
Χρήστος Ι. Ιωαννίδης

Ενσωµάτωση αντικειµενοστραφών µέσων αποθήκευσης
σε πλατφόρµα διαµοιρασµού δεδοµένων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Νεκτάριος Κοζύρης
 Καθηγητής Ε.Μ.Π.

Αθήνα, Νοέµβριος 2015

Χρήστος Ι. Ιωαννίδης

Ενσωµάτωση αντικειµενοστραφών µέσων αποθήκευσης
σε πλατφόρµα διαµοιρασµού δεδοµένων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριµελή εξεταστική επιτροπή τη 12η Νοεµβρίου 2015.

Αθήνα, Νοέµβριος 2015

............................
Νεκτάριος Κοζύρης
Καθηγητής Ε.Μ.Π.

............................
Νικόλαος Παπασπύρου

Αναπληρωτής Καθηγητής Ε.Μ.Π.

............................
Γεώργιος Γκούµας
Λέκτορας Ε.Μ.Π.

...................................
Χρήστος Ιωαννίδης
Διπλωµατούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Χρήστος Ιωαννίδης , 2015

Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ ολοκλήρου ή
τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανοµή για
σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται
η πηγή προέλευσης και να διατηρείται το παρόν µήνυµα. Ερωτήµατα που αφορούν τη χρήση της
εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συµπεράσµατα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερµηνευθεί ότι αντιπροσωπεύουν τις επίσηµες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

5

Περίληψη
Επί του παρόντος, οι συµµέτοχοι στο πεδίο των Big Data αντιµετωπίζουν πολλές δυσκολίες
όταν η συνεργασία µεταξύ τους είναι απαραίτητη. Απαιτούνται νέοι τρόποι συνεργασίας, µε
τους οποίους η συνεργασία θα είναι πολύ ευκολότερη και οι οποίοι θα λειτουργούν
αδιάλειπτα. Καθώς το αντικειµενοστραφές µοντέλο προγραµµατισµού είναι το πιο
κυρίαρχο, παρατηρείται η διείσδυσή του και στο πεδίο των Big Data. Επιπλέον, και το
υλικό (hardware) ακολουθεί αυτή την τάση του αντικειµενοστραφούς µοντέλου, καθώς
παρουσιάζονται πλέον νέες τεχνολογίες αποθήκευσης οι οποίες πραγµατοποιούν τη
διαχείριση δεδοµένων χρησιµοποιώντας την αφαιρετικότητα των αντικειµένων key-value.
Εποµένως, η προσπάθεια να συνδυαστούν το αντικειµενοστραφές λογισµικό και υλικό
χαρακτηρίζεται παραπάνω από εύλογη. Αντικείµενο αυτής της διπλωµατικής είναι η
ενσωµάτωση των σκληρών δίσκων νέας γενιάς της Seagate, οι οποίοι καθιστούν εφικτή τη
διαχείριση των δεδοµένων χρησιµοποιώντας αντικείµενα key-value, στην πλατφόρµα
διαµοιρασµού δεδοµένων που έχει αναπτύξει η ερευνητική οµάδα Συστηµάτων
Αποθήκευσης (Storage Systems research group) στο Κέντρο Υπερυπολογιστικής της
Βαρκελώνης (Barcelona Supercomputing Center).

Λέξεις κλειδιά
Big Data, Υπολογιστική Νέφους, Διαµοιρασµός δεδοµένων, Διαµοιρασµός µοντέλων
δεδοµένων, Αντικειµενοστραφή συστήµατα αποθήκευσης, Key-value storage

7

Abstract
Currently, Big Data actors tackle many difficulties when cooperation among them is
needed. New ways of cooperation, which make it in a seamless way, are needed. As the
object-oriented programming paradigm is the most dominant, the new approaches adopt it in
Big Data field, too. Furthermore, hardware follows this object-based fashion, and new
storage technologies enable data management using the key-value object abstraction. So, the
attempt to pair object-based software and hardware is more than plausible. Objective of this
master thesis is the integration of Seagate’s new generation hard disk drives, which enable
manipulation of data in key-value fashion, into the novel data-sharing platform that has been
developed by the Storage Systems research group at Barcelona Supercomputing Center.

Keywords
Big Data, Cloud computing, Data sharing, Data model sharing, Object-based storage
systems, Key-value storage

9

Ευχαριστίες

Όταν πλησιάζεις στην πραγµατοποίηση των στόχων σου, οφείλεις να εκφράσεις τις
ευχαριστίες σου σε αυτούς συνέδραµαν στην εκπλήρωσή τους.

Θα ήθελα να ευχαριστήσω όλα τα µέλη του Storage Systems Research Group στο Barcelona
Supercomputing Center, οι οποίοι µε βοήθησαν κατά την εκπόνηση αυτής της διπλωµατικής.
Συγκεκριµένα, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή µου, Toni Cortes, που µε
εµπιστεύτηκε και µε δέχτηκε στην οµάδα του ως επισκέπτη φοιτητή, παρόλο που, στην ουσία,
δεν γνώριζε σχεδόν τίποτα για µένα.

Επίσης, θα ήθελα να ευχαριστήσω τα µέλη του Εργαστηρίου Υπολογιστικών Συστηµάτων στο
Εθνικό Μετσόβιο Πολυτεχνείο, οι οποίοι µε υποστήριξαν και µου επίτρεψαν να εκπονήσω τη
διπλωµατική µου στο εξωτερικό ως φοιτητής ανταλλαγής.

Τέλος, οφείλω, ασφαλώς, πολλά ευχαριστώ στην οικογένειά µου και στους φίλους µου. Στην
οικογένειά µου, γιατί δεν θα είχα την ευκαιρία για Πανεπιστηµιακές σπουδές χωρίς την
υποστήριξή τους. Και στους φίλους µου, για τις κοινές µνήµες κατά τη διάρκεια του
περιπετειώδους ταξιδιού της φοιτητικής ζωής.

Contents

Per–lhyh 5

Abstract 7

Euqarist–ec 9

Contents 11

List of Figures 15

List of Tables 17

1 Sunoptik† Perigraf† 19

1.1 Perigraf 'h tou dataClay . 19
1.2 Antike–meno thc diplwmatik†c . 22
1.3 Perait 'erw katan 'ohsh tou dataClay . 22

1.3.1 Stub classes . 22
1.3.2 Custom serialization . 23

1.4 Sunjetik 'o m 'eroc: Kinetic handler . 25
1.4.1 Kinetic key-value objects . 25
1.4.2 Anapar 'astash twn kl 'asewn stouc d'iskouc Kinetic 25
1.4.3 Single-object rule . 26
1.4.4 Pag'ida gia parab'iash tou Single-object rule 27
1.4.5 K'inhtro gia to Single-object rule . 27
1.4.6 Perieq 'omeno thc tim 'hc (value) se 'ena key-value Entry 28
1.4.7 Epexergas'ia twn seiriopoihm 'enwn antikeim 'enwn 29
1.4.8 Key schema . 32
1.4.9 EmploutismÏc klàsewn . 32
1.4.10 An 'akthsh twn antikeim 'enwn ap 'o to Kinetic drive 33

1.5 Axiol 'oghsh . 34

2 Introduction and Motivation 37
2.1 dataClay . 38

2.1.1 Data sharing . 39
2.1.2 Persistent vs. non-persistent data models 39
2.1.3 Computing close to the data . 40

2.2 Seagate Kinetic Open Storage platform . 40

11

2.3 Objective of the master thesis . 41

3 Related Technology 43
3.1 dataClay . 43

3.1.1 Self-contained objects . 43
3.1.2 3rd party enrichment . 44
3.1.3 dataClay details . 45

3.2 Seagate Kinetic Open Storage platform . 49
3.2.1 Kinetic architecture . 49
3.2.2 Kinetic Open Storage Value proposition 52
3.2.3 Kinetic features . 54
3.2.4 Software resources . 59
3.2.5 Hardware resources . 60

4 Persistence Layer: Serialization mechanism 63
4.1 Bytecode analysis . 64
4.2 Motivation for implementing custom serialization mechanism 64
4.3 Representation of classes in the Data Service 65
4.4 Representation of class fields in the Data Service 66
4.5 Meaning of Not-Nulls-Bitmap . 66
4.6 Handling of already stored objects . 67
4.7 Handling of already serialized objects . 67
4.8 Serialization message . 68

4.8.1 Further explanation of the algorithm . 69
4.9 Wrappers . 69

4.9.1 Array wrappers . 70
4.9.2 Collection wrapper . 72
4.9.3 Map wrapper . 72

5 Persistence Layer: Kinetic handler 75
5.1 Establishment of connection with Kinetic 4-bay development chassis 75
5.2 Kinetic key-value objects overview . 77
5.3 Representation of classes on the Kinetic persistence layer 78
5.4 Storing objects on the Kinetic persistence layer 79

5.4.1 Overview . 79
5.4.2 Pitfalls for breaking the single-object rule 79
5.4.3 Motivation for having single objects on the Kinetic drive 79
5.4.4 Content of the value in a key-value entry 80
5.4.5 Processing of serialized objects . 81
5.4.6 Key schema . 84
5.4.7 Superclasses storing . 84
5.4.8 Iterative version . 86

5.5 Retrieval of objects from the Kinetic drive . 86
5.6 Updating objects in the Kinetic drive . 87
5.7 Objects deletion from Kinetic drive . 88
5.8 Removal of a class from Kinetic drive . 88
5.9 Class enrichment . 89

12

5.10 Storing collections in the Kinetic drive . 90
5.11 Storing maps in the Kinetic drive . 92
5.12 Storing arrays in the Kinetic drive . 92

6 Evaluation of Kinetic handler 93
6.1 Main Operations . 93
6.2 Impact of class enrichments . 95
6.3 Retrieving big arrays . 97

7 Conclusion 99
7.1 Serialization mechanism . 99
7.2 Seagate Kinetic Technology . 100

Bibliography 101

13

List of Figures

1.1 Autàrkh antike–mena . 21
1.2 Paràdeigma sthn apoj†keush antikeimËnwn . 31

3.1 Self-contained objects . 44
3.2 Data model sharing . 46
3.3 Remote execution . 48
3.4 Traditional Storage Stack . 50
3.5 Kinetic Storage Stack . 51
3.6 Basic Kinetic Application Architecture . 53
3.7 Kinetic Put Operation . 55
3.8 Kinetic Get Operation . 56
3.9 The 4-Bay Development Chassis . 60

5.1 Establishment of connection with Kinetic 4-bay development chassis 76
5.2 Assigning a static IP . 77
5.3 Example in storing objects . 83

6.1 Elapsed time for storing simple objects . 94
6.2 Elapsed time for storing objects with one reference 94
6.3 Elapsed time for storing objects with one reference to persistent object 95
6.4 Elapsed time for retrieving simple objects . 96
6.5 Elapsed time for retrieving objects of en enriched class 96
6.6 Elapsed time for retrieving arrays with random suffix in their keys 97
6.7 Elapsed time for retrieving arrays with continuous keys 98
6.8 Elapsed time for retrieving arrays twice in the row 98

15

List of Tables

3.1 Object modification by multiple users . 58
3.2 Versioned object modification by multiple users 59

17

Kefàlaio 1

Sunoptik† Perigraf†

SkopÏc tou parÏntoc kefala–ou e–nai na parousiàsei perilhptikà to perieqÏmeno aut†c thc di-
plwmatik†c ergas–ac sthn ellhnik† gl∏ssa. 'Opwc anafËretai kai ston t–tlo thc ergas–ac, to
antike–meno aut†c thc diplwmatik†c ergas–ac e–nai h “Enswmàtwsh antikeimenostraf∏n mËswn
apoj†keushc se platfÏrma diamoirasmo‘ dedomËnwn”. Pio sugkekrimËna, autÏ pou epiqeire-
–tai e–nai na enswmatwjo‘n oi sklhro– d–skoi nËac geniàc thc Seagate, oi Kinetic drives, sthn
platfÏrma diamoirasmo‘ dedomËnwn pou Ëqei anapt‘xei to Storage Systems Research Group
tou Barcelona Supercomputing Center (BSC), to dataClay. Idiàzon qarakthristikÏ twn Ki-
netic drives e–nai Ïti kajisto‘n efikt† th diaqe–rish dedomËnwn qrhsimopoi∏ntac antike–mena
key-value.

Sto pr∏to stàdio auto‘ tou kefala–ou, parousiàzetai to k–nhtro to opo–o od†ghse sthn a-
nàptuxh tou dataClay kaj∏c kai ta basikà qarakthristikà tou. Sth sunËqeia, parousiàzetai
to k–nhtro gia thn enswmàtwsh thc teqnolog–ac Kinetic sto dataClay. 'Epeita, g–netai parou-
s–ash twn pio shmantik∏n teqnik∏n qarakthristik∏n tou dataClay kai twn Kinetic drives ta
opo–a qreiàsthke na katanohjo‘n prin g–nei h s‘zeuxh twn d‘o teqnologi∏n. Sth sunËqeia,
parousiàzetai to sunjetikÏ mËroc aut†c thc diplwmatik†c ergas–ac pou den e–nai àllo apÏ thn
enswmàtwsh twn Kinetic drives sto dataClay. TËloc, parousiàzetai h axiolÏghsh thc anwtËrw
ergas–ac kaj∏c kai ta sumperàsmata ta opo–a proËkuyan.

1.1 Perigraf 'h tou dataClay

An epiqeiro‘same na diatup∏soume se m–a prÏtash to k–nhtro gia thn anàptuxh tou dataClay,
ja †tan Ïti sthn epoq† twn Big Data oi isq‘ousec l‘seic gia sunergas–a metax‘ diafÏrwn
forËwn e–nai aneparke–c. Me ton Ïro sunergas–a ennoe–tai e–te o diamoirasmÏc dedomËnwn e–te
o diamoirasmÏc montËlwn dedomËnwn (data models). Gia na g–nei perissÏtero katanoht† h
anepàrkeia twn shmerin∏n l‘sewn, ac do‘me ta elatt∏mata ta opo–a emperiËqoun.

H pr∏th epilog† gia sunergas–a, h opo–a e–nai kai h pio euËlikth, e–nai Ïloi oi emplekÏmenoi
(dhlad† oi idiokt†tec dedomËnwn kai oi sunergàtec touc) na Ëqoun pl†rh prÏsbash sthn upodom†
twn dedomËnwn (p.q. m–a Bàsh DedomËnwn). WstÏso, aut† h l‘sh e–nai efikt† mÏno Ïtan
upàrqei isqur† sqËsh empistos‘nhc metax‘ twn diafÏrwn emplekÏmenwn † ta dedomËna e–nai

19

anoiqtà/dhmÏsia. Se kàje per–ptwsh, ta dedomËna sun†jwc e–nai mÏno gia anàgnwsh (read-
only) kai Ïloi oi endiaferÏmenoi anagkàzontai na dhmiourg†soun Ëna dikÏ touc ant–grafo twn
dedomËnwn eàn apaito‘ntai tropopoi†seic, to opo–o sunepàgetai thn peraitËrw qr†sh pÏrwn
qrÏnou kai q∏rou.

H de‘terh epilog† gia sunergas–a e–nai oi kàtoqoi twn dedomËnwn na parËqoun prÏsbash se
sugkekrimËna s‘nola dedomËnwn (datasets) stouc sunergàtec touc (touc opo–ouc ja touc ka-
lo‘me kai wc katanalwtËc). Nai men oi katanalwtËc Ëqoun plËon thn euelix–a na diaqeiristo‘n
ta dedomËna Ïpwc auto– epijumo‘n, apÏ th stigm† pou Ëqei dhmiourge– to ant–grafo, allà aut†
h diadikas–a sunepàgetai uperbolik† metaforà dedomËnwn, kaj∏c ep–shc kai to gegonÏc Ïti oi
kàtoqoi twn dedomËnwn qànoun plËon ton ËlegqÏ touc afo‘ dhmiourgo‘ntai pollaplà ant–grafa.

H tr–th kai teleuta–a epilog† gia sunergas–a e–nai na qrhsimopoihje– kàpoio data service (Ïpwc
to RESTful web service). Se aut†n thn per–ptwsh, o idiokt†thc († alli∏c kai kàtoqoc) twn
dedomËnwn moiràzetai me touc endiaferÏmenouc sunergàtec thn upologistik† upodom† pou kai o
–dioc qrhsimopoie–, epilËgontac Ïqi mÏno ti ja moiraste– allà kai p∏c. Aut† h epilog† e–nai pol‘
perioristik† sthn per–ptwsh pou kàpoioc katanalwt†c qreiaste– m–a epiplËon leitourgikÏthta
apÏ autËc pou parËqontai apÏ ton kàtoqo. Se aut†n thn per–ptwsh, apaite–tai h sunergas–a
metax‘ katÏqou kai katanalwt† o‘twc ∏ste o kàtoqoc na enswmat∏sei thn epiplËon leitourgi-
kÏthta pou epijume– o katanalwt†c. Wc ek to‘tou, Ënac emplekÏmenoc de mpore– na emplout–sei
m–a tËtoia uphres–a me th dik† tou pneumatik† idiokths–a kai apaite–tai na krat†sei tic efarmogËc
tou sumbatËc me to API tou parÏqou.

EpiplËon, to dataClay antimetwp–zei m–a akÏmh prÏklhsh pou sunanto‘n diark∏c oi programma-
tistËc. Pio sugkekrimËna, epitrËpei stouc qr†stec tou na mhn apasqolo‘ntai me to peribàllon
sto opo–o br–skontai ta dedomËna touc kai na estiàzoun sth logik† twn efarmog∏n touc. S†me-
ra, ta montËla dedomËnwn Ëqoun sqediaste– me diaforetikÏ trÏpo anàloga me to an autà ta
montËla prospela‘nontai se Ëna pthtikÏ peribàllon † mh. Sta mh-pthtikà peribàllonta, oi
efarmogËc Ërqontai antimËtwpec e–te me sust†mata arqe–wn e–te me bàseic dedomËnwn. Ston
ant–poda, sta pthtikà peribàllonta, oi efarmogËc anagkàzontai na desme‘soun ele‘jerh mn†mh
prokeimËnou na fort∏soun ta dedomËna kai na ta diaqeiristo‘n. DojËntoc aut∏n twn diafor∏n,
oi programmatistËc e–nai anagkasmËnoi na afier∏noun qrÏno, men, gia to sqediasmÏ montËlwn
dedomËnwn anàloga me to peribàllon (pthtikÏ † mh), de, gia th metàbash apÏ to Ëna peribàllon
sto àllo.

EndeqomËnwc, o anagn∏sthc na br–sketai se s‘gqush sqetikà me thn Ënnoia tou diamoirasmo‘
montËlwn dedomËnwn. 'Ena paràdeigma màllon ja aposafhn–sei aut†n thn Ënnoia. An moira-
sto‘me to schema m–ac Bàshc DedomËnwn, den e–nai ta dedomËna pou moiràzontai allà h dom†
(schema) tou montËlou to opo–o se sunduasmÏ me ta dedomËna anaparistà to proc melËth
prÏblhma. Nai men sto sugkekrimËno paràdeigma epitugqànetai h apos‘zeuxh twn dedomËnwn
apÏ to montËlo touc ki Ëtsi to kajËna mpore– na diamoiraste– anexàrthta, wstÏso parathre–tai
Ïti an epijumo‘me epexergas–a twn dedomËnwn, apaite–tai epiplËon fÏrtoc ergas–ac prokeimËnou
na anakt†soume ta dedomËna kai na ta epexergasto‘me. To dataClay petuqa–nei kai thn apo-
s‘zeuxh twn dedomËnwn apÏ ta montËla dedomËnwn, allà kai thn epexergas–a twn dedomËnwn me
Ënan àmeso trÏpo.

Me bàsh ta elatt∏mata pou parousiàzoun oi upàrqousec l‘seic gia to diamoirasmÏ dedomËnwn
allà kai th diaqer–sh touc me bàsh to peribàllon pou br–skontai, to dataClay analambànei thn

20

prÏklhsh na antimetwp–sei Ïla autà ta empÏdia. Arqikà, epitugqànei th sunergas–a metax‘ twn
endiaferÏmenwn forËwn kajist∏ntac efiktÏ to diamoirasmÏ twn dedomËnwn allà kai twn mo-
ntËlwn dedomËnwn. AutÏ epitugqànetai qwr–c na qànei o‘te m–a stigm† o kàtoqoc twn dedomËnwn
ton pl†rh ËlegqÏ touc. EpiplËon, apofe‘gontai Ïlec oi àskopec metaforËc dedomËnwn allà
d–netai epiplËon h dunatÏthta se Ïlouc touc endiaferÏmenouc na emplout–soun ta montËla dedo-
mËnwn me th leitourgikÏthta pou epijumo‘n qwr–c na apaite–tai h emplok† twn katÏqwn. TËloc,
to dataClay antimetwp–zei ta dedomËna me Ëna diafan† trÏpo, anexart†twc tou peribàllontoc
pou br–skontai. Pio sugkekrimËna, Ëqontac wc stÏqo th dieukÏlunsh twn programmatist∏n, to
dataClay parËqei Ïlouc touc mhqanismo‘c pou e–nai apara–thtoi o‘twc ∏ste ta dedomËna pou
br–skontai se Ëna mh-pthtikÏ peribàllon na prospe‘lanontai me ton –dio trÏpo sthn per–ptwsh
pou br–skotan sth mn†mh.

ProkeimËnou na g–nei katanoht† h leitourgikÏthta pou parËqei to dataClay stouc qr†stec kai h
opo–a Ëqei àmesh sqËsh me to antike–meno aut†c thc diplwmatik†c, parousiàzetai Ëna upos‘nolo
twn qarakthristik∏n tou. S†mera, to pio dhmofilËc programmatistikÏ montËlo e–nai to anti-
keimenostrafËc (OOP). To dataClay qrhsimopoie– ta antike–mena apÏ to antikeimenostrafËc
programmatistikÏ montËlo me thn kajierwmËnh Ënnoia kai prosjËtei d‘o qarakthristikà: 1) Tic
politikËc (policies), qàric stic opo–ec e–nai dunat† h sunergas–a metax‘ twn endiaferÏmenwn
mer∏n, kai 2) th diepaf† (API) pou dieukol‘nei thn apoj†keush kai thn anàkthsh twn antikei-
mËnwn. To apotËlesma aut†c thc s‘zeuxhc onomàzetai “Autàrkh antike–mena” (Self-contained
objects - SCOs - Sq†ma 1.1). Ax–zei na shmei∏soume Ïti qàric sto antikeimenostrafËc montËlo
epitugqànetai to polupÏjhto qarakthristikÏ “UpologismÏc kontà sta dedomËna” (Computa-
tion close to the data).

!

a

y

d
t a C

l a
A
PIm

th
d

e
o

s

po
l i c es

i

data

Sq†ma 1.1: 'Enac autàrkec antike–meno kai h sqËsh tou me àlla autàrkh antike–mena

Logikà g–netai plËon antilhptÏ Ïti o diamoirasmÏc montËlwn dedomËnwn epitugqànetai epitrËpo-
ntac to diamoirasmÏ twn OOP klàsewn. EpomËnwc, kai o emploutismÏc twn montËlwn apÏ tr–ta
mËrh (3rd party enrichments) epitugqànetai epidr∏ntac pànw stic klàseic pou moiràzontai. Pio
sugkekrimËna, d–netai h dunatÏthta stouc qr†stec na prosjËtoun stic klàseic e–te nËa ped–a
e–te nËec mejÏdouc.

21

1.2 Antike–meno thc diplwmatik†c

'Opwc Ëqei †dh anaferje–, ta antike–mena prospela‘nontai me ton –dio trÏpo e–te br–skontai se
pthtikÏ peribàllon e–te Ïqi. Me àlla lÏgia, e–nai asfalËc gia ton programmatist† na ulopoie–
thn efarmog† tou jewr∏ntac Ïti ta dedomËna e–nai pànta diajËsima sth mn†mh. WstÏso, Ïpwc
e–nai profanËc den e–nai dunatÏn ta dedomËna na br–skontai sth mn†mh esae–. Apenant–ac, to
dataClay fËrei touc mhqanismo‘c oi opo–oi epitrËpoun th metàbash apÏ to mh-pthtikÏ peribàllon
sth mn†mh kai to ant–strofo.

Sthn paro‘sa fàsh, Ëqoun anaptuqje– mhqanismo– oi opo–oi analambànoun thn antisto–qish twn
SCOs se diàforec bàseic dedomËnwn Ïpwc sqesiakËc † grafikËc k.a. WstÏso, Ïpwc e–nai kata-
nohtÏ, h metàbash apÏ to Ëna peribàllon sto àllo apaite– arket† epexergas–a twn dedomËnwn
kaj∏c ta dedomËna montelopoio‘ntai me diaforetikÏ trÏpo anàloga me to peribàllon. Para-
de–gmatoc qàrin, Ïtan qrhsimopoio‘ntai sqesiakËc bàseic dedomËnwn gia thn apoj†keush twn
SCOs, apaite–tai h metàbash apÏ to antikeimenostrafËc montËlo twn SCOs sth morf† pinàkwn
pou qrhsimopoio‘n oi sqesiakËc bàseic. Ja †tan pol‘ protimÏtero na up†rqe h katàllhlh u-
podom† h opo–a ja epitrËpei thn apoj†keush twn dedomËnwn qrhsimopoi∏ntac to –dio montËlo
me autÏ pou qrhsimopoie–tai to dataClay, dhlad† antike–mena. Apodeikn‘etai Ïti upàrqei tËtoia
teqnolog–a, toulàqiston se fàsh anàptuxhc. PrÏkeitai gia thn teqnolog–a Kinetic pou Ëqei
anapt‘xei h Seagate kai Ëqei ulopoihje– se sklhro‘c d–skouc. Sthn teqnolog–a Kinetic qrh-
simopoie–tai h idia–tera apl† afairetikÏthta twn antikeimËnwn key-value. Sunep∏c, antike–meno
aut†c thc diplwmatik†c ergas–ac e–nai h s‘zeuxh twn d‘o teqnologi∏n, tou dataClay kai thc
Kinetic.

1.3 Perait 'erw katan 'ohsh tou dataClay

Prin proqwr†soume sto amig∏c sunjetikÏ mËroc aut†c thc diplwmatik†c ergas–ac, e–nai apa-
ra–thto, pr∏ton, na katano†soume ousiwd∏c kàpoia basikà mËrh tou dataClay, de‘teron, na
katano†soume se kàje leptomËreia to custom mhqanismÏ seiriopo–hshc tou dataClay, allà, kai
tr–ton, na apokt†soume oikeiÏthta me to API twn Kinetic drives.

1.3.1 Stub classes

'Otan g–netai diamoirasmÏc montËlwn dedomËnwn, oi dikaio‘qoi touc mporo‘n na anakt†soun
tic proc diamoirasmÏ klàseic e–te gia na dhmiourg†soun nËec dikËc touc efarmogËc e–te gia na
emplout–soun tic upàrqontec klàseic me nËa ped–a † mejÏdouc. SugkekrimËna, autÏ pou kànoun oi
katanalwtËc e–nai na «katebàzoun» (download) Ëna stub anà klàsh. Autà ta stubs paràgontai
apÏ to dataClay filtràrontac kai epitrËpontac mÏno ta oratà ped–a kai mejÏdouc s‘mfwna
me ta sumbÏlaia pou Ëqoun sunafje–. EpiplËon, kàje stub periËqei Ëna s‘nolo mejÏdwn (to
dataClay API pou perigràfhke prohgoumËnwc) to opo–o Ëqei klhronomhje– apÏ m–a koin† klàsh
(DataClayObject) thn opo–a Ïla ta stubs epekte–noun (kàti anàlogo me thn klàsh Object thc
Java).

22

1.3.2 Custom serialization

'Opwc Ëqei anaferje– †dh, to dataClay enswmat∏nei Ëna custom mhqanismÏ seiriopo–hshc. U-
pàrqei plhj∏ra lÏgwn pou od†ghse se aut†n thn apÏfash:

• O eggen†c mhqanismÏc seiriopo–hshc thc Java apaite– na Ëqoume thn –dia klàsh kai sthn
pleurà tou server kai tou client. To opo–o den isq‘ei sthn per–ptws† mac, exait–ac tou
diamoirasmo‘ montËlwn dedomËnwn pou efarmÏzoume (blËpe stubs klàseic).

• H seiriopo–hsh thc Java den e–nai apodotik† lÏgw tou reflection. AkÏmh kai an ulopoi-
†soume to Externalizable interface, to apofe‘gei to reflection, h apÏdosh exakolouje– na
e–nai isqn†.

• Upàrqoun kàpoiec anaparastàseic, Ïpwc oi kuklikËc anaforËc † anaforËc se àlla †dh
apojhkeumËna antike–mena (pou, sunep∏c, den qreiàzontai seiriopo–hsh xanà), oi opo–ec
e–nai d‘skolo na anaparastajo‘n sto Java RMI.

• To na Ëqoume to dikÏ mac mhqanismÏ seiriopo–hshc mac epitrËpei na apof‘goume th sei-
riopo–hsh kai thn aposeiriopo–hsh se endiàmesa stàdia.

• TËloc, o mhqanismÏc seiriopo–hshc thc Java periËqei dedomËna kai gia tic klàseic maz– me
ta stigmiÏtupa (Ïpwc oi t‘poi, k.à.), to opo–o prokale– pleonasmÏ plhrofor–ac.

'Opwc g–netai katanohtÏ, e–nai fusikÏ na epiqeirhje– h anàptuxh enÏc custom mhqanismo‘ sei-
riopo–hshc. Se aut†n thn enÏthta, parousiàzetai o mhqanismÏc seiriopo–hshc tou dataClay.
An anal‘soume ton algÏrijmo tou custom mhqanismo‘ seiriopo–hshc se uyhlÏ ep–pedo, e–nai
tËssera ta basikà qarakthristikà tou:

• PrÏkeitai gia m–a anadromik† diadikas–a: Katà th diàrkeia thc seiriopo–hshc enÏc anti-
keimËnou, eàn Ëna apÏ ta ped–a tou proc seiriopo–hsh antikeimËnou periËqei anaforà proc
àllo mhn apojhkeumËno antike–meno, tÏte seiriopoie–tai kai to proc anaforà antikeimËno,
kai afo‘ telei∏sei h seiriopo–hsh tou antikeimËnou-ped–ou suneq–zetai h seiriopo–hsh tou
arqiko‘ antikeimËnou.

• Kàje seiriopoihmËno antike–meno periËqei seiriopoihmËna, ektÏc àllwn, kai Ïla ta ped–a
Ïlwn twn klàsewn tic opo–ec klhronome–: Pio sugkekrimËna, mÏlic oloklhrwje– h seirio-
po–hsh enÏc antikeimËnou, tÏte xekinàei h seiriopo–hsh twn uperklàse∏n tou. Afo‘ kàje
klàsh epekte–nei to DataClayObject, kàje antike–meno periËqei ped–a toulàqiston m–ac
uperklàshc. AutÏ to gegonÏc, dhlad† Ïti Ïla oi klàseic epekte–noun to DataClayOb-
ject, diamorf∏nei kai th sunj†kh termatismo‘ thc seiriopo–hshc. MÏlic seiriopoihjo‘n
ta ped–a tou DataClayObject, h seiriopo–hsh termat–zetai.

• Katà th diàrkeia seiriopo–hshc enÏc antikeimËnou, eàn to dataClay brei m–a anaforà proc
Ëna antike–meno pou Ëqei †dh seiriopoihje–, autÏ to antike–meno den ja seiriopoihje– xanà.
Upàrqoun d‘o lÏgoi pou odhgo‘n se aut† thn epilog†: 1) PleonasmÏc epexergas–ac kai
plhrofor–ac apofe‘getai, kai 2) Opoiad†pote kuklik† anaforà apofe‘getai: Fantaste–te
eàn to dataClay katËfeuge sthn epexergas–a m–ac kuklik†c anaforàc: Ja katËlhge se

23

m–a atËrmonh seiriopo–hsh. ProkeimËnou na apof‘gei tËtoiec dusàrestec katastàseic,
to dataClay epishmei∏nei (tags) kàje antike–meno me Ënan akËraio. Eàn Ëna antike–meno
Ëna Ëqei seiriopoihje– prohgoumËnwc, to dataClay aplà prosjËtei to tag pou antistoiqe–
sto seiriopoihmËno antike–meno. 'Epeita suneq–zei me th seiriopo–hsh tou epÏmenou ped–ou.
P∏c, Ïmwc, to dataClay anagnwr–zei ta †dh seiriopoihmËna antike–mena; Gia autÏ to skopÏ,
qrhsimopoie– Ënamap, tou opo–ou ta kleidià (keys) e–nai ta hashcodes twn antikeimËnwn kai
oi timËc e–nai ta tags pou Ëqoun qrhsimopoihje– gia ta †dh seiriopoihmËna antike–mena. Eàn
breje– Ëna ze‘goc key-value sto map gia Ëna antike–meno, autÏ shma–nei Ïti to antike–meno
Ëqei seiriopoihje– prohgoumËnwc. Se aut†n thn per–ptwsh, aplà prost–jetai to tag. Ston
ant–poda, Ïtan Ëna antike–meno antimetwp–zetai gia pr∏th forà, autÏ epishmei∏netai me ton
amËswc epÏmeno diajËsimo tag kai ant–stoiqo key-value zeugàri prost–jetai sto map.

• 'Otan Ëna antike–meno seiriopoie–tai, autÏ to antike–meno pijan∏c na periËqei anaforËc
proc àlla antike–mena pou Ëqoun †dh apojhkeute– (me àlla lÏgia, na e–nai persistent). Se
aut†n thn per–ptwsh, den Ëqei nÏhma o‘te na apojhke‘soume xanà (dhlad†, na epaneg-
gràyoume - overwrite) to †dh apojhkeumËno antike–meno, o‘te na to seiriopoi†soume. Ant–
na epanaseiriopoi†soume to persistent antike–meno, to dataClay gràfei to anagnwristikÏ
antikeimËnou (object ID) sto m†numa seiriopo–hshc tou proc apoj†keush antikeimËnou.
'Epeita, h seiriopo–hsh twn enapome–nontwn ped–wn suneq–zetai.

WstÏso, poio e–nai to krit†rio pou kànei Ëna antike–meno persistent; Me àlla lÏgia, p∏c ana-
gnwr–zei to dataClay ta apojhkeumËna antike–mena; O kanÏnac e–nai: Eàn Ëna antike–meno Ëqei
Ëna dataClay object ID, autÏ to antike–meno e–nai persistent. Alli∏c, den e–nai. 'Ena antike-
–meno susqet–zetai me to anagnwristikÏ tou (object ID) gia olÏklhrh th zw† tou (life cycle),
mÏlic apojhke‘etai. EpomËnwc, o Ëlegqoc tou eàn Ëna antike–meno e–nai apojhkeumËno † Ïqi
isoduname– me to eàn Ëqei anagnwristikÏ (object ID).

E–nai pol‘ shmantikÏ na xekajar–soume Ïti Ëna object ID den e–nai Ëna anagnwristikÏ thc
gl∏ssac Java. PrÏkeitai gia Ëna eswterikÏ anagnwristikÏ pou qrhsimopoe– to dataClay. 'Enac
lÏgoc pou ta anagnwristikà thc Java (Ïpwc to hashcode enÏc antikeimËnou) den eparko‘n e–nai
Ïti kajor–zoun ta antike–mena mÏno Ïso autà br–skontai entÏc tou swro‘ thc Java. AntijËtwc,
to dataClay qreiàzetai na anagnwr–zei ta antike–menà tou anexart†twc tou eàn autà br–skontai
apojhkeumËna † br–skontai sth mn†mh. EpiplËon, ta antike–mena tou dataClay pijan∏c na
moirasto‘n anàmesa se diaforetiko‘c clients kai servers. EpomËnwc, qreiazÏmaste Ëna monadikÏ
anagnwristikÏ gia olÏklhro to s‘sthma. Gia autÏ to lÏgo to dataClay qrhsimopoie– ta dikà tou
anagnwristikà (IDs), ta opo–a e–nai sthn ous–a Ëna ped–o se kàje antike–meno. Pio sugkekrimËna,
e–nai Ëna ped–o sthn klàsh DataClayObject. Afo‘ kàje stub klàsh epekte–nei thn klàsh
DataClayObject, tÏte kàje antike–meno Ëqei autÏ to ped–o gia to object ID.

TËloc, to mÏno pou apomËnei na apanthje– e–nai p∏c kai pÏte epitugqànetai autÏ to dËsimo
metax‘ enÏc object ID kai tou mÏlic apojhkeumËnou antikeimËnou. H apànthsh e–nai Ïti Ïtan
oloklhr∏netai h apoj†keush enÏc antikeimËnou sthn upodom† dedomËnwn (p.q. m–a sqesiak†
bàsh dedomËnwn), to anagnwristikÏ (dataClay object ID) pou Ëqei qrhsimopoihje– gia autÏ
to antike–meno epistrËfetai wc apotËlesma thc kalo‘sac mejÏdou pou Ëqei analàbei thn apo-
j†keush. To dataClay lambànei autÏ to anagnwristikÏ kai to jËtei sto ant–stoiqo antike–meno,

24

to opo–o exakolouje– na br–sketai kai sth mn†mh. MetËpeita, opoiad†pote prospàjeia gia epa-
naseiriopo–hsh tou antikeimËnou ja apofeuqje–, afo‘ autÏ to antike–meno Ëqei †dh Ëna object
ID.

1.4 Sunjetik 'o m 'eroc: Kinetic handler

Se aut†n thn enÏthta perigràfetai to sunjetikÏ mËroc aut†c thc diplwmatik†c ergas–ac.

1.4.1 Kinetic key-value objects

Aut† h enÏthta perigràfei en suntom–a ta teqnikà qarakthristikà twn antikeimËnwn key-value
ta opo–a apojhke‘ontai se Ëna d–sko Kinetic. S‘mfwna me to API thc teqnolog–ac Kinetic,
Ëna tËtoio antike–meno kale–tai Entry. Me àlla lÏgia, upàrqei m–a Java klàsh, pou onomàzetai
Entry, h opo–a anaparistà ta antike–mena key-value.

Kàje stigmiÏtupo thc klàshc Entry anagnwr–zetai apÏ to monadikÏ tou kleid– (key), to opo–o
se Ïrouc Java e–nai Ëna ped–o byte array sthn klàsh Entry, pou onomàzetai key. To mËgisto
mËgejoc auto‘ e–nai 4 KB. Paromo–wc, kàje antike–meno thc klàshc Entry Ëqei Ëna àllo ped–o
byte array gia thn apoj†keush thc tim†c (value) tou antikeimËnou key-value, to opo–o fusik∏c
onomàzetai value. To mËgisto mËgejoc auto‘ e–nai 1 MB.

EpomËnwc, Ëna antike–meno key-value se Ëna d–sko Kinetic e–nai Ëna ze‘goc d‘o pinàkwn byte.
E–nai apokleistik† euj‘nh tou programmatist† na apofas–sei ti ja apojhkeute– sta d‘o ped–a,
key kai value.

TËloc, e–nai àxio anaforàc to gegonÏc Ïti Ïla ta antike–mena key-value entÏc enÏc d–skouKinetic
taxinomo‘ntai me bàsh to kleid– touc. S‘mfwna me tic prodiagrafËc thc teqnolog–ac Kinetic,
Ëna sq†ma/dom† (schema) gia ta kledià twn antikeimËnwn (object keys) to opo–o topojete–
ta antike–mena akoloujiakà, mpore– na beltistopoi†sei thn apÏdosh. Me àlla lÏgia, Ïtan
prospela‘nontai antike–mena key-value ta opo–a br–skontai to Ëna d–pla sto àllo, h apÏdosh
tou d–skou Kinetic beltistopoie–tai.

1.4.2 Anapar 'astash twn kl 'asewn stouc d'iskouc Kinetic

'Otan kàpoioc qrhsimopoie– m–a antikeimenostraf† gl∏ssa programmatismo‘ kai sqesiasËc bàseic
dedomËnwn, e–nai idia–tera suqnÏ oi klàseic na antistoiq–zontai se p–nakec thc bàshc dedomËnwn
kai kàje antike–meno na antistoiq–zetai se m–a eggraf† ston katàllhlo p–naka. To dataClay
akolouje– kai autÏ thn proanaferje–sa praktik† gia to Postgres handler tou, pou apojhke‘ei
SCOs se m–a sqesiak† bàsh Postgres. ProkeimËnou na to pet‘qei autÏ, Ïtan Ënac qr†sthc
kataqwre– sto dataClay m–a nËa klàsh pou Ëqei or–sei o –dioc, h upodom† dedomËnwn (data
infrastructure), h opo–a, sthn per–ptws† mac, e–nai m–a sqesiak† bàsh dedomËnwn prËpei na pro-
etoimaste– gia mellontik† apoj†keush antikeimËnwn. Gia autÏ to skopÏ, dhmiourge–tai Ënac
p–nakac pou antistoiqe– sthn klàsh pou mÏlic Ëqei kataqwrhje– sto dataClay kai ta mellontikà

25

stigmiÏtupa aut†c thc klàshc ja apojhkeuto‘n sth bàsh dedomËnwn wc eggrafËc auto‘ tou
p–naka.

Ston ant–poda, h arqitektonik† thc teqnolog–ac Kinetic Ëqei uiojet†sei thn pol‘ aplo‘sterh
afairetikÏthta twn antikeimËnwn key-value. Mporo‘me na apojhke‘soume mÏno d‘o p–nakec apÏ
bytes (byte arrays), Ënan gia to kleid– (key) kai Ënan gia thn tim† (value). T–pota perissÏtero.
EpomËnwc, to na anazht†soume gia m–a domhmËnh anaparàstash twn dedomËnwn Ïpwc kànoun
oi p–nakec twn sqesiak∏n bàsewn dedomËnwn † ta sust†mata arqe–wn den Ëqei pol‘ nÏhma
sthn per–ptwsh thc teqnolog–ac Kinetic. Ant’ auto‘ ja dusqËraine monàqa thn apÏdosh. H
pio àmesh kai, màllon, pio apotelesmatik† l‘sh e–nai na apojhke‘oume kàje seiriopoihmËno
antike–meno tou dataClay (dhlad† Ëna SCO) wc Ëna antike–meno key-value (dhlad† antike–meno
Entry), tou opo–ou h tim† (value) ja e–nai ta bytes tou seiriopoihmËnou antikeimËnou. Wc ek
to‘tou, oi d–skoi Kinetic den qreiàzetai na kànoun kàti gia thn proetoimas–a thc upodom†c,
Ïpwc kànoun oi sqesiakËc bàseic dedomËnwn dhmiourg∏ntac p–nakec. Sthn pragmatikÏthta,
stouc d–skouc Kinetic kàje antike–meno den sqet–zetai me ta upÏloipa, se ant–jesh me touc
p–nakec twn sqesiak∏n bàsewn dedomËnwn pou emfwle‘oun Ïla ta antike–mena thc –diac klàshc.
Stouc d–skouc Kinetic Ïla ta antike–mena e–nai anexàrthta.

ApÏ thn àllh pleurà, oi p–nakec stic sqesiakËc bàseic dedomËnwn epitugqànoun pol‘ apotele-
smatikà thn Ënnoia thc omadopo–hshc parÏmoiwn eid∏n: Kàje eggraf† se Ënan p–naka anaparistà
Ëna antike–meno thc –diac klàshc. Gia paràdeigma, anazht∏ntac Ïla ta antike–mena m–a klàshc
isoduname– mÏno me m–a entol† “SELECT * FROM” . O handler tou dataClay gia touc sklhro-
‘c d–skouc Kinetic petuqa–nei kai autÏc thn Ënnoia thc omadopo–hshc. Afo‘ kàje antike–meno
Entry taxinome–tai me bàsh to kleid– tou, h omadopo–hsh antikeimËnwn thc –diac klàshc epitug-
qànetai e‘kola kai stouc d–skouc Kinetic. Eàn qrhsimopoi†soume to –dio prÏjema gia to kleid–
twn antikeimËnwn pou an†koun sthn –dia klàsh, tÏte kàje antike–meno Entry ja br–sketai to
Ëna d–pla sto àllo, exait–ac thc taxinÏmhshc twn antikeimËnwn Entry. Sthn per–ptws† mac, to
fusikÏtero e–nai na qrhsimopoi†soume wc prÏjema to anagnwristikÏ twn klàsewn (class ID)
wc prÏjema gia to key schema.

1.4.3 Single-object rule

'Opwc Ëqei †dh dhlwje– prohgoumËnwc, o handler gia touc d–skouc Kinetic apojhke‘ei kàje
antike–meno enÏc qr†sth tou dataClay wc Ëna antike–meno key-value Entry sto sklhrÏ d–sko
Kinetic. AutÏc e–nai Ënac kanÏnac pou potË den prËpei na parabiàzetai anexairËtwc kate‘junshc:
Kàje antike–meno prËpei na apojhke‘etai wc m–a olÏklhrh ontÏthta kai potË den katatËmnetai.
ApÏ thn àllh pleurà, Ëna antike–meno key-value Entry sto d–sko Kinetic de mpore– na peri-
Ëqei plhrofor–ec (dhlad†, bytes) gia parapànw apÏ Ëna antike–meno. EpiplËon, epijumo‘me oi
sqËseic exàrthshc anàmesa sta antike–mena pou upàrqoun lÏgw twn anafor∏n metax‘ touc na
antanaklàtai kai sta antike–mena pou apojhke‘oume sto d–sko Kinetic. PijanÏtata, autÏc e–nai
o pio shmantikÏc kanÏnac sto Kinetic handler. ApÏ ed∏ kai sto ex†c, ja apokalo‘me autÏn
ton kanÏna “Single-object rule”.

26

1.4.4 Pag'ida gia parab'iash tou Single-object rule

Ac do‘me mËsw enÏc parade–gmatoc Ïti an den prosËxoume, o Single-object rule mpore– na pa-
rabiaste–. Ac upojËsoume Ïti epijumo‘me thn apoj†keush enÏc antikeimËnou, to opo–o ja to
onomàsoume objectA. EpiplËon, ac upojËsoume Ïti to objectA periËqei m–a anaforà proc Ëna
àllo mh apojhkeumËno antike–meno, to objectB. AutÏ uponoe– Ïti kai ta antike–mena prËpei na
apojhkeuto‘n sthn upodom† dedomËnwn (sthn per–ptws† mac, to d–sko Kinetic). S‘mfwna me to
mhqanismÏ seiriopo–shc pou perigràfhke prohgoumËnwc, to antike–meno objectB ja seiriopoihje–
“mËsa” sto antike–meno objectA, afo‘ to antike–meno objectB den e–nai o‘te autÏ apojhkeumËno.

Eàn apojhke‘soume to antike–meno objectA akaria–a, qwr–c na apomon∏soume to objectB, autÏ
ja prokalËsei parab–ash tou Single-object rule. SugkekrimËna, to antike–meno key-value Entry
sto d–sko Kinetic ja periËqei plhrofor–a (bytes) gia parapànw apÏ Ëna antike–meno. EpomËnwc,
to na apojhke‘oume antike–mena tou dataClay sto d–sko Kinetic den mpore– na epiteuqje– prag-
matopoi∏ntac aplà thn metaforà twn seiriopoihmËnwn antikeimËnwn (leitourg–a put). Pànta,
apaite–tai h epexergas–a touc pr∏ta.

1.4.5 K'inhtro gia to Single-object rule

Prin proqwr†soume sthn perigraf† tou trÏpou me ton opo–o ekplhr∏netai o Single-object rule,
e–nai kr–simo na parousiàsoume to k–nhtro gia na Ëqoume Ëna tËtoio kanÏna. Sthn per–ptws† mac,
ja do‘me Ïti o kanÏnac tou «oikonÏmou» e–nai pragmatikà shmantikÏc: Mia mikr† epiplËon pro-
spàjeia pou katabàlletai gia sunt†rhsh rout–nac mpore– na mac antapod∏sei se makroprÏjesmh
bàsh, prolambànontac megàlec katastrofËc.

O pr∏toc lÏgoc gia ton diaqwrismÏ twn antikeimËnwn kajor–zetai apÏ thn –dia th suske† Ki-
netic. 'Opwc Ëqei anaferje–, kàje antike–meno key-value Entry Ëqei periorismo‘c sto mËgejoc
kai tou kleidio‘ (key) kai thc tim†c (value). SugkekrimËna, to kleid– mpore– na e–nai Ëwc 4 KB
kai h tim† Ëwc 1MB. Fantaste–te Ëna antike–meno to opo–o periËqei mia megàlh sullog† se àlla
(megàla) antike–mena. Prospaj∏ntac na apojhke‘soume to arqikÏ antike–meno wc Ëna enia–o
ontÏthta, endeqomËnwc na uperbe– thn qwrhtikÏthta enÏc antikeimËnou Entry. To opo–o, me th
seirà tou, ja prokalËsei Exception.

EpiplËon, diathr∏ntac ta pràgmata organwmËna Ëqei nÏhma kai gia thn apÏdosh tou Kinetic
handler. Ac upojËsoume Ïti Ëqoume †dh apojhkeumËno Ëna antike–meno (ac to onomàsoume
objectA), to opo–o periËqei ep–shc Ëna àllo antike–meno (ac to onomàsoume objectB). EpiplËon,
ac upojËsoume Ïti me kàpoio trÏpo Ëqoume ep–gnwsh aut†c thc sqËshc Has-A metax‘ objectA
kai objectB (to opo–o, parempiptÏntwc, e–nai arketà d‘skolo kànontac àmesa leiourg–a put). An
to objectB tropopoihje–, to dataClay ja epiqeir†sei na enhmer∏sei to objectB sthn upodom†
dedomËnwn. Allà dedomËnou Ïti to objectB e–nai mËsa sto objectA (kai o handler to gnwr–zei),
o handler e–nai upoqrewmËnoc me thn epiplËon ergas–a tou na brei poia bytes e–nai gia to objectB
kai Ïqi gia to objectA, kai telikà na kànei thn epijumht† leitourg–a enhmËrwshc.

ApÏ thn prohgo‘menh paràgrafo kai to paràdeigmà thc, elafr∏c upono†jhke Ïti den mporo‘me
e‘kola na xËroume ti Ëqei apojhkeuje– Ïtan kànoume àmesec leitourg–ec put. Me àlla lÏgia,
e–maste se jËsh na gnwr–zoume to exwterikÏ antike–meno pou apojhke‘etai, allà Ïqi kai autà

27

pou perilambànontai sto exwterikÏ. To na Ëqoume autËc tic plhrofor–ec e–nai zwtik†c shma-
s–ac, Ïpwc e–dame prohgoumËnwc: MÏlic Ëna antike–meno apojhke‘etai, autÏ susqet–zetai me
Ëna anagnwristikÏ (dataClay ID), to opo–o apotele– to krit†rio gia Ëna antike–meno na e–nai
apojhkeumËno. Eàn autÏ to b†ma den g–nei, e–nai arketà pijanÏ na Ëqoume pollaplà ant–grafa
tou –diou antikeimËnou sthn upodom† dedomËnwn. Ac do‘me ta pijanà probl†mata asunËpeiac me
Ëna paràdeigma: to objectA (to opo'io peri 'eqei to objectB) apojhke‘etai me àmesh leitourg–a
put. 'Etsi, den gnwr–zoume poia antike–mena apojhke‘thkan ektÏc apÏ objectA. Omo–wc, Ëna
àllo antike–meno (ac to onomàsoume objectC) to opo–o periËqei ep–shc mia anaforà sto objectB
apojhke‘etai me àmesh leitourg–a put. ApÏ th stigm† pou den gnwr–zoume Ïti to objectB e-
–nai †dh apojhke‘meno (mËsa sto Entry tou objectA), ja apojhkeute– xanà (mËsa sto Entry
tou objectC). Sth sunËqeia, an Ëqoume tropopoi†soume to objectB se opoiod†pote apÏ ta duo
ant–grafa, ja prokalËsoume asunËpeia sto àllo.

En katakle–di, h shmas–a tou diaqwrismo‘ twn antikeimËnwn kai thc apoj†keus†c touc xeqwristà
Ëqei pol‘ nÏhma. Alli∏c, probl†mata Ïpwc h asunËpeia, h isqn† apÏdosh kai h upËrbash
twn or–wn apoj†keushc ja ege–rontai san Ëna fainÏmeno ntÏmino. Wc ek to‘tou, h epiplËon
prospàjeia gia thn taktopo–hsh twn antikeimËnwn Ïtan autà apojhke‘ontai gia pr∏th forà
ax–zei me to parapànw.

1.4.6 Perieq 'omeno thc tim 'hc (value) se 'ena key-value Entry

Se aut†n thn enÏthta, parousiàzetai to pattern gia thn tim† enÏc key-value Entry. E–nai
pol‘ qr†simo na paromoiàsoume to d–sko Kinetic me ton swrÏ thc Java. Sto swrÏ, kàje
antike–meno periËqei dedomËna gia ta ped–a tou. SugkekrimËna, periËqei plhrofor–ec gia kàje
ped–o prwtarqiko‘ t‘pou, kaj∏c ep–shc kai anaforËc se àlla antike–mena. Omo–wc, ta key-value
entries sto d–sko Kinetic prËpei na sumperifËrontai san na †tan antike–mena sto swrÏ: Eàn
Ëna antike–meno Ëqei ped–a prwtarqiko‘ t‘pou, ta ped–a autà seiriopoio‘ntai kai apojhke‘ontai
mËsa sto key-value Entry tou antikeimËnou sto opo–o an†koun. EpiplËon, ta key-value Entries
parapËmpoun se àlla key-value Entries sto d–sko Kinetic kai den periËqoun àlla Entries, Ïpwc
ta antike–mena den periËqoun àlla antike–mena sto heap.

WstÏso, ta seiriopoihmËna antike–mena pijan∏c na periËqoun dedomËna gia parapànw apÏ Ëna
antike–meno. AutÏ shma–nei Ïti ofe–loume na epexergazÏmaste ta dedomËna autà, na diaqwr–zoume
ta perikleiÏmena antike–mena kai na ta apojhke‘oume qwristà. AutÏ apaite– mia pol‘ prosegmËnh
douleià afo‘ Ëqoume na epexergasto‘me dedomËna se ep–pedo byte wc ep– to ple–ston, allà kai
se ep–pedo bit se eidikËc peript∏seic.

Eutuq∏c, tÏso o mhqanismÏc seiriopo–hshc Ïso kai oi d–skoi Kinetic e–nai thc –diac f‘shc. Kai
oi d‘o katalaba–noun bytes. T–pota àllo. T–pota parapànw. 'Etsi, autÏ pou qreiazÏmaste gia
na apojhke‘soume sto d–sko Kinetic kajor–zetai l–go pol‘ apÏ to prohgo‘meno str∏ma, to mh-
qanismÏ seiriopo–hshc. Den Ëqei kai pol‘ nÏhma na prospaj†soume gia mia entel∏c diaforetik†
apeikÏnish twn antikeimËnwn sto d–sko Kinetic. To mÏno pou ja Ëkane ja †tan na epibar‘nei
thn apÏdosh, kai stic d‘o kateuj‘nseic: Gia thn apoj†keush enÏc antikeimËnou, ja Ëprepe
na metafràsoume to seiriopoihmËno antike–meno se m–a morf† sumbat† gia to Kinetic drive kai
anakt∏ntac to antike–meno ja apaito‘se to ant–strofo. Ant' auto‘, e–nai arketà e‘logo na

28

krat†soume to apotËlesma tou mhqanismo‘ seiriopo–hshc kai na to tropopoi†soume mÏno Ïtan
autÏ e–nai anagka–o.

EpiplËon, o mhqanismÏc seiriopo–hshc mac d–nei th l‘sh gia Ïtan jËloume na anaferjo‘me se
àlla antike–mena: Katà th diàrkeia thc seiriopo–hshc enÏc antikeimËnou, eàn breje– m–a anaforà
se †dh apojhkeumËno antike–meno, to anagnwristikÏ (dataClay object ID) tou apojhkeumËnou
antikeimËnou prosartàtai sto m†numa seiriopo–hshc kai h seiriopo–hsh suneq–zei sto epÏmeno
ped–o. O Kinetic handler mime–tai autÏ to mot–bo: 'Otan Ëna seiriopoihmËno antike–meno peri-
Ëqei bytes gia àllo seiriopoihmËno antike–meno, to ¨eswterikÏ’ antike–meno apojhke‘etai se Ëna
xeqwristÏ key-value Entry kai to ¨exwterikÏ’ antike–meno apojhke‘ei mÏno to dataClay object
ID tou ¨eswteriko‘’ antikeimËnou. EpiplËon, o Kinetic handler epistrËfei ta object IDs Ïlwn
twn prÏsfata apojhkeumËnwn antikeimËnwn. To dataClay lambànei autÏ to apotËlesma kai
emplout–zei tic gn∏seic tou sqetikà me ta apojhkeumËna antike–mena. Qwr–c epexergas–a tou
seiriopoihmËnou antikeimËnou, ja †tan ad‘nato na gnwr–zoume poia antike–mena apojhke‘ontai.

1.4.7 Epexergas'ia twn seiriopoihm 'enwn antikeim 'enwn

Sthn prohgo‘menh enÏthta, to perieqÏmeno tou value twn Entries kal‘fjhke diaisjhtikà. A-
pÏ t∏ra kai sto ex†c, epikentrwnÏmaste sto kommàti thc epexergas–ac tou Kinetic handler.
K‘rio kaj†kon tou Kinetic handler e–nai na diakr–nei ta antike–mena pou upàrqoun mËsa se Ëna
seiriopoihmËno antike–meno kai na ta diaqwr–sei.

Katà th diàrkeia thc epexergas–ac twn ped–wn enÏc antikeimËnou, upàrqoun d‘o peript∏seic
pou mpore– na sunant†soume. H pr∏th kai pio e‘kolh e–nai na Ëqoume Ëna ped–o prwtarqiko‘
t‘pou. Se aut†n thn per–ptwsh, dedomËnou Ïti gnwr–zoume ton t‘po tou ped–ou (qàric se
kàpoia metadedomËna pou diajËtoume), antigràfoume apÏ to seiriopoihmËno antike–meno sto key-
value Entry to akribËc posÏ twn bytes pou e–nai afierwmËno gia autÏ to ped–o. Eutuq∏c,
ta ped–a prwtarqiko‘ t‘pou Ëqoun pànta tim†: AkÏma kai an den Ëqoun arqikopoihje–, Ëqoun
thn proepilegmËnh tim† touc. Ax–zei na anafËroume th diaforà metax‘ twn peript∏sewn tou
Kinetic kai twn sqesiak∏n bàsewn dedomËnwn. Sto Kinetic, aplà prËpei na antigràyoume
merikà bytes kai na suneq–soume sto epÏmeno ped–o. Ston ant–poda, o Postgres handler apaite–
thn katàllhlh diamÏrfwsh miac d†lwshc SQL, h opo–a sunepàgetai ektetamËno qeirismÏ enÏc
string qrhsimopoi∏ntac apostrÏfouc, parenjËseic, k.lp. Sto tËloc, autÏ odhge– se Ëna arketà
megàlo kai d‘skolo na katanohje– kommàti tou k∏dika, skopÏc tou opo–ou e–nai wc ep– to
ple–ston o sqhmatismÏc thc d†lwshc SQL, ant– o qeirismÏc twn dedomËnwn apÏ to seiriopoihmËno
antike–meno.

H de‘terh per–ptwsh e–nai Ïtan Ëqoume na kànoume me mia anaforà. H per–ptwsh aut† den e–nai
tÏso tetrimmËnh Ïpwc prin kai Ëqei pollËc upo-peript∏seic. 'Otan sunantàme mia anaforà, e–nai
pànta arketà dunatÏn h anaforà na e–nai null. WstÏso, aut† h plhrofor–a den exartàtai apÏ
thn morfolog–a thc klàshc pou Ëqei or–sei o qr†sthc. Ant' auto‘, exartàtai se megàlo bajmÏ
apÏ to sugkekrimËno stigmiÏtupo. Gia autÏ to skopÏ kàje seiriopoihmËno antike–meno Ëqei Ëna
bitmap, to notNullBitmap, to opo–o mac plhrofore– gia ta ped–a pou e–nai anaforËc se àlla
ped–a: 'Ena bit gia kàje anaforà mac plhrofore– an h anaforà e–nai null † Ïqi. 'Etsi, to pr∏to
b†ma, en∏ antimetwp–zoun anaforà e–nai na elËgxete to katàllhlo bit sto notNullBitmap.

29

Eàn h anaforà e–nai null (s‘mfwna me to bitmap), den upàrqoun bytes gia thn anaforà sto
seiriopohmËno antike–meno kai o handler suneq–zei sto epÏmeno ped–o.

ApÏ thn àllh pleurà, upàrqoun pollËc peript∏seic Ïtan h anaforà den e–nai null:

• Per–ptwsh 1 - Anaforà se Ëna †dh apojhkeumËno antike–meno: Eàn to
ped–o e–nai anaforà se Ëna apojhkeumËno antike–meno, o mhqanismÏc seiriopo–hshc Ëqei
prosarthje– mÏno to dataClay object ID tou †dh apojhkeumËnou antikeimËnou (maz– me
kàpoia àlla metadedomËna Ïpwc to tag).

• Per–ptwsh 2 - NËa seiriopoihmËno antike–meno: AutÏ sumba–nei Ïtan to m†numa
seiriopo–hshc periËqei bytes gia parapànw apÏ Ëna antike–meno. Sthn per–ptwsh aut†, to
upo-antike–meno prËpei na diaqwriste– apÏ arqikÏ seiriopoihmËno antike–meno, Ëpeita na
antigrafe– se Ëna àllo key-value Entry kai tÏte na epanËljei h epexergas–ac tou arqiko‘
antikeimËnou. Gia to skopÏ autÏ, o Kinetic handler leitourge– anadromikà, dedomËnou Ïti
kai o mhqanismÏc seiriopo–hshc energe– katà anadromikÏ trÏpo.

• Per–ptwsh 3 - Anaforà se Ëna antike–meno pou Ëqoume epexergaste–
prohgoumËnwc: Eàn h anaforà parapËmpei se Ëna antike–meno pou Ëqei antimetwpiste–
sto pareljÏn, tÏte mÏno to tag episunàptetai gia autÏ to antike–meno, ant– thc ek nËou
seiriopo–hshc tou antikeimËnou.

E–nai pol‘ shmantikÏ na diakr–noume th diaforà anàmesa sthn per–ptwsh 1 kai sthn per–ptwsh
3. Sthn per–ptwsh 3, Ëna antike–meno jewre–tai ¨epexergasmËno’ eàn o handler Ëqei †dh epexer-
gaste– autÏ to antike–meno sthn –dia kl†sh thc leitourg–ac apoj†keushc. Me àlla lÏgia, Ëna
«epexergasmËno» antike–meno den apoj†keuthke prin apÏ thn trËqousa kl†sh thc leitourg–ac
apoj†keushc. ApÏ thn àllh pleurà, Ëna antike–meno jewre–tai apojhkeumËno (per–ptwsh 1),
eàn Ëqei apojhkeute– se prohgo‘menh kl†sh leitourg–ac apoj†keushc.

Allà, p∏c diakr–nontai oi treic autËc peript∏seic; O Kinetic handler qrhsimopoie– Ëna map, pou
onomàzetai alreadyEncounteredObjects, to opo–o Ëqei wc key to tag twn †dh epexergasmËnwn
antikeimËnwn kai wc value to anagnwristikÏ (dataClay object ID) tou kàje antikeimËnou. An
upàrqei Ëna tag stomap, autÏ shma–nei Ïti to antike–meno Ëqei uposte– epexergas–a sto pareljÏn
(sthn –dia kl†sh thc leitourg–ac apoj†keushc, Ïmwc) kai ta bytes metà thn etikËta e–nai gia
to epÏmeno ped–o (per–ptwsh 3). Se ant–jeth per–ptwsh, h anaforà mpore– na e–nai e–te se
Ëna apojhkeumËno antike–meno (per–ptwsh 1) † se Ëna mh apojhkeumËno (per–ptwsh 2). Oi
peript∏seic autËc diakr–nontai apÏ ta metadedomËna pou Ëqei kàje seiriopoihmËno antike–meno.

O Kinetic handler pasq–zei na apojhke‘sei ta antike–mena key-value se m–a (sqedÏn) katanoht†
morf† gia to dataClay. Me autÏn ton trÏpo, h anàkthsh enÏc antikeimËnou apÏ to d–sko Kinetic
ja apait†sei th ligÏterh dunat† epexergas–a. EpomËnwc, ta tags se kàje key-value Entry ja
prËpei na energo‘n wc monadikà anagnwristikà, Ïpwc kànoun sta seiriopoihmËna antike–mena.
WstÏso, an jËloume na exagàgoume ta eswterikà antike–mena apÏ Ëna exwterikÏ, ta tags qànoun
thn anagnwristik† touc idiÏthta.

Gia paràdeigma, ac upojËsoume Ïti Ëqoume ta antike–mena objectA kai objectB, me th metax‘
touc susqËtish Ïpwc apeikon–zetai sto Sq†ma 1.2.

30

Sq†ma 1.2: Paràdeigma: SqËsh metax‘ d‘o antikeimËnwn.

An h leitourg–a apoj†keushc klhje– gia to objectA, tÏte kai ta d‘o antike–mena ja seiriopoih-
jo‘n. EpiplËon, to objectA ja epishmeiwje– me to tag 0, kai to objectB me to tag 1. H anaforà
tou objectA sto objectB emp–ptei sthn per–ptwsh 2, epeid† to objectB den to Ëqoume antimetw-
p–sei sto pareljÏn, o‘te e–nai apojhkeumËno. AntijËtwc, h anaforà tou objectB sto objectA
emp–ptei sthn per–ptwsh 3, epeid† to objectA to Ëqoume †dh sunant†sei. 'Etsi, qrhsimopoie–tai
mÏno to tag 0 gia thn anaforà aut†.

An ta antike–mena objectA kai objectB diaqwristo‘n kai apojhkeuto‘n qwristà, pa‘oun na
parapËmpoun to Ëna sto àllo plËon. Gia paràdeigma, to tag me arijmÏ 0 pou periËqei to objectB
gia thn anaforà tou sto objectA den mpore– na prosdior–sei objectA. Gia to lÏgo autÏ, to object
ID ja prËpei na qrhsimopoie–tai gia thn anaforà se àlla apojhkeumËna antike–mena, Ïpwc kànei
o mhqanismÏc seiriopo–hshc sthn per–ptwsh 1. Sth sunËqeia, kàje metËpeita anaforà se †dh
epexergasmËno antike–meno prËpei na periËqei mÏno to tag. Gia paràdeigma, gia mia de‘terh
anaforà apÏ to objectB sto objectA arke– na prosjËsoume mÏno to tag tou objectA, kai Ïqi to
object ID tou. 'Etsi, o Kinetic handler ja prËpei na efarmÏsei autÏ ton eswterikÏ mhqanismÏ
epishme–wshc. 'Ena map kai Ëna s‘nolo (set) kajisto‘n dunatÏ autÏn to mhqanismÏ:

• alreadyEncounteredObjects (Map apÏ tags se object IDs): AutÏ to map perigràfhke
kai prohgoumËnwc: E–nai apara–thto gia thn anagn∏rish twn antikeimËnwn pou Ëqoun
epexergaste– sto pareljÏn, sthn –dia kl†sh thc leigourg–ac apoj†keushc. O anagn∏sthc
ja prËpei na Ëqete katà nou Ïti autÏ to map e–nai monadikÏ kai qrhsimopoie–tai apÏ Ïlec
tic anadromikËc kl†seic thc leitourg–ac apoj†keushc.

• alreadyEncounteredTags (S‘nolo twn tags): Kàje forà pou kale–tai h leitourg–a apo-
j†keushc, Ëna tËtoio àdeio s‘nolo arqikopoie–tai. AutÏ to s‘nolo periËqei Ïla ta tags
pou Ëqei †dh sunant†sei h trËqousa kl†sh apoj†keushc. Eàn Ëna tag den upàrqei sto
s‘nolo, to epishmeiomËno antike–meno sunantàtai gia pr∏th forà apÏ thn trËqousa kl†sh
thc leitourg–ac apoj†keushc, kai to anagnwristikÏ antikeimËnou (dataClay object ID)
ja prËpei na episunafje–, maz– me to tag (to object ID mpore– na breje– apÏ to map al-
readyEncounteredObjects). Diaforetikà, eàn to tag e–nai sto s‘nolo, to tag arke– gia
thn anaforà sto antike–meno.

Kàje tag pou e–nai sto s‘nolo alreadyEncounteredTags e–nai kai sto map
alreadyEncounteredObjects. Allà, Ïqi to ant–strofo.

31

TËloc, o anagn∏sthc mpore– na fantaste– thn poluplokÏthta thc d†lwshc SQL gia to qeirism 'o
twn anafor 'wn sthn per'iptwsh tou handler twn sqesiak∏n bàsewn dedomËnwn.

1.4.8 Key schema

'Epeita apÏ thn perigraf† tou ti apojhke‘oume gia thn tim† enÏc key-value Entry, to mÏno pou
apomËnei na kal‘youme e–nai h dom† tou kleidio‘ gia Ëna Entry. Aut† den ekpl†sei kai akolouje–
to arketà e‘logo mot–bo: <class ID>_<object ID>

To k–nhtro pou od†ghse se aut† th dom† proËrqetai apÏ th diàtaxh twn key-value Entries
me bàsh to kleid– touc. Afo‘ ta Entries e–nai taxinomhmËna, ta antike–mena thc –diac klàshc
omadopoio‘ntai, Ïpwc paromo–wc kànoun oi p–nakec twn sqesiak∏n bàsewn dedomËnwn. S‘mfwna
me tic prodiagrafËc thc teqnolog–ac Kinetic, h anàkthsh twn antikeimËnwn pou br–skontai kontà
to Ëna sto àllo mpore– na beltistopoihje–. S‘ntoma, ja do‘me sugkekrimËnec peript∏seic Ïpou
ekmetalleuÏmaste autÏ to qarakthristikÏ.

1.4.9 EmploutismÏc klàsewn

Sthn arq† auto‘ tou kefafa–ou, anafËrjhke emfatikà Ïti stic trËqousec prosegg–seic gia
thn antallag† dedomËnwn, oi sunergàtec e–nai pànta periorismËnoi sthn leitourgikÏthta pou
parËqetai apÏ ton kàtoqo twn dedomËnwn. H mÏnh l‘sh gia auto‘c e–nai na dhmiourg†soume
Ëna ant–grafo twn dedomËnwn kai tÏte na to qeiristo‘n me bàsh thn epijum–a touc. WstÏso, h
ousiastik† sunergas–a kai h antallag† dedomËnwn pa‘oun na upàrqoun me th dhmiourg–a enÏc
antigràfou.

Ant' auto‘, to dataClay epitrËpei kai stic d‘o pleurËc na leitourgo‘n aprÏskopta. AkribËste-
ra, o emploutismo‘c twn klàsewn e–nai dunatÏc me treic trÏpouc: 1) Thn prosj†kh nËwn ped–wn
se mia klàsh, 2) thn prosj†kh nËwn mejÏdwn se mia klàsh, 3) thn prosj†kh miac nËac ulopo-
–hshc gia mia upàrqousa mËjodo se mia klàsh. Profan∏c, o Kinetic handler asqole–tai mÏno
me thn pr∏th per–ptwsh, epeid† h de‘terh kai tr–th per–ptwsh ephreàzoun th sumperiforà twn
klàsewn pou den Ëqei t–pota na kànei me thn upodom† twn dedomËnwn. Ant' auto‘, oi allagËc
sta ped–a m–ac klàshc ephreàzoun thn katàstash twn stigmiot‘pwn tou. Kai, Ïntwc h upodom†
twn dedomËnwn (sthn per–ptws† mac, oi d–skoi Kinetic) apojhke‘oun mÏno thn katàstash twn
antikeimËnwn. AntijËtwc, oi allagËc stic mejÏdouc antanakl∏ntai sta arqe–a twn klàsewn.

Sthn per–ptwsh twn sqesiak∏n bàsewn dedomËnwn, h anaparàstash miac klàshc epitugqànetai
qrhsimopoi∏ntac Ëna ant–stoiqo p–naka, Ïpou ta ped–a thc tàxhc antistoiq–zontai me tic st†lec
tou p–naka. 'Etsi, emplout–zontac mia tàxh me thn prosj†kh nËwn ped–wn antikatoptr–zetai
sth bàsh dedomËnwn, me thn prosj†kh nËwn sthl∏n ston ant–stoiqo p–naka. Ant–jeta, sthn
per–ptwsh twn Kinetic drives oi klàseic den anaparistÏntai me kàpoio trÏpo. Kàje stigmiÏtupo
e–nai anexàrthto apÏ to àllo se Ënan d–sko Kinetic, akÏmh kai an br–skontai to Ëna d–pla sto
àllo. WstÏso, oi tropopoi†seic sth dom† m–ac klàshc ephreàzoun Ïla ta stigmiÏtupà tou,
akaria–a. AkÏmh perissÏtero, h tropopo–hsh m–ac klàshc ephreàzei kai ta antike–mena twn
klàsewn pou epekte–noun thn emploutismËnh klàsh. 'Etsi, an jËlame na enhmer∏soume Ïla
ta antike–mena pou ephreàzontai apÏ ton emploutismÏ m–ac klàshc, e–nai ad‘naton, epeid† den

32

mporo‘me na bro‘me e‘kola ta antike–mena àllwn klàsewn pou epekte–noun thn emploutismËnh
klàsh.

Gia autÏ to lÏgo, den e–maste se jËsh na kànoume kàti me logik† poluplokÏthta, th stig-
m† tou emploutismo‘. To mÏno pou mporo‘me na kànoume th stigm† tou emploutismo‘ e–nai na
enhmer∏soume th gn∏sh pou Ëqoume gia th dom† thc emploutismËnhc klàshc. Aut† h enhme-
rwmËnh Ëkdosh den ephreàzei kanËna apÏ ta "dirty" antike–mena. WstÏso, aut† h nËa gn∏sh
mac epitrËpei na anagnwr–soume ta "dirty" antike–mena. H enhmËrwsh enÏc "dirty" antikeimËnou
sumba–nei katà th stigm† thc anàkthshc.

Prin proqwr†soume sth l‘sh pou Ëqoume uiojet†sei, e–nai shmantikÏ na dieukrin–soume ti a-
namËnei to dataClay apÏ thn upodom† twn dedomËnwn Ïtan aite–tai Ëna antike–meno tou opo–ou
e–te h klàsh † kàpoia apÏ tic uperklàseic tou Ëqoun emploutiste–. AnamËnei Ëna seiriopoihmËno
antike–meno to opo–o Ëqei plhrofor–ec (bytes) gia Ïla ta ped–a thc klàshc, tÏso palaià Ïso
kai nËa. Pio sugkekrimËna, h mËjodoc aposeiriopo–shc m–ac emploutismËnhc klàshc Ëqei enhme-
rwje– Ëtsi ∏ste na aposeiriopoie– «emploutismËna» antike–mena. 'Etsi, Ïtan zhtàme Ëna "dirty"
antike–meno, prËpei na prosjËsoume tic proepilegmËnec timËc sta nËa ped–a: Eàn to nËo ped–o
e–nai prwtarqiko‘ t‘pou, pa–rnei thn prokajorismËnh tim†. Diaforetikà, to nËo ped–o apotele–
shme–o anaforàc kai den ja prosjËsoume epiplËon bytes, afo‘ oi anaforËc null se seiriopoih-
mËna antike–mena den Ëqoun bytes. EpiplËon, to notNullBitmap prËpei na periËqei bits gia kàje
anaforà, akÏmh kai tic nËec.

P∏c anagnwr–zetai Ëna “dirty” antike–meno apÏ to Kinetic handler; ProkeimËnou na anagnwr–sei
Ëna ephreasmËno antike–meno o Kinetic handler, merikà metadedomËna prost–jetai sto value
kajenÏc key-value Entry, katà thn apoj†keus† tou. Gnwr–zoume Ïti Ïtan Ëna antike–meno
apojhke‘etai h klàsh den e–nai emploutismËnh, afo‘ qrhsimopoio‘me thn teleuta–a thc ekdoq†.
Gia autÏ to lÏgo markàroume kàje antike–meno me ton arijmÏ twn ped–wn gia kàje m–a apÏ tic
klàseic tou (dhlad† thn klàsh tou kai tic uperklàseic). Sth sunËqeia, Ïtan Ëna antike–meno
anaktàtai, autà ta apojhkeumËna metadedomËna sugkr–nontai me thn trËqousa gn∏sh pou Ëqoume
gia thn –dia klàsh. An entopiste– Ëstw kai m–a diaforà autÏ shma–nei Ïti to antike–meno e–nai
“dirty” .

TËloc, p∏c anagnwr–zoume ta nËa ped–a Ïtan prËpei na enhmer∏soume Ëna dirty antike–meno; H
l‘sh Ërqetai apÏ to –dio to dataClay. Kàje nËo ped–o prost–jetai sto tËloc twn †dh uparqÏntwn
ped–wn. H allag† aut† antikatoptr–zetai ep–shc sth gn∏sh pou Ëqoume gia th morfolog–a m–ac
klàshc. 'Etsi, dedomËnou Ïti gnwr–zoume ton arijmÏ twn †dh apojhkeumËnwn ped–wn, ta opo–a
taut–zontai me ta pr∏ta ped–a pou gnwr–zoume apÏ th gn∏sh gia th morfolog–a twn klàsewn,
mporo‘me ep–shc na diakr–noume ta nËa ped–a. EpiplËon, ta ped–a den afairo‘ntai potË apÏ tic
klàseic pou Ëqoun oriste– apÏ touc qr†stec. Wc ek to‘tou, Ïtan Ëna ped–o prost–jetai se m–a
klàsh, h jËsh tou sthn klàsh se sqËsh me ta àlla ped–a den ja allàxei potË.

1.4.10 An 'akthsh twn antikeim 'enwn ap 'o to Kinetic drive

PlËon to mÏno pou apomËnei na kalufje– e–nai o algÏrijmoc pou akolouje–tai gia thn anàkthsh
antikeimËnwn apÏ to d–sko Kinetic. 'Otan epijumo‘me na làboume Ëna antike–meno apÏ to d–sko
Kinetic, to pr∏to b†ma pou kànoume e–nai na anakt†soume to ant–stoiqo Entry apÏ to d–sko.

33

'Epeita akolouje– o Ëlegqoc an e–nai autÏ to antike–meno e–nai “dirty” . Me àlla lÏgia, elËgqoume
eàn h klàsh sthn opo–a an†kei to antike–meno Ëqei emploutiste– me nËa ped–a. Sthn per–ptwsh pou
den parathre–tai kàpoia allag† gia thn klàsh tou antikeimËnou, allà kai Ïlec tic uperklàseic
pou epekte–nei aut†, to antike–meno den qreiàzetai kàpoia peraitËrw epexergas–a. E–nai Ëtoimo
na metabibaste– sto dataClay. Ston ant–poda, an parathrhje– Ïti Ëstw m–a apÏ tic klàseic tou
antikeimËnou Ëqei tropopoihje–, tÏte mesolabo‘n d‘o b†mata prin peraste– to telikÏ antike–meno
sto dataClay. To pr∏to b†ma e–nai na prostejo‘n oi default timËc gia ta nËa ped–a thc klàshc.
To de‘tero b†ma e–nai apojhkeute– ek nËou to antike–meno Entry sto d–sko Kinetic, to opo–o
ja periËqei plhrofor–ec gia Ïla ta ped–a, nËa kai palià. Afo‘ telei∏sei h apoj†keus† tou, to
–dio antike–meno epistrËfetai kai sto dataClay.

Parathro‘me Ïti en∏ to telikÏ apotËlesma e–nai diajËsimo me to pËrac tou pr∏tou b†matoc,
perimËnoume thn peràtwsh kai tou de‘terou b†matoc prin diabisbaste– to telikÏ antike–meno sto
dataClay. H al†jeia e–nai Ïti aut† h ulopo–hsh epidËqetai beltistopo–hsh. Pio sugkekrimËna,
to ananewmËno antike–meno mpore– na metabibaste– sto dataClay amËswc metà to pr∏to b†ma kai
to de‘tero b†ma na ekteleste– me as‘gqrono trÏpo. O mÏnoc lÏgoc pou den Ëqei ulopoihje– h
beltistopoihmËnh anàkthsh dedomËnwn †tan h Ëlleiyh qrÏnou.

1.5 Axiol 'oghsh

En tËlei, poio e–nai to sumpËrasma metà thn olokl†rwsh aut†c thc Ëreunac; AkÏmh kai an ta
apotelËsmata pou prok‘ptoun apÏ tic dokimËc, Ïpwc parousiàzontai sto pËmpto kefàlaio, den
e–nai ta bËltista, h enswmàtwsh thc teqnolog–ac Kinetic thc Seagate sto dataClay fa–netai
pol‘ elpidofÏra. Pr∏ta ap' Ïla, h teqnolog–a Kinetic plhro– to epijumhtÏ qarakthristikÏ gia
byte addressability, dhlad† anaforà sta dedomËna se ep–pedo byte. Me àlla lÏgia, o mhqanismÏc
seiriopo–hshc kai h upodom† dedomËnwn, dhlad†, oi d–skoi Kinetic, milo‘n thn –dia gl∏ssa pou
e–nai bytes. Allà, epiplËon kai pio endiafËronta, upàrqei teràstio perij∏rio gia belt–wsh kai gia
tic d‘o teqnolog–ec kai, ep–shc, gia thn enswmàtws† touc. PeraitËrw leptomËreiec akoloujo‘n.

H teqnolog–a Kinetic thc Seagate exakolouje– na Ëqei megàlh prÏodo na diagràyei (Ïpwc kai
to dataClay). ParÏlo pou h teqnolog–a Kinetic Ëqei uiojet†sei thn apl† afa–resh twn antikei-
mËnwn key-value, h al†jeia sto parask†nio e–nai l–go pio per–plokh. Sthn pragmatikÏthta, h
apoj†keush antikeimËnwn key-value den Ëqei epiteuqje– se ep–pedo hardware, akÏma. Ant' auto-
‘, Ëna enswmatwmËno s‘sthma pou trËqei upÏ to leitourgikÏ s‘sthma Linux e–nai upe‘juno gia
thn apoj†keush twn antikeimËnwn key-value se mia bàsh dedomËnwn LevelDB. Me àlla lÏgia, h
upodom† key-value e–nai orismËnh sto logismikÏ proc to parÏn. AutÏ to mesa–o str∏ma monàqa
epibar‘nei thn apÏdosh tou Kinetic handler. 'Otan h upodom† key-value ulopoihje– se ep–pedo
uliko‘, h leitourg–a apÏ kai proc to Kinetic drive anamËnetai na beltistopoihje–.

PeraitËrw beltistopo–hsh mpore– na epiteuqje– me thn allag† thc teqnolog–ac tou –diou tou
d–skou. Aut† th stigm†, oi Kinetic drives efarmÏzontai se klasiko‘c Sklhro‘c D–skouc.
Eàn efarmoste– h teqnolog–a Kinetic se d–skouc stereàc katàstashc (Solid State Drives) ja
parousiaste– katà pàsa pijanÏthta peraitËrw belt–wsh stic epidÏseic.

Megàlo perij∏rio gia beltistopo–hsh upàrqei kai sthn pleurà tou dataClay. O mhqanismÏc
seiriopo–shc Ëqei sqediaste– katà tËtoio trÏpo pou ta apojhkeumËna dedomËna ja fËroun thn

34

shmasiolog–a touc. Gia paràdeigma, ta SCOs pou Ëqoun apojhkeute– se mia sqesiak† bàsh
dedomËnwn fËroun shmasiologik† plhrofor–a. O k‘rioc lÏgoc thc epilog†c auto‘ tou sqedia-
smo‘ †tan h dunatÏthta gia tic efarmogËc na Ëqoun prÏsbash àmesa sta dedomËna sthn upodom†
twn dedomËnwn. WstÏso, mia tËtoia anàgkh gia efarmogËc pou epijumo‘n thn àmesh prÏsbash
sthn upodom† dedomËnwn den Ëqei prok‘yei mËqri stigm†c. EpiplËon, h prÏsbash se dedomËna
me ton trÏpo autÏ diaspà to epijumhtÏ qarakthristikÏ tou upologismo‘ kontà sta dedomËna.
'Etsi, o isq‘wn mhqanismÏc seiriopo–hshc fa–netai na e–nai parwqhmËnoc. Pràgmati, o mhqani-
smÏc seiriopo–hshc upoqre∏nei ep– tou parÏntoc touc handlers na kànoun poll† douleià pou
ja mporo‘se na apofeuqje–. Pio sugkekrimËna, h epexergas–a lambànei q∏ra aut† th stigm†
kai stic d‘o pleurËc, kai sto mhqanismÏ seiriopo–hshc kai stouc handlers. AutÏ e–qe nÏhma
mÏno sthn per–ptwsh pou apojhke‘oume shmasiologik∏c plo‘sia dedomËna. Epeid† den upàrqei
mia tËtoia anàgkh, Ïpwc exhg†jhke prohgoumËnwc, e–nai apara–thtoc Ënac pio apotelesmatikÏc
mhqanismÏc seiriopo–hshc. Gia to skopÏ autÏ, to Storage Systems research group tou BSC
Ëqei xekin†sei thn anàptuxh enÏc nËou mhqanismo‘ seiriopo–hshc pou ja apofe‘gei th dipl†
epexergas–a kai ja kànei thn ergas–a twn handlers pol‘ eukolÏterh. SugkekrimËna, den ja
upàrqei plËon kam–a anàgkh gia epexergas–a twn seiriopoihmËnwn antikeimËnwn sto ep–pedo twn
handlers. Oi handler ja e–nai mÏno upe‘junoi gia to pËrasma twn seiriopoihmËnwn antikeimËnwn
sthn upodom† dedomËnwn kai to ant–strofo.

35

Chapter 2

Introduction and Motivation

Since the widespread use of the term “Big data” from 2011 and on [1], big data has evolved into
a promising actor for radical changes in every activity. Big data has tremendous potential to
transform businesses and to power revolutionary customer experiences. Insights from big data
can enable companies to make better decisions — deepening customer engagement, optimizing
operations, preventing threats and fraud, and capitalizing on new sources of revenue. All these
insights were hidden previously due to the high cost of processing that data.

One core benefit of dealing with big data is its use for analysis purposes. In comparison to the
older statistical approach of sampling, processing of every single item of data in reasonable
time is now feasible and it leads to safer conclusions. Having big amounts of data can beat out
even the best model. On the other side, big data can also drive into new products or services,
which can change dramatically our everyday life. For example, Facebook has been able to
craft a highly personalized user experience and create a new kind of advertising business, by
combining a large number of signals from a user’s actions and those of their friends.

On the other side, new challenges have been arisen by the emergence of big data. According
to Edd Dumbill [2],“Big data is data that exceeds the processing capacity of conventional
database systems.” The volume of data produced is unprecedented and what seems big today
will probably be considered normal in the not-so-distant future. Estimations on the size of
the digital universe mention a growth from 130 exabytes in 2005 to 40000 exabytes in 2020
[3]. This is translated into a growth by a factor of 300. Furthermore, data is also produced
extremely fast. It is created in such a high velocity that a new Moore-like law has arisen:
The total amount of data will be doubled every two years [3]. In addition, data is arriving
from multiple sources: Social networks, mobile devices, financial market data, traffic flow
sensors, anything, in general, can create data. This variety of sources is also reflected on the
multiple forms of data: structured (e.g. databases), semi-structured (e.g. XML, JSON) and
unstructured (e.g. text, video, sound, images etc) data consist the ocean of information.

Both academia and industry are putting much effort in order to tackle the multiple challenges
that big data has brought. To name some of them, scalability, performance and heterogeneity
are challenges that scientists and engineers are called to deal with. A short description of
them follows.

37

Managing big and fastly increasing loads of data has been an issue for many decades. Until the
recent past, Moore’s law was the resolver of this problem. The increasing processing capacity
was high enough so that it was able to catch up the increasing data volume. But since the
CPU speeds have been limited due to the power constraints, the new approach of dealing the
scalability problem has been resolved by changing the dimension of processing: Processors are
built with increasing numbers of cores. Though, parallelism is like passing the problem from
hardware to software. And software is now called to deal with the scalability challenge.

Bottlenecks on performance are also introduced because of the big data emergence. For
example, the need for rapid real-time value from data results in performance challenges as the
amount of data that moves into the system increases. First, there is the challenge of whether
there is enough I/O and network bandwidth when data is pushed to storage. Second, since
the only way to accomplish such a huge workload is by distributing it in several nodes, this
leads to the need for a quite sophisticated network design, where possible failures must be
predicted.

Both challenges described above are more or less of technical nature. Nevertheless, problems
are also arisen when somebody analyzes data. Such a problem is data heterogeneity. When
humans consume information, a great deal of heterogeneity is comfortably tolerated. In fact,
the nuance and richness of natural language can provide valuable depth. However, machine
analysis algorithms expect homogeneous data, and are poor at understanding nuances. In
consequence, data must be carefully structured as a first step in (or prior to) data analysis.

Taking into consideration the big data benefits and challenges mentioned above, the motivation
for conducting a master thesis on big data seems reasonable. This thesis, though, examines
some of the challenges that have not been described above. It makes a fair attempt to see
how collaboration between data owner and their partners can be facilitated. It also tries to
provide programmers all the tools that will make their work easier and spend their time on
the logic of their program rather the data storing. Last but not least, performance is never
sacrificed, and the intention is always to keep it high. Further details follow.

Throughout this master thesis, two developing technologies are being examined. The first
one is dataClay, a platform for data sharing which has been developed by Storage Systems
Research Group at Barcelona Supercomputing Center. dataClay has been built having in mind
data sharing as a fundamental feature. The second emerging technology is the Seagate Kinetic
Open Storage platform (sometimes called just Kinetic from now and on). Kinetic technology
is revolutionizing the way we know data storage and is trying to face many of the challenges
that big data has raised. Across the rest of this chapter, the motivation of developing the
aforementioned technologies is presented which also happens to be the motivation for using
them in this master thesis.

2.1 dataClay

What seems neglected by big data research community so far is the effort to make easier
the collaboration among all the actors. dataClay has been built having data sharing as a
key feature. This research focuses on how data can be shared in an easy and effective way.

38

Moreover, manipulating data on current platforms is highly dependent on the layer where it
relies. In dataClay approach, data is handled in a transparent way which permits programmers
to focus on the logic of their applications rather than coping with the data transfer. Last but
not least, performance is what really matters. Recent trends compel moving the computation
close to the data rather than the reverse way. dataClay faces this challenge by its design.

2.1.1 Data sharing

Nowadays, somebody can basically share intellectual property, such as data models, specific
data, code, etc. in three ways: a) by sharing the data infrastructure, b) by choosing the
datasets that can be copied or downloaded, or c) by offering restricted data services.

Sharing the data infrastructure provides full access to everybody. However, even though it is a
very flexible approach, its core requirement is the firm trust among all the stakeholders. This
probably happens when data is open/public. But, in this case, data is probably read-only.
If stakeholders want to modify it, the need for creating a copy into their workstation rises.
Which leads to extra time and space needed for this operation.

In the second case, data providers can only decide about the consumers to be granted the
authority to copy or download specific datasets. This option supplies to the consumers the
flexibility to process the data in their infrastructure according to their needs. However, down-
loading data implies too much data movement, especially in cases that the consumer’s infras-
tructure cannot store the whole dataset. Furthermore, data owners lose the control of their
data, because it leaves their infrastructure when it is copied.

Finally, when using a data service (such as RESTful web services), the data can be accessed
in the provider’s infrastructure and the owner maintains a strict control by deciding not only
what but also how this data is being shared. Despite the fact that such an approach prevents
the data movements and the data owner remains the only manager of the data, it restricts the
data consumers to use only the functionality provided by the data owners. A modification to
the given functionality is only possible with the involvement of the data provider.

Listening to the above needs and misbehaviors, dataClay is designed in such a way that ensures
data provider is the one who controls the data but, also, gives to third parties the potential
to enrich them, either by adding functionality or granting them modifications privileges. Last
but not least, dataClay avoids any redundant data transfer.

2.1.2 Persistent vs. non-persistent data models

Today, data models are designed in a different way depending on whether they are treated
within a persistent (non-volatile) environment or within a non-persistent (volatile) one.

Common cases of persistent storage include file systems and databases. Accessing data from
files demands I/O operations to be done by a developer. On the other hand, querying data
from databases is needed when someone deals with them, which also impose extra effort from
the developer.

39

In the case of non-persistent storage, data relies on memory. The applications themselves
(usually) allocate free memory for storing data and, since then, the data is processed through
references, pointers, iterators etc.

Given the differences between volatile and non-volatile data models, developers are compelled
to devote too much effort, first, design the two different data models and the mapping between
them, and then to implement the whole data flow for their applications with transitions
between persistent and non-persistent data.

dataClay provides all the mechanisms that are needed in order to handle persistent data as
non-persistent, thus facilitating application development and simplifying the design of data
models.

2.1.3 Computing close to the data

In non-big data cases, data processing involves the data loading from the persistent layer into
the memory and then its processing from CPUs. However, in big data era this approach is,
at least, inefficient, if not unfeasible. Data is produced in such a high pace that data transfer
close to the CPU is slower. Modern trends impose the movement of computation close to the
data, and not the reverse. Popular solutions that implement this include Apache Hadoop and
Active Storage. dataClay fulfills this need by its design: data are joined with code thanks
to its key technology: self-contained objects (SCOs). SCOs are like regular OOP objects,
which are enriched with some components which enable the two aforementioned long desired
features, the seamless data sharing and the abstraction of data from their environment. SCOs
are described detailly in the following chapter.

2.2 Seagate Kinetic Open Storage platform

Nowadays, we see an explosion of data that has been created of mobile, social, video applica-
tions, Internet of Things, connected devices, cloud computing and big data. These applications
rely on data that is primarily unstructured (or semi-structured), and easy and inexpensive to
create. The new status of data also drives the evolution of the storage infrastructure.

Today’s storage architecture was designed decades ago, for a very different use case, not
for a globally distributed, large scale cloud architecture and environment. In order for the
industry to achieve the growth demanded to support the new storage demands, layers of
inefficiency from legacy architectures must be removed and a new approach optimized for
scale-out application and data center needs must be introduced.

The Seagate Kinetic Open Storage platform and its developer tools make this radical change.
It takes traditional hard drives and adds two key elements: 1) Object Storage Protocol and
2) Ethernet connection. The combination of these two elements lets the entire storage archi-
tecture become more efficient.

The Kinetic technology is detailed in the next chapter. However, at that moment, what the
reader only needs to understand about Kinetic is that it is a new class of key-value Ethernet

40

connected drives. Instead of dealing with file semantics or a file system for finding where data
resides on the device, Kinetic offers a simple key-value abstraction for working with objects
(information). This abstraction is driven by the needs of modern applications: They just need
simple object semantics (e.g., write the whole thing, read the whole thing, delete the whole
thing etc).

The second key element of Kinetic is the use of Ethernet protocol. In traditional storage
architectures, data which starts from an application passes through several layers of hardware
and software in order to reach its destination, the storage device. Kinetic eliminates these
multiple layers in the path between application and storage devices and uses Ethernet instead.
So, information is just an IP address away. This enables applications to target storage devices
directly and take advantage of storage features.

2.3 Objective of the master thesis

One of the novelties introduced with dataClay is the abstraction of data from the layer they
rely on. They can be either in memory or in a persistent environment. From programmer’s
point of view, data can be accessed in the same way regardless the environment they rely on.
On the other side, although the data is accessed like being in memory, it cannot reside in it
forever, obviously. It is dataClay’s task to offer the functionality which enables the abstraction
feature.

dataClay is a purely object-based platform. As it was mentioned in the section “Computing
close to the data”, it deals with SCOs. Which, actually, are regular OOP objects. Thus,
information is enclosed inside objects. Working with data is actually working with objects.

In dataClay, when data needs saving, the corresponding objects must be saved. For this
purpose, dataClay has been using several data infrastructures, so far. For example, Postgres
relational databases, Cassandra distributed databases, and others. All these cases involved the
mapping of dataClay objects to the internal structure of the underlying data infrastructure.
For example, OOP objects must be mapped into rows in the corresponding table in a relational
database. On the contrary, Kinetic technology has adopted the much more simple key-value
object abstraction. Thus, it seems to be in advantageous position in comparison to the other
data infrastructure, regarding dataClay. Nevertheless, integration of Kinetic technology into
dataClay is not as easy as it seems, even though dataClay and Kinetic talk the “language of
objects”.

When dealing with objects, the easiest and most portable way to save them is to serialize
them. However, default serialization of OOP languages is not capable to support dataClay’s
features, like data sharing. Thus, dataClay has developed its own serialization mechanism. In
order to accomplish the integration of Kinetic technology into dataClay, solid understanding
of the underlying technologies and of their mechanisms is needed. For this reason, Chapter 2
describes both technologies from high level. Then, dataClay’s custom serialization mechanism
is presented in Chapter 3 in detail. Kinetic handler, which accomplishes the pairing of these
two technologies, is described in Chapter 4. Next, evaluation of Kinetic handler follows in
fifth chapter.

41

Chapter 3

Related Technology

The purpose of this chapter is to present dataClay and Seagate Kinetic Open Storage platform
in detail. In addition, the underlying technical mechanisms of some key features of both
technologies are presented.

3.1 dataClay

In the previous chapter, it was mentioned that self-contained objects (SCOs) are the key
elements of dataClay. They are presented in detail in the following section. Furthemore, the
possible ways a user can enrich a class with are presented. In the last section, details on
how dataClay can be used are presented and, along with them, some of the underlying key
mechanisms are explained.

3.1.1 Self-contained objects

What drives the introduction of self-contained objects (SCOs) is the widespread use of the
Object Oriented Paradigm (OOP). OOP objects are made out of two key features. Firstly,
they have state via their fields. Secondly, they also have behavior, via the methods they are
equipped with. dataClay takes advantage of this data-computation proximity derived by the
OOP design and adds some new features to the traditional objects. This blending results into
the concept of SCOs (Figure 3.1).

SCOs are like regular objects in the sense that they are instances of a certain set of data
models (the traditional OOP classes) and applications use them as in the common OOP. One
thing added on top of the regular objects is the policies that enable the long desired feature
of efficient data sharing. What is shared, or with whom, or for how long, etc. is controlled by
the policies that the data provider defines.

Furthermore, SCOs are also provided with a user-friendly dataClay API that enables the
programmers to store and retrieve them handily. In order to create new SCOs the user calls a
single method that makes the whole object and its relationships with other objects persistent

43

!

a

y

d
t a C

l a
A
PIm

th
d

e
o

s

po
l i c es

i

data

Figure 3.1: A self-contained object and its relationship with other.

in a transparent way. Then, SCOs can be retrieved by using three mechanisms: a) by using
a reference from another SCO, b) by tagging them with an alias and then querying by this
tag, or c) by performing “query by example” that is resolved searching SCOs that match with
a certain dummy SCO used as a prototype.

Now, it is easy to see, from a different perspective, how SCOs fulfill the three motivational
factors that led to the development of dataClay. Data sharing is possible due to the policies
that every SCO bears. Dealing with data (either persistent or not) in a transparent way is
enabled due to the dataClay API that every SCO inherits. Last but not least, computation
close to the data is achieved due to the nature of traditional OOP objects: fields and methods
reside together in an object.

Dealing with SCOs is actually dealing with OOP objects. Once a SCO is retrieved, the user
can manipulate it like a regular OOP object by using its fields or calling the methods that
its class has defined. In this way, dataClay saves lots of efforts to the programmers avoiding
the transitions between current persistent and non-persistent data models since now they can
focus on a single combined model with a SCO oriented basis.

3.1.2 3rd party enrichment

As it was described in the previous chapter, sharing data has not been an easy and effective
procedure so far. Current solutions imply too much data movement and multiple copies of
data. But most crucially, consumers are restricted by the functionality provided by the owner.
dataClay deals with these issues and offers both data owners and 3rd parties the potential to
enhance existing data models with intellectual property. Since dataClay follows the object-
oriented paradigm, data models are represented by classes. Thus, enrichment of a class is done
by modifying its elements, namely the fields or/and the methods. A class can be enriched
in three ways: a) by adding new fields, b) by adding new methods, and c) by adding new
implementations to existing methods.

44

Even though adding new fields to a class affects its structure, this enrichment does not have
any negative impact on the rest of the collaborators. In the same way, adding new methods
offers one more functionality, which does not exclude the one provided by the data model
owner. Thus, the new methods can be executed on the existing SCOs as well as the original
methods. In fact, the new methods become part of the original class as the original ones. Last
but not least, dataClay offers users the potential to add a new implementation to an existing
method. Nevertheless, this modification does not affect the rest of the users who have access
on the same class. Instead, when a user calls a method which has been modified previously by
someone else, the expected implementation (for him) will be executed. Soon, the underlying
mechanism which enables class enrichments will be described.

3.1.3 dataClay details

Across this section, the typical workflow of data model sharing will be explained and some key
underlying mechanisms will be explained too. The example will be described in Java, since
the implementation part of this master thesis has been done in this programming language.
However, dataClay supports Python too.

Data model sharing

When data providers aim to share their data models with 3rd parties, they begin by registering
the corresponding Java classes in dataClay. The data provider specifies the location of the
class files and dataClay proceeds with the registration process.

Given that a class name is not a universal resource identifier, dataClay uses namespaces as
the entities to organize class names as if they were part of a particular package or application.
These namespaces are also registered by the data model provider.

Once providers have registered their classes, they can sign model contracts that grant 3rd

parties to access them during a certain period of time. At that moment, the provider defines:
a set of interfaces, one per class, which include the fields and methods that will be exposed
through the contract, as well as the expiration date of the contract. Therefore, the providers
retain control of what they share, with whom, and for how long.

In order to manage the entire process, shown in Figure 3.2, dataClay offers an API via a client
library tool that provides the functionalities to register namespaces, classes, interfaces and
contracts.

Stubs

Beneficiaries of model contracts can retrieve the included classes to use them either to compile
their applications or to generate new enrichments. In particular, and also by means of the
client library tool, consumers download one stub per class (a bytecode class file representing
the original class). These stubs are generated by dataClay considering the visibility scope
derived from the contracts, i.e. the union of visible methods and fields according to the

45

!

Namespace

2) Signs contract <A interface>

A.class
1) Registers A 3) Enriches A

Figure 3.2: Sharing data models.

interfaces included; plus a set of specific methods (dataClay API) that are inherited from a
common class (DataClayObject) that all stubs extend (analogous to Object class in Java):

• makePersistent : stores the object as a new SCO in the system.

• deleteObject : deletes the referenced SCO from the system.

• getByAlias: retrieves a SCO reference of the same class by its alias.

• getAlike: retrieves the references of those SCOs whose values match with those of the
current instance acting as a prototype.

All the methods in a stub, except those provided by the dataClay API, have two different
parts controlled by an if-clause: local execution and remote execution. The former, contains
the bytecode of one of the accessible implementations of the method (considering the visibility
scope from the contracts) and it is necessary while the object remains local, that is, until it
is not made persistent with the makePersistent method. On the contrary, when the object is
already a SCO, it is called the remote execution behaving like a RPC (the following section
Remote execution describes it).

The stub also comprises (hardcoded) the information related to the model contracts used to
generate it — since, as we said, a stub might be generated from the union of several contracts
potentially containing different interfaces of the corresponding class.

Enrichments

Regarding the enrichments, introduced in the previous section, the process is analogous to
registering original classes, since at the end any enrichment is an extra piece for a data model
which can be defined within a class. In particular, when 3rd parties aim to add new value to
an existing class (for which they have authority via a model contract) registered in dataClay,
they use the Java extension mechanism (i.e. Java extends token) to define the corresponding
enrichments. That is, the class containing the enrichment extends from the stub corresponding
to the class being enriched, so that the enrichment class is allowed to use the original fields of

46

the class and the original methods as if it was a child class. This is useful not only to compile
the enrichment class and look for errors if any, but also to register the enrichment by using
an analogous process as a regular class registration.

In the data infrastructure, the enrichment is deployed by updating the original class to include
the new functionalities and fields, thus enabling to share these new parts through immediate
subsequent new model contracts containing them (with interfaces including the new defined
fields and methods). That is, although the original class and SCOs are extended, the existing
interfaces and model contracts are not affected. Thus, the existing applications using older
stubs are not compromised, with the new parts of the data model being simply out of their
visibility scope.

The enrichments of fields and methods are simple, in the sense that they add new value
to existing data models but the resulting class is like a regular one. On the contrary, the
enrichment of implementations of existing methods is a bit more complex because it entails
handling multiple implementations for any single method.

For this reason, model contracts do not only comprise the interfaces that define the visibility
scope of every included class, but also the visible implementations of the corresponding meth-
ods. Then, stubs are generated considering also this information so that dataClay can select
which implementation to be executed when processing a method execution request.

Datasets

In order to facilitate the organization of the SCOs and to easily define how they are shared,
dataClay offers the concept of dataset that enables data owners to enclose a set of SCOs.

Once the data owners register their datasets (a process analogous to registering a namespace for
classes), they can provide data contracts to consumers granting them access to corresponding
datasets. In short, a data contract offers a specific dataset so that the beneficiary can access
the SCOs associated with such a dataset.

Besides, the data contract is limited with an expiration date and also defines whether the
contracting party has the privilege to create new SCOs on the dataset or not. Therefore, the
data owners keep control on the datasets they share, how, with whom and for how long.

It is worth noting that data contracts comprise a new use-case and are different than model
contracts described previously. The former, grant access to the SCOs of the offered datasets;
the latter, establish the visibility scope from a specific set of classes. In other words, data
contracts enable data sharing (that is, SCOs), while model contracts enable data model sharing
(that is, classes).

Remote execution

At this point it is worth to introduce some components of our system: the Logic Module
(LM), and the Data Service (DS). Logic Module keeps track of all the management informa-
tion such as namespaces, classes, interfaces, contracts, etc. On the other hand, Data Service

47

is in charge of processing method execution requests by managing the persistence layer
where SCOs are actually stored. To this end, once a class is registered via the Logic Module
it is then deployed to Data Service which also prepares the data infrastructure to store future
SCOs that instantiate the class (more details in the following chapters).

Once a SCO is stored in the data infrastructure the stub behaves as the interface to access it
remotely. To this end, dataClay’s approach comprises a TCP communication binary-protocol
and its own serialization mechanism both to create new SCOs and to pass the necessary
arguments when executing a method on specific SCO.

The workflow for the execution of a method remotely, as it is show in the Figure 3.3, is:
When a client application invokes a method of a certain SCO via the corresponding stub,
the arguments (if any) are transparently serialized and transferred in the request, the request
is then analyzed by Logic Module that checks if it comes from a valid contract that grants
access to that class, and finally the Data Service processes the request by: retrieving the SCO
from the data infrastructure, executing the requested method with the given parameters, and
returning the result (if any) by using the same serialization mechanism and communication
protocol as for the requests.

!

 dataClay

LM

da
ta

C
la

y
cl

ie
nt

 li
b

se
ri

al
iz

at
io

n
N

et
ty

 c
om

m
. DS

Figure 3.3: Remote execution in dataClay.

Communication with the Persistence layer

Even though dataClay offers the very elegant feature of working with SCOs without concerning
where they reside (either on memory or a non-volatile environment), dataClay has to deal with
this issue. It is dataClay’s exclusive task to store and retrieve data (that is, objects) from the
data infrastructure they rely on.

dataClay is ready to used several data infrastructures like Postgres, Cassandra, Neo4j and
others as backends. Since the nature of the data store varies, the interaction between dataClay
and any of these infrastructures varies too. For example, representation of data on relational
databases is very different than on graph databases. For this reason, dataClay has a handler
for each of the data infrastructure that it supports.

The objective for each handler is to map objects from the non-persistent to the persistent
environment, and vice versa. More specifically, every handler has to prepare the data in-
frastructure for future storing of objects, which solely depends on the nature of the data

48

infrastructure. Afterwards, objects are stored, retrieved, modified, deleted to/from the data
infrastructure according to the representation the handler uses on the persistence layer. More
precisely, a handler receives a serialized object, manipulates this information (that is, bytes)
and store the data on the persistence layer, according to the representation that it has chosen.
The opposite happens when we want to retrieve an object from the persistence layer.

Objective of this master thesis is the development of the appropriate handler that enables
the use of Kinetic technology into dataClay. The following chapters describe in detail several
aspects for the development of this handler. Before moving to them, though, it is worth to
gain some insight into Kinetic technology regardless dataClay. This is done in the rest of this
chapter.

3.2 Seagate Kinetic Open Storage platform

As it was mentioned in the first chapter, Kinetic Open Storage is a drive architecture in which
the drive is a key/value server with Ethernet connectivity. The purpose of this section is to
provide a detailed description of Kinetic Open Storage platform. First, the motivation for
developing this Ethernet key/value storage device is presented. Then, some Kinetic features
that are relevant to this thesis are introduced. Last, the software and the hardware resources
are exposed. Before proceeding further, it should be mentioned that the biggest part of this
section derives from Kinetic website [4].

3.2.1 Kinetic architecture

The Seagate Kinetic Open Storage platform represents an opportunity to substantially address
the inefficiencies of traditional datacenters whose legacy architectures are not well-adapted
to highly distributed and capacity-optimized workloads of exploding unstructured data and
applications.

Current datacenters are characterized by multiple layers of software and hardware stacked
together in order to enable a data path between two poorly compatible systems: An object-
oriented application layer and a hardware layer (spanning HDDs, SSDs, and tape) based
on block-storage. The transit path from application to storage requires multiple layers of
manipulation from databases, down through POSIX interfaces, file systems, volume managers
and drivers. Information passes over Ethernet, through Fiber Channel, into RAID controllers,
SAS expanders and SATA host bus adapters. A stack might look something like in Figure 3.4.

Beyond the obvious inefficiency of having to move through multiple layers, this model relies
on a dated assumption about the operation of local storage devices: in the 1970’s storage was
organized close to, and based on, the physical attributes of a device. This has all changed,
but the software stack has not evolved.

The majority of today’s mass scale object applications do not need either file semantics (e.g.
change the middle of a file, append to the end of a file, refer to a file by a name in a tree of
names) or a file system to determine and maintain the best strategy for space management on

49

Figure 3.4: Traditional storage stack in a datacenter.

a device. Modern applications need only object semantics (e.g. write the whole thing, read
the whole thing, delete the whole thing, refer to it by a handle chosen by the client and cluster
manager), and should not need to worry about where data resides on a given device.

In order to manage this complexity, an entire ecosystem of storage server technology providers
(both hardware and software) has risen up purely to abstract it from both the device and the
application layers. Not only is this inefficient, it also introduces additional barriers between
the two realms that can impede surfacing of storage features and functionality.

What if we could start over and re-structure the stack from the bottom up? What would it
look like if object-oriented applications could speak directly to, and in the language of the
storage device?

It would look like the Kinetic Open Storage platform. Kinetic is:

• A new class of key/value Ethernet drives + an open API and series of libraries.

• Designed to provide the simplest semantic abstraction and enable the broadest set of
applications through an easy-to-use, minimalist API.

• An efficient platform to maximize innovation and value both within and above the
storage device.

Together, these pieces enable applications to target storage devices directly and take best
advantage of storage features. Drives talk in keys and values, as opposed to blocks. They do

50

’get’, ’put’, and ’delete’ operations. They allow applications to distribute objects and manage
clusters, while letting the drive efficiently manage functionality such as:

• Managing key (object) ordering

• Quality of service

• Policy-based “drive-to-drive” data migration

• Handling of partial device failures and other management

• Data at rest security

In contrast to the traditional stack described above, the Kinetic storage stack might look like
this in Figure 3.5:

Figure 3.5: A storage stack using Kinetic technogy.

The new model has a number of significant implications:

• The superfluous layers of legacy software and hardware are removed.

• Need for the traditional storage server tier is obviated.

• Storage can truly be disaggregated from compute.

• Racks can be more dense.

51

• Fans are minimized.

• Data traffic leverages the existing datacenter transit fabric, Ethernet.

• Datacenter operational management is simplified, and both cost- and risk- reduced.

Scale-out is simplified, cost-effective, and unconstrained by legacy architectures and infras-
tructure. Information is now just an IP address away.

3.2.2 Kinetic Open Storage Value proposition

The Kinetic Open Storage platform is architected to enable simple, flexible storage perfor-
mance and scaling. It delivers optimal total cost of ownership (TCO) for datacenter storage
providing savings both in capital outlays and operational expenses

Performance

Kinetic drives are native key/value stores. This shifts the burden of maintaining the space
mapping of a device from a file system to the drive itself. Applications need only put and
get objects; they no longer need to guess at LBA layout or prescribe data location. This
shift largely eliminates a very significant amount of drive I/O that moves no data but rather
represents metadata- and file system-related overhead.

There is also incremental benefit here for scaling: as both device manufacturers and cloud
datacenter operators ramp device capacity as aggressively as possible, the increased I/O effi-
ciency - and resulting net I/O utilization - enables more balanced scaling of I/O and capacity,
in addition to absolute performance on a given device and across a Kinetic cluster.

Scale

The Kinetic platform is uniquely optimized for explosive-growth, scale-out datacenters. The
Kinetic architecture with its disaggregation of storage from compute enables cloud datacenter
operators to simply add storage as need for capacity grows. Additionally, the combined im-
pact of Ethernet connectivity and the key/value API command structure enables incremental
capacity to be scaled in a highly distributed manner with the replication of data directed from
drive to drive, with minimal incremental system cost.

Simplicity, Ease of Use/Adoption

Kinetic drives are provided with a comprehensive user space library that allows applications
to access the device directly. This library provides the complete interface to access the data
and to manage the drive. It bypasses the normal operating system storage stack and lets the
application to talk directly to the drive as if it were talking to another service in the datacenter.

52

This process utilizes a typical application remote procedure call (RPC). This Kinetic platform
currently provides libraries for Java, C++, C, Python, and Erlang, and other languages will
be provided over time.

The Kinetic API allows applications to interact with the drive as if it were a typical key/value
service on the network; it allows applications to put data in the form of keys and values to the
drive and to get this data back by specifying just the key. As one would expect, keys and their
values can be deleted. Additionally, the keys are ordered (lexicographically) so that searching
of the keys within ranges and finding the next and previous keys are possible. The schematic
in Figure 3.6 shows the basic architecture.

Figure 3.6: Architecture of basic application using Kinetic technology.

There are also extensive drive management commands that allow the drive to report its health
and to manage who is allowed to communicate with the drive.

The Kinetic platform allows implementation of new datacenter architectures. This is due to
the fact that Kinetic drives interface directly with the applications, thereby eliminating an
entire tier of hardware. This technological advantage allows much denser storage racks, which
impacts total cost of ownership in a number of different areas. Elaboration of these advantages
is out of scope for this master thesis. Interested readers are prompted to Kinetic website for
further information.

53

3.2.3 Kinetic features

Across this section, the most important features of Kinetic technology are described. First is
described the notion of object storage. Then, elaboration on the key schema follows. Last, an
inner Kinetic mechanism for concurrency issues is presented.

Simple object storage

Object based storage organizes data into flexible-sized data containers, with the approach of
addressing and manipulating discrete units of storage called objects. Objects are not organized
in hierarchy, such that one object cannot be placed inside another. Since every object is at the
same level, this is considered a flat address space known as a storage pool. The key semantics
for object storage are PUT, GET, and DELETE.

Object storage differs from legacy disk storage, where legacy disk storage used block-oriented
interfaces that reads and writes fixed sizes of blocks of data. The object contains uninter-
preted sequence of bytes (data) and sets of attributes to describe the object (metadata). The
metadata are used to assign unique identifiers that allows a server or end user to retrieve
the object without needing to know the location of the data, which is extremely useful for
automating and streamlining data storage for cloud computing. The key functions of object
storage are:

• Create objects

• Delete objects

• Write bytes to and from individual objects

• Read bytes to and from individual objects

• Set attributes on objects

• Get attributes on objects

The advantages of using Object Storage are:

• Data Mobility - The ability to reference objects by IDs rather than file names pro-
vides more freedom for migration of data, and eliminating the constraints of underlying
hardware.

• Scalability of Namespace - The namespace does not have any size limitations and
completely independent of the file and operating system.

• Performance Scalability - The ability to read and write directly to the objects simul-
taneously with no limitations.

• Simplified Integration and Development - The enhanced feature that provides
easier coupling of applications and storage.

54

• Storage Efficiency - Objects only uses the space that they need, without having to
pre-allocate storage for the storage container

Kinetic Drives implement key/value object storage for the advantages stated above. The basic
semantics used for simple object storage are get, put, and delete.

In order to write the object onto the drive, the put operation is performed with the client
requesting to write a created object using the Kinetic API by sending the object’s keys and
values through the network to the Kinetic drive, as shown in Figure 3.7.

Figure 3.7: Put Operation using Kinetic API.

When requesting to read a desired object, the client sends the object’s keys to the Kinetic
drive through the network. Once the Kinetic drive receives the keys, the keys and values will
be returned to the client through the network, as shown in Figure 3.8.

Similarly, the delete function is performed with the client sending the objects’ keys to the
Kinetic drive, in which the drive removes the keys and the corresponding values from the
Kinetic drive.

Key schemas

In key-value object storage systems including Kinetic Open Storage, a key is a unique identifier
for the object. Key-value object stores typically support a large key size such that not all
possible values of keys can be stored. For instance, first generation Kinetic drives support
keys of up to 4K bytes. This means that there are over 10ˆ9864 possible values of keys. (In
comparison, the Logical Block Address (LBA) of the largest block storage disk drives is about

55

Figure 3.8: Get Operation using Kinetic API.

34 bits or 10ˆ10 possible addresses, and the number of atoms in the observable universe is
estimated to be about 10ˆ80.) The LBA space of a block device is dense; all addresses from
zero to the maximum LBA are used. The key space in a object store is typically sparse,
but may be dense in a small part of the possible key range. The key is used to specify the
key-value object being accessed. Put operations must specify the key for the key-value object
to be added to the object store. Get operations must specify the key of the key-value object
for which the value is to be retrieved from the object store. Delete operations must specify
the key of the key-value object to be removed from the object store. If the key already exists
in the object store during put operations, then the existing key-value object is replaced.

The key for a key-value object is totally at the discretion of the client or cluster manager.
Any key that is within the limits of the drive is allowed. The key is an opaque value to a
Kinetic device, with only key ordering as a quality that is understood by the device. The set
of key-value objects in a Kinetic device are ordered based on the value of the key.

While keys are opaque to the drive, various considerations are likely to drive the formation of
keys and the key schema.The major considerations include the following:

• Cluster Load Balancing

• Key Collisions and Key Space Segregation

• Key Ordering

• Semantic Meaning to Clients or Cluster Managers

56

Among the four considerations, only the third is explained further, since the rest are out of
scope for this master thesis. Interested readers are kindly prompted to the Kinetic website
for further information. As it is presented in the fourth chapter, key ordering is important for
our case too, and it has been taken into consideration.

Key Ordering

Various use cases include access to a set of key-value objects. A key schema that provides
for the most common sets to be sequential in key space can optimize performance as well as
simplifying the implementations.

Throughput can be optimized for use cases where a set of keys will be accessed together if
the set of keys are in sequential order. The following can benefit from key schemas that make
keys in the set of key-value objects sequential.

• Large objects sharded into multiple smaller key-value objects stored on the same device

• Objects that are appended by an application by adding key-value objects to the same
device

• Columns for a multi-dimensional database

If the key schema includes a sub-field that enumerates shards, addenda or columns and this
sub-field is in the lowest order part of the key then access to the multiple key-value objects
that make up the larger object may be optimized. For a database, a key schema that has
a column identifier in the less significant part of the key would optimize accesses to a given
column for all rows.

Searches can be optimized by minimizing the number of get key list calls needed for use cases
where a list of a set of keys are needed. The following can benefit from key schemas that make
keys in the set of key-value objects sequential.

• Object collections

• Versioned key-value objects

If the key schema includes a sub-field that enumerates the collection to which a key-value
object belongs and this sub-field is in the lower part of the key then get key list methods can
be issued to discover all of the keys belonging to the collection. Similarly, if the key schema
includes a sub-field that enumerates the version of an object and this sub-field is in the lower
part of the key then get key list methods can be issued to discover all of the versions for an
object, and in particular can directly discover the newest or oldest version of an object. This
can be further leveraged for snapshots.

57

Multiple clients with shared key/value objects

Kinetic also offers an inner mechanism for dealing with concurrency issues. Its key/value
entries are accompanied by version identifiers. Moreover, every put operation can specify the
existing version id as well as the resulting version id. This provides an elegant solution for
shared data with safe updates. The mechanism is explained further with an example that
follows.

If an object is shared by multiple clients, then occasionally two clients will attempt to update
the same object at about the same time (see Table 3.1).

Client A Client B
get(key1)

get(key1) modify object
modify object put(key1)

put(key1)

Table 3.1: Object modification by multiple users

In the case of Table 3.1, the data that Client B just wrote will be silently obliterated by Client
A.

To help protect against this kind of accidental data destruction, each object has a ’version’
identifier associated with it. The version id is returned to the host with the get command,
and is sent to the device with the put command.

When a put command is sent to the device, the client can include version id that it previously
read and specify that the put shall succeed only if the current version id matches. Prior to
accepting the new object data, the device checks the current version id for the object, and if
it does not match, the device rejects the new put command.

In the example of Table 3.2, the first put operation that Client A makes is rejected, because
the version of the already-stored key/value entry that he wants to override does not match the
one that he expects. This means that someone else has modified the key/value entry. This
causes Kinetic to raise a VersionMismatchException exception. The programmer is called to
handle this exception. In the example above, the modification for Client A is repeated on the
recently modified by Client B object.

The modifications that the two clients need to do are different. The clients are doing two
separate transformations. But if the transformations are commutative then they do not need
to be strictly ordered.

Such operations scale, and the simple yet powerful Kinetic version mechanism directly supports
high performance shared data.

58

Client A Client B Device
get(key1) returns version 1

get(key1) modify version 1, result-
ing in a desired version
2

return version 1 for
client A

modify version 1, result-
ing in a desired version
2

put(key1, old version =
1, new version = 2)

put is accepted

put(key1, old version =
1, new version = 2)

put is rejected

get(key1) return version 2 for
client A

modify version 2, result-
ing in version 3
put(key1, old version =
2, new version = 3)

put is accepted

get(key1) return version 3

Table 3.2: Versioned object modification by multiple users

3.2.4 Software resources

API Overview

The Kinetic Library includes two categories: Admin and Client. Here, only client library is
presented, since it is more meaningful for the purpose of this master thesis.

The Client API provides the Kinetic client application interface to communicate directly with
the Kinetic service, in two types of operations.

• Synchronous – Operations guaranteed to be successfully performed on server if call
returns with no Exceptions

• Asynchronous – Operation guaranteed to be successfully performed on server if Call-
backHandler (passes instance of the implementation) receives successful CallbackResults
(obtains operation requests)

Client API provides more than the basic key/value object-based storage methods, with the
key methods shown below:

• put – Put the specified entry to the persistent store

• get – Get the entry associated with the specified key

• delete – Delete the entry that is associated with the key specified in the entry.

59

• getNext – Gets the entry associated with a key that is after the specified key in the
sequence

• getPrevious – Gets the entry associated with a key that is before the specified key in
the sequence

• getKeyRange – Get a list of keys in the sequence based on the specified key range

• getMetadata – Get entry metadata for the specified key.

3.2.5 Hardware resources

The first generation Kinetic drive is a 4TB, 5900 rpm, 3.5” hard disk drive (HDD). Compared
to its conventional sister drive, the Kinetic drive implements the Kinetic API that enables key-
value object storage. The Kinetic drive replaces the Serial Advance Technology Attachment
(SATA) or Serial Attached SCSI (SAS) interface connections with two 1–Gbps SGMII Ethernet
ports, which enables direct network attached connectivity. The Ethernet interface allows
communication between drives and direct communication to the datacenter, eliminating the
need for Storage Servers for datacenter storage racks.

Throughout the conduction of this master thesis, the implementation code was tested using a
Kinetic prototype device which Seagate had kindly offered to Storage Systems Research Group
at BSC. This device is the 4-Bay Development Chassis, which is presented in the Figure 3.9.

Figure 3.9: The 4-Bay Development Chassis.

60

The purpose of the 4–bay development chassis is to provide a low cost, easy–to–use desktop
device to use as a test and software application development device. The chassis consists
of four drive bays, each with two (2) SGMII Ethernet ports, and a “backplane” PCB into
which the SGMII drives plug. The backplane provides all SGMII signal routing through an
Ethernet switch or switches covering all eight (8) SGMII drive ports. The backplane also
provides routing for all electrical power required by the drives and supplied by the included
power supply. The system is managed by manual on/off power control switches for each disc
drive in the enclosure and externally managed through Ethernet and I2C.

Simulator

Last but not least, Kinetic offers a simulator API that can be used instead of the 4-bay devel-
opment chassis. The Simulator API provides a simulator boot-strap class used for applications
to start new instances of the Simulator to act as a drive.

61

Chapter 4

Persistence Layer: Serialization

mechanism

As it was mentioned in the previous chapters, one of the core advantages of dataClay is the
SCOs’ abstraction from the layer they rely on. Either on memory or not, the programmer
deals with SCOs in the same way, like being loaded on memory. In that way, programmers do
not need to cope with storing, reading, updating, deleting data. They just focus on the logic
of their application.

On the other hand, data are not loaded on memory for ever, obviously. Data (that is, SCOs)
are stored in non-volatile environments. dataClay supports internally all the needed mech-
anisms that enable this functionality. More specifically, dataClay has its own serialization
mechanism and also has handlers that support data management on several platforms, like
PostgreSQL Relational DataBase Management System, Apache Cassandra and others. The
objective of this master thesis is the development of another handler, which connects data-
Clay with Seagate Kinetic Open Storage platform. However, profound understanding of the
serialization mechanism is needed before moving into the implementation of the new handler.

Across this and the following chapter, dataClay’s persistence layer is examined from two
perspectives. This chapter examines how things are organized before reaching the data in-
frastructure. In other words, how dataClay’s custom serialization mechanism works. On the
other side, the following chapter examines how Kinetic handler deals with the output that the
previous layer (that is, the serialization mechanism) produces.

The first section of this chapter describes one essential procedure for dataClay, the byte-
code analysis, which is quite important for persistence layer and beyond. The second section
presents the motivation for implementing a custom serialization mechanism for dataClay and
how it is achieved. Next, how dataClay represents user classes and their fields in the Data Ser-
vice is presented. What follows is the handling of null references. Then, treatment of already
stored or already serialized objects follows. After all these introductory parts, the content of
a serialization message is presented. Before reaching to the end of the chapter, special cases
of the serialization mechanism are presented. These cases include array, collections and maps.

63

4.1 Bytecode analysis

In the previous chapter, it was slightly mentioned that dataClay supports its own serialization
mechanism. Nevertheless, it has not been revealed yet who or what mechanism implements the
serialization and deserialization methods and at which moment this process is accomplished.
The answer is that dataClay itself is in charge of this process and this is achieved during the
bytecode analysis, which is detailed below.

During class registration, the dataClay client library tool analyses the bytecode of the classes
registered in the system. The fact is that this process is multipurpose. It is important to
a) prepare the persistence layer where SCOs are actually stored, b) generate the bytecode
required for the serialization mechanism, c) check dependencies among classes, and d) identify
the methods that modify the state of the SCO.

In order to prepare the persistence layer to store the SCOs, the handlers of data storages need
the information about the morphology of the class to prepare the required structures in the
underlying storage. For that purpose, the bytecode of the class is analyzed to extract its fields
and types.

As we know, stubs are the result of a user class which is “filtered” with a model contract.
The analysis of the class structure is also useful for the serialization mechanism, thus allowing
generating the bytecode of the makePersistent method that is in charge of serializing the stub
instance to generate the persistent SCO. In the same way, the bytecode analysis is useful for
the generation of the class methods that require argument passing and/or return some value,
since knowing the types of the arguments is necessary to generate the corresponding bytecode
in order to serialize efficiently the parameters in the corresponding execution requests.

Regarding the class dependency analysis, it is useful firstly to enable the client library to
transparently register the required classes needed for the main one; and secondly, to notice
the requirements of a class when it is offered to a 3rd party via a contract.

Last but not least, analyzing the methods enables dataClay to know the arguments and return
types, which is necessary for the serialization mechanism; and to keep track of those methods
that modify the state of the SCO, (i.e. those setting new values to any of its fields), which
is useful to know when to propagate updates and making them persistent transparently from
the point of view of the application.

4.2 Motivation for implementing custom serialization mecha-
nism

It has been mentioned several times that dataClay has its custom serialization mechanism.
There are several reasons that led to this decision:

• Java default serialization requires having the same class at both client and server sides.
Which is not true in our case, because of the model contracts that we apply.

64

• Java standard serialization is also slow, because of reflection. Even if we implement the
Externalizable interface, which avoids reflection, the performance is quite poor, too.

• There are some representations, like cycle references or the references to other persistent
objects (and they do not need serialization) that are difficult to be represented in Java
RMI.

• Also, having our own serialization mechanism allows us to avoid deserialization and
serialization in intermediate layers like Logic Module.

• Java serialization also sends class information together with the instance (types and so
on), which causes redundancy of information.

Since we want to avoid both reflection and the externalizable interface, dataClay implements
its own serialization method in a different way. Given that dataClay generates the bytecode
of stub classes, the serialization code can be hardcoded in the makePersistent method and for
the parameters and return values of methods, thus avoiding reflection every time an object is
serialized. Soon, the structure of a serialized object is presented.

4.3 Representation of classes in the Data Service

Throughout this section, the representation of a user class in the Data Service is represented.

As it has been said earlier, when a user registers a class, the Data Service (DS) is in charge of
preparing the data infrastructure for future storing of objects that instantiate that class. For
this purpose, a special class, named DBClass, exists. The objective of this class is to represent
the user classes. It contains an array which has the same length as the number of the user
class fields. Every element of this array represents one of the user class, in the same order as
in the class.

In this paragraph, the workflow which starts with the registration of a class in dataClay until
the preparation of the data infrastructure is presented. As it has been said, when a user
registers a class, the bytecode analysis of the class follows and then its registration is accom-
plished. During this process, the Logic Module requests from another smaller component, the
Class Manager, to instantiate a DBClass object for the user class representation. The Class
Manager is capable of creating the appropriate instance of DBClass for the user class, since
it stores all the information of the class resulting from the bytecode analysis that was held
earlier. When the DBClass object is prepared, it is passed from the Logic Module to the
Data Service. Then, the Data Service has to prepare the persistence layer (that is, the data
infrastructure) for future storing of instances of that user class. The preparation of the data
infrastructure depends exclusively on the data infrastructure nature. For example, relational
databases require different handling than NoSQL databases. Thus, Kinetic infrastructure also
needs its special treatment. For this reason, Kinetic handling will be explained in the next
chapter.

Last but not least, it is worth to mention that DBClass objects are also necessary for the
handlers that are in charge of storing/updating/reading/deleting data objects. Handlers deal

65

only with serialized messages (that is, bytes). So, these bytes do not bear any semantics of
the data and no information for the morphology of the class they represent. However, having
this information is definitely needed. For example, we need to know the amount of bytes we
have to read for a field: An integer has 4 bytes, while a double 8 bytes. Thanks to DBClass,
bytes from serialized objects can get meaning.

4.4 Representation of class fields in the Data Service

In a similar way to user classes, fields of user classes are represented in the Data Service by
instances of a special dataClay class, called DBField. Without diving too deeply into the
technical details, DBField models the user class fields, namely their name and their type. The
type of a field can be either any primitive type or reference to other object. This is achieved
thanks to a boolean called isNullable. If it is true, the user field is a reference. Otherwise, it is
a user field of primitive type. This boolean is set during the registration of a class. Afterwards,
isNullable is used by the handlers, since dealing with references is very different than dealing
with primitives.

4.5 Meaning of Not-Nulls-Bitmap

As it is obvious, objects can reference to other objects through their reference fields. However,
these reference fields may not point to other objects. In such a case, their value is null and
there is no need to serialize anything for null references. The serialization mechanism takes
this fact into consideration and appends to every serialized object (that contains references)
a variable number of bytes that bear this information.

More precisely, a bitmap is appended in every serialized object (which has references) and
it serves the purpose of knowing which references are null or not. This bitmap is called
notNullBitmap. It has the same number of bits as the number of reference fields of the
serialized object, one per reference. The order of the bits is the same as the order of the
references that they have been defined in the class. If a bit is set (that is, true), it means
that the corresponding reference is not null and bytes for the referenced object exist in the
serialized object. On the opposite, if one bit is not set (that is, false), it means that the
serialized object has no bytes dedicated for the null reference.

Last but not least, it is worth to mention that it depends on the data infrastructure how null
references are mapped on the persistence layer. For example, relational databases can map
a null reference into a null value in the corresponding table, row, and column. In the case
of graph databases though, if we suppose that objects are mapped to nodes, null references
can be mapped by not putting an edge in the graph. So, null treatment depends on the data
infrastructure. The Kinetic case is explained in the next chapter.

66

4.6 Handling of already stored objects

When an object is serialized, this object may contain references to other already stored objects
(in other words, persistent). In this case, it does not make sense neither storing again (that
is, overwritting) the already stored objects, nor serializing them. Instead of re-serializing
the persistent objects, dataClay writes their object ID into the serialization message of the
unstored object. Afterwards, it continues with the serialization of the remaining fields.

However, what is the criterion that makes an object persistent? In other words, how does
dataClay recognize persistent objects? The rule is: If an object has a dataClay object ID,
it is persistent. Otherwise it is not. An object gets tied with its object ID for its whole life
cycle, only when it is stored. Thus, checking the persistency of an object is actually checking
its object ID.

It is very important to make clear that this object ID is not a Java identifier. It is an internal
dataClay unique identifier. One reason is that Java identifiers (like the hashcode of an object)
identify objects only as long as they reside into the Java heap. On the contrary, dataClay needs
to identify its objects regardless they reside in the persistent layer or in memory. Secondly,
dataClay objects can be shared between different clients and servers. Thus, we need unique
identifiers for the whole system. That’s why dataClay uses its own IDs, which are actually a
field of every object. More precisely, it is a field of DataClayObject. Since every stub class
extends DataClayObject, every object has this field.

In the end, how is this bonding between an object ID and the freshly-persistent object
achieved? When makePersistent operation finishes for an object, its dataClay object ID is
returned. Data Service receives this object ID and sets it to the corresponding object, which
still resides in the memory. Thereafter, any attempt for reserialization of the object will be
prevented, since it has already a dataClay object ID.

4.7 Handling of already serialized objects

During the serialization of an object, if dataClay finds a reference to an object that has been
already serialized, this object will not be serialized again. There are two reasons for doing
this: 1) Redundancy of both processing and information is avoided, and 2) Any possible cycle-
reference is avoided: Imagine dataClay heading up in processing a cycle-reference: This would
lead to an infinite serialization.

In order to avoid such cases, dataClay tags every object with an integer. If an object has
been already serialized before, dataClay just appends the tag that corresponds to that object.
Then it continues with the serialization of the next field.

How does dataClay recognize the already serialized objects? It uses a map, whose keys are
the object hashcode and values are the tags of the already serialized objects. If a key-value
can be found for an object in the map, it means that it has been already serialized. In such a
case, only its tag is appended. On the other side, when an object is encountered for the first
time, it is tagged with the next available tag and its key-value pair is added to the map.

67

4.8 Serialization message

Several smaller parts of the serialization mechanism have been introduced so far. Their syn-
thesization composes the serialization mechanism. There are some key facts that make the
understanding of the serialization mechanism of dataClay easier:

• It is a recursive procedure: While processing with the serialization of an object, if some
of its fields refer to other non persistent objects, then they are serialized, and later the
serialization remainder of the initial object resumes.

• When the serialization of an object is finished, its superclass is serialized too. Since
every class extends DataClayObject, every class serializes at least another superclass.
Moreover, serialization of DataClayObject comprises also the halt criterion of the seri-
alization.

The pseudocode of Algorithm 1 describes the algorithm of the serialization mechanism:

Algorithm 1 The algorithm of the serialization mechanism
1: procedure SerializeObject()
2: append tag
3: if tag already used then
4: return
5: end if
6: append classID of the object
7: append isPersistent boolean
8: if isPersistent = true then
9: append objectID of the object

10: return
11: end if
12: append notNullBitmap
13: for all field do
14: if primitivefield then
15: append its value
16: else
17: if field not null then
18: field.SerializeObject()
19: end if
20: end if
21: end for
22: if superclass = DataClayObject then
23: SerializeDataClayObject()
24: return
25: else
26: goto step 6
27: end if
28: end procedure

68

4.8.1 Further explanation of the algorithm

In order to facilitate the understanding of the algorithm, some steps are explained further.

• The step 2 was described in the section “Handling of the already serialized objects”. As
it is obvious, step 3 is always false when SerializeObject() is called for first time. In
other words, when an object is encountered for first time, its tag is also used for first
time.

• The steps 7–9 were described in the section “Handling of the already stored objects”.

• The objective of notNullBitmap was described above in the corresponding section. How-
ever, it is worth to mention how step 12 really works. As it is obvious, it is quite hard
to know whether the fields of the objects are null or not, before processing them. In
other words, the job of step 12 seems impossible before step 13. What is actually done
is a bit more complex: At step 12, only the space for the notNullsBitmap is allocated.
Instead, the notNullsBitmap is formed during the step 13–21, when every field is pro-
cessed. Then, between step 21 and step 22, the final notNullBitmap is written in the
space that was allocated at step 12.

• The step 23 has not been detailed thoroughly enough, on purpose. During that step,
the serialization mechanism appends some metadata of fixed size (in bytes) for the Dat-
aClayObject. Since it is a trivial procedure, we can neglect its technical details. The
only worthy thing to mention is that after this step the termination step of Serial-
izeObject() comes.

• As it has been mentioned before, the serialization mechanism is a recursive procedure.
So, it is quite possible having information for more than one objects after SerializeOb-
ject() finishes. Actually, this can happen at two different steps: Either the object itself
has references to other objects (step 18), or some of its superclass fields are references
to other objects (step 26). This fact is very important and the reader should keep it in
mind for the next chapter.

4.9 Wrappers

Even though the algorithm above covers several use cases, it does not cover other common
ones. For example, it can handle any user object with either primitive or reference fields, but
it misses functionality for other common cases like arrays, collections and maps. The reason
is that these richer structures are not defined by some user. Instead, there are part of the
Java language. Thus, there is neither registration of arrays/collections/maps, nor stub classes
for them. Instead, their Java regular classes are used. Since no stubs are produced for these
classes, there is no serialization method (by dataClay) for these structures either. So, if we
want to store an object which contains an array (for example), this array will be wrapped into
a special class during the serialization of the outer object. Then the wrapped array will be
serialized, and this will finally be stored in the data infrastructure.

69

As it has been said, during the registration of a class, its bytecode is analyzed and the seri-
alization and deserialization methods are implemented. If a reference to any of these types
is found, then these fields are wrapped and the serialization method of the wrapper is used
instead, which is already implemented. It is further detailed below.

4.9.1 Array wrappers

When a reference to an array is found during the serialization of an object, then this reference
is wrapped into the appropriate wrapper. Particularly, there are 8 wrappers for the 8 primitive
types and one wrapper for arrays of any object. The latter case covers even multidimensional
arrays or arrays of Java default wrappers (like Integer etc.). In the case of an array of primitive
type (Algorithm 2), its serialization is quite simple.

Algorithm 2 The algorithm for the serialization of arrays with primitive types
1: procedure SerializePrimitiveArray()
2: append tag
3: if tag already used then
4: return
5: end if
6: append classID of the object
7: append isPersistent boolean
8: if isPersistent = true then
9: append objectID of the object

10: end if
11: append array length
12: append serialized array
13: SerializeDataClayObject()
14: return
15: end procedure

There are a few things worth to mention:

• At step 6 the class ID of the corresponding wrapper is serialized. For example, if an
array of shorts is serialized, the class ID of the wrapper for arrays of shorts is going to
be appended. This information is very useful for handlers.

• At step 11 the length of the array is appended, because it is very useful for the dese-
rialization. If this integer is not included, then deserialization cannot know how many
bytes to read for the array.

• At step 13, only the DataClayObject is serialized, since it is the only class that the
wrappers extend.

• As someone might have noticed, there is no notNullBitmap. The reason is that an array
will not be wrapped and serialized if the reference to the array is null. Instead, the object
that contains the reference to the array will mark as false the corresponding bit in its
notNullBitmap. On the handler’s side, since the bit will be false, the deserialization will
continue to the next field.

70

In the case of an array with references to other objects, the serialization is bit more complex
(Algorithm 3).

Algorithm 3 The algorithm for the serialization of references
1: procedure SerializeObjectsArray()
2: append tag
3: if tag already used then
4: return
5: end if
6: append classID of the object
7: append isPersistent boolean
8: if isPersistent = true then
9: append objectID of the object

10: end if
11: append classID of components
12: append array dimension
13: append array length
14: if length > 0 then
15: append size of notNullBitmap
16: append notNullBitmap
17: for all array elements do
18: if element not null then
19: element.SerializeObject()
20: end if
21: end for
22: end if
23: SerializeDataClayObject()
24: return
25: end procedure

Regarding Algorithm 3, some comments follow:

• At step 11, the class ID of the elements is appended. This information is needed for
the array instantiation during the deserialization. At that moment, the array must have
some type.

• At step 14, if the length of the array is 0, there is no need to append any extra information
except for the superclass. Furthermore, this metadata is very important because it
denotes, more or less, the amount of bytes someone can expect in the remainder of the
serialized array.

• At step 15, the size of the notNullBitmap is appended. This is done because there
is no other way to compute this size during the serialization. If it were not supplied,
deserialization cannot be aware of how many bytes to read for notNullsBitmap. Instead,
in the case of SerializeObject() such an information is not stored since the size of the
bitmap can be calculated thanks to the DBClass instance.

• At step 19, the serialization method of the referenced object is executed, which is known
due to the bytecode analysis.

71

4.9.2 Collection wrapper

After looking the array wrappers and their details, collection wrapper does not surprise. Its
serialization pseudocode can be found in Algorithm 4.

Algorithm 4 The algorithm for the serialization of collections
1: procedure SerializeCollection()
2: append tag
3: if tag already used then
4: return
5: end if
6: append classID of the object
7: append isPersistent boolean
8: if isPersistent = true then
9: append objectID of the object

10: end if
11: append name of the collection
12: append size of collection
13: if size > 0 then
14: append size of notNullBitmap
15: append notNullBitmap
16: for all collection members do
17: if member not null then
18: member.SerializeObject()
19: end if
20: end for
21: end if
22: SerializeDataClayObject()
23: return
24: end procedure

The only thing we should mention here is that at step 11, the name of the collection is written
in a string (for example, “ArrayList”). Having this information is needed for the instantiation
of the collection during the deserialization of the object.

4.9.3 Map wrapper

Map wrapper does, more or less, twice the process of a collection wrapper. Its serialization
pseudocode can be found at Algorithm 5.

As someone can notice from the Algorithm 5, steps 12 through 21 are for the keys of the map
and steps 23 through 31 are for the values.

72

Algorithm 5 The algorithm for the serialization of maps
1: procedure SerializeMap()
2: append tag
3: if tag already used then
4: return
5: end if
6: append classID of the object
7: append isPersistent boolean
8: if isPersistent = true then
9: append objectID of the object

10: end if
11: append name of the map
12: append size of map
13: if size > 0 then
14: append size of notNullBitmap of keys
15: append notNullBitmap of keys
16: for all keys do
17: if key not null then
18: key.SerializeObject()
19: end if
20: end for
21: end if
22: append size of map
23: if size > 0 then
24: append size of notNullBitmap of values
25: append notNullBitmap of values
26: for all value do
27: if value not null then
28: value.SerializeObject()
29: end if
30: end for
31: end if
32: SerializeDataClayObject()
33: return
34: end procedure

73

Chapter 5

Persistence Layer: Kinetic handler

Up to this point, very few things have been revealed for the implementation part of this master
thesis. The objective of the previous chapters was to provide the reader with the required
background to reach this chapter (and understanding all these concepts was also part of my
master thesis, given their novelty and lack of documentation). The vast majority of this
chapter describes the design choices made for accomplishing the integration of the Kinetic
technology into dataClay. The most important criterion for making these choices was always
the high performance. Another objective of this chapter is to expose the differences between
semantically rich data infrastructures, like relational databases, and byte enabled ones. For
this reason, Kinetic handler is compared with Postgres handler several times throughout this
chapter.

5.1 Establishment of connection with Kinetic 4-bay develop-
ment chassis

Throughout the implementation part of this master thesis, Kinetic 4-bay development chassis
was used extensively. In this section establishment of connection to the 4-bay development
chassis is described. The 4-bay developer kit architecture is simple and only needs a single
switch to tie the Ethernet ports together. The Figure 5.1 exemplifies the architecture and
gives one way of connecting a system together.

In this case, a cable is connected to the local area network (LAN) assuming that the LAN
has an existing IPv4 DHCP server. The other port can be connected to a computer. Since
the switch bridges all the 10 ports together (the 8 drive ports [4 drive x 2 ports each] and
the 2 external ports) the computer is able to get the IP address from the LAN as it would
normally do. The drives will then do DHCP for all 8 ethernet ports and begin to multicast
their configuration using UDP to 239.1.2.3 port 8123.

For the purpose of this master thesis, setting up a DHCP server in the personal computer is
more plausible than using the LAN. Next are presented the steps followed for the configuration
of the DHCP server under the Linux operating system:

75

Figure 5.1: Establishment of connection with the Kinetic 4-bay development chassis.

1. Installation of the DHCP network service:
sudo apt-get install isc-dhcp-server

2. Then, the configuration file /etc/default/isc-dhcp-server was edited in order to specify
the interface that the DHCP should listen to. The interface eth0 was added.

3. Editing of the file /etc/dhcp/dhcpd.conf is needed, too. By doing so, the address range
that the DHCP will multicast is specified. In our case, the range 10.5.5.10 to 10.5.5.20
was selected. The following lines were added in the configuration file:
subnet 10.5.5.0 netmask 255.255.255.224 {
range 10.5.5.10 10.5.5.20;
option routers 10.5.5.1;
}

4. Last, assigning a static IP to the interface that we use for dhcp (eth0 in our case) is
needed. This was done by using the graphical network manager that Ubuntu comes
with. An instance of this step is captured in the Figure 5.2
Moreover, through the Routes... option (as in Figure 5.2), this connection was set to
look only for resources on its network. By doing so, navigating to the Internet through
this connection is prevented.

The 4 steps above do not need to be done more than once. However, the DHCP network
service has to be started every time we want to connect to the 4-bay development chassis.
This is achieved with the following command: sudo service isc-dhcp-server start

Seagate has developed several script tools in Python programming language. One of them,
called discover.py, recognizes which Kinetic drives are connected and which IP address is
assigned to them. One of these IP addresses can be used for the configuration of the client
which is responsible for connecting the application (in our case, the dataClay platform) with
the Kinetic drive.

76

Figure 5.2: Assigning a static IP.

5.2 Kinetic key-value objects overview

This section briefs the technical details of the key-value objects that can be stored in a Kinetic
drive. According to the Kinetic API, such an object is called Entry. In other words, there is
a Java class called Entry which represents the key-value objects.

Every entry is identified by its unique key, which, in Java terms, is a byte array field in the
class Entry, called key. Its maximum size is 4 KB. Similarly, every entry has another byte
array field for storing the value of the key-value object, called value. Its maximum size is
1MB.

So, a key-value object in Kinetic drive is a couple of byte arrays. It is programmer’s exclusive
task to decide what to store in both key and value fields. To be more precise, we have seen
in the second chapter several aspects that the programmer should consider in order to take
advantage of the key ordering. Correspondingly, the value can be formed in a way so that it
fulfills the needs of the application. Both key and value usage in dataClay case are detailed
in the following sections, step by step.

77

5.3 Representation of classes on the Kinetic persistence layer

In the previous chapter, it was mentioned that every user class is modelled by a dataClay
class, called DBClass. In addition, it was said that instances of that class are passed to Data
Service in order to prepare the data infrastructure for future storing. Every handler decides
how classes will be represented on the persistence layer because this depends solely on the
nature of the data infrastructure. Here, we examine the Kinetic case and it is also compared
with relational database backends.

When someone deals with OOP programming languages and relational databases, it is quite
common every class to be mapped into a database table and every object to be mapped
into a row in the corresponding table. dataClay does the same for its Postgres handler. In
order to achieve this, it traverses through the representation class (that is, DBClass), creates
the proper “CREATE TABLE” SQL command and then this command is executed by the
RDBMS. Future instances of that user class will be rows of the newly created table.

On the contrary, Kinetic architecture has adopted the much simpler key-value objects abstrac-
tion. It can only write a pair of byte arrays, one for the key and one for the value. Nothing
more. So, looking for a structured representation of data like database tables or file systems
does not make much sense in Kinetic. It would only add an overhead to the performance.
The most straightforward and probably efficient solution is to store every serialized object as
a key-value object, where value is the bytes of the serialized object (the key schema is detailed
in the following section). Hence, Kinetic handler does not need to do anything for preparing
the data infrastructure for storing instances of a class in the future. Actually, every object is
independent of its class inside the Kinetic drive.

On the other hand, tables in relational databases offer a very nice notion of grouping similar
things: Every row in a table represents an object of the same class. For example, querying
all the instances of a class is just a “SELECT * FROM” command. Kinetic handler takes this
fact into consideration and makes its best. Since every entry is ordered by its key, grouping
objects of the same class is an easy task for Kinetic too. If someone uses the same prefix for
the key of same class objects, then each of them reside next to the other, because of the entries
ordering. In our case, using the class ID as prefix of the key schema seems to fit perfectly.
Soon, the exact key schema for storing objects will be explained.

Last but not least, in the previous chapter it was said that DBClass plays a double role: in
addition for preparing the data infrastructure, it is also useful for providing meaning to the
serialized objects. For this reason, it is important to have always this information handy.
Indeed, in Postgres handler, once a class is installed (that is, creating the corresponding table
in the database), its schema is also saved in a special table which contains the representation
of every installed class. Kinetic handler saves the schema information as well. It creates a
new key-value entry whose key is the class ID and its value is the serialized instance of the
DBClass. Once the representation of a class is needed, its serialized schema is retrieved from
the Kinetic drive, calling get(key) where key is the class ID, and, then, the value is deserialized,
which leads to an instance of DBClass. Moreover, dataClay has a software defined cache which
contains instances of DBClass. This prevents the continuous accessing of data infrastructure,

78

when the representation of a user class is needed. Only if a DBClass object is missing from
cache, access to the persistence layer follows.

5.4 Storing objects on the Kinetic persistence layer

Probably the reader has already gained some insight into how objects are organized in the
Kinetic device. However, there are still several details that need to be demystified. Here, most
of the design choices made for the Kinetic handler are presented, as well as the motivation
that led to them.

5.4.1 Overview

As it has been stated above, Kinetic handler stores every object of a dataClay user as a key-
value entry on the Kinetic drive. This is a rule that must never be violated in both directions:
Every object should be stored as a whole entity and never be segmented. On the other side,
a key-value entry on Kinetic drive cannot contain information (that is, bytes) for more than
one object. Probably, this is the most important rule in the Kinetic handler and every aspect
around this design choice will be explained further. From now and on, this rule will be called
“Single-object rule”.

5.4.2 Pitfalls for breaking the single-object rule

Let’s run through an example for understanding that if we do not pay attention, the single-
object rule can be violated. Let’s suppose that the makePersistent method has been called for
an object. Let’s call it objectA. Moreover, let’s assume that objectA contains a reference to
another non persistent object, objectB. This implies that both objects must be stored on the
persistence layer (in our case, the Kinetic drive). According to the serialization mechanism
(which was described in the previous chapter), objectB will be serialized “inside” objectA,
since objectB is not persistent either.

If we store objectA at once, without setting apart objectB, it would cause violation of the
single-object rule. Specifically, the resulting key-value entry on the Kinetic drive would contain
information (bytes) for more than one dataClay object. Thus, storing dataClay objects in the
Kinetic drive cannot be achieved with just a put operation.

5.4.3 Motivation for having single objects on the Kinetic drive

Before moving on the description of how the single-object rule is fulfilled, it is crucial to present
the motivation for having such a rule. In our case, we will see that the “housekeeper” rule is
really important: A little extra effort put into routine maintenance can pay off handsomely in
the long run, by forestalling major calamities.

79

The first reason for setting apart the objects is set by the Kinetic device itself. As it has been
mentioned, every key-value entry has limitations on the size of both key and value. Specifically,
the key can be up to 4 KB and the value up to 1 MB. Imagine an object which contains a
big collection to other (big) objects. Trying to store the initial object as a whole entity will
possibly exceed device’s capacity. Which, in turn, would cause an Exception.

In addition, keeping things organized makes sense for the performance of the Kinetic handler
as well. Let’s suppose we have already stored an object (call it objectA), which contains also
another object (call it objectB). Moreover, let’s assume that somehow we are aware of this
Has-A relationship between objectA and objectB (which, by the way, is quite hard with direct
put operations). If objectB is modified, dataClay itself will issue an update operation to the
persistence layer for objectB. But since objectB is inside objectA (and the handler knows it),
the handler is compelled with the extra work of finding which bytes are dedicated for objectB
and not for objectA, and eventually doing the desired update operation.

From the previous paragraph and its example, it was slightly implied that we cannot easily
know what we store when doing direct put operations. In other words, we are able to know
that we store the outer object, but not the ones included within the outer. Having this
information is crucial, as we have seen in the previous chapter: Once an object got persistent,
it is tied with its (dataClay) object ID, which is the criterion for an object to be persistent.
If this step is not done, it is quite possible of having multiple copies of the same object in
data infrastructure. Let’s see the possible inconsistency issues through an example: objectA
(which contains objectB) is stored with a direct put operation. Thus, we don’t know which
objects got persistent other than objectA. Similarly, another object (call it objectC) which
also contains a reference to objectB is stored with direct put operation. Since we do not
know that objectB is already persistent (inside objectA entry), it will be stored again (within
objectC bytes). Afterwards, if we update objectB in any of the two replicas, it will cause
inconsistency to the other.

In conclusion, the importance of separating objects and storing them individually makes much
sense. Otherwise, problems (inconsistency, performance, excess of data limits) will evoke in a
domino fashion. Hence, the extra effort for tidying up the objects when they are stored for
first time is more than worth.

5.4.4 Content of the value in a key-value entry

Across this section, the pattern for the value of a key-value entry is presented. It is quite
useful to think of Kinetic drive as the Java heap. In the heap, every object contains data
for its fields. Specifically, it contains information for every field of primitive type, as well
as references to other objects. Similarly, key-value entries in the Kinetic drive behave like
objects in the heap: If an object has fields of primitive type, these fields are serialized and
stored within the key-value entry of the object they belong to. Moreover, key-value entries
point to other key-value entries in the Kinetic drive and they do not contain other key-value
entries, as objects do not contain other objects in the heap1.

1
Even though inner objects exists as term in Java, they are strongly dependent on outer ones. In our case,

we are talking about independent objects.

80

However, serialized objects probably contain information for more than one object. This
implies that we need to process this information, extract the nested objects and store them
separately. This requires a very meticulous work since we have to process information in byte
level mostly, and in bit level in special cases.

Thankfully, both serialization mechanism and Kinetic drive are of the same nature. They both
understand bytes. Nothing else. Nothing more. Thus, what we need to store in Kinetic drive
is driven more or less by the previous layer, the serialization mechanism. It does not make
much sense to attempt for a completely different representation of the objects in Kinetic drive.
It would only add overhead on performance, in both directions: While putting an object, we
would have to translate the serialized object to its Kinetic compatible representation and
while getting it back to do the reverse. Instead, it is quite plausible to keep the result of the
serialization and modify it only when it is needed.

In addition, the serialization mechanism gives us the solution for referencing to other objects:
During the serialization of an object, if any reference to already persistent object is found,
the (dataClay) object ID of the persistent object is appended to the serialization message
and serialization continues to the next field. Kinetic handler mimics this pattern: When a
serialized object contains bytes for another serialized object, the “inner” object is stored into
a separate key-value entry and the “outer” object just stores the (dataClay) object ID of
the “inner” one. Furthermore, Kinetic handler returns the object IDs of all the newly stored
objects. Data Service receives this result and refreshes its knowledge about persistent objects.
Without processing the initial byte buffer, it would be impossible to know which objects
become persistent.

The truth is that, currently, the key-value entries contain some extra information which is
useful/necessary only for the Kinetic handler. If the key-value entries were formed as in the
previous paragraph, their content would be fully understandable by the Data Service: Any
object could be retrieved and be passed for deserialization to the Data Service, without any
need for processing by the Kinetic handler. However, things cannot be so dreamy in the general
case; class enrichments impose storing some extra information. This case is detailed in the
corresponding section. Nevertheless, there are some special cases (arrays, maps, collections)
where key-value entries can be passed directly from Kinetic drive to Data Service.

5.4.5 Processing of serialized objects

In the previous section, the content of value in key-value entries was covered intuitively. From
now and on, we are focusing on the processing part of Kinetic handler. Kinetic handler’s
main task is to distinguish objects that exist into the serialization message of other objects
and to separate them. Nevertheless, it only receives a byte array from the previous layer,
the serialization mechanism. A single array of bytes does not bear any semantics and its
processing would be impossible, especially in our case, where the morphology of an object
always varies. As it was stated several times before, the structure of a user class is modeled in
an instance of DBClass. Using the information from this instance, the bytes from a serialized
object get meaning and their process is possible.

81

In Kinetic handler, two types of byte buffers are used: 1) One byte buffer, the input buffer,
which contains the outcome of the serialization. There is always only one input buffer, and it
probably contains multiple serialized objects. 2) There are also the output byte buffers, one
per serialized object. The result in every output byte buffer is going to be the value for the key-
value entry that corresponds to the object. From now and on, we will name storeObject the
process of storing an object, like a method name. The first step of storeObject is to read some
metadata from input buffer. The most important among this metadata is the notNullBitmap,
which was explained in the previous chapter. This bitmap is of variable size and its size in
bytes is calculated due to the DBClass, which knows how many nullable references exist in a
user class. After this step, bytes for fields of the object follow.

While processing the bytes for the fields, there are two cases storeObject may encounter. The
first and the easier one is to deal with a field of primitive type. In this case, since we know the
type of the field (due to DBClass instance), we copy from the input buffer to the output buffer
the exact amount of bytes that are dedicated for this field. Thankfully, primitive field have
always value: Even if they have not been instantiated, they have their default value. It is worth
to mention the difference between Kinetic and relational databases case. In Kinetic, we just
copy bytes from one buffer to another and continue to the next field. On the opposite, Postgres
handler requires the appropriate formation of a SQL statement, which implies extensive string
manipulation using apostrophes, parentheses, etc. At the end, this results into a quite big and
hard-to-understand piece of code whose purpose is mostly the formation of the SQL statement,
rather than the data handling from the buffer.

The second case is when we have to deal with a reference. This case is not as trivial as before
and has several sub-cases. When we encounter a reference, it is always quite possible for the
reference to be null. However, this information does not depend on the morphology of the user
class. So, it cannot be found in DBClass. Instead, it is highly dependent on the instance of the
class. notNullBitmap, which comes with every serialized object (except the ones which have
only primitive fields), plays this role: One bit per reference informs us whether a reference is
null or not. Thus, the first step while encountering a reference is to check the appropriate bit
in the notNullBitmap. If the reference is null (according to the bitmap), no bytes exist for
the reference in the input buffer and the buffer handling continues to the next field.

On the opposite side, there are several cases when the reference is not null:

• Case 1 – Reference to an already persistent object: If the reference points to a
persistent object, the serialization mechanism has appended only the (dataClay) object
ID of the persistent object (along with some other metadata like the tag).

• Case 2 – New serialized object: This happens when the input buffer contains bytes
for more than one object. In this case, the sub-object has to be extracted from the input
buffer, to be copied into another output buffer and the remainder of the input buffer to
be processed for the initial object. For this purpose, Kinetic handler calls recursively
storeObject, since the serialization mechanism acts in a recursive way too.

• Case 3 – Reference to an already encountered object: If the reference points to
an object that has been encountered before, then only the serialization tag is appended
for this object, instead of re-serializing the object.

82

It is very important to mention the difference between case 1 and case 3. In case 3, an object
is considered “encountered” if the handler has already processed this object in the same call of
the makePersistent method. In other words, an “encountered” object has not been persistent
before the current call of makePersistent method. On the other hand, an object is considered
persistent (case 1) if it has been stored in previous makePersistent call.

But, how are these three cases distinguished? Kinetic handler uses a map, called alreadyEn-
counteredObjects, that has as key the tag of the already processed objects and as value their
object IDs. If a tag exists in the map, it means that the object has been processed in the
past (in the same call of makePersistent, though) and the bytes after the tag are for the next
field (case 3). Otherwise, the reference can be either to a persistent object (case 1) or to a
non persistent one (case 2). These cases are distinguished thanks to the metadata that every
object has in the input buffer. More precisely, there is a byte for a flag called isPersistent. If
it is true, then only the object ID for the persistent object follows (case 1). Otherwise, the
serialization of the non-persistent object follows (case 2).

Kinetic handler strives to store key-value objects in an (almost) understandable format for
Data Service. By doing so, retrieving an object from Kinetic drive will require the less possible
processing. Thus, tags in every key-value entry should act as unique identifiers, as they do in
serialized objects. However, if we extract the inner objects out of an outer one, tags lose their
identification property.

For example, suppose we have objectA and objectB, with a relationship as depicted in Figure
5.3.

Figure 5.3: Example: Relationship between two objects.

If makePersistent is called for objectA, then both objects will be serialized. Furthermore,
objectA will be tagged with 0, and objectB with 1. The reference of objectA to objectB
falls into case 2, because objectB has never been encountered before, nor it is persistent. On
the contrary, the reference of objectB to objectA falls into case 3, because objectA has been
already encountered. So, only the tag 0 is used for this reference.

If objectA and objectB are separated and stored individually, they cannot reference each other
anymore. For example, tag 0 in objectB cannot identify objectA. For this reason, the object
ID should be used for referencing to other persistent object, as serialization mechanism does
in case 1. Afterwards, any other reference to already encountered object should contain only
the tag. For example, a second reference from objectB to objectA should append only the

83

tag of objectA, not its object ID. Thus, Kinetic handler should implement this inner tagging
mechanism. One map and one set enable this mechanism:

• alreadyEncounteredObjects (Map from integer to object ID): This was described
earlier: It is necessary for recognizing objects that have been processed in the past, in
the same storeObject call. The reader should keep in mind that this map is unique and
it is used by all the recursive storeObject calls.

• alreadyEncounteredTags (Set of integers): Every time storeObject is called, such a set is
instantiated empty. This set contains the tags that the current storeObject call has al-
ready encountered. If a tag does not exist in the set, the tagged object is encountered for
first time from the current storeObject call, and its object ID should be appended, along
with the tag (the object ID can be found from alreadyEncounteredObjects). Otherwise,
if the tag is in the set, it is enough for referencing the object.

Every tag that is into alreadyEncounteredTags is in the alreadyEncounteredOb-
jects, too. But, not the reverse.

The pseudocode of the algorithm can be found at Algorithm 6. This algorithm is executed
only when a reference to another object is found.

Last but not least, the reader can imagine the complexity of the SQL statement for handling
references in the case of relational database handler.

5.4.6 Key schema

After this long description of what is stored in the value of a key-value entry, the only thing
left is the key schema of the entry. The key schema does not make any surprises and follows
the quite plausible pattern: class ID_object ID

The motivation that led to this schema derives from the entries ordering according to their
key. Since entries are ordered, objects of the same class are grouped together, like tables of
relational databases do. According to the Kinetic technology description, retrieval of objects
that reside close to each other can be optimized. Later, we will see specific cases where we
take advantage of this feature.

5.4.7 Superclasses storing

In OOP, when a class extends another class, the subclass inherits superclass’ fields. dataClay
takes this fact into consideration in its serialization mechanism, and Kinetic handler does too.
As it was mentioned in the previous chapter, every stub class inherits at least one class, the
class DataClayObject. Thus, serialized objects always contain bytes that correspond to its
superclasses, at least DataClayObject. Kinetic handler appends these bytes to the output
buffer of the corresponding object. Furthermore, processing the DataClayObject bytes is the
criterion for reaching to the end of processing.

84

Algorithm 6 The algorithm for processing references
1: procedure processReference()
2: tag inputBuffer.readInt() . Read tag
3: if !alreadyEncounteredObjects.containsKey(tag) then
4: isPersistent inputBuffer.readBoolean()
5: if isPersistent = true then
6: objectID inputBuffer.readObjectID() . Case 1
7: alreadyEncounteredObjects.add(tag, objectID)
8: alreadyEncounteredTags.add(tag)
9: outputBuffer.writeInt(currentTag)

10: outputBuffer.writeBoolean(true)
11: outputBuffer.writeObjectID(objectID)
12: else
13: objectID newobjectID() . Case 2
14: alreadyEncounteredObjects.add(tag, objectID)
15: alreadyEncounteredTags.add(tag)
16: outputBuffer.writeInt(currentTag)
17: outputBuffer.writeBoolean(true)
18: outputBuffer.writeObjectID(objectID)
19: inputBuffer.storeObject()
20: end if
21: else . Case 3
22: if alreadyEncounteredTags.contains(tag) then
23: outputBuffer.writeInt(tag)
24: else
25: alreadyEncounteredTags.add(tag)
26: objectID alreadyEncounteredObjects.get(tag)
27: outputBuffer.writeInt(currentTag)
28: outputBuffer.writeBoolean(true)
29: outputBuffer.writeObjectID(objectID)
30: end if
31: end if
32: end procedure

Here, it is worth to mention a corner case which indicates that direct put on the Kinetic
drive can be harmful. DBClass has a public method called hasNullableReferences which
returns true if the modeled user class contains references, and vice versa. So, in case of
receiving false after calling this method, it means that the user class has only primitive fields.
Which, in our case, are just copied. So, someone might think that the byte processing can be
avoided if the hasNullableReferences returns false, and that a direct put operation is possible.
But, the truth is that DBClass models only the class itself and not its superclasses. Thus,
hasNullableReferences is not aware of the superclasses, and whether they contain references
or not. So, it is quite possible a class to have only primitive fields and its superclass a
reference to another object. A direct put operation in this case would cause violation of the
single-object-rule.

85

5.4.8 Iterative version

As it has been mentioned above, the serialization acts in a recursive way. Thus, doing the
same in the Kinetic handler was more than straightforward. However, in cases where objects
are nested inside others in big depth, it is quite probable to run out of memory resources, and
end up with a stack overflow. For this purpose, an additional iterative method for storing
objects and the corresponding class that acts as stack frame have been developed. This class
contains among others several flags for overcoming code segments that must be run only once.
This ends up having an iterative version which is a quite hard to understand, but memory
safe. Describing the iterative version in detail would not add new concepts. That’s why no
further explanation is not attempted.

5.5 Retrieval of objects from the Kinetic drive

While the store operation has been detailed thoroughly, almost nothing has been said for its
counterpart, the read operation. The truth is that the store operation has been designed so
that it will facilitate the retrieval of an object from the Kinetic drive and it will be as more
performant as possible. Thankfully, this optimization can be achieved in many cases.

Before proceeding with the description of the read operation in the Kinetic handler, it is
crucial to learn some more things about dataClay and how it usually behaves: dataClay
usually requests single objects from the persistence layer. In other words, it usually does not
expect to receive many objects from the Kinetic drive in a single operation. For example, it
requests for an object, which might have references to other objects, but it does not expect the
referenced objects along with the initial one. Instead, it receives the initial object serialized,
which contains the dataClay object IDs of the other serialized objects, though. And actually,
it does not make sense to retrieve a big amount of objects with a single operation. It would
lead to a very demanding request, which would take a lot of time to be served, and, at the
end, only a small part of these objects would be accessed. Instead, every object is retrieved
from the persistence layer, only when it is not handy in the memory.

However, there is a corner case, in which an object, along with its references objects, are
expected. This case happens when we want to transfer/copy data from one data infrastructure
to another. As someone might think, this does not happen often.

So, how is it specified whether we want to retrieve objects exhaustively or not? The answer is
that this is achieved thanks to a boolean called stopsAtPersistent. When access to the data of
persistence layer is needed, Data Service issues the appropriate call to the handler. This call
contains several parameters, like the object and class IDs of the object we want to access, and
other parameters. stopsAtPersistent belongs to the complementary parameters. If it is true,
the access is exhaustive. Otherwise, only a single serialized object is expected.

From now and on, we will expose how Kinetic handler faces both situations. Let’s first see the
case when stopsAtPesistent is true. A few pages above, the motivation for having single objects
in every key-value entry (the single-object rule) has been described extensively; moreover, we
usually request single objects from the data infrastructure. Things seem to converge: It

86

would be ideal if objects were retrieved from the persistence layer and pushed directly to
Data Service without any byte processing. Kinetic handler does almost so. There are few
cases (maps, collections, array) that the retrieval is done directly without any processing.
Regarding the rest, it depends on whether the class of the retrieved object has been enriched
or not. For this purpose, every stored key-value Entry has some metadata in the beginning of
the stored bytes, which are necessary for determining whether the class of the retrieved object
has been enriched. If not, no more processing is needed. Otherwise, processing is inevitable.

On the other side, things cannot be dreamy when stopsAtPersistent is false. Multiple accesses
to the Kinetic drive are needed. Byte processing is done and code that takes much longer time
is run. The good thing is that stopsAtPersistent is usually true. Since the procedure follows
a quite symmetrical pattern to the store operation, it is described.

At the end, it is worth to mention that the get operation acts recursively when stopsAtPer-
sistent is false. No iterative version has been developed, since the recursive call is prevented
most of the times.

5.6 Updating objects in the Kinetic drive

In a data sharing platform, the ability to modify data is probably the most important feature.
If not, the cooperation among the users would be very restrictive and probably each of the
users would end up having a personal copy of the data. dataClay, though, provides the
modification feature and, actually, it is one of its fundamental ones. Thus, Kinetic handler
has also to ensure that modification of data on the persistence layer is possible.

In the previous chapter, the bytecode analysis, which takes place during the registration of
a class, was described. As it was said, one of the objectives of this analysis is to identify
the methods that modify the state of the self-contained objects. Since dataClay knows what
changes the state of an object it also knows when such a change takes places: Whenever a
state-modifying method is called. So, when such a method is called, dataClay can also trigger
the appropriate call for updating the data that rely on the persistence layer. More precisely,
when a method that modifies at least one of the fields of an object, the update of the object
on the persistence layer follows.

In Kinetic drive, when an entry must be updated, it is actually substituted by another one.
Kinetic handler is not the exception: When dataClay issues an update operation, the workflow
is exactly the same as when an object is first stored. Kinetic handler receives a serialized
object, the handler processes it, finds the non persistent object which are stored individually
and then overwrites the old object.

There is only one thing left for the update operation. In the second chapter, the Kinetic’s
inner mechanism for dealing with concurrency issues was described. Actually, this mechanism
is not used in dataClay, in the Kinetic handler. There is no need to use it because dataClay
itself does not permit the access to the persistence layer by more than one user per time. Thus,
there cannot be any inconsistency in the shared object, by design. Furthermore, the double
effort of Kinetic for updating an already updated object is avoided: if a user tries to update

87

an object and receives a VersionMismatchException, then he has to repeat his modification
on the freshly modified object.

5.7 Objects deletion from Kinetic drive

After introducing the majority of the details that concern the Kinetic handler, the delete
operation can be described quite fast. In analogous way as reading objects, every delete
operation has the boolean parameter stopsAtPersistent. If it is true, the deletion of a single
key-value entry is needed. On the other side, we need to delete the whole objects tree, whose
the object ID of the root is known. In this case, the delete method calls itself and every node
deletes its children nodes before deleting itself. Unfortunately, there is not much margin for
optimization for this operation.

5.8 Removal of a class from Kinetic drive

There are some rare cases where we want to delete from the data infrastructure every instance
of a class. If the objects were stored in a relational database, then a simple SQL statement
“DROP TABLE” would be sufficient for accomplishing the remove operation. On the contrary,
there is not any actual grouping for the key-value entries in the Kinetic drive, like tables do in
the relational databases. Instead, deletion of every instance must be held individually. Thus,
the keys for each instance of the class must be retrieved and then delete(key) must be issued
for every key.

Before moving to the implementation part, a little refresher would be useful: Every key (and its
entry) is ordered lexicographically in the Kinetic drive. So, this fact can facilitate drastically
the grouping of objects. And our key schema does so. Since each instance of a class shares the
same prefix in the key schema, each object of the class reside next to the other. And Kinetic
promises an optimization for accessing adjacent key-value entries.

The ordering fact gives us an insight for the planning inside the Kinetic drive, but we still do
not know how to receive the keys for the key-value entries that we are interested in. According
to Kinetic API, two solutions are possible.

The first one is to use the method getNext method until we delete every instance of the class.
More precisely, we are only given the class ID of the class we want to remove. As it was
described in the section “Representation of classes on the Kinetic persistence layer”, there is a
key-value entry for the class schema, whose key is only the class ID. This is the first member of
the class group. So, we can use getNext and remove every instance one by one. This operation
stops only when the key of the next entry is of different class.

The second option involves the getKeyRange method. According to this method’s declaration,
three of the parameters passed to it are the first and the last key of the range we are interested
and the maximum number of keys (call it max) we want to receive. If there are more keys in
the range than max, then the first max will be returned. Otherwise, the whole range of keys is

88

returned. So, we know the first key of the range but not the last one. Nevertheless, there is no
need to know the exact key, since every key is ordered lexicographically. Thus, if we define as
upper key a non existent key which is bigger than each object we want to remove, but smaller
from the next class group, then it can serve as the upper key limit in our purpose. In our case,
the following key is used: classID~ . Since ~is bigger than _, the key range from classID to
classID~ includes every key of the class group we are interested of. Of course, when max keys
are returned, the getKeyRange is executed again in order to remove the remaining objects of
the class.

5.9 Class enrichment

In the first chapter, it was emphatically mentioned that, in current approaches of data sharing,
3rd parties are always restricted in the functionality that is provided by the data owner. The
only solution for them is to create a copy of the data and then manipulate it at their wish;
however, real cooperation and data sharing cease to exist after creating a copy.

Instead, dataClay enables both sides to work seamlessly. More precisely, class enrichments are
possible in three ways: 1) Adding new fields in a class, 2) adding new methods in a class, 3)
adding a new implementation for an existing method in a class. Obviously, Kinetic handler
deals only with the first case, because the second and the third case affect the behavior of
classes which has nothing to do with the persistence layer. Instead, changes in the fields of a
class affect the state of its instances. And, actually persistence layer saves only the state of
objects. On the contrary, changes in methods are reflected in the class files. Moreover, which
method is exposed to whom depends solely on the model contracts.

In the case of relational databases, the representation of a class is achieved using a correspond-
ing table, where the fields of the class are mapped to the columns of the table. So, enriching
a class by adding new fields is reflected on the database by adding new columns in the cor-
responding table. On the contrary, Kinetic drive does not represent classes somehow. Every
instance is independent of the other in Kinetic drive, even though they reside next each other.
Nevertheless, modifications on the structure of a class affect all of its instances, at once. Even
more, a modification also affects the objects of classes that extend the enriched one. Thus,
if we wanted to update all the affected objects at the moment of their class enrichment, we
would not be able, because we cannot find easily the instances of other classes that extend
the enriched one.

Thus, we are not able to do anything with reasonable complexity, at the moment of the
enrichment. The only action at the enrichment moment is to update the key-value entry for
the instance of DBClass, whose class has been enriched. This update does not affect any of the
“dirty” objects. Nonetheless, the updated DBClass enables to recognize the “dirty” objects.
The update of a “dirty” happens at the moment of retrieval.

Before moving further to the adopted solution, it is important to clarify what is expected by
Data Service when it requests an object whose class/superclass has been enriched. It expects
a serialized object which has information (bytes) for all the fields, both old and new, of the
class. More precisely, the deserialization method has been updated in order to deserialize

89

“enriched” objects. Thus, when we request a “dirty” object, we have to add the default values
in the new fields: If the new field is of primitive type, it gets its default value. Otherwise,
it will be a reference and we will not append extra bytes since null references in serialized
objects have no bytes. Furthermore, the notNullBitmap must contain bits for every reference,
even the new ones.

How is a “dirty” object recognized by Kinetic handler? In order to recognize an affected object,
some metadata is added to the value of a key-value entry, while it is processed for storing.
During the store operation, every object is stored using the latest DBClass for its class and
superclasses. Thus, we mark every object with the number of fields for each of its classes.
Afterwards, when an object is retrieved, the stored metadata are compared with the number
of fields of the current DBClass instances. At least one difference means that the object is
“dirty”.

So, that’s why every key-value entry is not shaped exactly in an understandable way for Data
Service. The value of every key-value pair contains 4 more bytes for an integer in the beginning
of the serialized object. These 4 bytes denote the number of classes and superclasses that are
saved in the serialized object. Let’s call it classes. Thereafter, 20 * classes bytes of metadata
follow. Every 20 bytes consist of 16 bytes for the class ID and 4 bytes for the number of
fields of the class at the moment of store. If anything has not changed for any of the classes,
then the object is not dirty. Otherwise, its new fields should be set to default values. This
metadata are put in the beginning of the buffer, on purpose. If an object is not dirty and
stopsAtPersistent is true, we want the retrieval of an object to be as fast as possible. So, in
this case we just remove the initial metadata bytes from the buffer and return the remaining,
which is fully understandable by Data Service. No byte processing is needed. So, a huge
workload is avoided, which would take a lot time and it would be meaningless.

Last but not least, how are the new fields recognized when we need to update a dirty object?
The solution comes by dataClay itself. Thanks to the bytecode analysis, every new field is
added at the end of the fields. This change is also reflected in the DBClass in the same way.
Thus, since we know the number of the already stored fields, which are in the beginning of the
DBClass, we can also distinguish the new fields. Furthermore, fields are never removed from
user classes. Hence, once a field is added in a user class, its position in the class regarding the
other fields will never change.

5.10 Storing collections in the Kinetic drive

As we have seen in the previous chapter, there are some special cases where the serialization
does not follow the general pattern. Namely, collections, maps and arrays are serialized in
a special way. Obviously, the Kinetic handler treats serialized objects of these classes in a
special way, too. In this section, handling of collections is going to be presented. The other
cases follow in the next sections.

Honestly talking, the differences between the general serialization algorithm and the collection
one concern mostly some extra metadata rather than the actual way that collection members

90

are serialized. Thus, it would be meaningless and repetitive to describe in detail the processing
of serialized collections. Instead, we will focus on the things that make collections unique.

Someone might wonder how a collection wrapper is recognized. Every serialized object contains
16 bytes that denote the class ID of the object. These bytes are written in the second step
of the algorithms presented in the previous chapter. In the case of the three wrappers, there
is no exception. The class ID that is appended in the serialized object is the one of the
corresponding wrapper. So, if any of these 3 class IDs is recognized during the handling of
serialized objects, the general path is bypassed and special methods take care of the wrappers,
instead. After reading all the metadata that precedes the bytes for the serialized collection
members, the handling of the members is held by the same method that handles reference
fields in the general case. After all, collection members are objects!

It has been already mentioned that retrieval of collections, maps, arrays from Kinetic drive
can be direct. The reason is that the java wrappers are never enriched in comparison to other
user classes. Thus, no metadata are appended like in user classes. Only the serialized wrapper.
Which is fully understandable by Data Service. But, it is important to emphasize that just
the wrappers do not need enrichment check, not the collection members, which are regular
objects.

The rest of the section describes how to optimize retrieval of collections members in the Kinetic
drive. It has been mentioned several times the notion of grouping by selecting the appropriate
keys for the key-value entries. Regarding collections, taking advantage of this feature makes
sense more than any other time.

According to the selected key schema, objects of the same class always reside together in the
Kinetic drive. Thus, members of a collection reside inside the outer group of their class. But
it is very possible other objects which are not members of the collection to reside between the
collection members. This happens because the second part of every key is the object ID which
is generated randomly.

Before describing the proposed solution, let’s see how an object ID is formed. An object ID
is of type UUID. It consists of 16 bytes, which can be broken into two parts, 8 bytes for the
mostSignificantPart, and 8 bytes for the leastSignificantPart. In other words, an objectID is
made out of 2 longs.

The proposal is: We can generate randomly an object ID, which will be used for the wrapper
entry itself. Then, the mostSignificantPart of this ID will be used for the mostSignificantPart
of all the collection members’ IDs. By doing so, we achieve having collection members into a
subgroup inside the outer group of the class. However, if the leastSignificantPart is random,
the members of the collection probably will not have the same order as in the collection.
Instead, we can create the leastSignificantPart manually, by taking the leastSignificantPart of
the wrapper ID and increment it for every collection member. By doing so, the members of
the collection are ordered. Moreover, the probability to overwrite a collection member is very
small, since 8 bytes can produce IDs for 2ˆ64 - 1 collection members.

Last but not least, it is worth to mention the motivation of keeping objects IDs 16 bytes long,
despite the fact that we can store keys up to 4 KB in the Kinetic drive. The motivation is to

91

keep every key-value in an understandable format by Data Service. If we were using a kind of
internal object ID which exceeded the 16 bytes (for example, 16 bytes same for every member
and incrementing number), this ID would be useful only for the Kinetic handler. Even if only
the wrapper were requested with stopsAtPersistent true, it would have to map the internal
Kinetic ID to the dataClay ones. Which would impose extra processing of bytes.

5.11 Storing maps in the Kinetic drive

After introducing the handling of collections, there is no mystery left to reveal for maps.
Just, most of the processing is done twice. Moreover, the aforementioned optimization can be
adapted so that the keys and the values will be grouped.

5.12 Storing arrays in the Kinetic drive

Arrays can contain two types of elements: either primitive elements or references to other
objects. In the latter case, the handling is done more or less in an analogous way as collections.
Moreover, the grouping optimization can be applied in the array case too.

On the other side, when we want to store an array which contains primitive elements, the
process can be quite fast and without any need for calling the same method recursively (or its
iterative equal). Since we know both the type of the elements and the number of them in the
array, the number of bytes dedicated for the array into the serialized buffer can be calculated
really fast and the corresponding bytes are read at once.

However, if we do not pay attention, we will probably run into trouble. As the reader might
remember, every key-value in the Kinetic drive has restriction on the data size. The maximum
size of the value is 1 MB. If we want to store an array of 300,000 integers, it cannot fit into
one key-value entry, which would lead to an Exception. It is the only time we need to break
the single-object rule: The wrapper cannot contain the whole array.

The solution in this case is to break the array into small enough pieces, store them individ-
ually and keep track of the array components into the array wrapper. When a big array of
primitive type is requested, its wrapper is retrieved in the beginning, it is checked if its array
is segmented, and if yes, its parts are retrieved and recomposed into the wrapper. The only
thing left is: How can we recognize a big array? Thanks to the bytebuffer API, a single of the
method readableBytes() returns the number of bytes that the buffer contains. Last but not
least, the grouping trick that was described in the collection section can be used here too, in
order to retrieve the array segments as fast as possible.

92

Chapter 6

Evaluation of Kinetic handler

Objective of this chapter is to provide sense about the performance of Kinetic handler. Firstly,
the time needed for basic operations (such as put and get) is presented. Afterwards, the impact
of class enrichment is examined. Last, we see the behavior of Kinetic handler for arrays of
primitives (of variable lengths).

6.1 Main Operations

The first test run was for the elapsed time of store operation. Fifty simple objects (only with 2
primitive fields, and no references) were stored. The time needed for their store can be found
in Figure 6.1.

According to the results, the time needed for storing a single object is around 60 ms, most
of the times. Nevertheless, there are two more conclusions for which there is no explanation,
right now. It depends solely in the inner mechanisms of Kinetic drive.The first fact is that
similar results are grouped. In Figure 6.1, we see 2 groups: One group with elapsed time
around 60ms, and another with elapsed time around 80ms. The second fact is there are some
spikes during the store operation. In such cases, the elapsed time is even tripled.

The second case involves the store of an object which contains a reference to another un-stored
object. Thus, two objects are going to be stored, after processing the serialization message by
Kinetic handler. The result are in Figure 6.2.

As someone might expect, the elapsed times are doubled in comparison to those of Figure 6.1.
More precisely, grouping is present here too. More precisely, there is one group of 120ms and
another of 180ms, which are doubled of the values of Figure 6.1. Last, spikes are not missing
from this case.

In Figure 6.3, we see that if an object contains a reference to another persistent object, the
store operation is not affected and it behaves similarly with the case of Figure 6.1. This makes
sense, since dealing with references to other persistent objects requires just the processing of
some extra bytes in the serialized object. On the contrary, references to non-persistent objects

93

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

1" 6" 11" 16" 21" 26" 31" 36" 41" 46" 51" 56" 61" 66" 71" 76"

Elapsed(Time((msec)(

Elapsed"Time"

Figure 6.1: Elapsed time for storing simple objects.

0"

50"

100"

150"

200"

250"

300"

350"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31" 33" 35" 37" 39" 41" 43" 45" 47" 49" 51" 53" 55" 57" 59" 61" 63" 65" 67" 69" 71" 73" 75" 77" 79"

Elapsed(Time((msec)(

Elapsed"Time"

Figure 6.2: Elapsed time for storing objects with one reference.

94

require the processing of the whole serialized referenced object and, of course, one more put
operation to Kinetic drive.

0"

50"

100"

150"

200"

250"

300"

1" 3" 5" 7" 9" 11"13"15"17"19"21"23"25"27"29"31"33"35"37"39"41"43"45"47"49"51"53"55"57"59"61"63"65"67"69"71"73"75"77"79"

Elapsed(Time((msec)(

Elapsed"Time"

Figure 6.3: Elapsed time for storing objects with one reference to persistent object.

Regarding the retrieval of objects (Figure 6.4), we notice that they are one order of magnitude
faster than storing (as in Figure 6.1).

6.2 Impact of class enrichments

In Figure 6.5, the required time for obtaining objects of an enriched class is presented. It is
very important to mention that the total elapsed time (red lines in Figure 6.5) consists of both
enriching a “dirty” object and updating the “dirty” key-value entry in Kinetic drive. As it is
depicted in the blue sublines, most of the time is consumed for updating the key-value entry
in Kinetic drive, rather for retrieving and enriching a “dirty” object. According to the current
implementation, the user is compelled wait for the whole operation, while he is interested for
the enriched object which is ready much earlier. Such cases like this, can be dramatically
optimized by both using the Kinetic API for asynchronous operations and implementing the
corresponding callback handler. This was not possible throughout this master thesis, because
of the time limits.

95

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31" 33" 35" 37" 39" 41" 43" 45" 47" 49" 51" 53" 55" 57" 59" 61" 63" 65" 67" 69" 71" 73" 75" 77" 79"

Elapsed(Time((msec)(

Elapsed"Time"

Figure 6.4: Elapsed time for retrieving objects.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31" 33" 35" 37" 39" 41" 43" 45" 47" 49" 51" 53" 55" 57" 59" 61" 63" 65" 67" 69" 71" 73" 75" 77" 79"

Enrichment"and"Store"

Enrichment"

Figure 6.5: Elapsed time for retrieving objects of an enriched class.

96

6.3 Retrieving big arrays

In this section, the retrieval of big arrays of type int is examined. The objective is to check
whether the continuous key schema can perform better in comparison to using random suffixes.
In other words, it is tried to check the key schema trick mentioned in section 4.10.

Unfortunately, no optimization was noticed. For this test, 10 arrays of 25,000,000 ints were
stored, with and without the continuous key schema for their segments. The size of these
arrays is around 95MBs, which ends up into having 95 segments of the array because of the
1MB limit of the key-value entries. Afterwards, the arrays were retrieved. Figure 6.6 shows
elapsed times for retrieving the 10 arrays, when they were stored with random suffix for their
keys. Figure 6.7 shows elapsed times for retrieving the 10 arrays, when they were stored with
continuous suffix for their keys. Their times do not present any big difference. Time unit is
the millisecond.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Retrieval)of)10)big)arrays)with)random)suffix)in)their)keys)

Figure 6.6: Elapsed time for retrieving arrays with random suffix in their keys.

However, it was noticed the impact of the internal cache. Every array, in both cases (either
continuous or random key), was retrieved twice. Always the second retrieval was much faster.
The case of continuous key schema is presented in Figure 6.8. The behavior is the same for
random key schema too.

97

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Retrieval)of)10)big)arrays)with)con6nuous)suffix)in)their)keys)

Figure 6.7: Elapsed time for retrieving arrays with continuous suffix in their keys.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

1st"Retrieval"

2nd"Retrieval"

Figure 6.8: Elapsed time for retrieving arrays twice in the row.

98

Chapter 7

Conclusion

At the end, what is the conclusion after completing this research? Even though the results
derived from the tests, as they have been presented in the previous chapter, are not the
optimum, the integration of Seagate Kinetic technology into dataClay looks very promising
for dataClay. First of all, Kinetic technology fulfills the long desired feature of dataClay
for byte addressability. In other words, serialization mechanism and the data infrastructure,
that is, Kinetic drives, speak the same language which is bytes. But, moreover and more
interestingly, there is huge margin for improvement for both technologies and, also, for their
integration. Further details follow.

7.1 Serialization mechanism

Serialization mechanism has been designed in a way that persistent data will bear their se-
mantics. For example, SCOs that have been stored in a relational database are semantically
rich. Main reason of choosing this design was the potential to access data directly to the
data infrastructure. However, such a need for applications that want direct access to the data
infrastructure does not arise. Furthermore, accessing data this way breaks the long desired
feature of computation close to the data. Thus, the current serialization mechanism seems
to be obsolete. Indeed, serialization mechanism currently compels the data infrastructure
handlers to do a lot of work that can be avoided. More precisely, processing right now takes
place in both sides, serialization and handlers. This made sense only in the case of storing
semantically rich data. Since there is not such a need, as it has been explained earlier, a
more efficient serialization mechanism is needed. For this purpose, Storage Systems research
group at BSC has started the development of a new serialization mechanism that avoids the
double processing and makes handlers’ work much easier: There will be no need anymore for
processing serialized objects at handlers stage. Handlers will just be in charge of passing the
serialized objects in the data infrastructure. On the opposite side, when retrieving objects
whose class has been enriched, processing cannot be avoided as it has been explained in the
fourth chapter. But, if the class is not affected the stored objects can be just passed from the
data infrastructure to Data Service.

99

7.2 Seagate Kinetic Technology

Seagate Kinetic Technology still has a lot of progress to achieve (as dataClay has too). Even
though Kinetic has adopted the simple abstraction of key-value objects, the truth under the
hood is a bit more complicated. Actually, storing key-value objects has not been achieved
on hardware level, yet. Instead, an embedded system running Linux is in charge of storing
the key-value objects in a LevelDB database. In other words, the key-value store is software-
defined at the moment. This middle layer adds only overhead on the performance of the
Kinetic handler. When the key-value store will be implemented on hardware level, operation
from and to the Kinetic drive are expected to be optimized.

Further optimization can be achieved by changing the technology of the drive itself. Right
now, Kinetic drives are implemented on classical Hard Disk Drives. Implementing Kinetic
technology on Solid State Drives would probably offer further improvement to the perfor-
mance.

100

Bibliography

[1] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2):137–144, 2015.

[2] Edd Dumpbill. What is big data? https://beta.oreilly.com/ideas/

what-is-big-data, January 2012. Accessed: 2015-07-03.

[3] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future, 2007:
1–16, 2012.

[4] Kinetic open storage documentation wiki. https://developers.seagate.com. Accessed:
2015-07-03.

101

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	1 Συνοπτική Περιγραφή
	1.1 Περιγραφή του dataClay
	1.2 Αντικείμενο της διπλωματικής
	1.3 Περαιτέρω κατανόηση του dataClay
	1.3.1 Stub classes
	1.3.2 Custom serialization

	1.4 Συνθετικό μέρος: Kinetic handler
	1.4.1 Kinetic key-value objects
	1.4.2 Αναπαράσταση των κλάσεων στους δίσκους Kinetic
	1.4.3 Single-object rule
	1.4.4 Παγίδα για παραβίαση του Single-object rule
	1.4.5 Κίνητρο για το Single-object rule
	1.4.6 Περιεχόμενο της τιμής (value) σε ένα key-value Entry
	1.4.7 Επεξεργασία των σειριοποιημένων αντικειμένων
	1.4.8 Key schema
	1.4.9 Εμπλουτισμός κλάσεων
	1.4.10 Ανάκτηση των αντικειμένων από το Kinetic drive

	1.5 Αξιολόγηση

	2 Introduction and Motivation
	2.1 dataClay
	2.1.1 Data sharing
	2.1.2 Persistent vs. non-persistent data models
	2.1.3 Computing close to the data

	2.2 Seagate Kinetic Open Storage platform
	2.3 Objective of the master thesis

	3 Related Technology
	3.1 dataClay
	3.1.1 Self-contained objects
	3.1.2 3rd party enrichment
	3.1.3 dataClay details

	3.2 Seagate Kinetic Open Storage platform
	3.2.1 Kinetic architecture
	3.2.2 Kinetic Open Storage Value proposition
	3.2.3 Kinetic features
	3.2.4 Software resources
	3.2.5 Hardware resources

	4 Persistence Layer: Serialization mechanism
	4.1 Bytecode analysis
	4.2 Motivation for implementing custom serialization mechanism
	4.3 Representation of classes in the Data Service
	4.4 Representation of class fields in the Data Service
	4.5 Meaning of Not-Nulls-Bitmap
	4.6 Handling of already stored objects
	4.7 Handling of already serialized objects
	4.8 Serialization message
	4.8.1 Further explanation of the algorithm

	4.9 Wrappers
	4.9.1 Array wrappers
	4.9.2 Collection wrapper
	4.9.3 Map wrapper

	5 Persistence Layer: Kinetic handler
	5.1 Establishment of connection with Kinetic 4-bay development chassis
	5.2 Kinetic key-value objects overview
	5.3 Representation of classes on the Kinetic persistence layer
	5.4 Storing objects on the Kinetic persistence layer
	5.4.1 Overview
	5.4.2 Pitfalls for breaking the single-object rule
	5.4.3 Motivation for having single objects on the Kinetic drive
	5.4.4 Content of the value in a key-value entry
	5.4.5 Processing of serialized objects
	5.4.6 Key schema
	5.4.7 Superclasses storing
	5.4.8 Iterative version

	5.5 Retrieval of objects from the Kinetic drive
	5.6 Updating objects in the Kinetic drive
	5.7 Objects deletion from Kinetic drive
	5.8 Removal of a class from Kinetic drive
	5.9 Class enrichment
	5.10 Storing collections in the Kinetic drive
	5.11 Storing maps in the Kinetic drive
	5.12 Storing arrays in the Kinetic drive

	6 Evaluation of Kinetic handler
	6.1 Main Operations
	6.2 Impact of class enrichments
	6.3 Retrieving big arrays

	7 Conclusion
	7.1 Serialization mechanism
	7.2 Seagate Kinetic Technology

	Bibliography

