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Abstract

This thesis presents the use of the continuous adjoint method, developed by the

Parallel CFD & Optimization Unit of NTUA in the OpenFOAM environment, for

the shape optimization of a passenger car defroster nozzle, including experimental

validation performed at Toyota Motor Europe (TME). The defroster nozzle plays a

major role in the demisting–defogging of the windshield, by blowing high velocity

hot air jets supplied by the HVAC (heating, ventilation and air conditioning) unit

of the vehicle.

Since the basic performance requirements for a defroster nozzle are clear-up

speed and clear-up pattern, the time required for dispelling condensation or frost on

a windshield must be reasonable and the nozzle must have the capability to perform

uniform defrosting from the bottom of the windshield to its top, so that it becomes

clear without patches of condensation. In view of the above, an appropriate objective

function, to be minimized, is the integral of the difference of the air velocity from a

target (desirable) one over a thin control volume appropriately defined close to the

windshield, inside the car cabin.

To set up the optimization problem, the shape of an existing defroster nozzle

is allowed to vary using a volumetric NURBS tool developed by NTUA; the latter

is also used for deforming the computational mesh at each optimization cycle, by

adapting it to the changed defroster shape. The CFD analysis is based on RANS,

using the k-ε turbulence model. The optimization loop uses the gradient of the



objective function with respect to the coordinates of the volumetric NURBS lattice,

computed using the continuous adjoint method.

Experimental tests performed to measure the actual velocity pattern on the

windshield include velocity measurements with a hot-wire anemometer. A convinc-

ing comparison between CFD analysis and measurements is presented. Finally, the

improved demisting performance of the geometry resulted from the adjoint opti-

mization is validated experimentally, using rapid prototyping to manufacture the

defroster nozzle.

Major part of this diploma thesis was carried our in the premises of Toyota Motor

Europe, in Belgium, with Mr. Antoine Delacroix as industrial advisor.
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Chapter 1

Introduction

Automatic shape optimization loops for optimal performance, according to fluid dy-

namics or aerodynamic criteria, have been widely developed for aerospace applica-

tions and, nowadays, are also gaining more and more importance in the automotive

industry. On the basis of the advanced progress of adjoint-based shape design, au-

tomatic optimization loop has been used to solve an interesting problem related to

part of the HVAC system of a passenger car. The target was the improvement of the

demisting performance of a passenger vehicle by modifying the shape of its defroster

nozzle.

1.1 HVAC - Defroster Nozzle

The safety and thermal comfort of automotive passengers are the most important

factors in the development of the automotive Heating Ventilation and Air Condi-

tioning (HVAC) system, [11]. HVAC is responsible for the demisting and defrosting

of the vehicle’s windows and for creating/maintaining a pleasant climate inside the

cabin, by controlling cabin air humidity and temperature.

The defroster nozzle, as part of the HVAC system of vehicles, plays a major role

in the demisting-defrosting of the windscreen. Demisting refers the function intended

to remove mist, a film of condensate on the inside face of the glazed surface of the

windscreen, while defrosting refers to the function intended to eliminate frost or ice

generally on the outside surface of the windscreen. The HVAC unit provides hot air

to the nozzle which is, then, blowing high velocity air jets to the windscreen.

Windshield defrosting performance is an important factor on evaluating auto-

motive HVAC systems but, on the same time, is a compulsory test according to

national and international legislation since it has a significant impact on driving

safety.

Particularly, the formation of frost on the windshield and front door glasses

during cold season can be proved dangerous as it is veiling the driver’s view and
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disturbing driving. Therefore, defroster performance is seriously taken into con-

sideration during the design of HVAC system in order to ensure the safety of the

passengers.

In order to achieve an acceptable demisting performance, the HVAC system has

to meet some performance requirements [2]. These are mainly the following:

1. Clear-up speed performance: The time required for dispelling condensation or

frost on the windshield must be reasonable.

2. Clear-up pattern performance: The capability to perform uniform defrosting

ideally on the whole surface of the windshield so that it becomes clear without

being spotty, without any condensation patches.

The clear-up speed performance can be improved, to some extent by increasing

the airflow volume of the blower or the heat exchange efficiency of the heater core

(i.e. the temperature of the air being aimed at the windshield). At the same time,

for improvement of the clear-up pattern performance, it is common that repetitive

experiments are carried out with different draft shapes of defroster nozzles (air guide

vanes and outlet area are very important parameters) in order to select the one

providing an acceptable clear-up patterning. So far, the efficiency of the defroster

depends strongly on the technicians’ experience [2], [10].

However, irregular shape and complex structure makes the design difficult while

experimental design method costs too much time and money. Consequently, time

consuming experiments that are generally required to achieve an improved shape

with better performance are gradually being replaced by CFD simulations and au-

tomatic optimization loops.

On the same time, it is known that clear–up patterning is correlated with the air

velocity distribution on the windshield as mentioned in [2], [10]. Lately, distribution

of airflow velocity on the surface of windshield has been investigated by numerical

calculations and associated with defrosting performance resulting to be judged as

adequate to reflect it, to some extent. The defroster nozzle must, therefore, be

designed to provide optimal air velocity distribution. Based on this conclusion, we

set this later as the optimization target, which in terms of the optimization method

is translated into an objective function.

Based on some previous research [4], [10] it was concluded that CFD could be

used to carry out the majority of the design process not only of the defroster nozzle,

but, also, of other ducts and HVAC components. It presents significant advantages

to the engineer, compared to traditional techniques based on trial and error, which

depend too much on experience. One of them is that features of the airflow can

be studied, resulting to deeper understanding of the flow to help determining the

source of the problems. Another benefit is that the vehicle, or any prototype part is

no more needed. Therefore, evaluation work can progress in parallel to the design
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process. CFD can be used during the entire component design and evaluation phase,

leaving actual testing for the final homologation test. Defrost testing should be re-

served for the final legislative performance test. Last but not least, design space

exploration is time–consuming and the improvement in shape is difficult to reach

its full potential. For these reasons, in order to produce a new defroster that gives

an improved velocity pattern on the windshield, a CFD–based optimization is pre-

ferred and, in this diploma thesis, this relies upon the continuous adjoint method to

compute the gradient of the objective function with respect to the design variables

determining the shape of the defroster duct.

1.2 CFD–based Optimization

The constituents needed for running an automated shape optimization loop include

the flow (CFD) solver, the geometry parameterization (the parameters of which act

as the design variables), an optimization method capable of computing the optimal

values of the design variables and a way to adapt (or regenerate) the computational

mesh for each candidate solution.

During the CFD–based optimization loop, the shape of the geometry under con-

sideration is controlled by a number of design variables. For instance, these can

be the coefficients of the Bezier–Bernstein polynomials parameterizing the shape of

the body to be designed. The quality of the new shape produced is evaluated by

computing a quantity (usually an integral), known as the objective or cost function

of the optimization problem. For example, in the case of the aerodynamic design of

an airfoil (which is the standard problem used to validate all relevant methods), this

could be either the drag or lift coefficient of the airfoil. The objective function value

depends on the values of the flow variables, obtained through the solution of the

flow equations used to simulate the flow inside (internal aerodynamics) or around

(external aerodynamics) the shape under consideration. The flow equations can also

be considered as the flow constraints of the optimization problem and may include

the solution of the incompressible or compressible, steady or unsteady, inviscid or

viscous flow equations. Each optimization problem aims at the minimization of the

objective function with respect to (w.r.t.) the design variables. Maximization prob-

lems can easily be reformulated to minimization ones and can be solved using the

same tools.

1.2.1 Optimization Methods

CFD–based optimization methods can be classified into two main categories, i.e.

deterministic and stochastic optimization methods. Deterministic methods, known

also as gradient–based, require the calculation of the derivatives of the objective
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function. To get the new values of the design variables, a steepest–descent algo-

rithm (or Newton or quasi–Newton methods) must be used, based on the computed

gradient. On the other hand, stochastic methods do not require any further infor-

mation than the value of the objective function.

Stochastic optimization algorithms, [30], [31], [32], a representative example of

which is an evolutionary algorithm (EA), have the significant advantage that it is

almost unlikely for them to trapped into local minima, due to the fact that candidate

solutions are being searched in a randomized way. However, a great number of

evaluations, CFD simulations in our case, are usually necessary , provided that the

optimization runs for a adequately high number of generations, before obtaining the

optimal one. That increases the computational cost.

Deterministic algorithms are quite vulnerable to entrapment to local minima as

the solution can be erroneously considered as the optimum, while in this is noth-

ing more than a local extremum. However, as the direction of updating the design

variables is dictated by the sensitivity derivatives, rather than a random, or even

randomised choice, each cycle of the algorithm produces an improved result, for-

mulating in general an automatic process that requires much less evaluations than

those required by EAs.

Though ideally the target would be to acquire optimal solutions, especially in an

industrial environment,, improved (compared to the configuration which is currently

in use) solutions are highly welcome too. Thus, in this application, gradient–based

optimization methods are preferred.

The efficiency of gradient–based methods mainly depends on the technique that

is used to compute the sensitivity derivatives. Common techniques for that are the

finite differences method (FD), the complex variable method (CV) and the direct

differentiation method (DD) [33].

The gradient can be computed, in a straightforward manner, using finite differ-

ences. For a second order FD scheme, the derivatives of an objective function F

w.r.t. to the design variables
−→
b are given by

δF (
−→
b )

δbn
=
F (b1, b2, ..., bn + ε, ..., bN−1, bN)− F (b1, b2, ..., bn − ε, ..., bN−1, bN)

2ε
(1.1)

Even though it is straightforward to implement, since it only requires the re–

computation of the value of the objective function, the cost of FD scales with the

number of the design variables, N (bn, n ∈ [1, N ]), making its use unfeasible in

large scale optimization problems. Moreover, the choice of the infinitesimally small

quantity ε can affect the result and round–off errors are very common, as the two F

values are too close due to the small ε. Consequently, a trial and error process must

be employed in order to ensure that ε–independent derivatives have been computed.

This last disadvantage of the FD method can be circumvented by using the
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complex variable method where the sensitivities are computed as

δF (
−→
b )

δbn
=
Im[F (b1, b2, ..., bn + iε, ..., bN−1, bN)]

ε
(1.2)

where i =
√
−1. Since the sensitivity derivatives are no longer computed as a

function of the difference of two very close values of F , round–off errors cease to

exist, providing with an non ε–dependent result. Nevertheless, the cost of CV is

still scaled linearly with N . An added problem is the fact that the use of complex

variables requires an intervention into the source code of the flow solver, so that it

can handle complex variables.

The next alternative is direct differentiation, according to which the flow equa-

tions are differentated w.r.t. to
−→
b and the resulting N linear systems are solved for

the derivatives of the flow variables w.r.t. the design ones. The sensitivity deriva-

tives are expressed as a function of these fields. DD does not only scale with N but

it is also harder to implement than FD. However, this method is indispensable part

of algoritms used to compute high–order sensitivity derivatives.

These methods can be really accurate or indispensable in some cases as explained

above, however they share the same important drawback. Their cost scales linearly

with the number of the design variables, N , making them impractical for large

scale optimization problems. Thankfully, there is a fourth alternative, the adjoint

method,[34], [35], which is overcoming this issue due to the fact that practically, the

cost of computing the necessary sensitivity derivatives independent from the number

of the design variables. This is making the adjoint method the most appropriate

method to compute gradients.

1.2.2 Adjoint Method

The adjoint method is a mathematical tool that computes the gradient of the objec-

tive function w.r.t. the design variables by also taking into consideration that each

solution of the optimization problem has to satisfy the Navier–Stokes equations.

Let F be the objective function which is generally expressed as

F = F (
−→
U (
−→
b ),
−→
b ) (1.3)

where
−→
U is the vector of the flow variables and

−→
b the vector of the design

variables, which in the case of shape optimization define, for example, the shape of

an airfoil. Practically, any change of the values of the design variables
−→
b , modifies

the shape of the airfoil, resulting to a new flow field
−→
U around it and to a new value
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of the objective function. Consequently, the variation of F w.r.t.
−→
b is

dF

d
−→
b

=
∂F

∂
−→
b

+
∂F

∂
−→
U

d
−→
U

d
−→
b

(1.4)

The augmented objective function is introduced

Faug = F +
−→
ψ T−→R (1.5)

where
−→
ψ is the vector of Lagrange multipliers or the so–called adjoint variables. The

system of equations that describe the physical problem are noted as
−→
R =

−→
R (
−→
U ,
−→
b ).

Since
−→
R = 0, then F = Faug. As a consequence, minimizing F is equivalent to

minimizing Faug;

dFaug

d
−→
b

=
dF

d
−→
b

+
−→
ψ T d
−→
R

d
−→
b

(1.6)

d
−→
R

d
−→
b

=
∂R

∂
−→
b

+
∂R

∂
−→
U

d
−→
U

d
−→
b

= 0 (1.7)

Equation 1.6, using 1.4 and 1.7, turns into

dFaug

d
−→
b

=
∂F

∂
−→
b

+
∂F

∂
−→
U

d
−→
U

d
−→
b

+
−→
ψ T

(
∂R

∂
−→
b

+
∂R

∂
−→
U

d
−→
U

d
−→
b

)

=

(
∂F

∂
−→
U

+
−→
ψ T ∂R

∂
−→
U

)
d
−→
U

d
−→
b

+

(
∂F

∂
−→
b

+
−→
ψ T ∂R

∂
−→
b

) (1.8)

Matrix d
−→
U

d
−→
b

has high computational cost so it is desirable to avoid computing it.

Consequently, the multipliers
−→
ψ are computed instead so as to set to zero the

multiplier of this matrix on the equation 1.8. After having computed
−→
ψ the Lagrange

multipliers are used on the computation of the sensitivities according to

dF

d
−→
b

=
dFaug

d
−→
b

=
∂F

∂
−→
b

+
−→
ψ T ∂

−→
R

∂
−→
b

(1.9)

The computation of the sensitivity derivatives through equation 1.9 demands the

solution of only one linear system for the computation of
−→
ψ while the computation

through 1.4 demands the solution of N systems d
−→
R

d
−→
b

for the computation of the matrix

d
−→
U

d
−→
b

(the latter refers to the aforementioned DD method in sec. 1.2.1).

The adjoint method appears in two, substantially different, variants:: the discrete

[36], [37], [38] and the continuous, [34], [35], [39] adjoint method. Discrete adjoint

includes the discretization of the equations of
−→
R = 0 and, then, their integration

in equations 1.8 and 1.9, [26]. The Lagrange multipliers are also in discrete form.

On the contrary, according to the continuous adjoint method, the flow equations in
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continuous form are firstly differentiated and the adjoint PDEs are derived as closed

form expressions. The latter are, then, discretized and numerically solved.

In other words, the discrete adjoint approach works with the algebraic equa-

tions that come from the discretisation of the fluid dynamic equations while, in the

continuous adjoint approach, the adjoint PDEs are formulated and then discretised

and solved. The adjoint solver developed by PCOpt/NTUA on the OpenFOAM

software is using the continuous adjoint method and this software is used in this

diploma thesis.

The above equations that described the formulation of the adjoint problem in

general, actually refer to the discrete adjoint method. This approach is preferred

at this point as it is considered easier for the reader to become familiar with the

adjoint method and its advantages. The continuous adjoint method will be analyzed

in chapter 2.

1.2.3 Shape Morphing Methods

The computed sensitivity derivatives from the adjoint solver are translated into

displacements of the control points using algorithms such as steepest descent, BFGS,

Newton, quasi–Newton and others [24], [29], [13]. In CFD shape optimization, the

design variables can be the nodes of the surface mesh or more usually, control points

that parameterize the desired geometry. So the optimization loop uses the gradient

of the objective function w.r.t. the coordinates of control points, computed using the

continuous adjoint method; then, after translating the derivatives into displacements

of the control points, a morphing tool changes the surface according to the changed

control points.

In general, shape parameterization techniques can be divided into the following

eight categories [7]: basis vector, domain element, discrete, analytical, free–form

deformation (FFD), partial differential equation (PDE), polynomial and spline, and

Computer Aided Design (CAD). Among them, only CAD–based and FFD tech-

niques seem to be efficient and suitable enough for complex geometries.

As far as the former technique is concerned, the need to differentiate the code

of the commercial CAD software appears; this, however, is most of the times not

available to users. Assuming that the source code of the CAD software can be

accessed, another issue is that the differentiation of large codes is not a trivial task

as, even the use of automatic differentiation tools, cannor replace the necessity of

complex coding. Furthermore, the result is a code that requires a lot of computer

memory to perform the necessary calculations. Therefore, the calculation of the

analytical sensitivity derivatives of the geometry w.r.t. the design variables could

prove to be difficult within a commercial CAD environment. Nevertheless, there is

ongoing academic research in this field.

The latter technique, FFD, has the advantage of parameterizing and deforming
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both the surface and volume mesh. This is positive since that it eliminates the

need of using a different tool to deform the volume mesh after updating the surface.

Moreover the topology of the mesh is preserved and thus, remeshing is avoided and

at the same time this allows the initialization of the flow from solutions obtained

in the previous cycle. As a result, significant reduction in the computational cost

is achieved. Examples of this method are volumetric B–splines or NURBS, Radial

Basis Functions (RBFs), the harmonic coordinates method, etc. In the current

application, the PCOpt/NTUA morpher that parameterizes the desired 3D space

using volumetric B–splines is used.

1.3 Target and Structure of the Thesis

The target of this diploma thesis is the application of shape optimization methods,

using the continuous adjoint method, to the defroster nozzle of a Toyota vehicle. The

objective of this optimization procedure was to achieve an improved defrosting per-

formance. To do so, a suitable objective function is, firstly, formulated to describe

the engineering goal. The adjoint method provides the corresponding sensitivity

derivatives that gave qualitative information about the suggested shape deforma-

tion of the defroster. Then, the coupled shape morpher translates this information

appropriately to produce a new defroster nozzle geometry, giving better defrosting

performance than the initial one. The whole procedure is carried out iteratively

until a convergence criterion is met.

The structure of this thesis is organised in the following chapters:

• In chapter 2, the flow equations, as well as the continuous adjoint method

for incompressible, steady–state flow is presented. The objective function, the

adjoint equations and their boundary conditions and sensitivity derivatives are

formulated. The procedures of discretising and, then, solving the equations

are explained in detail.

• In chapter 3, the shape morpher is presented along with the optimization

algorithm.

• In chapter 4, a test for pressure measurement and the simulation of the equiv-

alent CFD model are presented. CFD–based results are validated through

comparison with experimental measurements.

• In chapter 5, the performed velocity pattern test and the computed flow in

the cabin are presented. The test and CFD correlation is validated.

• In chapter 6, results of the automated optimization process are presented. Sev-

eral cases are studied since there are manufacturing and topology constraints
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which are not included in the optimization loop. Those are taken into consid-

eration only at the end of each optimization project. The most suitable new

defroster nozzle is, then, manufactured using rapid prototyping techniques and

its improved performance is evaluated and compared to the one of the initial

shape through the presented defrost shape.

• In chapter 7, results and conclusions are summarized.
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Chapter 2

The Continuous Adjoint Method

for Incompressible, Steady–State

Flow

As mentioned before, the target for this optimization problem, is the improvement

of the demisting and defogging performance of a car. According to [4], CFD can be

used with confidence to simulate defrost performance. The realistic case would be

to simulate the transient, thermal, phase changing conditions that happen during

the procedure of defogging the windshield. However, the engineer can evaluate the

defrost performance from an interpretation of the velocity distribution close to the

windshield [2], [4]. As a consequence, it is also acceptable to run isothermal steady

state simulations and, in this way, simplify the problem complexity and decrease

the computational cost.

The automotive cases solved in this thesis are governed by the Reynolds Aver-

aged Navier–Stokes equations for steady–state, incompressible flow, coupled with

the turbulence model equations. The k–ε turbulence model is applied. The mean

flow and turbulence model PDEs along with their boundary conditions are referred

to as the primal (or state) equations of the optimization problem.

2.1 Flow Equations

The mean flow equations [21], [6], [28], the continuity equation and the momentum

equations are, respectively, written as

Rp = −∂vj
∂xj

= 0 (2.1)

Rv
i = vj

∂vi
∂xj
− ∂

∂xj

[(
ν + νt

)( ∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
= 0 i = 1, 2, 3 (2.2)
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where vi are the velocity components, p stands for static pressured divided by the

constant density ρ, ν is the constant bulk viscosity and νt is the turbulent viscosity.

Turbulence viscosity results from by the solution of the turbulence model PDEs.

Repeated indices denote summation over the spatial dimensions of the problem

(Einstein convention). Equation 2.1, is therefore, a shorthand representation of: ∂v1

∂x1
+

∂v2

∂x2
+ ∂v3

∂x3
= 0.

The turbulence model k-ε equations [23],[21],[28] are given by

Rk = vi
∂k

∂xi
−
(
ν +

νt
Prk

)∂2k

∂x2
i

− P + ε = 0 (2.3)

Rε = vi
∂ε

∂xi
−
(
ν +

νt
Prε

) ∂2ε

∂x2
i

− C1
ε

k
P + C2

ε2

k
= 0 (2.4)

νt = Cµ
k2

ε
(2.5)

where k is the turbulent kinetic energy, ε the turbulence energy dissipation term

and P stands for the turbulence production term

P = νt

( ∂vi
∂xj

+
∂vj
∂xi

)∂vj
∂xi

(2.6)

The constant coefficients of the model are: C1 = 1.44, C2 = 1.92, Cµ = 0.09 and

the turbulent Prandtl numbers Prε = 1.3, Prk = 1.0

2.2 Boundary Conditions

The boundary conditions that “close” the primal problem are:

• Dirichlet boundary condition for vi and the turbulence model variables (k,ε)

and zero Neumann boundary condition for p, at the inlet SI .

• Zero Neumann boundary condition for vi and the turbulence model variables

(k,ε) and zero Dirichlet boundary condition for p, at the outlet SO.

• Zero Dirichlet boundary condition for vi (no-slip condition). Empirical rela-

tions based on the friction velocity (wall functions) for the turbulence model

variables (k,ε) and zero Neumann boundary condition for p at the walls SW .

Empirical information using the wall function technique was used to approxi-

mate viscous stresses at the wall [23], [21].

The boundaries in the main case of interest are shown in fig. 2.1. The details

of the computational model are later explained in chapter 5.
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2.3 Objective Function

Usually, in aerodynamic problems, the objective function is a scalar quantity like

the lift or drag force exerted on an aerodynamic body. In case there are more than

one objective functions that happen to be convex, the Multi Objective Optimization

(MOO) problem can be turned into a Single Objective Optimization (SOO) problem

by simply adding the objectives and multiplying them with a different weight decided

by the engineer.

As previously mentioned, in our case, it is desirable that the velocity pattern of

the air close to the windshield (and not exactly on it, as the no–slip condition implies

zero velocity on the walls) meets some criteria (as listed in 1.1) and on the same

time it improves the demisting and defogging performance. In other words, the aim

is to achieve more uniform distribution of the velocity and increase its magnitude

on the weakest areas which is most of the times the upper part of the windshield.

This target is mathematically expressed as

Fobj =
1

2

∫
Ωtar

(
v2
i − v2

tar

)2
dΩtar (2.7)

The above objective function describes the wish to force the magnitude of velocity

over a thin volume close to the windshield, Ωtar, fig. 6.1 to reach a certain value

or to have a pre–defined distribution. Ωtar is often refered as target volume, in the

scope of this thesis.

The starting point of the adjoint problem is the use of the convenient augmented

function Faug and its use, instead of using F directly, see sec. 1.2.2 and [6]. So, Faug
is defined as

Faug = F +

∫
Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ (2.8)

where Ω is the computational domain, fig. 2.1a, ui are the adjoint velocity com-

ponents, vi the primal velocity components, q is the adjoint pressure and p is the

primal pressure. Since the residuals of the primal equations 2.1, 2.2 are zero, F and

Faug are identical.

At this point, it is important to mention that within the scope of this thesis, in

the analysis of the equations following, the effect of the solution to the equations

of the turbulence model is neglected, for reasons of simplicity. Consequently, the

commonly known as “frozen turbulence” assumption is made. Readers interested in

the differentiation of turbulence can refer to [6], [13], [15],[14], [16], [18], [17], [19].

Differentiating the augmented objective function we get

δFaug
δbn

=
δF

δbn
+

δ

δbn

∫
Ω

uiR
v
i dΩ +

δ

δbn

∫
Ω

qRpdΩ (2.9)

Then, the Leibniz theorem, which is used for the differentiation of the volume inte-
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grals with variable boundaries, is applied

δFaug
δbn

=
δF

δbn
+

∫
Ω

ui
∂Rv

i

∂bn
dΩ +

∫
Ω

q
∂Rp

∂bn
dΩ +

∫
S

(uiR
v
i + qRp)

δxk
δbn

nkdS (2.10)

where S is the boundary of the computational domain which is actually S = SI ∪
SO ∪SW ∪SWP

. The boundaries SI , SO, SW and SWP
refer to the inlet, outlet, fixed

and parameterized (varying or controlable) boundaries of the domain, respectively.

However, only the parameterized boundaries may change ( δxk
δbn
nk corresponds to the

deformation velocity of the surface in the normal direction) so we have

δFaug
δbn

=
δF

δbn
+

∫
Ω

ui
∂Rv

i

∂bn
dΩ +

∫
Ω

q
∂Rp

∂bn
dΩ +

∫
SWP

(uiR
v
i + qRp)

δxk
δbn

nkdS (2.11)

As already mentioned, F = Faug and consequently δF
δbn

= δFaug
δbn

.

At this point, it is necessary to make a clear distinction between the meaning

of the partial and total derivative, as used from eq. 2.11 and below. δΦ
δbn

is used to

indicate the total derivative of an arbitrary quantity Φ, which can be any of the flow

variables or even the residual of the state equations and represents the total change

in Φ by varying bn. The partial derivative ∂Φ
∂bn

denotes the variation in Φ due to

changes in the flow variables (that are caused by geometry deformation) excluding

contributions from the space deformation itself. In other words, the partial derivative

represents the variation in Φ if the internal nodes of the computational domain

remain unchanged. The expression that links the total and partial derivatives is

δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk

δxk
δbn

(2.12)

However, if Φ is a quantity computed on the surface, like pressure, eq 2.12 slighty

changes. As any small surface deformation can be seen as a normal displacement,

only the normal surface deformation velocity δxk
δbn

contributes in the change of Φ so

its tangential component can be neglected resulting in

δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk
nk
δxm
δbn

nm (2.13)

In order to express δF
δbn

and to formulate the adjoint equations and their boundary

conditions, the objective function is expressed in general form as a sum of both

surface and volume integrals, following [6].

F =

∫
S

FSdS +

∫
Ωtar

FΩtardΩtar (2.14)

However, the objective function used 2.7 has the form of a field integral on a pres-
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elected part of the flow domain and it does not include any surface integral. So, in

our case,

F =

∫
Ωtar

FΩtardΩtar (2.15)

The differentiation of F w.r.t. the design variables gives

δF

δbn
=

δ

δbn

∫
Ωtar

FΩtardΩtar (2.16)

The application of the Leibniz theorem yields

δ

δbn

∫
Ωtar

FΩtardΩtar =

∫
Ωtar

∂FΩtar

∂bn
dΩtar +

∫
S

FΩtarnk
δxk
δbn

dS (2.17)

In our case, the velocity of the boundary δxk
δbn

is zero as the boundaries of the target

volume in this application Ωtar are fixed. Consequently, we have

δ

δbn

∫
Ωtar

FΩtardΩtar =

∫
Ωtar

∂FΩtar

∂bn
dΩtar (2.18)

Since the objective function, equation 2.7 is exclusively expressed in terms of velocity,

the use of the chain rule for
∫

Ωtar

∂FΩtar

∂bn
dΩtar w.r.t. vi gives∫

Ωtar

∂FΩtar

∂bn
dΩtar =

∫
Ωtar

F́ v
Ωtar,i

∂vi
∂bn

dΩtar (2.19)

where F́ v
Ωtar,i

is equal to ∂F
∂vi

which, for the objective function of equation 2.7 is

F́ v
Ωtar,i =

∂F

∂vi
= 2
(
v2
k − v2

tar

)
vi (2.20)

According to 2.19 the derivative of our objective function is

δFobj
δbn

= 2

∫
Ωtar

(
v2
k − v2

tar

)
vi
∂vi
∂bn

dΩtar (2.21)

and, in general form using, eqs. 2.16, 2.18 and 2.19, we have

δF

δbn
=

∫
Ωtar

F́ v
Ωtar,i

∂vi
∂bn

dΩtar (2.22)

2.4 Adjoint Equations

The terms of eq. 2.11 that include the partial derivatives of the mean flow equations

w.r.t. the design variables can be developed by applying the operator ∂()
∂bn

to eqs.
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2.1 and 2.2. According to the comments made in sec. 2.3, the partial derivative

reflects the changes in the flow variables over the initial domain without taking into

account changes in its shape. Hence, the following permutation is allowed [6]

∂

∂bn

(
∂Φ

∂xj

)
=

∂

∂xj

(
∂Φ

∂bn

)
(2.23)

Using eq. 2.23 in the differentation of eqs. 2.1 and 2.2, we get

∂Rp

∂bn
= − ∂

∂xj

(
∂vj
∂bn

)
(2.24)

∂Rv
i

∂bn
=
∂vj
∂bn

∂vi
∂xj

+ vj
∂

∂xj

(
∂vi
∂bn

)
− ∂

∂xj

[(
ν+ νt

) ∂

∂bn

( ∂vi
∂xj

+
∂vj
∂xi

)]
+

∂

∂xi

∂p

∂bn
(2.25)

Applying the Green–Gauss theorem1 [6] to eq.2.11 using 2.24, the
∫

Ω
q ∂R

p

∂bn
dΩ

volume integral becomes∫
Ω

−q ∂

∂xj

(
∂vj
∂bn

)
dΩ = −

∫
S

q
∂vj
∂bn

njdS +

∫
Ω

∂q

∂xj

∂vj
∂bn

dΩ (2.26)

In a similar way, using eq.2.25 the inviscid terms of the volume integral
∫

Ω
ui

∂Rvi
∂bn

dΩ

can be written as ∫
Ω

ui
∂vi
∂xj

∂vj
∂bn

dΩ +

∫
Ω

uivj
∂

∂xj

(
∂vi
∂bn

)
dΩ =∫

Ω

uj
∂vj
∂xi

∂vi
∂bn

dΩ +

∫
S

uivjnj
∂vi
∂bn

dS −
∫

Ω

∂

∂xj
(uivj)

∂vi
∂bn

dΩ

(2.27)

∫
Ω

ui
∂

∂xi

∂p

∂bn
dΩ =

∫
S

uini
∂p

∂bn
dS −

∫
Ω

∂ui
∂xi

∂p

∂bn
dΩ (2.28)

The viscous terms of the same volume integral (using also eq. 2.23) can be written

as

−
∫

Ω

ui
∂

∂xj

[(
ν + νt

) ∂

∂bn

( ∂vi
∂xj

+
∂vj
∂xi

)]
dΩ =

= −
∫
S

ui
(
ν + νt

) ∂

∂bn

( ∂vi
∂xj

+
∂vj
∂xi

)
njdS +

∫
Ω

(
ν + νt

)∂ui
∂xj

∂

∂bn

( ∂vi
∂xj

+
∂vj
∂xi

)
dΩ

= −
∫
S

ui
(
ν + νt

) ∂

∂bn

( ∂vi
∂xj

+
∂vj
∂xi

)
njdS +

∫
Ω

(
ν + νt

)∂ui
∂xj

∂

∂xj

( ∂vi
∂bn

)
dΩ

+

∫
Ω

(
ν + νt

)∂ui
∂xj

∂

∂xi

(∂vj
∂bn

)
dΩ

(2.29)

1Green–Gauss or Divergence theorem:
∫
V

(∇·F)dV =
∮
S

(F ·n)dS where n is the normal vector
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The two volume integrals in the last expression of eq. 2.29 become∫
Ω

(
ν+νt

)∂ui
∂xj

∂

∂xj

( ∂vi
∂bn

)
dΩ =

∫
S

(
ν+νt

)∂ui
∂xj

nj
∂vi
∂bn

dS−
∫

Ω

∂

∂xj

((
ν+νt

)∂ui
∂xj

) ∂vi
∂bn

dΩ

(2.30)∫
Ω

(
ν + νt

)∂ui
∂xj

∂

∂xi

(∂vj
∂bn

)
dΩ =

∫
S

(
ν + νt

)∂ui
∂xj

ni
∂vj
∂bn

dS −
∫

Ω

∂

∂xi

((
ν + νt

)∂ui
∂xj

)∂vj
∂bn

dΩ

=

∫
S

(
ν + νt

)∂uj
∂xi

nj
∂vi
∂bn

dS −
∫

Ω

∂

∂xj

((
ν + νt

)∂uj
∂xi

) ∂vi
∂bn

dΩ

(2.31)

By substituting eqs. 2.27 to 2.4 and also using 2.22 into the expression of the

differantiated arbitrary objective function Faug 2.11 we get

δFaug
δbn

=

∫
S

[
uivjnj +

(
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
∂vi
∂bn

dS

+

∫
S

(ujnj)
∂p

∂bn
dS +

∫
S

(−uinj)
∂τij
∂bn

dS +

∫
SWP

(uiR
v
i + qRp)

δxk
δbn

nkdS

+

∫
Ω

{
uj
∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[(
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+ F́ v

Ω,i

}
∂vi
∂bn

dΩ

+

∫
Ω

(
− ∂uj
∂xj

)
∂p

∂bn
dΩ

(2.32)

It is necessary to avoid the computation of the partial derivatives ∂vi
∂bn

and ∂p
∂bn

as

they require the solution of N systems of equations. To do so, their multipliers in

the volume integrals of eq. 2.32 are set to zero, resulting in the so called adjoint

mean flow equations

Rq = −∂uj
∂xj

= 0 (2.33)

Ru
i = uj

∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[(
ν+νt

)(∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+ F́ v

Ωtar,i = 0 i = 1, 2, 3

(2.34)

where ui is adjoint velocity and q is adjoint pressure. As a result, the remaining

terms of the expression of 2.32 that will give the adjoint boundary conditions and

the final expression of the sensitivity derivatives are

δFaug
δbn

=

∫
S

[
uivjnj +

(
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
∂vi
∂bn

dS

+

∫
S

(ujnj)
∂p

∂bn
dS +

∫
S

(−uinj)
∂τij
∂bn

dS +

∫
SWP

(uiR
v
i + qRp)

δxk
δbn

nkdS
(2.35)
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2.5 Adjoint Boundary Conditions

The adjoint boundary conditions derive from the expression 2.35 by setting to zero

the first three integrals, see [6].

Inlet Boundaries As discussed in sec. 2.2, at the inlet boundaries SI , the Dirich-

let boundary condition on velocity implies that δvi
δbn

= 0. As this boundary is fixed,

we have δxk
δbn

= 0 so, according to 2.13, also ∂vi
∂bn

= 0. Eliminating the rest second and

third integrals of 2.35 we get

ujnj = u〈n〉 = 0 (2.36)

uinj = uit
l
i = ul〈t〉 = 0 (2.37)

but, since no boundary condition for q can be derived from the previous expression,

a zero Neumann boundary condition is used.

Outlet Boundaries Having a zero Dirichlet condition for p on the fixed outlet

boundaries SO, it is δp
δbn

= ∂p
∂bn

= 0. Due to the distance of the outlet boundary

from the parameterized area, see fig. 2.1 (where the parameterized area is a part of

the defroster nozzle), an almost uniform velocity profile can be assumed along SO
leading to eliminating the third term of 2.35. However, so as to eliminate the first

term of the equation, it should

uivjnj +
(
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

)
nj − qni = 0 (2.38)

By multiplying 2.38 with the normal surface vector ni, results namely a Dirichlet

boundary condition for q

q = u〈n〉v〈n〉 + 2
(
ν + νt

)∂u〈n〉
∂n

= 0 (2.39)

The tangential adjoint velocity components can be obtained by multiplying eq. 2.38

with the tangent to the surface vectors tli, l = 1, 2,resulting to a Robin type boundary

condition

v〈n〉u
l
〈t〉 +

(
ν + νt

)(∂ul〈t〉
∂n

+
∂u〈n〉
∂tl

)
= 0 (2.40)

while for the normal adjoint velocity components zero Neumann boundary condition

is applied.

Fixed Wall Boundaries Similar to the inlet boundaries SI , at the fixed walls of

the domain SW , the boundary condition for ui is Dirichlet resulting to

ujnj = u〈n〉 = 0 (2.41)
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uinj = uit
l
i = ul〈t〉 = 0 (2.42)

and zero Neumann boundary condition for q is imposed.

Parameterized Wall Boundaries The main difference between fixed and pa-

rameterized walls is that the boundaries of the latter may change during optimiza-

tion, hence δxk
δbn
6= 0. Consequently, since vi = 0, its total variation is zero δvi

δbn
= 0

resulting in
∂vi
∂bn

= − ∂vi
∂xk

nk
δxm
δbn

nm (2.43)

which makes the remaining first term of 2.35 along SWP
to turn into∫

SWP

[
uivjnj +

(
ν + νt

)( ∂vi
∂xj

+
∂vj
∂xi

)
nj − qni

]
∂vi
∂bn

dS =

−
∫
SWP

[
uivjnj +

(
ν + νt

)( ∂vi
∂xj

+
∂vj
∂xi

)
nj − qni

]
∂vi
∂xk

nk
δxm
δbn

nmdS

(2.44)

Since the integral on the r.h.s. of eq. 2.44 includes only the surface variation and

primal and adjoint fields, its value can be computed and added to the final expression

of the sensitivity derivatives.

To summarize, according to [6], for the objective function of eq. 2.7 that is only

dependent on vi, the adjoint boundary conditions are the following:

• Zero Dirichlet boundary condition on ui and zero Neumann boundary condi-

tion on q at the inlet.

• Robin type boundary condition on the tangential adjoint velocity components,

zero Neumann boundary condition on normal adjoint velocity components and

Dirichlet boundary condition on q, at the outlet.

• Zero Dirichlet boundary condition on ui and zero Neumann boundary condi-

tion on q at the fixed and parameterized walls.

2.6 Sensitivity Derivatives

After satisfying the adjoint mean flow equations and their boundary conditions, the

adjoint variables are given by the adjoint solver. Then, it is possible to compute the

sensitivity derivatives by the expression

δFaug
δbn

= −
∫
SWP

[(
ν + νt

)(∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
∂vi
∂xk

nk
δxm
δbn

nmdS

+

∫
SWP

(uiR
v
i + qRp)

δxk
δbn

nkdS

(2.45)
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where, in the first term, inside the brackets there are only primal and adjoint vari-

ables while the outside part comes from the differentiation of the geometry, that is

produced by the morpher.

2.7 Discretisation and Solution of the Equations

The systems of the Partial Differential Equations (PDEs) of the primal (eq. 2.1, 2.2)

and adjoint problem (eq. 2.33, 2.34) should be discretised in order to be transformed

into a corresponding system of algebraic equations and, then, numerically solved [6].

The steady state, mean flow equations for incompressible, turbulent flows are

given by eqs. 2.1, 2.2. In order to complete the system of primal equations, the

turbulence model, used to compute νt, should also be taken into account. In the

SIMPLE algorithm presented the turbulence model equations are solved in a segre-

gated manner from the mean flow ones.

The primal (already existed in the OpenFOAM CFD toolbox) and adjoint (devel-

oped by PCopt/NTUA) solvers are programmed in the OpenFOAM environment;

they solve the equations using the SIMPLE (Semi-Implicit Method for Pressure-

Linked Equations) algorithm and a cell-centered finite-volume discretization scheme,

on unstructured grids. For the convection terms, second-order upwind (primal) and

downwind (adjoint) schemes were used. For the computation of spatial gradients,

the Green–Gauss theorem is used and the involved quantities are interpolated using

a linear scheme. For more information about the discretization schemes, readers can

refer to [25], [28].

2.7.1 The SIMPLE algorithm

In what follows, the variant of the SIMPLE algorithm, already programmed in

OpenFOAM, for the solution of the primal equations is presented, [6].

The momentum equations, 2.2, can be written in a semi-discretized form as

aPvP,i =

NB(P )∑
N=1

aNvN,i −
∂p

∂xi
(2.46)

where P is used to denote both the cell index and its centroid in which the mo-

mentum equations are discretized and NB(P ) are its adjacent cells, fig. 2.3. The

coefficients aP and aN result from the discretization of the convection and diffu-

sion terms in 2.2. It should be noted that the coefficient aP is the same for all the

components of the momentum equations. The iterative solution of 2.46, using the

pressure field p∗, obtained through the previous iteration, results in a velocity field,

v∗i , which does not satisfy the continuity equation. Moreover, there is no equation

from which the pressure field can be updated (the continuity equation includes only
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the velocity components). For that reason, it appears the need to derive an equation

for the computation of p and correct the velocity field to also satisfy the continuity

equation.

Let the velocity and pressure fields that satisfy the momentum and continuity

equations be denoted by vi and p. As already discussed, v∗i stand for the velocity

components resulting from the iterative solution of the momentum equations (which

do not, however, satisfy the continuity equation) based on the pressure field p∗, made

available from the previous step of the solution algorithm. Based on the two above-

mentioned sets of fields, the semi-discretized momentum equations, 2.46, can be

written as

aPvP,i =

NB(P )∑
N=1

aNvN,i −
∂p

∂xi
(2.47)

aPv
∗
P,i =

NB(P )∑
N=1

aNv
∗
N,i −

∂p∗

∂xi
(2.48)

Once 2.48 have been numerically solved in the current iteration of the solution

algorithm, a prediction of the velocity components is given by

v∗P,j = v̂P,j
1

ap

∂p∗

∂xj
(2.49)

where

v̂P,j =
1

aP
HP,j(v

?) (2.50)

HP,j(v
?) =

NB(P )∑
N=1

aNv
∗
N,j (2.51)

Let v
′
i and p

′
correspond to the velocity and pressure corrections that need to be

added to v∗i and p∗ in order to also satisfy the continuity equation, i.e.,

vi = v∗i + v
′

i (2.52)

p = p∗ + p
′

(2.53)

Subtracting 2.48 from 2.47 and assuming that the discretization coefficients (aP , aN)

are (approximately) the same in eq.2.47 and eq.2.48, the following relation between

v
′
i and p

′
, holds

aPv
′

P,i =

NB(P )∑
N=1

aNv
′

N,i −
∂p

′

∂xi
(2.54)

After additionally assuming that the first term on the r.h.s. of eq. 2.54 is negligible
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compared to the gradient of the pressure correction, eq. 2.54 is simplified to

v
′

P,i = − 1

aP

∂p
′

∂xi
(2.55)

Then, by taking 2.52 into account, the continuity equation, 2.1, is written as

∂vj
∂xj

= 0⇒
∂v

′
j

∂xj
=
∂v∗j
∂xj

(2.56)

Substituting 2.55 into 2.56 yields

∂

∂xj

(
1

ap

∂p
′

∂xj

)
=
∂v∗j
∂xj

(2.57)

Eq.2.57 can be further processed after taking 2.49 into account,

∂

∂xj

(
1

ap

∂p
′

∂xj

)
=

∂

∂xj

(
v̂P,j −

1

aP

∂p∗

∂xj

)
⇒

∂

∂xj

(
1

ap

∂p

∂xj

)
=
∂v̂P,j
∂xj

(2.58)

giving rise to the pressure equation. It should be noted that the presented algorithm

utilized by OpenFOAM to solve the primal equations, formulates eq.2.58, from which

the pressure field, rather than the pressure correction one (usually computed through

more traditional variants of SIMPLE, [25], [28], [40]), is obtained. The integration

of eq.2.58 over a cell P with nb(P ) faces yields

nb(P )∑
f=1

v̂f,jSf,j =

nb(P )∑
f=1

1

af

(
∂p

∂xj
Sj

)
f

(2.59)

In eq.2.59, Sf,j are the components of the (dimensional) face normal vector, the

norm of which is equal to the face area. Overlines indicate a linear interpolation

of the variable under consideration to face f , using the values computed at the

neighbouring cells P and N . For an arbitrary variable φ, the linear interpolation is

written as

φf = wPφP + (1− wP )φN +
∂φ

∂xj

∣∣∣∣
f ′
mj︸ ︷︷ ︸

skew correction

(2.60)

where

wP =
d2

d1 + d2

d1 =
−→
Pf ·

−→
Sf d2 =

−→
fN ·

−→
Sf

−→m =
−→
f

′
f (2.61)

Symbols in eqs. 2.60 and 2.61 are explained in fig.2.4. For the sake of simplicity,
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it will be assumed that vector m has a negligible length compared to the vector

connecting points P and N (low skewness values) and the last term on the r.h.s.

of eq. 2.60 will be neglected hereafter. After numerically solving eq. 2.59, the new

pressure field is acquired. The velocity field, computed at the mesh cell centres, is

corrected based on the newly acquired pressure field

vP,i = v∗P,i + v
′

P,i ⇒

vP,i = v̂P,i −
1

ap

∂p∗

∂xj
− 1

aP

∂p
′

∂xj

= v̂P,i −
1

aP

∂p

∂xj

(2.62)

Finally, the fluid volume flux at the mesh faces is updated through

mf = vf,jSf,j = v̂f,jSf,j −
1

af

(
∂p

∂xj
Sj

)
f

(2.63)

The normal pressure derivative at each face is evaluated as(
∂p

∂xj
Sj

)
f

= (pN − pP )
nf,kSf,k
nf,mdPN,m

+
∂p

∂xj

∣∣∣∣
f

(
Sf,j −

nf,kSf,k
nf,mdPN,m

dPN,j

)
(2.64)

where n is a unit vector, normal to face f and the rest of the symbols in eq. 2.65

are explained in 2.5. The normal pressure gradient at each face is evaluated as(
∂p

∂xj
Sj

)
f

= (pN − pP )
nf,kSf,k
nf,mdPN,m

+
∂p

∂xj

∣∣∣∣
f

(
Sf,j −

nf,kSf,k
nf,mdPN,m

dPN,j

)
(2.65)

where n is a unit vector, normal to face f and the rest of the symbols in eq. 2.65

are explained in fig. 2.5. To sum up, the steps of the SIMPLE algorithm used to

solve the primal equations are:

1. Solve eq. 2.48 in order to acquire a velocity field, v∗i . The computation of

v∗i is based on the pressure field p∗ and the volume flux mf (required for the

computation of aP and aN) of the previous iteration of the algorithm (or the

initialization).

2. Compute v̂P,i through eq. 2.50 and interpolate its values to the cell faces using

a linear interpolation scheme.

3. Solve eq. 2.59 to compute the pressure field p.

4. Update the volume flux mf through eq. 2.63. The volume flux will be used in

the solution of the momentum equations in the next iteration of the algorithm.

23



5. Explicitly relax the pressure field, i.e.,

pnew = αp+ (1− α)p∗

where α is a user–defined relaxation factor. The new pressure field pnew will

be used as p∗ in step 1 of the next iteration of the algorithm.

6. Update the velocity fields vi at the cell centres using the new pressure field

pnew, eq. 2.62.

7. Solve the turbulence model equations, segregated from the mean flow ones.

8. If the desired level of convergence is met for all equations, terminate the run.

Otherwise, go to step 1.
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(a) The computational domain Ω in the main case of interest. Side view.

(b) Bottom view of the computational domain. The inlet SI is marked with a blue color
and it is the inlet of the defroster nozzle. The outlet SO is marked with red and it is an
area close to the trunk of the car. The walls SW are the remaining surfaces of the cabin.

Figure 2.1: Computational domain of the main model simulated. Definition of the
inlet and outlet areas.
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(a) Computational domain Ω and target volume Ωtar in side view.

(b) Computational domain Ω and target volume Ωtar in top view.

Figure 2.2: The thin target volume Ωtar where the objective function is computed is
marked with red color.
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Figure 2.3: Mesh cell, centered at P and one of its adjacent mesh cells centered at
N . The two cells share a single face f [6]

Figure 2.4: Linear interpolation of the face value based on the adjacent cell values.
Point f

′
is the intersection of the virtual segment dPN with the face centered at f .

Vector m connects points f
′

and f . The ratio |m| / |dPN| is defined as the face
skewness. The linearly interpolated value of a variable φ at f is approximated by
computing the value at f

′
and, then, correcting for face skewness using the last term

on the r.h.s. of eq. 2.60. If the face skewness is small, points f
′

and f practically
coincide and the skewness correction can be omitted [6].

Figure 2.5: Each internal mesh face belongs to two cells. The cell with the lower cell
number is characterized as the “owner” of the face (P ) and the other cell (N) becomes
its “neighbour”. The normal vector S, dimensioned with the face area, points from P
to N [6].
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Chapter 3

Shape Morphing

3.1 Introduction to the morpher

As mentioned in chapter 1, a mesh parameterization and movement strategy is

needed to perform an automated shape optimization loop. In our case, the shape

morpher used is based on volumetric B–splines, which can be seen as a Free Form

Deformation (FFD) method. The morpher is coupled with the adjoint solver of

PCOpt/NTUA, [20].

Some of its main characteristics are the following:

• A box (3D space) is defined, where a structured grid of control points for

volumetric B–splines is generated.

• The CFD mesh points included into the box are parameterized with these

control points which are, finally, our design variables.

• The displacement of the control points in each optimization cycle, corresponds

to a displacement of the surface and volume nodes of the CFD mesh.

3.2 Mathematical background

The FFD tool as presented in [20] makes use of B–splines defined in 3D space, the

so–called volumetric B–splines. So as to understand its properties that give so many

advantages to the morpher, a few mathematical details are explained, [22], [12], [20].

A B–spline is a generalization of the Bezier curve. It turns out that by adjusting

the construction of Bézier curves slightly, we can produce pieces of polynomial curves

that automatically tie together smoothly. These piecewise polynomial curves are

called spline curves.

29



In their simplest forms, both methods produce polynomial curves that can be

expressed as

g(u) =
d∑
i=0

Fi(u)ai (3.1)

where d is the polynomial degree, ai are the coefficients and Fi(t) are the basis

polynomials.

The difference between the two methods lies in the choice of basis polynomials,

or equivalently, how given points relate to the final curve. For Bezier and spline

curves, the coefficients are control points with the property that the curve itself

lies inside the convex hull of the control points, while the basis polynomials are

the Bernstein polynomials and B–splines, respectively. Although both methods

are capable of generating any polynomial curve, their differences lead to different

polynomial representations.

A Bezier curve or spline curve can conveniently be manipulated interactively

by manipulating the curve’s control points. It is also quite simple to link several

Bezier curves smoothly together. Nevertheless, the disadvantage of Bezier curves is

that the smoothness between neighbouring polynomial pieces can only be controlled

by choosing the control points appropriately. In other words, the advantage of

spline curves over Bezier curves is that smoothness between neighbouring polynomial

pieces is built into the basis functions (B–splines) instead of being controlled by

constraining control points according to specific rules.

3.2.1 B–spline curves

A B–spline is a parameterized curve x(u) that is defined as a linear combination of

bi ∈ [0, n] control points and B–spline basis functions Ui,p(u) with a degree of p [22].

The curve is described as

x(u) =
n∑
i=0

Ui,p(u)bi (3.2)

Equation 3.2 can also be used to obtain the y(, z) coordinates of a monoparametric

curve in 2D(, 3D). A B–spline is a piecewise polynomial function of degree p. In

order to define the basis function Ui,p, a set of knots which is a non decreasing

sequence, known as the knot vector, ξi, i ∈ [0,m],m = n + p + 1 must first be

defined. The knots ξp+1, . . . , ξm−p−1 are called internal knots. A B–spline with no

internal knots is a Bezier curve. The uniform knot vector is given as

ξ = [0, . . . , 0︸ ︷︷ ︸
p+1

,
1

N
, . . . ,

N − 1

N
, 1, . . . , 1︸ ︷︷ ︸

p+1

] (3.3)
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where N = n − p + 1. This knot vector results to closed curves, this means that

we get curves that pass through the first and last control points. The number of

control points has to exceed the curve degree by at least one, i.e. n ≥ p. The basis

function is given by

Ui,0(u) =

1 if ξi ≤ u < ξi+1

0 elsewhere
(3.4)

Ui,p(u) =
u− ξi
ξi+p − ξi

Ui,p−1(u) +
ξi+p+1 − u
ξi+p+1 − ξi+p

Ui+1,p−1(u) (3.5)

During the computation of the basis functions values, the quotient 0
0

may appear

and its value is defined to be 0. Two consecutive knots define a knot span.

The degree p determines the extent of the effect of control points. In other words,

each basis function (and in consequence, each control point) is affecting only points

with a parametric coordinate residing in the p+ 1 knot spans defined by [ξ, ξi+p+1).

This gives B–splines curves the desirable property of local support, i.e. a certain

part of the curve can be altered by keeping the rest of the curve intact. The range

of locality can be controlled by changing the curve degree p, where smaller p values

correspond to more localized support. So, control points have a stronger attraction

to the curve corresponding to the lower degree basis functions, as it can also be seen

in fig. 3.1.

Knots can have a multiplicity greater than one [22], i.e. the representation 3.2

is therefore valid even if some of the knots occur several times. Since B–splines

curves are piecewise polynomial functions, they are continuously differentiable in

the interior of each knot span. The curve continuity is finite only at the knots. A

curve is p − k times differentiable at a point where k duplicate knot values occur.

This means that if the knots are all distinct, then a linear spline will be continuous,

a quadratic spline will also have a continuous first derivative, while for a cubic spline

even the second derivative will be continuous. Predetermining the curve (or surface

in 3D) continuity is a very desirable property for a mesh movement algorithm as

well, since the deformed shapes are guaranteed to have a user–defined level of surface

continuity, facilitating the manufacturing process.

3.2.2 Volumetric B–splines

The volumes in B–spline form based on B–spline basic functions are now analyzed.

It is defined with all attributes as B–spline curve, however, here there are three

parameters u, v, w and the definition is similar to the case of curves. The properties

of B–spline volumes are similar to the properties of B–spline curves.

The cartesian coordinates x = [x1, x2, x3]T = [x, y, z]T of a CFD mesh point that

is chosen to be parameterized, which means that it is residing inside the boundaries
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defined by the control grid, are given by

xm(u, v, w) =
I∑
i=0

J∑
j=0

K∑
k=0

Ui,pu(u)Vj,pv(v)Wk,pw(w)bijkm (3.6)

where u = [u1, u2, u3]T = [u, v, w]T are the mesh point parametric coordinates,U, V,W

are the B–splines basis functions and pu, pv, pw their respective degrees.bijkm ,m ∈
[1, 3], i ∈ [0, I], j ∈ [0, J ], k ∈ [0, K], signifies the cartesian coordinates of the ijk–th

control point of the 3D structured control grid, where I, J and K are the number

of control points per control grid direction.

As long as the parametric coordinates u of any parameterized point are known,

the computation of its cartesian coordinates is straightforward, at a negligible com-

putational cost. Mesh parametric coordinates can be computed with accuracy, since

a mapping from <3(x, y, z) → <3(u, v, w) is required. This means that volumetric

B–splines can reproduce any geometry to machine accuracy. This is not, for in-

stance, the case when using surface NURBS fitting, where an approximate mapping

<3(x, y, z)→ <2(u, v) is performed.

Given the control points position, the knot vectors and the basis functions de-

grees, the parametric coordinates (u, v, w) of a point with cartesian coordinates

r = [xr, yr, zr]
T can be computed by solving the system of equations

R(u, v, w) =

x(u, v, w)− xr = 0

y(u, v, w)− yr = 0

z(u, v, w)− zr = 0

 (3.7)

where xm(u, v, w) are computed through eq.3.6 based on the given b values. The

3 × 3 system of eq.3.7 can be solved independently for each parameterized mesh

point numerically, using the Newton–Raphson method, for which is necessary to

compute and invert the Jacobian ∂xm
∂uj

,m, j ∈ [1, 3]. The Jacobian matrix is com-

puted analytically through a closed form expression resulting by differentiating eq.

3.6 with respect to the components of u. Since the evaluation of the parametric

coordinates of each point is independent from any other mesh point, this phase may

run in parallel.

The aforementioned process has to be done only once and can be seen as the

“training phase” of the method. Then, after moving the control points, the cartesian

coordinates of each (internal of boundary) mesh point that resides within the control

grid can easily be computed through eq. 3.6 at a very low cost. In addition, since xm
depends only on (u, v, w) (which remain unchanged whatever the change in b might

be) and b, the deformed meshes are step–independent. This means that, for a given

final control points position, the same mesh quality will be obtained independent of

the number of steps taken to reach that position. This is not, for instance, the case
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for RBF–based or Laplacian–based mesh movement algorithms.

3.3 Optimization Algorithm

To perform an automated CFD shape optimization loop for the defroster nozzle,

as it is mentioned before, the in–house adjoint solver coupled with the in–house

morpher was used,[20]. The steps of the shape optimization algorithm are listed

below:

1. Define the 3D space (box) to enclose the part of the geometry to be optimized.

Moreover, define the control points number and the basis functions degree

according the logic explained above. A structured control grid is created.

2. Find the CFD mesh points residing within the control grid. These points

are to be parameterized and then displaced, according to the control points

displacement.

3. Compute the parametric coordinates for each of the points found in step 2.

The computational cost of this step increases with the number of control points

and the number of the mesh points to be parameterized.

4. Solve the flow equations.

5. Compute the objective function value and apply the termination criterion.

6. Solve the adjoint equations.

7. Compute the objective function gradient w.r.t. the boundary CFD mesh nodes

to be displaced, i.e. δF
δxm

(surface sensitivities).

8. Project the surface sensitivities to control points in order to compute the

control points sensitivities,

δF

δbi
=

np∑
j=1

3∑
m=1

δF

δxjm

δxjm
δbi

(3.8)

where np is the number of boundary mesh points to be displaced. In the

general case, the control points are allowed to move on all the three directions,

however it is possible to confine the displacement in one, or even two directions.

As it was previously mentioned, one of the beneficial properties of B–splines is

that smoothing is included in the nature of the basis functions. Consequently,

no smoothing of the computed sensitivities is required. The quantity δxjm
δbi

is

computed analytically by differentiating the linear eq. 3.6 w.r.t. bi.
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9. Update the control point coordinates. In this thesis, the steepest descent

formula is used,

bli = bl−1
i − ηδF

δbi

∣∣∣∣
l−1

(3.9)

where η is a positive number that defines the step of the descent and l is

the current iteration. Apart from the steepest descent method, there are also

other algorithms based on the gradient of the objective function or even on the

Hessian matrix, such as quasi–Newton methods like BFGS, Newton method,

conjugate gradient, etc [24], [29], [13]. The boundary points of the control grid

are kept fixed in order to prevent an overlapping between the parameterized

and non–parameterized areas of the CFD mesh.

10. Compute the new surface and volume mesh points positions, using the already

computed parametric coordinates associated with each one of them.

11. Move to step 4.
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vector of control points. The curve corresponding to lower degree basis functions is
more strongly attracted by the control points.
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Chapter 4

Simplified Study with Validation:

Isolated Defroster Nozzle

Simulation methods have become more prominent at different stages of vehicle de-

velopment programs. One of the major concerns with simulations is the accuracy

of the results. Experimental validation data is required to build confidence in the

simulation results, [9].

The main challenges one has to tackle in order to achieve reliable CFD results

is to have a good quality of mesh that suits the physics of the fluid problem and

an appropriate flow solver. In order to get validate CFD on a simple case with low

computational cost before heading to the main target of the adjoint based optimiza-

tion of the defroster nozzle, an intermediate step was necessary. For that reason,

a pressure measurement of the duct was performed and the equivalent CFD model

and simulation were realized. The results were compared and the CFD process was

successfully validated.

At this point, it is essential to keep in mind that a steady flow solver is used

though, in some parts of the domain, unsteadiness may appear. This can be observed

looking at the fluctuations of the residuals of equations. However, the study of an

unsteady flow has high computational cost and it is decided herein to stick only

with steady flow simulations. The convergence using the steady–state solvers for

both the primal and the adjoint problem is more than satisfactory, as shown in the

following sections.

4.1 Measurement Setup and Results

The pressure measurement of the duct was performed according to the method

described below. The measurement setup is based on the use of a pressurized mini

chamber. A mini chamber with dimensions of 1× 1× 1 m is made. A smaller box

(0.15 × 0.2 × 0.4) m is attached to it so as to help the positioning (connection) of
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the defroster nozzle, and also facilitate the transition of the flow to the nozzle. The

static pressure measurement location is the center point of the upper face of the

chamber. This point was chosen as no intense flow phenomena happen there. The

static pressure is almost equal to the total pressure at this point of measurement,

since very little low velocity air is expected to reach the upper and lower sides of

the pressurized chamber1. This hypothesis will later be confirmed by CFD. During

the measurement, four different airflow volumes have been applied (using a throttle

valve to adjust the airflow), and the resulting pressure was measured. The airflow

was provided by a fan, connected to a callibrated bellmouth (conical inlet nozzle)

so as to have an accurate control of the airflow. The air is trasferred from the fan

outlet to the chamber by means of a flexible hose. The airflow is computed using

the pressure drop across the setup, from the inlet (atmospheric pressure) to the

point of measurement, measured with a manometer. This pressure indicated by the

manometer is the pressure used for the comparison of results. The setup can be seen

in fig 4.1.

In order to validate the pressure for different conditions, two cases were measured,

see fig.4.1. In the first case, the outlets of the duct where all open. In the second

one, the side outlets were taped.

Figure 4.1: Setup of the pressure measurement. It includes a mini chamber with
dimensions of 1 × 1 × 1 m. A smaller box (0.15 × 0.2 × 0.4) m is attached to it, on
its right side, in order to facilitate the transition of the flow towards the nozzle itself.
The static pressure measurement location is the center point of the upper face of the
chamber.

1Bernoulli’s principle: pt = pst + 1
2ρu

2 + ρgz ≈ pst for this case.
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Pressure Measurement Cases
1st case: all outlets open 2nd case: side outlets closed

Airflow volume (m3/h)

100 100
150 150
200 200
250 250

Table 4.1: Cases for which static pressure was measured.

4.2 Meshing and Simulation

So as to validate the CFD method an accurate mesh model of the measurement

process had to be produced. For that reason, a mesh that included the chamber,

the transition mini box and the inner skin (inside walls of the CAD) of the defroster

nozzle was developed. The inlet patch was determined as the circular disk that

corresponded to the area of connection between the tube of the fan and the mini

chamber. The outlet patches for the first case were the main outlets of defroster

nozzle that guide the air to the windshield and its side outlets that guide the air

to the side defrosters. The outlet patches for the second case were only the main

outlets of the defroster.

In each simulation, the inlet Dirichlet boundary condition for velocity was cal-

culated according to the corresponding value of the airflow volume. Wall boundary

conditions were provided by the standard high–Re wall functions of the OpenFOAM

CFD toolbox, for k and ε.

As the aforementioned geometry of the model is symmetrical, to reduce the

computational cost only half of the flow system is modeled, by applying symmetry

conditions.. The resulting mesh which is stretched in the areas of the most intense

flow phenomena, for the first case shown in fig.4.2 has 2539325 cells, of which 552602

are prisms, 1574 are pyramids and the rest 1985149 are tetrahedra. For the second

case, that is slightly different due to the layers along the former side outlets that

are now considered to be wall patches, the mesh has 2363873 cells of which 554092

are prisms, 1598 are pyramids and 1808183 are tetrahedra. The mesh was provided

by BETA CAE Systems to TME.

The simulation was run until the convergence criteria were satisfied, namely for

about 20000 iterations. A solution is considered to be converged when the flow vector

and scalar fields are no longer changing, but usually this is not the case for unsteady

flows. Most flows in nature and industrial applications are highly unsteady. A good

practice to check the convergence is to monitor the residuals. The residual measures

how much the approximate solution fails to satisfy the governing differential equation

and boundary conditions. However, as in some cases it is possible that the residuals

cannot reach full convergence, it is advisable to also monitor a physical quantity
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(a) Half model side view. (b) Half model volume mesh view.

Figure 4.2: Views of the mesh model used to simulate the pressure measurement.
The inlet is at the bottom, a circular half disk (with the same diameter as the flexible
hose of the test) which is providing the airflow corresponding to each measurement,
that flows through the chamber and exits through the outlets of the defroster nozzle.
The outlets for the 1st case are all the outlets of the duct, while for the 2nd the side
outlets are sealed.

representative of the case. If this physical quantity does not significantly change

in time (in the case of a steady–state problem) we may say that the solution is

converged. In these CFD runs the pressure at the point of the measurements during

the tests seems the most appropriate quantity to monitor. The convergence graphs

for one of the above mentioned simulations that were run (two cases of four airflows

each) are shown in fig. 4.3. The convergence of the physical quantities in this thesis

are focused on the last thousands of iterations only, in order to show the small

changes that happen as steady–state is approached. Also, the scale is normalized.

The physical quantity value is divided by the maximum value monitored along the

run and the percentage is presented.

For visualization of the simulations run in OpenFOAM, the ParaView software

was used. The post–processing figures in fig. 4.4, show the velocity and pressure

distributions for one of the above cases.
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4.3 Comparison between CFD and measurement

Comparing the CFD results with the measurement the result is a very good agree-

ment as can be seen in tab. 4.2. In the first case, the comparison shows almost

identical results, however, in the second case where the side outlets of the nozzle are

closed, the pressure measured is constantly smaller than the CFD pressure at the

same point. This can easily be justified because the use of tape to seal the outlets

does not assure the closure to be watertight, so leakage is highly possible. The higher

the airflow, the more the tape is vulnerable resulting to bigger leakage. That is the

reason why the deviation percentage is continuously increasing with airflow. As a

consequence, the correlation results are considered as very accurate and justifiable.

Another way to visualize the good correspondance between CFD and measurement

can be seen in fig. 4.5 where the errors of the performed test due to the measuring

tools accuracy, are also taken into account.

Airflow
volume
(m3/h)

Deviation
(%) for
1st case

Deviation
(%) for
2nd case

100 +1 +5
150 +0 +7
200 +0 +8
250 +1 +9

Table 4.2: Deviation of CFD and measurement for static pressure. The point of
measurement is the center of the upper side of the chamber. In all the cases the
pressure from the CFD simulation was slighly higher than the corresponding pressure
measured. The 1st case refers to the measurements taken while having all the outlets
of the nozzle open, while the 2nd case refers to the measurements taken while having
only the main outlets open and the side outlets closed with tape.
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(a) Non–dimensional residuals are reduced by more than 4 orders of
magnitude
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(b) Convergence of pressure at the point of measurement. The graph is
focused on the last thousands of iterations where, the point of interest
has reached the steady–state solution. The pressure in the y − axis is
normalised, by being divided by its maximum value that appeared during
the run.

Figure 4.3: The convergence graphs shown are specifically for the first case where all
outlets were open and for the first airflow volume of 100m3/h. The graphs concerning
the other cases were similar to these.
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(a) Pressure distribution (b) Velocity distribution

(c) Streamlines

Figure 4.4: The above figures refer to the first simulation run, that of the 1st case,
for airflow volume of 100m3/h. Blue corresponds to lower values while red corresponds
to higher. In the first two figures, pressure and velocity distributions accross a plane
of the CFD model are shown. The third figure shows the streamlines emitted from seed
points at the inlet of the domain to the outlet. There is a recirculation of low velocity
air close to the side–walls the pressurized box, though the main airflow is directed
towards the nozzle.

43



0%

20%

40%

60%

80%

100%

 100  120  140  160  180  200  220  240  260

P

airflow in (m
3
/h)

test 1
st

 case
CFD 1

st
 case

test 2
nd

 case
CFD 2

nd
 case

Figure 4.5: Correlation of CFD and measurement results. Pressure is normalized to
the highest pressure measured by CFD. The CFD results on the 1st case (all outlets
open) are not only within the range of the errors of the test but they almost coincide
with the measured static pressure. On the 2nd case (side outlets closed), the CFD
results are not within the accepted range. The CFD pressure was found to be constantly
a bit higher than the measured one. This can be justified due to small leakage from the
taped outlets. However, even in this case, the correlation is considered as quite good.
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Chapter 5

Full Model Study with Validation:

Defroster Nozzle & Cabin

The main target of this diploma thesis is to improve the demisting and defogging

performance of a car. To be able to proceed to the optimization process, it is firstly

necessary to solve the primal problem so to simulate the flow under consideration.

The blower of the HVAC unit provides the defroster nozzle with an airflow which

directs hot and high velocity air jets towards the windshield. Afterwards, the air

flows to the whole cabin of the car and exits through a flap, located in the rear

of the passenger compartment, to the outside. This case will undergo CFD–based

simulation.

5.1 Measurement Setup and Results

To begin with, it is important to somehow verify the validity of the CFD results also

in the main case of interest. The target is to achieve good accuracy of the computa-

tion of the velocity pattern on the windshield. For that reason, a measurement using

hot–wire anemometer has been performed, so as to experimentally measure the ve-

locity field in the vicinity of the defroster nozzle jet flow and windshield interior

surface [8], [9]. Hot–wire anemometry provides quantitative velocity measurements

that are useful for determining defroster and windshield air flow and validating the

numerical simulations, according to [9],[5]. To setup the test, a grid with 100mm

spacing is drawn on the windshield,[8], fig. 5.1a. The HVAC blower is controlled by

constant voltage with external power supply so that the defroster nozzle is provided

with constant airflow during the experiment. Velocity is measured at each point of

the grid using the hot wire anemometer, fig. 5.1b. The velocity cannot be measured

on the exact surface of the windshield, since this is zero due to the no–slip condition

It will be measured at a number of points located on a surface 7mm away. This

distance comes from the fact that the hot–wire anemometer is laid on the inner
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surface of the windshield and this results having the tip of the measuring tool 7mm

away from the windshield. It happens, also, that this is the standard depth where

the hot–wire measurements are carried out according to [8].

(a) Measurement grid from the outside.

(b) Measurement with hot–wire anemometer.

(c) Measurement grid from the inside.

Figure 5.1: Setup of the velocity pattern measurement.

The measured velocity pattern shown in fig 5.8b is not symmetrical because

the instrument panel is asymmetrical. On the driver’s side, the meter close to the

steering wheel is creating this asymmetry that is affecting the flow exiting from the

defroster nozzle, towards the windshield. Moreover, on our simulation we consider

the HVAC blower to provide uniform flow, which is the ideal case, but this does
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not happen in reality. To be more accurate, the whole HVAC unit should have

been included in the simulation [27] however this would have big computational

and timing cost. Futhermore, another reason why the two compared patterns are

not identical is that the possible error of the hot–wire anemometer and the flow

disturbance effects caused by it, see fig. 5.1b, also affect the flow. Also, during

the measurement, the side outlets of the defroster that provide with hot air the

passengers (face outlets) through the side ducts, were taped so leakage is highly

possible. Last but not least, in a real car, there is air leakage through the doors

and other parts, so the mass flow finally available to the windshield through the

defroster is significantly lower than the one provided from the blower. For all these

reasons, we expect the velocity pattern provided by the CFD run to be different

with the measured one, to have bigger range of velocities and be more symmetrical.

However, in general it should give a similar pattern qualitatively.

5.2 Meshing and Simulation

To obtain sufficiently accurate CFD results, it is vital to create a good quality mesh.

A good mesh means that it has a good description of the surface of the important,

at least, geometries included. Furthermore, it means that it should comply with

some quality criteria that vary according to the CFD solver used.

In the current case, to speed up building the model, CAD data was only used

for parts where high accuracy was needed (defroster nozzle, windshield, instrument

pannel on the outlet of the nozzle, mirror) fig. 5.2. Already available laser scanned

surface data is used for the rest of interior. This procedure was followed, because the

process of gathering and handling the dozens of the CAD parts included in the cabin

of the car can be very time consuming. Furthermore, dealing with the CAD data

demands to isolate the inner skin of the parts, before meshing, which is not a trivial

task. Last but not least, since according to [4] interior vehicle surface geometry

can be simplified to reduce simulation time while keeping acceptable accuracy, the

aforementioned procedure is justified.

After geometry clean–up, CAD data was precisely stitched to STL data. Mesh

refinement boxes are defined to achieve high accuracy where needed while balancing

overall computational cost, [27]. In that way, multiple mesh regions are created in

order to accomodate different mesh size in the front cabin, where finer mesh was

applied for better accuracy, while in the rear part coarser mesh was chosen. In this

model, the inlet patch of the defroster nozzle was set as the inlet patch of the whole

cabin flow and as outlet, a rectangular patch at the trunk of the car was created.

The resulting mesh has 8399341 cells of which 2435602 are prisms, 7958 are pyramids

and the rest 5955781 are tetrahedra fig. 5.3b. The surface mesh consists of 624470

cells. The mesh was provided by BETA CAE Systems to TME.
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Figure 5.2: CAD data of the important parts of the model: defroster nozzle, instru-
ment panel outlet, windshield, mirror.

The boundary condition for velocity imposed at the inlet is dictated by the

corresponding airflow applied during the measurement. The Reynolds number of

the flow is approximately 20000, based on inlet hydraulic diameter. Wall boundary

conditions were provided by the standard high–Re wall functions of the OpenFOAM

CFD toolbox for k and ε.

The solution was converged after 40000 iterations when the convergence criteria

were satisfied. Apart from the convergence of the residuals, the corresponding mesh

node of one point of the grid that was created at the test (shown in fig. 5.1c) was

tracked and its velocity magnitude was monitored during the run. The corresponding

graphs are presented in fig. 5.4.

The results where post–processed in order to visualize the flow in the cabin and

especially close to the area of interest,i.e. the windshield. The streamlines near the

windshield can be seen in fig. 5.5 The flow fieds on a cross section can be seen in

fig. 5.6. The highest magnitude of velocity and the highest absolute pressure are

inside the defroster duct and, then, close to the windshield. In the rest of the cabin

there are no intense flow phenomena, as expected.

The velocity pattern close to the windshield was also visualised in order to be

able to evaluate it and decide the optimization target (objective function) in a way

to improve it. As it can be seen in fig. 5.7, the current pattern has low velocity air

reaching its upper part, delaying the defrosting process.

5.3 Validation of the Velocity Pattern

The results of the CFD simulation are then post–processed to extract the value of

the magnitude of velocity at the grid points that we created during the test, [27].

The two resulting 2D velocity distributions shown in fig. 5.8 are then, compared
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(a) Watertight model.

(b) Computational mesh of the model with almost 9 million cells. The darkest areas
correspond to more dense surface and volume mesh, where high accuracy is needed. This
was achieved using refinement boxes.

Figure 5.3: CFD model and mesh. The inlet to the computational domain is the
inlet to the defroster nozzle, while the outlet is a rectangular patch at the rear of the
cabin.
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and the comparison between the CFD and test results is judged as good enough,

given the above mentioned problems of non–symmetry, the leakage, the errors of

the measurement and the flow disturbance effects that come from the holding of the

measuring tool by hand. CFD analysis results and measured results are in good

agreement and similar pattern can be observed visually. Consequently, the CFD

simulation provided a quite accurate solution of the flow and that allows to proceed

to the next step, the solution of the adjoint equations.
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(a) Non–dimensional residuals are reduced by more than 5 orders of
magnitude. The fluctuations of the residuals are due to the use of a
steady state solver (for reasons of reducing the computational cost), even
though slight unsteadiness appears in the flow.
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(b) Velocity magnitude at one corresponding point of the grid created
during the measurement, close to the windshield. The graph is focused
on the last thousands of iterations where, even though the residuals are
fluctuating, the area of interest (close to the windshield) has reached
the steady–state solution. The velocity magnitude in the y − axis is
normalised, by being divided by its maximum value that appeared during
the run.

Figure 5.4: Convergence of the primal problem. The residuals and the convergence
of the velocity magnitude close to the windshield are satisfactory.

51



(a) Streamlines from inlet to outlet.

(b) Streamlines near the windshield. (c) Streamlines on the windshield.

Figure 5.5: Streamlines emitted from seed points at the defroster inlet, indicate
the presence of small vortices of low velocity air at the bottom of the windshield,
below the level where the jet flow starts to be attached to the windshield. The jet flow
stays attached almost up to the level of the rear view mirror where it starts again to
recirculate.
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(a) Pressure distribution accross the symmetry plane. Inside the cabin, pressure is almost
zero while in the duct, pressure takes ”big negative” values in some areas and ”big positive”
in some others.

(b) Velocity distribution accross the symmetry plane. Inside the cabin, the magnitude of
velocity is almost zero while in the duct and close to the windshield, it reaches quite high
values.

Figure 5.6: Flow fields distributions across the symmetry plane. The color scale
used, indicates low values with blue color, medium with green and high with red.
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Figure 5.7: Velocity pattern close to the windshield provided by the CFD run. The
velocity magnitude contours shown are on a plane 7mm away from the inner surface of
the windshield. The air velocity distribution is colored indicating the low velocity areas
with blue color and the high velocity areas with red. It is obvious that the coverage is
considerably weak at the upper part of the windshield where low velocity air reaches,
while in the lower part, close to the defroster nozzle outlets, the velocity is quite high.
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(a) 2D velocity pattern from CFD, extracting only the velocity magni-
tude on the same points used in the experimental measurements,
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(b) 2D velocity pattern from measurement.

Figure 5.8: Comparison between CFD and measurement for the velocity pattern close
to the windshield. The axes are indicating the position on the 2D grid created during
the measurement (see fig. 5.1). The values collected for each figure, from both CFD
and measurement, are interpolated for better visualization. The two figures have a
few differences, however, qualitatively they give the same velocity distribution. In both
experimental and CFD study, higher flow velocity is observed on the driver side of
the windshield rather than the passenger side, as expected. In general CFD analysis
showed the same trend with test data, using visual observation.
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Chapter 6

CFD–based Optimization of

Defroster Nozzle

6.1 Solution of the Adjoint Equations and Sensi-

tivity Map

The velocity patten acquired from both the CFD simulation and measurement,

as mentioned in the previous chapter, reflects the weaknesses of the current defrost

pattern. It is logical and also suggested by papers such as [10] that ideally the airflow

velocity distribution close to the surface of the windshield should be homogenous in

order to facilitate defrosting performance. Also, spottiness is not desirable from the

driver point of view. For these reasons the value of the target velocity is selected

to be constant all over the windshield in order to boost uniformity of the optimized

velocity pattern. Moreover, the fact that the upper part of the windshield has

currently low velocity air reaching it, it is a drawback for defogging performance

which has to be tackled through the optimization process.

Consequently, in order to force the pattern to improve, tackling these weaknesses,

we first set as target velocity a constant velocity vtar and as the target volume (the

volume in which the objective function is computed), an offset windshield 7mm

away of the inner surface of the real one, that has a thickness of 20mm. The cells

that happen to reside inside the defined target volume are those where the objective

function is finally computed. The target volume can be seen in fig. 6.1.

After defining our target velocity and target volume we are ready to proceed with

the solution of the adjoint equations and the acquisition of the sensitivity map. The

adjoint solver is let to run for a few thousands of iterations until the residuals become

quite low (below 10−7) and the adjoint fields are stabilized, see fig.6.3. The maximum

values of adjoint velocity and adjoint pressure can also indicate convergence, so they

are monitored during the run. The sensitivity derivatives are then calculated for the

defroster nozzle, that is the area which will be morphed.
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(a) Target volume side view. (b) Target volume top view.

Figure 6.1: Target volume is an offset windshield 7mm away from the the real one,
with thickness of 20mm, and it is the volume where the objective function is computed.
It includes 660104 cells of the computational domain. The target velocity vtar is defined
as a constant velocity magnitude for all the target volume.

The resulting sensitivity map can be seen in fig. 6.2. Blue color indicates areas

(cells) that should be pulled outwards while red indicates areas to be pushed inwards

in order to achieve a better velocity distribution on the windshield.

A sensitivity map illustrates the derivatives of the objective function w.r.t. the

normal displacement of the wall boundary nodes of the selected shape. Sensitivity

maps, in general, are used to highlight the areas where aerodynamic improvement

has the greatest potential and are a valuable tool for the designer, even if automatic

optimization is not applied.

Consequently, the sensitivity map is used to indicate the areas where a shape

change can have great impact in the flow. However, morphing the geometry using

raw information given to the sensitivity map is impractical, since it is quite noisy.

In order to compute the exact displacement of each point of the mesh (or each

control point, in our case) the steepest descent algorithm is used. Moreover, the

parameterization of the area to be morphed is performed using B–splines that have

the property to also smooth the computed sensitivities.

6.2 Automated Runs

For the automated optimization process, a tool developed by PCOpt/NTUA is again

used. The in–house adjoint solver developed in OpenFOAM is coupled with a mesh

parameterization and movement strategy based on volumetric B–splines, as analyzed

in chapter 3. After setting up the optimization and solver parameters, the loop is

running until the termination criteria are met (for example maximum number of

iterations) or until a non–acceptable mesh (in terms of quality) is produced.

Several optimization runs were performed until the most suitable new shape of

the defroster nozzle was produced. The runs differed in their parameterization, the

parameterized area and the target volume. The need to perform several optimization
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(a) Shape sensitivities on the front side of the duct.

(b) Shape sensitivities on the back side of the duct.

Figure 6.2: Shape sensitivities indicate the change of the objective function F due to
normal discplacement of cells on the design boundary, in this case of the inside walls
of the defroster duct ( δFδni ). Here, blue highlights areas to be pulled outwards while red
areas to be pushed inwards so as to decrease the value of F , in other words to come
closer to the target.

runs, instead of only one, derives from the necessity of selecting the appropriate pa-

rameterization setup that gives more optimization potential, but most importantly

it is due to the fact that the manufacturing and the topology constraints are not

included in the optimization. At the end of each automated run, those are taken

into consideration, as the new candidate shape for the defroster nozzle has to be

manufacturable and fit inside the assembly of its neighbouring parts.

Run 1 The first run was a first attempt to get familiar with the setup of the

automated chain process and to get some initial results. The selection box that

includes the area to be parameterized and to be morphed, includes the defroster

duct only, excluding the areas of its inlet and outlet. A control grid of 3 × 7 × 9

control points with degrees of pu = 2, pv = 3, pw = 3 respectively was used, fig. 6.5.
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Only the red control points are allowed to move. The rest are defined as frozen, so

as to prevent overlapping between the parameterized and non–parameterized points

of the duct and, also, to preserve fixed the inlet and outlet areas. The structured

grid (control box) included 497521 mesh points. The displacement of the control

points is confined in the Z direction so as to prevent overlapping of the mesh points.

Convergence is seen in fig 6.6. The mesh displacement in the final (14th) shape

leads to 55% decrease in the objective function, fig. 6.6. The comparison of the two

new shapes, along with the comparison of the v − vtar fields on the target volume

are shown in fig. 6.7.

Run 2 The parameterization setup was exactly as in Run 1, fig. 6.8. However,

in this loop, it was first tried to change the target volume. In some previous trial

loops it happened that the objective function was decreasing during the optimization

cycles, however the resulting pattern showed that this was achieved by decreasing

the high velocities at the bottom of the volume only, instead of also increasing

the low velocities at its top. So one of the two targets, which are uniformity and

higher velocities at the top, was not achieved. To strengthen the second and more

important target and make it more clear to the optimization, only the upper part

of the previous target volume was used.

The convergence of the optimization loop as well as the 17% decrease in the

objective function that is given by the 10th shape produced can be seen in fig 6.9.

Moreover, the comparison of the two new shapes, along with the comparison of the

v − vtar fields on the target volume are shown in the following fig. 6.10.

Compared to the previous run, the objective function drop is less, even though

the setup of the control points remains the same. That is due to the fact that

using only the upper half of the windshield as target volume, we strictly express

the necessity to increase the velocity magnitude there, rather than over the whole

windshield, which is more difficult to accomplish.

Run 3 This run is applied by putting an extra restriction to the displacement of the

control points. Their allowed displacement is defined by averaging the displacement

of all the control points residing in an iso–x, iso–y and iso–z plane. In other words,

for example, all the control points laying in an iso–x plane are displaced in the

x–direction using the averaged x–component of their sensitivity derivatives. That

contributes in producing smoother shapes.

The selection box and the control grid of 3 × 7 × 9 control points with basis

function order set to pu = 2, pv = 3, pw = 3 respectively can be seen in fig. 6.11.

The control grid encloses 526157 mesh points. The displacement of the control

points is confined in the Z direction.

The loop convergence graph is shown on fig. 6.12 according to which the last
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produced shape, the 12th geometry, achieves 46% drop of the objective function.

The produced new shape compared to the initial one, as well as their v − vtar fields

on the target volume can be seen in fig. 6.13

Compared to the previous run, the objective function has decreased significantly

(even though the averaging of the displacements could imply less optimization po-

tential) due to the fact that the back row of the control points is now active, giving

the ability to deform bigger part of the initial geometry. The back row was previ-

ously frozen to prevent overlapping of the mesh there. However, in this run, with

this setup, this problem does not appear.

Run 4 In this run, averaging is of the displacements per iso–plane is applied too,

however compared to the previous run, the differences are that the displacement of

the control points is also confined in the Y direction, and that only the very top

row of control points is frozen, instead of the two top rows that are frozen in the

previous run. The parameterization setup was exactly as in Run 3, fig. 6.14.

The last produced shape, the 2nd geometry, achieves 43% drop of the objective

function. The produced new shape compared to the initial one, as well as their

v − vtar fields on the target volume can be seen in fig. 6.15.

This optimization run produces only one new shape as the 3rd mesh overlapps.

Consequently, the quality check fails and the run is terminated. Nevertheless, even

in one optimization cycle, the objective function achieves an impressive drop, due

to the fact that only the top row of control points is frozen, letting more nodes close

to the outlet of the nozzle to move. This displacement appears to have great impact

on the flow near the windshield.

6.3 Selection and manufacture of the new defroster

nozzle using rapid prototyping–Validation with

defrost test

From the above automated runs and the final new geometries produced, the most

suitable new shape, improving significantly the velocity distribution on the wind-

shield, is the one resulting from the 4th run. Its surfaces are very smooth, so it

is appropriate for manufacturing, and also the corresponding STL when placed in

the position of the initial defroster nozzle, in the assembly of its neighbouring CAD

parts, it fits. Consequently, this geometry is appropriate to be manufactured using

rapid propotyping and, then, placed in the vehicle to be validated with a defrost

test.

Rapid prototyping techniques are common for quickly fabricating models of

parts, appropriate for many uses, including testing. In this case, 3D printing is
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used to fabricate the candidate new defroster nozzle shape, provided in STL format.

The accuracy of the process is sufficiently high, giving a prototype suitable for our

purpose. The prototype is properly placed in the test vehicle, replacing the initial

defroster nozzle.

6.3.1 Defrost Tests

Windshield defrost patterns are obtained from cold room testing [9], [4]. To validate

the improved defrosting and demisting efficiency of the new defroster nozzle shape,

compared to the initial one, defrost tests for each defroster nozzle are performed.

To reproduce cold start condition, the vehicle is soaked for 6 hours at a tem-

perature of −20◦C, in TME’s climatic chamber. Following the soak, a humiditity

generator of capacity 360g/h was used to form a frost layer on the windshield for

another 30min. Then, the vehicle’s engine is started, the defrost option is turned

on and the defrost test commenced. The pattern is recorded every few minutes and

the windshield is marked from the inside to indicate clearance areas.

The melting pattern for the original and the improved defrosters, for two different

time milestones are shown in fig. 6.16. In every instant recorded, the new defroster

nozzle geometry gives a bigger clearance zone compared to the initial one. At the

end, the new geometry results in clearing the windshield completely, in 15% less

time than the initial defroster nozzle.
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(a) Non–dimensional residuals are reduced by more than 7 orders of
magnitude.
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(b) Adjoint velocity magnitude at one point of the grid created dur-
ing the measurement, close to the windshield. The graph is focused on
the last thousands of iterations where, the area of interest (close to the
windshield) has reached the steady–state solution. The adjoint velocity
magnitude in the y−axis is normalised, by being divided by its maximum
value that appeared during the run.

Figure 6.3: Convergence of the adjoint problem. The residuals and the convergence
of the velocity magnitude close to the windshield are satisfactory.
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(a) Adjoint pressure distribution accross the symmetry plane.

(b) Adjoint velocity distribution accross the symmetry plane.

Figure 6.4: Flow fields distributions accross the symmetry plane. The scale color
used, indicates low values with blue color, medium with green and high with red. The
adjoint variables are almost zero inside the cabin, but close to the the duct and the
windshield they take greater values as these areas have an impact on the flow in the
target volume.
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Figure 6.5: Run 1: The boundaries of the control box as well as the active (red)
and the frozen (blue) control points define the mesh points to be parameterized and
displaced. The frozen control points help to avoid overlapping of the mesh between the
parameterized and the non–parameterized areas. In this case, the back row, the two
top rows and the two bottom rows of control points remain frozen.
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Figure 6.6: Run 1: Evolution of the objective function during the optimization.
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(a) Original duct, front view. (b) Final duct, front view.

(c) Original duct, side view. (d) Final duct, side view.

(e) Original pattern. (f) Final pattern.

Figure 6.7: Run 1: In the first row, the control grid nodes are colored based on
the v coordinate while in the second row, based on the u. The final shape has many
bumps and undercuts so it is not suitable for mass production. However, some of the
previous shapes, of previous optimization cycles, could be manifactured as they have
smaller displacement compared to the initial shape. The field shown on the target
volume is v − vtar in which green areas correspond to areas where the target velocity
magnitude vtar was reached, blue to areas with lower air velocity and red to areas
with greater air velocity than the target. Consequently, looking at the last row, the
comparison between the two patterns shows improvement in the coverage of the upper
part of the windshield, as well as increased uniformity.
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Figure 6.8: Run 2: The boundaries of the control box as well as the active (red)
and the frozen (blue) control points define the mesh points to be parameterized and
displaced. The frozen control points help to avoid overlapping of the mesh between the
parameterized and the non–parameterized areas. In this case, the back row, the two
top rows and the two bottom rows of control points remain frozen.

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

 1  2  3  4  5  6  7  8  9  10

O
F

/O
F

in
it
ia

l

cycle

Figure 6.9: Run 2: Evolution of the objective function during the optimization.
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(a) Original duct, front view. (b) Final duct, front view.

(c) Original duct, side view. (d) Final duct, side view.

(e) Original pattern. (f) Final pattern.

Figure 6.10: Run 2: In the first row, the control grid nodes are colored based on
the v coordinate while in the second row, based on the u. The final shape produced has
many intense curves and undercuts so it seems inappropriate for mass production.
The features created could not be molded using a single pull mold so the suggested
shape could not be easily manfactured. The field shown on the target volume is v−vtar
in which green areas correspond to areas where the target velocity magnitude vtar was
reached, blue to areas with lower air velocity and red to areas with greater air velocity
than the target. The objective function is not much reduced and this is reflected on
the result on the target volume. The coverage on the upper part of the windshield is
slighly improved, however there is more potential.
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Figure 6.11: Run 3: The boundaries of the control box as well as the active (red)
and the frozen (blue) control points define the mesh points to be parameterized and
displaced. The frozen control points help to avoid overlapping of the mesh between the
parameterized and the non–parameterized areas. In this case, the side rows, the two
top rows and the two bottom rows of control points remain frozen.
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Figure 6.12: Run 3: Evolution of the objective function during the optimization.
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(a) Original duct, front view. (b) Final duct, front view.

(c) Original duct, side view. (d) Final duct, side view.

(e) Original pattern. (f) Final pattern.

Figure 6.13: Run 3: In the first row, the control grid nodes are colored based on the
v coordinate while in the second row, based on the u. The final control points position
indicates the fact that their displacement per iso–plane is averaged. In other words,
the right figures show that the active control points that belong to the same iso–plane
have the same displacement in that direction, that resulted from the averaging of the
component of the sensitivity derivatives on that plane, producing a smoother shape.
The field shown on the target volume is v − vtar in which green areas correspond to
areas where the target velocity magnitude vtar was reached, blue to areas with lower air
velocity and red to areas with greater air velocity than the target. The resulting pattern
is much improved as the target velocity reaches almost the top of the windshield (target
volume).
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Figure 6.14: Run 4: The boundaries of the control box as well as the active (red)
and the frozen (blue) control points define the mesh points to be parameterized and
displaced. The frozen control points help to avoid overlapping of the mesh between the
parameterized and the non–parameterized areas. In this case, the side rows, two top
row and the two bottom rows of control points remain frozen.
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(a) Original duct, front view. (b) Final duct, front view.

(c) Original duct, side view. (d) Final duct, side view.

(e) Original pattern. (f) Final pattern.

Figure 6.15: Run 4: In the first row, the control grid nodes are colored based on the
v coordinate while in the second row, based on the u. The final shape is very smooth
,due to the averaging per iso–plane of the displacements of the control points and it
seems to be suitable for mass production. The field shown on the target volume is
v − vtar in which green areas correspond to areas where the target velocity magnitude
vtar was reached, blue to areas with lower air velocity and red to areas with greater
air velocity than the target. Consequently, looking at the last row, the comparison
between the two patterns shows improvement in the coverage of the upper part of the
windshield, as well as increased uniformity. The target is reached on the majority of
the cells of the target volume.
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(a) Original duct, first time milestone. (b) Final duct, first time milestone.

(c) Original duct, second time milestone. (d) Final duct, second time milestone.

Figure 6.16: Defrost test of the original and the improved defroster nozzle shapes.
The melting pattern is recorded and marked on the inside surface of the windshield
every few minutes. The patterns in the above figures are compared for the same time
milestones, proving the improved defrosting efficiency of the optimized shape. Finally,
the windshield, with the new defroster nozzle shape, is completely clear in 15% less
time compared to the original shape.
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Chapter 7

Summary–Conclusions

In this diploma thesis, shape optimization using the continuous adjoint method,

developed by the PCOpt Unit of NTUA, was applied to the defroster nozzle, part

of the HVAC unit, of a Toyota passenger car. The high importance of the geometry

of this nozzle, as far as the demisting and defogging of the windshield is concerned,

led to the investigation of its shape optimization potential, improving the efficiency

of this vital function of the vehicle.

To begin with, the performance requirements of the HVAC system to dispel con-

densation or frost on the windshield within a reasonable time and perform uniform

defrosting all over its surface, was appropriately expressed in the form of a suit-

able objective function. This objective function, to be minimized, is the integral

of the difference of the air velocity from a target one over a thin control volume,

defined close to the windshield inside the car cabin. Moreover, the continuous ad-

joint method for incompressible, steady–state flow, was mathematically presented

in detail, along with the parameterization and shape morhing tool used (developed

by PCopt/NTUA), based on volumetric B–splines.

As a first comparison between a measurement and the simulation of the equiv-

alent CFD model, a pressure measurement including the defroster nozzle was per-

formed. The measurement setup included a pressurized cubic chamber, a small box

attached to it in order to facilitate the transition of the flow and the defroster nozzle

connected to the latter. Four different airflows were applied to the one side of the

chamber, with the air exiting from all the outlets in the first case tested, while in

the second one, the side outlets are sealed. During the above 2× 4 cases performed,

static pressure was measured at the center of the top side of the chamber. This

setup was modeled with a 2.5 million cells mesh and solved using RANS in con-

juction with the k–ε turbulence model, in OpenFOAM. The pressure measured and

the pressure derived from the CFD analysis on the point of measurement were very

close, validating the CFD simulation used.

The main target of this thesis, the shape optimization of the defroster nozzle,
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requires to simulate the flow coming from the defroster nozzle towards the interior

of the cabin and exiting from its back. For that reason, as a second step, a mesh

model of the defroster nozzle connected to the cabin, of almost 8.4 million cells was

created. The CFD simulation provided the flow fields necessary for the solution of

the adjoint problem but, also, a clear image of the current velocity distribution close

to the windshield. This velocity distribution was compared with the one acquired

through hot–wire anemometer measurement performed on a 10cm spaced grid, 7mm

away from the windshield. The results presented indicate similar velocity patterns,

validating the CFD simulation was in good agreement with the experimental study.

The third step was the solution of the adjoint equations and the use of the au-

tomated shape optimization process to produce new candidate geometries for the

defroster nozzle. Firstly, the use of the adjoint solver developed by PCopt/NTUA

in the OpenFOAM environment, gave the sensitivity map, a valuable tool for the

designer, indicating how the shape of interest should be morphed to reach the tar-

get (minimize the objective function). Afterwards, several automated runs were

performed, with their main differences being in the parameterization setup or/and

on the volume where the objective function is computed. The need for mass pro-

duction of the final shape requires more smooth/manufacturable surfaces, which

become possible with the technique of averaging the displacements of the control

points per iso–plane. This helpful feature was included in the in–house morpher.

The above process resulted in one final geometry, chosen to be the most appro-

priate for being manufactured using rapid prototyping so as to be tested, to validate

its improved defrosting capability, compared to the initial defroster nozzle geome-

try. The defrost tests performed using the initial and the improved shapes showed

significant improvement in the melting pattern on the windshield and decrease in

the total time required for the complete clearance of its surface.

More drastic improvement could be accomplished, by modifying the outlet shape,

or by applying a different approach, topology optimization using adjoint method,

instead of shape morphing optimization. In that case, the study would not begin

from the current defroster nozzle shape but from a 3D space or, even better, from

a draft shape.
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