou otéhvovton elte Yetallh TV Blepyaotdy evoc xoufou elte amd éva
xouPo og dhhoug. TlepthapBdvovton emiong xon PETEXES YL TNV CUVOAXT| XVNOT) TOU BNULOUEYOLY
Oheg oL diepyaoieg T epapuoyhc cuvohixd. Emnpdoieta, yia xdie unydvnua oplooue xdmoteg

UETEIXEC TTOU OYETILOVTAL UE TNV OPYLTEXTOVIXT TOU EXACTOTE CUCTAHUATOC.

Me Bdon tic mapamdve PETEIXES ONUIOURYAOUUE TEEW XAJOELS unyoviou®y teoBiedne. H mph
xhdom elvon 1) O yeEVIXY| xou MyOTERO axEBNg xon TEpLAopBdvel TANPoQopleg poOVO GYETXE UE Ta
YUEUXTNELOTIXA TNG EQUPUOYC Xl TO HEYEVOC TNG YENOWOTOLOUUEVNE XATUVOUHC TOU GUGTAUATOG.
H deltepn eunepiéyet emmpdoleta TIC UETPWXES TOU OYETILOVTOL UE TNV XATAVOUT| TWV OLEQYAUCLOV
oToug TLErveS Tou unyoviuatog. H teheutala xhdor, mou ebvar xon 1 mo oxpdric TEQLEYEL Xou

ueteéc mou oyetilovton Ye 1o UTH e&€TaoT BixTuo SlacVBEOTC.

[ va cuAAéEouYE Tar amopakTnTal BEBOUEVOL YIol VoL TEOTIOVCOUUE TO POVTERO WOC, EXTENECOYE
Ulat OELpd omd avTUAAAYES UNVUET®Y PETOED Tuyodwy Blepyaotdy Yia Towdha ueyédn xou TArdn

UNVURETLY %ot BIAPOREC TOGOTNTES TWV YETCHIOTOOUUEVWY TOpwY (TUPTvES Xal xo’pﬁon).

Awomdoope ta 6edouéva dag o unocUvola pe Bdorn to péyedog twv pnvuudtov. H Sudonaon
oLvEBake oty abZnom tng oxpeifeloc TEOBAEdNC TV YOVTEA®Y pag xou oty Baditepn xatavonon

TV TOEUYOVTIOY TOU ETNEEALOLY TO ETUXOVWVIIXG XOGTOC GTO XAdE UnydvnuaL.
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Yt ouvéyela Yo TopoUCLICOUUE Xt Yol Y ONACOUUE To TEWOUATIXG anoTEAEoUAT. AOXIUAGHUE

NV pedodoloyio Yog Yo 500 SLUPOPETIXES EQUOUOYES OTA BUO UNYUVARATA TOU Ely e Olordéatua.

Piz Daint

AZlohoymon tng neoPBAiedng enidoong
Méco oyetixd anoAuto cdApae TEOBAEdYNS

To oyfua 1o’ Topouctdlel Tig BLaPopEg O OYETIXG QAU Yior TIG Teelg xhdoelg. H mpdtn xAdon
Olvel oy eTd xahd aAAS Gy ixavoTomnTxd anoteAéopata. H mpootixn twv uetpmoy g dedte-
ENC XAAONC UELWVEL TO Yoo oyetxd opdhua oe 21.85% and 33.07% evd n teltn xhdon pelndvet

TEPAUTERW TO Gpdhpo ot 19.78%.
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Relative Error Message Size

(B) Xpdhpar yror 6hor o peyédn unvupdtwy (Khdoewe

(o) Xepdhpor yior Oheg T xhdoELG A o B)

Yyfuo 1: Teapixeg yia p€oo amdAuTo oYeTUO GPIAUL

Q2 mpog Tig Blapopéc eTaC) TwY xhdoewy A xar B, umopolue vo ETGTUEVOUUE OTL OL OOV TIXOTE-
eec Behtinoelg Aapfdvouy Yoo Yo Tor XEE xon To HECOLO UNVOUATO TOU ETWPEAOUVTUL OO TNV
TEOGU XN HETEIXWY CYETIXOV UE TNV APYITEXTOVIXT) TOU GUCTAUATOS. AT TNV GAAT, ToL HEYSAX

UNVOUOTA OEV EMWPEAOUVTOL WOLUTEQMS ATO TG VEEG UETEIXES.



RCC and R?

To oyfua 2a" napovoidler Tic Bertiwoelg otic uetpwéc RCC o R? xatd NV UeTdPBaon o
Olo xan To e&elypéveg xhdoeic mpoBiedne. H xhdon A eivon cagpde yepodteen and Tig 500 GAAES
xhdoelg ot TEOBAEDT AMOALTOY TV, DESOUEVOL TWYV YEVIXWY UETELXWY oL TNV yapaxtneiCouy.
Avtideta, n dedtepn xan tpltn xhdomn tetuyatvouy eCaipeTind anoteréopata Tou TeooeYyilouv ula

Téheta TEOBAE,.

1 1
ClassA ClassB
0.98 ClassB ClassC
) | ClassC m E
09 +
0.96 | .
e . .
0.94 | 0.8 |
) |
. |
092 | . 2 m |
' 0.7 ‘ ’
09 | . ‘ a%’ |
%% ‘ . |
0.88 + . 0.6 % |
0.86 | ﬁ% . |
. 0.5 B
0.84 _ Small Medium Large
2
RCC R Message Size

(o) Edyxpion v xhdoewv pe Bdon 1o RCC xou(B’) RCC yio 6ho tor peyédn unvupdtwy (Kidoee A
R? xou B)

Syfue 2: RCC xonr R?* oxop

Y10 oo 1B, uropolue va mopatnericoude 6Tt to oxop ot petew; RCC Pektidvetar ye tnv
TEOCVTXN PETEIXWY TOU OYETILOVTOL UE TNV UEYITEXTOVIXT| TOU GUCTAUNTOS XURItS YLol T ixpd
UNVOUATO, TO XOOTOC ETUXOVWVING TV 0TolwY eC0PTITOL And TNV ATOCTACT TOU SLavOOoLY Xal oTd

T O TUOKS ETT{TEDA TOU TEEVOLIV.

Koatavonon tonoloyixoyv diapopny

To oyfua 3 pac nopoucidlel yiatl n teltn xhdon medfredne €yet xahitepor RCC  amoteréopota
ot uxed unvopota. Ou dAdeg 600 xhdoelg Bev BladETouy TIC XATIAANAES UETEIXEC TROXEWEVOU
Vo avTIAN@Yo0Y xTMOlEC AETTES BLOPOREC TOTONOYIXOU YapoxTHEd HETAED OLapOopETIXGY  configu-
rations , ue amotéheoua va xdvouv axpBne Ty Bl TeoBiedn xon yior tor Telar onueta. Avtidéteng,

1 teltn xhdom etvar o Véom vo axohouidfoel AUTEC TIC BLOXUUAVOELS OTO YEOVO EXTEAECTC.
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Predictions for different topology configurations
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Topology configuration 1 Topology configuration 2 Topology configuration 3

Yyfua 3: Ldyxplon axplBelac mpofBiedng yio dedopéva ue SlapopeTixy) Totohoyia

Katavour cpdiuatog

e authAv TNV evoTnTa Vol TORUTNEHCOUUE TS To OYETINS CPIAUUTA XUTAVELOVTOL O %ddE xhdom
xou ot " eméxtoot Yo DMIGTOCOUPUE Ta OQPEAT TNG YENOHOTOMONG A0 oL O ELOLXEUUEVKY

HETEIXWV.

K\don A

Y10 oyfua 4 BAémouue OTL 1 xAdon A Bivel pepéc Popéc oYETE UEd o@dipata. ‘Oung o
XATOLEC TEQIMTAOELS EYOUUE TEAYHATOTOLACEL ATOYONTEVTIXES TTROBAEPELS UE TOL GPAANUINTA VOL XU-

wodvovton petod 84.19% xou 211.87%.
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Yyfuo 4: Katovour) o@dhuatog yior TNV Te@Tr xAdom

K\dorn B
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Me 1 Beltepn xhdon to onpela pe opdiparta petald -40% xar 40% avZhdnxay onuovtixd ot oyéon

ue v xidon A. Tlapbdho autd, ogdhuoata tou Eenepvoly to 100% cuveyilouv va undpyouy.

K\dorn C

Ye authv TV Tepintwon teTdy e e&onpe T oxpifela tpoBredne. 22% twv dedopévev TeoBAEpdn-
xoy PE oyeTxd opdia £ 5%, evd mepimou 50% twv meolrédewy pog divouv £ 15% o@dhuo.

Emunpécieta 10 lpog v oyetixdy Aadwv neptoplleton petall Tou -84.79% »ou 85.78%.
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Yy 6: Katoavour) opdhuatog yio Ty teitn xhdom

Oa avagepdolue Ayo o AETTOUERNOS GTNY TElTN XAdoT TapoUGLACoVTUS YRUPIXES Yo Xde Uéye-

Yog unvipatoc.

Meydho unvopota @ And 1o oyfua 7, gaivetar 6L 1) Thetodngio Tov Teofréewy Bploxetan
evtoc e meployiic £ 30%. Emlong, undpyet plo iooppomia we mpog to mhdoc twy unép- xon UTo-
extipnoeny. To yéoo oyetnd opdhua eivar 15.91%, eved to péyloto xou eEAdytoTo o@dAUa eivor

63.47% avd -79.19% avtiotorya. H meptoyr) auty| dlvel o mo ocxptﬁr'] ATOTEAECHUATOL.
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Yyfuo 70 Alomopd Twv oQoAUdTLY Yior ueydha unvopoto (teltn xAdaon)
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Eyfua 8: Alomopd Twv oQoAUdTwY Yio pecaior unvopata (teitn xhdomn)

Meoaia pnvopata @ Y10 oyfua 8 BAénouns oo xahd ebvar xaTtoveunuéva T oot
xou ytow T yeoodar unvopata. To yéoo oyetuxd o@dlua eivan 23.94%, eved Saxuyaiveton petold

ToU -66.84% xat tou 77.65%. To dYo onueia ye mporypoTind YeOvo emxovmvias YeYoAITERO and
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0.04 Seutepoienta xou Ue LVPNAG c@diua TEOBAeYNE udihov Exouv utooTtel YopuPo eite and dhieg
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Yyfuo 9: Alomopd Twv oQuAUdT®Y Yo uxed unvouata (dedtepn xan teitn xhdon)

Muxpd pnvopata @ I tor pixed unvopata ToeouctdCoupe Tr) SLUoTORd TWY GPUALITOY TOGO
yioe Ty Tl 600 Xou yiow TN 6eVTERn *AdoT). Patveton Eexdriopa 1) Sopopd peTAL) TKV 500 XAAGEWY
OC TEOC TN BUVAUTOTNTO XATAVONOTG OLUPOPETIXMY TOTOAOYIXOY YUeaxTNEoTixwy. ‘OTwe xou oo
Heoolor UNVOUOTO TUPATNEOVUE XATOLES 0xpaleEC UETPNOELS TToU TIavKS Vo ogeilovTon ot eEmYeveic
nopdyovtec. To uéoo oyetxd opdhua eivor 28.83%, eved To PEYIOTO Xau ERAYLOTO OPEAU efvan

etvor 85.79% xou -84.79% avticTotyo.

Alopopornolnorn anddoong

To mapaxdtey oy fuaTo OElYVOUY OTL UTEEYOUV UEYBEAES BLlapopéc GTO YeOVo exTéAeonc UeTall B0
EXTEAECEWY TOU axpBng (Blou  configuration . 30% améd T Topomdve Ceuydplo Eemepvoly o
nocooTtioda dtopopd to 100% oe petpniévta ypdvo, eve téocepa Eenepvoly xat to 200%. Autd ta
OEBOUEVA 0 POROVY UETAPOES UXEWY UNVUUATEY XL OL BLapOROTOLACELS THIOVKY VoL 0QeilovTon GTNY

oAhoy ) TNS TOMTIXNG BEOUOAOYNOTG HETOEY TV BV0 EXTEAEGEWY OO CUVTOUOTEENC BLadpOUNC OF
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OpOUOAOYNOT PECL €VOLduETOL xOpufou. Amo To oyfua 11, @aivetar 6Tl OE TEPLTTWOEIC TOU N
OLopopd LETAE) TwV 800 EXTEAECEWY Elvol UEYIAT), TO LOVTEAO UAS UTOPEREL amd LMAL GpduoTa
medPAedne. Mnopolue cuVeTKg Vo Yewpriooude OTL TLYOV xoxég TEOPAEDES eV ogeilovTon o

aduvolal TOU LOVTENOL Uog ahhd OE BLAPOPOTIOACELS ETBOCNE TOU UTO €EETAOT) CUOTAUATOC.

0.040
® Execution 1 L n

0.035
0 m  Execution 2

0.030

0.025}
0.020

E -I-IIIEIIS'I‘ II!I 'I g "I

0.0007 5 10 15 20 25

Configurations

ication Time (s
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Yyfua 11: Awgoporoinor anddoong oe cUVBLACUS UE OYETIXE opdApaTa TEOBAEDEWY

XVvil



Vilje

A&loNoynon tng neofAiedng enidoong

Méoco oyetixd andAuto cpdipa TeoBAsdng

Anéd 1o oyfuo 12d, etvan cagéc 6Tl 1 BedTepn xon 1) TEITN XAJOT PELOYOUY GNUAVTIXG TO UECO
OYETO GPIAUN OE GUYXELOT UE TNV TE®OTN Xxhdor. Metald tne dedtepne xou tne teitne xhdong
OUCLIC TIXEG BLAPOPES TUPATNEOUVTOL XUELG Yior TaL UiXEd UNVOpaTa, oTa oTtolo Umopoly Vo Teo-
xhnody TeolAuaTa GUUEPOENONE LOVO oTal UPMAG SucTuaxd eninedo Tou Sev GUUTERLAAUBAVOVTOL

OTIC UETPWES TNE OEUTEPNC HAOTC.

35 ¢

ClassB ¢
ClassA ClassC
30 |
ClassB 30 |
ClassC w %
25 | —_— e 25t .
. = , '
0 | g 0 | . .
. w . .
- (]
s | . E 15 | . %
. % . .
. e 10 . .
10 | , '
. : . .
. . . .
. 0
. Small Large
0

Relative Error Message Size

(B) Xpdhyar yror 6hor o peyédn unvupdtov (Kidoewe

(o) Eepdhpor yror OAec T xNdoELC A o B)

Yyfuor 12: Toopixéc yio oo andhuto oyeTxnd QAU

RCC and R?

To oyfua 13a" @avepdvel onuavTixée TANEoPoplec we TEog To 0@én TN UTapdNng e€ehlyHéveV
xhdoewv medPBredne. ‘Oheg oL xhdoelg £youy avorontixy| enidoon we mpog N peteixry RCC xou
uTtdipyEL Wt PehTimon PETAE) Twv XAACEWY Ylor aUTH TN YeTEIXh. Lyetind e 1o R? | Prérouye

oTL uTdipyel onuavTixy Bedtiwon g enidoong e TNV TEOG VXN ORO XU TEQIOCOTERMY UETPIXMY.
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ClassA ClassB ¢
0.98 | ClassB | ClassC oy
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(o) Boyxplon twv xhdoewy pe Bdon 1o RCC xou(B’) RCC yio dha o peyédn unvupdtwy (Kidoeig A
R? xou B)

Eyfua 13: RCC xou R? OXO0P

To oxop mou TETOYAUE €00 Elval CAUPOS YELROTERA AT TOL ATOTEAECUATA TTOL TETUYoUE 010 Piz
Daint . ©a npoonadjcoVUE OTNY CUVEYELL VoL EENYHOOUUE YIATL OEV TETUYAVOUUE IXUVOTOLTIXY

enidoon.

Katavour cpdiuatog

K\don A

Y10 oyfua 14, BAénoupe 6TL udpyouV dEXETd oNuEi E UiXEO OYETXO o@dAUa. ‘Oung uTdpyouv

xou TEOPBAEPELC UE axpaiol GHIAUATO TOU PTEVOLY To -78.51% »ou 157.34%.

K\dorn B

[ tn Beltepn »Ador, BAénoupe Tp®TOV 6TL Tor oxpala dEVNTIXG o@dApaTa TeEplopilovTal OTOo -
64.20%, am6 1o -78.51% mou Ntav yio TNy TedTn ¥Ador. To axpoio etind opdhuata YetdvovTon
eniong onuavtd. Iépa and v yelwon Tou ebpoug TwV CQPUAUATELY, T0 TARUOC TWV UETEHOEWY

UE OQdAUo £ 15% auEdvetan QEXETY KL PTAVEL OYEDOV TO 40%.
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Yyfuor 14: Katovour) o@dhuatog yior TNV TemTr xAdom

Relative Error Distribution (Class B)
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Yyfuo 15: Katoavour o@dhuatog yio Tnv 0eUTeEn xAdom
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K\don C

To oyrfuo 16 detyvel 6TL 1 enldoon ebvan Alyo xahitepn o oyéon e T debtepn xhdor. To yéyioto
Vetnd opdhua perdvetar and 122.33% ot 115.42%. To tocoaté v npofrédeny e o@dhuo £ 5%
av&dveton xatd 4%. Emilong, o aprdude tov TeoPAEYEwY UE apVNTIXG CQAAUATA UEYUADTERY OO

-45% mneplopiletan.
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Lyfuo 16: Katoavour o@dhuatog yio Ty teitn xhdon

Hapd Tic 6Toteg PehTudoelg o€ oyeoT Ye T 0e0TeERT XAAOT), 1) XUTOUVOUN TWV CQUNIATODVY Yol TNV
Tpltn xAdon dev elvor ixavoronuxt|. Trdpyouv Thpo TOAES UTOEXTIUACELS TOU YPOVOU ETUXOL-
voviog. AUTEC Ol UTOEXTYHOELS OLXOULOAOYOUY Xl TO X0XO R? mou rapatnednxe oto Vilje .
To mpoBhnua mavag éyxeiton oty UToEdn TOMAGY UETPROEWY O €Y0UV LTOGTEL EVTOVT To-
CEUPOAT| amd €QopUOYES TOU TEEYOUY TopdAANAa Ue TN dwad dag. H Omopdn uvdmiov emmédwnv
TopePBoAYg elvon amdppola TNG GUVOESTS TOAGDY xOUBWY GE Xde BEOUOAOYNTH XU TGV UEULKY
XL OXAVOVIOTOU GYAUATOS XATOVOUGY Tou Woc divovtar. H otatin dpopordynon dev Bonddet
OTNV ATOPUY T QUVOUEVKDY CUUPOENOTS X 0XOUOL X XS UNVOHATA Lo TavTon X0 UC TERTOELS.
Ebvar Aowndy coagég 6L elpacte opxetd emippenceic o TopeUPorr) amd GAAEC DOVAELES XOl GUVETGG
€youpe apxeTéC VopUBMOELC EXTEAECELS, TWV OTOIWY TOV Ypbvo exTtéleons umoexTiuolue. H umo-

exTlunom TOA®Y ONUEWY OPelAeTaL X0 GTO YEYOVOG OTL xotd T1) ddixaoia tou  benchmarking
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amopplmTOLUE TG axpaieg TES xou xpatdue Wia pétenon mou eivon Alyo yelpdtepn and tnyv uecoia

TeplnTwon. Yuvenng, elvon eDAOYO VoL UTOEXTILOVUE X3molo Onueia Ue UEYHAD YPOVO EXTENEDTC.

Me Bdon v napamdve emycpnuatoloyia, moTteboupe 6Tl UYNAG enineda TapeUBoirc 0dnyoLY
oe xoxég mpoPAédelg, eved To uetplonoeic mapepBoiéc avauévovtal va Umopoly vo meofiepio-
Ov ue axp(Beta ue Pdomn To dedopéva emixovemviog mou €youvue cuMEZeL. Tlopaxdte e&etdloupe

TELQOUOTIXG QUTHY TN oXEdT.

Alopopornolnorn anddoong

Ipoomadfoope vo evtomicovue éva teééuo tne egopuoync 3D-Jacobi mou mapoustale auwin-
Uévoug ypbvoug extéheong o oyéorn Ue To dhha Teedipata. Aol evtoniooue éva Tétolo TEECIuo
NG EQPAPUOYTC TO UPOLPECUE amtd TO testing set o BLAMIGTOOUUE OTL TO HOVTENO TETUYE APXETS
avoTon Ty ETIB0CT) X0t GAPMS XohDTERT amd TPV OTWS PutveToL GTO ToEoxdTw Tivaxa. [lioto-
TOLOUUE EMOPEVKS OTL TO HOVTERO pog umopel vor xdvel axplBelc mpoPfAddelc yio YeTprioelg mou dev

gyouv unoc tel ueydhn aArolwon and Yopufo.

Hivocag 1: Axp{Betar mpdBiedme yio SlopopeTind dedopéva Soxiung

Yet doxapfic  Méoo oyetiné opdhua  Méyioto oyetind opdhua  EXdyioto oyetnd opdhue  R? RCC Méoco anbhuto opdhua

oho 24.69% 115.42% -61.79% 0.889 0.9507 0.1562
UELWUEVO 22.90% 109.68% -57.13% 0.934 0.9568 0.1181

Xxil



Ylevdpelo yenons

H yenowétnra tng pedodoroyiog altoroyeiton ue Bdon pe v ixavotnTa Tng v TeoPBAENEL xplotua

onueta o xdmota GevdpLo AN anopdoewmy. MUVETMS, YENOWOTOIOVTAS TO HOVTEAD Uag Yo e

YEtericoupe va Bpolue To uéyedog Tne xatavourc Tou Yo Hag BWOEL TO IXPOTERD YPOVO EXTEAECTC

yio éva ouyxexpuévo tedBAnua. To arnotehéoyoto @aivovtal GTOV ToEaxdTe TivaXa.

Béhtiot xar.

IpoBhepieion xat.

ITpofBA. vs Metp.

Heprmrooew ( NxPPN ) ( NxPPN ) ATOTEREOU | 51 -6 spdua
Daint-3d-Jac -256° 1024 x 4 512 x 8 Adrdoc 11.4%
Daint-3d-Jac -5123 1024 x 8 1024 x 8 Ywotd -
Daint-3d-Jac -10243 1024 x 4 1024 x 8 Addoc 8.5%
Daint-3d-Jac -20483 1024 x 4 1024 x 4 Ywotd -
Vilje-3d-Jac -256° 512 x 2 512 x 2 Ywotd -
Vilje-3d-Jac -5123 512 x 16 512 x 16 Yoot -
Vilje-3d-Jac -10243 512 x 16 512 x 16 Ywotd -
Vilje-3d-Jac -20483 512 x 16 512 x 16 Ywotd -

Daint-4d-Halo 1024 x 1 1024 x 1 Ywotd -

Vilje-4d-Halo 256 x 1 256 x 1 Yot -

Hivoxag 2: Edgeon Bértiotne xotavourc

Y€ OXTO A6 TIG DEXA TEPLTTWOELG TETUYUUE TO OWO TO UEYEVOGC XATAVOUTG, EVE OTIC BUO TOU UG TO-

YNoopE LTHRYE Wixpt| Slapopd UeTall Tne mpofBiegieions xou Tng owoTrhg xatavourc. Emouévac,

TO UOVTENO UUC XOUTAPERE Var avTamoxpilel emTUYKOS 08 aUTO TO Xploo xar clvnUec TEOBANUA

ATOPACTG.
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LUUTEQUOUATIXG UTOPOVE VO XEVOUUE TG EENC TORUTNPHOELS (S TEOC TAL AMOTEAEGUOTO TOV TEL-

COUBTWY YOG:

Y7o Piz Daint xotagépoue va tpaypatonoticouue mohd axplBelc mpofiédelc Tou ypdvou emixove-
viog. Anuioupyriooue TEEG xaTnyoplec: Uuxpd, uecoto xou peydia unvopata. O yedévog diddoong
TV UXEOY PNVUpdToY eCopTdton xupine amd Ty andoTact tou Yo meénet va dtavicouy. Ta
MEYSAoL unvipota SnuLoueyoly cuVATKG avoueva cudgdenone ta onola xoopilouv ce ueydro
Bodud Tov ypdvo emxowvmviag og auTAY TNV TERITTWOT. AUTE To QUUVOUEVO GUUPOENOTNS CLUB0-
tvouv xupltg oToUG CLUVBESHOUS ElCUYWYTE BEBOPEVELY GTO BixTuo. Ta peoalo unvouato etvon pio
evoldueon xatdo oot xadde T0 x60TOC EMXOWVLVING ECUOTATAL XaL Amd TNV ATOCTACT Ahd Xou

oo T ETUTEDN CUUPOENOTG.

Ao elvon oL Teployéc Yo TIC OTOIEC TPAYUOTOTIOMOUUE TIC YEWpOTERES TpofAédelc oo Piz Daint.
H npdtn agopd tor uixedtepa and tar Yeydha unvouata, n neoBiedn twv onolwy ducyepoiveto
amb To YEYOVOS OTL EVG yenowonotiinxay exteréoeic u€ypl 128 xOufwv yior Ty SLopdepemon Tou
HovTéhou, To Hovtého doxiudleton Ue xatavoués péyet xou 1024 xouBoug. H deltepn meptoyy| mepl-
€YEL WXEE UNVOROTA, TwV OTOlWY 0 YEOVOS GUVONXTC UETAUPORAS ETNEEGlETOL OO TNV ATOC TUOT).
AucTuyKe, dLapopeTXd Tinedo TapeUBOAAC amd GAAES EPUPUOYES 00NYNOUY GE BLAPORETIXES TTO-
MTIXEG OPOUONGYNONG XAl OTUAVTIXES OLUPOPOTIONTELS GTO YEOVO ETLXOWVGViG, TopeuTodilovTog

TIC TPOOTAVEIES O,

A6 v &Mk, v to Vilje 1 ouugopnon ennpedlel To yeOVo BLEB0OTC OAMY TWV UNVUUSTODV.
H vretepuviotixr) dpopohdynon xa 1 avendpxelo. €0pou (VNG OEV EMUTEETOLY TO YELOIOUO TOV
% UC TEPTCEWY TIOL TEOXUAOUVTAL ATt UTER-YETNOYLOTIOLOUUEVOUG TOROLS DX TUOU. Pouvoueva Guy-
poENONG UToEOLY XSG Ta Vo Tpox Aol amd TNy epapuoyT| hag. Tao ued unviuota uropoly
va SnutovpyRoouy auugdenot wovo ata LPNAG Sutuoxd enineda (m.y. oto ecwtepd evog rack),
EVQ 1) ETXOVWVIOL HEYIAWY UNVUUSTOY UTOREL Vo UTEPXEQAGEL TOUG GUVOEGUOUS ELCUYWYNS GTO
0ixTUO Xau Vo OTEEGBIPEL X GUVOMXE TO BIxTUO. AUTE Tal PUVOUEVA CUUPOENONG BUCTUYMS ETL-
OEVMVOVTOL 0 EEWTEQIXES EQUOUOYES BEBOUEVNC TNE UPYLTEXTOVIXTC TOU BIXTOOU X0l TWV XOTOVO-
LY TOpwY Tou pog divovial. O e€wyevelc epyaciec mtpociétouy emmiéov xivnorn xon cuupdenon
07O BIXTUO avoryXELOVTAG oXOUA YO UtXEd UNVORTA Vor UTOG TOUY XaJUG TERHOELC OF EVOLIUEGOUG
xouPouc. Me autédv Tov 1pémo xeUPovioar cuvilwg ol xaducTERYOEC Tou Lo TaVTOL Tol Uixed
unvopoTa Adyw Tne andoTaong mou dlviouy. Kdévaue moAAEC UTOEXTWACELS Xou OEV ETLTOYOUE

oxetn) TeOPBAedn amdAuTng TS Tou xOoTOUG Emxovwving. AuTtd elvon ambdppola Tng amdpeethng

XxXiv



TV axEAUleV TV omd ToL OEDOUEVA ETUXOVGVING MG XL YEVIXOTEQO TWV DLUPOPETIXWY ETUTEDMY
TOEEUBOAYC aVIUESH OTOL DEDOPEVAL BLUULOPPWSTNEC TOU HOVTEAOU xat oTol dedopéva doxurc Tou. Ilo-
e6A0 auTd, pe TNV agolpeoT plag YopuBOOOUC EXTEAEOTS TNG EQUOUOYNG XATUPECUUE VOL TETUY OUUE

avoToinTXd amotehéopata TEOBAEdNS.

Y%x0TeVOVUE GTO UEANOV VoL ETEXTEIVOUUE TO HOVTEAO YLOL EQPUPUOYT) O axavOVIGToL JoTifor emxoL-
voviog xou Vo To SoXUAooVUE O ETTPOcUETES EQPupUOYES Xon unyavidato. Me autédv Tov tpdmo

Vot DLATLO TOOOUUE TNV EQUPUOCLUOTNTA X0 TG TEOOTTIXES YEVIXEUPEVNS YP1IONG TOU.
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Chapter 1

Introduction

1.1 Motivation

Large scale systems grow in size and in computation power constantly. Shortly, we will reach
the exascale era. High level of performance at these extreme scales seems to be harder and
harder. Scalability issues do not stem from the computation part which scales remarkably
well by efficiently exploiting the abundance of cores, vector processing units and heterogeneous
accelerators. Problems derive from the increased communication cost that can outweigh the
speedup of the computation phase. The increased number of cores and network components
can induce extended delays from congestion, increased synchronization costs and augmented
latency due to dilation. The importance of communication time for reaching high performance
is further indicated by the fact that it consists in many scientific applications up to 40% of
their total execution time [1]. Having said all that, it is clear that the communication part of
an application should be seriously taken into account at implementations of efficient algorithms
and at the estimation of scalability and overall performance of an application. However, there
are remarkably fewer attempts to predict the whole communication time of an execution than
its computation part. We believe, thus, that it is worth putting considerable effort into this

segment of the execution.

Accurate prediction is necessary for increasing the efficiency of HPC parallel computers. Users
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should understand the application’s ability to scale. There is no need for requests of large
allocations that do not provide performance improvement and lead to long waiting hours on
queues, waste of valuable core hours and needless spending of machine power. Sometimes, users
could be overly conservative in requesting batch time making jobs fail through under estima-
tion of the application execution time. Prediction is also necessary for better implementation
of scheduling policies at large-scale systems so as to increase system throughput. Moreover,
predictions are useful from an algorithmic viewpoint. Applying optimizations depends some-
times on the estimation of communication time. If the communication time lasts only a small
faction of the total execution time and computation dominates, then an optimization on the

communication part will be almost pointless.

1.2 Contribution

We propose a machine-learning approach to communication performance prediction for point-
to-point communication of MPI applications. We use a benchmark to capture information
regarding communication time on the interaction of the interconnect network and a given
application and train with the benchmark data a model consisting of various features that
represent application traits, allocation size, process mapping information and network charac-
teristics. Our methodology is not dependent of a specific system architecture and can easily
be applied to various interconnect networks by simply adapting some network specific features.
We even devise less accurate predictors that do not need any architecture specific metrics and
can more easily be applied to any underlying architecture. Our prediction model is, to the best
of our knowledge, one of the first attempts to predict an entire communication phase of an
application without needing run-time information (prior to execution prediction) and without
explicitly modeling communication primitives and network effects. We evaluate our prediction
scheme for two communication kernels and various problem sizes and system configurations.
We succeed in predicting with reasonable accuracy the communication time using two systems
with different network characteristics. The achieved accuracy is sufficient for supporting correct

decisions on critical optimization problems, like the decision-making scenario that we present
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in the end of this thesis. Our work additionally explores, through the devising of our model,
the causes of performance degradation for these two platforms and possible bottlenecks of the

interconnect networks that the algorithm developers should consider.



Chapter 2

Background

2.1 Communication features

The performance of the communication phase of an application depends on various parameters
that need to be understood and taken into consideration for any accurate performance model. In
general, variations in performance derive from the different application characteristics and the
variety of large-scale systems, which includes various interconnection networks, configurations,
routing protocols and MPI implementations. In addition to these parameters, the diverse
process mappings vary the communication time between different executions. These concepts

are analysed more thoroughly in the following sections.

2.1.1 Network architecture

First and foremost, the execution time of communication is determined to a great extent by
the underlying network architecture of the system. According to the top500 list, many diverse
interconnection networks dominate: Infiband, 10G or Gibabit Ethernet, Cray Interconnect and
other custom interconnects. These technologies come along with various topologies like trees
(e.g. Ethernet hierarchical trees, Infiband fat trees), k-nary n-cubes (e.g. Infiband hypercubes,
Cray Gemini 3D-torus, BlueGene/Q 5D-torus) and dragonfly topology (Cray XC30). The

4
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former topology is classified as indirect, given that non-terminal switches! exist, while the other
two are considered direct networks, meaning that every switch is terminal and has at least one
node attached to it. Each of these topologies presents different tradeoffs and is characterized
by a unique combination of network diameter, bisection bandwidth, path diversity between
source and destination and number of nodes attached to switches. Apart from the topology,
the network’s technology and material define several parameters, such as latency and link
bandwidth. For example, an optical fibre cable and a coaxial cable deliver data at different
rates. Additional parameters that affect performance are the switch size, the buffering capacity

and the architecture of the network interface on the compute node.

Performance variability due to different network characteristics was noted by Bhatele et al.
[2]. It was derived that different machines with dissimilar network traits, such as on-chip
and off-chip bandwidth and latency, appear to be better for different applications. Significant
performance deviations were noted among the examined machines in the presence of contention

too. Similar conclusions were also made in [3], [4] for six in total different architectures.

2.1.2 System Software

Another crucial factor is the system software. Scheduling policies, decisions concerning the way
the machine’s topology is partitioned to various jobs, process mapping within an allocation
and implementations of tools, frameworks and libraries differentiate the execution time of an

application.

Process mapping : Every execution of an application would lead to a certain process map-
ping. This mapping is determined on the one hand from user demands regarding cores, nodes,
memory usage, etc and on the other hand from the system’s scheduler. The scheduler will
allocate a system partition depending on the current system utilization by other applications
in addition to some optimization techniques for high overall system throughput or Quality Of

Service requirements.

IThe term switch is used to refer to all network nodes
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Congestion : The shape of the allocated partition will determine, except for the highest
possible dilation, the chances of interference from nearby jobs (examined thoroughly in the
next section). The way the processes are eventually mapped on the actual system will impose
where network bottlenecks could occur as a result of the application communication volume.
In other words, given a process mapping, there could be network components (e.g. switches,
links) which would confront an excessive amount of bytes or messages that would go beyond
their capacities and result in delays, degrading the communication performance [5], [6]. The
terminal switches are more prone to contention, because they face all the incoming and outgoing
traffic to/from the hosted processes in their connected compute nodes. In fact, Bhatele and
Kale in [6] demonstrate that latency can increase up to 8 times when multiple large messages
compete for network resources reducing the available effective bandwidth. Therefore, optimized
task mapping should be used to avoid link contention, especially for communication bound
applications. This need was clearly remarked in [7], where topology mapping algorithms, that
reduced maximum congestion and average dilation, and improved benchmarked communication

performance, were implemented.

Dilation : The diverse process mapping will produce different average and maximum dilation,
i.e. the number of hops made by a message traversing the network. High dilation could delay
the delivery of a small message owing to multiple hops, but more likely would increase the
chances of stalling a message at the numerous intermediate switches [3]. Hop count does not
affect significantly communication latency for large messages. In some cases, high dilation
could even add up positively to path diversity for large messages Nevertheless, the number of
hops affects small and medium messages’ latency, especially in the presence of contention [5],
[6]. Obviously, the system’s routing and flow control mechanisms play a role in the severity of
congestion phenomena, the value of maximum dilation and the eventual impact of distance on

latency.

Intranode communication : Except for internode communication, intranode communica-

tion should also be examined. The latter takes place over shared memory and consequently
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is faster than, and in most cases overlapped by, the former. However, intranode communica-
tion is susceptible to cache coherence effects [8],[9] and contention problems on the memory
bus/controllers or NUMA channels [10]. All these factors could render our model inaccurate
in some occasions, if intranode communication is neglected. Therefore, the number of pro-
cesses residing on different cores of the same multi-core compute node, according to the process

mapping, matters to some extent.

Interference : Provided that the system is not dedicated to one application, we expect
performance loss due to operating system noise and interference from other applications running

concurrently on the same machine. This problem is discussed in more detail in the next section.

MPI Implementation : The implementation details of the communication library (mostly
MPI) together with the system-level optimizations and the threshold for protocol switching

(eager to rendez-vous) differentiate the communication performance of the system.

2.1.3 Application’s attributes

Clearly, the communication performance depends also highly on the application’s communica-
tion profile. Different scenarios would lead to different execution times. The processes could
communicate irregularly or in synchronized phases. The number and the sizes of messages may
remain constant for every process or not and the communication pattern could be point-to-
point, collective or both. Moreover, the overall data volume exchanged and the distribution of
this volume to processes are performance factors as well. For instance, a large amount of mes-
sages transferred at once or frequent collective communication operations indicate that network

contention problems will arise if the target machine’s network bandwidth is not high enough.

Following sections : Later on we will see how, by gradually integrating all these factors

in our prediction technique, we will get better and better predictors, achieving eventually an
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accurate prediction scheme. On the next two sections, we will see some constraints that impede

a highly accurate prediction and examine some related work on performance models.

2.2 Constraints

This section indicates that there are certain restrictions and factors that we are unable to

monitor and include in a performance prediction attempt.

2.2.1 Interference

Provided that many applications run concurrently in a given machine, it is impossible to make
an extremely accurate prediction of the communication time based on application’s communi-
cation profile and current process mapping. Other jobs will undoubtedly affect the performance
of our application. Although, a lot of research is already done on the direction of understanding
the effects of interference on clusters and of improvement of scheduling policies, optimal schedul-
ing is an NP-complete problem and we should sometimes except suboptimal performance due

to external factors.

2.2.1.1 Network sharing

Bhatele et al.[11] claim that the most crucial parameter of performance variability is contention
for shared network resources. They conclude that message passing applications suffer the most
from interference and notice that, depending on what application runs nearby, different message
rates are measured. High communication performance is achieved for a communication bound
application, when a conflicting job is computation or I/O bound rather than communication
intensive. Namely, if two applications’ accesses to the network are complementary to each other,
then that will result in good application performance and high system throughput, since every
application will be able to have the same performance as if it had exclusive access to the network

[12]. To the contrary, the worst case scenario is when two communication-intensive applications
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reside on the same node and use concurrently the same network components to communicate
with other nodes. Furthermore, the more fragmented the allocation is, the more variability
in performance would there be, owing to increased chance of interference. Consequently, the
difficulty of making communication time prediction would be subject to the target machine’s
allocation policy, which can vary greatly from one machine to the other. For example, on Blue
Gene systems, a private torus is assigned to each job larger than 512 nodes or a mesh in some
dimensions for smaller jobs. Therefore, other jobs do not affect a given job. On other systems,
an arbitrary set of nodes, in possibly disjoint sections of the global machine topology (e.g.

Vilje), is allocated to each job.

2.2.1.2 Intranode interference

The communication costs of an application which runs on some of the cores of a CMP varies
greatly depending on the application that resides on the rest of the cores [13]. The performance
is almost always better when an application runs alone and the rest of the nodes are idle.
Optimal performance is nearly reached if the concurrent application does less communication
or if its nature and phases of communication are orthogonal to the other’s. Nevertheless, if the
two prerequisites mentioned above are not satisfied, processes will compete for shared hardware

such as network interface card or switches and they will experience higher communication costs.

It should be pointed out, however, that a lot of research is done towards the reduction of
conflicts for memory and disk resources, and additionally, cache and memory bus contention
are being addressed by vendors. Thus, the effects of intranode interference are not so severe as

those of an interference in a network level.

2.2.2 OS noise

Hoefler et al. [14] indicated that both collective operations and point-to-point communication
render an application’s performance more noise sensitive and that noise becomes a bottleneck at

some point, impeding benefits from faster networks. According to [15], when we have collective-



10 Chapter 2. Background

communication operations or global synchronization then a small delay of one process due to
system noise (e.g. interrupts, operating system daemons) will delay the whole application
greatly increasing communication costs. On the other hand, Bhatele et al. [11] claim that little

performance variability derives from OS jitter.

To us, it seems that, system noise should be considered for applications with frequent barriers,
and the existence of opposite opinions could be justified by the different effect of system noise

on performance depending on the target machine.

2.3 Modeling and Prediction

One of the first and very successful model of describing point-to-point communication on parallel
machines was Hockney’s model [16]. According to this model, the communication latency can
be expressed as :

m
t=ty+ —

where ty is the startup time, m is the message length and r., is the maximal bandwidth

achievable when the length of the message approaches infinity.

Another machine-independent and communication protocol agnostic model for communication
cost - in fact an extension of Hockney’s model - is the LogP model [17]. This simple model
included only four parameters: latency(L), overhead(o) - i.e. length of time that a processor
is engaged in sending or receiving a message - , communication bandwidth(g) and number of
processors(P). The simplicity of the model makes it useful for detailed algorithmic analysis,

parallel algorithmic design and characterization of the scalability of a machine.

Many extensions of the LogP model were proposed over the years. One of the first ones was
the LogGP [18] which incorporated long messages into the model by adding an additional
parameter (G. This extra parameter captures the obtained bandwidth for long messages. The
most important advantages of the LogGP model over simple latency-bandwidth models is the

ability to model network pipelining and computation/communication overlap. Supplementary
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parameters were added to the last model as well.

The LogGPS model [19] included also the parameter S, which indicated the threshold for
message length above which the rendezvous protocol of MPI was applied. By considering
the synchronization costs that occur for long messages, according to high-level communication
libraries, the accuracy of the model improved. A different attempt to extend the aforementioned
techniques was the LoGPC [20]. This model tried to address the issues of network contention

and network interface DMA behaviour.

The parameter estimation of the LogP family was not efficiently and accurately implemented
in the earlier attempts. For instance, in order to estimate the g parameter, the network was
flooded with a huge number of packets and, for L. parameter, second or third order errors
occurred. A new accurate LogGP parameter measurement scheme (Netgauge) was proposed
by Hoefler et al. [21]. This tool avoids network flooding and allows the detection of protocol

changes in the underlying communication subsystem.

In spite of their benefits, analytic methods can quickly become too complex and non-applicable,
and sometimes require benchmark runs on the target machine for accurate model parameters
assessment. Simulation, on the other hand, can provide white-box analysis of application
performance and help explore the behaviour of large-scale communication algorithms, saving
on expensive real runs. Simulations could also be used to make performance prediction on future
systems. The LogGOPSim [22] enables simulations in a slightly extended version of LogGPS,
in addition to other LogP family models. The new version has a new parameter O, in order
to model more accurately the overhead per byte, which grows with message size, and better
captures communication and computation overlap. Nevertheless, the LogGOPS model ignores
contention on the network and might thus underestimate communication costs. A significant
contribution of this work was a tool chain for MPI profiling trace gathering and evaluation
that eventually creates predictions based on the selected LogP family model. The proposed
scheme allows also extrapolation of collective operations with high accuracy by rebuilding the

communication pattern and simple trace extrapolation to larger communicator sizes.

All the generic models and techniques that were described above are great attempts to describe
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communication in a network and give some useful insights, necessary for productive and effi-
cient algorithmic and system design. However, they fail to incorporate computer architecture
concepts that affect intra-node communication and, in general, it was proven extremely difficult
to incorporate all the diverse notions proposed in a single model so as to achieve great absolute
communication time prediction. The latter is illustrated by the fact that most of the exten-
sions of LogGP tackle one or two supplementary problems instead of building an all-inclusive
model. Such a model that would consider all the different parameters, if it was feasible to be
created, would certainly be very complicated. But this should not be the case, as application
models are supposed to be simple enough to facilitate algorithm design, reveal application and
network traits, and simplify and abstract complex systems. They are not generally meant to

give accurate absolute execution time predictions.

A computer architecture oriented work was done by Hoefler and Ramos [9]. They created per-
formance models for intra-node communication in cache coherent systems that do not provide
precise predictions, but rather give some helpful range of performance for algorithm design and

development.

To further facilitate algorithmic decisions and address scalability issues, less general perfor-
mance models needed to be created too. In [23] the importance of communication models
for MPI implementations at large scale is underlined. A guideline of how simple performance
models can be created, possible problems and a hierarchy of modeling approaches of various
accuracies and complexities are presented. Even simple asymptotic models will yield some

insight for a parallel application.

Another approach was to make application-specific performance models to examine the scala-
bility of certain algorithms. Gahvari et al. [3] suggested some extensions to the basic latency-
bandwidth model for the Algebraic Multigrid solve cycle by adding penalties to the parameters
based on machine-specific constraints. In particular, they modified the latency parameter to
take into account communication distance and switching delays on the interconnect and added
to it a penalty to encapsulate performance degradation arising from multiple cores on a sin-

gle node contending for available resources. Moreover, they proposed the replacement of the
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best-case bandwidth measurement taken from the latency-bandwidth benchmark in the HPC
Challenge suite with a reduced one that will approach more accurately the actual per node
bandwidth. The above-mentioned work referred to torus and fat-tree interconnects. Later,
they validated these results for dragonfly interconnect as well [4]. The only difference was that
contention was better handled in dragonfly topology and they insisted on the distance penalty,
as communication between different router groups could suffer from substantial delays in this

topology.

Apart from the analytical models that were examined and used by many, there were lately some
attempts to use supervised learning algorithms for communication time prediction. Jain et al.
[24] tried to model the performance by utilizing communication data and network hardware
counters. They examined the life cycle of a message in the interconnect of Blue Gene/Q and
found various resources where delays could occur. Except for maximum dilation and bytes per
link, that were used previously in literature without giving accurate predictions, they intro-
duced some new metrics such as number of messages in injection network FIFOs and number
of packets in buffers in order to take into account contention for resources other than the links.
By combining these metrics they predicted with great accuracy the rank correlation of different
mappings, predicting at the same time, accurately enough, the absolute performance. In a
more recent work Bhatele et al. [25] improved the prediction accuracy of their previous work
and successfully identified in more depth the features and associated hardware components that
have the most impact on network congestion. They concluded that receive buffers on interme-
diate nodes, network links and injection FIFOs are primary indicators of network congestion,
while dilation or hop count are less important factors. Decent rank correlation results of various
mappings were observed for predictions of datasets of high node count in one case and produc-
tion applications in the other, using training set for smaller node count and communication
kernels respectively. Finally, it was noted that the importance and the effectiveness of features
vary greatly depending on the application’s code, and a feature selection attempt was made to

identify a subset of features that performs well for a variety of applications.
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2.4 Comparison of prediction models

In the previous section, we have presented all the state-of-art prediction methods. Now, we will
rank them based on four criteria and state where our work stands. The four dimensions that
we will examine are accuracy, prediction overhead, whether or not the technique is platform
independent and application applicability (i.e. whether it is application independent or it needs

to be tuned for every new one).

Accuracy

Bhatele et al. [25] have presented extremely accurate results at some cases when the training
and testing set consisted of various task mappings of a specific application for a fixed message
size and node count. The accuracy is decent even when mixed datasets from different appli-
cations and configurations are used. The achieved accuracy, though, is in reality deceptive,
because they actually run the applications whose performance they want to predict so as to
gather the desired features. On that grounds, we cannot give credit to this work for ahead-of-
execution performance prediction. We should, yet, underline the great accuracy of this work
in identifying the causes of network congestion and eventually the features that determine the
communication time. All the other methods, previously presented, do not provide an accurate
absolute prediction of communication time. Naturally, some attempts like [3] achieve better
results than the basic models, but as specified earlier, all these models provide some insights for
better understanding of applications, algorithms and systems and each and every one of them
neglects some parameters of performance loss or take rough estimates of them. Our work’s
accuracy is definitely better than the LogP family models and bandwidth-latency ones and

approaches sometimes the accuracy of [25].
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Prediction Overhead

All the analytical models that were described need some real runs on the target machine for
parameter estimation. However, these runs could be prior to the execution of the application.
Thus, the overhead is not on the critical path. On the other hand, Bhatele et al. use hardware
performance counters data for some features and need actual runs of the application in ques-
tion. As a result, this method involves a massive overhead, which makes it highly impractical.
Our prediction scheme occurs ahead of execution (after node allocation and process mapping)

causing no additional performance cost.

Platform Independence

The analytical models can be applied to any platform. Nevertheless, the parameters should
be assessed every time (not so cumbersome thanks to tools like Netgauge). The techniques
presented in [25] and [24] apply only on machines where hardware counters exist and are
accessible. Moreover, the scheme is validated only on one platform using an isolated allocation.
As far as our work is concerned, we use features that are related to application’s communication
pattern and generic interconnect characteristics. We applied our methodology with successful
results to two machines of different network architecture with trivial modifications on platform-

related features. On that account, our technique could be regarded as machine independent.

Application Independence

For LogP family and bandwidth-latency models a new model should be built for each applica-
tion. The LogGOPSim using the application trace assists in predicting any application with the
LogGOP model. Gahvari et al. proposed a performance model for a specific application. The
supervised techniques ([25],[24]) are application independent, since they are primarily based
on performance counters and need no knowledge of the communication pattern. In fact, they

make predictions of various communication kernels and production applications. Be as it may,
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in order to achieve optimal accuracy, their methods involve exhaustive search for finding the
best subset of features for every application. Our attempts focus only on stencil communica-
tion patterns with two different forms (3D,4D) and various configurations (number and message
sizes, node count etc.). For now therefore, we cannot be considered application independent.
In future work, we plan to test our methodology on other applications to figure out where we

really stand on this metric.

All in all, our technique is highly accurate with minimal prediction overhead and applicability
to many platforms with little tuning. This consists therefore, a prediction scheme that it is

unique in its qualities, to the best of our knowledge.
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Methodology

3.1 Machines description

Our prediction scheme focuses on high-level network and mapping features that are easily mod-
ified and adapted to each target architecture. We avoided low-level architectural features, such
as latency and bandwidth, and obscure system-level parameters, like routing and communica-
tion algorithms, so as to avoid tiresome tuning when moving from one platform to another.
Nonetheless, a good understanding of the underlying architecture of our experiment’s execu-
tion platforms was vital for evaluating the performance divergence and designing the prediction

technique.

3.1.1 Vilje

Vilje is a supercomputer installation at the Norwegian University of Science and Technology.
It is an SGI system that consists of 1404 Intel Xeon-E5 dual eight-core nodes, interconnected
with Infiniband FDR. The machine topology is an enhanced hypercube, where redundant links
are added to available switch ports at the lower dimensions of the hypercube. Each switch
connects to 18 nodes and each rack is a 3D hypercube with 8 switches and 144 compute nodes.

The MPI library built in the system is a component of the SGI Message Passing Toolkit.

17
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A
.o

Figure 3.1: A 4D hypercube of two racks. Each vertex has 18 compute nodes.

Some policies and characteristics of this machine hinder to some point our attempts to build
an accurate predictor. The configuration of the PBS scheduler does not permit specific node
selection and hence, we were unable to control the allocated partition. Moreover, we were
often given sparse allocations with nodes unevenly distributed on various switches and spread
over different racks. This resulted in changing levels of interference from concurrent jobs and
diverse process mappings of our application. Inevitably, great variability of communication
performance, between different executions, was observed. This fact, in combination with limited
core hour budget, high system utilization, long waiting hours and constraints faced by an

average user impeded our efforts.

Furthermore, it seems from the available documentation that the used Infiband routing is de-
terministic and selects minimal paths without any congestion control. In particular, packets are
first routed minimally to the correct position in higher dimension before continuing routing in
the next dimension. This static routing will inevitably lead to unexpected stalls at intermediate

switches, highly contented by our application or other external jobs.

3.1.2 Cray XC30 (Piz Daint)*

The Cray XC30 uses the Cray-developed Aries interconnect with Dragonfly network topology.

It provides great performance in terms of bandwidth, latency and message rate, achieving in

Most of the information came from [26].
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the same time scalable global bandwidth.

The basic network component is the blade which consists of four nodes (dual socket Intel Xeon
nodes) and an Aries router. A set of sixteen blades forms a chassis. All the Aries routers within
a chassis are directly connected with each other. Six chassis are packaged in a group. Within
each group a network connects, with electrical cables, each Aries of a chassis to all its peers in

the other chassis of the group (Fig. 3.2).

6 chassis connected
\ by cables (black

/ links) to form a two-
cabinet group

iniuiﬁgﬁiii

...-""_,--_,__-_,-______;_‘-
| I
HINARNIN
4 nodes ‘\\f

connected to 16 Aries routers
each Aries connected by chassis
router backplane (green links)

Figure 3.2: IntraGroup connections in Cray XC30 [26]

The groups are connected with an all-to-all topology network of optical links (Fig. 3.3).

Figure 3.3: InterGroup network in Cray XC30 [26]

Aries supports a sophisticated packet-by-packet adaptive routing mechanism. Adaptive routing
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selects between minimal and non-minimal paths based on load, spreading non-uniform traffic

evenly over the set of available links in the system and avoiding, as a result, congestion.

When traffic is balanced, the links are equally loaded on minimally routed traffic. Nevertheless,
in case there are insufficient links to achieve full bandwidth with minimal routing (e.g. in the
worst case scenario where each group i sends all packets to group i+1 ), then non-minimal
routing is applied. Non-minimal routes within a group involves routing minimally from the
source Aries to a randomly selected intermediate router and then minimally to the target
Aries. Similarly, global traffic is redirected through a random intermediate group in case of

congestion.

Gahvari et al. [4] verified that XC30 interconnect handles congestion phenomena well and
no penalties due to congestion were required, which was not the case for other networks, like
Infiniband [3]. The only penalty needed was related to dilation, as both non-minimal paths
and inter-group communication were worse latency-wise than minimal routes and intra-group

communication respectively.

The Cray XC30, as it seems, has sufficient intra-group and global bandwidth to support full
injection rate for all the nodes, thanks to adaptive routing. For that reason, communication

heavy applications will probably be injection bandwidth bound, rather than network bound.

Furthermore, the constraints that we presented in the previous chapter, are expected to be less
apparent on this platform. Adaptive routing allows the Cray XC network to handle a diverse
set of traffic patterns at full speed by avoiding any hot spots in the network. Consequently, job
to job interference would be less severe compared to other machines. In addition, the OS noise
is supposed to be minimum considering the lightweight operating system that runs on compute

nodes.

Nonetheless, even though sparse allocations and inconvenient process mappings on this sys-
tem will not hurt performance significantly, they will certainly yield worse results than denser

allocations with better process mappings.

Finally, Cray XC network provides highly optimized implementations of standard programming
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environments, such as MPI.

3.2 Machine learning

3.2.1 Why use machine-learning?

Analytical methods aim to find a representative mathematical relationship between a metric,
that needs to be calculated, and a set of parameters. Usually, a domain expert defines this rela-
tionship and the parameters are adjusted based on observed data. In the case of communication
time, this is a strenuous task, supposing that high accuracy is required. The great variety of
application traits, network-specific features, run-time configurations and MPI implementations,
not to mention interference from nearby jobs and OS noise, differentiate greatly the end result.
We are convinced that it is almost impossible to handle the whole spectrum and create a highly
accurate, generic and analytical performance model. Yet, even for a significantly reduced scope
(e.g. particular application and system) it is proven to be a challenging task. In any case,
the number and the complexity of factors that can degrade performance is too high. On that
account, the next logical step is to infer a model directly from data. Hence, we try to extract
information, concerning the effect of the aforementioned features on communication costs, by
running benchmarks on the target platform. This supervised learning approach will allow us
to hide obscure network effects. Specifically, we avoid quantifying congestion on network links
by capturing its consequences through the benchmarking procedure. Moreover, we hope that
some of the effects of OS noise will be captured by the benchmark and there will be no need

to specify explicitly in our model supplementary features related to this problem.

3.2.2 Why use decision trees?

We chose to use decision tree as our base estimator. Decision trees aim to predict the value
of a target variable by learning simple decision rules based on given data. They are simple to

interpret and understand since they can easily be visualized. Moreover, they indicate, in an
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automated way, the features that affect communication time the most. These features will be
the top few nodes on which the tree is split. Even if we use redundant features, a decision
tree will make an automatic feature selection for us based on some information gain criteria.
Furthermore, no form of normalization, to overcome scale differences, is needed given the tree
structure, something that is not true when fitting a regression model. Decision trees are also not
sensitive to outliers, because the splitting occurs based on proportion of samples within the split
ranges and not on absolute values. The most important advantage of decision trees compared
with other methods is, however, the fact that nonlinear relationships between parameters do
not affect tree performance. In many regression models, highly nonlinear relationships between
variables will result in poor results. To the contrary, decision trees do not require any assump-
tions of linearity in the data. Especially for our problem, this asset makes a great difference.
In particular, we have noticed that many of the features, that we have selected, do not score so
well on Pearson correlation coefficient (examines linear relationship with communication time),
while they score a lot better on Spearman’s rank correlation coefficient (examines monotonic

relationship).

For visualization purposes, we present a decision tree example for determining whether some-

body should go play tennis or not.

Outlook
Sunny Overcast Rain
Humidity Yes Wind
;igh Normal Strong Weak
No Yes No Yes

Figure 3.4: Decision tree example for tennis playing [27]
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3.2.3 Why use ensemble methods?

Despite their advantages, decision trees tend to overfit the training data and end up giving
very poor predictions, especially without limiting tree growth with proper pruning. An alter-
nate choice is to combine many weak base estimators (e.g. decision trees) and come up with
a stronger ensemble prediction with generalizability and robustness. By averaging different
predictive models, it is likely, from a statistical point of view, to get better results and reach a

globally optimum prediction - for the provided features of course - avoiding overfitting.

Table 3.1 clearly shows that using multiple decision trees improves impressively the achieved
accuracy. The measurements were taken from Vilje for small sized messages using identical
metrics. The evaluation metrics are thoroughly explained on section 4.4.

Table 3.1: Benefits of using ensemble methods

Number of decisiontrees Averagerelativeerror Max relativeerror Minrelativeerror R?score  RCC — Mean absolute error

1 40.15% 202.22% -74.54% 0.5487  0.8219 0.0080
100 30.60% 115.42% -56.18% 0.8521  0.9017 0.0049

3.2.4 Ensemble techniques

There are two dominant categories of ensemble methods : averaging and boosting methods. The
first one, involves building several estimators independently and then averaging their predictions
for reduced variance. The other one builds base estimators subsequently. Each subsequent
weak learner concentrates on the points missed by the previous ones in the sequence and thus
reduces the bias of the so far combined estimator. Averaging methods work best with strong
and complex models (e.g. fully developed decision trees), in contrast with boosting methods

which usually work best with weak models (e.g. shallow decision trees).

3.2.4.1 Averaging methods

Two popular averaging methods, based on decision trees, are the random forests [28] and the

extremely randomized trees [29)].



24 Chapter 3. Methodology

In the former method, every tree is built using a sample drawn with replacement from the
training set. Moreover, when splitting a node, instead of choosing the best split among all
the features, the best split is inferred from a random subset of the features. This randomness

results in significant reduction of variance compared with single decision trees.

In extremely randomized trees, not only do we use a random subset of features to find the
best split, but additionally split thresholds are drawn at random for each candidate feature.
To be more precise, the cut-off is chosen, at random, between the min and max value of each
feature of all the samples that reach the node. The split feature is, then, selected as the best
feature to split on based on the previous randomized threshold selection. This alteration further
reduces variance with a slight increase in bias. In order to minimize this increase in the bias,
extremely randomized trees method use the whole training set (rather than a bootstrap replica
as in random forests) to create the trees. In the end, if the randomization level is properly
adjusted and averaging over a sufficiently large ensemble of trees occurs, the variance will
almost vanish while bias will only slightly increase with respect to standard tree. Contrarily,
excessive randomization will increase bias significantly and will loosen the dependence of the

output predictions on the learning sample.

3.2.4.2 Boosting methods

A very popular boosting algorithm is AdaBoost [30]. It tries to fit a sequence of weak learners
on repeatedly modified data. Particularly, at each iteration we apply weights to the training
samples depending on the correctness of the last prediction. If a sample was mispredicted, it
will get a higher weight for the next step, while if it was predicted accurately then it will get
less weight. By having each weak learner focusing on data overlooked by the previous ones, we

receive a good prediction in the end.
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3.3 Examined features

We examined a variety of features that could give some insight on communication performance
variability. These features involved application’s communication profile characteristics, user
defined allocation size, process mapping information and network specific traits. It should be
pointed out that all these metrics are known at runtime and can be extracted prior to execution.

We evaluated their minimum, average and maximum values.

Allocation size metrics :  They are explicitly requested by the user.

e Nodes (N) : The number of nodes defines the size of the allocation and influences

parameters like dilation, path diversity and communication volume.

e Processes per Node (PPN) : The number of processes hosted on the same node
controls both intranode and internode communication volume. High number of processes

could lead to delays due to contention for locally shared network components.

Application-based metrics :

e Message Size (5) : The latency varies depending on the message size, and for different

message sizes protocol switches occur.

e Number of Messages per Process (M) : Multiple messages coming from the same

process could be overlapped or serialized.

e Process Traffic (PT = S« M) : Process mapping captures local contention effects and

gives indications for presence of congestion on the network.

Process Mapping aware (and architecture unaware) metrics :

e Node Traffic (NT) : The total amount of bytes injected into the network from all the
processes that reside on a node. This feature is highly correlated with communication

time given its ability to identify congestion on injection links.
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e Messages Injected per Node (NI) : Number of messages injected into the network
by the processes hosted on a node. It indicates potential overlapping or serialization of

messages during their injection into the network.

e Intranode Traffic (INT) : The total amount of bytes exchanged between processes
hosted on one node. This feature could capture contention issues on the memory bus/controllers

or NUMA channels.

e Intranode Injection (/NI) : Same as intranode traffic, but measures number of mes-

sages instead of bytes.

e Total Communication Volume (V' = NT'xN) : The quantity of bytes flowing through

the network during a communication phase. It could reveal network stress limits.

e Total Injected Messages (VI = NI x N) : Total number of messages traversing the

network.

Topology and network aware metrics

Piz Daint :

Aries Traffic (AT) : The sum of node traffic (measured in bytes) deriving from the

nodes connected to an Aries router (up to four nodes).

e Aries Injection (AI) : The sum of messages sent by the nodes connected to an Aries

router.

e Intra-Aries Traffic (IntraAT) : The amount of bytes exchanged between the nodes

connected to an Aries router.

e Intra-Aries Injection (IntraAI) : The number of messages exchanged between the

nodes connected to an Aries router.

e Inter-Aries Traffic (Inter AT) : The outgoing traffic (measured in bytes) from an Aries

router.
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e Inter-Aries Injection (InterAl) : The number of outgoing messages from an Aries

router.

e Similarly to Aries Traffic and Aries Injection, we used Chassis Traffic (CT), Group
Traffic (GT) and Chassis Injection (CI), Group Traffic (GI) to quantify the volume

of bytes or the number of messages sent from the processes of a chassis or a group.

e Intra-Chassis Traffic (IntraCTX) and Intra-Chassis Injection (/ntraCIX) : The

number of bytes and messages exchanged between Aries routers within a chassis.

e Inter-Chassis Traffic (InterCT) and Inter-Chassis Injection (InterCI) : The out-

going number of bytes and messages from a chassis.

e Intra-Group Traffic (IntraGTX) and Intra-Group Injection (IntraGIX) : The
number of bytes and messages exchanged between different chassis within a group. These
metrics together with Intra Chassis Traffic and Intra Chassis Injection could denote intra-

group congestion.

e Inter-Group Traffic (InterGT) and Inter-Group Injection (InterGI) : The out-
going number of bytes and messages from a group. Useful for detection of overwhelmed

global links and switch of routing policy (from minimal to non-minimal).

e Maximum Single Group Traffic (MazSGT) : The maximum number of bytes ex-
changed between two groups. This metric can point out excessive inter-group traffic that
could stress an optical global link and lead to non-minimal routing, and thus increased

latency.

e Maximum Single Group Injection (MazSGI) : Equivalent to MaxSGT but refers

to number of messages instead of bytes.

e Maximum Number of Chassis per Group (MaxCG) : It suggests possible intra-

group congestion.

e Number of Groups (Groups) : This feature reveals the size of allocation and implies

the value of maximum dilation.
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We have not included a distance related feature, since we have per-packet adaptive routing
and even the packets that consist a single message could take totally different paths.

Besides, metrics like Inter-Group traffic give us an idea of the maximum dilation.

The network features for Vilje do not essentially differ from the ones for Piz Daint.

Instead of having Aries routers, in Vilje, we have Infiniband network switches and instead of

groups, we have racks. In Vilje, we we do not have a network components inside a rack, except

for switches, while in Piz Daint, there is an intermediate network level which is chassis, a

collection of routers smaller than a group (see Machines description section for more details).

Similarly to Aries related metrics, we have Switch Traffic (S7), Switch In-
jection (S7), Intra-Switch Traffic (IntraST), Intra-Switch Injection (/ntraSI),
Inter-Switch Traffic (InterST), Inter-Switch Injection (InterSI). It should be
noted also, that, in this case, up to 18 nodes (instead of 4) can introduce traffic to each

switch.

Intra-Rack Traffic (IntraRTX) and Intra-Rack Injection (IntraRIX) could sug-
gest intra-rack congestion and contributes similarly to the combination of Intra-Group
Traffic (IntraGTX), Intra-Chassis Traffic (/ntraCTX) ,Intra-Group Injection
(IntraGIX) and Intra-Chassis Injection (IntraC1X) in Daint.

Equivalently to Inter-Group Traffic (InterGT) and Inter-Group Injection (InterGI)
we have Inter-Rack Traffic (Inter RT) and Inter-Rack Injection (InterRI), since

we have racks instead of groups in Vilje.

Average Nodes per Switch (avgNSW) : The average number of utilized nodes con-

nected to a single switch. It could indicate the chances of extra contention for the switch.

Average Switches per Rack (avgSW R) : The average number of switches used inside

a rack. Useful for detection of intra-rack interference.

Even though the features are similar in both cases, the ones that we end up using for each

platform differ greatly.
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3.4 Benchmarking

The goal of benchmarking is to extract an incisive dataset that would train properly our per-
formance model and successfully encapsulate the various network effects of the target machine.
We devised our benchmark to resemble a generic application communication phase, where data
streams from multiple processes flow concurrently throughout the network. We run various
configurations so as to sweep the space of parameters formed by the metrics in our study. Our
benchmark is built upon the WICON [6] benchmark, where random node pairs, with a single
process hosted on each node, communicate in a ping-pong fashion simultaneously. WICON’s
goal is to measure contention and suffices for exploring the effects of message size and total
communication volume. To capture the effect of many processes per node and increased node
traffic, we enhanced the benchmark so that all processes hosted on a node communicate si-
multaneously with the processes hosted on the paired node. To break the symmetry of this
scheme and stress the network, we switched from random node pairs to random rank pairs, as
a worst-case communication pattern scenario. To assess the impact of the number of messages
and process traffic, we paired each process with M other randomly chosen ones, resulting in
a scheme where each process sends M messages of the same length to M random processes
and receives a reply. We also switched from blocking to non-blocking communication, as the
latter allows overlapping at the system level between consecutive message transmissions and
is a common practice for most MPI applications. In the resulting benchmark, each process
performs simultaneous non-blocking ping-pong with one or more randomly selected processes,
where messages are of equal size. We execute this scheme for various message sizes, number
of messages and processes per node on several node allocations. We evaluate our benchmark
three times, to acquire diverse values for switches and racks. These parameters are beyond
user control and we can only record the values reported by the system for different executions,
thus we cannot get sufficient variability. The communication times reported from the bench-
mark are computed as follows: the core ping-pong operations are executed for a few hundred
iterations, with an MPI barrier between each, to synchronize the processes and allow for more

accurate time measurements. To avoid extreme outliers from OS noise, each process disposes
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25% of the iterations with the highest reported communication times, so the maximum time
for each process is the third quantile of all iterations. The reported communication time from

the benchmark is the maximum time of all processes.
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Constructing and Tuning Performance

Models

4.1 Comparison of methods

We tested random forests, extremely randomized trees and AdaBoost and compared their
performance. We tuned each method with extensive grid search, so that we could find the
best parameters for each one. We have tested them in many different subsets of our dataset
and we came to the conclusion that extremely randomized trees slightly outperform the other
two methods. For instance, for datasets with large messages (message size > 16K B) (tested
on Vilje with the same features) we see from Table 4.1 that extremely randomized trees yield
marginally better results than AdaBoost and random forests in every metric that we considered
in our analysis. The biggest asset of the extremely randomized trees was the limitation of the
range of the relative errors compared with the other two techniques.

Table 4.1: Comparison of the ensemble methods

Method Averagerelativeerror  Max relativeerror  Minrelativeerror R2?score  RCC  Mean absolute error
Extremely randomized trees 22.97% 71.03% -65.04% 0.8783  0.9487 0.1986
Random forests 23.82% 77.22% -65.33% 0.8688  0.9456 0.2091
Adaboost 23.60% 80.82% -67.12% 0.8607  0.9448 0.2086

From a theoretical viewpoint, extremely randomized trees may sometimes perform better than

31
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random forests. They add extra randomness in the ensemble, so that the base learners make
mistakes which are less correlated to each other, leading to greater benefits from the averag-
ing procedure. If the number of trained decision trees is sufficient, it appears that the extra
randomized trees will give a more general solution. This assumption is validated by our exper-

iments.

As far as boosting techniques are considered, our data showed that AdaBoost was a little bit
worse than extremely randomized trees. On the other hand, Bhatele et al. [25] concluded
that both extremely randomized trees and gradient boosted regression tree gave similar results.
Anyhow, it was safe to assume that the other methods would not yield better predictions in
comparison with extremely randomized trees. For that reason, we chose, ultimately, to use
extremely randomized trees to devise our prediction scheme. All the experimental results,

presented in the next section, were obtained utilizing this technique.

We used the Python-based scikit-learn (version 0.16.1) package [31] for our analysis, which pro-

vides the ExtraTreesRegressor, RandomForestRegressor and AdaBoostRegressor classes.

4.2 Tuning of machine learning methods

We will only focus on extremely randomized trees since it is, after all, the utilized method.
Briefly for the other techniques; the tuning of random forests does not differ notably from the
one of extremely randomized trees and regarding AdaBoost, the best performance was achieved
when we utilized a fair number of estimators, relatively small learning rate and not exhaustively

developed decision trees.

In [29], three basic tuning parameters were presented and commented on, and these are the
parameters that we considered too. The first one is the number of estimators. We decided to
use a large amount of trees (at least 100), so as to minimize variance and generally reduce some

of the negative effects of randomization.

The second parameter is the maximum number of features which are considered at each split. In
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the original paper [29], the use of all the available features is proposed for regression problems,
in which high levels of bias are not tolerated and a moderate randomization level is desired.
However, in our case, some features are highly correlated with each other and contain redundant
information. Furthermore, some features, like switch or node traffic, have high correlation with
communication time and tend to dominate, leading to biased trees. Therefore, in some cases
with many features, we excluded, at each split, one feature at random, increasing, in this way,

the chances of the remaining ones to be selected.

The last parameter determines the minimum number of samples required to split an internal
node, and thus controls the depth of the decision trees. Normally, we want trees with con-
siderable depth for smaller bias. How much splitting is in order is imposed by the noise in
our training dataset. It is not preferable to derive predictions from outliers. In our case, a
large training dataset is available and some points with abnormal execution times are present.
Instead of pruning the dataset by removing outliers, we avoid them by setting this parameter
equal to 5. We do not expect to lose in accuracy given the size of our training set. Besides,

this specific value was proposed in [29] as well.

We validated our thoughts on parameter tuning by doing exhaustive search of a large enough

parameter space.

4.3 Predictor Classes

The metrics vary from general to machine-specific ones. By considering more specific features,
we lose in generality, but we gain in prediction accuracy and understanding of the factors that
determine communication time. In the interest of examining this transition from the general and

mediocrely accurate to the specific and highly accurate, we devised three classes of predictors.

Class A (Mapping-agnostic and Topology-agnostic) :  The first one uses only features
that stems from the application’s profile and the user specified allocation size. This predictor

will give a rough estimate of the execution time and can answer to dilemmas of whether it
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is worth running an application or whether the execution will take too long. It could also be
useful for ranking algorithms based on the predicted communication time, facilitating in this

way algorithmic design.

Class B (Mapping-aware and Topology-agnostic) :  The second class uses information
gained from knowing the process mapping, in addition to the metrics of class A. The supple-
mentary features give some estimates on the overall traffic in the network and yield some hints
as far as congestion is concerned. In some cases, where traffic is really high, this predictor
successfully identifies some delays and provides accurate predictions. This predictor class is

suitable for user-level decisions regarding the allocations and configurations used.

Class C (Mapping-aware and Topology-aware) :  The final predictor class, along with
class B predictor’s features, also encapsulates network-specific traits. It takes into account
some network components that could become bottlenecks for performance and also evaluates
the way these components are organized and connected. Given that this predictor class is the

most accurate one and is related to each system, it could be valuable for system-level scheduling.

4.4 Evaluation Metrics

The success of a prediction scheme can be determined by many different evaluation metrics.

We have used four metrics to evaluate our regression model.

The first one is the Rank Correlation Coefficient (RCC) which rates how well we predicted the
ordering between different configurations in terms of performance. If mq, mo,...,m, are the

measured execution times of n samples and py, ps, ..., p, are the predicted execution times, then

RCC = ( Z Z concordantij)/w

0<i<n 0<5<i
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where .
1, if m; > m; and p; > p,
concordant;j = { 1, if m; < m; and p; < p,
0, otherwise
(

The next three metrics compare absolute values. We used relative error to examine the perfor-
mance of our model regardless of the absolute deviation of each prediction from the measured
value. The minimum and maximum values will give us an estimation of how bad a prediction
could eventually be, while the average absolute value will give as a mean estimation of accuracy.

This measurement is computed as follows:

dicted time — dti
predicted time — measured time | . o,

relative error =

measured time

Moreover, we use 2, the coefficient of determination from statistics:

Nsamples -1

Z (yi — 9i)°

Ry g) =1 - ==

Nsamples -1

Z (vi —9)°

1=0

where ¢; is the predicted value of the i-th sample, y; is the corresponding measured value,

Nsamples 18 the number of samples and

1 Nsamples — 1

y= Y;

Nsamples i—0

The last metric that we considered was the mean absolute error of predictions. This metric is
not presented extendedly later on due to its high correlation with R?. It was sometimes taken

into account in feature selection.
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4.5 Partitioning

We decided to partition our datasets based on the message size. This decision derived from
the fact that features exhibit different correlation with communication time for subsets with
different message sizes. By splitting the dataset, on the one hand, we achieve higher accuracy,
while on the other hand, we get a better understanding of the different factors that affect
communication time in each dataset. The partitioning, thus, moderates the basic drawback of

machine learning techniques, which is the difficulty to interpret the final product of prediction.

4.5.1 Piz Daint

We chose to create three partitions for Piz Daint. The first partition consisted of configurations
that involved small sized messages (size < 2K B), the second one involved medium sized

messages (2KB < size < 8K B), while the last one concentrated on large sized messages

(size > 8K B).

Small messages do not produce high communication volume and thus do not create congestion
problems. As shown in [4], [6], small messages tend to exhibit great variability up to 30% in
latency owing to dilation. Consequently, it seems that the communication time is determined
primarily by the length of the paths that the packets follow. Medium messages consist an
intermediate state. They can sometimes cause congestion, but their latency depends, to some
extent, on dilation too. In the last partition, we examine transfer of messages that exceed 8KB.
Large sized messages seem not to be affected by dilation as pointed in [6]. The main cause of
performance variability, here, is the different levels of congestion caused by our application or
other concurrent jobs. The most severe and critical congestion problems appear at the injection
links rendering applications injection bound rather than network bound. These differences

between the partitions are reflected by the used features presented in the next section.
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4.5.2 Vilje

The biggest cause of performance degradation, in this platform, is congestion. Applications
could suffer from delays on the injection points or on switches. To each switch, we have
eighteen compute nodes connected. If all these nodes choose to send concurrently bytes to
each other or to other switches, then the switch will not be able to handle all this traffic and
significant stalls will take place. Some of the compute nodes in each switch could be used by
other users and hence extra traffic could appear, hindering the quick transportation of even
small messages. Switches should also handle incoming traffic to the compute nodes and forward

traffic from one switch to another.

Furthermore, the routing protocols are deterministic and not adaptive, as in Piz Daint. As a
consequence, there is no special care for avoiding congestion. Small messages would take the
shortest path but they would probably end up stalling at some intermediate switch. Having
said that, we suppose that latency due to distance will be occasionally overlapped by severe

delays due to congestion.

The negative consequences of congestion that affect even smaller messages, minimizing even-
tually the impact of dilation in communication time, led us not to split the small messages
to medium sized and smaller ones, like in Daint. We created thus just two partitions : small
messages (size < 4K B) and large messages (size > 4K B). These two datasets exhibit quite
different behaviour. Small messages tend to cause less congestion phenomena on links than
large messages. Therefore, there is no need for many features that measure byte traffic. On
the other hand, a strong determinant of communication time, in this area, is the number of
messages that need to be processed at the network components. The higher the number of
messages that we sent is, the bigger are the chances for some of them to delay at some interme-
diate switch owing to high congestion. As a result, features that measure number of messages
and not bytes, would be more important. It should be noted that message and packet count is
the exact same thing for small messages, since InfiniBand transmits data in packets of up to 4
KB. This is not the case for large messages, which are split in many packets and the presence

of message size features would be necessary to convert number of messages to number of pack-
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ets. For large messages, the dominant factors that regulate execution time are the degree of
contention for network components, like switches or links and the injection bandwidth. Delays
owing to injection bandwidth are easy to be captured given that they are caused by our appli-
cation’s traffic and not by external jobs as it is the case sometimes for higher network levels.
Finally, a major difference between the two partitions is the MPI message passing protocol
that is used. For small messages, the eager protocol is applied, an asynchronous protocol that
allows a send operation to complete without acknowledgement from a matching receive, while
for large messages, the rendez-vous protocol is utilized, a synchronous protocol which requires

an acknowledgement from the receiver before sending the data.

4.6 Feature Selection

In this section we will present the feature selection procedure. Roughly, the procedure began
by noticing the correlation of the features to the communication time for both the testing and
training dataset. For correlation evaluation we used the Spearman’s rank correlation coeffi-
cient!. This correlation calculation assesses how well the relationship between two variables

can be described using a monotonic function.

Based on these correlations, we found the features that could contribute to an accurate pre-
diction; in other words, the features that demonstrated some positive correlation with com-
munication time. The features that were always included were the ones that had the higher
correlation with communication time. Some other features with high correlation were either not
included in the end because of providing redundant information, or selected with proper tuning
of the ensemble method (lower max features parameter). Apart from them, some features with
small correlation with communication time were also selected. They may not justify, in most
occasions, differences on communication time. However, by not correlating well with the other
already included metrics, they could give some additional information for specific data points.

Hence, they were vital for enhancing the absolute value prediction.

'http://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient
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After the careful selection of useful features in every case, we performed an exhaustive search
over these features so as to find the optimal subset, including minimum, average and maximum
feature’s values. The selection of the best subset was strenuous given the variety of used metrics
and the absence of a subset that outperformed the others in any given metric. Consequently;,
we tried to figure out which subset performed almost optimally in all the metrics. It was not
uncommon for some subsets to provide great R? and mean absolute error but relatively low
RCC scores. They consisted of few metrics, and gave a good average prediction that did not
produce high errors. However, they could not distinguish essentially different configurations.
These subsets were generally not preferred in our selection. On top of that, we preferred mostly

maximum values over average ones so as to identify network hotspots.

From the ranking of features, produced automatically by the extra randomized trees method,
we can observe the metrics that contributed the most to the end result. As expected, the
metrics that scored well on Spearman correlation coefficient got the top ranking positions. The
ones with lower correlation scores ended up in the last positions with contributions that were
even lower than 5%. Yet, the small changes and the node splits at the low parts of the decision

trees, that they caused, made our model more accurate.

In the following subsections, we present the features that were eventually selected in every

predictor class and in every data subset for the two used platforms.

4.6.1 Piz Daint

Class A

For the class A predictor, we wanted to create a generic prediction scheme which could be
applied to any given machine and will solely be based on the application’s communication
profile and basic allocation information. The metrics that we used give decent accuracy no
matter the target platform. In particular, we chose PPN and N to get an estimate of the
given allocation, and minS, maxS, avgM to get an idea of the total communication volume

and encapsulate the MPI protocol switches (eager to rendez-vous).
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Class B

In this class, we were able to include, except for user defined and application-specific metrics,
process mapping-aware features. For medium and large messages, we pretty much chose the
same metrics as congestion was the primary factor regarding performance in both cases. Node
traffic and injection, and intra-node traffic metrics gave the best results. On the other hand,
communicating small messages does not suffer from congestion. Therefore, these metrics were
not used in this occasion. The only available metric that gave an idea of the allocation and
could give a decent rough estimate of communication time was the number of nodes. Thus, N

was the only feature that was used in class B predictor for small sized messages.

Class C

Small messages : In this dataset, we included, first of all, metrics that reveal the size and
the shape of the allocation. These metrics are N, MaxCG and Groups, and they give a good
insight concerning the maximum dilation. For a more accurate estimation of the maximum
dilation, we included three supplementary metrics. These additions were motivated by the fact
that in Cray XC30 relatively great latency differences were noticed among intra-Aries?, intra-
group but inter-Aries, and inter-group traffic. The maxInter Al indicates whether we have
inter-Aries traffic or all the messages are exchanged within the Aries routers. The avgInterGT
and avglInterGI declares if inter-group communication occurs and could indicate switch to

non-minimal routing due to large volume of global traffic.

Medium messages :  The most important feature was the avgNT. High values of this
metric indicated congestion hazard. Three additional features (mazIntraAT, maxIntraCIX,
maxIntraGIX) encapsulated congestion effects within a blade, a chassis and a group respec-
tively. The fifth selected attribute was maxSGT. Its addition was necessary in order to take

into account latency differences due to increased dilation. If it is non zero, then inter group

2communication between compute nodes connected to the same Aries router
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communication is present and the observed latency could be affected. Furthermore, if this met-
ric reach a high value, then a non-minimal route will be selected and the latency could sustain

a further increase.

Large messages : For large messages, no features related to inter-group communication
were needed. The dominant features were NT and AT. Actually, the class B predictor per-
formed really well and the addition of network-aware metrics increased only slightly the accuracy
of the prediction. Besides, according to the overview of Cray XC30, intra and inter group con-
gestion is unlikely to happen, whereas the dominant performance degradation factor would be
the injection bandwidth. On that grounds, we selected a bunch of metrics that captured con-
gestion on the first network components (maxzNT, max NI, avgAl, maxInter AT). Similarly to
medium messages, metrics related to congestion in other parts of the network were also chosen
(mazxIntraAl, maxIntraClIX, mazxIntraGTX). Finally, we included maxzINT, too, so as to

catch contention for resources inside the compute node.

In table 4.2, we can concisely observe the used features for Piz Daint.

Classes \ Partitions \ Features
Class A - PPN, N,minS, mazS, avgM
S <2KB N
Class B | 2KB < S <8KB avgM,avgNT, max NI, maxINT
S >8KB avgM,maxNT, maxNI, maxINT
S <2KB N, maxInter Al, avgInterGT, avgInterGI, maxCG, Groups
Class C | 2KB < S < 8KB | avgNT, maxIntraAT, maxIntraCIX, maxIntraGIX, maxSGT
9> KB avgM,maxNT,maxNI, maxINT,avgAl, maxInter AT
mazxIntraAl, maxIntraCIX, maxIntraGTX

Table 4.2: Selected features for Piz Daint

4.6.2 Vilje

Class A

We wanted for class A predictor to be generic and machine agnostic. Hence, we employed the

exact same features with Daint’s class A prediction scheme.
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Class B

Small messages :  The avg/N I will express the number of messages injected in the network
and quantify its impact on delays , while V' and VI will reveal the total communication volume
and determine the chances of congestion on the network. We added PPN and mazINI for

detection of contention for local resources.

Large messages : The most important feature for predicting the communication time
was the avgNT. This metric showed impressive correlation with execution time and was the
main contributor to the construction of the decision trees, meaning that it was the attribute
based on which most top tree splits happened. In addition to node traffic, some metrics that
measured number of messages were also involved. max NI will indicate how many messages
need to be processed and introduced to the network, maxzI NI will identify contention for
local resources depending on the number of messages and VI will give an indication of the
total communication volume. Finally, we added minS and maxS to encapsulate MPI protocol

switches and to translate number of messages to packet count.

Class C

Small messages :  From the class B attributes, we kept all the metrics expect for VI. We
introduced instead two features that gave more elaborate information concerning the number
of messages traversing the various network levels. The first one was maxzSI. It diagnoses stalls
as a result of extreme number of messages sent concurrently by the utilized nodes of a switch.
The other one was maxIntraRIX. It can detect delays owing to routing an excessive number

of messages through intermediate switches inside a single rack.

Large messages : Class B metrics avgNT, maz NI, maxINI, minS and mazS were
included in this class as well. Additionally, we added mazINT as it was better combined
with the new metrics than with the class B ones, and gave a marginally better prediction.

Apart from these metrics, we boosted our predictor with network specific features. The most
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useful and important one was maxST. This one hints for delays due to congestion on switch
links or because of processing an enormous number of packets from the switch. maxST and
avgNT played fundamental roles on the final structure of our model in this particular partition.
Furthermore, we introduced maxIntraST to capture congestion on the links between the switch
and its nodes. Instead of VI, we used avglInterSI which expresses the number of messages
each switch injects into the network. In the interest of specifying the volume in bytes of
the traffic exchanged among the switches we included maxIntraRT X for intra-rack switch
communication. Finally, since interference could be an issue in Vilje, we selected avgNSW to
evaluate the chances of having interfering jobs residing on nodes connected to switches that we

use and avgSW R to reveal the density of our allocation.

Table 4.3 briefly presents the features that we choose for each class and partition on Vilje.

Classes \ Partitions \ Features
Class A - PPN, N,minS, mazS, avgM
Class B S <4KB PPN,avgNI,maxINI,V,VI
S >4KB minS, maxS, avgNT, max NI, maxINI,VI
Class C S <4KB PPN,avgNI,maxINI, maxSI,maxIntraRIX,V
S AKB minsS, maxS, avgNT, max NI, maxINT,maxINI, maxST,avgInterSI
maxIntraST, maxIntraRTX,avgNSW, avgSW R

Table 4.3: Selected features for Vilje
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Experimental Results

5.1 Testing set

To evaluate the accuracy of our prediction scheme, we experimented with one parallel ap-
plication kernel, the 3D-Jacobi solver. For this application, the processes are arranged in a
virtual 3D-cartesian grid (ps,py,p.) and the original 3D domain (N,, N,, N,) is decomposed
into smaller 3D subdomains (N, /ps, Ny/py, N./p.). The 3D-Jacobi solver exposes a 3D-halo
communication pattern, where each process exchanges a 2D-face with each of the six neighbour-
ing processes in the 3D grid. The message sizes are obtained from the size of the 3D-domain
and the domain decomposition. In any configuration, the applications exchange messages of
NuNy/papy, NyN. /pyp=, NoN. /psp. double precision floating point elements. We predict the
communication time for various problem sizes, core counts and execution configurations, from
16 up to 8192 processes. 3D-Jacobi has been executed three times in Piz Daint and four times
in Vilje, to ensure that our prediction models adequately capture the variations in communi-
cation time due to varying process mapping. We added some additional runs for small sized

messages, given that they are more prone to performance variability.

We supplementary tested a few configurations for a 4D Halo communication kernel to add some
points with increased communication volume. This kernel uses a 4D grid of MPI processes to

exchange eight messages with two neighbours in each dimension.

44



5.2. Piz Daint 45

Our testing set comprises, in the end, of 674 for Vilje and 476 for Daint communication time
measurements with their predictions. It should be noted that at some data points the node
count exceeds the node count used in the benchmarking procedure. For example, for Daint the
testing set includes configurations with 1024 nodes, while our training set includes for large
messages up to 128 nodes and for small sizes, where the size of allocation is important, up to

512 nodes.

The computational load of both 3D-Jacobi solver and 4D-Halo is almost perfectly balanced

across the MPI processes, allowing us to focus on their communication phases.

5.2 Piz Daint

5.2.1 Evaluation of prediction accuracy

We will present the achieved scores for three different metrics for all our class predictors and
compare their performances. In short, we begin with a predictor with good RCC score, but
low R? score and high average relative error, and end up with a highly accurate predictor with

very high RCC and R? scores and remarkably low average relative error.

5.2.1.1 Average absolute relative error

Figure 5.1a presents the differences in average absolute relative error for the three classes. Class
A yields a fair but not satisfactory average performance. It can easily be pointed out that there
is an improvement in average absolute relative error by the addition of process mapping aware
metrics. The percentage drops from 33.07% to 21.85% for class B. Class C decreases slightly

further this metric to 19.78%.
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Figure 5.1: Average absolute relative error plots

It is interesting to elaborate more on the differences between class B and class C prediction
accuracy. In Figure 5.1b, we notice that the biggest reduction in relative error occurs for small
and medium sized messages. This was expected since in these areas network-specific metrics
play an important role. On the other hand, smaller decrease is experienced for large messages,
the prediction of which is not greatly boosted by the supplementary features. Furthermore,
large messages consist the majority of our dataset and consequently the overall reduction in

relative error is not so apparent in Figure 5.1a.

5.2.1.2 RCC and R?

Figure 5.2a demonstrates the improvements in RCC and R? when moving to more advanced
classes. The most impressive fact is the high difference in R? between class A and class B. R?
is one of the most accurate metrics to evaluate absolute values predictions. Therefore, this big
alteration is justified by the fact class A use some elementary metrics and class B use more
elaborated ones. In spite of not predicting successfully the exact communication times, class A
predictor can rank satisfactorily the various configurations, achieving good RCC scores. As far
as class B and class C are concerned,the latter seems to outperform the former in both RCC
and R%. In fact, class C manages to achieve an almost perfect R? score. This very high score

indicates that the misranked configurations, that prevented RCC' of reaching a higher score,
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differ only marginally in execution time and their ranking is thus not so important.

ClassA ClassB
0.98 ClassB ClassC
: | ClassC mmm i
% 0.9 | g
0.96 .
0.94 | 0.8 | 1
. g
0.92 - I o
| 0ud .
0.9
. |
0.88 %s 0.6 | %@ 1
0.86 . .
| 0.5 .
0.84 . Small Large

2
RCC R Message Size

(a) Comparison of classes based on RCC and R? (b) RCC scores for all partitions of classes B and C

Figure 5.2: RCC and R? scores

In Figure 5.1b, it can be observed how the RCC score augments from class B to class C
predictor in each partition. It is obvious that RCC score for small sized messages is considerably
ameliorated by the supplementary machine-specific metrics. This is only natural, as these
metrics are the ones that count the most and determine the communication time for small
messages. The differences of class B and C, as far as prediction for small messages is concerned,
will be more clarified with the error scatterplots in the next subsection. For large messages, class
B predictor does a great job ranking different configurations. Thus, minor improvements from
moving to class C are observed in this case. This small difference in performance between class
B and C for large messages derives from the fact that communicating large messages is usually

bounded by the injection bandwidth rendering higher level network attributes unimportant.

5.2.1.3 Topology aware prediction accuracy

Figure 5.3 illustates why class C predictor displays better RCC score than the other classes.
This figure shows the measured time and the predictions from all the classes for three con-
figurations that have the exact same volume in bytes and messages and allocation size. The
only thing that changes is the shape of the allocation, namely how the allocated nodes are dis-

tributed to groups and switches. We see from Figure 5.3 that class A and class B are unable to
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capture the differences in time for these three configurations. However, class C is equipped with
some useful features, ideal for distinguishing topologically different data points. The presented
configurations refer to small sized message communication.
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Figure 5.3: Comparison of prediction accuracy for different topology configurations

5.2.2 Error Distribution

In this subsection, we can observe how the relative errors are distributed in each predictor class

and as a result notice the benefits from considering more and more specific metrics.

Class A

In Figure 5.4 we can see that even though class A predictor occasionally gives low relative errors,

some data points are completely mispredicted, producing excessive relative errors ranging from

-84.19% to 211.87%.
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With class B predictor, the number of points with relative error that lies between -40% and 40%
are significantly increased compared with class A predictor. Nevertheless, errors that exceed

100% still exist.

Class C

In this case, we achieve great prediction accuracy. 22% of the training set is extremely accurately
predicted with 4= 5% relative error, while environ 50% of our predictions yielded 4 15% error.

Moreover, the range of relative errors is further limited between -84.79% and 85.78%.

20 Relative Error Distribution (Class C)
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Figure 5.6: Class C error distribution

We will elaborate more on class C by presenting a error scatterplot for each partition.

Large messages :  From Figure 5.7, it seems that the vast majority of predictions lie within
the £ 30% area. In addition, there is a balance regarding how many under- and over- predictions
are made. The average relative error is 15.91%, while the maximum and minimum values are
63.47% and -79.19% respectively. This area yields the most accurate results. This success

stems from the fact that our metrics capture effectively the congestion phenomena related to



5.2. Piz Daint o1

communicating large messages on a dragonfly topology. Some inaccurate predictions, in this
area, seem to happen for small execution times. This prediction inadequacy could be caused
by the fact that our benchmark includes configurations with node count up to 128 nodes for

large messages, while the testing set includes configurations with 1024 nodes.

12 e PREDICTIONS
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Figure 5.7: Class C error scatterplot for large messages

Medium messages : In Figure 5.8, we see how well distributed are the errors for the
medium sized messages too. The average relative error is 23.94%, and the errors vary from
-66.84% to 77.65%. The two data points that have measured communication time more than
0.04 s and are mispredicted with error greater (in absolute value) than -60%, possibly consist
two outliers, whose execution time was affected by OS noise or excessive interference from

concurrent jobs.
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Figure 5.9: Class B and C error scatterplot for small messages

Small messages :

For small sized messages, we present a scatterplot that includes both

class B and C predictions. In this way, the benefits from using features related to the underlying

architecture are clear. With class B, the same value is predicted for many data points with
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greatly different measured execution times, whereas with class C, predictions are more balanced
and distinguish different configurations. Similarly to medium messages, we observe that there
are possibly some outliers that damage considerably our prediction accuracy. The presence of
these outliers is validated in the next subsection. The average relative error is 28.83%, the

maximum value is 85.79% and the minimum is -84.79%(owing to outliers)

5.2.3 Performance variability

The following figures clearly illustrate that there are huge differences in execution times between
executions of the exact same configuration. This validates with great certainty our previous
assumptions for some outliers in our testing set. 30% of these configurations exceed 100%

difference in measured time, while four configurations reach or exceed 200%.

The used configurations were taken from the testing set of small sized messages. Given that the
transfer time of small messages is highly correlated with dilation, we can assume that possibly
in one execution, interference forces messages to take non-minimal routes while in the other
execution (less busy network), messages take the shortest paths achieving the smallest possible
latency. In addition, small messages need less time to be communicated and thus are more

susceptible to OS noise.

From Figure 5.11, it appears that we suffer from high relative errors when high performance
distortion occurs, while on the contrary, low prediction errors are observed for data points with
minimal differences. We can conclude that our prediction scheme is hindered by events and

factors that are external to the running application and hence are highly unpredictable.
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5.3 Vilje

5.3.1 Evaluation of prediction accuracy

In the following sections, we will demonstrate and comment the performance results from the
devised for Vilje prediction scheme, and explain why our predictions, though satisfactory, were

not as successful as those for Piz Daint.

5.3.1.1 Average absolute relative error

From Figure 5.12a, it is apparent that class B and C reduce the average absolute relative error
significantly compared with class A. Between the two more detailed classes, the difference is
rather small. A big difference in mean absolute relative error occurs for small sized messages
(Figure 5.12b). This is expected, since small messages, in contrast with large messages, do
not cause congestion problems to the injection links, but they can cause congestion at higher
network levels, if many messages are accumulated at specific network components, like switches.
Yet, large message samples are much more in number than small message ones, and thus

improvements for small messages are not clearly reflected on the whole testing set results.
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Figure 5.12: Average absolute relative error plots
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5.3.1.2 RCC and R?

Figure 5.13a reveals very important information regarding the gains of having advanced predic-
tor classes. Without doubt, all the predictors perform very well concerning the RC'C metric.
The difference among the classes are noticeable but not so significant. RC'C' is primarily ame-
liorated for small sized messages (Figure 5.12b), as it was the case for Piz Daint as well, even
though here the improvement is not so impressive. In regard to R?, we can see that the score
is improved substantially class by class and the major improvement occurs between class B
and class C. It can be assumed that the more specific the metrics are, the more accurate the

prediction in absolute values would be.
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Figure 5.13: RCC and R? scores

It could be useful at this point to compare these results with Piz Daint. The scores for RCC
are similar to the ones for Piz Daint. However, the R? scores are obviously worse for Vilje.
Our metrics managed to achieve 0.978 R? in Piz Daint, while here they don’t even reach 0.9.
We can conclude that it is rather difficult to predict the absolute communication time, while
we can easily distinguish and rank configurations and give a good estimation of the execution

time with good relative errors.

We believe that the problem is the excessive interference and the congestion issues that come

with it and lead to great performance variability. As opposed to Piz Daint, where only four
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nodes were connected to each Aries router, in Vilje, we have eighteen nodes connected to
each switch. Consequently, it is very likely that we would not occupy all the eighteen nodes
connected to a switch and other jobs will reside in the remaining nodes causing extra contention
for the switch. For instance, our measurement for the traffic of a given switch (value of metric
ST) could be only the 50% of the actual traffic, leading us to wrong estimations of the delays
that are caused by this switch. Furthermore, the routing protocol in Infiband is deterministic.
It finds the shortest path and sticks to it without changing the route in case of congestion.
Without sufficient congestion control and adaptive routing, unexpected and prolonged stalls
from congestion will come up, something that was not the case for Piz Daint. On top of all
these, the allocation that we were usually given was sparse. Such an allocation involved many
network components and as a result there were increased chances of competing with external

applications for some of them.

But why interference affected the R? score much more than the RCC? We can only guess
that large groups of the samples in the testing set suffer from similar external noise, and our
judgement regarding the comparison of the configurations is not drastically impeded. However,
even if interference is uniform in many cases, it is extremely difficult to be quantified. Our
benchmarking process was performed separately at a different moment, when different jobs were
present nearby causing effects of different intensity compared with the testing set executions.
Therefore, we are unable to properly capture the consequences in communication time of the
interference in the 3D-Jacobi runs, and it is only natural, due to different levels of interference

between the training and the testing set, to predict with a small offset from the measured time.

5.3.2 Error Distribution

Class A

In Figure 5.14, we can observe that most errors are concentrated around 0%. However, many
predictions exceed 50% in both the positive and the negative side and the worst predictions

come with some extreme errors that reach -78.51% and 157.34%.
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For class B, we see that, first of all, the worst negative errors are limited to -64.20%, from being
-78.51% for class A. The highest errors from the positive side are also considerably reduced. In
class A we had many points mispredicted with errors exceeding 100% and going up to 157%,
while with class B predictor, we only have one point with error more than 100% and specifically
122.33%. Except for limiting the range, in class B the number of samples predicted with error

within the £ 15% is notably augmented to almost 40%.

Class C

Figure 5.16 shows that the prediction accuracy is a little bit improved compared with class B.
The maximum positive error is reduced from 122.33% to 115.42%. The percent of predictions
within £+ 5% is increased by 4%. Furthermore, the number of predictions with negative errors
greater in absolute value than -45% is limited, and generally the negative errors are pushed

closer to 0%. 42% of the samples’ errors lie now between + 15%.
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Figure 5.16: Class C error distribution

It is apparent from the error distribution of class B and C that our prediction scheme tends

to produce more under-predictions than over-predictions and, apart from that, the under-
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predictions exhibit much more excessive errors. Indicative of that are the high peaks that exist
between -35% and -55% for class B and between -35% and -45% for class C. This flaw of our
prediction scheme actually stems from the properties of the underlying system. As we previously
stated, this platform is prone to congestion because of interference. This congestion refers either
to link congestion or contention for switches from nodes connected to it or from messages
using them as intermediate or final hops. All these stalls cannot be measured accurately and
we are forced to make a rough estimate of them. Actually, from benchmarking we take an
estimation of the execution time that is a little bit worse than the average case scenario; for
each configuration, we drop the highest 25% (in execution time) so as to avoid extreme outliers
and take the maximum value from the remaining measurements. Thus, we are unable to
catch heavily performance-wise deteriorated data points of the testing set. Furthermore, our
dataset from benchmarking is very large and our predictions are determined by an abundance
of benchmarked configurations with similar traits, producing an additional moderating effect.

Thus, it is reasonable to end up making a lot of underestimations.

After mentioning all these, we strongly believe that high levels of interference harm considerably
our prediction scheme, while moderate levels are more expected and can be more accurately

predicted. We evaluated experimentally this idea in section 5.2.3.

In the purpose of clarifying more the prediction results of the class C predictor, we will addi-

tionally present some error scatterplots for each partition.

Large messages :  From Figure 5.17, it is clear that almost all the testing set with large
sized messages was predicted with errors within the +60% range. We can also observe that
the overpredictions do not usually exhibit errors greater than 35%, while the underpredictions,

that are more in number, tend to have in many occasions errors that lie between -30% and

-60%.
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Figure 5.17: Class C error scatterplot for large messages

Small messages : For small sized messages, we can see from Figure 5.18, that many
predictions have errors within the 4+ 30% range. However, there exists an area, which consists
of configurations with execution time less than 0.015 sec, where we have overpredictions with
errors that exceed 60%. In this case, it appears that we have overestimated the delays owing
to the processing and routing of packets from the switches or due to intranode contention. It
is also possible that time measurements errors occurred given the extremely small execution

times.
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Figure 5.18: Class C error scatterplot for small messages
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5.3.3 Performance variability
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Figure 5.19: Performance variability percentages combined with relative errors of our prediction

The above figure presents differences between two executions of identical configurations. The
differences in measured time are not so big and many as they were in Piz Daint. However,
in this case, the configurations include both small and large messages and thus a comparison
between the two machines is not so useful. Even though, some great variances exist for five
configurations accompanied with high relative errors, and some less high ones with some high
errors as well, we are unable to conclude that performance variability between different runs
of the same configuration is the root of our predictor’s shortcomings. We can presume instead
that the noise from the operating system and nearby runs, if existent, is quite uniform in the
aforementioned configurations. We will elaborate more on this last idea. The configurations
that we examined in Figure 5.19 either apply to small allocations, like sixteen nodes, where
nodes in two different runs are likely to be identically connected (e.g. all connected to a single
switch), or to occasions when two executions were chronically close enough to each other so that
the same system partition was available at both instances. In the first case, we do not expect

high penalties due to interference because of the limited amount of network resources used, while
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in the second case, we anticipate the same external applications running and producing similar
interference effects and minimum variability between the two executions. The points, in Figure
5.19, that have indeed high variability could be subject to OS jitter or varying communication

intensity and timing of the concurrent jobs.

After coming almost empty-handed from the previously examined configurations, in our attempt
to justify some deficiencies of our prediction model in this machine, we compared the different
runs of the 3D-Jacobi application. We tried to spot possible outliers and data points with big
negative relative errors. Each of these runs could indicate different degrees of interference from
jobs nearby. We noticed that the majority of the second execution’s configurations displayed
higher execution time compared with the corresponding configurations(same communication
volume and allocation size) of the other executions. This increased time was not clearly justified
by the topological characteristics of this run, as in most cases it had neither the sparsest nor the
densest allocation and generally none of our metrics could explain this behaviour. Consequently,
we concluded that during this run some communication intensive applications degraded severely
the performance of the majority of the configurations. Such a run could be a reason for the
plethora of under-predictions with high errors. Therefore, we tested our class C predictor
without including the seemingly noisy second run. The results are presented in table 5.1. We

have included for comparison the scores that we got when we used the entire testing set.

Table 5.1: Prediction accuracy depending on the used training set

Testing set  Averagerelative error Maz relative error  Minrelativeerror R?score RCC  Mean absolute error

whole 24.69% 115.42% -61.79% 0.8890  0.9507 0.1562
reduced 22.90% 109.68% -57.13% 0.9340  0.9568 0.1181

It is apparent that all the metrics are improved with the exclusion of the second run from the
testing set. The most significant enhancement concerns the prediction of absolute communica-
tion time values. We have a 24.4% reduction in mean absolute error and the R? score reaches

at last a satisfactory level and reduces the gap from the achieved score in Piz Daint.
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18 Relative Error Distribution (Class C)
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Figure 5.20: Class C error distribution for reduced testing set

In Figure 5.20, we can observe the error distribution of our class C predictor for the reduced
testing set. We notice that the percentage of predictions with negative error lower than -35%,
that was previously 22% (for the whole dataset), is now reduced to just 12.5%. In addition,
the percentage of samples with error within the range 4 25% is increased by 6%, reaching

eventually 61% of the total used testing data points.

The aforementioned results indicate that our predictor is highly accurate when it encounters
less deteriorated by interference application runs. Anyhow, even with aggressive interference,

we managed to provide a pretty good estimation.
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5.4 Use case

The utility of a prediction scheme is evaluated based on its ability to predict critical points in
decision-making scenarios. Thus, we will examine such a scenario to further grade the quality
of our predictor. We will test if our model finds the configuration with the minimum execution
time, problem that it is very common for a user who wants to make the best choice and avoid

configurations that do not scale well.

We speculate that a perfect predictor for computation time exists and we use our predictors for
communication time. We tested for four different problem sizes of the 3D-Jacobi solver on both
our machines. In addition, we tested the prediction of the configuration with the minimum
communication time for the halo 4D communication kernel (no computation part) on our two

platforms.

In table 5.2, we present the results. In the first column, we can observe the used system, the
tested application and the problem size (for 3d Jacobi). In the next two columns, we present
the observed and the predicted optimal configuration and in the last column we demonstrate,
if the prediction failed, the relative error between the observed minimum execution time and

the execution time of the predicted optimal configuration.

Test Case Observed Conf. | Predicted Conf. Result Pred. vs Obs.
(NxPPN) (NxPPN) relative error
Daint-3d-Jac-256° 1024 x 4 512 x 8 False 11.4%
Daint-3d-Jac-512° 1024 x 8 1024 x 8 True -
Daint-3d-Jac-10243 1024 x 4 1024 x 8 False 8.5%
Daint-3d-Jac-20483 1024 x 4 1024 x 4 True -
Vilje-3d-Jac-2563 512 x 2 512 x 2 True -
Vilje-3d-Jac-5123 512 x 16 512 x 16 True -
Vilje-3d-Jac-10243 512 x 16 512 x 16 True -
Vilje-3d-Jac-2048> 512 x 16 512 x 16 True -
Daint-4d-Halo 1024 x 1 1024 x 1 True -
Vilje-4d-Halo 256 x 1 256 x 1 True -

Table 5.2: Minimum time configuration prediction

We successfully predict the optimal configuration (among 28 configurations for Daint and 30

for Vilje) for 8 out of 10 test cases. We miss out two test cases on Piz Daint. The first one
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refers to the small problem size for which the message sizes for large allocations are very small
and are, hence, very susceptible to performance variability (examined in previous section) due
to external factors. The second test case involves a large problem size and all the sent messages
are large sized messages. For large messages, we have benchmarked data points that include
up to 128 nodes. Thus, predictions for 1024 node count are sometimes inevitably problematic.
In particular, for this test case, the smallest message size is 16KB which is in fact the smallest
large sized message and the one more affected by our limited benchmark data. Anyhow, for
the mispredicted configurations the relative error between the execution time of the measured
and predicted optimal configuration is 8.5% and 11.4%. These percentages indicate that even
if the predicted configurations is not optimal, it could be considered suboptimal. We conclude,
thus, that our prediction models are successful in identifying the minimum time configurations

with a very low and usually zero error margin.
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Conclusion

In this thesis, we created a prediction scheme for the communication of MPI applications with
iterative kernels and point-to-point communication patterns. We defined a set of descriptive
features that stems from application’s communication pattern, user defined allocation demands,
process mapping and system architecture traits. Three different classes of predictors were
devised going from the simple and generic to the more elaborate and accurate. These classes
could be utilized by users, system schedulers and algorithm designers according to the needs of
each entity in question. Our model was trained with a dataset from a benchmarking process

that evaluated the relation between the features and communication time.

We constructed prediction methods for two different systems and tested them for two commu-
nication kernels with satisfactory results. Our prediction attempts revealed some interesting

characteristics of the two used machines.

For Piz Daint, we achieved great absolute communication prediction. Large messages do not
cause many congestion problems to the network due to adaptive routing and sufficient global
bandwidth, and performance is primarily limited by the injection bandwidth. These delays are
easily captured even by the class B predictor. The transfer of small messages is determined in a
decisive degree by the number of hops and the traversed network levels. Moreover, communica-
tion costs for medium messages are influenced both by the injection rates and dilation. There

are two areas which exhibited the worst results. The first one includes the smallest sized large

67
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messages, the prediction for which is negatively affected by the reduced benchmark as far as
node count is concerned. The second area refers to small messages, whose transfer time depends
highly on dilation. Unluckily, different levels of interference caused different message routing
(sometimes minimal and sometimes non-minimal) and led to great performance variability that

impeded our prediction efforts.

For Vilje, congestion is the major reason for performance degradation for all message sizes.
Static routing and insufficient bandwidth do not allow handling of the delays derived from highly
contented network resources. Congestion phenomena could likely be caused by our application’s
traffic. Small messages could create congestion only on high network levels (e.g. intra-rack
congestion), while communicating large messages could overwhelm injection links and stress
the network as well. These phenomena are, unfortunately, highly aggravated by interfering
jobs given Vilje’s network architecture and the sparsity of given allocations. External jobs add
additional traffic and congestion to the network forcing even small messages to stall sometimes
at intermediate switches. We made a lot of under-predictions and did not predict absolute values
so accurately because of the exclusion of some outliers from the benchmark and generally due to
dissimilar levels of interference between the testing and the training set. However, by removing

a noisy application run from the testing set, we achieved notable accuracy.

Our predictor was also evaluated for a decision-making scenario, that concerns users of large-

scale systems, and was successful in identifying critical points.

We plan to extend our model for irregular communication patterns and test our methodology
on additional applications and systems. In this way, we will explore our scheme’s applicability

and generalization ability.
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