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Abstract

Contemporary research in tribology is often confronted with the simulation of
complex phenomena and interactions. Numerical models of systems and pro-
cesses become progressively more detailed and computationally costly, whereas
design optimization procedures often require conduction of a large amount of
simulations. Thus, the development and validation of efficient solution meth-
ods, which reduce computational time and exploit the available power of modern
computer systems, is imperative. In the present work, parallel programming al-
gorithms for the solution of the Reynolds equation for hydrodynamic lubrication
problems using the finite difference method (FDM) are developed and evaluated.
Two different parallel programming approaches are examined: (a) The Open
Multi-Processing Application Programming Interface (OpenMP API), which
utilizes shared-memory multicore computer systems, and (b) the CUDA frame-
work by NVIDIA, which utilizes the cores of Graphics Processing Units (GPUs).
Those programming approaches are implemented in an in-house algorithm, de-
veloped in C++, capable of solving steady-state and time-dependent hydrody-
namic lubrication problems, taking into consideration cavitation phenomena and
slip boundary conditions. More specifically, a portable CUDA Static Library
solving the discretized partial differential equations with “Red-Black” Succes-
sive Over-Relaxation (SOR) is developed and validated for certain test cases,
including converging-diverging (CD), diverging-converging (DC), textured and
hydrophobic sliders. Additionally, the corresponding C++/OpenMP functions
are also implemented, and shared-memory parallel computations for the same
cases are performed, utilizing different number of CPU cores. The results of
the present study demonstrate that parallel programming can greatly reduce
computational time, especially in cases where large grid sizes are required, and
thus runtime increases exponentially. In certain cases, utilization of GPU may
result in a decrease in computational time by a factor of 30, in comparison to
single-core calculations.
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Περίληψη

Οι σ�ύγχρονες ερευνητικές προσ�πάθειες σ�την περιοχή της τριβολογίας βρίσ�κον-
ται σ�υχνά αντιμέτωπες με τη μοντελοποίησ�η και προσ�ομοίωσ�η πολύπλοκων φαιν-
ομένων και αλληλεπιδράσ�εων. Τα αριθμητικά μοντέλα σ�υσ�τημάτων και διαδικασ�ιών
γίνονται όλο και πιό πολύπλοκα, με αυξούμενο υπολογισ�τικό κόσ�τος, ενώ οι δι-
αδικασ�ίες βελτισ�τοποίησ�ης απαιτούν τη διενέργεια ενός μεγάλου αριθμού προσ�ο-
μοιώσ�εων. Ως επακόλουθο, είναι αναγκαία η ανάπτυξη και επαλήθευσ�η αποδοτικών
μεθόδων επίλυσ�ης, οι οποίες μπορούν να μειώσ�ουν τον απαιτούμενο υπολογισ�τικό
χρόνο, και να εκμεταλλευτουν τις δυνατότητες των σ�ύγχρονων υπολογισ�τικών
σ�υσ�τημάτων. Στην παρούσ�α εργασ�ία αναπτύχθηκαν και αξιολογήθηκαν παράλληλοι
αλγόριθμοι για την επίλυσ�η της εξίσ�ωσ�ης Reynolds σ�ε έδρανα υδροδυναμικής λί-
πανσ�ης με τη μέθοδο των πεπερασ�μένων διαφορών. Συγκεκριμένα, εξετάσ�τηκαν
δύο μοντέλα παράλληλου προγραμματισ�μού: (α) Το Open Multi-Processing Ap-
plication Programming Interface (OpenMP API) για υπολογισ�τικά σ�υσ�τήματα
πολλών επεξεργασ�τών κοινόχρησ�της μνήμης και (β) το Compute Unified Device
Architecture (CUDA) framework της Nvidia που δίνει την δυνατότητα προγραμ-
ματισ�μού σ�ε κάρτες γραφικών. Οι παραπάνω μέθοδοι εφαρμόσ�τηκαν σ�ε υφισ�τάμενο
κώδικα, ο οποίος χρησ�ιμοποιείται για την επίλυσ�η προβλημάτων υδροδυναμικής λί-
πανσ�ης με σ�ταθερά ή χρονικά μεταβαλλόμενα φορτία, λαμβάνοντας υπόψιν φαινό-
μενα σ�πηλαίωσ�ης και ιδιότητες υδροφοβικότητας. Πιό αναλυτικά, αναπτύχθηκε σ�-
τατική βιβλιοθήκη κώδικα σ�ε CUDA, για τη λύσ�η των διακριτοποιημένων μερικών
διαφορικών εξισ�ώσ�εων με χρήσ�η της μεθόδου “Red-Black”, χρησ�ιμοποιώντας την
τεχνική Successive Over-Relaxation (SOR). Τα αποτελέσ�ματα της αναπτυχθείσ�ας
μεθόδου, επαληθεύτηκαν για απλές γεωμετρίες σ�υγκλινόντων-αποκλινόντων (CD)
και αποκλινόντων-σ�υγκλινόντων (DC) ολισ�θητών, καθώς και σ�ε έδρανα με τεχνητή
επιφανειακή τραχύτητα ή υδροφοβικότητα. Επιπλέον, αναπτύχθηκαν οι αντίσ�τοιχες
σ�υναρτήσ�εις για παράλληλ επεξεργασ�ία σ�ε OpenMP και πραγματοποιήθηκαν οι
ίδιοι υπολογισ�μοί σ�ε σ�υσ�τήματα πολλών επεξεργασ�τών κοινόχρησ�της μνήμης, χρησ�ι-
μοποιώντας διαφορετικούς αριθμούς επεξεργασ�τών ανά περίπτωσ�η. Τα αποτελέσ�-
ματα δείχνουν ότι με χρήσ�η μεθόδων παράλληλου προγραμματισ�μού μπορεί να μει-
ωθεί σ�ημαντικά ο χρόνος επίλυσ�ης, ειδικά σ�ε περιπτώσ�εις που έιναι απαραίτητη η
χρήσ�η μεγάλων υπολογισ�τικών πλεγμάτων, σ�τις οποίες ο χρόνος επίλυσ�ης αυξάνε-
ται εκθετικά. Σε κάποιες περιπτώσ�εις, η χρήσ�η κάρτας γραφικών μπορεί να μειώσ�ει
τον χρόνο επίλυσ�ης έως και κατά 30 φορές σ�ε σ�χέσ�η με την επίλυσ�η σ�ειριακού
κώδικα σ�ε έναν πυρήνα υπολογισ�τή.
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Chapter 1

Introduction

1.1 Tribology
Tribology is a relatively new branch of science that studies friction, lubrication
and wear of interacting surfaces in relative motion.

• Friction is the force that resists motion when the surfaces of two solid
objects slide over each other.

• Lubrication is the process of reducing the wear of one or both surfaces in
close proximity, and moving relative to each other, by interposing a sub-
stance called lubricant between the surfaces, to carry or to help carry the
load (pressure generated) between the opposing surfaces. The lubricant
can be a solid, a solid/liquid dispersion, a liquid, a liquid/liquid dispersion
or a gas.

• Wear is the erosion or sideways displacement of material from a solid
surface performed by the action of another surface.

Since the beginning of recorded history, humans tried to reduce friction between
surfaces in order to satisfy certain needs in their everyday lives. For that pur-
pose, low friction surfaces and different types of bearing applications had been
developed, whereas the positive impact of lubrication had been widely under-
stood. However, tribology as a scientific domain was first cultivated by Osborne
Reynolds, who proved that hydrodynamic pressure of a liquid entrained between
two surfaces sliding relative to each other was sufficient to prevent contact, and
thus wear, between the surfaces even at low sliding speeds. The work of Reynolds
inspired several scientists and engineers to study the lubrication phenomena in
order to reduce friction in mechanical parts of contemporary engines.

Tribology is a new field of science and engineering and subject to contro-
versy among the scientific circles. A significant part of the present knowledge
was established during the second world war. Taking into consideration the im-
portance of complex machinery in our modern civilizations, one can understand

13



CHAPTER 1. INTRODUCTION 14

the significance of tribology. Especially during the latest environmental crisis,
the struggle for energy efficiency is getting more and more attention and one
way to reduce energy consumption is by reducing friction between the countless
sliding surfaces which are present in modern mechanical systems. Besides that,
proper lubrication can limit wear and seizure, extending the life of components
and thus conserving natural resources.

1.2 Literature review & thesis outline
Tribology plays an important role in our efforts for energy efficiency and envi-
ronmental protection. In industrialized countries almost 30% of the total energy
production is wasted due to friction. In the United States, energy losses caused
by friction add up to a total cost of $100 billion US dollars per year. It is esti-
mated that research in tribology can save up to $21 billion US dollars (Czichos,
1978).

In marine Diesel engines, a significant amount of energy - around 5% of the
total generated power - is lost due to mechanical friction (Volund, 2003) . Taking
into consideration that the power of a large two-stroke engine can be higher than
80000 kW, frictional losses correspond to a very large amount of energy. In
addition, regulations for greenhouse gas emissions enforced by the International
Maritime Organization (IMO) become stricter, making improvements in energy
efficiency more important than ever before. The distribution of frictional losses
in large two-stroke marine Diesel engines is presented below (Clausen, 2014):

• Guide Shoe Bearings (31%)

• Piston Ring Packs (26%)

• Crankshaft Bearings (23%)

• Connecting Rods (10%)

• Thrust Bearing (5%)

In a different study (Comfort, 2003), the distribution of energy losses in small
heavy-duty Diesel engines has been estimated as:

• Piston Ring Assembly (45% to 50%)

• Engine Bearings (20% to 30%)

• Engine Auxiliaries (20% to 25%)

• Valve Train (7% to 15%)

By studying these figures, it becomes evident that tribology can play an impor-
tant role in the effort to reduce friction losses in Diesel engines. It should be
noted that CO2 emissions caused by shipping alone correspond to 4% of the to-
tal CO2 emissions, although shipping, in terms of transporting one cargo tonne



CHAPTER 1. INTRODUCTION 15

for one mile, exhibits the lowest CO2 emission, in comparison to any other type
of transportation (Clausen, 2014).

Friction and wear can be significantly reduced when a thin liquid film is
maintained between two interacting surfaces, by minimizing friction forces and
preventing direct surface to surface contact. The majority of tribological con-
tacts, such as fluid bearings, piston rings, seals etc., mainly operate within
the hydrodynamic lubrication regime (Stachowiak and Batchelor, 2001), (Hori,
2006). The tribological behavior of hydrodynamically lubricated contacts can be
efficiently predicted by the solution of Reynolds equation, requiring appropriate
application of conditions at the boundaries of the fluid domain. Special treat-
ment is necessary for cases where pressure falls below vapor pressure in certain
areas of the lubricant domain, giving rise to cavitation. The simplest approach
of cavitation modeling is the utilization of the Reynolds boundary condition,
zeroing all negative pressure values in the solution domain, and imposing zero
pressure derivative at the transition boundary between the full-film and the
cavitation regions (Stachowiak and Batchelor, 2001). This approach predicts
accurately lubricant pressure, however it violates mass conservation in the cav-
itation region and fails to accurately calculate the location of the film rupture
boundary (Giacopini et al., 2010). The former deficiency can be tackled by the
use of cavitation models; for the purposes of the present work, the Elrod-Adams
cavitation algorithm has been selected (Elrod and Adams, 1974), (Elrod, 1981).
According to this algorithm, the lubricant domain is divided into two regions;
the full-film (pressurized) and the cavitation region. In the full-film region, the
Reynolds equation is valid, whereas in the cavitation region, only a fraction r
of the film thickness is occupied with lubricant, while the remaining volume
is occupied by lubricant vapors and air. Concerning the numerical solution,
Elrod and Adams proposed the employment of a “global” differential equation,
which is valid in both regions of the lubricant film, representing different quan-
tities in each region. This requires the use of a cavitation factor g, taking the
values of 1 and 0 within the pressure and cavitation regions, respectively. Vi-
jayaraghavan and Keith (Vijayaraghavan and Keith, 1989) have presented a
numerically more stable implementation of the Elrod-Adams algorithm, using a
half-step finite difference scheme and deriving the shear and pressure flow terms
in a more consistent way. Fesanghary and Khonsari (Fesanghary and Khonsari,
2011) have proposed a modification of the original Elrod-Adams switch func-
tion, which regularizes the transition between the full film and the cavitating
region, and accelerates the convergence of the solution procedure.

In the last decade, the scientific community has been heavily concerned with
the improvement of the operational behavior of hydrodynamic bearings. To
this end, surface treatment technologies, such as artificial surface texturing and
hydrophobicity, have emerged as promising candidates, if appropriately imple-
mented. Artificial surface texturing is associated with the introduction of small
periodic geometrical irregularities in the form of dimples, grooves or pockets
at part of the interacting surfaces. Recent numerical and experimental stud-
ies have demonstrated that surface texturing may substantially improve the
performance of sliding contacts, in terms of load capacity and friction coeffi-
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cient (Etsion et al., 2004), (Papadopoulos et al., 2011). On the other hand,
wetting-resistant hydrophobic or super-hydrophobic surfaces, display a complex
nanostructure, characterized by a combination of micro- and nano- scale rough-
ness. The contact angle of a liquid drop resting on a super-hydrophobic surface
may attain values higher than 150 degrees. As a result, flow over a hydropho-
bic surface exhibits very low levels of friction in the fluid-solid interface. The
difference between a plain and a hydrophobic surface is that for the latter, the
no-slip boundary condition at the fluid-solid interface (where the velocity of
the fluid molecules in contact with the boundary should be equal to boundary
velocity) is no longer valid. In particular, the molecules of the fluid adjacent to
the hydrophobic wall exhibit a different velocity than the velocity of the wall,
when the local value of shear stress exceeds a critical value. Several studies,
such as (Fatu et al., 2011),(GuoJun et al., 2007) have demonstrated that proper
introduction of hydrophobicity at part of the stator of a bearing may lead to
substantial improvement in load capacity and friction coefficient.

The performance of lubricated contacts can also be greatly affected by qual-
ity degradation of the bearing surface. In journal bearings, lubricant con-
tamination, caused either by solid particles, severe impact loading or frequent
starts/stops, may lead to deterioration of the bearing surface, usually in the
form of scratches following the running pattern of the engine. In order to sup-
port the external load, scratched bearings will operate at higher eccentricity
values, and thus at smaller values of film thickness and, generally, higher values
of temperature (Dobrica and Fillon, 2012), (Helene et al., 2013). The critical
question is whether a scratched bearing is capable of operating in a safe manner,
or its maintenance/replacement is obligatory. Detailed numerical simulations of
the response of scratched bearings would be invaluable in supporting this deci-
sion making. However, scratch dimensions usually vary in the micrometer scale,
and, as a result, numerical simulations require very fine computational grids,
which can result in prohibitively large amounts of computational time.

The problems mentioned so far present various numerical difficulties. Due
to the large grid sizes demanded by the problem complexity and the geometry
irregularities, the execution duration of the computational algorithms could be
unbearable. In this respect, the use of High Performance Computing (HPC)
provides viable and efficient means for tackling computationally intensive prob-
lems. A typical method for solving the Reynolds equation for hydrodynamic
lubrication is the Finite Difference Method (FDM) (Stachowiak and Batchelor,
2001),(Hori, 2006),(Khonsari and Booser, 2008). This method typically em-
ploys a Gauss Seidel iterative procedure, which can converge faster if successive
overrelaxation (SOR) is introduced. Numerical solution of the FDM method
may be substantially accelerated by utilizing the Open Multi-Processing Appli-
cation Programming Interface (OpenMP API), which is associated with shared
memory multicore computer systems, the Message Passing Interface (MPI), for
distributed memory parallel computer networks, and the CUDA framework by
NVIDIA, which utilizes the cores of Graphics Processing Units (GPUs). In
(Konstantinidis and Cotronis, 2012), (Liu et al., 2011), algorithms for acceler-
ating the SOR method using GPUs with CUDA were developed for Compu-
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tational Fluid Dynamics (CFD) problems; the obtained results demonstrate a
potential for impressive reduction of computational time, compared to single-
core simulations. Other research groups have utilized the CUDA platform along
with OpenMP to solve the discretized incompressible and compressible Reynolds
equations (Wang et al., 2012), (Wang et al., 2009), showing that, for large grid
sizes, the performance of the less expensive GPU computing is on a par with
the performance of shared memory multi-threaded computing, with the latter
being substantially more expensive.

In the present work, parallel programming algorithms utilizing the OpenMP
and CUDA interfaces have been developed for the FDM solution of the Reynolds
equation in two-dimensional steady and time-dependent hydrodynamic lubrica-
tion problems. Two different forms of the Reynolds equation, with and without
cavitation modeling, have been considered. First, the developed algorithms
have been validated against published literature results, for several test-cases.
Next, the algorithms have been applied for solving the steady-state and time-
dependent response of plain, textured, hydrophobic and scratched journal bear-
ings, for different grid sizes and CPU/GPU types. The outline of the present
thesis is as follows. In chapter 2 the main types of bearings, used in marine
Diesel engines are presented. In chapter 3, the Reynolds equation for solving
hydrodynamic lubrication problems is presented, along with the appropriate
modifications for taking into account hydrophobic surfaces or cavitation phe-
nomena. In chapter 4, the computational methods for solving the Reynolds
equation are examined, whereas in chapter 5, high performance parallel com-
puting methods are introduced. In chapter 6 the results of the numerical simu-
lations are presented. Finally, in chapter 7 the conclusions of the current thesis
along with proposals for future work are discussed.



Chapter 2

Main Bearing Types in
Marine Engineering

2.1 Introduction
In this chapter, the two basic types of hydrodynamic bearings, namely thrust
and journal bearings, will be presented. The basic characteristics of these com-
ponents, their geometry and the basic parameters that affect their operational
performance will be examined.

2.2 Thrust Bearings

2.2.1 Fundamentals of thrust bearings
An axial load acting on a shaft is called a thrust. A bearing that supports a
thrust is called a thrust bearing. A thrust bearing consists of a rotating disk
(the rotor) that is a part of the shaft, and a stationary disk (the stator - shaded
part) as shown in Fig. 2.1-a. In the early days, the disks were parallel to each
other so load capacity was very low, as no pressure was generated from the
motion of the fluid between the disks. As a result, significant friction, wear
and thus energy loss occurred. The next logical step was to create an oil wedge
between the surfaces of the rotor and stator, in order to generate fluid pressure
rise, and keep a minimum distance between the moving surfaces. To achieve
this, an inclined pad was fixed to the stationary disk (the shaded wedge-shaped
pad), as shown in Fig. 2.1-b. This solution was clearly better than the first but
not so robust. That is because the optimal angle of inclination is very small
and even if it is accurately calculated, it will probably change throughout the
lifetime of the component due to the action of different loads or due to thermal
and elastic deformations of the initial geometry. A solution to this problem
was found independently by A. G. M. Michell (1870 – 1959) in Australia and
A. Kingsbury (1863 – 1943) in the USA. In their design, the inclined pad was

18
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supported by a pivot and the angle of inclination became self-adjusted depending
on the bearing operational conditions (load, speed). The only thing that needs
to be defined is the appropriate pivot position. This is shown schematically in
Fig. 2.1-c.

Figure 2.1: Development of thrust bearings: (a) parallel disks, (b) fixed inclined
pad, (c) tilting pad. The shaded pattern is the stationary disk (Hori, 2006).

Michell’s and Kingsbury’s inventions were also applied to the shaft system of
ships (Fig. 2.2). These small size (one-tenth the size of old bearing designs), low
friction and long life designs made possible the development of more powerful
engines and propellers. They were placed in ships during the first World War
and became a standard for ships and power plants all around the world.

Figure 2.2: Example of a thrust bearing application used to sustain the thrust
loads generated from the propeller of a ship (Stachowiak and Batchelor, 2001).
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2.2.2 Geometry of a thrust bearing
A thrust bearing consists of an inclined pad (stator), that remains stationary
during bearing operation conditions and a moving part (rotor), which rotates
with the shaft. The basic parameters that define the bearing geometry are (Fig
2.3):

• The length of the bearing L

• The breadth of the bearing B (perpendicular to the sketch of Fig. 2.3)

• The value of maximum film thickness h1

• The value of minimum film thickness h2

Figure 2.3: Profile sketch of a simple thrust bearing (Hori, 2006).

Film thickness is distributed in a linear way, and can be calculated from the
length of the bearing and its inlet and outlet values

h(x) = h1 −
x

L
(h1 − h2) (2.1)

There are many parameters that affect the performance of the bearing during
its operational conditions. These include:

• The viscosity of the lubricant η

• The temperature of the lubricant T , which in turn alters its viscosity

• The rotational speed of the rotor U

Hydrodynamic lubrication ensures that the rotor and stator surfaces do not
come into contact. During the startup or shutdown of the engine, when the
rotational speed is not sufficient to maintain the required film thickness, metal
to metal contact occurs, which may result in serious damage of the surface of
the bearing. To avoid contact, hydrostatic lift is occasionally enforced to keep
the two surfaces apart in such conditions. It is also worth mentioning that
temperature plays an important role in the performance of the bearing as heat
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generation during the operation of the bearing decreases lubricant viscosity,
which in turn affects the thickness of the film and the load that the bearing can
support.

2.3 Journal Bearings

2.3.1 Fundamentals of journal bearings
Journal bearings are engineering components used to support the radial loads
of rotating shafts. Geometrically, a journal bearing is a hollow cylinder, which
encloses a solid shaft that rotates about its axis. The radius of the bearing is
slightly larger than that of the shaft; the difference between the bearing and
the shaft radius is called (radial) clearance, c. The bearing cylinder is usually
held stationary. The hydrodynamic film, which supports the radial loads, is
generated between the surfaces of the rotating shaft and the stationary bearing.

2.3.2 Geometry of journal bearings
Here, the geometry of the typical journal bearing of Fig. 2.4 is examined. De-
pending on the magnitude and direction of the external shaft load, the shaft
will adjust its position within the inner volume of the bearing, until force equi-
librium is attained. Shaft position can be defined by the values of eccentricity
e (distance between the bearing and shaft centers) and attitude angle φ (angle
between the load line and the line of centers), see Fig. 2.4(a). Equilibrium is
attained when the sum of the hydrodynamic forces in the lubricant domain and
the sum of the externally applied loads on the shaft are equal. In the present
work, a two-dimensional Newton-Raphson root-finding method is applied to cal-
culate the journal equilibrium position. In each iteration step, new values for
eccentricity, e, and attitude angle, φ, are determined.

The basic characteristics of the bearing are:

• The clearance of the bearing c, defined as the difference between the bear-
ing and shaft radii.

• The value of film thickness at any any angle θ, defined as:

h = c(1 + �cosθ) (2.2)

where � the eccentricity ratio (e/c)

• The “Sommerfeld Number”

Δ =
W

LUη
(
c

R
)2 (2.3)

which is a critical non-dimensional parameter in journal bearing design.
Here, W is the total bearing load, L the bearing length and U = ω

R
the tangential velocity of the shaft. In Fig. 2.5, Sommerfeld number is
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(a)

(b)

Figure 2.4: (a) Geometry of a plain journal bearing, and (b) geometry of the
unwrapped lubricant film in a journal bearing.

plotted against bearing eccentricity ratio � for different values of length to
diameter, L

D , ratios of the bearing.
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Figure 2.5: Sommerfeld number Δ against eccentricity ratio � (Stachowiak and
Batchelor, 2001).



Chapter 3

Mathematical Analysis

3.1 Introduction
In this chapter, the equations that describe the phenomenon of hydrodynamic
lubrication and their derivation from fluid dynamics theory are discussed. Three
different types of equations are presented, which can be used to analyze (a)
conventional bearings, (b) bearings with hydrophobic surfaces and (c) bearings
with diverging regions where cavitation phenomena play an important role.

3.2 Reynolds equation of hydrodynamic lubrica-
tion

Based on hydrodynamic lubrication theory, when a viscous fluid (the lubricant)
is inserted between two inclined surfaces that move relative to each other, a fluid
film is generated, that prevents the contact of the two surfaces by developing a
pressure field, capable of supporting the acting load (Fig 3.1). Hydrodynamic
lubrication theory can be expressed mathematically by the Reynolds equation.
This equation is basically a simplification of the Navier-Stokes momentum and
continuity equations. The process followed in this section is similar to that
in (Stachowiak and Batchelor, 2001); the reader is encouraged to seek further
details in similar textbooks.

The basic simplifying assumptions for derivation of the Reynolds equation
are (Stachowiak and Batchelor, 2001):

• Body forces are neglected, as there are not any external fields of forces
acting on the fluids.

• Pressure is constant in the film thickness direction.

• There is no slip at the solid boundaries ( velocity of fluid adjacent to the
boundary is that of the boundary). This assumption is not valid in the
case of hydrophobic treatment on the surface of the bearing.

24
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Figure 3.1: Hydrodynamic pressure generation between two moving surfaces
(Stachowiak and Batchelor, 2001).

• The lubricant behaves as a Newtonian fluid.

• The flow is laminar.

• Fluid inertia is neglected.

• Fluid density is constant. This is generally true for liquid lubricants.

• Viscosity is constant in the film thickness direction. In the present analysis
an isothermal fluid is assumed, therefore viscosity is constant throughout
the fluid domain.

First, the equilibrium of a fluid element is considered (Fig 3.2).
The equilibrium of forces on both sides gives

ϑτx
ϑz

dxdydz =
ϑp

ϑx
dxdydz (3.1)

and for a non zero volume (dxdydz �= 0) the result is

ϑτx
ϑz

=
ϑp

ϑx
(3.2)

Following the same method in the y direction we have that

ϑτy
ϑz

=
ϑp

ϑy
(3.3)

In the z direction we have assumed that pressure is constant throughout the
film

ϑp

ϑz
= 0 (3.4)
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Figure 3.2: Equilibrium of a fluid film element; p is the pressure and τx the
shear stress in the x direction (Stachowiak and Batchelor, 2001).

Shear stress can be expressed using dynamic viscosity η as:

τx = η
ϑu

ϑz
(3.5)

τy = η
ϑv

ϑz
(3.6)

Substituting shear stress in equations (3.2) and (3.3) we get the final equilibrium
conditions for the fores acting on the fluid element of Fig 3.2:

ϑp

ϑx
=

ϑ

ϑz
(η

ϑu

ϑz
) (3.7)

ϑp

ϑy
=

ϑ

ϑz
(η

ϑv

ϑz
) (3.8)

Integrating equations (3.7) and (3.8) and considering non-slip conditions ( u =
U2 at z = 0 and u = U1 at z = h) , where U1 and U2 are the velocities of the
moving surfaces, we get the final expressions for velocities towards the x and y
directions (Fig 3.3)

u = (
z2 − zh

2η
)
ϑp

ϑx
+ (U1 − U2)

z

h
+ U2 (3.9)

v = (
z2 − zh

2η
)
ϑp

ϑy
+ (V1 − V2)

z

h
+ V2 (3.10)

The second condition that must be met, besides the equilibrium of forces, is
the continuity of flow. For a column of flow in the hydrodynamic film and under
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Figure 3.3: Profiles of velocity at the entrance of the fluid film (Stachowiak and
Batchelor, 2001).

steady conditions, the mass of liquid entering the volume must be equal to the
amount exiting on the other side (Fig 3.4) or for a non zero volume dxdy �= 0

ϑqx
ϑx

+
ϑqy
ϑy

+ (wh − w0) = 0 (3.11)

where wh is the velocity at which the top of the column moves down, and w0

the one at which the bottom of the column moves up. The flow rates (per unit
length) are simply the integrals of the velocities through the film thickness:

qx =

ˆ h

0

udz (3.12)

qy =

ˆ h

0

vdz (3.13)

Substituting the calculated expressions for the velocity profiles (3.9-3.10), the
flow rates finally are

qx = − h3

12η

ϑp

ϑx
+ (U1 + U2)

h

2
(3.14)

qx = − h3

12η

ϑp

ϑy
+ (V1 + V2)

h

2
(3.15)
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Figure 3.4: Continuity of flow in a column of the fluid film (Stachowiak and
Batchelor, 2001).

If we insert the flow rates in equation (3.11) and assume that U = U1 + U2

and V = V1 + V2 , that is, the velocities of the surface do not change locally
throughout the entire film we get the full Reynolds equation in three dimensions

ϑ

ϑx
(
h3

η

ϑp

ϑx
) +

ϑ

ϑy
(
h3

η

ϑp

ϑy
) = 6(U

dh

dx
+ V

dh

dy
) + 12(wh − w0) (3.16)

There are a few assumptions that are usually true and can further simplify
Reynolds equation:

• With a proper selection of axis one of the velocities ( U and V ) can be
equal to zero, here let V = 0

• Film thickness remains constant throughout the operation of the bearing
wh − w0 = 0

• The viscosity of the lubricant is constant η = const in isothermal models

Considering the operational conditions above the Reynolds equation is simplified
to

ϑ

ϑx
(h3 ϑp

ϑx
) +

ϑ

ϑy
(h3 ϑp

ϑy
) = 6Uη

dh

dx
(3.17)

which is the most common form of the Reynolds equation. In time-
dependent simulations the lubricant changes in time as the operating conditions
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change as well. In this case the term dh
dt must be inserted in equation (3.17),

yielding:
1

η
[
ϑ

ϑx
(
h3

12

ϑp

ϑx
) +

ϑ

ϑy
(
h3

12

ϑp

ϑy
)] =

ϑh

ϑt
+

U

2

dh

dx
(3.18)

3.3 Reynolds equation for hydrophobic surfaces
Hydrophobicity is a physical property of materials that exhibit very low shear
at the fluid-solid boundary. When a drop of water is placed on a hydrophobic
surface a high contact angle will be observed. The fundamental difference be-
tween a non-hydrophobic and a hydrophobic surface is that the no-slip boundary
condition, where the velocity of the fluid molecules on the boundary should be
equal to this of the solid wall, is no longer true. The molecules of the fluid have
a different velocity than this of the wall when shear stress exceeds a critical
value τc. In that case, the resulting slip velocity is proportional to the difference
between the shear stress and the critical value

us = (τ − τc)
b

η
(3.19)

In this equation, the slip length b represents a fictional distance below the solid
wall, where the fluid velocity extrapolates to zero with a constant rate, equal to
the velocity gradient at the fluid-wall boundary (Fig 3.5).

Figure 3.5: Velocity profile near the fluid-wall boundary with (a) no-slip condi-
tion and (b) slip condition with slip length b.

Excessive work has been done for inserting the proper modifications in the
Reynolds equation in order to include the slip boundary conditions for bear-
ings subjected to hydrophobic surface treatment, see e.g. (Raptis, 2014; Kouk-
oulopoulos, 2014). The final form of the modified Reynolds equation for slip
boundary conditions in the case of a journal bearing is presented below . The
equation consists of five terms (I − V ) in the form of:

(I) + (II) = (III) + (IV ) + (V ) (3.20)
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where each part is analyzed below

(I) → ϑ

ϑx
(
h3

12η

h2 + 4hη(aS + ah) + 12η2(aSah)

h(h+ η(aS + ah))

ϑp

ϑx
)

(II) → ϑ

ϑy
(
h3

12η

h2 + 4hη(aS + ah) + 12η2(aSah)

h(h+ η(aS + ah))

ϑp

ϑy
)

(III) → U

2

ϑ

ϑx
(

h2 + 2hηah
h+ η(aS + ah)

)+
h

2η

hηah + 2η2aSah
h+ η(aS + ah)

(
ϑp

ϑx

ϑh

ϑx
+
ϑp

ϑy

ϑh

ϑy
)−U

ηah
h+ η(aS + ah)

ϑh

ϑx
+
ϑh

ϑt

(IV ) → 1

2

ϑ

ϑx
(
h2aSτC,S + 2aSηahhτC,h − h2ahτC,h

h+ η(aS + ah)
)+

hahτC,h − ηaSahτC,S + ηaSahτC,h

h+ η(aS + ah)

ϑh

ϑx

(V ) → −1

2

ϑ

ϑy
(
(aSτC,S + ahτC,h)h

2 + 2hηaSah(τC,h + τC,S)

h+ η(aS + ah)
)+

hahτC,h + ηaSah(τC,h + τC,S)

h+ η(aS + ah)

ϑh

ϑy

where

• Subscripts S and h are used to characterize the geometry that they refer
to shaft or housing respectively.

• aS and ah are the slip parameters, (ratios of the the slip length to viscosity
ratio ( bη )) for the shaft and housing geometries, respectively.

• τC,S and τC,h are the corresponding shear stress critical values.

3.4 Cavitation in journal bearings
Cavitation is the formation of vapor or air cavities in the liquid film. This
phenomenon occurs when lubricant pressure gradients falls below cavitation
pressure and as a result, the lubricating film breaks into streamers of lubricant
and air. As film thickness increases, the space occupied by the lubricant re-
duces. The balance between the two volumes, is determined by the demand for
continuity of flow and is expressed by the density of the lubricant-gas mixture
ρ. The Reynolds equation for constant pressure is reduced in the following form
for the cavitation region (time-dependent state):

ϑ(ρh)

ϑt
+

U

2

ϑ(ρh)

ϑx
= 0 (3.21)

For the region of the bearing with positive pressure, the lubricant density
is assumed to be constant and the Reynolds equation is that presented in eq.
(3.20).

When cavitation zones are present in journal bearings with hydrophobic
surface regions, the modified version of the Reynolds equation is of the form

(I) + (II) + (III) + (IV ) + (V ) = 0 (3.22)
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where the factors can be analyzed to

(I) → U

2

ϑ

ϑx
(ρ

h2 + 2hηah
h+ η(aS + ah)

)− U
ρηah

h+ η(aS + ah)

ϑh

ϑx
+

ϑ(ρh)

ϑt

(II) → 1

2

ϑ

ϑx
(ρ

h2aSτC,S + 2aSηahhτC,S − 2aSηahhτC,h − h2ahτC,h

h+ η(aS + ah)
)

(III) → ρ
hahτC,h − ηaSahτC,S + ηaSahτC,h

h+ η(aS + ah)

ϑh

ϑx

(IV ) → −1

2

ϑ

ϑy
(
(ρaSτC,S + ρahτC,h)h

2 + 2hρηaSah(τC,S + τC,h)

h+ η(aS + ah)
)

(V ) → ρ
hahτC,h + ηaSah(τC,S + τC,h)

h+ η(aS + ah)

ϑh

ϑy



Chapter 4

Computational Methods

4.1 Introduction
In order to solve the equations described in Chapter 3, special computer pro-
grams must be developed. Several numerical methods can be used and with
the appropriate algorithms, these methods can aid in simulating the involved
complex fluid phenomena. In the present work, the finite difference method
is chosen for numerical simulations. First, the computational domain must be
discretized. Discretization of equations leads to a linear system which can be
solved using an iterative method such as the Jacobi or Gauss-Seidel method.
When the converged pressure field is obtained, post-processing can lead to the
final results and the problem is solved. In this chapter, all the necessary steps
that lead to the solution of the equations are presented.

4.2 The finite difference method
In order to solve the differential equations that describe the phenomenon, the
finite difference method is chosen. In this method, the computational space
is discretized by a finite number of nodes. The derivatives of the differential
equations are expressed as discrete quantities of dependent and independent
variables in the neighboring nodes of the current grid point and the result is
a system of algebraic equations that can be solved through an iterative solver.
There are other ways to solve the system of algebraic equations, but in our
case the successive over-relaxation form of the Gauss-Seidel iterative solver is
utilized. The computational grid is uniform. That means that all the nodes
have an equal distance from their neighbors in the x and y directions as shown
below (Fig 4.1). If L is the length of the bearing and B the breadth then:

dx =
L

Ni − 1
, dy =

B

Nj − 1
(4.1)

32
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Figure 4.1: Finite difference method: The computational grid.

where Ni and Nj are the number of nodes in the x and y direction, respec-
tively. The first order derivative at a point x of a function u(x) is:

ϑu(x)

ϑx
= lim

Δx→0

u(x+Δx)− u(x)

Δx
(4.2)

Using a Taylor series we can expand u(x+Δx) about u(x), which yields:

u(x+Δx) = u(x) +Δx
ϑu(x)

ϑx
+

(Δx)2

2

ϑ2u(x)

ϑx2
+

(Δx)3

3!

ϑ3u(x)

ϑx3
+ ... (4.3)

It is clear from the previous equations that

u(x+Δx)− u(x)

Δx
=

ϑu(x)

ϑx
+
Δx

2

ϑ2u(x)

ϑx2
+
(Δx)2

3!

ϑ3u(x)

ϑx3
+... =

ϑu(x)

ϑx
+O(Δx)

(4.4)
In equation 4.4, O(Δx) represents the truncation error. The finer the com-
putational grid (when dx goes to zero), the smallest the truncation error of
approximation. For a specific i node in the domain, the first order derivative
can be approximated through this finite difference discretization in three differ-
ent ways:
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• Forward difference approximation: In this case the function derivative in
the i− th node is calculated through the value of the function in the i+1
and i nodes.

(
ϑu(x)

ϑx
)i =

ui+1 − ui

Δx
+O(Δx) (4.5)

• Backward difference approximation: Where the derivative depends on the
function values at the i and i− 1 nodes.

(
ϑu(x)

ϑx
)i =

ui − ui−1

Δx
+O(Δx) (4.6)

• Central difference approximation: Which is a combination of the above
methods and considers the function values at the i+ 1 and i− 1 nodes.

(
ϑu(x)

ϑx
)i =

ui+1 − ui−1

2Δx
+O(Δx2) (4.7)

where dx is the constant distance between two nodes in the x-direction
from (4.1).

It is clear that the forward and backward difference approximations produce a
first order truncation error, while the central difference approximation a second
order truncation error. In many cases. second or higher order derivatives are
present in the differential equation. A finite difference approximation of a sec-
ond order derivative can be obtained in a similar way, using the forward and
backward first order derivative equations:

ui+1 − ui

Δx
−Δx

2!
(
ϑ2u

ϑx2
)− (Δx)2

3!
(
ϑ3u

ϑx3
)−... =

ui − ui−1

Δx
+
Δx

2!
(
ϑ2u

ϑx2
)− (Δx)2

3!
(
ϑ3u

ϑx3
)+...

(4.8)
and the next step is to calculate the second order derivative as

ϑ2u

ϑx2
=

ui+1 − 2ui + ui+1

dx2
+O(dx2) (4.9)

If a two-dimension domain is examined, the same equations are valid in the
y-direction, following the same steps, considering a v(y) function:

ϑv(y)

ϑy
= lim

Δy→0

v(y +Δy)− v(y)

Δy
(4.10)

v(y +Δy)− v(y)

Δy
=

ϑv(y)

ϑy
+O(Δy) (4.11)

(
ϑv(y)

ϑy
)j =

vj+1 − vj
Δy

+O(Δy) (4.12)

(
ϑv(y)

ϑy
)j =

vj − vj−1

Δy
+O(Δy) (4.13)
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(
ϑv(y)

ϑy
)j =

vj+1 − vj−1

2Δy
+O(Δy2) (4.14)

and for the second order derivative in the y-direction

ϑ2v

ϑy2
=

vj+1 − 2vj + vj−1

Δy2
+O(dΔy) (4.15)

4.3 Discretization of the basic equations
This section describes the part of the mathematical analysis, in order to derive
in the final form of the discretized equations that will be used in this work. First,
the discretization of the basic Reynolds equation is presented. Then, alternative
forms of the same equation are given, for cases where a surface of the bearing has
been, fully or partially, modified with hydrophobic surface treatment methods
or cavitation phenomena are present. In some cases, a part of the mathematical
procedure has not been presented for brevity

4.3.1 Discretization of the Reynolds equation for simple
bearings

The basic Reynolds equation used in the case of a simple bearing is:

1

η
[
ϑ

ϑx
(
h3

12

ϑp

ϑx
) +

ϑ

ϑy
(
h3

12

ϑp

ϑy
)] =

ϑh

ϑt
+

U

2

dh

dx
(4.16)

On the right hand side of this equation the time-dependent term is used to de-
scribe phenomena that vary in time. In steady-state form this term is neglected.
Using the derivative of product rule

h�(x) = [f(x)g(x)]� = f �(x)g(x) + f(x)g�(x) (4.17)

eq. (4.17) can be discretized with a central difference scheme:

ϑ

ϑx
(
h3

12

ϑp

ϑx
) =

1

12

ϑh3

ϑx

ϑp

ϑx
+
h3

12

ϑ2p

ϑx2
=

h3
i+1,j − h3

i−1,j

24dx

pi+1,j − pi−1,j

dx
+
h3
i,j

12

pi+1,j − 2pi,j + pi,j−1

dx2

(4.18)
ϑ

ϑy
(
h3

12

ϑp

ϑy
) =

1

12

ϑh3

ϑy

ϑp

ϑy
+
h3

12

ϑ2p

ϑy2
=

h3
i,j+1 − h3

i−1,j

24dy

pi,j+1 − pi−1,j

dy
+
h3
i,j

12

pi,j+1 − 2pi,j + pi,j−1

dy2

(4.19)
and for the right hand side

U

2

dh

dx
=

U

2

hi+1,j − hi−1,j

2dx
(4.20)

Regarding the time-dependent term, a second-order backward difference to gain
information from the two previous time steps is used. If m is the current time
step and m− 1, m− 2 the two previous steps respectively:
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ϑh

ϑt
=

3ht=m
i,j − 4ht=m−1

i,j + ht=m−2
i,j

2Δt
(4.21)

The last step to arrive to the system of linear equations is the factorization of
the pressure terms (as the pressure field is the unknown parameter) based on
the grid point that they refer to. In this discretization, a five point method
with the current node (i, j) updating its value in each iteration from the four
neighboring elements: (i+1, j), (i−1, j), (i, j+1) and (i, j−1) is implemented
(Fig 4.1). The result of the factorization is the following:

pi,j → −
h3
i,j

12ηdx2
−

h3
i,j

12ηdy2
(4.22)

pi+1,j →
h3
i+1,j − h3

i−1,j

48ηdx2
+

h3
i,j

12ηdx2
(4.23)

pi−1,j → −
h3
i+1,j − h3

i−1,j

48ηdx2
+

h3
i,j

12ηdx2
(4.24)

pi,j+1 →
h3
i,j+1 − h3

i,j−1

48ηdy2
+

h3
i,j

12ηdy2
(4.25)

pi,j−1 → −
h3
i,j+1 − h3

i,j−1

48ηdy2
+

h3
i,j

12ηdy2
(4.26)

and for the right hand side

3ht=m
i,j − 4ht=m−1

i,j + ht=m−2
i,j

2Δt
+

U

2

hi+1,j − hi−1,j

2dx
(4.27)

The equation can now be written in the form

Api+1,j +Bpi−1,j +Cpi,j+1 +Dpi,j−1 +Epi,j = F (4.28)

where the factor (i × j) matrices A to E are multiplied with the appropriate
element relative to the current (i, j) node. The matrices are derived from the
previous equations (4.22 - 4.26).

Ai,j =
h3
i+1,j − h3

i−1,j

48ηdx2
+

h3
i,j

12ηdx2

Bi,j = −
h3
i+1,j − h3

i−1,j

48ηdx2
+

h3
i,j

12ηdx2

Ci,j =
h3
i,j+1 − h3

i,j−1

48ηdy2
+

h3
i,j

12ηdy2

Di,j = −
h3
i,j+1 − h3

i,j−1

48ηdy2
+

h3
i,j

12ηdy2
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Ei,j = −
h3
i,j

12ηdx2
−

h3
i,j

12ηdy2

Fi,j =
3ht=m

i,j − 4ht=m−1
i,j + ht=m−2

i,j

2Δt
+

U

2

hi+1,j − hi−1,j

2dx

Our goal is to solve for pressure for every node (i, j), that is to solve the
modified equation

pi,j =
Fi,j −Ai,jpi+1,j −Bi,jpi−1,j −Ci,jpi,j+1 −Di,jpi,j−1

Ei,j
(4.29)

Therefore, for every node of the computational grid, a linear equation is ob-
tained.

4.3.2 Discretization of the Reynolds equation for bearings
with hydrophobic surface treatment

The Reynolds equation for hydrophobic boundary conditions has been presented
earlier (eq. (3.20))

In the present work, the critical shear stress values for both the shaft and the
housing are considered to be equal to zero

τC,S = τC,h = 0 (4.30)

Using a central difference method as before and the procedure followed in the
work of L.Raptis (Raptis, 2014), the discretized form of eq. (3.20) is derived:

pi,j =
Fi,j −Ai,jpi+1,j −Bi,jpi−1,j −Ci,jpi,j+1 −Di,jpi,j−1

Ei,j

where:

Ai,j =
1

2dx (
var1i+1,j−var1i−1,j

2dx − var3i,j
hi+1,j−hi−1,j

2dx ) + var1i,j
1

dx2

Bi,j = − 1
2dx (

var1i+1,j−var1i−1,j

2dx − var3i,j
hi+1,j−hi−1,j

2dx ) + var1i,j
1

dx2

Ci,j =
1

2dy (
var1i,j+1−var1i,j−1

2dy − var3i,j
hi,j+1−hi,j−1

2dy ) + var1i,j
1

dy2

Di,j = − 1
2dy (

var1i,j+1−var1i,j−1

2dy − var3i,j
hi,j+1−hi,j−1

2dy ) + var1i,j
1

dy2

Ei,j = − 2var1i,j
dx2 − 2var1i,j

dy2

Fi,j =
U
2

var2i+1,j−var2i−1,j

2dx − var4i,j
hi+1,j−hi−1,j

2dx +
3ht=m

i,j −4ht=m−1
i,j +ht=m−2

i,j

2Δt
and the auxiliary matrix variables
var1i,j =

h3
i,j

12η

h2
i,j+4hi,jη(aSi,j+ahi,j)+12η2aSi,jahi,j

hi,j(hi,j+η(aSi,j+ahi,j))

var2i,j =
h2
i,j+2hi,jηahi,j

hi,j+η(aSi,j+ahi,j)

var3i,j =
hi,j

12η
hi,jηahi,j+2η2aSi,jahi,j

hi,j+η(aSi,j+ahi,j)

var4i,j = U
ηahi,j

hi,j+η(aSi,j+ahi,j)
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4.3.3 Discretization of the Reynolds equation with the
Elrod-Adams mass-conservation model for simple bear-
ings

To account for cavitation in lubricated contacts, the Reynolds equation with the
Elrod-Adams cavitation algorithm is utilized, see eq. (4.31). This equation is
solved in both the active and the cavitating regions of the lubricant domain for
the fractional film content variable r, which is defined as r = ρ

ρc
. Here ρc is the

density of the lubricant in the non-cavitating film regions at cavitation pressure
pc, and ρ is the actual density of the lubricant within the lubricant domain. In
the active zones, where pressure is above cavitation pressure, the actual fluid
density ρ is slightly larger than ρc , due to the fact that pressure increase will
cause a slight compression of the lubricant and therefore an increase of its mass
content (r >= 1 ). In this case, lubricant pressure can be calculated using
Eq. (4.32), where β is the lubricant bulk modulus (Eq. 4.33). On the other
hand, within the cavitation zones, where pressure attains a constant value pc ,
the lubricant maintains a constant density ρc . However, due to the rupture of
lubricant film into streamers of lubricant, vapor or air, the actual density of the
lubricant-gas mixture ρ is smaller. Thus, the cavitation phenomenon results in
a decrease of mass content in those regions, r > 1 , whereas (1 − r) represents
the void (gas) fraction. To take the above into consideration, a switch function
g , whose index is zero within the cavitation zones and unity in the active zones,
is introduced, as seen in Eq. (4.34).

U

2

ϑ(rh)

ϑx
+

ϑ(rh)

ϑt
=

ϑ

ϑx
(
g(r)βh3

12η

ϑr

ϑx
) +

ϑ

ϑy
(
g(r)βh3

12η

ϑr

ϑy
) (4.31)

p = pc + gβlnr (4.32)

β = ρ
ϑp

ϑr
(4.33)

g =

�
0 , if r < 1

1 , if r ≥ 1
(4.34)

The derivatives of the r variable can be computed as (Vijayaraghavan and Keith,
1989)

g
ϑr

ϑx
=

ϑg(r − 1)

ϑx
(4.35)

g
ϑr

ϑy
=

ϑg(r − 1)

ϑy
(4.36)

and these equations can be substituted in (4.31). Values on the half step can
be computed using the following equations

fi± 1
2 ,j

=
fi±1,j + fi,j

2
(4.37)
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fi,j± 1
2
=

fi,j±1 + fi,j
2

(4.38)

Elrod has proposed an equation for the convective mass flux

(mx)convective = ρc
U

2
(ri−1,jhi−1,j(1−gi−1,j)+gi−1,jhi−1,j+gi,jgi−1,j

hi,j − hi−1,j

2
)

(4.39)
to consider the following cases

• If the upstream point is in the cavitation zone gi−1,j = 0 then

(mx)convective = ρc
U

2
ri−1,jhi−1,j

• If the upstream point is in the active zone gi−1,j = 1 and the downstream
point in the cavitation zone gi,j = 0

(mx)convective = ρc
U

2
hi−1,j

• If both points are in the active zone

(mx)convective = ρc
U

2

hi−1,j + hi,j

2

Using mathematical analysis (Raptis, 2014) and after rearranging the shear flow
term and the time derivative term the equation reaches the known form

Ari+1,j +Bri−1,j +Cri,j+1 +Dri,j−1 +Eri,j = F

with the factor matrices being

Ai,j =
β

12ηΔx2
gi+1,jh

3
i+ 1

2 ,j

Bi,j =
β

12ηΔx2
gi−1,jh

3
i− 1

2 ,j
+

U

2Δx
hi−1,j(1− gi−1,j)

Ci,j =
β

12ηΔy2
gi,j+1h

3
i,j+ 1

2

Di,j = Ci,j =
β

12ηΔy2
gi,j−1h

3
i,j− 1

2

Ei,j = − β

12ηΔx2
gi,j(h

3
i+ 1

2 ,j
+h3

i− 1
2 ,j

)− β

12ηΔy2
gi,j(h

3
i,j+ 1

2
+h3

i,j− 1
2
)− U

2Δx
hi,j(1−gi,j)−(

dh

dt
+
hi,j

2Δt
)

Fi,j =
β

12ηΔx2
(gi+1,jh

3
i+ 1

2 ,j
− gi,j(h

3
i+ 1

2 ,j
+ h3

i− 1
2 ,j

) + gi−1,jh
3
i− 1

2 ,j
)

+
β

12ηΔy2
(gi,j+1h

3
i,j+ 1

2
− gi,j(h

3
i,j+ 1

2
+ 1h3

i,j− 1
2
) + gi,j−1h

3
i,j− 1

2
)
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− U

2Δx
[
gi−1,jhi−1,j

2
(2−gi,j)+

gi,jhi,j

2
(gi−1,j−2+gi+1,j)−

gi+1,jgi,jhi+1,j

2
]+hi,j

−4θi,j |t−1 + θi,j |t−1

2Δt
where

Δx = xi+1 − xi = xi − xi−1 = xi+ 1
2
− xi− 1

2

Δy = yj+1 − yj = yj − yj−1 = yj+ 1
2
− yj− 1

2

Pressure at every node can be calculated by:

pi,j =
Fi,j −Ai,jpi+1,j −Bi,jpi−1,j −Ci,jpi,j+1 −Di,jpi,j−1

Ei,j

4.4 The iterative solver
In all cases, a linear system of equations (in matrix form) is obtained. The
system needs to be solved for pressure. There are various ways to solve such a
system but in our case an iterative solver is chosen. An iterative method is a
mathematical procedure that generates a sequence of improving estimates that
lead to the final solution of the system when a convergence criterion is met.
The other large category of solvers include the direct methods, which attempt
to solve the problem by a finite sequence of operations, without rounding errors.
These methods are often computationally expensive so the iterative methods are
chosen when the number of variables is very large or when the system consists of
non-linear equations. In our effort to analyze the process followed by the solver
to reach a final solution, the simplest approach is used as a starting point. That
is the Jacobi method. This method performs a number of successive iterations to
continuously update the value of each node using the final form of the equations
derived previously in the following form

p
[k]
i,j =

Fi,j −Ai,jp
[k−1]
i+1,j −Bi,jp

[k−1]
i−1,j −Ci,jp

[k−1]
i,j+1 −Di,jp

[k−1]
i,j−1

Ei,j
(4.40)

where p[k] is the value of pressure for the current iteration and p[k−1] is the
value of pressure for the previous iteration. By monitoring the error using an
absolute error convergence criterion such as

|p[k]i,j − p
[k−1]
i,j | < d�, ∀(i, j) (4.41)

where d� is a very small number, we can decide if the solution for the pressure
filed is accurate enough and stop the iterative process. Several improvements
can be made to make the Jacobi method converge faster (in a smaller number
of iterations). For example one can think that in the process of the for loop
that is used to update the current node (i, j) , the values of two out of the
four neighboring nodes have already been updated (in this case (i − 1, j) and
(i, j − 1)). If we use the already updated values for our current iteration step,
the iterative solver is of the form

p
[k]
i,j =

Fi,j −Ai,jp
[k−1]
i+1,j −Bi,jp

[k]
i−1,j −Ci,jp

[k−1]
i,j+1 −Di,jp

[k]
i,j−1

Ei,j
(4.42)
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and seems to converge much faster than the previous one. This modification
is known as the Gauss − Seidel method and improves the performance of our
algorithms. A further optimization can be achieved by enforcing a relaxation
factor on the Gauss−Seidel solver. This factor (ω) is called an under-relaxation
factor if 0 < ω < 1 or an over-relaxation factor if ω > 1. This new iterative
method is called Successive Over − Relaxation or simply SOR and has the
following form

p
[k]
i,j = (1−ω)p

[k−1]
i,j +ω ·

Fi,j −Ai,jp
[k−1]
i+1,j −Bi,jp

[k]
i−1,j −Ci,jp

[k−1]
i,j+1 −Di,jp

[k]
i,j−1

Ei,j

(4.43)
It is clear from comparing the equations (4.42) and (4.43) that when ω = 1 the
SOR method degenerates to the Gauss − Seidel method. We will see in the
following sections that the choice of the relaxation factor plays decisive role in
the convergence speed and consequently, the performance of our program.



Chapter 5

High Performance Computing

5.1 Introduction
In this chapter, the significance of high performance computing for hard and
time consuming computational problems will be discussed. Starting with ex-
amples which demonstrate why parallel programming is the only way to solve
problems that seemed impossible to solve, the basics of the parallel program-
ming models that are used in the context of this thesis will be presented. Then
the characteristics of these models will be analyzed, as well as examples on how
to implement specific algorithms and develop applications on these different
models and the potential benefits that each one can offer are presented. Finally,
a theoretical comparison is provided.

5.2 The age of parallel computing
Since the first computers were put together, computer scientists and engineers
tried to find ways to increase their computational power. At first this procedure
was quite straightforward, as by increasing the CPU clock frequency and/or
decreasing she size of transistors to fit more of them in a certain CPU size,
the performance is dramatically increased. The 1990’s were the golden era of
performance scaling for single core processors. Between 1994 and 1998 CPU
clock speeds increased by 300%. Regarding the transistor size it is useful to
mention that an Intel Pentium 4 processor from 2004 had 170 million transistors,
while an 15-Core Intel Xeon processor of 2013 fits 4.3 billion transistors for
roughly the same size. Transistors are the electronic devices that are found
in every processor, which act as electronic switches in a binary manner (1 or
0) ,and, for different combinations of these values, form logical gates able to
perform logical and arithmetic operations. The CPU clock frequency is the
frequency at which these devices can switch from one to zero without losing
their computational integrity. For example, a processor that operates on a
frequency of 1GHz is capable of performing 1 billion operations per second and

42
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still work as expected.
There are a few reasons why these parameters were not able to contribute to

an increase of computational power beyond a certain threshold. The first one
is that the size of transistors cannot get infinitely small. When the size of these
devices becomes smaller, the logical gates become thinner and their structural
integrity is lost, resulting in current leaks. Besides that, when the frequency
speed increases and millions or even billions of transistors operate on a very high
speeds, heat is generated. This heat leads to an increase in temperature that can
damage the processor beyond repair. Increase in frequency also means higher
voltage and the relation between voltage and power consumption is cubic. That
means that by decreasing the CPU frequency by 50%, the power consumption
is 12.5% of the original. Nowadays, energy efficiency is an even more important
matter, therefore it is clear that prodigious clock frequencies are unacceptable.

The only viable solution to this problem, is increasing the number of cores
per CPU. When more than one processors that can independently execute in-
structions at a lower frequency are utilized, a significant improvement in per-
formance can be achieved, while remaining energy efficient. In our days, most
personal computers are equipped with multicore processors, featuring up to 16
cores per unit. Finding new ways to exploit the potential performance of these
machines can lead to a significant increase in the performance of common com-
putational tasks. Parallel programming gives the opportunity to take advantage
of modern hardware. Besides multicore CPUs, there is another large group of
processors that are also suitable for parallel computations. Graphics Processing
Units (GPUs) are electronic circuits commonly used for computer graphics and
image processing as they rapidly manipulate and alter memory to accelerate the
creation of images in a frame buffer, to output to a display. They are highly
parallel units that achieve massive throughput and are more efficient than CPUs
for programs that require the manipulation of very large blocks of data. It is
noted that a commercially available GPU can have from several hundreds to
several thousands of computational cores. The differences in the architecture of
these two processing units will be analyzed further in this work.

5.3 The serial code
Before applying the parallel programming methods it is useful to set up a ref-
erence case of serial execution code. This reference case corresponds to the
solution of the simple Reynolds equation for a thrust bearing. Solution accu-
racy of the developed code was validated against the model of a simple thrust
bearing; see (Stachowiak and Batchelor, 2001) (Table 5.1 and Fig 5.1).
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L
B = 0.5

k=1 k=2 k=3 k=4 k=5

0.0291096 0.0297203 0.0270916 0.0242234 0.021646

L
B = 0.75

k=1 k=2 k=3 k=4 k=5

0.0505747 0.0501036 0.0444461 0.0388181 0.0339928

L
B = 1

k=1 k=2 k=3 k=4 k=5

0.0691179 0.0672483 0.0587022 0.0505692 0.0437666

L
B = 1.5

k=1 k=2 k=3 k=4 k=5

0.0948963 0.0905986 0.0777800 0.066069 0.0565053

L
B = 2

k=1 k=2 k=3 k=4 k=5

0.1101110 0.104198 0.0887689 0.0749183 0.0637285

L
B = ∞

k=1 k=2 k=3 k=4 k=5

0.157077 0.1458990 0.1222289 0.1018020 0.0855938

Table 5.1: Simple converging thrust bearing model. Non-dimensional load ca-
pacity for different values of convergence ratio k and length to width ratio of
the bearing.

In Section 4.4 we discussed about the implementation of the successive over-
relaxation (SOR) method. The importance of the ω relaxation factor is exam-
ined for the simple bearing model (Table 5.2). In particular, parametric analysis
has been conducted and the number of iterations needed for final convergence
are presented as a function of the relaxation factor. The SOR method, with a
proper selection of ω is finally compared to the number of iterations needed for
the basic Jacobi method, to display the improved performance that justifies the
choice of the SOR iterative method (Fig 5.2).
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Figure 5.1: Non-dimensional load capacity as a function of convergence ratio, for
different values of length-to-width ratio of the bearing. Comparison between the
results of the present code and those presented in (Stachowiak and Batchelor,
2001).

Relaxation Factor No. of Iterations

0.98 65811

0.99 55245

1 46500

1.1 39110

1.2 32752

1.3 27200

1.4 22283

1.5 17875

1.6 13872

1.7 10189

1.8 6744

1.9 3429

1.92 2762

1.94 2083

1.96 1367

1.98 682

1.99 1296

Table 5.2: Influence of the value of relaxation factor ω on convergence speed.
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Figure 5.2: Influence of the value of relaxation factor ω on convergence speed.
Performance of the Jacobi algorithm is also presented for comparison.

A very important step before trying to parallelize our code is profiling.
Profilers, are programs that measure the execution time for each function that
is called in an executable. It is crucial to have information on how long each
function or fraction of the code takes to execute, as this will help to choose which
part of the program needs to be parallelized to drastically improve the overall
performance. Profilers range from simple non-intrusive time counting programs
that provide information about the called functions, to complex, intrusive pro-
grams that are able to give much more detail on performance thresholds in both
serial and parallel applications. For this example gprof was used. This profiler
is part of the GNU operating system and is an open source utility. The present
simple Reynolds solver consists of the following functions:

• calculateGeometry(): generates lubricant film geometry

• reynolds(): initializes the factor matrices (A, B, C, D, E & F) for the
iterative solver (See sections 4.3.1-4.3.3)

• sor(): performs the iterative solution procedure
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• pressureIntegration(): integrates over the pressure and shear stress to
calculate load capacity and friction force

• report(): generates various result text files

The profiler output gives an overview of the time each function consumed as a
percentage of the overall execution time in seconds (Table 5.3). It can be seen
that the sor() function (iterative solver), makes up almost the entire runtime
(99.2%). So it would be redundant to spend any programming effort for paral-
lelizing any of the other functions. This example demonstrates the importance
of profiling an application before optimizing it, and the value of this type of
information.

Function Percentage of execution time [%]

calculateGeometry() 0.10

reynolds() 0.42

sor() 99.20

pressureIntegration() 0.14

report() 0.14

Table 5.3: Profiling details of the Reynolds equation solver for simple converging
bearings.

Following the profiling results, in the present work, only the SOR routines
have been parallelized in order to gain performance benefits. This gives a very
small overhead when comparing the execution times as not the entire code is
parallelized. It is useful in this point to present the basic serial version of the
present SOR routine (Fig 5.3).

In this routine, the SOR solver is used to solve the basic Reynolds equation
(4.28) and define the pressure field. The variables are defined below:

• ldiv: The number of nodes length-wise.

• bdiv: The number of nodes breadth-wise.

• difference: the error of the current iteration step. In this implementation
the error is calculated by adding the relative error of each node for the
entire field and then dividing by the number of nodes. So an average
relative error value is extracted. When the error drops below an acceptable
accuracy threshold (here 10−7) the iteration process stops as we consider
that the solver has converged.

• counter: The number of the current iteration. We stop the process if this
number exceeds 100000 as this is the maximum convergence limit that we
have set to prevent infinite loops.

• p[i][j]: An array that holds the pressure values at each node.
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while ((difference>0.0000001) && (counter<100000))
{

difference=0.;
for (i=1;i<ldiv-1;i++)
{

for (j=1;j<bdiv-1;j++)
{

p[i][j]=(1-omega)*pPrevious[i][j]
+((omega/sorE[i][j])
*(sorF[i][j]
-sorA[i][j]*pPrevious[i+1][j]
-sorB[i][j]*p[i-1][j]
-sorC[i][j]*pPrevious[i][j+1]
-sorD[i][j]*p[i][j-1]));
if (p[i][j]<0.)
{

p[i][j]=0.;

}
difference+=(fabs(pPrevious[i][j]-p[i][j]))/p[i][j];

pPrevious[i][j]=p[i][j];

}

}
difference=difference/(ldiv*bdiv);
counter++;

Figure 5.3: Algorithm of the serial SOR iterative solver.

• pPrevious[i][j]: An array that holds the pressure values from the previous
iteration at each node. This array is essential for the convergence check.

• sorA[i][j], sorB[i][j], ..., sorF [i][j]: The factor arrays from the analysis
that led to equation (4.28).

• omega: The relaxation factor.

This code segment in various forms is the basis for solving the differential equa-
tion and computing the pressure field. This routine will be modified, to fit our
purposes on parallel computing and accelerate computations.

5.4 Parallel programming models
The parallel programming models that were implemented in the present work
were two. The Open Multi-Processing (OpenMP ) shared memory API and the
Compute Unified Device Architecture (CUDA) model for accelerated compu-
tations on Graphics Processing Units (GPUs). Here, the gain in performance
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by utilizing these architectures is examined. These methods will be evaluated
mainly in terms of execution speedup in comparison to the speed of the refer-
ence, and other factors such as required programming effort and acquisition cost
of the necessary hardware. Beyond that, the basic features of each programming
approach are discussed and a comparison between the advantages and disadvan-
tages for each case are provided. Also, the Message Passing Interface (MPI) for
cluster computing with distributed memory nodes and Hybrid Models will be
briefly discussed, for these two paradigms have not been assessed in the context
of the current thesis.

5.4.1 Open MultiProcessing (OpenMP)
OpenMP (Open Multi-Processing) is an Application Programming Interface
(API) used for shared memory multiprocessing. That means that the distinct
threads that execute the instructions in parallel must share the same memory.
That is true for all the contemporary Intel and AMD multicore CPUs (Fig 5.4
and Fig 5.5), so everyone using a modern computer can significantly improve
the performance of a program, with a relatively small development effort. The
OpenMP API works with C/C++ or fortran, and most (if not all) widely used
compilers support it.

OpenMP is based on multithreading, a parallelizing method where a master
thread forks a number of slave threads that concurrently run the tasks assigned
to them by the system. The example of (Fig. 5.6), refers to a 4-core proces-
sor. When a task is parallelized, the master thread forks the workload to 3
slave threads and itself, entering the parallel region. When all threads have
executed their instructions, a join is implemented and the program returns to
single-thread mode and, later on, a new parallel region may be created. As
mentioned, OpenMP can allocate tasks to multiple threads as long as they
have access to the same globally shared memory. If the goal is to parallelize
the code, using a distributed memory system, that is a system where various
processors which have their own local memory belong to the same network, a
message-passing implementation such as the Message-Passing Interface (MPI)
to distribute data to the distinct processing nodes through the network must be
implemented. Additionally, hybrid models can be implemented for maximum
performance. In these hybrid models,we can distribute the data amongst differ-
ent computers with MPI and then use OpenMP locally to take full advantage of
the computational capability of each machine. This way, an even deeper level of
parallelism can be reached and further improvement on code performance, can
be obtained.

In general, OpenMP is a relatively easy and high-level model to implement
and the initial serial code does not need to be modified in low level. The positive
side of this, is that decent parallel performance can be gained for a small ‘price’,
but fine optimization and linear scaling are generally hard to achieve, whereas
in many cases, data and load distribution can be hidden from the programmer.
Linear scaling means that when the number of available threads increases, the
performance should also increase in a linear way. So when 4 threads are used in
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Figure 5.4: A contemporary multicore Intel CPU.

parallel to execute a program, the execution time should be a fourth of the initial
serial implementation. Generally, a code that achieves around 90% of parallel
efficiency is considered to be well implemented. Data and load distribution
show how the workload is distributed among the processing elements. The
best scenario is, of course, to distribute the workload evenly, so for 4 threads,
each one must process a fourth of the data. In C/C++, OpenMP uses #pragma
directives to fork additional threads to work in parallel. Preprocessing directives
are in general language constructs that specify how a compiler must process its
input. The use of pragmas makes OpenMP an easy model to implement and it
is recommended for a quick solution in improving code performance.

As mentioned, the basic advantage of OpenMP is actually its main weakness
at the same time. In those high-level programming models, the biggest part of
the information on how the actual tasks are going to be divided amongst the
threads is hidden, and that can lead to possible errors, while setting a threshold
on performance benefits. However, the OpenMP API provides several directives
(OpenMP, 2015) that are very useful in customizing the parallelization to each
specific problem’s needs. The developer can include these commands as inline
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Figure 5.5: Shared memory multicore CPU architecture.

clauses when calling OpenMP in a parallel region through the pragmas.

• parallel: The parallel construct forms a team of threads and starts par-
allel execution. It is the most common construct to start multithreaded
CPU execution.

• single: The single construct specifies that the associated structured
block1 is executed by only one of the threads in the team.

• master: The master construct specifies a structured block that is ex-
ecuted by the master thread. No other threads will try to execute this
block.

• critical: The critical construct restricts execution of the associated struc-
tured block to a single threads at a time.

• barrier: The barrier construct sets an explicit barrier at the points at
which it appears. We use this when all threads must reach the same point
in the code before computations continue.

1A structured block is a single or compound statement with a single entry at the top
and single exit at the bottom.
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Figure 5.6: The fork-join multithreading model.

• atomic: The atomic construct ensures that a specific memory location
is updated atomically, rather exposing it to the possibility of multiple
simultaneous writing threads.

• threadprivate: The threadprivate directive specifies that variables are
replicated, with each thread having its own copy.

These are only some of the directives one can use to tune the multithreaded
parallelization based on the algorithm that is implemented. Another important
group of orders are the Data sharing attribute clauses. These clauses apply
only to variables whose names are visible in the construct on which the clause
appears. The most notable include:

• default(shared | none): Controls the default data-sharing attributes of
variables that are referenced in a parallel or task construct.

• shared(list): Declares one or more list items to be shared by tasks gener-
ated by a parallel or task construct.

• private(list): Declares one or more list items to be private to a task.

• reduction(operator : list): Declares accumulation into the list items using
the indicated associative operator. Accumulation occurs into a private
copy for each list item which is then combined with the original item.
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In addition to the previous categories, there are the Runtime library routines,
which affect and monitor threads, processors, and the parallel environment. The
most commonly used are:

• void omp_set_num_threads(int num_threads); Affects the num-
ber of threads used for subsequent parallel regions that do not specify a
num_threads clause. With this routine we set the number of threads
that we want our program to use for a parallel region.

• int omp_get_num_threads(void); Returns the number of threads
in the current team. It is used to monitor the number of threads that we
use in the parallel regions of our code.

• int omp_get_max_threads(void); Returns the maximum number of
threads that could be used to form a new team using a parallel construct
without a num_threads clause.

All of the above information on Directives, Data sharing attribute clauses
and Runtime library routines are found in the “Summary of OpenMP 3.0
C/C++ Syntax” which can be downloaded from openmp.org. The reader is
encouraged to look for additional tools, in the effort to optimize custom OpenMP
implementations. An example of the OpenMP algorithm for the solution of
Reynolds equation is given. This example is based on the basic serial algorithm,
as described before (Fig 5.3). The OpenMP variation, exposes the relative ease
of development that characterizes the OpenMP model (Fig 5.7).
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while ((difference>0.0000001) && (counter<100000))
{

difference = 0.;
#ifdef OPENMP_SUPPORT
omp_set_num_threads(numberOfCores);
#endif
#pragma omp parallel for default(shared) private(j, resid)
for (i = 1; i < Ddiv - 1; i++)
{

for (j = 1; j < Ldiv - 1; j++)
{

resid = ((SORomega / sorE[i*Ldiv + j])
*(sorF[i*Ldiv + j]
- sorA[i*Ldiv + j] * pPrevious[(i + 1)*Ldiv + j]
- sorB[i*Ldiv + j] * p[(i - 1)*Ldiv + j]
- sorC[i*Ldiv + j] * pPrevious[i*Ldiv + (j + 1)]
- sorD[i*Ldiv + j] * p[i*Ldiv + (j - 1)]));
p[i*Ldiv + j] = (1 - SORomega)*pPrevious[i*Ldiv + j] + resid;

}

}
#pragma omp parallel for default(shared) private(j)
for (i = 1; i < Ddiv - 1; i++)
{

for (j = 1; j < Ldiv - 1; j++)
{
if (p[i*Ldiv + j]<0.)

{

p[i*Ldiv + j] = 0.;

}
if ((fabs(pPrevious[i*Ldiv + j])>DBL_EPSILON) &&

(fabs((pPrevious[i*Ldiv + j] - p[i*Ldiv + j])

/ pPrevious[i*Ldiv + j]) > difference))
{
difference = fabs((pPrevious[i*Ldiv + j] - p[i*Ldiv + j])
/pPrevious[i*Ldiv + j]);
}
pPrevious[i*Ldiv + j] = p[i*Ldiv + j];

}

}

}

Figure 5.7: OpenMP version algorithm of the default SOR iterative solver.

This code (Fig. 5.7) looks similar to the serial version (Fig 5.3) but with
some very crucial modifications:

• A preprocessor flag #ifdef is inserted to define if we want to use OpenMP.
When this flag is on, the system forks the parallel loop to a selected number
of threads (numberOfCores).
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• The two #pragma directives define the parallel regions. In this case two
parallel for loops are created.

• The SOR routine is modified. Now, the right part of the Reynolds equation
(4.28) is saved in an auxiliary resid value, which is private to each thread.
This prevents threads from accidentally modifying another thread’s value.
When the fork takes place, each thread gets its own chunk of j values to
process. By declaring j and resid as private, we make sure that faulty
local memory writes are avoided.

• A different convergence criterion is used as an example. The node with
the smallest relative error value is monitored and when this satisfies the
convergence criterion, the iterative process stops. In the numerical simu-
lations a universal convergence criterion is used, for the execution times
to be comparable.

A final detail is to be discussed at this point. The matrix expressions have
changed from p[i][j] to p[i ∗ Ldiv + j] between the serial and parallel version.
This has nothing to do with the parallel OpenMP execution, but is important
to mention that such a minor alteration can significantly improve the behavior
of the code. It involves, how C/C++ allocates arrays in memory. When a 2D
array is defined, that happens through a pointer to pointer model (double ∗∗a).
For a (i× j) 2-D matrix the program will allocate one 1-D array of j pointers,
that will point to j blocks of i variables. This does not ensure memory locality,
as the blocks may be in different areas in memory. The more sparse they are,
the overhead in fetching them to cache will increase. By allocating a 1-D array
and accessing the necessary values by [i ∗ Ldiv + j] we ensure that data will be
placed in a consistent way in memory and the overhead will be eliminated. In
certain cases an improvement of 20% in performance was noticed, by making
this simple alteration for no additional development cost. Besides this, it is
explained in the next section, why it is crucial for CUDA programming to have
the data in 1-D array form in memory.

The last matter to analyze, is scheduling, a very important OpenMP con-
cept. The scheduler, is responsible for dividing the task that is to be parallelized
to the available threads. There are two types of scheduling, static and dynamic.
The static schedule distributes the workload evenly among the threads. This
means that in a for-loop that needs to execute a floating-point operation 400
times and for 4 threads available, each thread will get a chunk of 100 floating-
point operations to perform. It is only logical, that if one thread is slower than
the others, the execution time will depend on how long this thread will take as
the others will have to wait for everyone to finish to move to the next set of
instructions. In our case, all the threads must calculate the pressure values for
the current iteration, or else the next iteration will not have the required data
and the program will not be able to continue. Especially when a large number
of threads is utilized and there are other system processes running on the same
computer, the overhead is more likely to be bigger. Dynamic scheduling on
the other hand, creates a queue of chunks that need to be processed and every
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thread that finishes its task can dynamically take on the next chunk waiting in
the queue. Dynamic scheduling must be used when load is distributed unevenly
between the threads to exploit the threads that have a small workload and re-
lieve those that have the heaviest. On data that display even load distribution
between the chunks, dynamic scheduling can lead to a big overhead. Schedul-
ing, is implemented in OpenMP through the clause [schedule(type, size)], where
type is set to static or dynamic and size refers to the chunk of data that each
thread will take over. Through scheduling, a finer tuning for OpenMP can be
achieved that may or may not lead to improved performance or reduce unnec-
essary overheads.

5.4.2 Compute Unified Device Architecture (CUDA)
The second parallel computing platform tested in the context of this work, is
Nvidia’s Compute Unified Device Architecture (CUDA) API. CUDA is funda-
mentally different from OpenMP as it uses specific CUDA- enabled Graphics
Processing Units (GPUs) from Nvidia to accelerate computational applications
(Fig 5.8). Initially, GPUs were used to manipulate computer graphics and image
processing in an efficient way but when Nvidia announced the first CUDA GPUs
for general purpose computing, they became available for a whole new range of
applications. General purpose GPUs have a different architecture than CPUs
and it’s their design that gives them an advantage when it comes to intensive
computations that process huge amounts of data.

Figure 5.8: A contemporary Nvidia GPU.

The main point is that CPUs can be characterized as latency devices, while
GPUs as throughput devices. Latency is the time delay between the execution
of two consecutive instructions from the computer. Throughput can be seen
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as the amount of instructions that a processing unit can execute in a specific
time interval. That means that a CPU is designed to executed an order as fast
as possible, while GPU as many orders as possible in a certain time. CPUs
are expensive and sophisticated processors. On the other hand GPUs utilize a
massive number of low-cost elementary threads to tolerate latencies. The archi-
tectures of the two units are presented in (Fig 5.9 and Fig 5.10). Hereinafter,
some details about each architecture are highlighted:

• Central Processing Units (CPUs)

– Powerful Arithmetic Logic Units (ALUs) for reduced operational
latency.

– Sophisticated Control units with branch prediction for reduced branch
latency and data forwarding for reduced data latency.

– Large Caches to convert long latency memory accesses, to short la-
tency cache accesses.

• Graphics Processing Unis (GPUs)

– Many energy efficient Arithmetic Logic Units, that display long
latency but are heavily pipelined for high throughput.

– Simple Control units with no branch or data forwarding.

– Small Caches to boost memory throughput.

Figure 5.9: Typical CPU architecture.

In conclusion, GPU computing can make a big difference in really heavy
numerical applications that require a lot of floating point operations and simple
control. As it is a lot more difficult to develop GPU applications (in comparison
to OpenMP) they are recommended only for the most demanding cases, when
a very fine discretization is required. One advantage is that GPUs are quite
inexpensive considering their computational performance.

In CUDA, the main code has a serial part that is implemented in the CPU
(host) and just a segment of the program is parallelized in the GPU (device).
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Figure 5.10: Typical GPU architecture.

The programmer must write specific device functions that are executed in the
GPU to accelerate the code. These new functions are called kernels and are
the fundamental core of a CUDA application. Generally the steps that must be
followed to execute a program in the GPU are the following:

• Allocate memory on device

• Copy data from host to device

• Initialize grid and block dimensions

• Execute the kernel

• Copy data from device to host

• Free device memory

When a kernel function is called, a specific number of threads is allocated to
execute it. These threads are organized in a grid that contains blocks of threads
(Fig 5.11). All threads that are in a grid execute the same function. Each block
in a grid is organized as a 3-D array of threads characterized by its dimensions
{blockDim.x, blockDim.y, blockDim.z}. Then a grid is organized as a 2-D array
of blocks {gridDim.x, gridDim.y}. Grouping blocks into grids helps avoid the
limitations and apply the kernel to more threads per call. It also helps in
scaling. If a GPU does not have enough resources, it will execute blocks one
by one. The programmer can adjust the block and grid dimensions in order to
utilize the program in the maximum capacity of the GPU and have the optimal
performance. There are many instructions online on how to select the best
combination of dimensions for specific hardware.

A thread is a singular processing unit in a GPU. It is based on the basic
Von-Neumann processor model (Fig 5.12). In this model the processor consists
of the following units:

• A Central Processing Unit that carries out the instructions of a com-
puter program by performing the basic arithmetical, logical and input/output
operations. It includes:
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Figure 5.11: A three-dimensional grid of threads.

– An Arithmetic Logical Unit, the digital circuit that performs arith-
metic and logical operations.

– A Control Unit, which controls communication between input/output
devices. It reads and interprets instructions and determines the se-
quence for processing the data.

• A Memory Unit, that stores data and instructions.

Figure 5.12: Architecture of a Von-Neumann processor.

A thread can get instructions as an input and carry out the necessary compu-
tations to produce a result as an output. The utilization of threads during run-
time is based on the streaming multiprocessors. As the CUDA programming guide
(NVIDIA, Corporation, 2007)states:
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“The CUDA architecture is built around a scalable array of mul-
tithreaded Streaming Multiprocessors (SMs). When a CUDA pro-
gram on the host CPU invokes a kernel grid, the blocks of the grid
are enumerated and distributed to multiprocessors with available ex-
ecution capacity. The threads of a thread block execute concurrently
on one multiprocessor, and multiple thread blocks can execute con-
currently on one multiprocessor. As thread blocks terminate, new
blocks are launched on the vacated multiprocessors”.

Based on the compute capability of the GPU, a different number of CUDA cores
is included in each streaming multiprocessor. Then, at any time a single wrap of
a number of threads is executed (Fig 5.13-a). It is clear from this notation that
for a GPU with a certain number of CUDA cores (e.g. 384 for the basic GeForce
GTX650 used in this thesis) we do not expect a linear scaling as only a prede-
fined number of them can run at a specific point in time. A final comment on the
CUDA specification can be made by discussing the CUDA device memories
(Fig 5.13-b). There are a few different types of memories in a CUDA device.
The Global Memory which is the largest memory and offers high bandwidth but
suffers from long latencies (several hundred cycles). Then the Local Memory is
a small volume of memory that can be accessed by only one streaming multipro-
cessor and is also relatively slow. The Shared Memory is shared between all
streaming processors in a multiprocessor. It is a fast memory, just like registers.
This memory provides interaction between threads, it is controlled by devel-
opers directly and features low latencies. Finally, the Constant and Texture
memories are read-only and are available for all multiprocessors.

(a) (b)

Figure 5.13: (a) The CUDA multiprocessor model and (b) the CUDA device
memories.
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It is already clear that CUDA programming is much more difficult and time
consuming than OpenMP, where a simple preprocessing directive in an existing
serial loop is sufficient to parallelize the code in the enabled threads. CUDA
is a low-level programming model and the developer must manually tune the
distribution of data and computational load between the computational threads.
A good programming practice is to try and ensure the scalability and portability
of the developed code. Scalability, means that the application should be able to
run with the same performance in newer generations of hardware and scale in
devices with a bigger number of cores. Portability is the usability of software in
different environments and hardware architectures.

The CUDA code developed in the present work implements the Red-Black
Successive-Over Relaxation (SOR) method. That is a parallel modification of
the traditional SOR iterative method, suitable for this type of applications (Liu
et al., 2011; Konstantinidis and Cotronis, 2012). In the Red-Black SOR method
the computational grid is split in two subdomains. Half of the computational
nodes (ie. those that have an even ID number) are marked as Red and the
other half (ie. those that have an odd id number) are marked as Black (Fig
5.14). Here as an ID number we can assign the sum of i + j for each node. In
a typical differential equation such as the Reynolds equation, each node’s value
is updated for the current iteration through the values of his neighboring nodes
(North, South, East and West). By executing a kernel that updates the Red
nodes based on the Black nodes’ values (left figure) and then executing a kernel
that updates the Black nodes based on the Red nodes’ values (right figure) in
parallel, a final solution is obtained after convergence. Using this method we
can compute the pressure field in a much more efficient way than by simple
serial for loop.

Figure 5.14: The Red-Black SOR domain decomposition.

A matter that is somewhat difficult to resolve is the convergence check. Gen-
erally, when a program is executed in the device through the kernels there is no
communication between the device and the host. The only way to communi-
cate is to copy out the appropriate variables, which is a time consuming process
and must be avoided. So, to improve performance, after a certain chunk of
iterations N , the pressure matrices are copied out and the convergence check is



CHAPTER 5. HIGH PERFORMANCE COMPUTING 62

implemented on the CPU. The number N can be seen as a different parameter
and affects the execution time of the developed application.

As mentioned before, there are a few basic steps that one must follow in a
CUDA program. Because the device (GPU) is different that the host machine,
the algorithm is modified to include these procedures (Fig. 5.15). Firstly, one
must allocate the required memory. This is done by declaring some device
variables that will be exact copies of the original variables, along with their
allocation size. Then, the variables are copied from device to host. After this,
initialization of the block and grid dimensions and kernel execution follows.
Finally, it is necessary to copy the results back to the host system and free the
device memory.

This is just a sample of the complexity of CUDA programming, compared
to the OpenMP API. CUDA requires a lot of low-level fine tuning but results
display clear superiority when compared to OpenMP, especially considering the
value-for-money factor which is increased for large grid computations.
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#define BLOCK_SIZE_X
#define BLOCK_SIZE_Y
//kernel definitions
__global__ void redKernel
(double *sorA, double *sorB,double *sorC, double *sorD, double *sorE, double *sorF, double *p, double omega, int Ni, int Nj)
{red kernel implementation}
__global__ void blackKernel
(double *sorA, double *sorB, double *sorC, double *sorD, double *sorE, double *sorF, double *p, double omega, int Ni, int Nj)
{black kernel implementation}
//function that performs the GPU computations
void performGpuComputations()
{

int size = Ni*Nj*sizeof(double);
//Initialize device variables
double* d_p;
double* d_pPrevious;
double* d_sorA;
double* d_sorB;
double* d_sorC;
double* d_sorD;
double* d_sorE;
double* d_sorF;
//gpu memory allocation
cudaMalloc((void**)&d_sorA, size);
cudaMalloc((void**)&d_sorB, size);
cudaMalloc((void**)&d_sorC, size);
cudaMalloc((void**)&d_sorD, size);
cudaMalloc((void**)&d_sorE, size);
cudaMalloc((void**)&d_sorF, size);
cudaMalloc((void**)&d_p, size);
cudaMalloc((void**)&d_pPrevious, size);
//copy matrices on device
cudaMemcpy(d_sorA, sorA, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_sorB, sorB, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_sorC, sorC, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_sorD, sorD, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_sorE, sorE, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_sorF, sorF, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_p, p, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_pPrevious, pPrevious, size, cudaMemcpyHostToDevice);
//initialize grid and block dimensions
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);
dim3 dimGrid(((Ni - 1) / dimBlock.x) + 1, ((Nj - 1) / dimBlock.y) + 1);
//kernel execution(call red-black kernel in each iteration)
while (difference > accuracy) //convergence criterion
{

for (int i = 0; i < N; i++)
{

//Launch kernel to update red squares
redKernel << <dimGrid, dimBlock >> >(d_sorA, d_sorB, d_sorC, d_sorD, d_sorE, d_sorF, d_p, omega, Ni, Nj);
cudaThreadSynchronize();
//Launch kernel to update black squares
blackKernel << <dimGrid, dimBlock >> >(d_sorA, d_sorB, d_sorC, d_sorD, d_sorE, d_sorF, d_p, omega, Ni, Nj);
cudaThreadSynchronize();

}

}
//copy results (pressure array) back to host
cudaMemcpy( p, d_p, size, cudaMemcpyDeviceToHost);
//Free GPU memory
cudaFree(d_sorA);
cudaFree(d_sorB);
cudaFree(d_sorC);
cudaFree(d_sorD);
cudaFree(d_sorE);
cudaFree(d_sorF);
cudaFree(d_p);

}

Figure 5.15: The modified CUDA algorithm of the Red-Black SOR iterative
solver.
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5.4.3 Message Passing Interface (MPI)
The Message Passing Interface (MPI) is a message-passing system used on dis-
tributed memory computer systems to develop large-scale parallel applications.
In message-passing, a process or function instead of being invoked by name, is
send as a message and the supporting infrastructure is responsible to invoke
the actual code to run. MPI is the dominant model used in high-performance
computing today.

Most large-scale parallel systems, such as supercomputers are distributed
memory clusters (Fig 5.16). That means that an explicit shared-memory model
(such as OpenMP) cannot be applied to take advantage of their full computa-
tional capacity. MPI has an advantage over OpenMP even in shared memory
systems that are based on the NUMA (Non-Uniform Memory Access) architec-
ture. In fact, in the NUMA multicore systems that were used in this thesis, the
OpenMP struggled to achieve optimal performance when a very large number
of cores was used.

Figure 5.16: A distributed memory cluster.

In a distributed memory computer network, the individual nodes (and the
CPUs they bear) cannot access the data from a shared memory as each one has
its own local memory. The program must distribute the chunks of data to the
different nodes through a high-speed interconnect network, and then collect the
results when the scattered CPUs have finished processing them (Fig. 5.17). In
this simple vector addition example we can see the following predefined MPI
APIs:

• MPI_Init: Must be called before any other MPI routine is called and
MPI can be initialized at most once.
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• MPI_Comm_Rank: Gives the rank of the process in the particular
communicator’s group. Many programs will be written with the master-
slave model, where one process (such as the rank-zero process) will play a
supervisory role, and the other processes will serve as compute nodes.

• MPI_Comm_Size: Indicates the number of processes involved in a com-
municator.

• MPI_Scatter: The outcome is as if the root executed n MPI_Send
operations. MPI_Send performs a standard-mode, blocking send.

• MPI_Gather: Is the inverse of MPI_Scatter. When called, each pro-
cess (root process included) sends the contents of its send buffer to the
root process. The root process receives the messages and stores them in
rank order.

• MPI_Finalize: Cleans up all MPI states. Once this routine is called,
no MPI routine (not even MPI_Init) may be called.

These and all other MPI API functions can be found at the open − mpi.org
(OpenMPI, 2015) documentation. A deeper insight into MPI is avoided, as it
was not used in the present work.
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int main(int argc, char **argv)
{

int rank, size, n, i;
double *x, *y, *buff;
//Initialize parallel environment
MPI_Init(&argc, &argv);
//Get my rank (MPI ID)
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
//Find out how many procs
MPI_Comm_size(MPI_COMM_WORLD, &size);
// initialize buffer array to 2*n length on master
if ( rank == 0 )
{

buff=calloc( 2*n , sizeof(double));
init_vec(buff,2*n);
print_vec(buff,2*n);

}
//Assume size divides n exactly
int chunk = n / size;
// initialize distributed vector placeholders
x=calloc(chunk , sizeof(double));
y=calloc(chunk , sizeof(double));
MPI_Scatter(buff,chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Scatter(&buff[n],chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
for (i=0; i<chunk; i++)

x[i] = x[i] + y[i];

MPI_Gather(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
if ( rank == 0 )

print_vec(buff,n);

MPI_Finalize();
return 0;

}

Figure 5.17: Vector addition algorithm with MPI.

5.4.4 Hybrid models
Hybrid models combine two or more parallel programming models. As an exam-
ple a cluster of distributed memory nodes that contain multicore shared memory
processors is examined (Fig 5.18). In this system, the same MPI example can
be modified so that when the data chunks are sent to the various nodes, an
OpenMP implementation can further parallelize the code to take advantage of
the multicore CPUs (Fig 5.19). By adding the OpenMP directives mentioned
in the previous section significant performance gains can be achieved. Here the
chunk and i variables are declared as private to ensure that they have a per-
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sonal value for each core and the arrays x and y as shared so that all threads
can access them.

Figure 5.18: A distributed memory cluster with multicore processors.

In a similar way, for distributed nodes that have distinct Nvidia GPUs a
hybrid MPI + CUDA model can be implemented, in which the MPI will pass
the data between the nodes and the GPUs will be used to accelerate the large-
scale computations with CUDA. These models, were not implemented in the
present thesis but are briefly presented here in an effort to expose the reader to
all the basic concepts regarding parallel computing.
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int main(int argc, char **argv)
{

int rank, size, n, i;
double *x, *y, *buff;
//Initialize parallel environment
MPI_Init(&argc, &argv);
//Get my rank (MPI ID)
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
//Find out how many procs
MPI_Comm_size(MPI_COMM_WORLD, &size);
// initialize buffer array to 2*n length on master
if ( rank == 0 )
{

buff=calloc( 2*n , sizeof(double));
init_vec(buff,2*n);
print_vec(buff,2*n);

}
//Assume size divides n exactly
int chunk = n / size;
// initialize distributed vector placeholders
x=calloc(chunk , sizeof(double));
y=calloc(chunk , sizeof(double));
MPI_Scatter(buff,chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Scatter(&buff[n],chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
for (i=0; i<chunk; i++)
#pragma omp parallel for private(i, chunk) shared(x,y)
x[i] = x[i] + y[i];
#pragma omp barrier
MPI_Gather(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD);
if ( rank == 0 )

print_vec(buff,n);

MPI_Finalize();
return 0;

}

Figure 5.19: Vector addition algorithm with hybrid MPI + OpenMP.

5.5 Code Analysis
The computational code of the present study was developed in two phases.
The first part was developed in the context of two master thesis at the School
of Naval Architecture and Marine Engineering at the National Technical Uni-
versity of Athens by L. Raptis and L. Koukoulopoulos (Koukoulopoulos, 2014;
Raptis, 2014) and it is used for computing the response of main journal bearings
of a large two-stroke marine Diesel engine, in steady-state and time-dependent
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loading conditions. The developed code is capable of taking into consideration
cavitation phenomena and slip boundary conditions. The code is implemented
in object-oriented C++. For steady-state simulations, a constant external load
is applied to the bearing. The solver, through a Newton-Raphson method, seeks
proper values of the bearing eccentricity and attitude angle that will lead to a
pressurized lubricant film geometry able to support the external load. In time-
dependent simulations, bearing load is a function of time (or crankangle, CA).
Two full engine cycles are solved, whereas 360 calculations are performed for each
cycle (every 1 degree CA). Therefore, to simulate the entire problem, the code
must calculate 720 separate equilibria whereas for each equilibrium Reynolds
equation needs to be solved several times through the SOR method, until the
Newton-Raphson method converges. For large grid sizes, these computations
can be very time consuming so parallel programming becomes imperative espe-
cially when simulating cavitation phenomena or when geometrical optimization
problems are solved. The mathematical analysis can be found in the third and
fourth chapters of the present work but the reader may look in to the mentioned
textbooks for a deeper understanding. The developed code is validated against
results from various research papers; a validation section is presented in the
next chapter.

When the concept of parallel programming for improving the performance
of our applications was set as a subject for this thesis, a different project was
set up by the writer, in order to implement the parallel algorithms for the case
of a simple pad bearing. This was to confirm that these methods would give the
desirable results and to start the development in a smaller scale and a simpler
code. The next phase, included the embodiment of the parallel code segments
in the form of independent C/C++ functions, giving users the ability to select
which implementation they want to run, and compare the results between serial
and parallel executions. In the OpenMP case the user is also able to select
the number of threads to be activated for benchmarking the CPU or to limit
overloading of the computer. A flow diagram of the developed program can give
valuable information about the utilized algorithms (Fig 5.20).

The individual parts of the developed algorithm and the order that they are
implemented is presented below:

• Data Entry: In the first part, variable initialization takes place( journal
bearing dimensions, rotational speed, lubricant viscosity, vertical and hor-
izontal loads, number of computational nodes in each dimension, number
of engine cycles, number of temporal points per cycle and solver type).

• First T ime Point: The initial assumption for the values of eccentricity
and attitude angle is set and film thickness geometry is calculated.

• Solution of Equation: The Reynolds equation is solved for pressure field
and then pressure is integrated over the lubricant domain. The hydrody-
namic load components, as well as the inlet and leakage flow rates and
friction force are calculated.

• Solution Evaluator: Examines if the equilibrium of forces is achieved.
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Figure 5.20: The basic flow diagram of the developed code.

• Determination of New V alues for Current T ime Point: New values
for the eccentricity and attitude angle are determined through the Newton-
Raphson method. Then new film thickness geometry is generated. The
procedure is repeated until force equilibrium is reached.

If time-dependent mode is ON, two extra procedures follow:

• Next T ime Point > Last T ime Point ?: Stops the program if the net
time point is after the time limit established, that is the complete engine
cycles have been simulated.

• Next T ime Point: Initializes the eccentricity and attitude angle param-
eters based on the two previous time steps and calculates the new film
thickness geometry for the next point in time. Reynolds equation is solved,
equilibrium of forces is evaluated and the procedure is repeated until force
equilibrium is reached.

The developed computational code, implements these CUDA kernels in a static
library form. The project architecture can give information on how the individ-
ual parts that make up the code are implemented and connected (Fig 5.21). The
program is developed entirely in object-oriented C++ and has both a Win32
and a GNU/Linux version. In Linux the gcc compiler for the C++ source (.cpp)
and header (.h) files was used and the nvcc compiler for the CUDA source (.cu)
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and header (.cuh) files. In Win32, the project is built in Visual Studio Nsight
Edition using the CUDA Software Development Kit (SDK). In the current ver-
sion four different executables can be produced. The bearingGUI uses the Fox
Toolkit to create a Graphical User Interface (GUI) to handle the input and out-
put code operations and of course execute it. The bearing executable simulates
the bearing’s function in steady state or time-dependent mode as described be-
fore. The user can choose the parallelization method from the input file (serial
execution, OpenMP with number of cores and CUDA) along with the rest of
the simulation parameters. The generateTabularV alues is used to run a para-
metric analysis with multiple sets of input data and the validateAlgorithms
validates that the results between the serial and the parallel executions are the
same during the development phase. All the computational functions are in the
bearingLib static library, and call the CUDA Lib library which is responsible
for executing the CUDA kernels. The decision to implement the GPU code in a
static library has many advantages as the last version of the code is extremely
portable and can be used to execute the computations in CUDA enabled ma-
chines without the need of a specific development environment or compilers.
Finally, two open source libraries are used. The Fox Toolkit for GUI develop-
ment and string input-output manipulation and the Eigen linear algebra library
of template headers for a few matrix-vector operations.

With the same profiling procedure we determined that the only the Solution
of Equation section needed to be parallelized and more specifically the iterative
SOR method that solves the linear system and computes the pressure field.

Figure 5.21: The architecture of the developed C++ project.



Chapter 6

Numerical Simulations

6.1 Introduction
In this chapter, the parallel numerical algorithms presented previously will be
utilized for solving the Reynolds equation for different hydrodynamic lubrica-
tion problems. The goal of the present chapter is to demonstrate the potential
increase in computational performance. The necessary code validation is pre-
sented for every examined case. That holds for the Reynolds equation, along
with the modifications for hydrophobic boundary conditions and cavitation phe-
nomena, discussed in chapter 3. Then, a benchmark case is implemented, to
demonstrate how the OpenMP implementation behaves for different numbers
of active threads and then compare it with the single core and CUDA imple-
mentations. Finally, a series of computational runs is performed and discussed,
along with the advantages and disadvantages of each method.

The simulations of this work were run on several workstations. The corre-
sponding hardware characteristics are presented in Table 6.1.

6.2 Validation of the developed code
The serial and parallel algorithms of the present study have been validated
against published literature results. In particular, the solution algorithm of
Eq. (3.17) has been validated against the results of Khonsari et al.(Khonsari
and Booser, 2008), for the case of a plain journal bearing, with slenderness
(length to diameter) ratio equal to 1. The comparison of results is presented in
Fig. 6.1(a) where the dimensionless load capacity as a function of Sommerfeld
number shows to be in very good agreement with the corresponding literature
results. The solution algorithm of Eq. (3.20) for hydrophobic surfaces has been
validated against the results of Guo-Jun et al. (GuoJun et al., 2007), for the
case of a partially hydrophobic slider (see Fig. 6.1(b)). Finally, the solution

72
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algorithm of Eq. (3.22), incorporating the Elrod-Adams cavitation model, has
been validated against the results of Giacopini et al. (Giacopini et al., 2010),
for the cases of a diverging-converging and a textured slider. The corresponding
comparisons are presented in Fig. 6.1(c,d), also demonstrating a very good
agreement.

Figure 6.1: Validation of the developed algorithms for (a) a plain journal bear-
ing, (b) a hydrophobic slider, (c) a diverging-converging slider, (d) a simple
textured slider.

6.3 Benchmark case: Steady-state equilibrium of
a plain journal bearing.

In the present section, the equilibrium of a plain journal bearing under steady
load has been computed. The geometric and operational parameters of the
bearing are presented in Table 6.2, along with the equilibrium results. Three
different computational grid sizes are studied, namely those of 256x256, 512x512
and 1024x1024 nodes. Simulations have been performed utilizing single-core,
OpenMP and CUDA algorithms.

OpenMP simulations have been performed on three different computer sys-
tems. The CPU characteristics of those systems have been presented in Table
6.1. In Tables 6.3 and 6.4, the execution time of the OpenMP implementations
are presented. The results are also displayed in graphical form (Fig. 6.2, 6.4
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and 6.6). In Figures 6.3, 6.5 and 6.7, speedup ratio S, being the ratio of total
computational time of the sequential algorithm over the computation time of
the parallel algorithm (quantifying relative performance improvement) for dif-
ferent number of utilized cores and the parallel efficiency being the percentage
of the parallel execution time in respect to the serial algorithm, are presented.
In all cases, the blue continuous line corresponds to the ideal linear speedup ra-
tio and parallel efficiency. It is noted that the reference single-core simulations
are performed with the Intel i5-760 processor, as it is faster than the others in
sequential execution.

Diameter [m] 0.3

Length [m] 0.3

Clearance [m] 0.00005

Lubricant Viscosity [Pas] 0.026

Vertical Load [N] 1000

Horizontal Load [N] 0

Rotational Speed [rpm] 1000

Eccentricity [m] 0.627

Attitude Angle [degrees] 48.77

Minimum film thickness [μm] 18.6

Normalized friction coefficient 0.026

Maximum pressure [Pa] 1.377×106

Table 6.2: Steady-state equilibrium of a plain journal bearing: Geometric, op-
erational and performance parameters.
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Figure 6.2: Equilibrium of a plain journal bearing under steady load: Execution
times on an Intel i5-760 system for different number of utilized cores.



CHAPTER 6. NUMERICAL SIMULATIONS 79

Figure 6.3: Equilibrium of a plain journal bearing under steady load: Speedup
and parallel efficiency on an Intel i5-760 system for different number of utilized
cores.
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Figure 6.4: Equilibrium of a plain journal bearing under steady load: Execution
times on an Intel Xeon E5-2620 system for different number of utilized cores.
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Figure 6.5: Equilibrium of a plain journal bearing under steady load: Speedup
and parallel efficiency on an Intel Xeon E5-2620 system for different number of
utilized cores.
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Figure 6.6: Equilibrium of a plain journal bearing under steady load: Execution
times on an AMD Opteron 6276 system for different number of utilized cores.
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Figure 6.7: Equilibrium of a plain journal bearing under steady load: Speedup
and parallel efficiency on an AMD Opteron 7276 system for different number of
utilized cores.
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The previous plots (Fig 6.3, Fig 6.5 and Fig 6.7) demonstrate that a linear
scaling of computational performance cannot be maintained as the number of
utilized cores increases. In particular, regarding the Intel i5-760 computer sys-
tem, a speedup ratio of approximately 3.2 is observed for the 256x256 grid, when
4 cores are utilized. For larger grid sizes, the corresponding improvement is fur-
ther reduced down to 2.4. For the Intel Xeon E5-2620 and the AMD Opteron
6276 computer systems, an almost linear increase of the speedup ratio is ob-
served for computations up to 6 and 8 cores respectively. For larger numbers of
utilized cores, speedup ratio decreases; for the 1024x1024 grid, a speedup ratio
of 3.3 is achieved for utilization of 64 cores.

The observed behavior can be attributed mainly to the scheduler, a part
of the system responsible for the synchronization barrier type. In more detail,
when OpenMP is used to parallelize an iterative “for loop”, the workload is
equally divided between the available threads. It is clear that it is not possible
for all of the threads to terminate their task simultaneously, therefore some
threads remain idle until the slower thread has finished processing its chunk of
data. Consequently a big overhead in the performance is created, being even
more intense when the number of threads increases. In general, two types of
schedulers exist, the static and the dynamic. When static scheduling is used,
each thread bears a predefined chunk of the total number of computations to
process. In dynamic scheduling, after a thread has completed the computations
it has undertaken, it takes over a chunk that is queued for processing. In the
present work, the default static implementation has been used. It is further
noted that, in order to accurately determine the actual processing time of the
solution procedure, a “clean” workstation is necessary, meaning that no other
process should be running in the system and that the thread pinning is enabled
preventing thread migration. Moreover, the parallelized loop should be executed
two times and only the second one to be taken into account, because, during
the first time, the overhead due to the threading pool creation (slave threads)
is also timed. In the present study, the performance was measured in default
state workstations, with other processes also running, to replicate the average
conditions of a personal computer.

Some additional remarks can be drawn for the Intel Xeon and AMD blade
servers. First, when a larger number of threads is utilized, the core frequency is
automatically lowered in order to prevent excessive heating, limiting computa-
tional performance. Another very important observation is related to the Non-
Uniform Memory Access (NUMA) architecture of these systems (Fig 6.8). In
this architecture, the processors communicate through several levels of memory
with different access latencies. This architecture is called non-uniform because
memory access time depends on the memory location relative to the processor.
The Intel workstation is build with 2 Intel Xeon E5-2620 12-Core processors,
whereas the AMD workstation with 4 AMD Opteron 6276 16-Core processors.
These different processors communicate through a high latency shared memory,
but each processor and each core have their own low latency cache memories.
The present OpenMP benchmark provides ground for explaining the behavior
of these processors. First, when a single processor is concerned we expect to
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have a normal OpenMP speedup, as the NUMA architecture does not affect
runtime. All variables are stored in the local memory of each processor and no
overhead is caused. That is true if we activate up to 12 threads in the Intel
Xeon machine and 16 threads in the AMD Opteron. But still the speedup is
not linear for this amount of threads, as the results also show. That is, because
these processors have 6 and 8 physical cores, respectively. In the case of the Intel
Xeon processor, the extra cores are a result of Hyperthreading, whereas in the
case of the AMD Opteron, the term “cores” can be misleading as in fact there
are “modules” that share arithmetic logic units (ALUs) amongst them, and are
capable of performing integer calculations for the operating system. As a result,
with the Intel Xeon machine a good parallel efficiency is expected for up to 6
parallel threads, whereas with the AMD Opteron for up to 8 parallel threads.
The above can be confirmed by the results of Fig. 6.5 and 6.7. Above these
thresholds of threads, each additional thread that is enabled will contribute ad-
ditional rise in performance, but not in an efficient manner. When more threads
are enabled, more than one processor is needed, therefore the deficiencies of the
NUMA architecture become inevitable. Data must be in a shared memory,
“seen” by all the processors. However, this memory will be of very high latency
and the speed at which each processor can access it, depends on their relative
position. In these architectures, a thread affinity can be utilized to bind the
OpenMP threads to the multiple processors. Depending on the topology of the
system, thread affinity can have a dramatic impact on OpenMP performance.
In the context of this work, it was not feasible to work on such levels of OpenMP
optimization, but this constitutes a very interesting subject for future work.

Figure 6.8: Topology of a ccNUMA Bulldozer server using hwloc.
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(a)

(b)

Figure 6.9: Steady state equilibrium of a plain journal bearing: (a) Comparison
of speedup ratios for the different computational systems of the present study.
(b) Color-coded contours of pressure on the interior surface of the bearing.

In Figure 6.9, the performance of CUDA calculations is also presented. In
the largest tested grid (1024x1024=1048576 nodes), a fairly basic GPU card
(Nvidia GeForce GTX-650) surpassed the OpenMP computational systems ap-
proximately by a factor of 2. It is noted that the purchase cost Nvidia GeForce
GTX-650 is 6 to 22 times less than that of the tested CPU workstations. On the
other hand, the high-end GPU (Nvidia Geforce GTX-980) is dramatically faster
than all other solutions. For the large computational grid, Geforce GTX-980
performs approximately 30 times faster than the best single-core CPU computa-
tion. Based on the present results, it becomes clear that for the utilized iterative
methods and for large grid sizes, GPU computing is the optimum solution, in
terms of both performance and acquisition cost.
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6.4 Time-dependent response of a plain journal
bearing

In the present section, the equilibrium of a plain journal bearing under under
time-dependent, periodic load has been computed. Simulation is performed
for two load cycles, considering 360 calculations per cycle. The geometric and
operational parameters of the bearing are presented in Table 6.5, whereas time-
dependent vertical and horizontal load of the bearing is presented in Figure
6.10(b). The bearing loads are representative of the crankshaft bearing loads of
Diesel engines. Since derivative dh/dt is unknown at the beginning of simula-
tion, two consecutive cycles need to be simulated. Here, three different computa-
tional grid sizes are studied, namely those of 256x256, 512x512 and 1024x1024
nodes. In Fig. 6.10(a), speedup ratios are summarized for the different grid
sizes and computational systems. The results demonstrate that parallel com-
puting can substantially improve the efficiency of time-dependent simulations,
however, speedup is less pronounced, in comparison to the steady-state simula-
tions of Section 6.3. OpenMP simulations on the i5-760 workstation displayed
good parallel efficiency, demonstrating a speedup ratio of approximately 3 in all
grid sizes. Simulations on the NUMA workstations (Intel Xeon E5-2620, AMD
Opteron 6276) showed that reduction of computational time by a considerable
factor is also feasible, especially in the medium sized grid. GPU simulations
demonstrate improved efficiency, especially for big sized problems, reaching a
speedup ratio of approximately 13, in comparison to single-core simulations.

Diameter [m] 0.3

Length [m] 0.3

Clearance [m] 0.00005

Lubricant Viscosity [Pas] 0.04

Vertical Load [N] 1000

Horizontal Load [N] 0

Rotational Speed [rpm] 1000

Table 6.5: Time-dependent response of a plain journal bearing: Geometric and
operational parameters.
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(a)

(b)

Figure 6.10: Time-dependent equilibrium of a plain journal bearing: (a) Com-
parison of speedup ratios for the different computational systems of the present
study. (b) Plot of time-dependent vertical and horizontal load.
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6.5 Steady-state response of a hydrophobic jour-
nal bearing

In the present section, the equilibrium of a plain hydrophobic journal bearing
under steady load has been computed. Hydrophobicity is considered at part
of the bearing surface, extending circumferentially from θ�h,start to θ�h,end, and
axially from Lh,start to Lh,start (see Fig. 6.11). The geometric and operational
parameters of the bearing, as well as the equilibrium results, are presented in
Table 6.6. Computations are performed for three different computational grid
sizes, namely those of 256x256, 512x512 and 1024x1024 nodes.

Diameter [m] 0.3

Length [m] 0.3

Clearance [m] 0.00005

Lubricant Viscosity [Pas] 0.026

Vertical Load [N] 1000

Horizontal Load [N] 0

Rotational Speed [rpm] 1000

θ�h,start [degrees] 20

θ�h,end [degrees] 220

Lh,start [degrees] 0.2L

Lh,end [degrees] 0.8L

b∗ 10

Eccentricity [m] 0.495

Attitude Angle [degrees] 32.97

Minimum film thickness [μm] 25.2

Normalized friction coefficient 2.104

Maximum pressure [Pa] 1.44×106

Table 6.6: Steady-state equilibrium of a hydrophobic journal bearing: Geomet-
ric, operational and performance parameters.

In Fig. 6.12(a), the achieved speedup ratios for the different grid sizes and
computational systems are presented. The results demonstrate that parallel
computing can substantially improve the efficiency of simulations utilizing the
modified Reynolds equation with hydrophobicity terms (Eq. (3.20)). OpenMP
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simulations prove to be very efficient on the i5-760 workstation, displaying a
speedup ratio of approximately 3, for all grid sizes. Regarding the NUMA
workstations (Intel Xeon E5-2620, AMD Opteron 6276), improved performance
is achieved for the small and medium sized grids, the latter displaying a speedup
ratio of approximately 11. GPU simulations on the Nvidia Geforce GTX-980
demonstrate substantially improved efficiency, especially for medium and large
sized problems, reaching a speedup ratio of approximately 15, in comparison to
single-core simulations.

Figure 6.11: Geometry of the hydrophobic journal bearing.
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(a)

(b)

Figure 6.12: Steady state equilibrium of a hydrophobic journal bearing: (a)
Comparison of speedup ratios for the different computational systems of the
present study. (b) Color-coded contours of pressure on the interior surface of
the bearing.

6.6 Steady-state response of a textured journal
bearing

Many recent research works have demonstrated that introduction of appropriate
artificial surface texturing at part of the surface of bearings may lead to improved
bearing performance. Numerical simulations of textured bearings with rectan-
gular, cylindrical or spherical dimples require the generation of very fine meshes,
therefore, this category of problems can greatly benefit from the utilization of
parallel programming methods. In this section, the equilibrium of a partially
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textured journal bearing under steady load has been computed. Artificial sur-
face texturing in the form of rectangular dimples has been considered at part of
the bearing surface, extending circumferentially from θ�t,start to θ�t,end, and axi-
ally from Lt,start to Lt,start, see Figure 6.13 and Table 6.7. The geometric and
operational parameters of the bearing, as well as the main equilibrium results
are also presented in Table 6.7. Computations are performed for three differ-
ent computational grid sizes, namely those of 256x256, 512x512 and 1024x1024
nodes.

Diameter [m] 0.3

Length [m] 0.3

Clearance [m] 0.00005

Lubricant Viscosity [Pas] 0.026

Vertical Load [N] 1000

Horizontal Load [N] 0

Rotational Speed [rpm] 1000

θ�t,start [degrees] 20

θ�t,end [degrees] 200

Lt,start [m] 0.15L

Lt,end [m] 0.85L

Nd,θ & Nd,L 5

dt,θ & dt,L 0.7

hd [μm] 15

Eccentricity [m] 0.625

Attitude Angle [degrees] 46.86

Minimum film thickness [μm] 18.74

Normalized friction coefficient 2.927

Maximum pressure [Pa] 1.434×106

Table 6.7: Steady-state equilibrium of a textured journal bearing: Geometric,
operational and performance parameters.

In Fig. 6.14(a), the achieved speedup ratios for the different grid sizes and
computational systems are presented. The results demonstrate that parallel
computing can substantially improve the efficiency of simulations utilizing the
Reynolds equation in geometries with increased complexity. OpenMP simula-
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tions prove to be very efficient on the i5-760 workstation; a speedup ratio of
approximately 3 is displayed for all grid sizes. Regarding the NUMA worksta-
tions (Intel Xeon E5-2620, AMD Opteron 6276), the results are similar to those
corresponding to the hydrophobic bearing: Improved efficiently is achieved for
the small and medium sized grids, the latter displaying a speedup ratio of ap-
proximately 9.5. GPU simulations on the Nvidia Geforce GTX-980 demonstrate
substantially improved efficiency, especially for medium and large sized prob-
lems, reaching a speedup ratio of approximately 15, in comparison to single-core
simulations. GPU simulations with the low-end Nvidia GTX-650 GPU display
reduced performance for all the tested grid sizes.

Figure 6.13: Geometry of the textured journal bearing.
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(a)

(b)

Figure 6.14: Steady state equilibrium of a textured journal bearing: (a) Com-
parison of speedup ratios for the different computational systems of the present
study. (b) Color-coded contours of film thickness and pressure on the interior
surface of the bearing.

6.7 Steady-state equilibrium of a scratched jour-
nal bearing

Bearing performance can be substantially affected by the degradation of surface
quality. Scratches constitute a usual form of bearing wear; they are observed
at the lower part of the bearing bushing and their width and depth is usu-
ally of the order of a few tens of microns. Obviously, numerical simulations of
scratched bearings require the generation of very fine meshes, therefore, this
category of problems can also greatly benefit from utilization of parallel pro-
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gramming methods. In this section, the equilibrium of a partially scratched
journal bearing under steady load has been computed. The main bearing geom-
etry and operational conditions follow the work of Dobrica and Fillon (Dobrica
and Fillon, 2012), (Helene et al., 2013),see Table 6.8. Scratches in the form
of circumferential grooves have been considered at part of the bearing surface,
extending circumferentially from θ�s,start to θ�s,end, and axially from Ls,start to
Ls,start, see Table 6.8 and Figure 6.15. The main equilibrium results of the bear-
ing are summarized in Table 6.8 as well. Computations have been performed
for a very fine grid of 512 x 4096 =2097152 nodes, ensuring 20 nodes in the
direction of scratch width.

Diameter [m] 0.28

Length [m] 0.215

Clearance [m] 0.000224

Lubricant Viscosity [Pas] 0.011

Vertical Load [N] 210700

Horizontal Load [N] 0

Rotational Speed [rpm] 1500

θ�s,start [degrees] 95

θ�s,end [degrees] 265

Ls,start [m] 0.15L

Ls,end [m] 0.85L

Ns,L 16

hs [μm] 112

Eccentricity [m] 0.967

Attitude Angle [degrees] 28.85

Minimum film thickness [μm] 7.44

Normalized friction coefficient 2.484

Maximum pressure [Pa] 20.13×106

Table 6.8: Steady-state equilibrium of a scratched journal bearing: Geometric,
operational and performance parameters.

In Fig. 6.16(a), the achieved speedup ratios for the different computational
systems are presented. The results demonstrate that parallel computing can
improve computational efficiency by a factor of approximately 3. The i5-760
workstation provides the best efficiency, whereas the NUMA workstations dis-
play slightly slower execution times, although they utilize larger number of cores.
GPU simulations on the Nvidia Geforce GTX-980 demonstrate substantially im-
proved efficiency, of the order of 7.5, in comparison to single-core simulations. It
is noted that simulation time can be reduced from 2 days and 1 hours (single-core
solution on Intel i5-760) to roughly 8 hours (Geforce GTX-980). The low-end
GTX-650 GPU was not able to substantially reduce computational time.
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Figure 6.15: Geometry of the scratched journal bearing.
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(a)

(b)

Figure 6.16: Steady state equilibrium of a scratched journal bearing: (a) Com-
parison of speedup ratios for the different computational systems of the present
study. (b) Color-coded contours of film thickness and pressure on the interior
surface of the bearing.

6.8 Steady-state equilibrium of a plain journal
bearing with oil-groove

In the present section, the equilibrium of a plain journal bearing under steady
load has been computed using the Reynolds equation with the Elrod-Adams
cavitation algorithm Eq. (3.22). The geometric and operational parameters of
the bearing are presented in Table 6.9. Here, continuity condition in the circum-
ferential direction is taken into account, whereas lubricating oil is assumed to
enter the domain from a rectangular oil hole, extending circumferentially from
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θ� = −10 to θ� = 10 deg and axially from 0.45L to 0.55L. Oil groove pressure
is assumed constant and equal to 0.2 MPa. The main equilibrium results of the
bearing are summarized in Table 6.9. Two different computational grid sizes
are studied, namely those of 64x64 and 128x128 nodes.

Diameter [m] 0.3

Length [m] 0.3

Clearance [m] 0.00005

Lubricant Viscosity [Pas] 0.04

Bulk Modulus [Pa] 0.0000001

Vertical Load [N] 500

Horizontal Load [N] 0

Rotational Speed [rpm] 1000

Eccentricity [m] 0.644

Attitude Angle [degrees] 47.3

Minimum film thickness [μm] 17.82

Normalized friction coefficient 2.613

Maximum pressure [Pa] 1.388×106

Table 6.9: Steady-state equilibrium of a plain journal bearing with oil groove:
Geometric, operational and performance parameters.

Solution of the Reynolds equation with the Elrod-Adams constitutes the
most complex and computationally intensive algorithm of the present study.
The largest obstacle in parallelizing this algorithm is the domain decomposition
in two different zones. The if statements separating the nodes in the cavitating
region from those in the active region lead to load imbalance, as different in-
structions of the algorithm are executed based on the region each node belongs
to. Regardless of the parallel model, the faster threads must remain idle and
wait for the slower thread to finish. In Fig. 6.17(a), the achieved speedup ratios
for the different grid sizes and computational systems are presented. Results
show, that the OpenMP NUMA workstations were less efficient compared to the
more powerful intel i5-760 processor. In the larger grid size, the GPUs domi-
nate the OpenMP implementations, with the high-end GTX-980 being the best
solution for this type of problems, reaching a speedup ratio of approximately
7.5. In Fig. 6.17(b), color-coded contours of pressure in the full-film region and
fractional film content in the cavitating region of the bearing are presented.
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(a)

(b)

Figure 6.17: Steady state equilibrium of a plain journal bearing with oil groove:
(a) Comparison of speedup ratios for the different computational systems of the
present study. (b) Color-coded contours of pressure and lubricant density on
the interior surface of the bearing.

6.9 Steady-state equilibrium of a textured jour-
nal bearing with oil-groove

In the present section, the equilibrium of a textured journal bearing under steady
load has been computed using the Reynolds equation with the Elrod-Adams
cavitation algorithm. The bearing is equivalent to that of Section 6.8 (see Table
6.9). Artificial surface texturing in the form of rectangular dimples has been
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considered at part of the bearing surface. Texturing parameters are identical to
those considered in Section 6.6 (see Table 6.7 for geometrical details). The main
equilibrium results of the bearing are summarized in Table 6.10. Computations
are performed for two different computational grid sizes, namely those of 64x64
and 128x128 nodes.

Eccentricity [m] 0.644

Attitude Angle [degrees] 40.66

Minimum film thickness [μm] 17.78

Normalized friction coefficient 2.537

Maximum pressure [Pa] 1.399×106

Table 6.10: Steady-state equilibrium of a textured journal bearing with oil
groove: Performance parameters.

This case combines a complex algorithmic implementation and a complex
bearing geometry. Parallel programming methods display the least efficiency
amongst all the studied cases. Here, the i5-760 OpenMP provides acceptable
efficiency, displaying a speedup ratio of approximately 3 for the small grid size,
and 2.2 for the large grid size, in comparison to single-core calculations (See
Fig. 6.18(a)). The efficiency of the NUMA workstations is less than single-
core simulations utilizing the Intel i5-760 processor. In the small grid size, the
low-end GTX-650 GPU is faster than the high-end GTX-980. The contrary is
true regarding the large grid size, where GTX-980 displays a speedup ratio of
approximately 4.2. For grid sizes larger than 128x128, the developed parallel
algorithms were proven unstable, therefore larger grids were not not tested in
the context of the present work.
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(a)

(b)

Figure 6.18: Steady state equilibrium of a textured journal bearing with oil
groove: (a) Comparison of speedup ratios for the different computational sys-
tems of the present study. (b) Color-coded contours of pressure and lubricant
density on the interior surface of the bearing.



Chapter 7

Conclusions and Future Work

In the present thesis, OpenMP and CUDA parallel programming algorithms
have been developed for solving the Reynolds equation in two-dimensional steady
and time-dependent hydrodynamic lubrication problems. Different forms of the
Reynolds equation have been utilized for taking into consideration hydropho-
bic surfaces of the rotor and stator, and cavitation in the diverging parts of
the lubricant domain. Here, plain, textured, hydrophobic and scratched journal
bearings, have been considered. For each studied case, a detailed comparison
of speedup amongst the different parallel algorithms and different CPU/GPU
systems has been presented. Three different CPUs (Intel i5-760 with 4 cores,
Intel Xeon E5-2620 with 24 cores and AMD Opteron 6276 with 64 cores) and
two different GPU processing units (Nvidia GeForce GTX-650, Nvidia GeForce
GTX-980) have been tested. Computational times were compared to reference
single-core simulations on Intel i5-760 CPU. The results demonstrate that par-
allel computing can significantly reduce computational time for the considered
hydrodynamic lubrication problems. Regarding CPU computations, the devel-
oped OpenMP implementation demonstrates, in most of the cases, acceptable
efficiency. In particular, the Intel i5-760 achieves a mean speedup ratio of ap-
proximately 3, whereas the NUMA based Intel Xeon E5-2620 and AMD Opteron
6276 workstations, exhibit very good performance for utilization of up to 6 and
8 cores, respectively. Inconsistent performance is observed when more than
one of the physical processors of the NUMA systems are used. In such cases,
deeper OpenMP optimization is required to fully exploit their computational
capacity. Nonetheless, in several cases, values of speedup ratio up to 11 have
been recorded. The Graphics Processing Units have proven substantially more
efficient, especially in large grid sizes, but require low-level tuning in the devel-
opment phase. The performance of the (inexpensive) low-end GPU GTX-650
is comparable to that of the CPU workstations, exhibiting better performance
on larger grid sizes. The high-end GPU GTX-980 is characterized by superior
performance on large grid sizes, outperforming by a wide margin all the other
tested hardware. The maximum speedup ratio achieved with GTX-980 is 29.7.
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Although the results presented here have demonstrated the effectiveness of
parallel computing methods in hydrodynamic lubrication problems, it could be
further developed in numerous ways, such as:

• OpenMP optimization for standard and NUMA architectures

• CUDA memory optimization using texture memory and tiling

• MPI implementations for distributed memory cluster systems

• Hybrid implementations utilizing MPI+OpenMP or MPI+CUDA

• Multi-GPU implementations for several GPUs in a single workstation

• Parallel implementations of Thermohydrodynamic (THD) analysis and
Elastothermohydrodynamic (ETHD) analysis of bearings using finite vol-
umes

• Optimization studies on bearing design and operational behavior using
parallel computing
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