
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗΗΛΕΚΤΡΟΛΟΓΩΝΜΗΧΑΝΙΚΩΝ

ΚΑΙΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Επέκταση Συστήματος Μοιραζόμενης Κρυφής Μνήμης
Επιπέδου Μπλοκ για την Αποδοτική Μετακίνηση

Εικονικών Μηχανών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Βασίλειος Π. Σουλελές

Αθήνα, Nοέμβριος 2015

ΕΘΝΙΚΟΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗΗΛΕΚΤΡΟΛΟΓΩΝΜΗΧΑΝΙΚΩΝ ΚΑΙΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Επέκταση Συστήματος Μοιραζόμενης Κρυφής Μνήμης
Επιπέδου Μπλοκ για την Αποδοτική Μετακίνηση

Εικονικών Μηχανών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Βασίλειος Π. Σουλελές

Επιβλέπων Καθηγητής: Νεκτάριος Κοζύρης
Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 25η Νοεμβρίου 2015.

.
Νεκτάριος Κοζύρης
Καθηγητής ΕΜΠ

.
Νικόλαος Παπασπύρου
Αναπ. Καθηγητής ΕΜΠ

.
Γεώργιος Γκούμας
Λέκτορας ΕΜΠ

Αθήνα, Nοέμβριος 2015

.

Βασίλειος Π. Σουλελές
Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ

Copyright © Βασίλειος Π. Σουλελές, 2015
Με επιφύλαξη παντός δικαιώματος. All rights reserved.
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου
ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή
για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να ανα-
φέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη
χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-
γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού
Μετσόβιου Πολυτεχνείου.

στους γονείς μου

Παναγιώτη και Σοφία

στα αδέρφια μου

Κωνσταντίνο και Ειρηνάντζελα

Η στοιχειοθεσία του κειμένου έγινε με το X ETEX 0.9999.

Χρησιμοποιήθηκαν οι γραμματοσειρές Minion Pro και Consolas.

Contents

Αντί Προλόγου xi

Abstract xiii

Περίληψη 1

1 Introduction 3

1.1 Problem Statement . 3

1.2 Motivation . 4

1.3 Shortcomings . 4

1.4 Design . 5

1.5 Results . 5

2 Background 7

2.1 Virtualization . 7

2.1.1 A bit of history . 7

2.1.2 Virtualization Today . 10

2.1.3 Hypervisor . 12

2.1.4 QEMU . 12

2.1.5 KVM . 13

2.1.6 Xen . 13

2.1.7 VMWare ESXi . 14

2.1.8 VirtIO . 14

2.1.9 Containers . 15

vii

viii

2.2 Cloud computing and cluster management 16

2.2.1 What is Cloud Computing . 16

2.2.2 Amazon Web Services . 19

2.2.3 Google Cloud Platform . 19

2.2.4 OpenStack . 19

2.2.5 Ganeti . 20

2.2.6 Synnefo . 20

2.3 Storage in the Cloud . 21

2.3.1 Basics of Computer Storage 21

2.3.2 e OS storage stack . 23

2.3.3 SAN Appliances and Shared Storage 30

2.3.4 Object Stores . 33

3 System Analysis and Design 37

3.1 Block Caching . 37

3.1.1 States of Cache Blocks . 39

3.1.2 Side-effects of Reads and Writes 41

3.1.3 Superblock and Metadata . 42

3.1.4 Modes of Operation and Replacement Policies 44

3.2 Detailed Problem Statement . 46

3.2.1 I/O Data Path . 47

3.2.2 Live Migration . 48

3.2.3 Complications of using a shared cache 50

3.2.4 Data corruption with a shared cache 51

3.3 Naive Workarounds . 52

3.4 An optimal solution . 52

3.5 Our design: A new cache mode . 54

4 Implementation 55

4.1 Migration using WB mode . 55

4.2 Naive Migration using FM mode . 56

4.3 Updating on-device metadata . 57

4.4 Atomic cache block updates . 58

4.5 Everything is D . 58

4.6 An alternative: locking the cache . 59

ix

5 Integration with Ganeti 61

5.1 Ganeti ExtStorage Providers . 61

5.2 Our eio_rbd provider . 62

5.3 Workflow . 64

6 Results and future directions 67

6.1 Testbed . 67

6.2 Results . 68

6.3 Future Work . 68

Bibliography 71

x

Αντί Προλόγου

Η παρούσα διπλωματική εργασία σημαίνει την ολοκλήρωση ενός σημαντικού κεφα-

λαίου της ακαδημαϊκής μου πορείας. Θα ήθελα στο σημείο αυτό να ευχαριστήσω ορι-

σμένους ανθρώπους που με βοήθησαν στη διαδρομή αυτή.

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου κ. Νεκτάριο Κοζύρη,

ο οποίος μου έδωσε την δυνατότητα να ασχοληθώ με ένα τόσο σύγχρονο και ενδιαφέ-

ρον θέμα. Οφείλω επίσης ένα μεγάλο ευχαριστώ στο Δρα Βαγγέλη Κούκη, για την πο-

λύτιμη βοήθεια του, για όλες τις εποικοδομητικές συζητήσεις μας και την διαρκή καθο-

δήγηση του, κατα την διάρκεια της εκπόνησης της διπλωματικής εργασίας μου, καθώς

και για την όρεξη που μου ενέπνευσε για το αντικείμενο αυτό μέσα από τις διαλέξεις

και τα μαθήματά του. Θα ήθελα επίσης να ευχαριστήσω τους συμφοιτητές, συνεργά-

τες και φίλους οι οποίοι με συντρόφευσαν σε αυτά τα σημαντικά χρόνια της φοίτησής

μου, Οδυσσέα, Αλέξανδρο, Γιώργο, Ibrahim, Νίκο, Δημήτρη, Μιχάλη, Γιάννη, ΠάνοM.,

Γιάννη Π., Νίκο Δ., Δήμητρα και Ντόρα και αρκετούς ακόμη που ίσως αυτή τη στιγμή

να μου διαφεύγουν.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου, Παναγιώτη και Σοφία, καθώς και τα

αδέρφια μου, Κωνσταντίνο και Ειρηνάντζελα, για την αγάπη, τη συνεχή υποστήριξη

και συμπαράσταση που μου προσέφεραν έως τώρα.

Βασίλης Σουλελές

Νοέμβριος 2015

xi

xii

Abstract

Cloud environments have been established today as the new technology that can of-

fer scalable and higly-available computational resources. Such systems are driven by a

constant demand for performance improvements. Modern cloud clusters tend to use a

centralized model of storage, offered through a dedicated network. erefore, the path

between instances and their disks imposes substantial latency, having significant impact

on the overall system performance. Clouds oen deploy a host-side Flash memory disk

to act as a block-level write-back cache for data coming from and going to networked

storage. e performance gain is tremendous for normal VM block I/O operations, but

the scenario of instance live migration turns out to be problematic. To address this is-

sue, we have designed and extended a block-level cache framework, making it capable

of working over shared storage, allowing VM live migrations to be completed while the

cache is still serving VM requests. We have achieved this by introducing a new mode

of operation for the cache, analogous to write-back or write-through, called “Frozen

Metadata” mode. Our newmode is meant to be used by the cache framework while live

migration is taking place, to avoid data corruption. With common benchmarks we can

show that it is now possible to migrate a VM while it is issuing block I/O towards the

cache. Consequently, caches can now provide performance benefits that accompany

instances from their creation time to their destruction.

xiii

xiv

Περίληψη

Τα υπολογιστικά νέφη έχουν καθιερωθεί σήμερα ως η καινοτόμα τεχνολογία ικανή να

αλλάξει το τοπίο της πληροφορικής και των επικοινωνιών, προσφέροντας κατά παραγ-

γελία κλιμακώσιμες υπηρεσίες υψηλής πιστότητας και διαθεσιμότητας. Η ανάγκη για

υψηλές επιδόσεις σε αυτά τα συστήματα είναι το κίνητρο για την σταθερή πρόοδο και

βελτίωση των παρεχόμενων υπηρεσιών.

Τα σύγχρονα περιβάλλοντα υπολογιστικού νέφους τείνουν να χρησιμοποιούν ένα κε-

ντρικό μοντέλο αποθηκευτικού χώρου, συνήθως προσβάσιμο μέσω ενός ξεχωριστού

δικτύου υπολογιστών. Συνεπώς το μονοπάτι των δεδομένων ανάμεσα στις εικονικές

μηχανές και στους δίσκους τους εμφανίζει σημαντικές καθυστερήσεις, οι οποίες εισά-

γουν περιορισμούς στην συνολική απόδοση του συστήματος.

Για να αντιμετωπίσουν αυτό το πρόβλημα, οι διαχειριστές ενός υπολογιστικού νέφους

συχνά επιλέγουν να χρησιμοποιήσουν σκληρούς δίσκους μνήμης Flash στους κόμβους

που φιλοξενουν εικονικές μηχανές και να τους χρησιμοποιήσουν ως κρυφές-μνήμες

επιπέδου μπλοκ για τα δεδομένα που έρχονται από και πηγαίνουν προς τους δίκτυο

αποθηκευτικού χώρου.

Το κέρδος σε απόδοση είναι σπουδαίο για τις τυπικές λειτουργίες μιας εικονικής μη-

χανής επιπέδου μπλοκ, αλλά το σενάριο της “ζωντανής” μετακίνησης μιας εικονικής

μηχανής αποδεικνύεται προβληματικό όταν χρησιμοποιείται η κρυφή μνήμη επιπέδου

μπλοκ.

Για να αντιμετωπίσουμε αυτό το ζήτημα, σχεδιάσαμε, υλοποιήσαμε, και επεκτείναμε

1

2

ένα υπάρχον σύστημα κρυφής μνήμης επιπέδου μπλοκ ώστε να του επιτρέψουμε να

λειτουργήσει πάνω απο μοιραζόμενους δίσκους. Με αυτόν τον τρόπο οι εικονικές μη-

χανές μπορούν να μετακινούνται μεταξύ φυσικών κόμβων, ενώ ταυτόχρονα κάνουν

αιτήσεις για λειτουργίες εισόδου-εξόδου επιπέδου μπλοκ προς τους δίσκους τους.

Για να πετύχουμε αυτό το αποτέλεσμα, εισάγαμε ένα νέο τρόπο λειτουργίας που ονο-

μάζεται “Frozen Metadata”. Η έρευνα μας υπαγορεύει πως αυτός ο τρόπος λειτουργίας

πρέπει να χρησιμοποιείται κατά την διάρκεια μιας ζωντανής μετακίνησης μιας εικονι-

κής μηχανής, προκειμένου να αποφευθχεί η καταστροφή και απώλεια δεδομένων.

Χρησιμοποιώντας συμβατικά εργαλεία δείξαμε πως είναι δυνατό μια εικονική μηχανή

να μετακινηθεί από έναν φυσικό κόμβο σε έναν άλλον, ενώ συνεχίζει να λειτουργεί και

κάποια απο τα αιτήματα της εξυπηρετούνται απο την κρυφή μνήμη επιπέδου μπλοκ.

Συνεπώς, τα αποτελέσματα της δουλειάς μας είναι πως πλέον τα οφέλη ύπαρξης μιας

κρυφής μνήμης συνοδεύουν μια εικονική μηχανή από την στιγμή δημιουργίας της, μέχρι

και την καταστροφή της.

1
Introduction

In this chapter we outline the scope of our work. We first provide a quick overview

of the problem we are trying to solve and argue about its importance. Next we shortly

describe hownaive approaches do not offer acceptable results andwe highlight potential

problems in achieving our goal. We move on to illustrate our proposed design and how

it fits in as an solution meeting the optimal requirements. Finally we conclude with an

early preview of some promising results.

1.1 Problem Statement

e primary objective of this work is to enable live migration of Virtual Machines that

benefit from the use of a block-level cache. Block-level caching has already been de-

ployed in cloud environments, by using host-side Flash memory disks such as SSDs.

However, live migrations while a host-side cache is active have a number of complica-

tions. e main factor of this impediment lies in the architectural model of VM disks

and block caches. Instance block devices are considered a part of the Virtual Machine

entity and as such, they are managed by the hypervisor. e latter is not only respon-

sible for creating and destroying the disks, but also carries out the preparation and the

actual migration of the disks. is is not the case for the cache, though. e hypervisor

and the instance itself, are not aware of the existence of the cache, because the cache is

managed by the host OS. As a result, the cache cannot be managed by the hypervisor,

and the host OS kernel is pledged to perform the cache migration. We assume that the

cache like the instance hard disks, is stored in shared storage and consequently, a need

3

4 CHAPTER 1. INTRODUCTION

arises for coordination between the source and destination nodes during migration, in

order to preserve data integrity while offering a significant performance boost. By tak-

ing KVM hypervisor as an example, we see that live migration is not a well-defined

procedure when it comes to block I/O operations. e KVM process, does not clarify

when the actual VM transfer is happening, and this phenomenon can be observed as

concurrent block I/O operations issued by both source and destination host nodes at

the same time. is case, combined with the fact that caches are externally managed by

the host, clearly illustrate the need for coordination, or else data corruption is possible.

1.2 Motivation

egoalwe set in the previous section is very important, becausewe aim to integrate two

components of different nature but of complementary aspect, the Virtual Machine and

its disk caches, into a unified system. is will enable truly atomic creation, processing,

management and destruction of cloud instances, making system administration easier,

while preserving the performance gain of using a cache.

1.3 Shortcomings

One straightforward way to handle this issue would be to destroy the cache before mi-

gration and re-create it aer the migration has completed. However, this would kill

performance and so, it cannot be considered in production environments for real-world

use. Moreover, using an existing cache framework will not work either, because they are

not built for shared storage and they do not contain concurrency logic. So we could ei-

ther create a new distributed cache framework or we could modify an existing one and

add a full-blown coherence protocol and distributed lock manager. Using a different

approach we could even adapt the KVM hypervisor to provide us with clear informa-

tion about where the instance is hosted in any time and whether it can or cannot issue

block I/O.

1.4. DESIGN 5

1.4 Design

We target to incorporate block-level caching for a VM live migration. To achieve this,

we haven’t chosen any of the aforementioned techniques. Rather we have designed,

implemented and expanded an existing cache framework by adding logic that enables a

shared-disk cache to be used concurrently bymore thanone hosts. Wehave resolved this

issue without adding complex distributed logic. Instead we have added a new operating

mode called “Frozen Metadata” mode or “FM” mode. Before initiating live migration,

the source node switches from write-back to our new mode. At the same time, the

destination node must also set the cache mode to Frozen Metadata, and keep it this

way, until the live migration has completed. e main idea it that while in FM mode,

the set of cached blocks remain the same; that is, no new allocations occur, neither

do evictions take place. By keeping the cached block set unchanged, we minimized

the metadata updates that need to be tracked to a bare minimum. is enables source

and destination host kernels to preserve data and metadata integrity, without explicit

communication between them.

1.5 Results

To meet our goal, we have performed a number of development iterations, each one

verging closer on an optimal solution. We have integrated the EnhanceIO cache frame-

workwith theGaneti clustermanagement tool, andwe have introduced the eio_rbd ex-

ternal storage provider. At the same time, we have developed a pair of usefull monitor-

ing tools; one that can dump the EnhanceIOmetadata fromkernelmemory to userspace,

and one that can parse this information and display it in human-readable form. By using

this setup as a testbed, we have been able to verify the correctness of our approach and

actually prove that data corruption can be eluded when live migration is taking place.

6

2
Background

In this chapter, we provide the necessary background information required to under-

stand the hardware and soware environment targeted by this work. Initially, we review

the basic principles of Virtualization as an ancestral technology of cloud computing.

Next we proceed to explain what exactly is cloud computing and discuss how cloud sys-

tems can be deployed on computer clusters. e next section presents a short overview

of modern storage solutions, outlines an typical OS storage stack, denotes the differ-

ences between block and file storage and examines how storage can be offered by cloud

providers in the form of object stores.

2.1 Virtualization

Virtualization is the process of creating a virtual, rather than actual/physical version of a

computer component, including whole hardware platforms, Operating Systems, storage

devices, and computer network resources. Computer Virtualization has a long history,

spanning nearly half a century. Over the last decade, Virtualization has transformed

the IT landscape and radically changed the way people utilize technology, with the es-

tablishment of Cloud Computing.

2.1.1 A bit of history

We can trace the roots of Computer Virtualization back in 1960s [22][29][11][27], a

time when computers were really big in size. Back then, computers ran programs in

7

8 CHAPTER 2. BACKGROUND

batches which were read from individual punched cards. e punch cards would be di-

rectly loaded or have their contents uploaded onto largemagnetic tapes. emainframe

would then be prepared to load a job, read the data from tape or punch cards, execute

the program and record the output in another tape. is output would be offloaded

and generally either sent to be printed or sent for punch card generation. ere was

no interactive ability between a running program and a user. It was a case of starting a

program and waiting with crossed fingers to see if it produced the desired results hours

or sometimes days later.

In 1959, Christopher Strachey, First Professor of Computation at Oxford University

published his ideas to a paper entitled ‘Time sharing in large fast computers’. Strachey

described what he referred to as multi-programming which included memory protec-

tion, shared interrupts and some kind of interactiveness to allow a user to debug code.

Later on, the traditional approach for a time sharing computer evolved into dividing up

the memory and other system resources between users.

In 1962, the Massachusetts Institute of Technology decided to instigate a new project

called Project MAC (Multiple Access Computer) with a goal to design and build an

advanced time sharing OS (operating system). An interesting fact is that MultiCS was

created as part of Project MAC at MIT and additional research and development was

performed on MultiCS at Bell Labs, where it later evolved into Unix.

In 1967, International Business Machines Cambridge Scientific Center released their

new operating system named CP-40 which stands for Control Program 40. It was devel-

oped to run on System/360Model 40, a custom IBMComputer, and it was a new type of

operating system that provided virtual memory and full hardware Virtualization. While

running, CP would create 14 pseudo machines, later called Virtual Machines, and each

VM would run CMS (Cambridge/Console/Conversational Monitoring System) with a

fixed amount of 256k virtual memory. CMS was a single-user OS designed to be in-

teractive with the user. It provided an interface with CP using privileged instructions

(arguably an ancestor of today’s system calls) and was also capable of presenting a file

system to users. e main advantages of using virtual machines versus a time sharing

operating system was more efficient use of the system because virtual machines were

able to share the overall resources of the mainframe, instead of having the resources

split equally between all users. Security was achieved by letting each user run in a com-

2.1. VIRTUALIZATION 9

pletely separate Operating System. e system was also reliable since no user could

crash the entire system; only their own OS.

A funnote is that in 1972, IBMVM/370was the first systemable to run a virtualmachine

from within another virtual machine, a procedure called virtual machine nesting.

During the 1980s, desktop computing and x86 platform became mainstream with the

introduction of the IBM PC and its clones followed by the Apple Macintosh. In 1985

Intel released the 80386, a 32-bit microprocessor which introduced virtual 8086 mode.

is mode could offer virtualized 8086 processors on the 386 and later chips. In 1987,

Locus Computing Corporation developed Merge/386, a virtual machine monitor that

enabled the direct execution of an Intel 8086 guest operating system under a host Unix

System V Release 2 OS. e virtual machines supported unmodified guest operating

systems and standalone programs such as Microso Flight Simulator. Merge/386 could

runmultiple simultaneous virtual 8086machines as long as guestOS and programswere

using valid 8086 instructions.

In 1998, a company calledVMWarewas established, and in 1999 began selling a product

called VMWare Virtual Platform for the Intel IA-32 architecture. It was the first x86 Vir-

tualization product and later VMWare would emerge as the biggest player in Enterprise

Virtualization.

In 2001, VMWare released twoproducts, called ESXServer andGSXServer. GSXServer

allowed users to run virtual machines on top of an existing operating system such as

Microso Windows. is is known as a Type-2 Hypervisor. ESX Server was a Type-

1 Hypervisor, and did not require a host operating system to run Virtual Machines.

A Type-1 Hypervisor is more efficient than a Type-2 hypervisor since it can be better

optimized for Virtualization, and does not require all the resources it takes to run a

traditional operating system.

In 2003, Xen was released and it was the first open-source x86 hypervisor.

e x86 platform wasn’t originally designed to handle Virtualization but this changed

in 2006 when both Intel (VT-x) and AMD (AMD-V) introduced limited hardware Vir-

tualization support for the x86 architecture that allowed for simpler Virtualization so-

ware but offered very little speed benefits. Greater hardware support, which allowed for

substantial speed improvements, came with later processor models.

10 CHAPTER 2. BACKGROUND

In 2007 KVM was released. It is an open source project that has been integrated with

the Linux kernel and provides Virtualization on Linux-only systems, utilizing hardware

Virtualization support such as Intel VT-x and AMD-V.

2.1.2 Virtualization Today

Virtualization technology today has evolved enough to create usable Virtual Machines

that can be indistinguishable from physical ones. As an example, we note that real world

Operating Systems such as Microso Windows and GNU/Linux flavors can run un-

modified on VMs. On such scenarios, the physical machine that runs the Virtualization

soware is called host, while the Virtual Machine is called guest.

Although other Virtualization platforms exist such as PowerPC, Sparc and ARM, the

extreme majority of Virtualization soware today runs on the x86 architecture.

Prior to 2006, Virtualization of the x86 architecture wasmade possible using techniques

such as binary translation, page table shadowing and I/O device emulation. Binary

translation was mandatory to take care of the privileged instructions issued by the guest

VM. ese instructions needed to be replaced by other instructions of lower privi-

leges since guests are considered userspace applications and have limited access to ac-

tual hardware. Page table shadowing in soware was needed to prevent important data

structures from being modified by the guest OS. For example, the guest OS should

not be allowed to change the actual page table entries. Such actions were emulated in

soware. I/O device emulation was required so that physically absent devices can be

emulated on the guest OS by a device emulator that runs in the host OS.

A different approach is known as Paravirtualization. Paravirtualization is extending the

guest OS with explicit modification so it knows it’s running inside a Virtual Machine.

e hypervisor exposes a soware interface to the virtual machine that is similar but

not identical to that of the underlying hardware. e intent of the modified interface is

to reduce the portion of the guest’s execution time spent performing operations which

are substantially more difficult to run in a virtual environment compared to a non-

virtualized environment. Paravirtualization provides specially defined ‘hooks’ to allow

the guests and host to request and acknowledge the tasks which would otherwise be ex-

ecuted in the virtual domain where execution performance is worse. A successful par-

2.1. VIRTUALIZATION 11

avirtualized platformmay allow the virtual machine monitor or VMM to be simpler, by

relocating execution of critical tasks from the virtual domain to the host domain, and/or

reduce the overall performance degradation of machine-execution inside the virtual-

guest. Paravirtualization requires the guest operating system to be explicitly ported for

the para-API. A conventional OS distribution that is not Paravirtualization-aware can-

not be run on top of a paravirtualizing VMM. However, even in cases where the oper-

ating system cannot be modified, components may be available that enable many of the

significant performance advantages of Paravirtualization.

In 2005 and 2006, Intel and AMD, working independently, created new processor ex-

tensions to the x86 architecture. e first generation of x86 hardware Virtualization ad-

dressed the issue of privileged instructions. e issue of low performance of virtualized

systemmemory was addressed with MMUVirtualization that was added to the chipset

later. is break through was named hardware-assisted Virtualization and offers better

performance while reducing the maintenance overhead of Paravirtualization by ideally

eliminating the changes needed in the guest operating system. Rather than needing to

do soware emulation or binary translation, the hardware extensions do what might be

called “hardware emulation”.

Aer having a fully virtualized system using hardware extensions to accelerate difficult-

to-virtualize parts one may notice that the interface for networks and disks is unneces-

sarily complicated. Since nearly all modern operating system kernels have ways to load

third-party device drivers, it’s a fairly obvious step to create disk andnetwork drivers that

can use the paravirtualized interfaces. is small step, from full Virtualization towards

Paravirtualization, begins to hint at the idea of a spectrum of Virtualization. Today, the

parts that can be fully virtualized or paravirtualized are: disk and network devices, in-

terrupts and timers, the platform, such as the motherboard, device buses, BIOS, legacy

boot, etc and finally the privileged instructions and pagetables. Depending on which

of those parts one chooses to fully virtualize or paravirtualize, a different point on the

Virtualization spectrum is produced.

Nowadays, it is safe to conclude that the term “Virtualization” refers to hardware-assisted

Virtualization enforcing the concept of Paravirtualization to some parts of the guest OS.

12 CHAPTER 2. BACKGROUND

2.1.3 Hypervisor

Ahypervisor or virtualmachinemonitor (VMM) is a piece of computer soware, firmware

or hardware that creates and runs virtual machines. A computer on which a hypervisor

is running one or more virtual machines is defined as a host machine. Each virtual ma-

chine is called a guest machine. e hypervisor manages and oversees the execution of

the guest operating systems and is responsible for creating the illusion of actual hard-

ware, as seen by the guest OS. When the Virtual Machine is running non-privileged

code such as computations, the hypervisor remains idle and the VM code is allowed to

execute on the physical host CPU achieving native performance. However, when the

Virtual Machine issues a privileged instruction such as IO or soware interrupts, the

VM is paused, and the hypervisor is notified to handle this event. In Paravirtualiza-

tion, anything that is slow or difficult to virtualize, is replaced by calls to the hypervisor,

which are called hypercalls.

2.1.4 QEMU

QEMU is a generic and open source machine emulator and virtualizer[18]. QEMU

was written by Fabrice Bellard, it is free soware and is mainly licensed under GNU

General Public License (GPL).When used as a complete machine emulator, QEMU can

run OS and programs made for one architecture (such as an ARM board) on a different

platform. By using dynamic translation, it can achieve very good performance. When

used as a virtualizer, QEMU achieves near native performance by executing the guest

code directly on the host CPU. QEMU supports Virtualization when executing under

the Xen hypervisor or using the KVMkernel module in Linux. Guest operating systems

do not need patching in order to run inside QEMU. When used with KVM, QEMU can

virtualize x86 in an operating mode called ‘KVM Hosting’ in which QEMU deals with

setting up, running, administering and migrating KVM instances. e execution of

the guest is done by KVM on host CPU but QEMU is still involved in the emulation

of hardware devices and peripherals, such as disks, buses, display cards, network cards

and modes of connectivity.

2.1. VIRTUALIZATION 13

2.1.5 KVM

KVM stands for Kernel-based VirtualMachine and it is a full Virtualization solution for

Linux on x86hardware that supports the IntelVTorAMD-VVirtualization extensions[12].

It consists of a loadable kernel module, kvm.ko, which provides the core Virtualization

infrastructure, as well as a processor specific module, kvm-intel.ko or kvm-amd.ko.

Using KVM, one can runmultiple virtual machines running unmodified Linux orWin-

dows images. Each virtual machine has private virtualized hardware: network cards,

disk drives, serial devices, graphics adapter, etc. KVM is open source soware. e

kernel component of KVM is included in mainline Linux, as of 2.6.20. e userspace

component of KVM is included inmainline QEMU, as of 1.3. ey enable running fully

isolated virtual machines at native hardware speeds, for some workloads. KVM uses a

slightly modified QEMU program to instantiate the virtual machine. Once running, a

virtual machine is just a regular process. KVM is part of Linux and uses the regular

Linux scheduler and memory management. is means that KVM is very simple to

use. It is also more featureful; for example KVM can swap guests to disk in order to free

RAM. KVM does not support Paravirtualization for the CPU but may support Paravir-

tualization for device drivers to improve I/O performance. Simply put, KVM is a way

to turn the Linux kernel into a hypervisor by adding a kernel module.

2.1.6 Xen

e Xen Project hypervisor is an open source Type-1 or baremetal hypervisor, which

makes it possible to run many instances of an operating system or indeed different op-

erating systems in parallel on a single machine or host[23]. e Xen Project hyper-

visor is the only Type-1 hypervisor that is available as open source. It is used as the

basis for a number of different commercial and open source applications, such as server

Virtualization, Infrastructure as a Service, desktop Virtualization, security applications,

embedded and hardware appliances. e Xen Project hypervisor runs directly on the

hardware and is responsible for handling CPU, Memory, and interrupts. It is the first

program running aer exiting the bootloader. On top of the hypervisor run a number

of virtual machines. A running instance of a virtual machine is called a “domain” or

“guest”. A special domain, called domain 0 contains the drivers for all the devices in

the system. Domain 0 also contains a control stack to manage virtual machine creation,

14 CHAPTER 2. BACKGROUND

destruction, and configuration. e hypervisor supports running two different types

of guests: Paravirtualization (PV) and Full or Hardware assisted Virtualization (HVM).

Both guest types can be used at the same time on a single hypervisor. It is also possible to

use techniques used for Paravirtualization in an HVM guest and vice versa, essentially

creating a continuum between the capabilities of pure PV and HVM. We use different

abbreviations to refer to these configurations, called HVM with PV drivers, PVHVM

and PVH.

2.1.7 VMWare ESXi

VMWare ESXi, formerly ESX, is an enterprise class, Type-1 hypervisor developed by

VMWare for deploying and serving virtual computers[6]. As a Type-1 hypervisor, ESXi

is not a soware application that one installs in an operating system; instead, it includes

and integrates vital OS components, such as a kernel. Aer version 4.1, VMWare re-

named ESX to ESXi. ESXi replaces Service Console (a rudimentary operating system)

with amore closely integrated OS. ESX/ESXi is the primary component in the VMWare

Infrastructure soware suite. ESX runs on bare metal, without running an operating

system unlike other VMWare products. It includes its own kernel: A Linux kernel is

started first, and is then used to load a variety of specialized Virtualization components,

including ESX, which is otherwise known as the vmkernel component. e Linux ker-

nel is the primary virtual machine; it is invoked by the service console and acts as the

management domain, analogous to Dom0 in Xen. At normal run-time, the vmkernel

is running on the bare computer, and the Linux-based service console runs as the first

virtual machine.

2.1.8 VirtIO

So called “full Virtualization” is a nice feature because it allows you to run any operat-

ing system virtualized. However, it’s slow because the hypervisor has to emulate actual

physical devices such as network cards and hard disks. is emulation is both com-

plicated and inefficient. VirtIO is a Virtualization standard for network and disk device

drivers where just the guest’s device driver knows it is running in a virtual environment,

and cooperates with the hypervisor[28]. is enables guests to get high performance

2.1. VIRTUALIZATION 15

network and disk operations, and gives most of the performance benefits of Paravirtu-

alization. VirtIO was written by Rusty Russel and is chosen to be the main platform for

IO Virtualization in KVM. e host implementation is in userspace by QEMU so no

driver is needed in the host. Under the hood, VirtIOworks by sharingmemory between

host and guest. e latter uses the VirtIO device drivers and instead of usual IO it writes

data to a circular buffer and notifies the former. is simplification grants a significant

performance boost.

2.1.9 Containers

Virtualization as described above is more or less operating system agnostic when it

comes to guest operating systems. e primary advantage of hypervisor-based solu-

tions is that they allow to run a fuller range of operating systems, just about any x86

operating system as a guest on a wide variety of host OS and Virtualization platforms

such as Linux KVM, Xen or VMWare. Performance, however, is likely to take at least

a slight hit when running a VM on a hypervisor. By introducing an extra layer of ab-

straction between the operating system and hardware with hypervisor Virtualization,

definitely there will be a performance impact as a result. Also a complete OS stack must

exist for each guest when using hypervisor Virtualization, from the kernel to libraries,

applications, and so on. is will lead to additional storage overhead and memory use

from running OS entirely separate.

An alternative to hypervisor Virtualization is container based Virtualization, also called

operating system Virtualization [26][13][4]. One of the first container technologies on

x86 was actually on FreeBSD, in the form of FreeBSD Jails. Instead of trying to run an

entire guest OS, container Virtualization isolates the guests, but doesn’t try to virtualize

the hardware. Instead, there are containers for each virtual environment.

With container-based technologies, a patched kernel is needed and also user tools to run

the virtual environments. e kernel provides process isolation and performs resource

management. is means that even though all the virtual machines are running under

the same kernel, they effectively have their own filesystem, processes, memory, devices,

etc.

e net effect is very similar to hypervisor Virtualization, and there’s a good chance

16 CHAPTER 2. BACKGROUND

that users of the guest systems will never know the difference between using a system

that’s running on bare metal, under a hypervisor, or in a container. Usually containers

are limited to a single operating system, the same one the host is running. Although

hypervisor Virtualization usually has limits in terms of howmany CPUs and howmuch

memory a guest can address, the container-based solutions should be able to address as

many CPUs and as much RAM as the host kernel.

2.2 Cloud computing and cluster management

2.2.1 What is Cloud Computing

Cloud computing, also known as on-demand computing, is a kind of Internet-based

computing, where shared resources and information are provided to computers and

other devices on-demand. It is a model for enabling ubiquitous, on-demand access to a

shared pool of configurable computing resources.

Cloud computing and storage solutions provide users and enterprises with various ca-

pabilities to store and process their data in third-party data centers. It relies on the

sharing of resources to achieve economies of scale, similar to a utility like the electricity

grid over a network. At the foundation of cloud computing is the broader concept of

converged infrastructure and shared services. Cloud computing, or in simpler short-

hand just “the cloud”, also focuses on maximizing the efficiency of the shared resources.

Cloud resources are usually not only shared by multiple users but are also dynamically

reallocated per demand. is can work for allocating resources to users. is approach

helpsmaximize the use of computing power while reducing the overall cost of resources

by using less power, air conditioning, rack space, etc tomaintain the system. With cloud

computing, multiple users can access a single server to retrieve and update their data

without purchasing licenses for different applications.

e origin of the term cloud computing is unclear. e expression cloud is commonly

used in science to describe a large agglomeration of objects that visually appear from

a distance as a cloud and describes any set of things whose details are not inspected

further in a given context.

e concept of resource sharing for better manageability and efficiency that stands in

2.2. CLOUD COMPUTING AND CLUSTER MANAGEMENT 17

the core of cloud computing is not new, as can be seen from the previous section where

we talked about centralized compute resources shared among users during the 1970s.

Virtualization is themain enabling technology for cloud computing. Virtualization so-

ware separates a physical computing device into one or more “virtual” devices, each of

which can be easily used and managed to perform computing tasks. With operating

system-level Virtualization essentially creating a scalable system of multiple indepen-

dent computing devices, idle computing resources can be allocated and used more ef-

ficiently. Virtualization provides the agility required to speed up IT operations, and

reduces cost by increasing infrastructure utilization. Autonomic computing automates

the process throughwhich the user can provision resources on-demand. Byminimizing

user involvement, automation speeds up the process, reduces labor costs and reduces

the possibility of human errors. ough service-oriented architecture advocates ‘ev-

erything as a service’, cloud computing providers offer their ‘services’ according to dif-

ferent models, which happen to form a stack: Infrastructure-, Platform- and Soware-

as-a-service[25]. In the following paragraphs, we give a brief overview of these core

cloud technologies and we emphasize on IaaS, since our work targets the context of

IaaS providers.

Soware as as service, SaaS

In the Soware-as-a-Service (SaaS) model, users gain access to application soware and

databases. Cloud providers manage the infrastructure and platforms that run the ap-

plications. SaaS is sometimes referred to as ‘on-demand soware’ and is usually priced

on a pay-per-use basis or using a subscription fee. In the SaaS model, cloud providers

install and operate application soware in the cloud and cloud users access the soware

from cloud clients. Cloud users do not manage the cloud infrastructure and platform

where the application runs. is eliminates the need to install and run the application

on the cloud user’s own computers, which simplifies maintenance and support. Cloud

applications differ from other applications in their scalability, which can be achieved

by cloning tasks onto multiple virtual machines at run-time to meet changing work de-

mand. Load balancers distribute the work over the set of virtual machines. is process

is transparent to the cloud user, who sees only a single access-point. To accommodate

a large number of cloud users, cloud applications can be multitenant, meaning that any

18 CHAPTER 2. BACKGROUND

machine may serve more than one cloud-user organization.

Platform as as service, PaaS

PaaS vendors offers a development environment to application developers. eprovider

typically develops toolkit and standards for development and channels for distribution

and payment. In the PaaS models, cloud providers deliver a computing platform, typi-

cally including the Operating System, programming-language execution environment,

database, and aWeb Server. Application developers can develop and run their soware

solutions on a cloud platform without the cost and complexity of buying and managing

the underlying hardware and soware layers.

Infrastructure as as service, IaaS

In the most basic cloud-service model providers of IaaS offer computers, physical or

more oen virtual machines, and other resources. IaaS refers to on-line services that

abstract user from the detail of infrastructure like physical computing resources, loca-

tion, data partitioning, scaling, security, backup etc. A hypervisor, such as Xen, KVMor

VMWare ESX/ESXi runs the virtual machines as guests. Pools of hypervisors within the

cloud operational system can support large numbers of virtual machines and the abil-

ity to scale services up and down according to customers’ varying requirements. IaaS

clouds oen offer additional resources such as a virtual-machine disk-image library,

raw block storage, file or object storage, firewalls, load balancers, IP addresses, virtual

local area networks (VLANs), and soware bundles. IaaS cloud providers supply these

resources on-demand from their large pools of equipment installed in data centers. To

deploy their applications, cloud users install Operating-System images and their appli-

cation soware on the cloud infrastructure. In this model, the cloud user patches and

maintains the operating systems and the application soware. Cloud providers typi-

cally bill IaaS services on a utility computing basis: cost reflects the amount of resources

allocated and consumed.

Our work is strongly related to the IaaS cloud model. We aim to integrate a block-

level caching solution with existing IaaS platforms and offer significant performance

improvements to the storage subsystem of hosted instances.

2.2. CLOUD COMPUTING AND CLUSTER MANAGEMENT 19

2.2.2 Amazon Web Services

A well-known example of IaaS services is AmazonWeb Services (AWS), which is a col-

lection of remote computing services, also called web services, that make up a cloud

computing platform offered by Amazon.com[2]. ese services operate from 11 geo-

graphical regions across the world. e most central and well-known of these services

arguably include Amazon Elastic Compute Cloud, also known as “EC2”, and Amazon

Simple Storage Service, also known as “S3”. Amazon markets AWS as a service to pro-

vide large computing capacity more quickly and more cheaply than a client company

building an actual physical server farm.

2.2.3 Google Cloud Platform

Another example of IaaS provider is Google Cloud Platform which is a cloud com-

puting platform by Google that offers hosting on the same supporting infrastructure

that Google uses internally for end-user products like Google Search and YouTube[10].

Cloud Platform provides developer products to build a range of programs from simple

websites to complex applications. Google CloudPlatform is a part of a suite of enterprise

solutions fromGoogle forWork andprovides a set ofmodular cloud-based serviceswith

a host of development tools. For example, hosting and computing, cloud storage, data

storage, translations APIs and prediction APIs.

2.2.4 OpenStack

OpenStack is a free and open source cloud computing soware platform and it is usu-

ally deployed as an infrastructure-as-a-service (IaaS)[16]. e technology consists of a

group of interrelated projects that control pools of processing, storage, and networking

resources throughout a data centerwhich usersmanage through aweb based dashboard,

through command-line tools, or through a RESTful API. OpenStack.org releases it un-

der the terms of theApache License. OpenStack has amodular architecturewith various

code names for its components, such as Nova for compute which is the main part of an

IaaS system and Swi for the Object Storage.

20 CHAPTER 2. BACKGROUND

2.2.5 Ganeti

e most important cloud soware targeted by this work is Ganeti [9][7][8]. We have

used a Ganeti cluster for integration with our cache framework and for performing ba-

sic test and benchmarks. Ganeti is a cluster virtual server management soware tool

built on top of existing Virtualization technologies such as Xen or KVM and other

open source soware. Ganeti requires pre-installed Virtualization soware on servers

in order to function. Once installed, the tool assumes management of the virtual in-

stances. Ganeti controls Disk creation management, Operating system installation for

instances, and also Instance Management such as startup, shutdown, and failover be-

tween physical systems. Ganeti is designed to facilitate cluster management of virtual

servers and to provide fast and simple recovery aer physical failures using commodity

hardware. Ganeti provides support for Xen and KVM Virtualization, support for fully

and para- virtualized instances, support for live migration, for disk management and

others. Ganeti is developed by Google and the first design included a solution stack

that uses either Xen or KVM as the Virtualization platform, LVM for disk management,

and optionally DRBD for disk replication across physical hosts. Ganeti is essentially a

wrapper around existing hypervisors whichmakes it convenient for system administra-

tors to set up a cluster.

2.2.6 Synnefo

Synnefo[21] is a complete open source cloud stackwritten in Python that providesCom-

pute, Network, Image, Volume and Storage services, similar to the ones offered by AWS.

Synnefo manages multiple Google Ganeti clusters at the back-end that handle low-level

VM operations and uses Archipelago to unify cloud storage. To boost 3rd-party com-

patibility, Synnefo exposes the OpenStack APIs to users. Synnefo is being developed by

GRNET (Greek Research and Technology Network), and is powering two of its public

cloud services, the ~okeanos service, which is aimed towards the Greek academic com-

munity, and the ~okeanos global service, which is open for all members of the GÉANT

network. In June 2010, GRNET decided to create a complete, AWS-like cloud ser-

vice (Compute/Network/Volume/Image/Storage). is service, called ~okeanos, aims

to provide the Greek academic and research community with access to a virtualized in-

frastructure that various projects can take advantage of experiments, simulations and

2.3. STORAGE IN THE CLOUD 21

labs. Given the non-ephemeral nature of the resources that the service provides, the

need arose for persistent cloud servers. In search for a solution, in October 2010 GR-

NET decided to base the service on Google Ganeti and to design and implement all

missing parts in-house. Synnefo has been designed to be deployed in any environment,

from a single server to large-scale configurations. All Synnefo components use an intu-

itive settingsmechanism that adds and removes settings dynamically as components are

getting added or removed from a physical node. All settings are stored in a single loca-

tion. Synnefo is modular in nature and consists of the following components: Astakos

as an Identity/Account service, Pithos for File and Object Storage services and Cyclades

for Compute, Network, Image and Volume services.

2.3 Storage in the Cloud

Cloud storage is a model of data storage where the digital data is stored in logical pools,

the physical storage spans multiple servers and locations, and the physical environment

is typically owned and managed by a hosting company. ese cloud storage providers

are responsible for keeping the data available and accessible, and the physical environ-

ment protected and running. Cloud storage is based on highly virtualized infrastruc-

ture and is like broader cloud computing in terms of accessible interfaces, near-instant

elasticity and scalability, multi-tenancy, and metered resources. Cloud storage typically

refers to a hosted object storage service, but the term has broadened to include other

types of data storage that are now available as a service, like block storage. Cloud stor-

age is made up of many distributed resources, but still acts as one and is highly fault

tolerant through redundancy and distribution of data.

2.3.1 Basics of Computer Storage

e core of computer storage is built around Non-Volatile Memory or NVM. Non-

volatile memory is computer memory that can retrieve stored information even aer

having been power cycled, that is turned off and back on. Examples of non-volatile

memory include read-only memory, flash memory, and most types of magnetic com-

puter storage devices such as hard disk drives and magnetic tapes. Such type of devices

can be found on every device that needs to store information and data, from mobile

22 CHAPTER 2. BACKGROUND

phones and digital cameras, to common desktop computers and laptops and to cloud

computing nodes, cluster members and supercomputers. All important data that needs

to be saved permanently and possibly later retrieved and processed is stored in NVM.

e most common examples of NVM are hard disk drives and Flash memory. A hard

disk drive or HDD, is a data storage device used for storing and retrieving digital infor-

mation using one or more rigid ‘hard’ rapidly rotating disks called platters coated with

magnetic material. e platters are paired with magnetic heads arranged on a mov-

ing actuator arm, which read and write data to the platter surfaces. Data is accessed

in a random-access manner, meaning that individual blocks of data can be stored or

retrieved in any order rather than sequentially. Since being introduced in 1960s, Hard

Disk Drives have become dominant as secondary storage devices and have evolved in

many ways, providing bigger capacity and faster performance while lowering the cost

per unit of storage. Also their reliability and lifespan has been greatly improved and

their size has been constantly shrinking.

In the field of Non-Volatile Memory devices, the main competitor of HDDs are SSDs.

SSDs are really important for our work because they are faster than HDDs and can

be used as block-level caches. A solid-state drive or SSD is a solid-state storage de-

vice that uses integrated circuit assemblies as memory to store data persistently. SSD

technology primarily uses electronic interfaces compatible with traditional block in-

put/output (I/O) hard disk drives, which permit simple replacements in common ap-

plications. SSDs have no moving mechanical components. is distinguishes them

from traditional electromechanical magnetic disks such as hard disk drives (HDDs) or

floppy disks, which contain spinning disks and movable read/write heads. Compared

with electromechanical disks, SSDs are typically more resistant to physical shock, run

silently, have lower access time, and less latency. Most SSDs use NAND-based flash

memory which retains data without power.

Due to the mechanical nature of HDDs, the time needed to access data is limited by the

speed of rotating disks and the movement of read/write heads. Seek time is a measure

of how long it takes the head assembly to travel to the track of the disk that contains

data. Typical seek time for common HDDs is about 10ms, dropping down to 4ms for

high-end server drives. Seek time is an important factor of latency considering a 10ms

delay for each block I/O operation of a poorly designed request pattern. SSDs, having no

2.3. STORAGE IN THE CLOUD 23

mechanical parts, do not suffer such performance penalties and thus they respond faster.

To mitigate this drawback, higher levels of the storage stack, such as the OS kernel and

the filesystem, are oen designed with rotational latency in mind. ey tend to produce

I/O load able to be served with a single movement of the head, rather than moving

back and forth. is trick has greatly improved the performance and responsiveness of

applications.

In terms of data transfer rate, commodity HDDs can transfer data up to 250MB/s as-

suming the head is correctly positioned and also assuming sequential I/O. On the other

hand, SSDs can transfer data at about 300MB/s or even up to 700MB/s for high-end

enterprise drives. Although SSDs seem to be an obvious choice when talking about

performance, there is a catch. Except from being more expensive than HDDs per MB,

SSDs have a lot shorter life span due to wearing off. Each block can support a finite

number of writes before becoming unusable. So, if a particular block was programmed

and erased repeatedly without writing to any other blocks, that block would wear out

before all the other blocks, thereby prematurely ending the life of the SSD. For this rea-

son, SSD controllers use a technique called wear leveling to distribute writes as evenly

as possible across all the flash blocks in the SSD. As a final note we claim that there’s not

an obvious choice to me made between HDDs and SSDs and hybrid solutions emerge,

as it will be seen in the following sections.

2.3.2 e OS storage stack

To better understand the path data follows from application level down to NVM, a full

storage stack is examined in this section. Without loss of generality, the Linux storage

stack is hereby used as an example of a modern Operating System Storage Stack. A

simplified top-down view of the Linux I/O stack is shown in the following figure, and

following that we talk about each layer in a bottom-up fashion.

• Applications

• VFS Layer

• FS

• Page Cache

24 CHAPTER 2. BACKGROUND

• Generic Block Layer

• Block IO Scheduling Layer

• Block Device Driver Layer

• Actual HDD

Physical Disk and Drive Controller

e on-device disk controller exists at the lowest level of the Stack and it is the hardware

part which empowers the communication with the disk drive. Modern disk controllers

are integrated into the disk drive, such as built-in SCSI controllers. e controller is the

component that enables the drive to be connected to the computer I/O bus, providing an

interface for communication. emost common types of interfaces provided nowadays

by disk controllers are PATA (IDE) and Serial ATA for home use. High-end disks use

SCSI, Fibre Channel or Serial Attached SCSI (SAS).

Apart from access to the medium, the disk controller also embeds extra functionality

such as intelligent command reordering, a small cache and a barrier operation. Disk

controllers can also control the timing of access to flash memory which is not mechan-

ical in nature, as in SSDs.

With Tagged Command Queuing (TCQ), the drive can make its own decisions about

how to order the requests and in turn relieve the operating system from having to do

so. For efficiency the sectors are serviced in order of proximity to the current head

position, rather than in the order received. e result is that TCQ can improve the

overall performance of a hard drive if it is implemented correctly.

Native Command Queuing (NCQ) is an extension of TCQ and also allows hard disk

drives to internally optimize the order in which received read and write commands are

executed. is can reduce the amount of unnecessary drive head movement, resulting

in increased performance. NCQ differs from TCQ in that, with NCQ, each command is

of equal importance, but NCQ’s host bus adapter also programs its own first party DMA

engine with CPU-given DMA parameters during its command sequence whereas TCQ

interrupts the CPU during command queries and requires it to modulate the ATA host

2.3. STORAGE IN THE CLOUD 25

bus adapter’s third party DMA engine. Both NCQ and TCQ have a maximum queue

length of 32 outstanding commands.

Another feature of the device controller is that allows the host to specifywhether it wants

to be notifiedwhen the data reaches the disk’s platters, orwhen it reaches the disk’s buffer

or on-board cache. Assuming a correct hardware implementation, this feature allows

data consistency to be guaranteedwhen the disk’s on-board cache is used in conjunction

with system calls like fsync. e associated write flag, which is borrowed from SCSI, is

called Force Unit Access (FUA).

Block Device Driver Layer

One step above the on-disk drive controller, lies a mixture of hardware support and low

level kernel code and device drivers, arbitrarily entitled as Block Device Driver Layer

by our schema. is part of the stack is device-specific and is responsible for actually

issuing the block I/O operations to the device. is is mostly done by setting up DMA

for the physical data transfer between block devices and kernel memory pages.

Direct memory access or DMA is a feature of computer systems that allows certain

hardware subsystems such as block devices and network cards to access main system

memory independently of the central processing unit. Without DMA, when the CPU is

using programmed input/output, it is typically fully occupied for the entire duration of

the read or write operation, and is thus unavailable to perform other work. With DMA,

the CPU first initiates the transfer, then it does other operations while the transfer is in

progress, and it finally receives an interrupt from the DMA controller when the opera-

tion is done. If the device supports scatter/gather I/O, then the block device driver’s job

is to create a single DMA operation, which is much easier than creating a DMA map-

ping for each block I/O operation. Moreover, since this device driver is aware of the

special capabilities of the device, it may issue manufacturer-specific commands to the

disk, if higher levels of the stack request it.

is layer typically also includes a device driver for the Host Bus Adapter or HBA. is

component allows the computer to talk to a peripheral bus such as PCI and SBus. Com-

mon host adapters are integrated into motherboards of modern computers for typical

ATA, IDE and USB devices, but also PCI-X or ISA cards exist to allow connecting with

SCSI, SAS, Fibre Channel, eSATA and InfiniBand devices.

26 CHAPTER 2. BACKGROUND

Block I/O Scheduling Layer

On top of the Block Device Driver layer is the Block I/O Scheduling Layer. is is the

part of the Linux kernel where block I/O operations are created as instructed by up-

per levels of the stack, managed and later dispatched to the device driver part below.

e Block I/O layer is device agnostic, meaning that the same piece of kernel code of-

fers functionality for many block devices without knowing any further details about the

device itself.

e basic building block of the Linux kernel block subsystem since kernel version 2.6 is

the struct bio. Each bio structure represents a block I/O operation by holding a block

device start sector, the size of data to be transferred and a list of 3-tuples, each defining a

struct page, a start offset and a size in bytes. For a read operation, a bio describes that

the set of device blocks starting with the block device start sector and adjacent sectors

until size reaches the size described by the bio should be transferred to the pages pointed

by the list of 3-tuples. For a write operation, a bio states that data pointed to by the list of

3-tuples should be written to disk, starting with the bio start sector and writing a total of

bio size data. e nature of bio structure implies some limitations. Namely, a bio cannot

represent both a read and write operation. e size of I/O to be performed for a single

bio is also restricted by the block device driver and it is limited by the capabilities of the

actual device. Finally, a bio can refer to many different memory pages and to different

start offsets within them, but it may only refer to contiguous sectors on the block device.

In other words, a single read bio can read many adjacent device sectors and write them

tomany different kernel buffers inmemory, and respectively awrite bio can gathermany

different data from different points in memory and write them to a set of neighboring

device sectors. In a struct bio, as defined in linux/bio.h, a lot more information is also

stored, such as a pointer to the block device this bio refers to and others used mainly in

keeping track of ongoing block I/O operations and extra accounting and housekeeping

tasks. With this short description of a bio structure in mind, it is easy to describe a

wrapper structure called struct request.

Essentially a request struct contains a linked list of struct bios along with some infor-

mation on the total size of data to be transferred and others. Although a struct bio is the

simplest form of an block I/O operation and refers to sets of blocks to be transferred, it

is safe to characterize a request structure in kernel space as a high level block I/O request

2.3. STORAGE IN THE CLOUD 27

that could have been created by some higher level entity.

Request structs, aer being created, are kept inside queues, called request queues or

struct request_queue. In the kernel, there is one request queue for each block device.

Not only is this struct a queue for block I/O requests, but it also holds many useful

information about those requests, many different parameters about the state of the block

device and the service-able requests and finally it also implements the I/O scheduler or

elevator. Simply put, a request queue is the place of kernel memory where requests are

stored until dispatched to the device.

Request queues provide ground for request preprocessing and scheduling. e nature of

struct bio, thus referring to contiguous device sectors, allows the request queue tomerge

two different request structs into one if the bio structs contained in those requests are

found to be adjacent on disk. ere are two types of merging, one called front merging

and one called back merging. When two request structs are merged, they are removed

from the request queue and a new request structure is allocated and placed into the

queue. It is clear that by merging requests, the kernel is able to create bigger coalesced

I/O requests that are more efficiently serviced by rotating hard disk drives with a single

movement of the read/write head.

e part of the request queue that handles this types of operations is called the I/O

scheduler or elevator. e scheduler is also responsible for forcing service policies to

requests, for example by reordering the requests and giving priority to important block

I/O operations over other less important ones. Depending on the merging policy, the

reordering policy and the various accounting tasks that each scheduler utilizes, there

are currently many different schedulers available.

One of them is called ‘CFQ’ and stands for ‘completely fair queue’. It is pretty straight-

forward to see that this elevator does not include extra logic for a much better issuing

order. Using a CFQ elevator should be suitable for most desktops and every day linux

boxes, where responsiveness to user actions is a critical parameter. Another elevator is

called ‘anticipatory’. When using this scheduler, aer receiving a block I/O request, the

kernel waits for an other possibly adjacent in terms of device sectors block I/O request

to come. If this happens, the requests are then merged, before sent to the device. An

other one is the ‘deadline’ elevator. is one keeps track of how long do some requests

stay in the request queue and enforces an aging policy by not allowing requests to wait

28 CHAPTER 2. BACKGROUND

for a long period of time. For most server loads like databases and cloud computing

services, ‘anticipatory’ and ‘deadline’ elevators should make a good choice. Finally, one

more elevator of great importance is the ‘noop’ scheduler. is one is meant to be used

with flash memory disks such as SSDs which do not depend on the order of block I/O

requests to achieve great performance since they do not have moving parts. As a result,

when using an SSD, one could use the ‘noop’ elevator.

e main user of the request queue structure is the request function. is function is

called asynchronously by the kernel and it is expected to make some progress with the

pending requests in the request queue. It is not required to actually complete any block

I/Ooperations since they are purely asynchronous. e request function is used tomake

sure that the requests will eventually be serviced. e request function could also call

the elevator and try to perform some kind of merging and/or reordering of the requests.

Aer having covered bios, requests, request queues, elevators and the request function,

one final note on the Block I/O Scheduling Layer is about plugging. e kernel can

control the request queue in two ways, by either plugging or unplugging it. When the

request queue is plugged, a short time delay is introduced to allow some more request

processing to happen such as merging and reordering. e request queue is then un-

plugged, which can be explained as a ‘dispatch to disk’ operation. Along with some bio

flags, the act of unplugging is used to force a barrier between block I/O requests.

Generic Block Layer

Above the Block I/O Scheduling Layer, there is a thin part called ‘Generic Block Layer’.

Much of the actual block I/O creation and processing is handled by the lower level of the

storage stack, so this layer serves block devices at a higher level of abstraction. Here one

may find code that creates logical block devices and maps physical disks and partitions

to logical ones. For example, the Linux DeviceMapper framework is found in this layer,

that can create many sophisticated mappings, enabling data replication, raid, and other

logic. Moreover, block-level caches such as dmcache and flashcache, as described later

are generally implemented in this layer.

Another important component of this level is a mapping tool called ‘DRBD’. DRBD

stands for Distributed Replicated Block Device and it layers logical block devices over

existing local block devices. en it performs synchronous replication of data between

2.3. STORAGE IN THE CLOUD 29

the logical block device and other logical block devices, found on different hosts on the

same cluster. In otherwords, DRBD is a kernelmodule that tracks block I/O activity on a

given block device and replicates these operations on other block devices across a LAN

network using TCP traffic. DRBD introduces the concept of Primary and Secondary

nodes. Primary node is the node which actually issues block I/O and utilizes the block

device, while secondary node is the one that mimics the block I/O operations. DRBD

can also be used for asynchronous replication.

Page Cache

On top of the Generic Block Layer, we see the ‘Page Cache’ layer. is level is essentially

memory pages used by the kernel as a write-back cache to hold data coming from and

going to block and other devices. e Linux kernel can keep some blocks from HDDs

and save them to unused memory pages resulting in quicker access to the contents of

cached pages and overall performance improvement. Memory pages from page cache

are later flushed to disk, to achieve consistency and persistently save data to HDD.

Potential OS crash would lead to data loss, if data is stored in the page cache but not

in NVM. For that reason, applications can choose either to completely avoid the page

cache, or they can enforce data writes to reach the disk. To avoid the cache completely,

one can use the O_DIRECT flag. is way, instead of using kernel memory from page

cache, the kernel uses the userspace address of an application buffer and directly sets

up block I/O requests and bios to perform the I/O operation to disk. Alternatively, the

userspace application could issue specific system calls, such as fsync and its variants to

force a persistent write that will reach the medium.

Filesystems

e filesystem layer is responsible for creating the notion of files and directories on top

of device blocks. is is achieved by mapping files and directories to physical blocks on

disk. Without a file system, information placed in a storage areawould be one large body

of data with no way to tell where one piece of information stops and the next begins. By

separating the data into individual pieces, and giving each piece a name, the information

is easily separated and identified. e file system keeps track of which disk blocks hold

30 CHAPTER 2. BACKGROUND

the contents of each file, keeps holds information about files stored inside directories

and also stores metadata such as name, size, modification time, user access permissions

and others. It is responsible for arranging storage space; reliability, efficiency, and tuning

with regard to the physical storage medium are important design considerations.

It is common to store filesystemcharacteristics on a superblock ondisk, including filesys-

tem size, block size, empty and filled blocks and their respective counts. During run-

time, if a filesystem’s superblock cannot be accessed, the filesystem cannot be mounted

and thus is unusable by the OS. For that reason, the superblock is replicated across the

disk or partition at different block offsets.

Virtual File System Layer

eVirtual File System layer can be seen as a superset of filesystems. It combines many

different filesystems that can be either block-based, network- based, or even memory-

based into one hierarchical tree. Moreover, there are pseudo files in the VFS created

by the kernel that may represent computer devices or running system parameters. By

mounting different filesystems into nodes, the user applications cannot tell the differ-

ence between files and thus is created a form of homogeneity. Aer all, ‘Everything is a

file’.

Applications in Userspace

Finally, on top of the storage stack we find the user space applications and programs.

ey interact with files found on the VFS and they request to read and write data by

issuing system calls such as ‘open’, ‘read’, and ‘write’.

2.3.3 SAN Appliances and Shared Storage

Having covered the various types of disk drives and their special characteristics, we will

now present the type of computer storage commonly used in cloud environments and

thus in our work, for example SAN appliances and shared block storage.

HardDiskDrives and Solid StateDisks are usually referred to asDirect Attached Storage

or DASwhen they can be directly accessed through aHost Bus Adapter by the computer

2.3. STORAGE IN THE CLOUD 31

using them. e protocol used for this communication can be one of ATA, SATA, SCSI,

SAS, USB, IEEE 1934, FibreChannel or others.

In contrast to DAS, Network Attached Storage or NAS and Storage Area Network or

SAN solutions exist to separate the storage users and the storage providers, inside a

Local Area Network.

NAS is a file-level computer data storage server connected to a computer network pro-

viding data access to a heterogeneous group of clients. NAS is specialized for serving

files either by its hardware, soware, or configuration. Besides being networked, NAS is

mainly used to provide both storage and a filesystem on top of it. NAS requires clients

to use a special network file system protocol such as NFS to access remote files and di-

rectories. With NFS, users and programs can access files on remote systems as if they

were stored locally. Network File System (NFS) is a distributed file system protocol orig-

inally developed by Sun Microsystems and it is used to coordinate and manage access

to shared files, avoiding data corruption. However, storing data in form of files has little

adoption in cloud environments for scalability reasons.

Instead of NAS, SAN appliances are installed and widely used in cloud configurations

and clusters. A storage area network or SAN is a network that provides access to con-

solidated, block-level data storage. A SAN does not provide file abstraction, only block-

level operations. When compared with NAS, one could argue that a SAN appliance is

like a NAS but without the filesystem logic. Clients of SAN storage can either commu-

nicate at a block-level or they can mount the remote block devices as local and build

special filesystems on them. Sharing storage usually simplifies storage administration

and adds flexibility. Most storage networks use the SCSI protocol for communication

between servers and disk drive devices. A mapping layer to other protocols is used to

form a network such as iSCSI (SCSI over TCP/IP), Fibre Channel Protocol (FCP) which

is SCSI over Fibre Channel, and others. SANs oen use a Fibre Channel fabric topology,

an infrastructure specially designed to handle storage communications.

A SAN appliance creates a medium reachable by all of the subscribers in a network,

allowing simultaneous access by them. is type of storage device is called shared stor-

age. A shared storage device has multiple ports or a way to identify and track multiple

sessions in a single port. Some examples of shared storage include an IEEE 1934 device

with two ormore physical ports, a SAN appliance, a RADOS cluster, and an iSCSI server

32 CHAPTER 2. BACKGROUND

with DAS devices. e semantics of a shared storage device define that the results of an

operation issued by one user are visible to other users that have access to the medium.

NAS severs and SAN appliances, can be characterized as shared storage either when ac-

cessed at a block-level or when a filesystem is used. Filesystems implemented to work

with SANs are known as shared-disk file systems or distributed file systems or even

parallel filesystems. ese file systems add mechanisms for concurrency control and

provide a consistent and serializable view of the file system, avoiding corruption and

unintended data loss even when multiple clients try to access the same files at the same

time. It is a common practice for shared-disk filesystems to employ some sort of a fenc-

ingmechanism to prevent data corruption in case of node failures, because an unfenced

device can cause data corruption if it loses communication with its sister nodes, and

tries to access the same information other nodes are accessing. Concurrency control

becomes an issue when more than one clients are accessing the same file or block and

they want to update it. Updates to the file from one client should not interfere with

access and updates from other clients. In shared-disk file systems, concurrency issues

are resolved using a Distributed Lock Manager or DLM which serializes access to com-

mon files and data structures. Examples of shared-disk filesystems include OCFS2[15],

GPFS[19], ZFS[24] and CephFS[3].

However, in most cloud environments that host VM instances, file level access to shared

storage is not needed. Each VM can have one or more virtual hard disks attached to it.

But even virtual hard disks are nothing more than a set of blocks, just as the physical

ones. So, it is a straightforward step to utilize parts of the block storage offered by a SAN

appliance directly as VM disks, rather than using a filesystem and creating disks as files

on top of it. As a result, host nodes reserve a set of blocks from a SAN, create a local

block device that is backed by those blocks and offer the local block device as a virtual

disk to the VM.

is approach not only avoids the need for a distributed file system, but it also elim-

inates the need for concurrency control and shared access. Each VM only reads and

writes blocks from each own virtual disk, and these blocks aremapped to different phys-

ical SAN blocks, hence concurrent access scenarios are not possible by definition. It is

exactly like treating the SAN appliance as a bunch of separate block devices. It is impor-

tant to note however, that shared storage rules still apply. If for some reason, two VM

2.3. STORAGE IN THE CLOUD 33

instances were to use the same block device backed by the same SAN appliance, then

the reads and writes of the one would be visible to the other. It is the same concept of

shared storage, applied to VM instances instead of cloud hosts.

2.3.4 Object Stores

File and block storage are well defined and have been in use for a long time, but a new

type of storage is now available and offered by cloud providers, called Object Store. Ob-

ject storage, also referred to as object-based storage, is a general term that refers to the

way in which work is organized in units of storage, called objects.

Objects are highly scalable, simple, cheap, distributed storage for the cloud. Every object

contains three things. Firstly, the data itself. e data can be anything, from a family

photo to a 400,000-page manual for assembling an aircra or even binary data, part of a

virtual hard disk etc. Secondly, an object contains an expandable amount of metadata.

e metadata is defined by whoever creates the object storage; it contains contextual

information about what the data is, what it should be used for, its confidentiality, or

anything else that is relevant to the way in which the data is used. ere is no limit on

the type or amount ofmetadata, whichmakes object storage powerful and customizable.

Lastly, the object has a globally unique identifier. e identifier is an address given to the

object in order for the object to be found over a distributed system. is way, it’s possible

to find the data without having to know the physical location of the data, which could

exist within different parts of a data center or different parts of the world.

Using objects as building blocks, object stores can host files of any type and size, in-

cluding Operating System Images and Virtual Machine Disks. Object storage provides

programmatic interfaces to allow applications to manipulate data. At the base level,

this includes CRUD functions for basic read, write and delete operations. Some object

storage implementations go further, supporting additional functionality like object ver-

sioning, object replication, andmovement of objects between different tiers and types of

storage. Most API implementations are REST-based, allowing the use of many standard

HTTP calls.

34 CHAPTER 2. BACKGROUND

Pithos

Pithos+ is theObject Storage service offered byGRNETas part of the~okeanos project[17].

It is based on OpenStack Object Storage API and it has a layered, modular implementa-

tion. It is built to scale, and it uses deduplication techniques such as content hashing for

efficiency. It also supports object versioning and it can be queried for object metadata.

Ceph and RADOS

Ceph[1] is a free soware storage platform that stores data on a single distributed com-

puter cluster, and provides interfaces for object-, block- and file-level storage. Ceph

aims primarily to be completely distributed without a single point of failure, scalable to

the exabyte level, and freely available. Ceph replicates data and makes it fault-tolerant,

using commodity hardware and requiring no specific hardware support. As a result of

its design, the system is both self-healing and self-managing, aiming to minimize ad-

ministration time and other costs. Ceph implements distributed object storage. Ceph’s

soware libraries provide client applications with direct access to the reliable autonomic

distributed object store (RADOS) object-based storage system, and also provide a foun-

dation for some of Ceph’s features, including RADOS Block Device (RBD), RADOS

Gateway, and the Ceph File System.

e following figure, taken from the official Ceph Documentation, can best describe

the Ceph layered architecture. All data are physically stored in the form of objects re-

siding in a RADOS cluster; the nodes that actually save data to Hard Disk Drives are

called “OSDs”. On top of the object store, the Ceph Storage Stack soware can offer di-

rect object access through a programmable interface called “LIBRADOS”, or it can offer

higher level entities such as block devices and filesystems. e Ceph component that

exposes usable block devices that are backed by objects is called “RBD” and stands for

“RADOS Block Device”. Such block devices can be made locally available with a proce-

dure called “mapping” by any Operating System that supports the “LIBRADOS” library

and then be used like a common block device. e Ceph component that exposes a

POSIX-compliant distributed filesystem is called “CephFS” and can be used as a paral-

lel filesystem over shared storage. Special Ceph nodes are responsible for administering

access to filesystem metadata and they are called “MDS”, which stands for “MetaData

2.3. STORAGE IN THE CLOUD 35

Ceph Layered Architecture

Servers”. Finally, some Ceph nodes act as monitors and they are called “MONs”. It is

their duty to keep track of the Ceph nodes that are up and running and provide admin-

istrative information.

36

3
System Analysis and Design

In this chapter we start with an examination of the fundamental concepts behind block-

level caching using the EnhanceIO caching framework as a point of reference, since it

is the framework used for our implementation. We then proceed to illustrate how data

corruption is possible when a Virtual Machine utilizing a block-level cache is live mi-

grated from a source host to a destination host. Next we present some naive approaches

that fail to provide a working solution and finally we discuss our design, which should

meet all requirements.

3.1 Block Caching

In this section we examine block-level caching. We present a detailed analysis of how

it works, we provide extensive examples and we conclude with benchmark results that

justify the usefulness of cache.

Caches are generally used in systems architecture to improve the performance of com-

ponents that react slowly compared to their users. Any type of read/write memory can

be essentially used as a cache, if it used to store data so that future requests for the same

data can be served faster. CPU on-chip caches and content caches used in the World

Wide Web are some of many well known examples of successful cache usage. Mod-

ern processors incorporate caches to save frequently used data and computational re-

sults, instead of reading and writing to main memory. e latter is typically an order of

magnitude slower compared to the CPU. Respectively, Web caches store frequently re-

quested content in order to serve clients faster and to reduce the traffic of main servers.

37

38 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Following the same pattern, block-level caches are used to improve the efficiency of

block devices.

Before going into details, it is important to note that a block cache is always transparent

for applications and users. is means that only the host OS kernel knows about the

existence of a cache device. Even if a cache is installed, applications will continue to

see the same block device and direct to it any block I/O requests they produce. Only

the cache framework, living at kernel level, knows about the existence of cache and it is

responsible for mapping the requests either to cache or to disk.

Hard Disk Drives are organized as a set of fixed size chucks of data, called blocks or

sectors, typically of size 512 bytes. e idea of block-level caching is to use faster disks

as a cache for slower ones. Effectively, flash memory disks such as SSDs can save blocks

and serve block I/O operations faster than slow spinning HDDs, and thus SSDs can

work as block-level caches.

Cache memory is usually one or two orders of magnitude smaller in size compared to

“main”memory, designed to hold only themost commonly accessed pieces of data. is

is the case in block-level caching too, and SSDs are in fact smaller in size than HDDs.

e former typically span a few hundred gigabytes, while the latter can store data in

units of terabytes.

Using an example derived from the previous section, we can see the need for caches

holding blocks coming from and going to networked block storage such as SAN appli-

ances. SSD performance can be extremely fast when compared to network latency.

Just like HDDs, SSD drives can be seen as a set of of blocks. However, block caching

does not involve storing individual blocks. Rather, caches save data in terms of a bigger

size, called “cache block”.

To avoid confusion, HDD device blocks and SSD device blocks will hereaer be men-

tioned as sectors, which is an equally valid name. e term “cache block” will be used

throughout this dissertation to describe the basic data unit a cache can handle. More-

over, the term “disk” will be used to describe the big and slow pool of data such as SAN

appliances, while the term “cache” will be used to describe the small and fast memory,

such as SSD drives.

Cache blocks typically are a few sectors in size, for example 8, 16 or 32. In most Linux

3.1. BLOCK CACHING 39

systems, kernel manages memory by splitting it into “pages” of size 4KB or 4096bytes,

which implies a very helpful alignment, if a cache block of size of 8 sectors is used.

Locality of reference is another strong argument towards big cache block sizes. In a

nutshell, it is a phenomenon describing the same value, or related storage locations,

being frequently accessed. As a result, when storing more amount of related data in

cache, it is highly likely that future requests will be served by the cache.

3.1.1 States of Cache Blocks

A cache search operation results either in a “cache hit” or a “cache miss”. When a block

is requested from disk, the cache framework performs a lookup to determine if the same

block exists somewhere in cache or not. If the block is found to be present in cache, the

operation is called “cache hit” and the request is served by the cache. Otherwise, it is

called “cachemiss” and the request is served by the disk. Blocks coming fromdisk can be

stored in the cache for future references. Cache frameworks usually keep informational

statistics about the hit/miss ratio.

To better organize cache space, cache blocks are grouped in sets. Sets allow for faster

lookup times and enable easier cache management by cache frameworks. For example,

a common technique is to create a many-to-1 mapping between disk sectors and cache

sets. en the cache framework can map each cache block, containing multiple disk

sectors, to exactly one cache set, usually by performing bit operations on the sector

number of the first cache block sector. e cache framework actually uses the sector

number as a cache block identification, and a possible lookup is narrowed down into a

cache set. Inside a cache set, the cache framework searches for cache blocks linearly or

using a hash map. A usable cache set size is 256 or 512 cache blocks.

Although “cache hit” and “cache miss” provide a conventional binary description of a

cache lookup result, the actual state of a cache block needs to be specified more accu-

rately. Aminimumof three states is required to correctly determine the status of a cache

block. In the simplest case, where a cache block is unused and does not hold any data,

we label it as I. If a cache block holds data that are identical to the respective

disk sectors, then the cache block is said to be V. Finally, if a cache block contains

updated data compared to disk sectors, it is named D.

40 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Aer defining the states of a cache block, it is easy to illustrate how a block transitions

from one state to another. It is safe to assume that during the first installation a cache

is initialized, possibly zeroed out, and thus all cache blocks start as I. I

cache blocks cannot serve any requests, and cache misses are a frequent phenomenon.

When a cache is in this phase, empty with the requested data constantly missing, it is

labeled as a “cold cache”. Aer a cache miss, the request is served from disk. Again,

since a cache block is equal to many disk sectors, it is expected that a small block I/O

request, for example a request for a single sector, will produce a greater block I/O request

to disk, for example for a whole cache block, say 8 sectors. e cache block, is stored in

cache aer being retrieved from disk, and its state is changed from I to V.

Subsequent read requests for the same block will be served by the cache, and the cache

block state will remain V.

If a write request is served by the cache, then the corresponding cache block will tran-

sition from V to D, because the cache block holds updated data relative to the

disk. Under special circumstances, it is possible for a cache block to transition from

state I directly to D. For example when a layer above the case issues a write

request without having previously issued a read request for the same cache block. When

a cache contains a large number of V and D cache blocks it is called a “warm

cache” and it expected to have a nice, high hit over miss ratio. D blocks are said to

be “cleaned” when their contents are written back to disk. Aer a cleaning operation,

cache block and disk sectors contain the same data, so the cache block state is changed

from D to V.

Finally, for completeness, we mention the rare cases where a V or D cache

block gets marked as I. If, for a very special reason, a write operation is driven

directly to disk bypassing the cache, then the cache blocks will hold stale data, and as

such they should be marked as I. is operation is called “write-around”. e

dual operation, is called “read-around”, and it means to read data directly from disk,

bypassing the cache. A read-around operation can be useful in cases when a very large

amount of data is requested. In those cases, a cache controllermay choose to direct these

sequential read requests directly to disk, and save the cache throughput for heavier write

operations, although some of the requested data could exist in the cache. However, a

read-around operation is not permitted if the disk holds stale data compared to the

cache, thus if the request involves cache blocks that are marked as D.

3.1. BLOCK CACHING 41

3.1.2 Side-effects of Reads and Writes

When using a cache, some situations occur that do not seem obvious at first read. For

example, it is fairly counterintuitive but still possible, for a write operation to trigger a

read from disk and respectively a read request to result in write operations. ese cases

can be better explained using some examples.

Consider the following scenario. A read block I/O request is issued by an application and

the cache lookup signals a cache miss. e request is then directed to disk and served

successfully. When the cache framework receives the relevant disk sectors, it realizes

that there is no room available in the corresponding cache set for this new cache block.

On such cases, a procedure called “eviction” is initialized. e cache framework will try

to locate and remove another cache block, already residing in cache, in order to make

room for the new cache block. If the chosen cache block is V, it is evicted by simply

deleting its contents, and no further actions are needed. However, if the chosen cache

block is D, it contains data that are not elsewhere available, and they cannot be

discarded until the cache block is cleaned. As a result, before eviction, the D block

must be flushed to disk. is completes the example and explains how a read operation

can lead to a write I/O issued to disk.

Respectively, to prove the second point, let’s assume the following scenario. An appli-

cation issues a write request, but the I/O size is smaller than the cache block size. e

blocks to be written do not exist in cache, and so the cache framework will try to locate

an empty slot, effectively an invalid cache block, to write the new data. In our scenario,

an unused cache block is indeed found, but the write operation cannot proceed. Cache

blocks cannot be filled with fewer disk sectors than its actual size. Otherwise, a padding

of zero bytes or even garbage would be later treated as valid data and written to disk,

possibly overwriting useful information. To avoid this catastrophe, the complete cache

block must be first read from the disk and then written into the cache. en, the same

cache block must be partially overwritten with the new data. is concludes this exam-

ple and shows how a write operation can lead to a disk read.

42 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.1.3 Superblock and Metadata

e cache framework must keep a lot of organizing information including cache name,

state, size, the current cache mode (which will be covered shortly), the set of current

cache blocks and their state, and alsowhich disk sectors are currently stored inside every

cache block. To accurately keep track of all these data, the cache framework creates and

maintains a very large set ofmetadata inmemory. Moreover, in order to survive reboots,

shutdowns and unplanned crashes, the cache framework stores a persistent copy of the

metadata on the cache device.

Metadata kept in memory include cache block and set states, statistics and useful infor-

mation for the replacement policy. A standard way to organize cache metadata is as an

array of size equal to the number of cache blocks is stored in memory. For each cache

block, the cache framework saves the current cache block state and the device sector

number of the first sector residing in the cache block in the respective position of the

array. is sector number works as an identification and allows the cache framework

to know exactly which sectors of the disk exist in the cache block.

In-memory metadata are frequently updated, exactly before each operation is com-

pleted. For example, aer each cache allocation, cache eviction and whenever a cache

block is being dirtied, the in-memory metadata are updated.

More precisely, in-memory metadata implement a bigger and more complex state ma-

chine, than the one we have described earlier. In-memory metadata need to reflect the

current state of cache for every given time, and as result it takes more than three states

to describe asynchronous operations such as block I/O requests. Cache blocks can be

marked in-memory as “Cache read in progress”, “Disk read and cache fill in progress”,

“Disk write and cache write in progress” etc. is is mandatory so that the cache frame-

work can continue to work and successfully manage all the cache blocks.

On the other hand,metadata kept on device are used to store information about the state

of cache blocks persistently. Persistent metadata is the only way a cache can survive a

sudden crash or power loss.

On-disk metadata are less frequently updated due to the cost of a block write I/O oper-

ation. Full on-disk metadata updates are only issued during a normal shutdown. While

the cache is being used, it issues only the bare minimum of metadata updates required.

3.1. BLOCK CACHING 43

For example, aer a read miss operation, a cache block is allocated and filled with the

requested data. is operation does not trigger an on-disk metadata update. e ra-

tionale behind this design is that it is not critical to save this information. In a crazy

scenario where this information is lost, it would cause no harm, since the data could be

read again from disk. On-disk metadata updates are only triggered by actions that cre-

ate new data. For example aer a write hit, cache holds newer data than disk, and this

state must be saved permanently. In case of a sudden crash and reboot, it must be clear

that the cache block is holding the new data, and any subsequent read operation must

be served from the cache, and not from the disk. Additionally, if for whatever reason,

that particular block needs to be later evicted, it must be clear that it needs to be cleaned

first. Another example that would trigger on-disk metadata update is a “write-around”

scenario. In this case, a valid cache block must be permanently marked as invalid, so

that future references, aer a possible crash, are served from disk and not from cache.

Finally, a superblock structure is stored on the cache device, usually in adjacent sectors

to the on-device metadata. e superblock contains useful information such as cache

name and size, mode of operation. In addition, it holds other information such as the

soware version of the cache framework, the name of the backing disk device, etc. Su-

perblock information is used when a cache is reloaded aer a host reboot or aer a

sudden crush. In the first case, before reboot, cache metadata are flushed from mem-

ory to the cache device. Each cache block that is D is first cleaned, thus flushed to

disk. As a result, cachemetadata stored on the device include V cache blocks. Aer

booting, cache metadata are read from the on-device metadata section and loaded into

memory. e superblock provides extra information about cache name, size, mode of

operation and others. Cache block metadata are used to find out which of the cache

blocks are V and which are I. is scenario, where V cache blocks exist

in cache and can requests can be served right away is called ‘warm boot’. e opposite

is called ‘cold boot’, where a cache is started as if it was new, without any V blocks

residing in it.

e superblock is useful in two more scenarios. First, the superblock can effectively

be used to accurately detect unplanned crashes. is can work with a procedure called

“Dirtying the Superblock”. Aer the initialization of cache, the superblock is immedi-

ately updated on the cache device and marked as D. is superblock state is kept

until one of two things happen, either a clean reboot or a sudden crash. In the first

44 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

case, the superblock is updated and marked as ‘Clean’. In the second case, nothing hap-

pens since the crash is unexpected and the superblock remains D. In both cases,

on next boot the cache superblock is read. If the superblock is found to be Clean, it

is a clear indication of a clean reboot and all V cache blocks residing in cache can

be used. So, cache metadata for V cache blocks are loaded in memory and cache

performs a warm boot. However, if the superblock is found to be D, it can only

mean that a sudden crash has occurred. In this case, only the D cache blocks are

considered present; the V cache blocks are ignored. To understand this, suppose a

write is directed to both cache and disk. Disk write completes, but before cache write

is completed the host crashes. If aer reboot, the same blocks are requested, reading

from cache would return stale data. As a result, V blocks cannot be fully trusted

aer an unclean reboot. Aer checking the superblock state and deciding on whether

the reboot was clean or not, the superblock is again marked as D.

Second, the superblock can be used for a quick reboot scenario. Cleaning the cache

for every reboot is resource hungry, resulting in a lot of I/O requests being generated

to write D cache blocks from cache to disk. It is possible to perform a cache “fast

remove”, whereD blocks remain in cache rather than cleaned. is is possible, again

by marking the superblock with a special flag called F. Aer reboot, the superblock

is read from cache device. If it is found to be Fast, a fast reboot scenario is assumed and

all cache blocks, both V and D are trusted, and all cache metadata are loaded

in memory. is is also a scenario of a warm boot.

3.1.4 Modes of Operation and Replacement Policies

e most important aspect of a cache, is its behavior aer a cache hit or cache miss. It

is determined by the current mode of operation,

e way a cache deals with an I/O request depends on its current mode of operation,

which can be one of ‘Read-only’, ‘Write-through’ and ‘Write-back’. We will now explain

each one of those.

Replacement policies are used to decide which cache block will be evicted when a new

cache allocation must take place. ‘Random’ and ‘FIFO’ options exist, but the ‘Least Re-

cently Used’ option is most commonly used.

3.1. BLOCK CACHING 45

In Read-onlymode, the cache is only used to serve read requests and all write operations

are directed to disk. For example, aer when an application requests some data living

in certain disk sectors, the host kernel puts that process to sleep until the block I/O

operation is complete. en a block I/O request is created and submitted to the disk

block device. e cache framework is then notified and performs a lookup to see if the

requested sectors exist in some cache block. In the case of a cache hit, the data are read

from the cache and copied into kernel memory, the read operation is completed and the

process will later be woken up. Otherwise, it is a cache miss and so another block I/O

request is created and submitted to disk. Once the data are read from disk and copied

to host memory, a write block I/O request is submitted to write the same data to cache.

Aer that write operation is done, the read operation is completed, and the process

will later be woken up. In the future, if the same sectors are again requested by a read

operation, they will be served by the cache. A write block I/O request is always directed

to disk. Aer the disk confirms that a write operation is done, the cache framework

invalidates the relevant cache blocks if any, and then the write operation is completed

and the application will later be woken up. Invalidation is mandatory since cache data

are stale aer a write around operation. We see that in Read-only mode there is no

notion of D cache blocks. Only I and V cache blocks exist. Read-only

mode can help future read requests to be served faster, while writing all data back to

disk for ultimate consistency.

Write-through mode behaves the same with read-only mode for read operations. How-

ever, write requests are handled differently; they are directed to both the cache and the

disk. Aer an application requests to write some sectors, it is put to sleep by the host OS

and the cache framework generates two block I/O requests, one towards the disk and one

toward the cache. Aer bothwrites are done, the write operation is considered complete

and the application will later be woken up. A write request inWrite-throughmode does

not cause any invalidation. Same as in Read-only mode, there cannot be D cache

blocks in Write-through mode, only I and V cache blocks. Write-through

mode is generally a better choice than read-only. It has all the benefits of Read-only

mode, while offering a better cache hit ratio, by keeping written data into cache.

As far as Read requests concerned, Write-back mode behaves the same as with Read-

only and Write-through modes. On a cache hit the cache serves the data, while on a

cache miss data comes from disk and a cache block is allocated in cache. In Write-

46 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

back mode, writes are exclusively served by the cache and as long as data are written

to the cache block the write operation is completed. is enables very fast writes but

introduces data inconsistency between the cache and the disk; the cache holds the true

data while disk is in stale state. In a Write-back cache, a clean thread is responsible for

cleaning cache blocks and flushing their content to disk at a predefined interval, one

minute for example. In contrast with Read-only and Write-through modes, data loss is

possible when using a write-back cache. If the cache device is permanently destroyed

aer a write operation has been completed and before the cache block is cleaned, the

data will be lost and irrecoverable.

3.2 Detailed Problem Statement

Let’s assume a cloudprovider,maintaining a computer cluster andoffering Infrastructure-

as-a-Service resources to its users. e cluster consists of many hosts connected to a

Local Area Network and each host features high-end CPUs and a lot of RAM, in order

to accommodate Virtual Machines. Block storage is offered by a Storage Area Network

appliance through a separate dedicated high speed network. e SAN appliance sup-

ports advanced data replication and synchronous backup services and as a result block

I/O performance is poor. Moreover the SAN appliance also includes a second storage

pool, consisting solely of SSDs. Data storing in this caching tier is very fast and thus it

can used as a block-level cache.

All hosts are assumed to run the Linux Operating System, running the Ganeti cluster

management tool, and supporting the KVM hypervisor. A set of KVM instances are

hosted in this Ganeti cluster, equally shared among hosts, and each instance has one or

more virtual disks. e SAN appliance provides block storage to all nodes in the form of

distinct block devices, and each node attaches the remote block devices as local disks. A

host can request a block device to be created either in the caching tier or in the backing

store. e hosts also support a caching framework such as EnhanceIO, and they set up

caches using block devices from the caching tier, to enhance the performance of block

I/O operations towards the featureful backing SAN appliance. Once the ‘fast’ and ‘slow’

block devices are combined, the augmented block device is then passed as a virtual disk

to an instance, and the KVM hypervisor deactivates page cache support for that block

3.2. DETAILED PROBLEM STATEMENT 47

device. erefore, all block I/O operations are directly serviced by the shared block

storage, ensuring stronger data consistency. In most cases where a cache framework is

used, the write-back cache mode is selected for the faster cache writes it can provide.

3.2.1 I/O Data Path

Let’s use an example the describe the data path. An application running inside in the

userspace of a KVM instance is generating I/O load by reading and writing data to files.

e OS kernel running inside a VM produces block I/O requests and directs them to-

wards a directly attached physical disk, as seen from its perspective. e virtual hard-

ware is emulated by the QEMU/KVM process running in the userspace of the host.

Block I/O requests issued to a virtual disk are intercepted by QEMU and translated into

real I/O towards a physical local disk. e host OS kernel, who is aware of the mapping

between local block devices and block devices residing in the SAN appliance, directs I/O

to the remote shared block storage. Furthermore, if a cache is installed, then a pseudo-

block device is used by the host OS kernel instead. When I/O operations are issued to

this block device, the cache framework decides whether they should be served by cache

or by the backing store and directs the requests to the corresponding block device.

e separation of control between theKVM instance and the cache is clear. e instance

is managed by the hypervisor while the cache is managed by the host OS kernel. e

hypervisor is responsible for creating the instance, providing virtual disks and network

cards, emulating the hardware, migrating the instance if necessary and finally destroy-

ing it. e host OS kernel has no way of controlling the instance. Respectively, the host

OS kernel is only aware of remotely-accessed shared-storage block devices. e kernel

manages the remote-to-local mapping and generates a pseudo block device that repre-

sents sectors residing in the SAN appliance. Moreover, when a cache is used, the kernel

merges two local pseudo block devices into one, creating a cached block device. It is ag-

nostic to the kernel how this cached block device will be used, and of course the KVM

hypervisor is not aware of the cache existence.

48 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.2.2 Live Migration

Before we explain why an instance utilizing a block-level cache cannot be live migrated,

we present a live migration scenario for an instance that does not use a cache. Again,

by using the term “an instance uses a cache” we do not mean that an instance knows

anything about the cache, but rather, that the instance is given a special block device

as disk, which block device is managed by a cache framework at the host OS kernel

level. Live migration is used to move a guest instance from one physical host to another

for load balancing reasons or to evacuate all instances from a physical node to enable

scheduled maintenance operations to proceed. is is possible because guest virtual

machines are running in a virtualized environment instead of directly on the hardware.

So, live migration is a procedure that requires two hosts. e node currently hosting the

instance is called the “source”, while the node on which the instance is to be migrated is

called the “destination” or the “target”. Live migration is performed completely by the

hypervisor and since we assume there is not a control communication protocol between

host hypervisors, an external tool such as Ganeti is required to trigger the migration in

both source and destination nodes. Ganeti initializes the migration on destination host

first, who listens to a network port for incoming data. en Ganeti fires up migration

on the source host by informing it of the IP address of the destination node.

Migrationworks by sending the state of the guest virtualmachine’smemory and any vir-

tualized devices to the destination host. In a live migration, the guest virtual machine

continues to run on the source physicalmachinewhile itsmemory pages are transferred,

to the destination host. Duringmigration, KVMmonitors the source for any changes in

pages it has already transferred, and begins to transfer these changes when all of the ini-

tial pages have been transferred. KVM also estimates transfer speed during migration,

so when the remaining amount of data to transfer will take a certain configurable period

of time (10ms by default), KVM suspends the original guest virtual machine, transfers

the remaining data, and resumes the same guest virtual machine on the destination host

physical machine. e whole VM state is transferred and upon success the guest will

continue to run on destination host with almost unnoticeable guest down time.

KVM expects that both source and destination hosts have access to the underlying stor-

age used for the guests virtual disks, so that only guests memory and state is migrated.

is greatly reduces migration time and network usage. If instance disks are residing on

3.2. DETAILED PROBLEM STATEMENT 49

shared storage such as a NAS appliance, all hosts have access to each instance disks, so

live migration is possible. Before the migration takes place, the destination host maps

the instance disk to a locally attached block device. Aer access to all the instance disks

is established by both source and destination nodes, the administrator can initiate a live

migration. Although cache devices are also stored in shared storage, it is clear that the

cache is not part of the VM state, and therefore it cannot be managed like the instance

disks by the KVM hypervisor.

One might argue that the KVM hypervisor does not in fact manage the instance disks

during migration; it only confirms that both hosts have access to them. e instance

is of course allowed to issue block I/O requests while being migrated and as a result

action must be taken to certify that requests issued by the instance while on source host

are served successfully and completed. en the instance is temporally paused without

ongoing block I/O requests pending, and then the instance is resumed on destination

host and allowed to perform more I/O. It would be really nice if the KVM hypervisor

performed such a clean and well defined procedure while live migrating an instance.

However, that is not the case.

eKVMhypervisor introduces some ambiguity during themigration and allows block

I/O operations to be performed by source and destination hosts at the same time. is

phenomenon occurs because of two reasons. First, KVM running on the destination

hostmust issue some read I/O requests to the instance disks to verify their existence and

readability. KVM may also search the disks for superblocks indicating LVM volumes,

partitions and certain filesystems. ese actions produce read block I/O requests to-

wards instance disks. Although write operations seem counterintuitive in this scenario,

they are not excluded by the inner workings of a cache, as described in the previous sec-

tion. Second, KVM is trying hard to keep track of clean pages that need to replicated to

destination host while searching for dirty pages that may or may not have already trans-

ferred. is tedious task is extremely important and allows the instance pause time to be

really small. However, to make this procedure as fast as possible, the KVM hypervisor

is not transparent as to when exactly the instance is paused, the final pages are copied

through the network to the destination host, and the instance is restartede KVM hy-

pervisor does not provide programmable hooks to let the administrator know exactly

when livemigration is taking place. is ambiguity leads to a phenomenon of reads and

writes being issued by source host and then suddenly by destination host, without any

50 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

further notice. With these two facts combined, we can only create an abstract model of

KVM’s live migration. is model assumes that for a finite time interval, block I/O op-

erations can be issued from the guest instance to the instance disks, by both source and

destination hosts. In other words, from the SAN’s perspective one may observe block

I/O requests arriving for the same block device but originate at separate hosts.

3.2.3 Complications of using a shared cache

Quite interestingly, shared block storage semantics can comply with this model. Block

I/O operations are considered atomic and concurrent access to shared storage is indeed

allowed. Clients of shared storage, in this case the two hypervisor processes, are the

only ones responsible for data integrity by synchronizing their access. As a result, this

scenario although complex is not problematic, and it is exactly how KVM currently

performs live migrations. However, the problem is introduced by using a block-level

cache.

As previously stated, cache metadata are stored both in memory and on the cache de-

vice. ememory area themetadata are saved to, belongs to the host OS kernel and thus

only the kernel can read and write them. e cache framework can write some impor-

tant metadata updates to disk, but generally it uses in memory metadata to operate. It

trusts in-memory metadata fully since they are easy to maintain, fast to update and se-

cure; no one can alter them. On the other hand, on-disk cachemetadata are only written

occasionally, when there is a need to. ey are not read except for a cache reboot oper-

ation. is behavior prevents the existing cache frameworks from working over shared

storage and thus supporting access by multiple users. Recall that shared storage is de-

fined as a medium where changes initiated by one user are visible by others. e caches

over shared storage do not fall into this category, although the cache devices are indeed

shared. e cache frameworks are programmed to never read on-disk cache metadata

during normal operation, and so, changes to cache block data or cache metadata done

by other hosts will never be acknowledged.

To further explain this situation, and to provide an example relative to our discussion

about live migration, consider the following. Let two hosts, A and B, utilize the same

cache device to provide a cache for two separate processes, each running on one node.

Host A and Host B each keep in-memory metadata about the state of the cache blocks

3.2. DETAILED PROBLEM STATEMENT 51

and update them properly. However, data corruption is unavoidable, since there is no

coordination between the two instances of the cache framework. Sooner or later, there

will be contention for the same cache block. e last one to update its contents will force

its own way, while the other will silently serve wrong data in future read accesses. ere

is no way of knowing which cache block “belongs” to which host. is still holds even

if cache frameworks write data to cache blocks and then update the cache metadata.

Caches never read on-device cache metadata and load them to memory during normal

operation. So, even if a cache could atomically write new data to a cache block and then

update the on-disk cachemetadata, it would make no difference, as long as other caches

wouldn’t search for this information and read it.

3.2.4 Data corruption with a shared cache

Having shown how two cache frameworks fail to cooperate over shared storage, it is

easy to conduct how the live migration of a “cached instance” can lead to data corrup-

tion. Consider the two migration hosts, source and destination, keeping separate cache

metadata in their own memory. Let’s assume for convenience that at a given point in

time, source host and destination host have exactly the same metadata in memory, and

their metadata are up to date with the on-disk metadata. Since different block I/O re-

quests are issued by source and destination host during migration in our scenario, it is

straightforward to see that the two hosts will tend to modify the shared cache, each in

his own way. For example, a single read request early in migration time, issued by the

destination node can lead to a cache miss and to a cache allocation, possibly to a cache

eviction, too. is event will go unnoticed by the source host, which could later ask the

cache for the data that have been evicted. Unaware of the change in cache block state,

the wrong data will be served. In a different scene, suppose the instance issues a lot of

write requests during the migration. A portion of them will go through the source host

cache while the rest of them will be executed on the destination host. As a result, any

possibly cache block dirtying that occurs in the source host node will not be visible to

the destination host cache, even if the source host node updates the on-disk metadata.

Consequently, the destination cache will treat D blocks as V, possibly evicting

them without cleaning them first, therefore producing data loss.

It must now be clear how an instance live migration, from source host to destination

52 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

host can lead to cache metadata corruption and thus data loss.

e key to avoid this catastrophe, lies within the cache metadata.

3.3 Naive Workarounds

Aer having taken a quick look at the aforementioned problem, one may suggest to

simply drop the cache duringmigration. at is, to destroy the cache on the source host

before a migration takes place, and then create a new cache on the destination host aer

the migration has completed.

Indeed this is a valid workaround, but it introduces an unacceptable performance hit.

Before the cache is destroyed for the migration, all D cache blocks must be cleaned.

is is a long lasting procedure, requiring high I/O throughput between cache and the

backing storage. Not only will it need a lot of time, it will also slow down other requests

to the SAN appliance due to contention. During the actual migration, all block I/O

requests issued by the instance will be served by the backing SAN appliance imposing a

severe penalty to I/O latency whichmay be unacceptable depending on the nature of the

application. And to make matters worse, performance will continue to suffer aer the

migration has completed, due to a cold cache. e instance will have to repopulate the

cache with its working set data; until this happens, the efficiency drop will be noticeable

and irritating. It is clear now, why although this workaround is correct, it is not enough

for real-world use.

3.4 An optimal solution

In this sectionwe provide an abstract description of an optimal solution. In otherwords,

we clearly design the properties that an option must meet, in order to be accepted.

e optimal solution must meet 3 key requirements.

1. First and obviously data consistency is of utmost importance. Instances and the

data they generate is invaluable, and so data integrity is a top priority in the con-

text of this work.

3.4. AN OPTIMAL SOLUTION 53

2. Second, we seek for excellent performance. We would like to benefit from the

cache at all occasions and our goal is to integrate the notion of VM instance with

its cache and provide uniform control.

3. Last, we are aer simple and elegant solutions. An option that is difficult to im-

plement and would require many many man-hours is not really considered as an

option.

Having these three goals in mind, we can see how the workarounds of the previous

section are insufficient and we now present some alternatives.

One option would be to extend an existing cache framework to implement a full coher-

ence protocol. Although it covers goals 1 and 3, it falls short on goal 3 as it requires a lot

of work. Implementing a full-blown distributed cache manager would involve develop-

ing with concurrency in mind and integrating a Distributed Lock Manager. Moreover,

by introducing locks a small performance hit would be taken.

Another option would be to modify the KVM hypervisor and add hooks to enforce

a notification when the actual migration is about to happen. is would enable the

source host to safely fast-remove the cache and notify in turn the destination host to

load the existing cache. However, the KVM project has too many moving parts and

is constantly evolving. So it would be extremely difficult to keep up with frequent up-

dates and maintain a functional patch to the upstream Linux kernel. Also, this would

introduce a dependency on the specific hypervisor being used; the solution would be

KVM-specific.

Ultimately, we came to conclude that we could avoid such options. ey key to a more

elegant solution was the observation that data corruption was triggered by actions such

as cache allocations and cache evictions. In the same manner, a possible change to

cache metadata could lead to data loss. As a result, it is straightforward to deduce that

if we could stop such actions from happening, cache metadata would stay unchanged

and data corruption would be avoided. Driven by this idea, we developed our solution,

which ensures data integrity, provides excellent performance and is easy to implement.

54 CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.5 Our design: A new cache mode

As described before, the key to avoiding data corruption is to somehow prevent cache

metadata from changing while cache is being managed by both source and destination

host. Taking one more step forward, it is easy to keep the same metadata state, if we

don’t allow any new cache allocations and cache evictions to occur. To enforce this

policy, we have developed a new cache operating mode, and we have called it ‘Frozen-

metadata’ mode. As the name suggest, the cache metadata remain unchanged while

the cache operates in our mode. In Frozen-metadata mode, the set of cached blocks is

not modified, and the instance is expected to have built its own working set residing in

cache. New cache allocations are not allowed, neither are cache evictions. Using this

technique we preserve the same cache metadata state pre-, during and post migration,

across source host, destination host and on-disk cache metadata. By not permitting

cachemetadata to change either in-memory or on the device, data corruption is avoided.

Effectively, our new mode is much easier to implement than the other approaches. We

only need an existing working cache framework and we can expand it to implement the

Frozen-metadata mode. When in our new mode, the cache framework serves read and

write hits directly from cache. On the other hand, cache misses always trigger read-

around and write-around operations, so that no new cache allocations occur, and thus

no possible cache evictions or invalidations. In other words, our new cache mode is a

“hit only” or “no-allocation” mode.

Moreover, we need to clearly define what happens when a cache transitions fromWrite-

back mode to our Frozen-metadata mode, or switches back. When we move from a

Write-back cache to a Frozen-metadata cache, we must flush the in-memory metadata

to the cache device. Recall that in Frozen-metadata mode we do not want any metadata

updates to occur. For that reasonwemake sure that whenwe switch to Frozen-metadata

mode, we sync in-memorymetadatawith ondevicemetadata. While in Frozen-metadata

the previous paragraph describes howwemanage to avoid all metadata updates. Finally,

when switching from Frozen-metadata mode back to a Write-back cache, we have to

read and load the on device metadata into memory. Although it is not clear now why

this is needed, it will become clear in the next chapter.

4
Implementation

In this chapterwe review the development iterationswehave performed, until the Frozen-

Metadata mode was fully functional and working. Our goal is to allow the reader to fol-

low our steps, and stumble upon the same obstacles that we ourselves hit. At each step,

we describe the problem and present the key idea enabling to overcome each issue.

For our implementation, we have chosen to use EnhanceIO[20], since it is the most

advanced and featureful cache framework available. e EnhanceIO project is free and

open source soware. We used the latest version available at GitHub[?].

4.1 Migration using WB mode

At first, let us analyze the naive scenariowhere an instance is livemigrated using aWrite-

back cache. e destination host prepares to receive the instance by attaching a remote

block device backed by a SAN appliance locally and also fires up the KVM hypervisor

to listen for incoming data. Furthermore, the destination host node OS will setup the

cache framework by pointing to an existing block device, already containing the instance

cache data andmetadata. As a cache load operation instructs, cachemetadata are loaded

into memory from the on-device metadata section. is allows the cache framework to

learn about the cache state and enables it to start serving requests immediately aer

loading has finished. While the destination host node reads and loads cache metadata

into memory, the instance is up and running on the source host node. As a result, it

is highly possible that the instance is issuing block I/O requests, which are serviced by

the source host node cache. is leas to modification of cache metadata in the memory

55

56 CHAPTER 4. IMPLEMENTATION

of the source host; they must change for the cache to be consistent. e problem is,

if the source host node operates in Write-back mode, new cache allocations and cache

evictions are allowed and these actionsmodify the set of cached blocks residing in cache.

However, the destination host node cache never acknowledges these updates and it will

continue to operate using the wrong metadata, aer the migration is completed. It is

clear now, how data are corrupted: future read requests that will hit the destination host

node cache, will erroneously return the new cache block instead of the evicted one.

4.2 Naive Migration using FM mode

As described in the previous chapter, the key for data integrity is tomaintain unchanged

metadata in both source and destination host node, and also on device. To achieve this,

the two nodes must switch to the new Frozen-Metadata mode during live migration.

While in Frozen-Metadata mode, the set of cached blocks remain unchanged and thus

nometadata update is required. Cache hits are served by cache, while cache misses lead

to read-around and write-around operations, respectively.

A live migration would then work as follows. First, the source host node should switch

fromWrite-backmode to Frozen-metadatamode. ismode switch triggers ametadata

flush from memory to the cache device. Next, the destination host node loads the ex-

isting cache as warm and starts operating directly in Frozen-metadata mode. As always

when loading an existing cache, the destination host node reads and loads in memory

the on device metadata. Aer that, we have the two host nodes having the same meta-

data in memory, and that metadata is consistent with the on device metadata. Now the

instance is allowed to issue block I/O operations either to the source host node or the

destination host node. Aer the migration has completed, the source host node must

simply drop the cache, in other words fast remove it, and the destination host node can

switch from Frozen-metadata mode to Write-back mode.

However, it turns out that this naive approach of a “hit only” cache is flawed. Let’s assume

that the instance issues somewrite requests through the source host node, and the cache

signals a write hit. As a result, some V cache blocks are updated and their state

transitions to D. e source host node updates the in-memory metadata and also

issues a block I/O operation to the cache disk, to update the on device metadata. e

4.3. UPDATING ON-DEVICE METADATA 57

problem is, the destination host never acknowledges these updates and it is easy to spot

how data can get corrupted. e destination host will continue to consider these cache

blocks as V and not asD, because this is what its in-memorymetadata show. At

some point in time, these cache blocks may need to be evicted, and when this happens,

the destination host node will simple delete them, thinking they hold the same values

as with the backing store. is is how updates get lost and data is corrupted.

4.3 Updating on-device metadata

e previous section made clear that write hits reveal a flaw in our Frozen-metadata

mode, that looks like a dead end. On the one hand, we cannot direct the writes to

disk. is would lead to a write-around operation which must be followed by a cache

invalidation if the same sectors reside in a cache block, and this would make the whole

point of avoiding metadata updates meaningless. On the other hand, we cannot write

the cache block with new data, because that would lead to a state update, from V to

D, and as previously noted, metadata updates are not allowed in our new mode. It

looks like we must break some Frozen-metadata rules, and so we did, by allowing write

hits to dirty some cache blocks. In other words, we choose to allow write operations to

hit the cache, and update the cache metadata, changing some cache block states from

V toD. It is important to note two things. First, if a cache block is already dirty,

and a write hit occurs, the cache block state is unchanged, and no metadata update is

required. Second, the scenario described here is probably more likely to happen, than

not to happen. So we must take action and comply with this impurity in our design. As

always, a dirty operation leads to an on-device cache metadata update. is means that

the source host node, and the cache device will get to know about the change of some

cache blocks. In order to be consistent, we must inform the destination host node, too.

For that reason, we choose to read and load the on-device cache metadata when we are

switching from Frozen-metadata mode to Write-back mode. By reading the on-device

cache metadata, the destination host node will acknowledge any possible dirtying of

cache blocks issued by the source host, and treat them properly later, for example by

cleaning them before evicting them.

58 CHAPTER 4. IMPLEMENTATION

4.4 Atomic cache block updates

It now seems like we have a working version of our new cache mode, but unfortunately

there are still flaws that we need to take care of. is time, the error lies withing on-

device metadata updates. In the previous analysis, we assumed that we can update the

on-device cache metadata by editing a single cache block state, but this is in fact wrong.

On device metadata are just like regular block device data, and as such they are read

and written in terms of blocks or sectors, typically 512 bytes in size. As a result, we

cannot atomically update the state of a single cache block and write the metadata on the

cache device. It is straightforward to make up an example where two blocks, initially

V, are both being dirtied by different hosts, respectively. If the two blocks happen

to lie in the same cache block device sector, then the first of the two nodes to update the

cache device metadata will mark the one block as D and the other as clean, based

on the in-memory metadata it owns. en the second host node, trying to mark the

other cache block as D, it will also mark the first cache block as V as derived

by the in-memory metadata, and thus destroying the work of the first host. is is

another example of cache metadata updates happening on the cache device but that are

not acknowledged by other hosts. e net result is that the first cache block dirtying will

be lost and data corruption will occur as described in the previous section.

4.5 Everything is D

eanalysis in the previous section states thatwemust find an efficientway to atomically

update the on device metadata, but we have found that this is not a hard requirement.

e only problematic scenario is when a cache block transitions from V state to

D. We have figured out that these updates can be avoided, if cache blocks are al-

ready in D state. is can happen in the case where the instance working set fits

into cache, the workload is very write-intensive, and the cleaning operation does run

very oen. So the cache can be expected to have mostly dirty cache blocks instead of

V ones. Since we cannot count on these conditions, we have decided to manu-

ally treat each cache block as D when the cache switches from Write-back mode

to Frozen-metadata mode. Using this trick, we change the in-memory metadata of the

two host nodes and we change any V cache blocks to D, while the on-device

4.6. AN ALTERNATIVE: LOCKING THE CACHE 59

metadata are not required to be updated. is method completes the Frozen-metadata

mode and presents a working paradigm. e destination host node, whichwill continue

to operate the cache aer the live migration has completed, will suffer from a perfor-

mance penalty for treating everything as D; eventually, it will have to clean all the

cache blocks, although some cleanings aren’t really required. However, the overhead

for cleaning will be amortized over time and thus the performance hit can be mitigated.

is technique is the one we have developed and tested, and as it will be shown later,

results seem promising.

4.6 An alternative: locking the cache

Another approach towards atomic metadata updates is to introduce a shared lock on

the cache. e lock must be shared between source and destination host node and thus

it must reside on the cache device. e idea is that before a metadata update is issued, a

host must acquire the lock. Acquiring and releasing the lock happens by writing a spe-

cial value in a specific part of the superblock. When a host holds the lock, it may write

the new metadata to the cache device knowing that no other host may access the cache

metadata at the same time. Aer having atomically updated the metadata, the host may

now release the lock by clearing a specific member of the superblock structure. Al-

though this approach introduces a performance overhead for acquiring and releasing

the lock, it may be a better alternative to treating the whole cache as D. Further-

more, special hardware support may be required in order to successfully implement this

solution, for example an atomic COMPARE_AND_WRITE storage operation.

60

5
Integration with Ganeti

In this chapter we describe how the Ganeti cloud cluster management tool can be used

in combinationwith our new expanded version of EnhanceIO to perform livemigration

of instances utilizing a block-level cache.

5.1 Ganeti ExtStorage Providers

Ganeti was initially designed to store instance disks as logical volumes using LVM[14].

Each node would have one or more physical disks, and it would create a logical group

named “xenvg” on top of it, allowing Ganeti to create logical volumes as instance block

devices. It is clear that an instance could only be hosted on the same node that was

initially created; this was the only node having access to the instance block devices. To

support instance migration and fail-over, Ganeti would employ DRBD to allow repli-

cation of data between hosts, and particularly instance disks. Borrowing from DRBD

terminology, to each instance was assigned a master or primary node and a secondary

or fail-over node. e instance would run on the primary node, and if the instance was

to be migrated, it could only be moved to its secondary node.

Later, Ganeti was extended to support externally-mirrored shared storage. is includes

two distinct disk templates. Either instance disks as regular files residing on a cluster

filesystem such as NFS and Ceph, or instance images as shared block devices, typically

LUNs residing on a SAN appliance. e use of a centralized storage provider offers

high availability and replication features, removes the limitation of a 1:1 master-slave

61

62 CHAPTER 5. INTEGRATIONWITH GANETI

setup and provides shared storage without the administrative overhead of DRBD. So,

Ganeti does not need to take care about themirroring process from one host to another,

anymore.

Ganeti added the “External Storage Interface” to support such storage solutions. e

Ganeti interface for any type of storage provider consists of a set of files, that is executable

scripts and text files, contained inside a directorywhich is named aer the provider. is

directory must be present across all nodes so that the provider is usable by Ganeti. Of

course, the external shared storage hardware should also be accessible by all nodes, too.

An extstorage provider must offer executable scripts able to create, resize and destroy

a disk, edit the disk metadata if it is supported, locally attach a remote disk and create a

local block device, detach a disk and take a snapshot of a disk. Optionally an “extstor-

age” provider may support opening and closing a block device, which can be used for

enabling and disabling I/O to the device, respectively. us, the extstorage API ex-

posed by Ganeti is a set of six executable scripts, which will be used to used to manage

the external storage.

5.2 Our eio_rbd provider

e Ganeti “External Storage Interface” can easily be used to integrate a cache frame-

work with Ganeti. We have developed our own ext provider called eio_rbdwhich com-

plies with the Ganeti external storage provider API. e name is a concatenation of eio,

which stands for EnhanceIO, and rbdwhich refers to a RADOS cluster and RBD images

that are backed by objects. It uses the rbd command line tool to manage remote block

devices residing in a RADOS cluster and uses our extended EnhanceIO cache frame-

work to create and manage a host-side cache. eio_rbd consists of six executable scripts

that will be called by Ganeti when needed. e six scripts are: create, attach, open,

close, detach and remove.



e create script is responsible for communicating with the RADOS cluster and

requesting the creation of a new block device. e name of the new device and its

size are passed as arguments to this call. Upon success the RBD image is created

5.2. OUR EIO_RBD PROVIDER 63

and it can bemapped to a local block device. e create script is also responsible

for creating the cache block device. In our setup, cache block devices reside in

the same RADOS cluster as normal block devices, but on a different storage pool

that is is only backed up by SSDs and thus it is faster. Similarly, the create script

requests the creation of a cache block device, specifying the device name, size, and

the cache pool to be created in. Overall, the create script is used to construct the

block devices needed for the instance disks and cache.



e remove script is the dual inverse of the create script. It is used to destroy

the block devices used as disks and as cache. It connects twice with the RADOS

cluster, requesting the deletion of the cache block device and the disk block device.

e same names as with the create script are used and upon success, the block

devices are permanently deleted and their resources deallocated.



e attach script is used by a host tomake a remote block device locally available.

is procedure is called block device mapping and upon success an rbd image re-

siding in a RADOS cluster can be access through a local block device, for example

/dev/rbd0. e new block device can be used in the same way as any block de-

vice, such as given to an instance as a disk or used alongwith another block device

to create a cache. As with the create script, the attach script also performs the

map operation twice, once for the instance disk and once for the cache device.

e output of the attach script is the name of the local block device created.



e inverse operations are performed by the detach script. is script unmaps

the given local block devices thus making it unavailable. e local block devices

cannot be in use when this script is called, for example by a KVM instance, oth-

erwise an error will be produced. Likewise, the cache block device cannot be in

use by the host cache framework. To be sure, the detach script first checks if a

cache exists, and if it does, it deletes it in a similar manner to the close script.



64 CHAPTER 5. INTEGRATIONWITH GANETI

e open script is the most complex script of our ext provider. It is supposed

to make a block device ready for receiving block I/O requests. In our context

there is no specific action to be made for enabling block I/O operations, but the

open script is responsible for creating the cache mapping. In other words, it uses

the two local block devices created by the attach script and combines them with

a call to the cache framework. e call provides the disk block device and the

faster cache block device and requests the creation of the cache. In the context of

EnhanceIO, no new block device is created, rather the block device representing

the disk is enhanced and aer the call it successfully utilizes the cache device. e

call to the cache framework also specifies the desirable cache mode of operation.

For reasons that will become obvious in the following paragraphs, the open script

also accepts one more argument, a binary flag called E. If this flag is set,

then the open script runs in context of a single master, that is, only one host node

has access to the cached block device being opened. If the flag is not set, then the

open script assumes that the block device is being shared, for example during a

live migration. In our work, exclusive access to a block device is equivalent to a

Write-back cache mode, while a shared block device implies a cache operating in

Frozen-metadata mode. So effectively, the open script is used for cache creation

and cache mode switching between Write-back and Frozen-metadata modes.



e close script is the opposite of the open script. It is used to delete a cache

mapping consisting of two local block devices. e close script does not require

any extra arguments as the open script. In our work, it always issues a fast cache

remove operation in order to complete fast, without waiting for a full cache clean

to happen.

5.3 Workflow

Aer having introduced the eio_rbd scripts, it is now time to explore how Ganeti uti-

lizes those scripts and in which context is each script called.

When a new instance is created, the create script is first called to create the block de-

vices that will be used as instance disks. In our scenario, the script creates two block

5.3. WORKFLOW 65

devices, one for the actual disk and one for the cache device. Next, the attach script is

called tomake those block devices locally available, for example /dev/rbd0 and /dev/rbd1

in our work. Lastly, the open script is called by Ganeti with the argument E

set, to allow the devices to receive block I/O requests. In our case, the open script first

creates the EnhanceIO cache, using the two local block devices, and then signals success.

eWrite-back mode is used as a result to the E flag being set. is concludes

how an instance is created using the eio_rbd ext provider.

e inverse operation, that is the removal of an instance follows the dual path. First the

close script is called to remove the cache mapping and to disallow further block I/O

requests towards the block devices. In ourwork, a cache fast remove is performed and so

the remove operation is quickly completed. Metadata are flushed as is and no cleaning

takes place; so both Valid and Dirty blocks reside in cache. Aer that, the detach script

is called to unmap the remote block devices and finally the remove script is called and

permanently deletes the RADOS images.

Sometimes, an instance needs to be powered off. is case is similar to the removal

scenario, and so aer the instance is shut down the close script is called to remove the

cache mapping and to disable future block I/O operations to the device. During cache

removal, the cache is not cleaned and so the cache device holds both Valid and Dirty

cache blocks. Next the detach script is called to unmap the local block devices and then

the power off operation is completed.

An off-line instance can be rebooted in any Ganeti cluster host. In this scenario, Ganeti

first calls the attach script to map the remote block devices as local devices to the node

that will host the instance. en the open script is called, and since the instance already

owns a cache, the script reloads the cache by reading cache metadata into memory, thus

performing a warm boot, and signals success.

Finally, the most important instance operation targeted by this work is instance live

migration. is procedure takes place in two hosts rather than one. Initially, the desti-

nation host calls the attach script to gain access to the remote block devices. en, the

source host calls the open script with the E flag not set, indicating “shared”

mode. In our scenario, a “shared open” operation is interpreted as “switch to Frozen-

Metadata mode”, and so the source node switches fromWrite-back to Frozen-metadata,

thus getting ready for the migration. e open script is then also called to the destina-

66 CHAPTER 5. INTEGRATIONWITH GANETI

tion node, again with the E flag being cleared. e destination host checks to

see if an existing cachemapping exists, and since it there is not, it reloads the cache using

the cache device obtained from the attach script by reading and loading into memory

the cachemetadata. At this point, the two nodes are both operating in Frozen-Metadata

mode, and so live migration is safe to proceed. e KVM hypervisor performs the ac-

tual transfer and when the migration is completed, it notifies Ganeti which in turn calls

our eio_rbd scripts. Aer migration, the close script is called on the source host, and

as a result the cache mapping is simply dropped. e EnhanceIO framework performs

a fast cache remove and any metadata updates are flushed to the cache device. en,

the destination host must switch from Frozen-metadata mode toWrite-back, and to do

this, the open script is called again, with the E flag set. Our cache framework

performs the mode switch and signals success. Ultimately, if everything happened as

planned, live migration is completed and instance is now successfully hosted on desti-

nation node.

6
Results and future directions

6.1 Testbed

e setup we have used for testing is a private Ganeti cluster, where each node supports

the KVM hypervisor and has the EnhanceIO

e testbed used in ourwork is a simple two nodeGaneti cluster hosting a small number

of Virtual Machines and a Ceph cluster offering shared block storage in two different

pools, one for instance disks and one for disk caches. e Ganeti cluster nodes provide

the KVM hypervisor for virtualization and also have our modified EnhanceIOmodule

installed. Finally, the eio_rbd ext storage provider is present on the two Ganeti nodes.

e testing of our cache framework involved mode switching from write-back mode to

frozen-metadata and back, while an instance is running and issuing block I/O opera-

tions. We have used the fio[5] load generator inside the instances to stress the block I/O

datapath and we have created a number of different I/O patterns, for example sequential

write-only scenarios or random reads and writes of different size. On the host level, we

have used the eio_cli tool to switch between cache modes and the ganeti command

line tools to create, destroy and live-migrate the hosted instances.

In order to reason about the correctness of our solution, we have developed a pair of

complementary tools; one in the kernel-space where EnhanceIO lives, and one for the

user-space. e former tool reads the in-memory cache metadata from the EnhanceIO

address space and exports them to user-space for further processing. is tool is ac-

tually a part of our extened EnhanceIO cache framework, and it is mandatory for real-

67

68 CHAPTER 6. RESULTS AND FUTURE DIRECTIONS

time cachemetadata inspection. e latter tool translates the binary data exported from

kernel-space into human-readable form. Effectively, this tool is aware of the data struc-

tures used in-kernel by the EnhanceIO framework and uses this information to print for

each cache block, which disk block is cached there and the state of the cache block; for

example V or D.

6.2 Results

As a result, we have been able to inspect the state of cache metadata at any given point

in time, like immediately before or aer a mode switch, during heavy I/O load from the

instance or during a live migration.

We have tested the transitions between a write-back cache and a frozen-metadata cache

and using our metadata extraction tool we have verified that frozen-metadata mode be-

haves as planned. e set of cached blocks residing in cache have remained unchanged,

thus no allocations or evictions have taken place. e state of those blocks have either

stayed the same or transitioned to a predictable state, for example fromV to D.

Consequently, we have concluded that metadata corruption can be avoided using our

approach and thus data loss can be evaded. is promising result clearly confirms our

hypotheses and validates our work as a whole.

6.3 Future Work

Ourworkhave created a need for further development and improvement of cache frame-

works.

Definetely we need to extensively test and reason about the correctness of our approach

under a very large spectrum of deployment scenarios and usecases, such as different I/O

workloads produces by instances.

Aer being heavily tested, we will deploy our cache framework in production environ-

ments and we will evaluate the performance results, providing helpfull feedback for ad-

ditional improvements.

6.3. FUTUREWORK 69

Finally, we plan to add supplementary features to our cache framework, that enables the

administrator to enforce different policies per instances trading-off between the impor-

tance of data and the acceptable performance loss.

70

Bibliography

[1] A next-generation platform for petabyte-scale storage. https://www.redhat.

com/en/technologies/storage/ceph. Accessed: 2015-11.

[2] Amazon Web Services (AWS) - Cloud Computing Services. https://aws.

amazon.com/. Accessed: 2015-11.

[3] Ceph Filesystem. http://docs.ceph.com/docs/master/cephfs/. Accessed:

2015-11.

[4] Docker - Build, Ship, and Run Any App, Anywhere. https://www.docker.com/.

Accessed: 2015-11.

[5] Flexible I/O Tester. https://github.com/axboe/fio. Accessed: 2015-11.

[6] Free VMware vSphere Hypervisor, Free Virtualization (ESXi). https://www.

vmware.com/products/vsphere-hypervisor. Accessed: 2015-11.

[7] ganeti - Cluster-based virtualizationmanagement soware - Google Project Host-

ing. https://code.google.com/p/ganeti/. Accessed: 2015-11.

[8] Ganeti 2.15.1 documentation. http://docs.ganeti.org/ganeti/current/

html/. Accessed: 2015-11.

[9] Ganeti Home Page. http://www.ganeti.org/. Accessed: 2015-11.

[10] Google Cloud Computing, Hosting Services and Cloud Support - Google Cloud

Platform. https://cloud.google.com/. Accessed: 2015-11.

71

https://www.redhat.com/en/technologies/storage/ceph
https://www.redhat.com/en/technologies/storage/ceph
https://aws.amazon.com/
https://aws.amazon.com/
http://docs.ceph.com/docs/master/cephfs/
https://www.docker.com/
https://github.com/axboe/fio
https://www.vmware.com/products/vsphere-hypervisor
https://www.vmware.com/products/vsphere-hypervisor
https://code.google.com/p/ganeti/
http://docs.ganeti.org/ganeti/current/html/
http://docs.ganeti.org/ganeti/current/html/
http://www.ganeti.org/
https://cloud.google.com/

72 BIBLIOGRAPHY

[11] History of Virtualization. http://www.everythingvm.com/content/

history-virtualization. Accessed: 2015-11.

[12] Kernel Virtual Machine. http://www.linux-kvm.org/page/Main_Page. Ac-

cessed: 2015-11.

[13] LinuxContainers.org Infrastructure for container projects. https:

//linuxcontainers.org/. Accessed: 2015-11.

[14] LVM is a Logical VolumeManager for the Linux operating system. http://tldp.

org/HOWTO/LVM-HOWTO/. Accessed: 2015-11.

[15] Mark Fasheh, OCFS2: Oracle Clustered File System, Version 2 , Proceedings of

the 2006 Linux Symposium, July 2006, pp. 289–302. https://www.kernel.org/

doc/ols/2006/ols2006v1-pages-289-302.pdf. Accessed: 2015-11.

[16] OpenStack Open Source Cloud Computing Soware. https://www.openstack.

org/. Accessed: 2015-11.

[17] Pithos+. https://okeanos.grnet.gr/services/pithos/. Accessed: 2015-11.

[18] QEMU Open Source Processor Emulator. http://wiki.qemu.org/Main_Page.

Accessed: 2015-11.

[19] Schmuck, Frank; Roger Haskin (January 2002). ”GPFS: A Shared-Disk File System

for Large Computing Clusters” (pdf). Proceedings of the FAST’02 Conference on

File and Storage Technologies. Monterey, California, USA: USENIX. pp. 231–244.

ISBN 1-880446-03-0. Retrieved 2008-01-18. http://www.usenix.org/events/

fast02/full_papers/schmuck/schmuck.pdf. Accessed: 2015-11.

[20] STEC EnhanceIO SSD Caching Soware. https://github.com/stec-inc/

EnhanceIO. Accessed: 2015-11.

[21] Synnefo. https://www.synnefo.org/. Accessed: 2015-11.

[22] e History of Virtualization - Supercomputers and Mainframes. http://www.

servethehome.com/virtualization-long-history. Accessed: 2015-11.

[23] e Xen Project, the powerful open source industry standard for virtualization.

http://www.xenproject.org/. Accessed: 2015-11.

http://www.everythingvm.com/content/history-virtualization
http://www.everythingvm.com/content/history-virtualization
http://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org/
https://linuxcontainers.org/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-289-302.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-289-302.pdf
https://www.openstack.org/
https://www.openstack.org/
https://okeanos.grnet.gr/services/pithos/
http://wiki.qemu.org/Main_Page
http://www.usenix.org/events/fast02/full_papers/schmuck/schmuck.pdf
http://www.usenix.org/events/fast02/full_papers/schmuck/schmuck.pdf
https://github.com/stec-inc/EnhanceIO
https://github.com/stec-inc/EnhanceIO
https://www.synnefo.org/
http://www.servethehome.com/virtualization-long-history
http://www.servethehome.com/virtualization-long-history
http://www.xenproject.org/

BIBLIOGRAPHY 73

[24] Wikipedia : ZFS. https://en.wikipedia.org/wiki/ZFS. Accessed: 2015-11.

[25] Wikipedia: Cloud computing. https://en.wikipedia.org/wiki/Cloud_

computing. Accessed: 2015-11.

[26] Wikipedia: Container (virtualization). https://en.wikipedia.org/wiki/

Operating-system-level_virtualization. Accessed: 2015-11.

[27] With long history of virtualization behind it, IBM looks to the future.

http://www.networkworld.com/article/2254433/virtualization/

with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.

html. Accessed: 2015-11.

[28] Rusty Russell. Virtio: Towards a de-facto standard for virtual i/o devices. SIGOPS

Oper. Syst. Rev., 42(5):95–103, July 2008.

[29] Wikipedia. Timeline of virtualization development — wikipedia, the free ency-

clopedia, 2015. [Online; accessed 22-November-2015].

https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
http://www.networkworld.com/article/2254433/virtualization/with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.html
http://www.networkworld.com/article/2254433/virtualization/with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.html
http://www.networkworld.com/article/2254433/virtualization/with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.html

	Αντί Προλόγου
	Abstract
	Περίληψη
	Introduction
	Problem Statement
	Motivation
	Shortcomings
	Design
	Results

	Background
	Virtualization
	A bit of history
	Virtualization Today
	Hypervisor
	QEMU
	KVM
	Xen
	VMWare ESXi
	VirtIO
	Containers

	Cloud computing and cluster management
	What is Cloud Computing
	Amazon Web Services
	Google Cloud Platform
	OpenStack
	Ganeti
	Synnefo

	Storage in the Cloud
	Basics of Computer Storage
	The OS storage stack
	SAN Appliances and Shared Storage
	Object Stores

	System Analysis and Design
	Block Caching
	States of Cache Blocks
	Side-effects of Reads and Writes
	Superblock and Metadata
	Modes of Operation and Replacement Policies

	Detailed Problem Statement
	I/O Data Path
	Live Migration
	Complications of using a shared cache
	Data corruption with a shared cache

	Naive Workarounds
	An optimal solution
	Our design: A new cache mode

	Implementation
	Migration using WB mode
	Naive Migration using FM mode
	Updating on-device metadata
	Atomic cache block updates
	Everything is Dirty
	An alternative: locking the cache

	Integration with Ganeti
	Ganeti ExtStorage Providers
	Our eio_rbd provider
	Workflow

	Results and future directions
	Testbed
	Results
	Future Work

	Bibliography

