

:

:

:

μ 2015

•

, μ μ , , μ • μ μ μ μ μ. μ μ μ μ μ

.

•

				•••••	
ABSTRACT	- 				1
	1				2
1.1					2
1.2					3
1.3					4
1.3.1	μ				4
1.3.2					5
1.3.3					8
1.3.4					
	2				
			Κ		
2.1					11
2.1.1	μ				11
2.1.2		μ			
2.2					15
2.2.1					
2.2.2					
2.2.2	.1				
2.2.2	.2 μ				20
2.2.3	μ	μ	μ		21
2.2.4					
2.2.5					22
2.2.6					23
2.2.7		μ			24
2.2.8					24
2.2.9	μ				
2.3					27
2.3.1					

	2.3.2				
2	2.4				
2	2.5				
	2.5.1				
	2.5.2			μ	
2	2.6				
	2.6.1	μ			
	2.6.2		-		39
	2.6.2.1				41
	2.6.2.2	μ			
	2.6.3			μ	
	2.6.3.1	μ			44
	2.6.3.2				
	2.6.3.3	μ			45
	2.6.3.4	μμ μ			45
	2.6.4				46
	2.6.5 ANI	FO			
	2.6.6 Slur	ries			
	2.6.7	μ			50
2	2.7				52
	2.7.1	μ			53
	2.7.1.1		μ		53
	2.7.1.2				55
	2.7.1.3	μ			56
	2.7.1.4				57
	2.7.1.5	μ NONE	L		60
	2.7.2	μ			64
	2.7.2.1				65
	2.7.2.2				65
	2.7.2.3				71
2	2.8		()	73
	2.8.1	μ	μ		75
		3			77
Μ			(V I	D)	77
3	3.1				77

7	3.2
l μ D'Autriche7	3.2.1
2	3.2.2
	3.3
ι μ8	3.3.1
	3.3.2
3 CORRTEX	3.3.3
4 SLIFER 8	3.3.4
5 μ	3.3.5
μ8	μ
49	
0	
	4.1
	4.1
	4.2
	4.3
9	4.4
	4.5
5	
- –	
	5.1
	5.2

Σχήμα 1 (.2.1):	μ			μ				
		(: Εργαστήρ	ιο Εξόρι	γξης Πετρο	ωμάτων	ЕМП.)		11
Σχήμα 2 (.2.2):		μ				Langweiler	(1938) (:
			, 1997)	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		13
Σχήμα 3 (.2.3):	μ	μ			Co	ok (1958)		
				μ	μ			• • • • • • • • • • • • • • • • • • • •	14
Σχήμα 4 (.2.4):				()			()	
		μ			(: ISEE	, 1998)		19
Σχήμα 5 (.2.5):	Μ					μ		
		μ	μ	(: (Καθηγ.	Γ.Ν. Παν	αγιώτου - Ε	ργαστήριο	
		Εξόρυ	ξης Πετρωμ	ιάτων Ε	МΠ),				20
Σχήμα 6 (.2.6):		μ		μ	μ			
	ŗ	(http:/	//www.met	al.ntua.	ar/index.r	ol/7d1d0	6d7 ar)		30
Σνήμα 7 (27).	(9.,r	.,	•••• _ 9 •)•		
	• 2•1)•	(http:	بر ۱/۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	۲ ما mtun	au/indov.u	al /7 d 1 d 0	(cd7 ar)		
Future 0 (2 0).	(nup:/	/www.met	ai.ntua.	gr/index.p	-1 2002)	ou <i>r_</i> gr)	•••••	33
Σχημα 8 (.2.8):			(: Dynonobo	el, 2003).	••••••		41
Σχημα 9 (.2.9):	μ			μ				
			μ			(:	, 1996)	43
Σχήμα10 (.2.10):			μ	.T			0,002-	
		0,1µm.	(Hopler, 19	93)		(:	,1	.997)	51
Σχήμα11 (.2.11):	μ	μ			μ	μ		•
		(:	, 1997).	•••••	•••••	•••••		54
Σχήμα12 (.2.12):			μ		I	u		
					μ	μ	•		
		(:	, 1997)	•••••				56
Σχήμα13(.2.13):		L	μ					60
Σχήμα14 (.2.14):					Lμ	μμ		
			μ		μ		μ (: Dynonobe	I,
		2003).			•••••			-	63
Σχήμα15 (.2.15):		μ	u	L:)µ				
		μ((: Dyn	onobel, 2003)	64
Σχήμα16 (.2.16):					·	, ,		
	<i>,</i>	(: Dvnonobel	. 2003)					66
Σχήμα17 (.2.17):		υ υ	· · ·					
-X.II ((:	. 1997)					67
Σνήιια18 (2 18).	с п	•	,			Dvr	onobel	
-V.Iboro ((• Dynonobel	2003)	٣		251		69
Σνήμα19 (2 19)•	(. Dynonobel	, 2003)		••••••			
Ζζιματ 9 (•2•17)•				μ	(. μ	1007)	60
Swhwa20 (2 20).					(•	, 1997)	09 70
Ζχημα20 (.2.20):					•••••	••••••	3.40	70
2χημα21 (.2.21):							MS	()
		(μ	1005			()		
- / -= /	• • • •	(, 1997).	•••••			•••••	71
Σχήμα22 (.2.22):	μ	μ			Ma	gnadet		_
		(:	,1997).					72

73
80
82
84
84
93
•••

Πίνακας 1 (.1.1):			,	μ		
			(:	, 1997)		9
Πίνακας 2 (.2.2):				(:	. 1996) 19
Πίνακας 3 (.2.3):				(:	, 1997) 39
Πίνακας 4 (.2.4):	μμ				μ	
		μ		μ	(:	, 1997) 53
Πίνακας 5 (.2.5):		μ			μ	,
		μ	. (: Union 1	Espanolas H	Explosives).	58
Πίνακας 6 (Πι	v.4.6):	Στοιχεία αν	ατίναξης # 1	L			94
Πίνακας 7 (Πι	v.4.7):	Στοιχεία αν	ατίναξης # 2	2	•••••		95
Πίνακας 8 (Πι	v.4.8):	Στοιχεία αν	ατίναξης # 3	3	•••••		96
Πίνακας 9 (Πι	v.4.9):	Μετρήσεις τ	αχύτητας έ	κρηξης εντ	ός διατρήμα	ατος της αν	ατίναξης # 2 102
Πίνακας10 (.4.10)	:				μ	# 3 105
Πίνακας11 (.5.11):	:		μ	EXTR	ACO SA	
Πίνακας12 (.5.12):	:	ANF	0	•••••		

Εικόνα 1 (.3.1):	10 mm (0,4 in)	μ	x 10 cm (3,9 in) µ	
		μ		• • • • • • • • • • • • • • • • • • • •	
Εικόνα 2 (. 3.2) :			μ	
		••••••	•••••		
Εικόνα 3 (.3.3):			μ	
					μ90

Εικόνα 4 (.3.4):					μ	
	μ	μ				
		µ. µ				μ
	μ			•••••	•••••	90
Εικόνα 5 (. 4.5):			V D		μ	
	Ŧ	#1 (V D Or	iginal Graph) –	μμ	-	•
	•••••				••••••	101
Εικόνα 6 (. 4.6):			VOL)	μ	
	i	#2 (V D Or	iginal Graph) –	μμ	-	
Εικόνα 7 (. 4.7):			V D	μ	μ	
	μ		# 2 (V D G	raph –V D	_VALUE	S) –
	μμ	-	,	μ		
	•• •••					
Εικόνα 8 (Εικ. 4.8):	Μεταβολή τ	ης ταχύτητα	έκρηξης του ANF	Ο συναρτής	σει της δια	αμέτρου του
	διατρήματο	ς στο οποίο ν	ομώνεται			
Εικόνα 9 (. 4.9):		, .	· VD		u	
	#3 (V D O	riginal Gran	h)	-		
Εικόνα10 (4 10)·		inginiar Grup				200
LIKOVUIO (. 4.10).			#3 (V D C)	μ ronh V D	μ VATHE	S)
	μ		$\# \mathbf{J} (\mathbf{V} \mathbf{D} \mathbf{G})$		_VALUE	3) -
	μμ	-	,	μ		100
	• ••••	••••••	••••••	••••••	•••••	

ABSTRACT

The purpose of this paper is the detailed study of the measurement of velocity of detonation of the explosive in drillings and videotaping of blasting production with ultra receiving camera.

The research carried out in the quarry Athikia Corinth during three visits took place on 27.02.2015, on 21.05.2015 and on 28.05.2015 dates on which an equal number of blasting production was held.

To measure the velocity of detonation of the explosive in drillings and videotaping of blasting has been used equipment Laboratory Mining Rocks of NTUA University.

The study and evaluation of the results of the blasting videotaped with ultrafast camera and the measurements of the explosives' explosion speed in drillings, resulted useful conclusions and recommendations which are analysed in the last chapter of this paper.

1

1.1

	μ	l				I	u
		μ«μ			μ	».	
μ		μ	,				
		μ			,	,	
μ				()	
μμ	μ				μ		
		μ					
	μ	μ μ					μ
	,		μ		•		
ĥ	l		μ				
			μ		μ	μ	•
			,	μ	μ	μ	
-	μ	μ,	,			μμ	μ
μ		μ				,	,
μμ	μ						
μ,			μ		μ		μ
μ			μ		μ	μμ	
μ				μ	μ	μ	
μμ	μ			•			
μ			μ				
μ					μ	μ	,
μ					μ		μ
				μ μ			
μ				μ			
	,				μμ	μ	
μ			μ				
						•	
		ł	μ μ				

μ , μ .

1.2

÷ μ μμ μ μ μ μ μ . μ ,μ μμ , μ . μ : μ μ • μ • μμ μ : μ μ μ μ μ μ μ . , (μμ , μ , .). μ μ: μ μ ,

μ μ.

1.3 .

1.3.1 μ

: X μ μ μ (). μ : μμ, , μ μ μ μ . μ . 8 μ μ (Dick, 1973) (Καθηγ. Γ.Ν. Παναγιώτου - Εργαστήριο μ μ Εξόρυξης Πετρωμάτων ΕΜΠ).

μ: , μ μ μ 2 10 km/s , μ μ (,1979).

	μ :	μ
μ	(, 1979).

1.3.2

		μ						13	,	
μ					μ					
	1	7	(<u>http://v</u>	vww.r	<u>metal.nt</u>	ua.gr/ind	lex.pl/7	d1d06d7	<u>gr</u>).	
			17				J	μ	μ	
	μ		μ		μ	,	μ			μ
	(,	,	,	,	,).		_	
μ				μ						
		μ					μ		()
		μ				μ	μ		3	-4 h/m ³
μ	•						μ	,	μ	
μ	μ							, μ		,
		μ	μ	,						,
			(<u>http://ww</u>	<u>ww.m</u>	<u>etal.ntu</u>	a.gr/inde	ex.pl/7d1	d06d7 g	gr).	
			162	7	μ					μ
			(μ)				Scl	hemnitz
			ł	ı	K	aspar W	Veindl.			μ
										μ
			μ.			18	331		7	William
Bickford				(n	niners s	afety fu	ise)			μ
			μ			μ				
	1846		Ascani	o So	obrero					
			, μ							
	,						μ			
μ										
		μ								
		•								
	1864		Alfred N	obel,	,μ μ			,		

 μ kieselguhr (μ μ)

,

(http://www.metal.ntua.gr/index.pl/7d1d06d7 gr).

1866

	μ				μ	ki	eselguhr	μ			
					μ		(dynamite	e-		μ)), μ
				μ	μ	l	μ			20	
			μ.								
	1865	Alfre	d Not	bel							
	(μ	μ)	,		Ļ	ιμ
			Bi	ickford	b						
μ		μ									
	1875	Alfred N	obel				μ	μ			
μ		(μ)					,		
		μ									•
μμ	μ						(blasting	gelatin),	μ		
92%		8	%			,	Ļ	ı	μ		
	μ		,	μ	l						
							(H	Καθηγ. Γ.Ι	Ν. Παν	αγιώτ	ου -
Εργαστ	ήριο Εξόρ	ουξης Πετρα	ωμάτων	и ЕМП.	.)						
	μ									μ	
	μ	μ		μ			20	100%)		
		μ.	μ							μ	
						μ		μ	(,
2009).											
	1902								,		
μ							1912	μ		μ	
μ,	μ	PET	ΓN, 1	1936.							
		20		μ							
1922			μ								
		1	940								μ
		10-	100					,			
		μ									

6

,

μ μ (Καθηγ. Γ.Ν. Παναγιώτου – Εργαστήριο Εξόρυξης Πετρωμάτων ΕΜΠ).

μ μ . μμ μ , μ ,μ μ μμ μ μ . / μμ μ μ μ μ μ 1950, μ « **»** μ μ . ANFO (Ammonium Nitrateμμ μ Fuel Oil) μ μμ ANFO μ μ • (NH4NO3), μμ μ 1945 μ. μμ μ μ μ μ μ μ μ • , 2009). (μ 1956 Oliver Mining μ μ Division, U.S. Steel Corporation. ANFO μ ANFO, µ μ . , 1956 1.000.000 tn μ 1975, 340.000 135.000 tn. μ μ 1958 Farnham Cook μ μ, μμ μ , , - μ μ μ . (slurry explosives) µ , μ H.F. Bluhm Atlas Chemical Industries Ltd () 1969 (emulsion explosives) μ. μ μ

μ

Πινακάς 1 (.1.1):

, μ (: ,1997)

Χημική	ουσία	Χημική σύσταση	Ρόλος της στην		
			παρασκευή		
			εκρηκτικών υλών		
Νιτρογλυκόλη	Ethylene glycol	C_H_(NO_)	Εκρηκτική ουσία		
	dinitrate(EGDN)	24 32	Χαμηλώνει σημείο πήξεως		
Νιτροκυτταρίνη ⁺	Nitrocellulose	[C_H_O_(ONO_)_]	Εκρηκτική ουσία. Προσ-		
		072 23 h	δίδει ζελατινώδη υφή		
Νιτρογλυκερίνη	Nitroglycerin(NG)	C ₂ H _E (NO ₂) ₂	Εκρηκτική ουσία		
Τρινιτροτολουόλιο	Trinitrotoluene	C ₇ H ₅ (NO ₂) ₃	Εκρηκτική ουσία		
ή Τροτύλη	(TNT)	1020			
Πεντρίτης ή Τετρανι-	Pentaerythrotetra-	C ₅ H ₈ (NO ₃)	Εκρηκτική ουσία		
τρικός πενταερυθρίτης	nitrate (PETN)	0 0 0 4			
Στυφνικός μόλυβδος	Lead styphnate	C ₆ HN ₃ O ₈ Pb	Εκρηκτική ουσία		
Τετρύλη	TETRYL	C ₇ H ₅ N ₅ O ₈	Εκρηκτική ουσία		
Αζίδιο του μολύβδου	Lead azide	Pb(N ₃) ₂	Εκρηκτική ουσία		
Βροντώδης	Mercury fulminate	52	Εκρηκτική ουσία		
υδράργυρος		Hg(ONC)			
Κυκλωνίτης	Cyclonite (RDX)	C_H_N_O	Εκρηκτική ουσία		
Νιτρικό αμμώνιο	Ammonium nitrate	NHANO3	Φορέας οξυγόνου		
Νιτρικό κάλιο(νίτρο)	Potassium nitrate	KNOZ			
Νιτρικό νάτριο	Sodium nitrate	NaNO			
Νιτρικό ασβέστιο	Calcium nitrate	Ca(NO3)			
Πετρέλαιο	Fuel oil	(CH ₃) ₂ (CH ₂)	Καύσιμο		
Παραφίνη	Paraffin	C H 2 1			
Ξυλοπολτός	Wood pulp	(C H 10 5)			
Άνθρακας	Coal	c			
Ξυλάνθρακας	Charcoal	С			
Θείο	Sulphur	S			
Αργίλιο	Aluminium	AI			
Οξείδιο του ψευδαρ-	Zinc oxide				
γύρου		ZnO	Ουδέτερη ουσία		
Κιμωλία	Chalk	CaCO			
Γη των διατόμων	Diatomeceous earth	SIO	Ουδέτερη ουσία.		
	(Kieselguhr)	-			
Νερό	Water	H ₂ O			
Ανθρακικό ασβέστιο	Calcium carbonate	CaĈO ₃			

μ

,

μ

•

	,			
ł	uµ,		(1.2)	μ
	,			
			,	
μ		,	μ	
μ,		,	μ	
μ	μ	μ	μ	(μ
8000 m/s).				
	μ	μ	μμμ	μ
		(, 1997).	

1.3.4

		(initiat	ion)			μ						
		μ										•
	μ			μ				μ	μ	μ	(,
		μ				,),	μ	•		
		μ								μ	,	
μ	μ			μ								
		μ					μ					
	,		μ									μ,
				μ	μ							
(primer).										

μμ, μμ , μμ μ .

μ μ μ , μ . μ μ , . μ μ , () μ μ μ μ (, 1997).

μ μ • μ μ μ , μ (detonation front). μ (detonation wave) μ μ μ μ μ • μ μ (detonation head). μ μ μ (Katsabanis, 1996) μ μ μ (primary reaction zone), μ (shock front) Chapman and Jouguet, . , 0,2 mm , 220 kbar (=22 GPa), 3000 μ 30% μ μ , μ μ μ, μ, **μ** (explosive wave) μ μ μ μ μ (, 1997). 2.1.2 μ μ μ μ μ Langweiler (1938), Cook (1974), μ μ Langweiler, (μ μ μ , 1997) . 2.2 μ μ μ,

,

12

:

- μ :
- μ (shock wave front). μ

μ .
μ Chapman Jouguet, .
2.1.1.

. 2.3.

Σχήμα 3 (.2.3): μ μ μ Cook (1958) μ μ

				μ		μ		μ
			μ	,				
μ ()	. 2.3 (Katsa	banis,	, 1996).				
	μ					,		μ,
				μ		μ	,	
				μμ		3 1/2		μ
μ		μ						
	μ	. μ				μ	μ	(transient
zone).		,						4/3 ,
					,		μ	μ
	μ	μ	2 d	3,5	5 d,	d	μ	μ
(Cook,	1958).						μ	. ANFO,
	(1	Katsabanis,	1996).					

	μ	,	μ,
		μ	
	μ	μ	
μ	μ	. (Katsabanis, 1996)	

2.2

		μ	μμ		μ			μ	
					•				
			,						
							μ	•	
						:			
1									
1.									
2.									
3.	μ	μ		μ					
4.									

5. 6. 7. 8.

2.2.1

(strength), μ μ , μ μ μ μ μ (μ), μ μ μ μ μ μ μ , μ, , , 1997) . (μ μ μ μ , μ μμ μ μ μ μ 1 kg ANFO (μμ μ μ . μ 1 s, 900 kcal 3.77 MJ 3.77 MW. 0.01 s, 377 MW, μ μ 300 MW μ μ μ , μ μ μ : 1. (Absolute Weight Strength- AWS) (μ), . μμ 930 cal/g, μ 1080 cal/g ANFO . . μ μμ μ μ 770 cal/g.

2. ' (Absolute Bulk Strength-ABS)

(μ), ABS AWS μ . • $0,81 \text{ g/cm}^3$ 930 x $0,81 = 753 \text{ cal/cm}^3$. ANFO 1,36 g : μ μμ μ $1080 \text{ x } 1,36 = 1460 \text{ cal/cm}^3$ μ 770 x 1,25 = 963 cal/cm³. 3. (Relative Weight Strength-RWS) ' (Relative Bulk Strengthcartridge strength) (, 1997) RBS

2.2.2

Η , μ μ , μ μ • μ μ μ μ μ 3000-7000 m/s. μ μ μ μ μ μ μ . (Dc), (confined μ μ (unconfined V D), (Du), VD) D*, (ideal VOD). : μ μ Du =(0,70 0,80) Dc (μ μ , ,) μ

	Dc.		,				μ
μ		μ μ				(. 1997).
			, μ	μ		μ	μ
		,					
μ	μ	μ			•		μ
μ	μ			μ		μ	

•	•	•	I
		μ	(fps)
μ		(m/s).	

- :
- .
- µ
- µ µ
- µ
- •
- •
- µ
- µ .

2.2.2.1

- μ μ . μ μ μ μ μ μ μ μ μ μ μ μ 1500 m/s - -
- 7600 m/s μ μ 3000 m/s -5500 m/s.

•

, 2.4 , μ μ

() () Σχημα 4 (.2.4): () () μ (: ISEE, 1998).

Πινακάς 2 (. . 2.2): (: . . 1996)

	3	(m/s)
	(g/cm [°])	
ANFO 94% AN, 6% FO	0,86	4400
Slurry 49%AN, 20%TNT	1,40	5000
μμ μ 24% , 26%NG	1,50	6000
Slurry 48%AN, 15%AL	1,27	5000
TNT	1,56	6700
PETN	1,76	7600
RDX	1,70	8200
Composition B	1,65	7600

μμ μμμ μμμ (ISEE, 1998).

2.2.3 μ μ μ

μ μ μ μ μ μ μ μ μ 4 ½ 5 ½ μ μ , 3 1/2 μ μ, d 4/3 μ d, d μ μ μ μ μ , • μ μ μ

,μ μ μ μμ μ μ, μ μμ (,1997).

2.2.4

pd (detonation pressure) μ μ μ μ , μ μ • μ μ 150 kbar (500 5 μ μ μ • 15000 MPa) (Hartman, 1987) μ μ μ , (particle velocity) (μ , 1997). μ (explosion pressure, borehole pressure) μ μ

2.2.5

μ

(density of explosive) μμ μ μ μ . μ μ. 1.6 g/cm³ 0.8 μ μ , • (Jimeno, 1995). μ • μ , μ , μ μ μ μ ,μ .) (μ . , • μ . μ μ μ, μ (, 1997). μ μ , μ μμ μ) μ (μ μ μ μ , μ μ μ μ μ μ,μ μ. μ , μ μ , (, 1997). μ μ (1g/cm³), μ μ μ

						(water	resista	nce)		
						,	μ,			
μ				μ	μ					
		μ		μ		μ			μ	
No. 6 (, 20)09).								
Ň	μ	μ								
	,	μ	,	,						
		μ		,						μ
	12	(Jime	no, 199	95).						
		,				«				»
μ				μ			I	r		
	μ				μ					μ
	μ«	» (exc	cellent)).		μ	l			
μ		(slurrie	s).			,			μ
μ	,								,	
	μ	μ			μ					
(,199	7).								
		μ		μ						
	μ	μ		μ						
		•	μ		μ					
				,						
μμ	μ	μ					,			
μμ		·								
1			μ				•			
1.								μ	μ	
2	μ				п					
<i>-</i> . 3.					μ			(
- •).						`		

2.2.7 μ

1 kg		μ	μ	lt, 0°C.
μ	μ	500	975 lt/kg	

		μ		
μ	•	μ	,	
		(, 1979)

2.2.8

		(sensitivity)	μ		:
	(, μ,	,)	,	
, (,) (, 2009).	·	, μ	,

1.

					μ					
			,				μ			μ
		•			μ				μ	
							,		μ	,
					μ	(minimum b	ooster)		μ	
	,					. ,	μ			
		μμ					μ	μ		
				μ				μ		
		,							•	
μ	μ	μ					μ			
1 in µ			μ	μ		μ				
μ	•				μ			μ		
		4						μ	•	
μ				μ				μ		

•

,

No. 8,	,						(explosiv	es)		μ
(blasting age	nts).									
				μ						μ
							μ	l	μ	μ
	(air g	gap sei	nsitivity	<i>r</i>).			μ			
,		μ		()	μ	30	mm (1 ¼	in) μ		
μ	()	μ	l	μ					μ
	μ		μ		μ	(, 1	.997).		
2.										
							μ			
		μ	п	п				•		
	,	٣	٣	٣					a	2 kg.
u						,				0,
·		μ		,			cm		μ	
					(, 1979).	·	
2										
J.										
μ								μ		
			μ				μ			
		•				μ				
					μ	μ		,		
			μ					•		
					μ					
μ	•									
	μ			п		μ			μ	
BAM		•		μ		μ 11	μ	1		
		ш	μ			м 11	٢		م nisti)	D
u		٣				٣	ц.	u	(pist	
μμ		μ					r. ,	٣		
r. r.		50%					(pis	til load)		μ
μ			μ				A	μ		•
•			•							

, μμ μμ (0,95g 0,1g) , μμμ . . μμμμ

(, 1979).

2.2.9 μ

μ, μ, , μ μ μ μ.

μ.,

. slurries μ . μ μ μ μ ,

μ μ μ . μ μ μ μ μ . μ - (Katsabanis, 1996). μ μ

μ μ μ

μ μ μ μ . ANFO . μ μ μ (hot spots) μ

μ', μ μ μ.

26

,

μ

•

.

μ

μ

μ , μ (ISEE, 1998).

2.3

μ μ μ μμ μ μ, μ μ • μ μ μ , μ μ, μ . , , μ μ μ μ, μ μμ , 2001). (_ μ , , μ , μ , μ μ μ μ , μ μ μ (Kutter et al, 1971, , 2001).

,

2.3.1

μ μ μ 3000-6000 m/s μ μ μ μ μ μ , . (detonation pressure) μ μ μ 100% 0,5-20 GPa, 5-10 GPa, μ μ

3000-4000 °K. μ μ μ (= μ), μ μ μ μ , μs, μ μ μ , (Persson et al, 1994, μ , 2001). μ , μ , , 2001). (μ μ μ μ μ , μ μ, μ μ μ • μ μ μ . (coupling ratio, decoupling). μ μ μ μ , μ μ μ μ μ μ μ μ μ μ. μ μ μ (, 2009). μ μ μ μ, μ μ μ μμ μ . : 1. (crushed zone) (hydrodynamic zone). μ μ μ μ μ μ μ 1000 MPa (1,5x 10⁶ psi) μ. μ μ ,μ μ μ μμ . ,
		μ		,			μ	μ				
	μ.	μ			μ							
											μ	
	1 3×	d		μ	,	d	μ			μ	,	
	μ			μ	•							
2.	μμ	μ		(blast-	fractur	ed z	one,	cracke	ed	zone).		
								μμ		,		μ
	μ			μ		μ				•		
		μ	μ							μ		
				μ			μ	•				
			μ									μ
		μμ	μ,			μ			μ			,
			l	μ		μ				μ	•	
)			μμ	μ
	(severely	fractured	l zone)	,) μ		μμ	μ			(mo	derately
	fractured	zone).			μμ	μ					μ	
	μ		μ		(sh	ear fra	acturi	ng),		μ		
	μ	μμ μ	L	,	,						μ	
				μ								
	μ		(transit	tion zo	one),			μ				
		μμ μ	l									
3.		(elastic	zone,	seism	ic zoi	ne).					
	μ										μ	
	μ		μ					μ	(
	μ)	,							•	μ
							,					μ
					μ	, μ				μ		
	μ.	μ					μ			μ		
	μ									μ	•	
	,	μ				μ				l	u	μ
				,					:			
	•		μμ	μ	(least	fractu	red z	one)				
	• h	ι μμ	μ	(unda	amageo	l rock)).					

μμ

μ

μ μ μ

ΣXHMA 6 (.2.6):

^{(&}lt;u>HTTP://WWW.METAL.NTUA.GR/INDEX.PL/7D1D06D7 GR</u>).

<u> </u>							
Solid rock = μ		μ					
Blasthole =	μ						
Shock waves =		μ ()				
Reflected shocked	waves =	μ		μ	()
Tiny cracks = μ	μ						
Joints =	(«	»)	
Gases penetrated j	oints =						
Spalling rock =	μ	μ	μ				
Free face =		(μ)				

μ μ , μ μ μ μ μ μ . μ μ μ μ μ μ μ , μ μ μ , μ ,

, (spalling) (slabbing), µ Duvall Atchison (1957), μ μ μ . μ μ μ μ , μ μ μ μ . μ μ μ , μ , μ, μ

, 2001). (μ

2.3.2

,

μ μ μ μ (strain wave μ energy) μ μ (CO2, H2O, N2, O2, μ μ μ). 10-20% μ μ μ, μ μ μ • μ , μ . μ μ μ μ

μ μ μ μ μ μ (quasi-staticstressfield), μ , μ μ μ μ , μ μ μ μ μ • μ μ μ μ μ μ μ μ , μ μ μ μ μ μ , μ μ • . , μ μ μ μ μ μ μ μ μ • μ μ μ μ μ μ μ , μ (. . .). μ Roberts (Kutter and Fairhurst, 1971), (1981), μ μμ μ μ, μ μ, 6 μ. μ μμ μ 9 μ μ μ μ μ μ μ μ , μ , μ. , μμ μ μ , 2009). μ . (

μ

Σχημα 7 (. 2.7): (<u>http://www.metal.ntua.gr/index.pl/7d1d06d7 gr</u>)

2.4 μ μ μ . μ , μ μ:

 μ
 .

 μ
 μ

 μ
 μ

 μ
 ,
 (military)
 μ

 μ
 (commercial
 industrial)

•

(http://www.metal.ntua.gr/index.pl/7d1d06d7_gr)

2.

μ

μ

μ

μ

μ

μ μ . (low explosives, LE) μ , μ (μ μ μ , μ). μ (black powder), μ μ μ μ μ . μ μ μ , , (3000-8000 m/s). ,μ μ (high explosives, HE) μ μ (primary HE), (. .), μ μ , (secondary HE), μ (, ANFO, slurries) μ , 1997). (3. μ μ μ μ , 2009): (Ñ : μ μ μ μ μ , (primers). μ Ñ : μ μ μ , (propellants), μ μ μ . Ñ : μ μ μ , μ •

2.5

μ

	,	μ			μ	μ	(air blast)	
		(fly	rock eff	ect).				
			,				μ	
μ			μ	,	μ		μ	
	μ		μ			(CO,	NOx, .).	
		μ					μ	
			,	μ			μ	μ
						,	μ	
	μ	μ		μ			μ (μ
)μ			μ			μ	
	,						μ	
				(, 2001).		

2.5.1

μ (, μ) , μ (, 2009). μ μ μ μ μ

(. . . μ). μ μ

(., 2003, μ , 2012): • (V) μ

() μ μ . μ (PPV) μ μ . . mm/s.

μ μ μ μ μ . μ μ μ Hertz (Hz) (μ , 2012).

2.5.2 μ

 μ (air blast) μ μ

μμ (. μ). μ :

) (noise) 20 20000 Hz.

) μ (concussions) μ 20 Hz. μ μ μ

μ (, 2009): μ (μ) μ μ

μ • μ • μμ

μ, μ, μ, μ).

μ 140 dB (0,029 psi). μ μ , μ , μ μ μ

2.6

μ μ : 1. (commercial type explosives), μ μ μ (military explosives), 2. μ μ μ μ μ . μ μ μ μ μ , μ . , , .

μ , μμ , ANFO, slurries μ (emulsions). μ Cardox, μμ , μ

2.6.1 μ

μ μ μ . μ , μ.

,

μ

, (,1997).

: 1. (Low Explosives,L). . μ μ μ • μ μ μ μ μ μ μ μ μ • 2. (High Explosives,), μ μ μ μ . μ : 2. . μ . (primary explosives). . . μ μ μ • 2. . μ () . (secondary explosives). μ ANFO, slurries μ . . μ (μμ) , : μ 2. .1. (NG). μ μ : (straight dynamite) μ _ (gelatin dynamite) -(semi-gelatins) μ _ (ammonia dynamites) μ μμ μ ν μ μ

(dynamites).

22.		μμ	():	μ		μ			
		:								
	- ANFO									
	- Slurries (Gels)									
	- μ									
	- ANFO (Heavy ANFO)									
	- ANI	FO (Alui	mini	zed A	ANFO)					

- 2.6.2

74,0	-
-	71,0
15,6	16,5
10,4	12,5

							μ	μ	μ
μ					Cook (1974) :			
		2 a	3 +S +C	Ν	$a_2SO_4 + CO_2$	+ 2			(2.3)
	μ		Q = 9	910	kcal/kg,	μμ			n = 4,7
mole/kg			50%		μ	μ			
			μ						μ:
	2 a	₃ +S+3/2C	Na ₂ SO ₃	+3/2	$2CO_2 + 2$				(2.4)
			μ	Q	620 kcal/kg	n = 6	,9		
	2NaN	3+S+2C	Na_2S_4+2C	$O_2 + I$	N_2				(2.5)
			μ	Q	680 kcal/kg	n = 8	,9		
	2NaNC	D ₃ +S+3C	Na ₂ SO ₄ +2	CO+	-N				(2.6)
			μ	0	620 kcal/kg	n = 1	2,6		
			·		C				
	μ				μ				μ
				n•	0 11				
	п	,	μ	п	×μ				μ
	μ					, 11			
μ			,		(2 4)	μ (2.5)			
,	μ	650 kcal/k	σ (= 2720	k I/k	(2.+)	(2.3).		ko	0.6 kg
		ko	5 (- 2720	K57 K	5), 270			K8	0,0 Kg
		кg	•						
	•								
μ U									
μ		п			μ				
	·	μ			(1997)			
					X	, ->> ,)		П	
u	μ					5 sec		۳ μ	427
r. C	•	0.5	sec	510				с [.] П	
U U			500	510	Ξ,	M		۳ U	
r	۳ u	۳ Tr	auzl 1	.0%	,	,	μ	r. U	
	r	110	I			,	μ	μ	

μ μ μ 42,5% 45% . μ μ μ μ, μ μ 1997). μ , , .

2.6.2.1

ΣXHMA 8 (.2.8):

(: Dynonobel, 2003)

41

,

,

.

μ μ : $2KNO_3 + S + C$ $K_2SO_4 + CO_2 + 920$ kcal/kg (2.7)300 C μ μ μ μ μ μ μ μ μ μ μ μ μ 180-600 m/s. μ μ μ μ μ μ μ μ . μμ μ. μ (Dynonobel, 2003)

.

2.6.2.2 μ . μ μ

μ 5 cm, μμμ μ μ 20 cm. μ μ 29 mm 50 mm.

 μ 1,65-1,75 g/cm³

(, 1997)

2.6.3 μ μ μ μ μ , (NG). 1,6 g/cm³ μ μ μ . 13,2°C μ 145°C. 15° C μ 42

(, 1997).

μ

Σχημα 9 (.2.9): μ μ

2.6.3.1 μ

		μ	μ,	Alfred Nobel μ		
μ		NG		,		
				"μ",		
	μ	Nobel (μ Guhr).	μ		
		μ	15% μ 60%	,		
	μ		NG	(60/40).		
		μ 40%	:			

40 %
44%
2 %
14 %

2.6.3.2

NG μ μ, μμ , , μ μ . 20% μ 60%. , μ μ μ , (2100-6000 m/s) , μ μ μ • μ , μ 30% μ. μ μ : =1,38g/cm³, NG μ μ Q=1180 kcal/kg (=4939 kJ/kg), μ

 $=3200^{\circ}$ C, , D = 4000 m/s 870 lt /kg.

μ 40% :

	26,2 %
	0,4 %
μμ	8,5 %
	49,6 %
	5,6 %
	0,8 %
	8,9 %

2.6.3.4 µµ µ

μμ μ μμ . μ NG μ .

μμ	μ	40%	1
		14 %	
μμ	ı	36 %	
		33 %	
		1 %	
		1 %	
		6%	

	μμ	μ	,				,			
				μμ	,	μ			,	μ
		,				μ			•	
	μ						μ	•		
μμ	μ		μ	65%			μ			
			,				μ		1500)

5100 m/s (, 1997).

2.6.4

μ μ. μ , μμμ CH₄ 6-16% μ μ , , μ 1 sec μ 10 sec 650 C μ 1000°C. (NaCl) μ μ μ μ . μμ μ • $100-200 \text{ g/cm}^3$, μ μ •

2.6.5 ANFO

μ μ μ μ 1955 µ μ Lee Akre , Le Clar 1956, μ μ μ 50% 1994 78%. ANFO, μ , . (μ μμ μ)μ μ μ μ μ μ (1.2)980 lt/kg μ μ μμ , ANFO. μ μ μ μμ ANFO μ μ μ , . μ ANFO μ 25 30 kg. ANFO μ μ : , μ μ μ μ . , μ μ μ . μ μ μ . : , (2.8) $_{4}N_{3} + _{2}$ 3 + 4 μ μ μ • ANFO, μ ,

, :

•								μμ ,				
								•				
•					μ							
	ANFO		μ						,		μ	
		•	μ						AN	FO		,
				μ				•				
		μ			,							
	,	μ			μ			μ			μ	
•	μ					μ		32-38	°C		μ	
μ							4	6	,	μ	μ	
43 °C,					2-4	(, 199	7).			

2.6.6 Slurries

	S	lurries,					water gels			
gels		μμ	l				μ	μ		
	. Cook	1956	μ	Nob I	Lake Mir	ne	Labrador		Iron	
Ore	Company	of Canada	a,		19	959		. Coo	k	
μ	Pilo	tac Mine	Me	sabi Range			Minnesot	a.	μ	
				,						
	10	1	960	μ	,					
μμ	ı	slurries,					μ		μ	
	μ	μ		μ			,	,		
	μ									
	μ		,							
	μ				μ			ANFO		
	μ.									
	slurri	es		μμ,					μ	
(μμ			μμ),	μ μ	l	
		(,	,	,	μ	μ,	μ			
	.),				(sens	sitiser)),	μ		
,			5	30% µ	μ			15%.		

) μ μ (μ () μ μ (μ μμ). guar), μμ (. . :) μ μ ,) μ μμ) μ) μ • μ slurries, μ μμ , μμ μμ , μ μ μ μ μ μ μ μ . :) μ ,)) μ μ μ μ μ . slurries μμ , μ μ slurries μ • μ (flakes granules) , μ slurries, slurries μ μ μ . slurry. μ μ μ , (30 - 50 mm) slurries μ μ μ μ . , slurries, . . . (slurry blasting agentsμ , SBA) µ μ μ,

	μ				
				slurries	μ
μ,				:	
		:		D = 3500-5800 m/s (4400)
		:		$P_d = 70-120 \text{ kbar } (48)$	
		:		= 1,05-1,6 (0,86)	
	μ	:		: $Q = 600-1200 \text{ cal/g} (880)$	
			,	: $Q = 700-1500 \text{ cal/cm}^3 (75)$	6)
		:		V = 3,1-4,2 mole/g (4,4)	
				$V = 3,9-5,3 \text{ mole/cm}^3$ (3,8)	
		μ		st	andard

ANFO.

2.6.7 μ

			l	μ	(6	emul	sions	5)		μμ					h	ιμ	μ	
	,					μ	l		μ		(μ	μ		
).																	
					μ	,				μ			,					
		μ					μ			μμ	μ	μ						
								μ						μ	(μ	
)										(pa	raffin	wax))	μ	μ	μ	
	•					μ				μ					μ			1
	10						μ	μ				h	l				μ	
	,									. 2.1	0			μ	l			
μ		,		μ	μ			μ					μ		μ	μ		
							μ		0,0	02- 0,1	μm				μ		,	
										(μμ		ł	J)	μ	•	
						,		,	μ							(
)				1	%			μ		μμ					
				(, 1	1997)).									

μ μ:

μμ	60-80%
	10-12%
	1%
	4-6%
	2,5-5% μ 40-70 μm

		,	μ	μ		μ
μ	μμ				μ,	
	μ			μ		
	μ	,		μ		
		(, 1997).			

2.7

		μ	
	(initiation).		μ
	μ μ	μ :	
•	μ		
•	μ μ		
	μ	μ	:
•	μμ	μ	
	μ	()	
•	μμ	μ μ	
		, (μ , ANFO,)	
		μ:	
•			
•			
	μ		
	μ μ	μ (shock wav	e)
	μ:		
1.	μ		
2.	μ		
3.			
4.	μ Nonel		
5.	μ Hercudet,	μ μ	μ
	μ.		

Πινακάς 4 (. 2.4):

(: ,1997)

(Instant)		
(Instant)		
	(msec)	
(Delay)	(1/2 sec)	
(Fuse and caps)		
	μ	
(Detonating cord)	(msec connectors)	
	(msec)	
(Detonating cord and caps)	(1/2 sec)	
	. Noral	(msec)
μ (Flash thru caps)	µ inonei	(1/2 sec)
	μ Hercudet	(msec)

2.7.1 μ

2.7.1.1 μ

		,				,
	0,78 g	•		6,	μ	
				0,35 g		
μ		(35 mm)	(, 199	7).	
		μ		100	μ	

μ μ .

2.7.1.2

		(safety	ignition	fuse)	μ	μ	
		μ					
		Willian	n Bickford	d 183	1		μ
	. μ	μ					,
			μ	μ			
		μ		μ	4	5,5 mm	•
					μ	KNO ₃	1
NaNO ₃ .				μ	μ	μ	
		μ					
		μ					
			,				
μ		,		μ (, 1997).	
μ				μ		90	S
130±10 s µ		μ		μ	±Ĵ	10%	
				,			
				μ			,
		•		μ			
,	μ	μ		μ			
μ							
μ						(,
1997).							
			μ				100,

250 1000 m μ

2.7.1.3 μ

•

μ μμ μ (Limiting cord distance). μ μ μ μ μ μ μ μ μ. μ μ • μ μ μ , ft (30 cm), $100~ft~\mu~~50$ 100 μ • 1000 µ μ .

2.7.1.4

((detonating cord)) μ μ mm, • μ μ μ , μ . (. . PVC) μ . μ μ μ μ μ , μ . $7.000 \text{ m/s} \pm 200 \text{ m/s},$ μ μ μ μ μ (, 1997). μ μ μ μ μ μ . () μ μ . μ μ μ , 1997). (

					μμ				
	,	g	(1	= 0,065 g)		μ	•		μ
		μ							μ
μ	1,5	g/m	400 g/m µ					10	12 g/m.
			μ	5-6 mm					50-60
		ft,							

ΠΙΝΑΚΑΣ 5 (.2.5): μ , μ ,

				μ
	μ	μ		
	mm	kg/cm	m	
3 g/m	3,5	100	750	μ. μ
6 g/m	4,0	100	500	μ
12 g/m	4,5	100	250	μ NG μ
20 g/m	6,0	100	200	μ
40 g/m	1,3	100	100	μ
100 g/m	12,0	100	50	μ,)
	6,0	>150	100	
μ	1,0	>150	100	μ
	1,5	>150	100	

12 g/cm, μ μ , μ μ μ . NG. μ μμ • , μ μ

(controlled blasting) μ , 1997). (μ μ μ . , μ μ μ μ • ,

(, 1997). (reinforced type), μ μ μ μμ (down line) μ , , 1997). (μ μ (plastic wire countered) μ μ •

,

μ μ 2.5 • μ , μ μ (, 1997). μ 0 : • μ • μ μ μ μ ٠

() μ μ • ,

	μ	μ			μ	
		(Alr blast).	μ			
						μ
μμ	,			μ		
(, 1996)					
	μ				50	500 m

2.7.1.5 μ NONEL

	μ				Per-Anders
Persson		1960			Nitro
Nobel	Gyttorp				
	,			μ.μ	μ
μ	μ	L		NON-ELectric.	
	μ	L	μ	:	
1.	(L GT detonate	or),		
	(),		. 2.13.		

Σχημα 13 (.2.13): L μ (: Dynonobel, 2003).

2. μ (connectors connector blocks) L.

			μ				,				
			,				μ		(single	con	nector
GT1)		(tw	in con	nec	tor GT2)					,	
		. 2.13.						μ			μ
	μ				L	μ					
	L		μ				μ				
	μ	μ									
	Lμ	μμ									
3.	μμ										
	L,										
					μ		L				
					·						μ
		0,02	g/m			ŀ	ιμ (=Homo	ocyclo	onite=
	μ		μ		,μ	C_4H_8N	ν ₈ Ο ₈ μ).		
							μ				
μ							μμ,			μ	
	μ					μ	μ				2100
m/s.	μ										
μ					•	NONEL					
		3L			μ	3 1	mm,				3L
D (H	eavy Duty) µ	ı			μ	3,7mr	n.				
μ		μ		1,2	mm.						
											μ
	l	μ				μ					•
		μ							μ	μ	
		,			μ						
		μ			μ				μ		
				μ	(25 kg	Ļ	ı	20) C	15	kg
μ	70 C)					μ					
	μ					Ļ	ιμ.				μ
						μ	,				L
	(D	ynonob	el, 200	3).							
							μ			μ	45
											61

95 mm, • μ μ , , μ μ μ $(C_{3}H_{6}N_{6}O_{6}).$ μμ . , μ μ , D (4.727.808) (Dynonobel, 2003). μ : NONEL MS, NONEL L NONEL LP. UNIDET μ $\,$ NONEL MS and NONEL UNIDET $\,$ μ μ. μ • μ μ μ , μ μ μ μ . 50% , μ μ μ. μ μ , 1/3 μ μ μ μ 10 ms μ μ 30 ms μ μ μ (Dynonobel, 2003). μ Lμ μ μ μ μ μ . μ μ μ , μ . (5) 3 mm μ μ (4) 3,7 mm (D) (2) μ μ D (3) μ . μ μ, μ μ , μ μ . 2.14. ,

μ L, μ μ NONEL (Dynonobel, 2003).

,

μ

.2.14): Lμ Σxhma 14 (μμ μ μ : DYNONOBEL, 2003). (μ L μ : μ 1. 8 6 2.15 . L, μ 5 m μ μμ , μ μ μ μ NONEL. Lμ μ μ μ NONEL. μ μ 2. (DynoStart blasting machine) . 2.15 . L, μμ μ μ μμ μ , μμ , ,

NONEL (Dynonobel, 2003).

Σχημα 15 (.2.15): μμμ L:)μ)μ (: Dynonobel, 2003).

2.7.2 μ

(electric initiation), μ μ μ , μ μ •) ((stray currents). μ μ μ , μ μ μ, μ μ , μ μ • , (Dick et al, 1983). μ
2.7.2.1

				(s	quibs)		μ		
		μ	μ	22	2 mm,			μ	
μ	μ			μμ					
		,			μ		μ		μ
						μμ		,	
	μ				μ,	,			,
					•				
	μμ								
μ	,					μ			
				μ	,				,
	μ		μ				•		
			μ	μ,	μ		,		
	μ,								
μ			,						
	(, 1997).						
	D	Pont				μ			
	μ	4, 6,	8, 9, 10	12 ft	. μ				
μ			50 μ				10	•	
2.7.2.2									
			(el	ectric bla	sting cap	s	caps))	
				(non-dela	y electri	c blasting	g caps)		
μ		(dela	y blasting	caps).					
	:								

. 2.16, μ μ μ 6,5 mm μ 4-5 cm μ μμ

•

. 2.17.

•

65

,

Σχημα 16 (.2.16): (: Dynonobel, 2003).

	,	μ	μμ		(flas	h charge),		
	μμ	(ignition	n mix	ture).		μμ		(primer
charge),				μ				
	μ		μ					μ
					μ			
	μ				(TETRYL	RDX	μμ
),		μμ			μμ	(, 19	97).
	μμ					μ	μ	
μ μ	(bridge win	e)		μ		μ	•	
		μ	μ					
	μμ,			•				μμ
,	μ	μ				μ		
μμ								

• μ (insensitive)

μ 8 6, 0,78 g μ

μ

(highly insensitive) µ μ • μ . μ μ μ μ , (, 1997). 1,2 m μ 100 m. μ μ μ μ , μ . μ • μ μ μ μμ μ (delay element). μ μ μμμ μ • . 2.18 μ μ . 2.19 μ μ μ , μ μ , , 5 cm 10 cm, μ μ , . μ

MS L. U... $LP \mu \mu 1-12 \mu \mu \mu 500 \text{ ms.}$

Σχημα 18 (.2.18): μ μ Dynonobel (: Dynonobel, 2003)

_			
1.0			The second second
1		11	
2		111100000	(N 111111111)
3		111	Similie
4		interer contraction	
5	100		~
6		11=++++++	🤍 🕬 🕬
	i a	111111111	
8		11-11111	
9		110000	
10			
11		111	
12			
	and the second	111-11-11	
13			
14	and the second sec		
15		·····	
16			
17		111/2~~~~	
18	A DESCRIPTION OF TAXABLE		

μ μ μμ. μ (excitation time).

μ (, 1996).

2.7.2.3

,

μ,

Nitro-Nobel

.

ΣXHMA 23 (.2.23): μ (: , 1997)

.

,

μ μ • μ μ μ , $\mu \ NG \ \mu$ μ . μ μ μ μ μ • μ , NG, • μ μ, • μ μ μ μ μ . μ μ • (ISEE, μ , 1998). μ μ , μ , μ , , μ , μ μ , , μ μ μ • , ANFO slurries μ μ , , 1997) (μ μ μ μ μ, μ μ μ • μ μ μ μ μ μ . μ μ μ , ,μ μ μ , μ . μ, μ μ μ. μ

μ μ (ISEE, 1998). μ (fume μ μ , rating class) μ μ μ μ . , μ , . . , , 3 : , 0,16 ft³ • 200 g. 1 ¼ x 8 in 0,16 - 0,33 ft³ μ • 200 g. 1 ¼ x 8 in 0,33 - 0,67 ft³ • 1 ¼ x 8 in 200 g. 1 μ, μ 2.

. ,

2.8.1 μ μ

μ μ μ Bichel Crawshaw-Johnes, μ μ Ardeer Tank, μ. μ μ μ μ Bichel, 200 μμ 15 μ μμ μ • , (ISEE, 1998). μμ

μ μ

. μ μ μ ANFO μ , μ μ μ • μ μ μ (ISEE, μ μ μ , 1998).

μ μ μ μ μ μ μ μ • μ • μ μ , μ μ μ μ μ μ μ . μ , (ISEE, 1998). μ

3

(V D)

3.1

			(Velo	ocity	of Detonati	on-	VoD)			μ
			μ		μ	μ	μ		•	μ
			μ							μ
	μ	μ								
μ			μ	μ	2.500		7.000 μ			•
						μ				
μ		μ			μ					
					, μ			μ		
	μ						μ.			
					μ					
	:									
1.	μ		μ							
2.		μ	μ							
3.			,							
4.	μ									
		μ	VoD							
μ								μ.		μ
		μ						μ	(1990).	
		,				h	l			
						Vo	рD			
μ		I	u				μ		μ	
μ	•			μ		"Co	ontinuous	s Probe M	ethod".	
		μ			μ,					μ
		•	μ							
	μ		μ			ŀ	u			

μ μ μ μ • μ μ μ μ • "nichrome" μ μ μμ μ μ μ •). (μ μ μ μ (μ , Ohm.). μ μ μ μ μ , μ μ μ • μ μ , μ μ μ μ μ μ , μ μ μ. VoD μ μ VODR-1 VODR-1. μ μ RADAR μ μ μ μ μ μ μ μ VODR-1 μ μ μ μ μ μ μ . μ μ μ . μ V D (Chiappetta, Vandenberg & Pressley (1992). μ V D μ μ ,μ μ Chiappetta & Vandenberg (1990). , μ V D μ Moxon et al (1991). μ μ VoD Chiappetta, Vandenberg & Pressley μ μ . (1997) μ μ μ VoD. VoD μ μ μ μ

3.2

3.2.1 µ D'Autriche

μ		μ		,	μ
		μ			
	μ		μ		(VD).

(a)	μ		•		(VDe)
		:			

$$VD_{e} = \frac{VD \cdot d}{2a}$$
(3.9)

: VD =

μ μ μ μ μ. μ μ μ (ISEE, 1998).

3.2.2

μ μ μ μ μ μ μ (1 ft) μ 1 μ μ • 1/10.000 0 μ μ • μ μ 1/10.000.000 (0,1 µs). « « **» »** μ μ μ . μ μ μμ , μ μ μ • ,

μ. μ . μ μ μ μ μ μ μ μ . (ISEE, 1998). μ μ μ μ μ 0 . μ μ μ μ μ μ μ μ

. μ μ μ (d). .

$$\mathbf{VDe} = \frac{\mathbf{d}}{\mathbf{t}} \tag{3.10}$$

μ μ [,] μ μ μ . μ μ μ (Jimeno and others, 1995).

3.3

μ μ μ μ . μ μ μ μ .

3.3.1 µ

μ μ μ μ μ μ μ μ μ μ. , μ μ. μμ μ • μ μ μ μ . μ . , μ μ μ μ μ • (rotating mirror camera) μ μ μ μ μ μ μ (. 3.26.) μ μ μ μ μ μ, μ μ ,

μ 24. μ μ μ .

Σχημα 26 (.3.26): μ μ μ (: Cordin, 2003)

μ , μ , μ , μ . μ . μ μ μ μ μ μ Cordin Scientific Imaging :

μμ (200 μμ) μ , 96 μ (Cordin, 2003)

3.3.2

μ μ μ), μ (μ μ μ • μ , μ μ μ μ μ • , μ μ . μ μ • μ μ μ . μ μ μ μ μ • μ μ μ μ μ μ • μ μ μ • (ISEE, μ μ 1998).

,

3.3.3 CORRTEX

μ μ μ μ μ

μ	(CORRTE	EX	(Continuo	us Refle	ctometry	for	Radius	Vers	us Time
Experiment	s),					μ				μ
Nevada					μ.				μ	μ
		μ						μ		-
μμ	l			-	μ		μ		μ	
μ				μ						
						μ		μ		μ
				μ	μ	τ	J,			
μ	μ			, μ						μ
	Ļ	ı	μ					μ	μ	μ
		μ								
		μ			μ					
То	μμ	μ			μ	μ			μ	
μ				μ				μ		μ
μ										μ
μ										
μ					μ			•		
μ		CORRTI	EX			μ				
μ						μ,				
	•									
			μ		μ					
μ	(ISEE	E, 1998).								

3.3.4 SLIFER

μ	SLIFER (Sh	orted Location	Indication	by Freq	uency	of Elec	trical
Resonance)				Sandia			
μ		μ			•		
μ			μ	μ		μ	•
	μ	μ	μ	,			
	μ						

μ μ • , μ μ μ μ μ μ , μ • μ μ μ μ μ μ μμ μ μ μ _ . SLIFER µ (50-75 μ μ ohms). μ μ μ μ (ISEE, 1998).

,

3.3.5 μ μ μ μ μ , (V D) μ, μ μ μ • μ, μ μ VoD. μ,μ μ μ μ μ, μ μ μ . μ , μ μ μ μ .

,

μ, μ μ μ μ

. μμμμμμ μ,μ

, μ μ, μ. , μμ μ

. ,μμ,μ μμ,μ μ,μ

μ,

μ μ μ μ μ , « » μ.

μ. μ μ , μ μ μ. , μ μ

μ ,

Eikona 1 (.3.1): 10 mm (0,4 in) x 10 cm (3,9 in) . μ μ (.3.2),

Eikona 2 (. 3.2):

μ μ μ (3.3).

Eikona 3 (.3.3) :

Eikona 4 (.3.4):

· · ·

	μ	μμ		μ	
	μ	μ		μ	•
				μ	
μ					
				μ	μ,
	μ	μ		,	μ
	μ VoD	/	μ.		

μ, μ μ μ . , μμ , . - / , , , . .

μ

•

μ

92

μ

μ μ μ μ μ μ

μ

4.1

μ

•

μ

•

•

.

ΣXHMA 28 (.4.28):

. .

4.3

#1

27.02.2015. μ μ 4.6

Πίνακας 6 (Πίν. 4.6): Στοιχεία ανατινάξης # 1

μμ	20
μ μ, mm	115
μ, m	17
, m	1
, m	4
μ, m	5
μ , m	4
$\mu \mu / \mu$ (μ : 2 $65*500$), kg	5
$(ANFO - \mu), kg$	100
μ / μ kg	-
(μ (12g PETN/m), m.	18
(1

μ μ 21.05.2015.

4.7

Πινακάς 7 (Πιν. 4.7): Στοιχεία ανατινάξης # 2

μμ	12
μ μ, mm	115
μ, m	33
, m	1
, m	4
μ, m	5
μ, m	4
$\mu \mu / \mu$ (μ : 2 65*550), kg	5
$(ANFO - \mu), kg$	225
μ / μ (μμ : 2 65*480 - μ), kg	3
/ μ (Nonel 500ms-36m), μ.	1
(1

μ μ 28.05.2015. 4.8

Πίνακας 8 (Πίν. 4.8): Στοιχεία ανατινάξης # 3

μμ	18
μ μ , mm	115
μ, m	33
, m	1
, m	4
μ, m	5
μ , m	4
$(\mu \mu / \mu / \mu \\ \mu : 2 65*550), kg$	5
$(ANFO - \mu), kg$	225
μ / μ (μμ : 2 65*480), kg	3
/ μ (Nonel 500ms-36m), μ.	1
/ µ (), µ.	1

						μ	ļ		μ		μ
		В	laster's Ra	anger Mo	del R	A500	CS-O,	S/N	R081	255X	
MREL	Ltd.	Canada.	μ							,	
μ		μ		μ					,		
							μ				
	μ			μ		5	00 fps	(fra	mes p	er secon	nd)
μ		μ									
			μ				μ				
			30 fps.								
	#.	<u>1</u>									
		#1	μ				μ		27.0	2.2015	
		μ									μ
					h	ı		125	fps.		
			:								
video_1	25fps	_270220	15_Larsin	osAthiki	aQua	arry.w	vmv				
	DVD					μ				•	
								μ		μ.	
									μ		μ
	μ	(«	μ	»)	μ		μ	,			
	μ		μ		μ			μ			
		μ	(2).					
			μ	μ			μ				
	12	g PETN/1	n.								
	<i>4</i>	n									
	# .	<u> </u>									
		#2	μ				μ		21.05	5.2015	
									μ		500
fps.				:							
video_5	00fps	_210520	15_Larsin	osAthiki	aQua	arry.w	mv				
		DVD				μ				•	

,	# 2		μ	μ μ
30 fps,				:
video_030fps_21052015_Larsinos	AthikiaQu	iarry.wmv		DVD
μ				
				μ μ.
,			12	
μ				Nonel (
, μ 12				
μμ	Non	el		
).			μ	μ
(µ)	μ	μ		(ANFO),
μ μ	μ		μ	(
/		ш	μ U	
u).		٣	٣	
μ		μ		
,				μ
μ				
μμ	μ			
μ μμ				
μ	•			
,				
μ μ	μ	(«	μ»)	μ
μ (μ	μ	μ	μ)
μ μ	None	1.		
#3				
#3 u		u	28.05.201	5
		P	L	ι 500
fps.	:		·	
video_500fps_28052015_Larsinos	AthikiaQu	iarry.wmv		
DVD		μ		
				μμ.

, 18 Nonel ($\mu \mu$ μ μ μ). () μ μ μ μ μ (ANFO) μ μ μ . μ μ μ , μ μ μ μ • μ μ μ μ . , μ (« μ») μ μ μ) μ (μ μ μ μ Nonel. μ μ

4.5

μ μ HandiTrap II, S/N 149 µ μ μ 1 MHz MREL Ltd. Canada. μ μ μ , μ μ μ, PROBECABLE_HT 326 +/- 6 ohms 30m, μ • HandiTrap II μ DAS – Data μ μ Acquisition Suite Ver. 1.0.0.0 . μ μ μ μ μ μ μ μ μ « **»** μ μ μ # 1 μμ •

				μ				,
μ		μ						μμ
	RG-58	8/U		μ				μ
	Handi	iTrap	II.					
	<u>#1</u>							
			μ					
	μ μ. 4.5					μμ		
			(original	graph).				
			-		13m			μ
μ								μ
μ			μ	μ		μ		
			μ	ANFO	μ	μ	(μ	μ
17m -µ		μ	$4m = \mu$	μ	13m).			
	μ							12g PETN/m
				ANFO	ļ	μ	μ	μ
	μ			•		μ		
μ			μ	μ				
		μ	- ANFO.			μ		
MREL I	.td.			μ		μ		

Πίνακας 9 (Πίν. 4.9): Μετρήσεις ταχύτητας εκρήξης διατρηματός της ανατινάξης 2

μ μ (m)		(m/s)
0 – 1.10	μ	5787
1.10 – 5.30	ANFO	3998
5.30 - 9.50	ANFO	3936
9.50 – 18.00	ANFO	3825
18.00 - 28.00	ANFO	3734
28.00 - 29.00	ANFO	3745

VOD # 2 (V D ORIGINAL

				μ	(Al	ΝΓΟ), μ				
	μ	μ		,	4	000 m/s,			μ	μ
	μ	μ	μ	μ	3745	5 m/s	ŀ	L		
	μ.				ANFO)	μ			μ
μ	μ	Ļ	ι μ		200) mm		μ		
		ANF	O (EXTRA	ACO S.A	A .)					ANFO
			3000 m/s,			μ		μ	μ	
	μ		μ	μ	. μ					
	ANFO µ				μ		μ	(4.8).

Είκονα 8 (Είκ. 4.8): Μεταβολή της ταχύτητα εκρήξης του ΑΝFO σύναρτησεί της διαμέτρου του διατρήματος στο οποίο γομώνεται.

#3

 $\mu \qquad \mu \qquad 4.9 \qquad \mu\mu$ (VoD Original Graph). $\mu \qquad DAS - Data Acquisition Suite \mu$, μ

	μ	,			μ	μ	(
4.10).			μ	μ		4.9.	

```
Πινακάς 10 ( . 4.10):
```

#3

μ μ (m)		(m/s)
0 – 1.10	μ	5916
1.10 - 6.50	ANFO	3973
6.50 - 18.00	ANFO	3847
18.00 - 29.00	ANFO	3730

EIKONA 10 (. 4.10): V D (V D GRAPH – V D_VALUES) – #3 ,

μ μ # 3 μμ μ μ # 2 μ μ μ μ . # 2. μ μ μ μ #3 ANFO, μ μ μμ 65*480 #2 (ANFO). μ μ μ μμ .

5.1

μ μ μ μ μ, μ :

1. # 2 # 3, μ (state-of-the-art). (μ μ) μ , Nonel μ μ μ • μ μ μ , », μ μ « μμ μ ,

μ μ μ μ. 2. #1, , ,

μμ, μμμ , μμμ. , 12g PETN/m μ ANFO μ μμμ.

μ μ #1. **3.** μ μ μ, μ

,

ΠΙΝΑΚΑΣ 11 (.5.11):

EXTRACO SA

EVELICITIES & VINIES DOCONTA

ENFIN TIM & ANNING THE DIDNIN		
COMMERCIAL NAME TECHNICAL NAME	AUSTROGEL GI EKPHKTIKES YAES, TYTIOY A	ΕΜΠΟΡΙΚΗ ΟΝΟΜΑΣΙΑ ΤΕΧΝΙΚΗ ΟΝΟΜΑΣΙΑ
IN-number	0081	ΑΡΙΘΜΟΣ UN (ΗΝΩΜΕΝΩΝ ΕΘΝΩΝ)
ADR item	40	ΕΙΔΟΣ ΣΥΜΦΩΝΑ ΜΕ ΤΗΝ ΑDR
DIVISION/COMPATIBILITY GROUP	1.1 D	ΟΜΑΔΑ ΕΠΙΚΙΝ/ΤΗΤΑΣ-ΣΥΜΒΙΒΑΣΤΟΤΗΤΑΣ
DENSITY	1.5 gr/cm ³	ПУКНОТНТА
RELATIVE WEIGHT STRENGTH	85 %	ΣΧΕΤΙΚΗ ΚΑΤΑ ΒΑΡΟΣ ΙΣΧΥΣ
STRENGTH (TRAUZL LEAD BLOCK TEST)	380 ml	IEXYE (TRAUZL LEAD BLOCK TEST)
BRISANCE (HESS TEST)	18 mm	ΘΡΑΥΣΤΙΚΟΤΗΤΑ (ΜΕΘΟΔΟΣ HESS)
VELOCITY OF DETONATION	6.000 m/sec	ΤΑΧΥΤΗΤΑ ΕΚΡΗΞΗΣ
Τα παραπανώ χαρακτηριστικά αποτελούν μεσούς όρους, όπω Theoretical - Experimental Calculations	ς αυτοι εχουν προκυψει απο τις μεχρι σήμερα μειρήσεις	Οι τημε, αυτές, μεσρεί να υπορογισμοί - Πειραματικές Μετρήσεις
Theoretical - Experimental Calculations		Θεωοητικοί υπολοπσμοί - Πειοαματικές Μετοήσεις
OXYGEN BALANCE	+4.0 %	ΙΣΟΖΥΓΙΟ ΟΞΥΓΟΝΟΥ
ENERGY OF EXPLOSION	995 Kcal/Kg	ΕΝΕΡΓΕΙΑ ΕΚΡΗΞΗΣ
GAS VOLUME	890 lt/Kg	ΟΓΚΟΣ ΕΚΡΗΚΤΙΚΩΝ ΑΕΡΙΩΝ
EXPLOSION TEMPERATURE	3490 °C	ΘΕΡΜΟΚΡΑΣΙΑ ΕΚΡΗΞΗΣ
FRICTION SENSITIVITY	≥36 kg pistil load	ΕΥΑΙΣΘΗΣΙΑ ΣΕ ΤΡΙΒΗ
IMPACT SENSITIVITY	≥0.2 kp m	ΕΥΑΙΣΘΗΣΙΑ ΣΕ ΚΡΟΥΣΗ
HEAT SENSITIVITY	Limiting diameter: 14 mm	ΕΥΑΙΣΘΗΣΙΑ ΣΕ ΘΕΡΜΟΤΗΤΑ
	Time until ignition: 10 sec	
	Time of combustion: 0 sec	
Decomposed ad user Within twalve (12) months from the de	the of manufacture	

ied use: Within twelve (12) m

Προτεινόμενος χρόνος για ασφαλή χρήση: Μέσα σε δώδεκα (12) μήνες από την ημερομηνία παρασκευής.

Storage conditions - Συνθήκες αποθήκευσης The product is an explosive and therefore, must be handled, stored, and transported according to the local and International rules.

Το προϊόν είναι εκρηκτική ώλη και για το λόγο αυτό πρέπει να χρησιμοποιείται, να αποθηκεύεται και να μεταφέρεται σύμφωνα με τις εθνικές και διεθνείς συμβάσεις.

Keep it in a dry, cool, well ventilated, authorized place, away from sources of heat, flames, ignition and direct sunlight. Διαπρείτε το προϊόν σε ζηρό, δροσερό και καλά αεριζόμενο χώρο, εγκεκριμένο από τις αρμόδιες αρχές, μακριά από πηγές θερμότητας, φλόγας, εναυσματικά μέσα, και ηλιακό φως.

Keep it locked up.

Το προϊόν πρέπει να φυλάσσεται πάντοτε κλειδωμένο.

Do not store the product with detonators in the same magazine.

Μην αποθηκεύετε το προϊόν μαζί με πυροκροτητές στην ίδια αποθήκη.

Store the product in original case only, up to +32 °C.

Αποθηκεύετε το προϊόν εντός της αρχικής του συσκευασίας μόνο, σε θερμοκρασία μέχρι +32 °C.

Explosives and Blasting accessories must be used by skilled personnel only.

Οι εκρηκτικές ύλες και τα ενανσματικά μέσα, πρέπει να χρησιμοποιούνται μόνο από το κατάλληλα εκπαιδευμένο προσωπικό.

1.	$0,8 \text{ g/cm}^3$
2.	480 MJ
3. (μ)	3000 m/s
4.	925 kcal/kg
5. μ	970 lt/kg
6. μ	2620 C
7.	360
8.	50 J
9.	2,5 mm
10. µ	42 mm

μμ μ,μ μ μ μ .

μ

μ.

5.2

II. μ . III. Nonel μ μ μ • IV. μ μ ANFO, μ μ , μμ μ μ μ μ •

1.	Dick, 1973 (_		μ		
).					
2.	–		μ			
3.	, ., μ	II ()			
	μ,		, , 1996.			
4.	Hartman, 1987 Introductory n	iining engineering	r			
5.	Jimeno and others, 1995 Dril	ling and Blasting	of Rocks (1995)			
6.	, ., 2009.		,			
	, .					
7.	Clark G.B., Principles of Rock	Fragmentation, Jo	ohn Wiley and Sons,	,		
	New York, 1987					
8.	Cook M.A., The science of Inc	lustrial Explosives	s, Ireco Chemicals,	Salt Lake		
	City, Utah, 1974					
9.	Cook M.A., The science of	f High Explosives	, ACS Monograph	No 139,		
	Reinhold Publishing Co., N.Y	., New York 1958	8			
10.	μ,					
	μ . 457-466	2000				
11.	. μ , ., 2012.	μ				
12.	. , ., 1979.	,		μ		
	, ,					
13.	. , ., 1997.			,		
	μ 1,	μ				
14.	. , ., 2001.			,		
	μ 2,	μ				
15.	15. Chiappetta, R.F., Vandenberg, B. & Pressley, J.R. 1997. Portable,					

multi-channel and continuous velocity of detonation recorders, Seventh High-Tech Seminar, BAI Inc., Florida, USA: 787-865.

http://www.metal.ntua.gr/index.pl/7d1d06d7 gr