Z
m

£
$

POMHBEV S

nvP¢oro

3

EGNIKO METZOBEIO I TOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKQON YTIOAOTIEZTON
TOMEAY TEXNOAOI'TAY. KAI TTAHPOPOPIKHY KAI YTIOAOI'TETON
EPTAYXTHPIO MIKPOYTIOAOTI'TETON KAI WHOIAKQON ZYYXTHMATQON

SPICE-Compatible Verilog-AMS Model for Inferior Olive Neurons

AINAQMATIKH EPTAZIA

Tov

MamnavikoAdou M'ewpyiou

EruBAEnwyv: AnuntpLog I. olvtpng
Av. KaBnyntng E.M.I.

ABnva, Alyouotog 2015

Z
m

£
$

POMHBEV S

nvP¢oro

3

EGNIKO METZOBEIO I TOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKQON YTIOAOTIEZTON

TOMEAY TEXNOAOI'TAY. KAI TTAHPOPOPIKHY KAI YTIOAOI'TETON
EPTAYXTHPIO MIKPOYTIOAOI'TETON KAI WHOIAKQON ZYYXTHMATQN

SPICE-Compatible Verilog-AMS Model for Inferior Olive Neurons

AINAQMATIKH EPTAZIA
TOoU

MamnavikoAdou M'ewpyilou

EruBAEnwy: Anuntplog |. Zovvtpng
Av. KaBnyntng E.M.I.

EykpiOnke amo tnv TpLluelr] eEETACTIKY EMLTPOTI TNV NUEPOUNVia e€€TaONG.

Anuntplog |. Touvtpng KlapdA Mekpeotln MNnwpyog MatodmouAog
AvamAnpwtng Kabnyntng KaBnyntig AvamAnpwtrg Kabnyntng

ABnva, Avyouotog 2015

ge-
$

POMHBEV
nVvPPoOPo

3

E®GNIKO METZOBEIO IIOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKQON YTIOAOTIEZTON
TOMEAY TEXNOAOI'TAY. KAI TTAHPOPOPIKHY KAI YTIOAOI'TETON
EPTAYXTHPIO MIKPOYTIOAOTI'TETON KAI WHOIAKON ZYYXTHMATQON

Amaryogevetat 1) avtryeadt), aod1KevoT) kat dlxvoun NG maQovoag eQyaoiag,
€€ 0OAOKATQOV 1] TUNHATOS AVTHG, YLX EUTIOQLIKO OKOTIO.

Erutoémetal n avatvmwor, anofnkevon Kal dlevour] yix 0KOoTo un
KEQOOOTKOTIKO, EKTIADEVTIKNG 1) EQELVITIKTG PVONG, LTO TNV TEOVTOOETT) Vo
avadégeTal n Ty TEOEAELONG KAL VA DLXTNQEITAL TO TTAQOV UNVUUA.
Epwtrpata mov adoovv T xoron e €Q0YAOIas Y KEQOOOKOTILKO OKOTIO TOETEL
va amtevOvVovTaL TTEOG TOV OLYYRAPEQ.

Oramopelc katl To CUUTIEQATUATA TIOV TIEQLEXOVTAL O XVTO TO £YYQAPO
exPoAlovv Tov ovyyeadéa kol dev TEETEL Vo eQUNVELOeL OTL AVTITTIEOCWTTEVOLY
T emtionpeg Oéoelg tov EOvucov Metoopiov IoAvteyvetov.

I'ewoytog IamavikoAaov
ArmAwpatovyog HAektpoAdyog Mnxavikog kot Mnxavucog HA. YrmoAoylotwv
Copyright © 2015 — Me erupVAaén mavtog dukaiwpatoc. All rights reserved

Contents

Acknowledgements L L L e e e e e e e
List of Figures 0 0 0 0 i e e e e e e e e e e e e
List of Tables 0 i i e
1 Introduction e
2 Related Work e e
2.1 Introduction
2.2 Neuron Models
2.2.1 Biological Aspects
2.3 EDA Technology
2.4 EDA and neuron modeling - Motivation
3 Spectre Implementation 000000,
3.1 Introduction
3.2 Single Neuron Implementation
3.3 Multi neuron implementation oL
3.4 Comparing code baseso
34.1 Compiling
3.4.2 Adaptive step size
3.4.3 Spectre transient analysis parameters
3.4.4 Simulations wrappers
4 Simulation Results o 000000000
4.1 Introduction
4.2 Single-Neuron verification oo oo
4.2.1 One Oscillation - Unit step current pulse
4.2.2 Multiple Oscillations
4.2.3 Input Parameter Sweeps

iii

v

vi

Ne R N

4.3 Multi-neuron verification

5 Conclusions & Future Work v i v i i i i i e e e e e

5.1 Conclusion .

5.2 Future Work

References

1

Acknowledgements

I am extremely grateful to have been part of the Microprocessors Laboratory and Digital
Systems Lab team for the past 9 months, during which I conducted my graduate thesis
project under the supervision of Prof. D.J. Soudris and Mr. D. Rodopoulos.

I would like to thank Prof. D.J. Soudris for all the advice and psychological support he
provided me from the very beginning of this period. The discipline mentality and the frame
of serious work he reinforced from the start were essential to my motivation for work.

Also, T would like to express my sincere gratitude to my supervisor and mentor, Mr. D.
Rodopoulos, for his pleasant cooperation and professionalism. I really enjoyed the process
of improving my technical skills under his wing, receiving the exact amount of feedback
necessary to keep going.

My special thanks to G.Chatzikonstandis for providing his knowledge immediately and ar-
ticulately whenever required.

Finally, T would like to thank my friends and family for being part of my journey as a
graduate student in the School of Electrical and Computer Engineering of NTUA.

11

ITepiAndn

H povtelornoinon tou eyxegdiou elvon pLor EQEUOYT TOU anacyolel OAO ot TEPLOGOTEQO TNV
EMOTAUN Ta TeheuToda yeovia xou tpooeyyileton and didpopoug xAddoug tne Biowteinrc omwe
etvan 1 Totpuer) amedvion xan n Aettoupyx| poryvntxy| topoypagior (EMRI) odAd xow 1 wAn-
pogopxt| LTEQUIMATC ambddooTC (HPC). Tétotec TEYVOAOYIEC EMITEETOLY TN GLVERYaoio O
MEYSAT ¥Aluaxa, TO OLUUOLPACHUO DEBOUEVGY, TNV UVAXUTACKELY| TOU EYXAPAAOU GE OLAPOPES
BlohoYeEg xAUAUXES X0 TNV XUTACKELT| DLUPORKY UTOAOYLO TIXWY CUC TNUATOY EUTVEUCUEVHY
ond tov eyxégaro. Aldpopo ueydha ey yeieiuata [1, 2, 3] emeEVTEGVOVTUL GTNY XATAVONON TNG
oavlpOTIVIG VONUOGUYNG XUl CUUTERLPORAS, OAAS xat oTny Vepamelar eYXEPUAXDY TUIHCEWY.
o cuyxexpuéva, oL TEOGOUOLWOELS oToV avlp®Tvo eYXEparo Vo umopolcay Vo €Ny oouy
TS OPOUY ToL BLAPOEA PAOUOXA GTOV EYREPANO, TOLEC EIVAL OL TUPEVERYELES TOUG ol (0WS Vo
Boniroouy oty avaxdiun véwv TpoéTwy Yepanelug.

Ev 1o peto€d, 1 évvola "neuromorphic computing” yiveton 6Ao xou mo dnuogirfc. H évvola
QUTY| OVAUPERETAL GTNY HATACKELT| ONOXATIOWUEVWY HUXAOUGTWY TON) UEYAANG XAuaxag Ue Qu-
OWXY| AEYLTEXTOVIXT) XU OQYEC TUEOUOLEG EXEIVIG TWV VEURIXWY CUCTNUATKY. Elvon eugavég ot
UTLGEYEL Lot BLoipX G ovall ATNOT) TNG XATAVONONG TWV EYUEPUALXDY UNYUVIOUMY X0k AELTOURYLMY.

TN ouYEXPWEVT BITAUATXT epyaocia Vo E0TIACOUNE O auUTH TNV avahoyio UETHED NAEXTEL-
AV HUXAOUGTLY %o VEURIXAC AELTouRYlag UE TN ¥eHom EWM®Y EpYaleiny oyedlaong ohoxAn-
CWUEVLY XUXAWUATOV YL TNV TEOGOUOIWOT] VEURIXGY XUTARMY. DUYXEXQUEVY, Vo YenoyloToL-
fiooupe évay mpocouolwty| Tutou SPICE, evioyuuévo ue éva VerilogA poviého yio to veupxd
x0topo infoli.

O in-silico TpoGOPOLOOELS ATATOVY TNV LIOVETNOT CUYXEXQUEV®Y VEURIXMOY UOVTIEAWY OOTE
va emteuydel 1 xotavonon e eyxepolxfic Aertoupylag. Ao Bacixéc xatnyopleg VEURIX®Y
HOVTEA®YV elvor Tar UtohoytoTxd o tar aupfotixd [10]:

o YuuPotixd poviého: Movtéha mou meplypdpovTtal Ue T YeN\on HodNUaTixwy eEIGHOEWY VLo
VoL oavaBEiEOUY TNV AEITOLRYLE TWV UNYOVIOUGY YaUNhol ETTEBOU GTOUG OToloug OQeElAETOL Xou
1 UToeEn TOU EXACTOTE (PUUVOUEVOL.

e Troloyiotixd povtéda: To uTohoYloTXE YOVTEAX UTOPOUV Vo TUPOUGLACTOUY WS ULdl TILO
APNENUEVT TEQLYRUPT) TNG AELTOURYLAC, 1 W L0 WO GUUTOYY| TEQPLYQUPT| TOV OVATIQUCTICEWY
xo TV ahyoplduwy mou ulodetiinxay yior vo teprypdipouy T Aettoupyio, péypl xou wS Ui
TEPLYPUPT| TOU Tw¢ VAoTo|dnxay auTol oL aAYOELIUOL Xou AVUTURUCTACEL.

EvahAaxtiny| xatnyoplonolnoT] Ty VEURIXGY HOVTEAWY UTOopEl Vo elvorn 1) Tapoxdtey:

e integrate-fire Movtéha: Ileprypdpouv to duvound ueufedvne o oyéor Ue TO PEUHN ELGOBOU
ToL AoUPAVEL Xou TNY XaTdoTaon TV cuvdheny. Ou adhayéc oty Tdon YeuBedvne xou TNy
ALY WYLLOTNTO BEV AMOTEAOVUY UEQOC TOL TROPBAANNTOS, Tl WOVO 1) GTOY oo T Sladacior Tng
évepyomnoinone twv duvauxwy dpdone ool EenepaoTel Evor xortd@AL [11].

e Movtéha Izhikevich: Bioloywde éyxatpa povtéla ye utohoyloties amhdtnra [12], tou Yewpet
TOUG VEVPWVES WE otdpal x0UTId Tou Teoxaholy 1| Oyt eXPHEELS Buvouxol evepyeiag.

v

o Movtéha aywydtnrac: Elvon Bactouéva oe yior avTioToly 1 XUXAOUATIXT AVITOQAGTOCT LIS
nxuToELMNG UEUPRdvNS 6w Tapouctdotnxe apywd and toug Hodgkin xou Huxley [13].

H Sour Tou veup®va mou Yo Yag anacyoAfoEL 6T GUVEYELXL PAUiVETOL GTO Ly UL 33.

Dendrite

Node of
Ranvier

Schwann cell
Myelin sheath
Nucleus

Yyfua 1: Aneixévion tng Soung VoG VEURMVIL XAl TWV ETUEPOUE TUNUATWY TOU [17]

Kdée tufua tou veupmva GUUPBEALEL UE TO OO TOL PORO OTT GUVOAIXT AclTouRYio TOL VELELXKOV
ovotuatoc. Ta didpopa TufuaTa TOU VEupKOV 6T amewovilovtal oTo Ly rua 1 etvan tor e€ng:

o Acvdpitec: Ou devdpiteg makpvouy Ty €lcod0 TOUC ATO YELTOVIXE XVTORA UECE TWV CUL-
vapewy xou otéhvouy Ty €€080 oto cwpo [17].

o Youa: Méow nhextpoynuixdy avTidpdoewy, To owud adeollel SleyEpTXE 1) AVACTUATIXG
oot omd Tor cuvamTid xoufio 1 dhhoug devdpitec. Av To dipolopa TwV oNUdTWY
Eemepdioel Uor GUYXEXQWEVY Tih (XaTd@AL) TOTE TO oOUA EVERYOTOLEL Evary NAEXTEIXG
TOAUS TOL UeTapépeTon OE YerTovixd xUTopa [17].

e ‘Alovac: O dovag elvan ULor TEOEXTACT TOU GWUATOS TOU CUUPBAAEL OTN PETAOOOT] TV
TUAUOY GE AN VEURIXE XOTTOQOL.

o Kitopa oynuatigopo’ Muekivne: Amotelovton and tov Nevpodova (Schwann cells,
OTOMOVOVOLY TOV dEova amo NhexTEr| dpaotnetotnTa ot ot Koufol tou Ranvier eivou
XEVE HETOED TWY AMOUOVOTIXGDY XUTdpnv [17].

Yta mhafotor authc TN gpyaotag, HEYAAN Eugaon Olvetal GTOV TOUEN TNG AUTOHATOTOMNOTG
niextpovixol oyedioouol (EDA). Ta etfiota é000a Ty and Tic YeYahDTEPES ETouplEC GTOV
TOUEN QUTO OLUXAOAOYOUY TNV ETLEEOY) TIOU EYEL GTO OYEDLAOUO AOYLOUIXOU UOVTEAOTIOMNONG
HUUAWUATOV.

To €0000 TOEOY WY AOYLIOUIXOU-WG-UTNEECIES (Software-as-a-Service) xou EUTOPOU AVOLY TOU
Aoytopxot (Commercial Open Source) eivar suvilng TOA TeptocdTEpo o ToERS avd, TETEUN-
VO Ot OYEoN UE T £0000 UmO TOROY Y| UDEWDY ET AOPLOTOV OTKG PUUVETOL OTO Ly AU 35.

Oplopéva epyoiela Tou aneLOVOVTAL GTOV TOUENY TWV OAOXANRWUEVEDY XUXAWUATOY £Vl QY-
Aelo Yvoo té wg egapupoyeg Tomou SPICE. To SPICE avoartOydnxe 610 epeuvntind epyas trpto
Hhiextpovixric tou navemotnuiou tou Berkley otnv Kahupdpvia and tov Laurence Nagel [26].

Amé toug Bidpopoug mpocouowwtéc TOmou SPICE mou €youv xotaoxeuac el (m.y HPSICE,
ModelSim,Spectre), eueic Yo aoyorniodue pe to cpyaieio Spectre tne Cadence, to onolo na-
PEYEL YTy oRT %ot ACLOTIO T TROCOUOIWGT) Yol AVOAOY XS, PABLOCUY VOTHTMY X0l X TOU CHUATOC
XUXAOUATa X0 AemTopepelc avolloele ot eninedo tpavliotop ot didgpopa media [3].

v

100 — Millions of dollars

40

Professional serVices and other

03 D4|D1 02 03 u4|u1 02 Q3 u4|u1
2004 2005 2006 2007

Eynuo 2: "Ecoda avé teTpdunvo evog avTimpoowreuTtinol Topdyou UTNEEGLOY AoYLlouxol [25]

H petdfaon otov tpocopowwty| Spectre elvon o oyetind amhr dwodixacior tou amoteheiton omod
T e&h¢ Pripota

e T petagopd tou Matlab x®dixa [8] o€ éva cuUBATO PETOY TEOGOUOLWTH LOVTEND GE YAOGGO!
VerilogA.

e v xataoxeur) Tou apEyelouw XUXAWUXTIXNG TEPLYRUPTHC (netlist) yio Tov amhé veupdva, 6Twe
pofvETOL TTAUEOXATE):

Apyclo infoli.scs — Apyeio mepiypagpnc aniod vevpwva

simulator lang=spectre
ahdl include "./infoli.va"

singleneuron (in out) infoli gbar K=36 gbar Na=120 g L=0.3 E_K=-12 E_Na=115
E.1L=10.6 C=1

Iinput (in 0) vsource type=pwl file=file.dat

optl options saveahdlvars=all
opt2 options rawfmt=psfascii

infoli tran stop=0.1

O %xdwoag mou amaptiCel To VerilogA amoteheiton amd telo uéen:

e 70 apyclo infoli_define.va, oto onolo opiCovial Gheg oL TaPAUETEOL ot UETABANTES.

e 10 opyclo infoli_assign.va, oto onolo yivovton oL amopalTNTES AEYIXOTOLACELS XUTd TO
AEY KO OTADLO TN TEOCOUOIWONG.

vi

e 10 apycio infoli_function.va, mou ulomolel TO OUGLWOES TUNUA TNG CUVARTNONG OF

x&de Brpa TG avdiuong oTo ypeodvo.

To tplo autd apyeio cupmepthopBdvovtor oTov xwdixa infoli.va, o omolog xakeiton Yece ToL

apYEl0 HUXAWUATINAG TEQLYPAUPYS.

O xowxag infoli.va @aiveton Topondte:

O xwduxag infoli.va yia TNV TERLYPAPY] TOU LOVTEAOU.

‘include "disciplines.h"
‘include "constants.h"

‘define INT_NOT_GIVEN -9999999
module infoli (in,out);
//node definitions

input in;

output out;

current in;

voltage out;

‘include "infoli_define.va"

analog begin

‘include "infoli_ assign.va"
‘include "infoli_function.va"

end

endmodule

O BLdpopeg UETABANTES %o TUPAUETEOL TTOU Y ENOLLOTIOLOUUE YLl TNV TERLYPOPT| TOU UOVTEAOU

infoli, xadd¢ xou 1 yeromn Toug, paiveton oToug TapoxdTe Tivoxeg 1 xon 2:

Or elomoelc Tou BLETOUY TO HOVTELO elval ToEoXdTe:

Iion = [m - [K - [Na - IL

onou T Ing, Ix, I, dlvovtar and Tig oyEoELS:

[Na = TTI,3 * Wl * h x (%ut(ﬂ — ENa)
Iy = n'*x 9r * (Vou(t) — Fx)
I, = g1 * (Vow(t) — EL)

Vil

ITivaag 1: Toapduetpot

Hapduetpor | Teprypapy

INa K TUWEC NAEXTEIXDY Ay WYLHOTHTGLY TOU AVOTAPL-
OTOUV TA LOVTLXS XOVIAAL TTOU ECUOTAOVTOL OO
TO YEOVO XU TNV THOT).

gL Toopuixr oy YWOTNTOL TOU oVITORLe TS TAL PE-
OpoTor OLEEOTG.

Er, Eng, Ex | IInyéc évtaong o téc twv omolwv xodo-
elovTon amo TIC CUYXEVIPWOELS TMV AVTIGTOL-
YWV LOVIOV.

C YWENTIXOTNTA UeuBpdvne ovd Uovdda €Tt
PAvELaS

Hivoxcag 2: MetofBAntéc

MeTafhntéc eprypapt

n, m, h Adwdotatec mtoootnTeg YeTald 0 xou 1 mou oye-
TiovTon Ue TNV EVEQYOTOMNON TWV XAVUALDY
xahiou, vatplou xou amEVERYOTOINOT) XoVOALO)
vatpeiou avtioTolya.

a;,b; Yradepéc avdroyeg tng tdong ahAd Oyl Tou

YEOVOU YOl TO 1-0GTO XAVAAL.

INaa]K7]L7Iion

Iion €lvon TO GUVOAXO PEVHNL UECT ATTO TT) UEW-
Bedvn mou urohoyiletan and TN oyéon (1).

viil

H véo Ty tne tdone unohoyiletoun péow tne mpocéyylone Euler mpdytne tédéng dote var mopo-
yOet pLor xoumUAn Tou mpocouoldlel TV e€EAEN TS Tdong oTo yedvo. H tdon e£66ou oe xdde
Briua Tng mpocouolwong diveTon amo:

Iion
Vout(t + 1) = Vouu(t) + deltaT * C (5)

Hopopoing, oL oTalepée EVERYOTOINONG TWV XAUVOALDY BiVOVTOL O TIG TORUXETE EELCMOOELS:

n =n+ deltaT * (a, * (1 —n) — b, *xn) (6)
m =m + deltaT * (am, * (1 —m) — by, *m) (7)
h = h + deltaT * (ap * (1 —h) — by, * h) (8)

‘Eva 8{xTtuo TOAGY VELPWVKY UTIOREL Vol XATUACKEVACTEL UE TUPOUOLA AOYIXT. LOUPOVA UE TOV
xOOxa [9], mAéov hopBdvoupe udhy xat Tic SloLVBETELS PETOED TV BLoPOEMY TUNUETMDY TOU
VEURWVOL aUTOV xod€auTol xardidg xon Tol PEVHTA oL ogellovTal 6TN Blapopd TdoNg UETOEY
OEVOPLTOV OLUPOPETINMY VEURMVOV.

H xuxdhwpatind neprypagr) evOg dixTtiou TEGGHRMY VEUROVWY QUVETAL OTO THPUXATL apyElo:

Ap)elo XUXADUATIXAG TERLYPAPNS BLXTVOU TECCALWY VELPOVW®Y

simulator lang=spectre
ahdl include "./infoli.va"

singleneuronl (in v_dend2 v_dend3 v_dend4 v_dendl) infoli parameters
singleneuron2 (in v_dendl v_dend3 v_dend4 v_dend2) infoli parameters
singleneuron3 (in v_dendl v_dend2 v_dend4 v_dend3) infoli parameters
singleneuron4 (in v_dendl v_dend2 v_dend3 v_dend4) infoli parameters

Iinput (in 0) vsource type=pwl file=file.dat

Yuyxpivovtog toug xddec MATLAB xou VerilogA evtoniloupe oplopéveg Slopopéc. Myetind
UE Tov TEOTO peToyAwTiong, o xwodxag MATLAB yenowonowel tov Matlab Compiler, mou
xwoomolel xou moxetdpet Tov xHowa MATLAB, onolog otn cuvéyeta o tpé€et e tn Bordeia
tou Matlab Compiler Runtime.

O npocopolwtrc Spectre dnuioupyel Evay @dxelo yetayrotiong ahdl otny apyr| Tng Tpocouo-
fwone.
H Boaowr| Sapopd uetah Spectre xon MATLAB, etvanr o npocapuolduevo Briua tng mpocouo-

fwong. Xto oyrua 33 gatveton T0 TpocupUolouevo Brjua Tou yenowlonolel To Spectre Yy TNV
Tpocouolwor evog avtiotpopéa BSIMA4.

To mheovexthpata ToU TEocUEUoloUEVOL BHUNTOC QolvovTon HOT amd Wi ATy TEOCoUOiko
yioo Ty emokfideuo tne Aettovpyixdtntoc tou VerilogA povtéhou, oto Lyrua ;3. BAénouue
OTL 0 TPOCOPOIWTAE Spectre xotapépver ptor GUUTOXVKDOT aTa ypeovixd. Brdata xatd 90.1%.

‘Eva tumuixd omotéAeoua TOMGY TEOCOUOLOOEWY PAUiVETOL GTO Ly fud 33, 010U 1 axp{Bela Tng
TPOETAOYYC conservative elvon eugovic.

1X

CMOS inverter input vs output

1.0F + + + *® + *® — in H
+ +
+++ out
+ +
4
0.8
"
20.6*
[
(o)}
8
©
> 0.4t
L
4
e
0.2} "
+
M +
: . :
+ +
0.0 W+ + ; W'H-Fﬁ+ + +
0.9 1.0 1.1 1.2 1.3
time (sec) le—-8

Yyfua 3: Ameixovion tne yerong meocuproloUsvou BAUNTOS YIol THY TEOCOUOIWOT
AVTIOTEOPEN

Y10 oyfua 53 gaiveton 1 axpifBeior xou cLUTOXNVWOT YEoVXWY onueiwy yio 150 enoavarrideg. O
xeovoc exteheong etvan 100 ms pe pedpatinoic makuoig edpoug 1 ms. Elvon epgoaveég mwg umdp-
YOULY OVETLIVUNTES TEQITTWOELS OL 0ToleC emNEedlouy apvNnTd TNV axp{Beta Tng Tpocouoiwong.

O1 800 TEPITWOES 0TO Ly AU 7, TOU EVIOTCTNXAY Vo 00NYO0V OE YEWOTEPEUCT) TOU OTU0-
T000pUPWOYU AGYOU PaivovTol ToEAXATK ot OPethovTol EiTE GE Blapopd Gaomg PETAL) TwV 500
xoumuAdv MATLAB xou Spectre, eite ot avaxplBt] evepyomoinom duvouixol evepyelag amd tov
TEOGOUOIWTY| Spectre.

2T CUVEYELL OTO Lyua 8, UEASTYUE T1) CUUTEQLPOEE. TOU TIPOCOUOLWTY OTIECTEE AVAAOYL UE
TNV EQUPUOYT BLUPORETIXMY PELUdTKY TNV elcodo. o otadepy| didpxeia ntpocouolwaong 400
ms, TOEATNEOVUE TN GUUTERLPORd TNe ptlog Tou Yéoou TeTpaywvxol opdiuatoc (RMSE)xa
Tou onuatotopuBxol Adyou (SNR)oe oyéon ue to ebpog TaALoL PEVUATOC Xat TN o BLépXELa
avdueca oty evepyomoinom xdde mohuou.

Avtiotoyn Sadixacto axohoLoUUe xou ylot TNV LAOTOINGCT TwV 4 SLUCUVOEBEUEVGY VELPOVWLY.
Apyixd Setyvoupe tnv eyxupdtnTa Tng uhoroinong yio éva dixtuo 2 entl 2 oTo Myfuo 9.

Erniong oto Eyrua 10, ancixovileton mwe 0 cUVOLAOUOS UEYIANG OLdEXELNS Xon WXehC HEOTC
OLdipxetog YeTadd TOAUWOY PEUUOTOS, UTOREL VoL 001y HoEL O G@dhdaTo TNy Spectre vhomolno.

Téhog, umopolpe Vo S0UUE WS 1) UETUBOAT OPIOUEVWY TOPAUUETEMY OTWE To maxstep Umopel
va ouvtehéoel oty auoucinon g axplBelag tpocouoiwong, xahoTHOVIAG TEAXOS TOV TEo-
copolwTA Spectre €va TOA) €UENXTO €QYUAEID YLl TNV TPOGOUOIWOT] VEUPOVWY. XTO My Hud
11, Brémoupe tnv enidpoaor Tou maxstep oto onuatoPopufixd Aéyo yia xdle €voy amd Toug
VEUPMVES TOU OLXTUOU.

input current
0.06 T ‘

0.05
_0.04} .
<
£ 0.03} 1
= 0.02f .

0.01} 1

0'(8)(.)000 0.002 O'0f04 . 0.%6 0.008 0.010
Voltage for simulated neuron

120 \ \
100 rmse=3.59mV - = spectre

80 snr=20.17dB — matlab ||
60 compression=92.91%

40
20

T

T

voltage (mV)

_%9000 0.002 0.004 0.006 0.008 0.010
time (sec)

Yyfuor 4: Mo tohvdpounom tng téomng Uepfedvng ocuyxplvovtog ta 600 gpyaheio

x1

£

voltage (mV)

0.06

input current

0.051
0.04
0.03f
0.02f
0.01f

1 1

1

1

O.O(S).00

0.02

0.10

12

120
100
80
60
40
20
0

.02mV
12dB

sion=87175%

|

.04 .06 0.08
Vo?tage for s?mulated neuron

- = spectre

— matlab ||

N—

=200

0.02 0.04

0.06

time (sec)

xii

0.08

0.10 0.12

Lyfuo 5: TTohhamhég Tahavtwoel yio Tuyala elcodo

Accuracy
20

15 — root mean square error ||
> —— mean absolute error

T

0 20 40 60 80 100 120 140 160
100 T T T T T a T T
AN A AN VINAANAp AWV WA—ANASAA .
80 — Compression |
. 60r .
X
40} 1
20f .
O0 20 40 60 80 100 120 140 160

iterations

Lyfua 6: Axp{Betar xou cuuTONVWon Ypovix®y onuelwy yio 150 enoavaiielg

xiil

input current
0.06 T

0.05} ' ' - :

_0.04f { { :

<

Eo0.03} 1

= 0.02f :
0.01f |

0-08 00 0.02 ?.04 0.06 0.08 0.10 0.12
Voltage for simulated neuron
120 T T T T

100} mV

- - spectre|]
— matlab ||

=89.91%

voltage (mV)

_200.00 0.02 0.04 0.06 0.08 0.10 0.12
time (sec)

(o) Avopopd: pdomne

input current
0.06 T

0.05} ' T o0 onr 1

_.0.04} 1

<

£ 0.03} |

= 0.02} .
0.01} |

.04 0.06 0.08 0.10 0.12
Vo?tage for simulated neuron

0'0(9.00 0.02
120
100

| rmse=9.50mV spectre|]

matlab ||

voltage (mV)

=200 . 0.06 0.10 0.12
time (sec)

(B") AvaxpBric evepyonoinon

Lo 7: Tepimtdoeig mou 0dnyolv oe yelpotépeuot) Tou onuatodopufod Adyou

X1v

15

225

20.0

20 1 ; 17.5
r 15.0

» 12.5
=
mo 10.0
= 10
3
< 7.5
5 1) 5.0
- 2.5
= - 20
. — -‘/‘- 0\
< _
20, — < e0 @s
60 < - 100 &\
80 <
Shir. 100 T 120 €
'ke oy, 120 < o«
Width 1<~ 140 140 8
Ms) 160 &0
«
(o) pllo ToL PECOU TETEPOYWVIXOU GPINLATOS
14
12
)
z
E 10
E
= 8
6
4
2
60 8o T " 6 S
SPikg w}:g;? 120 14(:= e ;0 120 199, me e
(ms)™"" 160 el e

(B") onuatodopuPixdc Aéyoc
Eyfua 8: cuunepipopd e pllac Tou UECOU TETROYWVIXOU GQIAIATOS X0k TOU

onuoatodopufixol Adyou ot oyéon Ue To €0p0¢ TOAUOL PEOUATOS Xat TN UEOT) DLdpXELd
avdueco oty evepyomoinom xdde oo

XV

Input current (uA) Voltage for simulated neuron (mV)

ONPOOOONPOOOONPOOOONPPO OO

o
=
N
w
N
ul
[e)}
o
=
N
w
N
ul
[e)}

Yy 9: Tdon e€660ou yio xdde Evay amd TOUC TEGGERELS VEURWVES

Xvi

100
920
80
g 80
W 70
’3<‘ 60 1 60
- 50
40 1 40
30
20 1 20
10
200, < <
;;:20600 800 T 2000
an ¢ T———— 3000 | 9)
Me 59900~ 4000 ot
ire’, 1400 U
s)
(o) Pilot tou péoou teTpaymvinol o@iuoTog
20
16
10 7 8
O 0
Z 0
2 -8
$-107
-16
-24
-32
-40
> -48
= 1000
< " 2000
€ap .. 800 I 3000 o
time tom,oolz()o T 4000 a{\on\
firs (1400 ouf
(Mg)

(B") LnuatodopuPde héyoc
Eyfua 10: Thomolnon TOMGY VEUR®VLV: MUUTERLPopd NG ellac Tou UEGOU TETROYWVIXOU

o@AhIaTOC %ot Tou onuatodopuPod AOYoU GE GYEoT UE T1 DIAEXELN TNS TEOCOUOIOTS XAl
TN péom BLEEXELN AVAUESA OTNV EVERYOTOMOT Xdle ToAUo0

XVvil

SNR vs maxstep

20 T T T T T T T
— neuron 1
— heuron 2
10 | .
= neuron 3
neuron 4
D - -
Py =10 R
=
o
=
u =20} |
_30 - -
_40 - -
_50 1 | 1 1 1 |
0 20 40 60 80 100 120 140 160

maxstep (us)

Yyfua 11: EnpoatodopuPinde Aoyog xadevdg and ToUg TEGOEQEIC VEUPWYVES OE OYECT| UE TO
HEYLoTO PBriua Tpocopoinong

Xviii

Abstract

The field of brain modeling is a very promising step towards the understanding of human
brain functions and the discovery of new treatments for brain diseases. Appearing research
challenges are being tackled by several scientific approaches including fMRI, Neuroimaging
and High Performance Computing. Despite the numerous scientific advances towards the
demystification of the human brain, there is always a constant need for higher optimiza-
tion and standardization of the simulation procedures. Neuromorphic computing is a very
interesting concept and a major step towards the better understanding of the brain, as it
establishes the connection between designed neural systems and actual biological nervous
systems. This analogy between electrical circuits and neural functionality is explored using
traditional EDA tools that are prominent in the IC design domain.

The purpose of this thesis is to provide a detailed transient response of a inferior olivary
nuclei (InfOli) model as a single neuron and as part of multi-neuron interconnection network,
through a standard, multi-physics simulator for integrated circuits. The software of our
choice is Spectre by Cadence. Starting from a Matlab implementation a compatible Verilog-
A model is created, which is run in the Cadence Spectre simulator. The results from Spectre
and the MATLAB simulator are compared to derive figures of merit as different input
parameters and inter-connection schemes are explored and finally the accuracy limitations
of the SPICE-like commercial tool are quantified.

Keywords: Electronic Design Automation (EDA), Inferior Olive (InfOli), Spike Width
(SW), Mean time to fire (Mtf), Root Mean Squared Error (RMSE), Signal to Noise Ratio
(SNR).

xXix

List of Figures

2.1
2.2
2.3

24
2.5

3.1
3.2

3.3

3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9
4.10

[lustration of the neuron’s structure and its compartments [16]
The analog VLSI chip NeuroDyn [18]

Reported Quarterly Revenue of a Representative Vendor of Software-as-a-
Service [25]

transistor vs neuron count [20, 28]

Integrated circuit abstractions for modeling and implementation [30]

Flowchart of the Matlab function that describes the Hodgkin Huxley model .

Spectre simulation flowchart. Spectre compiles the Verilog-A code for the
infoli model, which included in the netlist, and produces the output and the
ahdl compiling folder

Typical structure of a neuron cell showing the communication between the
axon and the dendrites of the neighbouring cell [17]

Connection scheme for 4 infOli neurons as described in our multi-neuron
implementaion Verilog-A model oo

[lustrating the adaptive step characteristic of the Spectre simulator through
simulating a typical CMOS Inverter

Python script flowcharto

Matlab vs Spectre voltage oscillation, errpreset = moderate
Multiple osciallations for random input, errpreset=conservative
Accuracy and compression for 150 iterations
Outlier cases that cause loss in the SNR of the Spectre implementation . . .

illustration of the delay caused by consecutive phase shifts of the MATLAB
signalo

Single neuron verification: Mtf and SW vs RMSE and SNR for a constant
duration of 400 ms

Single neuron verification: Mtf and Duration vs RMSE and SNR for a con-
stant spike width of 20 ms

Output voltage for each simulated neuron of the 2x2 connection scheme . . .
Matlab vs Spectre signal in the subthreshold oscillation level
Multiple neuron verification: Mean time to fire (Mtf) and Duration vs the

average RMSE and SNR of 4 neurons for a constant spike width of 20 ms . .

XX

10
11

14

18

19

20

23
25

28
30
31
33

34

35

36
38
39

40

4.11 SNR for each neuron of the 2 by 2 network, relative to different maxstep
values. Each SNR value is the mean of 20 iterations

4.12 Average compression of 4 neurons as a result of variations in maxstep and
Mtf for a constant spike width of 25 ms and a duration of 3.5s.

4.13 Multiple neuron verification: Mean time to fire (Mtf) and maxstep vs the
average RMSE, SNR of 4 neurons for a constant spike width of 25 ms and a
duration of 3.5 s. L

xx1

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

Parameters Usage L 16
Variable Usage 16
Differences in errpreset settings [35]o 24
Membrane Voltage Oscillation netlist parameters 26
Membrane Voltage Oscillation results - Moderate vs Conservative 27
Summary of the simulation parameters’ usage [35,41] 29
Membrane Voltage Oscillation results for each of the 4 neurons of the network.

The current generator produces spikes of 25 ms width, mean time of 1.5 s and
6 sduration. Lo 37

xxil

CHAPTER 1

Introduction

In order to coordinate all the functional needs of its organism, the brain has evolved into a
complex combination of structures each of which has a specific role. Every structure however,
consists of neural cells connected together in various ways forming neural networks. The full
spectrum of neural behavior has not yet been fully documented and analysed, nor has it been
explained how spectacular functions such as thought, stem from the interconnection of these
tiny cells. The research challenges regarding the brain are numerous and are being tackled
by a wide range of scientific approaches, while some approaches like functional Magnetic
Resonance Imaging (fMRI) or neuroimaging analysis are characterized by the development
and implementation of computational models in order to study fundamental brain structures

and functions.

Brain modeling is also a popular application increasingly appearing in High Performance
Computing (HPC) and multi-core processing systems, with modeling and visualization being
the core components. Scientific observations are translated into mathematics, developing
powerful algorithms to represent neuronal behavior realistically, and to make the best pos-
sible use of (super)computing power. These technologies will enable collaboration and data
sharing in a large scale, with the purpose of achieving a many-scale brain reconstruction,
matching clinical data to brain diseases, and developing brain-inspired computing systems
[1]. Several large scale projects [2],[3],[1] focus on the understanding of the human cognition
and behavior as well as the treatment of many brain related diseases. “The ultimate goals of
brain simulation are to answer age-old questions about how we think, remember, learn and
feel, to discover new treatments for the scourge of brain disease and to build new computer

technologies that exploit what we have learned about the brain” [2].

In the meantime, the concept of neuromorphic computing is coming to light. This concept

describes the use of VLSI technology to mimic neurobiological architectures present in the
nervous system. Neuromorphic analog, digital, mixed signal and software systems implement
models of neural systems for perception, motor control etc. The physical architecture and
principles of designed neural systems are based on those of biological nervous systems [4].
Whearas traditional Von-Neuman architecture chips make precise calculations reliably and
are efficient for numerical problems, they require substancial amounts of power for more
complex problems. On the other hand, neuromorphic architectures can detect and predict
complex data patterns using relatively low electricity and are efficient for applications that
are “rich in visual or auditory data and that require a machine to adjust its behavior as
it interacts with the world” [5]. It is obvious that there is a constant pursuit towards the

understanding of human brain mechanisms and functions.

This thesis attempts to amplify the analogy between electrical circuits and neural function-
ality by using tools for traditional Integrated Circuit design in order to perform transient
simulations of networks of InfOli cells. More specifically, a commercial SPICE-like simu-
lator is used, enhanced with a compatible InfOli model. The latter is implemented in the
Verilog-A language [6], which is traditionally used to behaviourally model complex electri-

cal/electronic phenomena [7]. The text of the current thesis is organized as follows:

Chapter 2 holds a state-of-the-art analysis regarding prior neuron models as well as an
overview of EDA landscape. Related work is explored, with emphasis on alternative mod-
eling and inter-connection schemes of the InfOli neurons. A summary of the EDA domain

is provided as an attempt to find common ground between EDA and Neuron Modeling.

Chapter 3 introduces the reader to our Verilog-A implementation of a simplified single neuron
InfOli model based on [8] and a more complex connection scheme of multiple neurons [9].
Characteristics of the Spectre simulator in relation to the Verilog-A model are also presented,
and finally a comparison is made between the legacy MATLAB code and the Verilog-A code

base with emphasis on the adaptive step characteristic of the EDA tool used.

Chapter 4 presents the verification for the single- and multi-neuron implementations. Dif-

ferent simulation approaches are discussed, and figures of merit that illustrate detailed com-

parison metrics for MATLAB and the Cadence Spectre simulator are presented.

This thesis concludes in Chapter 5 which summarizes results and respective observations.
Remarks about the infOli implementation and the simulator are made, in addition to future

work references.

CHAPTER 2
Related Work

2.1 Introduction

The current chapter illustrates the state of the art on neuron modeling and and gives a brief
overview of the EDA landscape. Section 2.2 discusses different types of neuron models and
presents prior art on neural connectivity and channel dynamics, whereas Section 2.3 focuses
on the impact of the EDA technology and presents an overview of the industry’s technical

landscape and the juxtaposition between EDA and neuron modeling.

2.2 Neuron Models

2.2.1 Biological Aspects

Simulating biologically plausible models with the purpose of understanding the brain func-
tionality is the main benefit of brain simulation even with the absense of in-vivo experiments.
Some models can provide insight for a single cell’s behaviour, while other, more complex
models, can provide information on the network dynamics of bigger brain sections [3]. In-
silico simulations can greatly accelerate brain experimentation and the understading of the

biological mechanisms.

Two basic types of neuron modeling are the conventional and the computational models

[10]:

e Conventional models: This type consists of the standard reductive modeling, which is

usefull for describing the neural phenomena (descriptive models), without much regard to the

substrate, as well as providing explanations (explanatory models) of the physiological sources
by considering the lower level mechanisms that generated them. Those mechanisms are
described in terms of models that need to be expressed as a set of mathematical equations,

which are capable of accurately capturing the involved phenomena.

e Computational models: The idea behind these models is that computations are the best
way to interprit a specific brain task. The key aspects of computations are representation,
storage, and transformation (algorithmic manipulation) planes, and are considered the way
neural machinery can represent and store information of outside stimuli. Computational
models can be further decomposed into the three planes described above, from an abstract
description of the underlying task, through a more concrete description of the representations
and algorithms adopted to satisfy the task, to a description of how these representations

and algorithms are actually implemented.

Alternative classification of neuron modeling is possible, exposing Integrate-and-fire models,

Firing-rate models and Conductance-based models [10]:

e Integrate-and-Fire: Describes the membrane potential of a neuron in terms of the
synaptic inputs and the injected current that it receives. An action potential (spike) is gen-
erated when the membrane potential reaches a threshold, but the actual changes associated
with the membrane voltage and conductances driving the action potential do not form part
of the model. The synaptic inputs to the neuron are considered to be stochastic and are

described as a temporally homogeneous Poisson process [11].

e Izhikevich Models: Biologically plausible model with extreme computational simplicity

[12], that abstracts the phases of neuron spikes treating the neuron as a black box.

e Conductance models: Conductance-based models are based on an equivalent circuit rep-

resentation of a cell membrane as first put forth by Hodgkin and Huxley [13].

The InfOli Model which is within the current thesis, falls under the Conventional, Conductance-
based model category, as full biological information is exposed during the simulation, due
to the full modelling of the underlying mechanisms. The Inferior Olive (InfOli) neural cells

are of major importance for the development of motor skills, space perception and cognitive

tasks. Extensive research has been placed to reveal their functionality [9, 14, 15].

Dendrite

Node of
Ranvier

Schwann cell

Myelin sheath
Nucleus

Figure 2.1: Illustration of the neuron’s structure and its compartments [16]

Biological neurons (Figure 2.1) are divided into several compartments that have their own

unique characteristics and a different biological role [17]:

e Dendrites. The dendrites of a neuron receive input current from Deep-Cerebellar-
Nuclei (DCN) cells as well as other neighbouring InfOli cells and forward their output
signal to the soma compartment [17]. The interfaces with neighbouring InfOli cells

are called gap-junctions or electrical synapses.

e Soma is the neuron cell’s body. Through electrochemical reactions, the cell nucleus
(soma) receives a plenty of activating (stimulating) and inhibiting (diminishing) signals
by synapses or dendrites, and accumulates these signals. As soon as the accumulated
signal exceeds a certain value (threshold value), the cell nucleus of the neuron activates

an electrical pulse which then is transmitted to nearby neurons [17].

e Axon.The pulse is transferred to other neurons by means of the axon. The axon is a
long, slender extension of the soma and it transmits the electrochemical output signal

to other brain cells, Purkinje-Cells, through the Climbing Fiber (CF).

e Myelin sheath that consists of Schwann cells, insulate the axon very well from
electrical activity and Nodes of Ranvier are gaps which appear where one insulate

cell ends and the next one begins [17].

Several prior art neuron implementations fall under the category of Conductance-based mod-

els. In [18], a neuromophic fully digitally programmable network of 4 biophysical Hodgkin-

6

Huxley neurons and conductance-based synapses is proposed (Figure 2.2) that accurately
models the detailed rate-based kinetics of membrane channels in the neural and synaptic

dynamics.

Figure 2.2: The analog VLSI chip NeuroDyn [18§]

Furhter related work [19], involves an effecient digital circuit implementation that captures
the quantized stochastic nature of KT ion channels of a Morris-Lecar (ML) Conductance-

based neuron model.

Artificial Neural Networks are another subsection of neural analysis that tries to mimic a
biological nervous system. ANN’s are described by sets of adaptive weights, (i.e. numerical
parameters that are tuned by a learning algorithm) and the capability of approximating non-
linear functions of their inputs. Specifically perceptrons, are multilayer networks without

recurrence and with fixed input and output layers [16].

Many other High Performance Computing networks have been implemented paving the way
of a new era for cortical simulations. In [20], the simulations, which incorporate phenomeno-
logical spiking neurons, individual learning synapses, axonal delays, and dynamic synaptic
channels, reach 1.6 billion neurons and 8.87 trillion synapses, exceeding the scale of the cat

cortex.

2.3 EDA Technology

In the context of this thesis, much emphasis is given on EDA tools. The increasing amounts

of CPU time and system memory as a result of the higher integration level of transistors

develops the need for exploring “High Performance computing techniques on the field of

EDA applications, such as transient IC simulations” [21].

The annual data revenues (5-year stock prices) of three major NASDAQ listed EDA compa-
nies [22, 23, 24] justify the impact of this booming industry on creating modeling software
tools all the way up from transistors to logic gates, IP blocks and processors. With a focus
on developing new technologies from a customer’s perspective and by adjusting execution
and service delivery on customers’ needs, EDA software has experienced an evolving pricing
equation that reflects the new means of delivering software functionality. Moving from the
established practice of selling perpetual licenses and time-based licesences for packaged soft-
ware, to newer approaches that include software-as-a-service and commercial open source
(COS), new pricing structures result in the adoption of new business models, research de-

velopments and sales practices.

100 — Millions of dollars

80 -

40 |-

Professional senvices and other

03 u4|m 02 a3 u4|m 02 03 u4|m
2004 2005 2006 2007

Figure 2.3: Reported Quarterly Revenue of a Representative Vendor of
Software-as-a-Service [25]

Revenue reported by software-as-a-service and COS providers (Figure 2.3), is usually much
less volatile quarter to quarter than the license fee revenue of vendors that use a perpetual

model [25].

Several produced tools directed at the IC domain, are software tools known as SPICE ap-

plications. SPICE was developed at the Electronics Research Laboratory of the University

of California, Berkeley by Laurence Nagel [26]. It combines operating point solutions, tran-
sient analysis, and various small-signal analyses with the circuit elements and device models
needed to successfully simulate many circuits and paved the way for many other circuit

simulation programs.

“The increasing need for accurate and efficient circuit simulation has prompted the devel-
opment of many circuit simulation programs as well as the advancement of the associated
numerical methods” [27]. Several SPICE-like simulators have been produced, some of which
are “HSPICE” by Synopsys, “ModelSim - Nanometer IC Design” by Mentor Graphics and

“Spectre” by Cadence.

2.4 EDA and neuron modeling - Motivation

There is a similar trend between brain modeling complexity and the number of transistors
in processors. As indicated in Figure 2.4, although brain modeling complexity is increasing
among species with larger and more complex neural networks, so does the number of tran-
sistors in modern processors, a fact that makes the solutions to brain modeling problems

more attainable.

In an attempt to find common ground between EDA and neuron modeling, we stumble
upon the concept of modeling abstraction [29]. In traditional EDA, the Y-chart (Figure
2.5) is often introduced and it features the available abstraction levels of integrated circuit

modeling.

Starting off at the bottom of the structural representation, the technology CAD level is
where the modeling of diffusion and ion implantation happens and solid state physics and
simulations reveal how the material works under different conditions. Then, in the circuit
level, which is the main abstraction level under the scope of this thesis, Kirchoft’s laws
and similar rules are used to solve the transient, steady state or frequency response. Higher
abstraction levels include the register transfer level (RTL) and the system level which

is the highest in the abstraction scale.

Intel Processors

L CeleronM Core2Duo Naniyg
: —e—Neumn Count
ol -)
1[}9 - :::'_'1[]"EI
1[}8 R R T R R R R LR R 5'555?1[}8
=36 Transistor Count|'
T S — A — 10"
Mouse Rat Cat Human
Mammals

Figure 2.4: transistor vs neuron count [20, 28]

As far as the neuron modeling context is concerned, however, the concept of modeling ab-
stractions is fragmented across coursework in a more vague manner. Some related work
drifts temporarily from the single-neuron level to discuss neuronal dynamics in terms of an
averaged population activity, like for example in the cortical tissue, which contains about
105 neurons. This spatial abstraction introduces concepts such as the average firing rate
ri(t),re(t) across excitatory-inhibitory populations and over ”spikes” [31]. The average activ-
ity of neurons describes the dynamics of the network in terms of these averaged quantities.
A similar concept of the average coupling strenght of two neurons being seperated by a

distance, appears on [17].

There are many promising large-scale parallel applications focusing on neuron modeling [20].
However, the neuron modeling domain as well as other other areas related to the design and
implementation of neuromorphic systems lack the levels of standardization and optimazation
that EDA community provides. The motivation for this thesis lies in the prospect of EDA

tools being used as a standard system for simulating asynchronous neural networks. While

10

Figure 2.5: Integrated circuit abstractions for modeling and implementation [30]

modeling abstraction is a concept established in EDA for over 30 years, it has yet to be

systematically introduced in neuron modeling as well.

The main focus of this thesis is the lower abstraction level, where mathematical equations
describe the neuron’s mechanisms and the involved phenomena are simulated in order to
capture a detailed transient response of neuron cells. The SPICE-like simulator will simulate
a compact Hodgkin-Huxley neuron model [8] and by exploiting the adaptive step sizing, it

will produce a computationally efficient waveform representation of neuron spikes.

The libraries created for neuron timing can later be used in a higher, transaction-level
modeling abstraction where neurons are perceived as finite state machines with a known
temporal response. The modeling phase will be accelerated with event-driven simulations.
Similar event driven simulations for neurons already exist under the scope of the Neural
Simulation Tool (NEST) and the combination of MPI and openMP [32]. NEST is best
suited for models that focus on the dynamics, size, and structure of neural systems rather

than on the detailed morphological and biophysical properties of individual neurons [33].

Fully synthesized asynchronous implementations of digital neurons that mimic the event-

driven nature of biological nervous system are already out to practise [34], establishing a

11

link between neuron networks and asychronous logic design. Such prior art is a major
step towards the one-to-one correspondence with EDA design and the ultimate purpose of

benefiting from the optimization and standardization that EDA offers.

12

CHAPTER 3

Spectre Implementation

3.1 Introduction

The purpose of this chapter is to describe the simulation tool where the inferior olive neuron
model has been implemented through the Verilog-A language. A comparison is also made
between MATLAB and Verilog-A code bases with an emphasis on the adaptive step sizing

and finally a multi-neuron implementation is discussed with suggestions for future work.

3.2 Single Neuron Implementation

Given the Matlab function of the Hodgkin and Huxley model [8] for a single neuron, a
flowchart is created describing the different stages of the process. Namely, the Hodgkin and
Huxley model describes the individual neuron and how both ion conductances and voltage
changes affect the action potential and the conductances of different ions. The equations
used in the MATLAB code were derived straight from the original Hodgkin and Huxley
paper [13]. In our case of a single neuron with one input and one output, the process is

described by the flowchart in Figure 3.1.

Making the transition to the Spectre Circuit Simulator is a straightforward process that
requires two steps. Firstly, a spectre-compatible InfOli model based on the given MATLAB
code is implemented in the Verilog-A language, which is traditionally used to behaviorally

model complex electrical/electronic phenomena [7].

Secondly, a netlist is created to be run by the Spectre Simulator as described in Figure 3.2.

The circuit description file for the single neuron model is provided below :

13

Initializing
constants

Parameter
Updates

li++] |[VIl=fVI]i-1)
]

Done Visualize
Not Done Results

Figure 3.1: Flowchart of the Matlab function that describes the Hodgkin Huxley model

The infoli.scs file — The netlist of a single neuron

simulator lang=spectre
ahdl_include "./infoli.va"

singleneuron (in out) infoli gbar K=36 gbar Na=120 g L=0.3 E_K=-12 E_Na=115
E1=10.6 C=1

Iinput (in 0) vsource type=pwl file=file.dat

optl options saveahdlvars=all
opt2 options rawfmt=psfascii

infoli tran stop=0.1

The main section in the sample netlist consists of the following instance statements:

e the singleneuron component, which is an ”expanded” model derived from the original
infoli module and is connected to the input node in and the output node out. The
singleneuron component receives the parameter values for the ion conductances, volt-
age equlibrium potentials and the membrane capacitance. The infoli module is the
master name of the component that identifies its type and is defined in the infoli.va
file included with the command ahdl_include "./infoli.va". The infoli.va file

should be provided at the current directory.

e the linput component connected to the input node in and the ground node 0, and is a

piecewise linear voltage source derived from a raw file called file.dat. Even though

14

this component is defined as a voltage source or vsource, later on we will use the

potential of the in node to access the current flowing between nodes 0 and in.

The code that describes the Verilog-A model is divided in three parts:

e infoli_define.va file, in which every variable and parameter is defined.

e infoli assign.va file, in which the necessary initial values of certain variables are

assigned during the initial step event of the simulation.

e infoli function.va file, where the main body of the InfOli function is placed and is

executed at every time step of the transient simulation.

These three files are held together in the infoli.va code, which should be provided in the

netlist.

The infoli.va code used is shown below:

infoli.va code — The Verilog-A description for an InfOli model

‘include "disciplines.h"
‘include "constants.h"

‘define INT_NOT_GIVEN -9999999
module infoli (in,out);
//node definitions

input in;

output out;

current in;

voltage out;

‘include "infoli_define.va"

analog begin

‘include "infoli_ assign.va"
‘include "infoli_function.va"

end

endmodule

15

Table 3.1: Parameters Usage

Parameters Description

INasJK Maximal values of electrical conductances
representing Voltage-gated ion channels that
depend on both voltage and time.

gL Linear conuctance that represents leaked cur-
rents.

Er, Ena, Ex | Voltage sources whose voltages are deter-
mined by the ratio of the intra- and extra-
cellular concentrations of the ionic species of
interest.

C membrane capacitance per unit area

Table 3.2: Variable Usage

Variables Description

n, m, h Dimensionless quantities between 0 and 1
that are associated with potassium channel
activation, sodium channel activation, and
sodium channel inactivation, respectively.
a;,b; Rate constants for the i-th ion channel, which
depend on voltage but not time.
Ina i 11, Lion | Lion is the total current through the mem-
brane calculated by equation (3.1).

As specified in the singleneuron instance statement singleneuron (in out) infoli in
the infoli.scs netlist, infoli is the name of the subcircuit being called; singleneuron is the
unique name of the subcircuit call; and in, out are the connecting nodes to the subcircuit
call [35]. However, when the singleneuron instance statement is called from the netlist, the
Spectre simulator substitutes these connecting node names in the singleneuron call for the
connecting nodes in the infoli module definition. The main body of the Verilog-A definition

is placed inside the analog block which is denoted by the keyword analog.

The infoli_define.va code includes all the variables and parameters that are being used.
In contrast to variables, default values must be assigned to parameters during definition. In
our case the default values characterised by ¢INT_NOT_GIVEN are very large negative numbers
as indicated in the infoli.va code, but their values are being edited in the netlist level.

The different parameters and variables used in our infoli model are presented in Table 3.1

and Table 3.2.

16

In the infoli_assign.va code, the n, m, h and a;,b; variables are being initialized according
to the Hodgin-Huxley equations [13] and the output membrane voltage is set equal to the
zero baseline voltage. These initializations take place only during the first step of the
simulation, that is, the DC operating point phase. This phase is called initial step event

and is denoted by @(initial step).

The variables of the model need to be updated at every step of the transient simulation.
This occurs in the infoli_function.va code file. The I;,, current is calculated based on

the updated values by:

Iion = Izn - IK - INa -]L (31)

where [;, is the input current flowing between nodes 0 and in, while Iy,, Ix and I are

given by the equations:

Ing = m> % Gna * h* (Vo (t) — Enag) (3.2)
]K = n4 * gK * (V;)ut(t) — EK) (33)
I, = gr * (Vou(t) — Er) (3.4)

The new value of the voltage is calculated using Euler’s first order approximation in order to
generate a curve that most closely approximates the time course of the voltage. The output

voltage at every step of the simulation is given by:

[ion
V;)ut(t + 1) == V:)ut(t) + o1 * C (35)
Similarly, the channel activation constants are given in the following equations:
n=n+ 0T * (a, * (1 —n) — b, xn) (3.6)
m =m+ 0T * (ay, * (1 —m) — b, xm) (3.7)

17

infoli_define.va
e

infoli_ assign.va

infoli_function.va

S—
spectre
netlist

Spectre()

ahdl compiling
folder

simulation
output

Figure 3.2: Spectre simulation flowchart. Spectre compiles the Verilog-A code for the infoli
model, which included in the netlist, and produces the output and the ahdl compiling
folder

The flowchart in Figure 3.2 indicates the process in which the netlist is compiled and run

by the simulator and the results are produced.

Access Functions

Whereas in Matlab the input current and the output voltage of the membrane are simply
defined by two vectors I and V, Verilog-A takes advantage of the access functions I() and
V(), which are defined by the electrical discipline contained within the disciplines.vams
file [36]. The arguments of the access functions refer to the internal nodes in and out of
the InfOli module. In our case, I(in) accesses the current flowing between the in node and
the implicit ground node. Similarly, V(out) accesses the potential between the out node
and the ground node. Equation 3.5 is a branch contribution which defines the relationship

between the module ports out and in.

Verilog-A Functions

Calculating the output voltage V(out) in equation 3.5 requires the knowledge of each step’s

duration, 0T. As we will discuss in section 3.3, this value is not a constant number which

18

can be known from the beginning. For that purpose we take advantage of a specific built-in
function, one of the many that Verilog-A currently supports. So, the value of T in equation
3.5 is the unique duration of each step of the transient simulation calculated with the use
of the $abstime built-in function [36], which in transient analysis returns the absolute
simulation time in seconds. More specifically, dT is the difference in seconds between the

returning values of two consecutive $abstime calls.

3.3 Multi neuron implementation

A multi-neuron network can be implemented based on the matlab code [9]. In comparison
to the single neuron implementation, the connections between the different compartments

of the infOli neuron model are now taken into consideration as in Figure 3.3.

N e

1 !
dendrites 73{ dendrites
| pUE Y 8

VoM e

| - soma

":}‘\M e action |
y‘:%&(‘ : ."l' potential - S
i
£y

T s _ I s
SO : ~ 110mv
N‘\J\\l‘i ’f,-—-‘y_\ ! i
o i /) 1ms ;
- , N axon |

‘\
, o eleetrode

Figure 3.3: Typical structure of a neuron cell showing the communication between the
axon and the dendrites of the neighbouring cell [17]
The MATLAB computational model works in a synchronous way, where in every step all
neurons concurrently produce the output based on their previous state and the current
inputs. The current input for each cell is the combination of the input current from the
Deep Cerebellar Nuclei (DCN) and a neighbouring current computed as a function of the
difference bewteen the dendritic voltages of two neighbouring cells times the conductance

of their gap juction.

In the context of this thesis, 4 neurons are interconnected by twelve synapses as shown in

19

Figure 3.4: Connection scheme for 4 infOli neurons as described in our multi-neuron
implementaion Verilog-A model

Figure 3.4, where the currents 4;; are given by the equation

iij - (‘/diend - ‘/djend) * Cij (39)

gap
and C’;{LP are the conductances of the gap junctions between each pair of neurons.

The connection scheme is implemented in Verilog-A by appropriately configuring the netlist.
Four singleneuron components of the same infoli model are instantiated, where each com-
ponent has 4 input nodes and 1 output node. When two single-neuron components connect
to a node, they can either affect or be affected by this node. This connection takes the form
of either the potential at the node, or the flow onto the node through the ports of the compo-
nents. For example, the singleneuronl component affects the V., output node potential,
which then contributes to the neighbouring input currents of the other three components as

an input node potential, according to equation 3.9.

Part of the netlist instance statements for the 4-neuron interconnection scheme is provided

below:

20

The infoli.scs file — The netlist of a 4-neuron interconnection scheme
simulator lang=spectre
ahdl_include "./infoli.va"

singleneuronl (in v_dend2 v_dend3 v_dend4 v_dendl) infoli parameters
singleneuron2 (in v_dendl v_dend3 v_dend4 v_dend2) infoli parameters
singleneuron3 (in v_dendl v_dend2 v_dend4 v_dend3) infoli parameters
singleneuron4 (in v_dendl v_dend2 v_dend3 v_dend4) infoli parameters

Iinput (in 0) vsource type=pwl file=file.dat

This connection scheme can be extended for an arbitary number of neurons with the con-
struction of the netlist being automated by a seperate script. The size of the neuron network
as well as the conductances of the gap junctions between neurons that define the intercon-

nection scheme should be given as inputs by the user.

Verilog-A allows definitions to contain repeated elements defined using vectors of nodes.
This can be used to implement devices such as the infoli module that have multiple inputs
or outputs. The Verilog-A specification allows the size of vectored nodes to be specified
as a parameter that can be assigned as a pre-processor constant (‘define n 16) or as a

compile-time parameter [36].

In such cases the netlist instance statement for the i singleneuron component becomes:
e singleneuron_ i (in v_in[n] vout_i) infoli

and the deifinition of the nodes as inputs in the infoli.va code becomes:

e input [0:n] v_in ;

This thesis however does not focus on the scaling of the InfOli modeling on the Cadence Spec-
tre, rather on the accuracy that the simulator provides. As a result, the fully parametrized

netlist production is left as future work.

21

3.4 Comparing code bases

3.4.1 Compiling

The MATLAB code is run using the Matlab Compiler, which encrypts and archives the
MATLAB code (remains as .m code), and packages it in an executable wrapper. This is
delivered to the end user along with the MATLAB Compiler Runtime (MCR). When the
executable is run, it dearchives and decrypts the MATLAB code, and runs it against the
MCR instead of MATLAB. The infOli function therefore runs exactly the same as it does

within MATLAB.

On the other hand, the Spectre simulator creates an ahdl compiling folder (inv.ahdlSimDB)
for the behavioral source code infoli.va, at the beginning of the simulaiton. Once the
installed compiled interface for the verilog-A code is created, every other simulation will
only require a check of whether the existing shared object for the infoli module is up to

date.

3.4.2 Adaptive step size

The main difference between the Matlab time-based implementation and the Spectre Circuit
Simulator is that the latter introduces an adaptive time step during the transient simula-
tion. This event-based characteristic is implemented through Verilog-A with the use of the
if (analysis("tran")) statement. More specifically, in the Matlab code, the parameter
updates and the calculation of the new voltage values using Euler’s first order approxima-
tion is nested within a for loop with a predefined by the user number of steps and step size
which can be obtained as the difference between two simulation time points. In Verilog-A,
the same process is embedded in the if (analysis("tran")) statement. Figure 3.5 shows
how the Spectre simulator uses adaptive step to simulate the output of a typical CMOS
inverter. More steps are required during rapid signal changes while a constant signal level
is simulated by only a few steps. In that sense, the simulator runs and stores the minimum

amount of activity that is required for accuracy to be guranteed. The output file size of

22

neuron simulation is kept therefore under reasonable control.

CMOS inverter input vs output

1.0 + + + + % — In H
+
+++ out
+
0.8f
< 0.6f
(0]
o
3
©
> 0.4}
L
4
b
0.2f "
+
M +
i . :
+ +
0.0 W+ + $ W-H-O--OH-+ + +
0.9 1.0 1.1 1.2 1.3
time (sec) le-8

Figure 3.5: Illustrating the adaptive step characteristic of the Spectre simulator through
simulating a typical CMOS Inverter

In most cases, the purpose of this adaptive stepsize control is to achieve some predeter-
mined accuracy in the solution with minimum computational effort. The implementation
of adaptive step size control requires that the stepping algorithm sends information about
its performance and an estimate of its truncation error. Although the calculation of this
information will add to the computational overhead, the trade-off will be received probably

in smaller execution time and definately smaller output size [37].

The fundamental task of the adaptive step sizing algorithm is to take the largest step
size consistent with specified accuracy constraints. Only when this is accomplished does
the simulation benefit in terms of speed vs. accuracy [37]. In that sense, the Spectre
simulator skips unnecessary steps where variations in the signal are smaller than a specific
predetermined accuracy criterion and increases the number of steps where variations are

large.

23

3.4.3 Spectre transient analysis parameters

Transient analysis parameters can be adjusted in several ways in terms of the error tolerance,
the integration method or the maximum speed, in order to meet the accuracy needs. Usually,
the performance and accuracy is improved by adjusting the reltol or errpreset parameters

[35).

The errpreset option can set a group of parameters that control transient analysis accuracy.

The spectre simulator uses three different errpreset values:

¢ Liberal: Suitable for digital circuits or analog circuits with short time constants
© Moderate: Suitable for approximating the accuracy of a SPICE2 style simulator

¢ Conservative: More appropriate for sensitive analog cicuits and high accuracy require-

ments

Based on the documentation [35], manual adjustments can be achieved by changing the
values of specific parameters like reltol or maxstep. If, for example, more accuracy is
required than that provided by conservative preset, the error tolerance can be tightened
by setting reltol to a smaller value. The differences in the parameter values for the three

errpreset settings are shown in Table 3.3.

Speed and accuracy can also be adjusted by the method parameter. The Spectre simulator
uses three different integration methods: the backward-Euler method [38], the trapezoidal
rule, and the second-order Gear method [39]. Several combinations are also permited be-

tween these methods [35].

Table 3.3: Differences in errpreset settings [35]

errpreset liberal || moderate || conservative
maxstep T/10 T/50 T /100
reltol 10e-03 le-03 100e-06
lteratio 3.9 3.5 10
relref sigglobal || sigglobal alllocal
method gear2 || traponly gearZonly

24

3.4.4 Simulations wrappers

The whole simulation process for both single- and multi-neuron implementations is orches-
trated by a Python script (version 2.7.6), as described in Figure 3.6. The input current
source for both MATLAB and the Spectre simulator is derived from the a raw file that

contains current spikes of 5 pA at random time points.

e —
t,Lin (1) Mtf, SW, Duration

rzts(:lli:s Spectre\()‘ ’l\ﬁtlab()
Signal
interpolation
!
Quality
metrics

Figure 3.6: Python script flowchart

In order to create the input current file, a current input generator is used [40], that produces
spikes with specific width, mean time between firing and duration, specified by the user.
The InfOli neuron module function is run simultaneously both by Matlab and the Spectre
simulator in parallel processes. Results are then stored in list structures and compared in

terms of quality metrics.

25

CHAPTER 4

Simulation Results

4.1 Introduction

This chapter discusses the process of the single and multi neuron verification. Section 4.2,
focuses on the singe neuron verification, the types of simulations and their purpose, the
different settings used and the results produced by applying different input patterns. A
similar discussion is made in section 4.3 about the multi neuron verification with a quick

reference to future exploration.

4.2 Single-Neuron verification

4.2.1 One Oscillation - Unit step current pulse

After the Verilog-A implementation for the single-neuron model is complete, a simple simu-
lation is run to verify the validity of the model compared to the existing Matlab impemen-

tation. The netlist parameters for the spectre simulation are shown in table 4.1.

Table 4.1: Membrane Voltage Oscillation netlist parameters

analysis type transient
duration 7 ms
input current 5 pA pulse
errprest moderate (default)

The resulting membrane potential for both Matlab and spectre is depicted in Fig 4.1. Even

though normally the membrane potential rests at -65 mV and climbs up to 50mV in the

26

depolarization phase, for simplicity reasons we set the resting potential at 0 mV. The four
regions of interest in the action potential of the cell membrane can be identified in this single

oscillation [16]:
e Region | - Resting State

The output remains steady at the resting potential. Gradually, the excitatory post synaptic

potential starts traveling down dendrites, summing up in the cell body (in the axon hillock).
e Region |l - Depolarization Phase

When a threshold is crossed, the sodium (Na) channels open, the potasium (K) ion channels

close and the membrane voltage begins to rise.
e Region |l - Repolarization Phase

The sodium ion channels begin to close, the potasium ion channels, which have already
began to open, dominate, and the potasium flow current out of the cell pertakes the sodium

current coming into the cell. The cell membrane voltage begins to drop back down.
e Region |V - Refractory period

Excessive hyperpolarization occurs past 0mV and and the membrane voltage climbs back

up to resting potential.

Right from the start, the benefits of the adaptive step in the simulation are obvious compared
to Matlab’s fixed step. The spectre simulator compresses time points by 92.91 % and with
satisfying accuracy.

Table 4.2: Membrane Voltage Oscillation results - Moderate vs Conservative

errpreset moderate | conservative
compression || 92.91 % 53.5%
SNR 25.95 dB 24.34 dB
RMSE 2.13 mV 2.61 mV

Results from the voltage membrane oscillation simulation for both moderate and conserva-

27

input current
0.06 x x x x

0.05
—_ 0.047 T
<

£ 0.03} 1
= 0.02

T
|

0.01f 1

0'(())(.)000 0.002 0.0P4) O.%)G 0.008 0.010
Voltage for simulated neuron
120 T T T T

100 rmse=3.59mV - - spectre

80 snr=20.17dB — matlab
60 compression=92.91%

40
20

T

T

voltage (mV)

_69000 0.002 0.004 0.006 0.008 0.010
time (sec)

Figure 4.1: Matlab vs Spectre voltage oscillation, errpreset = moderate

tive errpreset are shown in Table 4.2. Due to the tighter maxstep setting, the time-point
compression fell to 53.5%, in comparison to the moderate preset. For short simulation pe-
riods, the moderate setting leads to substancial compression and very satisfying accuracy

compared to the conservative setting.

While experimenting with longer execution times however, the spectre simulator leads to
convergence failures, due to the loose relative tolerance parameter, reltol, and the large
maxstep value, which are accompanied with the moderate errprest parameter. The reltol
parameter determines how well the circuit conserves charge and how accurately the Spectre
simulator computes circuit dynamics and steady-state or equilibrium points, while maxstep
is the largest time step permitted. As a result, Toleranceyr, which is equal to abstol +

reltol x Ref, does not properly bound the amount by which Kirchhoff’s Current Law is

28

not satisfied as well as the allowable difference in computed values in the last two Newton-

Raphson (NR) iterations of the simulation [35].

Table 4.3: Summary of the simulation parameters’ usage [35, 41]

parameter Usage
maxstep Determines the simulation’s maximum step.
reltol Sets the maximum relative tolerance for val-

ues computed in the last two iterations. The
default for reltol is 0.001.

relref Determines how the relative error is treated

lteratio Local truncation error. Sets the limit on nu-
merical integration error in the simulator.

abstol Sets absolute tolerance for differences in the
computed values of voltages and currents in
the last two iterations. These parameter val-
ues are added to the tolerances specified by
reltol.

Toleranceyr | A convergence criterion that bounds the
amount by which Kirchhoff’s Current Law
is not satisfied as well as the allowable dif-
ference in computed values in the last two
Newton-Raphson (NR) iterations of the sim-
ulation.

Tolerancerrg || The allowable difference at any time step be-
tween the computed solution and a predicted
solution derived from a polynomial extrapo-
lation of the solutions from the previous few
time steps.

In order to fix this convergence problem, the errpreset is set to conservative and conse-
quently the reltol and maxstep parameters are tightened, creating more strict convergence
criteria and increasing accuracy. Tightening reltol, however, also diminishes the allowable

local truncation error:

Tolerancerrr = Toleranceng * lteratio

The 1teratio parameter is increased to compensate for the tightening of reltol, so that the

29

simulation time is not increased because of the decrease in the time step [35]. The usage of

these parameters is summarized in Table 4.3.

4.2.2 Multiple Oscillations

The next phase of the verification is to oberve how both simulators handle the absolute
refractory period of the membrane action potential, that is, the amount of time that has
to go by before we can excite an identical action potential with the same spark. For that
purpose the random current input generator is introduced, that produces current spikes with

specific SW, Mtf and duration.

input current
0.06 T T T T T

0.05

T
|

~ 0.04

T
|

T
|

0.03

lin (mA

0.02

T
|

0.01

T
|

0-% 00 0.02
120 :
100k rMpe=1.02mV - - spectre|]
gol SNI=2912dB — matlab
cofhpression=87175%

.04 0.06 0.08 0.10 0.12
Vo?tage for simulated neuron

T T T T

60
40
20

o— J_—JUIN— |

_2 1 1 1 1
00.00 0.02 0.04 0.06 0.08 0.10 0.12
time (sec)

T
|

T
|

voltage (mV)

T
|

Figure 4.2: Multiple osciallations for random input, errpreset=conservative

A typical waveform is illustrated in Figure 4.2, where the accuracy obtained by the conser-

30

vative errpreset is obvious. As expected, two sufficiently consecutive current spikes will not
cause two action potential excitations if the time between their firing is smaller than the ab-
solute refractory period. This effect is given rise due to the fact that sodium channels enter
an inactivated state, “in which they cannot be made to open regardless of the membrane

potential” [42].

Figure 4.3, illustrates the accuracy and compression of the Spectre simulator in comparison
to Matlab for 150 iterations. The simulation’s execution time is 100 ms and the current
spikes are of 1 ms width and a 10 ms mean time between each spike. It can be clearly seen

that there are some outlier cases that produce a significant error, reducing the signal-to-noise

ratio.
Accuracy
20 T T T T T T T
15k — root mean square error| |
> — mean absolute error
S
% 20 40 60 80 100 120 140 160
100 T T T T T a T T
AN AN VNN AWV WNAANVASAA ;
80 — Compression|-
. 60f .
X
401 .
20} .
% 20 40 60 80 100 120 140 160

iterations

Figure 4.3: Accuracy and compression for 150 iterations

Two observed reasons that cause the error spikes or SNR drops are: (i) A slight delay of the

31

Matlab signal compared to the signal produced by the Spectre simulation, and (ii) an action
potential excitation caused in the latter, while the Matlab signal remained below threshold.

These two outlier cases are shown in Figure 4.4 (a),(b).

e Phase shift: The delayed matlab signal in Figure 4.5, is a product of random phase shifts
of the MATLAB signal compared to the output of the Spectre simulator. For large current
spike widths, the small delays caused by the phase shifts accumulate, and the delay between

the signals increases causing a decrease in the SNR between both signals.

From a biological point of view, the delay is justified by the desensitization of the neuron to a
constant stimulus (“accomodation” characteristic) [13], as predicted by the Hodgin-Huxley
equation. What happens is that the same initial stimulus takes a longer peirod of time to
raise the membrane voltage to the threshold, and as a result the action potential excitation
will happen less often as a constant post synaptic current is applied after long periods. This
is not to be confused, however, with the reason that causes a delay in the firing of action

potentials in our simulation, which is merely a stohastic effect caused by the simulator.

e Inaccurate excitations: Innacurate excitations (figure 4.4 (a)) are caused when current
spikes are applied in specific time points when the neuron is still in its inactivation period and
no stimuli can cause a further excitation of the neuron. However each simulator interprets
the inactivation period differently and therefore there are cases where a current spike at a

specific time point would cause the spectre signal to rise and the matlab signal not to rise.

This effect is rare compared to the phase shifts, since it is improbable for the current spikes
to always be fired with the same critical distance between them. On the other hand, the

Matlab signal delay case is more common but produces a smaller error spike (Figure 4.3).

4.2.3 Input Parameter Sweeps

In this subsection we study the behaviour of the Spectre simulator when different input
current schemes are applied by the current generator. The goal is to explain how the loss
of accuracy and the convergence failures are related to the changes in the Mtf, SW and

Duration. Each (Mtf,SW) and (Duration,Mtf) coordinate couple is the average of 20 Monte

32

0.06

0.05
~ 0.04
<

E0.03}

= 0.02
0.01

0.0&

120
100

voltage (mV)

0.06
0.05
_.0.04
= 0.02
0.01

0.08

120
100

voltage (mV)

0.03f

input current

00 0.02 .04 0.06 0.08 0.10 0.12
Vo?tage for simulated neuron
i mV - - spectre|]
L sn — matlab ||
=89.91% 1
00 0.02 0.04 0.06 0.08 0.10 0.12
time (sec)
(a) Phase shift
input current
00 0.02 .04 0.06 0.08 0.10 0.12
Vo?tage for simulated neuron
| rmse=9.50mV spectre|]
matlab ||
00 0.02 0.04 0.06 0.08 0.10 0.12
time (sec)

(b) Inaccurate excitation

Figure 4.4: Outlier cases that cause loss in the SNR of the Spectre implementation

33

input current
0-06 T T T T T T T T

(mA)
© o o o
(@) o o o
N w H (O]
T T T T
L L L L

0% 00 005 o010 015 020, 0.25 030 0.35 0.40 0.45
Voltage for simulated neuron

= =
e T =

[

N-—————
= e o o o

\

0.32 0.34 0.36
time (sec)

Figure 4.5: illustration of the delay caused by consecutive phase shifts of the MATLAB
signal

Carlo iterations.

For a constant duration of 400 ms, a 3D surface plot is created, that illustrates the SNR and

RMSE between MATLAB and the Spectre simulator in terms of the Mtf and SW sweeps.

It is obvious from Figure 4.6 (a) and (b), that when the SW value increases the error becomes
greater and therefore the SNR decreases, as descussed in previous section. Moreover, it is
clear from Figure 4.6 (a), that a shorter mean time between current input firing produces a
greater error. This is a result of inaccurate excitations occuring as described in the previous
subsection. Some spikes along the surface are attributed to convergence failures, in which
cases, very large error values and very small SNR values contribute to the respective average.

Cases of convergence failures are very rare for a 400 ms execution time, but happen more

34

22.5

20.0

20 1 ; 17.5
r 15.0

15 °
- 12.5
=
a | 10.0
= 10
3
E 7.5
5 1 ! 5.0
- 2.5
. 720
S ,,«"'ﬁ XN
20 40 ’_"“"""'----w., < 80 <°c’
60 o5 ~_ 100 &
Shik, 100 T T 120 €
® Wigs,, 120 140 ©
dth (ms) 140 160 o
«©
(a) RMSE (mV)
14
12
1]
=
» 10
o
= 8
6
4
2
20 4, o — “(40 20
80 T —)
SPikg , 100 0 T~ 100 me G
% 120
%)140 160 140 - qae
5)
“-\e

(b) SNR (dB)

Figure 4.6: Single neuron verification: Mtf and SW vs RMSE and SNR for a constant
duration of 400 ms

35

40
80 35
30
60 |
- 25
&
Ta0 1 ”
% 15
20 - 10
5
200
on. 60 o 300
& ~ _— 400 (@
6 ¢, 80 500 ot ™
Tre ,, 100 o pure
s)
(a) RMSE (mV)
20 20
o 15
o 10
= -207
= 5
2
-407 °
-5
-60]
-10
—80 =15
~ -20
T = 100
20 o X 200
m = — 300
San g, 60 . 400 QZ“B\
€20 0o . 500 a0
Ir.
e (m.?) 600 O

(b) SNR (dB)

Figure 4.7: Single neuron verification: Mtf and Duration vs RMSE and SNR for a constant
spike width of 20 ms

36

often when the execution time increases as we will see next.

The connection between total simulation time and convergence failure cases is illustraded in
Figure 4.7 (a) and (b). With a constant spike width of 20 ms that produces the best SNR,
convergence problems are becoming clearly evident for execution times longer than 600 ms,

regardless of the Mtf.

However, a connection between the Mtf and the quality of the output signal can be observed
in Figure 4.7 (a), where substancially short periods between current spikes cause the RMSE

to increase and the SNR to decrease.

Even though the output signal is quite insensitive to Mtf for a smaller execution time (i.e
100 ms or less), it is clear that a combination of small Mtf and long execution time causes

convergence failures.

4.3 Multi-neuron verification

Again, a simple simulation is run, illustrated in Figure 4.8 to verify the validity of the multi-
neuron model compared to the existing Matlab impementation [9]. The current generator
produces spikes of 25 ms width and a mean time of 1.5 s between each firing for a period of

6 s. The results of our initial verification are shown in Table 4.4.

The Spectre simulator accurately triggers the voltage spikes. It seems however, that it does

not accurately interpret the subthreshold oscillations as can be seen in Figure 4.9.

Table 4.4: Membrane Voltage Oscillation results for each of the 4 neurons of the network.
The current generator produces spikes of 25 ms width, mean time of 1.5 s and 6 s duration.

settings maxtep=100usec, lteratio=10, relref=alllocal
neuronjy || meuronis | neurons; || neuronss

compression 49.69 %

elapsed time | matlab: 84.84488 s spectre: 4.088 s

SNR 24.06 dB || 24.49dB | 15.97dB || 16.46 dB

RMSE 544 mV | 514 mV | 13.85 mV | 13.07 mV

37

Input current (uA) V%Itage for simulated neuron (mV)

10 T T T T T 40 T T T T T

8r] - i

6} 129]

4t 4 =20f .
—40} §

gk | L | L I | _SSWWWM\WN

100 } ? 3 fl § 6 .0 1 2 3 4 5 6

8k -

6k .

4t

2k

% 1 2 3 4 5 ¢

10 T T T T T

8k -

6k -

4t 4

2k -

% 1 2 3 4 5 &

10 T T T T T

8k

6k -

4t 4

2k -

00 1 2 3 4 5 6

Figure 4.8: Output voltage for each simulated neuron of the 2x2 connection scheme

As in subsection 4.2.3, we explore the behaviour of the Spectre simulator when different
input current schemes are applied to our multi-neuron implementation. For a constant spike
width of 25 ms, we present the average SNR and RMSE of our multi-neuron implemenation
relative to the changes in duration and mean time to fire. Each coordinate is the mean of
20 iterations and of all 4 neurons. Once again in Figure 4.10, we can see how the spectre
simulator cannot handle the combination of small mean time to fire and large durations,
whereas the SNR increases as the Mtf increases, causing a subsequent drop in the RMSE.
For longer duration simulations, the matlab code [9] deviates from normal solutions, sending
the output to inf and eventually leading to nan values for the RMSE and SNR. These cases
are dismissed by repeating the iteration each time matlab does not lead to accepted output

values.

38

Input current (uA) Voltage for simulated neuron (mV)

— matlab

- - spectre
8r 41 40} §
T | 1 —s0¢ .
a4+ |
2_ -

70
08 09 1.0 1.1 1.2 13 14 08 09 10 11 12 13 1.4
time (s) time (s)

Figure 4.9: Matlab vs Spectre signal in the subthreshold oscillation level

A key aspect of using EDA for neuron simulations is the optimization possibilities provided
by the tool at hand. For future work reference we provide Figure 4.11 that illustrates the
variabilty in the SNR of each neuron of our network, that is caused by the adjustment of

the maxstep parameter.

It is clear that a decrease in the maxstep, causes an increase in the SNR value, as the
variations in the signal are satisfied by more frequent simulation steps. However, even with
twice the step of the Matlab implementation (that generates a 50 % compression of time
points), the Spectre simulator shows significant accuracy. The input current spikes for each

neuron are of 20 ms width and 1.5 s mean time between each firing for a period of 4 s.

The previous exploration is extended in a 3D graph to show how changes in the maxstep

39

100
920
5 80 "
2
m 70
2] 60
=
50
40 10
30
20 1 o
10
(a) RMSE (mV)
20 1
16
10 .
50 0
Z 0
E -8
@101
-16
-24
-32
-40
-48
200, e " 1000
;5;100 600 e " 2000
Sap, ,. 800 T 3000 9
N i 1000 ~— 00 (¢
€ f 1200 4000 ,_x\0
©firg ' * 1400 our?
(Mg)

(b) SNR (dB)

Figure 4.10: Multiple neuron verification: Mean time to fire (Mtf) and Duration vs the
average RMSE and SNR of 4 neurons for a constant spike width of 20 ms

40

SNR vs maxstep

20 T T T T T T T
— neuron 1
— neuron 2
10 | .
= Neuron 3
neuron 4
O -]
o =10 .
=
o
=
u 20+ i
_30 -]
_40 -]
_50 I | I I I 1
0 20 40 60 80 100 120 140 160

maxstep (us)

Figure 4.11: SNR for each neuron of the 2 by 2 network, relative to different maxstep
values. Each SNR value is the mean of 20 iterations

and Mtf, affect the total compression of time points (Figure 4.12) as well as the average

SNR and RMSE of the 4 neurons (Figure 4.13).

It is clear from Figure 4.12, that the maxstep parameter value is proportional to the total
compression that the Spectre simulator achieves in comparison to the MATLAB implemen-
tation. A maxstep value of 50 us, which matches the value of the constant step used in the
MATLAB implementation, leads to approximately 0% compression of time points, while a

100 ps maxstep leads to almost 50 % compression.

Even though maxstep values less than 50 us are detrimental to the total compression of
time points, they cause a significant increase in the SNR value and a subsequent decrease in

the RMSE value as illustrated in Figure 4.13. In addition, the Spectre simulator becomes

41

100
T 80 40
" 60 e 32
-
=]
@ 24
v
g
a 116
E
[=]
v 18
0
-—40 -8
-16

40 50

60

70
80
Maxstep () 90 100200

Figure 4.12: Average compression of 4 neurons as a result of variations in maxstep and
Mtf for a constant spike width of 25 ms and a duration of 3.5 s

sensitive to the Mtf of the input current for a maxstep larger than 50 us and produces a
more satisfying SNR as the Mtf increases. It is clear from 4.13 that increasing the maxstep

to more than 70 us will produce satisfying accuracy for mtf values larger than 1 s.

42

TIOO

80
70
s
z 60
@ 50
2
40
30
20
10
ZU T
%0 4o 600
Maxsy 80 o5 a0 W
P (us) 100 200
(2) RMSE (mV)
T 30
- 20
16
- 10
8
. 0 %“
F-10 0
&
L 50 -8
- —30 -16
- 40 —24
-50 33
1600

1400
1200
1000

800 k‘=\
600 ¢§
400

100 200

40
50

60
70

M 80
axstep rUS)
(b) SNR (dB)
Figure 4.13: Multiple neuron verification: Mean time to fire (Mtf) and maxstep vs the

average RMSE, SNR of 4 neurons for a constant spike width of 25 ms and a duration of
3.0

43

CHAPTER 5
Conclusions & Future Work

5.1 Conclusion

This work offers some insight into approaching neuron modeling problems with the use of
EDA tools. A brief overview of the EDA possibilities motivates the need for a connection

between EDA and neuron modeling.

The main course of action involves using the Verilog-A language to implement highly detailed
neuron models, in order to achieve different simulation patterns through the Spectre sim-
ulator, which allows experimentation with different inputs, simulation settings and neuron

inter-connection schemes.

We present the process of creating the Verilog-A implementation and compare its code base
with the original MATLAB code as well as the different compiling methods and simulation
settings. Emphasis is given in the adaptive step size of the Spectre simulator, which is

illustrated through a simulation of a BSIM4 inverter model.

The verification of the single neuron model starts off with the representation of a single cell
membrane voltage oscillation, where the regions of interest for the action potential can be
identified. After changing to the more accuracy-friendly conservative preset, we conduct a
simulation of 150 iterations and examine the two main outlier cases (phase shift, innacurate
excitations) that cause an increase in the RMSE and a decrease in the SNR compared to

the original MATLARB signal.

Further verification includes simulating our model for sweeping input parameters in order to
display 3D graphs showing the relationship between input parameters and accuracy metrics.

For the first simulation, a constast current of 50 mA and 20 ms spike width is applied

44

with a varying mean time between each firing at different execution times. In the second
experiment, the Spike Width and the Mtf are the two sweeping variables while the execution
time remains constant at 400 ms. Both experiments justify how small Mtf combined with

large execution times are the reasons for high error values.

As far as the multi-neuron implementation is concerned, a seperate model is implemented
through verilog-A, that also takes the inter-connections between the different compartments
of the infOli neuron into consideration. Again, the new model is verified in comparison with
the equivalent MATLAB model and a graph is presented, showing the SNR values of the

Spectre signal with repsect to the change in the maxstep setting of the Spectre simulator.

5.2 Future Work

Our work approaches the field of EDA tools for neural networks in the lower abstraction
level, where emphasis is given on the transient response of neuron cells. In Chapter 4, we
implement a Verilog-A model for a single neuron and a multi-neuron network and observe

the increased accuracy and time compression of the Spectre simulator in comparison to

MATLAB.

This work can be further extended by exploring more possibilities provided by the Spectre
simulator. The transient response of the models can be explored in terms of adjustments to
the relative error parameters, the integration methods, or the analysis’ convergance settings.
A small fraction of this exploration is presented in Subsection 4.3, where the relation between

the maxstep parameter of the simulator and the achieved compression is presented.

Another major course of action, also discussed in Subsection 3.3, would be to expand the
multi-neuron verilog-A model so that it can form an arbitary network whose size is given as
input by the user. Verilog-A allows this kind of implementation with the use of node vectors.
Such exploration could show how the increased component complexity interferes with the
accuracy the simulator provides. In addition, this arbitary network could enable user-defined

inter-connectivity schemes of adjusting intensity, by editing the conductance values of the

45

gap junctions through the netlist. Consequently, different connectivity patterns could be

explored.

Taking the above into consideration, we could construct a datasheet that would provide
suggestions for appropriate simulation settings which could lead to specific margins for the

required accuracy and compression.

Last but not least, EDA tools can be used for higher abstraction levels in neuron simulation,
i.e event-driven simulations where each neuron model implements functions to accept and
handle incoming events. Event-based simulations will accelerate the modeling phase of larger

neural networks.

46

References

1]
2]

“Human brain project.” https://www.humanbrainproject.eu/roadmap, 2013. 1

“Blue brain project - in brief.” http://bluebrain.epfl.ch/page-56882-en.html,

2013. 1
“Erasmus brain project.” http://erasmusbrainproject.com/, 2015. 1, 4

Don Monroe, “Neuromorphic computing gets ready for the (really) big time,” Commu-

nications of the ACM, vol. 57, pp. 13-15, June 2014. 2
D. Robert, “Neuromorphic chips,” MIT Technology Review, April 2013. 2

Sathishkumar Balasubramanian, Pete Hardee, Cadence Design Systems, Solutions for
Mized-Signal SoC Verification Using Real Number Models. Cadence Design Systems,
2013. 2

Rodopoulos, D. and Mahato, S.B. and de Almeida Camargo, V.V. and Kaczer, B.
and Catthoor, F. and Cosemans, S. and Groeseneken, G. and Papanikolaou, A. and
Soudris, D., “Time and workload dependent device variability in circuit simulations,” in

IC Design Technology (ICICDT), 2011 IEEE International Conference, pp. 1-4, May

2011. 2, 13
Andrew Jahn, “Introduction to computational modeling: Hodgkin-
huxley model.” http://andysbrainblog.blogspot.gr/2013/10/

introduction-to-computational-modeling.html, October 2013. 2, 11, 13

J. R. De Gruijl, P. Bazzigaluppi, M. T. G. de Jeu, and C. 1. De Zeeuw, “Climbing fiber
burst size and olivary sub-threshold oscillations in a network setting,” PLoS Comput

Biol, vol. 8, p. 1002814, 12 2012. 2, 6, 19, 37, 38

47

https://www.humanbrainproject.eu/roadmap
http://bluebrain.epfl.ch/page-56882-en.html
http://erasmusbrainproject.com/
http://andysbrainblog.blogspot.gr/2013/10/introduction-to-computational-modeling.html
http://andysbrainblog.blogspot.gr/2013/10/introduction-to-computational-modeling.html

[10]

[11]

[12]

[16]

[17]

[18]

Dayan Peter, “Levels of analysis in neural modeling,” Encyclopedia of Cognitive Science,

2006. 4, 5

A. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous synaptic

input.,” Biological Cybernetics, vol. 95, Issue 1, pp. 1-19, 2006. 5

E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural

networks, vol.14,n0.6, November 2003. 5

Hodgkin Al, Huxley Af., “A quantitative description of membrane current and its
application to conduction and excitation in nerve,” The Journal of Physiology, August

1952. 5, 13, 17, 32

D. Zeeuw, H. FE, L. Bosman, M. Schonewille, L.. Witter, and S. Koekkoek, “Spatiotem-

poral firing patterns in the cerebellum,” Nature Review Neuronscience, May 2011. 6

C. I. D. Zeeuw, C. C. Hoogenraad, S. Koekkoek, T. J. Ruigrok, N. Galjart, and J. I.
Simpson, “Microcircuitry and function of the inferior olive,” Trends in Neurosciences,

December 1998. 6

David Kriesel , “A brief introduction to neural networks.” http://www.dkriesel.com,

2007. iv, 6, 7, 27

Waulfram Gerstner and Werner M. Kistler, “Spiking neuron models,” tech. rep., 2002.
iv, 6, 10, 19

T. Yu and G. Cauwenberghs, “Analog vlsi neuromorphic network with programmable
membrane channel kinetics,” in Clircuits and Systems, 2009. ISCAS 2009. IEEE Inter-

national Symposium on, pp. 349-352, May 2009. iv, 6, 7

B. Hanafi and Y. Abdelmaksoud, “Emulation of ion channel dynamics in cmos vlsi,”

University of California San Diego, La Jolla, CA 92093. 7

Ananthanarayanan, R. and Esser, S.K. and Simon, H.D. and Modha, D.S., “The cat

is out of the bag: cortical simulations with 109 neurons, 1013 synapses,” in High Per-

48

http://www.dkriesel.com

[21]

[22]

[23]

[20]

[27]

28]

[29]

[30]

formance Computing Networking, Storage and Analysis, Proceedings of the Conference

on, pp. 1-12, Nov 2009. iv, 7, 10

G. Lyras, D. Rodopoulos, A. Papanikolaou, and D. Soudris, “Hypervised transient spice
simulations of large netlists & workloads on multi-processor systems,” in Proceedings
of the Conference on Design, Automation and Test in Europe, DATE 13, (San Jose,

CA, USA), pp. 655658, EDA Consortium, 2013. 8

“Mentor graphics corporation stock quote & summary data.” http://www.nasdaq.

com/symbol/ment, 2015. 8

“Cadence design systems, inc. stock quote & summary data.” http://www.nasdaq.

com/symbol/cdns, 2015. 8

“Synopsys, inc. stock quote & summary data.” http://www.nasdaq.com/symbol/

snps, 2015. 8

“Software pricing trends - how vendors can capitalize on the shift to new rev-

)

enue models..” http://www.pwc.com/en_us/us/technology-innovation-center/

assets/softwarepricing_x.pdf, 2007. iv, 8

L. W. Nagel and D. Pederson, “Spice (simulation program with integrated circuit em-
phasis),” Tech. Rep. UCB/ERL M382, EECS Department, University of California,
Berkeley, Apr 1973. 9

L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits. PhD

thesis, EECS Department, University of California, Berkeley, 1975. 9

Intel Corporation, “Microprocessor quick reference guide.” http://www.intel.com/

pressroom/kits/quickreffam.htm. iv, 10

Dimitrios Rodopoulos, “Neuron modeling: Drawing hints from the eda industry,” tech.

rep., Microlab-ECE-NTUA, July 2015. 9

Daniel Gajski, “Guest editors’ introduction: New vlsi tools.e,” IEEE Computer, De-

cember 1983. iv, 11

49

http://www.nasdaq.com/symbol/ment
http://www.nasdaq.com/symbol/ment
http://www.nasdaq.com/symbol/cdns
http://www.nasdaq.com/symbol/cdns
http://www.nasdaq.com/symbol/snps
http://www.nasdaq.com/symbol/snps
http://www.pwc.com/en_us/us/technology-innovation-center/assets/softwarepricing_x.pdf
http://www.pwc.com/en_us/us/technology-innovation-center/assets/softwarepricing_x.pdf
http://www.intel.com/pressroom/kits/quickreffam.htm
http://www.intel.com/pressroom/kits/quickreffam.htm

[31]

[32]

[33]

[34]

[36]

[37]

[41]

[42]

John Rinzel, “Computational modeling of neuronal systems.” http://www.cns.nyu.

edu/~rinzel/CMNSF07/Neuronal’20dyns’%20cell _CMNSFO7.pdf, 2007. 10

“Open mpi: Open source high performance computing.” http://www.open-mpi.org/.

11

M. Diesmann and M. Gewaltig, “Nest (neural simulation tool).” http://www.

scholarpedia.org/article/NEST_%28NEural_Simulation_To001l%29. 11

N. Imam, K. Wecker, J. Tse, R. Karmazin, and R. Manohar, “Neural spiking dynamics
in asynchronous digital circuits,” In Neural Networks (IJCNN), The 2013 International

Joint Conference, August 2013. 11

Cadence Design Systems, Inc., Spectre Circuit Simulator User Guide, 2004. vi, 16, 24,
29, 30

SIMetrix Technologies Ltd., “Simetrix verilog-a manual,” tech. rep., September 2010.
18, 19, 21

William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery,

Numerical recipies in C: The art of scientific computing, 1992. 23

Butcher, John C., Numerical Methods for Ordinary Differential Equations, 2nd Edition.
John Wiley & Sons, March 2008. 24

Atkinson, Kendall E., An Introduction to Numerical Analysis, 2nd Edition. John Wiley

& Sons, 1989. 24

George Chatzikonstantis, “Energy aware mapping of a biologically accurate inferior

olive cell model on the single-chip cloud computer,” December 2013. 25

“Spectre/spectrerf simulation accuracy.” http://www.designers-guide.org/Forum/

YaBB.pl?num=1173722684. vi, 29

Ivan Poliacek, Jan Jakus, “Biophysics of action potential & synapse.”
http://eng. jfmed.uniba.sk/fileadmin/user_upload/editors/Biof_Files/

skusky/prednasky/Action_potential__synapse.ppt. 31

20

http://www.cns.nyu.edu/~rinzel/CMNSF07/Neuronal%20dyns%20cell_CMNSF07.pdf
http://www.cns.nyu.edu/~rinzel/CMNSF07/Neuronal%20dyns%20cell_CMNSF07.pdf
http://www.open-mpi.org/
http://www.scholarpedia.org/article/NEST_%28NEural_Simulation_Tool%29
http://www.scholarpedia.org/article/NEST_%28NEural_Simulation_Tool%29
http://www.designers-guide.org/Forum/YaBB.pl?num=1173722684
http://www.designers-guide.org/Forum/YaBB.pl?num=1173722684
http://eng.jfmed.uniba.sk/fileadmin/user_upload/editors/Biof_Files/skusky/prednasky/Action_potential__synapse.ppt
http://eng.jfmed.uniba.sk/fileadmin/user_upload/editors/Biof_Files/skusky/prednasky/Action_potential__synapse.ppt

	Title
	Table of Contents
	Acknowledgements
	Acknowledgements

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	2 Related Work
	2.1 Introduction
	2.2 Neuron Models
	2.2.1 Biological Aspects

	2.3 EDA Technology
	2.4 EDA and neuron modeling - Motivation

	3 Spectre Implementation
	3.1 Introduction
	3.2 Single Neuron Implementation
	3.3 Multi neuron implementation
	3.4 Comparing code bases
	3.4.1 Compiling
	3.4.2 Adaptive step size
	3.4.3 Spectre transient analysis parameters
	3.4.4 Simulations wrappers

	4 Simulation Results
	4.1 Introduction
	4.2 Single-Neuron verification
	4.2.1 One Oscillation - Unit step current pulse
	4.2.2 Multiple Oscillations
	4.2.3 Input Parameter Sweeps

	4.3 Multi-neuron verification

	5 Conclusions & Future Work
	5.1 Conclusion
	5.2 Future Work

	References

