E®GNIKO METZOBIO IIOAYTEXNEIO

2 XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKON YTIIOAOTIETON

TOMEAX TEXNOAOTIAX [TAHPO®OPIKHE KAI YITOAOTIZTON

E\
- -
\%
:\'iz“»
7 NPOMHBEYS -
ey
0l
nVPPoPos

[

Evoopnatmon avIikeEIPEVOOSTPUOPAOV HEcCOV amTodKEVONG
GE TAUTQOPNO OLANOLPAGHOV OEOGONEVOY

AITIAQMATIKH EPT'AXIA

Xpnotog I. Toavvidng

EmpBrénov : Nextdprog Koldpng
Kadnynmg E.M.IL

AbMva, NoéuBprog 2015






E®GNIKO METZOBIO IIOAYTEXNEIO

2 XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKON YTIIOAOTIETON

TOMEAX TEXNOAOTIAX [TAHPO®OPIKHE KAI YITOAOTIZTON

5

e '“\\.;
‘ N85
/gv
OPOMHOEVS -
ey
A Si==el
VP Poros

[

Evoopatmon avrikeIpevooTpo@@v pécmy anodnkevong

GE TAUTQOOPUO OLANOLPAGHOV OEOONEVOY

AITIAQMATIKH EPT'AXIA

Xpnotog I. Toavvidng

EmpBrénov : Nextdprog Koldpng
Kabnynmg E.M.IL

Eykpibnke amo v tpiuef eéetaotiky emrpon T 12" Noguppiov 2015.

Nektaplog Kolbpng Nworaog [Taracmdpov T'edpyrog I'codpag
Kadnynmgc E.M.IL Avorinpotmc Kadnyntmce E.M.IL Aéxtopag EMLIL

ABMva, NoéuBprog 2015



Xpnotog loavviong
Aumlopatovyog Hiektpoldyog Mnyavikog kot Mnyavikog Ynoroyiotov E.MLIT.

Copyright © Xpnotoc loavvidng, 2015
Me empoiaén mavtog dwkaidpatog. All rights reserved.

Amoayopegvetal 1 aviypaen, amodnKevon Kot Stovopr| Tng mapovcos epyaciog, €€ ohokAnpov 1
TUAHOTOS OVTAG, Y10, EUMOPIKO okomd. Emutpénetal n avotdnwon, amodnkevon Kot Stoavoun yio
OKOTO U1 KEPOOGKOTIKO, EKTOLOEVTIKNG 1] EPEVVNTIKNG PVOTG, VIO TNV TPOVTAOEoN Vo avapEpeTaL
N Iy Tpoérevong kot va dtatnpeitarl to Tapdv pivope. Epotipata mov agopoldv ) ypnion g
epyociog ylo KepOOOKOTIKO OKOTO MPEMEL VAL ameLOIVOVTUL TPOS TOV GLYYPUPEQ.

Ot amdWYELg Kol T0 GUUTEPAGLOTO TOV TEPLEXOVTAL GE QLTO TO £YYPOPO EKPPALOVY TOV GLYYPAPEN
Kol 0gv TTPEMEL va epunvevdel 0Tl avtimpocwnedovy Tig emionueg Bécelg tov EBvikod Metcofiov
[MoAvteyveiov.



HMepiinym

Eni tov mapovtog, ot suppéroyot oto medio tov Big Data avtipetonilovv moAAEg duokoieg
otav 1 cuvepyacio HETaED Tovg gival amapaitntr. Amaitohvtal VEOL TPOTOL GLVEPYOGING, LLE
T0Vg omoiovg M ovvepyocio Ba eival mOAD gvkoAdTEPN Kol ot omoiot Ba Asttovpyolv
aotbrenta. Kabdg 10 OVIIKEWNEVOOSTPAPEG HOVIEAO TPOYPOUUOTIGHOD €lvol TO O
Kuplapyo, mapotnpeital n deicdvorn tov kot oto medio twv Big Data. EmmAéov, kot 1o
vAkod (hardware) axolovBei avTh TNV TAGN TOV OVTIKEWWEVOSTPAPOVS LOVTEAOV, KOOMDC
napovctalovior AoV vEeg TeXVOAOyieg amoBnkevong ol omoieg TPAYUOTOTOWOHV TN
dwyeipton dedoUEVOV YPNOYLOTOIDVTAG TNV APUPETIKOTNTA TOV avTikeévaov key-value.
Emopévog, n mpoomdbsio vo GuvoLaGTOUV TO OVIIKEWUEVOSTPOPEG AOYICHIKO KOl VAIKO
yopokmnpiletor mopamdve omd €OAoyn. AVTIKEIHEVO aLTAG TNG OWMAMUATIKNG &ival m
EVOOUATOON TV OKANP®V oKV vEag Yevidg Tng Seagate, ot omoiol KaBloTovV EQIKTA T
Jwxelpton TV dedopévev xpNooToldVTAG aviikeipevo key-value, omv mioateopuo
OLOUOLPACHOD  OEOOUEVOV  TOL  £€YEL  OVOTTVEEL 1 EPELVNTIKY] OUAO0 ZVOTNUATOV
Amobnkevong (Storage Systems research group) oto Kévipo Ymepumoloylotiknig g
Bapkehdvng (Barcelona Supercomputing Center).

AéEgic Khedud
Big Data, Yroloyiotiky Né@ovg, Alopotpaspog 0e00péEvmv, Alapolpacios LOVIEA®MY
dedoUEVMV, AVTIKEILEVOGTPAPT cvoThpata armodnkevons, Key-value storage






Abstract

Currently, Big Data actors tackle many difficulties when cooperation among them is
needed. New ways of cooperation, which make it in a seamless way, are needed. As the
object-oriented programming paradigm is the most dominant, the new approaches adopt it in
Big Data field, too. Furthermore, hardware follows this object-based fashion, and new
storage technologies enable data management using the key-value object abstraction. So, the
attempt to pair object-based software and hardware is more than plausible. Objective of this
master thesis is the integration of Seagate’s new generation hard disk drives, which enable
manipulation of data in key-value fashion, into the novel data-sharing platform that has been
developed by the Storage Systems research group at Barcelona Supercomputing Center.

Keywords
Big Data, Cloud computing, Data sharing, Data model sharing, Object-based storage
systems, Key-value storage






Evyapiorics

Orav mAnoialeisc oty mpoyuoToOmoiney TWV GTOY@V 0OV, OPEIAEIS VO EKPPATEIS TIC
EVYOPLOTIES GOV TE ADTOVS CUVEOPOUOY TTHY EKTANPWOH TOVG.

Oa nbela va evyopiotnow ola ta uéin tov Storage Systems Research Group oto Barcelona
Supercomputing Center, o1 omoiol ue fonbnooy katd v eEKTOVoN AVTHS THS OITAMUOTIKHG.
2vykexpiuéva, o nBsio vo. evyopiotiow tov emPrémoveo kabnyntn wov, Toni Cortes, mov ue
EUTLOTEDTHKE KOL UE OEYTNKE GTHYV OUAO0 TOD (G EMIOKETTH POITHTH, TOPOLO TOV, OTHV 0VGIA,
eV YVapiLe ayedov TITOTO. Yio. UEVA.

Eriong, Oo nBeio va evyapiotnow ta uéin tov Epyoatnpiov Yroloyiotikwv Xvotnuarwy oo
EOviko Metaofio Ilolvteyveio, o1 omoiol ue vmootnpilay Kol LoV ETITPEYOY VO, EKTOVHT® T
OITAWUOTIKN OV 0TO ECOTEPIKO S POITHTHS OVTAALOYHG.

Télog, 0@eilw, 00PAADG, TOALG EVYOPIGTA TTNV OIKOYEVELG. OV KOL GTODS PILOVS HOv. XTnv
owkoyévela pov, yiati oev Ba eiyo v evkoipio yio. TovemoTnuiokéS GTOVOES YWPIS THY
vrootpiln tovg. Koi otovg @ilovg pov, yio TIC KOIVEG UVHUES KOTG TH OLOPKELQ. TOD
TEPITETELDIOVS TAL10100 THS POITHTIKNG (TG






Contents

Iepirndn
Abstract

Evyapiotieg
Contents

List of Figures
List of Tables

1 Xvuvorntuxy Ileprypopn
1.1 Iepwypagf) tou dataClay . . . . . . .. ...
1.2 Avtelyevo TN OIMAGUATIMAC .« .+« o o o
1.3 Iepoutépw xatavonon touv dataClay . . . . . . . . ... ... ... ...
1.3.1 Stubclasses . . . . . ...
1.3.2  Custom serialization . . . . . . ... . ... L
1.4 Yuvietwno pépog: Kinetic handler . . . . . . ...
1.4.1 Kinetic key-value objects . . . . . .. ... oL
1.4.2  Avonopdotoon Twv xAdoewv otoug dioxoug Kinetic . . . .. .. ...
1.4.3 Single-object rule . . . . . . ...
1.4.4  Tloyida vy mapaPioon tou Single-object rule . . . . . . . .. .. ... ..
1.4.5 Kivntpo yw to Single-object rule . . . . ... o000
1.4.6 Iepeyobuevo e twhc (value) oe éva key-value Entry . . . . . . ... ..
1.4.7  Enclepyocia TwV CERLOTOMNUEVDY OVTIXEWEVOY « . . . . . . o o o oo ..
1.4.8 Keyschema . . . . . . .. ..
1.4.9  EumlouTiopog ¥ABCEWY . . o o o
1.4.10 Avéxtnon twv avixewévey ond to Kinetic drive . . .. .. o000

1.5 AZOROYNOM . . o

2 Introduction and Motivation
2.1 dataClay . . . . . . o e
2.1.1 Datasharing . . . . . . . . ..
2.1.2  Persistent vs. non-persistent data models . . . . . ... ... ... ...
2.1.3  Computing close to thedata. . . . . . . ... ... ... ... ......
2.2 Seagate Kinetic Open Storage platform . . . . . . . ... ... ... ... ....

11

11

15

17

19
19
22
22
22
23
25
25
25
26
27
27
28
29
32
32
33
34



2.3 Objective of the master thesis . . . . . . . .. .. .. ... . ..

Related Technology

3.1 dataClay . . . . . . . .
3.1.1 Self-contained objects . . . . . .. ... o
3.1.2 3" party enrichment . . . . . ... ...
3.1.3 dataClay details . . . . . . . . .. .

3.2 Seagate Kinetic Open Storage platform . . . . . . ... ... ... ... .....
3.2.1 Kinetic architecture . . . . . . . . ... ... o
3.2.2 Kinetic Open Storage Value proposition . . . .. ... ... ... ... ..
3.2.3 Kinetic features . . . . . . ...
3.2.4  Software resources . . . . . .. ... e
3.2.5 Hardware resources . . . . . . . . . .. . oo

Persistence Layer: Serialization mechanism
4.1 Bytecode analysis . . . . . . . . ...
4.2 Motivation for implementing custom serialization mechanism . . . . . . .. ..
4.3 Representation of classes in the Data Service . . . . .. ... .. ... .....
4.4  Representation of class fields in the Data Service . . . . .. ... ... ... ..
4.5 Meaning of Not-Nulls-Bitmap . . . . . ... ... ... ... ... ... ...,
4.6 Handling of already stored objects . . . . . . .. .. .. ... L.
4.7 Handling of already serialized objects . . . . . . . . . ... ... .. ... ...
4.8 Serialization message . . . . .. ... oL L L
4.8.1 Further explanation of the algorithm . . . . . ... ... ... ... ...
4.9 Wrappers . . . . . . . e
4.9.1  Array Wrappers . . . . .. ..o e e
4.9.2  Collection Wrapper . . . . . . . . . . e
4.9.3 Map Wrapper . . . . .. ..

Persistence Layer: Kinetic handler
5.1 Establishment of connection with Kinetic 4-bay development chassis . . . . . .
5.2 Kinetic key-value objects overview . . . . . . . . ... ... .. ...
5.3 Representation of classes on the Kinetic persistence layer . . . . . . . .. .. ..
5.4 Storing objects on the Kinetic persistence layer . . . . . . ... ... ... ...
5.4.1 OVerview . . . . . . . e
5.4.2 Pitfalls for breaking the single-object rule . . . . . .. . ... ... ...
5.4.3 Motivation for having single objects on the Kinetic drive . . . . . . . ..
5.4.4 Content of the value in a key-valueentry . . . . . . ... ... ... ...
5.4.5 Processing of serialized objects . . . . . . .. ... ... . ...
54.6 Keyschema . . . . .. ..
5.4.7 Superclasses storing . . . . . ... L oL
5.4.8 Tterative version . . . . . . .. ...
5.5 Retrieval of objects from the Kinetic drive . . . . . . . . ... .. ... ... ..
5.6 Updating objects in the Kineticdrive . . . . . . . . . .. ... ... ... ....
5.7 Objects deletion from Kinetic drive . . . . . . . . . ... .. ... ... .....
5.8 Removal of a class from Kinetic drive . . . . . .. .. ... ... 0.
5.9 Class enrichment . . . . . . . . . .. ...

43
43
43
44
45
49
49
52
54
59
60

63
64
64
65
66
66
67
67
68
69
69
70
72
72



5.10 Storing collections in the Kinetic drive . . . . . . . . .. .. ... ... 90

5.11 Storing maps in the Kinetic drive . . . . . . . ... ... o L 92
5.12 Storing arrays in the Kinetic drive . . . . . . . . ... oo oo 92
6 Evaluation of Kinetic handler 93
6.1 Main Operations . . . . . . . . . . . . e 93
6.2 Impact of class enrichments . . . . . . .. ... 0o 95
6.3 Retrieving big arrays . . . . . . . . . 97
7 Conclusion 99
7.1 Serialization mechanism . . . . . . .. ... 000 L 99
7.2 Seagate Kinetic Technology . . . . . . . . . . . ... ... .. ... .. ..... 100
Bibliography 101

13






List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Autdpxn avtixelpevor ..o 21
[Mopdderypo 0TV AMOUAXEVOT) AVTIXEWEVODY .« . . o o . o o 31
Self-contained objects . . . . . . ... 44
Data model sharing . . . . . . . . . ... 46
Remote execution . . . . . . . . ..o 48
Traditional Storage Stack . . . . . . . . . . . ... ... 50
Kinetic Storage Stack . . . . . . . .. Lo 51
Basic Kinetic Application Architecture . . . . . . . . . ... .. ... ... ... 53
Kinetic Put Operation . . . . . . . . . .. . 55
Kinetic Get Operation . . . . . . . . . . . . . . . ... 56
The 4-Bay Development Chassis . . . . . . . . . . ... ... .. ... ..... 60
Establishment of connection with Kinetic 4-bay development chassis . . . . . . 76
Assigning a static IP . . . . . ... 7
Example in storing objects . . . . . . . .. oL 83
Elapsed time for storing simple objects . . . . . . .. .. ... oL 94
Elapsed time for storing objects with one reference . . . . . . . . . .. ... .. 94
Elapsed time for storing objects with one reference to persistent object . . . . . 95
Elapsed time for retrieving simple objects . . . . . . . . . ... ... ... ... 96
Elapsed time for retrieving objects of en enriched class . . . . . .. .. ... .. 96
Elapsed time for retrieving arrays with random suffix in their keys . . . . . .. 97
Elapsed time for retrieving arrays with continuous keys . . . . . . . ... .. .. 98
Elapsed time for retrieving arrays twice in therow . . . . . . . . .. .. .. .. 98

15






List of Tables

3.1 Object modification by multiple users . . . . .

3.2 Versioned object modification by multiple users

17






Kegpdiaio 1

Yuvorntixr Ieprypapn

Y%0mO¢ TOL TAPOVTOC XEQUANlOL Efval Vol THPOUCLACEL TEQLANTITIXG TO TEQIEYOUEVO QUTHS TNE Ot
TAWUATXAS EpYaoiag otV eEAANVIXY YAOooo. ‘Onee avagépetal xou 6Tov TTAo Tng epyaoiog, To
avTixeldevo auTAC NS Oimhwpatixrg cpyaoctac eivon 1 “EvooudtwoT avTXEUeEVoOs ToapoY HECWY
armodixeuong o TAaTPOpU Slopolpacpol dedouévev”. Ilo ouyxexpuyéva, auTtd Tou EMLYELRE-
(ton ebvon va evowpatwdolv ol oxineol dloxol véag yevide tne Seagate, ol Kinetic drives, otnv
ThaTQOpUa Blagolpacuod dedouévey mou €yel avantilel To Storage Systems Research Group
tou Barcelona Supercomputing Center (BSC), to dataClay. Iddlov yopaxtneiotind twv Ki-
netic drives etvor 6tL xohioTo0V EQXTY| TN Olaryelplon BEBOUEVWV YENOULOTOLWVTAS AVTIXE(UEVA
key-value.

Y10 TP®TO OTAdL AUTOV TOL XEQaialou, TapouctdleTon To xivnTeo TO omolo odRYNoE oTNV o-
vamtuln tou dataClay xodade xan Tar Bacind YopoxTNEICTIXG TOU. LT CUVEYELN, TAPOLCIALETOL
70 %iynTeo Yiot TNV evowudtwor tng teyvoroyiag Kinetic oto dataClay. Eneita, yiveton napou-
olaon TV O CNUAVTIXOY TEXYVIXOY YopoxTneloTixwy Tou dataClay xa twv Kinetic drives ta
omola ypetdotnxe va xatovondoly mew yiver n oLleuin twv 600 TEYVOAOYIOY. TN CUVEYELD,
TopouctdleTon To GUVIETING PEPOS AUTAC TNG BITAWUATIXAS EpYasiag Tou Bev elvon dAAO amd TNy
evowudtwon twy Kinetic drives oto dataClay. Téloc, mapoucidleton 1 oa€loAdynon Tng avwTépn
epyaoloug xoddg Xol ToL CUUTERAOUATO ToL OTOloL TEOEXUPALY.

1.1 IlIepiypapn tou dataClay

Av emyepoloaue vo Slotunwoouue oe Wla TedTaoT To xivnteo Yo TNy avdntugn tou dataClay,
Yo Arav 6L oty enoy”| twv Big Data ol woyloucec Moeig yio cuvepyaoio uetall dlapodpwy
popéwyv elvon avemopxeic. Me tov 6po cuvepyaoia evvoeiton eite 0 BloUolPAOUOS BEBOUEVLY ElTE
o dlopolpacuds povtéhwy dedopévewy (data models). T var yiver mepioodtepo xotavonti 1
QVETIIPXELDL TWV ONUEPVOY AVGEWY, 0 BOVUE TO EAXTTOUTA To OTOLA EUTEQIEYOUV.

H mpdtn emAoyy yio ouvepyootia, 1 onola livol xou 1 To LEAXTY), elval OAOL Ol EUTAEXOUEVOL
(OnhadY ot 1BLOXTATES BEBOUEVMY Xalt 0L GUVERYETES TOUC) VoL €Y 0LV ThfiEn TeboRacT oThy LTOSoUN
Ty dedopévov (m.y. wla Bdon Aedouévwv). Qotdéoo, auth n Aoon elvon epuxtr ubévo otav
UTdEYEL oY URT| OYEoT EUTIGTOCUVNG UETAE) TV BlapopwY EUTAEXOUEVLY 1| Ta dedopéva elvor

19



avolytd/dnudota.  Xe xdde mepintwon, ta dedouéva cuvAdwe elvon povo yio avdyvoon (read-
only) xou 6hot ot evdlapepduevol avoryxdlovTon Vo SNUoupYRooLY €val BIxd Toug avTlypapo Twv
OEDOUEVOV €AV ATAUTOOVTOL TPOTIOTIOLACELS, TO OTOI0 CUVETAYETOL TNV TEQPAUTERW YPNOT TORWY
YEOVOU XalL YWEOL.

H dedtepn emhoyn yio cuvepyaoio etvor oL xdToyol TV deBOPEVLY Vo Topéyouy TeocBact o
ouyxexpuéva cuvola dedouévmy (datasets) otouc cuvepydtec Touc (Toug onolouc Yo TouC Xo-
NolpE xot we xatovohwTéc). Now gev ot xotavahwtée €youv TAéov v evehi&io var Sloyelpto Tov
Ta Bedouéva OTwe autol emuuoly, and T oTiyUr Tou €yel dnuovpYel To avtiypapo, AN auTh
1 Sadacio cuvendyeTton LTERBOAXT HETAPORS BEBOUEVKY, XxadWE ETIONE XU TO YEYOVOS OTL OL
#ATOY 0L TLV BEGOUEVLV YEvVOUY TAEOY TOV EAEY YO TOUS 0ol BNULOUEYOUVTAL TOAATAL avTiypapoL.

H tpitn o teheutaio emthoyy| yia cuvepyaoio eivor vo ypnotoromdel xdmoto data service (émwe
o RESTful web service). Xe autAv tnv nepintwon, o WoxtAmng (¥ ahhde xaw xdtoyog) twv
0EBOUEVLY LOLRALETAL UE TOUG EVOLUPELOUEVOUS CUVERYHTES TNV UTOAOYLO TUXT] UTOBOUT| TOU Xal O
(Blog yenotponotel, emAéyovtag Oyt uévo Tt Yo uotpao tel ahhd xou e, Auth 1 emhoy elvon Toh)
TEPLOPLOTIXY) OTNY TEPIMTMON TOU XATOLOG XATAVAAWTNAG YEEWC TEL Ulal EMTAEOV AELTOLEYIXOTNTA
amo QUTEC TOU TOPEYOVTOL UG TOV XATOYO. L€ AUTHY TNV TEPINTMOT, AnauTelton 1 cuVERYasia
HETOEY XATOYOU XAl XATOUVOAWTT 00TOE WOTE O XATOYOG VO EVOWUATWOEL TNV ETUTAEOV AELTOVEYI-
%x6TNTL TOL eMVUUEL 0 XaTAVAAWTAS. §2¢ €X TOUTOU, €Vag EUTAEXOUEVOS BE UTopel Vo emhouTioet
ulor TéTolo uNEESTal UE TN BIXY| TOU TVELUOTLXY) LOLOXTNOLOL XOU IO TELTAL VAL XPAUTACEL TIC EQUPUOYES
tou ouuPatéc ye To API tou mapdyou.

Emniéov, 1o dataClay avtiyetwnilel pla axodun tpdxhnon mou cuVavToOy SLIEXOS Ol TROY QO
totéc. Ilo ouyxexplpéva, EMTEENEL GTOUC YPHGTES TOL VAL UMV ANUCYOAOUVTOL UE TO TEPBAANOY
oto onolo Beloxovton Tar Sedouéva Toug xal Vo EGTIALOUY OTN AOYIXT TWY EQUUOY Y TOUS. MY|UE-
PO, TOL LOVTEAA DEBOUEVOY €YOUV OYEDLUCTEL UE OLUPOPETIXG TEOTO OVIAOYU UE TO oV AUTA ToL
HOVTEAN TPOCTEAADVOVTAL O €Val TTNTXO TEPYBAANOY # U, XTol Un-mTnTixd TeEpBGAAOVTA, OL
EQUPUOYES €pYOVTOL AVTIETWTES EITE UE cLCTAATY dpyelwy elte ue Bdocic Bedouévey. MTov
avtinodo, oto TTNTXE TEpBdAlOVTY, Ol EQupUoYES avaryxdlovTa Vo decueloouy ehebiepn uviun
TEOXEWWEVOL VA (PORTHOCOLY ToL OEBOUEVA o VoL ToL BlaryElplo ToOY. Ao¥EVTOC AUTOY TV BLIPopnY,
Ol TPOYPUUUATIOTES EIVOL AVAYXACUEVOL VO APLEREVOUV YPOVO, UEV, YLl TO OYEDIOUO HOVTEAWY
dedouévmy avdhoya pe to TeptBdAov (TTnTixd 1 un), O, yior T ueTdBaon and to éva nepBEANOV
0T0 GAMO.

Evoeyouévwe, o avayveotng va Peloxeton oe oUyy uoT OYETXE UE TNV EVVOLO TOU BLUUOLRAUCUOU
HovTéAWY dedouévwy. ‘Eva mapdderypo udhhov do anocagnvioer authv TV €vvola. Av polpo-
otolue To schema plog Bdong Aedopévwy, dev elvan tor Sedopéva Tou polpdlovtar aAld 1) doun
(schema ) tou yovtélou To omolo oe GUVBUNOUS e To BESOUEVE AVATOPIGTA TO TEOS UEAETY
TeoBANua. Now yev 0T0 cuYXEXPUEVO ToeddeLyUo emTuyydvetan 1 amocOleuln Twv BeBoPEVemY
a6 To HOVTELO TOUC XL €Tl To xardéva umopel vor dlauotpac tel avedpTnTa, WoTOCOo TopaTnee(Tol
ot av emtfupolue encgepyocio Twv dedouéve, anateiton EMTAEOV POETOC ERYUCIUG TEOXEWEVOU
Vo avoxTiocoude Tar 0edopéva xan va Ta emedepyacTtovue. To dataClay metuyalvelr xou tnv amo-
oLCEVET TWV BEGOUEVWY OO ToL LOVTEAX DEBOUEVLVY, AAAG Xou TNV ETEEERYATO TWV DEBOUEVLY UE
Evay dUECO TEOTO.

Me Bdon to ehatTiduota ToU Toeouatdlouy oL UTEEYO0UCES ADCELS Yol TO DLUUOLEAoUO GESOUEVLV
oAAG o TN Sroryeplon toug Ye Bdon to tepBdAiov mou Peloxovtor, to dataClay avolouBdver tnv

20



TEOXANGT VoL AVTIUETWTIOEL OhoL AUTA ToL EUTOOLL. Apyixdl, ETLTUYYEVEL T1 GUVERYGIA UETAEY TV
EVOLAPEQOUEVWY POREMY XAVNCTOVTIS EPIXTO TO BLAUOLRAOUS TWV DEQOUEVGLY 0N XoL TV Ho-
VTEAWY BE00UEVODV. AUTO emTuYYdveTaL Yl Vo Ydvel oUTE plot 6 TLYPr 0 XATOY0C TV BEBOUEVKLY
Tov TAfen éAeyyd touc. Emmiéov, anogedyovior OAEC Ol AOXOTEC UETUPORES DEBOUEVKY OANS
olvetan eMTAEOV 1) BUVATOTNTA OE OAOUE TOUC EVOLIPEQOUEVOUS VAl EUTAOUTIGOUV Tal LOVTEAX BEDO-
UEVWY PE TN AELTOURYIXOTNTA oL LUV Ywelg Vo amonteiton 1) eunAoxt| Twv xatdywy. Télog,
7o dataClay avtiyetwnilel to dedouévo ye €var Slopovy) TeOTo, aveapTHTwS Tou TEPBEANOVTOC
mou PBeloxovton. 1o cuyxexpiuéva, €yovtag we 0ToY0 TN BIEUXOALVOY TWYV TREOYEUUUATIO TV, TO
dataClay mapéyet 6houg Toug unyaviopols mou ebvar amapaitnTol 00THE WOTE To SEdOUEVA TTOU
Beloxovton o €va un-tTnTind nepBdAAoy Vo TpooTebAavovTaL UE ToV (010 TPOTO GTNV TEPINTWON
Tou PBeloxotay ot uviun.

Ipoxewévou va yivel xatavonty| n Aettovpyxotnta nou mapéyet To dataClay otoug yeroTeg xat 1
omola €yel GUECT, OYEON UE TO AVTIXEUEVO AUTAS TNG OIMAWUATIXNAS, TUPOVCLILETAL VO UTOGUVOAO
TWV YORUXTNPICTIXDY TOV. LAUEQRY, TO THO ONUOPIAES TEOYPUUUITIOTIXO UOVTEAD ElVOL TO OVTL-
xewevootpapéc (OOP). To dataClay yenowonotel tor avTxelueva and 10 AVTIXEUEVOO TRAUPES
TPOYPUUUITIO TN HOVTENO UE TNV xahepwuévn €vvota xou TpooVétel dVo yopaxtnptotixd: 1) Ti
roltixéc (policies), ydpic otic omoleg eivar duvath) 1 cuvepyooion HETAZ) TwWV EVOLUPEROUEVHV
Hepy, xau 2) tn Semopry (API) mou Sieuxohiver Ty amoUAXEVOT) XoL TNY AVAXTNOY TWY AVTIXEL-
wévov. To amotéheopa autrhc e oblevéng ovopdleton “Autdpxn avuxeiueva” (Self-contained
objects - SCOs - Xyfua 1.1). AZilel va oNUeldoouUe OTL YApIC OTO AVTIXEWWEVOC TRUPES LOVTEND
EMTUYYAVETAL TO TOAUTOUNTO YapoxtneloTxd “Yrohoyiouds xovtd ota dedopéva” (Computa-
tion close to the data).

YXHMA 1.1: "Evog autdipxeg avTixeluevo xou 1 oy€on Tou Pe GANa autdpxn avTixeiueva

Aoywd yivetow TAéov avTIANTTO 6TL O SLUUOLEACHUOS LOVTEAWY BEBOUEVY ETUTUY YEVETOL ETULTEETO-
VTG To dtopotpacud Twv OOP xidoewy. Enouévog, xat o eumhouTionds Tov WovTEAny and Teita
wéen (3rd party enrichments) emtuyydvetor emdpdvTag mdve oTic xAdoelg mou potpdlovtor. Ilo
CUYXEXPWEVA, OIVETOL 1) BUVITOTNTO GTOUS YPHOTEC Vo TPOGVETOLY OTIC XAJOELS €lTe VEo TEdia
elte véeg yedodouc.

21



1.2 Avtxelgevo tng SITAOUATIXAS

‘Onwg €yer Homn avageplel, To avtixeipeva TpooneladvovTal Ue Tov (Blo Tpdémo eite Bploxovton o
nTnuxd tepBdAhov ette Oyt Me ik Adyta, €lvon aGQUAES Yo TOV TTROYQPOUUATIOTH VoL UNOTIOLEL
TNV EQoEUOYT| Tou VewpnvTog 0Tl Tar dedouéva elvon mdvTa dtordéaiuo 0T puviun. 261600, OTKC
elvon pogavée dev elvan duvatov Tor dedopéva Vo Bploxovton ot uvAun eoael. Anevavtiog, to
dataClay @épel Toug unyaviopols oL 0ToloL EMITEETOLY T1 METABACT) U6 TO UN-TTNTIXO TEPUSEANOY
OTN UVAUN XU TO avTIGTEOQO.

Yty mopodoa gdor, xouy avamtuylel unyavicuol ol omolol avaAopBdvouy TNV avTIo TolyioT TwV
SCOs ot dLdpopeg BAcELS BEBOUEVOV OTWG GYECIAXES 1 YEUPIXES X.o. §26THCO, OIS Elvor xoTa-
vonTo, 1 YetdPBaon and o €va nepBdAhov oto dhho amoutel apxeTh encdepyacio TV BEBOPEVLY
%o Tor OEBOUEVA LOVTEAOTIOOUVTOL UE DLUPORETING TEOTO avdAoya HeE To mepddAiov. Ilopo-
OElYHATOS YdELY, OTAV YENOWOTOUVTUL CYECIUXES PACELS BEGOUEVLY Yiol TNV AMOUAXELOT) TWV
SCOs, anarteitar ) yeTdBoct and 10 AVTIXEWEVOT TEAPES LoVTELD TV SCOs 0T nop@y| Tvixwy
TIOL YPNOWOTOoLY oL GYECtaxéS Bdoelg. Ou HTay TOAD TEOTIOTERO VoL UTHRYE 1) XUTAAANAT U-
nodoun 1 onolo Yo EMTEENEL TNV ATOVAKEUCT] TV OEBOUEVWY YENOLOTOLOVTIS TO (810 UOVTENO
ue auTo Tou yenowonotettar to dataClay, dnaady| avtixelyeva. Amodeixvietan 6Tt UTdEYEL TETOL
teyvohoyia, TouldyioTtov oe @dorn avintuing. Ilpdxerton yia v te)vohoyia Kinetic mou €yet
avantOlel 1 Seagate xou €yel vhonowiel oe oxAnpolg dloxoug. Xtnv teyvoroyio Kinetic yen-
olpomoLleiton 1) WOETERA ATAT) APALEETIXOTNTA TWV avTIXEWEVWY key-value. Yuvernde, avtixeiuevo
aUTAS NG Otmhwpatixig epyaotag elvon 1 oLleLEn TV BUo TeYVohoYLwY, Tou dataClay xou tng
Kinetic.

1.3 Ilepauwtepw xatavonor tou dataClay

ITpwv TEOoYWEHoOUKUE GTO aUY®DS CUVIETIXNG UEPOG QUTAC TNG DImAWUATIXNG epyaotag, eival ama-
EoLTNTO, TEMTOV, VA XATAVONICOUUE OUCIWONS xdmota Boacixd péen tou dataClay, deltepov, va
XATOVONOOUUE OE xde Aemtopépeta To custom unyavioud oelplonoinong tou dataClay, ohhd, xou
teitov, va amoxtcoupe owxetotnta pe o API twv Kinetic drives.

1.3.1 Stub classes

‘Otav yiveton SLOLeaoUoC LOVTEAWY OEBOUEVWLY, OL BIXAO0YOL TOUG UTOROVY VO OVUXTACOLY
TIC TPOC DLAUOLEAOUO XAAGELS ELTE YLol VoL ONULOVEYICOUY VEEC BIXEC TOUG EQUQUOYES ELTE Yia VoL
EUTAOUTIOOLY TIC UTAEY OVTES XAUCELS UE VEX TIES{ol 1) LEVOBOUE. DUYHEXPWUEVA, AUTO TTOU XAVOLY OL
xotavohoTég ebvan var «xateBdlouvy (download) éva stub avd xAdon. Autd to stubs mopdyovto
an6 1o dataClay @uktpdpovtog xon emiTpémoviag Uovo ta opatd medlor xou pedddous clupwva
we ta oupPolota mou €youy ouvagiel. Emniéov, xdde stub nepiéyet éva olvoro yedddwy (o
dataClay API mou neprypdpnxe mponyouuévwe) to onolo €yetl xhnpovoundel and pio xowr xhdomn
(DataClayObject) tnv omofa 6Ao T stubs enexteivouy (xdtt avdhoyo pe tnv xhdorn Object tng
Java).

22



1.3.2 Custom serialization

‘Onwg éyel avagepdel 1N, o dataClay evowyatdvel éva custom unyavioud ceplomoinone. Y-
Tdpyel TANYWEA AOYWY TOU OB YNOE GE QUTAHY TNV ATOPIOT):

o O eyyevic unyaviopog oelplonoinone tne Java amautel vo €youpe TNy (Bla xAdom xon oTny
Thevpd Tou server xat Tou client. To omolo dev woylel oty mepinTwor| wog, e€outiag Tou
BLoWOLEOCUOU HOVTEAWY BeBoUEVwY Tou epapudlouue (BAéne stubs xAdoelc).

e H oceiplonoinomn tng Java dev elvon amodotixf) Aoyw tou reflection. Axodurn xou av vAomol-
fiooupe To Externalizable interface, To anogedyel 1o reflection, n andédoon e€axoroviel va
elvon Loy vi).

o Tmdpyouv XATOLEG AVATAPACTACELS, OIS Ol XUXAXES AvVapPORES 1) avaPopES GE dAha 1O
amoUnxeuuéva avtixeipevo (Ttou, cuvenwe, dev ypewdlovton oelplonoinon Eavd), oL omoleg
elvon 80oxoho va avanopacTtadody oto Java RMIL

e To va €youpe To BInd HAC UNYOVIOUO CELOLOTIOMONG UG ETUTEENEL VoL AMOPUYOUUE TN OEL-
ploTolnom XL TNV ATOGELPLOTOMGT) GE EVOLIUETH GTAOLL.

e Télog, o unyaviouodg oelplonolnong tne Java mepléyel dedouéva xon Yo Tig xhdoelg poll ue
ot oTiypLdTUTL (OTIWS ot TUTIOL, %.4L), TO 0Tolo TEOXUAEL TAEOVUOUS TANEOpOPiaC.

‘Onwe yiveton xatoavonto, eivon guoixd va emyeiendel n avdntun evog custom unyavioyod oel-
ptomolnong. e aUTAY TNV EVOTNTA, TAUPOUCLALETOL O Unyoviopog oelptonoinone tou dataClay.
Av avolboouye tov akyopriuo tou custom unyavioyod celplomoinone oe uPnA6 eninedo, etvon
TECOEPA TOL BACLX YAPAXTNELO TIXE, TOL:

o Ilpoxerton yio pla avadpount| dradixactio: Kotd tn Sdpxeio tng oetplomolinong evog ovti-
AEWEVOL, EQV EVa amd Tal TEDLX TOU TPOG GELPLOTOIMNGT) AVTIXELIEVOU TEQLEYEL AVAUPOEE TEOG
SANO uny amoINUELPEVO AVTIXEUEVO, TOTE GELPLOTIOELTAL X0 TO TTPOG AVAPORE. AV TIXEWEVO,
X0 ool TERELDTEL 1) GELRlOTONGoT) TOL avTXeEvou-Tediou cuveyiletan 1 oelplomoinoy Tou
QEYLXOU AVTIXEWEVOL.

e Kde oeiplonomuévo avtxeluevo TepLEYEL GELPLOTONUEV, EXTOS GAAWY, xaL Oha Tol TEdia
OhwV TV xAdoewv T ontoleg xAnpovouel: Ilio cuyxexpéva, uohc ohoxhnpwiel n celplo-
molnom evog avTiXelévou, TOTE Eextvdel 1) OELRLOTONGCT) TWV UTEPXAAOE®Y Tou. Aol xdie
xhdon enextelvel to DataClayObject, xdie avtixeipevo mepiéyel nedla TouAdyiotov plog
umegpxhdong. Autd to yeyovog, dnhadr 6Tt dha ol xAdoelg enexteivouv to DataClayOb-
ject, dlapopaveL xou TN cuviTxn TepUaTiIopo) TN oeplonoinong. Molic ceplomointoly
T medla Tou DataClayObject, n oeiptonoinor tepuotiCetou.

o Kotd tn Sudpxeia oeiplonoinone evog aviixewwévou, edv to dataClay Peel plo avogopd npog
€vor avTixelpevo mou €yel 11on oelplonoinel, autd To avtixeluevo dev Ya oeiplonouniel Eavd.
Trdpyouv 800 Adyol Ttou odnyoly oe autr Ty emhoyry: 1) Ikeovooude enelepyooioc xau
TAnpogoploc anogetyetat, xat 2) OnotadAmote xuxhixr avagopd arnogedyeton: Pavtacteite
edv 1o dataClay xatépeuye otny enelepyaocia uiog xUxAMxAC avagopds: Oa xatéinye o

23



ulo atépuovn oeplomoinoy.  Ilpoxewévou va anogiyel T€T0lEC BUCPESTES XUTACTACELS,
10 dataClay emonuewdvel (tags) xdde avtixelyevo e évav oaxépono. Edv éva avtxeipevo
éva €yel oeplononiel tponyoupévng, to dataClay amhd mpoovétel To tag mou avTiGTOLYEl
070 oelploToUEVo avTixeipevo. ‘Eneita cuveyilel pe tn oeiplonolnoy Tou emduevou mediou.
[T, duwe, To dataClay avaryvwpetlet To \dn oetplomoinuéva avtixetyevo: I outéd 10 oxono,
Yenotpomotel éva map, tou onotou ta xhewdid (keys) etvou o hashcodes twv avtixeipévo xa
oL Twéc elvan T tags mou €youv yenowonomnlel yia to KO oetplomoinuéva avtixelpeve. Edv
Beedel éva Ledyog key-value 6to map yio €vor avTIXElUEVO, 0UTO ONUOLVEL OTL TO AVTIXEUEVO
€yl oetplomotniel TEONYOLPEVLS. Y qUTAY TNV TER(TTWoT), arhd tpoctideton To tag. Ltov
avtimoda, 6Ty v avTIXEUEVO AVTIETWTIETOL VIOl TEWTT POEA, AUTO ETULONUELOVETOL UE TOV
ap€owe emouevo dladéoylo tag xou avtiotoryo key-value (euydpl mpootiVetow 6To map.

e ‘Otav éva avTixeluevo oelplomole(ton, auTd TO AVTIXEUEVO TV VO TEPLEYEL VOPORES
TPOC dAhoL avTixelpeva Tou €youv RdN amoVnxeutel (ue dAha Aoyia, va elvon persistent). Xe
aUTAV TNV TEpinTWoT, dev Exel vomua olte vo amolnxedoouue Eavd (dSnhadh, vo enavey-
Yedpouye - overwrite) to ¥\dn amodnxeuévo avuxeluevo, oUTe Vo To oetptonoticoude. Avti
VOl ETAVOGELRLOTIOLAOOVUE To persistent avtixeluevo, to dataClay ypdpel To avayvmploTixd
avtxeévou (object ID) oto uAvupa celplontolnong Tou Teog ano¥hXeUsT) AV TIXEWEVOUL.
‘Eneita, 1 oglplonolnon twv evomopeivoviwy nediny cuveyileto.

201600, MO €lvon TO XELTAPLO TOU XAveL €var avTixelpevo persistent; Me dhho Aoy, o ava-
yvwellel 1o dataClay to amoUnxeupéva avtixelyeva; O xavovag etvan: Edv éva avtixeipevo éyel
éva dataClay object ID, awtéd to avtxeipevo elvon persistent. AAAode, dev eivon. "Evo avtixe-
tuevo ovoyetileton ye to avoryvoplotixd tou (object ID) yia ohdxhnen ) Lot tou (life cycle),
uohic anmodnxeveton. Enopévwe, o éheyyog tou €dv éva avtixelyevo elvor anodnxeupévo 1 oyt
tooduvopel pe o edv Exel avaryvwptotixd (object ID).

Efvar mohd onuovtind vo Eexadopliooupe 6Tl éva object ID Bev elvon évar avaryvewploTind tng
yAOooag Java. Ipdxeiton Yo €va ecwTERIXS avary vwptoTind mou yenotuonoet to dataClay. Evog
AOYOC TOU T avary voploTixd e Java (6mwe to hashcode evéde avtixeyévou) dev emapxolv etvat
ot xadopllouy tar avTixelyeva poévo 660 autd Beloxovton eviog Tou oweol tne Java. Avtiétwe,
to dataClay ypewdleton va avaryvopllet tar avTixelyevd tou avelapThtwe Tou edv autd Beloxovto
armoUnxevuéva 1 Beloxovton otn puvAun. Emniéov, ta avtixelyeva tou dataClay miovee va
HOLRUGTOLY avaUESH OE DLopopeTixoUg clients xau servers. Enouévwg, ypeialouaoTte Eva Lovodixd
VLY VWELOTIXG Yot OAOXANEO To abotnua. [t autd to Adyo to dataClay yenouonotel to Sixd Tou
avaryvepetotxd (IDs), to onola etvon oty ousia éva tedio oe xde avtxeiuevo. Ilo ouyxexpéva,
elvaw €va medio otnv wAdon DataClayObject. Aol xdlde stub xAidor enexteiver tnv xAdom
DataClayObject, tote xdde avtixelyevo €yel autd to nedlo yia to object ID.

Téhog, T0 pévo mou amouével vo amavtnUel ebval TOC XaL TOTE EMTUYYAVETAUL QUTO TO OECLUO
uetad evog object ID xou tou pohg amodnxeuuévou avtixewévou. H andvinom elvon 61t otary
ONOXANPWVETAL 1) AmOVAXEUOT EVOS avTIXEEVOL aTny uTtodoun dedopévev (m.y. wla oyeotox
Bdom dedouévwyv), to avayvepeotixd (dataClay object ID) mou éyer ypnowponomiel yio owtd
T0 AVTIXEUEVO EMOTREPETOL WC AMOTEAETHA TNC xohoVoG UeYOB0U o Exel avoAdPel TNV amo-
Ofxevor. To Satol Ao AopBdver autd TO avary VeRlo Tnd xat To VETEL GTO avTioToL 0 avTiXElUEVO,

24



To omnolo e&axoloudel va Beloxeton xou ot uviun. Meténeita, onoladrrote npoonddeio yio €mo-
vaoelplonoinon tou aviixelévou Ya anogeuydel, apod autd To aviixelyevo €yel Hon Eva object
ID.

1.4 XuvOetixd pépog: Kinetic handler

e qUTAY TNV EVOTNTO TEQLYRAPETAL TO GUVIETIXG UEPOC AUTNG TNG DITAWUATIXAC EQYACTOG.

1.4.1 Kinetic key-value objects

AuT 1 evOTNTOL TEQLYPAPEL EV GUVTOULAL TOL TEYVIXE YALAXTNELOTIXG TWV aVTIXEWEVLY key-value
ta omola anoYnxevovtar oe éva dloxo Kinetic. Xougpwva pye to API tne teyvoloyiag Kinetic,
Z 4 7 7 e 7 Ié 7 4 4

éva TéTolo avtixelpevo xadelton Entry. Me dhha Adyia, undpyet wla Java xAdor, mou ovoudletat
Entry, n omolo avamaplotd tar avtixelpeva key-value.

Kdde otyudtuno e xhdone Entry avayvewpeileton ond to yovadixd tou xhedt (key), to onolo
oe 6pouc Java eivor éva medlo byte array otnv xhdon Entry, nou ovopdletan key. To yéyioto
uéyedog autoL etvar 4 KB. Iapouolng, xde avtixeipevo tng xhdong Entry €yel éva dAho medio
byte array yio v anodixevon tne tpnc (value) tou avtixeyévou key-value, to onolo Quoxde
ovoudleton value. To yéyloto péyetoc autol etvon 1 MB.

Emopévee, éva avtixelyevo key-value oe éva dioxo Kinetic etvan éva (edyog dUo mvdnwy byte.
Ebvor amoxheiotin) eudivn tou mpoypouuatiot| vo anogacioet T Yo anodnxeutel oo 600 media,
key xou value.

Téhog, etvan dELo avapopds To Yeyovog 6T Oha To avTixetueva key-value evtog evog dioxou Kinetic
TagvopolvTal Ye Bdomn 1o xAewi Toug. Lougwvo Ue Ti¢ Teodlaypapés tng teyvoloyiuc Kinetic,
éva oyfua/dopr, (schema) yi ta xhedid twv avuxeévwyv (object keys) to omofo tomodetel
o avTixelpeva axohoudioxd, umopel v BeAtiotonooel Ty amodoor. Me dAlo Aoyia, OTtay
npoonehadvovTal avTixelyeva key-value ta omoia Beloxovton to éva dlmha oTto dhho, 1 anddoon
Tou dloxou Kinetic Beltiotonoleiton.

1.4.2 Avanapdotaon TV xAdocewv oToug dloxoug Kinetic

‘Otay %dmotog yenotuomoLel uio aVTIXEWWEVOT TEAUPY| YAOGOA TEOYPUUUATIOLO) XU GYECLUCES BAOELC
dedopévey, elvan Wlaftepa GLY VS oL xhdoelg Vo avTioTolylovTtal e Tivaxeg Tne Bdong Sedouévey
xou xdie avtixelyevo vo avtiotolyileton oe pla eyypay otov xatdiinio mivaxo. To dataClay
axohoudel xan auTo TNV Tpoavagpepleioa mpaxTixY yia To Postgres handler tou, mou anodnxeldel
SCOs oc pia oyeotony| Bdon Postgres. Ilpoxeiévou va 1o methyel autd, otay €vag Yehotng
xatayweel oto dataClay pla véo xhdon mou €yel oploet o Blog, 1 unodour dedouévwyv (data
infrastructure), n onola, oTnyv Tepintwor| yag, elvon pia oyeotaxy| Bdorn dedouévwy TEénel Vo Teo-
etoyooTel yioo uehhovny| anodrxeucy avixelwévwy. o autd 1o oxomnd, dnuiovpyeiton évag
Tivoxaig ToL avTIoToLyEl OTNV XAdom Tou POALS €yl xatayweniel oto dataClay xou to yehhovTind

25



CTYHOTUTOL QUTAC TNG XAdong Yo amodnxeutoly o Bdor 0eB0UEVWY WS EYYRAPES AUTOD TOU
Tivanat.

Ytov avtinoda, 1 apyltextovxr) Tne teyvoloyiog Kinetic €yel viodetrioel tnv mohd amiolotepn
APUUEETIXOTNTA TV AVTIXEWWEVWY key-value. Mropolue vo anolnxedcouye uévo 600 mivaxeg and
bytes (byte arrays), évoav yia 1o xhewdi (key) xou évav yioo tnv T (value). Tinota nepiocdtepo.
Emopévee, 1o va avalntiooupe yio dlar SoUNUEV avamapdoTaoy) TwyV SESOUEVLY OTIMS XEVOUV
oL TVOXEC TwV OYECLaX®)Y BAcewy Gedouévmy 1 Ta cuaTAuATo apYElwY Bev €yel TOAD voOTua
otnv mepinTwon e teyvoloylac Kinetic. Avt’ auvtold do duoyépouve povdyo tny anddoor. H
TO dUEST Xou, UEAAOV, To omoteheouotiny| Abon ebvar va amodnxebouue xdie GelpLOTOMUEVO
avuxetpyevo tou dataClay (Snhady| éva SCO) we éva avtixelyevo key-value (dniadr avtixeipevo
Entry), tou omolouv n Y (value) Yo eivor ta bytes tou oelplonotuévou avtxeévou. g ex
TouTou, ol dloxol Kinetic 8ev ypewdleton vor xdvouv xdtt Yyl TNy Tpoetoacior Tne unodoung,
OTWS XAVOLY Ol GYECLUXES BACELS BEBOUEVWY BNUIOURYWVTAS TIVOXES. DTNV TEOYHATIXOTNTA,
otoug dloxoug Kinetic xde avtixeipevo dev oyetiCetan ye tar umdhoina, oe avtileon ye Toug
TUVOXEC TV OYETLOXDY BACEWY BEBOUEVWY TIOU ERPWAELOUY Ohat Tar avTixelpeva Tng (Blog xAdome.
Ytoug dloxoug Kinetic oha tar avtixetueva etvan ave&dptnra.

And v G mAgupd, oL Tivoxeg OTIC Oyeotaxéc BAoELC DEBOPEVGLY ETULTUYYAVOUY TOAD omOTENE-
oUaTIXG TNV Evvola TN ouadonolnong tapduolny ewwmy: Kdie eyypapn o Evay mivoxa avomoptotd
évor avtixeluevo g Blag xAdong. T mopdderyya, avalntdviag dho Tor avTixeluevo io xhdong
tooduvopel povo pe pla eviory “SELECT * FROM”. O handler tou dataClay yia touc oxineo-
U¢ dloxoug Kinetic metuyaiver xou autdg v évvola tng opadonoinonc. Agol xdie avtixelpevo
Entry tagwvoyeiton pe Bdon 1o xAewdi Tou, 1 ogadonoinon avTxeévny g Blag xAdong emtuy-
yaveton ebxoha xou otoug dloxoug Kinetic. Edv yenowwomnoicouye to (Bio npdleua yio 10 xAeldl
TWV AVTIXEWEVWY TIOL aVAXOLY OTNV (BLol xAdom, ToTe xdie avuxelpyevo Entry da Peloxeton to
éva dimhar 0T0 dAho, e€outiog Tng Tadvounong Twv avixewévey Entry. Ytnv neplntwor| pag, to
PUOHTEPO EVOL VO YPNOLHOTIOLACOUUE 0 TEOUEUN TO avary VploTixd Twv xAdoewy (class ID)
w¢ mpdveua yio To key schema.

1.4.3 Single-object rule

‘Onwg €xer Non doniwdel tponyouuévne, o handler yia toug dioxoug Kinetic amodnxedetl xdie
avTixelyevo evog yerfotn tou dataClay w¢ éva avtixeipevo key-value Entry oto oxinpd dloxo
Kinetic. Autdc elvou évag xavdvog mou Toteé dev mpénel vo topoBialeton aveapéTng xateliuvong:
Kdée avtixeipevo mpénel va anotnxebeton ¢ uio OAOXANEN OVTOTNTO XAl TOTE OEV XATATEUVETAL.
And v dAAN mheupd, éva avtixelyevo key-value Entry oto 8loxo Kinetic de ymopel va mepl-
el TAnpogoplec (dnhady, bytes) yia napondvew and éva avtixeiyevo. Emmnhéov, emdupolue o
oYEoelg EAPTNONG AVAUESO OTA AVTIXEUEVOL TTOU UTHEYOUY AOYW TWV AVAPORMY PETOEY TOUS VA
ovTovaAdTon xon ot avTixetueva Tou anovnxedouue oto dioxo Kinetic. ITidavotota, autdg elvon
o To onuavtixég xavovoe oto Kinetic handler. A €66 xou oto €€hg, Yo amoxarolye autdv
Tov xavova “Single-object rule”.

26



1.4.4 TIlayida yio napaBiccy Tou Single-object rule

Ac dolye péow evog mapadelyuoatog 6Tt av dev mpooé€oupe, o Single-object rule unopel va mo-
cofaotel. Ag unodécoupe 6Tt emduyolue TV anodixeuon evog avTixelévou, To omofo Yo To
ovoudooupe objectA. Emniéov, ag unodécouue 6Tt T0 objectA mepiéyel pla avapopd mpog éva
GAho un anotnxevuévo aviixeluevo, 1o objectB. Autd umovoel dtu xou Tor avTixelpeva Teémel va
amoUnxeuToly TNy LTOBoUT Bedopévmy (oTny Tepintwo pog, to dioxo Kinetic). Xougpova ye to
UMY OVIoUO GELPLOTOIOTE TTOL TERLYPAPNUE TTEONYOLUUEVKS, To avTixeluevo objectB Ja celprononiet
“uéoa” oto avtxelyevo objectA, apol To avtixeluevo objectB dev elvon 00te auTd amodnxeupévo.

Edv arodnxeboouye to aviixelyevo object A axaplala, ywelc va aroyoviwoouye to objectB, autd
Yo mpoxoréael tapafioor tou Single-object rule. Yuyxexpyéva, to avtixelyevo key-value Entry
oo dioxo Kinetic Ya nepiéyer minpogopia (bytes) yia napondve and éva avuxeiyevo. Enopévoc,
70 va amodnxedouue avuxelpeva tou dataClay oto dloxo Kinetic 8ev pnopel va emitevydel mpory-
HOTOTIOLOVTAG AMAGL THY UETOPOEE TwV GEIRLOTOMNUEVLY avTixelwévey (Aettovpyio put). Ildvta,
omoutelton 1) ene€epyacion TOUC TEMTA.

1.4.5 Kivntpo yia to Single-object rule

ITpwv ROy WEYCOUUE GTNV TEPLYPAPT) TOU TEOTOL Ue ToV oTolo exTAnedveTal o Single-object rule,
elvow %ploLo VoL TOPOVCLIGOUNE TO XIVATEO YLaL VoL €Y OUUE VAl TETOLO XaVOVaL. LTV TERITTOY| YA,
Yo BOUUE OTL O XAVOVISC TOU KOLXOVOUOLY EVOL TEOYUATIXd onuovTixdc: Mo pixer) emnAéov npo-
ondielo ToU XATUBAIAAETOL Yo CUVTHENOT POLTIVOG UTOREL VO UAS AVTATIOOWOEL OE LoXPOTEOVECUT
Bdom, meohofdvovTac UEYIAES XUTAC TROPEC.

O mpdTog MOYOC Yol TOV Bl WEWOUO TwV aVTIXEWEVKY xodopileton amd Ny (Bl T cuoxer| Ki-
netic. ‘Onwg €yer avageplel, xdie avtixeluevo key-value Entry €yel neplopiopois oto péyedog
xou Tou xAewdol (key) xan tne uhg (value). Buyxexpuéva, 1o xhewdi unopel vo eivon éoc 4 KB
xan 1) Tin g 1 MB. ®avtacteite éva avtixelyevo to onolo meptéyet i UeYdhn cUAAOYT o€ Ghha
(peydha) avtixelpeva. Ilpoomoddvtog vor amoUnueloOVUE TO dpyd AVTIXEUEVO KOS €val EVioLo
OVTOTNTA, EVOEYOUEVKC Var UTERPEL TNV ywenTxoTnta evog avixewévou Entry. To ornolo, pe
oeglpd Tou, Yo npoxorécel Exception.

Emmiéov, Sloatnemdviog To TedyRaTo 0pYaveuEva €yel vonua xot yio Tny anodoon tou Kinetic
handler. Ac unodéocoupe 6Tt €xouue HdN amoUnxeuuévo éva avTXeluevo (og TO OVOUSoOUUE
objectA), to omolo nepLéyel eniong éva dAho avtixeiuevo (ag to ovoudooupe objectB). Emniéov,
oc uToYEécoupe 6TL UE XATOoLo TEOTO €youpe enlyvmon authg tne oyéone Has-A yetald objectA
xou objectB (1o omolo, mopepmntdviwe, etvar apxetd 50oxoho xdvovtag dueca hetovpyio put). Av
70 objectB tpononowndel, to dataClay Va emyeiprioet va evrucpwoel o objectB otnv unodoun
dedouévmy. ANG dedouévou 6Tt to objectB eivon uéoa oo objectA (xou o handler to yvwpilet),
o handler eivan utoypewuévog ye TNy emmAéov epyacio Tou va Beel mota bytes etvar yio To objectB
xan Oyt yia To objectA, xou tehxd var xdver Ty emuunty| Aettovpylo evnuépmwong.

Ao Vv TpoNYOoLUEVY TOEAYRAUPO Xl TO TURABELYUA TNG, EAAPEMS LTOVONINXE OTL OEV UTOPOVUE
e0xoha va E€pouue TL €yel amoUnxeutel 6tay xdvouue dueceg Aettovpyieg put. Me dAlo Adyia,
elyoote o Yéomn va Yvopiloupe To eEwTepixd avTixeipevo mou amodnxeletar, ahhd Oyl xon ouTd

27



mou mepthopPBdvovton oto eEmtepd. To va €youue autéc Tig TAnpogoplieg sivon {wTixrg onua-
olog, omwe eldapue mponyoupévewe: Mok éva avtixelyevo amodnxedetor, autd cucyetileton pe
éva avayvepelotixd (dataClay ID), to onolo amotelel to xpithiplo yia éva avtixelyevo va etvon
armoUnxevuévo. Edv autd to Briua dev yivel, etvon apxetd miavo va €youue TOMATAL avTlypopa
Tou (810U AVTIXEWWEVOL GTNY UTOS0UT| Bedouévey. Ag dolue to mdavd TEoBANUITH ACUVETELIS UE
éva apdderyua: to objectA (to onolo mepiéyel to objectB) amolnxedetu ye dueon Aettovpyio
put. 'Etot, dev yvwplloupe ol avtixelyeva anotnxebtnxoay extog and objectA. Ouolwg, éva
gAho avtixeipevo (ac to ovopdoouye objectC) to onolo tepiéyel enione wio avapopd oto objectB
amoUnxedeton Ye dueor Aettovpyio put. Amo i oTiyur) mou dev yvwpeilouye 6Tl To objectB e-
tvou 01 amonxedpevo (péoo oto Entry tou objectA), Ya anodnxeutel Zavd (uéoa oto Entry
oL objectC). Xtn cuvéyeia, av éyouye tporomolicoupe To objectB oe onolodYinote and o duo
avtiypapa, Yo TpOXIAECOUUE ACUVETELN GTO GAAO.

Ev xatoxheldl, ) onuoascia Tou Sl wELoUOU TV AVTIXEEVKY Xl TNE anoUxeVoTic Toug EEXWEIGTA
€yel TOAD vonuo.  ANNOC, TEOPAUATH OTWE 1) ACUVETELY, 1) LOY VT omod00m xou 1 UTERPaoT)
Twv oplwv anodfxeuone da eyelpovion cov €va Quvouevo vIouwvo. ¢ ex ToUTOU, 1) ETTAEOV
TpooTdUELd Yot TNV TAXTOTOMNOY TWY OVTIXEWEVLDY OTAY oUTd amoUnxedovTol yio TEMTN Qopd
o&ilel ye To MopomAve.

1.4.6 TIlepieyodpevo tnc TipAc (value) oe éva key-value Entry

Ye authv TNV evotnTa, mopoucidletar To pattern yir tnv T evog key-value Entry. Eivou
TOA) yperioyo va Topouoldooupe To dloxo Kinetic pe tov cwpd tng Java. Yto cwpd, xdie
avTixelyevo mepEyel BedoUEva Yiar To TEDO TOU. LUYXEXPWEVA, TEPEYEL TANPOPOpRieg Yior xdle
nedio mpwTaEyixol TOToL, xaddg enlong xan avapopég ot dAla avtixeipeva. Ouolng, ta key-value
entries oto 6loxo Kinetic mpénel va cuumepLpépovtar ooy v Aoy avTixeluevo 6To owpeod: Edv
Evo avTIXelpevo €yel medla TpwTaEytxo TOTOU, Ta TESiN AUTE CELPLOTIOLOUVTOL XAl ATOUNXEVOVTOL
uéoa oto key-value Entry tou avtixewévou oto onolo avixouv. Emmiéov, ta key-value Entries
napanéunouy oe dhha key-value Entries oto dloxo Kinetic xaw 0ev nepiéyouv dhha Entries, oo
TaL AVTIXELUEVOL BEV TIEPLEYOUY dAAa avTixelueva oTo heap.

207660, T GELPLOTONUEVOL AVTIXEUEVH TWIAVMS VO TEQLEYOLY DEDOUEVAL VLol TIORAUTEVE ATO €Vl
avtixelyevo. Autod onuaiver 6Tt ogelloupe va ene€epyaldpacTe Ta dedopéva auTd, va daywellovue
TO TEPWAELOUEVOL AVTIXEIUEVL X0tk VoL TOL AOUNXEVOVUE YWELOTE. AuT amoutel ptar Toh) TEOCEYUEVT
0oULAELd apol €youpe va enelepyaoTolUe dedouéva oe eninedo byte w¢ enl to mheloTtov, ahhd xon
o€ eminedo bit o€ elBWES TEQIMTOOELS.

Eutuyg, 1600 0 unyoviouog oeplonoinong 6co xou ol dloxot Kinetic efvar tng (Sl gplone. Ko
oL 800 xatohofaivouy bytes. Tinota dAho. Tinota mapandvew. Etot, avtd mou yeetaldyacte yio
vo. anotnxedoouyue oo dioxo Kinetic xadopileton Alyo moAd and to mponyoluevo oTe®ud, TO un-
xaviopo oelplonoinong. Aev €yel xou TOAD VoMU VoL TROCTI ACOUYE YioL Lol EVIEAMS OLOPORETIXN
ATEXOVION TV avTXEWEVwY oTo dloxo Kinetic. To udvo mou Ja éxave Yo fav vo emiPBopivel
v anddoor, xa oTic 6Vo xatevdivoelc: [N v anodixeuon evog avtixeyévou, Yo Emnpene
VO UETOUPPACOUNE TO CEIRLOTIOINUEVO avTixeluevo o pio poppr ouufaty v to Kinetic drive xou
avoxtovtag To avTixetyevo Yo aroutodoe to avtiotpopo. Avt autol, elvar apxetd ebhoyo va

28



XQATAHCOUUE TO AMOTEAECUA TOU UNYAVIOUOU CELRLOTOINGNE XAl VAL TO TPOTOTOLACOUUE HOVO OTOY
auTo glvon avaryxaio.

Emniéov, o unyoviouog ceplonoinong wog divel tn Abor yio 6tay Yéhoupue vor avageptolue o
dhho avtixelpevor: Katd tn Sidpxeia tng oetplomoinong evog avixelwévou, edv Peedel plo avapopd
oe 1o amodnxeupévo avtixeipevo, to avayvwpetotixd (dataClay object ID) tou anodnxeupévou
QVTIXEEVOU TPOCUETATAL OTO URVUKA CElploToinone ot 1) oelplomoinoy cuvey(lel oTo enduEvo
nedlo. O Kinetic handler petton autd 1o potiBo: ‘Otav €va ceplonomuévo avtixelyevo mepl-
€yel bytes yio dhho oelplonoinuévo avTxellevo, To "cowTepnd’ avtixeluevo anodnxeletu o éva
Eexwpetotd key-value Entry xou 1o "e€wtepind’ aviixelyevo anodnxelel pévo to dataClay object
ID 7ou “eowtepixol’ aviixewévou. Emniéov, o Kinetic handler emotpépel ta object IDs ohwv
TV TEOCHUTA anoUNXEVUEVLY avTixeévwy. To dataClay AoufBdver outd to amotéheoyo xou
eumhoutilel TI¢ YVOOEIC Tou oyYeTd Ye ta anotnxevuéva avixelyeva. Xwplc enelepyacio Tou
CELRLOTOLNUEVOL AVTIXEWWEVOU, Yo yTay ad0vato var Yvewpelloude ol avTixelpeva amodnxedovia.

1.4.7 Enelepyocia TV CELQLOTONUEVOY AVTIXELLEVLY

X1y mponyoluevr EVOTNTA, TO TEPLEYOUEVO Tou value twv Entries xohOgpinxe Siouocdnuxd. A-
TO TWEA ot 0TO €ENC, EMXEVIPOVOUUCTE 0TO xouudTt g eneepyaciog tou Kinetic handler.
Kopto xadrixov tou Kinetic handler eivon vo Stoxpiver tor avtixelyeva mou undpyouv uéco oe €va
CELPLOTOLNUEVO AVTIXEIUEVO X Vo ToL Oloy wEloEL.

Katd ) Sudpxeia g eneepyaciog TV Tedlwy EVOC avTIXEWEVOU, UTHEYOUY BUO0 TEQLTTHOOELC
Tou umopel var ouvavtiooupe. H mpotn xon mo €0xoAn eivon va €youpe éva edio TpwTap)y o
Tonou.  Xe authv TV Tepintwon, dedouévou 6t yvwpeilouvye Tov tOno Ttou mediou (ydpic oe
%dmotol LETABESOUEVA TOL DIDETOVIE), AVTLYPAPOLUE ATd TO CELPLOTOMNUEVO avTiXE(pevo oo key-
value Entry to oxpBéc mocd twv bytes mou elvon agiepwpévo Yoo auté to medio. Eutuydc,
Ta medlol TEMToEY X0 TUTOL €youv TavTa T Axdua xou av dev €youv apyxonoiniel, €youv
v mpoemAeyUévn T toug. AZilel va avopépouue TN SLopopd UETAL) TWV TEPLTTMOEWY TOU
Kinetic xou twv oyeoloxdv Bdoswy dedoyévev. Xto Kinetic, amhd mpéner vo avtiypddouue
uepd bytes xou vor cuveyloouue oto emduevo edlo. MTov aviinoda, o Postgres handler omoutet
TV XATAAANAT Btoadppnon uag dNhwong SQL, n omola cuvemdyeton eXTETAUEVO YELPIOUO EVOS
string yenowonouwmvIag anocTeoPous, TUpEVIETELS, x.AT. 2To TENOC, auTO 00TYEl OF €val apXETA
HEYSAO xou 60o%0AO Vo xatovoriel XOUUSTL TOU XWOWXA, GXOTOE Tou omoiou elivan w¢ enl To
TAElGTOY 0 oy NUATIONOS TNG ONAwong SQL, avtl 0 YElplonog TV BEBOUEVKY amd TO GELRLOTONUEVO
AVTIXEIPEVO.

H 8e0tepn nepintwon ebvar dtav €youpe vo xdvoupe pe pio avagpopd. H mepintwon auty| dev elvan
TO0O0 TETPWUEVT OTWE TEWY %ol €YEL TOMAES UTO-TEETTOOELS. ‘OToy GUVAVTAUE Yo avapopd, ebvou
TEVTOL 0EXETA BUVITOV 1) avapopd va ebvan null. 26Tt600, auth 1 TAneogoplo dev e€apTdtal omd
NV poppoloyio Tne xAdomng mou €xel oploel o yeotne. Avt autol, elaptdtar ot yeydio Baduo
amd To CUYXEXEIEVO oTiypdTuTo. o autd To oxomd xdle celplononuévo avTixeluevo €yel Eva
bitmap, to notNullBitmap, o onolo poag mAnpogopel yio T medla mou elvon avapopés oe dAla
nedio: Eva bit yio xdie avagpopd pog mhnpogopel av 1 avagopd eivon null 7 oxt. "Etot, to mpdto
Brua, eved avTweTonilovy avagopd eivon vo EAEYEETE TO xatdAAnio bit oto notNullBitmap.

29



Edv n avagopd eivor null (cOupwve ye to bitmap), dev undpyouv bytes yio v avagpopd oto
oeplononuévo avtixelpevo xou o handler cuveyilel oto enduevo nedio.

Ano Ty GANN TAELEA, UTEEYOUY TOAAES TEQITTWOOELS OTaY 1) avapopd dev etvan null:

o Ilepintwon 1 - Avagopd oc €va 7o1 anodnxevpévo avtixeipevo: Edv to
Tedio elvon avapopd o€ Eval AMOUNUEVUEVO AVTIXEIUEVO, O UNYOVIOUOS OELploTonoNg EYEL
npooaptniel pévo to dataClay object ID tou $dn amodnxeupévou avuxepévou (pali pe
xdmotar GANa peTAdEDOPEVD OTIWE TO tag).

’ 2 2 ’ 7 7 7 /

o Ilepintwon 2 - Néa oeiplonomnuévo avtixeiwevo: Autd cupfalvel dtov To prvuye
oelplomoinong meplEyel bytes yio mopoamdve and éva avtixelyevo. Xtny teplntworn auth, To
UTIO-OVTIXELUEVO TEETEL VoL DL WELIOTEL ANO aEYIXO CEIPLOTOINUEVO QVTIXEUEVO, ETELTA VO

7 Z e 7 Z 7 ’
avTiypagel oe éva dilo key-value Entry xou tote vo enavéldel 1 encéepyaciog Tou apyixod
4 4 7 . . 7 e 4 7
avtixeévou. I'a 1o oxond autd, o Kinetic handler Aertoupyel avadpouixd, dedopévou 6Tt
X0l O UNYAVIOUOS CELRLOTOINCNG EVERYEL XOTA OVadEOUIXO TEOTO.

o Ilepintwon 3 - Avagopd oe éva aviixeipevo mouv €yovpe eneiepyaoctel
TEOMYOLUEVWS: Edv 1 avapopd mapaméunel e €val avTIXEUEVO TIOU €YEL AVTIUETWOTICTEL
070 TaPEAUOY, TOTE UOVO TO tag EMCUVATTETOL YLl QUTO TO OVTIXEIUEVO, avTi TN €X VEOU
OELRLOTIOINGCNC TOU VTIXEWEVOL.

Etvor moh) onuovTtind vo Sloxplvoulde Tr) SLopopd avauesa oTny Tepintwor 1 xou otny mepintwon
3. Xy nepintwon 3, éva aviixelyevo Yewpeiton enelepyaopévo’ edv o handler €yel 7on enclep-
yootel autd To avtixelpyevo oty Bl xhon Tne Aettovpylac amodrixevong. Me dhha Adyia, €va
«ETEEEQYAOUEVOY AVTIXEUEVO BEV AMOUAXELTNXE TPl ANO TNV TEEYOLC XAoT TG Aettoupyiag
amodixevong. And v GAAN mAeupd, évo avtixeluevo Yewpeiton anodnxevuévo (nepintwon 1),
edv €yel anoUnxeutel oe mponyoLuevn xhfon Asttoupyiag amovfxeuong.

AN, Tode Braxpivovton ol Teewg autég tepintioelc O Kinetic handler yenowonoiet éva map, mou
ovoudaletan alreadyEncounteredObjects, to onolo €yel w¢ key to tag twv %om enelepyaouévmy
AVTIXEWEVOY Xt w¢ value To avayvewplotxd (dataClay object ID) tou xdde avtixeiévou. Av
uTdpyeEL Eva tag oTo map, auTo oNualvel 6TL To avTixelyevo el utootel enelepyacio oTo ToPENIOV
(oTtnv B xWfom e Aertoupylag amolfixeuone, dunc) xou ta bytes petd v eTixéta eivon yio
T0 enduevo Tedio (nepintwon 3). e avtidetn nepintwon, 1 avagopd urnopel va eivar eite o
éva anodnxevpévo avtxelyevo (mepintwon 1) # oe éva un anodnxevyévo (mepintwon 2). Ou
TEQLTTWOELS AUTES OlaxplvovTon amd Tor UETUOEDOUEVAL TTOU EYEL Xd)E GELOTONUEVO avTIXE(UEVO.

O Kinetic handler naoyilet vo anodnxedoel to avtxeipeva key-value oe pio (oyedov) xotovonth
uoppn yia To dataClay. Me autdv tov Tpom0, 1 avdxTnomn evog aviixelévou anod to dloxo Kinetic
Yo amoutrioel TN Ayotepn duvaty enelepyaocia. Emouyévee, ta tags oe xdde key-value Entry Yo
TEETEL VO EVERYOUY 1C UOVAOLXA OVOLY VWELOTIXA, OTWE XAVOUY GTOL GELRLOTIOMNUEVOL AVTIXEUEVAL.
Qo1600, av Héloupe va eEaydyOUUE ToL ECWTERIXE avTixelpeva amd éva eEwTERIXO, Ta tags ydvouv
TV oVOLY VORLOTIXT] TOUG LOLOTNTAL.

[ mopdderyua, ac utodécouue 6Tl €youue Ta avTixeluevo objectA xou objectB, ue tn petagd
TOUC CUCYETION OTLE anewoviletar 6To Lyfuo 1.2

30



objectA objectB

YXHMA 1.2: Hopdderypa: Xyéon yetadd 600 avixeluévmy.

Av 1 Aertovpylo anodrixevong xhndel yio to objectA, tdte xon ta SVo avtixelyeva Yo oetplomoln-
Yolv. Emmniéov, to objectA Ho emonueiwiel ye to tag 0, xou to objectB pe to tag 1. H avagopd
Tou objectA oto objectB eunintel otny nepintwon 2, encidr 1o objectB dev to €youue avTipeTe-
nioel oTo TapeAddy, olTe elvan anodnxevpévo. Avurdétng, 1 avapopd tou objectB oto objectA
euninTtel otV TeplnTwon 3, emeldr| To objectA To €youue KON cuvavtroel. ‘Etol, yenowomnoleiton
uovo to tag 0 yia TNV avopopd auT.

Av ta avtixelpeva objectA xouw objectB Siaywplotody xan anotdnxeutodyv ywelotd, modouy va
TUEATEUTIOUY TO €val 6TO dAho TAov. o mapdderyua, To tag pe aprduo 0 mou nepléyel To objectB
YioL TNV ovapopd Tou oto object A Bev umopel va tpocdioploet objectA. I'iat to Adyo autd, To object
ID Yo mpémel vor YpnowonolelTal yior TNV ovopopd o€ dAAS amoUNXEVUEVOL AVTIXELUEVDL, OTWS XAVEL
0 unyaviouos oelplonoinong oty mepintwor 1. X1n cuvéyela, xdide YETENEITA avapopd o HoT
eneeQYUOUEVO AVTIXEIUEVO TRETEL Vo TEpLEyEL Uovo To tag. Do mopddetypo, yior pior devTeEn
avapopd amtd to objectB oto object A apxel va tpociécouue udvo to tag Tou objectA, xan byt To
object ID tou. 'Etot, o Kinetic handler Yo npénel va e@oapudoel autd 10V ECWTERIXO UNYUVIOUO
emonueiwone. ‘Evo map xou évo abvoro (set) xahotolv duvatd autédv TO Unyoviouod:

e alreadyEncounteredObjects (Map oné tags oe object IDs): Auté to map meptypdpnxe
xaL Teonyouuévwe:  Elvor amopoftnto Yoo TNV avayveoplor TV oVTIXEWEVKY TOU €YOUV
ene€epyaotel oTo TopeAIdY, oty Bla xhfon Tng Aeryoupylag anodixevone. O avayvohotng
Yo TEETEL Var €YETE XATA VOU OTL AUTO TO map eivon LovadLxo xal yenoulonoteital and OAeg
TIC AVOBPOUIXES HATOELS TNE AetToupylog amodrixeuorg.

e alreadyEncounteredTags (X0voho twv tags): Kdile @opd mou xuhelton n Aettovpyio amo-
Yrxevong, éva tétolo ddeto cUVoAo apyxomolelton. Autd To clvoho mepiyel Oha Ta tags
TOU €yl HON cuvavTroeL 1 TeEyouca xhon anovfxeuone. Edv éva tag dev umdpyel oto
GUVONO, TO ETUCTUELOUEVO AVTIXEIPEVO CUVAVTHTOL YOl TEWTN QPOEA AT TNV TEEYOVTU XA o)
e Aertovpyiog anodhixevong, xar To avayveeloTixd avtixeyévou (dataClay object ID)
Vo mpémer vo emouvagel, pall e to tag (1o object ID unopei vo Bpedel and to map al-
readyEncounteredObjects). Awapopetixd, edv o tag eivon 610 olvolo, To tag apxel yia
TNV oVopopd 6To avTIXElUEVO.

Kdde tag mou eivow oto cUvoho alreadyEncounteredTags sivonw xow 6to map
alreadyEncounteredObjects. AAA&, 6yt To aviicTeogo.

31



Télog, o avayveotng umopel va gavTtacTel TNV TohuthoxdTnTo TG 0Anwong SQL vyl To yeipioud
TV avapopny oTny Tepittwon Tou handler twv oyeoloumwy Bdoewy dedouEvmy.

1.4.8 Key schema

‘Eneita and tnv meptypagr) Tou TL anovnxeboupe yio Ty Ty evog key-value Entry, to yévo mou
amouével va xalbhoupe etvar 1 Sour| Tou xAetdlol Yo éva Entry. Auty| 8ev extArioel xou axoloudel
T0 opxeTd ebhoyo potifo: <class ID> <object ID>

To xivntpo mou 0dfynoe oc autrh TN dour| mpoépyeton and Tn dudtaln twv key-value Entries
ue Bdon 1o xhewl toug. Aol ta Entries etvon ta€ivounuéva, o avtixeipeva tng dlag xhdong
OUABOTIOLOUVTAL, OTWS TAUPOUOINE XEVOLY OL TVAXES TWV OYECLUXWY BACEWY BEBOUEVKY. LOUQLVA
UE TIg TpodLaypapéc Tne Ty voroyiag Kinetic, 1 avdxtnon tov aviixeyévey tou Beloxovton xovtd
70 évat 670 ko pnopel va Bertiotomoinel. Lovtoua, Yo 600UE CUYXEXPWIEVES TEQLTTWOELS OOV
EXUETOUAAEVOUOGTE AUTO TO YUPAXTNELOTIXO.

1.4.9 EpnlouTtiopdc xhdoswy

Xy apyn) auToU TOU XEQUPAlOU, aVUPERUNXE EUPUTIXG OTL OTIC TEEYOUCES TMEOCEYYIoES Ylo
NV avTaAAYY) BEBOUEVMVY, Ol GUVERYHTES elvol TAVTO TEQLOPLOPEVOL GTNY AELTOLRYIXOTNTO TOU
TEEYETOL ANO TOV XATOYO Twv dedopévwy. H povn Aorn yia awtolc elvon var Snulouey\oouue
€vol avTlypapo TwY BeBoPEVWY xaL TOTE VoL To YelploTolv e Bdon Ty emuuia Toug. Qotdoo, 1
OLCLICTIXT CUVERYACTO Ko 1) AVTUAAXYY| BEBOUEVLY TOJOLY VoL UTLEEY 0LV UE TN Onuoupyio evog
AVTLYPAPOL.

Avt autoU, o dataClay emitpénel xou oTic 800 TheLpég va Aettoupyoly anpdoxonta. AxplBéote-
0L, 0 EUTANOUTIOUOUS TV XAEoEWY eivar Suvatdc Ue Teels Tponous: 1) Trv tpocifxn véwy nedinv
o€ W xAdom, 2) v 1eocixn VEwy uedddwy ot wa xAdom, 3) TNy TeocUxn WS VEUS LAOTO-
nong Yy wa undpyouca uédodo oe wa xhdom. Ilpogavee, o Kinetic handler acyoleiton udvo
UE TNV TN TEpinTmOoT, eNEdN 1) 0eTeEn Xt TElTN TERINTWOT EMNEEALOLY TN CUUTERLPOE TV
XAICEWY TOU BEV €yEL TIMOTA VO XAVEL PE TNV UTOBOUT TwV 6edopévmy. Avt autol, oL aAloyEg
oto medlar plag xhdong enneedlouv TNV xATAoTAoT TV CTYWOTUTLY Tou. Kot, dviwg 1 utodouy
WY Bedouévmy (oTny Tepintwot pag, ot dioxot Kinetic) amodnxedouv uévo tnv xatdotaon twv

AV TIXEWEVOY. AVTIIETOC, oL ahhayég OTIC UEVOBOUC aVTAVAXAMVTAL GTOL APYEld TWV XAACEWY.

YNy meplntoon Twv oYECIax®Y BACEWY DEBOUEVKV, 1) AVITUEACTACT) UG XACCTC ETUTUY YAVETOL
YENOWOTOUDVTAS Vol avTioTolyo Tivaxa, 6mou Ta Tedlor TN TéEng avtioTtotyilovTtal Ue TI¢ OTHAES
tou mivoxa. ‘Etol, eumioutilovtoc por 8N pe Ty mpocdnxn vEwv mediwy avtxatonTteileTon
ot Bdor dedouévmv, Ue TNV oo VEwY oTNA®Y oTov avtioTtolyo mivaxa. Avtildeta, otny
nepintwon twv Kinetic drives ol xAdoewc dev avamaplotdvton Ye xdnotlo tpono. Kdde otypdtuno
elvor ave&diptnTo amd To ko oe évav dioxo Kinetic, axoun xou av Beloxovtan to éva dimha oo
d@A\ho. ot600, oL Tpomonooelg ot dour| plog xhdong emnpedlouv Oha TaL CTLYMLOTUTE TOU,
oxaptafo.  Axoun meplocdTERD, 1) Teomonoinoy ulag xAdong emneedlel xaL ToL AVTIXEUEVO TKV
XAACEWY TIOU ETEXTEVOUY TNV eUnAoLTIoNEVY xAdoT. ‘Etol, av Uéhaue va evnuepthcoupue Oha
Tor avTixelyeva mou enneedloviol omd ToV EUTAOUTIOUO uiog xAdong, eivor adlvatov, neldr| dev

32



umopoluE Vo Bpolue ebxoha Tor avTIXElUEVO GAAGY XAACEWY TOU EMEXTEIVOUY TNV EUTAOUTICUEVT
xhdo.

[o autd T0 AoYo, dev elyacte oe V€on Vo xGVOUPE XATL UE AOYIXY) TOAUTAOXOTNTA, TN OTLY-
un Tou epmhouTtiopol. To udvo mou umopolUe Vo XEVOUUE TN GTLIYUY| TOU EUTAOUTIONOU Elvon Vol
EVNUEPWOOUYE TN YVOOT TOU €YOUUE Yiot TN SOUT| TNC EUTAOUTIOUEVNS XAdong. Auth 1 evnue-
pwUévn éxdoor dev emnpedlel xavéva amd to "dirty" avtixelyevo. Qotdoo, auth n véa yvoon
wog emiTeénel vor avaryvwploouue tor "dirty" avtixelyevo. H evnuépwon evoe "dirty" avtixeipévou
ouUPolvel Xt T OTUYT TNG aVAXTNOTG.

Ipwv mpoywericouue ot AOon mou €youue VIOVETACEL, elvon GNUAVTIXG Vo BLELXEIVICOUNE TL o-
vopéver to dataClay and tnv umodour tTwv 6edouévwy otav auteiton €va avTixeluevo Tou omoiou
elte 1 xhdon 1 xdmota amd TG UTEEKAAOELS Tou €Youv eunAouTioTel. Avouével €va GELRLOTOINUEVO
avuxelpevo 1o omolo €yer TAnpogopies (bytes) yio 6hor tor Tedia Tne xAdomg, 660 ToAwd 660
xan véa. ITo ouyxexpéva, n pédodoc amooeiplonoiong wiag EUTAOUTIOUEVNS XAJONG EYEL EVNUE-
cwiel €ToL WoTe v anooelplonolel «eumAouTiouévay aviixelyeva. Etot, 6tav {ntdue vo "dirty"
avTixelyevo, meénel va TpocVECOUUE TIC TPOETAEYUEVES TWES oTa VEa medio: Edv to véo medio
elvon Tpwtapyxod TUToL, Talpvel TNV Tpoxadoplouévn TWn. AlopopeTixd, To VEo Tedlo amoTeAEL
onueio avaopds xa 6ev Yo tpociécouue emnAcov bytes, agpol ot avagopés null ot oelplonown-
uévar avtixeipeva dev €youv bytes. Emmiéov, to notNullBitmap mpénel va nepiéyet bits yio xdde
AVOUPOEAL, AXOUT KL TG VEEC.

IIde avayvewpetletar éva “dirty” avtixeipevo and to Kinetic handler; ITpoxewévou vo avoryvepioet
éva ennpeacpévo aviixeipevo o Kinetic handler, pepuxd petadedopéva npootideton oto value
xadevoe key-value Entry, xatd tnv amodrxevon tou. I'vwplloupe oti 6tay €var avtixelyevo
amoUnxedeTon 1 ¥AdoT BEV EvoL EUTAOUTIGUEVT), APOU YENOLLOTOLOUUE TNV TEAEUTAO TN EXOOYT.
[ot w6 T0 AOYO popexdpouye xdde avTixeipevo e Tov aptdud Tov Tediny yia xdle pla and Tic
xhdoeg Tou (BnAadh TV Xxhdom Tou xou TS UTEEXAGOELS). X1 CUVEYEL, OTAV €Val AVTIXE(UEVO
VX TETOL, AUTE T ATOVNUEVUEVAL UETAOEBOUEVA GUYXEIVOVTOL UE TNV TEEYOUCI YVWOT| TTOU €Y OUUE
yioo TV (Ot xhdom. Av evtomiotel €0Te xou pior Slopopd auTod oNUalvel OTL To avTixeluevo elvou
“dirty”.

Téhog, moe avayvwplloupe ta véa Tedlor 6Tav Tpénel va evnuepwaooude €va dirty avtixeipevo; H
Koo épyetan and To (Bo To dataClay. Kde véo nedio npootideton ot téhog Twv 1dn vy ovTwmy
nediwv. H odhoryr) auth avixoatonteileton enlong otn YvMoT TOU €YOVUE Yol T1) Hop@ohoyio piog
xhdone. ‘Etot, 8edopévou 6Tl yvmpilouue tov aprdud twv 1on anotnxeuuévewy tediwy, o omola
TautiCovton Ye Tor Te T TESio oL YVWEICoUPE amd TN YVHOON Yio TN Loppoloyia Twv XAACEWY,
umopolue emlong va dlaxplvoupe o vEo edlo. Emmiéoy, to medlar 0ev aponpolvtal ToTE and TG
XAAOELS TOU €Y0UV OpIoTEL and Toug YenoTee. ¢ ex TolTou, dTav €va tedlo mpootiletoun ot uin
xhdom, n ¥éon Tou oY xhdon oe oyéon ue Ta dAAa Tedlor Bev Yo ahhdEel TOTE.

1.4.10 Avéxtnon tov avixeipévey and to Kinetic drive
IT\éov to pévo mou amopével va xohugiel elvon o ahyodpriuog tou axolovdeitar yio TNV avdxTnom

Z 7 4 . . 7, 4 4 Z 7 4 7
avTIXEEVOY amd To dloxo Kinetic. ‘Otav emiupolue vo AdBoupe éva avtixelyevo amd to dloxo
Kinetic, to mpcto Brjuo mou xdvoupe eivon var avaxtioouye to avtiotoryo Entry and to dioxo.

33



‘Eneita oxohoudel o €heyyog av elvan autod to avtixeluevo eivon “dirty”. Me dhha Aoyia, ehéyyouue
€dv 1 xhdom oTNY omola aviixel To avTIXelUeVOo €yel EUTAOUTIOTEL Ue VEa Ttedio. 2TV TERIMTWoT Tou
0ev mopaTNEELTAL XATOLL GANXLYT| YO TNV XAAGT] TOU AVTIXEWEVOU, OANS XU OAEC TIC UTEPXALGCELS
ToL emeXTElVEL AUTY, TO avTixeluevo dev ypetdleton xdmota tepautépw eneepyaoio. Elvar étowo
va petaPifaotel oto dataClay. Xtov avtinoda, av nopatneniel 6Tt €otw pla amd T xAdoe Tou
avTixelévou yel Tpononotniel, Tote pecoraBolv dVo Briuata Tew TEpaoTel TO TEAXO avTIXElUEVO
oto dataClay. To mpdto Brua eivan vor mpootedoly ol default Tég yio tar véor medior Tng xAdome.
To Seltepo Priwa etvon amotnxeutel ex véou To avtxelyevo Entry oto dioxo Kinetic, to onolo
Yo meptéyel mhnpogopleg yior OAa tar tediar, VEo o Tokld. Agol TeledoEL 1 anoVixELcT| Tou, To
(B0 avtxelpevo emotpégetan xou oo dataClay.

Hapatneolye 6Tt eved 10 Tehx6 anotéhecpa ebvar Slodéoiuo Pe To TEpAS Tou TE®MTOU BHUaTo,
TEPLEVOUNE TNV TERATWOT Xou Tou devTEPoL Priuatog metv Swflofactel To Tehind avTixeiuevo 6To
dataClay. H aAfdeia eivon 611 auth} 1 vAomoinor emdéyetan Bertiotonoinon. 1o cuyxexpyéva,
TO OVAVEWUEVO avTixeipevo umopet va petofiBactel oto dataClay opéowe Yetd to mpwTto Briua xou
70 0eUTepo Brua va exteleoTel e acdyypeovo Teomo. O pévog Adyog mou Bev €yel homolnlel 1)
BehtioTonoUEV avdxTnon BedoPEVLY HTay 1 EAAELYT YedVOou.

1.5 AZ&woAoynonm

Ev téei, moto ebvar 10 ouunépacpa HETE TNV OhoXApwoT aUTAS TNS €peuvag; Axdun xot ov To
ATOTEAEGUATA TTOU TEOXVTTOUY A6 TIC DOXUYES, OTWS TUEOLCLALOVTOL OTO TEUTTO XEPIANO, OEV
elvon tar BEATIoTa, 1 evowudtwon tng teyvoroyiog Kinetic tng Seagate oto dataClay gofveton
ToAU ehmudopopa. Tlpwta an’ 6Aa, 1 teyvoroyia Kinetic mhnpol to emduuntd yopoxtnetotind yia
byte addressability, onAaor| avapopd oto dedouéva ot eninedo byte. Me dhho Adyia, o unyoviouog
oElELOTONoNE XAl 1) UTOOOUT BEBOPEVLY, dNAadY|, ol dloxot Kinetic, wholy tnv Bla YAGcoo ToU
elvor bytes. ANAG, emimhéov xou o EVOLIPEROVTA, UTERYEL TERAOTIO TEPLIMELO Yol BEATILOTN Xa Yid
Tig 800 teYVohoYieS xan, entiong, Yot TNV eVowudtemoy| Toug. Ilepoutépm Aemtopépeieg axoroudoiv.

H teyvohoyia Kinetic tne Seagate eoaxohoudel va €yel yeydhn npdodo vo dorypdder (6w xou
o dataClay). ITapdro tou 1 teyvohoyio Kinetic éyet uiodethoel Ty anhh apaipeon twy avtixel-
uévev key-value, n ahrideio oto mopaoxAvio elvar Alyo o mepimhoxy. BTNV TeayHoTiXOTnTd, 1)
amodrxeuon aviixewévewy key-value dev éyet emiteuydel oe eninedo hardware, axduo. Avt’ auto-
0, €VOl EVOWUATOUEVO GG TN TTOU TEEYEL UTO TO Aeltoupyixd cUotrua Linux eivar utebduvo yia
v amodrxeuo Twv aviixeévewy key-value oe wa Bdon dedopévwy LevelDB. Me dhha Aoyia, 1)
urodour key-value elvon oplopévn 6to Aoylouixd Tpog o Tapoy. Autd 10 PEcUio OTEMOU LOVy
emPBaplvel Ty anddoorn Tou Kinetic handler. ‘Otav n urnodour key-value viorowniel oe eninedo
UAo0, 1 Aettovpyio and xou mpog to Kinetic drive avopéveton va Beitio tonouniet.

Iepoutépw Petiotonoinon unopel vo emtevy Vel ue v ohhayr g TeEYVOAoYiog Tou (Blou Tou
dloxou. Auth ™ otiyur, ov Kinetic drives eqopuélovton oe xhaowolg Xxineoie Aloxoug.
Edv eqappootel 1 teyvohoyio Kinetic oe Sloxoug otepeds xatdotaone (Solid State Drives) Yo
TapOLCLAoTEL AT Tdoa TaveTNTH TEPUTERL BEATiOT OTIC EMLOOCELS.

Meydho meprdmplo yia BeAtiotonoinon undpyet xou otnv mhevpd tou dataClay. O unyoviouog
oelplonolong €yel OYEBIUOTEL XTd TETOLO TEOTO ToL Ta amoUnxeLUEva dedopéva Yo PEpouv TNV

34



onuactohoylo toug. Ta mapdderypa, o SCOs mou €youv anodnxeutel oe wa oyecloxn Bdon
OEBOUEVLV PEQOLY oruactohoyr) TANpogopia. O x0plog Aéyog g emAoYTg auTo) TOU GYEDLA-
oUo0 ATAY 1) BUVITOTNTA YLA TIG EQUOUOYES VOL €Y OLY TEOCPBACT) GUECH GTA BEGOUEV GTNY UTOOOUT
TV 0e00PEVWY. 26TOC0, Lo TETOLL Avay XY Yiot EQUEUOYES Tou emIUUOOY TNV GUECT) TEOCPBAOT
oTNY UTodoUT BedoUEVKY Bev €xel mpoxilel uéypl oTiyuhc. Emmiéov, n npdcBaor oe dedouéva
UE TOV TEOTO aUTO BT To EMIUUNTO YUEAXTNELOTIXG TOU UTOAOYIGUOU XOVTA GTA BEGOUEVAL.
‘Etot, o woybwv unyoviopoc oeplonolnong gaiveton va etvan mopwynuévos. Ipdypatt, o unyavi-
ouo¢ oelplonolnong utoypeewvel ent Tou Tapdévtog toug handlers vo xdvouv TOAAY Soukeld mou
Yo umopoloe va amogevyvel. TIio ouyxexpwéva, 1 enclepyoacio Aopfdvel ydoa autrh T oTiyuy
xaL 0TIC BU0 MAEURES, oL OTO Pnyovioud celplomoinong xou otoug handlers. Auté elye vonua
HOVO GTNV TERITTWOTN ToU AMOUNXEVOUUE CNUACIONOYIXKOE TAOUGCL dedopéva. Emeldr| dev undpyel
war TéTolol avdyxr), 6Twe ey Hinxe TEONYOLUEVWLS, elvon omaEalTnTOg EVOC TIO OTOTENECUATIXOS
unyoaviopog oelptonoinong. I to oxond autd, to Storage Systems research group tou BSC
€yel Eexavroel TNV ovdmTudn evog VEou unyaviopol celplotoinong mou Yo amogedyYEL TN BITAN
enelepyaoio xou Yo xdvel Ty epyacio Twv handlers mohd suxoldtepn. Xuyxexpéva, dev Vo
UTdpyEL TAEOV Xoplor vy xn yia ENEEEQYACIO TWV GELPLOTONUEVOY AVTIXEWWEVWY GTO ENITECO TWV
handlers. Ot handler Yo eivon pévo uredYuvol yia To TEEUGU TWV GELOLOTONUEVGDY OV TIXELIEVLDY
oTNY UTOS0UT| BEGOUEVWY XaL TO aVToTEOYO.

35






Chapter 2

Introduction and Motivation

Since the widespread use of the term “Big data” from 2011 and on [1], big data has evolved into
a promising actor for radical changes in every activity. Big data has tremendous potential to
transform businesses and to power revolutionary customer experiences. Insights from big data
can enable companies to make better decisions — deepening customer engagement, optimizing
operations, preventing threats and fraud, and capitalizing on new sources of revenue. All these
insights were hidden previously due to the high cost of processing that data.

One core benefit of dealing with big data is its use for analysis purposes. In comparison to the
older statistical approach of sampling, processing of every single item of data in reasonable
time is now feasible and it leads to safer conclusions. Having big amounts of data can beat out
even the best model. On the other side, big data can also drive into new products or services,
which can change dramatically our everyday life. For example, Facebook has been able to
craft a highly personalized user experience and create a new kind of advertising business, by
combining a large number of signals from a user’s actions and those of their friends.

On the other side, new challenges have been arisen by the emergence of big data. According
to Edd Dumbill [2],“Big data is data that exceeds the processing capacity of conventional
database systems.” The volume of data produced is unprecedented and what seems big today
will probably be considered normal in the not-so-distant future. Estimations on the size of
the digital universe mention a growth from 130 exabytes in 2005 to 40000 exabytes in 2020
[3]. This is translated into a growth by a factor of 300. Furthermore, data is also produced
extremely fast. It is created in such a high wvelocity that a new Moore-like law has arisen:
The total amount of data will be doubled every two years [3]. In addition, data is arriving
from multiple sources: Social networks, mobile devices, financial market data, traffic flow
sensors, anything, in general, can create data. This variety of sources is also reflected on the
multiple forms of data: structured (e.g. databases), semi-structured (e.g. XML, JSON) and
unstructured (e.g. text, video, sound, images etc) data consist the ocean of information.

Both academia and industry are putting much effort in order to tackle the multiple challenges
that big data has brought. To name some of them, scalability, performance and heterogeneity
are challenges that scientists and engineers are called to deal with. A short description of
them follows.

37



Managing big and fastly increasing loads of data has been an issue for many decades. Until the
recent past, Moore’s law was the resolver of this problem. The increasing processing capacity
was high enough so that it was able to catch up the increasing data volume. But since the
CPU speeds have been limited due to the power constraints, the new approach of dealing the
scalability problem has been resolved by changing the dimension of processing: Processors are
built with increasing numbers of cores. Though, parallelism is like passing the problem from
hardware to software. And software is now called to deal with the scalability challenge.

Bottlenecks on performance are also introduced because of the big data emergence. For
example, the need for rapid real-time value from data results in performance challenges as the
amount of data that moves into the system increases. First, there is the challenge of whether
there is enough 1/O and network bandwidth when data is pushed to storage. Second, since
the only way to accomplish such a huge workload is by distributing it in several nodes, this
leads to the need for a quite sophisticated network design, where possible failures must be
predicted.

Both challenges described above are more or less of technical nature. Nevertheless, problems
are also arisen when somebody analyzes data. Such a problem is data heterogeneity. When
humans consume information, a great deal of heterogeneity is comfortably tolerated. In fact,
the nuance and richness of natural language can provide valuable depth. However, machine
analysis algorithms expect homogeneous data, and are poor at understanding nuances. In
consequence, data must be carefully structured as a first step in (or prior to) data analysis.

Taking into consideration the big data benefits and challenges mentioned above, the motivation
for conducting a master thesis on big data seems reasonable. This thesis, though, examines
some of the challenges that have not been described above. It makes a fair attempt to see
how collaboration between data owner and their partners can be facilitated. It also tries to
provide programmers all the tools that will make their work easier and spend their time on
the logic of their program rather the data storing. Last but not least, performance is never
sacrificed, and the intention is always to keep it high. Further details follow.

Throughout this master thesis, two developing technologies are being examined. The first
one is dataClay, a platform for data sharing which has been developed by Storage Systems
Research Group at Barcelona Supercomputing Center. dataClay has been built having in mind
data sharing as a fundamental feature. The second emerging technology is the Seagate Kinetic
Open Storage platform (sometimes called just Kinetic from now and on). Kinetic technology
is revolutionizing the way we know data storage and is trying to face many of the challenges
that big data has raised. Across the rest of this chapter, the motivation of developing the
aforementioned technologies is presented which also happens to be the motivation for using
them in this master thesis.

2.1 dataClay

What seems neglected by big data research community so far is the effort to make easier
the collaboration among all the actors. dataClay has been built having data sharing as a
key feature. This research focuses on how data can be shared in an easy and effective way.

38



Moreover, manipulating data on current platforms is highly dependent on the layer where it
relies. In dataClay approach, data is handled in a transparent way which permits programmers
to focus on the logic of their applications rather than coping with the data transfer. Last but
not least, performance is what really matters. Recent trends compel moving the computation
close to the data rather than the reverse way. dataClay faces this challenge by its design.

2.1.1 Data sharing

Nowadays, somebody can basically share intellectual property, such as data models, specific
data, code, etc. in three ways: a) by sharing the data infrastructure, b) by choosing the
datasets that can be copied or downloaded, or ¢) by offering restricted data services.

Sharing the data infrastructure provides full access to everybody. However, even though it is a
very flexible approach, its core requirement is the firm trust among all the stakeholders. This
probably happens when data is open/public. But, in this case, data is probably read-only.
If stakeholders want to modify it, the need for creating a copy into their workstation rises.
Which leads to extra time and space needed for this operation.

In the second case, data providers can only decide about the consumers to be granted the
authority to copy or download specific datasets. This option supplies to the consumers the
flexibility to process the data in their infrastructure according to their needs. However, down-
loading data implies too much data movement, especially in cases that the consumer’s infras-
tructure cannot store the whole dataset. Furthermore, data owners lose the control of their

data, because it leaves their infrastructure when it is copied.

Finally, when using a data service (such as RESTful web services), the data can be accessed
in the provider’s infrastructure and the owner maintains a strict control by deciding not only
what but also how this data is being shared. Despite the fact that such an approach prevents
the data movements and the data owner remains the only manager of the data, it restricts the
data consumers to use only the functionality provided by the data owners. A modification to
the given functionality is only possible with the involvement of the data provider.

Listening to the above needs and misbehaviors, dataClay is designed in such a way that ensures
data provider is the one who controls the data but, also, gives to third parties the potential
to enrich them, either by adding functionality or granting them modifications privileges. Last
but not least, dataClay avoids any redundant data transfer.

2.1.2 Persistent vs. non-persistent data models

Today, data models are designed in a different way depending on whether they are treated
within a persistent (non-volatile) environment or within a non-persistent (volatile) one.

Common cases of persistent storage include file systems and databases. Accessing data from
files demands I/O operations to be done by a developer. On the other hand, querying data
from databases is needed when someone deals with them, which also impose extra effort from
the developer.

39



In the case of non-persistent storage, data relies on memory. The applications themselves
(usually) allocate free memory for storing data and, since then, the data is processed through
references, pointers, iterators etc.

Given the differences between volatile and non-volatile data models, developers are compelled
to devote too much effort, first, design the two different data models and the mapping between
them, and then to implement the whole data flow for their applications with transitions
between persistent and non-persistent data.

dataClay provides all the mechanisms that are needed in order to handle persistent data as
non-persistent, thus facilitating application development and simplifying the design of data
models.

2.1.3 Computing close to the data

In non-big data cases, data processing involves the data loading from the persistent layer into
the memory and then its processing from CPUs. However, in big data era this approach is,
at least, inefficient, if not unfeasible. Data is produced in such a high pace that data transfer
close to the CPU is slower. Modern trends impose the movement of computation close to the
data, and not the reverse. Popular solutions that implement this include Apache Hadoop and
Active Storage. dataClay fulfills this need by its design: data are joined with code thanks
to its key technology: self-contained objects (SCOs). SCOs are like regular OOP objects,
which are enriched with some components which enable the two aforementioned long desired
features, the seamless data sharing and the abstraction of data from their environment. SCOs
are described detailly in the following chapter.

2.2 Seagate Kinetic Open Storage platform

Nowadays, we see an explosion of data that has been created of mobile, social, video applica-
tions, Internet of Things, connected devices, cloud computing and big data. These applications
rely on data that is primarily unstructured (or semi-structured), and easy and inexpensive to
create. The new status of data also drives the evolution of the storage infrastructure.

Today’s storage architecture was designed decades ago, for a very different use case, not
for a globally distributed, large scale cloud architecture and environment. In order for the
industry to achieve the growth demanded to support the new storage demands, layers of
inefficiency from legacy architectures must be removed and a new approach optimized for
scale-out application and data center needs must be introduced.

The Seagate Kinetic Open Storage platform and its developer tools make this radical change.
It takes traditional hard drives and adds two key elements: 1) Object Storage Protocol and
2) Ethernet connection. The combination of these two elements lets the entire storage archi-
tecture become more efficient.

The Kinetic technology is detailed in the next chapter. However, at that moment, what the
reader only needs to understand about Kinetic is that it is a new class of key-value Ethernet

40



connected drives. Instead of dealing with file semantics or a file system for finding where data
resides on the device, Kinetic offers a simple key-value abstraction for working with objects
(information). This abstraction is driven by the needs of modern applications: They just need
simple object semantics (e.g., write the whole thing, read the whole thing, delete the whole
thing etc).

The second key element of Kinetic is the use of Ethernet protocol. In traditional storage
architectures, data which starts from an application passes through several layers of hardware
and software in order to reach its destination, the storage device. Kinetic eliminates these
multiple layers in the path between application and storage devices and uses Ethernet instead.
So, information is just an IP address away. This enables applications to target storage devices
directly and take advantage of storage features.

2.3 Objective of the master thesis

One of the novelties introduced with dataClay is the abstraction of data from the layer they
rely on. They can be either in memory or in a persistent environment. From programmer’s
point of view, data can be accessed in the same way regardless the environment they rely on.
On the other side, although the data is accessed like being in memory, it cannot reside in it
forever, obviously. It is dataClay’s task to offer the functionality which enables the abstraction
feature.

dataClay is a purely object-based platform. As it was mentioned in the section “Computing
close to the data”, it deals with SCOs. Which, actually, are regular OOP objects. Thus,
information is enclosed inside objects. Working with data is actually working with objects.

In dataClay, when data needs saving, the corresponding objects must be saved. For this
purpose, dataClay has been using several data infrastructures, so far. For example, Postgres
relational databases, Cassandra distributed databases, and others. All these cases involved the
mapping of dataClay objects to the internal structure of the underlying data infrastructure.
For example, OOP objects must be mapped into rows in the corresponding table in a relational
database. On the contrary, Kinetic technology has adopted the much more simple key-value
object abstraction. Thus, it seems to be in advantageous position in comparison to the other
data infrastructure, regarding dataClay. Nevertheless, integration of Kinetic technology into
dataClay is not as easy as it seems, even though dataClay and Kinetic talk the “language of
objects”.

When dealing with objects, the easiest and most portable way to save them is to serialize
them. However, default serialization of OOP languages is not capable to support dataClay’s
features, like data sharing. Thus, dataClay has developed its own serialization mechanism. In
order to accomplish the integration of Kinetic technology into dataClay, solid understanding
of the underlying technologies and of their mechanisms is needed. For this reason, Chapter 2
describes both technologies from high level. Then, dataClay’s custom serialization mechanism
is presented in Chapter 3 in detail. Kinetic handler, which accomplishes the pairing of these
two technologies, is described in Chapter 4. Next, evaluation of Kinetic handler follows in
fifth chapter.

41






Chapter 3

Related Technology

The purpose of this chapter is to present dataClay and Seagate Kinetic Open Storage platform
in detail. In addition, the underlying technical mechanisms of some key features of both
technologies are presented.

3.1 dataClay

In the previous chapter, it was mentioned that self-contained objects (SCOs) are the key
elements of dataClay. They are presented in detail in the following section. Furthemore, the
possible ways a user can enrich a class with are presented. In the last section, details on
how dataClay can be used are presented and, along with them, some of the underlying key

mechanisms are explained.

3.1.1 Self-contained objects

What drives the introduction of self-contained objects (SCOs) is the widespread use of the
Object Oriented Paradigm (OOP). OOP objects are made out of two key features. Firstly,
they have state via their fields. Secondly, they also have behavior, via the methods they are
equipped with. dataClay takes advantage of this data-computation prozimity derived by the
OOP design and adds some new features to the traditional objects. This blending results into
the concept of SCOs (Figure 3.1).

SCOs are like regular objects in the sense that they are instances of a certain set of data
models (the traditional OOP classes) and applications use them as in the common OOP. One
thing added on top of the regular objects is the policies that enable the long desired feature
of efficient data sharing. What is shared, or with whom, or for how long, etc. is controlled by

the policies that the data provider defines.

Furthermore, SCOs are also provided with a user-friendly dataClay API that enables the
programmers to store and retrieve them handily. In order to create new SCOs the user calls a
single method that makes the whole object and its relationships with other objects persistent

43



FI1GURE 3.1: A self-contained object and its relationship with other.

in a transparent way. Then, SCOs can be retrieved by using three mechanisms: a) by using
a reference from another SCO, b) by tagging them with an alias and then querying by this
tag, or ¢) by performing “query by ezample” that is resolved searching SCOs that match with
a certain dummy SCO used as a prototype.

Now, it is easy to see, from a different perspective, how SCOs fulfill the three motivational
factors that led to the development of dataClay. Data sharing is possible due to the policies
that every SCO bears. Dealing with data (either persistent or not) in a transparent way is
enabled due to the dataClay API that every SCO inherits. Last but not least, computation
close to the data is achieved due to the nature of traditional OOP objects: fields and methods
reside together in an object.

Dealing with SCOs is actually dealing with OOP objects. Once a SCO is retrieved, the user
can manipulate it like a regular OOP object by using its fields or calling the methods that
its class has defined. In this way, dataClay saves lots of efforts to the programmers avoiding
the transitions between current persistent and non-persistent data models since now they can
focus on a single combined model with a SCO oriented basis.

3.1.2 3% party enrichment

As it was described in the previous chapter, sharing data has not been an easy and effective
procedure so far. Current solutions imply too much data movement and multiple copies of
data. But most crucially, consumers are restricted by the functionality provided by the owner.
dataClay deals with these issues and offers both data owners and 3rd parties the potential to
enhance existing data models with intellectual property. Since dataClay follows the object-
oriented paradigm, data models are represented by classes. Thus, enrichment of a class is done
by modifying its elements, namely the fields or/and the methods. A class can be enriched
in three ways: a) by adding new fields, b) by adding new methods, and c) by adding new
implementations to existing methods.

44



Even though adding new fields to a class affects its structure, this enrichment does not have
any negative impact on the rest of the collaborators. In the same way, adding new methods
offers one more functionality, which does not exclude the one provided by the data model
owner. Thus, the new methods can be executed on the existing SCOs as well as the original
methods. In fact, the new methods become part of the original class as the original ones. Last
but not least, dataClay offers users the potential to add a new implementation to an existing
method. Nevertheless, this modification does not affect the rest of the users who have access
on the same class. Instead, when a user calls a method which has been modified previously by
someone else, the expected implementation (for him) will be executed. Soon, the underlying
mechanism which enables class enrichments will be described.

3.1.3 dataClay details

Across this section, the typical workflow of data model sharing will be explained and some key
underlying mechanisms will be explained too. The example will be described in Java, since
the implementation part of this master thesis has been done in this programming language.
However, dataClay supports Python too.

Data model sharing

When data providers aim to share their data models with 34 parties, they begin by registering
the corresponding Java classes in dataClay. The data provider specifies the location of the
class files and dataClay proceeds with the registration process.

Given that a class name is not a universal resource identifier, dataClay uses namespaces as
the entities to organize class names as if they were part of a particular package or application.
These namespaces are also registered by the data model provider.

Once providers have registered their classes, they can sign model contracts that grant 3™
parties to access them during a certain period of time. At that moment, the provider defines:
a set of interfaces, one per class, which include the fields and methods that will be exposed
through the contract, as well as the expiration date of the contract. Therefore, the providers
retain control of what they share, with whom, and for how long.

In order to manage the entire process, shown in Figure 3.2, dataClay offers an API via a client
library tool that provides the functionalities to register namespaces, classes, interfaces and
contracts.

Stubs

Beneficiaries of model contracts can retrieve the included classes to use them either to compile
their applications or to generate new enrichments. In particular, and also by means of the
client library tool, consumers download one stub per class (a bytecode class file representing
the original class). These stubs are generated by dataClay considering the wisibility scope
derived from the contracts, i.e. the union of visible methods and fields according to the

45



2) Signs contract <A interface

Namespace /

/\ |

/

1) Registers A 3) Enriches A
A.class /

FIGURE 3.2: Sharing data models.

interfaces included; plus a set of specific methods (dataClay API) that are inherited from a
common class (DataClayObject) that all stubs extend (analogous to Object class in Java):

makePersistent: stores the object as a new SCO in the system.

deleteObject: deletes the referenced SCO from the system.

getByAlias: retrieves a SCO reference of the same class by its alias.

getAlike: retrieves the references of those SCOs whose values match with those of the
current instance acting as a prototype.

All the methods in a stub, except those provided by the dataClay API, have two different
parts controlled by an if-clause: local execution and remote execution. The former, contains
the bytecode of one of the accessible implementations of the method (considering the visibility
scope from the contracts) and it is necessary while the object remains local, that is, until it
is not made persistent with the makePersistent method. On the contrary, when the object is
already a SCO, it is called the remote execution behaving like a RPC (the following section
Remote execution describes it).

The stub also comprises (hardcoded) the information related to the model contracts used to
generate it — since, as we said, a stub might be generated from the union of several contracts
potentially containing different interfaces of the corresponding class.

Enrichments

Regarding the enrichments, introduced in the previous section, the process is analogous to
registering original classes, since at the end any enrichment is an extra piece for a data model
which can be defined within a class. In particular, when 3'4 parties aim to add new value to
an existing class (for which they have authority via a model contract) registered in dataClay,
they use the Java extension mechanism (i.e. Java extends token) to define the corresponding
enrichments. That is, the class containing the enrichment extends from the stub corresponding
to the class being enriched, so that the enrichment class is allowed to use the original fields of

46



the class and the original methods as if it was a child class. This is useful not only to compile
the enrichment class and look for errors if any, but also to register the enrichment by using
an analogous process as a regular class registration.

In the data infrastructure, the enrichment is deployed by updating the original class to include
the new functionalities and fields, thus enabling to share these new parts through immediate
subsequent new model contracts containing them (with interfaces including the new defined
fields and methods). That is, although the original class and SCOs are extended, the existing
interfaces and model contracts are not affected. Thus, the existing applications using older
stubs are not compromised, with the new parts of the data model being simply out of their
visibility scope.

The enrichments of fields and methods are simple, in the sense that they add new value
to existing data models but the resulting class is like a regular one. On the contrary, the
enrichment of implementations of existing methods is a bit more complex because it entails
handling multiple implementations for any single method.

For this reason, model contracts do not only comprise the interfaces that define the visibility
scope of every included class, but also the visible implementations of the corresponding meth-
ods. Then, stubs are generated considering also this information so that dataClay can select
which implementation to be executed when processing a method execution request.

Datasets

In order to facilitate the organization of the SCOs and to easily define how they are shared,
dataClay offers the concept of dataset that enables data owners to enclose a set of SCOs.

Once the data owners register their datasets (a process analogous to registering a namespace for
classes), they can provide data contracts to consumers granting them access to corresponding
datasets. In short, a data contract offers a specific dataset so that the beneficiary can access
the SCOs associated with such a dataset.

Besides, the data contract is limited with an expiration date and also defines whether the
contracting party has the privilege to create new SCOs on the dataset or not. Therefore, the
data owners keep control on the datasets they share, how, with whom and for how long.

It is worth noting that data contracts comprise a new use-case and are different than model
contracts described previously. The former, grant access to the SCOs of the offered datasets;
the latter, establish the visibility scope from a specific set of classes. In other words, data
contracts enable data sharing (that is, SCOs), while model contracts enable data model sharing
(that is, classes).

Remote execution

At this point it is worth to introduce some components of our system: the Logic Module
(LM), and the Data Service (DS). Logic Module keeps track of all the management informa-
tion such as namespaces, classes, interfaces, contracts, etc. On the other hand, Data Service

47



is in charge of processing method execution requests by managing the persistence layer
where SCOs are actually stored. To this end, once a class is registered via the Logic Module
it is then deployed to Data Service which also prepares the data infrastructure to store future
SCOs that instantiate the class (more details in the following chapters).

Once a SCO is stored in the data infrastructure the stub behaves as the interface to access it
remotely. To this end, dataClay’s approach comprises a TCP communication binary-protocol
and its own serialization mechanism both to create new SCOs and to pass the necessary
arguments when executing a method on specific SCO.

The workflow for the execution of a method remotely, as it is show in the Figure 3.3, is:
When a client application invokes a method of a certain SCO via the corresponding stub,
the arguments (if any) are transparently serialized and transferred in the request, the request
is then analyzed by Logic Module that checks if it comes from a valid contract that grants
access to that class, and finally the Data Service processes the request by: retrieving the SCO
from the data infrastructure, executing the requested method with the given parameters, and
returning the result (if any) by using the same serialization mechanism and communication

protocol as for the requests.

] dataClay
& LM Yoo ol

2z 2 (0)

S5z

il gg

@)

g

gL 5 gl

FIGURE 3.3: Remote execution in dataClay.

Communication with the Persistence layer

Even though dataClay offers the very elegant feature of working with SCOs without concerning
where they reside (either on memory or a non-volatile environment), dataClay has to deal with
this issue. It is dataClay’s exclusive task to store and retrieve data (that is, objects) from the

data infrastructure they rely on.

dataClay is ready to used several data infrastructures like Postgres, Cassandra, Neo4j and
others as backends. Since the nature of the data store varies, the interaction between dataClay
and any of these infrastructures varies too. For example, representation of data on relational
databases is very different than on graph databases. For this reason, dataClay has a handler
for each of the data infrastructure that it supports.

The objective for each handler is to map objects from the non-persistent to the persistent
environment, and vice versa. More specifically, every handler has to prepare the data in-
frastructure for future storing of objects, which solely depends on the nature of the data

48



infrastructure. Afterwards, objects are stored, retrieved, modified, deleted to/from the data
infrastructure according to the representation the handler uses on the persistence layer. More
precisely, a handler receives a serialized object, manipulates this information (that is, bytes)
and store the data on the persistence layer, according to the representation that it has chosen.
The opposite happens when we want to retrieve an object from the persistence layer.

Objective of this master thesis is the development of the appropriate handler that enables
the use of Kinetic technology into dataClay. The following chapters describe in detail several
aspects for the development of this handler. Before moving to them, though, it is worth to
gain some insight into Kinetic technology regardless dataClay. This is done in the rest of this
chapter.

3.2 Seagate Kinetic Open Storage platform

As it was mentioned in the first chapter, Kinetic Open Storage is a drive architecture in which
the drive is a key/value server with Ethernet connectivity. The purpose of this section is to
provide a detailed description of Kinetic Open Storage platform. First, the motivation for
developing this Ethernet key/value storage device is presented. Then, some Kinetic features
that are relevant to this thesis are introduced. Last, the software and the hardware resources
are exposed. Before proceeding further, it should be mentioned that the biggest part of this
section derives from Kinetic website [4].

3.2.1 Kinetic architecture

The Seagate Kinetic Open Storage platform represents an opportunity to substantially address
the inefficiencies of traditional datacenters whose legacy architectures are not well-adapted
to highly distributed and capacity-optimized workloads of exploding unstructured data and

applications.

Current datacenters are characterized by multiple layers of software and hardware stacked
together in order to enable a data path between two poorly compatible systems: An object-
oriented application layer and a hardware layer (spanning HDDs, SSDs, and tape) based
on block-storage. The transit path from application to storage requires multiple layers of
manipulation from databases, down through POSIX interfaces, file systems, volume managers
and drivers. Information passes over Ethernet, through Fiber Channel, into RAID controllers,
SAS expanders and SATA host bus adapters. A stack might look something like in Figure 3.4.

Beyond the obvious inefficiency of having to move through multiple layers, this model relies
on a dated assumption about the operation of local storage devices: in the 1970’s storage was
organized close to, and based on, the physical attributes of a device. This has all changed,
but the software stack has not evolved.

The majority of today’s mass scale object applications do not need either file semantics (e.g.
change the middle of a file, append to the end of a file, refer to a file by a name in a tree of
names) or a file system to determine and maintain the best strategy for space management on

49



Server

Application '_-]
File System DB —_—

POSIX
File System
Volume Manager
Driver
.

J Fc

Storage Server
RAID

Battery Backed RAM
Cache

Devices

SAS Interface

SMR, Mapping
Cylinder, Head, Sector
Drive HDA

FIGURE 3.4: Traditional storage stack in a datacenter.

a device. Modern applications need only object semantics (e.g. write the whole thing, read
the whole thing, delete the whole thing, refer to it by a handle chosen by the client and cluster
manager), and should not need to worry about where data resides on a given device.

In order to manage this complexity, an entire ecosystem of storage server technology providers
(both hardware and software) has risen up purely to abstract it from both the device and the
application layers. Not only is this inefficient, it also introduces additional barriers between

the two realms that can impede surfacing of storage features and functionality.

What if we could start over and re-structure the stack from the bottom up? What would it
look like if object-oriented applications could speak directly to, and in the language of the
storage device?

It would look like the Kinetic Open Storage platform. Kinetic is:

e A new class of key/value Ethernet drives + an open API and series of libraries.

e Designed to provide the simplest semantic abstraction and enable the broadest set of
applications through an easy-to-use, minimalist API.

e An efficient platform to maximize innovation and value both within and above the

storage device.

Together, these pieces enable applications to target storage devices directly and take best
advantage of storage features. Drives talk in keys and values, as opposed to blocks. They do

20



‘get’, 'put’, and ’delete’ operations. They allow applications to distribute objects and manage
clusters, while letting the drive efficiently manage functionality such as:

Managing key (object) ordering

Quality of service

Policy-based “drive-to-drive” data migration

Handling of partial device failures and other management

Data at rest security

In contrast to the traditional stack described above, the Kinetic storage stack might look like

Application ,
Kinetic Library i

3

this in Figure 3.5:

Devices

Ethernet Interface
Key Value Store
Cylinder, Head, Sector
Drive HDA

FIGURE 3.5: A storage stack using Kinetic technogy.

The new model has a number of significant implications:

The superfluous layers of legacy software and hardware are removed.

Need for the traditional storage server tier is obviated.

Storage can truly be disaggregated from compute.

Racks can be more dense.

o1



e Fans are minimized.
e Data traffic leverages the existing datacenter transit fabric, Ethernet.

e Datacenter operational management is simplified, and both cost- and risk- reduced.

Scale-out is simplified, cost-effective, and unconstrained by legacy architectures and infras-
tructure. Information is now just an IP address away.

3.2.2 Kinetic Open Storage Value proposition

The Kinetic Open Storage platform is architected to enable simple, flexible storage perfor-
mance and scaling. It delivers optimal total cost of ownership (TCO) for datacenter storage
providing savings both in capital outlays and operational expenses

Performance

Kinetic drives are native key/value stores. This shifts the burden of maintaining the space
mapping of a device from a file system to the drive itself. Applications need only put and
get objects; they no longer need to guess at LBA layout or prescribe data location. This
shift largely eliminates a very significant amount of drive I/O that moves no data but rather
represents metadata- and file system-related overhead.

There is also incremental benefit here for scaling: as both device manufacturers and cloud
datacenter operators ramp device capacity as aggressively as possible, the increased 1/0 effi-
ciency - and resulting net I/O utilization - enables more balanced scaling of 1/O and capacity,
in addition to absolute performance on a given device and across a Kinetic cluster.

Scale

The Kinetic platform is uniquely optimized for explosive-growth, scale-out datacenters. The
Kinetic architecture with its disaggregation of storage from compute enables cloud datacenter
operators to simply add storage as need for capacity grows. Additionally, the combined im-
pact of Ethernet connectivity and the key/value API command structure enables incremental
capacity to be scaled in a highly distributed manner with the replication of data directed from
drive to drive, with minimal incremental system cost.

Simplicity, Ease of Use/Adoption

Kinetic drives are provided with a comprehensive user space library that allows applications
to access the device directly. This library provides the complete interface to access the data
and to manage the drive. It bypasses the normal operating system storage stack and lets the
application to talk directly to the drive as if it were talking to another service in the datacenter.

52



This process utilizes a typical application remote procedure call (RPC). This Kinetic platform
currently provides libraries for Java, C++, C, Python, and Erlang, and other languages will
be provided over time.

The Kinetic APT allows applications to interact with the drive as if it were a typical key/value
service on the network; it allows applications to put data in the form of keys and values to the
drive and to get this data back by specifying just the key. As one would expect, keys and their
values can be deleted. Additionally, the keys are ordered (lexicographically) so that searching
of the keys within ranges and finding the next and previous keys are possible. The schematic
in Figure 3.6 shows the basic architecture.

B Applications ® Clustering ® Management

Libraries

TCP/IP/GbE

L}
L L]
s a

1519

B Storage

FIGURE 3.6: Architecture of basic application using Kinetic technology.

There are also extensive drive management commands that allow the drive to report its health
and to manage who is allowed to communicate with the drive.

The Kinetic platform allows implementation of new datacenter architectures. This is due to
the fact that Kinetic drives interface directly with the applications, thereby eliminating an
entire tier of hardware. This technological advantage allows much denser storage racks, which
impacts total cost of ownership in a number of different areas. Elaboration of these advantages
is out of scope for this master thesis. Interested readers are prompted to Kinetic website for
further information.

o3



3.2.3 Kinetic features

Across this section, the most important features of Kinetic technology are described. First is
described the notion of object storage. Then, elaboration on the key schema follows. Last, an
inner Kinetic mechanism for concurrency issues is presented.

Simple object storage

Object based storage organizes data into flexible-sized data containers, with the approach of
addressing and manipulating discrete units of storage called objects. Objects are not organized
in hierarchy, such that one object cannot be placed inside another. Since every object is at the
same level, this is considered a flat address space known as a storage pool. The key semantics
for object storage are PUT, GET, and DELETE.

Object storage differs from legacy disk storage, where legacy disk storage used block-oriented
interfaces that reads and writes fixed sizes of blocks of data. The object contains uninter-
preted sequence of bytes (data) and sets of attributes to describe the object (metadata). The
metadata are used to assign unique identifiers that allows a server or end user to retrieve
the object without needing to know the location of the data, which is extremely useful for
automating and streamlining data storage for cloud computing. The key functions of object

storage are:

Create objects

Delete objects

Write bytes to and from individual objects

Read bytes to and from individual objects

Set attributes on objects

Get attributes on objects

The advantages of using Object Storage are:

e Data Mobility - The ability to reference objects by IDs rather than file names pro-
vides more freedom for migration of data, and eliminating the constraints of underlying

hardware.

e Scalability of Namespace - The namespace does not have any size limitations and
completely independent of the file and operating system.

e Performance Scalability - The ability to read and write directly to the objects simul-
taneously with no limitations.

e Simplified Integration and Development - The enhanced feature that provides
easier coupling of applications and storage.

o4



e Storage Efficiency - Objects only uses the space that they need, without having to
pre-allocate storage for the storage container

Kinetic Drives implement key/value object storage for the advantages stated above. The basic
semantics used for simple object storage are get, put, and delete.

In order to write the object onto the drive, the put operation is performed with the client
requesting to write a created object using the Kinetic API by sending the object’s keys and
values through the network to the Kinetic drive, as shown in Figure 3.7.

Object Based
Storage
Client

Kinetic API

KV

—

FIGURE 3.7: Put Operation using Kinetic API.

When requesting to read a desired object, the client sends the object’s keys to the Kinetic
drive through the network. Once the Kinetic drive receives the keys, the keys and values will
be returned to the client through the network, as shown in Figure 3.8.

Similarly, the delete function is performed with the client sending the objects’ keys to the
Kinetic drive, in which the drive removes the keys and the corresponding values from the
Kinetic drive.

Key schemas

In key-value object storage systems including Kinetic Open Storage, a key is a unique identifier
for the object. Key-value object stores typically support a large key size such that not all
possible values of keys can be stored. For instance, first generation Kinetic drives support
keys of up to 4K bytes. This means that there are over 1079864 possible values of keys. (In
comparison, the Logical Block Address (LBA) of the largest block storage disk drives is about

95



Object Based
Storage
Client

Kinetic API

FIGURE 3.8: Get Operation using Kinetic APIL

34 bits or 10710 possible addresses, and the number of atoms in the observable universe is
estimated to be about 10°80.) The LBA space of a block device is dense; all addresses from
zero to the maximum LBA are used. The key space in a object store is typically sparse,
but may be dense in a small part of the possible key range. The key is used to specify the
key-value object being accessed. Put operations must specify the key for the key-value object
to be added to the object store. Get operations must specify the key of the key-value object
for which the value is to be retrieved from the object store. Delete operations must specify
the key of the key-value object to be removed from the object store. If the key already exists
in the object store during put operations, then the existing key-value object is replaced.

The key for a key-value object is totally at the discretion of the client or cluster manager.
Any key that is within the limits of the drive is allowed. The key is an opaque value to a
Kinetic device, with only key ordering as a quality that is understood by the device. The set

of key-value objects in a Kinetic device are ordered based on the value of the key.

While keys are opaque to the drive, various considerations are likely to drive the formation of
keys and the key schema.The major considerations include the following:

e Cluster Load Balancing
e Key Collisions and Key Space Segregation
e Key Ordering

e Semantic Meaning to Clients or Cluster Managers

o6



Among the four considerations, only the third is explained further, since the rest are out of
scope for this master thesis. Interested readers are kindly prompted to the Kinetic website
for further information. As it is presented in the fourth chapter, key ordering is important for
our case too, and it has been taken into consideration.

Key Ordering

Various use cases include access to a set of key-value objects. A key schema that provides
for the most common sets to be sequential in key space can optimize performance as well as
simplifying the implementations.

Throughput can be optimized for use cases where a set of keys will be accessed together if
the set of keys are in sequential order. The following can benefit from key schemas that make

keys in the set of key-value objects sequential.

e Large objects sharded into multiple smaller key-value objects stored on the same device

e Objects that are appended by an application by adding key-value objects to the same
device

e Columns for a multi-dimensional database

If the key schema includes a sub-field that enumerates shards, addenda or columns and this
sub-field is in the lowest order part of the key then access to the multiple key-value objects
that make up the larger object may be optimized. For a database, a key schema that has
a column identifier in the less significant part of the key would optimize accesses to a given

column for all rows.

Searches can be optimized by minimizing the number of get key list calls needed for use cases
where a list of a set of keys are needed. The following can benefit from key schemas that make

keys in the set of key-value objects sequential.

e Object collections

e Versioned key-value objects

If the key schema includes a sub-field that enumerates the collection to which a key-value
object belongs and this sub-field is in the lower part of the key then get key list methods can
be issued to discover all of the keys belonging to the collection. Similarly, if the key schema
includes a sub-field that enumerates the version of an object and this sub-field is in the lower
part of the key then get key list methods can be issued to discover all of the versions for an
object, and in particular can directly discover the newest or oldest version of an object. This
can be further leveraged for snapshots.

o7



Multiple clients with shared key/value objects

Kinetic also offers an inner mechanism for dealing with concurrency issues. Its key/value
entries are accompanied by version identifiers. Moreover, every put operation can specify the
existing version id as well as the resulting version id. This provides an elegant solution for
shared data with safe updates. The mechanism is explained further with an example that
follows.

If an object is shared by multiple clients, then occasionally two clients will attempt to update
the same object at about the same time (see Table 3.1).

| Client A | Client B |
get(keyl)
get(keyl) modify object

modify object put(key1)
put(keyl)

TABLE 3.1: Object modification by multiple users

In the case of Table 3.1, the data that Client B just wrote will be silently obliterated by Client
A.

To help protect against this kind of accidental data destruction, each object has a ’version’
identifier associated with it. The version id is returned to the host with the get command,
and is sent to the device with the put command.

When a put command is sent to the device, the client can include version id that it previously
read and specify that the put shall succeed only if the current version id matches. Prior to
accepting the new object data, the device checks the current version id for the object, and if
it does not match, the device rejects the new put command.

In the example of Table 3.2, the first put operation that Client A makes is rejected, because
the version of the already-stored key/value entry that he wants to override does not match the
one that he expects. This means that someone else has modified the key/value entry. This
causes Kinetic to raise a VersionMismatchException exception. The programmer is called to
handle this exception. In the example above, the modification for Client A is repeated on the
recently modified by Client B object.

The modifications that the two clients need to do are different. The clients are doing two
separate transformations. But if the transformations are commutative then they do not need
to be strictly ordered.

Such operations scale, and the simple yet powerful Kinetic version mechanism directly supports
high performance shared data.

o8



Client A ‘ Client B Device

get(keyl) returns version 1
get(keyl) modify version 1, result- | return version 1 for

ing in a desired version | client A

2

modify version 1, result-
ing in a desired version

2
put(keyl, old version = | put is accepted
1, new version = 2)
put(keyl, old version = put is rejected
1, new version = 2)
get(keyl) return version 2 for
client A

modify version 2, result-
ing in version 3

put(keyl, old version = put is accepted
2, new version = 3)

get(keyl) return version 3

TABLE 3.2: Versioned object modification by multiple users

3.2.4 Software resources
API Overview

The Kinetic Library includes two categories: Admin and Client. Here, only client library is
presented, since it is more meaningful for the purpose of this master thesis.

The Client API provides the Kinetic client application interface to communicate directly with
the Kinetic service, in two types of operations.

e Synchronous — Operations guaranteed to be successfully performed on server if call
returns with no Exceptions

e Asynchronous — Operation guaranteed to be successfully performed on server if Call-
backHandler (passes instance of the implementation) receives successful CallbackResults
(obtains operation requests)

Client API provides more than the basic key/value object-based storage methods, with the
key methods shown below:

e put — Put the specified entry to the persistent store
e get — Get the entry associated with the specified key

e delete — Delete the entry that is associated with the key specified in the entry.

29



e getNext — Gets the entry associated with a key that is after the specified key in the

sequence

e getPrevious — Gets the entry associated with a key that is before the specified key in
the sequence

e getKeyRange — Get a list of keys in the sequence based on the specified key range

o getMetadata — Get entry metadata for the specified key.

3.2.5 Hardware resources

The first generation Kinetic drive is a 4TB, 5900 rpm, 3.5” hard disk drive (HDD). Compared
to its conventional sister drive, the Kinetic drive implements the Kinetic API that enables key-
value object storage. The Kinetic drive replaces the Serial Advance Technology Attachment
(SATA) or Serial Attached SCSI (SAS) interface connections with two 1-Gbps SGMII Ethernet
ports, which enables direct network attached connectivity. The Ethernet interface allows
communication between drives and direct communication to the datacenter, eliminating the
need for Storage Servers for datacenter storage racks.

Throughout the conduction of this master thesis, the implementation code was tested using a
Kinetic prototype device which Seagate had kindly offered to Storage Systems Research Group
at BSC. This device is the 4-Bay Development Chassis, which is presented in the Figure 3.9.

Seagate Ember Chassis
(Currently Not for Sale)

15 1
3 4
7

ETH2  pwrok Seagate @

12V pC

7

FIGURE 3.9: The 4-Bay Development Chassis.

60



The purpose of the 4—bay development chassis is to provide a low cost, easy—to—use desktop
device to use as a test and software application development device. The chassis consists
of four drive bays, each with two (2) SGMII Ethernet ports, and a “backplane” PCB into
which the SGMII drives plug. The backplane provides all SGMII signal routing through an
Ethernet switch or switches covering all eight (8) SGMII drive ports. The backplane also
provides routing for all electrical power required by the drives and supplied by the included
power supply. The system is managed by manual on/off power control switches for each disc
drive in the enclosure and externally managed through Ethernet and I?C.

Simulator

Last but not least, Kinetic offers a simulator API that can be used instead of the 4-bay devel-
opment chassis. The Simulator API provides a simulator boot-strap class used for applications
to start new instances of the Simulator to act as a drive.

61






Chapter 4

Persistence Layer: Serialization
mechanism

As it was mentioned in the previous chapters, one of the core advantages of dataClay is the
SCOs’ abstraction from the layer they rely on. Either on memory or not, the programmer
deals with SCOs in the same way, like being loaded on memory. In that way, programmers do
not need to cope with storing, reading, updating, deleting data. They just focus on the logic
of their application.

On the other hand, data are not loaded on memory for ever, obviously. Data (that is, SCOs)
are stored in non-volatile environments. dataClay supports internally all the needed mech-
anisms that enable this functionality. More specifically, dataClay has its own serialization
mechanism and also has handlers that support data management on several platforms, like
PostgreSQL Relational DataBase Management System, Apache Cassandra and others. The
objective of this master thesis is the development of another handler, which connects data-
Clay with Seagate Kinetic Open Storage platform. However, profound understanding of the
serialization mechanism is needed before moving into the implementation of the new handler.

Across this and the following chapter, dataClay’s persistence layer is examined from two
perspectives. This chapter examines how things are organized before reaching the data in-
frastructure. In other words, how dataClay’s custom serialization mechanism works. On the
other side, the following chapter examines how Kinetic handler deals with the output that the
previous layer (that is, the serialization mechanism) produces.

The first section of this chapter describes one essential procedure for dataClay, the byte-
code analysis, which is quite important for persistence layer and beyond. The second section
presents the motivation for implementing a custom serialization mechanism for dataClay and
how it is achieved. Next, how dataClay represents user classes and their fields in the Data Ser-
vice is presented. What follows is the handling of null references. Then, treatment of already
stored or already serialized objects follows. After all these introductory parts, the content of
a serialization message is presented. Before reaching to the end of the chapter, special cases

of the serialization mechanism are presented. These cases include array, collections and maps.

63



4.1 Bytecode analysis

In the previous chapter, it was slightly mentioned that dataClay supports its own serialization
mechanism. Nevertheless, it has not been revealed yet who or what mechanism implements the
serialization and deserialization methods and at which moment this process is accomplished.
The answer is that dataClay itself is in charge of this process and this is achieved during the
bytecode analysis, which is detailed below.

During class registration, the dataClay client library tool analyses the bytecode of the classes
registered in the system. The fact is that this process is multipurpose. It is important to
a) prepare the persistence layer where SCOs are actually stored, b) generate the bytecode
required for the serialization mechanism, ¢) check dependencies among classes, and d) identify
the methods that modify the state of the SCO.

In order to prepare the persistence layer to store the SCOs, the handlers of data storages need
the information about the morphology of the class to prepare the required structures in the
underlying storage. For that purpose, the bytecode of the class is analyzed to extract its fields
and types.

As we know, stubs are the result of a user class which is “filtered” with a model contract.
The analysis of the class structure is also useful for the serialization mechanism, thus allowing
generating the bytecode of the makePersistent method that is in charge of serializing the stub
instance to generate the persistent SCO. In the same way, the bytecode analysis is useful for
the generation of the class methods that require argument passing and/or return some value,
since knowing the types of the arguments is necessary to generate the corresponding bytecode
in order to serialize efficiently the parameters in the corresponding execution requests.

Regarding the class dependency analysis, it is useful firstly to enable the client library to
transparently register the required classes needed for the main one; and secondly, to notice
the requirements of a class when it is offered to a 3'¥ party via a contract.

Last but not least, analyzing the methods enables dataClay to know the arguments and return
types, which is necessary for the serialization mechanism; and to keep track of those methods
that modify the state of the SCO, (i.e. those setting new values to any of its fields), which
is useful to know when to propagate updates and making them persistent transparently from
the point of view of the application.

4.2 Motivation for implementing custom serialization mecha-
nism

It has been mentioned several times that dataClay has its custom serialization mechanism.
There are several reasons that led to this decision:

e Java default serialization requires having the same class at both client and server sides.
Which is not true in our case, because of the model contracts that we apply.

64



e Java standard serialization is also slow, because of reflection. Even if we implement the
Externalizable interface, which avoids reflection, the performance is quite poor, too.

e There are some representations, like cycle references or the references to other persistent
objects (and they do not need serialization) that are difficult to be represented in Java
RMI.

e Also, having our own serialization mechanism allows us to avoid deserialization and
serialization in intermediate layers like Logic Module.

e Java serialization also sends class information together with the instance (types and so

on), which causes redundancy of information.

Since we want to avoid both reflection and the externalizable interface, dataClay implements
its own serialization method in a different way. Given that dataClay generates the bytecode
of stub classes, the serialization code can be hardcoded in the makePersistent method and for
the parameters and return values of methods, thus avoiding reflection every time an object is

serialized. Soon, the structure of a serialized object is presented.

4.3 Representation of classes in the Data Service

Throughout this section, the representation of a user class in the Data Service is represented.

As it has been said earlier, when a user registers a class, the Data Service (DS) is in charge of
preparing the data infrastructure for future storing of objects that instantiate that class. For
this purpose, a special class, named DBClass, exists. The objective of this class is to represent
the user classes. It contains an array which has the same length as the number of the user
class fields. Every element of this array represents one of the user class, in the same order as
in the class.

In this paragraph, the workflow which starts with the registration of a class in dataClay until
the preparation of the data infrastructure is presented. As it has been said, when a user
registers a class, the bytecode analysis of the class follows and then its registration is accom-
plished. During this process, the Logic Module requests from another smaller component, the
Class Manager, to instantiate a DBClass object for the user class representation. The Class
Manager is capable of creating the appropriate instance of DBClass for the user class, since
it stores all the information of the class resulting from the bytecode analysis that was held
earlier. When the DBClass object is prepared, it is passed from the Logic Module to the
Data Service. Then, the Data Service has to prepare the persistence layer (that is, the data
infrastructure) for future storing of instances of that user class. The preparation of the data
infrastructure depends exclusively on the data infrastructure nature. For example, relational
databases require different handling than NoSQL databases. Thus, Kinetic infrastructure also
needs its special treatment. For this reason, Kinetic handling will be explained in the next
chapter.

Last but not least, it is worth to mention that DBClass objects are also necessary for the
handlers that are in charge of storing/updating/reading/deleting data objects. Handlers deal

65



only with serialized messages (that is, bytes). So, these bytes do not bear any semantics of
the data and no information for the morphology of the class they represent. However, having
this information is definitely needed. For example, we need to know the amount of bytes we
have to read for a field: An integer has 4 bytes, while a double 8 bytes. Thanks to DBClass,
bytes from serialized objects can get meaning.

4.4 Representation of class fields in the Data Service

In a similar way to user classes, fields of user classes are represented in the Data Service by
instances of a special dataClay class, called DBField. Without diving too deeply into the
technical details, DBField models the user class fields, namely their name and their type. The
type of a field can be either any primitive type or reference to other object. This is achieved
thanks to a boolean called isNullable. If it is true, the user field is a reference. Otherwise, it is
a user field of primitive type. This boolean is set during the registration of a class. Afterwards,
1sNullable is used by the handlers, since dealing with references is very different than dealing
with primitives.

4.5 Meaning of Not-Nulls-Bitmap

As it is obvious, objects can reference to other objects through their reference fields. However,
these reference fields may not point to other objects. In such a case, their value is null and
there is no need to serialize anything for null references. The serialization mechanism takes
this fact into consideration and appends to every serialized object (that contains references)
a variable number of bytes that bear this information.

More precisely, a bitmap is appended in every serialized object (which has references) and
it serves the purpose of knowing which references are null or not. This bitmap is called
notNullBitmap. It has the same number of bits as the number of reference fields of the
serialized object, one per reference. The order of the bits is the same as the order of the
references that they have been defined in the class. If a bit is set (that is, true), it means
that the corresponding reference is not null and bytes for the referenced object exist in the
serialized object. On the opposite, if one bit is not set (that is, false), it means that the
serialized object has no bytes dedicated for the null reference.

Last but not least, it is worth to mention that it depends on the data infrastructure how null
references are mapped on the persistence layer. For example, relational databases can map
a null reference into a null value in the corresponding table, row, and column. In the case
of graph databases though, if we suppose that objects are mapped to nodes, null references
can be mapped by not putting an edge in the graph. So, null treatment depends on the data
infrastructure. The Kinetic case is explained in the next chapter.

66



4.6 Handling of already stored objects

When an object is serialized, this object may contain references to other already stored objects
(in other words, persistent). In this case, it does not make sense neither storing again (that
is, overwritting) the already stored objects, nor serializing them. Instead of re-serializing
the persistent objects, dataClay writes their object ID into the serialization message of the
unstored object. Afterwards, it continues with the serialization of the remaining fields.

However, what is the criterion that makes an object persistent? In other words, how does
dataClay recognize persistent objects? The rule is: If an object has a dataClay object 1D,
it is persistent. Otherwise it is not. An object gets tied with its object ID for its whole life
cycle, only when it is stored. Thus, checking the persistency of an object is actually checking
its object ID.

It is very important to make clear that this object ID is not a Java identifier. It is an internal
dataClay unique identifier. One reason is that Java identifiers (like the hashcode of an object)
identify objects only as long as they reside into the Java heap. On the contrary, dataClay needs
to identify its objects regardless they reside in the persistent layer or in memory. Secondly,
dataClay objects can be shared between different clients and servers. Thus, we need unique
identifiers for the whole system. That’s why dataClay uses its own IDs, which are actually a
field of every object. More precisely, it is a field of DataClayObject. Since every stub class
extends DataClayObject, every object has this field.

In the end, how is this bonding between an object ID and the freshly-persistent object
achieved? When makePersistent operation finishes for an object, its dataClay object ID is
returned. Data Service receives this object ID and sets it to the corresponding object, which
still resides in the memory. Thereafter, any attempt for reserialization of the object will be
prevented, since it has already a dataClay object 1D.

4.7 Handling of already serialized objects

During the serialization of an object, if dataClay finds a reference to an object that has been
already serialized, this object will not be serialized again. There are two reasons for doing
this: 1) Redundancy of both processing and information is avoided, and 2) Any possible cycle-
reference is avoided: Imagine dataClay heading up in processing a cycle-reference: This would
lead to an infinite serialization.

In order to avoid such cases, dataClay tags every object with an integer. If an object has
been already serialized before, dataClay just appends the tag that corresponds to that object.
Then it continues with the serialization of the next field.

How does dataClay recognize the already serialized objects? It uses a map, whose keys are
the object hashcode and values are the tags of the already serialized objects. If a key-value
can be found for an object in the map, it means that it has been already serialized. In such a
case, only its tag is appended. On the other side, when an object is encountered for the first
time, it is tagged with the next available tag and its key-value pair is added to the map.

67



4.8 Serialization message

Several smaller parts of the serialization mechanism have been introduced so far. Their syn-
thesization composes the serialization mechanism. There are some key facts that make the
understanding of the serialization mechanism of dataClay easier:

e [t is a recursive procedure: While processing with the serialization of an object, if some
of its fields refer to other non persistent objects, then they are serialized, and later the
serialization remainder of the initial object resumes.

e When the serialization of an object is finished, its superclass is serialized too. Since
every class extends DataClayObject, every class serializes at least another superclass.
Moreover, serialization of DataClayObject comprises also the halt criterion of the seri-

alization.

The pseudocode of Algorithm 1 describes the algorithm of the serialization mechanism:

Algorithm 1 The algorithm of the serialization mechanism

1: procedure SERIALIZEOBJECT()
2 append tag

3 if tag already used then

4: return

5: end if

6 append classI D of the object
7 append isPersistent boolean
8 if isPersistent = true then
9 append objectI D of the object
10: return

11: end if

12: append not Null Bitmap

13: for all field do

14: if primitive field then

15: append its value

16: else

17: if field not null then

18: field. SERIALIZEOBJECT()
19: end if

20: end if

21: end for

22: if superclass = DataClayObject then
23: SERIALIZEDATACLAYOBJECT()
24: return

25: else

26: goto step 6

27: end if
28: end procedure

68



4.8.1 Further explanation of the algorithm

In order to facilitate the understanding of the algorithm, some steps are explained further.

e The step 2 was described in the section “Handling of the already serialized objects”. As
it is obvious, step 3 is always false when SerializeObject() is called for first time. In
other words, when an object is encountered for first time, its tag is also used for first
time.

e The steps 7-9 were described in the section “Handling of the already stored objects”.

e The objective of notNullBitmap was described above in the corresponding section. How-
ever, it is worth to mention how step 12 really works. As it is obvious, it is quite hard
to know whether the fields of the objects are null or not, before processing them. In
other words, the job of step 12 seems impossible before step 13. What is actually done
is a bit more complex: At step 12, only the space for the notNullsBitmap is allocated.
Instead, the notNullsBitmap is formed during the step 13-21, when every field is pro-
cessed. Then, between step 21 and step 22, the final notNullBitmap is written in the
space that was allocated at step 12.

e The step 23 has not been detailed thoroughly enough, on purpose. During that step,
the serialization mechanism appends some metadata of fixed size (in bytes) for the Dat-
aClayObject. Since it is a trivial procedure, we can neglect its technical details. The
only worthy thing to mention is that after this step the termination step of SERIAL-
1ZEOBJECT() comes.

e As it has been mentioned before, the serialization mechanism is a recursive procedure.
So, it is quite possible having information for more than one objects after SerializeOb-
ject() finishes. Actually, this can happen at two different steps: Either the object itself
has references to other objects (step 18), or some of its superclass fields are references
to other objects (step 26). This fact is very important and the reader should keep it in
mind for the next chapter.

4.9 Wrappers

Even though the algorithm above covers several use cases, it does not cover other common
ones. For example, it can handle any user object with either primitive or reference fields, but
it misses functionality for other common cases like arrays, collections and maps. The reason
is that these richer structures are not defined by some user. Instead, there are part of the
Java language. Thus, there is neither registration of arrays/collections/maps, nor stub classes
for them. Instead, their Java regular classes are used. Since no stubs are produced for these
classes, there is no serialization method (by dataClay) for these structures either. So, if we
want to store an object which contains an array (for example), this array will be wrapped into
a special class during the serialization of the outer object. Then the wrapped array will be
serialized, and this will finally be stored in the data infrastructure.

69



As it has been said, during the registration of a class, its bytecode is analyzed and the seri-
alization and deserialization methods are implemented. If a reference to any of these types
is found, then these fields are wrapped and the serialization method of the wrapper is used
instead, which is already implemented. It is further detailed below.

4.9.1 Array wrappers

When a reference to an array is found during the serialization of an object, then this reference
is wrapped into the appropriate wrapper. Particularly, there are 8 wrappers for the 8 primitive
types and one wrapper for arrays of any object. The latter case covers even multidimensional
arrays or arrays of Java default wrappers (like Integer etc.). In the case of an array of primitive
type (Algorithm 2), its serialization is quite simple.

Algorithm 2 The algorithm for the serialization of arrays with primitive types

1: procedure SERIALIZEPRIMITIVEARRAY ()
2 append tag

3 if tag already used then

4 return

5: end if

6 append classI D of the object

7 append isPersistent boolean

8 if isPersistent = true then

9: append objectI D of the object

10: end if
11: append array length

12: append serialized array
13: SERIALIZEDATACLAYOBJECT()
14: return

15: end procedure

There are a few things worth to mention:

e At step 6 the class ID of the corresponding wrapper is serialized. For example, if an
array of shorts is serialized, the class ID of the wrapper for arrays of shorts is going to
be appended. This information is very useful for handlers.

e At step 11 the length of the array is appended, because it is very useful for the dese-
rialization. If this integer is not included, then deserialization cannot know how many
bytes to read for the array.

e At step 13, only the DataClayObject is serialized, since it is the only class that the
wrappers extend.

e As someone might have noticed, there is no notNullBitmap. The reason is that an array
will not be wrapped and serialized if the reference to the array is null. Instead, the object
that contains the reference to the array will mark as false the corresponding bit in its
notNullBitmap. On the handler’s side, since the bit will be false, the deserialization will
continue to the next field.

70



In the case of an array with references to other objects, the serialization is bit more complex
(Algorithm 3).

Algorithm 3 The algorithm for the serialization of references

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

procedure SERIALIZEOBJECTSARRAY ()

append tag
if tag already used then
return
end if
append classID of the object
append isPersistent boolean
if isPersistent = true then
append objectl D of the object
end if
append classI D of components
append array dimension
append array length
if length > 0 then
append size of notNullBitmap
append notNullBitmap
for all array elements do
if element not null then
element.SERIALIZEOBJECT()
end if
end for
end if
SERIALIZEDATACLAYOBJECT()
return

25: end procedure

Regarding Algorithm 3, some comments follow:

At step 11, the class ID of the elements is appended. This information is needed for
the array instantiation during the deserialization. At that moment, the array must have
some type.

At step 14, if the length of the array is 0, there is no need to append any extra information
except for the superclass. Furthermore, this metadata is very important because it
denotes, more or less, the amount of bytes someone can expect in the remainder of the
serialized array.

At step 15, the size of the notNullBitmap is appended. This is done because there
is no other way to compute this size during the serialization. If it were not supplied,
deserialization cannot be aware of how many bytes to read for notNullsBitmap. Instead,
in the case of SerializeObject() such an information is not stored since the size of the
bitmap can be calculated thanks to the DBClass instance.

At step 19, the serialization method of the referenced object is executed, which is known

due to the bytecode analysis.

71



4.9.2 Collection wrapper

After looking the array wrappers and their details, collection wrapper does not surprise. Its
serialization pseudocode can be found in Algorithm 4.

Algorithm 4 The algorithm for the serialization of collections

1: procedure SERIALIZECOLLECTION()
2 append tag

3 if tag already used then

4 return

5: end if

6 append classI D of the object

7 append isPersistent boolean

8 if isPersistent = true then

9: append objectI D of the object
10: end if

11: append name of the collection

12: append size of collection

13: if size > 0 then

14: append size of notNullBitmap
15: append notNullBitmap

16: for all collection members do
17: if member not null then
18: member.SERIALIZEOBJECT()
19: end if

20: end for

21: end if

22: SERIALIZEDATACLAYOBJECT()
23: return

24: end procedure

The only thing we should mention here is that at step 11, the name of the collection is written
in a string (for example, “ArrayList”). Having this information is needed for the instantiation
of the collection during the deserialization of the object.

4.9.3 Map wrapper

Map wrapper does, more or less, twice the process of a collection wrapper. Its serialization
pseudocode can be found at Algorithm 5.

As someone can notice from the Algorithm 5, steps 12 through 21 are for the keys of the map
and steps 23 through 31 are for the values.

72



Algorithm 5 The algorithm for the serialization of maps

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

procedure SERIALIZEMAP()

append tag
if tag already used then
return
end if
append classI D of the object
append isPersistent boolean
if isPersistent = true then
append objectI D of the object
end if
append name of the map
append size of map
if size > 0 then
append size of notNullBitmap of keys
append notNullBitmap of keys
for all keys do
if key not null then
key.SERIALIZEOBJECT()
end if
end for
end if
append size of map
if size > 0 then
append size of notNullBitmap of values
append notNullBitmap of values
for all value do
if value not null then
value.SERIALIZEOBJECT()
end if
end for
end if
SERIALIZEDATACLAYOBJECT()
return

34: end procedure

73






Chapter 5

Persistence Layer: Kinetic handler

Up to this point, very few things have been revealed for the implementation part of this master
thesis. The objective of the previous chapters was to provide the reader with the required
background to reach this chapter (and understanding all these concepts was also part of my
master thesis, given their novelty and lack of documentation). The vast majority of this
chapter describes the design choices made for accomplishing the integration of the Kinetic
technology into dataClay. The most important criterion for making these choices was always
the high performance. Another objective of this chapter is to expose the differences between
semantically rich data infrastructures, like relational databases, and byte enabled ones. For
this reason, Kinetic handler is compared with Postgres handler several times throughout this
chapter.

5.1 Establishment of connection with Kinetic 4-bay develop-
ment chassis

Throughout the implementation part of this master thesis, Kinetic 4-bay development chassis
was used extensively. In this section establishment of connection to the 4-bay development
chassis is described. The 4-bay developer kit architecture is simple and only needs a single
switch to tie the Ethernet ports together. The Figure 5.1 exemplifies the architecture and
gives one way of connecting a system together.

In this case, a cable is connected to the local area network (LAN) assuming that the LAN
has an existing [IPv4 DHCP server. The other port can be connected to a computer. Since
the switch bridges all the 10 ports together (the 8 drive ports [4 drive x 2 ports each| and
the 2 external ports) the computer is able to get the IP address from the LAN as it would
normally do. The drives will then do DHCP for all 8 ethernet ports and begin to multicast
their configuration using UDP to 239.1.2.3 port 8123.

For the purpose of this master thesis, setting up a DHCP server in the personal computer is
more plausible than using the LAN. Next are presented the steps followed for the configuration
of the DHCP server under the Linux operating system:

75



w
1 I .
|
4-Ba§'
Development
Chassis

FIGURE 5.1: Establishment of connection with the Kinetic 4-bay development chassis.

1. Installation of the DHCP network service:
sudo apt-get install isc-dhcp-server

2. Then, the configuration file /etc/default/isc-dhcp-server was edited in order to specify
the interface that the DHCP should listen to. The interface ethO was added.

3. Editing of the file /etc/dhcp/dhepd.conf is needed, too. By doing so, the address range
that the DHCP will multicast is specified. In our case, the range 10.5.5.10 to 10.5.5.20
was selected. The following lines were added in the configuration file:
subnet 10.5.5.0 netmask 255.255.255.224 {
range 10.5.5.10 10.5.5.20;
option routers 10.5.5.1;

}

4. Last, assigning a static IP to the interface that we use for dhep (ethO in our case) is
needed. This was done by using the graphical network manager that Ubuntu comes
with. An instance of this step is captured in the Figure 5.2
Moreover, through the Routes... option (as in Figure 5.2), this connection was set to
look only for resources on its network. By doing so, navigating to the Internet through
this connection is prevented.

The 4 steps above do not need to be done more than once. However, the DHCP network
service has to be started every time we want to connect to the 4-bay development chassis.
This is achieved with the following command: sudo service isc-dhcp-server start

Seagate has developed several script tools in Python programming language. One of them,
called discover.py, recognizes which Kinetic drives are connected and which IP address is
assigned to them. One of these IP addresses can be used for the configuration of the client
which is responsible for connecting the application (in our case, the dataClay platform) with
the Kinetic drive.

76



Editing Wired connection 1

Connection name: | Wired connection 1

General Ethernet B802.1x Security IPv4Settings @ IPv6 Settings

Method: | Manual v
Addresses
Address Netmask Gateway Add
10.5.5.1 255.255.255.224 10.5.5.1

Delete

DNS servers:

Search domains:
DHCP client ID:
(] Require IPv4 addressing For this connection to complete

Routes...

Cancel save...

FIGURE 5.2: Assigning a static IP.
5.2 Kinetic key-value objects overview

This section briefs the technical details of the key-value objects that can be stored in a Kinetic
drive. According to the Kinetic API, such an object is called Entry. In other words, there is
a Java class called Entry which represents the key-value objects.

Every entry is identified by its unique key, which, in Java terms, is a byte array field in the
class Entry, called key. Its maximum size is 4 KB. Similarly, every entry has another byte
array field for storing the value of the key-value object, called value. Its maximum size is
1MB.

So, a key-value object in Kinetic drive is a couple of byte arrays. It is programmer’s exclusive
task to decide what to store in both key and value fields. To be more precise, we have seen
in the second chapter several aspects that the programmer should consider in order to take
advantage of the key ordering. Correspondingly, the value can be formed in a way so that it
fulfills the needs of the application. Both key and value usage in dataClay case are detailed
in the following sections, step by step.

77



5.3 Representation of classes on the Kinetic persistence layer

In the previous chapter, it was mentioned that every user class is modelled by a dataClay
class, called DBClass. In addition, it was said that instances of that class are passed to Data
Service in order to prepare the data infrastructure for future storing. Every handler decides
how classes will be represented on the persistence layer because this depends solely on the
nature of the data infrastructure. Here, we examine the Kinetic case and it is also compared
with relational database backends.

When someone deals with OOP programming languages and relational databases, it is quite
common every class to be mapped into a database table and every object to be mapped
into a row in the corresponding table. dataClay does the same for its Postgres handler. In
order to achieve this, it traverses through the representation class (that is, DBClass), creates
the proper “CREATE TABLE” SQL command and then this command is executed by the
RDBMS. Future instances of that user class will be rows of the newly created table.

On the contrary, Kinetic architecture has adopted the much simpler key-value objects abstrac-
tion. It can only write a pair of byte arrays, one for the key and one for the value. Nothing
more. So, looking for a structured representation of data like database tables or file systems
does not make much sense in Kinetic. It would only add an overhead to the performance.
The most straightforward and probably efficient solution is to store every serialized object as
a key-value object, where value is the bytes of the serialized object (the key schema is detailed
in the following section). Hence, Kinetic handler does not need to do anything for preparing
the data infrastructure for storing instances of a class in the future. Actually, every object is
independent of its class inside the Kinetic drive.

On the other hand, tables in relational databases offer a very nice notion of grouping similar
things: Every row in a table represents an object of the same class. For example, querying
all the instances of a class is just a “SELECT * FROM” command. Kinetic handler takes this
fact into consideration and makes its best. Since every entry is ordered by its key, grouping
objects of the same class is an easy task for Kinetic too. If someone uses the same prefix for
the key of same class objects, then each of them reside next to the other, because of the entries
ordering. In our case, using the class ID as prefix of the key schema seems to fit perfectly.
Soon, the exact key schema for storing objects will be explained.

Last but not least, in the previous chapter it was said that DBClass plays a double role: in
addition for preparing the data infrastructure, it is also useful for providing meaning to the
serialized objects. For this reason, it is important to have always this information handy.
Indeed, in Postgres handler, once a class is installed (that is, creating the corresponding table
in the database), its schema is also saved in a special table which contains the representation
of every installed class. Kinetic handler saves the schema information as well. It creates a
new key-value entry whose key is the class ID and its value is the serialized instance of the
DBClass. Once the representation of a class is needed, its serialized schema is retrieved from
the Kinetic drive, calling get(key) where key is the class ID, and, then, the value is deserialized,
which leads to an instance of DBClass. Moreover, dataClay has a software defined cache which
contains instances of DBClass. This prevents the continuous accessing of data infrastructure,

78



when the representation of a user class is needed. Only if a DBClass object is missing from
cache, access to the persistence layer follows.

5.4 Storing objects on the Kinetic persistence layer

Probably the reader has already gained some insight into how objects are organized in the
Kinetic device. However, there are still several details that need to be demystified. Here, most
of the design choices made for the Kinetic handler are presented, as well as the motivation
that led to them.

5.4.1 Overview

As it has been stated above, Kinetic handler stores every object of a dataClay user as a key-
value entry on the Kinetic drive. This is a rule that must never be violated in both directions:
Every object should be stored as a whole entity and never be segmented. On the other side,
a key-value entry on Kinetic drive cannot contain information (that is, bytes) for more than
one object. Probably, this is the most important rule in the Kinetic handler and every aspect
around this design choice will be explained further. From now and on, this rule will be called

“Single-object rule”.

5.4.2 Pitfalls for breaking the single-object rule

Let’s run through an example for understanding that if we do not pay attention, the single-
object rule can be violated. Let’s suppose that the makePersistent method has been called for
an object. Let’s call it objectA. Moreover, let’s assume that objectA contains a reference to
another non persistent object, objectB. This implies that both objects must be stored on the
persistence layer (in our case, the Kinetic drive). According to the serialization mechanism
(which was described in the previous chapter), objectB will be serialized “inside” objectA,

since objectB is not persistent either.

If we store objectA at once, without setting apart objectB, it would cause violation of the
single-object rule. Specifically, the resulting key-value entry on the Kinetic drive would contain
information (bytes) for more than one dataClay object. Thus, storing dataClay objects in the
Kinetic drive cannot be achieved with just a put operation.

5.4.3 Motivation for having single objects on the Kinetic drive

Before moving on the description of how the single-object rule is fulfilled, it is crucial to present
the motivation for having such a rule. In our case, we will see that the “housekeeper” rule is
really important: A little extra effort put into routine maintenance can pay off handsomely in

the long run, by forestalling major calamities.

79



The first reason for setting apart the objects is set by the Kinetic device itself. As it has been
mentioned, every key-value entry has limitations on the size of both key and value. Specifically,
the key can be up to 4 KB and the value up to 1 MB. Imagine an object which contains a
big collection to other (big) objects. Trying to store the initial object as a whole entity will
possibly exceed device’s capacity. Which, in turn, would cause an Exception.

In addition, keeping things organized makes sense for the performance of the Kinetic handler
as well. Let’s suppose we have already stored an object (call it objectA), which contains also
another object (call it objectB). Moreover, let’s assume that somehow we are aware of this
Has-A relationship between objectA and objectB (which, by the way, is quite hard with direct
put operations). If objectB is modified, dataClay itself will issue an update operation to the
persistence layer for objectB. But since objectB is inside objectA (and the handler knows it),
the handler is compelled with the extra work of finding which bytes are dedicated for objectB
and not for objectA, and eventually doing the desired update operation.

From the previous paragraph and its example, it was slightly implied that we cannot easily
know what we store when doing direct put operations. In other words, we are able to know
that we store the outer object, but not the ones included within the outer. Having this
information is crucial, as we have seen in the previous chapter: Once an object got persistent,
it is tied with its (dataClay) object ID, which is the criterion for an object to be persistent.
If this step is not done, it is quite possible of having multiple copies of the same object in
data infrastructure. Let’s see the possible inconsistency issues through an example: objectA
(which contains objectB) is stored with a direct put operation. Thus, we don’t know which
objects got persistent other than objectA. Similarly, another object (call it objectC) which
also contains a reference to objectB is stored with direct put operation. Since we do not
know that objectB is already persistent (inside objectA entry), it will be stored again (within
objectC bytes). Afterwards, if we update objectB in any of the two replicas, it will cause
inconsistency to the other.

In conclusion, the importance of separating objects and storing them individually makes much
sense. Otherwise, problems (inconsistency, performance, excess of data limits) will evoke in a
domino fashion. Hence, the extra effort for tidying up the objects when they are stored for

first time is more than worth.

5.4.4 Content of the value in a key-value entry

Across this section, the pattern for the value of a key-value entry is presented. It is quite
useful to think of Kinetic drive as the Java heap. In the heap, every object contains data
for its fields. Specifically, it contains information for every field of primitive type, as well
as references to other objects. Similarly, key-value entries in the Kinetic drive behave like
objects in the heap: If an object has fields of primitive type, these fields are serialized and
stored within the key-value entry of the object they belong to. Moreover, key-value entries
point to other key-value entries in the Kinetic drive and they do not contain other key-value

entries, as objects do not contain other objects in the heap!.

'Even though inner objects exists as term in Java, they are strongly dependent on outer ones. In our case,
we are talking about independent objects.

80



However, serialized objects probably contain information for more than one object. This
implies that we need to process this information, extract the nested objects and store them
separately. This requires a very meticulous work since we have to process information in byte
level mostly, and in bit level in special cases.

Thankfully, both serialization mechanism and Kinetic drive are of the same nature. They both
understand bytes. Nothing else. Nothing more. Thus, what we need to store in Kinetic drive
is driven more or less by the previous layer, the serialization mechanism. It does not make
much sense to attempt for a completely different representation of the objects in Kinetic drive.
It would only add overhead on performance, in both directions: While putting an object, we
would have to translate the serialized object to its Kinetic compatible representation and
while getting it back to do the reverse. Instead, it is quite plausible to keep the result of the
serialization and modify it only when it is needed.

In addition, the serialization mechanism gives us the solution for referencing to other objects:
During the serialization of an object, if any reference to already persistent object is found,
the (dataClay) object ID of the persistent object is appended to the serialization message
and serialization continues to the next field. Kinetic handler mimics this pattern: When a
serialized object contains bytes for another serialized object, the “inner” object is stored into
a separate key-value entry and the “outer” object just stores the (dataClay) object ID of
the “inner” one. Furthermore, Kinetic handler returns the object IDs of all the newly stored
objects. Data Service receives this result and refreshes its knowledge about persistent objects.
Without processing the initial byte buffer, it would be impossible to know which objects
become persistent.

The truth is that, currently, the key-value entries contain some extra information which is
useful /necessary only for the Kinetic handler. If the key-value entries were formed as in the
previous paragraph, their content would be fully understandable by the Data Service: Any
object could be retrieved and be passed for deserialization to the Data Service, without any
need for processing by the Kinetic handler. However, things cannot be so dreamy in the general
case; class enrichments impose storing some extra information. This case is detailed in the
corresponding section. Nevertheless, there are some special cases (arrays, maps, collections)
where key-value entries can be passed directly from Kinetic drive to Data Service.

5.4.5 Processing of serialized objects

In the previous section, the content of value in key-value entries was covered intuitively. From
now and on, we are focusing on the processing part of Kinetic handler. Kinetic handler’s
main task is to distinguish objects that exist into the serialization message of other objects
and to separate them. Nevertheless, it only receives a byte array from the previous layer,
the serialization mechanism. A single array of bytes does not bear any semantics and its
processing would be impossible, especially in our case, where the morphology of an object
always varies. As it was stated several times before, the structure of a user class is modeled in
an instance of DBClass. Using the information from this instance, the bytes from a serialized
object get meaning and their process is possible.

81



In Kinetic handler, two types of byte buffers are used: 1) One byte buffer, the input buffer,
which contains the outcome of the serialization. There is always only one input buffer, and it
probably contains multiple serialized objects. 2) There are also the output byte buffers, one
per serialized object. The result in every output byte buffer is going to be the value for the key-
value entry that corresponds to the object. From now and on, we will name storeObject the
process of storing an object, like a method name. The first step of storeObject is to read some
metadata from input buffer. The most important among this metadata is the notNullBitmap,
which was explained in the previous chapter. This bitmap is of variable size and its size in
bytes is calculated due to the DBClass, which knows how many nullable references exist in a
user class. After this step, bytes for fields of the object follow.

While processing the bytes for the fields, there are two cases storeObject may encounter. The
first and the easier one is to deal with a field of primitive type. In this case, since we know the
type of the field (due to DBClass instance), we copy from the input buffer to the output buffer
the exact amount of bytes that are dedicated for this field. Thankfully, primitive field have
always value: Even if they have not been instantiated, they have their default value. It is worth
to mention the difference between Kinetic and relational databases case. In Kinetic, we just
copy bytes from one buffer to another and continue to the next field. On the opposite, Postgres
handler requires the appropriate formation of a SQL statement, which implies extensive string
manipulation using apostrophes, parentheses, etc. At the end, this results into a quite big and
hard-to-understand piece of code whose purpose is mostly the formation of the SQL statement,
rather than the data handling from the buffer.

The second case is when we have to deal with a reference. This case is not as trivial as before
and has several sub-cases. When we encounter a reference, it is always quite possible for the
reference to be null. However, this information does not depend on the morphology of the user
class. So, it cannot be found in DBClass. Instead, it is highly dependent on the instance of the
class. notNullBitmap, which comes with every serialized object (except the ones which have
only primitive fields), plays this role: One bit per reference informs us whether a reference is
null or not. Thus, the first step while encountering a reference is to check the appropriate bit
in the notNullBitmap. If the reference is null (according to the bitmap), no bytes exist for
the reference in the input buffer and the buffer handling continues to the next field.

On the opposite side, there are several cases when the reference is not null:

e Case 1 — Reference to an already persistent object: If the reference points to a
persistent object, the serialization mechanism has appended only the (dataClay) object
ID of the persistent object (along with some other metadata like the tag).

e Case 2 — New serialized object: This happens when the input buffer contains bytes
for more than one object. In this case, the sub-object has to be extracted from the input
buffer, to be copied into another output buffer and the remainder of the input buffer to
be processed for the initial object. For this purpose, Kinetic handler calls recursively

storeObject, since the serialization mechanism acts in a recursive way too.

e Case 3 — Reference to an already encountered object: If the reference points to
an object that has been encountered before, then only the serialization tag is appended
for this object, instead of re-serializing the object.

82



It is very important to mention the difference between case 1 and case 3. In case 3, an object
is considered “encountered” if the handler has already processed this object in the same call of
the makePersistent method. In other words, an “encountered” object has not been persistent
before the current call of makePersistent method. On the other hand, an object is considered

persistent (case 1) if it has been stored in previous makePersistent call.

But, how are these three cases distinguished? Kinetic handler uses a map, called alreadyEn-
counteredObjects, that has as key the tag of the already processed objects and as value their
object IDs. If a tag exists in the map, it means that the object has been processed in the
past (in the same call of makePersistent, though) and the bytes after the tag are for the next
field (case 3). Otherwise, the reference can be either to a persistent object (case 1) or to a
non persistent one (case 2). These cases are distinguished thanks to the metadata that every
object has in the input buffer. More precisely, there is a byte for a flag called isPersistent. If
it is true, then only the object ID for the persistent object follows (case 1). Otherwise, the
serialization of the non-persistent object follows (case 2).

Kinetic handler strives to store key-value objects in an (almost) understandable format for
Data Service. By doing so, retrieving an object from Kinetic drive will require the less possible
processing. Thus, tags in every key-value entry should act as unique identifiers, as they do in
serialized objects. However, if we extract the inner objects out of an outer one, tags lose their
identification property.

For example, suppose we have objectA and objectB, with a relationship as depicted in Figure
5.3.

objectA objectB

F1GURE 5.3: Example: Relationship between two objects.

If makePersistent is called for objectA, then both objects will be serialized. Furthermore,
objectA will be tagged with 0, and objectB with 1. The reference of objectA to objectB
falls into case 2, because objectB has never been encountered before, nor it is persistent. On
the contrary, the reference of objectB to objectA falls into case 3, because objectA has been
already encountered. So, only the tag 0 is used for this reference.

If objectA and objectB are separated and stored individually, they cannot reference each other
anymore. For example, tag 0 in objectB cannot identify objectA. For this reason, the object
ID should be used for referencing to other persistent object, as serialization mechanism does
in case 1. Afterwards, any other reference to already encountered object should contain only
the tag. For example, a second reference from objectB to objectA should append only the

83



tag of objectA, not its object ID. Thus, Kinetic handler should implement this inner tagging
mechanism. One map and one set enable this mechanism:

e alreadyEncounteredObjects (Map from integer to object ID): This was described
earlier: It is necessary for recognizing objects that have been processed in the past, in
the same storeObject call. The reader should keep in mind that this map is unique and
it is used by all the recursive storeObject calls.

e alreadyEncounteredTags (Set of integers): Every time storeObject is called, such a set is
instantiated empty. This set contains the tags that the current storeObject call has al-
ready encountered. If a tag does not exist in the set, the tagged object is encountered for
first time from the current storeObject call, and its object ID should be appended, along
with the tag (the object ID can be found from alreadyEncounteredObjects). Otherwise,
if the tag is in the set, it is enough for referencing the object.

Every tag that is into alreadyEncounteredTags is in the alreadyEncounteredOb-
jects, too. But, not the reverse.

The pseudocode of the algorithm can be found at Algorithm 6. This algorithm is executed
only when a reference to another object is found.

Last but not least, the reader can imagine the complexity of the SQL statement for handling
references in the case of relational database handler.

5.4.6 Key schema

After this long description of what is stored in the value of a key-value entry, the only thing
left is the key schema of the entry. The key schema does not make any surprises and follows
the quite plausible pattern: class ID object ID

The motivation that led to this schema derives from the entries ordering according to their
key. Since entries are ordered, objects of the same class are grouped together, like tables of
relational databases do. According to the Kinetic technology description, retrieval of objects
that reside close to each other can be optimized. Later, we will see specific cases where we
take advantage of this feature.

5.4.7 Superclasses storing

In OOP, when a class extends another class, the subclass inherits superclass’ fields. dataClay
takes this fact into consideration in its serialization mechanism, and Kinetic handler does too.
As it was mentioned in the previous chapter, every stub class inherits at least one class, the
class DataClayObject. Thus, serialized objects always contain bytes that correspond to its
superclasses, at least DataClayObject. Kinetic handler appends these bytes to the output
buffer of the corresponding object. Furthermore, processing the DataClayObject bytes is the
criterion for reaching to the end of processing.

84



Algorithm 6 The algorithm for processing references

1: procedure PROCESSREFERENCE()
2 tag < inputBuf fer.readInt() > Read tag
3 if lalready EncounteredObjects.containsKey(tag) then
4 isPersistent < input Buf fer.read Boolean()
5: if isPersistent = true then
6 object] D < input Buf fer.readObjectl D) > Case 1
7 alreadyEncounteredObjects.add(tag, objectI D)
8 alreadyEncounteredT ags.add(tag)
9: output Buf fer.writeInt(currentTag)
10: output Bu f fer.write Boolean(true)
11: output Buf fer.writeObject] D(objectI D)
12: else
13: objectID < newobject] D) > Case 2
14: alreadyEncounteredObjects.add(tag, objectI D)
15: alreadyEncounteredT ags.add(tag)
16: output Buf fer.writeInt(currentTag)
17: output Buf fer.write Boolean(true)
18: output Buf fer.writeObjectI D(objectI D)
19: input Buf fer.STOREOBJECT()
20: end if
21: else > Case 3
22: if alreadyEncounteredT ags.contains(tag) then
23: output Buf fer.writeInt(tag)
24: else
25: alreadyEncounteredT ags.add(tag)
26: object] D < alreadyEncounteredObjects.get(tag)
27: output Buf fer.writeInt(currentTag)
28: output Buf fer.write Boolean(true)
29: output Bu f fer.writeObject]I D(objectI D)
30: end if
31: end if

32: end procedure

Here, it is worth to mention a corner case which indicates that direct put on the Kinetic
drive can be harmful. DBClass has a public method called hasNullableReferences which
returns true if the modeled user class contains references, and vice versa. So, in case of
receiving false after calling this method, it means that the user class has only primitive fields.
Which, in our case, are just copied. So, someone might think that the byte processing can be
avoided if the hasNullableReferences returns false, and that a direct put operation is possible.
But, the truth is that DBClass models only the class itself and not its superclasses. Thus,
hasNullableReferences is not aware of the superclasses, and whether they contain references
or not. So, it is quite possible a class to have only primitive fields and its superclass a
reference to another object. A direct put operation in this case would cause violation of the

single-object-rule.

85



5.4.8 Iterative version

As it has been mentioned above, the serialization acts in a recursive way. Thus, doing the
same in the Kinetic handler was more than straightforward. However, in cases where objects
are nested inside others in big depth, it is quite probable to run out of memory resources, and
end up with a stack overflow. For this purpose, an additional iterative method for storing
objects and the corresponding class that acts as stack frame have been developed. This class
contains among others several flags for overcoming code segments that must be run only once.
This ends up having an iterative version which is a quite hard to understand, but memory
safe. Describing the iterative version in detail would not add new concepts. That’s why no
further explanation is not attempted.

5.5 Retrieval of objects from the Kinetic drive

While the store operation has been detailed thoroughly, almost nothing has been said for its
counterpart, the read operation. The truth is that the store operation has been designed so
that it will facilitate the retrieval of an object from the Kinetic drive and it will be as more
performant as possible. Thankfully, this optimization can be achieved in many cases.

Before proceeding with the description of the read operation in the Kinetic handler, it is
crucial to learn some more things about dataClay and how it usually behaves: dataClay
usually requests single objects from the persistence layer. In other words, it usually does not
expect to receive many objects from the Kinetic drive in a single operation. For example, it
requests for an object, which might have references to other objects, but it does not expect the
referenced objects along with the initial one. Instead, it receives the initial object serialized,
which contains the dataClay object IDs of the other serialized objects, though. And actually,
it does not make sense to retrieve a big amount of objects with a single operation. It would
lead to a very demanding request, which would take a lot of time to be served, and, at the
end, only a small part of these objects would be accessed. Instead, every object is retrieved
from the persistence layer, only when it is not handy in the memory.

However, there is a corner case, in which an object, along with its references objects, are
expected. This case happens when we want to transfer/copy data from one data infrastructure
to another. As someone might think, this does not happen often.

So, how is it specified whether we want to retrieve objects exhaustively or not? The answer is
that this is achieved thanks to a boolean called stopsAtPersistent. When access to the data of
persistence layer is needed, Data Service issues the appropriate call to the handler. This call
contains several parameters, like the object and class IDs of the object we want to access, and
other parameters. stopsAtPersistent belongs to the complementary parameters. If it is true,
the access is exhaustive. Otherwise, only a single serialized object is expected.

From now and on, we will expose how Kinetic handler faces both situations. Let’s first see the
case when stopsAtPesistent is true. A few pages above, the motivation for having single objects
in every key-value entry (the single-object rule) has been described extensively; moreover, we
usually request single objects from the data infrastructure. Things seem to converge: It

86



would be ideal if objects were retrieved from the persistence layer and pushed directly to
Data Service without any byte processing. Kinetic handler does almost so. There are few
cases (maps, collections, array) that the retrieval is done directly without any processing.
Regarding the rest, it depends on whether the class of the retrieved object has been enriched
or not. For this purpose, every stored key-value Entry has some metadata in the beginning of
the stored bytes, which are necessary for determining whether the class of the retrieved object
has been enriched. If not, no more processing is needed. Otherwise, processing is inevitable.

On the other side, things cannot be dreamy when stopsAtPersistent is false. Multiple accesses
to the Kinetic drive are needed. Byte processing is done and code that takes much longer time
is run. The good thing is that stopsAtPersistent is usually true. Since the procedure follows
a quite symmetrical pattern to the store operation, it is described.

At the end, it is worth to mention that the get operation acts recursively when stopsAtPer-
sistent is false. No iterative version has been developed, since the recursive call is prevented
most of the times.

5.6 Updating objects in the Kinetic drive

In a data sharing platform, the ability to modify data is probably the most important feature.
If not, the cooperation among the users would be very restrictive and probably each of the
users would end up having a personal copy of the data. dataClay, though, provides the
modification feature and, actually, it is one of its fundamental ones. Thus, Kinetic handler
has also to ensure that modification of data on the persistence layer is possible.

In the previous chapter, the bytecode analysis, which takes place during the registration of
a class, was described. As it was said, one of the objectives of this analysis is to identify
the methods that modify the state of the self-contained objects. Since dataClay knows what
changes the state of an object it also knows when such a change takes places: Whenever a
state-modifying method is called. So, when such a method is called, dataClay can also trigger
the appropriate call for updating the data that rely on the persistence layer. More precisely,
when a method that modifies at least one of the fields of an object, the update of the object
on the persistence layer follows.

In Kinetic drive, when an entry must be updated, it is actually substituted by another one.
Kinetic handler is not the exception: When dataClay issues an update operation, the workflow
is exactly the same as when an object is first stored. Kinetic handler receives a serialized
object, the handler processes it, finds the non persistent object which are stored individually
and then overwrites the old object.

There is only one thing left for the update operation. In the second chapter, the Kinetic’s
inner mechanism for dealing with concurrency issues was described. Actually, this mechanism
is not used in dataClay, in the Kinetic handler. There is no need to use it because dataClay
itself does not permit the access to the persistence layer by more than one user per time. Thus,
there cannot be any inconsistency in the shared object, by design. Furthermore, the double
effort of Kinetic for updating an already updated object is avoided: if a user tries to update

87



an object and receives a VersionMismatchException, then he has to repeat his modification
on the freshly modified object.

5.7 Objects deletion from Kinetic drive

After introducing the majority of the details that concern the Kinetic handler, the delete
operation can be described quite fast. In analogous way as reading objects, every delete
operation has the boolean parameter stopsAtPersistent. If it is true, the deletion of a single
key-value entry is needed. On the other side, we need to delete the whole objects tree, whose
the object ID of the root is known. In this case, the delete method calls itself and every node
deletes its children nodes before deleting itself. Unfortunately, there is not much margin for
optimization for this operation.

5.8 Removal of a class from Kinetic drive

There are some rare cases where we want to delete from the data infrastructure every instance
of a class. If the objects were stored in a relational database, then a simple SQL statement
“DROP TABLE” would be sufficient for accomplishing the remove operation. On the contrary,
there is not any actual grouping for the key-value entries in the Kinetic drive, like tables do in
the relational databases. Instead, deletion of every instance must be held individually. Thus,
the keys for each instance of the class must be retrieved and then delete(key) must be issued

for every key.

Before moving to the implementation part, a little refresher would be useful: Every key (and its
entry) is ordered lexicographically in the Kinetic drive. So, this fact can facilitate drastically
the grouping of objects. And our key schema does so. Since each instance of a class shares the
same prefix in the key schema, each object of the class reside next to the other. And Kinetic
promises an optimization for accessing adjacent key-value entries.

The ordering fact gives us an insight for the planning inside the Kinetic drive, but we still do
not know how to receive the keys for the key-value entries that we are interested in. According
to Kinetic API, two solutions are possible.

The first one is to use the method getNext method until we delete every instance of the class.
More precisely, we are only given the class ID of the class we want to remove. As it was
described in the section “Representation of classes on the Kinetic persistence layer”, there is a
key-value entry for the class schema, whose key is only the class ID. This is the first member of
the class group. So, we can use getNext and remove every instance one by one. This operation
stops only when the key of the next entry is of different class.

The second option involves the getKeyRange method. According to this method’s declaration,
three of the parameters passed to it are the first and the last key of the range we are interested
and the maximum number of keys (call it max) we want to receive. If there are more keys in
the range than max, then the first max will be returned. Otherwise, the whole range of keys is

88



returned. So, we know the first key of the range but not the last one. Nevertheless, there is no
need to know the exact key, since every key is ordered lexicographically. Thus, if we define as
upper key a non existent key which is bigger than each object we want to remove, but smaller
from the next class group, then it can serve as the upper key limit in our purpose. In our case,
the following key is used: classID~ . Since ~is bigger than _, the key range from classID to
classID ™ includes every key of the class group we are interested of. Of course, when max keys
are returned, the getKeyRange is executed again in order to remove the remaining objects of
the class.

5.9 Class enrichment

In the first chapter, it was emphatically mentioned that, in current approaches of data sharing,
3'd parties are always restricted in the functionality that is provided by the data owner. The
only solution for them is to create a copy of the data and then manipulate it at their wish;
however, real cooperation and data sharing cease to exist after creating a copy.

Instead, dataClay enables both sides to work seamlessly. More precisely, class enrichments are
possible in three ways: 1) Adding new fields in a class, 2) adding new methods in a class, 3)
adding a new implementation for an existing method in a class. Obviously, Kinetic handler
deals only with the first case, because the second and the third case affect the behavior of
classes which has nothing to do with the persistence layer. Instead, changes in the fields of a
class affect the state of its instances. And, actually persistence layer saves only the state of
objects. On the contrary, changes in methods are reflected in the class files. Moreover, which
method is exposed to whom depends solely on the model contracts.

In the case of relational databases, the representation of a class is achieved using a correspond-
ing table, where the fields of the class are mapped to the columns of the table. So, enriching
a class by adding new fields is reflected on the database by adding new columns in the cor-
responding table. On the contrary, Kinetic drive does not represent classes somehow. Every
instance is independent of the other in Kinetic drive, even though they reside next each other.
Nevertheless, modifications on the structure of a class affect all of its instances, at once. Even
more, a modification also affects the objects of classes that extend the enriched one. Thus,
if we wanted to update all the affected objects at the moment of their class enrichment, we
would not be able, because we cannot find easily the instances of other classes that extend
the enriched one.

Thus, we are not able to do anything with reasonable complexity, at the moment of the
enrichment. The only action at the enrichment moment is to update the key-value entry for
the instance of DBClass, whose class has been enriched. This update does not affect any of the
“dirty” objects. Nonetheless, the updated DBClass enables to recognize the “dirty” objects.
The update of a “dirty” happens at the moment of retrieval.

Before moving further to the adopted solution, it is important to clarify what is expected by
Data Service when it requests an object whose class/superclass has been enriched. It expects
a serialized object which has information (bytes) for all the fields, both old and new, of the
class. More precisely, the deserialization method has been updated in order to deserialize

89



“enriched” objects. Thus, when we request a “dirty” object, we have to add the default values
in the new fields: If the new field is of primitive type, it gets its default value. Otherwise,
it will be a reference and we will not append extra bytes since null references in serialized
objects have no bytes. Furthermore, the notNullBitmap must contain bits for every reference,
even the new ones.

How is a “dirty” object recognized by Kinetic handler? In order to recognize an affected object,
some metadata is added to the value of a key-value entry, while it is processed for storing.
During the store operation, every object is stored using the latest DBClass for its class and
superclasses. Thus, we mark every object with the number of fields for each of its classes.
Afterwards, when an object is retrieved, the stored metadata are compared with the number
of fields of the current DBClass instances. At least one difference means that the object is
“dirty”.

So, that’s why every key-value entry is not shaped exactly in an understandable way for Data
Service. The value of every key-value pair contains 4 more bytes for an integer in the beginning
of the serialized object. These 4 bytes denote the number of classes and superclasses that are
saved in the serialized object. Let’s call it classes. Thereafter, 20 * classes bytes of metadata
follow. Every 20 bytes consist of 16 bytes for the class ID and 4 bytes for the number of
fields of the class at the moment of store. If anything has not changed for any of the classes,
then the object is not dirty. Otherwise, its new fields should be set to default values. This
metadata are put in the beginning of the buffer, on purpose. If an object is not dirty and
stopsAtPersistent is true, we want the retrieval of an object to be as fast as possible. So, in
this case we just remove the initial metadata bytes from the buffer and return the remaining,
which is fully understandable by Data Service. No byte processing is needed. So, a huge
workload is avoided, which would take a lot time and it would be meaningless.

Last but not least, how are the new fields recognized when we need to update a dirty object?
The solution comes by dataClay itself. Thanks to the bytecode analysis, every new field is
added at the end of the fields. This change is also reflected in the DBClass in the same way.
Thus, since we know the number of the already stored fields, which are in the beginning of the
DBClass, we can also distinguish the new fields. Furthermore, fields are never removed from
user classes. Hence, once a field is added in a user class, its position in the class regarding the
other fields will never change.

5.10 Storing collections in the Kinetic drive

As we have seen in the previous chapter, there are some special cases where the serialization
does not follow the general pattern. Namely, collections, maps and arrays are serialized in
a special way. Obviously, the Kinetic handler treats serialized objects of these classes in a
special way, too. In this section, handling of collections is going to be presented. The other
cases follow in the next sections.

Honestly talking, the differences between the general serialization algorithm and the collection
one concern mostly some extra metadata rather than the actual way that collection members

90



are serialized. Thus, it would be meaningless and repetitive to describe in detail the processing
of serialized collections. Instead, we will focus on the things that make collections unique.

Someone might wonder how a collection wrapper is recognized. Every serialized object contains
16 bytes that denote the class ID of the object. These bytes are written in the second step
of the algorithms presented in the previous chapter. In the case of the three wrappers, there
is no exception. The class ID that is appended in the serialized object is the one of the
corresponding wrapper. So, if any of these 3 class IDs is recognized during the handling of
serialized objects, the general path is bypassed and special methods take care of the wrappers,
instead. After reading all the metadata that precedes the bytes for the serialized collection
members, the handling of the members is held by the same method that handles reference

fields in the general case. After all, collection members are objects!

It has been already mentioned that retrieval of collections, maps, arrays from Kinetic drive
can be direct. The reason is that the java wrappers are never enriched in comparison to other
user classes. Thus, no metadata are appended like in user classes. Only the serialized wrapper.
Which is fully understandable by Data Service. But, it is important to emphasize that just
the wrappers do not need enrichment check, not the collection members, which are regular
objects.

The rest of the section describes how to optimize retrieval of collections members in the Kinetic
drive. It has been mentioned several times the notion of grouping by selecting the appropriate
keys for the key-value entries. Regarding collections, taking advantage of this feature makes
sense more than any other time.

According to the selected key schema, objects of the same class always reside together in the
Kinetic drive. Thus, members of a collection reside inside the outer group of their class. But
it is very possible other objects which are not members of the collection to reside between the
collection members. This happens because the second part of every key is the object ID which
is generated randomly.

Before describing the proposed solution, let’s see how an object ID is formed. An object ID
is of type UUID. It consists of 16 bytes, which can be broken into two parts, 8 bytes for the
mostSignificantPart, and 8 bytes for the leastSignificantPart. In other words, an objectID is
made out of 2 longs.

The proposal is: We can generate randomly an object 1D, which will be used for the wrapper
entry itself. Then, the mostSignificantPart of this ID will be used for the mostSignificantPart
of all the collection members’ IDs. By doing so, we achieve having collection members into a
subgroup inside the outer group of the class. However, if the leastSignificantPart is random,
the members of the collection probably will not have the same order as in the collection.
Instead, we can create the leastSignificantPart manually, by taking the leastSignificantPart of
the wrapper ID and increment it for every collection member. By doing so, the members of
the collection are ordered. Moreover, the probability to overwrite a collection member is very
small, since 8 bytes can produce IDs for 2764 - 1 collection members.

Last but not least, it is worth to mention the motivation of keeping objects IDs 16 bytes long,
despite the fact that we can store keys up to 4 KB in the Kinetic drive. The motivation is to

91



keep every key-value in an understandable format by Data Service. If we were using a kind of
internal object ID which exceeded the 16 bytes (for example, 16 bytes same for every member
and incrementing number), this ID would be useful only for the Kinetic handler. Even if only
the wrapper were requested with stopsAtPersistent true, it would have to map the internal
Kinetic ID to the dataClay ones. Which would impose extra processing of bytes.

5.11 Storing maps in the Kinetic drive

After introducing the handling of collections, there is no mystery left to reveal for maps.
Just, most of the processing is done twice. Moreover, the aforementioned optimization can be
adapted so that the keys and the values will be grouped.

5.12 Storing arrays in the Kinetic drive

Arrays can contain two types of elements: either primitive elements or references to other
objects. In the latter case, the handling is done more or less in an analogous way as collections.
Moreover, the grouping optimization can be applied in the array case too.

On the other side, when we want to store an array which contains primitive elements, the
process can be quite fast and without any need for calling the same method recursively (or its
iterative equal). Since we know both the type of the elements and the number of them in the
array, the number of bytes dedicated for the array into the serialized buffer can be calculated
really fast and the corresponding bytes are read at once.

However, if we do not pay attention, we will probably run into trouble. As the reader might
remember, every key-value in the Kinetic drive has restriction on the data size. The maximum
size of the value is 1 MB. If we want to store an array of 300,000 integers, it cannot fit into
one key-value entry, which would lead to an Exception. It is the only time we need to break
the single-object rule: The wrapper cannot contain the whole array.

The solution in this case is to break the array into small enough pieces, store them individ-
ually and keep track of the array components into the array wrapper. When a big array of
primitive type is requested, its wrapper is retrieved in the beginning, it is checked if its array
is segmented, and if yes, its parts are retrieved and recomposed into the wrapper. The only
thing left is: How can we recognize a big array? Thanks to the bytebuffer API, a single of the
method readableBytes() returns the number of bytes that the buffer contains. Last but not
least, the grouping trick that was described in the collection section can be used here too, in
order to retrieve the array segments as fast as possible.

92



Chapter 6

Evaluation of Kinetic handler

Objective of this chapter is to provide sense about the performance of Kinetic handler. Firstly,
the time needed for basic operations (such as put and get) is presented. Afterwards, the impact
of class enrichment is examined. Last, we see the behavior of Kinetic handler for arrays of
primitives (of variable lengths).

6.1 Main Operations

The first test run was for the elapsed time of store operation. Fifty simple objects (only with 2
primitive fields, and no references) were stored. The time needed for their store can be found
in Figure 6.1.

According to the results, the time needed for storing a single object is around 60 ms, most
of the times. Nevertheless, there are two more conclusions for which there is no explanation,
right now. It depends solely in the inner mechanisms of Kinetic drive.The first fact is that
similar results are grouped. In Figure 6.1, we see 2 groups: One group with elapsed time
around 60ms, and another with elapsed time around 80ms. The second fact is there are some
spikes during the store operation. In such cases, the elapsed time is even tripled.

The second case involves the store of an object which contains a reference to another un-stored
object. Thus, two objects are going to be stored, after processing the serialization message by
Kinetic handler. The result are in Figure 6.2.

As someone might expect, the elapsed times are doubled in comparison to those of Figure 6.1.
More precisely, grouping is present here too. More precisely, there is one group of 120ms and
another of 180ms, which are doubled of the values of Figure 6.1. Last, spikes are not missing
from this case.

In Figure 6.3, we see that if an object contains a reference to another persistent object, the
store operation is not affected and it behaves similarly with the case of Figure 6.1. This makes
sense, since dealing with references to other persistent objects requires just the processing of
some extra bytes in the serialized object. On the contrary, references to non-persistent objects

93



200

180

Elapsed Time (msec)

160

140

120

100

80

 Elapsed Time

60

40

20

FI1GURE 6.1: Elapsed time for storing simple objects.

350

300

250

200

150

100

50

Elapsed Time (msec)

1 Elapsed Time

1

3

5

7

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

FIGURE 6.2: Elapsed time for storing objects with one reference.

94




require the processing of the whole serialized referenced object and, of course, one more put
operation to Kinetic drive.

Elapsed Time (msec)

300

250

200

150 W Elapsed Time

100 '

SO M T Tt i et et e et e e e e e e e et et e e e e e e et e e e e s e e st e ettt e e T

1 3 5 7 911131517 192123252729 31333537394143 454749 5153555759 61636567697173757779

F1GURE 6.3: Elapsed time for storing objects with one reference to persistent object.

Regarding the retrieval of objects (Figure 6.4), we notice that they are one order of magnitude
faster than storing (as in Figure 6.1).

6.2 Impact of class enrichments

In Figure 6.5, the required time for obtaining objects of an enriched class is presented. It is
very important to mention that the total elapsed time (red lines in Figure 6.5) consists of both
enriching a “dirty” object and updating the “dirty” key-value entry in Kinetic drive. As it is
depicted in the blue sublines, most of the time is consumed for updating the key-value entry
in Kinetic drive, rather for retrieving and enriching a “dirty” object. According to the current
implementation, the user is compelled wait for the whole operation, while he is interested for
the enriched object which is ready much earlier. Such cases like this, can be dramatically
optimized by both using the Kinetic API for asynchronous operations and implementing the
corresponding callback handler. This was not possible throughout this master thesis, because
of the time limits.

95



Elapsed Time (msec)

10

W Elapsed Time

[

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

FI1GURE 6.4: Elapsed time for retrieving objects.

180

160

120

100  Enrichment and Store

“Enrichment

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

FIGURE 6.5: Elapsed time for retrieving objects of an enriched class.

96




6.3 Retrieving big arrays

In this section, the retrieval of big arrays of type int is examined. The objective is to check
whether the continuous key schema can perform better in comparison to using random suffixes.
In other words, it is tried to check the key schema trick mentioned in section 4.10.

Unfortunately, no optimization was noticed. For this test, 10 arrays of 25,000,000 ints were
stored, with and without the continuous key schema for their segments. The size of these
arrays is around 95MBs, which ends up into having 95 segments of the array because of the
1MB limit of the key-value entries. Afterwards, the arrays were retrieved. Figure 6.6 shows
elapsed times for retrieving the 10 arrays, when they were stored with random suffix for their
keys. Figure 6.7 shows elapsed times for retrieving the 10 arrays, when they were stored with
continuous suffix for their keys. Their times do not present any big difference. Time unit is
the millisecond.

Retrieval of 10 big arrays with random suffix in their keys

14000

12000

10000

8000

6000
4000 -
2000 -
0 - T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

FIGURE 6.6: Elapsed time for retrieving arrays with random suffix in their keys.

However, it was noticed the impact of the internal cache. Every array, in both cases (either
continuous or random key), was retrieved twice. Always the second retrieval was much faster.
The case of continuous key schema is presented in Figure 6.8. The behavior is the same for
random key schema too.

97



Retrieval of 10 big arrays with continuous suffix in their keys

14000

12000

10000

8000
6000 -
4000
2000 -
0 - T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

FIGURE 6.7: Elapsed time for retrieving arrays with continuous suffix in their keys.

14000

12000

10000

8000

i 1st Retrieval

& 2nd Retrieval

6000 -

4000 -

2000

FI1GURE 6.8: Elapsed time for retrieving arrays twice in the row.

98



Chapter 7

Conclusion

At the end, what is the conclusion after completing this research? Even though the results
derived from the tests, as they have been presented in the previous chapter, are not the
optimum, the integration of Seagate Kinetic technology into dataClay looks very promising
for dataClay. First of all, Kinetic technology fulfills the long desired feature of dataClay
for byte addressability. In other words, serialization mechanism and the data infrastructure,
that is, Kinetic drives, speak the same language which is bytes. But, moreover and more
interestingly, there is huge margin for improvement for both technologies and, also, for their
integration. Further details follow.

7.1 Serialization mechanism

Serialization mechanism has been designed in a way that persistent data will bear their se-
mantics. For example, SCOs that have been stored in a relational database are semantically
rich. Main reason of choosing this design was the potential to access data directly to the
data infrastructure. However, such a need for applications that want direct access to the data
infrastructure does not arise. Furthermore, accessing data this way breaks the long desired
feature of computation close to the data. Thus, the current serialization mechanism seems
to be obsolete. Indeed, serialization mechanism currently compels the data infrastructure
handlers to do a lot of work that can be avoided. More precisely, processing right now takes
place in both sides, serialization and handlers. This made sense only in the case of storing
semantically rich data. Since there is not such a need, as it has been explained earlier, a
more efficient serialization mechanism is needed. For this purpose, Storage Systems research
group at BSC has started the development of a new serialization mechanism that avoids the
double processing and makes handlers” work much easier: There will be no need anymore for
processing serialized objects at handlers stage. Handlers will just be in charge of passing the
serialized objects in the data infrastructure. On the opposite side, when retrieving objects
whose class has been enriched, processing cannot be avoided as it has been explained in the
fourth chapter. But, if the class is not affected the stored objects can be just passed from the
data infrastructure to Data Service.

99



7.2 Seagate Kinetic Technology

Seagate Kinetic Technology still has a lot of progress to achieve (as dataClay has too). Even
though Kinetic has adopted the simple abstraction of key-value objects, the truth under the
hood is a bit more complicated. Actually, storing key-value objects has not been achieved
on hardware level, yet. Instead, an embedded system running Linux is in charge of storing
the key-value objects in a Level DB database. In other words, the key-value store is software-
defined at the moment. This middle layer adds only overhead on the performance of the
Kinetic handler. When the key-value store will be implemented on hardware level, operation
from and to the Kinetic drive are expected to be optimized.

Further optimization can be achieved by changing the technology of the drive itself. Right
now, Kinetic drives are implemented on classical Hard Disk Drives. Implementing Kinetic
technology on Solid State Drives would probably offer further improvement to the perfor-

marnce.

100



Bibliography

1]

2]

3]

[4]

Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2):137-144, 2015.

Edd Dumpbill. What is big data? https://beta.oreilly.com/ideas/
what-is-big-data, January 2012. Accessed: 2015-07-03.

John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future, 2007:
1-16, 2012.

Kinetic open storage documentation wiki. https://developers.seagate.com. Accessed:
2015-07-03.

101



	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	1 Συνοπτική Περιγραφή
	1.1 Περιγραφή του dataClay
	1.2 Αντικείμενο της διπλωματικής
	1.3 Περαιτέρω κατανόηση του dataClay
	1.3.1 Stub classes
	1.3.2 Custom serialization

	1.4 Συνθετικό μέρος: Kinetic handler
	1.4.1 Kinetic key-value objects
	1.4.2 Αναπαράσταση των κλάσεων στους δίσκους Kinetic
	1.4.3 Single-object rule
	1.4.4 Παγίδα για παραβίαση του Single-object rule
	1.4.5 Κίνητρο για το Single-object rule
	1.4.6 Περιεχόμενο της τιμής (value) σε ένα key-value Entry
	1.4.7 Επεξεργασία των σειριοποιημένων αντικειμένων
	1.4.8 Key schema
	1.4.9 Εμπλουτισμός κλάσεων
	1.4.10 Ανάκτηση των αντικειμένων από το Kinetic drive

	1.5 Αξιολόγηση

	2 Introduction and Motivation
	2.1 dataClay
	2.1.1 Data sharing
	2.1.2 Persistent vs. non-persistent data models
	2.1.3 Computing close to the data

	2.2 Seagate Kinetic Open Storage platform
	2.3 Objective of the master thesis

	3 Related Technology
	3.1 dataClay
	3.1.1 Self-contained objects
	3.1.2 3rd party enrichment
	3.1.3 dataClay details

	3.2 Seagate Kinetic Open Storage platform
	3.2.1 Kinetic architecture
	3.2.2 Kinetic Open Storage Value proposition
	3.2.3 Kinetic features
	3.2.4 Software resources
	3.2.5 Hardware resources


	4 Persistence Layer: Serialization mechanism
	4.1 Bytecode analysis
	4.2 Motivation for implementing custom serialization mechanism
	4.3 Representation of classes in the Data Service
	4.4 Representation of class fields in the Data Service
	4.5 Meaning of Not-Nulls-Bitmap
	4.6 Handling of already stored objects
	4.7 Handling of already serialized objects
	4.8 Serialization message
	4.8.1 Further explanation of the algorithm

	4.9 Wrappers
	4.9.1 Array wrappers
	4.9.2 Collection wrapper
	4.9.3 Map wrapper


	5 Persistence Layer: Kinetic handler
	5.1 Establishment of connection with Kinetic 4-bay development chassis
	5.2 Kinetic key-value objects overview
	5.3 Representation of classes on the Kinetic persistence layer
	5.4 Storing objects on the Kinetic persistence layer
	5.4.1 Overview
	5.4.2 Pitfalls for breaking the single-object rule
	5.4.3 Motivation for having single objects on the Kinetic drive
	5.4.4 Content of the value in a key-value entry
	5.4.5 Processing of serialized objects
	5.4.6 Key schema
	5.4.7 Superclasses storing
	5.4.8 Iterative version

	5.5 Retrieval of objects from the Kinetic drive
	5.6 Updating objects in the Kinetic drive
	5.7 Objects deletion from Kinetic drive
	5.8 Removal of a class from Kinetic drive
	5.9 Class enrichment
	5.10 Storing collections in the Kinetic drive
	5.11 Storing maps in the Kinetic drive
	5.12 Storing arrays in the Kinetic drive

	6 Evaluation of Kinetic handler
	6.1 Main Operations
	6.2 Impact of class enrichments
	6.3 Retrieving big arrays

	7 Conclusion
	7.1 Serialization mechanism
	7.2 Seagate Kinetic Technology

	Bibliography

