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Abstract

The aim of the present work is the computational study of the spatial and tem-
poral response of electrochemical systems where oscillations are observed (elec-
trochemical oscillators). The developed models were studied numerically with
the method of finite elements, by taking into account systems of two electrodes
(anode and cathode), functioning under constant potential conditions. These
systems were studied by assuming tertiary current distribution and the spatio-
temporal variations of the potential and concentrations in the solution were
determined. The effect of the applied potential and the geometry on the non-
linear response was studied also. Finally, a computational study was performed
for simple networks of electrochemical oscillators, consisting of two oscillatory
electrode pairs and the type of coupling was investigated.

Yxomég e mopoloug epyaciag elvol 1) UTOAOYLOTIX MEAETN TNC YWEIXAC %ol
YEOVIXNAG AMOXELONG NAEXTROYNUXDY CUCTNUATWY TOU €YOUV Tr dUVATOTNHTA Vol
TONOYTOVOVTAL 0T Ypdvo (nhextpoynuxol tahavtentés). T to Adyo autd, avor-
TOyUnxay povtéha ta onolo emALUnXay UToAoYLIo T Ye TN wédodo Twv TeEnepao-
HévwY oTolyelwy, ToU TEPLYPdPOUY NAexTeoYNUXES Blatdielc BU0 NAexTEOdIWY
(dvodoc xar x&dodoc) ot onoiec hettoupyolv und cuvifixes otadepd emBalhoyue-
vou Nhexteixol duvauxol. Mehetdnxe 1 Tohavtoluevr andxplon TETOWY CUCTY-
HATOV, VEWEMVTAC TRLTOYEVY] XUTAVOUT NAEXTEIXOU pebUATOC, Xt LToloyioUnxoy
Ol YWEO-YEOVXEC UETABOAEC TOU NAEXTEIXOD BUVOLXOU XU TWV CUYXEVTPWOEWY
070 NAeXTEONUTIXG Bidhupa. Alepeuviinxe 1 entidpaon Tou e@aprolOUEVO BUVHULXOD
XL TNG YEWUETPloG oTN PNFypeauuxt| duvopxt| andxeiorn. Téhog, pehetriinxoy
UTOAOYLOTIXG, oA S{XTUO NAEXTEOYNUXGDV TOAAVTIWTOV AmoTEAOVUEVA amd 500
Cebyn nhextpodlwy xou diepeuvidnxe To eldoc tng obleuvéng Toug.
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Nomenclature

v fluid velocity vector (m/s)
N; mass flux of ionic species i (mol/(m?s))
7 overpotential of each electrode (V)

Vi m stoichiometric coefficient
D, electric potential (V)
D, electric potential in solution (V)

Do, applied electrode voltage (V)

o conductivity (S/cm)

¢ concentrations of ionic species i (mol/m?)

Cal electrical double layer capacitance (F/m?)

D; diffusion coefficient of ionic species i (10~%m?-s)
F Faraday constant (C/mol)

i number of species, index

iw, Faradaic current density on anode (A)

iloc charge transfer current density (A/m?)

k; potential dependent reaction rate coefficient

k} temperature dependent reaction rate coefficient
m number of reaction, index

R universal gas constant (8.3143 j/ mole- K)
T Thermodynamic absolute temperature (293.15 K)
u; ionic mobility of a species ¢ (s-mol/kg)

Zi number of electric charge of ionic species 4

iii



Chapter 1

Introduction

Many electrochemical systems exhibit instabilities leading to oscillations of
the current, under potentiostatic conditions [3]. The oscillations observed ex-
perimentally are usually of periodic type and its characteristics (amplitude and
period) are determined by the kinetics of electrochemical reactions taking place
on the electrodes, the mass transport phenomena in the electrolytic solution
and the geometric characteristics of the electrolytic cell.

The determination of the kinetics of such oscillating systems are extremely
difficult, due to the complexity of the mechanism. Moreover, the quantitative
modeling of such systems is limited due to the unknown values of the kinetic con-
stants. Even when the kinetics are known or accepted, the resulting equations
are difficult to solve [17]. The resulting mathematical problem is a system of
partial differential equations (PDEs) with non-linear boundary conditions (the
kinetic equations on the electrode surfaces). Therefore, the modeling of these
non-linear dynamical systems is usually restricted due to necessary assumptions.
The most common assumption is to use the model of the Nernst diffusion layer
where it is considered that all changes of the concentrations of chemical species
occurs within a restricted, fixed-length layer, near the electrodes, and that the
concentration distributions are linear within the fixed layer. Beyond this layer,
all concentrations are assumed constant. This approach converts the PDE prob-
lem to an ordinary differential equations problem (ODE) [10]. Remarkably, this
option is able to describe qualitatively the instabilities and oscillations but it
cannot give realistic results on the phenomena occurring in the electrolytic so-
lution. Moreover, this approach cannot predict changes due to the modification
of geometry of the electrolytic cell. Another approach ignores changes in the
electrolytic solution and is able to model exclusively surface phenomena, i.e.
concentrations and potential distributions on the electrode surface [4].

In this study, the modelling of electrochemical oscillatory systems is based
on an approach considering only few assumptions and eliminating the need of
the Nernst diffusion layer model. Typical two electrode arrangements (anode
and cathode) are considered, in the absence of a reference electrode. It is as-



sumed that the description of the flow of the chemical species is determined
by the Nernst-Planck equation, taking into account both the diffusion and the
electromigration of the particles under the influence of the electric field. More-
over, the kinetics on the electrodes are taken into account. Thus, in terms
of current distribution, a tertiary current distribution model is considered. In
order to maintain the generality of the approach, a specific mechanism of elec-
trochemical reactions is not considered, but a general non-linear dependence of
faradaic current from the electrode potential is introduced. The formalism is
implemented for both one and two dimensions and summarizes the impact of
kinetic and geometrical characteristics in the appearance of oscillations under
potentiostatic conditions. Additionally, simple networks of electrochemical os-
cillators are studied numerically in order to elucidate the interaction mechanism
of such non linear oscillators [9, 6, 7, 13, 16].



Chapter 2

Physical Model and
Mathematical Formulation

2.1 Physical Model

The mathematical formulation depends on the reaction kinetics on the elec-
trode(s) surface. Let us consider an anode where a dissolution / passivation
reaction takes place. This reaction is, in principle, a multi-step electrode reac-
tion including both parallel and consecutive steps. These may include the active
dissolution of the metal, the formation of adsorbed species, the precipitation of
salts and the formation of oxide (passive) layers. In the most simple case, the
following scenario can be considered,

ke
M——>M?* 4 2e (2.1)
ko )
M+ A MAZL + 2e (2.2)
k—2

where M is the solid metal, M2t the metal ions, A the solution species and
MAZ2* the adsorbed species “passivating” the metal surface.
The kinetic constants for the above simple scheme are potential dependent,

201 F o

ky = kle AT (2.3)

ky = kie B (2.4)
—2a_oF

k_y =k, wT P (2.5)

where E is the electrode potential, a; the symmetry factor and k} the tem-
perature dependent kinetic constants (the rest of the symbols have their usual
meaning).



The total faradaic current due to the above reactions is,
g = 2FSmaX[(k:1 + k2CA)(1 — 0) — ]{1_20] (26)

where ca the concentration of species A on the electrode surface, Spa.x is
the surface concentration of adsorbed species at maximum coverage and 6 =
Cyiaz+ /Smax the coverage.

ads . .

The mass balance equation for the coverage is,

de
—_— = kQCA(l — 0) — k_gﬂ (27)
dt
Assuming steady-state for the coverage we arrive to the following equation,
kQCA
= 2.8
kaca + k_o 28)
thus, equation (2.6) is written,
. kik_o
=2F Spax———— 2.9
" koca + k_o 29)

where its has to be noticed that all kinetic constants are potential dependent.
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Figure 2.1: (a) Characteristic ¢ — F curve for dissolution-passivation mechanism
and (b) corresponding change of the coverage.

A characteristic ¢ — F curve and the corresponding change of coverage for
the above physical model is shown in Figure (2.1). It is evident that for small
values of the potential, the current increases due to the electrodissolution of the
metal. As the potential is increased, the current attains a maximum and then
decreases due to passivation. It is known that this type of relation is observed
in many electrochemical systems manifesting oscillations under potentiostatic
conditions [12].

If double layer effects are to be taken into account, the Helmholtz model can
be implemented. Thus, a charging current is considered at the anode,

. dE
ic = Cdlﬁ (2.10)



where Cyq; is the specific capacitance of the anode. Thus, the total current
density at the anode is, i = ip + ic.

Concerning the cathode, a typical arrangement may incorporate an electrode
where a (quasi)reversible reaction takes place,

NZt 4 2 N (2.11)

k_3

for example, the deposition/dissolution of a copper wire. In this case, the
current-potential relation at the cathode attains the following equation,

i = dgle R (B'~Bea) _ N2 B (B B (2.12)
2+

where ig is the exchange current density of the reaction, ¢y, is the bulk con-
centration of the cations of the metal N, E’ the potential of the cathode and Fe,
the equilibrium potential of N2 |N. Double layer effects can be also introduced
as shown above. Thus, the total current density at the cathode, i’ will be the
sum of the faradaic and charging current on this electrode. Apparently, during
operation of the electrochemical cell,

I=1=Ai=A4% (2.13)

where A and A’ are the surface area of the anode and cathode, respectively.
2.2 Mathematical Formulation

In this section, several examples of electrochemical modeling, based on the
secondary current distribution will be presented, as well as some simple analytic
solutions.

Additionally, the ODE formulation of the problem is introduced. As men-
tioned in the introduction §1, several assumptions have to be considered. De-
spite the fact that the ODE formulation is able to reproduce the instabilities
and the oscillations, an amount of physical information is lost.

Moreover, a more realistic PDE formulation is presented, based on tertiary
current distribution. The tertiary current distribution accounts for electromigra-
tion effects, effects of electrodes kinetics and the effect of concentration variation
in the cell.

2.2.1 Secondary current distribution

Let us consider an electrochemical cell consisting of two electrodes (1) and (2)
immersed in an electrolytic solution of NV species having concentrations c}. Let
us consider, for simplicity, a single electrochemical reaction at electrode (1) and
a single electrochemical reaction at electrode (2), each having an equilibrium
potential Feq1 and Feq 2.



The cell potential under open circuit conditions (no current flow) can be
defined as,
Eeen = Eeq72 - Eeq71 (2.14)

Thus, if Ecen > 0, electrode (1) will act spontaneously as an anode and electrode
(2) will acts spontaneously as a cathode. If Eqp < 0, electrode (1) will act
spontaneously as a cathode and electrode (2) will act spontaneously as an anode.
Hence, if an external load is connected between electrode (1) and (2) the system
will behave as a galvanic cell, current flowing spontaneously from (1) to (2) if
Ecen > 0 and spontaneously from (2) to (1) if Eeepy < 0.

Anode Cathode
Bulk Solution

Peat,

>
cl

—

—

:7

s Computational Domain
Electrode z=0 Electrode

Figure 2.2: Potential distribution inside the domain.

Let us suppose that a potential difference V is applied between electrode (1)
and (2) in a way such the potential at (1) is V' = ®ey¢ and the potential in (2) is
zero (electrode (2) is grounded) see Fig. (2.2). Let us assume that even if current
flows through the cell and the reactions proceed, the variation of concentrations
is insignificant. Let us also assume that the electrode surfaces are uniformly
accessible. In this case, the problem can be considered one-dimensional and the
one-dimensional Laplace equation holds for the potential ®(x) in the electrolytic
solution,'

0%®
— =0 2.15
92 (2.15)
Under these conditions, the current density will be given by Ohm’s law,
0P
| = —0— 2.16
i oo (2.16)

IThe electrolytic solution is considered as the domain enclosed between the edges of the
electrode double layer region



where the conductivity o is,

o=F">"zuc (2.17)

and under the above assumptions is constant throughout the electrolytic so-
lution. The symbol w; is used for the mobility of species ¢. The solution of
Eq. (2.15) is,

O(z) = a1z + ag (2.18)

By combining Egs. (2.18) and (2.16),
i=—oa (2.19)

that is, the current density in the solution is independent of the position =x.
In order to determine a; and as the appropriate boundary conditions must be
defined.

Before proceeding to the definition of the boundary conditions, let us in-
troduce that concept of owverpotential of the electrode. Thus, overpotential is
defined as the difference between the potential at metal phase of the electrode
and the potential at the edge of the double layer, minus the equilibrium poten-
tial. Thus,

m=® — (I)(O) - Eeq,l (2.20)

N2 = @2 — ®(I) — Eeq2 (2.21)
where x = 0 is the edge of the double layer of electrode (1) and « = L is the
edge of the double layer of electrode (2), see Figure (2.3). It is obvious that,
under the above assumptions,

M = Pext — P(0) — Eeq,1 (2.22)

N2 = 0— @(L) - Eeq,Q (223)

By using Eq. (2.18), we arrive to the following expressions for the overpotentials,

N = Pext — az — Eeq,l (224)
2 = _alL — G2 — Ecq,2 (225)
+ p—
o - S ——
Anode Cathode
L

Figure 2.3: Domain for ODE problem.



Now, let us consider the following cases,

e Very fast reactions: Let us assume very fast reactions occurring with
almost zero overpotentials, i.e. 71 = 7m2 = 0. Under this conditions,
Egs. (2.24) and (2.25) are written,

ag = Doyp — Feq1 (2.26)
a] = — q)ext ZEcell (227)

Thus, the potential distribution in the solution is,

(Pex Ece
O(x) = —%x 4V - Bu (2.28)
The current density is,
.o
1= E(‘bext + Ecell) (229)

Let us explore the above equations. If V' > FE. then the slope of
Eq. (2.28) is negative. Also, the current density ¢ is positive. That is,
current flows from electrode (1) to electrode (2), i.e. electrode (1) acts as
an anode and (2) as a cathode.

If V < Ecen then the slope of Eq. (2.28) is positive. In this case the current
density 7 is negative. That is, current flows from electrode (2) to electrode
(1), i.e. electrode (2) acts as an anode and (1) as a cathode.

Finally, we observe that if ®ext = —FEecen then the slope of Eq. (2.28) is
zero. Apparently, i = 0, thus there is no current flow in the cell, even
though a potential V' is applied.

The potential drops in the system can be found by writing Eq. (2.29) in
the following way,

L
Pexy = —1 — Ecenl (2.30)
o

By taking into account that the specific conductivity is related to the
solution resistance according to the formula,

L
= 2.31
o iR (2.31)

then Eq. (2.30) is written,
Pexy = IR — Eeenl (2.32)
where I = Ai is the current and A the electrode surface. Equivalently,
Pext = APoOhm — Eeen (2.33)

where A®ony, = IR is the ohmic drop in the solution.



Linear kinetics: Let us assume that the kinetics at electrode (1) obey a

linear law,
RT
n nFig 1 ‘ ! ( )

and the kinetics at electrode (2) are fast, no = 0.
Since 1 = Pext — P(0) — Eoq,1, P(0) = a2 and ¢ = —oay we obtain,

cDext —ag — Eeq71 = —k:aa1 (235)
Since 1, = 0, ®(L) = a1 L + as and (L) = —FE,q 2 we obtain,
ag = —Eeq’g - alL (236)

Combining the two equations above,

(I)ext + Ecell
= 2.37
“ ko + L (237)
‘bext + Ecell
=——L—-F 2.38
az ko — L eq,2 ( )

Thus, the potential distribution is,

(I)ex + Ecell
P(z) = —];‘7“(56 — L) — Eeqo (2.39)

and the current density is,

. (I)ext + Ecell
e e 2.40
t=e ko+ L ( )

Apparently, when the reaction at the anode is very fast, i9,; — oo, then
k — 0 and Egs. (2.39) and (2.40) transform to Egs. (2.28) and (2.29),
respectively.

The potential drops in the system can be found from Eq. (2.40), similarly
to the previous section,

Pyt =11 + IR — Ecen (2'41)
or equivalently,

Doyt = M1 + APonm — Feell (2.42)

We observe an additional potential drop corresponding to the overpoten-
tial at electrode (1).



e Tafel kinetics: Let us assume that the kinetics at electrode (1) obey
Tafel kinetics,

RT
Ing Ing 243
ain mto1 + ainkF e (243)

m=-
and the kinetics at electrode (2) are fast, 7o = 0. It is assumed that
electrode (1) behaves as an anode.

The potential drops in the system will be given by an equation similar to
Eq. (2.42), which can be written,

RT RT
Doyt = — Ini Ini+ IR — E 2.44
¢ ainkF o1+ ainkF ne . ( )
or,
RT RT
Doyt = — In I InI+IR—-F 2.45
ext anF nlpy+ anF nil+ cell ( )

where Iy 1 = Aig 1 the exchange current at electrode (1). We observe that
when the conductivity is very large then R — 0 and the applied potential
versus current curve (polarization curve) obeys Tafel kinetics. For finite
R there is a deviation from Tafel kinetics due to the term A®onn =
IR. Similar results are obtained if electrode (1) is a cathode, by writing
appropriately the Tafel kinetics, Eq. (2.43).

The condition at electrode (1) is written,

RT T
Bogi — a9 — Bog1 = ————Ini In| — 2.46
v — a2 q,1 ainF nig,1 + ainF n|—oa (2.46)
The condition at electrode (2) is,
ag = *Eeq,Q — alL (247)

The above system of equations cannot be solved analytically. A numerical
approximation can give a; and as and thus an approximation of ®(z).

e Butler-Volmer kinetics: In the case of Butler-Volmer kinetics at elec-
trode (1),

. . anF _(zapnr
i=1dp1(e BT M —e~ " ET M) (2.48)

the coefficients a; and as can be found by the condition at electrode (1),
—oa; = io,l(e%@ex“_ar&“) - 6_“*;#(@6“—@—&“)) (2.49)
and the condition at electrode (2),

ag = —Feq2 —a1L (2.50)

assuming 72 = 0.

The above system must be solved numerically. Once the solution is known,
®(x) and ¢ can be determined, as a function of V.

10



e Effect of double-layer: In all the above examples, the double-layer
capacitance was not taken into account. Assuming that electrode (1)
behaves as a perfect capacitor with leakage, the current density on that
electrode will be,

1 =1p1 + %c1 (2.51)
where ip ; is given by Eq. (2.48) and,

d(q)cxt B (I)(O))
dt

Thus, in order to determine a; and as, the following system of equations
must be solver numerically,

ic,1 = Ca (2.52)

F
L (Poxt—a2—FEoq,1)

—oa; = io,l(e RT — e_(17;¥7LF(<Dext—a2—Eeq,1))
d(q)ext - a2)
C 2.53
+ dl,1 dt ( )
az = —FEeq2 — a1 L (2.54)

Once again, we assumed that the reaction at electrode (2) is very fast and
thus 72 = 0. We also ignore capacitance currents at electrode (2).

We must note that, in this case, the potential distribution must be written,
O(z,t) = a1 (t)x + az(t) (2.55)

that is, a1 and as do not depend on x but are functions of ¢.

In the case of Tafel kinetics (assuming electrode (1) is an anode),

ain (bext - a?)

d

—oay = i0,1€TTF(@”°_a2_Eeq‘l) + Cai ( dt (2:56)

In the case of linear kinetics,

io,lnF d((bext - a2)
—oa =0 (Pext — a2 — Feq1) + Cdl’lT (2.57)
or, in general,
d(Pext —

—oay = ip(ag; Pext) + Cdl,l% (2.58)

where ip(ag; Pext) an expression of the faradaic current.

2.2.2 Ordinary differential equation approach

In all the above examples, the concentration of the species in the electrolytic
solution was assumed constant. In the case of varying concentrations, equa-
tion (2.58) is modified as follows,

—az — Eeq,2

dag
Cagr =0— 1

+ip(az,c1(0,t)...cn(0,); Pext) (2.59)

11



where now, the expression of the total faradaic current ir depends also on
the surface concentration of the reacting species, ¢;(0,t).

In order to evaluate the surface concentrations ¢;(0,t), the following assump-
tion is introduced. We define a linear distribution of the concentrations near
the electrodes on a distance § and a constant value ¢} in the bulk solution, for
i=1,2,...,N.

(0,
ci(O,t)—i-Lz(’)a: 0<z<$

ci(z,t) = 6 ’ (2.60)
c x>0

E3
7

A schematic representation of the concentration distribution near the anode is
shown in Figure (2.4).

Anode Bulk 1+ Solution

*

G

c(0,1t)

Electrode

Figure 2.4: Concentrations distribution near the anode.

Under this assumption, and if we consider only one electroactive species, the
mass balance equation at the anode is written,

dCl (O, t) - 2D1

2 2
a2 0 5
where Npigr,1 is the electromigration flux and Np; the faradaic flux of the
species.
For the faradaic flux, the Faraday law can be implemented, i.e.,

(c>lk - Cl(oat)) + Nmigr,l + NF,l (261)

N1 = — 2.62
F1= % (2.62)

where v is the stoichiometric coefficient of the species and n the number of
exchanged electrons. The electromigration flux, on the other hand, poses some
additional problems. Nevertheless, two limiting cases are easy to handle. If the
reacting species are minor, then the migration flux can be considered as zero. If
the reacting species are more mobile that all other species, then the migration
flux is almost equal to the total flux, i.e.

—az — Eeq,Q

N (2.63)

Nmigr,l =0

12



The above system of ODEs can be solved numerically for as and ¢; in order
to determine the potential and concentration distribution at any ¢, if the faradaic
current is defined. As mentioned before, the faradaic current depends on the
mechanism and for a dissolution/passivation mechanism can be approximated
by a function ix = ¢1(0) f(az; Pext) where [8],

F

RT

F

= (2.64)

2
f(A(I)d) = OzlACI)a ( Aq)a - Oég)
where A®, = O — as.

A typical example of cycle voltammogram for the above model is presented
in Figure (2.5). The parameter values are 0 = 4 S/cm, L = 10 cm, § = 0.01 cm,
Cq1 = 107° F/cm?, D = 107° cm?/s, a; = 0.65, az = 30, ¢; = 0.001 mol/cm?,
z1 =1, n=1,v = —1. It can be observed that for relatively small values of
applied potential the current increases until a limiting value. In the region from
0.68 to 0.76 V the current oscillates spontaneously. For large values of potential
the current decreases due to "passivation".

The existence of autonomous oscillations is verified by plotting the current as
a function of time for a fixed value of the applied potential within the oscillatory
region. An example is presented in Figure (2.6) for ®eyy = 0.75 V. It is evident
that the oscillations are of relaxation type, where the current oscillates between
a low value corresponding to a "passive" state and a high value corresponding
to an "active" state.

0.35

0.3f

o

N

4]
T

o
[N
T

o

o

o
T

Current density (A/rr?)
=]

Il i I I Il
0 0.1 02 03 04 05 06 07 08 09 1
External electric potential (V)

0.7 0.75

Figure 2.5: Cyclic voltammetry for the ODE model. Scan rate 1 mV/s.

The instabilities leading to oscillations can be identified from the correspond-
ing bifurcation diagram, by considering ®.y as the bifurcation parameter and
ay (which is proportional to the total current density). The bifurcation dia-
gram is presented in Figure (2.7), where red lines correspond to stable steady
states, black lines to unstable steady states and green lines to the minimum and
maximum values of limit cycles. At the point corresponding to ®.; = 0.68 V a
Hopf bifurcation occurs leading to oscillations. At ®.,; = 0.78 V the oscillations
disappear because the limit cycle merges with saddle point.

13
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Figure 2.6: Time series of the current for the ODE model. @ = 0.75 V.
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Figure 2.7: Bifuraction diagram for the ODE model.

2.2.3 Tertiary current distribution

The mass balance for the diluted species in the electrolytic solution is described
by the following equation for three species:
8ci
ot

+V-N;=0 (2.65)

It is assumed that the flux can be described by the Nernst-Planck equation
[15]. The transport depends on diffusion, convection and electromigration of
ions. Also the direction of flux depends on the sign of z;.

N, = —zju;c;V®y — D;Vc; 4+ ¢;v (266)

14



The modeling of any electrolytic process requires the consideration of the
three fundamental transport mechanisms diffusion, migration, and convection,
which are the first, second, and third terms in the above equation. In this
study, it is assumed that the fluid’s velocity v is equal to zero. The ®, denotes
the electric potential in the solution. Ionic mobility, u; in equation (2.66) was
derived from the Einstein relation,

" RT

In spite of the presence of charged species, the solution is electrically neutral
except for within very thin layers adjacent to the electrodes whose effects are not
taken into account in the present analysis. The constrain of electroneutrality
reads,

3
D zici =0 (2.68)
=1

which can be utilized to calculate c3 algebraically.

The above system of four equations (three mass balance equations and elec-
troneutrality) are sufficient to solve for the concentration distribution of three
species and the potential distribution. The electric current is derived from the
ionic flux according to the relation,

3
i= FZZZ-N,' (2.69)
=1

2.2.4 Implementation of boundary conditions of concen-
trations and electrode potential

Let us denote the outward unit normal vector on the boundary of the compu-
tational domain. Then

Anode: On the boundary interface of the anode we assume a chemical
reaction where only species (1) participate. Thus, on this boundary, the faradaic
and capacitance currents are written as equation (2.70) and equation (2.71).

ip, = c1 f(AD,) (2.70)
ic, = Cdl% (2.71)

The subscript a describes quantities on the anode. The function f(A®,) is
a function of the potential difference of the applied potential on the anode ®exs,
and the solution potential ®, i.e. A®, = Peyy, — Py as defined in the previous
section.
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Thus, the total current density at the anode is expressed by the following
equation,

3
itOta = iFa + ica = (FZ ZiNi> - n; (272)
i=1

where Ny = N3 = 0 because we assume that only the species (1) reacts on the
anode.

The function f(A®,), given by equation (2.64), where the values of the
constants «; and ao have been chosen after parametric studies of the problem,
is presented in Figure (2.8). The value of oy ranges between 0.4-0.9.In general
we have observed that as the distance between the electrodes increases, the value
of a; must be larger. The parameter «s is always equal to 30. In the equation
of capacitance current, the term Cy; is equal to 0.2 F/m? and is associated with
the electrical double layer capacitance.
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Figure 2.8: Graph of function f(A®,).

Cathode: To define the cathode of the electrolytic cell we use the expres-
sion (2.73) known as the Butler-Volmer equation.

. . ag F Cy _ack
ir, = 1o <e RT Mo — € "C> (2.73)
2

where the exchange current density io = 10? [A/m?|, a. = a, = 0.5 denote the
cathodic and anodic the charge transfer coefficients. We assume that the species
co reacts on the cathode, so the terms ¢y and ¢j correspond to the concentration
on the electrode and in the bulk. Finally the overpotential 7. is expressed as,

Ne = (I)extc - (I)Ec - E’eqC = _(I)ZC - -EeqC (274)
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We assume &, equal to zero, and E,,4, equal to the equilibrium potential
of the reaction. So the total current density on the cathode is,

3
itotc = iFC = FZ ZiNi - n; (275)
i=1
where the fluxes of species ¢; and c3 are equal to zero because only species ¢,
reacts on this boundary.

2.2.5 Initial conditions

As the problem is time dependant, we have to define initial conditions for the
distribution of the concentrations. The solution is initially homogeneous (at
equilibrium),

¢1 = ¢z = 1000mol/m® for t = 0 (2.76)

the third species is calculated from electroneutrality, Eq. (2.68). We assume a
zero value for electric potential field for t=0.

2.3 Definition of computational mesh

In this section we briefly describe the mesh used for solving the numerical scheme
with finite elements. We have to keep in mind that in computational modelling
we want a combination of reduced memory, CPU time and an accurate solution.
In our problem, due to the fast oscillations of the current we need a quite fine
space and time discretization. For all simulation cases the largest time step was
set to 0.1 s where all the phenomenon lasts from 2000 s to 4000 s. At timesteps
where the solution develops discontinuities we use the default options of Comsol
4.4, which discretizes freely the time until the solution converges.

2.3.1 Grid for 1D problem

In section (3.1) we describe the one dimension problem. There, we start the
simulations with a uniform discretization of the computational domain. In order
to obtain convergence we need a domain discretized with 185 elements, see
Figure (2.9).

Figure 2.9: Uniform discretized grid.
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From physical intuition, we consider that changes of the potential distribu-
tion in the solution will be rather smooth whereas, concentration variations will
be drastic in the vicinity of the electrodes where the reactions occur. Thus,
we create an non-uniform mesh with only 47 elements, see Figure (2.10). This
second mesh, allow us to get accurate results using less memory and reducing
the CPU time. The same idea is used for the problem of coupled electrodes in
section (4.1). In that case we need 100 elements, the grid being finer near the
electrodes and coarser everywhere else, see Figure (2.12).

Figure 2.10: Non-uniform grid, finner near the electrodes.

Cathode 1 Anode 1 Ano_(':i_e 2 Cathode 2

Figure 2.11: Non-uniform grid for the coupling case.

2.3.2 Grid for 2D problem

For the simulations in a two dimensional domain we assume a rectangular do-
main. Inside this domain we consider two cylindrical electrodes. Due to symme-
try, and from the computational point of view, the electrodes can be considered
as circles. The left circle is defined as the anode and the right as the cath-
ode. This domain is described in detail in section 3.2. In order to discretize
the computational domain we use the default triangular discretization of Com-
sol 4.4. Due to the preferences of domain the grid is finer near the electrodes
and becomes coarser in the bulk of the solution (far from the electrode/elec-
trolyte boundary). The number of triangular elements needed were 1817 and
the computational time was about five hours in a medium performance personal
computer.

0000 kPprr
SN BN B

Figure 2.12: Non-uniform grid for the 2D model.
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Chapter 3

A single oscillator

In this chapter we describe the computational solution of a one and a two dimen-
sional problem concerning a single oscillator. We present parametric analyses
for some of the parameters (e.g. the distance between the electrodes). Also
we study the response of the system for different values of the applied poten-
tial and we present the distribution of the species concentrations and potential
distribution in detail.

3.1 1D Problem

The simplest geometry is considered in a one dimensional domain. We assume a
line with fixed length where we define two points A and C, the anode electrode
on the left (A) and the cathode on the right (C) at a distance L, Figure (3.1).
In the bulk solution we consider the existence of three species ¢q, co and c3.

+ _
@ @
Anode Cathode

L

Figure 3.1: Computational domain fo 1D problem.

In order to find the region of the applied potential where the system becomes
unstable we have to scan the potential. Therefore a triangle type function of
the electric potential is implemented at the anode, see Figure (3.2). In this
way we manage to produce the cyclic voltammogram, similarly to laboratory
experiments.
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Figure 3.2: Triangular function for the applied (external) potential.

A typical graph corresponding to the above procedure is presented in Fig-
ure (3.3). The area which we are interested in, is the region where the behaviour
of the system is not smooth. As we will see in the following, to get more precise
information for that instability we have to scan the electrical potential with
a smaller rate and make a parametric analysis for some parameters e.g. the
distance L of the electrodes.
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Total interface current density (A/m?)

Figure 3.3: Cyclic voltammogram for high scan rate.

The emergence of oscillations depends on the distance between the electrode.
The proper distance can be found by a parametric study for L, see Figure (3.4)
and (3.5). It is clear that the optimal value for L is 3.5 cm, so the entire com-
putational domain is 5.5 cm long. The anode electrode is located at the 0 point
and the cathode at 3.5 cm. The domain is expanded 1 cm from each electrode,

where the computational domain ends (the boundaries of the electrochemical
cell).

20



700 —L=2.5cm
650 —L=5.5cm
600 —L=3.5cm

550
500
450
400
350
300
250
200
150

100 .
50
0 ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
External electric potential (V)

Total interface current density (A/m?)

Figure 3.4: Parametric study for distance L.

The range of the applied electric potential ®cy, in which the system os-
cillates is between 0.7 and 0.76 V as depicted in Figure (3.5). In order to
observe the behaviour of the system we make a parametric study for fixed the
values of @y, . We chose three values inside the range of (0.7 V, 0.75 V). From
Figure (3.6), we understand that for high values of the applied potential, the
oscillations are more profound, that is, easier to observe.
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External electric potential (V) 0.7 0.75

Figure 3.5: Cyclic voltametry for the optimal distance L = 3.5 cm.

There seems to be a conflict between these results and the cyclic voltammo-
gram, as well as the bifurcation diagram presented during the ODE study of
the system. Nevertheless, this discrepancy can be explained by taking into ac-
count the actual experiment which is modeled. Thus, this case corresponds to a
potential-step experiment, starting from initial conditions where the concentra-
tions have their bulk values throughout the domain and the potential gradient
is zero. In order to observe the oscillations, both concentrations and potential
have to follow a transient trajectory in the phase space which is finally attracted
by the existing limit cycle.
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Figure 3.6: Parametric study for applied potential ®yt, .

In order to bypass the problem of initial conditions being away from the
limit cycle, the applied potential is scanned (as in cycle voltammetry), but in
this case it is kept fixed at a desirable value, as presented in Figure (3.7). An
additional benefit of this method is that we get realistic results using a coarser
mesh. So it provides substantial saving in memory storage and CPU time, while
preserving the accuracy of the solution.
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Figure 3.7: Scan of @y, where the final value of the potential is in the oscilla-
tory region.

In Figure (3.8) the total current density at the anode is presented, for three
different values of ®eyt,. Eventually, the optimal values of potential, where the
current oscillations have long duration is at the upper limit of the oscillatory
region.
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Figure 3.8: Parametric study for different values of the applied potential ®eys, .

For ®¢y, = 0.75 V we can also calculate the fluctuations of concentrations of
all species on the electrodes. In Figure (3.9), solids lines describe the variation of
surface concentrations at the anode and dashed lines the surface concentrations
at the cathode.
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Figure 3.9: Fluctuations of the concentrations at the anode (solid lines) and the
cathode (dashed lines).

In order to visualize the changes of all dynamic variables of the system during
oscillations, we focus in a specific short time interval where the system oscillates,
for example three spikes in [1240 s-1340 s], see Figure (3.10).

[—@.,=075v]
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Figure 3.10: Current at the anode for a specific time interval.
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Potential (V)

In Figure (3.11) we present the distributions of potential and concentrations
in the whole domain, in the left and right figure, respectively. The x axis donates
the computational domain, where at the points 0 and 3.5 cm the electrode are
located (anode and cathode, respectively). It is clear that during spiking, the
distribution of the potential in the solution is more or less linear but fluctuates
drastically, and the concentration of each species changes only within a small
area close to the electrodes. These distributions are evident also from Figure
(3.12), where a snapshot is presented for ¢ = 2000 s.
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Figure 3.12: Concentration distribution of all species at ¢ = 2000 s.
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3.2 2D Problem

For the two dimensional problem we assume a rectangle domain a size of 1.5 cm
(at z direction) and 8 cm (at y direction). Inside the rectangle we place the
electrodes at a distance L = 6.5 cmn. The distance L has been chosen as the
optimal distance in order to have oscillations of long duration, similarly to the
1D problem. During the laboratory experiments, electrodes of different dimen-
sions are used, therefore the reactive areas of electrodes have different size. We
consider that the cathode area must be at least 2 times larger than the anode
area, [14, 5]. Thus, we suppose two cylindrical electrodes (cycles due to sym-
metry) where the cathode radius is two and a half times bigger than the anode,
see Figure (3.13).

Cathode
Anode

Figure 3.13: Computational domain for 2D problem.

The potential region where the system develops instability is located, once
again, by scanning the potential. We observe a behaviour similar to the 1D
problem, as can be seen in Figure (3.14).
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Figure 3.14: Cyclic voltammetry in the 2D case.

The potential region where we observe autonomous oscillations is located
between the values of 0.7 and 0.75 V. From the parametric study of the potential,
the applied potential value of @y, = 0.75V is chosen, since for this value the
oscillations have long duration. Thus, scanning for three different values of
external potential ®.y;, we observe that the period depends on the applied
potential, see Figure (3.15). The different behaviour of the system is visualized
better in figure (3.16), where we focus in a specific short time interval.
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Figure 3.15: Parametric for the applied potential ®eyt, -
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Figure 3.16: Parametric for the applied potential ®qy, , for a short time interval.

A contour figure for the distribution of potential and the normalized vector
of current density is presented in Figure (3.17) for ®eyy, = 0.75 V. As in the 1D
model, the potential increases near the anodic electrode (left cycle), it follows
a linear distribution between the electrodes and it takes values near zero on
the cathodic electrode (right cycle). The vectors of current density are always
perpendicular to the contour lines of the potential, and the direction of the
current is from the anode to the cathode, as expected. A 3D representation of
the above variables is presented in Figure (3.18).
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Figure 3.17: Contour of the potential &, and vectors of current density, ¢ =
3000 s.
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Figure 3.18: Contour of the potential and vectors of the current density, ¢t =
3000 s.

As mentioned in section (2.2.3), the species ¢ are consumed at the anode.
The species co are consumed at the cathode and the third species c3 move in
order to fulfil the electroneutrality condition, see Figure (3.19).
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Figure 3.19: Distribution of the concentrations in the domain, ¢ = 3000 s
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As mentioned before, the movement of ions in the electrolytic solution is due
to diffusion and electromigration. Diffusion fluxes are caused to concentration
gradients. The concentrations gradients for all species are shown in Figure
(3.20). It can be observed that concentration gradients for all species near the
anode are positive whereas they are negative for species ¢ and c¢3 and positive
for species ¢; near the cathode.
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Figure 3.20: Concentration gradients in the domain, ¢ = 3000 s

The diffusion fluxes are presented in Figure (3.21). As expected the direction
of the flux is the opposite of the direction of the gradient, as expressed from
Fick’s law.
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Figure 3.21: Diffusion flux in the domain, ¢ = 3000 s

The electromigration flux is presented in figure (3.22). It is obvious that the
migration flux of species ¢; and cg is from the anode to the cathode whereas for
species c3 is the opposite. This is to be expected since positive ions move from
regions of high potential to regions of low potential and negative ions move from
regions of low potential to regions of high potential.
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Figure 3.22: Electromigration flux in the domain, ¢ = 3000 s

The advantage of the simulation of the two dimensional model is that we can
get informations in particular areas of computational domain. In this paragraph
we study the changes of potential and concentrations on the surface of electrodes.
For a time period corresponding to a single spike we choose four time instances,
t1=1849.6 s,t5=1849.9 s,t3=1850.2 s and t,=1850.5 s, see left Figure (3.23). On
the right sketch of the same figure we define how we measure the arc length
of the electrode in degrees. The zero degree is located on the right side of the
anode. This side of the anode is the one facing the cathode. The 180° are
facing the left boundary of the electrochemical cell. For the cathode we use the
mirrored image of the (3.23), i.e. the zero is on the left side of the cycle with
face at the anodic electrode.
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Figure 3.23: Four selected timesteps during one spike (left), definition of the arc
lenght on the anode (right).

In Figure (3.24), we present the potential distribution on the surface of the
anode. It is evident that the distribution is not homogeneous. The potential is
higher in the region of the surface facing the cathode and lower in the region the
cell boundary. Moreover we can observe that, at list for this four time instances
the potential values are changing but the distribution remains the same.

A similar behaviour is observed at the cathode where the change of the values
of the potential are not so profound due to the low value of the overpotential of
this electrode (this electrode behaves as an ideally non polarized electrode), see
Figure (3.25).
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Figure 3.24: Distribution of the potential on the anodic surface.
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Figure 3.25: Distribution of the potential on the cathodic surface.

In Figure (3.26), we present the corresponding concentration distribution of
species c;. In this case we observe a non homogeneous distribution together
with localized profound inhomogeneities. The nature of this localized inhomo-
geneities is difficult explain due to the luck of corresponding experimental data,
[2, 1, 11]. Modification of the computational mesh did not result smoother dis-
tribution, thus this behaviour cannot be attributed easily to numerical accuracy.
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Figure 3.26: Distribution of the concentration of ¢; on the anodic surface.
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Chapter 4

Coupled Electrodes

In the section we present the case of two coupled electrode pairs immersed in a
common electrolytic solution. Was assume that the electrode pairs are electri-
cally isolated and the only communication medium is the electrolytic solution.
We study the interactions between the electrode pairs and their influence on
the geometry of the network. The study is restricted to the 1D where the CPU
memory requirements and computational time are not extreme.

4.1 ClAl - AQCQ networks

We suppose an one dimensional domain (point 0 is the middle point of the
domain). Anode; is located at the point —1.3 cm and the Anodes at 1.3 cm, i.e.
the distance between the anodes is d = 2.6 cm, see Figure (4.1). The cathodic
electrodes are located a at a distance of L = 3.5 cm from the corresponding
anodes, as it has been described in section 3.1. We denote this network as
C1A; - AyCs and we expect interaction between the oscillators through the
neighbouring anodes.

L —d — L
L 4 @ @ L 4
Cathodel Anodm AHOdez Cathodeg

Figure 4.1: Computational domain of C;A{-A5Cs.
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4.1.1 In-phase synchronization

Fist we have to locate the applied potential region in which the network os-
cillates. Following the same procedure are before, the potential is scanned,
similarly to a cyclic voltametry experiment. In figure (4.32), we present the
result the cyclic voltammogram, and we notice that the couples oscillate simul-
taneously in the region @y € [0.7 — 0.76].
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Figure 4.2: Cyclic voltammetry for a C;A; - A3Cs network.

The cyclic voltammetry calculations indicate that the network is synchro-
nized in-phase, that is, both oscillators oscillate simultaneously with the same
period and zero phase difference. In order to understand how these pairs inter-
act we implement a different function for the applied potential on each electrode
pair. At every case, the potential of left pair C;A; is considered are reference
(blue diagrams) and we alter the right pair A;Cs (green diagrams). So we keep
the same scan rate for each electrode, but at the end of the scan we set pair
(1) at potential ®eyr = 0.735 V and pair (2) at potential ®eyy = 0.735 V unit
t = 2000 s. For ¢ > 2000 s the potential of pair (2) is changed to Peyy = 0.75 V,
see Figure (4.3).
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Figure 4.3: Scan of ®qy, for the C;A; - A2Cy network.

In Figure (4.4) the total current densities are presented for each pair. The
green dashed curve represented current density at the anode of pair (2) (Anode,)
and with blue solid line the current density at the anode of pair (1) (Anode;).
Until the first 2000 s the oscillators are synchronized in-phase, At ¢ = 2000 s
the applied potential is changed from 0.735 V to 0.75 V of pair (2) and the
amplitude as well as the period of the oscillations increase, as expected. The
instance where this change of the potential is implemented is observed also in
the right figure of (4.4). It is observed that the period as well as the amplitude
of pair (1) also increases due to coupling. Due to the increase of period, the
electrode pairs still oscillate in-phase but due to the difference of the amplitude,
the wave-forms are not identical. This can be seen more easily if we plot the
difference between the values of total current densities, equation (4.1). We can
observe the evolution of this difference in Figure (4.5).
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Figure 4.4: Total current density at the anode of pair (1) and (2).
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Figure 4.5: Difference of total current densities of the anodes of pair (1) and

(2)-

The next set of calculations concern the opposite change of the applied po-
tential. Thus, we start from a higher value of applied potential and decrease
it at lower value. The potential is scanned to the value ®qy, = 0.75 V and at
t = 2000 s we set the potential of at Doy, = 0.735 V, see Figure (4.6).
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Figure 4.6: Scan of ®qy, for the C;A; - A3Cy network.
From Figure (4.7), we notice that, initially the oscillators are synchronized.
At ¢t = 2000 s, the amplitude of pair (2) decreases due to the lower value of
the applied potential. The wave-forms of the oscillators are different, but they
remain synchronized in-phase. If we represent the the differences of the current
densities of this case (red line) and the previous case (blue line), they are exactly
the same, see Figure (4.8).
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Figure 4.7: Total current densities of two anodes for the C;A; - A;Cy network.
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Figure 4.8: Difference of total current densities of the anodes of pair (1) and

2).

The influence of the initial conditions on this network of identical oscillators
is examined by scanning the each potential with different rates and setting the
final constant potential to the same value, as presented in Figure (4.9). So the
scan the pair (1) (blue) reaches the value of ®eyy = 0.75 V at 1250 s while the
rate of pair (2) (green) reaches the same value at 1875 s.
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Figure 4.10: Total current densities of the anodes of pair (1) and (2).

We can draw some conclusions on the synchronization observed from the
figure (4.10). It is clear that in the beginning of the simulation the pair (1)
(blue) has an expected delay. At 1250 s this pair, which enters the oscillatory
area, tries to oscillate and it drifts the other pair without success. Instead,
at t = 1875 s, when pair (2) (green) starts to oscillate, pair (1) (blue) starts a
simultaneous oscillation. Calculating the difference of the values of two currents,
Eq. (4.1) we notice a synchronized behaviour in time, see Figure (4.11) where
the two oscillators become almost identical.

The evolution of the potential and the ionic current during synchrony can be
seen in Figure (4.12). Here, we plot the distribution of the potential and the flow
of ionic current in the time interval from 3800 s to 4000 s, that is, during two
oscillatory peaks. We observe that during the “passive” state of the oscillations
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(low current density at step 347), there is a small potential difference between
Anodel and Anode2. Due to this small potential different, the ionic current be-
tween the interacting anodes is almost zero (no arrows in the region between the
anodes). Small ionic currents flow between Anode; and Cathode; and Anode,
and Cathodes. During the oscillatory spike (in the interval between steps 348
and 349), the ionic current between Anode;-Cathode; and Anodes-Cathodes is
large, due to the developed potential difference between these electrodes. Ad-
ditionally, a potential difference is developed between Anode; and Anode; and
current flows from the first to the second. Thus, it can be concluded that the
transmitted information between the two oscillators is the ionic current between
the two anodes, which is induced during the “active” state of the oscillations.
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Figure 4.11: Difference of total currents of two anodes.

37



358} :
= _ — _#
357 ===
356 7= = = S
s Lo ———
/4 P
; S EEEE
o 3521 C 2 e 3
£
~ 351} -
350+ :
349_54:?!-_&:7_: — =S : 7
348_1 - :—ﬁ,— = —;— —..— S ‘.I‘ )
M7p P iiN_ i3
aa6l | |
-4 -2 0 2 4
Domain

Figure 4.12: Contour of potential and vectors of the ionic current density in the
computational domain during oscillations.

4.2 A101 - A2C2 networks

In this case the distances are L = 3.5 cm and d = 2.6 cm but the configuration
of pair (1) is altered, as shown in Figure (4.13). So, Anode; is located at point
-4 c¢cm, Cathode; at -1.3 cm, Anode, at 1.3 cm and Cathodes at 4 cm. We
denote this network as A;C; - A;Cs and expect interaction through Cathode;
and Anode,.

In Figure (4.33) we present the cyclic voltammogram. We observe a different
behaviour for each couple. Moreover, the oscillatory region has been shifted
anodically, in comparison with the previous results.
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Figure 4.14: Cyclic voltammetry scanning for the A;C;-A5Cy network.

In order to clarify this response, we a computation by keeping the pair 1
(blue) in a fixed potential 0.75 V while the potential of pair (2) (green) is
scanned. In the Figure (4.15) it is shown how the pair with a potential value
in the oscillatory region affects the other pair, whose potential scanned. For
example, in the to diagram of Figure (4.16), we have focused in the time interval
form 1250 - 1660 s where pair (2) (green) has a potential in the region from 0.8
to 1 V. In this area, pair (1) (blue) tends to “passivite” pair one. Then, when
pair (2) enters the oscillatory region, the oscillators tend to synchronize.
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Figure 4.15: Cyclic voltammetry for pair (2) (green) and fixed potential for pair
(1) (blue) in the A;C;-A5C2 network.
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Figure 4.16: Cyclic voltammetry for pair (2) (green) and fixed potential for pair
(1) (blue) in the A;C;-A5Cy network for specific time regions.

As in the previous geometry, in this section we study the case in which we
keep the potential fixed at pair (1) equal to 0.735 V and for pair (2) we start
from the 0.735 V and at time of 2000 s we switch it at 0.75 V, see Figure (4.17).
Using this geometry (A;C;-AC5), we notice that the whole system follows the
characteristics of the couple with the fixed potential, i.e the oscillations cannot
last longer than 2800 s when pair (1) turns from oscillations to a steady state.
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Figure 4.17: Total current densities of two anodes for the A;C;-A5Cs network.
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Figure 4.18: Oscillations during the transition of the potential of pair (2) (green)
to higher values for the A;C;-A>Cs network.

On the other hand, when the value of pair (1) is higher, ®. = 0.75V and

we change the value of pair (2) from the 0.75 to 0.735 V we notice that the
system remains on sustained oscillations, see Figure (4.19) and (4.20).
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Figure 4.19: Total current densities of two anodes for the A;C;-A5Cs network.
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Figure 4.20: Oscillations during the transition of the potential of pair (2) (green)
to higher values for the A;C;-A5Cs network.

By calculating the difference Aiyot, the conclusions of the previous observa-
tions become evident. The blue line presents the case where the system goes
from a lower potential to a higher, and turns to a steady state at 2900 s. The red
line describes the second case when we change the potential of a higher value to
a lower. From the time of 2000 s, where we make the change, the system tries to
stabilize the spikes and finally the network is synchronized. The negative values
is due to the fact that the current of pair (2) is larger than that of pair (1), see
Figure (4.21).
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Figure 4.21: Difference of total current densities of the two anodes of pair (1)
and (2).

In this case we study how the system is effected when we keep the same
potential at both electrode pairs but we scan it with different rate. In this way,
the effect of initial conditions is explored. So, we scan the pair (2) with a slower
rate than that of pair (1).

In Figure (4.22) we observe that at ¢ = 1250 s pair (1) (blue) starts to
oscillate for applied potential ®ey = 0.75 V. At the same time pair (2) (green)
is at higher potential and it is affected by pair (1). At ¢ = 1800 s pair (2)
has almost double amplitude than pair (1), although they oscillate at the smae
potential. From Figure (4.24), we can see that the system is synchronized almost
instantly.
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Figure 4.22: Total current densities of two anodes for the A;C;-A>Cs network.
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Figure 4.24: Difference of total currents of two anodes.

4.3 A,;C; - CyA5 networks

In this geometry we set the electrodes in way such that the neighbouring elec-
trodes are the cathodes, see Figure (4.25). We start once again by calculating
a cyclic voltammogram and locate the area where we interested in, see Figure
(4.32). We notice that the oscillators synchronize completely. The region of the
potential values where instabilities are observed is [0.7 V-0.76 V], so we chose
as a high potential ®.; = 0.75 V and as a low potential ®.; = 0.735 V.
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Figure 4.25: Computational domain of the A;C;-CoA5 network.
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Figure 4.26: Cyclic voltammogram of the A;C;-CoA5 network .

In the next simulation we keep fixed the potential of pair (1) and compute
the cyclic voltammogram of pair (2) in order to record the oscillations, Figure
(4.28). Even though, both pairs are scanned with the same rate, pair (2) (green)
seems to delay. While pair (1) (blue) starts to oscillate, the other pair presents
damped oscillations, see Figure (4.28).

700 |
650
600
550
500
450
400
350
300
250
200
150
100

50

0 L AN

0 500 1000 1500 2000 2500 300(¢
Time (s)

— Left couple
—-Right couple

Total interface current density (A/m?)

Figure 4.27: Cyclic voltammetry for pair (2) and fixed potential for pair (1) in
the A;C;-C3A5 network.
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Figure 4.28: Cyclic voltammetry for pair (2) and fixed potential for pair (1) in
the A1C1-C2As network (enlarged region).

The two oscillators are non-identical if we switch the potential form the
lower value to a higher at pair (1), while pair (2) has a fixed potential value
Pt = 0.735 V. We observe that synchronization is not achieved.
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Figure 4.29: Total current densities of two anodes in the A;C;-CoA9 network.
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Figure 4.30: Cyclic voltammetry for pair (2) and fixed potential for pair (1) in
the A;C;-C3A5 network.
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Figure 4.31: Cyclic voltammetry for pair (2) and fixed potential for pair (1) in
the A;C;-C3A5 network.

By following the opposite procedure, i.e starting from higher applied po-
tential and switching to a lower value, we see the system synchronizes and the
network follows the behaviour of the oscillator being at the lower potential. The
oscillations stop at 4600 s.
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Figure 4.32: Total current densities of the two anodes.
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Figure 4.33: Cyclic voltammetry for pair (2) and fixed potential for pair (1).
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In Figure (4.34), we apply the same value of potentials at each pair, but
we scan with different rates. The pairs oscillate autonomously when both of
them reach the value of 0.75 V. From the difference of total current densities,
we notice that the pairs synchronize rapidly, Figure (4.35).
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Figure 4.34: Total current densities of two anodes for @, = 0.75 V.
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Figure 4.35: Difference of total current densities of the two anodes for ®oyy =
0.75 V.
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Chapter 5

Conclusions

The conclusions of this work are summarized as follows:

1.

Electrochemical systems following a “dissolution/passivation” mechanism
exhibit instabilities leading to oscillations of the current under potentio-
static conditions. The existence of oscillations depends on the electro-
chemical kinetics and the geometric characteristics of the electrochemical
cell.

. Assuming secondary current distribution for the potential, transport of di-

luted species for the concentrations and the Nernst diffusion layer approxi-
mation we arrive to an ODE model which can capture the instabilities and
oscillations but cannot give a realistic information for the concentration
distribution.

The ODE formulation cannot be implemented for the modeling of realistic
geometries and cannot give any information of the coupling mechanism in
networks of electrochemical oscillators.

. A time-dependent tertiary current distribution is the proposed model for

the numerical calculation of potential and concentration distributions.
This model can be solved by a finite elements scenario, implemented in
COMSOL

In an electrochemical system consisting of an anode and a (quasi)reversible
cathode, current oscillations are manifested due to the oscillations of both
the electric potential and the concentrations in the solution and the elec-
trodes surface.

The distribution of the potential in the solution remains, more or less, lin-
ear during oscillations. Variation of the potential is observed throughout
the electrolytic cell.
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10.

11.

12.

The distribution of the concentration is constant in the “bulk” of the solu-
tion even during oscillations. The variation of the concentrations is located
in a region close to the surfaces of the electrodes.

The potential as well as the concentration distributions on the electrodes
are not homogeneous.

Networks of two oscillatory electrode pairs are able to synchronize in-
phase. In the case of networks where the neighbouring electrodes are the
anodes, synchronization is observed even if the oscillators are not identical.

The synchronization of oscillators is due to the flow of ionic currents be-
tween the electrodes, while they are on the “active” state of the oscillatory
cycle.

Networks of oscillators where the neighbouring electrodes are of different
nature (anode and cathode) exhibit synchrony but the amplitude of one
oscillator is suppressed. The nature of coupling (inhibitory of excitatory)
seems to depend on the applied potential.

Networks of oscillators where the neighbouring electrodes are cathodes
exhibit complex oscillations. The origin of this response might be due to
a competing type of coupling between the oscillatory pairs.
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