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Abstract

The main purpose of this thesis is the design of a robust controller for a hybrid-electric
marine propulsion plant in order to reduce the main pollutant emissions of the internal
combustion engine (ICE) during load transients. Precisely, the controlled physical
variable is the value of lambda-λ of the exhaust gas produced by the ICE and the
system’s input is the command that is fed to the frequency inverter of the electric
motor (EM) which manipulates the torque output of the EM. The type of robust
controller chosen for the implementation was the µ-controller, mainly for its convenience
in the modelling of uncertainty elements. The soundness of the modelling and of the
developed controllers is evaluated in the experimental facilities of the Laboratory of
Marine Engineering (LME).

Initially, a virtual λ-sensor was developed as an effective way to replace the mea-
surements from the physical sensor installed in the exhaust duct of the ICE. The virtual
sensor was tested on-line and the estimated values of λ were compared to the measured
values of the physical sensor under both steady state and transient operation of the
ICE. It should be noted that a phenomenological approach was adopted in the model
derivation of the virtual sensor.

Furthermore, the non-linear dynamic uncertain model was derived using a mean
value approach in order to simulate the value of λ during transient engine operation.
The fundamental objective was to obtain a model of λ depending only on known physi-
cal variables of the hybrid-electric power-train. The model developed has to sufficiently
capture the transient phenomena but, simultaneously, be as simple as possible in order
to be suitable for the control application. For this reason, various simplifications were
made and their validity were evaluated mostly from an engineering perspective.

A linear model was obtained, for control purposes, from the original non-linear
uncertain plant at a certain operating point of the engine. For this reason, all the
physical variables of the operating point, which are at steady state, were computed as
a function of the known input variables; namely, the requested torque and the rotational
speed of the engine. The non-linear algebraic constraint equations along with certain
differential equations were also useful in deriving a second virtual sensor model which
made use only of the turbocharger speed in order to estimate λ; thus, provides a
promising and low cost solution for practical marine applications.

Furthermore, a low order λ-model of the internal combustion was obtained through
singular perturbations order reduction technique. The model was linearised and, even-
tually, a first order transfer function connecting the fuel mass flow with the variations
in the value of lambda was derived. The transfer function was parametrized and the
parameters of it were presented in 2D maps as a function of the steady state fuel
mass flow and the engine’s rotational speed. In this way, insights were gained for the
performance of the internal combustion engine in various operating points.
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Additionally, the model of the disturbance transfer function and the plant transfer
function were derived from the non-linear uncertain model. Both these models have
as output the value of λ with the input of the former being the disturbance torque
and the input of the latter being the frequency inverter command. The linear models
were imported to the µ-synthesis algorithm in order to obtain the robust controller.
The controller was analysed in terms of performance and stability in the presence of
uncertainty in modelling.

Finally, the experimental validation of the controller performance was carried out
at the experimental testbed of LME. The controllers functioned satisfactory and the
results obtained from simulations closely matched those of the experiments.
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Chapter 1

Introduction

Turbocharged diesel engines constitute the most widely used propulsion system for
marine applications. The domination of the diesel engine over all the other types of
propulsion systems is directly connected to its high fuel efficiency, typically ranging
from 40% to 50% for medium and high speed diesel engines [48].

On the grounds that the load profile of a typical vessels is relatively constant,
the behaviour of marine diesel engines is usually examined in steady state conditions.
However, this is not the sole case of load type that is encountered in sea-going vessels.
For instance, special purpose ships like harbour tugs, ferries, ice breakers, yachts and
dredgers have a load profile which displays short periods of steady load with many
sharp variations in load demand over time. Moreover, all categories of vessels have
time intervals with varying load demand during manoeuvring and transient operation,
especially near harbours.

The nature of transient operation in diesel engine is fundamentally different from
steady state conditions. During steady-state conditions the torque produced by the
engine is equal to the requested torque, the crank shaft acceleration is close to zero
and the physical variables associated with turbocharger are approximately constant.
Unlike steady state operation, during load transients, all the variables, including engine
speed, fuelling command and turbocharger shaft speed, change continuously. These
phenomenon drastically affects the exhaust gas enthalpy and the air supplied to the
cylinder through the turbocharger operation. Eventually, a mismatch between the air
supply and the fuel burned appears due to the presence of thermal, dynamic and fluid
delays in the manifolds and the turbocharger. The air-to-fuel ratio (AFR) inside the
cylinder drops with a consequential drastic rise in the pollutant formations emitted
from the diesel engine [33].

Nowadays, as mentioned in [43], many ports have imposed stricter emission require-
ments on commercial and recreational vessels and the adoption of the International
Convention of Prevention of Pollution from Ships (MARPOL) Annex VI limits the
main air pollutants contained in ships exhaust gas. Moreover, the International Mar-
itime Organization (IMO) is in the process of strengthening the emission limits in the
future. In view of this requirements, emission reduction is a key driven factor for the
development of novel technologies in the field of marine propulsion.

Typically, a conventional marine propulsion plant consists of an internal combustion
in direct connection with the propeller. This system has the advantage of offering high
reliability and its performance is also satisfactory when the load is relatively constant.
For ships that operate mostly at constant speed, like bulk-carriers, container-ships and

14
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crude-oil tankers, the replacement of the conventional power plant with a hybrid-electric
one may induce unnecessary conversion costs with very low benefit from emissions re-
duction. On the contrary, ships with a load profile that consists of relatively short
periods of constant load demand the installation of hybrid propulsion may offer an
effective way to reduce the pollutant emissions. An additional environmental benefit
that is linked to the installation of hybrid-electric propulsion plant instead of a conven-
tional one in special purpose vessels steams from the fact these type of vessels usually
operate near ports or environmentally sensitive areas where green house emissions dras-
tically influence the human population and stricter emission regulation are imposed by
legislation authorities.

1.1 Diesel Engine Response to Load Transients

The diesel engine response to a load increase will be examined since it provides useful
insights about the physical phenomena that take place in diesel engines during transient
conditions.

Suppose that the engine is running at steady state and, as a result, engine accelera-
tion is approximately zero, since the produced torque equals the requested torque and
λ, which is the value of air-to-fuel ratio (AFR) divided by the stoichiometric value of
air-to-fuel ratio (AFRst) for the given fuel, is at acceptable levels. When the new higher
load is applied, a substantial torque deficit appears, the engine is decelerated and the
engine speed drops. The drop in engine speed is sensed from the speed governor which
increases the fuel injected into the cylinder by an appropriate amount specified by the
Engine Control Unit (typically derived from a map as a function of various physical
variables).

The higher amount of fuel injected into the cylinder combined with the insufficient
air supply, due to thermal and dynamic delays, leads to a drastic drop in the air-to-fuel
ratio inside the cylinder and equivalently in the value of λ. The main reason for the
mismatch between the air supply and the fuelling command steams from the fact that a
certain time interval should elapse before the turbocharger has accelerated enough and
the intake manifold pressure has increased adequately. Precisely, the increased exhaust
gas temperature leads to an increase in the exhaust manifold enthalpy and, therefore,
in the power supplied by the turbine. However, due to the turbocharger inertia, the
compressor operation point swift slowly on its map from low air mass flow to higher
boost pressure and mass flow.

The subject of transient operation of Diesel Engines is examined in [34].

1.2 Pollutant Emissions of Diesel Engines

The main pollutant formations that appear in diesel engines exhaust gases are nitrogen
oxide NOx and particulate matter PM.

1.2.1 Nitrogen Oxides

Nitrogen oxide (NO) and nitrogen dioxide (NO2) are the main two chemical substances
that constitute NOx, with the former being the predominant pollutant formed in diesel
engines. However, the relative importance of NO2 is higher during lower engine loads
[14].
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The most critical factor affecting NOx formation is the burned gas temperature.
There is an exponential increase in NOx formation rate with temperature rise. More-
over, since in diesel engines fuel distribution is not uniform, the formation of NOx
happens in high temperature regions. Another crucial parameter affecting NOx gen-
eration is the availability of oxygen. Precisely, for a given mass of fuel, the higher the
value of λ the higher the oxygen presence for combustion. Consequently, the burned
gas temperature is cooler and NOx generation process is weaker during combustion.
Other factors affecting NOx formation in diesel engines are the combustion duration,
the injection timing and the in-cylinder pressure.

1.2.2 Particulate Matter

The particulate matter in diesel engines mainly consists of carbonaceous material, which
is refereed as soot, with some organic compounds absorbed on it. Various metrics can
be used to quantify soot, including the particles number, the total mass of particles,
the size or light absorbing properties-opacity [37].

Particulate matter generation is primarily driven by the inhomogeneity of the
air/fuel mixture in diesel engines. Even when engine is running in lean conditions
overall, regions where the value of λ is below the stoichiometric value do exist and thus
the combustion is incomplete.

Regarding the factors affecting the PM formation, it can be stated that no direct
correlation can be found between PM emissions and other variables of combustion
process. The reason for this lies in the fact that PM are formed during two separate
phases, which are refereed as PM formation and PM oxidation, and the net difference
between the PM formed and those oxidized are the PM that are emitted. On the
grounds that both these number are large in magnitude and close to one another, PM
cannot be accurately predicted [13]. However, experimental data illustrate that the
in-cylinder temperature and the availability of oxygen greatly determine PM emissions
[1].

1.3 Choice of Controlled Variable

The signal that is chosen to be fed into the robust controller is the value of λ. The
main reasons that justify this choice are:

1. Even though λ is not a measure of emissions itself, it is still a reliable estimate of
them. As illustrated in Fig. 1.1, there is a strong correlation between the value
of λ and the main emissions formed in diesel engines. Particularly, the role of λ
is even more crucial for diesel engines where load is primarily controlled with this
parameter.

2. Lambda is a really suitable signal for control purposes since no significant noise
is presented in this value and the dynamics of λ are neither very slow nor very
fast [13]

3. Unlike λ which can be easily modelled from the air and fuel path dynamics, NOx
and PM are complex functions of many variables and, thus, cumbersome to model
analytically.
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Figure 1.1: NOx and PM as a function of λ.-Figure obtained from [13].

1.4 Literature Review

1.4.1 Hybrid-Electric Powertrains

Although the number of publications in the subject of hybrid-electric powertrain control
for marine propulsion plants is limited, the control applications in automotive hybrid-
electric powertrains has been exhaustively examined by numerous authors. The main
objective of the majority of the publications in the field of hybrid-electric vehicle is
the energy management/split between the internal combustion engine and the electric
machine.

One main category of energy management strategies is the optimisation techniques.
The category of optimal and sub-optimal techniques includes linear, quadratic and dy-
namic programming [35],[40],[20] and [9]. One major drawback associated with optimal
strategies, which also limits their potentials for marine applications, is the fact that the
exact knowledge of the driving cycle is necessary in order to obtain the solution of the
optimization problem. Another problem, according P.Pisu et al.[31], is that solutions
to optimizations problems lead to non analytic expressions for the controllers derived
and, thus, difficult to implement in real world hybrid-electric plants.

Moreover, heuristic methods such as fuzzy logic [38], [30] and neural networks [5],
have also adopted but neither achieve an optimal solution not robustness with respect
to performance. Another method is linked to stochastic optimization and predictive
control [19],[21]. Since the optimization goal involves the minimization of an objective
function over a range of possible driving cycles rather than a specified one, the method
seems promising for marine applications where the exact load profile of the vessel is
never perfectly known. However, a great disadvantage associated with the aforemen-
tioned method is that the controller is designed off-line and implemented on-line with
the aid of a look up table.

Clearly, dealing with the control problem only from a quasi-static perspective can
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severely limit the potential benefits of a stochastic optimization, due to the presence of
un-modelled dynamics and exogenous disturbances in the real plant, unless the static
algorithm is integrated in a control system framework that also incorporates a dynamic
and robust control system. The possibilities of combining a quasi-static optimization
algorithm with a robust control algorithm was investigated by Sajjad Fekri and Francis
Assadian in [10]. Another, worth mentioning publications that does not, however, deals
with energy management in a dynamic way is [32].

1.4.2 Feedback Control Systems and Control Oriented Modelling

Introductory knowledge on feedback control system theory regarding uncertainty mod-
elling, generalized plant derivation and controller implementation was acquired mainly
from [42]. Moreover, the subject of the µ-controller synthesis and analysis is treated
with more mathematical formality compared to [42] by K.Zhou and J.C.Doyle in [49].
Finally, the essential practical framework for the implementation of the controller,
which is the main concern in the present thesis, is presented in [12] and [4].

For the virtual sensor model, the publications of J.Gravdal and O.Egeland [11]
along with the work of S.Dixon [7] provide insights for the compressor model deriva-
tion. O.Storset et al. published the journal [44], which proved very useful for the
adaptive observer design to estimate the volumetric efficiency on-line. The fundamen-
tal theoretical knowledge for time varying systems and on-line observation was obtained
from [26] and [16], respectively.

The main reference for the modelling of the individual components of the internal
combustion engine is the work of L.Guzzella [13]. Additional insight was also gained
for the doctoral thesis of E.Alfiery [1]. Further details for engine parts modelling were
also found in [8], [15] and [47]. Finally, the fuel mass flow estimation, which is a
critical physical variable, is estimated using Willans approximation with details about
the method presented in [36].

For certain components of the hybrid power-train that system identification princi-
ples rather than phenomenological modelling is applied, the fundamental information
gained from the introductory book of L.Ljung [22] was crucial. An overview of the
identification techniques is covered by K.J. Astrom and P. Eykhoff in the article [3]. A
last valuable guide when dealing with identification problems in Matlab environment
is [25].

1.5 The Experimental Plant

The hybrid-electric powertrain system of the LME consists of an ICE in parallel con-
nection to an EM. Thus, the rotational speeds of EM and ICE are identical and the
supplied torques add together. The desired torque demand is applied through a water
brake, which is manipulated by an Hª controller. Figure 1.2 illustrates the hybrid-
electric experimental plant of the LME along with a visual representation of this plant
in AUTOCAD.

The water brake at LME is manufactured by AVL Zoellner GmbH, type 9n 38F, and
has a load capacity of 1200 kW, with maximum speed 4000 rpm. The hydrodynamic
water brake consists of two main part; namely, the rotor and the stator. The former
is driven by the ICE and the EM while the stator is fixed and grounded. The rotor
can rotates freely within the water brake casing and the relative motion between the
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Figure 1.2: The LME hybrid-electric testbed.
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rotor and the stator generates a centrifugal force that is subsequently transformed into
a toroidal circulation of the fluid [27]. This circulation absorbs power from the ICE
and the EM; therefore, acts as a resisting torque to the external torque applied.

The water dynamometer installed in the LME test bed facility can be partially filled
with water and thus the applied torque can be variable depending on the water level
[46]. The water level is adjusted through a valve, which regulates the flow to the dy-
namometer. The command from the Hª controller is fed to the pneumatic mechanism
of the valve and controls its opening so the desired torque demand is achieved in a
closed loop control.

Moreover, the internal combustion engine of the experimental propulsion plant is
a CATERPILLAR 3176B four-stroke turbocharged marine diesel engine with rated
power 448 kW at 2300 RPM. The ICE has five different sensors installed in it, which
are depicted in Fig. 1.3.

As mentioned in the beginning of this section the ICE is coupled to an EM which
is an AC asynchronous-induction three phase motor with squirrel cage. Precisely, the
motor is of the type IE1-K21R 315 S4 and is manufactured by VEM with a rate power
of 110 kW.

In an induction motor, the current supplied to the stator generates a magnetic flux
which induces an opposing current to the winding of the rotor, a phenomenon concep-
tually similar to the operation of an electric transformer. In an induction machine the
sum of the rotational velocity of the magnetic flux vector of the rotor and the rotational
speed of the rotor has to equal the rotational speed of the stator magnetic flux vector.
Therefore, the revolutions of the rotor are fully determined from the frequency of the
current in the rotor winding [2].

However, the present induction machine is equipped with a power electronic device
known as adjustable frequency drive. Through this device the decoupling between the
the stator current, involved in the air gap flux, from the portion of the flux associated
with torque production is achieved. In this way it is possible to obtain the desired
torque at the specified speed without any constraint steaming from the stator’s electric
current frequency [41].

1.6 Structure of the Thesis

This thesis is structured as follows: In Chap. 2 the feasibility of a virtual λ-sensor
design is examined and the phenomenological modelling of it is presented. A non-
linear first-principles uncertain model of the hybrid-electric powertrain is derived in
Chap. 3. Chap 4 presents the process of obtaining a quasi-static model of the ICE.
This static non-linear model proved very useful in computing the steady state physical
variables in the operating points of linearisation in Chap. 5, where a linear model of
the hybrid-electric powertrain is obtained. Following the linear system derivation, the
next step is the development of a robust controller which is treated in Chap. 6 and the
experimental validation of the controller is presented in Chap. 7. Finally, Chap. 8 is
dedicated to conclusions.
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Chapter 2

Virtual Sensor Design

In this chapter the air and fuel path models of the diesel engine are obtained combining
thermodynamic relationships, semi-empirical formulas and on-line parameter identifica-
tion principles. The model is produced with the intention of offering a reliable estimate
of λ inside the cylinder using four physical variables which are available through mea-
surements; namely, the rotational speed of the engine Ne, the turbocharger shaft speed
Ntc, the barometric pressure at the air cooler outlet pim and the torque produced of the
internal combustion engine Te. The schematic representation of the main components
of the virtual sensor model is given in Fig. 2.1.

2.1 Physical Sensor

The physical sensor of lambda is installed in the exhaust duct, approximately 1 m after
the exhaust valves of the diesel engine. Consequently, a variation in λ will be sensed
only after the exhaust gas has arrived at this point.

The time that elapses between the end of the combustion cycle and the measuring
of λ for the exhaust gas of the corresponding cycle is the time interval that the sensed
signal is close to the reference value while the the value of λ inside the cylinder may be
below the reference value. If the measured λ is used for controller purposes, then the
error signal for the feedback controller is approximately zero during this time interval;
thereby, the command to the electric engine is zero too.

For the aforementioned reason, if the controlled variable is the value of λ inside the
cylinder instead of λ as measured from the sensor, engine’s response to load transients
will be improved with λ experiencing a less sharp drop. The advantage of this approach
steams from the fact that the controller’s command to the electric engine will no longer
be zero during the time interval of the mismatch between the value of λ sensed and the
actual value of λ inside the cylinder.

An additional advantage of this approach is associated with the way the Engine’s
Control Unit (ECU) functions. During fast load reductions, the ECU senses the accel-
eration and drastically reduces the injected fuel or even stops fuelling. For this reason,
large spikes appear in the measurement of λ. These spikes correspond to positive de-
viations from the reference value of λ and represent very low PM and NOx emissions.
Therefore, it would be desirable for the controller designed to ignore them, otherwise
the command to the electric motor command would display undesirable oscillatory
behaviour.

22
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2.2 Air Path Modelling

2.2.1 Intake Manifold Modelling

Intake manifold is modelled as a fixed volume where the thermodynamic states (pres-
sure, temperature, gas composition) are assumed to be homogeneous [13] . The mass
balance in the intake manifold yields

dmim

dt
� ṁc � ṁe (2.1)

where ṁc is the mass flow through the compressor, ṁe is the mass of air aspirated by
the engine and dmim

dt is the rate of change in the mass of air that is accumulated in the
intake manifold.

Moreover, assuming that the kinetic and potential energy of the fluid, in both the
inlet and outlet of the intake manifold, are negligible and applying energy balance, the
following differential equation is obtained

dHim

dt
� Ḣc � Ḣe (2.2)

The rate of change in the intake manifold enthalpy is given by

dHim
dt �t� � d�mim�t�eim�t��

dt �
d�mim�t�cvaTim�t��

dt � cva
d�mimTim�

dt
(2.3)

where cva is the specific heat capacity under constant volume for the air.

The enthalpy of the fluid entering and leaving the intake manifold can by

Ḣc � cpa � ṁc � Tac (2.4)

and

Ḣe � cpa � ṁe � Tim (2.5)

, respectively. In Eq. 2.4, Tac is the temperature immediately after the air-cooler while
in Eq. 2.5 Tim is the temperature in the intake manifold, which is assumed equal to
the temperature of the air aspirated by the engine and cpa is the heat capacity under
constant pressure for the air.

Assuming that ideal gas law is valid, the following equation is obtained

mimTim �
pimVim
Ra

(2.6)

where pim is the pressure in the intake manifold and Vim is the volume of the manifold.

Inserting Eqs. 2.6, 2.5, 2.4 and 2.3 into Eq. 2.2 yields

dpim
dt

�
γaRa
Vim

� ṁc � Tac �
γaRa
Vim

� ṁe � Tim (2.7)

The two air flows ṁc and ṁe have to be modelled in terms of the measured variables.
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2.2.2 Assessment of Compressor Maps Models

Compressor performance, both the air mass flow through it (ṁc) and the is-entropic
efficiency (ηis,c), is usually presented in map as a function of dimensionless parameters.
The introduction of the dimensionless quantities aims to make the compressor maps
valid for different machine sizes (but still of the same design features) and various
input/ambient conditions [8].

Two fundamentally different mathematical models have been propesed for the rep-
resentation of the compressor flow characteristics.

1. MODEL I, ṁc � f�Πc,Ntc�: The air mass flow ṁc through the compressor is
expressed as a function of the pressure ratio Πc and the turbocharger speed Ntc.

2. MODEL II, Πc � g�ṁc,Ntc�: The compressor pressure ratio Πc is presented
as a function of the air mass flow ṁc and the turbocharger speed Ntc.

A comparative examination of these two models is presented in [28]. On the grounds
that only measurements of the turbocharger speed Ntc and the pressure in the intake
manifold pimare available, there is no alternative other than choosing MODEL I. Ac-
cording to [28], the benefits of MODEL I are associated with the low sensitivity and
the reduced stiffness when it is incorporated as a part in an engine model.

Engine is modelled as a volumetric pump with the aspirated mass of air into the
engine given by

ṁe �
ηvVcylpimzNe

RaTim120
(2.8)

where Vcyl is the cylinder volume, ηv is the volumetric efficiency and z is the number
of cylinders.

Moreover, the pressure ratio of the compressor can be evaluated as follows

Πc �
pim � ζtotal

1
2ρ3c

2
3 � pdac

pamb
(2.9)

where pdac is the pressure drop in the air cooler and c3 is the average flow velocity at
the compressor outlet, given by

c3 �
ṁc

ρ3Aduct
(2.10)

The density at the compressor outlet can be evaluated from the known pressure ratio
Πc and the is-entropic efficiency ηis,c using the thermodynamic relationship

ρ3 � ρ1
�Πc� γa

γa�1 � 1 � nis,c

Πc � ηis,c
(2.11)

In Eq. 2.9, ζtotal is a coefficient which incorporates the two main pressure losses occur
in the pipeline, namely:

1. The linear pressure losses, which are taken into account with a coefficient ζln �

λfr �
l
D , where l and D are the length and the diameter of the pipe, respectively.

Additionally, λfr is coefficient derived from the Moody chart as a function of
Reynolds number and the relative pipe roughness λfr�Re, Dε �. The linear pressure
losses are the same for two pipes which have the same length, diameter and
relative roughness even if they have different elbows, fittings etc.
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2. The local pressure losses, which are considered with the coefficient ζlc, are asso-
ciated with pressure drops in fittings, elbows and control valves. This pressure
drops are difficult to model analytically but can be derived from charts and dia-
grams which are available in Fluid Mechanics Textbooks.

Having an estimate of the above-mentioned coefficients in the operation point of the
engine, the compressor pressure ratio is computed from Eq. 2.9.

In this point it is worth noting that the mass of air aspirated by the internal combus-
tion engine, for fixed fuelling rate ṁf and constant engine speed Ne, is approximately
a linear function of the pressure in the intake manifold pim as can be seen from Eq. 2.8
(No significant variations are presented in Tim and ηv). Moreover, in steady state and
very slow transient operation, no mass of air is accumulated in the intake manifold and
the mass of air produced by the compressor is equal to the mass of air aspirated by the
engine at the same time instant; this can be formulated mathematically by the writing
that

dmim

dt
� 0 (2.12)

and

ṁc�Ntc,Πc� � ṁe�Ne, pim�Πc,mc,Ntc�� (2.13)

Although MODEL I presents high sensitivity to pressure variations especially in the
low turbocharger shaft speed region, where the slope of mass flow with respect to the
pressure ratio is considerably large, the angle of intersection between ṁc and ṁe is
never close zero but lies within the range of 60 to 90 degrees. Thereby, the sensitivity
of the mass flow rate ṁc in the parameter Πc is radically reduced.

From now on the assumption that ṁc � ṁc�Ntc,Πc� is made; thus, MODEL I is
adopted for the compressor modelling.

2.2.3 Volumetric Efficiency Estimation Techniques

The volumetric efficiency ηv is essentially a measure of how different the engine is from
an ideal volumetric pump. Clearly, volumetric efficiency drastically determines engine’s
ability to aspire air [44]. Consequently, it can substantially determines the value of λ
inside the cylinder.

Volumetric efficiency ηv can be estimated through detailed CFD simulations. An-
other way of volumetric efficiency ηv computation, suggested in [13], is from a two-
dimensional map of the mean effective pressure pem and engine’s speed Ne. The dis-
advantage of the former method is the that it requires precise and time-consuming
simulations while the drawback of the latter is the fact that is less accurate for Diesel
engines where volumetric efficiency ηv depends in other parameters apart from the
mean effective pressure pem and engine’s speed Ne.

Precise dimensional analysis for turbocharged diesel engines, presented by Taylor in
[45], suggests that volumetric efficiency can be given by a product of two independent
efficiencies, with the one being a function of the pressure ratio between the exhaust
and the intake manifold pem~pim and the other being a function of the engine speed Ne

and the intake manifold temperature Tim.

ηv � ηρ�pem
pim

� � ηz�Ne,
»
Tim� (2.14)
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One should take into account that the exhaust manifold pressure pem is very difficult
to measure due to the adverse conditions in it (high temperature, high velocity of
exhaust gases and presence of pollutant formations). For this reason, the assumption
introduced by Storset et.al in [44], that volumetric efficiency depends on engine speed
Ne and a time-varying parameter θ�t� that needs to be identified, is adopted. Under
these assumptions, the volumetric efficiency is product of two terms

ηv � P �ωe�t�� � θ�t� (2.15)

2.2.4 Air Cooler Model

The temperature immediately after the compressor can be calculated from the known
pressure ratio in the compressor and the is-entropic efficiency. The temperature after
the compressor is given by

Tc � Tamb � Tamb � �Π γa�1
γa
c � 1�~ηis,c (2.16)

The air cooler can be modelled as a heat exchanger. The effectiveness of the air
cooler is assumed to be a quadratic function of the air flow ṁc [15].

ef � 1 � c � ṁc
2 (2.17)

And the air temperature Ti in the cooler outlet is

Tac � ef � Tw � �1 � ef� � Tc (2.18)

where Tw is the temperature of the coolant.

2.2.5 System of Differential Equations

Eq. 2.7 and Eq. 2.8 yield

dpim
dt

�
γaRa
Vim

� ṁc � Tac �
γaVcylpimzNe

120Vim
� ηv (2.19)

Moreover, substituting Eq. 2.8 in Eq. 2.1 and using assumption 2.15 yields

dmim

dt
� ṁc �

ηvVcylpimzNe

RTim120
� ṁc �

P �ωe�θVcylzNe

120Vim
�mim (2.20)

where the second equality is obtained using the ideal gas law. It follows from assumption
2.15 that

dpim
dt

�
γaRa
Vim

� ṁc � Tac �
γaVcylzNeP �ωe�θ

120Vim
� pim (2.21)

Equations 2.21, 2.20, 2.18 and 2.9 are mathematical system that describe the intake
manifold dynamics and will be used to identify the unknown volumetric efficiency ηv.
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2.2.6 Derivation of Compressor Map

Ideal Enthalpy

Incoming gas enters the impeller eye with velocity

c1 �
ṁc

ρ1 �A1
(2.22)

where ρ1 is the density at the compressor inlet. At the outlet of the impeller the radial
component of the velocity is given by

c2r �
ṁc

ρ2 � π �D2 � t2
(2.23)

and the tangential velocity under the assumption of no slip can be calculated as follows

c2tn � U2 � c2rcot�β2� (2.24)

where U2 is the impeller tip velocity

U2 � ωtc � r2 (2.25)

The so called ”slip factor” is introduced. It is defined as the ratio of the real tangential
velocity ´c2tn to the ideal velocity with no slip c2tn [7]

σ �
´c2tn

c2tn
(2.26)

For turbo-machines the applied torque equals the change on the angular momentum of
the fluid between the compressor inlet and impeller outlet. The power delivered to the
fluid is the product of the rotational speed of the shaft and the applied torque. The
following equation holds

Ẇc � ωtc � ṁc�r2 ´c2tn � r1c1tn� � ṁc�U2c2tn �U1c1tn� (2.27)

The rate of change in the energy delivered to the fluid is the ideal stagnation enthalpy
increase over the compressor. Thereby, the equation that is obtained is

Ẇc � ṁc �∆h0cideal (2.28)

Equations 2.27 and 2.28 yield

∆h0cideal � U2 ´c2tn �U1c1tn (2.29)

The flow at the impeller inlet is assumed to be axial, thus the tangential speed c1tn is
equal to zero and Eq. 2.29 is simplified to

∆h0cideal � U2 ´c2tn (2.30)

Equation 2.30 with the use of the slip definition and Eq. 2.24 becomes

∆h0cideal � σ�U2
2 �U2 � c2r � cot�β2�� (2.31)
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Enthalpy Losses

There are at least four main categories of enthalpy losses in a centrifugal vane-less
compressor, namely:

1. Incidence Losses

This type of enthalpy losses occur due to incidence of the incoming fluid onto the
rotor of the compressor at the inlet section. It is one of the major type of losses
that greatly determines the compressor characteristic curve. The incidence losses
can be calculated in various ways. From the most widely used models is the so
called ”NASA shock loss theory” which is based on the tangential component of
velocity which is destroyed during incidence. The use of this model leads to a loss
varying with the square of mass flow, being zero when the relative angle between
the fluid and the fixed bladed angle is zero [11].

As the gas hits the inducer, its velocity instantaneously changes its direction
to comply with the fixed blade inlet angle. The direction is changed from the
direction of flow β1 to β1b which is the fixed blade angle, and the kinetic energy
associated with this tangential component of the velocity is lost. Therefore, the
incidence loss can be expressed as

∆hi �
W 2
θ1

2
(2.32)

where the velocity lost due to incidence is described by the following equation

Wθ1 � U1 � cot�β1b�c1a (2.33)

and
c1a � c1 (2.34)

since the assumption that there is no tangential component of fluid velocity at
the inlet has been made.

Substituting 2.33 into 2.32, yields

∆hi �
�U1 � cot�β1b�c1a�2

2
�

�U1 �
cot�β1b�ṁc
ρ01A1 �2

2
(2.35)

where the last equivalence is derived from 2.22 and the use of assumption 2.34.

2. Friction Losses

Friction losses are associated with the adhesive force between the fluid flow and
the channel surfaces. In order to estimate friction losses the assumption adopted
is that the flow is fully developed. The friction losses in the impeller are calculated
using the following equation

∆hfil � fi � � li
Di

� � w2
b

2
(2.36)

where Di is the hydraulic diameter, since the compressor cross section is not a
circle, li is the average length of the impeller flow passage and wb is the mean
fluid velocity in the impeller given by

wb �
ṁc�ρ01 � ρ02�~2 �Aav (2.37)
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Additionally, the friction factor fiis computed accoding to [11], using Haaland’s
formula

1º
fi

� �1.8 � log�6.9
Re

� � ε
Di

3.7
�1.1� (2.38)

The Reynolds number is calculated as follows

Re �
U2b2
ν

(2.39)

where ν is the kinematic viscosity of the fluid.

3. Mixing Losses

The mixing losses are encountered at the outlet of the impeller section where the
so called ”jet flow” is mixed with the ”wake flow”. Although the flow of fluid
at the impeller outlet is uniform in axial direction, the simultaneous presence of
both low momentum fluid and high energy cores in radial direction causes the
sudden mixing of these fundamentally different types of flows.

Mixing losses are estimated using the conservation laws of jet-wake theory and
are given by the formula

∆hmix �
1

1 � tan2β2
�
1 � εwake � b

�

1 � εwake
�
c2

2

2
(2.40)

where
tan�β2� � cr2

σU2
(2.41)

In addition, εwake is a function of the blade to blade space occupied by the wake
and b� is the ratio of the diffuser inlet width and the impeller exit width.

4. Vane-less Diffuser Losses

In the volume occupied by the diffuser the primary and secondary flows are mixed.
As a result of friction and other factors, a loss, is experienced.

Stanitz developed a numerical procedure for the analysis of flow in a vaneless
diffuser and the estimation of losses in the diffuser section [6]. Although mixing
losses have not be taken into account by Stanitz, they have already been included
in the loss model described previously. According Stanitz the enthalpy losses in
the vane-less diffuser section of an axial compressor are given by

∆hvld � cpaT02�� p3

p03
� �γ�1�

γ � � p3

p02
� �γ�1�

γ � (2.42)

Efficiency

The is-entropic efficiency of the compressor is defined as

ηis,c �
∆h0ideal

∆h0ideal �∆hloss
(2.43)

where ∆hloss is the sum of the above-mentioned losses occurring in the impeller and
the diffuser

∆hloss � ∆hi �∆hfil �∆hmix �∆hvld (2.44)
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The aforementioned definition of efficiency has to be corrected so as the effect of other
type of losses that are difficult to model analytically and have a smaller influence on
the efficiency can be also taken into account. These type of losses are taken into
consideration by directly subtracting them from the is-entropic efficiency ηis,c given in
Eq. 2.43. One type of these enthalpy losses is clearance loss ∆ηc, which is mainly a
function of the the axial clearance at the impeller tip. Moreover, another loss which
has to be included is the back-flow loss ∆ηbf . This loss is associated with the existence
of pressure gradients in the impeller tip region which make necessary the reprocess of
certain part of the fluid and the re-injection of it into the impeller of the compressor.
Finally, the volute loss ∆ηv steams from the inability of the volute to use all the
available energy out of the diffuser. Nonetheless, this loss is not so significant in vane-
less diffusers.

The corrected is-entropic efficiency is then given by the following formula

ηis,c �
∆hideal

∆hideal �∆hloss
�∆ηc �∆ηbf �∆ηv (2.45)

Pressure Ratio Relationship

The overall efficiency ηis,c is given by

ηis,c �
h03is � h01

h03 � h01
�
h03is � h01

h02 � h01
�

CpT01 � �T03isT01
� 1�

h02 � h01
(2.46)

where the term h02 � h01 can be substituted from Eq. 2.31 and, in this way, Eq. 2.46
becomes

ηis,c �
CpT01 � �T03isT01

� 1�
σ�U2

2 �U2 � c2r � cot�β2�� (2.47)

The overall pressure rise in compressor is given for ideal is-entropic compression by

p03

p01
� �T03is

T01
� γ
γ�1 (2.48)

Substituting Eq. 2.47 into Eq. 2.48 the pressure ratio becomes

p03

p01
� �1 � ηis,c �∆hideal

T01cpa
� γa
γa�1 (2.49)

The is-entropic efficiency ηis,c is a function of the turbocharger speed Ntc, the mass
flow through the compressor ṁc and the pressure loss in the diffuser ∆hvld . The
vane-less diffuser enthalpy losses depend on the dynamic and static pressures at the
compressor inlet, impeller outlet and compressor outlet. The term ∆h0ideal is a function
of Ntc and ṁc. Moreover, the stagnation temperature at the compressor inlet T01 varies
with ṁc for constant ambient conditions. Consequently, for known turbocharger speed
Ntc, pressure ratio Πc and known ratio of the total pressure increase to the pressure
increase in the impeller section p3~p2, the right hand side of the equation is just a
non-linear function of the mass flow ṁc.

Regarding the left hand side of Eq. 2.49, for a given mass flow ṁc, Eq. 2.22 can
be used to estimate the inlet flow velocity c1. The air in the engine room is assumed
to be at temperature Tamb, pressure pamb and at zero velocity. When the air enters
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compressor, the temperature drops from Tamb to T1 as a result of the velocity increase.
Precisely, the new temperature is given by the following formula

T1 � Tamb �
1

2
c2

1 (2.50)

The static pressure at the compressor inlet, assuming no pressure drop and is-entropic
compression, is given by

p1s � pamb � � T1

Tamb
� γa
γa�1 (2.51)

In a more realistic approach, the process could not be considered perfectly is-entropic.
To account for this phenomenon the previously calculated pressure from Eq. 2.51 is
reduced by a term proportional to the square of speed c1

p1 � p1s � ζin
1

2
ρ01c

2
1 (2.52)

The factor ζin is mainly a function of the inlet geometry and can be derived from
diagrams. Moreover, using the ideal gas laws density at the compressor inlet is given
by

ρ1 �
p1

RT1
(2.53)

Finally, the dynamic pressure at the compressor inlet is given by

p01 � p1 �
1

2
ρ1c

2
1 (2.54)

Estimating density ρ3 from Eq. 2.11 the dynamic pressure at the compressor outlet
can also be calculated by

p03 � p3 �
1

2
ρ3c

2
3 (2.55)

Consequently, for a given stagnation pressure in the outlet of the compressor p3 �

Πc � pamb or equivalently pressure ratio Πc and turbocharger speed Ntc the left hand
side of Eq. 2.49 is a non-linear equation of ṁc.

Since both sides of the Eq. 2.49, for given pressure ratio Πc and turbocharger speed
Ntc, are only functions of the air mass flow ṁc, Eq. 2.49 can be solved iteratively in
order to yield the mass flow trough the compressor ṁc.

However, one should take into account that the mass flow through the compressor
is calculated by solving a non-linear algebraic equation. This type of algebraic loops
cannot be compiled during built process into C-Language and implemented in dSPACE
Rapid Prototyping Environment. Thus the compressor model, both the model of ṁc

and of ηis, should be replaced by look-up tables.
Equation 2.49 for constant pressure ratio Πc and turbocharger speed Ntc may gives

imaginary solutions or even two solutions. Although this problem does not appear
when the compressor model is incorporated with an engine model or the real engine, it
can arise when Eq. 2.49 is solved for unrelated turbocharger speeds Ntc and pressure
ratios Πc to derive the compressor maps in the form of ṁc � ṁc�Πc,Ntc�.

For this reason, the assumption that the mass flow ṁc and the turbocharger speed
Ntc are given is made and Eq. 2.49 is solved in an inverse way to compute the corre-
sponding pressure ratio Πc; thus, the compressor map can be derived in the form of
MODEL II-Πc � Πc�ṁc,Ntc�. Afterwards, only by using a simple linear interpolation
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Figure 2.2: Barometric pressure at compressor outlet �pc � pamb��bar� presented as
a function of compressor mass flow ṁc�kg~s� for different speeds of the turbocharger
shaft Ntc in the range �25000RPM � 35000RPM�.
technique the corresponding value of ṁc for know Πc and Ntc can be computed. In this
way, the desired representation is obtained, as the map is of the form ṁc � ṁc�Πc,Ntc�.
The combinations of Πc and Ntc which give a negative value of ṁc are of no significance
and of no effect as the connection of the engine model with the turbocharger model
gives only meaningful combinations of Πc and Ntc (that comply with the requirement
of positive air mass flow ṁc through the compressor).

One should note that the flow through the compressor chokes when the average
fluid velocity within a cross section of the compressor reaches sonic conditions [11].
The chocking behaviour appears beyond the engine operation range of interest for the
present application; thereby, the sonic effects are not captured by this model.

The barometric pressure at compressor outlet �pc � pamb��bar� as a function of the
mass flow through the compressor ṁc�kg~s� for different speeds of the turbocharger
shaft Ntc�25000 � 35000RPM� along with the experimental points is depicted in Fig.
2.2. Moreover, Fig. 2.3 illustrates the isentropic efficiency ηis as function as the mass
flow through the compressor. The speed of the turbocharger shaft Ntc is the parameter
of the plot and lies in the range �25000RPM � 35000RPM� .

Compressor power

The power requested from the compressor is given by

Pc � ṁccpa � �Tc � Tamb� (2.56)
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Figure 2.3: Isentropic efficiency ηis presented as a function of compressor mass flow
ṁc�kg~s� for different speeds of the turbocharger shaft Ntc in the range �25000RPM �

35000RPM�.
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2.2.7 Observer and On-line Parameter Identification

General Scheme

The two differential Eqs. 2.19 and 2.20 are presented again here in one vector differential
equation

d
dt
� pim
mim

� � <@@@@>
�
γVcylzNeP �ωe�θ

120Vim
0

0 �
ηvVcylzNe

120Vim

=AAAA? � � pimmim
� � � γRVim 0

0 1
	 � �ṁcTacṁc

� (2.57)

The above vector equation can be described by the generic configuration of a state
space system with time-varying matrix coefficients. In other words, the system above
can be written as follows

dÑx
dt

� A�t� � Ñx �B�t� � Ñu (2.58)

where Ñx is the states’ vector, Ñu is the inputs’ vector and A(t), B(t) are the two time-
varying matrices.

Only pressure in the intake manifold is available through measurement.This fact is
taken into account by introducing a linear output equation

pim � �1 0� � � pim
mim

� (2.59)

The generic representation of the above scheme is

Ñy � C � Ñx (2.60)

From Eqs. 2.60 and 2.58 the following system is obtained

dÑx
dt � A�t� � Ñx �B�t� � Ñu
Ñy � C � Ñx (2.61)

The problem that arises is whether estimate an unknown state (in the present case
the mass in the intake manifold mim) can be estimated given only measurements of the
known states (in our case the pressure in the intake manifold pim).

Observability of Linear Time Varying Systems

The property of a linear system that allow us to estimate an unknown state only from
measurements of another known state is called observability and the the system is called
observable.

Definition 2.1. The pair of matrices �C���,A���� is called observable on �t0, t1� if and
only if for all x0 > Rm and all u � �t0, t1� � Rm , one can uniquely determine x0 from
the information of �u�t�, y�t��St > �t0, t1�.

For the examined system it can be proved that is unobservable. In order to prove
the above statement in mathematically formal way, some definitions and theorems will
be presented in this section.
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Let us consider the wide class of linear time varying state space systems described
by the following differential equations

dÑx
dt � A�t� � Ñx �B�t� � Ñu
Ñy � C � Ñx �D � Ñu (2.62)

The response of the system to both initial conditions and external inputs s�t, t0, x0, u�
can be partitioned into two distinct components

s�t, t0, x0, u� � s�t, t0, x0,0� � s�t, t0,0, u� (2.63)

where in the right part of equation, the first term is the so-called ”zero input transition
matrix”, while the second is the so-called ”zero state transition matrix”. The state
transition matrix is denoted as Φ�t, t0� and is defined as

s�t, t0, x0,0� � Φ�t, t0�x0 (2.64)

Thereby, the state transition matrix fully determines the dynamic response of the sys-
tem under zero external input. For linear time-invariant system the state transition
matrix can be easily derived in closed form.

Definition 2.2. Let A��� � R � Rn�n be piecewise continuous function and consider
the following linear ODE ẋ�t� � A�t�x�t� .The transition matrix of the system is given
by Φ�t, t0� � X�t�X�t0��1 where X�t� is the fundamental matrix so that equality
Ẋ�t� � A�t�X�t� holds.

For the present system the state transition matrix is diagonal and has the following
form

Φ�τ, t0� � �exp�R τt0 φ�ξ�dξ� 0

0 exp�R τt0 ψ�ξ�dξ�	 (2.65)

where φ�ξ� and ψ�ξ� are the diagonal elements of the state matrix A�t� and as can be
seen are time-varying parameters.

Definition 2.3. The observability gramian of the pair �C���,A���� is the matrix

Wo�t0, t1� � R t1t0 Φ�τ, t0�TC�τ�TC�τ�Φ�τ, t0�dτ (2.66)

Theorem 2.4. The pair of matrices �C���,A���� is observable if and only if the the
determinant of the observability gramian is non-zero det�Wo�t0, t1�� x 0.

Substituting element Φ�τ, t0� and C with their values, the result that Wo�t0, t1� � 0
is obtained. Thereby, the state mim is not observable only from measurements of p1.
For this reason, the only feasible way to estimate the state mim from measurements of
p1 is to construct an open loop observer. The open loop observer will be based on the

For more information about the properties of time varying systems the reader is
referred to [26].
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Figure 2.4: General configuration for on-line parameter identification problems.

Parameter Identifier

On-line parameter identification can be viewed and formulated as a model tracking
problem (reference tracking or disturbance rejection), where the output of the model has
to follow the output produced by the plant. The general configuration for identification
problems is shown in Fig. 2.4. As it can be seen the input is fed to both the plant
and the model. Moreover, an adjustment mechanism, using the information from the
measured value and the prediction of the model, can continuously adjust the parameters
of the model so that the error between the measured and the estimated value tends to
zero [3].

The main focus of on-line parameter identification lies in finding the appropriate
adjustment mechanism to eliminate the error between the real parameters and the
identified ones. The adjustment mechanism should make the identification process
robust; therefore, convergence should be guaranteed despite the presence of uncertainty
of the proposed model, disturbances acting in the real plant and measurements’ errors.

The differential equation of the identifier model is as follows

˙̂p1 � �
γVcylzNeP �ωe�

120Vim
� ˆθ�t� � p̄1 �

γR

Vim
� ṁcTac (2.67)

As shown in Eq. 2.67 the identifier model is fed with both the plant input u � ṁcTac
and the measured state y � p̄1. Furthermore, a feedback term proportional to the
identification error p̄1 � p̂1 is included in the state space Eq. 2.67, on the grounds that
parameter identification is conceptually a reference tracking problem of the signal p̄1.
The final differential equation is the following

˙̂p1 � �
γVcylzNeP �ωe�

120Vim
� ˆθ�t� � p̄1 �

γR

Vim
� ṁcTac � gp � �p̄1 � p̂1� (2.68)

Adding this term servers to prevent constant disturbances in the measured pressure to
destabilize the adaptive observer when they are integrated over a wide time interval.

In this point it worth noting that not all types of inputs guarantee the convergence
of the estimated parameter to that of the real plant. Exponentially fast convergence
of the estimated parameters to those of the real plant is achieved if and only if the
system’s input u�t� is persistently exciting [16].
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Definition 2.5. A signal u�t� is called persistently exciting if

S
t�T

t
u2�τ�dτ C a0T (2.69)

for every T , where a0 is a positive constant in the equation above.

The main objective is to find an identification error that is implementable and guar-
antee convergence to the real parameter. The basis of the analysis is Eq. 2.21. Every
side of Eq. 2.21 is filtered so the derivatives that appear on the left side are realizable.
The derivatives are not realizable since, theoretically, they cannot be calculated only
with present and past values of the measured signal. Practically, derivative terms can
be approximately evaluated numerically but this results in the introduction of noise.
This problem can be suppressed by passing the signal through a low pass band filter.
Filtering both sides of Eq. 2.21 yields

Hfd�pim� � γR

Vim
�Hfi�ṁcTac� � γVcylz

120Vim
�Hfi�NeP �ωe�θpim� (2.70)

Defining the regress-or

φ̄�t� � �� γVcylz
120Vim

�Hfi�NeP �ωe�θ ¯pim�� (2.71)

and the corresponding signal
z � φ̄θ (2.72)

which satisfies the fundamental property of being persistently exciting and, conse-
quently, can be used for the on-line parameter estimation. The error signal is then
given by

ε � z�t� � ẑ�t� � φ̄θ � φ̄θ̂ � ...Cumbersome algebra... � φ̄θ̃ � εres (2.73)

where θ̃ is the error in the estimated parameter. As can be seen from Eq. 2.73 the
identification error is a linear function of the parameter error. If the identification error
is written as a function of the measured and estimated variables and eliminate the terms
that cause bias the following implementable identification error can be derived

ε � z�t� � ẑ�t� � ...Cumbersome algebra... � ��Hdf � gp1Hfi��p̄im � p̂im�� (2.74)

Finally, the choice of an appropriate adaptation law needs to be made. A through
presentation of the various types of adaptation laws is given in [16]. The adaptation
law that is used is a piecewise function of the estimated volumetric efficiency η̂v as
follows

˙̂
θ �

¢̈̈̈¦̈̈̈¤
�Γ � P �φ̄�t�ε̄�t� for η̂v > Sη

0 for η̂v ? Sη

(2.75)

where

Ṗ �

¢̈̈̈¦̈̈̈¤
P 2φ̄2 for η̂v > Sη

0 for η̂v ? Sη

(2.76)

This adaptation law is a hybrid version that combines traditional least squares algo-
rithm, projection and covariance resetting. In this way, the use of covariance resetting
guarantees that the covariance matrix P will not become singular and the use of pro-
jection ensures that the value of ηv is within the physical limits (typically ηv > �0.5,1�
but the upper bound for Diesel Engines can be even higher due to the scavenge air
ηv � 1.1).



2.3 Fuel Path Modelling 39

2.3 Fuel Path Modelling

2.3.1 Willan’s Model

The torque produced by the engine is a complex function of many variables, such as the
fuel mass in the cylinder, the air to fuel ratio, the engine’s speed, the injection timing,
etc [13].

Me � f�ṁf , λ,Ne, ζ, ...� (2.77)

Only with detailed thermodynamic simulations accurate prediction of the produced
torque by the internal combustion engine is possible. However, for control purposes
such simulations are too time-consuming and unnecessary, since lower accuracy in the
estimated torque is also acceptable for the majority of control problems. For this
reason, the engine is approximated as a Willans machine. Precisely, the engine is just
an energy converter which converts the available input power Win (Win � ṁfHLV ) into
output power Wout (Wout � ωeMe) and effort variables [36]. For each time instant, the
following equation holds

ωe �Me � η � ṁfHLV (2.78)

where ωe is the engine’s speed in rad~s, η is the engine’s efficiency and HLV is the fuel’s
lower calorific value of the fuel.

To derive a simple equation, the assumption that an affine relation between the
produced torque and the mass of fuel burned exists

Me �
ew�ωe� � ṁf �HLV

ωe
�Mloss�ωe� (2.79)

In Eq. 2.79, e is only the thermodynamic efficiency of the engine, while in Eq. 2.78,
η also incorporates friction losses and other mechanical losses of the engine.

The equation above depends on quantities that are associated with engine size. This
dependency can be eliminated by introducing dimensionless variables which are defined
as follows

pme �
4π

Vcyl
�Me (2.80)

pmf �
4π �HLV � ṁf

Vcyl � ωe
(2.81)

pmloss �
4π

Vcyl
�Mloss (2.82)

and

cm �
S � ωe
π

(2.83)

where S is the engine’s stroke. The variable pmf is the available mean effective pressure
and pme is the produced mean effective pressure. Equation 2.79 can be written in terms
of the previously defined dimensionless variables as follows

pme � ew�cm� � pmf � pml�cm� (2.84)

which is the equation that will be used for the linear regression in order to calculate
the coefficients ew and pml. It is worth noting that these two coefficients are primarily
functions of the engine speed.
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Figure 2.5: Linear regression of experimental data for Willan’s relation.

Figure 2.5 illustrates the experimental data of the mean effective fuel pressure and
mean effective pressure along with a line calculated using the least squares fit method
for engine speed Ne � 1600 RPM.

In order to capture the reciprocating behaviour of the engine delays should be
introduced between the cylinder-in and cylinder-out events. For instance, the injected
fuel affects the torque produced only after the injection to power cycle. The torque
produced at the time instant t is given by

Me�t� � ew � ṁf�t � τinj�PC�
ωe�t� �HLV �Mloss (2.85)

2.3.2 Inverse Willan’s Model

Equation 2.85 shall be written in the following way

ṁf�t � τinj�PC� � ωe�t� � �Me�t� �Mloss�
HLV � ew

(2.86)

Equation 2.86, if all terms are moved by τinj�PC , can be written as

ṁf�t� � ωe�t � τinj�PC� � �Me�t � τinj�PC� �Mloss�
HLV � ew

(2.87)
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The terms that appear in the right hand side of Eq. 2.87 are not realizable. In order to
evaluate the mass of fuel at the time instant ”t”, measurements of the torque produced
and the rotational speed of the engine at time instant ”t � τinj�PC” are required.

From now on the assumption that the torque produced at the time instant t�τinj�PC
equals the torque produced at time instant t plus the inertial term Je

dωe
dt at the same

time instant is made; thus, the following equation is obtained

Me�t � τinj�PC� �Me�t� � Jedωe
dt

�t� (2.88)

This approximation is introduced now but it will be shown a-posteri that is a reasonable
approximation from the agreement between the proposed model and the experimental
data. Moreover, engine’s speed at time instant t � tinj�PC can be replaced from the
corresponding first order approximation

ωe�t � τinj�PC� � ωe�t� � dωe
dt

�t� � τinj�PC (2.89)

The term Me�t�τinj�PC� can be substituted from Eq. 2.88 and the term ωe�t�τinj�PC�
from Eq. 2.89; It follows from these two substitutions that

ṁf �
�ωe � dωe

dt � τinj�PC� � �Me � Je
dωe
dt �Mloss�

HLV � ew
(2.90)

where all the time dependant variables in Eq. 3.21 refer to time instant t.

The problem associated with the realisability of the right hand side of Eq. 2.87 still
appears in Eq. 3.21 due to the presence of derivatives. However, in Eq. 3.21 derivatives
can be approximately estimated from past data.

The disadvantage of approximating derivatives is the fact that noise is introduced
into the system. The effect of noise can be suppressed by passing the derivatives through
a low pass filter. Nevertheless, filtering of the measurements can be a source of delay.
For this reason, a right balance should be found between the delay introduced and the
noise presented in the estimated value of λ.

2.4 Lambda estimation

2.4.1 Estimation of AFRst

From the stoichiometric analysis of the the fuel, the following data were obtained

Table 2.1: Fuel Analysis Data

Lowest Calorific Value 10378 kcal~kg
Carbon 86.624 �%� �mf,tot

Hydrogen 13.37 �%� �mf,tot

Sulphur 0.0022 �%� �mf,tot

Nitrogen 0.0014 �%� �mf,tot

As illustrated in Table 2.1 the main chemical substances in the fuel used are Carbon
and Hydrogen, the other two substances that correspond to small ratios of the total
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mass of fuel will be ignored. A general hydrogen fuel of molecular composition CaHb

is considered here. The parameter a is obtained by

a�kmC~KgF � � �KgC~KgF �
MC�kgC~kmC� � 0.07214 (2.91)

and, similarly, parameter b is given by

b�kmH~KgF � � �kmH~KgF �
MH�kgH~kmH� � 0.13264 (2.92)

The value of AFRst can be evaluated as a function of y � b~a � 1.83864 from the formula
presented in [14]

AFRst �
34.56 � �4 � y�

12.011 � 1.008 � y
� 14.554 (2.93)

2.4.2 In-cylinder gas mixing

At each time instant the value of lambda λ for the fresh charge mixture of air and fuel
is given by:

λ �
AFR

AFRst
�
ṁe~ṁf

AFRst
(2.94)

A considerable part of the exhaust gases remains inside the cylinder and is mixed
with the fresh air charge. The final value of λ�t� would be a weighted average of
λ�t�τieg� which is the value of λ for the previous cycle and of λfc�t� which is the value
of λ for the new air that is aspirated inside the cylinder. The following relationship is
derived

λ�t� � λ�t � τieg� �mres�t� � λfc�t� � �me�t� �mf�t��
me�t� �mf�t� �mres�t� (2.95)

where all the masses in the equation above can be calculated from the corresponding
mass flows using the integration formula as follows

m�t� � ṁ�t � τieg� � τseg (2.96)

where the time period for integration is the time interval between induction and exhaust
cycle

τseg �
2π � 2

ωe � z
(2.97)

2.5 Delays Computation

In the present thesis a mean value approach is adopted; thus, the reciprocating be-
haviour of the engine can only be captured by introducing delays between cylinder-in
and cylinder-out events. Moreover, delays have to be introduced between the inlet and
outlet of air ducts and air coolers. Although this approach is usually sufficient for
relative slow processes, it is weak in capturing really fast variations in lambda λ. In
the latter case discrete event modelling can be adopted.

In the experimental set-up of the LME, the barometric pressure in the air cooler
outlet pim and the turbocharger’s shaft speed Ntc are measured. In this way an estimate
of the air mass flow through the compressor can be obtained by using the compressor
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maps that provide ṁc as function of the above parameters. It is assumed that these
two variables are measured in the time instant ”t”.

Air from the turbocharger is delivered through the air pipe to the air cooler. The
average fluid velocity in the air pipe from compressor outlet up to the air cooler inlet
is given by Eq. 2.10 and the time needed for the fluid to travel along the pipe that
connects the compressor outlet with the air cooler inlet can be calculated by

τad �
Lad
c3

(2.98)

Proceeding analogously to derive the time delay due to the presence of the air cooler,
the formula that can be used is

τac �
Lac �Aac � ρav

ṁc
(2.99)

In order to calculate the air cooler delay the geometric features of the air cooler and
especially the effective cross sectional area Aac have to be known. In Eq. 2.99, ρav is
the mean density between the inlet and outlet of the air cooler ρav �

1
2 � �ρac� � ρ3�.

Moreover, the air in the intake manifold will only enter the engine during the in-
take stroke of one of the cylinders. For an one-cylinder engine the induction stroke
is repeated approximately every 360o � 180o of the crank shaft angle. For an engine
with z number of cylinders the induction stroke is repeated every �360o � 180o�~z of
the crank shaft angle. To convert crank-angle to time delay, with known engine speed,
the following relationship is used

dt �
dφ�deg�
360 � ωe

(2.100)

So the maximum inlet to induction delay can be calculated as follows

τinl�ind �
3~2
ωe � z

(2.101)

2.6 Virtual Sensor Model Simulation

The differential and algebraic equations that were presented in this chapter were im-
plement in a MATLAB/Simulink model. The structure of this model is depicted in
Fig. 2.1 where each block corresponds to a MATLAB/Simulink subsystem. The model
was tested on-line and the measurements of the physical sensor were compared with
the estimations provided by the virtual sensor. Precisely, two experiments were carried
out at the LME to verify the accuracy of the proposed virtual sensor model.

In the first experiment the engine was running at approximately constant speed
Ne � 1600RPM and the torque produced by the ICE was as illustrated in Fig. 2.6.
The measurements of Ntc, Ne, Te and pim were provided to the virtual sensor on-line
with both the estimated and the measured values of λ being recorded.

From the experimental results, depicted in Fig. 2.8, it is shown that the steady
state error is less than 0.2 for the various loads that were applied. The developed
model can sufficiently capture the dynamic behaviour of the measured value of lambda
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Figure 2.6: Torque probuced by the ICE-Te for a step load.

during load increase transients. At the same time, the undesirable spikes of the physical
sensor measurements during load reductions are not reproduced by the virtual sensor.

On the other hand, it should be mentioned that no significant benefit from mea-
surement delay reduction is noticed with the implementation of the virtual sensor.
Additionally, noise is presented in the estimated value of λ from the virtual sensor.
The noise steams from the way in which the non-realisable derivative term is computed
and from the high-frequency torque variations. The effect of noise can be eliminated
by applying filtering to the derivative term but, in this way, additional time delay is
induced in the estimation of λ. Clearly, a trade-off between the smoothness of the
estimated data and the speed of measurement exists.

In the second experiment, a propeller load demand was applied to the ICE with
the characteristics that are given in Fig. 2.7. As illustrated in Fig. 2.9, the measured
and the estimated value of λ match well over the whole time interval presented in the
figure with the maximum deviation between them being less than 0.25.

Finally, a conclusion that can be drawn from the comparison of Figs. 2.8 and 2.9 is
that the measured and the estimated values of λ are close to one another in quasi-static
loading and very slow transients. Thus, no need is presented to replace the physical
sensor with the virtual one in this case of loading. On the contrary, the use of the virtual
sensor may be proved beneficial in fast load transients when an accurate measurement
of λ is essential.
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(a) Torque probuced by the ICE-Te.
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Figure 2.7: Propeller load characteristics.
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Figure 2.8: Measured and estimated value of lambda for a step load.
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Figure 2.9: Measured and estimated value of lambda for a propeller load.



Chapter 3

Dynamic Uncertain Non-Linear
Model of Lambda

In the process of controlling the value of λ for the hybrid power-train, the ICE has to
be modelled. The model which will be derived has to sufficiently describe the variations
of λ during transient conditions but simultaneously be of low order and use only the
measured input variables, since it is oriented for a control application. All the compo-
nents of the engine are modelled using a Mean Value Approach. The final model will
have as output the value of λ and as input the fuel mass flow ṁf ; the rotational speed
of the engine Ne is considered as a fixed parameter. After the ICE engine model has
been developed, the other components of the hybrid-electric powertrain are modelled
as well and the final linearised model is computed in Chap. 5. Figure 3.1 presents the
whole structure of the hybrid-electric powertrain, while the schematic representation
of the ICE model with its corresponding components is illustrated in Fig. 3.2.

The Compressor, Air Cooler, Engine and Intake Manifold have already been mod-
elled in Chap. 2, as they were integrated parts of the virtual sensor model. Unlike
the previous chapter, where use of the measured turbocharger speed and pressure in
the intake manifold has been made, in this section, the proposed model simulates this
physical variables since they correspond to internal states of the model.
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λṁf

Td

Tsp

Telm

TeTreq

Figure 3.1: Hybrid power-train block diagram.
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3.1 Exhaust gas temperature

The real thermodynamic processes in the cylinder can be approximated by an ideal
Seiliger cycle [47]. Under this simplification the exhaust gas temperature immediately
after the exhaust valve is given by

Texh � ηscΠ
1�1~γg
e r

1�γg
c x

1~γg�1
p �qin�1 � xcv

cpg
�
xcv
cvg

� � Timrγg�1
c � (3.1)

where

qin �
ṁfHLV

ṁf � ṁe
(3.2)

and
xp � 1 �

qinxcv

cvaTimr
γ�1
c

(3.3)

The exhaust temperature model has two tunable parameters ηsc and xcv.

3.2 Turbine Model

3.2.1 Turbine Mass Flow

It has become clear from Subsection 2.2.6 that the mass flow delivered from the com-
pressor is as a combined result of both the pressure ratio Πc and the turbocharger
rotational speed Ntc. Unlike the compressor, turbine drives air through it mainly due
to the pressure ratio Πt and not the turbocharger rotational speed Ntc. Therefore,
simplifying turbine’s behaviour with this of a non-linear orifice is a reasonable approx-
imation that reduces complexity and is suitable for control applications [13].

The flow equation for a turbine is

ṁt � cAt
pem»
RgTem

Ψ�1~Πt� (3.4)

where cAt is the effective flow area, Rg is an ideal gas constant for the exhaust gas, pem
and Tem are the pressure and temperature in the exhaust manifold, respectively. The
term Ψ�1~Πt� is a piecewise function given by

Ψ�1~Πt� �
¢̈̈̈̈¦̈̈̈̈¤
�1~Πt� 1

γg

½
2γg
γg�1�1 � �1~Πt� γg

γg�1
�

for Πt B �γg�1
2 � γg

γg�1½
γg� 2

γg�1� γg�1γg�1 for Πt A �γg�1
2 � γg

γg�1

(3.5)

The throttle Eq. 3.5 suggests a chocking behaviour above the critical pressure ratio
Πt,cr � 2. This behaviour does not usually accords with the experimental data. For
this reason, many models have been proposed so that the actual behaviour is captured.
A comparison of three of the most common models which are used is presented in
[17]. These models have unknown tunable parameters which can be estimated when
the model is fitted to the data provided by the manufacturer. A very flexible and
mathematically compact model, which can capture the behaviour of the turbine, is the
following:

ṁt �
pemº
Tem

Φ�Πt� (3.6)
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where Φ�1~Πt� is a function given by

Φ�Πt� � ct �»1 � �Πt��kt (3.7)

In the above equation the constants ct and kt are two tunable parameters, which can be
identified so the final model agrees with the turbine’s map provided by the manufacturer
or the experimental data.

3.2.2 Turbine’s Isentropic Efficiency

In Subsection 3.2.1 the mass flow through the turbine ṁt was assumed independent of
the turbocharger speed Ntc. However, this assumption does not hold for the turbine’s
is-entropic efficiency which depends on the incidence of the incoming exhaust gas and,
as a result, the turbocharger speed Ntc. Turbine’s efficiency can be represented in a
dimensionless map as a function of the ”turbine blade speed ratio” c̃u and the pressure
ratio Πt. The ”turbine blade speed” ratio is defined in [13] and given by the following
formula

c̃u �
Dt � ωtc
cus

(3.8)

where

cu �

¼
2cpg � Tem�1 �Π

�1�γg�~γg
t � (3.9)

The is-entropic efficiency of the turbine ηis,t can be very well approximated by a
quadratic function of the form

ηis,t�c̃u� � ηis,t,max � � 2c̃u
˜cu,opt

� � c̃u
˜cu,opt

�2� (3.10)

The parameters ηis,t,max and cu,opt can be chosen in an appropriate way to fit the data
provided by the manufacturer.

3.2.3 Turbine Power

The power delivered by the turbine is given by

Pt � ṁt � cpg � Tem � �1 � Tto
Tem

� (3.11)

where ṁt is the mass flow through the turbine, Tem is the exhaust manifold temperature
that is equal to the exhaust gas temperature at the inlet of the turbine and Tto is the
temperature at the outlet of the turbine. Additionally, using the relationship of an
non-isentropic expansion between the temperatures Tto and Tem, the ratio Tto~Tem is
given by

1 �
Tto
Tem

� ηis,t�1 �Π

1�γg
γg

t � (3.12)

Substituting Eq. 3.12 into Eq. 3.11 yields

Pt � ṁt � cpg � Tem � ηis,t � �1 �Π

1�γg
γg

t � (3.13)
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3.3 Exhaust manifold model

The exhaust manifold is modelled similar to the intake manifold case as described in
Subsection 2.2.1. Using the conservation of mass principle and the energy balance the
following differential equations can be obtained

mem

dt
� ṁe � ṁf � ṁt (3.14)

and
dpem
dt

�
γgRg

Vim
� �ṁe � ṁf� � Texh � γgRg

Vem
� ṁt � Tem � Q̇em (3.15)

where Q̇em is the heat transfer that takes place in the exhaust manifold and Vem is the
volume of the exhaust manifold. Finally, from the ideal gas law the following equation
is valid

memTem �
pemVem
Rg

(3.16)

3.4 Turbocharger Rotational Dynamics

The rotational speed of the turbocharger shaft wtc can be derived from a power bal-
ance between the power delivered by the turbine Pt and the power absorbed by the
compressor Pc. The power balance yields the following differential equation

d

dt
�1

2
Jtcw

2
tc� � Pt � Pc (3.17)

where Jtc is the turbocharger’s shaft inertia and wtc is the rotational speed of the
turbocharger shaft expressed in rad~sec.

Equation 3.17 can also be written as

Jtc �
d

dt
�wtc� �Mt �Mc (3.18)

where Mt and Mc are the torque produced by the turbine and the torque request from
the compressor respectively.

3.5 Engine Rotational Dynamics

Using the second law of Newton on rotational motion, the following differential equation
can be obtained

Je
dωe
dt

�Me �Mreq (3.19)

The kinetic energy is stored mainly in the engine’s flywheel, since it accounts for most
of the rotational inertia of the engine.

If the acceleration of the engine and the requested torque was known, then the
torque produced by the engine could be very easily calculated from equation 3.19.
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3.6 Fuel Mass Flow Model

In Subsection 2.3.2the following equation was otained

ṁf �
�ωe � dωe

dt � τinj�PC� � �Me � Je
dωe
dt �Mloss�

HLV � e
(3.20)

Substituting Eq. 3.19 into Eq. 3.20 yields

ṁf �
�ωe � dωe

dt � τinj�PC� � �Mreq � 2 � Je
dωe
dt �Mloss�

HLV � ew
(3.21)

which is the equation that will be used to derive the fuel mass flow ṁf inside the
cylinder.

3.7 Electric Motor Identification

Unlike the components of the internal combustion engine, where a first-principles ap-
proach is adopted, the model of the electric motor is derived with the aid of identifica-
tion theory. In this way, no prior knowledge of the state space equations that describe
the system is necessary.

Ljung in [23] defined system identification as the art and science of building math-
ematical models of dynamic systems from observed input-output data. Additionally,
as can be seen from Fig. 3.3, system identification is an iterative procedure and the
identification process steps possess a natural logical sequence.

3.7.1 Step No1: Experiment Design

The input-output data are collected in a specified experimental set-up, appropriately
designed by the user to maximize the information which can derived for the identified
models. A crucial decision that has to be made in terms of the identification process
concerns the type of the input signal that will be used in the experiment.

The identification experiment has to distinguish different models in the set of all
the possible possible models which can be obtained. Ljung in [22] refers the class
of identification experiments that acquire this property as informative and formulates
mathematically this property as follows.

Theorem 3.1. If an unspecified model set of single-input single-output linear models
is defined as

M�
� �G�s, θ�,H�s, θ�Sθ >DM� (3.22)

where G is the model of the plant to be identified, H is the model of the noise and DM is
the set where the parameters of the family of models, then the necessary and sufficient
condition for informative experiment is

S∆G�eiω�S2Φ�ω� � 0 (3.23)

where ∆G is the difference between two identified models and Φ�ω� is the spectrum of
the input signal.

Signals with this property are called persistently exciting. Additionally the
following definition broadens the concept of persistently exciting signals
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Definition 3.2. A signal is called persistently exciting of order n if for all filters
of the form Mn�q� the relation

SMn�eiω�S2Φ�ω� � 0 (3.24)

is equivalent to

Mn�eiω� � 0 (3.25)

Theorem 3.3. An experiment where n parameters have to be identified is informative
if and only if the input signal is persistently exciting order 2n.

From the above discussion it has become clear that it is desirable the signal to
contains sufficiently many distinct frequencies. Moreover, to guarantee a high signal-
to-noise ratio, a high signal power is necessary. On the grounds that the input signal
is usually constrained due to physical limitations, the highest signal power has to be
achieved with a given maximum amplitude [50]. This property can be expressed math-
ematically by demanding the crest factor, defined as

Cr �

¿ÁÁÀ maxtu2�t�
limN�ª

1
N Pnt�1 u

2�t� (3.26)

to be as small as possible. One should take into account that the lower bound of the
crest factor Cr is 1. Unfortunately, these two requirements, of small crest factor and
sufficiently many distinct frequencies, are in conflict; therefore, a right balance should
be achieved between the satisfaction of this two contradictory objectives.

Typical choices of waveforms include Filtered Gaussian White Noise (FGWN), Ran-
dom Binary Signal (RBS) and Pseudo-Random Binary Signal (PRBS). In the present
case, PRBS signal is chosen since it combines advantages of RBS with additional de-
sirable properties found in deterministic signals. PRBS has an optimal crest factor like
RBS and it has also good second order properties which are a typical characteristic of
deterministic signals. Another property really suitable for identification process is the
fact that PRBS signal can be reproduced, so the performance of different models can
be evaluated.

Having made the choice of the identification signal, the experiment is carried out
and identification dataset is collected; the dataset obtained from the identification
experiment is shown in the left plot of Fig. 3.4.

3.7.2 Step No2: Data Preprocessing

The data presented in the left plot of Fig. 3.4 are not ready to be imported to the
identification algorithms and have to undergo several processes. Data processing is
essential due to the following reasons:

1. Data often contain high frequency disturbances that lie outside the frequency
region of interest for the systems dynamics.

2. Occasional bursts and outliers may appear in data.

3. Drift, offset and low-frequency disturbances are usually presented due to the
sensors’ dynamics.
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Observing the identification data set, we can infer that no considerable deficiencies of
the first and second categories are noticed. Thereby, we are going to focus our attention
on the third category. A typical model that describes the dynamic and static behaviour
of a linear system is as follows

A�q� � y�t� � B�q� � u�t� �w�t� (3.27)

where y�t� is the system’s response to input u�t� under the presence of noise w�t�.
The above equation for constant level input u�t� � ū and resulting steady state output
y�t� � ȳ is written as follows

A�1� � ȳ � B�1� � ū (3.28)

Considering that measurements of u�t� and y�t� are taken at arbitrary levels which
are usually unrelated with one another, equation 3.28 may be viwed as an unnecessary
constraint of 3.27. In [22] methods are proposed to solve this problem; among this
techniques are the following:

1. Let us define the output measurements gathered from an experiment as ym, cor-
responding to the input measurements um. Furthermore, the system’s output to
the steady state input ū is defined as ȳ. Then, the data for the identification
algorithm would be the deviations of the experimental data �ym, um� from the
equilibrium values

y�t� � ym�t� � ȳ (3.29)

u�t� � um�t� � ū (3.30)

2. Another way to deal with the problem is to subtract the sample means so the
processed data would be as follows

y�t� � ym�t� � 1

N
Qk � 1Nym�k� (3.31)

u�t� � um�t� � 1

N
Qk � 1Num�k� (3.32)

3. A third method is to keep all variables in their original physical units and add a
term in the dynamic equation to compensate for the steady state offset

A�q� � y�t� � B�q� � u�t� �w�t� � α (3.33)

The additional term is equal to

α � A�1�ȳ �B�1�ū (3.34)

The constant parameter alpha is included in the identification vector θ and esti-
mated from the data.

The second approach is chosen for the specific problem. Moreover, the data are de-
trended to remove low frequency disturbances and drifts. The initial and the processed
data set are presented in Fig. 3.4.
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Figure 3.4: Initial and processed identification data.
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3.7.3 Step No3: Model Derivation

Although in the beginning of this section it was mentioned that in the identification pro-
cess no previous knowledge of the plant dynamics is required, any a-priori information
about the plant type and order would facilitate the identification process. Particularly
in this step, choosing a suitable ”family” where the model to be specified belongs and
an appropriate identification algorithm can facilitate the identification process.

One of the most common choices in terms of the parametrization of the model G is
to let the coefficients of the numerator and denumerator be unknown variables which
will be specified by the identification algorithm. Various models with the above generic
representation can be found in [22]. In the present case, after careful observation of
the identification data set, a continuous transfer function with 3 poles and 1 zero is
proposed as the model of the electric motor (EM) torque generation process.

The plant model we want to specify has the following form in Laplace variables

Y �s� � A�s�
B�s� �U�s� (3.35)

where U�s� and Y �s� are the Laplace transforms of the input and output signals.
The main problem is to specify the constant coefficients of the s polynomials of the
numerator A�s� and the denominatorB�s�. For the time instant t the equation becomes

y�n��t� � a1y
�n�1��t� � ... � any�t� � b1y�m�1��t� � b2u�m�2��t� � ... � bmu�t� (3.36)

Two important parameters are defined

θ � �1, a1, ..., an, b1, ..., bm�T
φT �t� � ��y�n��t�, ...,�y�t�, u�m�1��t�, ..., u�t�� (3.37)

Then the chosen model would be of the form

y�t� � φT �t� � θ� (3.38)

If all the derivatives where accessible it would be an easy task to estimate the coefficients
using a linear regression formula. A proposed solution to the problem is to pass the
measurements through a continuous time filter; thereby, the new variables are

zk�t� � L�s� � yk�t�
wk�t� � L�s� � uk�t� (3.39)

and parameter φT �t� if defined accordingly

φT �t� � ��z�n��t�, ...,�z�t�,w�m�1��t�, ...,w�t�� (3.40)

Although the above representation is not mathematically formal as we have mixed time
with Laplace variables, it can capture the main concept of first passing the measure-
ments through the filter before applying a linear regression formula. The data filter
can have one of the following forms:

� SVF: Basic State Variable Filter

L�s� � � λ

λ � 1
�n (3.41)
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� GPMF: Generalized Poisson Moment Function

L�s� � � λ

λ � 1
�n�1 (3.42)

� Refined: Refines choice of filter (the denominator of the system)

L�s� � 1

A�s� (3.43)

After passing the data through the filter and assuming no presence of noise the pa-
rameters can be solved by the least squares method. The result to the minimization
problem

θ̂ � argmin Õ
1

N

N

Q
k�1

�y�tk� � φT �tk� � θ� Õ2 (3.44)

is as follows

θ̂ � � NQ
k�1

φ�tk�φT �tk���1
� � NQ
k�1

φ�tk�z�tk�� (3.45)

However, since noise is presented and cannot be neglected, the entries of the vector in
3.46 are replaced by their instruments and the new parameter vector is given by

ζT �t� � ��z�n�f �t�, ...,�zf�t�,w�m�1��t�, ...,w�t�� (3.46)

and the parameter vector is now derived from the following equation

θ̂ � � NQ
k�1

ζ�tk�φT �tk���1
� � NQ
k�1

ζ�tk�z�tk�� (3.47)

where the elements of ζ are called instrument of instrumental variables [24].
The choice of filter for the instrumental variables should guarantee that the instru-

ments are correlated with the regression variables but uncorrelated with the noise. The
process of choosing instruments is described by Ljung in [22] (Sec. 7.6). After the
initialization of the parameter vector, using the above-mentioned estimate, its value is
updated using the non-linear least squares method.

For the identification of the transfer function from the processed data set, Matalab’s
System Identification Toolbox is used with the tfest command. Various commands are
also available for the identification process in Matlab depending on the knowledge that
is possesed about the type of the model to be identified. The transfer function of the
Electric Motor that was obtained is:

Gelm�s� � 1485.7s � 7345.2

s3 � 3.1475s2 � 6.6877s � 3.0062
(3.48)

3.7.4 Step No5: Model Validation

The parameter estimation algorithms converge to the best model within the specified
set of possible models. However, the problem that arises is whether the model obtained
is good enough in terms of:

1. Agreeing quite well with the observed data.
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2. Being suitable for the developed purpose.

3. Describing adequately well the true system.

Question 3 cannot be answered in practical situations, so the most crucial require-
ment of the identified model is to be useful for the initial problem that was designed for.
However, testing all the models can be time-consuming and costly for control applica-
tions. Developing some confidence in the identified models before they are implemented
in the real plant is far more preferable option.

One suggested way to investigate model’s simplicity is through the application of
an order reduction algorithm and examination of its effect on model’s input-output
dynamics. Very fast modes of the model that correspond to very small singular values
can be neglected without a substantial error. Clearly, a model that can be reduced
without losing its ability in describing the input-output dynamics is unnecessarily-
complex.

In order to have a quantitative measure of the relative ability of the original and the
reduced order model to describe the process, the error between them can be evaluated.
The Hª norm of the difference between the original system G and the reduced system
Gk of order k satisfies YG �GkYª B 2�σk�1 � ... � σn� (3.49)

where σ1, ..., σn are the hankel singular values of the system G [39]. The magnitude of
the singular values is given in the following matrix

Table 3.1: Singular values of the Electric Motor transfer function

σ1 1440
σ1 294
σ1 73

Another common method for evaluating model’s performance is by simulating model’s
response and compare it with the actual response of the system. In this way, all the
features that can be captured and the ones which could not be reproduced by the model
are revealed. For the identification of the transfer function only half of the whole ex-
perimental set of data was used. The other half was used to validate the identified
transfer function. Figure 3.5 depicts the comparison between torque output from the
identified transfer function and the torque as derived from the experimental set of data
of the real plant with the input shown in Fig. 3.6 .

Finally, a very effective way of evaluating model’s performance is through the com-
putation of the residuals. Residuals are the part of the data that the model was unable
to reproduce. Consequently, model quality is in a direct correlation with the informa-
tion obtained from the residuals.Precisely residuals are defined as

ε�t� � ε�t, θ̂N� � y�t� � ŷ�tSθ̂N� (3.50)

In order to drive conclusions from the residuals the following statistic variables are
defined

S1 �maxtSε�t�S, S2 �
1

N

N

Q
t�1

ε2�t� (3.51)
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where the first variable is effectively an approximate measure about the magnitude of
the largest residual that the model will produce and the second quantity is the average
error for this estimation.

Moreover the residuals should not depend on a particular set, for instance the data
set that was used to identify the model. If such a dependency exists, then it is possible
that residuals contain traces of the past inputs and the model will not produce good
results for other inputs. A way to check this dependency is through the computation
of the covariance between the residuals and the past inputs

R̂Neu�τ� � 1

N

N

Q
t�1

ε�t�u�t � τ� (3.52)

Another equivalent way to test this property is by the computation of the auto corre-
lation between the residuals themselves

R̂Ne �τ� � 1

N

N

Q
t�1

ε�t�ε�t � τ� (3.53)

If this number is large then a part of y�t� has not been modelled well, as a certain part
of ε could have been predicted from past data.

3.8 Water Brake Model

From data acquired from the LME, the transfer function of the water brake oopen loop
plant model and the feedback controller were obtained. The closed loopd model from
the reference torque value to the demanded torque is given by

Gwb�s� � GK�1 �GK� (3.54)

where G is the transfer function of the open loop plant-from the valve command to the
torque demand-and K is the controller designed to achieve the reference torque. The
step response of the closed loop transfer function Gwb�s� is shown in Fig. 3.7 and the
corresponding bodeplot is illustrated in Fig. 3.8.

When the requested load reaches Mreq � 500Nm the operation of the controller
becomes marginally unstable and the torque oscillates significantly. The oscillatory
behaviour steam from the fact that the model of the hydraulic brake demonstrates a
highly non-linear behaviour in high loads which has not been reproduced by the open
loop plant model used for the controller design.

3.9 Acceleration Model

Suppose that the engine is running at steady state and, as a result, engine acceleration
is approximately zero, since the produced torque equals the requested torque. As soon
as the new higher load is applied, a torque deficit appears, the engine is decelerated and
the engine speed drops. The drop in engine speed is sensed from the speed governor
which increases the fuel injected into the cylinder by an appropriate amount.

As can be seen from Fig. 3.9 the engine acceleration is higher when the load increase
is more substantial.
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Figure 3.9: Top: Engine acceleration, Bottom: Various load increases. The sampling
time is Ts � 0.001s.

The data illustrated in Fig. 3.9 will be divided into four separate data sets which
will be used for the identification of the acceleration transfer function. For this rea-
son, MATLAB/System Identification Toolbox will be used to estimate four transfer
functions with input the requested torque difference between the current value and
the steady state value Mreq �Mreq0 and with output the rotational acceleration of the
engine Ṅe. The final transfer function will be an uncertain linear time invariant model
as will be shown in Subsection 3.10.3.

Figure 3.10 presents the four estimated transfer functions for the four step loads.

3.10 Uncertainty Modelling

3.10.1 Uncertainty in Willans Parameters

It is worth noting that Willans parameters are primarily functions of the mean piston
speed cm. Additionally, there is weak dependency in other physical variables such as
the mass of fuel burned in the cylinder ṁf , the value of lambda λ, et.c. [13].

On the grounds that only experimental data for Ne = 1600 RPM were available, the
dependency on the piston speed and the other parameters can be taken into account
by assuming that the value of these coefficients is uncertain. The identified values from
linear regression are denoted as ēw and p̄ml. The final uncertain Willans parameters
are

ew � ēw � �1 � δew� (3.55)

and
pml � p̄ml � �1 � δpml� (3.56)
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Figure 3.10: Step responses of identified transfer functions.

where δew and δpml are uncertain real parameters which take values in the range�δew,min, δew,max� and �δpml,min, δpml,max�, respectively and correspond to deviations
of the nominal values.

3.10.2 Uncertainty in Turbine’s is-entropic efficiency

As mentioned in Subsection 3.2.2, the isentropic efficiency is usually evaluated from
the data obtained by the manufacturer. Obviously, no effect of corrosion is taken into
account in these data. However, turbine’s performance can substantially deteriorate
over time due to the corrosion effect of the exhaust gases and the pollutant formations.
For this reason, the so called ”nominal is-entropic efficiency” derived from Eq. 3.10 is
corrected by an uncertain factor as follows

ηis,t � ηis,tnom � �1 � δηis,t� (3.57)

where δηis,t is a uncertain real parameter which takes values in a appropriate range�δηis,tmin , δηis,tmax�.
3.10.3 Uncertainty in Rotational Acceleration Transfer Function

Firstly, the so-called ”Nominal Transfer Function” is chosen to be the transfer function
whose step response is shown with green continuous line in Fig. 3.10. This choice is
made because this transfer function has a step response that lies in between the two
extreme responses and is approximately in the middle of them. Clearly, the choice of a
more simple and of lower order transfer function can be made at the expense of a very
wide uncertainty region.
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Figure 3.11: Relative error and 5th order weight bound.

Secondly, the assumption that the final family of transfer functions is given by

Ṅe�s� � Ṅenom�s� � �1 �WṄe
�s�∆�s�� (3.58)

is made where Ṅenom�s� is the Nominal Transfer Function, ∆�s� are the unmodelled
dynamics and WṄe

�s� is a weight appropriately chosen so that the uncertain transfer

function Ṅe�s� cover the whole range of responses shown in Fig. 3.10. In order to
derive this weight the relative error between the Nominal Transfer Function and all the
other three transfer functions identified with Matlab System Identification Toolbox is
evaluated. The relative error for the three identified transfer functions along with the
the evaluated 5th order weight which is approximately the upper bound of the relative
error is given as a function of frequency in the magnitude bode plot of Fig. 3.11.

In order to verify the accuracy of the estimated weight, the step response of the
uncertain transfer function (which is actually a ”family” of step responses) is compared
to the step responses of the four identified transfer functions. As shown in Fig. 3.12,
the step responses of the four identified transfer functions lie in the range of responses
of the uncertain transfer function Ṅe�s�.
3.11 Dynamic Uncertain Model Simulation

3.11.1 Step Load

To examine the validity of the proposed model of the ICE, an experiment was carried
out in the LME where the turbocharger speed Ntc, the barometric pressure in the intake
manifold pim, the engine speed Ne, the torque produced by the ICE Tice and lambda
λ at the exhaust duct were measured. The torque requested from the ICE was the
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Figure 3.12: Step responses of the four identified transfer functions and the uncertain
transfer function Ṅe�s�.
single input to the developed non-linear uncertain model, while all the other variables
were simulated. The results obtained are shown in Fig. 3.15 for the step load depicted
in Fig. 3.13.

As presented in Fig. 3.15 the simulated turbocharger speed Ntc and the pressure in
the intake manifold pim match the experimental data. The proposed model can capture
the transient behaviour of these variables and also the steady state error is less than 100
RPM for the turbocharger speed Ntc and 0.02 bar for the intake manifold pressure pim.
Regarding the value of lambda λ we can observe a very good agreement between the
experimental data and the simulated value. Precisely, the dynamic behaviour of lambda
during load increases is reproduced by the model and the model has the desirable
property of not producing spikes during load decrease. The maximum steady state
error between the simulated and the measured value is below 0.15 and is noticed only
for load 110 Nm. Apart from this, the steady state error between the simulated and
the measured value of λ is close to zero for the various loads applied.

3.11.2 Propeller Load

Since the ICE is an integrated part of a hybrid marine propulsion plant, it will be useful
to investigate the validity and performance of the model in a propeller load which is a
more realistic demand from a marine plant. The propeller load applied is illustrated in
Fig. 3.14.

As presented in Fig. 3.16 the performance of the uncertain model is still acceptable
even in the case of a propeller load. Despite the fact that higher deviation between the
measured and the simulated physical variables is presented in this case (particularly,
for the intake manifold pressure pim), the model can capture with adequate accuracy
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Figure 3.13: Torque step load.

the variations of lambda λ.
An important note that should be made regarding Figs. 3.15 and 3.16 is that in the

former only the nominal model was simulated while for the latter the uncertain model
is simulated. The reason for this choice is the fact that Willans parameters depend on
engine speed; thus, it is desirable to examine the validity of the uncertain model within
a wider range of this parameters.
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Figure 3.14: Propeller load torque and rotational speed.
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Figure 3.15: Simulated nominal and measured variables for a step load.
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Figure 3.16: Simulated uncertain and measured variables for a propeller load.



Chapter 4

Static Uncertain Non-Linear
Model of Lambda

After the non-linear dynamic uncertain model of the ICE has been developed in Chap.
3, it is further processed in this chapter in order to derive constraint equations among
the various physical variables of the ICE in steady state. These algebraic equations
are obtained by neglecting dynamic terms with minor influence in the steady state
behaviour of the ICE. The main objectives of the derivation of these algebraic equations
are the implementation of a second virtual sensor model which make use of only one
physical variable and the computation of the physical variables in the operating point
of the ICE where the non-linear dynamic system is linearised in Chap. 5.

4.1 Compressor and engine match

In steady state operation and very slow load transients, the mass of air in the intake
manifold is approximately constant (no positive or negative mass of air accumulation);
thereby, this assumption yields dmim~dt � 0 (assumption A). Under the assumption of
zero mass accumulation, Eq. 2.1 yields

ṁc�Ntc,Πc�pim,mc�� � ṁe�Ne, Tim, ηv, pim� (4.1)

Additionally the thermodynamic states are assumed constant in the intake manifold,
so that dpim~dt � 0 (assumption B). With the use of assumption A, assumption B and
Eq. 2.7 the following equality is obtained

Tim � Tac�Πc�pim,mc�,Ntc� (4.2)

Moreover, that engine’s volumetric efficiency ηv will be assumed that attains a con-
stant value within the operation range of interest (assumption C). Under assumptions
A, B and C a simple equation can be obtained

ṁc�Ntc, pim� � ṁe�Ne, pim� (4.3)

For constant engine speed equality 4.3 is a useful relationship that directly connects
the pressure in the intake manifold pressure pim with the turbocharger speed Ntc. In
addition, intake manifold pressure pim can be very-well approximated by a quadratic

71
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Figure 4.1: Relationship between pressure in the intake manifold and turbocharger
speed.

function of the turbocharger speed Ntc [29]. The coefficients of this quadratic polyno-
mial are parametric functions of the engine speed. To put it in a more concrete way
for a specified engine speed Ne the following equation holds

pim � fcoem�Ntc� (4.4)

where the name ”coem” stands for the abbreviation of the words compressor and engine
match.

To illustrate the result, an experiment was carried out for constant engine speed
Ne � 1600RPM and under engine loads Me in the range �100 � 500�Nm, where the
pressure in the intake manifold pim and the turbocharger speed Ntc were measured.
Figure 4.1 depicts the non-linear function as it was derived from Eq. 4.3 and the
quadratic approximation of it along with the experimental set of points as measured
from the experiment. The non-linear function that was derived from Eq. 4.3 and the
quadratic approximation of it match so well that they are not even distinguishable from
one another.

4.2 Turbocharger and Engine Match

In Sec. 4.1,a non-linear relationship between the turbocharger speed Ntc and the intake
manifold pressure pim was derived, by making simplifications associated with the intake
manifold dynamics. In this section, a simple relation between the turbocharger speed
Ntc and the fuel mass flow ṁf in the Internal Combustion Engine is developed.

Firstly the assumption that the change of kinetic energy stored in the turbocharger
shaft is negligible-especially in steady state operation when the acceleration is approx-
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imately zero-due to its small inertia is adopted; thus, under this assumtpion it holds
that d

dt�1
2Jtcw

2
tc� � 0 (assumption D) and

Pt � Pc (4.5)

Secondly, proceeding in a similar way to the intake manifold case and assuming
that dmem~dt � 0 (assumption E), Eq. 3.14 can be simplified to

ṁt � ṁe � ṁf (4.6)

A further assumption made is that no heat transfer takes place between the exhaust
duct and the atmosphere, so that Q̇em � 0 (Assumption G). Moreover, the thermody-
namic states in the exhaust manifold are approximately time invariant and, as a result,
dpem~dt � 0 (Assumption F). The aforementioned two assumptions and Eq. 3.15 yield

Tti � Texh (4.7)

The dependency of all the above-mentioned physical quantities on physical variables
will be presented. The compressor power is given by

Pc � Pc�ṁc, Tc, ηis,c,Πc� � Pc�Ntc, Pim� (4.8)

where the last equality in Eq. 4.8 is derived from the fact that all the variables that
appear on the left side of equation are functions of Ntc and Pim. Furthermore, from
Eq. 3.13 the following dependency can be inferred

Pt � Pt�ṁt, Tem, ηis,t,Πt� � [Using eq. 3.4,eq. 3.1 and eq. 3.10]
� Pt�ṁt�Πt�, Tem�ṁe, ṁf , Tim�, ηis,t�Πt,Ntc�� �
� Pt�ṁt�Πt�, Tem�ṁe�Ntc, pim, ηv,Ne�, ṁf , Tim�Ntc, pim��, ηis,t�Πt,Ntc�� �
� Pt�Ntc, pim, ṁf ,Πt, ηv,Ne�

(4.9)

As it was mentioned in Sec. 4.1 a quadratic relationship between pressure in the intake
manifold pim and the turbocharger’s shaft speed Ntc for constant engine speed Ne is
valid. Inserting Eq. 4.4 into Eq. 4.9 yields

Pt � Pt�Ntc,Πt, ṁf� (4.10)

Now we can derive that

Πt � ftuem�Ntc, ṁf� (4.11)

according to Eqs. 4.10,4.8,4.4 and 4.5, where the name ”tuem” stands for the abbrevi-
ation of the words turbine and engine match.

To be more precise uncertain term has to be included in Eq. 4.11, steaming from
the fact that the exact value of ηis,t is not known.

Πt � ftuem�Ntc, ṁf , δηis,t� (4.12)

Furthermore, Eq. 4.6 shall be written as follows

ṁt�Πt� � ṁc�Ntc, pim� � ṁf (4.13)
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Using the function 4.4 and 4.12 the above equation can be written as follows

ṁt�Πt�Ntc, ṁf , δηis,t�� � ṁc�Ntc, Pim�Ntc�� � ṁf (4.14)

It is clear from Eq. 4.14 that turbocharger speed Ntc and the fuel mass flow ṁf are
connected with a non-linear relationship. Consequently, there is an uncertain function

Ntc � ftcem�ṁf , δηis,t� (4.15)

where the name ”tcem” stands for the abbreviation of the words turbocharger and
engine match.

In steady state condition, when all transient phenomena are negligible, the torque
produced by the Internal Combustion Engine Me equals the torque requested from the
Internal Combustion Engine Mreq and, consequently, engine’s rotational acceleration
is zero dNe~dt � 0 (assumption H) . The equation that describes the fuel mass flow in
steady state condition is as follows

ṁf �
ωe �Mreq �Mloss

HLV � ew
(4.16)

So the relation that holds between the requested torque and the fuel mass flow if we
also include the uncertain terms δpml and δew from the Willans approximation is the
following

ṁf � ṁf�Mreq, δew, δpml� (4.17)

Substituting Eq. 4.17 into function 4.15 yields

Ntc � ftcem��Mreq, δηis,t , δew, δpml� (4.18)

The above function is valid only for a specified engine speed.
Figure 4.2 depicts that the experimental points lie within the region of validity

of the theoretically derived uncertain function 4.18. The experiment was carried for
constant engine speed at Ne � 1600RPM .

4.3 Derivation of a static and non-linear torque to lambda
model

4.3.1 Air Path and Fuel Path Modelling

According to 4.3, the mass of air aspirated by the engine is assumed equal to the air
mass flow through the compressor. Thus, the following equation is obtained

ṁe � ṁc�Ntc, pim� (4.19)

according to the previous assumption. The air mass flow through the compressor can
be derived easily from the compressor maps which are functions of the turbocharger
shaft speed Ntc and the compression ratio Πc.

Moreover, under the simplifications that Eqs. 4.18 and 4.4 are valid, it follows from
the previously derived equations that

ṁe � ṁc�ftcem�Mreq, δηis,t , δew, δpml�, fcoem�Ntc�� �
� ṁc�ftcem�Mreq, δηis,t , δew, δpml�, fcoem�ftcem�Mreq, δηis,t , δew, δpml��� �
� ṁc�Mreq, δηis,t , δew, δpml� (4.20)

The mass of fuel in steady state condition can be directly estimated from 4.17

ṁf � ṁf�Mreq, δew, δpml� (4.21)
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Figure 4.2: Relationship between the requested torque from the internal combustion
engine and turbocharger speed.

4.3.2 Lambda Estimation

When the transient phenomena in the ICE have declined, the value of λ will be constant
over time and no difference in the values of λ for two consecutive engine cycles will be
observed �λ�t � τieg� � λ�t�� (Assumption I). Assumption I and Eq. 2.95 yield

λ�t� � λfc�t� (4.22)

The value of λ inside the cylinder is given by

λ�Mreq, δηis,t , δew, δpml� � ṁe�Mreq, δηis,t , δew, δpml�
ṁf�Mreq, δew, δpml� �AFRst (4.23)

As can be seen from Eq. 4.23, λ is only a function of the requested torque Mreq and
the uncertain parameters. We have to make clear in this point that the above relation
holds only for a specified engine speed. In other words it is a parametric function of
the engine speed as well

λ�Mreq, δηis,t , δew, δpml ;Ne� � ṁe�Mreq, δηis,t , δew, δpml ;Ne�
ṁf�Mreq, δew, δpml ;Ne� �AFRst (4.24)

4.4 Static Non linear model validation

The validity between the proposed static non-linear model was examined by comparing
the theoretically derived non-linear function to an experimental set of points. Figure
4.3 demonstrates that all the experimental data points are within the region of validity
of the uncertain model.
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Figure 4.3: Comparison between the static non-linear function of lambda and the
experimental set of data.
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4.5 Virtual Sensor for Direct Implementation in Diesel
Plants

In the virtual sensor designed in Chap. 2, the assumption that there is availability of
the torque measurement is adopted. Although a torque measurement device is common
for most diesel engine test benches, this is not the case for commercial power-trains
due to the high cost of this sensor. An alternative way of fuel estimation is presented
in this section.

Equations 4.9 and 4.13 yield that

Pt � φ�pim,Ntc, ṁf , ηv,Πt,Ne� and Πt � ψ�Ntc, ṁf , pim� (4.25)

In this approach, the transient effects of the exhaust manifold are assumed to be neg-
ligible. Proceeding the same way for the intake manifold equation

pim � ζ�Ntc;Ne� (4.26)

is obtained.
Clearly, the simplicity steaming for this assumptions comes at the expense of weak

prediction of the engine transient behaviour during very fast load transients. However,
for marine application this is a fair approximation. Later in Chap. 5 the relative
significance of the neglected terms will be evaluated.

For constant Ne and ηv Eqs. 4.25 and 4.26 may as well be written as

Pt � φ�Ntc, ṁf ;Ne� (4.27)

Moreover, instead of proceeding as usual and ignoring the dynamic effects of the tur-
bocharger inertia, turbocharger change in kinetic energy is taken into account. Thus,
it can be derived that

Pt �
d

dt
�1

2
Jtcw

2
tc� � Pc�Ntc, pim;Ne� (4.28)

and for constant engine speed, the above equation with the use of 4.26 and 4.27becomes

Pt�Ntc, ṁf ;Ne� � d

dt
�1

2
Jtc�πNtc~30�2� � Pc�Ntc;Ne� (4.29)

Applying a filter in Eq. 4.29 in order to make the derivative term realizable yields

Hfi�Pt�Ntc, ṁf ;Ne�� �Hdf �1
2
Jtc�πNtc~30�2�� �Hfi�Pc�Ntc;Ne�� (4.30)

Equation 4.30 is the final relationship from which the fuel mass flow can be calculated.
It should be noted that filtering of Eq. 4.29 is essential in order to remove the effect of
noise. Nonetheless, filtering introduces a time delay and lambda estimation is delayed.

The experimental results shown in Fig. 4.4 illustrate that the virtual sensor model
displayed an acceptable performance during load transients. However, the slow response
should be noted.
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Figure 4.4: Measured and estimated value of lambda provided by the virtual sensor.



Chapter 5

Low Order Uncertain Dynamic
Model of Lambda

In Chaps. 2 and 3, the differential equations that describe the dynamic behaviour of the
engine were presented. Moreover, in Chap. 4, in order to derive the algebraic constraint
equations the dynamic terms were assumed negligible in the analysis presented.

A problem of different nature is examined in this chapter. Precisely, the relative sig-
nificance of the dynamic terms that appear in differential equations is considered. After
the relative importance of the differential terms is known, simplifications are made and
a low order dynamic model which can sufficiently capture the dynamic behaviour of the
engine is derived. Additional comments are made about the qualitative characteristics
of engine performance in different operating points. Finally, the plant and disturbance
transfer functions that will be used for the controller implementation are also obtained
in this chapter.

5.1 Full System of Non Linear Differential Equations

The differential equations which were obtained in Chaps. 2 and 3 for the ICE are
summarized in this section in order to facilitate reading.

INTAKE MANIFOLD, COMPRESSOR, ENGINE and AIR COOLER: Eqs. 2.6,
2.19, 2.1 2.9, 2.56, 2.8 and 2.18

mimTim �
pimVim
Ra

(5.1)

dmim

dt
� ṁc � ṁe (5.2)

dpim
dt

�
γaRa
Vim

� ṁc � Tac �
γaRa
Vim

� ṁe � Tim (5.3)

ṁe �
ηvVcylpimzNe

RaTim120
(5.4)

Πc �
pim � ζtotal

1
2ρ3c

2
3

pamb
(5.5)

Tac � ef � Tw � �1 � ef� � Tc (5.6)

79
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and

Mc � � 1

ωtc
� � ṁc � cpa � �Tc � Tamb� (5.7)

EXHAUST MANIFOLD, ENGINE and TURBINE: Eqs. 3.16, 3.14, 3.1, 3.15 and
3.13

memTem �
pemVem
Rg

(5.8)

mem

dt
� ṁe � ṁf � ṁt (5.9)

Texh � ηscΠ
1�1~γg
e r

1�γg
c x

1~γg�1
p �qin�1 � xcv

cpg
�
xcv
cvg

� � Timrγg�1
c � (5.10)

dpem
dt

�
γgRg

Vim
� �ṁe � ṁf� � Texh � γgRg

Vem
� ṁt � Tem � Q̇em (5.11)

and

Mt � � 1

ωtc
� � ṁt � cpg � Tem � ηis,t � �1 �Π

1�γg
γg

t � (5.12)

TURBOCHARGER ROTATIONAL DYNAMICS: Eq. 3.18

Jtc �
d

dt
�wtc� �Mt �Mc (5.13)

In the following sections the operation point of the engine has to be defined. All
physical variables at the operation point are at steady state and are denoted with �. As
thoroughly explained in Chap. 4, two characteristic physical variables, namely: engine
shaft speed ωe and the fuel mass flow ṁf are sufficient to estimate all the other physical
variables in steady state. The turbocharger speed N�

tc, the compressor pressure ratio
Π�

c and the turbine pressure ratio Π�

t can be computed from the static non-linear engine
model given the engine shaft speed ω�e and the fuel mass flow ṁf

�.

5.2 Reduced Order System of Non-Linear Differential Equa-
tions

The temperature in the intake manifold inlet Tac is assumed equal to the temperature
at the intake manifold outlet Tim, under an isothermal assumpiton that is valid when
a large heat transfer takes place. Moreover, the heat transfer that takes place in the
exhaust manifold is considered to be negligible; thereby, Q̇em � 0. Similarly to the
intake manifold case, the temperature Texh is approximately equal to Tem. Finally,
assuming that no pressure drop takes place in the air duct-from the cooler outlet to the
engine inlet-and in the exhaust manifold, the equalities pim � Πc �pamb and pem � Πt �pamb
are valid. These assumptions yield that

Vimpamb
RaTim

�
dΠc

dt
� ṁc�Πc,Ntc� � ηvVcylzNepamb

RaTim120
�Πc (5.14)

Vempamb
RgTem

�
dΠt

dt
�
ηvVcylzNepamb

RaTim120
�Πc � ṁf � ṁt�Πt� (5.15)

and
2π

60
� Jtc �

d

dt
�Ntc� �Mt�Πt, ṁf ,Πc,Ntc� �Mc�Πc,Ntc� (5.16)
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where
Tim � Tim�Πc,Ntc� and Tem � Tem�ṁf ,Πc,Ntc� (5.17)

The final equation from which the value of λ is computed is the following

λ �
ṁe�Πc�

ṁf �AFRst
(5.18)

so no effect of gas mixing is considered.
Equations 5.14, 5.15 and 5.16 define a system of non-linear differential equations

which can be written as follows

Ñ̇x1 �
Ñf� Ñx1, Ñx2, Ñu, ε�

ε Ñ̇x2 � Ñg� Ñx1, Ñx2, Ñu, ε� (5.19)

where Ñx1 � Ntc, Ñx2 � �Πc
Πt
�, Ñu � ṁf and ε is a scalar used to define small quantities. The

system of differential Eqs. 5.19 represents a wide class of systems. In [18] an overview
of the validity of order reduction for the above class of systems and the simplifications
made are examined. For ε � 0 the system of differential equations becomes

˙̄Ñx1 �
Ñf Ñ̄x1, Ñ̄x2, Ñ̄u,0�

0 � Ñg� Ñ̄x1, Ñ̄x2, Ñ̄u,0�� Ñ̄x2 � φ� Ñ̄x1, Ñ̄u� (5.20)

Now the reduced order model is described with the following differential Eq.

˙̄Ñx1 �
Ñf� Ñ̄x1, φ� Ñ̄x1, Ñ̄u�, Ñ̄u� � Ñ̄f� Ñ̄x1, Ñ̄u� (5.21)

According to [18], 5.21 is the reduced order non-linear differential equation for the
system of non-linear differential equations 5.19 when ε is sufficiently small. Applying
the same principles in the present case, the system of Eqs. 5.14, 5.15 and 5.16 is
simplified to

d

dt
�Ntc� � 60

2π
�

1

Jtc
�Tt�Πt, ṁf ,Πc,Ntc� � Tc�Πc,Ntc�� (5.22)

with the constraints

ṁc�Πc,Ntc� � ηvVcylzNepamb

RaTim120
�Πc (5.23)

and
ηvVcylzNepamb

RaTim120
�Πc � ṁf � ṁt�Πt� (5.24)

Equations 5.23 and 5.24 lead to the following constraints-functions.

Πc � fcoem�Ntc� and Πt � ftuem�Ntc, ṁf� (5.25)

Finally, substituting constaints 5.25 into Eq. 5.22 yields

d

dt
�Ntc� � 60

2π
�

1

Jtc
�Tt�Ntc, ṁf� � Tc�Ntc�� (5.26)

The 1st order non-linear differential Eq. 5.26 along with the algebraic constraints
5.25 adequately describes the relatively slow load transients of the engine. Heuristi-
cally, model reduction is achieved by adding more constraints to a high order system;
thereby, reducing the degrees of freedom, or equivalently the number of states, of it. As
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mentioned in [18], the order reduction is connected to a family of techniques in which
the fast dynamics of the system are neglected and only the slow ones are taken into
account. Fast dynamics are associated with high frequencies of the system and their
behaviour.

High-frequency dynamics can taken into account as multiplicative uncertainty. In
this way the error steaming from order reduction is reduced. The weight of the mul-
tiplicative uncertainty is connected to the error introduced into the reduced model by
neglecting high-frequency dynamics. In order to derive this frequency dependent weight
the frequency range over which high frequency neglected dynamics considerable influ-
ence the system has to be estimated. The processes of evaluating the frequency range
of the neglected dynamics and the error bounds can be performed for the linearised
plant. For linear plants a wide range of techniques is available for order reduction and
error bounds estimation.

5.3 Full System of Linear Differential Equations

Linearising Eqs. 5.14, 5.15 and 5.16 and collecting the coefficients of the same terms
together, yields the following vector differential equation

d
dt

���
Ntc

Πc

Πt

��� � J �

���
Ntc �N

�

tc

Πc �Π�

c

Πt �Π�

t

��� �
<@@@@@>

60
2πJtc

�
∂Tt
∂ṁf

0
1

=AAAAA? � �ṁf � ṁf
�� (5.27)

where J is the Jacobian Matrix of the system of differential equations computed at the
operation point �N�

tc,Π
�

c ,Π
�

t �

J�N�

tc,Π
�

c ,Π
�

t � �
<@@@@@@@@@@@>

60
2πJtc

� ∂Tt∂Ntc
�

∂Tc
∂Ntc

� 60
2πJtc

� ∂Tt∂Πc
�
∂Tc
∂Πc

� 60
2πJtc

∂Tt
∂Πt

RaTim
Vimpamb

∂ṁc
∂Ntc

RaTim
Vimpamb

∂ṁc
∂Πc

�
ηvVcylzNe

120Vim
0

0
RgTemηvVcylzNe
VemRaTim120

RgTem
Vimpamb

∂ṁt
∂Πt

=AAAAAAAAAAA?
(5.28)

and the input matrix B at the same operation point is as follows

B�N�

tc,Π
�

c ,Π
�

t � �
<@@@@@>

60
2πJtc

�
∂Tt
∂ṁf

0
1

=AAAAA? (5.29)

It is worth noting that all the derivatives appear in the matrices above are calculated at
the operation point �N�

tc,Π
�

c ,Π
�

t � which is a function of only the engine shaft speed ω�e
and the fuel mass flow ṁf

�. Clearly, the engine behaviour around an operation point
is fully defined if the functions and the corresponding derivatives of them that appear
in the matrices above are known.

Additionally, similarly to the order reduction, approximating the non-linear model
with a linear one can be taken into account by considering the effect of non-linear
dynamics as input uncertainty.
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5.4 Reduced Order System of Linear Differential Equa-
tions

The problem which is considered is the derivation of a low order linear model of lambda
λ. The starting point is the reduced order non-linear differential equation that was
obtained in 5.2. Equation 5.26 is linearised

d

dt
�Ntc� � 60

2πJtc
� ∂Tt
∂Ntc

�Ntc �N
�

tc� � ∂Tt
∂ṁf

�ṁf � ṁf
�� � ∂Tc

∂Ntc
�Ntc �N

�

tc�� (5.30)

The value of lambda λ with the use of constraint 5.23 is computed by

λ �
ṁc�Ntc�

ṁf �AFRst
(5.31)

Linearising Eq. 5.31 by keeping only the first order terms of the Taylor expansion series
yields

λ � λ� � 1
AFRst�ṁf

� � ∂ṁc∂Ntc
�Ntc �N

�

tc� � ṁc�N�

tc� � �1
ṁf

� �ṁf � ṁf
��� (5.32)

The Jacobian ”matrix” for the reduced 1st order system is given by

Jr �
60

2π�Jtc
� � ∂Tt∂Ntc

�
∂Tc
∂Ntc

� (5.33)

and the input ”matrix” is as follows

Br � � 60

2π � Jtc
�
∂Tt
∂ṁf

� (5.34)

Applying the Laplace transformation and introducing the deviation variables δy � y�y�

in Eqs. 5.32 and 5.30 yields

δλ�s� � 1
AFRst�ṁf

� � ∂ṁc∂Ntc
� δNtc�s� � ṁc�N�

tc�

ṁf
� � δṁf�s�� (5.35)

and

δNtc�s� � ∂Tt
∂ṁf

s�� 60
2π�Jtc

��
∂Tt
∂Ntc

�
∂Tc
∂Ntc

��
� δṁf�s� (5.36)

Substituting Eq. 5.36 into Eq. 5.35 yields the transfer function

Gλ�s� � � ∂ṁc
∂Ntc

∂Tt
∂ṁf

60
2π�Jtc

�Jr �ṁc�N�

tc��ṁf
��2���ṁc�N�

tc���s

��AFRst�ṁf
�
�Jr���AFRst�ṁf

���s
(5.37)

Due to the fact that the exact value of the turbine’s is-entropic efficiency ηis,t is not
known, the above transfer function contains one real uncertain parameter.

5.5 Model Analysis

5.5.1 Poles and Zeros

The nominal transfer function has one pole, located at the point:

sp � Jr �
60

2π � Jtc
� � ∂Tt
∂Ntc

�
∂Tc
∂Ntc

� (5.38)
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Moreover, there is one real zero and it’s location is at the point:

sz � Jr �
60

2π � Jtc
�
∂ṁc

∂Ntc
�
∂Tt
∂ṁf

(5.39)

In order to detirmine the effect of poles and zeros in stability and performance their
sign should be investigated.

As it have been mentioned in subsection 3.2.1, unlike the compressor that the air
mass flow is a function of both the turbocharger shaft speed Ntc and the pressure ratio
Πc, turbine drives mass through it mainly due to the pressure ratio Πt. For this reason
the following equality is valid

∂ṁt

∂Ntc
S�N�

tc,Π
�

c ,Π
�

t �P ∂ṁc

∂Ntc
S�N�

tc,Π
�

c ,Π
�

t � (5.40)

The torque produced by the turbine and the compressor can be, in a simplified ap-
proach, considered mainly a function of the air mass flow and, consequently, obtain
that

∂Tt
∂Ntc

S�N�

tc,Π
�

c ,Π
�

t � @ ∂Tc
∂Ntc

S�N�

tc,Π
�

c ,Π
�

t � (5.41)

Consequently, the system is stable since the poles lies in the left half plane and no
fundamental limitations are imposed to control as the zero is also located in the left
half plane. Additionally, due to the presence of uncertainty in the real parameter
ηis,t, the poles and zeros will lie within a region around the point of their the nominal
location. The uncertainty is included in the terms ∂Tt

∂ṁf
and ∂Tt

∂Ntc
.

5.5.2 Limiting behaviour of the transfer function

Moreover, the response of the engine in ”very fast” and ”very slow” fuel transients is
investigated. In others words, the limiting behaviour of the magnitude SGλ�jω�S, which
is the frequency response of the transfer function Gλ�s�, when jω �ª and jω � 0 is
examined.

For ”very fast” fuel transients we have that jω �ª and

SGλ�jª�S � S �ṁc�N�

tc�
AFRst � �ṁf

��2
S � λ�

ṁf
�

(5.42)

where λ� is the steady state value of λ at the operation point ṁf
�, ω�e . On the other

hand, for ”very slow” fuel transients we derive the following limiting behaviour of the
frequency response

SGλ�j0�S � S � λ�

ṁf
�
�

60
2π�Jtc

∂ṁc
∂Ntc

∂Tt
∂ṁf

ṁf
�
�AFRst � Jr

S � λ�

ṁf
�
�
f�λ��
ṁf

�
(5.43)

where the function f�λ�� is the product of the terms

f�λ�� � 60
2π�Jtc

∂ṁc
∂Ntc

∂Tt
∂ṁf

AFRst � Jr
(5.44)

and

Jr �
60

2π � Jtc
� � ∂Tt
∂Ntc

�
∂Tc
∂Ntc

� (5.45)
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All the derivatives that appear on the numerator of the expression 5.44 have positive
values. Precisely, the mass of air delivered through the compressor ṁc increases with
the turbocharger speed Ntc and, similarly, the torque delivered by the turbine Tt is
an increasing function of the fuel mass flow ṁf due to the rise in the enthalpy of the
exhaust gas in the turbine inlet. The critical term that determines the sign of the
function is Jr. As it was illustrated in 5.5.1 this term is negative. Therefore, the
following inequality inequality holds

SGλ�j0�S @ SGλ�jª�S (5.46)

between the ”slow” and ”fast” transients. In slow transients the additional term
f�λ��
ṁf

�

decreases the magnitude of SGλ�jω�S, which can be effectively viewed as the slope that
connects variations in the fuel mass flow δṁf with the corresponding variations in δλ
from the steady state operation point �ṁf

�, λ��. Therefore, during slow transients we
achieve a lower value of λ for the same decrease in the fuel mass flow ṁf compared
to fast fuel transients. However, we can achieve a higher value of λ for the same
increase in the fuel mass flow ṁf in comparison with fast fuel transients. By using an
electric motor (EM) the variations in the torque demand of the internal combustion
engine (ICE) become less sharp and slower and the same holds for the fuel mass flow.
Thereby, as indicated by inequality 5.46 the slower dynamic yield a higher value of λ
and consequently a less sharp drop during a load increase.

The reason for this behaviour can be explained with the air and fuel path dynamics.
The fuel path dynamics are much faster than those of the air path and during fast
transients they are the ones who dominate over the air path dynamics. A fuel variation
almost instantly affects the air to fuel ratio inside the cylinder, while there is some time
that should elapse before this variations in fuel could affect the air path mainly because
of the dynamics associated with the turbocharger.

5.6 Parametrization of the Transfer Function

The transfer function is parametrized in the following way:

G�s� �K �
s � sz
s � sp

(5.47)

where K is the gain of the transfer function, sz and sp are the locations of the zero and
pole of the transfer function, respectively.

Since the Jacobian matrices of the linear system depends on the operation point, a
change in it will also result in a swift in the location of the poles and zeros. Moreover,
the gain of the transfer function also varies with the operation point. The location
of poles and zeros is shown in Fig. 5.1a and 5.1b, respectively as a function of the
operating point.

Having these maps and knowing the operation point or operation range of the
engine, its performance can be qualitatively evaluated. For instance, it can be observed
that poles and zeros swift towards the positive right half plane when the load and
engine’s rotational speed is reduced. Therefore, it is expected a deterioration in the
performance of the hybrid power-train in low-load and low-speed operating points.

The aforementioned maps provide also essential information for sea-going vessels
with hybrid propulsion plant. In order to make use of the maps the fuel mass flow
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Figure 5.1: Engine poles and zeros map as a function of the operation point.

should be known. For seagoing vessels an approximate relationship between the torque
shaft demand and the propeller rotational speed ωp is valid; Mreq � Cpω

2
p. In addition,

for propulsion plants with reduction gear, ωe and ωp are connected with the relation
ωe � ωp~rg, where rg is the reduction factor.

The fuel mass flow as a function of the engine speed can be found by substituting
propeller demand equation into 4.16

ṁf �
Cp~r2

g

HLV � ew
� ω3

e �
Mloss

HLV � ew
(5.48)

By superimposing function 5.48 to the ICE maps insights can be gained about the
performance of the ICE under different propeller load curves.

5.7 Linearisation of the hybrid powertrain model

In Chap. 3 every component of the power-train was modelled analytically. Afterwards,
only the model of the ICE was simulated and the results were compared with the
experimental measurements. In this section, two single-input single-output models will
be derived from the non-linear analytic hybrid power-train model.

For λ-control, the plant model and the disturbance model have to be computed.
The plant model, refered as G, is the transfer function with input the command to
the frequency inverter of the electric motor-cmd and output the value of λ, while the
disturbance model is represented with Gd and has input the change in reference value
of torque to the disturbance model-Td and the same output as G.

Model linearisation can be performed analytically, as presented in the previous
section, by the calculation of the Jacobian matrix of the non-linear system. Clearly this
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process is useful for getting insights about the effect of the various model parameters in
system dynamics and about the performance of the ICE in numerous operating points.
However, the manual computation of the Jacobian matrices is not efficient. For this
reason, the linearisation of the whole hybrid model is based on the computational power
of Matlab-Simulink.

From the discussion in the previous sections of this chapter, it is clear that the non-
linear first order differential Eq. 5.26 along with the constraint Eqs. 5.25 adequately
describe the dynamic behaviour of the ICE for sufficiently slow transients. The model
of the ICE is presented in the aforementioned way as a Simulink model, in which each
individual component of the ICE corresponds to a Simulink-block and the coupling
between separate components is taken into account by considering the connection of
the signal lines.

In order to calculate the linearised plant, an operation point of constant input
values u0 and initial level of the integrators x0 has to be defined [1]. For this reason, the
system is simulated with the desirable input values and when the transient phenomenon
has declined-thus, the states are at steady state-the model is linearised with Matlab
command linearize.

In the operating point of linearisation, the torque produced by the ICE is Tsp �
300Nm and the additional torque Td � 100Nm, considered as a disturbance, is the
load received by the EM that produces Tem � 100Nm at cmd � 0.041V . The rotational
speed of the shaft is 1600 RPM, common for both the ICE and the EM. When the
input vector has been defined and the operation point has been computed, the nominal
model is linearised.

The resulting plant is of high order and this may also lead to a high order controller.
High order controllers cause problems associated with reliability and maintenance in a
practical control application [12]. Moreover, low orders controllers improve the numer-
ical properties of the mu-synthesis algorithm as it will be mentioned in Sec. 6.2. For
this reason the initial-high order controller is reduced and the bode plot of the initial
models along with reduced 4th order transfer function of the original plant transfer
function G and the reduced 5th order transfer function of the original disturbance
transfer function Gd are shown in Fig. 5.2.

5.8 Linear Uncertain Transfer Function

Table 5.1 summarizes all the uncertain real parameters and uncertain transfer functions
that appear in the hybrid power-train model.

Table 5.1: Uncertain Terms

Name Symbol Uncertainty Type

Uncertain Willans Parameter δew Uncertain Real Parameter
Uncertain Willans Parameter δplm Uncertain Real Parameter
Uncertain Is-entropic efficiency δηis,t Uncertain Real Parameter
Uncertain Rotational Acceleration Transfer Function ∆Ṅe

Uncertain Transfer Function

High Frequency Dynamics ∆hf Uncertain Transfer Function
Non-linear Dynamics ∆nl Uncertain Transfer Function
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Figure 5.2: Bode diagram of the original transfer functions G, Gd (blue line) and the
reduced ones Grd, Gd,rd.
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Now that all the uncertain terms presented in the system have been identified, a de-
cision has to be made regarding the way in which uncertainty will be modelled. Clearly,
there is substantial freedom in this choice, since various approaches can be adopted.
The possible ways of dealing with uncertainty range from very conservative designs
(for instance, lumping all uncertainty parameters in a single perturbations block) to
very marginal designs, where the uncertainty has a structure specified by the nature of
the problem with no simplifications made. A general rule, regarding uncertainty rep-
resentation, is that conservative designs-large region of uncertainty-demonstrate poor
performance but they can maintain their properties over a wider range of operation
points in contrast to marginal designs-narrow uncertainty range-where performance
drastically deteriorates when the operation point swifts far from the nominal.

The uncertain non-linear model is linearised for the three different operating points
shown in Table 5.2 using matlab function ulinearize. The bode digram of the uncertain
disturbance transfer functions-each of them linearised at different operating point-as
well as the reduced order nominal transfer function is shown in Fig. 5.3a and the
corresponding graph of the uncertain and nominal plant transfer functions is given in
Fig. 5.3b.

Table 5.2: Operation Points of Linearisation

Model No Tsp [Nm] Td [Nm] cmd [V] Ne [RPM] Time Instant of Snapshot [s]

1 300 50 0.025 1600 20
2 300 100 0.041 1600 20
3 300 150 0.0615 1600 20

The proposed modelling of the uncertainty is as follows:

1. One [1x1] full complex uncertain linear time invariant transfer function block and
less than one in magnitude, denoted by ∆G, is introduced to compensate for all
the uncertain terms in the plant transfer function G.

2. One [1x1] full complex uncertain linear time invariant transfer function block and
less than one in magnitude, denoted by ∆Gd , is introduced to compensate for all
the uncertain terms in the disturbance transfer function Gd.

The final uncertain transfer function of the plant model is

G � Gn � �1 �WG∆G� (5.49)

and the disturbance transfer function is

Gd � Gdn � �1 �WGd∆Gd� (5.50)

where the subscript n denotes the nominal model and W is the uncertainty weight of
the transfer functions appropriately computed to cover the whole range of responses.
The weight of the multiplicative uncertainty for the plant and the disturbance transfer
functions is computed in the same way as in subsection 3.10.3 and it is illustrated in
Fig. 5.4.

The plant and disturbance model are utilized for the controller implementation
which is described in Sec. 6.4. In order to validate the deterioration of performance
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Figure 5.3: Bode plot of the uncertain and the reduced transfer functions.

of the hybrid-electric powertrain in the low speed and low torque operation range, as
proposed in Sec. 5.6, the process of deriving a uncertain plant and disturbance transfer
function is repeated for shaft speed 1500 RPM.

5.9 Derivation of a Linear Uncertain Model for a Pro-
peller Loading

When a propeller load is applied to the hybrid propulsion plant, the torque demand is
determined by the engine rotational speed according to the relation Mreq � Cp~r2

gω
2
e .

Given the propeller constant Cp and the range of torque demand, the uncertain linear
system can be evaluated. Table 5.3 presents the characteristics of the propeller load.

Table 5.3: Propeller load characteristics

Propeller Constant-Cp[Nm/(rad/s)] Torque Range [Nm] Speed Range [rad/s]

0.01467 [200:550] [1100:1900]

The process of deriving the nominal and the uncertain plant and disturbance trans-
fer functions is similar to the step load-case and the points of linearisation are illustrated
in Table 5.4. However, for the propeller load the region of the uncertainty is substan-
tially larger compared to the step load-case, since the operating points of the engine
lie within a wider region. This fact has to be taken into consideration when the speci-
fication of the closed loop plant are determined. The wider range of uncertainty comes
at the expense of performance and, in our case, disturbance rejection requirement are
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Figure 5.4: Bode plot of the uncertainty weight.
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Figure 5.5: Bode plot of the uncertain and the reduced transfer functions for propeller
load.

more relaxed compared to the step load case.

Table 5.4: Operation Points of Linearisation for Propeller Load

Model No Tsp [Nm] Td [Nm] cmd [V] Ne [RPM] Time Instant of Snapshot [s]

No1 193 25 0.01025 1100 20
No2 270 25 0.01025 1300 20

No3-Nominal 360 25 0.01025 1500 20
No4 463 25 0.01025 1700 20
No5 577 25 0.01025 1900 20

The bode digram of the uncertain disturbance transfer functions for propeller load-
each of them linearised at different operating point-as well as the reduced order nominal
transfer function is shown in Fig. 5.5a and the corresponding graph of the uncertain
and nominal plant transfer functions is given in Fig. 5.5b.



Chapter 6

Controller Design

In this chapter, a feedback controller is proposed for λ-control during load transients
of the hybrid-electric powertrain. The controller is designed based on the linearised
models acquired in Chap. 5. Additionally, the robust stability and performance of
the controller were evaluated before the implementation of the λ-controller for the
experimental hybrid-electric powertrain of the LME, through the computation of the
closed loop transfer functions.

6.1 Feedback Control

Controllers can be categorized as one and two degrees of freedom depending on the
number of their inputs. The fundamental difference between these two type of con-
trollers is the fact that the one degree of freedom (1 DOF) controller is fed with the
measured error while the two degrees (2 DOF) controller is fed both with the measured
signal and the reference value. The 1 DOF configuration is presented in Fig. 6.1a and
the general scheme of a 2 DOF controller is illustrated in Fig. 6.1b.

As mentioned in the previous paragraph, the controller input in the one degree of
freedom case is the measured error em � r � ym where ym � y �n is the measured signal
that includes the noise n which is induced into the system. The disturbances entering
the system are symbolized with d and affect the real output of the system through the
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(a) 1 DOF controller
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(b) 2 DOF controller

Figure 6.1: Block diagram of controllers with different degrees of freedom.
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Figure 6.2: General configuration for controller synthesis, P -structure.

function Gd. The actual error is defined is the real output y is subtracted from the
reference value r. The same definitions and symbols are used for the 2 DOF controller
with the only difference that the controller input is the vector signal v � �ymr �.
6.2 Structured Singular Value (SSV) Framework

6.2.1 General control synthesis and performance analysis configura-
tions

The starting point of the controller synthesis is the generalized plant, illustrated in Fig.
6.2, where the uncertainty and the controller have been ”pulled out”. The uncertain
elements are collected in one block diagonal matrix ∆, with a specific structure, and the
block of the controller is denoted as K. Additionally, w is the vector of the exogenous
inputs and disturbances, z is the vector of the exogenous outputs, u is the input from
the controller to the plant and v is the measured signals fed into the controller. Finally,
the outputs and the inputs of the uncertain block are denoted as u∆ and y∆ respectively.

The generalized plant P can be easily derived if we know the block diagram of the
system, only by using available software. In Matlab Robust Control Toolbox there is
no need for the user to ”pull out” the uncertainty of the plant; therefore, there is a
benefit for the user to avoid manual computations.

Alternatively, if the objective of the problem is to analyse the uncertain system
that incorporates the controller, the N∆-structure shown in Fig. 6.3 will be used. The
relationship among N , P and K is given by a lower linear fractional transformation

N � Fl�P,K� � P11 � P21K�I � P22K��1P21 (6.1)

Moreover, in order to examine robustness it is essential to know the uncertain closed-
loop transfer function, that incorporates both the controller and the uncertainty. This
function, defined from w to z, can be computed from the upper linear fractional trans-
formation of N and ∆

F � Fu�N,∆� � N22 �N21∆�I �N11∆��1N12 (6.2)
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Figure 6.3: General configuration for robustness analysis, N∆-structure.

6.2.2 Definition of nominal and robust stability and performance

Nominal Stability: The requirement for nominal stability can be satisfied by de-
manding the whole matrix N be internally stable.

N is internally stable (6.3)

Nominal Performance: For nominal performance, ∆ � 0, we require for all the
normalized disturbances and references w, the normalized errors z to be less than one
in magnitude. This requirement can be mathematically formulated as follows

YF Y � YFu�N,0�Yª � YN22Yª @ 1 and NS (6.4)

Robust Stability: For robust stability, we require the transfer function F � Fu�N,∆�
function defined from the normalized disturbances and references w to the normalized
errors z be stable for all allowed ∆, Y∆Yª B 1

F � Fu�N,∆� is stable ¦∆, Y∆Yª B 1 and NS (6.5)

Robust Performance: Robust performance is guaranteed if the normalized errors z
are less than one in magnitude for all the allowed normalized disturbances and references
w and ∆, Y∆Yª B 1

YF Yª @ 1 is stable ¦∆, Y∆Yª B 1 and NS (6.6)

The problem with the definition of RS and RP is that they cannot be practically tested,
since they involve to check the aforementioned conditions over an infinite set of allowed
uncertain elements [42]. For this reason, the structured singular value µ of a matrix M
is introduced.

6.2.3 The structured singular value µ

Definition 6.1. Let M be a given complex matrix and ∆ � diag�∆i� denote a set of
uncertain complex matrices with a given block-diagonal structure (in which some of the
blocks may be repeated and some may be restricted to be real). The real non-negative
function µ�M�, called structured singular value, is defined by

µ�M� � 1

min�kmSdet�I � kmM∆� for structured ∆, σ̄�∆� B 1� (6.7)
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Figure 6.4: Robust stability analysis configuration.

The structured singular value µ, depending on the structure of uncertainty ∆, can
be given by different norms. Precisely, the above extreme bounds are valid:

If ∆ is a full complex matrix, then µ�M� � σ̄�M� (6.8)

and

If ∆ � δI, δ is complex scalar, then µ�M� � ρ�M� (6.9)

For complex perturbations the lower bound of the structured singular value is the
spectral radius while the upper bound is the singular value; thereby, the following
inequality is valid

ρ�M� B µ�M� B σ̄�M� (6.10)

In [49], the improved-tighter lower and upper bounds of µ are given

maxU>U�ρ�UM�� B µ�M� BminD>D�σ̄�DMD�1�� (6.11)

where U is any unitary matrix with the same structure as ∆ and D is any matrix that
commutes with ∆, that is, ∆D �D∆. One should note that the lower bound is always
an equality as mentioned in [49].

Having defined the structured singular value µ, the requirement for RS is given by

µ∆�N11� @ 1, ¦ω and NS (6.12)

where N11 is the matrix that connects y∆ with u∆ and ∆ is the block diagonal matrix
of the uncertain elements. Moreover, the structure used for the determination of the
robust stability is illustrated in Fig. 6.4 where the term N11 connects the output y∆

with the input u∆.

Similarly, RP can be tested using the structured singular value as follows

µ∆̃�N� @ 1, ¦ω, ∆̃ � �∆ 0
0 ∆P

	 , and NS (6.13)

Unlike ∆ that has structure specified by the type of uncertain elements, ∆P is always
a full complex matrix and does not have any immediate physical interpretation. Thus
the requirement of RP is equivalent to the RS of the structure presented in Fig. 6.5.
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Figure 6.5: Robust performance analysis configuration.

6.2.4 Controller synthesis

It is worth noting that no direct method to synthesize an µ-optimal controller exists
[42]. However, for complex perturbations, an approximate method known as DK-
iteration is available, with the results obtained from it usually been satisfactory. This
method is a combination of the Hª-synthesis and µ-analysis. The starting point of
DK-iteration is the minimization of the upper bound of inequality 6.11 over the whole
frequency range. This statement can be mathematically formulated as follows

minK�minD>D�σ̄�DND�1��� (6.14)

As can be easily seen from Eq. 6.14, the process of controller synthesis involves the
following iterative procedure:

1. K-step: Synthesize anHª controller for the scaled problem, minK�σ̄�DN�K�D�1��
with fixed D�s�.

2. D-step: Find D�jω� to minimize at each frequency σ̄�DN�jω�D�1� with fixed
N .

3. D-step: Fit the magnitude of each element of D�jω� to a stable and minimum
phase transfer function D�s� and go to Step 1.

Some interesting notes have to be made in this point. Although, the lower bound is
tight, as it was mentioned in the previous subsection, the quantity maxU>U�ρ�UM��
can have multiple local maxima that are not global [49]. However, one should also
take into account that the optimization algorithm can still converge to a suboptimal
solution even when the upper bound is minimized. This problem can occur because the
combined optimization problem is not convex, despite the fact that each step, treated
separately, is convex.

Additionally, the numerical properties of the optimization algorithm are improved
by using a low order fit and transfer function. For this reason, low order transfer
function and weights are preferred. Finally, the main problem associated with the
upper bound is that it is not always equal to µ. Whether the µ and its bound are equal
depends on the uncertainty structure.
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6.3 Reference Signal

The reference signal λref is provided by a high level static optimization algorithm.
Firstly, the static optimization algorithm splits the torque demand to the internal
combustion engine Tice and the electric motor Tem so the performance of the hybrid
power train is optimal in quasi-static conditions. The optimization problem consists of
a cost minimization of appropriately weighted functions of NOx, PM , fuel consumption
ṁf and battery state of charge SOC under various constraint equations.

The solution to the optimization problem is provided as a [2x1] vector of the optimal
internal combustion engine and electric motor torque �T optice , T

opt
em �T . However, even

when the static optimization algorithm provides the global optimal solution and not a
suboptimal one, the performance of internal combustion engine (ICE) in load transient
conditions substantially deviates from acceptable let alone optimal. For this reason,
the optimal torque T optice and the engine rotational speed Ne are utilized as inputs to

a two dimensional map from which the steady state value of λref�T optice ,Ne� is derived.
Additionally, the difference between the torque produced by the internal combustion
engine from the optimal, as specified from the optimization algorithm, for a certain time
instant is considered as disturbance acting in the system Tdis�t� � T optice �t� � Tice�t�.

The present thesis deals with the dynamic control and the process of deriving the
quasi-static reference is not considered. The control configuration is depicted in Fig.
6.6.

6.4 Controller Implementation

The generalized system P where the uncertainty and the controller have been ”pulled
out” is illustrated in Fig. 6.7 and a simplified version of this diagram, used for controller
synthesis, is depicted in Fig. 6.8. In order to derive the generalized plant P two possible
aproaches can be adopted. One approach of computing P is through Matlab either by
representing system interconnection in Simulink or source code [4]. Another possible
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Figure 6.7: Analytic block diagram of the uncertain plant. Uncertainty has been pulled
out.

way of dealing with the problem, which applies to less complex cases, is by manual
computations. In the latter case the equations of the system can be written down and
then the terms are rearranged so the matrix P that connects inputs with outputs can
be derived. The interconnection matrix P is as follows

P �

��������

0 0 0 WGd 0 0
0 0 0 0 0 WG

�Wp �Wp 0 WpGd,n �Wp WpGn
0 0 0 0 0 Wu

�1 �1 Wn �Gd,n �1 Gn

��������
(6.15)

In the above representation Wp is the performance weight, appropriately chosen so
that the closed loop plant match the designer’s response specifications. The general
representation of the performance weight is given by

Wp�s� � �s~M1~n
� ω�B�n�s � ω�BA1~n�n (6.16)

where A is the value that 1~Wp�s� takes at low frequencies, M is the asymptotic value
of 1~Wp�s� at high frequencies and ω�B is the frequency at which the asymptote crosses
1. The parameter n determines the steepness-roll off rate of the weight.

The requirement of a steady state error close to zero is reflected to the choice of the
parameter A, which is a sufficiently small quantity. Parameter M is directly related to
the overshoot of the system. The higher the magnitude of this factor the higher the
overshoot presented in the system. Finally, parameter ω�B determines the bandwidth
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Figure 6.8: Simplified block diagram of the uncertain plant. Uncertainty has been
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of the closed loop system. Generally speaking, large bandwidth correspond to system
with fast response and oscillatory behaviour. On the contrary, small bandwidth is a
characteristics of sluggish systems but with small overshoot.

Regarding the input command weight the assumption that it can be represented as
Wp is made. However, it is desirable to specify 1~Wu to have a value close to zero in
high frequencies in order to make controller less sensitive in noise; thereby, in this case
M has a large value. On the other hand, the magnitude of A has a large value to allow
large commands and tight control in small frequencies.

The following table illustrates the selected parameters of the performance and input
weights for the plant and disturbance model derived in :

Table 6.1: Selected Weight Parameters

Weight Symbol A M ω�B n

Wp 0.07 2 0.17 1
Wu 2 0.175 2 1

The controller is implemented for the plant transfer function derived in Sec. 5.8
with the aid of MATLAB and the value of γ � Y�DND�1�Yª achieved is 1.3657. This
controller correspond to the plant derived for shaft speed 1600 RPM. In Sec. 6.5, the
analysis of the controller designed for this plant is presented.

In addition to the aforementioned controller, another controller is also developed
for the plant that was obtained for shaft speed 1500 PRM with exactly the same
performance requirements. In this case, the value of γ � 1.3955; thus, it is expected a
deterioration in performance; this fact which accords with the discussion presented in
Sec. 5.6. The presentation of performance and stability analysis of the latter controller
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is omitted from the following section.

6.5 Closed Loop System Analysis

After the controller has been obtained the question that arises is whether the closed
loop system achieves the performance requirements determined from the designer. The
starting point of closed loop analysis is the N∆-structure.

6.5.1 Nominal Performance

Nominal performance can be determined, as mentioned in subsection 6.2.2 from the
Hª-norm that connects the input vector w � �n d r�T with the output vector z ��ep eu�T . This matrix can be represented by N22 and is given by

N22 � �WpGnKSoWn �WpGd,n�1 �GnKSo� �Wp�1 �GnKSo�
�WuKSoWn �WuKSoGd,n WuKSo

� (6.17)

The nominal performance in terms of disturbance rejection and reference tracking
can be formulated by the requirement that the singular values σi��� or equivalently
the magnitude (since there are scalar quantities) of the terms Gd,n�1 � GnKSo� and�1�GnKSo� lie below the inverse of the performance weight, 1~Wp, respectively. This
condition is satisfied as can be seen from Fig. 6.9a. Moreover, the magnitude of the
controller command should not exceed the specified weight 1~Wu. As can be seen from
Fig. 6.9b this requirement is not fulfilled but the violation of the condition is only
marginal.

6.5.2 Robust Stability

In the case of structured uncertainty matrix ∆, stability analysis has to be performed
by the computation of the structured singular value µ∆�N11� where

N11 � � 0 0
�WGKSo �WGKSo

� (6.18)

Since no algorithm is available for the exact computation of µ, the robust stability
analysis is based of the estimation of the quantity from its upper and lower bound.

The requirement of robust stability has been mathematically formulated in subsec-
tion 6.2.2 and it is evident from Fig. 6.10 that RS is achieved, as µ @ 1 over the whole
frequency range. The lower bound of stability margin, defined as the reciprocal of the
maximum µ over the frequency range, is SM � 12.39. The physical interpretation of
this quantity is that the system remains stable for all uncertainty values smaller than
12.39 and at least one collection of uncertain elements with magnitude equal to 12.39
exists which can cause instability [12].

6.5.3 Robust Performance

For the determination of robust performance the structure that is depicted in Fig. 6.3
which integrates the controller, the uncertainty and the performance weights, specified
in the design process to achieve the closed-loop desirable response characteristics, is
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Figure 6.9: Nominal performance analysis.
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Figure 6.10: Robust stability.

used. In addition, as mentioned in 6.2.2, the requirement of RP can be mathematically
determined through the computation of the structured singular value of the matrix N
with an augmented uncertainty block ∆̃. Similarly to the RS case, our conclusions
regarding RP are drawn from the computation of the lower and the upper bound of the
structured singular value µ∆̃. As can be seen from Fig. 6.11 the robust performance
requirement is not satisfied.

In order to analyse thoroughly the system in terms of robust performance the system
degradation curve is considered in Fig. 6.12. The performance degradation curve is
graphical representation the value of the YFzw�∆�Yª, which is the norm of the closed
loop function connecting system inputs w and system outputs z, as a function of the
uncertainty magnitude σ̄∆. It can be observed that YFzw�∆�Yª is a monotonically
increasing function of σ̄∆ and at a certain magnitude of the uncertain elements σ̄∆, the
gain becomes infinite and the system losses its stability. The point where this happens
is the robust stability margin which has also been specified at the previous subsection.

Additionally, the blue line corresponds to points with the property σ̄∆ �YFzw�∆�Yª �

1. Thus, these points lie in the margin of the acceptable robust performance. The
intersection between the performance degradation curve-red line and the blue line cor-
respond to the maximum allowed uncertainty magnitude for marginally acceptable
robust performance. In other words, from the definition of µ, the point of intersection
between the two lines has x-coordinate the reciprocal of the term γ �max�µ∆̃� � 1.3657
and max�σ̄∆� � 0.7322. This means that robust performance is guranteed for all the
uncertain blocks with magnitude less than 0.7322.

An additional useful information is the sensitivity of the performance margin with
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Figure 6.11: Robust performance.

respect to changes in the magnitude of the uncertain elements. Using Matlab Robust
Control Toolbox it is possible to obtain that an increase in the magnitude of ∆G by 25%
leads to an decrease in performance ”margin” by 1% while an increase in the magnitude
of ∆Gd by 25% leads to an decrease in performance ”margin” by 4%. Therefore, the
effect of the uncertain block ∆G,d greatly determines performance margin.
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Chapter 7

Experimental Results

This chapter is dedicated to the experimental validation of the controller in the hybrid-
electric testbed facility at the LME. The controller stability and performance is eval-
uated under the presence of exogenous torque disturbances. The results which are
illustrated in this chapter aim to verify the soundness of the choice of λ as a controlled
variable for emissions reduction and the suitability of the λ estimate provided by the
virtual sensor.

7.1 Experiment I

In this experiment the controller designed in Chap. 6, for the plant of Sec. 5.8, is
tested; the feedback signal is provided from the virtual sensor.

Initially, the engine operated at 1600 RPM producing 300 Nm torque and when all
transient phenomena had declined the required load from the water brake switched from
300 Nm to 400 Nm. Enough time was given until a new equilibrium operating point
had been reached and the additional 100 Nm load was removed. The aforementioned
process was repeated for a load change from 300 Nm to 500 Nm and the response of
the ICE was recorded. The requested torque along with the torque produced by the
ICE and the EM are depicted in Fig. 7.1

It can be observed from Fig. 7.2 (top plot) that apart from a relatively small error
between the simulated and the estimated on-line value of λ-as obtained from the virtual
sensor- during the initial transient phenomenon, the results of the simulation closely
match those of the experiment.

In Fig. 7.2 (bottom plot) it is depicted that the measured command of the controller
is smooth but simultaneously relatively sluggish. Regarding the comparison between
the simulated and the measured command it can be stated that the variations of the
measured command are reproduced from the model proposed. However, a steady state
deviation between the simulated and the measured command is presented in the first
step load.

Figure 7.4 (bottom plot) presents the value of λ as measured from the physical
sensor. Observing this figure it is can be deduced that NOx display a similar dynamic
behaviour to the inverse of λ. Unlike NOx and λ, noise induced bias is presented in
the measurement of opacity due to the analogue nature of this sensor. Additionally,
the opacity measurement is delayed by approximately 7 sec compared to NOx and λ.
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Figure 7.1: Exp I: Toque demand and produced torque by the ICE and EM.
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Figure 7.2: Exp I: Top: Simulated and on-line computed lambda from the virtual
sensor. Bottom: Simulated and measured controller command.
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Figure 7.3: Exp I: Top: Simulated and measured pressure in the intake manifold-pim.
Bottom: Simulated and measured turbocharger speed-Ntc.

7.2 Experiment II

For the second experiment all the operating conditions were as in Experiment I with the
only difference that the robust controller was fed with the measured λ of the physical
sensor.

For this trial, the results of the simulation are not presented, since the proposed
model of Chap. 3 is obtained in order to reproduce the dynamic behaviour of the
virtual sensor and not this of the physical sensor. A model of the physical sensor have
also to reproduce the transient operation of the ICE during load reductions and include
the delay of the measurement due to the exhaust duct length as well as the dynamics
associated with the measuring device.

It can be seen from Fig. 7.5 that the command to the frequency inverter of the EM
is not smooth and noticeable sharp variations are presented. This result verifies that
the undesirable oscillatory behaviour in the controller command is reduced with the
virtual sensor implementation.

Moreover, as depicted in Fig. 7.6 no deterioration in the emissions reduction is
expected, according to the experimental results, from the replacement of the physical
with the virtual sensor. At the same time, opacity experiences a less sharp rise during
the second load transient and the variations of λ decline faster when the feedback is
provided by the virtual sensor.
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Figure 7.4: Exp I: Top: Opacity and NOx. Bottom: Lambda as measured from the
physical sensor.
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Figure 7.5: Exp II: Controller command with feedback provided by the physical sensor.

7.3 Experiment III

In the final experiment that was carried out in the LME the objective was the investiga-
tion of the results obtained in Sec. 5.6 and the parameters of the testing were identical
to those of Experiment I with the only difference that the shaft speed was 1500 RPM.

The results obtained provided a sound verification of the theory developed in Sec.
5.6. Precisely, the controller derived for 1500 RPM shaft speed demonstrated substan-
tial oscillatory behaviour for the second step load as can be seen from Fig. 7.7. This
phenomenon can neither be attributed to the torque demand which was the same for
both the Experiment I and Experiment II nor to the accuracy of the proposed dynamic
non-linear model that seems to reproduce the experimental results as shown in Fig.
7.8.

The measured pollutant emissions along with the value of λ as provided by the
physical sensor are depicted in Fig. 7.9.
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Figure 7.7: Exp III: Top: Simulated and on-line computed lambda from the virtual
sensor. Bottom: Simulated and measured controller command.
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Figure 7.8: Exp III: Top: Simulated and measured pressure in the intake manifold-pim.
Bottom: Simulated and measured turbocharger speed-Ntc.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In order to meat the continuously tightening emission standards imposed by legislation
authorities on sea-going vessels, a closed-loop control of the main pollutants emissions
of a hybrid-electric marine powertrain is proposed. As a first step towards emission
reduction in hybrid-electric marine plants, the feasibility of controlling the value of
lambda of the exhaust gas only by manipulating the torque produced by the electric
motor was examined. The experimental results obtained were satisfactory and verified
the soundness of the proposed concept of emission reduction technique in practice.

In fact, the controller, tested under the presence of exogenous disturbances, demon-
strated its ability to reduce NOx and particulate matter (PM) that were emitted by
the internal combustion engine in transient loading and verified the choice of lambda as
feedback signal. The controller functioned more stable and smooth when the feedback
was provided by the virtual sensor compared to the operation with feedback provided
by the physical sensor. At the same time, considering the limited availability of the
torque measurement as input signal in marine applications, a virtual sensor that made
use only of the turbocharger speed was obtained; thus, the applicability of this method
in standard-marine plants is widened. Finally, the results from the operation of the
experimental plant in the low speed region were useful in developing confidence to
the proposed first order transfer function in terms of predicting the operation of the
hybrid-electric powertrain in various operating points.

8.2 Future Work

Quasi-Static Optimization Algorithm

An assumption was made in Chap. 6 that the reference value of λ was provided
by a high level quasi-static optimization algorithm. On the grounds that only the
transient behaviour of the ICE was treated in this thesis, a potential subject of further
research could be the optimal energy management of hybrid-electric marine powertrains
in steady state condition. Towards this direction, the non-linear dynamic λ-model
derived in Chap. 3 could be valuable.

Moreover, the value of λ derived from the dynamic model can also be the input
to quasi-static maps in order to obtain PM and NOx. In this way, knowledge can be
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gained about the pollutant emissions of the ICE as a function of the operating point. An
additional characteristic variable linked to the battery state of energy/state of charge
(SOE/SOC) or a metric of the electric energy consumption has to be developed to make
feasible the static energy management of the hybrid power-train.

Finally, the feasibility of the implementation of various energy management algo-
rithms in hybrid-electric marine propulsion plants, currently adopted in automotive
powetrains, has to be thoroughly examined. Although fundamental difficulties are pre-
sented in this direction, like the lack of knowledge of the exact vessel’s load profile and
the the absence of energy recovery system during deceleration of the vessel, the present
thesis demonstrated that certain benefits associated with emission reduction do exist
from the use of hybrid-electric propulsion in marine applications.

Robust Adaptive Controller

In Chap. 5 a first order transfer function Gṁf�λ was obtained and its parameters
were presented in 2D maps as a function of the operating point of the ICE. The variation
in the dynamic behaviour of the transfer function when the operating point shifted from
the nominal was taken into consideration as uncertainty in modelling and a controller
was implemented for the uncertain transfer function.

However, implementing a µ-controller for a wide operating range comes at the ex-
pense of a wide uncertainty region in the plant model and of poor performance charac-
teristics. Instead of developing a µ-controller, a robust adaptive controller and identifier
can be designed in order to obtain on-line the transfer function and the controller of
the plant. In this way the proposed design will be less conservative compared to the
µ-controller.

Alternative Fuel Mass Flow Estimation Techniques

The performance of the second virtual sensor derived in Sec. 4.5, which has as single
input the turbocharger speed, was not examined on-line. Thus, a possible direction of
further research may be the evaluation of the performance of this virtual sensor in λ
control applications.

Furthermore, the simulation results of Sec. 4.5 demonstrated slow response of the
virtual sensor. The reason for this slow response lies in the fact that fuel mass flow is
estimated only from the air path data. The feasibility of another approach of obtaining
a fast and accurate fuel flow estimate should be investigated.

Another subject of future work may be the study of a design that integrates both
the virtual and the physical sensor. The former will provide an accurate estimate of
λ during the initial transient phenomenon while the steady state value of λ will be
obtained from the latter sensor.

Multivariable Feedback Control

In the present thesis the controlled variable-λ is manipulated only by the input
command that is provided to the frequency inverter of the electric motor. This approach
imposes fundamental limitations in the performance that could be achieved and the
corresponding emission reduction. Precisely, the electric motor dynamics limit the rate
with which the pollutant emissions are reduced during load transients.
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If access to the fuel injection command is provided, the response of the internal
combustion engine will be substantially improved with λ experience a less sharp drop
during load transients. Towards this direction, increasing the degrees of freedom in
the powertrain through additional input variables could augments the effectiveness of
control. Another benefit that is provided by multiple input variables is the possibility
to control more accurately several output signals such as NOx and λ instead of a single
one.
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