EONIKO METTZOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOIIAY [TAHPO®OPIKHE KAI YTOAOTIETON

YAoroinon YvotAuatog Avvauixng Alayelplong
MvAung o FPGA upgow teyvixdv YTdniov
Emnédou YOvieong

AIMIAOMATIKH EPrAsIA

ToLV

Ytépavouv Kogopa

EnBArénwyv: Anuftploc Zodvierng
Avaminpotic Kadnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adrvo, Mduog 2016

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

YAoroinon XvotAuatog Avvauixnig Alayelplong
MvrAung o FPGA uygow teyvixodv YTdniov
Emnedouv YoOvieong

AIIAOMATIKH EPrAsIA

ToLV

Ytépavou Kogpoa

EnmBAréenwyv: Anuftpoc Xodvreng
Kodnyntic E.M.IL

Evyxpldnxe and tv tpyelr e€etactinn emitpons| tny 26m Maiou 2016.

(Ymoypagr) (Tmoypagn) (Tmoypagn)
Anurteloc Xolvteng Krodh Hexpeotln I'etdpyiog Owxovoudinog
Av. Kodnyntic E.MLIL. Kodnyntic E.M.IL En. Kadnyntic E.M.IL

Adrvo, Mduog 2016

(Troypaeri)

YTESPANOE KO®dAS
Amhopotovyog Hiextoohdyoc Mnyovinde xouw Mnyovixde Troroyotov E.M.IL
©) 2016 — All rights reserved

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Copyright @—All rights reserved Xtéqavog Koggag, 2016.

Me empOhaln novtdg SLXaOUATOS.

Anayopebeton 1 avTiypapr, amodixeuon xou Slovouy| Tng topoloos epyactiog, €€ oAoxApou
1) TWAUATOC QUTHC, Yia EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINO, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnddeoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. EpwtAuata tou apopodv

N XeMon TNS EpYUCLAS VLol XEPOOOXOTIXO OXOTO TEETEL VoL aneudivVOVTaL TEOS TOV GUYYROPEX.

Acknowledgements

First, I would like to express my gratitude to professor Mr. Dimitrios Sountris for giving
me the opportunity to work on this challenging subject. His teaching approach and his
insightful and extensive research have strongly increased my motivation and commitment
to work on this project.

I also feel obliged to thank Dionisis Diamantopoulos. Acting not only as a scientist
but also as a friend, he helped me, overcome every obstacle and difficutly I encountered
during this process.

I would like to personally thank my friends Dimitris, Dimitris, Ilias and Thanasis.
Their achievements and the time we spent together have contributed to the successfull
completion of my studies.

Last but not least, I would like to thank my familly that supported me in the pursuit

of my dreams and accomplishment of my personal goals.

Stefanos G. Koffas

YAonoinorn XuoTAMATOS
Avvoulxng Atayelpiong WvNung
oe FPGA pcow teyvixwyv YTniod
Emnedoouv XOvieong

H ovotowyia npoypoppoatiloyevmy nuieyv (Field Programmable Gate Array-FPGA) eivou
éva xOxhwua VLSI 1o omolo umopel va mpoypauatiotel and Tov ¥eH|oTh dpXeTéC POpES UETA
Vv xotaxeur; Tou. Ta FPGA etvan xotd Bdon cuoxeuvée nopdhining eneepyaoiag xon unopolv
VoL EXTEAEGOUV T TOY POV TOMAOUC UTOAOYLOUOUE. ol TopddBety o, Xaté ToV TEoYpouUaTIoNO
Toug elvon vor Buvartov var dnuovpynlel Tapamdve omd pio Aptunted xow Aoyuxry Movdda
(Arithmetic Logic Unit-ALU). Auté éyel we anotéleoya, oe avtideon ue toug enclepyaotée
X000 GXOTOU, VAL UToEOVY Vol EXTENOVY Topamdve amd ula evIoAég Tautoyeova. ‘Eva oaxdua
onuovTixd Theovéxtnua Twv FPGA elvon n yoaunin xotavdhwon woybog. Autol eivon xou o
x0plot Aoyol mou tor FPGA elvon eupéwe yenotuomoloduevo o Touelg tng Te)Vohoylog OTme
1 acpodlacTruix xou 1 opuvTed| Blopnyavia, n enelepyoaoio Pnelaxdy onudtwy (emxévo xou
fx0c), N autoxivnroBlognyavia, ol xivntéc xau otadepé emxovwvies, ta xévtpa dedopévev

(Datacenter), n tAnpogopx| udpmiic anddoone (High Performance Computing-HPC) ».d.

To dopxd otoyeio evoc FPGA eivor to enavadiopoppoluevo urhox (Configurable Logic
Block-CLB). To xd9e CLB onoteheiton and nivaxeg avagopds (Lookup Tables-LUT) ot ono-
fol uhomoloVY Tov Tivaxa oAfdeloe SapopeTinic cuvdpTtnong xdde gopd, and phm-gron (flip
flop-FF') ta onola amodnxevouy to anotéheopa evoc LUT xou and 90peg eto6d0u/e€680u (1/0
ports). Ta CLB cuvbéovtar yetoll toug pe pio npoypoppatilouevn utodopr xahwdinong, n
omola yenotponoteitar yia T Stopdppwon tou FPGA (oyfua 1). Katd ta tehevtaio ypdvia,
1 opyttextovixy) Tou FPGA éyel evioyuiel ye emimhéov otouyeio. To onpovtindtepo omd autd
etvar o DSP48 xau ta pmhox pviune RAM (BRAM) nou anotehodvton and 18 Kbit to xodéva
(oo 2).

[opadooiaxd, o npoypoupationds twv FPGA yivetaw péoa and tn yeron YAwcowy me-
prypopric vhixol (Hardware Definition Language-HDL). H ohoxAfpwon duwe autic g
otadactag elvon TOAD yEovoBOEA ol ATOTEETTIXY VLol VOV UNYAVIXO TOU 0oy OAELTAL XLElKS

e Yhdooeg udmhot emédou 6mwe 1 C/C++. T oawtdy oV AbY0, To TEheuTabar ypdvia €youy

3

Ylornoinon Xvotruatoc Avvouwaic Awyeioions uviunc oe FPGA uéow teyvixey Tgnlol

4 Emnédou Xivideonc
[A T O A
(I T e Y Y Y Y = I = =
— [L —
I cs CLB CLB CLB T
— [__ _—| —
— [} I
cLB CLB CLB CLB
— [l I
— [} I
]| cLs CLB CLB CLB
— E_ _] —
— [_ [
et CLB CcLB cs ||| |H
— [_ _] —
— 1 :] |
1 1 1 1 1 /1 1

— 1]
—H
.

Eyfua 1: Apyrtextovinn evoc FPGA

Column of e
dual-port RAM

Column of DSP48
(wide multiply-
accumulate) blocks

High speed serial - |

fransceivers

Extemnal
memory
controllers

Phase-locked loop (PLL)
clock generators

Yo 2: Apyttextoviny evog obyypovou FPGA

YXornoinon Xvotruatoc Avvouwajc Awxyeioions uviuns oe FPGA uéow teyvixddy Tgniol
Emnédov Xivieone 5

Test <:> —
Bench C, C++, Constraints/
Sy'stemC Directives

' —
———— Vivado HLS

Vivado Sys Gen

Yyua 3: Araduasta uhnhol emnédou civieone e to Vivado HLS

avantuyVel epyoreia udmhol emmédou olvieone (High Level Synthesis-HLS). To gpyoheia
QT UETATEETOUY XOOLXa a6 Wia YAOaoo udmiol emmédou, 6nwg etvan 1 C, oe YAWoGO Tept-
yeophc ulhixol (HDL). Autd o epyahelor topéyouv otov yeRot 1 Suvatdtnta vo ennpedoet
v mopaydeioo apyttextovixt| péoa and éva oo TNUa 0dNYHY Bektiotonoinone (optimization
directives). e auth) Simhoyatxd yio Ty uPniol emnédov olvieon Ya yenoylotowiel
7o Vivado HLS. 'Onwe gaiveton xon 610 oyfjuo 3 népa and Tig Teodlaypapés ToU GUOTHUATOS
xou Tic 0dnylec Behtiotonoinong, unopel va dnuoupy el xou to ceviplo eréyyou (test bench)
oe YAOooo udniol emnédou. Autd o apycio yenowonoleital Yo TV TEOcoUolkan Tou Gu-
oThaTog xou 6T0 UPNAS eninedo yia Ty Btopdwon Aoyxdv haddv (C simulation) odAd xou
oto eninedo viomoinone (RTL simulation) yu tn Si6pdwon Aaddv mov npoéxuay amd ™
dladwacio ohvieong tou gpyolelou.

Ta epyarela uPnrol emmédou clVleon PEEVOUV TO XOVTE TOUG XAABOUS TOU AOYLOUIXOD
(software) ot Tou LUAxoU (hardware) npoc@épovtac TheovexThuaTta xou aToug d0o. Ou unyo-
vixol Aoylopxo0 unopolv ue guxolio va yenowponotioouy ta FPGA cov emtoyuvtéc ulixol
(hardware accelerators) yia 0 YeNnYOpOTEEY EXTENEST] UTOAOYIOTIXE. OTOLTNTIXDY EQYACLAY,
EVG oL Unyavixol UAXo0 unopoly va auEACOUY TNV Aoy wYXOTNTd Toug uéoa amd Tn Yenomn
uac YAdooog uhnhol emnédou. o cuyxexpyéva, ta theovextiyato and tn cvvieon udmiod

emmédou elvon Tor e€g:

o H Snuioupylo plag epoapuoyhc pe T yeron woc YAOooog umiol emmédou anaitel TOAD
ANYOTERO YEOVO.

e H enodfdeuvon tne Aettoupylog pog epoppoyic unopel va mporypatonoiniel oto uPnio
eninedo xou xdde Aoyixd AGUoC UTOREL Vo oVOry VOPLOTEL XaL VO AVTIETWTLOTEL TOAD TiO

g0xoho ouYxpLTXd Pe pla Yhdooo meptypaphc Lhixol (HDL).

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
6 Emnréoouv Yovieonc

o Ayitextovinég ue uPnAy anddoon uropoly va dnuoupyNdoly ywelc va amontelton Wil
TepT TpooTdELd Ad TOV YENOTY), AmAd Xou UOVO UE T1) YXeNon TV 0dNYLOY BehtioTono-

ninonc (optimization directives).

e Méoa and g 0dnylec Pehtiotonoinong punopolv vo cuYxeLloly eUXOha BLPORETIXES

QEYLTEXTOVIXEC TNG (Blog EqapuoY g xou Vo Beedel 1 amodoTxdTER.

e Méoa and tnv cbvieon uPnhol emmESOL EVag UNyaVXOS UTTOREL Vo PTIAEEL HETAPEPOULO
%WOixa 0 omolog umopel va yenotponotniel yio Tov Tpoypauuations diapopetintdy FPGA

HOVO UE TNV oAAoyY) XATOLWY TORUUETEWY 0To gpyaieio alvieone udmhol emmédou.

E€outiag tne @lone twv FPGA, to Vivado HLS 6ev yroget va petoryhwttiosr oe HDL
onowadnmoTe dout| 1| dradixactia utoctneiletar and v C. Trdpyouv 8U0 xatrnyoplec TETOWWY
Boucv: auTég mou dev utooTneilovton xodhou xou auTéC Tou LooTnellovton Uepix®s. AuTtég

Tou dev unootneilovton etva:

o KAnoeag Yvotiuarog: Y¥ta FPGA dev undpyet Aettoupyixd obotnua. To Vivado HLS
oy voel auTtouaTa TIC To GUYVES XAAoES cuoThuatog (abort (), atexit(), exit(),
fprintf (), printf(), perror(), putchar() xa puts()) ywpic va napdyel xdmoto
Sl INVI]

o Auvvauuxd avuikefpeva: Otdnnote tpdxeiton va yetayottiotel oe HDL mpénet var etvon
YVwoTo) pey€doug Tn oYU TNG UETAYAWOTTIONS. AuTo €xel ooy anoTéAecuo XAHOELG

o6nwe nmalloc(), nalloc(), n free(), n new xau 1 delete vo unv vrootneilovion.
Avtéc mou unootnpllovton yepxde elvon oL e€AC:

o Aciktes: Aev unootneilovton mivaxeg and Oeixteg xar moAAEC mpdielc dievdivoewmy

(pointer arithmetic) dev eivar cuvdéoiuec.

o Yuvaptioas Mvnuns: H cuvapthoec memcpy () xou memset () unootneilovton oahhd

HOVO OTaY YenowonoloLy cTadepés TWES ouv oplouatd TOUC.

H amdB00n TV OTUEpVGY UTEPUTOLOYLG TV elvor Tne T4ENe Tov 101° tpdEewvy xavntic u-
rodtao torc avd Seutepdhento (PetaFLOPS), ondte awth tn otiyun ot unyavixol tou xA&dou
TpooTdOUV Vol XUTAGKEVAGOLY UTER-UTOAOYLOTES TTou Yol €y 0uV amddoaT TNS TAENG TV 1018
TedEewy xivnThc unodlacTodic ava deutepdiento (ExaFLOPS). Apxetéc oyetnée pehéteg
€youv del€el OTL Yoo var yivel auTtd Yo TEETEL Vo ULOVETHOOUUE EVal APYLTEXTOVIXO UOVTEAO
TOU EXUETOANEVETOL ToL TAEOVEXTHUAT TN ouviTopEng ulixol (hardware) xou Aoyiopxov
(software). T'o auTéV TOV O%0TG €YOLV TPOTAVEL OL ETEPOYEVEIC UPYLTEXTOVIXEC TOAADY €-
mrayLVTOY VAo, To epyaheio udmiold emnédou chvieong Bieuxollvouy Ty dnuloupyia
CUCTNUATOV PE TOANOUC ETMLTAUYUVTES UALXOU XOU YLOL UTO AVUUEVETOL VoL DLUBEOATIOOUY X0t
YoploTind pdro oTny emitevdn autol Tou oxomoL. Méow tng cUvieong udmiold emnédou, N
oyedlaom evée cuoTAuatog yivetar oe xdmowa YAhooo udnhol emnédou, onwe C/C++, pe

AmOTEAECUA VoL Aot TElTOn TOAD ALY OTEROS YPOVOC amd TNV oyedlaot evog cucthuatog o HDL.

YXoroinon Yvotriuatoc Avvauixric Awxyeipione uviuns oe FPGA uéow teyvixdy Tmiol
Emnnédov Yivieons 7

Axoua, Yoo and autd Tor epyaheio 1 am6B00T, 1 HATAVAAWST Loy VOGS, TO eUBadoV Tou TopEd-
YOUEVOU XUXADUOTOS X0l TO XOOTOG DLOPOPETIXWY EMUTOYUVTWV UTOREL Vo UTOAOYLOTEL TOAD
elxoNo[2].

Toa FPGA amoteholv plo eAxuoTixr) TAATQORUA aVATTUENS OEYLTEXTOVIXWY TOMNNATALY
ETUTOYUVTWY LAXOU, PEow TN eYYeEVOUC euehEiog EMAVATPOYQUUUATIONOY TOug Xadidg ol
NS EVEpYElaXnS Toug anddoons. 0T600, 1 0pYAVWoT TS UWVAUNG AmOTEAEL TOV XUPLOTECO
TEQPLOPLO TIXO TOPAYOVTOL OTIS OPYLTEXTOVIXES PE ToAhoUC emitayuvtég. O apriudc tov emta-
YUVTWV TOU UTOpoVY Vol TEOYRUUUATIOTOUY Tautdypova o éva FPGA eZaptdton dueoo amd
Toug dardéaipoug mopoug LAxoL. Tlpbogates €peuveg OE UG TAUATH TOAAATAGY ETUTAYUVTMY
LUAXOU €youv BelZel OTL 1) EVOOUUTWUEVT uvAun Tou FPGA Beopeleton oe pyeyalitepo Bodud
EVOVTL TV UTOAOITOV TOpwY LAXOU, owe To gAt-glon, to LUTs xou o DSPs. Autd oup-
Badvel ywatl ot egappoyéc mou vhomoobvton oe éva FPGA npénel va decpelouy uviun o tatixd
avdhoya Ue TNV yewdTepn Tepintwon ot amoutiioels [2].

Mio mpotetvopevn TeoGEYYIoN Lol TNV AVTWETOTICT AUTOL TOu TEPLOPLool elvol 1) Om-
wovpyior cuoThuatog duvouxic dyelplone uviune [2]. Ltnv napoloa dimhwpotixh epyacio
TpoTddnXE piot xouvoTopa apyLTEXTOVIXY SuvoxAc Blayelplong uviung oe FPGA. Xuyxexpt-

HEVOL OL GLVELCPORES TNE TPoLAS Epyaciog avapépovTal we eEAC:

o AZohoyhinxe xou enextdinxe plo BUBAoO N duvouxnic dlayelpnong uvAung tne Tedopo-
e Phoypagioc [2]. H hertoupyia authc tne Pihiodfixne ueretidnxe evdeleyme npo-

XEWEVOL v TpoTordoLy TovEC EMEXTACELS.

o Atcpeuvitnxay apyttextovxés Behtiotonoioelg péow tou gpyolelou Vivado HLS, A.
¥. pipeline, dataflow xou array partition, oe aAydprduouc auLEnuévne LUTOAOYIOTIXAC
TONUTAOXOTNTOC, Y. LOTOYEUUUA PNPLoXDY EOVLY. Xx0omo¢ auTtod Tou Briuatog Ytoy
n e€owxelwon ue to epyaieio Vivado HLS xou n xahOtepn xatavonon tng yedodoloyiog

unhol emnédou cbvieanc.

e Ilpootédnxe oto clotnua o alydprduog endpevou taupldopatoc (Next Fit). Avo-

Oy Onxay 800 evahhaxTixéc UAOTIOLACELS Tou alyopiluou auTov.

e Ilpootédnue oto obotnua o akydprduoc xohdtepou touptdopatoc (Best Fit). Tty
vhornolnomn tou alyoplduou, avartiydInxe uio evaAloxTixs) LAOTONCT TOU TUETVAL TNS

UTIAEYOVOUS APYITEXTOVIXHAC TOU GUGTAUATOS DLy Elplong UVAUNG.

e H npotewduevn npocéyyion allohoyhinxe ue TOMNATAG CeEVdpL AEtTOURYloC TEOXEL-
HEVoL var emaAnUeUTEL 1) AELTOLEYIXOTNTA TNG X Vo oLYxEWEel Ue TNV UTdpyoLCH aPYL-

TEXTOVIXT).

‘Onwe gaitvetar xou oto oyrua 4 1 ddixacio e cuvdeong udmiol emmédou dev peToBdA-
Aetouw Wiaitepa and) BiBAodrixn Suvauixic dayeiptong uvAune. Ot poveg ahhayég mou mpeEnel
VO XAVEL 0 YPNoTNE €lvol VoL CUUTIERLAGBEL TNV EQPUPUOYT) TOV XOOLXA TOU BLIYEIRLO T UVAUNG
X0l VO UETAOY NUATIOEL X3E OTaTIN:] BECUEUOT) UVAUNG Ao TO BuVoXG Tng toodlvopo. Ta

unolowna otddla (abvidear, mpocouolwon xou Lhotolno), etvon oxeyBoe T (Bio.

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou

8 Emnréoouv Yovieonc
__Standard VivadoHLSflow |~ DMM-Extension |
w T High level code Source-to-Source DMM
R C/C++/SystemC Code Modification Source
t 8 (Static allocation) for DMM-API code
= E
= B v ¥
(7]
Ll wasoms |/ Tl
S9 (High-level Synthesis) J‘ bl .
5'_8_ (Dynamic allocation)

Testbench Wrapper -
RTL Vivado Co-Simulation
—
(VHDL/Verilog/SystemC) \{cycle-accurate execution)j

‘(i smentation Implementation Strate
'k (ISE/EDK/Vivado) P gy

Eyfua 4: Teomononuévn diaduasta yerione touv Vivado HLS obugwva ye to Xvotnuo Au-
vopic Aayelplong uviunc(2]

Target FPGA
technology libraries

To apyiteExToVIXd TEOTUTO EVOC CUCTAUNTOC TOAADY ETLTAYUVIWY UALXOU TOU YETNOLLO-
molel Tov Suvopxd Blayelplo T uviung @aivetan oto oyfua 5. Ou diadéowec BRAM tou
FPGA ywpilovtar oe ouddeg dnutoupydvtag dtagopetixols owpols (heaps). O xdle owpodq
Sroryetpileton amd évav droyetptoth) wviunc (allocator). O xdde emttoyuvtic Lol uropel va
{nthoeL VAN omd oToloVENTOTE GwE6 dNhadn amd onotovdrrote dayelptoth. ‘Otav {nteiton
UVAUN amd Evay Blayelplo T auTog Beloxet, avdhoyo Ue Tov alyoprluo BEGUEUCTC IOV YPNOoL-
womotet, pla eAediepn Teployh TNG UVAUNG TOU Xt ETLOTEEQPEL Evay BEIXTN oTNY Tp®TN AEEN

TOVL.

O x&le allocator Swyeipileton éva C struct. Xto xdde struct (mhaioto xwdixa 3.2)
uTdpyEL xat To avtioTolyo heap mou etvon €vag mivoxac. Xtnv newmTrn vAoTolnoT yenolonoteiton
oxdpa évag ivaxag o onolog etvon évag yaptne bit (bit map) tou onolou To xdde bit avtiotouyel
oe éva byte tou heap. H tiuy) tou xdde bit Yo etvon 1 av to avticotyo byte oto heap eivon
deopeupévo evey Yo elvon 0 oe avtidetn nepintwon. Xto oyfua 6 mopoucidletar o TEOTOG
hertoupyloc tou allocator otav €yel {nndel n déopcuon evog axepaiou. O axépoog €yel
uéyedoc 4 byte, xou o allocator Seouelet 600 AE€elc axdua yior Vo amo¥nxedoEL HETABESOUEVAL
oYETXd pe auTh TNV dlodwacta. To yetadedouéva mou anovnxebovion ooV ETXEPUADA OTNV
aEYY) TNG KVAUNG TOL BECUEVTNXE, TEPLEYOLY To UEyedog NG BEoUEUONE AUTAS Xa TN VEoT
¢ otov bit map mivaxa. Agol Beedolv ooy 6 bit (oo ye o 0 otov bit map mivaxa
n avoltnon ehediepne puviunc ohoxinpdveto, To avtiototya bit popxdpovton (yivovtar ioa
ue 1), to petadedopéva eyypdgpovtar xou o allocator emotpéper évav deixtn oty apy)| e
TEPLOY NG TTOU BECUEDTNXE.

YXornoinon Xvotruatoc Avvouwajc Awxyeioions uviuns oe FPGA uéow teyvixddy Tgniol
Emnnédov Yivieons 9

Processor Subsystem __|[Accelerators Subsystem |

Pg;ﬁt:_,nrﬁt Accelerator 1 Accelerator 2
|
Host CPU
External | BRAMSs (On-chip Memory) |
Storage Statically Dynamically Allocated BRAM
(SATA) Allocated BRAM |
OoOoop |- s
OO0 C0 | 8 5
orcws || | BSRERE | 1HRE 41
G oooaa) | 3
COOOCOH | E
---------- Cooog) |3 3
oooog) || N
1 |
e Address/Data/Bus(es) 1,2,...,M |

@ \any-accelerators System Interconnection Network

Eyhuor 5: Apyttextovind TEOTUTO Yo GUGTAUATO TOAADY EMULTOYUVTMY UAXOU UETA omd TNy

eqapuoY” Tou cuoThuatog duvopxic Stayelplone uviunc(2]

Auth v vlonoinon yenotpomololv ot akyobpriuot mpotou Tapldopotoc (First Fit) xou
enéuevou touptaopotoc (Next Fit). O ahydprduoc First Fit Zexwvder xdde gopd va avalntdet
eheblepn pvAun amd Ty opyn Tou bit map mivaxa eve o olyoprduoc Next Fit Eexwvder and

70 onueto mou cToudTNoE 1 TEAeuTalo TOLU EXTEAEDT).

Y1n dedtepn vhomoinom xatapyeiton 1 €vvolor Tou bit map mivoxa xou yenoidonoieiton
70 (610 To heap yia va dnuoveyNdet n AMota pe ta ehebepa umhox pvriung. o autév to
AoYo0, Yenowwonoteltar plo emixepohida and Vo hé€eic uviung oe xdde eediepo umhox. Xtnv
emxeolido (oyfua 7), anodnxedetan to uéyedog Tou exdotote eheldiepou umhox ohhd xou
n Véomn Tou emduevou eAelicpou umhox. Xto oo 8 @ulveTal €vol GTIYULOTUTO TNG UVAUNG
Ywelg TNV epappoyn authc TNe emxepaiidac. Me padpo yedua gaivovtal to deopcuyéva byte
eve Ue Aeuxo eivon tar ehedlepa umhox. H ypron autrc tne emixeparidag yetaoynuotiCel 1o

CTIYMLOTUTIO oUTO 0TS PafveTon 0To oy e 9.
Y11 Seltepn vhomoinom xatapyeiton o bit map mivoxag xou xdde Swadixacio Tou oyetile-
ToL PE QUTOV, GAAG DNULOURYOUVTOL VEEG TEYVIXEC OEOUEUCTIC XU ATOOECUEVUCTC TNG UVAUNG.

Ou teyvinée autég elvan dppnuTol GUVOEDEUEVES UE TNV ETUXEPUAIDA TIOU YENOLUOTOLETOL OTa

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
10 Emnréoouv Yovieonc

1. int*A =HIsMalloc (1 * sizeof (int), i) ;
2. A[0] = DATA;

DMM Heap #i

AN Heap Address mapping to FrBMi %

' [<Alloc_size>] 0x00 ¢ P ppIng S

| [_Fremi | oxo1 < ¥

1 | DATA[31:23] | ox02 € ~

| |_DATA[22:16] | 0x03 € o

| [DATA[IS: 9] | ox04 < g
ol DATA[8: 0] | 0x05 € 1 mﬁ:'

| . " FreeBitMap index (FrBMi): 5 4 3 2 1 0! b

: . FreeBitMap #i T 0 0 ll_l 1]1] 1] 1] Reg0=63

: o~ 1 |0---0]0 0jo]o0]0]0fRegl=0

| it Il

| 1 _

0-°°-0] 0] O] 0] O] O] O] RegN=0
\/ ———————— 7 \/ ---------------- 7
LH; LF;

Yyfuo 6: Thomolnon 1: bit map nivaxag yio Tov €leyyo 1wV eAelicpwy %ol BEOUELUEVLV

byte tou cwpot [2]

NMumber of bytes Position of the Next Free block

Eyhuo 70 Aopn emixegaiidog twv eAediepwy Umhox uvAung yio Ty 8eTepn vhonolnon

1l N B

Eyua 8: Errypbtumo uviune mptv tnv dnuiovpyia tne Motog twv ehediepwy pmhox (Aeu-

xd:ehetiepa, padpo:deopeupéva)

eheO¥epa umhox. To onuovtind onueio auTdY TV TEXVIXOY elva Ta eEAc:

o Aéopevon uvnuns: Xto oyfua 10 @aivovtar ol 800 TEQITTMOELS Tou UTopel Vo Tpo-
x0Pouv xatd Ty déopeuon UvAUNG. Ltny TpmTn nepintwon 1 déoueuon yiveton (yxpet
uépoc) amd évo umhox to omnoio €yel peyahltepo péyedoc and autd mou éyer Intndel.

Ye auth) TV nepintwon, to uévo mou yeedletar and tov allocator elvon va evnuepdoet

YXoroinon Yvotriuatoc Avvauixric Awxyeipione uviuns oe FPGA uéow teyvixdy Tmiol
Emnnédov Yivieons 11

NN I AN

Eyhuor 9: Buymdtuno uvAune petd tnv dnuovpyio e Motac twv eAeblepmv umhox (Aeu-

x:ehelepa, yadpo:deopeupéva)

o~ =

Eyuo 10: Avodixacio déoueuong uviung

NV emxe@aAida e o véo péyetog Tou umhox. Xtn delTepn MeEpInTWoT 1) BECUEUOT) TTOU
Tpdxertar va parypoatonotnVel (Yxpl uépoc) xatahaufdvel ohGxANnpo To umhox ondTE 1|
EMXEPAAIDA TOU TRONYOLUUEVOL EAeOVEpOU UThOX TRETEL Vo EVUERMUEL XaUTAAANAAL Xou
vou Belyvel oto emduevo eleliepo umiox. e autd To onueio alller vo onueiwdel ot
AOY® TNG EMXEQOAIDAC oL UTdpyel oTny apy T xdde ehedlepou umhox, ol decuedoelc

yivovton amd to TEhOC TEOg TNV apYY| TOU xdE UTAox.

EXdxioto puéyeliog eAetilepov umdok: Emeidn) o xdde ehediepo umhox yernoiponoteiton
eTXEPOAISa 600 AEEewV TO eAdytoTo péyedog evog ehediepou pumhox elvar dLo AéEels.
‘Otav howndy pio déopeuon uviune ebvon xatd plo AEEN wixpdtepn and to pmhox (tpdhTo
pépoc tou oyfuatog 11) Yo mpémel va deopeutel odAdxhnpo to pmhox. Ouwe auth N

mhneogopla elvar YvwoTh uévo otov allocator xou mpenet va dratneniel ye tn Pordeia

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
12 Emnédov Yivieons

e,

Eyfuo 11: ‘Otav 1 déopeuor mou mpodxerton Vo yivel eivon xotd o AEEn wxpdtepn and to
umhox Va mpénel v deoueviel xou 1 AéEN mou neploelel. Av Bev ypnoulonoteital emxepaiida

0€opeuong TOTe Onuiovpyeiton plor Aoto ue autéc Tic AéCelg

Yyfua 12: 1n nepintwon anodéopeuonc: To umhox mou eheudepmveton (Yxpt) ouyywvelEToL

X0l UE TO TEOMNYOUUEVO OAAS o PE TO EMOPEVO EAelUEpO umAox

eVOC E0WTERIXOL UnyaviopoL. Av yenowonoteiton emxepoAido yior T BEGUELUEVA UTAOX

T6TE OMAG 0 0WOTOS oELiUoS TV byte amotnxedeta exel. Ye avtietn neplntwon (5ev-

YXoroinon Yvotriuatoc Avvauixric Awxyeipione uviuns oe FPGA uéow teyvixdy Tmiol
Emnnédov Yivieons

13

Yyhuo 13: 2n nepintwon anodéopeuons: To umhox mou ehevdepmvetar (Yxpl) ouyywvedeTol

MOVO UE TO eoUeVO eAellepo UThox

_J

oy

——
e N

Yyfua 14: 3n nepintwon anodéopeuonc: To umhox mou eheudepmveton (Yxpt) cuyywvedeTo

UOVO UE TO TRONYOLUEVO EAeVUEQO Umhox

TEPO WEPOC TOL oyfAuatoc 11) Snuovpyeiton pio Mota and autéc T <oy EnoLonoinTesy

Aéeic. T) dnuovpyio Tne Alotag autre, o xdde tétola AéEN anotnxeletan 1 o

NG EMOUEVNG «oyenolomointngy AEEng otn AloTa auTh.

o Amodéopevon urvnuns: Kotd tnv anodéoyeuor puvAung Yo meémel vo eheyydel av To

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
14 Emnédov Yivieons

ST N

B AE ——

Yyfua 15: 21 nepintwon anodéopeuone: To umhox mou ekeudepiveton (YxpL) Bev ouyywVe-

UeTon YE xdmoto yeitovixd eAediepo umiox

UTAOX TIOU EAEUVEPWVETOL TEETEL VO CUYYWVEVUTEL UE xdmoto yertovixd tou. 'Etol npo-
x0mTouy 4 mepintioels. Lty npdTn (oyAua 12) to umhox mou tpdxetton vor ehevdepwiet
TEETEL VoL CUYYWVEVTEL UE TO TEOMYOUUEVO X0t TO ETOUEVO eEAel¥epo pumhox. ‘Onwe gai-
VETOL X0l 0T0 oy o 12 ta Tplar umhox Yo yivouy €va. 3tnv emixeqoiida Tou vEou umiox
Yo amodnreutel To adpoloua TV UEYEVOY TWV TEWWOY UTAOX TOU GUYYWVELTNXOY XAl 1)
Yéomn tou enduevou ehetdepou unhox ot Aota. Ou undloineg TepITT®oEL elvan oL e€Xg:
TO UTAOX TOU EAEVVEQWVETAUL TPETEL VAL CUYYWVEVUTEL UE TO EMOUEVO UTAOX TNg AloTog
(oo 13), To umhox mou eAeUDEPMVETUL TEETEL VO CUYYWVEUTEL UE TO TEONYOUUEVO
e Motog (oyfua 14) xou to umhox mou ehevdepdveton amhd mpootideton otn Aoto

xwelc vo ouyywveutel ue xdmolo Ao (oyhue 15).

Ta cevdpla mou Snuovpyinxay v TNy Tewpopatxy) alloAdynor g BBAodixng yo-
cllovtan ot 4 xatnyoplec cOUPOVA UE XATOLL XOWVA TOUC YAULAXTNELO TIXJ.
YTV Te®T XATNY0opio TELQOUATMY AVAXOLY TA TLO ATAS GEVIQLNL TTOU YENOHLOTOLAUNXAY.

To 4 mewpdpato TG xotnyoplag auThAg elvon Tor €ng:
o Ileipapa 1: Yevdplo e 4 0eopéucels xal 4 amOOEGUEVCELS.
o Ileipaua 2: Yevdpio e 10 deopcloelg xon 4 anodecUeUoELS.

o Ileipapa 3: Xevdplo pe 256 emavokrpeg and 2 deoyeloelc otadepol peyédoug xa 2

amOdECUEVTELS.

o [leipapa 4: Xevdpo pe 128 enavokrpeg and 4 deoyeloelg otodepol yeyédoug xan 4

amOdECUENTELS.

YXornoinon Xvotruatoc Avvouwajc Awxyeioions uviuns oe FPGA uéow teyvixddy Tgniol
Emnédov Xivieone 15

Simulation Time
logarithmic scale

10000000000
1000000000

100000000
10000000
u First Fit
1000000 = Next Fit
100000 Best Fit
10000
1000
100
10
1
1 2 3 4

Test

Time (ps)

Yyfuo 16: 1n oudda mewpopdtonv: Xpbvog Tpocouoiwons oe Aoyapduixy| xhipaxo

FF

16000
14000
12000

10000 u First Fit
8000 u Next Fit

6000 Best Fit
4000
2000 -
0
1 2 3 4

Test

FF

Yyfuo 17: 1n opdda Telpoudtomy: 6ECUEVTT) YAT-GAOT

LUT
25000
20000

15000 m First Fit

5 B Next Fit
= 10000 Best Fit
N -
0
1 2 3 4

Test

T

Eyfuo 18: 1n opdda mewpopdtwv: 6éoyevon LUT

And 1o oyfua 16 BAémouye OtTL oTo Tp®To TElpaua o Best Fit moapovoidlel onuavtind
Behtwpévn anédoon oe oyéon e Toug dhhoug dvo ahyopiduous (1000 gopéc mo ypryopos
ano tov First Fit xou 1300 gopéc mo yeriyopoc and tov Next Fit). Ou Seopedoeic uviung

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
16 Emnédov Yivieons

DSP48E

| First Fit

15 m Next Fit
Best Fit
10
) .
0
1 2 3 4

Test

DSP48E

Yyhuo 19: 1n opdda mewpopdtwv: déoucuon DSPASE

BRAM

9.2

9
8.8
88 m First Fit
84 2 Noxt Fit
8.2 Best Fit

8
7.8
7.8
7.4

1 2 3 4

Test

BRAM (18K)

Yyfuor 20: 1n opddo mewpopdtwy: déoueucn umhox RAM

Tou yivovton o autéd To Telpopa etvor Alyec oto mAlog, aAAd oYETIXG YEYIAES, OTOTE QUTH)
UEYSA Blapopd oTNy anodooT) Twv 800 LVAOTONCEWY OQElheTol 0TS YpovoBopes Slodixacieg
evnuépwong twv bit tou bit map nivaxa. ¥to deltepo melpapo 1 Blaopd TG ATOB00NE TWV
0L0 LAOTIOLACEWY elvor UixEY) YiarTl Tor uEYEDT TV decUedoEWY Vol TO UXEd XL 1) EVIUEEWOT)
Twv bit Tou bit map nivoxa mpoyyoatonoleiton oe TOAD Arydtepouc xOxhoug. Tao dhha B0
TELPAUATO Y ENOWOTOIO0Y UXEES BECUEVCEL UVAUNG Hixeo) Xt otodepol uey€doug xou OTee
elvow puoxd ou odyodpriupor First Fit xou Next Fit umepioydouv évavtt tou Best Fit. O
amdAuTog aptiude Twv @ht-gron (oyfue 17) xo v LUT (oyfua 18) mou yenotuonotolvtos
e€aptdton oe peydro Bodud and to melpoua mou extedelton. ‘Ev yével n vhomoinomn tou Best
Fit deoyever xatd 18% Aydtepo phn-gron, 5% hyotepa LUT ond tov First Fit, xou 13%
Mybtepo LUT and tov Next Fit. Ovunhox RAM (oyfua 20) mou yenotponotodvton omd Toug
First Fit xou Next Fit elvon xatd pla nepiocodtepeg yiotl ypewdlovton tov bit map nivaxa o
omnolog €yet péyedog (oo ue 1o % tou heap. Ta DSP48E mou amoutodvton etvon tor {Btar 2o yia
i Teelc Lhontotioelc (oyhue 19).

H Seltepn xatnyopla melpaudtwy mepthopu3dver tetpduato o onoia extehobY TARYOC Oc-
ouedoewy uviune otadepol peyédoug. Ou amodeoucloelg oe auThv TNV xatnyopia yivovton

e xdmoto mdavotnto amotuytag. To netpduata authg e xatnyoplag etvan ta e&hc:

YXornoinon Xvotruatoc Avvouwajc Awxyeioions uviuns oe FPGA uéow teyvixddy Tgniol
Emnédov Xivieone 17

Simulation Time
Logarithmic Scale

10000000000
1000000000

100000000
10000000
u First Fit
1000000 w Next Fit
100000 Best Fit
10000
1000
100
10
1
5 6 7 8

Test

Time (ps)

Yyfuo 21 20 oudida mewpopdtov: Xpbvog Tpocouoiwons oe Aoyapduixy| xhipaxo

FF
25000
20000

15000 m First Fit

m Next Fit
10000 Best Fit
5000
0
5 6 7 8

Test

FF

Yyfuo 221 21 oudda TELROUATOY: OECUEVTT) PAIT-PAOT

o Ileipapa 5: Xevdpo ye 10 emavorrec and 16 deoueoeg otadepol ueyédoug xou 16
anodeopeloelg pe mdavétnro 50%.

e Ileijpapa 6: Yevdpio pe 30 emavarfec and 8 deoueloelg otadepod yeyédoug xan 8
anodeopevoelc ye miovotnta 10%.

o Ileijpapa 7: Xevdpio pe 50 emoavarierc and 8 deoyeloelg otadepod peyédoug xan 8
anodeopevoelg ye 30% mdavdnro

o Ileijpapa 8: Yevdpio ye 50 emoavarec and 8 deoueloelg otadepod yeyédoug xar 8
anodeopeloelc pe 10% mdoavdtnro.

e auth) Ty xatnyopio tewpaudtov o Best Fit mapoucidleton mévte @opéc mo yeryopog
and toug dhhoug dVo ahyopiuoue (oyfua 21). Autd ouuPaiver yiati o tpénog mou avaln-
telton otov Best Fit 1 xatddAnin ekediepn mepioyr| uvAung elvon mohd o amodoTixds xal

aw&dveTon 1 ToyOTNTA Tou 600 Tar Bedopéva o UvAun awgdvovtal. O yedvog eXTENEOTS TWV

Ylornoinon Xvotruatoc Avvouwaic Awyeioions uviunc oe FPGA uéow teyvixey Tgnlol
18 Emnédov Yivieons

LUT

45000
40000
35000

30000))
25000 m First Fit

m Next Fit
20000 Best Fit
15000
10000
5000
0
5 6 7 8

Test

LuUT

Lyhuo 23: 21 opdda mewpopdtwy: déouevorn LUT

DSP48E

70
60

50

40 o First Fit
m Next Fit

30 Best Fit
20
10
0
5 6 7 8

Test

DSP48E

Ly 24: 21 opdda mewpoudtwy: déoueucr DSP4SE

BRAM

| First Fit
m Next Fit
Best Fit
5 6 7 8

Test

9.2

8.8
8.6
8.4
8.2

BRAM (18K)

7.8
7.6
7.4

Yyfuor 25: 21 opddo tewpopdtwy: déoueuct urhox RAM

ahyopituwy First Fit xou Next Fit efvor o {do¢ yia tor metpdparta 6, 7, xou 8 yiati to eheie-
PO XOUMATIAL UWVAUNG TOU BNULOURYOUVTAL YE TNV TEPOd0 TOu Ypbvou €youv To (Blo péyedoc.
‘Etot 1 avalrtnon ehediepou umhox Ue 10 anattoOuevo péyedog ohoxAnemveTal xol oTig 500
TEPIMTWOOELS 0PXETY Yeryopa. O uévog mopdyovtog xoaduc tépnong Twv ahyoplduny autdy e
auThHY TNV TepinTwon elvon 1) Sladixacieg evnuépwong Tou Tivaxa bit map mou eivan xowég. O

amdAuTog aptiude Twv @ht-gron (oyfua 22) xo tov LUT (oyfua 23) mou yenotuonotolvtos

YXoroinon Yvotriuatoc Avvauixric Awxyeipione uviuns oe FPGA uéow teyvixdy Tmiol
Emnnédov Yivieons 19

Simulation Time

Logarithmic Scale

1000000000000
10000000000

100000000 = First Fit
B Next Fit

1000000 Best Fit

Time (ps)

10000

100

1

Test

Yyfuo 26: 31 oudda TElpopdTov: Xpovog Teocouoiwons oe Aoyapduixy| xhiuaxo

e€aptdton oc Yeydro Badud and to melpopa mou extehettan. o awtdv Tov Adyo oTo melpoa 5,
Tou To owua g for elvon peyalbtepo o oyéon e To uTOAOLTA, ToEATAEETOL it OTUAVTIXY
avénon Twv Topwv Tou deoucvovton. ‘Ev yévelr duwg, n viomoinon tou Best Fit Seouclet
xotd 21% Aybtepa phim-ghon and tov First Fit, xatd 18% Aydtepo phin-ghon ond tov Next
Fit xou 10% My6tepor LUT ané tov First Fit, xou tov Next Fit. O umhox RAM (oyfua
25) mou yenowonotolvton and toug First Fit xow Next Fit efvan xatd pla tepiocdtepes yiorl
xeewalovton Tov bit map mivaxo o omolog €xel uéyedog (oo pe to % Tou heap. To DSP48E
ToL omontoUvTon efvar ot {BLor xon yio TS TEELS VAoTotfoels (oyua 24).

H vpltn xotnyopio tewpoudtwy nepthopfdver tewpduota ta ool exteholy TAloc deope-
Voewv uviung petofantod peyédouc. O anodeoueloelg o auTAY TNV xatnyopla YivovTton Ue

xdmota midovotnTa amotuylag. Ta mewpduato authc Tng xatnyopiog elvor To e€ng:

o Ileipaua 9: Xevdpio pe 140 enovorfdec and 2 deopedoelc tuyaiou peyédoug xou 2
anodeopevoelc e 25% miavdtnra. To tuyaio péyedoc tne xde déopeuvong npoxinTel

and pio opotdpopgn xotavour) oto Sidotnua [5, 256].

o Ileipapa 10:Xevdpio ye 84 emavorfelc and 5 deouctoeic Tuyalou peyédoug xa 5 ano-
deopevoeic pe 10% miavdtnra. To tuyaio uéyedoc tne xdie déopeuonc npoxinTtel and

wlo opolduopen xatavouy| oto didotnua [5, 256).

Auth) 1 oudda TElpoUdTWY TERIEYEL TELRUOTO oL Uotdlouy To TOAD Ue uiol TEoryUaTIxy
nepintwon oe oyéon ye Tic nponyolueveg ouddec. H déopcuom tuyaiou peyédouc dnutovpyet
eheliepa xoppdTIol BLPORETIXOU PeYEDOUC oTn uvAun xou 1 uxer) Tavotnto eheutépmwong
TV etV 00NYel oE TOAD LYNAOTERPA TOGOGTA Yenotonoinone e uviunc. O Best Fit etvou
446 xou 2952 popéc o yeryopog amd tov Next Fit, eve etvor 258 xou 2052 qopég mo yYpryopog
and tov First Fit oto nepdpota 9 xou 10 avtiotoya (oyfua 26). To dwpopetind péyedoc
Twv unhox avayxdlouv toug First Fit xou Next Fit va mporypatonoiolv 6ho xou yeyohitepeg
avalnthoelc otov bit map nivaxa to onolo xotavaradver apxetolg xOxhoug. O First Fit elvou

o yehyopog and tov Next Fit (x1.5) yiotl ot mo nokhég Beoueloeic Wviung cLYXeVTehvovToL

Ylornoinon Xvotruatoc Avvouwaic Awyeioions uviunc oe FPGA uéow teyvixey Tgnlol
20 Emnédov Yivieons

FF

9000

8000
7000
6000
5000
4000
3000
2000
1000

0

9 10

Test

m First Fit
m Next Fit
Best Fit

FF

Dyfuo 27: 31 oudda TELRUUATOVY: OEGUEUTT) PALT-(QAOT

LUT

16000

14000
12000
10000 = First Fit
8000 = Next Fit
6000 Best Fit
4000
2000
0
9 10

Test

LuT

Eyfuo 28: 3n opdda Tewpopdtwy: 6éouevorn LUT

DSP48E

25

20

15

10

5

0
9 10

Test

o First Fit
B Next Fit
Best Fit

DSP48E

Eyfua 29: 3n opdda mewpopdtoy: 6éoueuon DSP4SE

OTO EVOL AXQEO TNG UE ATOTEAECUA VAL OTUloVEY0UVTAL UEYUADTERA XEVE GTO dANO dxpo Tne. 'Etol
urdpyel peyohitepn miavotnta Yo Tov First Fit vo mpaypatomoijoel tn déopcuon puviung
ywelc va ypetootel vo héZer oe ohdxhnpo tov mivaxa bit map [11]. O andhutog aprdude twyv
phm-ghor (oyfua 27) xo twv LUT (oyfua 28) mou yenowponowotviar eZuptdton o€ UeYEAO
Borduod and o melpopa mou exteieiton. ‘Ev yével duwe, 1 viornoinorn tou Best Fit deopelel xatd
14% Wybtepa phn-gphon and Toug dhhoug dvo ahyopiduog, 3% hydtepo LUT ané tov First

YXoroinon Yvotriuatoc Avvauixric Awxyeipione uviuns oe FPGA uéow teyvixdy Tmiol

Emnnédov Yivieons 21
BRAM

25

20
g 15 ® First Fit
2 Next Fit
Z 10 Best Fit
o
a

5 -

0

9 10

Test

Eyfua 30: 3n opdda Tewpopdtoy: déoueuon uthox RAM

Fit o 5% hyotepa LUT ané tov Next Fit. Ot unhox RAM (oyruo 30) mou yenouonotodvto
om6 toug First Fit xou Next Fit etvon xotd pio mepiocotepes yiatt ypeewdlovtoun tov bit map
mivoxa o omolog €yel uéyedog ico ye to % tou heap. H onuoavtiny ad&non otov apriud tov
umhox RAM mou mapotneeiton xat yia Toug Teelg ahyoplduoug oto melpopo 10 ogeiletar ot
XPMoT TGV Yo TIC Tuyaieg TIWéS Tou ypeeldlovTal Yiol TNV BECUEUCT) Xou TNV ATOOECUEUCT).
To DSP48E mou amottodvton efvon tor {Stor xou yar Tic Tpele Lhonotfioels (oyfua 29).

[Mo 0 Snuiovpyla TV TEWUUITWY aUTAS TS xaTnyoplag yenoworotinxe cov tpdTuTO
éva Telpoa o éyel Sruoupyndet and tov Per-Ake Larson xou tov Murali Krishnan yio tnv
aZLOAGYNOT BUVOXY BLOYELRLOTOV UVAUNG TopdAAnhey apyttextovixov([6]. To nelpopo autd
(mhadoto xwdixa 4.12) dwrtneel évav mivaxa and deixtec xou oe xdde enavdindm tou xHelou
Bedyou tou emhéyet Evay Seixtn Tuyaio, ehevdepddvel T uviAun otny onofo delyvel (free ())xon
ot ouvéyela extehel xawvolpta Séopeuon uvAung Tuyaiou peyédouc (malloc()). Eneid ouwce
to Vivado HLS 8ev ymogel vor petayAwttioel o YAOCOH TEpLYpapric LALXOU To TElpaol auTO
enoxpi3ng, dnuoupyHinxe éva mapduolo melpopua To 6molo elvan xatdhAnio yia cbvdeon oe
FPGA (mhaico x@dixa 4.13). To neipdporta e xatnyoplag authg ebvan mogoAAayég TG

cuviéoung exdoyrc Tou Telpduotog Tou Larson.

o Ileipaua 11: Yevdpio Larson pe 20 emavarrideic tou while Bpodyou. Anhady) 40 deoye-

boe uviune tuyaiou yeyédoug xou 20 anodecueloelC.

o Ileipapa 12: Yevdpro Larson ye 50 emavolfelc tou while Bpdyou. Aniady 70 deoye-
boeg uviung tuyaiou yeyédoug xou 50 amodecueloels.

o Ileijpapa 13: Yevdpo Larson pe 100 emavarrdeic tou while Bpdyou. Aniadr 120

deopevoelg pviung Tuyatou peyédoug xar 100 anodecueloelc.

o Ileipaua 14: Yevdpo Larson pe 200 emavorideic tou while Ppdyou. Anhadrh 220

deopevoelg uviung Tuyatou peyédoug xar 200 anodecueloELs.

Ye autiv v mepintwon o Best Fit nopouvoidletar 42 gopéc mo ypryopog and tov First

Fit xou 50 gogéc mo yeryopog and tov Next Fit (oyfua 31). ‘Onwg xar otic nponyolyeves

Ylornoinon Xvotruatoc Avvouwaic Awyeioions uviunc oe FPGA uéow teyvixey Tgnlol
22 Emrédov Xivieone

Simulation Time
Logarithmic Scale

10000000000

1000000000
100000000
10000000 o
W First Fit
1000000 = Next Fit
100000 Best Fit
10000
1000
100
10
1
12 13 14

Test

Time (ps)

Ly 31: 4n opddo meElpoudTwy: Xpdvog Teocouoinwong o Aoyoptduxr xhipoxa

FF
84000
62000
60000
50000 First Fit
| First Fi
w 56000 m Next Fit
o 54000 Best Fit
52000
50000
48000
46000
11 12 13 14
Test

Yyfuo 32: 4n oudda TELRUUATOV: OEGUEVTT) PALT-(PAOT

LUT

105000
100000

95000
m First Fit

90000 o Next Fit
Best Fit

LuT

85000
80000

75000

Test

Yyfuo 33: 4n opdda mewpopdtwy: déouevon LUT

YXornoinon Xvotruatoc Avvouwajc Awxyeioions uviuns oe FPGA uéow teyvixddy Tgniol
Emnédov Xivieone 23

DSP48E

140

120
100
80 W First Fit
m Next Fit
Best Fit
40
20
0
" 12 13 14

Test

DSP48E
[=2]
=1

Eyfuo 34: 4n opdda tewpoudtwy: 6éouevorn DSP4SE

BRAM

24.2

24
23.8
20 m First Fit
st FI
;:; ® Next Fit
) Best Fit
23
22.8
226
224
1 12 13 14

Test

BRAM (18K)

Yy 35: 4n opddo melpoudtwy: déoueuct umhox RAM

Yloroinon Yvotiuatoc Avvauixiic Awxyeipione uviunc oe FPGA uéow teyvixdv Tignlou
24 Emnédov Yivieons

TEQUTTOOELS aUTO oupPBaivel yioti oL TEAEELS, TOU AMAUTOUVTOL OO TNV UEYLTEXTOVIXY| TTOU YEN-
owwomotel o Best Fit, yio tnv ebpeor tou xatdhiniou umhox, elvar moAd AydTeERES and AUTES
ToL amoutoUVTAL amo TNV aEyLTEXTOVIXY TwV First Fit xau First Fit. Ilopatnpolue enlong éti o
XeOVOog owEAveToL Ypouuxd avdhoya pe To TAdog Twv enavaipewy tou Bedyou while. T
Toug AGYoug Tou avapépinxay GTNY TEoTYOoUUEVT oudda etpoudtwy o First Fit mapoucidlel
xou WAL, xohOTepn anddoon and tov Next Fit. O andiutoc aprdude tov ghm-glon (oyfua
32) xau v LUT (oyfua 33) tou yenotporototviar e€aptdrtar o€ yeydho Podud and to meipo-
o tou exteletton. H vhomoinomn tou Best Fit Seoueter xotd 10% Aybdtepa phn-ghon and tov
First Fit xou 15% Ay6tepo @hin-gron and tov Next Fit, 9% Ayotepa LUT oand tov First Fit
xou 16% Ayotepa LUT and tov Next Fit. Ov umhox RAM (oyfua 35) mou yenoylonolodvto
an6 toug First Fit xow Next Fit elvon xotd pio mepiocodtepee yatl yeewdlovton tov bit map
nivaxa o omolog €yel uéyedog (oo ye to % tou heap. H onuavtxy ad&nomn otov aprdud twy
umhox RAM mou mapatnpeeiton xon yior Toug Teelg ahyoplduoug oTny opddo auty ogetheton oTN
YENON TUVAXWY Yl T TUYALES TWES Tou YpeetdlovTon Yo TNV BEGUEUOT) XL TNV ATOOECUEVTT).

To DSP48E mou amoutovtan efvon o {Slar xou ylar Tic Tpele vhonotfoels (oyfua 34).

AéEeic KAeoud

FPGA, Avvopury Awyeipion MvAune, HLS, Alyéprduoc Ipidtng Tonodétnong, Ai-
yoprduog Koibtepne Tonotdétnong, Ahyopriuog Enduevne Torodétnone

Abstract

Breaking the exascale barrier has been recently identified as the next big challenge
in computing systems. Several studies, showed that reaching this goal requires a de-
sign paradigm shift towards more aggressive hardware/software co-design architecture
solutions. Recently, many-accelerator heterogeneous architectures have been proposed to
overcome the utilization/power wall.

FPGAs form an intresting solution for many-accelerator architectures. Their flexibility
and programmability enables the implementation of several types of hardware accelerators
compared to traditional ASICs. However, their memory organization forms a significant
bottleneck in the performance of many-accelerator architectures. Previous studies showed
that static memory allocation - the de-facto mechanism supported by modern design tech-
niques and synthesis tools - forms the main source of ”resource under-utilization” prob-
lems. A recent approach extends conventional High Level Synthesis (HLS) with dynamic
memory allocation/deallocation mechanisms to be incorporated during many-accelerator
synthesis.

This diploma thesis a) extends the allocation/deallocation mechanisms in order to fur-
ther optimize the efficiency of the memory reservation to the application runtime memory
requirements, b)develops a new architectural approach of the free-list organization and
c¢) implements two alternative allocation algorithms in synthesizable C code (Next Fit,
Best Fit). The proposed framework is seamlessly integrated with the industrial strength
Vivado-HLS tool and its effectiveness is evaluated with a set of memory intensive appli-
cation scenarios. The analysis showed that the proposed architectural approach delivers
significant speedup over the previous implementation (up to 40x) in addition to lower
FPGA resource utilization (-21% flip-flops, -10% LUTSs, -10% block-RAMs).

Keywords

FPGA, High Level Synthesis (HLS), Dynamic Memory Management (DMM), DMM-
HLS, Vivado HLS, First Fit, Next Fit, Best Fit, Memluv

25

ITepieybueva

Acknowledgements

YAormoinor Xvoctuatog Auvvapixnc Atayelpiong wviung o FPGA péow
Texvixoyv YTnioL Ennédouv XOvieong

Abstract

IMTepieybpeva
Katdloyog Eynpatwy
Listings

1 Introduction

1.1 Introduction to FPGA
1.1.1 Early History of Programmable Logic
1.1.2 Latest Trends e
1.1.3 Areasofuse
1.1.4 Architecture
1.1.5 Benefits of the FPGA
1.2 Thesis Overview e
1.2.1 Chapters Organization
2 FPGA Design Flow and High Level Synthesis
2.1 Introduction e
2.2 Developement Phases
2.2.1 Designo e e e e
2,22 Simulationo oL
223 Synthesis
2.2.4 Implementation
2.2.5 Programming Lo
2.3 High Level Synthesis o
2.3.1 HLS Compiler

25

28

31

34

35
35
35
37
39
40
44
46
46

28

Ilepieydueva

2.3.2 HLS Design Methodology

3 Dynamic Memory Management Framework for HLS

3.1 Imtroduction.
3.2 The DMM-HLS Framework

3.2.1 Dynamic Memory Management in Vivado-HLS

3.2.2 DMM-HLS Overview
3.2.3 DMM-HLS Details
3.3 The DMM-HLS Enhanchement
331 NextFit.
332 BestFit

4 Experiments and Results

4.1 Testing Environment
4.2 Experimental analysis
4.2.1 First group of experiments
4.2.2 Second group of experiments
4.2.3 Third group of experiments
424 Larson Test oo

5 Thesis Conclusion

5.1 General Remarks
5.2 Future Work

Bibliography

Katdhoyog Xynudtwy

=W NN

10
11

12

13

14

15

16

17

18

19

20
21

Apyrtextovixyevoc FPGA . . o o000
Apytextovinn evog olyypovou FPGAo 0000000
Auadixacto udmiod eminédou obvieong ye to Vivado HLS
Teononoinuévn dwdixacio yerone tou Vivado HLS clugpwva pe to Xootnua
Avvapixfc Awyelplone uvAunc[2] o Lo
ApyttexTovind TEOTUTO Y10l GUGTAUATO TOAAGDY ETUTOYUVTMY LALXOU UETE oo
™V EQappoY Tou cuoTAUATOS duvouxic dtayelptone uvAunc(2]
Thomoinon 1: bit map nivaxag yio Tov EAeYy0 TV eEAeUVEQMY Xl SECUEVPEVLY
byte tou cweol [2] . L. Lo
Aoyt emxepaiidog Twv eAedicpwy umhox uviung ylo Ty dedtepn vlonoinon .
Yrrypdtumo uviung mewv tny dnutoupyia tne Alotag twy ekediepwy umhox (Aeu-
HOEREVVEQA, UOPADEOUEVUEVAL) .« « « v v v o
YTyWOTUTO PvAuNg METE TNV Onuiovpyia g AloTag Tewv eAedicpwy umhox
(heuxdieheviepo, WOOPOBECUEUUEVAL) . .« o o o L L
Awodiootor OECUEVONG UVAUNG « « « « o v o
‘Otav 1 8éoueuon mou mpdxerton va yivel etvon xatd pla AEEn wxpdtepn ond To
umhox Yo mpénet vor deopeuiel xan 1 AEEN Tou eptoeel. Av dev ypnotuonoleitan
ETXEPOAISA BEGUEVOTC TOTE dnutovpyelton plor AMota e autég Tig Aé&eg
1n mepintwon anodéopevons: To umhox mou eheudepveton (YxpL) oUYYWVE-
UETOL X0 UE TO TEOTYOUUEVO ARG XAl UE TO ETOUEVO EAEVVEQO UTAOX
21 nepintwon anodéopevone: To umhox mou ehevdepdivetar (Yxpl) oLy YwVE-
UETOL UOVO UE TO EMOUEVO EAEVUVEQO UTTAOX o o o v oot oo L
31 nepintwon anodéopevonc: To pmhox mou ehevdepdivetar (Yxpl) ouyywVe-
UETOL UOVO UE TO TEONYOUUEVO EAEVVEQO UTAOX o o o o o oot L
21 mepinTtwon anodéopevonc: To umhox mou ehevdepdveton (Yxpl) Sev ouyYw-
VEUETOL UE XATOLO YELTOVIXO EAEVVEQO UTAOX
1n oudda metpopdtev: Xpodvog Tpocouolwong o Aoyaptduxh xAlyaxo
1n oudda TERUUATOY: DECUEUOT) PMT-QROTL o o oo o
In oudda mewpopdtoyv: déopevony LUT . . . o oo oo oo
1n opddo metpopdtwy: déoyeuon DSP48E o000
1n oudda metpopdtov: déopeuon umhox RAMo

21 opdda mepapdTwy: Xpdvog Teocouolnong ot Aoyouptduxn xhlpoxa

29

30 i
22 21 oudda TEWOUATOVY: OEGUEUCT) PAT-(AOTo 17
23 21 oudda mewpopdtwv: 0éouevon LUT ..o o oo o000 o000 18
24 27 opdda mewpopdtwy: déoyevon DSP48E . .. L oo oo o000 oo 18
25 21 oudda mewpopdtwy: déoyevon umhox RAMo o000 00000 18
26 31 oudda melpopdTrY: Xpovog Tpocopoiwons o hoyapduim xhipoxo 19
27 31 oudda TEWROUATOVY: OECUEUDT) PAT-(AOT o o oo 20
28 3n opdda mewpopdtwv: déoyevon LUT .. oo oo 20
29 3n oudda mewpopdtwv: déoyevon DSP4A8Eo oo o000 20
30 3n oudda mewpaudTev: 6éoueuon umhox RAMo o000 21
31 4n oudda melpoudTev: Xpdvog Tpocouolwong oe Aoyapuduxr xAlyoxo 22
32 4rn ouddo TEROUATOY: BECUEUOT) GMT-QAOTL o o o v oo 22
33 4n oudda melpopdtwy: déopevon LUT . . o o oo 22
34 4rn oudda melpopdTey: déopevon DSP4ASE . . L L Lo 23
35 4n oudda mewpaudtewv: 6éoueuon umhox RAM . . . oL oo 23
L1 PLA[A] ..o 36
1.2 PAL (7] . oo 37
1.3 All programmable system-on-chip: Zynq series[17] 38
1.4 Simplified Hustration of a logic cell 40
1.5 Basic FPGA Architectureo o oL 41
1.6 Modern FPGA Architecture 0oL 42
1.7 Example 4-input LUT [1] o 42
1.8 D flipflop structure [15] L 43
1.9 Structure of DSP Block [15] Lo o 44
1.10 Structure of an addressable shift register [15] 44
2.1 FPGA Developement Phases [12] 50
2.2 Design Time vs Performance for different designs 51
2.3 Simulation Levels[12]o oo o 52
2.4 Synthesis stages[12]o L 52
2.5 Implementation steps[12] Lo Lo oL 53
2.6 Example code for three operations[15] 55
2.7 Execution of example code on a Processor[15] 55
2.8 Execution of HLS code on an FPGA[15] 56
2.9 HLS synthesis output for code in listing 2.1 [14] 59
2.10 HLS synthesis output for code in listing 2.2 [14] 60
2.11 HLS synthesis output for code in listing 2.2 [14] 60
2.12 Dataflow optimization [14] Lo Lo Lo 61
2.13 Clock period and margin [14] L. 63
2.14 Loop Unrolling details [14] L 65
2.15 Function and Loop pipelining behaviour [14] 65
2.16 Array partitioning[14] L. o 66

2.17

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Loop merging example[14] 66
Memory Bottleneck of Kmeans clustering algorithm([2] 70
Extended Vivado HLS flow with DMM implementation[2] 71
Many accelerator FPGA based systems architecture enchanced with DMM-

HLS framework[2] 71
Example memory snapshot Lo 103
Free Block’s header structure 103
Best Fit’s memory snapshot o L. 104
Unused words scenario 105
Allocation process 105
First Free Scenario Lo 106
Second Free Scenario 106
Third Free Scenario 107
Fourth Free Scenario 107
First group of experiments: Simulation Time in logarithmic scale 127
First group of experiments: Number of flip-flops 127
First group of experiments: number of LUTs 127
First group of experiments: Number of DSP48E 128
First group of experiments: Number of block RAMs 128
Second group of experiments: Simulation Time in logarithmic scale 134
Second group of experiments: Number of flip-flops 134
Second group of experiments: number of LUTs 134
Second group of experiments: Number of DSP48E 135
Second group of experiments: Number of block RAMs 135
Third group of experiments: Simulation Time in logarithmic scale 138
Third group of experiments: Number of flip-flops 138
Third group of experiments: number of LUTs 138
Third group of experiments: Number of DSP48E 139
Third group of experiments: Number of block RAMs 139
Fourth group of experiments: Simulation Time in logarithmic scale 146
Fourth group of experiments: Number of flip-flops 146
Fourth group of experiments: number of LUTs 146
Fourth group of experiments: Number of DSP48E 147

Fourth group of experiments: Number of block RAMs 147

Listings

2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
4.1
4.2

Demonstration code for parallel operations 59
Demonstration code for pipelined operations 59
Configuration File[2] o Lo o 75
Struct MemLuvCore[2] L 80
Struct MemLuvStats[2] Lo 81
Struct MemLuvConf[2] Lo 82
Function MemluvSetBitFreelist[2] 82
Function MemluvClearBitFreelist[2] 82
Function MemluvTestBitFreelist[2] 83
Function MemluvSetFreelist [2] L. 84
Function MemluvClearFreelist()[2] 85
Allocation Wrapper([2] L 88
First Fit Implementation[2] L. 90
Function CurMemluvFree[2] oo 95
Function MemluvCalcPtrDistanceFromBase[2] 96
Function CurMemluvFreeBody[2] 97
Next Fit MemLuvCore 98
Next Fit implementation 99
Next Fit’s implementation of function CurMemluvFreebody 102
Changes in struct MemluvCore for Best Fit 108
Best Fit’s initialization oo oL 108
Best Fit’s CurMemluvAlloc o oL 109
Best Fit’s implementation o oo oo 111
Best Fit’s allocation mechanism 113
Function find previous unused 115
Best Fit’s CurMemluvFree() Lo 116
Function MemluvCalcPtrDistanceFromBaseyf() 116
Function CurMemluvFreeBody bf() 118
Function chk for unused() 119
Function freememory () 121
Test Bench’s main function[2] Lo 123
Test 1 . . . o o o 124

34 Listings
4.3 Test 2 . . . o e e 125
4.4 Test 3 125
4.5 Test 4 e e 126
4.6 Test b e e 129
4.7 Test 6 e 130
4.8 Test 7 e 131
4.9 Test 9 e e 132
4.10 Test 9 L e 136
4.11 Test 10 o e 136
4.12 Larson Test [5] 139
4.13 Test 11 o o e 141

Chapter 1

Introduction

1.1 Introduction to FPGA

The Field Programmable Gate Array (FPGA) is a type of integrated circuit that can
be reprogrammed many times after fabrication resulting in a different operation each time.
Nowadays, FPGAs consist of so many logic cells, that a large variety of software algorithms
can be implemented. The traditional proccess of programming an FPGA ressembles this
of an Integrated Circuit (IC) but the device’s nature offers great advantages. FPGAs’
performance is similar to that of Application Specific Integrated Circuits (ASICs) but the
cost of programming them is much lower. Their ability to be easily reconfigured gives the
opportunity to quickly fix erroneous behaviours and leads to a more adaptive hardware

that can be adjusted each and every time to the needs and restrictions of the market. [15]

1.1.1 Early History of Programmable Logic

FPGAs are closely related to the developement of the integrated circuit which took
place in the 1960s. The first precursors of FPGAs were the cellular arrays that were made
as arrays of interconnected simple logic cells with fixed functionality. This technology
evolved and Maitra cascade was created. This circuit was an one-dimensional variable cell
function array. Each cell of this array could operate in one of 16 different functions of
two or fewer variables and thus the ability to change the functionality of a circuit after its
fabrication was been created. [8]. Following the Maitra cascade, the most important steps
towards FPGAs were the cutpoint array and the cobweb array [8]. The cutpoint array
consisted of a number of vertical Maitra cascades. Each cell supported 8 combinational
functions but the connections between the cells were fixed. The cobweb array was a cell
array in which both the functionality of the cells and the interconnection structure could
be changed via its parameters. [8].

The next important step towards the FPGAs was the invention of read-only memories
(ROM). ROM was an electronic device in which binary information could be permanently
stored by properly configuring the interconnection structure of its internal elements. After

this configuration, the information remains ”saved” in the device even after the power

35

36 Chapter 1. Introduction

Inputs Programmable OR

vIvRy

A

JUUUUU

VAVAY

Outputs

%

Programmable Interconnect

Figure 1.1: PLA [4]

supply is cut. The closest predeseccors of modern FPGAs are the programmable ROMs
(PROMS). These devices were created by the manufacturers without any data within
them, so a user could configure them according to his/her needs with an electric pulse
applied to a specific port of the device. More specifically, two types of the PROMs were

most important.

The first was the programmable logic array (PLA). As shown at figure 1.1, this device
consisted of one AND plane and one OR plane, which were both programmable. The
second was the programmable array logic (PAL). As it is shown at figure 1.2, this device
consisted of an AND plane, which could be programmed and a fixed OR plane. If the
function to be implemented can be expressed with only two levels of logic, these devices

provide a perfect solution.

The first static memory-based FPGA, which allowed both logic and interconnection
manipulation via a stream of configuration bits was proposed by Wahlstrom in 1967[13].
Technical difficulties, though, with regards to the area of a device using an SRAM, post-
poned the invention of the first FPGA untill 1984. This year, the co-founders of Xilinx,
R. Freeman and B. Vonderschmitt, invented the first modern era FPGA which consisted

of 64 logic blocks and 58 inputs and outputs. [4].
This was the start of the FPGA market, which was then populated by a significant

number of vendors, including Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm,
Plessey, Toshiba, Motorola, and IBM. The number of vendors has diminished over the

yars and now the market is dominated by Xilinx and Altera whose combined market share

1.1 Introduction to FPGA 37

AND gates inputs
Product 12 3 4 5 & 7 8 9 10
term _l
1
2 _—
(e - S— —
4
s 5
6
f:—' >
-
8 F
4
L—3
10
1 E %) F,
12
fl_|>

I 2 3 4 5 6 7 B 9 10

Figure 1.2: PAL [7]

amounts to ¢. 67% of the total market. This market has seen an impressive growth and
it is estimated that its size will be equal to $8.2 billion by 2020 [9].

1.1.2 Latest Trends

During the last two decades, FPGAs developed dramatically achieving both a great
improvement in their performance and an extension of their capabilities. Important archi-
tectural changes took place and, nowadays, FPGAs have grown from being a simple glue
logic component to representing a complete System on Programmable Chip (SoPC) com-
prising on-board physical processors, dedicated DSP hardware, on-chip memory and high-
speed I/0. For example, Xilinx’s Zynq®)-7000 familly combines the concurrent nature of
an FPGA device with an ARM ®) high end microcontroller and its features (memory and
memory controlers, I/O and peripherals, hard-core implementations of 32-bit processor),
as shown at figure 1.3[16]. This architecture helps developers to create complex designs,
which combine serial with parallel execution leading to faster throughput and latency. In

addition, by allowing embedded designers to design in a familiar ARM environment, they

38 Chapter 1. Introduction

Processing System

Flash Controller Muitiport DRAM Controfler
NOR, NAND, SRAM, Quad SP1 DDR3, DOR3L, DDR2
. S.zil’ll . AMBA® Interconnect AMBA Interconnect
n
I ¥{H I
2%
CAN
I 2 I Cortex™- A9 MPCore
. UART I 32/32 KB I/D Caches
GPID
. 2x SDID I
with DMA
. 2x USB .
with DMA
. 21 Gigk '
with DMA Security
AES, SHA, RSA

=
=
=
=
=
g
@
-
=]
=4
=
&

Programmable Logic PCle Gen2
(System Gates, DSP, RAM) 1-8 Lanes

2x ADC, Mux,
Thermal Sensor

Multi-Standard 1/0s (3.3V & High-Speed 1.8V)

Multi-Gigabit Transceivers

Figure 1.3: All programmable system-on-chip: Zynq series[17]

can benefit from the time-to-market advantages of an FPGA platform compared to more

traditional design cycles associated with ASICs.

Another important feature added to modern FPGAs is the ability of run-time recon-
figuration. This feature is used when the functionality of an FPGA should be changed
while it operates. Run-time reconfiguration (RTR) might affect either only parts of a
design (partial RPR) or the whole chip (full RPR). Run-time reconfiguration can reduce
power consumption and area impact of a design, especially if it can be modularized. For
instance, if a device should be both a transmitter and a receiver but not done simulta-
neously, each module can be loaded when needed. The standard FPGA process would
require both modules to be implemented on the device resulting in more space and power
consumption, because logic components still consume energy even when they remain idle.
[10]

1.1 Introduction to FPGA 39

1.1.3 Areas of use

In the beginning, FPGAs were used only for ASIC prototyping and in designs that the
time-to-market was really important. In the second case, the designers would replace the
FPGA with an equivalent ASIC at the first opportunity.

As their size, capabilities and speed increased, their areas of use rose respectively. The
introduction of dedicated multipliers into FPGA architectures made them suitable choices
for Digital Signal Processing (DSP) applications. The full system-on-chip approach creates
a solution that is applicable to a wide range of engineering fields.

Nowadays, FPGAs are used in the following technological fields:

o Aerospace and defense: especially Avionics & UAV, Military Communications &
Public Safety Radio, Missiles and Munitions, Secure Solutions, Situational Aware-
ness, Space, Small Form Factor and Battery Powered Software Defined Radio Public
Safety & Military Mobile Radios and 24 Channel Radar.

o ASIC Prototyping: ASIC prototyping and emulation have been boosted with the
invention of all programmable System on Chip (SoC). Using this technology, the
need for multi-chip partitioning is eliminated, risks for developing large ASIC designs

are mitigated and power consumption is reduced.

o Audio: modern FPGAs are a perfect choice for DSP designs required in audio pro-
cessing, compression, interfacing and conversion. Their parallel nature also facilitates
the simultaneous and efficient proccess of multiple audio channels, which leads to

excellent performance and quality.

e Automotive: a relative new field that FPGAs are used. Their many to implement
driver assistance through real-time image analytics (object and pedestrian detection,
lane departure etc.). Besides they are key element of intelligent transport means

which can distribute video and data around the vehicle.

o Consumer Elelctronics: the good time-to-market feature that FPGAs support and
the smart vision applications that can be implemented, gives the opportunity for
FPGA based systems to meet the requirements of the rapidly evolving field of con-

sumer electronics.

e Datacenter: FPGA based solutions are designed for high-bandwidth, low-latency
servers, networking, and storage applications in order to bring higher value into

cloud deployments.

e High Performance Computing: modern FPGAs are used in High Performance Com-
puting as software accelerators (taking over a portion of the computationally inten-
sive tasks of a software application which runs on a CPU) or as hardware accelerators

(providing high throughput data processing at a fraction of GPUs’ power).

40 Chapter 1. Introduction

out

1|
|
-
=

L;I'J
s
C
=

=9
|

carry oul

Figure 1.4: Simplified Ilustration of a logic cell

e Industrial: FPGAs are also used to enhance factory automation frameworks and

industrial imaging applications.

e Medical: FPGAs are used in ultrasound, Computerized Tomography Scanners, Mag-
netic Resonance Imaging (MRI), X-ray, Positive Emission Topography (PET) and
Surgical Systems because they can support the increasing needs in processing power

of large image files.

o Smarter Networks both wired and wireless: smarter networks need the ability to
efficiently and quickly adapt to changes in network traffic demands, configuration,
network utilization, and market requirements. For the implementation of all these
abilities, reprogrammability is needed so that FPGAs are a perfect choice for this
field.

e Smarter Vision: FPGAs are the right choice for the majority of computer vision

algorithms, which are computationally intensive but can be easily parallelized.

[17]

1.1.4 Architecture

An FPGA consists of the following elements:

e Look-up table (LUT): This element performs logic operations.

e Flip-Flop (FF): This element stores the result of the LUT.

e Interconnection structure: This structure connects elements to one another.
e I/0O ports: These ports move data from and to the FPGA.

The combination of these elements results in the basic FPGA component, which is
the Configurable Logic Block (CLB). As shown at the figure 1.4, a typical block can

1.1 Introduction to FPGA 41

' I
] CLB CLB cLB cLB N
: CLB CLB CLB CLB :
: CLB CLB cLB CcLB :
: CLB CLB CLB CLB :
k J

Figure 1.5: Basic FPGA Architecture

be created using 4-input LUT, a full adder (FA), and a D flip-flop (DFF). Each FPGA
manufacturer defines its own basic structure, which may be different depending on the
applications that each FPGA device targets at. The resulting structure is shown at figure
1.5, where the basic building blocks are organized in an array in which the interconnection
structure beetween them can be changed in order to perform various functions required
by the design.

As mentioned at 1.1.2, modern FPGAs combine their basic structure along with ad-
ditional computational and data storage blocks in order to increase the efficiency of the

device. These elements are:
¢ Embedded memories for additional data storage
e High-speed serial transceivers
e Off-chip memory controllers
o Multiply-accumulate blocks

The resulting architecture is shown at figure 1.6.

42 Chapter 1. Introduction

o e T
=t DR
1228400000000
ppooofoooooooon

pooooooooooon

ppooooooooonoooom
p000000000000000 0
(P 0n0000n0 g
!
[

Column of
dual-port RAM

Column of DSP48
(wide multiply-
accumulate) blocks

-

Extemal
memory
controllers

|

JI0EI0000000 e
|

00000000000

High speed serial
transceivers

Phase-locked loop (PLL)
clock generators

Figure 1.6: Modern FPGA Architecture

el

a'b'c'd’+ abed + abc’'d’= 1000 0000 0000 1001 = 0x8009

Figure 1.7: Example 4-input LUT [1]

1.1.4.1 LUT

A LUT is the basic building block of an FPGA and it is responsible for implementing
any logical function of N inputs. In the context of combinatorial logic, LUT is a truth

1.1 Introduction to FPGA 43

set
FF
— dn d_out —
— clk_en
— >k
reset

Figure 1.8: D flip-flop structure [15]

table. It consists of 2 SRAM output bits, which can return all the possible outcomes of
the input values according to the function that is implemented. As shown at the figure
1.7, a LUT can be made by connecting the memory cells to multiplexers, and depending
on the input values, only one cell is enabled and returned as output. At the figure the
16:1 (i.e. 2%:1) multiplexer is implemented as a tree of 2:1 multiplexers. LUTs can also be

used as data storage elements.

1.1.4.2 Flip-Flop

This is the FPGASs’ basic storage element. It is always paired with a LUT to assist
logic pipelining and data storage [15]. As shown at the figure 1.8, this component includes
a data input, clock input, clock enable, reset and data output. If the signal clk_en is 1,

the goal of the flip-flop is to propagate the input value to the output in every clock pulse.

1.1.4.3 DSP48 Block

This is the most complex computational element embedded in Xilinx FPGAs and is
shown at figure 1.9. This element is an Arithmetic Logic Unit (ALU) that consists of three
stages of operations. The first stage is an add/subtract, the second is a multiplier and the

third is an add/subtract/accumulate engine.

1.1.4.4 Memory Elements

Instead of the LUTs which were discussed above, FPGAs include memory elements
that can be used as random access memory (RAM), read only memory (ROM) or shift
registers.

The BRAM is a dual port memory module embedded into the FPGAs. It is used
to store data. Xilinx’s FPGAs can support two sizes, 18K or 36K bits. Owing to the

44 Chapter 1. Introduction

48-Bit Accumulator/Logic Unit

B -

>

+*

A - Y

> > D

25x18
> Muttiplier
b > Pre-adder
>

c |_‘ Pattern Detector

>

XidaT

Figure 1.9: Structure of DSP Block [15]

:

i1/

nsn

Figure 1.10: Structure of an addressable shift register [15]

fact that this is a dual port element it can support up to two operations simoultaneously
allowing for parralel accesses to different memory locations. These BRAMs can be used
to implement both RAMs (when data should be read and written) and ROMs (when data
should be read and not modified).

The shift register as shown at figure 1.10 is a chain of D flip-flops sharing the same
clock, in which the output of each flip-flop is connected to the data input of the next
flip-flop in the chain. This circuit is usually used for simple delay of data, for grouping of

serial data so that they can be processed in parallel and for stack structures.

1.1.5 Benefits of the FPGA

When compared to processor architectures, FPGAs offer great parallel processing ca-
pabilities. In a processor, the performance of the assembly produced by a high level
language’s compiler depends largely on the location of the data to be processed in the
memory hierarchy. When the data to be processed is located in the cache memory, a load
or a store operation needs significant fewer clock cycles compared to those needed when
the data is in the main memory of the hard drive. As a result, software engineers spend
a considerable amount of time in order to create algorithms, which raise the number of

cache hits by exploiting the spatial locality of data. Furthermore, in processors, the code

1.1 Introduction to FPGA 45

is run sequentially and even independent operations cannot be computed simoultaneously.
The FPGA, however, is inherently a parallel proccessing device and every algorithm to be
implemented must be reformed for parallel processing. When an FPGA is programmed,
it can create more than one Arithmetic Logic Units (ALUs) that can operate in parallel,
resulting in a more efficient architecture than that of single processors, which have only
one ALU. Another important fact concerning FPGAs is that every time that they are
programmed, a custom memory architecture is created that consists of storage banks as

close as possible to the point of operation.

These actions are performed by the hardware designer manually or by the High Level
Synthesis (HLS) tool automatically so that the capabilities of the FPGA are used (HLS
will be discussed in depth in the next chapter). Either the HLS compiler or the hard-
ware designer tries to adapt every design to its FPGA-effective through the processes of

scheduling, pipelining and dataflow.

1.1.5.1 Scheduling

Scheduling is the process of identifying the data dependencies beetween different op-
erations in order to decide which of them can be executed in parallel. A designer should
analyze dependencies beetween operations and group together those that can be executed

in the same clock cycle.

1.1.5.2 Pipelining

Pipelining is a design technique, which allows multiple operations to overlap. In this
proccess, the computational circuit is divided to a chain of indepentent stages which can
be executed in the same cycle. The output of each stage is the input of the next one.
Using registers, the output of each stage is fed to the next one. As a consequence, in
every clock cycle a different operation can start its execution and the throughput can be

significantly increased.

1.1.5.3 Dataflow

Dataflow is another digital design technique, which enables the parallel execution of
functions in the same program. Two scenarios are well suited for the dataflow technique.
The first is when two functions need independent data sets for their execution and do not
communicate with each other. In that simple case, the functions can be executed without
any difficulties, in parallel. The more complex case is when one function feeds its results
to another function (consumer-producer scenario). This scenario is more complicated but

the paralellism is still feasible however not as efficient as the first one.

46 Chapter 1. Introduction

1.2 Thesis Overview

”Breaking the exascale barrier has been recently identified as the next big challenge
in computing systems. Several studies, showed that reaching this goal requires a de-
sign paradigm shift towards more aggressive hardware/software co-design architecture
solutions. Recently, many-accelerator heterogeneous architectures have been proposed to
overcome the utilization/power wall” [2].

FPGAs form an intresting solution for many-accelerator architectures. Their flexibility
and programmability enables the implementation of several types of hardware accelerators
compared to traditional ASICs. However, their memory organization forms a significant
bottleneck in the performance of many-accelerator architectures. Previous studies showed
that static memory allocation - the de-facto mechanism supported by modern design tech-
niques and synthesis tools - forms the main source of "resource under-utilization” prob-
lems. A recent approach extends conventional High Level Synthesis (HLS) with dynamic
memory allocation/deallocation mechanisms to be incorporated during many-accelerator
synthesis [2].

In this diploma thesis:

e A dynamic memory management library of the recent literature was evaluated and
extended. The functionality of this library was studied thoroughly in order to pro-

pose possible extensions.

e Architectural optimizations such as pipeline, dataflow and array partition were ap-
plied to computationally intensive algorithms via Vivado HLS. This step targeted
at the familiarization with Vivado HLS tool and at the better understanding of its
methodology.

e Next Fit algorithm was added in the DMM-HLS interface. Two different implemen-

tations of this algorithm were created and analyzed.

e Best Fit algorithm was added in the DMM-HLS interface. For the implementation

of this algorithm an alternative approach of the manager’s core logic was developed.

e The proposed architecture was evaluated by a variety of test cases in order to verify

its functionality and to compare its performance with the existing implementation.

1.2.1 Chapters Organization

This diploma thesis is organized according to the following structure:

e Chapter 1: In this chapter an introduction to FPGAs is presented. This introduction
starts from past inventions that led to modern FPGAs. Then, it demonstrates the
technological fields in which modern FPGAs are used. Finally, their architecture is

described and the benefits that they offer are presented.

1.2 Thesis Overview 47

Chapter 2: This chapter describes the FPGA design flow, i.e. every step that is
required for the programming of an FPGA device, and then gives an insightful view
in High Level Synthesis process. First, Vivado®) HLS’! logic is described. Then, the

recommended design methodology that leads to more efficient designs is analyzed.

Chapter 3: In this chapter the Dynamic Memory Management (DMM) interface is
shown. First, the basic functionality is analyzed and the rest of the chapter explains
the exact implementation of the DM manager for every different feature (First Fit,
Next Fit, Best Fit).

Chapter 4: This chapter consists of two sections. In the first one, the test cases that
were created are analyzed. The second one, presents the simulation and sythesis
results that were yielded by these experiments. An analysis of these results is also

included in this chapter.

Chapter 5: This is the last chapter and it concludes the findings of this study and

highlights the future extensions arising from the use of the proposed methodologies.

Lthe tool that is used in this diploma thesis

Chapter 2

FPGA Design Flow and High
Level Synthesis

2.1 Introduction

Traditionally, FPGA developement process is divided in the following stages: design,
simulation, synthesis, implementation and programming. As shown at figure 2.1, these
stages may overlap or interact whith each other. A brief description of each stage is given
in section 2.2. Lately, however, the field of High Level Synthesis (HLS) has been developed.
HLS can transform a specification of a high level language such as C, C++ or Java into a
Register Transfer Level (RTL) implementation that can be synthesized in an FPGA. As
shown at figure 2.2a, the time needed for an optimized version of RTL usually exceeds the
time limit of the project. But figure 2.2b shows that the design time of a project through

HLS is minimized and meets the time requirements [15].

2.2 Developement Phases

2.2.1 Design

Design is the initial stage of the FPGA developement process. This stage can be a
conversion of a schematic to Hardware Description Language (HDL), various modifications
to an existing HDL design or even the creation of a new design entirely from ”scratch”.
During this process, many decisions should be made. First, a ”design package” should
be created. This describes the system’s requirements and it is the outcome of predesign

activities. The most important of them are:
e Creation of architecture

e The partitioning the design into sections and the i efficient assignment of them

efficiently to the developers

e Decision on what the system should do through clear and unambiguous requirements

49

50 Chapter 2. FPGA Design Flow and High Level Synthesis

Gate-Level Simulation

-

Register Transfer Level Simulation

Simulation

Functional Simulation

Lo

Edit Design

HDL, Schematic, or

Design Combination Synthesis

Edit Design

Efficient & Program File

Condensed Logic

Implementation Programming

A

Edit Design

Figure 2.1: FPGA Developement Phases [12]

e Creation of timing and other diagrams

e Decision on the design format (HDLs, Shcematic, Combination)

e Decision on the Manufacturer (Xilix, Altera, Quicklogic etc.) and the actual device
part number (depending on the field of the application, on environmental conditions,

temperature range and design size)

e Decision on the tools that should be used in this process. Design format, cost, and
the fact that a design is shared among developers are the major considerations at

this stage.

The next step in design process is the evaluation of the ”design package” by the devel-
opers. This step is important because the developers need to understand thouroughly what
firmware ! should be made. Any ambiguities should be clarified and the ”design pack-
age” should be always updated with all the changes that occur through the development

proccess.

'HDL is a language that describes hardware and it is written in general by hardware engineers.

2.2 Developement Phases 51

Performance
Performance
+
FPGAwith FPGAwith HLS
RTL
GPU GPU
DSP
DSP
FPGA with +
x86 x86
RTL
+ [] FPGA +
with HLS
L]
pse Typical Design Time Limit DSP . . -
x86 — vp on Tin ® |___Typical Design Time Limit
® in a Software Project Y in a Software Project
GPU o ey
[]
@ Firstworking version Optimized version Time ,'
" + xisees @ Firstworking version <§= Optimized version Time

X13467

(a) Design Time vs Application Performance (b) Design Time vs Application Performance
with RTL Design Entry with Vivado HLS Compiler

Figure 2.2: Design Time vs Performance for different designs

2.2.2 Simulation

Simulation is the process that verifies that the design operates as it should. Specifically,
during the simulation, stimulus ? is applied to the design and the output is observed. The
stimulus can be either manually given to the simulator or produced automatically through
graphical or HDL test benches. As shown at figure 2.3, the simulation process can take
place after design, synthesis or implementation which creates three levels of simulation.
The first level uses the RTL that was produced by the design stage in order to tackle
logic and syntax errors. This level of simulation does not contain timing information.
Functional simulation uses the either the netlist or the code along with some timing
information generated automatically by the synthesis tool. It checks whether the design is
altered by the synthesis process. The last and most accurate simulation level uses the code
or the netlist that was created by the implementation tool. This simulation uses actual
timing information of the signals and hence it is the only one, which can demonstrate

timing problems of a design [12].

2.2.3 Synthesis

Synthesis is the process, which takes a design and associates it with internal FPGA
resources. It can be decomposed into three stages as shown at figure 2.4. The first is
the design check and resource association, in which the design is checked for syntax and
synthesis errors and every code’s logical abstraction, such as mathematical operators, is
replaced with the relevant logic elements. The next stage is the optimization. A synthesis
tool first tries to adapt the design to the existing hardware and then it uses some algorithms
in order to find and remove redundant logic, and to decide which will be the best timing
policy and which will be the clock’s speed. The last stage is the technology mapping, in

which the optimized version of the design is mapped to the resources that the specific

2input data signals.

52 Chapter 2. FPGA Design Flow and High Level Synthesis

Edit design to correct timing & other errors, change logic & ...

|

|

|

|

|
y
I

I

|

|
|
| | . —
p Yy Simulation
: : RTL]
a Lol
Design |1 Recompile after design edit
\ J
v Resynthesize
| | h Functional _
Synthesis Recompile after design edit — o
| l >
J
‘ Raimplemeﬁl
D GateLevel

:_ Implementation Recompile after design edit

——

Figure 2.3: Simulation Levels[12]

Design Check & Resource Association

+ Syntax Check
—-| « Synthesis Check
» Associate Design to Logic Cells/Blocks

Design

Optimization

* Reduce Logic
« Eliminate Redundant Logic
* Make Design Smaller & Faster

Technology Mapping

\ » Connect Design to Logic
* Predict & Add Timing Estimates

Design Netlist
!

» Create Output Reporis & Netlists

Figure 2.4: Synthesis stages[12]

device offers. The synthesis stage can produce netlists (both functional simulation and

design netlists), status reports (hardware resources usage, clock and timing information,

critical paths, warnings, errors etc.) and schematic views that depict the design with

generic symbols, such as adders, multipliers, counters, AND gates and OR gates [12].

2.3 High Level Synthesis 53

Implementation

I
Netlist
e : Translate Map 1—»‘ Place & Route
I

Figure 2.5: Implementation steps[12]

|
W | Programming File
Generate Program FiIe‘J t >

2.2.4 Implementation

During the implementation, the physical layout of the design is determined and the
netlist is mapped to FPGA resources, which are interconnected to its internal logic and
I/0O resources. This process is usually broken into three different steps as shown at figure
2.5. Translation is the first step, during which the netlist is combined with the design
constraints and a new file is created. This file will be the input to the next step, which
is known as mapping. During this step, the logic of the design is mapped to the FPGA’s
logic cells, the I/O cells and to other resources. This step produces Native Circuit Design
(NCD) file that is used by the next step, known as place and route. Place and route
process interconnects the design as it is stated in the NCD file and, if told so, it produces
the gate level simulation and timing files. The next step takes the output file from place

and route and generates a bitstream file, which is used to program the FPGA [12].

2.2.5 Programming

The last developement phase is programming. Programming is the process of config-
uring the device with the bitstream file, which is generated by the implementation phase.
Download cables, as they are called, connect the device with the workstation and pass the
bitstream file from the workstation to the FPGA. This process takes as input a bitstream
file and produces a programmed device. Some devices support In-System Programming
(ISP); they can be programmed whithout being removed from the rest of the system.
Designers should be very careful while programming a device because errors introduced

in this phase are not easily spotted and tackled [12].

2.3 High Level Synthesis

High level synthesis transforms a specification given in a high level language (C, C++,
Java) into an RTL implementation, which can be synthesized in an FPGA. HLS is a bridge
beetween software and hardware domains and both can benefit from its advantages. First,
hardware designers can take advantage of the productivity benefits that a higher level of
abstraction offers. HLS also provides software developers with the capability to accelerate

computationally intensive parts of their algorithms using the FPGA parallel architecture.

54 Chapter 2. FPGA Design Flow and High Level Synthesis

Vivado®) HLS that is used in this diploma thesis, transforms only C specifications (C,
C++, SystemC). The major benefits of Vivado®) HLS design methodology are:

The high level of abstraction that saves crucial time needed for implementation
details

e The verification of the functional correctness can be done to the high level of abstrac-
tion and every bug can be identified and fixed more easily compared to hardware

description languages.

e The optimization directives can create specific high performance hardware imple-

mentations.

e Many different designs can be evaluated by using different optimization directives.
This enables an easy design space exploration and increases the likelihood of finding

the optimal solution.

e Using the HLS, a designer can create portable C code, which can be easily retargeted

at a different device just by changing an HLS’ parameter.

The two processes which are the beating heart of HLS are scheduling and binding.
Scheduling phase decides which operations are executed in each clock cycle. It takes into
consideration the clock frequency, timing information from the target device’s technology
library and any user defined optimization directives. The clock period shows how many
operations can be completed in every cycle so, if a design is mapped to different devices,
the scheduling decisions can be different. Binding determines which hardware resource
will be used for each scheduled operation. HLS, during the binding process uses specific
information about the target device in order to create the optimal solution.

Another important phase of the HLS is the extraction and implementation of control
logic and I/O ports. Function arguments create ports in the final RTL design and arrays
are implemented by default as block RAMs 2. HLS creates the required data and addresses

ports and any chip-enable or write-enable signals. [14]

2.3.1 HLS Compiler

Vivado®) HLS is a compiler, which provides an environment similar to those for ap-
plication developement. It shares components with compilers for interpretation, analysis
and optimization of C/C++ programs. The main difference beetween Vivado®) HLS and
a common C/C++ compiler is the execution target of the application. Vivado®) HLS’
nature enables software engineers to optimize their code for throughput, power, and la-
tency. HLS compiler analyzes a program in terms of operations, conditional statements,

loops and functions [15].

3other options are available through optimization directives.

2.3 High Level Synthesis 55

A[i] = B[i] * C[i]
D[i] = B[i] * E[i]
Fli

i
= A[i] + DI[1i]

s N

-

Figure 2.6: Example code for three operations[15]

Read B[i]
Read C[i]
B[] * Cli]
Write A[i]
Read E[i]
B[i] * E[i]
Write D[i]
Ali] +Dfi]
Write F[i]
0 1 2 3 4 5 6 7 8 Time

Figure 2.7: Execution of example code on a Processor[15]

2.3.1.1 Operations

Operations refer to both the arithmetic and logic elements that contribute to the
computation of a resulting value. Comparison statements are excluded because they are
examined in section 2.3.1.2. HLS creates a targeted architecture for each algorithm in
C/C++ unlike the general purpose compilers, which must stick to a specific architecture.
This gives more leeway to the HLS designer who can now affect application performance
in terms of throughput, latency and power. If the code of figure 2.6 was executed in a
processor the steps would be completed sequentially because the architecture has only one
EXE stage as shown at figure 2.7. On the contrary, even HLS’ default behaviour analyzes
the dependencies of the code, creates a custom memory hierarchy, which contains the data
as close to the point of its consumption and finally produces better results as shown at
figure 2.8 [15].

2.3.1.2 Conditional Statements

Conditional statements are the control flow statements implemented by if-else or case

statements. In a processor, branch operations introduce idle cycles in the execution

56 Chapter 2. FPGA Design Flow and High Level Synthesis

Read BIi]
Read CIi]
B(il * C(il
Write Afi]
Read E[i]
B * Efl
Write DIi]
Alll + Dfi]
Write F[i]
0 1 2 3 4 5 6 7 8 Time

Figure 2.8: Execution of HLS code on an FPGA[15]

pipeline because the condition must be calculated before the fetch of the next instruc-
tion. In an FPGA, however, all the possible circuits are created and a branch is just the

selection beetween two different routes. Therefore their impact is significantly less[15].

2.3.1.3 Loops

Loops are a common programming construct and they are well supported by the HLS
compiler. In a processor compiler, the iterations of the loop are sequentially executed,
which means that one iteration starts only when the previous one has been completed.
The standard behaviour of Vivado@®) HLS is the same but optimization directives allow the
HLS designer to create pipelined architectures, which result in less computational latency
and increased input data rate. When the HLS tries to achieve this results, it resolves
data dependencies by altering the operations of the loop body and resource contentions
by instantiating more copies of the resources. In case it cannot complete this process, it

asks the user for algorithm changes.

2.3.1.4 Functions

HLS can fully parallelize the execution of functions using the dataflow optimization.
This option instructs the HLS compiler to create independent hardware modules, that are
capable of concurrent execution and self-synchronization during data transfer. Hence, by

sacrificing a small amount of hardware resources, significant speedup can be achieved.

2.3.1.5 Dynamic Memory Allocation

The programming languages C and C++ allow their applications to dynamically allo-

cate and deallocate memory when needed. It is not necessary for the compiler to know the

2.3 High Level Synthesis 57

amount of memory to be requested during the compile time. The HLS compiler, though,
cannot support this functionality because it creates custom hardware circuits and specific
memory architecture for each application. As a result, code provided to the HLS must
use only compile time analyzable memory allocation. This feature may increase the total
memory footprint of a software application but this fact should not bother HLS designers
because, when HLS is used, the designer targets at transforming the algorithm in a way

that will give the best possible hardware implementation [15].

2.3.1.6 Pointers

A pointer is an address to a memory location. Pointers are widely used in C/C++ as
function parameters, for array handling, for dynamic memory allocation. They are usually
combined with type casting. HLS compiler supports pointers that can be fully analyzed
during compile time. An analyzable pointer’s usage can be computed with pen and paper

whithout the need of runtime parameters [15].

2.3.2 HLS Design Methodology

If hardware designers want to exploit HLS capabilities to their maximum, they should
follow an appropriate design methodology. Such an approach could lead to less time to
market and better performance. In the following sections a collection of good practices
about design validation, hardware efficient C code, synthesis strategies, design analysis,

optimization, and verification is described.

2.3.2.1 The C Test Bench

The test bench is a C/C++ program which calls the function that will be synthesized
multiple times, provides appropriate input arguments and checks the results produced.
This program is responsible for the C simulation and the verification of whether a design
is correct. The simulation can be run before the synthesis. At this point, it checks only
the validity of the software implementation of the algorithm. If the test bench is self
checking (automatically checks the results produced to the expected values) it can be used
by Vivado®) HLS inorder to execute C/RTL co-simulation. Co-simulation verifies the
post-synthesis results and decides if something went wrong during the synthesis process.
The test bench is the main() function of the source code and its return value determines

whether the design is correct in the following ways:
e [t is set to zero if the results are correct
e [t is set to a non-zero value if the results are wrong

e Attention should be paid if there is no return statement in function main() of the
test bench. If this is the case then the C standard sets the return value to zero and

the simulation will always succeed.

58 Chapter 2. FPGA Design Flow and High Level Synthesis

In HLS designs, the gratest amount of time is usually consumed when a designer tries
to debug a wrong C specification through RTL simulation. RTL simulation is orders of
magnitude slower than C simulation and more difficult to debug. Therefore, the time
spent for the creation of a C test bench and for execution of C simulation offers great

productivity boost to the whole process and should not be omitted.

2.3.2.2 Language Support

A designer who uses Vivado®) HLS should keep in mind two important facts about

every implementation in FPGA:

e An FPGA is a fixed size resource, and thus objects cannot be dynamically created

and destroyed.

e There is no underlying operating system (OS) and all FPGA’s communication should

be performed via input and output ports.

For the above mentioned two reasons there are two categories of constructs in every HLS
C design: unsupported and partially supported.

The unsupported are:

e System Calls: There is no OS to interact. Some common system calls are au-
tomatically excluded by the HLS without any error (abort(), atexit(), exit(),
fprintf (), printf (), perror(), putchar() and puts())

e Dynamic Objects: Everything that is going to be synthesized must be of a known
size at compile time. Somalloc(), alloc(), free(), new, delete are not supported

by the HLS. For the same reason, recursion is also not supported.
The partially supported constructs are:

e Pointers: Vivado® HLS supports pointer casting beetween only native C types.
Pointer arrays are not supported. Pointer to pointer is supported for synthesis but

not when used as an argument to the top level function.

e Memory Functions: The memcpy () and memset () are supported but only when

constant values are used.

When a software implementation contains unsupported constructs, the synthesis pro-

cess will fail and therefore everything that will be synthesized should be modified.

2.3.2.3 Understanding Concurrent Hardware

The HLS compiler can create unique hardware circuits for every operation in a C
specification. As a result, more than one operations can be simultaneously computed. In
the code shown at listing 2.1, the design that is produced by HLS will not calculate y0,

v1, and y2 sequentially but it will perform two of the calculations in parallel. This is the

=

[

w

10

11

Jun

M)

w

I

=]

10

11

12

2.3 High Level Synthesis 59

+ Latency (clock cycles):
* Summary:

$mm--- +----- +----- 4o $ommmmmmm - +
| Latency | Interval | Pipeline|
| min | max | min | max | Type |
+----- +----- +----- +----- s +
| 2| 2| 3| 3] none |
$===-== +===== +----- 4= ettt +

Figure 2.9: HLS synthesis output for code in listing 2.1 [14]

reason why the compiler creates more than one multiplier circuits. Assuming that the
clock frequency is adjusted to fit only one multiplication, the design will be completed in 2
clock cycles and not in 3. Therefore it takes 2 cycles to output the results and the design

can consume input every 3 cycles (Initiation Interval) as shown at the figure 2.9.

#include ”foo.h”
int foo(char a, char b, char d){
#pragma HLS INTERFACE ap_ctrl_none register port=return

int y0,yl,y2;
yO = a * b;

yl = ¢ * yO0;
y2 =d % yl;

return y2;

Listing 2.1: Demonstration code for parallel operations

With a more detailed analysis, it can be observed that, during the first two multipli-
cations the third multiplier remains idle and, during the third multiplication the first two
multipliers remain idle. Concurrent hardware is capable of dealing with this situation be-
cause it supports pipelined operation. This way of operation uses all the resources at the
same time (figure 2.10). The initiation interval is reduced to one (figure 2.11) only with
the addition of line 5 in the previous code (listing 2.2). This results in a high performance

design (high throughput), which can consume input in every clock cycle.

#include ”foo.h”

int foo(char a, char b, char d){

#pragma HLS INTERFACE ap_ctrl_-none register port=return
#pragma HLS PIPELINE

int y0,yl,y2;

yO = a * b;
yl = ¢ * y0;
yv2 =d % yl;

return y2;

Listing 2.2: Demonstration code for pipelined operations

60 Chapter 2. FPGA Design Flow and High Level Synthesis

void func(...) {

op_Read; RD
op_Compute; CMP
op_Write;
}
€ —> i
3 cycles 1 cycle
[rRo [cvp [WwrR | RD | cMp [wr | (Rp | cmp [wr |
«—> [Ro cMp [wr |
2cycles
2cycles
(A) Without Function Pipelining (B) With Function Pipelining

Figure 2.10: HLS synthesis output for code in listing 2.2 [14]

+ Latency (clock cycles) :

* Summary:

Fo--——- +----- L +----- dommmmmm—m +
| Latency | Interval | Pipeline |
| min | max | min | max | Type |
et +--- - +----- oo e +
| 2| 2| 1| 1| function |
+----- +----- +----- +----- 4mmmmmmm oo - +

Figure 2.11: HLS synthesis output for code in listing 2.2 [14]

Besides the operations, through Vivado®) HLS, tasks can be also pipelined and run
in parallel. Figure 2.12 demonstrates the dataflow optimization, which schedules each
function to start its operation when the required data is available. In this example the
initiation interval is decreased from 8 cycles to 5. This optimization directive helps Vi-
vado® HLS to understand which tasks * are independent and should be scheduled in

parallel execution.

2.3.2.4 Default Synthesis Strategies

The creation of high performance designs with HLS requires a thorough understanding
of its default behaviour and the optional optimizations that it supports.

First, Vivado® HLS uses the target device and decides how many operations can
be performed in every clock cycle. After this decision it tries to optimize the design’s

performance with the following order.

e Interval: It tries to minimize the interval beetween new inputs and to increase the

data throughput rate.

4in this example the tasks shown are functions but this optimization can be applied beetween functions

and loops, and beetween loops.

2.3 High Level Synthesis 61

void top (a,b,c,d) {
func_A(a,b,il1); func_A
func_B(c,11,i2); | 700

func_C(i2,d) func_C

return d;

pigSgSpSgigigigs

L

8 cycles 8 3cycles
func_. A [funclB| func_C

&
Ty

N
A 4

8 cycles 5 5 cycles
(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

Figure 2.12: Dataflow optimization [14]

e Latency: Its next step is the minimization of latency.

e Area: The last optimization which is performed is the minimization of the area

occupied by the created design whithout changing its achieved interval and latency.
The default synthesis behaviour can be summarized in the following steps:

e Synthesis of Top-Level Function Arguments: The top-level function arguments
are synthesized into data ports with an optional I/O protocol. This protocol is used
to synchronize the data communication beetween the data port and other hardware
resources. For example, a valid port can indicate when the data of its associated
port is valid for reading of writing. The type of the protocol used is decided by the
type of the C argument. Pass-by-value scalar arguments and pass-by-refernce inputs
give data ports with no I/O protocol. Pass-by-refernce outputs give data output
ports with associated output valid ports. Pass-by-reference arguments which are
both read and written, are partitioned to separate input and output ports following
the above rules. Array arguments are implemented as block-RAM memory ports.
An I/0 protocol associated with the top-level function itself is also synthesized. This
protocol permits the function operation and indicates when the output data is ready

and when the function can consume new input data.

e Synthesis of sub-functions: Functions are synthesized into hierarchical blocks in
the final RTL design and are scheduled to be executed as early as possible. As a
result, every C function will by default be represented by a unique block. In some

cases, though, Vivado®) HLS may automatically inline small functions in order to

62

Chapter 2. FPGA Design Flow and High Level Synthesis

achieve better results. This functionality can be also applied manually with the inline
optimization directive. Any user defined optimization stops at function boundaries

unless a recursive option is set.

Synthesis of loops:Loops are by default kept rolled. This means that the loop
body is synthesized once and it is executed sequentially until it reaches its execution

limit.

Synthesis of arrays: Arrays are by default synthesized into block-RAM. Block-
RAM is made of blocks of 18K-bit. Each block RAM will use as many 18K-bit
blocks as required to implement each array. For example an array of 1024 integers

will require
1024 32

o0 O
blocks. Vivado® HLS automatically decides if a RAM should be implemented
as either single or dual port for better latency results. The resource optimization
directive can be used to manually declare the number of ports to be implemented.
Vivado®) HLS does not partition large arrays into smaller block RAMs and makes
no attempt to merge small arrays into a single larger block RAM. Only small arrays
are automatically partitioned to individual registers inorder to improve the quality
of the results. This task is left to the designer through the relevant optimization

directives.

Synthesis of structs: Structs by default are decomposed into their member ele-

ments.

Synthesis of operators: C operators such as +, *, and / are synthesized into hard-
ware cores. HLS automatically determines which core will best suit each operation

but the designer can use the resource optimization directive to manually specify one.

Specifying the clock frequency: For C/C++ designs only a single clock is sup-
ported. HLS uses the user defined clock period and the device target information in
order to create estimates of the timing of operations. It is not possible for the HLS to
know the exact placement and routing, so it introduces the use of clock uncertainty.
Clock uncertainty is a time margin used to ensure that HLS creates a design with
not too much logic attached to each clock cycle. Thus, the timing requirements can
be met even if not ideal placement and routing take place. Figure 2.13 depicts this

concept.

Specifying the Reset: An important decision for hardware designers is the se-
lection of the reset behaviour. The reset behaviour should not be confused with
the initialization behaviour. The latter refers to the initial values of variables or
arrays and it is automatically implemented by the HLS. However, there is no way

that a variable can return to its initial state during the execution of the design.

2.3 High Level Synthesis 63

_Clock Period

Effective Clock Period
used by Vivado HLS !
Margin for Logic
Synthesis and P&R

L

Clock Uncertainty

Figure 2.13: Clock period and margin [14]

This behaviour can be achieved with a reset. HLS allows four settings in the reset
behaviour: none, control, state and all. None adds no reset to the design. Control is
the default setting and ensures all control registers - those used in state machines and
to generate I/O protocol signals - are reset. State adds a reset signal to the control
registers plus any registers or memories derived from static and global variables in

C code. Last, all is used to add a reset to all registers and memories in the design.

2.3.2.5 Design Optimization

The best way to exploit Vivado®) HLS’ capabilities is first to synthesize the design
without any user defined optimization directives. The next step is to review the reports
produced by the HLS tool and to apply diferent combinations of optimization directives in
order to create an architecture with the best performance. This last step is called design
space exploration. The following sections describe the optimizations that can be applied
by Vivado®) HLS.

The first category of optimizations is related to the design’s throughput. > The most
important optimization directive of this category is task pipelining. As demonstrated
in section 2.3.2.3, pipeline allows operations to be executed in parallel and minimizes
the initiation interval of a design. Pipeline optimization can be applied to loops and
functions. There is a slight difference in the implemented hardware beetween these two
cases as shown at figure 2.15. A pipelined function will continuously read new inputs and
write new outputs but a pipelined loop causes a ”"bubble” in the data stream because it
must complete all the iterations before it starts a new execution. Attention should be
paid when a pipeline directive is applied to a loop with other loops inside its body. HLS
will unroll (create hardware for each iteration of the loop) all the enclosed loops and may
significantly increase the area impact of the design. In addition, if the inner loops have
varible bounds that cannot be unrolled, the pipeline will fail. Loop unrolling though, can

be beneficial in some cases and for this reason, Vivado®) HLS unrolls the loops with the

Show many clock cycles needed for the design to accept new input data.

64 Chapter 2. FPGA Design Flow and High Level Synthesis

UNROLL optimization directive. As depicted at figure 2.14, a loop can remain rolled,
can be partially unrolled or can be completely unrolled. At figure 2.14, the rolled loop
will execute each iteration in seperate clock cycles. In this case, only one multiplier is
needed and each block RAM can be a single port. In the partially unrolled loop, the
initianion interval is halved (2 cycles) but 2 multipliers along with dual port block RAMs
are needed. Last, if this loop is completely unrolled, the execution will be completed in
one clock cycle, given that all the reads can be perfomed in parallel and that 4 multipliers
are available. Another way of increasing the throughput of a design is the partitioning of
arrays. By default, the maximum simultaneous operations for an array are 2 (dual port
block RAM) and this can be a limiting factor to the performance of memory intensive
algorithms. Therefore Vivado®) HLS can be instructed to partition an array into multiple
smaller arrays that support 2 operations individually. The different ways of partitioning

an array are (figure 2.16):
e block: The original array is split into equally sized blocks of succesive elements.

e cyclic: The original array is split into equally sized blocks interleaving the elements

of the original array.
e complete: Every element of the original array is mapped to registers.

In some cases throughput could be increased without array partitioning but simply by
declaring an array as FIFO. This optimization is very convenient when the elements of an
array are sequentially accessed. Loop pipelining can be prevented by loop carry depen-
dencies. Vivado@® HLS’ dependence analysis of complex designs can be too conservative
and can create false dependencies. Using the DEPENENCE optimization directive, a
hardware designer can help the HLS tool to overcome such false dependencies and create
a more efficient implementation. As shown in section 2.3.2.3, dataflow optimization can
lead to parallel execution of tasks and can improve significantly the overall throughput.

The second category of optimizations targets the minimization of latency 6. A designer
can use latency constraints through the LATENCY directive and Vivado®) HLS will try
to create a hardware implementation, which meets the required latency specifications. If
it cannot satisfy the constraints posed it relaxes the limits and tries to achieve the best
possible result. Another way to increase latency is to merge sequential loops. Every loop
creates a different state in the Finite State Machine (FSM) of the design. Hence, multiple
sequential loops create unnecessary clock cycles in the design. As shown at figure 2.17 if
the two loops are merged into one, the execution will drop from 11 to 6 clock cycles. In
this example, just an else statement inside the add loop will solve the problem but most
of the times it will not be that obvious. Consequently, Vivado®) HLS can automatically
merge loops via the LOOP_MERGE optimization directive.

The last group of optimizations tend to minimize the area impact of the design im-

plementation. First, a hardware designer can use custom data types and bit-widths. If a

Sthe number of cycles needed for the operation to be completed.

2.3 High Level Synthesis 65

void top(..) {

-lFt.)r.'_mult:for (i=3;i>=@;i--) {
afi] = b[i] * c[i];

Rolled Loop Partially unrolled Loop Unrolled Loop
Readb[3] | Readb[2] | Readb[1] | Readb[0] Readb[3] | Readb[1] Readb[3]
Readc[3] | Readc[2] | Readc[1] | Readc[0] Readc[3] | Readc[1] Read c[3]
Read b[2] Read b[0] Read b[2]
| % | % | % | x] Readc[2] | Readc[0] Read c[2]
[writea3] | writeal2] | writea[1] | writealo] | . = Readb[1]
¥ ¥ Readc[1]
Read b[0]
Write a[3] Writea[1] Read c[0]
Write a[2] Writea[0] *
*
*
*
Writea[2]
Writea[1]
Write a[0]

Figure 2.14: Loop Unrolling details [14]

Pipelined Function Pipelined Loop

RDO RDO CMP | WRO RDO CMP | WR0

= Execute Function

= Execute Next ’ v
—, Execute Next Execute Loop Execute
Next Loop
Pipelined Function 10 Accesses Pipelined Loop 10 Accesses
RD0O RDI RD2 RON RD0O RD1 RD2 RDN Bubble RDO RDI RD2
WRO WR1 WR2 WRN wro wRt wRz wen [ETEER weo

Figure 2.15: Function and Loop pipelining behaviour [14]

variable needs only 12 bits and is declared as 32 bit, it will result in larger and slower 32
bit operators, which potentially leads to large initiation intervals. Thus, a good practice
would be to use the appropriate precision for every operation and to pay special attention

to complex mathematical operations like multiplications, divisions, or modulus by using

66 Chapter 2. FPGA Design Flow and High Level Synthesis

block ' I '
PO W E——
' | | | —
0 ‘ 3NN T

E——————

- comple WE-
= g

Figure 2.16: Array partitioning[14]

(A) Without Loop (B)With Loop

void top (a[4],b[4],c[4],d[4]...) { Merging Merging
1cycle
Add for (1' ;i>=a§i") {- CR] 1C Cle
i (d[i]) 4 cycles Y
a[i] = b[i] + c[i];
} - e—--
Teycle] 4 cycles
Sub: for (i=3;i>=0;i--) {= = = = = = =
if ('d[i])
a[i] = b[i] - c[i]; ol Teycl
1eycle

Figure 2.17: Loop merging example[14]

the varibale width required by the application. Another optimization that Vivado®) HLS
supports is the function inlining. Through HLS INLINE directive the tool removes the
function hierarchy and replaces a function call in the C specification with its code. This
may decrease the area occupied by the design by allowing the components within the
inlined function to be better shared and optimized with the logic of the calling function.
Vivado®) HLS automatically inlines small functions but for bigger ones this has to be
manually set. Area reduction can be also achieved by mapping many small arrays into
one large array. An array in the FPGA is mapped to block-RAM as stated in section
2.3.2.4. In some cases, the arrays are so small that do not use the full 18K bit block. This
can lead to larger block-RAM allocations than those needed. The HLS user can solve this
problem with the ARRAY_MAP directive which mapps multiple arrays into a larger one.

Two ways are supported:

e Horizontal Mapping: a new array is created by concatenating the original arrays.

2.3 High Level Synthesis 67

Physically, this creates a large array with more elements.

e Vertical Mapping: the words of the original arrays are concatenated. Physically,

this is implemented by one array with larger word width.

A hardware designer, via Vivado®) HLS can manually specify the number of operators
used for specific operations that can be beneficial for the area impact of the design (AL-
LOCATION directive). It is also possible for the designer to explicitly instruct the HLS
tool regarding the cores that it should use for each operation (RESOURCE directive).

2.3.2.6 Writing Hardware Efficient Code

Apart from either the automatic or the custom optimizations that can be applied to
the design with Vivado@®) HLS, there are some important steps in the developement that
can lead to a more efficient implementation.

First, the input data reads and the output data writes should be as few as possible.
The input and output ports support only a limited number of parallel operations and
are usually the performance bottlenecks of the designs. The best way to overcome this
problem is to read data once and use caches if the data must be re-used.

Array accesses should be also as few as possible. Arrays are implemented by block-
RAMsi, which can support, in best case, only two parallel operations’. This creates an
important bottleneck in the overall performance. Besides the array optimization tech-
niques that were mentioned in section 2.3.2.5 (array partitioning and array merging),
algorithms should be also modified. Small localized caches can be used for storing results
such as accumulations or group of data needed for every operation.

Another good practice, is to create conditional branching inside pipelined tasks rather
than conditionally execute tasks. Conditionals are just separate paths in the pipeline.
The data can flow rapidly from the pipelined task to the branch that is executed and this

results in better performing implementation.

"when dual port RAMs are used

Chapter 3

Dynamic Memory Management
Framework for HLS

3.1 Introduction

As mentioned in chapter 2, Vivado®) HLS cannot synthesize designs that require dy-
namic allocation and deallocation of memory. It only permits static memory allocation.
Thus, in the entire execution window of an application the maximum memory that is
needed should be allocated. While static allocation works fine for a limited number of ac-
celerators it does not scale to many-accelerator design paradigm. At figure 3.1, it is clearly
presented that when the dataset workload is increased, the available memory resources
are the first to be exhausted. In addition, as the number of the Kmeans accelerators is
increased the memory resources are exhausted long before another resource is in short-
age. So it is safe to declare that the BRAM memory is the main limiting factor of higher
accelerator densities and large datasets.

In order to alleviate this “resource under-utilization” problem, a dynamic memory
manager (DMM) for HLS is created. It targets at many-accelerator FPGA based systems
and enables each accelerator to dynamically adapt its allocated memory according to the
runtime requirements of memory [2]. This dynamic memory manager uses the First Fit
algorithm for allocation and deallocation of memory but in this diploma thesis it will be
extended with the implementation of Next Fit (section 3.3.1) and Best Fit (section 3.3.2)

algorithms.

3.2 The DMM-HLS Framework

In this section the DMM-HLS framework is presented. First the DMM-HLS flow that
is integrated in Vivado-HLS and the architectural implications on the organization of
many-accelerator systems are presented. Then, the implemented DMM mechanisms are

described [2].

69

70 Chapter 3. Dynamic Memory Management Framework for HLS

Reference Device: 2,148,480 FFs - 1,074,240 LUTs
Virtex Ultrascale - XCVU190 3780 BRAMs - 1800 DSPs
350
——&—— BRAMs
qf e O DPSs 300
——-v-—-— FFs

|| ==a— LUTs

FPGA Recources Utilization (%)
FPGA Recources Utilization (%)

1072 ; ; . ‘ | ! . | ! ! ! ! ‘
o o
SRR 0 20 40 60 80 100 120 140
L)

Kmeans Input Size Kmeans Accelerators

Figure 3.1: Memory Bottleneck of Kmeans clustering algorithm|[2]

3.2.1 Dynamic Memory Management in Vivado-HLS

As shown in figure 3.2 the standard Vivado ®)-HLS design flow is slightly altered with
the addition of the DMM-extension. The DMM-HLS extension works in the high level
source code, and thus it keeps minimum implementation overhead to the designers. The
first and only step for them is the source-to-source code modification. Through this step,
the C source code of a design must be changed in order to include the DMM library.
Also, every static allocation which is included in the initial design, must be transformed
to a dynamic one using the function calls provided by the DMM-HLS API. It should be
mentioned here that if a static allocation is not benefitted by its dynamic counterpart it
should not be changed because the framework supports both the dynamic and the static
allocation patterns. Then, the augmented code by the DMM-HLS function calls is synthe-
sized into RTL implementation through the back end of Vivado®) HLS tool. DMM-HLS
framework extends the architectural template supported in Vivado ®) HLS by supporting
many-accelerator systems and allowing the on-chip BRAM to be dynamically allocated
among accelerators at runtime. This altered architecture is shown in figure 3.3 and con-
sists of two subsystems: the processor subsystem and the accelerators subsystem. The
processor subsystem consists of IPs ! such as the processor (e.g. ARM A9 in Zynq) and
it executes three code segments: the application control flow, the computationally non-
intensive code kernels, and the code which should be executed on CPU due to the need of
high accuracy or high FPGA implementation cost (e.g. floating point division). The accel-
erators subsystem holds the computationally intensive code kernels of the application. The
accelerators are modeled in high level language (C) and synthesized using Vivado®) HLS.
As mentioned earlier the DMM-HLS framework supports the description of accelerators
with both static and dynamically allocated data stored in the on-chip BRAMs|[2].

ntelectual Property

3.2 The DMM-HLS Framework 71
Standard Vivado HLS flow DMM-Extension
w T High level code Source-to-Source DMM
Q.8 C/C++/SystemC Code Modification Source
—
b8 (Static allocation) for DMM-API code
= E
S =
o B v v
"
. Transformed code
£5 Vivado HLS w‘ /
€% (High-level Synthesis) | C/Ci+/SystemC
aa J / (Dynamic allocation)
Testbench Wrapper
RTL Vivado Co-Simulation
o (VHDL/Verilog/SystemC) \{cycle-accurate execution)
g &
a =2
ol ‘(BRpsmentation Implementation Strate
B ¥ ﬁk (ISE/EDK/Vivado) P &y
5 2
- =
LS}
Q
- -
Figure 3.2: Extended Vivado HLS flow with DMM implementation|2]
[__Processor rsubsystem || Accelerators Subsystem |
I~ 1
N 1
| |]} Aoz | e
| = DMM Port DMM Port |
[| i I L
I 1 . o 1
: o | : 7 144774 !
.| Host CPU : I| Accelerator N-2 Accelerator N “ 1
| I {P*am;o;"l " ommpor |
! j === fo——— :
i External || 3 | BRAMSs (On-chip Memory) [; An[t(;?:fgjhﬁl{oc(1% sizeof (int), i) ;
I| storage | | Qi Statically || _Dynamically Allocated BRAM _ |
[(ATA) [)| Allocated BRAM | Heap1 [efpl Heap M DMM Heap #i
I : Ooooodp |« DDT’:‘D‘ s | » - Heap Address mapping to FrBMi N
I H ooooool | sEooo! ! s O000 I'|_<Alloc. Size> | 0x00 -+
| N\ = 2 ooog I[_EBMi__| ox01 N
L1 off-chip |} Coooooy | 3 BE808 .8 | [DATABLZI] ox02 N
R | llooooool |s[EoEm 5| 0000 ! : 5
emory ™ =4 DDDD\ Il = DDDD | DATA[22:16] 0x03 -
I J ooooody | s s 1 [DATA[15: 9] | oxo4 ¥
! | llooooooy |2|2000! |1 |2|0000 0 oameo] oos — l K
_________ CICIEICEIE | O freepitmap 1 ||| 8 Freesitmapm E ! wy
Oooood ﬁ“H i aod ! I" FreeBitMap index (FrBMi): 5 4 3 2 1 0! "
0% i i i 11 Reg0=63
l Address/Data/Bus(es) 1,2,..,M | E Freemtmap#éi gg (1) é olo (1) ;l) R:§1=0
| 1
@S Many-accelerators System Interconnection Network i i 0 -+ 0] 0] o] 0] o] 0] 0] RegN=0
Smmm - 7 Aeemmmemme === 7
LH; L%

(a) DMM-HLS enchanced architectural template

for many-accelerator FPGA-based systems

(b) Freelist organization (bitmap array)

Figure 3.3: Many accelerator FPGA based systems architecture enchanced with DMM-
HLS framework|2]

DMM-HLS supports fully-parallel memory access paths, by grouping BRAM modules

into unique memory banks, named heaps (figure 3.3). Every heap instantiation has its

own DM allocator. The composition of heaps is described in a C header configuration file,

enabling new heap instantiations to be easily described. Every heap-i is highly parame-

terizable on a number of design options, most important of which are the heap depth DZH

72 Chapter 3. Dynamic Memory Management Framework for HLS

(the total number of unique addresses), the heap word length L (the number of bytes of
every single word of heap), the allocation alignment A; (the minimum number of bytes per
allocation so that every new allocation starts from a unique address) and the metadata
header size H; (the number of bytes reserved on first address(es) of every allocation to
store meta-data related to the allocation, e.g. allocation length). In a similar manner we
define the free depth DZF and free word length LZF for the FreeBitMap memory.

The DM allocator for HLS supports arbitrary size allocation/deallocation, i.e. enables
allocation on the same heap of any simple data type (integers, floats, doubles etc.), as
well as more complex data types (structs of same or combined simple data types and 1-D
arrays). A FreeBitMap structure, i.e. bit-map free-list holding information about the free
space inside this heap, tracks the occupied memory space. FreeBitMap, is an array of
registers, every bit of which maps to a singe byte of the Heap. The term “maps” refers

to the allocation status (allocated or free) of this byte. Because one bit is related to one

words , 1 H bytes _ D’fl*LH bytes _ D{I* H bits 4 1

Heap’s byte the freelist array will have D1H heap *Li' word i T i Tean*3

i.e. 8 times smaller size.

Figure 3.3b depicts the organization of FreeBitMap, using an example of the allocation
of 1 integer (4 bytes on x86). The first 2 words of the heap are used for metadata. More
specifically the first word contains the size in bytes of the allocated data, and the second
word contains the index of this allocation in the freelist bit map. Thus, six bytes are
allocated and six bits of the freelist are marked (set to 1) [2].

3.2.2 DMM-HLS Overview

”The DM allocator can be employed through the DMM API, which is composed of two
main function calls for memory allocation and deallocation. A similar to glibc malloc/free
function call API is adopted:

e void* HlsMalloc(size_t size, uint heap_id)
e void HlsFree(void* ptr, uint heap_id)

where size is the requested allocation size in bytes, heap_id is the identification number
of the heap on which allocation shall occur and *ptr is the pointer which shall be freed
up. HLsMALLOC and HLSFREE are shown below” [2].

”The allocator implements a first fit algorithm to find a free continuous memory space
according to requested bytes. This algorithm searches the memory and stops its execution
at the first free block with the requested or larger size. A pointer to its start is returned.
Since two extra bins to hold meta-data related to allocation are reserved, the first fit
function returns the index of FreeBitMap, so that there are continuous (size + 2) free
positions (equal to 0) at FreeBitMap[index| untill FreeBitMap[index + size + 2] (line 3).
Next the allocator calculates the address of heap based on this index (line 4). However the
heap word length LZH defines the smallest unit of memory access, i.e. each memory address

specifies different number of bytes. Thus in order to allow any arbitrary allocation size

3.2 The DMM-HLS Framework 73

we implemented a Lf{ -byte aligned memory address access. For that scope the mapped
address CandidateAddr is padded with extra bytes in order to be aligned (line 5). Next the
corresponding bits in FreeBitMap for the aligned address space reserved are marked (set to
1), (line 6) and finally the meta-data are written to the first two bins (lines 7,8). Finally
the AlignedAddr +2 is returned in order to prevent the user to ovewrite the allocation

metadata written in the first two bins” [2].

void® HLSMALLOC(size_t size,uint heap_id)
> Input: size: Requested allocation size in bytes
> Input: heap_id: The identification number of heap
> Output: Generic pointer pointing to allocated memory address
> Data: * HeapArray,” FreeBitMapArray

Heap _struct™ cur_heap < HeapArrayheap_id)
2 FreeBitMap_struct™ cur_fom < FreeBitMapArray[heap_id)]

3 int FrBMi < FIRSTFIT(size + 2, cur_fbm)
int* CandidateAddr <~ MAPADDR(FrBMi,cur_heap)

[int* Aligned Addr, int offset] < PADDING(Candidate Addr)
MARKBITMAP(FrBMi, size + of fset + 2, cur_fbm)

> 1st Addr: alloc. size
7 cur_heap|Aligned Addr] < size
> 2nd Addr: position in the freelist
8 cur_heap[AlignedAddr + 1] < FrBMi

9 return (void*) AllignedAddr + 2

"The HLSFREE function has minimum execution overhead since the meta-data for
every allocation store all necessary information for deallocation (lines 3, 4). It should be
mentioned here that the pointer returned to the user by the allocator points after the
metadata, therefore the ptr-2 and ptr-1 positions of the memory are read. The function
exits with the deallocation of corresponding bits in FreeBitMap for the requested pointer
(line 5). The UNMARKBITMAP function unmarks (sets to 0) the coresponding bits of the
free list array”[2].

"Finally, the shared hardware interface of HLSMALLOC and HLSFREE limits execu-
tion parallelism when multiple accelerators request to allocate or free memory simulta-

neously, even if the accesses affect data across different heaps. To overcome this issue,

74 Chapter 3. Dynamic Memory Management Framework for HLS

function inlining of the HLsSMALLOC and HLSFREE is applied ? . This directive increases
resource occupation, but also allows the unconstrained parallel access on heaps from many-

accelerators” [2].

void HLSFREE(void*ptr, uint heap_id)
> Input: ptr: The pointer to free
> Input: heap_id: The identification number of heap
> Data: * HeapArray,* FreeBitMapArray

Heap_struct™ cur_heap < HeapArray[heap_id]
2 FreeBitMap_struct™ cur_fbm < FreeBitMapArray[heap_id]i
> 1st Addr: alloc. size
3 int size < cur_heap[ptr — 2]
> 2nd Addr: position in the freelist
int FrBMi < cur_heap[ptr — 1]
5 UNMARKBITMAP(FrBMi,size + of fset + 2, cur_fbm)

3.2.3 DMM-HLS Details

In this section details about the C implementation of the DMM-HLS extension are

presented.

3.2.3.1 Configuration File of DMM-HLS extension

Listing 3.1 shows the parameters that can be adjusted through the configuration file
of the DMM-HLS library. More specifically the depth (line 3) of the heap, its type (line
31), and the size of each word (line 38) can be manually set. The last two constants are
used in the if clause in line 162 which defines the type of the array which represents the
memory heap. In a similar way the word length of the freelist bit-map array is controlled
(lines 47, 189). The size of the freelist bit-map is calculated automatically as mentioned
in section 3.2.1.

This configuration file provides a group of settings which control some aspects of the
DM manager’s behaviour. First, in line 65, the allocation/deallocation algorithm is chosen.
Moreover, line 107, controls an optional check regarding the limits of a pointer that is going
to be freed. If this flag is set then the DM manager checks the address of a given pointer
and returns an error if it does not belong to the current heap. Furthermore, if the flag in
line 113 is set, then every bit in the freelist is checked before freed (set to 0) and if it is O
then the free operation fails and a FREE_FAIL_UNREGISTERED_BIT enum is returned
by the DM-manager. Also, the CHCK_MALLOC_FAIL_DUE_FRAGMENTATION (line

2

using the ”pragma AP inline” preprocessor directive of Vivado-HLS

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3.2 The DMM-HLS Framework 75

119) checks if the current allocation request has fallen due to fragmentation issues; i.e.
free memory of the requested size exists but not in a continuous block. This flag should
be used only when the HW_DEBUG_MEMLUV (line 16) is set to 1. Another important
flag is the FREELIST_ HANDLE POLICY (line 60) which defines the behaviour of the
freelist set and clear processes and affects significantly the execution time of the allocator.
Three different values are supported: 0, 1, and 2. With 0 (slower process), one write
occurs for every different bit that is set or cleared. With 1 (faster than 0), one write with
a mask is occured for every freelist register that is affected but many cycles are lost in
the step-by-step (one cycle per bit) calculation of the mask. Number 2 results in the most
effective implementation. This implementation calculates the masks of the first and last
freelist register and for every intermediate register the mask that is used is “zero or zero

directly because all the bits must marked /unmarked.

Another group of options is related with debugging mechanisms of software execution.
More specifically DEBUG_MEMLUYV (line 8), DEBUG_MEMLUV_LEVEL (line 13) and
DEBUG_PRINT_STREAM (line 131) are used to control the debugging information that
is printed and its output stream (stdout or logfile). Also, the percentage (0 or 100) of the
memory contents that are going to be printed by the debugging interface (line 125) can

be customized.

Last but not least, the return values for every possible outcome of the DM manager
are defined (line 138)

/** The depth of internal buffer, i.e. the number of addresses
*/
#define MEMLUV.DEPTH 4096

/** Print debug messages of mem allocation functions, on SW only
* execution
*/

#define DEBUGMEMLUV 0

/** The level of debugging. DEBUG_MEMLUV should be 1
* 0->None, 1-> Light Debug, 2-> Medium Debug , 3-> Insane Debug
*/

#define DEBUGMEMLUV_LEVEL 3

/** Instatiate a HW debug monitor. Introduces extra HW resources overhead */
#define HWDEBUGMEMLUV 0

/** Replace memluv allocator with system’s allocator, i.e. glibc calloc */

#define SIM_WITH GLIBC_MALLOC 0

/** The statistics/debug messages are supressed for timing measurements.
* NOTE: On hls this define has no impact since it is only applied to
* non-synthesizable code.

*/
#define SIM.MINIMUM_OVERHEAD 0

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 Chapter 3. Dynamic Memory Management Framework for HLS

/** The type of the internal memory core. Curently uint and float are
* supported, no way to support them simultaneously
* 1-> uint 2-> float (deprecated in Vivado 2013.4)
*/

#define CORETYPE 1

/** The width of internal memory core. i.e. the legnth of every line of
* dinternal memory. Supported 8,16,32,64. Whatever the internal size,
* the requested memory type may be of any length/type.

* LLVM take cares of data (un)packing, whatever the endianess.
*/
#define CORE.WIDTH 32

/** The type of most internal pointers, i.e. base, addr, next etc. */
#define uint_t uint32_t
#define int_t int32_t

/** The width of free list, i.e. the legnth of every line of bitmap array.
* Supported 8,16,32,64
*/

#define FREELIST_WIDTH 32

/** The policy of handling the freelist set/clear processes.
* 0 -> Set/Clear per bit - One write to freelist for every bit
* (many cycles)

* 1 -> Set/Clear per register (and per bit for non-alinged requests),

* the mask is bit-computed (many cycles) but write happens as
* many times as the number of registers are affected,
* plus bit-process writes for non-aligned requests.

* 2 -> Set/Clear per register. The mask is computed directly

* (in 6 cycles with seq. exec.) and we succeed the minimum number of
* writes to freelist - one per affected register.
*/

#define FREELIST_HANDLE POLICY 2

/** The fitting algorithm of MemLuv.
* 0 -> First fit algorithm.
*/

#define MEMLUV_FIT_ALGORITHM 0

/** The policy of first fit algorithm of MemLuv (applicable only when

* MEMLUV_FIT_ALGORITHM==0) .

* 0 -> Search bit-by-bit starting from position O to bitmap length.

* On first succesfull empty bin, the next search starts from the next
* bit. If it fails the next search starts from the next bit.

* 1 -> Search bit-by-bit starting from position O to bitmap length.

* On first succesfull empty bin, the freelist registers are checked

* with masks. If it fails the next search starts from the next bit.

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

3.2 The DMM-HLS Framework 77

#define MEMLUV_FIRST_FIT_POLICY 1

/**x 1,2,4,8 bytes address alingment. Optimally should be log2(CORE_WIDTH) x*/
#define ALIGNMENT 4

/** The number of sizeof (CORE_UINT_T) bytes reserved at start of every
* allocation to store metadata. 0,2 are supported so far for x86.

* 0 -> No header is used

* 2 -> Header of two fields is used: On any address, the 1st previous
* address holds the index in freelist and the 2nd previous address

* holds the size of allocation in bytes. i.e.

* 0x0 -> [size_in_bytes]

* 0x1 -> [index_in_freelist]

* 0x2 -> [1lst_data_stored]...

* Note: The number of bits of CORE_UINT_T dictates the maximum
* allocation/free of 27 (sizeof (CORE_UINT_T)x8) bytes regardless
* the core size (MEMLUV_DEPTHxsizeof (CORE_UINT_T) bytes).

*/

#define MEMLUV_ALLOCHEADER 0

/** 1 -> Inline all logic inside alloc/free. Results in a fast, yet
* resource hungry circuit. Can the target FPGA accept the overhead?

* 0 -> Results to inlining of the main alloc/free wrappers, with limited

* logic inside them (computation intensive logic has been moved
* to shared functions/enities)
*/

#define MEMLUV_HLS_INLINE 1

/** Force checking if requested free pointer is a valid address for
* current hw heap
*/

#define CHCKFREEOUT_-OF BOUNDS 0

/** Force checking of freelist value prior to marking zero bits. In case
* a request free position is mnot ’1’, a FREE_FAIL_UNREGISTERED_BIT enum
* variable is asserted on memluv_action_status_t
*/

#define CHCK FREELIST BEFOREFREE 0

/** Force checking if malloc fails due to fragmentation issues, although
* there are available bytes for the requested size, but not continusoly.
* HW_DEBUG_MEMLUV should be ’1’
*/

#define CHCKMALLOC_FAIL DUE FRAGMENTATION 0

/** The percentage of lines of memory core dump which will be printed on
* MemluvDumpCore () and MemluvDumpFreeList () calls.
* Valid integer values (no check is performed): 0-100
*/

#define MEMELUV_DUMP_SHOW PERCENTAGE 100

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

160

161

162

164

165

166

168

169

170

171

172

173

174

175

78 Chapter 3. Dynamic Memory Management Framework for HLS

/** The output stream in which all messages are reported.
* 0 -> stdout (standard output)
* 1 -> file (./memluv_run_<pid>.log)
*/

#define DEBUG_PRINT_STREAM 0

/** Enabling the report of fragmentation.
* HW (working with freelist sequential parsing.)
*/

#define DEBUGREPORTFRAGMENTATION 0

typedef enum {IDLE,

MALLOC_SUCCESS,

MALLOC_FAIL,

MALLOC_FAIL DUE_ FRAGMENTATION,

FREE_SUCCESS,

FREE_FAIL,

FREE_FAIL_UNREGISTERED_BIT,

FREE_FAIL_POINTER-OUT_OF BOUNDS} memluv_action_status_t;
typedef enum {ALL, THIS} memluv_struct_-handle_t;

typedef unsigned int float32;
typedef unsigned long long float64;

/** rounds up to the nearest multiple of ALIGNMENT
* limitation: works only with power of 2 size
*/
#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~(ALIGNMENT-1))

#define SIZE_T_SIZE (ALIGN(sizeof(uint_t)))

#if CORETYPE =— 1
#if COREWIDTH = 8
#define COREUINT.T uint8_t
#elif COREWIDTH — 16
#define COREUINT.T uintl6_t
#elif COREWIDTH — 32
#define COREUINT.T uint32_t
#elif COREWIDTH — 64
#define CORE.UINT.T uint64_t
#else
#define CORE_UINT_T UNSUPPORTED_COREWIDTH
#endif
#define var_type_t uint_t
#elif CORETYPE — 2

176

177

178

180
181

182

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

3.2 The DMM-HLS Framework

79

#if COREWIDTH = 32
#define CORE_UINT.T float32
#define var_type_t float32
#elif COREWIDTH — 64
#define CORE_UINT.T float64
#define var_type_-t float64
#else
#define CORE_UINT.T UNSUPPORTED_-CORE-WIDTH
#endif

#else

#define CORE_UINT.T UNSUPPORTED.CORE.TYPE
#endif
#if FREELIST WIDTH =— 8

#define FREELIST_UINT.T uint8_t
#define FREELIST_UINT_-TD uint16_t

#elif FREELIST_WIDTH — 16

#define FREELIST UINT.T uintl6_t
#define FREELIST UINT.TD uint32_t

#elif FREELIST WIDTH = 32

#define FREELIST_-UINT_-T uint32_t
#define FREELIST_.UINT_-TD uint64_t

#elif FREELIST WIDTH =— 64

#define FREELIST UINT.T uint64_t
#define FREELIST_.UINT-TD uint64_t

#else

#define FREELIST_UINT_T UNSUPPORTED_FREELIST_WIDTH
#endif
/** log2 (ALIGNMENT), dummy but avoid either gcc warn

*

*

#i

for look-up table, or log cordic module :)
/
f ALIGNMENT — 8
#define LOG_ALIGN 3

#elif ALIGNMENT =— 4

#define LOG_ALIGN 2

#elif ALIGNMENT — 2

#define LOG_ALIGN 1

#elif ALIGNMENT — 1

#define LOG-_ALIGN 0

#else

#define LOG_ALIGN UNSUPPORTED_ALIGNMENT

#endif

typedef struct MemLuvConf MemLuvConf;
typedef struct MemLuvStats MemLuvStats;

typedef struct MemLuvCore MemLuvCore;

/%

*

* A pointer to MemLuvConfO, declared in global.c.
through MemluvInit ().

ing or extra registers

It is initialized

226

80 Chapter 3. Dynamic Memory Management Framework for HLS

*/

227| MemLuvConf *CurMemLuvConf;

[

)

Listing 3.1: Configuration File[2]

3.2.3.2 Global Structs Used by the allocator

The DM manager uses three C structs which keep important information organized.
These are: struct MemLuvCore (listing 3.2), struct MemLuvStats (listing 3.3) and struct
MemLuvConf (listing 3.4). The first two are tied with every heap that is implemented but
the last one is a global struct that contains global configuration options for the DMM-HLS
extension.

Struct MemLuvCore (listing 3.2) is the main struct that the allocator uses. It con-
tains the memory heap (line 4) and the corresponding freelist array (line 10). This struct
also contains the number of freelist addresses and bits (lines 7, 8) along with the core’s
size in bytes and depth (lines 12, 13). This four variables, inform the allocator in the
runtime, about the limits of the freelist and the heap and come in handy in debug mes-
sages and iterations. alloc_rqst, free_rqgst, tot_rgst (line 18) are some counters
useful for statistics. More specifically, alloc_rgst counts the allocation requests that
have been served so far, free_rqgst counts the free requests and tot_rqst represents
the total number requests that the DM manager has completed. stats (line 27) keeps
track of the DM manager’s statistics, its fields are shown in listing 3.3 and analyzed in
the following paragraph. *base (line 14) is a pointer to the first address of the heap
(base = &(MemLuvCore->core[0])). aligned and aligned_pad (line 16) stores the po-
sition (starting from 0) of the first byte and the first word respectively, of the free block
that is found, after the alignment process has taken place. ibitpos and ibitpos_pad
(line 19) are used for the same reason but as temporary values. log_align instructs how
many times the byte position should be shifted to the right in order to give the word
position. For example if a word length is 4 = 22 bytes and the byte position is 2048 then
the word position is 2048 >> 2 = 512. This struct also saves the status code of every
request that is served (line 20). The possible return values are shown in listing 3.1 and
line 138. Finally, some simulation specific and 24) fields are defined. More specifically, the
name (line 23) and the file descriptor (line 22) of a file that is used by the allocator for
debug information. Also a control variable (line 24) which is set to 0 after the creation of
this file is defined.

struct MemLuvCore

{

// Static buffer for new allocations
CORE_UINT.T core [MEMLUVDEPTH];
uint8_t id;

uint_t freelist_depth;
uint_t freelist_total_bits;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

-

»

10

11

3.2 The DMM-HLS Framework

81

//1 bit represents 1 distinct memory location
FREELIST_UINT.T freelist [MEMLUVDEPTHx«sizeof (CORE_UINT.T) /(sizeof (
FREELIST_UINT.T) %8) |;

uint_t size;
uint_t depth;

var_type_t xbase;

uint_t aligned , aligned_pad;
uint8_t log_align;
uintl6_-t alloc_rgst , free_rqst, tot_rqgst;
uint_t ibitpos, ibitpos_pad;
memluv_action_status_t action_status;
#ifndef _SYNTHESIS__
FILE *fd;
char filename [64];
unsigned int file_init;
#endif
#if HWDEBUGMEMLUV==1
MemLuvStats stats;
#endif

s

Listing 3.2: Struct MemLuvCore|2]

In listing 3.3 the struct MemLuvStats is demonstrated. This is used to keep track of

various statistics during the execution window of the DM manager. The fields in lines 4,

5, 6, 7, 9 are self descriptive. The manager also keeps track of the additional bytes that

have been allocated due to alignment issues (line 8). Furthermore, there is a per request

flag (line 3) which is set to 1 when the whole memory is searched and no free block of the

size requested is found. The DM manager also knows during the runtime how many free

bytes exist beetween the first byte of the memory and the last allocated byte (line 10).

struct MemLuvStats

{
uint_t max_address_reached;
uint_t used_percentage;
uint_t total_bytes_requested;
uint_t total_bytes_allocated;
uint_t total_addresses_allocated;
uint_t total_fragmented_bytes;
uint_t total_bytes_for_headers;

uint_t total_-request_fragmented_bytes;

Listing 3.3: Struct MemLuvStats|2]

The last struct that is by the DMM-HLS extension is the struct MemLuvConf (listing
3.4). This contains global information that is not tied with one heap only. It contains the
total number of heaps that are implemented by the DMM-HLS extension (line 3) and the

[N

w

~

ut

(=]

=1

o0

10

11

12

82 Chapter 3. Dynamic Memory Management Framework for HLS

file stream that the debug messages are printed (line 4). For the simulation only it also

keeps the pid® which is used to create a custom name 4 to the debug file.

struct MemLuvConf
{
uint8_t num_hw_heaps;
FILE xdbg_fd;
#ifndef _SYNTHESIS__
pid_t pid;
#endif

Listing 3.4: Struct MemLuvConf[2]

3.2.3.3 Functions which Manage Freelist

In this section the interface which is responsible for the management of the freelist is
demonstrated. It consists of 5 functions tha will be analyzed in the following paragraphs.

The function MemluvSetBitFreelist () (listing 3.5) takes two arguments, the freelist
array and an index (var_type_t k), and sets the k-th bit to 1. First the freelist register
that the k—th bit belongs to is calculated (line 9) and then the bit’s position in the register
(line 10). In the next steps a new variable is created which sets to 1 the appropriate bit
(lines 11, 12). Finally, this variable is OR-ed with the respective freelist register (line 13).
In a similar way, the function MemluvClearBitFreelist () (listing 3.6) sets the k-th bit
to zero, and the function MemluvTestBitFreelist () (listing 3.7) returns 1 if the k-th bit

is 1 or O otherwise.

void MemluvSetBitFreelist (FREELIST.UINT.-T A[], var_-type-t k) {
#ifdef __SYNTHESIS__
#if MEMLUV_HLS INLINE = 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
FREELIST_.UINT.T i = (FREELIST.UINT.T) (k/(sizeof (FREELIST_-UINT.T)x%8));
FREELIST_UINT.T pos = k%(sizeof (FREELIST_.UINT.T) %8) ;
FREELIST_UINT.T flag = 1; // flag = 0000....... 00001
flag = (FREELIST_UINT.T) (flag << pos); // flag = 0000...010...000 (
shifted k positions)

13 Ali] = AJi] | flag; // Set the bit at the k-th position in A[il
14| }

Listing 3.5: Function MemluvSetBitFreelist[2]
1|void MemluvClearBitFreelist (FREELIST.UINT.T A[|, var_type_-t k) {

3process id
Ymemluv_run_ < pid > .log

M)

w

I

=]

I

oo

10
11

12

13
14

15

»

w

IS

=]

oo

10

11

12

13

14

15

16

17

3.2 The DMM-HLS Framework 83

#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE =— 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
FREELIST_UINT.T i = (FREELIST_.UINT.T) (k/(sizeof (FREELIST_-UINT.T) 8)) ;
FREELIST_UINT_T pos = k%(sizeof (FREELIST_UINT_T) x8) ;
FREELIST UINT.T flag = 1; // flag = 0000....... 00001
flag = (FREELIST.UINT.T) (flag << pos); // flag = 0000...010...000 (
shifted k positions)

flag = (FREELIST.UINT.T) (" flag); // flag = 1111...101...111
Ali] = A[i] & flag; // RESET the bit at the k-th position in A[i]
}
Listing 3.6: Function MemluvClearBitFreelist[2]
uint8_t MemluvTestBitFreelist (FREELIST_.UINT_T A[|, var_type-t k) {

#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE — 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
FREELIST_.UINT.T i = (FREELIST.UINT.T) (k/(sizeof (FREELIST_.UINT.T) %8));
FREELIST_UINT_.T pos = k%(sizeof (FREELIST UINT_T) %8) ;
FREELIST_UINT.T flag = 1; // flag = 0000....... 00001
flag = (FREELIST.UINT.T) (flag << pos); // flag = 0000...010...000 (
shifted k positions)
if (A[i] & flag) // Test the bit at the k-th position in A[i]
return 1;
else

return 0;

Listing 3.7: Function MemluvTestBitFreelist[2]

Function MemluvSetFreelist () (listing 3.8) is used to set to 1 all the freelist bits that
represent the bytes of an allocation request. It has three arguments: the freelist array
(FREELIST_UINT_T A[1), the position of the starting bit (var_type_t start_pos), and
the position of the ending bit (var_type_t end_pos). As shown in the code (listing 3.8),
this can be done with three different ways depending on FREELIST_HANDLE_POLICY. If it is
0 (line 9), then every bit is set to 1 separately. This leads to one write for every bit and is
the slowest implementation. If it is 1 (line 14), then mask registers and logic operations on
every freelist register are used. More specifically, every mask’s bit is computed separately
and saved in an mask variable (line 25). When this mask is ready it sets to 1 all the bits of
the respective freelist register (line 28). If FREELIST_HANDLE_POLICY is 2 (line 33), mask

)

w

IS

ut

(=]

g

oo

©o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

84 Chapter 3. Dynamic Memory Management Framework for HLS

registers and logical operations are used again, but in a more efficient way. First, the
starting and ending freelist registers are calculated (lines 39, 40). Then, the position of
the starting register’s first bit and the position of the last register’s last bit are calculated
(lines 41, 42). If the starting and ending register refer to the same register (line 45), then
only one mask is calculated which is OR-ed with the respective freelist register (lines 47,
49). If they are different registers (line 51), then the mask of the first register is calculated
(line 52) and OR-ed with the register (line 54), next, all the intermediate registers are
directly OR~ed with a mask wich consists of ones only (line 57), and finally, the last’s
register mask is calculated (line 59) and OR-ed with the respective register (line 61). The
last one, is the more efficient way of marking the bits because it uses write per register
and because it calculates only two masks (starting, ending) and all the intermediate are
directly applied. In a similar way is implemented the function MemluvClearFreelist ()

which is used in free requests and sets the freelist bits to 0 (listing 3.9).

void MemluvSetFreelist (FREELIST_.UINT.T A[|, var_type_t start_pos,
var_type_-t end_pos) {
#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE =— 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
#if FREELIST_HANDLE POLICY =— 0
var_type-t i;
for (i=start_pos; i<=end_pos; i++) {
MemluvSetBitFreelist (A, 1);
}
#elif FREELIST_ HANDLE POLICY — 1
var_type-t i;
FREELIST_UINT_T j=0;
FREELIST_UINT_T pos;
FREELIST_.UINT.T flag;
FREELIST_UINT_.T reg-val=0;
for (i=start_pos; i<=end_pos; i++) {
j = (FREELIST_UINT.T) (i /(sizeof (FREELIST_.UINT_T)%8)) ;
pos = i%(sizeof (FREELIST_.UINT.T) %8) ;

flag = 1; // flag = 0000....... 00001

flag = (FREELIST_.UINT.T) (flag << pos); // flag = 0000...010...000 (
shifted i positions)

reg_val = reg_val | flag; // Set the bit at the i-th position in A[j
]

Dprintf(3, "DEBUG: Inside MemluvSetFreelist: bin=%u, reg=%u, pos=ju,
flag=%u, reg_val=ju\n", i, j, pos, flag, reg_-val);
if (pos=—FREELIST_-WIDTH-1) {
Alj] = A[j] | reg-val; // Only (i%FREELIST_WIDTH) writes to freelist

reg_val=0;

3.2 The DMM-HLS Framework

85

31|}

321 A[j] = A[j] | reg-val; // plus one last write to freelist

33|#elif FREELIST_ HANDLE POLICY == 2

34 var_type_t start_reg , end_reg;

35 var_type_t start_pos_in_reg , end_pos_in_reg;

36 var_type-t 1i;

37 FREELIST_UINT_T mask, zero=0;

38 FREELIST_UINT.TD flag=1; /* Double the size of FREELIST_UINT_T, since we
need to calculate the number 2 FREELIST_WIDTH x/

39| start_.reg = (FREELIST.UINT.T) (start_pos/(sizeof (FREELIST_UINT_T)*8));

40| end.-reg = (FREELIST.UINT.T) (end_pos/(sizeof (FREELIST_UINT._T) x8));

41 start_pos_in_reg = start_pos%(sizeof (FREELIST_UINT.T) x8) ;

42 end_pos_in_reg = end_pos%(sizeof (FREELIST_UINT_T) %8) ;

43 Dprintf(3, "DEBUG: Inside MemluvSetFreelist: start_pos=%u, end_pos=ju,
start_reg=/%u, end_reg=/u, start_pos_in_reg=%u, end_pos_in_reg=jul\n",
start_pos , end_pos, start_reg, end_reg, start_pos_-in_reg,
end_pos_in_reg);

44| switch (end.reg — start_reg) {

45 case O0:

46 // power of 2 with shift: i.e. 2730 == 1 << 30 == 1073741824

47 mask = (FREELIST_UINT.T) (((flag <<(end_pos_in_reg+1))—1) — ((flag<<

start_pos_in_reg)—1));

48 Dprintf(3, "DEBUG: mask=%u\n", mask);

49 Alstart_reg] = A[start_reg] | mask;

50 break;

51 default:

52 mask = (FREELIST_UINT.T) ((~zero) — ((flag<<start_pos_in_reg)—1));

53 Dprintf(3, "DEBUG: start mask=%u\n", mask);

54 Alstart_reg] = A[start_reg] | mask;

55 for (i=start_-reg+1; i<end_-reg; i++) {

56 Dprintf(3, "DEBUG: Marking entire reg %u\n", i);

57 A[i] = (FREELIST_.UINT.T) (" zero);

58 }

59 mask = (FREELIST_UINT.T) (((flag <<(end_pos_in_reg+1))—1));

60 Dprintf(3, "DEBUG: end mask=%u\n", mask);

61 Alend_reg] = A[end_reg] | mask;

62 break;

63| }

64| #else

65 Dprintf (0, "Unsupported FREELIST_HANDLE_POLICY on stc/memluv.h. Aborting
...\n\n");

66 exit(—=1);

67| #endif

68| }

Listing 3.8: Function MemluvSetFreelist [2]

1|void MemluvClearFreelist (MemLuvCorex CurMemLuvCore, var_type_t start_pos,
var_type_t end_pos) {

2| #ifdef _SYNTHESIS__

s|#if MEMLUV_HLSINLINE = 0

N

(=]

oo

©o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

86 Chapter 3. Dynamic Memory Management Framework for HLS

#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
#if FREELIST_HANDLE POLICY =— 0
var_type-t i;
for (i=start_pos; i<=end_pos; i++) {
#if CHCK_FREELIST BEFORE FREE==1
if (MemluvTestBitFreelist (CurMemLuvCore—>freelist , i) = 0) {
CurMemLuvCore—>action_status = FREE_FAIL_.UNREGISTERED_BIT;
Dfprintf (2, CurMemLuvConf—>dbg_fd, "\nDEBUG: Useless free request on

freelist position %u", i);
}
#endif
MemluvClearBitFreelist (CurMemLuvCore—>freelist , i);

}
#elif FREELIST HANDLE POLICY = 1

var_type_-t i;

FREELIST_UINT.T j=0;

FREELIST_UINT.T pos;

FREELIST_.UINT.T flag

FREELIST_UINT.T reg_val=(FREELIST_UINT.T) (70) ;

for (i=start_pos; i<=end_pos; i++) {
j = (FREELIST.UINT.T) (i /(sizeof (FREELIST_UINT_T) +8)) ;
pos = i%(sizeof (FREELIST_-UINT.T) %8) ;

flag = 1; // flag = 0000....... 00001

flag = (FREELIST_.UINT.T) (flag << pos); // flag = 0000...010...000 (
shifted i positions)

flag = (FREELIST.UINT.T) (" flag); // flag = 1111...101...111

reg_val = reg_val & flag; // Set the bit at the i-th position in A[j
]

Dprintf(3, "DEBUG: Inside MemluvSetFreelist: bin=%u, reg=%u, pos=ju,
flag=%u, reg_val=Y%u\n", i, j, pos, flag, reg_val);
if (pos=FREELIST-WIDTH-1) {
CurMemLuvCore—>freelist [j] = CurMemLuvCore—>freelist [j] & reg_-val; //
Only (i%FREELIST_WIDTH) writes to freelist
reg_val=(FREELIST_UINT.T) (70) ;

}

CurMemLuvCore—>freelist [j] = CurMemLuvCore—>freelist [j] & reg_-val; // plus

one last write to freelist
#elif FREELIST HANDLE POLICY = 2

var_type_t start_reg , end_reg;

var_type-t start_pos_in_reg , end_pos_in_reg;

var_type-t i;

FREELIST_UINT_T mask, zero=0;

FREELIST_UINT_TD flag=1; /* Double the size of FREELIST_UINT_T, since we
need to calculate the number 2 FREELIST_WIDTH x*/

start_-reg = (FREELIST_.UINT.T) (start_pos/(sizeof (FREELIST_UINT_T)*8));

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

3.2 The DMM-HLS Framework 87

end_reg = (FREELIST_UINT_.T) (end_pos/(sizeof (FREELIST_-UINT.T) *8)) ;

start_pos_in_reg = start_pos%(sizeof (FREELIST_UINT.T) x8) ;

end_pos_in_reg = end_pos%(sizeof (FREELIST_UINT_T) %8) ;

Dprintf(3, "DEBUG: Inside MemluvSetFreelist: start_pos=%u, end_pos=ju,
start_reg=/%u, end_reg=/u, start_pos_in_reg=%u, end_pos_in_reg=jul\n",
start_pos , end_pos, start_-reg, end._reg, start_pos_-in_reg,
end_pos_in_reg);

switch (end._reg — start_reg) {

case O0:

// power of 2 with shift: i.e. 2730 == 1 << 30 == 1073741824
mask = (FREELIST_.UINT.T) (" (((flag <<(end_pos_in_reg+1))—1) — ((flag<<
start_pos_in_reg)—1)));
Dprintf(3, "DEBUG: mask=%u\n", mask);
CurMemLuvCore—>freelist [start_reg] = CurMemLuvCore—>freelist [start_reg]
& mask;
break;
default:
mask = (FREELIST_UINT.T) (" (((zero)) — ((flag<<start_pos_in_reg)—1)));
Dprintf(3, "DEBUG: start mask=%u\n", mask);
CurMemLuvCore—>freelist [start_.reg] = CurMemLuvCore—>freelist [start_reg]
& mask;
for (i=start.-reg+1; i<end.-reg; i++) {
Dprintf(3, "DEBUG: Erasing entire reg %u\n", i);
CurMemLuvCore—>freelist [i] = zero;
}
mask = (FREELIST_UINT.T) (" (((flag <<(end_pos_in_reg+1))—1)));
Dprintf(3, "DEBUG: end mask=%u\n", mask);

CurMemLuvCore—>freelist [end_reg] = CurMemLuvCore—>freelist [end.reg]| &
mask ;
break;
}
#else
Dprintf(()7 "Unsupported FREELIST_HANDLE_POLICY on stc/memluv.h. Aborting
...\n\n");
exit(—1);
#endif

}

Listing 3.9: Function MemluvClearFreelist()[2]

3.2.3.4 First Fit Allocation and Deallocation Mechanisms

In this section the allocation/deallocation interface of the DMM-HLS extension is
analyzed. This interface is divided in two levels. In the first level are the functions
CurMemluvAlloc() for allocation, and CurMemluvFree() for deallocation (listings 3.10
and 3.12 respectively). This level is responsible for every side task that has to be made
for these requests such as finding the suitable padding, updating global variables or stor-
ing allocation/deallocation metadata in the heap. In the second level, are the functions
MemluvFit () with MemluvFirstFit(), and CurMemluvFreeBody() (listing 3.9) for allo-

V]

w

IS

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

88 Chapter 3. Dynamic Memory Management Framework for HLS

cation and deallocation respectively. This level interacts with the freelist array, and it

handles the search of free memory and the deallocation of allocated memory.

In listing 3.10 the function CurMemluvAlloc () is shown. Its arguments are: the struc-
ture (CurMemLuvCore) that represents the heap for this specific allocation and the number
of bytes (nbytes) that are requested. First, the allocator updates the statistics counters
(lines 8, 9). Then, the first byte of the available memory space is found (line 15). If
the status code is MALLOC_SUCCESS, then appropriate padding creates the aligned address
(lines 26, 27, 28). On the contrary, when malloc fails the first address of the memory heap
is returned (line 35). In both cases, if HW_DEBUG_MEMLUV is set to 1, then statistics are
updated (lines 30, 37). If header is used, then the metadata are writtern to the core (lines
53, 57) and the address to be returned is incremented by two words (line 43). Finally the

function returns a pointer to the relevant free memory space (line 66).

voidsx CurMemluvAlloc(MemLuvCore #*CurMemLuvCore, uint_-t nbytes) {
#ifdef __SYNTHESIS__
#pragma AP inline
#endif
var_type-t xaddr=NULL, xreturned;
uint_t cand_base;
uint_t allocated=0;
CurMemLuvCore—>alloc_rqst++;
CurMemLuvCore—>tot _rqst ++;

/* O0xl: Find a valid position on freelist of continuous nbytes,

* given a fit algorithm. Bytes for headers are computed
* internally in these algorithms.
*/

cand_base = MemluvFit(CurMemLuvCore, nbytes);

#if HWDEBUGMEMLUV==
allocated=CurMemLuvCore—>ibitpos_pad+l—cand_base;
#endif

if (CurMemLuvCore—>action_status = MALLOCSUCCESS) {

/* 0x2: If malloc succceeded, make padding of address
* according to alingment and do some statistics
*/
CurMemLuvCore—>aligned = ReqPadding(cand_base);
CurMemLuvCore—>aligned _pad = CurMemLuvCore—>aligned >>(CurMemLuvCore
—>log_align);
addr = (((var_type_t*)CurMemLuvCore—>base) + CurMemLuvCore—>
aligned_pad);
#if HWDEBUGMEMLUV==1
MemluvAllocUpdateStas (CurMemLuvCore, nbytes, allocated);
#endif
}

else {

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

57

58

59

60

61

62

63

64

66

67

3.2 The DMM-HLS Framework &9

// 0x3: If malloc failed, return the address of base heap
addr = CurMemLuvCore—>base ;
#if HW_DEBUGMEMLUV==1
MemluvAllocUpdateStas (CurMemLuvCore, nbytes, allocated);
#Hendif
}

// 0x4: The address is increased by MEMLUV_ALLOC_HEADER
// positions if we use header
returned = addr + MEMLUV_ALLOCHEADER

#if MEMLUV_ALLOCHEADER > 0

/* 0x5: If we use header, write to the first two addresses

* the length of the requested allocation and the

* index of the requested allocation on freelist bitmap,
* respectively

*/

//The first word stores the length in bytes of the respective allocation
CurMemLuvCore—>core [(cand_base >>CurMemLuvCore—>log_align)] = (
CORE_UINT.T) (nbytes) ;

//The second word stores the index of the requested allocation
//(first byte) on freelist bitmap
CurMemLuvCore—>core [(cand_base >>CurMemLuvCore—>log_align) +1] = (
CORE_UINT.T) cand_base;
#endif
DumpStatisticsToFile (CurMemLuvCore
#if USEMEMLUV==1 && HWDEBUGMEMLUV==1
1
,allocated
#endif
)5
// 0x6: Return the address in the form of a generic (void*) pointer.

return ((void#)returned);

Listing 3.10: Allocation Wrapper|[2]

The algorithm used by the DMM-HLS extension, for allocation and deallocation, is
First Fit. First Fit, searches the heap’s bytes sequentially, and when a free block of bytes,
that is larger or equal than the requested, is found, the algorithm stops and returns a
pointer to its first byte. The implementation of the First Fit algorithm is shown in listing
3.11. Depending on the MEMLUV_FIRST_FIT_POLICY option the DM manager supports two
ways of finding a free block.

In the first way, the freelist bits are checked one by one. More specifically, the respective
loop (line 17) starts from the first bit and ends when the last bit is checked. In the loop
body, if a free bit is found (line 20) and it is the first after one or more allocated (line 24),

then its position is saved and a counter counts the free bits after (line 30). In contrast,

90 Chapter 3. Dynamic Memory Management Framework for HLS

if the current bit is reserved the counter and the logic values are initialized again (lines
34, 35, 36, 37). In every step of the loop, the counter is checked and if it has reached the
requested value (line 41), the algorithm adds the appropriate padding to the starting byte
(line 45), marks the freelist bits (line 49), updates the status code (line 50) and returns
the position of the first free byte °. If the loop ends without finding any free block of the
requested size then the status code is set to MALLOC_FAIL (line 62), and 0 is returned.
The second way of finding a free memory block uses registers which examine the
bits, through logical operations. This way is more complex, but more efficient. The
coresponding loop (line 82), has the same limits. In every step, though, the possible
ending bit is calculated (line 91), along with the starting and ending freelist registers
(lines 93, 94) and the starting and ending positions in the starting and ending registers
respectively (lines 95, 96). Also, the counter of the free bytes is initialized to zero (line
97). Next, two cases are taken into consideration. In the first case the starting register
of the freelist is the same with the ending register (line 113). Thus, only one mask has
to be calculated (line 114). The following example demonstrates the calculation of this
mask. If the starting position is 5 (starting from 0) and the ending position is 28 (24 bytes

allocation) the mask will be calculated as follows,

mask = ((flag << (end_pos + 1)) — 1) — ((flag << (start_pos)) — 1) (3.1)
=((1<<29)-1)—((1<<b)—-1) (3.2)

= (00100000000000000000000000000000 — 1) — (100000 — 1) (3.3)

= 000111111111 1111117112111 11111111 — 11111 (3.4)
=00011111111111111111111111100000 (3.5)

and the candidate bits will be set to 1 and the rest to zero. Next, this mask is AND-ed
with the reverted register (line 115) and if the result is equal with the mask then the
counter’s value is updated, in order for the check in line 177 to succeed. The example’s
AND operation will succeed only if the inverted register has ones to the bits in positions
28 until 5, i.e. only if the register has zeros in bits in positions 28 until 5. Every check in
this function is done through this proccess. The next case is when the starting bit and the
ending bit belong to different registers (line 132). In the beginning of this case, the first
mask is calculated (line 134), and used for the register check (line 140). If this check is
successful a possible free block is found. Thus, its free bytes are added to the counter (line
141). Then, every intermediate register is checked (line 151) and added to the counter
(line 153). Finally, if all the intermediate registers were free, the algorithm checks the last
register (lines 166, 167) and updates the counter (line 168). If any of these register checks
fails, then the algorithm continues is search from the next bit. The remaining part of this

process is identical with that of the previous paragraph.

ifuint_t MemluvFirstFit (MemLuvCore *CurMemLuvCore, uint_t nbytes) {
2|#ifdef __SYNTHESIS_-

SFor the word position this value must be shifted LOG_ALIGN times to the right

w

S

[=2]

1

oo

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

3.2 The DMM-HLS Framework

91

#if MEMLUV_HLSINLINE = 0

#pragma AP inline off

#else

#pragma AP inline

#Hendif

#endif

#if MEMLUV_FIT ALGORITHM — 0

#if MEMLUV_FIRST_FIT POLICY==0
uint_t free_bins=0, cand_base=0;
uint8_t first_visit=0;

CurMemLuvCore—>ibitpos=1;

// 0xl: Go to a while loop to check every sinlge bit if it is
// candidate for allocation
while (CurMemLuvCore—>ibitpos<=CurMemLuvCore—>freelist_total_bits) {

// 0x2: Check this bit
if (MemluvTestBitFreelist (CurMemLuvCore—>freelist , CurMemLuvCore—>
ibitpos —1) == 0) {

// 0x3: If this bit is the first free found on freelist, start count

// free positions
if (first_-visit = 0) {
cand_base = CurMemLuvCore—>ibitpos —1;
first_visit = 1lis almost identical to First Fit the check that
has been added in the end of the \verb!while! loop

}

free_bins++;

}

// 0x4: If current bit is reserved, cancel the count of free positions

// up to mnow

else {
free_bins = 0;
cand_base = 0
first_visit = 0;

}

// 0x5: Check if free bins found up to now are equivalent to the bins

// requested
if (free_bins == nbytes + MEMLUV_ALLOCHEADER#sizeof (CORE_UINT.T)) {

// 0x6: If we found requested bins, make padding according to
// alingment
CurMemLuvCore—>ibitpos_pad = ReqPadding(CurMemLuvCore—>ibitpos) —1;

// 0x7: Mark requested free bins as reserved in freelist, malloc

// succceeded

MemluvSetFreelist (CurMemLuvCore—>freelist , cand_base, CurMemLuvCore—>

ibitpos_pad);
CurMemLuvCore—>action_status = MALLOCSUCCESS;

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

92 Chapter 3. Dynamic Memory Management Framework for HLS

// 0x8: Return the position of first free bin, to allocator
return cand_base;

}

// 0x9: Check next bin

CurMemLuvCore—>ibitpos++;

}

/* Oxa: If never returned on step 0x8, and freelist was scanned

* entirely, there are no continuous free bins for current
* request, thus allocation failed.
*/

CurMemLuvCore—>action_status = MALLOC_FAIL;
CurMemLuvCore—>ibitpos_pad = 0;

return (0);

#elif MEMLUV_FIRST FIT_POLICY==1
var_type_-t free_bins=0, cand_bin_start=0, cand_bin_end , i;
var_type_t start_reg , end_reg;
var_type_t start_pos_in_reg , end_pos_in_reg;
FREELIST_UINT_T mask, zero=0;

/ * NOTE: Double the size of FREELIST_UINT_T,
* since we need to calculate the number 2°"FREELIST_WIDTH
*/

FREELIST_UINT_.TD flag=1;

uint8_t search_footer=0;
CurMemLuvCore—>ibitpos=1;

// 0xl: Go to a while loop to check every sinlge bit if it is candidate
// for allocation

while (CurMemLuvCore—>ibitpos<=CurMemLuvCore—>freelist_total_bits) {

/* 0x2: Given this bit, check: i) the last bit based on current

* request (bytes + header)

* ii) the registers that start and

* last bit are indexed

* iii) the position in these registers
*/

cand_bin_start=CurMemLuvCore—>ibitpos —1;
cand_bin_end=(var_type_t)(cand_bin_start+nbytes+MEMLUV_ALLOC HEADER=*
sizeof (CORE.UINT.T)-1);

start_reg = (FREELIST_.UINT.T) (cand_bin_start /(sizeof (FREELIST_UINT._T) x8)

)
end_reg = (FREELIST_UINT.T) (cand_bin_end /(sizeof (FREELIST_.UINT.T) %8)) ;
start _pos_in_reg = cand_bin_start%(sizeof (FREELIST_.UINT.T) *8) ;
end_pos_in_reg = cand_bin_end%(sizeof (FREELIST_UINT.T) %8) ;

free_bins=0;

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

3.2 The DMM-HLS Framework 93

// 0x3: Check if requested continuous bins from cand_bin_start to
// cand_bin_end are free

switch (end._reg — start_reg) {

/* 0x4: If the request affects bits of the same register,

* e.g. check bits 5-13

*

* Register 0: MSB=15 [xxxx xxxX xxxx xxxx] LSB=0

o > =

* we create a mask with zeros on the space

* MSB[cand_bin_end,cand_bin_start]LSB and we check

* for free positions by ANDIng this mask with the inverted
* freelist register (since we check for zeros)

*/

case O0:

mask = (FREELIST_.UINT.T) ((((flag <<(end_pos_in_reg+1))—1) — ((flag<<
start_pos_in_reg)—1)));
if ((7CurMemLuvCore—>freelist [start_reg]| & mask) =— mask) {
CurMemLuvCore—>ibitpos=cand_bin_end +1;
free_bins=(var_type_t) (nbytes + MEMLUVALLOCHEADER#*sizeof (
CORE_UINT.T)) ;
}

break;

/* 0x5: If the request affects bits of different registers,

* e.g. check bits 5-42

*

* Register 0: MSB=15 [xxxx xxxx xxxx xxxx] LSB=0 (bits 5-15)

" -

* Register 1: MSB=31 [xxxx xxxXx XxxXxXx xxxx] LSB=16 (ii: bits 16-31)
*

* Register 2: MSB=47 [xxxx xxxx xxxXx xxxx] LSB=32 (iii:bits 32-42)
- 5

* We do the job in three steps: see i,ii,iii below
*/
default:

search_footer =0;

mask = (FREELIST_UINT.T) (((" zero)) — ((flag<<start_pos_in_reg)—1));

/* 0xb5 i) Create a mask with zeros on the space [MSB,cand_bin_start]

* and check for free positions by ANDIng this mask with the
* inverted freelist register (since we check for zeros)

*/

if ((7"CurMemLuvCore—>freelist [start_reg] & mask) = mask) {

free_bins = FREELIST-WIDTH — start_pos_-in_reg;
search_footer=1;
/* continue to footer in case the request is not big enough to

* search for intermediate registers

*/

147

148

149

151

152

153

154

155

156

157

159

160

161

162

163

164

166

167

168

170
171

172

174

175

176

177

178

179

181

182

183

184

185

186

188

189

190

191

192

193

194

195

94

Chapter 3. Dynamic Memory Management Framework for HLS

/* 0x5 ii) Check if intermediate registers (start_reg+l,end_reg) are

* zero (free). This step may be skipped if the request
* affects bits of continuous registers (i.e. 23,24)
*/
for (i=start_reg+1l; i<end_reg; i++) {
if (CurMemLuvCore—>freelist [i] == zero) {

free_bins+=FREELIST_WIDTH;
search_footer=1;

}

else {
search_footer=0;

break;

}

/* 0x5 iii) Create a mask with zeros on the space [cand_bin_end, LSB]

* and check for free positions by ANDIng this mask with
* the inverted freelist register
*/
if (search_footer = 1) {
mask = (FREELIST_UINT.T) (((flag <<(end_pos_in_reg+1))—1));
if ((~CurMemLuvCore—>freelist [end_reg] & mask) == mask) {

free_bins += end_pos_in_reg+1;
CurMemLuvCore—>ibitpos=cand_bin_end +1;

}

break;
}
// 0x6: Check if free bins found up to now are equivalent to the bins
// requested
if (free_bins == nbytes + MEMLUV_ALLOCHEADER*sizeof (CORE_UINT.T)) {

// 0x7: If we found requested bins, make padding according to
// alingment
CurMemLuvCore—>ibitpos_-pad = ReqPadding(CurMemLuvCore—>ibitpos) —1;

// 0x8: Mark requested free bins as reserved in freelist, malloc

// succceeded

MemluvSetFreelist (CurMemLuvCore—>freelist , cand_bin_start ,
CurMemLuvCore—>ibitpos_pad) ;

CurMemLuvCore—>action_status = MALLOC_SUCCESS;

// 0x9: Return the position of first free bin, to allocator

return cand_bin_start;

// Oxa: Check next bin
CurMemLuvCore—>ibitpos++;

196

197

198

200

201

202

204

205

206

207

208

209

210

Jun

»

w

IS

=]

I

o0

10

11

12

13

14

15

16

3.2 The DMM-HLS Framework 95

/* Oxb: If never returned on step 0x9, and freelist was scanned entirely,

* there are no continuous free bins for current request, thus
* allocation failed.
*/

CurMemLuvCore—>action_status = MALLOC_FAIL;
CurMemLuvCore—>ibitpos_pad = 0;
return (0);
#else
Dprintf (0, "ERROR: Unsupported MEMLUV_FIRST_FIT_POLICY=%u on src/memluv.h.
Aborting...\n\n", MEMLUV_FIRST FIT POLICY) ;

exit(—1);
#endif
#else

return 0;
#endif

}

Listing 3.11: First Fit Implementation|2]

In listing 3.12 CurMemluvFree () is shown. This function is pretty simple and it imple-
ments the first level of the DM manager’s freeing interface. Its arguments are the current
HW heap struct (*CurMemLuvCore), a pointer to the block that will be freed (xptr) and
the size in bytes of this block (nbytes). If allocation headers are used, the number of
bytes for every alocation are saved as metadata so the last argument is valid only when
allocation headers are not used (MEMLUV_ALLOC_HEADER = 2). First, this function incre-
ments the request counters (lines 12, 13), and sets the status code of this request (line
16). Then, it stores in the variables data_alloc_length and index the size in bytes of
the block that has to be freed, and its index in the freelist. This is can be done with two
different ways. The first, uses the allocation header (lines 18, 19), and the second, uses
the nbytes function argument and calculates manually the index in the freelist of this

pointer. (lines 21, 22) Finally, CurMemluvFreeBody () is called.

void CurMemluvFree(MemLuvCore *CurMemLuvCore, COREUINT.T xptr, uint_t
nbytes) {

#ifdef _SYNTHESIS__

#if MEMLUV_HLSINLINE =— 1 || MEMLUV_ALLOCHEADER > 0

#pragma AP inline

#else

#pragma AP inline off

#endif

#Hendif

uint_t data_alloc_length , index;

CurMemLuvCore—>free_rqst++;
CurMemLuvCore—>tot _rqst+-+;

/* Always mark a succesfull free unless check is forced */
CurMemLuvCore—>action_status = FREE_SUCCESS;

17

18

19

20

21

22

23

24

[N

w

I

ot

-

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

96 Chapter 3. Dynamic Memory Management Framework for HLS

#if MEMLUVALLOCHEADER > 0
data_alloc_length=CurMemLuvCore—>core [(uint_t) (ptr —CurMemLuvCore—>base)
—2];
index=CurMemLuvCore—>core [(uint_t) (ptr —CurMemLuvCore—>base) —1];
#else
data_alloc_length=nbytes;
index = MemluvCalcPtrDistanceFromBase (CurMemLuvCore, ptr);
#endif
CurMemluvFreeBody (CurMemLuvCore, ptr, data_alloc_length , index);

Listing 3.12: Function CurMemluvFree[2]

The function which calculates the index in freelist of the first byte which is pointed by a
pointer is shown in listing 3.13. This process is necessary because in Vivado®) HLS the di-

6 cannot be synthesized. Thus, MemluvCalcPtrDistanceFrom

rect subtraction of addresses
Base() increments a counter by sizeof (CORE_UINT_T) (line 18) for every address that is

before the address that ptr points to (line 17).

uint_t MemluvCalcPtrDistanceFromBase (MemLuvCore #CurMemLuvCore, CORE_UINT.T
#ptr) {

#ifdef __SYNTHESIS_.

#if MEMLUV_HLSINLINE = 0

#pragma AP inline off

#else

#pragma AP inline

#endif

#endif

uint_t i, distance=0;
if (CurMemLuvCore—>action_status =— FREE_SUCCESS) {
for (i=0; i<CurMemLuvCore—>depth; i++) {

//While this statement is synthesized, the difference cannot be
//directly computed to a variable
if (ptr > &CurMemLuvCore—>core[i]) {
distance+=(uint_t)sizeof (CORE.UINT.T) ;
}
else {
//break statement causes vivado intermnal error

i+=CurMemLuvCore—>size /(uint_t)sizeof (CORE_.UINT.T) ;

}

return distance;

Listing 3.13: Function MemluvCalcPtrDistanceFromBase[2]

Sindex = ptr - CurMemLuvCore->base;

»

w

I

=]

I

oo

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3.2 The DMM-HLS Framework 97

CurMemluvFreeBody () is shown in listing 3.14. First of all, it checks the validity of the
address given (line 12). Then, the allocation length is updated according to the header
length (line 19) and the index is written to CurMemLuvCore->stats.result (line 20).
Next, in order to create the correct ending position in the freelist appropriate padding is
added (line 22). Finally, the respective freelist bits are set to 0 (line 23), and the statistics
are updated (line 26) and written to the debug file (line 28).

void CurMemluvFreeBody (MemLuvCore *CurMemLuvCore, CORE.UINT.T #ptr, uint_t
data_alloc_length , uint_t index) {
#ifdef __SYNTHESIS__
#if MEMLUV_HLS_INLINE =— 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
uint_t ptr_index_in_freelist=0, end_index_in_freelist=0, true_alloc_length

)

#if CHCKFREE.OUT_-OF BOUNDS==1
if ((ptr < &CurMemLuvCore—>core [0]) || (ptr > &CurMemLuvCore—>core |
CurMemLuvCore—>depth])) {
CurMemLuvCore—>action_status = FREE FAIL POINTER.OUT_OF BOUNDS;
}
else
#endif
{
ptr_index_in_freelist = index;
true_alloc_length = data_alloc_length + (uint_t)(MEMLUV_ALLOCHEADER:x*
sizeof (CORE_.UINT.T)) ;
MemLuvDebugUpdate (CurMemLuvCore, 2, (uint-t)index);

end_index_in_freelist = ReqPadding(ptr_index_in_freelist +
true_alloc_length)—1;
MemluvClearFreelist (CurMemLuvCore, ptr_index_in_freelist ,
end_index_in_freelist);
CurMemLuvCore—>ibitpos_pad = end_index_in_freelist+1—
ptr_index_in_freelist ;
#if HWDEBUGMEMLUV==
MemluvFreeUpdateStas (CurMemLuvCore, data_alloc_length);
#endif
DumpStatisticsToFile (CurMemLuvCore
#if USEMEMLUV==1 && HW DEBUGMEMLUV==
9
,CurMemLuvCore—>ibitpos_pad
#endif

IE

=

s

o

98 Chapter 3. Dynamic Memory Management Framework for HLS

Listing 3.14: Function CurMemluvFreeBody/[2]

3.3 The DMM-HLS Enhanchement

The initial implementation of the DMM-HLS extension is described in section 3.2. It
is a system created from scratch, and problems from every aspect of the library should
be tackled. Also, Vivado® HLS limitations made it more difficult and time consuming
to debug. Therefore, only one algorithm was supported, First Fit. But, when the system
was finally stable, the need to optimize its behaviour was emerged. The purpose of this
diploma thesis is to add to the system both Next Fit and Best Fit implementations, and

examine their behaviour.

3.3.1 Next Fit

First, Next Fit is implemented. This algorithm is identical to First Fit, with the only
difference that it starts to search free memory space from the position that the previous
allocation request stopped or the last free happened. If the whole freelist is searched
without finding any suitable free blocks then the allocation process fails. This algorithm
has the same behaviour with First Fit in the long term but it distributes the allocated
bytes to the entire memory and not only in the beginning. Next Fit algorithm, is easily
produced through First Fit. First, a new field must be added to the heap struct (listing
3.15). This variable will contain the position that the algorithm starts its search. If the
last request was an allocation, this position will be the end of the allocation but if it was
a free, it will be the firs byte of this freed block.

struct MemLuvCore

{

#if MEMLUV FIT_ALGORITHM==1
uint_t nf_cache_bin_in;

#endif
b

Listing 3.15: Next Fit MemLuvCore

Its implementation is shown at listing 3.16 and is almost identical to First’s Fit. The
first difference that should be highlighted is the starting position (line 23) of the algorithm.
Another important difference is the loop’s control variable (line 28) which is a counter.
CurMemLuvCore->ibitipos cannot be used as control variable because when it reaches
the maximum value (CurMemLuvCore->freelist_total_bits) it should be reset to 1 and
let the loop continue its execution. This creates the last difference which is the modulo

operation in line 158 and the increment of the corner case (ibitpos==0) in line 159.

Jun

M

w

I

(=2}

1

oo

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

3.3 The DMM-HLS Enhanchement 99

uint_t MemluvNextFit (MemLuvCore *CurMemLuvCore, uint_t nbytes) {

#ifdef __SYNTHESIS__

#if MEMLUV_HLSINLINE = 0

#pragma AP inline off

#else

#pragma AP inline

#endif

#endif

#if MEMLUV_FIT_ ALGORITHM==1
var_type_t free_bins=0, cand_bin_start=0, cand_bin_end , i;
var_type_t start_reg , end_reg;

var_-type-t start_pos_in_reg , end_pos_-in_reg;
var_type_-t start_pos_of_next_fit;

FREELIST_UINT_T mask, zero=0;
FREELIST_UINT.TD flag=1;

uint8_t search_footer=0;

uint8_t wrap_search;

uintl6_t number_of_bits_checked=0;

uint_t bits_examined =0;

CurMemLuvCore—>ibitpos=CurMemLuvCore—>nf_cache_bin_in+1;
start_pos_of_next_fit=CurMemLuvCore—>ibitpos ;

// 0xl: Go to a while loop to check every sinlge bit if it is candidate
// for allocation

while (bits_examined <CurMemLuvCore—>freelist_total_bits) {

/* 0x2: Given this bit, check: i) the last bit based on current

* request (bytes + header)

* ii) the registers that start and

* last bit are indexed

* iii) the position in these registers
*/

cand_bin_start=CurMemLuvCore—>ibitpos —1;
cand_bin_end=(var_type_t)(cand_bin_start+nbytes+MEMLUV_ALLOC HEADER
sizeof (CORE.UINT.T)—1);

start_reg = (FREELIST_.UINT.T) (cand_bin_start/(sizeof (FREELIST_UINT.T
)*8));

end_reg = (FREELIST_.UINT.T) (cand_bin_end /(sizeof (FREELIST_.UINT.T) 8)
)

start_pos_in_reg = cand_bin_start%(sizeof (FREELIST_UINT._T) x8) ;

end_pos_in_reg = cand_bin_end%(sizeof (FREELIST_UINT_T) %8) ;

free_bins =0;

// 0x3: Check if requested continuous bins from cand_bin_start to

// cand_bin_end are free

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

100

Chapter 3. Dynamic Memory Management Framework for HLS

switch (end-reg — start_-reg) {

/* 0x4: If the request affects bits of the same register, (bits

5-13)
* Register 0: MSB=15 [xxxx xxxx xxxX xxxx] LSB=0 (bits 5-13)
" - -
* we create a mask with zeros on the space
* MSB[cand_bin_end,cand_bin_start]LSB and we check for free
* positions by ANDIng this mask with the inverted freelist
* register (since we check for zeros)
*/
case 0:

mask = (FREELIST_UINT.T) ((((flag<<(end_pos_in_reg+1))—-1) — ((
flag<<start_pos_in_reg)—1)));

if ((~CurMemLuvCore—>freelist [start_reg| & mask) == mask) {
CurMemLuvCore—>ibitpos=cand_bin_end+1;
free_bins=(var_type_t)(nbytes + MEMLUV_ALLOCHEADER#*sizeof (

CORE.UINT.T)) ;
}else{
free_bins=1;

}

break;

/* 0x5: Check bits of different registers, e.g. bits 5-42
*

* Register 0: MSB=15 [xxxx xxxXx XXXxX xxxx] LSB=0 (bits 5-15)
* &
* Register 1: MSB=31 [xxxx xxxx xxxx xxxx] LSB=16 (entire Reg)
*
* Register 2: MSB=47 [xxxx xxxx xxxx xxxx] LSB=32 (bits 32-42)
" &
* We do the job in three steps: see i,ii,iii below
*/

default:

search_footer =0;
mask = (FREELIST_-UINT_T) (((~zero)) — ((flag<<start_pos_in_reg)

_1)) 3

/* 0xb5 i) Create a mask with zeros on the space

* [MSB, cand_bin_start] and check for free positions by
* ANDIng this mask with the inverted freelist register
* (since we check for zeros)

*/

if ((7CurMemLuvCore—>freelist [start_reg| & mask) == mask) {

free_bins = FREELIST_WIDTH — start_pos_in_reg;
search_footer=1;
/* continue to footer in case the request is not big

* enough to search for intermediate registers

*/

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134
135

136

138

139

140

3.3 The DMM-HLS Enhanchement 101
/* 0x5 ii) Check if intermediate registers (start_reg+l,
* end_reg) are zero (free). This step may be
* skipped if the request affects bits of continuous
* registers (i.e. 23,24)
*/
for (i=start_-reg+1; i<end.reg; i++) {
if (CurMemLuvCore—>freelist [i] = zero) {
free_bins+=FREELIST WIDTH;
search_footer=1;
}
else {
free_bins=1;
search_footer=0;
break;
}
}
/* 0xb5 iii) Create a mask with zeros on the space
* [cand_bin_end ,LSB] and check for free positions
* by ANDIng this mask with the inverted freelist
* register.
*/
if (search_footer =— 1) {

mask = (FREELIST_UINT.T) (((flag <<(end_pos_in_reg+1))—1))
if ((~CurMemLuvCore—>freelist [end_reg| & mask) = mask)
{
free_bins += end_pos_in_reg+1;
CurMemLuvCore—>ibitpos=cand_bin_end +1;

}else({

free_bins=1;

}

telse{
free_bins=1;

}

break;

// 0x6: Check if free bins found up to now are equivalent to the
// bins requested
if (free_bins == nbytes + MEMLUV_ALLOCHEADER#*sizeof (CORE_UINT.T)) {

// 0x7: If we found requested bins, make padding according to

// alingment

CurMemLuvCore—>ibitpos_pad = ReqPadding(CurMemLuvCore—>ibitpos)
—1;

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

w

ot

102 Chapter 3. Dynamic Memory Management Framework for HLS

// 0x8: Update the value of the next starting point
if (CurMemLuvCore—>ibitpos_pad>CurMemLuvCore—>nf_cache_bin_in)
CurMemLuvCore—>nf_cache_bin_in = CurMemLuvCore—>ibitpos_pad ;

// 0x9: Mark requested free bins as reserved in freelist,

// malloc succceeded

MemluvSetFreelist (CurMemLuvCore—>freelist , cand_bin_start ,
CurMemLuvCore—>ibitpos_pad) ;

CurMemLuvCore—>action_status = MALLOC.SUCCESS;

// Oxa: Return the position of first free bin, to allocator

return cand_bin_start ;

// Oxb: Check next bin. Wrap the search to the start if the
// end has been reached
CurMemLuvCore—>ibitpos=(CurMemLuvCore—>ibitpos+free_bins) %(
CurMemLuvCore—>freelist_total_bits);
CurMemLuvCore—>ibitpos+=((CurMemLuvCore—>ibitpos)==0);

bits_examined 4= free_bins;
/* Oxc: If never returned on step 0x9, and freelist was scanned
* entirely, there are no continuous free bins for current request,
* thus allocation failed.

*/

CurMemLuvCore—>action_status = MALLOC_FAIL;
CurMemLuvCore—>ibitpos_pad = 0;
#endif

return (0);

Listing 3.16: Next Fit implementation

The only change in CurMemluvFreeBody () is shown in listing 3.17. Every free request
that is served, updates the value of nf _cache_bin_in. Thus, the next allocation will start

searching for free blocks from that address.

void CurMemluvFreeBody (MemLuvCore *CurMemLuvCore, COREUINT.T xptr, uint_t
data_alloc_length , uint_t index) {

#if MEMLUV FIT_ALGORITHM==1
CurMemLuvCore—>nf_cache_bin_in = ptr_index_in_freelist ;
#endif

3.3 The DMM-HLS Enhanchement 103

1Hl N

Figure 3.4: Example memory snapshot

Number of bytes Position of the Next Free block

Figure 3.5: Free Block’s header structure

Listing 3.17: Next Fit’s implementation of function CurMemluvFreebody

3.3.2 Best Fit

Best Fit algorithm searches every free block and finds the smaller free block with size
equal or larger than the requested. Unlike Next Fit, this algorithm is implemented with
a completely different approach from First Fit. The key parts are analyzed in section

3.3.2.1, and the implementation details are demonstrated in section 3.3.2.2.

3.3.2.1 Best Fit Key Parts

Figure 3.4 shows a possible state of the memory after dynamic storage allocation
operations. The black areas are allocated blocks and the white ones are free. This example
shows 5 blocks that are in use (reserved) together with 6 free (available) blocks. In First
Fit and Next Fit, the state of the memory is represented by a bitmap array (1 bit = 1
memory byte) but Best Fit will use a different approach. It uses the available space to
create a list of the free blocks. This is done by storing metadata in the first two words of
every free block as shown in figure 3.5. The first word contains the block’s size in bytes
and the next word contains the position of the next free block. Therefore, the memory
snapshot shown in figure 3.4, is tranformed by the DM manager as shown in figure 3.6.
The arrows shown in figure 3.6 should not be confused with the actual C pointers; they
just show the result of using the information that is stored in every free block.

The use of two words in every free block assumes that the minimum size of every
free block is two words. For this reason, special attention should be given when the

allocation is done from a free block that is exactly one word bigger than the requested

104 Chapter 3. Dynamic Memory Management Framework for HLS

A S S S5 Sy

Figure 3.6: Best Fit’s memory snapshot

size. The allocator cannot let this word represent a free block because the header metadata
cannot be written. Thus, it should mark this word as allocated. This word should remain
allocated as long as the rest of the block but it should never be used by the application
because that will result in out of bounds access. When the allocation header is 07, the
DM manager, in order to fullfil every free request, besides the actual pointer, it also
needs the size of the block that the pointer points to. However, the user cannot know
if the allocator allocated an extra ”"unused” word so the DM manager must keep this
informatuon internally. At figure 3.7 this scenario is demonstrated. The first picture
shows a snapshot of the memory. The black areas are the allocated and the white areas
are the free. The gray area demonstrates the scenario described above (the allocation
that is going to happen is only one word smaller than the free block). The second array
demonstrates how the DM allocator handles such cases. The allocation starts from the first
word of this block as shown by the gray area. The last word of this block will be added
to the unused words’ list. In order to create this list the allocator stores the position
of the next unused word in every unused word as shown symbolically by the picture’s
arrows. When the allocation header is 2%, the allocator does not create a list with the
unused words. It just allocates the whole block and writes the number of bytes that were

allocated in the allocation header.

Two scenarios are possible in every allocation. The first part of figure 3.8 shows
the simple case. The gray area represents the allocation that is going to happen. This
allocation starts from the last word of this free block because the metadata words are in
the beginning. Therefore, in this case the allocator calculates the starting position of the
returned pointer ((free_block’s_end+ 1) — size_requested) and updates the size of the free
block in the header metadata with the right value. The second part of figure 3.8 shows
the special case when a block that is the same size as the request is found. In this case
the allocator should find the previous free block and update its header, in order to point
to the free block that is after the one that is allocated.

The deallocation process is more complex. In general the block that is going to be

freed is beetween other free blocks. In this case 4 scenarios can occur. Their common
attribute is that the DM manager should find the previous free block in the freelist. The

"#define MEMLUV_ALLOC_HEADER 0
8#define MEMLUV_ALLOC_HEADER 2

3.3 The DMM-HLS Enhanchement

105

i,

Figure 3.7: Unused words scenario

o~ =

Figure 3.8: Allocation process

first case is when the block that is freed should merge with both the previous and the next

free blocks (figure 3.9). The next cases are when the block that is freed should merge with

either the next (figure 3.10) or the previous block (figure 3.11). Finally, in some cases the

106 Chapter 3. Dynamic Memory Management Framework for HLS

A,

Figure 3.9: First Free Scenario

Figure 3.10: Second Free Scenario

block that is freed is not adjacent to any other free blocks so it should be attached to the
virtual free list with the appropriate values in its header (figure 3.12). Rarely a block that
is freed may affect one of the list’s ends. These ”corner” cases are presented and explained
with the actual code (listing 3.28)

3.3 The DMM-HLS Enhanchement 107

N

—
T A

Figure 3.11: Third Free Scenario

N |
——

Figure 3.12: Fourth Free Scenario

B ——

3.3.2.2 Best Fit Implementation

In the previous section the important parts of Best Fit were analyzed. In this section
the actual C implementation is presented.

At listing 3.18 the changes that should be made to the struct MemLuvCore are shown.
For Best Fit the freelist array is ommited from this struct, because the freelist is created
through metadata headers in the actual memory. The rest of this struct remains the same
except for 3 fields that were added. The first field is the position of the first free block

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

108 Chapter 3. Dynamic Memory Management Framework for HLS

(line 28). If the memory has no free blocks its value will be the MEMLUV_DEPTH. This will
inform the DM manager when the memory is full. In general, core[freelist_start]
will access the first word of the first free block. In a similar way the first unused word’s
position is kept (line 30). Finally, allocated (line 29) saves the number of bytes that

were eventually allocated by the manager. This value is useful for statistics.

struct MemLuvCore

{

// Static buffer for new allocations
CORE_UINT_T core [MEMLUV.DEPTH] ;
uint8_t id;

uint_t size;
uint_t depth;
var_type_t xbase;

var_-type_-t *xtop;

uint_t aligned , aligned_pad;
uint8_t log-align;
uintl16_-t alloc_-rqst , free_rqst, tot_rqgst;
uint_t ibitpos, ibitpos_pad;
memluv_action_status_t action_status;
#ifndef _SYNTHESIS__
FILE x=fd;
char filename [64];
unsigned int file_init;
#endif
#if HWDEBUGMEMLUV==1
MemLuvStats stats;
#endif
//This should always point to the first free block
//if there is no free block then a special value
// (MEMLUV_DEPTH) should be given to this variable
uint_t freelist_start;
uint_t allocated;

uint_t unused_words_start ;

Listing 3.18: Changes in struct MemluvCore for Best Fit

When the first allocation occurs, the DM manager should do some initializations. As
shown at listing 3.19, the first two words of the heap are filled with the appropriate values.
The total heap’s size in bytes is saved in the first word(line 21) and the value MEMLUV_DEPTH
is saved in the second word (line 25). This value indicates that there is no other free blocks
after the first. This funtion also saves the position of the first free block (line 28). Finally,
MEMLUV_DEPTH is assigned to unused_words_start because the allocator have not created

yet any unused words.

1| /** The initialize_memory() function is needed when the MemluvAlloc

2

* 1is called for the first time so as to create the appropriate

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3.3 The DMM-HLS Enhanchement

109

* header in the available memory (only for best fit).

* The header structure is shown below:

* number of block’s bytes | next free block

* G@param CurMemLuvCore The employed HW heap structure MemLuvCore
*/
void initialize_memory (MemLuvCore *CurMemLuvCore){
#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE = 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
//available bytes of the HW heap
CurMemLuvCore—>core [0] = sizeof (CORE_.UINT.T)+MEMLUV DEPTH,

//Next free block of the heap (the end of the heap in this case)
//because the whole heap is free
CurMemLuvCore—>core [1] = MEMLUVDEPTH;

//update the position of the start of the heap
CurMemLuvCore—>freelist_start = 0;

//update the starting position of unused words list

CurMemLuvCore—>unused _words_start = MEMLUV_DEPTH;

Listing 3.19: Best Fit’s initialization

At listing 3.20 Best Fit’s CurMemluvAlloc() is shown. This function is responsible

for the initialization of the memory heap (line 13) and every calculation that should be

done outside Best Fit algorithm. FEvery time that is called, the statistics counters are

incremented (lines 15, 16). The allocation should always be an integer amount of heap’s

words so the bytes requested by the user should be rounded up to meet this requirement

(line 25). This rounded value is incremented according to header configuration (line 28)

and then the allocation algorithm is called (line 30). The algorithm returns the position
of the first word of the allocated block. If the allocation succeeded the block’s address is
calculated (lines 37, 52). On the contrary, if the allocation failed, the heap’s base address

is returned (line 44). Finally, if header is used, the number of bytes of each allocation is

saved in the first word of the allocated block.

1| void* CurMemluvAlloc(MemLuvCore *CurMemLuvCore, uint_t nbytes) {
2|#ifdef _SYNTHESIS__

3|#pragma AP inline

4|#endif

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

110 Chapter 3. Dynamic Memory Management Framework for HLS

var_type_t *addr=NULL, #returned;
uint_t cand_base;
uint_t allocated=0;
#if HWDEBUGMEMLUV==1
uint_t allocated=0;
#endif

if (! (CurMemLuvCore—>alloc_rqst))
initialize_memory (CurMemLuvCore) ;

CurMemLuvCore—>alloc_rqst++;
CurMemLuvCore—>tot_rqst++;

uint_t aligned_bytes;

uint_t modulo;

uint_t word_size_in_bytes;

word_size_in_bytes = sizeof (CORE.UINT.T);

aligned_bytes = nbytes;

modulo = nbytes % word_size_in_bytes

if (modulo){

aligned_bytes = nbytes + (word_size_in_bytes — modulo);

}
#if MEMLUV_ALLOCHEADER > 0

aligned_bytes += MEMLUV_ALLOCHEADER#*sizeof (CORE_.UINT.T) ;
#endif

cand_-base = MemluvFit(CurMemLuvCore, aligned_bytes);

allocated = CurMemLuvCore—>allocated ;

if (CurMemLuvCore—>action_status = MALLOCSUCCESS) {
/* 0x2: If malloc succceeded, calculate the address of the
* free block and do some statistics.
*/
addr = (((var_type_t #)CurMemLuvCore—>base) + cand_base);

#if HWDEBUGMEMLUV==1
MemluvAllocUpdateStas (CurMemLuvCore, nbytes, allocated);
#endif
telse {
// 0x3: If malloc failed, return the address of base heap
addr = CurMemLuvCore—>base ;
#if HWDEBUGMEMLUV==1
MemluvAllocUpdateStas (CurMemLuvCore, nbytes, allocated);
#endif
}
//0x4: The address is increased by MEMLUV_ALLOC_HEADER positions
//if we use header.

returned = addr + MEMLUV_ALLOCHEADER;

#if MEMLUV_ALLOCHEADER > 0

56

57

58

59

60

61

62

63

64

65

66

67

68

69

©

10

11

12

13

14

15

16

17

3.3 The DMM-HLS Enhanchement 111

/* 0xb5: If we use header, write to the first two addresses the length

* of the requested allocation and the index of the requested
* allocation on freelist bitmap, respectively
*/

CurMemLuvCore—>core [cand_base] = allocated;

DumpStatisticsToFile (CurMemLuvCore
#if USEMEMLUV==1 && HW_DEBUGMEMLUV==1
,1
,allocated
#endif
)
// 0x6: Return the address in the form of a generic (void*) pointer.

return ((void#*)returned);

Listing 3.20: Best Fit’s CurMemluvAlloc

The main logic of Best Fit implementation is shown at listing 3.21. The function
MemluvBestFit () (listing 3.21) iterates over the heap’s free blocks and finds the most
suitable (according to Best Fit policy) free block for the allocation requested. This itera-
tion is implemented through a while loop (line 40) which stops when the last free block is
found. temp_difference (line 41) stores for every free block the difference beetween the
number of bytes that exist in this free block and the number of bytes that were requested.
Best Fit searches for the minimum of this value. When a possible minimum is found (line
49), the previous free block and its position are saved. Then it continues to the next free
block (lines 55, 56, 57 58). This process can stop if a free block with the same size as the
requested is found (line 42). If no free block is found this function returns MEMLUV_DEPTH
(lines 29, 63). Otherwise the position of the first word that is allocated is returned (line
69). Every side effect of an allocation is managed by the function allocate_memory ()

which is demonstrated at listing 3.22.

/** This function searches for the suitable (best fit algorithm) block

* in the freelist if any exists.

* @param CurMemLuvCore The implemented HW heap struct MemLuvCore
* Qparam nbytes The number of bytes that must be allocated. (including
* allignement and header bytes)
*/

uint_t MemluvBestFit (MemLuvCore *CurMemLuvCore, uint_t nbytes){

#ifdef __SYNTHESIS__

#if MEMLUV_HLSINLINE — 0

#pragma AP inline off

#else

#pragma AP inline

#endif

#Hendif

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

112 Chapter 3. Dynamic Memory Management Framework for HLS

uint64_t min_difference, temp-_difference;
uint_t previous_free_block , current_free_block;
uint_t min_position, start_of_allocated_block;
uint_t previous_free_block_of_min;

uint_t freelist_start;

uint_t bytes_available , next_free_block;

uint8_t found=0, found_zero=0;

if ((CurMemLuvCore—>freelist_start) =— MEMLUV.DEPTH) {
CurMemLuvCore—>action_status = MALLOC_FAIL;
CurMemLuvCore—>allocated = 0;
return MEMLUV.DEPTH;

}
min_difference = UINT64 MAX;

freelist_start = CurMemLuvCore—>freelist_start ;
previous_free_block = freelist_start ;

current_free_block = freelist_start ;

bytes_available = CurMemLuvCore—>core [freelist_start |;
next_free_block = CurMemLuvCore—>core[freelist_start 4+1];

while(current_free_block != MEMLUV.DEPTH){
temp_difference = bytes_available — nbytes;

if (temp_difference){

found_zero = 1;
min_position = current_free_block;
previous_free_block_of_min = previous_free_block;
min_difference = 0;
break;
}
if((temp_difference < min_difference) && (bytes_available > nbytes)){
min_difference = temp_difference;
min_position = current_free_block;
previous_free_block_of_min = previous_free_block;
found = 1;
}
previous_free_block = current_free_block;
current_free_block = next_free_block;
bytes_available = CurMemLuvCore—>core[current_free_block J;
next_free_block = CurMemLuvCore—>core [current_free_block + 1];

}
if (!found && !found_zero){

CurMemLuvCore—>action_status = MALLOC_FAIL;

CurMemLuvCore—>allocated = 0;
return MEMLUV_DEPTH;
telse{
start_of_allocated_block = allocate_memory (min_position ,

previous_free_block_of _min , nbytes, min_difference, CurMemLuvCore);

68

69

70

71

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

3.3 The DMM-HLS Enhanchement 113

CurMemLuvCore—>action_status = MALLOCSUCCESS;

return start_of_allocated_block;

Listing 3.21: Best Fit’s implementation

Figure 3.8 shows the two possible scenarios in every allocation. Every task that
should be performed for the completion of the allocation is handled by the function
allocate_memory (listing 3.22). In the first scenario the freelist is not altered, and only
the size of the block is decremented according to the allocation bytes. This case is handled
by the else clause in line 69 which calculates the starting word of the allocation (line 71),
and updates the header metadata (lines 70, 72). The second scenario is more complex
because the block that is used for the allocation should be removed from the freelist. First,
it should be checked whether the block that is removed from the list is in the middle of
the list (line 50) or in the beginning (line 53). In the first case the header of the previous
block should be updated with the correct values but in the second case only the global
pointer which saves the start of the free list should be updated. After those changes the
DM manager must check if the allocation that is going to happen creates an unused word
(as described in section 3.3.2.2). The block of code that starts in line 57 handles this case.
First the position of the unused word is calculated and then this word is added to the list
of usused words. This word can be added either in the middle of the list (line 59) or in

the beginning (line 63).

/** allocate_memory is used by the allocator when a suitable free block
* is found. This function makes the appropriate changes
* to the freelist headers and to the global variable freelist start.

* More specifically when two cases are taken into consideration:

* * When the available block is the same size as requested or 1 word

* bigger (these cases are treated the same because header == 2 words).
* If this block is the same with freelist_start, freelist_start

* should be updated with the next position of freelist. If the next

* position is MEMLUV_DEPTH our memory will be fully allocated.

* If this block is not the freelist_start then the previous should

* point to the next free block (next(previous) = next(current))

* * When the available block is larger than the size requested then its

* header should be updated with the correct values (size -= requested)
* This means that the free blocks are allocated from their end towards
* their start.

* @param min_position The start of the free block found

* @param previous_free_block_of_min The previous free block

* G@param bytes_requested The amount of bytes that the user requested
* @param min_difference How many bytes more exist in this block

* @param CurMemLuvCore The employed HW Heap structure

* Qretval assigned_position The index of the free blcok in the Heap

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

114 Chapter 3. Dynamic Memory Management Framework for HLS

*/
uint_-t allocate_memory (uint_-t min_position, uint-t
previous_free_block_of_min ,
uint_t bytes_requested , uint_t min_difference,
MemLuvCore *CurMemLuvCore) {
#ifdef __SYNTHESIS__

#if MEMLUV_HLSINLINE = 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
uint_t bytes_available , next_free_block;
uint_t start_of_allocated_block;
uint_t bytes_in_two_words;
uint_t previous_unused;
uint_t this_unused_word;
uint_t tmp;
bytes_available = CurMemLuvCore—>core [min_position |;
next_free_block = CurMemLuvCore—>core [min_position + 1];
bytes_in_two_words = 2+sizeof (CORE_.UINT.T) ;
if (min_difference < bytes_in_-two_words) {
if (previous_free_block_of_min != min_position){
CurMemLuvCore—>core [previous_free_block_of_min + 1] = next_free_block;
start_of_allocated_block = min_position;
}else{
start_of_allocated_block = min_position;
CurMemLuvCore—>freelist _start = next_free_block;
}
if (min_difference){
this_unused_-word = min_position + (bytes_requested >>
TIMES_TO_.GET_-WORD_POSITION) ;
if (CurMemLuvCore—>unused_words_start < this_unused_-word){
previous_unused = find_previous_unused (CurMemLuvCore,
this_unused_word) ;
CurMemLuvCore—>core [this_unused_-word] = CurMemLuvCore—>core [
previous_unused |;
CurMemLuvCore—>core [previous_unused] = this_unused_-word;
}else{
CurMemLuvCore—>core [this_unused_word] = CurMemLuvCore—>
unused_words_start ;
CurMemLuvCore—>unused_words_start = this_unused_word;
}
}
CurMemLuvCore—>allocated = bytes_requested + min_difference;
}else{

70

71

72

73

74

75

76

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

3.3 The DMM-HLS Enhanchement 115

bytes_available —= bytes_requested;
start_of_allocated_block = min_position + (bytes_available >>
TIMES_TO_.GET_-WORD_POSITION) ;

CurMemLuvCore—>core [min_position] = bytes_available;
CurMemLuvCore—>allocated = bytes_requested;
}
return start_of_allocated_block;
}

Listing 3.22: Best Fit’s allocation mechanism

The function find_previous_unused() (listing 3.23) is used by allocate_memory ()
to find the unused word that is located just before the given position. It consists of a
simple while clause (line 28) which iterates through the unused words’ list and stops when

an index bigger than given is reached.

/** This function is used to find the previous unused word
* in the unused words list.

*

* NOTE: unused words are created when the allocated block
* 1s one word bigger than the requested size. Because

* the free blocks must have two word header the whole

* block is considered allocated by the allocator but

* the user cannot know about its existence. So a

* bookeeping should be implemented.

*/

uint_t find_previous_unused (MemLuvCore *CurMemLuvCore, uint_t
this_unused_word) {
#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE =— 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif

uint_t current, next, start;

uint_t 1i;

start = CurMemLuvCore—>unused_words_start ;
current = CurMemLuvCore—>unused_words_start ;

next = CurMemLuvCore—>core [current |;

while (next < this_unused_word){
current = next;
next = CurMemLuvCore—>core [current |;

}

return current;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

116 Chapter 3. Dynamic Memory Management Framework for HLS

Listing 3.23: Function find_previous_unused

Best Fit’s CurMemluvFree() is almost the same with the previous implementations

and is shown at listing 3.24. The key differences are:
e The calculation of the byte’s index that this pointer points to (line 18).
e The new implementation of Free’s logic (line 27).

These 2 functions are shown at listings 3.25 and 3.26 respectively.

void CurMemluvFree(MemLuvCore #CurMemLuvCore, CORE_UINT.T #ptr, uint_t
nbytes) {

#ifdef __SYNTHESIS__

#if MEMLUV_HLSINLINE =— 1 || MEMLUVALLOCHEADER > 0

#pragma AP inline

#else

#pragma AP inline off

#endif

#endif

uint_t data_alloc_length , index;

CurMemLuvCore—>free_rqst++;
CurMemLuvCore—>tot_rqst++;

/* Always mark a succesfull free unless check is forced */
CurMemLuvCore—>action_status = FREE_SUCCESS;

index = MemluvCalcPtrDistanceFromBase_bf(CurMemLuvCore, ptr);

#if MEMLUV_ALLOCHEADER > 0
data_alloc_length = CurMemLuvCore—>core [(index>>TIMES TO_.GET-WORD_POSITION

) —2];
#else
data_alloc_length = nbytes;
#endif

CurMemluvFreeBody_bf(CurMemLuvCore, ptr, data_alloc_length ,
index >> TIMES TO_.GET-WORD_POSITION) ;

Listing 3.24: Best Fit’s CurMemluvFree ()

MemluvCalcPtrDistanceFromBase_bf () (listing 3.25) finds through binary search the
index of the first byte that *ptr points to. This implementation is way more efficient than
First Fit’s and Next Fit’s (listing 3.13) which searches this index linearly.

1l uint_-t calc_binary_search (MemLuvCore *CurMemLuvCore, CORE_UINT.T #ptr){
2|#ifdef __SYNTHESIS__

w

S

[=2]

1

oo

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

3.3 The DMM-HLS Enhanchement 117

#if MEMLUV_HLSINLINE = 0
#pragma AP inline off
#else

#pragma AP inline

#endif

#endif

uint_t distance=0;

uint_t i, min, mid, max;

min=0;1=0;

max=CurMemLuvCore—>depth ;

while (min<=max) {

mid = min + (int)(max — min) /2;

if (ptr > &(CurMemLuvCore—>core [mid])) {
min = mid + 1;

telse if(ptr < &(CurMemLuvCore—>core [mid])){
max = mid — 1;

telse if (ptr = &(CurMemLuvCore—>core [mid])){
distance = (uint-t) mid*sizeof (CORE.UINT.T);
min = max + 1;

}

}

return distance;

uint_t MemluvCalcPtrDistanceFromBase_bf(MemLuvCore #*CurMemLuvCore,
COREUINT.T sptr){
#ifdef __SYNTHESIS__
#if MEMLUV_HLSINLINE =— 0
#pragma AP inline off
#else
#pragma AP inline
#endif
#endif
uint_t distance=0;
if (CurMemLuvCore—>action_status = FREE_SUCCESS) {
distance = calc_binary_search (CurMemLuvCore, ptr);

}

return distance;

Listing 3.25: Function MemluvCalcPtrDistanceFromBasef|()

At listing 3.26 the function CurMemluvFreeBody_bf () is shown. This function calcu-
lates the correct value of the allocated block either with allocation header enabled (line
32) or whithout allocation header (lines 21, 37). It writes some statistics (lines 34, 39)
and finally calls the function free_memory() (line 42). This function is shown at listing
3.28.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

118 Chapter 3. Dynamic Memory Management Framework for HLS

void CurMemluvFreeBody_bf (MemLuvCore #CurMemLuvCore, CORE.UINT.T #% ptr,
uint_t data_alloc_length , uint_t index){

#ifdef __SYNTHESIS__

#if MEMLUV_HLS_INLINE =— 1

#pragma AP inline

#else

#pragma AP inline off

#endif

#endif

uint_t true_alloc_length;

#if MEMLUVALLOCHEADER =— 0
uint_t modulo;
uint_t word_size_in_bytes;
word_size_in_bytes = sizeof (CORE.UINT.T);

modulo = data_alloc_length % word size in bytes;
if (modulo){
data_alloc_length += (word_size_in_bytes — modulo);
}
#endif
#if CHCKFREE.OUT_OF BOUNDS — 1
if (index >= MEMLUVDEPTH) {
CurMemLuvCore—>action_status = FREE_FAIL POINTER_OUT_OF BOUNDS;

return;
}
#endif
#if MEMLUV_ALLOCHEADER > 0
index —= 2;
true_alloc_length = CurMemLuvCore—>core [index |;

#if HWDEBUGMEMLUV — 1
MemLuvDebugUpdate (CurMemLuvCore, 2, (uint_-t) index);
#endif
#else
true_alloc_length = data_alloc_length;
#if HWDEBUGMEMLUV =— 1
MemLuvDebugUpdate (CurMemLuvCore, 2, CurMemLuvCore—>stats.lock);
#endif
#endif

free_memory (CurMemLuvCore, true_alloc_length , index);

#if HWDEBUGMEMLUV==1
MemluvFreeUpdateStas (CurMemLuvCore, data_alloc_length);
#endif

DumpStatisticsToFile (CurMemLuvCore
#if USEMEMLUV==1 && HW DEBUGMEMLUV==1

52

53

54

55

[un

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3.3 The DMM-HLS Enhanchement 119

,2
,CurMemLuvCore—>ibitpos_pad
#endif

DE

Listing 3.26: Function CurMemluvFreeBody_bf ()

Before the analysis of the main logic of every free operation in Best Fit the function

chk_for_unused() is demonstrated (listing 3.27). This function is needed only when the

allocation header is not used?. It checks if an unused word belongs to the block that is

going to be freed. If so, it increases the size of the free operation by one word (line 56).

As explained in section 3.3.2.1, every unused word will be in the end of the allocated

block. Thus, the possible position of an unused word is calculated as shown in line 53.

The function has_unused() returns 1 if this position is a member of the unused words’

list and remove this word from the list.

/*
*
*
*
*
*
*

*

* This function decides with the help of the unused words 1list
whether this block during the allocation created an unused word.

If so, this word is removed from the list.

@param CurMemLuvCore The implemented HW heap

@param possible_unused The index of a possible unused memory word

@retval ans 1 if there is unused word, O otherwise

*/

ui

nt8_t has_unused (MemLuvCore *CurMemLuvCore, uint_t possible_unused){

uint8_t ans = 0;

uint_t current, next;

int i=0;
current = CurMemLuvCore—>unused_words_start;
next = CurMemLuvCore—>core [current |;

if (current = MEMLUVDEPTH || possible_unused =— MEMLUV.DEPTH) {

return 0;

}telse if(current = possible_unused){
ans = 1;
CurMemLuvCore—>unused_words_start = next;
telse{
while(next < possible_unused){
current = next;
next = CurMemLuvCore—>core [current];
}
if ((next = possible_unused) && (next != MEMLUV.DEPTH)) {
CurMemLuvCore—>core [current] = CurMemLuvCore—>core [next | ;
ans = 1;
}

9define MEMLUV_ALLOC_HEADER O

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

120 Chapter 3. Dynamic Memory Management Framework for HLS

}

return ans;

/** Adds sizeof (CORE_UINT_T) bytes to the number of bytes that must

* be freed depending on the output of the function has_unused.

* @param CurMemLuvCore The HW heap struct
* @param nbytes The initial size in bytes

* Qparam position This blocks starts from core[position]
* Qretval nbytes the updated number of bytes

*/
uint_-t chk_for_unused (MemLuvCore *CurMemLuvCore, uint_-t nbytes,

uint_t position){

uint_t unused_start;

uint_t possible_position;
possible_position = position + (nbytes >> TIMES.TO.GET_-WORD_POSITION) ;

if (has_unused (CurMemLuvCore, possible_position)){
nbytes += (uint_t) sizeof (CORE_.UINT.T);
}

return nbytes;

Listing 3.27: Function chk _for_unused()

free_memory() (listing 3.28) frees the allocated block which starts at position position
and has size nbytes. This function is responsible for every modification in the list of free
blocks which may arise by every possible case (as explained in section 3.3.2.1). If allo-
cation header is not used it should be checked if the allocation of this block has created
an unused word (line 30). Then three corner cases are examined. The first (line 36) is
when there are no other free blocks in the heap and only the header metadata (lines 37,
38) and the global pointer to free list’s start should be configured (line 39). In the second
case the block that is going to be freed is before the start of the list (line 40). Therefore,
the global pointer which points to the first free block should be updated (line 49). The
block’s header is also filled with the correct metadata (lines 47, 48) even if it is merged
with next one (line 43). The third corner case is when the block that is freed should be
appended to the end of the list (line 50). In that case the block can either be merged with
its previous affecting only the previous’ size (line 53) or it is appended to the list with the
appropriate values in its header (lines 56, 57). As discussed in section 3.3.2.1, the block
that is going to be freed is located in the middle of the list. The else clause in line 59 is

responsible for this scenarios. More specifically the scenarios in figures 3.9, 3.10, 3.11 and

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

3.3 The DMM-HLS Enhanchement

121

3.12 are handled in lines 76, 72, 69 and 64 respectively.

/** free_memory frees the block that starts from core[position]
* until corel[nbytes/(sizeof (UINT_T))]

* This function is responsible for merging the block to be

* freed with adjacent ones (either with previous or next
* block)
*

* @param CurMemLuvCore The HW heap struct

* @param nbytes The number of bytes that should be freed
* Qparam position The block starts from core[position]
*/
void free_memory (MemLuvCore #*CurMemLuvCore, uint_t nbytes,

uint_t position){

uint_t freelist_start;

uint_t temp_next, temp-_size;

CORE_UINT.T =xcore;

uint_t size_of_previous , next_of_previous;

uint_t previous;

Dfprintf (1, CurMemLuvConf—>dbg_fd, "FREE_MEMORY:\n");
if (position >= MEMLUVDEPTH) {
Dfprintf (1, CurMemLuvConf—>dbg_fd, "Error: Address too high\n");

return;

freelist_start = CurMemLuvCore—>freelist_start ;
core = &(CurMemLuvCore—>core [0]) ;

#if MEMLUV_ALLOCHEADER = 0
nbytes = chk_for_unused (CurMemLuvCore, nbytes, position);
#endif

//this line is needed for FreeUpdateStats
CurMemLuvCore—>ibitpos_pad = nbytes;

if(freelist_start =— MEMLUVDEPTH) {
CurMemLuvCore—>core [position] = nbytes;
CurMemLuvCore—>core [position + 1] = freelist_start;
CurMemLuvCore—>freelist_start = position;
}else if(freelist_start > position){
temp_next = freelist_start;
temp_size = nbytes;
if ((position + (nbytes >> TIMES TO_.GET_-WORD_POSITION)) = temp_next){
temp_size = core[temp-next]| + nbytes;
temp_next = core|[temp_next + 1];
}
core[position] = temp_size;
core[position + 1] = temp_next;

CurMemLuvCore—>freelist_start = position;

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

122 Chapter 3. Dynamic Memory Management Framework for HLS

telse if(core[(previous = find_previous_free_block (CurMemLuvCore, position
)) + 1] = MEMLUV.DEPTH) {
size_of_previous = core[previous];

if ((previous + (size_of_previous >> TIMES TO_.GET_-WORD_POSITION)) =
position){

core [previous| += nbytes;

telse{
core[previous + 1] = position;
core [position] = nbytes;

core[position + 1] = MEMLUVDEPTH,;
}

telse(
previous = find_previous_free_block (CurMemLuvCore, position);
size_of_previous = core|[previous|;
next_of_previous = core[previous + 1];

if (((previous + (size_of_previous >> TIMES.TO.GET_-WORD_POSITION)) !=
position) &&
((position + (nbytes >> TIMES.TO_.GET_WORD_POSITION)) !=

next_of_previous)){

core [previous + 1] = position;
core [position + 1] = next_of_previous;
core[position] = nbytes;

telse if (((previous + (size_of_previous >> TIMES.TO.GET_-WORD_POSITION))
= position) &&
((position + (nbytes >> TIMES TO.GET_-WORD_POSITION)) !=
next_of_previous)){
core[previous] += nbytes;
telse if (((previous + (size_of_previous >> TIMES.TO.GET_-WORD_POSITION))
|= position) &&
((position + (nbytes >> TIMES.TO.GET-WORD_POSITION)) =—

next_of_previous)){

core[previous + 1] = position;

core[position] = core[next_of_previous] + nbytes;

core [position + 1] = core[next_of_previous + 1];
}else{

core[previous] += nbytes + core[next_of_previous];

core[previous + 1] = core[next_of_previous + 1];

Listing 3.28: Function free_memory ()

Chapter 4
Experiments and Results

This chapter demonstrates the process that is used in order to create a profile of
the extended DMM-HLS. First, the testbench which is used by the Vivado®) HLS is
analyzed along with every framework’s function call that it is required. Then, every
allocation/deallocation test is analyzed. It should be noted here that the more realistic
and accurate scenario is the larson test (section 4.2.4), which is the one that must be

trusted more.

4.1 Testing Environment

As refered in section 2.3.2.1 Vivado®) HLS uses a test bench for the evaluation of a
design. Thus, a test bench is created in order to compare the three different implemen-
tations of the DM manager. Its main() function is shown in listing 4.1. The only part
of this function that is synthesized is the function yadmm() (line 17) and it is analyzed in
the following paragraph. The remaining operations are: the initialization of every data
structure that is used by the DM manager (line 5), and the printing of usefull messages
such as general information (total size, starting and ending address, freelist’s size, freel-
ist’s depth, address and data width) about the heaps that are used (line 7), and all the
contents of the heap (line 24) and the freelist array if used (line 25). These operations are

not inluded in the time measurement of the simulation process.

int main(void){
uint_t i=4, returned, val;
MemLuvStats mlvstats;
MemLuvCore s*mlvcore;
MemluvInit () ;
mlvcore = ReturnMemLuvCore () ;
MemluvInfo (NULL, stdout, ALL);

for (i=205;i>204;i—) {
printf("try i=Yu\n", i);

#if RANDOM SEED==1

123

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

124 Chapter 4. Experiments and Results

val=RandMinMax (1,i);

#else
val=i;
#endif
returned = yadmm(val
#if HWDEBUGMEMLUV==
, &mlvstats
#endif
)
}

#if SIM_-WITH_GLIBC_.MALLOC==0
MemluvDumpFreeList (mlvcore, ALL);
MemluvDumpCore (mlvcore , ALL) ;

#endif
MemluvEnd () ;

return 0;

}

Listing 4.1: Test Bench’s main function[2]

4.2 Experimental analysis

yadmm () consists of several different tests that use the DM manager interface. Every
test is used for the performance evaluation of the different implementations of the DM
manager. A preprocessor flagl enables a different test each time the simulation takes

place. In this section every test will be analyzed.

4.2.1 First group of experiments

This group consists of 4 simple experiments. Despite their simplicity, these experiments
highlighted some of the key differences between the two implementations of the DMM-HLS

framework.

4.2.1.1 Test 1

The first test is shown at listing 4.2. It is just a simple scenario with four allocations
and four frees. It does not evaluate thoroughly the DM manager but it provides a usefull

first comparison beetween the different algorithms of the DM manager.

#if TEST==1
char *datal ,*data2,*data3 ,*datad;
uint_t i;
datal = (char *)MemluvAlloc(2048,0);
data2 = (char *)MemluvAlloc(2048,0);
MemluvFree(datal ,2048,0) ;
data3 = (char #%)MemluvAlloc(4096,0);

le.g. #define TEST 1

10

11

[un

10

11

12

13

14

16

17

18

19

20

[un

4.2 Experimental analysis 125

datad (char *)MemluvAlloc(2040,0) ;
MemluvFree(data2,2048,0) ;
MemluvFree (data3,4096,0) ;
MemluvFree(data4 ,2040,0) ;

#endif

Listing 4.2: Test 1

4.2.1.2 Test 2

The second test (listing 4.3), is used for the same purpose as the first one. It consists of
ten allocations and three deallocations. This test is a bit more stressful than the previous

one.

#if TEST==2
char xdatal ,xdata2,xdata3,xdatad;
char xdatab,xdata6 ,xdata7,xdata8;
char *xdata9 ,xdatal0 ,xdatall ,xdatal2;

datal = (char #%)MemluvAlloc (300, 0);
data2 = (char x)MemluvAlloc(150, 0);
data3 = (char *)MemluvAlloc(29, 0);
data4 = (char x)MemluvAlloc (55, 0);
datab5 = (char %)MemluvAlloc (653, 0);
data6 = (char x)MemluvAlloc(323, 0);
data7 = (char x)MemluvAlloc(63, 0);
data8 = (char *)MemluvAlloc(89, 0);
data9 = (char x)MemluvAlloc (76, 0);
MemluvFree ((void *)datab5, 653, 0);
MemluvFree ((void x)data3, 29, 0);
MemluvFree ((void x)datal, 300, 0);

datab5 = (char x)MemluvAlloc (50, 0);
#endif

Listing 4.3: Test 2

4.2.1.3 Test 3

The fourth test case is shown at listing 4.4. It is a for loop that performs two allocations

and two deallocations in every iteration.

#if TEST==3
int i;

char *pl, *p2;

for (i=0; i<256; i++){
pl (char #)MemluvAlloc (32, 0);
p2 (char *)MemluvAlloc (32, 0);

10

11

12

Jun
w

10

11

12

13

14

15

16

17

18

126 Chapter 4. Experiments and Results

MemluvFree ((void #*)pl, 32, 0);
MemluvFree ((void *)p2, 32, 0);

}
#endif

Listing 4.4: Test 3

4.2.1.4 Test 4

The fifth test case is shown at listing 4.5. It is a for loop that performs 4 allocations

and deallocations in every iteration.

#if TEST==4

int 1i;

char *pl, *p2;
char *p3, =*p4;

for (i=0; 1<128; i++){

pl = (char x)MemluvAlloc(32, 0);
p2 = (char x)MemluvAlloc(32, 0);
p3 = (char x)MemluvAlloc(32, 0);
p4 = (char x)MemluvAlloc(32, 0);
MemluvFree ((void *)pl, 32, 0);
MemluvFree ((void *)p2, 32, 0);
MemluvFree ((void *)p3, 32, 0);
MemluvFree ((void *)p4, 32, 0);
}
#endif

Listing 4.5: Test 4

4.2.1.5 Results

As we can see from figure 4.1, Best Fit is x1000 and x1300 faster than First Fit and
Next Fit respectively at the first experiment. The memory allocations of this experiment
are only 4 but they are relatively large. The significant difference in the perfomance of
the different implementations highlights the time consuming task of updating the free list
bit map array. In the second experiment the difference in the performance of the two
implementations is insignificant because the size of the memory allocations is relatively
small. Thus, fewer clock cycles are required to update the values of the bit map array.
The rest of the experiments of this group use small memory allocations of constant size
(32 bytes). In this case the bit map array is updated through an AND operation for every
memory allocation/deallocation, because 32 bytes in the heap are represented with 32 bits

in the bit map array, i.e. the width of one integer. In addition, every allocation starts from

4.2 Experimental analysis 127

Simulation Time
logarithmic scale

10000000000
1000000000

100000000
10000000
u First Fit
1000000 = Next Fit
100000 Best Fit
10000
1000
100
10
1
1 2 3 4

Test

Time (ps)

Figure 4.1: First group of experiments: Simulation Time in logarithmic scale

FF
16000
14000
12000
10000 u First Fit
w8000 u Next Fit
= s000 Best Fit
4000
0
1 2 3 4

Test

Figure 4.2: First group of experiments: Number of flip-flops

LUT

25000

20000
15000 m First Fit
5 B Next Fit
= 10000 Best Fit

N -
0
1 2 3 4
Test

Figure 4.3: First group of experiments: number of LUTs

the beginning of the heap. As a consequence, First Fit and Next Fit outperform Best Fit.
The number of the flip-flops (figure 4.2) and the LUTs (figure 4.3) that are used depends

strongly on the experiment’s structure. In general, though, Best Fit requires 18% fewer

128 Chapter 4. Experiments and Results

DSP48E

| First Fit

15 m Next Fit
Best Fit
10
) .
0
1 2 3 4

Test

DSP48E

Figure 4.4: First group of experiments: Number of DSP48E

BRAM

9.2

9
8.8
88 m First Fit
84 2 Noxt Fit
8.2 Best Fit

8
7.8
7.8
7.4

1 2 3 4

Test

BRAM (18K)

Figure 4.5: First group of experiments: Number of block RAMs

flip-flops, 5% fewer LUT from First Fit and 13% fewer LUT from Next Fit. First Fit and
Next Fit need one more block-RAM than Best Fit (figure 4.5). This extra block-RAM
is used to implement the bit map array that is required by this implementation. The

(heap's size)
8

size of this array is . The DSP48E that are required are the same for every

implementation (figure 4.4).

4.2.2 Second group of experiments

This group of experiments consists of 4 test cases. In order to create larger memory
footprint, in these test cases every free operation has specific possibility to be completed

successfully.

4.2.2.1 Test 5

This test case (listing 4.6) introduces a new feature. In order to strech the heap to its
limits every pointer that is allocated is freed with a 50% chance only. This tests the per-
formance of the algorithms when the memory is full or almost full. RandMinMaxSyn (min,
max, ...) isa pseudo-random synthesizable generator that returns random integers from

the set [min, max]. Therefore, if the set is [0, 1] the chance of freeing a pointer is 50%.

Jun

M

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

4.2 Experimental analysis

129

//50% chance of freeing the pointer
#if TEST==

int 1i;

char *p0,*pl,*p2,*p3,«pd,*pd,*pb,*p7;
char *p8,%p9,*pl0,*pll ,xpl2,*xpl3,*pld,*xplh;

unsigned short

lfsr_ptr = 0xACElu;

for (i=0; 1<10; i++){

pl = (char *)MemluvAlloc(32, 0);

p2 = (char *)MemluvAlloc(32, 0);

p3 = (char %)MemluvAlloc(32, 0);

p4d = (char x)MemluvAlloc(32, 0);

p5 = (char x)MemluvAlloc(32, 0);

p6 = (char *)MemluvAlloc(32, 0);

p7 = (char *)MemluvAlloc(32, 0);

p8 = (char #%)MemluvAlloc(32, 0);

p9 = (char x)MemluvAlloc(32, 0);

pl0 = (char x)MemluvAlloc(32, 0);

pll = (char *)MemluvAlloc(32, 0);

pl2 = (char x)MemluvAlloc(32, 0);

pl3 = (char %)MemluvAlloc(32, 0);

pld = (char x)MemluvAlloc(32, 0);

pl5 = (char x)MemluvAlloc(32, 0);

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void =)pl, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void *)p2, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void *)p3, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void x)p4, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void =*)p5, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void *)p6, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){
MemluvFree ((void *)p7, 32, 0);

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr, 0)){

MemluvFree ((void =*)p8, 32, 0);

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

=

)

10

11

12

13

14

15

16

17

18

130

Chapter 4. Experiments and Results

if (RandMinMaxSyn (0,

MemluvFree ((void =)p9,

}

if (RandMinMaxSyn (0,

MemluvFree ((void *)pl0,

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr
MemluvFree ((void *)pll, 32, 0);

}

if (RandMinMaxSyn (0,

MemluvFree ((void *)pl2,

}

if (RandMinMaxSyn (0, 1, &lfsr_ptr ,

MemluvFree ((void *)pl3,

}

if (RandMinMaxSyn (0,

1, &lfsr_ptr ,

32, 0);

1, &lfsr_ptr ,

32, 0);

1, &lfsr_ptr ,

32, 0);

32, 0);

1, &lfsr_ptr ,

MemluvFree ((void #*)pld, 32, 0);

}

if (RandMinMaxSyn (0,

MemluvFree ((void *)plh,

}
#endif

1, &lfsr_ptr ,

32, 0);

4.2.2.2 Test 6

Listing 4.6: Test 5

In the same way the next test is created (listing 4.7). This test case frees the pointers

only with 10% chance.

//10%
#if TEST==6

int 1i;

chance of freeing each pointer

char #p0,*pl,*p2,*p3,*pd,*pd,*xpb,*p7;

char #*p8,*p9,*pl0,*xpll ,*pl2,*pl3,xpld,xpl5;

unsigned short lfsr_ptr = 0xACElu;

for(i=0; 1<30; i++){

pl = (char
p2 = (char
p3 = (char
p4 = (char
p5 = (char
p6 = (char
p7 = (char
p8 = (char

x)MemluvAlloc
MemluvAlloc
MemluvAlloc
MemluvAlloc
MemluvAlloc
MemluvAlloc
MemluvAlloc

MemluvAlloc

*
*
*
*
*

*

)
)
)
)
)
)
)
)

P Py

*

32,
32,
32,
32,
32,
32,
32,
32,

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

o

[V

10

11

12

13

14

15

4.2 Experimental analysis

131

if (! RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void *)pl, 32, 0);
}
if (!RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void *)p2, 32, 0);
}
if (! RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void =*)p3, 32, 0);
}
if (!RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void x)p4, 32, 0);
}
if (!RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void *)p5, 32, 0);
}
if (! RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void =*)p6, 32, 0);
}
if (!RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void =)p7, 32, 0);
}
if (! RandMinMaxSyn (0, 9, &lfsr_ptr, 0)){
MemluvFree ((void =*)p8, 32, 0);
}
}
#endif

Listing 4.7: Test 6

4.2.2.3 Test 7

In a similar way operates the next test (listing 4.8). Now the each pointer is freed with

30% chance.

//30%

chance of freeing each pointer

#if TEST==

int

i

char *p0,*pl,*p2,*p3,*pd,*p5,*p6,*p7;
char *p8,*p9,*pl0,*pll,*xpl2,xpl3,xpld xplh;

unsigned short lfsr_ptr = 0xACElu;

for(i=0; 1<50; i++){

pl = (char %)MemluvAlloc(32, 0);
p2 = (char x)MemluvAlloc(32, 0);
p3 = (char x)MemluvAlloc(32, 0);
p4 = (char *)MemluvAlloc(32, 0);
p5 = (char *)MemluvAlloc(32, 0);

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

[un

N

10
11

12

132 Chapter 4. Experiments and Results
p6 = (char x)MemluvAlloc(32, 0);
p7 = (char %)MemluvAlloc(32, 0);
p8 = (char x)MemluvAlloc(32, 0);
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)pl, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)p2, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)p3, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)pd, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void =)p5, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void =)p6, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)p7, 32, 0);
}
if (RandMinMaxSyn (0, 9, &lfsr_ptr, 0) < 3){
MemluvFree ((void *)p8, 32, 0);
}
}
#endif
Listing 4.8: Test 7

4.2.2.4 Test 8

This is similar with the test in described in section 4.2.2.2. The only difference is that

the blocks that were allocated are also written.

//10% chance of freeing the blocks
#if TEST==8
int i;

char #*p0,*xpl,*p2,*p3,xpd,*pd,*pb,*xp7;

char *p8,%p9,*pl0,*xpll *xpl2 *pl3 ,xpld xpl5;

unsi

for(
pl
pl

gned short lfsr_ptr = 0xACElu;

i=0; 1<50; i++){
= (char x)MemluvAlloc(32, 0);
[31] = ’a’;

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

4.2 Experimental analysis

133

p2 = (char #%)MemluvAlloc(32,

p2[31] = pl[31]+1;

p3 = (char %)MemluvAlloc (32,

p3[31] = p2[31]+2;

p4 = (char #%)MemluvAlloc (32,

p4[31] = p3[31]+3;

p5 = (char #%)MemluvAlloc (32,

p5[31] = p4[31]+4;

p6 = (char #)MemluvAlloc (32,

p6[31] = p5[31]+5;

p7 = (char #%)MemluvAlloc(32,

p7[31] = p6[31]+6;

p8 = (char #)MemluvAlloc (32,

p8[31] = p7[31]+7;

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void *)pl, 32, 0);

}

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void *)p2, 32, 0);

}

if (! RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void =*)p3, 32, 0);

}

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void =*)p4, 32, 0);

}

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void *)p5, 32, 0);

}

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void *)p6, 32, 0);

}

if (!RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void *)p7, 32, 0);

}

if (! RandMinMaxSyn (0, 9, &lfsr_ptr

MemluvFree ((void =*)p8, 32, 0);

#endif

)

)

?

)

)

I’

)

)

4.2.2.5 Results

Listing 4.9: Test 9

In this group of experiments Best Fit’s implementation is x5 times faster than First

Fit’s and Next Fit’s (figure 4.6). Best Fit searches for free blocks in a very efficient way

and its execution time decreases as the data in the memory increases. In the other imple-

134 Chapter 4. Experiments and Results

Simulation Time
Logarithmic Scale

10000000000
1000000000

100000000
10000000
= First Fit
1000000 = Next Fit
100000 Best Fit
10000
1000
100
10
1
5 6 7 8

Test

Time (ps)

Figure 4.6: Second group of experiments: Simulation Time in logarithmic scale

FF
25000
20000
15000 m First Fit
w m Next Fit
% 40000 Best Fit
5000
0
5 6 7 8

Test

Figure 4.7: Second group of experiments: Number of flip-flops

LUT

45000
40000
35000

30000))
25000 m First Fit

M Next Fit
20000 Best Fit
15000
10000
5000
0
5 8 7 8

Test

LuUT

Figure 4.8: Second group of experiments: number of LUTs

mentation though, the execution time is increased as the data in the memory is increased.
Thus Best Fit is faster in these test cases. The simulation time in the experiments 6, 7,

and 8 is the same for First Fit and Next Fit because the size of every free block that is

4.2 Experimental analysis 135

DSP48E

m First Fit
m Next Fit

Best Fit
20
10
0
5 6 7 8

Test

DSP48E
[#%]
=3

Figure 4.9: Second group of experiments: Number of DSP48E

BRAM
9.2
9
8.8
8.6
g u First Fit
g 84 Next Fit
s 82 Best Fit
€ g
a
7.8
7.6
7.4
5 6 7 8
Test

Figure 4.10: Second group of experiments: Number of block RAMs

created is the same and both the algorithms complete their execution very fast. The time
consuming part of updating the freelist bit map is included in both of them. The number
of the flip-flops (figure 4.7) and the LUTs (figure 4.8) that are used depends strongly on
the experiment’s structure. Thus, experiment’s 5 large loop body leads to a significant
increase in resources that are required. In general, though, Best Fit requires 21% fewer
flip-flops than First Fit, 18% fewer flip-flops than First Fit, and 10% fewer LUTs from
First Fit and Next Fit. First Fit and Next Fit need one more block-RAM than Best
Fit (figure 4.10). This extra block-RAM is used to implement the bit map array that is
required by this implementation. The size of this array is W+ize). The DSP48E that

are required are the same for every implementation (figure 4.9).

4.2.3 Third group of experiments

This group consists of 2 test cases. In addition to uncertain free operations random-

sized memory allocations are introduced.

o

V]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

o

136 Chapter 4. Experiments and Results

4.2.3.1 Test 9

The next test (listing 4.10) introduces a new feature. RandMinMaxSyn () is used for the
size of every allocation. This creates a random-sized holes in the memory heap and it is a

more realistic scenario than the previous ones.

//random size and 25% chance of freeing each block
#if TEST==9

uint_t randl, rand2, rand3;

int 1i;

char *pl, *p2, *p3;

unsigned short lfsr_ptr = 0xACElu;

for (i=0; i<140; i++){
randl = RandMinMaxSyn (0, 256, &lfsr_ptr, 0);
pl = (char x)MemluvAlloc(randl, 0);

rand2 = RandMinMaxSyn (0, 256, &lfsr_ptr , 0);
p2 = (char x)MemluvAlloc(rand2, 0);

rand3 = RandMinMaxSyn (0, 256, &lfsr_ptr , 0);
p3 = (char %)MemluvAlloc(rand3, 0);

if (!RandMinMaxSyn (0, 3, &lfsr_ptr, 0)){
MemluvFree ((void *)pl, randl, 0);

}

if (! RandMinMaxSyn (0, 3, &lfsr_ptr, 0)){
MemluvFree ((void #)p2, rand2, 0);

}

if (!RandMinMaxSyn (0, 3, &lfsr_ptr, 0)){
MemluvFree ((void *)p3, rand3, 0);

}

}
#endif

Listing 4.10: Test 9

4.2.3.2 Test 10

This test is similar with the previous one. The random number generator, however, has
been replaced by lookup tables. These tables (Lookup_allocate[] and lookup freel[])
consist of random numbers that were produced by the generator (RandMinMaxSyn()).

lookup_allocate has integers from 1 to 256 and lookup_free has integers from 0 to 10.

#if TEST==10
uint_t randl, rand2, rand3, rand4, rand5;
int 1i;
char #pl, =*p2, *p3, *pd, =*pb;
unsigned short lfsr_ptr = 0xACElu;

I

oo

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

39

40

4.2 Experimental analysis 137

//i<84
for (i=0; i<84; i++){
randl = lookup_allocate[ix*5];

pl = (char x)MemluvAlloc(randl, 0);

rand2 = lookup-allocate [i*5+1];
p2 = (char #%)MemluvAlloc(rand2, 0);

rand3 = lookup_allocate [i*5+2];
p3 = (char *)MemluvAlloc(rand3, 0);

rand4 = lookup-_allocate[i*5+3];
p4 = (char #)MemluvAlloc(rand4, 0);

rand5 = lookup_allocate [i*5+4];
p5 = (char *)MemluvAlloc(rand5, 0);

if (!lookup_free[i]){

MemluvFree ((void *)pl, randl, 0);
}
if (!lookup-_free[i+1]){

MemluvFree ((void *)p2, rand2, 0);
}
if (!lookup_free[i+2]){

MemluvFree ((void *)p3, rand3, 0);
}
if (!lookup_free[i+3]){

MemluvFree ((void *)p4, rand4, 0);
}
if (!lookup-_-free[i+4]){

MemluvFree ((void #)p5, rand5, 0);
}

}
#endif

Listing 4.11: Test 10

4.2.3.3 Results

These two test cases are closer to a real time scenario than the previous ones. Random-
sized memory allocations create free blocks with different size in the heap and the small
possibility of freeing each pointer increases the memory usage. Best Fit is x446 and x2952
faster than First Fit and x258 and x2052 faster than Next Fit in the tests 9 and 10
respectively (figure 4.11). The random-sized allocations force First Fit and Next Fit to
search increasing areas of the bit map array which requires more clock cycles. First Fit,
as Shore proved [11], tends to allocate blocks in the beginning of the memory heap and
keeps large free blocks in the end. Therefore, it is more possible for First Fit to execute

successfully an allocation without searching the whole bit map array. On the contrary

138 Chapter 4. Experiments and Results

Simulation Time

Logarithmic Scale

1000000000000
10000000000

100000000 ® First Fit

= m Next Fit

a 1000000 Best Fit

g
= 10000
100
1
9 10

Test
Figure 4.11: Third group of experiments: Simulation Time in logarithmic scale

FF

9000

8000
7000
6000
5000
4000
3000
2000
1000

0

9 10

Test

| First Fit
m Next Fit
Best Fit

FF

Figure 4.12: Third group of experiments: Number of flip-flops

LUT

16000

14000
12000

10000 = First Fit

8000 = Next Fit

5000 Best Fit
4000
2000
0

9 10

Test

LuT

Figure 4.13: Third group of experiments: number of LUTs

Next Fit cancels this advantageous behaviour and it scatters the memory allocations in
the whole memory. As a result, First Fit is faster than Next Fit (figure 4.11). The number
of the flip-flops (figure 4.12) and the LUTs (figure 4.13) that are used depends strongly on
the experiment’s structure. In general, though, Best Fit requires 14% fewer flip-flops than
First Fit and Next Fit, 3% fewer LUTs than First Fit, and 5% fewer LUTSs from First Fit

4.2 Experimental analysis 139

DSP48E

25

20
15 o First Fit
 Next Fit
10 Best Fit
5
0
9 10

Test

DSP48E

Figure 4.14: Third group of experiments: Number of DSP48E

BRAM
25
20
g 15 u First Fit
g m Next Fit
Z 10 Best Fil
o
o
5 -
0
9 10
Test

Figure 4.15: Third group of experiments: Number of block RAMs

and Next Fit. First Fit and Next Fit need one more block-RAM than Best Fit (figure
4.15). This extra block-RAM is used to implement the bit map array that is required by
this implementation. The steep increase in the number of block-RAMs that is required in
experiment 10 is owed to the lookup tables that are used when a random value is needed.

(heap's size)
8

The size of this array is . The DSP48E that are required are the same for every

implementation (figure 4.14).

4.2.4 Larson Test

Per-Ake Larson and Murali Krishnan conducted a survey between different allocators
in pursuit of a more scalable DM manager for parallel architectures [6]. They created a test
that generates enough workload and yields reliable results. The source code of the main
logic of this test is shown at listing 4.12. This test case consists of a loop (line 34) in which
num_chunks deallocations and allocations are performed (lines 37 and 43 respectively) to
random pointers (line 36) in every iteration. The 1ran2() function that is used (lines 36,
41), yields values from a uniform distribution with range from 10 to 1000. The program
exits the loop when the time of the execution exceeds a specific threshold. The calculation

of the time is done in line 49 and is based on the system call gettimeofday().

N

w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

140 Chapter 4. Experiments and Results

#define MAXBLOCKS 1000000
char % blkp [MAXBLOCKS]

void runloops(long sleep_cnt, int num_chunks){

int cblks ;
int victim ;

int blk_size ;

long ticks_per_sec ;

long start_-cnt , end_cnt ;
app-int64 ticks ;

double duration ;

double reqd_space ;
//ULONG used_space ;

int sum-allocs=0 ;

QueryPerformanceFrequency (&ticks_per_sec) ;

QueryPerformanceCounter (&start_cnt) ;

for(cblks=0; cblks<num_chunks; cblks++){

if (max_size =— min_size) {
blk_size = min_size;
} else {
blk_size = min_size+lran2(&rgen)%(max_size — min_size) ;

blkp [cblks] = (char %) malloc(blk_size) ;
blksize [cblks] = blk_size ;
assert (blkp [cblks] != NULL) ;

while (TRUE){
for(cblks=0; cblks<num_chunks; cblks++){
victim = Iran2(&rgen)%num_chunks
free (blkp [victim]) ;
if (max_size = min_size) {
blk_size = min_size;
} else {
blk_size = min_size+lran2(&rgen)%(max_size — min_size)
}
blkp [victim] = (char %) malloc(blk_size) ;
blksize [victim] = blk_size ;
assert (blkp [victim] != NULL) ;

sum_allocs += num_chunks
QueryPerformanceCounter (&end_cnt) ;

ticks = end_cnt — start_cnt ;

)

52

53

54

55

-

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

4.2 Experimental analysis 141

duration = (double)ticks/ticks_per_sec ;

if (duration >= sleep_cnt) break ;

}

reqd_space = (0.5%(min_size+max_size)*num_chunks) ;

Listing 4.12: Larson Test [5]

The Larson test was compiled by standard C/C++ compilers and run in general pur-
pose processors. As a consequence, for the adaptation of this test case to vivado HLS’ test
bench some modifications are required. First, the code that is synthesized cannot have an
array of pointers. Thus, blkp[] will be replaced by independent pointers. The number
of these pointers, however, cannot be large, due to synthesis implications. In addition,
system calls are not supported for FPGA synthesis and the termination condition of the
loop should be changed. Thus, the while loop is replaced with a for loop with specified
limits. Furthermore, the values that are drawn from the random generator are saved in
lookup tables in order to facilitate the synthesis of the test case. The basic metric that
is going to be used for this approach is not the number of allocations and deallocations
that were completed?. This number remains constant because it is defined as the for
loop limit. Thus, the metric that is going to evaluate the performance of the different
algorithms will be the time of simulation. A modified Larson test is presented at listing

4.13. This test consists of 20 pointers (p0-p19) and 20 iterations of the loop.

//larson test
#if TEST==11
//char * blkp [MAX_BLOCKS] ;
char *p0,xpl,*p2,%*p3,xpd,*pd,*xpb,*xp7,*p8,*p9;
char *pl0,*pll *xpl2 *xpl3,*pld,*xpld,*xpl6,*pl7,*pl8,*xpl9;

uint32_t blksize [MAXBLOCKS] ;

uint32_t min_size=10, max_size=500 ;

//number of seconds that the test lasts
long sleep_cnt = 10;

//number of memory chunks

int num_chunks = 1000;

int cblks
int victim ;
uint32_-t blk_size ;

uint32_t free_size;

int sum_allocs=0 ;
int i=0;
blk_size = min_size+lookup_allocate [0];

blksize [0]=blk_size;

2Larson used this one

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

142

Chapter 4. Experiments and Results

p0=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [1];
blksize[1l]=blk_size;
pl=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [2];
blksize [2]=blk_size;
p2=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [3];
blksize [3]=blk_size;
p3=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_sizet+lookup_allocate [4];
blksize [4]=Dblk_size;
p4=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [5];
blksize [5]=Dblk_size;
p5=(char =x)MemluvAlloc(blk_size, 0);

blk_size = min_size+lookup_allocate [6];
blksize [6]=Dblk_size;
p6=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [7];
blksize [7]=blk_size;
p7=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [8];
blksize [8]=blk_size;
p8=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [9];
blksize [9]=Dblk_size;
p9=(char x)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [10];
blksize [10]=Dblk_size;
pl0=(char x)MemluvAlloc(blk_size, 0);

blk_size = min_size+lookup_allocate [11];
blksize[11l]=blk_size;
pll=(char *)MemluvAlloc(blk_size, 0);

blk_size = min_sizet+lookup_allocate [12];
blksize[12]=Dblk_size;
pl2=(char x)MemluvAlloc(blk_size , 0);

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

121

122

123

124

4.2 Experimental analysis

143

blk_size = min_size+lookup_allocate [13];
blksize[13]=blk_size;
pl3=(char *)MemluvAlloc(blk_size, 0);

blk_size = min_sizet+lookup_allocate [14];
blksize [14]=blk_size;
pl4=(char =x)MemluvAlloc(blk_size, 0);

blk_size = min_sizet+lookup_allocate [15];
blksize [15]=Dblk_size;
pls=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [16];
blksize [16]=Dblk_size;
plé=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_size+lookup_allocate [17];
blksize [17]=Dblk_size;
pl7=(char *)MemluvAlloc(blk_size , 0);

blk_size = min_sizet+lookup-allocate [18];
blksize[18]=blk_size;
pl8=(char x)MemluvAlloc(blk_size, 0);

blk_size = min_size+lookup_allocate [19];
blksize[19]=blk_size;
pl9=(char x)MemluvAlloc(blk_size, 0);

for (1=0; 1i<20; i++){

victim = lookup_20_ints[i];
free_size = blksize [victim |;
blk_size = min_size+lookup_allocate[i];

switch(victim){

case(0):
MemluvFree ((void *)p0, free_size , 0);
p0=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(1):
MemluvFree ((void *)pl, free_size , 0);
pl=(char x)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case(2):
MemluvFree ((void *)p2, free_size , 0);
p2=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(3):

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

167

168

169

170

171

172

173

174

144

Chapter 4. Experiments and Results

MemluvFree ((void *)p3, free_size , 0);
p3=(char =x)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case (4):
MemluvFree ((void =)p4, free_size , 0);
p4=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(5):
MemluvFree ((void *)p5, free_size , 0);
p5=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(6):
MemluvFree ((void *)p6, free_size , 0);
p6=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(7):
MemluvFree ((void *)p7, free_size , 0);
p7=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(8):
MemluvFree ((void *)p8, free_size , 0);
p8=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(9):
MemluvFree ((void *)p9, free_size , 0);
p9=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case (10):
MemluvFree ((void *)pl0, free_size , 0);
plO0=(char *)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case(11):
MemluvFree ((void *)pll, free_size , 0);
pll=(char *)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case (12):
MemluvFree ((void #)pl2, free_size, 0);
pl2=(char *)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case(13):

175

176

177

179

180

181

182

183

184

185

187

188

189

190

191

192

194

195

196

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

4.2 Experimental analysis

145

MemluvFree ((void *)pl3, free_size , 0);
pl3=(char x)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case(14):
MemluvFree ((void =*)pld, free_size, 0);
pld4=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(15):
MemluvFree ((void *)plb, free_size , 0);
pl5=(char x)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case(16):
MemluvFree ((void *)pl6, free_size , 0);
pl6=(char x)MemluvAlloc(blk_size, 0);
blksize [victim] = blk_size;
break;

case (17):
MemluvFree ((void *)pl7, free_size , 0);
pl7=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(18):
MemluvFree ((void *)pl8, free_size , 0);
pl8=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;
break;

case(19):
MemluvFree ((void *)pl9, free_size , 0);
pl9=(char x)MemluvAlloc(blk_size , 0);
blksize [victim] = blk_size;

default:
continue;

}
}
result = (TB_UINT.T) i;
#endif

Listing 4.13: Test 11

The rest of the test cases use this approach but alter the number of iterations of the

loop. More specifically, test 12 consists of a for loop with 50 iteratations, test 13 consists

of a for loop with 100 iterations and test 14 consists of a for loop with 200 iterations.

4.2.4.1 Results

In this group Best Fit is x42 faster than First Fit and x50 faster than Next Fit (figure

4.16). As explained in the previous test cases, Best Fit’s implementation is more efficient

146 Chapter 4. Experiments and Results

Simulation Time

Logarithmic Scale

10000000000
1000000000
100000000
10000000))
1000000 m First Fit
= ® Next Fit
8 100000 Best Fit
g
B3 10000
1000
100
10
1
" 12 13 14

Test
Figure 4.16: Fourth group of experiments: Simulation Time in logarithmic scale

FF

64000
62000

60000
28000 First Fit
W First Fi
iggg Next Fit
Best Fit
52000
50000
48000
46000
1 12 13 14

Test

FF

Figure 4.17: Fourth group of experiments: Number of flip-flops

LUT

105000

100000
95000
m First Fit
90000 o Next Fit
Best Fit
85000
80000
75000
" 12 13 14

Test

LUT

Figure 4.18: Fourth group of experiments: number of LUTs

and requires fewer operations to complete its operation than First Fit’s and Next Fit’s. In
this group of test cases the simulation time is icreased as the number memory allocation

requests increases. As shown in before, First Fit completes its operation earlier than Next

4.2 Experimental analysis 147

DSP48E

120
100
80 W First Fit
m Next Fit
Best Fit
40
20
0
" 12 13 14

Test

DSP48E
@
S

Figure 4.19: Fourth group of experiments: Number of DSP48E

BRAM

24.2

24
238
o m First Fit
Irst I
22: ® Next Fit
) Best Fit
23
22.8
22,86
22.4
11 12 13 14

Test

BRAM (18K)

Figure 4.20: Fourth group of experiments: Number of block RAMs

Fit. The number of the flip-flops (figure 4.17) and the LUTs (figure 4.18) that are used
depends strongly on the experiment’s structure. Best Fit requires 10% fewer flip-flops
than First Fit, 15% fewer flip-flop than Next Fit, 9% fewer LUTs than First Fit, and 16%
fewer LUTs than Next Fit. First Fit and Next Fit need one more block-RAM than Best
Fit (figure 4.20). This extra block-RAM is used to implement the bit map array that is
required by this implementation. The large number of block-RAMs that is required is
owed to the lookup tables that are used when a random value is needed. The size of this
array is w. The DSP48E that are required are the same for every implementation
(figure 4.19).

Chapter 5

Thesis Conclusion

5.1 General Remarks

This diploma thesis contributes to the optimization of the FPGA memory subsys-
tem in many-accelerator systems. To this direction, the adoption of Dynamic Memory
Management (DMM) of on-chip memory, is proposed. This DMM library is developed in
synthesizable C code in order to be highly utilized in modern FPGA programming envi-
ronments, i.e. High Level Synthesis (HLS). Different implementations of this DMM-HLS
interface are explored and compared. The first implementation uses a bit map array in
which every bit represents a byte in the memory heap. The bits that are equal to 1 repre-
sent allocated bytes and those equal to 0 represent free bytes. This implementation is used
by First Fit and Next F'it algorithms. When this approach is used, the DM manager
searches bit by bit this array until it finds the requested size of free bytes. The second
implementation uses a completely different approach. A list of the free blocks is created
via metadata headers in the heap’s free blocks and the bit map array is not needed. The
header is created with the use of two words. The first is the size in bytes of this free block
and the second is the position of the next free block. This approach is used by Best F'it

algorithm.

The evaluation analysis showed that the second approach is more efficient. Despite the
fact that Best F'it should search the whole list of the free blocks untill it terminates, the
simulation time of this approach is significantly smaller than the first one. The operations
that are required to handle the bit map array in the first approach are time consuming
and need many clock cycles. Another intresting conclusion is that Next F'it is slower than
First Fit. First Fit tends to allocate blocks towards one end of the memory heap and
encourages large free blocks to grow at the other end. On the contrary, Next Fit cancel
this behaviour because it distributes the allocations to the whole memory heap. There-
fore, if allocations that are large compared to the average request occur then First F'it

outperforms Next F'it.

149

150 Chapter 5. Thesis Conclusion

5.2 Future Work

A promising approach regarding the evolution of the DMM-HLS framework is the
implementation of both First Fit and Next Fit algorithms with Best Fit's core archi-
tecture. This will improve their time performance significantly and it will give better
simulation times than the Best F'it implementation. The next improvement could be to
create an allocator which supports all the allocation/deallocation algorithms and chooses
dynamically in the runtime which one should be used. Such a combination, can use in
the start the fastest algorithm, which probably will be First F'it, and when the mem-
ory fragmentation or usage is above a specified level the allocation/deallocation algorithm
should be changed to Best Fit. This dynamic allocation/deallocation scheme can yield
the best possible combination of results regarding the simulation time of the allocator and
the number of accelerators supported. Best Fit tends to increase very small blocks of
free memory which is undesirable. A good practice for Best F'it, may be, to perform a

memory allocation if the size of a free block satisfies the following relation.
size_requested < block's_size < size_requested + K

, where K is a small positive integer. The overhead that is needed for this approach® can
be easily accomplished with the use of headers [3].

The memory heap array is implemented by the Vivado@® HLS as a block-RAM as
mentioned in chapter 2. This block-RAM can be single port, which supports only one
simultaneous read and write, or dual port, which supports two simultaneous reads and
writes. Obviously, this mechanism forms an obstacle in parallel architectures. Thus, an
improvement that can facilitate the parallel nature of many accelerator architectures is the
partition of every heap array to multiple smaller ones. This can be done easily through the
Vivado®) HLS tool with the application of the array partition directive 2 to the memory
heap array. The best partition policy, though, can be application-specific and can be found
after careful design space exploration.

Vivado®) HLS supports many optimization directives which alter the architecture of
the RTL design. An important step towards the optimization of the DMM-HLS frame-
work’s performance could be an extensive exploration of the different combinations of
optimization directives (dataflow, pipeline, inline, array partition etc.) that can be ap-
plied to the framework. The best combination of optimization directives may lead to

smaller simulation times and optimal circuits.

“the exact size of the allocation should be kept by the DM manager
2#pragma HLS ARRAY_PARTITION variable=heap_core ...

Bibliography

[1]

Altera Corporation. Fpga architecture. https://www.altera.com/content/dam/
altera-www/global/en_US/pdfs/literature/wp/wp-01003.pdf, 2016. Last ac-
cessed on 20/03/2016.

D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris. Dynamic memory manage-
ment in vivado-hls for scalable many accelerator architectures. Proceedings of 11th In-
ternational Applied Reconfigurable Computing Symposium, 9040:117-128, April 2015.

D. E. Knuth. Fundamental Algorithms. Addison-Wesley, third edition, 1968.

I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and challenges.
Foundations and Trends in Electronic Design Automation, 2(2):135-253, 2008.
d0i:10.1561,/1000000005.

Larson. Larson Test source code. https://github.com/emeryberger/
Malloc-Implementations/blob/master/allocators/streamflow/streamflow/
larson. cpp, 2012. Last accessed on 8/05/2016.

P.-A. Larson and M. Krishnan. Memory allocation for long-running server appli-
cations. In ISMM °98 Proceedings of the 1st international symposium on Memory
management, pages 176-185. ACM Press, 1998. doi:10.1145/301589.286880.

M. M. Mano and M. D. Ciletti. Digital Design. Pearson, 2013.

R. C. Minninck. A survey of microcellular research. Journal of the Association of
Computing Machinery, 14(2):203-241, 1967. doi:10.1145/321386.321387.

Research and Markets. FPGA Market by Type (High-End, Mid-End, Low-End),
Verticals (Telecommunication, Industrial, AD, Automotive, Others), Architecture
(Sram, Flash, Antifuse), Technology Node (28nm-10nm, 45/40nm, Others), and
Geography - Forecast to 2022. http://www.researchandmarkets.com/research/
xcb7px/fpga_market_by, 2016. Last accessed on 20/03/2016.

B. Schulz, C. Paiz, J. Hagemeyer, S. Mathapati, M. Porrmann, and
J. Bocker. Run-time reconfiguration of fpga-based drive controllers. 2007 Eu-
ropean Conference on Power FElectronics and Applications, pages 1-10, 2007.

doi:10.1109/EPE.2007.4417686.

153

154

Bibliography

[11]

[16]

J. E. Shore. On the external storage fragmentation produced by first-fit and best-fit
allocation strategies. Communications of the Association of Computing Machinery,
18(8):433-440, 1975. doi:10.1145/360933.360949.

G. R. Smith. FPGAs 101: Everything you need to know to get started. Elsevier Inc,
2010.

S. E. Wahlstrom. Programmable logic arrays - cheaper by the millions. Electronics,
40(25):90-95, 1967. doi:10.1145/321386.321387.

Xilinx, Inc. Vivado Design Suite User Guide, High Level Synthesis.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_
1/ug902-vivado-high-level-synthesis.pdf, 2014. Last accessed on 28/03/2016.

Xilinx, Inc. Introduction to FPGA Design with Vivado High Level Syn-
thesis (HLS). http://www.xilinx.com/support/documentation/sw_manuals/
ug998-vivado-intro-fpga-design-hls.pdf, 2015. Last accessed on 20/03/2016.

Xilinx, Inc. Zyng-7000, All Programmable Soc-Technical Reference Man-
ual. http://www.xilinx.com/support/documentation/user_guides/
ugh85-Zyng-7000-TRM.pdf, 2015. Last accessed on 20/03/2016.

Xilinx, Inc. Fpga applications. http://www.xilinx.com, 2016. Last accessed on
20/03/2016.

i 155
Bibliography

