
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Προσεγγιστικοί Αλγόριθμοι Δρομολόγησης MapReduce

Εργασιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Βασίλειου-Ορέστη Κ.

Παπαδιγενόπουλου

Επιβλέπων: Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Προσεγγιστικοί Αλγόριθμοι Δρομολόγησης MapReduce

Εργασιών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Βασίλειου-Ορέστη Κ.

Παπαδιγενόπουλου

Επιβλέπων: Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή στις 9 Ιουλίου 2015.

..

Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

..

Γεώργιος Γκούμας

Λέκτορας Ε.Μ.Π

..

Ιωάννης Μήλης

Καθηγητής Ο.Π.Α.

Αθήνα, Ιούλιος 2015

...................................

Βασίλειος-Ορέστης Κ. Παπαδιγενόπουλος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright c○ Βασίλειος-Ορέστης Κ. Παπαδιγενόπουλος, 2015.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφο-

ρούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον

συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή της εργασίας αυτής, κ. Δη-

μήτρη Φωτάκη, για τη συνεχή καθοδήγηση, την υπομονή και τους προβληματισμούς που μου

έθεσε σε όλη τη διάρκεια αυτής της χρονιάς. Οι συμβουλές του ήταν καθοριστικής σημασίας

τόσο για την εκπόνηση της εργασίας αυτής όσο και για τη συνέχιση της ακαδημαϊκής μου

πορείας.

Θα ήθελα να ευχαριστήσω ιδιαιτέρως τον κ. Γεώργιο Γκούμα για το ενδιαφέρον του και για

την ευγενική παραχώρηση των μηχανημάτων του Εργαστηρίου Υπολογιστικών Συστημάτων

για την εκτέλεση των πειραμάτων της εργασίας αυτής.

Θα ήθελα να ευχαριστήσω ακόμα τον κ. Ιωάννη Μήλη που διατέλεσε μέλος της τριμελούς

επιτροπής μου.

Χρωστάω ένα μεγάλο ευχαριστώ στην οικογένεια και στους φίλους μου, οι οποίοι μετέτρεψαν

όλα αυτά τα χρόνια διαβάσματος, εργασιών και εξετάσεων μερικά από τα καλύτερα χρόνια

της μέχρι τώρα ζωής μου.

Τέλος, θα ήθελα να ευχαριστήσω τα αναγνωστήρια και τις ήσυχες καφετέριες του κέντρου

για την συμβολή τους στη συγγραφή του κειμένου αυτού.

Περίληψη

Το MapReduce αποτελεί ένα προγραμματιστικό μοντέλο καθώς και μια σχετική υλοποίηση

για την παράλληλη επεξεργασία μεγάλων ποσοτήτων δεδομένων σε συστάδες πολυπύρη-

νων υπολογιστικών συστημάτων. Στο MapReduce, κάθε εργασία περιλαμβάνει δυο σύνολα

υποεργασιών, τις map και τις reduce. Ενώ οι υποεργασίες κάθε συνόλου μπορούν να ε-

κτελεστούν παράλληλα, τα δύο αυτά σύνολα οφείλουν να εκτελεστούν ακολουθιακά. Με

άλλα λόγια, κάθε reduce υποεργασία μπορεί να ξεκινήσει την εκτέλεσή της μόνο μετά την

ολοκλήρωση των αντίστοιχων map υποεργασιών. Ο δρομολογητής MapReduce εργασιών

παίζει ένα πολύ ουσιαστικό ρόλο στην απόδοση του όλου συστήματος. Στη διπλωματική

αυτή, μελετάμε το πρόβλημα της δρομολόγησης MapReduce εργασιών από τη σκοπιά της

θεωρίας δρομολόγησης και των προσεγγιστικών αλγορίθμων. Παρουσιάζουμε μερικά γνω-

στά αποτελέσματα σχετικά με τη δρομολόγηση εργασιών σε παράλληλες μηχανές καθώς και

με τη δρομολόγηση MapReduce εργασιών. Η βασική συνεισφορά της εργασίας αυτής είναι

η πειραματική αξιολόγηση ενός πολυωνυμικού χρόνου 54-προσεγγιστικού αλγορίθμου για

το πρόβλημα δρομολόγησης MapReduce εργασιών σε ασυσχέτιστες μηχανές με στόχο την

ελαχιστοποίηση του βεβαρημένου μέσου χρόνου ολοκλήρωσης. Στη μελέτη αυτή δείχνουμε

ότι σε πειραματικές συνθήκες ο ¨εμπειρικός’ λόγος προσέγγισης αποδεικνύεται πολύ καλύτε-

ρος από αυτόν που έχει δειχθεί θεωρητικά για διαφορετικές κατανομές χρόνων εκτέλεσης

και αριθμούς εργασιών. Επιπλέον, προτείνουμε ένα γρήγορο και ¨άπληστο’ αλγόριθμο για το

ίδιο πρόβλημα ο οποίος αποδεικνύεται αρκετά ανταγωνιστικός για συγκεκριμένες εισόδους.

Τέλος, περιλαμβάνουμε στα πειράματά μας την μοντελοποίηση της μεταφοράς δεδομένων

από map σε reduce υποεργασίες μέσω της εισαγωγής των ’shuffle’ υποεργασιών.

Λέξεις-Κλειδιά: Χρονοδρομολόγηση και οργάνωση πόρων, Προσεγγιστικοί αλγόριθμοι,

Αλγοριθμική ανάλυση, Map-Reduce

Abstract

MapReduce is a programming model and an associated implementation for the parallel

processing of data sets in large clusters. In MapReduce, each job is associated with two

sets of tasks, the map and the reduce. While the tasks of each set can be scheduled

in parallel, the two sets must be scheduled sequentially i.e. the reduce after the map

tasks. The centralized scheduler of MapReduce plays a critical role in the performance

of the system. In this thesis, we study the problem of scheduling MapReduce tasks

from the view of scheduling theory and approximation algorithms. We present several

known results concerning the problem of scheduling parallel machines as well as the

problem of scheduling MapReduce tasks itself. The main contribution of this thesis is the

experimental evaluation of a polynomial time 54-approximation algorithm for the non-

preemptive scheduling of MapReduce tasks on unrelated machines with the objective

of minimizing the total weighted completion time. In this study, we show that the

empirical approximation ratio of this algorithm is much better than the theoretically

proven guarantee on various processing time distributions and number of jobs. We

also propose a fast, greedy heuristic for the same problem that appears to be very

competitive for certain inputs. Finally, we include in our experiments the modelling of

data transmission between map and reduce tasks, via the introduction of “shuffle” tasks.

Keywords: Scheduling and resource allocation, Approximation algorithms, Algorithm

analysis, Map-Reduce

Contents

Introduction 1

1 Preliminaries 7

1.1 Definitions . 7

1.2 Machine Environment . 8

1.3 Objective Functions and Metrics . 9

1.4 Precedence Constraints . 10

1.5 A Typical Notation for Scheduling Problems 11

1.6 Complexity Issues . 12

1.7 Approximating an Optimal Solution . 12

1.8 Online and Offline Scheduling . 13

2 Scheduling Parallel Machines 15

2.1 List Scheduling and Longest Processing Time First 15

2.2 An Exact Algorithm for the Average Completion Time Problem on Iden-

tical Machines . 18

2.3 Minimizing Total Weighted Completion Time on Identical Machines . . . 19

2.4 Minimizing Makespan on Unrelated Machines 21

2.5 Minimum-Weight Bipartite Matching to Schedule Positions 25

2.6 Minimizing Total Weighted Completion Time of Tasks on Unrelated Ma-

chines . 26

Contents

3 Precedence Constraints and Shop Scheduling 31

3.1 Chains, Flows and Shops . 31

3.2 A Greedy 2-approximation Algorithm For Open Shops 32

3.3 Two Machine Flow Shop Makespan Minimization 33

3.4 A Randomized Algorithm for the Flow Shop Scheduling Problem 35

4 Scheduling MapReduce Jobs Minimizing Total Completion Time 38

4.1 The General Model . 38

4.2 Offline Algorithms . 39

4.2.1 Identical Machines . 39

4.2.2 Unrelated Machines . 41

4.3 Online Scheduling . 42

4.3.1 Identical Machines . 42

4.3.2 Unrelated Machines . 43

5 Scheduling MapReduce Jobs and Shuffle Tasks 47

5.1 A constant approximation algorithm. 47

5.2 Data Shuffle . 50

5.2.1 The Shuffle Tasks are Executed on their Reduce Processors 51

5.2.2 The Shuffle Tasks are Executed on Different Input Processors . . . 52

5.3 A Greedy Heuristic . 53

6 Experimental Evaluation 55

6.1 Experimental Experience . 55

6.2 Lower Bound . 56

6.3 Processing Time Distributions . 57

6.4 Shuffle Tasks . 57

6.5 Implementation . 58

6.6 Technical Information . 59

6.7 Results . 59

6.7.1 Uncorrelated Input . 60

List of Figures

6.7.2 Job-Processor Correlated Input . 61

6.7.3 Job-Processor Correlated Input with Shuffle Tasks 62

6.8 Evaluation . 62

Conclusion 64

List of Figures

1.1 A graph representing the precedence constraints among jobs. 11

2.1 A Pseudoforest of Job and Machine Nodes. 23

2.2 Bipartite Graph Modelling Positions. 26

3.1 Examples of Chain- and Tree- Like Precedence Constraints. 32

6.1 Implementation sketch of Algorithm-MR. 58

6.2 Implementation sketch of Greedy-MR. 59

6.3 Uncorrelated Results . 60

6.4 Processor-Job Correlated Results . 61

6.5 Data Shuffle Results . 62

Introduction

Massive Parallelism

According to the well-celebrated Moore’s Law: ”The number of transistors on inte-

grated circuits doubles approximately every two years”. So far so good but, what does

this self-fulfilling prophecy practically mean? The more transistors one can ”fit” on a

constant size silicon, the more complex logic he can implement. In the terminology of

computer architecture, complex logic can be translated into faster clock speeds, larger

caches, better branch predictors, deeper instruction level pipelines and out-of-order ex-

ecution units. The ”best-effort” parallel execution of serial machine code, the so-called

Instruction Level Parallelism, combined with faster clock speeds were some of the basic

features that caused our experience as computer users to be improved year after year.

The same piece of code used to perform faster and faster as the logic on integrated cir-

cuits was becoming more complex. Unfortunately, at the beginning of the 21st century

as Herb Sutter stated ”the free lunch is over”. What happened is that logic became

very complex and the number of transistors could not improve the serial execution with

respect to the power consumption constraints. This turning point has been called the

”ILP wall” and we hit it around 2004. In order to exceed this barrier, the wide use of

multiprocessors was at that point a demand.

Although multiprocessing systems were introduced into personal computers quite re-

cently, the idea of massive parallelism as well as the use of multiprocessor and mul-

ticomputer systems is not novel. In fact, supercomputers have been used for decades

mainly for scientific based applications. Some examples of these ”number crunching”

applications are engineering simulations, DNA analysis and high-frequency trading al-

gorithms. The first multicore supercomputers were introduced around 1960 with less

than ten processors while at the end of the 20th century this number exceeded thousand.

Nowadays, according to top500.org, Tianhe-2, a supercomputer developed by China’s

National University of Defense Technology counts a total of 3,120,000 cores and a total

memory of 1,375 TiB.

1

Introduction 2

Due to the sudden growth in the market of parallel computers, the demand for developing

fast and reliable parallel code by software companies is increasing day after day. However,

the development of parallel code is a process far from trivial. In fact, the traditional

way somebody develops an algorithm, study programming or even think of a solution

is innately serial. Therefore, writing parallel code using the primitive tools provided by

an operating system is a time-consuming and error-prone activity. To deal with these

difficulties it was crucial to separate the transformation of an algorithm into lines of

code and its parallelization. For this reason, various high-level libraries and assisting

runtime systems have been created in order to simplify the parallel code production and

release the programmer from the burden of orchestrating the coordination of multiple

tasks. Typical examples of these systems are OpenMP, Java Threads, Cilk, Intel Thread

Building Blocks and different versions of the Message Passing Interface (MPI) paradigm.

The MapReduce Paradigm

Due to the popularity of internet technology, the amount of data stored on the web is

huge. For this reason, given the competition, companies that are active in the online

market such as search engines, e-mail providers, social networking services etc. need to

process everyday tons of raw data. However, given the amount of information, even the

execution of a conceptually trivial functionality may demand hundreds or even thousands

of processing units in order to complete in a reasonable amount of time. An important

parallel programming model and an associated implementation that can be used to

perform this kind of operations is MapReduce. The term MapReduce originally referred

to the way Google [1] processed large data sets on its clusters. Nowadays, MapReduce is

considered a parallel computation paradigm with various existing implementations such

as Google’s MapReduce [1], Apache Hadoop [2, 3], Disco Project [4] and Infinispan [5].

The MapReduce paradigm is based on a simple idea. The input data is considered as

a stream of records consisting of key-value pairs. The execution of a MapReduce job is

divided into two basic phases: the map and the reduce phase. In the map phase, a group

of map tasks is executed on map machines. Every map task, takes as input a subset of

the input’s key-value pairs and execute on them a programmer defined map function,

producing as an output new key-value pairs. After the execution of all map tasks and

therefore the completion of the map phase, the reduce phase begins. In the same way, in

the reduce phase, a set of reduce tasks is executed on reduce processors. These tasks take

as input the key-value pairs generated in the map phase and apply to them a reduce

function, under the constraint that all records with the same key will be processed

together on the same reduce machine. During the execution of a MapReduce job in the

aforementioned way, the map tasks and the reduce tasks are executed in parallel on the

Introduction 3

corresponding machines but no reduce task can start its execution unless all map tasks

have finished their work. Between the map and reduce phases, the redistribution of the

produced key-value pairs among processors takes place in order to satisfy the reduce

key-constraints. This exchange of data is called shuffle phase.

The simplicity of the described MapReduce model makes it more than suitable for the

parallel programming of various operations on large data sets. Typical examples are dis-

tributed sorting, construction of reversed web-link graphs, distributed pattern matching

etc. While it is the programmer’s responsibility to appropriately define the map and

reduce functions, the role of MapReduce implementation is crucial for the parallelization

and execution of those functions on raw data. Although the MapReduce paradigm is

an inherently distributed protocol, the coordination of the whole execution is central-

ized. Characteristics of the MapReduce such as efficient parallelization, scheduling, fault

tolerance, network bandwidth, data locality and machine availability are the responsi-

bilities of a single node called the master node. These operations that the MapReduce

implementation hides from the programmer are certainly the core of its power.

The MapReduce Scheduling Problem

As we have mentioned before, the scheduling of MapReduce jobs is a centralized activ-

ity motivating the study of new scheduling problems. A MapReduce job, in terms of

scheduling theory, consists of two sets of tasks, the map and the reduce ones. The tasks

of each set can be executed in parallel on any available corresponding processor in an

arbitrary order. However, in the MapReduce scheduling problem, there is one crucial

constraint one must keep in mind. The execution of any reduce task of a job cannot start

before the completion of all map tasks of the same job. This precedence rule, emerging

directly from the nature of MapReduce, models the situation where key-value pairs are

transmitted from map to reduce tasks. This general model combined with more specific

details such as the type of machines or the exact metric to be optimized defines new

scheduling problems. Given the fact that the performance of the centralized scheduler

of a MapReduce system is crucial for the efficient exploitation of the inherent paral-

lelism, recent studies deal with this issue from both a practical as well as a theoretical

viewpoint.

From the practical point of view, there has been a great deal of empirical work [6–9]

comparing the performance of various heuristics for the MapReduce scheduling problem.

This work demonstrates the advantages or trade-offs of different scheduling policies

under various objective functions. Typical examples are the work of Yoo and Sim [10]:

”A Comparative Review for Job Scheduling for MapReduce” and the work of Wolf et

al. ”FLEX: a slot allocation scheduling optimizer for MapReduce workloads” [11]. In

Introduction 4

the latter, Wolf et al. formalize the problem of slot allocation by the Hadoop Fair

scheduler and present various heuristic allocation schemes. In these papers, there exist

no theoretically proven guarantees of the heuristics’ performance in the language of

scheduling theory.

There have been various theoretical approaches concerning MapReduce from its analysis

as a computational model [12–14], studying its power and limitations, to the development

of MapReduce algorithms for well-known problems [15–20]. As far as the MapReduce

scheduling problem is concerned, Chang et al. [21] proposed a simple model, equivalent

to the well-known concurrent open shop problem [22], where there are no dependencies

between map and reduce tasks and the assignment of tasks to processors is given. In

this direction, Chen et al. [23] generalized the last model by considering dependencies

between tasks and presented a LP-based 8-approximation algorithm for this problem. In

the same work, they involved in their model the existence of data shuffle by presenting

a 58-approximation algorithm for this extension.

In their recent work, ”On scheduling in map-reduce and flow-shops”, Moseley et al

[24] deal with the MapReduce scheduling problem following a different direction. They

associated the MapReduce problem with the so-called Flexible Flow Shop problem [25,

26]. In the FFS scheduling problem, there is a set of jobs, each job has an arbitrary

number of tasks and each task corresponds to a stage. Although, tasks can be scheduled

on any available processor, they also have to be executed in their strict stage order. In

other words, a task corresponding to the second stage cannot start before the execution

of all tasks of the first stage of the same job. Given this new setting, Moseley et al.

propose algorithms for different variants of the problem, considering offline and online

scheduling cases as well as identical and unrelated processors. In all cases, the objective

function of the scheduling problem is to minimize the average completion time of all

jobs.

In their work ”Scheduling MapReduce Jobs and Data Shuffle on Unrelated Processors”,

Fotakis et al. [27] generalized the last model by considering the objective of weighted

average completion time. More specifically, in this model each job has multiple tasks

for the map and reduce stage, the assignment of tasks to processors is flexible, there are

precedence constraints between map and reduce tasks of the same job and the processing

time of each task depends on the processor where it is assigned to in order to capture

issues of data locality. Based on this model, they proposed a LP-based 54-approximation

algorithm, which becomes an 81-approximation considering the significant cost of data

communication, via the modeling of shuffle tasks.

Introduction 5

Contribution of this Thesis

The main contribution of this thesis, is the experimental evaluation of the algorithm

of Fotakis et al. and the estimation of its empirical approximation ratio under various

types of input. More specifically, we show that for realistic inputs, the performance of

this algorithm is much better than the theoretically proven 54-approximation. In fact,

for every type of input the empirical approximation ratio lay within the interval [1.5, 3.5].

In order to study the performance of the algorithm on normal inputs, we implement the

algorithm and compare the objective values of the produced schedules with a LP-based

lower bound to the optimal schedule. We test the performance of this algorithm for

two different processing time distributions. In the first case, the processing times of

tasks on machines are uniformly distributed, while in the second case, there is a strong

correlation among the processing time of a task, the job that this task belongs to and the

machine it runs on. More specifically, in the second case, the average processing time

of the tasks of a job depends on the job, while at the same time some processors has

more capabilities than others for all tasks. Moreover, we experiment on the influence of

the existence of the shuffle phase and how the algorithm performs in this case. This is

achieved by the introduction to our experiments of the shuffle tasks, in order to model

the data transmission time from a map to a reduce processor.

In addition to this, we propose a fast, greedy heuristic for the MapReduce problem,

released from the overhead of LP solving. We test the performance of this heuristic

in comparison with the algorithm of Fotakis et al. on the same inputs. Based on the

experimental results, we try to explain intuitively the reasons behind the performance

of the two algorithms under various processing time distributions and number of jobs.

To the side of this experimental evaluation, we present in this thesis a complete analysis

of the algorithm of Fotakis et al. as well as other known results for the MapReduce

problem. Lastly, we present various well-known results and algorithms from the theory

of parallel machine scheduling and shop scheduling.

Outline of this Reading

In Chapter 1, we present some fundamental definitions and terminology concerning

scheduling problems. In Chapter 2, we present some classic results of the parallel

scheduling literature with varying types of machines and metrics to be optimized. In

Chapter 3, examine the application of precedence constraints on our problems and

present some algorithms for ”job shop” scheduling. In Chapter 4, we survey some

known results concerning the exact problem of scheduling MapReduce Jobs while in

Introduction 6

Chapter 5 we present a constant approximation algorithm for so-far most general ver-

sion of the same problem. Lastly, in Chapter 6 we present our experimental evaluation

of this latter algorithm comparing it with a lower bound on the same problem as well

as with a fast heuristic.

Chapter 1

Preliminaries

In this chapter we examine some basic definitions and notation concerning the theory

of scheduling parallel machines. We discuss a general scheduling problem formulation,

different types of machines and various metrics that may be optimized in a scheduling

problem. Moreover, we consider problems with precedence constraints and we present a

standard notation for describing many scheduling problems. We conclude this chapter

with a reference to some complexity issues, an introduction to the notion and use of

approximation analysis and a clarification of the difference between online and offline

algorithms.

1.1 Definitions

How can we formally define a scheduling problem? To begin, although the relevant

literature is vast, we will try to present a general model for the majority of problems.

Imagine we have a set ℳ of machines or processors and a set 𝒥 of jobs that need to

be processed. In this text, we are going to use the terms ”machines” and ”processors”

interchangeably. Of course, the terms ”machines” and ”jobs” depend on the problem’s

context and may refer to any type of available resources and tasks to be completed. To

the rest of this text, unless otherwise noted, let 𝑚 = |ℳ| and 𝑛 = |𝒥 |, the number of

machines and jobs respectively.

Each job is associated with a specific processing time which, in the general case, depends

on the machine which it is assigned on. We denote 𝑝𝑖,𝑗 the processing time of a job 𝑗

when it is executed by the machine 𝑖. In other words, we can say that each job has a

vector of processing times consisting of one element for each machine it can be scheduled

on. It is clear that the processing time generally refers to the time domain. Throughout

this text we measure the magnitude of processing time by units of time, while in the

relevant literature it can be found as cycles, seconds etc.

7

Chapter 1. Preliminaries 8

Many scheduling problems include the notion of release date or release time of a job.

We say that a job 𝑗 has a release time 𝑟𝑗 if it is not available for scheduling before time

𝑟𝑗 . Likewise, we can define a due date or deadline 𝑑𝑗 for a job 𝑗 to denote that 𝑗 has to

be completed before time 𝑑𝑗 . The key difference between the notions of due date and

deadline is that in the former case, a job is allowed to be completed after time 𝑑𝑗 with

a specific penalty included, while in the latter case a job has to be completed before 𝑑𝑗

in order for a schedule to be valid.

Another crucial characteristic of a scheduling problem is the notion of preemption. We

say that a schedule is preemptive if there is at least one point in time where the execution

of a job is stopped before its completion and continued in a later point in time. In the

majority of problems discussed in this reading preemptions are not allowed. In this case

we refer to the resulting schedule as non-preemptive. Likewise, we denote a schedule to

be migratory (resp. non-migratory) if a job is allowed (resp. not allowed) to ”migrate”

to another machine during its execution.

1.2 Machine Environment

In the previous section, we defined 𝑝𝑖,𝑗 to be the processing time of a job 𝑗 if it is executed

on the machine 𝑖. A very interesting question is, fixing a job 𝑗, what can one say about

the distribution of its processing time over machines.

There are three basic types of machines that have been studied extensively:

∙ Identical Machines. In this case, all machines has the same capabilities. In

other words, the processing time 𝑝𝑖,𝑗 of a job 𝑗 stays the same for every machine

𝑖 that the job can be scheduled on. In this case, we can simplify the notation and

denote by 𝑝𝑗 the processing time of a job.

∙ Uniform Machines. This is the case where each machine is associated with a

specific speed that is independent from the job it is executed on it. Again, we

can simplify the notation by defining 𝑝𝑗 the processing time of a job on a 1-speed

machine and by fixing a vector of machines’ processing speeds. For instance, a job

𝑗 with 𝑝𝑗 = 6 needs six units of time on a 1-speed machine and two units of time

on a 3-speed machine.

∙ Unrelated Machines. In this type of machines, the processing time of a job

depends completely on the machine it is scheduled on. In this case, the demand

for a vector of processing times for each job is exigent, as the processing times are

not correlated in any simple way. For example, imagine we have two machines and

two jobs: one possible scenario of processing times is 𝑝1,1 = 2, 𝑝2,1 = 3, 𝑝1,2 = 1

and 𝑝2,2 = 1.

Chapter 1. Preliminaries 9

A quite straight-forward remark concerning the types of machines is the fact that each

type generalizes all its previous. It is easy to see that unrelated machines can easily sim-

ulate uniform and identical machines and that uniform machines can simulate identical

if we set all speeds to be equal to one. A very useful corollary of this remark is that

every algorithm that works for a specific type of machines is definitely working for all

its previous.

Throughout this reading, we will concentrate our attention to the unrelated and identical

case, leaving aside the uniform machines case.

1.3 Objective Functions and Metrics

Before we discuss the various types of objective functions of different scheduling problems

we would like to make a clarification of some terms. There are two main aspects one must

always have in mind when designing a scheduling algorithm: feasibility and optimality.

We call a schedule feasible if it does not violate any constraints of the problem. For in-

stance, in a typical problem, a feasible schedule must not exclude any job from scheduling

and at the same time respect all the precedence constraints, release dates or deadlines.

If a specific schedule does not respect all the constraints we call it infeasible. Note that

the notion of feasibility extends to be a characteristic of the problem itself: we call a

problem instance infeasible if there is no algorithm that can create a feasible solution.

A quick example to illustrate the infeasibility of a problem is the following: consider

a scheduling problem of jobs with release dates and deadlines on identical machines.

Imagine there is a job j with 𝑝𝑗 = 3, 𝑟𝑗 = 1 and 𝑑𝑗 = 2. In this case, it is obvious that

no algorithm can schedule this job in order to meet its deadline.

While the feasibility issue of a scheduling problem is in most cases trivial, the main

concern of an algorithm designer is that of optimality. What makes a schedule optimal

or, in other words, given two schedules for a problem, which one is better? In order

to compare schedules we need to define first what is called in the field of mathematical

optimization an objective (cost) function or metric.

For each scheduling problem we define a function 𝑓 : 𝑆 ↦→ R, where 𝑆 is the set of all

possible schedules and R the set of real numbers. We say that a schedule 𝑠′ ∈ 𝑆 minimizes

𝑓 if 𝑓(𝑠′) ≤ 𝑓(𝑠) ∀𝑠, 𝑠′ ∈ 𝑆 and maximizes 𝑓 if 𝑓(𝑠′) ≥ 𝑓(𝑠) ∀𝑠, 𝑠′ ∈ 𝑆. It follows

that given a scheduling setting and an objective function 𝑓 , we denote as minimization

problem (resp. maximization problem) the search for a schedule that minimizes (resp.

maximizes) 𝑓 . This schedule is called optimal and the value of 𝑓 for this schedule is

called optimal value.

Chapter 1. Preliminaries 10

Now we are ready to discuss some fundamental objective functions that are most studied

in literature:

∙ Makespan or Length. Given a schedule on parallel machines, we denote as

makespan the finishing time of the job that finishes last.

∙ Average Completion Time. This metric refers to the average completion time

of all jobs in a schedule. Note that given that the number of jobs for a problem

is constant, the optimization of the average completion time is equivalent to the

optimization of the sum of the completion times of jobs. This is the reason why this

metric in literature is frequently called total completion time or sum of completion

times.

∙ Average (Weighted) Completion Time. This cost function is similar to the

average completion time with the difference that each job is associated with a

specific weight 𝑤𝑗 which denotes its significance. In this case the completion time

of a job is multiplied by its weight before the calculation of the average. Likewise,

this objective function can be found as total weighted completion time in literature.

Of course, there is a variety of objective functions beyond the aforementioned such as

lateness, tardiness, absolute or squared deviation and unit penalty for problems with due

dates or total (weighted) flow time for problems with release dates.

It is crucial to realise that different metrics imply and represent different needs. Specif-

ically, the minimization of the makespan is usually suitable for one-user multiple-job

environments where the user demands all his jobs to be completed as soon as possible.

On the other hand, the minimization of the average completion time is more compatible

with multi-user environments, where the notion of fairness is more important. Obvi-

ously, the term ”weighted”, when used, implies users and jobs with different significance

or priority.

1.4 Precedence Constraints

Another well-studied aspect of scheduling problems is that of scheduling jobs with re-

spect to precedence constraints. In a few words, we say that a job 𝑖 must precede a job 𝑗,

denoted by 𝑖 ≻ 𝑗, if the execution of the latter can start only after the completion of the

former job. The use of scheduling models with precedence constraints emerges directly

from the nature of parallel processing systems. It is a very common phenomenon for a

job to produce data which is prerequisite for another job to begin execution. Usually

the precedence hierarchy of jobs is depicted as a Directed Acyclic Graph. Here is an

example:

Chapter 1. Preliminaries 11

Figure 1.1: A graph representing the precedence constraints among jobs.

As we can see, the nodes of the graph are jobs and there is a directed edge from node 𝑖

to 𝑗 for each precedence constraint of the form 𝑖 ≻ 𝑗. The fact that the graph is acyclic

is also obvious. Imagine there was a directed cycle of jobs, which one can be executed

first? The answer of course is none, and the problem is clearly infeasible.

1.5 A Typical Notation for Scheduling Problems

Given the wide variety of scheduling problems in literature, Graham, Lawler, Lenstra

and Kan introduced [33] a quick and elegant way of describing scheduling problems.

Their 3-field problem classification is a set of three labels of the form 𝛼|𝛽|𝛾. Each label

reflects different characteristics of a scheduling problem:

∙ Field 𝛼, describes the machine environment of the problem. Typical 𝛼 values

are 1, P, Q and R for the single machine, identical parallel, uniform parallel and

unrelated parallel machines respectively. Moreover, another example of common

notation is the use of an index that denotes the number of machines on parallel

environments. For instance, 𝑃5 represents an environment of five identical parallel

machines.

∙ Field 𝛽, is the second field and reflects additional properties of a problem. Some

of the most typical properties that belongs to this field are 𝑟𝑗 for problems with

release dates, 𝑑𝑗 for due dates or deadlines, prec for precedence constraints or

pmtn for problems where preemption is allowed. Another value of this field can

be 𝑝𝑖,𝑗 = 0 or 1 denoting processing times with zero or unit value.

∙ Field 𝛾, is the last field of the notation and represents the type of the objective

function. Typical values of 𝛾 are 𝐶𝑚𝑎𝑥 for makespan minimization,
∑︀

𝐶𝑗 for the

total completion time and
∑︀

𝑤𝑗𝐶𝑗 for the total weighted completion time.

Chapter 1. Preliminaries 12

For example, 1|𝑝𝑟𝑒𝑐|𝐿𝑚𝑎𝑥 is the problem of minimizing the maximum lateness on a

single machine subject to given precedence constraints. In the same way, 𝑅|𝑝𝑚𝑡𝑛|
∑︀

𝐶𝑗

is the problem of minimizing the total completion time on unrelated machines when

preemption is allowed.

1.6 Complexity Issues

At this point, we would like to discuss the complexity characteristics of different schedul-

ing problems. Unfortunately, given the jungle of the studied scheduling problems, only a

small percentage of those accepts a polynomial-time algorithm that estimates an optimal

solution. We concentrate our attention to parallel machine scheduling. In this case, the

simplest problem that accepts a polynomial-time algorithm is 𝑃𝑚||
∑︀

𝐶𝑗 . Unfortunately

we cannot argue the same for the problems 𝑃𝑚||𝐶𝑚𝑎𝑥 and 𝑃𝑚||
∑︀

𝑤𝑗𝐶𝑗 , when 𝑚 ≥ 2.

Usually, we are able to prove that a problem does not accept a polynomial-time algo-

rithm, unless 𝑃 ̸= 𝑁𝑃 , with the help of what is called a reduction. Intuitively, we say

that a problem 𝑃1 is reducible to problem 𝑃2 if an algorithm for solving problem 𝑃2

efficiently could also be used as a subroutine to solve 𝑃1. An example is the follow-

ing: think of the problems 𝑃 ||𝐶𝑚𝑎𝑥 and 𝑃 |𝑟𝑗 |𝐶𝑚𝑎𝑥. Given that the first problem does

not accept a polynomial time algorithm we can conclude that the same holds for the

second problem. Imagine the contrary and that there is an efficient algorithm solving

𝑃 |𝑟𝑗 |𝐶𝑚𝑎𝑥; then if we take an instance of 𝑃 ||𝐶𝑚𝑎𝑥 and add a ”dummy” zero release date

for every job then we would be able to solve the problem efficiently.

1.7 Approximating an Optimal Solution

As we have seen, the majority of parallel scheduling problems do not accept polynomial-

time algorithms. This means that for a slightly more than ”small” input, an optimal

schedule cannot be estimated efficiently. So what can we do for those problems? Hope-

fully, the story does not end here. In many cases we can construct algorithms running

in polynomial-time and producing an approximation to the optimal value.

More formally, a 𝜌-approximation algorithm for a minimization problem is an algorithm

that runs in polynomial-time on the size of the input and produces a solution 𝑆𝑂𝐿 such

that:

𝑂𝑃𝑇 ≤ 𝑆𝑂𝐿 ≤ 𝜌𝑆𝑂𝐿

, where 𝑂𝑃𝑇 the objective value of an optimal solution.

The value 𝜌 is called approximation ratio or guarantee of the algorithm. Generally

𝜌 = 𝑓(𝐼), where 𝐼 a problem instance. In other words, the approximation ratio of an

Chapter 1. Preliminaries 13

algorithm is a function of the problem instance. As a result, the main target in the area

of approximation algorithms is to find algorithms with the lowest possible upper bounds

of approximation ratios. In literature, there exist algorithms with constant, logarithmic,

linear or other function of the input size approximation ratios.

1.8 Online and Offline Scheduling

In practice, there are many scheduling problems where jobs arrive over time and the

scheduler does not know anything about their existence until their arrival. This is called

an online scheduler. There are two subcategories of online scheduling depending on

the existence or not of clairvoyance. A clairvoyant scheduler, learns all the relevant

information for a job (processing time, weight, etc) by the time of its arrival while a

non-clairvoyant learns nothing for a job but the fact that it has arrived. In order to

clarify the difference between the two types of scheduler let us demonstrate with an

example. The scheduler of an operating system is clearly an online scheduler. In the

general case, this scheduler may accept and run a job that needs live interaction with

the user without knowing the time the user will spend on the job or the importance of

this job to the user. In this case the scheduler may be considered non-clairvoyant. If the

user could inform in any way the scheduler about the time his job is going to spend or

the weight-importance of this job, then this scheduler could be considered a clairvoyant

one.

A standard way of measuring the effect of non-clairvoyance on an online scheduler is the

competitive ratio. For a minimization problem we can formally define the competitive

ratio of a schedule 𝑆(𝐼), produced on input 𝐼 as following:

𝜌(|𝐼|) = max
𝐼

𝑆(𝐼)

𝐴(𝐼)

, where 𝐴(𝐼) the objective value of an adversary 𝐴 who can specify the input 𝐼 and

schedule 𝐼 optimally.

Unfortunately, the notion of competitive ratio has been criticized as impractical as it

usually produces ”unrealistically” high ratios for usual inputs and consequently the

designer or prospective user of an algorithm fails to differentiate between the performance

of two online algorithms in practice.

In order to surpass the drawbacks of the competitive ratio, the notion of resource aug-

mentation was introduced. Intuitively, resource augmentation suggests that if we give

more resources in terms of quality or quantity to a non-clairvoyant scheduler then, the

approximation ratio of this problem may eventually be bounded. Formally, we say that

Chapter 1. Preliminaries 14

an online scheduler is s-speed c-approximation algorithm if:

max
𝐼

𝑆𝑆(𝐼)

𝐴1(𝐼)
≤ 𝑐

, where 𝑆𝑆(𝐼) the produced schedule with 𝑠 > 1 resources. Note that in these cases the

approximation ratio may also be found as competitive ratio of an online algorithm.

Resource augmentation, gives to the user of a scheduling algorithm a practical way to

balance the loss of clairvoyance by buying more or more powerful processors. A typical

example of the power of resource augmentation is included in the seminal paper of

Kalyanasundaram and Pruhs: ”Speed is as Powerful as Clairvoyance”. In their work

[34], they propose a (1 + 𝜖)-speed 𝑓(1𝜖)-approximation algorithm for the classic uni-

processor CPU scheduling problem 1|𝑟𝑖, 𝑝𝑚𝑡𝑛|
∑︀

𝐹𝑖.

Chapter 2

Scheduling Parallel Machines

The purpose of this chapter is to introduce the reader to the problem of scheduling

parallel machines. For this reason, we present a collection of well-known algorithms and

results on both cases of identical and unrelated machines and we discuss a variety of

typical methods for the optimization of different metrics such as makespan and total

(weighted) completion time.

2.1 List Scheduling and Longest Processing Time First

We begin our discussion on parallel scheduling algorithms with the simple Graham’s

List Scheduling algorithm [38]. Even though the algorithm’s description and analysis

may seem trivial even for the unfamiliar with the design of approximation algorithms

reader, the purpose of this presentation is to present a general technique for proving

approximation guarantees.

The problem we discuss is 𝑃𝑚||𝐶𝑚𝑎𝑥, which, as we have stated in the previous chapter,

is NP-hard for 𝑚 ≥ 2. The List Scheduling algorithm is nothing else but the following

simple procedure:

List Scheduling: Take an arbitrary sequence of jobs and assign them one-by-one to

the so-far least loaded machine.

Before we begin the analysis of the algorithm, we should make a significant remark. An

approximation ratio is a guarantee that the objective function of the feasible solution

found by an algorithm would lay within a factor of the optimal value. Since most of the

problems where the demand for approximation algorithms is exigent are NP-hard, as

we know from fundamental complexity, it is difficult to compute the optimal objective

value. So how can we prove an approximation guarantee if we do not have a clue of

what the optimal value is? As a matter of fact, many times we do have a clue. There

15

Chapter 2. Scheduling Parallel Machines 16

are cases where it is an easy task to estimate a so-called lower bound on the optimal

value. If we compare the result of an approximation algorithm with such a lower bound,

then we can prove a guarantee without knowing the exact optimal value. Indeed, we are

certain by definition that this value would be at least its lower bound. The proof of the

following theorem about the List Scheduling algorithm demonstrates these ideas.

Theorem 2.1. List Scheduling is a polynomial-time 2-approximation algorithm for

the problem of makespan minimization on identical machines.

Proof. For the problem of makespan minimization on identical machines there are two

very useful lower bounds. If we denote by 𝐶*
𝑚𝑎𝑥 the optimal makespan then the following

inequalities hold:

𝐶*
𝑚𝑎𝑥 ≥

1

𝑚

∑︁
𝑗∈𝒥

𝑝𝑗

and

𝐶*
𝑚𝑎𝑥 ≥ max

𝑗∈𝒥
𝑝𝑗

It is quite straight-forward why these inequalities consist lower bounds for the makespan

problem. The former suggests that the solution is greater or equal to the total processing

demand divided by the number of machines, a quantity that is obviously the most ”fair”

load-balancing one can achieve. The latter implies that the makespan must be at least

the maximum processing time of any job on a machine.

In order to prove the approximation ratio, consider a schedule produced with List

Scheduling and define 𝐶𝑚𝑎𝑥 to be its makespan. We fix a job 𝑗 to be the job finishing

last and, as a consequence, its completion time equals 𝐶𝑚𝑎𝑥. As we can see 𝐶𝑚𝑎𝑥 =

𝑠𝑗 + 𝑝𝑗 , where 𝑠𝑗 is the starting time of job 𝑗. By definition of our algorithm we can see

that just before the time 𝑠𝑗 , all the machines are working, producing a total amount of

work 𝑚𝑠𝑗 , which is definitely smaller than the total processing requirement. In other

words:

𝑚𝑠𝑗 ≤
∑︁
𝑗∈𝒥

𝑝𝑗

Consequently:

𝑠𝑗 ≤
1

𝑚

∑︁
𝑗∈𝒥

𝑝𝑗 ≤ 𝐶*
𝑚𝑎𝑥

Therefore, for the cost of the produced schedule it follows:

𝐶𝑚𝑎𝑥 = 𝑠𝑗 + 𝑝𝑗 ≤
1

𝑚

∑︁
𝑗∈𝒥

𝑝𝑗 +max
𝑗∈𝒥

𝑝𝑗 ≤ 2𝐶*
𝑚𝑎𝑥

Chapter 2. Scheduling Parallel Machines 17

Intuitively, the main drawback of the algorithm lies in the fact that a job with relatively

large processing time has to be scheduled last. With the following example one can see

that the analysis of this algorithm is tight: Imagine we have 𝑚 machines, 𝑚2 −𝑚 unit

time jobs and one job whose processing time equals 𝑚. In case the large job is at the end

of the list the following problem rises: the unit time jobs would be equally distributed

to the 𝑚 machines giving a load of 𝑚− 1. As a result, when the large job is scheduled

a solution with makespan 2𝑚 − 1 is produced. If we compare this solution with the

optimal 𝐶*
𝑚𝑎𝑥 = 𝑚 we asymptotically get an approximation factor of 2.

A quite obvious optimization for the algorithm is to sort the list of jobs before the

assignment in a non-increasing processing time order. This algorithm is called Longest

Processing Time First. The following theorem holds:

Theorem 2.2. Longest Processing Time First is a polynomial-time 3
2 -approximation

algorithm for the problem of minimizing makespan on identical parallel machines.

Proof. After the sorting procedure of the algorithm we can make the following observa-

tions: If we have at most 𝑚 jobs then the result of the algorithm is optimal i.e. one job

per machine. Now, if we have more than 𝑚 jobs then, for the processing time of a job

𝑗 where 𝑗 > 𝑚 it holds:

𝑝𝑗 ≤
𝐶*
𝑚𝑎𝑥

2

It is easy to see that assuming the contrary, then it should be the case that a job

scheduled last on a machine would have larger processing time than the sum of processing

times of all other jobs scheduled on the same machine. This fact leads to a contradiction

even for the case of two jobs per machine.

Using the last result and following the analysis of the previous theorem, for the last

finishing job 𝑗 it holds:

𝐶𝑚𝑎𝑥 = 𝑠𝑗 + 𝑝𝑗 ≤
1

𝑚

∑︁
𝑗∈𝒥

𝑝𝑗 + 𝑝𝑗 ≤
3

2
𝐶*
𝑚𝑎𝑥

Note that a more careful analysis of the Longest Processing Time First algorithm

can yield a 4
3 -approximation guarantee. The proof lies on the fact that if the processing

times are greater than 1
3𝐶

*
𝑚𝑎𝑥 the algorithm produces an optimal schedule with at most

two jobs per machine.

Chapter 2. Scheduling Parallel Machines 18

2.2 An Exact Algorithm for the Average Completion Time

Problem on Identical Machines

In this section we present a greedy algorithm that produces an optimal solution for the

problem of minimizing the total completion time on identical parallel machines. The

algorithm is an extension of the well-known Shortest Processing Time First rule for the

total completion time on a single machine.

Shortest Processing Time First: Order jobs in a non-increasing processing time

order and assign them in a cyclic way to machines.

Theorem 2.3. Shortest Processing Time First is a polynomial-time exact algorithm

for the problem of minimizing total completion time on identical machines.

Proof. Without loss of generality we assume that 𝑛 is divided by 𝑚. If this is not the

case, we can add to our problem instance an appropriate number of ”dummy” jobs with

zero processing time that clearly do not affect the resulting optimal schedule.

An alternative way one can express the resulting cost of an algorithm for this problem

is the following:

∑︁
𝑗∈𝒥

𝐶𝑗 =

𝑚 times⏞ ⏟
𝛼𝑛,1𝑛+ 𝛼𝑛,2𝑛+ · · ·+ 𝛼𝑛,𝑚𝑛+

+

𝑚 times⏞ ⏟
𝛼𝑛−1,1(𝑛− 1) + 𝛼𝑛−1,2(𝑛− 1) + · · ·+ 𝛼𝑛−1,𝑚(𝑛− 1)+

+ · · ·+
𝑚 times⏞ ⏟

𝛼1,1 + 𝛼1,2 + · · ·+ 𝛼1,𝑚

In the expression above 𝛼𝑙,𝑘 is variable denoting the processing time of a job which is

scheduled on machine 𝑘 and precedes 𝑙−1 jobs on the same machine. This is the reason

why this processing time is multiplied by a factor of 𝑙, as it clearly contributes 𝑙 times

to the objective function, one for its own completion time and one for the completion

time of each job it precedes. Given this new form of objective function, for any given

schedule the objective value can be estimated by assigning every 𝑝𝑗 to an 𝛼𝑙,𝑘 and by

setting the unassigned 𝛼𝑙,𝑘 variables to zero. The problem now is to find an assignment

that minimizes the objective function.

Hopefully, the Hardy-Littlewood-Pólya inequality, also known as rearrangement inequal-

ity [39], gives an elegant proof for the lower bound on any expression of this type.

Specifically, we know that for every choice of real numbers 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 and

Chapter 2. Scheduling Parallel Machines 19

𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑛 and for any permutation 𝑥𝜎(1), 𝑥𝜎(2) . . . 𝑥𝜎(𝑛) it is the case:

𝑥𝑛𝑦1 + · · ·+ 𝑥1𝑦𝑛 ≤ 𝑥𝜎(1)𝑦1 + · · ·+ 𝑥𝜎(𝑛)𝑦𝑛 ≤ 𝑥1𝑦1 + · · ·+ 𝑥𝑛𝑦𝑛

In a few words, the lowest possible value can be achieved if we multiply the variables

in a reversed order of their indices i.e. if we multiply the greatest 𝑥𝑛 with the lowest

𝑦1 and so on. It is not hard to verify that the Shortest Processing Time algorithm

achieves exactly this lower bound and as a result the produced objective value has to be

optimal.

2.3 Minimizing Total Weighted Completion Time on Iden-

tical Machines

In their seminal work: ”Scheduling to Minimize Average Completion Time: Off-line and

On-line Approximation Algorithms”, Hall et al. present [40] a collection of approxima-

tion algorithms for classic scheduling problems. In this part, we are going to present an

approximation algorithm for the 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 problem. Before we describe the algorithm

and the analysis, we are going to prove some useful lemmas concerning this problem.

If for any set 𝑆 ⊆ {1 . . . 𝑛} of jobs we define 𝑝(𝑆) =
∑︀

𝑗∈𝑆 𝑝𝑗 and 𝑝2(𝑆) =
∑︀

𝑗∈𝑆 𝑝2𝑗 , then

the following lemma holds:

Lemma 2.4. Let 𝐶1, 𝐶2, . . . , 𝐶𝑛 the completion times of jobs in a feasible schedule for

𝑃 ||
∑︀

𝑤𝑗𝐶𝑗. Then the 𝐶𝑗 satisfy the inequalities:

∑︁
𝑗∈𝑆

𝑝𝑗𝐶𝑗 ≥
1

2𝑚
(𝑝(𝑆)2 + 𝑝2(𝑆)) for each 𝑆 ⊆ 𝑁

Proof. Let us assume a feasible schedule where there is no unforced idle time. In this

schedule the jobs are indexed without loss of generality in a way that 𝐶1 ≤ · · · ≤ 𝐶𝑛. In

an induced schedule of jobs {1 . . . 𝑗}, job 𝑗 finishes last on machine 𝑖 which, by definition,

is the most heavily loaded machine with respect to this subset of jobs. Since there is no

idle time, for the load of machine 𝑖 it holds:

𝐶𝑗 ≥
1

𝑚
𝑝({1 . . . 𝑗}) = 1

𝑚

∑︁
𝑘∈{1...𝑗}

𝑝𝑘

If we multiply the last inequality with 𝑝𝑗 , follow the same analysis for each induced

subset of the form {1 . . . 𝑗}, then by summation we get:

𝑛∑︁
𝑗=1

𝑝𝑗𝐶𝑗 ≥
1

𝑚

𝑛∑︁
𝑗=1

𝑝𝑗

𝑗∑︁
𝑘=1

𝑝𝑘

Chapter 2. Scheduling Parallel Machines 20

With usual arithmetic we can simplify the last inequality so that for 𝑆 = {1 . . . 𝑛} it

holds: ∑︁
𝑗∈𝑆

𝑝𝑗𝐶𝑗 ≥
1

2𝑚
(𝑝(𝑆)2 + 𝑝2(𝑆))

The lemma in its general case follows directly from the fact that for each possible subset

of jobs we can apply the same analysis restricted to the schedule of these jobs.

Using the previous lemma, we see that for a subset of jobs 𝑆 = {1 . . . 𝑗}, where 𝐶𝑘 ≤ 𝐶𝑗

for each 𝑘 ∈ {1 . . . 𝑗} it is the case that:

𝐶𝑗𝑝(𝑆) = 𝐶𝑗

∑︁
𝑘∈𝑆

𝑝𝑘 ≥
∑︁
𝑘∈𝑆

𝐶𝑘𝑝𝑘 ≥
1

2𝑚
(𝑝(𝑆)2 + 𝑝2(𝑆)) ≥ 1

2𝑚
𝑝(𝑆)2

From this analysis the following lemma immediately follows:

Lemma 2.5. Let 𝐶1 . . . 𝐶𝑛 with 𝐶1 ≤ · · · ≤ 𝐶𝑛 of 𝑛 jobs satisfying
∑︀

𝑗∈𝑆 𝑝𝑗𝐶𝑗 ≥
1
2𝑚(𝑝(𝑆)2 + 𝑝2(𝑆)). Then for each 𝑗 = 1, . . . , 𝑛, where 𝑆 = {1, . . . , 𝑗} it is the case that:

𝐶𝑗 ≥
1

2𝑚
𝑝(𝑆)

Now, consider the following linear programming formulation:

Minimize:

𝑛∑︁
𝑗=1

𝑤𝑗𝐶𝑗

s.t: 𝐶𝑗 ≥ 𝑝𝑗 , ∀𝑗 ∈ {1 . . . 𝑛}∑︁
𝑗∈𝑆

𝑝𝑗𝐶𝑗 ≥
1

2𝑚
(𝑝(𝑆)2 + 𝑝2(𝑆)) ,∀𝑆 ⊆ {1 . . . 𝑛}

Given this LP formulation, the algorithm Schedule-by-𝐶𝑗 works as follows: Given an

optimal solution 𝐶1 . . . 𝐶𝑛 to the LP, assuming without loss of generality that 𝐶1 ≤
· · · ≤ 𝐶𝑛, the algorithm sorts the jobs in a non-decreasing order of 𝐶𝑗 and schedules

iteratively each job 𝑗 to the earliest available 𝑝𝑗 units of time on any machine.

Theorem 2.6. The schedule found by Schedule-by-𝐶𝑗 is a (3 − 1
𝑚)-approximation

algorithm for the problem of minimizing total weighted completion time on parallel ma-

chines.

Proof. If we denote as 𝐶𝑗 the completion time of job 𝑗 scheduled by Schedule-by-𝐶𝑗 ,

then for the induced schedule of jobs {1 . . . 𝑗} it is the case that:

𝐶𝑗 ≤ 𝑠𝑗 + 𝑝𝑗

Chapter 2. Scheduling Parallel Machines 21

, where 𝑠𝑗 denotes the starting time of job 𝑗. Since by definition of the algorithm, before

time 𝑠𝑗 all machines are busy it holds 𝑠𝑗 ≥ 1
𝑚𝑝(𝑆 ∖ {𝑗}). Given this we have :

𝐶𝑗 ≤ 𝑠𝑗 + 𝑝𝑗 ≤
1

𝑚
𝑝(𝑆 ∖ {𝑗}) + 𝑝𝑗 ≤

1

𝑚
𝑝(𝑆) + (1− 1

𝑚
)𝑝𝑗

From the previous lemma and the constraints of the LP we know that 𝐶𝑗 ≥ 𝑝𝑗 and

2𝐶𝑗 ≥ 1
𝑚𝑝(𝑆). Given that 𝐶𝑗 is clearly a lower bound to the optimal solution it is the

case:

𝐶𝑗 ≤ (3− 1

𝑚
)𝐶𝑗

If we apply the last inequality to the objective function the theorem follows.

An interesting observation is that the second set of constraints of the LP formulation

contains exponentially many constraints. Hopefully, it has been proven [41] that we can

solve this exact LP via the Ellipsoid Method, if we use as constraints only the subsets

of the form {1 . . . 𝑗}, ∀𝑗 ∈ 𝒥 .

2.4 Minimizing Makespan on Unrelated Machines

In this section we present a constant approximation algorithm for the problem of makespan

minimization on unrelated machines. This result, apart from its significance in the field

of approximation algorithms, is in fact a very useful tool for the MapReduce scheduling

algorithms we examine in the next chapters.

As we can easily see, list scheduling algorithms cannot directly apply in the unrelated

machine setting and definitely do not yield constant approximation guarantees. Hope-

fully, thanks to the work of Lenstra, Shmoys and Tardos, a 2-approximation algorithm

[42] was proved using linear programming techniques.

The key tool used in this algorithm is the following Rounding Theorem. Let 𝐽𝑖(𝑡) denote

the set of jobs that require no more than 𝑡 units of time on machine 𝑖 and 𝑀𝑗(𝑡) the

set of machines that can process job 𝑗 in no more than 𝑡 units of time. Let 𝑥𝑖,𝑗 a 0-1

assignment variable indicating whether job 𝑗 is assigned to machine 𝑖. We consider the

generalized decision version of our scheduling problem defining for each machine 𝑖 a

deadline 𝑑𝑖 and restricting the schedule to include assignments from jobs to machines

with processing time at most 𝑡. In this setting consider the following mathematical

formulations:

Chapter 2. Scheduling Parallel Machines 22

𝐼𝑃 (𝑃, 𝑑, 𝑡) :∑︁
𝑖∈𝑀𝑗(𝑡)

𝑥𝑖𝑗 = 1 ,∀𝑗 ∈ {1 . . . 𝑛}

∑︁
𝑗∈𝐽𝑖(𝑡)

𝑝𝑖𝑗𝑥𝑖𝑗 ≤ 𝑑𝑖 + 𝑡 ,∀𝑖 ∈ {1 . . .𝑚}

𝑥𝑖𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝐽𝑖(𝑡) , 𝑖 = 1 . . .𝑚

𝐿𝑃 (𝑃, 𝑑, 𝑡) :∑︁
𝑖∈𝑀𝑗(𝑡)

𝑥𝑖𝑗 = 1 ,∀𝑗 ∈ {1 . . . 𝑛}

∑︁
𝑗∈𝐽𝑖(𝑡)

𝑝𝑖𝑗𝑥𝑖𝑗 ≤ 𝑑𝑖 ,∀𝑖 ∈ {1 . . .𝑚}

𝑥𝑖𝑗 >= 0 , ∀𝑗 ∈ 𝐽𝑖(𝑡) , 𝑖 = 1 . . .𝑚

Theorem 2.7 (Rounding Theorem). If the linear program 𝐿𝑃 (𝑃, 𝑑, 𝑡) has a feasible

solution, then any vertex �̃� of this polytope can be rounded to a feasible solution �̄� of the

integer program 𝐼𝑃 (𝑃, 𝑑, 𝑡) and this rounding can be done in polynomial time.

Proof. If we denote by 𝑢 the number of 𝑥𝑖,𝑗 variables involved for a specific 𝑡, we can see

that the mathematical formulations above have 𝑛+𝑚+𝑢 constraints each. As we know

from the theory of linear programming each optimal solution correspond to a vertex of

the pointed polyhedron and each vertex is determined by 𝑢 linearly independent rows

of the constraints matrix, each one satisfied with equality. If we observe the constraints

of the LP we can see that for each feasible solution at most 𝑚 + 𝑛 variables may have

non-zero value. Now, if we denote by 𝛼 the number of integrally assigned jobs and by

𝛽 the number of fractionally assigned ones, then by definition it holds 𝛼 + 𝛽 = 𝑛. A

job that is fractionally assigned is involved to at least two non-zero 𝑥𝑖,𝑗 variables and,

therefore, 𝛼+ 2𝛽 ≤ 𝑚+ 𝑛. Combining the two relations we can see that the number of

fractionally assigned jobs is at most 𝑚.

For any feasible solution 𝑥, we define a bipartite graph 𝐺(𝑥) = (𝐽,𝑀,𝐸), where 𝐽 and

𝑀 the sets of nodes corresponding to jobs and machines respectively and 𝐸 the set of

edges defined as 𝐸 = {(𝑖, 𝑗)|𝑥𝑖,𝑗 > 0}. From the previous observations we can see that

𝐺(�̃�) has no more edges than vertices and in fact each connected component of the graph

has the same property. This type of graph whose connecting components are trees or

trees plus one edge is called pseudoforest. In order to prove this proposition, for each

Chapter 2. Scheduling Parallel Machines 23

connected component of 𝐺(�̃�), let 𝐶 denote the set of its nodes and 𝑀𝐶 , 𝐽𝐶 the sets of

machines and jobs involved respectively. Let �̃�𝐶 the restriction of �̃� to variables �̃�𝑖,𝑗 such

that 𝑖 ∈ 𝑀𝐶 and 𝑗 ∈ 𝐽𝐶 . If we also denote by �̃�𝐶 the rest of the variables and reorder

the columns of the variable vector, we see that �̃� = (�̃�𝐶 , �̃�𝐶). In order for the connected

component 𝐶 to maintain the same property about the number of fractionally assigned

jobs all we need to show is that �̃�𝐶 is an extreme point of 𝐿𝑃 (𝑃𝐶 , 𝑑𝐶 , 𝑡). Suppose

it is not, then there should exist two points 𝑦1 and 𝑦2 enough close to �̃�𝐶 such that

�̃�𝐶 = 1
2(𝑦1 + 𝑦2). In this case, it holds that �̃� = 1

2((𝑦1, �̃�𝐶) + (𝑦2, �̃�𝐶)), which leads to a

contradiction given the fact that �̃� is should be an extreme point.

An example of a produced pseudoforest is shown in the next graph:

Figure 2.1: A Pseudoforest of Job and Machine Nodes.

The key observation is that we can use this pseudoforest to round the fractional solution

of the LP to a feasible solution of the IP. This can be done quite easily: for each integrally

assigned job keep this assignment to the solution. For each connected component that

is a tree start from any job node and greedily assign one machine to each job. Lastly,

for each connected component that contains a cycle, given the fact that our graph is a

bipartite, this cycle must have an even length. Therefore, we can ”break” the cycle if

we arbitrarily begin from any edge and assign jobs to machines in an alternating way.

Clearly, with the aforementioned rounding one can see that if the LP has a feasible

solution then �̄� is a feasible solution to the IP such that for each machine 𝑖:

∑︁
𝑗∈𝐽𝑖(𝑡)

𝑝𝑖,𝑗 �̄�𝑖,𝑗 ≤
∑︁

𝑗∈𝐽𝑖(𝑡)

𝑝𝑖,𝑗 �̃�𝑖,𝑗 + max
𝑗∈𝐽𝑖(𝑡)

𝑝𝑖,𝑗 ≤ 𝑑𝑖 + 𝑡

Note that the rounding from a fractional to an integral solution this way can be done in

polynomial time.

Using this Rounding Theorem, we can construct a 2-approximation algorithm for the

problem of minimizing makespan on unrelated machines. Before we present the al-

gorithm, we introduce some useful definitions and theorems about 𝜌-relaxed decision

procedures:

Definition 2.8. A 𝜌-relaxed decision procedure or oracle can be seen as a decision oracle

with two possible outcomes: ”no” and ”almost”. More specifically, for a minimization

Chapter 2. Scheduling Parallel Machines 24

problem the oracle takes as input a problem instance and a target objective 𝑑. It returns

either ”no” or a solution with objective at most 𝜌𝑑. If the oracle returns ”no”, then

there is not a solution with objective at most 𝑑.

In the following, we present a useful theorem that links the existence of a 𝜌-relaxed

decision oracle with the existence of a 𝜌-approximation algorithm for the problem of

makespan minimization on unrelated machines.

Lemma 2.9. If there is a polynomial 𝜌-relaxed decision procedure for the minimum

makespan problem on unrelated machines, then there is a polynomial 𝜌-approximation

algorithm for this problem.

Proof. In order to prove the lemma, we can create a 𝜌-approximation algorithm using

binary search over the domain of possible makespan. Given a target objective 𝑑, then

𝑑 is an upper bound and 𝑑
𝑚 is clearly a lower bound to the problem’s objective value.

During the binary search procedure, if the oracle answers ”no” for a target makespan

𝑡, then we restrict the search space to values over 𝑡. If the oracle returns a schedule

with makespan at most 𝜌𝑡, then we keep the best schedule we have found so far and we

restrict the search space to values less than 𝑡. It is easy to see that in 𝑂(log 𝑑) time, the

algorithm converges to the highest value that the oracle answers ”no”. If we denote 𝑠

this point, then the best objective value that we have kept during this procedure would

be at most 𝜌𝑠. Given that the optimal value is definitely more than 𝑠 then it is the

case that the best objective value found would lay within a factor of 𝜌 of the optimal.

This procedure gives as a polynomial-time 𝜌-approximation algorithm for the problem

of makespan minimization on unrelated machines.

Now, the next theorem proves the existence of a 2-approximation algorithm for the

problem we discuss:

Theorem 2.10. There is a 2-approximation algorithm for the problem of makespan

minimization on unrelated machines that runs in time bounded by a polynomial of the

input size.

Proof. From the lemmas we have already proved, it suffices to construct a 2-relaxed

decision procedure for the problem. Let (𝑃, 𝑑) a problem instance. If we recall the

𝐿𝑃 (𝑃, 𝑑, 𝑡) of the rounding theorem and set 𝑑1 = 𝑑2 = · · · = 𝑑𝑚 = 𝑡 = 𝑑 then we

can see the following: if the 𝐿𝑃 (𝑃, 𝑑, 𝑑) has not a feasible solution, then the 𝐼𝑃 (𝑃, 𝑑, 𝑑)

cannot have either. On the other hand if the 𝐿𝑃 (𝑃, 𝑑, 𝑑) has a feasible solution, then it

can be rounded to a feasible solution of the 𝐼𝑃 (𝑃, 𝑑, 𝑑). As we have already shown in

this rounded solution, the deadline of each machine can be extended for at most 𝑡 units

of time. Given we have set all deadlines and 𝑡 equal to 𝑑, then the rounding yields a

Chapter 2. Scheduling Parallel Machines 25

solution at most 2𝑑. This use of the rounding theorem clearly satisfies the definition of

a 2-relaxed decision procedure.

2.5 Minimum-Weight Bipartite Matching to Schedule Po-

sitions

In this section we examine the problem of total completion time on unrelated machines.

Extending the analysis we have done for the total completion time on the identical

machines case, we can reformulate the objective function in a similar manner using 0-1

assignment variables.

Let 𝑥𝑖,𝑘,𝑗 denote the variable indicating that a job 𝑗 is scheduled on a machine 𝑖 in

the 𝑘-th last place among the jobs scheduled on the same machine. It is clear that if

𝑥𝑖,𝑘,𝑗 = 1, then the job is scheduled under these conditions and the opposite. Using this

notation we can reformulate the objective function as following:

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑘𝑝𝑖,𝑗𝑥𝑖,𝑘,𝑗

In the previous relation we can see that if a job is scheduled on 𝑘-th from the last

job position on a machine, it contributes 𝑘 times its processing time to the objective

function.

The solution of the following IP clearly gives the solution to the original problem:

Minimize:

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑘𝑝𝑖,𝑗𝑥𝑖,𝑘,𝑗

s.t:
𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑥𝑖,𝑘,𝑗 = 1 ,∀𝑗 ∈ {1 . . . 𝑛} (1)

𝑛∑︁
𝑗=1

𝑥𝑖,𝑘,𝑗 ≤ 1 ,∀𝑖 ∈ {1 . . .𝑚},∀𝑘 ∈ {1 . . . 𝑛} (2)

𝑥𝑖,𝑘,𝑗 ∈ {0, 1} ,∀𝑖 ∈ {1 . . .𝑚}, ∀𝑗, 𝑘 ∈ {1 . . . 𝑛} (3)

In the previous formulation constraints (1) suggest that every job must be scheduled on

exactly one position on some machine while constraints (2) restrict more than one jobs

to be scheduled on the same position of a machine.

The interesting fact about this formulation is that it is the exact IP formulation of the

Weighted Bipartite Matching Problem. Consider we have a bipartite graph 𝐺(𝐴,𝐵,𝐸),

where 𝐴 is the set of nodes corresponding to the jobs and 𝐵 the set of nodes corre-

sponding to all available scheduling positions. It holds that |𝐴| = 𝑛 and |𝐵| = 𝑛𝑚, as

Chapter 2. Scheduling Parallel Machines 26

𝑛𝑚 is the number all possible places a job can be scheduled on. This bipartite graph

is complete and the weight of each edge from a job 𝑗 to the node (𝑖, 𝑘) is defined to be

𝑘𝑝𝑖,𝑘,𝑗 . It is clear now that finding a minimum weight matching on this graph imme-

diately yields a schedule of minimum objective. Here is an example for the problem of

scheduling two jobs on two machines:

Figure 2.2: Bipartite Graph Modelling Positions.

Hopefully, it is a known result that the LP-relaxation if this IP, obtained by relaxing the

values of 𝑥𝑖,𝑘,𝑗 to be non-negative, has the same feasible set of solutions with the original

IP. In other words, it can be proven that the extreme points of the LP-relaxation only

correspond to integral solutions. From this fact we immediately obtain a polynomial-

time exact algorithm for 𝑅||
∑︀

𝐶𝑗 . Note that a well-known combinatorial algorithm for

the problem of minimum weight bipartite matching is the Hungarian algorithm [43].

2.6 Minimizing Total Weighted Completion Time of Tasks

on Unrelated Machines

As far as the problem 𝑅||
∑︀

𝑤𝑗𝐶𝑗 is concerned, Hall et al.[40] developed an LP-based
16
3 -approximation algorithm even for the presence of release dates. Instead of presenting

this algorithm, we choose to discuss a harder version of this problem. The problem we

present is that of scheduling job orders on unrelated machines under the same objective,

which was proposed in the work of Correa, Skutella and Verschae: ”The Power of

Preemption on Unrelated Machines” [44]. Because of the fact that this algorithm will

be used as a subroutine for MapReduce scheduling algorithms in the next, we are going

to use the notation from the work of Fotakis et al.: ”Scheduling MapReduce Jobs and

Data Shuffle on Unrelated Processors” [27].

In this problem, we have a set 𝒫 of processors and a set 𝒥 of jobs. Each job 𝑗 has

a set 𝒯𝑗 of tasks and each task 𝑇𝑘,𝑗 can be executed on processor 𝑖 in 𝑝𝑖,𝑘,𝑗 units of

Chapter 2. Scheduling Parallel Machines 27

time. We denote by 𝒯 the set of all jobs’ tasks. The completion time of each job

𝐶𝑗 is determined by the completion time of the job’s task 𝐶𝑘,𝑗 that finishes last i.e.

𝐶𝑗 = max𝑘|𝑇𝑘,𝑗∈𝒯 {𝐶𝑘,𝑗}. Each job is associated with a weight 𝑤𝑗 and our objective is

to minimize the total weighted completion time.

In this algorithm, which we will refer to as TaskScheduling in the rest of this reading,

we are going to schedule the tasks of jobs on exponentially growing time-intervals. For

this reason, consider a parameter 𝛿 ∈ (0, 1) and a maximum possible value 𝑃 for the time

horizon of this problem. To ensure that 𝑃 is an upper bound to the completion time of

each scheduling problem of this kind we define 𝑃 =
∑︀

𝑇𝑘,𝑗∈𝒯 max𝑖∈𝒫 𝑝𝑖,𝑘,𝑗 . Let 𝐿 be the

smallest integer such that (1+𝛿)𝐿−1 > 𝑃 . We discretize the time horizon into a set of the

following intervals: ℒ = {[1, 1], (1, (1 + 𝛿)], ((1 + 𝛿), (1 + 𝛿)2], . . . , ((1 + 𝛿)𝐿−1, (1 + 𝛿)𝐿]}.
In the following, we denote by 𝐼ℓ the time interval ((1 + 𝛿)ℓ−1, (1 + 𝛿)ℓ]. We assume

without loss of generality that all processing times are positive integers. Clearly, the

number of intervals is polynomial in the size of instance and in 1
𝛿 .

We introduce a set of variables 𝑦𝑖,𝑘,𝑗,ℓ indicating that a task 𝑇𝑘,𝑗 is completed on pro-

cessor 𝑖 within the interval 𝐼ℓ. Using this notation we introduce the following linear

programming formulation:

minimize
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗

subject to:
∑︁

𝑖∈𝒫,ℓ∈ℒ
𝑦𝑖,𝑘,𝑗,ℓ ≥ 1, ∀𝑇𝑘,𝑗 ∈ 𝒯 (1)

𝐶𝑗 ≥ 𝐶𝑘,𝑗 , ∀𝑇𝑘,𝑗 ∈ 𝒯 (2)∑︁
𝑖∈𝒫

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑦𝑖,𝑘,𝑗,ℓ ≤ 𝐶𝑘,𝑗 , ∀𝑇𝑘,𝑗 ∈ 𝒯 (3)

∑︁
𝑇𝑘,𝑗∈𝒯

𝑝𝑖,𝑘,𝑗
∑︁
𝑡≤ℓ

𝑦𝑖,𝑘,𝑗,𝑡 ≤ (1 + 𝛿)ℓ, ∀𝑖 ∈ 𝒫, ℓ ∈ ℒ (4)

𝑝𝑖,𝑘,𝑗 > (1 + 𝛿)ℓ ⇒ 𝑦𝑖,𝑘,𝑗,ℓ = 0, ∀𝑖 ∈ 𝒫, 𝑇𝑘,𝑗 ∈ 𝒯 , ℓ ∈ ℒ (5)

𝑦𝑖,𝑘,𝑗,ℓ ≥ 0, ∀𝑖 ∈ 𝒫, 𝑇𝑘,𝑗 ∈ 𝒯 , ℓ ∈ ℒ

In this linear program, constraints (1) ensure that every task is completed on a processor

in some time interval. Constraints (2) assure that the completion time of a job must be

at least the completion time of all its tasks. Constraints (3) impose a lower bound on

the completion time of a task while constraints (4) are feasibility constraints indicating

that the total processing time of jobs executed up to an interval 𝐼ℓ should be at most

(1 + 𝛿)ℓ. Lastly, constraints (5) indicate that if a task 𝑇𝑘,𝑗 has processing time greater

than (1 + 𝛿)ℓ on a machine 𝑖 cannot complete its execution within the interval 𝐼ℓ.

In the algorithm TaskScheduling, we begin from a fractional solution of the LP:

(𝑦𝑖,𝑘,𝑗,ℓ, 𝐶𝑘,𝑗 , 𝐶𝑗). We partition the set of tasks 𝑇𝑘,𝑗 into sets 𝑆(ℓ) = {𝑇𝑘,𝑗 ∈ 𝒯 |(1+𝛿)ℓ−1 ≤

Chapter 2. Scheduling Parallel Machines 28

𝛼𝐶𝑘,𝑗 < (1 + 𝛿)ℓ}, where 𝛼 > 1 a fixed parameter. After this, we schedule integrally on

the processors the of tasks of each set 𝑆(ℓ) in an increasing order of ℓ using the rounding

theorem of Lenstra, Shmoys and Tardos we have seen for the makespan minimization

on unrelated machines.

In the following, we begin the analysis of the algorithm by presenting some useful lemmas

and observations. First of all, we argue that this linear formulation, even if we restrict

the 𝑦𝑖,𝑘,𝑗,ℓ variables to take integral values {0, 1} is a (1 + 𝛿) relaxation of the original

problem. In order to see this, take any feasible schedule. From this schedule we can

directly assign to the variables 𝑦𝑖,𝑘,𝑗,ℓ values zero or one depending on the interval and

processor the tasks complete their execution. Then, from the constraints (2), (3) we see

that the completion time of a job and therefore the objective function can be at most

a factor of (1 + 𝛿) lesser than the optimal. As a result, this LP is a lower bound to the

optimal schedule for this problem.

For the tasks in 𝑆(ℓ) the following lemma holds:

Lemma 2.11. Tasks in 𝑆(ℓ) alone can be fractionally scheduled on processors 𝒫 with

makespan at most 𝛼
𝛼−1(1 + 𝛿)ℓ.

Proof. First, we need to prove that for any task 𝑇𝑘,𝑗 ∈ 𝑆(ℓ) it must hold:
∑︀

𝑖∈𝒫
∑︀

𝑡≥ℓ+1 𝑦𝑖,𝑘,𝑗,𝑡 ≤
1
𝛼 . Suppose it is not the case and

∑︀
𝑖∈𝒫

∑︀
𝑡≥ℓ+1 𝑦𝑖,𝑘,𝑗,𝑡 >

1
𝛼 then from (3) we have:

𝐶𝑘,𝑗 ≥
∑︁
𝑖∈𝒫

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑦𝑖,𝑘,𝑗,ℓ

=
∑︁
𝑖∈𝒫

∑︁
𝑡≥ℓ+1

(1 + 𝛿)𝑡−1𝑦𝑖,𝑘,𝑗,𝑡 +
∑︁
𝑖∈𝒫

∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡−1𝑦𝑖,𝑘,𝑗,𝑡

≥
∑︁
𝑖∈𝒫

∑︁
𝑡≥ℓ+1

(1 + 𝛿)𝑡−1𝑦𝑖,𝑘,𝑗,𝑡

≥ (1 + 𝛿)ℓ
∑︁
𝑖∈𝒫

∑︁
𝑡≥ℓ+1

𝑦𝑖,𝑘,𝑗,𝑡

>
1

𝛼
(1 + 𝛿)ℓ

Since 𝑇𝑘,𝑗 ∈ 𝑆(ℓ), then by definition of 𝑆(ℓ) this is a contradiction.

Now, using the fact that
∑︀

𝑖∈𝒫
∑︀

𝑡≥ℓ+1 𝑦𝑖,𝑘,𝑗,𝑡 ≤
1
𝛼 , from (1) we can see that:

∑︁
𝑖∈𝒫

∑︁
𝑡≤ℓ

𝑦𝑖,𝑘,𝑗,𝑡 ≥
𝛼− 1

𝛼

Using these observations we can transform a 𝑦𝑖,𝑘,𝑗,ℓ solution into 𝑦*𝑖,𝑘,𝑗,ℓ by setting 𝑦*𝑖,𝑘,𝑗,𝑡 =

0 for 𝑡 ≥ ℓ + 1 and 𝑦*𝑖,𝑘,𝑗,𝑡 =
𝛼

𝛼−1𝑦𝑖,𝑘,𝑗,𝑡 for 𝑡 ≤ ℓ. We can easily see that constraints (1)

and (5) of the LP are satisfied for this transformation:

Chapter 2. Scheduling Parallel Machines 29

For (1):

∑︁
𝑖∈𝒫,ℓ∈ℒ

𝑦*𝑖,𝑘,𝑗,ℓ =
∑︁

𝑖∈𝒫,𝑡≤ℓ

𝑦*𝑖,𝑘,𝑗,𝑡

=
∑︁

𝑖∈𝒫,𝑡≤ℓ

𝛼

𝛼− 1
𝑦𝑖,𝑘,𝑗,𝑡

=
𝛼

𝛼− 1

∑︁
𝑖∈𝒫,𝑡≤ℓ

𝑦𝑖,𝑘,𝑗,𝑡

≥ 𝛼

𝛼− 1

𝛼− 1

𝛼

= 1

In the same way we can see that constraints (4) are satisfied if we multiply the right-hand

side of the inequality with 𝛼
𝛼−1 :∑︁

𝑖∈𝒫

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑦*𝑖,𝑘,𝑗,ℓ ≤
∑︁
𝑖∈𝒫

∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡−1 𝛼

𝛼− 1
𝑦𝑖,𝑘,𝑗,𝑡

=
𝛼

𝛼− 1

∑︁
𝑖∈𝒫

∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡−1𝑦𝑖,𝑘,𝑗,𝑡

≤ 𝛼

𝛼− 1
(1 + 𝛿)ℓ

Thus, we see that tasks in 𝑆(ℓ) can be fractionally scheduled alone in 𝒫 with makespan

at most 𝛼
𝛼−1(1 + 𝛿)ℓ and therefore the lemma holds.

Now, using the rounding theorem for makespan minimization on unrelated processors

we have seen in a previous section of this chapter we can turn this fractional schedule of

tasks in 𝑆(ℓ) into an integral one with makespan at most 𝛼
𝛼−1(1+𝛿)ℓ plus the maximum

processing time of such a task. From (5) we know that this processing time is bounded

by (1 + 𝛿)ℓ. Therefore the following lemma holds:

Lemma 2.12. Tasks in 𝑆(ℓ) alone can be integrally scheduled on processors 𝒫 with

makespan at most (𝛼
𝛼−1 + 1)(1 + 𝛿)ℓ . Also, by definition of 𝑆(ℓ) the completion time of

a task in this schedule is at most 𝛼(𝛼
𝛼−1 + 1)(1 + 𝛿)𝐶𝑘,𝑗.

If we take the union of these schedules in an increasing order of ℓ, by applying the

algorithm for makespan minimization on each schedule we can see that for each task

Chapter 2. Scheduling Parallel Machines 30

𝑇𝑘,𝑗 ∈ 𝑆(ℓ) executed on the machine 𝑖 it holds:

𝐶𝑘,𝑗 ≤
𝛼

𝛼− 1
(1 + 𝛿)ℓ +

∑︁
𝑡≤ℓ

(1 + 𝛿)𝑡

≤ 𝛼

𝛼− 1
(1 + 𝛿)ℓ +

(1 + 𝛿)ℓ+1 − 1

𝛿

≤ 𝛼

𝛼− 1
(1 + 𝛿)ℓ +

(1 + 𝛿)ℓ+1

𝛿

=
𝛼

𝛼− 1
(1 + 𝛿)ℓ + (1 +

1

𝛿
)(1 + 𝛿)ℓ

= (
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)ℓ

= (
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)(1 + 𝛿)ℓ−1

≤ 𝛼(
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)𝐶𝑘,𝑗

Since the values (𝐶𝑘,𝑗) consist a lower bound for the objective it follows that for the

produced schedule:

∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗 ≤
∑︁
𝑗∈𝒥

𝑤𝑗 max
𝑇𝑘,𝑗

𝐶𝑘,𝑗

≤ 𝛼(
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)

∑︁
𝑗∈𝒥

𝑤𝑗 max
𝑇𝑘,𝑗

𝐶𝑘,𝑗

≤ 𝛼(
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)

∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗

≤ 𝛼(
𝛼

𝛼− 1
+ 1 +

1

𝛿
)(1 + 𝛿)𝑂𝑃𝑇

, where 𝑂𝑃𝑇 the optimal objective value of the problem.

Choosing 𝛼 = 3
2 and 𝛿 = 1

2 the quantity 𝛼(𝛼
𝛼−1 + 1 + 1

𝛿)(1 + 𝛿) is minimized, leading to

the following theorem:

Theorem 2.13. Algorithm TaskScheduling is a polynomial-time 27
2 -approximation

for the problem of minimizing the weighted completion time of jobs’ tasks on unrelated

processors.

Chapter 3

Precedence Constraints and Shop

Scheduling

In this chapter we present some basic types of scheduling problems where precedence

constraints between jobs are involved. We introduce some definitions on some of the

main scheduling issues in literature concerning shop scheduling and present some known

algorithms as examples.

3.1 Chains, Flows and Shops

Before we start, let us recall the notion of precedence constraints between jobs. We say

that a job 𝐽1 must precede 𝐽2 if 𝐽2 cannot start its execution before the completion of

𝐽1. In the next, we denote this fact by 𝐽1 ≻ 𝐽2. Precedence constraints between jobs

are very useful for modelling many real-world applications, varying from the concept of

assembly line in factories to the classic fork-join model in operating systems.

In the general case, the precedence relations define a strict partial order as the relation

”≻” satisfies the properties of irreflexibility, transitivity and asymmetry. Therefore,

every set of precedence constraints can be depicted as a Directed Acyclic Graph. Typical

examples of such graphs are the chain of jobs, modelling for example the assembly line

or the tree, modelling the fork-join task model.

In scheduling theory, there is a wide class of problems under the term shop scheduling.

In this shop scheduling problems, each job consists of a set of operations and each

operation has an associated machine on which it has to be processed. The target of

shop scheduling problems is to schedule the operations of all jobs in such a way, that

at most one operation of a specific job can be processed at a time. There are three

well-studied subcategories of shop scheduling: Open Shop, Flow Shop and Job Shop. In

31

Chapter 3. Precedence Constraints and Shop Scheduling 32

Figure 3.1: Examples of Chain- and Tree- Like Precedence Constraints.

the Open Shop problems the operations of a job can be performed in any possible order.

In the Job Shop problems the operations of a job must be performed in a specific order

while in the Flow Shop case for each job there is one operation per machine and the

execution order is fixed and the same for all jobs. The objective of these problems is

usually to minimize the makespan of the schedule with respect to the aforementioned

constraints.

3.2 A Greedy 2-approximation Algorithm For Open Shops

In the following, we present a 2-approximation algorithm for the problem 𝑂||𝐶𝑚𝑎𝑥. In

this problem we have a setℳ of machines, a set 𝒥 of jobs and a set 𝒪 = {𝑂1, . . . , 𝑂𝑘}
of operations. Each operation belongs to a job 𝑗 and has to be executed on a specific

machine 𝑖. For this problem, there is a trivial 2-approximation algorithm. This greedy

rule suggests that whenever a machine becomes idle, schedule on this machine any

available operation that has to be processed by this machine. Recall that for an open

shop problem an operation is considered to be ”available” at a time 𝑡 if no other operation

of the same job is running at this time.

Theorem 3.1. The greedy algorithm is a 2-approximation for 𝑂||𝐶𝑚𝑎𝑥.

Proof. The proof of this theorem follows very naturally after we define two very impor-

tant and useful lower bounds concerning open shop problems. First of all, if we denote

by 𝑝𝑗 the total processing need of the operations of a job 𝑗 and define 𝑃𝑚𝑎𝑥 = max𝑗∈𝒥 𝑝𝑗 ,

then it is definitely the case that 𝑃𝑚𝑎𝑥 ≤ 𝐶*
𝑚𝑎𝑥, where 𝐶*

𝑚𝑎𝑥 the optimal makespan. In

the same way, if we denote as 𝜋𝑖 the total processing time of operations of all jobs that

have to be executed on machine 𝑖, then the for the value Π𝑚𝑎𝑥 = max𝑖∈ℳ 𝜋𝑖 it holds

Π𝑚𝑎𝑥 ≤ 𝐶*
𝑚𝑎𝑥.

Let us fix a job 𝑗 whose operation 𝑜 finishes last on machine 𝑖. There are two reasons

why 𝑜 may not have been scheduled on the same machine a previous time moment

𝑡: either machine 𝑖 was busy at time 𝑡 executing an operation of another job, either

Chapter 3. Precedence Constraints and Shop Scheduling 33

another operation of 𝑗 was under processing at this time by another machine. From

these observations we argue that:

𝐶𝑚𝑎𝑥 = 𝐶𝑜,𝑗 ≤ 𝑝𝑗 + 𝜋𝑖 ≤ 𝑃𝑚𝑎𝑥 +Π𝑚𝑎𝑥 ≤ 2𝐶*
𝑚𝑎𝑥

3.3 Two Machine Flow Shop Makespan Minimization

In this section, we examine the two-machines case flow shop problem, which contrary to

the general case with an arbitrary number of machines, accepts a polynomial-time exact

algorithm. More specifically, we have two machines 𝑀1 and 𝑀2 and set 𝒥 of jobs, each

consisting of two operations, one for each machine. We denote 𝑂1
𝑗 and 𝑂2

𝑗 the operations

of job 𝑗 for machine 𝑀1 and 𝑀2 respectively and 𝑝1𝑗 , 𝑝
2
𝑗 the processing times of the two

operations. For each job 𝑗, the 𝑂1
𝑗 operation must be executed before 𝑂2

𝑗 . Using the

usual notation this problem is denoted by 𝐹2||𝐶𝑚𝑎𝑥.

The polynomial-time exact algorithm for this problem is the well-known Johnson’s Rule

[49]. This rule schedules the operations on each machine in the same job-order, making

greedy choices depending on the processing times of operations. In the following, we

describe the algorithm:

Data: Set of jobs, and processing times of operations

Result: A schedule with minimum makespan

List the processing times of all operations.

while there are unscheduled jobs do
From the unscheduled jobs, select the operation 𝑂𝑗 of a job 𝑗 with minimum

processing time.

if 𝑂𝑗 is for machine 𝑀1 then
Schedule 𝑗 at the first available position

else
Schedule 𝑗 at the last available position

end

end

Algorithm 1: Johnson’s Rule

Theorem 3.2. Johnson’s Rule is a polynomial-time exact algorithm for two-machine

flow shop makespan minimization problem.

Proof. First of all, it is clear that there exists an optimal schedule in which between

operations on machine 𝑀1 there is no idle time. Consequently, we are searching for an

optimal schedule without idle time between 𝑂1
𝑗 s and our goal is to minimize the idle

Chapter 3. Precedence Constraints and Shop Scheduling 34

time on machine 𝑀2. Furthermore, with a simple interchange argument we can see that

there exists an optimal schedule in which the order of job operations remains the same

for both the machines. In other words, for a job 𝑗, 𝑂2
𝑗 is scheduled after the execution

of 𝑂1
𝑗 the first time machine 𝑀2 becomes available.

We prove the optimality of Johnson’s Rule by a simple interchange argument. We

classify the jobs of an instance into two sets:

∙ Set A: The set of jobs 𝑗, where 𝑝1𝑗 ≥ 𝑝2𝑗 .

∙ Set B : The set of jobs 𝑗, where 𝑝1𝑗 < 𝑝2𝑗 .

Suppose we have an optimal schedule that is exactly the same with a schedule produced

by Johnson’s Rule until a job ℓ and exactly after ℓ, there are two jobs 𝑗 and 𝑘 that the

two algorithms have scheduled in a different order. Without loss of generality, suppose

the optimal algorithm has scheduled 𝑘 after 𝑗 and the Johnson’s Rule 𝑗 after 𝑘. If we

denote as 𝐶𝑖
𝑗 the completion time of a job 𝑗 on machine 𝑖 then for the optimal schedule

it holds:

𝐶1
𝑘 = 𝐶1

ℓ + 𝑝1𝑗 + 𝑝1𝑘

𝐶2
𝑘 = max {𝐶2

𝑗 , 𝐶
1
𝑘}+ 𝑝2𝑘

= max {max {𝐶2
ℓ + 𝑝2𝑗 , 𝐶

1
𝑗 + 𝑝2𝑗}, 𝐶1

ℓ + 𝑝1𝑗 + 𝑝1𝑘}+ 𝑝2𝑘

= max {max {𝐶2
ℓ + 𝑝2𝑗 , 𝐶

1
ℓ + 𝑝1𝑗 + 𝑝2𝑗}, 𝐶1

ℓ + 𝑝1𝑗 + 𝑝1𝑘}+ 𝑝2𝑘

= max {𝐶2
ℓ + 𝑝2𝑗 + 𝑝2𝑘, 𝐶

1
ℓ + 𝑝1𝑗 + 𝑝2𝑗 + 𝑝2𝑘, 𝐶

1
ℓ + 𝑝1𝑗 + 𝑝1𝑘 + 𝑝2𝑘}

If we interchange the order of jobs 𝑗 and 𝑘, then in the same way it holds:

𝐶
′1
𝑗 = 𝐶1

ℓ + 𝑝1𝑗 + 𝑝1𝑘

𝐶
′2
𝑗 = max {𝐶2

ℓ + 𝑝2𝑘 + 𝑝2𝑗 , 𝐶
1
ℓ + 𝑝1𝑘 + 𝑝2𝑘 + 𝑝2𝑗 , 𝐶

1
ℓ + 𝑝1𝑘 + 𝑝1𝑗 + 𝑝2𝑗}

Johnson’s Rule would interchange the two jobs if any of the following conditions holds:

∙ 𝑗 and 𝑘 ∈ 𝐴 and 𝑝2𝑗 ≤ 𝑝2𝑘.

∙ 𝑗 and 𝑘 ∈ 𝐵 and 𝑝1𝑘 ≤ 𝑝1𝑗 .

∙ 𝑘 ∈ 𝐵 and 𝑗 ∈ 𝐴.

Chapter 3. Precedence Constraints and Shop Scheduling 35

Clearly, it is always the case that 𝐶1
𝑘 = 𝐶

′1
𝑗 . All we have to do is to examine the relation

between 𝐶2
𝑘 and 𝐶

′2
𝑗 for all possible scenarios.

For the first condition, it holds 𝑝2𝑗 ≤ 𝑝2𝑘, 𝑝
1
𝑗 ≥ 𝑝2𝑗 and 𝑝1𝑘 ≥ 𝑝2𝑘. As we can see the first

terms of 𝐶2
𝑘 and 𝐶

′2
𝑗 are equal. Also, the second and third term of 𝐶

′2
𝑗 are lesser than the

third term of 𝐶2
𝑘 . In a similar way, we prove the that 𝐶2

𝑘 ≥ 𝐶
′2
𝑗 for the second condition.

If the third condition holds then it is the case that 𝑝1𝑘 < 𝑝2𝑘 and 𝑝1𝑗 ≥ 𝑝2𝑗 . Therefore, the

second term of 𝐶
′2
𝑗 is smaller than the third term of 𝐶2

𝑘 and the third term of the former

is smaller than the second term of the latter.

From the previous analysis we see that any optimal schedule can be turned into a

scheduled produced by Johnson’s Rule without loss. Consequently, Johnson’s Rule

is optimal.

3.4 A Randomized Algorithm for the Flow Shop Schedul-

ing Problem

In this section, we present a randomized algorithm for the flow shop scheduling problem

[50] for a non-fixed number of machines. Recall that in a flow shop problem we have

𝑛 jobs and 𝑚 machines. Each job has a set of 𝑚 operations, one for each machine.

We denote by 𝑝𝑖,𝑗 the processing time of the operation of job 𝑗 on machine 𝑖 and by

𝑝𝑚𝑎𝑥 = max 𝑝𝑖,𝑗 the maximum processing time of all operations. In this kind of problems,

the operations of all jobs must be executed in a specific machine order and this order is

the same for all jobs. Therefore we can enumerate the machines without loss of generality

with respect to this order. It is well-known that the problem of makespan minimization

in flow shops is strongly NP-hard for more than two machines.

The first step of our algorithm is to divide the time domain of each machine into time-

slots of size 𝑠, where 𝑠 ≥ 2𝑝𝑚𝑎𝑥. Assuming that all operation have size at least 1, then

each slot contains at least one operation. In order for our algorithm to work, we assume

that the slots have the property of independence i.e. the order of operations that are

executed on a slot-machine pair is independent of the order on other slot-machine pairs.

For this reason, we restrict the operations of a slot not to overpass the slot boundaries

as well as the operations of a job not to change machine in the middle of a slot. Given

these restrictions we can prove the following lemma:

Lemma 3.3. Any optimal flow shop schedule with makespan 𝑂𝑃𝑇 can be transformed

into a schedule satisfying the slotting constraints with makespan at most 𝑠
𝑠−𝑝𝑚𝑎𝑥

𝑂𝑃𝑇 +

(𝑚− 1)𝑠.

Chapter 3. Precedence Constraints and Shop Scheduling 36

Proof. Firstly, we divide the time domain of the optimal schedule in time-slots of size

𝑠 − 𝑝𝑚𝑎𝑥. This may probably lead to the straddling of two neighbouring time-slots of

the same machine by some operations. Now, if we increase the size of each slot by 𝑝𝑚𝑎𝑥,

then we can fit these ”problematic” operations to the first slot they cross with safety.

This transformation can augment the makespan of the optimal schedule at most by a

multiplicative factor of 𝑠
𝑠−𝑝𝑚𝑎𝑥

. In order to satisfy the second independence constrain of

the slotting transformation, we need to ensure that no job will ”migrate” in the middle

of a slot. This can be accomplished if we shift all operations of a slot in machine 𝑖 by

𝑖− 1 slots. Given that we begin the numbering of machines from 𝑖 = 1, this can cost to

the makespan an additive factor of (𝑚− 1)𝑠.

We now obtain an approximation for the flow shop scheduling problem satisfying the

slotting constraints. In this direction we define the following graph: Let 𝐺(𝑉,𝐸) be a

directed graph having a vertex for each pair of (time-slot,machine). We also add to the

set of vertices two nodes 𝑠𝑗 and 𝑡𝑗 for each job. As far as the edges are concerned, we

add a directed edge from each vertex (𝛼, 𝑖) to vertex (𝛽, 𝑖+ 1), where 𝑖 ∈ {1 . . .𝑚− 1}
and 𝛼 < 𝛽. In addition, each vertex 𝑠𝑗 has edges to all vertices corresponding to the

first machine and each vertex 𝑡𝑗 accepts edges from all vertices corresponding to the last

machine.

Given 𝐺(𝑉,𝐸) we define a multicommodity flow instance, where each job 𝑗 is associated

with a commodity and 𝑠𝑗 and 𝑡𝑗 the source and sink nodes of this commodity respectively.

If for a vertex 𝑢 = (𝛼, 𝑖) we denote by 𝑥𝑢,𝑗 the flow of the commodity 𝑗, then we require

that: ∑︁
𝑗∈𝒥

𝑥𝑢,𝑗𝑝𝑖,𝑗 ≤ 𝑠

Given this instance, we wish to route one unit of flow for each commodity 𝑗. It is now

clear that an integral multicommodity flow for this instance corresponds to a flow shop

schedule satisfying the slotting constraints. It is a known result [41] that the feasibility of

a multicommodity flow can be determined in polynomial time using linear programming.

With the use of this structure, in our algorithm we try to ”guess” the number of time-

slots required by the schedule. Clearly, the infeasibility of a multicommodity flow implies

that our guess is too small. If we denote by 𝑘 the number of slots for which the multicom-

modity flow instance is feasible then for the minimum makespan 𝑇 of the corresponding

flow shop schedule under slotting constraints it is the case that 𝑇 ≥ (𝑘 − 1)𝑠.

At this point, we are ready to describe the algorithm Random-FS. First, we find the

minimum number of slots, where the corresponding multicommodity flow instance is

feasible. Let 𝐹 be this flow, then in 𝐹 , we define the weight of a commodity 𝑗 on an

specific path from 𝑠𝑗 to 𝑡𝑗 to be the flow of this commodity passing through this path.

Chapter 3. Precedence Constraints and Shop Scheduling 37

Clearly, the total weight of all paths corresponding to a specific commodity is one. Then,

Random-FS picks for each commodity one path with probability equal to its weight.

The set of 𝑛 picked paths correspond to an integral multicommodity flow and therefore

a slot constrained flow shop schedule, which may be infeasible in terms of time slot

capacity. In other words, in this randomized rounded flow, for the sum of flow passing

through a time-slot it may hold that:
∑︀

𝑗∈𝒥 𝑥𝑢,𝑗𝑝𝑖,𝑗 > 𝑠.

For the algorithm Random-FS, the following theorem can be proven:

Theorem 3.4. Random-FS is a polynomial time randomized algorithm for flow shop

scheduling which with probability at least 1
2 finds a schedule with makespan at most:

2(1 + 𝛿)𝑂𝑃𝑇 +𝑚(1 + 𝛿)𝑝𝑚𝑎𝑥 log𝑐 2𝑚(𝑛+𝑚− 1)

, where 𝑐 = (1+𝛿)(1+𝛿)

𝑒𝛿
and 𝛿 a constant chosen so that 𝑐 > 1.

Chapter 4

Scheduling MapReduce Jobs

Minimizing Total Completion

Time

In this chapter, we survey some known results on the problem of scheduling MapReduce

jobs. The algorithms we discuss in this part were mainly presented in the work of

Moseley et al. ”On Scheduling Map-Reduce Jobs and Flow-Shops” [24] and include

online and offline algorithms for scheduling MapReduce tasks or identical as well as

unrelated parallel machines minimizing the total flow time.

4.1 The General Model

In the next sections, unless stated otherwise, we are going to alternate the notation as

it follows. Let 𝒥 be the set of MapReduce jobs. In this setting, a job consists of two

set of tasks, the map and the reduce set. Tasks in each set can run in parallel while the

two sets must run sequentially. In other words, in order to start the processing of any

reduce task, all map tasks of the same job must have completed their execution. Let

𝐽 ∈ 𝒥 denote a generic job. In this case, {𝐽𝑚
𝑖 } and {𝐽𝑟

𝑖 } denote the sets of map and

reduce tasks of 𝐽 . Let 𝑝𝑥(∙) denote the processing time of a task or job on machine 𝑖,

given that we may have a single task case if {𝐽𝑚
𝑖 } and {𝐽𝑟

𝑖 } are singletons or multiple

task case elsewhere.

Throughout this section we use 𝑏 ∈ {𝑚, 𝑟} to capture both map and reduce related

statements. Let 𝐽𝑏,* = argmax𝑖 𝑝(𝐽
𝑏
𝑖) the task with maximum processing time in a b-

set of tasks and let 𝐽* = argmax{𝑝(𝐽𝑚,*), 𝑝(𝐽𝑟,*)} be the task with maximum processing

time in all sets.

38

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 39

Moreover, let 𝛼𝐽 the time of arrival of job 𝐽 . Given a schedule 𝜎 of jobs, let 𝑠𝜎(∙) denote
the starting time of a job or task in 𝜎 and 𝐶𝜎(∙) the completion time respectively. We

denote by 𝒫ℳ both the set and the number of map machines and by 𝒫ℛ the set and

number of reduce machines respectively.

We define the flowtime of a job 𝐽 , with respect to a schedule 𝜎, to be flow𝜎(𝐽) =

𝐶𝜎(𝐽)−𝛼𝐽 . Let flow𝜎 =
∑︀

𝐽∈𝒥 flow𝜎(𝐽) be the total (average) flowtime of 𝜎. Note here

that for the offline case where jobs are available from the beginning, thus 𝛼𝐽 = 0, ∀𝐽 ∈ 𝒥 ,
the total flowtime is equal to the total completion time of a schedule.

A schedule 𝜎 is called viable in the MapReduce setting if all map (resp. reduce) tasks

of a job 𝐽 are schedule only on map (resp. reduce) machines and all map tasks of a job

𝐽 must have completed their execution before the starting of a reduce task of the same

job. Also this schedule is called non-migratory if each task is processed by exactly one

machine.

4.2 Offline Algorithms

In this section we present two algorithms for scheduling offline MapReduce jobs on

identical and unrelated machines respectively. The objective for both algorithms is to

minimize the total completion time. The produced schedules in every case are viable

and non-migratory.

4.2.1 Identical Machines

In order to create an algorithm for the identical machines case, we firstly simulate the

schedules of map tasks alone (resp. reduce tasks alone), on a single 𝑃𝑀 -speed (resp. 𝑃𝑅-

speed) machine. Using the results of these simulations we create a viable MapReduce

parallel schedule with the assistance of the MR-Identical algorithm.

We claim that if we use the Shortest Remaining Processing Time Rule (SRPT) for

simulating schedules 𝜎𝑀 and 𝜎𝑅 the algorithm above produces a MapReduce schedule

which is a 12−approximation for the problem of minimizing total completion time. In

order to prove this claim it is crucial to verify the correctness of the following lemma:

Lemma 4.1. Given schedule 𝜎𝑚 and 𝜎𝑟, there is a viable, non-migratory schedule 𝜎

such that for all jobs 𝐽 it is the case that 𝐶𝜎(𝐽) ≤ 4max{𝐶𝑚
𝜎𝑚

(𝐽), 𝐶𝑟
𝜎𝑟
(𝐽), 𝑝(𝐽*)}.

Proof. A useful observation is that for any task 𝐽𝑏
𝑖 that was available for scheduling

by our algorithm by time 𝑎𝜎(𝐽
𝑏
𝑖) it holds that 𝐶𝜎(𝐽

𝑏
𝑖) ≤ 𝑎𝜎(𝐽

𝑏
𝑖) + 2𝜔𝐽 . Assuming the

contrary we can see that by definition of width, in the time interval [𝑎𝜎(𝐽
𝑏
𝑖), 𝐶𝜎(𝐽

𝑏
𝑖) −

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 40

1: Simulate the schedules 𝜎𝑚 of only the map tasks on a single 𝑃𝑀 -speed machine
and 𝜎𝑟 of only the reduce tasks on a single 𝑃𝑅-speed machine.

2: 𝜔𝐽 ← max{𝐶𝑚
𝜎𝑀

(𝐽), 𝐶𝑟
𝜎𝑅

(𝐽), 𝑝(𝐽*)}
3: for each job 𝐽 ∈ 𝒥 by 𝜔𝐽 non-decreasing do
4: for each map task 𝐽𝑚

𝑖 of job 𝐽 do
5: Assign 𝐽𝑚

𝑖 to the least loaded machine
6: end for
7: for each reduce task 𝐽𝑟

𝑖 of job 𝐽 do
8: Let 𝑥 be the earliest available reduce machine
9: if 𝑥 is available before time 𝜔𝐽 then

10: Idle 𝑥 till time 2𝜔𝐽

11: end if
12: Assign 𝐽𝑟

𝑖 to 𝑥
13: end for
14: end for

Algorithm 2: MR-Identical

𝑝(𝐽*)], only tasks of width at most 𝜔𝐽 are executed, representing a total volume of work

strictly more than 𝑃𝑏𝜔𝐽 . However, since 𝜎𝑚 and 𝜎𝑟 are simulated by a single 𝑃𝑀 -speed

machine and a single 𝑃𝑅-speed machine respectively this implies that 𝜎𝑏 must complete

strictly more than 𝑃𝑏𝜔𝐽 volume of work by time 𝜔𝐽 , leading to a contradiction.

As we can see the algorithm schedules map task in a non-decreasing order of 𝜔𝐽 non-

preemptively to the so-far least loaded map machine. Therefore, since for all map tasks

𝑎𝜎(𝐽
𝑚
𝑖) = 0, from the previous observation it is the case that 𝐶𝜎(𝐽

𝑚
𝑖) ≤ 2𝜔𝐽 .

For the reduce tasks, by definition of the algorithm, the reduce tasks of a job of width

𝜔𝐽 are not consider for scheduling before time 2𝜔𝐽 . Again, in the produced schedule, the

reduce tasks are scheduled on reduce machines only in a non-preemptive, non-migrating

way. By the previous observation, if we set 𝑎𝜎(𝐽
𝑚
𝑖) = 2𝜔𝐽 then it is the case that

𝐶𝜎(𝐽) = 𝐶𝑟
𝜎(𝐽) ≤ 4𝜔𝐽 = 4max{𝐶𝑚

𝜎𝑚
(𝐽), 𝐶𝑟

𝜎𝑟
(𝐽), 𝑝(𝐽*)}.

As we know, the SRPT rule is optimal for the average flowtime (completion time) for

the single machine case where there is one task per job and no precedence constraints.

Since having more than one task per job is irrelevant in our case, the total completion

time of only map and only reduce on a 𝑃𝑀 -speed and a 𝑃𝑅-speed respectively consist

lower bounds for our objective. Let 𝑂𝑃𝑇 denote the optimal schedule. Then it is the

case that max{𝑓𝑙𝑜𝑤𝜎𝑀 , 𝑓 𝑙𝑜𝑤𝜎𝑅} ≤ 𝑓𝑙𝑜𝑤𝑂𝑃𝑇 . Also, an obvious lower bound to the total

completion time is the sum of the processing times of the ”largest” tasks of each job.

Thus
∑︀

𝐽∈𝒥 𝑝(𝐽*) ≤ 𝑓𝑙𝑜𝑤𝑂𝑃𝑇 . Keeping these in mind and using the previous lemma

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 41

we can see that:

𝑓𝑙𝑜𝑤𝜎 =
∑︁
𝐽∈𝒥

𝐶𝜎(𝐽)

≤
∑︁
𝐽∈𝒥

4max{𝐶𝑚
𝜎𝑚

(𝐽), 𝐶𝑟
𝜎𝑟
(𝐽), 𝑝(𝐽*)}

≤ 4(
∑︁
𝐽∈𝒥

𝐶𝑚
𝜎𝑚

(𝐽) +
∑︁
𝐽∈𝒥

𝐶𝑟
𝜎𝑟
(𝐽) +

∑︁
𝐽∈𝒥

𝑝(𝐽*))

= 4(𝑓𝑙𝑜𝑤𝜎𝑚 + 𝑓𝑙𝑜𝑤𝜎𝑟 +
∑︁
𝐽∈𝒥

𝑝(𝐽*))

≤ 4(𝑓𝑙𝑜𝑤𝑂𝑃𝑇 + 𝑓𝑙𝑜𝑤𝑂𝑃𝑇 + 𝑓𝑙𝑜𝑤𝑂𝑃𝑇)

≤ 12
∑︁
𝐽∈𝒥

𝐶𝑂𝑃𝑇

Theorem 4.2. There exists a non-migratory 12-approximation algorithm for flowtime

(completion time) in the offline, identical machines, multiple task, MapReduce setting.

4.2.2 Unrelated Machines

We now turn our attention to the unrelated machine setting. In this problem, restricting

ourselves to the single task case, we work in a quite similar way as in the identical machine

case. First, we simulate schedules 𝜎𝑚 and 𝜎𝑟 of only map and only reduce tasks on 𝑃𝑚

and 𝑃𝑟 machines respectively. Given these schedules we again define the width of each

job as 𝜔𝐽 = max{𝐶𝜎𝑚(𝐽), 𝐶𝜎𝑟(𝐽)}. In this case, the assignment of tasks to machines

is maintained from schedules 𝜎𝑚 and 𝜎𝑟 to 𝜎. The algorithm works as follows: first we

reorder the map tasks on each machine in a non-decreasing order of 𝜔𝐽 . For the reduce

tasks, on each time and on each reduce machine, we schedule the available reduce task

with the smaller width. Similarly to the identical machines case the following lemma

gives a generic lower bound to the completion time of each task in 𝜎.

Lemma 4.3. For any task 𝐽𝑏 that becomes available at time 𝑎𝜎(𝐽
𝑏) it holds that 𝐶𝜎(𝐽

𝑏) ≤
𝑎𝜎(𝐽

𝑏) + 𝜔𝐽 .

Proof. Let us assume the contrary: there exists a job 𝐽 assigned to a machine 𝑖 such

that 𝐶𝜎(𝐽
𝑏) > 𝑎𝜎(𝐽

𝑏) + 𝜔𝐽 . Then in the time interval [𝑎𝜎(𝐽
𝑏), 𝐶𝜎(𝐽

𝑏)], by definition of

width and since there are no idle times, machine 𝑖 processes more than 𝜔𝑗 units of work

of tasks with width at most 𝜔𝐽 . This is a contradiction since it would imply that 𝜎𝑏

processes strictly more than 𝜔𝐽 units of work by time 𝜔𝐽 .

Using the previous lemma we can now prove the following theorem:

Theorem 4.4. There exists a non-migratory 6-approximation algorithm for the flowtime

(total completion time) in the offline, unrelated machine single task MapReduce setting.

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 42

Proof. We can see that 𝑎𝜎(𝐽
𝑚) = 0 for all map tasks and also 𝑎𝜎(𝐽

𝑟) = max𝐽𝑚∈𝐽{𝐶𝜎(𝐽
𝑚)} ≤

𝜔𝐽 . Applying the previous lemma we can prove that 𝐶𝜎(𝐽) = 𝐶𝜎(𝐽
𝑟) ≤ 2𝜔𝐽 .

In [51], Skutella presented a 3
2 -approximation algorithm for minimizing total completion

time on unrelated machines, where we have single-task jobs and no precedence con-

straints. Therefore, if we use this algorithm to simulate schedules 𝜎𝑚 and 𝜎𝑟 we see that
2
3 max{𝑓𝑙𝑜𝑤𝜎𝑚 , 𝑓 𝑙𝑜𝑤𝜎𝑟} ≤ 𝑓𝑙𝑜𝑤𝑂𝑃𝑇 . Thus:

𝑓𝑙𝑜𝑤𝜎 =
∑︁
𝐽∈𝒥

𝐶𝜎(𝐽)

≤
∑︁
𝐽∈𝒥

2𝜔𝐽

≤
∑︁
𝐽∈𝒥

2max{𝐶𝜎𝑚(𝐽), 𝐶𝜎𝑟(𝐽)}

≤ 2
∑︁
𝐽∈𝒥

(𝐶𝜎𝑚(𝐽) + 𝐶𝜎𝑟(𝐽))

≤ 2(𝑓𝑙𝑜𝑤𝜎𝑚 + 𝑓𝑙𝑜𝑤𝜎𝑟)

≤ 6𝑓𝑙𝑜𝑤𝑂𝑃𝑇

4.3 Online Scheduling

We turn our attention now to the case of scheduling online MapReduce jobs on iden-

tical and unrelated machines respectively. The objective for both algorithms is, again,

to minimize the total completion time with the creation of viable and non-migratory

schedules.

4.3.1 Identical Machines

In the identical machine case, we consider the online scheduling of a fixed sequence of

jobs. Like the offline case, we simulate schedules 𝜎𝑚 and 𝜎𝑟 on a single 𝒫ℳ-speed and

a single 𝒫ℛ-speed machine respectively. For this case, we are going to limit ourselves

to a simple presentation of the algorithm and a brief proof sketch. The analysis of

this algorithm is quite technical and the simple ideas used will be demonstrated in the

analysis of the unrelated machine case.

As we have stated before, the algorithm firstly simulates the online schedules 𝜎𝑚 and 𝜎𝑟.

After the simulation, the width of a job 𝐽 is defined as 𝜔𝐽 = max{(max{𝐶𝑚
𝜎𝑚

(𝐽), 𝐶𝑟
𝜎𝑟
(𝐽)}−

𝑎𝐽), 𝑝(𝐽
)}, where 𝑎𝐽 the arrival time of a job 𝐽 and 𝑝(𝐽) the processing time of the

larger task of this job. A job is said to be in class 𝑘 if 𝜔𝐽 ∈ [2𝑘, 2𝑘+1). Let 𝑈𝑚,𝑥
=𝑘 (𝑡)

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 43

be the total processing time of map tasks in class 𝑘 assigned to the map machine 𝑥 by

time 𝑡. In the same way, let 𝑈𝑚,𝑥
=𝑘 (𝑡) denote total processing time of reduce tasks in

class 𝑘 assigned to the reduce machine 𝑥 by time 𝑡. Schedule 𝜎 is created by the online

algorithm OMR-Identical(t). Moseley et al. [24] proved the following lemma for

1: Simulate the schedules 𝜎𝑚 and 𝜎𝑟.
2: if t is the first time all map tasks for job 𝐽 are finished in 𝜎𝑚 and all reduce tasks

for job 𝐽 are finished in 𝜎𝑟 then
3: Let 𝑘 be 𝐽 ’s class.
4: for each map task 𝐽𝑚

𝑖 of job 𝐽 do
5: Assign 𝐽𝑚

𝑖 to the map machine 𝑥 with the minimum 𝑈𝑚,𝑥
=𝑘 (𝑡).

6: 𝑈𝑚,𝑥
=𝑘 (𝑡)← 𝑈𝑚,𝑥

=𝑘 (𝑡) + 𝑝(𝐽𝑚
𝑖)

7: end for
8: end if
9: if t is the first time that all map tasks for job 𝐽 are finished in schedule 𝜎 then

10: Let 𝑘 be 𝐽 ’s class.
11: for each reduce task 𝐽𝑟

𝑖 of job 𝐽 do
12: Assign 𝐽𝑟

𝑖 to the reduce machine 𝑥 with the minimum 𝑈 𝑟,𝑥
=𝑘 (𝑡).

13: 𝑈 𝑟,𝑥
=𝑘 (𝑡)← 𝑈 𝑟,𝑥

=𝑘 (𝑡) + 𝑝(𝐽𝑟
𝑖)

14: end for
15: end if
16: On each map and reduce machine, run the task assigned to that machine such that

its associated job has minimum width.
Algorithm 3: OMR-Identical(t)

OMR-Identical:

Theorem 4.5. Given online schedule 𝜎𝑚 and 𝜎𝑟, OMR-Identical produces a viable,

online, non-migratory (1 + 𝜖)-resource augmented schedule 𝜎 such that 𝐶𝜎(𝐽) ≤ 𝑎𝐽 +
128
𝜖2

max{(max{𝐶𝑚
𝜎𝑚

(𝐽), 𝐶𝑟
𝜎𝑟
(𝐽)} − 𝑎𝐽), 𝑝(𝐽

*)}.

Now, if we simulate 𝜎𝑚 and 𝜎𝑟 using the SRPT rule and following the analysis of the

identical machines offline case, then applying the above theorem we can easily prove the

following.

Theorem 4.6. OMR-Identical(t) with 𝜎𝑚 and 𝜎𝑟 simulated using SRPT rule yields

a non-migratory (1 + 𝜖)-speed 𝑂(1
𝜖2
) competitive algorithm for the average flowtime in

the online, identical machines, multiple task, MapReduce setting, where 0 < 𝜖 ≤ 1.

4.3.2 Unrelated Machines

In this setting we again consider the single task case, where jobs arrive over time and 𝑎𝐽

the arrival time of a job 𝐽 . In this case, our algorithm simulates schedules 𝜎𝑚 and 𝜎𝑟 in an

online way. We define as width of a job the quantity 𝜔𝐽 = max{𝐶𝜎𝑚(𝐽), 𝐶𝜎𝑟(𝐽)} − 𝑎𝐽 .

Our algorithm, as expected, creates a schedule 𝜎 by scheduling at each time 𝑡 on a

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 44

machine 𝑖 the task of the available job with minimum width. The resulting schedule is

clearly online, non-migratory and viable.

It has been proven [52] that there is no online algorithm with bounded competitive

ratio for the objective of flowtime. Therefore, like the previous case, we use resource

augmentation, giving to our schedule a minimum advantage of 𝜖 over the adversary.

The following lemma is a first step towards a (1 + 𝜖)-speed 𝑂(1
𝜖4
)-competitive online

algorithm.

Lemma 4.7. Let 𝛼 > 0 and suppose the task 𝐽𝑏, 𝑏 ∈ {𝑚, 𝑟}, is available for scheduling

by our schedule 𝜎 at time 𝑎𝐽 + 𝛼𝜔𝐽 . The it is the case that 𝐶𝜎(𝐽
𝑏) ≤ 𝑎𝐽 + 2𝛼

𝜖 𝜔𝐽 .

Proof. Suppose the job 𝐽𝑏 is assigned to a machine 𝑥 in 𝜎𝑏. Let 𝑡𝑏 be the earliest time

such that every task processed by machine 𝑥 in 𝜎 during the interval [𝑡𝑏, 𝐶𝜎(𝐽
𝑏)] has

width at most 𝜔𝐽 . Given that 𝐽𝑏 is available at time 𝑎𝐽 + 𝛼𝜔𝐽 and from the fact that

machine 𝑥 processes at any time the available jobs of minimum width, it must be the

case that 𝑡𝑏 ≤ 𝑎𝐽 + 𝛼𝜔𝐽 .

Also, it must be the case that any task 𝐽 ′ scheduled during [𝑡𝑏, 𝐶𝜎(𝐽
𝑏)] arrived at earliest

𝑡𝑏 − 𝛼𝜔𝐽 . This is because 𝐽 ′ must have 𝜔𝐽 ′ ≤ 𝜔𝐽 as it is scheduled before 𝐽𝑏 by our

algorithm. Therefore, 𝑎𝐽 ′ ≥ 𝑡𝑏 − 𝛼𝜔𝐽 ′ ≥ 𝑡𝑏 − 𝛼𝜔𝐽 .

Now, given that in schedule 𝜎 machine 𝑥 has speed (1+𝜖), then it produces a total work

of (1+ 𝜖)(𝐶𝜎(𝐽
𝑏)− 𝑡𝑏). Then, it must hold that in 𝜎𝑏, machine 𝑥 must complete at least

this amount of work during the interval [𝑡𝑏 − 𝛼𝜔𝐽 , 𝐶𝜎(𝐽
𝑏)]. Therefore:

(1 + 𝜖)(𝐶𝜎(𝐽
𝑏)− 𝑡𝑏) ≤ 𝐶𝜎(𝐽

𝑏)− 𝑡𝑏 + 𝛼𝜔𝐽

𝜖𝐶𝜎(𝐽
𝑏) ≤ 𝜖𝑡𝑏 + 𝛼𝜔𝐽

𝐶𝜎(𝐽
𝑏) ≤ 𝑡𝑏 +

𝛼

𝜖
𝜔𝐽

𝐶𝜎(𝐽
𝑏) ≤ 𝑎𝐽 + 𝛼𝜔𝐽 +

𝛼

𝜖
𝜔𝐽

𝐶𝜎(𝐽
𝑏) ≤ 𝑎𝐽 +

2𝛼

𝜖
𝜔𝐽

, given that 0 < 𝜖 < 1.

We now prove the following theorem:

Theorem 4.8. Given online non-migratory schedules 𝜎𝑚 and 𝜎𝑟, there is a viable,

online, non-migratory (1 + 𝜖)-resource augmented schedule 𝜎 such that all tasks for job

𝐽 are completed by time 𝑎𝐽 + 4
𝜖2
(max{𝐶𝜎𝑚(𝐽), 𝐶𝜎𝑟(𝐽)} − 𝑎𝐽)

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 45

Proof. Given that that map task 𝐽𝑚 is available to 𝜎 for scheduling at time 𝑎𝐽 + 2
𝜖𝜔𝐽 ,

then from the above lemma we can see that by setting 𝛼 = 1 it holds that:

𝐶𝜎(𝐽
𝑚) ≤ 𝑎𝐽 +

2

𝜖
𝜔𝐽

Similarly, given now that all map tasks of a job 𝐽 must have complete their execution

in 𝜎 by time 𝑎𝐽 + 2
𝜖𝜔𝐽 , then by setting again 𝛼 = 2

𝜖 for the completion time of tasks 𝐽𝑟

and therefore for the completion time of job 𝐽 it is the case that:

𝐶𝜎(𝐽) = 𝐶𝜎(𝐽
𝑚) ≤ 𝑎𝐽 +

4

𝜖2
𝜔𝐽

Chadha et al. [53] proved a (1 + 𝜖)-speed 𝑂(1
𝜖2
)-competitive online non-migratory algo-

rithm for the average flowtime on unrelated machines, when there is only one task per

job and no precedence constraints. With the use of their algorithm we can prove the

following theorem:

Theorem 4.9. There exists a non-migratory (1 + 𝜖)-speed 𝑂(1
𝜖4
)-competitive online

algorithm for the average flowtime objective in the online, unrelated machines, single

task, MapReduce setting.

Proof. Given the result in [53], we can generate schedules 𝜎𝑚 and 𝜎𝑟 in a way such that

if we denote by 𝑂𝑃𝑇 the optimal flowtime it is the case that:

Ω(𝜖2)max{𝑓𝑙𝑜𝑤𝜎𝑚 , 𝑓 𝑙𝑜𝑤𝜎𝑟} ≤ 𝑂𝑃𝑇

By applying the previous theorem we can see that:

𝑓𝑙𝑜𝑤𝜎 ≤
∑︁
𝐽∈𝒥

(𝐶𝜎(𝐽)− 𝑎𝐽)

≤ 4

𝜖2

∑︁
𝐽∈𝒥

𝜔𝐽

≤ 4

𝜖2

∑︁
𝐽∈𝒥

(max{𝐶𝜎𝑚(𝐽), 𝐶𝜎𝑟(𝐽)} − 𝑎𝐽)

≤ 4

𝜖2

∑︁
𝐽∈𝒥

max{𝐶𝜎𝑚(𝐽)− 𝑎𝐽 , 𝐶𝜎𝑟(𝐽)− 𝑎𝐽}

≤ 4

𝜖2

∑︁
𝐽∈𝒥

(𝐶𝜎𝑚(𝐽)− 𝑎𝐽 + 𝐶𝜎𝑟(𝐽)− 𝑎𝐽)

≤ 4

𝜖2
(𝑓𝑙𝑜𝑤𝜎𝑚 + 𝑓𝑙𝑜𝑤𝜎𝑟)

≤ 𝑂(
1

𝜖4
)𝑂𝑃𝑇

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 46

Since we can simulate 𝜎𝑚 and 𝜎𝑟 with the algorithm of Chadha et al. only with a

minimum advantage 𝜖 over the adversary, the theorem follows.

Chapter 5

Scheduling MapReduce Jobs and

Shuffle Tasks

In this chapter, we present a constant approximation algorithm for the MapReduce

scheduling problem on unrelated processors, where the objective is to minimize the

total weighted completion time of jobs. To the best of our knowledge, this problem

formulation is the most general version of MapReduce scheduling so-far, as we enable

each job to have an arbitrary number of map and reduce tasks. Furthermore, we propose

a fast heuristic for the same problem and we include in our analysis the modelling of

data shuffle, i.e. the overhead of the communication cost between map and reduce tasks.

5.1 A constant approximation algorithm.

In the following we presentAlgorithm-MR for the problem of minimizing total weighted

completion time of MapReduce tasks on unrelated machines. Before we begin the presen-

tation we introduce some notation: We denote byℳ and ℛ the sets of map and reduce

tasks respectively and by 𝒫ℳ and 𝒫ℛ the disjoint sets of map and reduce machines.

The notation 𝒯𝑘,𝑗 represent the task 𝑘 of a job 𝑗 and 𝑝𝑖,𝑘,𝑗 represent the processing time

of 𝒯𝑘,𝑗 on machine 𝑖.

Algorithm-MR works as follows. At first, the algorithm schedules separately the map

and reduce tasks on the corresponding machines, using the algorithm TaskSchedul-

ing as a subroutine. Recall from chapter 2 that the algorithm TaskScheduling is a
27
2 -approximation algorithm for the problem of scheduling jobs with multiple tasks on

unrelated machines in order to minimize the total weighted completion time. We denote

by 𝜎ℳ and 𝜎ℛ the two produced schedules and by 𝐶𝜎ℳ
𝑘,𝑗 and 𝐶𝜎ℛ

𝑘,𝑗 the completion time

of a map or reduce task 𝒯𝑘,𝑗 in the respective 𝜎𝑏 schedule, where 𝑏 ∈ {𝑚, 𝑟}. After the

simulation of map and reduce schedules, we use the completion times of jobs in these

47

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 48

schedules to merge them, keeping a constant approximation guarantee using a simple

routine. In this direction, we define for each job the quantity 𝜔𝐽 = max{𝐶𝜎ℳ
𝑗 , 𝐶𝜎ℛ

𝑗 }.

1: Run TaskScheduling on both the sets of tasksℳ and ℛ creating schedules 𝜎ℳ
and 𝜎ℛ respectively.

2: Assign each task on the same processors as they are in schedules 𝜎ℳ and 𝜎ℛ.
3: for each job 𝑗 ∈ 𝒥 do
4: Fix 𝜔𝑗 = max{𝐶𝜎ℳ

𝑗 , 𝐶𝜎ℛ
𝑗 } to be the width of job 𝑗

5: end for
6: for each time 𝑡 where a processor 𝑖 ∈ 𝒫 becomes available do
7: if 𝑖 = 𝒫ℳ then
8: Among the unscheduled map tasks in 𝑖, schedule task 𝒯𝑘,𝑗 ∈ℳ with the

smallest 𝜔𝑗 with processing time 𝑝𝑖,𝑘,𝑗 . Let 𝐶𝑘,𝑗 be the completion time of task
𝒯𝑘,𝑗 .

9: else
10: Among the unscheduled reduce tasks, which have 𝜔𝑗 > 𝑡, schedule task

𝒯𝑘,𝑗 ∈ ℛ with the smallest 𝜔𝑗 with processing time 𝑝𝑖,𝑘,𝑗 . Let 𝐶𝑘,𝑗 be the
completion time of task 𝒯𝑘,𝑗 .

11: end if
12: Let 𝐶𝑘,𝑗 be the completion time of task 𝒯𝑘,𝑗 .
13: end for
14: for each job 𝑗 ∈ 𝒥 do
15: Compute the completion time 𝐶𝑗 = max𝒯𝑘,𝑗′∈ℛ|𝑗′=𝑗{𝐶𝑘,𝑗′}.
16: end for

Algorithm 4: Algorithm-MR

At this point, we are going to prove the following theorem about Algorithm-MR:

Theorem 5.1. Algorithm-MR is a 54-approximation algorithm for the MapReduce

scheduling problem of minimizing total weighted completion time on unrelated processors.

Proof. In the following, we denote by 𝐶𝑗 the completion time of a job produced by

Algorithm-MR, by 𝐶𝑂𝑃𝑇
𝑗 the completion time in an optimal schedule, by 𝐶𝑂𝑃𝑇𝑀

𝑗 and

𝐶𝑂𝑃𝑇𝑅
𝑗 the optimal completion times for the problems of scheduling only map and only

reduce tasks respectively and by 𝐶𝜎𝑀
𝑗 and 𝐶𝜎𝑅

𝑗 the completion times for the schedules

𝜎𝑀 and 𝜎𝑅 produced using TaskScheduling.

Clearly, the optimal solutions to the problems of scheduling only map or only reduce

tasks consist lower bounds to the optimal solution of the problem. Therefore, it holds:

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇𝑀
𝑗 ≤

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇
𝑗∑︁

𝑗∈𝒥
𝑤𝑗𝐶

𝑂𝑃𝑇𝑅
𝑗 ≤

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇
𝑗

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 49

Directly from the analysis of TaskScheduling on chapter 2 it follows that for schedules

𝜎ℳ and 𝜎ℛ it is the case:

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝜎ℳ
𝑗 ≤ 27

2

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇𝑀
𝑗

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝜎ℛ
𝑗 ≤ 27

2

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇𝑅
𝑗

For the merging routine, we first need to prove that the produced schedule is a non-

preemptive one. While for the map tasks this argument is obvious, for the reduce tasks

we need to be more careful. The only way we can have preemption during the execution

of a reduce task 𝒯𝑘,𝑗 is the case where another task 𝒯𝑘′,𝑗′ of width less than 𝜔𝑗 becomes

available. However this cannot be the case, because by definition of the algorithm, 𝒯𝑘′,𝑗′
should be available before 𝒯𝑘,𝑗 and therefore should have been scheduled first.

Furthermore, we can prove that a map task of width 𝜔𝑗 is completed before time 𝜔𝑗 .

Suppose this is not the case and a map task, finishes its execution at time 𝑡 > 𝜔𝑗 . Then,

it should be the case that during the interval [0, 𝑡], all machines are busy processing

tasks of width less than 𝜔𝑗 . This is a contradiction, as in this case the machine 𝑖 where

the task is scheduled should process more than 𝜔𝑗 units of work by time 𝜔𝑗 in schedule

𝜎ℳ.

In the same way, we can prove that a reduce task of width 𝜔𝑗 that is available for

scheduling at time 𝑟 on processor 𝑖 must complete its execution by time at most 𝑟+𝜔𝑗 .

Suppose that a reduce task finishes its execution at time 𝑡 > 𝑟+𝜔𝑗 on processor 𝑖. Then,

in the interval [𝑟, 𝑡] on processor 𝑖 there is not idle time and only tasks of width at most

𝜔𝑗 are executed. This is again a contradiction as in this case in schedule 𝜎ℛ by time at

most 𝜔𝑗 there must have been processed more than 𝜔𝑗 units of work by the processor 𝑖.

A useful remark is that even for the case of non necessarily disjoint map and reduce

processors the same analysis applies if we define 𝜔𝑗 = 𝐶𝜎ℳ
𝑗 + 𝐶𝜎ℛ

𝑗 .

Now, if we set 𝑟 = 0 for the map tasks it follows that in the produced schedule 𝜎, for

a map task 𝒯𝑘,𝑗 it holds that: 𝐶𝑘,𝑗 ≤ 𝜔𝑗 . Similarly, since all map tasks of a job of

width 𝜔𝐽 have completed their execution by time 𝜔𝐽 , then the reduce tasks of the same

job are released by time 𝑟 ≤ 𝜔𝑗 . Using the previous argument we can see that for the

completion time of these reduce tasks it is the case that 𝐶𝑘,𝑗 ≤ 2𝜔𝑗 .

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 50

Therefore, for the resulting schedule it must be the case that:

∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗 =
∑︁
𝑗∈𝒥

𝑤𝑗 max
𝒯𝑘,𝑗′∈ℛ|𝑗′=𝑗

{𝐶𝑘,𝑗′}

≤
∑︁
𝑗∈𝒥

𝑤𝑗2𝜔𝑗

= 2
∑︁
𝑗∈𝒥

𝑤𝑗 max{𝐶𝜎ℳ
𝑗 , 𝐶𝜎ℛ

𝑗 }

≤ 2
∑︁
𝑗∈𝒥

𝑤𝑗(𝐶
𝜎ℳ
𝑗 + 𝐶𝜎ℛ

𝑗)

≤ 2(
27

2

∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇𝑀
𝑗 +

27

2

∑︁
𝑗∈𝒥

𝜔𝑗𝐶
𝑂𝑃𝑇𝑅
𝑗)

≤ 54
∑︁
𝑗∈𝒥

𝑤𝑗𝐶
𝑂𝑃𝑇

With this analysis we conclude that this Algorithm-MR is a polynomial time 54-

approximation for the problem of scheduling MapReduce tasks on unrelated processors

minimizing the weighted completion time.

5.2 Data Shuffle

An important aspect affecting the performance of MapReduce systems is the overhead

of data transmission. For this reason, we include in our model another phase which

we will refer to as Shuffle phase. Shuffle phase takes place between the execution of

map and reduce phases. In this phase, the key-value pairs are transmitted from map

to reduce tasks of each job. In this section, we are going to extend the analysis of our

algorithm in order to include shuffle tasks, modelling in this way the time overhead of

data transmission. In the following we will refer to this problem as MapShuffleReduce

problem.

In this extended model, the following properties must hold:

∙ Each shuffle task can start its execution only after the completion of the corre-

sponding map task.

∙ For every map task the number of shuffle tasks with produced data is equal to the

number of reduce tasks of the same job. Of course, when there is no data to be

transmitted between a map and a reduce task, the corresponding shuffle task has

zero processing time.

∙ The shuffle tasks must be executed non-preemptively.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 51

∙ The processing times of shuffle tasks transmitted to the same reduce processor

cannot overlap with each other.

In order to include the shuffle tasks we introduce some additional notation. We introduce

a set of shuffle tasks 𝒯𝑟,𝑘,𝑗 , where 1 ≤ 𝑟 ≤ |𝒯𝑘,𝑗 ∈ ℛ| for each map task 𝒯𝑘,𝑗 ∈ ℳ of job

𝑗. We denote by ℋ, the set of shuffle tasks. Each of these tasks is associated with a

transfer time 𝑡𝑟,𝑘,𝑗 , which is independent from the assignment of the involved map and

reduce tasks to processors.

In the following, we discuss two different variations of the MapShuffleReduce problem

and present two constant approximation algorithms for both.

5.2.1 The Shuffle Tasks are Executed on their Reduce Processors

In the first case, we consider the problem where the shuffle tasks are executed on the

same reduce processor as the corresponding reduce task. In this case, all we have to do

is to increase the processing time of each reduce task by the sum of the processing times

of the correlated shuffle tasks. For this reason, we consider a reduce task 𝒯𝑟,𝑘 ∈ ℛ of a

job 𝑗 and let 𝑠𝑟𝑗 = {𝒯𝑟,𝑘,𝑗 |𝒯𝑘,𝑗 ∈ ℳ}, the set of shuffle task that must complete before

𝒯𝑟,𝑗 starts its execution. In other words, we can reformulate the input in the following

way. For each reduce task 𝒯𝑟,𝑘 ∈ ℛ running on processor 𝑖 we set:

𝑝′𝑖,𝑟,𝑗 ← 𝑝𝑖,𝑟,𝑗 +
∑︁

𝒯𝑟,𝑘,𝑗∈𝑠𝑟𝑗

𝑡𝑟,𝑘,𝑗

For this new input, we can now use Algorithm-MR to obtain a feasible schedule.

The question here is whether the approximation factor of 54 we have proved for the

simple MapReduce problem holds also for this case. It suffices to show that there

exists an optimal schedule for this version of the MapShuffleReduce problem, where the

shuffle tasks are executed on the reduce processors exactly before the execution of the

corresponding reduce task. We show this in the following lemma:

Lemma 5.2. There is an optimal schedule of shuffle tasks and reduce tasks on processors

of the set 𝒫ℛ such that:

(i) There are no idle periods.

(ii) All shuffle tasks in 𝑠𝑟𝑗 are executed together and complete exactly before the reduce

task 𝒯𝑟,𝑗 starts its execution.

Proof. Consider a feasible schedule 𝜎. In this schedule there are three cases when idle

time can occur: either between the execution of two shuffle tasks or two reduce tasks,

either between a shuffle and a reduce task. In the first two cases, since there are no

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 52

precedence constraints between shuffle or reduce tasks and given the fact that we as-

sume that these types of tasks are available from time zero, skipping the idle time can

only reduce the completion time of these tasks and therefore the objective value of our

problem. For the third case, it suffices to notice that since the completion of each shuffle

task must precede the completion of the corresponding reduce task, skipping the idle

time again can only reduce the objective function of 𝜎.

In order to prove (ii), consider a feasible schedule 𝜎 violating this condition. Consider

a task 𝒯𝑟,𝑗 ∈ ℛ to be the last reduce task of a job 𝑗 completed on a processor 𝑖 ∈ 𝒫ℛ.
Then, if we fix its completion time and schedule all the corresponding shuffle tasks to be

executed just before 𝒯𝑟,𝑗 in an arbitrary order, then it is easy to see that the completion

time of 𝑗 remains unchanged, while the completion time of the tasks 𝒯𝑟,𝑗′ ∈ ℛ preceding

𝒯𝑟,𝑗 on the same processor may decrease. Thus, it follows that any feasible schedule

𝜎 of the reduce and shuffle tasks can be transformed into a schedule 𝜎′, satisfying the

properties of the lemma.

From the previous lemma we see that a schedule without idle times and with the shuffle

tasks executed just before the reduce task consists a lower bound for every feasible

schedule 𝜎 and thus for the optimal schedule.

Therefore, the following theorem holds:

Theorem 5.3. There exists a 54-approximation for the MapShuffleReduce scheduling

problem, when the shuffle tasks are executed on reduce processors.

5.2.2 The Shuffle Tasks are Executed on Different Input Processors

In the second variation of the MapShuffleReduce problem we discuss, the shuffle tasks are

executed on a set of different ”input” processors 𝒫𝒮 . When the shuffle tasks are executed

on different processors, we prove that we lose only a factor of 2 in the approximation

ratio of the ShuffleReduce schedule.

Lemma 5.4. Consider two optimal schedules 𝜎 and 𝜎′ of shuffle tasks and reduce tasks

on processors of the set 𝒫ℛ ∪ 𝒫𝒮 and on processors of the set 𝒫ℛ respectively. Let also

𝐶𝜎
𝑘,𝑗 , 𝐶

𝜎′
𝑘,𝑗 be the completion times of any reduce task 𝒯𝑘,𝑗 in 𝜎 and 𝜎′ respectively. Then,

it holds that 𝐶𝜎′
𝑘,𝑗 ≤ 2𝐶𝜎

𝑘,𝑗

Proof. Consider an optimal schedule 𝜎 on the 𝒫ℛ ∪ 𝒫𝒮 processors. We fix a reduce

task 𝒯𝑘,𝑗 ∈ ℛ of a job 𝑗, the reduce processor 𝑖𝑅 ∈ 𝒫ℛ where it is executed on 𝜎 and

the corresponding input processor 𝑖𝑆 ∈ 𝒫𝒮 . Let 𝐵(𝑘) the set of reduce tasks that are

executed on 𝑖𝑅 before 𝒯𝑘,𝑗 and 𝑆ℎ(𝑘) the set of shuffle tasks that are executed on 𝑖𝑆

corresponding to the reduce tasks of the set 𝐵(𝑘) ∪ {𝒯𝑘,𝑗}.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 53

In 𝜎 it is the case that:

𝐶𝜎
𝑘,𝑗 ≥ max{

∑︁
𝒯𝑘,𝑗∈𝐵(𝑘)

𝑝𝑖𝑅,𝑘,𝑗 ,
∑︁

𝒯𝑞,𝑙,𝑗∈𝑆ℎ(𝑘)

𝑡𝑞,𝑙,𝑗}

Now, we transform 𝜎 into a new schedule 𝜎′ by maintaining the order and assignment

of reduce tasks and by scheduling the shuffle tasks of each reduce task on its reduce

processor and exactly before its starting. In this schedule, for the completion time of a

reduce task 𝒯𝑘,𝑗 it holds:

𝐶𝜎′
𝑘,𝑗 =

∑︁
𝒯𝑘,𝑗∈𝐵(𝑘)

𝑝𝑖𝑅,𝑘,𝑗 +
∑︁

𝒯𝑞,𝑙,𝑗∈𝑆ℎ(𝑘)

𝑡𝑞,𝑙,𝑗 ≤ 2𝐶𝜎
𝑘,𝑗

Using this lemma we see that we can schedule only map tasks with a 27
2 -approximation

factor and the shuffle-reduce tasks with an approximation factor of 27. Now applying

the same analysis as for Algorithm-MR the next theorem follows:

Theorem 5.5. There exists a 81-approximation for the MapShuffleReduce scheduling

problem, when the shuffle tasks run on independent ”input” processors.

5.3 A Greedy Heuristic

The time complexity of Algorithm-MR combined with TaskScheduling is clearly

dominated by the time needed for the optimization of the linear programs. In this section

we present a natural greedy heuristic not burdened by any LP solving complexity. In

the following, we will refer to this heuristic as Greedy-MR.

In order to find a ”satisfying” solution to the MapReduce problem, there are two things

one must take into account. The fair load-balancing of tasks to processors and the

efficient sequencing of task in every processor are both crucial aspects for the quality of

a schedule. Algorithm Greedy-MR creates a feasible schedule by separating the load-

balancing from the sequencing nature of the problem and by using known ”best-effort”

heuristics for the optimization of each one.

As we can see the algorithm proceeds in two basic steps: the load balancing and the

sequencing. The idea in the assignment part is based on the work of Aspnes et al.

”On-line Routing of Virtual Circuits with Applications to Load Balancing and Machine

Scheduling” [54]. Using a parameter 𝛼 ∈ (0, 1) for tuning the sensitivity of the assign-

ment, each map or reduce task is assigned to the map or reduce machine respectively

that minimizes the quantity 𝛼Δ𝑏(𝑖)+𝑝𝑖,𝑘,𝑗−𝛼Δ𝑏(𝑖), where 𝑏 ∈ {𝑚, 𝑟} and Δ𝑏(𝑖) the current

load of a map or reduce machine 𝑖.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 54

Greedy-MR: Creates a fast feasible schedule for the MapReduce problem.

1: Fix a parameter 𝛼 ∈ (0, 1)
2: Take an arbitrary order 𝒪 of the jobs.
3: Let Δ𝑏(𝑖) be the current load of a 𝑏 ∈ 𝒫ℳ,𝒫ℛ processor. In this phase all these

variables are equal to zero.
4: for each job 𝑗 ∈ 𝒪 do
5: for each task 𝒯𝑘,𝑗 ∈ℳ of job 𝑗 do
6: Assign 𝒯𝑘,𝑗 to the processor 𝑖 such that

𝑖 = argmin𝑖∈𝒫ℳ{𝛼Δ𝑀 (𝑖)+𝑝𝑖,𝑘,𝑗 − 𝛼Δ𝑀 (𝑖)}.
7: Δ𝑀 (𝑖)← Δ𝑀 (𝑖) + 𝑝𝑖,𝑘,𝑗
8: end for
9: for each task 𝒯𝑘,𝑗 ∈ ℛ of job 𝑗 do

10: Assign 𝒯𝑘,𝑗 to the processor 𝑖 such that 𝑖 = argmin𝑖∈𝒫ℛ{𝛼Δ𝑅(𝑖)+𝑝𝑖,𝑘,𝑗 −𝛼Δ𝑅(𝑖)}
11: Δ𝑅(𝑖)← Δ𝑅(𝑖) + 𝑝𝑖,𝑘,𝑗
12: end for
13: end for
14: Reorder the tasks in each processor using the following rule:
15: for each job 𝑗 ∈ 𝒥 do
16: Let 𝑝𝑘,𝑗 be the processing time of a task on the processor it has been assigned.
17: Define the quantity 𝜔𝑗 ← 𝑤𝑗∑︀

𝒯𝑘,𝑗∈ℳ 𝑝𝑘,𝑗+
∑︀

𝒯𝑘,𝑗∈ℛ 𝑝𝑘,𝑗
.

18: end for
19: for 𝑖 ∈ 𝒫ℳ do
20: Reorder the tasks assigned to 𝑖 in a non-increasing order of 𝜔𝑗 .
21: end for
22: for 𝑖 ∈ 𝒫ℛ do
23: Reorder the tasks assigned to 𝑖 in a non-increasing order of 𝜔𝑗 , with respect to

the precedence constrains emerged by the completion of map tasks.
24: end for

Algorithm 5: Greedy-MR

After the assignment, the algorithm proceeds with the sequencing of tasks on each

processor using a simple rule. For the tasks of job 𝑗 we define the quantity 𝜔𝑗 ←
𝑤𝑗∑︀

𝒯𝑘,𝑗∈ℳ 𝑝𝑘,𝑗+
∑︀

𝒯𝑘,𝑗∈ℛ 𝑝𝑘,𝑗
, where 𝑝𝑘,𝑗 the processing time of a map or reduce task given

the assignment. We then schedule the map tasks of each map processor in a non-

increasing order of 𝜔𝑗 . After this, we schedule the reduce tasks of each reduce processor

again in non-increasing order of 𝜔𝑗 , taking into account at each time 𝑡 only the reduce

tasks that have been released. Recall that in the MapReduce setting, by ”released” we

refer to the tasks of jobs whose map tasks have already complete their execution. The

sequencing part of Greedy-MR uses the same idea as the well-celebrated Smith Rule

whose optimality is known for the single machine context. In this direction, we try to

schedule jobs of high weight first while we schedule jobs of high accumulative processing

time last.

Chapter 6

Experimental Evaluation

At this point, we present the experimental evaluation of the MapReduce scheduling al-

gorithm we present in the previous chapter. The study of the ”empirical” approximation

ratio of the algorithm, i.e. how the algorithm performs on ”normal” inputs, is the main

contribution of this thesis. In this chapter we describe implementation issues, different

models of inputs and technical information. We close this thesis with the presentation

and analysis of the results.

6.1 Experimental Experience

In order to estimate the performance of Algorithm-MR we compare the produced

objective value with the solution produced by the heuristic Greedy-MR as well as

with a lower bound derived from an LP-relaxation for the combined case of map and

reduce tasks. This comparison was performed for a fixed number of disjoint map and

reduce machines and a fixed number of map and reduce tasks per job. The parameters of

the problem we experiment on are the number of jobs and the distribution of processing

times.

More specifically, for the experiments we consider a fixed number of 40 map and 40

reduce machines. Each job has a fixed number of 30 map tasks and 10 reduce tasks.

The weight 𝑤𝑗 of each job 𝑗 is selected uniformly at random from the interval [1, |𝒥 |],
where |𝒥 | the total number of jobs. We experiment for a varying number of jobs from

5 to 50 increasing the number each time by 5 jobs. For each possible configuration of

the problem we run ten experiments using ten randomly generated instances with these

configurations.

55

Chapter 6. Experimental Evaluation 56

6.2 Lower Bound

In order to estimate the empirical approximation ratio of the two algorithms we create

an LP formulation similar to the one of algorithm TaskScheduling but for the mixed

problem of map and reduce tasks. Again, we denote as ℒ = {[1, 1], (1, (1 + 𝛿)], ((1 +

𝛿), (1 + 𝛿)2], . . . , ((1 + 𝛿)𝐿−1, (1 + 𝛿)𝐿]}, where (1 + 𝛿)𝐿 is an upper bound to the time

horizon of any possible MapReduce schedule. Recall that we denote as 𝒫ℳ and 𝒫ℛ the

map and reduce processors respectively and withℳ and ℛ the set of map and reduce

tasks.

The lower bound is computed using the following LP:

minimize
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗

subject to:
∑︁

𝑖∈𝒫ℳ,ℓ∈ℒ
𝑦𝑖,𝑘,𝑗,ℓ ≥ 1, ∀𝑇𝑘,𝑗 ∈ℳ (1𝑎)

∑︁
𝑖∈𝒫ℛ,ℓ∈ℒ

𝑦𝑖,𝑘,𝑗,ℓ ≥ 1, ∀𝑇𝑘,𝑗 ∈ ℛ (1𝑏)

𝐶𝑗 ≥ 𝐶𝑘,𝑗 , ∀𝑇𝑘,𝑗 ∈ ℛ (2𝑎)

𝐶𝑘,𝑗 ≥ 𝐶𝑚,𝑗 +
∑︁
𝑖∈𝒫ℛ

∑︁
ℓ∈ℒ

𝑝𝑖,𝑘,𝑗𝑦𝑖,𝑘,𝑗,ℓ ∀𝑗 ∈ 𝒥 ,∀𝑇𝑘,𝑗 ∈ ℛ,∀𝑇𝑚,𝑗 ∈ℳ (2𝑏)

∑︁
𝑖∈𝒫ℳ

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑦𝑖,𝑘,𝑗,ℓ ≤ 𝐶𝑘,𝑗 , ∀𝑇𝑘,𝑗 ∈ℳ (3𝑎)

∑︁
𝑖∈𝒫ℛ

∑︁
ℓ∈ℒ

(1 + 𝛿)ℓ−1𝑦𝑖,𝑘,𝑗,ℓ ≤ 𝐶𝑘,𝑗 , ∀𝑇𝑘,𝑗 ∈ ℛ (3𝑏)

∑︁
𝑇𝑘,𝑗∈ℳ

𝑝𝑖,𝑘,𝑗
∑︁
𝑡≤ℓ

𝑦𝑖,𝑘,𝑗,𝑡 ≤ (1 + 𝛿)ℓ, ∀𝑖 ∈ 𝒫ℳ, ℓ ∈ ℒ (4𝑎)

∑︁
𝑇𝑘,𝑗∈ℛ

𝑝𝑖,𝑘,𝑗
∑︁
𝑡≤ℓ

𝑦𝑖,𝑘,𝑗,𝑡 ≤ (1 + 𝛿)ℓ, ∀𝑖 ∈ 𝒫ℛ, ℓ ∈ ℒ (4𝑏)

𝑝𝑖,𝑘,𝑗 > (1 + 𝛿)ℓ ⇒ 𝑦𝑖,𝑘,𝑗,ℓ = 0, ∀𝑖 ∈ 𝒫ℳ ∪ 𝒫ℛ, 𝑇𝑘,𝑗 ∈ℳ∪ℛ, ℓ ∈ ℒ (5)

𝑦𝑖,𝑘,𝑗,ℓ ≥ 0, ∀𝑖 ∈ 𝒫ℳ ∪ 𝒫ℛ, 𝑇𝑘,𝑗 ∈ℳ∪ℛ, ℓ ∈ ℒ

Clearly, this linear relaxation consists a lower bound to the MapReduce problem. The

role of the constraints is the same as in the LP of the TaskScheduling algorithm.

Again here, constraints (2a) denote that the completion time of a job is the maximum

completion time of its reduce tasks while constraints (2b) denote the precedence con-

straints of between map and reduce tasks. The term
∑︀

𝑖∈𝒫ℛ

∑︀
ℓ∈ℒ 𝑝𝑖,𝑘,𝑗𝑦𝑖,𝑘,𝑗,ℓ added to

the completion time of each map task is in fact the ”squashed area” lower bound to the

execution of a reduce task.

Chapter 6. Experimental Evaluation 57

6.3 Processing Time Distributions

For the sake of the experiments, we model the processing time of tasks using two different

approaches: the Uniform or Uncorrelated distribution and the Processor-Job Correlated

distribution.

In the first uncorrelated case, the processing times {𝑝𝑖,𝑘,𝑗}𝑖∈𝒫ℳ of the map tasks 𝑇𝑘,𝑗 ∈
ℳ of each job 𝑗 ∈ 𝒥 are selected uniformly at random (u.a.r) from the interval [1,100].

In the same way, the processing times {𝑝𝑖,𝑘,𝑗}𝑖∈𝒫ℛ of the reduce Tasks are set to thrice

a value selected u.a.r from [1,100] plus some ”noise” selected u.a.r from [1,10].

In order to capture the issues of data locality on machines as well as the mean processing

time of tasks of different jobs the need for a more sophisticated distribution of processing

times is exigent. For this reason, in the processor-job correlated case [55] the processing

times {𝑝𝑖,𝑘,𝑗}𝑖∈𝒫ℳ of the Map tasks 𝑇𝑘,𝑗 ∈ℳ of each job 𝑗 are uniformly distributed in

[𝛼𝑖𝛽𝑗 , 𝛼𝑖𝛽𝑗 + 10], where 𝛼𝑖 , 𝛽𝑗 are selected u.a.r. from [1, 20], for each processor 𝑖 ∈ℳ
and each job 𝑗 ∈ 𝒥 respectively. As before, the processing time of each reduce task is

set to three times a value selected u.a.r. from [𝛼𝑖𝛽𝑗 , 𝛼𝑖𝛽𝑗+10] plus some ”noise” selected

u.a.r from [1, 10].

Note that in both cases the rule of thumb of three times more processing time require-

ment on average for the reduce tasks is based on the model of Chang et al. in ”Scheduling

in mapreduce-like systems for fast completion time” [21].

6.4 Shuffle Tasks

Apart from the two aforementioned processing time distributions, we include in our

experiments a third set of benchmarks, modelling the existence of shuffle tasks. In this

case, the processing times of map and reduce tasks follow the processor-job correlated

distribution while for each possible pair of map and reduce task of a job 𝑗 there exists

a shuffle task with specific transfer time. This processing time of the shuffle task is

equal to 20
3 𝛽𝑗 . Recall that 𝛽𝑗 is a job-specific value selected u.a.r from [1, 20]. In our

experiments we examine the case where shuffle tasks are executed on the same reduce

processor as the corresponding reduce task and exactly before its execution. For this

reason, we compare the performance of algorithms Algorithm-MR and Greedy-MR

with the lower bound, after we increase the processing time of each reduce task by the

sum of processing times of the shuffle tasks.

Chapter 6. Experimental Evaluation 58

6.5 Implementation

In the following, we describe in a few words the implementation of the algorithms we

compare, Algorithm-MR and Greedy-MR.

As we can see in figure 6.1 for the Algorithm-MR, the ”main” script begins with the

input reading and the initialization of variables. After this, the TaskScheduling sub-

routine is called two times, one for the map and one for the reduce tasks of the instance.

Given the two produced partial schedules, the script calls the Merge subroutine in order

to combine the two schedules.

Figure 6.1: Implementation sketch of Algorithm-MR.

The TaskScheduling subroutine creates schedules for only map or only reduce tasks

on map and reduce processors respectively. In this direction, as we have described in

previous chapter, algorithm TaskScheduling solves the corresponding LP with expo-

nentially growing time intervals. Given this fractional solution, the algorithm separates

tasks into groups with respect to their completion times. The last step of this subrou-

tine, is to integrally assign the tasks of each group on the processors trying to minimize

the makespan of every group. For this reason, TaskScheduling uses the algorithm for

makespan minimization on unrelated machines we have described in a previous chapter.

Note that, for the tasks of each group, the algorithm performs a binary search over the

possible makespan, starting with the upper bound provided by the theoretical analysis

of this algorithm.

Given the two produced schedules, the Merge subroutine, greedily merges the two

schedules into one, with the use of the width of each job, as described in the previous

chapter.

The implementation of Greedy-MR follows in general the same basic phases, separat-

ing completely this time the assignment of tasks to processors and the sequencing of the

Chapter 6. Experimental Evaluation 59

assigned tasks of each processor. As we can see in figure 6.2, the assignment of tasks

on processors is performed by the subroutine Greedy Assign, using the simple rule we

described in the previous chapter. After the creation of the two assignment schedules

for the map and the reduce tasks, the subroutine Generalized Smith Merge merges

the two schedules using the weight to total processing time ratio for sequencing and

respecting the precedence constraints between map and reduce tasks of each job.

Figure 6.2: Implementation sketch of Greedy-MR.

6.6 Technical Information

The algorithms Algorithm-MR, Greedy-MR as well as the lower bound were im-

plemented using Python 2.7. The solver used for the linear programs was Gurobi

Optimizer 6.0. The experiments were performed on a machine with 4 packages (In-

tel(R) Xeon(R) E5- 4620 @ 2.20GHz) of 8 cores each (16 threads with hyperthread-

ing) and a total memory of 256 GB. The operating system was a Debian GNU/Linux

6.0. The used scripts as well as the benchmarks of the results are available at: http:

//www.corelab.ntua.gr/~opapadig/mrexperiments/ .

6.7 Results

In the following, we present the results of the experiments. In all cases, we present

scatter graphs of the objective values produced by all our algorithms as well as the

empirical approximation ratios in all trials. Furthermore, for each number of job we

present graphically the average value of objective values for all trials as well as the

average approximation ratios.

http://www.corelab.ntua.gr/~opapadig/mrexperiments/
http://www.corelab.ntua.gr/~opapadig/mrexperiments/

Chapter 6. Experimental Evaluation 60

6.7.1 Uncorrelated Input

0 10 20 30 40 50

0

0.5

1

1.5

2

·105

(i) Number of Jobs

∑︀ 𝑗∈
𝒥
𝑤
𝑗
𝐶
𝑗

Greedy-MR
Algorithm-MR
Lower Bound

10 20 30 40 50

0

0.5

1

1.5

·105

(ii) Number of Jobs

(A
ve
ra
ge
)
∑︀ 𝑗∈

𝒥
𝑤
𝑗
𝐶
𝑗

Greedy-MR
Algorithm-MR
Lower Bound

0 10 20 30 40 50

1.5

2

2.5

3

(iii) Number of Jobs

A
p
p
ro
x
.
ra
ti
o

Greedy-MR
Algorithm-MR

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

(iv) Number of Jobs

(A
ve
ra
ge
)
A
p
p
ro
x
.
R
a
ti
o

Greedy-MR
Algorithm-MR

Figure 6.3: Uncorrelated Results

Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a

lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-

tios of Greedy-MR and Algorithm-MR, for uncorrelated tasks’ processing

times.

By figure 6.3 (i)-(ii) we note that Greedy-MR performs quite better than Algorithm-

MR in general. For number of jobs 𝑛 ≤ 10, Greedy-MR gives up to 21% better solu-

tions on average. However, as the number of jobs increases, the gap between Greedy-

MR and Algorithm-MR is shrinking, e.g., for 𝑛 = 45 and 𝑛 = 50 Greedy-MR

gives 6% and 5% (on average) better solutions, respectively. In terms of performance

guarantee, as we can see in figure 6.3 (iii)-(iv) the (empirical) approximation ratio of

Algorithm-MR ranges from 1.68 to 2.58 (on average), while the approximation ratio

of Greedy-MR ranges from 1.43 to 2.42 (on average). Clearly, both algorithms are far

away from Algorithm-MR’s approximation guarantee of 54.

Chapter 6. Experimental Evaluation 61

6.7.2 Job-Processor Correlated Input

0 10 20 30 40 50

0

1

2

3

4
·106

(i) Number of Jobs

∑︀ 𝑗∈
𝒥
𝑤

𝑗
𝐶

𝑗

Greedy-MR
Algorithm-MR
Lower Bound

10 20 30 40 50

0

1

2

3
·106

(ii) Number of Jobs

(A
ve
ra
ge
)
∑︀ 𝑗∈

𝒥
𝑤
𝑗
𝐶
𝑗

Greedy-MR
Algorithm-MR
Lower Bound

0 10 20 30 40 50

2

3

4

5

(iii) Number of Jobs

A
p
p
ro
x
.
R
at
io

Greedy-MR
Algorithm-MR

10 20 30 40 50
2

2.5

3

3.5

4

(iv) Number of Jobs

(A
ve
ra
ge
)
A
p
p
ro
x
.
R
at
io

Greedy-MR
Algorithm-MR

Figure 6.4: Processor-Job Correlated Results

Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a

lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-

tios of Greedy-MR andAlgorithm-MR, for processor-job correlated tasks’

processing times.

By figure 6.4 (i)-(ii) it is clear that Algorithm-MR outperforms Greedy-MR for

all different values of 𝑛. More specifically, Algorithm-MR leads to 11% − 34% (on

average) smaller values of the objective function, compared to Greedy-MR. This is

mainly due the fact that by generating processor-job correlated tasks’ processing times

the assignment and sequencing procedure becomes more sophisticated. So, both the

online assignment and the common WSPT policy, are not quite efficient; actually, even

when there is a small number of jobs, 𝑛 = 5, Algorithm-MR gives on average 11% (on

average) smaller solutions. The approximation ratio of Algorithm-MR, in figure 6.4

(iii)-(iv), ranges from 2.13 to 3.12 (on average), while, for Greedy-MR, the approxi-

mation ratio ranges from 3.19 to 3.95 (on average). Again, both algorithms are very far

from Algorithm-MR’s approximation guarantee of 54. Furthermore, it is important

to note that Algorithm-MR improves its performance guarantee as the input becomes

more and more involved (for 𝑛 ≥ 40), while simultaneously produces better solutions

(of more than 30%) than Greedy-MR.

Chapter 6. Experimental Evaluation 62

6.7.3 Job-Processor Correlated Input with Shuffle Tasks

0 10 20 30 40 50

0

0.5

1

1.5

2

·107

(i) Number of Jobs

∑︀ 𝑗∈
𝒥
𝑤

𝑗
𝐶

𝑗

Greedy-MR
Algorithm-MR
Lower Bound

10 20 30 40 50

0

0.5

1

1.5

·107

(ii) Number of Jobs

(A
ve
ra
g
e)

∑︀ 𝑗∈
𝒥
𝑤
𝑗
𝐶
𝑗

Greedy-MR
Algorithm-MR
Lower Bound

0 10 20 30 40 50
1

2

3

4

(iii) Number of Jobs

A
p
p
ro
x
.
R
at
io

Greedy-MR
Algorithm-MR

10 20 30 40 50

1.5

2

2.5

3

3.5

(iv) Number of Jobs

(A
ve
ra
ge
)
A
p
p
ro
x
.
R
at
io

Greedy-MR
Algorithm-MR

Figure 6.5: Data Shuffle Results

Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a

lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-

tios of Greedy-MR andAlgorithm-MR, for processor-job correlated tasks’

processing times including shuffle tasks.

By Fig. 6.5 (i)-(ii) it is clear that Greedy-MR is better than Algorithm-MR for all

different values of 𝑛. More specifically, Greedy-MR leads to 9%− 60% smaller values

of the objective function, compared to Algorithm-MR. However, as the number of

jobs is increasing the gap between the performance of the two algorithms is shrinking.

For example for 𝑛 = 5, Greedy-MR produced a 60% better solution, while for 𝑛 = 50

the percentage falls to 10% on average, with some trials where the Algorithm-MR

appears to give slight better solutions. The approximation ratio of Algorithm-MR, in

figure 6.5 (iii)-(iv), ranges from 2.02 to 3.81, while, for Greedy-MR, the approximation

ratio ranges from 1.24 to 2.31. In this case, both algorithms are again very far from

Algorithm-MR’s approximation guarantee of 54. Moreover, it is important to note

that both algorithms’ empirical ratios converge to 2 as the number of jobs is increasing.

6.8 Evaluation

Considering the results of the previous section, one can see that the performance of

Algorithm-MR and Greedy-MR depends highly on the type of processing time dis-

tribution, on the number of jobs as well as on the existence or not of shuffle tasks.

Chapter 6. Experimental Evaluation 63

More specifically, we see that in the uncorrelated case the performance of Greedy-MR

is slightly better. This can be explained and attributed to the distribution of processing

times. In the uniform case we can see that for all jobs, the estimated mean processing

time is constant. In other words, given that the processing times are selected u.a.r from

[0, 100], the probability for a task to have processing time 𝑝 is equal to the probability

to have 100−𝑝. This ”rough” smooth analysis suggests that for the load balancing part

of Greedy-MR, the processors may behave in the mean case as identical. Moreover, in

this case where there are not many ”anomalies” in the load balancing part, the Weighted

Shortest Processing Time First rule we apply for sequencing is known for behaving well

on identical processors.

The previous arguments about the performance of Greedy-MR in the uncorrelated case

are reinforced by the experimental results on the job-processor correlated case. In this

case, since many processors may have advantage over others for all jobs, the load balanc-

ing part of Greedy-MR in not working very well this time. The relatively sophisticated

load balancing of Algorithm-MR seems now to outperform that of Greedy-MR.

With the introduction of shuffle tasks in our experiments we see that the Greedy-

MR gives, again, much better solutions than Algorithm-MR. This fact can also be

attributed to the distribution of processing times. In this case, since the processing times

of shuffle tasks do not depend on the corresponding machines and due to the fact that

these tasks are executed on the reduce processors, two conclusions can be deduced. The

first is that the total contribution of the map schedule to the objective becomes negligible

given the severe enlargement of the reduce tasks. The second is that, in this case, since

by definition, the shuffle tasks’ processing times depend only on 𝛽𝑗 and therefore are

constant for a fixed job 𝑗, then the processing times of the extended reduce tasks behave

also as constant. As we can see, the load balancing of constant size tasks is the easiest

case so-far for by the load balancing part of Greedy-MR. This fact, together with

the Weighted Shortest Processing Time First rule, can explain the good performance of

Greedy-MR over Algorithm-MR.

Conclusion

The theory as well as the experimentation have been proven fundamental tools for the

evaluation of MapReduce scheduling algorithms. From linear programming relaxations

and greedy rules to randomized approaches and graph theoretic reductions are some of

the ways theory produces algorithms with various time complexities and approximation

guarantees. It is the experimentation, however, that shows us how close or far from

the reality these guarantees are and whether the trade-off between speed and optimality

is worth considering. What we have seen in this work, is that an approximation ratio

proven using the scheduling theory may be partially misleading given the performance

of the algorithm in practice.

More specifically, we have shown that the algorithm for scheduling MapReduce tasks on

unrelated processors minimizing the total weighted completion time performs quite well

for normal and ”rational” inputs. Indeed, it produces schedules with objective values

close to the optimal, despite the proven worst-case approximation factor of 54. The

same conclusion holds for case where we model the intermediate data exchange between

map and reduce tasks. Moreover, we have seen that a really fast and simple heuristic

for the same problem, despite its probably non-constant approximation ratio, may also

produce schedules with noteworthy objective values, even better than its sophisticated

competitor for specific instances.

In the pursuit of optimality and efficient use of the available hardware, the model of

scheduling MapReduce jobs can be extended in various directions. One of them is the

introduction of malleable MapReduce jobs. In this case, the scheduler, apart from the

assignment and sequencing of tasks to processors, has the ability to decide the so-called

”grain size” i.e. the number of tasks where the total volume of work is going to be

divided into. Another possible extension is to study the effect of the natural topology

of processors on the cost of data transferring between tasks. More specifically, in non-

uniform memory access (NUMA) architectures the communication time between two

tasks may be crucially affected from the location of the nodes where these tasks are

executed on.

64

Conclusion 65

As we have seen, massive parallelism is no more the future; it is now a reality relent-

lessly producing problems and demanding results and solutions: both theoretical and

empirical.

Bibliography

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782.

[2] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

ISBN 0596521979, 9780596521974.

[3] apache.org. http://apache.org. Accessed: 2015-06-12.

[4] discoproject.org. http://discoproject.org/. Accessed: 2015-06-12.

[5] infinispan.org. http://infinispan.org. Accessed: 2015-06-12.

[6] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. Quincy: Fair scheduling for distributed computing clusters. In

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Princi-

ples, SOSP ’09, 2009. ISBN 978-1-60558-752-3.

[7] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. Delay scheduling: A simple technique for achieving locality

and fairness in cluster scheduling. In Proceedings of the 5th European Conference

on Computer Systems, EuroSys ’10, pages 265–278, 2010. ISBN 978-1-60558-577-2.

[8] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.

Improving mapreduce performance in heterogeneous environments. In Proceedings

of the 8th USENIX Conference on Operating Systems Design and Implementation,

OSDI’08, pages 29–42, Berkeley, CA, USA, 2008. USENIX Association.

[9] Thomas Sandholm and Kevin Lai. Mapreduce optimization using regulated dy-

namic prioritization. In Proceedings of the Eleventh International Joint Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’09, pages

299–310, 2009. ISBN 978-1-60558-511-6.

[10] Dongjin Yoo and Kwang Mong Sim. A comparative review of job scheduling for

mapreduce. In Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE

International Conference on, pages 353–358, Sept 2011.

66

http://apache.org
http://discoproject.org/
http://infinispan.org

Bibliography 67

[11] Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vibhore Kumar, Su-

jay Parekh, Kun-Lung Wu, and Andrey balmin. Flex: A slot allocation scheduling

optimizer for mapreduce workloads. In Proceedings of the ACM/IFIP/USENIX

11th International Conference on Middleware, Middleware ’10, pages 1–20, Berlin,

Heidelberg, 2010. Springer-Verlag. ISBN 978-3-642-16954-0.

[12] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Cliff Stein, and Zoya

Svitkina. On distributing symmetric streaming computations. ACM Trans. Algo-

rithms, 6(4):66:1–66:19, September 2010. ISSN 1549-6325.

[13] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation

for mapreduce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’10, pages 938–948, 2010. ISBN 978-0-898716-98-6.

[14] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper

and lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377,

2012.

[15] Jeffrey D. Ullman. Designing good mapreduce algorithms. XRDS, 19(1):30–34,

September 2012. ISSN 1528-4972.

[16] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-reduce.

In Proceedings of the 19th International Conference on World Wide Web, WWW

’10, pages 231–240, 2010. ISBN 978-1-60558-799-8.

[17] Cheng tao Chu, Sang K. Kim, Yi an Lin, Yuanyuan Yu, Gary Bradski, Kunle

Olukotun, and Andrew Y. Ng. Map-reduce for machine learning on multicore. In

B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 281–288. MIT Press, 2007.

[18] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environ-

ment. In Proceedings of the 13th International Conference on Extending Database

Technology, EDBT ’10, pages 99–110, 2010. ISBN 978-1-60558-945-9.

[19] U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, and J. Leskovec. Hadi: Fast

diameter estimation and mining in massive graphs with hadoop. CMU-ML, 2008.

[20] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. Mor-

gan and Claypool Publishers, 2010. ISBN 1608453421, 9781608453429.

[21] Hyunseok Chang, M. Kodialam, R.R. Kompella, T.V. Lakshman, Myungjin Lee,

and S. Mukherjee. Scheduling in mapreduce-like systems for fast completion time.

In INFOCOM, 2011 Proceedings IEEE, pages 3074–3082, April 2011.

Bibliography 68

[22] Monaldo Mastrolilli, Maurice Queyranne, Andreas S. Schulz, Ola Svensson, and

Nelson A. Uhan. Minimizing the sum of weighted completion times in a concurrent

open shop. Oper. Res. Lett., 38(5):390–395, September 2010. ISSN 0167-6377.

[23] Fangfei Chen, Murali S. Kodialam, and T. V. Lakshman. Joint scheduling of pro-

cessing and shuffle phases in mapreduce systems. In INFOCOM’12, pages 1143–

1151, 2012.

[24] Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. On schedul-

ing in map-reduce and flow-shops. In Proceedings of the Twenty-third Annual ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 289–

298, 2011. ISBN 978-1-4503-0743-7.

[25] CarlosD. Paternina-Arboleda, JairoR. Montoya-Torres, MiltonJ. Acero-Dominguez,

and MariaC. Herrera-Hernandez. Scheduling jobs on a k-stage flexible flow-shop.

Annals of Operations Research, 164(1):29–40, 2008. ISSN 0254-5330. doi: 10.1007/

s10479-007-0257-2. URL http://dx.doi.org/10.1007/s10479-007-0257-2.

[26] Petra Schuurman and Gerhard J. Woeginger. A polynomial time approximation

scheme for the two-stage multiprocessor flow shop problem. Theoretical Com-

puter Science, 237(1–2):105 – 122, 2000. ISSN 0304-3975. URL http://www.

sciencedirect.com/science/article/pii/S0304397598001571.

[27] Dimitris Fotakis, Ioannis Milis, Orestis Papadigenopoulos, Emmanouil Zampetakis,

and Georgios Zois. Scheduling mapreduce jobs and data shuffle on unrelated pro-

cessors. CoRR, abs/1312.4203, 2013. URL http://arxiv.org/abs/1312.4203.

[28] Top500.org. http://top500.org. Accessed: 2015-06-11.

[29] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008. ISBN 0123705916,

9780123705914.

[30] Herb Sutter. The free lunch is over: a fundamental turn toward concurrency in soft-

ware. Dr. Dobb’s Journal 30 (3), 2005. URL http://www.gotw.ca/publications/

concurrency-ddj.htm.

[31] Parallel processing systems, lecture notes, cslab ece ntua. URL http://www.cslab.

ece.ntua.gr/courses/pps.

[32] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

ISBN 0070131511.

http://dx.doi.org/10.1007/s10479-007-0257-2
http://www.sciencedirect.com/science/article/pii/S0304397598001571
http://www.sciencedirect.com/science/article/pii/S0304397598001571
http://arxiv.org/abs/1312.4203
http://top500.org
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.cslab.ece.ntua.gr/courses/pps
http://www.cslab.ece.ntua.gr/courses/pps

Bibliography 69

[33] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. In Dis-

crete Optimization II Proceedings of the Advanced Research Institute on Discrete

Optimization and Systems Applications of the Systems Science Panel of NATO and

of the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM

Banff, Aha. and Vancouver, volume 5 of Annals of Discrete Mathematics, pages 287

– 326. Elsevier, 1979. URL http://www.sciencedirect.com/science/article/

pii/S016750600870356X.

[34] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J.

ACM, 47(4):617–643, July 2000. ISSN 0004-5411.

[35] David Karger, Cliff Stein, and Joel Wein. Algorithms and theory of computa-

tion handbook. chapter Scheduling Algorithms, pages 20–20. Chapman & Hal-

l/CRC, 2010. ISBN 978-1-58488-820-8. URL http://dl.acm.org/citation.cfm?

id=1882723.1882743.

[36] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publish-

ing Company, Incorporated, 3rd edition, 2008. ISBN 0387789340, 9780387789347.

[37] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 3rd edition, 2001. ISBN 3540415106.

[38] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical

Journal, 45(9):1563–1581, 1966.

[39] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical

Library. Cambridge University Press, 1952. ISBN 9780521358804.

[40] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to

minimize average completion time: Off-line and on-line approximation algorithms.

Math. Oper. Res., 22(3):513–544, August 1997. ISSN 0364-765X.

[41] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011. ISBN

0521195276, 9780521195270.

[42] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for schedul-

ing unrelated parallel machines. Math. Program., 46(3):259–271, February 1990.

ISSN 0025-5610.

[43] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Re-

search Logistics Quarterly, 2:83–97, 1955.

http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://dl.acm.org/citation.cfm?id=1882723.1882743
http://dl.acm.org/citation.cfm?id=1882723.1882743

Bibliography 70

[44] José R. Correa, Martin Skutella, and José Verschae. The power of preemption on

unrelated machines and applications to scheduling orders. Math. Oper. Res., 37(2):

379–398, 2012.

[45] H. Karloff. Linear Programming. Progress in Computer Science and Applied Series.

Birkhäuser, 1991. ISBN 9783764335618. URL https://books.google.gr/books?

id=XYfvf5sCx3gC.

[46] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,

Massachusetts, 1994. ISBN 0201530821.

[47] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc.,

New York, NY, USA, 2001. ISBN 3-540-65367-8.

[48] Mikhail J. Atallah and Susan Fox, editors. Algorithms and Theory of Computa-

tion Handbook. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1998. ISBN

0849326494.

[49] S. M. Johnson. Optimal Two- and Three-stage Production Schedules with Setup

Times Included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[50] Naveen Garg, Chaitanya Swamy, and Sachin Jain. A randomized algorithm for flow

shop scheduling.

[51] Martin Skutella. Convex quadratic and semidefinite programming relaxations in

scheduling. J. ACM, 48(2):206–242, March 2001. ISSN 0004-5411.

[52] M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

[53] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A com-

petitive algorithm for minimizing weighted flow time on unrelatedmachines with

speed augmentation. In Proceedings of the Forty-first Annual ACM Symposium on

Theory of Computing, STOC ’09, pages 679–684, 2009. ISBN 978-1-60558-506-2.

[54] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line

routing of virtual circuits with applications to load balancing and machine schedul-

ing. J. ACM, 44(3):486–504, May 1997. ISSN 0004-5411.

[55] A. M. A. Hariri and C. N. Potts. Heuristics for scheduling unrelated parallel ma-

chines. Comput. Oper. Res., 18(3):323–331, March 1991. ISSN 0305-0548.

[56] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized

assignment problem. Math. Program., 62(3):461–474, December 1993. ISSN 0025-

5610.

https://books.google.gr/books?id=XYfvf5sCx3gC
https://books.google.gr/books?id=XYfvf5sCx3gC

Bibliography 71

[57] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing

constraint violation (extended abstract). In Proceedings of the Twenty-fourth An-

nual ACM Symposium on Theory of Computing, STOC ’92, pages 771–782, 1992.

ISBN 0-89791-511-9.

	Introduction
	1 Preliminaries
	1.1 Definitions
	1.2 Machine Environment
	1.3 Objective Functions and Metrics
	1.4 Precedence Constraints
	1.5 A Typical Notation for Scheduling Problems
	1.6 Complexity Issues
	1.7 Approximating an Optimal Solution
	1.8 Online and Offline Scheduling

	2 Scheduling Parallel Machines
	2.1 List Scheduling and Longest Processing Time First
	2.2 An Exact Algorithm for the Average Completion Time Problem on Identical Machines
	2.3 Minimizing Total Weighted Completion Time on Identical Machines
	2.4 Minimizing Makespan on Unrelated Machines
	2.5 Minimum-Weight Bipartite Matching to Schedule Positions
	2.6 Minimizing Total Weighted Completion Time of Tasks on Unrelated Machines

	3 Precedence Constraints and Shop Scheduling
	3.1 Chains, Flows and Shops
	3.2 A Greedy 2-approximation Algorithm For Open Shops
	3.3 Two Machine Flow Shop Makespan Minimization
	3.4 A Randomized Algorithm for the Flow Shop Scheduling Problem

	4 Scheduling MapReduce Jobs Minimizing Total Completion Time
	4.1 The General Model
	4.2 Offline Algorithms
	4.2.1 Identical Machines
	4.2.2 Unrelated Machines

	4.3 Online Scheduling
	4.3.1 Identical Machines
	4.3.2 Unrelated Machines

	5 Scheduling MapReduce Jobs and Shuffle Tasks
	5.1 A constant approximation algorithm.
	5.2 Data Shuffle
	5.2.1 The Shuffle Tasks are Executed on their Reduce Processors
	5.2.2 The Shuffle Tasks are Executed on Different Input Processors

	5.3 A Greedy Heuristic

	6 Experimental Evaluation
	6.1 Experimental Experience
	6.2 Lower Bound
	6.3 Processing Time Distributions
	6.4 Shuffle Tasks
	6.5 Implementation
	6.6 Technical Information
	6.7 Results
	6.7.1 Uncorrelated Input
	6.7.2 Job-Processor Correlated Input
	6.7.3 Job-Processor Correlated Input with Shuffle Tasks

	6.8 Evaluation

	Conclusion

