
 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS  

Joint Postgraduate Course 

“Computational Mechanics” 

 

 

 

 

 
 

Second-Order Computational 
Multiscale Homogenization 

Postgraduate Dissertation 
 

Ioanna Patitsa 

 
Supervisor: VISSARION PAPADOPOULOS, Assistant Professor, NTUA 

 

ATHENS 2015 



 
        

2 
 

 

 

 

 

 

Ευχαριστίες 
 

Θα ήθελα να εκφράσω τις θερμές και ειλικρινείς ευχαριστίες μου στον 

επιβλέποντα της εργασίας μου κ. Βησσαρίωνα Παπαδόπουλο , Επ. Καθηγητή 

του Εργαστηρίου Στατικής και Αντισεισμικών Ερευνών του τομέα 

Δομοστατικής της Σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου 

Πολυτεχνείου, για τη δυνατότητα να ασχοληθώ με το αντικείμενο της 

ομογενοποίησης ,για το ενδιαφέρον και την άμεση ανταπόκριση στις διάφορες 

απορίες που προέκυπταν καθώς και για την εμπιστοσύνη που μου έδειξε. 

Επίσης, θα ήθελα να ευχαριστήσω την υποψήφια διδάκτορα κ. Μαρία 

Ταβλάκη για τη βοήθειά της. 

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους 

μου για την αμέριστη συμπαράστασή τους. 

 
 

 

 

 

 

 

 

 

 

 

 



 
        

3 
 

Abstract 
The aim of this dissertation is the investigation and implementation of 

the computational multiscale homogenization schemes. To this end, the 

homogenization solution schemes proposed by [10,12] are used. 

Heterogeneous materials are found everywhere. If the heterogeneities 

are small compared to the scale of the whole problem, a standard finite 

element analysis often becomes computationally too large. For that reason 

various homogenization methods have been developed. 

Multi-scale computational homogenization is a technique that reduces 

the amount of calculations, but still manages to capture the heterogeneous 

properties. It is based on the derivation of the local macroscopic constitutive 

response from the underlying microstructure through the adequate 

construction and solution of a microstructural boundary value problem. 

First-order computational homogenization schemes fit entirely into a 

standard local continuum mechanics framework. However, when considering 

problems of dimensions close to the characteristic length of the material, the 

size effects can not be neglected and the classical (first-order) multiscale 

computational homogenization scheme looses accuracy, motivating the use of 

a second-order multiscale computational homogenization scheme. This 

second-order scheme uses the classical continuum at the microscale while 

considering a second-order (i.e. strain gradient) continuum at the macro-

scale. 

When undertaking conventional displacement-based finite element 

analysis of second-order continuum, the interpolation of displacements should 

exhibit at least C1 continuity. In this dissertation, the structure at macroscale 

level is discretized by the C1 two dimensional triangular finite elements, while 

the C0 quadrilateral finite element is used for the discretization of the 

microscale. 

The two schemes are implemented in a cantilever beam bending 

problem. The results are compared. 

Key words: computational homogenization, multiscale mechanics, second-

order homogenization, C1 continuity finite element. 
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Περίληψη 
Αντικείμενο της παρούσας μεταπτυχιακής εργασίας είναι η μελέτη  και η 

εφαρμογή των μεθόδων υπολογιστικής ομογενοποίησης πολλαπλών κλιμάκων. 

Για το σκοπό αυτό, θα χρησιμοποιηθούν οι μέθοδοι υπολογιστικής 

ομογενοποίησης που έχουν προταθεί από τους [10,12].  

Σχεδόν όλα τα βιομηχανικά και τεχνητά υλικά, όπως επίσης και τα 

φυσικά υλικά, που χαρακτηρίζονται από πολλαπλές κλίμακες, παρουσιάζουν 

ανομοιογένεια σε κάποια συγκεκριμένη κλίμακα, η οποία έχει σημαντικό 

αντίκτυπο στην παρατηρούμενη μακροσκοπική συμπεριφορά τους. Η 

απευθείας αριθμητική επίλυση των προβλημάτων πολλαπλής κλίμακας είναι 

δύσκολη καθώς απαιτείται ένα τεράστιο ποσό μνήμης του υπολογιστή και 

μεγάλος χρόνος επεξεργασίας. Για το λόγο αυτό έχουν αναπτυχθεί διάφορες 

μέθοδοι ομογενοποίησης. 

Η υπολογιστική ομογενοποίηση είναι μια τεχνική που ανήκει στην 

ευρύτερη ομάδα των μεθόδων πολλαπλών κλιμάκων. Βασίζεται ουσιαστικά 

στον υπολογισμό της τοπικής μακροσκοπικής απόκρισης μέσω ανάλυσης της 

υποκείμενης μικροδομής με την κατάλληλη κατασκευή και επίλυση ενός 

προβλήματος συνοριακών τιμών σε επίπεδο μικροκλίμακας. 

Η υπολογιστική ομογενοποίηση πρώτης τάξης εφαρμόζεται σε 

περιπτώσεις που η μακροκλίμακα μπορεί να περιγραφεί με την κλασσική 

μηχανική συνεχούς μέσου. Ωστόσο, στις εφαρμογές μικρού μεγέθους, η 

επίδραση της μικροδομής δε μπορεί πια να θεωρηθεί αμελητέα σε σχέση με το 

μέγεθος του στοιχείου, οδηγώντας έτσι στα, όπως αποκαλούνται, φαινόμενα 

κλίμακας (size effects). Στις περιπτώσεις αυτές η υπολογιστική ομογενοποίηση 

πρώτης τάξης χάνει σε ακρίβεια, οδηγώντας έτσι στην απαίτηση ανάπτυξης 

μιας υπολογιστικής μεθόδου ομογενοποίησης δευτέρας τάξεως.  

Στη μέθοδο δευτέρας τάξεως, διατηρείται η θεώρηση του κλασσικού 

συνεχούς μέσου στη μικροκλίμακα, ενώ στη μακροκλίμακα χρησιμοποιείται μια 

γενικευμένη θεώρηση συνεχούς μέσου όπου η παραμορφωσιακή ενέργεια, 

εκτός από την εξάρτηση από τους καθιερωμένους όρους τροπής, εξαρτάται 

επιπλέον και από τις βαθμίδες τροπής. Στις θεωρίες συνεχούς μέσου τύπου 

«κλίσεως», εισάγεται συνεπώς η επίδραση της γειτονικής περιοχής σε ένα 

σημείο.  

Στα πλαίσια της κλασικής μεθόδου των πεπερασμένων στοιχείων για 

την αριθμητική επίλυση προβλημάτων αυτού του είδους απαιτούνται 

«στοιχεία C1» που να εξασφαλίζουν συνέχεια της μετατόπισης και των 

πρώτων χωρικών της παραγώγων. Στην παρούσα εργασία, για την εφαρμογή 
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της υπολογιστική ομογενοποίηση δευτέρας τάξεως, η μακροκλίμακα 

διακριτοποιείται με τριγωνικά πεπερασμένα στοιχεία «C1» ενώ η μικροκλίμακα 

με τετραπλευρικά ισοπαραμετρικά στοιχεία επίπεδης έντασης. 

Οι δύο μέθοδοι (πρώτης –δευτέρας τάξεως) εφαρμόζονται σε ένα 

πρόβλημα κάμψης δοκού και τα αποτελέσματα συγκρίνονται. 
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Chapter 1 

Introduction 

 

Heterogeneous materials are found everywhere. Actually, materials 

that normally are considered homogeneous are heterogeneous on a 

sufficiently small scale, such as steel. Typical examples include metal alloy 

systems, porous media, polycrystalline materials and composites. The 

different phases present in such materials constitute a material 

microstructure. The size, shape, physical properties and spatial distribution of 

the microstructural constituents largely determine the macroscopic, overall 

behaviour of these multi-phase materials. 

Consider a problem of various length scales, where the material is 

heterogeneous on the smallest scale. Solving this problem with a standard 

finite element analysis requires that the size of the elements correspond with 

the size of the smallest heterogeneity. For large and complex problems, this 

leads to a computationally large analysis. To handle this problem in a more 

efficient way, various techniques have been proposed. A promising approach 

developed in the recent years is Multi-scale Computational Homogenization. 

This procedure does not yield closed form over all constitutive equations. 

Instead it computes stress-strain relations at points of interest on the 

macroscopic field via a detailed modelling of the microscopic area linked to 

the point [7]. 

Computational homogenization introduces a coarser element grid to 

lower the computational effort. These elements consist themselves of several 

ordinary finite elements and are named Representative Volume Elements 

(RVEs), implying that they describe the heterogeneities within their range. 
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Two independent problems need then to be solved; one microscopic problem 

and one macroscopic problem. In first and second order computational 

homogenization, a material will be considered heterogeneous at micro scale 

and homogeneous at macro scale. The macroscopic behaviour of the material 

is predicted based on the microscopic properties.  

The multiscale analysis using the first-order computational 

homogenization scheme allows explicit modeling of the microstructure, but 

retains essential assumptions of the continuum mechanics, and thus gives 

satisfactory results only for the simple loading cases (tension, pressure, 

simple shear). It includes only the first gradient of the macroscopic 

displacement field and it is based on the principles of a local continuum. 

Therefore, the size effects cannot be captured [12].  

Due to the mentioned shortcomings, the first-order computational 

homogenization scheme has been extended to the second-order 

computational homogenization framework, where the second-order stress and 

strain are included. The formulation is based on a non-local continuum theory 

which takes into account the influence of an environment on the behavior of a 

material point. Furthermore, the multiscale analysis using the second-order 

homogenization approach may describe more complex deformation modes, 

e.g., bending mode. It requires a more complex formulation at the macrolevel 

(C1 continuity), which implicates the requirement that both displacements and 

deformations must be continuous functions. The microlevel in this case can 

remain on C0 continuity to keep micro boundary value problem as simple as 

possible. 
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1.1 Outline 

The aim of this dissertation is the investigation and implementation of 

the second-order multiscale homogenization scheme. 

In chapter 2, the classical first-order computational homogenization in 

2D is described, where only the most important aspects regarding the method 

have been written down. Additionally, some intrinsic limitations of the first-

order framework are pointed out. 

In chapter 3 the continuum description for the second gradient 

medium is presented, as in the framework of the second-order computational 

homogenization a proper description of the macroscopic homogenized 

continuum is required. Moreover, a finite element computational strategy 

based on C1 continuity elements is described. 

In chapter 4 the second-order computational homogenization scheme 

for small strains is presented, as proposed by [12]. The microstructural 

boundary conditions and the relations for the determination of the averaged 

stress measures, as well as the extraction of the macroscopic constitutive 

tangents from the microstructural stiffness are described. The solution 

scheme of the coupled second-order multiscale computational analysis is 

outlined.  

Chapter 5 presents some illustrative examples of the second-order 

computational homogenization analysis. A comparison of the performance of 

the first and second-order techniques is also carried out. 

Finally, chapter 6 gives a brief summary of the conclusions 

 

 

 

 



 
        

11 
 

 

Chapter 2 

Computational Homogenization 

  

 

To model a heterogeneous material in a finite element analysis, the 

element grid has to be small enough to capture all the material properties in a 

satisfying way. The problem that can occur in such an analysis is that the 

calculations become too heavy for the computational machine. One possibility 

to minimize the computational effort is to make use of multi-scale 

homogenization. This method divides the problem into two independent 

problems; a micro scale problem and a macro scale problem. The micro scale 

problem takes care of the heterogeneities in the material, while the macro 

scale problem is considered as a homogeneous problem and makes use of 

average material properties that the micro scale problem results in. 

2.1  Assumptions 

In computational homogenization the material is assumed to be 

macroscopically sufficiently homogeneous, but microscopically heterogeneous 

(the morphology consists of distinguishable components as e.g. inclusions, 

grains, interfaces, cavities), as illustrated in Fig. 2.1. To make this separation 

of scales possible, the macroscopic length scale has to be much larger than 

the microscopic length scale. The microscopic length scale must in turn be 

much larger than the molecular dimension to be able to describe the 

properties of the material in a satisfying manner, i.e. lmolecular « lmicro « lmacro 

[10]. 
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Figure 2.1:  Separation of scales [10]. 

 

Most of the homogenization approaches make an assumption on global 

periodicity of the microstructure, suggesting that the whole macroscopic 

specimen consists of spatially repeated unit cells. In the computational 

homogenization approach a more realistic assumption on local periodicity is 

proposed, i.e. the microstructure can have different morphologies 

corresponding to different macroscopic points, while it repeats itself in a small 

vicinity of each individual macroscopic point. The concept of local and global 

periodicity is schematically illustrated in Fig. 2.2 

The physical and geometrical properties of the microstructure are 

identified by a Representative Volume Element (RVE). On macro level the 

RVEs are considered as points. The actual choice of the RVE is a rather 

delicate task. The RVE should be large enough to represent the 

microstructure, without introducing non-existing properties (e.g. undesired 

anisotropy) and at the same time it should be small enough to allow efficient 

computational modeling. Since an appropriate RVE has been selected, the 

properties of the RVEs are used as homogenized properties in the macro scale 

problem [10]. 

 



 
        

13 
 

 

Figure 2.2:  Local periodicity compared to global periodicity [10]. 

 

 

2.2  First-order Computational Homogenization 

According to the classical formulation of the multi-scale computational 

homogenization [10,15], two nested boundary value problems are 

concurrently solved. The initial heterogeneous macroscopic structure is 

equivalent with a homogeneous one, in each Gauss point of which, a suitably 

defined RVE is correlated This RVE includes every heterogeneity and non-

linearity of the material. With linear or periodic boundary conditions, a 

macroscopic strain is the loading of the RVE. After analysis and convergence 

of each RVE in every Gauss point, results concerning the average stress and 

the stiffness are given back to the macroscopic structure (Fig. 2.3). No 

assumption for the constitutive law of the macroscopic structure is a priori 

considered, thus the macroscopic constitutive behavior is numerically 

obtained. This is a practical solution to the major question of homogenization, 

namely which are the properties of the homogeneous constitutive law. 

Here and in the following the subscript “M” refers to a macroscopic 

quantity, while the subscript “m” will denote a microscopic quantity. 
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Figure 2.3:  First-order computational homogenization scheme [6]. 

 

2.2.1  Definition of the problem on the microlevel 

The physical and geometrical properties of the microstructure are 

identified by a representative volume element (RVE). An example of a typical 

two-dimensional RVE is depicted in Figure 2.4. 

 

Figure 2.4:  Schematic picture of a typical two-dimensional representative               

volume element (RVE) [10]. 
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The RVE is in a state of equilibrium. This is mathematically reflected by the 

equilibrium equation in terms of the Cauchy stress tensor σm according to (in 

the absence of body forces): 

 0m m  σ  in ΩRVE (2.1) 

where ΩRVE is the RVE domain. 

2.2.2  Averaging theorems 

According to the Hill–Mandel condition or energy averaging theorem, 

the macroscopic volume average of the variation of work equals to the local 

work variation, on the RVE: 

 
1

: :

m

m

m V

dV
V

  Μ Μ m mσ ε σ ε  (2.2) 

Among others, three widely used types of loading states, which satisfy 

the above condition, can be applied to the RVE: (a) prescribed linear 

displacements, (b) prescribed tractions, (c) periodic boundary conditions [4]. 

According to linear displacement boundary conditions, the loading in 

the boundaries of the RVE is given by the following relation: 

 
Μ

u ε x          at mVx   (2.3) 

where a loading strain εΜ is applied to the boundaries ∂Vm of the RVE. With 

x is denoted the matrix with the undeformed coordinates of the boundary 

nodes of the RVE. 

Periodic boundary conditions require periodic displacements, as well as 

antiperiodic tractions, in the opposite boundaries of the RVE. In particular, the 

displacements of the opposite boundaries are given by the following 

equations: 

 
4 1                   

1 2

             – –

– –

T B

L R





u u u u

u u u u
 (2.4) 
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where the displacements in the top, bottom, left and right boundary are 

estimated by using the prescribed displacements of three corner nodes of the 

RVE, namely 1, 2 and 4, given by relation (2.3). 

In order to proceed in the formulation of a homogenization scheme, 

the average quantities of both the microscopic strain and stress should be 

defined. The constitutive relation will be then numerically built. The general 

averaging relations, are: 

 

1

m

m

m mV
m V

dV
V

 ε ε
   (2.5)   

 
1

m

m

m mV
m V

dV
V

 σ σ    (2.6) 

The equation (2.5) can be further simplified. The volume average microscopic 

strain is equal to the macroscopic strain which has been applied as loading to 

the boundaries of the RVE:  

 
m

MV
ε ε   (2.7) 

 In case prescribed displacements are applied to the RVE, the 

macroscopic stresses is expressed as      

 
1

mV
mV

 σ fx σ   (2.8) 

where f is the matrix of the resulting external forces in the undeformed 

coordinates of the boundary nodes x of the RVE, after microscopic analysis 

has been completed. 

A similar relation is applied for the macroscopic stress, in case periodic 

boundary conditions are used: 
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1

m
p pV

mV
 σ f x σ   (2.9) 

where fp denotes the external forces in the three corner nodes with 

prescribed displacements and xp the undeformed coordinates of these nodes. 

For the completion of the homogenization procedure, the stiffness of 

the macroscopic structure should be calculated. In particular, the consistent 

tangent stiffness must be incorporated in the Newton–Raphson incremental 

iterative procedure. This is obtained numerically, by requiring the relation 

between the variations of the average microscopic (e.g. the macroscopic) 

stresses and strains.  

2.2.3  Formulation of the multi-scale scheme 

The nodes of the RVE mesh are partitioned into those on the surface 

𝜕𝒱 of the RVE and those in the interior [15]. Assume that M < N nodes of the 

mesh lie on the boundary 𝜕𝒱. We then consider the partitions of the current 

nodal positions and internal nodal forces 

   
   
   
   

a a

b b

u P u
u = =

u P u
        (2.10) 

 

   
   
   

a a

b b

f P f
f = =

f P f   (2.11) 

where Pa and Pb are the topological projection matrices, defining internal and 

boundary contributions, respectively. In line with (2.10), the tangent matrix 

defined is partitioned as follow: 

 
  
  

   

T T
aa ab a a a b

T T
ba bb b a b b

K K P KP P KP
K = =

K K P KP P KP
  (2.12) 

We examine the case of the prescribed linear displacements on the 

boundary 𝜕𝒱 of the RVE. At each node q of this boundary, condition 2.3 

induces the discrete constraint 
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 q Μ q
u = ε x   (2.13) 

 

in terms of the prescribed macroscopic strain εΜ. Transcribing the strain 

tensor εΜ into vector form, and taking the discretization into consideration, 

we may rewrite: 

 q q T

Μ
u D ε   (2.14) 

where Dq is a matrix that depends on the coordinates of the nodal point q in 

the reference configuration, for example 

 
2 01

0 22
q

x y

y x

 
  

 
D   (2.15) 

Now define a global coordinate matrix D associated with all M nodes on the 

surface of the discretized microstructure as 

       
T T T

1 2 nD = D D ...D                 (2.16) 

Then we may rewrite the constraint (2.3) for the linear displacements on the 

boundary in the compact global form 

 
T

b Μu - D ε = 0                       (2.17) 

For nonlinear problems the partitioned finite element equation is defined in 

the incremental form as 

       

 
      

     
      

aa ab a a

ba bb b b

K K u f

K K u f
  (2.18)  

In the convergence state, Δfa obviously vanishes, which yields 

 b  bb bf K u   (2.19) 

where the matrix bbK  is expressed as 
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         -1

bb bb ba aa abK K - K K K    (2.20) 

The average stress of the RVE, which is equal to the macro stress, is given 

by: 

 
1

V
  

Μ b
σ D f   (2.21) 

By substitution of Eqs. (2.19) and (2.3) into (2.21), the stress–strain relation 

is formulated and the consistent tangent stiffness of the macroscopic level, 

CM, is obtained: 

  
1

V
  T

Μ bb Μ
σ DK D ε   (2.22) 

   

 
1

M
V

 T

bb
C DK D   (2.23) 

in terms of the condensed stiffness bbK . 

2.3  The need of second-order scheme 

The multiscale analysis using the first-order computational 

homogenization scheme has been proven to be a versatile tool to establish 

micromacro structure-property relations in materials, but retains essential 

assumptions of the continuum mechanics, and thus gives satisfactory results 

only for the simple loading cases (tension, pressure, simple shear). There are 

two major disadvantages lying in the existing (first-order) micro-macro 

computational approaches (as well as the conventional homogenization 

methods), which significantly limit their applicability. In spite of the fact that 

these techniques do account for the volume fraction, distribution and 

morphology of the constituents, they do not incorporate the absolute size of 

the microstructure, thus making it impossible to address geometrical size 

effects (Microstructural size effects, which are triggered through small-scale 

deformation mechanisms, and which can be captured in a local stress-strain 

response, do not fall into this category.) Another difficulty arises from the 
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intrinsic assumption of uniformity of the macroscopic (stress or strain) fields 

attributed to each microstructural representative cell. This uniformity 

assumption relies on the concept of separation of scales and is not 

appropriate in critical regions of high deformation gradients, where the 

macroscopic fields can vary considerably [10]. 

Due to the mentioned shortcomings, the first-order computational 

homogenization scheme has been extended to the second-order 

computational homogenization framework, where the second-order stress and 

strain are included. The formulation is based on a non-local continuum theory 

which takes into account the influence of an environment on the behavior of a 

material point, as proposed by [16,19]. Furthermore, the multiscale analysis 

using the second-order homogenization approach may describe more complex 

deformation modes, e.g., bending mode. 
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Chapter 3 

Strain Gradient Material 

Formulation 

 

3.1  Introduction 

Conventional continuum mechanics theories assume that stress at a 

material point is a function of “state” variables, such as strain, at the same 

point. This local assumption has long been proved to be adequate when the 

wavelength of a deformation field is much larger than the dominant micro-

structural length scale of the material. However, when the two length scales 

are comparable, the assumption is questionable as the material behaviour at 

a point is influenced by the deformation of neighbouring points. Starting from 

the pioneering Cosserat couple stress theory, various non-local or strain 

gradient continuum theories have been proposed. In the full Cosserat theory, 

an independent rotation quantity θ is defined in addition to the material 

displacement u; couple stresses (bending moment per unit area) are 

introduced as the work conjugate to the micro-curvature (that is, the spatial 

gradient of θ). Later, Toupin [19] and Mindlin [16] proposed a more general 

theory which includes not only micro-curvature, but also gradients of normal 

strain. Both the Cosserat and Toupin-Mindlin theories were developed for 

linear elastic materials. Afterwards, non-local theories for plastic materials 

have been developed. Interest in non-local continuum plasticity theories has 
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been rising recently, due to an increasing number of observed size effects in 

plasticity phenomena [17]. 

In the present dissertation, the Toupin-Mindlin formulation of strain 

gradient theory is the base for a finite element implementation for the 

discretization of the macrostructure in the second-order computational 

homogenization scheme, as proposed by [8] and [12]. The Toupin-Mindlin 

formulation furnishes strain gradients and higher order stresses which enter 

the principle of virtual work as work conjugates.  

 

3.2  Linear Elastic Strain Gradient Theory 

Unlike the classical linear elasticity, the grade-2 theories are based on 

an assumption that strain energy density function is dependent not only on 

six components of strain but also on the eighteen components of strain 

gradient.  Mindlin [16] proposed a classification of three forms based on 

different groupings of the eighteen additional arguments of strain energy 

density function. The strain energy density function having the additional 

eighteen arguments:  

i.  Form I: as second gradient of displacement,  

ii.  Form II: as strain gradient and  

iii. Form III: eight components of rotation gradient and ten 

components of fully symmetric part of second gradient of displacement or 

strain gradient. 

 In particular, gradient elasticity which is employed in the present 

dissertation can be shown as a special case of Form II of Mindlin’s theory, i.e. 

the strain energy density function is expressed as 𝑊 = 𝑊(𝜺𝑖𝑗, 𝜺𝑖𝑗,𝑘). 

Toupin and Mindlin developed a theory of linear elasticity whereby the 

strain energy density per unit volume depends upon both strain  
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 , ,

1

2
ij i j j iu u    and strain gradient ηijk. Here u is the displacement field 

and a comma represents partial differentiation with respect to a Cartesian co-

ordinate. Note that εij= εji and ηijk=ηjik.  

In addition to Cauchy stress σij , this theory furnishes higher-order 

stress μijk(=μjik)  which is work conjugate to the strain gradient ηijk. The local 

internal work can be expressed as: 

 W=σ:ε+μ⋮η (3.1) 

 

3.2.1  Variational equations of motion 

According to the principle of virtual work, variation of strain energy i.e; 

internal work is equal to the variation of work done by the external forces i.e; 

external work. 

 

 δWI= δWE (3.2) 

where WI ∫ WdV
V

 and WE  is the work done by the external forces.  

For the variation of strain energy, the work conjugates of strain and 

strain gradient are defined as follows: 

 

    

                         (3.3) 

 

 (3.4) 

 

 

ij ji

ij

W
 




 


,

kji kij

ij k

W
 




 

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where σij , Cauchy stress, is the work conjugate of strain. The first index 

denotes the plane on which it is acting and the second index denotes the 

direction of action and μkji , double stress, is the work conjugate of strain 

gradient. The first index denotes the plane on which double stress is acting, 

second index denotes the direction of lever arm and the third index denotes 

the direction of action. The double stress can be easily appreciated with the 

help of Figure 3.1. 

The variation of strain energy density is 

  

 

,

,

,

ij ij k

ij ij k

ji ij kji ij k

W W
W

W

  
 

    

 
  
 

 
  (3.5) 

Using the definition of strain as the symmetric part of displacement gradient, 

the above equation can be expressed as 

    , , ,ji i j ij kji i jk ij kW u u            (3.6) 

As σji is symmetric and μkji is symmetric in indices i and j , we obtain 

      , , , , ,,
ji kji k i ji j kji kj kji i j kj

W u u            
    (3.7) 
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 Figure 3.1: Representation of one component of double stress. The 

⇔ sign reads as “work conjugate of”. As it can be noticed from the figure, 

double stress is self-equilibrating with no net moment and no net force. The 

solid line represents the undeformed and dashed line represents the 

deformed shape [1]. 

   

Therefore, the variation of the 

total strain energy is  

(3.8) 

 

V

W WdV   
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Applying divergence theorem to equation (3.8), we obtain 

 

   , , , ,I j ji kji k i ji j kji kj i k kji i j

S V S

W n u dS u dV n u dS                

In the last surface integral, the variation of ui,j is not independent of variation 

of ui on the surface. As the variation normal derivative of displacement njui,j is 

independent of variation of displacement ui on the surface, ui,j in the last 

integral can be resolved on the boundary into surface gradient and a normal 

gradient as follows: 

 , , ,k kji i j k kji j i j k kji j i jn u n D u n n D u         (3.9) 

where the operators Dj and D are defined as: 

  j jl j l lD n n     (3.10) 

    (3.11) 

 

with δjl  being the kroneker delta and ∂l denotes the spatial partial derivative 

with respect to the subscript. 

The first term on the right hand side of equation (3.9) contains the 

non-independent variation Djδui which can further be expressed as [using the 

product rule of differentiation (d(u) = d(uv)-d(v) )] 

 ( ) ( )k kji j i j k kji i j k kji in D u D n u D n u         (3.12) 

The last term in the above equation (3.12) now contains the independent 

variation of δui. 

Using the surface divergence theorem, the first term of the equation 

(3.12) can be written as: 

 ( ) ( )j k kji i l l j k kji iD n u D n n n u      (3.13) 

l lD n 



 
        

27 
 

 Assembling all the results from (3.9) to (3.13), equation (3.8) can be 

written as 

 

 

 

,

, ,

( ) ( )I j ji kji k j k kji l l j k kji i

S

ji j kji kj i k kji j i

V S

W n D n D n n n u dS

u dV n n D u dS

     

    

     
 

  



 
 (3.14) 

The variation of work done by the external forces, neglecting the body 

forces, is 

 E i i i i

S S

W t u dS T D u dS       (3.15) 

where t and T are traction and double traction applied on the surfacere 

spectively. 

For any independent variations of ui and Dδui , the principle of virtual 

work (equation 3.2) results (for a body of volume V and surface Γ with normal 

n) in following stress-equilibrium equations  

           ˆ[ ]div σ 0       in V (3.16) 

where the real stress σ̂  is defined as 

   ˆ [ ]div σ σ μ  (3.17) 

and boundary conditions are 

  , ( ) ( )i j ji kji k j k kji l l j k kjit n D n D n n n         (3.18) 

 i j k kjiT n n    (3.19) 
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3.3  Finite Element Implementation 

When undertaking conventional displacement-based finite element 

analysis of second-order (i.e. strain gradient) continua, the interpolation of 

displacements should exhibit at least C1 continuity, as the virtual work 

statement includes the first- and second-order derivatives of the 

displacement. However, due to the complex formulation and practical 

difficulties associated with the implementation of such elements, the use of 

mixed C0 continuous elements is also proposed by many authors [8,10]. 

In this dissertation, the higher order continuum theory has been 

implemented , as it has been proposed by [12], into a C1 triangular finite 

element already used for the gradient elasticity in [20], in linear elastic 

fracture mechanics [2], and for the plate bending problem in [3]. 

3.3.1  C1 finite element 

The finite element used in the present work is a higher-order triangular 

bending element formulated by Dasgupta & Sengupta [3]. The C1 finite 

element is shown in the Fig. 3.2 below. 

 

Figure 3.2: C1 triangular finite element [1]. 
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This element uses a complete quintic polynomial to interpolate 

displacement field. It has 3 nodes with 6 degrees of freedom per node for 

each displacement component. The degrees of freedom are the displacement, 

its two first derivatives and its three second derivatives at each node. This 

results in eighteen degrees of freedom for each displacement component per 

each element. Therefore, for the displacement vector field, the total number 

of degrees of freedom per element is thirty six (36). The normal derivative of 

displacement along the element edge is constrained to vary as a cubic 

polynomial. The laplacian of strains vary as quadratic function inside the 

element [1]. 

So, the displacement vector is interpolated as follow: 

    ˆ
u

N u
v

 
   
 

u   (3.20)

   

where 

 

1 6 7 12 13 18

1 6 7 12 13 18

... 0... 0 ... 0... 0 ... 0... 0

0... 0 ... 0... 0 ... 0... 0 ...

N N N N N N
N

N N N N N N

 
  
 

  

and 

 

1 1, 1, 1, 1, 1, 1 1, 2 2, 2 2, 3 3,
ˆ [ ... ... ... ... ]T

x y xx xy yy yy yy yy yyu u u u u u u v v u u v v u v

  

where u is the displacement component along the global x-axis and v is the 

displacement component along the global y-axis. N is the matrix of shape 

functions. The shape functions of this element are given in the Appendix A. 
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3.3.2  Implementation 

The element equations are derived from the variation of the principle 

of virtual work, which may be expressed for strain gradient continuum as 

 ( )
A A S S

dA dA ds grad ds           ε σ η μ u t u T   (3.21) 

In Eq. (3.21) T is the double traction tensor, T = τn. A and S represent the 

area and the perimeter of the triangle, respectively. The displacement 

gradients can be derived as 

  
11

22

12

ˆ

2

u







 
 

  
 
  

εε Β
  

         (3.22) 

 

where Bε and Bη are the matrices containing corresponding the first and 

second derivatives of the interpolation functions N. 

Since a nonlinear problem should be solved, Eq. (3.21) is transformed 

into the incremental form in the interval (ti-1, t), where ti-1 represents the time 

increment of the last converged equilibrium state, and t is the new affine 

equilibrium state obtained in the iterative procedure using the following 

relations: 

 
1i  u u u   (3.23) 

 

111

222

221

122

121

212

ˆ

2

2

u













 
 
 
 

   
 
 
 
  

η Β
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1i μ μ μ  

Herein Δu denotes the displacement vector increment, while the stress 

increment Δσ and the second-order stress increment Δμ are computed by the 

incremental constitutive relations as 

      σ C ε C η   (3.24) 

      μ C ε C η   (3.25) 

 

where Cσε, Cση, Cμε, Cμη are the material tangent stiffness matrices. By use of 

Eq. (3.22), the strain and the second-order strain increments can be 

expressed in terms of the nodal displacement vector increment ˆu  by the 

relations 

 ˆ  
ε

ε Β u   (3.26) 

 ˆ
  η Β u   

Substituting Eqs. (3.22)–(3.26) into Eq. (3.21), the following finite element 

relation is obtained   

 

ˆ( )

( ) ( )

A

S A

da

grad ds dA

 
     

 

  



 

Τ Τ Τ Τ

ε σε ε ε ση η η με ε η μη η

T T Τ i-1 Τ i-1

ε η

B C Β B C Β B C Β B C Β u

N t N T B σ B μ
  (3.27) 

which may be written in the form 

 ˆ 
e i

K u F - F  (3.28) 

 

with K as the element stiffness matrix consisting of the following parts  

1i  σ σ σ
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 σε ση με μη
K = K + K + K + K   (3.29)

  

where the particular matrices are defined as 

 ( )
A

dA 
Τ

σε ε σε εΚ B C Β   

 ( )
A

dA 
Τ

ση ε ση ηΚ B C Β    (3.30) 

 ( )
A

dA 
Τ

με η με εΚ B C Β   

 ( )
A

dA 
Τ

μη η μη ηΚ B C Β   

Furthermore, Fe and Fi are the external and internal nodal force vectors, 

which are expressed by 

the relations 

                         (3.31)   

 

 ( )i

A

dA 
Τ i-1 Τ i-1

ε ηF B σ B μ   (3.32) 

 

 

 

 

 

 

 

( )e

S

grad ds 
T T

F N t N T
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Chapter 4 

Second-Order Computational 

Homogenization 

 

In this chapter, the second-order computational homogenization 

scheme is presented, as an extension of the classical first-order computational 

homogenization scheme for small strains. In the second-order 

homogenization approach the macroscopic strain ε and the strain gradient η 

are imposed on a microstructural representative volume element. 

Every microstructural constituent is modelled as a classical continuum. 

On the macrolevel, however, a full second gradient equilibrium problem 

appears. From the solution of the underlying microstructural boundary value 

problem, the macroscopic stress tensor σ and the higher-order stress tensor 

μ are derived based on an extension of the Hill-Mandel condition. This 

automatically delivers the microstructurally based constitutive response of the 

second gradient macrocontinuum. 

. 

4.1  Micro-macro algorithm 

4.1.1  Scale transition 

The following method, proposed by [12] is used to couple two different 

continua: a classical (first-order) continuum at the microscale (RVE), and a 
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higher- (second) order continuum at the macroscale. The micro–macro 

algorithm consists of the two models representing two different levels. The 

first level represents the macromodel, discretized in this dissertation by the 

triangular finite elements described in Chapter 3. As the second level, the 

microstructure is presented by the representative volume element (RVE), here 

discretized by the C0 quadrilateral four-node finite elements. The macroscopic 

quantities are denoted by the subscript “M”, while the microscopic values are 

labeled with the subscript “m”. In every macrolevel integration point of the 

structural mesh, the RVE microanalysis is performed. The macrolevel 

displacement gradients εM and ηM are transformed into the RVE boundary 

nodal displacements using corresponding boundary conditions. After solving 

the RVE boundary value problem, the stress σM, the double stress μM and the 

constitutive matrices CM are obtained by a homogenization procedure. The 

general scheme of the micro–macro algorithm is presented in Fig. 4.1 

 

 

Figure 4.1: Second-order computational homogenization scheme [6]. 

 

4.1.2  Downscaling 
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In the second-order computational homogenization scheme the RVE 

boundary displacement field is defined by 

m  0 1
u (X,x) = u (X) + x ε (Χ)+ x x : η (Χ)+ r(X,x)

2
 (4.1) 

where u0(X) is the displacement of the macroscopic point to which the RVE is 

assigned, εΜ is the macrostrain tensor, ηΜ is the second-order macrostrain 

tensor, x is the fast varying local RVE spatial coordinate, and X is the slow 

varying macroscopic spatial coordinate. The additional term r represents the 

microstructural displacement fluctuation field, which has been added to 

account for the microscale contribution to the displacement field [8]. 

In the following, the symmetric operator is dropped (i.e. ε=grad[u]) since it 

has been assumed, for simplicity, that the rotation of the RVE is negligible. 

Taking the spatial derivative of (4.1) leads to the microscopic strain 

(microstrain) field within the RVE 

 
[ ]

[ ]

m m

m M M

grad

grad

 

  

ε u

ε ε x η r
  (4.2) 

The volume average of the microstrain field yields 

 

1 1 1
( ) [ ]T

m M M

v V V

dV dV grad dV
V V V

    ε ε x η r   (4.3) 

where V represents the RVE volume. 

In the case that the RVE is centered on the corresponding macroscopic 

point (i.e. that the local RVE spatial coordinates have their origin at the 

geometric centre of the RVE), the second term on the right-hand side of (4.3) 

is automatically zero (first moment of area about the centroid); thus, the 

microscale fields (r, εm) can be related to the macrostrain εΜ only and are not 

affected by the second-order strain ηΜ, as follows: 
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1 1
[ ]M m

V V

dV grad dV
V V

  ε ε r                (4.4) 

Βy applying the divergence theorem to the terms on the right-hand side of 

(4.4) , the relation can also be rewritten in terms of boundary integrals: 

 

1 1
M d d

V V
 

     ε n u n r        (4.5) 

The volume average of the microstrain εm needs to be equal to the 

macrostrain εM; hence, the last integral in both (4.4) and (4.5) must vanish: 

1
0d

V


  n r    (4.6) 

Removing the term associated with ηΜ from (4.3) by conveniently 

centering the RVE, has the advantage that higher-order boundary conditions 

do not have to be prescribed on the RVE. This is consistent with the intention 

to preserve the microstructural RVE problem as a classical boundary value 

problem. 

Averaging theorems implicit in the first-order computational 

homogenization scheme have a suitable geometric interpretation—i.e. that 

both the area and the first moment of area of the deformed RVE (with 

respect to an arbitrary axis) defined in terms of microscopic displacements 

are equal to the area and first moment of area of the RVE expressed in terms 

of macroscopic deformation measures. This assumption consequently places a 

restriction on the microscopic displacement field which, together with the 

boundary conditions, leads to a well-posed boundary value problem for 

deformation of the RVE. In the second-order computational homogenization 

scheme, it is proposed by [8] to extend this concept, i.e. to include an 

additional assumption that the second moment of area of the deformed RVE 

given in terms of microscopic displacements is equal to the second moment of 

area of the RVE expressed in terms of macroscopic deformation measures. 
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Following the additional assumption about the second moment of area 

of the deformed RVE, the relation (4.2) is multiplied by x and integrated over 

the volume V of the RVE to give 

[ ] [ ]
V V

grad dV grad dV     J η x u x r       (4.7) 

where 
V

dV J x x  . Once again the centering of the RVE about the 

macroscopic point has been utilized so that the volume integral of  Mx ε  

conveniently vanishes. Applying the divergence theorem to relation (4.7) 

gives 

1

2
d d 

 

          J η I J : η n x u n x r     (4.8) 

It should be noted that the relationship between the macroscopic 

second-order strain (analogous to the reasoning associated with the first-

order strain in (4.4)) and the microscopic variables is now given exclusively by 

integrals over the boundary of the RVE. The additional assumption regarding 

the second moment of area of the deformed RVE requires that the influence 

of the displacement fluctuation field should vanish: 

 0d


   n x r   (4.9) 

 

Any RVE boundary conditions used must satisfy relations (4.6) and 

(4.9). The displacement boundary conditions obey the assumption that r = 0, 

∀x ∈ ∂V, which yields the satisfaction of the two aforementioned relations. 

The generalized periodic boundary conditions assume identical 

microfluctuation field on the opposite RVE sides, as defined in Fig. 3, resulting 

in 
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Figure 4.2: Undeformed Representative Volume Element [12]. 

 
( ) ( )

( ) ( )

L R

T B

s s

s s





r r

r r
  (4.10) 

where s is a local coordinate along the edge and the subscripts L, R, T and B 

stand for the Left, Right, Top and Bottom boundaries of the RVE. From Eq. 

(4.10), it is obvious that relation (4.6) is satisfied, considering nL (s) = −nR (s) 

and nT (s) = −nB (s). Relation (4.9) is required on two RVE edges only due to 

the periodicity (4.10). Consequently, relation (4.9) is expressed as 

 

0

0

L

B

L

A

B

A

dA

dA









r

r
  (4.11) 

After substituting (4.1) into (4.11), the following expressions are obtained 
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1
( )

2

1
( )

2

L L L

B B B

T

L L L L

A A A

T

B B B B

A A A

dA dA dA

dA dA dA



 



 

 

 

  

  

u ε x η x x

u ε x η x x
  (4.12) 

After solving the RVE boundary value problem, the homogenization of the 

stress tensors and the constitutive matrix has to be carried out [12]. 

4.1.3  Upscaling 

To complete the formulation it is necessary to identify the upscaling of 

the microstructural response in order to define the macroscopic stress 

measures in terms of the microscopic quantities. For a statistically 

homogeneous body, the macroscopic quantities can be defined as the 

average of the microscopic quantities over the volume of the RVE. According 

to the Hill–Mandel condition it is required that the local variation of work at a 

macroscopic point must be equal to the volume average of the variation of 

work performed on the RVE associated with this macroscopic point: 

  
1

V

dV
V

   
T T T

m m M M Μ Με σ ε σ η μ
 (4.13) 

By means of Eq. (4.13), the first-order and the second-order stress tensors 

are derived in the form of the surface integrals as 

  
1

d
V



 
T

Μσ t x   (4.14) 

                             
1

2
d

V


 
T

Μ
μ x tx                             (4.15) 

The relations (4.14) and (4.15) can also be transformed into volume integrals, 

allowing the macroscopic stress measures to be expressed in terms of volume 

averages of microstructural quantities. The macroscopic stress tensor σM 

again equals the volume average of the microscopic stress tensor σm: 
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1

V

dV
V

 Μ mσ σ   (4.16) 

  

  
1

2
V

dV
V

  m

Τ T

Μ mμ σ x+x σ  (4.17) 

 

In the limit case, the infinitesimal force tdΓ in (4.14) and (4.15) tends to 
b

i
f  , 

representing the nodal force of ith node on the RVE boundary. On the basis of 

the previous assumption, Eqs. (4.16) and (4.17) transform into 

 

 (4.18) 

 

 

     
1

V


Μ b
μ Ηf     (4.19) 

as described by [15]. In Eqs. (4.18) and (4.19) the matrices D and H, 

introduced in [8] and [15], are the coordinate matrices involving all the 

boundary nodes of the RVE. These matrices for the RVE boundary node i for 

the 2D case have the following form 

 
2 01

0 22
i

x y

y x

 
  

 
D  (4.20)

  

2 2

2 2

2 0 2 0 01

4 0 2 0 2 0
i

x y xy

y x xy

 
  

 
H     (4.21) 

which are assembled for n nodes into the matrices: 

1

V


Μ b
σ Df
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   
T T T

1 2 nD = D D ...D   (4.22) 

               
T T T

1 2 nH = H H ...H       (4.23) 

In Eqs. (4.18) and (4.19) fb is the nodal force vector involving all the 

boundary nodes on the RVE. Using Eqs. (4.18) and (4.19) the incremental 

values of the first-order and the second-order stress tensors may be 

expressed in terms of the boundary nodal forces increment Δfb as 

 

  

  (4.24) 

 

1

V
  

Μ b
μ Η f     (4.25) 

According to [10,12,15], the boundary nodal forces can be computed by 

partitioning RVE algebraic equations. In this setting, the RVE global matrices 

are transformed into 

        
   
   
   

a a

b b

u P u
u = =

u P u
               (4.26) 

   
   
   

a a

b b

f P f
f = =

f P f
            (4.27) 

 

  
  

   

T T
aa ab a a a b

T T
ba bb b a b b

K K P KP P KP
K = =

K K P KP P KP
  (4.28) 

where Pa and Pb are the topological projection matrices, defining internal and 

boundary contributions, respectively. For nonlinear problems the partitioned 

finite element equation is defined in the incremental form as 

1

V
  

Μ b
σ D f
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      

     
      

aa ab a a

ba bb b b

K K u f

K K u f
  (4.29) 

In the convergence state, Δfa obviously vanishes, which yields 

 b  bb bf K u   (4.30) 

where the matrix bbK  is expressed as 

  -1

bb bb ba aa abK K - K K K   (4.31) 

Hereafter the RVE boundary nodes displacement increment Δub is derived by 

means of Eqs. (4.1), (4.22) and (4.23) resulting in 

     T Τ

b Μ Μu D ε Η η   (4.32) 

Substitution of Eqs. (4.32) and (4.30) into (4.24) and (4.25) yields 

 

 

 (4.33) 

 

 

 
1

V
    T T

Μ bb Μ bb Μ
μ ΗK D ε ΗK Η η          (4.34) 

Finally, comparing Eqs. (4.33) and (4.34) with (3.24) and (3.25), the 

following identities are easily observed 

 

 

 
1

V
    T T

Μ bb Μ bb Μ
σ DK D ε DK Η η
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1

V
 

T

bb
C DK D   

 

(4.35)  

1

V
 

T

bb
C ΗK D  

1

V
 

T

bb
C ΗK Η  

 

representing the tangent stiffness matrices at the macrolevel, CM [12]. 

 

4.2  Nested solution scheme 

Summarizing the second-order computational homogenization 

framework, this section discusses the nested solution scheme for the coupled 

multi-scale numerical analysis. The structure of the coupled micro-macro 

program can be outlined as follows [10].  

The macroscopic structure to be analyzed is discretized by finite 

elements. To each macroscopic integration point a unique microstructural RVE 

is assigned. The geometry and material properties of an RVE are based on 

the microstructure of the underlying material. The RVE selected should be 

“representative”, i.e. it should contain sufficient information on the 

microstructural features and basic mechanisms of their interaction. 

In order to initiate the macroscopic finite element analysis, constitutive 

tangents at every integration point are required. To obtain these tangents 

from the microstructural properties a preparing microstructural analysis is 

performed. During this initialization the stiffness matrix of an undeformed RVE 

1

V
 

T

bb
C DK Η
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is assembled and used to derive the initial macroscopic constitutive tangents 

at a macroscopic integration point. 

 During the actual analysis the external macroscopic load is applied in 

increments. For every step of the macroscopic incremental-iterative 

procedure, and in each macroscopic integration point, the macrostrain εΜ and 

the second-order strain ηΜ are calculated based on the current (iterative) 

macroscopic displacement field. These values are sent to the microlevel, 

where they are used to define the boundary value problem for the RVE, 

corresponding to the respective macroscopic integration point. Upon the 

solution of every RVE problem, the averaged stress tensor σM and the 

second-order stress tensor μM are obtained using (4.18) and (4.19). 

Additionally, the constitutive tangents are extracted according to (4.35) and 

returned to the macroscopic program. 

When the analysis of all RVEs is finished, the stress tensor, the second-

order stress tensor and the consistent constitutive tangents are available at 

every macroscopic integration point. Hence, macroscopic internal nodal forces 

can be calculated, higher-order equilibrium can be evaluated and, if required, 

the next macroscopic iteration can be performed. If equilibrium is achieved 

the calculations can be continued for the next increment. This solution 

scheme is summarized in Table 4.1 and in Fig. 4.3. 

Obviously, the multi-scale algorithm described above is parallel by its 

nature. All RVE calculations for one macroscopic iteration can be performed at 

the same time without any exchange of data between them. So the use of 

parallel processors for the RVE analyses would significantly reduce the total 

micro-macro calculation time. 
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Figure 4.3: Micro-macro algorithm [12]. 
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MACRO   MICRO   

1. Initialization 
    

  
    

  

 initialize the macroscopic model 
  

  
    

  
     assign an RVE to every integration 

  
  

    
  

      point 
    

  
    

  
      loop over all integration points Initialization RVE 
analysis 

    
  

      for εM
unit and ηΜ = 0 

  
εM ηΜ 

Initialization RVE 
analysis 

 
  

  
   

→  prescribe boundary conditions   

  
     

 assemble the RVE 
stiffness 

 
  

  
   

tangents 

 calculate the tangents Cσε Cση Cμε 
Cμε 

 end integration point loop 
 

← 
    

  

  
    

  
    

  

2. Next increment 
   

  
    

  
 apply increment of the macro load 

  
  

    
  

3. Next iteration 
   

  
    

  
 assemble the macroscopic tangent 

  
  

    
  

stiffness 
    

  
    

  

 solve the macroscopic system 
  

  
    

  
 loop over all integration points RVE 
analysis 

 
  RVE analysis 

  
  

      calculate εM and ηΜ = 0 
 

εM ηΜ 
    

  
  

   
→  prescribe boundary conditions   

  
    

  
 assemble the RVE 
stiffness 

 
  

  
    

   solve the RVE problem 
 

  

  
   

σΜ μ Μ  calculate   σΜ , μ Μ 
 

  

  
   

tangents 

    calculate the tangents  Cσε Cση Cμε 
Cμε 

 end integration point loop 
 

← 
    

  

 assemble the macroscopic internal 
  

  
    

  
      forces 

    
  

    
  

  
    

  
    

  

4. Check for convergence 
   

  
    

  
 if not converged ⇒ step 3 

  
  

    
  

 else ⇒ step 2 
   

  
    

  
  

    
  

    
  

                      

 

Table 4.1: Incremental-iterative nested multi-scale solution scheme for the 

second-order computational homogenization. 
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Chapter 5 

Numerical Examples 

 

In the previous chapters the first-order and second-order 

computational homogenization schemes have been presented. This chapter 

focuses on the implementation of these two techniques. At first, in section 5.1 

RVEs subjected to a given macroscopic deformation are analyzed. The results 

obtained from the first-order and the second-order computational 

homogenization modelling are compared and the ability of the second-order 

scheme to capture gradient effects is demonstrated. In section 5.2 the micro-

macro algorithm of the second-order computational homogenization is 

evaluated by being implemented in a benchmark (pure bending of a 

homogeneous cantilever beam) problem. Finally, in section 5.3, the first-order 

and the second-order computational homogenization schemes are compared 

in a problem of bending of a cantilever beam consisting of a material with 

embedded fibers.  

 

5.1  Microstructural analysis 

In this section, some features of the second order homogenization 

scheme are illustrated by analyzing a single RVE subjected to a given 

macroscopic path. 
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5.1.1  RVE modes of deformation 

Firstly, it will be showed how the strain gradient ηΜ affects the 

deformation of the RVE. According to [13], the deformation modes of an RVE 

that correspond to particular components of the second gradient tensor are 

distinguished in four categories of deformation (3D case): extensional, 

trapezoidal, curvature, and twist named according to their affect on an 

otherwise undeformed cubic RVE (Fig.5.1). 

 

 

 

 

 

 

 

  

Figure 5.1: Examples of RVE deformation associated with nonzero 

components of second gradient tensor [13]. 

 

 We consider a 2D homogeneous RVE model discretized by 4x4 

quadrilateral plane stress finite elements (Fig.5.2). When the gradient 

components of first order strain εΜ are applied on RVE boundaries, the two 

well known modes of deformation, stretch and shear, occur. The deformed 

shape of RVE for ε={0.01 0 0} and ε={0 0 0.01 } are illustrated in Fig 5.3. 
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The components of strain gradient ηΜ cause three (in 2D case) additional 

modes of deformation. In Fig 5.4 the deformed shapes are shown for  

η111=0.02, η221=0.02 and 2η121=0.02. 

 

 

 

Figure 5.2: Undeformed RVE 

 

 

Figure 5.3: RVE deformation associated with nonzero components of εΜ  

α) ε11=0.01,  b) 2ε12=0.01. 

 

 

Deformed Shape

Deformed Shape
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(a) 

 

(b) 

 

(c) 

Figure 5.4: RVE deformation associated with nonzero components of second 

order strain ηΜ a) η111=0.02 (Extensional)  b) η221=0.02 (Curvature)            

c) 2η121=0.02 (Trapezoidal).   

Deformed Shape

Deformed Shape

Deformed Shape
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5.1.2  Size effects for a given microstructure 

In the case when the microstructural size is no longer negligible with 

respect to the characteristic length of the macroscopic deformation field a 

type of size effect may appear. This may occur due to a relatively small size of 

the macroscopic configuration (e.g. thin layers) or when localization of 

deformation takes place at the macrolevel. These size effects, which are 

generally associated with a dominant influence of the microstructure at the 

macrolevel, usually depend not only on the value and history of the strain 

tensor but also on its gradient. Classical continuum mechanics material 

models and, consequently, the first-order computational homogenization 

scheme, are not able to describe this size effect, since they do not incorporate 

a microstructural length scale. The second-order framework, on the other 

hand, is well capable to deal with these size effects, due to the account of the 

macroscopic gradient of the strain tensor [10]. This is illustrated in the 

following example. 

Identical microstructural RVEs have been subjected to different tensile-

bending macroscopic deformation histories. In these histories the strain 

tensor εΜ is the same, but its gradient ηΜ, while representing the same 

deformation mode (bending), has different intensities. This has been achieved 

by a component-wise linear increase of the components of the prescribed ηΜ. 

The resulting deformed RVEs are shown in Fig. 5.5. The left picture in Fig. 5.5 

corresponds to the first-order case, not accounting for the strain gradient. 

Clearly, depending on the intensity of the strain gradient tensor, the overall 

deformation mode differs, which will result in different extracted overall 

responses, thereby capturing the size effect. 
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Figure 5.5: Dependence of the overall deformation mode on the intensity of 

the second-order strain. All the RVEs have been subjected to the same strain 

tensor εΜ and a gradient ηΜ of different intensity. 

 

5.2  Modeling of pure bending 

In this section, the micro–macro simulation algorithm has been verified 

on a pure bending problem.  

For the macromodel we consider the cantilever beam shown in Fig 5.6. 

The geometrical properties are C = 10 mm, L = 60 mm, t = 5 mm and the 

concentrated force P=1000 N. 

 

 

Figure 5.6: Cantilever beam in plane stress [9]. 
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The macromodel is discretized by twenty four (24) C1 triangular 

elements, as they were described in paragraph 3.3. The number of nodes are 

21 and the nodes numbered 19, 20, and 21 represent the fixed end  

(Fig 5.7). 

 

Figure 5.7: Finite element discretization with C1 triangular elements. 

 

 The microscopic model (RVE) consisted of sixteen (16) quadrilateral 

elements, as it was shown in Fig 5.2.  

The material data are the Young’s modulus E = 200 GPa and the 

Poisson’s ratio of ν= 0.3. Since the influence of the microfluctuation field for 

homogeneous materials is negligible, the displacements of the RVE boundary 

can be calculated by using displacement boundary conditions. 

The deformed shape of the macromodel is presented in Fig. 5.8.  
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Figure 5.8: Deformed beam (Second-order scheme). 

 

Comparing the deformed shape with results of standard FEM analysis (Fig 

5.9) with the same number of elements and by using 3-nodes (linear) and 6-

nodes (quadratic) triangular elements, we can see that the shape is 

acceptable. 

 

 

Figure 5.9: Deformed beam (FEM 6-nodes triangular elements). 
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Next we plot the vertical displacement of the nodes situated along the 

neutral axis of the cantilever (Fig.5.10). As it appears, a good correspondence 

is exhibited.  

 

 

Figure 5.10: Deflection of the cantilever beam. 

 

5.3  Linear Modelling 

In this section, the cantilever beam problem of section 5.2, will be 

solved for the linear case of a non-homogeneous material using both the first-

order and the second-order computational homogenization schemes. 

5.3.1  Microscopic model 

We consider a microstructure which consists of a fiber of diameter 

d𝑓=0.3568 (cross-section A𝑓=0.1), made of material with Young’s modulus 
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E𝑓=1000, embedded in a matrix of thickness t𝑚=1 and made of material with 

Young’s modulus E𝑚=100 and Poisson’s ratio 𝜈=0.2, which is represented by 

a RVE shown in Fig. 5.11.  

 

 

Figure 5.11: RVE with embedded fiber. 

Full bond between the fiber and the matrix is assumed, that is, no slip 

is allowed between the two elements. The microstructure is modelled using 

plane-stress quadrilateral elements for the matrix. The model for full bond 

which has been used is that proposed by [14] (see Appendix B).  

When the RVE is deformed monotonically with strain                               

{ε11  ε22  2ε12} 𝑇 ={ε1 −0.2ε1 0}𝑇, until strain ε1=0.05 is achieved, and for 

ηΜ=0 using the first-order and second-order homogenization scheme, the 

response of averaging stress  σΜ with prescribed strain is shown in Fig 5.12. 



 
        

57 
 

 

Figure 5.12: Averaging stress σΜ11 -prescribed strain ε1 response. 

A we can see, for ηΜ=0 there is no difference between the two 

schemes.  

5.3.2  Macroscopic model 

For the macromodel we consider the cantilever beam described in 

section 5.2. The problem is solved with both the first-order and second-order 

homogenization scheme. 

The first step is the initialization of the problem by partially solving the 

RVE to compute the constitutive matrices C. It is remarked that when the 

problem is linear, the homogenized macroscopic constitutive modulus can be 

computed once and used for all calculation steps at the macroscale. Since the 

matrices C are computed, the constitutive law is thus known for the 

macroscopic model. Macroscopic displacements, strains εΜ and strains 

gradients ηΜ can be obtain at every intergration point. 
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At the final stage the macroscale strains εΜ and strains gradients ηΜ are 

available and a postprocessing of the RVEs could be performed in order to 

find their stress and strains fields.  

  

 

Figure 5.13: Vertical deflection of the neutral axis (First-order scheme). 

 

Figure 5.14: Vertical deflection of the neutral axis (Second-order scheme). 
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The vertical displacement of the nodes situated along the neutral axis 

of the cantilever for the solutions obtained by using the first-order and 

second-order homogenization schemes are depicted respectively on Fig. 5.13 

and 5.14. As we notice the second-order scheme give us a stiffer response. 

The stress distribution σxx of the macrolevel are presented in Fig. 5.15 

and 5.16., portraying also the deformed shapes of RVEs in selected 

intergration points of the same area.  

 

Figure 5.15: Stresses along the x-axis obtained with the first-order scheme. 



 
        

60 
 

 

 

 

Figure 5.16: Stresses along the x-axis obtained with the second-order 

scheme. 
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Chapter 6 

Conclusions 

 

A wide range of manufactured, as well as natural, materials are 

heterogeneous at a certain scale of observation. If the heterogeneities are 

small compared to the scale of the whole problem, a standard finite element 

analysis often becomes computationally too large. For that reason various 

homogenization methods have been developed. 

In the scope of this dissertation the two schemes, i.e the first-order 

and the second-order, of the computational multiscale homogenization 

method have been examined.  

The computational multiscale homogenization method is based on the 

solution of nested boundary value problems, one for each scale. The most 

important characteristic of this solution strategy is that no constitutive 

assumptions are required on the macrolevel, since the macroscopic 

constitutive response is numerically obtained from the solution of a microscale 

boundary value problem.  

The first-order computational homogenization scheme fits entirely in a 

standard local continuum mechanics framework. However, there are 

limitations in the application of the first-order scheme, because the size 

effects can not be neglected when considering problems of dimensions close 

to the characteristic length of the material. 

In order to eliminate these limitations, the second-order computational 

homogenization procedure could be used. The second-order scheme is based 

on a proper incorporation of the macroscopic gradient of the strain tensor. 

The second-order scheme algorithm have been programmed and 

implemented.  According to the second-order formulation, the macrolevel was 

discretized by the C1 triangular finite element based on the strain gradient 
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theory, while the standard C0 quadrilateral was used for the discretization at 

the microlevel. The results for a bending problem of a homogeneous beam 

exhibited a good correspondence.     

The second-order scheme was also compared with the first-order 

scheme in a bending problem. As it appears, the second-order scheme shows 

a stiffer behaviour. 

It should also be mentioned, that, compared to the first-order 
framework, in the second-order computational homogenization the only 
additional computational effort is the solution of the higher-order equilibrium 
problem on the macrolevel, since the microstructural boundary value problem 
remains classical.  

 
Moreover, the ability of the RVE within the second-order framework to 

capture differences of the macroscopic gradient was shown.  
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Appendix A 

 
The shape functions of the C1 triangular finite element used are [1]: 

  

5 4 4 3 2 3 2 3 2 2 2 2

1 1 1 2 1 3 1 2 1 3 1 2 3 21 1 2 3 31 1 3 25 5 10 10 20 30 30N L L L L L L L L L L L L r L L L r L L L       

 

4 4 3 2 3 2 3 2 2

2 3 1 2 2 1 3 3 1 2 2 1 3 3 2 1 2 3 1 21 2 1 2 3

2 2

1 31 3 1 3 2

4 4 4( ) (3 15 )

(3 15 )

N c L L c L L c L L c L L c c L L L c r c L L L

c r c L L L

        

 

 

4 4 3 2 3 2 3 2 2

3 3 1 2 2 1 3 3 1 2 2 1 3 2 3 1 2 3 1 21 2 1 2 3

2 2

1 31 3 1 3 2

4 4 4( ) (3 15 )

(3 15 )

N b L L b L L b L L b L L b b L L L b r b L L L

b r b L L L

         

 

 

2 3 2

2 2
3 2 3 2 3 2 2 2 2 2 23 2

4 1 1 2 3 1 2 3 1 2 21 1 2 3 1 3 31 3 1 3 2

5 5
( ) ( )

2 2 2 2

c c
N L L L L c c L L L c c r c L L L c c r c L L L      

  

2 3

3 2 3 2 3 2 2

5 3 3 1 2 2 1 2 3 3 2 1 2 3 1 2 2 1 21 2 2 1 2 3

2 2

1 3 3 1 31 3 3 1 3 2

( ) ( 5 )

( 5 )

N b c L L b c L L b c b c L L L b c b c r b c L L L

b c b c r b c L L L

        

  

 

 

2 3 2

2 2
3 2 3 2 3 2 2 2 2 2 23 2

6 1 1 2 3 1 2 3 1 2 21 1 2 3 1 3 31 3 1 3 2

5 5
( ) ( )

2 2 2 2

b b
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 where, 

bi = yj – yk 

ci = xk –xj 

with i, j, k being cyclic permutations of 1,2 and 3. 
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 2 2

i j i j

ij

i i

b b c c
r

b c


 


  

The remaining twelve components of the shape function, N7 to N18, 

corresponding to the degrees of freedom at nodes 2 and 3 are obtained by the 

cyclic permutations of the suffixes.   
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Appendix B 

In this Αppendix a brief summary of the model of full bond between fiber and 
matrix is presented, based on mathematical formulation of  [14]. 
 
Let a fiber element be embedded in a “parent” matrix element, and let uf be 
the displacement of the fiber, um the displacement of the matrix and s the 
slippage between the two (Fig. B.1). 
 
 

 
Figure B.1: [14] 

In the case of full bond (i.e. no slippage), the virtual work principle is 

described by the system: 

 

 

where nf is the number of fibers embedded in the element, Rt are the external 

forces acting upon the matrix nodes and 
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*

,

m

T

m f m f f

V l

dV T A dl  
T T

m m m
Q B σ B σ   

Bm are the shape function derivatives for the parent matrix element, 

 

with l1, m1, n1 the direction cosines of the fiber, 

Vm is the matrix volume, Af the fiber section area, l the fiber  length, Ef the 

fiber Young’s modulus and Dm the matrix constitutive matrix. 

 

 

 

 

 

 

 

 


