

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Integrating High-Level Synthesis derived Hardware Accelerators on an
FPGA-based SoC: Evaluation and Analysis of Design Alternatives

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Κωνσταντίνου Γ. Ραΐλη

Επιβλέπων: Δημήτριος Ι. Σούντρης
Αναπληρωτής Καθηγητής

Αθήνα, Μάρτιος 2016

2

3

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ
ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Integrating High-Level Synthesis derived Hardware Accelerators on an
FPGA-based SoC: Evaluation and Analysis of Design Alternatives

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Κωνσταντίνου Γ. Ραΐλη

Επιβλέπων: Δημήτριος Ι. Σούντρης
Αναπληρωτής Καθηγητής

Εγκρίθηκε από την τριμελή επιτροπή την 30η Μαρτίου 2016.

…............................ …............................ …............................
 Δημήτριος Ι. Σούντρης Κιαμάλ Ζ. Πεσκμεστζή Γεώργιος Οικονομάκος

Αναπληρωτής Καθηγητής Καθηγητής Επίκουρος Καθηγητής

Αθήνα, Μάρτιος 2016

4

…...

ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΡΑΪΛΗΣ
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ

Copyright © Κωνσταντίνος Γ. Ραΐλης, 2016.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπό μή κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να
αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν
τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού
Μετσόβιου Πολυτεχνείου.

5

Σύντομη Περίληψη

Τα τελευταία χρόνια, ο σχεδιασμός επιταχυντών υλικού έχει καθιερωθεί σαν δεδομένο όταν
στοχεύουμε σε βελτιστοποιήσεις αλγοριθμικών υλοποιήσεων. Συγκεκριμένα, οι επιταχυντές
βασισμένοι σε FPGA έχουν κερδίσει το ενδιαφέρον των σχεδιαστών και του επιστημονικού
κόσμου καθώς οι συσκευές FPGA προσφέρουν ταχύτατη ανάπτυξη του υλικού και δυνατότητες
επαναδιαμόρφωσής του. Σε συνδυασμό με το επίπεδο του αφαιρετικού σχεδιασμού που
προσφέρει η Σύνθεση Υψηλού Επιπέδου (High-Level Synthesis – HLS) σχηματίζουν μία σαφή
λύση όταν επιθυμείται η γρήγορη σχεδίαση πρωτοτύπων για συστήματα. Προσφάτως, η
κυρίαρχη τάση για μία συσκευή FPGA είναι να περιλαμβάνει τα πλεονεκτήματα που
προσφέρουν οι ενσωματωμένοι επεξεργαστές σχηματίζοντας με αυτόν τον τρόπο ένα
ολοκληρωμένο Σύστημα-σε-Ψηφίδα (System-on-a-Chip – SoC). Η συνύπαρξη επιταχυντών
υλικού και ενσωματωμένων επεξεργαστών σε μία συσκευή έχει φέρει στο προσκήνιο τη
διασύνδεσή τους σαν ένα στοιχείο ζωτικής σημασίας για την επίδοση ολόκληρου του
συστήματος. Για ευκολία στη διασύνδεση ενός επιταχυντή και ενός επεξεργαστικού
συστήματος έχει υιοθετηθεί σαν πρακτική η σχεδίαση σε μορφή Πνευματικής Ιδιοκτησίας
(Intellectual Property – IP). Συνήθως ένα IP είναι εξοπλισμένο με διεπαφές ελέγχου και
επικοινωνίας έτσι ώστε να είναι εύκολος ο συνδυασμός του με άλλα στοιχεία, τις περισσότερες
φορές χωρίς να απαιτείται η προσθήκη πρόσθετου υλικού. Μια ευρέως διαδεδομένη διεπαφή
επικοινωνίας είναι το πρωτόκολλο ARM AMBA Advanced eXtensible Interface (AXI). Οι
σχεδιαστικές εναλλακτικές που παρέχονται από το πρωτόκολλο AXI μπορεί να κυμαίνονται από
απλή, χαμηλού εύρους ζώνης επικοινωνία και μεταφορά δεδομένων μέχρι υψηλές τιμές
εύρους ζώνης χρησιμοποιώντας διαθέσιμα χαρακτηριστικά όπως η Άμεση Πρόσβαση Μνήμης.
Σε αυτή την εργασία επικεντρωνόμαστε στη ροή υλοποίησης ενός συστήματος για τη συσκευή
Zynq-7000 AP SoC. Ξεκινώντας με την προσθήκη διαφορετικών διεπαφών επικοινωνίας
δημιουργούμε επιταχυντές σε μορφή IP μέσω του HLS. Στη συνέχεια προχωρούμε στη
διασύνδεση των IP με ένα επεξεργαστικό σύστημα βασισμένο στον ARM και δημιουργούμε το
συνολικό σύστημα. Τέλος, ακολουθεί η δημιουργία ενσωματωμένων Linux διανομών για το
σύστημά μας και η ανάπτυξη μιας εφαρμογής που θα εκτελεστεί στο επεξεργαστή. Οι
επιταχυντές υλικού που χρησιμοποιήθηκαν για την αξιολόγηση και ανάλυση των εναλλακτικών
σχεδίων ανήκουν σε διαφορετικά επιστημονικά πεδία. Ο πρώτος είναι μία υλοποίση του
αλγορίθμου ανίχνευσης γωνιών Harris & Stephens. Ο δεύτερος είναι ένας ταξινομητής
Μηχανών Διανυσμάτων Υποστήριξης (Support Vector Machines – SVM) για την καρδιακή
αρρυθμία που χρησιμοποιεί τη βάση δεδομένων ΗΚΓ MIT-BIH. Διαφέρουν όχι μόνο στα
επιστημονικά τους πεδία αλλά επίσης στο μέγεθος των δεδομένων εισόδου, στην
πολυπλοκότητα του κώδικα και στη χρησιμοποίηση πόρων. Η ανάλυση μας παρουσιάζει την
επίδραση των διαφορετικών διεπαφών επικοινωνίας στo χρόνο εκτέλεσης, στο εύρος ζώνης,
στη χρησιμοποίηση πόρων του FPGA και στη συνολική επίδοση του συστήματος. Η διερεύνηση

6

των εναλλακτικών διεπαφών και διασυνδέσεων για μία συγκεκριμένη έκδοση ενός επιταχυντή
κατέληξε σε κέρδος μέχρι και 20% στο χρόνο εκτέλεσης και σημαντικό κέρδος στο εύρος ζώνης.

Λέξεις-Κλειδιά: Σύνθεση Υψηλού Επιπέδου, AMBA AXI, AXI4-Lite, AXI4-Stream, Αναπτυξιακή
Πλακέτα Zynq Evaluation and Development Board, Άμεση Πρόσβαση Μνήμης, Αλγόριθμος
Ανίχνευσης Γωνιών Harris & Stephens, Μηχανές Διανυσμάτων Υποστήριξης, Ανάλυση ΗΚΓ

7

Abstract

In recent years, the design of hardware accelerators has been established as a standard
practice when targeting to optimizations of algorithmic implementations. FPGA-based
accelerators, in particular, have gained the interest of system architects and the scientific
world due to the innate fast hardware development and reconfiguration capabilities that
are offered by an FPGA device. Τhese features, combined with the level of design
abstractions of High-Level Synthesis (HLS) frame a definite solution when it comes to fast
prototyping of system designs. Lately, the tendency for an FPGA device is to comprise the
benefits of embedded processors, thus forming a whole system-on-a-chip (SoC). The
coexistence of hardware accelerators and embedded processors on a single device have
brought the interconnection of these components to the proscenium as an element of vital
significance for the performance of the whole system. In order for the custom hardware to
be readily interconnected to a processing system, the Intellectual Property (IP) design style
has been adopted. Typically, an IP is equipped with control and communication interfaces
so that it can be easily combined with other components, in most cases, without the
utilization of additional hardware. A widely used communication interface for IP generation
is the ARM AMBA Advanced eXtensible Interface (AXI) protocol. Design alternatives offered
by the AXI might range from simple low-bandwidth communication and data transfers to
higher values of bandwidth by employing the available Direct Memory Access features. Ιn
this work, we focus on the system implementation flow targeting to a Zynq-7000 AP SoC
device. Beginning with the addition of different communication interfaces we generate
custom accelerator IPs through HLS. Then we proceed to the interconnection of those IPs
with an ARM-based processing system and generate the system design. The final steps
include the generation of Embedded Linux distributions for our custom hardware and the
development of a userspace application to be executed on the processing system of our
design. The hardware accelerators that are employed for evaluation and analysis of design
alternatives appertain to two distinct scientific fields. The first one is an implementation of
the Harris & Stephens Corner Detection Algorithm. The second is a Support Vector Machine
classifier for arrhythmia detection using MIT-BIH ECG signal database. The employed
accelerators differ not only in their respective fields but also in the input data sizes,
complexity of the code and resource needs. Our combined analysis shows the impact of
different communication interfaces in latency, bandwidth, utilized FPGA resources and
overall system performance. The exploration of different interface and interconnection
configurations for a default accelerator lead to latency gains of up to 20% and significant
bandwidth gains.

Keywords: High-Level Synthesis, AMBA AXI, AXI4-Lite, AXI4-Stream, ARM, Zynq Evaluation
and Development Board, Direct Memory Access, Embedded Linux, HW/SW codesign, Harris
and Stephens Corner Detection Algorithm, Support Vector Machines, ECG Analysis

8

This page is intentionally left blank.

9

Ευχαριστίες

Η εκπόνηση της παρούσας διπλωματικής εργασίας έγινε σε συνεργασία με το Εργαστήριο
Μικροϋπολογιστών και Ψηφιακών Συστημάτων της Σχολής Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών του ΕΜΠ. Θα ήθελα να εκφράσω της ειλικρινείς ευχαριστίες μου στον
κύριο Δημήτριο Σούντρη, Αναπληρωτή Καθηγητή της ΣΗΜΜΥ για την εμπιστοσύνη που μου
έδειξε ώστε να μου εμπιστευτεί ένα αρκετά απαιτητικό θέμα προς εκπόνηση, αλλά και για της
εκπαιδευτικές ευκαιρίες και γνώσεις που μου προσέφερε, όχι μόνο στο πλαίσιο των
μαθημάτων του εργαστηρίου αλλά και μέσω της προσωπικής μας επικοινωνίας.

Θα ήθελα στη συνέχεια να ευχαριστήσω ειλικρινά τον Βασίλη Τσούτσουρα, Υποψήφιο
Διδάκτορα και δεύτερο πρωταγωνιστή στην εκπόνηση αυτής της διπλωματικής εργασίας. Με
τα εποικοδομητικά του σχόλια, την καλή διάθεση και την αρκετά μεγάλη υπομονή και
κατανόηση που έδειχνε στις συναντήσεις μας μου έδινε συνεχώς θάρρος να συνεχίζω και να
επικεντρώνομαι στο στόχο μου.

Θα ήθελα επίσης να ευχαριστήσω τον Γιώργο Λεντάρη και τον Σωτήρη Ξύδη,
Μεταδιδακτορικούς Ερευνητές για τις περιορισμένες μεν αλλά πάντα εποικοδομητικές
συζητήσεις και για τα χρήσιμα σχόλιά τους.

Στη συνέχεια, δεν θα μπορούσα να μην ευχαριστήσω τον Γιάννη Γαλάνη, Διπλωματούχο
Ηλεκτρολόγο Μηχανικό και Μηχανικό Υπολογιστών για την παροχή του πηγαίου κώδικα για την
υλοποίηση του Αλγορίθμου Ανίχνευσης γωνιών Harris & Stephens. Στο ίδιο πλαίσιο αλλά σε
πολύ μεγαλύτερο βαθμό θα ήθελα να εκφράσω τις ευχαριστίες και την ευγνωμοσύνη μου στην
Κωνσταντίνα Κολιογεώργη, Διπλωματούχα Ηλεκτρολόγο Μηχανικό και Μηχανικό Υπολογιστών
αφενός για την παροχή του πηγαίου κώδικα για το SVM, αφετέρου γιατί η εξαιρετική της
εργασία και οργάνωση του κώδικα μου προσέφερε ένα μεγάλο κέρδος σε μονάδες χρόνου.

Θέλω επίσης να ευχαριστήσω όλους του ανθρώπους που συνυπάρχουν στο Εργαστήριο
Μικροϋπολογιστών και Ψηφιακών Συστημάτων για το εξαιρετικό κλίμα που δημιουργούν αλλά
και για τη διαθεσιμότητα τους σε οποιαδήποτε απορία που μπορεί να είχε προκύψει, όπως
επίσης και τους συμφοιτητές οι οποίοι εκπονούν και εκείνοι τη διπλωματική τους εργασία με
τους οποίους περάσαμε ατελείωτες ώρες ο ένας δίπλα στον άλλον στο εργαστήριο.

Περισσότερο από όλους, θέλω να ευχαριστήσω την οικογένεια μου που με στήριξε σε κάθε μου
επιλογή και μου προσέφερε από τη γέννησή μου όλα αυτά που μου έδωσαν τη δυνατότητα
σήμερα να γράφω αυτό το ευχαριστήριο σημείωμα στις πρώτες σελίδες της Διπλωματικής μου
εργασίας. Τέλος, να ευχαριστήσω την αδελφή μου και όλους μου τους φίλους, σχολικούς και
“πανεπιστημιακούς” που με κάνουν να χαμογελώ και να ανταπεξέρχομαι σε οποιαδήποτε
συγκυρία με αισιοδοξία, κάτι που θα ήταν αδύνατο χωρίς την ύπαρξή τους.

10

This page is intentionally left blank.

11

Acknowledgements

The present diploma thesis is the result of the work and collaboration with the
Microprocessors and Digital Systems Laboratory (MicroLab) of National Technical
University of Athens. I would like to express my sincere gratitude to Prof. Dimitrios Soudris
for the trust he showed, granting me such a demanding thesis but also for the educational
opportunities and knowledge he offered me, not only through the Lab's courses but also
through our personal communication.

I would like to sincerely thank Phd Student Vasilis Tsoutsouras, who can be considered are a
second protagonist during the work for this diploma thesis. His insightful comments, good
mood, patience and understanding he showed during our meetings gave me courage to
continue and focus on my target.

I would also like to thank Postdoctoral Researchers George Lentaris and Sotiris Xydis for
our limited but always full with constructive and insightful comments conversations.

Thanks to Giannis Galanis, Graduate Student of the School of Electrical and Computer
Engineering for the provision of the Harris & Stephens Corner Detection Algorithm source
code. Special thanks to Konstantina Koliogeorgi for the provision of the SVM classifier
source code but also for her excellent work.

I would also like to thank all the people that coexist in MicroLab for the great environment
that they create and their availability whenever I had a question and fellow undergraduate
students with whom we worked together, side by side for long hours in the Lab.

Most of all, I would like to thank my family which has been supporting every choice I have
made and since my birth have offered me all these that today give me the opportunity to
write this thank you note in the first pages of my diploma thesis. Finally, I would like to
thank my sister and my friends for making me smile and cope with any situation that has
occurred with optimism, something which would be impossible without their existence.

12

This page is intentionally left blank.

13

Contents

Σύντομη Περίληψη 5
Abstract 7
Ευχαριστίες 9
Acknowledgments 11
Εκτεταμένη Περίληψη 17
List of Figures 27
List of Tables 29

1 Introduction 31
1.1 Introduction to FPGA 31

1.1.1 History. 31
1.1.2 FPGA Attributes and Advantages 32
1.1.3 State of the Art 34

1.2 FPGA fabric 36
1.2.1 Look Up Table 37
1.2.2 Hardwired Blocks 38
1.2.3 Interconnection 39
1.2.4 Programming Technologies 40

1.3 CAD tools and FPGA programming 41
1.4 High-Level Synthesis 43
1.5 Aims, Objectives and Organization of Chapters 45

2 Theoretical Background 47
2.1 The Harris & Stephens Corner Detector 47

2.1.1 Introduction to Computer Vision 47
2.1.2 Feature Detection 48
2.1.3 The Edge Tracking Problem 49
2.1.4 The Moravec Corner Detector 50
2.1.5 The Harris & Stephens/Plessey/Shi-Tomasi Corner Detection

Algorithm 51
2.1.6 Related Work 53

2.2 Support Vector Machine Classifier for Arrhythmia Detection 53
2.2.1 Electrocardiogram Analysis Flow 54
2.2.2 SVM Classifier 56
2.2.3 Related Work 57

14

3 Technical Background 59
3.1 The Advanced Microcontroller Bus Architecture (AMBA) 59
3.2 The Advanced eXtensible Interface (AXI) Protocol 60

3.2.1 The AXI4-Lite Interface 62
3.2.2 The AXI4-Stream Interface 63

3.3 The Linux UIO Driver 65
3.4 Direct Memory Access 67

4 Employed Work Flow for HW IP Integration on ZedBoard 69
4.1 Zynq Evaluation and Development Board Specifications 69
4.2 IP Generation with High-Level Synthesis 72

4.2.1 Setting AXI4-Lite Interfaces 74
4.2.2 Setting AXI4-Stream Interfaces 76

4.3 System Generation 78
4.3.1 System Design with AXI4-Lite Interfaces 79
4.3.2 System Design with AXI4-Stream Interfaces. 80

4.4 Generation of Embedded Linux Distributions 82
4.5 Userspace Application Development 84

4.5.1 Development of AXI4-Lite Targeted Application 84
4.5.2 Development of AXI4-Stream Targeted Application 85

5 Evaluation of Work Flow on Harris & Stephens Corner Detector 87
5.1 General Description of HW Implementations 87
5.2 Code Transformations Targeting to a ZedBoard Implementation 88
5.3 Implementation of AXI4-Lite Version 92
5.4 Implementation of AXI4-Stream Version 94
5.5 Overall Comparison of HW Implementations 94

6 Evaluation of Work Flow on SVM Classifier 97
6.1 General Description of HW Implementations 97
6.2 HW Original Version Implementations and Results. 98

6.2.1 Original AXI4 Slave Lite Version with 1 Classify IP 99
6.2.2 Original AXI4 Slave Lite Version with 2 Classify IPs. 100
6.2.3 Original AXI4 Slave Lite Version with 4 Classify IPs. 101
6.2.4 Original AXI4 Stream Version with 1 Classify IP 103
6.2.5 Original AXI4 Stream Version with 2 Classify IPs 105
6.2.6 Comparison of HW Original Implementations 108

6.3 HW Accelerated Version Implementations and Results 110
6.3.1 Accelerated AXI4 Slave Lite Version 110
6.3.2 Accelerated AXI4 Stream Version with 1 Classify IP. . . , , , , , 111
6.3.3 Accelerated AXI4 Stream Version with 2 Classify IPs 112
6.3.4 Comparison of HW Accelerated Versions 114

6.4 HW Optimal Version Implementations and Results. 115

15

6.4.1 Optimal AXI4 Slave Lite Version 115
6.4.2 Optimal AXI4 Stream Version 116
6.4.3 Comparison of HW Optimal Implementations 117

6.5 Overall Comparison of HW Implementations 118

7 Conclusion 123
7.1 Summary 123
7.2 Future Work124

References 125

16

This page is intentionally left blank.

17

Θεωρητικό Υπόβαθρο

Αλγόριθμος Ανίχνευσης Γωνιών Harris & Stephens

O Αλγόριθμος Ανίχνευσης γωνιών Harris & Stephens είναι ένας αλγόριθμος ο οποίος όπως
υποδηλώνει το όνομά του, έχει στόχο την ανίχνευση γωνιών σε εικόνες. Τα βασικά στοιχεία του
αλγορίθμου αυτού όπως υλοποιήθηκε στη συνέχεια της διπλωματικής εργασίας είναι τα εξής:

• Ο αλγόριθμος παίρνει επικαλυπτόμενα παράθυρα της εικόνας και τα μετακινεί προς
όλες της κατευθύνσεις ώστε να εντοπίσει τις μεταβολές στην ένταση της εικόνας.
Αρχικά η συνάρτηση που δίνει την ένταση της εικόνας σε κάθε σημείο δίνεται από την
εξής σχέση:

I (x+u , y+v)≈ I(u , v) + x I x (u , v) + y I y (u , v)

Στη συνέχεια υπολογίζεται το άθροισμα των τετραγώνων των διαφορών ως εξής

E(x , y)=∑
u, v

w(u ,v)(I (u , v)+x I x(u , v)+ y I y(u , v))
2 ή E(x , y)=[x y] A[xy]

όπου

A =∑
u , v

w(u , v)[I x
2 I x I y

I x I y I y
2]= [⟨ I x

2
⟩ ⟨ I x I y ⟩

⟨I x I y ⟩ ⟨ I y
2
⟩]

.

• Ένα σημαντικό στοιχείο του αλγορίθμου Harris είναι η χρήση γκαουσιανού παραθύρου
για την ομαλοποίηση της εικόνας που εξασφαλίζει μία μία θορυβώδη απόκριση.

• Στον αλγόριθμο του Harris οι γωνίες θεωρούνται πως παρουσιάζουν μεγάλη
διακύμανση του αθροίσματος των τετραγώνων των διαφορών σε κάθε κατεύθυνση. Αν
ένα σημείο ενδιαφέροντος/γωνία εξετάζεται τότε ο πίνακας Α πρέπει να έχει δύο
ιδιοτιμές με μεγάλη τιμή. Αν λ1≈0, λ2≈0 τότε το σημείο που εξετάζεται δεν είναι
σημείο ενδιαφέροντος. Αν λ1≈0 και λ2 τότε έχουμε ανίχνευση μιας ακμής. Τέλος
αν και οι δύο ιδιοτιμές είναι μεγάλες θετικές τιμές τότε έχουμε εντοπίσει μία γωνία.

18

Θεωρία Μηχανών Διανυσμάτων Υποστήριξης

Οι Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines – SVM) είναι μοντέλα
επιβλεπόμενης μάθησης που εκπαιδεύονται με ένα μεγάλο σύνολο δεδομένων και είναι
κατάλληλα για την ταξινόμηση των νέων εισόδων σε δύο υποψήφιες κλάσεις
συμππληρωματικές μεταξύ τους. Το σύνολο εκπαίδευσης αποτελείται από διανύσματα με
συγκεκριμένα χαρακτηριστικά και μία ετικέτα της κλάσης στην οποία ανήκει το κάθε διάνυσμα.

Τα SVM εφαρμόζουν αρχικά μία συνάρτηση πυρήνα που ανάγει τα διανύσματα σε έναν χώρο
με περισσότερες διαστάσεις όπου ο διαχωρισμός είναι πιο εύκολος. Στο χώρο αυτό εντοπίζεται
ένα υπερεπίπεδο που αποτελείται από διανύσματα που απέχουν μέγιστα από αυτά της κάθε
κλάσης. Κάθε νέο διάνυσμα ανάγεται σε αυτόν το χώρο, υπολογίζεται η απόστασή του από το
υπερεπίπεδο και αναλόγως ταξινομείται σε κάποια κλάση. Η συνάρτηση πυρήνα παίζει έναν
πρωταγωνιστικό ρόλο στη ακρίβεια και την πολυπλοκότητα του μοντέλου. Στο πρόβλημα που
θα εξετάσουμε προτιμούμε μη γραμμική συνάρτηση πυρήνα και συγκεκριμένα εκθετικής
φύσης για τον διαχωρισμό των παλμών της καρδιάς.

Η μαθηματική εξίσωση που περιγράφει τον υπολογιστικό πυρήνα του ταξινομητή είναι η
παρακάτω:

Class=sgn (∑
i=1

N sv

(y i∗ai∗exp(−γ‖x−sup_vector i‖
2
))−b)

όπου x είναι το διάνυσμα του παλμού προς ταξινόμηση, sup_vector(i) είναι το I-οστό διάνυσμα
υποστήριξης και y i , ai είναι τιμές διαφορετικές για κάθε διάνυσμα υποστήριξης και
προέκυψαν κατά την εκπαίδευση του SVM.

19

Ροή Εργασίας για Υλοποιήσεις στο ZedBoard

ZedBoard

Το ZedBoard είναι μία αναπτυξιακή πλακέτα χαμηλού κόστους. Είναι ένα σύστημα που έχει
υλοποιηθεί σε ολοκληρωμένο κύκλωμα (SoC) που ανήκει στην οικογένεια Zynq-7000 AP SoC
της Xilinx. Συνδυάζει την ύπαρξη ενός υπολογιστικού συστήματος με δύο επεξεργαστές ARM με
την ύπαρξη επαναπρογραμματιζόμενης λογικής. Υποστήζει υλοποίηση Linux, Android και RTOS
εφαρμογών. Τα κύρια χαρακτηριστικά του ZedBoard είναι τα εξής:

• Μνήμη: δυναμική (DDR3) και στατική μνήμη (SPI Flash, Διεπαφή κάρτας SD)
• USB: USB-to-UART σύνδεση, λειτουργικότητα JTAG, προστασία κυκλωμάτων
• Οθόνη και Ήχος: HDMI πομπός, Analog Device Audio Codec, OLED dislpay
• Clock Sources: 33.3333 MHz ρολόι για το υπολογιστικό σύστημα και παροχή έως και

τεσσάρων ρολογιών για το επαναπρογραμματιζόμενο μέρος.
• Reset Sources: εξωτερικοί διακόπτες για επανεκκίνηση της πλακέτας και

επαναπρογραμματισμό
• User I/O: 7 user GPIO push buttons, 8 user dip switches, 8 LEDS
• 10/100/1000 Ethernet PHY
• PS και PL I/O επεκτάσεις

Στόχος της παρούσας εργασίας είναι η προσθήκη στο ZedBoard επιταχυντών υλικού που έχουν
σχεδιαστεί και παραχθεί με τη βοήθεια της σύνθεσης υψηλού επιπέδου και η μελέτη της
επικοινωνίας τους με το διαθέσιμο επεξεργαστικό σύστημα.

Δημιουργία IP με Σύνθεση Υψηλού Επιπέδου

Το πρώτο βήμα για μία υλοποίηση ενός αλγορίθμου ή ενός επιταχυντή στην αναπτυξιακή
πλακέτα ZedBoard είναι το βήμα της σύνθεσης υψηλού επιπέδου (High-Level Synthesis – HLS).
Κατά τη διαδικασία της σύνθεσης υψηλού επιπέδου επιλέγουμε τις απαραίτητες διεπαφές
επικοινωνίας και ελέγχου. Στην παρούσα εργασία, οι διεπαφές που χρησιμοποιήθηκαν ήταν τα
πρωτόκολλα AXI4-Lite και AXI4-Stream. Και τα δύο μπορούν να προστεθούν πολύ εύκολα από
την καρτέλα Directives του Vivado HLS. Στην περίπτωση του AXI4-Lite το εργαλείο προσθέτει
αυτόματα εκτός από το AXI4-Lite πρωτόκολλο στη συνάρτηση και ένα πρωτόκολλο επιπέδου-
μπλοκ για τον έλεγχο του συγκεκριμένου επιταχυντή, δηλαδή την εκκίνηση των υπολογισμών,

20

τον έλεγχο ολοκλήρωσης των υπολογισμών και άλλα. Επιπλέον για IP με AXI4-Lite διεπαφές
γίνοται αυτόματη δημιουργία ενός οδηγού υλικού για τη συγκεκριμένη συσκευή μέσω του
οποίου μπορούμε να έχουμε πρόσβαση στη μνήμη της. Αντιθέτως όταν προσθέτουμε AXI4-
Stream διεπαφές επιλέγουμε ο έλεγχος της λειτουργίας να μην γίνεται με πρωτόκολλα
επιπέδου-μπλοκ. Αντίθετα, τοποθετούμε τον έλεγχο εντός του επιταχυντή. Στις stream
υλοποιήσεις οι επιταχυντές μας πρώτα συλλέγουν τις τιμές που απαιτούνται για τον
υπολογισμό και στη συνέχεια εκτελούν τον υπολογισμό ενώ επιπλέον δεδομένα που μπορεί να
βρίσκονται στην είσοδο δεν διαβάζονται μέχρι να συλλεχθούν όλα και να εκκινήσει ο
υπολογισμός.

Δημιουργία του Συνολικού Συστήματος

Μετά τη δημιουργία των επιταχυντών υλικού σε μορφή IP σειρά έχει διασύνδεση του με το
επεξεργαστικό σύστημα (PS) του ZedBoard και η δημιουργία του συνολικού συστήματος. Στην
περίπτωση των AXI4-Lite πρωτοκόλλων η διασύνδεση γίνεται κυριολεκτικά με το πάτημα ενός
κουμπιού. Αντιθέτως στην περίπτωση των AXI4-Stream πρωτοκόλλων η διασύνδεση δε γίνεται
αυτόματα. Ο χρήστης πρέπει να προσθέσει ένα AXI DMA μπλοκ για τη μεταφορά των
δεδομένων. Στη συνέχεια εκτελείται η σύνθεση και η υλοποίηση του συστήματος και εξάγεται
το αρχείο bitstream που χρησιμοποιείται για τον προγραμματισμό του FPGA.

Δημιουργία Linux Διανομών

Έπειτα από την υλοποίηση του συστήματος το επόμενο βήμα είναι η δημιουργία μιας
ενσωματωμένης Linux διανομής για το σύστημά μας. Για το σκοπό αυτό χρησιμοποιούμε τα
Petalinux Tools της Xilinx. Με τα Petalinux δημιουργούμε μία νέα πλατφόρμα Linux για το
ZedBoard και στη συνέχεια από την περιγραφή υλικού που έχει εξαχθεί προηγουμένως
χτίζουμε μία νέα διανομή για το δικό μας σύστημα. Φορτώνουμε την εικόνα της διανομής στην
κάρτα SD και στη συνέχεια μπορούμε να συνδεθούμε μέσω της σειριακής θύρας και του
προγραμμάτος GtkTerm με τη συσκευή.

Ανάπτυξη Εφαρμογών στο ZedBoard

Αφού έχουμε δημιουργήσει την πλατφόρμα που τρέχει στο επεξεργαστικό σύστημα στη
συνέχεια πρέπει να αναπτύξουμε μία εφαρμογή που τρέχει στο χώρο χρήστη, αποκτά
πρόσβαση και ελέγχει τον επιταχυντή. Οι συσκευές που διαθέτουν AXI4-Lite πρωτόκολλο
μπορούν να απεικονιστούν στο χώρο χρήστη μέσω του Linux UIO οδηγού. Αντίθετα για την
ανάπτυξη εφαρμογών για συσκευές με AXI4-Stream πρωτόκολλα η διαδικασία είναι
διαφορετική καθώς απαιτείται ένας πιο πολύπλοκος οδηγός. Η ανάπτυξη για αυτή την
περίπτωση έγινε με τη βοήθεια του zynq-xdma driver [https://github.com/bmartini/zynq-
xdma].

https://github.com/bmartini/zynq-xdma
https://github.com/bmartini/zynq-xdma

21

Αξιολόγηση Ροής Εργασίας για τον
Αλγόριθμο Ανίχνευσης Γωνιών Harris & Stephens

Κατά την εφαρμογή της προτεινόμενης ροής εργασίας στον αλγόριθμο ανίχνευσης γωνιών
Harris προχωρήσαμε σε πέντε διαφορετικές υλοποιήσεις στο ZedBoard. H πρώτη υλοποίηση
δεν περιελάμβανε καμία βελτιστοποίηση, οι επόμενες περιελάμβαναν την προσθήκη της
ντιρεκτίβας UNROLL και ARRAY_MAP με ρολόι 50 MHz και 75 MHz. Προχωρήσαμε σε
υλοποιήσεις χρησιμοποιώντας τα πρωτόκολλα AXI4-Lite και AXI4-Stream. Στις υλοποιήσεις
αυτές κατεφέραμε να πετύχουμε ένα εύρος ζώνης μέχρι και 154 ΜΒ/s . Παρακάτω μπορούμε
να δούμε συγκριτικά διαγράμματα για τον απαιτούμενο χρόνο επικοινωνίας και υπολογισμού
σε κάθε υλοποίηση.

Σχήμα 1: Χρόνου υπολογισμού για της υλοποιήσεις του Harris

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.5
1

1.5
2

2.5
3

Comparison of HW Implementations

Computation Time

Unoptimized-Lite Unroll_&_Array_Map_50M-Lite

Unroll_&_Array_Map_75M-Lite Unroll_&_Array_Map_75M-Stream

ARM

Image Size (Pixels)

T
im

e
 (

s
e

c)

22

Σχήμα 2: Χρόνοι Επικοινωνίας για τις υλοποιήσεις του Harris

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.01

0.02

0.03

0.04

0.05

0.06

Comparison of HW Implementations

Communication Times

Unoptimized_Lite Unroll_&_Array_Map_50M-Lite

Unroll_&_Array_Map_75M-Lite Unroll_&_Array_Map_75M-Stream

Image Size (Pixels)

T
im

e
 (

s
e

c)

23

Αξιολόγηση Ροής Εργασίας για τον Ταξινομητή SVM

Κατά την ενασχόλησή μας με τον ταξινομητή SVM προχωρήσαμε σε εξαγωγωγή μέσω του HLS
έξι διαφορετικών εκδόσεων του κώδικα. Οι πρώτες έκδοσεις είναι ο γνήσιος κώδικας χωρίς
βελτιστοποιήσεις με AXI4-Lite και AXI4-Stream. H 3η και 4η έκδοση είναι ένας επιταχυμένος
κώδικας και πάλι με AXI4-Lite και ΑΧΙ4-Stream υλοποιήσεις. Τέλος, υλοποιούμε και δύο
εκδόσεις της βέλτιστης εκδοχής του κώδικα. Συνολικά οι υλοποιήσεις για τον ταξινομητή ήταν
πέντε για τον γνήσιο κώδικα, με χρήση και περισσοτέρων του ενός IP, τρεις για τον ενδιάμεσο
κώδικα και δύο για τον βέλτιστο. Το εύρος ζώνης που καταφέραμε να πετύχουμε ήταν στα 444
ΜΒ/s ενώ για τη βέλτιστη έκδοση του επιταχυντή η ίδια ακριβώς υλοποίηση με AXI4-Stream
προσφέρει ένα 20% κέρδος σε σχέση με την αντίστοιχη AXI4-Lite. Παρακάτω μπορούμε να
δούμε σχετικά διαγράμματα.

Σχήμα 3: Επίδοση και Κέρδος για διαφορετικές SVM υλοποιήσεις

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

20

40

60

80

100

120

Comparison of HW Versions

Latency Gain BRAM_18K DSP48E FF LUT

Implementation

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

24

Σχήμα 4: Εύρος Ζώνης για διαφορετικές SVM υλοποιήσεις

Σχήμα 5: Throughput για διαφορετικές SVM υλοποιήσεις

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Comparison of HW Versions

Throughput

Implementation

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0
50

100
150
200
250
300
350
400
450
500

Comparison of HW Versions

Bandwidth

Implementation

B
a

n
d

w
id

th
 (

M
B

/s
)

25

Σχήμα 6: Εύρος Ζώνης και Throughput για διαφορετικές SVM υλοποιήσεις

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

100

200

300

400

500

Comparison of HW Versions

Bandwidth & Throughput

BW Throughput

BW/Channel (Specifications)

Implementation

B
a

n
d

w
id

th
 (

M
B

/s
)

26

This page is intentionally left blank.

27

List of Figures

1.1 A PLA schematic paradigm 32
1.2 FPGA Vs. ASIC SoC design time. 33
1.3 FPGA Vs. ASIC cost per unit 34
1.4 Zynq®-7000 All Programmable SoC 35
1.5 An array of CLBs composed by four slices and two logic cells per slice 36
1.6 A simplified schematic of a logic cell 36
1.7 A simple 4-bit look up table logic block 37
1.8 Structure of DSP block 38
1.9 An island-style architecture with connect blocks and switch boxes. 39
1.10 A switch box 40
1.11 A typical FPGA mapping flow 42
1.12 High-Level Synthesis design steps 44

2.1 Scientific fields correlating with Computer Vision. 48
2.2 Binary Window Function 51
2.3 Gaussian Window Function 52
2.4 ECG Waveform Typical Morphology 54
2.5 ECG Analysis Flow 56

3.1 AXI Channel Architecture of Reads 61
3.2 AXI Channel Architecture of Writes 61
3.3 Interface and Interconnect 62
3.4 A Conventional Device Driver 65
3.5 A UIO driver paradigm 65
3.6 Ioctl() vs. Memory Access through UIO 66

4.1 Implementation Work Flow. 71
4.2 Classify IP with AXI4-Lite Interfaces 75
4.3 Classify IP with AXI4-Stream Interfaces. 77
4.4 Re-customized ZYNQ7 Processing System. 78
4.5 An AXI Interconnect IP Block 79
4.6 A Processor System Reset Block. 80
4.7 An AXI DMA Block 81

28

5.1 Utilization of Device of 1024 x 1024 Input Image Size 89
5.2 Utilization of Device for AXI4-Lite Versions and different input image size 91
5.3 Computation Time for Different AXI4-Lite Implementations 93
5.4 Communication Time for Different AXI4-Lite Implementations. 93
5.5 Computation Time for Different HW Implementations and ARM 95
5.6 Communication Time for Different HW Implementations 95

6.1 HW Original 1-Lite System Architecture. 99
6.2 HW Original 2-Lite System Architecture. 100
6.3 HW Original 4-Lite System Architecture. 101
6.4 Performance and Gain of HW Original AXI4 Slave Lite Versions. 102
6.5 Bandwidth of HW Original AXI4 Slave Lite Versions 103
6.6 HW Original 1-Stream System Architecture 104
6.7 Bandwidth of HW Original 1-Stream Version for different buffer sizes 105
6.8 HW Original 2-Stream System Architecture 106
6.9 Bandwidth of HW Original 2-Stream Version for different buffer sizes 107
6.10 Performance and Gain for HW Original AXI4 Stream Versions. 107
6.11 Performance and Gain for different HW Original Implementations. 109
6.12 Bandwidth Gain for HW Original Implementations 109
6.13 Performance and Gain for HW Original 1-Lite and Accelerated Lite 111
6.14 Bandwidth for HW Accelerated 1-Stream Version. 112
6.15 Bandwidth for HW Accelerated 2-Stream Version. 113
6.16 Performance and Gain for Different HW Accelerated Versions. 114
6.17 Bandwidth Gain for HW Accelerated Versions 114
6.18 Bandwidth for HW Optimal Stream Version 116
6.19 Performance and Gain for Different HW Optimal Versions 117
6.20 Performance and Gain for HW Optimal Stream vs. Optimal Lite Version. 118
6.21 Performance and Gain for Different HW Versions. 119
6.22 Bandwidth for Different HW Versions 120
6.23 Throughput for Different HW Versions. 120
6.24 Bandwidth and Throughput for Different HW Versions 121
6.25 Communication and Computation Times for HW Original 1-Lite Version 121
6.26 Communication and Computation Times for HW Optimal Lite Version 122

29

List of Tables

3.1 AXI4-Lite Interface Signals 63
3.2 AXI4-Stream Interface Signals List 64

4.1 ZedBoard Available Resources 70
4.2 HLS Directives 72
4.3 Basic API of zynq-xdma driver library 85

5.1 Comparison of Available Resources between ZedBoard and Kintex-7 87
5.2 Time Measurements for Harris SW version executed on ARM ® 88
5.3 Utilized Resources for an Image Size of 1024 x 1024 for different directives . . . 89
5.4 Utilization of AXI4-Lite Version for Different Image Sizes 90
5.5 Utilization of Device for Different Interfaces 91
5.6 Time Measurements for Unoptimized HW Implementation (50 MHz Clock) . . . 92
5.7 Time Measurements for Optimized HW Implementation (different clocks) . . . 92
5.8 Time Measurements for AXI4-Stream Version 94

6.1 Time Measurements for SVM SW version executed on ARM ® 98
6.2 Resource Utilization for the original HW Implementation of the SVM Classifier . . 98
6.3 Final Utilized Resource for HW Original ZedBoard Implementation. 98
6.4 Time Measurements for SW Version and HW Original 1-Lite Version 100
6.5 Time Measurements for HW Original 1-Lite and 2-Lite Versions 101
6.6 Time Measurements for HW Original AXI4 Slave Lite Versions 102
6.7 Time Measurements for HW Original 1-Lite and 1-Stream Versions 104
6.8 Time Measurements for HW Original 1-Stream and 2-Stream Versions 106
6.9 Resource Utilization for the HW Accelerated Version of the SVM Classifier 110
6.10 Final Utilized Resources for HW Accelerated ZedBoard Implementation 110
6.11 Time Measurements for HW Original 1-Lite and Accelerated Lite Versions 111
6.12 Time Measurements for HW Original 1-Lite and Accelerated 1-Stream Versions. . .111
6.13 Time Measurements for HW Accelerated 1-Stream and 2-Stream Versions 112
6.14 Resource Utilization for the HW Optimal Implementation of the SVM Classifier . . 115
6.15 Final Utilized Resources for HW Optimal ZedBoard Implementations 115
6.16 Time Measurements for HW Original 1-Lite and Optimal Lite Version 116
6.17 Time Measurements for HW Original 1-Lite and Optimal Stream Version 116
6.18 Time Measurements for HW Optimal Versions 117

30

This page is intentionally left blank.

31

Chapter 1

Introduction

1.1 Introduction to FPGA

A Field-Programmable Gate Array (FPGA) is an integrated digital circuit (IC) which is
constituted of a number of Configurable Logic Blocks interconnected with programmable
connections. The term "field" denotes the fact that the FPGA is programmable on the spot in
comparison to other integrated circuits whose functionalities cannot be altered after
integration.

The reconfigurability that FPGAs offer is an element that enhances flexibility and makes
them a very good platform for quick implementations and prototyping of system designs.
The correction of errors is made easy and bears a very low cost in comparison with
Application-Specific Integrated Circuit (ASIC) implementations which require a large
amount of time and bear a higher cost.

FPGAs can be configured for various applications. In addition, almost every computational
algorithm can be implemented on an FPGA. Applications in which FPGAs are widely used
include Digital Communications, Image Processing, Digital Signal Processing and others.
Moreover, an FPGA is capable of implementing a System on a Chip (SoC), a fact which gives
the ability of a unified hardware-software approach to the design and implementation of
applications.

1.1.1 History

Fixed logic devices, a name which implies devices that cannot be reprogrammed, were the
first approach to system designs. Although they were widely used, the large amount of time
requirements for the transition from a design to a prototype along with the fact that error
correction would demand a new design and implementation led the way to fabrication of
Programmable Logic Devices (PLDs).

One of the first attempts in the PLD field were Programmable Logic Arrays (PLAs). PLAs
consisted of a set of AND gates and another set of OR gates (Fig. 1.1) which could be

32

conditionally complemented to produce an output. PLAs were mainly used for
implementing combinatorial logic circuits [1]. Programmable Array Logic (PAL) was an
evolution of PLA. PAL devices consisted of a small programmable read-only memory
(PROM) core and additional output logic used to implement various logic functions with a
few components [2].

The beginning of a new technology and market occurred in 1985 when Xilinx co-founders R.
Freeman and B. Vonderschmitt introduced the first FPGA which was the first device which
had programmable gates and interconnects. Since then, and especially during the 1990s,
FPGA production grew explosively. Various vendors entered the market and the competition
increased. In the early 1990s FPGAs were primarily used in telecommunications and
networking, however, by the end of the decade and lately FPGA usage expanded to
consumer, automotive, and industrial applications [3].

Figure 1.1: A PLA schematic paradigm [1]

1.1.2 FPGA Attributes and Advantages

The appearance of FPGAs in the market was accompanied by low speeds and high power
consumptions. Additionally, early FPGAs carried a finite number of functionalities. The
above mentioned are some of the reasons that made ASIC implementations preferable.
Nowadays, FPGAs have drastically evolved and are capable of providing solutions which
overpower the equivalent ASIC ones. A list of reasons which led to the proliferation of FPGA
production and use can be seen below:

• Increased Speeds. When the origination of FPGAs occurred they were used for
lower speed designs, however, current FPGAs easily push the 500MHz performance
barrier and readily support higher speed designs.

• Low Power Consumption. FPGA vendors are constantly pursuing the minimization
of power consumptions. With approaches like a triple-oxide process technology for

33

transistors to reduce their static power consumption or a shift to coarse-grained
logic architectures for more compact designs and minimization of dynamic power
consumption, FPGA vendors along with FPGA programmers have managed to
decrease power consumption through time.

• Declining Cost per Unit. The competition among various FPGA vendors has been
proven beneficial to users. Today, customers are able to purchase 1 million-gate
FPGAs for much less than $100 in low volumes and for tens of dollars in higher
volumes.

• Reconfigurability. As already mentioned an FPGA's configuration is easily alterable
offering high flexibility during the development of applications. On top of that, the
latest trend is for an FPGA to partially alter its configuration while operating. More
specifically, some regions of the FPGA can be reprogrammed while applications
continue their executions in the remainder of the device.

• Short Time-to-Market. The relatively fast transition from a design to a prototype
allows an FPGA – based product or application to enter the market in a shorter time
compared to ASIC implementations (Fig. 1.2).

• Low NRE Cost. A consequence of rapid prototyping is the reduction of the non-
recurring engineering (NRE) cost, which is defined as the one-time cost to research,
develop, design and test a new product.

Figure 1.2: FPGA Vs. ASIC SOC design time [4]

The above mentioned are only a few of the features which have led to the prosperity of the
FPGA market. Additionally, the short time-to-market combined with the constantly
declining NRE costs is a factor which drops the FPGA unit costs below the ASIC ones for
high volumes [4].

34

Figure 1.3: FPGA Vs. ASIC cost per unit

1.1.3 State of the Art

Since the dawn of the market in 1985, FPGAs have become increasingly important to the
electronics industry, as innovative accomplishments have occurred in the FPGA field.
Today's FPGAs are entire programmable systems on a chip (SoC) which are able to cover an
extremely wide range of applications. Latest trends make FPGAs a highly flexible alternative
to ASICs for a larger number of higher-volume applications, a fact which is mirrored in the
growing number of FPGA design starts [5],[6]. For instance, in 2005 FPGA design starts
were estimated around 80.000, however, the number had increased to 90.000 by 2008.

The flourishment of the FPGA market could not have been achieved, if a tremendous
increment in the number of logic gates had not transpired. Back in 1982 the number of logic
gates was 8.192 (Burroughs Advances System Group, integrated into the S-Type 24-bit
processor for reprogrammable I/O) for it to rise up to 9.000 in 1987 by Xilinx. Since 1987,
an explosive growth in the number of logic gates led to 600.000 gates in 1992 (Naval
Surface Warfare Department) [3]. In early 2000s the number of logic gates had already
increased to millions.

The latest tendency in the FPGA field is the combination of traditional logic blocks with
embedded micro-processors and the essential peripherals to develop a SoC device. Such an
innovation was introduced in 2010, when Xilinx presented Zynq®-7000 All Programmable
SoC (AP SoC), the first SoC device that combined the features of a Dual-Core ARM® Cortex
A9 Processing System (PS) with Programmable Logic (PL), or a dual-core processor with an
FPGA core. The combination of the software programmability of an ARM®-based processor
with the hardware programmability of an FPGA in a single device offers to developers the
capability of applying a hardware-software unified approach to embedded system designs,
with a conjunction of serial and parallel processing. On top of that, the Zynq®-7000 AP SoC
is architected to deliver the lowest possible system power and system level performance
through optimized architecture [7]. It should be mentioned that Zynq®-7000 AP SoC is
going to be the target device for the application development in the present diploma thesis.

35

Figure 1.4: Zynq®-7000 All Programmable SoC

Lately, Xilinx launched new 16nm and 20nm UltraScale™ families based on the first all
programmable architecture to span multiple nodes from planar through FinFET
technologies and beyond, while also scaling from monolithic though 3D ICs. At 20nm Xilinx
pioneered the first ASIC-class All Programmable architecture to enable multi-hundred
gigabit-per-second levels of system performance with smart processing at full line rates,
scaling to terabits and teraflops, while UltraScale+ families, at 16nm, combine new memory,
3D-on-3D, and multiprocessing SoC (MPSoC) technologies [8].

The latest innovations in the FPGA field add to its reconfigurable nature and make it an
obvious choice when it comes to rapid prototyping of system designs, hardware
accelerators, or even embedded system designs, as it offers a steadily dropping power
consumption combined with a steadily increasing speed and data throughput.

36

1.2 FPGA fabric

An FPGA consists of a number of Configurable Logic Blocks (CLBs), I/O blocks and
programmable routing. The CLB serves as the main functional unit of an FPGA. Each FPGA
contains a large number of CLBs, which are organized in a two-dimensional array and are
interconnected via horizontal and vertical routing channels (Fig. 1.5). A CLB consists of four
slices and each slice is composed by two logic cells (Lcs) [9].

Figure 1.5: An array of CLBs composed by four slices and two logic cells per slice [9]

A logic cell consists of a Look Up Table (LUT) with 4 inputs, a multiplexer and a flip-flop. In
addition, FPGAs contain hardwired memories, multipliers and DSP (Digital Signal
Processing) Blocks interconnected with the CLBs. Last but not least, a number of I/O blocks,
organized in banks, enables the FPGA to communicate with a variety of devices in the
outside world, for instance, sensors and processors.

Figure 1.6: A simplified schematic of a logic cell

37

1.2.1 Look Up Table

A N-LUT is a functional unit capable of computing any function of N inputs. The operation of
a LUT resembles the process of finding the value of a logical function via its truth table.
Given the truth table of a function, the LUT is programmed accordingly. Then it is
responsible for matching a pattern of the N inputs with one of the 2 N rows of the table and
generate the corresponding output value. LUTs can be combined to implement more
complex functionalities than a N-bit logical function. Specifically, a LUT is able to implement
a logical function of N inputs, a N-bit shift register or, alternatively be used as N-bit
distributed memory. A N-LUT is usually implemented as a column of 2N SRAM bits which
serve as inputs to a 2N-to-1 multiplexer. The N inputs of the LUT are used as the select lines
of the multiplexer. Additionally, there is a single-bit storage element in the basic logic block
in the form of a D flip-flop. The output multiplexer selects either a result generated by the
LUT or the bit stored in the D flip-flop.

Figure 1.7: A simple 4-bit look up table logic block [10]

Through time, the LUT has been chosen to serve as the smaller computational unit in
commercially available FPGAs. However, the size of the LUT in each logic block has been
widely investigated. On the one hand, larger look up tables would allow more complex
operations to be performed per logic block, thus reducing the wiring delay between blocks
along with the number of needed logic blocks. Yet, a large LUT would introduce additional
delays due to the requirement of larger multiplexers. On top of that, a larger LUT yields an
increased probability of wasting resources if the implemented functionality has lower
demands. On the other hand, small look up tables might lead to an increment of logic blocks
consumption, thus increasing the wiring delay between blocks. Empirical studies have
shown that the 4-LUT structure makes the best trade-off between area and delay for a wide
range of benchmark circuits [10].

38

1.2.2 Hardwired Blocks

As already mentioned, configurable logic blocks serve as the main functional unit of an
FPGA, with the look up tables playing an important role in their operation. However, it is
currently the rule for an FPGA to have common functionalities embedded into the silicon, in
order to reduce the required area and provide increased speed compared to building those
functionalities from primitives. Examples of hardwired blocks include multipliers, generic
DSP blocks, embedded processors, high-speed I/O logic and embedded memories. It should
also be mentioned that, nowadays, it is more and more common for an FPGA to dispose
high-speed transceivers, Ethernet MACs, PCI controllers and external memory controllers.

To begin with, FPGA boards are equipped with various memory elements that can be
utilized as RAM, ROM or shift registers. One of these elements is the look up table which is
discussed in the previous paragraph. Flip-flops also serve as a basic storage unit in an FPGA
design. Another significant memory element is the BRAM (Block RAM). The BRAM is a dual-
port RAM component which is embedded into the FPGA board and can achieve storage of a
large set of data. The capacity of block RAMs usually instantiated is is 18KB and 32KB. Of
course, each and every board comes with a specific number of embedded BRAMs [3]. A key
element in BRAMs is the dual-port operation which is introducing a parallel behavior as it is
providing access to different locations in the same clock cycle.

One of the most important and complex computational unit embedded into the FPGA fabric
is the DSP (Digital Signal Processing) Block. The usage of embedded DSP blocks has been
established in order to support the increasing amount of computational load. A DSP block is
a combination of adders, subtractors and multipliers put together to compose an arithmetic
logic unit (ALU). The adder or subtractor unit is connected to a multiplier which has a
cascading connection to the final add/subtract/accumulator engine. Following, we can
observe a schematic of a DSP block.

Figure 1.8: Structure of DSP Block

39

Finally, the programmable high speed I/O blocks are another essential element of an FPGA
board. The I/O blocks are usually organized in banks and every bank can use a specific IO
mechanism and protocol (e.g. Time-to-Live/TTL). By programming the I/O blocks we
usually define the direction of data (input, output or input & output), or whether tri-state
logic will be used [9].

1.2.3 Interconnection

Contemporary popular FPGAs implement what is often called island-style architecture. This
specific architecture has logic blocks tiled in a two-dimensional array. The logic blocks form
the islands and float in a sea of interconnect. With this array architecture, computations are
performed spatially in the FPGA fabric [10]. Large computations are broken into 4-LUT
pieces and mapped into physical logic blocks in the array. The interconnect is then
configured to appropriately route the signals among the logic blocks.

Figure 1.9: An island-style architecture with connect blocks and switch boxes [10]

In Figure 1.9 an island-style architecture is shown. A random logic block accesses nearby
communication resources through a connection block. The connection block connects logic
block input and output to routing resources with programmable switches and multiplexers.
It allows logic block I/Os to be assigned to arbitrary horizontal and vertical tracks,
increasing routing flexibility.

On the intersections of horizontal and vertical routing tracks a switch box makes its
appearance. In general sense, the switch box is an array of programmable switches that
allow a signal on one track to connect to another track. Depending on the design of the

40

switch box, a signal might turn right or left when it meets a corner or continue straight until
it reaches another switch box or connection block.

Figure 1.10: A switch box [10]

A key fact in this in this interconnect architecture is that the introduction of connect blocks
and switch boxes separates the interconnect from the logic, allowing long-distance routing
to be accomplished without consuming logic block resources.

1.2.4 Programming Technologies

Each configurable element in an FPGA requires 1 bit of storage to maintain a user-defined
configuration. For a common LUT-based FPGA these programmable locations generally
include the contents of the logic block and the connectivity of the routing fabric. The
configuration of an FPGA is accomplished through programming the storage bits connected
to these programmable locations according to user definitions [9]. For the look up table this
translates into filling it with logic ones and zeros. For the routing fabric, programming
enables and disables switches along routing tracks and channels. The most popular
programming technologies for configuring an FPGA include SRAM, anti-fuse and Flash
memory.

The most widely used method for storing the configuration information in commercially
available FPGAs is volatile static RAM or SRAM. This specific method has gained popularity
among FPGAs as it provides fast and infinite reconfiguration in a well-known technology.
The drawbacks of SRAM include power consumption and data volatility [3]. Firstly, the
SRAM cell size dissipates significant static power due to leakage current. Secondly, the FPGA
is not configured at power-up and must be programmed using off-chip logic and storage.
This could be accomplished with an additional non-volatile storage unit and a micro-
controller to configure the FPGA. However, it adds to the component count and complexity
of a design and prevents SRAM-based FPGAs from being a true single-chip solution [10].

Another method for FPGA programming, yet not very popular, is the usage of Flash memory
for the maintenance of configuration information. The key difference between SRAM and
Flash memory is that the second is non-volatile and can only be written a finite number of
times. Since Flash memory is non-volatile, it is able to retain the FPGA configuration when

41

power turns off. In addition, the flash memory cell usually consists of fewer transistors
compared to SRAM, a fact which reduces static power consumption. One major
disadvantage of flash memory, as already mentioned, is that it can be written a finite
number of times so it does offer an infinite reconfigurability.

A third approach to FPGA configuration is anti-fuse technology. As its name suggests, anti-
fuse is a metal-based link that behaves in a way opposite to fuse. The anti-fuse link is
normally open or unconnected. The programming in this case involves a laser or a high-
current programmer melting the link to form an electrical connection. Although anti-fuse
technology yields zero static power consumption as it does not consist of transistors, the
fact that an anti-fuse link cannot be reprogrammed removes the most significant element of
an FPGA which is reconfigurability and does not allow the use of anti-fuse FPGAs for
prototyping of system designs [10].

1.3 CAD Tools and FPGA programming

CAD (Computer-Aided Design) tools are one of the three main factors that determine the
performance of an FPGA design. The other two are the quality and efficiency of a specific
FPGA architecture and the transistor-level design of the FPGA. Investigation of different
architectures and implementations of an FPGA could not have been possible without the
assistance of CAD tools. It might be obvious, that the implementation of a design in modern
FPGAs requires thousands or millions of programmable switches and configuration bits set
to proper state. Instead of that, a specific circuit can be described by the user at a higher
level of abstraction by using a hardware description language, for instance, VHDL or Verilog,
in general an RTL (Register-Transfer Language) or alternatively a design generated through
high-level synthesis, which will be discussed in the next paragraph. Then the process of
mapping a design on an FPGA is broken down to steps including Logic Synthesis,
Technology Mapping, Placement, Routing and finally the generation of the bitstream file, the
file according to which the FPGA is configured. Following, the steps for mapping a design on
an FPGA are listed [10].

Logic Synthesis

It is the first step which includes the conversion of the circuit description, either in a
hardware description language or a schematic form, into a netlist of basic gates. The next
step is the conversion of the previously generated netlist to a netlist of FPGA logic blocks,
such that the number of blocks is minimized while the speed of the circuit is maximized.
Simplification and optimization of logic is made wherever possible.

Technology Mapping

In this step several LUTs and registers are packed into one logic block according to the
limitations of the specific device on which the design is going to be implemented. The
number of resources varies among different FPGA devices. The optimization goal in this
phase is to pack LUTs so that the number of logic blocks and routed signals is minimized.

42

Figure 1.11: A typical FPGA mapping flow [10]

Placement

The step of placement includes the application of algorithms to determine which FPGA logic
block should implement each of the logic blocks required by the circuit. The target is to
place connected logic blocks together or in small distances in order to minimize the
required wiring and delay, or in some cases, to balance the wiring density across the FPGA.

Routing

Once the locations for all logic blocks in a design have been chosen, a router determines
which programmable switches should be turn on to connect all the logic block inputs and
outputs throughout the circuit. Usually, the routing architecture is represented as a directed
graph in which the nodes are the inputs and outputs of the logic blocks and potential
connections are the edges of the graph. Of course, the target of this step is to interconnect
the previously placed elements in the most efficient way, using short paths and fast routing
connections. Since most of the delay in an FPGA design is due to programmable routing,
most routers are timing-driven in the sense that an attempt to obtain good circuit speeds is
made.

43

1.4 High-Level Synthesis

High-Level Synthesis (HLS), sometimes referred to as behavioral synthesis, is an automated
design process that interprets an algorithmic description of a desired behavior and creates
digital hardware that implements this behavior. The first generation of high-level synthesis
tools made its appearance in the 1990s. While logic synthesis uses an RTL description of a
design, high-level synthesis works at a higher level of abstraction, starting with an
algorithmic description in a high-level language (HLL) such as ANSI C/C++.

Beginning with a specification of an application that is to be implemented as a custom
processor, dedicated coprocessor or any other custom hardware unit, the user must provide
a high-level description capture of the desired functionality using an HLL. This capture is a
functional specification, sometimes referred to as untimed description, in which a function
consumes all of its inputs simultaneously, performs all necessary computations without
delay and provides its output data simultaneously [11]. In other words, the user is
responsible for writing a function performing a desired computation as if it were to be
included in a software project. At this level of abstraction variables and data types are
related neither to the hardware design domain, nor to the embedded software. Thus, a
realistic hardware implementation definitely requires the floating-point, integer or other
data types to be converted to bit-accurate data types of specific length and acceptable
computation accuracy. Then, an optimized hardware architecture should be generated.

At this point, HLS tools make their appearance, targeting to transformation of a given
untimed or partially timed high-level specification into a fully timed implementation. HLS
tools automatically or semi-automatically generate a custom architecture to efficiently
implement the previously mentioned specification. In addition to the memory banks and
communication interfaces, the generated architecture is described at the Register-Transfer
Level and contains a data path and a controller as required by the given specifications and
design constraints [11]. Except for the high-level description of the application, an RTL
component library and specific design constraints are needed. Below, the steps from the
high-level specification to the generation of RTL architecture are listed.

Compilation and Modeling

In this first step, the input description is transformed into a formal representation or model.
Code optimizations, such as dead-code and false data dependency elimination, constant
folding and loop transformations transpire. The formal model produced by the compilation
exhibits the data and control dependencies between operations. Data dependencies are
usually represented by a data flow graph (DFG) or a control and data flow graph (CDFG)
which explicitly exhibit all the intrinsic parallelism of the specification. The main difference
between DFGs and CDFGs is that CDFGs are more expensive in general because they take
unbounded loops into account, a feature which DFGs miss.

Allocation

In this step, a definition of type and number of hardware resources needed to satisfy the
design constraints transpires. The components are selected from the specific RTL

44

component library which is provided. At least one component for each operation in the
specification model is selected. For example, if an addition is included in the specification
then at least one adder will be selected from the RTL library. Depending on the HLS tool,
some of the essential components might be added during later steps.

Figure 1.12: High-Level Synthesis design steps [11]

Scheduling

The step following allocation is scheduling. All operations required in the specification
model must be scheduled into cycles. For each operation (e.g. +/-) variables must be read
from their sources (i.e. storage or functional unit components), brought to the input of a
functional unit which can perform the operation and the result must be brought to its
destination storage or functional unit. Depending on the functional component to which the
operation is mapped, it can be scheduled within one or several clock cycles. The operations
can be chained and be scheduled to execute in parallel if there are no data dependencies
between them and a sufficiency of available resources [11].

Binding

Each variable that carries values across cycles must be bound to a storage unit, while
variables with non-overlapping or mutually-exclusive lifetimes can be bound to the same
storage units. Additionally, every operation in the specification model must be bound to one
of the functional units capable of executing it and in the case of plurality of such units the
binding algorithm optimizes its selection. Finally, connectivity binding requires that each
transfer from component to component be bound to a connection unit. Ideally, HLS
estimates the connectivity delay and area as early as possible for better optimization.

45

Generation

Once decisions have been made in the preceding tasks of compilation and modeling,
allocation, scheduling and binding, the goal of the RTL generation step is to apply all the
design decisions made and generate an RTL model of the synthesized design. Given the
generated RTL description, the steps that follow up are the ones mentioned in the previous
paragraph, starting with logic synthesis and ending with the generation of the bitstream
file.

1.5 Aims, Objectives and Organization of Chapters

The aim of the present diploma thesis is the exploration and evaluation of communication
potentials between a processing system and custom hardware accelerators in the form of IP
(Intellectual Property) cores. An IP core or IP block is a reusable unit of logic, cell or chip
layout that is the intellectual property of one party. The target device of our
implementations is Zynq®-7000 APSoC, and more specifically, Zedboard (Zynq Evaluation
and Development Board). As already mentioned, Zynq®-7000 APSoC is composed of a
Dual-Core ARM® Cortex A9 Processing System and additional Programmable Logic. For the
purposes of this thesis, two different IP cores generated through Vivado HLS 2014.4 are
going to be employed. The first one pertains to the field of Computer Vision, and more
specifically, is an implementation of the Harris & Stephens Corner Detection Algorithm. The
second resides in the Biomedical field and it is an implementation of an SVM (Support
Vector Machine) classifier for arrhythmia detection. The natures of these IP cores differ not
only in their corresponding applied fields but also, and most significantly for our thesis
aims, in the size of their input and output data requirements. Both algorithms will be
discussed further later. The rest of this thesis is organized as follows:

• Chapter 2 gives the theoretical background of the implemented algorithms along
with information on the related work in Computer Vision and Bio-medicine.

• Chapter 3 focuses on more technical details of the implementation concerning the
ARM Advanced Micro-controller Bus Architecture (AMBA), available interfaces and
their characteristics, Direct Memory Access and the Linux UIO Driver.

• Chapter 4 presents the whole flow for ZedBoard implementations, beginning with
the initial step of High-Level Synthesis, up to the development of the userspace
application intended to control the hardware accelerators.

• Chapters 5 and 6 present all the implementations and corresponding results for the
Harris & Stephens Corner Detector and the Support Vector Machine classifier for
Arrhythmia Detection respectively.

• Finally, in Chapter 7 the conclusions of this thesis are recorded and proposals for
further improvements and research are made.

46

This page is intentionally left blank.

47

Chapter 2

Theoretical Background

2.1 The Harris & Stephens Corner Detector

The role of this paragraph is to give us an overview of the field of Computer Vision and the
implemented algorithm. The process of feature detection and, in particular, corner
detection has, lately, gained a significant amount of interest from the scientific world. The
theme of this paragraph is the study of evolution in Computer Vision and Feature Detection
algorithms, beginning with the Canny Edge Detector and reaching the point where the
Harris & Stephens Corner Detection algorithm was introduced.

2.1.1 Introduction to Computer Vision

Computer Vision (CV) is a term which denotes the scientific field which includes all the
methods for acquiring, processing, analyzing and understanding data from the 3D world in
order to generate numerical or symbolic information. Computer Vision emerged from the
need to simulate human vision by electronically perceiving and understanding an image
[12]. Since the analysis of the 3D world requires an interdisciplinary approach, it is
presumed that the aid of scientific fields such as geometry, physics, statistics and learning
theory is of vital importance.

Computer Vision algorithms have evolved rapidly in recent years, covering a wide range of
applications. They play a dominant role in navigation of robots and vehicles, either ground
or aerial. The applications in the automotive field might range from obstacle avoidance,
autonomous robot navigation to space exploration, which is held by fully autonomous
ground-based vehicles like the ESA ExoMars rover. Secondly, industrial CV applications
provide vital information for the manufacturing process, such as the search for
imperfections on a product or assisting robotic arms to perform pick-and-place operations
in a manufacturing area. The contributions of CV in the medical field, and specifically in
medical imaging, have facilitated the diagnosis for diseases or organ disorders and
dysplasias by employing representations like x-ray images or CT and MRI scans for the
measurement of organ dimensions, blood flow or even the structure of the brain [13].

48

Figure 2.1 Scientific fields correlating with Computer Vision [12]

2.1.2 Feature Detection

One of the main and most significant targets of Computer Vision is the extraction of features
from images in order to satisfy the requirements of a variety of systems concerning
robotics, motion estimation and a number of other application kinds. In the field of
Computer Vision, feature detection refers to essential methods and operations for the
estimation, at every pixel of an image, of the presence or absence of a specific feature. In
other words, feature detection is the process of estimating geometrical and physical
properties of the surfaces of 3D world objects by using their image representations as
inputs. The result of the feature detection process is a subset of the initial image which
might contain points, continuous lines or connected regions depending on the kind of
features one might need to extract. Occasionally, the definition of a feature type might be
hazy, however, it is important to understand that any image pixel or region might be
considered a feature if it holds a certain property that increases its interest in comparison
with other image pixels or regions.

Lately, a variety of feature detection algorithms have been developed depending on the
desired feature extraction. Following, in order to clarify what a feature might refer to let us
enumerate those principally used in Computer Vision applications and systems:

49

• Edges : The term “edge” is used to describe the boundary between two or more
different regions or surfaces of an image. Obviously, there is no predefined shape for
an edge as it is the border between surfaces of any shape. Most edge detection
algorithms rely on the fact that edges consist of pixels with a high gradient
magnitude [14]. A well-known, yet not unique, edge detection algorithm is the Canny
Edge Detector proposed by John F. Canny in 1983.

• Corners/Interest Points : The term “corner” describes the point of intersection
between two or more edges. Initially the corner detection algorithms firstly detected
the edges and afterwards the corners of an image by determination of the points
with strong changes in direction. Lately, the corner detection algorithms search for
high values of curvature in the image gradient. It was claimed that many of those
algorithms occasionally misinterpreted non-corner points as corners due to contrast
[14]. For example, a white dot on a black canvas would be characterized as a corner.
For such points the term “interest points” is used.

• Blobs/Regions of Interest or Interest points : By the term “blob” an image region
that differs in properties such as brightness or colour, compared to surrounding
regions is described. Informally a “blob” is a region of an image in which some
properties are constant or approximately constant [14]. In other words, a blob is a
collection of points that, based on some criteria, are similar to each other. Commonly
used blob detectors are the Laplacian of Gaussian (LoG), the Difference of Gaussians
(DoG) and the Determinant of Hessian (DoH). As one might think, blob detection is a
significant task especially in applications concerning Image Segmentation.

• Ridges : The “ridges” or “ridge set” of a smooth function of two variables are a set of
curves whose points are local maximum points of the function in at least one
dimension. In other words, a ridge could be thought as a one-dimensional curve that
represents an axis of symmetry. In addition its width depends on the local ridge
point. In general, the calculation of ridge points is much more computationally
intense than the detection of edges, corners or blobs [13].

This diploma thesis focuses on corner detection which is commonly used in tasks like
Motion Detection, Image Segmentation, Video Tracking, 3D Modeling and Object
Recognition.

2.1.3 The Edge Tracking Problem

Edge detectors of some kind, particularly step edge detectors have been an essential part of
many computer vision systems. The edge detection process serves as a simplification to the
analysis of images by drastically reducing the amount of data to be processed, preserving
useful structural information about about object boundaries inside an image [15].

One of the first attempts in edge detection was proposed by John F. Canny in 1983. The
Canny operator was designed to be an optimal edge detector according to certain criteria:

50

• Good Detection. The probabilities of failing to mark real edge points and falsely
marking non-edge points should be low. Both probabilities are monotonically
decreasing functions of the output Signal-to-Noise Ratio (SNR) and so the first
criterion is fulfilled if SNR is maximized [15].

• Good Localization. The points marked as edge points should be as close as possible
to the center of the real edge.

• Only one response to a single edge. This is implicitly captured in the first criterion
since when there are two responses to an edge, one of them must be considered
false.

The mathematical background of the Canny operator will not be discussed in this diploma
thesis. The role of this paragraph is the statement of the criteria that John F. Canny relied on
during the design of the Canny operator as they are the criteria that were used, slightly
different in some cases, for the design of later feature detection algorithms.

2.1.4 The Moravec Corner Detector

One of the first successful attempts in corner detection was Moravec's corner detector. It
operates by considering a local window in the image and determining the average changes
of image intensity that occur from shifting the window by a small amount in various
directions [16]. In other words, the algorithm checks the similarity between a centered
pixel with other local pixels. For this purpose, the sum of squared differences between the
two sections is computed. There are three cases that need to be examined:

• The windowed image patch is flat. In this case all window shifts will result in small
change, or in a low value of the sum of squared differences as the windowed image
patch is approximately constant in intensity.

• The window includes an edge. In this case a shift in a parallel to the edge direction
will result in a small change, however, a shift perpendicular to the edge will result in
a large change, or a high value of the sum of squared differences.

• The window includes a corner or an isolated point. In this case shifts to any
direction will result in large changes. Thus, a corner or an interest point is detected
when the minimum change produced by any of the shifts is large.

Thereafter, we give a mathematical specification of the above statements. Denoting the
image intensities by I, the change E produced by a shift (x, y) is given by

E(x , y)=∑
u, v

w(u , v)|I (x+u , y+v) – I (u , v)|2

51

where w specifies the image window, which is unity within a specific rectangular region,
and zero elsewhere. The directions (x, y) on which we compute the shifted intensity are {(1,
0), (1, 1), (0, 1), (-1, 1)}. Moravec's corner detector searches for local maxima in min{E}.

Figure 2.2 Binary Window Function

By consideration of the mathematical formula on which Moravec's corner detector depends,
it is concluded that the specific detector suffers from a number of problems. Firstly, only a
discrete set of shifts at every 45 degrees is considered. Secondly, the binary and rectangular
window results in a noisy response [16]. Finally, only the minimum value of E is taken into
account. The attempt to solve the above mentioned problems and the desire for a better
performance in corner detection concluded in the Harris & Stephens corner detector.

2.1.5 The Harris & Stephens / Plessey / Shi–Tomasi Corner Detection
Algorithm

Considering the drawbacks of Moravec's corner detector, Chris Harris and Mike Stephens
proposed improvements by taking the differential value of a corner into account, regarding
the direction directly and avoiding the usage of shifted regions. They applied corrective
measures to overcome the above mentioned issues of Moravec's detector and defined the
result as an “auto-correlation detector” [16].

One of the problems of Moravec's operator is that it generates an anisotropic response
because only a discrete set of shifts at every 45 degrees is considered. The Harris &
Stephens algorithm covers all possible small shifts by performing an analytic, Taylor series
expansion in order to compute an approximation of I(x+u, y+v). Denoting I x and Iy as the
partial derivatives of the intensity of an image we write:

I (x+u , y+v)≈ I (u , v) + x I x (u , v) + y I y (u , v)

Thus, the expression for the computation of the sum of squared differences E, given in the
previous paragraph becomes:

E(x , y)=∑
u , v

w(u , v)(I (u , v)+x I x(u , v)+ y I y(u , v))
2 or E(x , y)=[x y] A[xy]

52

where

A =∑
u , v

w(u , v)[I x
2 I x I y

I x I y I y
2]= [⟨ I x

2
⟩ ⟨ I x I y ⟩

⟨ I x I y ⟩ ⟨I y
2
⟩]

is the structure tensor.

Another significant improvement in comparison with Moravec's corner detector is that a
smooth window function is employed, guaranteeing a less noisy response, a feature missing
from Moravec's corner detector due to the choice of a binary window function [13],[16].
Instead, a Gaussian window can be used:

wu ,v=e
−
u2

+v2

2σ2

Figure 2.3 Gaussian Window Function

Finally, in Harris algorithm a corner is considered to have a large variation of the sum of
squared differences in all directions of the vector (x, y) [13]. In mathematical form, this
statement can be expressed in terms of the eigenvalues of matrix A. If an interest point is
examined, then matrix A should have two eigenvalues with high magnitude. Considering the
magnitudes of the eigenvalues, the following cases are determined:

• If λ1≈0, λ2≈0 then this point is of no interest.

• If λ1≈0 and λ2 has a high positive value then an edge has been detected.

• If both λ1 and λ2 have high positive values then a corner has been detected.

The computation of eigenvalues bears a heavy workload, hence, Harris and Stephens
proposed an alternative function which is

M c= λ1 λ2−κ (λ1+λ2)
2
=det(A)−κ⋅trace2

(A)

considering that det (M)= λ1 λ2 and trace(M)=λ1+λ2 . The factor κ is a chosen
parameter whose value depends on the desired sensitivity [16].

53

2.1.6 Related Work

The high complexities of Computer Vision algorithms combined with the fact that these
algorithms are mainly fed with images and videos, in other words, with large amounts of
data, lead to greater demands of computational power, followed by greater power
consumption and memory demands. General purpose CPUs are appropriate for low
complexity applications, while GPUs perform a lot better. However, it is common with CV
applications to demand non-linear optimizations for the sake of accuracy. The consequence
is a computational load which might reach several millions of operations. Hence, another
approach to design of CV applications should is recently considered.

The latest trend for a CV application is to be HW accelerated with an ASIC or an FPGA
device. While ASICs are capable of meeting high performance expectations the high NRE
costs, the long time-to-market and the lack of reconfigurability options lead the way to
FPGA dominance. Recent improvements in FPGA technology manage to reach comparable
to ASIC performances. The innate concurrent FPGA behavior proves as a great advantage for
implementing CV applications. For instance, the convolution is a very common operation in
CV and Image Processing systems, yet, it is computationally intensive and might require
several millions of multiplications and additions. A convolution would be quite time
consuming in a standard processor, however, it could be implemented simultaneously in an
FPGA. On the other hand, FPGAs might introduce a major drawback when it comes to
implementing CV applications. Floating-point operations consume a large amount of FPGA
resources. This situation is worse when a floating-point operation needs to be performed
repeatedly. Luckily, Xilinx FPGAs include DSP blocks embedded in the FPGA fabric which
allows an application to perform operations like multiplications and additions more quickly,
partially solving the floating-point operation issue.

In our work, a corner detection algorithm is accelerated and targeted to an FPGA device.
The hardware accelerator is firstly implemented and generated through High-Level
Synthesis. In our study case the accelerator is data intensive in both execution and
communication time as it requires images as input data. Hence, not only should we add an
interface for the accelerator to communicate with the processing system which feeds the
input data, but also an effective way of communication should be considered by exploration
of the available potential interfaces and interconnections. When we refer to the potential
interfaces the available resources of the FPGA target device should be considered as some
of them need to instantiate input ports, hence leading to even a 100% increase in resource
utilization.

2.2 Support Vector Machine Classifier for Arrhythmia Detection

Electrocardiogram analysis has been established as a key factor for analyzing and assessing
the health status of a person. The ECG Analysis flow is complex, relies on machine learning
algorithms such as Support Vector Machine Classifiers and in an effort to be executed in
real-time hardware acceleration is required [17]. In this paragraph an overview of the ECG
analysis flow and Support Vector Machine classifiers is given.

54

2.2.1 Electrocardiogram Analysis Flow

Electrocardiography is an important tool in diagnosing the condition of the heart. The
electrocardiogram (ECG) is the record of variation of bioelectric voltage with respect to
time as the human heart beats. The state of cardiac health is generally reflected in the shape
of ECG waveform and heart rate [18]. Due to its inherent relation to heart physiology the
ECG is one of the most fundamental and crucial biological signals for monitoring and
assessing the health status of a person [17]. Before proceeding to ECG Analysis flow
description, we consider essential to give background information about the heart.

The heart is a four-chambered organ consisting of right and left valves. The upper two
chambers, or in other words, the left and right atria, are entry-points into the heart, while
the lower two chambers, or left and right ventricles, are responsible for contractions that
send the blood through the circulation [18]. The role of the right ventricle is to pump
deoxygenated blood to the lungs through the pulmonary trunk and pulmonary arteries,
while the role of the left ventricle is to pump newly oxygenated blood to the body through
the aorta.

The cardiac cycle refers to complete heartbeat from its generation to the beginning of the
next beat. The first stage, defined as “diastole”, is when the semilunar valves (the pulmonary
valve and the aortic valve) close, the atrioventricular (AV) valves (the mitral valve and
tricuspid valve) open, and the whole heart is relaxed. The scond stage, defined as “atrial
systole”, is when the atrium contracts, and blood flows from atrium to the ventricle. The
third stage, defined as “isovolumic contraction” is when the ventricles begin to contract, the
AV and semilunar valves close, and there is no change in volume. The fourth stage,
"ventricular ejection", is when the ventricles are contracting and emptying, and the
semilunar valves are open. Finally, the fifth stage, “isovolumic relaxation time”, is when
pressure decreases, no blood enters the ventricles, the ventricles stop contracting and begin
to relax, and the semilunar valves close due to the pressure of blood in the aorta [19].

Figure 2.4: ECG Waveform Typical Morphology [20]

55

The cardiac cycle, which is described above is coordinated by a series of electrical impulses
that are produced by specialized pacemaker cells. A typical ECG tracing is repeating cycle of
three electrical entities: a P wave, a QRS complex that consists of three peaks, Q, R, and S,
and finally a T wave. These waves are created by voltage fluctuations that depict the
electrical activity of the heart and thus represent the cardiac cycle [18]. The phases of the
cardiac cycle that each of the above signals are generated will not be discussed.

All the waves on the ECG and the intervals between them have a predictable duration, a
range of acceptable amplitudes (voltages), and a typical morphology. This morphology is
depicted in Figure 2.4. Any deviation from the normal tracing is potentially pathological and
therefore of clinical significance. Arrhythmia is considered as one of the most commonly
encountered heart malfunctions. Cardiac arrhythmia, also referred to as dysrhythmia, or
irregular heartbeat, is a group of conditions in which the heartbeat is irregular, too fast, or
too slow. Some arrhythmias do not cause symptoms, hence are not associated with
increased mortality but this is not the typical case. Medical assessment of the abnormality
using an electrocardiogram is a way to diagnose and assess the risk of any given arrhythmia
[18].

Taking into account the critical condition of a person suffering from arrhythmia episodes,
the field of depicting signs of arrhythmia in an ECG signal has been highly investigated.
Arrhythmia incidents might occur at random in time scale because the ECG is not a
stationary signal. Thus, the disease symptoms may not show up all the time, but manifest at
certain irregular intervals during the day. Therefore, for an effective diagnosis, the study of
the ECG pattern and heart rate variability signal may have to be carried out over several
hours. This translates into an enormous data set that needs to be processed in order to
reach a diagnosis. As a result, machine learning techniques are ideal for solving the
diagnosis problem. The data set is used as a training set, and by the time the training is
completed the system is ready to deliver a diagnosis. The training set could be formed from
a number of databases of ECG signals that are available. Our choice was a rather commonly
used database, the MIT-BIH Arrhythmia Database, which is a combined effort of MIT and
Beth Israel Deaconess Medical Center. The heart beats included in this database have been
verified by cardiologists, so this data base forms an ideal starting point for creating a
training data set for the detection problem.

The process of acquiring and processing an ECG signal in order to extract the individual
beats and their corresponding features is composed of various stages with distinct
characteristics and requirements. It consists of three main stages: a preprocessing stage
(noise removal), a processing stage (R peak detection, feature extraction), and a
classification stage. A simplified overview of this processing flow can be seen in Figure 2.5.
Our point of interest is the final step of diagnosis classification, or detecting whether the
heart beat exhibits arrhythmia signs or not. This is performed using a classification
algorithm, which detects the pattern of problematic beat. The classifier has been trained on
the data set that includes the feature vectors of the isolated beats. Given a new feature
vector the classifier can detect whether that corresponding beat displays signs of
arrhythmia.

56

Figure 2.5: ECG Analysis Flow

2.2.2 SVM Classifier

In machine learning, Support Vector Machines (SVMs) are supervised learning models that
are used for data-driver modeling and classification. They are suitable for binary
classification problems. The classification process requires that the data is separated into
training and testing set. Each of the instances in the training set has the form of a feature
vector consisting of the attributes that are being observed and a label indicating the class of
each instance. The instances in the training set consist solely of the attributes. The goal of
the SVM classification technique, is to train a model that can predict the class of an instance
of the training set given only the attributes of the corresponding instance [21].

This goal is accomplished through the ability of the SVM to find a hyperplane that divides
samples into two classes with the widest margin between them. A mapping function is used
to project each feature vector of the training set to a feature space of higher dimension
where the classification of data will be easier. The SVM is used to find the optimal
hyperplane for data classification according to their attributes. This optimal hyperplane
maximizes the distance between itself and the feature vectors that belong to each class and
are closest to the hyperplane. These feature vectors represent the decision boundary
between the classes and are called support vectors. A new feature vector is classified by its
distance from the support vector. The function used for computing the distance between a
new feature vector and a support vector by firstly projecting them to a higher dimensional
feature space is called kernel function. The hyperplane decision function for classifying a
test feature vector x is of the following form:

Class=sgn (∑
i=1

Nsv

(y i∗ai∗K (x , sup_vector i))−b)

where K is the kernel function, x is the feature vector, sup_vector i is the i-th
support vector and y i , ai are values related to it and result from the classifier training
process. Coefficient b is a bias value, also a result of the training process and is constant
for all support vectors. The kernel function is of great significance for the accurate
prediction of testing data. Depending on the characteristics of a data set , different kernel
functions are able to provide the desired classification accuracy.

In this work, we turn our attention to radial basis kernel function (RBF) since the complex
correlations between the attributes of our feature vector and the physiological states of
interest typically require the flexibility afforded by non-linear kernel functions. The

57

advantages of the RBF kernel over the other non-linear kernels is that RBF has fewer
parameters and fewer numerical difficulties [21]. Following are the equations in case of the
RBF kernel. The second is the final decision function that is implemented in HW.

K (x ,sup_vector i)= exp(−γ‖x− sup_vectori‖
2
)

Class= sgn (∑
i=1

Nsv

(y i∗ai∗exp (−γ‖x − sup_vector i‖
2
))−b)

2.2.3 Related Work

Most biomedical devices used for monitoring chronic patients and detection of
abnormalities in biomedical signals aim to provide accurate results in real-time. This comes
with processing an enormous amount of signal data with extremely complex correlations.
On this ground, proposed methodologies include an algorithmic-driven architectural design
space exploration of domain-specific medical-sensor processors. Data-driven modeling
techniques are emerging as a powerful approach for overcoming the mentioned challenges.
Additionally, most biomedical devices are wearable, hence application-specific architectures
for low energy should be considered.

In our work a co-processor is build through High-Level Synthesis Design tools and is
intended for arrhythmia detection study case. It is thus optimized for this case only. For that
reason the application is fixed concerning the implementation of the kernel function. The
design space exploration for this particular study case has already been made as part of the
work of a former diploma thesis. The Pareto Design space has been granted to us and we
had to choose different versions of the HW. Finally, three different versions were chosen and
integrated in the target device in IP form. Of course, before integration different
communication interfaces were added during the High-Level Synthesis step. Finally,
implementations with one or more classifier IPs were made for those versions whose
resource utilization allowed it.

58

This page is intentionally left blank.

59

Chapter 3

Technical Background

3.1 The Advanced Microcontroller Bus Architecture (AMBA)

The ARM® Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-
chip interconnect specification for the connection and management of functional blocks in
SoC designs. It facilitates the development of multi-processor designs with large numbers of
controllers and peripherals [22]. Since its inception, the scope of AMBA has, despite its
name, gone fay beyond microcontroller buses. Today, it is widely used on a range of ASIC
and SoC parts [23]. AMBA was introduced by ARM in 1996. Since then, AMBA protocols
have become the de facto standard for 32-bit embedded processors because they are well
documented and can be used without royalties.

The design principles of AMBA originate from the fact that an important aspect of a SoC is
not only which components or blocks it utilizes but also the interconnection of these
components. Hence, it is a clear solution for the blocks to interface with each other. The
objectives of AMBA vary from facilitating right-first-time development of embedded
microcontroller products with one or more CPUs, GPUs or signal processors to technology
independence by allowing the re-use of IP cores, peripheral and system macrocells across
diverse IC processes. Moreover, another objective is to encourage modular system design to
improve processor independence and the development of re-usable peripheral and system
IP libraries. Finally, the minimization of silicon infrastructure while supporting high
performance and low power on-chip communication is of great importance. The AMBA 4
specifications define the following buses or interfaces [22]:

• AXI Coherency Extensions (ACE & ACE-Lite)
• Advanced eXtensible Interface (AXI4, AXI4-Lite & AXI4-Stream v1.0)
• Advanced Trace Bus (ATB v1.1)
• Advanced Peripheral Bus (APB4)

In this diploma thesis we focus on the characteristics and use of the Advanced eXtensible
Interface (AXI) protocol.

60

3.2 The Advanced eXtensible Interface (AXI) Protocol

The AMBA AXI protocol supports high performance and frequency system designs. To begin
with it is suitable for high-bandwidth and low latency designs providing high-frequency
operation without using complex bridges. Secondly, it meets the interface requirements for
a wide range of components. Additionally, it is suitable for memory controllers with high
initial access latency. It provides flexibility in the implementation of interconnect
architectures. Finally, it is backward-compatible with existing AHB and APB interfaces [24].
The key features of the AXI protocol are:

• Separate address/control and data phases
• Support for unaligned data transfers using data strobes
• Uses burst-based transactions with only the start address issued
• Separate read and write data channels that can provide low-cost Direct Memory

Access (DMA)
• Support for issuing multiple outstanding addresses
• Support for out-of-order transaction completion
• Permits easy addition of register stages to provide timing closure

The above key features along with the fact that the AXI protocol includes optional
extensions that cover signaling for low-power operation are what make AXI our first choice
when it came to implementing the interconnection between the PS-side and the PL-side of
the ZedBoard. We should now proceed to a further explanation of the architecture and
operating principles of the AXI protocol. To begin with, it should be mentioned that the AXI
protocol is burst-based and defines five independent transaction channels:

• read address
• read data
• write address
• write data
• write response

An address channel carries control information that describes the nature of data to be
transferred. The data is transferred between the master and the slave using either a write
data channel to transfer data from the master to the slave or a read data channel to transfer
data from the slave to the master. It should be mentioned that in a write transaction, the
slave uses write response channel to signal the completion of the transfer to the master. The
AXI protocol permits address information to be issued before the actual data transfer,
supports multiple outstanding transactions and out-of-order completion of transactions
[24].

Each of the independent channels consists of a set of information signals and VALID and
READY signals that provide a two-way handshake mechanism. The information source uses
the VALID signal to show when valid address, data or control information is available on the
channel. The destination uses the READY signal to show when it can accept the information.
Both the read data channel and the write data channel also include a LAST signal to indicate
the transfer of the final data item in a transaction. The read data channel carries both the
read information and the read response from the slave to the master and includes the data

61

Figure 3.1: AXI Channel Architecture of Reads [24]

Figure 3.2: AXI Channel Architecture of Writes [24]

62

bus, that can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide, and a read response signal
indicating the completion status of the read transaction. On the other hand, the write data
channel carries the data from the master to the slave and includes a data bus of the same
possible widths as the read channel's data bus, and a byte lane strobe signal for every data
byte, indicating which bytes of the data are valid. A final notice is that a typical system
consists of a number of master and slave devices connected together through some form of
interconnect.

The AXI protocol provides a single interface definition for the interfaces between a master
and the interconnect, between the slave and the interconnect and finally between a master
and a slave. We now proceed to a further description and explanation of the AXI4-Lite and
AXI4-Stream interface.

Figure 3.3: Interface and Interconnect [24]

3.2.1 The AXI4-Lite Interface

AXI4-Lite is an interface which is suitable for simple control register-style interfaces that do
not require the full functionality of the AXI4 protocol. Of course, the potential transactions
are compliant with general principles of the AXI protocol, however a subset of the signals
offered by the AXI protocol are supported as AXI4-Lite refers to simpler transactions [24].

Lets now enumerate the key functionalities of AXI4-Lite interface. Firstly, all transactions
are of burst length 1. This means that the maximal packet size that is transferred at once,
can be either 32-bit or 64-bit depending on the data bus width. Secondly, all data accesses
use the full width of the data bus. It should be mentioned that AXI4-Lite supports a data bus
width of 32-bit of 64-bit. Thirdly, all accesses are non-modifiable and non-bufferable, and,
finally exclusive accesses are not supported [24]. In Table 3.1 we might observe the signals
that are supported by the AXI4-Lite interface for all kind of transactions. In this table we
may notice some signals that were already mentioned before, like the VALID and READY
signals. Other essential signals include the ADDR and DATA signals, which obviously refer to
the address that we wish to read from or write to and the actual data transfer that is to be
made. The PROT signal refers to protection type. The signal indicates the privilege and
security level of the transaction and whether it is a data access or instruction access. The
RESP signal refers to the response of either the write response or read data channel. Finally
the STRB signal refers to the write strobes and indicates which byte lanes hold valid data.
There is one write strobe bit for each byte of the write data bus.

63

Global Write Address
channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

Table 3.1: AXI4-Lite Interface Signals [24]

The most important piece of information that should be kept in mind is that AXI4-Lite has a
fixed data bus width and all transactions are the same width as the data bus which might be
either 32-bit or 64-bit wide. On the one hand, this is a fact that combined with the burst
length of 1, might limit bandwidth. On the other hand, if a data transfer requires less than
32 bits, the utilization of the data bus will be the same as if the data transfer requires 32
bits. Thus, power and data bus consumptions will be the same, independently of the actual
needed data bus width. At this point, a basic explanation of the AXI4-Lite interface has been
made and we now proceed to an overview of the AXI4-Stream interface.

3.2.2 The AXI4-Stream Interface

The AXI4-Stream Interface is used as a standard interface to connect components that wish
to exchange data. The interface can be used to connect a single master that, that generates
data, to a single slave, that receives data. The protocol can also be used when connecting
larger numbers of master and slave components. The protocol supports multiple data
streams using the same set of shared wires, allowing a generic interconnect to be
constructed that can perform upsizing, downsizing and routing operations. The AXI4-
Stream interface also supports a wide variety of different stream types [25].

Types of streams include byte streams, continuous aligned streams, continuous unaligned
streams and sparse streams. For the purposes of this paragraph, the types of streams will
not be discussed further. Additionally, AXI4-Stream interface applies a distinction of the
data bytes that a data stream might consist of. A byte might be data byte, position byte or
null byte. Data byte refers to a byte of data that contains valid information that is
transmitted between the source and destination. The term position byte refers to a byte that
indicates the relative positions of data bytes within the stream and performs as a
placeholder that does not contain any relevant data values that are transmitted between the
sourceand destination. Finally, a null byte is a byte that does not contain any data
information or any information about the relative position of data bytes within a stream. In
Table 3.2 a list of signals used in transactions with devices disposing AXI4-Stream interfaces
is given.

64

Signal Source Description

ACLK Clock Source The global clock signal. All signals are sampled on the rising
edge of ACLK.

ARESETn Reset Source The global reset signal. It is active-LOW

TVALID Master Indicates that the master is driving a valid master.

TREADY Slave Indicates the slave can accept a transfer in the current cycle.

TDATA [(8n-1):0] Master It is the primary payload that is used to transfer the data. The
width of the data payload is an integer number of bytes.

TSTRB [(n-1):0] Master It is the byte qualifier that indicates whether the content of the
associated type of TDATA is processed as a data byte of

position byte.

TKEEP [(n-1):0] Master It is a byte qualifier that indicates whether the content of the
associated byte of TDATA is processed as part of the data

stream. Associated Bytes that have the TKEEP byte qualifier
deasserted are null bytes and can be removed from the stream.

TLAST Master It indicates the boundary of the packet.

TID [(i-1):0] Master Data stream identifier that indicates different streams of data.

TDEST [(d-1):0] Master It provides routing information about the data stream.

TUSER[(u-1):0] Master User-defined sideband information that can be transmitted
along the data stream.

Table 3.2: AXI4-Stream Interface Signals list [25]

3.3 The Linux UIO Driver

Userspace I/O (UIO) drivers are designed to handle devices like FPGAs found on embedded
boards and are frequently used in embedded systems. The Linux UIO driver was introduced
in Linux 2.6.23 and is suitable for devices that cannot fit into other kernel subsystems. It
allows the programmer to develop a device driver almost entirely in userspace, using all
standard application development tools and libraries. This is a feature that simplifies
development, maintenance and distribution of device drivers [26].

Non-standard devices, for instance accelerators implemented on an FPGA, are commonly
treated as character devices. A simple device might be easily handled by the read() and
write() system calls, however, this is not the typical case. Such devices are usually more
complex and the additional necessary functionalities are commonly implemented using the
ioctl() system call. An important note for a conventional driver is that it is obliged to use
many internal kernel functions and macros. For several reasons, kernel developers refuse to
keep the internal API stable, causing a driver which might perfectly work with the current
kernel to neither work nor compile anymore in a small amount of time. Although drivers
designed for widely used devices will be updated by the Linux community, a non-standard
device will require the programmer to maintain it throughout the whole lifetime of the
product [26]. Therefore, to address this situation, the UIO framework was introduced.

65

Figure 3.4: A Conventional Device Driver [26]

It is well-known that a device driver basically has two tasks to accomplish. The first one is
to access the device memory. The second and more difficult task is to handle interrupts
generated by the device. The first demand is easily fulfilled since Linux is capable of
mapping physical device memory to an address accessible from userspace. This had already
been possible by using /dev/mem and it is a fact that a lot of people used it for similar
purposes leading to occurrences of security leaks and stability issues. The UIO framework
prevents userspace from mapping memory that does not belong to the device, thus coping
with the previously mentioned issues. Moreover, the framework itself offers an mmap()
implementation able to perform the previous task for physical, logic and virtual memories.

Figure 3.5: A UIO driver paradigm [26]

66

As mentioned above, a more difficult task concerning a device driver is interrupt handling.
Interrupts need to be handled in kernel space. Current interrupts are level-triggered and
the machine might hang if an interrupt is still active at the end of the interrupt service
routine (ISR). Hence, the UIO framework will need to include a small kernel module
containing a minimal ISR that only needs to acknowledge or disable the interrupt.
Additionally, if the userspace part of the driver wills to wait for an interrupt, it simply does a
blocking read() from /dev/uioX. The call returns immediately as soon as an interrupt
occurs [26]. The following figure shows a small kernel driver that calls only a few kernel
functions. The majority of the essential functionalities is handled in a generic way by the
UIO framework, effectively protecting the author of a driver from the dirty sides of the
kernel. A quick reference guide for development of userspace applications using the UIO
driver is presented in Chapter 4.

As a final comment on the Linux UIO driver lets consider its performance. In real world
drivers, ioctl() is commonly used to write a single value to a hardware register. As shown in
Figure 3.6, this is not always as straightforward as one might think. In that system call, the
Virtual File System needs to find the ioctl() implementation for the specific device and call
it. Then, the ioctl() function will copy the value from userspace to kernel space. On the
contrary, in a UIO driver the device memory is directly mapped into userspace. Hence,
writing to a register might be as simple as an access to a regular array of integers. In
addition, reading a result from the hardware is equally simple. This features are what make
a UIO userspace driver code faster and easier to read [26]. Last but not least, the Linux UIO
driver is employed in our AXI4-Lite implementations of our custom accelerators to map the
device memory to userspace. This will be discussed further later.

Figure 3.6: Ioctl() vs. Memory Access through UIO [26]

67

3.4 Direct Memory Access

Direct Memory Access (DMA) is a feature of computer systems that allows certain hardware
subsystems to access the main memory (usually RAM), independently of the Central
Processing Unit (CPU). In a system without DMA, the CPU is using programmed
input/output and is typically fully occupied for the entire duration of read and write
operations, thus it cannot perform any other tasks. However, this is not the case in a system
disposing the DMA feature. In a system with DMA capabilities, a DMA controller is notified
by the CPU that a data transfer should be made. The CPU initiates the transfer, then it
performs other operations until it finally receives an interrupt from the DMA controller
when the requested operation has finished. This feature is useful at any time the CPU
cannot keep up with the rates of data transfer, or when it needs to perform useful tasks
while waiting for a relatively slow I/O data transfer. We should now proceed to a basic
explanation of the operation principles of DMA and DMA controllers.

A DMA controller is a device, usually a peripheral to a CPU, that is programmed to perform a
sequence of data transfers on its behalf. The DMA controller can directly access the memory
and make a transfer from a memory location to another, or from an I/O device to memory
and vice versa [27]. A DMA controller manages several DMA channels each of which can be
programmed to perform a sequence of data transfers. A DMA controller typically shares the
system memory and I/O bus with the CPU and is able to perform as both master and slave.
Depending on the manner that a DMA transfer is made there are different modes of
operation that are presented below.

Burst Mode

In burst mode of operation an entire block of data is transferred in one contiguous
sequence. Once the DMA controller is granted access to the system bus by the CPU, it
transfers all bytes of data in the data block, also referred to as burst, before releasing
control of the system buses back to the CPU, hence, the CPU might be inactive for relatively
long periods of time depending on the burst size. It should be noted that the size of a data
block depends not only on the burst size but also on the data bus width. If the width of a
data bus is 32-bit then the size of a data block is 32-bit times the burst size. However, in a
64-bit data bus the block size would be 64-bit times the burst size.

Cycle Stealing Mode

The cycle stealing mode is used in systems in which the CPU should not be inactive for the
length of time needed for a burst mode transfer to be completed. In this mode, the DMA
controller gains access to the bus in the same way as before. However, in cycle stealing
mode, after transferring one byte of data, the control of the buses returns to the CPU. If the
transfer of the desired number of bytes has not been completed then the DMA controller
requests the bus again to send another byte of data. This is repeated until the transfers are
completed. On the one hand, in this mode of operation a data block is not transferred as
quickly as in burst mode transfers. On the other hand, the CPU does not remain idle for long
periods of time and can perform other operations even though the DMA transfer is not
completed.

68

Transparent Mode

In the transparent mode of operation the transfer of a data block takes the longest time
interval when compared to burst and cycle stealing mode, yet it is the most efficient mode
in terms of overall system performance. In this mode, the DMA controller only transfers
data when the CPU performs operations that do not utilize the system buses. The CPU never
stops executing its programs and the DMA transfer is free in terms of time. A drawback of
the transparent mode of operation is that the hardware needs to determine when the
system buses are not utilized by the CPU.

DMA can lead to cache coherency problems. Lets imagine a CPU equipped with a cache and
an external memory that can be accessed directly by devices using DMA. When a CPU access
a location X in the memory, the location's value will be stored in the cache. Then the CPU
performs subsequent operations on X, which will update the cached copy but not the
external memory version of X, assuming a write-back cache. If cache is not flushed to
memory before the next access of X by a DMA-based device, then the device will receive a
stale value of X. This issue has been addressed either in a hardware method or in a software
method [27]. ARM offers the Acceleration Coherency Port (ACP) on which a DMA controller
can connect to, in order to deal with previously mentioned issue.

The AXI4-Stream versions of our implementations which are discussed further later take
advantage of Direct Memory Access. Specifically, an AXI DMA block is used in order to make
transfers from the memory to custom accelerators. The DMA block performs as both a
master and a slave to the PS-side of the ZedBoard. A specific transaction is commanded by
the Processing System, thus the AXI DMA block performs as a slave. When the transfer is to
be done, the AXI DMA block accesses the memory through the High Performance (HP) slave
ports of the PS, thus performing a master. The AXI DMA block and its operation will be
discussed further in following chapters. At this point, a general description and explanation
of the principles of DMA has been made and we are ready to proceed to the next chapter.

69

Chapter 4

Employed Work Flow for HW IP
Integration on ZedBoard

4.1 Zynq Evaluation and Development Board Specifications

The purpose of this chapter is to capture a proposed framework and be an overall guide for
implementations of various applications on ZedBoard. The whole flow of design tools
utilized to produce and implement a system is described, starting with Vivado HLS,
proceeding to Vivado Design Suite, Petalinux Tools and finally Xilinx SDK. To begin with, a
description and listing of ZedBoard Zynq Evaluation and Development Board specifications
is presented.

The ZedBoard [28] is a low-cost evaluation and development board based on the Xilinx
Zynq®-7000 All Programmable SoC (AP SoC). ZedBoard combines a Dual-Core ARM®
Cortex A9 Processing System (PS) with 85,000 Series-7 Programmable Logic (PL) cells and
it can be targeted for a wide range of applications. The board includes everything necessary
for Linux, Android, RTOS and other OS based designs. In addition, the processing system
and programmable logic I/Os are exposed through several expansion connectors for easy
user access. The features provided by ZedBoard [29] consist of the following:

• Memory: Zynq contains a hardened PS memory interface unit. The memory
interface unit includes a dynamic memory controller (DDR3) and static memory
interface modules (SPI Flash, SD card interface).

• USB: ZedBoard implements one of the two available PS USB OTG interfaces.
Additionally a USB-to-UART bridge is connected to a PS UART peripheral providing
JTAG functionalities and USB circuit protection.

• Display and Audio: An Analog Devices ADV7511 HDMI Transmitter provides a
digital video interface to the ZedBoard. On top of that, the ZedBoard allows 12-bit
video output through a through-hole VGA connector. An Analog Devices ADAU1761
Audio Codec provides integrated digital audio processing. Finally, An
Inteltronic/Wisechip UG-2832HSWEG04 OLED Display is used on the ZedBoard.

70

• Clock Sources: The PS subsystem uses a dedicated 33.3333 MHz clock source, IC18,
Fox 767-33.333333-12, with series termination. The PS infrastructure can generate
up to foul PLL-based clocks for the PL system. An on-board 100 MHz oscillator, IC17,
Fox 767-100-136, supplies the PL subsystem clock input.

• Reset Sources: The Zynq PS supports external power-on reset signals. The power-
on reset is the master reset of the entire chip. A push button switch initiates
reconfiguring the PL-subsection by the processor. Power-on reset erases all debug
configurations.

• User I/O: The ZedBoard provides 7 user GPIO push buttons; five on the PL-side and
two on PS-side. It has eight user dip switches, providing user input accompanied by
eight user LEDs.

• 10/100/1000 Ethernet PHY: The ZedBoard implements a 10/100/1000 Ethernet
port for network connection using a Marvell 88E1518 PHY.

• PS and PL I/O Expansion: A single low-pin count (LPC) FMC slot is provided on the
ZedBoard to support a large ecosystem of plug-in modules. The Zedboard has five
Pmod compatible headers (2x6). The XADC header provides analog connectivity for
analog reference designs, including AMS daughter cards.

• Configuration Modes: Zynq-7000 AP SoC devices use a multi-stage boot process
that supports both non-secure and secure boot. The PS is the master of the boot and
configuration process. Upon reset, the device mode pins are read to determine the
primary boot device to be used: NOR, NAND, Quad-SPI, SD card or JTAG.

As already mentioned, the ZedBoard can be used for a wide range of applications varying
from video processing, motor control, software acceleration, Linux/Android/RTOS
development to Embedded ARM Processing and general Zynq-7000 AP SoC prototyping.
The area of interest in this thesis is software acceleration by building an HLS-based IP on
the PL-side of the device. To be more precise, our field of study is the exploration and
evaluation of communication potentials between the PS and PL sides of the device. Hence,
our interest focuses on the features of the PS and PL sides of the ZedBoard but mostly on
their interconnection which is accomplished through High Performance ARM AXI interfaces
(High Bandwidth AMBA interconnect), a solution providing scalable and effective
communication. Table 4.1 contains essential information about the available resources of
the ZedBoard.

Name BRAM_18K DSP48E FF LUT

Available 280 220 106400 53200

Table 4.1: ZedBoard Available Resources

71

Figure 4.1: Implementation Work Flow [18]

72

4.2 IP Generation with High-Level Synthesis

Advanced algorithms used nowadays in wireless, medical, defense and consumer
applications are more sophisticated than ever before. Vivado® High-Level Synthesis, a
design tool launched by Xilinx, accelerates IP creation by enabling C, C++ and System C
specifications to be directly targeted into Xilinx All Programmable devices without the need
to manually create RTL. Vivado HLS shows a fast path to IP creation. The abstraction of
algorithmic description, data type specification and available interfaces (AXI4, AX4-Lite,
AXI4-Stream) are a key element in what Vivado HLS offers. In addition, there are extensive
libraries for arbitrary precision data types, video, DSP and more available. On top of that,
the directives driven architecture-aware synthesis delivers the best possible quality of
designs. Moreover, Vivado HLS offers an accelerated verification using C/C++ test bench
simulation, automatic VHDL or Verilog simulation and test bench generation. It should be
noted that for all IP generations that were demanded through the duration of this diploma
thesis, Vivado HLS 2014.4 was employed.

A general capture of the steps of High-Level Synthesis given an abstract algorithmic
description has already been presented in Chapter 1. As already mentioned, our field of
interest is the evaluation of the available communication interfaces between the PS and PL
sides of the ZedBoard, and not particularly in directives and optimizations during the High-
Level Synthesis stage of the design flow. Lets consider a code file that is available in which a
functionality has already been optimized, the directives to Vivado HLS which produce the
optimal hardware are given in the code and the functionality is described in C programming
language. For purposes of completion lets us enumerate and describe some of the basic HLS
directives.

Directive Description

PIPELINE Reduces the initiation interval by allowing the concurrent execution of
operations within a loop of function.

DATAFLOW Enables task-level pipelining, allowing functions and loops to execute
concurrently. Used to minimize interval.

INLINE Inlines a function, removing all function hierarchy. Used to enable logic
optimization across function boundaries and improve latency/interval by

reducing function call overhead.

UNROLL Unroll for-loops to create multiple independent operations rather than a single
collection of operations.

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays or into individual registers,
to improve access to data and remove block RAM bottlenecks.

ARRAY_MAP Combines multiple smaller arrays into a single large array to help reduce block
RAM resources

ARRAY_RESHAPE Reshape an array from one with many elements to one with greater word-width.
Useful for improving block RAM accesses without using more block RAM.

INTERFACE Specifies how RTL ports are created from the function description.

Table 4.2: HLS Directives [18]

73

The given code might contain some of the above directives. Lets assume it may not contain
the INTERFACE directive. This is where our job begins. Assuming the C code comes with no
documentation whatsoever, there must be a clarification of the input and output data. Since
this clarification transpires the INTERFACE directive should be used on the input data,
output data and top function of the code. It is obvious that the input and output data have to
be arguments of the top function. The interface refers to the type of I/O protocol that is
used. Our solution of choice for specifying the type of I/O protocol is Interface Synthesis,
where the port interface is created based on efficient industry standard interfaces. An
alternative to Interface Synthesis would be a manual interface specification where the
interface behavior is explicitly described in the input source code, a fact which allows any
arbitrary I/O protocol to be used. The term Interface Synthesis refers to the process of the
arguments of the top-level function being synthesized into RTL ports when the top-level
function is synthesized. In general, Vivado HLS creates three types of ports on the RTL
design: clock and reset ports, block-level interface protocols, port-level interface protocols.

Clock and Reset Ports

The ap_clk and ap_rst ports are automatically created in every synthesized design. The
clock ports are created if a design requires more than one clock cycle of its completion. The
input of the ap_clk port is applied to all existing functions of the design and it should be
mentioned that only one clock can be applied to C or C++ designs. The operation of the reset
is controlled by the config_rtl configuration.

Block-Level Interface Protocols

The block-level interface protocols are ap_ctrl_none, ap_ctrl_hs and ap_ctrl_chain.
For the purposes of this diploma thesis only ap_ctrl_none and ap_ctrl_hs will be
examined. The block-level interface protocols can only be specified on the function or the
function return. Even if the function is of void type a block-level protocol may be specified
on the function return.

The ap_ctrl_hs is the default protocol and generates ports that control the block
independently of any port-level I/O protocols. The PS of the ZedBoard is later going to
control an IP block through these ports. The generated ports control when the block can
start processing data (ap_start), indicate when it is ready to accept new inputs
(ap_ready), indicate if the design is idle (ap_idle) or has completed operation (ap_done).
When using the AXI4-Lite interface, the previously mentioned ports are grouped in one
bundle. The ap_ctrl_none mode implements the design without block-level I/O protocol
and will be useful when implementing the AXI4-Stream versions of our accelerators.

Port-Level Interface Protocols

After the block-level protocol has been used to start the operation of the block, the port-
level I/O protocols are used to sequence data into and out of the block. The AXI4 Interfaces
come under this category of protocols. Those supported by Vivado HLS are the AXI4-Stream
(axis), AXI4-Lite (s_axilite), and AXI4 Master (m_axi) interfaces which will be
discussed further. Another important mode is ap_vld which is set to 1 when an output port
has a valid value and ap_none for input ports.

74

4.2.1 Setting AXI4-Lite Interfaces

Lets now assume that we are given a simple code and we are asked to add the necessary
communication interfaces so that the produced IP could be added and interconnected in an
AXI4-compliant system. In Listing 4.1 we may see a simple sample code. The specific code
takes as inputs an array a of twenty integers and an integer number b and counts the
occurrences of b in array a.

1 void count (int a[20], int b, int *c) {
2
3 int i = 0, temp_c = 0;
4
5 for (i = 0; i < 20; i++) {
6 if (a[i] == b) temp_c++;
7 }
8 *c = temp_c;
9 }

Listing 4.1: A simple C-code paradigm

Although AXI4-Lite is not supposed to be used on arrays, it was in fact used in our
implementations described in next chapters without occurring issues so we are going to
employ it in this paradigm. We would like to group all interface ports in a bundle called
"COUNT_IO". AXI4-Lite interfaces will be set to a and b, the return value c and the return
port of the function. In Listing 4.2 we may notice the altered code using the INTERFACE
directive.

1 void count (int a[20], int b, int *c) {
2
3 #pragma HLS INTERFACE s_axilite port=a bundle=COUNT_IO
4 #pragma HLS INTERFACE s_axilite port=b bundle=COUNT_IO
5 #pragma HLS INTERFACE s_axilite port=c bundle=COUNT_IO
6 #pragma HLS INTERFACE s_axilite port=return bundle=COUNT_IO
7
8 int i = 0; temp_c = 0;
9
10 for (i = 0; i < 20; i++) {
11 if (a[i] == b) temp_c++;
12 }
13 *c = temp_c;
14 }

Listing 4.2: A simple C-code with AXI4-Lite Interfaces

75

It should be mentioned that Vivado HLS automatically sets the top-level function's interface
to ap_ctrl_hs, unless it is set manually by the user to another mode. The ports generated
by this particular mode are bundled with the return port of the function. The input ports
are also set to ap_none, and more important, the output ports are set to ap_vld. This will be
useful when the hardware will be controlled by the PS-side of the ZedBoard, since ap_vld
mode offers the ability to check if the output is valid, or, in other words, if the computation
is completed and the output value is written and up-to-date. After the C-synthesizing the
HW, the next step is the extraction of RTL in IP-XACT form. For IPs with AXI4-Lite interface
ports a C driver is generated automatically so that the AXI4-Lite ports can be controlled
through a Linux application. The generated device is memory-mapped. More details about
the generated driver will be discussed further later, although an overview of the Linux UIO
driver has already been presented in the previous chapter. In Figure 4.1 the classify IP with
AXI4-Lite Slave that we generated for our implementations is presented.

Figure 4.2: Classify IP with AXI4-Lite Interfaces

76

4.2.2 Setting AXI4-Stream Interfaces

Our next assumption is that we are given a simple code and our target is to add AXI4-
Stream interfaces. A detail that should be paid attention to is the fact that if an AXI4-Stream
interface is set on an array, then the accesses to the specific array have to made in a
sequential order and no input values may be reused. In the Harris & Stephens Corner
Detector, as much as in the Support Vector Machine Classifier code, accesses to input arrays
are not made in a sequential order. Hence, if one wishes to take advantage of the speed that
AXI4-Stream interfaces offer, then another approach should be considered, otherwise the
AXI4-Stream interfaces cannot be set. Lets assume a kind of code like the one presented in
Listing 4.3 is given and AXI4-Stream Interfaces should be added. The code is of no particular
use but is employed in order to clarify the manner in which AXI4-Stream interfaces were
used in our implementations during this thesis.

1 void dummy (int a[20], int *y) {
2
3 int sum = 0, i = 0, j = 0;
4
5 for (i = 0; i < 100; i++)
6 for (j = 0; j < 20; j++)
7 sum += a[j] – 1;
8 *y = sum;
9 }

Listing 4.3: Dummy C-code Paradigm Intended for addition of AXI4-Stream Interfaces

In the above listing, an array of twenty integer numbers is given as input to the top-level
function. As we may notice, the accesses to each element of the array is reused a hundred
times and a sum is computed. The final value of the sum is the output value of the function.
Our implementations on Harris and SVM classifier might not be exactly like the above code,
however, this code is adequate for the point that we need to address. In the next listing we
may observe the transformed code with the AXI4-Stream interfaces added.

1 int dummy (int a[20]) {
2
3 int sum = 0, i = 0, j = 0;
4
5 for (i = 0; i < 100; i++)
6 for (j = 0; j < 20; j++)
7 sum += a[j] – 1;
8
9 return sum;
10 }
11

77

12 void top_dummy (int a[20], int *y) {
13
13 #pragma HLS INTERFACE axis port=a
15 #pragma HLS INTERFACE axis port=y
16 #pragma HLS INTERFACE ap_ctrl_none port=return
17
18 int i = 0, temp_a[20];
19
20 for (i = 0; i < 20; i++)
21 temp_a[i] = a[i];
22 *y = dummy(temp_a);
23 }

Listing 4.4 Transformed Dummy C-code with AXI4-Stream interfaces

The previous code was transformed in way so that the accesses to the input array seem to
be sequential. In fact, the accesses to array a in top_dummy function are sequential. When
all the values of input array a are collected to array temp_a then the array is passed as an
argument to dummy function which is the one that performs the needed computations. The
dummy function's type is changed to int and the sum is returned to the output value y of the
top_dummy function. The block-level protocol of the top-level function is set to ap_ctrl_none
because the necessary control is now transposed to the hardware. When twenty integer
numbers are collected, the computation begins. Thus, when the PS-side of the ZedBoard
needs to make a transfer to the hardware and get a result, it commands the AXI DMA block
to perform the transfer. The values are streamed to the accelerator and the result is
streamed back to the AXI DMA block which then forwards it to the PS. So, the PS controls
the AXI DMA block and not the accelerator. If no data are sent to the hardware, then no
computation is performed. Though this method for addition of AXI4-Stream interfaces
might introduce additional latency, the function level handshakes are avoided, there is no
need to initiate the computation and, finally, there is no need to check if the output signal is
valid or not. These features combined with the extremely fast transfers that are achieved
through the employment of DMA blocks, eventually end up with satisfactory latency gains
as we have recorded in following Ch. 5 & 6.

Figure 4.3: Classify IP with AXI4-Stream Interfaces

78

4.3 System Generation

At this point the IP, whether it contains AXI4-Lite interfaces or AXI4-Stream interfaces, has
been generated. The next step is the creation and generation of the system architecture as a
whole in Vivado Design Suite. It offers a new approach for ultra high productivity with next
generation C/C++ and IP-based design. The RTL has already been produced during the C-
synthesis of the HLS step. In Vivado Design Suite, a block design will be created by the
addition of the ZYNQ7 Processing System and the previously generated IP. After the
interconnection and validation of the design we proceed to the synthesis and
implementation, and finally to bitstream file generation. In our work Vivado Design Suite
2014.4 was used.

To begin with, the first step is the creation of a block design and the addition of the ZYNQ7
Processing System IP. The IP should be re-customized to fit our needs. In clock configuration
at least one PL Fabric Clock should be chosen. Up to four PL Fabric Clocks can be included
with frequencies theoretically ranging from 0 to 250 MHz. The PL-PS fabric interrupts
should be enabled creating an IRQ_F2P port on ZYNQ7 Processing System IP. The USB
interface is not needed in our designs and should be disabled. After the necessary
customizations the block design of ZYNQ7 Processing System looks like the one shown in
Figure 4.3 where the DDR and FIXED_IO ports are made external when block automation is
run. After the addition of the PS part in the block design, our generated IP should be added.
The repositories should be edited so that our custom IP is included. A slightly different
design process is then followed depending on the kind of interfaces of our IP ports. The
cases of AXI4-Lite and AXI4-Stream interfaces are examined.

Figure 4.4: Re-customized ZYNQ7 Processing System

79

4.3.1 System Design with AXI4-Lite Interfaces

When a custom IP is equipped solely with AXI4-Lite interfaces the design of the system
requires no effort whatsoever. On the IP addition the option “Run Connection Automation”
is enabled and interconnects the AXI4-Lite custom IP with ZYNQ7 Processing System with
addition of an AXI Interconnect Block and a Processor System Reset. The interrupt port of
the Classify IP is connected to the IRQ_F2P port of the PS.

AXI Interconnect IP

The AXI Interconnect IP block connects one or more AXI memory-mapped Master devices
to one or more memory-mapped Slave devices. The Interconnect IP is intended for
memory-mapped transfers only and AXI4-Stream transfers are not applicable. It has the
potential to connect 1 to 16 Master devices and 1 to 16 Slave devices. This means that if
more than one Slave IPs are included in the same system design then only one AXI
Interconnect IP will be utilized if the number of Slave devices is less than 16. The Slave port
of the Interconnect IP is connected to the Master AXI General Purpose (M_AXI_GP) port of
the ZYNQ7 Processing System, while one of the M_AXI Interconnect ports is connected to
the AXI4-Lite Slave port of our custom accelerator. Obviously, the Interconnect IP and the
custom IP have the same clock and reset port sources. No re-customization is needed for the
nature of design we wish to implement.

Figure 4.5: An AXI Interconnect IP Block

Processor System Reset

The Processor System Reset is another necessary component of our custom system
architecture. It generally allows the users to tailor the design to suit their application by
setting certain parameters to enable or disable features. It should be mentioned that the

80

asynchronous external and auxiliary external reset inputs are synchronized with clock.
Needless to say that the application of proper reset signals is essential for an FPGA design to
perform appropriately. The Processor System Reset is intended to implement a Power-on
Reset (PoR) which detects the power applied to a the chip and generates a reset impulse
that travels through the entire circuit placing it into a known state. No re-customization is
needed for the Processing System Reset in our case.

Figure 4.6: A Processor System Reset block

It should be mentioned that no specific block designs are presented in this chapter as
various implementations along with their respective block designs are presented
extensively in Ch. 5 & 6 of the present diploma thesis.

4.3.2 System Design with AXI4-Stream Interfaces

The work flow for the generation of our system architecture is not quite the same and
straightforward when AXI4-Stream interfaces are added to our custom accelerators. In
contrary to AXI4-Lite versions, in this case the IP is not automatically interconnected with
the PS with the push of a button. In case of AXI4-Stream custom IPs the first step for system
generation is the addition of an AXI DMA IP core. The existence of AXI Interconnect IP is
essential once again for the AXI DMA block to be connected through its AXI4-Lite Slave port
with the M_AXI_GP port of the processing system. An element absent in the AXI4-Lite
version of the design is the Slave High Performance Ports of the ZYNQ7 Processing System.
We proceed to an overview of the IP blocks and ports that were not present in the AXI4-Lite
versions of the system and specifically AXI DMA.

AXI Direct Memory Access

The AXI DMA is utilized to provide high-speed data movement between system memory
and an AXI4-Stream-based target IP, like the AXI4-Stream versions of our
Harris_FindCorners and Classify IPs. The implementations will be discussed further in Ch. 5
& 6. The AXI DMA block is re-customized to fit to our specific needs. The Status/Control
Stream and Scatter/Gather Engine are disabled because they are not needed in our
applications. If we re-customize the AXI DMA block we will notice a number of parameters

81

that can be altered and may or may not affect the performance of the block and,
consequently the speed of data transfers. Lets now have an overview of the parameters that
an AXI DMA block is using:

• Width of Buffer Length Register: It refers to the length of the internal counter or
register in the DMA which stores the length of DMA operation data. Its main impact
is on maximal achievable frequency and has slight or no impact in the FPGA utilized
resources. This parameter is set to 23 bits which is the largest possible value and is
recommended by the utilized DMA driver.

• Memory-Map Data Width: It specifies the data width of AXI4 Interface. Data widths
of 64 bits can significantly improve throughput when connected to the HP or ACP
port of the ZYNQ7 Processing System. However, Vivado Design Suite does not leave
us option for altering this value. This parameter should not be misinterpreted with
AXI4 Stream data width.

• Stream Data Width: It represents the width of AXI4-Stream Interface. For instance,
if an accelerator takes an input array of integers or floats then the width of the
stream should be 32 bits. In our implementations, the Harris Corner Detector has an
input image in the form of an array of unsigned chars (8-bit) so the stream width is
set to 8 bits. On the other hand, the SVM Classifier receives an input array of floats so
the stream width is set to 32 bits.

• Max Burst Size: Data on an AXI Interface can be transferred in bursts. Considering
that the bus is 32-bits wide, if a burst size value of 8 is used then the size of a block
to be transferred to a device would be 8*32 bits. Higher burst size leads to better
throughput. This parameter should be set to at least 16. If the parameter is set to 256
the speedup in comparison with a burst size of 16 will be imperceptible. The PS AXI
interfaces are AXI3-compliant so the burst size is limited to 16. Thus, the AXI
Interconnect must split the AXI4 bursts to several AXI3 bursts. In our designs all
possible burst sizes were used with almost no difference whatsoever in throughput.

Figure 4.7: An AXI DMA Block

82

The AXI DMA block has several ports as we may notice in Figure 4.6. The S_AXI_LITE port is
for the block to be interconnected to the PS. The M_AXI_MM2S and M_AXI_S2MM as their
names might imply, are the memory-mapped to stream and stream to memory-mapped
channels, in other words the channels that are used for reads from memory and writes to
memory. This channels are connected to the Slave HP Ports of the PS-side through an AXI
Memory Interconnect intended for use with non memory-mapped HW. The M_AXIS_MM2S
port is connected directly to the input port of our accelerator and the accelerator's output is
connected back to the S_AXIS_S2MM port of the block. It should be noted that Zynq Slave HP
Ports are 64-bit wide and support the connection of both MM2S and S2MM channels to a
single HP Port. In fact, different configurations were tested including the two channels being
connected to one HP Port and the two channels being connected to two separate HP Ports
with no occurring differences in execution times and data rates. Finally, the MM2S and
S2MM interrupt ports are connected to a Concat IP which has a cascading connection to
IRQ_F2P port of the ZYNQ7 Processing System. Afterwards, the design is ready for synthesis,
implementation and generation of the bitstream file.

4.4 Generation of Embedded Linux Distributions

The next step of our design flow after the generation of the system's bitstream file and the
hardware's exportation is the creation of an operating system that is executed on the PS-
side of the ZedBoard, for a system which includes the hardware generated through Vivado
Design Suite. The creation of an Embedded Linux distribution for our custom hardware is
accomplished with the aid of Xilinx PetaLinux Tools which offer everything necessary to
customize, build and deploy Embedded Linux solutions on Xilinx processing systems and
especially on Zynq®-7000 All Programmable SoC. In our work PetaLinux Tools 2014.4 were
used. The first step is the creation of a Linux platform in the form of an empty project
template. The Linux platform is customized to precisely match the hardware system built in
Vivado Design Suite. This is accomplished by copying and merging the platform
configuration files generated through the hardware building phase into the newly created
software platform. The tool configures the system by parsing the hardware description file
(.hdf) to obtain the hardware information in order for the device-tree to be updated, as
much as PetaLinux U-boot configuration files and kernel config files. During the
configuration we set the SD card as the primary boot device. Then we confirm that the
Userspace I/O drivers are included as built-in and, in case of a system including DMA
transfers, that the Contiguous Memory Allocator is enabled under Generic Driver Options. If
we take a look at the generated device-tree we will notice every block that is included in our
design. In a design where a Dummy IP use AXI4-Lite interfaces, the device should be
compatible with the UIO driver. For this reason the addition of Listing 4.5 in the device-tree
is essential for every distinct IP and every instance of the same IP. It should be also noted
that occasionally when building a new Linux platform, errors concerning the Ethernet
device occurred. These errors were overcome by editing the device-tree once again and
adding the code of Listing 4.5 concerning the ethernet device. The proposed alterations of
the device-tree should be made in the system-top.dts file. When the configuration is
finally completed we build the system image.

83

1 &ps7_ethernet_0_mdio {
2 phy-handle = <&phy0>;
3 mdio {
4 #address-cells = <1>;
5 #size-cells = <0>;
6 phy0: phy@0 {
7 compatible = “marvell,88e1510”;
8 device-type = “ethernet-phy”;
9 reg = <0>;
10 };
11 };
12 };
13
14 &dummy_0 {
15 compatible = “generic-uio”;
16 };

Listing 4.5: Linux device-tree necessary updates

Having built the system image, the next step is the creation of a boot image file that includes
the Zynq FSBL (First Stage Boot Loader), the .BIT file for the configuration of the PL-side of
the ZedBoard, U-boot and the Linux image for the SD card boot. The BOOT.BIN and image.ub
files generated are copied to the SD card and Linux boots on ZedBoard. In this phase the PL
has been configured and a USB-to-UART connection is made to our PC. Then, GtkTerm,
which is a simple terminal used for communication with serial ports, is used. For our
following implementations, the userspace application is cross-compiled on our machine
and transferred to the ZedBoard through FTP.

At this point the PL-side of the ZedBoard has been configured with the hardware that was
designed during the previous steps while a fully customized for our hardware Linux OS is
running on the PS-side. If a device disposes AXI4-Lite interfaces then an entry will be
created under the /sys/class/uio. In a system with more than one UIO devices, the
developer is able to notice the name of a uio0 device by executing cat
/sys/class/uio/name. Normally, UIO devices should also have been created under the
/dev directory. For instance, if there are three UIO compatible devices then uio0, uio1, and
uio2 will be created. If the devices have not been added automatically then the mdev -s call
should be executed and the UIO devices will be added. The previous comments refer to
hardware with AXI4-Slave Lite interfaces. On the other hand, AXI4-Stream interfaces are not
memory-mapped and no device is generated in the /dev directory.

For AXI4-Stream devices except for the Xilinx DMA driver, a complementary driver is
utilized and performs as a wrapper for communication with the lower-level Xilinx DMA
driver. The zynq-xdma [https://github.com/bmartini/zynq-xdma] has been developed by
Berin Martini [https://github.com/bmartini] and generates a module that should be
inserted in the system along with a library offering an API intended for use with the
generated xdma module. The driver code should be built against the Linux Kernel that is
intended to be used with. Minor adjustments were made for it to fit in our systems.

https://github.com/bmartini
https://github.com/bmartini/zynq-xdma
mailto:phy@0

84

4.5 Userspace Application Development

At this point our system is up and running on the ZedBoard and our final task is the
development of a userspace application. Xilinx SDK could be used but we preferred to
develop our applications without it, cross-compile them in our machine and transfer the
executable files to the implemented system through FTP (File Transfer Protocol).
Applications targeted to AXI4-Lite implementations are not alike with applications targeted
to AXI4-Stream implementations, so we will examine them separately.

4.5.1 Development of AXI4-Lite Targeted Application

The development of an application which controls an AXI4-Lite-based accelerator is based
entirely on the Linux UIO driver which has already been presented in the previous chapter.
Before proceeding to the development of the application one should first examine the
automatically generated driver. As mentioned before, for AXI4-Lite-based devices a driver is
automatically generated. Among the driver files we can find a header file where all the
addresses for all signals of our accelerator are given. We keep this header file in mind. In
Listing 4.6 a template for accessing an AXI4-Lite device is presented.

1 char *uiobf = “/dev/uio0”;
2 int *fd;
3 void *ptr;
4
5 fd = open(uiobf, O_RDWR);
6 if (fd < 1) {
7 printf(“UIO device error: %s.\n”, uiobf);
8 exit(EXIT_FAILURE);
9 }
10 ptr = mmap(NULL, MAP_SIZE, PROT_READ|PROT_WRITE,
11 MAP_SHARED, fd, 0);
12
11 /* Do Something */
12
13 munmap(ptr, MAP_SIZE);

Listing 4.6: Template code for accessing an AXI4-Lite device from userspace

In the above template code we may notice that the device is opened for reads and writes as
a regular file, using the open() system call. Then, mmap() maps the device memory to
userspace where it can be accessed regularly using the offsets from the previously
mentioned header file. Specifically, ptr represents the beginning of the mapped memory
and the offsets are used to read or write to specific addresses of the device memory. For
instance, the ap_start port which is generated from the use of ap_ctrl_hs block-level
protocol is usually the beginning of the device memory. After copying the necessary input

85

data to their corresponding addresses the initiation of the computation is accomplished by
setting the ap_start signal to 1 for a brief moment and then again to 0. An ap_vld signal is
set when the computation is completed, at which point we are ready to read the output
values. If another computation is needed then the process is repeated. The device is finally
unmapped from userspace when it is no longer needed. It is obvious that the UIO driver
simplifies the process of accessing the device memory, consequently making application
development faster when targeting AXI4-Lite devices.

4.5.2 Development of AXI4-Stream Targeted Application

In case of AXI4-Stream-based accelerators the device we wish to access is not memory-
mapped. The task of the userspace application is to fill a buffer with input values, then call
one of the high-level functions that are offered by the zynq-xdma API to send the data to the
lower-level Xilinx DMA driver and perform the transfer. The essential function calls for
making a DMA transfer and receiving a result are presented in the following table.

Function Operation

xdma_init() A function intending to initialize the AXI DMA blocks
that are included in a design. Up to four devices are

supported.

xdma_alloc() Allocates the necessary input and output buffers for the
transactions that are going to be performed. Returns a

pointer to the address of the first element.

xdma_num_of_devices() Returns the number of the active DMA devices. It
should be called before a transaction to ensure the

existence of at least an active DMA device.

xdma_perform_transaction() It is responsible for sending the input buffer and
receiving the output buffer. Arguments include the

input and output buffers' addresses and sizes, the ID of
the DMA device that we wish to perform the transfer

and a flag (XDMA_WAIT_NONE, XDMA_WAIT_SRC,
XDMA_WAIT_DST, XDMA_WAIT_BOTH) concerning the

waiting or no-waiting of transfers.

xdma_exit() It finalizes the DMA devices.

Table 4.3: Basic API of zynq-xdma driver library

The above functions are usually called in series of appearance in the table. The initialization
of AXI DMA devices and the DMA engine is made through the xdma_init() call. After the
initialization the DMA buffers should be allocated by the xdma_alloc() call. We usually
allocate two buffers, one intended for input to the hardware and one intended for output of
hardware. Before attempting to perform a transaction the number of DMA devices should
be checked by the xdma_num_of_devices() call. The most critical part of the userspace

86

application is the transaction itself. The xdma_perform_transaction() call is used. It should
be noted that we should be careful with the usage of available flags for this function call.
Particularly, the flags refer to whether the application should wait for a transfer, either
inward or outward, or not wait at all. In our view, the flag that made most sense to use was
XDMA_WAIT_DST, which as its name implies, commands the driver to wait for the
destination buffer, or output. So, after the issue for transfer of the source buffer, or input,
there is no waiting for inward but only for outward transfers. Hence, the total time that is
measured takes into account both communication and computation times. Finally
xdma_exit() is called. At this point the application development for an AXI4-Stream device is
finished.

87

Chapter 5

Evaluation of Work Flow on
Harris & Stephens Corner Detector

5.1 General Description of HW Implementations

In this chapter the results of our implementations on Harris & Stephens Corner Detector are
presented. This particular algorithm was our first attempt to explore and evaluate the
communication potentials between the PS-side and the PL-side of the ZedBoard. The source
code that was used for the High-Level Synthesis step of the implementation was provided
by Ioannis P. Galanis, Graduate Student of the School of Electrical and Computer
Engineering, NTUA, whose work during his diploma thesis[] led to the optimized code
version that was implemented on the ZedBoard. However, it should be mentioned that the
specific version had great possibilities at over-utilizing the ZedBoard. The target device
during the development of this accelerator was Kintex-7 (xc7k325tffg900-2) which, in
general, is a device with significantly more available resources than the ZedBoard
(xc7z020clg484-1). Thus, the code should be transformed in order to give a realistic
implementation for our target device. A comparison between the available resources of the
above mentioned devices is shown in Table 5.1.

Device BRAM_18K DSP48E FF LUT

ZedBoard (xc7z020clg484-1) 280 220 106400 53200

Kintex-7 (xc7k325tffg900-2) 890 840 407600 203800

Table 5.1: Comparison of Available Resources between ZedBoard and Kintex-7

During development for a target device with more available resources one might think that
a design is economical in the utilization of resources even though it consumes many of the
available ones. In many cases percentages might be misleading. For instance if two-thousant
BRAM_18K are available and their utilization is 40% it does not mean that not a lot of
BRAMs are used. Since our target devices were different, in this chapter there is a paragraph

88

referring to the process of altering the code in order to fit to our target device, in terms of
resources and utility. Then, after generating the HW we proceed to implementations of
AXI4-Stream and AXI4-Lite versions. Harris & Stephens Corner Detector is an algorithm
which consumes images as input data, hence, the communication between the PS and PL
sides of the ZedBoard might be intense in terms of number of bytes that we need to transfer
for a single execution of the algorithm. The communication and computation times of each
implementation and image size have been measured. Communication time refers to the
time that is needed for the input data to be transferred from the PS-side to the accelerator
which lies on the PL-side of the ZedBoard, while computation time refers to the time that is
needed for the necessary output data to be computed and written. In our case, the input
data include the image in the form of a one-dimensional array and a struct of characteristics
of the input image like height and width. The output data include the number of corners
that were detected along with an array containing the coordinates of those corners. For
purposes of comparison a software only version of the Harris & Stephens Corner Detector
provided by Dr. Manolis Lourakis [http://users.ics.forth.gr/~lourakis] was executed on the
PS-side of the ZedBoard.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 - 0.03313

256 x 256 - 0.13055

512 x 512 - 0.57567

1024 x1024 - 2.55367

Table 6.2: Time measurements for Harris SW version executed on ARM®

5.2 Code Transformations Targeting to a ZedBoard
Implementation

As already mentioned, the optimized HW version of the Harris and Stephens corner
detector was developed for a different target device with more available resources than the
ZedBoard. In this paragraph the necessary code transformations leading to a ZedBoard
implementation will be presented. Except for the addition of different communication
interfaces, the input image's size was altered. In addition, we experimented with different
memory cores, offered through Vivado HLS, that are essential for some parts of the
algorithm's implementation. The final version that was implemented on the ZedBoard
supports an input image size of 128 x 128 pixels. Of course, larger images were broken into
pieces of 128 x 128 pixels through the userspace application that was developed and
executed on the PS-side. The small input image size is a consequence of versions with larger
input images over-utilizing the device. In fact, a version of 256 x 256 input image size would
be a possibility if no additional resources were utilized by the essential communication
interfaces. To begin with, we present the utilization for different 1024 x 1024 input image
size versions. It should be mentioned that the initial version uses the memluv library for
dynamic memory allocation which was not synthesizable, not only for our Vivado Design

http://users.ics.forth.gr/~lourakis

89

Suite version but also for our target device, as many different versions of Vivado Design
Suite were tried. The lack of this library might or might not create additional utilization of
available resources.

To begin with, we employ a version of Harris and Stephens Corner Detector. The initial code
processes an input image of 1024 x 1024 pixels and no synthesis directives are used except
for the use of an asynchronous dual port RAM block to store some intermediate results
needed through the computation of the image derivatives. The UNROLL and ARRAY_MAP
optimizations are applied. In table 5.1 a comparison of the resource utilization is made in
form of percentages.

BRAM_18K DSP48E FF LUT

None
Utilization (%)

76 29 13 50

UNROLL
Utilization(%)

76 42 19 80

ARRAY_MAP
Utilization(%)

76 29 13 50

UNROLL &
ARRAY_MAP
Utilization(%)

76 42 19 80

 Table 5.1: Utilized Resources for an Image Size of 1024 x 1024 for different directives

Figure 5.1: Utilization of Device for 1024 x 1024 Input Image Size

None
UNROLL

ARRAY_MAP
UNROLL & ARRAY_MAP

0

20

40

60

80

100

HW Original Version

Utilization of Device

BRAM_18K DSP48E FF LUT

Implementation

P
e

rc
e

n
ta

g
e

 %

90

The above table, as mentioned, refers to a version of the algorithm using a dual port
asynchronous RAM in one of its components and for an image size of 1024 x 1024. From
aspect of estimated latency the version using the UNROLL directive on most loops with a
factor of 4 has the lowest estimated latency, slightly below the UNROLL & ARRAY_MAP
implementation. However, the later is used. We now assume that a basic default version of
the code is acquired and we would now like to integrate a HW IP of this version in our
target device. So, we decide to add the simplest interface possible, AXI4-Lite for an initial
implementation and generate the HW. Nevertheless, an extremely high over-utilization of
BRAM blocks is depicted. Then we decide to reduce the image size and see if it now fits in
our device, and so we do, by reducing the image size to 512 x 512 pixels. Nonetheless the
over-utilization of BRAM blocks still remains, yet with a lower value. The only option that is
seen then is to reduce the image size even more and changing it to 256 x 256. Finally, the
Harris_FindCorners IP fits in the device but with an extremely high utilization. So we then
proceed to Vivado Design Suite for generation of our system. The IP is automatically
interconnected through its AXI4-Lite ports. The synthesis is run, however an error occurs
repeatedly, explaining that the dual port asynchronous RAM cannot be inferred. From the
specifications of the product we find out that an asynchronous dual port RAM is not an
option even though it is supported by the exactly same version of Vivado HLS. Our
alternative option is to use a true dual port RAM either implemented as distributed memory
or with BRAM blocks and of course single port RAMs. However, for every combination of
memory cores there is an over-utilization of either the BRAM blocks or the LUTs. Hence, we
decide to further reduce the input image size to 128 x 128 which is considered the smallest
size that this computation makes sense because in smaller sizes it might be considered
trivial, not define any memory core for this specific computation and let the tool decide
which would be the best configuration. Lets now make another comparison of utilized
resources up to this point. We have a 1024 x 1024 version with AXI4-Lite Interfaces and
Dual Port asynchronous RAM, a 512 x 512 and 256 x 256 version of the same characteristics
and finally a 128 x 128 version without the dual port asynchronous RAM core. In table 5.2
another comparison between the utilization is made.

Dual Port
RAM

BRAM_18K DSP48E FF LUT

1024 x 1024
Utilization (%)

X 810 42 20 81

512 x 512
Utilization (%)

X 212 42 19 80

256 x 256
Utilization (%)

X 96 76 27 96

128 x 128
Utilization (%)

- 67 72 24 86

Table 5.2: Utilization of AXI4-Lite Version for Different Image Sizes

91

Figure 5.2: Utilization of Device for AXI4-Lite versions and different input image size

Finally, we proceeded to an AXI4-Stream Implementation of the 128 x 128, no dual port
RAM version. AXI4-Stream in general does not utilize the device as much as AXI4-Lite which
instantiates the input and output ports, but because of its operation principles needs no
additional resources. So, we considered a 256 x 256 AXI4-Stream version to be viable only
to discover that there was a really high unexpected utilization of BRAMs, hence only the
AXI4-Stream 128 x 128 version was implemented and another version combining the AXI4-
Lite and AXI4-Stream interfaces was created. In table 5.3 we may notice the utilized
resources of our implementations.

Lite Stream BRAM_18K DSP48E FF LUT

128 x 128
Utilization (%)

X - 67 72 24 86

128 x 128
Utilization (%)

- X 57 82 24 85

256 x 256
Utilization (%)

- X 173 72 24 86

Table 5.3: Utilization of Device for Different Interfaces

1024 x 1024 512 x 512 256 x 256 128 x 128
0

200

400

600

800

1000

HW AXI4-Lite Versions

Utilization of Device

Dual Port RAM BRAM_18K DSP48E FF LUT

Implementation

P
e

rc
e

n
ta

g
e

 %

92

5.3 Implementation of AXI4-Lite Version

After reaching a viable solution for implementing the Harris & Stephens Corner
Detector on the ZedBoard, it is now time that we present the results of the AXI4-Lite version
of the HW. The AXI4-Lite version includes a bundle where all input and output values along
with the block-level protocol ports are grouped together. The values of the struct harrisData
are given through the device memory addresses mapped to userspace through the Linux
UIO driver and the memcpy() function is used for the transfer of the image. Different AXI4-
Lite versions were implemented. Beginning with the original unoptimized version and a
clock of 50 MHz frequency, proceeding to the optimized version with 50 MHz and 75 MHz
clocks. In the following tables we may notice the communication and computation times
that were measured for different implementations. To begin with, in table 5.4 the time
measurements for the not optimized version are presented. Of course, an important notice
is that although the accelerator can process an image of only 128 x 128 pixels size per
execution, larger images are broken into 128 x 128 pieces and are sent one after the other
to the accelerator for processing. Hence, in the following time measurements we include the
communication and computation times for all sizes of images.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 0.000825 0.032617

256 x 256 0.00297 0.129410

512 x 512 0.013271 0.522747

1024 x 1024 0.053690 2.121970

Table 5.4: Time measurements for Unoptimized HW Implementation (50 MHz Clock)

We may notice that the achieved bandwidth for this AXI4-Lite implementation is about
18.62 MB/s for the largest image size. We must notice that in the worst case we need to
transfer 1 MB of data to the hardware accelerator. Lets now proceed to the optimized
versions with different clocks of 50 MHz and 75 MHz. The results are depicted in the
following table. The achieved bandwidth for the 75 MHz Clock was about 24.87 MB/s.

Unroll & Array_Map (50 MHz) Unroll & Array_Map (75 MHz)

Image Size
(Pixels)

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

128 x 128 0.000827 0.021395 0.000622 0.014588

256 x 256 0.003289 0.085210 0.002455 0.058099

512 x 512 0.013240 0.344918 0.009902 0.235177

1024 x 1024 0.053610 1.404327 0.040198 0.957514

Table 5.5: Time Measurements for Optimized HW Implementation with different clocks

93

Though expected, it should be noticed that the change of the clock in the optimized version
from 50 Μhz το 75 MHz improves communication times to some extent and definitely
improves the total latency of the algorithm as the computation time is decreased. Lets now
make a comparison between computation times and communication times for all these
implementations, including the software only implementation in the form of diagrams.

Figure 5.3: Computation Time for Different AXI4-Lite Implementations

Figure 5.4: Communication Time for Different AXI4-Lite Implementations

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.01

0.02

0.03

0.04

0.05

0.06

Comparison of AXI4-Lite Versions

Communication Time

Unoptimized Unroll_&_Array_Map_50M Unroll_&_Array_Map_75M

Image Size (Pixels)

T
im

e
 (

s
e

c)

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.5

1

1.5

2

2.5

3

Comparison of AXI4-Lite Versions

Computation Time

Image Size (Pixels)

T
im

e
 (

s
e

c)

94

5.4 Implementation of AXI4-Stream Version

We now proceed to an AXI4-Stream Implementation of the optimized unrolled and array
mapped version of Harris_FindCorners IP. Considering that the elements of the input
harrisData struct remain unaltered for all implementations, we proceeded to the integration
of these data in the IP. Then, the only thing to have as an input would be the image which is
streamed into the IP using the AXI4-Stream Protocol. Lets now proceed to the evaluation of
the time measurements that were made during these implementations.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 0.0001018 0.012588

256 x 256 0.0004075 0.056099

512 x 512 0.001630 0.211797

1024 x 1024 0.006523 0.937865

Table 5.6: Time Measurements for AXI4-Stream Version

In the above measurements we clearly notice an incredible increment in bandwidth which
now reaches values of up to 154.7 MB/s which is an incredible gain when compared to the
previous implementations. In addition, the lack of a block-level protocol proves beneficial
for the computation time as well as we may notice a slight decrement even though no
additional optimizations where made to the algorithm.

5.5 Overall Comparison of HW Implementations

In this paragraph the HW Implementations of Harris & Stephens Corner Detection
algorithm where examined. The different target device for which the specific
implementation where developed introduced issues when moving the IP in another and,
most significantly, smaller from the aspect of the device's available resources. In the
following diagrams a comparison between communication and computation times is made.
In addition the gain of bandwidth compared to the original, unoptized-50-MHz-clock
implementation is made.

In the following charts it is made clear that the AXI4-Stream protocol is the best choice,
offering not only the lowest communication times, and consequently highest bandwidth but
also even a slight decrease in computation time, a fact which may have not been expected
due to the lack of block-level protocols for the control of the device. The achieved
bandwidth reached a climax of 154.7 MB/s when the AXI4-Stream Version was employed.

95

Figure 5.5: Computation Times for Different HW Implementations and ARM

Figure 5.6: Communication Time for Different HW Implementations

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.01

0.02

0.03

0.04

0.05

0.06

Comparison of HW Implementations

Communication Times

Unoptimized_Lite Unroll_&_Array_Map_50M-Lite

Unroll_&_Array_Map_75M-Lite Unroll_&_Array_Map_75M-Stream

Image Size (Pixels)

T
im

e
 (

s
e

c)

128 x 128 256 x 256 512 x 512 1024 x 1024
0

0.5
1

1.5
2

2.5
3

Comparison of HW Implementations

Computation Time

Unoptimized-Lite Unroll_&_Array_Map_50M-Lite

Unroll_&_Array_Map_75M-Lite Unroll_&_Array_Map_75M-Stream

ARM

Image Size (Pixels)

T
im

e
 (

s
e

c)

96

This page is intentionally left blank.

97

Chapter 6

Evaluation of Work Flow on SVM Classifier

6.1 General Description of HW Implementations

The purpose of this chapter is to present and compare various hardware implementations
of the Support Vector Machine classifier, mainly, from the aspect of communication between
the PS and PL part of ZedBoard Zynq Evaluation and Development Board. High-Level
Synthesis enabled us to produce Classify IPs with different communication interfaces.
Particularly, AXI4 Slave Lite and AXI4 Stream Interfaces were utilized for the
communication of the classify accelerator with the processing system. It should therefore be
mentioned that the simplicity of the classifier code combined with the low utilization of
device resources for each IP allowed us to experiment with the addition of more than one
instance of the classifier accelerator and explore the multi-processing potentials that our
target device offers. We implemented and explored three different hardware versions from
the Pareto design space. The first is a HW original version of the algorithm. It has a
relatively high execution latency combined with low demands of resources due to its
simplicity. The second is a HW accelerated version with lower latency and higher resource
demands, yet still low. The final HW version is the optimal one and has an extremely low
latency, consequently combined with high utilization of the device. Of course, each HW
version, based on its utilized resources, limits the possible alternative implementations. For
example, if a specific HW configuration utilizes over 50% of the available resources, then it
is impossible to add two instances of the specific HW in a system design.

The testing set for each of the implementations included 52291 test vectors which were
read from a file. Time measurements were taken for the computation time per beat and for
the time necessary for the test vectors to be transferred from the PS to the PL side.
Additionally, the total transfer and total computation time were taken. The execution was
repeated 10 times and the mean values were computed to eliminate potential mistakes. For
comparison purposes, a software only implementation of the original classifier code,
without any structural alterations was built and executed on the ARM® processing system
of our target device. In the following table, the execution times of this implementation are
presented. Obviously, for the software version of the classifier no communication time is
measured.

98

Communication Time (s) Computation Time (s)

Per beat - 0.002223635

Total - 116.2761016

Table 6.1: Time measurements for SW version executed on ARM®

6.2 HW Original Version Implementations and Results

In the first approach to implementing the Classify IP, we employed a simple, not-accelerated
version of the algorithm. No optimizations were made during the high-level synthesis of the
hardware. We produced two different versions of the Classify IP. The first version includes
an AXI4 Slave Lite Interface and the input, output and return values of the classify function
are grouped in one bundle. In the second version of the Classify IP, AXI4 Stream Interfaces
were used for transferring the input and output values. In the following table a comparison
between the percentage of utilized resources is presented.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 25 20 3 11

AXI4 Stream Util. (%) 24 20 3 11

Table 6.2: Resource Utilization for the original HW implementation of the SVM classifier

As shown in the above table, the utilization of the device is almost identical for both AXI4
Slave Lite and AXI4 Stream Interfaces. However, a difference occurs in the utilization of
BRAMs which derives from the fact that AXI4 Slave Lite Interface suffers from the need to
instantiate the input and output ports of the classify IP, leading to an additional 1% in
BRAM utilization. Given the above table, we proceeded to five different implementations of
the SVM classifier on Zedboard by employing one or more instances of the classifier. The
implementations are defined as 1-Lite, 2-Lite, 4-Lite, 1-Stream and 2-Stream. The Lite
implementations include 1, 2 or 4 instances of the AXI4 Slave Lite version of while the
Stream versions include 1 or 2 instances of the AXI4 Stream version of the classifier. Before
proceeding to analysis of each version we present their final utilized ZedBoard resources.

FF LUT Memory LUT BRAM DSP48 BUFG

1-Lite Ut.(%) 3 7 1 25 20 3

2-Lite Ut.(%) 5 14 2 50 41 3

4-Lite Ut.(%) 10 28 3 100 82 3

1-Stream Ut(%) 5 11 2 26 20 3

2-Stream Ut(%) 11 22 4 51 41 3

Table 6.3: Final Utilized Resources for HW Original ZedBoard Implementations

99

6.2.1 Original AXI4 Slave Lite Version with 1 Classify IP

The first approach to implementing the SVM classifier in ZedBoard Zynq Evaluation and
Development Board was to employ one instance of the Classify IP and use the AXI4 Slave
Lite interface for the communication of the processing system and the hardware (1-Lite
Version). The userspace application is responsible for the initialization, input data transfer,
output data collection and finalization of the device, to which the access is made through
the Linux UIO driver that was discussed in a previous chapter. It should be noted that
Vivado performs optimizations during the implementation phase of the design, leading to
elimination of unused nets. Hence, the final resource utilization after synthesizing and
implementing the design might be lower than the estimated during the high-level synthesis
step of the implementation, a fact which is denoted in Table 6.2.

Figure 6.1: HW Original 1-Lite IP System Architecture

The above schematic of the implemented system architecture is constituted by four
components. The ZYNQ7 Processing System, the Classify IP, an AXI Interconnect IP core and
a Processor System Reset. The AXI Interconnect allows the ZYNQ7 Processing System to
communicate through its AXI Master General Purpose port with the AXI Slave port of the
Classify IP. It should be noted that only memory-mapped devices use the AXI Interconnect
for communication and control purposes. The Processor System Reset is necessary for the
operation of the whole system because the PS and PL parts of the device operate in different
frequencies. Specifically, for this particular implementation a clock of 100MHz is used for
the Classify IP core. In the following table the time measurements for this implementation
are compared with the software version of the classifier. It can be observed that the not-
optimized, original HW version of the SVM classifier presents a decelaration of 82%
compared to the software only version. For our following implementations this HW version
will be considered as a baseline as it is the simplest HW that can be created combined with
the simplest interface, which is AXI4 Slave Lite.

100

SW Version HW Original Version

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat - 0.002223635 0.00000449943 0.004047181

Total - 116.2761016 0.2352798 211.6311248

Table 6.4: Time Measurements for SW version and HW original 1-Lite version

6.2.2 Original AXI4 Slave Lite Version with 2 Classify IPs

The next approach to implementing the SVM classifier was to employ two instances of the
Classify IP with AXI4 Slave Lite interfaces. The objective of this particular implementation
was to take advantage of the multi-processing potentials that Zynq®-7000 offers. In the
userspace application of this implementation two child processes are spawned Each of the
child processes is granted the half beats of the testing set and controls its own Classify IP.
Each child process is responsible for essential device initializations, input data transfers,
output data collections and finalization of its corresponding HW accelerator. As already
shown in Table 6.2, the final resource utilization of our target device is almost doubled in
most cases, which, of course, is an expected outcome considering that the number of
instantiated classifiers is doubled. The implemented system architecture is shown in Figure
6.2. We may notice two instances of the Classify IP connected with the ZYNQ7 Processing
System through the same AXI Interconnect block. A Concat IP is an additional component
which is utilized in order to connect the interrupt ports of the Classify IPs to ZYNQ7
Processing System which is able to support up to 16 interrupts.

Figure 6.2: HW Original 2-Lite System Architecture

101

In the following table, the measurements for the necessary communication and
computation time are compared with the HW original 1-Lite implementation.

HW Original 1-Lite HW Original 2-Lite

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.0000034617 0.00388686

Total 0.2352798 211.6311248 0.090508 101.624144

Table 6.5: Time Measurements for HW Original 1-Lite and 2-Lite versions

We notice that the total computation and communication times measured for the
classification of all 52291 beats are significantly lower than the ones measured for the HW
original version. Actually, an over 50% decrease of the initial times is observed, leading to
lower communication and computation times per beat. However, the new values are really
close to the previous ones because it is not the processing time per beat that changes but
the fact that the system is capable of processing two different beats simultaneously.

6.2.3 Original AXI4 Slave Lite Version with 4 Classify IPs

The third implementation on the SVM classifier follows a similar approach to the preceding
one. In this implementation we employed four instances of the Classify IP. Four child
processes are spawned and the operation is identical to preceding versions. The utilization
of the device in this configuration is high as we may notice in Table 6.2 with the BRAMs and
DSPs reaching utilizations of 100% and 82% correspondingly. The system architecture is
presented below and is similar with previous ones.

Figure 6.3: HW Original 4-Lite System Architecture

102

In the following table the the time results for the HW Original 4-Classify IP version are
compared with the HW Original previously implemented versions.

HW Original 1-Classify IP HW Original 2-Classify IP HW Original 4-Classify IP

Comm. Time
(s)

Comp. Time
(s)

Comm. Time
(s)

Comp. Time
(s)

Comm. Time
(s)

Comp. Time
(s)

Per Beat 0.000004499 0.00404718 0.000003461 0.00388686 0.000003609 0.00658754

Total 0.2352798 211.6311248 0.090508 101.624144 0.047185 86.117293

Table 6.6: Time Measurements for HW Original AXI4 Slave Lite Versions

As noticed, the total measured communication and computation times for the 4-Lite version
are lower than both preceding ones. The 2-Lite and 4-Lite versions present latency gains of
52% and 62% correspondingly, while the latter utilizes an extremely high percentage of the
available resources. A comparison between AXI4 Slave Lite implementations is shown in
Figure 6.4. It should be noted that the computation time for the 4-Lite is increased
compared to the 1-Lite version. The reason could be located in the PS part of our
implemented system which includes a Dual-Core ARM® processor. In case of two processes
handling their corresponding accelerators, each process can be executed solely on one of
the processors. However, in case of four accelerators, a process might be stopped by the
scheduler in a periodic or other manner for another one to be executed. Meanwhile, the
output value of the accelerator might be ready, yet, it cannot be read because the process is
stopped, leading to an increment in computation time per beat.

Figure 6.4: Performance and Gain of HW Original AXI4 Slave Lite Versions

1 2 4
0

20

40

60

80

100

120

HW Original AXI4 Slave Lite Versions

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Number of Instantiated IPs

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

103

The optimal choice out of the three HW Original AXI4 Slave Lite implementations from the
aspect of latency gain and utilization of resources, as presented in the previous chart, would
be the 2-Lite version as the gemination of utilized resources is accompanied by an over 50%
latency gain in contrary to 4-Lite version in which the quadruplication of utilized resources
does not induce analogous results. However, another area of interest beyond the latency
gain is the bandwidth that can be reached in each of the versions. Hence, the following chart
is presented.

Figure 6.5: Bandwidth of HW Original AXI4 Slave Lite versions

As observed, the AXI4 Slave Lite implementations of the HW Original version reach a
bandwidth of almost 80 MB/s. There is a clear increment in bandwidth that follows the
addition of Classify IPs in contrary to total latency gain for which a similar observation
cannot be made. Specifically, bandwidth is increased by 2.6 times for the 2-Lite version and
by 5.2 times for the 4-Lite version. Yet, this increment is imperceptible as the total time
needed for communication is less than 0.5% percent of the total execution time.

6.2.4 Original AXI4 Stream Version with 1 Classify IP

After implementing various AXI4 Slave Lite versions of the original HW we proceeded to
implementations of AXI4 Stream versions. To begin with, we employed one instance of the
HW Original AXI4 Stream Version. In this implementation the Classify IP is not memory-
mapped and the data transfers are not performed by the PS part of the device. Instead an
AXI Direct Memory Access (DMA) IP core is utilized and is responsible for input data
transfers and output data collections. In order for the AXI DMA core to be controlled from

1 2 4
0

10

20

30

40

50

60

70

80

HW Original AXI4 Slave Lite Versions

Bandwidth

Number of Instantiated IPs

B
a

n
d

w
id

th
 (

M
B

/s
)

104

the userspace application, the original Xilinx DMA Linux driver was complemented by the
zynq-xdma driver [https://github.com/bmartini/zynq-xdma], developed by Berin Martini
[https://github.com/bmartini]. Minor alterations were made to the source code for the
driver to fit in our situation. The userspace application is responsible for initializing the AXI
DMA core and allocating the essential buffers for sending and receiving data. Then, it fills
the buffer with the input data values and commands the AXI DMA to perform the transfer
from memory to our accelerator. When the buffer is transferred, the AXI DMA waits for the
computation to finish, so that the output buffer is written and transferred back to memory.
In this particular implementation, the accelerator is responsible for collecting the necessary
number of input values from the buffer. For instance, if a buffer of 180 float numbers is sent
to the accelerator then it would extract the first 18 numbers, perform the computation and
write the return value to the output buffer. Afterwards, it will extract the next 18 float
numbers from the buffer and the process will repeat until the buffer is empty. If a buffer of
length 18*N is sent, the length of the output buffer will be N.

In the following schematic we may notice the system architecture for the 1-Stream
implementation. Firstly, as expected, we may notice the existence of an AXI DMA IP core.
The ZYNQ7 Processing System and the AXI DMA communicate through an AXI Interconnect.
The input values are fed to the Classify IP from the Master AXI Stream Port of the AXI DMA
and the output values are fed back through the Slave AXI Stream Port of the AXI DMA. The
Memory-Mapped to Stream (MM2S) and Stream to Memory-Mapped (S2MM) channels are
connected to the Slave High Performance Ports of the PS through an AXI Memory
Interconnect. A time comparison between this implementation and the HW Original 1-Lite
version, which is considered as a baseline, is presented in Table 6.6

Figure 6.6: HW Original 1-Stream System Architecture

HW Original 1-Lite HW Original 1-Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.000000309078 0.00388195

Total 0.2352798 211.6311248 0.016162 202.995416

Table 6.7: Time Measurements for HW Original 1-Lite and 1-Stream Versions

https://github.com/bmartini
https://github.com/bmartini/zynq-xdma

105

In this implementation the execution was repeated for a variety of input and, consequently,
output buffer sizes. Buffers of small sizes translated into a need for more transfers from the
memory to the accelerator, thus, concluding to high communication times and low
bandwidths. On the other hand, buffers of large sizes require a lower number of transfers,
thus significantly reducing the communication times and increasing bandwidth. The
following diagram presents the increment of bandwidth as a function of beats per transfer.
It is noted that a beat is composed by 18 floating point numbers. This version's high
computation latency combined with the operation of the Xilinx DMA driver did not allow us
to try and send a buffer containing more than 768 beats or in other words 54 KB. As we may
notice, the bandwidth varies from 1.24 MB/s up to 234.5 MB/s and increases as much as
100% when the buffer size is doubled.

Figure 6.7: Bandwidth of HW Original 1-Stream Version for different buffer sizes

6.2.5 Original AXI4 Stream Version with 2 Classify IPs

The previous implementation includes one instance of the HW Original Classify IP and one
instance of the AXI DMA IP core. In a manner similar to 2 and 4-Lite Versions, we proceeded
to the addition of another instance of the Classify IP and another AXI DMA for the data
transfers. The addition of the second AXI DMA block is essential because each AXI DMA
block supports a channel dedicated to reads from memory and a channel dedicated to
writes to memory. Two child processes are responsible for handling the DMA blocks. It
should be mentioned that the userspace application does not have any control whatsoever
on the Classify IP and are responsible for filling the input buffers and receiving the results.
The control that exists in 1-Stream and 2-Stream implementations lies in the Classify IP,
which internally extracts and collects the input data needed for a computation.

1 2 4 8 16 32 64 128 256 512 768
0

50

100

150

200

250

HW Original 1-Stream Version

Bandwidth

Beats per Transfer

B
a

n
d

w
id

th
 (

M
B

/s
)

106

Figure 6.8: HW Original 2-Stream System Architecture

In Figure 6.8 a block design of the implemented system architecture is presented. It
includes 2 instances of the AXI DMA IP core and 4 instances of the AXI Memory
Interconnect IP. In this architecture we employed all available slave High Performance ports.
The width of the High Performance ports is 64-bit, out of which, the 32 bits are destined for
reads from memory and the other 32 bits are destined for writes. We implemented an extra
version with the same number of Classify IP instances and the same number of AXI DMA
blocks. Only 2 out of 4 High Performance ports were utilized. Both communication and
computation times were identical in these implementations.

HW Original 1-Stream HW Original 2-Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.000000309078 0.00388195 0.000000315733 0.00387699

Total 0.016162 202.995416 0.008255 101.36596

Table 6.8: Time Measurements for HW Original 1-Stream and 2-Stream Versions

The time measurements show a slight increment in communication time per beat and a
slight decrement in computation time per beat. No significant changes are noticed in
communication and computation times per beat, however, the system is able to process

107

twice as many beats in the same time, as does the 2-Lite implemented system. The
execution was repeated for a variety of buffer sizes. The bandwidth varied from 2.9 MB/s
and reached a value of 444.7 MB/s with approximately 222 MB/s per process and AXI DMA
block. The bandwidth achieved for different number of beats per transfer is shown below.

Figure 6.9: Bandwidth of HW Original 2-Stream Version for different buffer sizes

Figure 6.10: Performance and Gain for HW Original AXI4 Stream versions

1-Lite 1-Stream 2-Stream
0

10

20

30

40

50

60

HW Original AXI4 Stream Versions

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementations

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

1 2 4 8 16 32 64 128 256 512 768
0

50
100
150
200
250
300
350
400
450
500

HW Original 2-Stream Version

Bandwidth

Beats per Transfer

B
a

n
d

w
id

th
 (

M
B

/s
)

108

As we may notice in Figure 6.10 a latency gain of 4.08% and 52.1% is measured for 1-
Stream and 2-Stream versions respectively. It should be noticed that the gain of 1-Stream
version might not be anticipated as the accelerators are almost identical. It is a fact that
communication times are extremely lower compared to 1-Lite version. However, the
communication times are not the principal components of latency. The measured
improvements in computation times are due to our choice of different communication
interfaces. Regarding the AXI4 Slave Lite interface, Vivado HLS automatically sets the
interface to ap_ctrl_hs. This is a protocol which adds necessary signals to Classify IP so
that it can be controlled from a processor. Among them are the ap_start and ap_return
signals. It should be noted that the generated signals are exposed to memory and can be
accessed and set by the processor through the Linux UIO Driver. In the AXI4 Lite versions of
the original HW, the accelerator is memory-mapped and after using the memcpy() call to
copy the input data to the intended device memory address, the userspace application sets
the ap_start signal to 1 for a brief moment and then again to 0 in order to start the
computation. The computation begins and when it is completed an ap_vld signal attached to
the output of the accelerator is set to 1 and the output is read from its respective memory
address. The ap_ctrl_hs protocol includes a function call handshake. On top of that, every
time the userspace application triggers a computation, a very short initiation interval is
required combined with an interval needed for the output of the accelerator to be valid and
ready for reading. On the other hand, the AXI4 Stream versions of the classifier do not
operate in the same manner. An ap_ctrl_none interface is manually set to the function so
that ap_start and the rest of the signals are eliminated leading to elimination of the function
call handshakes as well. The ap_ctrl_hs interface is not needed for the control of the device
because the AXI4 Stream versions are designed in a manner that allows the Classify IP itself
to control the incoming streams. No matter the size of input buffers, the accelerator counts
and devides the input streams at every 18 values, which is the number of input values for a
computation. This means that if more than 18 values are sent to the hardware, then only the
first 18 will be used for the computation. If the remaining ones count to 18, then another
computation is executed an another output value is written to the output buffer, otherwise,
the accelerator does not perform another computation until the necessary number of input
values is collected. This is a key element as the userspace application does not need to make
any initializations or wait for a result. The only thing that it should do is fill the input buffer
and read the results of the output buffer. Hence, a latency gain in computation time makes
its appearance.

6.2.6 Comparison of HW Original Implementations

In this paragraph an overall comparison between HW Original implementations is made. To
begin with, in Figure 6.11 we may notice the latency gain and utilization of the available
target device resources for all implemented versions of the original HW. The 2-Lite and 2-
Stream versions present significant latency gains without excessive utilization of the device.
On the contrary, although the 4-Lite version presents slightly greater latency gains, the
100% and 82% utilization of BRAM and DSP blocks is prohibitive. It should be mentioned
that though an attempt for a 4-Stream implementation was made, the BRAM utilization
proved to be slightly above the available resources. Except for the latency gains and a

109

utilization comparison between the different implementations, we are also interested in the
bandwidth that each implementation version achieves. It is noticed that the AXI4 Stream
implementations which employ the DMA engine are able to achieve higher values of
bandwidth (Figure 6.12).

Figure 6.11: Performance and Gain for different HW Original Implementations

Figure 6.12: Bandwidth Gain for HW Original Implementations

1-Lite 2-Lite 4-Lite 1-Stream 2-Stream
0

20

40

60

80

100

120

HW Original Versions

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementations

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

Orig-2-Lite Orig-4-Lite Orig-1-Stream Orig-2-Stream
0

5

10

15

20

25

30

35

HW Original Versions

Bandwidth Gain

BW Gain

Implementation

B
a

n
d

w
id

th
 (

 x
 1

5
.2

 M
B

/s
)

110

6.3 HW Accelerated Implementations and Results

After implementing five different versions of original HW we proceed to various
implementations of a HW Accelerated version picked from the Pareto design space. The
chosen solution includes LOOP UNROLL, PIPELINE and ARRAY PARTITION directives to
Vivado HLS. The estimated utilization of Vivado HLS, as seen in the table below, is slightly
higher than the utilization of the original HW implementation while the estimated latency is
21416 cycles and the clock frequency is set to 25 MHz. The possible implementations on
this accelerated HW, based on the utilized resources included 1-Lite, 2-Lite, 1-Stream and 2-
Stream Version. However, Vivado Design Suite could not synthesize the 2-Lite version and
the error stated that there are not enough RAMB blocks while the 2-Stream versions which
also included two Classify IP Instances where synthesized and implemented regularly.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 27 26 3 16

AXI4 Stream Util. (%) 27 26 3 16

Table 6.9: Resource Utilization for the HW Accelerated Version of the SVM Classifier

The estimated through Vivado HLS utilized resources present no difference whatsoever
between the AXI4 Slave Lite and AXI4 Stream versions in contrary to the HW Original
version. We continue our analysis with a table of final utilized resources for all
implementations of the HW Accelerated ZedBoard implementations.

FF LUT Memory LUT BRAM DSP48 BUFG

1-Lite Ut. (%) 3 13 1 28 26 3

1-Stream Ut(%) 6 18 2 29 26 3

2-Stream Ut(%) 11 34 2 57 53 3

Table 6.10: Final Utilized Resources for HW Accelerated ZedBoard Implementation

6.3.1 Accelerated AXI4 Slave Lite Version

We proceeded to AXI4 Slave Lite implementation of the HW accelerated version of the
classifier. The block design of the implementation is not presented as the system
architecture of 1-Lite HW Accelerated version is identical to 1-Lite HW Original Version.
Alterations are only made internally during the HLS process in the Classify IP. The
utilization of the device (Table 6.9) is very close to HW Original 1-Lite version. In Table 6.13
the time measurements for the HW Accelerated Lite version are compared with our
baseline. The HW Accelerated version offers a significant latency gain, which might not have
been anticipated by the utilized resources. The communication time has increased as a
consequence of the 25 MHz clock. The computation time per beat has dropped incredibly.

111

HW Original 1-Lite HW Accelerated Lite

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.000007194272 0.0008590309

Total 0.2352798 211.6311248 0.376197 44.91959

Table 6.11: Time Measurements of HW Original 1-Lite and Accelerated Lite Version

Figure 6.13: Performance and Gain for HW Original 1-Lite and Accelerated Lite

6.3.2 Accelerated AXI4 Stream Version with 1 Classify IP

In this version we employ an AXI4 Stream instance of the HW Accelerated version
accompanied by an instance of the AXI DMA IP core. The system architecture is identical to
this of the HW Original 1-Stream Version and it can be referred to in Figure 6.6. The final
utilization of resources after design synthesis and implementation can be seen in the
following table.

HW Original 1-Lite HW Accelerated 1-Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.000000832648 0.0008590744

Total 0.2352798 211.6311248 0.04354 44.921861

Table 6.12: Time Measurements for HW Original 1-Lite and Accelerated 1-Stream Versions

HW Original 1-Lite HW Accelerated Lite
0

10

20

30

40

50

60

70

80

90

HW Accelerated AXI4 Lite Version

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementation

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

112

It can be observed that, similarly with the HW Accelerated Lite version of the classifier the
total computation time has experienced an incredible decrease, hence, the computation
time per beat has also declined. Furthermore, the communication time followed by the
communication time per beat has decreased resulting in an increment, yet not sharp in
bandwidth which now reaches 78.1 MB/s as it can be seen in the following diagram
presenting the achieved bandwidth for the specific implementation as a function of the
beats sent per transfer.

Figure 6.14: Bandwidth for HW Accelerated 1-Stream Version

6.3.3 Accelerated AXI4 Stream Version with 2 Classify IPs

The next implementation employs two instances of the HW Accelerated AXI4 Stream IP
accompanied by two AXI DMA blocks. The system architecture is identical to HW Original 2-
Stream implementation so it is not further discussed in this paragraph. The throughput of
this implementation is doubled when compared to the preceding one, while computation
time per beats remains the same with only a slight decrement. Following, we compare the 1
and 2-Stream implementations. The bandwidth is also presented as a function of the
number of beats per transfer, or input buffer size. The achieved bandwidth was 157.4 MB/s.

HW Accelerated 1-Stream HW Accelerated 2-Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.000000832648 0.0008590744 0.000000436403 0.0008410912

Total 0.04354 44.921861 0.02282 21.99075

Table 6.13: Time Measurements for HW Accelerated 1-Stream and 2-Stream Versions

1 2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

90

HW Accelerated 1-Stream Version

Bandwidth

Beats per Transfer

B
a

n
d

w
id

th
 (

M
B

/s
)

113

Figure 6.15: Bandwidth for HW Accelerated 2-Stream Version

An important technical fact should now be mentioned. In figure 6.9 we may see the
achieved bandwidth for the HW Original 2-Stream version. A detail that should be observed
is that the number of beats per transfer is limited to 768 for HW Original version while it
reaches 1024 beats per transfer for the version we are currently examining. This derives
from the Xilinx DMA Linux driver and the additional zynq-xdma driver. Specifically, the
zynq-xdma driver, which, as already mentioned, is a high-level wrapper to communicate
with the lower level Xilinx DMA driver. When sending an input buffer to our accelerator we
have the option to wait for the input buffer to be transferred, wait for no transfer either
input or output or wait for the output. The first option is to be chosen when the input buffer
has a very large size and would not be transferred at once, or extremely fast as a small or
medium sized buffer would. The second option is to wait neither for the input transfer to
complete nor for the output. This would be an ideal option if the HW accelerator was able to
process input data and instantly produce an output. A paradigm of this situation might be
some kind of hardware that receives an input value, adds 1 to that value and then writes it
to the output buffer. The previous job would be very fast and there might be no need to wait
for the result. The third and final option would be to send the input buffer and wait for the
output buffer which should be considered the safest and most obvious solution. In the HW
Original Version buffers of all sizes up to 768 beats or 54 KB where regularly sent and the
output was regularly received. A buffer of greater size would cause a timeout situation
generated by the driver. On the contrary, in this implementation we were able to sent
buffers of 72 KB or 1024 beats. The issues that occurred partially derive from the
throughput of the accelerator and the operation principles of the driver. Particularly, the
driver in fact waits for a very small interval, then it checks if the inward or outward transfer
is completed. If not, then it refreshes the time but only to a certain multiple of the intervals,
hence leading to the above mentioned issues.

1 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

180

HW Accelerated 2-Stream Version

Bandwidth

Beats per Transfer

B
a

n
d

w
id

th
 (

M
B

/s
)

114

6.3.4 Comparison of HW Accelerated Implementations

An overall comparison of different HW Accelerated implementations is following. With Lite
and 1-Stream versions it is possible to achieve a high latency gain up to 80% accompanied
by a very small increment in utilization of the device or 90% latency gain with 2-Stream
Version and a double utilization of resources.

Figure 6.16: Performance and Gain for Different HW Accelerated Versions

Figure 6.17: Bandwidth Gain for HW Accelerated Versions

HW Orig. 1-Lite
HW Acc. Lite

HW Acc. 1-Stream
HW Acc. 2-Stream

0
10
20
30
40
50
60
70
80
90

100

HW Accelerated Versions

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementations

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

Acc-Lite Acc-1-Stream Acc-2-Stream
0

2

4

6

8

10

12

HW Accelerated Versions

Bandwidth Gain

BW Gain

Implementation

B
a

n
d

w
id

th
 (

x
1

5
.2

 M
B

/s
)

115

6.4 HW Optimal Implementations and Results

The final choice for our Support Vector Machine classifier implementation is the HW
Optimal from the Pareto design space. This specific implementation involves a full manual
unroll of the inner loop of the original code and the addition of PIPELINE and ARRAY
RESHAPE directives to Vivado HLS. It is expected to present the higher latency gain of all
alternative HW versions. It should be noted that the clock for this implementations is set to
25 MHz. In the following table, the estimated HLS utilization is depicted.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 24 75 12 48

AXI4 Stream Util. (%) 24 75 12 46

Table 6.14: Resource Utilization for the Optimal HW implementation of the SVM classifier

We may notice that most components of the device are utilized with a percentage less than
50% except for DSP blocks where a 75% utilization makes its appearance. As already
mentioned the accelerator in this version is pipelined which leads to the utilization of extra
components and especially DSP blocks and LUTs for the creation of the hardware.
Concerning different communication interfaces the utilization is almost identical with only
a 2% difference in LUTs. Lets now proceed to the implemented versions. Obviously, the 75%
utilization of DSP blocks is a constraint for different implementations, an option which
existed in previous versions of the HW. So, the HW optimal implementation alternatives are
an 1-Lite and 1-Stream where only an instance of the Classify IP is employed.

FF LUT Memory LUT BRAM DSP48 BUFG

Lite Util. (%) 4 28 1 23 76 3

Stream Util. (%) 7 30 1 24 76 3

Table 6.15: Resource Utilization for HW Optimal Lite ZedBoard Implementation

6.4.1 Optimal AXI4 Slave Lite Version

The AXI4 Slave Lite system implementations are discussed extensively in the previous
paragraphs. In this version we employ a single Classify IP and implement the system
architecture of Figure 6.1. As we may notice in Table 6.15 there is an incredible decrease in
total and per beat computation time. On the other hand, the 25 MHz clock that is used has
increased total and per beat communication time. In fact, communication time presents an
increase of 145% while computation time presents a decrease of 98.7%. Even with an
increase in communication time, this particular implementation offers a total latency gain
of 98.4%.

116

HW Original 1-Lite HW Optimal Lite

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.000011064301 0.0000521259

Total 0.2352798 211.6311248 0.5785634 2.7257132

Table 6.15: Time Measurements for HW Original 1-Lite and Optimal Lite Version

6.4.2 Optimal AXI4 Stream Version

We now proceed to the final implementation of the Support Vector Machine classifier. This
includes an AXI4 Stream implementation of the HW Optimal version of the code. An
instance of the Classify IP is accompanied by an instance of the AXI DMA IP core. As we
mentioned before, in the Lite implementation of Optimal HW, communication time is a
principal component of total latency compared to former implementations. The HW
Optimal Stream version not only copes with this issue but also slightly reduces computation
time due the differences in the employed interfaces, as mentioned in paragraph 6.2.5.

HW Original 1-Lite HW Optimal Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.00000449943 0.004047181 0.000000808647 0.0000502549

Total 0.2352798 211.6311248 0.042285 2.627881

Table 6.16: Time Measurements for HW Original 1-Lite and Optimal Stream Version

Figure 6.18: Bandwidth for HW Optimal Stream Version

1 2 4 8 16 32 64 128 256 512 1024
0

10
20
30
40
50
60
70
80
90

HW Optimal Stream Version

Bandwidth

Beats per Transfer

B
a

n
d

w
id

th
 (

M
B

/s
)

117

6.4.3 Comparison of HW Optimal Implementations

In this paragraph a comparison and evaluation of HW Optimal versions is made. We notice
that both Lite and Stream versions offer an extremely high latency gain compared to the HW
Original version, reaching a value of almost 99%. The utilization of the device is low in
general except for DSP blocks where a percentage of 75% is reached. Another instance of
the Classify IP cannot be added to the system architecture, thus, leading to solely single-
accelerator solutions. This translates to the fact that two heart beats cannot be processed at
the same time in contrary to former 2-Lite, 4-Lite and 2-Stream implementations. However
the computation time per beat is extremely low making it possible for a large number of
beats be processed in a unit of time. For a real system this would translate to many
processes being able to connect to the implemented system and send beats for classification
with the accelerator being a critical part of the system which get locked during a
computation and then unlocked and assigned to a different, thus implementing a resource
sharing between different users.

HW Optimal Lite HW Optimal Stream

Communication
Time (s)

Computation
Time (s)

Communication
Time (s)

Computation
Time (s)

Per beat 0.000011064301 0.0000521259 0.000000808647 0.0000502549

Total 0.5785634 2.7257132 0.042285 2.627881

Table 6.17: Time Measurements for HW Optimal Versions

Figure 6.19: Performance and Gain for different HW Optimal Versions

HW Original 1-Lite HW Optimal Lite HW Optimal Stream
0

20

40

60

80

100

120

HW Optimal Versions

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementation

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

118

Figure 6.20: Performance and Gain of HW Optimal Stream vs. Optimal Lite version

Concerning the bandwidth of the HW Optimal implementations, an observation of loss of
bandwidth was made in the Lite version, which is definitely due to the clock frequency of 25
MHz. An additional reason might be the use of ARRAY_RESHAPE directive for the input test
vector. The directive technically breaks the input test vector in 18 parts, as many as the
input values. This is a strategy which reduces latency because not the whole test vector
must be loaded for the execution of a computation which needs only one of the values.
However, the test vector is not necessarily stored in successive memory addresses and this
might introduce an increment in communication time when copying the input values to the
device memory. Given the above facts, the Lite implementation offered us a bandwidth of
0.4 times the HW Original 1-Lite bandwidth. Meanwhile, the Stream version increased the
previous value to 5.6 times the original bandwidth.

6.5 Overall Comparison of HW Implementations

In this paragraph an overall comparison of all HW implementations is made. We present
diagrams concerning latency gains of different versions, bandwidth gain and throughput.
Moreover, a comparison between the impact of communication times in different
implementations is made. To begin with, in Figure 6.20 a comparison of utilization and
latency gain between all HW implementations is shown.

The HW Original Versions clearly offer the lowest possible utilization, at least when we
refer to the 1-Stream and 1-Lite versions and are accompanied by high latency. When we
proceeded to 2-Lite and 2-Stream implementations we acquired latency gains of over 50%
compared to 1-Lite and 1-Stream versions and the utilization of the device was doubled.
This was an expected outcome and no irregularities occurred. Then, the 4-Lite version was

Optimal Lite Optimal Stream
0

10

20

30

40

50

60

70

80

HW Optimal Versions

Stream Vs. Lite

Latency Gain

BRAM_18K

DSP48E

FF

LUT

Implementation

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

119

implemented which lead to a 100% utilization of BRAMs and also high utilizations of the
rest available components and resources. Theoretically, this implementation should have
offered as a 75% latency gain, however this was not the fact. A latency gain of 60% occurred
which was irregular but seems valid if we take the scheduling of the Linux operating system
into account. The device disposes a dual-core processing system and scheduling issues
occurred, thus leading to a low latency gain when compared to the HW Original 2-Lite
version. A 4-Stream implementation was impossible as it required slightly more than the
available BRAM blocks.

After the HW Original implementations, an optimized accelerated, yet not optimal, version
of the classifier was employed. The utilization of the device obtained remained pretty low
with a very satisfactory latency gain which reached 80% for the Lite and 1-Stream versions
and 90% for 2-Stream version. The low utilization of all components combined with the
high latency gains were compensatory. The only issue that occurred emerged during the
synthesis phase of 2-Lite version in Vivado Design Suite where an error explaining the
scarcity of RAMB blocks made its appearance, even though the respective 2-Stream version
was successfully synthesized and implemented. We proceeded without implementing the 2-
Lite version and recorded the error that occurred.

The HW Optimal versions clearly offer the highest latency gains while utilizing the 75% of
DSP blocks. The utilization of the rest available components are definitely much lower. From
the aspect of latency gain the two implementations are almost identical, however, if a
comparison between them is made we will notice that the total computation times differ as
much as 0.63 seconds or in terms of latency, the Stream version offers a 19% gain when
compared to the Optimal Lite one, a result which emerges from the incredibly high gain in
computation time.

Figure 6.21: Performance and Gain for different HW versions

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

20

40

60

80

100

120

Comparison of HW Versions

Latency Gain BRAM_18K DSP48E FF LUT

Implementation

P
e

rf
o

rm
a

n
ce

 a
n

d
 P

e
rc

e
n

ta
g

e
 %

120

After latency gains, an evaluation of the achieved bandwidth of each implementation will be
made but this time we are going to compare both bandwidth and throughput of our
implementations. It is a fact that the achieved values of bandwidth were quite satisfactory
and if the achieved throughput was even a little close to them we would be taking about an
extremely fast system as a whole. However this is not the case as we will notice in the
following diagrams which visualize the huge gap between bandwidth and throughput.

Figure 6.22: Bandwidth for different HW versions

Figure 6.23: Throughput for different HW Versions

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Comparison of HW Versions

Throughput

Implementation

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0
50

100
150
200
250
300
350
400
450
500

Comparison of HW Versions

Bandwidth

Implementation

B
a

n
d

w
id

th
 (

M
B

/s
)

121

Figure 6.24: Bandwidth and Throughput for different HW Implementations

An additional comment on the impact of communication time in total execution time should
be made. In most versions of the implemented SVM classifier the communication is an
imperceptible component. The only version in which communication time plays an
important role is the HW Optimal Lite version. For reference purposes two pie charts are
presented to show the average and worst version from the aspect of communication.

Figure 6.25: Communication and Computation Times for HW Original 1-Lite Version

HW Original 1-Lite Version

Percentages of Communication and Computation Times

Communication Time

Computation Time

Orig-1-Lite
Orig-2-Lite

Orig-4-Lite
Orig-1-Stream

Orig-2-Stream
Acc-Lite

Acc-1-Stream
Acc-2-Stream

Opt-Lite
Opt-Stream

0

100

200

300

400

500

Comparison of HW Versions

Bandwidth & Throughput

BW Throughput

BW/Channel (Specifications)

Implementation

B
a

n
d

w
id

th
 (

M
B

/s
)

122

Figure 6.26: Communication and Computation Times for HW Optimal Lite Version

As one may notice, the impact of communication time in the average case is close to zero
and its percentage in the pie chart is barely visible. On the other hand, in the HW Optimal
Lite implementation communication time plays a more dominant role. Hence, the
improvement through the employment of an AXI4 Stream version is more visible that in
previous implementations.

At this point we have completed the exploration and evaluation of different Support Vector
Machine classifiers. Three different versions of the Pareto design space were employed and
tested. We proceeded to various different implementations using the previously mentioned
versions. AXI4 Slave Lite and AXI4 Stream interfaces were used for the communication,
control and data transfers between the PS and PL parts of the device. Additionally, versions
of system architectures with more than one classifiers were implemented leading to higher
bandwidth and throughput values. A conclusion of this exploration was that better
communication times can be achieved by adding AXI4 Stream interfaces to custom
accelerators and employing AXI DMA blocks for data transfers. Finally, talking about
numbers, the latency gain of our final implementations was up to 99% and the achieved
bandwidth reached values of as much as 445 MB/s.

HW Optimal Lite Version

Percentage of Communication and Computation Times

Communication Time

Computation Time

123

Chapter 7

Conclusion

7.1 Summary

At this point the work for our diploma thesis has reached the end. Many things have been
studied and implemented and so this text consisted of a lot of diagrams and results. The
field of this thesis was the integration of custom hardware accelerators generated through
High-Level Synthesis on an FPGA-based SoC device which is Zynq-7000 AP SoC. The
algorithms that were studied and implemented are of vital significance for their
corresponding fields as corner detection is the basis of most algorithms in Computer Vision
and, on the other side, ECG is considered to be one of the most important biological signals.

For the integration of those custom hardware accelerators the widely used AMBA AXI
protocol was utilized. Specifically, the its simplest form, AXI4-Lite and a more complex form,
AXI4-Stream. The usage of AXI4-Lite was based on the Linux UIO driver which is usually
built in distributions generated through Petalinux Tools. On the other, the AXI4-Stream
protocol required the theoretical and technical background of Direct Memory Access, a
method of accessing memory that does not utilizes the CPU and assists the fast data
transfers that are needed.

After choosing the interfaces for our custom accelerators we proceeded to the system
generations through Vivado Design Suite. Various AXI components were introduced, some
of which were automatically interconnected by the tool while others needed our assistance.
The most important of those components were the AXI Interconnect, which is used on every
single design for interconnection with the PS-side of the ZedBoard, and the AXI DMA block
which was utilized for fast transfers to AXI4-Stream-based accelerators.

The two distinct accelerators that we examined offered us different design alternatives. For
starters, the Harris_FindCorners IP offered us design alternatives limited to the choice of
AXI4-Lite or AXI4-Stream protocols because its utilization of resources accompanied with
the fact that is was originally developed for another FPGA device restricted our options for
diversity. On the other hand, the simplicity of the Classify IP, the low resource demands,
combined with the fact that it was originally designed for the same target device offered a
wide range of design alternatives, not limited to solely a choice of interfaces but also

124

expanded to the addition of multiple IPs controlled by different processors in both AXI4-
Lite and AXI4-Stream Versions.

The tools that we used were in some cases a bit restrictive as the design options that were
offered were usually not implemented. For instance, the AXI4 DMA block is supposed to
support Burst Lengths of up to 256, however the AXI3-compliance restricts it to only 16,
and setting it to higher values technically makes no difference.

Through our various implementations on both hardware accelerators we concluded that an
addition of multiple IPs increases bandwidth and throughput only to a point because the
PS-side of the ZedBoard includes a processor with only two cores, thus scheduling issues
occurred slowing down the execution of four processes with no scaling in performance.
AXI4-Stream has been evaluated as the fastest of the protocols that where used as the AXI
DMA block can make transfers with speeds up to 300 MB/s per DMA channel. AXI4-Stream
proved the best also in case of computation latency gains as its lack of block-level protocols
lead to a total gain of as much as 20% compared to the equivalent AXI4-Lite solution for a
default hardware accelerator. Simultaneously, a bandwidth of 444 MB/s was achieved.

7.2 Future Work

Devices combining a Processing System and Programmable Logic gain an increased interest
as the next generation of FPGA-based devices. The innate nature of FPGA is fast
development of system designs and reconfigurability. FPGAs have reached a point where a
lot of research have proven them as top choices when it comes to implementing HW
accelerators. On the other hand, the embedded processors that are added to Programmable
Logic, due to their scarcity of time in the device might introduce scheduling issues as
proven by our implementations. A nice idea for future work might be the study of the PS not
in general but as part of an FPGA device for coping with issues concerning, for instance,
scheduling.

Another idea would be the study and development of more possible design alternatives for
a hardware accelerator when it is integrated in a SoC. Design tools offer many opportunities
for development but the human factor has always proven beneficial. Even though, most of
the design work is made by the tool, useful hints and directives from humans could be
integrated to enhance automated design, not only to the extent of HLS but even more.

Finally another idea would be the exploration of the parameters of the AXI DMA blocks that
are offered in Vivado Design Suite of other tools. Many of the parameters can be altered,
such as burst size, but many of the theoretical utilities have no impact whatsoever due to
compliance and other issues. If greater burst sizes could be supported along with wider
DMA channels the AXI DMA block would be the must choice when it came to data transfers.

125

References

[1] “Programmable Logic Array”, https://en.wikipedia.org/wiki/Programmable_logic_array

[2] “Programmable Array Logic” https://en.wikipedia.org/wiki/Programmable_Array_Logic

[3] “FPGA”, https://en.wikipedia.org/wiki/Field-programmable_gate_array

[4] Karen Parnell, Roger Bryner, “Comparing and Contrasting FPGA and Microprocessor
System Design and Development”, White Paper, Xilinx, 2004

[5] Dionysios Diamantopoulos, Ioannis Galanis, Kostas Siozios, George Economakos and
Dimitrios Soudris, “A Framework for Rapid System-Level Synthesis Targeting to
Reconfigurable Platforms: A Computer Vision Study”, Workshop in Reconfigurable
Computing, Amsterdam, 2015

[6] Philip H.W. Leong, “Recent Trends in FPGA Architectures and Applications”, 4th IEEE
International Symposium on Electronic Design, Test & Applications, February 2008

[7] “Zynq-7000 AP SoC”, http://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html

[8] “Ultrascale Architecture”, http://www.xilinx.com/products/technology/ultrascale.html

[9] Κ.Ζ. Πεκμεστζή, “ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ VLSI: ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ”, Αθήνα, 2014

[10] Χαράλαμπος Ν. Σιδηρόπουλος, “Development of a Design Framework for Power/Energy
consumption estimation in heterogeneous FPGA architectures”, Diploma Thesis, National
Technical University of Athens, July 2010

[11] Philippe Coussy, Michael Meredith, Daniel D. Gajski, Andres Takach, “An Introduction to
High-Level Synthesis”, IEEE Design & Test of Computers, July/August 2009

[12] “Computer Vision”, https://en.wikipedia.org/wiki/Computer_vision

[13] Ιωάννης Π. Γαλάνης, “High-Level Synthesis του αλγορίθμου Όρασης Υπολογιστών Harris
σε FPGA”, Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2015

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://en.wikipedia.org/wiki/Programmable_logic_array

126

[14] “Feature Detection”, https://en.wikipedia.org/wiki/Feature_detection_
%28computer_vision%29

[15] John F. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, VOL. PAMI-8, NO. 6, November 1986

[16] Chris Harris and Mike Stephens, “A COMBINED CORNER AND EDGE DETECTOR”, Plessey
Research Roke Manor, United Kingdom, The Plessey Company plc. 1988

[17] Vasileios Tsoutsouras, Konstantina Koliogeorgi, Sotirios Xydis, Dimitrios Soudris, “HLS
code transformation strategies and directives exploration for FPGA accelerated ECG analysis”,
Workshop in Reconfigurable Computing, Prague, 2016

[18] Κωνσταντίνα Ι. Κολιογεώργη, “Optimizing ECG Signal Analysis by building FPGA-based
accelerators using High-Level Synthesis”, Διπλωματική Εργασία, Εθνικό Μετσόβιο
Πολυτεχνείο, Αθήνα, Ιανουάριος 2016

[19] “Cardiac Cycle”, https://en.wikipedia.org/wiki/Cardiac_cycle

[20] A. Szczepanski and K. Saeed, "A mobile device system for early warning of ecg
anomalies", Sensors, vol. 14, no. 6, pp. 11031-11044, 2014. xxixxxix, 5

[21] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., "A practical guide to support vector classication",
2003.

[22] “AMBA Specifications”, http://www.arm.com/products/system-ip/amba-
specifications.php

[23] “AMBA”, https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

[24] ARM Ltd. , “AMBA AXI and ACE Protocol Specification: AXI3, AXI4, and AXI4-Lite, ACE and
ACE-Lite”, Copyright © 2003, 2004, 2010, 2011, 2013 ARM. All rights reserved.

[25] ARM Ltd. , “AMBA 4 AXI4-Stream Protocol: Specification, Version: 1.0”, Copyright © 2010
ARM. All rights reserved.

[26] Hans J. Koch, “Userspace I/O drivers in a real-time context”, Linutronix GmbH,
Uhldingen, Germany

[27] A. F. Harvey and Data Acquisition Staff, “DMA Fundamentals on Various PC Platforms”,
National Instruments, Application Note 011

[28] F. Digilent's ZedBoard Zynq, “Dev. Board documentation”

[29] “ZedBoard hardware user's guide”,
http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf

https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)

	Table Of Contents
	Chapter 1: Introduction
	1.1 Introduction to FPGA
	1.1.1 History
	1.1.2 FPGA Attributes and Advantages
	1.1.3 State of the Art

	1.2 FPGA Fabric
	1.2.1 Look Up Table
	1.2.2 Hardwired Blocks
	1.2.3 Interconnection
	1.2.4 Programming Technologies

	1.3 CAD Tools and FPGA programming
	1.4 High-Level Synthesis
	1.5 Aims, Objectives and Organization of Chapters

	Chapter 2: Theoretical Background
	2.1 The Harris & Stephens Corner Detector
	2.1.1 Introduction to Computer Vision
	2.1.2 Feature Detection
	2.1.3 The Edge Tracking Problem
	2.1.4 The Moravec Corner Detector
	2.1.5 The Harris & Stephens/Plessey/Shi-Tomasi Corner Detection Algorithm
	2.1.6 Related Work

	2.2 Support Vector Machine Classifier for Arrhythmia Detection
	2.2.1 Electrocardiogram Analysis Flow
	2.2.2 SVM Classifier
	2.2.3 Related Work

	Chapter 3: Technical Background
	3.1 The Advanced Microcontroller Bus Architecture (AMBA)
	3.2 The Advanced eXtensible Interface (AXI) Protocol
	3.2.1 The AXI4-Lite Interface
	3.2.2 The AXI-Stream Interface

	3.3 The Linux UIO Driver
	3.4 Direct Memory Access

	Chapter 4: Employed Work Flow for HW IP Integration on ZedBoard
	4.1 Zynq Evaluation and Development Board Specifications
	4.2 IP Generation with High-Level Synthesis
	4.2.1 Setting AXI4-Lite Interfaces
	4.2.2 Setting AXI4-Stream Interfaces

	4.3 System Generation
	4.3.1 System Design with AXI4-Lite Interfaces
	4.3.2 System Design with AXI4-Stream Interfaces

	4.4 Generation of Embedded Linux Application
	4.5 Userspace Application Development
	4.5.1 Development of AXI4-Lite Targeted Application
	4.5.2 Development of AXI4-Stream Targeted Application

	Chapter 5: Evaluation of Workflow on Harris & Stephens Corner Detector
	5.1 General Description of HW Implementations
	5.2 Code Transformations Targeting to a ZedBoard Implementation
	5.3 Implementation of AXI4-Lite Version
	5.4 Implementation of AXI4-Stream Version
	5.5 Overall Comparison of HW Implementations

	Chapter 6: Evaluation of Work Flow on SVM Classifier
	6.1 General Description of HW Implementations
	6.2 HW Original Version Implementations and Results
	6.2.1 Original AXI4 Slave Lite Version with 1 Classify IP
	6.2.2 Original AXI4 Slave Lite Version with 2 Classify IPs
	6.2.3 Original AXI4 Slave Lite Version with 4 Classify IPs
	6.2.4 Original AXI4 Stream Version with 1 Classify IP
	6.2.5 Original AXI4 Stream Version with 2 Classify IPs
	6.2.6 Comparison of HW Original Implementations

	6.3 HW Accelerated Version Implementations and Results
	6.3.1 Accelerated AXI4 Slave Lite Version
	6.3.2 Accelerated AXI4 Stream Version with 1 Classify IP
	6.3.3 Accelerated AXI4 Stream Version with 2 Classify IPs
	6.3.4 Comparison of HW Accelerated Versions

	6.4 HW Optimal Versions Implementations and Results
	6.4.1 Optimal AXI4 Slave Lite Version
	6.4.2 Optimal AXI4 Stream Version
	6.4.3 Comparison of HW Implementations

	6.5 Overall Comparison of HW Implementations

	Chapter 7: Conclusion
	7.1 Summary
	7.2 Future Work

