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Abstract

The goal of the current project was to study deep architectures of neural networks
which have received tremendous attention during the past few years, because of their
success in tasks of interest to the machine learning community.

The application field that we selected was automatic speech recognition, given
that most breakthroughs in deep learning have first occurred in speech recognition
tasks. In addition, we adopted a manifold approach for the regularization of the
training criterion of the network. The idea (Tomar and Rose, 2014) is that, if we
manage to maintain the manifold-constrained relationships of speech input data
through the network, we will learn a more accurate and robust against noise distri-
bution over speech units. The algorithm that will maintain the manifold-imposed
relations uses classes of speech units and distances between speech features to learn
the underlying manifold.

The first chapter is a mathematical background refresher to introduce the notion
of the manifold, in order to help with the understanding of the manifold regulariza-
tion and why it works.

Next, we proceed to present a general, brief overview of the automatic speech
recognition task, as well as current approaches in the field.

The third chapter is an introduction to manifold learning, where we define the
area and give an overview of popular manifold learning algorithms. In the last
section of this chapter, we present the work of Tomar and Rose, 2014, on which the
current project was based.

Chapter four presents deep neural networks; it starts with the history and mo-
tivation behind deep architectures in speech recognition and proceeds with the de-
scription of the deep multilayer perceptron, which was the architecture of choice in
the project. Practical tips and tricks are also given as they were collected during the
development and experimental part of the project. The chapter concludes by briefly
presenting recurrent neural networks, a type of network that has recently received
a lot of attention in speech and natural language processing tasks.

The last chapter describes in detail the manifold regularized network we built,
the way we incorporated the manifold criterion in the deep neural network as well
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as challenges we faced during development. Finally, experimental results and sub-
sequent remarks are presented.
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Chapter 1

Introduction

1.1 Motivation and task description

In the current project we worked on a large vocabulary continuous speech recog-
nition task. Although speech recognition is one of the first fields where pattern
recognition had been successfully applied, it is still receiving a lot of attention from
the research community, as the rise in voice-guided automation and Internet of
Things applications has increased the need for better, more robust and efficient
models.

We built and trained a deep neural network acoustic model for automatic speech
recognition, which included manifold learning elements to discover useful structure
in the underlying space of the available speech data.

Traditional speech recognition systems use Hidden Markov Models and a mixture
of Gaussians (GMM) to model acoustic sequences, while in our project we replaced
the GMM with a deep neural network that computes the conditional probability
distribution of the phonetic label given the observed speech sample. The use of a
deep neural network for acoustic modeling is motivated by several reasons: deep
architectures are adept at extracting distributed, higher-level representations from
their input, which we believe will be useful for speech recognition. Furthermore, they
can process correlated input, contrary to GMM, which makes them more appropriate
for speech tasks, given the high variability of speech samples and correlation between
neighboring speech segments. These claims have already been proven accurate if we
consider the success that DNN-based acoustic models have exhibited so far. In
addition, GMM are statistically inefficient for modeling data lying on or in the
vicinity of a manifold, as is the case with speech samples. For this reason, we
incorporated the manifold learning element in the deep network, in the hope of
capturing information about the underlying space that will aid in phonetic class
discrimination. Research ([SR03]) has shown that information about the space that

1



2 Chapter 1. Introduction

data lie on can indeed be useful for discrimination purposes.

1.2 Current approaches

1.2.1 Deep Learning and Automatic Speech Recognition

The application of neural networks to speech recognition dates back to the 1980s,
when the Time Delay Neural Network was presented, introducing time-delay units
to consider past history in addition to current input ([WHH+90]). The first hybrid
approaches combining (shallow) neural networks for the acoustic model and Hidden
Markov Models, appeared a few years later for small vocabulary tasks ([MB90]),
however they were abandoned due to poor performance compared with the state-of-
the-art at that time. Interest in deep neural networks increased again after Hinton et.
al. ([HOT06]) presented a fast and efficient algorithm to pre-train deep models. The
application of deep architectures to ASR was revisited in 2009 when a DNN/HMM
system for phone recognition ([rMDH]) was introduced, which reduced the error rate
on TIMIT by about 5% (absolute) as compared with the state-of-the-art.

After the initial success of hybrid DNN-HMM systems, research also turned its
attention to feature extraction using deep models, as it was believed that deep
architectures would be able to extract useful features from raw input by themselves,
without the need for extra feature engineering and processing. Research presented in
2013 ([SKrMR13]), showed that DNNs can extract filterbank features from the FFT
spectrum, or, as a different work proved, even raw time signal can be fed directly to
the DNN ([TGSN14]). In 2014, different deep models and i-vector based adaptation
techniques were combined and managed to reduce the error rate on Switchboard by
about 4% (absolute), or even more if the language model was also improved (with
neural network approaches to language modeling or otherwise).

Given the success of deep models in ASR and the performance issues associated
with their use, researchers started looking into practical ways to improve decoding
and training speed of deep architectures. In 2011, a group from Google ([VSM11])
showed that by using quantization and a certain instruction set, DNNs can be ef-
fectively trained on a CPU, thus proving that DNN-based systems can be used
in real-time applications. Furthermore, extra gain in training and decoding speed
was attained using parallelization methods based on CPUs ([LMD+11]) and GPUs
([CEL+12]) by groups from Google and Microsoft respectively. IBM on the other
hand used low-rank approximation ([SKS+13]) to achieve training and evaluation
speed-up of deep models.
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1.2.2 Manifold learning

The interest towards manifold learning is due to the hypothesis (manifold hy-
pothesis) that natural data are expected to concentrate near or on a manifold of
lower dimensionality, embedded into the high dimensional space of the original data
([Cay05]). Consequently, if we manage to discover that lower-dimensional space and
transfer our problem there, it will be easier for us to deal with it ([Ver08]). For
this purpose, a number of manifold-based dimensionality reduction algorithms have
been developed, that work by optimizing the structure of a neighbor graph. The
graph expresses the relations between elements on the manifold. The most represen-
tative of these algorithms are Isometric Mapping (ISOMAP, [TdSL00]), which uses
multidimensional scaling to preserve the distances before and after the transforma-
tion; Locally Linear Embedding ([RS00]) that tries to discover an approximately
linear mapping ,which will preserve the local geometry of the manifold, between the
manifold and the surrounding space; and Laplacian Eigenmaps ([BN03]) which uses
the Laplacian of the neighbor graph to discover information about the underlying
manifold.

1.2.3 Deep and Manifold learning in ASR

Jansen and Niyogi ([JN05]) showed that the manifold hypothesis for speech data
is accurate, by using a simple tube to model the vocal tract. Given that idea
and the fact that geometric and local structure of the data space can be useful for
classification tasks ([SR03]), there has been an effort to include manifold learning
ideas to speech recognition. Tomar and Rose ([TR14a], [TR13b], [TR13a], [TR13c])
presented a discriminative algorithm for dimensionality reduction, that essentially
exploited the structure of the manifold underlying the input space, in order to dis-
criminate between phonetic classes. Their approach was discriminative as instead
of building one neighbor graph, they built two: one with neighbors of each sample
belonging to the same phonetic class, and one with samples belonging to different
phonetic classes. By minimizing a scatter measure on the first graph and maximiz-
ing another on the second, they discovered a feature transformation that led to a
relative error rate reduction in the range of 6-30% on Aurora 2. Furthermore, they
incorporated their idea into a deep neural network which was used to extract fea-
tures for a subsequent speech recognition task ([TR14b]), achieving a relative error
rate reduction in the range of 8-38% on Aurora 2.
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1.2.4 Our approach

The aforementioned ideas combining manifold learning and deep neural networks
for ASR were the foundations for our work. In our approach, instead of using the
neural network to generate new features, we used it directly in the computation of
the acoustic modeling probability, thus avoiding the extra experimentation needed
for robust feature extraction from a deep model. The motivation behind the ap-
proach was that the deep network will uncover the manifold structure and will thus
discriminate more effectively between phonetic classes.

1.3 Contributions

The main contributions of the project to current research can be summarized as
follows:

• We constructed an acoustic model for automatic speech recognition using a
deep neural network, that was trained with constraints imposed on the struc-
ture of the acoustic space. We used this acoustic model in conjunction with
the Kaldi Toolkit for speech recognition. To our knowledge, similar approaches
to acoustic modeling have not used manifold constraints in the way we did.
The initial project on which we were based used a manifold-regularized deep
network for robust feature extraction and then used those features to train an
acoustic model. Instead, we trained a deep network to participate directly in
the training of the acoustic model, without the need of long experimentation
and tuning in order to extract good features and then use them in an ASR
task.

• We established that dropout works better as a regularization method than
imposing manifold constraints while training a DNN-based acoustic model.
This was an issue under investigation in the initial project we based our work
on, however, it must be noted that we established it using a different approach
(hybrid vs tandem DNN-based acoustic modeling). What we observed was
that, although systems using the two regularization methods exhibited more
or less the same decoding accuracy, the dropout-regularized system had a
larger error on the training set which means that it managed to attain the
same decoding capabilities having learnt less noise from the training set.

Furthermore, dropout and manifold regularization can be combined and com-
plement each other, which provided the best results in our task.
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• We are now combining articulatory features with the manifold-regularized
acoustic model that we constructed.

Our goal is to discover a mapping from the acoustic to the articulatory space
(articulatory inversion) and then back to the acoustic space, and use the new
features to train an acoustic model. Since articulatory features have proven
effective in ASR when used complementary to traditional acoustic features, we
hope that a new representation coming from an autoencoder whose encoding
part performs articulatory inversion, will be successful without the need for
complementary acoustic features. The first results using a small articulatory
dataset (MNGU0) have been encouraging and support our estimations. The
next step is to apply our idea onto a bigger dataset (USC-TIMIT), which
includes data from more speakers, hence it will improve the performance of
the articulatory inversion part.





Chapter 2

Mathematical Background

2.1 Introduction

An important part of every pattern recognition project handling large amounts
of data, is the dimensionality reduction problem, that is, the transfer of the input
data into a lower dimensional space, which will allow for more efficient processing
and a lower model error, as fewer parameters will have to be estimated. In order
to develop algorithms for this task, one must be able to understand basic notions
often arising in such context, e.g. Hilbert space, convergence, metric, manifolds.
The purpose of this chapter is to offer a brief introduction to these concepts in
connection with the broader topic of the project([Kre78]).

2.2 Metric Spaces

A space in the broader mathematical sense, is a set of elements X with some
added structure.

Specifically, we will be working on metric spaces. Prior to defining a metric space
we must first define what a metric is.

Definition 1. A metric d on a set X (or distance function on X) is a function
defined on X × X, such that for all x,y,z ∈ X ,the following properties hold true:

• d is real-valued, finite and non-negative

• d(x,y) = 0 iff x = y

• d(x,y) = d(y,x) (Symmetry)

• d(x,y) ≤ d(x,z) + d(z,y) (Triangle Inequality)

7



8 Chapter 2. Mathematical Background

Definition 2. A metric space is a pair (X,d) where X is a set and d is a metric on
X.

Set X is also called the underlying set of (X,d). For the fixed points x,y the
non-negative number d(x,y) is called the distance from x to y.

Examples of metric spaces are the well known R with the distance function

d(x, y) = |x− y|

, and the Euclidean space R2 with the Euclidean metric, defined by

d(x, y) =
√

(x1 − y1) + (x2 − y2)

for elements x = (x1, x2) and y = (y1, y2).

Spaces and their structure play a vital role in dimensionality reduction. The goal
of this process is to transfer the input space into a lower dimensional one, yet at
the same time retain the original relations between input data. In order to do this,
we need to make sure that the space we move to, has certain properties. We are
especially interested in spaces where the triangular inequality is satisfied, so that we
can take advantage of the convergence properties it offers to the space. This is the
reason why we built on a metric space, adding properties and operations, to derive
new spaces which offer the required structure.

We will now introduce some auxiliary concepts which will enable a smooth tran-
sition into defining further sorts of spaces.

Definition 3. Given a point x0 ∈ X and a real number r > 0, we define three types
of sets:

• B(x0;r) = {x ∈ X | d(x,x0) < r } (Open Ball)

• B(x0;r) = {x ∈ X | d(x,x0) ≤ r } (Closed Ball)

• S(x0;r) = {x ∈ X | d(x,x0) = r } (Sphere)

where point x0 is called the center and r the radius.

Given the definition of a ball, we can define the notion of a neighborhood of a
point.

Definition 4. An open ball B(x0, ε) , ε > 0, is called an ε - neighborhood of x0. A
neighborhood of x0 is any subset of X which contains an ε - neighborhood of x0.
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Figure 2.1: The unit balls in the euclidean space defined using the euclidean norm
(B2), the sum norm (B1) and the maximum norm (Bmax).[Kre78]

Since the process of dimensionality reduction is ,in its essence, a mapping from
one space to another, we proceed by defining the notion of a continuous mapping.

Definition 5. Let X = (X,d) and Y = (Y,d̄) be metric spaces. A mapping T : X →
Y is said to be continuous at a point x0 ∈ X if for every ε > 0 there exists a δ > 0

such that
d̄(Tx, Tx0) < ε ∀ x satisfying d(x, x0) < δ

T is said to be continuous if it is continuous at every point of X.

Having presented the ideas of a metric space and some of its subsets, as well as

Figure 2.2: Illustration of a mapping T. [Kre78]
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defined a continuous mapping, we proceed to remind the notions of convergence and
completeness which will be used to move on to further spaces.

2.3 Convergence and completeness

Definition 6. A sequence (xn) in a metric space X = (X,d) is said to converge or
to be convergent if there is a x ∈ X such that

lim
n→∞

d(xn, x) = 0.

x is called the limit of xn and we write

lim
n→∞

xn = x or xn → x.

It is obvious now why we need to be in a metric space to define the convergence
of xn: the metric d produces the sequence an = d(xn, x) whose convergence defines
that of xn. Furthermore, using the triangular inequality we can prove the following
lemma:

Lemma 1. Let X=(X,d) be a metric space. Then:

• A convergent sequence in X is bounded and its limit is unique.

• If xn → x and yn → y ∈ X, then d(xn, yn)→ d(x,y).

Convergence plays an important role in the definition of completeness which will
help us later to define Banach and Hilbert spaces (where we mostly work).

Definition 7. Let xn be a sequence in R or C. xn converges and we call it a Cauchy
sequence if and only if it satisfies the Cauchy convergence criterion,that is, if and
only if for every given ε > 0 there is a N=N(ε) such that

|xm − xn| < ε ∀m,n > N.

However, this is the case only for R and C. Given that most pattern recogni-
tion tasks work on multidimensional spaces, we have to generalize this convergence
property in such spaces.

Definition 8. A sequence xn in a metric space X = (X,d) is said to be Cauchy (or
fundamental),if for every ε > 0 there is a N=N(ε) such that

d(xm, xn) < ε ∀m,n > N.

This generalization allows us to give the following definition of completeness:
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Definition 9. A metric space X = (X,d) is said to be complete if every Cauchy
sequence in X converges (that is, it has a limit which is an element of X).

It is important to notice that convergence is not a property of the sequence by
itself, but it also depends on the metric space that the sequence lies: the limit of
the sequence must be in the space.

2.4 Vector spaces and Banach spaces

As we explore the structure of spaces so that we reach a suitable one for our
problem, we come across the notion of vector spaces.

Definition 10. A vector space (or linear space) over a field K is a non-empty set
X of elements x,y,... ,which are called vectors, together with two algebraic opera-
tions : vector addition and multiplication of vectors by scalars, that is by elements
of K.

Vector addition associates with every ordered pair (x,y) of vectors, a vector x+y,
called the sum of x+y, in such a way that the following properties are satisfied:

x+ y = y + x

x+ (y + z) = (x+ y) + z

Furthermore, there exists a vector θ, called the zero vector, and for every vector x
there exists a vector -x, such that for all vectors we have:

x+ θ = x

x+ (−x) = θ

Vector multiplication by scalars associates with every vector x and scalar α a vector
αx (or xα) called the product of α and x in such a way that for all vectors x,y and
scalars α, β the following hold:

α(βx) = (αβ)x

1x = x

α(x+ y) = αx+ αy

(α + β)x = αx+ βx

A vector space X exactly as defined above, may or may not be a metric space.
To make sure that a relation between the algebraic structure of X and the metric
exists, and thus be able to combine algebraic and metric concepts, we have to define
on X a metric d based on a norm.
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Definition 11. A norm on a vector space X (over R or C) is a real-valued function
on X whose value at a x ∈ X is denoted by

‖x‖

and which has the properties
‖x‖ ≥ 0

‖x‖ = 0⇒ x = 0

‖αx‖ = |α|‖x‖

‖x+ y‖ ≤ ‖x‖+ ‖y‖

where x,y ∈ X and α ∈ K.

A norm on X defines a metric d on X which is given by

d(x, y) = ‖x− y‖ x, y ∈ X

and is called the metric induced by the norm.
A vector space X with a norm defined on it, is called a normed space and is

denoted by X or (X,‖ · ‖).
If a normed space is complete in the metric defined by the norm, we call it a

Banach space.

2.5 Inner product spaces and Hilbert spaces

In a vector space, vectors can be added and multiplicated giving the space its
algebraic properties. By defining a norm on such a space, the concept of the length
of a vector is generalized allowing us to define a metric and establish a relation
between the algebraic and geometrical structure of the space.

To connect the above with pattern recognition, one should notice that when the
problem is transferred to a lower dimensional space, it is often desirable to keep
not only the length/magnitude relations between the data (as represented by the
distance/norm for example) but also the angle between them. This reminds us of
the inner product of a Euclidean space, which is what we will expand over normed
spaces.

Definition 12. An inner product on a vector space X is a mapping of X×X into
the scalar field K of X; that is, with every pair of vectors x and y, there is associated
a scalar which is written

〈x, y〉
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and is called the inner product of x and y, such that for all vectors x,y,z and scalar
α the following properties hold:

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

〈αx, y〉 = α〈x, y〉

〈x, y〉 = 〈y, x〉

〈x, x〉 ≥ 0

〈x, x〉 = 0 ⇐⇒ x = 0

An inner product on X defines a norm on X given by

‖x‖ =
√
〈x, x〉

and a metric induced by the above norm given by

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

A vector space X with an inner product defined on it, is called an inner product
space (or pre-Hilbert space). An inner product space which is complete in the metric
defined by the inner product, is called a Hilbert space.

It is apparent that an inner product space is a normed space and a Hilbert space
is a Banach space.

An important theorem of Banach spaces, and thus Hilbert spaces, is the Fixed
point theorem or Contraction theorem. Before we present the theorem and its useful
proof we have to give the following definitions.

Definition 13. A fixed point of a mapping T:X → X of a set X into itself, is a
x ∈ X which is mapped onto itself (it is kept “fixed” by T), that is, the image Tx
coincides with x:

Tx = x

Definition 14. Let X = (X,d) be a metric space. A mapping T: X → X is called a
contraction on X if there is a positive real number α < 1 such that for all x,y ∈ X

d(Tx, Ty) ≤ αd(x, y)

that is, the images of any points x,y are closer together than the points x,y.

The Banach fixed point theorem is an existence and uniqueness theorem for fixed
points of certain mappings, and its proof gives a constructive procedure for getting
closer and closer to the fixed point starting from an initial approximation. Thinking
this idea in connection with pattern recognition one should think of the fixed point
as the pattern to be found and the initial approximation as the observation available.
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Theorem 1. Banach fixed point theorem.
Consider a metric space X = (X,d) where X 6= ∅. Suppose that X is complete

and let T: X → X be a contraction on X. Then T has precisely one fixed point.

Proof Idea: We construct a sequence (xn) and show that it is Cauchy so that
it converges in the complete space X. Then we prove that its limit X is a fixed point
of T and T has no further fixed points.

We choose any x0 ∈ X and define the iterative sequence (xn) by

x0 , x1 = Tx0 , x2 = Tx1 = T 2x0 , ..., x
n = T nx0, ... (2.1)

which is the sequence of the images of x under repeated application of T. We now
show that (xn) is Cauchy. Since T is a contraction we have:

d(xm+1, xm) = d(Txm, Txm−1)

≤ αd(xm, xm−1) = αd(Txm−1, Txm−2)

≤ α2d(xm−1, xm−2)

... ≤ αmd(x1, x0).

Hence, using the triangular inequality we obtain for n>m:

d(xm, xn) ≤ d(xm, xm+1) + ...+ d(xn−1, xn)

≤ (αm + αm+1 + ...+ αn−1)d(x0, x1)

= αm(
1− αn−m

1− α
)d(x1, x0)

Since 0< α <1, in the numerator we have 1 - αn−m < 1. Consequently,

d(xm, xn) ≤ (
αm

1− α
)d(x1, x0)

On the right 0< α <1 and d(x0, x1) is fixed, so that we can make the right-hand
side as small as we please by taking m sufficiently large (and n > m). This proves
that (xm) is Cauchy. Since X is complete, (xm) converges, say xm → x. We now
have to show that this limit x is a fixed point of the mapping T.

From the triangle inequality and the definition of contraction we have:

d(x, Tx) ≤ d(x, xm) + d(xm, Tx)

≤ d(x, xm) + αd(xm−1, x)

The sum on the second line can be made smaller than any preassigned ε >0 because
xm → x. We draw the conclusion that d(x,Tx)=0) and consequently x = Tx, which
means that x is a fixed point of T.
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Figure 2.3: A one-dimensional manifold embedded in the three-dimensional space.
[Cay05]

We now have to show that this fixed point is unique. Let there be a second fixed
point x̄.Then

d(x, x̄) = d(Tx, T x̄) ≤ αd(x, x̄)

which implies that d(x,x̄)=0 since α < 1. Hence x = x̄ and the proof of the theorem
ends here.

2.6 Manifolds

An important notion that we will come across very often in the present work is
the notion of a manifold.

An intuitive representation of a manifold is the following: suppose we have a
set of data vectors in Rn, and that a certain projection of these vectors lies into a
lower-dimensional space. If we examine the data in the projected space, we notice
that the data vectors move along a certain path. This path, or curve formed in the
space, is the manifold that the features lie on in Rn.

For example, in figure 2.3 we see a curve in R3, which has zero volume and zero
area. It can therefore be parameterized by a single variable. Consequently, despite
being in the three-dimensional space, the curve has an intrinsic dimensionality of
one, since it locally resembles R1.

We will give a formal definition of manifolds, when we talk about their use in
representation learning.
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Figure 2.4: Overview of various spaces and their relations (taken from Wikipedia)

2.7 Summary

In this chapter some basic ideas about spaces and their properties were presented.
Starting from the metric and metric space, we moved on to the norm and vector space
and based on these we defined the Hilbert space which is the closest generalization
of the well-known Euclidean space. Hilbert spaces provide us with the tools we need
in our work like convergence, completeness, and contractions.



Chapter 3

Automatic Speech Recognition

3.1 Introduction

The goal of work on Automatic Speech Recognition (ASR) is to build systems
that recognize spoken speech, that is, they are able to map acoustic signals to strings
of words. In contrast to natural language processing, ASR does not try to determine
the meaning behind speech or find the multiple meanings of words; it merely tries
to recognize which words were spoken.

Research in ASR has come a long way in the last few years, which has allowed
us to take advantage of it in multiple areas with very satisfying results: human-
computer interaction (speech-only or multimodal interfaces), telephony (information
passing, call routing) and dictation are examples where ASR systems can perform
well, irrespective of the speaker or their environment.

We will begin by providing a quick description of the way human speech is
produced and move on to present the concept and mechanisms behind Automatic
Speech Recognition.

3.2 Fundamentals of the speech production mecha-
nism

[JM09] Sound is produced by the rapid movement of air coming from the lungs
through the “windpipe", also called the trachea and out of the mouth or nose. As
it flows through the trachea, it passes through the larynx (or Adam’s apple) where
it affects the position of two small folds of muscle which are known as vocal folds
or vocal chords. The possible movements of these muscles are either moving closer
together or apart; the space between them is called the glottis. If the vocal folds are
close together they will vibrate as air passes through the glottis and produce sounds

17
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Figure 3.1: The vocal organs.[JM09]

that are known as voiced sounds. The vowels are examples of voiced sounds. On
the other hand, if they are far apart they will not vibrate and the sounds produced
are called unvoiced. Examples of unvoiced sounds are [p], [t] and [k].

After passing through the trachea and before exiting the body, air passes through
the vocal tract, which consists of the nasal and oral tract. The vocal tract will act
as a filter on the speech signal and the output of the filter will be the signal that we
hear. The speech signal varies according to what obstacles the air meets on its way
out: the tongue, the lips or the teeth. These obstacles will define the vocal tract
filter applied on the speech signal.
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3.3 Design parameters of an ASR system

This section attempts to provide a short introduction into Automatic Speech
Recognition and the most common architectures behind ASR systems ([JM09]).

Before deciding on the architecture of a speech recognition system, one has to
take into account its application domain. The most decisive parameters are:

• The vocabulary size, which is the number of distinct words that the system
should be able to recognize. Few words imply relatively easy set-up and train-
ing of the system, whereas systems recognizing thousands of words, as in a
broadcasting news vocabulary, are more complicated and harder to train.

• The fluency of the speech that the system will be asked to recognize. This
includes whether the speech will be continuous or just isolated words as well
as the speed and clarity of the speaker. Isolated word recognition systems, e.g.
recognizing commands to a computer, are easier than ASR systems for contin-
uous, conversational speech, e.g. a telephone conversation between humans.

• The environment where the recognition might have to take place. Systems
designed to perform well in noisy environments with high distortion in the
recorded speech are more demanding than systems that can capture the speech
for recognition clearly, in an isolated environment.

• The speaker variability. Speech recognition is easier if the system is expected
to recognize the speech of a limited number of people. On the contrary, a
general ASR system that should work with any speaker, regardless of sex, age,
or accent, is much more difficult to implement and train.

3.4 ASR system architecture

As mentioned in the introduction, the problem of ASR is, in principle, a struc-
tured sequence classification task, where a (relatively long) sequence of acoustic
data is used to infer a (relatively short) sequence of linguistic units, such as words.
Modern ASR systems use the model of a noisy channel to deal with the classifica-
tion task. The idea behind this model is to think of the input signal as a distorted
version of the corresponding words, which was produced as they passed through a
noisy communication channel. If we manage to understand how the channel affected
the signal, we can then match it to the original, noise-free set of words, by passing
every acceptable -by the grammar of the language- sentence though the channel to
get its distorted version, and see which matches best the initial input signal.
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Figure 3.2: The noisy channel model. The decoder searches through all possible
sentences and finds the one that after passing through the channel best matches the
initial input signal[JM09].

Figure 3.3: The main building blocks of an ASR system[You02].

In order to achieve the modeling of the noisy channel and the subsequent decod-
ing of a new acoustic signal, we will need to have at our disposal the following tools:
the prior probability of each sentence of the language, the probability of words being
the concatenation of certain speech units and the probability of these speech units
being represented from the acoustic or spectral features which are drawn from the
input signal.

These tools define the main components of a modern automatic speech recogni-
tion system, which will be presented below, following the formulation of the com-
putational/mathematical problem of Automatic Speech Recognition.
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3.4.1 Computational formulation of ASR

We will now use mathematical notation and probability theory to answer the
basic question in ASR:

‘What is the most likely sentence Ŵ out of all sentences belonging to language L
that corresponds to an acoustic signal O?’

The acoustic input signal O is a sequence of observations oi,

O = o1, o2, o3, ...ot

each one representing features of a specific part of the input speech, which is usually
split into overlapping parts of a certain duration (frames). In the same way, if we
treat each sentence of the language as a string of words,

W = w1, w2, w3, ...wn

we can express the answer to the ASR question as the solution of the following
equation:

Ŵ = argmax
W∈L

P (W |O)

which we cannot compute directly. However, if we apply Bayes’ rule, the equation
takes the following form:

Ŵ = argmax
W∈L

P (O|W )P (W )

P (O)

We can simplify the computation even further, if we consider that the probability
of the observation in the denominator, P(O), does not affect the maximization with
respect to W, since the observation signal stays the same as we search over the
sentence space. Consequently, the answer to our problem can be computed by the
following form:

Ŵ = argmax
W∈L

P (O|W )P (W )

The two probabilities on the right hand side of the equation, represent the tools
we need to address the recognition problem, as we have mentioned above: P(W),
which is the prior probability of each sentence of the language, is computed by the
language model, whereas P (O|W ), which includes the probability of words being
the concatenation of certain speech units and the probability of these speech units
being represented by certain features, is calculated by the acoustic model.

Having presented the computational formulation of the automatic speech recog-
nition problem, we can move on to present the required steps to be taken and models
to be constructed in order to build a speech recognition system.
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Figure 3.4: MFCC feature extraction from a quantized digital waveform[JM09].

3.4.2 Feature Extraction

[JM09] The first issue we have to address is how and in what format do we “insert”
the speech waveform into our system. This process, known as feature extraction
results in the extraction from the speech waveform of a sequence of acoustic feature
vectors, each of them representing the information included in a small time window
of the signal. These feature vectors are further preprocessed and finally presented
as the input to the ASR system.

Mel Frequency Cepstral Coefficients

Although research in feature extraction moves towards using the raw waveform
directly as input to the system, so far the most common feature representation in
speech recognition systems is the Mel Frequency Cepstral Coefficients (MFCC ). The
steps involved in extracting the MFCC feature vectors follow the analog to digital
conversion of the speech signal (sampling and quantization) and are outlined in the
next paragraphs:

Pre-emphasis In the pre-emphasis step we want to amplify the amount of
energy in the high frequencies of the signal. If we take a look at the spectrum of
a vowel we will note a drop in energy as we move on to higher frequencies; this is
known as spectral tilt and is due to the nature of the glottal pulse. Amplifying the
energy of higher frequencies will improve phone detection accuracy as it will provide
more information to the acoustic model, coming from the boosted higher formants.
In essence, pre-emphasis the application onto the signal of a first order, high-pass
filter whose equation is:

y[n] = x[n]− αx[n− 1], 0.9 ≤ α ≤ 1.0

Windowing Given that the feature vectors we want to extract will be used to
train a phone classifier, i.e. the acoustic model, we want them to able to capture the
spectral properties corresponding to these fundamental speech units. Consequently,
since speech is a non-stationary signal - its statistical properties are not constant over
time - we extract the feature vectors from a small window of the speech signal that
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Figure 3.5: Part of the spectrum of vowel [aa] before (a) and after (b) pre-
emphasis[JM09].

corresponds to a phone or subphone, where the signal can be considered stationary,
i.e. its statistical properties stay constant over time.

The windowing process comes down to applying a filter to the signal that is non-
zero inside some region and zero elsewhere, moving this filter along the speech signal
and extracting segments of the signal (or frames). The window is characterized by
its width (in milliseconds, also called frame size), the overlap between successive
windows (usually a percentage of the width) and its shape, e.g. rectangular, Ham-
ming etc. The Hamming window is usually preferred over the rectangular as it
gradually reduces the signal values at the boundaries of the window towards zero,
thus avoiding discontinuities which cause problems during the next step of feature
extraction ( the Fourier analysis):

whamming[n] =

0.54− 0.46 cos(2πn
L

), 0 ≤ n ≤ L− 1

0 otherwise

The application of the filter is an element-wise multiplication of the signal values
at each time step n with the values of the window:

y[n] = w[n]s[n]

where w is the window and s the signal.
Fourier Analysis The next step in the feature extraction process is to acquire

the spectral information included in the windowed segments. The tool to extract
such information, e.g. the amount of energy included in different discrete frequency
bands of each segment, is the Discrete Fourier Transform. Given a part of a signal,
the DFT will produce a complex number representing the magnitude and phase of
each frequency component of the corresponding segment.
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Figure 3.6: Rectangular and Hamming windows and their effect on the signal[JM09].

Figure 3.7: Windowing process with a rectangular window. After a figure by Brian
Pellom[JM09].
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Figure 3.8: The mel filterbank. After Davis and Mermelstein (1980)[JM09].

Mel Filterbank Research has shown that the human hearing is not equally
sensitive at all frequency bands - it is less sensitive at higher frequencies (above
1000 Hz). Moreover, humans are less sensitive to differences in amplitude at high
amplitudes than at low amplitudes.

The way we take advantage of this information during the feature extraction
process is by passing the DFT of the windowed signal parts through an array of tri-
angular filters (a filterbank), which collect energy from each frequency band. These
filters have their center frequencies spread on a mel scale, that is, 10 of them are
spaced linearly below 1000 Hz and the rest are spaced logarithmically above 1000
Hz. A mel is a unit of pitch defined so that pairs of sounds which are perceptu-
ally equidistant in pitch are separated by an equal number of mels ([SVN37]). The
mapping between frequency in Hz and the mel scale is described by the equation:

mel(f) = 1127 ln(1 +
f

700
)

Finally, having passed the DFT of the signal through the filterbank, the final step is
to take the logarithm of the mel spectrum values, which is a form of normalization
to make the feature estimates less sensitive to variations in input.

The Cepstrum The next step in the MFCC feature extraction process is the
computation of the cepstrum. As mentioned before, the speech waveform is created
when a source waveform is passed through the filter of the vocal tract. The shape
of the vocal tract will determine the outcome of this filtering process, i.e. the signal
corresponding to the phone that will be produced.

Therefore we aim to have some information about the vocal tract inserted into
the feature vectors. The cepstrum provides us with a way of separating the glottal
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Figure 3.9: Effect of vocal tract on source signal. Tomi H. Kinnunen, Speech Tech-
nology Workshop

Figure 3.10: Cepstrum computation. Source: test.virtual-labs.ac.in

source from the vocal tract filter.
The peaks at lower values on the x-axis in the cepstrum of Figure 9 (last line)

correspond to the vocal tract characteristics whereas peaks at higher values cor-
respond to the glottal source. Therefore, since for the feature vectors we want to
extract, we need information about the way a phone was produced, i.e. about the
vocal tract shape, we will keep a few of the first cepstral values (usually 12).

Furthermore, an important property of the cepstral coefficients is that their
variance is uncorrelated, contrary to spectral coefficients, which are correlated at
different frequency bands. This is extremely important for acoustic models based

Figure 3.11: Cepstrum example: (a) magnitude spectrum, (b) log magnitude spec-
trum, (c) cepstrum. [JM09].
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on Gaussian Mixture Models, as it allows us to keep the number of their parameters
low.

Feature vectors The cepstral coefficients extracted from the previous process
are just a part of the feature vectors. They are further enhanced by adding a few
extra coefficients that provide more information helpful towards determining speech
units.

The first extra piece of information we include by adding one more coefficient is
the energy of the frame, which is defined as:

Energy =

t2∑
t=t1

s2[t],

where s is the speech signal and t1, t2 are the boundaries of the frame.

Energy is useful for phone detection since it correlates with phone identity: higher
energy reveals the presence of e.g. a vowel whereas very low energy could identify a
pause in speech.

Considering that speech properties change from frame to frame it is reasonable
to expect that capturing these changes would provide more information about the
nature of the speech signal. This motivated the use of delta and delta-delta coeffi-
cients for each one of the cepstral coefficients and the energy. The delta coefficients
capture the change of the corresponding feature between successive frames whereas
the delta-delta coefficients capture the change of the delta features between succes-
sive frames. The simplest way to compute these delta and delta-delta coefficients is
by taking the difference of the corresponding features between successive frames:

d(t) =
c(t+ 1)− c(t− 1)

2
,

where c is the cepstral feature with delta coefficient d at time t.

This concludes the construction of the feature vectors. As mentioned before,
we usually pick 12 cepstral coefficients plus an energy coefficient, thus we will have
39-dimensional feature vectors: 13 + 13 delta +13 delta-delta coefficients. It is also
common to concatenate the cepstral coefficients to produce higher dimensional vec-
tors. This way we manage to include contextual information in the feature vectors.
To deal with computational problems arising from the increase in the number of
dimensions, various dimensionality reduction techniques are used, from simple ones
such as Linear Discriminant Analysis or Principal Component Analysis, to more
sophisticated such as techniques aiming to discover the lower dimensional manifold
on which the feature vectors lie.
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Figure 3.12: Feature extraction process.[You02].
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3.4.3 The Language Model

The language model (LM ) expresses how likely a given string of words is, taken
into consideration certain linguistic constraints. In order to do this, we consider the
idea of predicting the next word in a sequence of words, which is formalized with
probabilistic models called N-gram models.

N-grams

An N-gram is a sequence of N words, e.g. a 2-gram or bigram is a sequence of
two words, a 3-gram or trigram is a sequence of three words etc. An N-gram model
is a probabilistic model which computes the N th word of a sequence of N words
given the previous N-1.

The power of N-grams becomes evident in areas such as speech or handwriting
recognition, machine translation, spelling correction and natural language processing
tasks. What all these areas have in common is that they might have to deal with
noisy or ambiguous input. N-grams can deal with ambiguity by assigning a higher
likelihood to word sequences that are valid according to the language constraints.

Since these models are capable of assigning a conditional probability to the next
possible word in a group, we can exploit them to compute the joint probability of
a sequence of words, i.e. a sentence, which is what we were aiming to from the
beginning.

Suppose we have a sequence of n words W = w1, w2, w3, ..., wn . Then, the
probability P(W) can be computed in the following way:

P (W ) = P (w1, w2, w3, ..., wn) =
n∏
i=1

P (wi|w1, w2, w3, ..., wi−1)

As this computation for every possible word sequence in the language is very difficult
if not impossible, we make the assumption that the ith word depends only on the
previous N-1 words (its history). Based on this assumption we can compute P (W )

as:

P (W ) =
n∏
i=1

P (wi|w1, w2, w3, ..., wi−1) ≈
n∏
i=1

P (wi|wi−N+1, ..., wi−1)

to approximately compute the probability of the sequence. The expressions on the
two sides would be exactly equal for sufficiently high n and if the language were
ergodic, that is, the probability of any word could be estimated from sufficient
history independent of the starting conditions.

Building a language model based on N-grams

[YEK+02]
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Figure 3.13: Process of building a language model.[YEK+02].

Considering the intuition of N-grams and assuming that the probability of an
N-gram occurring in an unknown text can be estimated from its frequency in a given
training text, we can build language models based on N-grams.

The construction of such an LM can be broken down into three stages:

• Collect and store the N-grams of the training text (corpus)

• Possibly map some words into classes, e.g. map out-of-vocabulary words into
a special symbol

• Count the N-grams and compute the N-gram probabilities

The last step of computing the probabilities is based on maximum likelihood
estimation:

P̂ (wi|wi−N+1, ..., wi−1) =
C(wi−N+1, ..., wi)

C(wi−N+1, ..., wi−1)

where C(.) is the count of a given word sequence extracted from the training text.
When building a language model based on N-grams, there are several factors

one has to take into account before they decide on N. Resources constraints (e.g.
storage) and size of the vocabulary (i.e. the set of distinct words in the language) will
play a major role in deciding on N, as the number of parameters of the model grows
exponentially with N : |V |N , where V is the vocabulary. However, storage needs
because of parameters’ size are lower than one would expect, because not all N-
word combinations are acceptable/valid sequences in the language. What increases
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storage and computational needs, is the large training sets required, so that our
model estimates parameters with a minimum acceptable degree of confidence. Apart
from processing, also acquiring these training sets might be difficult, especially for
domain-specific applications, where training sets have to be specifically constructed.

Data sparsity and smoothing

[JM09] Since the training set will always be finite, one can never have a sufficient
number of N-grams for every valid N word sequence of the language. This issue faced
when developing LMs is known as data sparsity and the technique used to deal with
it is called smoothing. Smoothing aims to increase the robustness of the language
model by redistributing the probability mass assigned by the maximum likelihood
estimates.

Laplace Smoothing. Laplace or add-one smoothing is the simplest form of
smoothing : we just add one to all the counts. Before we compute the ML prob-
abilities, one has to to take into account the extra |V | ‘words’ that we added, in
order to maintain the sum of all probabilities equal to 1. To avoid this last step and
because Laplace smoothing does not perform very well, it is more convenient to use
an adjusted count

c∗i = (ci + 1)
K

K + V

where ci is the original count and K is the number of word tokens.
Discounting. Instead of adding the same amount of probability mass to all

N-gram probabilities, a different approach would be to remove some mass out of the
higher counts and assign it to lower ones. We can therefore define a relative discount
as the ratio of the new counts and the originals:

dc =
c∗

c

One algorithm applying discounting, is the Good-Turing discounting.The intuition
behind it is that we use the MLE of N-grams occurring c+1 times in the training
set, to define the MLE of N-grams occurring c times. The new smooth count c∗ is
thus defined as:

c∗ = (c+ 1)
Nc+1

Nc

where Ni is the number of different N-grams occurring i times in the training set.
Back-off and interpolation. Discounting techniques allow us to distribute

some probability mass equally to the unseen events. However, we can distribute it
fairer if we take into consideration information from lower or higher order N-grams.
This is the idea of back-off smoothing. In particular, Katz back-off always resorts to
the (i-1)-gram if the i-gram has zero counts (i starting from our originally selected
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N). From a different point of view, we back-off to lower order N-grams only if we have
zero evidence for a higher order one. On the other hand, interpolation deals with
zero counts by summing estimates of all N-grams using weights (e.g. interpolate the
estimates of unigrams, bigrams and trigrams).

Language model evaluation

Given the numerous applications of N-grams and LMs as well as their inherent
drawbacks (static and finite vocabulary, finite training sets, more N-grams than can
ever be collected and utilized), it is evident that we must have a way to compare
LMs and evaluate their performance.

The most obvious way to compare two different language models would be to
use them in our application and see which gives the best results. However, this way
is expensive and time consuming as it is based on training and evaluating systems
using huge speech datasets.

Another way to compare two LMs independent of the application, is to use
the perplexity metric. The perplexity of an LM on a test set is a function of the
probability that the LM assigns on it and is defined as:

PP (W ) = P (w1w2w3...wN)−
1
N

where W = w1w2w3...wN is the test set.
The best LM would be the one that has the minimum perplexity, since that

would mean that it maximizes the test set probability, i.e. it better predicts the
details of the test set. Another way to look at perplexity is as the weighted average
branching factor of the language, that is, the number of best possible words following
a word sequence. The smaller that number is, the better the work of the LM on
coping with the ambiguity of the language.

Finally, when comparing language models using the perplexity metric, one should
take care to use the same vocabulary for both LMs and evaluate them on the same
test set which will be presented to the system for the first time during evaluation.

Recent advances in language modeling

In a paper presented recently [BDVJ03], a novel approach to building language
models was presented which takes advantage of neural networks. The motivation
behind using NNs to build language models is based on the following problems
associated with N-gram models:

• a huge amount of training data is needed to train LMs which will still have
limited context capabilities (1-2 words)
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• N-gram models ignore word similarity, which makes generalizing difficult

Dealing with these issues becomes even more important when one considers that
language models are probabilistic models using discrete random variables (words)
which largely increases the amount of free parameters they need.

The writers suggest using distributed representations of words (i.e. real-valued
feature vectors) which allow them 1) to identify similarities between words, since
similar words will have similar feature vectors, and 2) to exploit the smooth proba-
bility function modeled by a neural network, in order to generalize: in this way, each
vector representing a word will be able to provide information about a huge number
of similar words, i.e. its ‘neighbors’ in the feature space. In their work they present
a neural network which simultaneously learns its parameters and the feature vectors
associated with each word in the training set, and most importantly, the number of
parameters it uses scales linearly with the vocabulary and context size. Due to the
high computational cost of the training (higher than N-gram based models), they
use parallel methods to efficiently train the model.

In recent years the use of neural networks for language modeling has included
using recurrent neural networks which can take advantage of arbitrarily long contexts
for each word, like humans do, something that was not possible with feedforward
NNs [MKB+10].

3.4.4 The Acoustic Model

[You02]
According to the computational formulation of the ASR problem, we need the

likelihood of the observed data (i.e. the acoustic signal) given the word sequence
P (O|W ). However, it would be impractical and inefficient if we tried to compute
this likelihood by building a separate model for each word in the language, since
sub-word units are shared among different words. Instead, as mentioned before,
the acoustic model calculates the probability of words being the concatenation of
certain speech units and combines it with the probability of these speech units being
represented by certain features, to produce the desired likelihood for a word.

We will first present some basic notions in acoustic modeling and then we will
go into more details about this important part of the system.

Phones

The basic unit of speech analysis we use, is the phone which is the smallest iden-
tifiable unit we find in a stream of speech. The sequence of phones that constitutes
each word in the training dataset is determined by a pronouncing dictionary. Using
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a phone sequence to represent each word makes it easy to add new words in the
dataset just by adding them and their phone sequence to the dictionary.

Context-dependent phones

Given that there are thousands of words in a language, but just tens of phones
(e.g. 44 in the English language) the computational and storage gain acquired from
the use of phones as the basis of the acoustic model becomes immediately apparent.
However, contextual effects like co-articulation cause large variations in the way
that different sounds are produced even if in principle they correspond to the same
phone. Hence, to achieve good phonetic discrimination, we build context-dependent
phone models, with the most common being the triphone: for each phone there is a
different model for every unique pair of left and right neighboring phones.

There are two dominant triphone models:

• cross-word triphones, which include phones of the previous and following words
in the first and last triphones of the word of interest:

ten pots → sil_silte_ten_enp_npo_pot_ots_tssil_sil

The advantage of this approach is that they model co-articulation across word
boundaries, but on the other hand, they complicate the decoding process since
the phone models of each word depend on the following and preceding words
as well.

• word-internal triphones, which explicitly encode word boundaries, thus making
decoding easier:

ten pots → sil_silte_ten_en− −po_pot_ots_tssil_sil

State-of-the-art systems use mostly cross-word triphones because of their ability to
model contextual effects.

As a consequence, the number of distinct triphones greatly increases and the
number of parameters for such systems can grow up to hundreds of millions, while at
the same time we have too little training data at our disposal. In addition, we might
have unseen triphones appearing in evaluation tasks. To deal with these problems
we have developed smoothing techniques, just as was the case with language models.
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Smoothing techniques

Back-off and interpolation. When too little data is available for the training
of a context-dependent model of a particular order, one can instead use a model
of lower order at the expense of some inaccuracy in the modeling of the context:
e.g. use a biphone or a context-independent phone (monophone) when we cannot
use a triphone. In order to implement a more robust model one can use a weighted
combination of models with various levels of context dependency (interpolation).

Parameter tying. An alternative that offers a greater degree of flexibility while
maintaining the high level of context-dependency in the model, is the technique of
parameter-tying, in which parameters of context-dependent phone models that are
acoustically indistinguishable are tied together, to facilitate training in case there
is little training data available. Before tying parameters together one has to apply
some form of clustering to build the groups of phone models that will share their
parameters.In practice, the most commonly used clustering technique is the phonetic
desicion tree, where a binary tree is build for each phone model and its leaves contain
the parameters to be shared.

Acoustic Modeling with Gaussian Mixture and Hidden Markov models

State-of-the-art ASR systems use Hidden Markov Models to represent each phone,
in conjunction with Gaussian Mixture Models to determine the probability that an
acoustic observation was produced by a certain phone. The high representational
capabilities and ease of training of these models are what has made them prevalent
in ASR. We will present the GMM/HMM acoustic model and in later chapters we
will examine their most recent competitor: deep neural networks.

Gaussian Mixture Models[You02][YD14]

Multivariate Gaussian random variables and Mixture Models

Given that the feature vector corresponding to an acoustic observation is multi-
dimensional (usually 39-dimensional as was presented above), we will have to treat
it as a multivariate random variable and use a multivariate distribution to assign
a probability to it. The reason why we choose the Gaussian distribution is not
only its desirable computational properties but also its ability to approximate many
real-world data (owing to the law of large numbers), such as speech features.

Supposing that Σ is the co-variance matrix, µ is the mean vector and d is the
number of dimensions of the feature vector, the multivariate Gaussian distribution
is defined as:
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p(x|µ,Σ) =
1

(2π)d/2 |Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ) = N (x|µ,Σ)

However, because of the inherent multimodality of the speech features, a single
Gaussian distribution is insufficient to describe them. Therefore, we use a mixture
of Gaussian distributions:

p(x) =
M∑
i=1

ciN (x|µi,Σi)

where ci are the positive mixture weights and
M∑
i=1

ci = 1. Usually, the number of

mixture components is chosen according to the nature of the problem and the infor-
mation we have about the data. The variability and multimodality of the features
may be due to multiple latent causes; provided we can identify these underlying
causes we can match each one to the corresponding mixture component in the dis-
tribution.

As mentioned earlier, the Gaussian distribution is favorable both for its modeling
and its computational properties. GMMs can model complex, multimodal distribu-
tions to any required level of accuracy and they can be trained using standard max-
imum likelihood approaches. Their attractiveness is also due to research into GMM
training having come up with approaches to optimize the trade-off between their
modeling effectiveness and the amount of training time and data needed. For exam-
ple, we have the ability to reduce the number of free parameters (from M ×d2 down
to M) while still achieving high performance, if instead of using full co-variance ma-
trices we opt for diagonal Σ or even use the same matrix for all mixture components.
The use of diagonal co-variance matrices has been thought to impose decorrelation
among features, but, given that a mixture of Gaussians with diagonal Σ can at least
effectively describe the correlations modeled by a single full co-variance Gaussian,
this thought has been misleading.

Specifically for speech recognition, a number of ways has been proposed to im-
prove recognition accuracy of a GMM system. We can discriminatively train the
system after the generative maximum-likelihood training, so that we maximize the
probability of generating the observed speech features in the training data, or aug-
ment the input speech features with bottleneck features acquired using neural net-
works.

The set of free parameters to be estimated for a Gaussian-mixture distribution
is denoted by Θ and consists of : {ci,µi,Σi}. In order to acquire the parameters
we rely on maximum likelihood methods and in particular on the Expectation-
Maximization (EM) algorithm ([DLR77]). The EM algorithm is used to find locally
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maximum likelihood parameter estimates of statistical models when the equations
cannot be solved directly. It is especially useful for models involving latent variables
apart from the parameters-to-be-estimated and the observable data. A GMM can
be treated as such a model if we assume that each observable data point has a
corresponding hidden data point specifying the component of the mixture that the
observable point belongs to. Furthermore, the EM algorithm provides us with closed-
form expressions for the computation of the estimates in the M-step:

c
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1

N

N∑
t=1

h
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i (t),
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where the posterior probabilities, i.e. the ‘latent’ variables computed in the
E-step, which correspond to the mixture components, are:

h
(j)
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(j)
i N (x(t)|µ(j)

i ,Σ
(j)
i )

n∑
m=1

c
(j)
m N (x(t)|µ(j)

m ,Σ(j)
m )

The last equation computes the conditional probability for a given data point
x(t), t = 1, ...,N being generated from mixture component i using the current (de-
noted by j ) parameter estimate.

Despite the ease of training of GMMs, they have two serious drawbacks when it
comes to speech recognition systems. The first one is that they cannot model the
sequence information contained in speech features. To balance their inability, we
combine GMMs with more general models able to capture sequence information: the
Hidden Markov Models, which will be presented next. The second disadvantage, is
that, in spite of their huge modeling capabilities, GMMs are statistically inefficient
for modeling data lying on or near a nonlinear manifold in the data space, which
is the case for speech features, despite their seemingly high dimensionality. To deal
with this matter, there are a number of techniques we can apply to extract the lower
dimensional manifold of the features. We will go into more details about manifolds
and speech features in the following chapter.
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Hidden Markov Models and acoustic modeling[YD14]

As we have already mentioned, mixture-of-Gaussians random variables (single-
or multidimensional) lack a “temporal" dimension, which would make the length of
the random vectors variable, in order to follow the length of the speech sequence we
intent to model. Therefore, although Gaussian mixture models are appropriate for
short-term sound patterns, we will need to introduce a new model appropriate for
sequences of acoustic vectors.

Extending the notion of the random variable to the discrete-time random se-
quence will provide us with the necessary tool to model acoustic vector sequences
of variable length. A discrete-time random sequence is a collection with variable
length, consisting of random variables indexed by uniformly spaced discrete times.
We will focus on the most common class of random sequences which is the Markov
sequence.

Markov sequences
The concept of state is a key point in Markov sequences. If we think of a

system that generates random variables and works as a Markov sequence, then
the configuration of the system at each time step is defined by a specific state
of the sequence. If the state of the Markov sequence is confined to be discrete,
then the Markov sequence is called a Markov chain and the possible values of each
discrete state constitute the discrete state space. If each discrete state value is
generalized to be a new random variable (either discrete or continuous) the Markov
chain is generalized to the Hidden Markov Sequence, also called Hidden Markov
Model when it characterizes statistical properties of real-world data sequences. The
Hidden Markov Model is the tool that we will use to model speech units, such as
sub-phones.

Markov chains
A Markov chain is a discrete-time Markov sequence. Its state space is of discrete

nature, finite and each element of the space is associated with a state in the chain:

qt ∈ s(j), j = 1, 2, ..., N

where qt symbols a state.
A Markov chain denoted by qT1 = q1, q2, ..., 1T , is completely characterized by

the initial state distribution probabilities (priors) and the transition probabilities
defined by:

P (qt = s(j)|qt−1 = s(i))
.
= aij(t), i, j = 1, 2, ..., N

Given the transition probabilities of a Markov chain, the state-occupation probabil-
ity

pj
.
= P [qt = s(j)]
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can be recursively computed by

pi(t) =
N∑
j=1

aijpj(t− 1), ∀i

Hidden Markov Models[RJ86][Rab89][DHS00]

If the states of a Markov chain are emitting, that is, they are able to generate ob-
servational output variables, then we call the chain an observable Markov sequence.
However, since there is an one-to-one correspondence between the output of the
chain and the states, the model is inadequate to describe real-world information
sources such as sequences of speech features. To overcome this limitation, we will
add randomness to the Markov chain by associating each state with an observa-
tion probability distribution, thus creating the hidden Markov sequence. It is called
hidden because the underlying Markov chain is no longer directly observable but
it can be observed only through a separate random function characterized by the
observation probability distributions, which overlap across the states.

A Hidden Markov Model (HMM ) is characterized by:

• N, the number of states in the model

• K, the number of distinct observation symbols per state

• The transition probabilities, A = [αij], i, j = 1,2,...,N where

αij = P (qt = j|qt−1 = i), i, j = 1, 2, ..., N

• The initial Markov chain prior probabilities

π = [πi], i = 1, 2, ..., N

where πi = P(q1=i)

• The observation probability distribution, P(ot|s(i)), i = 1,2,...,N.

If ot is discrete, the distribution associated with each state gives the probabil-
ities of symbolic observations v1,v2, ...,vk:

bi(k) = P [ot = vk|qt = i], i = 1, 2, ..., N.

If the observation probability distribution is continuous, then the parameters
Θi in the p.d.f. characterize state i in the HMM. The most common p.d.f used
in speech processing is, as we have seen, the multivariate mixture of Gaussian
distributions:

bi(ot) =
M∑
m=1

ci,mN (ot|µi,m,Σi,m)

with Θi = {ci,m,µi,m,Σi,m}
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Figure 3.14: Generate observation sequence from an HMM ([YD14])

Given these parameters one could consider the HMM as a generative model
producing a sequence of observational data, ot, t = 1, 2, ...T . According to this
perspective, the observed data at each time t are generated from the model according
to:

ot = µi + rt(Σi)

where state i at a given time t is determined by the evolution of the Markov chain
characterized by αij and

rt(Σi) = N (0,Σi)

is a zero-mean, independent and identically distributed (IID) residual sequence.
Given that µi is constant, the observation ot is also IID given the state. Conse-
quently, the HMM produces locally stationary sequences making it appropriate to
model sub-phone units. A procedure to generate sequences of observations from an
HMM is described in the figure 3.14.

The three basic problems for an HMM
Given the HMM model as presented above, there are three main problems asso-

ciated with it that apply to real-world problems:

• The evaluation problem: Suppose we have an HMM (Aij, bik,Θi). How do we
determine the probability that a given sequence of observations was generated
by that model?

• The decoding problem: Suppose we have an HMM (Aij, bik,Θi). How do we
determine the most likely hidden state sequence that led to the generation of
a given observation sequence?

• The parameter estimation problem: Given the basic structure of an HMM
(number of states and number of distinct observation symbols) as well as a set
of training observations, how do we determine the parameters (Aij, bik,Θi)?
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Figure 3.15: The Forward algorithm for HMM probability evaluation ([JM09])

The evaluation problem. Let qT1 be a finite length sequence of states in a Gaussian-
mixture HMM and P (oT1 , q

T
1 ) be the joint likelihood of the observation sequence

oT1 and the state sequence qT1 .
Then, P (oT1 |qT1 ) denotes the likelihood that the observation sequence oT1 is gen-

erated by the model conditioned on the state sequence qT1 and is in the form of:

T∏
i=1

bi(ot)

whereas the probability of state sequence qT1 is the product of transition probabili-
ties:

P (qT1 ) = πq1

T−1∏
t=1

aqtqt+1

The joint likelihood P (oT1 , q
T
1 ) can be obtained as:

P (oT1 , q
T
1 ) = P (oT1 |qT1 )P (qT1 )

Since the hidden state sequence qT1 is not known, we will have to sum over all
possible state sequences in order to compute the desired probability:

P (oT1 ) =
∑
qT1

P (oT1 , q
T
1 )

The amount of this computation though, is exponential in the length T of the
observation sequence. However, an efficient algorithm (linear complexity in T ) to
evaluate the above expression has been found, based on the principle of optimality
(dynamic programming, [Bel03]). The algorithm, known as Forward algorithm is
described in figure 3.15.
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Figure 3.16: The Viterbi algorithm for HMM decoding ([YD14])

The decoding problem. The decoding problem consists of finding the most proba-
ble sequence of HMM hidden states given a sequence of observations. It is essentially
a path-finding optimization problem that will be dealt with using again the dynamic
programming paradigm. In fact, the decoding algorithm, also known as the Viterbi
algorithm (figure 3.16) is very similar to the Forward algorithm presented above.

The Viterbi algorithm returns the maximum joint likelihood of the observation
and state sequence as well as the corresponding state transition path. The optimal
path for a left-to-right HMM, i.e. an HMM where transitions are only allowed in
the forward direction, determines the optimal segmentation of the HMM states to
match the observation sequence.

The parameter estimation problem. The goal in HMM training, is to extract
the model parameters so as to minimize the empirical risk with respect to the joint
likelihood loss over a training dataset. To estimate the parameters of an HMMmodel
given training data, we will apply the Expectation-Maximization algorithm, also
known as Baum-Welch algorithm in the context of HMM training. First however,
we will introduce the Backward algorithm, which is part of the EM computation for
HMMs.

The Backward algorithm (figure 3.17) is very similar to the Forward but now we
are moving backwards, that is, the algorithm computes

βt(i) = P (oTt+1|qt = i), t = 1, ..., T − 1

The EM algorithm uses both the Forward and Backward algorithms in the ex-
pectation E-step in order to obtain:
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Figure 3.17: The Backward algorithm for HMM decoding ([DHS00])

• the posterior state transition probabilities in the HMM

ξt(i, j) =
αt(i)βt+1(j)αij exp (Nt+1(j))

P (oT1 |θ0)
, t = 1, ..., T − 1

where Nt(i) is the logarithm of the Gaussian p.d.f. associated with state i,

• the posterior state occupancy probabilities

γt(i) =
N∑
j=1

ξt(i, j)

In the maximization M-step the parameters are computed using the current esti-
mates of ξ and γ:

α̂ij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

Σ̂i =

T∑
t=1

γt(i)(ot − µ̂i)(ot − µ̂i)T

T∑
t=1

γt(i)

µ̂i =

T∑
t=1

γt(i)ot

T∑
t=1

γt(i)

for each state i.
HMMs in speech modeling and recognition.([YD14][ST04]) We have al-

ready seen that HMMs can be used as generative models to produce sequences of
observations. They are able to produce sequences of variable length, which is of
utmost importance for speech modeling and recognition, and they have proven to
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Figure 3.18: Three-state, left-to-right HMM model ([ST04])

be good models for the statistical distribution of sequence data of speech acoustics.
Consequently, HMMs have become very popular in the ASR community.

GMM/HMMs in ASR. As we have seen, a GMM/HMM is a statistical model
that describes two inter-dependent random processes, an observable and a hidden,
where the observable is assumed to be generated by a hidden state according to a
Gaussian mixture probability distribution function.

In the context of speech, we think of a single HMM as a system generating
acoustic features of a modeled speech unit, which can be a word, a syllable, a single
phone, or, usually a context-dependent phone. The motivation behind choosing
context-dependent phones, and therefore states, stems from the effort to reduce
output variability of speech feature vectors associated with each state. This leads
to an expansion of the state space, and consequently to more detailed generative
modeling.

The most common HMM model is the three-state left-to-right HMM (figure
3.18). The number of states is chosen based on the behavior of the vocal tract. It
goes through three states when uttering a phone: changing from the previous phone,
steady pronunciation of the current phone and changing to the next phone.

Despite their advantages, HMMs have been found to have several weaknesses.
The temporal independence of speech data conditioned on the HMM states and the
lack of proven correlation between acoustic features and ways in which speech sounds
are produced (e.g. speaking rate and style), have motivated the replacement of the
GMMs associated with each state by more realistic, temporally correlated, dynamic
systems containing hidden, continuous-valued dynamic structure (e.g. [Bil03]).
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3.4.5 The Decoder

[MPR01] The components described above are finally combined in the decoder
which will find the most likely word sequence given a sequence of feature vectors. In
order to define a common framework for the representation and use of the aforemen-
tioned models in ASR, we represent them by Weighted Finite State Transducers; an
approach which provides significant algorithmic and engineering benefits.

A finite-state transducer is a finite automaton whose state transitions are labeled
with both input and output symbols. Consequently, a path through the transducer
encodes a mapping from an input to an output symbol sequence. Weighted finite-
state transducers (WFSTs), in addition to input/output symbols, have weights on
the transitions which accumulate along paths to compute the total cost of a mapping
from an input to an output symbol sequence. Thus, seeing the components of an
ASR system asWFSTs and mathematical operations on them, allows for generalizing
and efficiently implementing many of the common processing methods in speech
recognition. We will briefly present the WFST framework in speech recognition, yet
first we will introduce some necessary notation and algorithms.

Notation and Algorithms

• A semi-ring (K,
⊕
,
⊙
, 0̄, 1̄) is defined by a set of values K, two binary opera-

tions of addition (
⊕

) and multiplication (
⊙

) and two designated values 0̄ and
1̄. The addition operation is associative, commutative and has 0̄ as the iden-
tity element. The multiplication operation is associative, has 1̄ as the identity
element, is distributive with respect to addition and has 0̄ as the annihilator
element: ∀a ∈ K, a

⊙
0̄ = 0̄

⊙
a = 0̄. If

⊙
is also commutative the semi-ring

is called commutative, which will be the case for all the semi-rings mentioned
later.

• A WFST T = (A,B,Q, I,F , E , λ, ρ) over a semi-ring K is specified by a finite
input alphabet A, a finite output alphabet B , a finite set of states Q, a set
of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite set of transitions
E ⊆ Q×(A∪ε)×(B∪ε)×K ×Q, an initial state weight assignment λ : I → K
and a final state weight assignment ρ : F → K. E [q] denotes the sum of the
number of states and transitions of T .

Based on the notation just introduced we will present the operations on WFSTs
that will be used in speech recognition applications.

• Composition is the basic operation that allows us to create complex WFSTs
from simpler ones, thus putting together all the fundamental components of
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Figure 3.19: Composition algorithm ([MPR01])

an ASR system (figure 3.19).

• Determinization removes non-determinancy from the WFST by ensuring that
each state has no more than a single output transition for a given input label.
Not every WFST is determinizable, however, there is a pre-determinization al-
gorithm that can be used to make determinizable an arbitrary WFST over the
tropical semi-ring ((R∪ {−∞,+∞},min,+,+∞, 0)) by inserting transitions
labeled with special symbols. The determinization operation is particularly
important in ASR considering the redundancy found in e.g. the WFST repre-
senting the pronunciation lexicon. A deterministic lexicon WFST will contain
at most one path for any input string, thus less time and space will be needed
to process the string (figure 3.20).

• Minimization transforms a WFST to an equivalent one with the fewest possible
states and transitions which saves both space and time during its processing.
Before minimizing the transducer, a form of re-weighting (weight-pushing) is
performed to redistribute weight among transitions so as to improve search
operations.

WFST models in speech recognition

There are four principal models of weighted finite-state transducers that are used
in speech recognition:

• G : the word level grammar
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Figure 3.20: Determinization algorithm ([MPR01])

• L : the pronunciation lexicon

• C : the context-dependency transducer

• H : the HMM transducer

The word level grammar transducer G has a state wi for each word and transitions
are added according to the N-gram model used in the grammar. For example, a
bigram grammar has a transition from state w1 to w2 for every bigram w1w2 seen
in the training corpus. The label of the transition is then w2 and the weight is
the negative logarithm of the transition probability (− log(p̂(w2|w1))). To deal with
unseen N-grams while keeping the complexity of constructing the WFST low, we
introduce a back-off state b. An unseen bigram w1w3 is then represented as two
transitions: an ε transition w1b with weight − log(β(w1)) and a transition bw3 with
weight − log(p̂(w3)). Because ε transitions introduce non-determinism in the WFST,
we can treat ε labels as normal symbols during determinization, thus keeping the
number of transitions low - otherwise transitions become quadratic with respect to
the size of the vocabulary after determinization.

The pronunciation lexicon transducer L is the Kleene closure of the union of
individual word pronunciations.It is easy to see that L is, in general, not determiniz-
able, considering the existence of homophones and the fact that the first word of
the output string might be impossible to determine before the entire phone string
is scanned. To make L determinizable we add a number of disambiguation sym-
bols (#i) as well as a symbol (#0) to mark the end of the phonetic transcription
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of each word. The new lexicon transducer after the addition of these symbols is
determinizable and is denoted by L̄.

The context dependency transducer represents a mapping from context indepen-
dent phones to context dependent units. The transducer has a state for every pair
of phones with label (a, b), where a is the past and b is the future phone, and transi-
tions marked as a:phone/left context_right context. To apply the context dependent
triphone models often used in ASR in the WFST framework, we need to be able to
compose a context dependency transducer with the lexicon transducer introduced
earlier. In order to make this composition feasible we first invert the context depen-
dency transducer (interchange input and output labels) and create the transducer
C which maps from context dependent triphones to context independent phones.

The final transducer that is used in the decoding process is the Hidden Markov
Models transducer H which is the closure of the union of the individual HMMs of
the acoustic model.

Applying the composition operation on the transducers presented here will out-
put the decoding transducer which we will further optimize to help decoding and
make it as efficient as possible. First, composing the lexicon and grammar transduc-
ers gives a new transducer that maps from phones to word strings restricted to the
grammar (L ◦ G). The resulting transducer is then composed with the context de-
pendency transducer C and the resulting transducer maps from context dependent
phones to word strings restricted to the grammar (C ◦ L ◦ G).Finally, C ◦ L ◦ G is
composed with the HMM transducer H and the outcome is a transducer that maps
from the identifiers of context-dependent HMM states to word strings restricted to
G (H ◦ C ◦ L ◦ G).

After the construction of the final transducer we have to determinize and mini-
mize it so that we have the optimal transducer for recognition. By determinizing it
we eliminate redundant paths which reduces recognition time. Moreover, if the de-
terminization is applied after each composition stage during the construction of the
graph, the composition operations that follow are performed more efficiently and the
total size of the transducer is reduced. Once we have determinized the transducer
we can further optimize it by minimization and the weight pushing process that
precedes it. As far as weigh pushing is concerned, provided we are using the -log

semi-ring, we can have large efficiency gains during the Viterbi search, and make
sure that all weights leaving a state sum up to one.

Given the HCLG transducer and an utterance of N frames, how do we decode
it, namely how do we find the most likely word sequence and its corresponding
state-level alignment?

The first step is to construct an acceptor U of the utterance, which is a WFST
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Figure 3.21: Transducer example: (a) Grammar G, (b) Lexicon L̄ ([MPR01])

Figure 3.22: Transducer example: (c) L̄◦ G, (d)L̄◦ G determinized, (e)
mintropicalsem det(L̄◦ G) ([MPR01])
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with identical input and output symbols. The acceptor has N+1 states with an arc
for each (time,context-dependent HMM state) combination and the weights on these
arcs are the scaled negated acoustic log likelihoods. Following the construction of
U, we compose it with the decoding WFST and get a new WFST S :

S = U ◦ HCLG

The decoding problem now reduces to finding the best path through S. The input
symbol sequence of the best path is the state-level alignment and the output sequence
is the corresponding sentence [PHB+12].

3.4.6 Evaluation

The performance of a large vocabulary continuous speech recognition system
is evaluated with the Word Error Rate (WER) metric. There are three types of
possible errors when recognizing continuous speech: (a) substitution errors, i.e. the
wrong word is recognized, (b) word deletions, namely the presence of a word is not
recognized at all and (c) word insertions, meaning that an extra word is recognized.
If we define the number of words in the text speech as N and denote with C(·) the
number of errors of each type, then WER is defined as:

WER =
C(substitutions) + C(deletions) + C(insertions)

N



Chapter 4

Manifold and Representation
learning

In the first chapter we briefly saw an intuitive definition of manifolds. In this
chapter we will give a mathematical definition of manifolds and examine the role
that they play in representation learning.

Representation learning is the process of learning good representations of the
data, that make it easier to extract information that will be useful when we build
classifiers or other predictors. A good representation is one that captures the pos-
terior distribution of the hidden explanatory factors that led to the data we can
observe, and as such, it is particularly effective as input to a supervised predictor
[BCV13].

4.1 Manifold learning

[BGC15]
Manifold learning is an approach to representation learning that builds on the

manifold hypothesis([Cay05]). According to this hypothesis, real-world data pre-
sented in high dimensional spaces are expected to concentrate in the vicinity of a
manifoldM of low dimensionality dM, which is embedded in the high dimensional
input space Rdx .

This hypothesis is a kind of prior assumption about the data generating dis-
tribution that seems particularly fit to artificial intelligence tasks involving data,
such as speech, text, music and images. One can easily confirm that the common
thing about such data, is that if we choose configurations of the observed variables
at random, according to some distribution (e.g. a uniform distribution), it is very
unlikely to generate the kind of observations we want to model. For example, if we
uniformly pick values for an acoustic signal, we will most likely create an unnatural

51
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speech sample. The aspiration of manifold learning algorithms is to discover where
probability concentrates in the input space, since it will probably be a very small
region of the total space of configurations.

Furthermore, making very small changes to data assumed to lie on a low-dimensional
manifold, e.g the values of the pixels of an image, will produce natural-looking data
similar to the original input. This is another aspect of the manifold hypothesis, i.e.
the fact that probable configurations are likely to be surrounded by other possible
configurations.

4.1.1 Mathematical formulation of manifold learning

[Cay05]
We will now give the mathematical definition of manifolds and mathematically

formulate manifold learning.

Definition 15. A homeomorphism is a continuous function whose inverse is also
continuous.

Definition 16. A d-dimensional manifoldM is a set that is locally homeomorphic
with Rd. That is, ∀ x ∈ M there is an open neighborhood around x, Nx, and a
homeomophism f : Nx → Rd. These neighborhoods are known as coordinate patches
and the mapping f is known as a coordinate chart. The image of the coordinate
charts is referred to as the parameter space.

Intuitively, the dimension d of the manifold indicates the number of independent
ways by which a probable configuration can be locally transformed into another
probable configuration (remember the example of tiny changes in pixel values of an
image). Another concept associated with this intuition is the set of tangent planes
of a manifold. A tangent plane at a point x on a d-dimensional manifold is given by
d basis vectors which cover the local dimensions of variation on the manifold, i.e.
they show how x can be changed while staying on the manifold (figure 4.1).

We will only deal with manifolds which are subsets of RD where D >> d. That
is, the manifold will lie in RD but will be homeomorphic to a lower dimensional
space Rd.

Before moving on to manifold learning we will further constrain the manifolds
of interest.

Definition 17. A smooth or differentiable manifold is a manifold such that each
coordinate chart is differentiable with a differentiable inverse. We say that such a
chart is a diffeomorphism.
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Figure 4.1: Tangent plane and directions of variation on the manifold [BGC15].

Definition 18. An embedding of a manifold M into RD is a smooth homeomo-
prhism from M to a subset of RD.

The result of the embedding is usually a low-dimensional vector, with less di-
mensions than the surrounding space, in which the manifold lies. The learning
algorithms that will be presented later will learn either directly an embedding for
each training data point, or a more general mapping, also called encoder or repre-
sentation function, that maps any point in the high-dimensional input space to its
representation on the manifold.

Definition 19. Suppose we are given a set of N points x1, x2, ..., xN ∈ RD that lie
on a d-dimensional manifold M which can be described by a single coordinate chart
f : M→ Rd. Manifold learning is the process of finding y1, y2, ..., yN ∈ Rd, where
yi

.
= f(xi).

In other words, manifold learning is the process of trying to learn the manifold
of a set of available points, or find an embedding of the underlying manifold. The
most frequently used example in the manifold literature is the Swiss roll, which is a
two-dimensional manifold embedded in the three-dimensional space (R3). What is
important to note is the fact that neighboring points in the original dataset will also
be neighbors in the two-dimensional dataset. This is due to the chart f between the
two datasets being a homeomorphism. Furthermore, distances between points in
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Figure 4.2: Swiss roll (top) and the underlying manifold (bottom). [Cay05].

the original dataset are approximately maintained (at least, based on the Johnson-
Lindenstrauss lemma that will be presented later) in the new dataset, and are exactly
maintained if the chart f is isometric.

The fact that the point distances between the elements of the datasets are pre-
served is a basic characteristic of the manifold learning algorithms that will be
presented in the next section.

4.2 Manifold learning algorithms

4.2.1 Dimensionality reduction

[Ver08] We know that most learning algorithms that perform well in low-dimensional
datasets, perform poorly when applied to high-dimensional datasets. This phe-
nomenon is known as the curse of dimensionality. In order to effectively apply
learning algorithms in high-dimensional data, we would like first to map them to
a low-dimensional space, while preserving much of the important information con-
tained within, and then run the algorithms in the projection space. The process of
projecting data onto a lower-dimensional space is known as dimensionality reduction.

One way to verify the quality of a dimensionality reduction technique is to test
how well the mapping preserves pairwise distances. This idea is based on the assump-
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tion that distances between points in space relate to the (dis-)similarity between the
corresponding observations. It is evident that this distance preservation would be
much easier if we could find the underlying manifold of the data; we would then
limit our work on points lying on the manifold and not in the whole ambient space.

A question that arises here, is, whether we can project any dataset on a lower-
dimensional space, which maintains distances. The Johnson-Lindenstrauss lemma
states that any n points in high dimensional euclidean space can be mapped onto
k dimensions where k ≥ O( logn

ε2
) without distorting the euclidean distance between

any two points more than a factor of 1± ε [Mah09], [DG03].

Lemma 2. For any 0 < ε < 1 and any integer n, let k be a positive integer such
that k ≥ 4( ε

2

2
− ε3

3
)−1 lnn.

Then for any set V of n points in Rd there is a map f : Rd → Rk such that
∀u, v ∈ V :

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

This map can be found in randomized polynomial time.

A general outline of the proof is the following:

• Construct a random projection over k-dimensional subspaces.

• Prove that the expected value of the euclidean distance of the random projec-
tion is equal to the euclidean distance of the orginal subspace.

• Prove that the variance of the euclidean distance is greater than the specified
error factor only with a probability 2

n2 , such that the union bound of this
probability across all points is less than 1− 1

n
.

4.2.2 Algorithms

So far, most manifold learning algorithms are unsupervised learning procedures
attempting to uncover the underlying manifold structure. They use a nearest-
neighbor graph which has one node per training vector and edges connecting nearest
neighbors. Each node is associated with a tangent plane which spans the directions
of variation associated with a neighborhood of the graph and a coordinate system
that associates each training vector with an embedding. This coordinate system can
be thought of as a local Euclidean system or a locally flat Gaussian, with very small
variance in the directions orthogonal to the plane, and a very large variance in the
directions spanning the local coordinate system (figure 4.3). With this approach,
a generalization is possible to new examples by a form of interpolation between
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Figure 4.3: Tangent planes are tiled together to cover the manifold, forming a global
coordinate system [BGC15]

neighbors, and a global coordinate system can be obtained through an optimiza-
tion or solving a linear system. Furthermore, by formulating a problem in terms
of graph structure one avoids making any assumptions about the data distribution
([YXZ+07]).

However, the methods based on nearest-neighbor graphs work well provided we
have a very large number of training examples to cover all the curves of the un-
derlying manifold. This need for a huge amount of data, as well as the fact that
manifolds of interest in AI, such as the ones underlying speech and image data,
have many twists, have motivated the use of deep learning methods and distributed
representations to uncover the manifold structure. These methods try to learn a co-
ordinate system for the main latent factors that explain the underlying generating
distribution.

Furthermore, such algorithms work in batch mode and they do not provide a
way of mapping new points from the high to the low dimensional space without
re-running the algorithm from scratch; to tackle this issue, a number of approaches
have been suggested ([AE], [SR03],[BPV03]).

We will now introduce some fundamental manifold learning algorithms.

Isomap

Isometric feature mapping (ISOMAP) was one of the first manifold learning
algorithms. Isomap contains the following three steps:

• Construct the k nearest-neighbor graph. The number of neighbors k is defined
after trying with various values and comparing the results. It is also possible
to find the neighbors with an approximate nearest neighbor procedure, e.g.
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Figure 4.4: Classical Multidimensional Scaling [Cay05]

use neighborhoods with a certain ε radius.

• Estimate the distances along the manifold (geodesic distances) between input
points using shortest-path distances on the neighbor graph constructed in the
previous step.

Isomap assumes that there is an isometric chart that maps the input points to
the low-dimensional space, i.e. it preserves the distances between points. If the
manifold is smooth enough then the geodesic distance between nearby points is
almost linear. Given that the manifold locally resembles the Euclidean space,
the Euclidean distance can be used to estimate distances. On the other hand,
for points that are far apart from each other, we cannot estimate distances in
the same way, because the manifold structure is not globally Euclidean. To
compute such distances we use shortest-paths algorithms on the neighbors’
graph we have constructed.

• Using Multidimensional Scaling find points in a lower-dimensional Euclidean
space whose inter-point distances match the geodesic distances found in the
previous step.

In the third step Isomap finds points whose Euclidean distances equal the
geodesic distances found earlier. Supposing that the manifold is isometrically
embedded, we are certain that such points exist and are unique to translation
and rotation. To find such points we apply a technique called Multidimen-
sional scaling (figure 4.4), which, given a matrix D ∈ Rn×v of dissimilarities
constructs a set of points whose Euclidean distances from each other match
closely those in D.

Isomap has the following two important properties. First, it automatically es-
timates the dimensionality of the underlying manifold: the number of non-zero
eigenvalues found by MDS is the underlying dimensionality.
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Figure 4.5: ISOMAP [Cay05].

Second, under the following assumptions, Isomap is guaranteed to recover the
structure of a manifold.

• The manifold is isometrically embedded into RD.

• The underlying parameter space is convex, or intuitively, the parameter space
of the manifold cannot contain any holes.

• The manifold is compact and well-sampled everywhere.

Locally Linear Embedding

The intuition behind Locally Linear Embedding (LLE ) stems from thinking of
the manifold as a collection of overlapping cooordinate patches. If the neighborhood
sizes are small and the manifold does not have many curves or twists, then these
patches will be approximately linear. The concept is to find these patches, discover
their geometry and find a mapping from the manifold to Rd that preserves the local
geometry and is approximately linear. Since these patches are overlapping, the local
reconstructions will combine into a global one.

The first step of LLE tries to model the manifold as a collection of linear patches
and uncover their geometry. In order to do so, it represents each point xi as a
weighted, convex combination of its nearest neighbors. The weights are chosen
based on minimizing the squared error:

‖xi −
∑

j∈N(xi)

Wijxj‖2

where N(i) is the set of nearest-neighbors of xi.
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The weight matrix W discloses the positions of the neighbors around each point;
thus it isW that captures the local geometry of each patch. It is necessary to impose
two constraints on W . First, each point is represented as a convex combination of
its neighbors. We ensure convexity by requiring that each row of the weight matrix
sums to 1. Second, we require that:

Wij = 0 if j /∈ N(i)

These two constraints have an important physical meaning: the convexity makes
the weights invariant to global rotation, translation and scaling, e.g.

‖xi + a−
∑

j∈N(xi)

Wij(xj + a)‖2 = ‖xi −
∑

j∈N(xi)

Wijxj‖2

whereas the second enforces locality on the patches.
The above minimization problem has a closed-form solution for the weight matrix

which, for each xi is given by:

Ŵi =

∑
k

C−1
jk∑

lm

C−1
lm

where C is the local covariance matrix

Cjk
.
= (xi − ηj)T (xi − ηk)

and ηj, ηk are neighbors of xi. Ŵ ∈ Rn×k is then transformed into the sparse
W ∈ Rn×n by setting Wij = Ŵil if xj is the lth neighbor of xi and Wij = 0 if
j /∈ N(i).

The second step in LLE is to find a configuration of points in the d-dimensional
parameter space whose local geometry is described well by W . Contrary to Isomap
LLE cannot discover the number of dimensions d; we have to provide it based on
prior knowledge about the parameter space or estimate it using other techniques
(e.g. Conformal Eigenmaps, [SS05]). Such a configuration is found by minimizing
the cost function:∑

i

‖yi −
∑
j

Wijyj‖2 = Y T [(I −W )T (I −W )]Y = Y TMY

with respect to y1, y2, ..., yn ∈ Rd and under constraints: Y TY = I and
∑
i

Yi = 0.

The first constraint forces the solution to be of rank d whereas the second centers
the embedding around the beginning of the axes. Minimizing the cost function
corresponds to setting the columns of Y to the eigenvectors that correspond to the
minimum d eigenvalues ofM. However, the minimum (eigenvector,eigenvalue) pair
is (1,0). Therefore, to avoid the last coordinate being identical for all points, we
pick the minimum d eigenvectors that are not constant.
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Figure 4.6: LLE [Cay05].

Laplacian Eigenmaps

The Laplacian Eigenmaps algorithm is based on the concept of the Laplacian of
a graph: Given a graph and the corresponding matrix containing edge weights, the
Laplacian of the graph is defined as L .

= D−W , where D is defined is the diagonal
matrix defined as Dii =

∑
j

Wij. The eigenvalues of L reveal information about the

structure of the graph, such as whether it is complete or connected. Since in our
case the weight matrix contains information about the neighborhoods of the points,
its Laplacian will help us discover local information about the underlying manifold.

In Laplacian Eigenmaps we have two choices for constructing the weight matrix
W . Either use the simple scheme:

Wij =

1 if j ∈ N(i)

0 if j /∈ N(i)

or use the Gaussian heat kernel:

Wij =

e
−‖xi−xj‖

2

2σ2 if j ∈ N(i)

0 if j /∈ N(i)

Like LLE we use W to find points in the d-dimensional parameter space (d is set or
estimated in advance) that preserve the relations of their original counterparts.

The cost function we are aiming to minimize now is based on the fact that we
want to maintain the distance between points:∑

ij

Wij‖yi − yj‖2 = tr(Y TLY )
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Figure 4.7: Laplacian Eigenmaps [Cay05].

To avoid getting to a solution with less than d dimensions, we enforce the constraint
Y TDY = I. In this way we will ensure that the rank of Y is d. We now have
to solve the generalized eigenvalue problem Ly = λDy and populate Y with the
eigenvectors that correspond to the d smallest, non-zero eigenvalues.

4.3 Discriminative manifold learning algorithms in
ASR

The reason why we presented some basic ideas and algorithms coming from the
area of manifold learning is the fact that speech sounds are suspected to lie on
a low-dimensional manifold, which we can exploit to reduce the dimensionality of
speech feature vectors. Approaches to automatic speech recognition using manifold
learning is an active field of research that has so far produced promising results.

4.3.1 Manifolds and speech data

We had mentioned earlier that natural data is usually high dimensional, yet the
latent factors that generate it may lie in lower-dimensional spaces. Intuitively one
can see why the manifold assumption is true for certain classes of speech: given
that there is only a small finite number of articulatory systems involved (tracheia,
glottis, vocal tract, tongue, lips, teeth), it is reasonable to expect the existence of a
low-dimensional structure in speech data.

In their work, Jansen and Niyogi ([JN05]) consider wave propagation in acoustic
tube models and present a derivation of the sounds generated by it. They represent
steady-state sounds produced by such models with the magnitude of their Fourier
coefficients, hence as a point in a high dimensional space. They prove that certain
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classes of sounds generated, as the configuration of the articulatory system varies,
lie on a low dimensional manifold embedded in the ambient high-dimensional space.

We will outline the analysis in their paper ([JN05]) when a single tube is modeling
the vocal tract.

In order to be able to arrive at a tractable problem they introduce the following
approximations: the vocal tract walls are rigid, their impedance is much greater than
that of air and the transverse dimension of the vocal tract is much smaller than
the signal’s wavelength. Based on these assumptions the problem of acoustically
analysing the vocal tract resonator reduces to the analysis of planar waves in one
spatial dimension.

The notation used is:

• p is the air pressure

• ρ is the density

• u is the velocity

• A(x) is the cross-section area of the tube as a function of the position

• U = Au is the volume velocity of the air perturbations

Starting from the continuity equation for compressible fluid flow and the preservation
of momentum, we can arrive at a partial differential equation with respect to the
volume velocity U as a function of space and time, which can be further reduced to
the standard wave equation in free space:

∂2U

∂x2
=

1

c2

∂2U

∂t2

or, using pressure p
∂2p

∂x2
=

1

c2

∂2p

∂t2

with the boundary conditions
U(0, t) = s(t)

where s(t) represents the glottal vibrations as a function of time, and

Û(L, ω) =
p̂(L, ω)

Zr(ω)

where the second condition is in the frequency domain and Zr(ω) is the acoustic
impedance at the open end of the tube (x = L).

The solution U(x, t) to the above equation can be expressed using its Fourier
transform Û(x, ω):

U(x, t) =
1

2π

∫ ∞
−∞

Û(x, ω)eiωtdω
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Substituting in the wave equation and solving we get the general solution for the
volume and (after working in a similar way) pressure respectively:

Û(x, ω) = U1(ω)e−ikx + U2(ω)eikx

p̂(x, ω) = p1(ω)e−ikx + p2(ω)eikx

The detailed computations for the magnitudes can be found in [JN05]. Eventually
we arrive at the general solutions for U and p:

Û(x, ω) = ŝ(ω)

[
e−ikx

1 + B+1
B−1

e−i2kL
+

eikx

1 + B−1
B+1

ei2kL

]

p̂(x, ω) = ŝ(ω)Zr(ω)

[
e−ikx

1 + B+1
B−1

e−i2kL
+

eikx

1 + B−1
B+1

ei2kL

]
where B = ρ0c

AZr(ω)
, ρ0 is the equilibrium density air value.

Since any odd periodic function can be expressed as a Fourier series of sinusoidal
sources, we pick a single-frequency sinusoidal as the source function:

s(t) = U0sinω0t

If we compute its Fourier transform, substitute in the previous solutions and take
the inverse Fourier, we arrive at the final form of the solution in the time-domain:

p(L, t) =
U0

2i

[
f(ω0, L, A)eiω0t − f(−ω0, L, A)e−iω0t

]
= Im(U0f(ω0, L, A)eiω0t)

where f(ω, L,A) = Zr(ω)
[
coskL − iAZr(ω)

ρ0c
sinkL

]−1

and we arrived at the second
form given that Zr(ω) = Z∗r(−ω) and consequently f ∗(ω, L,A) = f(−ω, L,A).

If we use a linear combination of H harmonics as the source function

s(t) =
H∑
n=1

ansin(nω0t)

then at the output we expect a solution of the form

p(L, t) =
H∑
n=1

βnsin(nω0t+ φn)

where for each n

βnsin(nω0t+ φn) = Im(αnf(nω0, L, A)einω0t)

Consequently, the output Fourier coefficients βn are given by

βn(L,A) = αn|f(nω0, L, A)|
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If we now define a subset of RH for a given set {αi|i = 1, ..., H} by

M1(L1, L2) = {(β1, β2, ..., βH)|L ∈ (L1, L2)}

thenM outlines a one-dimensional curve in the ambient Fourier space RH with the
following properties:

• There exists a diffeomorphism φ : (L1, L2) ∈ R1 → M1(L1, L2) ∈ RH for
L1, L2 in the range of human vocal tract lengths.

• The diffeomorphism φ−1 : M1(L1, L2) → R1 is a coordinate chart on the set
M1(L1, L2).

• The setM1(L1, L2) is open.

These properties tell us that the setM1(L1, L2) is a smooth and open one dimen-
sional manifold embedded in RH , which is not a straight line and spans the whole
ambient space.

The manifold structure of speech data can be exploited in several ways: improve
supervised learning techniques by applying regularization based on the manifold
of speech data (manifold regularization) and find new methods of dimensionality
reduction. One such method will be presented next.

4.3.2 Discriminative manifold learning

[TR14a][TR13a]
In the context of automatic speech recognition we usually want to classify our

data into the corresponding phoneme categories, e.g. monophones or triphones. It
has recently been established ([SR03]) that the geometric and local structure of the
space the data lie on, is important for classification tasks. Consequently, if we could
identify the underlying manifold of the available data and apply a discriminative
feature transformation, we should see an improvement in our classification efforts.

However, discriminative transformations alone are incapable of capturing the
geometric and local distributional structure of the data space, whereas on the other
hand, manifold learning algorithms that do uncover the geometric properties of the
space, are unsupervised and non-discriminative. Rose and Tomar propose a new
framework ([TR14a]) that introduces a discriminative element in manifold learning
techniques: they aim to maximize the separability between different classes while
at the same time preserve the manifold-constraint relationships between data points
that belong to the same class.
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Their discriminative manifold learning framework starts -similarly to the al-
ready presented techniques- by embedding feature vectors into two graphs con-
necting neighborhoods of vectors, followed by an optimization of their structure
according to certain constraints. These weighted, undirected graphs characterize
the class-specific manifolds where the feature vectors. One of the two graphs, called
the intrinsic graph, defines the relationships between same-class feature vectors
(Gint = {X,W int}), whereas the other, called penalty graph, defines the relation-
ships between feature vectors belonging to different classes (Gpen = {X,W pen}).

The characteristics of the two graphs, such as structure, connectivity and com-
pactness, are mostly influenced by the weights on their edges, which are calculated
according to the distance between points. Therefore, intuitively we can understand
that the graphs express the geometry of the data space.

Based on the metric used to calculate distance, the writers propose two different
approaches, both resulting in the estimation of a projection matrix P ∈ Rd×m,m�
d, which maximizes the sub-manifold class discrimination in the projected space
while at the same time it preserves the data relations within each sub-manifold.

Locality Preserving Discriminant Analysis

[TR12a]
In Locality Preserving Discriminant Analysis (LPDA) the distance metric used

is the Euclidean distance. The elements of the weight matrices W int and W pen are
calculated using the Gaussian heat kernel:

wintij =

e
−‖xi−xj‖

2

ρ if C(xi) = C(xj), e(xi, xj) = 1

0 otherwise

wpenij =

e
−‖xi−xj‖

2

ρ if C(xi) 6= C(xj), e(xi, xj) = 1

0 otherwise

where ρ is the heat kernel scale parameter, C(xi) refers to the class of vector xi and
e(xi, xj) = 1 indicates that xi is in the near neighborhood of xj. The neighbors
of vector xi can be discovered either by an exact or by an approximate k-nearest
neighbors method, such as a range search for points lying in a ball of radius r around
xi.

In essence, the meaning of the aforementioned weights assignment is that in
graph Gint a node xi is connected to its kint-nearest neighbors having the same label,
whereas in Gpen a node xi is connected to its kpen-nearest neighbors that have a
different label than itself. The values of kint and kpen are determined empirically.
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We can define a scatter measure for a graph G as follows:

FG(P ) =
∑
i 6=j

‖yi − yj‖2wij = 2P TX(D −W )XTP

where D is a diagonal matrix defined as Dii =
∑
j

wij. Depending on whether we

want to retain or discard graph properties, the optimal projection matrix P can be
obtained by minimizing or maximizing FG.

Specifically for LPDA, one would want to reinforce the fact that points belonging
to different classes are conceptually far away from each other and on the other hand
strengthen the relations between points of the same class. Intuitively it follows that
one should aim to maximize the scatter of the penalty graph Fpen(P ) and minimize
the scatter of the intrinsic graph Fint(P ). To combine the two scatters into a single
measure the writers define their ratio as a measure of class-separability and graph
preservation:

F (P ) =
Fp(P )

Fi(P )
=
P TX(Dp −W p)X

TP

P TX(Di −W i)X
TP

where i denotes intrinsic and p penalty.
The optimal P is the one to maximize F (P ):

P LPDA = argmax
P

F (P ) = argmax
P

{
tr
(

(X(Di −W i)X
TP )−1(P TX(Dp −W p)X

TP )
)}

This maximization problem can be brought down to solving the following generalized
eigenvalue problem:

(X(Dp −W p)X
T )pjlpda = λj(X(Di −W i)X

T )pjlpda

where pjlpda is the jth column of the transformation matrix P lpda ∈ Rd×m and is the
eigenvector associated with the jth largest eigenvalue. Therefore P optimal

lpda contains
the m eigenvectors associated with the m largest eigenvalues.

Correlation Preserving Discriminant Analysis

[TR13b][TR12b]
The second approach, Correlation Preserving Discriminant Analysis (CPDA),

uses the cosine-correlation, i.e. normalized inner-product, as distance metric. This
is motivated by the fact that models based on Euclidean distance are susceptible to
noise, whereas cosine-correlation based models are expected to be less influenced by
noise, given the robustness of the angles between cepstrum vectors.

Similarly to LPDA, CPDA uses two undirected graphs , (Gint = {X,W int}),
(Gpen = {X,W pen}), to embed the feature vectors, yet this time the similarity
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between nodes is calculated based on the cosine-correlation distance:

wintij =

e
〈xi,xj〉−1

ρ if C(xi) = C(xj), e(xi, xj) = 1

0 otherwise

wpenij =

e
〈xi,xj〉−1

ρ if C(xi) 6= C(xj), e(xi, xj) = 1

0 otherwise

where the notation is the same as above. The scatter measure used in CPDA is the
same as in LDPA, yet CPDA first projects the data points onto the surface of a
unit hypersphere, thus discarding magnitude information and keeping correlation-
based information about data points. Thus, the projection matrix P ∈ Rd×m,m�
d, eventually estimated, will non-linearly project the features from the original d-
dimensional hypersphere onto the target m-dimensional hypersphere.

The scatter for CPDA is:

FG(P ) =
∑
i 6=j

‖yi−yj‖2wij
y=P Tx/‖P Tx‖

=
∑
i 6=j

∥∥∥ P Txi

‖P Txi‖
− P Txj

‖P Txj‖

∥∥∥wij = 2
∑
i 6=j

(
1− fij

fifj

)
wij

where for two arbitrary vectors xu, xv:

fu =

√
xTuPP

Txu

and
fuv =

√
xTuPP

Txv

As previously, we want to maximize the scatter of the penalty graph and minimize
the scatter of the intrinsic graph. However, in CPDA the writers have chosen the
difference of the two scatter measures as a measure of manifold separability and
graph preservation:

F (P ) = Fpen(P )− Fint(P ) = 2
∑
i 6=j

(1− fij
fifj

)wp−iij

where wp−iij = wpenij − wintij . The optimal projection matrix P opt
cpda is obtained by

maximizing F (P ):
P CPDA = argmax

P
F (P )

Because of the projection of the feature vectors onto the unit hypersphere, the max-
imization problem cannot be solved by solving an equivalent generalized eigenvalue
problem. Therefore, an iterative procedure is chosen, the well known gradient ascent:

P := P + α∇PF
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where

∇PF = 2
∑
i 6=j

[fijxixTi
f 3
i fj

+
fijxjx

T
j

fif 3
j

−
xix

T
j + xjx

T
i

fifj

]
Pwp−iij

where α is the gradient scaling factor and ∇PF represents the gradient of the scat-
ter measure F with respect to P . Given that F is non-linear and non-convex, a
good initialization is important to avoid reaching just a local maximum. Such an
initialization can be obtained by neglecting the projection on the unit hypersphere,
approximate a linear transformation:

yi = P Txi

and eventually acquire P init by solving the generalized eigenvalue problem:

(X(Dp −W p)X
T )pj = λj(X(Di −W i)X

T )pj

whereD is a diagonal matrix with elementsDii =
∑
i

wij andX contains the normal-

ized feature vectors. As before, P init
cpda is composed of the eigenvectors corresponding

to the m largest eigenvalues.

Noise Aware Manifold Learning

[TR13c]
Furthermore, in their work Rose and Tomar explore a new method to increase

noise robustness of manifold learning methods. They point out that since edge
weights, which depend on the Gaussian heat kernel size and shape, characterize local
neighborhoods, there is a strong relation between kernel size and the robustness to
background noise.

The kernel size governs the compactness of the neighborhood and the smoothness
of the manifolds, and in turn, it is governed by the scale parameter ρ. Therefore,
the choice of ρ is important to the definition of local neighborhoods and thus to
the characteristics of the transformation. If ρ had a value that is too large, then
the kernel would tend to flatten, and all data pairs on the graph would have the
same importance; on the other hand, if it had too small a value, the manifold would
lack smoothing and thus the kernel would be too sensitive to noise. Therefore, the
writers claim that the optimal value for ρ is dependent on the SNR level of the
speech signal, and support their claims with successful experimental results.

They propose that multiple scale parameters be used, each specific to a noise
condition. First, during training, they gather multiple SNR dependent LPDA or
CPDA projections and Continuous Density HMMs. This procedure is broken down
into three steps:
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• Based on a set of ρ values, determine the set of the corresponding projection
matrices

• Heuristically identify the optimal value of rho and the corresponding transfor-
mation that maximizes ASR performance for a given SNR level

• Train GMM/HMM models from the features obtained using the set of projec-
tion matrices previously acquired

Having this set of SNR-dependent LPDA/CPDA transformations, SNR is esti-
mated for each test utterance and the feature space projection is performed using
the corresponding LPDA/CPDA projection matrix. Eventually, the corresponding
GMM/HMM model is used in the ASR application.

This procedure is referred to as Noise-Aware LPDA/CPDA (N-LPDA or N-
CPDA).

Results

All of the proposed techniques are verified by experiments the writers conducted
using the Aurora-2 and Aurora-4 datasets.

LPDA and CPDA show a relative WER improvement ranging from 6 to 30% com-
pared to conventional techniques, such as Linear Discriminant Analysis or Locality
Preserving Projections. This verifies the assertion that manifold and discriminative
learning result in a well-behaved and robust feature-space transformation.

Furthermore, CPDA performs better that LPDA under high noise conditions,
supporting the noise robustness of cosine-correlation distance compared to Eu-
clidean. As far as Noise-Aware manifold learning is concerned, N-LPDA performs
slightly better on average as compared to LPDA for most noise conditions (0.10-0.20
reduced WER).

At this point it is important to point out the huge computational complexity
involved in computing the weight matrices, given the high dimensionality of the
feature space. To tackle this issue the writers propose using novel approximate
nearest neighbors techniques such as Locality Sensitive Hashing ([TR13b]).





Chapter 5

Deep Neural Networks

In this chapter we will give a general introduction to deep neural networks
(DNNs). We will begin by presenting the ideas and motivation behind deep ar-
chitectures and then move on to describe a few of these models as well as practical
issues concerning building and training such models.

5.1 History and Motivation

[DY14]
Until recently, shallow-structured architectures were prevalent in machine learn-

ing and signal processing. These include Gaussian Mixture Models, Conditional
Random Fields, Support Vector Machines, logistic regression and the (shallow) mul-
tilayer perceptron, all of which have been successful in solving well-constrained prob-
lems, yet their limited representational power does not allow them to effectively deal
with applications involving natural signals such as human speech, natural sound and
image.

In order to deal with such tasks efficiently, researchers had to improve the in-
formation processing mechanisms involved in the systems and they turned to the
human brain for inspiration. Human information processing mechanisms (such as vi-
sion and audition) suggest the need for ‘deep’, hierarchical architectures ([SKK+07])
to capture non-linear, complex structure and build internal distributed representa-
tions from sensory inputs. Researchers however, have been stressing out recently
that deep learning, i.e. the application of deep architectures to machine learning
tasks, is only inspired by the way the brain works, rather than mimicking it. For one
thing, the human brain is full of different types of neurons each one serving a differ-
ent purpose, whereas deep architectures have a single type of neuron performing the
same task. Moreover, humans learn mostly in an unsupervised manner, contrary to
deep models which usually need labeled examples to learn from.

71
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Although deep architectures recently gained in popularity, the main idea behind
them, that is to learn lower-level representations from raw input data, is not new.
As early as 1998, Yann LeCun et al. ([LBBH98]) developed a Convolution Neural
Network to recognize handwritten digits on banking checks. The novelty of LeNet-
5 (the model proposed in the paper) was that it learned features from raw pixel
images, as opposed to receiving hand-crafted features in the input end. The power
of deep models lies exactly at that point: they can extract features from raw input
and do discrimination jointly ([Ben09]).

However, at that time, it was not easy to implement a deep architecture onto,
for example, a feed-forward neural network. The back-propagation algorithm, which
had been very popular until then, did not work well in practice when more than a
small number of hidden layers were involved. Given the presence of too many local
optima in the non-convex objective function of such models, as well as the problems
of diminishing or exploding gradients and the computational issues arising when the
parameters’ number rose too much, most research turned to shallow models with
convex loss functions (e.g. SVMs, CRFs). It was not until recently that new theoret-
ical breakthroughs appeared (e.g. RBM pretraining, primal-dual update algorithm,
new non-linear activation functions) and together with the boom of computationally
efficient hardware usage (GPUs, CPU/GPU clusters) allowed researchers to turn to
deep (many hidden layers) and wide (many neurons) models.

5.1.1 Deep learning in Automatic Speech Recognition

Neural networks had appeared in the ASR field as early as 1980 with the Time
Delay Neural Network ([?]), which introduced time-delay units, in addition to sig-
moids, in order to take into account past history together with the current input.
Hybrid approaches of (shallow) NNs with Hidden Markov Models were also in-
troduced early ([MB90]) however at the time they were abandoned due to worse
performance in comparison with GMM/HMM systems.

The interest in neural networks for ASR was refueled again in 2009 at the NIPS
Workshop on Deep Learning, where a team of researchers from the University of
Toronto proposed a DNN/HMM system for phone recognition ([rMDH]). The com-
bination of the DNN with the HMM was the same as the first hybrid approach in
1990, yet now a deep model was used instead of a shallow and the team managed to
achieve a 23.0% phone error rate on TIMIT as opposed to 27.7% of the GMM-HMM
system.

Around the same time researchers started looking into raw features instead of
MFCCs and deep autoencoders were tried for binary feature encoding and feature
extraction. The promising results that these attempts yielded, turned the spotlight
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on DNNs for ASR, and further successful experiments on large vocabulary tasks
followed. The work presented in [SLY] by Seide et al. exhibited a 1/3 cut of
error over the corresponding GMM/HMM system. Most of the ideas tried were not
actually new; however, due to limited computing resources and training data it was
difficult if not impossible before to train the large models that were tried at the
time.

The experiments at that time started clarifying the conditions under which a
context-dependent deep neural network together with an HMM system can be suc-
cessfully applied to ASR:

• having a deep enough architecture

• using tied triphone states as targets (senones)

• use a contextual window of features as input

Furthermore, it was found that initializing layer weights through pre-training might
help, but it is not crucial for good performance.

In parallel with research on deep models used in acoustic modeling, people con-
ducted research on the features that would be fed into the models. It was found
that DNNs did not need some of the feature pre-processing steps necessary for
HMM/GMM systems (e.g. HLDA, fMLLR). This was attributed first to the many
layers in the architecture, which applied a nonlinear feature transformation on the
input, second to the softmax layer which acts as a log-linear classifier and third to
the joint optimization of the two. Furthermore, DNNs can handle correlated input
and hence, correlated features that without pre-processing could not be used for
GMM/HMM training can now be exploited in a DNN system without any previous
processing.

Recent work on feature learning in the context of deep neural networks which was
presented in 2013 ([SKrMR13]), showed that DNNs can extract the Mel-scale filter-
bank from the FFT spectrum given as input. Another team demonstrated that even
raw time signal can be used as input to the DNN for acoustic modeling ([TGSN14]).
Finally, in 2014 a team from IBM combined CNN, DNN and i-vector based adapta-
tion techniques to improve the acoustic model and managed to reduce the WER on
the Switchboard Hub5’00 dataset to 10.4% (as opposed to 14.5% achieved by the
best GMM/HMM system). This error rate can be further reduced to less than 10%
by improving the language model, either with recent neural-network approaches or
with large-scale N-grams.

However, state-of-the-art systems with or without DNNs still perform poorly
when faced with tasks involving far field microphones, very noisy conditions, speech
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Figure 5.1: A deep neural network with three hidden layers [YD14]

with accent or multiple speakers and spontaneous, interrupted speech. To deal
with such tasks research has focused on improving acoustic models and developing
dynamic ASR systems with recurrent feedback, as well as incorporating semantic
understanding, which will assist in pruning the search space of sentences.

5.2 Constructing DNNs: the Multilayer Perceptron

[YD14]
Although initially the term “deep neural network” was used to identify a multi-

layer perceptron with many hidden layers, it has now come to name a whole class of
neural network models having a “deep” architecture, i.e. having at least three hidden
layers. However, we will use the conventional multilayer perceptron to present the
basic deep architecture and cover the training issues associated with it.

5.2.1 Architecture of the Deep Multilayer Perceptron

As already mentioned, the simplest deep neural network is a multilayer percep-
tron with at least three hidden layers, excluding the input and output layers. A
DNN with a total of five layers can be seen in figure 5.1

We can denote the input layer as layer 0 and the output layer as layer L for an
(L+ 1)-layer DNN.
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The neurons in the first layer correspond to each feature (or dimension) in the
input vector, i.e.

v0 = xinput

whereas for the first L layers the output is calculated as follows:

vl = f(zl) = f
(
W lvl−1 + bl

)
, 0 < l < L

where
zl = W lvl−1 + bl ∈ RNl×1

vl ∈ RNl×1

W l ∈ RNl×Nl−1

bl ∈ RNl×1

and Nl ∈ R, are respectively the excitation vector, the activation vector, the weight
matrix, the bias vector and the number of neurons at layer l.

The function f(·) : RNl×1 → RNl×1 is the activation function of the correspond-
ing neuron that is applied element-wise to the excitation vector. The most common
activation function is the sigmoid function

σ(z) =
1

1 + e−z

followed by the second most common, the hyperbolic tangent

tanh(z) =
ez + e−z

ez + e−z

which is a rescaled version of the former. Both have the same modeling power,
but the output range of the hyperbolic tangent is (-1,+1) , therefore the activation
values are symmetric and this was believed to help during training. On the other
hand, the sigmoid function has an output range of (0,1), which stimulates sparse
but asymmetric activation values. Recently, another type of activation function, the
rectified linear unit (ReLU) has been suggested:

ReLu(z) = max(0, z)

ReLu has been gaining in popularity since it enforces sparse activation values and
has a simple gradient:

∇ReLu(z) = max(0, sgn(z))

which provides a huge improvement in the speed of computation.
As far as the output layer is concerned, its form depends on the task of interest.
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Figure 5.2: Computation of DNN output [YD14].

In case of regression tasks, a linear layer is used to generate the output vector
vL ∈ RNl , where Nl is the output dimension:

vL = zL = W LvL−1 + bL

In case of classification tasks, each output neuron represents a class i ∈ 1, ..., C.
where C = NL is the number of classes. In this case, the output of the DNN will
be a probability distribution over the possible classes. The value of the ith output
neuron represents the probability Pdnn(i|x) that the input vector belongs to class i.

Since we want the output vector to be a valid probability distribution we impose
the following constraints on it

vLi ≥ 0

and
C∑
i=1

vLi = 1

and use as output function the softmax function:

vLi = Pdnn(i|x) = softmax(zL) =
ez
L
i

C∑
j=1

ez
L
j

where zLi is the ith element of the excitation vector zL.
Given an input matrix with observations O the output of the DNN can be

computed as described in figure 5.2

5.2.2 Training and related issues

Given that a multilayer perceptron with a sufficiently large hidden layer can
approximate any function ([HSW89]), it is evident that a multilayer perceptron
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with more than one hidden layers can serve as a universal approximator as well,
that is, compute any mapping

g : RD → RC

from the input space RD to the output space RC . For a set of training samples we
can estimate the network parameters {W , b} with a training process, characterized
by a training criterion and a learning algorithm.

Training criterion

The training criterion is chosen so that an improvement in it reflects an improve-
ment in the final evaluation score. Therefore, it should somehow express the final
goal of the task, yet at the same time be easy to compute.

Ideally, we would like to estimate the DNN parameters that minimize the ex-
pected cost:

JE = E(J(W , b;xi,y))

where J is the cost (or loss) function given the model parameters {W , b} together
with the input vector xi and the corresponding output y. However, since we cannot
know in advance the output for unseen samples, we can only optimize empirical
criteria based on the training set.

The two most popular empirical criteria used in DNN training are the mean
square error (MSE ) for regression tasks and the cross-entropy (CE ) for classification
tasks, which are defined as follows:

JMSE(W , b;xi,train,yo,train) =
1

2M

M∑
m=1

‖vL − y‖2

and

JCE(W , b;xi,train,yo,train) =
1

M

M∑
m=1

(−
C∑
i=1

yi log(vLi ))

where yi and vi in JCE are respectively, the probability observed in the training set
that x belongs to class i (yi = Pempirical(i|x)) and the same probability estimated
from the DNN vLi = PDNN(i|x)).

The minimization of the cross-entropy criterion is equivalent to minimizing the
Kullback-Leibler divergence between the empirical probability distribution and the
probability distribution estimated from the deep neural network. One crucial ad-
vantage of using cross-entropy as cost function against mean square error, is that it
has better convergence properties than MSE and the network learns faster from its
classification mistakes during training. This occurs because the derivative of CE is
proportional to the difference between DNN estimation and the actual target value,
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Figure 5.3: Back-propagation algorithm [YD14].

and therefore the change in the network parameters is greater when the estimated
value diverges a great deal from the target.

Training algorithm and practical considerations

Having selected an appropriate training criterion, we can train the network us-
ing the back-propagation algorithm which is based on the chain rule for gradient
computation. The algorithm is summarized in figure 5.3.

Despite the simplicity of the algorithm, its application to DNNs gives rise to
many problems, the most important ones being the speed of convergence and the
vanishing or exploding gradients that get in the way of the training. It is therefore
crucial to address these issues by specifically tuning the DNN and the training set
to avoid such drawbacks.

Data preprocessing Data preprocessing is an important part of the pre-training
phase in the DNN construction. There are two principal ways of preprocessing, each
one attacking a different problem that might arise during training.

The first preprocessing technique is referred to as per-sample feature normaliza-
tion and it results in reducing the variability in the final features presented to the
DNN. This is desired since we want to drop any variation that is not important
to the final decision made by the model, and would otherwise add extra difficulties
both at the output stage as well as during training, because the network would try
to learn too much redundant information. For example, in image recognition, it is
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desired to reduce the variability introduced by the brightness, or in speech recogni-
tion we want to avoid acoustic channel distortions. In this last case we can achieve
our goal by calculating the per-utterance mean for each feature and subtracting it
from all frames in the utterance (cepstral mean normalization).

The second preprocessing technique is the global feature standardization, and
it aims to scale the data along each dimension with a global transformation so
that the final data vectors lie in a similar range of numerical values. The global
transformation is estimated from the training data and is then applied to both
training and test sets. Global feature standardization will improve performance in
later steps of the training process. As far as DNN training is concerned, it allows
us to use the same learning rate across all weight dimensions and still achieve good
performance.

A common global transformation in speech recognition is to standardize each
dimension of the feature vector to have zero mean and unit variance. If we use
MFCC vectors without standardization, the energy component will dominate the
learning procedure, since its values are much greater than the rest of the coefficients.

Initialization of model parameters The back-propagation algorithm starts
with a set of initial network parameters. Since the DNN is highly non-linear and the
training criterion with respect to the model parameters is non-convex, initialization
of the model parameters can greatly affect the end model. There are many sugges-
tions for the initialization of a DNN, all of which are based on two assumptions.

First, the weights should be initialized so that each neuron operates in the linear
range of the activation function (e.g. sigmoid) at the start of the learning. If the
weights were very large, neurons would saturate, i.e. take an extreme value (close to
zero or one in the case of a sigmoid function) leading to vanishing gradients. This
becomes evident in the case of the sigmoid as we can observe from its derivative:

σ′(zlt) = (1− σ(zlt))σ(zlt) = (1− vlt)vlt

On the contrary, if the neurons operate in the linear range, the gradients are large
enough and learning can proceed smoothly. It is important to point out that the
excitation vector depends on both the weights and the input values. If we have stan-
dardized the input values in the preprocessing stage, then the weight initialization
can become easier.

Second, the weights should be initialized at random. Since neurons in DNNs are
symmetric and interchangeable, random initialization serves the purpose of symme-
try breaking. If all neurons were initialized with the same values then they would
have the same output thus detect the same patterns in the lower layers.

Bengio et. al. ([GB10]) have suggested that the weight values should be uni-
formly sampled from an interval depending on the activation function. For the
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sigmoid function they suggested the interval[
− 4

√
6

fanin + fanout
, 4

√
6

fanin + fanout

]
where fanin is the number of units in the (i − 1)th layer and fanout is the number
of units in the ith layer. This approach is based on the idea that neurons with more
inputs should have smaller weights ([Ben12]).

LeCun et. al. ([LBOM98]) suggested to draw the initial weight values for layer
l from a zero-mean Gaussian distribution with standard deviation σW l+1 = 1√

Nl
,

where Nl is the number of connections feeding into the node.
When it comes to speech recognition applications, usually each DNN layer has

1000-2000 neurons and initializing the weights either from a Gaussian distribution
N (w; 0, 0.05) or from a uniform distribution in the range of [-0.05, 0.05] we can
achieve good results.

As far as the bias vectors bl are concerned, they can be initialized to zero.
Regularization Taking into consideration the huge number of parameters in a

DNN it is easy to understand the risk of overfitting the model to the training data.
Overfitting occurs because although we aim to minimize the expected loss, we ac-
tually minimize the empirical loss defined on the training set. To control overfitting
we try to affect the model parameters through the training function so that they
do not fit the training data too well. This process is known as regularization or
weight decay. Regularization aims to help the model learn patterns often seen in
the training data yet not learn every noise peculiarity present in the training set
([Nie15]).

The most common forms of regularization are based on the L1 and L2 norms
respectively:

R1(W ) = ‖vec(W )‖1 =
L∑
l=1

‖vec(W l)‖1

R2(W ) = ‖vec(W )‖2
2 =

L∑
l=1

‖vec(W l)‖2
2

Including the regularization terms the training criterion becomes

JR(W , b;Strain) = J(W , b;Strain) + λR(W )

where λ is an interpolation weight called regularization weight. Regularization is
particularly helpful when the training set size is small compared to the number of
parameters of the DNN. For DNNs used in speech recognition, there are usually
millions of parameters in the model and the regularization weight should be small
(≈ 10−4) or zero when the training set is large.



5.2 Constructing DNNs: the Multilayer Perceptron 81

In Bayesian context, the regularization term is the negative log-prior −logP (θ)

on the parameters θ. Adding the regularization term makes the training criterion
correspond to the negative joint likelihood of training data and parameters

−logP (data, θ) = −logP (data|θ)− logP (θ)

with the loss function L(z, θ) being interpreted as −logP (z|θ) and −logP (data|θ) =

−
T∑
t=1

L(zt, θ), where zt, t = 1, ..., T are the training data. In case we are training our

model with a stochastic gradient based method, as is usually the case, we want to
use an unbiased estimation of the gradient of the total training criterion including
both the loss function and the regularization term. In a mini-batch or online learning
approach it is not trivial to include the regularization in the above sum, since it is
different from the sum of the loss function on all examples and the regularization
term. In these cases, the regularization term should be properly weighted not only
with λ but also with the inverse of the number of updates needed to see all the
training data ([Ben12]).

Another popular regularization method is dropout. The basic idea behind dropout
is to randomly omit a certain percentage (e.g. p = 50%) of the neurons in each hid-
den layer for each presentation of the samples during training. This would mean
that each random combination of the remaining neurons needs to perform well dur-
ing training, which implies that each neuron depends less on other neurons to detect
patterns.

One way to look at dropout is as a technique to add random noise to the training
data, since each neuron takes input from a random collection of the neurons in the
previous layer. Consequently, the excitation value will be different even if the same
input is fed to the DNN. The improvement in generalization comes from the fact
that the capacity of the DNN is reduced since some weights must be dedicated to
removing the noise inserted by dropout.

A different perspective of dropout is as a bagging technique. Bagging refers to
the combination of different classifiers, each one performing better than the rest at
identifying a particular pattern in the data. The resemblance of dropout to bagging
comes from the fact that omitting neurons creates in essence a different layer, thus a
different classifier, during each feed-forward pass. After multiple passes it is as if we
are averaging the outputs of these “different” classifiers to produce the final output
of our model.

It should be noted that regularization affects only the weights and not the biases
of the layers. This is because having a large bias does not make the network as
sensitive to its input as having large weights would.

Batch size The term batch size refers to the number of samples we observe
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before we make an update to the model parameters. This number will affect the
convergence speed as well as the end model.

The simplest choice of batch size is the whole training set. This approach, also
known as batch training, has several advantages: it has good convergence properties,
there are many techniques that can speed it up like conjugate gradient ([HS52]) and
L-BFGS ([LN89]) and it allows for easy parallelization. On the other hand, seeing
the whole dataset before a parameter update, is prohibitive for large datasets, which
are often met in speech processing tasks.

Another approach to setting the batch size is to set it equal to one. In this
approach, commonly referred to as stochastic gradient descent (SGD) or online
learning, we update the model parameters after seeing just a single sample from the
training set. If the sample is independently and identically distributed, it can be
shown that the gradient of the training criterion estimated from it is an unbiased
estimation of the gradient on the whole training set, despite the fact that it is
noisy. This noise is the advantage of the SGD over the batch training approach.
Since deep neural networks are highly non-linear and non-convex, the loss function
contains many local minima, many of which are poor. Batch learning will converge
to the minimum of whatever basin the initial model parameters are in and therefore
it makes the model highly dependent on its initialization. On the other hand, the
noise present in the gradient estimation of the SGD approach can help the algorithm
move away from a poor local minimum and go closer to a better one. This property
is reminiscent of simulated annealing, which allows the model parameters to move
in a direction locally poorer but globally better ([KGV83]).

Moreover, SGD often converges much faster than batch learning, especially in
large datasets. This is because first, it does not waste time in redundant samples
in the dataset as batch learning does, and second because in each update the new
gradient is estimated based on the new model rather than the old. This means that
SGD moves faster towards the best model.

However, SGD cannot be easily parallelized and it will fluctuate around the
local minimum due to the noise present in the gradient estimation, without fully
converging to it. This fluctuation though can be sometimes useful, as it reduces
overfitting.

The third approach to batch size is to set it to a number, usually small, between
one and the training set size. This approach, called minibatch training, estimates
the gradient based on a small number (a mini-batch) of randomly drawn training
samples. It must be noted that drawing the samples at random is crucial to the
minibatch and the SGD approaches to training.

Similar to SGD, the minibatch-estimated gradient is also unbiased, yet the vari-
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ance of the estimation is smaller than that in the SGD algorithm. Furthermore,
we can easily parallelize the computations within the minibatch, which makes this
approach converge faster than SGD.

Care should be taken as to how to choose the appropriate minibatch size, yet
fortunately it can be chosen independently of the rest of the learning parameters. It
can be determined automatically considering the variance of the gradient estimation,
or it can be empirically determined by searching on a small subset of samples in each
epoch. As far as speech recognition tasks are concerned, a minibatch size of 64-256
is good for the early stages of the training, which can be expanded to 1024-8096 in
later stages.

Momentum In neural network training adding a momentum term to the update
of the model parameters is known to improve the speed of convergence. This is due
to the fact that the parameters’ updates will be based on all the previous gradients
instead of only the current one and the oscillation problems commonly seen in the
back-propagation algorithm will be reduced.

Learning rate and stopping criterion One of the most difficult to choose
parameters in DNN training, yet maybe the most crucial, is the learning rate, as
it can determine whether the training will convergence to an optimum, as well as
how fast it will convergence. Most learning rate strategies choose an appropriate
initial learning rate and modify it during training. The modifications are based on
a strategy usually defined empirically.

A common practice to determine the initial optimal learning rate is to set it to
the largest value that does not make the training criterion diverge. Consequently,
one can start with a large value, observe the development of the training criterion
and if it diverges, try setting the learning rate to a value three times smaller than
the initial and proceed likewise until there is no divergence ([Ben12]).

In the case of batch learning, an empirical suggestion for a learning strategy is to
decrease the learning rate when the weight vectors oscillate and increase it when the
weights follow a relatively steady course. However, this approach cannot be applied
to SGD learning since the weights continuously fluctuate ([LBOM98]).

It has been proven that when the learning rate is set to

ε =
c

t

where t is the number of samples seen by the network and c is a constant, or generally

εt =
ε0τ

max(t, τ)

which maintains a constant learning rate for the first τ steps and then decreases it
in O(1

t
), SGD converges asymptotically, although convergence will be slow since ε

will quickly become too small ([YD14],[LBOM98]).
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Network Architecture Network architecture, meaning the number of hidden
layers and the number of neurons in each layer, is an important model parameter
that can affect the computational complexity and consequently the training speed,
as well as the performance of the end model itself.

Each layer in the network works in essence as a feature extractor of the previous
layer. Consequently, one must make sure that the number of neurons in it is large
enough to capture the patterns of interest of the input vector. This becomes espe-
cially important in the case of the lower layers, since lower layer features are more
variable, and more neurons are required to model the hidden patterns. However,
having too many neurons encloses the danger of overfitting. As a rule of thumb, the
wide, shallow networks are easier to overfit whereas the narrow, deep networks are
easier to underfit to the training data.

Taking these into consideration, it is often the case that a different number of
neurons is used in each layer, with wide layers with many neurons being placed close
to the network input and narrow layers with less neurons being placed close to the
output. If however all layers have the same number of neurons, simply adding more
layers in some cases might cause the network to underfit since the extra layers add
extra constraints to the model parameters.

On the other hand, Bengio ([Ben12]) reports that networks using same-size layers
perform better or the same as using decreasing or increasing size layers. He mentions
though, that this could depend on the data used.

Regarding speech recognition tasks, it has been found that 5-7 layer DNNs with
1000-3000 neurons per layer work best.

5.3 Pretraining

Considering the above discussion and the difficulties in DNN training, it must
have already been clear that the initialization of the model parameters is of utmost
importance to the performance of the network. We will now briefly examine some
pretraining techniques which aim at properly initializing a DNN to facilitate training
and improve performance.

Generative pretraining

The idea of generative pretraining stems from the fact that generative models,
i.e. models that randomly generate observable data values, are able to identify more
complex relationships between data and target labels than discriminative models.
Before describing this pretraining method it makes sense to introduce the generative
models that it is based on.
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Energy-based models [Ben09] Energy-based models are models that base their
learning procedure on the idea of the energy function. The energy function is a scalar
function of each configuration of the variables of interest in our model. Such models
learn by modifying the shape of the energy function so that desirable configurations
of their variables have a low energy value.

The probability distribution of energy-based models assumes the following form:

P (x) =
e−Energy(x)

Z

where Z, called the partition function, is

Z =
∑
x

e−Energy(x)

If the energy function is a sum of functions fi

Energy(x) =
∑
i

fi(x)

then the probability distribution becomes

P (x) ∝
∏
i

Pi(x)
∏
i

e−fi(x)

In that case, if we assume that fi is an “expert” imposing a constraint on x, then
P (x) is a “product of experts” and all fi form a distributed representation of the
configuration space, where more than one expert can contribute to each region in
space. In contrast, if a different energy form leads to a weighted sum of experts,
i.e. P (x) is a “mixture of experts”, then the experts do not create a distributed
representation of the configuration space, since belonging to a region excludes all the
rest. Distributed representations of data, are representations of the observed data in
such a form that they appear as a combination of different basic features ([DY14]).
Such representations provide robustness in representing the internal structure of
data and are capable to generalize concepts and relations.

In case there are unobservable components in our data, or we want to introduce
hidden components in order to enhance the expressive power of the model, we can
insert a hidden part h in the energy function. The probability distribution then
becomes

P (v, h) =
e−Energy(v,h)

Z

where
Z =

∑
v,h

e−Energy(v,h)
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and

P (v) =
∑
h

e−Energy(v,h)

Z

where v is the visible component of the data. If we define the quantity of ‘free
energy’ as

Fe(v) = −log(
∑
h

e−Energy(v,h))

then the probability distribution function of the visible part of the data takes the
form of an energy-based model p.d.f. without latent components:

P (v) =
e−Fe(v)

Z

and
Z =

∑
v

e−Fe(v)

Boltzmann Machines A Boltzmann Machine is a network of symmetrically
connected units that make stochastic decisions about whether to be on or off ([DY14]).

The energy function in a Boltzmann Machine is a general second-order polyno-
mial:

Energy(v,h) = −a′v − b′h− h′Wv − v′Dv − h′Rh

where the offsets ai, bi, each associated with a single element of vector v or h, and
the weight matrices W ,D,R, each associated with a pair of units are the model
parameters ([DY14],[Ben09]).

Restricted Boltzmann Machines A special type of Boltzmann Machine is the
Restricted Boltzmann Machine (RBM ). It is an undirected graphical model built by
a layer of stochastic visible neurons and a layer of stochastic hidden neurons, which
together form a bipartite graph with no visible-visible or hidden-hidden connections
(figure 5.4).

The energy function of the RBM has the same form of the energy of a Boltzmann
Machine, only now, given the special architecture of the RBM, D = R = 0.

For the Bernoulli-Bernoulli RBM, in which v ∈ {0, 1}Nv×1 and h ∈ {0, 1}Nh×1

the energy is
E(v,h) = −aTv − bTh− hTWv

where Nv, Nh are the number of visible and hidden neurons respectively, W ∈
RNh×Nv is the weight matrix connecting visible and hidden neurons and a ∈ RNv×1, b ∈
RNh×1 are the bias vectors for the visible and hidden layers respectively.

If the visible neurons take real values, i.e. v ∈ RNv×1, the RBM is called
Gaussian-Bernoulli RBM and its energy function is

E(v,h) = −1

2
(v − a)T (v − a)− bTh− hTWv
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Figure 5.4: An example of a Restricted Boltzmann Machine [YD14]

Since the RBM is an energy model, each configuration of its units (v,h) is associated
with a probability

P (v, h) =
e−E(v,h)

Z
where

Z =
∑
v,h

e−E(v,h)

Because there are no connections between units of the same layer the posterior
probabilities P (v|h) and P (h|v) can be efficiently computed. For the Bernoulli-
Bernoulli RBM we can easily arrive at the expression for the posterior

P (h|v) =
∏
i

ebihi+hiW i,∗v∑̄
hi

ebih̄i+h̄iW i,∗v
=
∏
i

P (hi|v)

whereW i,∗ is the ith row ofW . The above expression reveals that the hidden units
are conditionally independent given the visible vector. Since hi ∈ {0, 1}

P (h = 1|v) = σ(Wv + b)

where σ(·) is the element-wise logistic sigmoid function, and for the binary visible
neurons we symmetrically obtain

P (v = 1|h) = σ(W Th+ a)

In the case of the Gaussian-Bernoulli RBM, P (h = 1|v) is the same as above and

P (v|h) = N (v;W Th+ a, I)

where I is the identity covariance matrix.
At this point it is important to note that the posterior probability of the hidden

units given the visible, independently of the input values, has the same form as the
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Figure 5.5: Marginal probability density function of a Gaussian-Bernoulli RBM
[YD14]

activation function of the deep multilayer perceptron (DNN) with sigmoidal hidden
units. This is where the idea of generative pretraining is based, since we can equate
the inference for RBM hidden units with forward computation in a DNN and use the
weights of an RBM to initialize a feed-forward DNN with sigmoidal hidden units.

Using the free energy defined earlier we can express the marginal probability
P (v) as

P (v) =
∑
h

P (v,h) =
e−F (v)∑
v

e−F (v)

For a Gaussian-Bernoulli RBM with no hidden neurons, the marginal probability
density function is

p0(v) =
e−

1
2

(v−a)T (v−a)

Z0

which is a unit-variance Gaussian distribution centered at vector a (figure 5.5, part
(a)).

It is easy to show ([YD14]) that when a new hidden neuron is added and the rest
of the model parameters are fixed, the initial distribution is scaled and a copy of it
is placed along the direction determined by W n,∗ (figure 5.5, parts (b)-(d)). This
means that RBMs represent their visible inputs as a Gaussian Mixture Model with
an exponential number of unit-variance Gaussians. Consequently, RBMs can be
used in generative models replacing GMMs, since for instance, a Gaussian-Bernoulli
RBM can represent real-valued data distributions in a similar way to GMMs.

Another useful property of RBMs is that if we present the training data to the
network, it can learn the correlation between different features, i.e. represent inter-
visible connections though the hidden neurons they connect to. However, this also
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implies that the hidden layers can be used to learn a different representation of the
raw input.

When it comes to learning the RBM parameters, one can perform stochastic
gradient descent using as training criterion the minimization of the negative log-
likelihood:

JNLL(W ,a, b;v) = −logP (v) = F (v) + log
∑
v

eF (v)

However, the computation of the gradient of the log-likelihood of the data is infea-
sible to compute exactly:

∇θJNLL(W ,a, b;v) = −
[〈∂E(v,h)

∂θ

〉
data
−
〈∂E(v,h)

∂θ

〉
model

]
where θ is some model parameter and 〈·〉data and 〈·〉model are the expectation of
the argument estimated from the training data and the model respectively. The
first expectation 〈·〉data can be computed from the training set, but 〈·〉model takes
exponential time to compute exactly when the hidden values are unknown. Con-
sequently, we have to use approximated methods for RBM training, with the most
widely used being the Contrastive Divergence learning algorithm ([Hin02]).

The Contrastive Divergence algorithm aims to approximate the gradient of the
training criterion locally, i.e. around a training point. Its goal is to discover a
decision surface to separate high- from low-probability regions by comparing training
samples and samples generated by the model. The term ‘contrastive’ comes exactly
from the fact that it builds on the contrast between these two classes of samples.

The algorithm starts by initializing a sampling process (Gibbs sampling) at a
training data sample. It then generates a hidden sample from the visible sample
based on the posterior probability P (h|v), defined according to the RBMmodel used
(Gaussian-Bernoulli or Bernoulli-Bernoulli). This hidden sample is further used to
generate a visible sample based on the posterior probability P (v|h). This process
may continue for many steps. If it continues for an infinite number of steps the true
expectation 〈·〉model can be estimated. However, it has been found that even one
step of the algorithm is enough to provide us with a good estimate of 〈·〉model and
consequently of the gradient of the training criterion ([Hin12]).

Deep Belief Networks We can view an RBM as a generative model with
infinite number of layers all of which share the same weight matrix (figure 5.7, parts
(a)-(b)).

If we separate the bottom layer from the deep model of figure 5.7(b) the re-
maining layers form another generative model with infinite number of layers sharing
the same weight matrices, i.e. they are equivalent to another RBM whose visible
layer and hidden layer are switched (figure 5.7, part (c)). This model is a special
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Figure 5.6: Contrastive Divergence algorithm for RBM training [YD14]

Figure 5.7: Different perspectives of the same RBM [YD14]
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generative model called Deep Belief Network (DBN ), where the bottom layers form
a directed generative model and the top layer is an undirected RBM. Thinking in
the same way we can derive the equivalent model shown in figure 5.7(d).

Because the DBN is related closely to the RBM, we can apply a layer-wise process
to train deep generative models. We start by training an RBM, which, after the
training, can discover a different representation of the feature vectors. Hence, for
each vector v we compute a vector of expected hidden neuron activations h. These
hidden expectations can be fed to a new RBM as training data. Continuing in this
way we can use each set of RBM weights to extract features from the output of the
previous layer. When we do not need to train more RBMs, we can use their weight
matrices to initialize the hidden layers of a DBN with as many hidden layers as the
RBMs we have trained. The final DBN can be further fine-tuned.

This procedure can be used to stack RBMs with different or the same number of
dimensions which allows us to improve the flexibility and performance of the DBN.

Weight initialization of a DNN The DBN weights can be used to initialize
the weights of a sigmoidal DNN. This is due to the fact that P (h|v) in the RBM has
the same form as that in the DNN provided the layers use the sigmoidal activation
function. The DNN can be viewed as a statistical graphical model where each hidden
layer 0 < l < L models posterior probabilities of conditionally independent hidden
binary neurons hl given input vectors vl−1 as Bernoulli distribution

P (hl|vl−1) = σ(zl) = σ(W lvl−1 + bl)

and the output layer approximates the label y as

P (y|vL−1) = softmax(zL) = softmax(W LvL−1 + bL)

Given the observation vector o and its label y, the precise modeling of P (y|o)

with an RBM requires integration over all possible values of h across all layers.
However, because this is infeasible, we replace the marginalization with the mean-
field approximation:

vl = E(hl|vl−1) = P (hl|vl−1) = σ(W lvl−1 + bl)

which is the non-stochastic description of the DNN previously presented.
Weight initialization via generative pretraining can improve the DNN perfor-

mance on the test set. This is due to three main reasons. First, the initial point of
the learning algorithm can greatly affect the end model, especially in batch train-
ing. Second, since we only need labels for the fine-tuning part of the training, we
can utilize a large amount of unlabeled data, which would be useless without pre-
training. Third, the generative criterion used in pretraining is different from the



92 Chapter 5. Deep Neural Networks

discriminative criterion used in fine-tuning, which means that pretraining can act
as a data-dependent regularizer.

Bengio in [Ben09] debates whether unsupervised (generative) pretraining has in
principle a regularization or optimization effect.

Given that generative pretraining is equivalent to imposing a constraint on where
in the parameter space a solution is allowed, i.e. near solutions of the unsupervised
training criterion that capture important statistical structure in the data, it can
be seen as a form of regularization. Furthermore, generative pretraining plays a
more important role in the initialization of the lower layers. Experiments have
shown that when there are no constraints on the number of hidden neurons at the
top two layers of the network, the representation computed by the lower layers is
unimportant: the network can still be trained to minimize the training error as much
as desired - despite the fact that it may generalize poorly. However, if we have to
use smaller top layers, then pretraining of the lower layers becomes necessary to get
a low training error and better generalization.

The optimization perspective of unsupervised pretraining requires to focus on
tuning the lower layers while the top two layers are kept small in terms of the
number of neurons or of the magnitude of their weights. Bengio suggests that if
unsupervised pretraining worked purely as a regularizer, then if we had an infinite
stream of training data and performed online learning - in which case we would
in essence minimize the generalization error - then with or without pretraining the
error would converge to the same level. However, after emulating such a setting, he
discovered that the pretrained network achieved a lower minimum, which suggests
that there is an optimization component in generative pretraining.

In any case, there has been no evidence so far of generative pretraining hurting
the DNN training.

Judging by literature references, generative pretraining is highly dependent on
the task. It also works best with two hidden layers and is of trivial importance when
the network has only one hidden layer. However, the more hidden layers we add, the
more the effectiveness of the network decreases, since modeling errors introduced by
the mean-field approximation and the contrastive divergence algorithm accumulate
([YD14]).

Discriminative pretraining

A different, “incremental”, approach to pretraining is to discriminatively train
each layer using back-propagation. Pretraining begins by training a one-hidden-
layer network to convergence, using labels. Then, we insert another hidden layer
before the output layer, randomly initialized, and retrain the whole network to
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Figure 5.8: Discriminative pretraining [YD14].

convergence. We continue in the same way until the network reaches the desired
number of hidden layers (figure 5.8)

It is important to note that all hidden layers are updated during training and
not only the layer added last. Because of this, if we are planning to add more hidden
layers, the network should not be trained to full convergence, to avoid having some
hidden neurons operating in the saturation region and thus being unable to further
update. A common heuristic is to go through the training set 1

L
times of the total

number of the data passes needed to convergence, where L is total number of layers
in the final model.

Discriminative pretraining aims to bring the weights close to a good local opti-
mum and it does not have the regularization effect of generative pretraining. There-
fore, it is best used when large amounts of training data are available.

Hybrid pretraining

Both pretraining techniques presented work well, however they both have some
drawbacks.

Generative pretraining is not directly related to the task-specific objective func-
tion, hence it is not guaranteed to help the discriminative fine-tuning phase. How-
ever, it does help to reduce overfitting. On the other hand, discriminative pretraining
minimizes the training criterion, yet it entails the danger of over-tuning the lower
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layers to the final objective thus making them unable to learn when new hidden
layers are added.

To tackle these issues, it has been suggested to optimize a weighed sum of the
generative and discriminative pretraining criteria. We thus have a hybrid criterion
to optimize:

JHY B(W , b;Dtrain) = JDISC(W , b;Dtrain) + αJGEN(W , b;Dtrain)

The discriminative criterion can be cross-entropy or mean-square error whereas the
generative can be negative log-likelihood for RBMs. Intuitively, the generative cri-
terion acts as a data-dependent regularizer for the discriminative.

Hybrid pretraining can outperform both the generative and the discriminative
pretraining approaches. Despite the fact the the importance of pretraining dimin-
ishes as the amount of training data increases, pretraining can still help to make the
training procedure more robust.

Dropout pretraining

We have already seen that dropout can be considered a bagging technique, thus
generate a smoother objective surface. This implies that dropout could be used
to pretrain a DNN to easily find a good starting point on the smoothed objective
surface and then fine-tune the model without dropout.

Dropout requires labeled data and achieves similar performance to the discrimi-
native pretraining, as well as being easier to implement and control.

5.4 Recurrent Neural Networks

[YD14]
Research in ASR has been working towards building models that can adequately

emulate the human speech production and perception system. However, as we have
seen, GMM/HMMmodels fail to model the dynamic and hierarchical structure of the
human speech system and DNN/HMM models exhibit the same type of limitations.
A Recurrent Neural Network (RNN ) is a class of neural network models where many
connections among its neurons form a directed cycle (hence the name recurrent),
thus providing the network with a structure of internal states, or memory, which
helps it exhibit a dynamic temporal behavior missing from the DNN.

The internal representation of dynamic speech features in the RNN is discrim-
inatively formed by feeding the low-level features into the hidden layers, together
with the hidden features from the past history. The RNN implements a time-delay
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operation over the temporal dimension which allows its internal states to function
as memory and the network to exhibit a dynamic temporal behavior.

RNNs are considered deep models since, if we unfold the network in time, we will
create as many layers in the network as the length of the input speech utterance.

In this section we will present the fundamental RNN model and the two basic
ways to train it, as well as a model which has received a lot of attention recently,
the Long-Short-Term Memory.

5.4.1 State-Space formulation of the basic RNN

The RNN differs from the DNN in that it operates not only on its inputs but
also on its internal states, which encode the past information that has already been
processed.

We will express the one-hidden layer RNN in terms of the noise-free nonlinear
state-space model often used in signal processing, which will enable the learning of
sequentially extended dependencies over a long time span. If xt is the K × 1 input
vector, ht is the N × 1 vector of hidden state values and yt is the L × 1 output
vector, the one-hidden layer RNN can be described as

ht = f(W xhxt +W hhht−1) (state equation)

yt = g(W hyht) (observation equation)

where W hy is the L × N weight matrix connecting the N hidden units to the L
outputs,W xh is the N ×K weight matrix connecting the K inputs to the N hidden
units, and W hh is the N × N weight matrix connecting the N hidden units from
time t− 1 to time t.

Let us further define
ut = W xhxt +W hhht−1

as the N × 1 vector of hidden layer potentials and

vt = W hyht

as the L× 1 vector of output layer potentials.
Then, f(ut) is the hidden layer activation function and g(vt) is the output layer

activation function. Commonly used activation functions in the hidden layers are
the sigmoid, tanh and rectified linear units (ReLU), whereas typical output layer
activation functions are the linear and softmax functions.

In case we want to use the output from previous time frames to update the state
vector the state equation becomes

ht = f(W xhxt +W hhht−1 +W yhyt−1)

where W yh is the weight matrix connecting the output layer to the hidden layer.
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Figure 5.9: Backpropagation-through-time [YD14]

5.4.2 Training

Back-propagation-through-time algorithm

The back-propagation-through-time (BPTT ) method ([Bod01]) manages to learn
the weight matrices of the RNN by first unfolding the network in time and then
propagating errors backwards through time. The algorithm is an extension of the
original back-propagation algorithm for feed-forward neural networks, yet now the
stacked hidden layers for the same training frame t have been replaced by the T
same single hidden layers across time t = 1, 2, ..., T .

The training criterion of the BPTT algorithm is the sum-square error

E =
1

2

T∑
t=1

‖lt − yt‖2

where lt is the target vector and yt is the output vector over all time frames. Our
goal is to minimize this cost with respect to the weights and for that we will use the
gradient descent rule. The algorithm is presented in figure 5.9.

It should be noted that contrary to the DNN backpropagation algorithm, the
RNN weight matrices are spatially duplicated for an arbitrary number of time steps,
i.e. they are tied. That is the reason why in the update step of the algorithm we
sum over all time frames.

The computational complexity of the BPTT is O(M2) per time step, where
M = LN + NK + N2 is the total number of the model parameters. It converges
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slower than the original back-propagation algorithm due to dependencies between
frames, and is highly likely to converge to a poor local optimum due to exploding or
vanishing gradients. Although we can limit the past history to the last p time steps
and thus improve speed, it is still difficult to achieve good results without much
experimentation and tuning.

Primal-dual learning algorithm

The problems of the back-propagation algorithm in conjunction with gradient
computation are even more evident in the case of RNNs. Learning RNNs is particu-
larly difficult because of the exploding (too big) and vanishing (too small) gradients.

A sufficient condition for vanishing gradients to occur is ‖W hh‖ < d, where d
is a constant dependent on the activation function of the hidden units (d = 4 for
sigmoidal units and d = 1 for linear) and ‖W hh‖ is the largest singular value of the
weight matrix W hh.

Similarly, a necessary condition for exploding gradients is ‖W hh‖ > d.
Therefore, in order to effectively learn an RNN, we have to impose certain con-

straints on the weight matrix ‖W hh‖ > d. For example, to avoid vanishing gradients,
we could add a regularization term to increase the gradient or exploit curvature-
related information about the regularization function; to avoid exploding gradients
we could clip the gradient at an empirically-determined threshold.

A more rigorous approach to RNN learning would be to directly exploit the
conditions described above regarding W hh, and this is the focus of the primal-dual
algorithm for training RNNs. This algorithm tries to preserve the echo state property
which is closely related to the previous constraints and states that if the network has
been run for a very long time, the current network state is uniquely determined by
the history of the input and the teacher-forced output. Mathematically, a sufficient
condition for the network to satisfy the echo state property is

‖W hh‖∞ < d

where ‖W hh‖∞ is the maximum absolute sum of W hh, d = 4 for sigmoidal units
and d = 1 for hyperbolic tangent units.

Given that we want to preserve the echo state property, RNN learning can be
formulated as a constraint optimization problem:

min
Θ
E(Θ) = min

Θ
E(W hh,W xh,W hy)

subject to
‖W hh‖∞ ≤ d
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The Lagrangian of this problem can be formulated as:

L(Θ,λ) = E(W hh,W xh,W hy) +
N∑
i=1

λi

( N∑
j=1

|Wij| − d
)

where λi ≥ 0 is the ith entry of the Lagrange vector λ.
Then, the dual function q(λ) is the solution to the following unconstrained opti-

mization problem

q(λ) = min
Θ
L(Θ, λ)

and is a lower bound of the original constrained optimization problem, i.e.

q(λ) ≤ E(Θ∗)

Maximizing q(λ) will be the best lower bound that can be obtained for E(Θ). This
is called the dual problem of the original optimization problem:

max
λ

q(λ), λi ≥ 0, i = 1, ..., N

and is a convex optimization problem since we aim to maximize a concave objective
with linear equality constraints.

Having solved the dual problem for λ∗ we substitute the optimal dual variables
into the Lagrangian and solve for the set of parameters Θ that minimize L(Θ, λ∗):

Θ0 = argmin
Θ

L(Θ, λ∗)

This solution will be an approximation to an optimal solution to the original con-
strained optimization problem. However, in general non-convex problems where
acquiring a globally optimal solution is infeasible, this approximation will be good
enough.

Following the two-stepped solution, the updates of the RNN parameters happen
in two steps:

• primal update: minimize L(Θ, λ∗) w.r.t. Θ

• dual update: maximize L(Θ∗, λ) w.r.t. λ

The standard gradient descent algorithm can be applied to the update rules with
some improvements being possible due to the structure in the objective function.
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5.4.3 RNNs with Long-Short-Term Memory cells

Motivation

The basic RNN presented so far does not have the necessary structure to model
complex temporal dynamics and is thus incapable of looking far back into the past
in many types of input sequences.

One way to solve this problem is to introduce a memory structure into the RNN
which leads to the incorporation of long-short-term memory cells (LSTM)([HS97]).
Due to its structure, the LSTM-RNN can recognize temporally extended patterns in
noisy input sequences and temporal order of widely separated events in noisy input
streams. Like the basic RNN, the LSTM-RNN is a universal computing machine,
provided it has enough network units and receives proper training, and, in addition,
it can learn from input sequence data to classify, process and predict time series
with very long time lags of unknown lengths between important events.

The LSTM-RNN has been shown to perform very well in handwriting and phone
recognition, keyword spotting, reinforcement learning for robot localization and con-
trol, online learning for protein structure prediction, learning music composition and
grammars, language identification, speech synthesis and environment-robust speech
recognition.

Architecture of LSTM cells

The basic notion behind LSTM cells in the RNN is to use various types of
element-wise multiplication (or gating) structure to control the information flow in
the network. Such a cell can be viewed as a complex and smart network unit able to
remember information for a long time. This is the job of the gating structure which
is in charge of determining when the input is important enough to remember, when
the cell should continue to remember or forget the information and when it should
output the information.

An LSTM cell is mathematically described by the following forward operations
iteratively over time t = 1, 2, ..., T :

it = σ
(
W (xi)xt +W (hi)ht−1 +W (ci)ct−1 + b(i)

)
f t = σ

(
W (xf)xt +W (hf)ht−1 +W (cf)ct−1 + b(f)

)
ct = f t • ct−1 + it • tanh

(
W (xc)xt +W (hc)ht−1 + b(c)

)
ot = σ

(
W (xo)xt +W (ho)ht−1 +W (co)ct + b(o)

)
ht = ot • tanh(ct)
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where it, f t, ct, ot and ht are vectors, all with the same dimensionality, which
represent five different types of information at time t of the input gate, forget gate,
cell activation, output gate and hidden layer respectively; σ(·) is the logistic sigmoid
function, W ’s are the weight matrices connecting different gates and b’s are the
corresponding bias vectors. The weight matrices are full except for W (ci) that is
diagonal. In addition to the above set, an additional output layer has to be provided
on top of the LSTM-RNN’s hidden layer.

Training

The Back-Propagation-Through-Time algorithm introduced for RNN training
can be also used in the case of LSTM-RNNs in order to compute error derivatives
(although the computation is more complex) and then apply stochastic gradient
descent methods to update the weight parameters.

However, the problems of vanishing and exploding gradients encountered in RNN
training are less evident here. This is because the error signals back-propagated
from the output become trapped in the memory part of the LSTM cells. In this
way, meaningful error signals are constantly fed back to each of the gates until the
RNN parameters are well trained.



Chapter 6

Manifold regularized deep neural
networks in ASR

This chapter covers the process followed to develop an acoustic model using
deep neural networks and incorporate a manifold regularization component in the
objective function. The term ‘regularization’ is used to denote the imposition of
manifold-related constraints on the model’s parameters. What the term actually
contributes towards is the smoothing of the parameter space in a way that aids
discrimination between phonetic classes.

It starts by describing the preparatory work that had to be done before proceed-
ing to use the deep network architecture, then it moves on to the incorporation of
the DNN in the ASR system and the manifold term in the DNN as described in
[TR14b], and finally it presents the experimental results acquired with the above
systems.

6.1 Preparatory work

6.1.1 DNN in acoustic modeling

There are two main ways in which we can use deep neural networks in acoustic
modeling [YD14]:

• a hybrid approach, where we directly compute the observation probability
used in the Hidden Markov Model of a previously trained GMM-HMM auto-
matic speech recognition system, i.e. compute the posterior probability of the
HMM’s state given the acoustic observation

• a tandem approach, where we extract a representation of the training features
from one of the DNN’s layers and feed it to a GMM-HMM system

101
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Hybrid approach

The DNN-HMM system that is the outcome of the hybrid approach combines
the strength of the DNN, that is, its representational power, with the benefit of the
HMM: its sequential modeling ability.

As we have already seen, the combined use of neural networks and HMMs started
between the end of the 1980s and the beginning of the 1990s, however, they were
only applied to small vocabulary tasks. Research in the area resurrected again after
DNNs exhibited their strong representational power and such systems performed
well in large vocabulary continuous speech recognition applications.

In these combined systems the dynamics of the speech signal are modeled with
the HMMs and the observation probabilities are estimated through the deep network:
each output neuron is trained to estimate the posterior probability of a continuous
density HMMs’ state given an acoustic observation. Mathematically the output of
the DNN can be formulated as:

p(qt = s|xt),∀s ∈ [1,S]

where s is the state of the HMM and xt is the input frame of acoustic features.
Although in the first hybrid approaches s were the monophone states, in more
recent systems DNNs directly model senones, i.e. tied triphone states. This has not
only improved performance, but it also comes with two extra benefits: first, a DNN-
HMM system can be built from an existing GMM-HMM requiring only minimal
modifications, and second, any breakthrough in the modeling units of a GMM-
HMM can be easily incorporated in the DNN-HMM system, since the improvement
will reflect directly in the output units.

Given that the HMM requires the likelihood p(xt|qt) instead of the posterior
probability during the decoding process, the DNN output has to be converted as
follows:

p(xt|qt = s) =
p(qt = s|xt)p(xt)

p(s)

where p(s) is the prior probability of each senone estimated from the training set as

p(s) =
Ts
T

with T being the total number of frames, Ts the number of frames labeled as s, and
p(xt) does not affect the decoding, and can be ignored. The contribution of the
prior likelihood is not great to the recognition accuracy but it can be important in
reducing the label bias problem.

Having taken the above into consideration, the ASR problem with a hybrid DNN-
HMM approach can be formulated in the following way, where ŵ is the decoded word
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Figure 6.1: DNN-HMM hybrid approach [YD14]

sequence:

ŵ = argmax
w

p(w|x) = argmax
w

p(x|w)P (w)

P (x)
= argmax

w
p(x|w)P (w)

where P (w) is the language model probability and

p(x|w) =
∑
q

p(x|q, w)p(q|w) ≈ maxπ(q0)
T∏
t=1

aqt−1qt

T∏
t=1

p(qt|xt)
p(qt)

is the acoustic modeling probability. In the equation above p(qt|xt) is computed
by the DNN, p(qt) is the prior estimated from the training set, π(q0) is the initial
state probability and aqt−1qt is the state transition probability, both of which are
determined by the HMM. Similar to traditional GMM/HMM systems, we can also
include a weight λ to balance between the acoustic and language model scores:

ŵ = argmax
w

[log p(x|w) + λ logP (w)]

According to a series of studies on LVCSR DNN-HMM systems, the components
that have contributed the most to the success of such systems are:

• the depth of the neural networks, i.e. the many layers in the architecture. It has
been experimentally verified that deeper models have a stronger discriminative
ability than shallow models. Bengio in his monograph ([Ben09]) mentions
that even though we can achieve the same accuracy by using just a single
wide layer with thousands of units, when there are limitations to the number
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Figure 6.2: WER on Hub5 ’00 - Switchboard, 309h training data. Summarized from
Seidel et al. 2011 [YD14]

of parameters, much better performance can be attained by a deep model.
In figure 6.2 we see that WER decreases as the number of layers increases,
and, even if two networks have the same number of parameters, the deeper
model performs better. However, after a certain number of layers, the network
saturates and performance starts to decrease. Consequently, a trade-off has
to be made between WER improvement on the one hand, and training and
decoding cost on the other.

• the use of a contextual window as input to the network. Since DNNs are able
to capture correlations between neighboring frames and exploit information
included in them, it is crucial to use a window of frames (usually 9-13) as
input to the network. Apart from capturing extra information though, this
also allows us to compensate for the independence assumption made in the
HMMs, which states that each feature frame is independent from the rest.
However, this is in fact untrue since neighboring frames correlate with each
other given the same state.

• the use of senones as target labels. Modeling senones allows the model to
exploit information encoded in the fine-grained labels and reduce overfitting.
Although using senones as targets implies that the number of output nodes will
explode and thus classification accuracy will decrease, decoding performance
is improved since the state transitions that would be prone to confusion are
reduced. According to [YD14], using senone labels as targets has been the
largest source of improvement out of all design decisions.

It is worth mentioning that pretraining is not as critical to train deep networks as
previously thought. It might be beneficial to small networks (less than five layers),
however as the number of layers increases, the benefits diminish.

This is partly due to the fact that stochastic gradient descent can escape from
local optima and consequently a good initialization for the weights is not of the
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utmost importance. In addition, the contrastive divergence algorithm employed in
the pretraining phase introduces modeling errors for each layer, which accumulate
as the number of layers increases and thus hurt the effectiveness of pretraining.

Finally, although pretraining is deemed to contribute to reduce overfitting, its
contribution is not that crucial, provided a huge amount of training data is used.

On the other hand though, even if the improvement in decoding accuracy is small,
pretraining can act as an implicit regularizer on the training data, help towards
achieving a more robust training and avoid bad weights initialization; thus it might
help to achieve good performance with a small training set.

To train a hybrid DNN-HMM system, one first needs to train a conventional
GMM/HMM system, since the hybrid system shares with it the phoneme-tying
structure and the Hidden Markov Model. The latter will be used both for the final
decoding phase and for the provision of the initial training targets. It is therefore
crucial to train a good GMM/HMM system, in order to achieve good performance
with the DNN. For the experiments conducted in the current project, the Kaldi
speech recognition toolkit was used (see appendix B).

Depending on the decoder that will be used, a mapping from states to senones,
which will be the training targets, might have to be build. Having built the GMM/HMM
and the mapping if needed, the Viterbi algorithm is used on the training set to gen-
erate a forced alignment so as to acquire the targets for training. The senone labels
are also used to estimate the priors that will be needed to convert the posteriors
produced by the DNN to likelihoods that will be used by the HMM for the decoding.

Tandem approach

In the tandem approach, a set of features is extracted from the deep neural
network and is then used to train a GMM/HMM ASR system. For the training
stage one can either use only the features extracted from the network, or use them
complementary to traditional features used in ASR, e.g. MFCC or filterbank.

The idea behind the tandem approach lies in the fact that DNNs can take as
input a high-dimensional vector made of many observed correlated variables, and,
after passing it through all their layers of computation, extract a more abstract rep-
resentation of it. Consequently, it is assumed that DNNs can discover the underlying
factors that have lead to the creation of the data in their original form ([Ben09]).
Such models can be seen as combining a non-linear transformation model with a
classification model, thus being able to transform input features into a discrimina-
tive representation that is invariant to factors of variability in speech recognition,
such as different speakers and environmental noise [YSL+13] .

The feature extraction can occur either at the last hidden layer before the clas-
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sification layer, or at the classification layer itself. In the latter case, it is suggested
([YD14]) to use as targets monophone states in order keep the number of dimen-
sions of the new feature vectors to a low enough level. In general, it is common
practice to use a lot less units in the extraction layer, so as to force the network to
compute a more compact representation of the salient information in the features,
yet still highly discriminative. The extraction is usually followed by a dimensional-
ity reduction algorithm, e.g. PCA, in order to keep only the directions of highest
variability.

The idea of extracting a new representation of the features is similar to the
same task using an autoencoder. The difference between that approach and the one
described here using a DNN, is that features coming from an autoencoder are often
not discriminative, contrary to features coming from a DNN which has been trained
to discriminate between phonetic units.

The difficulty of the tandem approach lies in the fact that one cannot know in
advance which layer will produce the best features or how many activation units
that layer should have; one has to experiment extensively in order to determine the
best architecture and extraction layer. At this point it is worth mentioning that in
order for the feature extraction to work, firstly a huge amount of training data is
needed, and secondly, the test data should not deviate largely from the training set
[ESS01].

Comparison of the two approaches

In general, both approaches have equal performance when considered over dif-
ferent tasks. However, the hybrid approach is much easier to implement and train
in practice.

The main difference between the two is in the classifier: the hybrid approach uses
a log-linear classifier, that is, the softmax layer at the output, whereas the tandem
approach uses a GMM, which provides it with the advantage of being able to use
numerous existing methods and tools for training a GMM/HMM ASR system.

6.1.2 Training of GMM/HMM

As mentioned, the GMM/HMM used in this project was trained using the Kaldi
speech recognition toolkit. The dataset we used comprised the 2000 shortest utter-
ances of the Wall Street Journal corpus (see appendix C).

In Kaldi, the GMM/HMM training begins by training a monophone system, that
is, a model that uses a context-independent HMM. The training uses the traditional
39-dimensional MFCC (including energy, deltas and delta-deltas) as input features,
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which have normalized means and variances. During training, we first build the
phonetic decision tree, which, in the monophone case has no splits, and then, using
the tree, we compile the Finite State Transducer for each training utterance (train-
ing graph). The training graph encodes the HMM structure for the utterance it
corresponds to; it includes the source and destination HMM state, the input and
output symbols and the cost of the transition. In Kaldi, output symbols are words
and input symbols are transition-ids, which roughly correspond to arcs in an HMM
(for more details see the description of Kaldi’s transition model in the appendix).
The training continues by producing a first set of equally spaced alignments, which
are refined in the following iterations using the Viterbi algorithm.

For the construction of a triphone condext-dependent system, one could build a
model for every possible combination of three phones; that however would make the
number of HMM models explode, as for 10 phones for instance, 10×10×10 models
would have to be built. Instead, we build a decision tree for each monophone of
the already trained monophone system, by asking questions about the left and right
context of each monophone. The triphones that were seen will correspond to the
leaves of the tree, and we will build an HMM model for each leaf. In order to
accumulate sufficient statistics to train a GMM for each HMM state, we use the
previously trained monophone system to acquire alignments for more data. As
before, training proceeds by building the decision tree, which now maps from a
pair (window of three phones, HMM state) to an integer identifier for a probability
distribution function (pdf-id in Kaldi terminology). The tree is used to initialize the
triphone model and subsequently train it.

6.2 Incorporating the Deep Neural Network

In order to use a deep neural network acoustic model we first have to select
the development environment and language both of the DNN and of the initial
GMM/HMM, which also determines the decoder. As already mentioned, the GMM/HMM
system was trained in Kaldi, which will also be used for the decoding process. As far
as the DNN is concerned, the Python programming language including the Theano
library were used (see appendix D) for its development and training.

The main issues that needed to be dealt with for the training and decoding were:

• the format of input features

• the classification output format

• the output of the trained DNN into a Kaldi-compatible model for decoding
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Table 6.1: PFile format
Sentence Frame Feature Vector Label

0 0 [0.2, 0.3, 0.5, 1.4, 1.8, 2.5] 10
0 1 [1.3, 2.1, 0.3, 0.1, 1.4, 0.9] 179
1 0 [0.3, 0.5, 0.5, 1.4, 0.8, 1.4] 32

6.2.1 Input features

The 39-dimensional MFCCs (including energy, deltas and delta-deltas) were se-
lected as input features. As we have already seen, DNN perform best when each
input frame of features is presented in its context, i.e. with neighboring frames.
Therefore, and following the advice here [TR14b], we fed the network with a win-
dow of 9 frames in total: each frame together with 4 neighboring frames on the left
and right side.

The 2000 shortest WSJ utterances were split into training (95%, about 1880
utterances) and validation sets (5%, about 120 utterances). Most of the input
module was taken from the project KALDI-PDNN by Y. Miao ([Mia14], also see
appendix D) .

The feature frames are extracted directly from the corresponding Kaldi files,
context is added to them and they are saved in PFile format. PFile ([pfib]) is
a binary file format used to store feature frames and their corresponding labels.
It was developed in the International Computer Science Institute (ICSI) and was
intended mainly for ASR and machine learning tasks. Each file starts with a fixed
length ASCII header followed by zero or more variable length binary sections. These
sections are divided into sentences, each of which contains a sequence of frames.
Each frame is associated with a feature vector and one or more labels. In the
context of ASR applications, sentences and frames correspond to utterances and
frames respectively. The frames must be indexed within each sentence; however,
fake indices can be used for both sentences and frames. An example of the format
can be seen in table 6.1.

The standard toolkit for handling PFiles is located here [pfia]; however, it is also
included in Kaldi’s distributions. It contains executables to create, read and print
information about a PFile. Using this toolkit, together with auxiliary Kaldi scripts
we create two PFiles: one for the training and one for the validation set. All features
are standardized to have zero mean and unit variance.
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6.2.2 Architecture and training

In this section we will present the issues concerned with the training of the deep
network. We will present them in the same order as they were introduced in chapter
5.

Training criterion

The training criterion used for the baseline deep network was the cross entropy
loss function, due to its faster and more robust convergence. Although derivation
of this particular cost function is easy to implement in Python, we did not need to
do it manually, as the Theano framework allows for automatic differentiation.

Training algorithm and batch size

The implemented algorithm used for training is the standard back-propagation
algorithm. The cost function is minimized using minibatch gradient descent (mini-
batch training) to search for the minimum on the error surface. The batch size
remained constant throughout training and various sizes were tried with the most
successful appearing to be a size of 256 samples. This is in agreement with the
literature on batch size for ASR tasks.

Initialization of weights and Regularization

For the weight initialization we have used the random initialization proposed in
[GB10]. Using PDNN ([Mia14]) we also tried to initialize the weights with an RBM
network however the improvement noticed was not adequate to justify the extra
burden of training the RBM.

As far as regularization is concerned, the method that resulted in huge improve-
ments in the learning process is dropout.

We have already mentioned that the widespread use of dropout is also due to
its easy implementation: the dropped out neurons have their activation set to zero
and consequently no error signal passes through. Therefore, no other change to
the training procedure or the network is needed, other than randomly selecting the
neurons to be dropped out. It should be noted, however, that dropout is used only
during training; at test time the average of all possible combinations is used. There
are two ways to accomplish this:

• at the end of the training, compensate all weights involved in training by
multiplying them by (1-dropout_factor) and use the resulting model as a
normal DNN
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• during training multiply the input from the previous layer by 1
1−r , where r is

the dropout rate for the previous layer.

In the current project we used the latter implementation thus the activation yt of
layer t during forward propagation is:

yt = f(
1

1− r
yt−1 ∗mW + b)

where f is the tth layer’s activation function, W is the weight matrix, b the bias ma-
trix, ∗ denotes element-wise multiplication and m is a binary mask whose elements
are drawn from a Bernoulli(1-r) distribution, i.e.:

f(k, (1− r)) = (1− r)k[1− (1− r)]1−k, k ∈ 0, 1

and indicate which neurons are not dropped out ([DSH13]).
On the other hand, regularization using L1 or L2 norms did not provide almost

any improvement. However, an implicit weight decay was imposed on the weights
by clipping and scaling the columns of the weight matrices as described here [caf].

Learning rate and momentum

Carefully selecting the learning rate is important for the convergence and conver-
gence speed of the training. In our approach, different learning rates were tried and
two strategies were used for its decrease: either decrease it by half or exponentially
every time the validation error rate rises.

The exponential reduction followed the rule:

learning_rate =
learning_rate_init

1 + decay_factor ∗ epoch

A momentum term was included in the update of the model hoping to improve
convergence speed and stabilize the back-propagation algorithm, which it did. The
momentum schema that was implemented is the following:

υt+1 = µυt + (1− µ)ε∇f(θt)

θt+1 = θt + υt+1

where ε is the learning rate, µ is the momentum value, f is the cost function and θ
is the parameter to be updated. In addition, µ gradually increases to a maximum
value based on the training epoch.
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Network architecture

The network we used for the acoustic modeling is a standard multi-layer per-
ceptron with at least four hidden layers (‘Deep Neural Network’). We tried various
different layer sizes, yet all hidden layers had the same size; no ‘pyramid’ shaped
networks were tried as they do not improve performance according to the literature.
The input layer had 117 dimensions ((4+1+4)×13 features). The output layer was
a soft-max layer for classification purposes and its architecture is something that
needs closer attention.

The output targets and consequently the dimensions of the classification layer
depend on the decoding framework. Most state-of-the-art speech recognition systems
use as targets identifiers for the GMMs involved; Kaldi for instance, uses pdf-ids (see
transition modeling in appendix B) during decoding and therefore the classification
targets in our project are pdf-ids. This corresponds to a few hundred output units
in the monophone case and a few thousand in the triphone. Using pdf-ids allows us
to directly export a trained DNN model to Kaldi and use it for the forward pass of
the test datasets through the network (export module taken from [Mia14]).

A DNN model in Kaldi is described by a text file that contains the following
information:

• layer type and input/output dimensions, for instance: <Sigmoid> 1024 1024

• weights for each layer

The decoding script ([Mia14]) is based on a DNN recipe in Kaldi (dnn1,[kalb]) which,
at the time of the project, did not support Rectified Linear units (ReLU). In order
to use the decoder with rectifiers, a ReLU component had to be included in Kaldi;
the implementation was taken from here [kalc].

6.3 Manifold regularization

Introduction

The main task of the current project was to implement the ideas described in
4.3.2 onto an LVCSR task using part of the Wall Street Journal corpus, as described
in a previous section of the current chapter.

Although the initial paper by Tomar and Rose ([TR14b]) follows the tandem
approach, we implemented the hybrid. This was mainly due to the dataset used.
For a dataset like WSJ, which contains long utterances and has a large lexicon, the
acoustic model plays a less important role than for a dataset like Aurora 2, which
was used in the original paper and which consists only of utterances containing
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digits. Therefore, manifold regularization in a feature-extracting DNN will have a
greater impact on decoding in the case of Aurora than of WSJ, where the language
model prevails to the acoustic.

This was also empirically confirmed, as we tried to extract bottleneck features
for a tandem approach, yet decoding efforts failed.

Discovering the manifold structure

Like most manifold learning algorithms, the approach described in [TR14b] and
[TR14a] begins by constructing two neighborhood graphs which will contain the
manifold constrained relations between data points.

As already described in 4.3.2, the first graph (Wint) is constructed by taking
into account only same label neighbors of each point, whereas the second (Wpen)
contains only neighbors that belong to a different phonetic class.

The labels that are used for the construction of the graphs are of the utmost
importance for the success of the discovery of the manifold and the performance of
the regularized system. One would assume that the labels would be the targets that
the DNN will use during training; however, this is only correct if the decoder uses
-and thus the classification targets are- the physical triphone states of the Hidden
Markov Models. In our case, where we used Kaldi’s decoder which is based on
identifiers of Gaussian distributions (see Kaldi transition modeling in appendix B),
and they were the targets for DNN training, the aforementioned assumption does
not hold. This is due to the fact that Gaussian identifiers have no physical meaning
or ‘presence’ on the manifold of the phonetic units and there does not exist a one-to-
one mapping between triphone states and Gaussian distributions. Therefore, they
are unable to help in the discrimination between the phonetic classes.

The alternative labels we could use were either the phones or the physical HMM
states of the triphones. To determine the appropriate label for discrimination we
tried the manifold algorithm for the reduction of dimensions as described in [TR14a]
and visualized the results. For the visualizations only a small portion of the data
was used (2500 frames) which contained samples from a small number of classes.

The feature space before the application of LPDA can be visualized in two di-
mensions using PCA, as depicted in figure 6.3. There are five phonetic classes in
the data subset, however they are overlapping and discrimination between them is
difficult.

Using phones as labels during the construction of the affinity matrices we can
acquire the projection in two and three dimensions as seen in figures 6.4 and 6.5.
It is evident that the projection using information from the manifold does help to
discriminate between classes. Even if some classes overlap in the 2D space, they are
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Figure 6.3: Projection in 2D of 2.5k MFCC and energy feature vectors using PCA

Figure 6.4: LPDA, 2D projection, kpen=kint=400, Rint=850, Rpen=3000, 2.5k
data, 5 phones

separable when projected in three dimensions. Furthermore, as a consequence of the
optimization criterion used in the reduction algorithm, which includes the minimiza-
tion of the within-class scatter measure, the phone clusters formed in the projected
space are more compact. Increasing the number of neighbors (see figures 6.6 and 6.7)
that are used to capture the coordinate patches of the manifold, will improve the
acquired projection; therefore, a balance has to be found between the computational
cost to build the manifold graphs and the discrimination improvement.

If we build the manifold graphs using the HMM states of the triphones as targets,
we acquire the visualizations as shown in figures 6.8 - 6.11. The discrimination is not
more evident in the 2D projections, yet in the 3D plots we can clearly see that using
(phone-HMM state) pairs as labels, helps to better discriminate between phonetic
classes.

Consequently, just for the graph building, we use (phone - HMM state) pairs as
labels, and during DNN training for the hybrid approach, Gaussian identifiers as
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Figure 6.5: LPDA, 3D projection, kpen=kint=400, Rint=850, Rpen=3000, 2.5k
data, 5 phones

Figure 6.6: LPDA, 3D projection, kpen=500, kint=600, Rint=850, Rpen=3000, 2.5k
data, 5 phones
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Figure 6.7: LPDA, 2D projection, kpen=500, kint=600, Rint=850, Rpen=3000, 2.5k
data, 5 phones

Figure 6.8: LPDA, 3D projection, kpen=kint = 400, Rint=850, Rpen=3000, 2.5k
data, phone-HMMstate label
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Figure 6.9: LPDA, 2D projection, kpen=kint = 400, Rint=850, Rpen=3000, 2.5k
data, phone-HMMstate label

Figure 6.10: LPDA, 3D projection, kpen=kint = 600, Rint=850, Rpen=3000, 2.5k
data, phone-HMMstate label
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Figure 6.11: LPDA, 2D projection, kpen=kint = 600, Rint=850, Rpen=3000, 2.5k
data, phone-HMMstate label

targets.
For the weights that describe the relations between data points we used the

Locality Preserving Discriminant Analysis and the weight matrices were populated
in the following way:

wintij =

e
−‖xi−xj‖

2

ρ if C(xi) = C(xj), e(xi, xj) = 1

0 otherwise

wpenij =

e
−‖xi−xj‖

2

ρ if C(xi) 6= C(xj), e(xi, xj) = 1

0 otherwise

where ρ is the heat kernel scale parameter, C(xi) refers to the class of vector xi and
e(xi, xj) = 1 indicates that xi is in the near neighborhood of xj.

Constructing the neighborhoods - kd-tree

Discovering the manifold requires discovering the neighborhoods around each
data point that constitute the patches depicted in figure 4.3. Given a big training
set though, determining the nearest neighbors (either exact or approximate) of a
data point can become a difficult problem. In the current project we used the m
approximate nearest neighbors, i.e. m points that lie within a radius r of the point
in question, to build each patch.

To determine the m approximate neighbors we used the kd-tree data structure.
A kd-tree stores a finite set of points from a k-dimensional space (in our case, the
13-dimensional space of MFCC) [Ben79]. The basic idea behind kd-trees is to split
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Figure 6.12: Region of node v, picture taken from Computational Geometry class in
[kdt].

the input space by alternating between axes, using at each iteration the plane that is
perpendicular to the axis in question and passes through the median of the points.
For instance, in the 2-dimensional case the corresponding tree is constructed as
follows:

Algorithm 1 Build 2-d tree
procedure Build2DTree(S, depth)

if S contains only one point then return leaf containing the point
else if DEPTH is even then

Split S with a perpendicular to the x-axis line at the median x-coordinate
of the points, into two subsets P1 containing points to the left of or on the line,
and P2 containing points to the right of the line

else
Split S with a perpendicular to the y-axis line at the median y-coordinate

of the points into two subsets P1 containing points to the left of or on the line,
and P2 containing points to the right of the line

nleft = Build2DTree(P1, depth+1)
nright = Build2DTree(P2, depth+1)
Create node nroot storing the splitting coordinate, make nleft the left child and

nright the right child of n
return nroot

If N is the number of points in S, a kd-tree can be built in O(N logN) time.
In order to determine the m neighbors of each point that lie within range R of

it the procedure described in Algorithm 2 is performed.
In the pseudocode region(node) is the area of the space that contains node and

is bounded by the closest splitting planes, e.g. see figure 6.12.
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Algorithm 2 Search k-d tree
procedure SearchTree(node, R)

if node is a leaf then return point stored at node if it lies within ball of
radius R

else
if region(nodeleftChild) is fully contained within ball of radius R then re-

turn nodeleftChild

else if region(nodeleftChild) intersects ball of radius R then return
SearchTree(nodeleftChild, R)

if region(noderightChild) is fully contained within ball of radius R then
return noderightChild

else if region(noderightChild) intersects ball of radius R then return
SearchTree(noderightChild, R)

Running a query for m approximate nearest neighbors in a balanced kd-tree
takes O(n1− 1

k +m) time.
The programming approach to the construction of the manifold graphs involved

a clustering stage to further ease and speed up the process.
The clustering to help in the penalty graph construction was a simple k-means,

where the initial cluster centers were randomly chosen from the samples and the
number of clusters was manually set. Having acquired the cluster to which each
point belongs, one can search for nearest neighbors only within that cluster.

As far as the intrinsic graph is concerned, the clustering was based on the labels
of each sample: each cluster contained all same-label samples, among which we
subsequently searched for neighbors for each sample of the cluster.

The construction of both graphs was performed using the Julia (see appendix E)
programming language with the Clustering ([julc]) and KDTrees ([julb]) packages.

Architecture of the manifold regularized network

In figure 6.13 we can see the architecture of the manifold regularized neural
network.

The first input to the network is a window of frames which is centered around
each training frame. A window of 9 frames was used in this project, i.e. the central
frame together with four adjacent frames on the left and four on the right. The
second input is a neighborhood of frames of each training frame, which describe the
manifold structure around it. Given that the second input has to pass through the
same network, each frame is passed in a window of the same size as the window of
the first input.
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Figure 6.13: Manifold regularized DNN

This kind of architecture is dictated by the criterion used during the network’s
training phase:

F(W; Y) =
1

N

N∑
i=1

{
V (xi, ti, f) + γ

2k∑
j=1

‖yi − yj‖2wij

}
where V is the training criterion used for the baseline system, i.e. the cross-entropy
loss in our case, and the rest is the term that imposes the manifold regularization:
γ is the regularization weight, yi is the output of the network that corresponds
to the input window xi, yj is the output of the network that corresponds to the
manifold neighbor xj,j = 1, ..., K including neighbors in both graphs, and wij is the
weight that describes the relationship between xi and xj and is the difference of the
corresponding entries in the manifold graphs:

wij = wintij − w
pen
ij

The gradient of the regularized training function, which will be used to update
the network’s parameters is then computed as follows:

∇Θn,mF = ∇Θn,mV + C

K∑
j=1

wij(yi,m − yj,m)

(
∂yi,m
∂θn,m

− ∂yj,m
∂θn,m

)
We have already mentioned that the format of the input to the neural network is

the PFile. To facilitate the manifold regularization, we had to build a second input
file in the same format, which contained as features the k nearest neighbors (from
both graphs) in their 9-frame window and as label the weight wij as defined above.
Since the weight term is of type float, the standard PFile toolkit ([pfia]) had to be
modified to support float labels and not just integers as it originally had.
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One of the most challenging parts of the project was how to pass the manifold-
required data of each minibatch and the minibatch through the network and in such
a way so as to allow computation using the GPU. In order to do this, we had to set
up the data-loading module in such a way so as to load onto the GPU the manifold
data required just for the current minibatch and load the rest onto the CPU memory.
Consequently, this caused a loss in execution speed but it allowed us to perform the
manifold regularization which would have been impossible otherwise.

6.4 Decoding and experimental results

In this section we will present the results of the performed experiments and
summarize the observations made. We will begin with the evaluations using the
unregularized network and then proceed to the manifold regularized system. The
results are summarized in tables 6.2 (monophone) and 6.3 (triphone).

The baseline for the comparison is Kaldi’s GMM/HMM system, trained on the
2000 shortest utterances of the WSJ corpus and evaluated on the two accompanying
datasets: dev93 and eval92.

The decoding accuracy achieved by the triphone system is 76.15% on dev93 and
82.62% on eval92, whereas the monophone system achieved correspondingly 64.87%
and 74.45% on the two test sets.

Monophone DNN

• A deep MLP consisting of 5 layers with 600 sigmoid units each was trained for
250 epochs, with the initial learning rate set at 0.06. The learning rate was
decaying exponentially at the end of each epoch and the training strategy was
minibatch gradient descent (GD) with batch size 256 samples and momentum
starting at 0.8 and gradually increasing to 0.99. The cost and validation plots
are shown in figures A.1 and A.2. The decoding accuracy on dev93 dataset
was 69.6% and on eval92 78.84%.

• A deep MLP consisting of 4 layers with 1024 sigmoid units each was trained
for 100 epochs, with the initial learning rate set at 0.08. The learning rate
was decaying exponentially at the end of each epoch and the training strategy
was minibatch GD with batch size 256 samples and momentum starting at 0.8
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and gradually increasing to 0.99. The cost and validation plots are shown in
figures A.3 and A.4. The decoding accuracy on dev93 dataset was 69.34% and
on eval92 79.83%.

• A deep MLP consisting of 4 layers with 1024 hyperbolic tangent (tanh) units
each was trained for 20 epochs, with initial learning rate set at 0.08. The learn-
ing rate was decaying exponentially at the end of each epoch and the training
strategy was minibatch GD with batch size 256 samples and momentum start-
ing at 0.8 and gradually increasing to 0.99. The cost and validation plots are
shown in figures A.5 and A.6. The decoding accuracy on dev93 dataset was
67.97% and on eval92 77.30%.

• A deep MLP consisting of 4 layers with 1024 rectified linear units each was
trained for 30 epochs, with initial learning rate set at 0.08. The learning
rate was halved every time the validation error rose and the training strategy
was minibatch GD with batch size 256 samples and momentum starting at
0.8 and gradually increasing to 0.99. Dropout was used as a regularization
method. The dropout rate was set at 0.4 for the hidden layers and there was
no dropout in the input layer. The cost and validation plots are shown in
figures A.7 and A.8. The decoding accuracy on dev93 dataset was 71.1% and
on eval92 80.99%.

• A deep MLP consisting of 5 layers with 1024 sigmoid units each was trained
for 100 epochs, with initial learning rate set at 0.05. The learning rate was
decaying exponentially per epoch and the training strategy was minibatch GD
with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. The decoding accuracy on dev93 dataset was 68.97% and
on eval92 78.5%.

The trained system set the initialization point in the weights’ space for the
manifold-regularized DNN.

• A deep MLP consisting of 5 layers with 1024 sigmoid units each was trained
for 15 epochs, with initial learning rate set at 0.01. The learning rate was
decaying exponentially per epoch and the training strategy was minibatch GD
with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. The training criterion included a manifold regularization
term with weight set to γ = 0.00017. The network was initialized using the
weights of the previous baseline network. The decoding accuracy on dev93
dataset was 70.23% and on eval92 80.56%.
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Triphone DNN

• A deep MLP consisting of 5 layers with 1024 sigmoid units each was trained
for 100 epochs, with initial learning rate set at 0.05. The learning rate was
decaying exponentially every time the validation error increased and the train-
ing strategy was minibatch GD with batch size 256 samples and momentum
starting at 0.9 and gradually increasing to 0.99. The cost and validation plots
are shown in figures A.13 and A.14. The decoding accuracy on dev93 dataset
was 78.43% and on eval92 85.11%.

The trained system set the initialization point in the weights’ space for the
manifold-regularized DNN with sigmoid units.

• A deep MLP consisting of 5 layers with 1024 sigmoid units each was trained
for 20 epochs, with initial learning rate set at 0.01. The learning rate was
decaying exponentially per epoch and the training strategy was minibatch GD
with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. The training criterion included a manifold regularization
term with weight set to γ = 0.01. The network was initialized using the weights
of the previous baseline network. The decoding accuracy on dev93 dataset was
80.38% and on eval92 86.66%.

• A deep MLP consisting of 5 layers with 1024 rectified linear units each was
trained for 20 epochs, with initial learning rate set at 0.05. The learning rate
was decaying exponentially per epoch and the training strategy was minibatch
GD with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. Dropout was used as regularization method. The dropout
rate was set at 0.4 for the hidden layers and there was no dropout in the input
layer. The decoding accuracy on dev93 dataset was 80.00% and on eval92
86.87%.

The trained system set the initialization point in the weights’ space for the
manifold-regularized DNN with ReLU units.

• A deep MLP consisting of 5 layers with 1024 rectified linear units each was
trained for 20 epochs, with initial learning rate set at 0.05. The learning rate
was decaying exponentially per epoch and the training strategy was minibatch
GD with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. Dropout was used as regularization method. The dropout
rate was set at 0.4 for the hidden layers and there was no dropout in the
input layer. Furthermore, a manifold regularization term was included in the
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Table 6.2: Decoding accuracy of monophone systems (in %)
System configuration Accuracy on eval92 Accuracy on dev93
GMM/HMM (Kaldi) 74.45 64.87

5x600 sigmoid 78.84 69.6
4x1024 sigmoid 79.83 69.34
4x1024 tanh 77.30 67.97

5x1024 ReLU + dropout 80.08 71.12
5x1024 sigmoid 78.5 68.97

5x1024 sigmoid + manifold 80.56 70.23

Table 6.3: Decoding accuracy of triphone systems (in %)
System configuration Accuracy on eval92 Accuracy on dev93
GMM/HMM (Kaldi) 82.62 76.15

5x1024 ReLU + dropout 86.87 80.00
5x1024 ReLU + manifold 87.19 79.27

5x1024 ReLU + dropout + manifold 88.06 81.81
5x1024 sigmoid 85.11 78.43

5x1024 sigmoid + manifold 86.66 80.38

training criterion. The regularization weight was set to γ = 0.000000017. The
decoding accuracy on dev93 dataset was 81.81% and on eval92 88.06%.

• A deep MLP consisting of 5 layers with 1024 rectified linear units each was
trained for 20 epochs, with initial learning rate set at 0.05. The learning rate
was decaying exponentially per epoch and the training strategy was minibatch
GD with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. A manifold regularization term was included in the training
criterion. The regularization weight was set to γ = 0.000000017. The decoding
accuracy on dev93 dataset was 79.27% and on eval92 87.19%.

• A deep MLP consisting of 5 layers with 1024 rectified linear units each was
trained for 20 epochs, with initial learning rate set at 0.05. The learning rate
was decaying exponentially per epoch and the training strategy was minibatch
GD with batch size 256 samples and momentum starting at 0.9 and gradually
increasing to 0.99. The network was pre-trained with dropout, but the dropout
rate was set to 0 during the fine-tuning phase. The decoding accuracy on dev93
dataset was 79.45% and on eval92 87.17%.
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Summary and future work

7.1 Comments on results and remarks

It is evident that over the duration of the project a lot f experience was gathered
in the field of deep and manifold learning. However, comparing the results of the cur-
rent project with those acquired in the work that it was based on ([TR14b],[TR14a]),
we cannot overlook the fact that we have not been as successful. In particular, in
connection with the above presented results, the following remarks are to be made:

• Training. Training the deep neural network proved to be a long-lasting and
difficult process. Generative pre-training did not help, which is in accordance
with the initial papers mentioned above. This could be due to the fact that we
had a limited amount of data and used a fairly small network, so the data at our
disposal were enough to train it and search the weight space. Discriminative
pre-training was too hard to control. We usually over-trained the network
and during the fine-tuning phase only tiny changes were noticed, which did
not contribute to the generalization ability of the network. When we tried to
control over-training, almost no difference was noticed compared with when
training the whole network at once.

• Hybrid vs. Tandem approach. As we have already mentioned, the hybrid
approach was chosen for the current project. There were efforts to pursue
the tandem approach as well, yet they were fruitless. The reason for this
is probably the large vocabulary dataset that we have used (WSJ), which
inevitably places a lot of importance on both the acoustic and the language
model. In the initial paper the writers worked on a connected digits dataset,
which means that the vocabulary was limited and the acoustic model prevailed
in the decoding.

125
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Moreover, there are reports that bottleneck feature extraction works if we have
lots of data, and that test data do not diverge a lot from the training data
([ESS01]).

• Performance of hybrid approach. The absolute improvement in decoding ac-
curacy was ≈ 2% more than the baseline DNN in both the monophone and
triphone tasks (≈ 4 and 6% when compared to baseline GMM/HMM respec-
tively). It is not enough however to clearly say that the manifold regularizer
indeed offered a significant improvement in decoding. The reasons for this
outcome are not fully determined yet. It is possible that different hyper-
parameters could produce better results, especially parameters like network
size, mini-batch size and manifold related parameters (size of heat kernel that
was used for the weights of the graph edges, number of neighbors for each
training sample) but time and limited resources did not allow for further ex-
perimentation.

• Choice of ASR system. We chose Kaldi instead of HTK as Rose and Tomar
in their approach ([TR14b]). Although we had the same configuration for the
tandem approach (targets were the HMM states) we were not successful in our
efforts to extract bottleneck features.

For the hybrid approach, we had to compute at the output posterior proba-
bilities for the identifiers of probability distribution functions in Kaldi. These
do not have a ‘physical’ meaning, but, given the way we set up the system,
the manifold regularization principle should work. By manifold regularization
principle we mean the fact that the search direction in the weights’ space is
determined by a gradient which now contains information about the whole
neighborhood of each training sample. This is what makes the descent in the
space more robust against unrelated variations in the data. Constructing the
manifold graphs by using the HMM states as labels, we manage to overcome
the lack of a one-to-one mapping between identifiers of p.d.f. and HMM states
and give a ‘physical’ meaning to the regularization constraint: we want train-
ing samples that are close in the input space, i.e. belong to the same phonetic
class (same HMM state label), to be able to be produced by the same p.d.f.,
i.e. be close in the output space as well.

• Comparison of activation units and their effect. As expected, training with
rectified linear units proceeded faster than using sigmoids. Furthermore, the
error on the training set was lower with ReLU, which means that ReLU are
more prone to overfit the training data. As far as regularization is con-
cerned, in experiments with ReLU it became evident that manifold constraints
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can indeed act as regularizers on the data, even in the hybrid approach.
We performed experiments using ReLU+dropout, ReLU+manifold as well as
ReLU+dropout+manifold. All of them were initialized with parameters ob-
tained by a dropout-pretrained network.

The network that was regularized with both dropout and manifold had a higher
error rate on the training set (15% absolute difference) than the manifold-only
regularized network. Regarding the accuracy on the validation set though, it
was higher with the dropout- and manifold-regularized network. Consequently,
dropout is more successful in controlling overfitting, however, introducing man-
ifold constraints can contribute to an increase in decoding accuracy. This was
noticed during the training phase of most of the above experiments. It was
an open issue in the paper by Rose and Tomar, although we have established
that only by the hybrid approach.

When comparing dropout and manifold regularization alone, both have more
or less the same effect on decoding accuracy.

All in all, rectified linear units perform better than sigmoids and as far as reg-
ularization is concerned, dropout alone performs better than manifold-based
regularization, yet they can also successfully work complementary to each
other.

7.2 Future work

7.2.1 Next steps

The next steps after the completion of the project will be to broaden the areas
of application so that we determine in what tasks and with what data does the
manifold regularization work. We will try the method on different datasets, for
instance Aurora 2, which is a connected digits database with added noise. We hope
to discover whether manifold-induced information is helpful under noisy or clean
speech conditions, when we are dealing with isolated or continuous speech as well
as with what vocabulary size we can successfully work.

In a further level we shall try to improve the nearest neighbors discovery by us-
ing more advanced approximate methods like Locality Sensitive Hashing ([TR13b])
hoping that we will discover a better description of the manifold neighborhoods.



128 Chapter 7. Summary and future work

Figure 7.1: Articulatory feature extraction during recording of MNGU0 dataset
[URR]

7.2.2 Manifold regularization in the articulatory space

Motivation.

An important factor that affects the performance of speech recognition systems
is the large variability that is present in speech samples. A source of such variability
is co-articulation and it has been proposed that a way to deal with it would be
to include information related with the production of speech ([MSN+14]). Such
piece of information can be exploited by using articulatory features, i.e. features
that describe the movement of the articulators in space. The articulators that take
part in speech production are limited, and include the tongue, the jaw and the lips.
Consequently, if we have articulatory features at our disposal, we can use them
complementary to standard acoustic features to improve recognition accuracy.

However, because the extraction of articulatory features is difficult and requires
the use of specialized equipment (see figure 7.1), research is focused on extracting
articulatory from acoustic features. This problem is known as articulatory inversion
and deep neural networks have proven successful in the task. Furthermore, given the
limited number of articulators, it is not unreasonable to assume that their movement
can be described by a low dimensional manifold embedded in the articulatory space.

Based on this idea, we are currently trying a deep learning approach to the
articulatory inversion problem, while imposing manifold constraints and a discrim-
inative criterion to the network. The idea is to extract articulatory from acoustic
features, find a representation in the articulatory space that facilitates discrimina-
tion between phonetic classes, and then return to the acoustic space and use the
new representation of features to train an ASR system.

In the next sections we will briefly present the articulatory inversion problem
and describe our approach that incorporates manifold learning ideas.
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Articulatory inversion.
The recovery of the positions of the articulators from just the acoustic signal

is a difficult and not well-posed problem. The main difficulty in determining the
articulatory state is the fact that there is not a one-to-one mapping between the
acoustic signal and the articulators’ configuration. When the articulators assume a
certain position, a specific acoustic signal will be produced, but the opposite is not
true: a given acoustic signal can be produced by a number of different articulatory
configurations. Furthermore, the problem of articulatory inversion is highly non-
linear, since, for instance, two seemingly similar articulatory states might produce
totally different acoustic signals ([TM03]).

One of the most promising approaches to the articulatory inversion problem is
the one using deep neural networks, where the parameters of the network are trained
to learn a non-linear mapping between the articulatory and acoustic space. Uria et.
al. in their work ([UMRR12]) support that the success of deep neural networks
is due to their highest expressive capability and not just because they have more
parameters than shallow models. They use the MNGU0 dataset, which is a single-
speaker articulatory feature dataset, and train a deep neural network to map acoustic
features to the corresponding positions of six articulators: the upper lip, the lower
lip, the lower incisor, the tongue tip, the tongue blade and the tongue dorsum.
The training targets were the x and y positions of each tracked articulator, whereas
the input features were frames of 40 frequency warped line spectral frequencies,
presented to the network in 10-frame windows. The training criterion was the root
mean square error between the outputs of the network and the recorded articulators’
positions. Their experiments established that the DNN performed much better than
a shallow neural network and better than other state-of-the-art models, for instance
a trajectory mixture density network.

Manifold-based acoustic-articulatory-acoustic space mapping.
Based on the idea of articulatory inversion and the possible existence of an

underlying manifold in the articulatory space, we plan to integrate both approaches
to come up with a mapping from the acoustic to the articulatory space and back to
the acoustic. The desired result is a set of acoustic features that will have undergone
a discriminative transform in the articulatory space, and hopefully, the different
phonetic classes will have been pushed apart, which will facilitate the construction
of an ASR system.

The proposed architecture is a direct extension from the manifold-regularized
DNN that we constructed for the acoustic model, and the architecture presented in
[UMRR12]. The necessary change in the network is the output layer that will now
be a linear regression layer, since we are not facing a classification task but rather
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Figure 7.2: Acoustic to articulatory to acoustic mapping

a generative one. For the manifold learning component of the training, we will also
need the phonetic labels of the articulatory dataset, and not just the positions of
the articulators. As mentioned before the phonetic labels are necessary to build the
manifold-describing neighborhood graphs.

In the next step, where the actual mapping will take place, we propose the use
of a contractive autoencoder that will take in as input the acoustic features and try
to work out an alternative representation of them. The weights of the autoencoder
will be initialized using the trained deep network that performed the articulatory
inversion. The suggested architecture is demonstrated in figure 7.2.

A contractive autoencoder is an autoencoder that its training criterion is regular-
ized in such a way so as to encourage the acquisition of robust representations of the
input features. The regularization term that contributes towards that direction is
the Frobenius norm of the Jacobian of the mapping that the autoencoder discovers.
This idea is mathematically formulated in the following form:

‖Jf (x)‖2
F =

∑
ij

(∂hj(x)

∂xi

)2

where the input x ∈ Rd
x is mapped by the encoding function f to the hidden repre-

sentation h ∈ Rd
h. Penalizing the Frobenius norm of the Jacobian forces the discov-

ered representation to be contractive in the neighborhood of the training data, i.e.
invariant and robust to small variations of the input. From a manifold perspective,
a contractive autoencoder preserves the variations present in the training data, i.e.
dimensions along the manifold on which the data lie, and penalizes rare variations
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in the data, i.e. dimensions orthogonal to the manifold. It must be noted that
what makes contractive autoencoders good feature extractors is the fact that they
combine the penalty on irrelevant dimensions (through the Frobenius norm of the
Jacobian) with the reconstruction requirement of the autoencoder; using only one
of the two would not lead to good feature representations ([RVM+11]).

In our approach we expect that if we extract features from one of the last layers
of the contractive autoencoder of figure 7.2, we will acquire a representation of the
acoustic features that will be successful in training a robust GMM/HMM model for
ASR. We start by mapping the input acoustic features to the articulatory space us-
ing a deep manifold-regularized neural network, and we hope that the articulatory
features extracted will contain phonetic class discriminative information imposed
by the manifold regularization term. Then, we run a few training iterations with a
contractive autoencoder, which will be initialized with the weights of the previous
DNN. Hence, we hope to first transfer the data from the acoustic to the articulatory
space and at the same time push the phonetic classes apart by exploiting the man-
ifold constraints, and then map the articulatory space back to the acoustic, while
maintaining the class-discriminative information of the first transform.

As already mentioned, for the articulatory inversion task, the MNGU0 database
was used ([SRMG12]). Although it is a database widely used for acoustic to artic-
ulatory mapping tasks, it contains only one speaker and therefore it is inadequate
for our purpose. Our main experiments will be conducted using the USC-TIMIT
([NTR+14]) speech production database. The database contains articulography data
from five male and five female speakers and is still under construction.





Appendix A

Network training plots

In this appendix we have included the plots that were produced during the deep
neural network training, namely the evolution of the cost function over the training
epochs and the evolution of the classification error on the validation set.
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Figure A.1: Monophone DNN, 5x600, sigmoid

Figure A.2: Monophone DNN, 5x600, sigmoid
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Figure A.3: Monophone DNN, 4x1024, sigmoid

Figure A.4: Monophone DNN, 4x1024, sigmoid
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Figure A.5: Monophone DNN, 4x1024, tanh

Figure A.6: Monophone DNN, 4x1024, tanh
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Figure A.7: Monophone DNN, 4x1024, ReLU

Figure A.8: Monophone DNN, 4x1024, ReLU
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Figure A.9: Triphone DNN, 6x2048, ReLU

Figure A.10: Triphone DNN, 6x2048, ReLU
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Figure A.11: Triphone DNN, 5x1024, sigmoid

Figure A.12: Triphone DNN, 5x1024, sigmoid
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Figure A.13: Triphone DNN, 5x1024, sigmoid

Figure A.14: Triphone DNN, 5x1024, sigmoid



Appendix B

Kaldi Speech Recognition Toolkit

[PGB+11]
Kaldi is an open source speech recognition toolkit implementing state-of-the-

art algorithms for feature extraction, acoustic modeling and decoding. It origi-
nated in Johns Hopkins University in 2009, and its name comes from the Ethiopian
goatherder who discovered the coffee plant.

Its codebase is written entirely in C++ and the corresponding executables are
invoked from bash scripts called ‘recipes’ which depend on the dataset they process.

The main benefits of Kaldi are:

• Code-level integration with Finite State Transducers, since it compiles against
the OpenFst library

• Extensive matrix library using BLAS and LAPACK

• Generically developed modules to easily support extensions

• Open license (Apache v2.0)

• Complete recipes that span from feature extraction to decoding

Installation[leca]
In order to install Kaldi you need to clone the repository where it resides:
‘git clone https://github.com/kaldi-asr/kaldi.git kaldi-trunk –origin golden’
The INSTALL file contains all the required information about the installation

process.

Getting started
Source code and executables are organized according to the purpose they serve

(decoding, feature extraction, neural network configuration etc.) and are placed in
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kaldi-trunk/src. Invoking a script without arguments will print instructions on how
to run it and what arguments it actually needs.

Example recipes for well-known datasets are inside kaldi-trunk/egs. The latest
recipe for each dataset is inside the s5 folder. For example, the latest recipe for
the Wall Street Journal dataset is kaldi-trunk/egs/wsj/s5/run.sh and is executed by
running the script run.sh from inside that directory.

Going though the WSJ recipe
To give an idea of Kaldi’s recipes, we will focus on the Wall Street Journal recipe

for the rest of the chapter, referring to the run.sh script. Apart from it, inside
kaldi-trunk/egs/wsj/s5 are folders (local, steps, utils) containing dataset-dependent
scripts.

• Data preparation [kala]

– The script begins by setting the variables which determine the dataset
location (wsj0,wsj1 ).

– Invoke dataset dependent script (wsj_data_prep.sh) to make sure all
data needed are available and to build auxiliary scripts for the training
steps (e.g. spk2utt, utt2spk scripts). It also extracts the language model
which (unless we want to use a different one) is distributed with the WSJ
dataset.

– Proceed to create the dictionary (wsj_prepare_dict.sh) and the language
directory, which contains extra information regarding the language model
(prepare_lang.sh).

– Reorganize the data directory to facilitate the next steps (wsj_format_-
data.sh).

• Feature extraction

– Extract MFCC features (steps/make_mfcc.sh). Make sure that the data
are where the script expects them to be and in the correct form (case-
sensitive to file names).

• Split the dataset into smaller chunks which will be used for training various
systems (utils/subset_data_dir.sh).

• Training

– The usual procedure to evaluate an ASR system starts with system train-
ing (e.g. train_mono.sh), proceeds to build the decoding graph HCLG
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Table B.1: Kaldi ASR accuracy on WSJ
GMM/HMM system test_eval92 test_dev93

monophone 25.55 % 35.13 %
delta + delta-delta 11.84 % 18.27 %
LDA + MLLT 10.81 % 16.89 %
LDA + MLLT + SAT 8.77 % 14.63 %
LDA + MLLT + SAT (more data) 7.73 % 12.58 %

utterance-id [ frame1 features
frame2 features
. . . ]

Table B.2: Kaldi table format

(utils/mkgraph.sh) and ends with system evaluation (steps/decode.sh)
[lecd]. The final result of the evaluation is inside exp/decode.../scoring_-
kaldi/best_wer.

– The system just created can be used to extract the observations-phones
alignment, which will be used to initiate the training of e.g. a triphone
model [lecb],[lecc].

The decoding accuracy on WSJ for various systems is summarized on table B.1.

Useful scripts
Kaldi provides various executables that can prove useful not only for ASR sys-

tem training but also for debugging/testing purpose. In particular, inside kaldi-
trunk/src/bin:

• ali-to-phones : converts alignments from Kaldi raw format (‘transition-ids’) to
phones. To view the alignments use show-alignments.

• copy-matrix (or featbin/copy-feats): copies a Kaldi matrix. During copying
we can save the matrix in text format. The read and write specifiers that
are referred to in the scripts are ‘ark’ ,‘t’ and ‘scp’ for binary, text and scp
(readable by text editors) scripts.

In general, Kaldi processes scp scripts (ending in .scp) and binary data. Kaldi
matrices have the form seen in the table and are saved into binary format (.ark
files).

Kaldi transition modeling
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The basic transition model is as follows. Each phone has an HMM topology
and each HMM-state of each of these phones has a number of transitions out of it.
Each HMM-state has an associated ‘pdf_class’ which gets replaced with an integer
identifier, a pdf-id, via the tree. The transition model associates the transition proba-
bilities with a triple (phone, HMM-state, pdf-id). We associate with each such triple
a transition-state. Each transition-state has a number of associated probabilities to
estimate. Each probability has an associated transition-index. We associate with
each (transition-state, transition-index) a unique transition-id, which is the output
of the alignments. Each individual probability estimated by the transition-model is
associated with a transition-id. A list of the terms found in Kaldi’s transition model
is:

• pdf-id : a number output by the Compute function of ContextDependency (it
indexes probability distribution functions). Zero-based.

• transition-state: the states for which we estimate transition probabilities for
transitions out of them. In some topologies, will map one-to-one with pdf-ids.
One-based, since it appears on FSTs.

• transition-index : identifier of a transition (or final-prob) in the HMM. Zero-
based.

• transition-id : identifier of a unique parameter of the TransitionModel. As-
sociated with a (transition-state, transition-index) pair. One-based, since it
appears on FSTs.

List of the supported mappings in Kaldi:

• (phone, HMM-state, pdf-id) -> transition-state

• (transition-state, transition-index) -> transition-id

• transition-id -> transition-state

• transition-id -> transition-index

• transition-state -> phone

• transition-state -> HMM-state

• transition-state -> pdf-id
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Wall Street Journal corpus

The Wall Street Journal corpus ([PB92]) is a large dataset of sentences of North
American English collected from the 1987-89 editions of the corresponding newspa-
per. The dataset is divided in two subsets, WSJ0 and WSJ1, and it was collected to
support the development and evaluation of large vocabulary, speaker-independent,
continuous speech recognition systems.

WSJ0 [wsjb]
The Wall Street Journal Phase I (CSR-WSJ0) corpus was designed by the

DARPA Corpus Coordinating Committee and was collected in 1991 at the Mas-
sachusetts Institute of Technology Laboratory for Computer Science, SRI Interna-
tional, and Texas Instruments (TI) in late 1991.

The test material in WSJ0 contains 5.000-word and 20.000-word WSJ vocabulary
read tests, as well as tests using spontaneous dictation. Each set of test material is
segmented into utterances and each utterance was recorded with two microphones,
a Sennheiser close-talking microphone and a secondary microphone of varying type.

To minimize storage requirements, the waveforms have been compressed using
the SPHERE-embedded ‘Shorten’ compression algorithm which was developed at
Cambridge University, and the storage requirements for the corpora have been ap-
proximately halved.

WSJ1 [wsja]
WSJ1 was collected in 1992 and contains about 78.000 training utterances (73

hours of speech), and about 8.200 (5.000-word and 20.000-word vocabulary) devel-
opment test utterances (8 hours of speech). Like WSJ0, the training portion of the
corpus was recorded using 2 microphones: a Sennheiser close-talking head-mounted
microphone, and a secondary microphone of varying type, and the waveforms are
again stored using the ‘Shorten’ compression algorithm.
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Python-Theano

D.1 Python

Python is a popular high-level, general-purpose, programming language that was
developed in the 1990s in the Netherlands by Guido van Rossum.

It is interpreted and its strict syntax allows for clear, easy-to-read programs.
Python is a multi-paradigm programming language: it allows for object-oriented
programming, structured programming, and some of its modules even allow the use
of functional programming ideas. This versatility, simplicity of syntax and large
collection of available libraries are the reason why it is so popular among software
developers in many different fields.

In this project we used Python version 2.7.6.

D.2 Theano

[BLP+12],[BBB+10]
Theano is a Python library intended for optimization and evaluation of mathe-

matical expressions involving arrays. These expressions can also contain symbolic
variables which make Theano indispensable for neural network programming in
Python, as it makes it easy for the programmer to define the training criterion
and perform the necessary calculations.

Key advantages of Theano include:

• easy integration with NumPy, a Python library for mathematical operations
and arrays

• transparent use of a Graphics Processing Unit (GPU); Theano will automat-
ically detect a GPU - if available - and use it to speed up calculations (using
CUDA/OpenCL), otherwise it will fall back onto the CPU
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• symbolic differentiation; one has to simply express a function using symbolic
variables, state with respect to which variable the derivative will be taken, and
Theano will compute it

• numerical stability optimizations

• dynamic C code generation, which improves performance

• many available tools for unit-testing and self-verification

Theano tutorials and material relevant to its machine learning applications can
be found on [the].

D.2.1 Exploiting the GPU

When developing Python programs using Theano, one has to consider the fol-
lowing, as to what can be optimized on the GPU:

• Computations with float32 data type; support for float64 is expected later

• Matrix operations such as multiplication, convolution, and element-wise op-
erations. However, the speed-up is much greater (5-50x) if the arguments are
large enough to make full use of all GPU cores

On the other hand, indexing, dimension shuffling and constant-time reshaping will
be equally fast on GPU as on CPU, whereas summing over rows/columns of tensors
(symbolic arrays) can be slower on the GPU than on the CPU.

Care should also be taken when it comes to moving data to and from the GPU,
as is can be quite slow and thus cancel most of the benefits of GPU computations.

To ensure that the GPU will be used for computations, one should firstly include
floatX=float32 in the configuration file of Theano, i.e. .theanorc. Then, whenever a
float type variable is to be declared in a script, the expression theano.config.floatX
should be used instead. Secondly, one should ensure that all output variables have
float32 type. Setting the floatX entry in .theanorc is a good way to make sure
that all float variables that will be processed by the GPU are of the correct type.
Finally, there are many more flags that will prove useful for profiling the program’s
execution, such as profile=True or assert_no_cpu_op.

D.3 Kaldi-PDNN

[Mia14]
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Python DNN (PDNN) is a deep learning toolkit developed in Python. It contains
many different neural network architectures (DNN, CNN, RBM) as well as a number
of supporting tools for reading and storing data and exporting model parameters.
In the current project, the input module for reading PFiles, as well as the output
module for saving Kaldi DNN models were based on PDNN.

Kaldi-PDNN constructs state-of-the-art DNN acoustic models using PDNN and
builds complete ASR systems by combining the DNN model with Kaldi.

The general process has three steps:

• Initial GMM models are built with Kaldi standard recipes

• Acoustic models using a deep architecture (DNN/CNN) are trained using
PDNN

• Trained models are imported into Kaldi for direct decoding or building a tan-
dem system using DNN-extracted features





Appendix E

Julia

[jula]
Julia is an open-source, high-level programming language for technical comput-

ing, developed in MIT. Its design and just-in-time compiler allow it to match or
outperform other common programming languages for scientific and numerical com-
puting.

Julia features an active community contributing to a huge number of external
packages, as well as the following key benefits:

• multiple dispatch, i.e. allows the programmer to define a function’s behavior
across many combinations of argument types

• Easy integration and call of Python and C functions

• Strong shell-like capabilities for handling other processes

• Support of parallel and distributed computation

• Ability to combine low- and high-level programming in the same script
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