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AmaryopevETaL 1) AVTLYPAPT], ATOONKELOT KOl SLOVOLT TNG TOPOVGOS EpYaciog, £ OAOKAPOL
N TUNHOTOS OVTHG, Yo EUTOPIKO okomd. Emtpénetal 1 avotdmmor, amobnkevon Kot dtovoun
Y10 GKOTO U1 KEPOOOKOTIKO, EKTOOEVTIKNG 1 EPEVVNTIKNG PVOTG, VIO TNV TPOHTOOEGN VoL
AVOPEPETOL 1] TNYT TPOEAELONG Kol VoL dtoTtnpeital To mapov puvopa. Epotiuota mov
apOPOVV TN YPNOT TNS EPYACTAG Y10l KEPOOOKOMIKO GKOTO TPEMEL VoL armeLOVVOVTOL TPOG TOV
GLYYPOUPEQ.

Ot amOWyELS KO TOL GUUTEPAGLOLTA TTOL TEPLEYOVTOL GE OVTO TO EYYPAPO EKPPAlovV TOV
ovyypapéa Kot dev TPEmeL va, epunvevdel 0Tt avTmposmmehouvv Tig emionpeg BEcelg Tov
EBvucod Metoofrov TToAvteyveiov.






Iepiinyn

H ypovodpopordynon eivor puo dwodikacio, 1 omoio a@opd o SoUolpocud TOP®V oE
gpyocieg avd ToKTA YpOoviKd dlaoTNUATO, LE GKOTO TN PeATiotomoinon opiopévev otdywv. 'Evag
TOUENG, OTOV Omoio ypnotlpomoteitar kKupimg, eivor ta vwoloyiotikd cvotiuata. Ocov agopd
LOVOTTUPNVES  OPYITEKTOVIKEG  £YOLV  OvOmTTUYOEl TEXYVIKEG YPOVOOPOUOADYNONG, Ol Omoleg
AVTOEEEPYOVTOL ATOOOTIKA GTO SLOUOPAGHO TOL YPOVOL TOV TVPTVA AVAUEGH GTIC OEPYCIES TOV
ovotnuatos. H avaykn oupmg yio eéummpétnon peyaldtepov @OPTov €pyaciog 00yNGe TOLG
KOTOUOKELOOTEG GTI| OMULIOVPYID TOALTUPNVOV OPYLTEKTOVIKAOV EVOMUATMOVOVTOS TOAAOVS TUPTVES
péca o€ Eva ohokAnpouévo kiklmpa (CMP). Avtifeta pe To GUUUETPIKA TOALTHPTVO GUGTILLOTOL
(SMP), ot mupiveg Tov CMPS dev Bempodvian aveEaptnteg povaodeg epocov popdlovtal ototyeio
NG OPYLTEKTOVIKNG, OTMG TO TEAELTAO EMIMEDO KPLONG LVIVNG KO TO OTOLAO LV UNG.

Yto. molvmopnva cvotiuato avtd (CMP) evoopotodnkav, avtovoieg | pe Ayeg oaAlayéc,
Ol TEYVIKEG YPOVOOPOLOAIYNONG, OV Elyav vAomomBel otig cvupetpikéc (SMP) apyttexktovikéc.
Extehdvtag mpoypaupota mapdiinio oe mopnveg mov popdlovtal otoryeio vrdpyel ThavoTnTa
Vo TOPATNPNOOLUE UEI®ON oTNV amddoon TOVE AOY® avIAY®VIGHOV HETAED TOvc. Y100eTmvTog
TEYVIKEG OV 0 AQUPAvouy VIOYIV TOVE TOV AVIOY®OVICUO OVTOV, OE®POVTOC TOVS TLPTVEG
OTOLLOVOUEVEG LOVAGEC OV OV HOPALOVTOL GTOLXEID, OONYOVLOOCTE GE OMOTEAECUOTO OV OEV
TANPOOV TIG apy€S TG XPOovodpopordynons. Mepikd mpofAnpata mov onpovpyodval givol to
eENG: MO0 YapnAn amddoon TV EPAPUOYDV, GVIGOG SOUOIPAGLOS TV TUPNVOV LETAED TOVG Kot
CLVETMG OTTPOPAETTN KOl A0TOONG GLUTEPLPOPA TOV GLGTHLOTOG.

O okomdg oIS TG OUTAMUATIKNG EIVOL VO TOPOVGLAGOVUE TEXVIKES TOV PEATUOVOLY TNV
dvion Katovoun Tov Tépmv, AapBdvovtog vToyy TNV Sapdyn TV OEPYUCLOV Y10 To LOpalopEVaL
OTOl(ElDL TOV TOUT KOl TIG KOTOAOGTPOPIKES GULVEMEIEG OV VTN OMOPEPEL OGNV ASIOMIOTIO TOV
oLOTNATOG. EMIKEVIp®VOLOOTE GE TEYVIKES TOV TPOGPEPOVY SIKALOCVVY] OTIS EPOPLOYEG LLE TOVG
TAPOKAT® TPOTOVES. TNV TPAOTN TPOGEYYIoN oxedlovpe €vav  YPOVOSIPOLOAOYNTH OV
TPOTUPEATNTA TOL EIVOL VO ATTOPVYEL TOV OVTAYOVIGUO TOV SIEPYACLAOV, PACIGUEVOL GE Eva GYTLLOL
tagvounong kot oe €va HovtéAo mov TPoPAETEL TG Ol SAPOPES KATNYOPlEG OlEPYACIDOV
oAAnAemidpovv. H emdpevn pnébodog mpoomabel vo SLoyEPIOTEL TOV OVIAYOVIGUO TOV OEPYUCLAOV.
Aoaupaver voyy ™ peiwon g amdo0oNg TOV OEPYUSLOY Kol TIS €VVOEL avaldyws. Avto To
EMTVYYAVEL OTVOVTOG EVKALPIO GLYVOTEPNG EKTEAEGNG OE EKEIVEG TOL VITOPEPOVY TEPICCOTEPO, GE
Bapog exeivav mov ekteAoVVTOL LE VYNAOTEPT amddoon. TéNog emexteivape TV deDTEPT TEYVIKN
LOG, £TCL MOTE VO ATOPEVYEL LEPOG TOL AVTUYMVIGLOV Kol va dtoyelpileTon T0 VTOAOLTO.

Aoxipnalovtog TG TEYVIKEG HOG OE O TOWKIAIL TEWPAPATOV KOl GLYKPIvOvTog To
OTOTEAEGLLOTO LE YPOVOSPOLOAOYNTH TTOV YPTOLUOTOLEITAL GE EUTOPIKA TOAVTVPNVO GUGTILLOTOL
(Linux scheduler), xatoAn&ape oto e&ng copnépacpa. Ot TPOTEWVOUEVEG EVOAMAKTIKES EIVaL IKOVES
va BeATidoovy og peydlo Babpd TV Avion KOTavoun ToV TOPp®V KOl VO, TPOGPEPOLY 0EIOTIGTIO
TNV aOS0CT] TOV GLUGTUATOC.

AéEarg Khewdorwa: Xpovodpoporldynomn, ovioyoviopos, Holpoalopevol mOPOl, TOAVTUPNVEG
OPYLTEKTOVIKEG, OIKOLOCVVN






Abstract

Scheduling is a decision-making process that deals with the assignment of resources to tasks
over given periods, aiming to optimize one or more objectives. Responsible for efficient
distribution of the CPU time among the processes, scheduler has become an essential part of
computer systems. OS schedulers for single processor architectures have become so optimized that
need for further improvements dramatically subsided. The scheduling problem was considered
solved until the arrival of chip multiprocessors (CMP). Driven by the critical problems of transistor
shrinking, heat generation, power consumption and poor performance improvement, manufacturers
abandoned single core architectures and turned to chips with multiple cooler-running, energy-
efficient processing cores. In order to provide a cost-effective solution, they integrated the cores
into a single circuit die, sharing architectural components, such as the last level cache and the
memory bus.

Scheduling policies developed for symmetric multiprocessors (SMP) have been integrated
without modifications into CMPs. While applications run on neighboring cores of a CMP, they
contend with each other for the shared resources. This contention can result in great performance
degradation for the applications that are concurrently executed. For this reason, treating the cores
of a CMP as isolated and independent units is a very optimistic abstraction and can cause great
problems to the objectives a scheduler tries to optimize. First and foremost, it cannot be assured
that applications would make adequate progress. In addition, it is observed that resources cannot be
fairly distributed among the applications of the system. As a result, poor fairness enforcement can
lead to unstable and unpredictable performance of the system.

In this paper, we develop 3 scheduling techniques aiming to improve the unequal sharing of
the resources, taking into consideration the destructive effects of applications interference, when
contending for the shared resources. On our first approach, we attempt to avoid pairing applications
that interfere destructively. We build a contention-aware scheduler, based on a classification
scheme and an interference prediction model. On the next approach, we manage the results of the
interference, boosting the performance of applications based on their IPC reduction. Applications
that are heavily impacted have the opportunity to increase their running time at the expense of the
well-performed. Finally, we extend our previous technique, aiming to avoid a part of the contention
and manage the rest of it.

Evaluating our proposed scheduling policies on a variety of workloads and comparing them
with the Linux scheduler, we come to the following conclusions. All of them manage to overcome
the problem of unfair distribution, creating an environment where Quality of Service (QoS)
guarantees are possible to be provided and Service Level of Agreements (SLAS) can be enforced.

Key words: Scheduling, contention, shared resources, chip multiprocessor, fairness






Evyaprotieg

Ye avtd 1o onueio Ba NBela va gvyoplotio® Tov emPAémovia kabnynty pov K. N.
Kolbpn mov pov €dwoe v gvkapio va acyoindod pe avtd 1o Bépa. Emiong 0o MBera va
evyoplomom 10 K. I. I'kovpa yia g cvpPovrég tov Ko tov ArE€avopo Xapiltdto, Tov HE
Bonbnoe otV mepdtwon g Epyaciag.

TéLhog Ba B vo ELYOPIGTC® TOV TATEPO KOL TNV UNTEPO OV TTOV LE LITOCTNPLEAY GE
OAN pov 1 Tpoomdheia Kot pe evBAppuvay SLoPKOS LE TV Ayl Tous. Evyapiotd diontépwg
™ PAOpa TOV 6TAONKE GTO TAELPO LOL TIC 1O OVOKOAEC GTIYUES OV Kol TOVG GIAOVE LoV TTOV
LLE AKOVYOV VITOUOVETLKA.
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Kepararo 1
Ewoayoyn

1.1 Xpovoopouoloynon kor Epapuoyés

H ypovodpopordynon eival pa dtadikosio, kotd v omoio AapBavovtol amopacels yio
TO SOUOPACUO TOP®V GE EPYACIES, LE TETOLO TPOMO MOTE VO EMTVYXAVOVTOL GUYKEKPILEVOL
otoyotl. [Tailel ToAD onuavtikd porAo cg O1APOPOVS TOUELS KOl EXEL EPAPLOYES GE EPYOCTACTIN
TAPOYOYNG, OE VANPECIEG LETAPOPDOV KOl GE VIOAOYIOTIKA GLOTAHOTO. X& KAOe Topéa ot
ndPOL, 01 EPYACIES KO O1 TPOG EKTANP®ST GTOHYOL TOIPVOLV TOIKIAEG LOPPEC.

Ag &fetdoovpe, apyikd, €va €PYOCTAGIO TOL TOAPAYEL YAPTIVEG GLOKELOGIES Yo
OKLAOTPOPEG, KApPouva kot toévro. H dwdwacio mapaymyng amoteleitoar amo Sibpopa
0TA010, OTTMG TOTMUN AOYOTOTOL 1) PAYILO TMOV TAEVPAOV TNG GCLOKELAGING. X& KAOE 6TAO10 TOL
HUNYOVTLLATO STOPEPOVY MG TPOG TO. YOPAKTNPICTIKA TOVG KOl TIG AELTOVPYIES TOV EEVTNPETOVV.
To punyovApate ovTd amoTEAOLV TOVG TOPOLS TOVL £PYOCTAGIOV. Avaioyo pe TO €100G NG
napoyyeriog, kdmoleg epyacieg mpénet va tpaypatoromBovv ota punyovipato. Ot mopayyehieg
dgv a@opohv HOVO &va mpoidv, Gpa KOl Ol AEITOVPYIEG TOV UNXAVNUATOV SOPEPOVY OO
napayyeiia oe mapayyeMa. ‘Evag otoyog o umopodce va gival 1 ehayiotonoinom tov ypoévov
TOPOYOYNS UG CLUYKEKPIUEVNG TopayyeAiog, av vrobfécovue OTL évag vyiotng onuaciog
meAdtG omotel ypnyopn moapddoon. Evag dAdog otdxog umopel vo givor M amodoTikn
Aertovpyio TOV UNYavNUATOV Yoo €E0IKOVOUNGT EVEPYELNS KOl KOGTOVC. Xe kibe mepimtwon
BAémovpue OTL glvarl avaykoio 1 €papuoyn pioag moATIKNG, mTov Bo popdlel Tovg TOPOLS GTIC
gpyacieg pe T€T010 TPOTO, MOTE CLYKEKPIUEVOL GTOYOL VO EEVTTNPETOVVTAL.

H ypovodpopordynon ocvvovtdtol, €miong, 6To LTOAOYICTIKO cLoTHUOTA. AToTeAEl
OVOTOGTOGTO KOUUATL TOL AELTOLPYIKOV GLGTHUOTOS KOl 1 KOUPLOL oprodtOTHTA TS Eivat vo
apEyel Eva mePIPAALOV, GTO 0TO10 TOAAG TPOYPAULOTE LTOPOVY VO TPEYOLY TTaPpAAANAL. Mo
depyacio dev Umopel va KPoTdel Tov eneEepyacty| AmacyOANUEVO OAN TV dpa. To Asttovpyikd
oLGTNUA OPEILEL VO TPOGPEPEL TUNHO TOV YPOVOL Tov enelepyaotn o€ OAEG TG dlepyacieg Kot
va dafPePaidvel 0Tt avTég KAvouy tpoodo. O dpoprorloynTNG amoTeAel amapoitnTo KOUUATL TOV
AertovpykoD, O10TL €KTOC OO TO VA TPOGPEPEL VO TOAVTPOYPOUULATIOTIKO TEPIPAALOV, TailEl
Bapivovoag onpaciog pOAO 6T GLUVOAIKY] AmOGOOGN TOL GLGTHUATOS, KAOME Ol GTOYOL OV
npoonabel va ikovoromoetl oyetilovral pe v anddoon tov. Mepikoi amo tovg 6tdyovs givat
ot €€NG: VoL KPATALE TOV EMEEEPYACTN OGO MEPIGGATEPO OMACYOANUEVO YIVETOL, VO EKTEAOVUE
060 10 dLVATOV TEPLGGATEPES dlEPYACIES ava LOVAO XPOVOL 1| VO, EAAYLGTOTOOUE TO XPOHVO
TOV OlEPYOCIOV TOV UEVOLV €KTOC emefepyonot. AveSoptnTog oTOXOL, 0 JPOUOAOYNTNAG
epappolel 600 moATKES. v pia popalel Tov eneepyaotr] ¥POVIKA Kol 6TV GAAN TOTIKA,
ONAaodn g o€ pia xpovikn otypn| o polpactodv ot muprveg ot diepyacies. Otav mpokettat
Y10 LOVOTTOPNVES OPYLITEKTOVIKEG 1] LOVN TTOMTIKT) TOL UTOPEL VoL EQOPUOCTEL Eivor I KaTovoun
TOV ¥POVOV, EVA GE TOADTVUPNVES OPYLTEKTOVIKEG UTOPOVV VO EPOPLOGTOVV Kol Ot 6VO.
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1.2 Holvmvpyve Lvotijuare (CMPS)

Ol KoTtaoKELOOTEG Yo YPpOVIo. EMdiwKay TNV adENon NG amddoong Tov EMEEEPYNTT,
av&avovtag Tov aplipnd Tov TpaviicTop Kol CLPPIKVOVOVTAC TO. DGTE VO LELWGOVY TO GUVOALKO
péyeBog tov towm. Avt M 1dom, OU®G, 0gv pmopel va cvveylotel yioo mavto, kabdg ot
dvvatdtTeg cuppikvmong tov tpaviictop meplopilovtor Kot TPoPNUaTe KOTovOA®oNS Kot
Oepuomag cvveydg avidvovtat. ‘Etolr 1 Pedtiooon g amddoong tov enelepyactr| apyloe vo
pewdveral. Xt oekaetio Tov 90 1 anddoon avlavotay katd 60 % kdbe ypovo,evd amo o 2000
¢w¢ 10 2004 n avénon énece oto 40% KABe ypdvo. H katackevr| evog ehdyiota, koatd 20%
YPNYOPOTEPOL Tom pe OwAdolo pEyeBoc Oev avTamOKpiveTOl GTIS TPOGOOKIEC MO Yio
BeAtiopévn amdd0oT, amodoTiKn KATAVAA®MOT| Kol LELOUEVO KOGTOC.

"o avTo0g TOVG AOYOVS, CTPAPTKOLE GTNV KOTOGKELT TOAVTOPNVOV CUCTNUATOV. €
avtifeon pe TIg LOVOTUPNVES OPYLTEKTOVIKES, EVOMUATMOVOVUE GTO 1010 TGUT TOAALOVG TLPT|VEG,
oL omoiol AEITOVPYOVV GE EANPPADS YOUNAOTEPES TayOTNTEG Ko popalovior otoyyeio
apyrrektovikng (CMPS). O dwpolpacpdc tov eoptov o€ TOAAEG Hovadeg emebepyaoiag, ot
OTOleEC UTOPOVV VO, EKTEAOVV TPOYPAUUATO TOPAAANAC ATOPEPEL CNUOVTIKY) 0OENGN OTNV
GUVOAIKT] amOd0ot. AT v GAAN, TO KOGTOG Yo TNV KOTOOKELY] Kl TN AEITOVPYid TOLG
(katavaiwmon) gival YaUNAOTEPO CLYKPITIKG LE TO GUUUETPIKE TOAVTVUPTVO GUGTAUATA, KOOMDG
ot eme€epynoTéG HopdlovTot GTOLXELN KO 1) EMKOV@VIO TOVG YIVETOL YPTYOPOTEPOL.

Ady® TV TAEOVEKTNUATOV TOL TPOCPEPOLV, OVTEG Ol APYLITEKTOVIKEG £XOVV KLPloPYN
0éon oTO VTOAOYICTIKA GULGTNUOTH. XPNOLUOTOOVVTIOL EVPEMS GE TOAAOVC TOUEIC, amo
EVOOLOTOUEVO GE CLGTNUOTA EMEEEPYATIAG YNOLOKOV onudtomv. Ocov apopd v Prounyovia,
n AMD, n Fujitsu, n IBM, n Intel kot n Sun Microsystems katackevalovv 161 molvmopnva
GLGTNLLOTO, KO GKOTEVOLV VO GYEOAGOVV VEQ LOVTEAN GTO UEAAOV.

1.3 O ypovoopouoloyntic tov Aertovpyikov cvotiuaros Linux

Onwc avapépope vopitepa, o poAog Tov dpoporoyntdv ot CMPS eivar va poipalet
TOVG emMeCEPYUOTEG Ol HOVO YPOVIKGL OAAG Kot Tomukd. Aniadn va amopacilovv ce kdbe
YPOVIKN GTIYUN Toteg depyacieg Ba avatefodv atovg mupnves. O khplog okomdg Tovg eivar va
popdlovv 10 POpTO epyaciog ica petald tov Tupnvov. Ag eEetdoovpe Evav SpoLoAOYNTH TOV
YPNOUOTOLEITAL GTO AEITOVPYIKO cvoTNUe Tov LiNuX, dote vo katoldBovpe kaAdtepa TmG TO
oVUVOAO T®V dlepYacidV olayelpileton oto CMPS.

H ypovodpopordynon yivetar ce dvo emineda. 10 TPOTO EMIMESO YPNGLULOTOLOVVTOL
EexmPloTéG 0VPEG dlepyacidV Yoo kKEOe TupNva Kol TOMTIKEG Yoo TNV OlayEiplon TOvG. XT0
devtepo eminedo vdpyet o load balancer mov popdlet Tic diepyacieg 6Tovg TLPNVES. Me avTdV
TOV TPOTO EMTLYYAVOVUE KOTOVOU OTO YPOVO (TPDTO €minedo) kol 610 Y®Opo (devTEPO
eMinedo).

H ovpd diepyaciav oe kGOe Tupva avIITPOCOTEVEL TO GUVOAO TOV TPOYPUUUAT®V TOV
éxel avordPer vo extelécel avtdg o mupnvas. H moMrtikn mov ypnowlomoteitor yio v
dwyeipnon kdbe ovpdc Paciletor ommv eEng apyn. H oepyasia mov €xel v peyoidtepn
avVAYK™N Yo VTOAOYIGTIKO ¥povo Ba givarl n emdpevn mov Ba dpoporoyndel. Tkomdg avTg TG
TOMTKNG €lval vo TPOGPEPEL OTKOUT KOTAVOUT TOV XpOVOL UETAED TOV OEPYUCSIOV KOl Y10, VTO
10 Adyo ovoudleton CFS (Completely Fair Scheduler). Tw va 1o metdyer avtd, AapPaver
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VI’ OYv TOL TO YPOVO TOL Ol Olepyacieg Ppiokovian ektdg mupnva kol emMALYel KAOE Popd
VTNV LE TOV peyoivtepo. Me avtdv tov tpdmo dwuPeParcdvel ott kapio diepyasio dev Ba pével
EKTOG TUPTVA Y10 TEPLOGOTEPO YPOVO, LOPALovTas Toug mOpovg dikato petald tov. H ovpd
depyaciov vAomoteital pe évo time-ordered red black tree yiwa kée Topnva

211 CMP apyrtektovikég kdBe mopnvag €xel ™ 01Kid Tov ovpd depyacimdv. E@’ocov ot
YPOVOL €KTEAECTG TOV OlEpyosldV  do@épovy, &eivar mBavd pepikoi emeepyaotés va
dwayepiCovron Aydtepo aplfuod depyaciav. Avtiyv v avion kotavour] eoptov tpoonadel va
uetpidoet o load balancer, o onoiog gpopuoletat TEPLOdIKA Kol GKOTOG TOV £ival Vo 16OPPOTEL
TO UKOG TWV OVPAV G€ OAOVG TOVG TLPNVEG. AVTO TO EMTVYYAVEL LETAKIVOVTAG OlEPYOGIES OO
TO 7O OOAGYOANUEVO TTVUPNVO. GE €kelvo pe 10 Ayotepo @opto. H e&lcopponnon tov poptov
yivetor epapykd, Eekivoviog amo eminedo mov agopd dwpopetikd NUMA domains
KataAnyovtog oto eninedo twv SMT contexts. H cuyvovinta kot o apBudg tTov HETOKIVIIGE®Y
dlpépetl amo eninedo o eninedo.

1.4 Ieprypapn Kepoaiaiwv

210 06VTEPO KEPAANIO TOPOLGLALOVE TNV EMIOPOACT] TOV EPAPLOYDV GTNV OTOd00N
T0VG,0Tav ekeiveg avtaymvifovtal Yo Toug potpalopevoug toépovs. Emmiéov pedetdue nog m
OVTILETMOMION TOV TOPWOV OO GUYXPOVO YPOVOIPOUOAOYNTN, EMNPEALEL TNV OmTOS0CT TOV
GLGTNLOTOG.

210 1pito KePdAowo mpoteivovpe 3 TEYVIKEG YPOVOOPOUOAOYNONG, LE OKOTO Vo
BeAtiowoovpe T otafepdHTNTA TOV GLGTHUOTOS KOL VO TPOCPEPOLUE OIKOL KOTAVOUN TMV
TOPpWOV

210 TETOPTO KEPAANLO, EAEYYOVUE TIG TEXVIKEG OGS GE Hio TOKIMO pOPT®V EPYOCiag Kot
ovykpivovue ta amoteléopato pog pe to Linux scheduler.

210 MEUMTO KEPAAWLO, TOAPOVCIALOVUE TO. CLUTEPACUOTO HOG Kot TOOVEG 10€€G Yo
BeAtioomn, evd 010 TEAELTOO KEPAAOLO OVOPEPOVUE OLAPOPES TPOCEYYICELS TOV EXOVV Yivel
oo TNV ETIGTNUOVIKT KOWVOTNTA.

Kepdaiaro 2
Opropog tov Ipopiparog kot Kivytpo

2.1 Aquiovpyikny ka1 KOTAGTPOPIKY COUTEPLPOPU.

Onwg avagépape mpornyovuévamg, ot moprveg twv CMP gival evoopatopévol e éva tou
Kot popdlovTol GToL el TG OPYITEKTOVIKTG, OTTMG TNV KPLET UVIAUT TEAEVTOIOV EMTEOOV KoL
10 dlawAo pvhAuNG. Otav extedodvton eQapproyég TapdAANAo 6TOVG TVPNVEG Ol popalOpEevol
wOpotl umopel va Exovv gite BeTiKO gite apvNTIKO AVIKTLTO GTNV ATOSOGT] TOVG.
2NV TEPIMTOON TOL GLVEIGPEPOVY INUOVPYIKA, Ol EQAPUOYEG UTOPOVV VO YVOPICOLV
tpopept] Pertioon oty oamddoomn tove. Avtd umopel va emtevyBel Otov vipoTo pog
EQPAPUOYNG KAVOUV avapopd oTa idtoL 1] o€ Tomikd dedopéva tavtdypova (fine-grained sharing).
Me avtd 10 TPOTO PEPIKA VIUOTA PEPVOVY OEOUEVA GTNV KPVET] LVIUN Kol EEVTTNPETOVY Ko
TOL YEITOVIKG VIUATO 7OV YPNGUOTOlovV To 101, yopic va ypeldletor vo KAvovv gk vEOL
13



avVOQOPE TNV LLVTUT).

Amo v GAAN pepud, ot HopalOUEVOL TOPOL UTOPEL VO £XOVV KATUGTPOPIKES GUVETELEG
Y TG €QapproyEC. Avtd cupfaivel OTav TpEYOLV TOPAAANAQ VILLOTO SLLPOPETIKAOV JEPYACIDV,
oL Ogv €yovv kopia emkowvovio petad tovg. Emiong vipota tov 01ov oepyasidv givot
duvatd va €yovv éva poTifo avagopds ota dedouéva Tov Vo, UV EELINPETOVV T YEITOVIKA
touc. [0 mapdderypo pmopel va ViU Vo avaQEPETOL GE £vVal TUNUA OEOOUEVOV Y10, KATO10
YPOVIKO OLACGTNO KOL TO YELITOVIKO TOV Vo avapepBel o€ avTO 0POD TEAEUDGEL TNV AVOPOPA TO
apywo(coarse-grained sharing). Xvvenmg dev umopei 0 éva va Pondniost to GAAO Kot
CUUTEPIPEPOVTOL GOV VIUOTO EEXMPIOTAOV JEPYACIDV. X& OAEG TIG MEPITTMOELS TO VILATO
TPOGTOHOVV VO, IKOVOTOUGOLV TIG OTAITNGEL TOVG, YPNOLLOTOIMVTOS TOLG HOPalOUEVOLG
TOPOLG Yoo OO TOLG AOYOPLACUO OMOKAEIGTIKG kol aviaywvilovror petad tovg yo v
KOVOTIOINGT TV OVOYKAOV TOLG. AVLTH 1 dlapLéyn Yo T Xpnomn Tov Holpalopevav Topmv el
ONUOVTIKEG OPVNTIKEG OULVERELES OTNV OomdOO0CGN T®V  €QUPUOYDV, kabmg mopatnpeiton
KaBVOTEPNON GTNV EKTEAECT] TOVG GUYKPITIKA LLE TOV OTAV TPEXOVV HOVEG TOVC.

Meletaue mapokdto v cvykpovon og 000 popalopevoug moépovg, ™ LLC kon to
Memory Bandwidth

2.2 AvTtaymvicuog yio Ty Kpoeny uvijuny

Otav ot depyacieg tpéyovv mapdAAnia 0 TPAOTOC TOPOG, YO TOV OMOi0 £PYOVIOL GE
oVYKPOLGT| €ivat | KpLEN UVNUT. Alepyaciec PEPVOVY dEGOUEVO GTT) KPLPT LVIUN LLE OKOTO VO,
KOLVOTIOI|GOVV TIG OMOLTNOELS TOVG. TNV TEPIMTMGT TOL TPEYEL Ui depyyacio 1 KPLEN LVHUN
neptEyel ta dedopéva e Otav Opmg tpélet mapdAinio pio GAAN GTOV YELTOVIKO TTLPNVO,
QEPVEL TOL OKA TNG OEGOUEVO, SUDYVOVTOG OO TN KPLET UVIUN To 0€d0pUEVA TG AAANC. AVTd
€Yl ooV OMOTELEGUO TNV OVENCT TOV OTOTVYIMV KOl GUVETMG UEYOAITEPEG KOOBVOTEPNGELS
otV ektéleon ¢ oepyaciag. Tpéyovrag oe éva tetpamdpnvo cvotua pe ko LLC (Ba
OVOADCOVE AETTOUEPMDG TOPAKAT®) 4 EQPAPUOYESG TAPATNPOVUE TIG KATAGTPOPIKEG GUVETELES
7OV YL ALTN N dtopdyn oty arddoomn tovg. (Figurel.1-1)

1.0 T T T T

T T T T
0.8 B 00 |- 4
- 06| 15
]
®
(=] =
c o
0.2 -
0.0 |
- . 0
lu.w stream_s cholesky | jacobi-1d_s luw ctream s cholesky | jacobi-1d s
benchmarks benchmarks

Figure 1.1-1: Exintewon s adénong twv MPI azo IPC 4 diepyaciav mov tpéyovv mapadiinio.

[Tapatnpodpe, Aomdv, OTL 0 AVTAYOVIGUOG Y10 TV KPLOT LVNUN TPoKaAEl avénom ota
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MPI tov gpappoymv. BAémovpe, eniong, ot n epappoyéc dev ennpedlovrot to 1010, pepikég
EMMOEAOVVTAL TEPIGGOTEPO QMO TN KPLOT UVIUT EVD AALEC OYL.

2.2 Avraywvicuog yia to Memory Bandwidth

‘Eva dAlo onpeio ovykpovong stvar o dioawrog g pvhung. O pvbuodg, pe tov omoio ta
dedopéva dapalovrar 1 ypaoovton omd Kot Tpog ™ wviun, ovoudleton Memory Bandwidth.
Otav tpéyovv mapdiinia diepyaciec, LoAOvouy 10 dlavAo pvnung pe dedopéva. To cvoTua
™G UVIUNG, OTtMG givat uoIko, £xel Eva Oplo 610 pLOUd eEuanpénong twv dedopEvav. Avtod
onuaivel 6Tt vdpyel Eva onpueio oto onoio To Bandwidth dev umopei vo ikavomocel OAEC TIC
depyaociec. e avtn ) nepintwon to Bandwidth popdletor petaéd tov diepyaciov kot Kabe
plo moipver éva Tunpo TOv apywol €vpovg mov Bo Emoupve, Otav ETpExe HOVN TNG.
Xpnoomolmvtog Streaming e@opproyEg, dSNAadN EQOPLOYES TOV XPNOLUOTOLOVY dedoUEVOL ATTd
™V pvnun €oc tov enegepyaotn Yopig vo ETOEEAOVVTOL A0 TIG KPLOES LVILES, TOPATPOVLE
oG 1 dapdyn Yo to Memory Bandwidth exnpedlet v amddoon Tovg.

10 T T T T 10 T T T T
=1 2

06 L i 0.6 | n
= =
o g
o o
E 04 - g 04 - _
= =

0.2+ . 0.2 .

0.0 0.0 - .

cholesky_| jacobi-1d_| stream_| atax_| cholesky_| jacobi-1d_| stream_| atax_|
benchmarks benchmarks

Figure 1.1-2: H ueiwon tov Bandwidth gyer dueoo avtiktomo oo IPC 4 streaming epapuoyav

[Mapatnpovpe 6TL | GVYKPOLGN GTO JiLAO TNG UVAUNG TPOoKaAEL peimon Tov Bandwidth
Kot pio avaroyn peiowon oto IPC. And avtd katarafaivovpe 6Tt to Bandwidth eivor évag
ONUAVTIKOG TAPAYOVTOG oL EXNPEGLEL TV amdO00T TV dEPYACIDV.

2.3 Kiviytpo

Me v aeiEn tov CMPS o1 mepiocdtepeg TEXVIKEG VAIKOD KOl AOYIGUIKOV TTOL iy
vAomomBel otic povomvpnveg apyrtektovikég 1 oo SMPS gpapudcOnkay yopic petatpoméc.
Ot ypovodpoporoyntég Bewpodv OtL o1 Tuprveg givor aveEApTnTol Kol ATOHOVOUEVOL. AVTO,
opmg, o0ev woyvel, koo polpdlovior otolyeia yuoo To omoio VIAPYEL SN HETOED T®V
epapuoydv mov tpéyovv pali. H aviypétomion avty opme dnuovpyet moArld mpoPAnquato
GTOVG GTOYOVG TTOL £VOG YPOVOOPOLOAOYNTNG TPOSTADEL VO IKOVOTOIGEL.

Tpéyxovtag 4 €PapyHoyEG GTO GUOTNO TOV OVOPEPUUE TPOTYOLUEVMG Yo 5 AETTA e
tov Linux scheduler (Figure 1.1-3) mopatnpodue mw¢ 0 POAOC TOV YPOVOSPOLOAOYNTN
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vroPaduilerat.
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08 -

06 -

04 |-
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0.0

atax_| cholesky | stream_s pchase s
benchmarks

Figure 1.1-3: ®opéc tepuationod 4 diepyoocicrv
KOVOVIKOTOLUEVES TTHV TEPITTWOH TOV EKTEAOVVTAL HOVES
700G

Apyika gtvor Tpo@avég 0TL 0 TPOTAPYIKOS GKOTOS TOL VO TPOSPEPEL £Vl TEPPAAAOV,
010 omoio OAeg Ol diepyaciec kdvovv mpdodo dev pmopel va emrevydel, KOOGS vIapy oLV
epapuoyéc oav tnv pchase_s ot omoieg ektelovvon pe TOAD YounAn anddoon).

To yeyovdg ovtd oe gupltepn KMpOKo €xel HEYAAN emimtworn otov apldud Ttomv
JEPYUCIDV TOL TO GLGTNUA UTOPEL VO EKTEAEGEL ava povada ypovou (throughput). Xe ypovikd
didotuo. 5 Aemtdv ot digpyaoieg Sstream_S kou pchase s éyovv ektedeotei 50% wor 80%
Mydtepec Qopéc.

Eniong eivor advvarto va epappocdei pio moltikn pe npotepaiotnres. Atvovtag oe pia
depyacio vynAdTeEPN mpotepandtnTo. onuaivel 4tt emBopodue vty Vo KAvel peyaAvtepn
mpd0do. Avtd oto Tapddelyud pog oev pmopet va emitevyBel PAEmovtac TV TOAD younAn
amo6doon g pchase_s.

"‘Evag amo toug kuptdtepovg poOAOVG TOv ¥povodpoporoyntn gival vo katavéper dikoto
TOVG TOPOLVG HETAED TV dlepyactdv. Avtd TAéov dev pmopel va yivel epiktd, kabmng PAémovpe
OTL pepkég depyaciec £xovv LYNAN Kol GAAEG TOAD younAr omddoot. Eivar epgovéc 0t ot
EMITMOOEL TNG CVUYKPOVLOTNG OEV LITOPOLV VO LOPOGTOVV OUOLOLOPPO OTIG EPOPLOYEG Kot
OLVETTMG dKOooVVN dev umopel va eméADet.

1.0 T T T T T T T T
1.0 -
w 08 -
a =
= o b 1=
E E
= oalb ] i
= = 04 -
2 2
.......... [ oz L.
0.0 _
atax_| cholesky_| stream_s pchase_s syrk_m doitgen_m trisolv_m pchase_s
benchmarks benchmarks

Figure 1.1-4: MetafAnti amddoon ¢ epapuoync pchase_s
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Télog mapatnpoviag to oynuoe 1.1-4 kataAryovue oto eéng ocvunépacua. H amddoon
LG epapproyns e€opTatal omo TG EQAPLOYES Tov Ba TPEEOVLY GTOVG YEITOVVIKOVS TUPTVES. XTN
pio tetpdoa  amddoon g eival TOAD YaUnAn eved 6TnV GAAN TOAD LYNAY. AvTd onuaivel 0Tt
N amdd0ocN TOL GLOTAUATOC €lval AoTAONG KOl OmPOPAETTN KOL O YPOVOOPOLOAOYNTNG OEV
umopel va gyyonbet a&lomotio oTnV EKTELEGT] TOV OLEPYACLAOV.

Kepararo 3
IIpoTELVONEVES TEYVIKES YPOVOOPOUOAOYIONG

Ye autd TO KEPAAMO TOPOVCLALOVUE TPELG TEXVIKES YPOVOdPOLOLOYNOTS, Pdoel TV
omolwv EMOUDKOVUE Vo EemepAGOLe To. TPOPANHOTA oTaOEPOTNTOS Kol OEOMGTIOG TOL
OMUOVPYOVV 01 YPOVOSPOLOAOYNTEG TTOV OeV AQUPAVOLY VT OYLV TOLG TNV GUYKPOVGCT] GTOVLG
potpalOpevov mOPOLC.

2V Tp®T TPOCEYYIoN HOG, oYedAlovpE Evav YPOVOSIPOLOAOYNTN, O 0010 TpooTadet
Vo amo@vyel Tn ovykpovon Tov depyaciodv. To emtvyydver yopiloviag Tig dlepyacieg oe
Katnyopieg kot €etdlovtag Tmg ATEG O KATNYOopieg OAANAETIOPOVV HETAED TOVG OTAV TPEXOVV
napaiinia. E@’0cov vrapyel pio mpdPreyn vy 10 mmg avTEG o1 Katnyopieg cuykpovovtal,
elval €Toog va TAPEL amoPAcelS Yo To0 Tm¢ Ba Tig daywpioel pe okomd vo TETHYEL diKaun
KOTOVOUT] TV TOPWV.

v Og0TEPT TPOGEYYION, Y EPLOUOCTE EK TOV VOTEPOV TO OTOTEAECUOTO TNG
oVYKPOLGTG TV depyactav. Evvoovpue Tig diepyacieg mov €yovv mAnyel meplocdTePo, divovtog
TOVG TNV gukopia va TPEEOVV Yo TEPLGGOTEPO YPOVO Kol VO ALENGOVV TNV TPOOSO TOVE GE
Bapoc avtdv mov TpEYovvy HE KAAVTEPN omdOdoon. Me avtd tov tpdmo OéAovpe va
€E100pPOTNGOVLE TNV OTOSOCT) TOVG.

H tpitn mpocéyyion eivar eméktaon g devtepns. Zépoviag 0Tt pepikd Cevydpila otav
tpé€Eovv pali, TPOoKaAOLV KATUGTPOPIKEG cvveémeles. 1o avtd T0 AOY0 OAMOPEVYOVLUE TNV
extéleon tovg kol eEakolovbodpe va eapUOlOLUE TNV TOMTIKY TNG O€LTEPNG TEYXVIKNG,
ATOPEVYOVTAG £TOL €Val LEPOG TNG GVYKPOLONG Kat dtayelpilovtog To vwoAowro. Me avtiv v
TevIKY B€lovpe va eTvyovpe peyolvtepn PeATioon ot TPO0OO0 TV JEPYOUCLDY KOl CUVETMOC
oto throughput.

3.1 Ilpaoty Hpocéyyion (Aropevyovrag Ty 6OYKpPOvGH)

Kvpro yopakmpiotikd avtig g TEXVIKNG £lval 1 €DPECT] TOV KATAAANAOL GLUVOLACHOD
depyaciov 1 oroio 0dMnyel oty embBoun anddoot. Onme TapaTnPCUIE TPONYOVUEV®GS, Ol
depyacieg dev amodidovy 10 1010 OTOV EKTEAOVVTOL TOPAAANAL e GAAEG GTOVG YEITOVIKOVG
mopnvec. Mepkoi cuvdlacpol cuykpovovtor 6 TOAD Yapunio PBabud kot amodidovv apkeTd
KoAQ, ev®d OAAOlL 6e €vtovo Kot emmpedlovionr Kataotpopikd. Ouwg oev elval epiktd va
doKipdoovpe duvaptkd OAOVE TOVG GUVOLUGHOVE MOTE VO KOTOANEOVUE GTOV MO OTOOOTIKO.
Mo avto 10 AdYO M YpOovodpOoOLOYNON LG YiveTol o€ Tpia eMinEd. XTO TPAOTO TaIVOUODUE TIG
epappoyés oe katnyopieg. Xto 0devtepo Ppiokovpe €vo poviéAo TOVL mpoflémer WG
oANAemidpohv o1 katnyopieg avtég petacy tove. Téhog maipvovue v amopacn Vo
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TOmo0ETCOVE TIC EQPAPUOYEC GTOVS TLPNVES HE TETOWO TPOTO (DGTE VO OTOPVYOLUE TN
OVYKPOLGT| TOVG KOl VO TETVYOVUE To. EMBLUNTA amoteléopata. [Ipv avaidvcovpe to otdoto,
Ba avagpépoope v TAOTEOpHO otV omoio Oa ekTEAECOLUE TO TEPAUATO HOGC KOl TIG
dVVOTOTNTEG TOV LLOG TPOGPEPEL.

3.1.1 IMhateoppo Extéleong

Xmv  gpyocsio  avt, Yoo TNV 0EWOAOYNON  TOV  YPOVOOPOUOAOYNTOV  LOG,
ypnowomomoape tov eneepyoaot Intel® Xeon® Processor X5560 Nehalem apyitextoviknic.
Amoteleiton amo 600 tour (Sockets) ta omoia avoeépovior oe Eex®PLOTO UEPOG LVAUNG
(NUMA) ka1 omotehovvtat amo to eENG.

Teooepic mopnveg 2,8 GHz ouyvotntog, L1 diwtikn kpue pvhiun, mov yopiletal og 32
KB dedopévov kar 32 KB gvtoddv, L2 1dwtikn kpoen pviun 256 KB kot L3 kowvn kpoen
wnun 8 MB. Kdabe tomr emkowwvel pe v uviun péom tpuov 8-byte kovoldv mov
Aertovpyovv oto 1,333 GT/s. Anhadn to péytoto Bempntikd Bandwidth umopei vo ptdcet v
Tiun 31,992 GB/s. H emiowvovia peta&d tov 2 toum entvyydvetal péocw tov QPI cuvdéopov
nov etavel Bandwidth 12,8 GB/s. Erniong kabe tour vrootpiler Hardware Prefetching Logic,
Yo, va pépvet dedopéva Tov ta vijnata o xpnotponomoovy 6to kovtivo uédlov, Simultaneous
Multi-Threading” (SMT), emttpénoviog mopamdved VAUATO VO, EKTEAOVVTIOL GTOV 1010 TupHva
kot Turbo Boost Technology ya e€owcovounon evépyetag,.

o ta mewpdpoato pog yPNOUOTOMCAUE HOVO TO €vO TOUT WE EVEPYOTOINUEVN] TN
Aertovpyia tov hardware prefetching logic kot anevepyomomuévec tig SMT ko TBT.

H apyrtextovikn dadpapatilel ToAd onuovtikd polo otnv Tomobétnon tev diepyacimv
otovg mupnveg kal KaBopilel TIC OPOPETIKEG OUAOEG TTOL WUTOPOVV Vo dnpovpyndovv
ocvvoralovrtag tig depyaciec. Tlaipvovtog yio mapdoctypa 4 epapuoyés A, B, I, A, oty
HOG OPYLTEKTOVIKY] TOPAYETOL £VOG HOVAIIKOS GUVOLAGHOG EKTEAEONG TOVE GTOVG TUPNVES. AV
elyope po opyLTEKTOVIKN TOL 01 TVPTVES ava 2 potpaldvrovcsav pa LLC, téte T mpdypata Ha
Ntav SPOPETIKA. X avth TNV mepintmon ot mbaveég TeTpddeg extédeons avidvovion otig 3.
[Topatnpovpe Aouwdv 6TL 1 SLVATOHTNTO ATOPLYNG TNG CLYKPOVOTG AVEAVETAL KAOMG LEDVETAL
0 ap1Ouog Tov mupnvev mov popdlovtor  LLC. Avtd ocvpPaiver, emedn pog divetar emmiéov
N Svvatdtnte. vo polpdoovpe TIC dlepyacieg oto ydpo (Space-sharing). Xtm owmM pog
TEPIMTOOT, 0 HOVOC TPOTOC VO, LOIPAGOVUE TIG EPAPUOYEC glvar ypovikd (time-sharing) o
avtd TEPLOPIlet TIC EMAOYEG LOG Y10 OTOPLYN TG GVYKPOVGT|S.

3.1.2 M£00ooog Ta&rvounong

EEKWVALE e TO TPAOTO oTAd0 TG TaSvounons. Baciopévol 6to oyniua mov tpotabnke
amo TN dovAeld Tov Haritatos et al [1] xatnyoplomolobpe TIc €QapLOYES G€ TEGGEPLG KAAGELS,
v L, LC, C ko N.

Xmv L kamnyopia avikovv gkeiveg, ol omoiec mapovcstdlovv pio onuovtikn Kot otadepn
pomn dedoUEVAOV amd TNV UVHUT £0G TO TUPNVA. AVTEG OL EPUPULOYEG OEV EMMPELOVVTOL OTTO TN
LLC kot poAvvouv pe peydio apBud 0ed0pévov To S10A0 LVAUNG KAVOVTAG PO LEYAAOL
nocootov Tov Memory Bandwidth.

18



Ymv LC xammyopio ta&ivopovviol €poprOYEC, Ol OTOIEG YPNOCLUOTOIOVV GE WETPLO
Babuod to dtawro g pvnung Ko emmeerovvion eAappd amo t LLC, emavoypnoionoldvog
v o€ pKpo Paduo.

2ty C kKAdon KaTaTAGGOoVTOL Ol EPOPUOYEG LLE TO EENG XOPAKTNPIOTIKA. XPNGILOTOOVV
o€ TOAD pkpd Badud 1o diavio HviuUng, KOTovoA®VOVToS HKpo 1ocootd Tov Bandwidth, odAd
napovotdlovy peydin e&dptmon amo t LLC. Avtd onpaivel 6tL gépvovv dedopéva 6€ oV
KOl TPOYLLOLTOTTOLOVY OVOLPOPES GE ALLTA Y10 APKETO YPOVIKO OLACTNLLA TPV PEPOVV TO ETOUEVAL.
Me avt6 ToVv TpdTOo TEplopilovtal Lovo og avtd T0 Lopaldpuevo TOPO, TPOYLUTOTOIDVTOS TOAD
HEYAAN ETOVOYPICYLOTOINOT).

Téhog n N katnyopio amoteAeitor omo €PAPLOYES OL OmMoieg OV OElYVOLV GNUOVTIKY
dpacTNPLOTNTO GTOVS LOPALOUEVOLG TOPOLGS, AAAE TEPLOPILOoVTOL OTIG IOIMTIKEG KPUPES LVILEG
Kot otov enegepyaotr). Ot katnyopiec mapovcidlovral oto oyfua 1.1-5.

7% 52 [BE 59 [55 5 BB Be

(a) class L (b) class LC (c) class C (d) class N

| | - - | - |
uc
|

DRAM
ue
I

Figure 1.1-5: Apaotnpiotnro otig 4 katnyopies

['o vo Ta&vopncovpe TIg epapuroyES oTIS Topandve Katnyopieg, eivor anapaitnto va
KOTOYPOWYOLLE TN CUUTEPLPOPE. TOVS. AVTO TO EMITVYYAVOVUE YPTCILOTOLDOVTOG KATOLEG OTALEC
UETPIKEG, TIG OTOIEG UTOPOVUE VO OTOKTHOOVUE KATO TO ¥pdVo eKTEAEONG o Tovg hardware
performance counters mov wap£yovv o1 GOYYPOVOL ETEEEPYUOTEC.

‘ DRAM ‘
J, LB = Bin,
‘ LLC=Ln ‘
1 Bin.

| Bn
Figure 1.1-6. Pon dedouévawv

['o kéBe epappoyn eivor amopaitnto vo HETPICOVUE TN POT| TOV OEOOUEVAOV OO TN
KOplo uvun ¢ tov encEepyaotr, ypnoonoldvrog to Bandwidth cov petpikn kot vo Bpodue
o€ MO0 UEPOG TNG LEPAPYING TNG UVIUNG VTTAPYEL LEYAAN OpACTNPLOTNTA, YPTCULOTOLDOVTAG TO
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CR; = %(Gmua 1.1-6).

Av 10 LB (Memory Bandwidth) sivon peyddo kot 1o CR,, = 1 161€ 1 €appoyn givar L.
Av 1 opacmnpromra petay uviung kor LLC elvor pétpro kar CR, > 1, tote eivon LC.
AlQopeTIKA eQappoyéc e ToAD younio LB dpactnplomolovvial 610 vTOAOUTO TUNUO. TNG
lepapylog.
Av vrtépyet peydin emavoypnoponoinon g LLC avagepdpacte oe C ailmg o N.

H péfodoc tagivounong pog mapovotaletor oto dévipo tov oynuatog 1.1-7. e kdbe
T ateopua mpémel va, BEcovpe 5 Opua, a, B, v, 0 KOl € Xe AT TN TAATEOPUO EYOVUE A =
0.12 X Bpgxs B =0.045 X Byax, ¥ =0.068 X Bgyy 6 =0.25, € =0.25 X IPCppy,. H
péylom T tov Memory Bandwidth 6mwg petpribnke amo tn stream seapuoyn [2] eivan
Binax = 13.20 GB/sec ko1 IPCpppy = 4

-
Memary Link Litilization ]
.

(B =
k=I_n-I)

- g I 3
Reuse Location J Memaory-latency bound? )
L% .

yes

ue private caches imemuops/al_wops =

(TR = maxjCRe) (R = max|CRs)
k=l.ni) k=l_n-i)

Figure 1.1-7: Aévtpo talivounong

Awympropog g C katnyopiog

Ot gpappoyéc umopel vo TOPOLGLAGOVY OLOPOPETIKE YOPOKTNPICTIKG OVAAOYO TO
uéyebog Tov data set tovg. E&etalovtog 600 epapuoyég pe dapopo peyédn yio to data set tovg
napotnpovuE Ta ENG .

Apywcd BAémovpe OTL OTOV TO GUVOAO TV OEOOUEVOV EIval OPKETA HIKPO DCTE Vo
KOVOTOLlElTOol om0  To. YOUNAdTEpA TUAUHOTE NG PVAUNG (1OOTIKEG KPLOES HVNUES) T
dpactnprotnta meplopiletol 6€ oTO TO KOUUATL KOl Ol EPOPROYES TOPOVCIALOVY GLUTEPIPOPA.
N «Adong.

Av&avovpue to data set kot mwapatnpovpe 61t awtd pmopel vo. ikavoromBel TAéov amo ™ LLC,
OmOTE KOl 01 EQapLOYES yivovton C.

A&iler va onueidoovpe, 60Tt N petdPaocn ano t C ot LC katnyopia mpaypotonoteiton
oe Owpopetikd data set yio kabe epapuoyn. Ttnv pchase yivetar oto onueio oto omoio
apyilouv va unv yopdve ta dedopéva ot LLC, eved otqv mvt oAb apyodtepa. Avtd onpaivel
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otL M TpOT gpapuoyn 6tav PBpicketal ota Opro g LLC guvoeital amd 6o 10 ydPo TOv avTh
TpooPépel kat otav to data set Eemepvael to uéyebog g apyilel va kavel cuyvn avagopd oty
KOpLoL VNN, Oelyvovtag UNdeVIKN avoyn. Ao v GAAn, 1 de0TEPN €@approyn deiyvel va unv
emnpealetal amo Tov meplopiopd Kot va eEakorovdel va e&ummperteitoan amo t LLC axopa kot
ywo. 14 MB data set.

Class
| ]
®

0o 2 4 6 8 10 12 14 16 18 20 22 24
Data Set (MB)

Figure 1.1-8: Zvumepipopd. o epapupoymv yo. didpopae data

sets

Baoiouévol atnv mponyovpevn mopatnpnon Hoc, WTOPOVLE VO GUUTEPAVOVLE TO EENC.
Edv om mhatedppa pog (8 MB LLC, 4 moprveg) tpééovpe mapdiinia 600 epapuroyés pe 6
MB data set, mov mapovcialovv b cvumepipopd pe t pchase, n LLC dev pmopsi va
eCumnpetnoel Kol TIC 0Vo. Ba HOpdcoel To YOPO TNG Kol avaykKaoTikd Oo mhpovv Eva
vrocHvoro tov data set tovg. O meproptopds avtdg Ba Tovg 0dNyNoeL 6€ avEnon Tmv MISSES,
ovyvoTeEPN avaeopd ot puvnun (awénuévo Bandwidth) kot peimwon oty amddoon tove. Av ot
EPAPULOYEG Elyov TNV GLUTEPIPOPA TG MVE Ba NtV AVEKTIKEG GTOV TTEPLOPICUO Kot dev Oa
napovciolov TpofAnuaTe 6TV arddocN TOVC.

Kpivetoan avaykaio Aowmdév va dSwyopicoope mepartépo v C  xotnyopio oTig
vrokatnyopieg SC kot BC.

>t SC avikovv ekeiveg pe working set pikpotepo tov 2 MB, kabmhg oty nepintmon 4
TUPNVOV UTopovv va cuvurdpyovy ot 8 MB LLC. ITidvouv pikpo ydpo kot oev emnpedlovrat
OTNUOVTIKA OO TNV TAPEUPOAN.

>t BC katnyopia kotatdocovrol ekeiveg pe working set peyoaivtepo tov 2 MB, ot
omoieg yperalovror apketd ywpo ¢ LLC yia va tpé€ovv amodotikd kot 6tov mepropilovrat
TaPoVc1alovy HeYAAeC KaBVGTEPNGELS OTNV EKTEAEGT] TOVG,.

O tpdmog daywpicpov g C xoatnyopiag yivetar otatikd. o va mpoypotomomOet
duvapka ypetafovtol Tolvmlokes teyVikég (cache partitioning) mov eivarl €ktdg oL TESIOL
pHeAéNg avtg ¢ epyociog. Evoewtikd moapovptdlovpe 6ToV TOPAKAT® TIVOKO UEPIKES
epapuoyéc (single-threaded and single execution phase) kot o€ moteg katnyopieg ta&vopodvtot
Baoet tov dEVTpOL TOV TEPTYPAYALLE.
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Name Source DataSet (MB) | Bin3=1.c(MB/s) CR3 CR2 IPC | Class
stream [2] 366 6618.432 0.994 1.003 0.721 L
atax polybench 72 4401.339 1.029 1.759 0.380
gemver polybench 125 1173.694 4.299 1.315 0.402 LC
mvt polybench 125 996.640 5.597 1.171 0.279
pchase [3] 6 491.220 9.920 1.000 0.081 BC
stream [2] 5 99.691 51.732 1.000 0.921
correlation polybench 2 0.706 1275.893 15.874 1.334 SC
covariance polybench 2 0.714 1255.327 15.960 1.332
3mm polybench 0.064 0.760 1.983 72.710 2.250 N
bicg polybench 0.064 0.670 2.194 504.134 1.180

Table 1.1-1: Ta&ivounon epopuoymv otig katnyopies

3.1.3 Movtédro Ipofreync

[lepvépe oto emdpevo otdoto petd v tavounon, v mpofreyn g cLYKPOLGNG
HETOED TV Katnyopudv. Exyovtag pio KoAr eKTipnon yio 10 tmg ot Katnyopieg aAANAETIOPOHV
UETOED TOVE OTOV TPEXOVV TOPAAANAO, LUTOPOVUE VO TAPOLLE Wi EYKVPN ATOPACT] YOl TO MG
Ba tomoBetoovE TIC EPOPLOYEG MGTE VO TAPOVLUE TO emBuuntd amotédeopo. [lapabérovpe
TOPOKATO TOC TEPIUEVOVLE VO EXNPENGTOVV Ol KATNYOpies, OTaV TPEEOVYV TOPAAANAL LE TIG
VILOAOUTEC.

H N «xoamyopia mepropiletor ota yopunAotepo emimedo G epapyiog TG HVAUNG
(101 TIKEG KPLEEG LVILES) KOl OEV AAANAETIOPA pe Kopio AAAN Katnyopia.

H L xotmyopio katavaimvel peydro pépog oo Memory Bandwidth kot e€aptdtot amo
avtd. Otav moAlég L epappoyéc tpééovv mapdrAinia 1o cuvolikd tovg Bandwidth pmopei va
EemepdoEL OVTO TOL TO GUGTNLO UTOPEL VO IKOVOTTOGEL. AVTH 1] GVYKPOLGT TPOKAAEL LEimON
otV omdd0cT TOVE TOL eivar avaloyn ¢ ueimong tov Bandwidth. Apo avti 1 katnyopia
ennpedletal amd ToV €0VTO NG,

['a v LC kAdon mepuévoope pikpég kabvotepnoelg 6tav ektedovvton pali pe tig L.
Avtd pmopet vo couPei LMoym ¢ dopdyng oto Memory Bandwidth kot g poivveng g LLC
pe dedopéva tov L.

Ocov apopd v SC opdda, ot epappoyés g emmeerlovvtal amo ™ LLC xabng
@EPVOLV G€ AT £val KPS GYKO SEGOUEVMV Kl KAVOLUY £VTOVT| ETOVOYPTGULOTOINGT) GE QVTA.
[Tepuévoope va emmpedlovion oe wkavomomtikd Pabud amo tv L xatnyopia, S10TL o1
EQOPUOYEG NG HOADVOLV dlopkdg pe Ogdopéva 1 LLC mpokoAdviog KoTooTPOPIKY|
TapeUPOAN.

Téhog e€etalovpe ) BC kAdon, n omoia givarl 1 mo gvaicOntn amo 0Aec. Adyw tov 6T
ypeldletar 1o peyoivtepo puépog g LLC vy va tpéfel pe koA amddoon, OmolodNmoTe
napeUPoin o avTOV TOV TOPO B TpokaAEcel TOAD cofapr) {nud. Eropéveg npoPAénetot Ot
n L ko n LC katnyopia, ot omoieg poAdvovv pe peydin cvyvomta v LLC, va emnpedlovv
v opoAn ektédeon tg BC. Emionc ot epoapuoyég g idwo¢ katnyoplog mePUEVOLUE Vo
TPOKAAEGOVY peydin dwopdyn ot LLC.

22



N

L 1.3014 11273 1E744 10821
LC 1.1184 1.0714 1.1192 1.0549
s5C 1.0564 1.0436 1.0783 1.0384
BC 1.1438 1.0761 1.1608 1.0093
N 1.0189 1.0063 1.0008 1.0644 1.0017

Figure 1.1-9: Méon kaOvotépnon tmv epapuoymy otav eKteAobvIal
wapaiinia o€ eximedo KAGGEWY

>10 oynua 1.1-9 mapovsialovpe tn péomn kabvotépnon mov vroPEpel kAbe Kotnyopio
otav extedeiton pe pio GAAN. Ztov dEova y Tapovsialovpe v kabvotépnon mov enPdriovy ot
KAMAGELS, EVO GTOV Y TNV KaBLGTEPTGN TOV VITOPEPOLV.

To arotedléopata ociyvouv Ot o1 TpoPAéyelg pag eivar €yxvpec. H mo evdimtn kAdon
etvan n BC, mov emmpedletar omd 1ig L, LC won BC. H L ko SC BAénovpe 611 ennpedlovton o
ukpotepo Pabud omo v L. H N ko 1 LC dev @aivovion va mapovstdlovv Kabvotepnoelg,
OTOV TPEYOLV UE TIG AAAEC KaTYOPiES.

3.1.4 Am6gpaon

210 televtaio avtd oTAO0 £PAPUOOVUE TNV TOMTIKN HOG, omo@aciloviog e Tolo
TpOmo Oa GLUVOIACOLUE TIC EQOPUOYEG, (MOTE VO OMOPVUYOVLUE TN GUYKPOUOT Yo TOLG
popalopevovg mopovs. Me avtd T0 TPOTO EMIIMKOVLE VO, TPOSPEPOVIE VoL TEPPAAAOV, GTO
omoio ot depyaocieg Oa ektehovvtol pe VYNAN amddoon (Kovid oty anddoon mov Pidvouvv
OTOV EKTEAOVVTOL LOVEG TOVG) KOl KAT EMEKTACT] 1) KOTAVOLT| TV TOPWV Ba yvetat dikaia.

O ypovodpoporoyntic pog Aoupdver v’oyw tov ) oudyn yw ™ LLC xar 1o
Memory Bandwidth kot ovopdaleton CMB (Cache and Memory Bandwidth contention-aware
scheduler). YmevOouiCovpe 011 €medn doviebovpe oto €va TOIT, GTO Omoio 4 TVPNVEG
potpalovtar po LLC, &ovpe ™ dvvatdta va Yopicovue Tig €QUpUOYEG GTO YPOVO HOVO
(time-sharing). 'Etot cuvdtdlovpe TIg EQOPUOYES GE TETPASES TOV EKTEAOVVTAL GE OLOUPOPETIKE,
KBavta ypoévov, pe oKomd vo aro@lOyovpe TN HeTah TOVG GLYKPOVOT).

Booiopévolr oto povtélo mpoPrleyng kol oTo OMOTEAEGUO TNG CLVEKTEAEONS TMV
KOTNYopLdV, ONUIovpyodUe pia ToAMTIKN pe Tpotepotdottes. H mpd pog mpotepatdotra givort
va amopovocovpe v BC kammyopia mov eivar mo evdAwtn. Emiong 0élovue va
npootatéyovpe ™ SC katnyopia Kot TEAOG Vo HETPLacovpEe T dapdyn tov L yio to Memory
Bandwidth. I'a avto to Adyo dnuovpyodue Tpelc mhavég TeTpaded.

Yy pia (BC) emrpénerar va eivar poli BC pe SC pe N epapuoyéc, kabmng PAémovpe
OmO TOV TAPATAV® Tivake OTt o€ oty TV 7nepintwon dOev  emPdiiovion peyAAeS
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kaBvotepnoel. To Wavikd Ba NTav avt) N tetpada omo povo pio BC epappoyn kabmg 6mmg
EEPOVLUE 1) CLVEKTEAECT] TOVG TPOKOAEL KOTAGTPOPIKT TAPEUPOAN, OALG 0VTO glvarl EQIKTO dTaV
0 ap1Buog Twv BC givar pikpog Kot pmopoHv vor aropovobodv TANPOS 6TIG TETPASEC.

Yy devtepn tetpdda. (SC) umopodv va PBpiockovror moArég SC polil pe N epoppoyéc.
Me avt6 ToV TpOTO EMTLYYAVOLLLE amoPLYT cvykpovong SC pe L.

H tpitn tetpdda (L) amotereitor amo L, LC 1} N gpapuoyéc.

To Pruato mov akoAovBel 0 YPOVOSPOLOAOYNTNS YIOL TOV GYNUOTICUO OVTOV TOV
1eTpdowV moapovcialovioan otov mapakdto wivaka 1.1-2. TapdAinAia mopabétovpe kot To
okomd mov kdbe Prpa eSvnnpetel.

Bruaza 21001

1) ueyoronmoinoce g BC te1pddeg ko animoe tig BC| Anépuye ™ mopeuforr tov BC pe 1ig BC xon tig L
EQPUPHOYES
2)ovykévipwoe TG SC  epapuoyéc  @ote  vo | Anépuye ) mapepforn tov SC ue Tig L
glayiotomomoelg Tig SC teTphdeg

3) Ta&wounoe 115 L epappoyés og mpog to Bandwidth | Ioopponnoe ) ypnon tov Memory Bandwidth
KoL Hoipaoe TEG OTIG TETPAOES TOV ATOUEVOVY

Table 1.1-2: Brjuota ko aréyor tov CMB ypovodpouoloynti

O ypovodpoporoyntig pog vaomoteitol o€ 5 cuvaptioetg, init(), gex(), thaw(), freeze(),
schedule(). H gex() xaAeitor petd to t€Aog oV KPAVIOL ¥pOVOL Kol KOAEL LE TN GLYKEKPLUEVN
oepd tic freeze(), schedule() xar thaw(). Xt freeze() otapotdpe v TETPAdO TOV £TPEYE, OTN
schedule() emAéyovpue v emodueEVT TETPAON, GTNV MEPIMTOON UOC Ol TETPAOES EKTEAOVVTOL
KUKALKG, kot ot thaw() Eekvaue v ektéleon TG TeETPAdOC OV EMAEXONKE TPONYOLUEVAC.
Yt init() yivetatr o oymuatiopods TV TETPAO®YV, OTMS TEPLYPAPNKE.

Ot teTpddeg ko o1 KAAcelg vAomolovvtal o€ Aloteg. Ot epappoyéc Exovv Talvoundel
offline. O aiyopOuoc éxer moAvmhiokotnta O(n + L log L), O(n) ywo tov doympiopd tomv
eQapuoymVv oTic dlapopetikéc ouddeg ko O(L log L) yio v ta&wvounon tov L epapuoymv
(code 1.1-1), ko O(1) yoo v omdeacn. Metd 10 oYNUOTIOHO TOV TETPAO®V Ol TETPAOES
ekteEAOVVTOL KUKAMKG o€ KaOe kPBdvTo xpovov.
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void create_gangs (gangs_nr, apps_I){
list. t gangs[gangs_nr];
for_each_app_in_list(apps_I){
remove_from_top (apps_l);
add_to_tail (gangs[i++]);
}

void form_gangs(apps){
move_to_lists(apps);
gangs_nr = (apps_nr / cores_nr);
minimum_L = (L_nr/ cores_nr);
BC_gangs_nr =0;
SC_gangs_nr =0;

if (BC_list I=[]){
maximum_BC = (gangs_nr — minimum_L);
BC_gangs_nr = ((BC_nr < maximum_BC) ?
BC_nr: maximum_BC);
create_gangs(BC_gangs_nr, [BC, N, SC]);
}

if (SC_list I=[]){
SC_gangs_nr = (SC_nr / cores_nr);
create_gangs(SC_gangs_nr, [SC, LC, N]);
}

remaining_gangs_nr = gangs_nr — (BC_gangs_nr +
SC_gangs_nr);
if (L_list ==[]) create_gangs(remaining_gangs_nr, [LC, NJ);
else{
quicksort(L_list);
create_gangs(remaining_gangs_nr, [L, LC, N]);

Code 1.1-1: AAyopi6uog oo CMB ypovodpouoroynti

3.2 Aevtepn Ilpocéyyien (Arayepilovras thy cvyKpovon)

Xe OoUTH TN TEYVIKY] OKOMOC HOG €ivol vo SloyEPIOTOVUE TO OTOTEAECUOTO TG
oLYKPOLGTG TOV gpapuoymv. Onwg &ldape o€ TPONYOLUEVO KEPAAOMO Ol dlEPYacies Oev
emnpealovtot To {10 amo TN HETAED TOVG KOt 1] EMMTMGY| GTNV TPAOSO TOLG EIVAL SLOPOPETIKT].
AvTo €xel ¢ amotédecua TNV Avion Katavop Tov topwv o avtéc. Tpéyovue 12 epappoyEg
ue to Linux scheduler yioa 320 dgvtepdrenta Kot moapatnpodue 0Tt divel id1o gvkaupio 6TIg
EQOPUOYEG VO EKTEAECTOVV, OAAA Oev KOTOVEUEL TNV TPOodo Ttovg Oikoua. H mpdodoc
VTOAOYILETAL OC TO YIVOUEVO TV POPOV TOL EKTEAEGTNKE 1 KAOE Epaployn €nl TO YPOVO TOL
YPEBLeTOL Y10 VO EKTEAECTEL OTOAV TPEYEL LOVI TNG.

Av1d OV EMOIDKOLVLLE EUEIC Efvart 01 dlepyacieg va kKdvouy TNV 1010 TPAOJ0 GTN YPOVIKY
nepiodo mov Tovg divetar va tpEEovv. Aapfdvovtac v’ dyv 0t 1 TpO0o0g Tovg KabopileTon
amo 10 KAASUO TP Coo_rynning /TP Caione KO 0O TO YPOVO IOV TPEYOVY GTOV TVPNVA, L0
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Figure 1.1-10: Aikoun kazovousj ypovov alré oyt mpoddov

epappoyn A pe yopnidtepo IPC and avtd pdg aAing B mpémet va tpééet mepiocdtePo ¥povVo
amno tv B ®ote o1 mpaypatikol xpdvor mov avtéc Etpelav va EpBovv ota idwa enimeda.

Odnyoduevol amo auTiy TV Topotipnon, oxedtdlovpe €voav ypovodpoLOAOYNTNH, O
omoiog Aappdvel v’ oy Tov v peiwon tov IPC mov kdbe depyacio €xel vrootel petd 10
TEAOG TNG EKTEAEOTNG TNG KOt TIS €VVOEl avarldyms. Emdidkel va avénoel 1o ¥pdvo eKTEAEOTG
OVTOV OV £Yovv UeYaAN peimwon oto IPC, pe okomd va avENCEL TNV TPAYUATIKY TOLS TPOOOO,
LELDOVOVTOG TO ¥POVO KOl GLUVETMG TPO0d0 ekelvwv Tov TpEyouvv pe peyarvtepo IPC. Me avtov
TOV TPOTO UTOPEL VoL KOTAVELOVUE GVIcO TO YPOVO TOL EMEEEPYACTY] OVALEGO OTIS OEPYAOIES,
dwPePardvovpe dpmg 0Tt OAeg Bo Kdvouy TNV 1010 TPHOJO.

2V LVAOTOINGT] OGS YPNOCLLOTOOVUE o ovpd dEPYACIOV Y10, OAOVG TOVG TLPTVEG.
Metd and kabe kBdvio ypdvov M ovpd avtr taivoueitoan oe eBivovca cepd pe Paon Eva
KpUnplo, mov €yovpe emiéEel kol Bo eEnynoovpe TOPOKAT®, KOL Ol TEGGEPLS TPADTEG
depyaocieg emAEyovToL Yo va TpEEOVV GTOVG TLPTVEG.

H Baocwn wéa eivar va guvvoovue Tig depyacieg avdroyo pe to ndéco IPC éyacav v
teAevToion @OpA mov NTav oTovV TLPNVA. ALTO TO EMTLYYAVOLUE TPOMOMOVTAG CVTEG TIC
dlepyaciec YynAoTEPU GTNV 0VPA, £TGL MGTE VO £YOVV TNV EVKALPIN VO EKTEAEGTOVV GLYVOTEPQ,
avéavovtag v mpoodo Tovs. o avtd 10 AdYyo Ttagivopodue Tic Olepyacieg pe Paom to
TOPAKAT® KpuMplo criterion = waiting time + factor * [IPC_loss .Zmv mepintmon mov
elyape povo to waiting time ot diepyacieg O emthéyovtay KuKAKA kat Oo giyav ion KoTovoun
rpovov. Topa dpmg avtéc mov uog étpeov pe peydro IPC_loss pmopovv vo Eemepdoovv
pepkéG AAAeS otn ovpd kot va tomofetnBovv otov emeepyaotn vopitepa, kabvotepovtog
exeivec mov €tpelav pe kaivtepo IPC. To IPC_loss vmoloyiletar moAd gvkoAa, HeTd TO TENOG
0V KPBAvtov ypdvov yia T diepyacieg mov NTav otov wopnva, ond T oxéon IPC_loss =
(1 _ Il:’Cco—running ]

IPCalone
IPC.o—rynning TO omokTOoOUE HETE amd kdOe kPdvio ypdvov and tovg hardware performance
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counters mwov wapEYEL 0 EMEEEPYACTNG LLOG.
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Figure 1.1-11: Extéleon 12 devtepolentawv yawpic factor oe 2-mopnvo
aboTnuo.

To IPC_loss a6 pudvo tov dev gival ikavo vo tpombncel cwotd tig diepyaciec. o avtd
T0 AOYO ypeldletan va ToAamAaclactel pe tov moapdyovia factor. Avtd yivetor speavég oto
noapdaderypo tov oyfuotog 1.1-11. Tapatnpovpue 611 kabodg to IPC_loss kopaiveron peta&y 0
Kot 1, elvar addvarto va Eemepdioet TIC dlEPYACGIES TOV TEPIUEVOLY GTNV 0VPA pe Waiting time 1
ka1 2 devteporenta (KPavto ypdvov = 1 devtepOAenTO).

Factor for a package with 4 cores

20 .
18 [ — y=2(z-1)
16 |-

14 -
12 -

Factor

0 1 2 3 4 5 6 7 8 9 10 11
Gangs

Figure 1.1-12: Yyéon uetald mopdyovro kor opiOuod tetpadmv

O mopayovrtag factor givar évag axépoatog mov e€aptdtan 0mo 10 KBAvVTo ¥pOvov Kot Tig
oudoec TV dlepyacidv kKot kabopilel ™ cwom) TpodOnon tev dlEpyasidY otV ovpd. XT0
TOPAOEYLE LOG AV O ToPAyovTag 4 1KOVOTOl006E TIG OOLTNOELS LG Kot 0AAALOUE TOV OOPTO
gpyaciag mpochétovtag pepikég dlepyacieg tOte o1 opddec mov HBa mepipevay va TpEEOVV GTOVG
nopnveg Oa avéavovtov. Avtd onuaivel 6Tt kot to waiting time 0o avéavotav cuvolikd. e

27



vty TV mEepimToN M wponyovuevn T dev Ba NTOV apKETN Yoo vo pog avePdoel Tig
depyaocieg otnv ovpd. To 1610 1oyve Kot Yo g Thavy| aAloyn Tov KPAavtov ypovov

Yxomdg pog givar va, Pydlovpe pio oyxéon pe v omoia 0o kabopicovpe tov factor pia
Yo TAVTO Yoo omtotodnmote cvatnua. Me kBdvto ypdvo ico pe 1 devtepdiento Ppickovpe yia
SAPOPEC OUAdES OlEPYUCIOV TOV TTAPAYOVTO TOV 00NYel o1V KaADTEPN amddoon, dnAadn ion
Katovoun e mpoodov. Emedn eivar moiv ypovoPopo kot oxeddv avEQIKTO Vo, KAVOULUE
JOKIUEG 1o OAEG TIC TOOVEC OUAOES GE TPAYUOTIKO GUGTILO, TPOCMUOIOVOVLE TNV TOALTIKN
poG. Anupiovpyodue OAeg TIG TOAVEG OUAOEG YL TO GLOTAUATO OVO, TPIOV KOl TEGGAP®V
TUPNVOV Kol Yo KAOe opdda eAEyyove ETAVOANTTIKA Eva €0pog amd mapdyovies. Kpatdpue
exetvov mov odnyel otV PIKPATEPN TLTIKY ATOKAIGN TS TPOoOSOL T®V depyacimv. Evoswtikd
napobétovpe To OMOTEAEGHOTO TIC TPocopoimwong yw €va 4-mopnvo cLGTNUA Yo TO
dpopetikd apBud tetpddowv. H 101 ewcodva mapovctdletor Kot Yo to VITOAOUTO GUGTHLOTO
mov eEetdosape (300, TPLOV TLPNVOV).

BAémovpe Aowmdv 611 | oxéon peta&d mapdyovta kot aplfpod opdadwv pe kBévto ypovov
ico pe 1 devtepdiento elvan n €N :

Factor =2 - (gangs_.nr— 1)
_ progs_nr
EANESMT= cores_nr

Eipoote £tolpot Aoutdv vo VAOTOMGOVLE TO YPOVOOPOLOAOYNTH OGS, GKOTOG TOL 0010V
glvat vo Tpocs@épeL dikoun katovoun g tpoodov uetaéy tov depyactov (FOP-Fairness over
Progress scheduler).

Onwg oty mponyoOUEVN TPOGEYYIOT HOC, O YPOVOSPOLOAOYNTNG VLAOmOlEiTol o€ S5
CUVAPTNOCELS OTTMC PaiveTal oTov Kddwka 1.1-2.

Yty init() evepyomolovpe tovg performance counters, Aaupdavoope to IPCalone yo
Kk@0e epappoyn, vworoyilovpe 10 GHVOAO TV TETPAd®V oL Ba TPEEOVY KAl €V GuVE)ELX TOV
napdyovto. H quantum_expired() xoAeitot petd to 1€hog Tov KBAVTou Kot KaAEL Ue TN GEPA TIC
freeze(), schedule() kot thaw(). Xt freeze ctapatdue v TETPASO TOL HTOV GTOLE TLPNVEG,
Aoupavoope 1o IPCco-running, Bpiokovue to IPCloss kot vmoAoyilovue to penalty.
Avavemvovpe emiong to waiting time kot cuvenmg to Criterion yio 6Aeg TIG €QOPUOYES. XTn
schedule() ta&wopovpe tig papproyég oe Oivovca celpd pe Paorn to Criterion Kot emAEyoLLE
g 4 mpoteg mpog ektéleon. Xin thaw() extedovdpe TIc emeyuéveg epappoyés. H
nolvmhokotnta tov FOP scheduler yia v andeoaon sivar O(n log n) (molvmAokdtnta ™G
quicksort), n ovpd viomoteitan cav AioTa.
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void init (){
gangs_nr = progs_nr/cores_nr;
factor = 2 (gangs_nr — 1);
counters = perf_counters_init(selected events);

for_each_application_in_list(progs_all_list){
application->criterion = 0;
application->IPC_alone = get_IPC_parameter();

¥

}
void schedule(){
quicksort(progs_all_list, criterion, DESCENDING);
while (number(progs_schedule_list) < cores_nr){
remove_from_top(progs_all_list);
add_to_tail(progs_schedule_list);
}

}
void thaw(){
for_each_application_in_list(progs_schedule_list){
start_running(application);
}

perf_counters_zero(counters);
perf_counters_start(counters);

}
void freeze(){
perf_counters_stop(counters);
for_each_application_in_list(progs_schedule_list){
stop_running(application);
value = perf_counters_read(counters);
IPC_co-running = get_IPC(value);
IPC_loss = (1 — IPC_co-running/application->IPC_alone);
application->waiting_time = 0;
application->penalty = factor * IPC_loss;
remove_from_top(progs_schedule_list);
add_to_tail(progs_all_list);
}
for_each_application_in_list(progs_all_list){
update_waiting_time(application);
application->criterion = waiting_time + penalty;
}
}
void quantum_expired(){
freeze();
if (current_tics < RUN_TICS){
schedule();
thaw();
Yelse{
stop_execution();
print_results();

Code 1.1-2: AAyéprBuoc rov FOP scheduler
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3.2 Tpitn Ilpocéyyion (Amopevyovrag Kat dlayelpilovras th cOYKpovoi])

X€ 0TI TN TPOGEYYION WG EMEKTEIVOVLE TOV TPONYOVUEVO YPOVOOPOLOAOYNTH €TGL
(MOTE VO OTOPEVYEL TI] GVYKPOLGT] OPIGUEVOV EQOPUOYDV. ATO TO HOVTEAD TTPOPAEYNC NG
oUYKPOLONG TV OlOPOPETIKMDY Katnyopldv PAémovpe OtL 1 omddoon tov C (SC, BC)
EQUPUOYDV UEIOVETAL SNUAVTIKG OTav ektehovvtan pali pe L (X1.67 kabvotépnon yuo ) SC,
x2.43 xobvotépnon yia ™ BC). Oéhovtag vo mapéyovue évo mepiBaAAov, 610 0moio ot
depyaocieg Oa ekTELOVVTOL O OTOOOTIKG, UETAGYNUATICOVUE TNV TPONYOVUEVN TEXVIKT DOTE
va amoeevyel TV extédeon tov L pe tig C. Me avtd tov 1pomo ot C €yovv ) dvvatdtnta va
KAavouv peyaldtepn mpoodo. Xe gvupvtepn KAipaka ovtd onuaiver Pektiopuévo throughput ce
oxéon pe tov FOP scheduler. Toug ‘kakovg’ cuvoloGHOVE TOV JEV UTOPOVUE VO OTTOQVYOVLLE
ToVG dwyeplopoote, epapuolmvrog v idta ToAttikn pe tov FOP.

O FOP-LCI (Fairness over Progress with L-C Isolation) scheduler peté v tagwvounon
™G ovpds dropopaletl tig epappoyés dmwg gaivetar oto oynue 1.1-13. Onwg mapoatnpodpe
elval mBavod pepkég eQapUOYEG TOL OEV NTAV 1 GEPA TOLG Vo TPEEOVY, va TortoBeTtnBovv GTovV
mopnva vopitepa, ‘KAEPovtag’ ™ oelpd avtdv mov Enpene va tpéovv. E@’ocov éuetvay eKtog
TopNva Yo dAAo Eva KBAavto xpovov to waiting time tovg o avénbel kKot eropévmg To KPLTHPLO
ToV¢. Oa PTdoovv, AoV, va eivatl GTNV apyn TG OVPAG Kot VoL EKTEAEGTOVV UE TIG EMBLUNTEG
eQapUOYES. Me autd Tov TPOTO aAmoPEVYOLUE TN AMUOKTOVIAL.

~
J
7

:\n< \ \ v «Gang2‘ f

--.. @ -

Figure 1.1-13: Emidoyn tetpadwv ue tov FOP(ravw)
kot e tov FOP-LCI (kdzw)

/
/

O FOP-LCI dagpopomnoteitar o oyéon ue tov FOP povo ot cvvéptnon schedule(). O
KOOKAC G @aivetan dimia (Code 1.1-3). Ot epappoyéc ta&vopovvtal ue BAcn 0 GYNUe ToL
npotov CMB scheduler. H moAvmlokdtta yio v amdeacn eivar ommg kot tpv O(n log n)
(moAvmhokdtnTa g quicksort).
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void schedule()
L_ ON =0;
C_ON=0;
allowed = 1;
quicksort(progs_all_list, criterion, DESCENDING);
for_each_app_in_list(progs_all_list)
switch (app->class)
case L _CLASS:
if (C_ON) allowed = 0;
else L ON =1;
case C_CLASS:
if (L_ON) allowed = 0;
elseC ON=1,;
if (allowed )
if (number(progs_schedule_list) != cores_nr)
remove_app_from_list(progs_all_list);
add_to_tail(progs_schedule_list);

Code 1.1-3: Schedule() ovvdptnon rov FOP-LCI scheduler
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Kepaioo 4
A&oAoynon

o v agloAdynon TV TOMTIKOV LG ONUOVPYOVUE 3 OUddES TEPAUAT®V, HE S
QOPTOVG ePYOCSLDY GE KAOBE OpAdM. XTNV TPDT OUAdN ONUIOVPYOVHE (OPTOVG EPYOCLDV
ovvoldlovtag Oleg Tig Katnyopieg epappoydv extodg e BC. H devtepn amotehéitar amo
EPaPUOYEG OAMV TV KaTnyoptdv kol amd apldud BC epapuoydv, ot omoiec pmopoldv va
OTOHOVMBOVLY TANPMC GE OLOPOPETIKEG TETPAOEG. XtV TeAevTain opdoa o apduds towv BC
EQOPUOYODV gfvarl TETOO0C Kot 1 TANPNG omopdveon tovg dev sivar gpiktr. Kabe @optog
gpyaciov amoteleiton and 16 gpappoyés. O spapuoyés Exovv talvoundei offline. Te kdde
ektéheon embBopodue o @oOptog diepyacidv vo givor otabepdg, €101 emavekteAoOue KAOe
epappoyn mov teppatiCet. H mlatpoppo mov xpnoylonocape ivol ot Tov TEPLYPAYOLE CE
TPONYOVLEVO KEPAAOLO KOl AOYOANONKALE LE TO £VO TOIT, MOTE VO OOKIUAGOVUE TIG TEXVIKES
pog o€ mePPAALOV OV HaG Oivel T duVATOTNTA VO LOIPAGOVLLE TIG EPUPUOYES LOVO YPOVIKAL.

Evolapepopoote vo LETPGOVIE TO KOTA OGO diKoto kKatavépovol ot Topot (fairness)
Kot mwooeg diepyocieg extehovvtal ava povada ypdvov (throughput). Tavtd 1o Adyo
YPNOLOTOLOVUE dVO PETPIKES, TNV TLTIKY amokAon (2) kat tov péco (1). Tig petpikég avtég T1g
epapuolovpe 6To GHVOAO TOV EPAPLOYDV, GTO KAAGLO TOV POPOV TOV TEPUATIOTNKAY LE TNV
KaOg TEYVIKN TPOG TOV 100VIKO aptBud mov Oa tepuartilévrovoay av dev vanpye ocvykpovon (3).

T(s) = average(N(s,i)), for all applicationsi (1)

F(s) = a(N(s, 1)), for all applications i (2)

times_terminated (s, 1)

N(s, i) = s = scheduler,i = application (3)

ideal times_terminated (i)’

execution_time

time (l)alone —execution

ideal_times._terminated (i) = ) i = application (4)

) ) ) ) cores_nr
execution_time = total execution_time - ——— (5)
apps._nr

[TapaBétovpe pio gvdewktiky pérpnon vy kKébe opddo mepapdrov. Xpnoiomotovue
boxplots ywo va deifovpe Vv yevikn ewdva petald tov TEXVIKGOV uag kot barcharts yw vo
dgiovpe o ovoALTIKE TNV omddoor kdBe epappoync. Xe kabe ouddo cvykpivovue Tig
TeYVIKEG pog pe to Linux scheduler 6cov agopd to throughput kou to fairness.
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[poOt Opdada Mepaparov

[Mopabétovpe mapakdto Eva eopto depyaciov pe 8 L, 6 SC ko 2 N. (oynua 1.1-14)
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Figure 1.1-14 : @dprog dispyaoicrv ue 8 L, 6 SC kar 2 N diepyooieg

[Mapatnpovpe 6TL OAEG 01 TEYVIKES TTOV TPOTEIVaLE VTTEPTEPOVV Kot o€ throughput kot oe
fairness tov Linux scheduler. Tnv xaAvtepn anddoomn dcov apopd to throughput emidewkviet o
FOP, pépvovtag tv mpododo tov diepyasidy oxeddv oty 1d1a evbeia. O CMB napovcidlet 1o
ueyolvtepo throughput, divovtag pio onuovtiky ®Onon otigc SC epoapproyég Kol LEIDOVOVTAG
erappa tic L (AMoym maketapiopatog). I'a to FOP-LCI, tapatnpodue mapopuote GuUmeptpopd
pe to FOP. BAémovpe 01t gvvoet tig N gpappoyég avtt tov SC kot autd dukooloyeitor amo to
veyovog 0t ot N gival ovdétepeg, OnAadn pmopovv va tpéEovv ko pe tig L ko pe tig C.
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Figure 1.1-15: BeAtimwon throughput xa: fairness oyetixa ue to Linux

10 oynua 1.1-15 mopovoialovpe to amotedéspato ovykpione pe to Linux scheduler
TOV EOpTOV NG TPOTNS opadas. Ocov apopa to throughput, o CMB deiyvel ta kaAdtepa
amoteAéopata, EVM oyeTikd pe to fairness, tpmrtog épyetar o FOP.
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Figure 1.1-16: @dprog diepyooiov ue 4 L, 3 BC, 4 SC kor 5 N digpyaocicg

e ovtd t0 PopTo Topatnpovue to. e€nc. O CMB metvyaiver to kaldtepo throughput,
KaOdG Kataeépvel vo anopovaoel TANpog Tig BC spappoyég otic tetpddeg kal va avénocet
ONUOVTIKE TNV amdd0c1 Tovs, Omwg emiong Kavel kat pe 11g SC. Mewbvel v mpdodo tov L
omwg mpwv, Kabag T maketdpel poali. O FOP, dnwg mprv, £xel Tnv kaADTEPTN OTOS0CT| WG TPOG
1o fairness, icoppommvrtag oyxedov TéLEW TIC EPaPUOYEC, OAAG pewdvel to throughput, 516t
TPEYEL CLYVOTEPA EPAPLOYEG TTOV deV KAvouy Ttpdodo. O FOP-LCI gaiveral, mdAL, va guvoet Tig
N epappoyég avti tov SC.

w10 average
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Figure 1.1-17: Beltiwon throughput ke fairness oyetixa pe o Linux

>t0 oynua 1.1-17 ovykpivovpe T1g teYVIKEC pog pe to Linux yua toug @oOpTovg e
devtepng opadag. Katainyovue ota e&nc. O CMB elvat kavog va popdoet 1ig BC gpappoyég
Kot va Tpoo@épel o kaAvtepo throughput. Amd v dAln o FOP peidver ehagpmdg to
throughput, aAld metvyaivel to kodvtepo fairness. O FOP-LCI Bpioketol og po evoidueon
KATAGTOON
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Figure 1.1-18: @dprog diepyooiawv ue 6 L, 2 LC, 5 BC, 1 SC kot 2 N diepyaoieg

Ye avty Vv zmepintoon (oyquo 1.1-18) katorapaivoope 611 0 CMB dev pmopei va
aropovaooel 11 BC epappoyés kot avaykaotikd tic tpéyet poli. Aapfavoviag vmoyty ot
TOKETAPEL Kol TIG L, avtd odnyel og ehoppdg petopévn amoddoon cvuykprtikd pe to Linux.
I'evikd akolovbei tn cvumepipopd Tov Linux. Ao v GAAN, ot GALEG 6O TEXVIKEG 0m0didovV
onw¢ mepuévaype, pe yauniotepo throughput oyetikd pe tig GAAeg opadec melpaudtmv, 610t 0
apBudc TV EQapuoy®dv Tov dev ektelovvTal amodotikd (BC) eivor avénuévog.
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Figure 1.1-19: BeAtimon throughput oz fairness oyetixd ue to Linux

JUYKEVIPOTIKG Yoo OAOVG TOLG @OpTOLG dlepyacidv €yovpe to e€nc. O CMB
napovoialel v uikpdtepn peimon oto throughput kou v pikpdtepn avénon oto fairness. Ot
GAheg dVO TEYVIKEG £xoLV TTOPOUOL cVUTEPLPOPd, pe Ttov FOP va eivar eAappdg xelpotepog
oto throughput kot ehappdg kaddtepog oto fairness and tov FOP-LCI.
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Figure 1.1-20: BeAtiwon throughput xoz fairness yia kafe ouddo oyetixd pe to Linux

BAémovtag ta amoteléopata g ovyKplong kataAnyovpe oto €ENG. Oleg ot teyvikég
TOL TPOTEIVOUE KOTOVELOLV TO OlKoo TOVG TOPOLS TOL GUCTHUOTOS OTIG OEPYACIES.
Exminktikd amotedéopata mopovctdlel n 0e0tepn Kot 1 TPitn mPOcLyylon kabMOS QEPVEL GE
oYEOOV AmOAVTN 160pPOTia MV TPAOAO TOVE. LTV TPADTY TPOGEYYIOTN EYOVUE TOV TEPLOPIGLO
OTL 0 JWPICUOG TOV EPOPLOYDV TOV VITOPEPOVY TEPIGGOTEPO UTOPEL vaL Yivel LOVO YPOVIKAL.
Avtd onuoaiver 6tt 0tav o aplBudg tovg ECemepdoer TG mbavEG TETPAdES, TOTE O
YPOVOSPOLOAOYNTNC oG dev umopetl va ovtamokpdei oe amodotikn avénon throughput kot
fairness.

Avoeopikd pe v peiowon tov throughput yia toug FOP ko FOP-LCI, avtd couPaiver
eMEON 1OV enelepyaoTr] KPATAVE AMOGYOANUEVO KUPIMG depyacieg mov 0ev kKdvouv TPdodo.
[Top’6da avtd elvar omovdaio to amotédecpo mov mwpooeépovv kot ailel va Buoidoovue
throughput ®ote va metdyoLUE GYESOV TNV OTOAVTY 1GOPPOTTICL.

Yyetwkd pe tov FOP-LCI, emdiovkope va avénioovpe v mpdodo twv C pe v
aropovoon tove. Kataiafaivoope dpmg ot pe ovtd 10 tpdmo, cvscmpevape T L 1 tpéyope
11g BC padi, katt mov dev 0dnyel o€ KaAdTEPQ AMOTEAEGHOTA. AVTO TTOV TOPATNPNGAUE Elval
avénon tov throughput amo v €vvoiky eKTELEST] TOV ‘OVOETEPOV’ EPUPUOYDV.

Yvvoyilovtog, PAEmovpE OTL 01 GUYYPOVOL XPOVOSPOUOAOYNTEG Oev AauPdvouy VoY
TOVG TIC WITEPOTNTEG TOV TOAVTHPVOV CUCTNUATOV Kot dev mapéyovv otabepotnta. Ot
TEYVIKEG TTOV TTPOTEIVAUE HUITOPOVV Vo €yyonBovv a&lomiotio Kot S1kolochVN GTNV KOTOVOUT TOV
TOPOV.
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Chapter 1
Introduction

1.1 Definition of scheduling

Scheduling is a process concerning the decision of allocating resources to tasks. It
occurs over given time periods and is responsible for optimizing several objectives [4].The
resources, tasks and objectives vary between different organizations. In the examples below we
illustrate the possible forms they may take.

Taking industry for example, we examine a factory that produces paper bags used for
dog food or cement. Regardless of the type of bags we want to produce, the process remains the
same and follows three stages, the printing, the gluing and the sewing. In each stage, there are
machines of different characteristics, which execute different operations at various speeds. So
we recognize here that the resources and the tasks coincide with the machines and the clients’
orders respectively. The size of the order affects the completion time. In addition, the setup of a
machine should be changed when a switch from one type of bag to another occurs. Another
thing that should be taken into consideration is the impact a late delivery would have on the
relationship between the factory and the clients. For these reasons, it is necessary to schedule
the operation of the machines aiming to satisfy some of the following objectives, minimize the
penalties a late delivery would impose or minimize the time wasted on different setups.

As far as transportation services are concerned, we examine a terminal at an airport.
Each day hundreds of planes arrive to and depart from numerous gates. Some gates have plenty
of space and are easily accessible by large planes, while others are in a location where it is
difficult for a plane to reach in. Planes follow a certain schedule for their arrival and their
departure. However unforeseen circumstances, like bad weather conditions, require changes to
the main schedule. When a plane arrives to the airport, it occupies its gate. The arriving
passengers disembark, the plane remains at the gate in order to be serviced and the departing
passengers are boarded. However the flight could be postponed, because the destination airport
could be busy enough to accommodate another plane. On this occasion, the plane may have to
remain at the gate for a long period, preventing others from using it. In this example, the gates
are the resources and the servicing of planes are the tasks. It is made clear that a scheduling
policy should be adopted in order to optimize several objectives. In the first place, we need to
assure that the arriving planes would be assigned to an unoccupied gate. Another objective may
be the minimization of personnel’s work or the minimization of delays.

Scheduling is widely used in information processing environments. In such
environments, we recognize the CPUs (Central Processing Units) as the resources and the
executable programs (processes) as the tasks. Computing systems provide with the ability of
multiprogramming, assigning, in other words, numerous processes in the CPUs in a given time
period. The scheduler is responsible for this work. It slices the CPU time into pieces and
devotes them to different processes. In that way it assures that all of the processes would take a
fraction of the CPU time and that the CPU would not be kept busy by only a few. The
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optimization of specific objectives has a great impact on the overall performance of the system.
For example, keeping the CPUs busy all the time leads to maximization of throughput or
minimizing the waiting time of applications provides with fair distribution of the resources. For
these reasons, schedulers are an indispensable part of computing systems and it is essential to
make efforts to improve them.

1.2 Chip Multiprocessor

Manufacturers adopt a simple rule to improve computer performance. They increase the
number of transistors a CPU contain and decrease in parallel their size. In accordance with
Moore’s law this has caused speeds to climb and prices to fall. The computing industry
followed this trend for years. However, it is impossible for transistors to continuously shrink.
Despite the fact that transistors grow thinner, manufacturers have to face two critical problems,
power usage and heat generation. Even approaches for performance enhancement, like running
multiple instructions per thread (ILP) have reached a plateau.

For these reasons, potentials for improvement of the processor performance have been
seriously restricted. Chip performance experienced a 60% increase per year in 90s but declined
to 40% per year from 2000 to 2004. Apparently designing a chip with 20% speed increase,
costing twice the die area would not be ideal for meeting our expectations for performance
boost, energy efficiency and cost effectiveness [5].

In response, manufacturers are turning from single-core to multi-core architectures.
Instead of one increasingly powerful core, they are building chips with multiple more energy-
efficient processing cores. These cores run in lower speeds as compared to the single-core
systems but they improve overall performance by executing more processes in parallel. Taking
for example a dual-core chip running multiple processes simultaneously, we conclude that it is
about 1.5 faster than a chip with just one core.

When a single-core chip runs multiple programs, it assigns a time slice to work on one
program and then assigns different time slices for others. This can cause conflicts, errors, or
slowdowns when the processor must perform multiple tasks simultaneously. When considering
multi-core chips, on the opposite, it is feasible to execute multiple instructions at the same time,
increasing overall speed for programs amenable to parallel computing. So if you have multiple
tasks that all have to run at the same time, you will see a boost of performance with multi-core
processors.

The improvement in performance gained by the use of a multi-core processor depends
very much on the software algorithms used and their implementation. In particular, possible
gains are limited by the fraction of the software that can be run in parallel simultaneously on
multiple cores. Programmers must find good places to break up the applications, divide the
work into roughly equal pieces that can run at the same time, and determine the best times for
the threads to communicate with one another (thread-level parallelism (TLP)), a work that
makes the parallelization of software a significant ongoing topic of research.

Manufacturers typically integrate the cores onto a single integrated circuit die (known as
a chip multiprocessor or CMP), or onto multiple dies in a single chip package. Because the
chips' cores are on the same die, they can share architectural components, such as memory
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elements and memory management. They thus have fewer components and lower costs than
systems running multiple chips (SMP). Also, the signaling between cores can be faster and use
less electricity than on multichip systems.

The advantages a multi-core processor can offer, mentioned above, made them the
dominant in the area of computing systems. Multi-core processors are widely used across many
application domains including general-purpose, embedded, network, digital signal processing
(DSP), and graphics. Multi-core technology, with its promise of improved power efficiency and
increased hardware utilization, has been embraced by the industry: AMD, Fujitsu, IBM, Intel
and Sun Microsystems are shipping multicore systems and have announced plans to release
future models. Having become mainstream in both server and desktop processors, we expect to
see processors with tens and even hundreds of cores on a chip, over the next decade.

1.3 Operating System Services

An operating system is a program that manages a computer's hardware. It also provides
a basis for application programs and acts as an intermediary between the computer user and the
computer hardware.

user user user user
1 2 3 e n
compiler assembler text editor asa database
system

system and application programs

operating system

computer hardware

Figure 1.3-1: Abstract view of the components of a computer system

A computer system can be divided roughly into four components: the hardware, the
operating system, the application programs, and the users (Figure 1.3-1). The hardware
consists of the central processing unit (CPU), the memory and the input/output (I1/O) devices
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and provides the resources for the system. The application programs, for example word
processors, spreadsheets and browsers, define the ways in which these resources are used to
solve users' computing problems. The operating system controls the hardware and coordinates
its use among the various application programs for the various users [6].

The operating system is responsible for process, memory and storage management.
Regarding process management, it schedules processes and threads on the CPUs, creates and
deletes both user and system processes, suspends and resumes processes and provides
mechanisms for process synchronization and communication.

Concerning the memory management, it keeps track of which parts of memory are
currently being used and who is using them, decides which processes and data to move into and
out of memory and (de)allocate memory space as needed.

Operating system abstracts the physical properties of the storage devices and creates a
logical, uniform storage unit, the file. It accesses the storage devices via the files and takes
charge of specific operations for managing the file-system. It creates and deletes files or
directories, supports mechanisms for their manipulations, and maps files onto storage devices. |

In the case a program needs to communicate with a file or a device, the operating system
provides 1/O operations. The communication can be achieved via special functions that utilize
the devices properly and offer efficiency and protection

Communication between users and their programs should be helpful and convenient.
The operating system provides the user interface (Ul), in order to make computer interactive.
There are many form an interface could take. It may be a command line interface (CLI), which
uses text commands. The other and most common form is the graphical user interface (GUI). It
consists of a window system with a pointing device and a keyboard.

Protection and security are two aspects that an operating system should take into
consideration. User and processes are not allowed to have access to the resources without
regulation. Operating systems enforce some controlling mechanism in order to protect the
execution of the processes. They ensure that files, memory and CPUs can be utilized by the
processes that have gained proper authorization.

Operating systems should offer not only protection but also security. This means that
they should be able to defend the system from external and internal attacks. Such attacks may
include viruses, identity theft, denial-of-service and theft of service.

1.4 Process Scheduling

A process is considered as the task that should be completed in a computing system. A
system consists of numerous processes, some of them are operating-system processes, meaning
that they execute system code, and the others are user processes, meaning that they execute
user code.

CPUs are considered as the main resources of a system. Operating systems assign these
resources to the tasks aiming to optimize some objectives. Scheduler is the indispensable part
of the operating systems that holds this responsibility. Its main role is to provide with the ability
of multiprogramming. CPU cannot be kept busy by a single process all the time. It should be
ensured that all processes take a slice of the CPU’s time and make progress
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However, multiprogramming is not the only reason that makes the scheduler so
important. The way it manages the processes has a great impact on the system performance.
The extent at which the various objectives are satisfied is reflected on the system, as these
objectives consist the criteria for the performance measurement.

The main objectives that a scheduler tries to optimize are the following. First of all we
want to maximize the CPU utilization, meaning that we try to keep the CPU as busy as
possible. In addition we want to maximize the throughput, which is the measure of work done.
It indicates the processes that are completed per time unit. Furthermore it is desirable to
minimize the turnaround time of applications. This refers to the interval from the time of
submission to the time of completion of a process. Waiting time is another criterion we try to
minimize. It is the total time that an application spent waiting in the ready queue. We do not
want waiting time to be gathered to one application only, but to be equally distributed among
them. Another thing we should take into account is the response time, which is the time from
the submission of a request until the first response is produced. In an interactive system, it is
preferable to minimize response time

Regardless of the various scheduling algorithms proposed in order to achieve the
optimization of the desirable objectives, the main abstract purpose of the scheduler is analyzed
in the meaning of time-sharing and space-sharing the CPUs. Time-sharing the CPU means
multiplexing a single processor in time and devotes every time-slice to different process, so that
CPU executes multiple processes in a time interval. Space-sharing the CPUs is about deciding
on which CPU each process chosen to run at a given time interval will be assigned to run.

For single processor architectures the scheduler enforces obviously time-sharing only.
OS schedulers for these architectures had become so optimized that need for further
improvements dramatically subsided, thereby diminishing interest in this research topic. In the
late 90s, the scheduling problem was considered solved; at least it appeared that way until the
advent and subsequent near ubiquitous proliferation of chip multiprocessors (CMP).

CMP architectures, consisting of multiple processing cores on a single die added new
dimensions to the scheduler’s role. In addition to time-sharing, it became necessary to also
space-share cores among the processes. In the state-of-the-art schedulers the cores are treated
as isolated and independent processors, just like SMPs, and the strategy for placing processes
on cores is load balancing. The OS scheduler tries to balance the runnable threads across the
available resources to ensure fair distribution of CPU time and minimize the idling of cores.

1.5 The Linux Scheduler

To comprehend how the time and space-sharing are applied and how scheduling
strategies for optimization of some desirable objectives are implemented in practice, we now
present the Linux Scheduler.

Linux contemporary multiprocessor operating system uses a two-level scheduling
approach for efficient resource distribution. In the first level, it assigns queues in each core and
adapts fair policies to manage each queue. In the second level, it redistributes the tasks across
the cores using the load balancer. The first level reflects the time-sharing policy, while the
second level reflects the space-sharing policy. In the paragraphs that follow we discuss each

44



level independently.
Run Queue Management

The Linux scheduler is called CFS (Completely Fair Scheduler). It is different from the
classical schedulers, as it does not embrace the idea of time slices. It takes into account the
waiting time (the time an application is in the run queue and is ready to be executed) of the
applications only, rather than computing time slices for each one and run it until their time slice
is used. In this level, a per core run queue is created and represents the set of programs assigned
on this core. CFS schedules the tasks of each core, deciding which application from the queue
will run next, via its run queue management.

Inspecting deeper the general principle of CFS we understand why it is called
completely fair. It provides maximum fairness to tasks in terms of power, scheduling the task
with the gravest need for CPU time. Associating waiting time with unfairness, it ensures that no
heavy unfairness will gathered in tasks, as it picks the application with the highest waiting time
and assigns it to the core. In that way, it shares the unfairness equally among all the tasks in the
system.

Run queues of the CFS are implemented through a time ordered red-black tree.

CFS enforces priority indirectly using a delay factor for the time a task is allowed to be
executed. Lower-priority processes have higher delay factors, while higher-priority processes
have lower factors. This means that the time a task is permitted to run passes more quickly for a
lower-priority application than for a higher-priority.

The Load Balancer

In the CMP platforms, each core has its own run queue, as described previously.
Completion times of tasks across the run queues are not the same. For this reason, some cores
may execute all the tasks of their run queues and become idle, while other still have many
applications in the queue waiting to be executed. This phenomenon is called load imbalance.
The load balancer is designed to solve this problem. It is called periodically migrating tasks
from the busiest CPU to the less-loaded. In that way, it attempts to balance the number of tasks
across all the run queues of the system.

The selection of potential tasks to be migrated occurs based on meeting some
restrictions. For example it needs to be ensured that the candidate application is not on a CPU
at the moment or that it is allowed to run on the destination core.

Topology and Locality Awareness

The Linux scheduler organizes the run queues hierarchically into different scheduling
domains, in such a way that it is reflected how the hardware resources are shared. It balances
the queues progressing up the following domains of the hierarchy: Simultaneous
Multithreading (SMT) contexts, last-level caches, and NUMA domains. At each level the load
balancer decides how many processes need to be migrated between two groups in order to
balance the number of tasks in those groups. If the groups are already in balance, no action is
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taken. The load balancer is invoked in a frequency specified by both the scheduling domain
kernel settings and the instantaneous load.

As the level in the hierarchy increases, the frequency of invoking the balancer and the
number of migrations decreases. This is based on the concept that migrations between domains
located higher in the hierarchy are more costly than those between domains located lower. This
is valid if we consider migrations between NUMA banks and between SMT contexts.

1.6 Chapter Description

In Chapter 2 we present the problem of co-executing applications that contend for the
shared resources of a CMP. In addition, we study the destructive consequences that the agnostic
treatment of threads has on the objectives of a scheduler.

Motivated by the observations made on the previous chapter, in Chapter 3 we propose 3
scheduling policies that attempt to mitigate the phenomenon of unfair resource sharing. In
addition, we describe the execution platform used for our experiments, and the tools and
mechanisms used for the implementation of our techniques.

In Chapter 4, we form 15 workloads and group then in 3 categories. We evaluate our
proposed schedulers and compare them with the Linux scheduler, describing in detail the
results for each category.

Conclusions and ideas for further improvements are summarized in Chapter 5, while
approaches made by the research community are presented in Chapter 6.
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Chapter 2
Problem Definition and Motivation

2.1 Resource sharing utilization

As mentioned before, CMP's cores managed to overcome the problems of transistor
shrinking, power consumption and heat generation that a simple core had to face. The need for
fast signaling between cores, less electricity usage and in consequence cost effectiveness lead
the manufacturers to integrate the cores into a single circuit die and thus share architectural
components such as memory elements and memory management. The main components (on-
and off-chip) shared among the cores of a CMP architecture are the LLC (Last Level Cache)
the memory bus or interconnects, DRAM controllers and pre-fetchers (Figure 2.1-1).
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Figure 2.1-1: Shared resources of a CMP platform

While CMP platforms seem to be promising for performance improvement, sharing the
workload to parallel cores, their design would not have such a beneficial impact on the various
threads running simultaneously. Workloads of both client and server domain consist of a variety
of applications with a big range of different characteristics and behavior. When they are
executed concurrently in the neighboring cores of a CMP they can use its resources either
constructively or destructively.
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2.1.1 Constructive behavior of resource sharing

CMP platforms can offer tremendous speed up for applications that exploit the thread
level parallelism (TLP). When multiple cores share resources, threads of an application running
concurrently on those cores can constructively use these resources in a number of ways.

Threads of an application share data that they access in different patterns. A memory
access pattern that can lead to constructive use of shared resources is the one of fine-grain
sharing. This kind of sharing is achieved when threads ping-pong data back and forth between
private caches and main memory [7]. Such behavior express threads that update the same or
coterminous group of data either concurrently or one after another, like the producer-consumer
example, where one thread writes some data and another thread reads it.

When co-executing threads, presenting the above behavior of memory accesses, into the
cores of a CMP, the sharing of LLC, memory controllers, memory bus and hardware
prefetching helps the threads to productively cooperate. Last Level Cache in this case is the
main component playing the dominant role for constructive behavior. It holds blocks of data
that are accessed from all the cores with low latency at the same period. This means that only
one copy of the data is shared rather than multiple copies spread out across private caches,
reducing coherence traffic [8]. It also means that since data are concurrently used by all cores
they are not ping-ponged back and forth from cache to main memory, reducing the latency of a
costly transfer, contaminating less frequent the memory bus, dram controllers and prefetchers.
Furthermore data are being brought to cache by one thread which exploiting the prefetching
logic brings a coterminous group of data that can be used by the other threads. This reduction
in data redundancy also leads to larger effective capacity on chip.

Even threads not sharing a cache can interfere constructively. If caches are located in the
same socket, coherence traffic can avoid transfer of messages in a heavily contended system
bus. Of course, coherence traffic between caches sharing a bus is less costly than between
caches located to different sockets.

2.1.2 Destructive behavior of resource sharing

Considering the workloads to be executed in CMP platforms both in desktop and server
environment, they consist of a variety of applications multithreaded or not that need to run
concurrently on the neighboring cores. Threads of different applications, usually, do not
communicate with each other or share data, thus they don't help each other when running
simultaneously, using constructively the shared resources of a CMP. Even threads of the same
application running together will not benefit, if they exhibit coarse-grained sharing [7].
Opposite to fine-grained sharing, they do not ping-pong data back and forth, but there is a long
period where one thread accesses the data followed by a long period where another thread
accesses the same data. In that way they do not bring data for each other and act like being
threads of different applications that exhibit different memory access properties.

Such applications are competing for the shared resources, as their needs for utilization of
elements of the memory hierarchy try to be satisfied. The performance of the applications
participated in this conflict for resources can be negatively impacted, being slowed down by
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hundreds of percent relative to running alone, because of the destructive interference they cause
to each other. In this paper we will examine only the destructive behavior between threads,
when they contend for shared resources.

Below we present how the contention in each level of resource sharing (Last Level
Cache, DRAM Controllers) impacts destructively on performance of applications.

2.2 Last Level Cache Contention

When threads run concurrently in cores, the first point of contention is Last Level Cache
they share. Threads bring data to cache without regulation, following the cache replacement
policy being implemented on the CMP platform, in order to save the heavy latency the memory
Impose. This means that a thread evicts the data of a neighboring thread or its data are evicted
by another (Table 2.2-1).

Processor Cache Line X Action Cause Result
P1 Access Data A Compulsory miss Cache empty -
P1 Access Data A Hit In cache -
P2 Access Data B Capacity miss Not in cache Evicts P1 Data
Pl Access Data A Conflict miss Evicted by P2 Evicts P2 Data
P2 Access Data B Conflict miss Evicted by P1 Evicts P1 Data
Pl Access Data A Conflict miss Evicted by P2 Evicts P2 Data
Pl Access Data C Capacity miss Not in cache Evicts P2 Data

Table 2.2-1: Impact of interference in the Last Level Cache

As it is depicted in the above example, the process P1 is subjected to pay the cost of two
extra misses and P2 of one extra miss, forced to wait more time for the data to come from
memory and consequently having a severe degradation to their performance.

Research showed that the 3C classification of misses (Compulsory, Conflict, Capacity)
Is inadequate to analyze the exact cause of misses and cannot model the contention existing in
the shared cache. They provide a new cache miss classification, CIl (Compulsory, Intra
processor, Inter processor), that is able to model the interactions between transactions of
multiple processors at the level of shared cache [9]. Intra-processor miss is the one caused by
the same process, opposite to Inter-processor which is caused due to a conflict by a neighboring
process. In the above example, P1 has two inter-processor and one intra-processor miss and P2
has one inter-processor and one intra-processor miss.

Using a set of benchmarks they measured the distribution of misses of their
classification scheme to an 8 processor CMP architecture with L1 private caches and L2 shared
unified Last Level Cache. On an average, 40.3% of the misses are Inter-processor misses,
24.6% of the misses are Intra-processor misses and the remaining 35.1% are compulsory
misses.

Several studies have shown how the contention for the Last Level Cache negatively

50



affect the performance of the applications co-scheduled [10] [11]. They showed that the
reduction in IPC is corresponded to the increase of cache misses.

Working on a CMP platform with Nehalem architecture, using the one of two packages
consisting of four processors with up to L2 private caches, one fully inclusive and fully shared
L3 Last Level Cache and an integrated memory controller, we show how the conflict for the
LLC affect the co-running applications. All bars are normalized to the case where applications

were running alone.
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Figure 2.2-1: Destructive effects of LLC contention on IPC of 4 co-running applications
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Figure 2.2-2: Impact of LLC contention on MPI

Examining the two above figures we come to the following conclusions. When
applications are executed concurrently, they cause increase of their Misses Per Instruction
(MPI), because of their destructive interference in the shared LLC. This increase reflects to a
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corresponding decrease of their IPC, which occurs at a different rate for each application.
Furthermore, the increase of MPI is not uniformly distributed, meaning that the LLC contention
Is not treated equally between threads and thus present unfair slowdown.

Summarizing, the above figures, assured our previous statements, that when applications
compete for the shared LLC, they do cause destructive interference that leads to severe
performance degradation (x1.23, x2.12, x1.08, x1.71 times of slowdown).

2.3 Memory Bandwidth Contention

The other crucial point of contention is the memory bus, which is the mediator between
the Last Level Cache and the main memory. Memory Bandwidth is referred as the rate that data
are written to or loaded from main memory through the memory data bus. Its theoretical
maximum rate depends on the source and timing constraints of the memory system, such as
memory clock frequency, bus width, number of data transfers per clock. The actual sustainable
rate, though, is implied by the memory access pattern of the application running and the
scheduling algorithm imposed to those arriving requests by the Dram controller.

When multiple threads are running concurrently, they contaminate the memory bus with
their data without regulation. As long as the sustainable rate of transactions is limited, their
bandwidth would be reduced, in order to obey the source constraints.

Working on the same CMP platform described before, we show how the contention on
the memory bandwidth affects destructively the performance of the applications running
together.

To avoid contribution to the performance degradation from the shared LLC contention,
we choose applications that have streaming behavior. This means that data transferred from
main memory to LLC are further descending to the private caches without gaining any benefit
from their preservation on the LLC. Every second another amount of data arrives on the LLC,
evicting the previously brought, and moves towards to the processor with the same rate. This
direct flow of data characterizes these applications as streaming and do not take advantage of
the LLC existence. Such applications when running concurrently, they do not cause
interference to each other because of the shared LLC. This happens because each application
have a flow of data which passes through the LLC and is directed deeper to the processors,
evicting each other’s data, but without causing extra LLC misses, as they wouldn't refer to them
in future time. They only refer to the flow that comes every second. Usually this kind of
applications is memory intensive, meaning that they access the main memory at long and
frequent time periods.

The Figure 2.3-1 shows how bus bandwidth contention affects the performance of the
co-executed applications. The bars describing the impact on IPC, memory bandwidth and
misses per instruction are all normalized to the case where these applications are running alone.
Examining the results, we come to the following conclusions. On the one hand, our previous
statement that working with streaming applications sharing the LLC we avoid the contention
coming from this source comes true. Misses per Instruction have remained unharmed. On the
other hand, all applications are subjected to lower memory bandwidth rate, causing a decrease
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on IPC (instructions per cycle) that follows the same reduction pattern. Time is increased
inversely proportional to the IPC reduction, as expected.
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Figure 2.3-1: Bandwidth and IPC distribution of 4 co-running streaming applications subjected to
bandwidth contention
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Figure 2.3-2: MPI behavior for the set of streaming application executed concurrently

The total sustainable bandwidth the memory controller can perform is Bgcryai-peax =
13.21 GB/s, as measured form the co-execution of the streaming applications. The sum of the
sustainable bandwidth of each application, when running alone, is Byy¢qi-peax = 18.5 GB/s.

The percentage of bandwidth, that the dram controller satisfies, is Bactuat-peak _ () 7319, This

total-peak
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means that when running together, the memory controller contention cause each application to
reach a 73.19% proportion of their initial bandwidth, on the ideal case where the reduction was
uniformly distributed. As we see the ratio of bandwidth of each application is with a small
deviation around this price, that is the memory controller shares its actual peak bandwidth quite
fairly between the conflicted applications. The bars of IPC are decreased proportionally to
those of bandwidth by a factor of 0.914 (~1) on average. This behavior shows how important
the bandwidth is for the streaming applications. As mentioned above, the flow of data,
translated to bandwidth here, determines the performance of such applications, so a decrease on
bandwidth leads to same decrease on IPC.

2.4 NUMA Architecture

In the last years, processor manufacturers have adopted a new way for accessing the
main memory system, the NUMA (Non Uniform Memory Access) architecture. Traditionally,
processors access data through an external bi-directional data bus called front-side bus (FSB).
This bus is connected to the memory controller hub that receives requests from all the
processors, directed to the main memory. This uniform memory access (UMA) through a
common FSB and memory controller is replaced by a new system architecture (Intel Quick
Path for example) that integrates a memory controller into each microprocessor, dedicates
specific areas of memory to each processor, and connects processors and other components
with a new high-speed interconnect (Figure 2.4.1).

The main benefit, that NUMA architectures offer, is that the contention for bus and its
bandwidth present a significant reduction. Processors do not anymore need to compete with
each other to reach memory system, as they have their own dedicated memory banks accessed
through an integrated memory controller. In case, that one processor needs to access other
processor's memory, this happens through a high speed interconnect that links all the
processors.

Despite the fact that, now processors are integrated into packages and access specific
memory areas, through separate memory channels and memory controllers, avoiding the
contention of a unique shared bus, contention cannot be eliminated completely. Even
processors of the same package would suffer from memory controller and bus contention, as
these components are still shared among them. We showed previously that contention does
exist, when co-running four applications in a Nehalem quad core package (NUMA
architecture).
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Figure 2.4-1: Nehalem, NUMA architecture

2.5 Motivation

On the arrival of the CMP architecture, most of hardware and software techniques
implemented on single-core or SMP processors are adopted unmodified. Cache and memory
controller scheduling policies, optimized for isolated processors, do not satisfy the needs of
threads that run concurrently on neighboring cores and share resources. LRU cache
replacement policy treats the misses from multiple threads uniformly, allocating space based on
their rate demand, causing destructive interference. Memory scheduling policies, designed to
maximize overall data throughput, prioritize requests of threads with specific memory patterns
over others. Hardware, in general, do not support contention or thread aware mechanisms, in
order to mitigate or avoid destructive interference that causes severe performance degradation.

Not only hardware but also software implementations proposed for utilization of
hardware sources on single-core or SMP architectures are destined for CMP platforms. State-
of-the-art schedulers, running without modifications on CMPs, create the illusion that the
processors, they handle, are isolated and independent units, without taking into account the
sharing components and their occurring contention. This flaw causes a serious impact on the
optimization of the scheduler objectives.

2.5.1 Low progress

Before inspecting deeper how the contention agnostic treatment influences the
characteristics of a scheduler, we describe what alone execution means for an application.
Alone execution time of an application is very useful for comparing with the time needed to
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finish when contending with others. It is measured when application is running completely
alone, with the neighboring cores remaining idle, and the shared sources are exclusively
occupied only by this application.

A scheduling algorithm should provide with maximum utilization of CPU time, ensuring
that all the threads it manages are assigned frequently on the different cores and make progress.
But when threads competing for the shared resources, are placed together without regulation,
their progress is subjected to the consequences of contention.

For the co-running group below, every application make a fraction of the ideal progress
achieved if no contention occurs (same as running alone). For example, if an application on
every time slice the scheduler assigns, achieves the 70 % of the IPC measured in the alone
execution, the actual progress made on this time slice is equal to the 70 % of the ideal progress,
where no contention exists.

So the actual time of an application running on contention is given by the form:

IPCco—running
IPCalone

timegcruar = ) timeco—running (form 2.5.1)

and is interpreted as the time passed if this application was running alone. When the application
Is finished, the actual time is the same as the alone execution time and is equal to the measured
co-execution time multiplied by the factor that implies how much progress was done (form
2.5.1). The slowdown imposed on this application is inversely proportional to the IPC ratio:

timeco—execution (Zil) IPCalone—exeCution (form 2.5 2)

Slowdown = —
IMEgione—execution IPCco—execution
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Figure 2.5-1: Relationship between IPC and slowdown
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As showed in the figure the relation between IPC and Slowdown (form 2.5.2) is satisfied

IPCalone—execution _

= = 4.808
IPCco—execution 0.208

Slowdowny,cpgse =

1[} T T T T

08 -

04 |-

0.2 --

normalized times terminated

0.0

atax_| cholesky | stream_s pchase_s
benchmarks

Figure 2.5-2: Normalized times terminated over standalone execution
of 4 applications running on a time window of 5 minutes

This slowdown has a further negative impact on the objective of the scheduler to
maximize overall throughput, as in a 5 minute time period (Figure 2.5-2) the application
suffering from contention is finished far fewer times than expected if running alone (x 0.208).
Furthermore the ensuring that threads do make adequate progress is no longer reliable, leading
in cases of great suffering to thread starvation.

2.5.2 Poor fairness

When applications suffer from contention, their performance is not affected uniformly.
This means that they experience contention in variable ways. Some of them may present no
suffering; others may present average or severe degradation. On the example given, it is made
clear that the contention resulted in ununiformed IPC reduction for the four co-executed
applications in a 5 minute time period, giving unfair advantages to some at the expense of
others (Figure 2.5-2). This means, that the main principal of the scheduler to share the
resources equally among threads is trespassed.

The poor fairness enforcement, lead to another major problem. Thread priority policies
are unable to be adapted by the scheduler and if so, they lead to undesirable results. Giving
higher priority to an application, results in greater actual progress for this one. But when treated
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unfairly this progress is impeded by the progress of lower priority threads, taking for example
pchase as a high priority application and stream a lower one, leading to priority inversion.

2.5.3 Co-runner Dependent Performance
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Figure 2.5-3: Variable performance of pchase_s application between different co-running groups

The level of contention generated depends on the co-running threads that compete for
the shared resources. As illustrated on the above figure, the application pchase_s is subjected to
high level of contention, resulting to high IPC reduction. When placing together the same
application with 3 different co-runners, we see an important increase on the IPC as a result of
lower occurring contention (Figure).

This means that the performance of an application is highly variable between different
co-running sets. This unstable and co-runner dependent behavior of applications leads to
unpredictable and workload-dependent overall performance of a CMP platform. Consequently,
Quality of Service (Qo0S) guarantees cannot be provided to threads and Service Level
Agreements (SLAS) are very difficult to enforce.
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Chapter 3
Proposed Scheduling Policies

Shared resources of a CMP system are managed exclusively in hardware, meaning that
they treat the requests from different threads running simultaneously on neighboring cores as
they were requests from one single source. In addition, state-of-the-art process scheduling
algorithms enforced initially on single-core or SMT architectures and later implemented
without modifications on CMP platforms, consider the cores as isolated units and do not take
into account the contention occurring when different threads compete for the shared resources.
This thread and contention unaware behavior leads to poor system throughput, unfairness and
unpredictable/workload dependent performance.

In this chapter we describe 3 scheduling policies, aiming to mitigate the unpredictable
and unstable performance the state-of-the-art schedulers, like CFS, dictate. Driven by the unfair
treatment these thread-unaware schedulers enforce, we focus on implementation of techniques
that attempt to share the resources evenly among the application of the system. On the first
hand, we propose a scheduler that picks combinations of applications that do not interfere with
each other, in order to provide fairness via contention avoidance. On the second approach, we
try to increase running time of heavily suffering applications at the expense of the well-
performed applications, in order to increase their progress and overall equalize the workload
performance. Finally, we extend the second solution, building a scheduler that takes into
account the bad consequences of some pairs of applications, trying to avoid a part of contention
and manage the rest of it, providing in that way a more efficient solution concerning
throughput.

3.1 First approach (Avoiding contention)

A promising solution for addressing the contention of shared resources and its
destructive effects on the co-running applications is the contention-aware thread-level
scheduling. As mentioned before, performance of threads is subjected to the level of contention
generated when running together. Different combinations of threads compete for shared
resources to different extents and as such suffer different levels of performance loss. Some
combinations compete less aggressive than others. In this approach, we attempt to mitigate the
phenomenon of unfair distribution of the resources via contention avoidance. Our purpose is to
build a contention-aware thread scheduling policy which would determine which threads
should be placed together and which are placed far apart in such a way to minimize the effects
of resource contention. Thus applications would execute in a less contended environment,
experiencing higher performance and fairer resource sharing.

Mitigation of contention effects through thread-to-core mappings is a very attractive
solution, as the mechanism enforcement requires no changes to the hardware and minimal
changes to the operating system. Modern operating systems allow binding of threads to cores
from user space via system calls with no modification to the kernel.
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Taking into consideration the vast number of different thread-to-core mappings, it is
impossible to perform online all the execution combinations in order to decide which leads to
the best result. Contention-aware schedulers are composed in three stages. On the first stage
they observe the activity of programs and classify them based on a particular performance
metric. On the next level they predict how programs from different classes interfere with each
other when they run together. On the last stage, they are ready to enforce their decision-making
policy, choosing the thread combination which leads to the desired performance according to
the prediction model.

3.1.1 CMP architecture and thread placement

Before describing the building stages of our contention-aware scheduler, it is worth
mentioning the significance of the different CMP architectures on the thread placement
combinations. Most contention-aware schedulers proposed on research attempt to address the
problem of contention on multicore systems with components shared among a small set of
cores, usually two ( [12], [13], [14]) . Cores are placed into different sockets and each socket is
dedicated to a specific memory area managed by an integrated memory controller (NUMA).
Cores of the same socket share pairwise a Last Level Cache. Opposite to this kind of sharing,
modern architectures have all of their cores (4 or 8) sharing the same LLC in the socket (Figure
3.1-1).

CMP Architecture A CMP Architecture B CMP Architecture C

Socket A Socket B Socket A Socket A

= =
H

Core 0

Core 0 Core 1 Core 2 Core 3

Cerel Coe?2 Core 3 Core 0 Coel Core 2 Core 3

Figure 3.1-1: Structure of 3 different CMP architectures

Supposing we have a workload of 4 applications (A, B, C, D), we have to test all the
different combinations produced by the architectures, in order to find the appropriate thread-
to-core mapping that leads to the best possible performance. Although architectures A and B,
having different structure, they have the same subset of cores sharing a component and thus
generate the same combinations. The order of placement of threads on the pair cores does not
matter, as (A to core 0, B to core 1) results in the same execution with (B to core 0, A to core
1). In addition, the pair of threads can be placed to any pair of cores resulting in the same
execution. The mapping (C to core 0, D to corel, A to core2, B to core3) is redundant as it is
the same with this mapping (A to core0, B to corel, C to core2, D to core3). (If we utilize two
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sockets including many pairs of cores sharing a cache, this mapping has to be taken into
account, as the contention for DRAM controller and bus is different. For example, having two
sockets with two LLC each and 2 cores on each cache, the (AB CD) (EF GH) and (AB EF)
(CD GH) could cause different behavior on the execution of this workload). With these
restrictions the different mappings of these 4 applications to cores on Architectures A and B are
3. On the other hand, on Architecture C there is only one unique mapping of this workload, as
all cores share the same component and different placement would lead to the same execution.

In general all the possible unique mappings of n threads (same to the set of cores) to
cores that per k share a cache (in the same socket) is given by the following form:

i<n/k .
~ " Cn—k-i,k) n
Map(n, k) = [lizo ( ) —>1,C(n, k) = Binomial Coefficient (form 3.1.1)

@

Taking another example of 8 applications on 8-core architectures that per 2, per 4 and all
cores share a LLC in a socket, the number of different combinations for executing this
workload is respectively Map(8,2) = 105, Map(8,4) = 35, Map(8,8) = 1. It is obvious, that
increasing the number of cores sharing a component, the search space for finding the best co-
running combination is significantly reduced. With multiple shared LLCs we have the ability to
multiplex the applications in space (space-sharing), deciding how they should be distributed in
a time interval: which threads will be scheduled to neighboring cores and which wil be
scheduled to distant cores. That is the reason why we have a high number of generated
combinations. On the other hand, the ability of space sharing the CPU is weakened, when
fewer LLCs are shared between cores, reaching zero space sharing for 1 LLC. This means that
threads causing high levels of contention can be placed apart only via time-sharing, executing
them to different time intervals, in order to avoid contention and bad performance. And with
workloads containing a normal number of contending threads, there is no way of avoiding
completely their co-execution only by time-sharing. Taking for example a workload of 8
applications half of them contending more aggressively when co-running (A, B, C, D, E, F, G,
H). We execute this workload to Architecture B and C. Architecture B offers the opportunity
for time and space sharing, opposite to Architecture C which offers only time sharing. A
possible co-execution on these different architectures could be the following:

Time slice 1 | Time slice 2
Architecture B | (AB) (CD) | (EF) (GH)
Architecture C (ABCD) (EFGH)

Table 3.1-1: Pairing of applications between different architectures

We come to the conclusion that Architecture B makes it possible to avoid bad co-
runners, comparing to Architecture C which is forced to place them together and is obliged to
generate combination of high levels of contention.

Summarizing, working with CMP architectures that all of their cores are sharing the
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same component (LLC or DRAM controller), the choices we have for finding the best thread-
to-core mapping are severely limited. Without space-sharing, we are obliged to co-schedule
threads in a highly contended environment by avoiding contention only via time-sharing.
Executing threads on such conditions, the potential for further improvement is extremely
restricted. We evaluate our scheduling policies on a CMP platform that shares a LLC on 4 cores
in each package, desiring to inspect how fairness can be enforced to architectures that provide
with restricted thread placement options.

3.1.2 Experimental CMP Platform

In this paper, we are testing our scheduling techniques on an Intel® Xeon® Processor
X5560 Nehalem architecture, consisted of two processor chips (sockets), each of them
including several functional parts within a single silicon die. A Nehalem chip consists of the
following components [15]. The core domain:

e Four identical compute cores of 2.8 GHz processor base frequency,

e L2 Cache: Each core has a private, non-inclusive, 256KiB, 8-way set associative unified
level 2 (L2) cache,

e L1 Cache: At level 1 each core has separate instruction and data caches. They are
private, non-inclusive and unified. Each of them has a size of 32 KiB. The instruction
and data caches have 4-way and 8-way set associativity organization, respectively.

The un-core domain:

e L3 Cache: A unified, inclusive, 16-way set associative, 8 MiB cache shared by all four
cores of the chip

e UIU: Un-Core Interface Unit (switch connecting the 4 cores to the 4 L3 cache segments,

the IMC and QPI ports),

L3: level-3 cache controller and data block memory;,

IMC: 1 integrated memory controller with 3 DDR3 memory channels,

QPI: 2 Quick-Path Interconnect ports,

Auxiliary circuitry for cache-coherence, power control, system management and
performance monitoring logic (both core and un-core domain).

The L3 is inclusive (unlike L1 and L2), meaning that a cache line that exists in either L1
data or instruction, or the L2 unified caches, also exists in L3. The L3 is designed to use the
inclusive nature to minimize “snoop” traffic between processor cores and processor sockets.

A Nehalem chip is divided into two broad domains, namely, the “core” and the “un-
core”. Components in the core domain operate with the same clock frequency as that of the
actual computation core. The un-core domain operates under a different clock frequency. This
modular organization reflects one of Nehalem’s objectives of being able to consistently
implement chips with different levels of computation abilities and power consumption profiles.
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Figure 3.1-2: Nehalem architecture details

Each chip is dedicated to specific memory areas, accessible via the IMC, which supports
three 8-byte channels of DDR3 memory operating at up to 1.333 GT/s. Maximum theoretical
bandwidth between DRAM and the IMC in the uncore domain of the chip is 31.992 GB/s.

Communication between the two chips is achieved via the QPI link with available
bandwidth of 12.8 GB/s. Memory latency for a remote memory access is higher, since the
memory request and response must go through this QPI link. The latency to access the local
memory is, approximately, 65 nanoseconds. The latency to access the remote memory is,
approximately, 105 nanoseconds.

A Nehalem chip supports:

e Hardware Prefetching Logic, for requesting data which threads will use in the near
future.

e “Simultaneous Multi-Threading” (SMT). SMT is an implementation which allows more
than one hardware threads (two threads for Nehalem) to execute simultaneously within
each core,

e Power saving features (“Turbo Boost Technology”) for dynamically turning off unused
processor cores and increasing the clock speed of the cores in use (when thermal and
electrical requirements are still met.
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Our experimental setup includes one of the Nehalem chips with the four cores sharing a
LLC, aiming to test our scheduling techniques on highly contended condition. The main
memory shared between the two chips is a 12 GB DDR3 1333 MHz’s The hardware
prefetching logic is enabled, whereas the SMT and TBT features are disabled. The platform
runs Ubuntu 12.04.2 LTS.

3.1.3 The Classification Method

A contention-aware scheduler is responsible for determining, given a workload, on
which time slice the applications should run (time-sharing) and which cores they should occupy
at this time interval (space-sharing). In our case space-sharing is not a possible option. Even
with time-sharing only, the different possible schedules of a 12-applications workload executed
on our platform are 5.775 (form 3.1.1). This vast number of combinations makes dynamic trial
and error exploration infeasible. As such, it becomes necessary for a contention-aware
scheduler to be able to predict the performance of different mappings without actually trying
them.

In order to establish a prediction model, firstly we have to record the behavior (which
resource they utilize and at what extent) of the applications when executing alone. Applications
with common characteristics can be grouped together forming a class. Following a
classification scheme, applications can be divided into different classes, according to their
characteristics. In this paper we categorize applications following the classification method
proposed by Haritatos et al [1]. Necessary information for the programs’ performance is
acquired via the performance monitoring facilities available on the Nehalem processor. In the
next paragraph, we briefly describe the performance monitoring, before presenting the
classification method.

The step after the classification of applications to different classes is to examine how
they interact with each other. Testing all the different combinations, we determine how
applications of a class behave when executing with those of another class, the level of
occurring contention and at what extent each class is impacted by this contention. Now that we
know how applications of different classes contend with each other and what influence this
contention has on their performance, it is possible for a prediction model to be adopted.

Following a model that can predict the performance of the different mappings, the

scheduler is able to decide which applications should co-execute every time interval for
achieving the desired objective.
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Performance Monitoring

As explained previously, in order to classify the applications to different classes, we
need to acquire information about their profile. In addition, it is very useful to collect
performance data from their co-execution with applications of other classes, in order to
understand how contention changes their behavior. Modern processors, like the one described
before, provides hardware performance counters on both core and un-core domain for
recording the activity of the cores and the memory system [16].

Once deciding which data we want to collect, selecting the proper events, we initialize
the corresponding counters. Then, we start counting at the moment that the desired application
is running for a specific time interval. After this interval, we read the value stored in the
counters. Finally the requested data are available and with the proper interpretation we can use
them to reach to great conclusions.

Counters, that provide us with useful information for classifying the applications and
verifying the proposed prediction model, are listed on the table below accompanied with
necessary information used for their initialization.

Name Number | Mask Type Description
EVENT_UNHLT _CORE_CYCLES 0x3C 0x00 PMC Clock Cycles of Unhalted Core
EVENT_INSTR_RETIRED 0xCO0 0x00 PMC Instructions Retired
EVENT_LLC_MISSES O0x2E 0x41 PMC Last Level Cache Misses
EVENT _L1D REPL 0x51 0x01 PMC Cachelines allocated in the L1
EVENT_L1D_M_EVICT ox51 | ox04 | pmcio | Modified Cac{fé'[is evicted from
EVENT L2 LINES IN OxF1 0x07 PMC Cachelines allocated in the L2
EVENT_L2_LINES OUT_DEMAND Modified Cachelines evicted from
_DIRTY OxF2 0x02 PMC the L2
EVENT _UNC_L3 LINES IN O0x0A 0xOF [ UNCORE Cachelines allocated in L3
EVENT_UNC_L3_LINES OUT ox0B | oxtF | uncorg | Medified Cac?ﬁ;”ﬂf evicted from

Table 3.1-2: Performance monitoring events

Application Classes

Our classification method separates applications into 4 different categories [1]. The
criteria chosen for their characterization are based on which of the resources they utilize and at
what extent. Using this model, we our able to accurately locate which part of the shared
resources, both memory bus bandwidth (memory link) and LLC, is stressed the most and thus
is prone to contention. Our approach uses simple metrics that can be easily and quickly
collected at runtime from the existing monitoring facilities of modern processors. Concluding,
this classification scheme provides us with the possibility of adopting a highly reliable
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prediction model, while the classes represent in a very clear way the behavior of applications
(specific resource utilization) and how it is affected when interfering with each other.
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Figure 3.1-3: Activity in application classes

L Class

Applications with streaming nature tend to have a stable data flow throughout the entire
memory hierarchy. They fetch data from the main memory directly to cores at a high rate,
contaminating the memory bus (memory link), all the caches and their connections (cache
links). Responsible for this behavior are their memory accesses, which occur to data sets that
largely exceed the size of LLC. They bring data to LLC but the reference on those data is either
not occurring at all or is happening with large reuse distances. So, data are descending down to
the cores at the same rate they are brought to LLC, resulting in zero benefit from the existence
of this shared resource. But more importantly, the continuing pollution of the LLC with their
data cause great destructive interference to co-running threads that benefit from the reservation
of their data in this shared resource. Providing that the determining factor for their performance
is the memory bandwidth utilization, contention to this shared resource can cause them severe
degradation.

LC Class

On this class belong applications with modest pressure on the memory link and modest
to low activity on the shared LLC. They present common characteristics with the L class
imitating their streaming nature, as they fetch data from the main memory at a satisfying rate,
but the flow of data is not the same on the rest path. They take advantage of their reservation in
the LLC, reusing them for a while before bringing the next group of data. This kind of
applications cause contention to the memory bandwidth and the LLC, affecting negatively the
applications with important activity on this shared resources. As long as they take advantage
from both memory bandwidth and LLC utilization, their performance gets negatively affected
by applications that contaminate these shared resources.
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C Class

On this class belong applications with high activity on the shared LLC. They bring data
to cache at a really low rate and perform heavy reuse on the cached data. This class includes
applications with varying characteristics, such as those with data sets not exceeding the size of
the LLC or with memory access patterns optimized for taking advantage of the LLC and
latency-bound applications that make irregular data accesses and benefit a lot from LLC hits.

N CLASS

This class consists of applications that take advantage exclusively of the lower parts of
the memory hierarchy, such as private caches and cores. Applications, which perform heavy
computations, have working sets that are small enough to fit the private (L1 or L2) caches or
have optimized memory access patterns that can be serviced by the private caches, do not
extend their activity further on the shared resources. This means that they do not pollute the
LLC or the memory bus with their data, causing destructive interference to threads running on
neighboring cores. Except that, their performance is not affected by the contention caused by
their co-runners. Concluding, applications, that neither suffer nor cause suffering from/to
others, form the N class. Figure 1.6-3 indicates the activity spot of each class.

Classification scheme

Once the application classes are defined, we need to adopt a method to perform
classification using runtime statistics. The idea is to inspect the data path from main memory to
cores [1]. We are focused on the stream flowing towards the cores, recording the occurring
activity on memory and cache links. Thus, for each application it is necessary to measure the
flow of data from main memory to LLC, from LLC to private cache and between private
caches as depicted in figure. (Bin;, incoming Bandwidth to i level of memory hierarchy,
0 <i <n,n=lastlevel). Now that we know the utilization of the links across the entire
path, we have to specify on which resource the pressure is high. The ratio CR; = % is a
good indicator for the pressure put on a resource, as it follows the simple rationale. If data flow
out of the source with a much higher rate than they flow in, we can safely assume that high

activity occurs on this resource, as it is heavily reused.

The information required for this metrics can be easily collected at runtime by the
performance monitoring facilities of modern processors. Once assigning the application on the
core, we choose the appropriate counters and start monitoring, as described before. In our case,
for the bandwidth computation the events that count the cache lines allocated to each cache
should be activated. We do not take into account the number of modified (dirty) cache lines
evicted from the cache, as long as they overestimate the incoming bandwidth. Events counting
allocated lines in a cache also include data transfers due to a write allocate load on a store miss
in that cache. For our platform the bandwidth between the different levels of the memory
hierarchy is computed by the following forms
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Figure 3.1-4: Inspected data flow in the memory hierarchy

The memory hierarchy of our platform consists of 3 cache levels, two private and one
shared. So the Bins, Bin,, Bin, refers to memory — LLC , LLC—L2 , L2—L1 bandwidth
respectively. The ratio CR;and CR,corresponds to the LLC and L2 reuse. The block size is 64 B
and the measurement unit of bandwidth is [MB/s].

) (EVENT UNC _L3_LINES_IN) - 64 - 10~° Bin,
Bing = , , CR; = —
time Bin,
) (EVENT L2 _LINES_ IN) - 64 - 107 Bin,
Bin, = , ) CR; = —;
time Bin,
) (EVENT L1D_REPL) - 64 -107°
Bin, =

time

Now that we acquired all the appropriate metrics we can perform our classification.
High bandwidth utilization across all links and zero cache reuse means that the application put
high pressure on the links only, experiencing streaming behavior and can be classified as L.
Other with satisfying activity on the memory — L3 link and higher activity on the L3 — L2
link (CR; > 1) belong to LC class. Applications with low memory bandwidth activity and
significant data flow somewhere in the LLC — core part of the data path reuse heavily either
the LLC or the private caches. Locating the reuse location we can classify as C and N
respectively.

In case that low data flow is measured throughout the entire data path, we have
identified three application patterns that may exhibit this picture [1]: a) applications that
heavily reuse data on the L1 cache (high activity on the gray arrow of Figure 1.6-4), b)
applications that perform computations within the core with minimal data accesses, and c)
memory-latency bound applications that suffer from high LLC miss penalties (and also greatly
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benefit from LLC hits). Although we may utilize various combined metrics involving cache hit
ratios to illuminate this further, we have observed that inspecting the application’s
mem uops/all uops ratio and IPC suffices to distinguish a) and b) cases, which are N
applications, from the c) case, which includes C applications. High mem uops/all uops and
low IPC is a quite safe indicator for memory-latency bound applications (at the absence of
significant data flow in the path).

high
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Figure 3.1-5: Decision tree for application classification

Our classification method implements the decision tree shown in Figure 3.1-5 [1]. In
each execution platform we need to set five thresholds, namely a, B, v, 6 and ¢ that guide the
classification process. In this platform we set = 0.12 X B4 » B =0.045 X B4 » Vv =
0.068 X Bpgx » 6 = 0.25 , € = 0.25 X IPCyq, - The maximum memory link bandwidth as
measured by the stream benchmark is B,,,,,, = 13.20 GB/sec and IPC,,,,,, = 4.

C class analysis

An application's data set determines its behavior. Their characteristics do not remain
unharmed, when they are executed with different sizes of their working set. As depicted on the
table below, the same benchmark [3] could belong to any class of our scheme, depending on its
size.

With a data set half of the size of our platform's L2 private cache (256 KB), the activity
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of the chase benchmark is restricted down to the core domain. The reference is occurring
mainly on the L2 (CR2 >> CR3) and the application is classified as N. Increasing the size to
250 KB we notice that pressure on the L2 cease (CR2 = ~ 1) and start occurring on the LLC
(high CR3), while the data set barely fits to the L2. From now on the application is satisfied by
the LLC and is classified as C. Increasing the size more and more, we observe that CR3
decreases dramatically and the reference starts occurring on the main memory too (higher
bandwidth and MPI). At size of 7 MB we reach the point where the data set barely fits the LLC
of 8 MB size and the pressure on memory link becomes heavier, changing the behavior of this
application to LC. From now on, the application will experience intense activity on memory
link and zero activity on LLC and is on the edge of changing behavior to L.

Data Set (KB) IPC MPI B3 (MB/s) CR3 CR2 Class
125 0.3167 | 0.00000061 0.464 49.114 880.992 N
250 0.1420 | 0.00000079 0.676 8,384.399 1.477
500 0.1139 | 0.00000109 0.474 14,144.102 | 1.003

1,000 0.1141 | 0.00000092 0.747 9,001.215 1.000
2,000 0.1144 | 0.00000164 0.813 8,260.022 1.009 Cc
3,000 0.1126 | 0.00000388 1.490 4,485.029 1.002
4,000 0.1119 | 0.00005670 3.895 1,709.589 1.007
5,000 0.0966 | 0.01351051 | 251.686 22.795 1.001
6,000 0.0819 | 0.03272887 | 491.220 9.920 1.000
7,000 0.0590 | 0.08496037 | 905.713 3.873 1.001
8,000 0.0418 | 0.16437671 | 1,238.942 1.979 1.000
9,000 0.0370 | 0.19934837 | 1,326.267 1.652 1.000
10,000 0.0329 | 0.23939016 | 1,419.495 1.353 1.000 LC
12,000 0.0292 | 0.28887063 | 1,515.268 1.129 1.000
14,000 0.0283 | 0.30526646 | 1,552.032 1.063 1.000
16,000 0.0282 | 0.31001331 | 1,581.033 1.026 1.000

Table 3.1-3: Classification of pchase across different data sets

However, not all applications change their behavior in the same way. Inspecting, for
example, the mvt benchmark, we observe that the transition from C to LC class is occurring at
a bigger data set compared to the pchase benchmark, as shown on the Figure 3.1-6 below.

Increasing the data set to a size bigger than the size of LLC, the mvt benchmark remains
to the C class. This means that its access pattern do not take advantage of the whole data set but
a part of it. While the data set exceeds the LLC, the access restricts to data that fit the LLC and
the reference on the main memory is occurring at a low rate. On the other hand, pchase
benchmark takes advantage of the whole data set. When it does not fit the LLC, reference on
the main memory becomes really intense.
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Figure 3.1-6: Behavior of pchase and mvt applications across different data sets

We come to the conclusion that applications imitating the behavior of pchase benchmark
require the majority of the available shared LLC capacity to perform well. When they get
restricted, meaning that they do not receive the space their data set implies, their misses present
a major increase and their performance is significantly degraded.

Based on this observation, we understand that, while the data set of these applications
(pchase) do not exceed the LLC size, it can be translated to working set, as it can be completely
served by the LLC. The same cannot be assumed for applications imitating the mvt behavior, as
their working set is a subset of their data (data set = 12 MB, working set < 8 MB).

Executing on a multi-core system, where 4 cores share an 8 MB LLC, 4 applications
with working set bigger than 2 MB, it is made clear that they cannot be served efficiently by
the LLC, as their total working set would exceed its size. On this case, interference in the LLC
would occur, leading to destructive effects on their performance. In general, on an N core
system, where the cores share an L MB size LLC, applications with working set bigger than
L/N MB are considered to interfere destructive with each other.

Taking the previous observation into consideration, we extend the classification scheme

proposed by Haritatos et al. [1], distinguishing further the C class into 2 subclasses, the SC and
BC.
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Figure 3.1-7: Activity of the C subclasses

SC Subclass

Applications operate on data with size occupying a small part of the shared LLC (< 2
MB). Such applications benefit from the available shared cache, performing heavy reuse, but
their performance does not degrade significantly when they do not receive the bulk of its space.
While their activity occurs on a restricted LLC area, interference on this resource generated by
other thrashing applications will cause them moderate damage.

BC Subclass

Applications with data occupying the biggest or a satisfying part of the LLC space (> 2
MB), also performing heavy reuse on the cached data. As they require the majority of the
available shared LLC capacity to perform well, they get severely degraded when high
contention level occurs on this resource. The only way to experience good performance is,
when running in isolation.

Working Set

@

Figure 3.1-8: C class distinction in the decision tree
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We modify the decision tree (Figure 3.1-8) to correspond to the C class distinction
described previously; adding to the C leaves the graph shown in the Figure 1.6-8. We define the
new threshold { = LLC_size/cores_nr which is equal to 2 MB for our platform (8 MB LLC
size and 4 cores).

Finally we have all the information required to perform our classification. Although we
have the ability to classify applications into these 4 different categories via simple metrics
collected by hardware performance counters at runtime, it is difficult to go deeper into the C
class and acquire information about size of data allocated in the LLC. This requires additional
hardware support [17] or complicated software techniques [18]. Inevitably, the only way to
distinguish applications of C class into the subclasses is by knowing beforehand their working
set. In our case, we inspect the behavior of benchmarks across different data set sizes. If they
imitate the pchase benchmark behavior, it is possible to extract information about their working
set, as explained previously. We compile those applications with data set greater than 3 MB and
smaller than 7 MB (equal to working set), in order to extract the BC applications. Applications
that imitate the mvt benchmark behavior are compiled with 2 MB data set (working set < 2
MB), in order to populate the SC class.

Summarizing, we chose to adopt the classification scheme described in the LCA paper
[1], in order to observe how applications of different categories interfere with each other and
enforce a scheduling policy to avoid interference and improve their performance. We inspected
the behavior of applications compiled with different data sets. Based on our observations, we
further extended the classification of C class into two different categories, the SC and BC,
according to the working set. While the classification into the 4 categories can be accomplished
at runtime via simple metrics, acquiring information from the performance counters, it is
impossible, following the procedure described previously, for the C applications to be deeper
distinguished into the two subclasses online. Acquiring information for the working set at
runtime requires complicated software techniques, something that is out of the scope of this
paper. However, the scheduling policy developed for those subclasses can be easily applied
with whichever method that classifies online the C applications deeper.

Benchmark Selection

The benchmarks populating our classes are selected mostly from polybench suite. We
use single threaded applications with single execution phases and low 1/O operations. We
compile them with large data sets (far exceeding the LLC) for generating L and LC classes and
with small data sets fitting the L2 for generating the N class. We inspect the behavior of each
benchmark across different data sets and compile those that imitate the pchase benchmark, with
data set of size between 3 and 7 MB creating the BC class. Finally the SC class is populated by
benchmarks compiled with 2 MB data set.
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Name Source | DataSet (MB) | Bjpz=1.c(MB/s) CR3 CR2 IPC | Class
cholesky polybench 128 3112.835 1.009 1.355 0.838
jacobi-1d polybench 48 3932.853 1.013 1.002 0.558

2mm polybench 66 2276.183 2.430 1.790 0.256

fw polybench 64 2292.729 1.011 1.043 0.913
stream [2] 366 6618.432 0.994 1.003 0.721 L

atax polybench 72 4401.339 1.029 1.759 0.380

syr2k polybench 34 2997.791 1.022 1.184 0.881

trmm polybench 144 2418.043 1.002 1.459 0.859
jacobi-2d polybench 12 1124.768 1.112 1.071 1.057

bt NAS 15 1450.758 2.081 1.112 0.897
gemver polybench 125 1173.694 4.299 1.315 0.402 LC
mvt polybench 125 996.640 5.597 1.171 0.279

pchase [3] 4 3.895 1,709.589 1.007 0.111

pchase [3] 5 251.686 22.795 1.001 0.096

pchase [3] 6 491.220 9.920 1.000 0.081

stream [2] 4 9.87 544.98 1.000 0.960

stream [2] 5 99.691 51.732 1.000 0.921 BC
jacobi-1d polybench 5 88.765 24.154 1.000 1.101
jacobi-1d polybench 6 328.559 5.937 1.000 1.001
jacobi-2d polybench 5 113.177 16.152 1.012 1.544
jacobi-2d polybench 2 0.807 2378.055 1.000 1.621
jacobi-1d polybench 2 0.974 2284.703 1.000 1.145

pchase [3] 2 0.246 27344.115 1.000 0.114

correlation | polybench 2 0.706 1275.893 15.874 1.334
covariance | polybench 2 0.714 1255.327 15.960 1.332 SC

ludemp polybench 2 0.763 1869.429 1.330 1.512

symm polybench 2 0.820 1815.967 8.979 1.355

stream [2] 2 0.478 11280.28 1 964

syrk polybench 0.064 0.632 0.791 304.735 | 2.392

doitgen polybench 0.064 0.681 0.493 346.346 | 2.311

trisolv polybench 0.064 0.609 0.762 2021.165 | 0.813

3mm polybench 0.064 0.760 1.983 72.710 2.250 N
gesummyv polybench 0.064 0.656 1.183 1300.079 | 1.160

bicg polybench 0.064 0.670 2.194 504.134 | 1.180

Table 3.1-4: Classification of benchmarks selected for the population of our workloads
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3.1.4 The Prediction Model

Another crucial building block of a contention-aware scheduler is the interference
prediction model. Having characterized the applications into different categories, following a
classification scheme, it is important to establish a model that accurately predicts how their
performance degrades as they share resources. Knowing beforehand the co-execution effects
between applications of different classes, it is feasible for a scheduler to find a thread
placement policy without performing trials of the sheer number of combinations generated by
the applications of each workload.

Prediction and Evaluation of inter-class interference

For each category of our classification scheme we describe how performance of
applications is expected to be affected when co-executing with applications of other classes. In
order to validate our prediction model, for the selected benchmarks populating our classes, we
generate all the possible pairs and perform their co-execution. We collect the slowdown
measurements for applications of each class and extract their average.

N Class Suffering

Performance of applications belonging to this class is not affected by co-runners of other
classes. While their activity is restricted to the core domain of the CMP, there is no interference
with applications experiencing intense activity on the shared resources.

L Class Suffering

Applications of this class consume a high percentage of the memory bandwidth. They
get negatively affected only by applications of the same class that are capable of causing
destructive interference on the memory link. When L applications run simultaneously and the
sum of their bandwidth exceeds the maximum sustainable bandwidth (13.20 GB/s as measured
on the example below), they are forced to perform with a fraction of their initial bandwidth
(form 3.1.2). Usually the maximum bandwidth is divided unequally between the competing
applications. The slowdown imposed is inversely proportional to the ratio of the experienced
bandwidth.

i<s
1
BWiota = z a; - BW;, Slowdown,; = = (form 3.1.2)

i=1 L
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Figure 3.1-9: Slowdown imposed to L applications due to bandwidth contention

LC Class Suffering

For application with modest activity on the memory link we expect mild degradation by
the L applications only. While it is possible to experience LLC reuse, interference by BC
applications do not harm them. LC application trash the LLC quite often and have very low
LLC reuse factor in order to get negatively affected by the BC class. In fact the opposite is
happening, LC cause great pain to BC applications, as BC are greatly benefited by the
residence of their data in the LLC and LC sweeps them away.

SC Class Suffering

Applications with small data set resident on the LLC perform well with all the classes
except the L. Although L applications, with their heavily trashing nature, bring at a high rate
data evicting SC cache lines, we do not expect devastating slowdowns, as the small amount of
data being swept away can be easily and quickly retrieved. We observe heavy but not
destructive damage for the SC-L pair and no slowdown for the other pairs.

BC Class Suffering

While applications of this class require the bulk of the LLC space to perform well,
applications, that have LLC trashing behavior like L and LC, cause great contention and
devastating damage. Severe slowdowns are expected to occur when BC applications are co-
executed, as the sum of their data set exceeds the size of LLC and they force eviction of each
other’s cache lines. Only the SC and N co-runners have friendly behavior, showing light and
zero interference respectively.
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Summarizing we present the on the figure below the average slowdown each class suffer
when co-executing with the other classes. Along the x axis we show the slowdown imposed by
each class, and along the y axis we show the slowdown suffered. We observe that the co-
execution test validates our prediction model. L applications are affected only by themselves, as
they are subjected to bandwidth contention. LC applications present a slight slowdown by the L
applications only, as expected. SC applications suffer heavily by the L only, while they show
LLC trashing behavior. BC applications are the most vulnerable, suffering devastating damage
by L, LC and themselves. They perform the best with N and get a mild degradation with SC. N
applications neither suffer nor cause suffering by/to other classes.

L LC sC BC N
L 1.3014 11273 16744 10821
LC 1.1184 1.0714 1.1192 1.0549
s5C 1.0564 1.0436 1.0783 1.0384
BC 1.1438 1.0761 1.1608 1.0093
N 1.0189 1.0063 1.0008 1.0644 1.0017

Figure 3.1-10: Average application slowdown due to the co-execution at the class level
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3.1.5 The Decision - CMB (Cache and Memory Bandwidth contention-
aware) Scheduler

Taking into consideration the prediction model described previously, we try to enforce a
thread placement that avoids contention and maximizes throughput and fairness. Our primary
purpose is to keep separated L class from C class (SC, BC) applications and LC class from BC
class applications, as long as their co-execution would be catastrophic for the C class (x1.67
slowdown for the SC and x2.43 (L), x2.22 (LC) slowdown for the BC).

To achieve this separation, we form L and C gangs that will be executed on different
time quantum. Considering that we work on one package, we have the ability of time-sharing
only the CPU and the possible gangs generated are equal to progs,./ cores_nr. An L gang
consists of a mix of L, LC and N applications. A C gang can be either a SC gang or a BC gang.
A SC gang is filled by SC and N applications, whereas a BC gang has BC, SC and N
applications. (Figure 3.1-11)

HEEVEEE GEE

[ gang SC gang BC gang

Figure 3.1-11: Desired gangs for the CMB scheduler

However isolating L from C applications is not enough. Based on the interference
prediction model, the combination BC-BC causes heavy damage on the BC applications. In
addition, co-executing L applications with themselves can cause severe degradation, when their
total bandwidth far exceeds the maximum (BW;,;,; > 13.20 GB/s). Following the rules
imposed by the prediction model we form the gangs in such a way, that co-execution of BC
applications would be avoided and memory link pressure of the L gangs would be mitigated.

While the BC-BC pair experience higher slowdown than the L-L pair, the isolation of
BC applications gets higher priority than the mitigation of the memory bandwidth.

Taking into consideration the prioritized objectives to be satisfied, our thread placement
scheduling policy is described in the steps below:

1. We spread the BC applications across the gangs as much as possible in order to avoid
their co-execution. We compute the maximum number of BC gangs that could be
created, if interference with L applications only is avoided (totalgngs —

min (L_gangs)). If the number of BC applications exceeds the number of available
gangs, we are obliged to pair them together, tolerating the destructive behavior this
match causes. Now that we have isolated the BC applications, we fill their gangs firstly
with N and then with SC applications (BC-SC, BC-N pairs with mild and zero
interference respectively).

2. We pack together SC applications. If they cannot form whole gangs (minimum number)
by themselves, we group together LC applications firstly and then N applications (SC-
LC, SC-N pairs with zero interference).
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3. We sort the L applications with bandwidth criterion. We add on the list the remaining LC
and N applications. We fill the remaining gangs with the applications of the list.

If applications of the L, SC and BC class are completely missing or have been used in previous
steps, then the step forming the respective gangs is skipped. If there are no BC applications, we

skip step 1. If there are no SC applications, we skip step 2.

applications we skip steps 1 and 2.

If there are no BC and no SC

In the above steps we fill the gangs in the same way. We iterate over the number of
selected applications and with the determined order we pack them switching the gangs on each
iteration. The figure below shows this packing clearer.

BC1 gang

BCZ2 gang

Figure 3.1-12: Formation of gangs

Following this packing, the sorted L applications are distributed equally across the
gangs, as heavy L are not accumulated in one gang.

On the table below we summarize the steps we follow for the placement of our
applications and the objective each step accomplish.

Steps

Objectives

1) maximize BC gangs and spread BC
applications across them as much as possible

Avoid interference of BC with BC,LC and L
applications

2) pack together SC gangs to minimize SC gangs

Avoid interference of SC with L applications

3) sort L applications and share them on the
remaining L gangs

Balance the memory link utilization.
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The algorithm

Our scheduler consists of 5 functions, init(), gexp(), freeze(), schedule(), thaw(). Upon
selection of our scheduler the init() function is called. In this function we form the gangs. Then
we are ready to start the execution. After the end of the time quantum gexp() is called. Inside
this function freeze(), schedule() and thaw() are called. The gangs are scheduled in a round
robin way. On our implementation, each class is represented by a list. Applications on the input
are already classified. The classification can be easily carried out online, running each
application alone for one time quantum. This would result in a small deviation in the execution
time of N quantum comparing to Linux scheduler. In order to be as accurate as possible we
perform the classification offline. The gangs are, also, implemented as lists. In each step we
compute the number of gangs and fill them with the appropriate applications in a specific order.
For the L gangs, the corresponding applications should be sorted. The algorithm has O(n + L
log L) complexity, O(L log L) corresponds to the sorting of L applications and O(n) to the
forming of gangs in a greedy way. The flow chart and pseudocode below present the
implementation of our scheduling policy.

select scheduler
l quantum expired
init() i
| qexp()
g ' / | \
/ mpplications /| e Y
/ Input /—¥ SCBC,L,
LIy | LC'Nisis ‘freeze()\ ’schedule()\ ’thawO’
v Y v - i l .
Yy B X y D A Computef | stop—execution(gang) | start_execution(gang) ‘
<BC lst= [[D>—¥ESP(SC list= [ >—¥Es B List=[] > ’,‘:m;’;:rfg R, T —
A <& gangs | | select(gang - next) |
“Compute “Compute | Compute - create;gangs
‘ number of number of number of (remaining_gan
{ ﬂangs igangs \ L gangs | gs_m, [LC], ND)
T = L], d
create_gangs - | asort(L, esc)J
(BC_gangs nr create_gangs
i [§C], [N]_. (SC_gangs_nr,
[C)) [SC], [LC], (D) create_gangs |
| A | (L_gangs_nr,
[L], [LC], [ND

Figure 3.1-13: Flowchart of CMB scheduler
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void create_gangs (gangs_nr, apps_I)

{
list t gangs[gangs nr];
for_each_app_in_list(apps_I){
remove_from_top (apps_I);
add_to_tail (gangs[i++]);
}
}

void form_gangs(apps)

move_to_lists(apps);

gangs_nr = (apps_nr / cores_nr);
minimum_L = (L_nr/ cores_nr);
BC _gangs nr =0;

SC_gangs _nr =0;

if (BC_list '=])
{

maximum_BC = (gangs_nr — minimum_L);

BC_gangs_nr = ((BC_nr < maximum_BC) ? BC_nr : maximum_BC);

create_gangs(BC_gangs_nr, [BC, N, SC]);

}
if (SC_list'=1])
{
SC_gangs_nr = (SC_nr / cores_nr);
create_gangs(SC_gangs_nr, [SC, LC, N]);
}

remaining_gangs_nr = gangs_nr — (BC_gangs_nr + SC_gangs_nr);
if (L_list ==[]) create_gangs(remaining_gangs_nr, [LC, N]);

else
{
quicksort(L_list);
create_gangs(remaining_gangs_nr, [L, LC, N]);
}

Code 3.1-1: CMB algorihm
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3.2 Second Approach (Managing Contention)

3.2.1 Fairness over running time

The state-of-the-art schedulers implemented on CMPs have varying objectives they try
to optimize. One of those is the equal share of resources among the applications of their
workload. They multiplex the CPU in time and space with policies ensuring, that all the
available cores will be utilized and each process will take the same fraction of CPU time in a
time interval. CFS, the Linux scheduler, achieves fairness via assigning to the CPU processes
with the gravest need (higher waiting time). This means that all processes have been waiting
for the same period before they run on a core and, thus they have been treated fairly as far as
the time out of the CPU is concerned. This implies that fairness is enforced for their running
time too. Testing on our platform (4 cores) the Linux scheduler for a time period of 321
seconds with a workload of 12 random applications, we understand how the CPU time is
distributed across those applications (Figure 3.2-1) and how fairness is enforced.
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Figure 3.2-1: Running and waiting time of 12 applications scheduled with Linux

To keep the workload full in this executing interval, we respawn every process that
terminates. As expected, fairness is enforced, as long as waiting (2/3 of total time) and running
(1/3 of total time) time is distributed equally among processes.
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On each time slice, the Linux scheduler executes 4 applications on the neighboring
cores. As discussed earlier, contention occurs on the shared resources when threads run
simultaneously and have negative impact on their performance. Their IPC decreases

significantly (compared to alone execution) and the progress made is not reflected on their
running time. Their actual progress is given by the form 2.5.1 and is a fraction (mcl,:,c_w
alone

of their running time.

For each application we know its alone execution (measured offline) and how many
times it is finished when co-running. So the actual progress is simply deduced by the form:

actual_progress = times_finished X alone_execution (form 3.2.1)

120 7|3 running time B actual progress |

w0 L1 b
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time (s)
[=)]
o
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pl p2 p3 p4 p5 p6 p7 p8 p9 plo pll pl2
applications

Figure 3.2-2: Actual progress compared to running time

This figure clearly depicts, that despite the effort of the Linux scheduler to be fair, giving
equal running time to each process, fairness cannot be achieved. It cannot be assured that, on a
given time interval, applications would make equal progress, as long as IPC loss do not occur
uniformly among them.
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3.2.2 Fairness over progress

Applications are executed on groups of 4. Our workload consists of 3 groups. Each
group, also called gang, have the same 4 applications throughout the entire execution. At the
end of any time quantum, a group has just left the CPU and has zero waiting time, the other is
ready to be assigned to the CPU with waiting time = 2 x time quantum and the 3rd is the next
group to be executed with waiting time = 1 x time quantum. Thus the contention level for each
gang remains the same and the IPC loss is stable for all of the applications.

The IPC ratio is given by the form 2.5.1:

1P Cco —running _ timeactual
IPCalone tlmeco—running

ratio = (form 3.2.2)

Assuming that the IPC ratio remains the same for each application, independent of the
varying contention levels that may occur between different co-runners, we try to find how the
running time should change in order to share the progress fairly among them.

The simple equation system below will help us find the solution:
ratio; - x; = equalprogress 0<i<12 (form3.2.3)

<13
Z x; = totaliyme - cores,, = 1284 (form 3.2.4)
i=1

Equation 3.2.3 is derived from the form 3.2.2. We want to find the running time (unknown) for
each application, which multiplied by the corresponded IPC ratio would produce the equal
progress (unknown). Thus the sum of their running time should be equal to the total given time
that the workload is going to be executed multiplied by the number of cores. (form 3.2.4).

The results of the solution of this equation system are shown in the figures below. It
seems that in order to achieve actual fairness, we need to distribute unequal the CPU time
across the applications. We notice that applications suffering the most (low IPC ratio) need to
be scheduled more frequent, “stealing” running time from those that make sufficient progress.
This approach assure fairness over progress in a contention agnostic way. It depends only on
the IPC loss and aims to proper distribution of running time between processes performing with
varying IPC ratio. There is no requirement of specifying contention levels between different
combinations of applications and finding a scheduling policy that could place threads in such a
way that their IPC loss would distributed uniformly.
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Figure 3.2-4: Unfair running time over fair progress
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3.2.3 The FOP (Fairness over Progress) Scheduler

The Idea

Based on the observation made before, the core idea is to give the opportunity for
applications that experience significant IPC reduction to be scheduled more frequent at the
expense of those which perform with a high IPC ratio. Enforcing this policy, applications with
poor progress are boosted, while others with satisfying progress are declined in order to create
a balanced environment concerning the progress and not the running time.

The implementation
Metric

This approach does not require any preliminary work for finding the appropriate
classification method, inspecting how applications of different classes interact with each other
(prediction model) and deciding on a specific policy for their placement. The only thing needed
Is information about the IPC of each application when running alone and when running with
others. This simple metric can be easily taken on runtime via the performance monitoring our
CMP platform provides. The alone IPC can be acquired offline before the execution of the
workload or online sacrificing one time quantum per application. The co-running IPC is
gathered at the end of each time quantum where the application are exiting the running state
and entering the ready state.

1pe — _ EVENT INSTR RETIRED i
= EVENT UNHLT CORE CYCLES /O™ 3:2)

Waiting Queue

Now that we have collected all the information about the IPC loss after each time
quantum, we need to find a way to boost the applications depending on that loss. Inspired by
the way the Linux scheduler chooses the applications to be scheduled (trying always to
minimize those with the highest waiting time), we implement a waiting queue for the
applications of the workload. Before the start of each time quantum, this waiting queue gets
sorted in descending way with criterion the waiting time plus a penalty (2). The k applications
(k = number of cores) on the top of the queue with the higher criterion are selected for
execution. This penalty represents the IPC loss of the applications multiplied by a factor (3)
and is updated every time they are assigned on the CPU. Waiting time of applications
remaining out of the CPU is incremented one time quantum per schedule and is zeroed when
they are executed. Concluding for each application its criterion is initialized with the penalty
value every time it finishes its execution and is incremented one quantum per schedule that
keeps waiting out of the CPU.
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criterion = waiting time + penalty (form3.2.6)

penalty = factor * IPC loss (form 3.2.7)

IPCco—running

IPC_loss = (1 —
IPCalone

), IPC_loss € [0,1]  (form 3.2.8)

Adding this penalty on the waiting time, we give the opportunity to applications, that in
this specific time quantum on the CPU suffer with a significant IPC loss, to take a higher place
on the waiting queue, stealing the turn of others that have previously perform on an adequate
IPC ratio and have low penalty. Therefore, it is possible to be selected more frequently,
increasing their running time and progress accordingly (Figure 3.2-5). However, IPC loss only
is not sufficient for boosting the applications up to the queue. Its value ranges between 0 and 1
(4), practically less than 1 because it is difficult for an application to experience zero IPC ratio.
If, for example, the time quantum is defined to 1 second and only the IPC_loss was considered
as penalty, the criterion value of applications that just finished their execution would be less
than 1 (criterion = IPC_loss,IPC_loss < 1) and they would be placed at the end of the
gueue. On the next position of the queue are placed the applications that were executed right
before the currently finished and their criterion value is 1 second at least (criterion =
waiting_time + IPC_loss = one_time_quantum + IPC_loss = 1 + IPC_loss > 1). With
the group just left the CPU having criterion < 1 and the next lower group having criterion > 1,
no elevation upon the waiting queue could be possible and the scheduling would result in
fairness over running time as shown in the figure below (figure applications with bold are
assigned on the CPU for the current quantum).
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Figure 3.2-5: Elevation of App 2 higher in the waiting queue, using as criterion the waiting time plus
the penalty
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Figure 3.2-6: 12 second execution with factor = 1
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Figure 3.2-7: 12 second execution with factor = 4

For this reason, it is necessary to form the penalty as the weighted IPC loss (multiplied by a
factor). The factor should be selected in such a way that would give the proper boost to the
suffering applications, taking into consideration the time quantum and the number of gangs
(progs_nr/cores_nr), and create a fair over progress environment as shown in figure (figure).
The proper selection of this factor is explained further on the next paragraph.
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Factor Selection

We previously described the strategy followed to boost applications that suffer
significant IPC loss and give them the opportunity to occupy the resources more times. We
understand that IPC loss only is not an adequate characteristic to elevate properly the
applications up to the waiting queue. We need to establish a weighted IPC loss deciding the
factor, while we take into consideration 2 other parameters, the time quantum and the gangs
(progs_nr/cores_nr). In the above given example lowering the time quantum we have to lower
the factor because the increment of the criterion of the waiting applications will occur at a
slower pace and the applications suffering the most would occupy the CPU much more
frequently. This would create an unfair over progress environment, as the execution of
applications with high IPC ratio would be repeatedly impeded by those with low. Supposedly
now that in the above example we increase the number of gangs, by increasing the applications.
As a result, the waiting time of the group being on the top of the queue would be much more
higher, as long as it has to wait for more groups to be executed before its turn comes. Without
changing the factor , applications that need to occupy the CPU more frequent would be unable
to reach in a satisfying place in the queue (they have to pass more gangs). This means that their
progress cannot be boosted and fairness cannot be enforced.

Concluding, once the time quantum is defined, we try to find out how the factor and the
number of gangs should be related in order to achieve our objective, fairness over progress.
Having defined the time quantum to 1 second, the idea is to test our scheduling policy between
different combinations of gang numbers and factors. For each gang number we select the factor
that leads to the best performance. Our metric for understanding the best possible performance
Is the standard deviation of the actual progress the applications made in the total execution time
of the workload. When this metric converges to zero, the result would be similar to this one
shown in figure (figure) and fairness would be achieved. So for each gang number, we select
the factor that minimizes the standard deviation of progress, gather all the pairs of gang number
and factor and try to find a possible relation.

However, executing all these tests in a real environment is really time costly and
infeasible to be accomplished. For this reason we simulate our scheduling policy, creating a
simple program that take as input the number of applications with their varying IPC losses, the
number of cores and the execution time interval and produce as output the factor that results in
the minimum standard deviation. Factor values between 1 and progs_nr have been tested on the
given workload with iteration step 0.2. Execution time is divided to N quantum (N =
execution_time/time_quantum) and one time quantum is one iteration in the for-loop. For
any gang number the standard deviation follows the same behavior as a function of factor.
Initially it starts with a high value and decreases as the factor increase. It reaches a minimum
value and then increases as the factor continues to rise (Figure 3.2-8). This seems absolutely
logical, while , adapting a high factor value, applications with great IPC loss would remain
always on the top of the queue with criterion value that dominates the criterion value of those
with low IPC loss. As a result those applications should remain a long time out of the CPU to
increase their criterion (increasing waiting time) and reach the top in order to be executed. This
situation leads to thread starvation of those with low IPC loss.
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Figure 3.2-8: Minimum standard deviation for factor = 6 on a workload with 4 gangs

Finally, we take measurements for three different core numbers (2, 3, 4), in order to
extract the relationship between factor and gangs number. Results are shown in the figures

below.

Factor

Factor for a package with 2 cores

y=2(x—1)

4 5 6
Gangs

11

Figure 3.2-9: Relationship between factor and gangs number for a 2-core architecture
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Figure 3.2-10: Relationship between factor and gangs number for a 3-core architecture
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Figure 3.2-11:Relationship between factor and gangs number for a 4-core architecture

93



As it is made clear by the graphs, the factor is a function of gangs number (same
behavior across different cores_nr) and it can be simply selected by the form:

progs._nr

Factor =2 - (gangs nr— 1), gangs nr= form(3.2.9)

cores_nr
IPC loss

In a real execution environment, IPC loss of an application does not remain the same, as
it is possible to have different co-runners and generate varying contention levels. Although all
previous work was made with the assumption, that IPC loss remains stable, in order to simplify
our approach, this scheduling policy is not violated when enforced to real platforms, as long as
the idea to boost the suffering applications is based on the IPC loss occurring on every time
quantum.

The algorithm

In our case the waiting queue is implemented as a list and gets sorted with quicksort
algorithm. This means that the complexity for deciding which applications to run before each
time quantum is O(n log n). Queues on Linux scheduler are implemented as red-black trees and
all the actions are performed in O(log n) time complexity.

The factor is selected on the initialization of the scheduler, following the relationship we
extract on the previous paragraph. The IPC of each application on alone execution has been
measured beforehand and is given as a parameter. The co-running IPC (and IPC loss) is
measured after the execution of the gang on each quantum.

The algorithm is presented on the flow chart and pseudocode below.

select scheduler q uantum‘ expired
! v
init) | 9exp0

Y ifreezeO‘ scheduIeO‘ fthawo‘

factor = 2(gangs_nr -1) ¢
A/

perf_counters_init()
get_IPC_alone()
gsort(progs,criterion,desc)
gang=select(progs,cores_nr)

zero_criterion()

" stop_execution(gang) |
read_perf_counters(IPC)
compute_IPC_loss()
update_criterion()

start_execution(gang)
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void init (){
gangs_nr = progs_nr/cores_nr;
factor = 2 (gangs_nr — 1);
counters = perf_counters_init(selected_events);

for_each_application_in_list(progs_all_list){
application->criterion = 0;
application->IPC_alone = get_IPC_parameter();

¥

void schedule(){
quicksort(progs_all_list, criterion, DESCENDING);
while (number(progs_schedule_list) < cores_nr){
remove_from_top(progs_all_list);
add_to_tail(progs_schedule_list);

}

}

void thaw(){
for_each_application_in_list(progs_schedule_list){

start_running(application);

}
perf_counters_zero(counters);
perf_counters_start(counters);

}

void freeze(){
perf_counters_stop(counters);

for_each_application_in_list(progs_schedule_list){
stop_running(application);
value = perf_counters_read(counters);
IPC_co-running = get_IPC(value);
IPC_loss = (1 — IPC_co-running/application-

>|PC_alone);
application->waiting_time = 0;
application->penalty = factor * IPC_loss;
remove_from_top(progs_schedule_list);
add_to_tail(progs_all_list);
}

for_each_application_in_list(progs_all_list){
update_waiting_time(application);
application->criterion = waiting_time + penalty;




void quantum_expired(){

freeze();

if (current_tics < RUN_TICS){
schedule();
thaw();

Yelse{
stop_execution();
print_results();

Code 3.2-1: FOP scheduler algorithm
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3.3 Third Approach (Avoiding and Managing Contention)

3.3.1 The FOP-LCI (Fairness over Progress with L-C class Isolation)
Scheduler

The idea

In the first approach, we build a scheduler that aims to improve fairness and throughput
avoiding contention. In the second approach, we try to manage contention, assuring that all
threads would take equal share of the resources without caring at what extent the thread is
possible to affect or be affected by the co-runner. In this approach we adopt the idea of the
second scheduler, taking into consideration that some applications when co-executed cause
destructive interference. We extend its functionality, in order to avoid co-execution of L-C pair.
As the prediction model imposes, co-scheduling of L with C (SC, BC) applications could result
in heavy IPC losses for the C (x1.67 for SC, x2.43 for BC). So our idea is to avoid a part of the
contention (L-C) and manage the rest of it (BC-LC, BC-BC).

The Objective

Avoiding bad co-runners for the C applications means, that they have the opportunity to
run in a less contended environment and increase their actual progress. This way the total
throughput is expected to be enhanced. On the other hand, suffering applications would have
the change to be selected more frequent, as assured on the FOP scheduler. Concluding, our aim
is to provide fairness with improved throughput comparing to FOP.

[ H H H J
f /gang?‘f

RaRwEN

Figure 3.3-1: Selection of applications with the FOP scheduler

EEEBE

Figure 3.3-2: Selection of appllcatlons with the FOP-LCI scheduler
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The Implementation

We use the same waiting queue, sorted in the way described on the previous scheduler.
The difference now is that we do not schedule the N top applications of the queue (N =
cores_nr). The applications are classified following the scheme we defined in the CMB
scheduler. If an L (C) application is identified first, it is packed in the gang. If the gang is not
filled, we iterate over the waiting queue ignoring all the C (L), packing with the LC, N
applications. The ignored applications C (L), expected to run on this time quantum, lose their
turn. They are kept out of the CPU for an extra quantum, increasing their waiting time. On the
next quantum, they will be on the top of the queue, will be selected first and will keep out the L
(©). In this way we form gangs that consist of L(C), LC, N applications. On the Figure 3.3-2
we show how the selection occurs.

To achieve the scheduling policy described, we extend the schedule () function of the B
scheduler. This extension is depicted on the flow chart and the pseudocode below.

select scheduler

’ quantum expired
Y

|
initQ) Y
| | qexp()

. ¢ \
factor = 2(gangs_nr -1)

perf_counters_init()
’freeze() schedule()| thaw()

get_IPC_alone()
‘/ Y

zero_criterion()
& <qsort(prog s,criterion,desc)h“
gang=select(progs,cores_nr)
avoid_L-C_pairing()

 stop_execution(gang)

read_perf_counters(IPC)
compute_IPC _loss()

_ update_criterion()

start_execution(gang)
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void schedule()

{

L ON=0;
C_ON=0;
allowed = 1;
quicksort(progs_all_list, criterion, DESCENDING);
for_each_app_in_list(progs_all_list){
switch (app->class){
case L _CLASS:
if (C_ON) allowed = 0;
else L ON=1;
case C_CLASS:
if (L_ON) allowed = 0;

else C ON =1;
}
if (allowed ){
if (number(progs_schedule_list) '= cores_nr){
remove_app_from_list(progs_all_list);
add_to_tail(progs_schedule_list);
}
}

Code 3.3-1: Extension of schedule() function
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3.4 Implementation tool

3.4.1 The scaff

All scheduling policies proposed in this chapter are implemented on the scaff
infrastracture. Scaff is a runtime system that organize the execution of single or multi-threaded
applications on multi-core architectures [19]. It operates at user-space, on top of Linux-based
systems. Its main responsibility is to provide a communication mechanism between the
scheduler implementation and the executed applications. Scaff consists of two basic
subsystems, the executor and the scheduler. The executor handles execution events regarding
creation or termination of applications, while the scheduler decides on which way the available
resources would be distributed among the applications of the workload. In the next paragraphs,
we describe in detail the operation of these subsystems.

The executor

The executor keeps information about the programs of the workload, specific events
during execution and the current scheduler implementation. For each execution test, the
following parameters are passed to the executor: a configuration file, an output folder, the set of
CPU and the scheduler. The configuration file includes the execution path of the applications of
the workload along with necessary information for their execution, such as number of required
cores for each one (on this paper we work with single threaded applications), starting time if a
delay is desired, the class they belong to and their IPC on alone execution (essential for the
decision making of our schedulers). On the output folder, we keep track of the scheduler
operations, the programs behavior (performance counters data) and error messages. The
executor inspects the information given for each application and prepares them for the
execution, establishing the cpuset and a shared memory area for communication between the
application and the scheduler. Its main duty is to handle execution events and programs' signals
and trigger corresponding scheduler functions. It is mainly interested on the events,
EVNT_NEWPROG and EVNT_QEXPIRED. The first is associated with the start of the
execution of a program. When a program is added, this event is allocated. Subsequently the
executor make the following actions, it moves this program to the new_p list and calls the
function scheduler—rebalance(). The second event indicates the expiration of a time quantum.
The executor, then, returns the execution flow to the scheduler calling the function
scheduler—qexpired(). The signals that scaff handles are SIGCHLD and SIGSTOP. SIGCHLD
Is send to executor when a program has terminated its execution normally, while SIGSTOP is
raised when a forced termination occurs. Regarding the first signal, the executor moves the
finished program to finished_p list and calls the scheduler function rebalance(), whereas the
second signal implies an erroneous behavior and the executor terminates the whole execution.

The scheduler

The scheduler is the second subsystem of the scaff, responsible for the placement of the
programs to the available cores. Based on a scheduling policy, it distributes the resources
among the programs, taking into consideration their demands and the information for the
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execution platform provided by the executor. Concerning our work, the scheduler has to make
decision about when (which time quantum) and not where (which core) the programs should be
co-executed, as it based on time-sharing only.

Our schedulers implement the following functions:

e init(): this function is called at the beginning of execution by the executor and allocates
structures necessary for the management of programs. These are stored by the executor
and used to subsequent callsof the scheduler.

e schedule(app_list): at this point occurs the selection of the programs to be executed on
the following time quantum.

e thaw(sched_list): the selected applications are ready to be executed on the set of the
available cores. The performance counters are activated and the state of the freezer
cgroup subsystem of each program is set to thaw.

o freeze(sched _list): the time quantum has expired and the running applications should
leave the CPU. The performance counters are stopped and their value can be easily read,
providing information for the performance of each program running on the current
guantum. The state of the freezer cgroup subsystem of each one is set to freeze.

e (expired(sched_data): this function is called on the expiration of the time quantum by
the executor (EVNT_QEXPIRED occurs). Subsequently it calls freeze, schedule and
thaw functions, making the decision for the next time quantum.

e rebalance(sched_data): when a program is ready to start execution, it is added in the
new_p list (EVNT_NEWPROG) and this function is called. It moves this program from
the new_p list to the app_list and allocates the structure that the scheduler keeps for
every program in order to store important information for their execution. This function
is also called when a SIGCHLD is raised to the executor, meaning that a program has
terminated normally. In this case, the scheduler removes it from the finished p list,
respawns it, if this attribute is enabled and deallocates it.

3.4.2 System tools and mechanisms

The scaff infrastructure requires some tools, in order to manage the execution of
programs. A scheduler determines which applications should be assigned on the available cores
on a specific time slice. Taking into account that a multi-core system provides the ability of
space sharing the cores, the scheduling policy should determine which program would map to
the specific core. The ability of binding programs to specific cores and executing them on
specific time slices is provided by a couple of Linux tools, cpusets and freezer. Both of these
are part of the Control Groups (Cgroups) feature provided by Linux.

Cgroups

Control groups provide a mechanism for aggregating or partitioning sets of tasks into
hierarchical groups with specialized behavior [20]. A cgroup is a set of task associated with a
set of parameters for one or more subsystems. A subsystem is a module that treats the groups of
tasks provided by cgroups in particular ways, applying per-cgroup limits. A hierarchy is a set of
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cgroups arranged in a tree, such that every task is in exactly one cgroup and a set of
subsystems. Each hierarchy has an instance of the cgroup virtual file system associated with it
and can be easily handled from user space. User-level code can create and destroy cgroups by
name in the virtual file system, specify and query to which cgroup a task is assigned, and list
the task PIDs assigned to a cgroup.

On their own, the only use for cgroups is for simple job tracking. The intention is that
other subsystems hook into the generic cgroup support to provide new attributes for cgroups,
such as accounting/limiting the resources which processes in a cgroup can access. For example,
cpusets allow you to associate a set of CPUs and a set of memory nodes with the tasks in each
cgroup.

Freezer subsystem

We use the cgroup freezer subsystem, in order to implement the time sharing policy of
our schedulers. It provides a convenient way to start and stop a set of tasks, by simply writing
values in files of the virtual file system. Using sequences of SIGSTOP and SIGCONT signals
are not always sufficient for stopping and resuming tasks in user space. Both of these signals
are observable from within the tasks we wish to freeze. SIGSTOP cannot be caught, while
SIGCONT can be caught by the task. Any programs designed to watch for these signals could
be broken by attempting to use this way to stop and resume them [21]. In contrast, the cgroup
freezer uses the kernel freezer code to prevent the freeze/unfreeze cycle from becoming visible
to the tasks being frozen. The cgroup freezer is hierarchical. Freezing a cgroup freezes all the
tasks associated with it and all its descendant cgroups. Each cgroup has its own state and the
state inherited from the parent. These states are described in a combined way in the freezer.state
file created by the freezer subsystem in the virtual file system. Reading this file returns the state
of the cgroup — “THAWED”, “FREEZING” or “FROZEN”. FREEZING — FROZEN
transition occurs when all tasks of the cgroup and its descendants become frozen. FROZEN —
FREEZING transition is possible, when a new task is added to the cgroup, until it is frozen.
Two values are allowed to be written in this file — “FROZEN” and “THAWED?”. If frozen is
written, the cgroup, if not already freezing, enters the FREEZING state until it is frozen. If
THAWED is written the state of the cgroup is changed to THAWED. Therefore, it is easy to
manipulate the execution of programs by writing to the freezer.state file THAED or FROZEN.
In our implementation we create one cgroup freezer for every application of the workload.

Cpuset subsystem

Cpusets use the generic cgroup subsystem and provide a mechanism for assigning a set
of CPUs and Memory Nodes to a set of tasks [22]. Cpusets extend the existing mechanisms of
Linux kernel that specify in which cpus and memory nodes a process is allowed to run.
Requests by a task, using the sched_affinity system call to include CPUs in its CPU affinity
mask, and using the mbind and set_mempolicy system calls to include Memory Nodes in its
memory policy, are both filtered through that task’s cpuset, filtering out any CPUs or Memory
Nodes not in that cpuset. User space code can create and destroy cpusets by name in the cgroup
virual file system, manage their attributes and specify which CPUs and Memory Nodes are
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assigned to each cpuset, writing values in the files cpuset.cpus and cpuset.mem respectively. In
our implementation one cpuset is created for each application of the workload.
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Chapter 4
Experimental Evaluation

Contention Environment

From the benchmarks selected on the previous chapter, we create workloads of 16, that
form conditions of 3 different contention levels, low, medium and high. Each contention level
Is populated by 5 workloads. On the low contention environment, the workloads consist of
various combinations of L, LC, SC and N applications. The medium contention environment
includes workloads of applications from all the classes with the BC applications being
absolutely isolated. Workloads of the high contention environment have BC applications far
exceeding the number of BC gangs.

Execution Details

The total 15 workload mixtures are tested with all the 3 scheduling policies (CMB, FOP,
FOP-LCI) proposed on the previous section plus the state-of-the-art Linux scheduler (CFS). We
set the execution time to 20 minutes and the time quantum to 1 second. In order to keep the
gangs and the contention conditions stable, we keep the workload full at the whole execution,
respawning every terminated application.

The execution platform, described in detail on the section, is a Nehalem architecture
(one socket is utilized) with characteristics summarized on the table below

Cores 4
L1 Data_cache: priva‘_[e, 32 KB, 8-way, 64 bytes block size_
Instruction cache: private, 32 KB, 4-way, 64 bytes block size
L2 private, 256 KB, 8-way, 64 bytes block size
L3 shared, 8 MB, 16-way, 64 bytes block size
Memory 12 GB, DDR3, 1333 MHz

Table 3.4-1: Execution platform

The classification of applications has accomplished offline on their alone execution. The
class and other characteristics of applications, like IPC_alone, are passed to our schedulers as
parameters on the configuration file. We can acquire all this information online, executing the
N applications of the workload alone for N time quantums, adding this time to the total
execution time, in order to be accurate with the CFS. An alternative is to reduce the time of
quantum for N quantums, sacrificing a smaller fraction of the total execution time, if we keep it
the same for all the schedulers. For the distinction of the C applications into SC and BC the
size of the data occupying the LLC should be given as a parameter, assuming that it has been
deduced in a "magical” way. We have not enforced any mechanism like cache partitioning for
extracting online the size of data resident on the LLC. Our way for generating BC applications
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Is inspecting their behavior across different data set, as described in the previous chapter.
Performance Metrics

While our goal, from the beginning, is to implement techniques that would optimize
throughput and fairness, we are interested into inspecting the proposed scheduling policies for
these two characteristics. So we define some metrics that will help us compare schedulers and
evaluate their characteristics.

On the first hand, for each application of the workload, we compute how many times, in
the equal part of the total execution time distributed among the applications (form 4.1), it
would be terminated on the ideal occasion, where the interference of the neighboring
applications was null (form 4.22). This means that the application would run on an
environment with conditions of zero contention and would have the same termination time as
when running alone.

, , . ) cores_nr
execution_time = total_execution_time-———— (form 4.1)
apps._nr

execution_time

time (l)alone—execution

ideal_times._terminated (i) = , i = application (form 4.2)

We have implemented the schedulers in such a way, that they keep track of the times
each application has terminated throughout the whole execution. We compare these results to
the ideal_times_terminated and we extract their normalized values (form 4.3).

times_terminated (s, 1)
N(s, i) =

) = scheduler,i = applicati 4.3
ideal times_terminated (i) s = scheduler,i = application  (form 4.3)

We define throughput and fairness of a scheduler as the average (form 4.4) and the
standard deviation (form 4.5) respectively of the normalized times for all programs of the
workload.

T(s) = average(N(s,i)), for all applicationsi (form 4.4)

F(s) = a(N(s, 1)), for all applications i (form 4.5)
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Information about the execution of the workload is represented by a boxplot [23] for
each scheduler. A boxplot is a convenient way to graphically depict the distribution of data
based on the five number summary: minimum, first quartile, median, third quartile and
maximum. It consists of a central rectangle and the whiskers. The rectangle spans the first
quartile to the third quartile (IQR, interquartile range). A dashed line in the box shows the
median and the vertical lines (whiskers) above and below that box show the locations of the
minimum and maximum. Our graph includes for each scheduler, one boxplot, an additional
solid line representing the average and a text on top of y-axis annotating the standard deviation.
In that way, it is possible to acquire a short and accurate description of the applications'
behavior and depict the metrics of our interest essential for the schedulers' evaluation. Although
the general picture of the boxplot provides with sufficient information about the deviation of
the data from the average (rectangle height and whiskers range), we annotate the standard
deviation on top of the y-axis for greater accuracy.
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4.1 Evaluation of scheduling policies

4.1.1 Low contention environment

Workload 1

We start with a workload consisting of 4 L, 4 LC, 4 SC and 4N applications.
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schedulers
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Figure 4.1-1: Workload 1 consists of 4 L, 4 LC, 4 SC and 4N applications

We observe that all schedulers are performing roughly at the same throughput level.
CMB presents the best results concerning fairness. FOP and FOP-LCI present almost identical
behavior.
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Workload 2

We increase the number of L applications, forming a workload of 6 L, 4 LC, 4 SC and
2N applications.
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Figure 4.1-2: Workload 2 consists of 6 L, 4 LC, 4 SC and 2N applications

With a slight increase on the number of L applications, we notice that CFS widens the
performance gap between the applications, as the SC applications are more likely to be
executed with L, suffering their destructive interference. The throughput of our
proposedschedulers is located at the same level with CFS. They all outperform Linux on the
aspect of fairness, with the FOP showing the best behavior (lower standard deviation).
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Workload 3

We replace 2 LC with 2 more SC applications, creating a workload of 6 L, 2 LC, 6 SC
and 2N.
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Figure 4.1-3: Workload 3 consists of 6 L, 2 LC, 6 SC and 2N applications

It is obvious that the contention agnostic treatment of Linux can lead to severe
degradation of some applications (0.45 % of the ideal performance), performing overall with
poor fairness and throughput comparing to our approaches. The isolation of SC applications
occurring on the CMB scheduler provides a friendlier environment for their execution, boosting
their performance and leading overall to the best throughput. FOP shows great results
concerning fairness, as it is performing with the lower deviation. FOP-LCI performs at the
same throughput with FOP and presents higher deviation.
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Workload 4

In this workload we eliminate completely the LC applications, having 8 L, 6 SC and 2N.
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Figure 4.1-4: Workload 4 consists of 8 L, 6 SC and 2N applications

We observe that our proposed schedulers outperform Linux on both aspects of
throughput and fairness. It is getting clearer that CFS fails to handle a workload with
applications subjected to the destructive effects of contention (SC applications). The general
picture of the results of our scheduling policies is similar to the previous workload. CMB
performs at the same level with FOP in the matter of throughput. The FOP presents the most
improved fairness. FOP-LCI, again, does not perform with higher throughput comparing to
FOP.

111



Workload 5

At this point, we inspect the behavior of the schedulers, when it comes to handle
applications of two classes exclusively (workload of 8 L and 8 SC). The contention level is
getting higher, as the contention for the memory bandwidth and the trashing of the LLC caused
by the L applications affects destructively their selves and the SC applications respectively.
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Figure 4.1-5: Workload consists of 8 L and 8 SC applications

Reaching the peak of the low contention environment, we come to the following
conclusions. The isolation of the SC applications from the bad co-runners (L applications) and
the balanced distribution of L applications, adapted on the contention aware approach, lead to
the best results concerning throughput. The FOP scheduler manages to balance the performance
of the applications near the average, boosting the suffering SC applications at the expense of
the well performing L applications. The FOP-LCI lives up to our expectations for improved
throughput comparing to FOP, since the SC applications are not co-executed with the
unfriendly L. As a result they are not subjected to destructive interference and they utilize the
CPU more efficiently (making greater progress). It is worth mentioning that FOP and FOP-LCI
perform almost at the same fairness level.
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Low contention environment comparison results

Relative Throughput

Relative Fairness
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Figure 4.1-6: Relative throughput improvement comparing to Linux
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Figure 4.1-7: Relative fairness improvement comparing to Linux
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The above graphs (Figures 4.1-6 and 4.1-7) depict the gains of throughput and fairness
of our scheduling policies comparing to Linux scheduler for each workload and for the low
contention environment (average). We observe that our techniques outweigh Linux scheduler
regarding fairness on every workload of this environment. Concerning throughput CFS seems
to perform better for workloads (first two) consisting of small number of contending
applications (L and SC). On the other hand, when it comes to workloads with increased number
of destructively interfering applications, our approaches outperform Linux respecting
throughput.

Taking into account the graphs below (Figures 4.1-8 and 4.1-9), which present in detail
the execution of each class on the different schedulers for two representative workloads, we
analyze deeper the behavior of the proposed scheduling policies.

The CMB performs with the best throughput and the least improved fairness. The
contention aware policy helps the most the SC applications. On the other hand, the L
applications are slightly downgraded, because of their packing.

The FOP scheduler provides the best solution concerning fairness. Overall it performs
with the lower deviation, balancing the applications near the average, as shown in the graphs
below. It is worth mentioning that the frequent occupation of CPU with lower progress
applications does not cause reduction in throughput, ranking FOP in the third place. This
happens because the applications do not suffer from devastating interference and thus do not
need significant increase on their running time. This, in turn, does not lead to great reduction of
the running time of the well performed applications, keeping throughput on high levels.
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Figure 4.1-8: Detailed execution of workload 3
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The FOP-LCI holds the second place among our schedulers on both aspects of fairness
and throughput. Our intention is to separate the L-C pairing, in order to boost C applications
performance and provide an improved throughput comparing to FOP. This is achieved only in
the 5th workload. In the general case, it benefits the applications (LC and N) allowed to be
executed with both L and C and keeps the C applications in the same level with FOP.
Consequently the improved throughput is a result of LC and N rather than C boosting. One
possible explanation is that the packing of L would result in higher IPC loss. This means that
they are likely to be more frequently executed carrying with them the LC or N.
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Figure 4.1-9: Detailed execution of workload 5
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4.1.2 Medium contention environment

Workload 6

On this test group, we evaluate our schedulers when it comes to manage applications of
the BC class, which suffer from heavier slowdowns but can be completely isolated via time
sharing. On this workload we introduce 1 BC applications, having totally 4 L, 4 LC, 1 BC, 4
SCand 3 N.
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Figure 4.1-10: Workload 6 consists of 4 L, 4 LC, 1 BC, 4 SC and 3 N applications

We notice that FOP manages to distribute almost completely fair the resources,
experiencing the lower deviation, with a small decrease in throughput. The CMB performs with
the highest throughput and improved fairness. The FOP-LCI provides an intermediate solution
for the inspecting characteristics.
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Workload 7

We add another BC application, forming a workload of 4 L, 4 LC, 2 BC, 3 SC and 3N.
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Figure 4.1-11: Workload 7 consists of 4 L, 4 LC, 2 BC, 3 SC and 3N

The CMB spreads the BC applications across the 2 available gangs. This offers a great
performance boost for them and for the SC, leading overall to the highest throughput. In
addition it experiences great improvement regarding fairness, as its deviation is really close to
the FOP-LCI. The other approaches experience lower throughput than Linux, since they
occupy the CPU mostly with applications that make low progress. It is becoming clearer that,
except the unfair distribution, Linux cannot guarantee that applications would make adequate
progress (application executing at fraction of 25% of its ideal performance).
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Workload 8

We increase the number of L applications to 8, eliminating completely the LC. The
workload now consists of 8 L, 2 BC, 3 SC and 3 N.
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Figure 4.1-12: Workload 8 consists of 8 L, 2 BC, 3 SC and 3 N applications

The general picture presented on this graph is similar to the previous workload.
Concerning the CMB scheduler, the BC applications are not affected with the increase of L, as
they can be completely separated and the destructive interference can be avoided.
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Workload 9

Now, we replace the N applications with SC. This workload contains 8 L, 2 BC and 6
SC.
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Figure 4.1-13: Workload 9 consists of 8 L, 2 BC and 6 SC applications

We observe that the replacement of N applications with SC causes greater problem for
the CMB scheduler. Following its policy, it splits the BC and packs them together with the SC
only. This leads to lower increase of BC applications’ performance, while the slowdown
imposed to them is higher when co-executing with SC applications rather than N (prediction
model). Despite that fact, overall it performs with the highest throughput. The other schedulers
follow similar behavior to the previous workloads.
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Workload 10

This workload consists of 4 L, 3 BC, 4 SC and 4 N.
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Figure 4.1-14: Workload 10 consists of 4 L, 3 BC, 4 SC and 4 N applications

As it is depicted on the graph above, our first approach manages to spread the 3 BC
applications across the gangs, performing, again, with the best throughput and a satisfying
Improvement of fairness.
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Medium contention environment comparison results

Relative Throughput

Relative Fairness
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Figure 4.1-15: Relative throughput improvement comparing to Linux
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Figure 4.1-16: Relative fairness improvement comparing to Linux

121



Inspecting the above graphs (Figures 4.1-15 and 4.1-16), which depict the gains of
throughput and fairness of our scheduling policies comparing to Linux scheduler for each
workload and for the medium contention environment (average), we come to the following
conclusions. All of our scheduling policies outperform Linux regarding fairness. When it
comes to throughput, only CMB presents improvement across the workloads of this
environment. FOP performs with lower throughput on every workload, showing a reduction of
6% on average. FOP-LCI increases throughput on two workloads only, performing on average
with a 1.8% decrease.

Introducing the BC applications, it is getting clearer that Linux fails to manage the
devastating effects of contention, providing an environment where those applications cannot
make adequate progress and are lead to starvation (Figure 4.1-18). This results in greater
unequal distribution of the resources among the applications. Comparing with the low-
contention environment, our schedulers present higher improvement in the matter of fairness.

Taking into account two representative examples (Figures 4.1-17 and 4.1-18) of this
environment, we are able to understand deeper the behavior of our schedulers.

The CMB manages to offer a great performance boost for the BC applications, when
they can be completely isolated from the L and from each other. We observe that the
Improvement is dependent on the co-runners. Working with workloads consisting of N
applications (Figure 4.1-17), the BC applications experience better improvement compared to
workloads with SC applications only (Figure 4.1-18). This seems reasonable, since the
prediction model implies zero slowdown for the execution pair BC-N and mild degradation for
the pair BC-SC (x 1.46 on average (Figure 3.1-10)). As far as the L and LC applications are
concerned, their performance is affected similarly to the workloads of the low contention
environment. The packing of L with LC applications and with each other generates memory
bandwidth contention and a higher degradation compared to Linux. Overall, it performs with
the highest throughput and a satisfying fairness improvement.

When it comes to resource distribution, the FOP presents the fairest behavior. The
figures below depict the tremendous results of the FOP performance. It manages to equalize the
progress of the applications with a really negligible deviation around the average. This picture,
also, confirms the correctness of the relationship between the factor and the gangs extracted
previously. Opposite to the workloads of the low-contention environment, the throughput is
suffering from a slight reduction. This phenomenon is explained by the fact that the CPU is
mostly occupied by applications with low IPC ratio (BC class).

The FOP-LCI provides the second best solution for both characteristics of throughput
and fairness. We notice that the avoidance of L-C pairing does not benefit the BC applications,
as they are co-executed with each other and with LC, suffering from devastating damage
(x 2.33 and x 2.22 slowdown respectively (Figure 3.1-10)). As a result, they get really often
high in the waiting queue. Allowed to be co-executed only with SC, LC and N, the progress of
L is slightly impeded regarding FOP. Similar to low-contention environment the increased
throughput is due to the beneficial treatment of LC and N (executed with C and L) (Figure 4.1-
17) plus the SC that perform well when isolated from L and are likely to be more frequent
selected by BC (Figure 4.1-18)
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Figure 4.1-17: Detailed execution of workload 7
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Figure 4.1-18: Detailed execution of workload 9
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4.1.3 High contention environment

Workload 11

On this environment, we test our scheduling policies considering workloads with high
number of BC applications, which cannot be isolated from each other. This means that our first
approach would be forced to group them together and tolerate the heavy damage they cause.

This workload consists of 4 L, 4 LC, 3 BC, 2 SC and 3N applications.
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Figure 4.1-19: Workload 11 cosists of of 4 L, 4 LC, 3 BC, 2 SC and 3N applications
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We observe that the effects of the BC pairing impact on the CMB performance, as it
cannot provide sufficient improvement to them, in order to increase the throughput. However it
is performing with lower deviation. The results of the other two schedulers are similar to
previous workloads.
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Workload 12

We increase the number of BC and L applications. We have 5 L, 3 LC, 4 BC, 2SC and
2N.
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Figure 4.1-20: Workload 12 consists of 5L, 3 LC, 4 BC, 2SC and 2N applications

It is getting clearer that CMB scheduler cannot boost BC applications’ performance,
remaining in the same throughput levels with Linux. Even the fairness improvement is
declining. The general picture of FOP and FOP-LCI is similar to previous workloads.
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Workloads 13, 14 and 15
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Figure 4.1-21: Workload 13 consisting of 6 L, 2 LC, 5 BC, 1 SC and 2 N applications
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Figure 4.1-22: Workload 14 consisting of 7L, 1 LC, 7 BC and 1 N applications
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Figure 4.1-23: Workload 15 consisting of 8 L and 8 BC applications

Inspecting the above graphs, it is obvious that the policy of the CMB scheduler, packing
the BC applications that cannot be spread across the gangs, harms its performance regarding
both fairness and throughput. We see that the boxplots of Linux and CMB scheduler are almost
identical, with the CMB providing reduced throughput and a slightly improved environment
regarding fairness. In addition we notice that FOP-LCI is performing almost at the same
throughput level with FOP. FOP distributes the resources in the fairest way, except the last
workload, where FOP-LCI is slightly improved.

127



High contention environment comparison results

Relative Throughput

Relative Fairness

I I I I
=0 VB &8 FOP @ FOP— LC‘I]

0% TS |

0 S |

0%

-10%

-20%

B T L7 |

A |

_5{}13',\& 1 1 1 1 1 1
w6 w7 w8 w9 w10 average

Figure 4.1-24: Relative throughput improvement comparing to Linux
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Figure 4.1-25: Relative fairness improvement comparing to Linux
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Concluding, the graphs (Figures 4.1-24 and 4.1-25) present some interesting results for
the heavy contention environment. Regarding throughput, it is clear that none of our scheduling
policies is possible to provide improved performance, with the FOP and FOP-LCI experiencing
higher decrease relative to medium-contention environment. Inspecting fairness, we understand
that all of our schedulers outweigh Linux, with FOP and FOP-LCI performing at the same level
and CMB with a satisfying decrease (- 30%) compared to the medium-contention environment.

It is worth mentioning how the rising of applications with devastating suffering (BC)
influence the behavior of our scheduling policies. We describe in detail the impact on our
schedulers.

The CMB fails to provide a friendly environment for the BC applications, as it is
Impossible to be completely isolated across the gangs. This proves our previous statement that,
working on a package with increased number of cores sharing a cache, applications with great
suffering are more likely to interfere with each other, while the distinction can be achieved only
by time sharing. Our scheduler avoids execution of the BC-L packing. However when the
number of BC applications far outweigh the available gangs it is obliged to group them
together, tolerating the destructive effects this packing causes. Figure 4.1-26 presents clearly
the general behavior of this scheduler, which imitates the Linux scheduler with lower
throughput and a moderate improvement on fairness. Lower throughput is a result of the L
packing, as they generate bandwidth contention. The performance degradation of L is the
reason of the decreased throughput and the improved fairness. It achieves better deviation
because of the lower progress of L and not the enhancement of BC applications, which was
initially our purpose.

Concerning the FOP scheduler, the results, when it comes to fairness, are tremendous. It
offers equal distribution of resources among the applications, improving fairness at 85% on
average. Inspecting the graph below, we deduce that even applications with low progress
cannot get any performance boost. This happens, because there are applications experiencing
even greater decrease on their IPC getting prioritized on the waiting queue, occupying mostly
the CPU time. This phenomenon leads to the satisfying reduction of 15% on throughput

Inspecting the FOP-LCI scheduler, we see that, following the policy of L-C isolation,
fails to boost the performance of C, while the BC-BC pairing causes great degradation. Similar
to the previous contention environment the improved throughput compared to FOP is a result of
the LC and N beneficial treatment. These two classes are favored by the scheduler, as it is
possible to be selected with both L and C applications (Figure 4.1-26).

Summarizing, on this environment we understand that with time sharing only
applications that are mostly impacted by the contention cannot be completely isolated. Thus
their performance cannot be enhanced and overall throughput cannot be improved (CMB
scheduler). For the other scheduling policies we see that despite the rise of BC applications and
the high contention levels, they are able to provide a fair distribution of resources across the
applications.
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Figure 4.1-26: Detailed execution of workload 14
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Chapter 5
Conclusion and Future Work

5.1 Results Evaluation

In this paper we focused on the problem of destructive interference of single-threaded
applications with one execution phase when they are co-scheduled on multicore platforms that
share architectural components, such as the Last Level Cache and the memory bandwidth.
Inspecting the behavior of the system when applications are executed with state-of-the-art
schedulers, like the CFS of Linux, we came to the following conclusions. The applications are
treated in a contention agnostic way and are subjected to the effects of the destructive
interference. As a result the overall performance of the system is negatively affected and the
prime objectives that a scheduler tries to satisfy are totally impeded. We found that Linux
scheduler is unable to share the resources of the platform equally among the applications,
providing an unstable and workload dependent performance. This means that there is no
guarantee that an application would make equal and stable progress with the other. Thus QoS
(Quality of Service) guarantees cannot be provided to threads and SLAs (Service Level
Agreements) are very difficult to enforce. We proposed three scheduling policies, aiming to
mitigate the phenomenon of unfair distribution. On the first approach we built a contention-
aware scheduler based on the classification scheme proposed by [1]. We try to improve fairness
via contention avoidance and performance enhancement of the suffering applications,
proposing a novel scheduler which take into consideration both LLC and memory bandwidth
contention. On the second approach we enforce a policy that boosts the performance of
suffering applications in expense of the ones that experience high IPC ratios, aiming to equalize
their progress. The third approach is an extension of the previous policy, which select the
threads in a contention aware manner, in order to create a friendlier environment for their
execution and improve their performance. All of our proposed schedulers were tested and
evaluated on a 4-core package sharing one LLC with a variety of workloads and have been
compared to Linux scheduler. The results for the different contention environments are
summarized on the graphs below.

Inspecting the Figure 5.1-1, it is clear that our scheduling policies achieved a
tremendous improvement of the unfair distribution of resources provided by the Linux
scheduler. Analyzing deeper the behavior of our schedulers, we come to the following
conclusions.

Providing fairness through a thread-to-core placement policy (CMB scheduler) that
avoids destructive interference is a possible solution. The suffering applications experience a
great performance boost and the system throughput is improved. The main disadvantage is that
our options for thread isolation are constrained, while only time-sharing is available. This leads
to low throughput and a slight fairness improvement when it comes to workloads with suffering
applications that cannot be completely isolated across the gangs.
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Figure 5.1-1: Throughput and fairness gains compared to Linux

Occupying the CPU with applications that have the gravest need concerning their
progress and not their waiting time seems to be the best solution for equal distribution of
resources. The results of the other two approaches show incredible fairness speedup. FOP
presents the greatest fairness enhancement, while FOP-LCI experiences improved throughput
and a slight decrease of fairness relative to FOP. Opposite to CMB, they are not affected by the
rising of applications suffering from devastating interference, and manage to balance their
progress across the different workloads.

Summarizing, we proposed three novel scheduling policies that take into consideration
the destructive effects of resource sharing and manage to overcome the problem of unfair
distribution. Balancing the performance of application, we assure that none would run at the
expense of others. In addition, we prevent threads from experiencing starvation phenomena,
providing an environment where all applications make adequate progress. In conclusion, all of
our approaches manage to provide with QoS guarantees and make it possible for SLAs to be
enforced. Concerning the first approach, a SLA could be established, assuring that all
applications would share equally the CPU time and would perform well, as they do not
interfere destructively with each other. Regarding the other two approaches, it is also possible
for a SLA to be determined, taking into consideration that suffering applications would
consume more CPU time but they could make adequate progress, equal to that of the other
applications of the workload.
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5.2 Future work

The work presented on this paper has prospect for expansion. While all of our metrics
used are based on information acquired at run time via performance counters provided by the
facilities of modern processors, the classification of C class cannot be performed online. The
method we follow for the population of BC class requires investigation of the applications’
behavior across different data sets. So, a technique for online identification of the working set
could be developed, in order to make the CMB scheduler completely applicable to real
environments. Opposite to CMB, the other two schedulers do not require additional
adjustments and can be integrated as completely independent units on multicore architectures.

Additionally, our policies could be further extended, in order to handle more complex
scheduling scenarios, including multi-threaded applications, applications with multiple
execution phases, short-running tasks, 1/0-bound applications and dynamic workloads. Finally,
a very interesting scenario is to enhance our proposed schedulers, so that they could be
integrated in NUMA architectures and in large scale cloud environments.
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Chapter 6
Related Work

There has been significant interest in the research community in addressing shared
resource contention on CMPs. The majority of work has focused on solutions which require
elaborate modifications to hardware and can be distinguished into two categories: performance
aware cache modification (commonly known as cache-partitioning) and DRAM controller
scheduling.

Concerning the inefficient distribution of the shared LLC resources the LRU
replacement policy impose, some researchers [24], [10], [17] proposed solutions to address this
problem by explicitly partitioning the cache space based on how much applications would be
benefited, rather than based on their demand rate. In the work on Utility Cache Partitioning
[17], it has been developed a monitoring circuit, designed to estimate an application’s number
of hits and misses for all possible number of ways allocated in the cache (a technique based on
stack-distance profiles (SDPs)). Then the cache is partitioned in such a way, so that the cache
misses of a particular set of co-running applications would be minimized.

Tam et al. [25] addresses cache contention via software-based cache partitioning. Cache
Is partitioned using page coloring. Each application reserve a portion of the cache and the
physical memory is allocated such that the application’s cache lines map only into that reserved
portion. The size of the allocated cache portion is determined based on the marginal utility of
allocating additional cache lines for that application. Marginal utility is estimated via an
application’s reuse distance profile, acquired online utilizing hardware counters.

Approaches based on cache modification present some common characteristics. They
typically rely on classification of the application execution behavior and a prediction model of
the interference when they are executed together.

Xie and Loh [26] proposed a classification method based on animals. Each application
may belong to one of the four classes named turtles, sheep, rabbits and devils. Applications that
present low activity in the LLC are classified as turtles. Those that make use of the LLC but
have zero sensitivity to the ways allocated to them belong to sheep. Rabbits are very sensitive
to the ways allocated to them. Devils make heavy use of the LLC, while they experience high
miss rates.

Similarly to Tam et al.,, Lin et al. [18] adapted page coloring and classified the
applications into four colors based on their slowdown when executing on 1 MB compared to
executing on 4 MB cache. Their scheme consists of two thresholds for the slowdown imposed
to them. Applications showing over 20% degradation are considered red. Those suffering with
slowdown between 5% and 20% are classified as yellow. Programs, degrading at a rate lower
of 5%, are deeper classified as green or black according to their number of misses per thousand
cycles.

Another approach by Jaleel et al. [13] categorize the applications into the following
classes: Core Cache Fitting (CCF) have a dataset size that can be served by the lower levels of
the memory hierarchy (private caches) and do not benefit from the shared LLC. LLC Trashing
(LLCT) have a dataset larger than the size of LLC. Such applications cause great damage to
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those that get highly benefited by the LLC utilization. LLC Fitting (LLCF) require the majority
of the LLC capacity to perform well and get degraded when they do not receive it. LLC
Friendly (LLCFR) benefit from the available shared LLC but their performance does not
degrade significantly when they do not receive the bulk of its space.

Taking into consideration the DRAM memory system, researchers [27] found that the
FR-FCFS policy implemented on the DRAM controllers leads to poor system throughput in
CMPs and to potential starvation of threads with low row-buffer locality. Therefore, memory
aware schedulers have been proposed in several studies, aiming to equalize the DRAM-related
slowdown experienced by each thread because of interference. Nesbit et al. [28] proposed the
fair queuing memory scheduler (FQM). For each thread, in each bank, FQM keeps a counter
called virtual runtime. When a memory request of the thread is serviced, the scheduler
increases this counter. This approach prioritizes the treads with the earliest virtual time, in order
to balance the progress of each thread in each bank. Another algorithm of special interest is the
parallelism-aware batch scheduling algorithm (PAR-BS) [29], which provides with higher
memory throughput and exploits per-thread bank-level parallelism more efficiently than FQM.
It attempts to minimize the average stall time by giving higher priority to requests from the
thread with the shortest stall time at a given instant. This scheduler relies on the idea of batches.
Regarding systems with multiple DRAM controllers, ATLAS (Adaptive per-Thread Least-
Attained-Service) [30] manages to provide superior scalability and throughput than PAR-BS. It
divides execution time into quanta, during which each controller makes scheduling decisions
locally based on a system-wide thread ranking, in order to reduce the coordination between
memory controllers.

It is worth mentioning that the techniques discussed previously may seem promising but
require significant changes to the underlying hardware and the operating system. Thus it is
possible to be evaluated only in simulation and it is very difficult to be implemented in
commercial systems.

In contrast to cache partitioning and DRAM controller scheduling, a part of research
community embraces a different trend to deal with the contention of resource sharing, the
thread-level scheduling. According to this approach, studies focus on finding the appropriate
thread-to-core mappings that generate the friendlier contention conditions for the execution of
applications and thus lead to the best possible performance. They attempt to classify programs
based on simple metrics that can be easily collected via the performance monitoring facilities
of modern processors and predict their interference through simple heuristics.

Banikazemi et al. [31] attempted to predict the performance of a thread in a particular
mapping, calculating the cache occupancy ratio, which is the ratio of the LLC access rate of a
specific thread to the LLC access rate of all the threads sharing a cache in that mapping. Then
they calculated the possible LLC miss rate the thread would experience, based on the currently
measured LLC miss rate, the cache occupancy ratio and a rule of a heuristic. Finally, they use a
linear regression model to convert the predicted LLC miss rate into a predicted CPI for the
thread, which directly represents the predicted performance of a thread in that mapping.

Opposite to the complex method adapted by Banikazemi, some researchers [32], [14],
[12] preferred to approximate contention with one simple heuristic: the LLC miss rate. Based
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on this simple performance metric, they observed that applications with high LLC miss rate
stress the entire memory hierarchy for which they are competing and tried to keep them
separated, in order to avoid poor performance. They use concepts like cache light/heavy threads
[32] and turtle/devils [14] in order to characterize low and high miss applications, rather than
converting this intuition into a numerical prediction.

Once a prediction model has been established, a scheduler must decide how the threads
should be combined in order to satisfy the desired objective.

Jiang et al. [33] approximated the problem in graph-theoretical form. The nodes of the
graph represent the applications to be executed. The weighted edges between them represent
the performance degradation occurring to these applications when they run concurrently
sharing a LLC, assuming that the performance degradation of every possible pair of threads is
known. They showed that the optimal scheduling solution to this problem is the minimum
weight perfect matching of the graph.

Based on the simple LLC miss rate performance metric, Zhuravlev et al. [14] proposed
their distributed intensity (DI) scheduling policy. According to that, all threads are sorted based
on their miss rate. Then the threads are paired in the following way: the thread with the highest
miss rate is co-scheduled with the one presenting the lowest miss rate, the thread with the
second highest miss rate is co-scheduled with that with the second lowest miss rate, etc. In that
way it achieves to balance the miss rate (intensity) across the threads.

Merkel et al. [12] developed its decision-making policy based on the activity vectors. A
thread’s activity vector represents its usage of system resources; the memory bus, the LLC and
the rest of the core. Their scheduler exploits thread migration to co-schedule threads with
complementary activity vectors. Programs with high variability of activity vectors are likely to
yield to high performance if co-scheduled in a complementary manner. They introduce the
sorted co-scheduling, which based on a parameter of the activity vector keeps the run queue of
one core sorted in descending order and the run queue of the other core in ascending. This way,
they attempt to co-schedule pairs of threads with complementary activity vectors.

138



139



Bibliography

[1] Haritatos A. H. et al., "LCA: a memory link and cache-aware co-scheduling approach for CMPs,"
in In Proceedings of the 23rd international conference on Parallel architectures and compilation,
2014, pp. 469-470.

[2] McCalpin J. D., "Memory bandwidth and machine balance in current high performance
computers,” IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19-25, 1995.

[3] pChase benchmark. [Online]. https://github.com/maleadt/pChase

[4] Michael L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed. New York, USA:
Springer.

[5] Geer D., "Industry trends: Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp.
11-13, 2005.

[6] Silberschatz A., Galvin P. B., and Gagne G., Operating System Concepts, 9th ed.: John Wiley &
Sons, 2012.

[7] Zhuravlev S., Juan Carlos Saez, Blagodurov S., Fedorova A., and Prieto M., "Survey of scheduling
techniques for addressing shared resources in multicore processors,” ACM Computing Surveys,
vol. 45, no. 1, pp. 1-28, November 2012,

[8] Hsu L. R., Reinhardt S. K., lyer R., and Makineni S., "Communist, utilitarian, and capitalist cache
policies on CMPs: caches as a shared resource," in Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques (PACT 06), 2006, pp. 13-22.

[9] Srikantaiah S., Kandemir M., and Irwin M. J, "Adaptive set pinning: managing shared caches in
chip multiprocessors,” in Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XI11), 2008, pp. 135-144.

[10] Chandra D., Guo F., Kim S., and Solihin Y., "Predicting inter-thread cache contention on a chip,"
in Proceedings of the 11th International Symposium on High-Performance Computer Architecture
(HPCA’05), 2005, pp. 340-351.

[11] Kim S., Chandra D., and Solihin Y., "Fair cache sharing and partitioning in a chip multiprocessor
architecture,” in Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques (PACT 04), 2002, pp. 111-122.

[12] Merkel A., Stoess J., and Bellosa F., "Resource-conscious scheduling for energy efficiency on
multicore processors,"” in Proceedings of the 5th European Conference on Computer Systems
(EuroSys’10), 2010, pp. 153-166.

[13] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, and Simon, "Cruise: Cache
replacement and utility-aware scheduling,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, New York, USA, 2012, pp. 249-260.

[14] Zhuravlev S., Blagodurov S., and Fedorova A., "Addressing shared resource contention in
multicore processors via scheduling,” in Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’10), 2010,
pp. 129-142.

[15] Michael E. Thomadakis, The Architecture of the Nehalem Processor and Nehalem-EP SMP
Platforms, 2011, Ph. D. Supercomputing Facility.

[16] Intel Performance Counter Monitor - A better way to measure CPU utilization. [Online].

140


https://github.com/maleadt/pChase

http://software.intel.com/en-us/articles/intel-performance-counter-monitor

[17] Qureshi M. K. and Patt Y.N., "Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches," in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 39), 2006, pp. 423-432.

[18] Lin J. et al., "Gaining insights into multicore cache partitioning: Bridging the gap between
simulation and real systems," in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA’08), 2008, pp. 367-378.

[19] Xohog Xaparapmoc, Apopordynon Hapddiniov Eeappoyov o IToAvndpnve Zvotiuota, 2013,
Diploma thesis, School of Electrical and Computer Engineering, N.T.U.A.

[20] CGroups - The Linux Kernel Archives. [Online].
https://www.kernel.org/doc/Documentation/cgroup-vl/cgroups.txt

[21] freezer. [Online]. https://www.kernel.org/doc/Documentation/cgroup-vl/freezer-subsystem.txt

[22] Cpusets - The Linux Kernel Archives. [Online].
https://www.kernel.org/doc/Documentation/cgroup-vl/cpusets.txt

[23] Box Plot: Display of Distribution. [Online]. http://www.physics.csbsju.edu/stats/box2.html

[24] Suh G. E., Rudolph L., and Devadas S., "Dynamic partitioning of shared cache memory," J.
Supercomput.28, vol. 28, no. 1, pp. 7-26, 2004.

[25] Tam D. K., Azimi R., and Soares L. B. and Stumm M., "RapidMRC: Approximating L2 miss rate
curves on commodity systems for online optimizations,” in Proceeding of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’09), 2009, pp. 121-132.

[26] Xie Y. and Loh G., "Dynamic classification of program memory behaviors in CMPs," in
Proceedings of CMP-MSI, held in conjunction with ISCA-35, 2008.

[27] Moscibroda T. and Mutlu O., "Memory performance attacks: Denial of memory service in multi-
core systems," in Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, 2007, pp. 18:1-18:18.

[28] Nesbit K. J., Aggarwal N., Laudon J., and Smith J. E., "Fair queuing memory systems," in
Proccedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 39), 2006, pp. 208-222.

[29] Mutlu O. and Moscibroda T., "Parallelism-aware batch scheduling: Enhancing both performance
and fairness of shared DRAM systems,"” in Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA’08), 2008, pp. 63-74.

[30] Kim Y., Han D., Mutlu O., and Harchol-Balter M., "ATLAS: A scalable and high- performance
scheduling algorithm for multiple memory controllers,”" in Proceedings of the IEEE 16th

International Symposium on High Performance Computer Architecture (HPCA’10), 2010, pp. 1-
12.

[31] Banikazemi M., Poff D., and Abali B., "Pam: A novel performance/power aware meta- scheduler
for multi-core systems," in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC’08), 2008, pp. 1-12.

[32] Knauerhase R., Brett P., Hohlt B., Li T., and Hahn S., "Using OS observations to improve
performance in multicore systems," IEEE Micro, vol. 28, no. 3, pp. 54-66.

[33] Jiang Y., Shen X., Chen J., and Tripathi R., "Analysis and approximation of optimal co-scheduling
on chip multiprocessors,” in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT’08), 2008, pp. 220-229.

141


http://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
http://www.physics.csbsju.edu/stats/box2.html

[34] The freezer subsystem. [Online]. https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-
subsystem.txt

142


https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt

E=E= rop

LZZAa cFs

NN

B roP-LCT

CMB

B2

|

A A A A S A A S A A A S A A A
A A A A A A A S A A A A

L EZ

A A A A A A L A L A S AT S L L LV S A S AT S AT S L

A A A A S A A A L S A A S A A T A A

WA A A A A A A A A A -~

VA A A A AT A A A A A A T S A A A

WA A A A A A A A A A A .

A A A A A A A A A A A A A A

A A A A A A A A A AT A S

1
|4

P

-

Appendix

1.00 b e e e e e e e e e e e e e e e

i
N
ol
o

N
1 1
o [Tg]
[=)] [ee]

0.80
0.751 1
0.70
0.65
0.60

o o

paleulwlal sawi) pazijewlou

L LC SC N L LC SC N

benchmarks

/ L LC SC N

L LC sC

Workload 1

Figure A-5.2-1

E=E= rop

LZZAa crs

NN

B roP-LCT

CMB

A A AV .

v

il
=
l

v
Wl A A A A A A

A A A A A A A A A A A AV A

A A A A A A A A A A A A A A A

A A A A A A S A A A A A A A AT

AT A A A A A A A L A .

. . A A A A Al 1 |

A A A A A A A VA A A AR A VA

= =

o n * . e

S

g

I

<

T E

L 1

1.00 e

0.95F-

i
o
o

o

i
N
co

0.75
0.70 -
0.65
0.60

I
o
) «
(=] (=]

Paleulwla] SawWi) pazijewlou

L LC SC N L LC SC N L LC SC N

L LC sC

benchmarks

Workload 2

Figure A-5.2-2

143



=8 ropr

224 cFs

1.05

Fo =
L &
: i
L <!
: ~
L : =
-
.mm =
—
| o
A, |55}
e Q
_
- =
2l <]
= 7
C ' n_\ \m\\\.\\\.-\\\\\.\\\.\\\m\\\w\\\_\\\_\\\
. ‘\\\.\\\\\\\\\\\\\\L\\\»\\\\\\\\\\\\C
- : ”_.\\W\\.\\\.\\\.\\\”\\\.\\\.\\\.\\\.\\\.\\ Tl.u
“ : : : i AT T AT A
Al o= =
H H H D P L A A S A A A S A S A S A M A A
e : . < < : =
P g _ s
! ——— S %
: : : : K
| 0 : = & " e n .
: : T - ~
: : : -
: ; ; ; =
I “ . . _VV% > g
N . L S i Sy
: B . L3 - - - o o 5 L LN
1 1 1 1 1 1 1 1 1 1 1 1 1
o n o n O mn O nn O n o W O wmn
S o & © ® M~ K © ©in N < F M
A o o o o o oo o o oo o oo o Q
p=leulul=] sawl] paZljewlou

benchmarks

Figure A-5.2-3: Workload 3

[revs

BE==8 rop

CFS

CMB

B rop-rcr

- A A A A A A A A A A

=4

A A A A A A A A A A A S A A A S A A

1.05

- ——
m S IR g _
| . . . E e . 7
: . . . <.
. . . . . L N
: : : : b = : -
. L <
. . - . 5 S =
. N [N A
- . s b
. h n n L3 5 o b h
: < : - -
N i L e
: : b - : . KN N
1 1 1 1 1 1 1 1 1 1 1 1 1
o Ty o Tg] o L o Tg] o L o Ty o g}
© o @ ©® ® ~ K © © n Wy % I M
- O O O O O O O 0O o o o o o
pPaleuluL=] salul] pazZlijewlou

SC N

benchmarks

Figure A-5.2-4: Workload 4

144



=8 ropr

[z crs

L LCBCSC N

1.05

T
: : -l :
. . 3] = .
o = :
~ : —
.} : o
o I 23 5
Ay : % AR
: : QW
L x o
: : o W
: : : : . = ..
: : : : : = Te)
! [ A CA A A A A A A A A AT e (W) 1
. | WAV A A A AT A LW A A A A A AV A ALV = 2
; - B P A A e A A A P P i i %] N
[sa] Vi, ViV AT AT AT AT AT A AT Sum Lo m
S T < 2 S
] : : S — — [GRN! i == 2 0 0 0 - z ; 2
. . e | e e e e e e e e e L
- . . o - L Wl A R N .
gl = N 7 T — S
“ : : =2 I“
- : : . LL N LA
: : : : : ; : C + + ~
A L= = L S
[ —F - =S m
o N~ TTTTTRTT i : =
e < = ; i e < - . :
: : : I = . : P - . E o = -
“ ? L = 5 % S = = 1 S,
. v o < = c L E j .
: : A, : > : SESRSRSS Y t " < . . : ! ™ >
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o N O n O n o N o wnm o wmnmw o n o 'a] o Ty} o Ty} o Tal (=] [Ty} o Tg} o L o
o o o @ oM~ N8 Y NN S S MmoM © o oo o © © M~ M~ Y O N N <
- O O O O o OO o o o oo o o o o — — o o o o o o o o o o o o
peleulwla) Sall} pazi|ewlou pajeulwa) sawi} pazi|ewlou

145

L LCBCSC N

L LCBCSC N

benchmarks
Figure A-5.2-6: Workload 6

L LCBCSC N



BN rop-rcr

L LCBCSC N

L LCBCSC N

B rop-Lol

== rop
EeE rop

T2 7 T T 7 i 77 T F T T 77 I T T T T T T T T F T T 7T 7777,

s A A st st [

A A A A A A A A A A A A A A

benchmarks

CMB

H i A A S AV A A A LAY

DO (000 0 0 B S T S S T S L S SV A S

CMB

A A A A A A A A A A A S A A~
A A A A A S VA i

K

L LC BCS

NN

Figure A-5.2-7: Workload 7

LZZ4 crs

NN

224 cFs

=

S
=~

-

- (4

LT
¥

|1

14 .

L LCBCSC N

1
_

0.65
0.55{}
0.50 [ }f

£ 0.45
0.35H}
0.30f
0.25 -}
0.20 |-}
0.15
0.90F
0.85f

T 0.80f

2075 b
0.65 1

EO.?O-'

o
N
S 0.40

N 0.50

£ 0454

S 0.40ff
0.35f |
0.30

0.25 [

146

L BCSC N

L BCSC N

benchmarks

L BCSC N
Figure A-5.2-8: Workload 8

L BCSC N

0.20 | {4 H#
0.15



=8 ropr

[z crs

B rop-Lcrf ...

=2 cus

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A A A L OV L A A AV L S A A

k1A -

1

P
F

Na
-

1.
2d

0.50 1 111k
0.35r¢
0.30 1
0.25
0.20{
0.15

£ 045 .

0.65 - 1}
0.55r{

0.85F -
E 0.60 - UMY |

© 0.80 - Al

0.90
20751
Eo70f
£
v
o]
=]
@
N
S 0.40[{

L BC SC

L BC sC

L BC SC

L BC 5C

benchmarks

Figure A-5.2-9: Workload 9

E=8 ror

B rop-Lol

CMB

LZZ4 crs
NN

A A A A A

. \\““‘.‘\‘\““l“.““‘

]
1

Ly

T Fl

£

14

F

4.

£8

-

¥l

-4 1

0.85 -
D080

E0.70F

0.65

4~
w

pra}
=]

0.55
0.50

£ 0.45

Q
e

S 0.40 i}

0.35

0.30 [

0.25 [

0.20 At}
0.15

L BC SC N L BC SC N
benchmarks

L BC 5€¢ N

L BC SC N

Figure A-5.2-10: Workload 10

147



Esed rop

\ezza crs

by

o}

T

m

N W e

= m

S} :

w :

21

e = S

I”—r A

L= ——— : = — =

A : C

oo h T

R : b —~ e

. = .

S —— e o S e e =

L E= e ~

N "y

Fo L e S i

R L -

| NS N I I N _— — N_— ——— W—_— _—

o N o mn o n o n o ;o o ;no;non

o mOM~M~WOOWN NS ST mME N

[ I == T e TR e T o Y o T e T Y o T e s R o Y o I e R o I o B o i o |
p=leulul=] sawl] paZljewlou

L LC BOSC N L LC BOSC N
benchmarks

L LC BCSC N

L LC BCSCN

Figure A-5.2-11: Workload 11

BEelR roP

\zz2 crs

- m
o 5]
L .}
: al
L e}
: ~
L =)
-
—y
e}
S 2
|
2 3
g Q
P
- -
m
[sa] wn
= e}
g g
&}
w -]
1 ~3
S 3 - == m
r == e e 3 S @
L : Lo ~—+ o .}
o m Ee——— S
i mr—” ) ./ - cam— n r = w
- = s
o | I - - = £ > . 2 R — = - f&L
B B L - L 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _
O N o Wnomnomnomnownowmnonon
R I B e A S N S LS B B R
=== === === = I = e R = = = R = =
P21BUILLIR] S2WI] pazijewdiou

benchmarks

Figure A-5.2-12: Workload 12
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Figure A-5.2-13: Workload 13
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Figure A-5.2-14: Workload 14
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