

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ

ΠΑΡΑΚΟΛΟΥΘΗΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΣΤΟΝ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΟ ΣΤΑΘΜΟ ΒΑΣΙΛΙΚΟΥ ΣΤΗΝ ΚΥΠΡΟ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ **ΘΕΟΦΑΝΗΣ ΝΙΚΟΛΑΟΥ**

ΕΠΙΒΛΕΠΩΝ ΓΕΩΡΓΙΟΣ ΠΑΝΤΑΖΗΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΕΜΠ

ΑΘΗΝΑ, ΜΑΡΤΙΟΣ 2016

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ

ΠΑΡΑΚΟΛΟΥΘΗΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΣΤΟΝ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΟ ΣΤΑΘΜΟ ΒΑΣΙΛΙΚΟΥ ΣΤΗΝ ΚΥΠΡΟ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΟΦΑΝΗΣ ΝΙΚΟΛΑΟΥ

Επιβλέπων : Γεώργιος Πανταζής Αναπλ. Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή:

(Υπογραφή)

(Υπογραφή)

(Υπογραφή)

••••••••••••••••••••••••••••

Γεώργιος Πανταζής Αναπλ. Καθηγητής ΕΜΠ

Ευαγγελία Λάμπρου Ευαγγελία Λαμπρου Μαρία Τουκιρη Αναπλ. Καθηγήτρια ΕΜΠ Αναπλ. Καθηγήτρια ΕΜΠ

Μαρία Τσακίρη

Αθήνα, Μάρτιος 2016

(Υπογραφή)

••••••

ΘΕΟΦΑΝΗΣ ΝΙΚΟΛΑΟΥ

Διπλωματούχος Αγρονόμος και Τοπογράφος Μηχανικός Ε.Μ.Π.

Copyright ©, Θεοφάνης Νικολάου, 2016. Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και η διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσεως, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν στη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σ' αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσοβίου Πολυτεχνείου.

ΕΥΧΑΡΙΣΤΙΕΣ

Θερμές ευχαριστίες θα ήθελα να εκφράσω :

Στον κ. Γεώργιο Πανταζή, αναπληρωτή καθηγητή της ΣΑΤΜ του ΕΜΠ επιβλέποντα της παρούσας διπλωματικής εργασίας, τόσο για την αέναη καθοδήγηση, τις χρήσιμες συμβουλές, τις πολύτιμες γνώσεις όσο και για την ευκαιρία να ασχοληθώ με το συγκεκριμένο αντικείμενο.

Στην κ. Ευαγγελία Λάμπρου, αναπληρώτρια καθηγήτρια της ΣΑΤΜ του ΕΜΠ, για τη πολύτιμη βοήθεια που πρόσφερε κατά τη διάρκεια εκπόνησης της παρούσας μελέτης.

Στον κ. Χρύσανθο Χατζημάρκο, αναπληρωτή διευθυντή του Ηλεκτροπαραγωγού Σταθμού Βασιλικού, για την έγκριση όλων των σχετικών εγγράφων για τη διεκπεραίωση όλων των μετρήσεων εντός του σταθμού.

Στον κ. Γεώργιο Σταύρου, Ανώτερο Τεχνικό Μηχανικό της Αρχής Ηλεκτρισμού Κύπρου, ο οποίος με συνεχή υποστήριξη και ενδιαφέρον στήριζε με κάθε δυνατό μέσο τη συλλογή των δεδομένων.

Στον κ. Παναγιώτη Ματσούκα, Τεχνικό Έργων της Αρχής Ηλεκτρισμού Κύπρου, για τη βοήθεια στη λήψη μετρήσεων πεδίου.

Στους γονείς μου **Αντώνιο** και **Θεοδώρα**, οι οποίοι υπήρξαν αρωγοί σε κάθε βήμα της ζωής μου με κάθε δυνατό τρόπο, κυρίως όμως στον πατέρα μου ο οποίος αποτέλεσε τον σημαντικότερο βοηθό στις μετρήσεις πεδίου.

Στον αδερφό μου **Μάριο Νικολάου**, ο οποίος βοήθησε στη συλλογή μετρήσεων πεδίου.

Στον φίλο μου **Αντώνιο Σάββα**, υποψήφιο διδάκτορα της ΣΗΜΜΥ του ΕΜΠ, για τη βοήθεια στη συγγραφή του κώδικα σε προγραμματιστικό περιβάλλον.

Στον φίλο μου Ευάγγελο Παλάτο, απόφοιτο του ΚΑΡ, για τις εύστοχες παρατηρήσεις στη γλωσσική επιμέλεια του κειμένου.

Στον ξάδελφο μου Διονύσιο Δικέφαλο, διπλωματούχο αρχιτέκτονα μηχανικό του ΑΠΘ, για τη βοήθεια στη συγγραφή της αγγλικής περίληψης και στη διαμόρφωση της εικόνας του εξωφύλλου.

Στον φίλο μου Απόστολο Παλάτο, διπλωματούχο αγρονόμο τοπογράφο μηχανικό του ΕΜΠ, για τη βοήθεια στη γλωσσική επιμέλεια του κειμένου.

Σε οποιονδήποτε βοήθησε στην εκπόνηση της παρούσας εργασίας.

ΠΡΟΛΟΓΟΣ

Στη σύγχρονη εποχή, οι εφαρμογές της τεχνολογίας η οποία εξελίσσεται με ιλιγγιώδεις ρυθμούς είναι ασύλληπτες. Συγκεκριμένα, η εφαρμογή της τεχνολογίας στον κλάδο της γεωδαισίας αποτελεί μια αέναη πηγή εξέλιξης.

Τόσο η ανάπτυξη των συστημάτων μέτρησης όσο και η αναβάθμιση της τεχνογνωσίας του ανθρωπίνου δυναμικού, συμβάλουν στη βελτίωση της ποιότητας των παραγόμενων τοπογραφικών προϊόντων.

Στη σύγχρονη βιομηχανία οι απαιτήσεις των προδιαγραφών ακρίβειας στις κατασκευές συνεχώς αυξάνονται, αφού υπάρχει η δυνατότητα ανταπόκρισης τόσο από τα συστήματα όσο και από το ανθρώπινο δυναμικό.

Ειδικότερα σ' έναν σύγχρονο σταθμό παραγωγής ηλεκτρικής ενέργειας οι απαιτήσεις στη γνώση των συντεταγμένων στον χώρο των μονάδων παραγωγής ηλεκτρικής ενέργειας αυξάνονται, αφού είναι αναγκαίες τόσο για την εύρυθμη λειτουργία του σταθμού όσο και για τη μέγιστη απόδοση των μονάδων.

Οι σύγχρονες μέθοδοι και ο σύγχρονος γεωδαιτικός εξοπλισμός με τα οποία επιτυγχάνεται ικανοποιητική ακρίβεια στον υπολογισμό των συντεταγμένων των κορυφών ενός γεωδαιτικού δικτύου είναι το αντικείμενο της παρούσας μελέτης.

Η ανάπτυξη των σύγχρονων μεθοδολογιών προσδιορισμού συντεταγμένων με ακρίβεια οφείλεται στη χρήση προηγμένων συστημάτων μέτρησης γεωδαιτικών δεδομένων, όπως ολοκληρωμένοι γεωδαιτικοί σταθμοί με δυνατότητα μέτρησης μήκους χωρίς ανακλαστήρα και ψηφιακοί χωροβάτες.

Συγκεκριμένα, το πεδίο της Τεχνικής Γεωδαισίας που περιλαμβάνει τις προαναφερθείσες εφαρμογές αποτελεί ένα από τα βασικότερα, αξιόλογα και ενδιαφέροντα πεδία της Γεωδαισίας.

Στο αντικείμενο της Τεχνικής Γεωδαισίας ανήκουν εφαρμογές όπως Γεωδαιτικά Δίκτυα Τριδιάστατου Ελέγχου για την παρακολούθηση μετακινήσεων μεγάλων τεχνικών έργων και του στερεού φλοιού της γης, χάραξη αθλητικών εγκαταστάσεων και μεθοδολογίες μέτρησης επιδόσεων σε αγωνίσματα αλμάτων και ρίψεων, υπόγεια έργα, σήραγγες, τρόποι διάνοιξης και επιπτώσεις, μέθοδοι βιομηχανικής γεωδαισίας και η εφαρμογή τους στη μελέτη της αξιοπιστίας της κατασκευής και της καλής λειτουργίας μηχανολογικών εγκαταστάσεων και κατασκευών, καθώς και αποτυπώσεις σε μεγάλες κλίμακες διαφόρων κατασκευών [Γεωργόπουλος Γ. κ.α. 2005].

Η παρακολούθηση μετακινήσεων αποτελεί ''αιχμή του δόρατος''. Αποδεικνύει τις δυνατότητες για εντοπισμό μετακινήσεων ή παραμορφώσεων της τάξης των λίγων χιλιοστών σε οποιαδήποτε κατασκευή φυσική ή τεχνητή μικρής, μεσαίας ή μεγάλης κλίμακας.

Επομένως, υπάρχει δυνατότητα αναφοράς σε γεωδαιτικά δίκτυα παρακολούθησης μετακινήσεων τεσσάρων διαστάσεων όπου συμπεριλαμβάνονται ο τριδιάστατος χώρος και ο χρόνος.

ΠΕΡΙΕΧΟΜΕΝΑ

ΕΥΧΑΡΙΣΤΙΕΣ	iii
ΠΡΟΛΟΓΟΣ	V
ΠΕΡΙΕΧΟΜΕΝΑ	vii
ΕΙΚΟΝΕΣ	ix
ΠΙΝΑΚΕΣ	ix
ΣΧΗΜΑΤΑ	X
ΑΚΡΩΝΥΜΙΑ	xiii
ΣΥΜΒΟΛΙΣΜΟΙ	XV
ПЕРІЛНΨН	xix
ABSTRACT	xxiii
ΕΙΣΑΓΩΓΗ	xxiii

1.1.	Γενικά	3
1.2.	Γεωδαιτικά Δίκτυα του ΗΣ Βασιλικού	6
1.3.	Αντικείμενο διπλωματικής εργασίας	11

2.1.	Γενικά	
2.2.	Γεωμετρική Χωροστάθμηση (ΓΧ)	
2.3.	ΤΡιγωνομετρική Υψομετρία Ακριβείας (ΤΡΥΑ)	
2.4.	Επιλογή οργάνων	
2.5.	Βελτιστοποίηση δικτύου	
2.6.	Μετρήσεις στοιχείων δικτύου κατακορύφου ελέγχου	
2.7.	Κλείσιμο τριγώνων	
2.8.	Συνόρθωση δικτύου	

ΚΕΦΑΛΑΙΟ 3 ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΤΡΙΔΙΑΣΤΑΤΟΥ ΕΛΕΓΧΟΥ41

3.1.	Γενικά	41
3.2.	Μετρήσεις στοιχείων δικτύου τριδιάστατου ελέγχου	41
	3.2.1. Μέτρηση ύψους οργάνου και στόχου	47
3.3.	Επεξεργασία μετρήσεων	49
3.4.	Συνόρθωση δικτύου	
3.5.	Ελλείψεις σφάλματος	55

ΠΑΡΑΡΤΗΜΑ Α ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΕΓΧΟΥ85

-		
I.	Μετρήσεις ΤΡΥΑ	86
II.	Μετρήσεις ΓΧ	
III.	Δοκιμαστικές Μετρήσεις ΤΡΥΑ	111
IV.	Δοκιμαστικές Μετρήσεις ΓΧ	

ΠΑΡΑΡΤΗΜΑ Β ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΤΡΙΔΙΑΣΤΑΤΟΥ ΕΛΕΓΧΟΥ127

I.	Μετρήσεις υψών οργάνου και στόχων	128
II.	Έντυπα μετρήσεων γωνιών και μηκών	135
III.	Αποτελέσματα επίλυσης ΓΔΤΕ για εε 95 %	144

ΠΑΡΑΡΤΗΜΑ Γ ΚΩΔΙΚΕΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΜΑΤLAB.....153

I.	Κώδικας επίλυσης Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου.154
II	Κώδικας ελένχου απόλυτων μετακινήσεων οριζοντιονοαωικά

II. Κώδικας ελέγχου απόλυτων μετακινήσεων οριζοντιογραφικά και υψομετρικά για επίπεδο εμπιστοσύνης 95%......166

ΕΙΚΟΝΕΣ

Εικόνα 1.1 : Θέση ΗΣ Βασιλικού [5]	3
Εικόνα 1.2 : Η πρώτη φάση λειτουργίας του ΗΣ Βασιλικού [7]	4
Εικόνα 1.3 : Δορυφορική εικόνα ΗΣ Βασιλικού [5]	6
Εικόνα 1.4 : Τριδιάστατο δίκτυο ΗΣ Βασιλικού [5]	7
Εικόνα 1.5 : Κορυφές 6-Ρ, 1-S και 9-Κ	8
Εικόνα 1.6 : Μπουλόνια κορυφών 1-S και 2-P	10
Εικόνα 2.1 : ΟΓΣ ΤC(R)1202+ της Leica	
Εικόνα 2.2 : Ψηφιακός χωροβάτης DNA 10 της Leica	24
Εικόνα 2.3 : Ειδικό παρελκόμενο για σκόπευση σε Rèpère	
Εικόνα 3.1 : Κορυφές 1-S, 3-Τ και 2-Ρ	46
Εικόνα 3.2 : Σημείο μέτρησης ύψους οργάνου	47

ΠΙΝΑΚΕΣ

Πίνακας 1.1 : Στοιχεία μονάδων σταθμού	5
Πίνακας 1.2 : Οπτική επαφή μεταξύ των κορυφών του ΓΔΤΕ	9
Πίνακας 2.1 : Χαρακτηριστικά οργάνων μέτρησης υψομετρικού	
δικτύου [6]	25
Πίνακας 2.2 : Αριθμός στάσεων και a priori σφάλμα ΤΡΥΑ	28
Πίνακας 2.3 : Τελικές υψομετρικές διαφορές και αβεβαιότητες για	
εε 95%	38
Πίνακας 2.4 : Υψόμετρα και αβεβαιότητες ΓΔΚΕ	39
Πίνακας 2.5 : Σάρωση δεδομένων κατά Baarda για εε 95%	39
Πίνακας 3.1 : Πίνακας οριζόντιων γωνιών ΓΔΤΕ	44
Πίνακας 3.2 : Πίνακας κατακόρυφων γωνιών ΓΔΤΕ	44
Πίνακας 3.3 : Πίνακας μηκών ΓΔΤΕ	44
Πίνακας 3.4 : Ψηφιακός χωροβάτης SPRINTER 150M της Leica [6]	49
Πίνακας 3.5 : Κλεισίματα βρόγχων ΓΔΤΕ για εε 95%	51
Πίνακας 3.6 : Συντεταγμένες και αβεβαιότητες ΓΔΤΕ για εε 95%	55
Πίνακας 3.7 : Στοιχεία απόλυτων ελλείψεων σφάλματος ΓΔΤΕ για	
εε 95%	57
Πίνακας 3.8 : Στοιχεία σχετικών ελλείψεων σφάλματος ΓΔΤΕ για εε	
95%	60
Πίνακας 4.1 : Συντελεστές z και $λ$ για εε 95 και 99 %	63
Πίνακας 4.2 : Αποτελέσματα τριδιάστατης επίλυσης 2012 για εε 95%	64
Πίνακας 4.3 : Στοιχεία απόλυτων μετακινήσεων ΓΔΤΕ για εε 95%	65
Πίνακας 4.4 : Στοιχεία σχετικών μετακινήσεων ΓΔΤΕ για εε 95%	71
Πίνακας Γ.1 : Μήκη ΓΔΤΕ	144

Πίνακας Γ.2 : Οριζόντιες γωνίες ΓΔΤΕ	.145
Πίνακας Γ.3 : Ζενίθιες γωνίες ΓΔΤΕ	.146
Πίνακας Γ.4 : Προσωρινές συντεταγμένες τριδιάστατου δικτύου	.146
Πίνακας Γ.5 : Πίνακας τελικών συντεταγμένων με τις διορθώσεις	
των προσωρινών συντεταγμένων του ΓΔΤΕ	.147
Πίνακας Γ.6 : Στοιχεία απόλυτων ελλείψεων σφάλματος ΓΔΤΕ για	
εε 95%	.147
Πίνακας Γ.7 : Στοιχεία σχετικών ελλείψεων σφάλματος ΓΔΤΕ για εε	
95%	.148
Πίνακας Γ.8 : Ισχύς του Γ Δ TE σε ppm	.148
Πίνακας Γ.9 : Σάρωση δεδομένων κατά Baarda ΓΔΤΕ για εε 95%	.149
Πίνακας Γ.10 : a posteriori πίνακας μεταβλητότητας -	
συμμεταβλητότητας ΓΔΤΕ (Στήλες:1-12)	.150
Πίνακας Γ.11 : a posteriori πίνακας μεταβλητότητας -	
συμμεταβλητότητας ΓΔΤΕ (Στήλες:13-23)	.151

ΣΧΗΜΑΤΑ

Σχήμα 2.1 : Σχήμα μοναδιαίας ΓΧ [Λάμπρου Ε., Πανταζής Γ., 2013]	15
Σχήμα 2.2 : Σχήμα χωροσταθμικής όδευσης [Λάμπρου Ε., Πανταζής	
Γ., 2013]	15
Σχήμα 2.3 : Σχηματική παράσταση της ΤΡΥΑ με μία στάση οργάνου.	18
Σχήμα 2.4 : Σχηματική παράσταση της ΤΡΥΑ με δύο ενδιάμεσες	
στάσεις	20
Σχήμα 2.5 : Σχηματική παράσταση της ΤΡΥΑ με περισσότερες από	
δύο στάσεις	21
Σχήμα 2.6 : Σκόπευση προς την υψομετρική αφετηρία	22
Σχήμα 2.7 : Διάγραμμα βελτιστοποίησης	29
Σχήμα 2.8 : Μορφή δικτύου από βελτιστοποίηση	30
Σχήμα 2.9 : Μορφή ΓΔΚΕ με μετρήσεις ΤΡΥΑ και ΓΧ	31
Σχήμα 2.10 : Τελική μορφή δικτύου	32
Σχήμα 2.11 : Απεικόνιση εργατοωρών πεδίου ΓΔΚΕ	34
Σχήμα 2.12 : Κλείσιμο μοναδιαίων τριγώνων υψομετρικού δικτύου	
Σχήμα 3.1 : Στατιστικά εργατοωρών πεδίου ΓΔΤΕ	42
Σχήμα 3.2 : Εργατοώρες ανά κορυφή ΓΔΤΕ	43
Σχήμα 3.2 : Μορφή Γ Δ TE	45
Σχήμα 3.3 : Ακριβής προσδιορισμός του ύψους οργάνου - στόχου	
[Λάμπρου Ε., Πανταζής Γ. 2013]	49
Σχήμα 3.4 : Γεωμετρική αναγωγή του μήκους στα προσημασμένα	
σημεία του δικτύου [Λάμπρου Ε., Πανταζής Γ. 2013]	50
Σχήμα 3.5 : Τυπική έλλειψη σφάλματος	

Σχήμα 3.6 : Απόλυτες ελλείψεις σφάλματος ΓΔΤΕ για εε 95%	.58
Σχήμα 3.7 : Αβεβαιότητα υψομέτρων ΓΔΤΕ για εε 95%	.59
Σχήμα 3.8 : Σχετικές ελλείψεις σφάλματος ΓΔΤΕ για εε 95%	.61
Σχήμα 3.9 : Αβεβαιότητες σχετικών υψομέτρων ΓΔΤΕ για εε 95%	.62
Σχήμα 4.1 : Απόλυτες οριζοντιογραφικές μετακινήσεις ΓΔΤΕ για εε	
95%	.67
Σχήμα 4.2 : Απόλυτες υψομετρικές μετακινήσεις ΓΔΤΕ	.68
Σχήμα 4.3 : Σχετικές οριζοντιογραφικές μετακινήσεις ΓΔΤΕ για εε	
95%	.72
Σχήμα 4.4 : Σχετικές υψομετρικές μετακινήσεις ΓΔΤΕ για εε 95%	.73
Σχήμα 5.1 : Απεικόνιση εργατοωρών εκπόνησης παρούσας εργασίας	.79

ΑΚΡΩΝΥΜΙΑ

АНК	Αρχή Ηλεκτρισμού Κύπρου						
AM	Ατμοηλεκτρική Μονάδα						
ΑΠΘ	Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης						
ΓΔΚΕ	Γεωδαιτικό Δίκτυο Κατακορύφου Ελέγχου						
ΓΔΟΕ	Γεωδαιτικό Δίκτυο Οριζοντίου Ελέγχου						
ΓΔΤΕ	Γεωδαιτικό Δίκτυο Τριδιάστατου Ελέγχου						
ГХ	Γεωμετρική Χωροστάθμηση						
ΔΣΜ	Διαχειριστής Συστήματος Μεταφοράς						
33	Επίπεδο εμπιστοσύνης						
ЕГГ	Εργαστήριο Γενικής Γεωδαισίας						
ЕМП	Εθνικό Μετσόβιο Πολυτεχνείο						
KAP	Κέντρο Αθλητικού Ρεπορτάζ						
Κλ.	Κλείσιμο βρόγχου						
MAAK	Μονάδα Αεριοστροβίλων Ανοικτού Κύκλου						
ΜΑΣΚ	Μονάδα Αεριοστροβίλων Συνδυασμένου Κύκλου						
ΜΑΦΑ	Μονάδας Αποϋγροποίησης Φυσικού Αερίου						
МЕП	Μέθοδος των Εμμέσων Παρατηρήσεων						
ΜΜΣ	Μέθοδος Μεταβολής των Συντεταγμένων						
ΜΣΘ	Μέση Στάθμη Θάλασσας						
ΝΜΣ	Νόμος Μετάδοσης Σφαλμάτων						
HΣ	Ηλεκτροπαραγωγός Σταθμός						
OB	Οριζοντιογραφικός Βρόγχος						
ΟΓΣ	Ολοκληρωμένος Γεωδαιτικός Σταθμός						
OM	Οριζόντια Μετακίνηση						
ΠΟΜΗΓΕ	Τμήμα ΠΟλιτικών ΜΗχανικών και ΜΗχανικών ΓΕωπληροφορικής						
ΣΑΤΜ	Σχολή Αγρονόμων Τοπογράφων Μηχανικών						

ТЕПАК	ΤΕχνολογικό ΠΑνεπιστήμιο Κύπρου						
TPYA	ΤΡιγωνομετρική Υψομετρία Ακριβείας						
TT	Τομέας Τοπογραφίας						
ΣΗΜΜΥ	Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών						
YB	Υψομετρικός βρόγχος						
YM	Υψομετρική Μετακίνηση						
ΦΓΕ	Φυσική Γήινη Επιφάνεια						
ΨΓΧ	Ψηφιακή Γεωμετρική Χωροστάθμηση						
ATH	Accurate Trigonometric Heighting						
CCGT	Combined Cycle Gas Turbine						
DGL	Digital Geometric Leveling						
GIS	Geographic Information System						
GNSS	Global Navigation Satellite System						
ISBN	International Standard Book Number						
MW	Mega Watt (10 ⁶ Watt)						
MWh	Mega Watt hour						
OCGT	Open Cycle Gas Turbine						
ppm	Parts per million						
RL	Reflector Less						
VCM	Variation of Coordinates Method						
VGCN	Vertical Geodetic Control Network						
TDGCN	Three Dimensional Geodetic Control Network						

ΣΥΜΒΟΛΙΣΜΟΙ

A	Πίνακας σχεδιασμού συνόρθωσης ή πίνακας συντελεστών των αγνώστων								
α_{ij}	Γωνία διεύθυνσης								
α_{max}	Γωνία μεγάλου ημιάξονα της έλλειψης σφάλματος από τον άξονα των τεταγμένων (y) - (clockwise)								
β	Οριζόντια γωνία								
ΔH	Ορθομετρική υψομετρική διαφορά								
δx	Διάνυσμα μεταβολής αγνώστων								
δl	Διάνυσμα συστηματικών σφαλμάτων μετρήσεων								
δr _i	Διάνυσμα απόλυτης οριζοντιογραφικής μετακίνησης κορυφής i								
δH_i	Διάνυσμα απόλυτης κατακόρυφης μετακίνησης κορυφής i								
ΔR_{ij}	Διάνυσμα σχετικής οριζοντιογραφικής μετακίνησης κορυφών i και j								
ΔRH_{ij}	Διάνυσμα σχετικής κατακόρυφης μετακίνησης κορυφών i και j								
θ_{max}	Γωνία μεγάλου ημιάξονα της έλλειψης σφάλματος από τον άξονα των τετμημένων (x) - (anti-clockwise)								
κ	Συντελεστής γεωδαιτικής διάθλασης								
μ_{i}	Ακριβής τιμή μεγέθους i								
σ	Τυπική απόκλιση (Σφάλμα)								
σ_0	a priori τυπικό σφάλμα της μονάδας βάρους								
$\widehat{\sigma}_0$	a posteriori τυπικό σφάλμα της μονάδας βάρους								
σ_{α}	Τυπικό σφάλμα ανάγνωσης χωροβάτη								
$\sigma_{\alpha_{ij}}$	Τυπικό σφάλμα γωνίας διεύθυνσης								
$\sigma_{\rm D}$	Τυπικό σφάλμα μετρούμενου μήκους								
σ_{l_i}	Τυπικό σφάλμα μέτρησης i								

$\sigma_{\rm S}$	Τυπικό σφάλμα μετρούμενης απόστασης							
σ _z	Τυπικό σφάλμα μετρούμενης ζενίθιας γωνίας							
σ_{eta}	Τυπικό σφάλμα οριζόντιας γωνίας							
$\sigma_{\Delta H}$	Τυπικό σφάλμα προσδιοριζόμενης ορθομετρικής υψομετρικής διαφοράς							
$\sigma_{\delta Hi}$	Τυπικό σφάλμα κατακόρυφης μετακίνησης κορυφής i							
$\sigma_{\Delta R H i j}$	Τυπικό σφάλμα σχετικής κατακόρυφης μετακίνησης κορυφών i και j							
$\sigma_{\rm H}$	Τυπικό σφάλμα ορθομετρικού υψομέτρου							
σ_{κ}	Τυπικό σφάλμα κλεισίματος βρόγχων							
σ_{u}	Μεγάλος ημιάξονας έλλειψης σφάλματος							
$\sigma_{\rm v}$	Μικρός ημιάξονας έλλειψης σφάλματος							
σ_x, σ_y	Τυπικό σφάλμα καρτεσιανών συντεταγμένων της προβολής σε επίπεδο (είτε του κρατικού συστήματος αναφοράς, είτε ενός αυθαίρετου τοπικού συστήματος συντεταγμένων)							
$\sigma_{\hat{x}_i}$	Τυπικό σφάλμα καλλίτερης τιμής							
σ_{υ_i}	Τυπικό σφάλμα υπολοίπου ή φαινομένου σφάλματος μέτρησης i							
ρ^{cc}	Συντελεστής μετατροπής cc σε ακτίνια (200000/π)							
υ_i	Πιθανό ή φαινόμενο σφάλμα της μέτρησης i (υπόλοιπο)							
YO	Ύψος οργάνου							
YΣ	Ύψος σκόπευσης (ύψος στόχου)							
Φ	Γωνία διανύσματος απόλυτης μετακίνησης η οποία μετράται αριστερόστροφα από τον μεγάλο ημιάξονα της έλλειψης (anti-clockwise)							
e _{ij}	Σφάλμα δείκτη ζενίθιας γωνίας από το σημείο i προς το σημείο j							
D	Μετρούμενο κεκλιμένο μήκος στη ΦΓΕ							
Н	Ορθομετρικό υψόμετρο							
H ₀	Προσωρινό ορθομετρικό υψόμετρο							

 J_{yx}^0 Ιακωβιανός πίνακας του διανύσματος γ ως προς x στην θέση x₀ 1 Πίνακας μετρήσεων Πίνακας μετρήσεων οποίος προκύπτει 1_{0} 0 από τις προσωρινές συντεταγμένες Μέτρηση μεγέθους i l_i Άγνωστες καθοριστικές παράμετροι m Αριθμός μετρήσεων n Επίπεδο εμπιστοσύνης р Р Πίνακας βαρών Pi Βάρος μέτρησης i r Βαθμός ελευθερίας R Μέση ακτίνα καμπυλότητας της γης (6371 Km) S Απόσταση (Οριζόντια απόσταση) $V_{\delta x}$ συμμεταβλητότητας Πίνακας μεταβλητότητας διανύσματος μετακίνησης V_1 a priori πίνακας μεταβλητότητας - συμμεταβλητότητας μετρήσεων $\widehat{V}_{\hat{1}}$ a posteriori πίνακας μεταβλητότητας - συμμεταβλητότητας μετρήσεων a priori πίνακας μεταβλητότητας συμμεταβλητότητας V_î καλλίτερων τιμών των αγνώστων $\widehat{V}_{\widehat{x}}$ a posteriori πίνακας μεταβλητότητας συμμεταβλητότητας καλλίτερων τιμών των αγνώστων V_{υ} Πίνακας μεταβλητότητας - συμμεταβλητότητας υπολοίπων ή φαινομένων σφαλμάτων W Γωνία διεύθυνσης διανύσματος απόλυτης ή σχετικής μετακίνησης Καρτεσιανές συντεταγμένες στην προβολή σε επίπεδο (είτε x,y του κρατικού συστήματος αναφοράς, είτε ενός αυθαίρετου τοπικού συστήματος συντεταγμένων)

x ₀ ,y ₀	Προσωρινές καρτεσιανές συντεταγμένες στην προβολή σ επίπεδο (είτε του κρατικού συστήματος αναφοράς, είτε ενό αυθαίρετου τοπικού συστήματος συντεταγμένων)						
â	Διάνυσμα καλλίτερων τιμών των αγνώστων						
\$x _i	Συνορθωμένη ή καλλίτερη τιμή μεγέθους i						
Z	Ζενίθια απόσταση (ζενίθια γωνία)						
Zp	Συντελεστής κανονικής κατανομής για εε p						
1D	Αναφορά στη μια διάσταση - κατά την κατακόρυφη έννοια						
2D	Αναφορά στις δύο διαστάσεις - κατά την οριζόντια έννοια						
3D	Αναφορά στις τρεις διαστάσεις - κατά την τριδιάστατη έννοια						

ΠΕΡΙΛΗΨΗ

Αντικείμενο της παρούσας διπλωματικής εργασίας αποτελεί η μέτρηση του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου, η επαναμέτρηση του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου και ο έλεγχος μετακινήσεων στην περιοχή του Ηλεκτροπαραγωγού Σταθμού Βασιλικού στην Κύπρο.

Στο **Κεφάλαιο 1** παρουσιάζεται ο Ηλεκτροπαραγωγός Σταθμός Βασιλικού με μια γενική περιγραφή τοποθεσίας, έκτασης και χρονολογίας έναρξης εργασιών κατασκευής.

Στη συνέχεια γίνεται μια εκτενέστερη περιγραφή των φάσεων κατασκευής των μονάδων παραγωγής ηλεκτρικού ρεύματος και του τρόπου λειτουργίας τους.

Περιγράφεται η σημερινή κατάσταση του σταθμού, οι μονάδες από τις οποίες αποτελείται, τα χαρακτηριστικά τους, οι δυνατότητες και οι μελλοντικές εξελίξεις που σχεδιάζονται να γίνουν.

Γίνεται εισαγωγή στα γεωδαιτικά δίκτυα κατακορύφου και τριδιάστατου ελέγχου τα οποία έχουν εγκατασταθεί στον σταθμό. Δίνονται πληροφορίες για την ημερομηνία και τους λόγους κατασκευής.

Στο τέλος του πρώτου κεφαλαίου περιγράφεται αναλυτικά το αντικείμενο της παρούσας διπλωματικής εργασίας.

Στο **Κεφάλαιο 2** περιγράφονται οι διάφορες μέθοδοι προσδιορισμού ορθομετρικών υψομετρικών διαφορών και πώς η επιλογή της ΤΡιγωνομετρικής Υψομετρίας Ακριβείας (ΤΡΥΑ) επηρεάζει την προανάλυση της ακρίβειας.

Ακολουθούν οι μετρήσεις πεδίου για τη συλλογή των απαραίτητων δεδομένων (προετοιμασία, έλεγχοι οργάνων, μέθοδοι που εφαρμόστηκαν, δυσκολίες και τεχνικές αντιμετώπισης, επεξεργασίαέλεγχοι μετρήσεων και στατιστικά στοιχεία).

Γίνεται η εξαγωγή των τελικών υψομετρικών διαφορών, υπολογίζονται τα κλεισίματα των μοναδιαίων τριγώνων τα οποία αποτελούν ένα δείκτη αξιοπιστίας των μετρήσεων (επανάληψη μέτρησης ή θεώρηση κάποιας μέτρησης ως δοκιμαστικής) και μια a priori εκτίμηση της αβεβαιότητας του δικτύου.

Στο τέλος του δευτέρου κεφαλαίου γίνεται η συνόρθωση του δικτύου με τη μέθοδο των εμμέσων παρατηρήσεων με τις ελάχιστες εξωτερικές

δεσμεύσεις, τον ολικό έλεγχο αξιοπιστίας test χ^2 , τη σάρωση δεδομένων κατά Baarda και τις αντίστοιχες συγκρίσεις.

Στο **Κεφάλαιο 3** γίνεται μια περιγραφή των Γεωδαιτικών Δικτύων Τριδιάστατου Ελέγχου, εστιάζοντας στο τριδιάστατο δίκτυο του σταθμού.

Στη συνέχεια περιγράφεται η προετοιμασία, η διαδικασία και ο έλεγχος των μετρήσεων.

Ακολουθεί η επεξεργασία των μετρήσεων, οι απαραίτητες αναγωγές μηκών, η συνόρθωση του δικτύου με τη μέθοδο των εμμέσων παρατηρήσεων επιβάλλοντας τις ελάχιστες εξωτερικές δεσμεύσεις, τον ολικό έλεγχο αξιοπιστίας test χ² και τη σάρωση δεδομένων κατά Baarda.

Τέλος, υπολογίζονται τα στοιχεία απόλυτων και σχετικών ελλείψεων σφάλματος των κορυφών του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου.

Στο **Κεφάλαιο 4** πραγματοποιείται έλεγχος απόλυτων και σχετικών μετακινήσεων σύμφωνα με τις ελλείψεις σφάλματος και τα διανύσματα απόλυτης και σχετικής μετακίνησης κατά την οριζόντια και κατακόρυφη έννοια.

Στο **Κεφάλαιο 5** εξάγονται τα τελικά συμπεράσματα της παρούσας διπλωματικής εργασίας και οι προτάσεις για τα δίκτυα του σταθμού.

Το ΓΔΚΕ μπορεί να ανιχνεύσει μετακινήσεις της τάξης των ± 2 mm και μεγαλύτερες, ακρίβεια ικανοποιητική για τον έλεγχο μετακινήσεων ή παραμορφώσεων στις μονάδες του σταθμού για επίπεδο εμπιστοσύνης 95%.

Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει απόλυτες μετακινήσεις της τάξης των 4 mm οριζοντιογραφικά και ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.

Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει σχετικές μετακινήσεις της τάξης των 5 mm οριζοντιογραφικά και ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.

Ο έλεγχος των μετακινήσεων έδειξε ότι υπάρχουν μετακινήσεις σ' όλες τις κορυφές οριζοντιογραφικά εκτός της κορυφής 9.

Οι απόλυτες μετακινήσεις είναι της τάξης των 4 mm - 11 mm οριζοντιογραφικά για επίπεδο εμπιστοσύνης 95%.

Υψομετρικά παρουσιάζουν καθίζηση οι κορυφές 4 και 6 με μετακινήσεις 13 mm και 22 mm αντίστοιχα για επίπεδο εμπιστοσύνης 95%.

Οι σχετικές μετακινήσεις κυμαίνονται από 4 mm - 16 mm οριζοντιογραφικά και -13 mm - +28 mm υψομετρικά.

ABSTRACT

3D Monitoring of the Vasilikos Power Station site in Cyprus

The object of this thesis is the measurement of the Vertical Geodetic Control Network, the remeasurement of the 3D Geodetic Control Network and the 3D monitoring at the area of the Vasilikos Power Station in Cyprus.

Chapter 1 presents the Vasilikos Power Station with a general description of the location, the site and the starting date for its construction.

Furthermore there is an extensive description of the construction phases of the power plants and of the way they work.

Following is a description of the stations' current status, its consisting units, their characteristics, capabilities and the plans for future development of the station.

Continuing, an introduction is made to the vertical and 3D geodetic control networks, that are installed in the station, with information regarding the date and reasons for their construction.

At its end, the first chapter gives an analytic description of this thesis' scope.

Chapter 2 describes the various methods applied for the determination of orthometric altitude differences and how the choice of the Accurate Trigonometric Heighting (ATH) affects the preliminary analysis accuracy.

In addition, field measurements for the collection of the necessary data (preparation, **instrument calibration**, methods applied, difficulties and response techniques, processing - checking of measurements and statistics) are presented.

Calculations are made for the final altitude differences, errors of closed triangles which are a measurement reliability indicator (measurement repetition or taking a measurement as a test) and an *a priori* estimation of network precision.

At the end of the second chapter takes place the network adjustment through the Indirect Observations Method with a minimum of external commitments, the total chi-squared test reliability check, the Baarda data snooping and corresponding comparisons. **Chapter 3** gives a description of 3D Geodetic Control Networks focusing on 3D Geodetic Control Network of the station.

Following is the description of the preparation, issuance and control of the measurements.

Then follows the processing of the measurements, the necessary length reductions, the network adjustment through the Indirect Observations Method with a minimum of external commitments, the total chi-squared test reliability check and the Baarda data snooping.

At the end of chapter 3 is the calculation and plotting of the absolute and relative standard error ellipses of the 3D Geodetic Control Network benchmarks.

Chapter 4 monitors the absolute and relative displacements according to standard error ellipses and moving displacement vectors in horizontal and vertical space.

Chapter 5 includes the final conclusions of this thesis and presents proposals for station networks.

The Vertical Geodetic Control Network can detect displacements in the order of ± 2 mm or more, which is a satisfactory accuracy for the control of displacements or deformations at the plant units for a confidence level of 95%.

The **3D** Geodetic Control Network has a sensitivity which can detect absolute displacements in the order of **4 mm** on the horizontal plane and \pm 9 mm in elevation for a confidence level of 95%.

The **3D** Geodetic Control Network has a sensitivity which can detect relative displacements in the order of **5 mm** on the horizontal plane and \pm 9 mm in elevation for a confidence level of 95%.

The displacement control showed that there are displacements on the horizontal plane for all benchmarks except for benchmark 9.

The **displacements** were of the order of **4 mm - 11 mm** on the **horizontal plane** for a confidence level of 95%.

On the vertical axis benchmarks **4 and 6** show signs of **sedimentation** with a **13 mm and 22 mm** displacement respectively for 95% confidence level.

The relative displacements range between 4 mm - 16 mm on the horizontal plane and -13 mm - +28 mm vertically.

ΕΙΣΑΓΩΓΗ

Ο ηλεκτρισμός στην Κύπρο, έχει μια ιστορία μεγαλύτερη των 100 χρόνων. Πρωτοεμφανίστηκε στις αρχές του 20^{ου} αιώνα και συγκεκριμένα το 1903, με την εγκατάσταση από την τότε αποικιακή Αγγλική Κυβέρνηση μιας ηλεκτρογεννήτριας για τις ανάγκες του Αρμοστίου στη Λευκωσία.

Μια δεύτερη ηλεκτρογεννήτρια εγκαταστάθηκε μετά από λίγο καιρό στο Γενικό Νοσοκομείο Λευκωσίας.

Μέχρι το 1952 που ιδρύθηκε η Αρχή Ηλεκτρισμού Κύπρου (AHK), η διάδοση του ηλεκτρισμού στην Κύπρο συνεχιζόταν με πολύ αργό ρυθμό, ενώ ο εξηλεκτρισμός της υπαίθρου ήταν ουσιαστικά ανύπαρκτος.

Ο πρώτος Ηλεκτροπαραγωγός Σταθμός ετέθη σε πρώτη φάση λειτουργίας το 1953 στην περιοχή Δεκέλεια.

Στη συνέχεια η ανάπτυξη της ΑΗΚ και φυσικά ο εξηλεκτρισμός της Κύπρου προχώρησε με γοργά βήματα, που έγιναν άλματα μετά την ανακήρυξη της Κυπριακής Δημοκρατίας το 1960.

Χαρακτηριστικά, αναφέρεται πως το 1952, απολάμβαναν το αγαθό του ηλεκτρισμού 20 περίπου χιλιάδες καταναλωτές. Έναν χρόνο μετά την ίδρυση της ΑΗΚ οι καταναλωτές αυξήθηκαν στις 38 περίπου χιλιάδες, ενώ μέχρι την ανακήρυξη της Κυπριακής Δημοκρατίας, το 1960, οι καταναλωτές κυμαίνονταν γύρω στις 80 χιλιάδες.

Οι αυξημένες απαιτήσεις σε ηλεκτρική ενέργεια υπαγόρευαν την εγκαθίδρυση και νέου ηλεκτροπαραγωγού σταθμού. Ο δεύτερος Ηλεκτροπαραγωγός Σταθμός ετέθη σε πρώτη φάσης λειτουργίας το 1966 στο παραθαλάσσιο χωριό Μονή.

Την εντυπωσιακή ανάπτυξη της ΑΗΚ και βέβαια της Κυπριακής Δημοκρατίας, φρέναρε το πραξικόπημα της 15^{ης} Ιουλίου 1974 και η Τουρκική Εισβολή που ακολούθησε.

Μετά την ανάκαμψη από τα τραγικά γεγονότα του 1974, ακολούθησε η ανέγερση του τρίτου Ηλεκτροπαραγωγού Σταθμού στην περιοχή Δεκέλεια.

Ο τρίτος Σταθμός ετέθη σε πρώτη φάση λειτουργίας το 1982 απενεργοποιώντας σταδιακά τον πρώτο Ηλεκτροπαραγωγό Σταθμό της ομώνυμης περιοχής. Η αύξηση του πληθυσμού, η επικρατούσα ανάπτυξη και η απαίτηση αναβάθμισης των υφιστάμενων Ηλεκτροπαραγωγών Σταθμών υπαγόρευε την ανέγερση ενός ακόμα Ηλεκτροπαραγωγού Σταθμού.

Το 1997 άρχισαν οι εργασίες για ανοικοδόμηση του νέου Ηλεκτροπαραγωγού Σταθμού στην περιοχή ''Βασιλικός''. Σημαντικό ρόλο κατά την ανέγερση του Ηλεκτροπαραγωγού Σταθμού διαδραμάτισε το Γεωδαιτικό Δίκτυο που ιδρύθηκε για τον σκοπό αυτόν.

Η πρώτη φάση του Ηλεκτροπαραγωγού Σταθμού λειτούργησε το 2000. Στις 11/7/2011 ο ΗΣ Βασιλικού καταστράφηκε σχεδόν ολοσχερώς μετά από έκρηξη σε παρακείμενη ναυτική βάση [6].

Οι ζημιές που υπέστη ο Σταθμός ήταν δυσχερείς. Για την επιδιόρθωση των ζημιών απαραίτητη ήταν η ίδρυση δύο Γεωδαιτικών Δικτύων, Κατακορύφου και Τριδιάστατου Ελέγχου με υψηλές προδιαγραφές.

Το εγχείρημα αυτό επετεύχθη το 2012 στο πλαίσιο δύο πτυχιακών εργασιών οι οποίες διεξήχθησαν από τη Σχολή Πολιτικών Μηχανικών και Μηχανικών Γεωπληροφορικής του Τεχνολογικού Πανεπιστημίου Κύπρου [Σταύρου Γ., Κωνσταντινίδης Κ., 2013]. Κατά την πρώτη σειρά παρατηρήσεων μετρήθηκε το Γεωδαιτικό Δίκτυο Τριδιάστατου Ελέγχου τόσο με επίγειες όσο και με δορυφορικές μετρήσεις.

Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η μέτρηση για πρώτη φορά του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου, η επαναμέτρηση του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου με επίγειες μεθόδους και ο έλεγχος των μετακινήσεων (2012 - 2015) στην περιοχή που εδρεύει ο Σταθμός.

ΚΕΦΑΛΑΙΟ 1

ΓΕΩΔΑΙΤΙΚΑ ΔΙΚΤΥΑ ΣΤΟΝ

ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΟ ΣΤΑΘΜΟ ΒΑΣΙΛΙΚΟΥ

1.1. Γενικά

Ο Ηλεκτροπαραγωγός Σταθμός Βασιλικού αποτελεί το μεγαλύτερο έργο υποδομής της Κύπρου. Η σημασία του βασικού αυτού έργου υποδομής είναι στενά συνδεδεμένη με την ευρύτερη οικονομική ανάπτυξη της Κύπρου. Οι εργασίες για την ανέγερσή του ξεκίνησαν το 1997 στην περιοχή του Βασιλικού απ΄ όπου και πήρε την ονομασία του. Ο ΗΣ Βασιλικού βρίσκεται 28 km Ανατολικά της Λεμεσού (εικ.1.1) μεταξύ της Ακτής του Κυβερνήτη και της κοινότητας Ζυγίου. Διοικητικά ανήκει στην επαρχία Λάρνακας και συγκεκριμένα στην κοινότητα Μαρί. Οι χερσαίες εγκαταστάσεις του καλύπτουν έκταση μεγαλύτερη από 400 στρέμματα.[4]

Εικόνα 1.1 : Θέση ΗΣ Βασιλικού [5]

Ο Ηλεκτροπαραγωγός Σταθμός τέθηκε σε εμπορική λειτουργία το 2000 με δύο Ατμοηλεκτρικές Μονάδες (ΑΜ) με δυνατότητα παραγωγής 260MW και μια Μονάδα Αεριοστροβίλων Ανοικτού Κύκλου (MAAK)

δυναμικότητας 35MW (εικ.1.2). Έγινε επίσης σημαντική υποδομή για την μελλοντική επέκταση, η οποία συνεχίζεται σε Φάσεις και βασίζεται στη παρούσα αύξηση της ζήτησης ηλεκτρισμού, όπως επίσης και σε μελέτες του ρυθμού αύξησης και μελλοντικής ζήτησης που διεξάγει το Τμήμα Παραγωγής και ο Διαχειριστής Συστήματος Μεταφοράς (ΔΣΜ).

Εικόνα 1.2 : Η πρώτη φάση λειτουργίας του ΗΣ Βασιλικού [7]

Η Φάση ΙΙ περιελάμβανε την τρίτη ατμοηλεκτρική μονάδα δυναμικότητας 130MW και τέθηκε σε εμπορική λειτουργία το 2005. Οι πρώτες τρεις μονάδες χρησιμοποιούν ως καύσιμο το μαζούτ.

Η Φάση ΙΙΙ αποτέλεσε αποφασιστική στροφή στην παραγωγή ηλεκτρικής ενέργειας στην Κύπρο με την υιοθέτηση νέας τεχνολογίας αλλά και την προοπτική χρήσης νέας μορφής καυσίμου. Εγκαταστάθηκε μια Μονάδα Αεριοστροβίλων Συνδυασμένου Κύκλου (ΜΑΣΚ) η οποία περιλαμβάνει δύο μονάδες αεριοστροβίλων δυναμικότητας 72.5 MW η καθεμιά και μία ατμοηλεκτρική μονάδα 75MW. Τέθηκε σε λειτουργία

ανοικτού κύκλου το καλοκαίρι του 2008 και σε πλήρη λειτουργία συνδυασμένου κύκλου το 2009.

Η Φάση IV ακολούθησε αμέσως μετά με ακόμα μια μονάδα του ίδιου τύπου και τέθηκε σε εμπορική λειτουργία το 2011. Στις 11 Ιουλίου 2011 μετά από έκρηξη σε παρακείμενη ναυτική βάση ο ΗΣ υπέστη σοβαρές ζημιές. Για την επιδιόρθωση του σταθμού χρειάστηκε περίοδος δύο ετών και δαπανήθηκε το ποσό των 180 εκατομμυρίων ευρώ.

Ο σταθμός σήμερα (εικ.1.3) αποτελείται από τρείς Ατμοηλεκτρικές Μονάδες, τέσσερις Μονάδες Αεριοστροβίλων Συνδυασμένου Κύκλου και μια Μονάδα Αεριοστροβίλου Ανοικτού Κύκλου (πίν.1.1). Οι πέντε μονάδες αεριοστροβίλων χρησιμοποιούν ως καύσιμο το πετρέλαιο αλλά είναι σχεδιασμένες να μπορούν να χρησιμοποιούν και φυσικό αέριο.

Στο Βασιλικό προβλέπεται η εγκατάσταση σε παρακείμενο χώρο Μονάδας Αποϋγροποίησης Φυσικού Αερίου (ΜΑΦΑ) έτσι ώστε να γίνεται παραλαβή και αποθήκευση υγροποιημένου φυσικού αερίου και αποϋγροποίηση για χρήση από όλες τις μονάδες παραγωγής.

Η εισαγωγή και χρήση του αερίου θα βελτιώσει σημαντικά την παραγωγή ηλεκτρισμού, αφού θα είναι δυνατή η καθαρότερη και βέλτιστη απόδοση των μονάδων.

Μονάδα	Καύσιμο	Δυναμικότητα	Απόδοση	
Steam Unit 1	Μαζούτ	130 MW	39 %	
Steam Unit 2	Μαζούτ	130 MW	39 %	
Steam Unit 3	Μαζούτ	130 MW	39 %	
CCGT Unit 4	Πετρέλαιο	225 MW	52 %	
CCGT Unit 5	Πετρέλαιο	225 MW	52 %	
CCGT Unit 6	Πετρέλαιο	225 MW	52 %	
CCGT Unit 7	Πετρέλαιο	225 MW	52 %	
OCGT 1	Πετρέλαιο	38 MW	27 %	
	Total	1328 MW		

Πίνακας 1.1 : Στοιχεία μονάδων σταθμού

Η κεφαλαιουχική δαπάνη μέχρι την ολοκλήρωση του Ηλεκτροπαραγωγού Σταθμού Βασιλικού αναμένεται να φτάσει το 1 δις. Ευρώ.

Ταυτόχρονα γίνονται αναβαθμίσεις και τεχνολογικός εκσυγχρονισμός των υφιστάμενων εγκαταστάσεων με σημαντικό κόστος. Οι αναβαθμίσεις βελτιώνουν τη λειτουργία του εξοπλισμού με αποτέλεσμα καλύτερες περιβαλλοντικά συνθήκες. Κατά το 2013, ο ΗΣ Βασιλικού, παρήγαγε το 56.9% (2 243 261 MWh) της συνολικής ηλεκτρικής ενέργειας που παρήχθη από τους ΗΣ της AHK, ενώ κατά την ίδια περίοδο, εξήγαγε το 57.2% (2 156 953 MWh) της συνολικής ηλεκτρικής ενέργειας που εξήχθη από τους ΗΣ της AHK.

Εικόνα 1.3 : Δορυφορική εικόνα ΗΣ Βασιλικού [5]

1.2. Γεωδαιτικά Δίκτυα του ΗΣ Βασιλικού

Το Γεωδαιτικό Δίκτυο Τριδιάστατου Ελέγχου (εικ.1.4) ιδρύθηκε, μετρήθηκε και επιλύθηκε το έτος 2012 στο πλαίσιο δύο πτυχιακών εργασιών από τη Σχολή Πολιτικών Μηχανικών και Μηχανικών Γεωπληροφορικής του Τεχνολογικού Πανεπιστημίου Κύπρου [Σταύρου

Γ., Κωνσταντινίδης Κ., 2013], μετά την καταστροφική έκρηξη στην παρακείμενη ναυτική βάση. Αποτελείται συνολικά από 9 κορυφές (1 - Submarine, 2 - Parking, 3 - Thalassa, 4 - Skopia, 5 - Kratiras, 6 - Pevka, 7 - Daytank, 8 - Pumphouse και 9 - Kaminada).

Εικόνα 1.4 : Τριδιάστατο δίκτυο ΗΣ Βασιλικού [5]

Οι 7 από τις 9 κορυφές (2 - Parking, 3 - Thalassa, 4 - Skopia, 5 - Kratiras, 6 - Pevka, 7 - Daytank και 8 - Pumphouse) έχουν υλοποιηθεί με

βάθρα από οπλισμένο σκυρόδεμα μέσα στη γη (εικ.1.5.α), η κορυφή 1 -Submarine έχει υλοποιηθεί με μεταλλικό βάθρο πάνω σε μονολιθική κατασκευή (εικ.1.5.β) και η κορυφή 9 - Kaminada με ειδικό μεταλλικό βραχίονα πάνω στην καμινάδα του εργοστασίου (εικ.1.5.γ) σε ύψος περίπου 30 m από το έδαφος.

α

γ

Εικόνα 1.5 : Κορυφές 6-Ρ, 1-S και 9-Κ

Στη στέψη κάθε κορυφής υπάρχει μπουλόνι με σπείρωμα 5/8 της ίντσας για την τοποθέτηση του ΟΓΣ ή του στόχου.

β

Οι λόγοι που οδήγησαν στην ίδρυση του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου ήταν :

- Έλεγχος καταλληλότητας των κτιριακών εγκαταστάσεων λόγω της καταπόνησης που δέχτηκαν από το οστικό κύμα της έκρηξης
- Έλεγχος πρανών στις κορυφές 4, 5 και 6
- Χρήση για οποιαδήποτε εφαρμογή όπως προσθήκη καινούριων βιομηχανικών εγκαταστάσεων, έλεγχο μετακινήσεων ή παραμορφώσεων τόσο των βιομηχανικών εγκαταστάσεων όσο και του περιβάλλοντα χώρου
- Αποτυπώσεις και χαράξεις σε οποιοδήποτε σημείο του σταθμού

Στον πίνακα 1.2 παρουσιάζεται η οπτική επαφή μεταξύ των κορυφών του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου. Σ' ένα δίκτυο θεωρείται πλεονέκτημα να υπάρχει αμοιβαία ορατότητα όσο το δυνατόν περισσότερων κορυφών. Οι λόγοι είναι οι εξής :

- Το δίκτυο είναι προσφορότερο στις μετρήσεις πεδίου, εξοικονομώντας χρόνο και κόπο
- Υπάρχει δυνατότητα σύνδεσης περισσότερων κορυφών άρα αυτό συνεπάγεται πιο ακριβές αποτέλεσμα

A/A	ΚΟΡΥΦΕΣ ΔΙΚΤΥΟΥ								
ΚΟΡΥΦΕΣ ΔΙΚΤΥΟΥ	1-S	2-P	3-T	4-S	5-K	6-P	7-D	8-P	9-K
1-S	-			-			-		
2-P		-		-		-	-		-
3-T			-		-		-		-
4-S	-	-		-		-			
5-K			-		-				
6-P		-		-		-		-	
7-D	-	-	-				-	-	
8-P						-	-	-	
9-K		-	-						-

Βελτίωση της γεωμετρίας του δικτύου

Πίνακας 1.2 : Οπτική επαφή μεταξύ των κορυφών του ΓΔΤΕ

Τα κριτήρια με τα οποία επιλέχθηκαν οι συγκεκριμένες θέσεις ήταν :

- Πλήρωση των πιο πάνω λόγων κατασκευής του δικτύου
- Βέλτιστη γεωμετρία του δικτύου
- Αμοιβαία ορατότητα όσο το δυνατόν περισσοτέρων κορυφών
- Οι κορυφές να είναι πρόσφορες στη μέτρηση με επίγειες μεθόδους
- Οι κορυφές να είναι πρόσφορες στη μέτρηση με δορυφορικές μεθόδους, δηλαδή να υπάρχει επαρκής ανοικτός ορίζοντας
- Να υπάρχει απρόσκοπτη πρόσβαση στο σημείο κατά προτίμηση με όχημα
- Να επιτρέπεται τεχνικά η εγκατάσταση του βάθρου που υλοποιεί τη θέση του κάθε σημείου
- Να υπάρχει ικανοποιητική ασφάλεια διαχρονικά για το βάθρο υλοποίησης

Σε κάθε βάθρο υπάρχει υλοποιημένη υψομετρική αφετηρία (εικ.1.6) εκτός από την κορυφή 9.

Κάθε υψομετρική αφετηρία τοποθετήθηκε 20 - 30 cm πάνω από τη βάση κάθε βάθρου.

Οι υψομετρικές αφετηρίες είναι μπουλόνια από ανοξείδωτο χάλυβα εκτός από τη κορυφή 1 - Submarine της οποίας είναι από γαλβανισμένο χάλυβα. Ο λόγος που οδήγησε στην επιλογή του συγκεκριμένου υλικού είναι η τοποθεσία του σταθμού ο οποίος βρίσκεται δίπλα στην θάλασσα.

Ο ανοξείδωτος και ο γαλβανισμένος χάλυβας ως υλικά παρουσιάζουν αντίσταση στην οξείδωση που προκαλείται από διάφορους παράγοντες, όπως οι διαβρωτικές ουσίες που υπάρχουν στο νερό της θάλασσας και στην υγρασία.

Η τοποθέτηση των υψομετρικών αφετηριών έγινε για να υπάρχει η δυνατότητα υλοποίησης ενός Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου.

Εικόνα 1.6 : Μπουλόνια κορυφών 1-S και 2-Ρ

Οι υψομετρικές αφετηρίες που υπάρχουν στα βάθρα αποτελούν το Γεωδαιτικό Δίκτυο Κατακορύφου Ελέγχου.

Η ύπαρξη ενός Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου δίνει την δυνατότητα εντοπισμού και μέτρησης μετακινήσεων ή παραμορφώσεων
μικρότερης τάξης μεγέθους από αυτήν που δίνει ένα Γεωδαιτικό Δίκτυο Τριδιάστατου Ελέγχου όσον αφορά τα ορθομετρικά υψόμετρα.

Η αβεβαιότητα των ±3mm στις συντεταγμένες των σημείων η οποία επετεύχθη στις προηγούμενες σειρές μετρήσεων [Σταύρου Γ., Κωνσταντινίδης Κ., 2013] στις στέψεις των βάθρων του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου (ΓΔΤΕ) τόσο με δορυφορικές όσο και με επίγειες μεθόδους οδήγησε στη μέτρηση του υψομετρικού δικτύου, με σκοπό την ελαχιστοποίηση της αβεβαιότητας, η οποία θα καλύψει μελλοντικές απαιτήσεις του δικτύου για εφαρμογές ακρίβειας.

1.3. Αντικείμενο διπλωματικής εργασίας

Η παρούσα διπλωματική εργασία έχει ως αντικείμενο τις μετρήσεις πεδίου, την επεξεργασία μετρήσεων, την επίλυση, τον ολικό έλεγχο αξιοπιστίας τεστ χ² και τη σάρωση δεδομένων κατά Baarda για επίπεδο εμπιστοσύνης 95% για πρώτη φορά του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου.

Αντικείμενο της παρούσας αποτελεί επίσης η επαναμέτρηση, η επεξεργασία των παρατηρήσεων, η επίλυση, ο ολικός έλεγχος αξιοπιστίας τεστ χ² και ο έλεγχος δεδομένων κατά Baarda για επίπεδο εμπιστοσύνης 95% του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου.

Επίσης για τα σημεία του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου γίνεται έλεγχος μετακινήσεων οριζοντιογραφικά και υψομετρικά.

Για τον έλεγχο των μετακινήσεων υπολογίζονται και σχεδιάζονται υπό κατάλληλη κλίμακα τα διανύσματα και οι ελλείψεις των απόλυτων και των σχετικών μετακινήσεων κατά τα έτη 2012 - 2015.

Στο τέλος υπολογίζονται οι απόλυτες και σχετικές μετακινήσεις οριζοντιογραφικά και υψομετρικά για επίπεδο εμπιστοσύνης 95%.

ΚΕΦΑΛΑΙΟ 2

ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΕΓΧΟΥ

2.1. Γενικά

Υψομετρικό δίκτυο ή χωροσταθμικό δίκτυο ή δίκτυο κατακορύφου ελέγχου ορίζεται ένα σύνολο σημείων της ΦΓΕ των οποίων είναι γνωστό το ορθομετρικό ή το γεωμετρικό υψόμετρο. Τα σημεία τα οποία αποτελούν το δίκτυο είναι υλοποιημένα με ειδική μόνιμη σήμανση, όπως βάθρα από οπλισμένο σκυρόδεμα, μπουλόνια με σφαιρική κεφαλή από ορείχαλκο ή ανοξείδωτο χάλυβα ή άλλα ανθεκτικά υλικά. Για την τοποθέτηση των κορυφών του δικτύου προτιμούνται περιοχές εδαφικά σταθερές και κτίσματα με μεγάλη διάρκεια ζωής (π.χ. εκκλησίες, δημόσια κτίρια, μέγαρα, σχολεία, πανεπιστημιακές εγκαταστάσεις κ.λ.π.) [Μπαλοδήμος Δ.-Δ., Αραμπατζή Ο., 2004].

Οι υψομετρικές διαφορές διακρίνονται σε δύο κατηγορίες, τις ορθομετρικές και τις γεωμετρικές. Οι ορθομετρικές οι οποίες αναφέρονται στη ΜΣΘ, χρησιμοποιούνται στα τεχνικά έργα και προσδιορίζονται κυρίως με επίγειες μεθόδους μέτρησης όπως :

- Γεωμετρική Χωροστάθμηση (ΓΧ) : άμεση μέθοδος προσδιορισμού υψομετρικών διαφορών. Γίνεται χρησιμοποιώντας χωροβάτη (οπτικομηχανικό ή ψηφιακό) και σταδίες (απλές ή ψηφιακές), με αβεβαιότητα που κυμαίνεται από ± 0.2 mm/Km έως ± 1 cm/Km
- Τριγωνομετρική Υψομετρία (ΤΥ) : έμμεση μέθοδος προσδιορισμού υψομετρικών διαφορών. Γίνεται συνδυάζοντας μετρήσεις ζενιθιών γωνιών, μηκών, ύψους οργάνου και ύψους σκόπευσης. Χρησιμοποιούνται ολοκληρωμένοι γεωδαιτικοί σταθμοί και ανακλαστήρες. Το σφάλμα προσδιορισμού της υψομετρικής διαφοράς κυμαίνεται από ± 2 cm - ±10 cm
- Τριγωνομετρική Υψομετρία Ακριβείας (TPYA) : έμμεση μέθοδος προσδιορισμού υψομετρικών διαφορών, μεταξύ προσιτών ή απρόσιτων σημείων. Χρησιμοποιούνται ολοκληρωμένοι γεωδαιτικοί σταθμοί που μετρούν μήκη χωρίς ανακλαστήρα και στόχοι ή ανακλαστήρες. Μετρούνται μήκη και ζενίθιες γωνίες. Το σφάλμα προσδιορισμού της υψομετρικής διαφοράς είναι της τάξης των ± 1.5 mm ± 5 mm
- Βαρομετρική Υψομετρία (BY) : έμμεση μέθοδος προσδιορισμού υψομετρικών διαφορών. Βασίζεται στον προσδιορισμό της διαφοράς της ατμοσφαιρικής πίεσης μεταξύ των σημείων, η οποία

είναι ανάλογη της μεταβολής του υψομέτρου. Χρησιμοποιούνται βαρόμετρα ή αλτίμετρα και το σφάλμα προσδιορισμού των υψομετρικών διαφορών είναι περίπου ± 30 cm

Υδραυλική Χωροστάθμηση (YX) : άμεση μέθοδος προσδιορισμού υψομετρικών διαφορών, η οποία γίνεται χρησιμοποιώντας την αρχή των συγκοινωνούντων δοχείων με αβεβαιότητα λίγων mm. Μπορεί να εφαρμοστεί σε μικρής έκτασης περιοχές ή χώρους με μικρές υψομετρικές διαφορές [Λάμπρου Ε., Πανταζής Γ., 2013].

Οι γεωμετρικές υψομετρικές διαφορές αναφέρονται στο ελλειψοειδές, δεν χρησιμοποιούνται σε τεχνικά έργα και προσδιορίζονται συνήθως με δορυφορικές μεθόδους όπως :

- Μετρήσεις με συστήματα GNSS
- Δορυφορική αλτιμετρία

2.2. Γεωμετρική Χωροστάθμηση (ΓΧ)

Η ΓΧ είναι άμεση μέθοδος προσδιορισμού υψομετρικών διαφορών, η οποία γίνεται χρησιμοποιώντας χωροβάτη (οπτικομηχανικό ή ψηφιακό) και σταδίες (απλές ή ψηφιακές). Για την εφαρμογή της μεθόδου ο απαραίτητος εξοπλισμός είναι :

- Χωροβάτης
- 1 χωροσταθμικός πήχυς (σταδία)
- 1 χωροσταθμική βάση (χελώνα)
- 1 τρίποδας

Η ΓΧ βασίζεται στην υλοποίηση ενός οριζοντίου επιπέδου [Γεωργόπουλος Γ. κ.α. 2011]. Για να επιτευχθεί αυτό χρησιμοποιείται ο χωροβάτης ο οποίος μπορεί να οριζοντιώνει με μεγάλη ακρίβεια την σκοπευτική του γραμμή υλοποιώντας κατά την περιστροφή της γύρω από τον πρωτεύοντα άξονα ΠΠ΄ ένα οριζόντιο επίπεδο (διακεκομμένη γραμμή σχ.2.1).

Για να προσδιοριστεί η υψομετρική διαφορά μεταξύ των σημείων Α και Β γίνονται δύο σκοπεύσεις. Τοποθετείται πρώτα η σταδία στο σημείο Α κατακόρυφα, σκοπεύεται, καταγράφεται η μέτρηση και μετά η ίδια διαδικασία γίνεται και για το σημείο Β. Η φορά της ΓΧ εξαρτάται από την υψομετρική διαφορά η οποία πρέπει να προσδιοριστεί.

Για την ελαχιστοποίηση των σφαλμάτων όσον αφορά τις συνθήκες της ατμόσφαιρας αλλά και την απόκλιση του σκοπευτικού άξονα του

χωροβάτη ο χωροβάτης πρέπει να τοποθετείται στη μεσοκάθετο μεταξύ των δύο σημείων εκ των οποίων λαμβάνονται οι σκοπεύσεις όπισθεν και έμπροσθεν. Επίσης αναγκαίος είναι ο έλεγχος του μέσου άκρου ο οποίος προσδιορίζει το σφάλμα της οριζοντίωσης του σκοπευτικού άξονα.

Η υψομετρική διαφορά προκύπτει ως η διαφορά σκόπευσης στο Α (Όπισθεν) μείον η σκόπευση στο Β (Έμπροσθεν) :

$$\Delta H_{AB} = H_B - H_A = O\pi i\sigma\theta \epsilon v - E\mu \pi \rho o\sigma\theta \epsilon v = \alpha - \beta \qquad (2.1)$$

Στην περίπτωση που η απόσταση μεταξύ των δύο σημείων απαιτεί περισσότερες των δύο στάσεων (σχ.2.2) τότε πραγματοποιείται χωροσταθμική όδευση.

Η υψομετρική διαφορά μεταξύ των σημείων Α και Β υπολογίζεται από τη σχέση 2.2 :

$$\Delta H_{AB} = H_B - H_A = \sum_{i=1}^n O_i - \sum_{i=1}^n E_i$$
(2.2)

Σχήμα 2.1 : Σχήμα μοναδιαίας ΓΧ [Λάμπρου Ε., Πανταζής Γ., 2013]

Σχήμα 2.2 : Σχήμα χωροσταθμικής όδευσης [Λάμπρου Ε., Πανταζής Γ., 2013]

Τα σφάλματα που εμφανίζονται στη ΓΧ οφείλονται :

- Στον χωροβάτη
- Στις σταδίες
- Στον παρατηρητή
- Στην ατμόσφαιρα

Η αβεβαιότητα προσδιορισμού στις υψομετρικές διαφορές υπολογίζεται εφαρμόζοντας νόμο μετάδοσης σφαλμάτων στην σχέση 2.1:

$$\sigma_{\Delta H} = \pm \sqrt{\sigma_O^2 + \sigma_E^2}$$
(2.3)

όπου $\sigma_0 = \sigma_E = \sigma_\alpha =$ το σφάλμα ανάγνωσης στην σταδία.

Αν ο χωροβάτης είναι οπτικομηχανικός αυτό εξαρτάται κυρίως από την διακριτική ικανότητα του ματιού (±0.25mm) πολλαπλασιασμένη με την απόσταση σκόπευσης.

Στην περίπτωση που ο χωροβάτης είναι ψηφιακός, το σφάλμα ανάγνωσης εξαρτάται από τις δυνατότητες του χωροβάτη.

Επομένως το σφάλμα της υψομετρικής διαφοράς ΔΗ για μια μόνο στάση οργάνου θα είναι :

$$\sigma_{\Delta H} = \pm \sqrt{2} \cdot \sigma_{\alpha} \tag{2.4}$$

θεωρώντας ότι $\sigma_0 = \sigma_E = \sigma_\alpha$.

Για η στάσεις χωροβάτη η υψομετρική διαφορά θα είναι :

$$\Delta H = \Delta H_1 + \Delta H_2 + \dots + \Delta H_n \tag{2.5}$$

εφαρμόζοντας νόμο μετάδοσης σφαλμάτων το σφάλμα της υψομετρικής διαφοράς θα είναι :

$$\sigma_{\Delta H} = \pm \sqrt{\sigma_{\Delta H_1}^2 + \sigma_{\Delta H_2}^2 + \ldots + \sigma_{\Delta H_n}^2}$$
(2.6)

θεωρώντας ότι $\sigma_{\Delta H_1} {=} \sigma_{\Delta H_2} {=} {\dots} {=} \sigma_{\Delta H_n} \pi \rho$ οκύπτει :

$$\sigma_{\Delta H} = \pm \sqrt{n \cdot \sigma_{\Delta H_n}^2}$$
(2.7)

και με αντικατάσταση της σχέσης 2.4 στην σχέση 2.6 προκύπτει ότι :

$$\sigma_{\Delta H} = \pm \sqrt{\mathbf{n} \cdot 2 \cdot \sigma_{\alpha}^2} \tag{2.8}$$

gia diplý gewmetriký cwrostádmyst me n_1 stáseic metábasyc kai n_2 stáseic epistrogýc ba eívai $n=n_1+n_2$:

$$\Delta H = \frac{\Delta H_{\mu \epsilon \tau \alpha \beta \alpha \sigma \eta \varsigma} + \Delta H_{\epsilon \pi \iota \sigma \tau \rho o \phi \eta \varsigma}}{2}$$
(2.9)

εφαρμόζοντας νόμο μετάδοσης σφαλμάτων :

$$\sigma_{\Delta H} = \pm \frac{1}{2} \cdot \sqrt{\sigma_{\Delta H_{\mu\epsilon\tau\dot{\alpha}\beta\alpha\sigma\eta\varsigma}}^2 + \sigma_{\Delta H_{\epsilon\pi\iota\sigma\tau\rhoo\phi\dot{\eta}\varsigma}}^2}$$
(2.10)

$$\sigma_{\Delta H} = \pm \frac{1}{2} \cdot \sigma_{\alpha} \cdot \sqrt{2 \cdot (n_1 + n_2)}$$
(2.11)

Όταν ο αριθμός στάσεων του χωροβάτη στη μετάβαση ισούται με τον αριθμό στάσεων της επιστροφής δηλαδή $n_1 = n_2$ τότε :

$$\sigma_{\Delta H} = \pm \sigma_{\alpha} \cdot \sqrt{n} \tag{2.12}$$

2.3. ΤΡιγωνομετρική Υψομετρία Ακριβείας (ΤΡΥΑ)

Η ΤΡΥΑ είναι μέθοδος προσδιορισμού υψομετρικών διαφορών μεταξύ προσιτών και απρόσιτων σημείων με χρήση ολοκληρωμένων γεωδαιτικών σταθμών, που μετρούν μήκη και χωρίς τη χρήση ανακλαστήρα (RL) [Λάμπρου Ε., 2007]. Με την εφαρμογή της προσδιορίζονται υψομετρικές διαφορές από μετρήσεις μηκών (D) και ζενιθιών γωνιών (z). Έχει χρησιμοποιηθεί μέχρι τώρα σε διάφορα υψομετρικά δίκτυα, με ικανοποιητικά αποτελέσματα [Ζαννής Ι. 2008, Τεμένος Κ. 2007].

Για την εφαρμογή της TPYA για δύο ή περισσότερες στάσεις είναι απαραίτητος ο ακόλουθος εξοπλισμός :

- Ένας ολοκληρωμένος γεωδαιτικός σταθμός (ΟΓΣ) που έχει τη δυνατότητα μέτρησης μήκους και χωρίς τη χρήση ανακλαστήρα (RL)
- Ένα σύστημα γωνιομετρικού στόχου (στόχος, βάση στήριξης, τρικόχλιο) ή ανακλαστήρα (ανακλαστήρας, βάση στήριξης, τρικόχλιο)
- Δύο τρίποδες

Για την εφαρμογή της TPYA με μία μόνο στάση απαιτείται μόνο ο γεωδαιτικός σταθμός και ένας τρίποδας. Μεταξύ δύο προσιτών ή απρόσιτων σημείων Α και Β που είναι και τα δυο ορατά από κάποια θέση εγκατάστασης του γεωδαιτικού σταθμού και δεν απέχουν μεγάλη

απόσταση από αυτόν, μπορεί να εφαρμοστεί η TPYA με μία μόνο στάση οργάνου (σχ.2.3). Τοποθετείται ο γεωδαιτικός σταθμός σε τυχαία κατάλληλη θέση δηλαδή να είναι όσο το δυνατόν στην μεσοκάθετο των σημείων για να ελαχιστοποιούνται και να ισομοιράζονται οι αποστάσεις από τον γεωδαιτικό σταθμό προς το κάθε σημείο. Δεν απαιτείται κέντρωση αλλά μόνο οριζοντίωση.

Μετρούνται οι ζενίθιες γωνίες $z_{\Sigma A}$, $z_{\Sigma B}$ και τα μήκη $D_{\Sigma A}$, $D_{\Sigma B}$ και κατόπιν υπολογίζονται οι υψομετρικές διαφορές $\Delta H_{\Sigma A}$, $\Delta H_{\Sigma B}$ μεταξύ κάθε σημείου και του σημείου τομής των αξόνων του γεωδαιτικού σταθμού.

Η υψομετρική διαφορά ΔH_{AB} μεταξύ των σημείων A, B προκύπτει από τη σχέση 2.13 :

$$\Delta H_{AB} = H_B - H_A = \Delta H_{\Sigma B} - \Delta H_{\Sigma A} = H_B - H_{\Sigma} - H_A + H_{\Sigma}$$
(2.13)

Σχήμα 2.3 : Σχηματική παράσταση της ΤΡΥΑ με μία στάση οργάνου

όπου

$$\Delta H_{\Sigma A} = \cos z_{\Sigma A} \cdot D_{\Sigma A} + (1 - \kappa) \cdot \frac{D_{\Sigma A}^2}{2 \cdot \kappa} \cdot \sin^2 z_{\Sigma A}$$
(2.14)

$$\Delta H_{\Sigma B} = \cos z_{\Sigma B} \cdot D_{\Sigma B} + (1 - \kappa) \cdot \frac{D_{\Sigma B}^2}{2 \cdot R} \cdot \sin^2 z_{\Sigma B}$$
(2.15)

Στην περίπτωση που τα σημεία Α και Β δεν είναι και τα δύο ορατά από κάποια θέση όπου μπορεί να τοποθετηθεί ο γεωδαιτικός σταθμός, ή

η μεταξύ τους απόσταση είναι μεγάλη τότε μπορεί να εφαρμοστεί η παρακάτω διαδικασία (σχ. 2.4).

Τοποθετείται σε τυχαία θέση, κοντά στο σημείο A (σε απόσταση περίπου 20 m) ο τρίποδας T_1 με τρικόχλιο και τον γεωδαιτικό σταθμό (σχ.2.4.α). Αντίστοιχο σύστημα με τρίποδα T_2 , τρικόχλιο και γωνιομετρικό στόχο, τοποθετείται κοντά στο σημείο B.

Ο γεωδαιτικός σταθμός που βρίσκεται στον τρίποδα T_1 σκοπεύει αρχικά προς το σημείο A και μετράται το μήκος D_{1A} και η ζενίθια γωνία z_{1A} . Στη συνέχεια σκοπεύεται ο στόχος T_2 και μετράται το μήκος D_{12} και η ζενίθια γωνία z_{12} . Κατόπιν αλλάζουν αμοιβαία θέση ο γωνιομετρικός στόχος και ο ΟΓΣ, οι οποίοι αποσπώνται από τα τρικόχλια τους με προσοχή χωρίς να επέλθει καμία μεταβολή στη θέση του κάθε συστήματος τρικόχλιο – τρίποδας.

Ο γεωδαιτικός σταθμός, που βρίσκεται πια στον τρίποδα T_2 (σχ. 2.4.β) μετρά (σε επιστροφή) το μήκος D_{21} και τη ζενίθια γωνία z_{21} προς τον στόχο που βρίσκεται στον τρίποδα T_1 . Ύστερα σκοπεύοντας προς το σημείο B μετράται το μήκος D_{2B} και η ζενίθια γωνία z_{2B} . Η υψομετρική διαφορά ΔH_{AB} μεταξύ των δύο σημείων προσδιορίζεται από την σχέση :

$$\Delta H_{AB} = \Delta H_{2B} - \Delta H_{1A} + \frac{\Delta H_{12} - \Delta H_{21}}{2}$$
(2.16)

όπου

$$\Delta H_{12} = \cos z_{12} \cdot D_{12} + (1 - \kappa) \cdot \frac{D_{12}^2}{2 \cdot R} \cdot \sin^2 z_{12}$$
(2.17)

$$\Delta H_{21} = \cos z_{21} \cdot D_{21} + (1 - \kappa) \cdot \frac{D_{21}^2}{2 \cdot R} \cdot \sin^2 z_{21}$$
(2.18)

ενώ οι υψομετρικές διαφορές ΔH_{1A} , ΔH_{2B} υπολογίζονται από τις αντίστοιχες σχέσεις. Όταν δεν είναι δυνατός ο προσδιορισμός της υψομετρικής τους διαφοράς με δύο μόνο ενδιάμεσες στάσεις τότε εφαρμόζεται η μέθοδος των τριών τριπόδων (σχ.2.5, για n=4) και η τελική υψομετρική διαφορά προσδιορίζεται από την σχέση (2.19).

$$\Delta H_{AB} = \Delta H_{nB} - \Delta H_{1A} + \sum_{i=1}^{n-1} \frac{\Delta H_{i,i+1} - \Delta H_{i+1,i}}{2}$$
(2.19)

όπου n ο αριθμός των στάσεων του γεωδαιτικού σταθμού.

Είναι φανερό ότι σ' αυτήν την μέθοδο προσδιορισμού υψομετρικών διαφορών, δεν μετρούνται ύψη οργάνων, αφού οι επιμέρους υψομετρικές διαφορές δεν αναφέρονται σε σημεία της ΦΓΕ αλλά στο κέντρο οργάνου και στόχων.

Σχήμα 2.4 : Σχηματική παράσταση της ΤΡΥΑ με δύο ενδιάμεσες στάσεις

Η απόσταση τοποθέτησης των τριπόδων μπορεί να είναι τόση όση επιτρέπει η εμβέλεια μέτρησης του μήκους από τον γεωδαιτικό σταθμό και δεν χρειάζεται κέντρωσή τους σε συγκεκριμένο σημείο. Τα σημεία τοποθέτησης του γεωδαιτικού σταθμού και των στόχων επιλέγονται κάθε φορά, ώστε να είναι τα ελάχιστα δυνατά και να διευκολύνουν τον υψομετρικό προσδιορισμό.

Σχήμα 2.5 : Σχηματική παράσταση της ΤΡΥΑ με περισσότερες από δύο στάσεις

Εφόσον εκτελούνται αμοιβαίες και ταυτόχρονες μετρήσεις μεταξύ των σημείων, τότε οι παράγοντες της καμπυλότητας της γης και της γεωδαιτικής διάθλασης αλληλοαναιρούνται και δεν επηρεάζουν το τελικό αποτέλεσμα.

Πλεονέκτημα αυτής της μεθόδου αποτελεί και η ταυτόχρονη εκτέλεση των μετρήσεων σε μετάβαση και επιστροφή.

Αν το αρχικό ή το τελικό σημείο είναι υψομετρική αφετηρία (Rèpère) τότε η μέτρηση προς αυτή πρέπει να εκτελείται με μοναδιαίο και σωστό τρόπο. Η υλοποίηση των υψομετρικών κορυφών γίνεται με τη χρήση ειδικών ορειχάλκινων κατασκευών (μπουλόνια). Η κατασκευή τους είναι τέτοια (κυλινδρική ή σφαιρική) ώστε να εδράζεται πάντοτε στο ίδιο μοναδικό σημείο ο χωροσταθμικός πήχυς. Επομένως το πρόβλημα ανάγεται στη σκόπευση αυτού του μοναδικού σημείου κατά τη μέτρηση του μήκους και της αντίστοιχης ζενίθιας γωνίας.

Όπως φαίνεται και στο σχήμα 2.6, η θέση του σημείου αυτού μπορεί να οριστεί ως αυτή όπου το οριζόντιο σταυρόνημα του τηλεσκοπίου του γεωδαιτικού σταθμού εφάπτεται στο πάνω μέρος της ορειχάλκινης κατασκευής έτσι ώστε η ένδειξη της ζενίθιας γωνίας να είναι η ελάχιστη.

Πρακτικά αυτό μπορεί να επιτευχθεί τοποθετώντας ένα χαρτί ή κάποια κατασκευή στην κεφαλή του μπουλονιού το οποίο θα "κόβει" τη σφαίρα σε δύο ίσα μέρη και θα βρίσκεται σ΄ ένα περιστρεφόμενο επίπεδο το οποίο έχει άξονα περιστροφής τον κατακόρυφο άξονα ο οποίος διέρχεται από το κέντρο του μπουλονιού και κάθετο άξονα στο επίπεδο ο οποίος διέρχεται από το κέντρο του ΟΓΣ έτσι ώστε να διευκολύνεται η σκόπευση από τον παρατηρητή του ΟΓΣ αλλά και να μην υπάρχει κίνδυνος φυγής της δέσμης του laser προς το βάθρο.

Σχήμα 2.6 : Σκόπευση προς την υψομετρική αφετηρία

Η αβεβαιότητα με την οποία μπορεί να προσδιοριστεί η ορθομετρική υψομετρική διαφορά μεταξύ δύο σημείων με την ΤΡΥΑ, εξαρτάται από:

- Την αβεβαιότητα μέτρησης του μήκους
- Την αβεβαιότητα μέτρησης της ζενίθιας γωνίας
- Τη μεταβολή της τιμής του συντελεστή γεωδαιτικής διάθλασης κ, κατά τη διάρκεια των μετρήσεων

ενώ είναι ανεξάρτητη :

- Της τιμής του συντελεστή γεωδαιτικής διάθλασης κ και της καμπυλότητας της γης
- Της αβεβαιότητας μέτρησης ύψους οργάνου και στόχου τα οποία δεν μετρώνται

Η τελική αβεβαιότητα, με την οποία μπορεί να προσδιοριστεί η υψομετρική διαφορά μεταξύ δύο σημείων Α και Β με την ΤΡΥΑ με μια μόνο ενδιάμεση στάση οργάνου είναι ίση με :

$$\sigma_{\Delta H_{AB}} = \pm \sqrt{\sigma_{\Delta H_{\Sigma A}}^2 + \sigma_{\Delta H_{\Sigma B}}^2}$$
(2.20)

όπου τα σ_{ΔH_{ΣA}}, σ_{ΔH_{ΣB}} προκύπτουν με την εφαρμογή του νόμου μετάδοσης των σφαλμάτων στις σχέσεις 2.17 και 2.18 σύμφωνα με το σφάλμα στις μετρήσεις μηκών και ζενιθιών γωνιών. Ο όρος της καμπυλότητας και της διάθλασης αναιρείται αν τα μήκη D_{ΣA}, D_{ΣB} είναι περίπου ίσα και τότε σ_{ΔH_{ΣA}} \cong σ_{ΔH_{ΣB}} \cong σ και επομένως σ_{ΔH_{AB}} $=\pm \sqrt{2}$ ·σ.

Αν απαιτούνται η ενδιάμεσες στάσεις οργάνου και $\sigma_{\Delta H_A} \cong \sigma_{\Delta H_B} \cong \sigma_{\Delta H}$ (στο αρχικό σημείο Α και στο τελικό σημείο Β αντίστοιχα), με την εφαρμογή του νόμου μετάδοσης σφαλμάτων στη σχέση 2.20, τότε η συνολική αβεβαιότητα είναι :

$$\sigma_{\Delta H_{AB}} = \pm \sqrt{2 \cdot \sigma_{\Delta H}^2 + \frac{n-1}{2} \cdot \sigma_{\Delta H_{i,i+1}}^2}$$
(2.21)

όπου i = 1 έως n – 1 και $\sigma_{\Delta H_{i+1,i}} = \sigma_{\Delta H_{i,i+1}}$ υπολογίζεται σύμφωνα με τις σχέσεις (2.22) και (2.23) :

$$\Delta H_{i,i+1} = \cos z_{i,i+1} \cdot D_{i,i+1}$$
(2.22)

$$\sigma_{\Delta H_{i,i+1}} = \pm \sqrt{\cos^2 z_{i,i+1} \cdot \sigma_{D_{i,i+1}}^2 + (-D_{i,i+1} \cdot \sin z_{i,i+1})^2 \cdot \left(\frac{\sigma_{z_{i,i+1}}^{cc}}{\rho^{cc}}\right)^2} \quad (2.23)$$

Αξίζει να σημειωθεί ότι για την ασφάλεια και την ορθότητα της οριζοντίωσης των έμπροσθεν τριπόδων χρήσιμο είναι να χρησιμοποιείται ένας δεύτερος ΟΓΣ. Επίσης η ύπαρξη ενός επιπλέον ΟΓΣ επιταχύνει σημαντικά τις μετρήσεις πεδίου καθότι θα γίνεται ταυτόχρονα η

οριζοντίωση των ΟΓΣ από δύο χειριστές και η εναλλαγή στόχου σταθμού.

2.4. Επιλογή οργάνων

Ο εξοπλισμός που χρησιμοποιήθηκε για την μέτρηση του ΓΔΚΕ είναι:

 1 Ολοκληρωμένος Γεωδαιτικός Σταθμός με δυνατότητα μέτρησης χωρίς κατάφωτο (Reflector less) - Leica TCR1202+ (πιν.2.1)

Εικόνα 2.1 : ΟΓΣ TC(R)1202+ της Leica

• 1 Ψηφιακός χωροβάτης - Leica DNA 10 (πιν.2.1)

Εικόνα 2.2 : Ψηφιακός χωροβάτης DNA 10 της Leica

- 3 τρίποδες
- 3 κατάφωτα με τρικόχλια
- 2 σταδίες
- 2 χελώνες
- 1 ζεύγος ασύρματων πομποδεκτών
- Έντυπα ΤΡΥΑ
- Έντυπα ΓΧ

	Ακρίβεια					
	Mr					
Οργανο	Με πρίσμα	X	ωρίς πρίσμα (<500m)	Γωνιών		
	$\pm 1 \text{ mm} \pm 1.5 \text{ ppm}$	± 2	$mm \pm 2 ppm$	$\pm 2^{\prime\prime} (6^{cc})$		
	Ηλεκτρονική αν	νάγνωσ	η γωνιών : ± 0.1	mgon		
Leica TC(R) 1202+	Ηλεκτρονική α	ανάγνω	ση μηκών : ± 0.1	mm		
	Εύρος εργασίας αντισταθμιστή : 4΄ (0.07 gon)					
	Ακρίβεια κυκλικής αεροστάθμης : 6΄ / 2 mm					
	Βάρος : 4.8 – 5.5 Kg					
	Ακρίβεια					
	± 0.9 mm/km		\pm 1.5 mm/km			
	(σταδία invar) (απλή στο			αδία)		
Leica DNA 10	Ηλεκτρονική ανάγνωση : ± 0.1 mm					
	Ελάχιστη απόσταση σκόπευσης : 1.8 m					
	Μέγιστη απόσταση σκόπευσης : 110 m					
	Βάρος : 2.8 Kg					

Πίνακας 2.1 : Χαρακτηριστικά οργάνων μέτρησης υψομετρικού δικτύου [6]

2.5. Βελτιστοποίηση δικτύου

Πριν από την εκτέλεση των παρατηρήσεων, ενδείκνυται να υπολογίζονται τα κατάλληλα στατιστικά μεγέθη του δικτύου προκειμένου να επιτυγχάνεται ο σωστός σχεδιασμός, με βάση πάντα τον σκοπό που θα εξυπηρετήσει και τις προδιαγραφές για την ακρίβειά του. Η βασική αυτή πληροφορία για τη στατιστική ανάλυση δίνεται από τον a priori πίνακα μεταβλητότητας – συμμεταβλητότητας $V_{\hat{x}}$ των υψομέτρων των κορυφών του δικτύου. Στις συνορθώσεις με τη μέθοδο των εμμέσων παρατηρήσεων ή μεταβολής των συντεταγμένων όπου ο πίνακας $V_{\hat{x}}$ δίνεται από τη σχέση :

$$V_{\hat{x}} = \sigma_0 \cdot \left(A^T \cdot P \cdot A \right)^{-1}$$
(2.24)

όπου σ₀ – το a priori τυπικό σφάλμα της μονάδας βάρους το οποίο είναι ίσο με μονάδα

Α – ο πίνακας σχεδιασμού και

Ρ-ο πίνακας βαρών

είναι εύκολος ο υπολογισμός του πριν από την εκτέλεση των παρατηρήσεων.

Έτσι από τις αρχικά προγραμματισμένες παρατηρήσεις με τις αβεβαιότητες τους, υπολογίζεται ο $V_{\hat{x}}$ και τα στατιστικά στοιχεία που ενδιαφέρουν.

Μεταβάλλοντας τον αριθμό, το είδος, τις αβεβαιότητες των παρατηρήσεων αλλά και τη μέθοδο μέτρησης γίνονται διαδοχικές προσεγγίσεις ώσπου να επιτευχθεί ο ιδανικός συνδυασμός από άποψη ακρίβειας, των προβλεπομένων αποτελεσμάτων, αλλά και από άποψη οικονομίας χρόνου παραμονής στο ύπαιθρο και κόστους. Προφανώς η επιδιωκόμενη ακρίβεια εξαρτάται από τον σκοπό για τον οποίο έχει ιδρυθεί το δίκτυο.

Η προκαταρκτική αυτή μελέτη που υπαγορεύει τον βέλτιστο σχεδιασμό του δικτύου, συνήθως ονομάζεται βελτιστοποίηση (optimization). Στη βιβλιογραφία αναφέρονται τέσσερα ξεχωριστά προβλήματα σχεδιασμού, ενώ στη πράξη ακολουθείται ένας συνδυασμός τους [Αγατζά – Μπαλοδήμου Α.Μ., 2009]. Τα προβλήματα που αναφέρονται είναι :

- Σχεδιασμός μηδενικής τάξης : Αφορά στην επιλογή του κατάλληλου συστήματος αναφοράς (επιλογή εσωτερικών δεσμεύσεων ή εξωτερικών και ποιών)
- Σχεδιασμός 1^{ης} τάξης : Αφορά στην επιλογή των θέσεων των κορυφών και των παρατηρήσεων
- Σχεδιασμός 2^{ης} τάξης : Αφορά στην επιλογή των βαρών (αβεβαιότητα παρατηρήσεων)
- Σχεδιασμός 3^{ης} τάξης : Αφορά στη βελτίωση του υπάρχοντος δικτύου με προσθήκη παρατηρήσεων ή με ακριβέστερες παρατηρήσεις (χρήση ακριβέστερων οργάνων ή ακριβέστερης μεθόδου)

Τα στατιστικά μεγέθη σ' ένα γεωδαιτικό δίκτυο κατακορύφου ελέγχου τα οποία υπολογίζονται είναι :

- Τα τυπικά σφάλματα των υψομέτρων, που εξαρτώνται από το σύστημα αναφοράς και
- Τα τυπικά σφάλματα των υψομετρικών διαφορών τα οποία δεν εξαρτώνται από το σύστημα αναφοράς

Οι στόχοι του σχεδιασμού ενός δικτύου είναι :

- Ο προσδιορισμός της θέσης των σημείων αναφοράς και ελέγχου του δικτύου, δηλαδή ο προσδιορισμός της γεωμετρίας του δικτύου
- Ο καθορισμός των απαραίτητων παρατηρήσεων στο ύπαιθρο, δηλαδή ο καθορισμός των εξισώσεων παρατήρησης
- Ο καθορισμός των αβεβαιοτήτων των παρατηρήσεων, που συνδέονται με τα όργανα και τις μεθόδους που θα επιλεγούν για τις μετρήσεις

Το συνηθέστερο κριτήριο με βάση το οποίο επιτυγχάνεται ο βέλτιστος σχεδιασμός στην πράξη είναι το ίχνος tr ($V_{\hat{x}}$)=min [Γεωργόπουλος Γ. κ.α. 2005]. Στη συνέχεια υπολογίζεται το σ_{0apriori} από τη σχέση 2.25 :

$$\sigma_{0_{apriori}} = \sqrt{\frac{\operatorname{tr}(V_{\hat{x}})}{v}}$$
(2.25)

όπου ν οι κορυφές του δικτύου.

Η μέθοδος η οποία χρησιμοποιήθηκε στην προανάλυση βελτιστοποίηση του σχεδιασμού είναι η ΤΡΥΑ. Οι λόγοι οι οποίοι οδήγησαν στην επιλογή της μεθόδου ΤΡΥΑ ήταν :

- Μεγάλες αποστάσεις μεταξύ των κορυφών
- Έντονο ανάγλυφο
- Αμοιβαία ορατότητα στην πλειοψηφία των υψομετρικών κορυφών
- Λιγότερος χρόνος στο πεδίο
- Μεγάλη ευελιξία
- Ικανοποιητική ακρίβεια μετρήσεων που μπορεί να επιτευχθεί (≈±1.5mm)

Για την επίτευξη των στόχων της βελτιστοποίησης έγινε ο βέλτιστος σχεδιασμός του δικτύου με τη μέθοδο των εμμέσων παρατηρήσεων με τις ελάχιστες εξωτερικές δεσμεύσεις (μια κορυφή με σταθερό υψόμετρο R_1 - Submarine). Στην παρούσα μελέτη η απαιτούμενη ακρίβεια είναι της τάξης των ± 2 mm όπως ορίζουν οι μηχανολογικές κατασκευές.

Με βάση τις εξισώσεις παρατήρησης : \widehat{H}_j - \widehat{H}_i =l+υ μορφώθηκε ο πίνακας A για κάθε σενάριο.

Στη συνέχεια σχεδιάστηκε ο πίνακας των βαρών Ρ χρησιμοποιώντας την σχέση :

$$P_i = \frac{\sigma_0^2}{\sigma_i^2}$$
 ⇒ όπου σ₀=1 - a priori τυπικό σφάλμα της μονάδας βάρους.

Τα σφάλματα τα οποία συμμετέχουν στον προσδιορισμό των βαρών εξαρτώνται από τον διαθέσιμο εξοπλισμό.

Εφαρμόζοντας νόμο μετάδοσης σφαλμάτων στην σχέση που προσδιορίζει την υψομετρική διαφορά με μια, δύο και τρείς στάσεις ΤΡΥΑ προσδιορίστηκε το a priori σφάλμα στον πίνακα 2.2 με δεδομένα:

- $\sigma_z = \pm 6^{cc}$
- $z = 90^{g} \acute{\eta} 110^{g}$
- $D_{ij} = 400 \text{ m} (M \eta \kappa o \varsigma \mu \epsilon ta \xi \upsilon 2 \sigma t a \sigma \epsilon \omega v to u or g a vou)$
- $D_{iR} = 10 \text{ m} (M\eta \kappa o \varsigma \alpha \pi \delta \sigma \tau \delta \sigma \eta \mu \epsilon \chi \rho i R \epsilon)$
- $\sigma_{\text{DIR}} = \pm 1 \text{ mm} \pm 1.5 \text{ ppm}$ (me anaklastýpa)
- $\sigma_{DRL} = \pm 2 \text{ mm} \pm 2 \text{ ppm}$ (Reflectorless)

Αριθμός στάσεων	1	2	3
σ _{0_{apriori}} (mm)	± 0.5	± 3.2	± 4.5

Πίνακας 2.2 : Αριθμός στάσεων και a priori σφάλμα ΤΡΥΑ

Έγιναν διάφορα σενάρια με 7, 11, 14, 18, 21, 25 και 28 υψομετρικές διαφορές (σχ.2.7) με αβεβαιότητα από \pm 1.6 - 4 mm με δεδομένα :

- 2 στάσεις οργάνου λόγω αμοιβαίας ορατότητας μεταξύ περισσότερων των κορυφών
- $\sigma_z = \pm 6^{cc}$
- $z = 90^{g} \acute{\eta} 110^{g}$
- $D_{ij} = 129 839 \text{ m} (Mήκος μεταξύ 2 στάσεων του οργάνου)$
- $D_{iR} = 10 \text{ m} (M\eta \kappa o \varsigma \alpha \pi \delta \sigma \tau \alpha \sigma \eta \mu \epsilon \chi \rho i R e pere)$
- $\sigma_{\text{DIR}} = \pm 1 \text{ mm} \pm 1.5 \text{ ppm} (\text{me anaklastipa})$
- $\sigma_{DRL} = \pm 2 \text{ mm} \pm 2 \text{ ppm}$ (Reflectorless)

Από τα πάνω σενάρια επελέγη το δεύτερο σενάριο με τις 25 υψομετρικές διαφορές (ΔΗ). Ο λόγος ήταν ότι πληρούσε τις προϋποθέσεις για την απαιτούμενη ακρίβεια (±2mm).

Σχήμα 2.7 : Διάγραμμα βελτιστοποίησης

Οι υψομετρικές διαφορές οι οποίες πρόκειται να μετρηθούν παρουσιάζονται στο σχήμα 2.8. Για την επιλογή των ΔΗ που πρόκειται μετρηθούν έγινε έλεγχος με βάση τα κριτήρια :

- Η σταθερή κορυφή να συνδέεται μ' όλες τις υπόλοιπες κορυφές
- Να δημιουργούνται τέτοια τετράπλευρα τα οποία να δίνουν την δυνατότητα ελέγχου στους βρόγχους
- Να δημιουργείται μια καλή γεωμετρία του δικτύου

Για το δεύτερο σενάριο με το οποίο πρόκειται να μετρηθούν 25 ΔΗ υπολογίστηκε το μέσο σφάλμα υψομέτρου :

$$\sigma_{0_{apriori}} = \sqrt{\frac{\operatorname{tr}(V_{\hat{x}})}{\nu}} = \pm 1.57 \text{ mm}$$

το οποίο ήταν ικανοποιητικό με βάση την απαιτούμενη ακρίβεια που προκαθορίστηκε σ_{απαιτούμενο} = ± 2 mm.

Σχήμα 2.8 : Μορφή δικτύου από βελτιστοποίηση

Κρίθηκε σκόπιμο 7 από τις 25 υψομετρικές διαφορές να γίνουν με ΓΧ οι οποίες παρεμβάλλονταν από ομαλό ανάγλυφο και από σχετικά κοντινή απόσταση. Οι λόγοι οι οποίοι οδήγησαν στη μέτρηση κάποιων ΔΗ με Γεωμετρική Χωροστάθμηση είναι :

- Επίτευξη περαιτέρω ακρίβειας, άρα αύξηση ευαισθησίας δικτύου
- Ο χρόνος μέτρησης με ΓΧ δεν αυξάνεται σε σχέση με ΤΡΥΑ

Η ΓΧ δίνει την δυνατότητα ελέγχου του οργάνου (έλεγχος μέσου άκρου) σε αντίθεση με την ΤΡΥΑ

Σχήμα 2.9 : Μορφή ΓΔΚΕ με μετρήσεις ΤΡΥΑ και ΓΧ

2.6. Μετρήσεις στοιχείων δικτύου κατακορύφου ελέγχου

Πριν τις μετρήσεις στο ύπαιθρο προηγήθηκε προετοιμασία στην οποία δημιουργήθηκαν τα κατάλληλα έντυπα ΤΡΥΑ και ΓΧ.

Στο πεδίο μετρήθηκαν 25 ΔΗ όπως είχε προγραμματιστεί με τη διαδικασία της βελτιστοποίησης.

Όμως κατά τους ελέγχους των μοναδιαίων τριγώνων κάποιες ΔΗ οι οποίες μετρήθηκαν με ΤΡΥΑ θεωρήθηκαν δοκιμαστικές λόγω μειωμένης ακρίβειας.

Για τον λόγο αυτό κάποιες ΔΗ εκ των δοκιμαστικών οι οποίες αποτελούσαν νευραλγική σύνδεση του δικτύου επαναλήφθηκαν με ΤΡΥΑ ή όπου ήταν δυνατό με ΓΧ.

Τελικά μετρήθηκαν 20 υψομετρικές διαφορές εκ των οποίων οι 12 με ΤΡΥΑ και οι 8 με ΨΓΧ. Η τελική μορφή του ΓΔΚΕ με μετρημένες 20 ΔΗ απεικονίζεται αναλυτικά στο σχήμα 2.10.

Σχήμα 2.10 : Τελική μορφή δικτύου

Κατά τη διάρκεια των μετρήσεων υπήρξαν διάφορες δυσκολίες όπως:

- Έντονες κακές καιρικές συνθήκες (υγρασία, διάθλαση, θερμοκρασία, άνεμοι κλπ)
- Αβεβαιότητα λόγω απειρίας στη σκόπευση των Rèpères.
- Αβεβαιότητα στο σφάλμα δείκτη $e_{ij} = \frac{400 z_I z_{II}}{2}$ των κατακορύφων γωνιών λόγω απειρίας σε μακρινές σκοπεύσεις

Οι έντονες καιρικές συνθήκες οι οποίες επηρέαζαν κυρίως την ΤΡΥΑ, αντιμετωπίστηκαν με προγραμματισμό των μετρήσεων κατά τις απογευματινές ή τις πρωινές ώρες στις οποίες τα καιρικά φαινόμενα εξομαλύνονταν.

Η δυσκολία στη σκόπευση αντιμετωπίστηκε τόσο με δοκιμαστικές μετρήσεις όσο και με την τοποθέτηση ειδικού παρελκόμενου (εικ.2.3) στο Rèpère το οποίο περιόριζε την αβεβαιότητα σε μεγάλο βαθμό και απέκλειε το ενδεχόμενο φυγής της δέσμης προς τα πίσω. Το παρελκόμενο αυτό ήταν ένα παχύμετρο με βίδα πάκτωσης του πτυσσόμενου βραχίονα. Έτσι υπήρχε η δυνατότητα πάκτωσης στην επιθυμητή θέση πάνω στο μπουλόνι όπως φαίνεται στο σχήμα 2.3.

α

β

Εικόνα 2.3 : Ειδικό παρελκόμενο για σκόπευση σε Rèpère

Η αβεβαιότητα στο σφάλμα δείκτη των κατακορύφων γωνιών αντιμετωπίστηκε με δοκιμαστικές μετρήσεις για την εξοικείωση του παρατηρητή στις σκοπεύσεις.

Οι θετικοί παράγοντες κατά τη διάρκεια των μετρήσεων ήταν :

- Περιορισμένη κίνηση ανθρωπίνου δυναμικού και οχημάτων εντός του εργοστασίου
- Εύκολη πρόσβαση στις υψομετρικές κορυφές με χρήση αυτοκινήτου

Οι μετρήσεις της ΓΧ έγιναν με τη χρήση μιας σταδίας και μιας χελώνας. Κατά τη διάρκεια των μετρήσεων το συνεργείο αποτελείτο κυρίως από δύο άτομα και σε κάποιες μετρήσεις από ένα.

Επίσης έγινε ο έλεγχος του μέσου – άκρου πριν και μετά από κάθε μέτρηση ο οποίος δεν έδειξε κάποια απόκλιση της σκοπευτικής γραμμής του χωροβάτη. Οι υψομετρικές διαφορές με την μέθοδο της ΓΧ έγιναν σε μετάβαση και επιστροφή (aller - retour) διατηρώντας τον μέσο όρο.

Για την μέθοδο της TPYA έγιναν μετρήσεις κατακορύφων γωνιών και κεκλιμένων μηκών με την μέθοδο των πλήρων περιστροφών σε 2 ή περισσότερες περιόδους. Στις κατακόρυφες γωνίες κατά τη διάρκεια των μετρήσεων γινόταν έλεγχος και προσπάθεια έτσι ώστε το σφάλμα δείκτη να μην ξεπερνάει τα 10^{cc}. Η οριζοντίωση των έμπροσθεν τριπόδων γινόταν με ΟΓΣ. Τα έντυπα των μετρήσεων επισυνάπτονται στο παράρτημα μετρήσεων.

Σχήμα 2.11 : Απεικόνιση εργατοωρών πεδίου ΓΔΚΕ

Επίσης διανύθηκαν συνολικά 9 χιλιόμετρα χωροσταθμικής όδευσης.

Αξίζει να σημειωθεί η διαφορά χρόνου στη μέτρηση της υψομετρικής διαφοράς μεταξύ των υψομετρικών κορυφών R_1 , R_3 που απέχουν περίπου 843 m η οποία μετρήθηκε και με τις δύο μεθόδους :

- Χρόνος ΤΡΥΑ : 1 ώρα (2 στάσεις)
- Χρόνος ΨΓΧ : 4 ώρες (16 στάσεις aller retour \approx 2 km χωροσταθμικής όδευσης)

Οι μετρήσεις πεδίου έγιναν σε δύο χρονικές περιόδους μεταξύ 03 - 23/04/2015 και 12 - 17/07/2015. Χρειάστηκαν συνολικά 111 εργατοώρες.

2.7. Κλείσιμο τριγώνων

Για τη μέθοδο της ΓΧ έγινε υπολογισμός των υψομετρικών διαφορών σε μετάβαση και επιστροφή διατηρώντας τον μέσο όρο. Ελέγχθηκε το κλείσιμο μετάβασης και επιστροφής για ύπαρξη χονδροειδούς σφάλματος πράγμα το οποίο δεν διαπιστώθηκε.

Ακολούθησε η επεξεργασία των μετρήσεων όπου υπολογίστηκαν οι γενικοί μέσοι όροι τόσο για τις κατακόρυφες γωνίες όσο και για τα μήκη και υπολογίστηκαν με τη μέθοδο της TPYA οι υψομετρικές διαφορές μεταξύ των στάσεων του οργάνου και οι τελικές υψομετρικές διαφορές μεταξύ των υψομετρικών κορυφών.

Έγινε έλεγχος στη διαφορά των υψομετρικών διαφορών μεταξύ των στάσεων του οργάνου για την ύπαρξη χονδροειδούς σφάλματος όπως λανθασμένη οριζοντίωση, μεταβολή στη θέση του τρίποδα κλπ.

Το κλείσιμο των μοναδιαίων τριγώνων μπορεί να ανιχνεύσει ποιές υψομετρικές διαφορές είναι προβληματικές. Για την ακριβή εύρεση της προβληματικής υψομετρικής αφετηρίας η οποία δημιουργούσε το πρόβλημα έγινε χρήση των τετραπλεύρων τα οποία περιείχαν τις κορυφές του μοναδιαίου τριγώνου το οποίο ''έκλεινε'' πέραν των τριών χιλιοστών και μιας γειτονικής κορυφής.

Έτσι παραλείποντας μια υψομετρική διαφορά του μοναδιαίου τρίγωνου παρατηρήθηκε αν ''έκλεινε'' το τετράπλευρο με ικανοποιητική ακρίβεια.

Έστω ότι το μοναδιαίο τρίγωνο 2-7-8 του σχήματος 2.9 δεν "έκλεινε" με ικανοποιητική ακρίβεια. Υπήρχε η υποψία ότι η προβληματική μέτρηση είναι η 2-7 η οποία έγινε με τη μέθοδο της ΤΡΥΑ. Υπολογιζόταν το κλείσιμο του τετραπλεύρου 2-5-7-8.

Αν ''έκλεινε'' το τετράπλευρο 2-5-7-8 ικανοποιητικά τότε η προβληματική μέτρηση ήταν η 2-7 αν όχι γινόταν παρόμοιος έλεγχος και για τις υψομετρικές διαφορές 7-8 και 2-8 για να διαπιστωθεί ποια από τις

τρείς δημιουργούσε το πρόβλημα. Επίσης ελέγχθηκε αν κάποια υψομετρική διαφορά συμμετείχε μόνο σε προβληματικά τρίγωνα.

Υποψία δημιουργούσε επίσης το γεγονός αν μια υψομετρική διαφορά η οποία προέκυψε με την μέθοδο της ΤΡΥΑ είναι προβληματική, το αν χρησιμοποιήθηκαν πέραν των τριών στάσεων πράγμα το οποίο αυξάνει την αβεβαιότητα του προσδιορισμού της συγκεκριμένης υψομετρικής διαφοράς.

Στις περιπτώσεις όπου ένα μοναδιαίο τρίγωνο ήταν προβληματικό αλλά περιείχε και εξωτερική πλευρά του δικτύου, γινόταν έλεγχος με τις δύο υψομετρικές διαφορές οι οποίες καλύπτονταν από τετράπλευρα.

Μετά τους ελέγχους των μοναδιαίων τριγώνων κάποιες υψομετρικές διαφορές απεδείχθησαν προβληματικές ξαναμετρήθηκαν για τον λόγο ότι αποτελούσαν νευραλγική σύνδεση του δικτύου π.χ. εξωτερική πλευρά του δικτύου, κάθε υψομετρική κορυφή έπρεπε να συνδεόταν με τουλάχιστον άλλες τέσσερις κορυφές.

Στο σχήμα 2.12 παρουσιάζονται τα μοναδιαία τρίγωνα με τα κλεισίματα τους.

Η αβεβαιότητα των κορυφών από την βελτιστοποίηση είναι :

 $\sigma_{H_{Ri}} = \pm 1.6 \text{mm} \Rightarrow$

Εφαρμόζοντας νόμο μετάδοσης σφαλμάτων στη σχέση η οποία δίνει την υψομετρική διαφορά 2 κορυφών προκύπτει :

 $\sigma_{\Delta H_{RiRi}} = \pm \sqrt{2^2 + 2^2} = 2.5 \text{ mm} \Rightarrow$

Εφαρμόζοντας νόμο μετάδοσης σφαλμάτων στη σχέση η οποία προσδιορίζει το κλείσιμο σ' ένα μοναδιαίο τρίγωνο ή υψομετρικό βρόγχο προκύπτει :

$$\sigma_{\kappa\lambda} = \sqrt{2.5^2 + 2.5^2 + 2.5^2} = \pm 4.4 \text{mm} \Rightarrow$$

Με θεώρηση για επίπεδο εμπιστοσύνης 95% προκύπτει :

 $\sigma_{\kappa\lambda} \cdot z_{95\%} = \pm 8.6 \text{mm}$

Παρατηρείται ότι όλοι οι βρόγχοι ''κλείνουν'' εντός του ορίου (±8.6mm) για επίπεδο εμπιστοσύνης 95%.

Σχήμα 2.12 : Κλείσιμο μοναδιαίων τριγώνων υψομετρικού δικτύου

2.8. Συνόρθωση δικτύου

Η επίλυση του δικτύου έγινε με τη μέθοδο των εμμέσων παρατηρήσεων με τις ελάχιστες εξωτερικές δεσμεύσεις [Αγατζά – Μπαλοδήμου Α.Μ., 2009].

Αρχικά έγινε επίλυση με ισοβαρείς παρατηρήσεις με δεδομένα n = 20, m = 7, r = 13 και H_{R1} = 34.3824 m. Σκοπός της επίλυσης αυτής ήταν ο υπολογισμός του πίνακα V_1 ώστε να δοθούν οι ρεαλιστικές τιμές στις αβεβαιότητες των ΔΗ.

$\Delta H_{ij}(m)$		$\sigma_{\Delta \mathrm{Hapriori}} \ (\mathrm{mm})$	$\Delta H_{ij}(m)$		$\sigma_{\Delta \mathrm{Hapriori}}\ (\mathrm{mm})$
ΔH_{R1R2}	-24.5539	± 1.5	ΔH_{R3R4}	31.5269	±1.6
ΔH_{R1R3}	-25.5986	±1.6	ΔH_{R3R7}	14.5422	±1.6
ΔH_{R1R5}	27.6594	± 1.5	ΔH_{R4R5}	21.7274	±1.5
ΔH_{R1R6}	26.2766	±1.6	ΔH_{R4R6}	20.3441	±1.6
ΔH_{R1R8}	-11.1316	±1.5	ΔH_{R4R7}	-16.9844	±1.5
ΔH_{R2R3}	-1.0429	±1.5	ΔH_{R5R6}	-1.3841	±1.5
ΔH_{R2R4}	30.4834	±1.5	ΔH_{R5R7}	-38.7112	±1.5
ΔH_{R2R5}	52.2109	±1.4	ΔH_{R5R8}	-38.7916	± 1.4
ΔH_{R2R7}	13.5021	±1.4	ΔH_{R6R8}	-37.4077	±1.6
ΔH_{R2R8}	13.4208	±1.5	ΔH_{R7R8}	-0.0825	±1.5

Πίνακας 2.3 : Τελικές υψομετρικές διαφορές και αβεβαιότητες για εε 95%

Στη συνέχεια έγινε η τελική επίλυση του ΓΔΚΕ με ανισοβαρείς παρατηρήσεις όπου για βάρη χρησιμοποιήθηκαν οι τιμές για κάθε παρατήρηση από τον πίνακα V_1 . Οι αβεβαιότητες για τον πίνακα βαρών θεωρήθηκαν για επίπεδο εμπιστοσύνης 95 % και πολλαπλασιάστηκαν με το 1.96 (πιν.2.3).

Η επίλυση έγινε στα λογισμικά Microsoft Excel και Matlab.

Η επίλυση του δικτύου προσδιόρισε τις καλύτερες τιμές των υψομέτρων των κορυφών (πίν. 2.5) και το a posteriori τυπικό σφάλμα της μονάδας βάρους $\hat{\sigma}_0 = \pm 0.8$ mm.

Στον πίνακα 2.5 παρουσιάζονται τα αποτελέσματα της συνόρθωσης του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου.

Παρατηρείται ότι οι αβεβαιότητες των κορυφών κυμαίνονται από ± 0.7 - ± 0.8 mm.

Υψόμετρα και αβεβαιότητες επίλυσης								
Rèpère	H (m)	$\sigma_{\rm H} ({\rm mm})$	Rèpère	H (m)	$\sigma_{\rm H}({\rm mm})$			
H _{R1}	34.3824	-	H _{R5}	62.0411	±0.7			
H _{R2}	9.8291	±0.7	H _{R6}	60.6577	± 0.8			
H _{R3}	8.7860	± 0.8	H _{R7}	23.3301	±0.8			
H _{R4}	40.3135	± 0.8	H _{R8}	23.2496	±0.7			

	Πίνακας 2.4 :	<i>Υψόμετρα</i>	και αβεβαιότη	<i>ιτες ΓΔΚΕ</i>
--	---------------	-----------------	---------------	------------------

Έγινε ολικός έλεγχος αξιοπιστίας test χ^2 με επίπεδο εμπιστοσύνης p = 95 %, r = 13, $\hat{\sigma}_0$ =± 0.8 και $\chi^2_{(13, 0.95)}$ =22.36 =>

 $\frac{r \cdot \hat{\sigma}_0^2}{\chi^2_{(13, 0.95)}}$ =0.37 < $\hat{\sigma}_0^2$ =1, ο οποίος αξιολογείται θετικά.

Πραγματοποιήθηκε σάρωση δεδομένων κατά Baarda για τυχόν ύπαρξη χονδροειδούς λάθους στις μετρήσεις με βάση τα υπόλοιπα και τα σφάλματα των υπολοίπων των μετρήσεων.

Τα δεδομένα για τη σάρωση δεδομένων είναι r = 13, p = 95 % => $(F_{(0.95,13,13)})^{0.5}$ =1.6063 (πίν.2.6).

	$w_i = abs(v_i / \sigma_{v_i})$		$w_i = abs(v_i / \sigma_{vi})$
ΔH_{R1R2}	0.6894	ΔH_{R3R4}	0.4188
ΔH_{R1R3}	2.2651	ΔH_{R3R7}	1.7234
ΔH_{R1R5}	0.5585	ΔH_{R4R5}	0.2702
ΔH_{R1R6}	1.1561	ΔH_{R4R6}	0.0962
ΔH_{R1R8}	1.1030	ΔH_{R4R7}	1.0496
ΔH_{R2R3}	0.0526	ΔH_{R5R6}	0.6138
ΔH_{R2R4}	0.9896	ΔH_{R5R7}	0.2371
ΔH_{R2R5}	1.1494	ΔH_{R5R8}	0.1154
ΔH_{R2R7}	1.1094	ΔH_{R6R8}	0.4169
ΔH_{R2R8}	0.3434	ΔH_{R7R8}	1.7650

Πίνακας 2.5 : Σάρωση δεδομένων κατά Baarda για εε 95%

Παρατηρείται ότι εκτός των υψομετρικών διαφορών ΔH_{R1R3} , ΔH_{R3R7} και ΔH_{R7R8} οι υπόλοιπες μετρήσεις είναι αποδεκτές.

Συγκεκριμένα οι ΔH_{R3R7} και ΔH_{R7R8} αν και είναι ελάχιστα μεγαλύτερες της τιμής σύγκρισης κατά Baarda θεωρούνται αποδεκτές.

Κρίθηκε σκόπιμο οι συγκεκριμένες υψομετρικές διαφορές να μην θεωρηθούν λάθος και να χρησιμοποιηθούν στην επίλυση λόγω μεγαλύτερης ακρίβειας.

Τελικά παρατηρείται ότι επετεύχθη ο στόχος της αβεβαιότητας του υψομετρικού δικτύου. Η **αβεβαιότητα προσδιορισμού** είναι της τάξης του $\pm 1 \text{ mm}$ άρα η ευαισθησία του δικτύου είναι της τάξης των $\pm 2 \text{ mm}$ για εε 95% δηλαδή το υψομετρικό δίκτυο μπορεί να ανιχνεύσει μετακινήσεις μεγαλύτερες των 2 mm.

ΚΕΦΑΛΑΙΟ 3

ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΤΡΙΔΙΑΣΤΑΤΟΥ ΕΛΕΓΧΟΥ

3.1. Γενικά

Τριδιάστατο δίκτυο ή δίκτυο τριδιάστατου ελέγχου ορίζεται ένα σύνολο από σημεία της ΦΓΕ των οποίων είναι γνωστές οι θέσεις στον χώρο, ως προς κάποιο σύστημα αναφοράς (Γεωκεντρικό, Τοποκεντρικό). Στα τριδιάστατα δίκτυα οι μετρήσεις μπορούν να γίνουν με :

- επίγειες μεθόδους
- συστήματα GNSS

Τα τριδιάστατα δίκτυα μπορούν να χρησιμοποιηθούν στους παρακάτω τομείς :

- Έλεγχος μετακινήσεων, παραμορφώσεων σε φυσικές ή τεχνητές κατασκευές
- Αποτυπώσεις κατασκευών
- Χαράξεις τεχνικών έργων
- Βιομηχανική Γεωδαισία (έλεγχος ορθότητας βιομηχανικών κατασκευών σύμφωνα με τις αρχικές προδιαγραφές) κλπ.

3.2. Μετρήσεις στοιχείων δικτύου τριδιάστατου ελέγχου

Πριν τις μετρήσεις στο ύπαιθρο προηγήθηκε προετοιμασία στην οποία δημιουργήθηκαν τα κατάλληλα έντυπα μετρήσεων ύψους οργάνου και στόχου, γωνιών και μηκών του ΟΓΣ στο λογισμικό Microsoft Excel. Ο εξοπλισμός που χρησιμοποιήθηκε είναι ο ακόλουθος :

- 1 ΟΓΣ Leica TCR1202+ (πιν.2.1)
- 1 Ψηφιακός Χωροβάτης Leica SPRINTER 150 (πιν.3.4)
- 1 τρίποδας
- 7 κατάφωτα με βάσεις και τρικόχλια
- 1 σταδία
- 2 χελώνες
- Υπολογιστής πεδίου Getac B300
- 1 ζεύγος ασύρματων επικοινωνίας

Οι μετρήσεις πεδίου πραγματοποιήθηκαν κατά την περίοδο 22/06-09/07/2015. Η καταγραφή των μετρήσεων έγινε σε υπολογιστή πεδίου πράγμα το οποίο επιτάχυνε σημαντικά τις διαδικασίες. Συνολικά χρειάστηκαν 143 εργατοώρες (σχ.3.1).

Στο σχήμα 3.1 παρουσιάζεται η κατανομή των εργατοωρών, από το οποίο διαπιστώνεται πόσο χρονοβόρα είναι η διαδικασία προσδιορισμού του ύψους στόχου-οργάνου.

Σχήμα 3.1 : Στατιστικά εργατοωρών πεδίου ΓΔΤΕ

Στο σχήμα 3.2 παρουσιάζεται η απεικόνιση των εργατοωρών ανά κορυφή.

Η κορυφή η οποία απαιτεί τις περισσότερες εργατοώρες είναι η κορυφή 5 η οποία έχει αμοιβαία ορατότητα με 7 από τις υπόλοιπες κορυφές.

Στην 2^η θέση με τις περισσότερες εργατοώρες είναι η κορυφή 1 (σταθερή κορυφή) η οποία έχει αμοιβαία ορατότητα με 6 κορυφές.

Στην 3^{η} θέση με τις περισσότερες εργατοώρες είναι οι κορυφές 4 και 8 οι οποίες έχουν αμοιβαία ορατότητα με 5 κορυφές.

Στην 4^{η} θέση με τις περισσότερες εργατοώρες είναι οι κορυφές 3, 4, 6 και 8 οι οποίες έχουν αμοιβαία ορατότητα με 5 κορυφές.

Οι κορυφές οι οποίες απαιτούν τις λιγότερες εργατοώρες είναι οι κορυφές 2 και 7 οι οποίες έχουν αμοιβαία ορατότητα με 4 από τις υπόλοιπες κορυφές.

Κατά μέσο όρο κάθε κορυφή χρειάζεται περίπου 10 εργατοώρες.

Σχήμα 3.2 : Εργατοώρες ανά κορυφή ΓΔΤΕ

Κατά τη διάρκεια των μετρήσεων γινόταν σε πρώτο στάδιο η μέτρηση ύψους οργάνου και στόχου με την κατάλληλη διαδικασία για την επίτευξη μέγιστης δυνατής ακρίβειας όπως περιγράφεται στην παράγραφο 3.2.1.

Στο πεδίο έγιναν μετρήσεις οριζόντιων γωνιών, κατακόρυφων γωνιών σε δύο περιόδους (Ι και ΙΙ θέση τηλεσκοπίου - εικ. 3.1.β και 3.1.γ) και μηκών (2 μετρήσεις) και όπου κρίθηκε σκόπιμο σε περισσότερες.

Στους πίνακας 3.1, 3.2 και 3.3 παρουσιάζονται οι παρατηρήσεις των οριζόντιων γωνιών, των κατακόρυφων γωνιών και των μηκών.

Μετρήθηκαν συνολικά 36 οριζόντιες γωνίες, 24 κατακόρυφες γωνίες και 24 μήκη.

Τα μήκη είναι αναγμένα από το κέντρο οργάνου και στόχων στη στέψη των βάθρων, έτσι ώστε να μπορούν να υπολογιστούν οι μέσοι όροι μετάβασης και επιστροφής.

Οριζόντιες γωνίες (^g)								
β ₃₁₂	5.3976	β ₆₃₂	23.9626	β_{167}	84.7395	β ₄₈₉	5.2989	
β ₂₁₈	11.2020	β_{238}	0.1673	β ₇₆₃	8.0909	β ₉₈₅	29.4617	
β_{815}	37.7000	β_{831}	14.5925	β_{157}	36.4777	β ₆₇₉	225.4959	
β_{516}	14.1470	β_{382}	0.1651	β_{758}	11.6159	β ₉₇₄	61.3329	
β_{123}	179.8429	β_{284}	82.0621	β ₂₅₄	77.8473	β ₃₆₉	1.7652	
β ₃₂₅	150.2502	β_{581}	114.2067	β_{651}	50.2359	β ₉₆₅	41.0210	
β_{528}	50.0800	β_{183}	168.8056	β_{843}	61.5614	β_{859}	28.5501	
β ₈₂₁	19.8269	β ₅₇₆	62.4085	β ₅₄₇	26.6792	β ₉₅₂	4.5456	
β ₄₃₆	32.0807	β ₄₇₅	50.7627	β ₈₁₉	16.7536	β ₇₄₉	23.8074	

Πίνακας 3.1 : Πίνακας οριζόντιων γωνιών ΓΔΤΕ

	Κατακόρυφες γωνίες (^g)							
Z ₂₁	97.4951	Z ₂₅	92.6549	Z ₇₄	96.3780	Z19	98.9293	
Z ₃₁	98.0687	Z ₂₈	96.3300	Z ₈₄	97.4859	Z49	99.2245	
Z ₁₅	96.9446	Z ₃₄	96.2687	Z ₆₅	99.4442	Z95	93.6538	
Z ₁₆	96.5240	Z ₃₆	95.5624	Z ₇₅	81.4961	Z96	96.1060	
Z ₈₁	98.2648	Z ₃₈	98.0008	Z ₈₅	92.5533	Z ₇₉	88.7157	
Z ₃₂	99.6958	Z45	93.9435	Z ₇₆	86.7178	Z89	92.9484	

Πίνακας 3.2 : Πίνακας κατακόρυφων γωνιών ΓΔΤΕ

Μήκη αναγμένα στην στέψη των βάθρων (m)								
D ₂₁	620.2760	D ₂₅	453.1569	D ₇₄	298.8376	D ₁₉	538.8995	
D ₃₁	840.3297	D ₂₈	232.0499	D ₈₄	432.2238	D ₄₉	251.8405	
D ₁₅	577.4918	D ₃₄	538.2707	D ₆₅	150.0132	D ₉₅	187.4441	
D ₁₆	483.7492	D ₃₆	745.4092	D ₇₅	135.1099	D ₉₆	283.7624	
D ₈₁	405.6888	D ₃₈	460.3794	D ₈₅	332.4307	D ₇₉	113.8217	
D ₃₂	228.4904	D ₄₅	228.6614	D ₇₆	180.5860	D ₈₉	182.2590	

Πίνακας 3.3 : Πίνακας μηκών ΓΔΤΕ

Στο σχήμα 3.2 παρουσιάζεται η μορφή του ΓΔΤΕ. Φαίνεται με ενάργεια ποιες κορυφές έχουν αμοιβαία ορατότητα (μπλε γραμμή) και ποιες όχι (πράσινη γραμμή).

Παρατηρείται ότι στην κορυφή 9 δεν υπάρχει η δυνατότητα τοποθέτησης ΟΓΣ, επομένως οι παρατηρήσεις προς τη συγκεκριμένη κορυφή γίνονται μονοσήμαντα (καφέ γραμμή).

Η κορυφή 5 έχει την πλεονεκτική θέση να έχει τη δυνατότητα σκόπευσης σε 7 κορυφές.

Σχήμα 3.3 : Μορφή ΓΔΤΕ

Κατά τη διάρκεια των μετρήσεων υπήρξαν διάφορες δυσκολίες όπως:

- Έντονες καιρικές συνθήκες (υγρασία, διάθλαση, θερμοκρασία, άνεμοι κλπ)
- Μεγάλες τιμές στο σφάλμα δείκτη $e = \frac{400 z_I z_{II}}{2}$ των κατακορύφων γωνιών λόγω απειρίας σε μακρινές σκοπεύσεις
- Μεταβολή στην οριζοντίωση του ΟΓΣ στην κορυφή "1-SUBMARINE" λόγω θερμοδιαστολής του μετάλλου. Γι' αυτόν τον λόγο κατασκευάστηκε ειδικό κάλυμμα για την θερμομόνωση του βάθρου (εικ.3.1.α)
- Αβεβαιότητα στην σκόπευση της κορυφής "3-THALASSA" λόγω της διάθλασης που υπήρχε (εικ.3.1.β)

Εικόνα 3.1 : Κορυφές 1-S, 3-Τ και 2-Ρ

Οι έντονες καιρικές συνθήκες αντιμετωπίστηκαν με προγραμματισμό των μετρήσεων κατά τις απογευματινές ή τις πρωινές ώρες στις οποίες τα καιρικά φαινόμενα εξομαλύνονταν.

Η ελαχιστοποίηση της τιμής του σφάλματος δείκτη των κατακορύφων γωνιών αντιμετωπίστηκε με δοκιμαστικές μετρήσεις για την εξοικείωση του παρατηρητή στις σκοπεύσεις.

Κατά τη διάρκεια των μετρήσεων το συνεργείο αποτελείτο από δύο άτομα. Ανάλογα με το σημείο (πρωινό ή απογευματινό) στο οποίο θα πραγματοποιούνταν οι σκοπεύσεις προγραμματίζονταν πρωινές μετρήσεις (7 - 11 πμ) ή απογευματινές μετρήσεις (4 - 11 μμ) έτσι ώστε ο
ήλιος να βρίσκεται όπισθεν του παρατηρητή και να μην δυσχεραίνει τις σκοπεύσεις.

Τα πρωινά σημεία ήταν τα σημεία 2 και 7. Τα απογευματινά σημεία ήταν τα σημεία 1, 3, 4, 5, 6 και 8.

Οι μετρήσεις γωνιών διεξήχθησαν σε δύο περιόδους και όπου κρίθηκε σκόπιμο σε περισσότερες.

3.2.1. Μέτρηση ύψους οργάνου και στόχου

Για τον προσδιορισμό μιας υψομετρικής διαφοράς με τη μέθοδο της τριγωνομετρικής υψομετρίας, είναι απαραίτητη η μέτρηση του ύψους του οργάνου και του ύψους του στόχου πάνω από τα σημεία της ΦΓΕ, όπου τοποθετούνται.

Το ΥΟ μετράται, αφού έχει ολοκληρωθεί η διαδικασία κέντρωσης και οριζοντίωσής του, με μετροταινία κατακόρυφα από το σημείο κέντρωσης έως το κέντρο του οργάνου δηλαδή το σημείο τομής των τριών αξόνων του. Στο σημείο αυτό αναφέρονται οι μετρήσεις μηκών και γωνιών που πραγματοποιούνται.

Το σημείο αυτό υλοποιείται στη μία ή και στις δύο πλευρές στο εξωτερικό περίβλημα σε όλους τους γεωδαιτικούς σταθμούς (εικ.3.2)

Εικόνα 3.2 : Σημείο μέτρησης ύψους οργάνου

Αυτή η διαδικασία μέτρησης του ύψους οργάνου παρέχει αβεβαιότητα της τάξης των ± 2 mm - ± 5 mm. Το σφάλμα αυτό μεταφέρεται ακέραιο στο σφάλμα υπολογισμού της υψομετρικής διαφοράς.

Η τάξη μεγέθους του σφάλματος αυτού επηρεάζει σημαντικά τη διαδικασία μέτρησης και επίλυσης ενός ΓΔΤΕ. Αυτό εξηγείται εφόσον οι ζητούμενες ακρίβειες είναι της τάξης των $\pm 1 \text{ mm} - \pm 2 \text{ mm}$.

Επίσης η αδυναμία στα ΓΔΤΕ είναι η τρίτη διάσταση δηλαδή τα ορθομετρικά υψόμετρα.

Αυτός είναι ένας λόγος περαιτέρω, ο οποίος υπαγορεύει την αποφυγή σφαλμάτων στην όλα διαδικασία μέτρησης και επίλυσης ενός ΓΔΤΕ.

Στην περίπτωση που απαιτείται μικρότερη αβεβαιότητα στον προσδιορισμό του ύψους οργάνου ακολουθείται η παρακάτω διαδικασία :

Σε προσημασμένο σημείο B, κοντά στο σημείο στάσης A του γεωδαιτικού σταθμού, τοποθετείται σταδία. Χρησιμοποιώντας το γεωδαιτικό σταθμό ως χωροβάτη, δηλαδή τοποθετώντας τη σκοπευτική του γραμμή σε οριζόντια θέση (ένδειξη 100^{g} στη ζενίθια γωνία), λαμβάνεται από τον παρατηρητή η ανάγνωση e πάνω στη σταδία σε πρώτη (I^η) και δεύτερη (II^η) θέση τηλεσκοπίου (300^g) (σχ.3.3.α).

Τελικά
$$e = \frac{e^{I} + e^{II}}{2}$$
.

Στη συνέχεια, αφού απομακρυνθεί ο γεωδαιτικός σταθμός από το σημείο A, τοποθετείται χωροβάτης περίπου στη μεσοκάθετο της απόστασης μεταξύ των σημείων A και B και λαμβάνονται οι ενδείξεις της σταδίας όπισθεν O (στο σημείο A) και έμπροσθεν E (στο σημείο B).

Υπολογίζεται η υψομετρική διαφορά $\Delta H_{AB} = O - E$ (σχ. 3.3.β). Τότε το ύψος οργάνου ΥΟ προκύπτει ως άθροισμα των ε και ΔH_{AB} , δηλαδή :

$$YO = e + \Delta H_{AB}$$
(3.1)

Σ' αυτή την περίπτωση η αβεβαιότητα προσδιορισμού του ύψους οργάνου είναι ίση περίπου με ± 0.7 mm, αν θεωρηθεί ότι:

- Η αβεβαιότητα των αναγνώσεων πάνω στη σταδία είναι ± 0.6 mm, χρησιμοποιώντας ψηφιακό χωροβάτη και σταδίες
- Η αβεβαιότητα ανάγνωσης ε του παρατηρητή πάνω στη σταδία μέσω του γεωδαιτικού σταθμού (ως χωροβάτη) είναι ± 0.25 mm. [Λάμπρου Ε., Πανταζής Γ., 2013]

Σχήμα 3.4 : Ακριβής προσδιορισμός του ύψους οργάνου - στόχου [Λάμπρου Ε., Πανταζής Γ. 2013]

Ο ψηφιακός χωροβάτης που χρησιμοποιήθηκε για τις μετρήσεις ύψους οργάνου και στόχων παρουσιάζεται στον πίνακα 3.4.

	Ακρίβεια
	\pm 1.5 mm/km (απλή σταδία)
Sprinter	Ηλεκτρονική ανάγνωση : ± 0.6 mm
150M	Ελάχιστη απόσταση σκόπευσης : 2 m
	Μέγιστη απόσταση σκόπευσης : 100 m
	Βάρος : 2.55 Kg

Πίνακας 3.4 : Ψηφιακός χωροβάτης SPRINTER 150M της Leica [6]

3.3. Επεξεργασία μετρήσεων

Στη συνέχεια ακολούθησε η επεξεργασία των μετρήσεων όπου υπολογίστηκαν οι γενικοί μέσοι όροι για τις οριζόντιες γωνίες, τις κατακόρυφες γωνίες και για τα μήκη.

Αναγωγή στη στέψη των βάθρων έγινε για τα μήκη, χρησιμοποιώντας τη σχέση 3.2 :

$$D_{AB} = \sqrt{D_{A'B'}^2 + (YO - Y\Sigma)^2 + 2 \cdot D_{A'B'} \cdot (YO - Y\Sigma) \cdot \cos z_{A'B'}} \quad (3.2)$$

όπου $AA' - (YO - Y\Sigma)$

 $D_{A'B'}$ - το μετρούμενο μήκος

ΥΟ - το ύψος οργάνου στο σημείο Α

 $Y\Sigma$ - το ύψος σκόπευσης στο σημείο B

 $z_{A'B'}$ - η ζενίθια γωνία που μετράται από το A' προς το B'.

Σχήμα 3.5 : Γεωμετρική αναγωγή του μήκους στα προσημασμένα σημεία του δικτύου [Λάμπρου Ε., Πανταζής Γ. 2013]

Υπολογίστηκαν τα κλεισίματα των μοναδιαίων τριγώνων υψομετρικά και οριζοντιογραφικά (πίν.3.5).

Έγινε έλεγχος κλεισίματος βρόγχων για επίπεδο εμπιστοσύνης 95 %.

Οι υψομετρικές διαφορές μεταξύ των κορυφών υπολογίστηκαν με τη μέθοδο της Τριγωνομετρικής Υψομετρίας με μετάβαση και επιστροφή, απαλλαγμένες από καμπυλότητα και διάθλαση.

Γνωρίζοντας ότι το σφάλμα μιας ΔΗ είναι της τάξης των ± 5 mm έγινε εφαρμογή του νόμου μετάδοσης σφαλμάτων για έλεγχο στο κλείσιμο των υψομετρικών βρόγχων :

 $\sigma_{\kappa_{\Lambda H}} = \pm \sigma_{\kappa} \cdot z_{95\%} = \pm 17 mm$

$$\sigma_{\kappa_{1D}} = \pm \sqrt{\sigma_{\Delta H_{12}}^2 + \sigma_{\Delta H_{23}}^2 + \sigma_{\Delta H_{31}}^2} = \pm \sqrt{3 \cdot 5^2} = \pm 9 \text{mm}$$

$$\sigma_{\Delta H_{i,i+1}} = \pm \sqrt{\cos^2 z_{i,i+1} \cdot \sigma_{D_{i,i+1}}^2 + (-D_{i,i+1} \cdot \sin z_{i,i+1})^2 \cdot \left(\frac{\sigma_{z_{i,i+1}}^{\text{cc}}}{\rho^{\text{cc}}}\right)^2} = >$$

όπου

$$\sigma_{\Delta H_{i,i+1}} = \pm \sqrt{\cos^2 z_{i,i+1} \cdot 0.0002^2 + (-D_{i,i+1} \cdot \sin z_{i,i+1})^2 \cdot \left(\frac{6}{636620}\right)^2} = \pm 5 \text{ mm}.$$

Οριζοντιογραφικά το όριο για το σφάλμα κλεισίματος ήταν :

 $\sigma_{\kappa_{00}, \kappa_{0}, \gamma_{00}, \gamma_{00}} = \pm \sigma_{\kappa} \cdot z_{95\%} = \pm 20^{cc}$

όπου - $z_{95\%}$ =1.96 για κανονική κατανομή

$$-\sigma_{\kappa} = \pm \sqrt{\sigma_{\alpha}^{2} + \sigma_{\beta}^{2} + \sigma_{\gamma}^{2}} = \pm \sqrt{3 \cdot 6^{2}} = \pm 10.39^{cc} \approx \pm 10^{cc}$$
$$-\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = \pm 6^{cc}$$

Στον πίνακα 3.5 παρουσιάζονται τα κλεισίματα των βρόγχων του ΓΔΤΕ οριζοντιογραφικά και υψομετρικά.

Στα τρίγωνα 159, 169, 189 και 459 δεν υπάρχει οριζοντιογραφικό κλείσιμο για τον λόγο ότι στην κορυφή 9 δεν μπορούσε να τοποθετηθεί ΟΓΣ.

A/A	В	Κλ (^{cc})	Kλ (mm)	A/A	В	$K\lambda$ (^{cc})	Kλ (mm)
1	123	-3	7	13	567	8	1
2	125	18	11	14	1236	9	4
3	128	4	6	15	1256	24	9
4	136	6	-3	16	1258	21	6
5	138	24	-3	17	1345	14	7
6	156	6	-2	18	1548	-18	-11
7	158	-3	-6	19	1328	2	-1
8	238	-22	-2	20	159	-	-5
9	258	17	0	21	169	I	1
10	348	9	0	22	189	-	-3
11	457	-9	8	23	459	-	6
12	458	-15	5			-	

Πίνακας 3.5 : Κλεισίματα βρόγχων ΓΔΤΕ για εε 95%

Με εξαίρεση τα τρίγωνα 138 και 238 τα οποία οριακά δεν είναι εντός των επιτρεπόμενων τιμών κλεισίματος, δεν είναι στατιστικά σημαντικά.

Τα κλεισίματα των βρόγχων απετέλεσαν μια a priori εκτίμηση της αβεβαιότητας των γωνιών με βάση τον τύπο του Ferrero [Αγατζά – Μπαλοδήμου Α. Μ., 2009]:

$$\sigma_{\beta} = \pm \sqrt{\frac{\sum w_i^2}{3 \cdot v}} = \pm 8^{cc}$$
(3.3)

όπου $\sum w_i^2$ – το άθροισμα των τετραγώνων των σφαλμάτων κλεισίματος ικανού αριθμού ν τριγώνων του δικτύου.

Για τον υπολογισμό του σφάλματος των οριζόντιων γωνιών χρησιμοποιήθηκαν τα τρίγωνα με την καλύτερη γεωμετρία.

Η τιμή των 8^{°C} δεν θεωρήθηκε ρεαλιστή και στη θέση της χρησιμοποιήθηκε η τιμή

 $\sigma_{\beta} = \pm 10^{cc}$.

Η επιλογή αυτή έγινε με δοκιμές επίλυσης για διαφορετικές τιμές στο σφάλμα των οριζόντιων γωνιών.

3.4. Συνόρθωση δικτύου

Η συνόρθωση του δικτύου έγινε με τη μέθοδο μεταβολής των συντεταγμένων (μέθοδο των εμμέσων παρατηρήσεων) με τις ελάχιστες εξωτερικές δεσμεύσεις (μια κορυφή σταθερή 1-Submarine (5000m, 5000m, 35.504m) και σταθερός προσανατολισμός της πλευράς 12 ($a_{12} = 195.8515^{g}$) με δεδομένα :

- Αριθμός κορυφών : 9
- Αριθμός παρατηρήσεων μηκών : 24
- Αριθμός παρατηρήσεων οριζόντιων γωνιών : 36
- Αριθμός παρατηρήσεων ζενίθιων γωνιών : 24
- Συνολικός αριθμός παρατηρήσεων : n = 84
- Αριθμός άγνωστων καθοριστικών παραμέτρων m : 23
- Baquós eleuderías : r = n m = 61

Βάση των προσωρινών συντεταγμένων μορφώθηκε ο πίνακας $A_{84\cdot23}$ σύμφωνα με τις εξισώσεις παρατήρησης 3.4, 3.5 και 3.6 :

Για τα μήκη :

$$-\frac{x_{j}^{0}-x_{i}^{0}}{D_{ij}^{0}}\cdot\delta x_{i}-\frac{y_{j}^{0}-y_{i}^{0}}{D_{ij}^{0}}\cdot\delta y_{i}-\frac{z_{j}^{0}-z_{i}^{0}}{D_{ij}^{0}}\cdot\delta z_{i}+\frac{x_{j}^{0}-x_{i}^{0}}{D_{ij}^{0}}\cdot\delta x_{j}+\frac{y_{j}^{0}-y_{i}^{0}}{D_{ij}^{0}}\cdot\delta y_{j}+\frac{z_{j}^{0}-z_{i}^{0}}{D_{ij}^{0}}\cdot\delta z_{j}=\delta l+\upsilon \quad (3.4)$$

Για τις οριζόντιες γωνίες :

$$\begin{pmatrix} y_{j}^{0} - y_{i}^{0} \\ (S_{ij}^{0})^{2} - \frac{y_{k}^{0} - y_{i}^{0}}{(S_{ik}^{0})^{2}} \end{pmatrix} \cdot \delta x_{i} + \begin{pmatrix} \frac{x_{k}^{0} - x_{i}^{0}}{(S_{ik}^{0})^{2}} - \frac{x_{j}^{0} - x_{i}^{0}}{(S_{ij}^{0})^{2}} \end{pmatrix} \cdot \delta y_{i} - \frac{y_{j}^{0} - y_{i}^{0}}{(S_{ij}^{0})^{2}} \cdot \delta y_{j} + \frac{x_{j}^{0} - x_{i}^{0}}{S_{ij}^{0}} \cdot \delta x_{j} + \\ \begin{pmatrix} \frac{y_{k}^{0} - y_{i}^{0}}{(S_{ik}^{0})^{2}} \end{pmatrix} \cdot \delta x_{k} - \begin{pmatrix} \frac{x_{k}^{0} - x_{i}^{0}}{(S_{ik}^{0})^{2}} \end{pmatrix} \cdot \delta y_{k} = \delta l + \upsilon$$

$$(3.5)$$

• Για τις ζενίθιες γωνίες :

$$-\frac{(x_{j}^{0}-x_{i}^{0})\cdot(z_{j}^{0}-z_{i}^{0})}{(D_{ij}^{0})^{2}\cdot S_{ij}^{0}}\cdot\delta x_{i}-\frac{(y_{j}^{0}-y_{i}^{0})\cdot(z_{j}^{0}-z_{i}^{0})}{(D_{ij}^{0})^{2}\cdot S_{ij}^{0}}\cdot\delta y_{i}+\frac{S_{ij}^{0}}{(D_{ij}^{0})^{2}}\cdot\delta z_{i}+\frac{(x_{j}^{0}-x_{i}^{0})\cdot(z_{j}^{0}-z_{i}^{0})}{(D_{ij}^{0})^{2}\cdot S_{ij}^{0}}\cdot\delta x_{i}+\frac{(y_{j}^{0}-y_{i}^{0})\cdot(z_{j}^{0}-z_{i}^{0})}{(D_{ij}^{0})^{2}\cdot S_{ij}^{0}}\cdot\delta y_{i}-\frac{S_{ij}^{0}}{(D_{ij}^{0})^{2}}\cdot\delta z_{i}=\delta l+\upsilon$$

$$(3.6)$$

Έπειτα μορφώθηκε ο πίνακας των βαρών $P_{84\cdot 84}$ με τα δεδομένα :

- A priori τυπικό σφάλμα της μονάδας βάρους : $\sigma_0 = 1$
- Σφάλμα μηκών : $\sigma_D = \pm a \text{ mm} \pm b \text{ ppm} = \pm 1 \text{ mm} \pm 1.5 \text{ ppm}$. Με εφαρμογή στην σχέση 3.7 :

$$\sigma_{\mathrm{D}_{\mathrm{AR}_{\mathrm{i}}}} = \pm \sqrt{a^2 + \left(\frac{b \cdot \mathrm{D}}{1000}\right)^2} \tag{3.7}$$

To σ_D kumándyke apó $\pm 1~mm$ - $\pm 1.6~mm$

- Σφάλμα κατακόρυφων γωνιών : $\sigma_z = \pm 10^{cc}$

Προκειμένου να μορφωθεί ο πίνακας l_0 των προσωρινών τιμών έγινε αναγωγή των ζενιθιών γωνιών στο κέντρο οργάνου και στόχου βάση της σχέσης 3.8 :

$$\Delta H_{AB} = \cot z_{AB} \cdot S_{AB} + (1 - \kappa) \cdot \frac{S_{AB}^2}{2 \cdot R} + YO - Y\Sigma$$
(3.8)

Λύνοντας ως προς z_{AB} προκύπτει η προσωρινή τιμή της ζενίθιας γωνίας (σχ. 3.9) :

$$z_{AB} = \arctan\left(\frac{S_{AB}}{\Delta H_{AB} - (1-\kappa) \cdot \frac{S_{AB}^2}{2 \cdot R} + YO + Y\Sigma}\right)$$
(3.9)

Μορφώθηκαν οι πίνακες 1, l_0 και δl από τις μετρήσεις και από τις προσωρινές συντεταγμένες και έγινε επίλυση του συστήματος σύμφωνα με την σχέση 3.10 :

$$\delta \hat{\mathbf{x}} = \left(\mathbf{A}^{\mathrm{T}} \cdot \mathbf{P} \cdot \mathbf{A}\right)^{-1} \cdot \mathbf{A}^{\mathrm{T}} \cdot \mathbf{P} \cdot \delta \mathbf{l}$$
(3.10)

Υπολογίστηκαν οι καλλίτερες τιμές των αγνώστων (x,y,H) από την σχέση 3.11 :

$$\hat{\mathbf{x}} = \mathbf{x}^0 + \delta \hat{\mathbf{x}} = \mathbf{x}^0 + \left(\mathbf{A}^T \cdot \mathbf{P} \cdot \mathbf{A}\right)^{-1} \cdot \mathbf{A}^T \cdot \mathbf{P} \cdot \delta \mathbf{l}$$
(3.11)

Για τον προσδιορισμό των υπόλοιπων ή φαινόμενων σφαλμάτων υ έγινε επίλυση του συστήματος σύμφωνα με τη σχέση 3.12 :

$$v = A \cdot \delta \hat{x} - \delta l$$
 (3.12)

Βάση της σχέσης 3.13 προσδιορίστηκε το $\hat{\sigma}_0$:

$$\hat{\sigma}_0 = \pm \sqrt{\frac{\upsilon^{\mathrm{T} \cdot \mathrm{P} \cdot \upsilon}}{\mathrm{r}}} \tag{3.13}$$

Βάση της σχέσης 3.14 προσδιορίστηκε ο $\widehat{V}_{\hat{x}}$ με διαστάσεις 23·23 :

$$\widehat{\mathbf{V}}_{\widehat{\mathbf{x}}} = \widehat{\sigma}_0^2 \cdot \mathbf{N}^{-1} \tag{3.14}$$

Στη συνέχεια έγινε μετατροπή του $\hat{V}_{\hat{x}}$ σε 24·24 για να προσδιοριστούν οι αβεβαιότητες σ_x και σ_y της ημισταθερής κορυφής με χαρακτηριστική ονομασία 2-PARKING από την αβεβαιότητα της ημισταθερής απόστασης σ_{S12}.

Η επίλυση του ΓΔΤΕ έγινε με το λογισμικό Microsoft Excel.

Τα αποτελέσματα που προέκυψαν από την επίλυση του ΓΔΤΕ παρουσιάζονται στον πίνακα 3.6.

Έγινε ολικός έλεγχος αξιοπιστίας test χ^2 με επίπεδο εμπιστοσύνης p=95%, r = 61, $\hat{\sigma}_0 = \pm 1.004$ και $\chi^2_{(61-0.95)} = 57.27 =>$

$$\frac{r \cdot \hat{\sigma}_0^2}{\chi^2_{(13, 0.95)}} = 1.07 \cong \sigma_0^2 = 1$$
, ο οποίος αξιολογείται θετικά.

Πραγματοποιήθηκε σάρωση δεδομένων κατά Baarda για τυχόν ύπαρξη χονδροειδούς λάθους στις μετρήσεις με βάση τα υπόλοιπα και τα σφάλματα των υπολοίπων των μετρήσεων.

Κορυφή	x (m)	$\sigma_x(mm)$	y (m)	σ_{y} (mm)	H (m)	$\sigma_{\rm H}({\rm mm})$
1	5000.000	-	5000.000	-	35.504	-
2	5040.360	± 0.1	4381.521	± 0.9	11.063	± 4.1
3	5125.496	± 1.5	4169.486	± 1.1	9.967	± 4.5
4	4613.541	± 1.3	4332.710	± 1.2	41.513	± 4.1
5	4627.084	± 0.9	4559.932	± 1.0	63.239	± 3.7
6	4614.180	± 1.0	4709.383	± 1.1	61.929	± 3.8
7	4750.942	± 1.1	4597.543	± 1.0	24.515	± 3.7
8	4955.160	± 1.0	4596.949	± 0.8	24.437	± 3.6
9	4803.160	± 1.1	4498.417	± 0.9	44.584	± 3.6

Πίνακας 3.6 : Συντεταγμένες και αβεβαιότητες ΓΔΤΕ για εε 95%

Τα δεδομένα για την σάρωση δεδομένων είναι r = 61, p = 95 % = >

 $(F_{(0.95,61,61)})^{0.5} = 1.2374$ (πίν. Γ.9). Τα αποτελέσματα παρουσιάζονται στο παράρτημα Γ. Παρατηρείται ότι δεν αξιολογούνται θετικά σύμφωνα με τον έλεγχο όλες οι μετρήσεις.

Παρόλα αυτά δεν απορρίπτεται κάποια παρατήρηση για τον λόγο ότι δεν υπάρχει πλεονασμός παρατηρήσεων. Απορρίπτοντας κάποια μέτρηση μειώνεται η ευαισθησία του δικτύου τόσο οριζοντιογραφικά όσο και υψομετρικά.

3.5. Ελλείψεις σφάλματος

Οι ελλείψεις σφάλματος απεικονίζουν την αβεβαιότητα της θέσης ενός σημείου ως προς το σύστημα αναφοράς του δικτύου (θέση σταθερού ή σταθερών σημείων και επιλογή ελάχιστων δεσμεύσεων) και συχνά ονομάζονται απόλυτες ελλείψεις σφάλματος σε αντίθεση με τις σχετικές ελλείψεις που παριστάνουν την αβεβαιότητα στη σχετική θέση δύο ελεύθερων κορυφών (την αβεβαιότητα του σημείου i ως προς ένα άλλο j).

Από τον a posteriori πίνακα μεταβλητότητας συμμεταβλητότητας $\hat{V}_{\hat{x}}$ υπολογίζονται τα στοιχεία των απόλυτων ελλείψεων σφάλματος σύμφωνα με τις σχέσεις 3.15, 3.16 και 3.17 :

$$\tan(2\theta) = \frac{\sigma_{xy}}{\sigma_x^2 - \sigma_y^2} \, \dot{\eta} \, \tan(2\alpha) = \frac{\sigma_{xy}}{\sigma_y^2 - \sigma_x^2} \tag{3.15}$$

$$\sigma_{\max}^2 = \sigma_u^2 = \frac{1}{2} \cdot \left[\left(\sigma_x^2 + \sigma_y^2 \right) + \sqrt{\left(\sigma_x^2 + \sigma_y^2 \right)^2 + 4 \cdot \sigma_{xy}^2} \right]$$
(3.16)

Σχήμα 3.6 : Τυπική έλλειψη σφάλματος

Για τον υπολογισμό των στοιχείων των σχετικών ελλείψεων σφάλματος εφαρμόστηκε ο νόμος μετάδοσης μεταβλητοτήτων στον $\hat{V}_{\hat{x}}$ σύμφωνα με την σχέση (3.18).

$$\mathbf{V}_{\Delta \mathbf{r}_{ij}} = \mathbf{J} \cdot \mathbf{V}_{\mathbf{r}_{ij}} \cdot \mathbf{J}^{\mathrm{T}} = \begin{bmatrix} \sigma_{\Delta \mathbf{x}}^{2} & \sigma_{\Delta \mathbf{x} \Delta \mathbf{y}} \\ \sigma_{\Delta \mathbf{x} \Delta \mathbf{y}} & \sigma_{\Delta \mathbf{y}}^{2} \end{bmatrix}$$
(3.18)

Στη συνέχεια χρησιμοποιούνται οι σχέσεις 3.15, 3.16 και 3.17 για τον υπολογισμό των στοιχείων των σχετικών ελλείψεων.

Οι απόλυτες και οι σχετικές ελλείψεις παρουσιάζονται στα σχήματα 3.6 και 3.8. Από τον σχεδιασμό των απόλυτων ελλείψεων παρατηρείται ότι το δίκτυο έχει αδυναμία κυρίως σε προσανατολισμό και λιγότερο σε κλίμακα.

Στο σχήμα 3.7 παρουσιάζονται οι αβεβαιότητες των υψομέτρων των κορυφών του δικτύου σχεδιασμένες υπό κατάλληλη κλίμακα.

Στο σχήμα 3.9 παρουσιάζονται οι αβεβαιότητες των σχετικών υψομέτρων των κορυφών του δικτύου σχεδιασμένες υπό κατάλληλη κλίμακα.

Στον πίνακα 3.7 παρουσιάζονται τα στοιχεία των απόλυτων ελλείψεων σφάλματος για επίπεδο εμπιστοστοσύνης 95%.

Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει απόλυτες μετακινήσεις της τάξης των 4 mm οριζοντιογραφικά ενώ μπορεί να ανιχνεύσει απόλυτες μετακινήσεις της τάξης των ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.

Κορυφή	$\sigma_u(mm)$	$\sigma_v(mm)$	θ (^g)	$\sigma_{\rm H} ({\rm mm})$
2	± 2.2	± 0.0	195.8515	± 8.1
3	± 4.0	± 2.3	71.6238	± 8.8
4	± 3.9	± 2.2	146.2679	± 7.9
5	± 2.8	± 2.1	162.7156	± 7.2
6	± 2.8	± 2.5	164.9539	± 7.4
7	± 2.9	± 2.2	141.3216	± 7.3
8	± 2.5	± 1.8	125.5925	± 7.1
9	± 2.8	± 2.0	136.9030	± 7.1

Πίνακας 3.7 : Στοιχεία απόλυτων ελλείψεων σφάλματος ΓΔΤΕ για εε 95%

Στον πίνακα 3.8 παρουσιάζονται τα στοιχεία των σχετικών ελλείψεων σφάλματος για επίπεδο εμπιστοσύνης 95%.

Το ΓΔΤΕ παρουσιάζει αδυναμία κυρίως σε προσανατολισμό και λιγότερο σε κλίμακα σύμφωνα με τα στοιχεία των σχετικών ελλείψεων.

Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει σχετικές μετακινήσεις της τάξης των 5 mm οριζοντιογραφικά ενώ μπορεί να ανιχνεύσει σχετικές μετακινήσεις της τάξης των ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.

Σχήμα 3.7 : Απόλυτες ελλείψεις σφάλματος ΓΔΤΕ για εε 95%

Σχήμα 3.8 : Αβεβαιότητα υψομέτρων ΓΔΤΕ για εε 95%

Από	Προς	$\sigma_u(mm)$	σ _v (mm)	θ (^g)	σ _H (mm)
1	2	± 2.2	± 0.0	104.1485	± 8.1
1	3	± 4.0	± 2.3	81.1713	± 8.8
1	4	± 3.9	± 2.2	112.8489	± 7.9
1	5	± 2.8	± 2.1	117.9621	± 7.2
1	6	± 2.8	± 2.5	106.0525	± 7.4
1	7	± 2.9	± 2.2	106.0426	± 7.3
1	8	± 2.5	± 1.8	118.5390	± 7.1
1	9	± 2.8	± 2.0	113.0953	± 7.1
2	3	± 4.0	± 1.9	98.3969	± 6.0
2	4	± 3.9	± 2.6	62.2201	± 7.1
2	5	± 2.9	± 2.3	75.0554	± 6.4
2	6	± 3.0	± 2.5	69.4971	± 6.8
2	7	± 2.8	± 2.6	48.9500	± 6.5
2	8	± 2.4	± 1.9	100.6029	± 5.6
2	9	± 2.7	± 2.7	33.2339	± 6.3
3	4	± 4.2	± 2.7	103.2057	± 7.7
3	5	± 4.6	± 2.4	110.5308	± 7.3
3	6	± 4.9	± 2.4	104.3972	± 7.6
3	7	± 4.5	± 2.6	106.4204	± 7.4
3	8	± 4.2	± 2.0	99.0970	± 6.8
3	9	± 4.1	± 2.5	108.9730	± 7.2
4	5	± 3.1	± 1.9	120.9058	± 4.5
4	6	± 3.6	± 2.5	117.1217	± 5.2
4	7	± 3.6	± 1.8	102.6607	± 4.6
4	8	± 4.0	± 1.9	94.0920	± 5.5
4	9	± 3.4	± 1.8	95.0395	± 4.5
5	6	± 2.4	± 1.8	83.8631	± 3.4
5	7	± 2.0	± 1.8	74.9657	± 2.9
5	8	± 2.8	± 1.9	91.6306	± 4.6
5	9	± 2.2	± 1.7	100.1796	± 3.1
6	7	± 2.4	± 1.9	106.0795	± 3.5
6	8	± 2.9	± 2.7	99.3514	± 5.2
6	9	± 2.9	± 1.8	102.7571	± 3.9
7	8	± 2.8	± 2.2	56.9969	± 4.7
7	9	± 2.0	± 1.8	110.0585	± 2.8
8	9	± 2.7	± 1.8	93.9046	± 4.3

Στον πίνακα 3.8 παρουσιάζονται τα στοιχεία των σχετικών ελλείψεων σφάλματος του ΓΔΤΕ για εε 95%.

Πίνακας 3.8 : Στοιχεία σχετικών ελλείψεων σφάλματος ΓΔΤΕ για εε 95%

Σχήμα 3.9 : Σχετικές ελλείψεις σφάλματος ΓΔΤΕ για ε
ε95%

Σχήμα 3.10 : Αβεβαιότητες σχετικών υψομέτρων ΓΔΤΕ για εε 95%

ΚΕΦΑΛΑΙΟ 4

ΕΛΕΓΧΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ

4.1. Γενικά

Έλεγχος μετακινήσεων είναι η διαδικασία κατά την οποία γίνεται ο εντοπισμός, για ένα συγκεκριμένο επίπεδο εμπιστοσύνης συνήθως 95%, απολύτων ή σχετικών μετακινήσεων των κορυφών ενός γεωδαιτικού δικτύου.

Για τον σωστό εντοπισμό των μετακινήσεων επιβάλλεται να διατηρείται το ίδιο σύστημα αναφοράς (ίδιες δεσμεύσεις και προσωρινές συντεταγμένες σε όλες τις περιόδους των παρατηρήσεων).

Απαραίτητα δεδομένα για τον έλεγχο μετακινήσεων είναι οι καλλίτερες τιμές των άγνωστων καθοριστικών παραμέτρων και οι a posteriori πίνακες μεταβλητότητας - συμμεταβλητότητας για τις δύο χρονικές στιγμές κατά τις οποίες διεξήχθησαν οι παρατηρήσεις.

Αν πρόκειται για Γεωδαιτικό Δίκτυο Κατακορύφου Ελέγχου οι άγνωστες καθοριστικές παράμετροι είναι οι συνορθωμένες τιμές των υψομέτρων, για Γεωδαιτικό Δίκτυο Οριζοντίου Ελέγχου οι καλλίτερες τιμές των συντεταγμένων x και y ενώ για Γεωδαιτικό Δίκτυο Τριδιάστατου Ελέγχου οι καλλίτερες τιμές των x, y και H.

Συνήθως ο έλεγχος μετακινήσεων πραγματοποιείται για ε.ε. 95% ή 99% (πίν. 4.1).

Επίπεδο εμπιστοσύνης	Z	λ
95 %	1.96	2.447
99 %	2.576	3.035

Πίνακας 4.1	: Συντελεστές z	και λ για	: ee 95	και 99	%
-------------	-----------------	-----------	---------	--------	---

Σε πρώτη φάση γίνεται υπολογισμός του πίνακα μεταβλητότητας - συμμεταβλητότητας μεταβολών $V_{\delta x}$ του διανύσματος μεταβολής δχ των σημείων του γεωδαιτικού δικτύου.

$$V_{\delta x} = \widehat{V}_{x}^{1} + \widehat{V}_{x}^{2} \tag{4.1}$$

Ο έλεγχος μετακινήσεων στην παρούσα μελέτη γίνεται για το ΓΔΤΕ των 9 κορυφών αλλά ανεξάρτητα οριζοντιογραφικά και υψομετρικά.

Το ΓΔΤΕ μετρήθηκε το 2012 στο πλαίσιο δύο πτυχιακών εργασιών του ΤΕΠΑΚ [Σταύρου Γ., Κωνσταντινίδης Κ., 2013].

Τα αποτελέσματα της επίλυσης όπως αυτή προέκυψε από τις μετρήσεις του 2012 παρουσιάζονται στον πίνακα 4.2.

Κορυφή	x (m)	$\sigma_{\rm x}$ (mm)	y (m)	σ_{y} (mm)	H (m)	$\sigma_{\rm H}({\rm mm})$
1	5000.000	-	5000.000	-	35.504	-
2	5040.360	±0.1	4381.516	±0.9	11.066	± 2.8
3	5125.494	±1.1	4169.475	±1.1	9.976	±3.0
4	4613.534	±1.1	4332.707	±1.2	41.526	±2.7
5	4627.077	± 0.8	4559.927	±1.0	63.242	±2.4
6	4614.189	±0.9	4709.377	±1.1	61.951	±2.5
7	4750.945	±0.9	4597.539	±0.9	24.513	±2.5
8	4955.158	± 0.8	4596.946	± 0.8	24.443	±2.4
9	4803.160	±0.9	4498.418	±0.9	44.578	±2.4

Πίνακας 4.2 : Αποτελέσματα τριδιάστατης επίλυσης 2012 για εε 95%

4.2. Απόλυτες Μετακινήσεις

Με τον όρο απόλυτες μετακινήσεις, ουσιαστικά γίνεται αναφορά στις μεταβολές των απόλυτων θέσεων των κορυφών του δικτύου σε σχέση με τη σταθερή κορυφή [Γεωργόπουλος Γ. κ.α. 2005].

4.2.1. Κατά την οριζόντια έννοια

Tο διάνυσμα μεταβολής δύο σημείων A και B είναι :
$$\delta x = \begin{bmatrix} \delta x_A \\ \delta y_A \\ \delta H_A \\ \delta x_B \\ \delta y_B \\ \delta H_B \end{bmatrix}$$
.

Υπολογίζεται το διάνυσμα μεταβολής της θέσης κάθε σημείου δr από τη σχέση 4.2 και η αντίστοιχη γωνία διεύθυνσης από τη σχέση 4.3.

$$\delta r = \sqrt{\left(x_{i_{t2}} - x_{i_{t1}}\right)^2 + \left(y_{i_{t2}} - y_{i_{t1}}\right)^2}$$
(4.2)

$$\alpha_{\delta r} = \arctan\left(\frac{\Delta x}{\Delta y}\right) \tag{4.3}$$

Έπειτα γίνεται υπολογισμός των στοιχείων της έλλειψης σφάλματος απόλυτης μεταβολής θέσης σύμφωνα με τις σχέσεις 3.15, 3.16 και 3.17.

Πραγματοποιείται έλεγχος μετακίνησης κατά την οριζόντια έννοια.

Σχεδιάζεται η έλλειψη σφάλματος της μεταβολής της θέσης της κορυφής με άξονες πολλαπλασιασμένους με λ ($\sigma_u \cdot \lambda$, $\sigma_v \cdot \lambda$) και το διάνυσμα μεταβολής δr της μεταβολής στην ίδια κλίμακα και εξετάζεται αν το πέρας του είναι εντός ή εκτός της έλλειψης [Γεωργόπουλος Γ. κ.α. 2005].

4.2.2. Κατά την κατακόρυφη έννοια

Υπολογίζεται το διάνυσμα μεταβολής δΗ_i βάση από την σχέση 4.4.

$$\delta H_i = H_{i_{t_2}} - H_{i_{t_1}}$$
 (4.4)

Για κάθε κορυφή συγκρίνεται η μεταβολή δH_i με το αντίστοιχο τυπικό σφάλμα ($\sigma_{\delta Hi}$) πολλαπλασιασμένο με z και εξετάζεται αν η τιμή αυτή είναι μεγαλύτερη ή μικρότερη από ($\sigma_{\delta Hi}$ ·z) [Γεωργόπουλος Γ. κ.α. 2005].

Όπου
$$\sigma_{\delta H_i} = \sqrt{\sigma_{\delta H_{i_{t2}}}^2 + \sigma_{\delta H_{i_{t1}}}^2}$$
 (4.5)

4.2.3. Αποτελέσματα

Οι απόλυτες μετακινήσεις (2012-2015) για επίπεδο εμπιστοσύνης 95% του ΓΔΤΕ παρουσιάζονται στον πίνακα 4.3.

Κορυφή	δr _i (mm)	$W(^{g})$	σ _u (mm)	σ _v (mm)	θ (^g)	O.M	δH _i (mm)	σ _{δHi} (mm)	Y.M.
2	4.6	195.8515	± 3.2	± 0.0	104.1485	Ναι	-2.8	± 9.8	Όχι
3	10.7	13.2800	± 5.0	± 3.2	67.6200	Ναι	-9.1	± 10.6	Όχι
4	7.8	74.4113	± 5.1	± 3.0	150.0847	Ναι	-13.5	± 9.5	Ναι
5	8.9	66.2180	± 3.8	± 2.9	167.6596	Ναι	-2.6	± 8.6	Όχι
6	10.5	340.0546	± 3.9	± 3.4	177.3538	Ναι	-22.3	± 8.9	Ναι
7	4.9	363.0246	± 3.8	± 3.0	145.1380	Ναι	1.9	± 8.7	Όχι
8	4.0	37.9233	± 3.3	± 2.6	135.2533	Ναι	-6.3	± 8.5	Όχι
9	0.9	169.5490	± 3.8	± 2.7	140.9097	Όχι	5.9	± 8.6	Όχι

Πίνακας 4.3 : Στοιχεία απόλυτων μετακινήσεων ΓΔΤΕ για εε 95%

Όλες οι κορυφές εκτός από την 9 έχουν οριζόντια μετακίνηση που κυμαίνεται από **4 mm** έως **11 mm**.Οι κορυφές 4 και 6 παρουσιάζουν υψομετρική μετακίνηση (καθίζηση) **13 mm** και **22 mm** αντίστοιχα.

Σημειώνεται ότι οι κορυφές αυτές έχουν τοποθετηθεί, στο πρανές που βρίσκεται ανατολικά των εγκαταστάσεων με σκοπό τον έλεγχο μετακίνησής του.

Οι απόλυτες μετακινήσεις οριζοντιογραφικά και υψομετρικά για επίπεδο εμπιστοσύνης 95% (2012-2015) παρουσιάζονται στα σχήματα 4.1 και 4.2 αντίστοιχα.

Σχήμα 4.1 : Απόλυτες οριζοντιογραφικές μετακινήσεις ΓΔΤΕ για εε 95%

Σχήμα 4.2 : Απόλυτες υψομετρικές μετακινήσεις ΓΔΤΕ

4.3. Σχετικές Μετακινήσεις

Με τον όρο σχετικές μετακινήσεις, ουσιαστικά γίνεται αναφορά στις μεταβολές των σχετικών θέσεων των κορυφών του δικτύου [Γεωργόπουλος Γ. κ.α. 2005].

4.3.1. Κατά την οριζόντια έννοια

Το διάνυσμα μεταβολής της σχετικής θέσης των σημείων i, j καθορίζεται από τη σχέση 4.6 :

$$\delta\Delta r = \begin{bmatrix} \delta(x_j - x_i) \\ \delta(y_j - y_i) \end{bmatrix} = \begin{bmatrix} \delta\Delta x \\ \delta\Delta y \end{bmatrix} = \begin{bmatrix} (x_j - x_i)_{t2} - (x_j - x_i)_{t1} \\ (y_j - y_i)_{t2} - (y_j - y_i)_{t1} \end{bmatrix}$$
(4.6)

Η τιμή του διανύσματος υπολογίζεται από τη σχέση 4.7 :

$$\delta r = \sqrt{\delta (x_j - x_i)^2 + \delta (y_j - y_i)^2}$$
(4.7)

Ο πίνακας μεταβλητότητας - συμμεταβλητότητας του δ Δr προκύπτει από τη σχέση 4.8.

$$\mathbf{V}_{\delta\Delta x} = \begin{bmatrix} \sigma_{\delta\Delta x}^2 & \sigma_{\delta\Delta x\Delta y} \\ \sigma_{\delta\Delta x\Delta y} & \sigma_{\delta\Delta y}^2 \end{bmatrix} = \mathbf{J} \cdot \mathbf{V}_{\delta x} \cdot \mathbf{J}^{\mathrm{T}}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$
(4.8)

Έπειτα γίνεται υπολογισμός των στοιχείων της έλλειψης σφάλματος απόλυτης μεταβολής θέσης σύμφωνα με τις σχέσεις 3.14, 3.15 και 3.16.

Πραγματοποιείται διδιάστατος έλεγχος μετακίνησης όπως και στις απόλυτες μετακινήσεις [Γεωργόπουλος Γ. κ.α. 2005].

4.3.2. Κατά την κατακόρυφη έννοια

Υπολογισμός της μεταβολής της υψομετρικής διαφοράς $\delta \Delta H_{ij}$ σύμφωνα με τη σχέση 4.9 :

$$\delta \Delta H = \delta (H_B - H_A) = (H_B - H_A)_{t2} - (H_B - H_A)_{t1}$$
(4.9)

Για κάθε κορυφή συγκρίνεται η μεταβολή δH_i με το αντίστοιχο τυπικό σφάλμα (σ_{δHi}) πολλαπλασιασμένο με z και εξετάζεται αν η τιμή αυτή είναι μεγαλύτερη ή μικρότερη από (σ_{δHi}·z) [Γεωργόπουλος Γ. κ.α. 2005].

Όπου
$$\sigma_{\delta\Delta H_{ij}} = \sqrt{\sigma_{\delta H_i}^2 + \sigma_{\delta H_j}^2 - 2 \cdot \sigma_{\delta H_i \delta H_j}}$$
 (4.10)

Οι σχετικές μετακινήσεις παρουσιάζονται στα σχήματα 4.3 και 4.4. Σύμφωνα με τα γραφήματα των τυπικών ελλείψεων σφάλματος σχετικής μετακίνησης παρατηρείται ότι το δίκτυο παρουσιάζει αδυναμία σε προσανατολισμό κυρίως και λιγότερο σε κλίμακα.

4.3.3. Αποτελέσματα

Παρατηρώντας τις τυπικές ελλείψεις σφάλματος και τα διανύσματα σχετικής μετακίνησης, οριζοντιογραφική μετακίνηση παρουσιάζουν όλες οι σχετικές θέσεις των κορυφών εκτός από τις σχετικές θέσεις των κορυφών 1-9 και 4-5.

Όσον αφορά τις αβεβαιότητες και τα διανύσματα σχετικής μετακίνησης υψομετρικά προκύπτει το συμπέρασμα ότι οι κορυφές οι οποίες παρουσιάζουν κατακόρυφη μετακίνηση είναι οι 1-4, 1-6, 2-6, 4-6, 4-9, 5-6, 6-7 και οι 6-9.

Εξάγεται το συμπέρασμα ότι οι κορυφές οι οποίες παρουσιάζουν απόλυτη μετακίνηση υψομετρικά μεταφέρουν τη μετακίνηση και στη σχετική υψομετρική θέση σε κάποιες εκ των κορυφών με τις οποίες συνδέονται.

Δπό	Поос	ΔR_{ij}	$\mathbf{W}(\mathbf{g})$	σ_{u}	$\sigma_{\rm v}$	A (^g)	OM	ΔRH_{ij}	(mm)	VМ
Ало	προς	(mm)	W ()	(mm)	(mm)		UNI	(mm)	$\nabla \Delta RH_{ij}$ (IIIII)	1 111
1	2	4.6	195.8515	± 3.2	± 0.0	104.1485	Ναι	-2.8	± 9.8	Όχι
1	3	10.7	0.0000	± 5.0	± 3.2	77.1672	Ναι	-9.1	± 10.6	Όχι
1	4	7.8	140.9921	± 5.1	± 3.0	116.6653	Ναι	-13.5	± 9.5	Ναι
1	5	8.9	121.4644	± 3.8	± 2.9	122.9057	Ναι	-2.6	± 8.6	Όχι
1	6	10.5	18.8462	± 3.9	± 3.4	118.4536	Ναι	-22.3	± 8.9	Ναι
1	7	4.9	372.2541	± 3.8	± 3.0	109.8597	Ναι	1.9	± 8.7	Όχι
1	8	4.0	130.8697	± 3.3	± 2.6	128.1996	Ναι	-6.3	± 8.5	Όχι
1	9	0.9	154.2588	± 3.8	± 2.7	117.1020	Όχι	5.9	± 8.6	Όχι
2	3	6.4	148.8909	± 4.9	± 2.8	98.6019	Ναι	-6.23	± 19.1	Όχι
2	4	7.5	120.7141	± 5.3	± 3.5	67.2729	Ναι	-10.6	± 17.3	Όχι
2	5	7.8	324.8690	± 4.1	± 3.0	73.9322	Ναι	0.2	± 16.7	Όχι
2	6	8.4	130.0271	± 4.3	± 3.4	67.8969	Ναι	-19.5	± 16.7	Ναι
2	7	2.6	152.9685	± 3.9	± 3.4	48.0405	Όχι	4.7	± 16.8	Όχι
2	8	2.8	345.1367	± 3.1	± 2.8	94.0634	Όχι	-3.5	± 17.1	Όχι
2	9	5.5	163.8621	± 3.7	± 3.3	39.8283	Ναι	8.7	± 16.7	Όχι
3	4	8.9	143.1607	± 5.6	± 3.8	100.1300	Ναι	-4.4	± 17.9	Όχι
3	5	8.1	111.0447	± 6.0	± 3.3	108.2808	Ναι	6.5	± 17.2	Όχι
3	6	11.5	176.3125	± 6.4	± 3.4	102.4574	Ναι	-13.2	± 17.2	Όχι
3	7	8.1	187.6601	± 5.8	± 3.6	105.3279	Ναι	10.9	± 17.2	Όχι
3	8	7.2	123.8152	± 5.3	± 2.9	98.2052	Ναι	2.8	± 17.4	Όχι
3	9	11.5	159.3510	± 5.2	± 3.5	107.7113	Ναι	15.0	± 17.2	Όχι
4	5	1.5	83.1525	± 4.1	± 4.1	121.0222	Όχι	10.9	± 17.3	Όχι
4	6	15.9	187.5687	± 4.8	± 3.4	118.3665	Ναι	-8.8	± 17.3	Όχι
4	7	9.9	176.4940	± 4.8	± 2.5	103.1387	Ναι	15.0	± 17.4	Όχι
4	8	4.9	145.7036	± 5.3	± 2.7	95.2395	Ναι	7.2	± 16.8	Όχι
4	9	7.8	112.4864	± 4.4	± 2.5	95.8715	Ναι	19.4	± 17.3	Ναι
5	6	16.2	187.5687	± 3.1	± 2.5	83.6803	Ναι	-19.7	± 17.0	Ναι
5	7	10.4	116.5652	± 2.6	± 2.4	57.6234	Ναι	4.5	± 17.0	Όχι
5	8	5.5	306.2452	± 3.8	± 2.7	92.1505	Ναι	-3.7	± 16.2	Όχι
5	9	9.0	361.8108	± 2.9	± 2.4	99.8730	Ναι	8.5	± 16.7	Όχι
6	7	6.1	122.0114	± 3.0	± 2.6	100.6961	Ναι	24.2	± 17.0	Ναι
6	8	11.1	103.8755	± 4.0	± 3.6	92.5116	Ναι	16.0	± 16.2	Όχι
6	9	11.3	111.0947	± 3.8	± 2.6	101.9907	Ναι	28.2	± 16.7	Ναι
7	8	5.0	90.1288	± 3.7	± 3.0	57.4699	Ναι	-8.2	± 16.3	Όχι
7	9	5.9	105.0733	± 2.6	± 2.4	129.0328	Ναι	4.0	± 16.9	Όχι
8	9	4.5	137.0068	± 3.5	± 2.5	93.5217	Ναι	12.2	± 16.3	Όχι

Στον πίνακα 4.4 παρουσιάζονται τα στοιχεία των σχετικών μετακινήσεων (2012-2015) του ΓΔΤΕ για επίπεδο εμπιστοσύνης 95 %.

Πίνακας 4.4 : Στοιχεία σχετικών μετακινήσεων ΓΔΤΕ για εε 95%

Σχήμα 4.3 : Σχετικές οριζοντιογραφικές μετακινήσεις ΓΔΤΕ για εε 95%

Σχήμα 4.4 : Σχετικές υψομετρικές μετακινήσεις ΓΔΤΕ για εε 95%

ΚΕΦΑΛΑΙΟ 5

5.1. Συμπεράσματα

Αντικείμενο της παρούσας διπλωματικής εργασίας αποτελεί η μέτρηση του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου, η επαναμέτρηση του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου και ο έλεγχος μετακινήσεων στην περιοχή του Ηλεκτροπαραγωγού Σταθμού Βασιλικού.

Από την εργασία αυτή προκύπτουν χρήσιμα συμπεράσματα τα οποία παρατίθενται πιο κάτω και παρέχουν σημαντικές πληροφορίες στις οποίες πρέπει να εστιάσει κανείς.

Από τη διαδικασία του σχεδιασμού, μέτρησης και επίλυσης του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου προκύπτουν τα ακόλουθα συμπεράσματα :

- Κατά τον σχεδιασμό-βελτιστοποίηση ενός δικτύου πρέπει να λαμβάνονται υπόψη μια σειρά από παράγοντες όπως η απαιτούμενη ακρίβεια, ο διαθέσιμος γεωδαιτικός εξοπλισμός (αν υπάρχει), ο απαιτούμενος βοηθητικός εξοπλισμός (παρελκόμενα), οι αποστάσεις μεταξύ των κορυφών, το ανάγλυφο της περιοχής και οι συνθήκες που επικρατούν στην περιοχή.
- Για τη μέτρηση του Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου χρησιμοποιήθηκαν κυρίως η ΤΡΥΑ και λιγότερο η ΓΧ. Η επιλογή αυτή στηρίχθηκε στην ικανοποιητική ακρίβεια που παρέχει η μέθοδος ΤΡΥΑ(≈±1.5mm). Η κλίμακα του δικτύου και το έντονο ανάγλυφο που υπήρχε στην περιοχή υπήρξαν καθοριστικοί παράγοντες για την επιλογή της ΤΡΥΑ ως κύρια μέθοδο.
- Τόσο τα όργανα όσο και τα παρελκόμενά τους πρέπει να ελέγχονται μετρολογικά ακολουθώντας τους κατάλληλους έλεγχους βαθμονόμησης πριν από την έναρξη των μετρήσεων για ελαχιστοποίηση πιθανών σφαλμάτων, αλλά και την διάρκεια.
- Σημαντικός παράγοντας στις μετρήσεις είναι η επιλογή κατάλληλης θέσης τοποθέτησης του τρίποδα στο έδαφος.
- Οι οριζοντιώσεις των τρικοχλίων στην ΤΡΥΑ πρέπει να γίνονται με την χρήση ΟΓΣ για την επιτάχυνση στην εφαρμογή της μεθόδου.
- Η ύπαρξη ενός επιπλέον ΟΓΣ επιταχύνει σημαντικά τις μετρήσεις πεδίου καθότι γίνεται ταυτόχρονα η οριζοντίωση των ΟΓΣ από δύο χειριστές και η εναλλαγή στόχου σταθμού.

- Η TPYA χρειάζεται περίπου το ¼ του χρόνου σε σχέση με τη ΓΧ όσον αφορά τις μετρήσεις πεδίου για μεγάλες αποστάσεις της τάξης του 1 km και ανώμαλο ανάγλυφο.
- Κατά την εφαρμογή της ΤΡΥΑ απαραίτητη είναι η τοποθέτηση ειδικού παρελκόμενου κατά τις σκοπεύσεις στο μπουλόνι της υψομετρικής αφετηρίας για τον αποκλεισμό φυγής της δέσμης του λέιζερ εκτός του επιθυμητού σημείου.
- Οι μετρήσεις οι οποίες αφορούν τη μέθοδο TPYA μπορούν να γίνουν και από ένα άτομο εφόσον οι συνθήκες δυσκολεύουν την ύπαρξη περισσότερων ατόμων με την προϋπόθεση να υπάρχει περαιτέρω εξοπλισμός (κατάφωτα, τρικόχλια και τρίποδες).
- Παρατηρείται ότι επιτεύχθηκε ο στόχος της αβεβαιότητας του ΓΔΚΕ. Η αβεβαιότητα προσδιορισμού είναι της τάξης του ±1mm άρα η ευαισθησία του δικτύου είναι της τάξης των ± 2mm για εε 95% δηλαδή το υψομετρικό δίκτυο μπορεί να ανιχνεύσει μετακινήσεις από ±2mm και μεγαλύτερες.

Από τη μέτρηση και επίλυση της δεύτερης φάσης του Γεωδαιτικού Δικτύου Τριδιάστατου Ελέγχου προκύπτουν τα ακόλουθα συμπεράσματα :

- Τόσο τα όργανα όσο και τα παρελκόμενά τους πρέπει να ελέγχονται μετρολογικά ακολουθώντας τους κατάλληλους έλεγχους βαθμονόμησης πριν από την έναρξη των μετρήσεων για ελαχιστοποίηση πιθανών σφαλμάτων.
- Για τη διεξαγωγή των μετρήσεων του ΓΔΤΕ απαραίτητη είναι η παρουσία τουλάχιστον δύο ατόμων στο συνεργείο μετρήσεων.
- Σημαντικός παράγοντας κατά τη διάρκεια των μετρήσεων είναι η ορθή επιλογή ωραρίου, έτσι ώστε να μην υπάρχει έντονη γεωδαιτική διάθλαση με αποτέλεσμα την αβεβαιότητα στη σκόπευση των στόχων και ο ήλιος να βρίσκεται όπισθεν του παρατηρητή.
- Στην περίπτωση κατά την οποία τα τρικόχλια των στόχων παραμένουν στις κορυφές μετά το πέρας των ημερήσιων μετρήσεων σκόπιμος θεωρείται ο έλεγχος της οριζοντίωσης πριν την έναρξη της επόμενης ημερήσιας σειράς παρατηρήσεων.
- Η κορυφή 1 παρουσιάζει ευαισθησία στον ήλιο. Σκόπιμη κρίνεται η κατασκευή ειδικού καλύμματος για την αποφυγή της θερμοδιαστολής του χάλυβα.
- Η παρουσία υπολογιστή στο πεδίο κατά τη διάρκεια των παρατηρήσεων στον οποίο καταγράφονται άμεσα όλα τα

παρατηρούμενα μεγέθη (ύψη οργάνου και στόχων, οριζόντιες - κατακόρυφες γωνίες και μήκη) επιταχύνει σημαντικά την όλη διαδικασία και δίνει την δυνατότητα άμεσου ελέγχου.

- Η μέτρηση οριζόντιων γωνιών, κατακόρυφων γωνιών (και μηκών) πρέπει να γίνεται σε τουλάχιστον δύο πλήρεις περιόδους και αν υπάρχει η δυνατότητα σε περισσότερες.
- Η ύπαρξη ασύρματων επικοινωνίας κατά την τοποθέτηση και τον προσανατολισμό του στόχου στην κορυφή 9 ήταν απαραίτητη.
- Είναι σωστό στη συνόρθωση του δικτύου να συμμετέχουν οι ανεξάρτητες γωνίες μεταξύ τους για την αποφυγή μετάδοσης συστηματικών σφαλμάτων.

Δηλαδή αν θεωρηθεί η κορυφή 1 σαν στάση οργάνου οι γωνίες που πρέπει να συμμετέχουν στη συνόρθωση είναι οι β_{312} , β_{218} , β_{819} , β_{915} , β_{516} σε αντίθεση με τις γωνίες β_{312} , β_{318} , β_{319} , β_{315} , β_{316} στις οποίες υπάρχει η πιθανότητα συστηματικού σφάλματος στη σκόπευση της κορυφής 3. Επίσης απαγορευτική είναι η παρουσία τριών γωνιών εκ των οποίων οι δύο να δίνουν το άθροισμα της εναπομένουσας γωνίας π.χ. β_{312} , β_{218} και β_{318} .

Σύμφωνα με τον πίνακα 3.6 στον οποίο παρουσιάζονται οι αβεβαιότητες των συντεταγμένων του ΓΔΤΕ παρατηρείται ότι οι αβεβαιότητες οριζοντιογραφικά κυμαίνονται από ± 0.1 - 1.5 mm και υψομετρικά από ± 3.6 - 4.5 mm.

Η ακρίβεια στις συντεταγμένες και στην ισχύ του δικτύου φαίνεται να μειώνεται σε σχέση με την προηγούμενη σειρά μετρήσεων του ΓΔΤΕ. Το γεγονός αυτό οφείλεται στην εμπειρία του παρατηρητή και στις ημερομηνίες διεξαγωγής των μετρήσεων. Η ακρίβεια μειώνεται κατά ± 0.3 mm οριζοντιογραφικά και ± 1.5 mm υψομετρικά.

Τα αποτελέσματα της επίλυσης του 2012 έδωσαν ένα εύρος ±0.1-±1.2 mm οριζοντιογραφικά και ±2.4-±3.0 mm υψομετρικά.

- Η ακρίβεια οριζοντιογραφικά επαληθεύει το μαθηματικό μοντέλο το οποίο αρχικώς ετέθη για την απαιτούμενη ακρίβεια να βρίσκεται κάτω από ± 2 mm πράγμα που ορίζουν οι μηχανολογικές κατασκευές.
- Η υψομετρική ακρίβεια στην παρούσα μελέτη (± 4.5mm) αλλά και σε προηγούμενη σειρά μέτρησης (± 3mm) δεν επαληθεύει το μαθηματικό μοντέλο με την απαιτούμενη ακρίβεια να είναι κάτω

των ± 2 mm. Γι' αυτόν τον λόγο άλλωστε σχεδιάστηκε, μετρήθηκε και επιλύθηκε το ΓΔΚΕ. Για να μπορεί να ανιχνεύει μετακινήσεις της τάξης των ± 2 mm.

- Ο σχεδιασμός των απόλυτων ελλείψεων σφάλματος μας δείχνει αδυναμία σε κλίμακα και σε προσανατολισμό. Δεν παρατηρείται κάποια συστηματικότητα στις απόλυτες ελλείψεις σφάλματος.
- Ο σχεδιασμός των σχετικών τυπικών ελλείψεων σφάλματος μας δείχνει αδυναμία σε κλίμακα και σε προσανατολισμό. Δεν υπάρχει κάποια συστηματικότητα στις σχετικές ελλείψεις σφάλματος.
- Από την απεικόνιση των σχετικών ελλείψεων παρατηρείται ομοιότητα γενικά στο μέγεθος νοουμένου ότι οι αποστάσεις είναι περίπου οι ίδιες. Ο προσανατολισμός των σχετικών ελλείψεων δείχνει κυρίως αδυναμία σε προσανατολισμό και λιγότερο σε κλίμακα.
- Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει απόλυτες μετακινήσεις της τάξης των 4 mm οριζοντιογραφικά και ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.
- Το ΓΔΤΕ έχει ευαισθησία με την οποία μπορεί να ανιχνεύσει σχετικές μετακινήσεις της τάξης των 5 mm οριζοντιογραφικά και ± 9 mm υψομετρικά για επίπεδο εμπιστοσύνης 95%.

Από τη διαδικασία ελέγχου απόλυτων μετακινήσεων για επίπεδο εμπιστοσύνης 95 % προκύπτουν τα εξής συμπεράσματα :

- Κατά την οριζόντια έννοια, όλες οι κορυφές εμφανίζουν μετακίνηση, εκτός από την κορυφή 9.
- Η μετακίνηση των κορυφών όπως δείχνουν τα διανύσματα απόλυτης μετακίνησης δεν είναι ενιαία.
- Οι απόλυτες μετακινήσεις των κορυφών κατά την οριζόντια έννοια κυμαίνονται από 4 mm 11 mm.
- Κατά την κατακόρυφη έννοια παρατηρείται μετακίνηση στις κορυφές 4 και 6. Η κορυφή 4 παρουσιάζει καθίζηση 13 mm και η κορυφή 6 ομοίως 22 mm. Η μετακίνηση ήταν αναμενόμενη αφού οι κορυφές 4, 5 και 6 έχουν τοποθετηθεί πάνω σε τεχνητά πρανή δυτικά του σταθμού και αποτελούν σημεία ελέγχου για τον έλεγχο μετακινήσεων των πρανών.

Από τη διαδικασία ελέγχου σχετικών μετακινήσεων για επίπεδο εμπιστοσύνης 95 % προκύπτουν τα εξής συμπεράσματα :

- Κατά την οριζόντια έννοια οι διευθύνσεις των διανυσμάτων δεν φαίνονται να έχουν κάποια ενιαία διεύθυνση. Υπάρχει όμως διεύθυνση των μισών σχετικών διανυσμάτων προς βορειοδυτικά και των υπόλοιπων προς βορειοανατολικά.
- Οι σχετικές μετακινήσεις των κορυφών κατά την οριζόντια έννοια κυμαίνονται από 4 mm 16 mm.
- Κατά την κατακόρυφη έννοια μετακίνηση παρουσιάζουν κάποιες εκ των κορυφών οι οποίες συνδέονται με τις κορυφές 4 και 6.
- Οι σχετικές μετακινήσεις των κορυφών κατά την κατακόρυφη έννοια κυμαίνονται από - 13 mm - + 28 mm.

Για την εκπόνηση της παρούσας διπλωματικής εργασίας απαιτήθηκαν περίπου 754 εργατοώρες. Η ανάλυση φαίνεται στο σχήμα 5.1.

Σχήμα 5.1 : Απεικόνιση εργατοωρών εκπόνησης παρούσας εργασίας

5.2. Προτάσεις

Οι προτάσεις που προκύπτουν από την παρούσα μελέτη είναι :

- Επέκταση του δικτύου με τις ίδιες προδιαγραφές για μελλοντικές χρήσεις στην ευρύτερη περιοχή.
- Κατασκευή προστατευτικής περίφραξης για την ασφαλή διεξαγωγή μετρήσεων και κλιμακοστασίου για την ασφαλή πρόσβαση στην κορυφή 1 - Submarine.
- Επαναμέτρηση των δικτύων σε τακτά χρονικά διαστήματα για τον έλεγχο μετακινήσεων της περιοχής και των κατασκευών του σταθμού.
- Παρακολούθηση της συμπεριφοράς των κορυφών 4 και 6 οι οποίες δείχνουν τη μεγαλύτερη μετακίνηση σε σχέση προς τις υπόλοιπες κορυφές.
- Παρακολούθηση της συμπεριφοράς της κορυφής 9 η οποία αποτελεί την ψηλότερη κατασκευή του σταθμού. Έλεγχος του εύρους ταλάντωσης αν είναι εντός των ορίων.
- Έλεγχος της σταθερής κορυφής 1 Submarine τριδιάστατα για τυχόν μετακινήσεις.
- Μετρήσεις για τον προσδιορισμό του συντελεστή γεωδαιτικής διάθλασης κ στην περιοχή του σταθμού αλλά και στην ευρύτερη περιοχή.
- Σκυροδέτηση του μεταλλικού βάθρου της κορυφής 1 Submarine για την αποφυγή της θερμοδιαστολής του χάλυβα.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- 1. Αγατζά Μπαλοδήμου Α. Μ., Θεωρία Σφαλμάτων και Συνορθώσεις Ι, Σημειώσεις μαθήματος, ΣΑΤΜ, ΕΜΠ, Αθήνα 2009.
- Αγατζά Μπαλοδήμου Α. Μ., Θεωρία Σφαλμάτων και Συνορθώσεις ΙΙ, Σημειώσεις μαθήματος, ΣΑΤΜ, ΕΜΠ, Αθήνα 2009.
- 3. Γεωργόπουλος Γ., Γκίκας Β., Τελειώνη Ε., Τσακίρη Μ., *Γεωδαισία*, Σημειώσεις μαθήματος Γεωδαισία ΙΙ, ΣΑΤΜ, ΕΜΠ, Αθήνα 2011.
- Γεωργόπουλος Γ., Δογγούρης Σ., Μπαλοδήμος Δ., Λάμπρου Ε., Πανταζής Γ., Σημειώσεις Τεχνικής Γεωδαισίας, ΣΑΤΜ, ΕΜΠ, Εργαστήριο Γενικής Γεωδαισίας, Αθήνα 2005, Σημειώσεις μαθήματος.
- Ζαννής Ι., Μέτρηση του Υψομετρικού Δικτύου της Πολυτεχνειούπολης Ζωγράφου με την μέθοδο της ΤΡιγωνομετρικής Υψομετρίας Ακριβείας (TPYA), ΣΑΤΜ, ΕΜΠ, Φεβρουάριος 2008, Διπλωματική Εργασία.
- Κωνσταντινίδης Κ., Ίδρυση, Μέτρηση και Επίλυση Τρισδιάστατου Γεωδαιτικού Δικτύου Ακριβείας στον ΗΣ Βασιλικό της ΑΗΚ, με χρήση GNSS (2 φάσεις), Ψηφιακή Βάση Πληροφοριών του Δικτύου σε Περιβάλλον GIS, ΠΟΜΗΓΕ, ΤΕΠΑΚ, Λεμεσός 2013, Πτυχιακή Εργασία.
- Λάμπρου Ε., Ακριβής προσδιορισμός υψομετρικών διαφορών με χρήση ολοκληρωμένων γεωδαιτικών σταθμών, Τεχνικά Χρονικά Επιστημονική Έκδοση ΤΕΕ, Ι, Τεύχος 1-2, Αθήνα 2007.
- 8. Λάμπρου Ε. Πανταζής Γ., *Εφαρμοσμένη Γεωδαισία*, Εκδόσεις Ζήτη, Φεβρουάριος 2013, ISBN 978-960-456-205-3, Θεσσαλονίκη.
- 9. Μπαλοδήμος Δ.-Δ., Αραμπατζή Ο., Υψομετρία, Σημειώσεις μαθήματος, ΣΑΤΜ, ΕΜΠ, Αθήνα Ιανουάριος 2004.
- 10. Σταύρου Γ., Μέτρηση και Επίλυση Τρισδιάστατου Γεωδαιτικού Δικτύου Ακριβείας στον ΗΣ Βασιλικό της ΑΗΚ, με χρήση Ολοκληρωμένων Γεωδαιτικών Σταθμών. Συγκριτική αξιολόγηση με Επίγειες και Δορυφορικές Μετρήσεις, ΠΟΜΗΓΕ, ΤΕΠΑΚ, Λεμεσός 2013, Πτυχιακή Εργασία.

11. Τεμένος Κ., Παρακολούθηση παραμορφώσεων του Φράγματος του Κούρη στην Κύπρο, ΣΑΤΜ, ΕΜΠ, Ιούνιος 2007, Διπλωματική Εργασία.
ΙΣΤΟΓΡΑΦΙΑ

- 1. <u>https://books.google.gr/</u> (last access : 11/2015)
- 2. <u>http://portal.tee.gr/portal/page/portal/PUBLICATIONS/search</u> (last access : 11/2015)
- 3. <u>https://www.eac.com.cy/EL/EAC/AboutEAC/Pages/History.aspx</u> (last access : 09/2015)
- 4. <u>https://www.eac.com.cy/EL/EAC/Operations/Pages/Generation.aspx</u> (last access : 09/2015)
- 5. <u>http://www.earth.google.com</u> (last access : 09/2015)
- 6. <u>https://www.leica-geosystems.com/</u> (last access : 03/2015)
- 7. <u>http://www.schools.ac.cy/klimakio/Themata/Epistimi/web_Quest_mai</u> <u>n/webquests/energeia_ilektrismos/process-a.htm</u> (last access : 12/2015)

ПАРАРТНМА А

ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΕΓΧΟΥ

Ι. Μετρήσεις ΤΡΥΑ

Ημ/νία	Ημ/νία : 08/04/2015 Ώρα έν.: 07:20 Ώρα Λήξ.: 07:57 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
<t< td=""></t<>										
				Μετρή	σεις προς Β,					
Σκόπ	ευση		Κατακό	ουφες γωνίες	, , , , 2	Θέση Ι	Θέση II	a ()	ΔH_{1R2} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	ΔH=cosz·S	
1		122.5374	277.4479	122.5448	122 5 4 4 0	2.4417	2.4411	2 4 4 1 2	0.0466	
1	К ₂	122.5384	277.4486	122.5449	122.5448	2.4416	2.4409	2.4413	-0.8466	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	$\Delta H=cosz \cdot S$	
1	2	92.6626	307.3327	92.6650	02 6650	450.0918	450.0913	450.0014	E1 7442	
1	2	92.6630	307.3331	92.6650	92.0030	450.0914	450.0912	430.0914	51.7445	
2	1	107.3364	292.6587	107.3389	107 2200	450.0919	450.0917	450.0017	F1 7701	
2	1	107.3370	292.6587	107.3392	107.5590	450.0918	450.0914	430.0917	-31.7721	
				Μετρήο	σεις προς R₅					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	Surface (m)	$\Delta H_{\rm 2R3}$ (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	-μεου (··· /	$\Delta H=cosz \cdot S$	
2	R ₅	106.2027	293.7887	106.2070	106.2068	4.0467	4.0462	4.0465	-0.3939	
	5	106.2029	293.7897	106.2066		4.0472	4.0460			
ΔH _{R2R5}	=ΔH _{R5}	$-\Delta H_{R2} + \sum_{i=1}^{n} \Delta H_{R2}$	$\frac{\Delta H_{12} - \Delta H_{21}}{2} =$	52.2109	m					
D ₁₂ ² /R	$\Delta H_{12}^2/R = 0.032 > \Delta H_{12} + \Delta H_{21} = 0.028 \text{ m} => \text{Ok.}$									

Ημ/νία	x : 14/0	4/2015	Ώρα	ι έν.: 20:00	Ώρα Λήξ.: 21:10	Όργανο : Le	eica TCR1202+	Παρατηρη	_Ι τής : Ν. Θ.		
Σκαρίφημα :											
	Μετρήσεις προς R ₁										
Σκόπ	Σκόπευση Κατακόρυφες γωνίες Θέση Ι Θέση ΙΙ _S (m) ΔΗ _{1R1} (m)										
Από	Προς	Θέση Ι	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1		145.895	58	254.0855	145.9052	145 0040	1.8657	1.8649	1.0055	1 2210	
1	К1	145.896	50	254.0869	145.9046	145.9049	1.8659	1.8654	1.8655	-1.2316	
Σκόπευση Κατακόρυφες γωνίες						·	Θέση Ι	Θέση II	s (m)	∆H(m)	
Από	Προς	Θέση Ι	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	2	102.561	19	297.4296	102.5662	102 5665	618.2282	618.2284	610 2202	24 0169	
1	2	102.560)4	297.4267	102.5669	102.5005	618.2283	618.2282	010.2205	-24.9108	
2	1	97.4310	0	302.5578	97.4366	07 /368	618.2285	618.2282	618 2287	2/ 88/6	
2	1	97.4312	2	302.5571	97.4371	37.4308	618.2290	618.2290	010.2207	24.0040	
					Μετρήα	σεις προς R_2					
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R2} (m)	
Από	Προς	Θέση Ι	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (Π)	∆H=cosz·S	
n	р	122.803	33	277.1855	122.8089	122 9001	2.5231	2.5230	2 5221	0 0040	
2	г ₂	122.803	32	277.1848	122.8092	122.6091	2.5232	2.5230	2.5251	-0.0040	
ΔH_{R1R2}	$\Delta H_{R1R2} = \Delta H_{2R2} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -24.5539 $ m										
D ₁₂ ² /R	$D_{12}^{2}/R = 0.060 > \Delta H_{12} + \Delta H_{21} = 0.032 m => Ok.$										

Ημ/νία	x : 15/0	4/2015 Ώ	ρα έν.: 18:30	Ώρα Λήξ.: 20:00	Όργανο : Le	eica TCR1202+	Παρατηρη	τής : Ν. Θ.				
Σκαρία	Σκαρίφημα :											
- /				ινιετρη	σεις προς κ ₁	- / .	a ()					
Σκοπ	ευση		Κατακο	ρυφες γωνιες		Θέση Ι	Θέση II	Suton (m)	$\Delta H_{1R1}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	μεσοι	∆H=cosz·S			
1	R,	147.1289	252.8517	147.1386	147,1386	1.8143	1.8147	1.8143	-1.2240			
	1	147.1296	252.8525	147.1386	1	1.8143	1.8139	1.01.10				
Σκόπ	ευση		Κατακόρυφες γωνίες Θέση Ι Θέση ΙΙ ΔΗ (m)									
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ο μέσο (Π)	∆H=cosz·S			
1	2	96.5461	303.4490	96.5486	06 5496	484.0382	484.0377	101 0200	26 2201			
1	2	96.5466	303.4495	96.5486	90.3460	484.0378	484.0381	404.0560	20.2294			
2	1	103.4535	296.5415	103.4560	102 4567	484.0378	484.0376	40.4.0200				
2	1	103.4527	296.5381	103.4573	103.4507	484.0382	484.0385	484.0380	-20.2089			
			•	Μετρή	σεις προς R ₆		•					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R6} (m)			
Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S			
2		125.9005	274.0912	125.9047	425 0026	3.0238	3.0224	2 022	4 4005			
2	К ₆	125.8973	274.0924	125.9025	125.9036	3.0239	3.0229	3.023	-1.1965			
ΔH _{R1R6}	$\Delta H_{R1R6} = \Delta H_{2R6} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = 26.2766 \text{ m}$											
D ₁₂ ² /R	=	0.037	~	$\Delta H_{12} + \Delta H_{21} =$	$D_{12}^{2}/R = 0.037 \approx \Delta H_{12} + \Delta H_{21} = 0.039 \text{ m} \Rightarrow \text{Ok}.$							

Ημ/νία	ιμ/νία : 15/04/2015 Ώρα έν.: 19:30 Ώρα Λήξ.: 20:30 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.											
Σκαρία	φημα :						•					
	1								R ₇			
	Μετρήσεις προς R ₁											
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	$\Delta H_{1R1}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	ομεσο ()	∆H=cosz·S			
1	D	147.1289	252.8517	147.1386	1/7 1206	1.8143	1.8147	1 01/12	1 22/10			
1	п ₁	147.1296	252.8525	147.1386	147.1500	1.8143	1.8139	1.0145	-1.2240			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	(m)	∆H(m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	∆H=cosz·S			
1	2	96.5461	303.4490	96.5486	06 5496	484.0382	484.0377	101 0200	26 2204			
1	2	96.5466	303.4495	96.5486	90.3460	484.0378	484.0381	404.0300	20.2294			
2	2 1	103.4535	296.5415	103.4560	103.4567	484.0378	484.0376	484 0380	-26 2689			
2	-	103.4527	296.5381	103.4573		484.0382	484.0385	-0-1.0500	20.2005			
2	з	113.4881	286.5061	113.4910	113 4917	177.6983	177.6982	177 6980	-37 3778			
2	5	113.4898	286.5050	113.4924	113.4317	177.6973	177.6980	177.0500	57.5770			
2	2	86.5066	313.4887	86.5090	86 5088	177.6987	177.6981	177 6983	37 3766			
	2	86.5063	313.4892	86.5086	00.0000	177.6984	177.6981	177.0505	57.5700			
				Μετρήα	σεις προς R	7						
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	ΔH_{3R5} (m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S			
3	R-	146.4209	253.5583	146.4313	146 4315	1.7098	1.7097	1 710	-1 1394			
5	117	146.4218	253.5585	146.4317	140.4313	1.7098	1.7098	1.710	1.1354			
ΔH _{R1R7}	$\Delta H_{R1R7} = \Delta H_{3R7} - \Delta H_{1R1} + \sum_{l=1}^{n} \frac{\Delta H_{12} - \Delta H_{21} + \Delta H_{23} - \Delta H_{32}}{2} = -11.0434 \text{ m}$											
D ₁₂ ² /R	=	0.037	≈	$\Delta H_{12} + \Delta H_{21} =$	0.039	m => 0k.						
D ₂₃ ² /R	=	0.005	>	$\Delta H_{23} + \Delta H_{32} =$	0.001	m => 0k.						

Σκαρία	Σκαρίφημα :									
						\$ ■	R.		5	
						//\				
				Μετρής	σεις προς R	1				
Σκόπ	ευση		Κατακό	υφες γωνίες	, , , ,	Θέση Ι	Θέση II		$\Delta H_{1R1}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	∆H=cosz·S	
		147.1289	252.8517	147.1386		1.8143	1.8147	4 04 40	4 99 49	
1	К1	147.1296	252.8525	147.1386	147.1386	1.8143	1.8139	1.8143	-1.2240	
Σκόπ	ευση		Κατακό	ουφες γωνίες		Θέση Ι	Θέση II	S. (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	2	96.5461	303.4490	96.5486	06 5496	484.0382	484.0377	101 0200	26.2204	
1	2	96.5466	303.4495	96.5486	90.9400	484.0378	484.0381	404.0300	20.2294	
2	1	103.4535	296.5415	103.4560	103 //567	484.0378	484.0376	181 0380	-26 2689	
2	Т	103.4527	296.5381	103.4573	103.4307	484.0382	484.0385	-00500	20.2005	
2	3	99.5496	300.4454	99.5521	99.5522	148.8989	148.8991	148 8991	1 0475	
	5	99.5501	300.4457	99.5522	55.5522	148.8994	148.8991	140.0551	1.0475	
2	2	100.4445	299.5503	100.4471	100 4472	148.8992	148.8986	1/0 0000	1 0/59	
5	2	100.4438	299.5494	100.4472	100.4472	148.8988	148.8986	140.0900	-1.0430	
				Μετρής	σεις προς R _s	5				
Σκόπ	ευση		Κατακό	ουφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{3R5} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	R-	126.8728	273.1101	126.8814	126 8818	2.0991	2.0988	2 0994	-0 8604	
	115	126.8750	273.1107	126.8822	120.0010	2.1003	2.0994	2.0554	0.0004	
ΔH _{R1R5}	= ∆H _{3R5}	,- ΔH _{1R1} +	$\sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_2}{\Delta H_{12} - \Delta H_2}$	$\frac{+\Delta H_{23} - \Delta H_{32}}{2} =$	27.6594	m				
D ₁₂ ² /R	=	0.037	~	$\Delta H_{12} + \Delta H_{21} =$	0.039	m => Ok.				
D ₂₃ ² /R	=	0.003	>	$\Delta H_{23} + \Delta H_{32} =$	0.002	m => 0k.				

Ημ/νία	α : 15/0	4/2015 Ώρ	α έν.: 17:00	Ώρα Λήξ.: 23:21	Όργανο : L	eica TCR1202+	Παρατηρη	ιτής : N. Θ.	
Σκαρία	φημα :								
	ĺ					<u> </u>	R ₅		R ₄
	[_]								
				Μετρής	σεις προς Β	1			
Σκόπ	ευση		Κατακόι	ουφες γωνίες	, , , ,	Θέση Ι	Θέση II		ΔH_{1B1} (m)
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	$\Delta H = cosz \cdot S$
		147.1289	252.8517	147.1386		1.8143	1.8147		4 0002 0
1	К1	147.1296	252.8525	147.1386	147.1386	1.8143	1.8139	1.8143	-1.2240
Σκόπ	ευση		Κατακόρ	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	∆H(m)
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	∆H=cosz·S
4	2	96.5461	303.4490	96.5486	00 5400	484.0382	484.0377	40.4.0200	26.2204
1	2	96.5466	303.4495	96.5486	96.5486	484.0378	484.0381	484.0380	26.2294
2	4	103.4535	296.5415	103.4560	402 4567	484.0378	484.0376	40.4.0200	26.2600
2	1	103.4527	296.5381	103.4573	103.4567	484.0382	484.0385	484.0380	-26.2689
2	2	99.5496	300.4454	99.5521	99.5522	148.8989	148.8991	140 0001	1.0475
2	3	99.5501	300.4457	99.5522	99.5522	148.8994	148.8991	148.8991	1.0475
2	n	100.4445	299.5503	100.4471	100.4472	148.8992	148.8986	140 0000	1 0459
5	2	100.4438	299.5494	100.4472	100.4472	148.8988	148.8986	140.0900	-1.0456
2	1	106.0686	293.9274	106.0706	106 0706	224.2546	224.2544	224 2546	-21 2510
5	7	106.0684	293.9271	106.0707	100.0700	224.2548	224.2546	224.2340	21.3313
л	2	93.9287	306.0678	93.9305	02 0202	224.2552	224.2549	224 2540	21 2400
4	5	93.9277	306.0678	93.9300	95.9502	224.2548	224.2548	224.2549	21.5490
				Μετρήα	σεις προς Β	1			
Σκόπ	ευση		Κατακόρ	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{4R4} (m)
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S
л	R	126.7708	273.2182	126.7763	126 7757	3.0118	3.0113	3 0118	-1 2297
-	N ₄	126.7694	273.2193	126.7751	120.7757	3.0123	3.0118	5.0110	1.2257
$\Delta H_{R1R4} = \Delta H_{4R4} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21} + \Delta H_{23} - \Delta H_{32} + \Delta H_{34} - \Delta H_{43}}{2} = 5.9396 \text{ m}$									
D ₁₂ ² /R	=	0.037	≈	$\Delta H_{12} + \Delta H_{21} =$	0.039	m => 0k.			
D ₂₃ ² /R	=	0.003	>	$\Delta H_{23} + \Delta H_{32} =$	0.002	m => 0k.			
D ₃₄ ² /R	=	0.008	>	$\Delta H_{34} + \Delta H_{43} =$	0.003	m => Ok.			

Ημ/νία	Ημ/νία : 16/04/2015 Ώρα έν.: 10:50 Ώρα Λήξ.: 13:29 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.											
Σκαρίφημα :												
				Μετρής	σεις προς R	2						
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	$\Delta H_{1R2}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S			
1		124.7128	275.2730	124.7199	124 7100	2.2019	2.2029	2 2010	0 0227			
1	к ₂	124.7128	275.2733	124.7198	124.7198	2.2016	2.2013	2.2019	-0.8337			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S			
1	2	92.6065	307.3889	92.6088	02 6000	451.1015	451.1016	451 1014	E2 2E4E			
	2	92.6065	307.3883	92.6091	92.0090	451.1016	451.1008		JZ.ZJ4J			
2	2 1	107.3933	292.6030	107.3952	107.3949	451.1015	451.1009	451 1011	-52 281/			
2	1	107.3932	292.6040	107.3946	107.3343	451.1011	451.1009	451.1011	52.2014			
2	2	106.0874	293.9104	106.0885	106 0994	223.9225	223.9220	222 0225	21 2022			
2	5	106.0862	293.9098	106.0882	100.0004	223.9228	223.9226	223.9223	-21.3023			
2	2	93.9147	306.0818	93.9165	02.0150	223.9226	223.9226	222 0226	21 2674			
5	2	93.9138	306.0830	93.9154	92.9129	223.9225	223.9226	223.9220	21.5074			
				Μετρής	σεις προς R	1						
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c ()	$\Delta H_{3R5}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	ΔH=cosz·S			
2	D	125.3872	274.6005	125.3934	125 2025	3.2012	3.2012	2 2016	1 2/25			
5	Γ ₄	125.3888	274.6014	125.3937	123.3333	3.2021	3.2018	5.2010	-1.2455			
∆H _{R2R4}	$\Delta H_{R2R4} = \Delta H_{3R4} - \Delta H_{1R2} + \sum_{l=1}^{n} \frac{\Delta H_{12} - \Delta H_{21} + \Delta H_{23} - \Delta H_{32}}{2} = 30.4834 \text{ m}$											
D ₁₂ ² /R	=	0.032	>	$\Delta H_{12} + \Delta H_{21} =$	0.027	m => 0k.						
D ₂₃ ² /R	=	0.008	<	$\Delta H_{23} + \Delta H_{32} =$	0.015	m => Μη αποδ	δεκτό.					

Ημ/νία	Ημ/νία : 16/04/2015 Ώρα έν.: 14:10 Ώρα Λήξ.: 16:33 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	φημα :									
	_	R ₅								
				\backslash				∎ F	₹ ₈	
				\setminus	/				-	
										<u> </u>
					Μετρή	σεις προς R₅				
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R5}(m)$
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ο μέσο (Π)	∆H=cosz·S
1	D	127.691	.4	272.2920	127.6997	127 6006	2.1264	2.1247	2 1256	0 8060
1	п ₅	127.691	.5	272.2925	127.6995	127.0990	2.1265	2.1248	2.1230	-0.8900
Σκόπ	Σκόπευση Κατακόρυφες γωνίες		ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	ΔH(m)		
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S
1	2	107.390	8	292.6053	107.3928	107 3928	331.7743	331.7741	331 7741	-38 4411
-	2	107.390)5	292.6047	107.3929	107.3520	331.7741	331.7740	551.7741	50.4411
2	1	92.6083	3	307.3865	92.6109	92 6106	331.7748	331.7744	331 7745	38 4236
-	-	92.6078	8	307.3873	92.6103	52.0100	331.7743	331.7745	551.7745	30.4230
					Μετρή	σεις προς R ₈				
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{2R7}(m)$
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S
h	D	146.140	8	253.8381	146.1514	140 1010	1.8936	1.8934	1 0020	1 2552
2	к ₈	146.142	.7	253.8402	146.1513	140.1513	1.8921	1.8929	1.8930	-1.2552
∆H _{R5R8}	$\Delta H_{RSRB} = \Delta H_{RB} - \Delta H_{RS} + \sum_{i=1}^{2} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -38.7916 $ m									
D ₁₂ ² /R	=	0.017		~	$\Delta H_{12} + \Delta H_{21} =$	0.018	m => Ok.			

							1			
Ημ/νία	μ/νία : 16/04/2015 Ώρα έν.: 17:00 Ώρα Λήξ.: 23:21 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	φημα :									
								K ₅		
		۸		Κτίριο 🐧						
	R_2	Λ								
		<u></u>	/		\		/			
				Μετοής		_				
Σκόπ	sugn		Κατακό		σεις προς π ₂		Oćan II		A11 (mm)	
2.000		04	04		F M O			S _{μέσο} (m)	$\Delta H_{1R2}(m)$	
Απο	προς	Θεση Ι	Θεση ΙΙ	ινι. τιμη	T. IVI. U.	S(m)	S(m)		∆H=cosz·S	
1	R ₂	124.7128	275.2730	124.7199	124.7198	2.2019	2.2029	2.2019	-0.8337	
	-	124.7128	275.2733	124.7198		2.2016	2.2013			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ομεσο (/	∆H=cosz·S	
1	2	92.6065	307.3889	92.6088	02 000	451.1015	451.1016	451 1014	F2 2F4F	
1	2	92.6065	307.3883	92.6091	92.6090	451.1016	451.1008	451.1014	52.2545	
2	1	107.3933	292.6030	107.3952	107 2040	451.1015	451.1009	451 1011	F2 2014	
2	L	107.3932	292.6040	107.3946	107.3949	451.1011	451.1009	451.1011	-52.2814	
2	2	118.3704	281.6270	118.3717		134.8830	134.8834			
2	3	118.3694	281.6300	118.3697	110 0707	134.8830	134.8832	40.4.0000		
_	_	118.3680	281.6274	118.3703	118.3707	134.8830	134.8830	134.8830	-38.3848	
2	3	118.3681	281.6257	118.3712		134.8828	134.8829			
		81.6289	318.3655	81.6317		134.8835	134.8834			
3	2	81.6290	318.3680	81.6305		134.8833	134.8834			
		81.6291	318.3655	81.6318		134.8832	134.8828			
3	2	81.6306	318.3680	81.6313		134.8830	134.8829			
		81.6286	318.3663	81.6312	81.6311	134.8831	134.8821	134.8830	38.3811	
3	2	81 6289	318 3666	81 6312		13/ 8823	13/ 8826			
		81 6292	318 367/	81.6309		13/ 8829	13/ 8830			
3	2	81 6202	218 2682	81.6305		134,8823	12/ 8825			
		01.0292	310.3003	81.0303		134.8855	134.0033			
F /					r_{7}	7			()	
2κοπ	ευση	o/ .	κατακο	ρυφες γωνιες		ΘεσηΙ	Θεση ΙΙ	S _{μέσο} (m)	ΔH_{4R4} (m)	
Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	I. M. O.	S(m)	S(m)		∆H=cosz·S	
3	R ₇	135.3813	264.6033	135.3890		2.3054	2.3052			
		135.3817	264.6034	135.3892		2.3057	2.3055			
3	R ₇	135.3826	264.6024	135.3901	135.3898	2.3057	2.3051	2.3054	-1.2166	
		135.3822	264.6026	135.3898		2.3059	2.3053			
3	R ₇	135.3835	264.6022	135.3907		2.3052	2.3051			
	ŕ	135.3818	264.6013	135.3903		2.3058	2.3051			
					_ A U					
ΔH_{R1R4}	$= \Delta H_{4R4}$	₄-ΔH _{1R1} +	$\sum \frac{\Delta n_{12} - \Delta n_2}{\Delta n_2}$	2	<u>- Δ1143</u> =	13.5021	m			
			<i>l</i> =1							
D_{12}^{2}/R	=	0.032	>	$\Delta H_{12} + \Delta H_{21} =$	0.027	m => 0k.				
D_{22}^2/R	=	0.003	≈	$\Delta H_{23} + \Delta H_{32} =$	0.004	m => Ok.				
- 23 / 1				25 52						
1										

Ημ/νία	Ημ/νία : 16/04/2015 Ώρα έν.: 17:00 Ώρα Λήξ.: 19:01 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.										
Σκαρία	Σκαρίφημα :										
							¢,				
		A			Å∎ .		A	R ₅	_		
		R₃ ▮ /ĭ	`		//						
			4	/	/						
				/							
				Μετρής	σεις προς R	3	T				
Σκόπ	ευση		Κατακόρ	ουφες γωνίες		Θέση Ι	Θέση II	S(m)	$\Delta H_{1R3}(m)$		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	ομεσο ()	∆H=cosz·S		
1	R ₂	143.4698	256.5080	143.4809	143,4808	1.7410	1.7401	1,7403	-1.0983		
-	13	143.4700	256.5086	143.4807	113.1000	1.7408	1.7392	1.7 105	1.0505		
Σκόπ	ευση		Κατακόρ	ουφες γωνίες		Θέση Ι	Θέση II	S (m)	∆H(m)		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	ομεσο (/	∆H=cosz·S		
1	2	96.2706	303.7276	96.2715	96 2710	536.9689	536.9689	536 9691	31 4352		
	2	96.2698	303.7289	96.2705	50.2710	536.9694	536.9691	550.5051	51.4552		
2	1	103.7319	296.2659	103.7330	103 7325	536.9692	536.9690	536 9691	-31 4640		
	1	103.7316	296.2678	103.7319	105.7525	536.9693	536.9689	550.5051	51.4040		
2	3	94.0065	305.9924	94.0071	94 0069	229.7512	229.7511	229 7511	21 5969		
	5	94.0069	305.9936	94.0067	54.0005	229.7512	229.7509	225.7511	21.5505		
2	2	105.9948	294.0045	105.9952	105 9953	229.7513	229.7510	229 7513	-21 6044		
	-	105.9953	294.0046	105.9954	100.0000	229.7513	229.7514	225.7515	21.0011		
				Μετρής	σεις προς Β	5					
Σκόπ	ευση		Κατακόρ	ουφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{3R8} (m)		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (111)	∆H=cosz·S		
2	D	127.6883	272.3071	127.6906	127 6001	2.1243	2.1243	2 12/6	-0.8052		
5	N ₅	127.6903	272.3111	127.6896	127.0901	2.1250	2.1248	2.1240	-0.8932		
			$\sum_{n=0}^{n} \Delta H_{n} = \Delta H_{n}$	$+ \Delta H_{aa} - \Delta H_{aa}$							
ΔH _{R3R5}	$\Delta H_{R3R5} = \Delta H_{3R5} - \Delta H_{1R3} + \sum_{i=1}^{2} \frac{\Delta H_{22} - \Delta H_{21} + \Delta H_{23}}{2} = 53.2533 \text{ m}$										
D ₁₂ ² /R	=	0.045	>	$\Delta H_{12} + \Delta H_{21} =$	0.029	m => Ok.					
D ₂₃ ² /R	=	0.008	=	$\Delta H_{23} + \Delta H_{32} =$	0.008	m => Ok.					

Ημ/νία	x : 16/0	4/2015 Ώρ	α έν.: 17:00	Ώρα Λήξ.: 19:01	Όργανο : L	eica TCR1202+	Παρατηρη	ιτής : N. Θ.	
Σκαρία	φημα :								
									R ₇
				-					
5 /			/	ινιετρησ	σεις προς κ		a (
2κοπ	ευση	oʻ	κατακο	ρυφες γωνιες		Θέση Ι	Θέση ΙΙ	S _{μέσο} (m)	ΔH _{1R3} (m)
Απο	Προς	Θεση Ι	Θεση ΙΙ	Μ. Τιμη	1. M. O.	S(m)	S(m)		∆H=cosz·S
1	R ₃	143.4698	256.5080	143.4809	143.4808	1.7410	1.7401	1.7403	-1.0983
5uá=		143.4700	256.5086	143.4807		1.7408	1.7392		
		0/	κατακο	ρυφες γωνιες	5.14.0	ΘεσηΙ	Θεση ΙΙ	S _{μέσο} (m)	ΔH(m)
Απο	προς	Θεση Ι	Θεση II	Μ. Τιμη	T. M. O.	S(m)	S(m)		∆H=cosz·S
1	2	96.2706	303.7276	96.2715	96.2710	536.9689	536.9689	536.9691	31.4352
		96.2698	303.7289	96.2705		536.9694	536.9691		
2	1	103.7319	296.2659	103.7330	103.7325	536.9692	536.9690	536.9691	-31.4640
		103.7316	296.2678	103.7319		536.9693	536.9689		
2	3	94.0065	305.9924	94.0071	94.0069	229.7512	229.7511	229.7511	21.5969
		94.0069	305.9936	94.0067		229.7512	229.7509		
3	2	105.9948	294.0045	105.9952	105.9953	229.7513	229.7510	229.7513	-21.6044
		105.9953	294.0046	105.9954		229.7513	229.7514		
3	4	118.4110	281.5874	118.4118	118.4119	134.8392	134.8387	134.8390	-38.4559
		118.4116	281.5876	118.4120		134.8391	134.8388		
4	3	81.5978	318.4029	81.5975	81.5990	134.8392	134.8389	134.8390	38.4337
		81.6008	318.3997	81.6006		134.8392	134.8386		
				Μετρήα	σεις προς R ₇	,	r		
Σκόπ	ευση		Κατακό	ρυφες γωνίες	r	Θέση Ι	Θέση II	$S_{m}(m)$	$\Delta H_{4R7} (m)$
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	ομεου (/	∆H=cosz·S
4	R-	135.0222	264.9738	135.0242	135.0246	2.2218	2.2221	2,2218	-1.1616
	,	135.0257	264.9756	135.0251	100.0110	2.2214	2.2219		1.1010
∆H _{R3R7}	= ΔH _{4R7}	,-ΔH _{1R3} +	$\sum_{i=1}^{n} \underline{\Delta H_{12} - \Delta H_{21}}$	$\frac{+\Delta H_{23} - \Delta H_{32} + \Delta H_{34} - \Delta H_{34}}{2}$	-ΔH ₄₃ =	14.5422	m		
D ₁₂ ² /R	=	0.045	>	$\Delta H_{12} + \Delta H_{21} =$	0.029	m => Ok.			
D ₂₃ ² /R	=	0.008	=	$\Delta H_{23} + \Delta H_{32} =$	0.008	m => Ok.			
D ₃₄ ²/R	=	0.003	<	$\Delta H_{34} + \Delta H_{43} =$	0.022	m => Ok.			

Ημ/νία	α:16/0	4/2015 Ώρ	α έν.: 17:00	Ώρα Λήξ.: 19:01	Όργανο : L	eica TCR1202+	Παρατηρη	_] τής : Ν. Θ.		
Σκαρία	φημα :									
						\$ ∎				
		¢ ∎ .				/ \F	R ₅		٨	
							\backslash		Å ∎ R ₇	
	,						\backslash			
	_/									
				Μετρήο	σεις προς Β	1				
Σκόπ	ευση		Κατακό	ρυφες γωνίες	-	Θέση Ι	Θέση II	S. (m)	$\Delta H_{1R4}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	P	119.9594	280.0411	119.9592	110 0586	3.2825	3.2833	2 2227	-1 0124	
T	п ₄	119.9578	280.0417	119.9581	119.9360	3.2823	3.2827	5.2027	-1.0124	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	1 2	94.0065	305.9924	94.0071	94.0069	229.7512	229.7511	220 7511	21 5060	
1	2	94.0069	305.9936	94.0067	94.0009	229.7512	229.7509	229.7511	21.5909	
2	1	105.9948	294.0045	105.9952	105 9953	229.7513	229.7510	229.7513	21 6044	
2	1	105.9953	294.0046	105.9954	103.9933	229.7513	229.7514	229.7315	-21.0044	
2	2	118.4110	281.5874	118.4118	118 /110	134.8392	134.8387	12/1 8200	- 28 /1550	
2	5	118.4116	281.5876	118.4120	110.4119	134.8391	134.8388	134.8330	-30.4333	
2	2	81.5978	318.4029	81.5975	81 5000	134.8392	134.8389	12/ 8200	28 1227	
5	2	81.6008	318.3997	81.6006	81.3990	134.8392	134.8386	154.6550	50.4557	
				Μετρήο	σεις προς R	7				
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH _{3R7} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	∆H=cosz·S	
2	Б	135.0222	264.9738	135.0242	125 0246	2.2218	2.2221	2 2210	1 1 1 1 1 1	
3	к ₇	135.0257	264.9756	135.0251	135.0240	2.2214	2.2219	2.2218	-1.1010	
			n			-				
ΔH_{R4R7}	$\Delta H_{RAR7} = \Delta H_{3R7} - \Delta H_{1R4} + \sum_{n=1}^{n} \frac{\Delta H_{12} - \Delta H_{21} + \Delta H_{23} - \Delta H_{32}}{2} = -16.9934 \text{ m}$									
	510	1	=1	2						
D ² /R	_	0.008	=	$\Lambda H_{12} + \Lambda H_{21} =$	0.008	m => 0k				
D ₁₂ / N	. –	0.000			0.000					
D ₂₃ ² /R = 0.003 < ΔH ₂₃ + ΔH ₃₂ = 0.022 m => Μη αποδεκτό.										
25 /						•				

Ημ/νία	Ημ/νία : 16/04/2015 Ώρα ἑν.: 19:30 Ώρα Λήξ.: 22:00 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.											
Σκαρία	φημα :											
		• ĉ	3									
	_	R ₅	\Box									
								¢ 🔳				
				\backslash					R ₇			
					Μετο	ήσεις προς Β₌						
Σκόπ	ευση			Κατακό	ρυφες γωνίες	. , , , , ,	Θέση Ι	Θέση II		$\Delta H_{1P5}(m)$		
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	$\Delta H = cosz \cdot S$		
1		127.688	3	272.3071	127.6906	127 (001	2.1243	2.1243	2 1240	0.0050		
T	к ₅	127.690)3	272.3111	127.6896	127.6901	2.1250	2.1248	2.1246	-0.8952		
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)		
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S		
1	2	118.411	0	281.5874	118.4118	118 /110	134.8392	134.8387	13/1 8390	-38 /1559		
-	2	118.411	6	281.5876	118.4120	110.4115	134.8391	134.8388	134.0330	30.4333		
2	1	81.5978	8	318.4029	81.5975	81 5990	134.8392	134.8389	13/ 8300	38 /1337		
2	1	81.6008	8	318.3997	81.6006	01.5550	134.8392	134.8386	134.0330	50.4557		
					Μετρ	ήσεις προς R ₇						
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{2R7} (m)		
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S		
2	R	135.022	2	264.9738	135.0242	135 02/6	2.2218	2.2221	2 2218	-1 1616		
2	N7	135.025	57	264.9756	135.0251	133.0240	2.2214	2.2219	2.2210	1.1010		
			2	I ATT								
$\Delta H_{RSR7} = \Delta H_{R7} - \Delta H_{R5} + \sum_{i=1}^{2} \frac{\Delta m_{12} - \Delta m_{21}}{2} = -38.7112 \text{ m}$												
D_{12}^{2}/R	D ₁₂ ² /R = 0.003 < ΔH ₁₂ + ΔH ₂₁ = 0.022 m => Μη αποδεκτό.											

Ημ/νία	α:16/C	4/2015 Ώρ	οα έν.: 20:09	Ώρα Λήξ.: 22:01	Όργανο : L	eica TCR1202+	Παρατηρη	ητής : N. Θ.	
Σκαρί	φημα :								
				\					<
				Μετρή	σεις προς R	6			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	$\Delta H_{1R6}(m)$
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (Π)	∆H=cosz·S
1	D	125.3606	274.6395	125.3606	125 2624	3.0620	3.0629	2 0621	1 1000
T	п ₆	125.3672	274.6347	125.3663	125.5054	3.0617	3.0619	5.0021	-1.1000
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S
1	2	99.5059	300.4947	99.5056	00 5062	148.9985	148.9987	1/0 000/	1 1556
1	2	99.5077	300.4939	99.5069	33.3003	148.9984	148.9980	140.9904	1.1550
2	1	100.4959	299.5055	100.4952	100 /052	148.9983	148.9980	1/12 0022	_1 1501
2	1	100.4961	299.5055	100.4953	100.4955	148.9985	148.9981	140.3302	-1.1591
2	2	107.3847	292.6137	107.3855	107 2851	332.5989	332.5983	222 5085	-38 /063
2	5	107.3841	292.6149	107.3846	107.5651	332.5986	332.5982	552.5965	-38.4903
2	2	92.6187	307.3819	92.6184	92 6181	332.5991	332.5980	332 5983	38 /1802
5	2	92.6169	307.3815	92.6177	52.0101	332.5982	332.5980	552.5505	30.4002
				Μετρήο	σεις προς R	В			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c ()	ΔH ₃₈₈ (m)
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	∆H=cosz·S
2	n	148.7221	251.2766	148.7228	140 7005	1.8245	1.8255	1.0250	1 2017
3	к3	148.7224	251.2779	148.7223	148.7225	1.8247	1.8276	1.8250	-1.2047
∆H _{R6R8}	=ΔH _{3R8}	₃ - ΔH _{1R6} +	$\sum_{i=1}^{n} \underline{\Delta H_{12} - \Delta H_2}$	$\frac{1+\Delta H_{23}-\Delta H_{32}}{2} =$	-37.4077	m			
D ₁₂ ² /R	=	0.003	~	$\Delta H_{12} + \Delta H_{21} =$	0.004	m => Ok.			
D ₂₃ ² /R	=	0.017	>	$\Delta H_{23} + \Delta H_{32} =$	0.016	m => Ok.			

Ημ/νία	Ημ/νία : 23/04/2015 Ώρα έν.: 18:00 Ώρα Λήξ.: 18:47 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.										
Σκαρίφημα :											
	-	к ₆ /	Д								
				\backslash				↑ ■			
				\backslash				F	R ₇		
				\					Ň		
									\setminus		
Μετρήσεις προς R ₆											
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	6 ()	$\Delta H_{1R6}(m)$	
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S	
		134.917	76	265.0687	134.9245	424 0247	2.6325	2.6327	2 6226	4 0700	
1	к ₆	134.918	30	265.0680	134.9250	134.9247	2.6329	2.6322	2.6326	-1.3729	
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	∆H(m)	
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	∆H=cosz·S	
1	2	113.526	58	286.4686	113.5291		177.9804	177.9803			
1	2	113.526	54	286.4698	113.5283		177.9803	177.9805			
1	2	113.525	57	286.4697	113.5280	112 5200	177.9803	177.9800	177 0000	27 5262	
1	2	113.525	54	286.4710	113.5272	113.5280	177.9802	177.9802	177.9802	-37.5363	
1	2	113.525	58	286.4701	113.5279		177.9801	177.9801			
1	2	113.525	53	286.4702	113.5276		177.9803	177.9802			
h	1	86.470	2	313.5258	86.4722		177.9795	177.9800			
2	T	86.470	0	313.5241	86.4730		177.9799	177.9801			
h	1	86.469	1	313.5245	86.4723	06 4720	177.9801	177.9803	177 0900	27 5242	
2	T	86.470	8	313.5239	86.4735	00.4720	177.9799	177.9801	177.9600	57.5542	
2	1	86.471	2	313.5248	86.4732		177.9803	177.9802			
2	Т	86.469	5	313.5246	86.4725		177.9802	177.9797			
					Μετρή	σεις προς R ₇					
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II		ΔH_{2R7} (m)	
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S	
2		136.153	35	263.8317	136.1609	100 1001	2.1514	2.1515	2 4546	4 4 5 7 5	
2	К ₇	136.151	16	263.8319	136.1599	136.1604	2.1518	2.1518	2.1516	-1.15/5	
			2			•		•			
$\Delta H_{R6R7} = \Delta H_{R7} - \Delta H_{R6} + \sum_{n=1}^{\infty} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -37.3199 $ m											
		-	<i>ι</i> =1								
D_{12}^{2}/R	=	0.005		>	$\Delta H_{12} + \Delta H_{21} =$	0.002	m => Ok.				

Ημ/νία	Ημ/νία : 23/04/2015 Ώρα έν.: 19:00 Ώρα Λήξ.: 19:39 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.											
Σκαρίφημα :												
	B. D											
	-	К ₄	Щ									
			`	\backslash				¢ 🔳				
				\backslash				F	R ₇			
				\					\backslash			
Μετρήσεις προς R ₄												
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S (m)	$\Delta H_{1R4}(m)$		
Από	Προς	Θέση	1	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ομεσο (Π /	∆H=cosz·S		
1	R.	120.28	66	279.7030	120.2918	120 2919	3.2615	3.2622	3 2616	-1 0221		
-	14	120.28	64	279.7023	120.2921	120.2515	3.2610	3.2616	5.2010	1.0221		
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	∆H(m)		
Από	Προς	Θέση	I I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ομέσο (Π)	∆H=cosz·S		
1	2	103.57	18	296.4247	103.5736		300.4581	300.4577				
-	2	103.57	05	296.4252	103.5727		300.4580	300.4573				
1	2	103.57	13	296.4252	103.5731	103 5732	300.4579	300.4576	300 /1577	-16 8552		
-	2	103.57	25	296.4253	103.5736	105.5752	300.4579	300.4575	500.4577	10.0552		
1	2	103.57	10	296.4247	103.5732		300.4577	300.4578				
-	2	103.57	17	296.4251	103.5733		300.4578	300.4576				
2	1	96.426	59	303.5686	96.4292		300.4575	300.4573				
2	-	96.427	76	303.5682	96.4297		300.4574	300.4571				
2	1	96.426	58	303.5688	96.4290	96 1291	300.4579	300.4571	200 /157/	16 8/28		
2	1	96.427	75	303.5692	96.4292	30.4234	300.4575	300.4575	500.4574	10.0420		
2	1	96.426	56	303.5683	96.4292		300.4575	300.4574				
2	1	96.428	30	303.5673	96.4304		300.4576	300.4574				
					Μετρή	σεις προς R ₇						
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R7} (m)		
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	∆H=cosz·S		
2		136.15	35	263.8317	136.1609	100 1004	2.1514	2.1515	2 4546	4 4 5 7 5		
2	К ₇	136.15	16	263.8319	136.1599	130.1004	2.1518	2.1518	2.1510	-1.15/5		
$\Delta H_{pcp7} = \Delta H_{p7} - \Delta H_{p6} + \sum_{k=1}^{2} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -16.9844 \text{ m}$												
	R/		$\sum_{i=1}$	2	2010011							
_ 2.			_		<u> лн тун -</u>							
D_{12}^{\prime}/R	$D_{12}^{2}/R = 0.014 > \Delta M_{12} + \Delta M_{21} - 0.012 m => Ok.$											

Ημ/νία : 12/07/2015 Ώρα έν.: 18:00 Ώρα Λήξ.: 18:33 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.												
Σκαρία	Σκαρίφημα :											
R ₃												
	Μετρήσεις προς R ₃											
Σκόπ	ευση		Κατακό	ρυφες γωνίες	1	Θέση Ι	Θέση II	S	$\Delta H_{1R3}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	-μεου (···)	∆H=cosz·S			
1	R ₂	139.7603	260.2247	139.7678	139,7681	1.8671	1.8671	1.8670	-1.0919			
	1.3	139.7627	260.2258	139.7685	155.7001	1.8671	1.8666	1.0070	1.0515			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)			
Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ο μέσο (Π)	∆H=cosz·S			
1	2	96.2644	303.7366	96.2639	06 2640	535.8900	535.8897	E2E 9001	21 /20/			
1	2	96.2649	303.7366	96.2642	90.2040	535.8906	535.8902	333.8901	51.4504			
2	1	103.7424	296.2580	103.7422	102 7426	535.8907	535.8903	E2E 9006	21 /1962			
2	1	103.7430	296.2569	103.7431	103.7420	535.8909	535.8903	555.8500	-31.4803			
				Μετρή	σεις προς R	4						
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH _{2R4} (m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S			
2	D	121.9275	278.0661	121.9307	121 0210	3.0303	3.0304	2 0202	1 0724			
2	п ₄	121.9285	278.0658	121.9314	121.9310	3.0304	3.0300	5.0505	-1.0254			
$\Delta H_{R3R4} = \Delta H_{2R4} - \Delta H_{1R3} + \sum_{l=1}^{2} \frac{\Delta H_{12} + \Delta H_{21}}{2} = 31.5269 $ m												
D ₁₂ ² /R	$D_{12}^{2}/R = 0.045 < \Delta H_{12} + \Delta H_{21} = 0.056 m => Ok.$											

II. Μετρήσεις ΓΧ

		Μετρ	ήσεις Γεωμετρ	ικής Χωροστ	άθμησης	
Ημ/νία : 03/04,	/2015 Ώ	ρα έν.: 17:00	Ώρα λήξ	. : 19:20	Όργανο : Le	eica DNA 10 Παρατηρητής : Ν. Θ.
Σημείο	Μήκο	ς(m)	Αναγνώσεις α (m	στην σταδία ۱)	Υψόμετρα Η (m)	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν		
R_1	1.97	-	0.8213	-	34.3822	
1	10.89	3.15	0.4545	3.9399		
2	32.54	10.22	1.0253	2.7858		
3	38.79	31.44	0.6466	1.7673		
4	22.00	46.58	0.2363	3.0593	-	
5	60.97	21.28	1.0421	2.4647		
6	34.59	54.72	1.3896	1.4625		
7	9.46	32.25	1.3532	1.2726		
R ₈	-	8.35	-	1.3471	23.2506	
Σύνολο	211.21	207.99	6.9689	18.0992		
Σύνολο	419	9.20	-			
-		$\Delta H_{R1R8} =$	ΣΟ - ΣΕ =	-11.1303		
		-				
R ₈	8.60	-	1.2911	-		
1	44.81	7.75	1.2617	1.3387		
2	35.47	46.24	1.3803	1.2997		
3	28.01	41.95	2.5795	1.5794		
4	30.72	23.17	2.7636	0.1228	-	
5	41.34	30.92	1.9964	0.4774		
6	20.19	38.39	2.9916	0.8413		
7	3.17	11.44	3.9315	0.5900		
R ₁	-	2.12	-	0.8135		
Σύνολο	212.31	201.98	18.1957	7.0628		
Σύνολο	414	1.29	-			
-		$\Delta H_{R1R8} =$	ΣΟ - ΣΕ =	11.1329		
_			$\Delta H_{R1R8\mu\acute{\sigma}\sigma} =$	-11.1316		
	-			2.6	mm	

Ημ/νία : 05/04/2015 Ώρα έν.:		ρα έν.: 11:00	Ώρα λήξ	. : 12:43	Όργανο : Leica DNA 10 Παρατηρητής : Ν. Θ		
Σημείο	Μήκο	ς(m)	Αναγνώσεις στην σταδία (m)		Υψόμετρα Η (m)	Παρατηρήσεις - Σκαριφήματα	
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν			
R ₂	9.57	-	0.8116	-	9.838		
1	28.62	9.50	1.3680	1.3114			
2	12.93	27.75	0.3413	3.0969			
3	36.39	13.15	0.7167	2.4622			
4	25.99	33.83	1.5174	1.4965	-		
5	33.29	27.22	1.2183	1.2596			
6	18.17	31.58	2.0459	1.4776			
7	23.50	16.23	3.4114	0.2606			
R ₃	-	24.16	-	1.1092	8.7949		
Σύνολο	188.46	183.42	11.4306	12.4740			
Σύνολο	371	L.88	-				
-		$\Delta H_{R2R3} =$	ΣΟ - ΣΕ =	-1.0434			
		-					
R ₃	77.13	-	2.2113	-			
1	44.94	76.86	1.8777	0.0928			
2	18.39	45.49	1.2071	3.3266	-		
3	3.85	18.62	1.2108	1.3903			
R ₂	-	4.30	-	0.6548			
Σύνολο	144.31	145.27	6.5069	5.4645			
Σύνολο	289	9.58	-				
- ΔH _{R3R2} =			ΣΟ - ΣΕ =	1.0424			
			$\Delta H_{R2R3\mu\acute{\sigma}\sigma} =$	-1.0429			
-			Κλείσιμο :	-1.0	mm		

Ημ/νία : 05/04/2015 Ώ		ρα έν.: 15:30	Ώρα λήξ	. : 16:50	Όργανο : Le	eica DNA 10	Παρατηρητής : Ν. Θ.
Σημείο	Μήκο	ς(m)	Αναγνώσεις (m	στην σταδία ۱)	Υψόμετρα	Παρατηρή	σεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	п(m)		
R ₈	57.27	-	1.9449	-	23.2620		
1	69.23	57.54	1.5595	2.1622			
2	17.95	64.44	1.4647	1.6473	-		
3	4.11	17.68	1.4346	1.4254			
R ₇	-	3.56	-	1.0867	23.3445		
Σύνολο	148.56	143.22	6.4037	6.3216			
Σύνολο 29		l.78	-				
-		$\Delta H_{R8R7} =$	ΣΟ - ΣΕ =	0.0821			
		-					
R ₇	3.51	-	0.9446	-			
1	43.67	3.68	1.4681	1.2990			
2	70.82	41.08	1.1590	1.2425	-		
3	28.39	71.50	1.6141	1.2696			
R ₈	-	32.11	-	1.4575			
Σύνολο	146.39	148.37	5.1858	5.2686			
Σύνολο	294	1.76	-				
- ΔH _{R7R8} =			ΣΟ - ΣΕ =	-0.0828			
			ΔH _{R8R7μέσο} =	0.0825			
-			Κλείσιμο :	-0.7	mm		

Ημ/νία : 06/04/	′2015 ΄Ω	ρα έν.: 17:00	Ώρα λήξ	. : 17:43	Όργανο : Le	eica DNA 10 Παρατηρητής : Ν. Θ.
Σημείο	Μήκο	ς(m)	Αναγνώσεις (m	στην σταδία ۱)	Υψόμετρα	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	п(m)	
R ₆	17.94	-	3.8113	-	60.6838	
1	26.58	18.70	1.5935	0.7251		
2	28.09	25.60	2.0257	1.3563	-	
3	15.12	28.86	0.6923	0.9000		
R ₅	-	15.12	-	3.7577	62.0679	
Σύνολο	87.73	88.28	8.1228	6.7391		
Σύνολο 17		5.01	-			
-		$\Delta H_{R6R5} =$	ΣΟ - ΣΕ =	1.3837		
		-				
R ₅	16.04	-	3.7835	-		
1	22.63	16.48	0.9828	0.7161		
2	38.00	23.49	1.2052	1.9334	-	
3	9.65	38.51	0.0768	1.6210		
R ₆	-	11.95	-	3.1622		
Σύνολο	86.32	90.43	6.0483	7.4327		
Σύνολο	176	5.75	-			
-		$\Delta H_{RGR5} =$	ΣΟ - ΣΕ =	-1.3844		
_			ΔH _{R6R5μέσο} =	1.3841		
	-		Κλείσιμο :	-0.7	mm	

Ημ/νία : 06/04/2015 Ώρα έν.: 18:0		ρα έν.: 18:00	Ώρα λήξ. : 19:30		Όργανο : Leica DNA 10 Παρατηρητής : Ν. Θ.		
	Μήκο	c(m)	Αναγνώσεις	στην σταδία	Vuluáriaza a		
Σημείο	WII KO	ς (m)	(m	1)	τψομειρα	Παρατηρήσεις - Σκαριφήματα	
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	п(ш)		
R ₅	12.08	-	2.9068	-	62.0529		
1	7.71	11.95	0.3977	2.3237			
2	10.29	8.64	0.0130	2.7177			
3	9.53	11.25	0.3875	2.6196			
4	9.12	10.67	0.3041	2.5755			
5	7.85	9.42	0.3405	2.4515			
6	9.41	8.23	0.2120	2.3041			
7	11.33	9.37	0.0606	2.6783			
8	10.75	11.12	-0.0065	2.7372			
9	10.49	11.67	0.2256	2.9788			
10	17.53	10.88	0.7867	2.5312			
R ₄	-	16.69	-	1.4365	40.3256		
Σύνολο	116.09	119.89	5.6280	27.3541			
Σύνολο	235	5.98	-				
-		$\Delta H_{R5R4} =$	ΣΟ - ΣΕ =	-21.7261			
		-	•				
R ₄	17.23	-	1.4443	-			
1	10.44	17.06	2.4004	0.7946			
2	10.87	9.62	2.8294	0.2160			
3	10.93	10.17	2.8723	0.1178			
4	11.36	10.69	2.8909	0.2313			
5	11.43	9.75	2.6560	0.1305	-		
6	11.64	11.05	2.7784	-0.0131			
7	10.69	11.21	2.4740	0.1363			
8	9.96	11.57	2.7380	0.0564			
9	13.38	8.63	2.8958	0.0792			
R ₅	-	16.98	-	2.5019			
Σύνολο	117.93	116.73	25.9795	4.2509			
Σύνολο	234	1.66	-				
-	- ΔH _{R5R4} =		ΣΟ - ΣΕ =	21.7286			
			ΔH _{R5R4μέσο} =	-21.7274			
-			Κλείσιμο :	2.5	mm		

Ημ/νία : 07/04/2015 Ώρ		ρα έν.: 15:20	Ώρα λήξ	. : 17:47	Όργανο : Le	eica DNA 10 Παρατηρητής : Ν. Θ.
		<i>(</i>)	Αναγνώσεις	στην σταδία		·
Σημείο	Μηκο	ς(m)	(m	ı)	Υψομετρα	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	н(m)	
R ₆	22.22	-	4.0353	-	60.684	
1	43.90	23.68	1.6156	0.8985		
2	32.37	43.28	0.8285	0.3933		
3	11.18	23.33	0.0237	3.4152		
4	11.01	11.91	0.0950	3.0768		
5	10.58	10.81	0.2426	2.5085		
6	11.22	11.63	0.0636	2.6999	-	
7	11.21	11.64	0.0523	2.8429		
8	11.36	11.67	0.0811	2.9991		
9	11.69	12.13	-0.0170	2.9607		
10	11.27	11.44	0.1781	2.9898		
11	13.51	12.49	0.9848	2.3175		
R ₄	-	15.43	-	1.4273	40.3397	
Σύνολο	201.52	199.44	8.1836	28.5295		
Σύνολο	400).96	-	•		
-		$\Delta H_{B6B4} =$	ΣΟ - ΣΕ =	-20.3459		
		-				
R ₄	20.64	-	1.6620	-		
1	12.44	20.55	2.9413	0.3776		
2	9.89	10.39	2.6946	0.0948		
3	10.55	9.27	2.6591	0.2014		
4	9.60	11.36	2.6468	0.0579		
5	10.10	8.84	2.7101	0.3214		
6	9.59	11.32	2.5537	0.0642	_	
7	10.65	8.83	2.4702	0.4643		
8	11.17	10.39	2.7980	0.1739		
9	10.49	8.32	2.7339	0.1031		
10	31.15	10.95	2.3670	0.1137		
11	28.49	28.59	1.0463	2.1190		
12	33.71	28.92	0.6851	1.4448		
R ₆	-	22.56	-	4.0897		
Σύνολο	208.47	190.29	29.9681	9.6258		
Σύνολο	398	3.76	-	-		
-	- ΔH _{R6R4} =		ΣΟ - ΣΕ =	20.3423		
			ΔH _{R6R4μέσο} =	-20.3441		
	-		Κλείσιμο :	-3.6	mm	

Ημ/νία : 08/04/2015 Ώρα έν.: 08:40		ρα έν.: 08:40	Ώρα λήξ	. : 11:10	Όργανο : Leica DNA 10 Παρατηρητής : Ν.	
_ /	Μήκο	ç (m)	Αναγνώσεις α	στην σταδία	Υψόμετρα	
Σημείο	•	,, ,	(m	<u>ו)</u>	H(m)	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν		
R ₂	84.71	-	3.3132	-	9.8378	
1	40.63	81.22	2.5556	0.3160		
2	37.92	30.33	4.0871	-0.0458		
3	55.81	51.14	2.7582	-0.0189		
4	95.51	22.72	2.8671	-0.0383	-	
5	84.62	106.88	3.2486	3.7862		
6	6.93	88.81	0.9547	0.9725		
R ₈	-	7.86	-	1.3904	23.2586	
Σύνολο	406.13	388.96	19.7845	6.3621		
Σύνολο	795	5.09	-	•		
-		$\Delta H_{R2R8} =$	ΣΟ - ΣΕ =	13.4224		
		-		•		
R ₈	8.17	-	1.3438	-		
7	86.73	7.00	1.0136	0.9082		
8	104.83	87.28	3.6425	3.2901		
9	32.34	106.11	0.0769	3.5690		
10	52.77	31.93	0.0897	2.0059	-	
11	28.94	32.00	0.0567	3.9177		
12	73.95	55.01	0.5871	3.2055		
R ₂	-	85.72	-	3.3331		
Σύνολο	387.73	405.05	6.8103	20.2295		
Σύνολο	792	2.78	-			
-	- ΔH _{R8R2} =		ΣΟ - ΣΕ =	-13.4192		
_			$\Delta H_{R2R8\mu\acute{\sigma}\sigma} =$	13.4208		
			Κλείσιμο :	3.2	mm	

Ημ/νία : 08/04/2015		ρα έν.: 11:17	Ώρα λήξ. : 13:00		Όργανο : L	eica DNA 10 Παρατηρητής : Ν. Θ.
	Μήκο	c (m)	Αναγνώσεις	στην σταδία	νιμόμετοα	
Σημείο	Nulko	ς (m)	(m	ו)	H(m)	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν		
R ₁	1.92	-	1.3398	-	-	Συνδέσεις Reperes με στέψη των
1-Submarine	-	2.03	-	0.2179	35.504	βάθρων
-		ΔH _{R1-1} =	O - E =	1.1219	-	
1-Submarine	2.03	-	0.2180	-	-	
R ₁	-	1.93	-	1.3398	34.382	
-		$\Delta H_{1-R1} =$	O - E =	-1.1218	-	
	-		ΔH _{R1-1μέσο} =	1.1219	-	
R ₂	2.43	-	1.3482	-	9.838	
2-Parking	-	2.41	-	0.1190	11.067	
-		ΔH _{R2-2} =	O - E =	1.2292	-	
R ₃	2.26	-	1.2475	-	8.800	
3-Thalassa -		2.30	-	0.0718	9.976	
-		ΔH _{R3-3} =	O - E =	1.1757	-	
R ₄	4.52	-	1.2824	-	40.332	
4-Skopia	-	4.45	-	0.0936	41.521	
-		ΔH _{R4-4} =	O - E =	1.1888	-	
R ₅	5.18	-	1.6230	-	62.053	
5-Kratiras	-	5.03	-	0.4299	63.246	
-		ΔH _{R5-5} =	0 - E =	1.1931	-	
R ₆	5.18	-	1.4751	-	60.684	
6-Pevka	-	5.03	-	0.2059	61.953	
-		ΔH _{R5-5} =	O - E =	1.2692	-	
				-		
Ημ/νία : 14/04/	2015 Ώ	ρα έν.: 17:00	Ώρα λήξ	. : 17:20	Όργανο : L	eica DNA 10 Παρατηρητής : Ν. Θ.
Σημείο	Μήκο	ς (m)	Αναγνώσεις (m	στην σταδία ι)	Υψόμετρα	Παρατηρήσεις - Σκαριφήματα
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	п(ш)	
R ₇	3.76	-	1.2602	-	23.336	Συνδέσεις Reperes με στέψη των
7-Daytank	-	3.76	-	0.0794	24.517	βάθρων
-		ΔH _{R7-7} =	O - E =	1.1808	-	
R ₈	3.71	-	1.2840	-	23.262	
8-Pumphouse	-	3.81	-	0.1000	24.446	
-		ΔH _{R8-8} =	O - E =	1.1840	-	

Hμ/νία : 22/04/2015 Ώρα έν.		ρα έν.: 09:10	Ώρα λήξ. : 13:00		Όργανο : Leica DNA 10 Παρατηρητής : Ν. Θ		
	Μήκο	c (m)	Αναγνώσεις	στην σταδία	Υιμόμετοα		
Σημείο		s(m)	(m	1)	H(m)	Παρατηρήσεις - Σκαριφήματα	
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	,,		
R ₁	50.53	-	1.7860	-	34.3822		
1	28.73	72.60	0.0616	3.4965			
2	24.85	36.58	0.0330	2.8658			
3	22.25	19.01	0.0502	2.8066			
4	49.58	67.76	1.1116	3.7912			
5	46.25	38.04	0.5259	3.8363	-		
6	20.94	64.41	0.0882	3.8185			
7	60.04	63.59	0.4284	3.6767			
8	62.90	109.58	0.2114	3.3316			
R ₃	-	85.15	-	2.2725	8.7827		
Σύνολο	366.07	556.72	4.2963	29.8957			
Σύνολο	922	2.79	-				
-		ΔH _{R1R3} =	ΣΟ - ΣΕ =	-25.5994			
		-	•				
R ₃	73.27	-	2.3253	-			
1	100.43	74.86	3.1639	0.2657			
2	63.59	69.18	3.7028	0.2599			
3	64.35	21.04	3.7975	0.1157			
4	38.12	46.33	3.7042	0.5033			
5	76.69	39.42	3.0417	0.3050	-		
6	19.11	23.66	2.7824	-0.0255			
7	36.64	24.74	2.8411	0.0116			
8	72.26	28.61	3.5226	0.0341			
R ₁	-	50.69	-	1.8139			
Σύνολο	544.46	378.53	28.8815	3.2837			
Σύνολο 9		2.99	-				
- ΔH _F		ΔH _{R3R1} =	ΣΟ - ΣΕ =	25.5978			
			ΔH _{R1R3μέσο} =	-25.5986			
			Κλείσιμο :	-1.6	mm		

III. Δοκιμαστικές Μετρήσεις TPYA

Ημ/νία	a : 03/0	4/2015 G	Ωρα έν.: 10:11	Ώρα λήξ.: 12:41	Όργανο : Le	eica TCR1202+	Παρατηρη	_] τής : Ν. Θ.		
Σκαρία	φημα :									
			Å							
		R ₂ /	IL_							
		Λ	R ₃							
				Μετρήο	σεις προς R ₂					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	$\Delta H_{1R2}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (Π)	∆H=cosz·S	
1	D	127.2909	272.6938	127.2986	127 2094	2.5037	2.5035	2 5020	1 0/11	
T	г 2	127.2894	272.6931	127.2982	127.2964	2.5042	2.5043	2.5059	-1.0411	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	2	100.2715	299.7201	100.2757	100 2758	226.0152	226.0155	226 0155	-0 0702	
1	2	100.2718	299.7200	100.2759	100.2758	226.0155	226.0156	220.0133	-0.9792	
2	1	99.7275	300.2633	99.7321	00 7210	226.0157	226.0158	226 0155	0.0517	
2	1	99.7273	300.2638	99.7318	55.7515	226.0153	226.0153	220.0133	0.5517	
				Μετρήο	σεις προς R_3					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{2R3} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	P	139.6130	260.3376	139.6377	120 6266	1.9256	1.9233	1 02/17	-1 122/	
2	1.3	139.6283	260.3575	139.6354	155.0500	1.9245	1.9252	1.5247	1.1224	
		2								
ΔH_{R2R3}	= ΔH _{R3}	- ΔH _{R2} + <u></u>	$\frac{\Delta n_{12} - \Delta n_{21}}{2} =$	-1.0467	m					
		<i>i</i> =1								
D_{12}^{2}/R	=	0.008	<	$\Delta H_{12} + \Delta H_{21} =$	0.027	m => Μη αποδ	εκτό.			
				12 21						

Ημ/νία	x : 04/0	: 04/04/15 Ώρα έν.: 19:30 Ώρα λήξ.: 22:00 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.								
Σκαρία	φημα :									
		R ₈	4							
	R ₃									
								\setminus		
				Μετρήα	σεις προς R ₈					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R8}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	P	135.0860	264.8926	135.0967	125 0055	1.6680	1.6685	1 6683	-0 8738	
1	п ₈	135.0844	264.8960	135.0942	133.0933	1.6682	1.6685	1.0005	-0.8738	
Σκόπ	ευση	η Κατακόρυφες γωνίες Θέση Ι Θέση ΙΙ ς (m) ΔΙ							∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	2	102.0272	297.9624	102.0324	102 0221	458.5637	458.5635	150 5626	11 6219	
1	2	102.0262	297.9627	102.0318	102.0321	458.5636	458.5636	438.3030	-14.0340	
2	1	97.9651	302.0245	97.9703	07 0600	458.5642	458.5641		14 6272	
2	Т	97.9626	302.0273	97.9677	97.9090	458.5649	458.5650	438.3040	14.0272	
				Μετρήα	σεις προς R_3					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R3} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
n	р	126.5122	273.4689	126.5217	126 5210	1.7714	1.7715	1 7714	0 7169	
2	n 3	126.5129	273.4688	126.5221	120.5219	1.7714	1.7714	1.7714	-0.7108	
∆H _{R8R3}	$\Delta H_{R8R3} = \Delta H_{R3} - \Delta H_{R8} + \sum_{i=1}^{2} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -14.4740 $ m									
D ₁₂ ² /R	=	0.033	>	$\Delta H_{12} + \Delta H_{21} =$	0.008	m => Ok.				

Ημ/νία	Ημ/νία : 05/04/2015 Ώρα έν.: 22:21 Ώρα Λήξ.: 23:30 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρίφημα :										
				Μετρή	σεις προς R ₁					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II		$\Delta H_{1R1}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S	
	_	150.3608	249.6176	150.3716		1.6264	1.6264			
1	R ₁	150.3624	249.6171	150.3727	150.3721	1.6263	1.6264	1.6264	-1.1567	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	∆H=cosz·S	
1	2	101.9429	298.0451	101.9489	101 0490	840.2025	840.2023	840 2024	-25 7058	
T	2	101.9401	298.0458	101.9472	101.9460	840.2023	840.2025	040.2024	-25.7056	
2	1	98.0455	301.9445	98.0505	09.0510	840.2020	840.2020	840 2010	25 7102	
2	1	98.0464	301.9436	98.0514	96.0310	840.2021	840.2016	040.2019	23.7195	
				Μετρή	σεις προς R_3					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{2R3} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	P	140.6814	259.2963	140.6926	1/0 6026	1.7604	1.7600	1 7604	-1.0501	
2	13	140.6810	259.2958	140.6926	140.0920	1.7605	1.7605	1.7004	-1.0501	
$\Delta H_{R1R3} = \Delta H_{R3} - \Delta H_{R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -25.6059 \text{ m}$										
D ₁₂ ² /R	=	0.111	>	$\Delta H_{12} + \Delta H_{21} =$	0.014	m => Ok.				

Ημ/νία	Ημ/νία : 06/04/2015 Ώρα έν.: 09:10 Ώρα Λήξ.: 09:50 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	Σκαρίφημα :									
				Μετρή	σεις προς R _:	L				
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R1}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	D	150.134	1 249.8433	150.1454	150 1/60	1.6614	1.6605	1 6600	1 1771	
T	п ₁	150.136	3 249.8432	150.1466	130.1400	1.6609	1.6608	1.0009	-1.1//1	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	2	102.563	8 297.4289	102.5675	102 5670	618.3484	618.3485	C10 2407	24 0220	
T	2	102.564	5 297.4285	102.5681	102.5078	618.3493	618.3487	- 618.3487	-24.9550	
2	1	97.4359	302.5559	97.4400	07 4401	618.3483	618.3479	C10 2402	21 0572	
2	1	97.4371	302.5566	97.4403	97.4401	618.3486	618.3484	010.3403	24.0373	
				Μετρή	σεις προς R ₂	2				
Σκόπ	ευση		Κατακά	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	$\Delta H_{2R2} (m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	D	123.540	4 276.4428	123.5488	122 5400	2.2976	2.2970	2 2072	0.9205	
2	г ₂	123.540	9 276.4424	123.5493	125.5490	2.2974	2.2973	2.2975	-0.6505	
ΔH_{R1R2}	$\Delta H_{R1R2} = \Delta H_{2R2} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -24.5490 \text{ m}$									
D ₁₂ ² /R	=	0.060	<	$\Delta H_{12} + \Delta H_{21} =$	0.076	m => Μη αποδ	εκτό.			

Ημ/νία	Ημ/νία : 06/04/2015 Ώρα έν.: 10:30 Ώρα Λήξ.: 11:22 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	Σκαρίφημα :									
				Μετρήο	σεις προς R ₂	2				
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c ()	$\Delta H_{1R2}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S	
		123.5407	276.4435	123.5486	400 5400	2.2975	2.2967		0.0005	
1	К ₂	123.5393	276.4435	123.5479	123.5483	2.2978	2.2968	2.2972	-0.8305	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c ()	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	∆H=cosz·S	
1	2	92.6252	307.3675	92.6289	02 6202	450.8767	450.8765	450 0767	F2 00C2	
1	2	92.6270	307.3680	92.6295	92.6292	450.8769	450.8767	450.8767	52.0862	
2	4	107.3753	292.6206	107.3774	407 0770	450.8769	450.8763	450.0700	F2 42F2	
2	1	107.3761	292.6196	107.3783	107.3778	450.8770	450.8762	450.8766	-52.1353	
				Μετρήο	σεις προς R _s	5				
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II		ΔH_{2B3} (m)	
Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	ΔH=cosz·S	
2		119.6660	280.3191	119.6735	110 (725	2.3789	2.3792	2 2701	0 7220	
2	к ₅	119.6657	280.3188	119.6735	119.6735	2.3789	2.3792	2.3791	-0.7236	
ΔH _{R2R5}	$\Delta H_{R2R5} = \Delta H_{R5} - \Delta H_{R2} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = 52.2177 $ m									
D ₁₂ ² /R	=	0.032	<	$\Delta H_{12} + \Delta H_{21} =$	0.049	m => Μη αποδ	δεκτό.			

Ημ/νία	x : 08/0	4/2015	Ώρο	α έν.: 06:10	Ώρα Λήξ.: 06:47	Όργανο : Le	eica TCR1202+	Παρατηρη	ιτής : N. Θ.	
Σκαρία	Σκαρίφημα :									
					Μετρήο	σεις προς R ₁				
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH _{1R1} (m)
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S
1	D	145.064	6	254.9157	145.0745	145 0749	1.6924	1.6922	1 6022	1 100F
T	п 1	145.065	54	254.9152	145.0751	145.0746	1.6921	1.6919	1.0922	-1.1005
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S
1	2	102.553	84	297.4394	102.5570	102 5572	618.1610	618.1608	618 1611	-24 8234
-	2	102.554	9	297.4403	102.5573	102.3372	618.1610	618.1614	010.1011	24.0234
2	1	97.4442	2	302.5503	97.4470	97 4472	618.1605	618.1605	618 1605	24 7814
-	-	97.4448	8	302.5500	97.4474	57.4472	618.1607	618.1604	010.1005	24.7014
					Μετρήο	σεις προς R ₂				
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{2R2} (m)$
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S
2	P	122.537	7	277.4502	122.5438	122 5//1	2.4418	2.4416	2 1/12	-0.8467
2	N ₂	122.537	'8	277.4490	122.5444	122.3441	2.4422	2.4416	2.4410	-0.0407
∆H _{r1r2}	$\Delta H_{R1R2} = \Delta H_{2R2} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -24.5486 $ m									
D ₁₂ ² /R	=	0.060		<	$\Delta H_{12} + \Delta H_{21} =$	0.042	m => Μη αποδ	δεκτό.		

Ημ/νία	Ημ/νία : 13/04/2015 Ώρα έν.: 05:52 Ώρα Λήξ.: 07:00 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρίο	φημα :	_	_							
		R₁r	L Â							
							/11.	_		
								\setminus		
				Μετοή	σεις ποος Β.					
Σκόπ	ευση		Κατακά	ουφες γωνίες		Θέση Ι	Θέση II		$\Delta H_{4M}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)		
	, <u> </u>	143.257	5 256.7240	143.2668	440.0050	1.8842	1.8839	4 0000		
1	К1	143.2558	8 256.7259	143.2650	143.2659	1.8839	1.8833	1.8838	-1.1840	
Σκόπ	ευση		Κατακό	ρυφες γωνίες	•	Θέση Ι	Θέση II	S. (m)	∆H(m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	∆H=cosz·S	
1		102.5590	297.4314	102.5638	102 5621	618.1136	618.1130	618.1134	24.0005	
1	2	102.5532	2 297.4324	102.5604	102.5621	618.1132	618.1138		-24.8695	
2		97.4272	302.5619	97.4327	07 4040	618.1138	618.1144		24.0242	
2	1	97.4257	302.5661	97.4298	97.4312	618.1142	618.1142	618.1142	24.9343	
			•	Μετρή	σεις προς R ₂					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R2} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	D	120.8814	4 279.1070	120.8872	120 0071	2.5696	2.5707	2 5701	0 0202	
2	N ₂	120.8814	4 279.1073	120.8871	120.0071	2.5698	2.5703	2.5701	-0.0202	
∆H _{R1R2}	$\Delta H_{R1R2} = \Delta H_{2R2} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -24.5461 \text{ m}$									
D ₁₂ ² /R	.=	0.060	<	$\Delta H_{12} + \Delta H_{21} =$	0.065	m => Μη αποδ	δεκτό.			

Ημ/νία : 14/04/2015 Ώρα έν.: 18:30 Ώρα Λήξ.: 19:00 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.											
Σκαρία	Σκαρίφημα :										
									\		
					Μετρήο	σεις προς R ₁					
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R1}(m)$	
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	р	145.858	57	254.1269	145.8659	1/E 0CE1	1.8668	1.8665	1 9667	1 2215	
T	г 1	145.855	3	254.1269	145.8642	145.6051	1.8667	1.8666	1.0007	-1.2515	
Σκόπ	ευση			Κατακό	Θέση II	S. (m)	ΔH(m)				
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ο μέσο (Π)	∆H=cosz·S	
1	2	102.563	6	297.4303	102.5667	102 5668	618.2265	618.2262	618 2262	-2/ 0101	
1	2	102.565	4	297.4317	102.5669	102.3008	618.2262	618.2257	010.2202	-24.9191	
2	1	97.4370)	302.5593	97.4389	97 /1392	618.2264	618.2260	618 2261	2/ 861/	
2	Т	97.4377	7	302.5586	97.4396	57.4552	618.2262	618.2258	010.2201	24.0014	
					Μετρήο	σεις προς R ₂					
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{2R2} (m)$	
Από	Προς	Θέση Ι		Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
۰ ۲	D	122.792	6	277.1956	122.7985	122 7002	2.5254	2.5263	2 5260		
2	п ₂	122.793	8	277.1941	122.7999	122.7992	2.5258	2.5266	2.3200	-0.0034	
$\Delta H_{R1R2} = \Delta H_{2R2} - \Delta H_{1R1} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -24.5442 $ m											
D ₁₂ ² /R	=	0.060		>	$\Delta H_{12} + \Delta H_{21} =$	0.058	m => 0k.				
Ημ/νία	Ημ/νία : 15/04/2015 Ώρα έν.: 19:30 Ώρα Λήξ.: 22:00 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.										
--	--	---------	----	--------------	-----------------------------------	--------------------------	----------	----------	-------------------------	------------------------	--
Σκαρία	φημα :	-	A								
		R_6	Ň								
	-			\ \							
				\backslash				Å R	!_		
				\setminus					., \		
								_/	\backslash		
					Μετρή	σεις προς R _e					
Σκόπευση Κατακόρυφες γωνίες Θέση Ι Θέση ΙΙ											
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
1	P	125.900)5	274.0912	125.9047	125 0026	3.0238	3.0224	3 0233	-1 1065	
1	N ₆	125.897	73	274.0924	125.9025	125.9050	3.0239	3.0229	5.0255	-1.1905	
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	ΔH(m)	
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ο μέσο (111)	∆H=cosz·S	
1	2	113.488	31	286.5061	113.4910	113 /017	177.6983	177.6982	177 6980	-37 3778	
1	2	113.489	98	286.5050	113.4924	115.4917	177.6973	177.6980	177.0980	-37.3770	
2	1	86.506	6	313.4887	86.5090	86 5088	177.6987	177.6981	177 6983	37 3766	
2	1	86.506	3	313.4892	86.5086	00.0000	177.6984	177.6981	177.0505	57.5700	
					Μετρή	σεις προς R ₇	,				
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{2R7} (m)	
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S	
2	P	146.420)9	253.5583	146.4313	1/6 /215	1.7098	1.7097	1 7008	_1 120/	
2	N ₇	146.421	18	253.5585	146.4317	140.4313	1.7098	1.7098	1.7098	-1.1334	
ΔH _{R6R7}	$H_{RGR7} = \Delta H_{R7} - \Delta H_{R6} + \sum_{l=1}^{2} \frac{\Delta H_{12} - \Delta H_{21}}{2} = -37.3201 \text{ m}$										
D ₁₂ ² /R	=	0.005		>	$\Delta H_{12} + \Delta H_{21} =$	0.001	m => Ok.				

Ημ/νία	Ημ/νία : 16/04/2015 Ώρα έν.: 17:00 Ώρα Λήξ.: 18:33 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	φημα :	ħ						Ô		
		R ₃								
				Μετρή	σεις προς R ₃					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R3}(m)$	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 μέσο (Π)	∆H=cosz·S	
1	D	143.4698	256.5080	143.4809	1/12 / 10/10	1.7410	1.7401	1 7/02	1 0092	
T	n ₃	143.4700	256.5086	143.4807	143.4000	1.7408	1.7392	1.7405	-1.0985	
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)	
Από	Προς	ος Θέση Ι Θέση ΙΙ Μ. Τιμή Γ. Ι		Г. М. О.	S (m)	S(m)	3 μέσο (Π)	∆H=cosz·S		
1	n	96.2706	303.7276	96.2715	06 2710	536.9689	536.9689	E26 0601	21 4252	
T	2	96.2698	303.7289	96.2705	90.2710	536.9694	536.9691	220.2021	51.4552	
2	1	103.7319	296.2659	103.7330	102 7225	536.9692	536.9690	E26 0601	21 /6/0	
2	T	103.7316	296.2678	103.7319	105.7525	536.9693	536.9689	220.2021	-31.4040	
				Μετρή	σεις προς R_4					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R4} (m)	
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S	
n	р	119.9594	280.0411	119.9592	110 0596	3.2825	3.2833	2 2022	1 0124	
2	г 4	119.9578	280.0417	119.9581	119.9560	3.2823	3.2827	5.2027	-1.0124	
ΔH _{R3R4}	$\Delta H_{R3R4} = \Delta H_{2R4} - \Delta H_{1R3} + \sum_{i=1}^{n} \frac{\Delta H_{12} - \Delta H_{21}}{2} = 31.5355 $ m									
D ₁₂ ² /R	=	0.045	>	$\Delta H_{12} + \Delta H_{21} =$	0.029	m => 0k.				

					-					
Ημ/νία	Ιμ/νία : 21/04/2015 _ Ώρα έν.: 18:30 Ώρα Λήξ.: 20:30 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρί	φημα :									
								/ \		
		₅∎ Â								
		κ_3	۲							
				Matań	acic maac D					
Σκόπ	curr		Κατακό		υεις προς κ ₃	Oára I	Oára II		All (m)	
2K0/		Oára I	κατακο	ρυφες γωνιες	ГМО	Θεσηι	Θεση II	S _{μέσο} (m)	$\Delta H_{1R3}(m)$	
Απο	προς	9800 T		ινι. τιμη	T. IVI. U.	S (M)	S(m)		∆H=cosz·S	
		137.0776	262.9067	137.0855	-	1.8764	1.8/68			
1	R ₃	137.0767	262.9071	137.0848	137.0851	1.8764	1.8768	1.8767	-1.0324	
		137.0758	262.9092	137.0833	-	1.8767	1.8769			
Σκόπ	sugn	137.0758	202.9077 Κατακό	137.0841		1.8705	1.8768		4 ↓(m)	
Δπό		Θέση Ι	Θέση ΙΙ	ροφες γωνιες	ГМО	S(m)	S(m)	S _{μέσο} (m)		
AILO	προς	06 2552	202 7402		T. IVI. U.	5(11)	5(11)		ΔH=cosz·S	
1	2	90.2332	202 7425	90.2373	-	526 2026	526 2026			
		90.2330	202 7/10	90.2300	-	526 2027	530.2030			
1	2	90.2330	202 7205	90.2309	-	526 2027	526 2022			
		90.2320	202 7/05	96.2556	-	526 2825	526 2822			
1	2	96.2517	303.7403	96.2554	96.2566	536 2821	536 2832	536.2833	31.5157	
		96 2553	303.7403	96.2534	-	536 2831	536 2830			
1	2	96 2542	303.7355	96 2564		536 2832	536 2829			
		96 2542	303 7410	96 2566		536 2831	536 2829	-		
1	2	96 2548	303 7409	96 2570		536 2830	536 2828			
		103,7449	296,2499	103.7475		536,2829	536,2822			
2	1	103,7455	296.2501	103.7477	_	536,2826	536,2820			
		103.7450	296.2502	103.7474	-	536.2824	536.2820			
2	1	103.7453	296.2505	103.7474		536.2823	536.2822			
_		103.7449	296.2507	103.7471		536.2820	536.2821			
2	1	103.7447	296.2507	103.7470	103.7473	536.2823	536.2815	536.2820	-31.5488	
_		103.7456	296.2500	103.7478		536.2820	536.2816			
2	1	103.7446	296.2492	103.7477		536.2821	536.2816			
2	1	103.7446	296.2511	103.7468		536.2817	536.2817			
2		103.7439	296.2503	103.7468		536.2818	536.2816			
				Μετρή	σεις προς R ₄					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II		ΔH_{2B4} (m)	
Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S	
		119.2329	280.7584	119.2373		3.4543	3.4543			
2		119.2335	280.7578	119.2379	110 2270	3.4549	3.4546	2 4546	1 0201	
2	К4	119.2333	280.7589	119.2372	119.2376	3.4551	3.4549	3.4546	-1.0281	
		119.2308	280.7583	119.2363		3.4543	3.4543			
		2								
ΔH_{R3R4}	= ΔH _{2R4}	- ΔH _{1R3} + Σ	$\frac{\Delta H_{12} + \Delta H_{21}}{2} =$	31.5366	m					
		<i>i</i> =1	2							
D_{12}^{2}/R	=	0.045	>	$\Delta H_{12} + \Delta H_{21} =$	0.033	m => Ok.				
12 / 1				16 61						

Ημ/νία	Ημ/νία : 12/07/2015 Ώρα έν.: 17:00 Ώρα Λήξ.: 19:07 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.									
Σκαρία	φημα :									
			Â							
	-	Γ ₄	Щ							
								<u>ک</u>		
				\backslash					7	
				\					\backslash	
									Λ.	
					Μετρήα	σεις προς Β	1			
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	S. (m)	$\Delta H_{1R4}(m)$
Από	Προς	Θέση	L	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	Ομέσο (Π /	∆H=cosz·S
1	R	121.92	75	278.0661	121.9307	121 9310	3.0303	3.0304	3 0303	-1 023/
1	N ₄	121.928	85	278.0658	121.9314	121.5510	3.0304	3.0300	5.0505	1.0254
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	∆H(m)
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 μέσο (Π)	∆H=cosz·S
1	n	103.572	22	296.4284	103.5719	102 5710	300.5005	300.5001	200 5002	16 0510
Т	2	103.57	18	296.4282	103.5718	105.5719	300.5004	300.4999	300.3002	-10.6512
n	1	96.431	.6	303.5698	96.4309	06 4210	300.5004	300.5005	200 5005	16 0277
2	Ţ	96.431	.9	303.5697	96.4311	90.4310	300.5005	300.5004	500.5005	10.0577
					Μετρήο	σεις προς R _:	7			
Σκόπ	ευση			Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{2R7} (m)
Από	Προς	Θέση	I	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	3 _{μέσο} (Π)	∆H=cosz·S
2	р	137.426	68	262.5635	137.4317	127 4210	2.1016	2.1015	2 1017	1 1057
2	к ₇	137.42	59	262.5628	137.4316	137.4310	2.1022	2.1014	2.1017	-1.1057
		_	2							
ΔH_{R6R7}	= ΔH _{R7} ·	- ΔH _{R6} + 🤰	∑≞	$\frac{11_{12} + \Delta 11_{21}}{2} =$	-16.9868	m				
		i	=1							
D_{12}^{2}/R	=	0.014	Ļ	>	$\Delta H_{12} + \Delta H_{21} =$	0.013	m => Ok.			

Ημ/νία	Ημ/νία : 17/07/2015 Ώρα έν.: 18:00 Ώρα Λήξ.: 19:30 Όργανο : Leica TCR1202+ Παρατηρητής : Ν. Θ.										
Σκαρία											
	Μετρήσεις προς R ₂										
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	$\Delta H_{1R2}(m)$		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S			
1	D	119.0415	280.9538	119.0439	110 0427	3.0360	3.0341	2 0250	0.9044		
T	г ₂	119.0409	280.9537	119.0436	119.0457	3.0364	3.0336	5.0550	-0.6944		
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	∆H(m)		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S		
1	2	92.6568	307.3446	92.6561	02 6550	449.8032	449.8028	110 2020	E1 77E0		
T	2	92.6561	307.3449	92.6556	92.0559	449.8031	449.8030	449.6050	51.7750		
r	1	107.3479	292.6518	107.3481	107 2/190	449.8033	449.8032	110 9022	E1 9077		
2	1	107.3483	292.6523	107.3480	107.5460	449.8034	449.8030	449.0032	-31.0022		
				Μετρή	σεις προς R	5					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	s (m)	ΔH_{2R3} (m)		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S		
r	D	106.7367	293.2614	106.7377	106 7270	4.4722	4.4707	1 1716	0 4724		
2	n ₅	106.7368	293.2610	106.7379	100.7578	4.4718	4.4716	4.4710	-0.4724		
∆H _{R2R5}	= ΔH _{R5}	$-\Delta H_{R2} + \sum_{i=1}^{2} \Delta H_{R2}$	$\frac{H_{12} + \Delta H_{21}}{2} =$	52.2106	m						
D ₁₂ ² /R	=	0.032	>	$\Delta H_{12} + \Delta H_{21} =$	0.027	m => 0k.					

Ημ/νία	ιμ/νια : 17/07/2015 Ωρα εν.: 17:00 Ωρα Ληξ.: 20:30 Οργανο : Leica TCR1202+ Παρατηρητης : Ν. Θ.											
Σκαρία	φημα :							R ₅				
	Μετρήσεις προς R ₂											
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II		$\Delta H_{1R2}(m)$			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S			
1		119.0415	280.9538	119.0439	110 0427	3.0360	3.0341	2.0250	0.0044			
T	К2	119.0409	280.9537	119.0436	119.0437	3.0364	3.0336	3.0350	-0.8944			
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	∆H(m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S(m)	S(m)	S _{μέσο} (m)	∆H=cosz·S			
1		92.6568	307.3446	92.6561	02.0550	449.8032	449.8028	440,0000	F4 77F0			
1	2	92.6561	307.3449	92.6556	92.0559	449.8031	449.8030	449.8030	51.7750			
2	1	107.3479	292.6518	107.3481	107 2490	449.8033	449.8032	110 0022	E1 9022			
2	1	107.3483	292.6523	107.3480	107.3480	449.8034	449.8030	449.0052	-31.6022			
2	2	118.3637	281.6373	118.3632	110 2622	133.6100	133.6096	122 6009	20 0072			
2	5	118.3629	281.6367	118.3631	110.3032	133.6099	133.6096	133.0038	-38.0072			
2	2	81.6379	318.3632	81.6374	Q1 6272	133.6097	133.6097	133 6007	38 0065			
5	2	81.6373	318.3633	81.6370	81.0372	133.6097	133.6096	155.0057	38.0005			
				Μετρή	σεις προς R	7						
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	ΔH_{4R4} (m)			
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	S _{μέσο} (m)	∆H=cosz·S			
2	D	131.6244	268.3679	131.6283	121 6200	2.4606	2.4605	2 4609	1 1720			
5	Γ ₇	131.6259	268.3663	131.6298	151.0290	2.4611	2.4608	2.4008	-1.1729			
ΔH_{R1R4}	$H_{R1R4} = \Delta H_{4R4} - \Delta H_{1R1} + \sum_{i=1}^{2} \frac{\Delta H_{12} - \Delta H_{21} + \Delta H_{23} - \Delta H_{32}}{2} = 13.5032 \text{ m}$											
D ₁₂ ² /R	=	0.032	>	$\Delta H_{12} + \Delta H_{21} =$	0.027	m => Ok.						
D ₂₃ ² /R	=	0.003	~	$\Delta H_{23} + \Delta H_{32} =$	0.001	m => Ok.						

Ημ/νία	a : 17/0	7/2015	Ωρα έν.: 19:30	Ώρα Λήξ.: 20:30	Όργανο : L	eica TCR1202+	Παρατηρη	ιτής : N. Θ.			
Σκαρία	Σκαρίφημα :										
				Μετοή							
Σκόπ	ະມດກ		Κατακά			Θέση Ι	Θέση II		AH (m)		
Δπό	Ποος	Θέση I	Θέση ΙΙ	Μ Τιμή	гмо	S(m)	S(m)	S _{μέσο} (m)			
7010	προς	106 736	7 293 2614	106 7377	1.10.0.	4 4722	4 4707		ΔΠ-C052-5		
1	R ₅	106.736	8 293.2610	106.7379	106.7378	4.4718	4.4716	4.4716	-0.4724		
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	- ()	∆H(m)		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S(m)	S _{μέσο} (m)	ΔH=cosz·S		
1	2	118.363	7 281.6373	118.3632	110 2022	133.6100	133.6096	122 000	20.0072		
T	2	118.362	9 281.6367	118.3631	118.3632	133.6099	133.6096	133.6098	-38.0072		
n	1	81.6379	318.3632	81.6374	01 6272	133.6097	133.6097	122 6007	20 0065		
2	T	81.6373	318.3633	81.6370	81.0372	133.6097	133.6096	155.0097	56.0005		
				Μετρή	σεις προς R ₇	7					
Σκόπ	ευση		Κατακό	ρυφες γωνίες		Θέση Ι	Θέση II	c (m)	$\Delta H_{2R7}(m)$		
Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	3 _{μέσο} (Π)	∆H=cosz·S		
2	P	131.624	4 268.3679	131.6283	131 6200	2.4606	2.4605	2 4608	-1 1720		
2	N7	131.625	9 268.3663	131.6298	151.0290	2.4611	2.4608	2.4000	-1.1725		
∆H _{rsr7}	= ∆H _{R7} ·	$-\Delta H_{R5} + \sum_{l}$	$\sum_{n=1}^{2} \frac{\Delta H_{12} + \Delta H_{21}}{2} =$	-38.7074	m						
D ₁₂ ² /R	=	0.003	<	$\Delta H_{12} + \Delta H_{21} =$	0.001	m => Μη αποδ	δεκτό.				

ΙΥ. Δοκιμαστικές Μετρήσεις ΓΧ

Ημ/νία : 13/07/	Ιμ/νία : 13/07/2015		Ώρα λήξ. : 19:30		Όργανο : Leic	a SPRINTER 150M	Παρατηρητής : Ν. Θ.
	Μήκο	c (m)	Αναγνώσεις	στην σταδία	Υψόμετοα Η		
Σημείο		5()	(m	1)	(m)		
	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	()		
R ₂	83.62	-	3.321	-	9.838		
1	24.66	81.48	1.908	0.082			
2	51.18	39.52	5.048	0.061			
3	70.69	65.02	4.774	0.361			
4	78.07	86.34	3.209	2.934	-		
5	100.29	79.33	1.552	1.547			
6	21.48	99.98	1.432	1.521			
R ₇	-	25.74	-	1.243	23.337		
Σύνολο	429.99	477.41	21.244	7.749	-		
Σύνολο	907	7.40	-				
-		$\Delta H_{R2R7} =$	ΣΟ - ΣΕ =	13.4950			
		-					
R ₇	23.62	-	1.251	-			
1	99.69	23.58	1.528	1.439			
2	79.24	100.40	1.592	1.565			
3	86.21	78.24	2.880	3.251			
4	64.70	71.25	0.375	4.713			
5	25.05	51.52	0.408	5.064			
6	83.50	39.27	0.172	2.266			
R ₂	-	83.30	-	3.411			
Σύνολο	462.01	447.56	8.206	21.709			
Σύνολο	909	9.57	-				
-		ΔH _{R7R2} =	ΣΟ - ΣΕ =	-13.503			
	_			13.499			
	-			-8.0	mm		

ПАРАРТНМА В

ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΤΡΙΔΙΑΣΤΑΤΟΥ ΕΛΕΓΧΟΥ

Ι. Μετρήσεις υψών οργάνου και στόχων

Έντυπο μ	ιετρήσεων ύψο	ι στόχου	Ημερομηνία :	Ημερομηνία : 18/06/2015 Ώρα έν. : 17:30 Ώρα λήξ. : 22:30					Παρατηρητής : Ν.Θ.	
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	L		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TCR 1202+, DNA 10	
					Μήκος (m) Αναγνώσεις σταδίας (m		ις σταδίας (m)			
Σημείο	e^{1} (z = 100 ^g)	e^{11} (z = 300 ^g)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
1-Submarine	1.5890	1.5895	1.5893	1-Submarine	2.60		0.1879			
						2.00		1.5411	-1.3532	0.2361
2-Parking	1.8823	1.8829	1.8826	2-Parking	2.22		0.0541			
						4.09		1.6987	-1.6446	0.2380
3-Thalassa	1.3860	1.3860	1.3860	3-Thalassa	2.78		0.0617			
						3.14		1.209	-1.1473	0.2387
8-Pumphouse	1.5900	1.5900	1.5900	8-Pumphouse	3.65		0.1975			
						2.35		1.5515	-1.354	0.2360
7-Daytank	1.6985	1.6990	1.6988	7-Daytank	4.01		0.1608			
						2.89		1.6229	-1.4621	0.2367
6-Pevka	1.1725	1.1738	1.1731	6-Pevka	4.13		0.1565			
						3.31		1.0944	-0.9379	0.2352
5-Kratiras	1.7438	1.7443	1.7440	5-Kratiras	4.51		0.4316			
						3.17		1.9345	-1.5029	0.2411
4-Skopia	1.6645	1.6650	1.6648	4-Skopia	3.45		0.1647			
						3.14		1.5905	-1.4258	0.2390

Έντυπο μ	Έντυπο μετρήσεων ύψους οργάνου και στόχου				21/06/2015	Ώρα έν. : 1	λήξ. : 21:30	Παρατηρητής : Ν.Θ.		
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	L		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TCR 1202+, DNA 10	
				Μήκος (m) Ανα		Αναγνώσεις σταδίας (m)				
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = $e + \Delta h_{ij} (m)$
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.6488	1.6490	1.6489	3-Thalassa	4.49		0.0093			
						2.52		1.4191	-1.4098	0.2391
8-Pumphouse	1.5943	1.5948	1.5945	8-Pumphouse	4.22		0.2342			
						2.16		1.5927	-1.3585	0.2360
7-Daytank	1.6698	1.6725	1.6711	7-Daytank	4.39		0.1359			
						2.38		1.5682	-1.4323	0.2388
5-Kratiras	1.7310	1.7315	1.7313	5-Kratiras	5.03		0.5614			
						2.49		2.0518	-1.4904	0.2409
4-Skopia	1.6668	1.6670	1.6669	4-Skopia	7.94		0.1548			
						4.34		1.5821	-1.4273	0.2396

Έντυπο μ	ιετρήσεων ύψοι	υς οργάνου κα	ι στόχου	Ημερομηνία :	22/06/2015	Ώρα έν. : 1	λήξ. : 21:20	Παρατηρητής : Ν.Θ.		
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	1		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TCR 1202+, DNA 10	
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} (z = 100 ^g)	e^{11} (z = 300 ^g)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.6893	1.6898	1.6895	3-Thalassa	5.35		0.0175			
						2.92		1.469	-1.4515	0.2380
8-Pumphouse	1.6058	1.6060	1.6059	8-Pumphouse	3.69		0.1663			
						2.72		1.5366	-1.3703	0.2356
7-Daytank	1.7020	1.7080	1.7050	7-Daytank	4.80		0.1866			
						3.22		1.6469	-1.4603	0.2447
5-Kratiras	1.9235	1.9238	1.9236	5-Kratiras	5.15		0.4934			
						3.01		2.1764	-1.683	0.2406
4-Skopia	1.6520	1.6525	1.6523	4-Skopia	5.50		0.2321			
						2.96		1.6451	-1.413	0.2393

Έντυπο μ	Έντυπο μετρήσεων ύψους οργάνου και στόχου				24/06/2015	Ώρα έν. : 1	.5:40 Ώρα	λήξ. : 19:20	λήξ. : 19:20 Παρατηρητής : N.Θ.		
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδία	1			Σκοπεύσεις Ψ	.X.		Όργανα : Leica TCR 1202+, DNA 10		
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)			
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)	
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)			
2-Parking	1.8810	1.8815	1.8813	2-Parking	2.35		0.0389				
						2.72		1.6822	-1.6433	0.2380	
1-Submarine	1.5800	1.5850	1.5825	1-Submarine	2.52		0.2372				
						1.81		1.5808	-1.3436	0.2389	
8-Pumphouse	1.5405	1.5405	1.5405	8-Pumphouse	3.13		0.2066				
						2.99		1.5097	-1.3031	0.2374	
7-Daytank	1.6603	1.6605	1.6604	7-Daytank	2.79		0.1589				
						3.34		1.5793	-1.4204	0.2400	
6-Pevka	1.2488	1.2490	1.2489	6-Pevka	2.97		0.1864				
						2.47		1.1999	-1.0135	0.2354	
4-Skopia	1.6378	1.6378	1.6378	4-Skopia	2.87		0.1338				
						3.58		1.532	-1.3982	0.2396	
5-Kratiras	0.9253	0.9260	0.9256	5-Kratiras	3.23		0.3695				
						3.85		1.0582	-0.6887	0.2369	
			9-Kaminada					0.24025	0.2383	0.2393	

Έντυπο μ	ιετρήσεων ύψοι	υς οργάνου κα	ιι στόχου	Ημερομηνία :	25/06/2015	Ώρα έν. : 1	.6:00 Ώρα	λήξ. : 19:20	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	ι		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, DNA 10
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e ¹ (z = 100 ^g)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.6893	1.6898	1.6895	3-Thalassa	5.35		0.0175			
						2.92		1.4690	-1.4515	0.2380
1-Submarine	1.5849	1.5850	1.5850	1-Submarine	2.61		0.2075			
						1.89		1.5552	-1.3477	0.2373
7-Daytank	1.6955	1.6960	1.6958	7-Daytank	4.62		0.1938			
						3.60		1.6494	-1.4556	0.2402
5-Kratiras	0.9253	0.9260	0.9256	5-Kratiras	3.23		0.3695			
						3.85		1.0582	-0.6887	0.2369
6-Pevka	2.0300	2.0300	2.0300	6-Pevka	2.17		0.4354			
						3.02		2.2301	-1.7947	0.2353
			9-Kaminada					0.2398	0.2383	0.2390

Έντυπο	μετρήσεων ύψο	υς οργάνου κα	ι στόχου	Ημερομηνία :	03/07/2015	Ώρα έν. : Ο)7:30 Ώρα	λήξ. : 08:20	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	L			Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
4-Skopia	1.7558	1.7560	1.7559	4-Skopia			0.2718			
								1.7888	-1.517	0.2389
5-Kratiras	1.9053	1.9068	1.9060	5-Kratiras			0.5388			
								2.2061	-1.66735	0.2387
6-Pevka	1.1913	1.1915	1.1914	6-Pevka			0.2980			
								1.2543	-0.95625	0.2351
7-Daytank	1.6908	1.6908	7-Daytank			0.2400				
								1.6905	-1.4505	0.2403
			9-Kaminada					0.23982	0.23796	0.2389

Έντυπο μ	ιετρήσεων ύψοι	υς οργάνου κα	ι στόχου	Ημερομηνία :	03/07/2015	Ώρα έν. : 1	L7:00 Ώρα	λήξ. : 19:00	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδία	1			Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.6893	1.6898	1.6895	3-Thalassa	5.35		0.0175			
						2.92		1.4690	-1.4515	0.2380
2-Parking	1.8828	1.8833	1.8830	2-Parking	2.25		0.038			
					4.17		1.682	-1.644	0.2390	
1-Submarine	1.5850	1.5855	1.5853	1-Submarine	2.47		0.235			
						1.85		1.582	-1.347	0.2383
5-Kratiras	1.9073	1.9078	1.9075	5-Kratiras	5.29		0.659			
						2.99		2.327	-1.668	0.2395
4-Skopia	1.6598	1.6603	1.6600	4-Skopia	4.71		0.064			
						3.66		1.484	-1.42	0.2400
8-Pumphouse	1.5720	1.5723	1.5721	8-Pumphouse	3.15		0.232			
						2.67		1.566	-1.334	0.2381
			9-Kaminada					0.23995	0.2382	0.2391

Έντυπο	μετρήσεων ύψο	υς οργάνου κα	ι στόχου	Ημερομηνία :	05/07/2015	Ώρα έν. : 1	L4:30 Ώρα	λήξ. : 16:30	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	L		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.3688	1.3690	1.3689	3-Thalassa	2.6200		0.1350			
						2.7700		1.2650	-1.13	0.2389
2-Parking	1.8813	1.8815	1.8814	2-Parking	2.44		0.038			
					2.49			1.68	-1.642	0.2394
8-Pumphouse	1.6025	1.6075	1.6050	8-Pumphouse	2.81		0.179			
						2.45		1.542	-1.363	0.2420
5-Kratiras	1.9010	1.9015	1.9013	5-Kratiras	2.63		0.1790			
						2.14		1.8410	-1.662	0.2393
6-Pevka	1.6183	1.6188	1.6185	6-Pevka	2.12		0.3800			
						2.05		1.7610	-1.381	0.2375
1-Submarine	1.5893	1.5898	1.5895	1-Submarine	2.51		0.217			
						1.83		1.564	-1.347	0.2425
			9-Kaminada					0.2399	0.2383	0.2391

Έντυπο	ιετρήσεων ύψοι	υς οργάνου κα	ι στόχου	Ημερομηνία :	06/07/2015	Ώρα έν. : Ο	6:45 Ώρα	λήξ. : 08:10	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	!		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} (z = 100 ^g)	e^{11} (z = 300 ^g)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
3-Thalassa	1.3688	1.3690	1.3689	3-Thalassa	2.6200		0.1350			
	1 5000 1 5000 1 500					2.7700		1.2650	-1.13	0.2389
8-Pumphouse	1.5888	1.5893	1.5890	8-Pumphouse	mphouse 2.71		0.183			
						2.62		1.533	-1.35	0.2390
1-Submarine	1.5848	1.5853	1.5850	1-Submarine	2.59		0.172			
						1.86		1.52	-1.348	0.2370
5-Kratiras	1.9223	1.9223	1.9223	5-Kratiras	2.36		0.0020			
						1.94		1.6860	-1.684	0.2383
2-Parking	1.8823	1.8825	1.8824	2-Parking	2.38		0.0910			
						2.13		1.7340	-1.643	0.2394

Έντυπο	ιετρήσεων ύψοι	υς οργάνου κα	ιι στόχου	Ημερομηνία :	08/07/2015	Ώρα έν. : 1	.6:50 Ώρα	λήξ. : 18:20	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	ι		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
					Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)		
Σημείο	e^{1} ($z = 100^{g}$)	e^{11} ($z = 300^{g}$)	$e = (e^{1} + e^{11}) / 2$	Σημείο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	$\Delta H_{ij} = O - E(m)$	Y.O. = e + ∆h _{ij} (m)
					(Στέψη)	(Χελώνα)	(Στέψη)	(Χελώνα)		
4-Skopia	1.6860	1.6865	1.6863	4-Skopia	3.6400		0.0560			
						2.9400		1.5010	-1.445	0.2413
6-Pevka	1.7720	1.7723	1.7721	6-Pevka	2.28		0.313			
						2.48		1.847	-1.534	0.2381
1-Submarine	1.5850	1.5853	1.5851	1-Submarine	2.64		0.17			
						1.80		1.516	-1.346	0.2391
8-Pumphouse	1.5788	1.5790	1.5789	8-Pumphouse	3.00		0.1930			
						2.88		1.5330	-1.34	0.2389
2-Parking	1.8838	1.8840	1.8839	2-Parking	2.26		0.0640			
						2.47		1.7090	-1.645	0.2389
3-Thalassa	1.6500	1.6503	1.6501	3-Thalassa	2.3900		0.0490			
						2.4200		1.4600	-1.411	0.2391

Έντυπο μ	μετρήσεων ύψο	υς οργάνου κα	ιι στόχου	Ημερομηνία :	09/07/2015	Ώρα έν. : 1	.6:30 Ώρα	λήξ. : 17:40	Παρατηρητής : Ν.	Θ.
	Σκοπεύσεις Ο.Γ.	Σ. προς σταδίο	ι		2	Σκοπεύσεις Ψ	.X.		Όργανα : Leica TC	R 1202+, SPRINTER 150
Σημείο				Σουςίο	Μήκ	ος (m)	Αναγνώσε	ις σταδίας (m)	AH = O E(m)	VO = 0 + Ab (m)
Ζημειο	e (z = 100°)	$e(z = 300^{\circ})$	e=(e+e)/2	Ζημειο	Όπισθεν	Έμπροσθεν	Όπισθεν	Έμπροσθεν	Δп _{ij} – О - Е (III)	$1.0 e + \Delta \Pi_{ij}(\Pi)$
5-Kratiras	1.9098	1.9103	1.9100	5-Kratiras	s 3.49		0.280			
						3.17		1.949	-1.669	0.2410
4-Skopia	1.6505	1.6508	1.6506	4-Skopia	3.00		0.096			
						3.15		1.506	-1.41	0.2406
			9-Kaminada					0.2385	0.2383	0.2384

Ημερ	ομηνί	ία : 22/	06/2015		Ώρα έν. : 1	.7:20	Ώρα λήξ. :	21:20	Όργανο : L	eica TCR 12.	02 +	Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γω	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	$\mathbf{v} \mathbf{o} (\mathbf{m})$	$V \Sigma (m)$
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (III)	1.2. (111)
		5-K	0.0000	200.0003	0.0002	0.0000	0.0000	93.9436	306.0564	93.9436	93.9435	228.6605	228.6606		0.2406
1 ^ŋ	1 5	7-D	26.6787	226.6803	26.6795	26.6794	26.6792	103.6243	296.3739	103.6252	103.6240	298.8367	298.8361	0 2202	0.2447
1.	4-3	8-P	54.2975	254.2980	54.2978	54.2976	54.2979	102.5174	297.4824	102.5175	102.5185	432.2239	432.2237	0.2393	0.2356
		3-T	115.8593	315.8602	115.8598	115.8596	115.8593	103.7345	296.2634	103.7356	103.7353	538.2715	538.2712		0.2380
		5-K	0.0000	200.0008	0.0004	0.0000		93.9432	306.0540	93.9446		228.6606	228.6604		0.2406
a n	1 6	7-D	26.6783	226.6778	26.6781	26.6777		103.6236	296.3766	103.6235		298.8368	298.8369	0 2202	0.2447
2'	4-3	8-P	54.2977	254.2988	54.2983	54.2979		102.5182	297.4807	102.5188		432.2239	432.2240	0.2595	0.2356
		3-T	115.8580	315.8612	115.8596	115.8592		103.7353	296.2641	103.7356		538.2715	538.2713		0.2380
		5-K	0.0008	200.0031	0.0019	0.0000	_	93.9408	306.0561	93.9424	-	228.6607	228.6690		0.2406
an	1 5	7-D	26.6829	226.6824	26.6827	26.6807		103.6232	296.3768	103.6232		298.8370	298.8367	0 2202	0.2447
3 ^η	4-3	8-P	54.2992	254.3012	54.3002	54.2983		102.5171	297.4787	102.5192		432.2240	432.2240	0.2393	0.2356
		3-T	115.8609	315.8612	115.8611	115.8591		103.7345	296.2653	103.7346		538.2720	538.2719		0.2380

Π. Έντυπα μετρήσεων γωνιών και μηκών

Ημερ	ομην	ία : 24/	06/2015		Ώρα έν. : 1	5:20	Ώρα λήξ. :	23:20	Όργανο : L	eica TCR 12.	02 +	Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	πευση		Ορ	ιζόντιες γων	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	VO(m)	$\sqrt{5}$ (m)
οδος	Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.U. (III)	1.2. (111)
		6-P	0.0011	200.0002	0.0007	0.0000	0.0000	100.5572	299.4424	100.5574	100.5572	150.0131	150.0134		0.2354
		1-S	50.2370	250.2382	50.2376	50.2370	50.2359	103.0608	296.9402	103.0603	103.0604	577.4937	577.4941		0.2389
		7-D	86.7141	286.7140	86.7141	86.7134	86.7136	118.5072	281.4967	118.5053	118.5049	135.1088	135.1090		0.2400
1 ^η	5-K	8-P	98.3310	298.3305	98.3308	98.3301	98.3295	107.4478	292.5522	107.4478	107.4490	332.4303	332.4304	0.2369	0.2374
		9-K	126.8812	326.8801	126.8807	126.8800	126.8796	106.3440	293.6485	106.3478	106.3462	187.4444	187.4442		0.2393
		2-P	131.4182	331.4272	131.4227	131.4221	131.4252	107.3476	292.6488	107.3494	107.3475	453.1573	453.1569		0.2380
		4-S	209.2723	9.2727	209.2725	209.2719	209.2725	106.0580	293.9349	106.0616	106.0615	228.6606	228.6602		0.2396
		6-P	0.0003	200.0031	0.0017	0.0000		100.5568	299.4426	100.5571		150.0135	150.0131		0.2354
		1-S	50.2349	250.2356	50.2353	50.2336		103.0599	296.9388	103.0606		577.4938	577.4945		0.2389
		7-D	86.7133	286.7141	86.7137	86.7120		118.5033	281.4971	118.5031		135.1091	135.1090		0.2400
2 ^η	5-K	8-P	98.3286	298.3294	98.3290	98.3273		107.4467	292.5530	107.4469		332.4304	332.4305	0.2369	0.2374
		9-K	126.8808	326.8807	126.8808	126.8791		106.3448	293.6540	106.3454		187.4445	187.4442		0.2393
		2-P	131.4266	331.4282	131.4274	131.4257		107.3454	292.6518	107.3468		453.1569	453.1569		0.2380
		4-S	209.2730	9.2731	209.2731	209.2714		106.0598	293.935	106.0624	_	228.6608	228.6606		0.2396
		6-P	0.0002	200.0037	0.0020	0.0000		100.557	299.4431	100.5570	_	150.0136	150.0139		0.2354
		1-S	50.2364	250.2416	50.2390	50.2371		103.0594	296.9389	103.0603		577.4948	577.4948		0.2389
		7-D	86.7173	286.7172	86.7173	86.7153		118.5023	281.4894	118.5065		135.1096	135.1094		0.2400
3 ^ŋ	5-K	8-P	98.3326	298.3335	98.3331	98.3311		107.4507	292.5460	107.4524		332.4309	332.4309	0.2369	0.2374
		9-K	126.8819	326.8815	126.8817	126.8798		106.3458	293.6547	106.3456		187.4443	187.4443		0.2393
		2-P	131.4294	331.4302	131.4298	131.4279		107.3475	292.6551	107.3462		453.1579	453.1575		0.2380
		4-S	209.2742	9.2783	209.2763	209.2743		106.0610	293.9399	106.0606		228.6611	228.6606		0.2396

Ημερ	ομηνί	ία : 25/	06/2015		Ώρα έν. : 1	.5:20	Ώρα λήξ. :	20:00	Όργανο : L	eica TCR 12.	02 +	Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γω	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	VO(m)	VS (m)
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.U. (III)	1.2. (111)
		1-S	0.0002	200.0001	0.0002	0.0000	0.0000	103.4816	296.5186	103.4815	103.4812	483.7511	483.7514		0.2373
		7-D	84.7395	284.7395	84.7395	84.7394	84.7395	113.2844	286.7154	113.2845	113.2848	180.5853	180.5853		0.2402
1 ^η	6-P	3-T	92.8312	292.8310	92.8311	92.8310	92.8304	104.4443	295.5559	104.4442	104.4443	745.4100	745.4101	0.2369	0.2380
		9-K	94.5968	294.5977	94.5973	94.5971	94.5956	103.8941	296.1069	103.8936	103.8940	283.7624	283.7625		0.2390
		5-K	135.6165	335.6169	135.6167	135.6166	135.6166	99.4449	300.5556	99.4447	99.4442	150.0130	150.0126		0.2369
		1-S	0.0002	200.0012	0.0007	0.0000		103.4815	296.5185	103.4815		483.7519	483.7510		0.2373
		7-D	84.7393	284.7403	84.7398	84.7391		113.2853	286.7154	113.2850		180.5855	180.5853		0.2402
2 ^η	6-P	3-T	92.8316	292.8317	92.8317	92.8310		104.4449	295.5558	104.4446		745.4105	745.4101	0.2369	0.2380
		9-K	94.5956	294.5957	94.5957	94.5950		103.8941	296.1059	103.8941		283.7628	283.7628		0.2390
		5-K	135.6161	335.6176	135.6169	135.6162		99.4440	300.5557	99.4442		150.0130	150.0129		0.2369
		1-S	0.0006	199.9988	399.9997	0.0000	-	103.4811	296.5202	103.4805	-	483.7512	483.7513		0.2373
		7-D	84.7404	284.7392	84.7398	84.7401		113.2851	286.7153	113.2849		180.5854	180.5852		0.2402
3 ⁿ	6-P	3-T	92.8289	292.8293	92.8291	92.8294		104.4447	295.5562	104.4443		745.4102	745.4103	0.2369	0.2380
		9-K	94.5946	294.5945	94.5946	94.5949		103.8950	296.1066	103.8942		283.7628	283.7625		0.2390
		5-K	135.6166	335.6169	135.6168	135.6171		99.4447	300.5569	99.4439		150.0130	150.0130		0.2369

Ημερ	ομηνί	ία : 03/	07/2015		Ώρα έν. : 0	7:30	Ώρα λήξ. :	11:00	Όργανο : L	eica TCR 12	02 +	Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γων	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	VO(m)	$V \Sigma (m)$
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (III)	f.Z. (III)
		9-K	0.0000	200.0006	0.0003	0.0000	0.0000	88.7137	311.2834	88.7152	88.7157	113.8221	113.8212		0.2389
۹ŋ	ם ד	4-S	61.3333	261.3333	61.3333	61.3330	61.3329	96.3786	303.6228	96.3779	96.3780	298.8379	298.8380	0 2402	0.2389
1.	7-0	5-K	112.0947	312.0983	112.0965	112.0962	112.0956	81.4963	318.5037	81.4963	81.4961	135.1096	135.1088	0.2405	0.2387
		6-P	174.5039	374.5040	174.5040	174.5037	174.5041	86.7168	313.2818	86.7175	86.7178	180.5847	180.5845		0.2351
		9-K	0.0009	200.0003	0.0006	0.0000		88.7168	311.2840	88.7164		113.8223	113.8211		0.2389
a n	ם ד	4-S	61.3336	261.3344	61.3340	61.3334		96.3772	303.6215	96.3779		298.8385	298.8380	0 2402	0.2389
2.	7-0	5-K	112.0965	312.0952	112.0959	112.0953		81.4970	318.5051	81.4960		135.1096	135.1092	0.2405	0.2387
		6-P	174.5053	374.5048	174.5051	174.5045		86.7180	313.2821	86.7180		180.5848	180.5849		0.2351
		9-K	0.0002	199.9992	399.9997	0.0000	_	88.7148	311.2836	88.7156	-	113.8211	113.8211		0.2389
an	7 0	4-S	61.3327	261.3311	61.3319	61.3322		96.3787	303.6225	96.3781		298.8385	298.8382	0 2402	0.2389
3 ^ŋ	7-0	5-K	112.0940	312.0959	112.0950	112.0953		81.4962	318.5044	81.4959		135.1093	135.1094	0.2405	0.2387
		6-P	174.5037	374.5041	174.5039	174.5042		86.7172	313.2812	86.7180		180.5842	180.5843		0.2351

Ημερ	ομηνί	ία : 03/	07/2015		Ώρα έν. : 1	9:00	Ώρα λήξ. :	22:30	Όργανο : L	eica TCR 12	02 +	Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γων	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	$\mathbf{v} \mathbf{O}(\mathbf{m})$	V 5 (m)
οδος	Από	Προς	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	r.o. (m)	1.2. (111)
		1-S	0.0004	199.9993	399.9999	0.0000	0.0000	98.2662	301.7368	98.2647	98.2648	405.6908	405.6907		0.2383
		3-T	168.8042	368.8047	168.8045	168.8046	168.8056	102.0033	297.9973	102.0030	102.0031	460.3798	460.3796		0.2380
۹ŋ	٥D	2-P	168.9706	368.9692	168.9699	168.9701	168.9706	103.6730	296.3280	103.6725	103.6725	232.0503	232.0499	0 2201	0.2390
1''	0-L	4-S	251.0334	51.0305	251.0320	251.0321	251.0327	97.4857	302.5147	97.4855	97.4859	432.2242	432.2239	0.2361	0.2400
		9-K	256.3300	56.3303	256.3302	256.3303	256.3316	92.9487	307.0516	92.9486	92.9484	182.2592	182.2591		0.2391
		5-K	285.7916	85.7925	285.7921	285.7922	285.7933	92.5545	307.4475	92.5535	92.5533	332.4309	332.4308		0.2395
		1-S	0.0011	200.0009	0.0010	0.0000		98.2652	301.7355	98.2649		405.6906	405.6905		0.2383
		3-T	168.8075	368.8075	168.8075	168.8065		102.0037	297.9973	102.0032		460.3798	460.3796		0.2380
a n	٥D	2-P	168.9722	368.9722	168.9722	168.9712		103.6734	296.3283	103.6726		232.0503	232.0500	0 2201	0.2390
2 ^ŋ	0-L	4-S	251.0340	51.0345	251.0343	251.0333	_	97.4868	302.5141	97.4864	-	432.2238	432.2238	0.2361	0.2400
		9-K	256.3331	56.3347	256.3339	256.3329		92.9487	307.0521	92.9483		182.2592	182.2591		0.2391
		5-K	285.7951	85.7957	285.7954	285.7944		92.5537	307.4475	92.5531		332.4309	332.4309		0.2395

Ημερ	ομην	ία : 05/	07/2015		Ώρα έν. : 1	.6:30	Ώρα λήξ. :	19:00	Όργανο : Leica TCR 1202 +			Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γων	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	VO(m)	$V \Sigma (m)$
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση ΙΙ	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (III)	f.Z. (III)
		3-T	0.0006	200.0003	0.0005	0.0000	0.0000	101.9391	298.0594	101.9399	101.9391	840.3286	840.3278		0.2389
		2-P	5.3978	205.3972	5.3975	5.3970	5.3976	102.5147	297.4869	102.5139	102.5123	620.2745	620.2740		0.2394
٩ŋ	1_5	8-P	16.5986	216.5988	16.5987	16.5983	16.5997	101.7381	298.2624	101.7379	101.7383	405.6875	405.6870	0 2425	0.2420
1.	1-2	9-K	33.3531	233.3520	33.3526	33.3521	33.3533	98.9287	301.0701	98.9293	98.9293	538.9001	538.8998	0.2425	0.2391
		5-K	54.3008	254.2981	54.2995	54.2990	54.2996	96.9455	303.0562	96.9447	96.9446	577.4895	577.4887		0.2393
		6-K	68.4460	268.4460	68.4460	68.4456	68.4466	96.5240	303.4773	96.5234	96.5240	483.7474	483.7464		0.2375
		3-T	0.0006	199.9996	0.0001	0.0000		101.9392	298.0609	101.9392		840.3280	840.3271		0.2389
	1-S	2-P	5.3990	205.3980	5.3985	5.3984		102.5144	297.4894	102.5125		620.2737	620.2737		0.2394
2 ⁿ		8-P	16.6024	216.5994	16.6009	16.6008		101.7380	298.2622	101.7379		405.6869	405.6870	0 2425	0.2420
		9-K	33.3549	233.3544	33.3547	33.3546		98.9298	301.0713	98.9293		538.8994	538.8993	0.2425	0.2391
		5-K	54.3018	254.3011	54.3015	54.3014		96.9456	303.0557	96.9450		577.4892	577.4891		0.2393
		6-K	68.4489	268.4475	68.4482	68.4481		96.5244	303.4765	96.5240		483.7467	483.7466		0.2375
		3-T	0.0014	199.9992	0.0003	0.0000		101.9390	298.0608	101.9391		840.3274	840.3278		0.2389
		2-P	5.3988	205.3982	5.3985	5.3982		102.5119	297.4883	102.5118		620.2739	620.2741		0.2394
ъŋ	1-5	8-P	16.6002	216.5997	16.6000	16.5997	_	101.7392	298.2618	101.7387	_	405.6869	405.6871	0 2/25	0.2420
5	1-2	9-K	33.3542	233.3532	33.3537	33.3534	_	98.9295	301.0710	98.9293	_	538.8991	538.8997	0.2425	0.2391
		5-K	54.3004	254.2987	54.2996	54.2993		96.9455	303.0568	96.9444		577.4891	577.4888		0.2393
		6-K	68.4469	268.4465	68.4467	68.4464		96.5251	303.4761	96.5245		483.7464	483.7466		0.2375
		3-T	0.0012	199.9987	0.0000	0.0000		101.9384	298.0620	101.9382		840.3275	840.3281		0.2389
		2-P	5.3971	205.3964	5.3968	5.3968		102.5103	297.4885	102.5109		620.2738	620.2746		0.2394
۸ŋ	1-5	8-P	16.5991	216.6006	16.5999	16.5999		101.7380	298.2606	101.7387		405.6868	405.6871	0 2/25	0.2420
4	1-2	9-K	33.3529	233.3532	33.3531	33.3531		98.9299	301.0710	98.9295		538.8988	538.8993	0.2423	0.2391
		5-K	54.2993	254.2982	54.2988	54.2988		96.9447	303.0556	96.9446		577.4893	577.4896		0.2393
		6-K	68.4464	268.4459	68.4462	68.4462		96.5246	303.4761	96.5243		483.7470	483.7469		0.2375

Ημερ	ομηνί	ία : 06/	07/2015		Ώρα έν. : Ο	8:10	Ώρα λήξ. :	09:15	Όργανο : Leica TCR 1202 +			Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γω	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	X Q (m)	V S (m)
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (111)	1.2. (111)
		3-T	0.0011	200.0042	0.0027	0.0000	0.0000	100.3065	299.6936	100.3065	100.3069	228.4909	228.4909		0.2389
a ⁿ	2 D	5-K	150.2533	350.2514	150.2524	150.2497	150.2502	92.6552	307.3460	92.6546	92.6549	453.1565	453.1561	0 2204	0.2383
1.	2-r	8-P	200.3323	0.3311	200.3317	200.3291	200.3302	96.3298	303.6693	96.3303	96.3300	232.0499	232.0500	0.2394	0.2390
		1-S	220.1587	20.1609	220.1598	220.1572	220.1571	97.4946	302.5045	97.4951	97.4951	620.2779	620.2785		0.2370
		3-T	0.0002	199.9992	399.9997	0.0000		100.3076	299.6935	100.3071		228.4907	228.4904		0.2389
2 ^η	2-P	5-K	150.2501	350.2499	150.2500	150.2503		92.6557	307.3441	92.6558		453.1562	453.1562	0 2204	0.2383
		8-P	200.3301	0.3287	200.3294	200.3297		96.3293	303.6696	96.3299		232.0496	232.0497	0.2394	0.2390
		1-S	220.1562	20.1561	220.1562	220.1565		97.4941	302.5046	97.4948		620.2784	620.2781		0.2370
		3-T	0.0000	199.9994	399.9997	0.0000		100.3066	299.6926	100.3070		228.4905	228.4904		0.2389
ə ŋ	2 D	5-K	150.2505	350.2504	150.2505	150.2508		92.6559	307.3487	92.6536		453.1560	453.1565	0 2204	0.2383
3.	2-F	8-P	200.3317	0.3296	200.3307	200.3310	-	96.3293	303.6699	96.3297	-	232.0499	232.0497	0.2394	0.2390
		1-S	220.1571	20.1571	220.1571	220.1574		97.4944	302.5043	97.4951		620.2782	620.2782		0.2370
		3-T	0.0008	200.0013	0.0010	0.0000		100.3067	299.6929	100.3069		228.4906	228.4906		0.2389
an	2 0	5-K	150.2515	350.2508	150.2512	150.2501		92.6551	307.3439	92.6556		453.1563	453.1562	0 2204	0.2383
4''	2-F	8-P	200.3327	0.3313	200.3320	200.3310		96.3295	303.6688	96.3304		232.0497	232.0491	0.2354	0.2390
		1-S	220.1584	20.1582	220.1583	220.1573		97.4943	302.5033	97.4955		620.2777	620.2777		0.2370

Ημερ	ομηνί	ία : 06/	07/2015		Ώρα έν. : 1	.8:30	Ώρα λήξ. :	20:00	Όργανο : Leica TCR 1202 +			Παρατηρη	τής : Ν.Θ.		
Περί	Σκότ	τευση		Ορ	ιζόντιες γων	νίες			Κατακόρυ	φες γωνίες		Θέση Ι	Θέση II	$X \cap (m)$	V5 (m)
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (III)	f.Z. (III)
		4-S	0.0025	200.0009	0.0017	0.0000	0.0000	96.2680	303.7319	96.2681	96.2687	538.2703	538.2702		0.2413
		6-P	32.0814	232.0822	32.0818	32.0801	32.0807	95.5630	304.4386	95.5622	95.5624	745.4080	745.4082		0.2381
1 ^ŋ	3-T	2-P	56.0452	256.0447	56.0450	56.0433	56.0433	99.6960	300.3042	99.6959	99.6958	228.4902	228.4902	0.2391	0.2389
		8-P	56.2129	256.2118	56.2124	56.2107	56.2106	98.0012	301.9997	98.0008	98.0008	460.3794	460.3791		0.2391
		1-S	70.8054	270.8036	70.8045	70.8028	70.8031	98.0691	301.9325	98.0683	98.0687	840.3323	840.3324		0.2389
		4-S	0.0012	200.0007	0.0010	0.0000		96.2690	303.7310	96.2690		538.2702	538.2694		0.2413
		6-P	32.0822	232.0815	32.0819	32.0809		95.5639	304.4378	95.5631		745.4073	745.4080		0.2381
2 ^η	3-T	2-P	56.0447	256.0437	56.0442	56.0433		99.6967	300.3043	99.6962		228.4903	228.4904	0.2391	0.2389
		8-P	56.2117	256.2109	56.2113	56.2104		98.0015	301.9991	98.0012		460.3790	460.3788		0.2391
		1-S	70.8048	270.8040	70.8044	70.8035		98.0706	301.9318	98.0694		840.3316	840.3312		0.2389
		4-S	0.0012	200.0003	0.0008	0.0000		96.2690	303.7314	96.2688		538.2701	538.2696		0.2413
		6-P	32.0809	232.0824	32.0817	32.0809		95.5621	304.4380	95.5621		745.4076	745.4081		0.2381
3 ^ŋ	3-T	2-P	56.0440	256.0438	56.0439	56.0432	-	99.6957	300.3047	99.6955	-	228.4902	228.4901	0.2391	0.2389
		8-P	56.2118	256.2110	56.2114	56.2107		98.0011	302.0001	98.0005		460.3790	460.3790		0.2391
		1-S	70.8037	270.8042	70.8040	70.8032		98.0702	301.9315	98.0694		840.3317	840.3317		0.2389
		4-S	0.0013	200.0013	0.0013	0.0000		96.2684	303.7307	96.2689		538.2702	538.2705		0.2413
		6-P	32.0818	232.0825	32.0822	32.0809		95.5634	304.4385	95.5625		745.4079	745.4077		0.2381
4 ^ŋ	3-T	2-P	56.0449	256.0450	56.0450	56.0437		99.6959	300.3045	99.6957		228.4901	228.4903	0.2391	0.2389
		8-P	56.2123	256.2118	56.2121	56.2108		98.0011	301.9995	98.0008		460.3788	460.3792		0.2391
		1-S	70.8033	270.8048	70.8041	70.8028		98.0692	301.9335	98.0679		840.3316	840.3317		0.2389

Ημερ	ομηνία	ı:09/0	7/2015		Ώρα έν. : 1	.7:50	Ώρα λήξ. : 1	8:30	Όργανο : Leica TCR 1202 +			Παρατηρητήα	ϳς : Ν.Θ.		
Περί	Σκόπ	ευση		Ορι	ιζόντιες γω\	νίες			Κατακόρυα	φες γωνίες		Θέση Ι	Θέση ΙΙ	VO(m)	$V \Sigma (m)$
οδος	Από	Προς	Θέση Ι	Θέση II	Μ. Τιμή	Μ. Α. Τιμή	Г. М. О.	Θέση Ι	Θέση II	Μ. Τιμή	Г. М. О.	S (m)	S (m)	1.0. (111)	1.2. (111)
1 1	15	5-K	0.0012	200.0014	0.0013	0.0000	0.0000	93.9441	306.0558	93.9442	93.9448	228.6596	228.6595	0.2406	0.2410
1.	4-3	9-K	50.4895	250.4881	50.4888	50.4875	50.4866	99.2235	300.7752	99.2242	99.2245	251.8399	251.8402)2 0.2406	0.2384
a n	15	5-K	0.0020	200.0004	0.0012	0.0000		93.9435	306.0558	93.9439		228.6598	228.6594	0.2406	0.2410
2"	4-3	9-K	50.4888	250.4872	50.4880	50.4868		99.2257	300.7779	99.2239		251.8408	251.8400	0.2400	0.2384
an	15	5-K	0.0009	200.0004	0.0007	0.0000		93.9456	306.0552	93.9452		228.6599	228.6599	0.2406	0.2410
3	4-3	9-K	50.4870	250.4873	50.4872	50.4865		99.2247	300.7766	99.2241		251.8406	251.8408	0.2400	0.2384
a n	4 6	5-K	0.0001	200.0000	0.0001	0.0000	-	93.9444	306.0532	93.9456	-	228.6598	228.6594	0.2406	0.2410
4 '	4-3	9-K	50.4857	250.4861	50.4859	50.4859		99.2256	300.7763	99.2247		251.8403	251.8408	0.2400	0.2384
-n	15	5-K	0.0005	200.0008	0.0006	0.0000		93.9456	306.0555	93.9451		228.6602	228.6598	0.2406	0.2410
5'	4-3	9-K	50.4870	250.4871	50.4871	50.4864		99.2266	300.7756	99.2255		251.8407	251.8407	0.2400	0.2384

III. Αποτελέσματα επίλυσης ΓΔΤΕ για εε 95 %

Αριθμός κορυφών	:	9
Αριθμός παρατηρήσεων μηκών	:	24
Αριθμός παρατηρήσεων οριζοντίων γωνιών	:	36
Αριθμός παρατηρήσεων κατακορύφων γωνιών	:	24
Συνολικός αριθμός παρατηρήσεων	:	84
Αριθμός αγνώστων	:	23
Βαθμοί ελευθερίας	:	61
A-posteriori μεταβλητότητα	:	1.008
A-posteriori τυπική απόκλιση	:	1.004

Μήκος D _{ij}	Αρχική τιμή (m)	$\sigma_{\rm D} ({\rm mm})$	Διόρθωση (m)	Τελική τιμή (m)
D ₂₁	620.2760	± 1	0.38	620.2764
D ₃₁	840.3300	± 2	0.44	840.3304
D ₁₅	577.4920	± 1	-0.93	577.4911
D ₁₆	483.7490	± 1	-0.01	483.7490
D ₈₁	405.6890	± 1	-0.55	405.6884
D ₃₂	228.4900	± 1	1.69	228.4917
D ₂₅	453.1560	± 1	1.30	453.1573
D ₂₈	232.0500	± 1	0.46	232.0505
D ₃₄	538.2710	± 1	-0.69	538.2703
D ₃₆	745.4090	± 2	-1.27	745.4077
D ₃₈	460.3800	± 1	-1.19	460.3788
D ₄₅	228.6610	± 1	-1.29	228.6597
D ₇₄	298.8370	± 1	1.50	298.8385
D ₈₄	432.2240	± 1	-0.09	432.2239
D ₆₅	150.0130	± 1	0.21	150.0132
D ₇₅	135.1100	± 1	0.87	135.1109
D ₈₅	332.4310	± 1	-0.63	332.4304
D ₇₆	180.5860	± 1	0.89	180.5869
D ₁₉	538.9000	± 1	1.10	538.9011
D ₄₉	251.8400	± 1	0.17	251.8402
D ₉₅	187.4440	± 1	-0.91	187.4431
D ₉₆	283.7630	± 1	-0.94	283.7621
D ₇₉	113.8220	± 1	0.31	113.8223
D ₈₉	182.2590	± 1	0.75	182.2597

Πίνακας Γ.1 : Μήκη ΓΔΤΕ

Οριζόντια γωνία β _{jik}	Αρχική τιμή (^g)	σ_{β} (^{cc})	Διόρθωση (^{cc})	Τελική τιμή (^g)
β_{312}	5.3976	± 10	14.05	5.3990
β_{218}	11.2020	± 10	-0.14	11.2020
β_{815}	37.7000	± 10	-0.24	37.7000
β ₅₁₆	14.1470	± 10	9.49	14.1480
β ₁₂₃	179.8429	± 10	-14.30	179.8415
β ₃₂₅	150.2502	± 10	9.60	150.2512
β ₅₂₈	50.0800	± 10	-1.52	50.0799
β_{821}	19.8269	± 10	6.23	19.8275
β_{436}	32.0807	± 10	13.97	32.0821
β ₆₃₂	23.9626	± 10	-1.34	23.9625
β_{238}	0.1673	± 10	-6.55	0.1667
β ₈₃₁	14.5925	± 10	-0.20	14.5929
β_{382}	0.1651	± 10	-7.38	0.1644
β ₂₈₄	82.0621	± 10	9.51	82.0631
β ₅₈₁	114.2067	± 10	-3.57	114.2063
β ₁₈₃	168.8056	± 10	5.30	168.8061
β ₅₇₆	62.4085	± 10	-4.95	62.4080
β ₄₇₅	50.7627	± 10	8.62	50.7636
β ₁₆₇	84.7395	± 10	-14.09	84.7381
β ₇₆₃	8.0909	± 10	1.02	8.0910
β ₁₅₇	36.4777	± 10	3.35	36.4780
β ₇₅₈	11.6159	± 10	-2.53	11.6157
β ₂₅₄	77.8473	± 10	-16.22	77.8457
β ₆₅₁	50.2359	± 10	3.69	50.2363
β ₈₄₃	61.5614	± 10	-0.21	61.5614
β ₅₄₇	26.6792	± 10	-10.73	26.6781
β ₈₁₉	16.7536	± 10	5.82	16.7542
β_{489}	5.2989	± 10	-2.84	5.2986
β ₉₈₅	29.4617	± 10	-2.01	29.4615
β ₆₇₉	225.4959	± 10	-16.04	225.4943
β ₉₇₄	61.3329	± 10	12.37	61.3341
β ₃₆₉	1.7652	± 10	6.18	1.7658
β ₉₆₅	41.0210	± 10	-1.28	41.0209
β ₈₅₉	28.5501	± 10	1.87	28.5503
β ₉₅₂	4.5456	± 10	11.00	4.5467
β ₇₄₉	23.8074	± 10	23.66	23.8098

Πίνακας Γ.2 : Οριζόντιες γωνίες ΓΔΤΕ

Ζενίθια z _{ij}	Αρχική τιμή (^g)	σ_{z} (^{cc})	Διόρθωση (^{cc})	Τελική τιμή (^g)
Z ₂₁	97.4951	± 10	-14.14	97.4937
Z ₃₁	98.0687	± 10	-0.93	98.0686
Z ₁₅	96.9446	± 10	-5.18	96.9441
Z ₁₆	96.5240	± 10	-5.51	96.5235
Z ₈₁	98.2648	± 10	-0.76	98.2647
Z ₃₂	99.6958	± 10	-1.09	99.6957
Z ₂₅	92.6549	± 10	7.77	92.6557
Z_{28}	96.3300	± 10	0.22	96.3300
Z ₃₄	96.2687	± 10	1.55	96.2689
Z ₃₆	95.5624	± 10	-6.05	95.5618
Z ₃₈	98.0008	± 10	-0.43	98.0008
Z_{45}	93.9435	± 10	-9.13	93.9426
\mathbf{Z}_{74}	96.3780	± 10	4.92	96.3785
Z_{84}	97.4859	± 10	-2.13	97.4857
Z ₆₅	99.4442	± 10	1.51	99.4444
Z ₇₅	81.4961	± 10	-5.56	81.4955
Z ₈₅	92.5533	± 10	-0.73	92.5532
Z ₇₆	86.7178	± 10	-7.73	86.7170
Z ₁₉	98.9293	± 10	6.38	98.9299
Z ₄₉	99.2245	± 10	7.62	99.2253
Z ₉₅	93.6538	± 10	13.85	93.6552
Z ₉₆	96.1060	± 10	23.98	96.1084
Z ₇₉	88.7157	± 10	17.22	88.7174
Z ₈₉	92.9484	± 10	1.84	92.9486

Πίνακας Γ.3 : Ζενίθιες γωνίες ΓΔΤΕ

Αριθμός σημείου	Ονομασία	x(m)	y(m)	H(m)
1	Submarine	5000.000	5000.000	35.504
2	Parking	5040.360	4381.519	11.046
3	Thalassa	5125.494	4169.479	9.958
4	Skopia	4613.535	4332.706	41.449
5	Kratiras	4627.074	4559.922	63.176
6	Pevka	4614.186	4709.375	61.891
7	Daytank	4750.945	4597.539	24.463
8	Pumphouse	4955.158	4596.947	24.425
9	Kaminada	4803.141	4498.438	44.570

Πίνακας Γ.4 : Προσωρινές συντεταγμένες τριδιάστατου δικτύου

Κορμαή	Διορ	θώσεις ((mm)	Τελικές α	συντεταγμέν	νες (m)
κορυφη	δx	dy	δН	Х	у	Н
1	-	-	-	5000.000	5000.000	35.504
2	-0.2	2.5	16.9	5040.360	4381.521	11.063
3	1.8	6.8	9.1	5125.496	4169.486	9.967
4	6.0	3.7	64.1	4613.541	4332.710	41.513
5	9.7	9.7	63.3	4627.084	4559.932	63.239
6	-5.5	8.2	37.5	4614.180	4709.383	61.929
7	-3.4	3.9	52.2	4750.942	4597.543	24.515
8	1.9	2.1	11.6	4955.160	4596.949	24.437
9	18.8	-21.4	14.2	4803.160	4498.417	44.584

Πίνακας Γ.5 : Πίνακας τελικών συντεταγμένων με τις διορθώσεις των προσωρινών συντεταγμένων του ΓΔΤΕ

Κορυφή	σ _x (mm)	σ _y (mm)	σ _H (mm)	σ _u (mm)	σ _v (mm)	θ (^g)	σ _H (mm)
2	± 0.1	± 0.9	± 4.1	± 2.2	± 0.0	195.8515	± 8.1
3	± 1.5	± 1.1	± 4.5	± 4.0	± 2.3	71.6238	± 8.8
4	± 1.3	± 1.2	± 4.1	± 3.9	± 2.2	146.2679	± 7.9
5	± 0.9	± 1.0	± 3.7	± 2.8	± 2.1	162.7156	± 7.2
6	± 1.0	± 1.1	± 3.8	± 2.8	± 2.5	164.9539	± 7.4
7	± 1.1	± 1.0	± 3.7	± 2.9	± 2.2	141.3216	± 7.3
8	± 1.0	± 0.8	± 3.6	± 2.5	± 1.8	125.5925	± 7.1
9	± 1.1	± 0.9	± 3.6	± 2.8	± 2.0	136.9030	± 7.1

Πίνακας Γ.6 : Στοιχεία απόλυτων ελλείψεων σφάλματος ΓΔΤΕ για εε 95%

Από	Προς	a(^g)	S(m)	D(m)	$\sigma_{S}(mm)$	$\sigma_a(mm)$	σ _H (mm)	$\sigma_u(mm)$	$\sigma_v(mm)$	θ (^g)
1	2	195.8515	619.796	620.279	± 2.2	± 0.0	± 8.1	± 2.2	± 0.0	0.0000
1	3	190.4525	839.942	840.330	± 2.4	± 3.9	± 8.8	± 4.0	± 2.3	81.1713
1	4	233.4190	771.121	771.144	± 2.3	± 3.8	± 7.9	± 3.9	± 2.2	112.8489
1	5	244.7535	576.825	771.144	± 2.1	± 2.7	± 7.2	± 2.8	± 2.1	117.9621
1	6	258.9014	483.027	483.749	± 2.5	± 2.8	± 7.4	± 2.8	± 2.5	106.0525
1	7	235.2790	473.288	473.416	± 2.2	± 2.9	± 7.3	± 2.9	± 2.2	106.0426
1	8	207.0535	405.537	405.688	± 1.9	± 2.5	± 7.1	± 2.5	± 1.8	118.5390
1	9	223.8077	538.825	538.901	± 2.0	± 2.8	± 7.1	± 2.8	± 2.0	113.0953
2	3	175.6928	228.487	228.489	± 1.9	± 4.0	± 6.0	± 4.0	± 1.9	98.3969
2	4	292.7514	429.601	430.680	± 3.1	± 3.6	± 7.1	± 3.9	± 2.6	62.2201
2	5	325.9445	450.143	453.158	± 2.4	± 2.8	± 6.4	± 2.9	± 2.3	75.0554
2	6	341.7461	537.702	540.105	± 2.6	± 2.9	± 6.8	± 3.0	± 2.5	69.4971
2	7	340.8199	361.150	361.401	± 2.7	± 2.7	± 6.5	± 2.8	± 2.6	48.9500

2	0	276 02 12	001 (()	000 050	1.1.0	101		101	1.1.0	100 (000
2	8	376.0242	231.666	232.053	± 1.9	± 2.4	± 5.6	± 2.4	± 1.9	100.6029
2	9	329.1501	264.441	266.559	± 2.6	± 2.6	± 6.3	± 2.7	± 2.7	33.2339
3	4	319.6484	537.345	538.270	± 2.7	± 4.2	± 7.7	± 4.2	± 2.7	103.2057
3	5	342.3049	633.137	635.374	± 2.5	± 4.6	± 7.3	± 4.6	± 2.4	110.5308
3	6	351.7305	743.594	745.408	± 2.4	± 4.9	± 7.6	± 4.9	± 2.4	104.3972
3	7	354.2375	568.792	568.978	± 2.6	± 4.5	± 7.4	± 4.5	± 2.6	106.4204
3	8	375.8596	460.151	460.379	± 2.0	± 4.2	± 6.8	± 4.2	± 2.0	99.0970
3	9	350.6446	460.539	461.838	± 2.6	± 4.0	± 7.2	± 4.1	± 2.5	108.9730
4	5	3.7898	227.625	228.660	± 2.0	± 3.0	± 4.5	± 3.1	± 1.9	120.9058
4	6	0.1081	376.674	377.227	± 2.6	± 3.5	± 5.2	± 3.6	± 2.5	117.1217
4	7	30.4679	298.355	298.839	± 1.8	± 3.6	± 4.6	± 3.6	± 1.8	102.6607
4	8	58.0870	431.886	432.224	± 2.0	± 4.0	± 5.5	± 4.0	± 1.9	94.0920
4	9	54.2777	251.821	251.840	± 1.8	± 3.4	± 4.5	± 3.4	± 1.8	95.0395
5	6	394.5172	150.007	150.013	± 1.8	± 2.3	± 3.4	± 2.4	± 1.8	83.8631
5	7	81.2315	129.443	135.111	± 1.9	± 2.0	± 2.9	± 2.0	± 1.8	74.9657
5	8	92.8472	330.158	332.430	± 2.0	± 2.8	± 4.6	± 2.8	± 1.9	91.6306
5	9	121.3974	186.512	187.443	± 1.7	± 2.2	± 3.1	± 2.2	± 1.7	100.1796
6	7	143.6395	176.669	180.587	± 1.9	± 2.4	± 3.5	± 2.4	± 1.9	106.0795
6	8	120.2771	359.038	360.990	± 2.7	± 2.9	± 5.2	± 2.9	± 2.7	99.3514
6	9	153.4963	283.232	283.762	± 1.8	± 2.9	± 3.9	± 2.9	± 1.8	102.7571
7	8	100.1851	204.219	204.219	± 2.5	± 2.6	± 4.7	± 2.8	± 2.2	56.9969
7	9	169.1338	112.039	113.822	± 1.8	± 2.0	± 2.8	± 2.0	± 1.8	110.0585
8	9	263.3857	181.143	182.260	± 1.8	± 2.7	± 4.3	± 2.7	± 1.8	93.9046

Πίνακας Γ.7 : Στοιχεία σχετικών ελλείψεων σφάλματος ΓΔΤΕ για εε 95%

Ισχύς του δικτύου (ppm)									
Κλίμακας	:	2.813							
Προσανατολισμού	:	3.799							
Υψομέτρου	:	8.469							

Πίνακας Γ.8 : Ισχύς του ΓΔΤΕ σε ppm

Παρατήρηση	$w_i=abs$ (v_i/σ_{vi})	Παρατήρηση	$w_i=abs$ (v_i/σ_{vi})	Παρατήρηση	$w_i=abs$ (v_i/σ_{vi})
D ₂₁	0.2889	β ₁₂₃	1.3528	β_{965}	0.0453
D ₃₁	0.4968	β ₃₂₅	0.9626	β_{859}	0.1578
D ₁₅	0.8584	β ₅₂₈	0.3547	β_{952}	1.1761
D ₁₆	0.0112	β_{821}	0.7171	β_{749}	2.4077
D ₈₁	0.6813	β_{436}	1.3929	z ₂₁	1.3663
D ₃₂	1.6224	β_{632}	0.0082	Z ₃₁	0.0234
D ₂₅	0.7487	β ₂₃₈	0.8349	Z ₁₅	0.6865
D ₂₈	0.4450	β ₈₃₁	0.3811	Z ₁₆	0.9218

D ₃₄	0.7409	β_{382}	0.9201	Z ₈₁	0.1808
D ₃₆	0.7791	β_{284}	1.1716	Z ₃₂	0.1924
D ₃₈	1.0335	β_{581}	0.4179	Z ₂₅	1.0086
D ₄₅	1.8182	β_{183}	0.5556	Z ₂₈	0.2103
D ₇₄	1.8780	β_{576}	0.5461	Z ₃₄	0.2432
D ₈₄	0.1395	β_{475}	1.0093	Z ₃₆	0.6543
D ₆₅	0.1894	β_{167}	1.4849	Z ₃₈	0.0152
D ₇₅	1.2482	β ₇₆₃	0.0867	Z ₄₅	1.1143
D ₈₅	0.5159	β_{157}	0.3629	\mathbf{Z}_{74}	0.5796
D ₇₆	1.2552	β_{758}	0.2678	Z ₈₄	0.2186
D ₁₉	1.0658	β_{254}	1.8381	Z ₆₅	0.2773
D_{49}	0.1322	β_{651}	0.3161	Z ₇₅	0.5492
D ₉₅	1.0305	β_{843}	0.0004	Z ₈₅	0.0043
D ₉₆	1.2401	β_{547}	1.0537	Z ₇₆	1.2738
D ₇₉	0.4721	β_{819}	0.6098	Z ₁₉	0.5365
D_{89}	1.0566	β_{489}	0.2385	Z ₄₉	0.9311
β ₃₁₂	1.3410	β ₉₈₅	0.2322	Z95	1.7462
β ₂₁₈	0.0670	β ₆₇₉	2.0442	Z ₉₆	2.5327
β_{815}	0.0135	β_{974}	1.3161	Z ₇₉	2.7574
β ₅₁₆	0.9323	β ₃₆₉	0.6476	Z ₈₉	0.3373

Πίνακας Γ.9 : Σάρωση δεδομένων κατά Baarda ΓΔΤΕ για εε 95%

8.35176E-07	-3.98731E-08	5.08275E-08	-5.43688E-07	7.88119E-09	1.71877E-07	-2.11022E-07	-6.05213E-08	2.95139E-07	-2.57741E-07	-4.60158E-08	2.47277E-07
-3.98731E-08	1.71405E-05	4.29636E-07	-2.50949E-07	1.406E-05	3.97813E-07	-2.04312E-09	1.02881E-05	7.03273E-07	-7.42024E-08	9.95651E-06	5.89799E-07
5.08275E-08	4.29636E-07	2.30526E-06	6.95044E-07	5.78051E-07	1.28912E-06	-9.00976E-07	3.64782E-07	4.09173E-07	-6.69687E-07	3.38807E-07	3.14697E-07
-5.43688E-07	-2.50949E-07	6.95044E-07	1.18268E-06	-3.74846E-07	1.66885E-07	-3.03314E-08	-1.69858E-07	-1.89838E-07	6.93588E-08	-1.7232E-07	-2.22644E-07
7.88119E-09	1.406E-05	5.78051E-07	-3.74846E-07	2.0199E-05	2.96215E-07	7.00601E-08	1.05752E-05	6.55821E-07	-4.32849E-09	9.87896E-06	5.34016E-07
1.71877E-07	3.97813E-07	1.28912E-06	1.66885E-07	2.96215E-07	1.74414E-06	-8.54822E-07	8.16977E-07	5.76396E-07	-5.96573E-07	6.26945E-07	3.909E-07
-2.11022E-07	-2.04312E-09	-9.00976E-07	-3.03314E-08	7.00601E-08	-8.54822E-07	1.54277E-06	-2.23428E-07	-1.38195E-07	9.55862E-07	-3.65285E-08	-1.08175E-07
-6.05213E-08	1.02881E-05	3.64782E-07	-1.69858E-07	1.05752E-05	8.16977E-07	-2.23428E-07	1.64362E-05	9.44963E-07	-1.19585E-07	1.2317E-05	7.87828E-07
2.95139E-07	7.03273E-07	4.09173E-07	-1.89838E-07	6.55821E-07	5.76396E-07	-1.38195E-07	9.44963E-07	8.92205E-07	-2.48202E-07	1.09333E-06	5.55087E-07
-2.57741E-07	-7.42024E-08	-6.69687E-07	6.93588E-08	-4.32849E-09	-5.96573E-07	9.55862E-07	-1.19585E-07	-2.48202E-07	1.10177E-06	-1.74923E-07	-1.68698E-07
-4.60158E-08	9.95651E-06	3.38807E-07	-1.7232E-07	9.87896E-06	6.26945E-07	-3.65285E-08	1.2317E-05	1.09333E-06	-1.74923E-07	1.33678E-05	8.59504E-07
2.47277E-07	5.89799E-07	3.14697E-07	-2.22644E-07	5.34016E-07	3.909E-07	-1.08175E-07	7.87828E-07	5.55087E-07	-1.68698E-07	8.59504E-07	1.1004E-06
-2.85357E-07	-3.67823E-08	-6.9431E-07	1.09108E-07	4.1575E-08	-5.9698E-07	8.2713E-07	-1.16394E-07	-3.36712E-07	8.8151E-07	-1.59902E-07	-1.32634E-07
-5.28346E-08	9.55806E-06	3.33E-07	-1.5859E-07	9.61781E-06	6.06187E-07	-3.58158E-08	1.17352E-05	9.66716E-07	-1.63554E-07	1.22352E-05	1.00964E-06
2.74227E-07	6.43248E-07	4.29736E-07	-1.83692E-07	5.84774E-07	5.68757E-07	-9.62609E-08	8.54687E-07	7.31129E-07	-2.52222E-07	8.92677E-07	7.51995E-07
-2.61818E-07	-1.13089E-07	-4.37095E-07	1.57919E-07	-5.74434E-08	-3.24426E-07	8.04638E-07	-2.18022E-07	-2.19698E-07	7.52121E-07	-1.68718E-07	-2.48943E-07
-5.68515E-08	9.89184E-06	3.52608E-07	-1.54774E-07	9.86731E-06	6.48033E-07	-6.33452E-08	1.23856E-05	9.68065E-07	-1.77083E-07	1.24955E-05	8.68762E-07
3.26471E-07	6.62361E-07	3.6194E-07	-2.4943E-07	6.03734E-07	5.81905E-07	-1.45608E-08	6.17105E-07	6.01663E-07	-1.24117E-07	6.35509E-07	4.2035E-07
-4.02425E-07	-2.76842E-07	-1.32776E-08	4.11649E-07	-2.80768E-07	-1.29769E-08	2.43357E-07	-2.79581E-07	-1.33615E-07	2.24371E-07	-2.61365E-07	-1.53257E-07
-6.97523E-08	1.11035E-05	3.35156E-07	-1.8362E-07	1.07161E-05	4.75113E-07	-5.45343E-08	1.0845E-05	7.23834E-07	-1.14879E-07	1.04823E-05	6.43612E-07
2.68522E-07	5.73476E-07	6.39458E-07	-1.12765E-07	5.06369E-07	8.29836E-07	-2.77935E-07	8.33352E-07	7.4373E-07	-4.06664E-07	8.5645E-07	5.88939E-07
-2.6753E-07	-1.48764E-07	-3.10584E-07	1.97557E-07	-1.02384E-07	-2.01038E-07	6.10085E-07	-1.94961E-07	-2.45333E-07	5.93846E-07	-2.10034E-07	-3.26707E-07
-5.85597E-08	9.93534E-06	3.57805E-07	-1.54834E-07	9.87155E-06	6.4021E-07	-7.44582E-08	1.2192E-05	9.14348E-07	-1.58395E-07	1.19989E-05	8.13906E-07

Πίνακας Γ.10 : a posteriori πίνακας μεταβλητότητας - συμμεταβλητότητας ΓΔΤΕ (Στήλες:1-12)

-2.8536E-07	-5.28346E-08	2.74227E-07	-2.61818E-07	-5.68515E-08	3.26471E-07	-4.02425E-07	-6.97523E-08	2.68522E-07	-2.6753E-07	-5.85597E-08
-3.6782E-08	9.55806E-06	6.43248E-07	-1.13089E-07	9.89184E-06	6.62361E-07	-2.76842E-07	1.11035E-05	5.73476E-07	-1.48764E-07	9.93534E-06
-6.9431E-07	3.33E-07	4.29736E-07	-4.37095E-07	3.52608E-07	3.6194E-07	-1.32776E-08	3.35156E-07	6.39458E-07	-3.10584E-07	3.57805E-07
1.09108E-07	-1.5859E-07	-1.83692E-07	1.57919E-07	-1.54774E-07	-2.4943E-07	4.11649E-07	-1.8362E-07	-1.12765E-07	1.97557E-07	-1.54834E-07
4.1575E-08	9.61781E-06	5.84774E-07	-5.74434E-08	9.86731E-06	6.03734E-07	-2.80768E-07	1.07161E-05	5.06369E-07	-1.02384E-07	9.87155E-06
-5.9698E-07	6.06187E-07	5.68757E-07	-3.24426E-07	6.48033E-07	5.81905E-07	-1.29769E-08	4.75113E-07	8.29836E-07	-2.01038E-07	6.4021E-07
8.2713E-07	-3.58158E-08	-9.62609E-08	8.04638E-07	-6.33452E-08	-1.4561E-08	2.43357E-07	-5.45343E-08	-2.77935E-07	6.10085E-07	-7.44582E-08
-1.1639E-07	1.17352E-05	8.54687E-07	-2.18022E-07	1.23856E-05	6.17105E-07	-2.79581E-07	1.0845E-05	8.33352E-07	-1.94961E-07	1.2192E-05
-3.3671E-07	9.66716E-07	7.31129E-07	-2.19698E-07	9.68065E-07	6.01663E-07	-1.33615E-07	7.23834E-07	7.4373E-07	-2.45333E-07	9.14348E-07
8.8151E-07	-1.63554E-07	-2.52222E-07	7.52121E-07	-1.77083E-07	-1.2412E-07	2.24371E-07	-1.14879E-07	-4.06664E-07	5.93846E-07	-1.58395E-07
-1.599E-07	1.22352E-05	8.92677E-07	-1.68718E-07	1.24955E-05	6.35509E-07	-2.61365E-07	1.04823E-05	8.5645E-07	-2.10034E-07	1.19989E-05
-1.3263E-07	1.00964E-06	7.51995E-07	-2.48943E-07	8.68762E-07	4.2035E-07	-1.53257E-07	6.43612E-07	5.88939E-07	-3.26707E-07	8.13906E-07
1.23508E-06	-1.8679E-07	-3.14659E-07	7.4289E-07	-1.06522E-07	-2.1744E-07	2.30352E-07	-7.50055E-08	-5.11539E-07	6.02028E-07	-1.12421E-07
-1.8679E-07	1.41672E-05	8.52967E-07	-7.79973E-08	1.23339E-05	5.99109E-07	-2.43859E-07	1.00813E-05	8.18936E-07	-1.85207E-07	1.17368E-05
-3.1466E-07	8.52967E-07	1.17296E-06	-2.68264E-07	1.06165E-06	5.71656E-07	-1.30401E-07	7.06855E-07	8.21089E-07	-3.11084E-07	9.60832E-07
7.4289E-07	-7.79973E-08	-2.68264E-07	1.02295E-06	-1.39905E-07	-8.0467E-08	2.7408E-07	-1.59756E-07	-3.08534E-07	6.71061E-07	-1.88918E-07
-1.0652E-07	1.23339E-05	1.06165E-06	-1.39905E-07	1.37472E-05	6.26936E-07	-2.61468E-07	1.05661E-05	9.1014E-07	-2.35368E-07	1.24887E-05
-2.1744E-07	5.99109E-07	5.71656E-07	-8.04671E-08	6.26936E-07	9.77472E-07	-1.7552E-07	7.98535E-07	6.64718E-07	-7.95463E-08	6.23012E-07
2.30352E-07	-2.43859E-07	-1.30401E-07	2.7408E-07	-2.61468E-07	-1.7552E-07	6.39262E-07	-3.01028E-07	-8.40693E-08	2.87708E-07	-2.72775E-07
-7.5005E-08	1.00813E-05	7.06855E-07	-1.59756E-07	1.05661E-05	7.98535E-07	-3.01028E-07	1.3161E-05	6.25338E-07	-1.90346E-07	1.07976E-05
-5.1154E-07	8.18936E-07	8.21089E-07	-3.08534E-07	9.1014E-07	6.64718E-07	-8.40693E-08	6.25338E-07	1.13075E-06	-3.06402E-07	8.77942E-07
6.02028E-07	-1.85207E-07	-3.11084E-07	6.71061E-07	-2.35368E-07	-7.9546E-08	2.87708E-07	-1.90346E-07	-3.06402E-07	8.63344E-07	-1.89205E-07
-1.1242E-07	1.17368E-05	9.60832E-07	-1.88918E-07	1.24887E-05	6.23012E-07	-2.72775E-07	1.07976E-05	8.77942E-07	-1.89205E-07	1.32106E-05

Πίνακας Γ.11 : a posteriori πίνακας μεταβλητότητας - συμμεταβλητότητας ΓΔΤΕ (Στήλες:13-23)

ΠΑΡΑΡΤΗΜΑ Γ

ΚΩΔΙΚΕΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΜΑΤLAΒ

Ι. Κώδικας επίλυσης Γεωδαιτικού Δικτύου Κατακορύφου Ελέγχου

```
%Epilisi 1D diktiou me tis elaxistes eksoterikes desmevseis -
Anisovareis paratiriseis
clear all; % clears all objects in the MATLAB workspace and
closes the MuPAD engine associated with the MATLAB workspace
resetting all its assumptions
clc;%Clear Command window
importData = importData('Data.txt');%Sinartisi eisagogis
genikon dedomenon
importData 1 = importData 1('Data 1.txt');%Sinartisi eisagogis
ypsometrikon diaforon me tis antistoixes avevaiotites
n=importData(1,1);%Plithos metriseon
m=importData(1,2)-1;%Agnostoi kathoristikoi parametroi
A=zeros(n,m);%Dimiourgia midenikou pinaka n x m kai me
onomasia A
for koryfes=1:n
    index 1 = importData 1(koryfes, 1);
    index 2 = importData 1(koryfes, 2);
        if index 1==1 && index 2>1
            Hj = index 2 - 1;
            A(koryfes, Hj) = 1;
        end
        if index 1>1 && index 2==1
            Hi = index 1 - 1;
            A(koryfes, Hi) = -1;
        end
        if index 1>1 && index 2>1
            Hi = index 1 - 1;
            Hj = index 2 - 1;
            A(koryfes, Hi) = -1;
```
```
A(koryfes, Hj) = 1;
        end
end%Gemisma pinaka A
s0 = 1;%A priori tipiko sfalma tis monadas varous
sh = importData 1(:,4);%Eisagogi avevaiotiton ypsometrikwn
diaforwn
sh = sh.^2/1000^2;%Metatropi se m
P = diag(s0./sh);%Dimiourgia pinaka varwn
N=A'*P*A;
Ni=inv( (A')*P*A );
dl = zeros(n, 1);
for koryfes=1:n
    index 1 = importData 1(koryfes, 1);
    index 2 = importData_1(koryfes, 2);
    if index 1==1 && index 2>1
    dl(koryfes,1)=importData 1(koryfes,3)+importData(1,5);
    end
    if index 1>1 && index 2==1
    dl(koryfes,1)=importData 1(koryfes,3)-importData(1,5);
    end
    if index 1>1 && index 2>1
    dl(koryfes,1)=importData 1(koryfes,3);
    end
end
dx=Ni*(A'*P*dl);
u=A*dx-dl;
```

r=n-m; S0=((u'*P*u)/r)^0.5;%a posteriori tipiko sfalma tis monadas varous Vxi=S0^2*Ni;%Pinakas V^x^ m*m Vxii=diag(Vxi.^0.5)*1000;%Avevaiotites korifon se mm Vxiii=diag(Vxi.^0.5*1.96)*1000;%Avevaiotites korifon se mm pollaplasiasmenes %me epipedo empistosinis 95% qia kanoniki katanomi z95%=1.96 %Olikos elegxos aksiopistias test x2 importx2 = importx2('x2.txt');%Eisagogi pinaka me tis times tis katanomis test x2 cl=importData(1,6);%Epipedo empistosinis confl=cl*100; if (r<=30 || r==40 || r==60 || r==120) [row,col]=find(importx2==cl);%Evresi se poia stili kai grammi aniki to epipedo empistosinis tis epilisis [row1,col1]=find(importx2==r);%Evresi se poia stili kai grammi aniki o vathmos eleftherias r x2 = importx2(row1,col);%Timi tis katanomis test x2 else [row,col]=find(importx2==cl);%Evresi se poia stili kai grammi aniki to epipedo empistosinis tis epilisis [row2,col2]=find(importx2>r,1);%Evresi se poia stili kai poia grammi aniki o amesos megaliteros vathmos eleftherias apo ton r row1=row2-1; coll=col2; x2 = importx2(row1, col) + (r-

```
importx2(row1, col1))*(importx2(row2, col)-
```

```
importx2(row1, col))/(importx2(row2, col2) -
importx2(row1, col1));%Tipos grammikis paremvolis
end
check=S0^2*r/x2;
if check<s0^2%Elegxos an pernaei ton oliko elegxo aksiopistias
test x2
    cout='περνάει';
else cout='δεν περνάει';
end
%Sarosi dedomenwn kata Baarda
if cl==0.90
    importFisher cl =
importFisher 900('Fisher 0.900.txt');%Eisagogi pinaka me tis
times tis katanomis Fisher
elseif cl==0.95
    importFisher cl = importFisher 950('Fisher 0.950.txt');
elseif cl==0.975
    importFisher cl = importFisher 975('Fisher 0.975.txt');
elseif cl==0.99
    importFisher cl = importFisher 990('Fisher 0.990.txt');
else
    disp('Error in Fisher Distribution');
end
Vu=S0^2*inv(P)-S0^2*A*Ni*A';%Pinakas ipolipon i fainomenon
sfalmaton
Vu=diag(abs(Vu.^0.5));%Epilogi stoixeiwn kirias diagoniou Vu
stin ^0.5
Vu=abs(u./Vu);
```

if (r<=10 || r==12 || r==15 || r==20 || r==24 || r==30 || r==40 || r==60 || r==120) [row, col]=find(importFisher cl==r);%Evresi se poia stili kai grammi aniki to epipedo empistosinis tis epilisis [row1, col1]=find(importFisher cl(1,:)==r);%Evresi se poia stili kai grammi aniki o vathmos eleftherias r F = importFisher cl(row, coll);%Timi tis katanomis Fisher elseif (r>10 && r~=12 && r~=15 && r~=20 && r~=24 && r<30) [row,col]=find(importFisher cl==r,1);%Evresi se poia stili kai poia grammi aniki o amesos mikroteros vathmos eleftherias apo ton r [row2, col2]=find(importFisher cl(1,:)>r,1);%Evresi se poia stili kai poia grammi aniki o amesos megaliteros vathmos eleftherias apo ton r row1=row2; coll=col2-1;F = importFisher cl(row, col1) + (rimportFisher cl(row1, col1))*(importFisher cl(row, col2)importFisher cl(row,col1))/(importFisher cl(row2,col2)importFisher cl(row1, col1));%Tipos grammikis paremvolis elseif (r>30 && r~=40 && r~=60 && r<=119) [row1, col1]=find(importFisher cl>r,1);%Evresi se poia stili kai poia grammi aniki o amesos mikroteros vathmos eleftherias apo ton r row=row1-1; col=col1; [row3,col3]=find(importFisher cl(1,:)>r,1);%Evresi se poia stili kai poia grammi aniki o amesos megaliteros vathmos eleftherias apo ton r row2=row3; col2=col3-1;

```
F = importFisher cl(row, col2) + (r-
importFisher cl(row2,col2))*(importFisher cl(row1,col3)-
importFisher cl(row,col2))/(importFisher cl(row3,col3)-
importFisher cl(row2,col2));%Tipos grammikis paremvolis
elseif r>120
    r=121;
    [row,col]=find(importFisher cl==r);%Evresi se poia stili
kai grammi aniki to epipedo empistosinis tis epilisis
    [row1, col1]=find(importFisher cl(1,:)==r);%Evresi se poia
stili kai grammi aniki o vathmos eleftherias r
    F = importFisher cl(row, col1);%Timi tis katanomis Fisher
end
F=sqrt(F);
Baarda check = zeros(n,1);
for koryfes=1:n
    if F>Vu(koryfes);
      Baarda check(koryfes)=1;
    else
      Baarda check(koryfes)=0;
    end
end
%Eksagogi stoixeion epilisis se arxeio txt
ladj=importData 1(:,3)+u;%Sinorthomenes paratiriseis
From=[importData 1(:,1)];
To=[importData 1(:,2)];
Initial prices=[importData 1(:,3)];
Uncertainty=[importData 1(:,4)];
```

Adj H=ladj;

```
staple=importData(1,3);%Orismos statherou
p1=m+1;%Sinolikes korifes diktiou
u=u*1000;
test = [From, To, Initial prices, Uncertainty, u, Adj H];
Name=[1:p1];%Arithmisi korifon
Name=Name'; %Metatropi se anastrofo epeidi to matlab diavazei
stiles kai oxi grammes
dx = [importData(1, 5); dx];
Vxii = [0;Vxii];
Vxiii = [0;Vxiii];
Final H = [Name, dx, Vxii, Vxiii];
Baarda = [From, To, Vu, Baarda check];
Results=fopen('1D-Results.txt','w');
fprintf(Results,'%1s %2.0f','Επίλυση υψομετρικού δικτύου για
επίπεδο εμπιστοσύνης', confl, '% με τις ελάχιστες εξωτερικές
δεσμεύσεις :');
fprintf(Results,'%1s \r\n\r\n','');
fprintf(Results,'%1s %5d \r\n','Αριθμός κορυφών
:',p1);
fprintf(Results,'%1s %5d \r\n','Σταθερή κορυφή
:', staple);
fprintf(Results,'%1s %5d \r\n','Αριθμός παρατηρήσεων
υψομετρικών διαφορών :',n);
fprintf(Results,'%1s %5d \r\n','Αριθμός άγνωστων καθοριστικών
παραμέτρων :',m);
fprintf(Results,'%1s %5d \r\n','Βαθμοί ελευθερίας
:',r);
fprintf(Results,'%1s %5.3f \r\n\r\n','A-posteriori τυπική
απόκλιση
                      :',S0);
fprintf(Results,'%50s \r\n\r\n','Υψομετρικές διαφορές');
fprintf(Results,'%s %6s %17s %18s %15s %17s
\r\n\r\n','Από','Προς','Αρχική τιμή (m)','Αβεβαιότητα
(mm)', 'Διόρθωση (mm)', ' Τελική τιμή (m)');
fprintf(Results,'%2d %6d %13.4f %16.1f %17.1f %18.4f
\r\n',test');
fprintf(Results, '%1s \r\n', '');
fprintf(Results,'%26s \r\n\r\n','Τελικά υψόμετρα');
fprintf(Results,'%s %7s %8s %14s \r\n\r\n','Kopυφή','H
(m)','\sigmaH(mm)','\sigmaH*1.96 (mm)');
fprintf(Results,'%3d %11.4f %5.1f %11.1f \r\n',Final H');
fprintf(Results,'%1s \r\n','');
fprintf(Results,'%s ','Η επίλυση του δικτύου',cout,'τον ολικό
έλεγχο αξιοπιστίας test x2.');
fprintf(Results,'%1s \r\n\r\n','');
```

```
fprintf(Results,'%1s \r\n\r\n','Έλεγχος υψομετρικών διαφορών
κατά Baarda :');
fprintf(Results,'%s %6s %13s %9s
\r\n\r\n', 'Από', 'Προς', 'w=abs(υ/συ)', 'Έλεγχος');
fprintf(Results,'%2d %6d %11.4f %8d \r\n',Baarda');
fprintf(Results, '%1s \r\n', '');
fprintf(Results,'%s \r\n','Όπου 1 - Περνάει και Ο - Δεν
περνάει στην στήλη έλεγχος');
%Eqgrafi ton stoixeion tis epilisis sto Excel
xlswrite('1D-Results',m+1,1,'F1');
xlswrite('1D-Results', importData(1,3),1,'F2');
xlswrite('1D-Results',n,1,'F3');
xlswrite('1D-Results',m,1,'F4');
xlswrite('1D-Results',r,1,'F5');
xlswrite('1D-Results',S0,1,'F6');
xlswrite('1D-Results', importData 1, 1, 'A11');
xlswrite('1D-Results',ladj,1,'E11');
xlswrite('1D-Results',(1:m+1)',1,'H11');
xlswrite('1D-Results', dx, 1, 'I11');
xlswrite('1D-Results',Vxii,1,'J11');
xlswrite('1D-Results', Vxiii, 1, 'K11');
xlswrite('1D-Results',{'Αριθμός κορυφών :'},1,'A1');
xlswrite('1D-Results',{'Σταθερή κορυφή :'},1,'A2');
xlswrite('1D-Results',{'Αριθμός παρατηρήσεων υψομετρικών
διαφορών :'},1,'A3');
xlswrite('1D-Results',{'Αριθμός αγνώστων καθοριστικών
παραμέτρων :'},1,'A4');
xlswrite('1D-Results',{'Βαθμοί ελευθερίας :'},1,'A5');
xlswrite('1D-Results', {'A posteriori τυπικό σφάλμα της μονάδας
βάρους :'},1,'A6');
xlswrite('1D-Results',{'Υψομετρικές διαφορές'},1,'C8');
xlswrite('1D-Results', {'Aπό'}, 1, 'A10');
xlswrite('1D-Results', {'Προς'},1,'B10');
xlswrite('1D-Results',{'Αρχική τιμή (m)'},1,'C10');
xlswrite('1D-Results',{'Αβεβαιότητα (mm)'},1,'D10');
xlswrite('1D-Results',{'Συνορθωμένη τιμή (mm)'},1,'E10');
xlswrite('1D-Results',{'Τελικά υψόμετρα'},1,'I8');
xlswrite('1D-Results', {'Kopuq\u00ed'}, 1, 'H10');
xlswrite('1D-Results', {'H (m)'}, 1, 'I10');
xlswrite('1D-Results',{'Αβεβαιότητα (mm)'},1,'J10');
xlswrite('1D-Results',{'Αβεβαιότητα για ε.ε. 95%
(mm) '},1,'K10');
xlswrite('1D-Results', {'Σάρωση δεδομένων κατά
Baarda'},1,'08');
```

```
xlswrite('1D-Results', {'Aπó'}, 1, '010');
xlswrite('1D-Results', {'Προς'},1, 'P10');
xlswrite('1D-Results', {'w=abs(u/ou)'},1,'Q10');
xlswrite('1D-Results', {'EAsyxoc'}, 1, 'R10');
xlswrite('1D-Results', importData 1(:,1:2),1,'011');
xlswrite('1D-Results', Vu, 1, 'Q11');
xlswrite('1D-Results',Baarda check,1,'R11');
xlswrite('1D-Results', {'Η επίλυση του δικτύου'},1,'I1');
cout=str2mat(cout);
xlswrite('1D-Results', cout, 1, 'L1');
xlswrite('1D-Results',{'τον ολικό έλεγχο αξιοπιστίας test
x2'},1,'I2');
% Παράδειγμα αρχείου data.txt
20 8 1 1 34.38235 0.95
Όπου
20 : ο αριθμός των μετρημένων ΔΗ
8 : ο αριθμός των κορυφών
1 : η σταθερή κορυφή
34.38235 : το υψόμετρο της σταθερής κορυφής
0.95 : το επίπεδο εμπιστοσύνης για το οποίο γίνεται η
συνόρθωση
% Παράδειγμα αρχείου data 1.txt
2 1 24.5539 1.5
3 1 25.5986 1.7
1 5 27.6594 1.5
1 6 26.2766 1.6
8 1 11.1316 1.5
3 2 01.0429 1.5
2 4 30.4834 1.5
2 5 52.2109 1.4
2 7 13.5021 1.4
2 8 13.4208 1.5
3 4 31.5269 1.6
3 7 14.5422 1.6
4 5 21.7274 1.5
4 6 20.3441 1.6
7 4 16.9844 1.5
6 5 01.3841 1.5
7 5 38.7112 1.5
8 5 38.7916 1.4
8 6 37.4077 1.6
8 7 00.0825 1.5
```

Όπου

1^η στήλη και 2^η στήλη : Όνομα υψομετρικής διαφοράς 3^η στήλη : Υψομετρική διαφορά σε m 4^η στήλη : Αβεβαιότητα υψομετρική διαφοράς σε mm % Παράδειγμα αρχείου Results.txt Επίλυση υψομετρικού δικτύου για επίπεδο εμπιστοσύνης 95% με τις ελάχιστες εξωτερικές δεσμεύσεις : 8 Αριθμός κορυφών : 1 Σταθερή κορυφή : Αριθμός παρατηρήσεων υψομετρικών διαφορών : 20 Αριθμός άγνωστων καθοριστικών παραμέτρων : 7 Βαθμοί ελευθερίας 13 : A-posteriori τυπική απόκλιση : 0.844 Υψομετρικές διαφορές Апó Προς Αρχική τιμή (m) Αβεβαιότητα (mm) Διόρθωση (mm) Τελική τιμή (m) 2 24.5539 1.5 -0.7 1 24.5532 25.5986 3 1.6 -2.4 1 25.5962 1 5 27.6594 1.5 -0.6 27.6588 26.2766 1 6 1.6 -1.2 26.2754 11.1316 1.5 8 1 1.1 11.1327 2 3 1.0429 1.5 0.1 1.0430 30.4834 1.5 2 4 1.0 30.4844 2 5 52.2109 1.4 1.1 52.2120 13.5021 2 7 1.4 -1.0 13.5011 2 8 13.4208 1.5 -0.3 13.4205 31.5269 0.4 3 4 1.6 31.5273 14.5422 3 7 1.6 1.8 14.5440

4	5	21.7274	1.5	0.2
21.7276 4	6	20.3441	1.6	0.1
7 16.9833	4	16.9844	1.5	-1.1
6 1 3834	5	1.3841	1.5	-0.7
7 38.7110	5	38.7112	1.5	-0.2
8 38 7916	5	38.7916	1.4	-0.0
8 37.4081	6	37.4077	1.6	0.4
8	7	0.0825	1.5	-1.9

Τελικά υψόμετρα

Κορυφή	H (m)	σ H (mm)	σH*1.96	(mm)
1	34.3824	0.0	0.0	
2	9.8292	0.7	1.4	
3	8.7862	0.8	1.6	
4	40.3135	0.8	1.6	
5	62.0412	0.7	1.4	
6	60.6577	0.8	1.6	
7	23.3302	0.8	1.6	
8	23.2496	0.7	1.5	

Η επίλυση του δικτύου περνάει τον ολικό έλεγχο αξιοπιστίας test x2.

Έλεγχος υψομετρικών διαφορών κατά Baarda :

Апо́	Προς	w=abs(u/ou)	Έλεγχος
2	1	0.7120	1
3	1	2.2558	0
1	5	0.5766	1
1	6	1.1469	1
8	1	1.1078	1
3	2	0.0638	1
2	4	0.9726	1
2	5	1.1476	1
2	7	1.0602	1
2	8	0.3417	1
3	4	0.4105	1

3	7	1.7111	0
4	5	0.2413	1
4	6	0.0904	1
7	4	1.0593	1
6	5	0.6376	1
7	5	0.2388	1
8	5	0.0442	1
8	6	0.3885	1
8	7	1.8182	0

Όπου 1 - Περνάει και 0 - Δεν περνάει στην στήλη έλεγχος

II. Κώδικας ελέγχου απόλυτων μετακινήσεων οριζοντιογραφικά και υψομετρικά για επίπεδο εμπιστοσύνης 95%

```
%3D - Movements monitoring
clear all;%Clear Workspace
clc;%Clear Command window
xi = importxi('xi.txt');%Eisagogi syntetagmenon xronikis
stigmis i
xii = importxii('xii.txt');%Eisagogi syntetagmenon xronikis
stigmis ii
Vxi=importVxi('Vx 2012.txt');%Eisagogi aposteriori pinaka
metavlitotitas simmetavlitotitas xronikis stigmis i
Vxii=importVxii('Vx 2015.txt');%Eisagogi aposteriori pinaka
metavlitotitas simmetavlitotitas xronikis stigmis ii
m=size(Vxi,1)^0.5;
Vxi=reshape(Vxi,[m,m]);
Vxii=reshape(Vxii,[m,m]);
x1 = xi (1, 2); % Eisagogi keliou (1,1) apo to arxeio ton
prosorinon syntetagmenon me onomasia x1
y1 = xi (1, 3);
x^2 = xi (2, 2);
y^2 = xi (2, 3);
A12 = a12( x2-x1, y2-y1 );%Sinartisi dierevnisis gonias
dievthinsis al2
sina12 = sin(A12);
\cos a12 = \cos (A12);
%Metatropi Vxi se (m+1) * (m+1)
Vxi1 = zeros(m+1,m+1);%Dimourgia midenikou pinaka (m+1)*(m+1)
Vxi1(3:end, 3:end) = Vxi(2:end, 2:end);%Antistixisi tou Vxm*m
me ton Vx(m+1)*(m+1) apo to stoixeio (3,3) mexri (m+1,m+1) pou
;exoun ta idia stoixeia
Vxi1(1,1) = Vxi(1,1)*(sina12^2);%Simplirosi stoixeiou (1,1)
Vxi1(2:end, 1) = Vxi(:,1)*sinal2*cosal2;
Vxi1(1, 2:end) = Vxi1(2:end, 1)';
Vxi1(2,2) = Vxi(1,1) * (cosa12^2);
Vxi1(3:end, 2) = Vxi(2:end, 1)*sinal2*cosal2;
Vxi1(2, 3:end) = Vxi1(3:end, 2)';
Vxi=Vxi1;
%Metatropi Vxii se (m+1) * (m+1)
```

```
Vxii1 = zeros(m+1,m+1);%Dimourgia midenikou pinaka (m+1)*(m+1)
Vxii1(3:end, 3:end) = Vxii(2:end, 2:end);%Antistixisi tou Vxm*m
me ton Vx(m+1)*(m+1) apo to stoixeio (3,3) mexri (m+1,m+1) pou
;exoun ta idia stoixeia
Vxii1(1,1) = Vxii(1,1)*(sinal2^2); Simplirosi stoixeiou (1,1)
Vxii1(2:end, 1) = Vxii(:,1)*sinal2*cosal2;%Simplirosi
stoixeion prwtis stilis apo (2,1) mexri telos
Vxii1(1, 2:end) = Vxii1(2:end, 1)';%Simplirosi stoixeion
prwtis grammis apo (1,2) mexri telos
Vxii1(2,2) = Vxii(1,1)*(cosa12^2);
Vxii1(3:end, 2) = Vxii(2:end,1)*sinal2*cosal2;
Vxii1(2, 3:end) = Vxii1(3:end, 2)';
Vxii=Vxii1;
%Apolites metakiniseis
Vdx=Vxi+Vxii;%Ypologismos pinaka metavlitotitas -
simmetavlitotitas metavolwn Vdx tou dianismatos metavolis dx
ton simeiwn
Amesd = zeros(size(xi,1)-1,11);%Dimiourgia midenikou pinaka
diastasewn size(xi,1)-1*12 wpou size(xi,1) o aritmhos ton
grammwn tou pinaka xi
Amesd(:,1) = 2:size(xi,1); % Simplirwsi prwtis stilis me tis
onomasies twn koryfwn
for koryfes=2:size(xi,1)
    xit1 = xi(koryfes, 2);
    yit1 = xi(koryfes, 3);
    hit1 = xi(koryfes, 4);
    xit2 = xii(koryfes, 2);
    yit2 = xii(koryfes, 3);
    hit2 = xii(koryfes, 4);
    dr = sqrt((xit2-xit1)^2 + (yit2-yit1)^2);
    dHi = hit2 - hit1;
    Amesd(koryfes -1,2) = dr*1000;
    Amesd(koryfes -1, 9) = dHi*1000;
end
```

koryfes=1;

```
for index=1:3:size(Vdx,1)
    sx = Vdx(index, index);
    sy = Vdx(index+1, index+1);
    sxy = Vdx(index, index+1);
    smax = sqrt(0.5*(sx + sy + sqrt((sx-sy)^2 + 4*sxy^2)))
);
    smin = sqrt(0.5*(sx + sy - sqrt((sx-sy)^2 + 4*sxy^2)))
);
    sh = sqrt( Vdx(index+2, index+2) );
    Amesd(koryfes, 5) = 1000*(2.447*smax);
    Amesd(koryfes, 6) = 1000*(2.447*smin);
    Amesd(koryfes, 10) = 1000*(1.96*sh);
    th = thmax(sx, sy, sxy);
    AMAX = amax(sx, sy, sxy);
    DX = xii(koryfes+1, 2) - xi(koryfes+1, 2);
    DY = xii(koryfes+1, 3) - xi(koryfes+1, 3);
    Aij = a12(DX, DY);
    Amesd(koryfes, 3) = Aij*200/pi;
    Amesd(koryfes, 7) = th*200/pi;%Gwnia thita ellipsis
    %Amesd(koryfes, 8) = a*200/pi;
    w = 400 - (Aij*200/pi) + AMAX; %Aristerostrofi gwnia
dianismatos metakinisis apo megalo imiaksona tis elleipsis
    if w>400
        w = w - 400;
    end
    Amesd(koryfes, 4) = w;
    koryfes = koryfes + 1;
end
for koryfes=1:size(Amesd,1)
    if abs(Amesd(koryfes, 2)) > abs(Amesd(koryfes, 5))
        Amesd(koryfes, 8) = 1;
    end
```

```
if abs(Amesd(koryfes, 9)) > abs(Amesd(koryfes, 10))
        Amesd(koryfes, 11) = 1;
end
```

```
end
```

```
Results = fopen('3D-Movements.txt','w');
fprintf(Results,'%75s \r\n\r\n','Στοιχεία ελλείψεων σφάλματος
απόλυτης μετακίνησης');
fprintf(Results,'%s %9s %10s %10s %9s %9s %11s %6s %10s %9s
%6s \r\n\r\n','Kopuφή','DR (mm)','A (grad)','W (grad)','ou
(mm)','ov (mm)','θ (grad)','O.M.','DRH (mm)','oh
(mm)','K.M.');
fprintf(Results,'%4d %9.1f %12.4f %10.4f %7.1f %9.1f %13.4f
%5d %10.1f %9.1f %6d \r\n',Amesd');
```

% Παράδειγμα αρχείου xi.txt και xii.txt

1 5000.000 5000.000 35.504 2 5040.360 4381.516 11.066 3 5125.494 4169.476 9.976 4 4613.534 4332.707 41.526 5 4627.076 4559.928 63.242 6 4614.188 4709.377 61.951 7 4750.945 4597.539 24.513 8 4955.158 4596.946 24.443 9 4803.160 4498.418 44.578

Όπου

1^η στήλη : αριθμός κορυφής
 2^η στήλη : τετμημένη (x) κορυφής σε m
 3^η στήλη : τεταγμένη (y) κορυφής σε m
 4^η στήλη : ορθομετρικό υψόμετρο (H) κορυφής σε m

% Παράδειγμα αρχείου Vxi.txt και Vxii.txt

Τα αρχεία Vxi.txt και Vxii.txt είναι αρχεία σε format .txt μιας στήλης στα οποία υπάρχουν τα στοιχεία του πίνακα μεταβλητότητας συμμεταβλητότητας για τις δύο χρονικές στιγμές. Στις πρώτες m γραμμές βρίσκονται τα στοιχεία της πρώτης γραμμής του πίνακα Vx κ.ο.κ % Παράδειγμα αρχείου 3D-Movements.txt

Κορυφή	DR (mm)	A (grad)	W (grad)	σu (mm)	σv (mm)
θ (grad)	Ο.Μ.	DRH (mm)	σh (mm)	K.M.	
2	5.0	0.0000	3.0764	3.3	0.0
104.1485	1	-3.0	8.9	0	
3	10.2	12.5666	388.4992	5.2	3.3
32.1515	1	1.0	9.7	0	
4	7.6	74.2238	328.1357	5.4	3.2
149.7934	1	-13.0	8.7	1	
5	8.9	70.4833	332.1765	3.9	3.0
130.6721	1	-3.0	7.8	0	
6	10.0	340.9666	61.7913	4.0	3.6
124.4292	1	-22.0	8.1	1	
7	5.0	359.0334	43.2659	4.0	3.1
153.6208	1	2.0	8.0	0	
8	3.6	37.4334	364.6815	3.4	2.7
165.3619	1	-6.0	7.8	0	
9	1.0	200.0000	202.2193	3.9	2.9
158.7157	0	6.0	7.8	0	

Στοιχεία ελλείψεων σφάλματος απόλυτης μετακίνησης

Όπου

DR - το διάνυσμα απόλυτης μετακίνησης οριζοντιογραφικά σε mm
 Α - η γωνία διεύθυνσης του διανύσματος απόλυτης μετακίνησης σε βαθμούς
 W - η γωνία του διανύσματος απόλυτης μετακίνησης η οποία μετρά αριστερόστροφα από τον μεγάλο ημιάξονα της απόλυτης έλλειψης

σφάλματος σε βαθμούς

συ - ο μεγάλος ημιάξονας της έλλειψης σε mm σν - ο μικρός ημιάξονας της έλλειψης σε mm θ - η γωνία η οποία σχηματίζει ο μεγάλος ημιάξονας της έλλειψης με τον άξονα των τετμημένων Ο.Μ. - Μονοδιάστατος έλεγχος μετακίνησης για επίπεδο εμπιστοσύνης 95 % όπου 1 σημαίνει ναι και 0 όχι DRH - το διάνυσμα απόλυτης μετακίνησης υψομετρικά σε mm σh - η αβεβαιότητα του διανύσματος απόλυτης μετακίνησης υψομετρικά σε mm K.M. - Έλεγχος υψομετρικής μετακίνησης για επίπεδο εμπιστοσύνης 95 % όπου 1 σημαίνει ναι και 0 όχι