
National Technical University of Athens
School of Electrical and

Computer Engineering
Knowledge and Database Systems Laboratory

Geospatial Dataspaces: Location-based services
and integration of User-Generated Content

PhD Thesis
of

Christodoulos Efstathiades
BSc in Computer Science (UCY 2009)

MSc in Networked Computer Systems (UCL 2010)

Athens, May 2016

National Technical University of Athens
School of Electrical and Computer Engineering

Knowledge and Database Systems Laboratory

Geospatial Dataspaces: Location-based services
and integration of User-Generated Content

PhD Thesis
of

Christodoulos Efstathiades
BSc in Computer Science (UCY 2009)

MSc in Networked Computer Systems (UCL 2010)

Supervising Committee: I. Vassiliou
T. Sellis
D. Pfoser

Approved by the Examination Committee, 18th May 2016.

.
I. Vassiliou T. Sellis D. Pfoser
Prof. NTUA Prof. RMIT Assoc. Prof. GMU

.
K. Kontogiannis I. Stavrakas N. Koziris
Assoc. Prof. NTUA Researcher Athena RC Prof. NTUA

. . .
Y. Theodoridis
Prof. UNIPI

Athens, May 2016

. . .

Christodoulos Efstathiades
BSc in Computer Science (UCY 2009)
MSc in Networked Computer Systems (UCL 2010)

© 2016 - All rights reserved
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκ-

λήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση

και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την

προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να

απευθύνονται προς τον συγγραφέα.

Η έγκριση της διδακτορικής διατριβής από την Σχολή Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών του Ε. Μ. Πολυτεχνείου δεν υποδηλώνει αποδοχή των γν-

ωμών του συγγραφέα (Ν. 5343/1932, ΄Αρθρο 202). Οι απόψεις και τα συμπεράσματα που

περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί

ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

i

ABSTRACT

The technological advances during the past years have resulted in the
change of how people use and interact with the internet. Novel Web tech-
nologies and resulting applications have lead to a participatory data ecosys-
tem that when utilized properly will lead to more rewarding services. People
have been using cell phones for social interaction, willingly producing vast
amounts of information. This, in addition to the technological ability of
cell phones to track locations have lead to the consideration of advanced
location-based services that take into account not only the location but all
of the user-generated data that is produced implicitly or explicitly. In this
PhD thesis, we investigate the case of this kind of Location-based Services
and specifically of how to improve the typical location-based queries with
user-generated content taken from sources in the web in the form of texts.
Towards this goal we have focused our research on three main directions:
(a)Proposal of access methods that take advantage of the additional infor-
mation taken from user-generated data, (b) proposal of new location-based
queries on top of the proposed access methods that leverage the use of crowd-
sourced information, (c) efficiency of the execution of the queries leveraging
the state of the art in geo-spatial algorithms, graph algorithms and research
on set similarity. An extensive literature review has been made in for an
in-depth research on the areas of interest towards this PhD thesis. New
access methods and query processing algorithms have been proposed in or-
der to support location-based services that are enriched with user-generated
content that is extracted from web platforms. Experimental evaluation of
the proposed algorithms and techniques prove their efficiency. A framework
that works entirely within the database in order to support distance queries
on large-scale graphs is proposed. Finally, we present a framework for the
collection, analysis, querying and visualisation of social network data, that
aims in the support for the proposed enhanced location-based services.

Key words: User generated content, spatial databases, spatio-textual
queries, knn, similarity search, shortest paths, graph theory

iii

ΠΕΡΙΛΗΨΗ

Οι τεχνολογικές εξελίξεις κατά τη διάρκεια των τελευταίων χρόνων έχουν

οδηγήσει στην αλλαγή στον τρόπο με τον οποίο οι άνθρωποι χρησιμοποιούν

και να αλληλεπιδρούν με το διαδίκτυο. Οι νέες τεχνολογίες ιστού καθώς

και οι εφαρμογές που έχουν προκύψει, οδηγούν σε ένα οικοσύστημα το οποίο

όταν χρησιμοποιηθεί σωστά, θα οδηγεί σε χρήσιμες στον άνθρωπο υπηρεσίες.

Η χρήση των κινητών τηλεφώνων για την κοινωνική αλληλεπίδραση, οδηγεί

στην παραγωγή τεράστιων ποσοτήτων δεδομένων. Αυτό, σε συνδυασμό με την

ικανότητα των κινητών τηλεφώνων να ανιχνεύουν τη γεωγραφική τους θέση,

οδηγεί στην αναζήτηση πιο προηγμένων υπηρεσιών που λαμβάνουν υπόψη όχι

μόνο τη γεωγραφική θέση αλλά και το σύνολο των δεδομένων που δημιουρ-

γούνται από τους χρήστες. Σε αυτή την διδακτορική διατριβή, μελετούμε την

περίπτωση αυτού του είδους των Υπηρεσιών Θέσης και συγκεκριμένα το πώς

μπορούν να βελτιωθούν τα τυπικά ερωτήματα υπηρεσιών θέσης με περιεχόμενο

που προέρχεται από πηγές στο διαδίκτυο μέσω των χρηστών, με τη μορφή των

κειμένων. Προς την κατεύθυνση αυτή έχουμε εστιάσει την έρευνά μας σε τρεις

κύριες κατευθύνσεις: (α) Πρόταση μεθόδων ευρετηρίασης που επωφελούνται

από τις πρόσθετες πληροφορίες μέσω του περιεχομένου, (β) πρόταση νέων

ερωτημάτων και αλγορίθμων για βελτιωμένες υπηρεσίες θέσης, που εκμετ-

αλλεύονται τις νέες μεθόδους ευρετηρίασης, και (γ) την αποτελεσματικότητα

της εκτέλεσης των ερωτημάτων αξιοποιώντας την πιο πρόσφατη έρευνα σε αλ-

γόριθμους εγγύτητας, αλγόριθμους για την εύρεση κοντινότερων μονοπατιών

σε γράφους και την έρευνα σχετικά με ομοιότητα συνόλων. Μια εκτενής

ανασκόπηση της βιβλιογραφίας έχει πραγματοποιηθεί για μια σε βάθος έρε-

υνα σχετικά με τις περιοχές ενδιαφέροντος που αφορούν αυτή τη διδακτορική

διατριβή. Νέες μέθοδοι πρόσβασης και αλγόριθμοι επεξεργασίας επερωτήσεων

έχουν προταθεί για να υποστηρίξουν υπηρεσίες θέσης που είναι εμπλουτισμένες

με περιεχόμενο που παράγεται από χρήστες και εξάγεται από διαδικτυακές

πλατφόρμες. Η πειραματική αξιολόγηση των προτεινόμενων αλγορίθμων και

τεχνικών αποδεικνύουν την αποτελεσματικότητά τους. Προτείνεται επίσης ένα

σύστημα που λειτουργεί εξ΄ ολοκλήρου εντός της βάσης δεδομένων, προκειμέ-

νου να στηρίξει ερωτήματα απόστασης σε γράφους μεγάλης κλίμακας. Τέλος,

παρουσιάζουμε ένα σύστημα για τη συλλογή, ανάλυση, υποβολή επερωτήσεων

και την οπτικοποίηση των δεδομένων των κοινωνικών δικτύων, που στοχεύει

στην υποστήριξη των προτεινόμενων από αυτή τη διατριβή υπηρεσιών θέσης.

v

ACKNOWLEDGMENTS

I offer my sincerest gratitude to my supervising PhD committee Yannis
Vassiliou, Timos Sellis and Dieter Pfoser. They have provided me with the
appropriate guidance and support throughout the years of my research, espe-
cially during times when things seemed to have come to a dead end. Dieter
Pfoser, with whose guidance I have conducted this PhD Thesis has been an
excellent supervisor and has helped me tremendously with his experience,
trust and patience. The thesis would not have been possible without his
help and guidance. I thank him for always finding time in reviewing my
work and giving me valuable advices. Timos Sellis has provided me with the
appropriate funding in order for me to be able to conduct this thesis. His
willingness to help with any problems and concerns that I had is admirable
and I thank him for being an inspiration to me throughout all the years of
my PhD. Yannis Vassiliou gave me the chance to teach for three consecu-
tive years at NTUA, providing me with the trigger to pursue a work that
involves teaching. In addition, especially during the final year of my PhD he
was always willing to help when I needed him.

I would like to thank Prof. Kostas Kontogiannis, Dr. Yiannis Stavrakas,
Prof. Nectarios Koziris and Prof. Yiannis Theodoridis for doing me the
honor of being members to my PhD defence committee. Special thanks go
to Dimitrios Skoutas for his useful advices and collaboration in research,
especially in the last year of my PhD. I would also like to thank Alexandros
Belesiotis a great researcher and friend, with whom we have collaborated
during the final year of my PhD. I would also like thank Alexandros Efentakis
for the collaboration in completing large parts of this thesis.

At this point I would like to thank Prof. Marios Dikaiakos from the
University of Cyprus, who was the first to believe in me during my under-
graduate studies and initiated me in research by employing me as a member
of his lab. I offer to him my sincere gratitude, since he is also the one that
suggested I come to Athens and NTUA to conduct my PhD research.

I feel lucky to have as lab mates Georgios Skoumas and Sophia Karagior-
gou. The endless discussions we had throughout the years, as well as the
pints of beer we had together were oases in times when this PhD seemed a
never ending desert.

I would like to thank my fiancé and companion in life Irene Ioannidou.
She was always there at difficult times, showing love and patience, since I
have been away all these years. I thank her for her dedication and love. I
dedicate this thesis to her, as well as to my parents Andreas and Eleftheria.
My father Andreas is a true inspiration and a representative sample that

hard work pays off. I thank my mother Eleftheria for her love and caring
and for raising me with proper values.

Finally I would like to thank my brother Hariton, my sister Theophano
and all my friends for always being there for me when I needed them.

Athens, May 2016 C. E.

To my family. . .

Contents

1 Introduction 1
1.1 General . 1
1.2 Contributions . 2

1.2.1 Relevant Nearest Neighbor Queries . 3
1.2.2 Similarity Search on Spatio-Textual Point Sets 4
1.2.3 Hub Labels on the Database for Large-Scale Graphs . . . 5
1.2.4 Visualizing and Exploring the Twittersphere 5

1.3 Thesis Outline . 6

2 Related Work 8
2.1 Spatial and Spatio-Textual Search . 8

2.1.1 Spatio-Textual Indexes . 9
2.1.2 Spatial group keyword queries. 11
2.1.3 Nearest Neighbor and Top-k Queries 12
2.1.4 Spatial, Spatio-Textual and Similarity Joins 12

2.2 Geo-Social Query Processing . 15
2.3 User Recommendation Systems . 15
2.4 Shortest Path Computation . 16

2.4.1 Landmarks . 16
2.4.2 Hub Labels . 17
2.4.3 Distance Queries on Graphs . 18

2.5 Location-based services based on Twitter data 20

3 Efficient Processing of Relevant Nearest-Neighbor Queries 22
3.1 Introduction . 22
3.2 Data and k-RNN Queries . 23

3.2.1 Data . 24
3.2.2 k-RNN Queries . 25
3.2.3 Access Methods . 26

3.3 k-RNN Query Processing . 27
3.3.1 Index Synchronization . 28

ix

3.3.2 Index Linking . 32
3.4 k-RNN Query Optimization . 34

3.4.1 Landmarks . 35
3.4.2 ALT algorithm optimization . 38

3.5 Experimental Evaluation . 42
3.5.1 Data . 43
3.5.2 Experimental Setup . 44
3.5.3 Basic k-RNN Query Performance . 45
3.5.4 Tuning Landmark-based Optimizations. 45
3.5.5 Query Performance for Varying k . 48
3.5.6 Assessing the Effect of α . 50
3.5.7 Spatial Grid vs. Graph Partitioning 50
3.5.8 Summary. 51

4 Similarity Search on Spatio-Textual Point Sets 53
4.1 Introduction . 53
4.2 Problem Definition . 55
4.3 Algorithms for STPSJoin . 57

4.3.1 Baseline Approach . 57
4.3.2 The S-PPJ-B Algorithm . 58
4.3.3 The S-PPJ-F Algorithm . 60
4.3.4 The S-PPJ-D Algorithm . 61

4.4 Experimental Evaluation . 63
4.4.1 Experimental Setup . 63
4.4.2 Scalability . 64
4.4.3 Effect of similarity thresholds . 65
4.4.4 Effect of Fanout on S-PPJ-D. 65
4.4.5 Summary. 66

5 Hub Labels on the Database for Large-Scale Graphs 73
5.1 Introduction . 73
5.2 Contribution . 74

5.2.1 Implementation . 75
5.3 Experimental Evaluation . 82

5.3.1 Performance on HDD . 83
5.3.2 Performance on SSD . 86
5.3.3 Summary. 88

6 TwitterViz: Visualizing and Exploring the Twittersphere 89
6.1 Introduction . 89
6.2 The TwitterViz System . 90

6.3 Demonstration. 93

7 Conclusions and Directions for Future Work 95
7.1 Relevant Nearest Neighbor Queries . 96
7.2 Spatio-Textual Similarity Search on Point Sets 97
7.3 Hub Labels on the Database for Large-Scale Graphs 97
7.4 Visualizing and Exploring the Twittersphere 98

Bibliography 99

List of Figures

3.1 “Closeby” Points Of Interest . 25
3.2 Relevance Graph and spatial “map” data . 26
3.3 Spatial expansion . 28
3.4 Graph expansion and relevance score . 30
3.5 GR-Link method using Grid POIs in Graph search 34
3.6 GR-Link-LMmethod using Landmark nodes on the Graph

periphery . 39
3.7 GR-Link-LM ∗ method: ALT algorithm significantly

optimizes the relevance graph search . 42
3.8 Intuition for A∗/ALT search: Prune the graph space and go

faster from s towards the query POI’s q expansion 43
3.9 Synthetic dataset . 44
3.10 Naive, Hybrid and Ideal Index I/O performance 46
3.11 Real Dataset: varying k . 47
3.12 Varying the number of Landmark nodes N , I/O and CPU

Performance. Landmarks are selected using the farthest
method (k=60) . 48

3.13 Varying the number of Landmark nodes N , I/O and CPU
Performance. Landmarks are selected using the partitioning -
highest degree method (k=60) . 49

3.14 Varying the number of expanded ALT nodes σ, I/O and
CPU Performance. Different k values show different optimal
σ values. 50

3.15 GR-Link, GR-Link-LM , GR-Link-LM ∗and Ideal Index I/O
performance . 51

3.16 CPU performance, varying k . 51
3.17 Varying preference parameter α . 52
3.18 Partitioning: Spatial Grid vs. Relevance Graph 52

4.1 STPSJoin query scenario. Multiple objects are spatially or
textually similar, but only users u1 and u3 have objects
which are mutually similar. 54

xii

4.2 PPJ-C and PPJ-B grid traversal strategies examples.
Objects associated with user u (u′) are depicted by squares
(diamonds) respectively. Object colors represent whether the
search has determined if an object matches with objects from
the other user. Matched objects are painted black, objects
that do not match are painted white, while objects whose
state has not been determined are painted grey. PPJ-B has
determined the state of every object in cells 1 to 15, while
PPJ-C the objects until cell 10. 67

4.3 Spatio-textual structure for S-PPJ-F and S-PPJ-D. 69
4.4 Scalability results for the GeoText, Flickr and Twitter

datasets (parameter defaults: GeoText: εloc = 0.001,
εdoc = 0.3, εu = 0.3; Flickr εloc = 0.001, εdoc = 0.5, εu = 0.5;
Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4). 70

4.5 Varying the similarity thresholds (GeoText: 6, 000 users,
107, 941 objects; Flickr: 11, 000 users, 74, 8745 objects;
Twitter: 20, 000 users, 4, 988, 090 objects). 72

4.6 Tuning the R-Tree fanout parameter. 72

5.1 A sample Graph G and the created hub-labels 75
5.2 Experiments on HDD for vertex-to-vertex . 84
5.3 kNN Experiments on HDD for COLD and HLDB 85
5.4 RkNN Experiments on HDD for COLD . 85
5.5 One-to-many experiments for COLD . 86
5.6 SSD vertex-to-vertex . 86
5.7 kNN and RkNN SSD performance . 87

6.1 TwitterViz Architecture and Data Model for querying the
Twittersphere . 90

6.2 TwitterViz User Interface . 92
6.3 Use Case: Find paths between co-tagged users 94

List of Tables

3.1 Calculation of relevance score based on Figure 3.2 example . . . 31
3.2 Overhead for the number of landmarks . 47

4.1 Experimentation datasets, number of objects and users, and
mean (standard deviation) for descriptive metrics. 71

5.1 A sample Graph G and its adjacency list . 75
5.2 The forward table used in HLDB for the sample graph G 76
5.3 The forwcold table used for COLD for the sample graph G . . . 76
5.4 Necessary data structures for the sample graph G,

P = {4, 10, 12} and one-to-many, kNN and RkNN queries 77
5.5 The knntab table used in HLDB for the sample graph G,

k = 2 and P = {4, 10, 12} . 79
5.6 The knntab table used in COLD for the sample graph G,

k = 2 and P = {4, 10, 12} . 79
5.7 The knnres table used in COLD for RkNN queries, the

sample graph G, k = 1 and P = {4, 10, 12} 81
5.8 Networks graphs statistics . 82

1

Chapter 1

Introduction

1.1 General
The technological advances during the past years have resulted in the change
of how people use and interact with the internet. Novel Web technologies
and resulting applications have lead to a participatory data ecosystem that
when utilized properly will lead to more rewarding services. People have been
using cell phones for social interaction, willingly producing vast amounts of
information. This, in addition to the technological ability of cell phones to
track locations have lead to the consideration of advanced location-based
services that take into account not only the location but all of the user-
generated data that is produced implicitly or explicitly. In this PhD thesis,
we investigate the case of this kind of Location-based Services and specifically
of how to improve the typical location-based queries with user-generated
content taken from sources in the web in the form of texts.

Research in the area of dataspaces [FHM05] regarding the integration
of diverse data sources has mainly been focused on general subjects such
as entity recognition and implicit handling of the uncertainty around vague
objects. The main focus of this PhD project is to investigate as to how these
concepts can be applied to geospatial and spatio-textual data where high
volumes are coupled with highly particular data. Specifically, we will focus
on how spatial data can be coupled with non-spatial characteristics of data
that are a result of integrating various user-contributed data sources.

Location-based Services have been at the forefront of mobile computing
as they provide an answer to the simple question as to what is around me.
A lot of effort has been dedicated to improving such services typically by
improving the selectivity of each request. Rating sites augment POIs with
quality criteria. Preferences, when available, add further, user specific pa-

1

rameters to a request. Context limits the available information based on
situational choices. However, what has not been captured yet are user ex-
periences per se, i.e., assessing what people want in terms of what people in
the same situation have done in the past.

User experiences can be extracted from various sources. With the pro-
liferation of the Internet as the primary medium for data publishing and
information exchange, we have seen an explosion in the amount of online
content available on the Web. Thus, in addition to professionally-produced
material being offered free on the Internet, everybody is able to make its
content available online to everyone.

An example of such User-Generated Geospatial Content (UGC) is travel
blogs, which are web sites where people share their experiences from trips
they make around the world. A large amount of useful information can be
extracted from the description of a journey, such as spatial content referring
to geographic locations people have visited during their journey and a lot
of semantically rich information which are closely related to that spatial
content.

Another source rich of crowd-sourced data are location-based social net-
works (LBSNs) and micro-blogging platforms such as Twitter. Micro-blogging
platforms, have become a very popular communication tool, where millions
of users share opinions on different aspects of everyday life. Twitter reports
over 100 million active users and 500 million tweets exchanged every day.
This huge amount of data and the fact that they are offered publicly in real
time make their management and analysis challenging. This information,
along with the spatial characteristics of each entity in the social network can
be used in order to construct interesting and useful queries.

This PhD thesis proposes access methods and queries that use the user-
generated content found on the web as well as data taken from micro-blogs.
New querying algorithms are proposed in order to support location-based
services. The efficiency of the querying algorithms is achieved by the combi-
nation of state of the art shortest path algorithms on graphs, set similarity
searching algorithms and spatial querying algorithms.

1.2 Contributions
The general framework for the contributions of this thesis lies in proposing
enhanced location-based services and algorithms that combine spatial infor-
mation with other types of user-generated content. In addition, we propose a
database framework that can support distance queries on large-scale graphs
and provides off-the-shelf tools to be used by applications. Below, we briefly

each one of the contributions of the thesis per section.

1.2.1 Relevant Nearest Neighbor Queries
The first contribution deals with proposing a new type of enhanced location-
based query namely k-Relevant Nearest Neighbor query (kRNN). We propose
indexing schemes and algorithms for searching in a combined environment
for close by points of interest (POIs), also taking into account the relevance
between POIs.

In order to find relevant POIs, we leverage the use of travel blogs. Travel
blogs contain rich user-generated geo-spatial content that allows us to extract
meaningful information. Specifically, we introduce the concept of a Link-Of-
Interest (LOI) between two POIs to express the respective relevance, i.e.,
find related nearest POIs to my location. Relevance is inferred by extracting
pairs of POIs that are frequently mentioned together in the same context by
users. In our work, we extract this information (co-occurrence of POI pairs)
by parsing travel blogs and using the page structure to derive relevance. This
relevance information can be represented by means of a graph in which POIs
represent nodes and LOIs are links. At the same time we need to capture
the spatial properties of POIs. The challenge in this work is as to how we
efficiently combine relevance captured by a graph and the spatial properties
captured by means of a spatial index.

We introduce the k-RNN query as follows. Given a query point that is
represented as a POI, find the k relevant nearest neighbors by taking into
account both spatial proximity and relevance. Essentially, the query takes
into account how relevant a close by POI is to the query point, and combining
this information with the spatial proximity between the two POIs, computes
a combined RNN score denoting the Spatial-Relevance Distance between two
points. We provide indexing schemes as well as variations of the searching
algorithms in order to establish the efficiency during the search.

Extending this first work, we deal with optimizing the current approach.
A major drawback in the efficiency of our algorithms is the search on the
Relevance Graph. A step to the optimization of the proposed algorithms,
is to facilitate the current research in graph theory, in order to use current
state-of-the art approaches on computing shortest paths and tune them to the
context of our work. During the search on the Relevance Graph, we currently
compute the score of a node compared to the query POI by searching naively
on the graph. We propose new algorithms that leverage the use of Landmarks
on the graph, by conducting a pre-computation step. Using landmarks, in
combination with the A* search, we achieve high efficiency compared to our
previously proposed methods.

Our work on proposing the kRNN query, indexing methods and algo-
rithms are presented in [EP13b]. The work on optimizing the kRNN query-
ing algorithms leveraging the use of shortest path algorithms is presented in
[EEP].

1.2.2 Similarity Search on Spatio-Textual Point Sets
Spatio-Textual Search has attracted attention in the past years due to the
variety of practical applications. Several location-based services available
on the web offer simple spatio-textual queries in order to return to a user
close by POIs also considering textual descriptions during query time. In the
second contribution, we address the problem of similarity search for spatio-
textual entities, where each entity is represented by a set of spatio-textual
objects. In particular, we introduce the Spatio-Textual Point-Set Similar-
ity Join (STPSJoin) query. Given sets of spatio-textual objects, each one
belonging to a specific entity, this query seeks pairs of entities that contain
similar spatio-textual objects.

The spatio-textual point set similarity join can naturally model, for ex-
ample, the search for users, which exhibit similar behaviour according to the
spatio-textual objects they generate. For instance, given the locations and
nature of store chains as spatio-textual objects, we can formalize the prob-
lem of identifying similar franchises and support site analysis for a franchise
expansion.

To the best of our knowledge, current work treats such documents inde-
pendently of the entity responsible for their generation. Different documents
are treated as independent objects, even though they may have been created
by the same user. In this paper, we consider each user to be associated with
a set of documents, each one of which has spatial and textual properties, and
focus on queries that require the identification of the users whose documents
better satisfy some textual and spatial properties or pairs of users who are
associated with similar documents.

To efficiently process spatio-textual point-set similarity joins, we adapt
and extend the state-of-the-art algorithms for processing similarity joins for
single points. The proposed algorithms make use of spatio-textual indexes in
conjunction with an early termination and a filter-and-refinement strategy
to effectively prune the search space, reducing the execution time by orders
of magnitude. In addition, we present an alternative version of the best per-
forming algorithm, which relies on an R-tree instead of a grid for the spatial
indexing. The experimental evaluation is conducted using three large, real-
world datasets. The results of the experimental evaluation demonstrate that
the proposed algorithms achieve an order of magnitude and above improve-

ment in terms of execution time when compared to the baseline method. The
results of this work are presented in [EBSP].

1.2.3 Hub Labels on the Database for Large-Scale Graphs
Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks, the
emergence of social networks has generated massive un-weighted graphs of
interconnected entities. On such networks, the distance between two vertices
is an indication of their closeness, i.e., for finding users closely related to each
other or extracting information about existing communities within the social
media users. Although we may always use a breadth first search (BFS) to
calculate the distance between any two vertices on such graphs, that approach
cannot facilitate fast-enough queries on main memory or be easily adapted
to secondary storage solutions.

Considering the drawbacks of previous methods, our third contribution
presents a database framework that may service multiple distance queries
on massive large-scale graphs. Our pure-SQL COLD framework (COm-
pressed Labels on the Database) may answer multiple distance queries (point-
to-point, kNN, RkNN and one-to-many queries), rendering it a complete
database solution for a variety of practical applications on massive, large-
scale graphs. Furthermore, it may be used in order to support for more
advanced location-based services such as spatio-textual queries or geo-social
queries. Our extensive experimentation will show that COLD outperforms
previous solutions, including specialized graph databases, on all aspects (in-
cluding query performance and memory requirements) while servicing a larger
variety of distance queries, making it the best overall solution for servicing
scalable, real-time applications operating on large-scale graphs. In addition,
COLD is implemented entirely on a popular, open-source database engine
with no third-party extensions and thus our results are easily reproducible
by anyone. The results of this work are presented in [EEP15].

1.2.4 Visualizing and Exploring the Twittersphere
Micro-blogging platforms and social networks are a rich source of spatio-
temporal information, which, together with additional information that can
be mined from the social network’s structure, makes them extremely valuable
for monitoring users’ opinions, sentiments and behaviour, and, consequently,
making more timely and effective decisions. In this fourth contribution, we
present TwitterViz , a complete solution for the visualization and analysis of

spatio-temporal Twitter data, in combination with the analysis of the Twitter
graph, by leveraging the use of a popular graph database and using state of
the art visualization tools that aim at providing insights to the non-expert
user.

The main motivation for the development of the TwitterViz framework
stems from the fact that, although there exists a variety of applications that
use data from twitter in order to provide useful analytics, no such a tool
exists to provide a wide range of functionalities in a unified environment.
TwitterViz manages to leverage both the spatio-temporal characteristics as
well as the social aspects of the twitter data and is successful in assisting the
non-expert in exploring the Twittersphere. TwitterViz can be extended to
support more complex spatio-temporal and geo-social queries on the twitter
multi-modal graph in order to allow for a more rich analysis. The results of
this work are presented in [EASV15].

1.3 Thesis Outline
This PhD thesis is stuctured as follows:

Chapter 2 presents a literature review of the most recent advances in
location-based services, as well as a review of shortest path techniques and
algorithms on graphs.

Chapter 3 presents our initial work towards proposing a new type of query,
namely the k-Relevant Nearest Neighbors query, that leverages the use of
user-generated data from travel blogs in order to suggest places to visitors
in specific areas. The second part of this work deals with optimizing the
proposed querying algorithms for the k-RNN query and proposes additional
algorithms that leverage the use of state of the art graph searching methods.

Chapter 4 proposes access methods and new types of queries that leverage
the use of data from micro-blogs (such as Twitter). It deals with the area of
Spatio-Textual Similarity Joins and proposes a new type of join query that
deals with finding pairs of point sets.

Chapter 5 presents the COLD framework that allows for scalable and
efficient distance queries on graphs, entirely within the database, allowing
the user to use off-the-shelf tools to support distance queries on applications.

Chapter 6 proposes an application that could support all of the proposed
location-based services in this thesis. It presents a user-friendly tool that
visualizes and allows for the exploration and analysis of data from twitter.
It is a framework for the non-expert user and allows exploring and analyzing
huge streams of micro-blogging data using simple, unobtrusive yet powerful
tools and can essentially support our proposed queries.

Chapter 7 concludes and provides directions for future research.

Chapter 2

Related Work

In the following we discuss the related to our work research in order to lay
the foundation for the contributions of this thesis. Works that relate to
this thesis are of two main categories: (a) Research that aims in combining
spatial data with other forms of data such as textual descriptions of points
in space or social connectivity, (b) research related to the computation of
the shortest path on large-scale graphs. These two research areas are used in
combination in the contributions of this thesis in order to propose advanced
location-based services that combine different aspects of the characteristics
of points in space. We discuss the recent advances and how they relate to
each contribution.

We first describe spatial and spatio-textual search in the form of kNN,
top-k and join queries. We then discuss the recent advances in geo-social
query processing and user recommendation systems. In the last part, we
discuss the recent advances in the computation of the shortest path on large
scale graphs. When it is applicable, we discuss how this works relate to our
contributions and how they differ.

2.1 Spatial and Spatio-Textual Search
Spatial data management has been in the forefront of database research for
many years. The database community has given much attention in provid-
ing indexing methods so that a database can quickly and efficiently present
spatially close areas or points. An index is a data structure that allows for
the fast and efficient retrieval of information located in a data source [Clo05].
Different database applications require different kinds of indexes. As men-
tioned in [EN06], Spatial Databases provide concepts for databases that keep
track of objects in a multidimensional space. Typical queries for a spatial

8

database include:

Range Queries Find all the objects within a given area or region.

Nearest Neighbor Queries Find the objects that are closer to a given
point or area.

Spatial Joins Determines for two sets of spatial objects all objects in a
relationship described by a spatial predicate.

For these queries to be answered and to retrieve the required information
efficiently, Spatial Index structures need to be built, in order to support
this kinds of queries. A spatial access method organizes spatial objects in a
particular space in a way so that, given a query, only specific subsets of all
of the objects stored in the spatial database will be considered as a possible
answer [G9̈4]. Without a spatial index, all objects in a database need to be
checked whether they meet a spatial selection criterion (for example whether
they are located within a given distance from a given query point). Typical
spatial index structures include the R-tree [Gut84a] and its variations (such
as the R*-tree [BKSS90]).

2.1.1 Spatio-Textual Indexes
Nowadays, the Internet is comprised of a large amount of information in
the form of text documents that are generated mostly by every day users
and are therefore unstructured. Additionally, spatial characteristics of these
web documents are available, such as the location where a specific document
refers to. Also, a lot of spatial information is indirectly contained into a
document, such as place names and postcodes. Spatio-Textual Search is a
recent subject studied in the past years that aims in combining spatial search
with textual descriptions. According to [VJJS05], studies in this area try to
make web search geographically-aware, thus enabling it to index and retrieve
documents according to their geographic context. Current research focuses
on combining spatial and textual indexes and proposes hybrid methods to
support geographical awareness.

In order to facilitate spatio-textual search, several indexes have been pro-
posed in the recent literature. Current approaches are dealing with merging
R-trees [Gut84a], regular grids, and space-filling curves with a textual in-
dex such as inverted files or signature files. The most common combination
of indexes used are R-tree based structures with inverted files. On the one
hand, R-trees, such as the R*-tree [BKSS90] provide a very efficient way of
indexing and searching for spatial objects, and on the other hand inverted

files an efficient way of indexing text documents. One of the first works in
Spatio-Textual indexing was conducted in the context of the SPIRIT search
engine [VJJS05], that takes as input a set of keywords and a set of spatial
predicates. The engine returns documents that satisfy both sets (keywords
and spatial predicates). SPIRIT facilitates the use of regular grids as spa-
tial indexes and inverted files for the indexing of the documents. Following
this idea, Zhou et al. [ZXW+05] present hybrid indexing approaches com-
prising of R*-trees [BKSS90] for spatial indexing and inverted files for text
indexing, suggesting the use of R*-trees instead of regular grids. Several ap-
proaches leveraging the combination of R*-trees and inverted files followed
([ZXW+05, CJW09, RJGJN11]). Chen et al. [CSM06] used space-filling
curves for spatial indexing, whereas in [DFHR08], R-trees are combined with
signature files in the internal nodes of the tree, so that a combined index is
created. The algorithm in [HS99] is used for incremental nearest neighbor
queries. Cong et al. [CJW09] propose the IR-tree index, creating an inverted
file for each node of an R-tree, again using the incremental k-NN algorithm
from [HS99]. Here, linear interpolation is used [MSA05], in order for the spa-
tial distance to be combined with the textual distance and therefore produce
a combined score. In our work, we use a similar approach when combining the
relevance score with spatial distance. A very related approach to [CJW09] is
presented in [LLZ+11]. Rocha-Junior et al. [RJGJN11] propose the hybrid
index S2I, which uses aR-Trees [PKZT01]. This work takes into considera-
tion the fact that the document frequency of terms in a corpus follows the
Zipf’s law, and therefore most of the terms occur infrequently while there
exist some terms that occur frequently. Consequently, terms with different
document frequency should be stored differently. The proposed hybrid index
is called S2I. The authors claim to outperform all other proposed approaches
in this problem domain.

Our work in Chapter 3 differs significantly in that we do not consider
textual similarity, but use the co-occurrence of POIs in text as an indicator
for relevance. This relevance information (and no actual textual information)
is then combined with the spatial aspect of the POIs to retrieve relevant
nearest neighbors. To the best of our knowledge, the most related work that
combines user experiences and spatial data is [CCJ10], which introduces the
notion of prestige to denote the textual relevance between nearby to the
query point objects. The prestige from a given query point is propagated
through the graph, an information that is later used to extend the IR-tree
[CJW09]. The prestige is calculated by a personalized PageRank algorithm
[JW03]. Compared to our work in Chapter 3, our index does not include a
factor of randomness in the relevance score calculation as this is the case with
PageRank-based algorithms. Additionally, Cao et al. assume that similar

objects often co-locate, so they create sub-graphs based on this restriction. In
the case that a query is so specific in the extend that it limits the query results
(based on the text terms given), then this makes sense. However, in our case,
the problem is to aid a traveller in visiting important places throughout a
city or country. In this case, spatial limitations cannot be strictly provided, a
fact that renders the creation of relevance sub-graphs based primarily on the
spatial distance inadequate. Additionally, the algorithms they propose do
not support updates on the insertion of new points. In general, the notion of
relevance in [CCJ10] is based on different measures that are query dependent
(textual relevance), a fact that is not being considered in our work. Our query
considers only the location of a query point. Relevance is only derived from
the collected dataset.

In the present work, relevance is computed by counting the co-occurrences
of POIs in the same paragraphs of texts. In spite of the simplicity of this
metric, recent results show that POIs co-occur in documents when they are
spatially close, have similar properties, or interact with each other [LWK+14].
On a similar note, Skoumas et al. [SPK13] show that textual narratives can
be used to derive spatial relationships between POI pairs. In their analysis,
they go even further and use this textual information as a means to per-
form qualitative positioning, i.e., discovering the location of POIs only using
spatial relationships mentioned in texts.

2.1.2 Spatial group keyword queries.
Another type of spatio-textual queries is spatial group keyword queries such
as [ZCM+09, ZOT10, CCJO11, LWWF13]. These aim at finding groups of
spatio-textual objects that collectively satisfy a number of given keywords,
while minimizing the collective distances between points in the group and
the given query point. [ZCM+09, ZOT10] introduce the bR*-tree structure
in order to solve the mCK query. [CCJO11] introduces two spatial group
keyword queries. Both retrieve a group of objects that cover a given set of
keywords; the first requires that the total distance between the objects in the
group and the query point is minimized, while the second seeks to minimize
the sum of the maximum distance between a point in the group and the
query point and the maximum distance between any objects in the group.
[LWWF13] revisits the spatial group keyword query with the maximum sum
cost and also proposes a variation based on minimizing the maximal distance
between any two objects of the group or any object of the group and the query
point.

Although the aforementioned queries involve searching for groups of ob-
jects, they differ from the problem addressed in our work in Chapter 4. Our

proposed STPSJoin query is not constrained by an input query point nor
a given textual description. In addition, groups of objects are predefined
according to the user they are associated with. STPSJoin considers spatial
and textual distances of objects across groups, rather than within groups.
Finally, STPSJoin deals with the problem of spatio-textual join, which is
fundamentally different from range and kNN queries.

2.1.3 Nearest Neighbor and Top-k Queries
In the context of efficient kNN query processing, [NZTK08] propose the
V*-Diagram to compute moving kNN queries, i.e., assessing the kNNs of
a moving query point). This approach provides incremental evaluation of
the kNN set, but differs significantly from our problem, since we do not take
moving objects into consideration. [KOTZ04] investigate approximate kNN
queries for data streams and propose the DISC technique to answer the e-
approximate kNN problem (ekNN) using space-filling curves. e refers to an
error by which the result set is bounded. This work differs from ours, since
we do not take into neither data streams or approximate results. [SQZZ15]
propose the k-nearest neighbor temporal aggregate query (k-NNTA), which
computes the nearest POIs to a query point based on spatial distance and
the number of check-ins for query point in a given time interval. A weighted
sum is used compute a combined ranking score, which is similar to our work,
but used in a different problem setting.

The problem of combining relevance and spatial distance in Chapter 3 is
closely related to the problem of computing top-k queries that are based on
different subsystems such as studied by Fagin et al. [Fag99, FLN03]. The
difference to our approach is that we have a specific focus on spatial data
and on how to combine the result sets. Also, in our final k-RNN list we have
the exact scores, compared to the approximate scores of the NRA algorithm.

2.1.4 Spatial, Spatio-Textual and Similarity Joins
This section overviews works on set similarity joins, spatial joins, and spatio-
textual joins. These works form the basis for our proposed algorithms on
spatio-textual point set joins.

2.1.4.1 Similarity Joins

Similarity joins seek to identify pairs of objects from given sets that satisfy
a predefined similarity threshold. The main application for textual set simi-
larity join is duplicate detection across sets of documents. The set similarity

join task is computationally challenging; a naive approach requires the con-
sideration of the similarity between every possible pair of objects across sets.
Set similarity joins have been extensively studied, especially with respect
to textual characteristics, and multiple optimizations have been proposed.
[SK04] uses an inverted index based probing method to reduce the number
of potential candidates. [CGK06] observes that the prefixes of potential can-
didates must satisfy a minimal overlap. The ALL-PAIRS algorithm proposed
by [BMS07] further optimizes the size of the inverted index, by visiting the
tokens associated with every object with respect to their precomputed fre-
quencies as well as reducing the size of the indexing prefix by ordering the
objects with respect to their size. PPJOIN+ [XWL+11] is the state-of-the-art
algorithm for set similarity joins. It builds on ALL-PAIRS and introduces a
positional filtering principle which exploits the ordering of tokens, and op-
erates both on the prefix and the suffix of the tokens of objects. PPJOIN+
is internally used as the final step of our algorithms in order to efficiently
compute textual similarity joins.

2.1.4.2 Spatial Joins

Data structures and algorithms for spatial joins have been widely studied in
the literature. A relevant survey can be found in [JS07]. Spatial joins have
been used in combination both with space partitioning as well as with data
partitioning structures. The state of the art algorithm for spatial joins has
been proposed in [BKS93]. The algorithm traverses the R-Tree starting from
the root node and checks for pairs of child nodes with intersecting ε-extended
minimum bounding rectangles (MBRs). An ε-extended rectangle is obtained
by extending an MBR in every dimension by a given spatial threshold ε.
Intersecting nodes are discovered following the plane sweeping method. We
utilize this algorithm to prune the search space when searching for spatially
relevant users using an R-Tree in Chapter 4.

The problem of spatial joins over point sets has not received much at-
tention. Adelfio et al. [ANS11b, ANS11a] focus on similarity search for a
collection of spatial point set objects based on the Hausdorff distance. The
motivation behind their work is highly relevant to our proposed STPSJoin
query. However, there are important differences. We consider web objects
with spatio-textual characteristics and measure the distance among point sets
using a different similarity measure. The Hausdorff distance measures the
maximum discrepancy between two point sets, whereas in our work we use a
measure inspired by the Jaccard coefficient which focuses on the amount of
objects from different point sets that are similar.

2.1.4.3 Spatio-Textual Joins

Spatio-textual joins have attracted some attention recently with a specific
focus on joins for spatio-textual points. This process is primarily executed
for the purpose of duplicate detection. The work in [BCR11] is one of the first
examples of spatio-textual join methods. They propose the SpSJoin query
that follows the MapReduce paradigm for scalable computation of spatio-
textual join queries. The spatio-textual join query has been also studied
in the form of spatial regions associated with textual descriptions [LLF12,
FLZ+12]. Pruning strategies, based on spatial and textual signatures of
objects, are employed to filter the number of candidates. [RLS14] presents
grid and quad tree based indexes in order to efficiently partition the database
either in a local or global fashion. They also explore different dimensions of
the problem, including the use of PPJOIN+ and All-Pairs for text similarity
joins, as well as single and multi-threaded approaches.

Bouros et al. [BGM12] propose the state of the art spatio-textual join
algorithms. Their work builds on top of PPJ, a baseline method that extends
PPJOIN+ to account for objects with spatio-textual characteristics and a given
spatial distance threshold. The algorithms PPJ-C and PPJ-R extend PPJ
by leveraging a grid and an R-Tree based index respectively. Their PPJ-C
algorithm utilises a dynamic grid partitioning in order to focus the search for
matching objects. A dynamic grid is constructed at runtime, with cell size
the exact size of the spatial threshold parameter of the join query. The cells
in the grid are traversed in a sequential order, starting from the left column
in the lower row. When the right-most cell in a row is traversed, the search
continues with the left-most cell of the higher row. The objects within each
cell are examined against the objects of the same cell, as well as every adjacent
cell that has already been traversed. This process is achieved using PPJ. This
strategy ensures that objects with distant location are never evaluated, and
at the same time no duplicate evaluations are performed. PPJ-R is built on
top of an R-Tree index. This algorithm traverses the nodes of the R-Tree
structure utilising the spatial join algorithm presented in [BKS93] in order
to prune the search space. Finally, when PPJ-R reaches the leaf nodes of
the tree,PPJ is used in order to identify pairs of objects that exceed a given
spatio-textual similarity score.

Work on spatio-textual joins is highly relevant to our approach. However,
the focus is different. To the best of our knowledge, current research in the
field has focused on spatio-textual similarity joins among points. On the
contrary, our work introduces spatio-textual similarity joins among point
sets. Point sets are relevant when objects are grouped with respect to a
common characteristic. In this case, the focus is on identifying similarities

among groups, rather than single elements. For instance, in the case of web
objects, a group consists of objects associated with the same user. In this
case, point-set joins identify user similarity instead of object similarity.

2.2 Geo-Social Query Processing
Our work is also related to the area of Geo-Social query processing. Geo-
Social networks are graphs that consist of users (nodes) and friendships with
other users (edges). The nodes of the graph have spatial properties (loca-
tion). A first work towards Geo-Social query processing [APP13] introduces
a general framework to query a geo-social network. The social and geo-
graphical aspect are considered separately and as a result the answers to
their proposed queries are not ranked based on spatial and social dimensions
simultaneously. On a similar note, [AAP15] propose ranking functions to
assign scores to geo-social nodes given a query location.

In combining spatial and social proximity, [MLTM15] compute top-k users
based on a minimized weight function combining Euclidean distance and dis-
tance in a social graph. Somewhat similar to this work, spatial and graph
distance are combined in a scoring function. However, the actual graph is
different in that we use a weighted graph. Related to weights is also how
the data is updated. While new POIs (nodes) can be added as well to the
graph, the bulk of the updates will come from newly discovered relevance
information, which requires frequently updating the weights of the graphs.
Further, our scoring function combines edge weights with graph proximity,
which makes it considerably harder to add such relative graph distance in-
formation to (the nodes of) a spatial index such as proposed in their work.

2.3 User Recommendation Systems
Matching users based on their location history is one of the main tasks of
recommendation engines in location-based social networks [BZWM15]. User
location histories have been used for identifying local experts, recommending
friends, and extracting local communities. It has been revealed by several
studies that location information plays a vital role in determining such rela-
tionships [CTH+10, DKKLN11]. Typically, these approaches take into con-
sideration additional information, such as location ratings, semantics of lo-
cation descriptions and tags, sequence of visit or duration of stay. [LZX+08]
computes user similarity based on matching sequences of locations visited
by the users, to find users with similar travelling patterns. Similar works

([LZX+08]) deal with finding users with similar patterns in behavior. This is
further extended in [ZZM+11], to consider different spatial granularities and
the popularity of visited locations. Semantic information about visited loca-
tions is additionally considered in [XZLX10, YLL+10]. However, the latter
convert GPS trajectories to semantic trajectories, thus finding similar users
based on patterns of activities and behaviour, without necessarily requiring
geographic proximity.

[GSWY13] study several features to identify users that are similar to a
given user. Their methods are based on a logistic regression model. Accord-
ing to their work, a single and in many cases imprecise user location feature
(such as city or country) is not effective. In our work in Chapter 4, we focus
on multiple geo-tagged objects for each user, which may provide a better
insight into location-based user similarity.

2.4 Shortest Path Computation
Shortest path computation is the process during which one aims in computing
the distance between nodes in a graph. This thesis facilitates the use of two
main concepts for the computation of the shortest path: (a) Landmarks and
(b) hub labels. These two families of algorithms require the pre-processing
of the data in order to be able to provide fast answers of distance queries on
large-scale graphs.

2.4.1 Landmarks
In our work, we use landmarks as a means to optimize k-RNN processing in
Chapter 3. Landmarks in relation to shortest-path problems were introduced
in [GH05]. In this work, a small set of vertices called landmarks is chosen
and for each vertex of the graph, the authors precompute distances to and
from every landmark. The resulting method is the seminal ALT algorithm.

Potamias et al. in [PBCG09] significantly augmented the aforementioned
concept of landmarks in various ways. To the best of our knowledge, they
were the first to claim that the upper bounds obtained by the landmarks pre-
processing phase are also important. They expand the usage of landmarks
to undirected unweighted graphs (similar to our work). As a result their
preprocessing phase is faster and easier, as it suffices to calculate distances
from landmarks to all other vertices. Although there were many important
works utilizing the concept of landmarks in various types of graphs, such as
[TACGBn+11] and [GBSW10], our work is heavily influenced and expands
the aforementioned research results of Goldberg and Potamias. We use undi-

rected graphs (similar to [PBCG09]) and utilize lower bounds obtained by
the preprocessing phase of landmarks, in order to exclude neighbors that
cannot possibly belong to the relevant neighbors set. Moreover, we use a
variant of the ALT algorithm of [GH05] to accelerate graph traversal from
each spatial seed towards the query point. Results of of the experimental
evaluation in Chapter 3 clearly demonstrate the correctness and efficiency of
our choices.

The preprocessing stage involved in landmarks based estimation methods
is divided in two phases, the landmarks selection process and the computa-
tion of distances from landmarks to all other graph vertices (for undirected
graphs). As far as the landmark selection process is concerned, many alterna-
tive strategies have been suggested in [GH05], [GW05], [PBCG09]. As Delling
et al. suggest in [DW07], no technique picks landmarks that universally yield
the smallest search space for random queries (although some perform better
than others). Therefore in our work we utilize the simplest strategy, which
is the farthest landmark selection strategy introduced in [GH05]. According
to this, we pick a start vertex at random and a vertex v1 that is farthest
away from it. We add v1 to the set of landmarks. Proceed in iterations, at
each iteration finding a vertex that is farthest away from the current set of
landmarks and adding the vertex to the landmarks set. The intuition behind
this procedure is that we select landmarks to the periphery of the graph.

2.4.2 Hub Labels
Our work in Chapter 5 builds upon the 2-hop labeling or Hub Labeling
(HL) algorithm of [GPPR01, CHKZ02] in which, preprocessing stores at
every vertex v a forward Lf (v) and a backward label Lb(v). The forward
label Lf (v) is a sequence of pairs (u, dist(v, u)), with u ∈ V . Likewise,
the backward label Lb(v) contains pairs (w, dist(w, v)). Vertices u and w
are denoted as the hubs of v. The generated labels conform to the cover
property, i.e., for any s and t, the set Lf (s) ∩ Lb(t) must contain at least
one hub that is on the shortest s − t path. For undirected graphs Lb(v) =
Lf (v). To find the network distance dist(s, t) between two vertices s and t,
a HL query must find the hub v ∈ Lf (s) ∩ Lb(t) that minimizes the sum
dist(s, v) + dist(v, t). By sorting the pairs in each label by hub, this takes
linear time by employing a coordinated sweep over both labels. The HL
technique has been successfully adapted for road networks in [ADGW11,
ADGW12, DGW13, AIKK14]. In the case of large-scale graphs, the Pruned
Landmark Labeling (PLL) algorithm of [AIY13] produces a minimal labeling
for a specified vertex ordering. In this work vertices are ordered by degree,
whereas the work of [DGPW14] improves the suggested vertex ordering and

the storage of the hub labels for maximum compression. The HL method
has also been used for one-to-many, many-to-many and kNN queries on road
networks in [DGW11] and [DW13] respectively. [EP14b] proposed ReHub, a
novel main-memory algorithm that extends the Hub Labeling approach to
efficiently handle RkNN queries. The main advantage of the ReHub algorithm
is the separation between its costlier offline phase, which runs only once for
a specific set of objects and a very fast online phase which depends on the
query vertex q. Still, even the costlier offline phase hardly needs more than
1s, whereas the online phase requires usually less than 1ms, making ReHub
the only RkNN algorithm fast enough for real-time applications and big,
large-scale graphs.

Regarding secondary-storage solutions, Jiang et al. [JFWX14] propose
their HopDB algorithm that suggest an efficient HL index construction when
the given graphs and the corresponding index are too big to fit into main
memory. There are also approximate solutions like [AMV15], optimized for
secondary storage but since they are inexact and only focus on vertex-to-
vertex queries their practical applicability is limited. The work of [ADF+12]
introduced the HLDB system, which answers distance and kNN queries in
road networks entirely within a database by storing the hub labels in database
tables and translating the corresponding HL queries to SQL commands.
Throughout this work, we will compare our proposed COLD framework to
HLDB, since to the best of our knowledge, it is the only framework that may
answer exact distance queries entirely within a database. Moreover, within
the COLD framework we also adapt the ReHub main-memory algorithm into
a database context, so that its online phase may be translated to fast and
optimized SQL queries.

2.4.3 Distance Queries on Graphs
Throughout the work in Chapter 5 we use undirected, unweighted graphs
G(V,E) (where V represents the vertices and E the arcs). A k-Nearest
Neighbor (kNN) query in graphs seeks the k-nearest neighbors to an in-
put vertex q. The RkNN query (also referred as the monochromatic RkNN
query), given a query point q and a set of objects P , retrieves all the objects
that have q as one of their k-nearest neighbors according to a given distance
function dist(). In graph networks, dist(s, t) corresponds to the minimum
network distance between the two objects. Formally RkNN(q) = {p ∈ P :
dist(p, q) ≤ dist(p, pk)} where pk is the k-Nearest Neighbor (kNN) of p.
Throughout this work, we assume that objects are located on vertices and
we always refer to snapshot kNN and RkNN queries on graphs, i.e, objects
are not moving. Also, similarly to previous works, the term object density D

refers to the ratio |P |/|V |, where P is a set of objects in the graph and |V | is
the total number of vertices. Although, there is extensive literature focusing
on kNN and RkNN queries in Euclidean space, since our work focuses on
graphs we will only describe related work focusing on graphs.

Regarding road networks and kNN queries, the G-tree [ZLTZ13] is a bal-
anced tree structure, which is constructed by recursively partitioning the
road network into sub-networks. Then the best-first algorithm is applied
on this G-tree index structure to answer kNN queries. Unfortunately, this
method cannot scale for continental road networks, since it requires several
hours for its preprocessing. Moreover, it requires a target selection phase to
index which tree-nodes contain objects (requiring few seconds) and thus, it
cannot be used for moving objects. Recently, the work of [DW13] expanded
the graph-separators CRP algorithm of [DGPW11] to handle kNN queries
on road networks. Unfortunately, (i) CRP also requires a target selection
phase and thus, cannot be applied to moving objects and (ii) it may only
perform well for objects near the query location. Hence, this solution is also
not optimal. The latest work focusing on kNN queries on road network is
the SALT framework presented in [EPV14] which may be used to answer
multiple distance queries on road networks, including vertex-to-vertex (v2v),
single source (one-to-all, range, one-to-many) and kNN queries. This work
expands the graph-separators GRASP algorithms of [EP14a] and the ALT-
SIMD adaptation [EP13a] of the ALT algorithm [GH05] and offers very fast
preprocessing time and excellent query times. Regarding kNN queries, SALT
does not require a target selection phase and hence it may be used for either
static or moving objects.

For RkNN queries on road networks, the work of [SIT09] uses Network
Voronoi cells (i.e., the set of vertices and arcs that are closer to the generator
object) to answer RkNN queries. This work has only been tested on a rela-
tively small network (110K arcs) and all pre-computed information is stored
in a database. Despite the fact that the preprocessing stage for computing
the Network Voronoi cells is quite costly, the queries’ executions times range
from 1.5s for D = 0.05 and k = 1, up to 32s for k = 20, rendering this
solution impractical for real-time scenarios. Up until recently, the only work
dealing with other graph classes (besides road networks) is [YPMT06], al-
though it has only been tested on sparse networks, e.g., road networks, grid
networks (max degree 10), p2p graphs (avg degree 4) and a very small, sparse
co-authorship graph (4K nodes). In this work, the conducted experiments
for values of k > 1 refer only to road networks, therefore the scalability of
this work for denser graphs and larger values of k is questionable. Recently,
Borutta et al. [BNNK14] extended this work for time-dependent road net-
works, but presented results were not very encouraging. The larger road

network tested had 50k nodes (queries require more than 1s for k = 1) and
for a network of 10k nodes and k = 8, RkNN queries take more than 0.3s
(without even adding the I/O cost). In a nutshell, all existing contributions
and methods have not been tested on dense, large-scale graphs, cannot scale
for increasing k values and their performance highly depends on the object
density D.

2.5 Location-based services based on Twitter
data

Many research studies have been conducted in order to determine whether
Twitter can actually give insights as to how people behave and provide
location-based services based on these observations. Such studies have fo-
cused on analyzing a variety of spatio-temporal phenomena (e.g. [KP12,
SGAF13]), as well as topics, sentiments and social interactions (e.g. [QECC12,
QCC12]). Many research studies have been conducted in order to determine
whether twitter can actually give insights as to how people behave. Recent
studies, such as [KP12] study urban dynamics using user-generated data from
twitter and foursquare1. They show how patterns in structure and function of
urban areas can be extracted from the crowdsourced data (tweets) of citizen
activities using a probabilistic topic model. The patterns, however, have been
extracted using offline data that have been gathered in advance. They also
argue that a reasonable step beyond this work could be a real-time analysis
in order to infer the current state of a city.

Several other studies have been conducted mostly on the twitter graph
(relationship graph between “twitter friends”) such as [QECC11] where they
categorize twitter users in types based on the language they use. Then they
argue whether the use of language is linked to social influence. They also use
sentiment analysis in order to track “good” or “bad” influence. In [QECC12],
the authors use sentiment analysis on tweets and suggest that it is possible
to effectively track the emotional health of local communities from their resi-
dents’ tweets in an unobtrusive way, by using data from twitter. In [QCC12]
again sentiment analysis is used in order to compare the social dynamics in
Twitter to those in physical communities. [EAPD] seek to identify the users’
key locations based on their social networks profiles.

Typically, these works focus on specific problems and examine specific
parts of the Twittersphere. A recent survey of approaches for Twitter ana-
lytics can be found in [GSZS14]. This survey identifies the need of a complete

1https://foursquare.com

framework to support the collection, analysis, visualization and querying on
Twitter data. Based on this, we proposed the TwitterViz framework in Chap-
ter 6 that aims in supporting all of the identified services.

Chapter 3

Efficient Processing of Relevant
Nearest-Neighbor Queries

3.1 Introduction
Location-based Services have been at the forefront of mobile computing as
they provide an answer to the simple question as to what is around me. A lot
of effort has been dedicated to improving such services typically by improv-
ing the selectivity of each request. Rating sites augment POIs with quality
criteria. Preferences add further user specific parameters to a request. Con-
text limits the available information based on situational choices. However,
what has not been captured yet are user experiences per se, i.e., assessing
what people want in terms of what people in the same situation have done
in the past. Our objective is to provide location-based services, specifically
relevant k-RNN search based on the crowdsourced choices and experiences
other users have had in the past. The basic premise of a so called k Rele-
vant Nearest Neighbor (k-RNN) query is to combine spatial proximity with
cognitive proximity, or relevance, as observed in previous user behavior. We
introduce the concept of a Link-of-interest (LOI) between two POIs to ex-
press respective relevance, i.e., “find related nearest POIs to my location.” In
this first approach, relevance is inferred by observing pairs of POIs that are
frequently mentioned in the same context. We discover this co-occurrence of
POI pairs in travel blogs based on textual proximity, e.g., same paragraph.
The more frequent POIs co-occur, the stronger and the more relevant is the
LOI existing between them. Capturing POIs and LOIs in combination with
k-RNN queries can be used to re-discover travel patterns, i.e., links between
objects that frequently appear in other people’s itineraries. Since not all ob-
jects are of equal type, e.g., restaurants, museums, bus stops, shops, hotels,

22

etc., and this is in contrast to classical LBS, k-RNN queries will allow us to
discover semantic chains of objects and, thus, provide the basis for an actual
trip planning software. Eventually such semantic chains will be linked to
user profiles that can then be used go generate customized travel guides.

While existing work addresses spatio-textual search, i.e., introducing a
spatial aspect to (Web) search, thus, enabling it to index and retrieve docu-
ments according to their geographic context, to the best of our knowledge, the
problem of combining user experience (expressed as relevance) with spatial
proximity in the form of k-RNN search has only been addressed in [EP13b].
Here, relevance information is represented by means of a graph in which POIs
represent nodes and LOIs are links. The spatial aspect of the data (POI lo-
cations) is captured using a spatial grid. The overall challenge in this work is
on how to combine these two data structures (graph and grid) to efficiently
process k-RNN queries. Initially, two basic methods are presented. GR-Sync
(GR = Grid/Graph) expands the two indexes separately, but synchronizes
their search at certain steps. GR-Link uses a tighter integration in that spa-
tial search results are seeded to the graph search so as to minimize costly
(and most often unnecessary) expansions. Focusing on the more efficient GR-
Link method, our additional contribution will be on optimizing the search
in the Relevance Graph by using landmark-based estimation. This approach
belongs to the family of approximate shortest-path methods, since the dis-
tances between pairs of vertices can be estimated based on pre-computed
distances to a fixed set of landmark nodes. We use those estimates to ben-
efit our graph traversal by excluding nodes that based on the approximate
distances are not worth exploring (filter step). The resulting method, GR-
Link-LM , also utilizes bi-directed BFS to improve performance. Using the
information we gain on lower bound distance approximations, we introduce
GR-Link-LM ∗, which additionally uses A∗-search to further prune the search
space. Experimental evaluation shows that the use of landmark-based esti-
mation significantly improves the performance of k-RNN query processing.

The outline of the remainder of this work is as follows. The basic con-
cepts and data structures for processing k-RNN queries are introduced in
Section 3.2. Sections 3.3 and 3.4 then introduce the various k-RNN query
processing methods and respective optimizations. The results of the experi-
mental evaluation are presented in Section 5.3.

3.2 Data and k-RNN Queries
With the proliferation of the Internet as the primary medium for data pub-
lishing and information exchange, we have seen an explosion in the amount of

online content available on the Web. In addition to professionally-produced
material being offered free on the Internet, the public has also been en-
couraged to make its content available online to everyone as User-Generated
Content (UGC). We, in the following, describe the data we want to utilize
and how to exploit it in the context of k-RNN queries.

3.2.1 Data
Web-based services and tools can provide means for users through attentional
(e.g., geo-wikis, geocoding photos) or un-attentional efforts (e.g., routes from
their daily commutes) to create vast amounts of data concerning the real
world that contain significant amounts of information (“crowdsourcing”).
The simplest possible means to generate content is by means of text when
(micro) blogging. Any type of text content may contain geospatial data such
as the mentioning of POIs, but also data characterizing the relationship be-
tween two POIs, e.g., eating at Eleni’s tavern after visting the Acropolis in
Athens, Greece.

In this work, we try to discover collections of POIs in texts and to use
k-RNN queries as a means to navigate this forest of interesting locations to
retrieve not only nearby, but also relevant objects. Consider the example of
Figure 3.1a. In the specific text snippet of a travel blog, three distinct spatial
objects are mentioned, O1 = {Acropolis}, O2 = {Plaka}, and O3 = {Ancient
Agora}. We introduce the concept of Link-of-Interest (LOI) as a means to
express relevance between two POIs. Assuming that O = {O1, . . . , On} is
the set of all discovered POIs, then a text paragraph Px ⊂ O contains a set
of POIs. It also holds that O = ⋃

P . We state that there exists a LOI Li,j

between two POIs Oi and Oj, if both POIs are mentioned in the same text
paragraph Px. The set of all LOIs is defined as follows.

L = {L(Oi, Oj)|∃Px ∈ P : Oi ∈ Px ∧Oj ∈ Px} (3.1)
It is apparent that the definition of relevance is a very simple one, i.e.,

co-occurrence in a text paragraph. In future work, we intend to exploit the
entire document structure as well as use sentiment information. However,
any of these considerations will only affect the way we compute relevance
and not the presented techniques for computing the specific type of query.

In the example of Figure 3.1, when considering O1 as the query POI, we
can see that it has a stronger relevance to O2 than to O3 and O4, since O1
and O2 co-occur more often in the same paragraph of the given text snippet.
Although O4 is spatially closer to O1 , the higher relevance of O2 makes it the
immediate relevant neighbor of O1, i.e., when considering both, the spatial

(a) POIs in text

o1

o3

o2

o6

o5

o4

o7

o8

(b) POIs on a map

Figure 3.1: “Closeby” Points Of Interest

distance and relevance. O3 is spatially closer to O1, but less relevant, hence
overall more “distant”.

As we will see in the following section, k-RNN queries have the ambition to
rediscover closeby POIs that have been visited by people in similar situations
before. Here we combine the relevance information extracted from travel blog
narratives with spatial proximity. Relevance can be considered an additional
filter to navigate the forest of POIs in, for example, a tourist context.

3.2.2 k-RNN Queries
Combining relevance information with spatial distance will allow us to pro-
vide better query results, i.e., POIs that are close-by and relevant.

Let D be a spatial database that contains spatial objects O and Links of
Interests L. Each spatial object is defined as Oi = (Oi.id, Oi.loc) and each
LOI as Lk = (Oi.id, Oj.id, r), O.id is a unique object identifier, O.loc captures
the object location in two-dimensional space, and r provides the relevance
(score) of a LOI existing between two POIs Oi and Oj. The relevance r is
computed as the total number of occurrences of a LOI, i.e., in the entire
text corpus. In other words, r measures how often two POIs co-occur in
paragraphs of the entire text corpus. The intuition is that the more frequently
they are mentioned together, the more important is the LOI existing between
them.

We introduce the k-RNN query as follows. Given a query point that is
represented as a POI, find the k relevant nearest neighbors by taking into
account, both, spatial proximity and relevance. An example is given in Fig-
ure 3.2 for a 1-RNN neighbor. The edge weights denote the relevance between
the POIs, e.g., the weight of the edge linking O2 and O8 is 8. This means that

the two objects co-occur eight times in the same paragraph when considering
all documents of the available corpus. A combined k-RNN score assesses
the Spatio-Relevance Distance between the two points, i.e., the smaller the
distance (score), the better.

o1

o3

o2

o6

o5

o4

o7

o8

(a) Map (b) Relevance graph

Figure 3.2: Relevance Graph and spatial “map” data

Equation 3.2 provides a means to compute a combined k-RNN score srnn

that considers, both, spatial distance and relevance.

srnn = α ∗ sr(Q,O)
sr.max

+ (1− α) ∗ sd(Q,O)
sd.max

(3.2)

Q is the query point, O is the spatial object for which we compute the score
with respect to Q, sr is a relevance score and can be any kind of metric,
sr.max is the maximum possible relevance score, sd is the Euclidean distance
between Q and O and sd.max is the maximum distance and depends on the
query space. The parameter 0 ≤ α ≤ 1 is used to denote the importance of
each distance function (Relevance or Spatial) and can be tuned according to
the user’s needs.

The following sections give detailed explanations as to the calculation of
the Relevance Score and the computation of k-RNN queries.

3.2.3 Access Methods
Given a query and trying to define an efficient method for solving it in a data
management context access methods are used to speed up processing. The
following discussion mentions some methods that, either on their own, or,
by combining them, efficiently solve the k-RNN query processing problem.
When considering efficiency, we will also argue for the simplicity of a method,

as the more complex a proposed access method is, the bigger is the challenge
in implementing it in a given data management infrastructure.

Following this approach, we try to utilize spatial indexing methods with
graph data structures. A regular Spatial Grid is used for indexing the loca-
tions of our POIs. In the Spatial Grid the geographical coverage of the earth
is divided into a set of equally sized grid cells. Each cell corresponds to a
disk block storing the POI of the respective grid cell. Each cell is identified
by a unique id which is computed as a hash value of the cell’s geographic
coordinates. We maintain a hash table with key-value pairs for each grid cell,
where the key is the grid cell’s id and the mapped value is a pointer to the
actual block on disk. In this way, we can locate the corresponding page on
the disk in O(1) time. This is also a reason for using a regular grid instead
of other types of access methods.

We are using a grid instead of a more efficient spatial access method
since it is easier to integrate it with a graph search. Using for example an
R-tree, we would have to keep respective graph distance information with the
nodes of the spatial index. As we will see later on, this presents a challenge
as the relative position of nodes in the Relevance Graph (hops) affects the
graph distance (cf. the recursive formula to compute the relevance score
of Equation 3.3).In addition, with newly discovered LOI information, the
weights of the graph frequently change, thus requiring frequent updates to
the index structure.

As we will show, kNN queries can be processed incrementally by “radiat-
ing out” from the query point (see in the following), and it is a data structure
that serves as a simple and elegant way of showing how a spatial index can
be combined with others to index, e.g., space + relevance. Should a node
reach is maximum capacity (fanout), an overflow node is added.

The Relevance Graph is defined as a graph G(V,E), where V is the set
of vertices that correspond to the POIs found in the set of documents, and
E is the set of edges that correspond to links-of-interest (LOIs) between
the POIs. The edge weights denote the relevance score r between a pair of
vertices. Updating the Relevance Graph involves introducing new vertices
(new POIs), edges and edge weights (both, based on new relevance). The
Relevance Graph is stored by means of an adjacency list. Edges can be added
in O(1) time and the updates in O(|E|) time.

3.3 k-RNN Query Processing
The major contribution of this work is how to combine the Spatial Grid and
the Relevance Graph so as to efficiently support the processing of k-RNN

queries. The following sections present various approaches to this integration
starting with the simple GR-Sync method.

3.3.1 Index Synchronization
In a first, basic query processing method, termed GR-Sync (derived from
Grid/Graph synchronization), we combine the results of the two separate
indices to answer k-RNN queries. GR-Sync consists of two separate methods
for identifying the k-RNN candidates in the Spatial Grid and in the Relevance
Graph, respectively. The intuition behind this approach is an intermixed,
stepwise execution of the search utilizing both indexes. After each step of
the so-called expansion process in both data structures, the results (current
list of respective kNN neighbor candidates) are combined. The search stops
when the neighbors found are guaranteed to be the k-RNN.

3.3.1.1 Spatial Search

The Spatial Expansion algorithm uses a Spatial Grid as illustrated by Fig-
ure 3.2a. For each inserted POI we store four distances to the respective
sides of the cell. Figure 3.3 shows an example of how the algorithm behaves
for eight expansions beginning from a query POI. The algorithm first locates
the grid cell of the query point.

Given that this algorithm tries to establish the relevance and proximity
between POIs (“Where to go next?”), the query point is recruited from the
set of POIs. If necessary, any user location can be mapped to the closest
POI location.

(a) Steps 1-4 (b) Steps 5-8

Figure 3.3: Spatial expansion

The objective of the spatial expansion is to discover the nearest-neighbor
POIs of the query point. We do so, by retrieving close-by POIs in neigh-
boring cells in a step-wise fashion. As we will see, this results in a snail-like
expansion. The order in which the cells are retrieved depends on the loca-
tion of the query point within its containing cell. Consider the example of
Figure 3.3a. The query point is closest to the bottom side of the cell (ar-
row labeled “1”). To guarantee that all POIs have been examined that are
within distance 1, only the cell of the query point needs to be loaded (indi-
cated also by the circle around the query point of radius “1”). However, for
the case of distance “2” also the points of the bottom cell (labeled 2) need
to be retrieved. This snail-like expansion next retrieves two cells labeled “3”
and then two cells labeled “4”. While we also retrieve points that are further
away than d4, we are also certain that we have not missed any candidates.

The points that are not within the maximum distance are added to a
retrievedPoints list, whereas the points that are within the maximum distance
are added to the kNN list based on Euclidean distance. With increasing
distance, the search expands to neighboring cells as shown in the example of
Figure 3.3b. As expected, the larger the distance from the query point, the
more points are retrieved in each step, e.g., 4 cells in Step 8.

3.3.1.2 Computing the Relevance Score

To retrieve the relevance score sr, we have to examine the Relevance Graph.
Our method orients itself on the Breadth-First graph traversal. It starts
with the query point and in a first step examines all adjacent nodes in the
Relevance Graph. Subsequent steps examine all neighbors of the initially-
visited nodes and so on. To compute a Relevance Score, we use the following
recursive formula that computes the score of a node k based on the score of
its predecessor, or, parent node p. For the initial expansion p = q.

sr(k) = 1− wp,k∑N
i=1 wp,i

+ sr(p) + sh(k) (3.3)

sh(k) = sh(p) + h(k) (3.4)
where sr is the Relevance Score for node k, wp,k is the weight from the parent
node p to k, N is the number of the parent’s one-hop neighbors, the number of
nodes that are expanded during the same step, sr(p) is the parent’s relevance
score, and sh(k) is a score derived from h(k), which is the number of hops
needed to reach k from q. sh(k) is based on the respective score of the parent
node and increases with the distance of k from d. This also ensures that
any node l with h(l) > h(k) will have a higher relevance score than node k,

i.e., sr(l) > sr(k) : h(l) > h(k). The recursive relevance score computation
emphasizes that even the “worst” one-hop neighbor is preferable to the “best”
two-hop neighbor. In terms of semantics, one-hop neighbors are POIs that
co-occur at least once in a paragraph. Two-hop neighbors are POIs that
co-occur with another POI only in a transitive, “friend-of-a-friend” fashion.
As such, the more distant two POIs are in the Relevance Graph, the less
obvious is a relevance relationship existing between them. As such, both,
the Relevance Score and also the Spatial Score are a penalizing score as they
reflect distance, i.e., the higher sr, the less relevant a node k with respect to
q.

Figure 3.4: Graph expansion and relevance score

What follows are some relevance score computation examples. Example
1 - Figure 3.4 depicts an example of the calculation of the Relevance Score
for the neighbors of a query point. First, the sum of the weights of the edges
that connect the query point to its neighbors is calculated. In this example
Σ(0) = 28. To compute each one-hop neighbor’s Relevance Score sr, we need
to get the intermediate score of each neighbor node based on the edge weight,
i.e., 1− (wp,k/

∑N
i=1 wp,i). For example, node B has an intermediate score of

1 − 3/28 = 0.89. Applying the rest of Equation 3.3, with sr(p) = 0, since
p = q and h = 0 with the hop count starting at 0, sr(B) = 0.89. Continuing
the expansion, i.e., retrieving the two-hop neighbors, for example for node
F, sr(F) = (1− 2/6) + 0.89 + 1 = 2.56 (the edge that connects the neighbor
to its parent is not taken into consideration). It should be noted that for
computing the score of a node, we consider the shortest path as far as the
number of hops from the query point is considered. Additionally, should a

node be reachable by the same number of hops through multiple nodes, we
consider the lowest scoring node as a parent node.

Example 2 - (Added Table 3.1). Using Figure 3.2 as a running example,
we seek the 1-RNN neighbor of query point O1. To compute the score of O2
with respect to O1, first, a spatial search is initiated on the Spatial Grid and
the spatial distance between O1 and O2 is found to be sd(O1, O2) = 350m.
Expanding O1 on the Relevance Graph, we use Equation 3.3 to calculate
the relevance score of O2, which is 0.32. O2 is 1 hop away from O1, thus
sh(O2) = 0, and its parent’s relevance score is sh(O1) = 0 (by default). With
α = 0.5 (equal preference for relevance and spatial distance), sr.max = 2,
and sd.max = 600m, the combined score between O1 and O2 is srnn = 0.37
(calculated using Equation 3.2). Computing the srnn scores for all other
objects with respect to O2 as shown in Table 3.1, we can see that indeed O2
is the 1-RNN of O1.

O sh(k) sr(k) sd(Q,O) srnn

O2 0 0.32 350 0.37
O3 0 0.89 200 0.39
O4 0 0.96 100 0.40
O5 0 0.93 480 1.03
O6 1.96 1.96 475 1.28
O7 0 0.88 550 1.13
O8 1.32 1.32 600 1.33

Table 3.1: Calculation of relevance score based on Figure 3.2 example

3.3.1.3 Synchronizing Expansion

To compute the k-RNN score, the spatial and the relevance graph search need
to be synchronized and their scores combined. The following approach com-
putes combined scores and evaluates the status of the search at fixed intervals
determined by the number of expansions performed in each index. The Spa-
tial Grid utilizes a snail-like expansion and retrieval of cells surrounding the
query point, and the Relevance Graph uses a BFS-like expansion of increasing
distance to the query point. After each expansion step, the two lists contain
the closest in terms of spatial and relevance score neighbors, respectively.
To synchronize the two expansions, we define a respective rate of expansion
steps. The expansion ratio χ determines the ratio of spatial to relevance
graph expansions. χ will typically be in the range of 4 to 16, as spatial ex-
pansions are considerably cheaper (read accessess). Each search maintains a
list of expanded POIs and their respective score. After each expansion cycle

(considering the expansion ratio), the two lists are checked and the common
POIs, i.e., appearing in both lists, are identified. Using Equation 3.2, their
combined score srnn is computed. All POIs with such a score are added to
a queue sorted by srnn and essentially containing all top k-RNN neighbors
that have been identified at this point, i.e., POIs that have been examined
in both data structures.

To define a termination criterion, we have to guarantee that all k-RNN
POIs have been found, i.e., further search will not reveal any POIs with a
better score than the ones already identified. Each search keeps an open
list for each set of respective POIs found so far to record the corresponding
k-RNN score. If a POI is found in only one index, to compute its score,
we use a best-case estimate for the missing score, i.e., that it will be found
during the next expansion. For example, assuming a POI was retrieved in
the spatial search, but not yet in the relevance search, the relevance score
will be the lowest possible score after the next expansion (relevance score
is dominated by number of hops = expansion steps). Similarly, should the
spatial score be missing, we assume the best case, i.e., that the POI will be
discovered during the next round of expansion with a distance from the query
point just beyond the current search distance. As the searches progress, the
scores of the POIs, and thus the open lists, will be updated based on the cur-
rent number of hops and search distance. The GR-Sync algorithm is shown
in Algorithm 1. SpatialExpansion(q, k, (n × χ), SG, sg) takes as input the
query point q, the number of sought neighbors k, the current expansion
radius (n× χ), the spatial grid SG and the sg list that contains the discov-
ered points so far by the spatial expansion algorithm (cf. Section 3.3.1.1).
RelevanceExpansion(q, k, n,RG, rg) takes as input the query point q, the
number of sought neighbors k, the relevance graph step count n, the Rele-
vance Graph RG and the rg list that contains the discovered points so far by
the relevance expansion algorithm (cf. Section 3.3.1.2). GR-Sync uses sd

rnn

and sr
rnn as the minimum predicted combined k-RNN scores for nodes with

no valid spatial, or relevance score, respectively. If s∗rnn = min(sd
rnn, s

r
rnn),

the minimum score that still could be found, is less than max(srnn), i.e., the
maximum score of identified rnn candidates, it means that the POIs in the
(top-k) result list are guaranteed to be the top k-RNN neighbors (Line 11).
This condition can be used as the termination criterion.

3.3.2 Index Linking
The k-RNN query processing algorithm presented so far does not actually
combine the two indices (spatial and relevance), but only evaluates the re-
sults at times with the expansion steps used as a means of synchronization.

ALGORITHM 1: GR-Sync k-RNN algorithm
Input: Query POI q, Number of Neighbors k, Relevance Graph RG, Spatial

Grid SG, Discovered POIs in RG: rg, Discovered POIs in SG: sg,
k-RNN result list rnn, Relevance Graph step count n, Expansion ratio
for Spatial Grid χ.

Output: Complete k-RNN result list rnn.
1 complete = false;
2 while ¬ complete do
3 SpatialExpansion(q, k, (n× χ), SG, sg);
4 RelevanceExpansion(q, k, n,RG, rg);
5 rnn = sg ∩ rg NN results with complete score;
6 sr

rnn = MinScore(rg) Min. predicted score, Relevance Graph;
7 sd

rnn = MinScore(sg) Min. predicted score, Spatial Grid;
8 s′rnn = Min(sd

rnn, s
r
rnn) Min. expected score;

9 s∗r = MaxScore(rnn) Max. score in current result list;
10 If the max kth RNN distance found so far is less than the min predicted

distance, the algorithm completes;
11 complete = (|rnn| ≥ k ∧ s∗r < s′rnn);

An inherent problem with this method is the search in the Relevance Graph,
which after the first hops becomes very costly. Big expansions in the Rele-
vance Graph (empirically observed for hops > 3) retrieve a lot of data and,
hence, incur disk activity. We have devised a variation of our query process-
ing technique that manages to bound the Relevance Graph expansion. This
so-called GR-Link method, termed as such since it combines the two indexes
(Grid/Graph linking), we use the results of the spatial search as seed ele-
ments for the search in the Relevance Graph. The intuition is that many
1-hop expansions (spatial search seeds) are “cheaper” than a single n-hop
expansion of the query point. POIs retrieved by the spatial search (and not
discovered yet in the relevance search) are expanded in the Relevance Graph
(cf. Figure 3.5). The intuition is that the graph searches of (i) the seeded
POIs and (ii) the query point will meet eventually and, thus, we can com-
pute a POI’s relevance score. Without seeding the search, we would have to
wait until the query point expansion reaches a POI. The simplified example
of Figure 3.5 should illustrate that the POIs expanded are much fewer than
the POIs that would have been retrieved if a second expansion step from the
query point would have been performed.

The GR-Link approach also allows us to better bound the estimates of

Figure 3.5: GR-Link method using Grid POIs in Graph search

missing scores. Placing a POI on the Relevance Graph, we know for sure
that if their expansions (POI and query point) do not meet, the base for
their score computation is at least the sum of the two expansions plus one
hop (since they did not meet). Therefore, the predicted sr score for such a
point is larger than what it would have been in the non-hybrid case.

The pseudo code for this method is shown in Algorithm 2. The difference
to the GR-Sync algorithm are the statements of Lines 4-8, which are seed
POIs for the Relevance Search.

As the experimental section will show, the intuition of choosing many
small Relevance Graph expansions over one large expansion pays off and the
GR-Link method shows superior performance in terms of IO when compared
to the GR-Sync solution.

3.4 k-RNN Query Optimization
Having introduced the k-RNN problem and several processing algorithms,
we, in the following, introduce two novel methods that provide improved
query processing by optimizing the search in the Relevance Graph. The
methods involve landmark-based distance estimation and the ALT algorithm
for additional pruning of the search space.

ALGORITHM 2: GR-Link k-RNN algorithm
Input: Query POI q, Number of Neighbors k, Relevance Graph RG, Spatial

Grid SG Discovered POIs in RG: rg, Discovered POIs in RG - spatial
seeds: rg′, Discovered POIs in SG: sg, k-RNN result list rnn, Relevance
Graph step count n, Expansion ratio Spatial Grid χ.

Output: Complete k-RNN result list rnn.
1 complete = false;
2 while ¬ complete do
3 SpatialExpansion(q, k, (n× χ), SG, sg);
4 for each poi ∈ sg do
5 RelevanceExpansion(poi, 1, RG, rg′);
6 RelevanceExpansion(q, n,RG, rg);
7 rg = Connect(rg, rg′) Combine graph expansions;
8 rnn = sg ∩ rg NN results with complete score;
9 sr

rnn = MinScore(rg) Min. predicted score, Relevance Graph;
10 sd

rnn = MinScore(sg) Min. predicted score, Spatial Grid;
11 s′rnn = Min(sd

rnn, s
r
rnn) Min. expected score;

12 s∗r = MaxScore(rnn) Max. score in current result list;
13 If max kth RNN distance found so far is less than min predicted distance, the

algorithm completes;
14 complete = (|rnn| ≥ k ∧ s∗r < s′rnn);

3.4.1 Landmarks
Landmark-based distance estimation in graphs is a method that involves the
pre-selection of a set of landmark nodes and computing the distances of all
graph vertices from those landmarks. Given two arbitrary graph vertices, the
distance between them can be estimated based on the respective distances
from landmarks as follows. Given a set S ⊆ V of landmarks and distances
d(Li, v), d(v, Li) for all nodes v ∈ V and landmarks Li ∈ S, the following
triangle inequalities hold: d(u, v)+d(v, Li) ≥ d(u, Li) and d(Li, u)+d(u, v) ≥
d(Li, v). Therefore, the function maxLi

max{d(u, Li) − d(v, Li), d(Li, v) −
d(Li, u)} provides a lower bound for the distance d(u, v).

For the specific case of k-RNN queries, we will utilize landmarks for the
Relevance Graph search to estimate the distance of seeded POIs to the query
point and thus minimize the necessary expansions in the Relevance Graph.
The necessary preprocessing stage is divided into two phases, the landmarks
selection process and the computation of distances from landmarks to all

other graph vertices (for undirected graphs).
As far as the landmark selection process is concerned, many alternative

strategies have been suggested in [GH05], [GW05], [PBCG09]. As Delling et
al. suggest in [DW07], no technique picks landmarks that universally yield
the smallest search space for random queries (although some perform better
than others). Therefore in our work we utilize the simplest strategy, which is
the farthest landmark selection strategy introduced in [GH05]. In a nutshell
the algorithm randomly selects a starting vertex and performs a Dijkstra
search. Upon termination, the whole graph has been expanded, producing
shortest-paths between the start and all other vertices of the graph. Choosing
now the most distant vertex, it becomes the first landmark. Continue the
search by finding at each step a new vertex that is furthest away from the
current set of landmarks. Stop when n landmarks have been added to the set
of landmarks L. The intuition behind this procedure is to choose landmarks
that are at the periphery of the graph.

We also implemented a custom simplified alternative strategy, to have a
clear view of the impact of the landmark selection process to our results. Our
new method, referred hereafter as the partitioning - highest degree method
initially partitions the Relevance Graph. For each partition, the node of the
highest degree is added to the landmarks set. To partition the Relevance
Graph, we used METIS [KK98] a free, well-known graph partitioning tool,
used often in the context of shortest path computation [KMS06], [MSM10],
[EPV11], [ETP12]. Thanks to METIS partitioning, our partitioning - highest
degree method guarantees a uniform distribution of landmarks throughout
the Relevance Graph. Picking the highest degree node for each partition is
also a natural choice, since as Potamias et al. suggest in [PBCG09], “the
more connected a node is, the higher the chance that it participates in many
shortest paths”. Following the selection of landmarks L, we compute the
distance from the vertices of the graph to the landmarks. As such these
landmark distances will provide us with a relevance score sr estimate for
each spatial seed.

To simplify the approach, we consider the Relevance Graph G to be un-
weighted and undirected. This is a simplification over the approach presented
so far, since the focus is on the efficiency of the graph traversal and not on the
relevance calculation per se. Another modification in relation to the graph
dataset is that now the graph needs to be fully connected, since landmark-
based approaches do not apply to unconnected graphs.

Following landmark selection, it suffices to pre-compute the graph (hop)
distances from each landmark to all graph nodes by running a Breadth-
First search from each landmark. This information is captured by a two-
dimensional distance matrix D of size N ∗M , where N is the total number

of vertices and M the number of landmarks used. Therefore, Dij refers to
the hop distance from landmark j to vertex i.

The upper and the lower bound distances to landmarks can now be used
as estimates for the true distance between any two graph vertices. Given
a set of landmarks L and two vertices u and v, whose distance we need to
determine, for undirected, unweighted graphs the following equation holds
[PBCG09]:

maxLi
|d(Li, v)− d(Li, u)| ≤ d(u, v) ≤ minLi

|d(Li, v) + d(Li, u)| (3.5)

Therefore, a good approximation for the lower bound of the graph distance
d(u, q) between any vertex u and the query point q in the Relevance Graph
is as follows.

d(u, q) ≥ maxLi
|d(Li, u)− d(Li, q)| (3.6)

Having a way to approximate the distance between a vertex and a query
point in the Relevance Graph, we can prune the graph search space based on
this approximation. In Algorithm 3 the GR-Link-LM algorithm is shown,
which is an expansion of the GR-Link algorithm for the computation of the
k-RNN query.

The algorithm works just like the GR-Link approach, with the difference
that for the expansion of the spatial seeds the routine LandmarkExpansion
(cf. Line 5) is used. More specifically, after a number of χ expansions are
made in the spatial index, a set rg′ of POIs has been discovered. These POIs
serve as spatial seeds in the Relevance Graph search (cf. GR-Link approach).
At this point, instead of initiating a “blind” BFS traversal of the spatial seeds,
we use the LandmarkExpansion algorithm in order to facilitate the use of
landmark lower bounds and therefore improve the performance of the graph
traversal. Algorithm 4 shows the algorithm for the expansion of the spatial
seeds.

Let s be the spatial seed node that is to be expanded in the Relevance
Graph G, q is the query POI, and Li is a landmark node. For the spatial
seed s we calculate the lower bound maxLi

|d(Li, s)−d(Li, q)| using Equation
3.6. If the calculated lower bound for s is greater than the actual graph dis-
tances of the current k-RNN results, then the spatial seed s could be safely
ignored, i.e., it is too far-away from the query point in the Relevance Graph
to ever become a viable solution. With this simple but crucial optimization,
we efficiently prune the spatial seeds that need to be expanded and, thus,
significantly lower the number of I/O operations. This of course results in im-
proved performance (see Section 5.3), while still guaranteeing the optimality
of results.

ALGORITHM 3: GR-Link-LM k-RNN algorithm
Input: Query POI q, Number of Neighbors k, Relevance Graph RG, Spatial

Grid SG Discovered POIs in RG: rg, Discovered POIs in RG - spatial
seeds: rg′, Discovered POIs in SG: sg, k-RNN result list rnn, Relevance
Graph step count n, Expansion ratio Spatial Grid χ.

Output: Complete k-RNN result list rnn.
1 complete = false;
2 while ¬ complete do
3 SpatialExpansion(q, k, (n× χ), SG, sg);
4 for each poi ∈ sg do
5 LandmarkExpansion(poi, q, RG,L,D, rg′);
6 RelevanceExpansion(q, n,RG, rg) rg = Connect(rg, rg′) Combine graph

expansions;
7 rnn = sg ∩ rg NN results with complete score;
8 sr

rnn = MinScore(rg) Min. predicted score, Relevance Graph;
9 sd

rnn = MinScore(sg) Min. predicted score, Spatial Grid;
10 s′rnn = Min(sd

rnn, s
r
rnn) Min. expected score;

11 s∗r = MaxScore(rnn) Max. score in current result list;
12 If the max kth RNN distance found so far is less than min predicted distance,

the algorithm completes;
13 complete = (|rnn| ≥ k ∧ s∗r < s′rnn);

An example of an k-RNN query with landmarks is shown in Figure 3.6.
In comparison to Algorithm 2 the spatial search portion is omitted. The
example shows five spatial seeds. Before each of the seeds are expanded, its
lower bound distance to the query point is calculated based on the landmark
information. In this example, two spatial seeds are not expanded further
since their landmark distance is above the threshold for them to become
viable k-RNN candidates. The remaining three seeds are expanded. This
example illustrates that by eliminating nodes the expanded graph portion
becomes smaller. It is expected that the GR-Link-LM method thus shows
improved performance.

3.4.2 ALT algorithm optimization
The presented k-RNN method combines central BFS traversal from the query
point q with the individual BFS traversals originating from the seed points.
In this section, we further optimize this process by using the lower bounds

Figure 3.6: GR-Link-LMmethod using Landmark nodes on the Graph pe-
riphery

ALGORITHM 4: Landmark Based Expansion algorithm
Input: The spatial seed to be expanded s, The query POI q, Relevance Graph

RG, Set of landmarks L, Distance matrix from landmarks to all nodes D,
Output: Discovered POIs in RG - spatial seeds: rg′

1 Chosen landmark Li = -1;
2 Lower bound dapprox = -1;
3 Li = selectLandmark(q, s, L,D);
4 dapprox = computeLowerBound(Li, q, s,D);
5 if ¬worthExpanding(s, L, dapprox) then
6 return;
7 while ¬ completedHopExpansion() do
8 BFSexpansion(s.BFSqueue, s, q);

of the landmarks preprocessing phase to exclude spatial seeds that cannot
belong to the k-RNN set. GR-Link-LM traverses the graph from the seed
points by using plain BFS in an un-directed fashion. This is also illustrated
by the gray circles in Figure 3.6. In what follows, we augment the seed
expansions by using a unidirectional version of the ALT algorithm of [GH05].
The ALT algorithm is a well-known goal direction shortest-path technique
that combines A∗ search [HNR68] with the lower bounds provided by the
landmarks preprocessing phase. Combining the central BFS traversal from
the query point q and the individual unidirectional ALT algorithms from the
seed points requires several additional enhancements. For that purpose, we
adapt several core-concepts from [GH05]:

• For each unidirectional ALT algorithm originating from a seed point,
we must maintain the shortest path length µ seen so far between the
seed and the query point. Initially, for each such search µ is set to
infinity. When an edge (u,w) is scanned by the ALT algorithm and w
has already been scanned in the BFS traversal from the query point,
we know the shortest paths for s − u and w − q are of lengths ds(u)
and dq(w), respectively. If µ ≥ ds(u) + l(u,w) + dq(w), we have found
a shorter path than those seen before, so we update µ accordingly.

• The unidirectional ALT algorithm cannot terminate as soon as it scans
a node already scanned by the central BFS traversal from the query
point. Instead, we can safely abort the search only provided the ALT al-
gorithm is about to scan a vertex v with k(v) = ds(u)+maxLi

|d(Li, u)−
d(Li, q)| ≥ µ.

ALGORITHM 5: The unidirectional ALT algorithm optimization
Input: The spatial seed to be expanded s, The query POI q, Relevance Graph

RG, Set of landmarks L , Distance matrix from landmarks to all nodes
D, ALT expanded nodes σ.

Output: Discovered POIs in RG - spatial seeds: rg′.
1 Chosen landmark Li = -1;
2 Lower bound dapprox = -1;
3 Li = selectLandmark(q, s, L,D);
4 dapprox = computeLowerBound(Li, q, s,D);
5 if ¬worthExpanding(s, L, dapprox) then
6 return;
7 while σ 6= 0 do
8 A ∗ expansion(s.ALTqueue, s, q);
9 σ = σ − 1;

Another essential difference between theGR-Link method and the current
proposal is the way we alternate between the two opposing searches (the
central BFS traversal from the query point and searches originating from the
seeds). For the GR-Link method, the alternation strategy was measured in
hops, i.e., we performed one-hop BFS expansion from the query point and
one-hop BFS expansion from each seed. Although we still use a one-hop BFS
expansion from the query point, the ALT search from the seeds can no longer
be measured in hops. Instead we keep track of the number of nodes extracted
from the priority queue per seed search. Once the set number of nodes has
been taken off the priority queue of the ALT search for a particular seed, we
then proceed to the next seed. Once all seeds perform the necessary number
of node extractions from their priority queues, we perform another one-hop
BFS expansion from the query point and proceed in this iterative fashion.
Algorithm 5 shows the algorithm in detail.

An example of a k-RNN query using the ALT optimization is shown in
Figure 3.7. The decision whether or not the spatial seed, or the subsequently
discovered nodes will be further expanded is taken based on the landmark
lower bounds. Additionally, since the ALT algorithm uses the landmarks-
based lower bounds, we observe that nodes closer to the query point q are
expanded first, allowing the algorithm to find a common node with the query
point BFS expansion sooner, and therefore calculate the spatial seed’s rele-
vance score way before all nodes will be expanded.

The intuition behind the GR-Link-LM ∗ approach is shown in Figure 3.8.
The spatial seed s, using the ALT algorithm, expands towards the query POI

Figure 3.7: GR-Link-LM ∗ method: ALT algorithm significantly optimizes
the relevance graph search

q. In this way, it will retrieve a smaller number of relevance graph nodes until
it reaches q’s central BFS expansion. The overall impact of this approach is
visualized by the ellipses, rather than the circles of the GR-Link-LM case,
in Figure 3.7. Using this directed search, a smaller portion of the Relevance
Graph is expanded, overall resulting in improved performance.

The following section will examine the performance of the proposed algo-
rithms with respect to existing approaches.

3.5 Experimental Evaluation
We assess the efficiency of the proposed k-RNN query processing methods
a in performance study measuring accessed data (disk I/O operations) and
CPU time. The experiments use real and synthetic datasets. Overall, we
compare five methods, (i) the GR-Sync method (naive method), (ii) the GR-
Link method, (iii) the GR-Link-LM method, (iv) the GR-Link-LM ∗ method
and (v) an hypothetic ideal method (see below for an explanation). What
we expect from the experiments is to see a well-performing GR-Link method

Figure 3.8: Intuition for A∗/ALT search: Prune the graph space and go faster
from s towards the query POI’s q expansion

as well as a boost in performance from the GR-Link-LM and GR-Link-LM ∗
methods, that come close to the performance of the ideal method.

3.5.1 Data
Actual POI + LOI data was collected from a corpus of 120k documents
from user-generated content found in travel blog sites1. The texts were pre-
processed to collect the necessary information for our index, i.e., (i) identi-
fication of POIs, (ii) geocoding of POIs (spatial position) and (iii) location
within the document (paragraph id and offset).

The procedure of generating the realistic dataset used in this work follows
simple heuristic rules derived from the characteristics of the real-world data.
Essentially, the data generation approach is based on hotspots that resemble
cities, related POIs, and then LOIs between the POIs. We generate center
points (cities, attractors) in an area of 30×30 degrees (approximately 3300
× 3300km) using a uniform distribution. For each center point, using a nor-
mal distribution, we generate neighboring points (POIs). We then generate
relationships (LOIs) between POIs using again a normal distribution, i.e.,
the neighbors that are spatially closer to a POI in question are more likely
to be linked to it than the ones further away (Tobler’s spatial bias). On ave-
rage, we generate 15 LOIs per POI (maximum = 50). Our synthetic dataset
consists of approximately 810k POIs that generate a Relevance Graph with
a total of 6 million edges (LOIs). The synthetic data is considerably larger
than the Relevance Graph derived from travel blogs and thus should produce
more conclusive results. Figure 3.9 visualizes the major nodes and a closeup
view of the links between nodes.

1www.travelblog.com, www.traveljournal.com, www.travelpod.com

(a) Global view (b) Detailed View

Figure 3.9: Synthetic dataset

3.5.2 Experimental Setup
We evaluate the various query processing methods not only by means of
different datasets, but also under a varying set of parameters including (i) the
number of k and (ii) the preference parameter α emphasizing either spatial
distance or relevance. The performance is assessed in terms of number of
page accesses (I/O) performed to retrieve the data from disk for each query
as well as CPU time. In each case, we performed 100 queries and computed
the average I/O and CPU time shown in the respective charts. The 100 query
points were randomly picked from the POIs in the dataset. An important
aspect in the experiments is the spatial grid used to index the data. We use a
regular grid with a spacing of 0.02 degrees (approximately 2km) in longitude
and latitude. The synthetic dataset consists of approximately 810k POIs
covering an area of 30 degrees longitude and latitude, respectively, an extent
somewhat comparable to Europe. The 810k POIs are grouped into 160k cells
amounting to an average space utilization of 5, but not exceeding 30. Keep
in mind that we only consider occupied cells in our index.

The real dataset contains 120k points that are scattered all over the globe.
Here, 80k cells contain at least one POI. This amounts to an average space
utilization of < 2, with few cells containing more than 5 POIs. Essentially,
we used this dataset as a template for the synthetic data generation. Still,
we wanted to present the results of the performance study to see whether
the performance trends with respect to the indexing methods persist.

The expansion ratio χ was set to 12, i.e., for each expansion in the Rel-
evance Graph, 12 expansions in the Spatial Grid are performed. Unless
mentioned otherwise, the parameter α used in Equation 3.2 to compute the
k-RNN score srnn is fixed to 0.5, i.e., considering the spatial and relevance
score equally important.

All experiments were performed using a computer with a Intel Core i5
2400 CPU and 8GB DDR3 RAM, running Ubuntu Linux 11.10. The index
and algorithms were implemented in Java.

3.5.3 Basic k-RNN Query Performance
In our experimental setup, we first vary the number of sought nearest neigh-
bors k to see how scalable our algorithms are. α is set to 0.5, i.e., considering
the spatial and relevance score equally important.

The first experiment should verify the performance advantage of the GR-
Link approach over the naive GR-Sync algorithm. Figure 3.10a shows that
GR-Link outperforms GR-Sync by an order of magnitude. This is due to the
fact that GR-Sync needs to search large parts of, both, the Spatial Grid and
the Relevance Graph in order to guarantee the result. Therefore, when POIs
are found in one of the two indices, it needs to keep searching the other to
find the combined k-RNN score. This causes the algorithm to retrieve too
many (irrelevant) pages. On the other hand, the GR-Link method uses the
results of the Spatial Search to limit the expansions in the Relevance Graph.

While a comparison to the naive GR-Sync approach does not pose a chal-
lenge, so does the next experiment relate the performance of GR-Link to an
“ideal” approach (cf. Figure 3.10b). The ideal approach simulates a Rele-
vance Graph search that terminates as soon as the k-RNN POIs are found,
i.e., we have a-priori knowledge of the results and are only expanding the
graph until the result is “discovered”. As such, this method is unrealistic,
but serves as a lower-bound for the performance of the hybrid index. Fig-
ure 3.10b shows that the GR-Link method examines more data than the
ideal approach (albeit little data overall). Still, in terms of comparison to
this baseline approach, the hybrid index’s performance is close to that of the
ideal method.

Using a real-world dataset (cf. Figure 3.11), the number of page accesses
as well as CPU time when compared to the experiments with the synthetic
dataset appear to be orders of magnitude greater due to a sparse dataset.
Overall however, this experiment shows the same trends observed for syn-
thetic data.

3.5.4 Tuning Landmark-based Optimizations
The naive GR-Sync approach performs orders of magnitude worse than GR-
Link. We thus excluded it from the following experiments that establish an
optimal setting for (i) the number of landmark nodes N , (ii) the choice of a
landmark selection algorithm, (iii) the number of expanded nodes during the

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

4

k

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

Ideal

GR−Sync

GR−Link

(a) GR-Sync vs. GR-Link vs. Ideal

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

k

I/
O

 p
a
g
e
 a

c
c
e
s
s
e
s

Ideal

GR−Link

(b) GR-Link vs. Ideal

Figure 3.10: Naive, Hybrid and Ideal Index I/O performance

ALT traversal for each expanded spatial seed, and (iv) the number of RNNs
k.

An important parameter is the number of ALT expansions σ per spatial
seed for all numbers of sought neighbors k. As explained in Section 3.4.2,
for every step of the main query point BFS expansion, for each of the spatial
seeds the ALT algorithm expands a fixed number of σ nodes in the graph
search. This is not the case for BFS since there we can ensure that each
expansion step is in fact a one-hop expansion. We also perform experiments
varying the number N of landmarks, as this affects the performance of the
GR-Link-LM and GR-Link-LM ∗algorithms. Both proposed landmark selec-
tion algorithms, i.e., using the farthest as well as the partitioning - highest
degree landmarks, are assessed.

The disk space overhead for the GR-Link-LM method includes the dis-
tance table D from the landmark nodes to all other nodes in the graph. The
overhead for each number of landmarks is shown in Table 3.2. The size of
the database containing the data needed to build the indices (POI and LOI
information) is 74.96 MB.

What follows are experiments relating to the various parameters affecting
the k-RNN query performance.

3.5.4.1 Varying Landmarks

Seeking k = 60 results, Figure 3.12 shows that the GR-Link-LM and GR-
Link-LM ∗ algorithms perform best with N=8. Choosing more landmarks
provides a better lower bound estimate (to points to “triangulate” to). How-

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

k

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

GR−Sync

GR−Link

Ideal

(a) I/O performance

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9
x 10

4

k

C
P

U
 T

im
e

(m
s)

GR−Sync
GR−Link

(b) CPU Performance
Figure 3.11: Real Dataset: varying k

Num of Landmarks Overhead (MB)
1 3.08
2 6.16
4 12.33
8 24.66
12 36.96
16 49.28

Table 3.2: Overhead for the number of landmarks

ever, increasing the number of landmarks to N > 8 does not provide tighter
distance bounds and thus no further performance gain.

Using a different landmark selection algorithm, the partitioning - highest
degree method, Figure 3.13 shows a performance similar to that of the farthest
landmark selection method, i.e., reachingN=8 we have the best performance.

The farthest method precomputes the distances between the landmarks
and all other nodes in the graph in one step. The partitioning - highest de-
gree method requires extra pre-processing steps (i) to partition the graph
(METIS) and then (ii) to select the high degree nodes from each of the
partitions. Therefore, the pre-processing cost using the farthest landmark
selection method is lowest. Since with both methods have comparable perfor-
mance, we chose the farthest method for subsequent experimentation. Also,
the number of landmark nodes will be fixed to N = 8.

0 2 4 6 8 10 12 14 16
115

120

125

130

135

140

Number of landmarks (N)

I/
O

 p
a
g
e
 a

c
c
e
s
s
e
s

GR−Link−LM

GR−Link−LM*

(a) I/O Performance

0 2 4 6 8 10 12 14 16
1200

1400

1600

1800

2000

2200

2400

2600

2800

Number of landmarks (N)

tim
e

(m
s)

GR−Link−LM
GR−Link−LM*

(b) CPU Performance
Figure 3.12: Varying the number of Landmark nodes N , I/O and CPU Per-
formance. Landmarks are selected using the farthest method (k=60)

3.5.4.2 ALT Optimization

The GR-Link-LM ∗algorithm uses an ALT approach for the expansion of the
spatial seeds (A∗combined with landmarks). Using stepwise expansion, we
need to determine the number of the ALT expanded nodes σ in each GR-
Link-LM ∗step for each spatial seed. Figure 3.14 shows the performance for
varying σ and k in terms of I/O disk page accesses. For smaller k, the optimal
σ is lower, whereas for larger k, the optimal σ increases. The best choice
seems to be σ = 80. For smaller ks, the main query point expansion reaches
in a few steps the spatial seeds (not a lot of data to look for). In this case,
performing extra node expansions for the spatial seeds incurs additional disk
page accesses without any benefit (the solution was found already). However,
for larger ks, in which cases the GR-Link-LM ∗ algorithm needs to search
larger portions of the graph to guarantee the top k-RNN expanding more
nodes at each ALT step results in fewer node accesses. The graph search is
directed towards the query point expansion with a larger “momentum”.

3.5.5 Query Performance for Varying k

Having determined the optimal σ values, the core experiments will be to
assess how the k-RNN processing methods perform under varying k values.

Figure 3.15a presents a comparison of all of the methods discussed in
this paper. Figure 3.15b focuses specifically on the respective performance of
the GR-Link-LM and GR-Link-LM ∗methods. As mentioned, the benchmark
“ideal approach” simulates a Relevance Graph search that terminates as soon
as the k-RNN POIs are found, i.e., we have a-priori knowledge of the results

0 2 4 6 8 10 12 14 16
115

120

125

130

135

140

Number of landmarks (N)

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

GR−Link−LM

GR−Link−LM*

(a) I/O Performance

0 2 4 6 8 10 12 14 16
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Number of landmarks (N)

tim
e

(m
s)

GR−Link−LM
GR−Link−LM*

(b) CPU Performance
Figure 3.13: Varying the number of Landmark nodes N , I/O and CPU Per-
formance. Landmarks are selected using the partitioning - highest degree
method (k=60)

and are only expanding the graph until “discovered”. As we can see, the
GR-Link-LM and GR-Link-LM ∗ methods outperform the GR-Link method,
both, in terms of I/O page accesses and CPU time. Also, while not quite
reaching the performance of the ideal method, especially the GR-Link-LM ∗
method not only reduces the gap considerably, but also shows the same I/O
and CPU cost k growth behavior as the ideal method.

Focusing on the respective performance of the two new methods, for large
k, GR-Link-LM ∗ performs considerably better than the simple, Breadth-first
approach of GR-Link-LM . The GR-Link algorithm - as expected - performs
worse than our proposed GR-Link-LM and GR-Link-LM ∗ algorithms. This
shows that the exclusion of expanded nodes based on our landmarks-based
method benefits the proposed algorithms and shows a considerable perfor-
mance gain over the simple, “blind” bidirectional BFS approach. In addi-
tion, the performance of GR-Link-LM ∗ is improved over the GR-Link-LM
approach. The ALT algorithm used by GR-Link-LM ∗ for the spatial seed
expansions proves to work as expected, directing the search towards the query
point and therefore saving the algorithm from expanding unused graph nodes.

Figure 3.16 shows the running times of the algorithms. The results are
in line with the I/O-based experiments and the respective performance ad-
vantage is even more evident.

0 20 40 60 80 100
80

100

120

140

160

180

200

220

ALT expanded nodes (σ)

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

k=20

k=40

k=60

k=100

(a) I/O Performance

0 20 40 60 80 100
600

800

1000

1200

1400

1600

1800

2000

2200

2400

ALT expanded nodes (σ)

tim
e

(m
s)

k=20
k=40
k=60
k=100

(b) CPU Performance
Figure 3.14: Varying the number of expanded ALT nodes σ, I/O and CPU
Performance. Different k values show different optimal σ values.

3.5.6 Assessing the Effect of α
The preference parameter α balancing the effect of spatial distance vs. rel-
evance on the query result is not only a critical factor for the quality of the
result, but also affects the query processing cost. With α < 0.5 it favors the
Spatial Score and with α > 0.5 it favors the Relevance Score. Figure 3.17
shows that with an emphasis on Relevance (α > 0.5), the cost increases due
to a more expensive Relevance Graph expansion. Also, algorithms with an
optimized graph search increase their performance advantage with increasing
α. The results are analogous when measuring the CPU time.

3.5.7 Spatial Grid vs. Graph Partitioning
All POI data is kept on disk. The assumption so far is that each populated
Spatial Grid cell corresponds to a disk block. This approach supposedly
has the disadvantage of only considering the spatial characteristics without
taking into account that the nearest-neighbor search explores the Relevance
Graph as well. It is expected that the further the points are spatially dis-
tributed, the more blocks need to be retrieved, thus, increasing the I/O cost.
Our approach in extending the current disk layout is now to group POIs
together based on Relevance Graph proximity. This is achieved by partition-
ing the Relevance Graph using the METIS graph partitioning tool [KK98].
However, the grid-based partitioning is essential for spatial search and the un-
derlying expansion mechanism. Using graph-based partitioning, we mapped
the spatial grid cells to graph partitions. Now, when the spatial search re-
quests a specific grid cell, the respective one or more graph partitions are

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

k

I/
O

 p
a
g
e
 a

c
c
e
s
s
e
s

Ideal

GR−Link

GR−Link−LM

GR−Link−LM*

(a) GR-Link vs. LM vs. LM* vs. Ideal

20 30 40 50 60 70 80 90 100
80

100

120

140

160

180

200

220

240

k

I/
O

 p
a
g
e
 a

c
c
e
s
s
e
s

GR−Link−LM

GR−Link−LM*

(b) GR-Link-LM vs. GR-Link-LM ∗

Figure 3.15: GR-Link, GR-Link-LM , GR-Link-LM ∗and Ideal Index I/O per-
formance

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 10

4

k

ti
m

e
 (

m
s
)

GR−Link
GR−Link−LM
GR−Link−LM*

Figure 3.16: CPU performance, varying k

fetched.
Ultimately, Figure 3.18a shows that graph-partitioning does not provide

a performance advantage. What is interesting is that the performance ad-
vantage of the ideal method when compared to GR-Link is diminished in this
case. An explanation here is that the expansion solely relies on the graph
and, hence, a respective partitioning would provide some (respective) advan-
tage for this method. Overall however, the ideal method performs best in
the case of the Spatial Grid, which is evident when comparing Figures 3.10b
and 3.18b.

3.5.8 Summary
The experiments show that by optimizing graph search, the resulting algo-
rithms, GR-Link-LM and especially GR-Link-LM ∗ manage to improve the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

alpha

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

GR−Link
GR−Link−LM
GR−Link−LM*

(a) I/O Performance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12x 10
4

alpha

tim
e

(m
s)

GR−Link
GR−Link−LM
GR−Link−LM*

(b) CPU Performance
Figure 3.17: Varying preference parameter α

Spatial Graph
0

20

40

60

80

100

120

140

160

I/
O

 p
a
g
e
 a

c
c
e
s
s
e
s

 GR−Link

GR−Link−LM

GR−Link−LM*

(a) k=60

20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

k

I/
O

 p
a

g
e

 a
c
c
e

s
s
e

s

Ideal

GR−Link

GR−Link−LM

GR−Link−LM*

(b) Graph partitioning, varying k

Figure 3.18: Partitioning: Spatial Grid vs. Relevance Graph

performance of the GR-Link method considerably. The two proposed algo-
rithms perform also very well in comparison to an “ideal” method.

Chapter 4

Similarity Search on
Spatio-Textual Point Sets

4.1 Introduction
Online social platforms, such as Twitter, Flickr, Facebook and Foursquare
have attracted billions of active users. For example, according to Twitter, 500
million tweets are exchanged every day from 100 million active users. User
activities in these platforms generate content that in most cases is either
textual (e.g., status updates, short messages), or has textual information
associated with it (e.g., tags assigned to uploaded photos). At the same
time, following the widespread use of GPS and mobile devices, an increasing
amount of this content is additionally associated with geospatial information
(e.g., geotagged tweets, geotagged photos, user check-ins at specific places).
Thus, user actions generate “traces”, where each trace is an entity that can
be associated with textual content and a location.

Efficient indexing and querying of spatio-textual data has received a lot of
attention over the past years, due to the high importance of such content in
location-based services, such as nearby search and recommendations. In par-
ticular, multiple types of spatio-textual queries have been extensively studied,
including boolean range queries, top-k queries, k-nearest neighbor queries,
and more recently, spatio-textual similarity joins [CCJW13, BGM12].

Nevertheless, in existing works spatio-textual entities are typically treated
as individual, independent items. A typical example is a query to find nearby
restaurants, or hotels offering certain amenities. The work presented in
[BGM12] deals with finding pairs of entities that are both spatially close and
textually similar. This work is highly applicable, such as for de-duplicating
Points of Interest across datasets, or finding matching photos taken at ap-

53

u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

u3, o3, {shop,market}

u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}

u3, o7, {bus,ride}

spatial threshold

u2, o8, {football,derby}

Figure 4.1: STPSJoin query scenario. Multiple objects are spatially or tex-
tually similar, but only users u1 and u3 have objects which are mutually
similar.

proximately the same location and with very similar tags.
Similarity search on isolated entities can be restrictive. Consider, for

example, searching for similar users in social networks. Users (entities) are
associated with sets of spatio-textual objects (i.e. geotagged photos, or tweets
the user has generated). Clearly, characterising two users as similar requires
that their sets of spatio-textual objects are “similar”.

Motivated by such applications, in this paper we address the problem of
similarity search for spatio-textual entities, where each entity is represented
by a set of spatio-textual objects. In particular, we introduce the Spatio-
Textual Point-Set Similarity Join (STPSJoin) query. Given sets of spatio-
textual objects, each one belonging to a specific entity, this query seeks pairs
of entities that contain similar spatio-textual objects. The spatio-textual
point set similarity join can naturally model, for example, the search for
users, which exhibit similar behavior according to the spatio-textual objects
they generate. For instance, given the locations and nature of store chains
as spatio-textual objects, we can formalize the problem of identifying similar
franchises and support site analysis for a franchise expansion.

To efficiently process spatio-textual point-set similarity joins, we adapt
and extend the state-of-the-art algorithms for processing similarity joins for
single points [BGM12]. The proposed algorithms make use of spatio-textual
indexes in conjunction with an early termination and a filter-and-refinement
strategy to effectively prune the search space, reducing the execution time
by orders of magnitude. More specifically, the contributions of our work are

as follows.

• We formally define the spatio-textual point set similarity join (STPSJoin)
query, which extends and generalizes the spatio-textual similarity join
for the case of point sets.

• We derive a baseline algorithm for the STPSJoin query by adapting the
state-of-the-art PPJ-C algorithm to work for point sets.

• We propose two optimized algorithms, S-PPJ-B and S-PPJ-F, which
apply an early termination and a filter-and-refinement strategy, respec-
tively, in order to drastically prune the search space. This significantly
reduces the number of comparisons required, both, in terms of pairs of
entities and in terms of individual points for each candidate pair.

• In addition, we present an alternative version of S-PPJ-F, denoted as
S-PPJ-D, which relies on an R-tree instead of a grid for the spatial
indexing.

• Finally, we perform an extensive experimental evaluation using three
large, real-world datasets. The results of the experimental evaluation
demonstrate that the proposed algorithms achieve an order of magni-
tude and above improvement in terms of execution time when compared
to the baseline method.

The rest of the paper is structured as follows. The STPSJoin query is
formally introduced in Section 4.2. Then, our algorithms for the efficient
evaluation of STPSJoin queries are presented in Section 4.3. Section 4.4
presents an experimental evaluation of our proposed approaches.

4.2 Problem Definition
We assume a database D of spatio-textual objects created by different users
U . A spatio-textual object o ∈ D is a triple o = 〈u, loc, doc〉, where u ∈ U is
the user associated with this object, loc = 〈x, y〉 is a spatial point and doc is a
set of keywords. We refer to the user, location and keywords associated with
an object o using the notation o.u, o.loc and o.doc respectively. In addition,
we use Du to denote the set of objects belonging to user u.

The spatial distance δ(o, o′) between two objects is calculated as the
Euclidean distance between their spatial locations. Moreover, the textual

similarity τ(o, o′) is measured according to the Jaccard similarity of their
keywords:

τ(o, o′) = |o.doc ∩ o′.doc|
|o.doc ∪ o′.doc| .

Given a spatial threshold εloc and a textual threshold εdoc, we say that
two objects o, o′ ∈ D match if their spatial distance is below εloc and their
textual similarity is above εdoc. Matching between objects is defined using
the predicate µ:

µ(o, o′) =
{

True if δ(o, o′) ≤ εloc and τ(o, o′) ≥ εdoc
False otherwise.

For brevity, we overload µ to account for matching an object with a set of
objects D ⊆ D:

µ(o,D) =
{

True if there exists o′ ∈ D such that µ(o, o′)
False otherwise.

Furthermore, let two spatio-textual point-setsD andD′. Function M (D,D′)
returns the set of objects in D that match with at least one object in D′:

M(D,D′) = {o ∈ D such that µ(o,D′)} .

We then useM to define the similarity of point-sets D and D′. In particular,
this is measured as the fraction of the matched points from one set to the
other divided by the total number of points in the two sets. Formally:

σ(D,D′) = |M(D,D′)|+ |M(D′, D)|
|D|+ |D′| .

The employed measure is inspired by the Jaccard similarity, which is not
directly applicable since it does not support partial similarity between el-
ements. More elaborate similarity metrics over point sets can be found in
[EM97, RB01].

We can now define the Spatio-Textual Point Set Join query (STPSJoin).
STPSJoin identifies all pairs of users U which are associated with sets of
spatio-textual objects that have a match higher than a specified threshold
εu. We assume a total ordering over U (i.e. ≺U) to avoid returning duplicate
pairs. Formally, the STPSJoin query is defined as follows.

Definition 1. Given a database D of spatio-textual objects belonging to a set
of users U , the STPSJoin query is a tuple Q = 〈εloc, εdoc, εu〉 which returns
a set R containing all pairs of users (u, u′) such that u, u′ ∈ U , u ≺ u′, and
σ(Du, Du′) ≥ εu with respect to the spatial and textual thresholds εloc and εdoc.

4.3 Algorithms for STPSJoin
In this section, we present our algorithms for the evaluation of the STPSJoin
query. We first present a baseline algorithm, and then we introduce meth-
ods that exploit filter and refine strategy in combination with spatio-textual
indexes in order to direct the search for similar point sets.

4.3.1 Baseline Approach

Preliminaries. The straightforward method for evaluating an STPSJoin
query is to find, for every pair of users, the set of matching objects, and
then to check whether the resulting similarity score σ exceeds the specified
threshold εu. Thus, for a pair of users (u, u′), the problem can be cast as a
spatio-textual similarity join query, ST-SJOIN(D, εloc, εdoc), which has been
studied in [BGM12]. This query returns all pairs of objects (o, o′) in D such
that o, o′ ∈ D, δ(o, o′) ≤ εloc and τ(o, o′) ≥ εdoc. Based on this, we can find
the objects of u that match with those of u′, and vice versa, and then proceed
with computing the score σ for this pair of users.

For this purpose, we adopt the PPJ-C algorithm from [BGM12] for the
purposes of ST-SJOINs. PPJ-C uses a grid to partition the space, in order to
limit the search to those candidates that can satisfy the spatial predicate of
the join. The grid is constructed dynamically at query time, using cells that
have an extent in each dimension that equals the spatial distance threshold
εloc. The cells are assigned ids in a row-wise order from bottom to top (see
Figure 4.2a).

PPJ-C visits the cells in ascending order of their ids, taking advantage
of the spatial filtering, since the objects in each visited cell c need to be
joined only with those in c and in the cells adjacent to c. In fact, to avoid
duplicates, only the adjacent cells with ids lower than c need to be exam-
ined. Thus, for each cell, one self-join operation and at most four non-self
join operations need to be performed. These are performed using the PPJ
algorithm, that in turn extends the set similarity join algorithm PPJOIN
[XWL+11] by including an additional check on the spatial distance of two
objects.
The S-PPJ-C algorithm. Using PPJ-C as basis, we can derive a baseline al-
gorithm, denoted as S-PPJ-C (Set-PPJ-C), for the STPSJoin query. S-PPJ-C
is presented in Algorithm 6. During the construction of the grid, we main-
tain the following additional information: (a) for each cell c, we maintain
the contained objects in separate lists according to the user they belong to;
we denote by Du

c the set of objects of user u that are contained in c; (b) for

every user u, we maintain a list of cells Cu that contain objects belonging to
u; Cu is sorted according to cell ids in ascending order.

ALGORITHM 6: S-PPJ-C Algorithm
Input: D, U , εdoc, εloc, εu
Output: Pair of matched users R

1 R← ∅
2 selectedUsers ← ∅
3 G← createGridIndex(D,U, εloc)
4 foreach u1 ∈ U do
5 foreach u2 ∈ selectedUsers do
6 r ← PPJ-C(u1, u2, εdoc, εloc)

7 σ ← |r|
|Du1 |+|Du2 |

8 if σ ≥ εu then
9 R.add(〈u2, u1〉)

10 selectedUsers.add(u1)
11 return R

The S-PPJ-C algorithm loops through all pairs of users, taking into con-
sideration the total ordering ≺U of the user set U . For each pair of users
(u, u′), S-PPJ-C executes a non-self join version of the PPJ-C algorithm from
[BGM12] presented above. The difference with the standard PPJ-C, lies in
the fact that in this case pairs with objects from both users are returned. To
do so, first the lists Cu and Cu′ containing the cells for u and u′ respectively
are gathered. Next, the algorithm iteratively selects from either list the cell
c with the lowest id that has not been selected yet. Assume that the next se-
lected cell c is from the list of user u. For every cell c′ in Cu′ with c′.id ≥ c.id,
a non-self join version of PPJ is executed with input the spatio-textual point
sets Dc

u and Dc′
u′ . Since Cu and Cu′ may both contain the cell c, we avoid the

duplicate execution of PPJ for c.
The results of PPJ-C are used to compute the user similarity score σ (line

6-7). Pairs of users that achieve a similarity score above the threshold εu are
collected in the result set.

4.3.2 The S-PPJ-B Algorithm
The drawback of the S-PPJ-C algorithm is that for each pair of users it finds
all their matching points and computes the exact value of their similarity
score σ before checking whether this exceeds the given threshold. Instead,
since we are only interested in finding those pairs with a similarity that

exceeds εu, we can reduce the execution time of the algorithm by terminating
the computation for a pair of users as soon as it can be decided that their
similarity is below εu. Following this observation, we derive a more efficient
algorithm, denoted as S-PPJ-B (where B stands for bound).

S-PPJ-B operates in the same manner as S-PPJ-C, with the only difference
that it replaces the execution of PPJ-C with a modified process, denoted
as PPJ-B. PPJ-B leverages the use of an upper bound on the number of
unmatched objects for a pair of users to effectively prune the search on the
spatial grid. More specifically, the intuition behind PPJ-B is the following.
While examining two users, PPJ-B leverages the user similarity threshold εu

and the number of objects belonging to each user in order to compute an
upper bound on the number of unmatched objects between the two users,
above which the user similarity cannot exceed εu. In the following, we first
derive this upper bound, and then we explain the process followed by PPJ-B
in order to allow for early termination during the examination of two users.

For a pair of users (u, u′), let βu,u′ denote the number of objects from user
u and user u′ that do not match with the other user, i.e.:

βu,u′ = |Du|+ |Du′ | − |M(Du, Du′)| − |M(Du′ , Du)|

An upper bound for βu,u′ is derived as follows.

Lemma 1. For a pair of users (u, u′), if βu,u′ > (1− εu) · (|Du|+ |Du′|) then
σ(Du, Du′) < εu.

Proof. The proof is derived from the definition of the similarity score between
two users, as follows:

σ(Du, Du′) ≥ εu ⇒
|M(Du, Du′)|+ |M(Du′ , Du)|

|Du|+ |Du′ |
≥ εu ⇒

|Du|+ |Du′ | − βu,u′

|Du|+ |Du′|
≥ εu ⇒ 1− βu,u′

|Du|+ |Du′ |
≥ εu ⇒

βu,u′ ≤ (1− εu) · (|Du|+ |Du′|)

Upon traversing a cell c, PPJ-C checks for potential matches in cells with
ids lower than c.id. Therefore, we cannot be certain that objects that have
not been matched so far will also not match with objects in cells with higher
ids (i.e. in the next cell or row). Therefore, the bound may be used within
PPJ-C, but only with respect to the objects discovered from the beginning
of the grid until the previous row. The objects that were traversed in the
current row have to be excluded from calculation.

To that end, PPJ-B devises a different grid traversal strategy that allows
the pruning mechanism to utilize every object appearing in cells traversed
when the bound evaluation is executed. Specifically, this strategy traverses
the rows from bottom to top (considering the id of the bottom row as 1),
and depending on whether the id of a row is odd or even, different treatment
is followed. If a cell ci,j belongs to a row with odd id, i.e. j is odd, then
the objects contained in it are matched with objects from all surrounding
cells, except the cell directly on the right, i.e. ci+1,j. Matching is done by
executing PPJoin. Otherwise, if the cell belongs to an even row, then we
match its objects only with objects from the other user from the cell that is
directly on the left, i.e. ci−1,j. This process is illustrated in Figure 4.2b.

PPJ-B is described in Algorithm 7. Following this traversal strategy,
PPJ-B allows for early termination using the bound β, while still maintaining
the property of PPJ-C to avoid duplicate examination of the same pair of
cells. Indeed, when PPJ-B traverses the last cell of an odd row (lines 13-16),
it has considered every potential match for any object it has encountered up
to that point. Thus, it checks whether the number of objects that have not
been matched exceeds the calculated bound β. If so, the search stops, since
it is impossible to result in a user similarity score that exceeds εu. Note that,
in practice, since the grid may be rather sparse, some rows may be empty.
In that case, when the next visited cell belongs to a row that is not directly
above the previous one, the same check can be performed, even if the last
examined row was even, since previously encountered objects cannot have
any new matches in the future.

4.3.3 The S-PPJ-F Algorithm
The S-PPJ-B algorithm presented above exploits an upper bound on the
number of unmatched objects between two users in order to allow for early
termination when comparing each pair of users. In the following, we present
the S-PPJ-F algorithm that further increases efficiency by following a fil-
ter and refine strategy that concentrates the search on those pairs of users
that are promising candidates, while pruning others that can not exceed the
similarity threshold εu.

S-PPJ-F is outlined in Algorithm 8. It operates on top of a spatio-textual
index structure that is constructed at runtime. In every iteration, the algo-
rithm selects a new user u, searches for potential matches with the users that
have been selected in previous steps, and updates the spatio-textual index
with the objects in Du.

The spatio-textual index is a dynamic grid enhanced with an inverted
index for every cell. This list maintains for every token that appears in objects

in a cell, the users that are associated with these objects. An example is
depicted in Figure 4.3. The grid structure additionally maintains the objects
associated with every user within a cell.

The search for matches follows the filter and refine principle. After a user
u is selected, the algorithm traverses through every cell c ∈ Cu which contains
objects associated with u, and calculates the set of tokens T that appear in
any one of these objects. This set is then utilized to identify candidate users
in c and its surrounding cells (lines 6-9). Every user u′ that is associated
with an object that appears in one of these cells and contains at least one
keyword from T is considered to be a candidate. S-PPJ-F maintains every
cell for u and u′ that contains objects that potentially (both spatially and
textually) match in Mu

u′ and Mu′
u′ respectively.

For every user u and candidate user u′, the algorithm calculates an upper
bound σ̄ of their user similarity score (lines 12-13). This is performed by
assuming that all of their objects which are contained in the same or adjacent
cells match. Formally, σ̄ is computed as follows:

σ̄ =
∑

l∈Mu
u′
|Dl

u|+
∑

l′∈Mu′
u′
|Dl′

u′ |
|Du|+ |Du′ |

.

If σ̄ < εu, then this pair can be safely pruned. Otherwise, a refinement step
follows, during which the PPJ-B algorithm is executed to identify whether
the exact similarity score for the pair exceeds the user similarity threshold.

4.3.4 The S-PPJ-D Algorithm
In the following, we consider databases that are already partitioned by a data
partitioning scheme. In particular, we consider data partitioning schemes
induced by an R-tree structure combined with a textual index similar in
fashion to the index outlined with respect to S-PPJ-F. The main difference
is that instead of indexing grid cells, in this case, we index the leaf nodes of
the R-tree.

S-PPJ-D implements a filter and refinement strategy similar to S-PPJ-F,
based on a given data partitioning and a spatio-textual index I that is con-
structed at runtime. I maintains an entry for every leaf node l in the tree.
This entry holds an inverted list that maps a token t U l

t (i.e. users with
objects in l that contain t). In addition, every leaf node l maintains a map-
ping between users and their objects within l, denoted by Dl

u. Finally, the
intersections among the extended MBRs of the leaf nodes in the tree are
precomputed by performing a spatial join using the process described in
[BKS93]. S-PPJ-D is described by Algorithm 9.

The filter step iterates over the leaf nodes Lu of a user u. For every
leaf node l, it calculates the set of tokens T that appear in objects within l
that are associated with u (i.e. Dl

u). These tokens are then used to probe
the spatio-textual index (line 8) and identify the candidate users that are
associated with objects containing tokens from T . This is performed for each
leaf node that intersects with the εloc-extended bounding box of l (line 6). In
order to avoid duplicates, we only search for candidate users which are higher
in the user ordering. M maintains for every candidate u′ the leaf nodes of
u′ contain objects that can potentially match objects associated with user u
Mu′

u′ , as well as the leaf nodes of the relevant objects from u Mu
u′ . S-PPJ-D

then calculates for every candidate u′ a bound on the similarity score between
u and u′. This bound is calculated by considering the extreme case in which
every object fromMu′

u′ andMu
u′ match (lines 11-12). The refinement step uses

PPJ-D in order to calculate the exact similarity between candidate users.
Algorithm 10 outlines PPJ-D. PPJ-D leverages the spatio-textual index

in combination with an appropriate leaf node traversal strategy in order to
return the similarity score between two users. PPJ-D functions similar to
PPJ-B for the context of a data-driven partitioning scheme. Given two users
u1 and u2, two lists L1 and L2 are maintained for their leaf nodes ordered
with respect to a predefined ordering (e.g. in ascending order of their ids).
The algorithm proceeds iteratively, and selects the lowest (with respect to
the ordering) unvisited leaf node l from L1 and L2.

Let user u be the user from which the element was selected, and u′ the
other user. The index is used to identify every leaf node l′ that is spatially
relevant to l, and contains objects from u′. Spatially relevant leaf nodes are
nodes with intersecting εloc-extended MBRs. For every l′ we execute PPJoin
to identify the exact similarity between the objects Dl

u and Dl′
u′ . This is

performed by focusing only in objects that belong within the intersection A
of the εloc-extended MBRs of l and l′ (lines 11-12, 18-19). This optimisation
is based on the observation that objects which are not contained in A do not
satisfy the spatial threshold εloc.

PPJ-D follows a similar pruning strategy with PPJ-B. The objects of every
leaf node for user u are evaluated against every potential candidate from Du′

that falls within a leaf node that is higher in the given ordering. Therefore,
after an iteration that visits an object, candidate matches from leaf nodes,
both higher and lower in the ordering, are considered. This observation is
the basis of a pruning step (lines 21-22) that calculates the number of objects
t−|J | that are already found to fail to satisfy the thresholds. If this number
is lower that a computed bound, the search is pruned since the users fail to
satisfy the user similarity threshold.

4.4 Experimental Evaluation
Next, we present our experimental evaluation of the proposed algorithms.
We first describe the datasets used and the parameters involved, and then
we present the results.

4.4.1 Experimental Setup

Datasets. We have used three real-world datasets of spatio-textual web
objecs for our experiments. The Flickr dataset is derived from the Flickr
Creative Commons dataset provided by Yahoo [TSF+15]. The whole dataset
contains about 99.3 million images, about 49 million of which are geotagged.
For our experiments, we concentrate on objects from the geographical bound-
aries of London, UK and we filtered out images that do not contain coor-
dinates or tags. The resulting dataset contains 17,008 users and 1,189,335
objects. The GeoText dataset [EOSX10] is a geotagged microblog corpus
available online.1 It comprises 377,616 posts by 9,475 different users within
the US. Finally, the Twitter dataset is a collection of geotagged tweets from
the geographical area of London, UK, that we have collected. It contains
9,724,579 tweets generated by 40,000 different users in 2014.

The NLTK toolkit2 was employed to identify named entities from the
text associated with the objects. The extracted named entities were used
in combination with other related information, such as tokens, hashtags and
mentions, as keywords associated with the respective objects. The charac-
teristics of the three datasets are summarized in Table 4.1.
Evaluation measures and parameters The purpose of the experimental
evaluation is to compare the performance of the proposed algorithms in terms
of the execution time in different settings. We investigate the effect of the
following parameters: (a) the dataset size N in terms of number of users, (b)
the query thresholds for spatial distance (εloc), textual similarity (εdoc) and
user similarity (εu) and (c) the fanout parameter of the R-tree structure.

All algorithms were implemented in Java, and the experiments were exe-
cuted on a machine with an Intel Core i5 2400 CPU and 16GB RAM, running
on Ubuntu Linux. During the experiments, 15GB of memory were allocated
to the JVM. All plots report running time in a logarithmic scale.

1http://www.ark.cs.cmu.edu/GeoText/
2http://www.nltk.org/

http://www.ark.cs.cmu.edu/GeoText/
http://www.nltk.org/

4.4.2 Scalability
The scalability experiments evaluate the performance of our methods in
datasets of different sizes. We divided the Twitter, Flickr and GeoText
datasets for a variable number of users. The resulting datasets range from
4,000 users with 72,094 objects to 40,000 users with 9,724,579 objects. Dif-
ferent parameter values are used for different datasets, in order to account for
the different sizes and token selectivity across the datasets. Lower thresholds
are set for the GeoText dataset in order to avoid empty result sets, whereas
higher thresholds are set for the Flickr dataset to account for the increased
amount of textual information.

Figure 4.4 shows the scalability evaluation results. The results clearly
show that S-PPJ-F outperforms the other methods by several orders of mag-
nitude. This is consistent for all datasets, irrespective of size. The efficiency
of S-PPJ-F compared to the other approaches is attributed to the effect of the
filter and refinement scheme, in combination with the suitability of the dy-
namic grid partitioning over the objects. The grid partitioning is tailor made
to the spatial threshold parameter εloc, which allows the search for matching
objects to be limited exclusively in adjacent cells. Additionally, the inverted
lists maintained within each cell of the grid, allow the effective filtering of
candidate user pairs associated with spatially similar, but textually diverse,
objects.

The performance of S-PPJ-B does not compare favourably against S-PPJ-F.
This result is expected since S-PPJ-F builds on S-PPJ-B by leveraging the fil-
ter and refinement scheme. The comparison between S-PPJ-B and S-PPJ-C,
allows the evaluation of the early termination strategy, as well as the traver-
sal mechanism, differentiating S-PPJ-B from S-PPJ-C. The results indicate
that S-PPJ-B offers a consistent improvement in execution time compared
to S-PPJ-C, confirming that the proposed techniques manage to prune the
search space for similarity search among two point sets.

Finally, the results show that S-PPJ-D outperforms the baseline methods,
but it is not comparable to the grid-based S-PPJ-F, which follows the same
principles. The discrepancy in execution time can be attributed to the use
of different spatial indexes. The data driven-partitioning imposed by the
R-tree is independent of the spatial threshold given as a parameter to the
STPSJoin query. As a result, the imposed partitioning leads to an ineffective
division of the database. Inspection of the performance of S-PPJ-D shows
that both partition size and overlap may lead to subpar performance, since
objects within large partitions tend to be spatially irrelevant, and overlaps
require the evaluation of multiple join operations. We revisit this issue in
Section 4.4.4.

4.4.3 Effect of similarity thresholds
In the following experiments, we vary the parameters and evaluate the pro-
posed algorithms for different combinations of textual, spatial and user sim-
ilarity thresholds. Similar to the scalability experiments, different ranges in
threshold values are used across datasets.

Figure 4.5 presents the results. We observe that the dominant param-
eter is the spatial threshold εloc. High values on εloc result in significantly
higher execution times. This is particularly obvious for the Flickr and Twit-
ter datasets, which contain significantly larger amounts of objects. When the
spatial distance threshold reaches metropolitan level distances, the majority
of the objects fall into adjacent partitions. As a result, the filtering step of
S-PPJ-F and S-PPJ-D returns a high number of candidates. In these cases,
the overhead imposed by the additional indexing maintained by S-PPJ-F and
S-PPJ-D is apparent. We observe a peak in the case of S-PPJ-D, especially
with respect to the Flickr dataset. In this case, inspection shows that the
R-tree partitioning does not manage to result in an efficient partition of the
object database.

This does not apply for GeoText, mainly due to the fact that the objects
in GeoText are scattered in the significantly larger area of the whole of USA.
The results show that the proposed pruning strategies are highly functional
in combination with a grid-based partitioning scheme. S-PPJ-F outperforms
the other methods in every scenario, and apart from the case of the Flickr
dataset with εloc = 0.01, its performance is independent of the parameter
values.

4.4.4 Effect of Fanout on S-PPJ-D
An important parameter for data partitioning schemes based on R-trees is the
fanout parameter. This parameter is associated with the number of objects
that reside in a node of the R-tree. The effect the fanout parameter has on the
performance of S-PPJ-D is twofold. First of all, S-PPJ-D executes a spatial
distance join in order to identify spatial relations among the leaf nodes of
the tree, which are treated by the algorithm as spatial data partitions. Since
the fanout parameter affects both the depth and the breadth of the R-tree,
it also affects the performance of the spatial join. Second, S-PPJ-D is build
on top of the partitioning imposed by the leaf nodes. Therefore, the fanout
affects both the number and the size of leaf nodes, which are relevant to
S-PPJ-D.

In order to experimentally evaluate the effects of the fanout parameter,
experiments with values ranging from 50 to 250 were conducted. The results

are shown in Figure 4.6. The results verify that S-PPJ-D is sensitive to the
fanout value. Even though no single fanout value achieves the best results
in all datasets, we observe that an appropriate fanout value for STPSJoin
queries falls within the range of 100 to 200.

4.4.5 Summary
Our experimentation verifies the superiority of the proposed algorithms in
terms of execution time for all datasets used. The pruning strategy employed
by S-PPJ-F manages to significantly boost the algorithm’s performance for
the computation of the STPSJoin query. Furthermore, the S-PPJ-D algorithm
which induces data partitioning is efficient enough to be considered as a viable
choice in cases when the data are already partitioned with an R-tree (or any
other data partitioning method). The experimental analysis is conducted
on three real datasets of varied size (the two of them are publicly available)
and different parameters setting have been examined in order to reach to
the optimum configurations. The results show that the algorithms scale well
in very large databases and can therefore be used effectively in real-world
scenarios.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(a) PPJ-C grid traversal.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(b) PPJ-B grid traversal.
Figure 4.2: PPJ-C and PPJ-B grid traversal strategies examples. Ob-
jects associated with user u (u′) are depicted by squares (diamonds) respec-
tively. Object colors represent whether the search has determined if an object
matches with objects from the other user. Matched objects are painted black,
objects that do not match are painted white, while objects whose state has
not been determined are painted grey. PPJ-B has determined the state of
every object in cells 1 to 15, while PPJ-C the objects until cell 10.

ALGORITHM 7: PPJ-B Algorithm
Input: Du1 , Du2 , G, εdoc, εloc, εu
Output: Similarity score for users u1, u2

1 β ← (1− εu) · (|Du1 |+ |Du2 |)
2 J ← ∅
3 Cu1 ← G.getUserCells(u1)
4 Cu2 ← G.getUserCells(u2)
5 t← 0
6 c1 ← −1, c2 ← −1
7 while c1 < |Cu1 | − 1 or c2 < |Cu2 | − 1 do
8 if Cu1 [c1 + 1] ≤ Cu2 [c2 + 1] then
9 c1 ← c1 + 1, c← c1, uc ← u1

10 else
11 c2 ← c2 + 1, c← c2, uc ← u2

12 r ← G.getRow(c)
13 if (r−1 is odd and r > r−1) or
14 (r−1 is even and r − r−1 > 1) then
15 if t− |J | > β then
16 return 0
17 if r is odd then
18 Crel ← G.getRelevantCellsExceptRight(c)
19 foreach c′ ∈ Crel do
20 if c = c′ and c−1 = c then continue
21 else if uc = u1 then
22 PPJoin(Dc

u1
, Dc

u2
, J)

23 else
24 PPJoin(Dc′

u2
, Dc

u1
, J)

25 else
26 if c 6= c−1 then
27 PPJoin(Dc

u1
, Dc

u2
, J)

28 if G.getColumn(c) 6= 0 then
29 if uc = u1 then
30 PPJoin(Dc

u1
, Dc−1

u1
, J)

31 else
32 PPJoin(Dc

u2
, Dc−1

u1
, J)

33 if c 6= c−1 then
34 t← t+ |Dc

u1
|+ |Dc

u2
|

35 r−1 ← r, c−1 ← c

36 σ ← |J |/(|Du1 |+ |Du2 |)
37 if σ ≥ εu then return σ

38 else return 0

cell/leaf tokens users

shop u1 u3

jeans u1
football u2

users objects
u1
u2
u3

o1
o2 o8
o3

match u2

stadium u2

market u3
u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}
u3, o7, {bus,ride}

spatial threshold

derby u2u3, o3, {shop,market}

u2, o8, {football,derby}

u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

Figure 4.3: Spatio-textual structure for S-PPJ-F and S-PPJ-D.

ALGORITHM 8: S-PPJ-F Algorithm
Input: D, U , εdoc, εloc, εu
Output: Pair of matched users R

1 R← ∅
2 G← initialiseSTGridIndex(D, εloc)
3 foreach u ∈ U do
4 foreach c ∈ Cu do
5 T ← calculateTokens(u, c)
6 foreach c′ ∈ G.getRelevantCells(c) do
7 foreach t ∈ T do
8 foreach u′ ∈ G.getTokenUsers(c′, t) do
9 Mu

u′ .add(c), Mu′

u′ .add(c′)
10 G.addUser(u)
11 foreach u′ ∈M.keys() do
12 m←

∑
c∈Mu

u′
|Dc

u|+
∑

c′∈Mu′
u′
|Dc′

u′ |

13 σ̄ ← m
|Du|+|Du′ |

14 if σ̄ ≥ εu then
15 σ ← PPJ-B(Du, Du′ , G, εdoc, εloc, εu)
16 if σ ≥ εu then
17 R.add(〈u′, u〉)
18 return R

ALGORITHM 9: S-PPJ-D Algorithm
Input: Tree, εdoc, εloc, εu
Output: Pair of matched users R

1 R← ∅
2 I ← constructSpatioTextualIndex(Tree)
3 foreach u ∈ I.getUsers() do
4 foreach l ∈ I.getLeafNodes(u) do
5 T ← I.calculateTokens(u, l)
6 foreach l′ ∈ I.getRelevantLeafNodes(l) do
7 foreach t ∈ T do
8 foreach u′ ∈ U l′

t such that u < u′ do
9 Mu

u′ .add(l), Mu′

u′ .add(l′)
10 foreach u′ ∈M.keys() do
11 m←

∑
l∈Mu

u′
|Dl

u|+
∑

l′∈Mu′
u′
|Dl′

u′ |

12 σ̄ ← m
|Du|+|Du′ |

13 if σ̄ ≥ εu then
14 σ ← PPJ-D(Du, Du′ , I, εdoc, εloc, εu)
15 if σ ≥ εu then
16 R.add(〈u′, u〉)
17 return R

Figure 4.4: Scalability results for the GeoText, Flickr and Twitter datasets
(parameter defaults: GeoText: εloc = 0.001, εdoc = 0.3, εu = 0.3; Flickr
εloc = 0.001, εdoc = 0.5, εu = 0.5; Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4).

ALGORITHM 10: PPJ-D Algorithm
Input: Du1 , Du2 , I, εdoc, εloc, εu
Output: Similarity score for users u1, u2

1 β ← (1− εu) · (|Du1 |+ |Du2 |)
2 J ← ∅ // joined objects
3 L1 ← I.getLeafs(u1) // sorted
4 L2 ← I.getLeafs(u2)
5 i1 ← 0, i2 ← 0
6 t← 0
7 while ii < |L1| or i2 < |L2| do
8 if L1[ii] ≤ L2[i2] then
9 foreach l2 ∈ I.getRelevantLeafs(l1) do

10 if l2 ≥ l1 and l2 ∈ L2 then
11 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)
12 PPJoin(Dl1

u1
∩A,Dl2

u2
∩A, J)

13 t← t+ |Dl1
u1
|

14 else if Lu2 [i2] ≤ L1[i1] then
15 l2 ← L2[i]
16 foreach l1 ∈ I.getRelevantLeafs(l2) do
17 if l1 > l2 and l1 ∈ L1 then
18 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)
19 PPJoin(Dl1

u1
∩A,Dl2

u2
∩A, J)

20 t← t+ |Dl2
u2
|

21 if t− |J | > β then
22 return 0
23 if L1[ii] <= L2[i2] then i1 ← i1 + 1
24 if L2[i2] <= L1[i1] then i2 ← i2 + 1
25 σ ← |J |/(|Du1 |+ |Du2 |)
26 if σ ≥ εu then return σ

27 else return 0

Dataset Objects Users Tokens per Object Objects per Token Objects per User

Twitter 9724579 40000 2.08 (1.43) 6.25 (141.80) 243.11 (344.86)
Flickr 1189335 17008 7.90 (8.03) 26.45 (1236.50) 69.93 (346.53)
GeoText 165733 9461 1.64 (1.01) 3.53 (39.36) 17.52 (12.99)

Table 4.1: Experimentation datasets, number of objects and users, and mean
(standard deviation) for descriptive metrics.

Figure 4.5: Varying the similarity thresholds (GeoText: 6, 000 users, 107, 941
objects; Flickr: 11, 000 users, 74, 8745 objects; Twitter: 20, 000 users,
4, 988, 090 objects).

Figure 4.6: Tuning the R-Tree fanout parameter.

Chapter 5

Hub Labels on the Database
for Large-Scale Graphs

5.1 Introduction
Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf.
[Bas14] for the most recent overview) the emergence of social networks has
generated massive unweighted graphs of interconnected entities. On such
networks, the distance between two vertices is an indication of their closeness,
i.e., for finding users closely related to each other or extracting information
about existing communities within the social media users. Although we may
always use a breadth first search (BFS) to calculate the distance between
any two vertices on such graphs, that approach cannot facilitate fast-enough
queries on main memory or be easily adapted to secondary storage solutions.

Moreover, most of the excellent preprocessing techniques available for
road networks cannot be adapted to large-scale graphs, such as social or col-
laboration networks. So far, the most promising approach for this type of
graphs builds on the 2-hop labeling or hub labeling (HL) algorithm [GPPR01],
[CHKZ02], in which we store a two-part label L(v) for every vertex v: a
forward label Lf (v) and a backward label Lb(v). These labels are then
used to very fast answer point-to-point shortest-path queries. This tech-
nique has been adapted successfully to road networks [ADGW11, ADGW12,
DGW13, AIKK14] and quite recently has also been extended to undirected,
unweighted graphs [AIY13, DGPW14, JFWX14]. The HL method has also
been applied for one-to-many, many-to-many and kNN queries in road net-
works [DGW11, DW13] and kNN and RkNN queries in the context of social

73

networks in [EP14b].
Although the aforementioned technique is extremely efficient on providing

very fast computation of shortest-path distances on main memory, there are
very few works that try to replicate those algorithms on secondary storage.
HLDB [DW12] stores the calculated hub labels for continental road networks
on a commercial database system and translated the typical HL distance
query between two vertices to plain SQL commands. Moreover, it showed
how to efficiently answer kNN queries and k-best via points, again with SQL
queries. Recently, HopDB [JFWX14] proposed a customized solution that
utilizes secondary storage, also during preprocessing. Unfortunately, both
methods are not flawless: HLDB has only been tested on road networks
where the size of labels is relatively small (<100) and therefore its speed
would seriously degrade for large-scale graphs due to the much larger size
of the labels, whereas HopDB answers only vertex-to-vertex queries and is a
customized C++ solution that cannot plug-in on existing database systems
and hence has limited practical applicability.

Considering the drawbacks of previous methods, this work presents a
database framework that may service multiple distance queries on massive
large-scale graphs. Our pure-SQL COLD framework (COmpressed Labels on
the Database) may answer multiple distance queries (point-to-point, kNN) in
addition to RkNN and one-to-many queries not handled by previous meth-
ods, rendering it a complete database solution for a variety of practical ap-
plications on massive, large-scale graphs. Our extensive experimentation
will show that COLD outperforms previous solutions, including specialized
graph databases, on all aspects (including query performance and memory
requirements) while servicing a larger variety of distance queries, making it
the best overall solution for servicing scalable, real-time applications oper-
ating on large-scale graphs. In addition, COLD is implemented entirely on
a popular, open-source database engine with no third-party extensions and
thus our results are easily reproducible by anyone.

The outline of this work is as follows. Section 5.2 describes our novel
COLD framework and its implementation details. Experiments establishing
the benefits of our approach are provided in Section 5.3.

5.2 Contribution
In this section we will present our COLD (COmpressed Labels on the Database)
database framework that may answer multiple distance queries (point-to-
point, kNN, RkNN and one-to-many) for large-scale graphs using SQL com-
mands. Since, the COLD framework builds on the previous works of HLDB

Vertex Hub Labels (h,d)
0 (0,0)
1 (0,1), (1,0)
2 (0,1), (2,0)
3 (0,1), (3,0)
4 (0,1), (4,0)
5 (0,2), (1,1), (5,0)
6 (0,2), (1,1), (6,0)
7 (0,2), (1,1), (7,0)
8 (0,2), (2,1), (8,0)
9 (0,2), (3,1), (9,0)
10 (0,2), (4,1), (10,0)
11 (0,3), (1,2), (5,1), (11,0)
12 (0,3), (1,2), (6,1), (12,0)
13 (0,3), (1,2), (7,1), (13,0)

Figure 5.1 & Table 5.1: A sample Graph G and the created hub-labels

[ADF+12] and [EP14b] we will follow the notation and running example pre-
sented there, for highlighting the necessary concepts and challenges for adapt-
ing those previous works, (i) in the context of large-scale graphs for [ADF+12]
and (ii) within the boundaries of a relational database management system
(RDBMS) for [EP14b]. To this end, we chose PostgreSQL [Pos15] for our
implementation, since it is a very popular, open-source, extensible RDBMS.
Although we will use some PostgreSQL-specific data-types and SQL exten-
sions, we do not use any third-party extensions but only features included in
its standard installation.

5.2.1 Implementation
Our COLD framework assumes that we have a correct hub labeling (HL)
framework that generates hub-labels for the undirected, unweighted graphs
we wish to query. Although COLD will work with any correct HL algo-
rithm, in this work we use the [AIY15] implementation of the PLL algorithm
of [AIY13] to generate the necessary labels. To highlight the results of this
process, the labels for the undirected, unweighted graph G of Figure 5.1 are
shown in Table 5.1. Throughout this work, we will refer to those labels as
the forward labels. The forward label L(v) for a vertex v is an array of pairs
(u, dist(v, u) sorted by hub u. Since our work also focuses on snapshot kNN
and RkNN queries, there also some target objects P∈V that do not change
over time. For our specific running example we assume that P = {4, 10, 12}

Table 5.2: The forward table used
in HLDB for the sample graph G

v hub dist
.
2 0 1
2 2 0

.
7 0 2
7 1 1
7 7 0

.

Table 5.3: The forwcold table used
for COLD for the sample graph G

v hubs dists
.
2 {0, 2} {1, 0}

.
7 {0, 1, 7} {2, 1, 0}

.

Code 5.1: V2v query for HLDB
SELECT MIN(n1 . d i s t+n2 . d i s t)
FROM forward n1 , forward n2
WHERE n1 . v = s
AND n2 . v = t
AND n1 . hub = n2 . hub ;

Code 5.2: V2v query for COLD
SELECT MIN(n1 . d i s t+n2 . d i s t) FROM
/∗ Expand the hubs , d i s t s a r rays ∗/
(SELECT UNNEST(hubs) AS hub ,
UNNEST(d i s t s) AS d i s t
FROM forwco ld WHERE v = s) n1 ,
(SELECT UNNEST(hubs) AS hub ,
UNNEST(d i s t s) AS d i s t
FROM forwco ld WHERE v = t) n2
WHERE n1 . hub=n2 . hub ;

and thus, we highlight the respective entries of Table 5.1.

5.2.1.1 Vertex-to-Vertex (v2v) queries.

To find the network distance dist(s, t) between two vertices s and t, a HL
query must find the hub v ∈ L(s)∩L(t) that minimizes the sum dist(s, v) +
dist(v, t). For our sample graph G, e.g., the minimum distance between
vertices 2 and 7 is d(2, 7) = 3, using the hub 0. To translate this HL query
into SQL commands, in HLDB [ADF+12] forward labels are stored in a
database table denoted forward where the labels of vertex v are stored as
triples of the form (v, hub, dist(v, hub)) (see Table 5.2). The table forward
has the combination of (v, hub) as the primary key and is clustered according
to those columns, so that “all rows corresponding to the same label are stored
together to minimize random accesses to the database” [ADF+12]. Then we
can find the distances between any two vertices s and t by the SQL query of
Code 5.1.

Although the HLDB vertex-to-vertex (v2v) query is very simple, there
is one major drawback. For such a query, HLDB has to fetch from secon-
dary storage a total of |L(s)| + |L(t)| rows. Although this is practical for

Table 5.4: Necessary data structures for the sample graph G, P = {4, 10, 12}
and one-to-many, kNN and RkNN queries

Backw. Lbls kNN Backw. RkNN Backw. kNN Result (k=1)
Hub (to-many) Labels (k=2) Labels (k=1) Obj. (Obj., dist)

0 (4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3) 4 (10,1)1 (12,2) (12,2) (12,2)
4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1) 10 (4,1)6 (12,1) (12,1) (12,1)
10 (10,0) (10,0) (10,0) 12 (4,4)12 (12,0) (12,0) (12,0)

road networks where the forward labels have less than 100 hubs per ver-
tex [ADGW12], it cannot scale for large-scale graphs where the forward la-
bels have thousand of hubs per vertex. Moreover, on such graphs the forward
DB table and the corresponding primary key index will become too large,
which is also an important disadvantage. To this end, we take advantage of
the fact that PostgreSQL has an array data type that allows columns of a
DB table to be defined as variable-length arrays. Hence, in COLD we store
hubs and distances for a vertex (both ordered by hub) as arrays in two sep-
arate columns (i.e., hubs and dists) in a single row. The resulting forwcold
compressed DB table is shown in Table 5.3. This approach not only emulates
exactly how labels are stored on main-memory for fast v2v queries but also
has considerable advantages: (i) The forwcold DB table has exactly |V | rows
(ii) The forwcold DB table has the column v as primary key without needing
a composite key. This alone facilitates faster queries. Moreover the size of
the corresponding index will be much smaller. In fact, our experimentation
will show that the primary-key index for forwcold may be > 4, 400× smaller
than the index size of HLDB. (iii) For a v2v query, COLD needs to access
exactly two rows, regardless of the sizes of |L(s)| and |L(t)|. This way, we
efficiently minimized the secondary-storage utilization, even working inside
a database. The resulting SQL query for COLD is shown in Code 5.2. There
we exploit the fact that PostgreSQL guarantees that parallel unnesting for
hubs and distances for each nested query will be in sync, i.e., each pair (hub,
dist) is expanded correctly since for the same v the respective arrays have
the same number of elements1.

5.2.1.2 Additional queries overview.

For answering more complex (kNN, RkNN and one-to-many) distance queries
on a HL framework for a set of target objects P , we need to build some
additional data structures from the forward labels (for undirected graphs).

1http://stackoverflow.com/questions/23830991/parallel-unnest-and-sort-order-in-
postgresql

Then to answer the respective query we only need to combine the forward
labels L(q) of query vertex q, with the respective data structure explained in
the following. Those data structures are summarized in Table 5.4.

For answering one-to-many queries, i.e., calculate distances between a
source vertex q and all objects in P , we need to build the backward labels-
to-many by basically ordering the forward labels of the target objects by
hub [DGW11] and then by distance for the same hub. For kNN queries we
only need to keep at most the k-best pairs (of smallest distances) per hub from
the backward labels-to-many to create the kNN backward labels [ADF+12].
In our specific example, the kNN backward labels for k = 2 and hub 0, do not
contain the pair (12, 3). Finally, for RkNN queries, we must first calculate
the kNN Results (i.e., the NN of the object 4 is the object 10 with distance
1) and then we build the RkNN backward labels, based on the observation
that “we need to access those pairs from the backward labels-to-many to a
specific object, if and only if those distances are equal or smaller than the
distance of the kNN of this object” [EP14b]. In our specific example, the
RkNN backward labels for k = 1 and hub 0, do not contain the pair (10,2)
since the NN of object 10 (the object 4) is within distance 1. Although for
our small graph the differences between the individual data structures seem
minimal, for larger graphs those differences become very prominent. This
was also showcased by the theoretical analysis provided in [EP14b] which
showed that backward labels-to-many will have on average D · |HL| pairs,
the kNN backward labels have at most k · |V | pairs and the RkNN backward
labels have on average ε ·D · |HL| pairs where ε may be < 0.01 for specific
datasets and experimental settings. Moreover, Efentakis et al. [EP14b] have
shown how these additional data structures may be constructed from the
forward labels in main-memory, requiring less than few seconds, even for the
larger tested datasets.

5.2.1.3 kNN queries.

To translate the HL kNN query into SQL, HLDB stores kNN backward la-
bels in a separate DB table denoted knntab that stores triples of the form
(hub, dist, obj) (see Table 5.5). The respective table knntab has the combina-
tion of (hub, dist, obj) as a composite primary key and is clustered according
to those columns. Note that in HLDB, we cannot use the combination of
(hub, dist) as a primary key, because especially in large scale graphs we will
have a lot of distance ties even for k-entries for the same hub. Then we can
can answer a kNN query from vertex q by the SQL query of Code 5.3. Again,
the kNN HLDB query has the same drawbacks as before, i.e., it has to re-
trieve |L(q)| rows from forward and k · |L(q)| rows from knntab tables, for a
total of (k+ 1) · |L(q)| rows retrieved from secondary storage. Moreover in a

Table 5.5: The knntab table used in
HLDB for the sample graph G, k =
2 and P = {4, 10, 12}

hub dist obj
0 1 4
0 2 10
1 2 12

.

Table 5.6: The knntab table used in
COLD for the sample graph G, k =
2 and P = {4, 10, 12}

hub dist objs
0 1 {4}
0 2 {10}
1 2 {12}

.

Code 5.3: kNN query for HLDB
SELECT MIN(n1 . d i s t+n2 . d i s t) ,
n2 . obj FROM
forward n1 , knntab n2
WHERE n1 . v = q
AND n1 . hub = n2 . hub
GROUP BY n2 . obj
ORDER BY MIN(n1 . d i s t+n2 . d i s t)
LIMIT k ;

Code 5.4: kNN query for COLD
SELECT MIN(n1 . d i s t+n2 . d i s t) ,
UNNEST(ob j s) AS obj FROM
(SELECT UNNEST(hubs) AS hub ,
UNNEST(d i s t s) AS d i s t
FROM forwco ld WHERE v = q) n1 ,
/∗ Get k−e n t r i e s per hub , d i s t ∗/
(SELECT hub , d i s t , ob j s [1 : k]
FROM knncold) n2
WHERE n1 . hub=n2 . hub
GROUP BY obj
ORDER BY MIN(n1 . d i s t+n2 . d i s t)
LIMIT k ;

database, it makes sense to create one large knntab table for the maximum
value kmax of k (e.g., for k = 16) that may be serviced by the DB framework
and that same table will be used for all kNN queries up to k = kmax. In
that case, the HLDB framework will have to retrieve (kmax+1) · |L(q)| rows
for every kNN query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB ta-
ble (Table 5.6) that has the columns (hub, dist, objs), whereas objects are
grouped and ordered per hub and distance (the column objs is an array).
Although for our sample graph G, the DB tables knntab and knncold seem
identical, COLD’s method offers several advantages: (i) We can now use
the combination of (hub, dist) as a primary key, which makes the respective
index significantly smaller and faster and (ii) In case of many distance ties
(common to large-scale graphs) and one large knncold DB table that services
all kNN queries for values of k up to the maximum value kmax , we only
need to fetch the first k-objs entries (i.e., objs[1:k]) per hub and dist, which
makes the later sorting faster (see Code 5.4).

Code 5.5: One-to-many query for
COLD
SELECT MIN(n1 . d i s t+n2 . d i s t) ,
UNNEST(ob j s) AS obj FROM
(SELECT UNNEST(hubs) AS hub ,
UNNEST(d i s t s) AS d i s t
FROM forwco ld WHERE v = q) n1 ,
ob j co ld n2
WHERE n1 . hub=n2 . hub
GROUP BY obj ;

Code 5.6: RkNN query for COLD

SELECT n3 . id2 , n3 . d i s t FROM
/∗ Nested n3 query i s a modi f i ed
one−many−query to r evco ld ∗/

(SELECT MIN(n1 . d i s t+n2 . d i s t) AS d i s t ,
UNNEST(ob j s) AS obj FROM
(SELECT UNNEST(hubs) AS hub ,
UNNEST(d i s t s) AS d i s t
FROM forwco ld WHERE v = q) n1 ,
r evco ld n2
WHERE n1 . hub=n2 . hub
GROUP BY obj
ORDER BY obj ,MIN(n1 . d i s t+n2 . d i s t)
) n3 ,
/∗ Join with the knnres t ab l e ∗/
(SELECT obj , d i s t s [k] AS d i s t
FROM knnres) n4
WHERE n3 . obj=n4 . obj
AND n3 . d i s t<=n4 . d i s t
ORDER BY n3 . obj ;

5.2.1.4 One-to-many queries.

Similar to how COLD handles kNN queries, for one-to-many queries, COLD
stores the backward labels-to-many in a new objcold DB table that has an
identical format to knncold, i.e., it has three columns (hub, dist, objs) whereas
objects are grouped and ordered per hub and distance. Objcold also uses the
combination of (hub, dist) as a primary key. The resulting one-to-many query
(Code 5.5) is quite similar to COLD’s kNN query, but (i) it operates on the
larger objcold DB table (ii) It does not have the ORDER BY ... LIMIT k
clause and (iii) We use the entire objs array per hub and distance instead of
objs[1:k]. Note that HLDB cannot possibly support such queries because
it will need to retrieve on average |L(q)| rows from the forward table and a
total of |L(q)| · D · (|HL|/|V |) [EP14b] rows from the corresponding objlab
table, which will be prohibitively slow for very large datasets.

5.2.1.5 RkNN queries.

Table 5.7: The knnres table used
in COLD for RkNN queries, the
sample graph G, k = 1 and P =
{4, 10, 12}

obj dists objs
4 {1} {10}
10 {1} {4}
12 {4} {4}

For RkNN queries, COLD stores the
RkNN backward labels in a sepa-
rate revcold DB table that has an
identical format to previous knncold
and objcold DB tables, i.e., three
columns (hub, dist, objs) where objects
are grouped and ordered per hub and

distance and the combination of (hub, dist) used as a primary key. COLD
also stores the kNN Results, i.e., the kNN of all objects in another knnres DB
table that has the format (obj, dists, objs,) where obj is the primary key and
objs and dists are arrays (both ordered by distance). Therefore the kNN of
object p is the objs[k] within distance dists[k] of the respective row for
p. Again it makes sense to build a knnres DB table for a max value of kmax
that may service RkNN queries for varying values of k. As a result, during
the RkNN COLD query, we will have to use an additional JOIN between the
revcold and knnres DB tables. The resulting query is shown in Code 5.6.

We see that even the more complex RkNN query in COLD requires just
a few lines of SQL code that will work on any recent PostgreSQL version
without any need of third-party extensions or specialized index structures.
In fact, all DB tables in COLD, use only standard B-tree based primary key
indexes, without any additional modifications. To satisfy this strict require-
ment, we had to effectively compress the index sizes by grouping rows per
vertex (forcold table) or object (knnres table), or by hub and distance for knn-
cold, objcold and rknncold. And although we used PostgreSQL specific SQL
extensions for expanding the stored arrays, latest versions of other commer-
cial databases (e.g., Oracle, SQL Server) support similar array data-types.
Hence, it would be quite easy to port COLD to other database vendors, as
well.

In a nutshell, in this section we covered all the implementation details of
our novel, pure-SQL COLD framework that may answer multiple distance
queries (v2v, kNN, RkNN and one-to-many) entirely within a database. We
also presented the actual queries used and the way the necessary data struc-
tures are stored within the database, so that our results are easily repro-
ducible by anyone. Although our focus was on query efficiency, it is impor-
tant to note that once we create the forcold table, all the adjoining DB tables
within COLD can also be created by SQL commands. The resulting queries
were omitted due to space restrictions. This fact also testifies that COLD
is really a pure SQL framework for servicing multiple distance queries on
large-scale graphs. We also provided the necessary theoretical details why
the COLD framework outperforms previous solutions. This will be further
quantified in the following experimental section.

Table 5.8: Networks graphs statistics
Graph | V | | E | Avg degr. | HL | / | V | PLL Preproc. Time (s)

Facebook 4,039 88,234 22 26 0.03
NotreDame 325,729 1,090,108 3 55 6

Gowalla 196,591 950,327 5 100 13
Youtube 1,134,890 2,987,624 3 167 123

Slashdot1 77,360 469,180 6 204 11
Slashdot2 82,168 504,230 6 216 13
Citeseer1 268,495 1,156,647 4 408 110
Amazon 334,863 925,872 3 689 230
DBLP 540,486 15,245,729 28 3,628 5,720

Citeseer2 434,102 16,036,720 37 4,457 5,946

5.3 Experimental Evaluation
To evaluate the performance of COLD on various large-scale graphs, we
conducted experiments on a workstation with a 4-core Intel i7-4771 pro-
cessor clocked at 3.5GHz and 32 GB of RAM, running Ubuntu 14.04. We
compare our COLD framework with a custom implementation of HLDB in
PostgreSQL and with Neo4j, a well-known, popular graph database.

We use the same network graphs as our previous work of [EP14b] that
are taken from the Stanford Large Network Dataset Collection [LK14] and
the 10th Dimacs Implementation Challenge website [BMSW13]. All graphs
are undirected, unweighted and strongly connected. We used collabora-
tion graphs (DBLP, Citeseer1, Citeseer2) [GSS08], social networks (Face-
book [ML12], Slashdot1 and Slashdot2 [LLDM09]), networks with ground-
truth communities (Amazon, Youtube) [YL12], web graphs (Notre Dame) [AJB99]
and location-based social networks (Gowalla) [CML11]. The graphs’ average
degree is between 3 and 37 and the PLL algorithm creates 26− 4, 457 labels
per vertex, requiring 0.03− 5, 950s for the hub labels’ construction (see Ta-
ble 5.8).

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64bit with rea-
sonable settings (8192 MB shared buffers, 64 MB temp buffers). We also
used Neo4j Server v2.1.5. The Neo4j queries were formulated using Cypher,
Neo4j’s declarative query language and we report query times as they were
returned by the server. Although Cypher may theoretically facilitate one-
to-many queries (besides vertex-to-vertex), testing Neo4j with our datasets
and the same number of target vertices we tested COLD with, resulted in
a “java.lang.Stack OverflowError”. Providing the server with additional re-
sources2 had no positive effect and thus there are no results to report for
one-to-many queries and Neo4j.

We conducted experiments belonging to 4 query types: (i) vertex-to-
2http://neo4j.com/developer/guide-performance-tuning/

vertex, (ii) kNN , (iii) RkNN and (iv) one-to-many. For each experiment,
we used 10,000 random start vertices, reporting the average running time.
Before each experiment, we restart the PostgreSQL and Neo4j servers for
clearing their internal cache and we also clear the operating system’s cache
for accurate benchmarking. All charts are plotted in logarithmic scale.

5.3.1 Performance on HDD
In our first round of experiments, we ran experiments on an HDD. We used
a Seagate Barracude ST3000DM001 SATA3 7200rpm with 64Mb cache.

5.3.1.1 Vertex-to-vertex.

Figure 5.2a shows results for vertex-to-vertex (v2v) queries for COLD, HLDB
and Neo4j. Results show that COLD is consistently 5 - 20.7× faster than
HLDB, with this difference amplified for the Citeseer1, Amazon and Youtube
datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also 9 -
149× (for the facebook dataset) faster than Neo4j, which exhibits stable
performance for all datasets, but is slower from both COLD and HLDB. For
all datasets, COLD requires less than 9ms for answering v2v queries.

Figure 5.2b shows the difference in memory size for the DB tables for-
cold (COLD) and forward (HLDB) and their respective primary-key (PK)
indexes. Results show that the size of the PK index in COLD is 3, 600 -
4, 444× smaller than for HLDB (for DBLP and Citeseer2 respectively). As
expected, the difference in index sizes is almost identical to the |HL|/|V |
ratio, since forcold table has |V | rows and forward has |HL| rows. Likewise,
the corresponding tables are 131 - 188× smaller for COLD. Thus, the tech-
niques used for compressing the forward labels in COLD clearly achieve a
considerable reduction in memory size, rendering our proposed framework
suitable for real-world scenarios.

5.3.1.2 kNN.

Figure 5.3a shows the speedup of COLD compared to HLDB in the case
of kNN queries for D = 0.01 and k = {1, 2, 4, 8, 16}. As described in Sec-
tion 5.2.1.3, we have created two DB tables for each framework (COLD,
HLDB), one for kmax = 4 and one for kmax = 16. Then the DB table for
kmax = 4 is used for answering kNN queries for k = 1, k = 2 and k = 4
and the kNN table for kmax = 16 is used for answering kNN queries for
k = 8 and k = 16. Results show that for k = 1, COLD is 5 - 19× faster
for the five largest datasets (Amazon, Citeseer,Citeseer2, DBLP. Youtube)
and although this speedup degrades for larger values of k, COLD remains

(a) Vertex-to-vertex query times (b) Memory size’s difference between
COLD and HLDB

Figure 5.2: Experiments on HDD for vertex-to-vertex

consistently 2 - 10× faster even for k = 16. For the smaller datasets, perfor-
mance between COLD and HLDB is quite similar, with COLD performing
better on Facebook and Gowalla, while HLDB performs only marginally bet-
ter for Slashdot1, Slashdot2 and Notredame. In all cases, COLD answers
kNN queries for all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of
COLD vs HLDB for varying values of D. For each value for D, we have
build separate versions of knntab (HLDB) and knncold (COLD) DB tables
for D · |V | objects selected at random from each dataset and kmax = 4.
Figure 5.3b shows results for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}.
Again, for the five largest datasets COLD is consistently 3.5 - 23.4× faster
than HLDB, whereas even for the smaller datasets, COLD is consistently 8.6
- 11.5 faster than HLDB for the largest value of D (for D = 0.1). Moreover,
COLD may answer kNN queries for k = 4 on all datasets and all values of
D in less than 15ms.

5.3.1.3 RkNN.

For RkNN experiments, we only report the COLD’s performance, since there
is no other SQL framework that supports these queries. In out first ex-
periment, we report the performance of COLD for D = 0.01 and k =
{1, 2, 4, 8, 16}. For all those queries we have built one version of the kn-
nres DB table for kmax = 16 (see Section 5.2.1.5) and 3 separate revcold
tables for kmax = {1, 4, 16}. As expected, for RkNN queries and k = 1 we
use the revcold table built for kmax = 1, for k = 2, k = 4 we use the revcold
table built for kmax = 4 and for k = 8, k = 16 we use the revcold table
built for kmax = 16. Figure 5.4a presents the results. In all cases, COLD
provides excellent query times that are below 20ms for k = 1 in all datasets
and never exceed 85ms even for k = 16.

1 2 4 8 16
0.5

1

2

4

8

16

32

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD vs
HLDB forD = 0.01 and varying val-
ues of k

0.001 0.0050.01 0.05 0.1
0.5

1

2

4

8

16

32

D

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(b) Speedup of COLD vs HLDB for
k = 4 and varying values of D

Figure 5.3: kNN Experiments on HDD for COLD and HLDB

(a) COLD RkNN query times for
D = 0.01 and varying values of k

(b) COLD RkNN query times for for
k = 1 and varying values of D

Figure 5.4: RkNN Experiments on HDD for COLD

In our second set of RkNN experiments, we assess the performance of
COLD for varying values of D. Figure 5.4b presents results for k = 1 (as this
is the typical case for RkNN queries) and D = {0.001, 0.005, 0.01, 0.05, 0.1}.
Results show that although COLD’s performance degrades for larger values
of D, RkNN query times are below 65ms for all datasets and values of D,
with the exception of Youtube and D = 0.1 (109.3ms). Thus, COLD offers
excellent and stable performance in RkNN queries for all all datasets and
tested values of k and D.

5.3.1.4 One-to-Many.

Again, COLD is the only SQL framework that supports one-to-many queries.
Figure 5.5a presents the corresponding results for varying values of D (D =
{0.001, 0.005, 0.01, 0.05, 0.1}). COLD answers such queries in less than a sec-

(a) One-to-Many experiments for
COLD varying values of D

(b) COLD One-to-Many HDD vs SSD

Figure 5.5: One-to-many experiments for COLD

ond for all datasets and values of D, except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio) that require 5601ms and 4170ms re-
spectively, for D = 0.1. For such high values of D, the one-to-many query
reaches the complexity of an one-to-all query and as expected, it cannot be
any faster on a secondary storage device. Note that even specialized graph
databases like Neo4j cannot support this type of queries for more than a 1,000
target objects, whereas COLD answers one-to-many queries to 110, 000 tar-
get objects in the Youtube dataset in 401ms, with a simple SQL query. This
alone, is a great achievement.

5.3.2 Performance on SSD
After establishing the performance characteristic of COLD in the HDD, in
our second round of experiments, we repeat some of the previous experiments
on an SSD to measure the impact of the secondary-storage device type to
results. The SSD used is a Crucial CT512MX100SSD1 MX100 512GB 2.5”
SATA3.

5.3.2.1 Vertex-to-vertex performance.

Figure 5.6: SSD vertex-to-vertex

Although the usage of SSD favors
HLDB more than COLD (see Fig-
ure 5.6), COLD is consistently 1.5
- 3.2× faster than HLDB (except
Facebook, which is the smallest of
datasets). The SSD has almost no
impact on Neo4j and thus, COLD
is now 11-199× faster than Neo4j
on all datasets. Note, than on the

1 2 4 8 16
0.5

1

2

4

8

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD vs
HLDB for D = 0.01 and varying
values of k

(b) COLD RkNN query times for
D = 0.01 and varying values of k

Figure 5.7: kNN and RkNN SSD performance

SSD, COLD requires less than 0.9ms
for all datasets and vertex-to-vertex

queries, except the Citeseer2 and DBLP datasets (those with the highest
|HL|/|V | ratio). But even then, vertex-to-vertex queries take less than 2.6ms
for COLD.

5.3.2.2 kNN performance.

Figure 5.7a shows the performance speedup of COLD compared to HLDB
in the case of kNN queries running on the SSD, for D = 0.01 and varying
value of k. Again, although the SSD lowers the performance gap between
COLD and HLDB, COLD is still faster on all datasets (except Facebook).
In fact, COLD is 3 - 6.75× faster than HLDB for the high |HL|/|V | ratio
datasets (Citeseer2, HLDB) requiring less than 24.6ms even for k = 16.

5.3.2.3 RkNN.

Figure 5.7b presents the results of the RkNN query time performance on
COLD for D = 0.01 and varying value of k. Results show that SSD usage
accelerates COLD by only 20% at most, which clearly demonstrates that
COLD effectively minimized secondary storage utilization and thus adding a
better secondary storage provides minimal benefits for such queries.

5.3.2.4 One-to-Many performance.

Finally, Figure 5.5b compares one-to-many queries on HDD and SSD for
COLD. Again, the SSD usage accelerates COLD by only 2-30% with further
testifies the optimal secondary storage utilization of COLD.

5.3.3 Summary
Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, includ-
ing query performance, memory size and scalability. On the HDD, COLD
is 9 − 149× faster for vertex-to-vertex queries and 10 − 20× faster for kNN
queries and the largest datasets. On the SSD, COLD is 2 − 3× faster than
HLDB for vertex-to-vertex and up to 6.75× faster for kNN queries. COLD
also requires up to 4, 444× less storage space (indexes) and up to 188× less
storage space (DB tables) used for storing forward labels and thus COLD
is suitable for real-world deployment. Even specialized graph databases like
Neo4j are outperformed by COLD, which is up to 199× faster. But, most im-
portantly COLD may service additional (RkNN, one-to-many) queries, not
handled by any other previous secondary-storage solutions, while providing
excellent query times even on standard hard drives. This fact demonstrates
that COLD achieves maximum secondary-storage utilization that it will be
very hard to beat by any forthcoming pure-SQL framework.

Chapter 6

TwitterViz: Visualizing and
Exploring the Twittersphere

6.1 Introduction
Micro-blogging platforms, especially Twitter, have become a very popular
communication tool, where millions of users share opinions on different as-
pects of everyday life. Twitter reports over 100 million active users and
500 million tweets exchanged every day. This huge amount of data and the
fact that they are offered publicly in real time make their management and
analysis challenging.

Many research studies have been conducted in order to determine whether
Twitter can actually give insights as to how people behave. Such stud-
ies have focused on analyzing a variety of spatio-temporal phenomena (e.g.
[KP12, SGAF13]), as well as topics, sentiments and social interactions (e.g.
[QECC12, QCC12]). Typically, these works focus on specific problems and
examine specific parts of the Twittersphere.

A recent survey of approaches for Twitter analytics can be found in
[GSZS14]. It identifies the need for integrated solutions that provide a uni-
fied framework to be used by researchers and practitioners across disciplines,
and it suggests the support of the following components for this purpose: (a)
a focused crawler to allow for configuration by the user, (b) a pre-processor
for the processing of tweets based on specific needs, (c) a defined data model
that allows the efficient execution of complex queries, (d) the support of a
query language and (e) the informative spatial as well as graph visualization.

TwitterViz supports all of these components. The crawler allows spa-
tial configuration in order to focus on specific geographic areas. The pre-
processor uses natural language processing (NLP) in real time and the pro-

89

(a) TwitterViz architecture

User

Tweet

Hashtag

TWEETS

CONTAINS

FOLLOWS

NEXT

MATCHES

MENTIONS

(b) TwitterViz Data Model
Figure 6.1: TwitterViz Architecture and Data Model for querying the Twit-
tersphere

cessed information is stored in a graph database with a defined data model
as well as the support of a powerful graph query language. In addition, the
visualization of the data both based on spatio-temporal characteristics as
well as graph characteristics renders TwitterViz a complete solution for the
management of Twitter data in order to provide useful analytics. TwitterViz
provides a framework to the non-expert user for exploring and analyzing the
Twittersphere using simple, unobtrusive yet powerful tools.

6.2 The TwitterViz System
TwitterViz comprises a modular pipeline that supports data collection, stor-
age, analysis and visualization of Twitter data. Figure 6.1a shows the archi-
tecture of the system. We briefly describe each module below.
Data Collection. The data collection module supports the crawling of
tweets. Tweets are collected from specific geographic regions based on users’
preferences along with information about “followers" relationships. The col-
lection of these data is subject to limitations, but as long as the geographic
regions selected by the user are on the country level, the restrictions are usu-
ally not violated. In case of violations there are mechanisms that allow the
smooth recovery of the system.
Sentiment Analysis. NLP for sentiment analysis is conducted and each
tweet is then tagged with a score denoting its sentiment. The pre-processing

uses the AlchemyAPI 1 tool which is also used in various research works (e.g.
[QCC12]).
Storage. The storage module consists of a Neo4j2 graph database, which
naturally fits the overtly relationship-centered domain of social networks.
The defined data model, depicted in Figure 6.1b, enables the Twitter graph
construction using a variety of relationships, rendering it a complete model
for the support of complex queries.

The Storage Example describes how the information is stored in the
database once a tweet arrives. Storage Example: Once a tweet arrives, the
USER who has created the TWEET is added to the database and appropriate
FOLLOWS relationships are added/updated. The temporal aspect is main-
tained by the NEXT relationship between two tweets by the same user. The
HASHTAGS that are CONTAINED in the TWEET also have a special relationship
called MATCHES with a property to count the frequency of the co-occurrence
of HASHTAGS that appear in the same TWEET. By using this data model and
the specific graph database, we can achieve the physical representation of
this model in the database, since Neo4j offers native graph storage and pro-
cessing. In this way, graph traversal queries can be achieved very fast. In
addition, TwitterViz employs the Neo4J Spatial extension, that leverages an
R-tree [Gut84b] for the indexing of the tweets based on their coordinates. In
this way, we can perform spatial queries on tweets in an efficient manner.
Visualization and Analysis. The user interface of the TwitterViz frame-
work, shown in Figure 6.2, consists of two main views: (a) the Spatio-
Temporal Analysis View and (b) the Graph Analysis View. Both can be
used simultaneously, independently or in combination with each other. In
future versions, we intend to provide additionally an API that would allow
third-party applications to reuse the results of the analysis creating custom
visualizations for specific needs.
Spatio-Temporal Analysis. The user is given a variety of tools for spatio-
temporal analysis and exploration of Twitter data, both on the map as well
as a variety of charts. Spatial indexing is used to speedup range queries
focusing on tweets in specific areas. The user interface allows for temporal
visualization and analysis of tweets, as well as the simulation of the temporal
evolution of tweets created during a specific time window. All tools can be
used in combination with each other in order to reach to useful conclusions.
Figure 6.2a shows the spatio-temporal analysis interface, which supports the
following operations:

• Range queries on the map to visualize tweets from specific areas.
1http://www.alchemyapi.com
2http://www.neo4j.org/

(a) Spatio-Temporal Analysis Interface (b) Graph Mining Interface
Figure 6.2: TwitterViz User Interface

• Visualization of sentiment on tweets on the map in speficic geographic
areas using a defined visual syntax. The user can investigate how the
sentiments change in specific areas as well as how they change in time,
by also applying other restrictions based on the social network’s struc-
ture.

• Visualization of a user’s followers’ tweets on the map, combining infor-
mation from the graph.

• Visualization and study of the temporal evolution of tweets in user-
defined time windows.

• Analysis of the spatio-temporal distribution of tweets.

• Presentation of a variety of real-time statistics on the streaming data.

All of the supported operations can be combined with each other using re-
strictions, allowing a powerful spatio-temporal and social analysis based on
the advanced visualization offered by TwitterViz .
Graph Mining. The graph mining module offers to the non-expert user off-
the-shelf advanced queries for the exploration of the Twitter graph. In ad-
dition, the expert can formulate her own Cypher queries3. The visualization
of the graph allows for exploration of query results. In addition, charts are
used to visualize specific relationships on the graphs such as hashtags. The
user is thus given powerful tools to explore the Twittersphere, visualize and
analyze data as well as extract meaningful information. Figure 6.2b shows
the graph mining interface that supports the following operations:

3Cypher is the graph query language used in Neo4j

• Defined Cypher queries for the non-expert for graph exploration, like
shortest-path queries, n-Hop traversal queries and queries for locating
specific nodes.

• Support for custom queries on the graph for more complex analysis,
such as pattern matching queries on the graph. Custom queries can be
formulated easily and can combine the tweets’ geo-social characteris-
tics. Such example queries could be:

− Find the tweets with hashtag “parthenon” that are within 0.5Km
from the Athens historical center (substituting x,y with actual
coordinates).
START n=node : tweetWKT(’ wi th inDis tance : [x , y , 0 . 5] ’)
MATCH (n)−[]−(h : HashTag)
WHERE h . Hashtag=’parthenon ’
RETURN n , h

− Find the top-10 users in New York based on how many other users
“follow” them.
MATCH (n : User)<−[:FOLLOWS]−(m: User) , (n)−[]−>(t : Tweet)
WHERE t . Region=’NewYork ’ WITH n , count (m) AS t o t a l
RETURN n ORDER BY to t a l DESC l im i t 10

• Visualization of the results for all of the queries on the graph.

• Presentation of a variety of statistics for real-time graph analysis.

6.3 Demonstration
A use-case scenario that benefits from the use of TwitterViz is the follow-
ing: We want to examine whether users who tweet from the same spatial
neighborhood and who use the same hashtags in their tweets are close in the
followers graph. This kind of scenario can be used to verify the results of a
geo-social query as in [APP13] or a kRNN query as in [EP13b]. We expect
that users who use the same hashtags are close in the followers graph (prob-
ably one follower of the other). We pick a very popular hashtag from an area
in NYC job and we use TwitterViz to choose two random users who used job
in their tweets. TwitterViz visualizes the resulting subgraph, showing that
u1 and u2 are three hops apart. Figure 6.3 shows how we use TwitterViz
spatial and graph analysis capabilities in order to gain insights.

Select Popular

Hashtag #job

Find and visualize

shortestPaths

between 2 users
Select Users based on

tweets location

Figure 6.3: Use Case: Find paths between co-tagged users

The capabilities of TwitterViz for spatio-temporal and graph analysis and
visualization are apparent. Scenarios such as the above, that leverage the
use of spatio-temporal exploration and sentiment analysis, and combine the
findings with graph exploration in order to reach to useful results can be used
for decision making as well as research. A current prototype of TwitterViz is
available online4 among with a video demonstration.

4https://web.imis.athena-innovation.gr/redmine/projects/twittervizdemo

Chapter 7

Conclusions and Directions for
Future Work

In this thesis we have described works that aim in enhancing location-based
services and efficiently execute respective queries. We have introduced a new
query, the k-Relevant Nearest Neighbor query (k-RNN), that manages to ef-
ficiently combine a spatial and a graph index in order to provide answers to
relevant and close by POIs, enhancing the user experience and satisfaction.
We have used state of the art algorithms from graph theory in order to opti-
mize our proposed algorithms. We have introduced a new type of join query,
the Spatio-Textual Point-Set Similarity Join (STPSJoin), that seeks pairs
of entities that contain similar spatio-textual objects. Combining research
from similarity joins and spatial joins we proposed efficient data structures
and algorithms to support this type of query. Based on the observation that
user-generated content is generated in massive amounts, we aim in proposing
a secondary-storage solution to conduct distance-based queries on large-scale
graphs. Our in-database framework, namely COLD, manages to outperform
all other secondary storage solutions, rendering it a complete database sys-
tem to be used off-the shelf. This allows the use of efficient location-based
services by third-party application without the need for custom-based solu-
tions. Since the majority of user-generated content is being made available
by social networks, there is an ever increasing need to harness this informa-
tion and gain valuable insights. Researchers and practitioners on the field
seek in analyzing social network data. In spite of this fact, the research
in the area has not produced a unified solution for the collection, analysis,
querying and visualization based on this kind of data. Our proposed sys-
tem TwitterViz is a complete solution that manages to perform spatial and
spatio-temporal analysis and visualization of Twitter data, as well as query-
ing on the Twittersphere, both in real time and offline. This tool can be used

95

by a variety of practitioners in the field, as well as researchers for the support
of enhanced location-based services such as k-RNN, spatio-textual and Geo-
Social queries. What follows is a brief summary of each of the contributions
of this PhD thesis, as well as directions for future work.

7.1 Relevant Nearest Neighbor Queries
The scope of this work is to introduce k-RNN queries and to create efficient
methods for processing them, i.e., a version of the NN problem that also
considers the relevance between query points. Relevance is introduced as a
means to navigate a “forest” of POIs by retracing the steps of other people
in similar situations, i.e., where did people typically go next. Relevance in
our case is defined as the co-occurrence of POIs in texts (Links of Interests
- LOI). While a rather simplistic measure, it is adequate to define and eval-
uate the proposed approach. To solve the k-RNN problem, we define query
processing methods that rely on a Spatial Grid and a Relevance Graph to
capture the spatial and the relevance aspect of the data, respectively. Land-
marks are introduced as a means to improve the k-RNN query performance
by optimizing the costly search on the Relevance Graph. GR-Link-LM ∗ the
best performing algorithm, uses the ALT algorithm, which combines land-
marks and A∗ search to optimize the graph search. The proposed methods
show a significant performance improvement and their performance comes
close to that of hypothetical, “ideal” method.

Directions for future work include optimizing the spatial aspect of k-RNN
query processing. The challenge is to create an index that more tightly inte-
grates the processing of k-RNN queries. More efficient spatial access methods
could be used and our goal is to make the Relevance Graph information part
of the index. The specific data and relevance score computation turn this
goal into quite a challenge. Additional work will focus on an empirical “rel-
evance” assessment of the query results involving real-world data collected
from the Web. Extracting POIs and LOIs from Web documents requires
an accurate and powerful geoparsing/geocoding algorithm. Testing Google
Places and other NER (named entity recognition) tools has yielded some
promising initial results.

7.2 Spatio-Textual Similarity Search on Point
Sets

This work studies the problem of similarity search on spatio-textual point
sets. We formally define this problem as STPSJoin. STPSJoin can be em-
ployed to identify pairs of similar users, with respect to web documents such
as tweets and photographs associated with these users.

In order to efficiently process STPSJoin we propose algorithms that lever-
age different spatio-textual indexes, and integrate an early termination prun-
ing mechanism with a filter and refinement approach. We conducted large-
scale experiments on real-world datasets for multiple values on the problem
parameters. The better performing algorithm S-PPJ-F is orders of magnitude
more efficient in terms of execution time than the baseline methods. Finally,
S-PPJ-D shows improvement over the baseline methods for the case of data-
driven partitioned databases, even though it is significantly outperformed by
S-PPJ-F.

In the future, we plan to focus on distributed architectures in order to
further enhance the efficiency of our methods. Furthermore, we intend to
integrate additional characteristics in STPSJoin queries, which are often as-
sociated with web objects, such as temporal information.

7.3 Hub Labels on the Database for Large-
Scale Graphs

This work presented COLD, a novel SQL framework for answering multiple
exact distance queries on a database for large-scale graphs. Our results have
proven solid. Not only the COLD framework answers RkNN and one-to-many
queries not handled by previous approaches but it also outperforms previ-
ous solutions (including specialized graph databases) on all levels, includ-
ing query performance, secondary storage utilization and scalability. Thus,
COLD is the best overall pure SQL framework for querying huge, large-scale
graphs.

Moreover, we have provided comprehensive details about our specific
COLD implementation in a popular, open-source database system along with
the actual SQL queries used in our implementation, so that our results may
be easily reproducible by anyone. Hence, we hope to inspire other researchers
to expand the COLD framework towards handling even more complex queries
and test-cases.

7.4 Visualizing and Exploring the Twitter-
sphere

The main motivation for the development of the TwitterViz framework stems
from the fact that, although there exists a variety of applications that use
data from twitter in order to provide useful analytics, no such a tool exists to
provide a wide range of functionalities in a unified environment. TwitterViz
manages to leverage both the spatio-temporal characteristics as well as the
social aspects of the twitter data and is successful in assisting the non-expert
in exploring the Twittersphere. We aim in extending TwitterViz to support
more complex spatio-temporal and geo-social queries on the multi-modal
graph (such as the queries proposed in [EP13b] and [APP13] in order to
allow for a more rich analysis.

Bibliography

[AAP15] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias.
Geo-social ranking: functions and query processing. The
VLDB Journal, pages 1–17, 2015.

[ADF+12] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Gold-
berg, and Renato F. Werneck. Hldb: Location-based services
in databases. In SIGSPATIAL GIS. ACM, November 2012.

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Re-
nato Fonseca F. Werneck. A hub-based labeling algorithm for
shortest paths in road networks. In Experimental Algorithms
- 10th International Symposium, SEA 2011, Kolimpari, Cha-
nia, Crete, Greece, May 5-7, 2011. Proceedings, pages 230–
241, 2011.

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and
Renato Fonseca F. Werneck. Hierarchical hub labelings for
shortest paths. In Algorithms - ESA 2012 - 20th Annual
European Symposium, Ljubljana, Slovenia, September 10-12,
2012. Proceedings, pages 24–35, 2012.

[AIKK14] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and
Yuki Kawata. Fast shortest-path distance queries on road
networks by pruned highway labeling. In 2014 Proceedings of
the Sixteenth Workshop on Algorithm Engineering and Ex-
periments, ALENEX 2014, Portland, Oregon, USA, January
5, 2014, pages 147–154, 2014.

[AIY13] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact
shortest-path distance queries on large networks by pruned
landmark labeling. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD
2013, New York, USA, pages 349–360, 2013.

99

[AIY15] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Pruned
landmark labeling [online]. https://github.com/iwiwi/
pruned-landmark-labeling, 2015.

[AJB99] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabesi.
The diameter of the world wide web. CoRR, cond-
mat/9907038, 1999.

[AMV15] Deepak Ajwani, Ulrich Meyer, and David Veith. An i/o-
efficient distance oracle for evolving real-world graphs. In
Proceedings of the Seventeenth Workshop on Algorithm En-
gineering and Experiments, ALENEX 2015, San Diego, CA,
USA, January 5, 2015, pages 159–172, 2015.

[ANS11a] Marco D Adelfio, Sarana Nutanong, and Hanan Samet.
Searching web documents as location sets. In ACM SIGSPA-
TIAL, 2011.

[ANS11b] Marco D Adelfio, Sarana Nutanong, and Hanan Samet. Sim-
ilarity search on a large collection of point sets. In ACM
SIGSPATIAL, 2011.

[APP13] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris
Papadias. A general framework for geo-social query process-
ing. Proc. VLDB Conf., 6(10):913–924, August 2013.

[Bas14] Bast, Hannah and Delling, Daniel and Goldberg, Andrew
and Müller-Hannemann, Matthias and Pajor, Thomas and
Sanders, Peter and Wagner, Dorothea and Werneck, Renato.
Route Planning in Transportation Networks. Technical re-
port, Microsoft Research, 2014.

[BCR11] Jaime Ballesteros, Ariel Cary, and Naphtali Rishe. Spsjoin:
Parallel spatial similarity joins. In ACM SIGSPATIAL, 2011.

[BGM12] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-
textual similarity joins. PVLDB, pages 1–12, 2012.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger.
Efficient processing of spatial joins using r-trees. In SIGMOD,
1993.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and
Bernhard Seeger. The R*-tree: an efficient and robust access

https://github.com/iwiwi/pruned-landmark-labeling
https://github.com/iwiwi/pruned-landmark-labeling

method for points and rectangles. In Proc. SIGMOD conf.,
pages 322–331, 1990.

[BMS07] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant.
Scaling up all pairs similarity search. In WWW, 2007.

[BMSW13] David A. Bader, Henning Meyerhenke, Peter Sanders, and
Dorothea Wagner, editors. Graph Partitioning and Graph
Clustering - 10th DIMACS Implementation Challenge Work-
shop, Georgia Institute of Technology, Atlanta, GA, USA,
February 13-14, 2012. Proceedings, volume 588 of Contempo-
rary Mathematics. American Mathematical Society, 2013.

[BNNK14] Felix Borutta, Mario A. Nascimento, Johannes Niedermayer,
and Peer Kröger. Monochromatic rknn queries in time-
dependent road networks. In Proceedings of the Third ACM
SIGSPATIAL International Workshop on Mobile Geographic
Information Systems, MobiGIS ’14, pages 26–33, New York,
NY, USA, 2014. ACM.

[BZWM15] Jie Bao, Yu Zheng, David Wilkie, and Mohamed F. Mok-
bel. Recommendations in location-based social networks: a
survey. GeoInformatica, 19(3):525–565, 2015.

[CCJ10] Xin Cao, Gao Cong, and Christian S. Jensen. Retrieving
top-k prestige-based relevant spatial web objects. PVLDB,
3(1-2):373–384, 2010.

[CCJO11] Xin Cao, Gao Cong, Christian S Jensen, and Beng Chin Ooi.
Collective spatial keyword querying. In SIGMOD. ACM,
2011.

[CCJW13] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu.
Spatial keyword query processing: An experimental evalua-
tion. PVLDB, 6(3):217–228, 2013.

[CGK06] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik.
A primitive operator for similarity joins in data cleaning. In
ICDE. IEEE, 2006.

[CHKZ02] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 937–946, Philadelphia,

PA, USA, 2002. Society for Industrial and Applied Mathe-
matics.

[CJW09] Gao Cong, Christian S. Jensen, and Dingming Wu. Effi-
cient retrieval of the top-k most relevant spatial web objects.
PVLDB, 2(1):337–348, 2009.

[Clo05] Paul Clough. Extracting metadata for spatially-aware infor-
mation retrieval on the internet. In Proc. Geographic Infor-
mation Retrieval Workshop, pages 25–30. ACM, 2005.

[CML11] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friend-
ship and mobility: user movement in location-based social
networks. In Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, pages 1082–1090,
2011.

[CSM06] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. Effi-
cient query processing in geographic web search engines. In
Proc. SIGMOD conf., pages 277–288, 2006.

[CTH+10] Justin Cranshaw, Eran Toch, Jason I. Hong, Aniket Kittur,
and Norman M. Sadeh. Bridging the gap between physical
location and online social networks. In UbiComp, 2010.

[DFHR08] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword
search on spatial databases. In Proc. 24th ICDE conf., pages
656–665, 2008.

[DGPW11] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Re-
nato F. Werneck. Customizable route planning. In Proceed-
ings of the 10th international conference on Experimental al-
gorithms, SEA’11, pages 376–387, Berlin, Heidelberg, 2011.

[DGPW14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Re-
nato F. Werneck. Robust distance queries on massive net-
works. In Algorithms - ESA 2014 - 22th Annual European
Symposium, Wroclaw, Poland, September 8-10, 2014. Pro-
ceedings, pages 321–333, 2014.

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F.
Werneck. Faster batched shortest paths in road networks. In
ATMOS, pages 52–63, 2011.

[DGW13] Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. Hub label compression. In Experimental Algorithms,
12th International Symposium, SEA 2013, Rome, Italy, June
5-7, 2013. Proceedings, pages 18–29, 2013.

[DKKLN11] Peter DeScioli, Robert Kurzban, Elizabeth N Koch, and
David Liben-Nowell. Best friends alliances, friend ranking,
and the myspace social network. Perspectives on Psycholog-
ical Science, 6(1):6–8, 2011.

[DW07] Daniel Delling and Dorothea Wagner. Landmark-based rout-
ing in dynamic graphs. In Proc. of the 6th Int’l conf. on
Experimental algorithms, WEA’07, pages 52–65, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[DW12] Daniel Delling and Renato Fonseca F. Werneck. Better
bounds for graph bisection. In Algorithms - ESA 2012 - 20th
Annual European Symposium, Ljubljana, Slovenia, Septem-
ber 10-12, 2012. Proceedings, pages 407–418, 2012.

[DW13] Daniel Delling and Renato F. Werneck. Customizable point-
of-interest queries in road networks. In 21st SIGSPATIAL
International Conference on Advances in Geographic Infor-
mation Systems, SIGSPATIAL 2013, Orlando, FL, USA,
November 5-8, 2013, pages 490–493, 2013.

[EAPD] Hariton Efstathiades, Demetris Antoniades, George Pallis,
and Marios D Dikaiakos. Identification of key locations based
on online social network activity.

[EASV15] Christodoulos Efstathiades, Helias Antoniou, Dimitrios Sk-
outas, and Yannis Vassiliou. Twitterviz: Visualizing and ex-
ploring the twittersphere. In Advances in Spatial and Tempo-
ral Databases - 14th International Symposium, SSTD 2015,
Hong Kong, China, August 26-28, 2015. Proceedings, pages
503–507, 2015.

[EBSP] Christodoulos Efstathiades, Alexandros Belesiotis, Dimitrios
Skoutas, and Dieter Pfoser. Similarity search on spatio-
textual point sets.

[EEP] Christodoulos Efstathiades, Alexandros Efentakis, and Di-
eter Pfoser. Efficient processing of relevant nearest neighbor
queries.

[EEP15] Alexandros Efentakis, Christodoulos Efstathiades, and Dieter
Pfoser. COLD. revisiting hub labels on the database for large-
scale graphs. In Advances in Spatial and Temporal Databases
- 14th International Symposium, SSTD 2015, Hong Kong,
China, August 26-28, 2015. Proceedings, pages 22–39, 2015.

[EM97] Thomas Eiter and Heikki Mannila. Distance measures
for point sets and their computation. Acta Informatica,
34(2):109–133, 1997.

[EN06] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems (5th Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[EOSX10] Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and
Eric P. Xing. A latent variable model for geographic lexical
variation. In EMNLP, 2010.

[EP13a] Alexandros Efentakis and Dieter Pfoser. Optimizing
landmark-based routing and preprocessing. In Proceedings of
the 6th ACM SIGSPATIAL International Workshop on Com-
putational Transportation Science, IWCTS ’13, pages 25–30,
New York, NY, USA, 2013.

[EP13b] Christodoulos Efstathiades and Dieter Pfoser. User-
contributed relevance and nearest neighbor queries. In Proc.
13th SSTD Symp., 312-329, 2013.

[EP14a] Alexandros Efentakis and Dieter Pfoser. GRASP. extending
graph separators for the single-source shortest-path problem.
In AndreasS. Schulz and Dorothea Wagner, editors, Algo-
rithms - ESA 2014, volume 8737 of Lecture Notes in Com-
puter Science, pages 358–370. Springer Berlin Heidelberg,
2014.

[EP14b] Alexandros Efentakis and Dieter Pfoser. ReHub. Extending
hub labels for reverse k-nearest neighbor queries on large-
scale networks. CoRR, abs/1504.01497, 2014.

[EPV11] Alexandros Efentakis, Dieter Pfoser, and Agnès Voisard. Effi-
cient data management in support of shortest-path computa-
tion. In Proc. of the 4th ACM SIGSPATIAL Int’l Workshop
on Computational Transportation Science, CTS ’11, pages
28–33, New York, NY, USA, 2011. ACM.

[EPV14] Alexandros Efentakis, Dieter Pfoser, and Yannis Vassiliou.
SALT. A unified framework for all shortest-path query vari-
ants on road networks. CoRR, abs/1411.0257, 2014.

[ETP12] Alexandros Efentakis, Dimitris Theodorakis, and Dieter
Pfoser. Crowdsourcing computing resources for shortest-path
computation. In Proc. of the 20th Int’l conf. on Advances
in Geographic Information Systems, SIGSPATIAL ’12, pages
434–437, New York, NY, USA, 2012. ACM.

[Fag99] Ronald Fagin. Combining fuzzy information from multiple
systems. J. Comput. Syst. Sci., 58(1):83–99, 1999.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From
databases to dataspaces: A new abstraction for information
management. SIGMOD Rec., 34(4):27–33, December 2005.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal ag-
gregation algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[FLZ+12] Ju Fan, Guoliang Li, Lizhu Zhou, Shanshan Chen, and Jun
Hu. Seal: Spatio-textual similarity search. PVLDB, 5(9):824–
835, May 2012.

[G9̈4] Ralf Hartmut Güting. An introduction to spatial database
systems. VLDB Journal, 3(4):357–399, October 1994.

[GBSW10] Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and
Gerhard Weikum. Fast and accurate estimation of shortest
paths in large graphs. In Proc. of the 19th ACM Int’l conf. on
Information and knowledge management, CIKM ’10, pages
499–508, New York, NY, USA, 2010. ACM.

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the
shortest path: A search meets graph theory. In Proc. 16th
SODA conf., pages 156–165, 2005.

[GPPR01] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran
Raz. Distance labeling in graphs. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’01, pages 210–219, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics.

[GSS08] Robert Geisberger, Peter Sanders, and Dominik Schultes.
Better approximation of betweenness centrality. In J. Ian
Munro and Dorothea Wagner, editors, ALENEX, pages 90–
100. SIAM, 2008.

[GSWY13] Ashish Goel, Aneesh Sharma, Dong Wang, and Zhijun Yin.
Discovering similar users on twitter. In MLG, 2013.

[GSZS14] Oshini Goonetilleke, Timos Sellis, Xiuzhen Zhang, and Saket
Sathe. Twitter analytics: A big data management perspec-
tive. SIGKDD Explor. Newsl., 16(1):11–20, September 2014.

[Gut84a] Antonin Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. SIGMOD conf., pages 47–57.
ACM, 1984.

[Gut84b] Antonin Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

[GW05] Andrew V. Goldberg and Renato F. Werneck. Computing
Point-to-Point Shortest Paths from External Memory. In
Proc. of the Seventh Workshop on Algorithm Engineering and
Experiments (ALENEX’05), pages 26–40, 2005.

[HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics, 4:100–107, 1968.

[HS99] Gísli R. Hjaltason and Hanan Samet. Distance browsing in
spatial databases. ACM Trans. on Database Syst., 24(2):265–
318, 1999.

[JFWX14] Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong,
and Yanyan Xu. Hop doubling label indexing for point-
to-point distance querying on scale-free networks. PVLDB,
7(12):1203–1214, 2014.

[JS07] Edwin H Jacox and Hanan Samet. Spatial join techniques.
TODS, 32(1):7, 2007.

[JW03] Glen Jeh and Jennifer Widom. Scaling personalized web
search. In Proc. 12th WWW conf., pages 271–279, 2003.

[KK98] George Karypis and Vipin Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM J.
Sci. Comput., 20:359–392, 1998.

[KMS06] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling.
Fast point-to-point shortest path computations with arc-
flags. In IN: 9TH DIMACS IMPLEMENTATION CHAL-
LENGE, 2006.

[KOTZ04] Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang.
Approximate nn queries on streams with guaranteed er-
ror/performance bounds. In Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases - Volume
30, VLDB ’04, pages 804–815. VLDB Endowment, 2004.

[KP12] Felix Kling and Alexei Pozdnoukhov. When a city tells a
story: urban topic analysis. In Proc. of the 20th Int’l Conf.
on Advances in GIS, SIGSPATIAL ’12, pages 482–485, New
York, NY, USA, 2012. ACM.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.
edu/data, June 2014.

[LLDM09] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and
Michael W. Mahoney. Community structure in large net-
works: Natural cluster sizes and the absence of large well-
defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[LLF12] Sitong Liu, Guoliang Li, and Jianhua Feng. Star-join: Spatio-
textual similarity join. In CIKM, 2012.

[LLZ+11] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee,
Dik Lee, and Xufa Wang. IR-tree: An efficient index for
geographic document search. IEEE Trans. on Knowl. and
Data Eng., 23(4):585–599, 2011.

[LWK+14] Yu Liu, Fahui Wang, Chaogui Kang, Yong Gao, and Yongmei
Lu. Analyzing relatedness by toponym co-occurrences on web
pages. Transactions in GIS, 18(1):89–107, 2014.

[LWWF13] Cheng Long, Raymond Chi-Wing Wong, Ke Wang, and Ada
Wai-Chee Fu. Collective spatial keyword queries: a distance
owner-driven approach. In SIGMOD, 2013.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

[LZX+08] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu,
and Wei-Ying Ma. Mining user similarity based on location
history. In ACM SIGSPATIAL, 2008.

[ML12] Julian J. McAuley and Jure Leskovec. Learning to discover
social circles in ego networks. In Advances in Neural In-
formation Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pages 548–556, 2012.

[MLTM15] K. Mouratidis, Jing Li, Yu Tang, and N. Mamoulis. Joint
search by social and spatial proximity. Knowledge and Data
Engineering, IEEE Transactions on, 27(3):781–793, 2015.

[MSA05] Bruno Martins, Mário J. Silva, and Leonardo Andrade. In-
dexing and ranking in geo-ir systems. In Proc. Geographic
Information Retrieval Workshop, pages 31–34, 2005.

[MSM10] Jens Maue, Peter Sanders, and Domagoj Matijevic. Goal-
directed shortest-path queries using precomputed cluster dis-
tances. J. Exp. Algorithmics, 14:2:3.2–2:3.27, January 2010.

[NZTK08] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Ku-
lik. The v*-diagram: A query-dependent approach to moving
knn queries. Proc. VLDB Endow., 1(1):1095–1106, August
2008.

[PBCG09] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and
Aristides Gionis. Fast shortest path distance estimation in
large networks. In Proc. of the 18th ACM conf. on Informa-
tion and knowledge management, CIKM ’09, pages 867–876,
New York, NY, USA, 2009. ACM.

[PKZT01] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao.
Efficient olap operations in spatial data warehouses. In Proc.
7th SSTD symp., pages 443–459. Springer-Verlag, 2001.

[Pos15] PostgreSQL. The world’s most advanced open source
database [online]. http://www.postgresql.org/, 2015.

[QCC12] Daniele Quercia, Licia Capra, and Jon Crowcroft. The social
world of twitter: Topics, geography, and emotions. In John G.

http://www.postgresql.org/

Breslin, Nicole B. Ellison, James G. Shanahan, and Zeynep
Tufekci, editors, ICWSM. The AAAI Press, 2012.

[QECC11] D. Quercia, J. Ellis, L. Capra, and J. Crowcroft. In the mood
for being influential on twitter. In Privacy, security, risk and
trust (passat), 2011 ieee third international conference on and
2011 ieee third international conference on social computing
(socialcom), pages 307–314, 2011.

[QECC12] Daniele Quercia, Jonathan Ellis, Licia Capra, and Jon
Crowcroft. Tracking "gross community happiness" from
tweets. In Proceedings of the ACM 2012 conference on Com-
puter Supported Cooperative Work, CSCW ’12, pages 965–
968, New York, NY, USA, 2012. ACM.

[RB01] Jan Ramon and Maurice Bruynooghe. A polynomial time
computable metric between point sets. Acta Informatica,
37(10):765–780, 2001.

[RJGJN11] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen,
and Kjetil Nørvåg. Efficient processing of top-k spatial key-
word queries. In Proc. 12th SSTD symp., pages 205–222,
2011.

[RLS14] Jinfeng Rao, Jimmy Lin, and Hanan Samet. Partitioning
strategies for spatio-textual similarity join. In BigSpatial,
2014.

[SGAF13] Christian Sengstock, Michael Gertz, Hamed Abdelhaq, and
Florian Flatow. Reliable spatio-temporal signal extraction
and exploration from human activity records. In Advances
in Spatial and Temporal Databases, volume 8098 of Lecture
Notes in Computer Science, pages 484–489. Springer Berlin
Heidelberg, 2013.

[SIT09] Maytham Safar, Dariush Ibrahimi, and David Taniar.
Voronoi-based reverse nearest neighbor query processing on
spatial networks. Multimedia Systems, 15(5):295–308, 2009.

[SK04] Sunita Sarawagi and Alok Kirpal. Efficient set joins on sim-
ilarity predicates. In SIGMOD, 2004.

[SPK13] Georgios Skoumas, Dieter Pfoser, and Anastasios Kyril-
lidis. On quantifying qualitative geospatial data: A prob-
abilistic approach. In Proc. 2nd ACM SIGSPATIAL Int’l
GEOCROWD Workshop, pages 71–78, 2013.

[SQZZ15] Yu Sun, Jianzhong Qi, Yu Zheng, and Rui Zhang. K-nearest
neighbor temporal aggregate queries. In Proc. 18th Int’l
EDBT Conf., pages 493–504, 2015.

[TACGBn+11] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano
García-Bañuelos, Jaak Vilo, and Marlon Dumas. Fast fully
dynamic landmark-based estimation of shortest path dis-
tances in very large graphs. In Proc. 20th CIKM conf., pages
1785–1794, 2011.

[TSF+15] Bart Thomee, David A. Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. The new data and new challenges in multimedia
research. arXiv preprint arXiv:1503.01817, 2015.

[VJJS05] Subodh Vaid, Christopher B. Jones, Hideo Joho, and Mark S.
Spatio-textual indexing for geographical search on the web.
In Proc. 5th SSTD symp., pages 218–235, 2005.

[XWL+11] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and
Guoren Wang. Efficient similarity joins for near-duplicate
detection. TODS, 36(3):15:1–15:41, August 2011.

[XZLX10] Xiangye Xiao, Yu Zheng, Qiong Luo, and Xing Xie. Finding
similar users using category-based location history. In ACM
SIGSPATIAL, 2010.

[YL12] Jaewon Yang and Jure Leskovec. Defining and evaluating net-
work communities based on ground-truth. In 12th IEEE In-
ternational Conference on Data Mining, ICDM 2012, Brus-
sels, Belgium, December 10-13, 2012, pages 745–754, 2012.

[YLL+10] Josh Jia-Ching Ying, Eric Hsueh-Chan Lu, Wang-Chien Lee,
Tz-Chiao Weng, and Vincent S. Tseng. Mining user similarity
from semantic trajectories. In LBSN, 2010.

[YPMT06] Man Lung Yiu, D. Papadias, Nikos Mamoulis, and Yufei
Tao. Reverse nearest neighbors in large graphs. Knowledge

and Data Engineering, IEEE Transactions on, 18(4):540–
553, April 2006.

[ZCM+09] Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, An-
thony KH Tung, and Masaru Kitsuregawa. Keyword search
in spatial databases: Towards searching by document. In
ICDE, 2009.

[ZLTZ13] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu
Zhou. G-tree: An efficient index for knn search on road net-
works. In Proceedings of the 22nd ACM International Confer-
ence on Conference on Information Knowledge Management,
CIKM ’13, pages 39–48, New York, NY, USA, 2013. ACM.

[ZOT10] Dongxiang Zhang, Beng Chin Ooi, and Anthony KH Tung.
Locating mapped resources in web 2.0. In ICDE, 2010.

[ZXW+05] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and
Wei-Ying Ma. Hybrid index structures for location-based web
search. In Proc. 14th CIKM conf., pages 155–162, 2005.

[ZZM+11] Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie, and Wei-
Ying Ma. Recommending friends and locations based on in-
dividual location history. TWEB, 5(1):5, 2011.

	Introduction
	General
	Contributions
	Relevant Nearest Neighbor Queries
	Similarity Search on Spatio-Textual Point Sets
	Hub Labels on the Database for Large-Scale Graphs
	Visualizing and Exploring the Twittersphere

	Thesis Outline

	Related Work
	Spatial and Spatio-Textual Search
	Spatio-Textual Indexes
	Spatial group keyword queries.
	Nearest Neighbor and Top-k Queries
	Spatial, Spatio-Textual and Similarity Joins

	Geo-Social Query Processing
	User Recommendation Systems
	Shortest Path Computation
	Landmarks
	Hub Labels
	Distance Queries on Graphs

	Location-based services based on Twitter data

	Efficient Processing of Relevant Nearest-Neighbor Queries
	Introduction
	Data and k-RNN Queries
	Data
	k-RNN Queries
	Access Methods

	k-RNN Query Processing
	Index Synchronization
	Index Linking

	k-RNN Query Optimization
	Landmarks
	ALT algorithm optimization

	Experimental Evaluation
	Data
	Experimental Setup
	Basic k-RNN Query Performance
	Tuning Landmark-based Optimizations
	Query Performance for Varying k
	Assessing the Effect of
	Spatial Grid vs. Graph Partitioning
	Summary

	Similarity Search on Spatio-Textual Point Sets
	Introduction
	Problem Definition
	Algorithms for STPSJoin
	Baseline Approach
	The S-PPJ-B Algorithm
	The S-PPJ-F Algorithm
	The S-PPJ-D Algorithm

	Experimental Evaluation
	Experimental Setup
	Scalability
	Effect of similarity thresholds
	Effect of Fanout on S-PPJ-D
	Summary

	Hub Labels on the Database for Large-Scale Graphs
	Introduction
	Contribution
	Implementation

	Experimental Evaluation
	Performance on HDD
	Performance on SSD
	Summary

	TwitterViz: Visualizing and Exploring the Twittersphere
	Introduction
	The TwitterViz System
	Demonstration

	Conclusions and Directions for Future Work
	Relevant Nearest Neighbor Queries
	Spatio-Textual Similarity Search on Point Sets
	Hub Labels on the Database for Large-Scale Graphs
	Visualizing and Exploring the Twittersphere

	Bibliography

