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Euxapiorisg

©a nBeAa va ekPpacw TIC OEPUEC Kal EINKPIVEIC EUXAPIOTIEC JOU OTOV
emBAENOVTa TNG €pyaciac pou K. Bnooapiwva ManadonouAo , En. Kabnynm
Tou Epyaotnpiou ZTamikng kai  AvTiosiopikwv  Epeuvwv  Tou  TopEa
AopooTaTiKNG TNG ZXOANG MoAImikwv Mnyxavikwv Tou EBvikou MeTooBiou
MoAuTexveiou, yia Tn OuvaTtoTnTa va aoXoAnbw HE TO AVTIKEIMEVO TNC
opoyevonoinong ,yia To evOlapEPOV Kal TNV APEST avTanokpion OTIC JIAPOPEC
anopiec Nou NPOEKUNTAvV KaBwc Kal yid TNV EUNICTOoUVN NMou Jou £O¢IEE.

Eniong, 6a nBeAa va guxapiotnow Tnv unoynela 8i1dakTopa k. Mapia
TaBAakn yia T BonBeid Tnc.

TeAog, Ba nBeAa va €uxapioTHOW TNV OIKOYEVEIA HOU Kal TOUG (PIAOUG
HOU yIa TNV auéPIOTn CUPNAapAacTaocr) Touc.



Abstract

The aim of this dissertation is the investigation and implementation of
the computational multiscale homogenization schemes. To this end, the
homogenization solution schemes proposed by [10,12] are used.

Heterogeneous materials are found everywhere. If the heterogeneities
are small compared to the scale of the whole problem, a standard finite
element analysis often becomes computationally too large. For that reason
various homogenization methods have been developed.

Multi-scale computational homogenization is a technique that reduces
the amount of calculations, but still manages to capture the heterogeneous
properties. It is based on the derivation of the local macroscopic constitutive
response from the underlying microstructure through the adequate
construction and solution of a microstructural boundary value problem.

First-order computational homogenization schemes fit entirely into a
standard local continuum mechanics framework. However, when considering
problems of dimensions close to the characteristic length of the material, the
size effects can not be neglected and the classical (first-order) multiscale
computational homogenization scheme looses accuracy, motivating the use of
a second-order multiscale computational homogenization scheme. This
second-order scheme uses the classical continuum at the microscale while
considering a second-order (i.e. strain gradient) continuum at the macro-
scale.

When undertaking conventional displacement-based finite element
analysis of second-order continuum, the interpolation of displacements should
exhibit at least C continuity. In this dissertation, the structure at macroscale
level is discretized by the C* two dimensional triangular finite elements, while
the O quadrilateral finite element is used for the discretization of the
microscale.

The two schemes are implemented in a cantilever beam bending
problem. The results are compared.

Key words: computational homogenization, multiscale mechanics, second-
order homogenization, C! continuity finite element.



MepiAnwn

AVTIKEIPEVO TNG NapoUoac YETANTUXIAKNC £pyaaiac ival n JEAETN Kai n
eQappoyn Twv JeBOdwY UMOAOYIOTIKNG OMOyEVONoinang NOAAANAwWY KAIJAKWV.
Na TO oOKONO autod, Ba ¥pnoigonoinBoUv oI PEBODOI  UMOAOYIOTIKAC
opoyevornoinong nou £xouv npotadsi ano Toucg [10,12].

2xedOV OAa Ta Plounxavika kal TeXvNTAa UAIKG, OnNwg €niong kai Ta
QUOIKa UAIKG, nou xapaktnpifovral and noAAanAeg kAipakeg, napouaialouv
AVOUOIOYEVEIDQ OE KAMOIa OUYKEKPIYEVN KAIJAKA, N onoia €XEl GnNUAvTiko
avTikTuno OTNV  NApAaTNPOUMEVN HAKPOOKOMIKA CUMNEPIPOPA Toug. H
aneuBeiag apiBuNnTIkn eniAuon Twv NPOBANMATWV NOAAANARG KAipakag eivai
OuokoAn kaBwg¢ anaiTeital €va TEPACTIO MOGO MWVAKRNG TOU UMOAOYIOTN Kal
HEeyalog xpovoc ene€epyaciac. Ma 1o Aoyo auTtd €xouv avanTuxdei dIapopeC
HEBODOI OlIOYEVONOINaNG.

H unoAoyioTIKr) OpOyevomoinon €ival Wia TEXVIKN MOU AvhKel oTnv
gUpUTEPN opada Twv PeBOdWV noAAanAwv KAIHAkwv. BacileTal oucoiaoTika
OTOV UMOAOYIONO TNG TOMIKNAG HAKPOOKOMIKAG andkpiong PEOWw avaAuong Tng
UMOKEIJEVNG MIKPODOWNG ME TNV KATAANAN Kataokeun kai eniAuon €vog
NPOBANKUATOG CUVOPIAKWY TIHWV O€ €NINEdO HIKPOKAIKaKag.

H unoloyloTikr) opoyevonoinon npwTtng TAa&nc epapuodleTar o€
NEPINTWOEIC MOU N MAKPOKAIMaKa WMOPEl va neplypagei PE TNV KAACOIKN
MNXAVIK) OuveXoUC MECoOU. Q0TOO0O, OTIC E€PAPHOYEC MIKPOU MeyEBOUC, N
enidpaacn TnG HIKpodOouNnc O Unopei nia va BewpnOei aueANTEQ OE OXEON KE TO
MEYEBOG TOU aToIXEIOU, 0dNYyWVTag £TOl 0TA, ONWG anokaAouvTal, Ppaivopeva
KAipakag (size effects). ZTIC NEPINTWOEIC AQUTEC N UNMOAOYIOTIKR OJOYEVOMOINON
npwTNG TAgNG xavel os akpifela, odnywvTag €10l GTNV aAnaitnon avanTtugng
HIag unoAoyIoTIKNG HEBODOU opoyevonoinong deuTEPAg TAEEWC,

>Tn pEBodo deuTépAc TAswce, diatnpeital n Bswpnon Tou KAAoOIKOU
OUVEXOUG ECOU OTN MIKPOKAIKAKa, EVw OTn HAKPOKAIaka XpnaoldonolgiTal pia
YEVIKEUWEVN BewpPnon OUVEXOUG HECOU OMou n Napagoppwaolakn EVEPYEIQ,
EKTOC ano Tnv €&aptnon and Touc KabIEpWHEVOUC OPOUC TPOMNnG, Eaptaral
eMMAEOV Kal ano TIG BaBuideg Tponng. XTI Bewpieg ouvexoUug PECOU TUMOU
«KNIOEWEC», €I0AYETAl OUVEN®G N €nidpacn TNG YEITOVIKNG MEPIOXNG O €va
onueio.

>Ta nAgiola TNG KAAoIKNG HEBOBOU TWV NENEPACHEVWV OTOIXEIWV YIa
™V apiBunTikn eniluon npoBANuaTwv auTtoU Tou €idoug anarrouvTal
«gToIxeia C'» nou va €Eao@aAilouv Ouvéxeld TNG METATONIONG Kal TWV
NPWTWV XWPIKWV TNG Napaywywv. XTnv napouca pyaacia, yia Tnv papuoyn
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TNG UMOAOYIOTIKR) OMoyevonoinon OeuTépac TALEwC, N HAkpokAipaka
OIQKPITOMOIEITAI JE TPIVWVIKA NENEPACHEVA oToIXEid «Cl» evw n PIKPOKAIJAKa
ME TETPANAEUPIKA I00MNAPAPETPIKA OTOIXEIA ENINEdNG EvTAONC.

O1 dUo pEBodOoI (NPWTNG —OeuTEPAG TAEEWG) epapuolovtal O &va
npoBANKa kauwng okou Kal Ta anoTEAEOUATA GUyKpivovTal.
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Chapter 1

Introduction

Heterogeneous materials are found everywhere. Actually, materials
that normally are considered homogeneous are heterogeneous on a
sufficiently small scale, such as steel. Typical examples include metal alloy
systems, porous media, polycrystalline materials and composites. The
different phases present in such materials constitute a material
microstructure. The size, shape, physical properties and spatial distribution of
the microstructural constituents largely determine the macroscopic, overall

behaviour of these multi-phase materials.

Consider a problem of various length scales, where the material is
heterogeneous on the smallest scale. Solving this problem with a standard
finite element analysis requires that the size of the elements correspond with
the size of the smallest heterogeneity. For large and complex problems, this
leads to a computationally large analysis. To handle this problem in a more
efficient way, various techniques have been proposed. A promising approach
developed in the recent years is Multi-scale Computational Homogenization.
This procedure does not yield closed form over all constitutive equations.
Instead it computes stress-strain relations at points of interest on the
macroscopic field via a detailed modelling of the microscopic area linked to
the point [7].

Computational homogenization introduces a coarser element grid to
lower the computational effort. These elements consist themselves of several
ordinary finite elements and are named Representative Volume Elements
(RVEs), implying that they describe the heterogeneities within their range.



Two independent problems need then to be solved; one microscopic problem

and one macroscopic problem. In first and second order computational
homogenization, a material will be considered heterogeneous at micro scale
and homogeneous at macro scale. The macroscopic behaviour of the material

is predicted based on the microscopic properties.

The multiscale analysis wusing the first-order computational
homogenization scheme allows explicit modeling of the microstructure, but
retains essential assumptions of the continuum mechanics, and thus gives
satisfactory results only for the simple loading cases (tension, pressure,
simple shear). It includes only the first gradient of the macroscopic
displacement field and it is based on the principles of a local continuum.

Therefore, the size effects cannot be captured [12].

Due to the mentioned shortcomings, the first-order computational
homogenization scheme has been extended to the second-order
computational homogenization framework, where the second-order stress and
strain are included. The formulation is based on a non-local continuum theory
which takes into account the influence of an environment on the behavior of a
material point. Furthermore, the multiscale analysis using the second-order
homogenization approach may describe more complex deformation modes,
e.d., bending mode. It requires a more complex formulation at the macrolevel
(& continuity), which implicates the requirement that both displacements and
deformations must be continuous functions. The microlevel in this case can
remain on (® continuity to keep micro boundary value problem as simple as

possible.



1.1 Qutline

The aim of this dissertation is the investigation and implementation of
the second-order multiscale homogenization scheme.

In chapter 2, the classical first-order computational homogenization in
2D is described, where only the most important aspects regarding the method
have been written down. Additionally, some intrinsic limitations of the first-

order framework are pointed out.

In chapter 3 the continuum description for the second gradient
medium is presented, as in the framework of the second-order computational
homogenization a proper description of the macroscopic homogenized
continuum is required. Moreover, a finite element computational strategy

based on C* continuity elements is described.

In chapter 4 the second-order computational homogenization scheme
for small strains is presented, as proposed by [12]. The microstructural
boundary conditions and the relations for the determination of the averaged
stress measures, as well as the extraction of the macroscopic constitutive
tangents from the microstructural stiffness are described. The solution
scheme of the coupled second-order multiscale computational analysis is

outlined.

Chapter 5 presents some illustrative examples of the second-order
computational homogenization analysis. A comparison of the performance of

the first and second-order techniques is also carried out.

Finally, chapter 6 gives a brief summary of the conclusions
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Chapter 2

Computational Homogenization

To model a heterogeneous material in a finite element analysis, the
element grid has to be small enough to capture all the material properties in a
satisfying way. The problem that can occur in such an analysis is that the
calculations become too heavy for the computational machine. One possibility
to minimize the computational effort is to make use of multi-scale
homogenization. This method divides the problem into two independent
problems; a micro scale problem and a macro scale problem. The micro scale
problem takes care of the heterogeneities in the material, while the macro
scale problem is considered as a homogeneous problem and makes use of

average material properties that the micro scale problem results in.

2.1 Assumptions

In computational homogenization the material is assumed to be
macroscopically sufficiently homogeneous, but microscopically heterogeneous
(the morphology consists of distinguishable components as e.g. inclusions,
grains, interfaces, cavities), as illustrated in Fig. 2.1. To make this separation
of scales possible, the macroscopic length scale has to be much larger than
the microscopic length scale. The microscopic length scale must in turn be
much larger than the molecular dimension to be able to describe the

properties of the material in a satisfying manner, i.e. fmolecular € €micro « £macro

[10].

11



Figure 2.1: Separation of scales [10].

Most of the homogenization approaches make an assumption on global
periodicity of the microstructure, suggesting that the whole macroscopic
specimen consists of spatially repeated unit cells. In the computational
homogenization approach a more realistic assumption on local periodicity is
proposed, i.e. the microstructure can have different morphologies
corresponding to different macroscopic points, while it repeats itself in a small
vicinity of each individual macroscopic point. The concept of local and global

periodicity is schematically illustrated in Fig. 2.2

The physical and geometrical properties of the microstructure are
identified by a Representative Volume Element (RVE). On macro level the
RVEs are considered as points. The actual choice of the RVE is a rather
delicate task. The RVE should be large enough to represent the
microstructure, without introducing non-existing properties (e.g. undesired
anisotropy) and at the same time it should be small enough to allow efficient
computational modeling. Since an appropriate RVE has been selected, the
properties of the RVEs are used as homogenized properties in the macro scale
problem [10].

12



(a) local periodicity (b) global periodicity

Figure 2.2: Local periodicity compared to global periodicity [10].

2.2 First-order Computational Homogenization

According to the classical formulation of the multi-scale computational
homogenization [10,15], two nested boundary value problems are
concurrently solved. The initial heterogeneous macroscopic structure is
equivalent with a homogeneous one, in each Gauss point of which, a suitably
defined RVE is correlated This RVE includes every heterogeneity and non-
linearity of the material. With linear or periodic boundary conditions, a
macroscopic strain is the loading of the RVE. After analysis and convergence
of each RVE in every Gauss point, results concerning the average stress and
the stiffness are given back to the macroscopic structure (Fig. 2.3). No
assumption for the constitutive law of the macroscopic structure is a priori
considered, thus the macroscopic constitutive behavior is numerically
obtained. This is a practical solution to the major question of homogenization,

namely which are the properties of the homogeneous constitutive law.

Here and in the following the subscript "“M” refers to a macroscopic

quantity, while the subscript “m” will denote a microscopic quantity.

13
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Figure 2.3: First-order computational homogenization scheme [6].

2.2.1 Definition of the problem on the microlevel

The physical and geometrical properties of the microstructure are
identified by a representative volume element (RVE). An example of a typical
two-dimensional RVE is depicted in Figure 2.4.

Figure 2.4: Schematic picture of a typical two-dimensional representative
volume element (RVE) [10].
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The RVE is in a state of equilibrium. This is mathematically reflected by the
equilibrium equation in terms of the Cauchy stress tensor om according to (in
the absence of body forces):

Vi Oy = 0 in Qree (2.1)
where Qrye is the RVE domain.

2.2.2 Averaging theorems

According to the Hill-Mandel condition or energy averaging theorem,

the macroscopic volume average of the variation of work equals to the local

work variation, on the RVE:

Gy 08y =— I ¢, :og dV_ (2.2)

myV

m

Among others, three widely used types of loading states, which satisfy
the above condition, can be applied to the RVE: (a) prescribed linear

displacements, (b) prescribed tractions, (c) periodic boundary conditions [4].

According to linear displacement boundary conditions, the loading in

the boundaries of the RVE is given by the following relation:
U=g,X at Xe 8Vm (2.3)

where a loading strain &m is applied to the boundaries dVm of the RVE. With
X is denoted the matrix with the undeformed coordinates of the boundary
nodes of the RVE.

Periodic boundary conditions require periodic displacements, as well as
antiperiodic tractions, in the opposite boundaries of the RVE. In particular, the
displacements of the opposite boundaries are given by the following

equations:

U; —Ug =U, —U,

2.4
u —ug=u,-U, (24)

15



where the displacements in the top, bottom, left and right boundary are
estimated by using the prescribed displacements of three corner nodes of the

RVE, namely 1, 2 and 4, given by relation (2.3).

In order to proceed in the formulation of a homogenization scheme,
the average quantities of both the microscopic strain and stress should be
defined. The constitutive relation will be then numerically built. The general

averaging relations, are:

1

<£>vm = V_m VI £,dVy, (2.5)
1

(o), = v [ o0V, (2.6)
m Vv,

The equation (2.5) can be further simplified. The volume average microscopic
strain is equal to the macroscopic strain which has been applied as loading to
the boundaries of the RVE:

<8>V =&y (2.7)

m

In case prescribed displacements are applied to the RVE, the

macroscopic stresses is expressed as

1
) =—1fx=o¢
(o), =y X =0 (2.8)
where f is the matrix of the resulting external forces in the undeformed
coordinates of the boundary nodes x of the RVE, after microscopic analysis

has been completed.

A similar relation is applied for the macroscopic stress, in case periodic

boundary conditions are used:

16



1
(o), =y ToXp =0 2.9)
m
where f, denotes the external forces in the three corner nodes with

prescribed displacements and x, the undeformed coordinates of these nodes.

For the completion of the homogenization procedure, the stiffness of
the macroscopic structure should be calculated. In particular, the consistent
tangent stiffness must be incorporated in the Newton-Raphson incremental
iterative procedure. This is obtained numerically, by requiring the relation
between the variations of the average microscopic (e.g. the macroscopic)

stresses and strains.

2.2.3 Formulation of the multi-scale scheme

The nodes of the RVE mesh are partitioned into those on the surface
dV of the RVE and those in the interior [15]. Assume that M < N nodes of the
mesh lie on the boundary aV. We then consider the partitions of the current

nodal positions and internal nodal forces
gt ]2 P,u
u, _Pbu (2.10)

|1, __Paf
f= f —_be (2.11)

where P, and Py are the topological projection matrices, defining internal and

boundary contributions, respectively. In line with (2.10), the tangent matrix

defined is partitioned as follow:

K. K, PaKPaT PaKPbT
K= =| oo > (2.12)

We examine the case of the prescribed linear displacements on the
boundary 0V of the RVE. At each node q of this boundary, condition 2.3

induces the discrete constraint

17



U, = 8y X, (2.13)

in terms of the prescribed macroscopic strain &m. Transcribing the strain
tensor €m into vector form, and taking the discretization into consideration,

we may rewrite:

u, =D, &, (2.14)

where Dgq is a matrix that depends on the coordinates of the nodal point q in

the reference configuration, for example

112x 0 vy
D, == ,
‘ 2{0 2y x} (2.15)

Now define a global coordinate matrix D associated with all M nodes on the

surface of the discretized microstructure as
—_ T™TT T
D=|D;D;..D] | (2.16)

Then we may rewrite the constraint (2.3) for the linear displacements on the

boundary in the compact global form
Te —
u,-Dg, =0 (2.17)

For nonlinear problems the partitioned finite element equation is defined in

the incremental form as
Ko Ky || Au, B Af,
K. K, | Au, |"|Af, (2.18)

In the convergence state, Afa obviously vanishes, which yields

Af, =K, Au, (2.19)

where the matrix K,, is expressed as

18



Ibe = Kbb - KbaK:aKab (2.20)

The average stress of the RVE, which is equal to the macro stress, is given
by:

1
AGy = DAL, (2.21)

By substitution of Egs. (2.19) and (2.3) into (2.21), the stress-strain relation
is formulated and the consistent tangent stiffness of the macroscopic level,
Cw, is obtained:

1, -

A, = \T(DKbbDTAsM) (2.22)
1 o AT

Cu =\7DKbbD (2.23)

in terms of the condensed stiffnessK .

2.3 The need of second-order scheme

The multiscale analysis wusing the first-order computational
homogenization scheme has been proven to be a versatile tool to establish
micromacro structure-property relations in materials, but retains essential
assumptions of the continuum mechanics, and thus gives satisfactory results
only for the simple loading cases (tension, pressure, simple shear). There are
two major disadvantages lying in the existing (first-order) micro-macro
computational approaches (as well as the conventional homogenization
methods), which significantly limit their applicability. In spite of the fact that
these techniques do account for the volume fraction, distribution and

morphology of the constituents, they do not incorporate the absolute size of

the microstructure, thus making it impossible to address geometrical size
effects (Microstructural size effects, which are triggered through small-scale
deformation mechanisms, and which can be captured in a local stress-strain

response, do not fall into this category.) Another difficulty arises from the

19



intrinsic assumption of uniformity of the macroscopic (stress or strain) fields
attributed to each microstructural representative cell. This uniformity
assumption relies on the concept of separation of scales and is not
appropriate in critical regions of high deformation gradients, where the

macroscopic fields can vary considerably [10].

Due to the mentioned shortcomings, the first-order computational
homogenization scheme has been extended to the second-order
computational homogenization framework, where the second-order stress and
strain are included. The formulation is based on a non-local continuum theory
which takes into account the influence of an environment on the behavior of a
material point, as proposed by [16,19]. Furthermore, the multiscale analysis
using the second-order homogenization approach may describe more complex

deformation modes, e.g., bending mode.

20



Chapter 3

Strain Gradient Material

Formulation

3.1 Introduction

Conventional continuum mechanics theories assume that stress at a
material point is a function of “state” variables, such as strain, at the same
point. This local assumption has long been proved to be adequate when the
wavelength of a deformation field is much larger than the dominant micro-
structural length scale of the material. However, when the two length scales
are comparable, the assumption is questionable as the material behaviour at
a point is influenced by the deformation of neighbouring points. Starting from
the pioneering Cosserat couple stress theory, various non-local or strain
gradient continuum theories have been proposed. In the full Cosserat theory,
an independent rotation quantity @ is defined in addition to the material
displacement u; couple stresses (bending moment per unit area) are
introduced as the work conjugate to the micro-curvature (that is, the spatial
gradient of @). Later, Toupin [19] and Mindlin [16] proposed a more general

theory which includes not only micro-curvature, but also gradients of normal

strain. Both the Cosserat and Toupin-Mindlin theories were developed for
linear elastic materials. Afterwards, non-local theories for plastic materials

have been developed. Interest in non-local continuum plasticity theories has

21



been rising recently, due to an increasing number of observed size effects in

plasticity phenomena [17].

In the present dissertation, the Toupin-Mindlin formulation of strain
gradient theory is the base for a finite element implementation for the
discretization of the macrostructure in the second-order computational
homogenization scheme, as proposed by [8] and [12]. The Toupin-Mindlin
formulation furnishes strain gradients and higher order stresses which enter

the principle of virtual work as work conjugates.

3.2 Linear Elastic Strain Gradient Theory

Unlike the classical linear elasticity, the grade-2 theories are based on
an assumption that strain energy density function is dependent not only on
six components of strain but also on the eighteen components of strain
gradient. Mindlin [16] proposed a classification of three forms based on
different groupings of the eighteen additional arguments of strain energy

density function. The strain energy density function having the additional

eighteen arguments:

i. Form I: as second gradient of displacement,

ii. Form II: as strain gradient and

iii. Form III: eight components of rotation gradient and ten
components of fully symmetric part of second gradient of displacement or

strain gradient.

In particular, gradient elasticity which is employed in the present
dissertation can be shown as a special case of Form II of Mindlin’s theory, i.e.

the strain energy density function is expressed as W = W (g;;, & x)-

Toupin and Mindlin developed a theory of linear elasticity whereby the

strain energy density per unit volume depends upon both strain

22



&j = E(ui,j +uj,i) and strain gradient n Here u is the displacement field

and a comma represents partial differentiation with respect to a Cartesian co-

ordinate. Note that €= €j and n=nji

In addition to Cauchy stress o; , this theory furnishes higher-order
stress Y(=Mjk) which is work conjugate to the strain gradient n;« The local

internal work can be expressed as:

W=0:e+H:in (3.1)

3.2.1 Variational equations of motion

According to the principle of virtual work, variation of strain energy i.e;
internal work is equal to the variation of work done by the external forces i.e;

external work.

OWr= OWE (3.2)
where W, fv WdV and WE is the work done by the external forces.

For the variation of strain energy, the work conjugates of strain and

strain gradient are defined as follows:

oW
Oy == =0j
0g; (3.3)
oW (3.4)
Hgi = ?ﬂk = Hyij

23



where o , Cauchy stress, is the work conjugate of strain. The first index
denotes the plane on which it is acting and the second index denotes the
direction of action and pgi , double stress, is the work conjugate of strain
gradient. The first index denotes the plane on which double stress is acting,
second index denotes the direction of lever arm and the third index denotes
the direction of action. The double stress can be easily appreciated with the

help of Figure 3.1.

The variation of strain energy density is

oW =aﬂ§gij +al58ij’k =

0&; O&;; \ (3.5)

oW = ajiégij +,ukji58ij|k

Using the definition of strain as the symmetric part of displacement gradient,

the above equation can be expressed as
oW =0ji (5ui,j _5wij)+lukji (5ui,jk _5a)ij,k) (3.6)
As 0;is symmetric and [ is symmetric in indices /and j, we obtain

oW :[(Gii _ﬂkii'k)5ui] _(Gii.j ~ Hi i )+(/ukji5ui,j ),k (3.7)

]
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Figure 3.1: Representation of one component of double stress. The
& sign reads as “work conjugate of”. As it can be noticed from the figure,
double stress is self-equilibrating with no net moment and no net force. The
solid line represents the undeformed and dashed line represents the

deformed shape [1].

Therefore, the variation of the

total strain energy is
oW, = [ oWdv
\%

(3.8)

25



Applying divergence theorem to equation (3.8), we obtain

SW, = j (0 = g JoU,0S — j — iy ) OudV + j Ny L OU; ;0S

In the last surface integral, the variation of ui;j is not independent of variation
of u; on the surface. As the variation normal derivative of displacement nju;; is
independent of variation of displacement u; on the surface, ui; in the last
integral can be resolved on the boundary into surface gradient and a normal

gradient as follows:

kﬂkj|5u k:uka 5“ i T Mty D5ui,j (3.9)

where the operators D;and D are defined as:
D, =(5,-n;n )4 (3.10)

D=ng, (3.11)

with ; being the kroneker delta and 9| denotes the spatial partial derivative

with respect to the subscript.

The first term on the right hand side of equation (3.9) contains the
non-independent variation D;du; which can further be expressed as [using the
product rule of differentiation (d(u) = d(uv)-d(v) )]

N 445 D;0U; = D, (nk:ukjiéui) +D; (nk:ukji)é‘ui (3.12)

The last term in the above equation (3.12) now contains the independent

variation of oui.

Using the surface divergence theorem, the first term of the equation
(3.12) can be written as:

D; (nklukjié‘ui) :(Dlnl)njnklukjié‘ui (3.13)
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Assembling all the results from (3.9) to (3.13), equation (3.8) can be

written as
oW :I[ AN _’ukjhk)_Dj (”kﬂkji)+(D.n,)njnkykji]5uids_
_I — i, k, éu dv +Inkyk“n Déu,dS (3.14)

The variation of work done by the external forces, neglecting the body

forces, is

= [t.6u,ds + [T, Dou,ds (3.15)
S S

where t and T are traction and double traction applied on the surfacere

spectively.

For any independent variations of u; and Ddu; , the principle of virtual
work (equation 3.2) results (for a body of volume Vand surface /" with normal

n) in following stress-equilibrium equations

div[e]=0 inV (3.16)

where the real stress 6 is defined as

6 =c—div[u] (3.17)

and boundary conditions are
t =n, (Gji _lukji,k)_ D, (nkzukji) +(D, nl)njnk/ukji (3.18)
T = NNy A4 (3.19)
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3.3 Finite Element Implementation

When undertaking conventional displacement-based finite element
analysis of second-order (i.e. strain gradient) continua, the interpolation of
displacements should exhibit at least C continuity, as the virtual work
statement includes the first- and second-order derivatives of the
displacement. However, due to the complex formulation and practical
difficulties associated with the implementation of such elements, the use of

mixed C® continuous elements is also proposed by many authors [8,10].

In this dissertation, the higher order continuum theory has been
implemented , as it has been proposed by [12], into a C triangular finite
element already used for the gradient elasticity in [20], in linear elastic

fracture mechanics [2], and for the plate bending problem in [3].

3.3.1 _ finite element

The finite element used in the present work is a higher-order triangular
bending element formulated by Dasgupta & Sengupta [3]. The C finite

element is shown in the Fig. 3.2 below.

— >  Displacement
component

O Two first partial
derivatives

]

Three second partial
derivatives

L/

Figure 3.2: C triangular finite element [1].
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This element uses a complete quintic polynomial to interpolate
displacement field. It has 3 nodes with 6 degrees of freedom per node for

each displacement component. The degrees of freedom are the displacement,

its two first derivatives and its three second derivatives at each node. This
results in eighteen degrees of freedom for each displacement component per
each element. Therefore, for the displacement vector field, the total number
of degrees of freedom per element is thirty six (36). The normal derivative of
displacement along the element edge is constrained to vary as a cubic
polynomial. The laplacian of strains vary as quadratic function inside the

element [1].

So, the displacement vector is interpolated as follow:

u :{“}:[N].{a} (3.20)

Vv

where

and

Y 1,xx ul, Xy

where u is the displacement component along the global x-axis and v is the

displacement component along the global y-axis. N is the matrix of shape

functions. The shape functions of this element are given in the Appendix A.
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3.3.2 Implementation

The element equations are derived from the variation of the principle

of virtual work, which may be expressed for strain gradient continuum as

j 5eodA+ j Sn'pdA = j Su"tds + j S(gradu™)Tds 5y
A A S S

In Eq. (3.21) T is the double traction tensor, T = Tn. A and S represent the
area and the perimeter of the triangle, respectively. The displacement

gradients can be derived as

i Th | (3.22)

M2z
M1
Tha,
21
| 21751, |

where Be and By are the matrices containing corresponding the first and

second derivatives of the interpolation functions N.

Since a nonlinear problem should be solved, Eqg. (3.21) is transformed
into the incremental form in the interval (t-1, t), where #7represents the time
increment of the last converged equilibrium state, and ¢ is the new affine
equilibrium state obtained in the iterative procedure using the following

relations:

u=u+Au (3.23)
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6=6"+Ac
p=p'"+Ap

Herein Au denotes the displacement vector increment, while the stress
increment Ao and the second-order stress increment Ap are computed by the

incremental constitutive relations as

Ae=C_ Ae+C  An (3.24)

Ap=C  Ae+C  An (3.25)

where Co, Con, Cpe, Cun are the material tangent stiffness matrices. By use of
Eq. (3.22), the strain and the second-order strain increments can be
expressed in terms of the nodal displacement vector increment AU by the

relations

Ae =B Ail (3.26)
An=B, Au

Substituting Egs. (3.22)—(3.26) into Eq. (3.21), the following finite element

relation is obtained

[®!c,B, +BC,B,+BC,B, +B,C,B,)da |Ai-=
A

npee noopmen
' . (3.27)
j (N"t+ gradN™T)ds — j (BI6" +BIp*")dA
S A
which may be written in the form
KAO=F, -F (3.28)

with K as the element stiffness matrix consisting of the following parts
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K=K, +K, +K, +K_ (3.29)

where the particular matrices are defined as

B, )dA

[ A

K, =[(BC
A

K,, = [(B!C,B,)dA (3.30)
A

K, = [(B]C,.B,)dA

A

K,, = [ (B,C,,B,)dA
A

Furthermore, Fe and F; are the external and internal nodal force vectors,
which are expressed by

the relations
F = J'(NTt +gradN"T)ds
S (3.31)

F = [(Blo™ +Bn*")dA (3.32)
A
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Chapter 4

Second-Order Computational

Homogenization

In this chapter, the second-order computational homogenization
scheme is presented, as an extension of the classical first-order computational
homogenization scheme for small strains. In the second-order
homogenization approach the macroscopic strain € and the strain gradient n
are imposed on a microstructural representative volume element.

Every microstructural constituent is modelled as a classical continuum.
On the macrolevel, however, a full second gradient equilibrium problem
appears. From the solution of the underlying microstructural boundary value
problem, the macroscopic stress tensor o and the higher-order stress tensor
B are derived based on an extension of the Hill-Mandel condition. This
automatically delivers the microstructurally based constitutive response of the

second gradient macrocontinuum.

4.1 Micro-macro algorithm

4.1.1 Scale transition

The following method, proposed by [12] is used to couple two different

continua: a classical (first-order) continuum at the microscale (RVE), and a
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higher- (second) order continuum at the macroscale. The micro—-macro
algorithm consists of the two models representing two different levels. The
first level represents the macromodel, discretized in this dissertation by the
triangular finite elements described in Chapter 3. As the second level, the
microstructure is presented by the representative volume element (RVE), here
discretized by the C°® quadrilateral four-node finite elements. The macroscopic
quantities are denoted by the subscript "M”, while the microscopic values are
labeled with the subscript "m”. In every macrolevel integration point of the
structural mesh, the RVE microanalysis is performed. The macrolevel
displacement gradients em and nm are transformed into the RVE boundary
nodal displacements using corresponding boundary conditions. After solving
the RVE boundary value problem, the stress om, the double stress pm and the
constitutive matrices Cm are obtained by a homogenization procedure. The

general scheme of the micro—-macro algorithm is presented in Fig. 4.1

MACRO

e

Higher-order
continuum

0“35?-\@‘3‘\"" : MICRO
», o |
4

T °3;, Solving B.V.P.
Figure 4.1: Second-order computational homogenization scheme [6].

4.1.2 Downscaling
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In the second-order computational homogenization scheme the RVE

boundary displacement field is defined by
U (X,5) = U7(X) X053, ()2 X O x5 1, (01X, ) @.1)

where u%(X) is the displacement of the macroscopic point to which the RVE is
assigned, &m is the macrostrain tensor, nm is the second-order macrostrain
tensor, x is the fast varying local RVE spatial coordinate, and X is the slow
varying macroscopic spatial coordinate. The additional term r represents the
microstructural displacement fluctuation field, which has been added to

account for the microscale contribution to the displacement field [8].

In the following, the symmetric operator is dropped (i.e. €=grad[u]) since it
has been assumed, for simplicity, that the rotation of the RVE is negligible.
Taking the spatial derivative of (4.1) leads to the microscopic strain
(microstrain) field within the RVE

g, =gradfu, ]=

g, =g, +xn, +grad[r] (4.2)

The volume average of the microstrain field yields
1 1 1
v j e dV =g, v J (x'n,)dV v J grad[r]ldV (43

where Vrepresents the RVE volume.

In the case that the RVE is centered on the corresponding macroscopic

point (i.e. that the local RVE spatial coordinates have their origin at the
geometric centre of the RVE), the second term on the right-hand side of (4.3)
is automatically zero (first moment of area about the centroid); thus, the
microscale fields (r, €m) can be related to the macrostrain &gv only and are not

affected by the second-order strain nm, as follows:
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1 1
ey = [eqdv - [ grad[rdv (4.4)
\% \%

By applying the divergence theorem to the terms on the right-hand side of

(4.4) , the relation can also be rewritten in terms of boundary integrals:

€y :Vljn®udf—\%jn®rdl“ (4.5)
r r

The volume average of the microstrain €m needs to be equal to the

macrostrain €m; hence, the last integral in both (4.4) and (4.5) must vanish:

\%In@rdrzo (4.6)
r

Removing the term associated with nm from (4.3) by conveniently
centering the RVE, has the advantage that higher-order boundary conditions
do not have to be prescribed on the RVE. This is consistent with the intention
to preserve the microstructural RVE problem as a classical boundary value

problem.

Averaging theorems implicit in the first-order computational
homogenization scheme have a suitable geometric interpretation—i.e. that
both the area and the first moment of area of the deformed RVE (with
respect to an arbitrary axis) defined in terms of microscopic displacements
are equal to the area and first moment of area of the RVE expressed in terms
of macroscopic deformation measures. This assumption consequently places a
restriction on the microscopic displacement field which, together with the
boundary conditions, leads to a well-posed boundary value problem for
deformation of the RVE. In the second-order computational homogenization
scheme, it is proposed by [8] to extend this concept, i.e. to include an
additional assumption that the second moment of area of the deformed RVE
given in terms of microscopic displacements is equal to the second moment of

area of the RVE expressed in terms of macroscopic deformation measures.
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Following the additional assumption about the second moment of area
of the deformed RVE, the relation (4.2) is multiplied by x and integrated over
the volume I of the RVE to give

Jmy = jx® grad[u]dv —jx ®gradr]dv 4
\%

Y,
where J =IX®XdV . Once again the centering of the RVE about the
\

macroscopic point has been utilized so that the volume integral of X®§g,,

conveniently vanishes. Applying the divergence theorem to relation (4.7)

gives

J-ny +%I®J:nM :jn®x®udr—jn®x®rdr (4.8)
I T

It should be noted that the relationship between the macroscopic
second-order strain (analogous to the reasoning associated with the first-

order strain in (4.4)) and the microscopic variables is now given exclusively by

integrals over the boundary of the RVE. The additional assumption regarding
the second moment of area of the deformed RVE requires that the influence

of the displacement fluctuation field should vanish:

[n®x®rdr=0 (4.9)
r

Any RVE boundary conditions used must satisfy relations (4.6) and

(4.9). The displacement boundary conditions obey the assumption that r = 0,

vx € dV, which yields the satisfaction of the two aforementioned relations.

The generalized  periodic  boundary  conditions assume identical

microfluctuation field on the opposite RVE sides, as defined in Fig. 3, resulting

in
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Figure 4.2: Undeformed Representative Volume Element [12].

r (S) =TIy (S)

(5 =1y (9) @10

where s is a local coordinate along the edge and the subscripts L, R, T and B
stand for the Left, Right, Top and Bottom boundaries of the RVE. From Eq.
(4.10), it is obvious that relation (4.6) is satisfied, considering n. (s) = —nr ()
and nt (s) = —ng (S). Relation (4.9) is required on two RVE edges only due to
the periodicity (4.10). Consequently, relation (4.9) is expressed as

[rda=o
A

4.11
[ rada=0 (%:11)
Ag

After substituting (4.1) into (4.11), the following expressions are obtained
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(4.12)

After solving the RVE boundary value problem, the homogenization of the

stress tensors and the constitutive matrix has to be carried out [12].

4.1.3 Upscaling

To complete the formulation it is necessary to identify the upscaling of
the microstructural response in order to define the macroscopic stress
measures in terms of the microscopic quantities. For a statistically
homogeneous body, the macroscopic quantities can be defined as the
average of the microscopic quantities over the volume of the RVE. According
to the Hill-Mandel condition it is required that the local variation of work at a
macroscopic point must be equal to the volume average of the variation of

work performed on the RVE associated with this macroscopic point:
L S’ V =g, o,
\7 €mOnm )d = 0§06\, +OoNy (4.13)
Y

By means of Eq. (4.13), the first-order and the second-order stress tensors

are derived in the form of the surface integrals as

Oy =\%I(tTX)dF (4.14)
r

1 it
B, = —I x tx)dI _
M T oy r( ) (4.15)
The relations (4.14) and (4.15) can also be transformed into volume integrals,
allowing the macroscopic stress measures to be expressed in terms of volume
averages of microstructural quantities. The macroscopic stress tensor om

again equals the volume average of the microscopic stress tensor om:
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G, = \% [o,dv (4.16)
V
. :%J(G:x+xTcm )dV (4.17)

In the limit case, the infinitesimal force tdl" in (4.14) and (4.15) tends to f: ,

representing the nodal force of i» node on the RVE boundary. On the basis of

the previous assumption, Egs. (4.16) and (4.17) transform into

(4.18)

1

ty = HE, (4.19)

as described by [15]. In Egs. (4.18) and (4.19) the matrices D and H,
introduced in [8] and [15], are the coordinate matrices involving all the
boundary nodes of the RVE. These matrices for the RVE boundary node /for

the 2D case have the following form

1/2x 0 vy
D == 4.20
' 2{0 2y x} (4.20)

2x? 2y?
Hzl{x 0 2y 0 xy 0} (4.21)

40 2y 0 23 0 xy

which are assembled for n nodes into the matrices:
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D=[D/D;..D; | (4.22)
H=[HH;..H] | (4.23)

In Egs. (4.18) and (4.19) f, is the nodal force vector involving all the
boundary nodes on the RVE. Using Egs. (4.18) and (4.19) the incremental
values of the first-order and the second-order stress tensors may be

expressed in terms of the boundary nodal forces increment Af, as

Ac,, = lDAfb
v (4.24)
1
Apy = v HAf, (4.25)

According to [10,12,15], the boundary nodal forces can be computed by
partitioning RVE algebraic equations. In this setting, the RVE global matrices

U= u, | _|Pu

= u, = P.u (4.26)
f f.| | Pf

= f = P.f (4.27)

K = K. Ks| [PKPT PKPS
K. K| |P.KPT PKPT (4.28)

are transformed into

where P2 and Py are the topological projection matrices, defining internal and
boundary contributions, respectively. For nonlinear problems the partitioned

finite element equation is defined in the incremental form as
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Ko Ky || Au, B Af,
K, K | Au, | |af, (4.29)

In the convergence state, 4fa obviously vanishes, which yields
Af, =K, Au, (4.30)
where the matrix K,, is expressed as

Ibe = Kbb - KbaK;aKab (4.31)

Hereafter the RVE boundary nodes displacement increment Aus is derived by
means of Egs. (4.1), (4.22) and (4.23) resulting in

Au, =D"Ag,, + H An,, (4.32)
Substitution of Egs. (4.32) and (4.30) into (4.24) and (4.25) yields

1 ~ T % T
Aoy, = V(DKbbD Azy + DK, H AHM> (4.33)

1, -~ -
Ap,, = V(HKbbDTAsM +HK,, H"An,, ) (4.34)

Finally, comparing Egs. (4.33) and (4.34) with (3.24) and (3.25), the

following identities are easily observed
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Ccrg _\%DkbbDT
1 o
C,, —\7DKbe
(4.35)
C,. =\%HI~(bbDT
1o o
C.. :VHKbe

representing the tangent stiffness matrices at the macrolevel, Cm [12].

4.2 Nested solution scheme

Summarizing the second-order computational homogenization
framework, this section discusses the nested solution scheme for the coupled
multi-scale numerical analysis. The structure of the coupled micro-macro
program can be outlined as follows [10].

The macroscopic structure to be analyzed is discretized by finite
elements. To each macroscopic integration point a unique microstructural RVE
is assigned. The geometry and material properties of an RVE are based on
the microstructure of the underlying material. The RVE selected should be
“representative”, i.e. it should contain sufficient information on the
microstructural features and basic mechanisms of their interaction.

In order to initiate the macroscopic finite element analysis, constitutive
tangents at every integration point are required. To obtain these tangents
from the microstructural properties a preparing microstructural analysis is

performed. During this initialization the stiffness matrix of an undeformed RVE
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is assembled and used to derive the initial macroscopic constitutive tangents
at a macroscopic integration point.

During the actual analysis the external macroscopic load is applied in
increments. For every step of the macroscopic incremental-iterative
procedure, and in each macroscopic integration point, the macrostrain gm and
the second-order strain nm are calculated based on the current (iterative)
macroscopic displacement field. These values are sent to the microlevel,
where they are used to define the boundary value problem for the RVE,
corresponding to the respective macroscopic integration point. Upon the
solution of every RVE problem, the averaged stress tensor om and the
second-order stress tensor Pm are obtained using (4.18) and (4.19).
Additionally, the constitutive tangents are extracted according to (4.35) and

returned to the macroscopic program.

When the analysis of all RVEs is finished, the stress tensor, the second-
order stress tensor and the consistent constitutive tangents are available at
every macroscopic integration point. Hence, macroscopic internal nodal forces
can be calculated, higher-order equilibrium can be evaluated and, if required,
the next macroscopic iteration can be performed. If equilibrium is achieved
the calculations can be continued for the next increment. This solution

scheme is summarized in Table 4.1 and in Fig. 4.3.

Obviously, the multi-scale algorithm described above is parallel by its
nature. All RVE calculations for one macroscopic iteration can be performed at
the same time without any exchange of data between them. So the use of
parallel processors for the RVE analyses would significantly reduce the total

micro-macro calculation time.
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Figure 4.3: Micro-macro algorithm [12].
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MACRO
1. Initialization
*initialize the macroscopic model

+ assign an RVE to every integration

point

+ loop over all integration points Initialization RVE

analysis

for em*"tandnm =10

end integration point loop

2. Next increment

apply increment of the macro load
3. Next iteration

assemble the macroscopic tangent
stiffness

*solve the macroscopic system
*loop over all integration points RVE
analysis

*calculate emand nm=0

+ end integration point loop
+ assemble the macroscopic internal
forces

4. Check for convergence
+ if not converged = step 3
‘else = step 2

Em nm

tangents
é

Em nm

oM | HKm

tangents
e

MICRO

Initialization RVE

analysis

*prescribe boundary conditions
*assemble the RVE

stiffness

*calculate the tangents Cog Con Cue
Cue

RVE analysis

*prescribe boundary conditions
*assemble the RVE

stiffness

*solve the RVE problem

*calculate om, U ™m
¢ calculate the tangents Cog Con Cpe
Cue

Table 4.1: Incremental-iterative nested multi-scale solution scheme for the

second-order computational homogenization.
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Chapter 5

Numerical Examples

In the previous chapters the first-order and second-order
computational homogenization schemes have been presented. This chapter
focuses on the implementation of these two techniques. At first, in section 5.1
RVEs subjected to a given macroscopic deformation are analyzed. The results
obtained from the first-order and the second-order computational
homogenization modelling are compared and the ability of the second-order
scheme to capture gradient effects is demonstrated. In section 5.2 the micro-
macro algorithm of the second-order computational homogenization is
evaluated by being implemented in a benchmark (pure bending of a
homogeneous cantilever beam) problem. Finally, in section 5.3, the first-order
and the second-order computational homogenization schemes are compared
in a problem of bending of a cantilever beam consisting of a material with
embedded fibers.

5.1 Microstructural analysis

In this section, some features of the second order homogenization
scheme are illustrated by analyzing a single RVE subjected to a given

macroscopic path.
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5.1.1 RVE modes of deformation

Firstly, it will be showed how the strain gradient nm affects the
deformation of the RVE. According to [13], the deformation modes of an RVE
that correspond to particular components of the second gradient tensor are
distinguished in four categories of deformation (3D case): extensional,
trapezoidal, curvature, and twist named according to their affect on an

otherwise undeformed cubic RVE (Fig.5.1).

Undeformed Twist

Extensional Curvature Trapezoidal

Figure 5.1: Examples of RVE deformation associated with nonzero

components of second gradient tensor [13].

We consider a 2D homogeneous RVE model discretized by 4x4
quadrilateral plane stress finite elements (Fig.5.2). When the gradient
components of first order strain €v are applied on RVE boundaries, the two
well known modes of deformation, stretch and shear, occur. The deformed
shape of RVE for €={0.01 0 0} and €={0 0 0.01 } are illustrated in Fig 5.3.
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The components of strain gradient nm cause three (in 2D case) additional
modes of deformation. In Fig 5.4 the deformed shapes are shown for
N111=0.02, N221=0.02 and 2n12:=0.02.

Figure 5.2: Undeformed RVE

c c
Deformed Shape

L L c
Deformed Shape

Figure 5.3: RVE deformation associated with nonzero components of gm

a) £11=0.01, b) 2¢12=0.01.

49



e e
Deformed Shape

(a)

Deformed Shape

(b)

I r
Deformed Shape

(c)
Figure 5.4: RVE deformation associated with nonzero components of second
order strain nm a) Nni11=0.02 (Extensional) b) n22:=0.02 (Curvature)
€) 2n121=0.02 (Trapezoidal).
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5.1.2 Size effects for a given microstructure

In the case when the microstructural size is no longer negligible with
respect to the characteristic length of the macroscopic deformation field a

type of size effect may appear. This may occur due to a relatively small size of

the macroscopic configuration (e.g. thin layers) or when localization of

deformation takes place at the macrolevel. These size effects, which are

generally associated with a dominant influence of the microstructure at the
macrolevel, usually depend not only on the value and history of the strain
tensor but also on its gradient. Classical continuum mechanics material
models and, consequently, the first-order computational homogenization
scheme, are not able to describe this size effect, since they do not incorporate
a microstructural length scale. The second-order framework, on the other
hand, is well capable to deal with these size effects, due to the account of the
macroscopic gradient of the strain tensor [10]. This is illustrated in the

following example.

Identical microstructural RVEs have been subjected to different tensile-
bending macroscopic deformation histories. In these histories the strain
tensor €m is the same, but its gradient nm, while representing the same
deformation mode (bending), has different intensities. This has been achieved
by a component-wise linear increase of the components of the prescribed nm.
The resulting deformed RVEs are shown in Fig. 5.5. The left picture in Fig. 5.5
corresponds to the first-order case, not accounting for the strain gradient.
Clearly, depending on the intensity of the strain gradient tensor, the overall
deformation mode differs, which will result in different extracted overall

responses, thereby capturing the size effect.
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(a) (b) (c)

Figure 5.5: Dependence of the overall deformation mode on the intensity of
the second-order strain. All the RVEs have been subjected to the same strain

tensor €m and a gradient nm of different intensity.

5.2 Modeling of pure bending

In this section, the micro—macro simulation algorithm has been verified

on a pure bending problem.

For the macromodel we consider the cantilever beam shown in Fig 5.6.
The geometrical properties are C= 10 mm, L = 60 mm, £ =5 mm and the

concentrated force P=1000 N.

=

]

54
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Figure 5.6: Cantilever beam in plane stress [9].
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The macromodel is discretized by twenty four (24) C! triangular
elements, as they were described in paragraph 3.3. The number of nodes are
21 and the nodes numbered 19, 20, and 21 represent the fixed end
(Fig 5.7).

. . . . . . -
l | | | | | | -

P
- - s - - : <

Figure 5.7: Finite element discretization with C! triangular elements.

The microscopic model (RVE) consisted of sixteen (16) quadrilateral

elements, as it was shown in Fig 5.2.

The material data are the Young’s modulus £ = 200 GPa and the
Poisson’s ratio of v= 0.3. Since the influence of the microfluctuation field for
homogeneous materials is negligible, the displacements of the RVE boundary

can be calculated by using displacement boundary conditions.

The deformed shape of the macromodel is presented in Fig. 5.8.
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Figure 5.8: Deformed beam (Second-order scheme).

Comparing the deformed shape with results of standard FEM analysis (Fig
5.9) with the same number of elements and by using 3-nodes (linear) and 6-
nodes (quadratic) triangular elements, we can see that the shape is

acceptable.

L

Figure 5.9: Deformed beam (FEM 6-nodes triangular elements).
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Next we plot the vertical displacement of the nodes situated along the
neutral axis of the cantilever (Fig.5.10). As it appears, a good correspondence
is exhibited.
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Figure 5.10: Deflection of the cantilever beam.

5.3 Linear Modelling

In this section, the cantilever beam problem of section 5.2, will be
solved for the linear case of a non-homogeneous material using both the first-

order and the second-order computational homogenization schemes.

5.3.1 Microscopic model

We consider a microstructure which consists of a fiber of diameter

dr=0.3568 (cross-section Ar=0.1), made of material with Young’s modulus
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Ef=1000, embedded in a matrix of thickness tm=1 and made of material with
Young’s modulus Em=100 and Poisson’s ratio v=0.2, which is represented by
a RVE shown in Fig. 5.11.

a5f

05k

Figure 5.11: RVE with embedded fiber.

Full bond between the fiber and the matrix is assumed, that is, no slip
is allowed between the two elements. The microstructure is modelled using
plane-stress quadrilateral elements for the matrix. The model for full bond

which has been used is that proposed by [14] (see Appendix B).

When the RVE is deformed monotonically with strain
{€11 €2 2e12} T ={&1 —0.2¢e1 0}7, until strain €:=0.05 is achieved, and for
nm=0 using the first-order and second-order homogenization scheme, the

response of averaging stress om with prescribed strain is shown in Fig 5.12.
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Stress-Strain curve(c1-¢1)
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Figure 5.12: Averaging stress omi: -prescribed strain €; response.

A we can see, for nm=0 there is no difference between the two

schemes.

5.3.2 Macroscopic model

For the macromodel we consider the cantilever beam described in
section 5.2. The problem is solved with both the first-order and second-order

homogenization scheme.

The first step is the initialization of the problem by partially solving the
RVE to compute the constitutive matrices C. It is remarked that when the
problem is linear, the homogenized macroscopic constitutive modulus can be
computed once and used for all calculation steps at the macroscale. Since the
matrices C are computed, the constitutive law is thus known for the
macroscopic model. Macroscopic displacements, strains &v and strains

gradients nm can be obtain at every intergration point.
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At the final stage the macroscale strains &m and strains gradients nm are
available and a postprocessing of the RVEs could be performed in order to

find their stress and strains fields.
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Figure 5.13: Vertical deflection of the neutral axis (First-order scheme).

-0.05
Second-Order Scheme
T .01
£
c
K=}
I3}
= -0.15
j)
a
©
o
5 02
>
-0.25
0 10 20 30 40 50 60

Lenght (mm)

Figure 5.14: Vertical deflection of the neutral axis (Second-order scheme).
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The vertical displacement of the nodes situated along the neutral axis
of the cantilever for the solutions obtained by using the first-order and
second-order homogenization schemes are depicted respectively on Fig. 5.13

and 5.14. As we notice the second-order scheme give us a stiffer response.

The stress distribution ox of the macrolevel are presented in Fig. 5.15
and 5.16., portraying also the deformed shapes of RVEs in selected

intergration points of the same area.
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Figure 5.15: Stresses along the x-axis obtained with the first-order scheme.
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Figure 5.16: Stresses along the x-axis obtained with the second-order

scheme.
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Chapter 6

Conclusions

A wide range of manufactured, as well as natural, materials are
heterogeneous at a certain scale of observation. If the heterogeneities are
small compared to the scale of the whole problem, a standard finite element
analysis often becomes computationally too large. For that reason various
homogenization methods have been developed.

In the scope of this dissertation the two schemes, i.e the first-order
and the second-order, of the computational multiscale homogenization
method have been examined.

The computational multiscale homogenization method is based on the
solution of nested boundary value problems, one for each scale. The most
important characteristic of this solution strategy is that no constitutive
assumptions are required on the macrolevel, since the macroscopic
constitutive response is numerically obtained from the solution of a microscale
boundary value problem.

The first-order computational homogenization scheme fits entirely in a
standard local continuum mechanics framework. However, there are
limitations in the application of the first-order scheme, because the size
effects can not be neglected when considering problems of dimensions close
to the characteristic length of the material.

In order to eliminate these limitations, the second-order computational
homogenization procedure could be used. The second-order scheme is based
on a proper incorporation of the macroscopic gradient of the strain tensor.

The second-order scheme algorithm have been programmed and
implemented. According to the second-order formulation, the macrolevel was
discretized by the C triangular finite element based on the strain gradient
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theory, while the standard C® quadrilateral was used for the discretization at
the microlevel. The results for a bending problem of a homogeneous beam
exhibited a good correspondence.

The second-order scheme was also compared with the first-order
scheme in a bending problem. As it appears, the second-order scheme shows
a stiffer behaviour.

It should also be mentioned, that, compared to the first-order
framework, in the second-order computational homogenization the only
additional computational effort is the solution of the higher-order equilibrium
problem on the macrolevel, since the microstructural boundary value problem
remains classical.

Moreover, the ability of the RVE within the second-order framework to
capture differences of the macroscopic gradient was shown.
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Appendix A

The shape functions of the C triangular finite element used are [1]:

N, = L +5L2L, +5L¢L, + 101312 +10L3L2 + 20131, L, +30r,, L?L, L2 + 30r, 2L, 12

N, = Cs'—f'—z _Czl—il—e +4C3Lf|—§ _4C2|—i|—§ +4(C3 _Cz)l—il—zl-s _(301 +15r2102)|—i|—2|—§ +
+(3¢, +151,,C,) L L L

N3 = _bsLisz +b2'-f'~3 _4b3|-f|—§ +4b2|-13|-§ +4(b2 _bs)l—il—zl-s +(3b1 —|—15I’21b2)LfL2L§ o
_(3b1 +15I’31b3) Li le-i

2 2
N, = %3 L2 —%2 LL —c,c, 5L, L, +(cc, +gr21cf)LfL2L§ +(ccC, +grglc§)LfL3L§

N, = —bic, 5L —byc, L2 + (b,c, +b,¢,) L, L, — (b, +b,c, +5r,b,¢,) L, L; -
_(b1C3 + b3C1 + 5r31b303) Lf L3 Lé

b2 2 5 5
Ns :?3 I—il—zz +?2 Lil—i —b2b3L3L2L3 +(b1b2 +§r21b22)|-f|—2|-§ +(b1b3 +§I’31b32)LfL3L§

where,
bi = y; =y«
Ci = Xk —=Xj

with / j, k being cyclic permutations of 1,2 and 3.
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bibj +CiC;

ro=—
b? +c?

1

The remaining twelve components of the shape function, N7 to Nis,
corresponding to the degrees of freedom at nodes 2 and 3 are obtained by the
cyclic permutations of the suffixes.
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Appendix B

In this Appendix a brief summary of the model of full bond between fiber and
matrix is presented, based on mathematical formulation of [14].

Let a fiber element be embedded in a “parent” matrix element, and let ur be
the displacement of the fiber, um the displacement of the matrix and s the
slippage between the two (Fig. B.1).
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Figure B.1: [14]

In the case of full bond (i.e. no slippage), the virtual work principle is
described by the system:

nf
Kmm + Z Kff,m,i -Ad = Rt+ﬂt — Qm,f

i=1

where nf is the number of fibers embedded in the element, R are the external
forces acting upon the matrix nodes and

Kin=[BrTTEATB,dI
|

m—m—m

Ko = [ BTDRBRdV,,
Vin
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Qu¢ = | BrondV, +[BIT 7o Adl
|

Vm

Bm are the shape function derivatives for the parent matrix element,

w o 2 2 2 , - . .
T"={ly m;y n;y l;'n;, my-n;y [ -ng}

with |1, m1, n1 the direction cosines of the fiber,

Vm is the matrix volume, Arthe fiber section area, £ the fiber length, Er the
fiber Young’s modulus and Dm the matrix constitutive matrix.
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