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Abstract

The aim of the present work is the computational study of the spatial and tem-
poral response of electrochemical systems where oscillations are observed (elec-
trochemical oscillators). The developed models were studied numerically with
the method of �nite elements, by taking into account systems of two electrodes
(anode and cathode), functioning under constant potential conditions. These
systems were studied by assuming tertiary current distribution and the spatio-
temporal variations of the potential and concentrations in the solution were
determined. The e�ect of the applied potential and the geometry on the non-
linear response was studied also. Finally, a computational study was performed
for simple networks of electrochemical oscillators, consisting of two oscillatory
electrode pairs and the type of coupling was investigated.

Σκοπός της παρούσας εργασίας είναι η υπολογιστική μελέτη της χωρικής και

χρονικής απόκρισης ηλεκτροχημικών συστημάτων που έχουν τη δυνατότητα να

ταλαντώνονται στο χρόνο (ηλεκτροχημικοί ταλαντωτές). Για το λόγο αυτό, αναπ-

τύχθηκαν μοντέλα τα οποία επιλύθηκαν υπολογιστικά με τη μέθοδο των πεπερασ-

μένων στοιχείων, που περιγράφουν ηλεκτροχημικές διατάξεις δύο ηλεκτροδίων

(άνοδος και κάθοδος) οι οποίες λειτουργούν υπό συνθήκες σταθερά επιβαλλόμε-

νου ηλεκτρικού δυναμικού. Μελετήθηκε η ταλαντούμενη απόκριση τέτοιων συστη-

μάτων, θεωρώντας τριτογενή κατανομή ηλεκτρικού ρεύματος, και υπολογίσθηκαν

οι χωρο-χρονικές μεταβολές του ηλεκτρικού δυναμικού και των συγκεντρώσεων

στο ηλεκτρολυτικό διάλυμα. Διερευνήθηκε η επίδραση του εφαρμοζόμενο δυναμικού

και της γεωμετρίας στη μη-γραμμική δυναμική απόκριση. Τέλος, μελετήθηκαν

υπολογιστικά, απλά δίκτυα ηλεκτροχημικών ταλαντωτών αποτελούμενα από δύο

ζεύγη ηλεκτροδίων και διερευνήθηκε το είδος της σύζευξής τους.
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Nomenclature

v �uid velocity vector (m/s)

Ni mass �ux of ionic species i (mol/(m2·s))

ηi overpotential of each electrode (V)

νi,m stoichiometric coe�cient

Φi electric potential (V)

Φ` electric potential in solution (V)

Φexta applied electrode voltage (V)

σ conductivity (S/cm)

ci concentrations of ionic species i (mol/m3)

Cdl electrical double layer capacitance (F/m2)

Di di�usion coe�cient of ionic species i (10−9m2·s)

F Faraday constant (C/mol)

i number of species, index

iFa
Faradaic current density on anode (A)

iloc charge transfer current density (A/m2)

ki potential dependent reaction rate coe�cient

k∗i temperature dependent reaction rate coe�cient

m number of reaction, index

R universal gas constant (8.3143 j/ mole· K)

T Thermodynamic absolute temperature (293.15 K)

ui ionic mobility of a species i (s·mol/kg)

zi number of electric charge of ionic species i

iii



Chapter 1

Introduction

Many electrochemical systems exhibit instabilities leading to oscillations of
the current, under potentiostatic conditions [3]. The oscillations observed ex-
perimentally are usually of periodic type and its characteristics (amplitude and
period) are determined by the kinetics of electrochemical reactions taking place
on the electrodes, the mass transport phenomena in the electrolytic solution
and the geometric characteristics of the electrolytic cell.

The determination of the kinetics of such oscillating systems are extremely
di�cult, due to the complexity of the mechanism. Moreover, the quantitative
modeling of such systems is limited due to the unknown values of the kinetic con-
stants. Even when the kinetics are known or accepted, the resulting equations
are di�cult to solve [17]. The resulting mathematical problem is a system of
partial di�erential equations (PDEs) with non-linear boundary conditions (the
kinetic equations on the electrode surfaces). Therefore, the modeling of these
non-linear dynamical systems is usually restricted due to necessary assumptions.
The most common assumption is to use the model of the Nernst di�usion layer
where it is considered that all changes of the concentrations of chemical species
occurs within a restricted, �xed-length layer, near the electrodes, and that the
concentration distributions are linear within the �xed layer. Beyond this layer,
all concentrations are assumed constant. This approach converts the PDE prob-
lem to an ordinary di�erential equations problem (ODE) [10]. Remarkably, this
option is able to describe qualitatively the instabilities and oscillations but it
cannot give realistic results on the phenomena occurring in the electrolytic so-
lution. Moreover, this approach cannot predict changes due to the modi�cation
of geometry of the electrolytic cell. Another approach ignores changes in the
electrolytic solution and is able to model exclusively surface phenomena, i.e.
concentrations and potential distributions on the electrode surface [4].

In this study, the modelling of electrochemical oscillatory systems is based
on an approach considering only few assumptions and eliminating the need of
the Nernst di�usion layer model. Typical two electrode arrangements (anode
and cathode) are considered, in the absence of a reference electrode. It is as-
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sumed that the description of the �ow of the chemical species is determined
by the Nernst-Planck equation, taking into account both the di�usion and the
electromigration of the particles under the in�uence of the electric �eld. More-
over, the kinetics on the electrodes are taken into account. Thus, in terms
of current distribution, a tertiary current distribution model is considered. In
order to maintain the generality of the approach, a speci�c mechanism of elec-
trochemical reactions is not considered, but a general non-linear dependence of
faradaic current from the electrode potential is introduced. The formalism is
implemented for both one and two dimensions and summarizes the impact of
kinetic and geometrical characteristics in the appearance of oscillations under
potentiostatic conditions. Additionally, simple networks of electrochemical os-
cillators are studied numerically in order to elucidate the interaction mechanism
of such non linear oscillators [9, 6, 7, 13, 16].
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Chapter 2

Physical Model and

Mathematical Formulation

2.1 Physical Model

The mathematical formulation depends on the reaction kinetics on the elec-
trode(s) surface. Let us consider an anode where a dissolution / passivation
reaction takes place. This reaction is, in principle, a multi-step electrode reac-
tion including both parallel and consecutive steps. These may include the active
dissolution of the metal, the formation of adsorbed species, the precipitation of
salts and the formation of oxide (passive) layers. In the most simple case, the
following scenario can be considered,

M
k1

GGGGGGAM2+ + 2e (2.1)

M + A
k2

GGGGGGBFGGGGGG

k−2

MA2+
ads + 2e (2.2)

where M is the solid metal, M2+ the metal ions, A the solution species and
MA2+ the adsorbed species �passivating� the metal surface.

The kinetic constants for the above simple scheme are potential dependent,

k1 = k∗1e
2a1F
RT E (2.3)

k2 = k∗2e
2a2F
RT E (2.4)

k−2 = k∗−2e
−2a−2F

RT E (2.5)

where E is the electrode potential, ai the symmetry factor and k∗i the tem-
perature dependent kinetic constants (the rest of the symbols have their usual
meaning).
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The total faradaic current due to the above reactions is,

iF = 2FSmax[(k1 + k2cA)(1− θ)− k−2θ] (2.6)

where cA the concentration of species A on the electrode surface, Smax is
the surface concentration of adsorbed species at maximum coverage and θ =
cMA2+

ads
/Smax the coverage.

The mass balance equation for the coverage is,

dθ

dt
= k2cA(1− θ)− k−2θ (2.7)

Assuming steady-state for the coverage we arrive to the following equation,

θ =
k2cA

k2cA + k−2
(2.8)

thus, equation (2.6) is written,

iF = 2FSmax
k1k−2

k2cA + k−2
(2.9)

where its has to be noticed that all kinetic constants are potential dependent.

Figure 2.1: (a) Characteristic i−E curve for dissolution-passivation mechanism
and (b) corresponding change of the coverage.

A characteristic i − E curve and the corresponding change of coverage for
the above physical model is shown in Figure (2.1). It is evident that for small
values of the potential, the current increases due to the electrodissolution of the
metal. As the potential is increased, the current attains a maximum and then
decreases due to passivation. It is known that this type of relation is observed
in many electrochemical systems manifesting oscillations under potentiostatic
conditions [12].

If double layer e�ects are to be taken into account, the Helmholtz model can
be implemented. Thus, a charging current is considered at the anode,

iC = Cdl
dE

dt
(2.10)
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where Cdl is the speci�c capacitance of the anode. Thus, the total current
density at the anode is, i = iF + ic.

Concerning the cathode, a typical arrangement may incorporate an electrode
where a (quasi)reversible reaction takes place,

N2+ + 2e
k3

GGGGGGBFGGGGGG

k−3

N (2.11)

for example, the deposition/dissolution of a copper wire. In this case, the
current-potential relation at the cathode attains the following equation,

i′F = i0[e
2a3F
RT (E′−Eeq) − cN2+

c∗N2+

e
2a3F
RT (E′−Eeq)] (2.12)

where i0 is the exchange current density of the reaction, c∗N2+ is the bulk con-
centration of the cations of the metal N, E′ the potential of the cathode and Eeq

the equilibrium potential of N2+|N. Double layer e�ects can be also introduced
as shown above. Thus, the total current density at the cathode, i′ will be the
sum of the faradaic and charging current on this electrode. Apparently, during
operation of the electrochemical cell,

I = I ′ = Ai = A′i′ (2.13)

where A and A′ are the surface area of the anode and cathode, respectively.

2.2 Mathematical Formulation

In this section, several examples of electrochemical modeling, based on the
secondary current distribution will be presented, as well as some simple analytic
solutions.

Additionally, the ODE formulation of the problem is introduced. As men-
tioned in the introduction �1, several assumptions have to be considered. De-
spite the fact that the ODE formulation is able to reproduce the instabilities
and the oscillations, an amount of physical information is lost.

Moreover, a more realistic PDE formulation is presented, based on tertiary
current distribution. The tertiary current distribution accounts for electromigra-
tion e�ects, e�ects of electrodes kinetics and the e�ect of concentration variation
in the cell.

2.2.1 Secondary current distribution

Let us consider an electrochemical cell consisting of two electrodes (1) and (2)
immersed in an electrolytic solution of N species having concentrations c∗i . Let
us consider, for simplicity, a single electrochemical reaction at electrode (1) and
a single electrochemical reaction at electrode (2), each having an equilibrium
potential Eeq,1 and Eeq,2.
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The cell potential under open circuit conditions (no current �ow) can be
de�ned as,

Ecell = Eeq,2 − Eeq,1 (2.14)

Thus, if Ecell > 0, electrode (1) will act spontaneously as an anode and electrode
(2) will acts spontaneously as a cathode. If Ecell < 0, electrode (1) will act
spontaneously as a cathode and electrode (2) will act spontaneously as an anode.
Hence, if an external load is connected between electrode (1) and (2) the system
will behave as a galvanic cell, current �owing spontaneously from (1) to (2) if
Ecell > 0 and spontaneously from (2) to (1) if Ecell < 0.
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Φexta

Φ`c

Electrode Electrode

Anode Cathode

Φexta = 0V

Bulk Solution

Computational Domain

Φ`a

∆Φ

x = 0
δ δ

Figure 2.2: Potential distribution inside the domain.

Let us suppose that a potential di�erence V is applied between electrode (1)
and (2) in a way such the potential at (1) is V = Φext and the potential in (2) is
zero (electrode (2) is grounded) see Fig. (2.2). Let us assume that even if current
�ows through the cell and the reactions proceed, the variation of concentrations
is insigni�cant. Let us also assume that the electrode surfaces are uniformly
accessible. In this case, the problem can be considered one-dimensional and the
one-dimensional Laplace equation holds for the potential Φ(x) in the electrolytic
solution,1

∂2Φ

∂x2
= 0 (2.15)

Under these conditions, the current density will be given by Ohm's law,

i = −σ∂Φ

∂x
(2.16)

1The electrolytic solution is considered as the domain enclosed between the edges of the

electrode double layer region
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where the conductivity σ is,

σ = F 2
∑
i

z2
i uic

∗
i (2.17)

and under the above assumptions is constant throughout the electrolytic so-
lution. The symbol ui is used for the mobility of species i. The solution of
Eq. (2.15) is,

Φ(x) = a1x+ a2 (2.18)

By combining Eqs. (2.18) and (2.16),

i = −σa1 (2.19)

that is, the current density in the solution is independent of the position x.
In order to determine a1 and a2 the appropriate boundary conditions must be
de�ned.

Before proceeding to the de�nition of the boundary conditions, let us in-
troduce that concept of overpotential of the electrode. Thus, overpotential is
de�ned as the di�erence between the potential at metal phase of the electrode
and the potential at the edge of the double layer, minus the equilibrium poten-
tial. Thus,

η1 = Φ1 − Φ(0)− Eeq,1 (2.20)

η2 = Φ2 − Φ(l)− Eeq,2 (2.21)

where x = 0 is the edge of the double layer of electrode (1) and x = L is the
edge of the double layer of electrode (2), see Figure (2.3). It is obvious that,
under the above assumptions,

η1 = Φext − Φ(0)− Eeq,1 (2.22)

η2 = 0− Φ(L)− Eeq,2 (2.23)

By using Eq. (2.18), we arrive to the following expressions for the overpotentials,

η1 = Φext − a2 − Eeq,1 (2.24)

η2 = −a1L− a2 − Eeq,2 (2.25)

Anode Cathode

L

Figure 2.3: Domain for ODE problem.
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Now, let us consider the following cases,

• Very fast reactions: Let us assume very fast reactions occurring with
almost zero overpotentials, i.e. η1 = η2 = 0. Under this conditions,
Eqs. (2.24) and (2.25) are written,

a2 = Φext − Eeq,1 (2.26)

a1 = −Φext + Ecell

L
(2.27)

Thus, the potential distribution in the solution is,

Φ(x) = −Φext + Ecell

L
x+ V − Eeq,1 (2.28)

The current density is,

i =
σ

L
(Φext + Ecell) (2.29)

Let us explore the above equations. If V > Ecell then the slope of
Eq. (2.28) is negative. Also, the current density i is positive. That is,
current �ows from electrode (1) to electrode (2), i.e. electrode (1) acts as
an anode and (2) as a cathode.

If V < Ecell then the slope of Eq. (2.28) is positive. In this case the current
density i is negative. That is, current �ows from electrode (2) to electrode
(1), i.e. electrode (2) acts as an anode and (1) as a cathode.

Finally, we observe that if Φext = −Ecell then the slope of Eq. (2.28) is
zero. Apparently, i = 0, thus there is no current �ow in the cell, even
though a potential V is applied.

The potential drops in the system can be found by writing Eq. (2.29) in
the following way,

Φext =
L

σ
i− Ecell (2.30)

By taking into account that the speci�c conductivity is related to the
solution resistance according to the formula,

σ =
L

AR
(2.31)

then Eq. (2.30) is written,

Φext = IR− Ecell (2.32)

where I = Ai is the current and A the electrode surface. Equivalently,

Φext = ∆ΦOhm − Ecell (2.33)

where ∆ΦOhm = IR is the ohmic drop in the solution.
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• Linear kinetics: Let us assume that the kinetics at electrode (1) obey a
linear law,

η1 =
RT

nFi0,1
i = ki (2.34)

and the kinetics at electrode (2) are fast, η2 = 0.

Since η1 = Φext − Φ(0)− Eeq,1, Φ(0) = a2 and i = −σa1 we obtain,

Φext − a2 − Eeq,1 = −kσa1 (2.35)

Since η2 = 0, Φ(L) = a1L+ a2 and Φ(L) = −Eeq,2 we obtain,

a2 = −Eeq,2 − a1L (2.36)

Combining the two equations above,

a1 = −Φext + Ecell

kσ + L
(2.37)

a2 =
Φext + Ecell

kσ − L
L− Eeq,2 (2.38)

Thus, the potential distribution is,

Φ(x) = −Φext + Ecell

kσ + l
(x− L)− Eeq,2 (2.39)

and the current density is,

i = σ
Φext + Ecell

kσ + L
(2.40)

Apparently, when the reaction at the anode is very fast, i0,1 → ∞, then
k → 0 and Eqs. (2.39) and (2.40) transform to Eqs. (2.28) and (2.29),
respectively.

The potential drops in the system can be found from Eq. (2.40), similarly
to the previous section,

Φext = η1 + IR− Ecell (2.41)

or equivalently,
Φext = η1 + ∆ΦOhm − Ecell (2.42)

We observe an additional potential drop corresponding to the overpoten-
tial at electrode (1).

9



• Tafel kinetics: Let us assume that the kinetics at electrode (1) obey
Tafel kinetics,

η1 = − RT

a1nF
ln i0,1 +

RT

a1nF
ln i (2.43)

and the kinetics at electrode (2) are fast, η2 = 0. It is assumed that
electrode (1) behaves as an anode.

The potential drops in the system will be given by an equation similar to
Eq. (2.42), which can be written,

Φext = − RT

a1nF
ln i0,1 +

RT

a1nF
ln i+ IR− Ecell (2.44)

or,

Φext = − RT

a1nF
ln I0,1 +

RT

a1nF
ln I + IR− Ecell (2.45)

where I0,1 = Ai0,1 the exchange current at electrode (1). We observe that
when the conductivity is very large then R→ 0 and the applied potential
versus current curve (polarization curve) obeys Tafel kinetics. For �nite
R there is a deviation from Tafel kinetics due to the term ∆ΦOhm =
IR. Similar results are obtained if electrode (1) is a cathode, by writing
appropriately the Tafel kinetics, Eq. (2.43).

The condition at electrode (1) is written,

Φext − a2 − Eeq,1 = − RT

a1nF
ln i0,1 +

RT

a1nF
ln | − σa1| (2.46)

The condition at electrode (2) is,

a2 = −Eeq,2 − a1L (2.47)

The above system of equations cannot be solved analytically. A numerical
approximation can give a1 and a2 and thus an approximation of Φ(x).

• Butler-Volmer kinetics: In the case of Butler-Volmer kinetics at elec-
trode (1),

i = i0,1(e
a1nF
RT η1 − e−

(1−a1)nF
RT η1) (2.48)

the coe�cients a1 and a2 can be found by the condition at electrode (1),

− σa1 = i0,1(e
a1nF
RT (Φext−a2−Eeq,1) − e−

(1−a1)nF
RT (Φext−a2−Eeq,1)) (2.49)

and the condition at electrode (2),

a2 = −Eeq,2 − a1L (2.50)

assuming η2 = 0.

The above system must be solved numerically. Once the solution is known,
Φ(x) and i can be determined, as a function of V .
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• E�ect of double-layer: In all the above examples, the double-layer
capacitance was not taken into account. Assuming that electrode (1)
behaves as a perfect capacitor with leakage, the current density on that
electrode will be,

i = iF,1 + ic,1 (2.51)

where iF,1 is given by Eq. (2.48) and,

ic,1 = Cdl,1
d(Φext − Φ(0))

dt
(2.52)

Thus, in order to determine a1 and a2, the following system of equations
must be solver numerically,

−σa1 = i0,1(e
a1nF
RT (Φext−a2−Eeq,1) − e−

(1−a1)nF
RT (Φext−a2−Eeq,1))

+ Cdl,1
d(Φext − a2)

dt
(2.53)

a2 = −Eeq,2 − a1L (2.54)

Once again, we assumed that the reaction at electrode (2) is very fast and
thus η2 = 0. We also ignore capacitance currents at electrode (2).

We must note that, in this case, the potential distribution must be written,

Φ(x, t) = a1(t)x+ a2(t) (2.55)

that is, a1 and a2 do not depend on x but are functions of t.

In the case of Tafel kinetics (assuming electrode (1) is an anode),

− σa1 = i0,1e
a1nF
RT (Φext−a2−Eeq,1) + Cdl,1

d(Φext − a2)

dt
(2.56)

In the case of linear kinetics,

− σa1 =
i0,1nF

RT
(Φext − a2 − Eeq,1) + Cdl,1

d(Φext − a2)

dt
(2.57)

or, in general,

− σa1 = iF(a2; Φext) + Cdl,1
d(Φext − a2)

dt
(2.58)

where iF(a2; Φext) an expression of the faradaic current.

2.2.2 Ordinary di�erential equation approach

In all the above examples, the concentration of the species in the electrolytic
solution was assumed constant. In the case of varying concentrations, equa-
tion (2.58) is modi�ed as follows,

Cdl
da2

dt
= σ
−a2 − Eeq,2

L
+ iF(a2, c1(0, t) . . . cN (0, t); Φext) (2.59)

11



where now, the expression of the total faradaic current iF depends also on
the surface concentration of the reacting species, ci(0, t).

In order to evaluate the surface concentrations ci(0, t), the following assump-
tion is introduced. We de�ne a linear distribution of the concentrations near
the electrodes on a distance δ and a constant value c∗i in the bulk solution, for
i = 1, 2, . . . , N .

ci(x, t) =


ci(0, t) +

c∗i − ci(0, t)
δ

x, 0 ≤ x ≤ δ

c∗i , x > δ

(2.60)

A schematic representation of the concentration distribution near the anode is
shown in Figure (2.4).
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Figure 2.4: Concentrations distribution near the anode.

Under this assumption, and if we consider only one electroactive species, the
mass balance equation at the anode is written,

dc1(0, t)

dt
=

2D1

δ2
(c∗1 − c1(0, t)) +

2

δ
Nmigr,1 +

2

δ
NF,1 (2.61)

where Nmigr,1 is the electromigration �ux and NF,1 the faradaic �ux of the
species.

For the faradaic �ux, the Faraday law can be implemented, i.e.,

NF,1 =
ν1iF
nF

(2.62)

where ν1 is the stoichiometric coe�cient of the species and n the number of
exchanged electrons. The electromigration �ux, on the other hand, poses some
additional problems. Nevertheless, two limiting cases are easy to handle. If the
reacting species are minor, then the migration �ux can be considered as zero. If
the reacting species are more mobile that all other species, then the migration
�ux is almost equal to the total �ux, i.e.

Nmigr,1 = σ
−a2 − Eeq,2

z1FL
(2.63)
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The above system of ODEs can be solved numerically for a2 and c1 in order
to determine the potential and concentration distribution at any t, if the faradaic
current is de�ned. As mentioned before, the faradaic current depends on the
mechanism and for a dissolution/passivation mechanism can be approximated
by a function iF = c1(0)f(a2; Φext) where [8],

f(∆Φa) = α1∆Φa

(
F

RT
∆Φa − α2

)2
F

RT
(2.64)

where ∆Φa = Φext − a2.
A typical example of cycle voltammogram for the above model is presented

in Figure (2.5). The parameter values are σ = 4 S/cm, L = 10 cm, δ = 0.01 cm,
Cdl = 10−5 F/cm2, D = 10−5 cm2/s, a1 = 0.65, a2 = 30, c∗1 = 0.001 mol/cm3,
z1 = 1, n = 1, ν = −1. It can be observed that for relatively small values of
applied potential the current increases until a limiting value. In the region from
0.68 to 0.76 V the current oscillates spontaneously. For large values of potential
the current decreases due to "passivation".

The existence of autonomous oscillations is veri�ed by plotting the current as
a function of time for a �xed value of the applied potential within the oscillatory
region. An example is presented in Figure (2.6) for Φext = 0.75 V. It is evident
that the oscillations are of relaxation type, where the current oscillates between
a low value corresponding to a "passive" state and a high value corresponding
to an "active" state.

Figure 2.5: Cyclic voltammetry for the ODE model. Scan rate 1 mV/s.

The instabilities leading to oscillations can be identi�ed from the correspond-
ing bifurcation diagram, by considering Φext as the bifurcation parameter and
a1 (which is proportional to the total current density). The bifurcation dia-
gram is presented in Figure (2.7), where red lines correspond to stable steady
states, black lines to unstable steady states and green lines to the minimum and
maximum values of limit cycles. At the point corresponding to Φext = 0.68 V a
Hopf bifurcation occurs leading to oscillations. At Φext = 0.78 V the oscillations
disappear because the limit cycle merges with saddle point.
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Figure 2.6: Time series of the current for the ODE model. Φext = 0.75 V.

Figure 2.7: Bifuraction diagram for the ODE model.

2.2.3 Tertiary current distribution

The mass balance for the diluted species in the electrolytic solution is described
by the following equation for three species:

∂ci
∂t

+∇ ·Ni = 0 (2.65)

It is assumed that the �ux can be described by the Nernst-Planck equation
[15]. The transport depends on di�usion, convection and electromigration of
ions. Also the direction of �ux depends on the sign of zi.

Ni = −ziuici∇Φ` −Di∇ci + civ (2.66)
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The modeling of any electrolytic process requires the consideration of the
three fundamental transport mechanisms di�usion, migration, and convection,
which are the �rst, second, and third terms in the above equation. In this
study, it is assumed that the �uid's velocity v is equal to zero. The Φ` denotes
the electric potential in the solution. Ionic mobility, ui in equation (2.66) was
derived from the Einstein relation,

ui =
Di

RT
(2.67)

In spite of the presence of charged species, the solution is electrically neutral
except for within very thin layers adjacent to the electrodes whose e�ects are not
taken into account in the present analysis. The constrain of electroneutrality
reads,

3∑
i=1

zici = 0 (2.68)

which can be utilized to calculate c3 algebraically.
The above system of four equations (three mass balance equations and elec-

troneutrality) are su�cient to solve for the concentration distribution of three
species and the potential distribution. The electric current is derived from the
ionic �ux according to the relation,

i = F

3∑
i=1

ziNi (2.69)

2.2.4 Implementation of boundary conditions of concen-

trations and electrode potential

Let us denote the outward unit normal vector on the boundary of the compu-
tational domain. Then

Anode: On the boundary interface of the anode we assume a chemical
reaction where only species (1) participate. Thus, on this boundary, the faradaic
and capacitance currents are written as equation (2.70) and equation (2.71).

iFa = c1f(∆Φa) (2.70)

iCa = Cdl
d(∆Φa)

dt
(2.71)

The subscript a describes quantities on the anode. The function f(∆Φa) is
a function of the potential di�erence of the applied potential on the anode Φexta

and the solution potential Φ` i.e. ∆Φa = Φexta − Φ` as de�ned in the previous
section.
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Thus, the total current density at the anode is expressed by the following
equation,

itota = iFa
+ iCa

=

(
F

3∑
i=1

ziNi

)
· ni (2.72)

where N2 = N3 = 0 because we assume that only the species (1) reacts on the
anode.

The function f(∆Φa), given by equation (2.64), where the values of the
constants α1 and α2 have been chosen after parametric studies of the problem,
is presented in Figure (2.8). The value of α1 ranges between 0.4-0.9.In general
we have observed that as the distance between the electrodes increases, the value
of α1 must be larger. The parameter α2 is always equal to 30. In the equation
of capacitance current, the term Cdl is equal to 0.2 F/m

2 and is associated with
the electrical double layer capacitance.

Figure 2.8: Graph of function f(∆Φa).

Cathode: To de�ne the cathode of the electrolytic cell we use the expres-
sion (2.73) known as the Butler-Volmer equation.

iFc = i0

(
e

aaF
RT ηc − c2

c∗2
e−

acF
RT ηc

)
(2.73)

where the exchange current density i0 = 102 [A/m2], ac = aa = 0.5 denote the
cathodic and anodic the charge transfer coe�cients. We assume that the species
c2 reacts on the cathode, so the terms c2 and c

∗
2 correspond to the concentration

on the electrode and in the bulk. Finally the overpotential ηc is expressed as,

ηc = Φextc − Φ`c − Eeqc
= −Φ`c − Eeqc

(2.74)
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We assume Φextc equal to zero, and Eeqc equal to the equilibrium potential
of the reaction. So the total current density on the cathode is,

itotc = iFc
= F

3∑
i=1

ziNi · ni (2.75)

where the �uxes of species c1 and c3 are equal to zero because only species c2
reacts on this boundary.

2.2.5 Initial conditions

As the problem is time dependant, we have to de�ne initial conditions for the
distribution of the concentrations. The solution is initially homogeneous (at
equilibrium),

c1 = c2 = 1000mol/m
3
for t = 0 (2.76)

the third species is calculated from electroneutrality, Eq. (2.68). We assume a
zero value for electric potential �eld for t=0.

2.3 De�nition of computational mesh

In this section we brie�y describe the mesh used for solving the numerical scheme
with �nite elements. We have to keep in mind that in computational modelling
we want a combination of reduced memory, CPU time and an accurate solution.
In our problem, due to the fast oscillations of the current we need a quite �ne
space and time discretization. For all simulation cases the largest time step was
set to 0.1 s where all the phenomenon lasts from 2000 s to 4000 s. At timesteps
where the solution develops discontinuities we use the default options of Comsol
4.4, which discretizes freely the time until the solution converges.

2.3.1 Grid for 1D problem

In section (3.1) we describe the one dimension problem. There, we start the
simulations with a uniform discretization of the computational domain. In order
to obtain convergence we need a domain discretized with 185 elements, see
Figure (2.9).

Figure 2.9: Uniform discretized grid.
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From physical intuition, we consider that changes of the potential distribu-
tion in the solution will be rather smooth whereas, concentration variations will
be drastic in the vicinity of the electrodes where the reactions occur. Thus,
we create an non-uniform mesh with only 47 elements, see Figure (2.10). This
second mesh, allow us to get accurate results using less memory and reducing
the CPU time. The same idea is used for the problem of coupled electrodes in
section (4.1). In that case we need 100 elements, the grid being �ner near the
electrodes and coarser everywhere else, see Figure (2.12).

Figure 2.10: Non-uniform grid, �nner near the electrodes.

Figure 2.11: Non-uniform grid for the coupling case.

2.3.2 Grid for 2D problem

For the simulations in a two dimensional domain we assume a rectangular do-
main. Inside this domain we consider two cylindrical electrodes. Due to symme-
try, and from the computational point of view, the electrodes can be considered
as circles. The left circle is de�ned as the anode and the right as the cath-
ode. This domain is described in detail in section 3.2. In order to discretize
the computational domain we use the default triangular discretization of Com-
sol 4.4. Due to the preferences of domain the grid is �ner near the electrodes
and becomes coarser in the bulk of the solution (far from the electrode/elec-
trolyte boundary). The number of triangular elements needed were 1817 and
the computational time was about �ve hours in a medium performance personal
computer.

Figure 2.12: Non-uniform grid for the 2D model.
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Chapter 3

A single oscillator

In this chapter we describe the computational solution of a one and a two dimen-
sional problem concerning a single oscillator. We present parametric analyses
for some of the parameters (e.g. the distance between the electrodes). Also
we study the response of the system for di�erent values of the applied poten-
tial and we present the distribution of the species concentrations and potential
distribution in detail.

3.1 1D Problem

The simplest geometry is considered in a one dimensional domain. We assume a
line with �xed length where we de�ne two points A and C, the anode electrode
on the left (A) and the cathode on the right (C) at a distance L, Figure (3.1).
In the bulk solution we consider the existence of three species c1, c2 and c3.

Anode Cathode

L

Figure 3.1: Computational domain fo 1D problem.

In order to �nd the region of the applied potential where the system becomes
unstable we have to scan the potential. Therefore a triangle type function of
the electric potential is implemented at the anode, see Figure (3.2). In this
way we manage to produce the cyclic voltammogram, similarly to laboratory
experiments.
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Figure 3.2: Triangular function for the applied (external) potential.

A typical graph corresponding to the above procedure is presented in Fig-
ure (3.3). The area which we are interested in, is the region where the behaviour
of the system is not smooth. As we will see in the following, to get more precise
information for that instability we have to scan the electrical potential with
a smaller rate and make a parametric analysis for some parameters e.g. the
distance L of the electrodes.

Figure 3.3: Cyclic voltammogram for high scan rate.

The emergence of oscillations depends on the distance between the electrode.
The proper distance can be found by a parametric study for L, see Figure (3.4)
and (3.5). It is clear that the optimal value for L is 3.5 cm, so the entire com-
putational domain is 5.5 cm long. The anode electrode is located at the 0 point
and the cathode at 3.5 cm. The domain is expanded 1 cm from each electrode,
where the computational domain ends (the boundaries of the electrochemical
cell).
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Figure 3.4: Parametric study for distance L.

The range of the applied electric potential Φexta in which the system os-
cillates is between 0.7 and 0.76 V as depicted in Figure (3.5). In order to
observe the behaviour of the system we make a parametric study for �xed the
values of Φexta . We chose three values inside the range of (0.7 V, 0.75 V). From
Figure (3.6), we understand that for high values of the applied potential, the
oscillations are more profound, that is, easier to observe.

Figure 3.5: Cyclic voltametry for the optimal distance L = 3.5 cm.

There seems to be a con�ict between these results and the cyclic voltammo-
gram, as well as the bifurcation diagram presented during the ODE study of
the system. Nevertheless, this discrepancy can be explained by taking into ac-
count the actual experiment which is modeled. Thus, this case corresponds to a
potential-step experiment, starting from initial conditions where the concentra-
tions have their bulk values throughout the domain and the potential gradient
is zero. In order to observe the oscillations, both concentrations and potential
have to follow a transient trajectory in the phase space which is �nally attracted
by the existing limit cycle.
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Figure 3.6: Parametric study for applied potential Φexta .

In order to bypass the problem of initial conditions being away from the
limit cycle, the applied potential is scanned (as in cycle voltammetry), but in
this case it is kept �xed at a desirable value, as presented in Figure (3.7). An
additional bene�t of this method is that we get realistic results using a coarser
mesh. So it provides substantial saving in memory storage and CPU time, while
preserving the accuracy of the solution.

Figure 3.7: Scan of Φexta where the �nal value of the potential is in the oscilla-
tory region.

In Figure (3.8) the total current density at the anode is presented, for three
di�erent values of Φexta . Eventually, the optimal values of potential, where the
current oscillations have long duration is at the upper limit of the oscillatory
region.
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Figure 3.8: Parametric study for di�erent values of the applied potential Φexta .

For Φexta = 0.75 V we can also calculate the �uctuations of concentrations of
all species on the electrodes. In Figure (3.9), solids lines describe the variation of
surface concentrations at the anode and dashed lines the surface concentrations
at the cathode.

Figure 3.9: Fluctuations of the concentrations at the anode (solid lines) and the
cathode (dashed lines).

In order to visualize the changes of all dynamic variables of the system during
oscillations, we focus in a speci�c short time interval where the system oscillates,
for example three spikes in [1240 s-1340 s], see Figure (3.10).

Figure 3.10: Current at the anode for a speci�c time interval.
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In Figure (3.11) we present the distributions of potential and concentrations
in the whole domain, in the left and right �gure, respectively. The x axis donates
the computational domain, where at the points 0 and 3.5 cm the electrode are
located (anode and cathode, respectively). It is clear that during spiking, the
distribution of the potential in the solution is more or less linear but �uctuates
drastically, and the concentration of each species changes only within a small
area close to the electrodes. These distributions are evident also from Figure
(3.12), where a snapshot is presented for t = 2000 s.

Figure 3.11: Distribution of potential and concectrations for a speci�c time.

Figure 3.12: Concentration distribution of all species at t = 2000 s.
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3.2 2D Problem

For the two dimensional problem we assume a rectangle domain a size of 1.5 cm
(at x direction) and 8 cm (at y direction). Inside the rectangle we place the
electrodes at a distance L = 6.5 cm. The distance L has been chosen as the
optimal distance in order to have oscillations of long duration, similarly to the
1D problem. During the laboratory experiments, electrodes of di�erent dimen-
sions are used, therefore the reactive areas of electrodes have di�erent size. We
consider that the cathode area must be at least 2 times larger than the anode
area, [14, 5]. Thus, we suppose two cylindrical electrodes (cycles due to sym-
metry) where the cathode radius is two and a half times bigger than the anode,
see Figure (3.13).
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Anode

Cathode

L

Figure 3.13: Computational domain for 2D problem.

The potential region where the system develops instability is located, once
again, by scanning the potential. We observe a behaviour similar to the 1D
problem, as can be seen in Figure (3.14).

Figure 3.14: Cyclic voltammetry in the 2D case.

The potential region where we observe autonomous oscillations is located
between the values of 0.7 and 0.75 V. From the parametric study of the potential,
the applied potential value of Φexta = 0.75V is chosen, since for this value the
oscillations have long duration. Thus, scanning for three di�erent values of
external potential Φext, we observe that the period depends on the applied
potential, see Figure (3.15). The di�erent behaviour of the system is visualized
better in �gure (3.16), where we focus in a speci�c short time interval.
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Figure 3.15: Parametric for the applied potential Φexta .

Figure 3.16: Parametric for the applied potential Φexta , for a short time interval.

A contour �gure for the distribution of potential and the normalized vector
of current density is presented in Figure (3.17) for Φexta = 0.75 V. As in the 1D
model, the potential increases near the anodic electrode (left cycle), it follows
a linear distribution between the electrodes and it takes values near zero on
the cathodic electrode (right cycle). The vectors of current density are always
perpendicular to the contour lines of the potential, and the direction of the
current is from the anode to the cathode, as expected. A 3D representation of
the above variables is presented in Figure (3.18).

Figure 3.17: Contour of the potential Φ` and vectors of current density, t =
3000 s.
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Figure 3.18: Contour of the potential and vectors of the current density, t =
3000 s.

As mentioned in section (2.2.3), the species c1 are consumed at the anode.
The species c2 are consumed at the cathode and the third species c3 move in
order to ful�l the electroneutrality condition, see Figure (3.19).

Figure 3.19: Distribution of the concentrations in the domain, t = 3000 s
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As mentioned before, the movement of ions in the electrolytic solution is due
to di�usion and electromigration. Di�usion �uxes are caused to concentration
gradients. The concentrations gradients for all species are shown in Figure
(3.20). It can be observed that concentration gradients for all species near the
anode are positive whereas they are negative for species c2 and c3 and positive
for species c1 near the cathode.

Figure 3.20: Concentration gradients in the domain, t = 3000 s

The di�usion �uxes are presented in Figure (3.21). As expected the direction
of the �ux is the opposite of the direction of the gradient, as expressed from
Fick's law.

Figure 3.21: Di�usion �ux in the domain, t = 3000 s

The electromigration �ux is presented in �gure (3.22). It is obvious that the
migration �ux of species c1 and c2 is from the anode to the cathode whereas for
species c3 is the opposite. This is to be expected since positive ions move from
regions of high potential to regions of low potential and negative ions move from
regions of low potential to regions of high potential.
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Figure 3.22: Electromigration �ux in the domain, t = 3000 s

The advantage of the simulation of the two dimensional model is that we can
get informations in particular areas of computational domain. In this paragraph
we study the changes of potential and concentrations on the surface of electrodes.
For a time period corresponding to a single spike we choose four time instances,
t1=1849.6 s,t2=1849.9 s,t3=1850.2 s and t4=1850.5 s, see left Figure (3.23). On
the right sketch of the same �gure we de�ne how we measure the arc length
of the electrode in degrees. The zero degree is located on the right side of the
anode. This side of the anode is the one facing the cathode. The 180o are
facing the left boundary of the electrochemical cell. For the cathode we use the
mirrored image of the (3.23), i.e. the zero is on the left side of the cycle with
face at the anodic electrode.

Figure 3.23: Four selected timesteps during one spike (left), de�nition of the arc
lenght on the anode (right).

In Figure (3.24), we present the potential distribution on the surface of the
anode. It is evident that the distribution is not homogeneous. The potential is
higher in the region of the surface facing the cathode and lower in the region the
cell boundary. Moreover we can observe that, at list for this four time instances
the potential values are changing but the distribution remains the same.

A similar behaviour is observed at the cathode where the change of the values
of the potential are not so profound due to the low value of the overpotential of
this electrode (this electrode behaves as an ideally non polarized electrode), see
Figure (3.25).
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Figure 3.24: Distribution of the potential on the anodic surface.
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Figure 3.25: Distribution of the potential on the cathodic surface.

In Figure (3.26), we present the corresponding concentration distribution of
species c1. In this case we observe a non homogeneous distribution together
with localized profound inhomogeneities. The nature of this localized inhomo-
geneities is di�cult explain due to the luck of corresponding experimental data,
[2, 1, 11]. Modi�cation of the computational mesh did not result smoother dis-
tribution, thus this behaviour cannot be attributed easily to numerical accuracy.
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Figure 3.26: Distribution of the concentration of c1 on the anodic surface.
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Chapter 4

Coupled Electrodes

In the section we present the case of two coupled electrode pairs immersed in a
common electrolytic solution. Was assume that the electrode pairs are electri-
cally isolated and the only communication medium is the electrolytic solution.
We study the interactions between the electrode pairs and their in�uence on
the geometry of the network. The study is restricted to the 1D where the CPU
memory requirements and computational time are not extreme.

4.1 C1A1 - A2C2 networks

We suppose an one dimensional domain (point 0 is the middle point of the
domain). Anode1 is located at the point −1.3 cm and the Anode2 at 1.3 cm, i.e.
the distance between the anodes is d = 2.6 cm, see Figure (4.1). The cathodic
electrodes are located a at a distance of L = 3.5 cm from the corresponding
anodes, as it has been described in section 3.1. We denote this network as
C1A1 - A2C2 and we expect interaction between the oscillators through the
neighbouring anodes.

Cathode1 Anode1 Anode2

L L

Cathode2

d

Figure 4.1: Computational domain of C1A1-A2C2.
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4.1.1 In-phase synchronization

Fist we have to locate the applied potential region in which the network os-
cillates. Following the same procedure are before, the potential is scanned,
similarly to a cyclic voltametry experiment. In �gure (4.32), we present the
result the cyclic voltammogram, and we notice that the couples oscillate simul-
taneously in the region Φext ∈ [0.7− 0.76].

Figure 4.2: Cyclic voltammetry for a C1A1 - A2C2 network.

The cyclic voltammetry calculations indicate that the network is synchro-
nized in-phase, that is, both oscillators oscillate simultaneously with the same
period and zero phase di�erence. In order to understand how these pairs inter-
act we implement a di�erent function for the applied potential on each electrode
pair. At every case, the potential of left pair C1A1 is considered are reference
(blue diagrams) and we alter the right pair A2C2 (green diagrams). So we keep
the same scan rate for each electrode, but at the end of the scan we set pair
(1) at potential Φext = 0.735 V and pair (2) at potential Φext = 0.735 V unit
t = 2000 s. For t > 2000 s the potential of pair (2) is changed to Φext = 0.75 V,
see Figure (4.3).
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Figure 4.3: Scan of Φexta for the C1A1 - A2C2 network.

In Figure (4.4) the total current densities are presented for each pair. The
green dashed curve represented current density at the anode of pair (2) (Anode2)
and with blue solid line the current density at the anode of pair (1) (Anode1).
Until the �rst 2000 s the oscillators are synchronized in-phase, At t = 2000 s
the applied potential is changed from 0.735 V to 0.75 V of pair (2) and the
amplitude as well as the period of the oscillations increase, as expected. The
instance where this change of the potential is implemented is observed also in
the right �gure of (4.4). It is observed that the period as well as the amplitude
of pair (1) also increases due to coupling. Due to the increase of period, the
electrode pairs still oscillate in-phase but due to the di�erence of the amplitude,
the wave-forms are not identical. This can be seen more easily if we plot the
di�erence between the values of total current densities, equation (4.1). We can
observe the evolution of this di�erence in Figure (4.5).

Figure 4.4: Total current density at the anode of pair (1) and (2).

33



∆itot = iright − ileft (4.1)

Figure 4.5: Di�erence of total current densities of the anodes of pair (1) and
(2).

The next set of calculations concern the opposite change of the applied po-
tential. Thus, we start from a higher value of applied potential and decrease
it at lower value. The potential is scanned to the value Φext1 = 0.75 V and at
t = 2000 s we set the potential of Anode2 at Φext2 = 0.735 V, see Figure (4.6).

Figure 4.6: Scan of Φexta for the C1A1 - A2C2 network.

From Figure (4.7), we notice that, initially the oscillators are synchronized.
At t = 2000 s, the amplitude of pair (2) decreases due to the lower value of
the applied potential. The wave-forms of the oscillators are di�erent, but they
remain synchronized in-phase. If we represent the the di�erences of the current
densities of this case (red line) and the previous case (blue line), they are exactly
the same, see Figure (4.8).

34



Figure 4.7: Total current densities of two anodes for the C1A1 - A2C2 network.

Figure 4.8: Di�erence of total current densities of the anodes of pair (1) and
(2).

The in�uence of the initial conditions on this network of identical oscillators
is examined by scanning the each potential with di�erent rates and setting the
�nal constant potential to the same value, as presented in Figure (4.9). So the
scan the pair (1) (blue) reaches the value of Φext = 0.75 V at 1250 s while the
rate of pair (2) (green) reaches the same value at 1875 s.
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Figure 4.9: Scan of Φext for the C1A1 - A2C2 network with di�erent rates.

Figure 4.10: Total current densities of the anodes of pair (1) and (2).

We can draw some conclusions on the synchronization observed from the
�gure (4.10). It is clear that in the beginning of the simulation the pair (1)
(blue) has an expected delay. At 1250 s this pair, which enters the oscillatory
area, tries to oscillate and it drifts the other pair without success. Instead,
at t = 1875 s, when pair (2) (green) starts to oscillate, pair (1) (blue) starts a
simultaneous oscillation. Calculating the di�erence of the values of two currents,
Eq. (4.1) we notice a synchronized behaviour in time, see Figure (4.11) where
the two oscillators become almost identical.

The evolution of the potential and the ionic current during synchrony can be
seen in Figure (4.12). Here, we plot the distribution of the potential and the �ow
of ionic current in the time interval from 3800 s to 4000 s, that is, during two
oscillatory peaks. We observe that during the �passive� state of the oscillations
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(low current density at step 347), there is a small potential di�erence between
Anode1 and Anode2. Due to this small potential di�erent, the ionic current be-
tween the interacting anodes is almost zero (no arrows in the region between the
anodes). Small ionic currents �ow between Anode1 and Cathode1 and Anode2

and Cathode2. During the oscillatory spike (in the interval between steps 348
and 349), the ionic current between Anode1-Cathode1 and Anode2-Cathode2 is
large, due to the developed potential di�erence between these electrodes. Ad-
ditionally, a potential di�erence is developed between Anode1 and Anode2 and
current �ows from the �rst to the second. Thus, it can be concluded that the
transmitted information between the two oscillators is the ionic current between
the two anodes, which is induced during the �active� state of the oscillations.

Figure 4.11: Di�erence of total currents of two anodes.
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Figure 4.12: Contour of potential and vectors of the ionic current density in the
computational domain during oscillations.

4.2 A1C1 - A2C2 networks

In this case the distances are L = 3.5 cm and d = 2.6 cm but the con�guration
of pair (1) is altered, as shown in Figure (4.13). So, Anode1 is located at point
-4 cm, Cathode1 at -1.3 cm, Anode2 at 1.3 cm and Cathode2 at 4 cm. We
denote this network as A1C1 - A2C2 and expect interaction through Cathode1

and Anode2.
In Figure (4.33) we present the cyclic voltammogram. We observe a di�erent

behaviour for each couple. Moreover, the oscillatory region has been shifted
anodically, in comparison with the previous results.
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Figure 4.13: Computational domain of the A1C1-A2C2 network.

Figure 4.14: Cyclic voltammetry scanning for the A1C1-A2C2 network.

In order to clarify this response, we a computation by keeping the pair 1
(blue) in a �xed potential 0.75 V while the potential of pair (2) (green) is
scanned. In the Figure (4.15) it is shown how the pair with a potential value
in the oscillatory region a�ects the other pair, whose potential scanned. For
example, in the to diagram of Figure (4.16), we have focused in the time interval
form 1250 - 1660 s where pair (2) (green) has a potential in the region from 0.8
to 1 V. In this area, pair (1) (blue) tends to �passivite� pair one. Then, when
pair (2) enters the oscillatory region, the oscillators tend to synchronize.
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Figure 4.15: Cyclic voltammetry for pair (2) (green) and �xed potential for pair
(1) (blue) in the A1C1-A2C2 network.

Figure 4.16: Cyclic voltammetry for pair (2) (green) and �xed potential for pair
(1) (blue) in the A1C1-A2C2 network for speci�c time regions.

As in the previous geometry, in this section we study the case in which we
keep the potential �xed at pair (1) equal to 0.735 V and for pair (2) we start
from the 0.735 V and at time of 2000 s we switch it at 0.75 V, see Figure (4.17).
Using this geometry (A1C1-A2C2), we notice that the whole system follows the
characteristics of the couple with the �xed potential, i.e the oscillations cannot
last longer than 2800 s when pair (1) turns from oscillations to a steady state.
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Figure 4.17: Total current densities of two anodes for the A1C1-A2C2 network.

Figure 4.18: Oscillations during the transition of the potential of pair (2) (green)
to higher values for the A1C1-A2C2 network.

On the other hand, when the value of pair (1) is higher, Φext = 0.75V and
we change the value of pair (2) from the 0.75 to 0.735 V we notice that the
system remains on sustained oscillations, see Figure (4.19) and (4.20).
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Figure 4.19: Total current densities of two anodes for the A1C1-A2C2 network.

Figure 4.20: Oscillations during the transition of the potential of pair (2) (green)
to higher values for the A1C1-A2C2 network.

By calculating the di�erence ∆itot, the conclusions of the previous observa-
tions become evident. The blue line presents the case where the system goes
from a lower potential to a higher, and turns to a steady state at 2900 s. The red
line describes the second case when we change the potential of a higher value to
a lower. From the time of 2000 s, where we make the change, the system tries to
stabilize the spikes and �nally the network is synchronized. The negative values
is due to the fact that the current of pair (2) is larger than that of pair (1), see
Figure (4.21).
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Figure 4.21: Di�erence of total current densities of the two anodes of pair (1)
and (2).

In this case we study how the system is e�ected when we keep the same
potential at both electrode pairs but we scan it with di�erent rate. In this way,
the e�ect of initial conditions is explored. So, we scan the pair (2) with a slower
rate than that of pair (1).

In Figure (4.22) we observe that at t = 1250 s pair (1) (blue) starts to
oscillate for applied potential Φext = 0.75 V. At the same time pair (2) (green)
is at higher potential and it is a�ected by pair (1). At t = 1800 s pair (2)
has almost double amplitude than pair (1), although they oscillate at the smae
potential. From Figure (4.24), we can see that the system is synchronized almost
instantly.

Figure 4.22: Total current densities of two anodes for the A1C1-A2C2 network.
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Figure 4.23: Interaction in the A1C1-A2C2 network at di�erent time intervals.

Figure 4.24: Di�erence of total currents of two anodes.

4.3 A1C1 - C2A2 networks

In this geometry we set the electrodes in way such that the neighbouring elec-
trodes are the cathodes, see Figure (4.25). We start once again by calculating
a cyclic voltammogram and locate the area where we interested in, see Figure
(4.32). We notice that the oscillators synchronize completely. The region of the
potential values where instabilities are observed is [0.7 V-0.76 V], so we chose
as a high potential Φext = 0.75 V and as a low potential Φext = 0.735 V.
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Figure 4.25: Computational domain of the A1C1-C2A2 network.

Figure 4.26: Cyclic voltammogram of the A1C1-C2A2 network .

In the next simulation we keep �xed the potential of pair (1) and compute
the cyclic voltammogram of pair (2) in order to record the oscillations, Figure
(4.28). Even though, both pairs are scanned with the same rate, pair (2) (green)
seems to delay. While pair (1) (blue) starts to oscillate, the other pair presents
damped oscillations, see Figure (4.28).

Figure 4.27: Cyclic voltammetry for pair (2) and �xed potential for pair (1) in
the A1C1-C2A2 network.
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Figure 4.28: Cyclic voltammetry for pair (2) and �xed potential for pair (1) in
the A1C1-C2A2 network (enlarged region).

The two oscillators are non-identical if we switch the potential form the
lower value to a higher at pair (1), while pair (2) has a �xed potential value
Φext = 0.735 V. We observe that synchronization is not achieved.

Figure 4.29: Total current densities of two anodes in the A1C1-C2A2 network.

Figure 4.30: Cyclic voltammetry for pair (2) and �xed potential for pair (1) in
the A1C1-C2A2 network.
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Figure 4.31: Cyclic voltammetry for pair (2) and �xed potential for pair (1) in
the A1C1-C2A2 network.

By following the opposite procedure, i.e starting from higher applied po-
tential and switching to a lower value, we see the system synchronizes and the
network follows the behaviour of the oscillator being at the lower potential. The
oscillations stop at 4600 s.

Figure 4.32: Total current densities of the two anodes.

Figure 4.33: Cyclic voltammetry for pair (2) and �xed potential for pair (1).
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In Figure (4.34), we apply the same value of potentials at each pair, but
we scan with di�erent rates. The pairs oscillate autonomously when both of
them reach the value of 0.75 V. From the di�erence of total current densities,
we notice that the pairs synchronize rapidly, Figure (4.35).

Figure 4.34: Total current densities of two anodes for Φext = 0.75 V.

Figure 4.35: Di�erence of total current densities of the two anodes for Φext =
0.75 V.
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Chapter 5

Conclusions

The conclusions of this work are summarized as follows:

1. Electrochemical systems following a �dissolution/passivation� mechanism
exhibit instabilities leading to oscillations of the current under potentio-
static conditions. The existence of oscillations depends on the electro-

chemical kinetics and the geometric characteristics of the electrochemical
cell.

2. Assuming secondary current distribution for the potential, transport of di-
luted species for the concentrations and the Nernst di�usion layer approxi-
mation we arrive to an ODE model which can capture the instabilities and
oscillations but cannot give a realistic information for the concentration
distribution.

3. The ODE formulation cannot be implemented for the modeling of realistic
geometries and cannot give any information of the coupling mechanism in
networks of electrochemical oscillators.

4. A time-dependent tertiary current distribution is the proposed model for
the numerical calculation of potential and concentration distributions.
This model can be solved by a �nite elements scenario, implemented in
COMSOL

5. In an electrochemical system consisting of an anode and a (quasi)reversible
cathode, current oscillations are manifested due to the oscillations of both
the electric potential and the concentrations in the solution and the elec-
trodes surface.

6. The distribution of the potential in the solution remains, more or less, lin-
ear during oscillations. Variation of the potential is observed throughout
the electrolytic cell.
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7. The distribution of the concentration is constant in the �bulk� of the solu-
tion even during oscillations. The variation of the concentrations is located
in a region close to the surfaces of the electrodes.

8. The potential as well as the concentration distributions on the electrodes
are not homogeneous.

9. Networks of two oscillatory electrode pairs are able to synchronize in-

phase. In the case of networks where the neighbouring electrodes are the
anodes, synchronization is observed even if the oscillators are not identical.

10. The synchronization of oscillators is due to the �ow of ionic currents be-
tween the electrodes, while they are on the �active� state of the oscillatory
cycle.

11. Networks of oscillators where the neighbouring electrodes are of di�erent
nature (anode and cathode) exhibit synchrony but the amplitude of one
oscillator is suppressed. The nature of coupling (inhibitory of excitatory)
seems to depend on the applied potential.

12. Networks of oscillators where the neighbouring electrodes are cathodes
exhibit complex oscillations. The origin of this response might be due to
a competing type of coupling between the oscillatory pairs.
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