

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΛΙΜΕΝΙΚΩΝ ΕΡΓΩΝ

Πειραματική διερεύνηση συντελεστή ανάκλασης σε απορροφητικό κρηπιδότοιχο

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Καλογερής Διονύσης

Επιβλέπων: Κωνσταντίνος Μουτζούρης, Καθηγητής ΕΜΠ Συνεπιβλέπουσα: Θεοδώρα Γιαντσή, ΕΔΙΠ ΕΜΠ

Αθήνα, Οκτώβριος 2015

Πειραματική διερεύνηση συντελεστή ανάκλασης σε απορροφητικό κρηπιδότοιχο

Λέξεις-Κλειδιά: ανάκλαση θαλασσίων κυμάτων, συντελεστής ανάκλασης, απορροφητικός κρηπιδότοιχος

Experimental investigation of the reflection coefficient on an absorbent quay wall

Keywords: wave reflection, reflection coefficient, absorbent quay wall

Το περιεχόμενο της ανά χείρας διπλωματικής εργασίας αποτελεί προιόν της δικής μου πνευματικής προσπάθειας. Η ενσωμάτωση σε αυτή υλικού τρίτων, δημοσιευμένου ή μη, γίνεται με δόκιμη αναφορά στις πηγές, που δεν επιτρέπει ασάφειες ή παρερμηνείες.

Ευχαριστίες

Θα ήθελα πρωτίστως να ευχαριστήσω τον επιβλέποντα καθηγητή μου Κωνσταντίνο Μουτζούρη που μου έδωσε την ευκαιρία να εκπονήσω την παρούσα διπλωματική πειραματική εργασία. Επίσης ευχαριστώ ιδιαίτερα τη συνεπιβλέπουσα κυρία Θεοδώρα Γιαντσή, που χωρίς την πολύτιμη συνεισφορά της η εκπόνηση της εργασίας δεν θα ήταν εφικτή. Μέσω της εμπειρίας της και των γνώσεων της βοήθησε τα μέγιστα στην εξοικείωσή μου με το χώρο του Εργαστηρίου Λιμενικών Έργων και τον εξοπλισμό του.

Θα ήθελα τέλος να ευχαριστήσω τον αδερφό μου Γιάννη Καλογερή καθώς και την φίλη μου Ελευθερία Κραγιοπούλου για τις χρήσιμες συμβουλές τους κατά τη διάρκεια συγγραφής της παρούσας διπλωματικής εργασίας.

Περιεχόμενα

Περίληψη	σελ.3
Abstract	σελ.4
1. Εισαγωγή	σελ.5
2. Θεωρητικό Υπόβαθρο	σελ.6
2.1 Θαλάσσιοι Κυματισμοί	σελ.6
2.2 Φασματικοί κυματισμοί	σελ.7
2.3 Ανάκλαση Θαλασσίων Κυμάτων	σελ.9
2.3.1. Μέθοδοι υπολογισμού μέσου συντελεστή ανάκλασης	σελ.11
2.3.2. Μέθοδοι προσομοίωσης μέσου συντελεστή ανάκλασης με εμπειρικούς τύπους	σελ.12
2.3.3. Ενεργειακή Θεώρηση	σελ.12
2.4 Συμβολισμοί	σελ.13
3.Πειραματικές Εγκαταστάσεις Ε.Λ.Ε.	σελ.14
3.1 Δεξαμενή Δοκιμών	σελ.14
3.2 Σύστημα παραγωγής κυμάτων	σελ.15
3.3 Μετρητές κύματος	σελ.15
3.4 Συλλογή Δεδομένων κατά την διεξαγωγή των μετρήσεων	σελ.16
4.Πειραματικές Διατάξεις	σελ.17
4.1 Κατασκευαστικά στοιγεία του Προσομοιώματος	σελ.17
4.2 Πειραματικές Διατάξεις	σελ.18
5. Αποτελέσματα Μετρήσεων	σελ.30
5.1 Αποτελέσματα Μετρήσεων Διάταξης Δ1	σελ.30
5.2 Αποτελέσματα Μετρήσεων Διάταξης Δ2	σελ.34
5.3 Αποτελέσματα Μετρήσεων Διάταξης Δ3	σελ.37
5.4 Αποτελέσματα Μετρήσεων Διάταξης Δ4	σελ.41
5.5 Αποτελέσματα Μέσου Συντελεστή Ανάκλασης	σελ.45
6. Επεξεργασία Μετρήσεων και Διαγράμματα Συσχέτισης	σελ.52
6.1 Εισαγωγή	σελ.52
6.2 Μέσος Συντελεστής Ανάκλασης ως προς το λόγο του ύψους κύματος προς το	
μήκος κύματος	σελ.53
6.3 Μέσος Συντελεστής Ανάκλασης ως προς το λόγο του ελεύθερου περιθωρίου προς	
το ύψος κύματος	σελ.55
6.4 Μέσος Συντελεστής Ανάκλασης ως προς το λόγο του βάθους του νερού στον	
πόδα της κατασκευής προς το μήκος κύματος	σελ.57

6.5 Μέσος Συντελεστής Ανάκλασης ως προς το λόγο του πλάτους του	
αεροδιαδρόμου προς το μήκος κύματος	σελ.60
6.6 Μέσος Συντελεστής Ανάκλασης ως προς το μέγεθος (Rc*d)/(Hs*Lo)	σελ.62
6.7 Μέσος Συντελεστής Ανάκλασης ως προς το συντελεστή θραύσης	σελ.65
6.8 Μέσος Συντελεστής Ανάκλασης ως προς το εύρος ε	σελ.67

7. Συμπεράσματα	. σελ.69
Βιβλιογραφικές Αναφορές	. σελ.70

Περίληψη

Στην εργασία αυτή παρουσιάζεται η πειραματική διερεύνηση σε φυσικό προσομοίωμα του φαινομένου της ανάκλασης των θαλάσσιων κυματισμών σε κατακόρυφο τοίχο επιστροφής και σε πρανή από φυσικούς ογκόλιθους. Για τη διενέργεια των πειραμάτων χρησιμοποιήθηκε το φυσικό προσομοίωμα απορροφητικού κρηπιδότοιχου σε κλίμακα 1:20. Όλα τα πειράματα έλαβαν χώρα στο Εργαστήριο Λιμενικών Έργων του Εθνικού Μετσόβιου Πολυτεχνείου.

Αντικείμενο της παρούσας διπλωματικής είναι να διερευνηθεί η ανάκλαση των κυματισμών σε πέντε διαφορετικές διατομές του μετώπου του προσομοιώματος, καθώς και σε διαφορετικές στάθμες ύδατος και εν συνέχεια η σύγκριση των αποτελεσμάτων. Παράλληλα διερευνήθηκε η σχέση του μέσου συντελεστή ανάκλασης με άλλες παραμέτρους καθώς και να συγκριθούν οι μετρήσεις που θα προκύψουν με αντίστοιχες από τη διεθνή βιβλιογραφία.

Αρχικά στην εργασία παρατίθενται θεωρητικά στοιχεία σε σχέση με τους θαλάσσιους κυματισμούς όπως και αναλυτικά στοιχεία για τις πειραματικές διατάξεις και την πειραματική διαδικασία. Ύστερα παρουσιάζονται τα αποτελέσματα των μετρήσεων υπό μορφή πινάκων και γραφημάτων. Ακολουθεί η επεξεργασία τους και η κατάρτιση διαγραμμάτων που αφορούν το συντελεστή ανάκλασης και την συσχέτιση τους με άλλες παραμέτρους. Στο τέλος αναφέρονται τα γενικά συμπεράσματα αυτής της διπλωματικής.

Abstract

This diploma thesis presents the experimental investigation on a physical model of the phenomenon of sea waves reflection on a vertical wall with wave return and on slopes of natural stone blocks. For this reason a physical model of an absorbent quay wall with a 1:20 scale was used. All the above mentioned experiments were performed at the Harbor Works Laboratory of National Technical University of Athens.

The aim of this project is to investigate of the sea wave reflection of five different sections and various water levels at the front of the quay wall and compare the results. The relationship between the reflection coefficient with other parameters is also investigated and finally the results obtained from these measurements are compared with those in the relevant international literature.

Firstly some theoretical data concerning the sea waves are presented, as well as the details about the experimental procedure and the facilities where the experiments were held. After the presentation of the results of the measurements through tables and graphs, the analysis concerning the correlation between the reflection coefficient and its interaction with other parameters through diagrams is followed. Finally, the general conclusions of this diploma thesis are presented.

1. Εισαγωγή

Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η διερεύνηση σε φυσικό προσομοίωμα με πειραματικές μετρήσεις του φαινομένου της ανάκλασης σε κατακόρυφο τοίχο με θάλαμο εκτόνωσης (κενό ή με πλήρωση φυσικών ογκολίθων). Οι μετρήσεις πραγματοποιήθηκαν για 3 διαφορετικές στάθμες ύδατος. Κατά τα παραπάνω υπολογίσθηκε ο μέσος συντελεστής ανάκλασης και στη συνέχεια συγκρίθηκε με παραμέτρους της κατασκευής και των προσπίπτοντων κυματικών διαταραχών. Δευτερευόντως, να γίνει σύγκριση των μετρήσεων που θα προκύψουν με αντίστοιχες από τη διεθνή βιβλιογραφία. Δεδομένου ότι το συγκεκριμένο φαινόμενο είναι σύνθετο και πολύπλοκο, η εργαστηριακή έρευνα θεωρείται διεθνώς αξιόπιστη μέθοδος εκτίμησης του.

Όλες οι πειραματικές μετρήσεις έλαβαν χώρα στη Δεξαμενή Δοκιμών 1 του Εργαστήριο Λιμενικών Έργων του Εθνικού Μετσόβιου Πολυτεχνείου.

Στο 2ο κεφάλαιο γίνεται αναφορά των θεωρητικών στοιχείων που αφορούν τους θαλάσσιους κυματισμούς καθώς και το φαινόμενο της ανάκλασης.

Στο 3ο κεφάλαιο περιγράφονται οι πειραματικές εγκαταστάσεις του Εργαστηρίου Λιμενικών Έργων που χρησιμοποιήθηκαν με αναφορά στην δεξαμενή, στο σύστημα παραγωγής κυμάτων και στα όργανα μέτρησης. Επίσης παρουσιάζεται η μέθοδος συλλογής και επεξεργασίας των μετρήσεων και παρατίθενται τα σχέδια των διατομών, οι κατόψεις και σχετικό φωτογραφικό υλικό.

Στο 4ο κεφάλαιο περιγράφεται το φυσικό προσομοίωμα το οποίο κατασκευάστηκε για την εκτέλεση των πειραμάτων. Γίνεται αναφορά στις κατασκευαστικές λεπτομέρειες, στις τυπικές διατομές του μετώπου, στη διαδικασία της ανάκλασης όπως και στα κύματα που χρησιμοποιήθηκαν κατά τη διάρκεια των πειραμάτων.

Στο κεφάλαιο 5 παρουσιάζονται οι συγκεντρωτικοί πίνακες και τα διαγράμματα με τα χαρακτηριστικά των κυμάτων για όλα τα φάσματα που ελέγχθηκαν ανά διατομή και ελεύθερο περιθώριο. Αναγράφεται επίσης ο κωδικός της κάθε μέτρησης που πραγματοποιήθηκε.

Στο κεφάλαιο 6 γίνεται επεξεργασία των αποτελεσμάτων που προέκυψαν απ' τις μετρήσεις. Παρουσιάζονται συγκριτικές γραφικές παραστάσεις για το συντελεστή ανάκλασης με παραμέτρους όπως το σχετικό βάθος και κάποια επιπλέον αδιάστατα μεγέθη για κάθε διατομή και στάθμη ύδατος που ελέγχθηκε, στα οποία γίνετε χρήση και κάποιων σχέσεων της διεθνής βιβλιογραφίας που ταιριάζουν στο προφίλ της συγκεκριμένης εργασίας.

Τέλος, στο κεφάλαιο 7 αναγράφονται τα συμπεράσματα στα οποία κατέληξε αυτή η διπλωματική εργασία.

2. Θεωρητικό Υπόβαθρο

2.1 Θαλάσσιοι Κυματισμοί

Η ταυτόχρονη δράση δυνάμεων απομακρύνσεως των υδάτινων σωματιδίων της θαλάσσιας μάζας από τη θέση ηρεμίας τους (γενεσιουργές δυνάμεις) και δυνάμεων επαναφοράς των σωματιδίων στις αρχικές θέσεις τους (επαναφέρουσες δυνάμεις), σε συνδυασμό με τη μεγάλη κινητικότητα των σωματιδίων, προκαλεί κάτω από ορισμένες συνθήκες τη δημιουργία κινήσεων ταλαντώσεως στα σωματίδια. Η συνισταμένη διαταραχή της θαλάσσιας μάζας από τις ταλαντώσεις των σωματιδίων οδηγεί στο θαλάσσιο κυματισμό. Τα κυριότερα γενεσιουργά αίτια των ταλαντώσεων είναι ο άνεμος οι σεισμικές δονήσεις, οι γρήγορες μεταβολές της ατμοσφαιρικής πιέσεως, η έλξη της σελήνης κλπ.

Στην ανάλυση των κυμάτων στην περιοχή του χρόνου προσδιορίζονται οι χρονικές μεταβολές όπως είναι το ύψος και το μήκος ή η περίοδος του κύματος, με τη βασική παραδοχή, ότι το ένα ορισμένο κύμα είναι ανεξάρτητο από οποιοδήποτε άλλο. Περίοδος κύματος Τ είναι ο χρόνος μιας πλήρους ταλαντώσεως των σωματιδίων. Ορίζεται και σαν το χρονικό διάστημα μεταξύ της διελεύσεως δύο διαδοχικών κορυφών κύματος από ένα ορισμένο σημείο. Ύψος κύματος Η είναι η κατακόρυφη απόσταση μεταξύ της κορυφής και της κοιλιάς του κύματος. Ισούται με το διπλάσιο του εύρους ταλαντώσεως των σωματιδίων.

Η πιο συνήθης διάκριση των κυματισμών γίνεται βάση την περίοδο των ταλαντώσεων των σωματιδίων. Για περιόδους μεγαλύτερες των 5 λεπτών οι κυματισμοί ονομάζονται μεγάλης περιόδου. Οι κυματισμοί μικρότερων περιόδων και ιδιαίτερα περιόδων Τ<30sec ονομάζονται κυματισμοί μικρής περιόδου. Στους κυματισμούς μικρής περιόδου η γενεσιουργός δύναμη τις περισσότερες φορές προέρχεται από τον άνεμο και η επαναφέρουσα δύναμη από την βαρύτητα.

Οι πιο κοινοί κυματισμοί στη φύση είναι οι κυματισμοί βαρύτητας. Η δύναμη από την πνοή του ανέμου απομακρύνει τα υγρά σωματίδια από την θέση ισορροπίας. Η φορά της κινήσεως αντιστρέφεται από την επενέργεια της δυνάμεως βαρύτητας στα σωματίδια, οπότε τείνουν να επανέλθουν στην αρχική τους θέση. Οι αδρανειακές δυνάμεις τα επαναπομακρύνουν και ούτω καθεξής. Στα θαλάσσια τεχνικά έργα ο σημαντικότερος παράγοντας φορτίσεως είναι το μηχανικό ενεργειακό τους περιεχόμενό.

Υπάρχουν δύο μεθοδολογίες βάση των οποίων εξετάζονται οι κυματισμοί: η πρώτη ονομάζεται μαθηματική θεωρία των κυματισμών και θεωρεί, ότι η διαταραγμένη επιφάνεια αποτελείται από μια σειρά μονοχρωματικών ή μια σειρά κυμάτων με συχνότητες πολλαπλάσιες της βασικής. Με τις παραδοχές και της χρήσης των θεωριών της υδραυλικής καταλήγει σε μαθηματικές εκφράσεις εκφράσεις για το πεδίο ροής.

Η δεύτερη είναι η θεωρία είναι των πραγματικών κυματισμών και η μεθοδολογία εξετάσεως βασίζεται στη φασματική περιγραφή τους. Θεωρεί ότι η θαλάσσια επιφάνεια συντίθεται από απειροσειρά κυμάτων, με χαρακτηριστικά εμφανιζόμενα κατά στοχαστικό τρόπο.

2.2 Φασματικοί κυματισμοί

Η ανώμαλη κίνηση της θαλάσσιας επιφάνειας προσδιορίζεται σαν μια επαλληλία αρμονικών ταλαντώσεων με διάφορες συχνότητες. Στη φασματική ανάλυση περιγράφεται η θαλάσσια διαταραχή σε όλο το φάσμα συχνοτήτων και ενεργειών. Στη θεωρία των φασματικών κυματισμών επιδιώκεται η αντιπροσώπευση του όλου φάσματος κυμάτων από ένα αντιπροσωπευτικό μονοχρωματικό κύμα, συνήθως το χαρακτηριστικό κύμα του φάσματος.

Στην ανάλυση των κυμάτων στην περιοχή του χρόνου προσδιορίζονται οι χρονικές μεταβολές όπως είναι το ύψος και το μήκος ή η περίοδος του κύματος, με τη βασική παραδοχή, ότι το ένα ορισμένο κύμα είναι ανεξάρτητο από οποιοδήποτε άλλο. Περίοδος κύματος Τ είναι ο χρόνος μιας πλήρους ταλαντώσεως των σωματιδίων. Ορίζεται και σαν το χρονικό διάστημα μεταξύ της διελεύσεως δύο διαδοχικών κορυφών κύματος από ένα ορισμένο σημείο. Ύψος κύματος Η είναι η κατακόρυφη απόσταση μεταξύ της κορυφής και της κοιλιάς του κύματος. Ισούται με το διπλάσιο του εύρους ταλαντώσεως των σωματιδίων.

Στη φασματική περιγραφή του πεδίου των κυματισμών στόχος είναι συνήθως η εύρεση ενός μονοχρωματικού κύματος, του λεγόμενου χαρακτηριστικού κύματος φάσματος, που αντιπροσωπεύει κατά το δυνατόν καλύτερα όλο το φάσμα. Μέσω μαθηματικών θεωριών προσδιορίζονται τα χαρακτηριστικά του πεδίου ροής.

Μέχρι σήμερα έχουν γίνει πολλές προσπάθειες για τον προσδιορισμό των συναρτήσεων της ενέργειας S(f) μέσω μετρήσεων σε πολλές περιοχές της υδρογείου. Οι πιο χαρακτηριστικές έχουν την μορφή:

$$S(f) = C_1 f^{-1} \exp(-C_2 f^{-n})$$

Οι Pierson-Moskowitz, βασιζόμενοι σε μετρήσεις που έγιναν στον Ατλαντικό Ωκεανό πρότειναν το ομώνυμο φάσμα-υπόδειγμα. Το συγκεκριμένο φάσμα-υπόδειγμα αφορά πλήρως αναπτυγμένη θαλάσσια διαταραχή.

Η ανάλυση μιας καταγραφής αρχίζει με τον προσδιορισμό των περιεχομένων κυμάτων. Ο προσδιορισμός γίνεται είτε με τη "μέθοδο τομής της μέσης στάθμης προς τα πάνω" ή απλούστερα "μέθοδος ανοδικού μηδενισμού" (zero up-crossing method) είτε με τη "μέθοδο τομής της μέσης στάθμης προς τα κάτω" ή απλούστερα "μέθοδος καθοδικού μηδενισμού" (zero down-crossing method). Για την παρούσα διπλωματική παρήχθησαν φασματικά κύματα 3D με τη χρήση του φάσματος JONSWAP.

Το φάσμα JONSWAP προτάθηκε από τον Hasselmann το 1973, με βάση τα δεδομένα από το Joint North Sea Wave Program (JONSWAP) του 1969 στα δυτικά των ακτών της Δανίας. Πρόκειται για μια επέκταση του φάσματος Pierson-Moskowitz προς τις μερικά ανεπτυγμένες θαλάσσιες διαταραχές, που εισάγονται για μια νέα παράμετροσυνάρτηση του αναπτύγματος πελάγους X και της ταχύτητας U10. Η νέα παράμετρος παρέχει την δυνατότητα για στενότερα και πιο απότομα φάσματα, χαρακτηριστικά αύξουσας θαλάσσιας διαταραχής.

Η περίοδος Tmax του μέγιστου φάσματος δίνεται από τις σχέσεις :

Pierson-Moskowitz: $T_{max} = 0.785 U_{10}$, όπου Τ σε sec και U10 σε m/sec

JONSWAP: $T_{max} = 0.605 X^{0.33} 0.785 U_{10}^{0.34}$, όπου X σε km

Στην ουσία αφού ανέλυσαν μετρήσεις που είχαν συλλεχθεί στη Βόρεια θάλασσα στο Project JONSWAP, βρήκαν ότι το φάσμα δεν είναι ποτέ εντελώς ανεπτυγμένο, σε αντίθεση με ότι είχε ως παραδοχή το προηγούμενο φάσμα-υπόδειγμα του Pierson-Moskowitz. Έτσι διατύπωσαν τη θεωρία ότι οι κυματισμοί αναπτύσσονται συνεχώς μέσω μη γραμμικών σχέσεων κύμα με κύμα για πολύ μεγάλα χρονικά διαστήματα και αποστάσεις. Συνοπτικά αυτό που έκαναν είναι πως το διαμόρφωσαν έτσι ώστε το φάσμα να ταιριάζει περισσότερο με τις μετρήσεις τους και να συναρτάται από το ανάπτυγμα πελάγους (fetch) και όχι μόνο από τη ταχύτητα του ανέμου (για άνεμο που φυσάει για μεγάλο χρονικό διάστημα). Το φάσμα JONSWAP είναι σήμερα το πιο διαδεδομένο και χρησιμοποιούμενο.

Ένα βασικό χαρακτηριστικό των φασματικών κυματισμών είναι πως δεν υπάρχει καμία εμφανής βραχυπρόθεσμη περιοδικότητα, δεδομένου ότι οι κινήσεις είναι τυχαίες και διαφέρουν συστηματικά από ημιτονοειδείς. Αυτό οφείλεται στο γεγονός ότι οι κινήσεις ενός σωματιδίου της ελεύθερης επιφάνειας προέρχονται από μια τυχαία διαδικασία. Η στοχαστικότητα συνεπάγεται ότι σπάνια μπορούν να ανευρεθούν δύο παρόμοιες κινήσεις σε συνάρτηση με το χρόνο. Βασική αιτία δημιουργίας τυχαίων διαδικασιών είναι οι συνεχείς μεταβολές των γενεσιουργών αιτιών. Στη περίπτωση των κινήσεων της ελεύθερης επιφάνειας της θάλασσας όπως προαναφέρθηκε τέτοια βασική αιτία είναι οι μεταβολές του πεδίου του ανέμου. (Κ.Ι.Μουτζούρης, Θαλάσσια Υδραυλική).

2.3 Ανάκλαση Θαλασσίων Κυμάτων

Οι θαλάσσιοι κυματισμοί ανακλώνται σε όλες τις παράκτιες κατασκευές. Σε κατακόρυφα μη πορώδη μέτωπα η ανάκλαση μπορεί να φτάσει το 100% της ενέργειας των προσπιπτόντων κυματισμών. Οι φυσικές κεκλιμένες ακτές συναντώνται ευρέως στη φύση συνεισφέροντας στην απορρόφηση της κυματικής ενέργειας. Λόγω του πορώδους τους και της μη ομοιόμορφης κλίσης, που τις χαρακτηρίζει, ανακλούν μικρότερο ποσοστό κυματικής ενέργειας από ισοδύναμες μη πορώδεις ακτές με ομοιόμορφη κλίση πυθμένα. Η ανάκλαση ποσοτικοποιείται βάσει του συντελεστή ανάκλασης, Cr, το πηλίκο του ύψους του ανακλώμενου κυματισμού, Hr, προς το ύψος του προσπίπτοντος κυματισμού, Hi στην περίπτωση μονοχρωματικών κυματισμών:

$$C_r = \frac{H_r}{H_i}$$

Αντίθετα, στην περίπτωση τυχαίων κυματισμών ο συντελεστής ανάκλασης, Cr, ορίζεται ως το πηλίκο του μέσου τετραγωνικού ύψους του ανακλώμενου κυματισμού, Hrms-r, προς το μέσο τετραγωνικό ύψος του προσπίπτοντος κυματισμού, Hrms-i.

Επειδή όμως τα παραγόμενα κύματα είναι σύνθετα (φασματικά), ο συντελεστής ανάκλασης διαφέρει ανάλογα με τη συχνότητα κάθε προσπίπτοντος κύματος. Ορίζεται ότι ο μέσος (bulk) συντελεστής ανάκλασης C_{rb} είναι ίσος με το μέσο όρο των συντελεστών ανάκλασης, για όλες τις συχνότητες που δεν έχουν μηδενικό συντελεστή ανάκλασης. Ο συντελεστής ανάκλασης για κάθε συχνότητα είναι ίσος με το λόγο των ανακλώμενων προς των προσπιπτόντων ενεργειών του κυματισμού ανά συχνότητα. Για το σχεδιασμό ενός λιμενικού έργου ο μέσος συντελεστής ανάκλασης C_{rb} θεωρείται ότι χαρακτηρίζει τη κατασκευή για τον κάθε κυματισμό.

Ωστόσο, έτσι χάνονται πολλές πληροφορίες που έχουν σχέση με το πόσο ανακλάται κάθε συχνότητα του φάσματος του κύματος καθώς και με τη πιο λεπτομερή ανάλυση του κυματισμού και της ανάκλασής του. Συνήθως το πρόβλημα εμφανίζεται όταν το φάσμα του ανακλώμενου κυματισμού πλαταίνει. Οπότε ο μέσος συντελεστής ανάκλασης δεν είναι αντιπροσωπευτικός. Αυτές οι πληροφορίες δίνονται από το φάσμα του προσπίπτοντος και του ανακλώμενου κυματισμού.

Η κινηματική του κύματος μπροστά στο μέτωπο αποτυπώνεται κυρίως από δύο γραφήματα: το φάσμα του προσπίπτοντος-ανακλώμενου κυματισμού και το φάσμα της αλλαγής φάσης του κυματισμού.

Το φάσμα αλλαγής της φάσης εξαρτάται από τη κλίση της κατασκευής, το βάθος του νερού στον πόδα του μετώπου, την περίοδο του κύματος και τη γωνία πρόσπτωσης (James Sunderland and Tom O Donogue 1998). Η αλλαγή φάσης είναι ίδια είτε για ογκόλιθους είτε για λείο μέτωπο και είναι ανεξάρτητη του ύψους του κύματος.

Ωστόσο οι περισσότερες έρευνες έχουν γίνει για τον προσδιορισμό του φάσματος ανακλώμενου - προσπίπτοντος κυματισμού, που είναι κατεξοχήν χρήσιμος για το σχεδιασμό του παράκτιου έργου. Για να εξαχθούν τα δύο φάσματα από τις καταγραφές των μετρητών, στα φασματικά κύματα έχουν χρησιμοποιηθεί διάφορες τεχνικές ανάλυσης.

Το φάσμα του ανακλώμενου κυματισμού εξαρτάται κυρίως από την κλίση του μετώπου, την περίοδο του κυματισμού (T_{ρ}) , το προσπίπτον ύψος κύματος και από το είδος της κατασκευής.

Η αδιάστατη παράμετρος χ (Hughes and Fowler (1995)) προσδιορίζει το φάσμα της αλλαγής φάσης στην ανάκλαση:

$$\chi = \frac{f_P}{tan\alpha} * \sqrt{\left(\frac{d}{g}\right)}$$

όπου f η συχνότητα του κυματισμού, α η γωνία κλίσης της διατομής και d το βάθος στο πόδα της διατομής.

Η αλλαγή φάσης είναι ανεξάρτητη του ύψους κύματος, οπότε και το χ είναι ανεξάρτητο αυτού. Ωστόσο ο συντελεστής ανάκλασης συσχετίζεται με το ύψος κύματος. Επομένως το χ είναι παράμετρος που γραφικά χρησιμοποιείται με το μέσο συντελεστή ανάκλασης C_{rb} μόνο για σχετικά κοντινά ύψη κύματος (James Sunderland and Tom O Donogue 1998).

Για να εξαχθούν τα δύο φάσματα από τις καταγραφές των μετρητών στα φασματικά κύματα εισάχθηκαν διάφορες τεχνικές ανάλυσης.

Γενικά ο συντελεστής ανάκλασης μειώνεται όσο μειώνεται η περίοδος του κύματος και μεγαλώνει η κυρτότητα του, χωρίς να εξαρτάται ισχυρά από το ύψος κύματος (Paul Postma 1989). Η μεγάλη τραχύτητα και διαπερατότητα του μετώπου έχει ως αποτέλεσμα μικρότερη ανάκλαση.

 Ω_{ζ} προς το φάσμα του ανακλώμενου κυματισμού, είναι εξαρτώμενο κυρίως από παραμέτρους όπως η κλίση του μετώπου, η περίοδος του κυματισμού (T_p), το προσπίπτον ύψος κύματος και από το είδος της κατασκευής.

Μία αδιάστατη παράμετρος που, σύμφωνα με την διεθνή βιβλιογραφία, σχετίζεται με την ανάκλαση είναι η αδιάστατη παράμετρος ξ. Ειδικά για θαλάσσιες κατασκευές από τετράποδα με πρανή κλίσεων 1:1.33, 1:1.5 και 1:2 (CEM, 2006) έχει προταθεί από τους Allsop & Hettiarachchi (1988) τύπος συσχετισμού της παραμέτρου θραύσης των Seelig and Ahrens (1981) ξ με τον Cr. Αυτός είναι:

•
$$Cr = \frac{0.48 \xi^2}{(9.62 + \xi^2)}$$

• $\xi = \tan \alpha / \sqrt{\frac{2\pi Hs}{gTm^2}}$

Παρακάτω παρατίθεται ο πιο πρόσφατος συσχετισμός του συντελεστή ανάκλασης Cr και ξ για πρανή θαλάσσιων κατασκευών ωπλισμένων με δύο στρώσεις από τετράποδα. Πρόκειται για τις σχέσεις των Zanuttigh B. & van der Meer J. W. (2006):

• $Cr = tanh(0.102 \xi o^{0.87})$

•
$$\xi_0 = \tan \alpha / \sqrt{\frac{2\pi Hs}{g T_{m-1,0}^2}}$$

Η παραπάνω σχέση για τον υπολογισμό του ξ χρησιμοποιεί την περίοδο του φάσματος στον πόδα της κατασκευής, η οποία ισούται με:

• $Tm_{-1,0} = m_{-1} / m_0$,

όπου m₋₁ =
$$\int_0^\infty f^{-1} S(f) df$$
 και mo = $\int_0^\infty S(f) df$,

αντί της μέσης περιόδου Tm, που είναι επίσης φασματικό μέγεθος:

•
$$T_m = (m_o / m_2)^{1/2},$$

 $\delta \pi o v m_2 = \int_0^\infty f^2 S(f) df$

Οι δύο παραπάνω σχέσεις ισχύουν για κάθετη πρόσπτωση και κυματισμούς μη υπερπηδόντες τον μόλο.

Μια άλλη αδιάστατη παράμετρος είναι η παράμετρος φασματικού εύρους ε, η οποία υπολογίζεται από τις ροπές:

•
$$\varepsilon = \frac{m_0 m_4 - m_2 m_2}{m_0 m_4}$$

Η τιμή ε τείνει στη μονάδα, όταν αυξάνει το εύρος φάσματος (Μουτζούρης Κ.Ι, 2007)

Τέλος, παρατίθεται η εξίσωση των Muttray et al. (2006), η οποία συσχετίζει εμπειρικά τον συντελεστή ανάκλασης με το σχετικό βάθος d/Lo για κατασκευές από ογκολίθους με κλίσεις πρανών μεγαλύτερες του 1:2.

$$Cr = 1 / (1.3 + 6d/Lo)$$

Η παραπάνω σχέση ισχύει για μη θραυόμενους κυματισμούς και για μηδενική ή πολύ μικρή υπερπήδηση.

2.3.1. Μέθοδοι υπολογισμού μέσου συντελεστή ανάκλασης

Οι πιο σημαντικές μέθοδοι υπολογισμού του συντελεστή ανάκλασης που χρησιμοποιούνται είναι η μέθοδος Goda (Goda et Suzuki 1976) που βασίζεται στη χρήση του μετασχηματισμού Fourier και τις καταγραφές τριών μετρητών και η μέθοδος Mansard and Funke (1980) στην οποία γίνεται χρήση ελαχίστων τετραγώνων. Από τις μεθόδους αυτές, στα πειράματα που πραγματοποιήθηκαν και αξιολογήθηκαν στη παρούσα Διπλωματική εργασία χρησιμοποιήθηκε η δεύτερη.

Η μέθοδος που χρησιμοποιήθηκε απαιτεί ο πυθμένας να είναι σταθερός και να λαμβάνονται καταγραφές κυμάτων τουλάχιστον από τρεις μετρητές σε σταθερές

αποστάσεις, που να βρίσκονται πάνω στην ορθογωνική του κύματος (κάθετα στο μέτωπο του κύματος).

2.3.2. Μέθοδοι προσομοίωσης του μέσου συντελεστή ανάκλασης με εμπειρικούς τύπους

Το πιο σημαντικό εργαλείο για το σχεδιασμό θα ήταν η πρόβλεψη του μέσου συντελεστή ανάκλασης ανάλογα με το κυματισμό σχεδιασμού και τη συγκεκριμένη γεωμετρία της διατομής. Εκεί εστιάζουν πολλές έρευνες και για αυτό το σκοπό έχουν καταρτιστεί εμπειρικοί τύποι, βασιζόμενοι σε πειραματικά δεδομένα.

Αρχικά οι Seelig and Ahrens (1981) πρότειναν τη σχέση:

$$C_{rb} = a * \frac{\xi^2}{b + \xi^2}$$

όπου α και b παράμετροι που εξαρτώνται από το τύπο της κατασκευής και δίνονται από πίνακες (για 3 απλές διατομές).

Οι Barbara Zannutigh και Jentsje W.Van Der Meer (2008) πρότειναν τη σχέση:

$$C_{rb} = \tanh(a * \xi_o^b)$$

όπου με βάση την τραχύτητα γf του έργου προκύπτουν οι παράμετροι α και b.

Οι Barbara Zannutigh και Thomas Lykke Andersen (2010) προσέθεσαν στο τύπο υπολογισμού του συντελεστή ανάκλασης ένα μειωτικό συντελεστή λόγω πλάγιας πρόσπτωσης:

$$C_{rb}(\beta) = C_{rb}(\beta = 0) * \cos\beta$$

όπου β η γωνία πρόσπτωσης του κυματισμού στο μέτωπο.

2.3.3. Ενεργειακή θεώρηση

Γενικά ο συντελεστής ανάκλασης μειώνεται όσο μειώνεται η περίοδος του κύματος και μεγαλώνει η κυρτότητα του, χωρίς να εξαρτάται ισχυρά από το ύψος κύματος (Postma 1989). Η μεγάλη τραχύτητα και διαπερατότητα του μετώπου έχει ως αποτέλεσμα μικρότερη ανάκλαση. Υπάρχει επίσης κάποια σχέση μεταξύ ανάκλασης και υπερπήδησης.

Η φυσική εξήγηση είναι ότι στην πρόσπτωση ενός κύματος σε μία διατομή η ενέργεια του κυματισμού μετατρέπεται σε απώλειες, λόγω της γεωμετρίας της διατομής, σε ανακλώμενο κυματισμό, σε κυματισμό που διέρχεται διαμέσου του έργου στην άλλη πλευρά του (αν είναι πορώδης) και σε υπερπηδούμενο κυματισμό. Ωστόσο δεν υπάρχει περαιτέρω διερεύνηση σε δεδομένα που να συσχετίζουν ποσοτικά αυτές τις ενέργειες στη διεθνή βιβλιογραφία.

2.4 Συμβολισμοί

Οι συμβολισμοί που χρησιμοποιούνται στην συνέχεια είναι οι εξής:

• Ύψος κύματος Hs : είναι η κατακόρυφη απόσταση μεταξύ της κορυφής και της κοιλιάς του κύματος. Ισούται με το διπλάσιο του εύρους ταλαντώσεως των σωματιδίων.

• Μήκος κύματος L : η οριζόντια απόσταση μεταξύ δύο σωματιδίων, που βρίσκονται στην ίδια φάση ταλαντώσεως. Μετράται κατά μήκος της διευθύνσεως μεταδόσεως.

• Καμπυλότητα ή κυρτότητα κύματος γ (=Hs / L)

• Περίοδος κύματος Tp : είναι ο χρόνος μιας πλήρους ταλαντώσεως των σωματιδίων. Ορίζεται και σαν το χρονικό διάστημα μεταξύ της διελεύσεως δύο διαδοχικών κορυφών κύματος από ένα ορισμένο σημείο.

• Ταχύτητα κύματος C : είναι η απόσταση, που διανύεται από το μέτωπο του κύματος στη μονάδα χρόνου. εξ ορισμού C= Lo /Tp

• **Βάθος νερού h** : είναι η κατακόρυφη απόσταση της ελεύθερης επιφάνειας της θάλασσας σε ηρεμία από τον πυθμένα

• Βάθος νερού στον πόδα της κατασκευής : d

- Ελεύθερο περιθώριο : Rc
- Σχετικό βάθος νερού : h/ Lo
- Μέσος Συντελεστής Ανάκλασης : Cr

• Suntelesthz qraúshz:
$$\xi = \frac{\tan{(a)}}{\sqrt{\frac{H_s}{L}}}$$

3. Πειραματικές Εγκαταστάσεις Ε.Α.Ε.

3.1 Δεξαμενή Δοκιμών

Οι εργαστηριακές μετρήσεις διεξήχθησαν στις εγκαταστάσεις του εργαστηρίου Λιμενικών εργαν του Εθνικού Μετσόβιου Πολυτεχνείου.

Το Εργαστιριο Λιμενικών Έργ^Δ του. Ε.Μ.Π διαθέτει δύο πειραματικές δεξαμενές, Δ1 και Δ2, μοναδικές στο είδδ[©] τους στην Ελλάδα. Είναι εξοπλισμένες με ικανό αριθμό κυματιστήρων με δυνατότητα να μετακινηθούν ώστε να επιτυγχάνονται διαφορετικές γωνίες πρόσπτωσης κυμάτων στο φυσικό προσομ⁵/₈ίωμα (B.K Τσουκαλά, Θ. Γιαντσή, Ε.Ν. Αναστασάκη, 2011).

Η Δεξαμενή Δοκιμών Δ1 του Ε.Α.Ε. την οποία διεξήχθησαν οι μετρήσεις, έχει εσωτερικές διαστάσεις 26,80 x 24,30 m και βάθος 1,1 m. Για την απορρόφηση των προσπιπτόντων κυμάτων στα τοιχώματα της έχουν κατασκευασθεί αποσβεστικές επενδύσεις από λιθορριπή. Η κλίση της 20 λιθορριπής είναι 1:2 και έχει τέτοια κοκκομετρία όστε να ανακλάται όσσταταν μικρότερο ποσοστό του προσπίπτοντος κύματος.

Σχήμα 3.1.1. Κάτοψη Δεξαμενής Δ1

3.2 Σύστημα παραγωγής κυμάτων

Η παραγωγή κυματισμών γίνεται μέσω ενός συστήματος που περιλαμβάνει τα ακόλουθα:

- Υδραυλικό μηχανισμό, κινητήρα
- Υδραυλικά έμβολα
- Κυματιστήρες
- Σύστημα ελέγχου
- Λογισμικό Η/Υ

Από την ελαιοδεξαμενή μέσω μίας αντλίας και ελαστικών σωληνώσεων, τα έλαια της δεξαμενής κινούνται υπό πίεση στον κυματιστήρα όπου κινούν τα έμβολα. Τα έμβολα με την σειρά τους κινούν το κατακόρυφο μέτωπο που έχει διαστάσεις 6 m x 1 m και παράγει τον κυματισμό.

Ο χειρισμός του υδραυλικού συστήματος παραγωγής κυματισμών γίνεται μέσω ενός ηλεκτρονικού υπολογιστή εξοπλισμένου με το λογισμικό WAVEGEN SD της εταιρείας H.R. Wallingford το οποίο έχει την δυνατότητα παραγωγής μονοχρωματικών αλλά και φασματικών κυματισμών.

3.3 Μετρητές κύματος

Για την μέτρηση των κυμάτων στην δεξαμενή χρησιμοποιήθηκαν μετρητές κύματος τύπου αντιστάσεως, οι οποίοι μετρούν την στιγμιαία μεταβολή της στάθμης του ύδατος. Αποτελούνται από δύο σύρματα στερεωμένα σε στέλεχος στηριζόμενο σε τρίποδο (βάση). Η διαφορετική στάθμη ύδατος δημιουργεί διαφορετική διαφορά δυναμικού, από την οποία με την κατάλληλη βαθμονόμηση προκύπτει η μεταβολή της στάθμης. Οι μετρητές είναι συνδεδεμένοι με έναν ενισχυτή σήματος, ο οποίος στην συνέχεια μεταφέρει το σήμα σε ηλεκτρονικό υπολογιστή. Το Εργαστήριο Λιμενικών Έργων του Ε.Μ.Π. διαθέτει δύο σειρές μετρητών κύματος. Η σειρά Α αποτελείται από μετρητές με κοντά στελέχη, ώστε να είναι δυνατή η μέτρηση του κύματος σε βάθος νερού πολύ μικρό (4cm<d<20cm). Η σειρά Β αποτελείται από μετρητές πειλέχη και δύναται να μετρά σε μεγαλύτερα βάθη νερού (7cm<d<80cm). Στη παρούσα πειραματική διερεύνηση χρησιμοποιήθηκαν συνολικά 5 μετρητές της σειράς Β.

3.4 Συλλογή Δεδομένων κατά τη διεξαγωγή των μετρήσεων

Η συλλογή και η ανάλυση των μετρήσεων έγινε μέσω του προγράμματος Wavedata της εταιρείας HR Wallingford. Οι μετρητές ήταν συνδεδεμένοι με έναν ηλεκτρονικό υπολογιστή στο κέντρο έλεγχου του Ε.Λ.Ε. στον οποίο αποθηκεύονταν οι πληροφορίες για την μετέπειτα ανάλυση και επεξεργασία.

Ακόμα το πρόγραμμα Wavedata μας παρείχε και άλλα εργαλεία σημαντικά για την διερεύνηση για τα πειράματα που εκτελέστηκαν όπως ο υπολογισμός του μέσου συντελεστή ανάκλασης Cr καθώς και τη μόρφωση των ενεργειακών φασμάτων του προσπίπτοντος και του ανακλώμενου κυματισμού. Αυτή η μέθοδος είναι ένας συνδυασμός της προσέγγισης του Isaacson (1992) και του Zelt και Skjelbreia (1992). Για τον υπολογισμό του τοποθετήσαμε 4 μετρητές σε σειρά σε ίδιο βάθος νερού σε συγκεκριμένες αποστάσεις από το μέτωπο. Ο μέσος συντελεστής ανάκλασης Cr προκύπτει από το μέσο όρο των συντελεστών ανάκλασης που μέτρησε ο καθένας από τους μετρητές, ο οποίοι είναι ίσοι με το λόγο των ανακλώμενων προς των προσπιπτόντων ενεργειών ανά συχνότητα. Στο παράρτημα αυτής της εργασίας υπάρχουν σχετικά διαγράμματα.

4.Πειραματικές Διατάξεις

Στο παρόν κεφάλαιο περιγράφεται το φυσικό προσομοιώμα που χρησιμοποιήθηκε στα πειράματα που εκτελέστηκαν για αυτή την εργασία. Περιλαμβάνονται στοιχεία για τις κατασκευαστικές λεπτομέρειες, οι διατομές του μετώπου, και στοιχεία για τις μετρήσεις που συλλέχτηκαν

4.1 Κατασκευαστικά στοιχεία του Προσομοιώματος

Για την συγκεκριμένη έρευνα χρησιμοποιήθηκε το φυσικό προσομοιώμα απορροφητικού κρηπιδότοιχου κλίμακας 1:20.. Για να καταγραφεί η κυματική διαταραχή για την εκτίμηση του συντελεστή ανάκλασης τοποθετήθηκαν 5 μετρητές κύματος μέσα στην δεξαμενή σε συγκεκριμένα προκαθορισμένα -από το λογισμικό καταγραφής- θέσεις.

Αφού κατασκευάσθηκε το προσομοίωμα του κρηπιδότοιχου με το έργο θωράκισης το οποίο αποτελείται από κατακόρυφο τοίχοκαι θωράκιση τμήματος. Για την προσομοίωση των ογκολίθων χρησιμοποιήθηκαν λίθοι. Το κατακόρυφο μέτωπο κατασκευάσθηκε από λαμαρίνα και οι ανωδομές όπως και τα προστατευτικά τοιχία των έργων κατασκευάσθηκαν από σκυρόδεμα, ενώ τέλος το μέτωπο της ανωδομής διαμορφώθηκε με ξύλινη κατασκευή. Οι μετρήσεις πραγματοποιήθηκαν σε 5 διαφορετικές διατομές σε 3 διαφορετικές στάθμες για κάθε διατομή (55cm,62,69cm).

4.2 Πειραματικές Διατάξεις

ΚΑΤΟΨΗ ΔΙΑΤΟΜΗΣ

Εικόνα 4.1. Απορροφητικός κρηπιδότοιχος με κατακόρυφο μέτωπο

Η διάταξη Δ_1 έχει μήκος 3.00 m, πλάτος 0.175 m και ύψος 0.93 m. Η στάθμη στην δεξαμενή Δ_1 ήταν στα 0.55,0.62, και 0.69 μέτρα αντίστοιχα και η πειραματική διάταξη είναι τοποθετημένη παράλληλα στον κυματιστήρα έτσι ώστε τα κύματα να προσπίπτουν κάθετα σε αυτήν.Η διατομή αποτελείται απο συμπαγές μέτωπο 45cm,μεταλλικά διπλά ταυ 42cm τα οποία υποστυλώνουν 7cm σκυροδεματος υλοποιώντας κενό θάλαμο πλάτους 35cm.Η διάταξη Δ_1 έχει προέλθει από αφαίρεση του αδιαπέρατου μετώπου της Δ_0 και επανατοποθέτησή του στο μέσον του πλάτους δημιουργώντας κενό θάλαμο 17,5cm.Ο θάλαμος εκτόνωσης κυματισμών και σ' αυτήν την περίπτωση είναι κενός και κλεισμένος με αδιαπέρατο μέτωπο στην πίσω παρειά. Παρατίθενται το πρόγραμμα μετρήσεων με το χαρακτηριστικό ύψος προσπίπτοντος κύματος, την περίοδο αιχμής, τη στάθμη και τον κωδικό μέτρησης, σχέδια που περιλαμβάνουν όψη, κάτοψη και τομή του μοντέλου καθώς και φωτογραφία της διάταξης Δ_1 , όπως αυτή κατασκευάστηκε.

ΚΑΤΟΨΗ ΔΙΑΤΟΜΗΣ

ala	Διάταξη	Στάθμη (cm)	Κύματα	Κωδικός μέτοησης	A	ποτελέσματα	
u/u	Διαταςη		Κυματα	Κωσικός μετρησης	Hs (mm)	Hmax(mm)	Tp(s)
50	Δ_1	55	K1.2	Δ1.1.2	8,72	16,1	0,61
51	Δ_1	55	K1.3	Δ1.1.3	13,1	24,5	0,61
52	Δ_1	55	K2.2	Δ1.2.2	16,2	25	0,656
53	Δ_1	55	K2.3	Δ1.2.3	21,5	33,9	0,656
54	Δ_1	55	K3.2	Δ1.3.2	36,3	60,3	0,948
55	Δ_1	55	K3.3	Δ1.3.3	46,8	71,2	0,948
56	Δ_1	55	K4.2	Δ1.4.2	44,1	75,9	1,07
57	Δ_1	55	K4.3	Δ1.4.3	55	95,1	1,07
58	Δ_1	55	K5.2	Δ1.5.2	46,3	86,2	1,42
59	Δ_1	55	K5.3	Δ1.5.3	59,5	106	1,42
60	Δ_1	55	K6.2	Δ1.6.2	40,1	64,4	1,22
61	Δ_1	55	K6.3	Δ1.6.3	53	87,9	1,71
62	Δ_1	55	K7.2	Δ1.7.2	45,7	72,3	2,13
63	Δ_1	55	K7.3	Δ1.7.3	61,2	91,2	2,13
64	Δ_1	62	K1.2	Δ1.1.2	7,85	19	0,569
65	Δ_1	62	K1.3	Δ1.1.3	16,1	25,6	0,569
66	Δ_1	62	K2.2	Δ1.2.2	23,9	51	0,776
67	Δ_1	62	K2.3	Δ1.2.3	32,2	65,8	0,776
68	Δ_1	62	K3.2	Δ1.3.2	43,6	77,3	0,948
69	Δ_1	62	K3.3	Δ1.3.3	57,6	105,3	0,948
70	Δ_1	62	K4.2	Δ1.4.2	48,5	88,3	0,948
71	Δ_1	62	K4.3	Δ1.4.3	59,2	114	0,948
72	Δ_1	62	K5.2	Δ1.5.2	47,8	77,7	0,948
73	Δ_1	62	K5.3	Δ1.5.3	59,5	97,7	0,948
74	Δ_1	62	K6.2	Δ1.6.2	49,3	73,1	1,71
75	Δ_1	62	K6.3	Δ1.6.3	62,3	96,5	1,71
76	Δ_1	62	K7.2	Δ1.7.2	59,8	102	2,13
77	Δ_1	62	K7.3	Δ1.7.3	76,8	120	2,13
78	Δ_1	69	K1.2	Δ1.1.2	8,68	14,7	0,569
79	Δ_1	69	K1.3	Δ1.1.3	12,8	23	0,569
80	Δ_1	69	K2.2	Δ1.2.2	27,7	51,1	0,776
81	Δ_1	69	K2.3	Δ1.2.3	36,1	65,2	0,776
82	Δ_1	69	K3.2	Δ1.3.2	47,1	77,2	0,948
83	Δ_1	69	K3.3	Δ1.3.3	58,8	94,5	0,948

TT/ 4.1	A 77	,	C / Y A1
Πινακας 4.1.	Αποτελεσματα	μετοησεων	$\partial \eta \sigma \tau \sigma \sigma \sigma \Lambda I$
III WILLY MILLY	1 110 10100 0000	morphood	

84	Δ_1	69	K4.2	Δ1.4.2	47	91,9	0,948
85	Δ_1	69	K4.3	Δ1.4.3	58,8	113	0,853
86	Δ_1	69	K5.2	Δ1.5.2	51,8	82,4	0,948
87	Δ_1	69	K5.3	Δ1.5.3	63,1	104	0,948
88	Δ_1	69	K6.2	Δ1.6.2	58,5	93,2	1,71
89	Δ_1	69	K6.3	Δ1.6.3	71,8	114	1,71
90	Δ_1	69	K7.2	Δ1.7.2	72	101	2,13
91	Δ_1	69	K7.3	Δ1.7.3	94,6	134	2,13

Η διάταξη Δ_2 έχει μήκος 3.00 m, πλάτος 0.35 m και ύψος 0.93 m. Η στάθμη στην δεξαμενή Δ_2 ήταν στα 0.55,0.62,και 0.69 μέτρα αντίστοιχα και η πειραματική διάταξη είναι τοποθετημένη παράλληλα στον κυματιστήρα έτσι ώστε τα κύματα να προσπίπτουν κάθετα σε αυτήν.Η διάταξη Δ_2 έχει προκύψει ύστερα από αφαίρεση του ενδιάμεσου πανελου όποτε έχουμε κενό θάλαμο εκτόνωσης κυματισμών διπλάσιου πλάτους συγκριτικά με την Δ_1 .Παρατίθενται το πρόγραμμα μετρήσεων με το χαρακτηριστικό ύψος προσπίπτοντος κύματος, την περίοδο αιχμής,τη στάθμη και τον κωδικό μέτρησης, σχέδια που περιλαμβάνουν όψη, κάτοψη και τομή του μοντέλου καθώς και φωτογραφία της διάταξης Δ_2 , όπως αυτή κατασκευάστηκε.

ala	Διάταξη	Στάθυμα (am)	Vúuara	Κωδικός μότοησης	A	ποτελέσματα	
a/a	Διαταζη		κυματα	κωοικός μετρησης	Hs (mm)	Hmax(mm)	Tp(s)
92	Δ_2	55	K1.2	Δ2.1.2	5,03	9,88	0,569
93	Δ_2	55	K1.3	Δ2.1.3	11,9	23,7	0,569
94	Δ_2	55	K2.2	Δ2.2.2	19,2	33,4	0,776
95	Δ_2	55	K2.3	Δ2.2.3	26,3	43,8	0,776
96	Δ_2	55	K3.2	Δ2.3.2	29,1	50,5	1,07
97	Δ_2	55	K3.3	Δ2.3.3	37,3	64,6	1,07
98	Δ_2	55	K4.2	Δ2.4.2	49,4	86	1,22
99	Δ_2	55	K4.3	Δ2.4.3	60,9	113	1,22
100	Δ_2	55	K5.2	Δ2.5.2	59,7	100	1,42
101	Δ_2	55	K5.3	Δ2.5.3	72,3	124	1,42
102	Δ_2	55	K6.2	Δ2.6.2	56,2	89,8	1,42
103	Δ_2	55	K6.3	Δ2.6.3	69,9	111	1,42
104	Δ_2	55	K7.2	Δ2.7.2	53,4	89,7	1,42
105	Δ_2	55	K7.3	Δ2.7.3	70,2	112	1,42
106	Δ_2	62	K1.2	Δ2.1.2	6,67	14,2	0,533
107	Δ_2	62	K1.3	Δ2.1.3	6,25	11,3	0,533
108	Δ_2	62	K2.2	Δ2.2.2	17,5	32,1	0,711
109	Δ_2	62	K2.3	Δ2.2.3	25,5	45,7	0,711
110	Δ_2	62	K3.2	Δ2.3.2	39,7	75,1	0,948
111	Δ_2	62	K3.3	Δ2.3.3	51,1	81,1	0,948
112	Δ_2	62	K4.2	Δ2.4.2	54,1	97,5	1,22
113	Δ_2	62	K4.3	Δ2.4.3	69,4	124	1,22
114	Δ_2	62	K5.2	Δ2.5.2	58,7	100	1,42
115	Δ_2	62	K5.3	Δ2.5.3	73,1	128	1,42
116	Δ_2	62	K6.2	Δ2.6.2	52,6	90,3	1,07
117	Δ_2	62	K6.3	Δ2.6.3	66,7	117	1,07
118	Δ_2	62	K7.2	Δ2.7.2	54,5	86	1,07
119	Δ_2	62	K7.3	Δ2.7.3	69,1	117	1,22
120	Δ_2	69	K1.2	Δ2.1.2	7,43	19,2	0,656
121	Δ_2	69	K1.3	Δ2.1.3	14,7	24,1	0,533
122	Δ_2	69	K2.2	Δ2.2.2	21,1	40,7	0,656
123	$\overline{\Delta_2}$	69	K2.3	Δ2.2.3	26,2	49,6	0,656
124	Δ_2	69	K3.2	Δ2.3.2	45,4	82,8	0,9478
125	Δ_2	69	K3.3	Δ2.3.3	59,6	117	0,948

Πίνακας. 4.2. Αποτελέσματα μετρήσεων διάταξης Δ2

126	Δ_2	69	K4.2	Δ2.4.2	55,5	86,8	1,22
127	Δ_2	69	K4.3	Δ2.4.3	69,7	110	1,07
128	Δ_2	69	K5.2	Δ2.5.2	53,9	99,9	1,07
129	Δ_2	69	K5.3	Δ2.5.3	69	123	1,07
130	Δ_2	69	K6.2	Δ2.6.2	51,1	89,1	1,07
131	Δ_2	69	K6.3	Δ2.6.3	66,8	124	1,07
132	Δ_2	69	K7.2	Δ2.7.2	60,9	101	2,13
133	Δ_2	69	K7.3	Δ2.7.3	77,8	135	2,13

Η διάταξη Δ_3 έχει μήκος 3.00 m, πλάτος 0.35 m και ύψος 0.93 m. Η στάθμη στην δεξαμενή Δ_3 ήταν στα 0.55,0.62, και 0.69 μέτρα αντίστοιχα και η πειραματική διάταξη είναι τοποθετημένη παράλληλα στον κυματιστήρα έτσι ώστε τα κύματα να προσπίπτουν κάθετα σε αυτήν. Σ' αυτό το στάδιο των μετρήσεων είχαμε πλήρωση του θαλάμου με πορώδες υλικό,δηλαδή ογκόλιθους βάρους 300-500 gr ανά λίθο και d_m=6 cm και κλίση πρανών 35 μοιρών εντός του θαλάμου όπως φαίνεται και στην τομή. Παρατίθενται το πρόγραμμα μετρήσεων με το χαρακτηριστικό ύψος προσπίπτοντος κύματος, την περίοδο αιχμής,τη στάθμη και τον κωδικό μέτρησης, σχέδια που περιλαμβάνουν όψη, κάτοψη και τομή του μοντέλου καθώς και φωτογραφία της διάταξης Δ_3 , όπως αυτή κατασκευάστηκε.

ΚΑΤΟΨΗ ΔΙΑΤΟΜΗΣ

ala	Διάταξη	Στάθμη Κή	Κύματα	Κωδικός	Αποτελέσματα			
u/u	Διαταςη	(cm)	Κυματα	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	
134	Δ_3	55	K1.1	Δ3.1.1	2,27	4,29	0,656	
135	Δ_3	55	K1.2	Δ3.1.2	4,05	7,53	0,533	
136	Δ_3	55	K1.3	Δ3.1.3	5,22	9,36	0,533	
137	Δ_3	55	K2.1	Δ3.2.1	7,18	11,4	0,711	
138	Δ_3	55	K2.2	Δ3.2.2	9,84	19,1	0,711	
139	Δ_3	55	K2.3	Δ3.2.3	19,9	36,4	0,711	
140	Δ_3	55	K3.1	Δ3.3.1	13,6	24,4	0,776	
141	Δ_3	55	K3.2	Δ3.3.2	21,1	36,6	0,776	
142	Δ_3	55	K3.3	Δ3.3.3	26	44,1	0,776	
143	Δ_3	55	K4.1	Δ3.4.1	19,7	35,8	1,22	
144	Δ_3	55	K4.2	Δ3.4.2	28,5	52,7	1,22	
145	Δ_3	55	K4.3	Δ3.4.3	37,3	73,8	1,22	
146	Δ_3	55	K5.1	Δ3.5.1	30,4	55,7	1,42	
147	Δ_3	55	K5.2	Δ3.5.2	39	69,9	1,14	
148	Δ_3	55	K5.3	Δ3.5.3	52,1	104	1,42	
149	Δ_3	55	K6.1	Δ3.6.1	30,7	52,4	1,71	
150	Δ_3	55	K6.2	Δ3.6.2	43,5	76,9	1,71	
151	Δ_3	55	K6.3	Δ3.6.3	57,7	99,7	1,71	
152	Δ_3	55	K7.1	Δ3.7.1	34,5	65	2,13	
153	Δ_3	55	K7.2	Δ3.7.2	49,3	90,2	2,13	
154	Δ_3	55	K7.3	Δ3.7.3	66,5	121	2,13	
155	Δ_3	62	K1.1	Δ3.1.1	1,92	3,56	0,569	
156	Δ_3	62	K1.2	Δ3.1.2	6,9	11,8	0,569	
157	Δ_3	62	K1.3	Δ3.1.3	5,92	9,79	0,569	
158	Δ_3	62	K2.1	Δ3.2.1	8,76	16,6	0,776	
159	Δ_3	62	K2.2	Δ3.2.2	14,2	27,4	0,776	
160	Δ_3	62	K2.3	Δ3.2.3	19,7	34,1	0,776	
161	Δ_3	62	K3.1	Δ3.3.1	16,2	24,9	0,948	
162	Δ_3	62	K3.2	Δ3.3.2	24	40	0,948	
163	Δ_3	62	K3.3	Δ3.3.3	31,3	49,3	0,948	
164	Δ_3	62	K4.1	Δ3.4.1	19,2	39,5	1,22	
165	Δ_3	62	K4.2	Δ3.4.2	33,6	61,9	1,22	
166	Δ_3	62	K4.3	Δ3.4.3	41,9	78,2	1,22	
167	Δ_3	62	K5.1	Δ3.5.1	27	48,5	1,42	

Πίνακας 4.3. Αποτελέσματα μετρήσεων διάταξης Δ3

168	Δ_3	62	K5.2	Δ3.5.2	37,5	72,3	1,42
169	Δ_3	62	K5.3	Δ3.5.3	46,8	94,9	1,42
170	Δ_3	62	K6.1	Δ3.6.1	26,9	42,3	1,71
171	Δ_3	62	K6.2	Δ3.6.2	38,4	62,4	1,71
172	Δ_3	62	K6.3	Δ3.6.3	50	81,7	1,71
173	Δ_3	62	K7.1	Δ3.7.1	31,3	48,4	2,13
174	Δ_3	62	K7.2	Δ3.7.2	45,4	68,2	2,13
175	Δ_3	62	K7.3	Δ3.7.3	61,4	103	2,13
176	Δ_3	69	K1.1	Δ3.1.1	2,73	5,01	0,533
177	Δ_3	69	K1.2	Δ3.1.2	4,17	6,94	0,569
178	Δ_3	69	K1.3	Δ3.1.3	8,8	14,5	0,533
179	Δ_3	69	K2.1	Δ3.2.1	9,45	15,2	0,711
180	Δ_3	69	K2.2	Δ3.2.2	14,3	22,9	0,711
181	Δ_3	69	K2.3	Δ3.2.3	19,1	31,6	0,711
182	Δ_3	69	K3.1	Δ3.3.1	19,5	33,5	1,07
183	Δ_3	69	K3.2	Δ3.3.2	28,9	49,1	1,07
184	Δ_3	69	K3.3	Δ3.3.3	38,4	63,9	1,07
185	Δ_3	69	K4.1	Δ3.4.1	29,8	50,5	1,22
186	Δ_3	69	K4.2	Δ3.4.2	45	76,5	1,22
187	Δ_3	69	K4.3	Δ3.4.3	55,9	91,9	1,22
188	Δ_3	69	K5.1	Δ3.5.1	31,7	57,4	1,22
189	Δ_3	69	K5.2	Δ3.5.2	45,6	77,1	1,22
190	Δ_3	69	K5.3	Δ3.5.3	56,9	101	1,22
191	Δ_3	69	K6.1	Δ3.6.1	33,6	49,6	1,22
192	Δ_3	69	K6.2	Δ3.6.2	44,8	72,3	1,22
193	Δ_3	69	K6.3	Δ3.6.3	54,1	93,2	1,22
194	Δ_3	69	K7.1	Δ3.7.1	32,6	56,9	2,13
195	Δ_3	69	K7.2	Δ3.7.2	50,3	91,2	2,13
196	Δ_3	69	K7.3	Δ3.7.3	70,5	114	2,13

Εικόνα 4.2. Απορροφητικός κρηπιδότοιχος με πρανή-Δ3

Εικόνα 4.3. Αλλαγή κλίσεως πρανών για τη διάταξη Δ4

Η διάταξη Δ_3 έχει μήκος 3.00 m, πλάτος 0.35 m και ύψος 0.93 m. Η στάθμη στην δεξαμενή Δ_3 ήταν στα 0.55,0.62,και 0.69 μέτρα αντίστοιχα και η πειραματική διάταξη είναι τοποθετημένη παράλληλα στον κυματιστήρα έτσι ώστε τα κύματα να προσπίπτουν κάθετα σε αυτήν.Σ' αυτό το στάδιο των μετρήσεων είχαμε πλήρωση του θαλάμου με πορώδες υλικό,δηλαδή ογκόλιθους βάρους 300-500 gr ανά λίθο και d_m=6 cm και κλίση πρανών 40 μοιρών εντός του θαλάμου όπως φαίνεται και στην τομή. Παρατίθενται το πρόγραμμα μετρήσεων με το χαρακτηριστικό ύψος προσπίπτοντος κύματος, την περίοδο αιχμής,τη στάθμη και τον κωδικό μέτρησης, σχέδια που περιλαμβάνουν όψη, κάτοψη και τομή του μοντέλου καθώς και φωτογραφία της διάταξης Δ_3 , όπως αυτή κατασκευάστηκε.

ala	Διάταξη	Στάθμη (om)	Vingen	<u>Κοδικός μότοη σης</u>	A	ποτελέσματα	ατα	
u/u	Διαταζη		κυματα	κωσικός μετρησης	Hs (mm)	Hmax(mm)	Tp(s)	
197	Δ_4	69	K1.1	Δ4.1.1	2,88	10,6	0,61	
198	Δ_4	69	K1.2	Δ4.1.2	4,22	14,9	0,569	
199	Δ_4	69	K1.3	Δ4.1.3	7,61	14,8	0,569	
200	Δ_4	69	K2.1	Δ4.2.1	9,53	16	0,711	
201	Δ_4	69	K2.2	Δ4.2.2	14,6	22,4	0,711	
202	Δ_4	69	K2.3	Δ4.2.3	18,9	30,6	0,711	
203	Δ_4	69	K3.1	Δ4.3.1	19,3	31,9	0,948	
204	Δ_4	69	K3.2	Δ4.3.2	28,3	45,2	0,948	

Πίνακας 4.4 Αποτελέσματα μετρήσεων διάταξης Δ4

205	Δ_4	69	K3.3	Δ4.3.3	37	58,9	0,948
206	Δ_4	69	K4.1	Δ4.4.1	27,2	44,2	1,22
207	Δ_4	69	K4.2	Δ4.4.2	38,9	62,3	1,22
208	Δ_4	69	K4.3	Δ4.4.3	50,9	56,3	1,22
209	Δ_4	69	K5.1	Δ4.5.1	29,5	57,1	1,22
210	Δ_4	69	K5.2	Δ4.5.2	39,9	75,1	1,22
211	Δ_4	69	K5.3	Δ4.5.3	51,1	97,2	1,22
212	Δ_4	69	K6.1	Δ4.6.1	29,2	46,3	1,22
213	Δ_4	69	K6.2	Δ4.6.2	41,9	61,6	1,07
214	Δ_4	69	K6.3	Δ4.6.3	54,3	82,9	1,07
215	Δ_4	69	K7.1	Δ4.7.1	36,6	56,4	2,13
216	Δ_4	69	K7.2	Δ4.7.2	54,1	80,9	2,13
217	Δ_4	69	K7.3	Δ4.7.3	69,5	100	2,13
218	Δ_4	62	K1.1	Δ4.1.1	3,29	6,3	0,569
219	Δ_4	62	K1.2	Δ4.1.2	6,86	11,6	0,569
220	Δ_4	62	K1.3	Δ4.1.3	8,01	14,2	0,569
221	Δ_4	62	K2.1	Δ4.2.1	10,4	16,4	0,776
222	Δ_4	62	K2.2	Δ4.2.2	16,5	24,6	0,776
223	Δ_4	62	K2.3	Δ4.2.3	21,5	36,5	0,776
224	Δ_4	62	K3.1	Δ4.3.1	16,1	26,1	0,948
225	Δ_4	62	K3.2	Δ4.3.2	24,3	40,4	0,948
226	Δ_4	62	K3.3	Δ4.3.3	32	51,7	0,948
227	Δ_4	62	K4.1	Δ4.4.1	22,3	43,6	1,22
228	Δ_4	62	K4.2	Δ4.4.2	32,2	62,5	1,22
229	Δ_4	62	K4.3	Δ4.4.3	40,6	81,2	1,22
230	Δ_4	62	K5.1	Δ4.5.1	24,7	43,3	1,42
231	Δ_4	62	K5.2	Δ4.5.2	36	64,2	1,42
232	Δ_4	62	K5.3	Δ4.5.3	47,5	88,5	1,42
233	Δ_4	62	K6.1	Δ4.6.1	27,2	45,2	1,71
234	Δ_4	62	K6.2	Δ4.6.2	40,4	70,6	1,71
235	Δ_4	62	K6.3	Δ4.6.3	513,6	90,9	1,71
236	Δ_4	62	K7.1	Δ4.7.1	33,3	51,8	2,13
237	Δ_4	62	K7.2	Δ4.7.2	48,8	71	2,13
238	Δ_4	62	K7.3	Δ4.7.3	64,1	92,7	2,13
239	Δ_4	55	K1.1	Δ4.1.1	2,05	3,8	0,533
240	Δ_4	55	K1.2	Δ4.1.2	6,14	11,7	0,533
241	Δ_4	55	K1.3	Δ4.1.3	7,87	14,2	0,533

242	Δ_4	55	K2.1	Δ4.2.1	9,46	15,2	0,711
243	Δ_4	55	K2.2	Δ4.2.2	15,3	23,9	0,711
244	Δ_4	55	K2.3	Δ4.2.3	20,4	33,7	0,711
245	Δ_4	55	K3.1	Δ4.3.1	13,7	23	0,853
246	Δ_4	55	K3.2	Δ4.3.2	20,9	33,4	0,853
247	Δ_4	55	K3.3	Δ4.3.3	27,4	46,5	0,948
248	Δ_4	55	K4.1	Δ4.4.1	19,7	35,4	1,22
249	Δ_4	55	K4.2	Δ4.4.2	28,7	53,8	1,22
250	Δ_4	55	K4.3	Δ4.4.3	36,9	71,7	1,22
251	Δ_4	55	K5.1	Δ4.5.1	29,2	51,5	1,42
252	Δ_4	55	K5.2	Δ4.5.2	40,7	75,8	1,42
253	Δ_4	55	K5.3	Δ4.5.3	50	97,9	1,42
254	Δ_4	55	K6.1	Δ4.6.1	30,5	52,4	1,71
255	Δ_4	55	K6.2	Δ4.6.2	44,2	73,6	1,71
256	Δ_4	55	K6.3	Δ4.6.3	58,5	95	1,71
257	Δ_4	55	K7.1	Δ4.7.1	34,7	64,5	2,13
258	Δ_4	55	K7.2	Δ4.7.2	49,9	87,5	2,13
259	Δ_4	55	K7.3	Δ4.7.3	66,7	118	2,13

5. Αποτελέσματα μετρήσεων

Στο κεφάλαιο αυτό παρατίθενται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s , που προέκυψαν από τα πειράματα για τις διάφορες πειραματικές διατάξεις.

5.1 Αποτελέσματα Μετρήσεων Διάταξης Δ1

Παρουσιάζονται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s και για τους τέσσερις μετρητές που βρίσκονται έμπροσθεν της διάταξης Δ_1 με κατακόρυφο αδιαπέρατο μέτωπο, για κύματα με διαφορετικές τιμές περιόδου Tp.

Πίνακας 5.1.1: H_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και στάθμη ηρεμίας 55cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.1.1	Δ1.1.2	Δ1.1.3	Δ1.1.4	Δ1.1.5	Δ1.1.6	Δ1.1.7
Tp (sec)	0,569	0,569	0,776	0,776	0,948	0,948	1,070
Μετρητής 1	9,420	12,357	21,426	29,150	36,018	46,759	45,921
Μετρητής 2	9,100	12,591	22,131	29,856	38,026	49,113	43,504
Μετρητής 3	8,909	12,336	21,801	29,424	39,704	51,630	42,448
Μετρητής 4	8,723	13,082	16,199	21,452	36,288	46,841	44,061

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.1.8	Δ1.1.9	Δ1.1.10	Δ1.1.11	Δ1.1.12	Δ1.1.13	Δ1.1.14
Tp (sec)	1,070	1,420	1,420	1,710	1,710	2,130	2,130
Μετρητής 1	58,039	58,647	74,158	58,688	75,620	59,294	77,125
Μετρητής 2	54,683	57,531	74,770	55,778	71,052	54,453	70,772
Μετρητής 3	54,084	57,846	73,680	51,757	65,492	49,515	64,025
Μετρητής 4	55,015	46,268	59,540	40,147	53,013	45,703	61,236
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.2.1	Δ1.2.2	Δ1.2.3	Δ1.2.4	Δ1.2.5	Δ1.2.6	Δ1.2.7
---------------------	--------	--------	--------	--------	--------	--------	--------
Tp (sec)	0,569	0,569	0,776	0,776	0,948	0,948	1,070
Μετρητής 1	7,051	15,838	25,361	34,793	42,493	55,699	51,746
Μετρητής 2	7,347	15,951	25,273	34,717	44,465	58,667	53,651
Μετρητής 3	6,980	15,580	25,132	34,147	43,480	56,721	58,073
Μετρητής 4	7,846	16,087	23,947	32,161	43,646	57,635	48,452

Πίνακας 5.1.2: Η_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και στάθμη ηρεμίας 62cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.2.8	Δ1.2.9	Δ1.2.10	Δ1.2.11	Δ1.2.12	Δ1.2.13	Δ1.2.14
Tp (sec)	1,070	1,420	1,420	1,710	1,710	2,130	2,130
Μετρητής 1	62,443	64,867	82,266	64,461	86,514	66,078	84,629
Μετρητής 2	64,682	66,049	82,874	61,272	82,973	61,618	78,681
Μετρητής 3	70,134	66,955	84,376	58,131	78,907	58,352	73,910
Μετρητής 4	59,203	51,077	59,505	45,952	62,335	59,757	76,804

Πίνακας 5.1.3: Η_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και στάθμη ηρεμίας 69cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.3.1	Δ1.3.2	Δ1.3.3	Δ1.3.4	Δ1.3.5	Δ1.3.6	Δ1.3.7
Tp (sec)	0,569	0,569	0,776	0,776	0,948	0,948	1,070
Μετρητής 1	7,771	10,995	26,992	36,411	49,199	61,450	55,929
Μετρητής 2	7,741	11,117	26,748	36,688	50,912	64,665	60,671
Μετρητής 3	7,516	10,856	25,432	34,16 4	46,455	58,203	63,807
Μετρητής 4	8,681	12,765	27,685	36,146	47,053	58,754	46,997

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ1.3.8	Δ1.3.9	Δ1.3.10	Δ1.3.11	Δ1.3.12	Δ1.3.13	Δ1.3.14
Tp (sec)	1,070	1,420	1,420	1,710	1,710	2,130	2,130
Μετρητής 1	70,532	74,034	93,065	74,718	93,872	69,744	90,111
Μετρητής 2	76,509	76,846	96,168	72,462	89,819	67,295	86,292
Μετρητής 3	81,111	74,623	93,466	66,991	82,351	63,970	80,305
Μετρητής 4	58,794	51,848	63,149	58,492	71,843	71,954	94,613

Διάγραμμα 5.1.1 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και στάθμη 55cm

Διάγραμμα 5.1.2 : Ηs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και στάθμη 62cm

Διάγραμμα 5.1.3 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και στάθμη 69cm

5.2 Αποτελέσματα Μετρήσεων Διάταξης Δ2

Παρουσιάζονται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s και για τους τέσσερις μετρητές που βρίσκονται έμπροσθεν της διάταξης Δ_2 με κατακόρυφο αδιαπέρατο μέτωπο, για κύματα με διαφορετικές τιμές περιόδου Tp.

Παρουσιάζονται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s και για τους τέσσερις μετρητές που βρίσκονται έμπροσθεν της διάταξης $\Delta 2$ με κατακόρυφο αδιαπέρατο μέτωπο, για κύματα με διαφορετικές τιμές περιόδου Tp.

Πίνακας 5.2.1: H_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 55cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.1.1	Δ2.1.2	Δ2.1.3	Δ2.1.4	Δ2.1.5	Δ2.1.6	Δ2.1.7
Tp (sec)	0,569	0,569	0,776	0,776	0,948	0,948	1,070
Μετρητής 1	4,760	11,453	21,220	27,762	36,295	46,845	51,347
Μετρητής 2	5,205	11,787	20,146	26,737	34,573	44,390	50,802
Μετρητής 3	4,925	11,732	20,128	26,680	36,629	47,508	49,222
Μετρητής 4	5,759	13,174	19,242	25,325	29,128	37,638	49,386

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.1.8	Δ2.1.9	Δ2.1.10	Δ2.1.11	Δ2.1.12	Δ2.1.13	Δ2.1.14
Tp (sec)	1,070	1,420	1,420	1,710	1,710	2,130	2,130
Μετρητής 1	65,142	52,561	59,946	50,604	63,538	54,642	76,113
Μετρητής 2	64,725	50,714	57,754	50,360	62,456	52,804	72,427
Μετρητής 3	62,693	50,312	56,863	51,077	62,595	52,063	70,990
Μετρητής 4	61,447	56,935	67,553	52,681	64,865	53,383	73,191

	-						
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.2.1	Δ2.2.2	Δ2.2.3	Δ2.2.4	Δ2.2.5	Δ2.2.6	Δ2.2.7
Tp (sec)	0,569	0,569	0,776	0,776	0,948	0,948	1,070
Μετρητής 1	6,293	8,607	21,175	30,879	41,113	52,371	55,197
Μετρητής 2	5,904	8,752	21,657	31,381	41,152	52,330	51,108
Μετρητής 3	6,244	8,595	22,071	31,755	43,331	55,395	47,197
Μετρητής 4	6,249	8,299	18,291	26,049	39,971	50,759	52,946

Πίνακας 5.2.2: Η_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 62cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.2.8	Δ2.2.9	Δ2.2.10	Δ2.2.11	Δ2.2.12	Δ2.2.13	Δ2.2.14
Tp (sec)	1,070	1,420	1,420	1,710	1,710	2,130	2,130
Μετρητής 1	71,151	58,428	72,845	65,477	85,958	73,041	91,577
Μετρητής 2	65,962	59,283	74,005	64,831	84,898	70,721	87,889
Μετρητής 3	61,045	59,162	73,264	63,007	80,990	66,974	82,821
Μετρητής 4	67,963	56,200	69,466	50,229	64,095	54,828	69,101

Διάγραμμα 5.2.1 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και στάθμη 55cm

Διάγραμμα 5.2.2 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και στάθμη 62cm

5.3 Αποτελέσματα Μετρήσεων Διάταξης Δ3

Παρουσιάζονται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s και για τους τέσσερις μετρητές που βρίσκονται έμπροσθεν της διάταξης Δ_3 με κατακόρυφο αδιαπέρατο μέτωπο, για κύματα με διαφορετικές τιμές περιόδου Tp.

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.1.1	Δ2.1.2	Δ2.1.3	Δ2.1.4	Δ2.1.5	Δ2.1.6	Δ2.1.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	2,625	3,722	4,729	6,124	8,993	18,168	18,213
Μετρητής 2	2,507	3,481	4,533	5,763	8,573	18,112	16,502
Μετρητής 3	2,775	3,967	4,995	5,973	8,873	18,611	16,641
Μετρητής 4	2,840	4,120	4,827	6,690	9,862	19,904	13,785
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.1.8	Δ2.1.9	Δ2.1.10	Δ2.1.11	Δ2.1.12	Δ2.1.13	Δ2.1.14
Tp (sec)	0,948	0,948	1,070	1,070	1,070	1,420	1,420
Μετρητής 1	28,195	35,945	25,290	36,420	49,488	34,989	50,024
Μετρητής 2	25,725	32,615	25,229	36,561	49,552	33,118	47,359
Μετρητής 3	25,749	31,896	27,403	39,633	54,336	33,327	47,244
Μετρητής 4	21,074	24,872	20,026	27,681	37,519	29,082	38,968
KOAIKOE							

Πίνακας 5.3.1: H_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 55cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.1.15	Δ2.1.16	Δ2.1.17	Δ2.1.18	Δ2.1.19	Δ2.1.20	Δ2.1.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	68,024	36,761	52,112	68,509	36,126	50,705	67 <i>,</i> 846
Μετρητής 2	64,998	33,640	47,469	62,279	32,711	45,638	61,141
Μετρητής 3	64,875	32,491	45,298	59,328	31,556	43,626	58,339
Μετρητής 4	52,147	30,682	43,508	57,724	34,463	49,259	66,486

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.2.1	Δ2.2.2	Δ2.2.3	Δ2.2.4	Δ2.2.5	Δ2.2.6	Δ2.2.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	2,083	6,550	5,750	8,605	14,374	20,368	17,055
Μετρητής 2	2,244	6,470	5,644	8,518	14,325	20,278	17,003
Μετρητής 3	2,037	6,820	6,007	8,653	14,646	20,734	17,457
Μετρητής 4	1,819	7,446	5,923	8,669	14,233	19,710	16,190

Πίνακας 5.3.2: Η_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 62cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.2.8	Δ2.2.9	Δ2.2.10	Δ2.2.11	Δ2.2.12	Δ2.2.13	Δ2.2.14
Tp (sec)	0,948	0,948	1,220	1,220	1,220	1,420	1,420
Μετρητής 1	25,212	33,163	24,340	35,636	45,608	30,668	42,517
Μετρητής 2	25,126	33,081	24,101	35,344	44,997	30,589	42,647
Μετρητής 3	25,764	33,861	23,807	35,140	44,913	30,821	43,045
Μετρητής 4	23,952	31,264	22,232	32,216	41,505	25,787	35,232

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.2.15	Δ2.2.16	Δ2.2.17	Δ2.2.18	Δ2.2.19	Δ2.2.20	Δ2.2.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	55,744	34,356	48,758	68,815	36,829	54,461	72,269
Μετρητής 2	55,881	33,081	46,967	65,919	34,968	51,506	68,163
Μετρητής 3	56,362	31,615	44,553	62,424	32,987	48,249	63,513
Μετρητής 4	45,765	25,478	35,352	49,585	31,852	46,757	60,968

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.3.1	Δ2.3.2	Δ2.3.3	Δ2.3.4	Δ2.3.5	Δ2.3.6	Δ2.3.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	2,332	5,034	7,917	9,601	14,748	20,346	20,770
Μετρητής 2	2,531	5,519	8,341	9,137	14,191	19,757	20,263
Μετρητής 3	2,533	5,613	8,546	9,151	14,294	19,835	21,319
Μετρητής 4	2,397	5,090	8,220	9,060	13,671	19,043	19,890

Πίνακας 5.3.3: H_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 69cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.3.8	Δ2.3.9	Δ2.3.10	Δ2.3.11	Δ2.3.12	Δ2.3.13	Δ2.3.14
Tp (sec)	0,948	0,948	1,220	1,220	1,220	1,420	1,420
Μετρητής 1	30,307	39,508	29,129	43,094	54,151	34,164	47,555
Μετρητής 2	29,531	38,553	27,516	40,634	51,362	34,411	48,058
Μετρητής 3	31,367	40,959	26,390	38,896	48,904	35,332	49,209
Μετρητής 4	29,145	38,105	29,937	43,818	54,258	30,594	42,327

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ2.3.15	Δ2.3.16	Δ2.3.17	Δ2.3.18	Δ2.3.19	Δ2.3.20	Δ2.3.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	60,771	41,270	53,938	72,837	37,910	59,482	80,046
Μετρητής 2	61,778	40,156	52,877	71,542	36,747	57,527	77,280
Μετρητής 3	63,372	39,156	51,673	69,454	35,478	55,115	73,799
Μετρητής 4	53,578	31,128	40,061	53,760	31,528	48,925	66,390

Διάγραμμα 5.3.1 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 55cm

Διάγραμμα 5.3.2 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 62cm

Διάγραμμα 5.3.3 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 69cm

5.4 Αποτελέσματα Μετρήσεων Διάταξης Δ4

Παρουσιάζονται τα αποτελέσματα του χαρακτηριστικού ύψους κύματος H_s και για τους τέσσερις μετρητές που βρίσκονται έμπροσθεν της διάταξης Δ_4 με κατακόρυφο αδιαπέρατο μέτωπο, για κύματα με διαφορετικές τιμές περιόδου Tp.

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.1.1	Δ4.1.2	Δ4.1.3	Δ4.1.4	Δ4.1.5	Δ4.1.6	Δ4.1.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	2,002	4,458	7,130	9,361	14,727	19,942	18,555
Μετρητής 2	2,089	4,752	7,367	9,181	14,340	19,375	17,331
Μετρητής 3	2,005	4,669	7,398	8,883	13,841	18,840	16,433
Μετρητής 4	1,983	4,415	7,250	9,741	15,137	20,222	13,772
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.1.8	Δ4.1.9	Δ4.1.10	Δ4.1.11	Δ4.1.12	Δ4.1.13	Δ4.1.14
Tp (sec)	0,948	0,948	1,220	1,220	1,220	1,420	1,420
Μετρητής 1	28,208	37,604	24,658	35,456	47,606	34,360	47,205
Μετρητής 2	26,356	35,032	26,797	38,971	52,448	34,270	47,152
Μετρητής 3	24,913	32,668	27,143	39,854	53,820	31,832	43,672
Μετρητής 4	21,078	27,229	20,235	28,251	37,232	28,033	36,821
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.1.15	Δ4.1.16	Δ4.1.17	Δ4.1.18	Δ4.1.19	Δ4.1.20	Δ4.1.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	63,260	34,931	51,878	65,922	36,934	53,151	70,702
Μετρητής 2	63,219	32,481	47,679	60,689	33,545	48,028	63,356
Μετρητής 3	58,579	29,228	42,527	54,153	29,852	42,581	56,263
Μετρητής 4	48,690	28,519	42,078	53,680	35,230	50,697	68,433

Πίνακας 5.4.1: Hs σε mm ανά μετρητή για κύματα με διαφορετικό T_p και στάθμη ηρεμίας 55cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.2.1	Δ4.2.2	Δ4.2.3	Δ4.2.4	Δ4.2.5	Δ4.2.6	Δ4.2.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	3,266	4,864	7,208	9,027	14,433	19,336	17,224
Μετρητής 2	3,490	5,180	7,640	9,146	14,540	19,529	17,166
Μετρητής 3	3,233	4,987	7,309	8,652	13,882	18,638	16,613
Μετρητής 4	3,674	6,005	8,095	10,355	16,028	21,233	15,977
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.2.8	Δ4.2.9	Δ4.2.10	Δ4.2.11	Δ4.2.12	Δ4.2.13	Δ4.2.14
Tp (sec)	0,948	0,948	1,220	1,220	1,220	1,420	1,420
Μετρητής 1	26,160	35,089	23,769	34,886	44,696	30,361	44,799
Μετρητής 2	26,108	35,091	24,201	35,646	45,769	28,692	47,322
Μετρητής 3	25,193	33,805	23,955	35,541	45,888	28,692	44,487
Μετρητής 4	24,156	32,322	22,223	31,895	40,270	23,098	34,942

Πίνακας 5.4.2: Η_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 62cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.2.15	Δ4.2.16	Δ4.2.17	Δ4.2.18	Δ4.2.19	Δ4.2.20	Δ4.2.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	58,600	35,160	50,238	67,069	37,702	55,823	71,682
Μετρητής 2	61,783	34,617	49,185	65,370	36,427	53,504	68,282
Μετρητής 3	58,046	30,381	42,861	56,864	31,990	46,505	58,685
Μετρητής 4	45,618	26,039	36,592	49,445	33,642	49,687	63,357

Πίνακας 5.4.3: H_s σε mm ανά μετρητή για κύματα με διαφορετικό T_p και βάθος νερού 69cm

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.3.1	Δ4.3.2	Δ4.3.3	Δ4.3.4	Δ4.3.5	Δ4.3.6	Δ4.3.7
Tp (sec)	0,569	0,569	0,569	0,776	0,776	0,776	0,948
Μετρητής 1	2,685	4,637	7,248	9,795	15,004	20,447	19,055
Μετρητής 2	2,692	4,840	7,679	9,367	14,437	19,841	18,764
Μετρητής 3	2,775	4,904	7,663	9,145	14,217	19,645	19,553
Μετρητής 4	2,893	5,188	7,614	9,370	14,193	19,167	18,922
ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.3.8	Δ4.3.9	Δ4.3.10	Δ4.3.11	Δ4.3.12	Δ4.3.13	Δ4.3.14
Tp (sec)	0,948	0,948	1,220	1,220	1,220	1,420	1,420
Μετρητής 1	28,933	37,650	27,013	39,243	52,579	34,095	47,870
Μετρητής 2	28,503	37,134	25,872	37,499	50,888	34,596	48,624
Μετρητής 3	29,675	38,650	25,322	36,795	49,832	34,970	49,037
Μετρητής 4	28,667	37,290	26,796	38,655	50,139	27,080	37,774

ΚΩΔΙΚΟΣ ΜΕΤΡΗΣΗΣ	Δ4.3.15	Δ4.3.16	Δ4.3.17	Δ4.3.18	Δ4.3.19	Δ4.3.20	Δ4.3.21
Tp (sec)	1,420	1,710	1,710	1,710	2,130	2,130	2,130
Μετρητής 1	62,042	41,399	59,842	77,777	40,556	59,538	76,874
Μετρητής 2	63,023	40,361	58,315	75,475	38,829	57,089	73,433
Μετρητής 3	63,100	38,077	55,140	70,995	36,178	53,369	68,258
Μετρητής 4	48,709	29,196	41,918	54,259	36,581	54,081	69,473

Διάγραμμα 5.4.1 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 55cm

Διάγραμμα 5.4.2 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 62cm

Διάγραμμα 5.4.3 : Hs σε mm ανά μετρητή για κύματα με διαφορετικό Tp και βάθος νερού 69cm

5.5 Αποτελέσματα Μέσου Συντελεστή Ανάκλασης

Μέσω επεξεργασίας των κυματομορφών με το πρόγραμμα επεξεργασίας HR Wavedata προέκυψε ο μέσος συντελεστής ανάκλασης μέσω της διαδικασίας που έχει αναφερθεί στο κεφάλαιο 3.3. Στην συνέχεια εμφανίζεται ο μέσος συντελεστής ανάκλασης (CRC, Reflection Coefficient) για κάθε κύμα που μετρήθηκε, σε κάθε μία από τις τέσσερις πειραματικές διατάξεις.

a/a	Κωδικός		Αποτελέσ	ματα		Στάθμη
u/u	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
1	Δ2.1.2	8,72	16,1	0,61	0,9871	55
2	Δ2.1.3	13,1	24,5	0,61	0,9042	55
3	Δ2.2.2	16,2	25	0,656	0,9183	55
4	Δ2.2.3	21,5	33,9	0,656	0,8879	55
5	Δ2.3.2	36,3	60,3	0,948	0,8548	55
6	Δ2.3.3	46,8	71,2	0,948	0,7963	55
7	Δ2.4.2	44,1	75,9	1,07	0,7769	55
8	Δ2.4.3	55	95,1	1,07	0,6528	55
9	Δ2.5.2	46,3	86,2	1,42	0,5322	55
10	Δ2.5.3	59,5	106	1,42	0,4725	55
11	Δ2.6.2	40,1	64,4	1,22	0,6478	55
12	Δ2.6.3	53	87,9	1,71	0,6055	55
13	Δ2.7.2	45,7	72,3	2,13	0,7283	55
14	Δ2.7.3	61,2	91,2	2,13	0,6862	55

Πίνακας 5.5.1 :	Αποτελέσιια	ια Συντελεστή	Ανάκλασης	Διάταξης Δ1	στάθμη 55	cm)
1100000 3.3.1	moloncopu					cm)

Πίνακας 5.5.2 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ1 (στάθμη 62 cm)

	Κωδικός		Αποτελέσι	ιατα		Στάθμη
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
15	Δ2.1.2	7,85	19	0,569	1,021	62
16	Δ2.1.3	16,1	25,6	0,569	0,9697	62
17	Δ2.2.2	23,9	51	0,776	0,9676	62
18	Δ2.2.3	32,2	65,8	0,776	0,9348	62
19	Δ2.3.2	43,6	77,3	0,948	0,931	62
20	Δ2.3.3	57,6	105,3	0,948	0,9028	62
21	Δ2.4.2	48,5	88,3	0,948	0,9149	62
22	Δ2.4.3	59,2	114	0,948	0,8485	62
23	Δ2.5.2	47,8	77,7	0,948	0,871	62
24	Δ2.5.3	59,5	97,7	0,948	0,8351	62
25	Δ2.6.2	49,3	73,1	1,71	0,9648	62
26	Δ2.6.3	62,3	96,5	1,71	0,913	62
27	Δ2.7.2	59,8	102	2,13	1,003	62
28	Δ2.7.3	76,8	120	2,13	0,9761	62

	Κωδικός			Στάθμη		
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
29	Δ2.1.2	8,68	14,7	0,569	0,9334	69
30	Δ2.1.3	12,8	23	0,569	0,86	69
31	Δ2.2.2	27,7	51,1	0,776	0,9735	69
32	Δ2.2.3	36,1	65,2	0,776	0,9777	69
33	Δ2.3.2	47,1	77,2	0,948	0,9757	69
34	Δ2.3.3	58,8	94,5	0,948	0,9543	69
35	Δ2.4.2	47	91,9	0,948	1,003	69
36	Δ2.4.3	58,8	113	0,853	0,9798	69
37	Δ2.5.2	51,8	82,4	0,948	1,019	69
38	Δ2.5.3	63,1	104	0,948	1,011	69
39	Δ2.6.2	58,5	93,2	1,71	1,043	69
40	Δ2.6.3	71,8	114	1,71	1,023	69
41	Δ2.7.2	72	101	2,13	1,023	69
42	Δ2.7.3	94,6	134	2,13	1,013	69

Πίνακας 5.5.3 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ1 (στάθμη 69 cm)

Πίνακας 5.5.4 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ2 (στάθμη 55 cm)

	Κωδικός			Στάθμη		
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
1	Δ2.1.2	5,03	9,88	0,569	0,8229	55
2	Δ2.1.3	11,9	23,7	0,569	0,8808	55
3	Δ2.2.2	19,2	33,4	0,776	0,7566	55
4	Δ2.2.3	26,3	43,8	0,776	0,6959	55
5	Δ2.3.2	29,1	50,5	1,07	0,7305	55
6	Δ2.3.3	37,3	64,6	1,07	0,6869	55
7	Δ2.4.2	49,4	86	1,22	0,8491	55
8	Δ2.4.3	60,9	113	1,22	0,8216	55
9	Δ2.5.2	59,7	100	1,42	0,6752	55
10	Δ2.5.3	72,3	124	1,42	0,6222	55
11	Δ2.6.2	56,2	89,8	1,42	0,5922	55
12	Δ2.6.3	69,9	111	1,42	0,5252	55
13	Δ2.7.2	53,4	89,7	1,42	0,5638	55
14	Δ2.7.3	70,2	112	1,42	0,4965	55

	Κωδικός			Στάθμη		
α/α	κωσικος μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
15	Δ2.1.2	6,67	14,2	0,533	0,9232	62
16	Δ2.1.3	6,25	11,3	0,533	0,9723	62
17	Δ2.2.2	17,5	32,1	0,711	0,9003	62
18	Δ2.2.3	25,5	45,7	0,711	0,9192	62
19	Δ2.3.2	39,7	75,1	0,948	0,8895	62
20	Δ2.3.3	51,1	81,1	0,948	0,8727	62
21	Δ2.4.2	54,1	97,5	1,22	0,9349	62
22	Δ2.4.3	69,4	124	1,22	0,8941	62
23	Δ2.5.2	58,7	100	1,42	0,8104	62
24	Δ2.5.3	73,1	128	1,42	0,773	62
25	Δ2.6.2	52,6	90,3	1,07	0,8428	62
26	Δ2.6.3	66,7	117	1,07	0,7939	62
27	Δ2.7.2	54,5	86	1,07	0,9212	62
28	Δ2.7.3	69,1	117	1,22	0,8632	62

Πίνακας 5.5.5 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ2 (στάθμη 62 cm)

Πίνακας 5.5.6 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ2 (στάθμη 69 cm)

	Κωδικός μέτρησης			Στάθμη		
α/α		Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
29	Δ2.1.2	7,43	19,2	0,656	0,8691	69
30	Δ2.1.3	14,7	24,1	0,533	0,8879	69
31	Δ2.2.2	21,1	40,7	0,656	0,9402	69
32	Δ2.2.3	26,2	49,6	0,656	0,9344	69
33	Δ2.3.2	45,4	82,8	0,9478	0,9172	69
34	Δ2.3.3	59,6	117	0,948	0,8757	69
35	Δ2.4.2	55,5	86,8	1,22	0,9141	69
36	Δ2.4.3	69,7	110	1,07	0,8681	69
37	Δ2.5.2	53,9	99,9	1,07	0,8604	69
38	Δ2.5.3	69	123	1,07	0,8457	69
39	Δ2.6.2	51,1	89,1	1,07	0,9288	69
40	Δ2.6.3	66,8	124	1,07	0,8866	69
41	Δ2.7.2	60,9	101	2,13	0,9491	69
42	Δ2.7.3	77,8	135	2,13	0,9213	69

	Κωδικός		Αποτελές	σματα		Στάθμη
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
1	Δ4.1.1	2,27	4,29	0,656	0,5215	55
2	Δ4.1.2	4,05	7,53	0,533	0,5201	55
3	Δ4.1.3	5,22	9,36	0,533	0,4674	55
4	Δ4.2.1	7,18	11,4	0,711	0,3876	55
5	Δ4.2.2	9,84	19,1	0,711	0,3871	55
6	Δ4.2.3	19,9	36,4	0,711	0,3706	55
7	Δ4.3.1	13,6	24,4	0,776	0,4054	55
8	Δ4.3.2	21,1	36,6	0,776	0,4076	55
9	Δ4.3.3	26	44,1	0,776	0,4023	55
10	Δ4.4.1	19,7	35,8	1,22	0,5505	55
11	Δ4.4.2	28,5	52,7	1,22	0,5356	55
12	Δ4.4.3	37,3	73,8	1,22	0,5433	55
13	Δ4.5.1	30,4	55,7	1,42	0,5217	55
14	Δ4.5.2	39	69,9	1,14	0,5614	55
15	Δ4.5.3	52,1	104	1,42	0,5622	55
16	Δ4.6.1	30,7	52,4	1,71	0,5635	55
17	Δ4.6.2	43,5	76,9	1,71	0,5982	55
18	Δ4.6.3	57,7	99,7	1,71	0,6235	55
19	Δ4.7.1	34,5	65	2,13	0,6487	55
20	Δ4.7.2	49,3	90,2	2,13	0,6787	55
21	Δ4.7.3	66,5	121	2,13	0,6877	55

Πίνακας 5.5.7 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ3 (στάθμη 55 cm)

Πίνακας 5.5.8 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ3 (στάθμη 62 cm)

	Κωδικός μέτρησης			Στάθμη		
α/α		Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
22	Δ4.1.1	1,92	3,56	0,569	0,5103	62
23	Δ4.1.2	6,9	11,8	0,569	0,4001	62
24	Δ4.1.3	5,92	9,79	0,569	0,4688	62
25	Δ4.2.1	8,76	16,6	0,776	0,3429	62
26	Δ4.2.2	14,2	27,4	0,776	0,3124	62
27	Δ4.2.3	19,7	34,1	0,776	0,2904	62
28	Δ4.3.1	16,2	24,9	0,948	0,2979	62
29	Δ4.3.2	24	40	0,948	0,2799	62
30	Δ4.3.3	31,3	49,3	0,948	0,2582	62
31	Δ4.4.1	19,2	39,5	1,22	0,2979	62
32	Δ4.4.2	33,6	61,9	1,22	0,2442	62
33	Δ4.4.3	41,9	78,2	1,22	0,2418	62
34	Δ4.5.1	27	48,5	1,42	0,2891	62

35	Δ4.5.2	37,5	72,3	1,42	0,2879	62
36	Δ4.5.3	46,8	94,9	1,42	0,2872	62
37	Δ4.6.1	26,9	42,3	1,71	0,4457	62
38	Δ4.6.2	38,4	62,4	1,71	0,4435	62
39	Δ4.6.3	50	81,7	1,71	0,4692	62
40	Δ4.7.1	31,3	48,4	2,13	0,5749	62
41	Δ4.7.2	45,4	68,2	2,13	0,5956	62
42	Δ4.7.3	61,4	103	2,13	0,5971	62

Πίνακας 5.5.9 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ3 (στάθμη 69 cm)

	Κωδικός			Στάθμη		
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
43	Δ4.1.1	2,73	5,01	0,533	0,4653	69
44	Δ4.1.2	4,17	6,94	0,569	0,5441	69
45	Δ4.1.3	8,8	14,5	0,533	0,3744	69
46	Δ4.2.1	9,45	15,2	0,711	0,4857	69
47	Δ4.2.2	14,3	22,9	0,711	0,4744	69
48	Δ4.2.3	19,1	31,6	0,711	0,4535	69
49	Δ4.3.1	19,5	33,5	1,07	0,5151	69
50	Δ4.3.2	28,9	49,1	1,07	0,4782	69
51	Δ4.3.3	38,4	63,9	1,07	0,4519	69
52	Δ4.4.1	29,8	50,5	1,22	0,5795	69
53	Δ4.4.2	45	76,5	1,22	0,5501	69
54	Δ4.4.3	55,9	91,9	1,22	0,5182	69
55	Δ4.5.1	31,7	57,4	1,22	0,5973	69
56	Δ4.5.2	45,6	77,1	1,22	0,5602	69
57	Δ4.5.3	56,9	101	1,22	0,5358	69
58	Δ4.6.1	33,6	49,6	1,22	0,666	69
59	Δ4.6.2	44,8	72,3	1,22	0,6337	69
60	Δ4.6.3	54,1	93,2	1,22	0,6312	69
61	Δ4.7.1	32,6	56,9	2,13	0,7332	69
62	Δ4.7.2	50,3	91,2	2,13	0,7056	69
63	Δ4.7.3	70,5	114	2,13	0,6899	69

	Κωδικός		Στάθμη			
α/α	κωσικός μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
43	Δ4.1.1	2,05	3,8	0,533	0,4183	55
44	Δ4.1.2	6,14	11,7	0,533	0,3927	55
45	Δ4.1.3	7,87	14,2	0,533	0,3734	55
46	Δ4.2.1	9,46	15,2	0,711	0,3652	55
47	Δ4.2.2	15,3	23,9	0,711	0,3635	55
48	Δ4.2.3	20,4	33,7	0,711	0,3605	55
49	Δ4.3.1	13,7	23	0,853	0,3894	55
50	Δ4.3.2	20,9	33,4	0,853	0,3928	55
51	Δ4.3.3	27,4	46,5	0,948	0,3907	55
52	Δ4.4.1	19,7	35,4	1,22	0,4983	55
53	Δ4.4.2	28,7	53,8	1,22	0,5062	55
54	Δ4.4.3	36,9	71,7	1,22	0,5211	55
55	Δ4.5.1	29,2	51,5	1,42	0,4923	55
56	Δ4.5.2	40,7	75,8	1,42	0,5328	55
57	Δ4.5.3	50	97,9	1,42	0,5617	55
58	Δ4.6.1	30,5	52,4	1,71	0,5557	55
59	Δ4.6.2	44,2	73,6	1,71	0,592	55
60	Δ4.6.3	58,5	95	1,71	0,6207	55
61	Δ4.7.1	34,7	64,5	2,13	0,643	55
62	Δ4.7.2	49,9	87,5	2,13	0,6677	55
63	Δ4.7.3	66,7	118	2,13	0,6919	55

Πίνακας 5.5.10 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ4 (στάθμη 55 cm)

Πίνακας 5.5.11 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ4 (στάθμη 62 cm)

	Κωδικός			Στάθμη		
α/α	κωσικος μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
22	Δ4.1.1	3,29	6,3	0,569	0,2898	62
23	Δ4.1.2	6,86	11,6	0,569	0,2611	62
24	Δ4.1.3	8,01	14,2	0,569	0,2635	62
25	Δ4.2.1	10,4	16,4	0,776	0,2956	62
26	Δ4.2.2	16,5	24,6	0,776	0,2768	62
27	Δ4.2.3	21,5	36,5	0,776	0,2638	62
28	Δ4.3.1	16,1	26,1	0,948	0,2658	62
29	Δ4.3.2	24,3	40,4	0,948	0,2431	62
30	Δ4.3.3	32	51,7	0,948	0,2348	62
31	$\Delta 4.4.1$	22,3	43,6	1,22	0,2355	62

32	Δ4.4.2	32,2	62,5	1,22	0,2335	62
33	Δ4.4.3	40,6	81,2	1,22	0,2291	62
34	Δ4.5.1	24,7	43,3	1,42	0,2945	62
35	Δ4.5.2	36	64,2	1,42	0,3278	62
36	Δ4.5.3	47,5	88,5	1,42	0,3361	62
37	Δ4.6.1	27,2	45,2	1,71	0,4782	62
38	Δ4.6.2	40,4	70,6	1,71	0,4892	62
39	Δ4.6.3	513,6	90,9	1,71	0,5108	62
40	Δ4.7.1	33,3	51,8	2,13	0,5928	62
41	Δ4.7.2	48,8	71	2,13	0,6214	62
42	Δ4.7.3	64,1	92,7	2,13	0,6345	62

Πίνακας 5.5.12 : Αποτελέσματα Συντελεστή Ανάκλασης Διάταξης Δ4 (στάθμη 69 cm)

	Κωδικός			Στάθμη		
α/α	μέτρησης	Hs (mm)	Hmax(mm)	Tp(s)	Crr	(cm)
1	Δ4.1.1	2,88	10,6	0,61	0,4174	69
2	Δ4.1.2	4,22	14,9	0,569	0,3082	69
3	Δ4.1.3	7,61	14,8	0,569	0,29	69
4	Δ4.2.1	9,53	16	0,711	0,2683	69
5	Δ4.2.2	14,6	22,4	0,711	0,2398	69
6	Δ4.2.3	18,9	30,6	0,711	0,2207	69
7	Δ4.3.1	19,3	31,9	0,948	0,3308	69
8	Δ4.3.2	28,3	45,2	0,948	0,3003	69
9	Δ4.3.3	37	58,9	0,948	0,2905	69
10	Δ4.4.1	27,2	44,2	1,22	0,4505	69
11	Δ4.4.2	38,9	62,3	1,22	0,4159	69
12	Δ4.4.3	50,9	56,3	1,22	0,3947	69
13	Δ4.5.1	29,5	57,1	1,22	0,4633	69
14	Δ4.5.2	39,9	75,1	1,22	0,4532	69
15	Δ4.5.3	51,1	97,2	1,22	0,4547	69
16	Δ4.6.1	29,2	46,3	1,22	0,6126	69
17	Δ4.6.2	41,9	61,6	1,07	0,5932	69
18	Δ4.6.3	54,3	82,9	1,07	0,6012	69
19	Δ4.7.1	36,6	56,4	2,13	0,6627	69
20	Δ4.7.2	54,1	80,9	2,13	0,6544	69
21	Δ4.7.3	69,5	100	2,13	0,6627	69

6. Επεξεργασία Μετρήσεων

6.1 Εισαγωγή

Κατά την επεξεργασία των μετρήσεων συσχετίστηκε ο μέσος συντελεστής ανάκλασης με διάφορες αδιάστατες παραμέτρους, όπως αυτές προτείνονται από την βιβλιογραφία. Πιο συγκεκριμένα και για τις τέσσερις διατάξεις παρουσιάζονται τα διαγράμματα που συσχετίζουν το συντελεστή ανάκλασης με:

- το λόγο του ύψους κύματος προς το μήκος κύματος του προσπίπτοντος κυματισμού (Hs/Lo)
- το ελεύθερο περιθώριο προς ύψος κύματος (Rc/Hs)
- το λόγο του βάθους στο πόδα της διατομής πρός το μήκος κύματος του προσπίπτοντος κυματισμού (d/Lo)
- το πλάτος προς το μήκος κύματος του προσπίπτοντος κυματισμού (D/Lo)
- το πηλίκο του ελεύθερου περιθωρίου επί το βάθος στον πόδα της διατομής προς το γινόμενο του ύψους με το μήκος κύματος (Rc*d/Hs*Lo)
- το συντελεστή θραύσης $\xi = \tan(a)/\sqrt{(Hs/L)}$
- την παράμετρο φασματικού εύρους ε

όπως προτείνονται από τη διεθνή βιβλιογραφία.

Επιπλέον, διερευνάται η σχέση άλλων αδιάστατων συντελεστών που κατασκευάστηκαν για να διερευνηθεί η σχέση παραμέτρων όπως το ελεύθερο περιθώριο, με τον συντελεστή ανάκλασης σε κάθε διατομή.

Τέλος παρατίθενται τα διαγράμματα ύψους κύματος και μέσου συντελεστή ανάκλασης που διευκολύνουν την σύγκριση της αποδοτικότητας της κάθε διατομής ως προς την μείωση του συντελεστή ανάκλασης.

6.2. Μέσος συντελεστής ανάκλασης, Crr, ως προς το λόγο του ύψους κύματος προς το μήκος κύματος, $H_{\rm s}/L_0$

Σχήμα 6.2.1. Μέσος συντελεστής ανάκλασης ως προς το λόγο H_{s}/L_{0} για τη διάταξη $\Delta 1$

Σχήμα 6.2.2. Μέσος συντελεστής ανάκλασης ως προς το λόγο H_{s}/L_{0} για τη διάταξη $\Delta 2$

Σχήμα 6.2.3. Μέσος συντελεστής ανάκλασης ως προς το λόγο H_{s}/L_{0} για τη διάταξη Δ3

Σχήμα 6.2.4. Μέσος συντελεστής ανάκλασης ως προς το λόγο H_{s}/L_{0} για τη διάταξη Δ4

Από τα σχήματα 6.2.1 και 6.2.2 βλέπουμε ότι για τις διατάξεις Δ1 και Δ2 έχουμε αρνητική συσχέτιση μεταξύ Crr και Hs/L₀, η οποία ελαττώνεται όσο αυξάνεται το ύψος της στάθμης.

Στην τρίτη διάταξη έχουμε θετική συσχέτιση των μεγεθών για τη στάθμη των 55cm, αρνητική για τη στάθμη των 62cm, και οριακά αρνητική για τη στάθμη των 69cm.

Τέλος, για τη διάταξη Δ4 βλέπουμε ότι υπάρχει οριακά αρνητική συσχέτιση για την πρώτη στάθμη, αρνητική για τη δεύτερη και θετική για την τρίτη στάθμη.

Και εδώ να σχολιάσουμε, ότι η στάθμη των 69cm παρουσιάζει τους μεγαλύτερους συντελεστές ανάκλασης για τις διατάξεις Δ1, Δ2 και Δ3, και η στάθμη των 55cm για την τέταρτη διάταξη.

6.3. Μέσος συντελεστής ανάκλασης, Crr, ως προς το λόγο του ελεύθερου περιθωρίου προς το ύψος κύματος, R_c/H_s

Σχήμα 6.3.1. Μέσος συντελεστής ανάκλασης ως προς το λόγο R_c/H_s για τη διάταξη $\Delta 1$

Σχήμα 6.3.2. Μέσος συντελεστής ανάκλασης ως προς το λόγο R_c/H_s για τη διάταξη Δ2

Σχήμα 6.3.3. Μέσος συντελεστής ανάκλασης ως προς το λόγο R_c/H_s για τη διάταξη Δ3

Σχήμα 6.3.4. Μέσος συντελεστής ανάκλασης ως προς το λόγο R_c/H_s για τη διάταξη Δ4

Από το σχήμα 6.3.1 συμπεραίνουμε ότι υπάρχει θετική συσχέτιση μεταξύ Crr και R_c/H_s για τις στάθμες των 55 και 62cm, ενώ έχουμε αρνητική συσχέτιση για τη στάθμη των 69cm.

Για τη διάταξη Δ2 βλέπουμε ότι έχουμε θετική συσχέτιση των μεγεθών, η οποία όμως μειώνεται όσο μεγαλώνει το ύψος στάθμης, με αποτελέσμα στην στάθμη των 69cm να γίνεται οριακά αρνητική.

Στην τρίτη διάταξη έχουμε αρνητική συσχέτιση των μεγεθών για τις στάθμες 55 και 69cm, και θετική για τη στάθμη των 62cm.

Τέλος, για τη διάταξη Δ4 βλέπουμε ότι υπάρχει αρνητική συσχέτιση μεταξύ του συντελεστή ανάκλασης και του λόγου R_c/H_s , η οποία αυξάνεται όσο αυξάνεται το ύψος της στάθμης.

Όπως και στο κεφ.6.2 και εδώ παρατηρούμε οτι στις διατάξεις $\Delta 1$ και $\Delta 2$ εμφανίζονται υψηλότεροι συντελεστές ανάκλασης, απ' οτι στις διατάξεις $\Delta 3$ και $\Delta 4$.

Επίσης, η στάθμη των 62cm φαίνεται να είναι η δυσμενέστερη για τις $\Delta 1$ και $\Delta 2$, ενώ η στάθμη των 55cm είναι η δυσμενέστερη για τις $\Delta 3$ και $\Delta 4$.

6.4. Μέσος συντελεστής ανάκλασης, Crr, ως προς το λόγο του βάθους του νερού στον πόδα της κατασκευής προς το μήκος κύματος, d/L₀

Σχήμα 6.4.1: Μέσος συντελεστής ανάκλασης ως προς το λόγο d/L₀ για τη διάταξη Δ1

Σχήμα 6.4.2: Μέσος συντελεστής ανάκλασης ως προς το λόγο d/L₀ για τη διάταξη Δ2

Σχήμα 6.4.3: Μέσος συντελεστής ανάκλασης ως προς το λόγο d/L₀ για τη διάταξη Δ3

Σχήμα 6.4.4: Μέσος συντελεστής ανάκλασης ως προς το λόγο d/L_0 για τη διάταξη Δ4

Από το σχήμα 6.4.1 παρατηρούμε θετική συσχέτιση μεταξύ Crr και d/L_0 για τη στάθμη των 55cm, η οποία μειώνεται αναλογικά με το ύψος στάθμης και καταλήγουμε στη στάθμη των 69cm να έχουμε οριακά αρνητική συσχέτιση.

Αντίστοιχα συμπεράσματα έχουμε και για τη Δ2 διάταξη, όπως φαίνεται από το σχ. 6.4.2.

Στην τρίτη διάταξη έχουμε αρνητική συσχέτιση των μεγεθών για τις στάθμες 55 και 69cm, και οριακά αρνητική για τη στάθμη των 62cm.

Τέλος, για τη διάταξη Δ4 βλέπουμε ότι υπάρχει αρνητική συσχέτιση μεταξύ του συντελεστή ανάκλασης και του λόγου d/L_0 , η οποία αυξάνεται όσο αυξάνεται το ύψος της στάθμης.

Σε αντιστοιχία με τα κεφ.6.2 και 6.3 και εδώ παρατηρούμε οτι στις διατάξεις $\Delta 1$ και $\Delta 2$ εμφανίζονται υψηλότεροι συντελεστές ανάκλασης, απ' οτι στις διατάξεις $\Delta 3$ και $\Delta 4$.

Ως προς τι στάθμες, η στάθμη των 69cm φαίνεται να παρουσιάζει τους μεγαλύτερους συντελεστές ανάκλασης για τις διατάξεις $\Delta 1$, $\Delta 2$ και $\Delta 3$, και η στάθμη των 55cm για την τέταρτη διάταξη. Να παρατηρήσουμε ότι τα αποτελέσματα αυτά έρχονται σε συμφωνία με τα αντίστοιχα του 6.2 κεφαλαίου.

6.5. Μέσος συντελεστής ανάκλασης, Crr, ως προς το λόγο του πλάτους του απορροφητικού κρηπιδότοιχου προς το μήκος κύματος, D/L_0

Σχήμα 6.5.1: Μέσος συντελεστής ανάκλασης ως προς το λόγο D/L $_0$ για τη διάταξη $\Delta 1$

Σχήμα 6.5.2: Μέσος συντελεστής ανάκλασης ως προς το λόγο D/L₀ για τη διάταξη $\Delta 2$

Σχήμα 6.5.3: Μέσος συντελεστής ανάκλασης ως προς το λόγο D/L₀ για τη διάταξη $\Delta 3$

Σχήμα 6.5.4: Μέσος συντελεστής ανάκλασης ως προς το λόγο D/L₀ για τη διάταξη $\Delta 4$

Στο σχήμα 6.5.1, παρατηρούμε, ότι στη διάταξη Δ1 αύξηση του λόγου D/L₀ οδηγεί σε αύξηση του Crr για τη στάθμη των 55cm, σε οριακή αύξηση του για τη στάθμη των 62cm και σε μείωση του για την στάθμη των 69cm.

Για τη διάταξη Δ2 τα διαγράμματα παρουσιάζουν την ίδια συμπεριφορά με αυτές της διάταξης Δ1.

Για τη διάταξη Δ3 (σχ. 6.5.3) παρατηρούμε μια διαφοροποίηση σε σχέση με τις προηγούμενες περιπτώσεις, καθώς αύξηση του λόγου D/L₀ οδηγεί σε μείωση του Crr για τις στάθμες των 55 και 69cm, και οριακή μείωση για τη στάθμη των 62cm.

Τέλος, για τη διάταξη Δ4 βλέπουμε ότι υπάρχει αρνητική συσχέτιση μεταξύ του συντελεστή ανάκλασης και του λόγου D/L_0 και για τις τρεις στάθμες.

Εκτός των παραπάνω παρατηρούμε οτι στις διατάξεις Δ1 και Δ2 εμφανίζονται υψηλότεροι συντελεστές ανάκλασης, απ' οτι στις διατάξεις Δ3 και Δ4.

Επίσης, η στάθμη των 69cm φαίνεται να είναι η δυσμενέστερη για τις $\Delta 1$, $\Delta 2$ και $\Delta 3$, κάτι όμως που δεν ισχύει για τη $\Delta 4$, καθώς εκεί η στάθμη των 55cm είναι η δυσμενέστερη.

6.6. Μέσος συντελεστής ανάκλασης, Crr, ως προς το μέγεθος $R_c \cdot d/(H_s \cdot L_0)$

$$\label{eq:static} \begin{split} \Sigma \chi \acute{\textbf{μμ}} \textbf{a} \ \textbf{6.6.1:} \ M \acute{e} \text{soc} \ \sigma \text{unterlevent} \ \alpha \text{uatrix} \ \alpha \text{uatrix$$

Σχήμα 6.6.2: Μέσος συντελεστής ανάκλασης ως προς το μέγεθος $R_c \cdot d/(H_s \cdot L_0)$ για τη διάταξη Δ2

Σχήμα 6.6.3: Μέσος συντελεστής ανάκλασης ως προς το μέγεθος $R_c \cdot d/(H_s \cdot L_0)$ για τη διάταξη Δ3

$$\label{eq:linear} \begin{split} \Sigma \chi \acute{\textbf{μμ}} \textbf{a} ~ \textbf{6.6.4} : & M \acute{e} \text{soc} ~ \text{suvtelegtic} ~ \text{auáklash} \omega \text{s} ~ \text{pros to} ~ \mu \acute{e} \gamma e \theta \text{os} ~ R_c \cdot d/(H_s \cdot L_0) ~ \text{grath} \\ & \delta \text{iataξh} ~ \Delta 4 \end{split}$$

Στην περίπτωση αυτή παρατηρούμε, ότι για τις δυο πρώτες διατάξεις Δ1 και Δ2, υπάρχει θετική συσχέτιση για την πρώτη στάθμη, η οποία μειώνεται όσο αυξάνεται το ύψος στάθμης και καταλήγει να είναι αρνητική στην τελευταία στάθμη.

Από την άλλη, για την τρίτη διάταξη, έχουμε αρνητική συσχέτιση των μεγεθών για την πρώτη και την τρίτη στάθμη και θετική για τη δεύτερη.

Στην τελευταία διάταξη, και οι τρεις ευθείες παλινδρόμησης υποδηλώνουν αρνητική συσχέτιση των μεγεθών.

Να παρατηρήσουμε επίσης, ότι για τη στάθμη των 62cm έχουμε τους δυσμενέστερους συντελεστές ανάκλασης για τις διατάξεις Δ1 και Δ2, ενώ για την στάθμη των 55cm για τις Δ3 και Δ4. Τα αποτελέσματα αυτά επομένως παρουσιάζουν μεγάλες ομοιότητες με αυτά του κεφαλαίου 6.3.

6.7. Μέσος συντελεστής ανάκλασης, Crr, ως προς τον συντελεστή θραύσης, ξ

Ο συντελεστής θραύσεως αφορά διατομές με πρανή και δίνεται από τον παρακάτω τύπο:

$$\xi = \frac{\tan{(a)}}{\sqrt{\frac{H_s}{L}}}$$

Στην παρούσα διπλωματική εργασία έχουν εξεταστεί διατάξεις που δεν έχουν πρανή. Οι διατάξεις όμως περιέχουν πορώδες μέσο με κλίση tan(α). Στις διατάξεις αυτές ως κλίση tan(α) λήφθηκε η κλίση του πορώδους μέσου εντός του θαλάμου κυματισμών Για τις διατάξεις Δ1, Δ2 προφανώς δεν ορίζεται ξ, αφού δεν περιέχουν πορώδες μέσο.

Σχήμα 6.7.1: Μέσος συντελεστής ανάκλασης ως προς το συντελεστή θραύσης για τη διάταξη Δ3

Σχήμα 6.7.2: Μέσος συντελεστής ανάκλασης ως προς το συντελεστή θραύσης για τη διάταξη Δ4

Και για τις δυο αυτές διατάξεις, παρατήρουμε μια μικρη αρνητική συσχέτιση των μεγεθών για την πρώτη στάθμη, θετική συσχέτιση για τη δεύτερη και ξανά αρνητική για την τρίτη στάθμη. Επίσης, η στάθμη των 69cm παρουσιάζει τους δυσμενέστερους συντελεστές ανάκλασης για τη Δ3 διάταξη και η στάθμη των 55cm για τη Δ4.
6.8. Μέσος συντελεστής ανάκλασης Crr, ως προς το εύρος ε

Σχήμα 6.8.1. Μέσος συντελεστής ανάκλασης ως προς το ε για τη διάταξη Δ1

Σχήμα 6.8.2. Μέσος συντελεστής ανάκλασης ως προς το ε για τη διάταξη Δ2

Σχήμα 6.8.3. Μέσος συντελεστής ανάκλασης ως προς το ε για τη διάταξη Δ3

Σχήμα 6.8.4. Μέσος συντελεστής ανάκλασης ως προς το ε για τη διάταξη Δ4

Στην περίπτωση αυτή παρατηρούμε, ότι για τις δυο πρώτες διατάξεις $\Delta 1$ και $\Delta 2$, υπάρχει αρνητική συσχέτιση κυρίως για την χαμηλότερη σταθμη η οποία δείχνει να επηρεάζεται και περισσοτερο.

Από την άλλη, για τις διατάξεις Δ3 και Δ4,είναι ξεκάθαρο πως έχουμε θετική συσχέτιση των δύο μεγεθών για όλες τις στάθμες.

7. Συμπεράσματα

<u>Γενικά</u>

- Ο Το πρώτο καθώς και αναμενόμενο συμπέρασμα που διεξάγουμε από την επεξεργασία των μετρήσεων είναι ότι στις διατάξεις Δ₁ και Δ₂, στις οποίες ο θάλαμος εκτόνωσης κυματισμών είναι κενός, παρουσιάζονται σαφώς μεγαλύτεροι συντελεστές ανάκλασης σε σύγκριση με τους συντελεστές ανάκλασης που έχουμε όταν δημιουργήσαμε πρανή από φυσικούς ογκόλιθους.
- Το δεύτερο συμπέρασμα είναι ότι οι στάθμη της δεξαμενής στα 69cm είναι η δυσμενέστερη για τις διατάξεις Δ₁, Δ₂ και Δ₃ καθώς εκεί παρουσιάζει τους υψηλότερους συντελεστές ανάκλασης... Αντιθέτως η διάταξη Δ₄ παρουσιάζει τους υψηλότερους συντελεστές ανάκλασης όταν η στάθμη της δεξαμενής είναι 55 cm

<u>Ειδικότερα</u>

- ο για το λόγο D/L₀ καθώς και για το μέγεθος $R_c \cdot d/(H_s \cdot L_0)$ προκύπτει πως τα δύο μεγέθη είναι αντιστρόφως ανάλογα με το συντελεστή ανάκλασης για την Δ_4 εν αντιθέσει με τις άλλες διατάξεις στις οποίες η συσχέτιση είναι άλλοτε ανάλογη άλλοτε αντιστρόφως, ανάλογα με τα βάθη.
- ο όσον αφορά το λόγο R_c/H_s προκύπτει σχέση αντιστρόφως ανάλογη με το συντελεστή ανάκλασης στην διατομή Δ_4 όσο αυξάνεται το βάθος. Το ίδιο ισχύει και για το λόγο d/L_0
- ο ακόμα ο λόγος Hs/L_0 παρουσιάζει αντιστρόφως ανάλογη σχέση με το συντελεστή ανάκλασης στις διατάξεις Δ_1 , Δ_2 για όλα τα βάθη
- επιπλέον φαίνεται πως δεν μπορεί να εξαχθεί κάποιο βέβαιο συμπέρασμα για τη συσχέτιση του συντελεστή θραύσης ξ με το συντελεστή ανάκλασης.
- Τέλος φαίνεται πως από την συσχέτιση του συντελεστή ανάκλασης και της παραμέτρου φασματικού εύρους ε,ότι στις δύο τελευταίες διατάξεις που είχαμε λιθορριπή, με αύξηση του ε είχαμε μείωση του Crr.Αντιθέτως στις Δ1 και Δ2 που έχουμε κατακόρυφο μέτωπο, αύξηση του ε οδηγεί σε αύξηση του Crr

Βιβλιογραφικές Αναφορές

- Κουτάντος Ε.Β., 2006, Πειραματική Μελέτη της Ανάκλασης των Κυματισμών σε Κεκλιμένη Ακτή, Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, Ι, τεύχ. 1-2
- Μελισσόβας Σ., 2013, Πειραματική διερεύνηση συντελεστή ανάκλασης σε απορροφητικό κρηπιδότοιχο, Διπλωματική Εργασία ΕΜΠ
- Μουτζούρης Κ., 1994, Εισαγωγή στην ακτομηχανική, Εκδόσεις Ε.Μ.Π., Αθήνα
- Μουτζούρης Κ.Ι., 2007, Θαλάσσια Υδραυλική, εκδόσεις ΕΜΠ, Αθήνα
- Παπαδόπουλος Αγ., 2013, Πειραματική Διερεύνηση Ανάκλασης και Υπερπήδησης Τοίχου Επιστροφής σε Κυματική Δράση, Διπλωματική Εργασία ΕΜΠ
- Τσουκαλά Β.Κ., Γιαντσή Θ., Αναστασάκη Ε.Ν., 2011, Περιγραφή Πειραματικής Διαδικασίας, εκδόσεις ΕΜΠ
- Goda, Y. and Y. Suzuki (1976), *Estimation of Incident and Reflected Waves in Random Wave Experiments*, 15th Coastal Engineering Conference, Hawaii.
- Hasselmann D.E., Dunckel M., Ewing J.A., 1980, *Directional Wave Spectra Observed during JONSWAP 1973*, J. Phys. Oceanogr, 10, 1264-1280
- Hughes S.A., Fowler J.E., 1995, *Estimating wave-induced kinematics at sloping structures*, ASCE, 121(4), p. 209-215
- Mansard E.P.D., Funke E.R., 1980, *The measurement of incident and reflected* spectra using a least square method, Coastal Engineering, Ch.8
- Muttray M., H. Oumeraci H., E. Oever, 2006, *Wave reflection and wave run-up at rubble mound breakwaters*, International Conference on Coastal Engineering. San Diego, September 2006
- Seelig W.N., Ahrens J.P., 1981, Estimation of wave reflection and energy dissipation coefficients for beaches, revetments and breakwaters, CERC Technical paper 81-1, Fort Belvoir, USACEMS, Vicksburg
- Sunderland J., Donogue T., 1998, J. Waterway, Port, Coastal, Ocean Eng. 124, 303
- Zanuttigh B., Van der Meer J.W., Andersen T.L., Lara J.L., Losada I.J., 2009, Analysis of wave reflection from structures with berms through an extensive database and 2D numerical modeling, proceedings of the 31st International Conference on Coastal Engineering, p. 3285-3297
- Zanuttigh B., Andersen T.L., 2010, *Wave reflection in 3D conditions*, coastal engineering, vol. 57, issue 5, may 2010, p. 531-538