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Abstract  

 

In the deterministic case, the solution of a nonlinear problem can easily approached by 

iterative methods. In the case of, that we have to deal with a stochastic nonlinear 

problem the domain does not however, have a physical meaning that permits a 

sensible discretization. In this context the abstract Hilbert space foundation of the 

finite element method becomes useful as it can be extended to deal with random 

functions. In this thesis we intended to solve one nonlinear problem with a random 

variable. In a more applied sense, it is sought to describe random processes in such a 

manner that they can be implemented in a finite element formulation of the physical 

problem.  

 

 

I would like also to express my gratitude to As. Professor Vissarion Papadopoulo for 

the assignment of this thesis and Dr. Dimitri Giovani for all explanations and 

programming implementations. 
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1 Introduction 

 

1.1 Definitions in Stochastic Measurement  

1.1.1 Random Variables 

 

Definition   

A random variable X(ω), ω ∈ Ω is a function defined on a sample space Ω such that 

for every real number x there exists the probability P[ω : X(ω) ≤ x]. In more simple 

terms a random variable is a rule that assigns a numerical value to each possible 

outcome of a probabilistic experiment. Examples: 

 

• The age of a randomly selected student here today. 

 

• The values of the Young’s modulus 

 

 
 

Random variables can be: 

 

1. Discrete, that is, taking any of a specified finite or countable list of values. 

2. Continuous, taking any numerical value in an interval or collection of intervals. 

Rule of thumb: before the experiment is run, if you can determine/list all 

possible values of the random variable, it is a discrete random variable, else it is a 

continuous random variable. 

 

1.1.2 Cumulative distribution function (CDF) 

 

The probability distribution or cumulative distribution function (CDF) FX(x) 

describes the probability that a random variable X takes on a value less than or equal 

to a number x. 

 

   ( ) , ( )xF x P X x P X x          

Properties: 

 lim ( ) 1x
x

F x


  

 If a b  then ( ) ( )x xF a F b . 

 For any positive ( 0  ) 

 
0

lim ( ) lim ( )x x
a

F a F a


 

 
   
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 ( )xF x  is a continuous from the right 

 

 

   ( ) ( )x xP a x b F b F a     

 

1.1.3 Probability density function (PDF) 

The probability density function (PDF) fX(x) is defined to be that function 

when integrated yields the CDF: 

  

 
( )

( ) ( ) ( )

x

x
x x x

dF x
F x f x dx f x

dx


      

 

Properties: 

 ( ) 0xf x   

 ( ) 1xf d 




  

 ( ) ( )

x

x xf d F x 


  

 

A probability density function can be unimodal and/or multimodal. The mode is the 

value that appears most often in a set of data. 

 

1.1.4 Moments of random Variables 

 ( ) ( )n n

n xm x E X x f x dx





      

 

  1x m E X mean     

 

 

 2

2m E X mean square     

 

 

Central Moments 

    ( ) ( )
n n

n x x xK x E X x f x dx 




    
    

 

  
22

2 ( )x xK x E X Variance     
 

 

 

 

 x Variance Std    (Standard Deviation) 

 

  
22 2 2( ) xVar x E X E X E X            
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Coefficient of Variation 

 

. . x

x

C OV





 
 

Coefficient of Skewness 

Skewness is a measure of the asymmetry of the probability distribution of a random 

variable about its mean: 

 

3
1 3

x

K



  

 

Coefficient of Kyrtosis 

 

4
2 4

x

K



  

 

It is often compared to a standard value of 3. The value of 3 is chosen only because it 

is the value of the kurtosis coefficient of the Gaussian distribution. A 2( 3) 0   , 

implies a slim sharp peak in the neighborhood of a mode in a unimodal distribution 

(sharper than the Gaussian distribution having the same x ), while a negate 

2( 3) 0    implies as a rule, a flattened peak (flatter than the Gaussian distribution 

having the same x ). 

 

1.1.5 Functions of random variables 

Mapping 

 

Consider the problem where we have two random variables X and Y related as Y = 

g(X). We need to compute the cumulative distribution of Y in terms of the cumulative 

distribution of X. The easiest case for transformations of continuous random variables 

is the case of g to be 1–1. 

 

• We first consider the case of g increasing on the range of the random variable X. In 

this case, 1g   is also an increasing function. 

        1 1{ } { } { }         Y XF y P Y y P g X y P X g y F g y       
 

 

• Consider the case of g decreasing on the range of the random variable X. function. 

        1 1{ } { }        { } 1Y XF y P Y y P g X y P X g y F g y          

 

The probability density function is then obtained as: 

 

   1 1( ) ( ) ( )Y x

d
f y f g y g y

dy

   

 



 11 

Moments of functions of random variables 

  ( ) ( ) ( )Xmean E G X G X f x dx





    

      
2 2

( ) ( ) ( ) ( ) ( )XVariance E G X E G X G X E G X f x dx





    
    

 

Jointly distributed variables 

Joint probability distribution function 

 

 ( , ) ( )XYF x y P X x Y y       

Properties: 

 

 ( , ) 0XYF     

 ( , ) 1XYF     

 ( , ) ( , ) 0XY XYF y F x     

 

Joint probability density function 

 
2

( , ) ( , ) ( , )

y x

XY XY XY X Yf x y F x y f d d
x y

    

 


 
     

 

If the random variables X and Y are statistically independent (the occurrence 

of one does not affect the probability of the other) if and only if 

 

( , ) ( ) ( )XY Yf x y f x f y  

 

Moments of Jointly distributed random variables 

 

' '

' ( , )v

XYx y f x y dxdy


 

 

    

 '

00 1   

 '

10 X   

 '

01 Y   

 

 

Central Moments of jointly distributed random variables 

 

     
2 2'

' ( , )XYx E X y E Y f x y dxdy
 

 

      

 00 1   

 10 01 0    

 20 ( )Var x   

 02 ( )Var y   
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Covariance 

 

     

 

11 ( , )

y x

XY X Y X X Y Y XY X Y X Y

X Y

K E X Y f d d

E XY

          

 

 

        

 

   

 

If the random variables are uncorrelated 

 

 0XY X YK E XY      

 

 

 

 

XY
XY

X Y

K


 
  

Properties: 

 

 1XY XY X yK      

 

 If 1XY    then the random variables X and Y are fully correlated, i.e.: 

Y aX b  . 

 

 

  If 0XY   then the random variables X and Y are uncorrelated. 

 

Important: 

 

IF X, Y : Independent ⇒ X, Y : Uncorrelated 

X, Y : Independent : IF X, Y : Uncorrelated 

 

1.1.6 Gaussian (Normal) random variable 

A random variable X is considered to be normally distributed (X ∼ N(µ, σ2)) if its 

probability density function is of the form: 

 
2

2

( )

2
1

( ) ,
2

x

f x e x










    

 
 

where µ is its mean value and σ the standard deviation. 

 

 This probability density is often called the Laplacian density by the French [after the 

French mathematician the Marquis Pierre Simon De Laplace (1749-1827)] and the 

Gaussian density by the Germans [after the German mathematician Johann Friedrich 

Carl Gauss (1777-1855)]. Partly for historical reasons, probability theorists and 

statisticians commonly use normal, while physicists and engineers often use Gaussian. 

We shall use all these names interchangeably. If µ = 0 and σ = 1 the random variable is 

the standard Gaussian random variable, denoted as Z ∼ N (0, 1) and the φ(x) is the 
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standardized pdf. The corresponding probability distribution function Φ(x) is obtained 

by integration of φ(x). 

 
2

2

( )

2
1

( ) ( )
2

x x

x d e d

 

  





 

    
 

 
1-1 Normal Distribution with quartiles 

 

 

Using the following change of variable 

,
x

z
  


 

 
   

we obtain the cumulative distribution function of the standard Gaussian random 

variable Z 
2

2
1

( )
2

z

Z z e d









    
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Central Limit Theorem 

 

I know of scarcely anything so apt to impress the imagination as the wonderful form of 

cosmic order expressed by the Law of Frequency of Error. The law would have been 

personified by the Greeks and deified, if they had known of it. It reigns with serenity 

and in complete self-effacement, amidst the wildest confusion. The huger the mob, and 

the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of 

Unreason. Whenever a large sample of chaotic elements are taken in hand and 

marshaled in the order of their magnitude, an unsuspected and most beautiful form of 

regularity proves to have been latent all along.–Sir Francis Dalton (1889). Let Xn 

denote a sequence of independent random variables with mean value µ and finite 

variance 2 . The Central Limit Theorem states that the arithmetic mean as n → +∞ 

will be approximately normally distributed, regardless of the underlying distribution, 

 

 2

1

1
~ 0,

n

i

i

X for n
n

 


  
    

  
  

 

Because of its generality, this theorem is often used to simplify calculations involving 

finite sums of non- Gaussian random variables. However, attention is seldom paid to 

the convergence rate of the Central Limit Theorem. Consequently, the Central Limit 

Theorem, as a finite-sample distributional approximation, is only guaranteed to hold 

near the mode of the Gaussian, with huge numbers of observations needed to specify 

the tail behavior. 

 

1.1.7 Gaussian random vectors 

When working with all these random variables together, we will often find it 

convenient to put them in a vector  1 2, ,...,
T

nX X X X . We call the resulting vector a 

random vector (more formally, a random vector is a mapping from Ω to n . It should 

be clear that random vectors are simply an alternative notation for dealing with n 

random variables, so the notions of joint pdf and cdf will apply to random vectors as 

well. Consider an arbitrary function g(X) : ( ) : ng X  of the random vector X. 

The mathematical expectation of this function can be defined as: 

 

 
1 21 2 , ,..., 1 2 1 2( ) ( , ,..., ) ( , ,..., ) ...

N
n

n X X X n n

R

E g X g x x x f x x x dx dx dx   

 

where 
nR

 is n consecutive integrations from −∞ to ∞. If g is a function from  , then 

the value of g is the element-wise expected values of the output vector. The covariance 

matrix C of the random vector is the nxn matrix whose entries are given b 

  ,
i jij i j i X j Xnxn

C Cov X X E X X             
. The covariance matrix has a 

number of useful properties like being positive semi-definite and symmetric. The 

mean value vector X  of a random vector X is a vector containing the mean value of 

each component random variable 

 

1 2
, ,...,

n

T

X X X X        
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The multivariate Gaussian distribution. 

 

One particularly important example of a probability distribution over random vectors 

X is called the multivariate Gaussian or multivariate normal distribution. A random 

vector nX   is said to have a multivariate normal (or Gaussian) distribution with 

mean nm  and covariance matrix C. 

 
 

1 2

1

, ,..., 1 2 1

22

1 1
( ) ( , ,..., ; , ) exp ( )

2
2

n

T

X X X X n n
f x f x x x C X C X

C

  



 
     

 
 

We written this as ~ ( , )X C . 
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1.2 Definitions of Stochastic Processes 

 

• Random variable ( )X  : Mapping from a random outcome ω to a real number. 

 

• Random (stochastic) process ( , )X t  : Mapping from a random outcome ω to a 

function. A random process can be a function of time 

and/or space. 

For a given outcome 
k   the function ( , )X t k  is called a sample function. 

Therefore, a stochastic process is a collection of functions (or a family of functions) 

generated by the random outcome ω. 

 

 
 

The parameter t of the random process ( , )X t   can be either: 

 

1. Discrete: Discrete-time random process 

 

2. Continuous: Continuous-time random process 

 

At any given time t the random process ( , )X t   represents a random variable 

and as the time changes the random process generates different random variables 

 

1 2( , ), ( , ),...X t k X t k   

1.2.1 Probability functions of random processes 

Since a random process X(t, ω) is a random variable at any given time t, the 

process generates a sequence of random variables at a series of discrete time 

instances 1 2, ,..., kt t t : 

 

1 1 2 2( , ), ( , ),..., ( , )k kX X t X X t X X t      

 

Therefore we can define the joint probability functions (CDF,PDF) of these random 

variables: 

1. Joint Cumulative distribution function (cdf) 

 

 
1 2, ,..., 1 2 1 1 2 2( , ,..., ) , ,...,

kX X X k k kF x x x P X x X x X x     
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2. Joint Probability density function (pdf) 

 

1 2, ,..., 1 2( , ,..., )
kX X X kf x x x  

1.2.2 Moments of random process 

Let 
( ) ( )X tf x  be the pdf of a random variable ( )X t . We can define the kth  moment as: 

 

  ( )( ) ( )
k k

x tE X t x f x dx





  
    

 

A special case of the kth moment is the mean: 

 

  ( )( ) ( ) ( )X x tt E X t xf x dx




    

If 
( ) ( )X tf x  be the pdf of a random variable ( )X t  then the kth  central moment is 

defined as: 

 

  ( )( ) ( ) ( ( )) ( )
k k

X X x tE X t t x t f x dx 




   
    

 

A special case of the kth central moment is the Variance: 

 

 
2 2

( )( ) ( ) ( ) ( ( )) ( )X X X x tVar t E X t t x t f x dx 




    
    

 

1.2.3 Joint moments of a random process 

Two sample times 1 2( ), ( )X t X t  of the random process ( )X t  represent two random 

variable with a joint pdf 
1 2( ), ( ) ( , )X t X tf x y  

 

Autocorrelation function 
 

The autocorrelation function 1 2( , )XR t t  of the random process is defined as: 

 

 
1 21 2 1 2 1 2 ( ), ( ) 1 2 1 2( , ) ( ) ( ) ( , )X X t X tR t t E X t X t x x f x x dx dx

 

 

     

Properties: 

 Symmetry: 1 2 2 1( , ) ( , )X XR t t R t t  

 Cauchy – Schwarz inequality: 2

1 2 1 1 2 2( , ) ( , ) ( , )x X XR t t R t t R t t  

 Non-negative definite:
1 1

( ) ( ) ( ) 0
n n

X j k j k

j k

R t t g t g t
 

   

 
2

0
lim ( )XR


 


  and lim ( ) 0XR





 . 
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The cross-correlation function of the random process is defines as: 

 

 
1 21 2 1 2 ( ), ( )( , ) ( ) ( ) ( , )XY X t X tR t t E X t Y t xyf x y dxdy

 

 

     

 

The autocovariance function of the random process is defined as: 

 

  1 2 1 1 2 2( , ) ( ) ( ) ( ) ( )X X XC t t E X t t X t t       
 

The value of ( , )C t t  on the diagonal 
1 2t t t   equals the variance of ( )X t  at the time 

t. 

 

   
2

( ) ( , ) ( ) ( )X XVar X t C t t E X t t   
 

 

 

The Cross-covariance function 1 2 1 2 1 2( , ) ( , ) ( ) ( )X X X XC t t R t t t t    

 

Autocorrelation coefficient: 

 

1 2
1 2

1 1 2 2

( , )
( , )

( , ) ( , )

X
X

X X

C t t
t t

C t t C t t
 

 
 

Several models of autocorrelation coefficient functions for homogeneous random 

fields have been proposed. Common models are: 

 

( ) b
X e



 


  
2

( )
b

X e



 

 
  
   

 

The parameter b is the correlation length of the respective correlation models. A small 

correlation length signifies fast reduction of the correlation coefficient as the distance τ 

increases and thus a high variability in the random field realization. Conversely, large 

correlation lengths correspond to slowly varying realizations. Moreover, the limit case 

of an infinite correlation length can be modeled by one random variable. Note: The 

mean and correlation function of a stochastic process provide a partial characterization 

of the process, referred to as second-moment characterization. It is clear that 

stochastic processes with the same second-moment characteristics can have very 

different sample properties. 

 

1.2.4 Stationary random process 

Stationary random process is a stochastic process whose joint probability distribution 

does not change when shifted in time. Consequently, parameters such as the mean 

and variance, if they are present, also do not change over time and do not follow any 

trends. 

 

 



 19 

1 2

1 2 1 2 2 1

( ) , ( ( )) ( ) , ( , ) ( )

( , ) ( ) , ( , ) ( ) ,

X x X X

X X X X

t Var X t Var X R t t R

C t t C t t t t

  

    

  

   
 

 

 

 For a stationary random process, the bounds of ( )XR   and ( )XC   is: 

 ( ) (0)XR R  ,  2(0) ( )XR E X t const     

 2( )X XC Variance    

 

 
1-2 Stationary and non – Stationary stochastic process 

 

1.2.5 Ergodicity of a stochastic process 

The study of Ergodic Theory was first introduced in classical statistical mechanics 

and kinetic theory in order, for example, to relate the average properties of a particular 

system of molecules in a closed space to the ensemble behavior of all molecules at any 

given time. For the theory of random processes to be useful, we need to estimate the 

mean value and autocorrelation function by measurements. This estimation is done by 

using a large number of sample functions or realizations of the random process. 

 

 

Enseble Averages(averages over the entire number of sample functions).The 

interchangeability of ensemble and time averages has considerable appeal in practice 

because, when statistical averages of a stochastic process need to be computed, what is 

generally available is not a representative collection of sample functions but rather 

certain pieces of sample functions or a long, single observation of one sample 

function. 

 

 1 1( ) ( )XE X t t  

 1 2 1 2( ) ( ) ( , )XE X t X t R t t
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Unfortunately, we usually have only a very small number of sample functions of the 

random process. One naturally asks if certain statistical averages of a stochastic 

process can be determined from appropriate time averages associated with a single 

sample function. If a random process is stationary, SOMETIMES it is possible 

to estimate the mean and autocorrelation function from just ONE sufficiently LONG 

sample function.  A stationary random process is called ERGODIC if its second-order 

information can be obtained from a single realization X(t) of the field. 

That is, the ensemble averages equal the corresponding time averages with 

probability one. 

 

Ergodicity and stationarity 

 

• Wide-sense stationary: Mean and Autocorrelation is constant over time 

 

• Strictly stationary: All statistics is constant over time 

 

Weak form of ergodicity: The complete statistics is often difficult to estimate so we 

are often only interested in:  

 

1. Ergodicity in the Mean 

 

2. Ergodicity in the Autocorrelation 

 

1.2.6 Spectral density function 

The theories of Fourier series and integrals cannot be applied directly to random 

signals. This is because the periodic requirement for the Fourier series is not met 

which rules out the Fourier series. Moreover, if we consider a random signal to 

continue over infinite time, neither the real or imaginary part of the Fourier transform 

converges to a steady value which is why it is not possible to use the concept of 

Fourier integrals: Instead, we introduce the spectral density, which has no convergence 

problems.   

The power spectrum of a random process X(t) describes how the variance of the data 

x(t) is distributed over the frequency components into which they may be 

decomposed. A theorem due to S. BOCHNER asserts that every non-negative definite 

function has a nonnegative Fourier.  

Consider a stationary ergodic random process x(t) which is assumed to have 

started at t = -∞ and continue until t =+ ∞. Such a signal is not periodic and 

it is thus impossible to define its Fourier transform. It is possible, however, to 

determine the Fourier transform of a signal which is equal to x(t) 

over the interval 
2 2

T T
t    and zero at all other times. 

 

The spectral density or power density of x(t) is now defined as: 

 

21
( ) lim ( )TS A

T
 



 
  

 
 

so that 
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2

0

( )X S d  


   

 

The power density indicates how the harmonic content of x(t) is spread over the 

frequency domain. The amount of 2 ( )x t associated with a narrow frequency band ∆ω 

is equal to S(ω)∆ω. Different realizations of a stationary ergodic random process have 

a common S(ω). The power density S(ω) is thus a constant, non-random, statistical 

parameter of the random process x(t). If a signal has a spectrum that is uniform 

(constant) over the whole frequency domain, the spectrum is said to be white and the 

signal is referred to as white noise. 

 

 

1.3 The Mathematical Model  

1.3.1 Hilbert Spaces 

 

The class of problems dealt with in this study is not of the conventional engineering 

kind in that it involves concepts of a rather abstract and mathematical nature. It is both 

necessary and instructive to introduce at this point the mathematical concepts which 

are used in thesis. The Hilbert space of functions (Oden, 1979) defined over a domain 

D, with values on the real line , is denoted by H. Let ( , , )P   denote a probability 

space. Let x  be an element of D and θ be an element of Ω. Then, the space of 

functions mapping Ω onto the real line is denoted by Θ. Each map   defines a 

random variable. Elements of H and Θ are denoted by roman Greek letters 

respectively. Capital letters are used to denote algebraic structures and spaces as well 

as operators defined on these spaces, with Greek letters referring again to those 

operators defined on spaces of random functions.   

1.3.2 Inner product over Hilbert Spaces 

The inner products over H and over Θ are defined using the Lebesgue measure and the 

probability measure respectively. That is, for any two elements ( )ih x  and ( )jh x  in H, 

their inner product defined as 

 

 ( ( ), ( )) ( ) ( )i j i j

D

h x h x h x h x dx   (1.7) 

 

The domain D represents the physical space over which the problem is defined. 

Similarly, given any two elements ( )   and ( )   in Θ, their inner product is defined 

as 

 

 ( ( ), ( )) ( ) ( )dP       


    (1.8) 

  

 

where dP  is a probability measure. Under very general conditions, the integral in 

equation (1.8) is equivalent to the average of the integrand with respect to the 

probability measure dP , so that 
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 ( ( ), ( )) ( ) ( )          (1.9) 

 

Any two elements of the Hilbert spaces defined above are said to be orthogonal if their 

inner product vanishes. A random process may then be described as a function defined 

on the product space D . Viewed from this perspective a random process can be 

regarded as a curve in either of H or Θ. 

 

 

 

 

1.3.3 Mathematical Representation of the General Problem 

 The physical model under consideration involves a medium whose properties 

exhibit random spatial fluctuations and which is subjected to a random external 

excitation. The mathematical representation of this problem involves an operator 

equation 

 

  ( , ) ( , ) ( , )x u x f x     (1.10) 

 

where ( , )x   is some operator defined on  . In other words, Λ is a differential 

operator with coefficients exhibiting random fluctuations with respect to one or more 

of independent variables. The aim then is to solve for the response ( , )u x   as a 

function of both arguments. With no loss of generality, Λ is assumed to be a 

differential operator, whose random coefficients are restricted to being second order 

random processes. This is not a severe restriction for practical problems, since most 

physically measurable processes are of the second order type. Then, each one of these 

coefficients ( , )ka x   can be decomposed into a purely deterministic component and a 

purely random component in the form 

 

 ( , ) ( ) ( , )kk ka x a x a x     (1.11) 

 

where ( )ka x  is equal to the mathematical expectation of the process ( , )ka x  , and 

( , )ka x   is a zero mean random process, having the same covariance function as the 

process ( , )ka x  . Equation (1.10) can be written as 

 

  ( ) ( , ) ( , ) ( , )L x x u x f x      (1.12) 

 

where ( )L x  is a deterministic differential operator and ( , )x   is a differential 

operator whose coefficients are zero-mean random processes. Before a solution to 

equation (1.12) is sought, it is essential to clarify what is meant by such a solution. 

 As was mentioned above, Θ denotes the Hilbert space of functions defined on 

the σ-field of events generated by the physical problem, with range the interval [0,1]. 

In other words, if the possible realizations of the random process were numbered 

continuously on the interval [0,1], and these numbers were assigned to the variable θ, 

then, for a fixed * [0,1]   , the process *( , )ka x   is a deterministic function of x, a 

realization of the process. From observing a finite number of realizations of this 

process, distribution theory can be used to construct the distribution of the process 

along the θ-dimension. For a given x,  ( , )ka x   is a random variable with such a 
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distribution. Obviously, for a complete description of the process, the joint distribution 

at all x D  is required. However, if the process is assumed to be Gaussian, all the 

finite dimensional distribution functions are also Gaussian. Clearly, the usually limited 

number of observed realizations of a random process cannot, in general, suggest any 

definite distribution. However, invoking the central limit theorem, the Gaussian 

distribution appears to be the most likely candidate for many physical applications. 

 Once the coefficients in the operator equation (1.10) have been defined through 

their probability distribution functions, the main question remains as to what is meant 

by a solution to the problem. Obviously, the discussion and comments just made 

concerning the coefficient processes apply to the solution process as well. A 

conceptual modification, through, can be introduced. Specifically, a quite general form 

of the solution process can be expressed as 

 

  ( , ), ( , ),ku g a x f x x    (1.13) 

   

where [.]g  is some linear functional of its arguments. Clearly, a complete description 

of the response would involve the prescription of its joint distribution with the various 

processes appearing in equation (1.13). This information could form the basis for a 

rational reliability and risk assessment. However, given the infinite dimensional 

structure of the random process appearing in equation (1.13), such a task seems to 

exceed the capability of currently used methods. A finite – dimensional description of 

the processes involved is required if the solution is to proceed in a computational 

setting. Given the abstract nature of the functional spaces over which random 

processes are defined, a finite dimensional representation cannot be achieved through 

partitioning of these spaces as it usually done with the deterministic finite element 

analysis. Alternatively, an abstraction of the discretization process can be introduced 

which is mathematically equivalent to a discretization with respect to a spectral 

measure. Indeed, a spectral representation is introduced in the text which permits the 

algebraic manipulation of random processes through that of an equivalent discrete set 

of random variables.  
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2 Representation of Stochastic Processes 

2.1 The Mathematical Model  

 

2.2 General Theory of Random Processes  

A continuous random process is formally defined as an indexed set of random 

variables, the index belonging to some continuous uncountable set (Ghanem & 

Spanos, 2003). Then, the process can be approximated as closely as desired be 

restricting the index to a set dense in the indexing set. Stretching mathematical rigor 

further, a random process can be represented by its values at a discrete set of points in 

its domain of definition. It is then clear how the foregoing discussion for random 

variables can be extended to the case of random processes. In the context of the finite 

element analysis of a given system, the random processes involved are substituted for 

by random variables that are so chosen as to coincide with some local average of the 

process over each element. It is expected, however, that the result would depend to a 

notable extend on the averaging method used. Local averages are usually of two kinds. 

These are weighted average over each a subset of the indexing set, and the collocation 

average over each such subset whereby the process over the subset is replaced by its 

value at some point in the subset. It is clear that, in general, the first approach 

smoothes the random process, whereas the second approach introduces additional 

irregularities. This suggests that the two approaches provide lower and upper bounds, 

respectively, for the random behavior of the process. In the limit, as the size of each 

subset becomes vanishingly small, the representation resulting from the two 

approaches should converge to the exact process. It is obvious that a relatively large 

number of random variables is required to represent a random process in this fashion. 

It is noted that local averaging parallels point wise approximations of deterministic 

functions. The size of the individual subsets used for the averaging process does in 

general depend on the frequency content of the process. That is, the broader the 

frequency content of the process, the smaller the region over which the process shows 

a definite pattern, and thus the smaller the size of the necessary subset to meet a 

certain precision criterion. This problem with local averaging is particularly crucial in 

the context of the finite element analysis of structures with curved and irregular 

geometry. The finite element analysis of these systems usually requires recourse to 

curved elements and non-uniform spacing of the nodal points. The shape and size of 

the finite element mesh is generally dictated by the stress distribution within the 

structure. This stress distribution is usually independent of that of the uncertainty of 

the random parameters involved. This fact necessitates either the use of an 

independent mesh for the simulation, or the use of a mesh size such that both stresses 

and material properties are adequately and consistently represented. In either case, the 

dimension of the problem, as reflected by the number of random variables used to 

represent the underlying processes, is quite large. The associated computational 

problem is, in general, of prohibitive dimensions.  

 

   Alternatively to the heuristic argument associated with the local averaging approach, 

a rigorous exposition of the basic concepts of the theory of representation for random 

processes can be formulated (Parsen, 1959). This theory is a quite rich and mature 

mathematical subject. The development of the theory parallels that of the modern 

theory of random processes, and has had its origin in the need for more sophisticated 

models in applied statistics. Most of the related results have been derived for the class 

of second order processes. Perhaps the most important results is the spectral 
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representation of random processes (Gel’fand and Vilenkin), which, in its most general 

form, can be stated as 

 

 ( , ) ( ) ( )x g x d       (2.1) 

 

where ( , )x   is a stochastic process whose covariance function 1 2( , )C x x  admits of 

the decomposition  

 

 

 
1 2 1 2 1 2( , ) ( ) ( ) ( ) ( )C x x g x g x d d         (2.2) 

 

 

In equation (2.1), ( )g x  is a deterministic function. Further, ( )d   is an orthogonal set 

function, also termed orthogonal stochastic measure, defined on the σ-field Ψ of 

random events. An important  specialization of the spectral decomposition occurs if 

the process ( , )x   is wide sense stationary. In this case, equation (2.1) can be shown 

to reduce to the Wiener-Khintchine relation (Yaglom, 1962) and the following 

equations hold 

   ( , ) ( , )
Tixx e d    





   (2.3) 

 

and 

 

 1 2( )

1 2( , ) ( )
Ti x x TC x x e S d


  






    (2.4) 

 

 

Here, the symbol T denotes vector transposition, S(ω) is the usual spectral density of 

the stationary process, and ω is the wave number vector. 

 

    The preceding representations have had a strong impact on the subsequent 

development of the theory of random processes. However, their applications have been 

restricted to randomly excited deterministic systems. This is largely attributed to the 

fact ha all of these representations involve differentials of random functions, and are 

therefore set in an infinite dimensional space, not readily amenable to computational 

algorithms. An alternative formulation of the spectral representation, and one which is 

extensively used in the sequel, is the Karhunen – Loeve expansion whereby a random 

process ( , )x   can be expanded in terms of a denumerable set of orthogonal random 

variables in the form 

 
1

( , ) ( ) ( )i i

i

x g x   




   (2.5) 

 

where  ( )i   is a set of orthogonal random variables and ( )ig x  are deterministic 

functions, which can be related to the covariance kernel of ( , )x  . Note that since 

equation (2.5) constitutes a representation of the random process in terms of a 

denumerable set of random variables, it may be regarded as an abstract discretization 

of the random process. Further, it is important to note that this equation, can be viewed 
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as a representation of the process ( , )x   as a curve in the Hilbert space spanned by 

the set ( )i  . The random process ( , )x   is expressed as a direct sum of orthogonal 

projections in this Hilbert space hereby the magnitudes of the projections on 

successive basis vectors are proportional to the corresponding eigenvalues of the 

covariance function associated with the process ( , )x  .    

The representations discussed thus far can be thought of as linear operators or filters 

acting on processes with independent increments (Doob, 1953). Interestingly, these 

concepts can be generalized to allow for the representation of nonlinear functional of 

the orthogonal stochastic measures ( )d  . The theory of non linear functional was 

developed by Volterra (1913). He generalized the Taylor expansion of functions to the 

case of functionals.  It was Wiener, however, who first applied Volterra’s ideas to 

stochastic analysis, and developed what is now known as the Homogeneous Chaos. 

Based on Wiener’s work, Cameron and Martin (1947) developed the Fourier – 

Hermite expansion, which is a Fourier – type expansion for nonlinear functionals. 

Again, it was (Wiener, 1958) who first applied the new theory to problems involving 

random phenomena, using the ideas he had developed on Differential Spaces (1923) 

and Homogeneous Chaos (1938).  

2.2.1 Derivation 

One of the major difficulties associated with the numerical incorporation of random 

processes in finite element analyses, is the necessity to deal with abstract measure 

spaces that have limited physical intuitive support. The major conceptual difficulty 

from the viewpoint of the class of problems considered herein involves the treatment 

of functions defined on these abstract spaces, namely random variables defined on the 

σ-field of random events. The most widely used method, the Monte Carlo simulation, 

consists of sampling these functions at randomly chosen elements of this σ-field, in a 

random, collocation – like, scheme. Obviously, a quite large number of points needs to 

be sampled if a good approximation is to be achieved. A theoretically more sound and 

more appealing approach would be to expand these functions in a Fourier – type series 

as 

 
0

( , ) ( ) ( )n n n

n

x f x    




   (2.6) 

 

where  ( )n   is a set of random variables to be determined, n  is some constant, and 

 ( )nf x  is an orthogonal set of deterministic functions. This is exactly the Karhunen 

Loeve expansion achieves. The expansion was derived independently by a number of 

investigators (Karhunen, 1947; Loeve 1948; Ka cans Siegert, 1947). Let ( , )x   be a 

random process, function of the position vector x defined over the domain D, with θ 

belonging to the space of random events Ω. Let ( )x  denote the expected value of 

( , )x   over all possible realizations of the process, and 1 2( , )C x x  denote its 

covariance function, it is bounded, symmetric and positive definite. Thus, it has the 

spectral decomposition (Hilbert, 1953) 

 

  
1 2 1 2

0

( , ) ( ) ( )n n n

n

C x x f x f x




  (2.7) 

  

where n  and ( )nf x  are the eigenvalues and the eigenvector of the covariance kernel 

respectively. That is, they are the solution to the integral equation  
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 1 2 1 2( , ) ( ) ( )n n n

D

C x x f x dx f x   (2.8) 

 

Due to the symmetry and the positive definiteness of the covariance kernel (Loeve, 

1977), its eigenfunctions are orthogonal and form a complete set. They can be 

normalized according to the following criterion 

 

 ( ) ( )n m nm

D

f x f x dx    (2.9) 

 

where nm  is the Kronecker delta. Clearly, ( , )x   can be written as 

 

 ( , ) ( ) ( , )x x x        (2.10) 

  

where ( , )x   is a process with zero mean and covariance function 
1 2( , )C x x . The 

process ( , )x   can be expanded in terms of the eigenfunctions ( )nf x  as 

 

 
0

( , ) ( ) ( )n n n

n

a x f x   




   (2.11) 

  

Second order properties of the random variables n  can be determined by multiplying 

both sides of equation (2.11) by 2( , )x   and taking the expectation on both sides. 

Specifically, it is found that 

 

 
1 2 1 2 1 2

0 0

( , ) ( , ) ( , ) ( ) ( ) ( ) ( )n m n m n m

n m

C x x a x a x f x f x       
 

 

      (2.12) 

 

Then, multiplying both sides of equation (2.12) by 2( )kf x , integrating over the domain 

D, and making use of the orthogonality of the eigenfunctions, yields 

 

  1 2 2 2 1 1

0

( , ) ( ) ( ) ( ) ( ) ( )k k k n k n k n

nD

C x x f x dx f x f x      




     (2.13) 

 

Multiplying once more by 1( )lf x  and integrating over D, gives 

 

 1 1 1

0

( ) ( ) ( ) ( )k k l n k n k nl

nD

f x f x dx E       




     (2.14) 

 

Then, using equation (2.15) leads to  

 

 ( ) ( )k kl k l k l            (2.15) 

 

Equation (2.15) can be rearranged to give  

 

 ( ) ( )k l kl        (2.16) 
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Thus, the random process ( , )x   can be written as 

 

  
0

( , ) ( ) ( ) ( )n n n

n

x x f x     




   (2.17) 

where,  

 

  ( ) 0 , ( ) ( )n n m nm           (2.18) 

 

and , ( )n nf x  are solution to equation (2.8). Truncating the series in equation (2.17) at 

the Mth term , gives 

 

 
0

( , ) ( ) ( ) ( )
M

n n n

n

x x f x     


    (2.19) 

 

An explicit expressions for ( )n   can be obtained by multiplying equation (2.11) by 

( )nf x  and integrating over the domain D. That is,  

 

 
1

( ) ( , ) ( )n n

Dn

x f x dx   


    (2.20) 

 

Viewed from a Reproducing Kernel Hilbert Space (RKHS) point of view (Aronszajn, 

1950; Parzen, 1959), either of equations (2.11) or (2.20), is an expression for the 

congruence that maps the Hilbert space spanned by the functions ( )nf x  to the Hilbert 

space spanned by the set of random variables ( )n  . It is this congruence along with 

the covariance function of the process that determines uniquely the random process 

( , )x  . Observed the similarity of equations (2.11) and (2.20) with equations (2.7) 

and (2.8), respectively. Indeed, it can be shown (Parzen 1959) that if a function f can 

be represented in terms of linear operations on the family  2 2( , ),C x x Z , then f 

belongs to the (RKHS) corresponding to the kernel 1 2( , )C x x , and of an orthogonal 

family spanning this RKHS by means of the same linear operations used to represent f 

in terms of  2 2( , ),C x x Z . Another point of practical importance is that the 

expansion given by equation (2.19) can be used in a numerical simulation scheme to 

obtain numerical realizations of the random process. It is optimal in the Fourier sense, 

as it minimizes the mean square error resulting from truncation after a finite number of 

terms. The expansion is used extensively in the fields of detection, estimation, pattern 

recognition and image processing as an efficient tool to store random processes 

(Devijver and Kittler, 1982). It is worth noting at this point that the Karhunen – Loeve 

exoansion was independently derived in connection with stochastic turbulence 

problems (Lumley, 1970). In that context, the associated eigenfunctions can be 

identified with the characteristic eddies of the turbulence field.  

       It is well known from functional analysis that the steeper a bilinear form decays to 

zero as a function of one of its arguments, the more terms are needed in its spectral 

representation in order to reach a preset accuracy. Noting that the Fourier transform 

operator is a spectral representation, it may be concluded that the faster the 

autocorrelation function tends to zero, the broader is the corresponding spectral 
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density and the greater the number of requisite terms to represent the underlying 

random process by the Karhunem – Loeve expansion. 

     For the spectral case of a random process possessing a rational spectrum, the 

integral eigenvalue problem can be replaced by an equivalent differential equation that 

is easier to solve (Van Trees, 1968). In the same context, it is reminded that a 

necessary and sufficient condition for a process to have a finite dimensional Markov 

realization is that its spectrum be rational (Soize, 1986). It may seem that any 

complete set of functions can be used in-lieu of the eigenfunctions of the covariance 

kernel in the expansion (2.11). However, it will now be shown that the Karhunen – 

Loeve expansion as described above, has some desirable properties that make it a 

preferable choice for some of the present approach. 

 

2.2.2  Properties 

Error Minimizing Property 

 

The generalized coordinate system defined by the eigenfunctions of the covariance 

kernel is optimal in the sense that the mean – square error resulting from a finite 

representation of the process ( , )x   is minimized. This property can be proved as 

follows. Given a complete orthogonal set of functions ( )nh x , the process ( , )x   can 

be approximated in a convergent series of the form  

 

 
0

( , ) ( ) ( )n n n

n

x h x    




   (2.21) 

 

Truncating equation (2.21) at the Mth  term results in an error Me  equal to 

 

 
1

( ) ( )M n n n

n M

e h x  


 

    (2.22) 

 

Multiplying equation (2.21) by ( )mh x  and integrating throughout gives  

  

 
1

( ) ( , ) ( )m m

m D

x h x dx   


    (2.23) 

 

where use is made of the orthogonality property of the set ( )nh x . Substituting equation 

(2.23) for ( )m   back into equation (2.22), the mean – square error 2

Me  can be written 

as 

 

  

2

1 2 1 2 1 2

1 1

1 2 1 2 1 2

1 1

( ) ( ) ( , ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( )

M m n m n

m M n M D D

m n m n

m M n M D D

e h x h x S x S x h x h x dx dx

h x h x R x x h x h x dx dx

 
 

   

 

   

 
   
 



   

   

 (2.24) 

   

 

Integrating equation (2.24) over D and using the orthogonality of the set  ( )ih x  yields  
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  1 2 1 2 1 2

1

( ) ( , ) ( ) ( ) ( ) ( ) 1k m m m m m

m M D D D

F h x R x x h x h x dx dx h x h x dx 


 

 
   

 
       (2.26) 

 

Differentiating equation (2.26) with respect to ( )ih x  and setting the result equal to 

zero, gives  

 

 
 

1 2 1 1 2 2

( )
( , ) ( ) ( ) 0

( )

m

i i i

i D D

F h x
R x x h x dx h x dx

h x
 

 
   

  
    (2.27) 

 

which is satisfied when 

 

 1 2 2 2 1( , ) ( ) ( )i i i

D

R x x h x dx h x    (2.28) 

 

Uniqueness of the Expansion 

 

The random variables appearing in an expansion of the kind given by equation (2.10) 

are orthogonal if and only if the orthogonal functions  ( )nf x  and the constants  n  

are respectively the eigenfunctions and the eigenvalues of the covariance kernel as 

given by equation (2.8). The “if” part is an immediate consequence of equation (2.11). 

To show the “only if” part, equation (2.12) can be used with ( ) ( )n m nm       to 

obtain  

 

 
1 2 1 2

0

( , ) ( ) ( )n n n

n

C x x f x f x




   (2.29) 

 

Multiplying both sides by 2( )mf x  and integrating over D gives  

 

 1 2 2 2 1 1

0

( , ) ( ) ( ) ( )m n n nm m m

nD

C x x f x dx f x f x  




   (2.30) 

 

 

 

In the context of this last theorem, it is interesting to note that some investigators (e.g. 

Lawrence, 1987) have used an expansion of the kind given by equation (2.11) with 

orthogonal random variables and orthogonal deterministic functions that do not satisfy 

equation (2.8). It is obvious that such an expansion cannot form a basis for the 

representation of random processes. 

 

Expansion of Gaussian Processes 

 

Let ( , )x   be a Gaussian process with covariance function 1 2( , )C x x . Then ( , )x   

has the Karhunen – Loeve decomposition given by equation (2.17) with the random 

variables ( )i   forming a Gaussian vector. That is, any subset of ( )i   is jointly 

Gaussian. Since these random variables are uncorrelated, their Gaussian property 

impliew their independence. Some important consequences derive from this property. 

Specifically,  
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 1 2 1( ),..., ( ) 0n       (2.31) 

 

and 

 

 1 2( ),..., ( ) ( ) ( )n i j             (2.32) 

 

where the summation extends over all the partitions of the set  
2

1
( )

n

i i
 


 into sets of 

two elements, and the product is over all such sets in a given partition. Furthermore, it 

can be shown (Loeve, 1977) that for Gaussian processes, the Karhunen – Loeve 

expansion is almost surely convergent. 

 

Other Properties 

 

In addition to the mean – square error minimizing property, the Karhunen – Loeve 

expansion has some additional desirable properties. Of these, the minimum 

representation entropy property is worth mentioning. These properties, however, are of 

no relevance to the present study and will not be discussed any further. A detailed 

study of the properties of the Karhunen – Loeve expansion is given by Devijver and 

kittler (1982). 

 

 

2.2.3 Solution of the Integral Equation 

Preliminary Remarks 

 

The usefulness of the Karhunen – Loeve expansion hinges on the ability to solve the 

integral equation of the form  

 

 1 2 2 2 1( , ) ( ) ( )
D

C x x f x dx f x   (2.33) 

 

where 1 2( , )C x x  is an autocovariance  function. Equation (2.33) is a homogeneous 

Fredholm integral equation of the second kind. The theory underlying this kind of 

equations has been extensively investigated and is well documented in a number of 

monographs (Mikhlin, 1957). Beaing an autocovariance function the kernel 1 2( , )C x x  

is bounded, symmetric, and positive definite. This fact simplifies the ensuing analysis 

considerably in that it guarantees a number of properties for the eigenfunctions and the 

eigenvalues that are solution to equation (2.33). Specifically,  

1. The set ( )if x  of eigenfunctions is orthogonal and complete. 

2. For each eigenvalue k , there correspond at most a finite number of linearly 

independent eigenfunctions. 

3. There are at most a countably infinite set of eigenvalues. 

4. The eigenvalues are all positive real numbers. 

5. The kernel 1 2( , )C x x  admits of the following uniformly convergent expansion 

 

 
1 2 1 2

1

( , ) ( ) ( )k k k

k

C x x f x f x




  (2.34) 
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The Karhunen – Loeve expansion of a process was derived based on the preceding 

analytical properties of its covariance function. These properties are independent of 

the stochastic nature of the process involved, which allows the expansion to be applied 

to a wide range of processes including non-stationary and multidimensional processes.  

 

Numerical Solution 

 

In this section, a Galerkin type procedure is described for the solution of the Fredholm 

equation (2.33). Let ( )ih x  be a complete set of functions in the Hilbert space H. Each 

eigenfunction of the kernel 
1 2( , )C x x  may be represented as  

 

 ( )

1

( ) ( )
N

k

k i i

i

f x d h x


   (2.35) 

 

with an error Ne  resulting from truncation the summation after the Nth term. This error 

is equal to the difference between the left hand side and the right hand side of equation 

(2.33). Substituting equation (2.74) into equation (2.33) yields the following 

expression for the error 

 

 
( )

1 2 2 2 1

1

( , ) ( ) ( )
N

k

N i i n i

i D

e d C x x h x dx h x


 
  

 
    (2.36) 

Requiring the error to be orthogonal to the approximating space yields equations of the 

following form, 

 

 ( , ( )) 0 , 1,...,N je h x j N    (2.37) 

 

Equivalently, 

 

 
( )

1 2 2 2 1 1 1

1

( , ) ( ) ( ) ( ) ( ) 0
N

k

i i j n i j

i D D D

d C x x h x dx h x dx h x h x dx


  
   

   
      (2.38) 

 

Denoting 

 

 1 2 2 2 1 1 2( , ) ( ) ( )ij i j

D D

C C x x h x dx h x dx dx     (2.39) 

 

  ( ) ( )ij i j

D

B h x h x dx   (2.40) 

 

 

 
( )k

ij iD d  (2.41) 

and  

 

  
ij ij i    (2.41) 

 

Equation (2.38) becomes  
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 CD BD    (2.42) 

 

 

where C,B and D are three N-dimensional matrices whose elements are given by 

equations (2.39)-(2.40). Equation (2.42) represents a generalized algebraic eigenvalue 

problem which may be solved for the matrix D and the eigenvalues 
k . Back 

substituting into equation (2.35) yields the eigenfunctions of the covariance kernel. 

The preceding procedure can be implemented using piecewise polynomials as the 

basis for the expansion. With this choice of basis functions, the columns of the matrix 

D becomes the eigenvectors computed at the respective nodal points of the induced 

mesh, and the ijth  element of the matrix C becomes the weighed correlation between 

the process at nodes i and j. Both matrices C and B are symmetric positive definite, a 

fact that substantially simplifies the numerical solution. Obviously, the eigenvectors 

and eigenvalues computed based on the above scheme provide convergent estimates to 

the true values. Certain properties of these particular estimates make this scheme 

computationally attractive. Specifically, the Galerkin scheme described above can be 

shown to be equivalent to variations treatments of the problem. This property ensures 

that the computed eigenvalues are a lower bound of the correspondingly numbered 

exact eigenvalues. This implies that the convergence of each eigenvalue is monotonic 

in N. Further, note that the accuracy in estimating the eigenvalues is better than that 

achieved for the eigenfunctions (Delves and Mohamed, 1985). 

 

2.3 Homogeneous Chaos 

2.3.1 Preliminary Remarks 

It is clear from the preceding discussion that the implementation of the Karhunen – 

Loeve expansion requires knowing the covariance function of the process being 

expanded. As far as the system under consideration is concerned, this implies that the 

expansion can be used for the random coefficient in the operator equation. However, it 

cannot be implemented for the solution process, since its covariance function and 

therefore the corresponding eigenfunctions are not known. An alternative expansion is 

clearly needed which circumvents this problem. Such an expansion could involve a 

basis of known random functions with deterministic coefficient to be found by 

minimizing some norm of the error resulting from a finite representation. This could 

be construed as similar to the Fourier series solution of deterministic differential 

equations, whereby the series coefficients are determined so as to satisfy some 

optimality criterion. To clarify this important idea further, a useful modification of the 

problem suggested by equation  ( , ), ( , ),ku g a x f x x    is noted. So we can note, 

 

  ( ),iu h x    (2.43) 

 

 

where [ ]h   is a nonlinear functional of its arguments. In equation (2.43) the random 

processes involved, have all been replaced by their corresponding Karhunen – Loeve 

representations. It is clear now that what is required is a nonlinear expansion of [ ]h   in 

terms of the set of random variables ( )i  . If the processes defining the operator are 

Gaussian, this set is a sampled derivative of the Wiener process (Doop, 1953). In this 

case, equation (2.43) involves functionals of the Brownian motion. This is exactly 



 34 

what the concept of Homogeneous Chaos provides. This concept was first introduced 

by Wiener (1938) and consists of an extension of the then obscure Volterra’s work on 

the generalization of Taylor series to functionals (Volterra, 1913). Wiener’s 

contributions were the result of his investigations of nonlinear functionals of the 

Brownian motion. Based on Wienere’s ideas, Cameron and Martin (1947) contracted 

an orthogonal basis for nonlinear functionals in terms of Fourier – Hermite 

functionals. Wiener’s Homogeneous Chaos was subsequently refined by Ito (1951) 

into what is known as the “Multiple Wiener Integral”. About the same time that this 

analytical and measure – theoretic development of the theory was being pursued, 

Murray and Von – Neumann (1936) were establishing the parallel algenraic structure 

of rings of operators. Wiener’s theory was further developed through research efforts 

that led to a series of reports (Bose, 1956; George, 1959). Numerical implementation 

of the basic ideas as well as convergence properties were addressed in these reports. 

This theory has drawn the interest of investigators in the fields of communication 

(Yasui, 1979), neuro-science (Palm and Poggio, 1977), engineering mechanics (Jahedi 

and Ahmadi, 1983), statistical phusics (Imamura et.al, 1965) and mathematics (Hida 

and Ikeda, 1965; McKean, 1973; Huang and Cambanis, 1978, 1979; Kallianpur, 1980; 

Engels, 1982). In particular, Yasui (1979), Engels (1982) and Kallianpur (1980) have 

attempted to develop a unified treatment of the Volterra series, the Wiener series, the 

Cameron – Martin expansion and the Ito approach. They have concluded that the last 

three approaches are equivalent and that they are superior to the Volterra series in 

terms of their convergence properties and their applicability. In the same manner that 

the Homogeneous Chaos can be viewed as an orthogonal development for nonlinear 

functionals with Gaussian measure, the Discrete Chaos (Wintner and Wiener, 1943; 

Hida and Ikedia, 1965; Ogura, 1972) is an orthogonal development with respect to the 

Poisson measure. Extensions to general measures have been investigated by Segall and 

Kailath (1976). 

 

 

2.3.2 Definition and Properties 

 

Let  
1

( )i i
 




 be a set of orthogonal Gaussian random variables. Consider the space 

ˆ
p  of all polynomials in  

1
( )i i

 



 of degree not exceeding p . Let 

p  represent the 

set of all polynomials in ˆ
p  orthogonal to 1

ˆ
p . Finally, let p  be the space spanned 

by
p . Then, the subspace p  of Θ is called the pth Homogeneous Chaos, and 

p  is 

called the polynomial Chaos of order p . Based on the above definitions, the 

Polynomial Chaoses of any order p  consist of all orthogonal polynomials of order p  

involving any combination of the random variables 
1

( )i i
 




. It is clear, then, that the 

number of Polynomial Chaoses of order p , which involve a specific random variable 

out of the set  
1

( )i i
 




 increases with p . This fact plays an important role in 

connection with the finite dimensional Polynomial Chaoses to be introduced in the 

sequel. Furthermore, since random variables are themselves functions, it becomes 

clear that Polynomial Chaoses are functions of functions and are therefore functionals. 

The set of Polynomial Chaoses is a linear subspace of the space of square – integrable 

( 2L ) random variables Θ, and is a ring with respect to the functional multiplication

( ) ( ) ( )p l p l       . In this context, square integrability must be construed to be 
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with respect to the probability measure defining the random variables. Denoting the 

Hilbert space spanned by the set  
1

( )i i
 




 by ( ) , the resulting ring is denoted by 

( ) , and is called the ring of functions generated by ( ) . Then, it can be shown 

that under some general conditions, the ring 
( )  is dense the space Θ (Kakutani, 

1961). This means that any square – integrable random function ( ) can be 

approximated as closely as desired by elements from 
( ) . Thus, any element ( )   

from the space Θ admits the following representation, 

 

 1

1 1

1 1

...

...

0 ... ,...,

( ) ( ( ),..., ( ))r

r r

r r

n n

p p p p p

p n n p p p

a     
  

      (2.44) 

 

where (.)p  is the Polynomial Chaos of order p . The superscript in  refers to the 

number of occurrences of ( )
ip   in the argument list for (.)p . Also, the double 

subscript provides for the possibility of repeated arguments in the argument list of the 

Polynomial Chaoses, thus preserving the generality of the representation given by 

equation (2.44). Briefly stated, the Polynomial Chaos appearing in equation (2.44) 

involves r distinct random variables out of the set  
1

( )i i
 




, with the kth  tandom 

variable ( )k   having multiplicity 
kn , and such that the total number of random 

variables involved is equal to the order p  of the Polynomial Chaos. The Polynomial 

Chaoses of any order will be assumed to be symmetrical with respect to their 

arguments. Such a symmetrization is always possible. Indeed, a symmetrical 

polynomial can be obtained from a non – symmetrical one by taking the average of the 

polynomial aver all permutations of its arguments. The form of the coefficients 

appearing in equations (2.44) can then simplified, resulting in the following expanded 

expression for the representation of random variables, 
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  (2.45) 

 

where (.)p  are successive Polynomial Chaoses of their arguments, the expansion 

being convergent in the mean – square sense. The upper limits on the summations in 

equation (2.45) reflect the symmetry of the Polynomial Chaoses with respect to their 

arguments, as discussed above. The Polynomial Chaoses of order greater than one 

have mean zero. Polynomials of different order are orthogonal to each other; so are 

same order polynomials with different argument list. At times in the ensuing 

developments, it will prove notationally expedient to rewrite equation (2.45) in the 

form 

 

  
0

ˆ( ) ( )j j

j

a   




    (2.46) 
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where there is a one to one (1-1) correspondence between the functionals  .  and 

[.] , and also between the coefficient ˆ
ja  and 

1...
ˆ

ri ia  appearing in equation (2.45). 

Implicit in equation (2.45) is the assumption that the expansion (2.45) is carried out in 

the order indicated by that equation. In other words, the contribution of polynomials of 

lower order is accounted for first. Up to now, and throughout the previous theoretical 

development, the symbol θ has been used to emphasize the random character of the 

quantities involved. It is felt that, although somewhat cumbersome, this notation 

underlines the fact that a random variable is a function defined over the space of 

events of which θ is an element. Having noted this, the symbol θ will be deleted in the 

ensuing development whenever the random nature of a certain quantity is obvious 

from the context. As defined above, each Polynomial Chaos is a function of the 

infinite set i , and is therefore an infinite dimensional polynomial. In a 

computational setting, however, this infinite set has to be replaced by a finite one. In 

view of that, it seems logical to introduce the concept of a finite dimensional 

Polynomial Chaos. Specifically, the n-dimensional Polynomial Chaos of order p  is 

the subset of the polynomial Chaos of order p , as defined above, which is a function 

of only n of the uncorrelated random variables
i . As n , the Polynomial Chaos as 

defined previously is recovered. Obviously, the convergence properties of a 

representation based on the n-dimensional Polynomial Chaoses depend on n as well as 

on the choice of the subset  
1i

n

i



 out of the infinite set. In the ensuing analysis, this 

choice will be based on the Karhunen – Loeve expansion of an appropriate random 

process. Since the finite dimensional Polynomial Chaos is a subset of the (infinite-

dimensional) Polynomial Chaos, the same symbol will be used for both, with the 

dimension being specified. Note that for this case, the infinite upper limit on the 

dimension of the Polynomial involved. For clarity, the two- dimensional counterpart of 

equation (2.45) is rewritten, in a fully expanded form as 
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     

       



 (2.47) 

 

In view of this last equation, it becomes clear that, except for a different indexing 

convention, the functionals  .  and [.]  are identical. In this regard, equation (2.47) 

can be recast in terms of  .j  as follows 

 

 0 0 1 1 2 2
ˆ ˆ ˆ( ) ...a a a           (2.48) 

 

From which the correspondence between  .  and [.]  is evident. For example, the 

term 211 3 2 1 1( , , )a     of equation (2.47) is identified with the term 7 7â   of equation 

(2.48). 

 

2.3.3 Construction of the Polynomial Chaos 
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A direct approach to construct the successive Polynomial Chaoses is to start with the 

set of homogeneous polynomials in  ant to proceed, through a sequence of 

orthogonalization procedures. The zeroth order polynomial is a constant and it can be 

chosen to be 1. That is  

 

 0 1    (2.49) 

 

The first order polynomial has to be chosen so that it is orthogonal to all zeroth order 

polynomials. Since the set  i  consists of zero – mean elements, the orthogonality 

condition implies 

 

 1( )i i     (2.50) 

 

The second order Polynomial Chaos consists of second order polynomials in  i  that 

are orthogonal to both constants and first order polynomials. Formally, a second order 

polynomial can be written as 

 

 
1 2 1 1 2 2 1 2 1 22 0( , )i i i i i i i i i ia a a a a            (2.51) 

 

where the constants are so chosen as to satisfy the orthogonality conditions. The 

second of these requires that  

 

 
1 2 32( , ) 0i i i       (2.52) 

 

This result in the following equation  

 

 
1 1 3 2 2 3

0i i i i i ia a     (2.53) 

 

Allowing 3i  to be equal to 1i  and 2i  successively, permits the evaluation of the 

coefficients 
1i

a  and 
2i

a  as 

 

 
1 2

0, 0i ia a    (2.54) 

 

The first orthogonality condition results in 

 

 

 
1 2 1 20 0i i i ia a     (2.55) 

 

Equation (2.55) can be normalized by requiring that 

 

 
1 2

1i ia    (2.56) 

 

This leads to  

 

 
1 20 i ia     (2.57) 

 

Thus, the second Polynomial Chaos can be expressed as  
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1 2 1 2 1 22( , )i i i i i i         (2.58) 

 

In a similar manner, the third order Polynomial Chaos has the general form 

 

 

  
1 2 3 1 1 2 2 3 3 1 2 1 2

1 3 1 3 2 3 2 3 1 2 3 1 2 3

3 0( , , )i i i i i i i i i i i i i

i i i i i i i i i i i i i i

a a a a a

a a a

       

      

      

  
 (2.59) 

 

With conditions of being orthogonal to all constants, first order polynomials and 

second order polynomials. The first of these conditions implies that 

 

 
1 2 33( , , ) 0i i i       (2.60) 

 

That is  

 

  (2.61) 

 

The second condition implies that  

 

 
1 2 33( , , ) 0i i i      (2.62) 

 

which leads to  

 

 
1 1 4 2 2 4 3 3 4 1 2 3 1 2 3 4

0i i i i i i i i i i i i i i i ia a a a             (2.63) 

 

The last orthogonality condition is equivalent to 

 

 
1 2 3 4 53( , , ) 0i i i i i        (2.64) 

 

which results in  

 

 
4 5 1 2 1 2 4 5 1 3 1 3 4 5 2 3 2 3 4 50 0i i i i i i i i i i i i i i i i i i i ia a a a                      (2.65) 

 

The above equations can be normalized by requiring that 

 

 
1 2 3

1i i ia    (2.66) 

 

Then equation (2.63) becomes 

 

  (2.67) 

 

Due to the Gaussian property of the set i , the following equation holds  

 

 
1 2 3 4 1 2 3 4 1 3 2 4 1 2 2 3i i i i i i i i i i i i i i i i               (2.67) 

 

Substituting for the expectations in equations (2.67) and (2.65) yields 
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1 1 4 2 2 4 3 3 4

1 2 3 4 1 3 2 4 1 4 2 3
0

i i i i i i i i i

i i i i i i i i i i i i

a a a  

     

  

   
 (2.68) 

 

and 

 

 

4 5 1 2 1 2 4 5 1 4 2 5 1 5 2 4

1 3 1 3 4 5 1 4 3 5 1 5 3 4

2 3 2 3 4 5 2 4 3 5 2 5 3 4

0

0

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

a a

a

a

      

     

     

    

    

     

 (2.69) 

 

 

Substituting for 0  from equation (2.63), equation (2.69) can be written as 

 

 

 
1 2 1 4 2 5 1 5 2 4 1 3 1 4 3 5 1 5 3 4

2 3 2 4 3 5 2 5 3 4
0

i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i

a a

a

       

   

        

    

  (2.70) 

 

 

From equation (2.70), the coefficient 
1 2 1 3 2 3

, ,i i i i i ia a a  can be evaluated as 

 

 

1 2

1 3

2 3

0

0

0

i i

i i

i i

a

a

a







  (2.71) 

 

 

Using equation (2.69) again , it is found that  

 

  0 0a   (2.72) 

 

Equation (2.68) can be written as 

 

 
1 4 1 2 3 1 4 1 2 3 1 4 1 2 3

( ) ( ) ( ) 0i i i i i i i i i i i i i i ia a a             (2.73) 

 

From which the coefficient 
1 2 3
, ,i i ia a a  are found to be 

 

 

1 2 3

2 1 3

3 1 2

i i i

i i i

i i i

a

a

a







 

 

 

  (2.74) 

 

The third order Polynomial Chaos can then be written as 

 

 
1 2 3 1 2 3 1 2 3 2 1 3 3 1 23( , , )i i i i i i i i i i i i i i i                  (2.75) 
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After laborious algebraic manipulations, the fourth order Polynomial Chaos can be 

expressed as 

 

 

1 2 3 4 1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3

2 3 1 4 2 4 1 3 3 4 1 2

1 2 3 4 1 3 2 4 1 4 2 3

4 ( , , , )i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i

i i i i i i i i i i i i

                

        

     

    

  

  

  (2.76) 

 

It is readily seen that, in general, the nth order Polynomial Chaos can be written as 

 

 
1

1

1

( ,..., ) 1 1

1

( ,..., ) 1 1

( 1) ,

( ,..., )

( 1) ,

k l

n

n

k l

n

r n
r

i i

r n i i k l r
r even

p i i r n
r

i i

r n i i k l r
r even

n even

n odd





 

 

 

   



   


  


  

   



   

   

  (2.77) 

 

where (.)  denotes a permutation of its arguments, and the summation is over all such 

permutations such that the sets  
1
,...,

ri i   is modified by the permutation. 

Thus, the Polynomial Chaos of order n can be obtained as 

 

  
1

1

1

2( ,..., ) ( 1)
...

T

n

n

n
n

n i i

i i

e
 

 
 


  

 
 (2.78) 

 

Equation (2.78) can be readily evaluated symbolically at the following tables for one 

dimensional Polynomial Chaoses up to the fourth order along with the values of their 

variances. The term i  in this table refers to the quantity appearing in equation (2.46). 

 

j 
p , Order of the 

Homogeneous Chaos 

jth Polynomial 

Chaos 
j  

2

j    

0 0p   1 1 

1 1p   
1  1 

2 2p   2

1 1   2 

3 3p   3

1 13   6 

4 4p   4 2

1 16 3    24 

Table 2.1: One – Dimensional Polynomial Chaoses and their Variance; n=1 
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3 Newton - Raphson method 

3.1 Method in general 

Newton’s method is a general procedure that can be applied in many diverse 

situations. When specialized to the problem of locating a zero of real-valued function 

of a real variable, it is often called Newton-Raphson iteration. In general, Newton’s 

method is faster than the bisection method and Fixed-Point iteration since its 

convergence is quadratic rather than linear. Once the quadratic becomes effective, that 

is, the values of Newton’s method sequence are sufficiently close to the root, the 

convergence is so rapid that only a few more values are needed. Unfortunately, the 

method is not guaranteed always to convergence. Newton’s method is often combined 

with other slower method in a hybrid method that is numerically globally convergence. 

Suppose that we have a function f whose zeros are to be determined numerically. Let 

r  be a zero of )(xf  and let x  be an approximation to r . If f  exists and is 

continuous, then by Taylor’s Theorem,  

 

          20 f r f x h f x hf x o h        (3.1) 

 

where xrh  . If h  is small (that is, x  is near r ), then it is reasonable to ignore the 

 2ho  term and solve the remaining equation for h . If we do this, the result is

   xfxfh  . If x  is an approximation to r , then    xfxfx   should be r . 

Newton’s method begins with an estimate 0x  of r  and then defines inductively  

 

   (3.2) 

 

3.2 Newton’s Algorithm 

 

x0 =  initial guess 

   (3.3) 

 
1

( )n
n n

n

f x
x x

f x
  


  for n = 0,1,2,  

 

 

Before examining the theoretical basis for Newton’s method, let’s give a graphical 

interpretation of it. From the description already given, we can say that Newton’s 

method involves linearizing the function. That is, f  was replaced by a linear function. 

The usual way of doing this is to replace f  by the first two terms in the Taylor series. 

Thus, if  

 

           
2

!2

1
cxcfcxcfcfxf   (3.4) 
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Then the linearization (at c) produces the linear function  

 

       cxcfcfxl    (3.5) 

 

Note that l  is a good approximation to f  in the vicinity of c , and in fact we have 

   cfcl   and    cfcl  . Thus, the linear function has the same value and the 

same slope as fit the point c . So in Newton’s method we are constructing the target 

line to f at a  point near r , and finding where the target line intersects the x -axis. 

 

3.3 Error Analysis (Quadratic convergence of Newton’s method) 

 

Now we analyze the errors in Newton’s method. By errors, we mean the quantities 

xxe nn  . (We are not considering round-off errors) Let us assume that f  is 

continuous and r  is a simple zero of f  so that    rfrf  0 . From the definition 

of the Newton iteration, we have  

 

 

 

 

 

 

1 1

( ) ( ) ( ) ( ( ) ( ))
.

( ) ( )

'

'

n n n n n n

n

n

n n

n

n

n

n n

n

e f x f x e f x f x f r

f

f x
e x r x r

f x

x f

f

x

x
e

f x

 

   


  










 

  (3.6) 

 

                       

By Taylor’s Theorem, we have  

 

         21
' ''

2
n n n n nf x f r f x x r e f       (3.7) 

 

                             

 
 

 

 

 

2

2 2

1

1 1
''

2 2
n n

n n n

f e f r

e e ce
f r f r



   
 

  (3.8) 

  

Suppose that 1c  and 410ne . Then by Equation (3.8), we have 8

1 10

 ne  and 
16

1 10

 nl . We are impressed that only a few additional iterations are needed to 

obtain more than machine precision.  

This equation tells us that 1ne  is roughly a constant times
2

ne . This desirable state of 

affairs is called quadratic convergence. It accounts for the apparent doubling of 

precision with each iteration of Newton’s method in many applications. 

 

3.3.1 Definition (Quadratically convergent): 

A iterative method is quadratically convergent if 

            M = lim
n®¥

e
n+1

e2

n

< ¥  
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We have yet to establish the convergence of the method. By Equation (3.8), the idea of 

the proof is simple: If ne  is small and if    nn xff  
2

1
 is not too large, then 1ne  

will be smaller than ne . Define a quantity  c  dependent on   by  

 

 

         0minmax
2

1






xfxfc

rxrx
 (3.9) 

    

We select small enough   to be sure that the denominator in Equation (3.9) is 

positive, and then if necessary we decrease   so that   1c   . This is possible 

because as   converges to 0,  c  converges to    rfrf 
2

1
, and so  c  

converges to 0 . Having fixed , set   c . Suppose that we start the Newton 

iteration with a point 0x  satisfying 0x r   . Then 0e  and   r0 . Hence, 

by the definition of  c , we have  

 

   (3.10) 

 

Therefore, Equation (3.8) yields 

 

      2

1 1 0 0 0 0 0 0x r e e c e e c e c e e               (3.11) 

 

This shows that the next point 
1x , also lies within   units of r . Hence, the argument 

can be repeated, with the results  

 

              01 ee   ,   0

2

12 eee     and   0

3

23 eee             (3.12) 

 

In general, we have  

 

  0ee n

n   (3.13) 

 

Since 10   , we have 0lim 


n

n
 , and so 0lim 


n

n
e . Summarizing, we obtain the 

following theorem on Newton’s method. 

 

3.4 Theorem (Theorem on Newton’s method) 

Let f  be twice continuously differentiable and ( ) 0f r  . If '( ) 0f r  , then Newton’s 

method is locally and quadratic ally convergent to r and satisfies 

 

 xn+1 - r £ c xn - r
2

n ³ 0( )   (3.14) 

 

In some situations Newton’s method can be guaranteed to converge from an arbitrary 

starting point. We give one such theorem as a sample. 
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3.4.1 Theorem (Theorem on Newton’s method for a convex function) 

If f  belongs to  RC 2
, is increasing, convex and has a zero, then the zero is unique, 

and the Newton’s method will converge to it from any starting point. 

 

3.4.2 Theorem (Linear convergence of Newton’s Method) 

Assume that the (m+1) -time continuously differentiable function f on a,b[ ]has a 

multiplicity m  root at r . Then Newton’s Method is locally and linearly convergent to 
r .Newton’s Method, like Fixed-Point Method, may not converge to a root. 
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4 Spectral Galerkin Method - Newton- Raphson (SGM-NR) 

4.1 SGM-NR Method 

 

At this paragraph is presented the method SGM-NR (Spectral Galerkin Method – 

Newton - Raphson) for a stochastic non linear problem. Let k is a random variable 

(scalar), so the dimension is one (m=1) and f  is a non linear function of variable Δ. 

The right hand side of the equation is a constant number. 

 

 ( )kf R   , with  2~ ,k N    (4.1) 

 

An equivalent problem to (4.1) is:  

 

  ( ) ( ) 0J kf R       (4.2) 

 

 Let 0  was an initial (displacement) guess, and then Δ can be expressed as: 

 

  0       (4.3) 

 

With first order Taylor expansion at eq. (4.2) we can create the following expression:  

 

  

0

0 0

( )
( ) ( ) ( )

Taylor dJ
J J J

d
 




        


 (4.4) 

Then the equation (4.4) can be in the form: 

 

  

0

0

( )
( )

dJ
J

d





    


 (4.5) 

 

In order to solve the stochastic problem we can re-write equation (4.5) in the form: 

  

 

0

0

( , )
( ) ( , )

dJ k
k J k

d





    


  (4.6) 

 

Further, we can note from the following equations that: 

 

 
   

0 0 0

( ) ( )( , ) d kf R d fdJ k
k

d d d  

  
 

  
 (4.7) 

 

and 

 

From equations (4.6) and (4.7) we can write equation (4.5) in the form: 

 

 
 

0

0

( )
( , )

d f
k J k

d




 
     
 
 

 (4.10) 
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Equation (4.10) it’s the equivalent problem with (4.1) if we assume that k is a random 

variable is distributed by Gaussian field  2~ ,k N    with dimension 1. At this step 

it is obvious from the equation (4.10) that we have to deal with a stochastic equation 

because k is a random variable. Further it is important to notice that Δ is depended 

from variable k and that’s has as result that Δ is a random variable with respect to k. 

For that reason we can note that ( )k    . So,  

 

 0 0'( ) ( ) ( )k f k R kf         (4.12) 

 

Now we can write the quantity ( )k  with the polynomial chaos expansion form 

(2.46).  If we choose the order of polynomial chaos expansion to be p and i  are the 

Hermite orthogonal up to p degree then the expansion with truncated over 

 1 1 !
1

!1!

p p
P p

p p

  
    

 
 is: 

 

 
1

0

( ) ( )
P

i i

i

k d k




    , where , 0,..., 1id i P   are unknown constants  (4.13) 

 

Then equation (4.12) with (4.13) can be expressed as 

 

  
1

0 0

0

'( ) ( ) ( )
P

i i

i

k f d k R kf




        (4.14) 

 

Further, if we multiply equation (4.14) with , 0,..., 1j j P    where 
j  are 

Hermite polynomials, equation (4.14) can take the form: 

 

  
1

0 0

0

'( ) ( ) ( ) ( ) ( )
P

i i j j

i

k f d k k R kf k




          (4.15) 

 

As a property of Newton – Raphson convergence is that 0'( ) 0f   . 

So  

 
1

0

0 0

( )
( ) ( ) ( )

'( )

P

i i j j

i

R kf
k d k k k

f





 
    


 ,  0,..., 1j P   (4.16) 

 

 

 

Summarized the above results of equations (4.16) and (4.17), equation (4.15) can be 

expressed as: 

 

 
1

0

0 0

( )
( ) ( ) ( )

'( )

P

i i j j

i

R kf
d k k k k

f





 
   


  , for 0,..., 1j P    (4.17) 

 

and with the estimations, equation (4.18) can be expressed as: 

 

 
1

0

( ) ( ) ( ) ( )
P

i i j j

i

d k k k B k k




     , for 0,..., 1j P    (4.18) 
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Finally with the notation  

  
0

0

( ) ( )

( )
( )

'( )

ij i j

j j

K K k k k

R kf
B B k

f

   

 
  



 (4.19) 

 

 

the augmented linear system can expressed as: 

 

  

 

 

dim ( 1) ( 1)

dim ( 1) (1)

dim ( 1) (1)

Kd B

K p p

d p

B p



   

  

  

 (4.20) 

 

More analytically  

 

0 0 0 1 0

1 0

0

... P

P P P

k k k

k
K

k k

       
 

  
 
      

, 

0

1

P

d

d
d

d

 
 
 
 
 
 

 , 

0

1

P

B

B
B

B

 
 
 


 
 
 
 

 

 

As we assume before, k  is a random variable distributed as 2~ ( , )k N    . If we 

standardized variable k we can exact:  

 

 
~ (0,1)

k
N

k






  




  

  (4.21) 

 

Hermite polynomials are (Xiu & Karniadakis, 2014) 

 

  

1 0

1 1

2

( ) ( ) 1

( ) ( ) ( )

!

n n n

n

H H

H H nH

H n

 

   



 

 

  



 (4.22) 

 

 

 

 

 

 

 

 

So, the first Polynomials are 
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j 
p , Order of the 

Homogeneous Chaos 

jth Polynomial 

Chaos 
j  

2

j    

0 0p   1 1 

1 1p     1 

2 2p   2 1   2 

3 3p   3 3   6 

4 4p   4 26 3    24 

 

 

 

 
4-1 Hermite Polynomials  

 
 

For the inner functional product we have the following properties: 

 

 

2

2

0

1
( ), ( ) ( ) ( )

2

( ) 1

( ) 0 , 1,...,

( ), ( ) , , 1,...,

i j i j

i

i j ij ij

e d

for i p

a for i j p



    






  






     

  

   

    



  (4.23) 
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4.1.1 K Matrix                     

 

 ( ) ( )ij i jK K k k k     (4.24) 

 

 

From the equations (4.21), (4.22) and (4.23) we have the following: 

 

 For the 00K  element we have: 
2

2 2

2
00 0 0

2 2

1
( ) 1 1 ( )

2

1 1

2 2

k e d

e d e d



 

    


     
 






 
 

 

         

  



 

 

 

 For the 01K  element we have: 
2

2 2

2 2
01 0 1

2 2 2

1
( ) 1 ( )

2

1 1

2 2

k e d

e d e d



 

     


      
 






 
 

 

         

  



 

 

 

 

 For the 02K  element we have: 
2

2 2

2 3 2 2
02 0 2

3 22 2

1
( ) 1 ( 1) ( )

2

1 1
( ) ( 1) 0

2 2

k e d

e d e d



 

       


      
 






 
 

 

            

    



 

 

 

 For the 12K  element we have: 
2

2 2

2 4 3 2 2
12 1 2

4 2 32 2

1
( ) ( 1) ( )

2

1 1
( ) ( ) 2

2 2

k e d

e d e d



 

        


        
 






 
 

 

            

    



 
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K is also a symmetric matrix so we can have the following sparsity 

(Stavroulakis, Giovanis, Papadrakakis, & Papadopoulos, 2014): 

 

 

0

2 0 0

0 2 2 6 0

0 6 6 24

0 24 24 0

0 !

0 ! !

n

n n

 

  

  

  

 



 

 
 
 
 
 

   
 
 
 
 
   

 

 

4-2 K sparsity  

4.1.2 B Matrix        

 

 0 0

0 0 0

( ) ( )
( ) ( ) ( )

'( ) '( ) '( )
j j j j

R kf fR
B B k k k k

f f f

  
       

  
  (4.25) 

 

 

 For the 0B  element we have: 
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2

2

0
0 0 0

0 0

0

0 0

0 2

0 0

0 02

0 0 0

( )
( ) ( )

'( ) '( )

( )
1 ( ) 1

'( ) '( )

( ) 1
( )

'( ) '( ) 2

( ) ( )1 1

'( ) '( ) '( )2 2

fR
B k k k

f f

fR

f f

fR
e d

f f

f fR
e d e

f f f



 

 

  


   
 






 
 

 


      

 


      

 

  
       

   

    
            

     



 

2

2

0 0

0 0 0 0

( ) ( )
0

'( ) '( ) '( ) '( )

d

f fR R

f f f f



 



 
      

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For the 1B  element we have: 

2

2 2

0
1 1 1

0 0

0

0

0 2

0

20 02 2

0 0

0

0
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f

f

f
e d
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f f

f
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

 

  

   


     
 






 
 

 


      

 


     



  
        

  

    
              

    


 





 

0

0

( )
1

) '( )

f

f
 


    



 

 

 

 For the 2B  element we have: 
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 

 
2

2

2

0
2 2 2

0 0

20

0

20 2
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( ) 1
( ) 1

'( ) 2

( ) 1

'( ) 2

( ) 1

'( ) 2

( )

fR
B k k k

f f

f

f

f
e d

f

f
e d

f

f
e d

f

f







  

   


  


  


















      

 
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  
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  





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
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2 2
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0 2
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0

e d
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


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
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
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
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
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 
    

  

  
     

  






 

 

 

 

 

 

 

 

 

 

 

 For the i  with 2,..., 1i p   we have 0iB  . 

Proof 
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4.1.3 Statistics measurements of SGM   

 

 Mean of SGM 

 

The solution of the linear system (4.20) is 
0

( ) ( )
P

i i

i

k d k


  
 

 

  

   

0

0 0 1 1

0

0 0 1 1

1

0 1 1

( ) 0, 1,...,

0 1 1

0

...

( ) ( ) ... ( )

(1) ( ) ... ( )

( ) ... ( )
i

p

i p p

i

p p

p p

E for i p

p p

Mean E d E d d d

d d d

d d d

d d d

d




 

  

 
           

 

          

         

        





 (4.26) 

 

 Variance (Standard Deviation) 

 

 

 
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0 0 1 1

0

2 2 2

0 0 1 1

1
2 2 2

0 1 1

2 2 2

0 1 1

1

( ) ...

( ) ( ) ... ( )

(1) ( ) ... ( )

0 ( ) ... ( ) ( )

p

i p p

i

p p

p p

p

p p i

i

Variance Var d Var d d d

d Var d Var d Var

d Var d Var d Var

d d Var d Var d Var








 



 
           

 

       

      

        





 (4.27) 

So if we use the identity  2 2( ) ( )Var x E x E x   we can express (4.27) as: 

 

 

    

 

( ) 0 , 1,...,
2 2 2

1

2 2 2 2 2

1 2

1

( )

1! 2! ... !

i
p E i p

i i i

i

p

i i p

i

Variance d E E

d E d d d p


  





     

        





 (4.28) 

Summary: 

   0d    

   (4.29) 

 1 2( ) 2! ... ! nstd d d n d      

 

 

 

And for the Δ we have: 

 

   0 0d      

   (4.30) 
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 1 2( ) 2! ... ! nstd d d n d      is the same because 
0( ) 0Var    
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4.1.4 Algorithm SGM – Newton – Raphson  

 

For the solution of the problem  ( )kf R   , with  2~ ,k N    we have the next 

algorithm: 

 

Start SGM-NR 

Step 1 

Input the Dimension of the variable k (m) 

and the order of Polynomial Chaos (p) 

(next) 

Step 2 

Specify R (right hand side) and  

generate one random k from  2,N    

(next) 

Step 3 
Calculate Polynomial Chaos parameters (Basis, norms etc) 

 (next) 

Step 4 
Newton – Raphson (Specify: tolerance) 

(next) 

Step 5 
Specify the initial (seed) 0  

(next) 

Step 6 

Solve the linear system (4.20) and 

calculate δΔ 

if Tolerance   go to (step 7) 

else  

0 0      

and go to (step 5) 

Step 7 

If Newton – Raphson Converged, then Calculate the statistics 

( )Mean   and ( )std Var   then you have pdf 

 
End SGM-NR 
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4.2 Monte Carlo Simulation (MCS) 

4.2.1 Monte Carlo Method 

A Monte Carlo method is a technique that involves using random numbers and 

probability to solve problems. The term Monte Carlo Method was coined by S. Ulam 

and Nicholas Metropolis in reference to games of chance, a popular attraction in 

Monte Carlo, Monaco (Hoffman, 1998; Metropolis and Ulam, 1949).  

Computer simulation has to do with using computer models to imitate real life or 

make predictions. When you create a model with a spreadsheet,  you have a certain 

number of input parameters and a few equations that use those inputs to give you a set 

of outputs (or response variables). This type of model is usually deterministic, 

meaning that you get the same results no matter how many times you re-calculate.  

 
Figure 1: A parametric deterministic model maps a set of input variables to a set of 

output variables.  

Monte Carlo simulation is a method for iteratively evaluating a deterministic model 

using sets of random numbers as inputs. This method is often used when the model is 

complex, nonlinear, or involves more than just a couple uncertain parameters. A 

simulation can typically involve over 10,000 evaluations of the model, a task which in 

the past was only practical using super computers.  

By using random inputs, you are essentially turning the deterministic model into a 

stochastic model.  

We can use simple uniform random numbers as the inputs to the model. However, a 

uniform distribution is not the only way to represent uncertainty. Before describing the 

steps of the general MC simulation in detail, a little word about uncertainty 

propagation:  

The Monte Carlo method is just one of many methods for analyzing uncertainty 

propagation, where the goal is to determine how random variation, lack of knowledge, 

or error affects the sensitivity, performance, or reliability of the system that is being 

modeled. Monte Carlo simulation is categorized as a sampling method because the 

inputs are randomly generated from probability distributions to simulate the process of 

sampling from an actual population. So, we try to choose a distribution for the inputs 

that most closely matches data we already have, or best represents our current state of 

knowledge. The data generated from the simulation can be represented as probability 

distributions (or histograms) or converted to error bars, reliability predictions, 

tolerance zones, and confidence intervals. (See Figure 2).  
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Uncertainty Propagation  

 
Figure 2: Schematic showing the principal of stochastic uncertainty propagation.  

(The basic principle behind Monte Carlo simulation.)  

The steps in Monte Carlo simulation corresponding to the uncertainty propagation 

shown in Figure 2 are fairly simple, and can be easily implemented for models. All we 

need to do is follow the five simple steps listed below: 

Step 1: Create a parametric model, y = f(x1, x2, ..., xq). 

Step 2: Generate a set of random inputs, xi1, xi2, ..., xiq. 

Step 3: Evaluate the model and store the results as yi. 

Step 4: Repeat steps 2 and 3 for i = 1 to n. 

Step 5: Analyze the results using histograms, summary statistics, confidence 

intervals, etc. 
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4.2.2 Algorithm Monte Carlo – Newton – Raphson  

 

For the solution of the problem  ( )kf R   , with  2~ ,k N    we have the next 

algorithm: 

 

Start MCS-NR 

Step 1 

Specify R (right hand side) and  

generate one random k from  2,N    

(next) 

Step 2 
Newton – Raphson (Specify: tolerance) 

(next) 

Step 3 
Specify the initial (seed) 0  

(next) 

Step 4 

Solve the linear system (4.10) and 

calculate δΔ 

if Tolerance   go to (step 5) 

else  

0 0      

and go to (step 3) 

Step 5 

If Newton – Raphson Converged, then Calculate the statistics 

( )Mean   and ( )std Var   

Then you have pdf  

 
End MCS-NR 
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5 Example - Results 

5.1 Definition of the problem 

At the following truss we must find the displacement of the point P under loading R. 

 

 
5-1 Symmetric Truss with two bars under loading R 

 

 

 

It is obvious that we have a symmetric problem so we can make the calculation on the 

next equivalent geometrical scheme: 

 

 

 
5-2 Displacement of point P 

 

 

 sin
2

R
F     (5.1) 

From cosine rule  

 
2 2' 2 sinL L L      (5.2) 

 

If we note  'L L     we have 
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2 22 sinL L L        (5.3) 

   

 

 
sin

sin
L

L










  (5.4) 

 

Now, from equations (5.1),(5.3) and (5.4) we have the following expression: 

 

 
sin

2

L R
F

L









 (5.5) 

 

For k=EA where E: Young’s Module and area A we have 

 

  
 'L L

F k k
L




   , where k=EA  (5.6) 

 

 

 
 ' sin

2
'

L L L
k R

L L

 
   (5.7) 

 

Further, 

 

 2 1 sin
'

L
k R

L L


   
       
   

  (5.8) 

 

From the equation (5.2) equation (5.8) can be expressed as: 

 

 

  
2 2

2 1 sin
2 sin

L
k R

LL L




   
       

    
 (5.9) 

 

And finally  

 

 
1/2

2

1
2 1 sin

1 2 sin

k R
L

L L





 
 
   
       

     
         

  (5.10) 

 

 

 

 

 

 

 

 

 



 61 

 

5.2 Deterministic Solution 

Let 5 510 ,(k 10 1)k EA     with length of each bar is 1 .L un length  and 015  .    

 
5-3 Solution of deterministic problem for all displacements and stationary points A and B  

 

At this part, it is important to note the stationary points A and B of the diagram (5-3) 

because at those points Newton – Raphson it is unstable as the bar of the truss. In 

order to pass through this points, we must use path techniques (Arc Length algorithms) 

but isn’t the purpose of this thesis. For that reason we can deal with the first concave 

down part to confirm the method of this thesis. 

 

 
5-4 Concave down part of deterministic solution 
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5.2.1 Stochastic Solution with Monte Carlo Simulation (MCS) 

For the problem (5.10) with 5 3~ (10 ,10 )k N  , 1L unit  and 015   after the 

application of the algorithm (MCS-NR) as it proposed in the paragraph (4.4.2) for 

 0,650R  and for each R we estimate the pdf for all displacements Δ with 1000 

realizations. The following diagram is the solution of stochastic problem. 

 

   

 

5-5 Monte Carlo Simulation - NR with  5 3~ 10 ,10k N   

 

5.2.2 Solution of Stochastic problem with SGM 

At this paragraph we solve the problem (5.10) again with 5 3~ (10 ,10 )k N  , 1L unit  

and 015   now with the application of the algorithm (SGM-NR) as it proposed in the 

paragraph (4.4.1) for  0,650R and for each R we estimate the pdf for all 

displacements Δ without any realizations. The following diagram is the solution of 

stochastic problem and as we can see it is similar with (5-5) diagram. 

 

 

5-6 Spectral Galerkin Method -NR Simulation with  5 3~ 10 ,10k N  
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5.3 Comparison of two methods 

At this paragraph we introduce the way that we can compare SGM-NR method with 

reliability. The following diagrams represent for the specific loadings R=100, R=400 

and R=600 the probability distribution function (pdf) and give the idea for the reliable 

comparison test at the following (5.3.1) – (5.3.3) sections. 

 
5-7 at this diagram for loading R=100, R=400 and R=600  

Is the estimation for the pdf with the SGM-NR method 

 

 

 

 
5-8 At this diagram for loading R=100, R=400 and R=600  

Is the estimation for the pdf with the MCS-NR method. 
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5.3.1 R=100 with 5000 Realizations and p=2 polynomial Chaos 

 

 
5-9 Left histogram is the pdf estimation with MCS-NR  

and the right is the pdf estimation with SGM-NR with R=100 

 

 

 
 

R=100  

(5000 Realizations) 
Mean Standard Deviation  

MCS 37.790719 10  58.134136 10  

SGM (p=2) 37.790847 10  58.146517 10  

Absolute Error 71.28 10    O(-7) 71.2381 10    O(-7) 

 

 

 
5-10 both kernel density plots for R=100 
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5.3.2 R=400 with 5000 Realizations and p=2 polynomial Chaos 

 

 
5-11 Left histogram is the pdf estimation with MCS-NR  

and the right is the pdf estimation with SGM-NR with R=400 

 

 

 

 

R=400  

(5000 Realizations) 
Mean Standard Deviation  

MCS 23.704271 10  44.870621 10  

SGM (p=2) 23.702710 10  44.819321 10  

Absolute Error 51.1561 10     O(-5) 65.13 10     O(-6) 

 

 

 
5-12 both kernel density plots for R=400 
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5.3.3 R=600 with 5000 Realizations and p=2 polynomial Chaos 

 
5-13 Left histogram is the pdf estimation with MCS-NR  

and the right is the pdf estimation with SGM-NR with R=600 

 

 

 

 

R=600  

(5000 Realizations) 
Mean Standard Deviation  

MCS 26.866779 10  31.341924 10  

SGM (p=2) 26.864848 10  31.356364 10  

Absolute Error 53.287 10    O(-5) 51.444 10    O(-5) 

 

 

 
5-14 both kernel density plots for R=600 
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5.3.4 Parametric Analysis 

 

 

 

 
5-5 At this multi kernel density plots we can see the convergence of high orders of Polynomial 

Chaos Expansion method 

 

 

R=400  

(5000 Realizations) 
Mean Standard Deviation  

MCS 23.704271 10  44.870621 10  

SGM (p=2) 23.702710 10  44.819321 10  

SGM (p=4) 0,0370271041200518 0,000481932178769749 

SGM (p=8) 0,0370271041200518 0,000481932178769775 
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