

ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ
ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ ΚΑΙ ΜΗΥΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ

ΔΡΓΑΣΗΡΙΟ ΤΠΟΛΟΓΙΣΙΚΩΝ ΤΣΗΜΑΣΩΝ

Σεσνικέρ σπονοδπομολόγηζηρ εθαπμογών για δίκαιη καηανομή

πόπυν ζε πολςπύπηνερ απσιηεκηονικέρ

ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑΙΑ

ηνπ

Θεόδυπος Ι. Μαπινάκη

Επιβλέπυν: Νεθηάξηνο Κνδχξεο

 Καζεγεηήο Δ.Μ.Π.

Αζήλα, Ινχιηνο 2016

ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ

ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ ΚΑΙ ΜΗΥΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ

ΔΡΓΑΣΗΡΙΟ ΤΠΟΛΟΓΙΣΙΚΩΝ ΤΣΗΜΑΣΩΝ

Σεσνικέρ σπονοδπομολόγηζηρ εθαπμογών για δίκαιη καηανομή

πόπυν ζε πολςπύπηνερ απσιηεκηονικέρ

ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑΙΑ

ηνπ

Θεόδυπος Ι. Μαπινάκη

Επιβλέπυν: Νεθηάξηνο Κνδχξεο

 Καζεγεηήο Δ.Μ.Π.

Δγθξίζεθε απφ ηελ ηξηκειή εμεηαζηηθή επηηξνπή ηελ 1
ε
 Ινπιίνπ 2016.

 (Υπογπαθή) (Υπογπαθή) (Υπογπαθή)

.............................
Νεθηάξηνο Κνδχξεο Γεψξγηνο Γθνχκαο Γεκήηξηνο Σζνπκάθνο

Καζεγεηήο Δ.Μ.Π. Λέθηνξαο Δ.Μ.Π. Δπηίθνπξνο Καζεγεηήο

 Ινλίνπ Παλεπηζηεκίνπ

Αζήλα, Ινχιηνο 2016

(Τπνγξαθή)

...

ΜΑΡΙΝΑΚΗ ΘΕΟΔΩΡΟ

Γηπισκαηνχρνο Ηιεθηξνιφγνο Μεραληθφο θαη Μεραληθφο Τπνινγηζηψλ Δ.Μ.Π.

Copyright © Θεφδσξνο Ι. Μαξηλάθεο, 2016

Με επηθχιαμε παληφο δηθαηψκαηνο. All rights reserved

Απαγνξεχεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνχζαο εξγαζίαο, εμ νινθιήξνπ

ή ηκήκαηνο απηήο, γηα εκπνξηθφ ζθνπφ. Δπηηξέπεηαη ε αλαηχπσζε, απνζήθεπζε θαη δηαλνκή

γηα ζθνπφ κε θεξδνζθνπηθφ, εθπαηδεπηηθήο ή εξεπλεηηθήο θχζεο, ππφ ηελ πξνυπφζεζε λα

αλαθέξεηαη ε πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην παξφλ κήλπκα. Δξσηήκαηα πνπ

αθνξνχλ ηε ρξήζε ηεο εξγαζίαο γηα θεξδνζθνπηθφ ζθνπφ πξέπεη λα απεπζχλνληαη πξνο ηνλ

ζπγγξαθέα.

Οη απφςεηο θαη ηα ζπκπεξάζκαηα πνπ πεξηέρνληαη ζε απηφ ην έγγξαθν εθθξάδνπλ ηνλ

ζπγγξαθέα θαη δελ πξέπεη λα εξκελεπζεί φηη αληηπξνζσπεχνπλ ηηο επίζεκεο ζέζεηο ηνπ

Δζληθνχ Μεηζφβηνπ Πνιπηερλείνπ.

5

Πεπίλητη

 Η ρξνλνδξνκνιφγεζε είλαη κηα δηαδηθαζία, ε νπνία αθνξά ην δηακνηξαζκφ πφξσλ ζε

εξγαζίεο αλά ηαθηά ρξνληθά δηαζηήκαηα, κε ζθνπφ ηε βειηηζηνπνίεζε νξηζκέλσλ ζηφρσλ. Έλαο

ηνκέαο, ζηνλ νπνίν ρξεζηκνπνηείηαη θπξίσο, είλαη ηα ππνινγηζηηθά ζπζηήκαηα. Όζνλ αθνξά

κνλνπχξελεο αξρηηεθηνληθέο έρνπλ αλαπηπρζεί ηερληθέο ρξνλνδξνκνιφγεζεο, νη νπνίεο

αληαπεμέξρνληαη απνδνηηθά ζην δηακνηξαζκφ ηνπ ρξφλνπ ηνπ ππξήλα αλάκεζα ζηηο δηεξγαζίεο ηνπ

ζπζηήκαηνο. Η αλάγθε φκσο γηα εμππεξέηεζε κεγαιχηεξνπ θφξηνπ εξγαζίαο νδήγεζε ηνπο

θαηαζθεπαζηέο ζηε δεκηνπξγία πνιππχξελσλ αξρηηεθηνληθψλ ελζσκαηψλνληαο πνιινχο ππξήλεο

κέζα ζε έλα νινθιεξσκέλν θχθισκα (CMP). Αληίζεηα κε ηα ζπκκεηξηθά πνιππχξελα ζπζηήκαηα

(SMP), νη ππξήλεο ησλ CMPs δελ ζεσξνχληαη αλεμάξηεηεο κνλάδεο εθφζνλ κνηξάδνληαη ζηνηρεία

ηεο αξρηηεθηνληθήο, φπσο ην ηειεπηαίν επίπεδν θξπθήο κλήλεο θαη ην δίαπιν κλήκεο.

 ηα πνιππχξελα ζπζηήκαηα απηά (CMP) ελζσκαηψζεθαλ, απηνχζηεο ή κε ιίγεο αιιαγέο,

νη ηερληθέο ρξνλνδξνκνιφγεζεο, πνπ είραλ πινπνηεζεί ζηηο ζπκκεηξηθέο (SMP) αξρηηεθηνληθέο.

Δθηειψληαο πξνγξάκκαηα παξάιιεια ζε ππξήλεο πνπ κνηξάδνληαη ζηνηρεία ππάξρεη πηζαλφηεηα

λα παξαηεξήζνπκε κείσζε ζηελ απφδνζή ηνπο ιφγσ αληαγσληζκνχ κεηαμχ ηνπο. Τηνζεηψληαο

ηερληθέο πνπ δε ιακβάλνπλ ππφςηλ ηνπο ηνλ αληαγσληζκφ απηφλ, ζεσξψληαο ηνπο ππξήλεο

απνκνλσκέλεο κνλάδεο πνπ δελ κνηξάδνληαη ζηνηρεία, νδεγνχκαζηε ζε απνηειέζκαηα πνπ δελ

πιεξνχλ ηηο αξρέο ηεο ρξνλνδξνκνιφγεζεο. Μεξηθά πξνβιήκαηα πνπ δεκηνπξγνχληαη είλαη ηα

εμήο: πνιχ ρακειή απφδνζε ησλ εθαξκνγψλ, άληζνο δηακνηξαζκφο ησλ ππξήλσλ κεηαμχ ηνπο θαη

ζπλεπψο απξφβιεπηε θαη αζηαζήο ζπκπεξηθνξά ηνπ ζπζηήκαηνο.

 Ο ζθνπφο απηήο ηεο δηπισκαηηθήο είλαη λα παξνπζηάζνπκε ηερληθέο πνπ βειηηψλνπλ ηελ

άληζε θαηαλνκή ησλ πφξσλ, ιακβάλνληαο ππφςηλ ηελ δηακάρε ησλ δηεξγαζηψλ γηα ηα κνηξαδφκελα

ζηνηρεία ηνπ ηζηπ θαη ηηο θαηαζηξνθηθέο ζπλέπεηεο πνπ απηή απνθέξεη ζηελ αμηνπηζηία ηνπ

ζπζηήκαηνο. Δπηθεληξσλφκαζηε ζε ηερληθέο πνπ πξνζθέξνπλ δηθαηνζχλε ζηηο εθαξκνγέο κε ηνπο

παξαθάησ ηξφπνπο. ηελ πξψηε πξνζέγγηζε ζρεδηάδνπκε έλαλ ρξνλνδξνκνινγεηή πνπ

πξνηαηξεφηεηα ηνπ είλαη λα απνθχγεη ηνλ αληαγσληζκφ ησλ δηεξγαζηψλ, βαζηζκέλνη ζε έλα ζρήκα

ηαμηλφκεζεο θαη ζε έλα κνληέιν πνπ πξνβιέπεη πσο νη δηάθνξεο θαηεγνξίεο δηεξγαζηψλ

αιιειεπηδξνχλ. Η επφκελε κέζνδνο πξνζπαζεί λα δηαρεηξηζηεί ηνλ αληαγσληζκφ ησλ δηεξγαζηψλ.

Λακβάλεη ππφςηλ ηε κείσζε ηεο απφδνζεο ησλ δηεξγαζηψλ θαη ηηο επλνεί αλαιφγσο. Απην ην

επηηπγράλεη δίλνληαο επθαηξία ζπρλφηεξεο εθηέιεζεο ζε εθείλεο πνπ ππνθέξνπλ πεξηζζφηεξν, ζε

βάξνο εθείλσλ πνπ εθηεινχληαη κε πςειφηεξε απφδνζε. Σέινο επεθηείλακε ηελ δεχηεξε ηερληθή

καο, έηζη ψζηε λα απνθεχγεη κέξνο ηνπ αληαγσληζκνχ θαη λα δηαρεηξίδεηαη ην ππφινηπν.

 Γνθηκάδνληαο ηηο ηερληθέο καο ζε κηα πνηθηιία πεηξακάησλ θαη ζπγθξίλνληαο ηα

απνηειέζκαηα κε ρξνλνδξνκνινγεηή πνπ ρξεζηκνπνηείηαη ζε εκπνξηθά πνιππχξελα ζπζηήκαηα

(Linux scheduler), θαηαιήμακε ζην εμήο ζπκπέξαζκα. Οη πξνηεηλφκελεο ελαιιαθηηθέο είλαη ηθαλέο

λα βειηηψζνπλ ζε κεγάιν βαζκφ ηελ άληζε θαηαλνκή ησλ πφξσλ θαη λα πξνζθέξνπλ αμηνπηζηία

ζηελ απφδνζε ηνπ ζπζηήκαηνο.

Λέξειρ Κλειδιά: Υξνλνδξνκνιφγεζε, αληαγσληζκφο, κνηξαδφκελνη πφξνη, πνιππχξελεο

αξρηηεθηνληθέο, δηθαηνζχλε

6

7

Abstract

Scheduling is a decision-making process that deals with the assignment of resources to tasks

over given periods, aiming to optimize one or more objectives. Responsible for efficient

distribution of the CPU time among the processes, scheduler has become an essential part of

computer systems. OS schedulers for single processor architectures have become so optimized that

need for further improvements dramatically subsided. The scheduling problem was considered

solved until the arrival of chip multiprocessors (CMP). Driven by the critical problems of transistor

shrinking, heat generation, power consumption and poor performance improvement, manufacturers

abandoned single core architectures and turned to chips with multiple cooler-running, energy-

efficient processing cores. In order to provide a cost-effective solution, they integrated the cores

into a single circuit die, sharing architectural components, such as the last level cache and the

memory bus.

 Scheduling policies developed for symmetric multiprocessors (SMP) have been integrated

without modifications into CMPs. While applications run on neighboring cores of a CMP, they

contend with each other for the shared resources. This contention can result in great performance

degradation for the applications that are concurrently executed. For this reason, treating the cores

of a CMP as isolated and independent units is a very optimistic abstraction and can cause great

problems to the objectives a scheduler tries to optimize. First and foremost, it cannot be assured

that applications would make adequate progress. In addition, it is observed that resources cannot be

fairly distributed among the applications of the system. As a result, poor fairness enforcement can

lead to unstable and unpredictable performance of the system.

 In this paper, we develop 3 scheduling techniques aiming to improve the unequal sharing of

the resources, taking into consideration the destructive effects of applications interference, when

contending for the shared resources. On our first approach, we attempt to avoid pairing applications

that interfere destructively. We build a contention-aware scheduler, based on a classification

scheme and an interference prediction model. On the next approach, we manage the results of the

interference, boosting the performance of applications based on their IPC reduction. Applications

that are heavily impacted have the opportunity to increase their running time at the expense of the

well-performed. Finally, we extend our previous technique, aiming to avoid a part of the contention

and manage the rest of it.

 Evaluating our proposed scheduling policies on a variety of workloads and comparing them

with the Linux scheduler, we come to the following conclusions. All of them manage to overcome

the problem of unfair distribution, creating an environment where Quality of Service (QoS)

guarantees are possible to be provided and Service Level of Agreements (SLAs) can be enforced.

Key words: Scheduling, contention, shared resources, chip multiprocessor, fairness

8

9

Εςσαπιζηίερ

 ε απηφ ην ζεκείν ζα ήζεια λα επραξηζηήζσ ηνλ επηβιέπνληα θαζεγεηή κνπ θ. Ν.

Κνδχξε πνπ κνπ έδσζε ηελ επθαηξία λα αζρνιεζψ κε απηφ ην ζέκα. Δπίζεο ζα ήζεια λα

επραξηζηήζσ ην θ. Γ. Γθνχκα γηα ηηο ζπκβνπιέο ηνπ θαη ηνλ Αιέμαλδξν Υαξηηάην, πνπ κε

βνήζεζε ζηελ πεξάησζε ηεο εξγαζίαο.

 Σέινο ζα ήζεια λα επραξηζηήζσ ηνλ παηέξα θαη ηελ κεηέξα κνπ πνπ κε ππνζηήξημαλ ζε

φιε κνπ ηε πξνζπάζεηα θαη κε ελζάξξπλαλ δηαξθψο κε ηελ αγάπε ηνπο. Δπραξηζηψ ηδηαηηέξσο

ηε Φιψξα πνπ ζηάζεθε ζην πιεπξφ κνπ ηηο πην δχζθνιεο ζηηγκέο κνπ θαη ηνπο θίινπο κνπ πνπ

κε άθνπγαλ ππνκνλεηηθά.

10

11

Κεθάλαιο 1

Ειζαγυγή

1.1 Xρονοδρομολόγηζη και Εθαρμογές

 Η ρξνλνδξνκνιφγεζε είλαη κηα δηαδηθαζία, θαηά ηελ νπνία ιακβάλνληαη απνθάζεηο γηα

ην δηακνηξαζκφ πφξσλ ζε εξγαζίεο, κε ηέηνην ηξφπν ψζηε λα επηηπγράλνληαη ζπγθεθξηκέλνη

ζηφρνη. Παίδεη πνιχ ζεκαληηθφ ξφιν ζε δηάθνξνπο ηνκείο θαη έρεη εθαξκνγέο ζε εξγνζηάζηηα

παξαγσγήο, ζε ππεξεζίεο κεηαθνξψλ θαη ζε ππνινγηζηηθά ζπζηήκαηα. ε θάζε ηνκέα νη

πφξνη, νη εξγαζίεο θαη νη πξνο εθπιήξσζε ζηφρνη παίξλνπλ πνηθίιεο κνξθέο.

 Αο εμεηάζνπκε, αξρηθά, έλα εξγνζηάζην πνπ παξάγεη ράξηηλεο ζπζθεπαζίεο γηα

ζθπινηξνθέο, θάξβνπλα θαη ηζηκέλην. Η δηαδηθαζία παξαγσγήο απνηειείηαη απν δηάθνξα

ζηάδηα, φπσο ηχπσκα ινγνηχπνπ ή ξάςηκν ησλ πιεπξψλ ηεο ζπζθεπαζίαο. ε θάζε ζηάδην ηα

κεραλήκαηα δηαθέξνπλ σο πξνο ηα ραξαθηεξηζηηθά ηνπο θαη ηηο ιεηηνπξγίεο πνπ εμππεξεηνχλ.

Σα κεραλήκαηα απηά απνηεινχλ ηνπο πφξνπο ηνπ εξγνζηαζίνπ. Αλάινγα κε ην είδνο ηεο

παξαγγειίαο, θάπνηεο εξγαζίεο πξέπεη λα πξαγκαηνπνηεζνχλ ζηα κεραλήκαηα. Οη παξαγγειίεο

δελ αθνξνχλ κφλν έλα πξντφλ, άξα θαη νη ιεηηνπξγίεο ησλ κεραλεκάησλ δηαθέξνπλ απν

παξαγγειία ζε παξαγγειία. Έλαο ζηφρνο ζα κπνξνχζε λα είλαη ε ειαρηζηνπνίεζε ηνπ ρξφλνπ

παξαγσγήο κηαο ζπγθεθξηκέλεο παξαγγειίαο, αλ ππνζέζνπκε φηη έλαο πςίζηεο ζεκαζίαο

πειάηεο απαηηεί γξήγνξε παξάδνζε. Έλαο άιινο ζηφρνο κπνξεί λα είλαη ε απνδνηηθή

ιεηηνπξγία ησλ κεραλεκάησλ γηα εμνηθνλφκεζε ελέξγεηαο θαη θφζηνπο. ε θάζε πεξίπησζε

βιέπνπκε φηη είλαη αλαγθαία ε εθαξκνγή κίαο πνιηηηθήο, πνπ ζα κνηξάδεη ηνπο πφξνπο ζηηο

εξγαζίεο κε ηέηνην ηξφπν, ψζηε ζπγθεθξηκέλνη ζηφρνη λα εμππεξεηνχληαη.

 Η ρξνλνδξνκνιφγεζε ζπλαληάηαη, επίζεο, ζηα ππνινγηζηηθά ζπζηήκαηα. Απνηειεί

αλαπφζπαζην θνκκάηη ηνπ ιεηηνπξγηθνχ ζπζηήκαηνο θαη ε θχξηα αξκνδηφηεηα ηεο είλαη λα

παξέρεη έλα πεξηβάιινλ, ζην νπνίν πνιιά πξνγξάκκαηα κπνξνχλ λα ηξέρνπλ παξάιιεια. Μηα

δηεξγαζία δελ κπνξεί λα θξαηάεη ηνλ επεμεξγαζηή απαζρνιεκέλν φιε ηελ ψξα. Σν ιεηηνπξγηθφ

ζχζηεκα νθείιεη λα πξνζθέξεη ηκήκα ηνπ ρξφλνπ ηνπ επεμεξγαζηή ζε φιεο ηηο δηεξγαζίεο θαη

λα δηαβεβαηψλεη φηη απηέο θάλνπλ πξφνδν. Ο δξνκνινγεηήο απνηειεί απαξαίηεην θνκκάηη ηνπ

ιεηηνπξγηθνχ, δηφηη εθηφο απφ ην λα πξνζθέξεη έλα πνιππξνγξακκαηηζηηθφ πεξηβάιινλ, παίδεη

βαξίλνπζαο ζεκαζίαο ξφιν ζηε ζπλνιηθή απφδνζε ηνπ ζπζηήκαηνο, θαζψο νη ζηφρνη πνπ

πξνζπαζεί λα ηθαλνπνηήζεη ζρεηίδνληαη κε ηελ απφδνζή ηνπ. Μεξηθνί απν ηνπο ζηφρνπο είλαη

νη εμήο: λα θξαηάκε ηνλ επεμεξγαζηή φζν πεξηζζφηεξν απαζρνιεκέλν γίλεηαη, λα εθηεινχκε

φζν ην δπλαηφλ πεξηζζφηεξεο δηεξγαζίεο αλα κνλάδα ρξφλνπ ή λα ειαρηζηνπνηχκε ην ρξφλν

ησλ δηεξγαζηψλ πνπ κέλνπλ εθηφο επεμεξγαζηή. Αλεμαξηήησο ζηφρνπ, ν δξνκνινγεηήο

εθαξκφδεη δχν πνιηηηθέο. ηελ κία κνηξάδεη ηνλ επεμεξγαζηή ρξνληθά θαη ζηελ άιιε ηνπηθά,

δειαδή πσο ζε κία ρξνληθή ζηηγκή ζα κνηξαζηνχλ νη ππξήλεο ζηηο δηεξγαζίεο. Όηαλ πξφθεηηαη

γηα κνλνπχξελεο αξρηηεθηνληθέο ε κφλε πνιηηηθή πνπ κπνξεί λα εθαξκνζηεί είλαη ε θαηαλνκή

ηνπ ρξφλνπ, ελψ ζε πνιππχξελεο αξρηηεθηνληθέο κπνξνχλ λα εθαξκνζηνχλ θαη νη δχν.

12

1.2 Πολσπύρηνα Σσζηήμαηα (CMPs)

 Οη θαηαζθεπαζηέο γηα ρξφληα επηδίσθαλ ηελ αχμεζε ηεο απφδνζεο ηνπ επεμεξγαζηή,

απμάλσληαο ηνλ αξηζκφ ησλ ηξαλδίζηνξ θαη ζπξξηθλψλνληαο ηα ψζηε λα κεηψζνπλ ην ζπλνιηθφ

κέγεζνο ηνπ ηζηπ. Απηή ε ηάζε, φκσο, δελ κπνξεί λα ζπλερηζηεί γηα πάληα, θαζψο νη

δπλαηφηεηεο ζπξξίθλσζεο ησλ ηξαλδίζηνξ πεξηνξίδνληαη θαη πξνβήκαηα θαηαλάισζεο θαη

ζεξκφηεηαο ζπλερψο απμάλνληαη. Έηζη ε βειηίσζε ηεο απφδνζεο ηνπ επεμεξγαζηή άξρηζε λα

κεηψλεηαη. ηε δεθαεηία ηνπ 90 ε απφδνζε απμαλφηαλ θαηά 60 % θάζε ρξφλν,ελψ απν ην 2000

έσο ην 2004 ε αχμεζε έπεζε ζην 40% θάζε ρξφλν. Η θαηαζθεπή ελφο ειάρηζηα, θαηά 20%

γξεγνξφηεξνπ ηζηπ κε δηπιάζην κέγεζνο δελ αληαπνθξίλεηαη ζηηο πξνζδνθίεο καο γηα

βειηησκέλε απφδνζε, απνδνηηθή θαηαλάισζε θαη κεησκέλν θφζηνο.

 Γηα απηνχο ηνπο ιφγνπο, ζηξαθήθακε ζηελ θαηαζθεπή πνιππχξελσλ ζπζηεκάησλ. ε

αληίζεζε κε ηηο κνλνπχξελεο αξρηηεθηνληθέο, ελζσκαηψλνπκε ζην ίδην ηζηπ πνιινχο ππξήλεο,

νη νπνίνη ιεηηνπξγνχλ ζε ειαθξψο ρακειφηεξεο ηαρχηεηεο θαη κνηξάδνληαη ζηνηρεία

αξρηηεθηνληθήο (CMPs). Ο δηακνηξαζκφο ηνπ θφξηνπ ζε πνιιέο κνλάδεο επεμεξγαζίαο, νη

νπνίεο κπνξνχλ λα εθηεινχλ πξνγξάκκαηα παξάιιεια απνθέξεη ζεκαληηθή αχμεζε ζηελ

ζπλνιηθή απφδνζε. Απφ ηελ άιιε, ην θφζηνο γηα ηελ θαηαζθεπή θαη ηε ιεηηνπξγία ηνπο

(θαηαλάισζε) είλαη ρακειφηεξν ζπγθξηηηθά κε ηα ζπκκεηξηθά πνιππχξελα ζπζηήκαηα, θαζψο

νη επεμεξγαζηέο κνηξάδνληαη ζηνηρεία θαη ε επηθνηλσλία ηνπο γίλεηαη γξεγνξφηεξα.

 Λφγσ ησλ πιενλεθηεκάησλ πνπ πξνζθέξνπλ, απηέο νη αξρηηεθηνληθέο έρνπλ θπξίαξρε

ζέζε ζηα ππνινγηζηηθά ζπζηήκαηα. Υξεζηκνπνηνχληαη επξέσο ζε πνιινχο ηνκείο, απν

ελζσκαησκέλα ζε ζπζηήκαηα επεμεξγαζίαο ςεθηαθψλ ζεκάησλ. Όζνλ αθνξά ηελ βηνκεραλία,

ε AMD, ε Fujitsu, ε IBM, ε Intel θαη ε Sun Microsystems θαηαζθεπάδνπλ ήδε πνιππχξελα

ζπζηήκαηα θαη ζθνπεχνπλ λα ζρεδηάζνπλ λέα κνληέια ζην κέιινλ.

1.3 Ο τρονοδρομολογηηής ηοσ λειηοσργικού ζσζηήμαηος Linux

 Όπσο αλαθέξακε λσξίηεξα, ν ξφινο ησλ δξνκνινγεηψλ ζηα CMPs είλαη λα κνηξάδεη

ηνπο επεμεξγαζηέο φρη κφλν ρξνληθά αιιά θαη ηνπηθά. Γειαδή λα απνθαζίδνπλ ζε θάζε

ρξνληθή ζηηγκή πνηεο δηεξγαζίεο ζα αλαηεζνχλ ζηνπο ππξήλεο. Ο θχξηνο ζθνπφο ηνπο είλαη λα

κνηξάδνπλ ην θφξην εξγαζίαο ίζα κεηαμχ ησλ ππξήλσλ. Αο εμεηάζνπκε έλαλ δξνκνινγεηή πνπ

ρξεζηκνπνηείηαη ζην ιεηηνπξγηθφ ζχζηεκα ηνπ Linux, ψζηε λα θαηαιάβνπκε θαιχηεξα πσο ην

ζχλνιν ησλ δηεξγαζηψλ δηαρεηξίδεηαη ζηα CMPs.

 Η ρξνλνδξνκνιφγεζε γίλεηαη ζε δχν επίπεδα. ην πξψην επίπεδν ρξεζηκνπνηνχληαη

μερσξηζηέο νπξέο δηεξγαζηψλ γηα θάζε ππξήλα θαη πνιηηηθέο γηα ηελ δηαρείξηζε ηνπο. ην

δεχηεξν επίπεδν ππάξρεη ν load balancer πνπ κνηξάδεη ηηο δηεξγαζίεο ζηνπο ππξήλεο. Με απηφλ

ηνλ ηξφπν επηηπγράλνπκε θαηαλνκή ζην ρξφλν (πξψην επίπεδν) θαη ζην ρψξν (δεχηεξν

επίπεδν).

 Η νπξά δηεξγαζηψλ ζε θάζε ππξήλα αληηπξνζσπεχεη ην ζχλνιν ησλ πξνγξακκάησλ πνπ

έρεη αλαιάβεη λα εθηειέζεη απηφο ν ππξήλαο. Η πνιηηηθή πνπ ρξεζηκνπνηείηαη γηα ηελ

δηαρείξεζε θάζε νπξάο βαζίδεηαη ζηελ εμήο αξρή. Η δηεξγαζία πνπ έρεη ηελ κεγαιχηεξε

αλάγθε γηα ππνινγηζηηθφ ρξφλν ζα είλαη ε επφκελε πνπ ζα δξνκνινγεζεί. θνπφο απηήο ηεο

πνιηηθήο είλαη λα πξνζθέξεη δίθαηε θαηαλνκή ηνπ ρξφλνπ κεηαμχ ησλ δηεξγαζηψλ θαη γηα απηφ

ην ιφγν νλνκάδεηαη CFS (Completely Fair Scheduler). Γηα λα ην πεηχρεη απηφ, ιακβάλεη

13

ππ‟φςηλ ηνπ ην ρξφλν πνπ νη δηεξγαζίεο βξίζθνληαη εθηφο ππξήλα θαη επηιέγεη θάζε θνξά

απηήλ κε ηνλ κεγαιχηεξν. Με απηφλ ηνλ ηξφπν δηαβεβαηψλεη φηη θακία δηεξγαζία δελ ζα κέλεη

εθηφο ππξήλα γηα πεξηζζφηεξν ρξφλν, κνηξάδνληαο ηνπο πφξνπο δίθαηα κεηαμχ ησλ. Η νπξά

δηεξγαζηψλ πινπνηείηαη κε έλα time-ordered red black tree γηα θάζε ππξήλα

 ηηο CMP αξρηηεθηνληθέο θάζε ππξήλαο έρεη ηε δηθηά ηνπ νπξά δηεξγαζηψλ. Δθ‟φζνλ νη

ρξφλνη εθηέιεζεο ησλ δηεξγαζηψλ δηαθέξνπλ, είλαη πηζαλφ κεξηθνί επεμεξγαζηέο λα

δηαρεηξίδνληαη ιηγφηεξν αξηζκφ δηεξγαζηψλ. Απηήλ ηελ άληζε θαηαλνκή θφξηνπ πξνζπαζεί λα

κεηξηάζεη ν load balancer, ν νπνίνο εθαξκφδεηαη πεξηνδηθά θαη ζθνπφο ηνπ είλαη λα ηζνξξνπεί

ην κήθνο ησλ νπξψλ ζε φινπο ηνπο ππξήλεο. Απηφ ην επηηπγράλεη κεηαθηλφληαο δηεξγαζίεο απν

ην πην απαζρνιεκέλν ππξήλα ζε εθείλν κε ην ιηγφηεξν θφξην. Η εμηζνξξφπεζε ηνπ θφξηνπ

γίλεηαη ηεξαξρηθά, μεθηλψληαο απν επίπεδν πνπ αθνξά δηαθνξεηηθά NUMA domains

θαηαιήγνληαο ζην επίπεδν ησλ SMT contexts. Η ζπρλφληεηα θαη ν αξηζκφο ησλ κεηαθηλήζεσλ

δηαθέξεη απν επίπεδν ζε επίπεδν.

1.4 Περιγραθή Κεθαλαίων

 ην δέπηεξν θεθάιαην παξνπζηάδνπκε ηελ επίδξαζε ησλ εθαξκνγψλ ζηελ απφδνζε

ηνπο,φηαλ εθείλεο αληαγσλίδνληαη γηα ηνπο κνηξαδφκελνπο πφξνπο. Δπηπιένλ κειεηάκε πσο ε

αληηκεηψπηζε ησλ πφξσλ απν ζχγρξνλν ρξνλνδξνκνινγεηή, επεξεάδεη ηελ απφδνζε ηνπ

ζπζηήκαηνο.

 ην ηξίην θεθάιαην πξνηείλνπκε 3 ηερληθέο ρξνλνδξνκνιφγεζεο, κε ζθνπφ λα

βειηηψζνπκε ηε ζηαζεξφηεηα ηνπ ζπζηήκαηνο θαη λα πξνζθέξνπκε δηθαηε θαηαλνκή ησλ

πφξσλ

 ην ηέηαξην θεθάιαην, ειέγρνπκε ηηο ηερληθέο καο ζε κία πνηθηιία θφξησλ εξγαζίαο θαη

ζπγθξίλνπκε ηα απνηειέζκαηα καο κε ην Linux scheduler.

 ην πέκπην θεθάιαην, παξνπζηάδνπκε ηα ζπκπεξάζκαηα καο θαη πηζαλέο ηδέεο γηα

βειηίσζε, ελψ ζην ηειεπηαίν θεθάιαην αλαθέξνπκε δηάθνξεο πξνζεγγίζεηο πνπ έρνπλ γίλεη

απφ ηελ επηζηεκνληθή θνηλφηεηα.

Κεθάλαιο 2

Οπιζμόρ ηος Πποβλήμαηορ και Κίνηηπο

2.1 Δημιοσργική και καηαζηροθική ζσμπεριθορά

 Όπσο αλαθέξακε πξνεγνπκέλσο, νη ππξήλεο ησλ CMP είλαη ελζσκαηνκέλνη ζε έλα ηζηπ

θαη κνηξάδνληαη ζηνηρεία ηεο αξρηηεθηνληθήο, φπσο ηελ θξπθή κλήκε ηειεπηαίνπ επηπέδνπ θαη

ην δίαπιν κλήκεο. Όηαλ εθηεινχληαη εθαξκνγέο παξάιιεια ζηνπο ππξήλεο νη κνηξαδφκελνη

πφξνη κπνξεί λα έρνπλ είηε ζεηηθφ είηε αξλεηηθφ αλίθηππν ζηελ απφδνζή ηνπο.

 ηελ πεξίπησζε πνπ ζπλεηζθέξνπλ δεκηνπξγηθά, νη εθαξκνγέο κπνξνχλ λα γλσξίζνπλ

ηξνκεξή βειηίσζε ζηελ απφδνζε ηνπο. Απηφ κπνξεί λα επηηεπρζεί φηαλ λήκαηα κηαο

εθαξκνγήο θάλνπλ αλαθνξά ζηα ίδηα ή ζε ηνπηθά δεδνκέλα ηαπηφρξνλα (fine-grained sharing).

Με απηφ ην ηξφπν κεξηθά λήκαηα θέξλνπλ δεδνκέλα ζηελ θξπθή κλήκε θαη εμππεξεηνχλ θαη

ηα γεηηνληθά λήκαηα πνπ ρξεζηκνπνηνχλ ηα ίδηα, ρσξίο λα ρξεηάδεηαη λα θάλνπλ εθ λένπ

14

αλαθνξά ζηελ κλήκε.

 Απφ ηελ άιιε κεξηά, νη κνηξαδφκελνη πφξνη κπνξεί λα έρνπλ θαηαζηξνθηθέο ζπλέπεηεο

γηα ηηο εθαξκνγέο. Απηφ ζπκβαίλεη φηαλ ηξέρνπλ παξάιιεια λήκαηα δηαθνξεηηθψλ δηεξγαζηψλ,

πνπ δελ έρνπλ θακία επηθνηλσλία κεηαμχ ηνπο. Δπίζεο λήκαηα ησλ ίδησλ δηεξγαζηψλ είλαη

δπλαηφ λα έρνπλ έλα κνηίβν αλαθνξάο ζηα δεδνκέλα πνπ λα κελ εμππεξεηνχλ ηα γεηηνληθά

ηνπο. Γηα παξάδεηγκα κπνξεί έλα λήκα λα αλαθέξεηαη ζε έλα ηκήκα δεδνκέλσλ γηα θάπνην

ρξνληθφ δηάζηεκα θαη ην γεηηνληθφ ηνπ λα αλαθεξζεί ζε απηφ αθνχ ηειεηψζεη ηελ αλαθνξά ην

αξρηθφ(coarse-grained sharing). πλεπψο δελ κπνξεί ην έλα λα βνεζήζεη ην άιιν θαη

ζπκπεξηθέξνληαη ζαλ λήκαηα μερσξηζηψλ δηεξγαζηψλ. ε φιεο ηηο πεξηπηψζεηο ηα λήκαηα

πξνζπαζνχλ λα ηθαλνπνηήζνπλ ηηο απαηηήζεηο ηνπο, ρξεζηκνπνηψληαο ηνπο κνηξαδφκελνπο

πφξνπο γηα δηθφ ηνπο ινγαξηαζκφ απνθιεηζηηθά θαη αληαγσλίδνληαη κεηαμχ ηνπο γηα ηελ

ηθαλνπνίεζε ησλ αλαγθψλ ηνπο. Απηή ε δηακάρε γηα ηε ρξήζε ησλ κνηξαδφκελσλ πφξσλ έρεη

ζεκαληηθέο αξλεηηθέο ζπλέπεηεο ζηελ απφδνζή ησλ εθαξκνγψλ, θαζψο παξαηεξείηαη

θαζπζηέξεζε ζηελ εθηέιεζε ηνπο ζπγθξηηηθά κε ηνλ φηαλ ηξέρνπλ κφλεο ηνπο.

 Μειεηάκε παξαθάησ ηελ ζχγθξνπζε ζε δχν κνηξαδφκελνπο πφξνπο, ηε LLC θαη ην

Memory Bandwidth

2.2 Ανηαγωνιζμός για ηη κρσθή μνήμη

 Όηαλ νη δηεξγαζίεο ηξέρνπλ παξάιιεια ν πξψηνο πφξνο, γηα ηνλ νπνίν έξρνληαη ζε

ζχγθξνπζε είλαη ε θξπθή κλήκε. Γηεξγαζίεο θέξλνπλ δεδνκέλα ζηε θξπθή κλήκε κε ζθνπφ λα

ηθαλνπνηήζνπλ ηηο απαηηήζεηο ηνπο. ηελ πεξίπησζε πνπ ηξέρεη κία δηεξγγαζία ε θξπθή κλήκε

πεξηέρεη ηα δεδνκέλα ηεο. Όηαλ φκσο ηξέμεη παξάιιεια κία άιιε ζηνλ γεηηνληθφ ππξήλα,

θέξλεη ηα δηθά ηεο δεδνκέλα, δηψρλνληαο απν ηε θξπθή κλήκε ηα δεδνκέλα ηεο άιιεο. Απηφ

έρεη ζαλ απνηέιεζκα ηελ αχμεζε ησλ απνηπρηψλ θαη ζπλεπψο κεγαιχηεξεο θαζπζηεξήζεηο

ζηελ εθηέιεζε ηεο δηεξγαζίαο. Σξέρνληαο ζε έλα ηεηξαπχξελν ζχζηεκα κε θνηλή LLC (ζα

αλαιχζνπκε ιεπηνκεξψο παξαθάησ) 4 εθαξκνγέο παξαηεξνχκε ηηο θαηαζηξνθηθέο ζπλέπεηεο

πνπ έρεη απηή ε δηακάρε ζηελ απφδνζε ηνπο. (Figure1.1-1)

Figure 1.1-1: Δπίπηωζη ηηρ αύξηζηρ ηων MPI ζηο IPC 4 διεπγαζιών πος ηπέσοςν παπάλληλα

 Παξαηεξνχκε, ινηπφλ, φηη ν αληαγσληζκφο γηα ηελ θξπθή κλήκε πξνθαιεί αχμεζε ζηα

15

MPI ησλ εθαξκνγψλ. Βιέπνπκε, επίζεο, φηη ε εθαξκνγέο δελ επεξεάδνληαη ην ίδην, κεξηθέο

επσθεινχληαη πεξηζζφηεξν απφ ηε θξπθή κλήκε ελψ άιιεο φρη.

2.2 Ανηαγωνιζμός για ηο Memory Bandwidth

 Έλα άιιν ζεκείν ζχγθξνπζεο είλαη ν δίαπινο ηεο κλήκεο. Ο ξπζκφο, κε ηνλ νπνίν ηα

δεδνκέλα δηαβάδνληαη ή γξάθνληαη απφ θαη πξνο ηε κλήκε, νλνκάδεηαη Memory Bandwidth.

Όηαλ ηξέρνπλ παξάιιεια δηεξγαζίεο, κνιχλνπλ ην δίαπιν κλήκεο κε δεδνκέλα. Σν ζχζηεκα

ηεο κλήκεο, φπσο είλαη θπζηθφ, έρεη έλα φξην ζην ξπζκφ εμππεξέηεζεο ησλ δεδνκέλσλ. Απηφ

ζεκαίλεη φηη ππάξρεη έλα ζεκείν ζην νπνίν ην Bandwidth δελ κπνξεί λα ηθαλνπνηήζεη φιεο ηηο

δηεξγαζίεο. ε απηή ηε πεξίπησζε ην Bandwidth κνηξάδεηαη κεηαμχ ησλ δηεξγαζηψλ θαη θάζε

κία παίξλεη έλα ηκήκα ηνπ αξρηθνχ εχξνπο πνπ ζα έπαηξλε, φηαλ έηξερε κφλε ηεο.

Υξεζηκνπνηψληαο streaming εθαξκνγέο, δειαδή εθαξκνγέο πνπ ρξεζηκνπνηνχλ δεδνκέλα απφ

ηελ κλήκε έσο ηνλ επεμεξγαζηή ρσξίο λα επσθεινχληαη απν ηηο θξπθέο κλήκεο, παξαηεξνχκε

πψο ε δηακάρε γηα ην Memory Bandwidth επεξεάδεη ηελ απφδνζή ηνπο.

Figure 1.1-2: Η μείωζη ηος Bandwidth έσει άμεζο ανηίκηςπο ζηο IPC 4 streaming εθαπμογών

 Παξαηεξνχκε φηη ε ζχγθξνπζε ζην δίαπιν ηεο κλήκεο πξνθαιεί κείσζε ηνπ Bandwidth

θαη κία αλάινγε κείσζε ζην IPC. Απφ απηφ θαηαιαβαίλνπκε φηη ην Bandwidth είλαη έλαο

ζεκαληηθφο παξάγνληαο πνπ επεξεάδεη ηελ απφδνζε ησλ δηεξγαζηψλ.

2.3 Kίνηηρο

 Με ηελ άθημε ησλ CMPs νη πεξηζζφηεξεο ηερληθέο πιηθνχ θαη ινγηζκηθνχ πνπ είραλ

πινπνηεζεί ζηηο κνλνπχξελεο αξρηηεθηνληθέο ή ζηα SMPs εθαξκφζζεθαλ ρσξίο κεηαηξνπέο.

Οη ρξνλνδξνκνινγεηέο ζεσξνχλ φηη νη ππξήλεο είλαη αλεμάξηεηνη θαη απνκνλσκέλνη. Απηφ,

φκσο, δελ ηζρχεη, θαζψο κνηξάδνληαη ζηνηρεία γηα ηα νπνία ππάξρεη δηακάρε κεηαμχ ησλ

εθαξκνγψλ πνπ ηξέρνπλ καδί. Η αληηκέησπηζε απηή φκσο δεκηνπξγεί πνιιά πξνβιήκαηα

ζηνπο ζηφρνπο πνπ έλαο ρξνλνδξνκνινγεηήο πξνζπαζεί λα ηθαλνπνηήζεη.

 Σξέρνληαο 4 εθαξγκνγέο ζην ζχζηεκα πνπ αλαθέξακε πξνεγνπκέλσο γηα 5 ιεπηά κε

ηνλ Linux scheduler (Figure 1.1-3) παξαηεξνχκε πσο ν ξφινο ηνπ ρξνλνδξνκνινγεηή

16

ππνβαζκίδεηαη.

 Αξρηθά είλαη πξνθαλέο φηη ν πξσηαξρηθφο ζθνπφο ηνπ λα πξνζθέξεη έλα πεξηβάιινλ,

ζην νπνίν φιεο νη δηεξγαζίεο θάλνπλ πξφνδν δελ κπνξεί λα επηηεπρζεί, θαζψο ππάξρνπλ

εθαξκνγέο ζαλ ηελ pchase_s νη νπνίεο εθηεινχληαη κε πνιχ ρακειή απφδνζε.

 Σν γεγνλφο απηφ ζε επξχηεξε θιίκαθα έρεη κεγάιε επίπησζε ζηνλ αξηζκφ ησλ

δηεξγαζηψλ πνπ ην ζχζηεκα κπνξεί λα εθηειέζεη αλά κνλάδα ρξφλνπ (throughput). ε ρξνληθφ

δηάζηεκα 5 ιεπηψλ νη δηεξγαζίεο stream_s θαη pchase_s έρνπλ εθηειεζηεί 50% θαη 80%

ιηγφηεξεο θνξέο.

 Δπίζεο είλαη αδχλαην λα εθαξκνζζεί κία πνιηηηθή κε πξνηεξαίνηεηεο. Γίλνληαο ζε κία

δηεξγαζία πςειφηεξε πξνηεξαηφηεηα ζεκαίλεη φηη επηζπκνχκε απηή λα θάλεη κεγαιχηεξε

πξφνδν. Απηφ ζην παξάδεηγκά καο δελ κπνξεί λα επηηεπρζεί βιέπνληαο ηελ πνιχ ρακειή

απφδνζε ηεο pchase_s.

 Έλαο απν ηνπο θπξηφηεξνπο ξφινπο ηνπ ρξνλνδξνκνινγεηή είλαη λα θαηαλέκεη δίθαηα

ηνπο πφξνπο κεηαμχ ησλ δηεξγαζηψλ. Απηφ πιένλ δελ κπνξεί λα γίλεη εθηθηφ, θαζψο βιέπνπκε

φηη κεξηθέο δηεξγαζίεο έρνπλ πςειή θαη άιιεο πνιχ ρακειή απφδνζε. Δίλαη εκθαλέο φηη νη

επηπηψζεηο ηεο ζχγθξνπζεο δελ κπνξνχλ λα κνηξαζηνχλ νκνηφκνξθα ζηηο εθαξκνγέο θαη

ζπλεπψο δηθαηνζχλε δελ κπνξεί λα επέιζεη.

Figure 1.1-4: Μεηαβληηή απόδοζη ηηρ εθαπμογήρ pchase_s

Figure 1.1-3: Φοπέρ ηεπμαηιζμού 4 διεπγαζιών

κανονικοποιημένερ ζηην πεπίπηωζη πος εκηελούνηαι μόνερ

ηοςρ

17

 Σέινο παξαηεξψληαο ην ζρήκα 1.1-4 θαηαιήγνπκε ζην εμήο ζπκπέξαζκα. Η απφδνζε

κηαο εθαξκνγήο εμαξηάηαη απν ηηο εθαξκνγέο πνπ ζα ηξέμνπλ ζηνπο γεηηνπληθνχο ππξήλεο. ηε

κία ηεηξάδα ε απφδνζή ηεο είλαη πνιχ ρακειή ελψ ζηελ άιιε πνιχ πςειή. Απηφ ζεκαίλεη φηη

ε απφδνζε ηνπ ζπζηήκαηνο είλαη αζηαζήο θαη απξφβιεπηε θαη ν ρξνλνδξνκνινγεηήο δελ

κπνξεί λα εγγπεζεί αμηνπηζηία ζηελ εθηέιεζε ησλ δηεξγαζηψλ.

Κεθάλαιο 3

Πποηεινόμενερ ηεσνικέρ σπονοδπομολόγηζηρ

 ε απηφ ην θεθάιαην παξνπζηάδνπκε ηξεηο ηερληθέο ρξνλνδξνκνιφγεζεο, βάζεη ησλ

νπνίσλ επηδηψθνπκε λα μεπεξάζνπκε ηα πξνβιήκαηα ζηαζεξφηεηαο θαη αμηνπηζηίαο πνπ

δεκηνπξγνχλ νη ρξνλνδξνκνινγεηέο πνπ δελ ιακβάλνπλ ππ‟φςηλ ηνπο ηελ ζχγθξνπζε ζηνπο

κνηξαδφκελνπ πφξνπο.

 ηελ πξψηε πξνζέγγηζή καο, ζρεδηάδνπκε έλαλ ρξνλνδξνκνινγεηή, ν νπνίνο πξνζπαζεί

λα απνθχγεη ηε ζχγθξνπζε ησλ δηεξγαζηψλ. Σν επηηπγράλεη ρσξίδνληαο ηηο δηεξγαζίεο ζε

θαηεγνξίεο θαη εμεηάδνληαο πσο απηέο νη θαηεγνξίεο αιιειεπηδξνχλ κεηαμχ ηνπο φηαλ ηξέρνπλ

παξάιιεια. Δθ‟φζνλ ππάξρεη κία πξφβιεςε γηα ην πσο απηέο νη θαηεγνξίεο ζπγθξνχνληαη,

είλαη έηνηκνο λα πάξεη απνθάζεηο γηα ην πσο ζα ηηο δηαρσξίζεη κε ζθνπφ λα πεηχρεη δίθαηε

θαηαλνκή ησλ πφξσλ.

 ηελ δεχηεξε πξνζέγγηζε, δηαρεηξηδφκαζηε εθ ησλ πζηέξσλ ηα απνηειέζκαηα ηεο

ζχγθξνπζεο ησλ δηεξγαζηψλ. Δπλννχκε ηηο δηεξγαζίεο πνπ έρνπλ πιεγεί πεξηζζφηεξν, δίλνληαο

ηνπο ηελ επθαηξία λα ηξέμνπλ γηα πεξηζζφηεξν ρξφλν θαη λα απμήζνπλ ηελ πξφνδν ηνπο ζε

βάξνο απηψλ πνπ ηξέρνπλ κε θαιχηεξε απφδνζε. Με απηφ ηνλ ηξφπν ζέινπκε λα

εμηζνξξνπήζνπκε ηελ απφδνζε ηνπο.

 Η ηξίηε πξνζέγγηζε είλαη επέθηαζε ηεο δεχηεξεο. Ξέξνληαο φηη κεξηθά δεπγάξηα φηαλ

ηξέμνπλ καδί, πξνθαινχλ θαηαζηξνθηθέο ζπλέπεηεο. Γηα απηφ ην ιφγν απνθεχγνπκε ηελ

εθηέιεζή ηνπο θαη εμαθνινπζνχκε λα εθαξκφδνπκε ηελ πνιηηηθή ηεο δεχηεξεο ηερληθήο,

απνθεχγνληαο έηζη έλα κέξνο ηεο ζχγθξνπζεο θαη δηαρεηξίδνληαο ην ππφινηπν. Με απηήλ ηελ

ηερληθή ζέινπκε λα πεηχρνπκε κεγαιχηεξε βειηίσζε ζηε πξφνδν ησλ δηεξγαζηψλ θαη ζπλεπψο

ζην throughput.

3.1 Πρώηη Προζέγγιζη (Αποθεύγονηας ηη ζύγκροσζη)

 Κχξην ραξαθηεξηζηηθφ απηήο ηεο ηερληθήο είλαη ε εχξεζε ηνπ θαηάιιεινπ ζπλδηαζκνχ

δηεξγαζηψλ ε νπνία νδεγεί ζηελ επηζπκεηή απφδνζε. Όπσο παξαηεξήζακε πξνεγνπκέλσο, νη

δηεξγαζίεο δελ απνδίδνπλ ην ίδην φηαλ εθηεινχληαη παξάιιεια κε άιιεο ζηνπο γεηηνληθνχο

ππξήλεο. Μεξηθνί ζπλδηαζκνί ζπγθξνχνληαη ζε πνιχ ρακειφ βαζκφ θαη απνδίδνπλ αξθεηά

θαιά, ελψ άιινη ζε έληνλν θαη επεξεάδνληαη θαηαζηξνθηθά. Όκσο δελ είλαη εθηθηφ λα

δνθηκάζνπκε δπλακηθά φινπο ηνπο ζπλδηαζκνχο ψζηε λα θαηαιήμνπκε ζηνλ πην απνδνηηθφ.

Γηα απηφ ην ιφγν ε ρξνλνδξνκνιφγεζή καο γίλεηαη ζε ηξία επίπεδα. ην πξψην ηαξινομούμε ηηο

εθαξκνγέο ζε θαηεγνξίεο. ην δεχηεξν βξίζθνπκε έλα κνληέιν πνπ πποβλέπει πσο

αιιειεπηδξνχλ νη θαηεγνξίεο απηέο κεηαμχ ηνπο. Σέινο παίξλνπκε ηελ απόθαζη λα

18

ηνπνζεηήζνπκε ηηο εθαξκνγέο ζηνπο ππξήλεο κε ηέηνην ηξφπν ψζηε λα απνθχγνπκε ηε

ζχγθξνπζή ηνπο θαη λα πεηχρνπκε ηα επηζπκεηά απνηειέζκαηα. Πξηλ αλαιχζνπκε ηα ζηάδηα,

ζα αλαθέξνπκε ηελ πιαηθφξκα ζηελ νπνία ζα εθηειέζνπκε ηα πεηξάκαηά καο θαη ηηο

δπλαηφηεηεο πνπ καο πξνζθέξεη.

3.1.1 Πλαηθόπμα Εκηέλεζηρ

 ηελ εξγαζία απηή, γηα ηελ αμηνιφγεζε ησλ ρξνλνδξνκνινγεηψλ καο,

ρξεζηκνπνηήζακε ηνλ επεμεξγαζηή Intel® Xeon® Processor X5560 Nehalem αξρηηεθηνληθήο.

Απνηειείηαη απν δχν ηζηπ (sockets) ηα νπνία αλαθέξνληαη ζε μερσξηζηφ κέξνο κλήκεο

(NUMA) θαη απνηεινχληαη απν ηα εμήο.

 Σεζζεξηο ππξήλεο 2,8 GHz ζπρλφηεηαο, L1 ηδησηηθή θξπθή κλήκε, πνπ ρσξίδεηαη ζε 32

KB δεδνκέλσλ θαη 32 ΚΒ εληνιψλ, L2 ηδησηηθή θξπθή κλήκε 256 ΚΒ θαη L3 θνηλή θξπθή

κλήκε 8 ΜΒ. Κάζε ηζηπ επηθνηλσλεί κε ηελ κλήκε κέζσ ηξηψλ 8-byte θαλαιηψλ πνπ

ιεηηνπξγνχλ ζην 1,333 GT/s. Γειαδή ην κέγηζην ζεσξεηηθφ Bandwidth κπνξεί λα θηάζεη ηελ

ηηκή 31,992 GB/s. Η επηθνηλσλία κεηαμχ ησλ 2 ηζηπ επηηπγράλεηαη κέζσ ηνπ QPI ζπλδέζκνπ

πνπ θηάλεη Bandwidth 12,8 GB/s. Δπίζεο θάζε ηζηπ ππνζηεξίδεη Hardware Prefetching Logic,

γηα λα θέξλεη δεδνκέλα πνπ ηα λήκαηα ζα ρξεζηκνπνηήζνπλ ζην θνληηλφ κέιινλ, Simultaneous

Multi-Threading” (SMT), επηηξέπνληαο παξαπάλσ λήκαηα λα εθηεινχληαη ζηνλ ίδην ππξήλα

θαη Turbo Boost Technology γηα εμνηθνλφκεζε ελέξγεηαο.

 Γηα ηα πεηξάκαηα καο ρξεζηκνπνηήζακε κφλν ην έλα ηζηπ κε ελεξγνπνηεκέλε ηε

ιεηηνπξγία ηνπ hardware prefetching logic θαη απελεξγνπνηεκέλεο ηηο SMT θαη TBT.

 Η αξρηηεθηνληθή δηαδξακαηίδεη πνιχ ζεκαληηθφ ξφιν ζηελ ηνπνζέηεζε ησλ δηεξγαζηψλ

ζηνπο ππξήλεο θαη θαζνξίδεη ηηο δηαθνξεηηθέο νκάδεο πνπ κπνξνχλ λα δεκηνπξγεζνχλ

ζπλδηάδνληαο ηηο δηεξγαζίεο. Παίξλνληαο γηα παξάδεηγκα 4 εθαξκνγέο Α, Β, Γ, Γ, ζηελ δηθή

καο αξρηηεθηνληθή παξάγεηαη έλαο κνλαδηθφο ζπλδηαζκφο εθηέιεζεο ηνπο ζηνπο ππξήλεο. Αλ

είρακε κηα αξρηηεθηνληθή πνπ νη ππξήλεο αλα 2 κνηξαδφληνπζαλ κηα LLC, ηφηε ηα πξάγκαηα ζα

ήηαλ δηαθνξεηηθά. ε απηή ηελ πεξίπησζε νη πηζαλέο ηεηξάδεο εθηέιεζεο απμάλνληαη ζηηο 3.

Παξαηεξνχκε ινηπφλ φηη ε δπλαηφηεηα απνθπγήο ηεο ζχγθξνπζεο απμάλεηαη θαζψο κεηψλεηαη

ν αξηζκφο ησλ ππξήλσλ πνπ κνηξάδνληαη ηε LLC. Απηφ ζπκβαίλεη, επεηδή καο δίλεηαη επηπιένλ

ε δπλαηφηεηα λα κνηξάζνπκε ηηο δηεξγαζίεο ζην ρψξν (space-sharing). ηε δηθή καο

πεξίπησζε, ν κφλνο ηξφπνο λα κνηξάζνπκε ηηο εθαξκνγέο είλαη ρξνληθά (time-sharing) θαη

απηφ πεξηνξίδεη ηηο επηινγέο καο γηα απνθπγή ηεο ζχγθξνπζεο.

3.1.2 Μέθοδορ Σαξινόμηζηρ

 Ξεθηλάκε κε ην πξψην ζηάδην ηεο ηαμηλφκεζεο. Βαζηζκέλνη ζην ζρήκα πνπ πξνηάζεθε

απν ηε δνπιεηά ηνπ Haritatos et al [1] θαηεγνξηνπνηνχκε ηηο εθαξκνγέο ζε ηέζζεξηο θιάζεηο,

ηελ L, LC, C θαη N.

 ηελ L θαηεγνξία αλήθνπλ εθείλεο, νη νπνίεο παξνπζηάδνπλ κία ζεκαληηθή θαη ζηαζεξή

ξνή δεδνκέλσλ απφ ηελ κλήκε έσο ην ππξήλα. Απηέο νη εθαξκνγέο δελ επσθεινχληαη απν ηε

LLC θαη κνιχλνπλ κε κεγάιν αξηζκφ δεδνκέλσλ ην δίαπιν κλήκεο θάλνληαο ρξήζε κεγάινπ

πνζνζηνχ ηνπ Memory Bandwidth.

19

 ηελ LC θαηεγνξία ηαμηλνκνχληαη εθαξκνγέο, νη νπνίεο ρξεζηκνπνηνχλ ζε κέηξην

βαζκφ ην δίαπιν ηεο κλήκεο θαη επσθεινχληαη ειαθξά απν ηε LLC, επαλαρξεζηκνπνηψληαο

ηελ ζε κηθξφ βαζκφ.

 ηελ C θιάζε θαηαηάζζνληαη νη εθαξκνγέο κε ηα εμήο ραξαθηεξηζηηθά. Υξεζηκνπνηνχλ

ζε πνιχ κηθξφ βαζκφ ην δίαπιν κλήκεο, θαηαλαιψλνληαο κηθξφ πνζνζηφ ηνπ Bandwidth, αιιά

παξνπζηάδνπλ κεγάιε εμάξηεζε απν ηε LLC. Απηφ ζεκαίλεη φηη θέξλνπλ δεδνκέλα ζε απηή

θαη πξαγκαηνπνηνχλ αλαθνξέο ζε απηά γηα αξθεηφ ρξνληθφ δηάζηεκα πξηλ θέξνπλ ηα επφκελα.

Με απηφ ηνλ ηξφπν πεξηνξίδνληαη κφλν ζε απηφ ην κνηξαδφκελν πφξν, πξαγκαηνπνηψληαο πνιχ

κεγάιε επαλαρξεζηκνπνίεζε.

 Σέινο ε Ν θαηεγνξία απνηειείηαη απν εθαξκνγέο νη νπνίεο δελ δείρλνπλ ζεκαληηθή

δξαζηεξηφηεηα ζηνπο κνηξαδφκελνπο πφξνπο, αιιά πεξηνξίδνληαη ζηηο ηδησηηθέο θξπθέο κλήκεο

θαη ζηνλ επεμεξγαζηή. Οη θαηεγνξίεο παξνπζηάδνληαη ζην ζρήκα 1.1-5.

Figure 1.1-5: Γπαζηηπιόηηηα ζηιρ 4 καηηγοπίερ

 Γηα λα ηαμηλνκήζνπκε ηηο εθαξκνγέο ζηηο παξαπάλσ θαηεγνξίεο, είλαη απαξαίηεην λα

θαηαγξάςνπκε ηε ζπκπεξηθνξά ηνπο. Απηφ ην επηηπγράλνπκε ρξεζηκνπνηψληαο θάπνηεο απιέο

κεηξηθέο, ηηο νπνίεο κπνξνχκε λα απνθηήζνπκε θαηά ην ρξφλν εθηέιεζεο απν ηνπο hardware

performance counters πνπ παξέρνπλ νη ζχγρξνλνη επεμεξγαζηέο.

Figure 1.1-6: Ροή δεδομένων

 Γηα θάζε εθαξκνγή είλαη απαξαίηεην λα κεηξήζνπκε ηε ξνή ησλ δεδνκέλσλ απν ηή

θχξηα κλήκε έσο ηνλ επεμεξγαζηή, ρξεζηκνπνηψληαο ην Bandwidth ζαλ κεηξηθή θαη λα βξνχκε

ζε πνηφ κέξνο ηεο ηεξαξρίαο ηεο κλήκεο ππάξρεη κεγάιε δξαζηεξηφηεηα, ρξεζηκνπνηψληαο ην

20

𝐶𝑅𝑖 =
𝐵𝑖𝑛𝑖−1

𝐵𝑖𝑛𝑖
 (ζρήκα 1.1-6).

 Αλ ην LB (Memory Bandwidth) είλαη κεγάιν θαη ην 𝐶𝑅𝑛 = 1 ηφηε ε εθαξκνγή είλαη L.

Αλ ε δξαζηεξηφηεηα κεηαμχ κλήκεο θαη LLC είλαη κέηξηα θαη 𝐶𝑅𝑛 > 1, ηφηε είλαη LC.

Γηαθνξεηηθά εθαξκνγέο κε πνιχ ρακειν LB δξαζηεξηνπνηνχληαη ζην ππφινηπν ηκήκα ηεο

ηεξαξρίαο.

Αλ ππάξρεη κεγάιε επαλαρξεζηκνπνίεζε ηεο LLC αλαθεξφκαζηε ζε C αιιηψο ζε Ν.

 Η κέζνδνο ηαμηλφκεζεο καο παξνπζηάδεηαη ζην δέληξν ηνπ ζρήκαηνο 1.1-7. ε θάζε

πιαηθφξκα πξέπεη λα ζέζνπκε 5 φξηα, α, β, γ, δ θαη ε. ε απηή ηε πιαηθφξκα έρνπκε 𝛼 =
0.12 × 𝐵𝑚𝑎𝑥, 𝛽 = 0.045 × 𝐵𝑚𝑎𝑥, 𝛾 = 0.068 × 𝐵𝑚𝑎𝑥, 𝛿 = 0.25, 휀 = 0.25 × 𝐼𝑃𝐶𝑚𝑎𝑥. Η

κέγηζηε ηηκή ηνπ Memory Bandwidth φπσο κεηξήζεθε απν ηε stream εθαξκνγή [2] είλαη

𝐵𝑚𝑎𝑥 = 13.20 𝐺𝐵 𝑠𝑒𝑐⁄ θαη 𝐼𝑃𝐶𝑚𝑎𝑥 = 4

Figure 1.1-7: Γένηπο ηαξινόμηζηρ

Διασυπιζμόρ ηηρ C καηηγοπίαρ

 Οη εθαξκνγέο κπνξεί λα παξνπζηάζνπλ δηαθνξεηηθά ραξαθηεξηζηηθά αλάινγα ην

κέγεζνο ηνπ data set ηνπο. Δμεηάδνληαο δχν εθαξκνγέο κε δηάθνξα κεγέζε γηα ην data set ηνπο

παξαηεξνχκε ηα εμήο .

 Αξρηθά βιέπνπκε φηη φηαλ ην ζχλνιν ησλ δεδνκέλσλ είλαη αξθεηά κηθξφ ψζηε λα

ηθαλνπνηείηαη απν ηα ρακειφηεξα ηκήκαηα ηεο κλήκεο (ηδησηηθέο θξπθέο κλήκεο) ε

δξαζηεξηφηεηα πεξηνξίδεηαη ζε απηφ ην θνκκάηη θαη νη εθαξκνγέο παξνπζηάδνπλ ζπκπεξηθνξά

Ν θιάζεο.

Απμάλνπκε ην data set θαη παξαηεξνχκε φηη απηφ κπνξεί λα ηθαλνπνηεζεί πιένλ απν ηε LLC,

νπφηε θαη νη εθαξκνγέο γίλνληαη C.

 Αμίδεη λα ζεκεηψζνπκε, φηη ε κεηάβαζε απν ηε C ζηε LC θαηεγνξία πξαγκαηνπνηείηαη

ζε δηαθνξεηηθφ data set γηα θάζε εθαξκνγή. ηελ pchase γίλεηαη ζην ζεκείν ζην νπνίν

αξρίδνπλ λα κελ ρσξάλε ηα δεδνκέλα ζηε LLC, ελψ ζηελ mvt πνιχ αξγφηεξα. Απηφ ζεκαίλεη

21

φηη ε πξψηε εθαξκνγή φηαλ βξίζθεηαη ζηα φξηα ηεο LLC επλνείηαη απφ φιν ην ρψξν πνπ απηή

πξνζθέξεη θαη φηαλ ην data set μεπεξλάεη ην κέγεζνο ηεο αξρίδεη λα θάλεη ζπρλή αλαθνξά ζηελ

θχξηα κλήκε, δείρλνληαο κεδεληθή αλνρή. Απφ ηελ άιιε, ε δεχηεξε εθαξκνγή δείρλεη λα κελ

επεξεάδεηαη απν ηνλ πεξηνξηζκφ θαη λα εμαθνινπζεί λα εμππεξεηείηαη απν ηε LLC αθφκα θαη

γηα 14 ΜΒ data set.

 Βαζηζκέλνη ζηελ πξνεγνχκελε παξαηήξεζή καο, κπνξνχκε λα ζπκπεξάλνπκε ηα εμήο.

Δάλ ζηε πιαηθφξκα καο (8 ΜΒ LLC, 4 ππξήλεο) ηξέμνπκε παξάιιεια δχν εθαξκνγέο κε 6

ΜΒ data set, πνπ παξνπζηάδνπλ ίδηα ζπκπεξηθνξά κε ηε pchase, ε LLC δελ κπνξεί λα

εμππεξεηήζεη θαη ηηο δχν. Θα κνηξάζεη ην ρψξν ηεο θαη αλαγθαζηηθά ζα πάξνπλ έλα

ππνζχλνιν ηνπ data set ηνπο. Ο πεξηνξηζκφο απηφο ζα ηνπο νδεγήζεη ζε αχμεζε ησλ misses,

ζπρλφηεξε αλαθνξά ζηε κλήκε (απμεκέλν Bandwidth) θαη κείσζε ζηελ απφδνζε ηνπο. Αλ νη

εθαξκνγέο είραλ ηελ ζπκπεξηθνξά ηεο mvt ζα ήηαλ αλεθηηθέο ζηνλ πεξηνξηζκφ θαη δελ ζα

παξνπζίαδαλ πξνβιήκαηα ζηελ απφδνζή ηνπο.

 Κξίλεηαη αλαγθαίν ινηπφλ λα δηαρσξίζνπκε πεξαηηέξσ ηελ C θαηεγνξία ζηηο

ππνθαηεγνξίεο SC θαη BC.

 ηε SC αλήθνπλ εθείλεο κε working set κηθξφηεξν ησλ 2 ΜΒ, θαζψο ζηελ πεξίπησζε 4

ππξήλσλ κπνξνχλ λα ζπλππάξρνπλ ζηε 8 ΜΒ LLC. Πηάλνπλ κηθξφ ρψξν θαη δελ επεξεάδνληαη

ζεκαληηθά απν ηελ παξεκβνιή.

 ηε BC θαηεγνξία θαηαηάζζνληαη εθείλεο κε working set κεγαιχηεξν ησλ 2 ΜΒ, νη

νπνίεο ρξεηάδνληαη αξθεηφ ρψξν ηεο LLC γηα λα ηξέμνπλ απνδνηηθά θαη φηαλ πεξηνξίδνληαη

παξνπζηάδνπλ κεγάιεο θαζπζηεξήζεηο ζηελ εθηέιεζή ηνπο.

 Ο ηξφπνο δηαρσξηζκνχ ηεο C θαηεγνξίαο γίλεηαη ζηαηηθά. Γηα λα πξαγκαηνπνηεζεί

δπλακηθά ρξεηάδνληαη πνιχπινθεο ηερληθέο (cache partitioning) πνπ είλαη εθηφο ηνπ πεδίνπ

κειέηεο απηήο ηεο εξγαζίαο. Δλδεηθηηθά παξνπξηάδνπκε ζηνλ παξαθάησ πίλαθα κεξηθέο

εθαξκνγέο (single-threaded and single execution phase) θαη ζε πνηεο θαηεγνξίεο ηαμηλνκνχληαη

βάζεη ηνπ δέληξνπ πνπ πεξηγξάςακε.

Figure 1.1-8: Σςμπεπιθοπά δύο εθαπμογών για διάθοπα data

sets

22

Name Source DataSet (MB) 𝐵𝑖𝑛3=𝐿𝐿𝐶(𝑀𝐵 𝑠⁄) CR3 CR2 IPC Class

stream [2] 366 6618.432 0.994 1.003 0.721 L

atax polybench 72 4401.339 1.029 1.759 0.380

gemver polybench 125 1173.694 4.299 1.315 0.402 LC

mvt polybench 125 996.640 5.597 1.171 0.279

pchase [3] 6 491.220 9.920 1.000 0.081 BC

stream [2] 5 99.691 51.732 1.000 0.921

correlation polybench 2 0.706 1275.893 15.874 1.334 SC

covariance polybench 2 0.714 1255.327 15.960 1.332

3mm polybench 0.064 0.760 1.983 72.710 2.250 N

bicg polybench 0.064 0.670 2.194 504.134 1.180

Table 1.1-1: Ταξινόμηζη εθαπμογών ζηιρ καηηγοπίερ

3.1.3 Μονηέλο Ππόβλετηρ

 Πεξλάκε ζην επφκελν ζηάδην κεηά ηελ ηαμηλφκεζε, ηελ πξφβιεςε ηεο ζχγθξνπζεο

κεηαμχ ησλ θαηεγνξηψλ. Έρνληαο κία θαιή εθηίκεζε γηα ην πσο νη θαηεγνξίεο αιιειεπηδξνχλ

κεηαμχ ηνπο φηαλ ηξέρνπλ παξάιιεια, κπνξνχκε λα πάξνπκε κία έγθπξε απφθαζε γηα ην πσο

ζα ηνπνζεηήζνπκε ηηο εθαξκνγέο ψζηε λα πάξνπκε ην επηζπκεηφ απνηέιεζκα. Παξαζέηνπκε

παξαθάησ πσο πεξηκέλνπκε λα επεξεαζηνχλ νη θαηεγνξίεο, φηαλ ηξέμνπλ παξάιιεια κε ηηο

ππφινηπεο.

 Η Ν θαηεγνξία πεξηνξίδεηαη ζηα ρακειφηεξα επίπεδα ηεο ηεξαξρίαο ηεο κλήκεο

(ηδησηηθέο θξπθέο κλήκεο) θαη δελ αιιειεπηδξά κε θακία άιιε θαηεγνξία.

 H L θαηεγνξία θαηαλαιψλεη κεγάιν κέξνο ηνπ Memory Bandwidth θαη εμαξηάηαη απν

απηφ. Όηαλ πνιιέο L εθαξκνγέο ηξέμνπλ παξάιιεια ην ζπλνιηθφ ηνπο Bandwidth κπνξεί λα

μεπεξάζεη απηφ πνπ ην ζχζηεκα κπνξεί λα ηθαλνπνηήζεη. Απηή ε ζχγθξνπζε πξνθαιεί κείσζε

ζηελ απφδνζή ηνπο πνπ είλαη αλάινγε ηεο κείσζεο ηνπ Bandwidth. Άξα απηή ε θαηεγνξία

επεξεάδεηαη απφ ηνλ εαπηφ ηεο.

 Γηα ηελ LC θιάζε πεξηκέλνπκε κηθξέο θαζπζηεξήζεηο φηαλ εθηεινχληαη καδί κε ηηο L.

Απηφ κπνξεί λα ζπκβεί ιφγσ ηεο δηακάρεο ζην Memory Bandwidth θαη ηεο κφιπλζεο ηεο LLC

κε δεδνκέλα ησλ L.

 Όζνλ αθνξά ηελ SC νκάδα, νη εθαξκνγέο ηεο επσθεινχληαη απν ηε LLC θαζψο

θέξλνπλ ζε απηή έλα κηθξφ φγθν δεδνκέλσλ θαη θάλνπλ έληνλε επαλαρξεζηκνπνίεζε ζε απηά.

Πεξηκέλνπκε λα επεξεάδνληαη ζε ηθαλνπνηεηηθφ βαζκφ απν ηελ L θαηεγνξία, δηφηη νη

εθαξκνγέο ηεο κνιχλνπλ δηαξθψο κε δεδνκέλα ηε LLC πξνθαιψληαο θαηαζηξνθηθή

παξεκβνιή.

 Σέινο εμεηάδνπκε ηε BC θιάζε, ε νπνία είλαη ε πην επαίζζεηε απν φιεο. Λφγσ ηνπ φηη

ρξεηάδεηαη ην κεγαιχηεξν κέξνο ηεο LLC γηα λα ηξέμεη κε θαιή απφδνζε, νπνηαδήπνηε

παξεκβνιή ζε απηφλ ηνλ πφξν ζα πξνθαιέζεη πνιχ ζνβαξή δεκηά. Δπνκέλσο πξνβιέπεηαη φηη

ε L θαη ε LC θαηεγνξία, νη νπνίεο κνιχλνπλ κε κεγάιε ζπρλφηεηα ηελ LLC, λα επεξεάδνπλ

ηελ νκαιή εθηέιεζε ηεο BC. Δπίζεο νη εθαξκνγέο ηεο ίδηαο θαηεγνξίαο πεξηκέλνπκε λα

πξνθαιέζνπλ κεγάιε δηακάρε ζηε LLC.

23

 ην ζρήκα 1.1-9 παξνπζηάδνπκε ηε κέζε θαζπζηέξεζε πνπ ππνθέξεη θάζε θαηεγνξία

φηαλ εθηειείηαη κε κία άιιε. ηνλ άμνλα ρ παξνπζηάδνπκε ηελ θαζπζηέξεζε πνπ επηβάινπλ νη

θιάζεηο, ελψ ζηνλ y ηελ θαζπζηέξεζε πνπ ππνθέξνπλ.

 Σα απνηειέζκαηα δείρλνπλ φηη νη πξνβιέςεηο καο είλαη έγθπξεο. Η πην επάισηε θιάζε

είλαη ε BC, πνπ επεξεάδεηαη απφ ηηο L, LC θαη BC. Η L θαη SC βιέπνπκε φηη επεξεάδνληαη ζε

κηθξφηεξν βαζκφ απν ηελ L. Η Ν θαη ε LC δελ θαίλνληαη λα παξνπζηάδνπλ θαζπζηεξήζεηο,

φηαλ ηξέρνπλ κε ηηο άιιεο θαηεγνξίεο.

3.1.4 Απόθαζη

 ην ηειεπηαίν απηφ ζηάδην εθαξκφδνπκε ηελ πνιηηηθή καο, απνθαζίδνληαο κε πνην

ηξφπν ζα ζπλδηάζνπκε ηηο εθαξκνγέο, ψζηε λα απνθχγνπκε ηε ζχγθξνπζε γηα ηνπο

κνηξαδφκελνπο πφξνπο. Με απηφ ην ηξφπν επηδηψθνπκε λα πξνζθέξνπκε έλα πεξηβάιινλ, ζην

νπνίν νη δηεξγαζίεο ζα εθηεινχληαη κε πςειή απφδνζε (θνληά ζηελ απφδνζε πνπ βηψλνπλ

φηαλ εθηεινχληαη κφλεο ηνπο) θαη θαη‟επέθηαζε ε θαηαλνκή ησλ πφξσλ ζα γηλεηαη δίθαηα.

 Ο ρξνλνδξνκνινγεηήο καο ιακβάλεη ππ‟φςηλ ηνπ ηε δηακάρε γηα ηε LLC θαη ην

Memory Bandwidth θαη νλνκάδεηαη CMB (Cache and Memory Bandwidth contention-aware

scheduler). Τπελζπκίδνπκε φηη επεηδή δνπιεχνπκε ζην έλα ηζηπ, ζην νπνίν 4 ππξήλεο

κνηξάδνληαη κηα LLC, έρνπκε ηε δπλαηφηεηα λα ρσξίζνπκε ηηο εθαξκνγέο ζην ρξφλν κφλν

(time-sharing). Έηζη ζπλδηάδνπκε ηηο εθαξκνγέο ζε ηεηξάδεο πνπ εθηεινχληαη ζε δηαθνξεηηθά

θβάληα ρξφλνπ, κε ζθνπφ λα απνθχγνπκε ηε κεηαμχ ηνπο ζχγθξνπζε.

 Βαζηζκέλνη ζην κνληέιν πξφβιεςεο θαη ζηα απνηέιεζκα ηεο ζπλεθηέιεζεο ησλ

θαηεγνξηψλ, δεκηνπξγνχκε κία πνιηηηθή κε πξνηεξαηφηεηεο. Η πξψηε καο πξνηεξαηφηεηα είλαη

λα απνκνλψζνπκε ηελ BC θαηεγνξία πνπ είλαη πην επάισηε. Δπίζεο ζέινπκε λα

πξνζηαηέςνπκε ηε SC θαηεγνξία θαη ηέινο λα κεηξηάζνπκε ηε δηακάρε ησλ L γηα ην Memory

Bandwidth. Γηα απηφ ην ιφγν δεκηνπξγνχκε ηξεηο πηζαλέο ηεηξάδεο.

 ηελ κία (BC) επηηξέπεηαη λα είλαη καδί BC κε SC κε Ν εθαξκνγέο, θαζψο βιέπνπκε

απν ηνλ παξαπάλσ πίλαθα φηη ζε απηήλ ηελ πεξίπησζε δελ επηβάιινληαη κεγάιεο

Figure 1.1-9: Μέζη καθςζηέπηζη ηων εθαπμογών όηαν εκηελούνηαι

παπάλληλα ζε επίπεδο κλάζεων

24

θαζπζηεξήζεηο. Σν ηδαληθφ ζα ήηαλ απηή ε ηεηξάδα απν κφλν κία BC εθαξκνγή θαζψο φπσο

μέξνπκε ε ζπλεθηέιεζε ηνπο πξνθαιεί θαηαζηξνθηθή παξεκβνιή, αιιά απηφ είλαη εθηθηφ φηαλ

ν αξηζκφο ησλ BC είλαη κηθξφο θαη κπνξνχλ λα απνκνλσζνχλ πιήξσο ζηηο ηεηξάδεο.

 ηελ δεχηεξε ηεηξάδα (SC) κπνξνχλ λα βξίζθνληαη πνιιέο SC καδί κε Ν εθαξκνγέο.

Με απηφ ηνλ ηξφπν επηηπγράλνπκε απνθπγή ζχγθξνπζεο SC κε L.

 Η ηξίηε ηεηξάδα (L) απνηειείηαη απν L, LC ή N εθαξκνγέο.

 Σα βήκαηα πνπ αθνινπζεί ν ρξνλνδξνκνινγεηήο γηα ηνλ ζρεκαηηζκφ απηψλ ησλ

ηεηξάδσλ παξνπζίαδνληαη ζηνλ παξαθάησ πίλαθα 1.1-2. Παξάιιεια παξαζέηνπκε θαη ην

ζθνπφ πνπ θάζε βήκα εμππεξεηεί.

Βήμαηα Σηόσοι

1) κεγηζηνπνίεζε ηεο BC ηεηξάδεο θαη άπισζε ηηο BC

εθαξκνγέο

Απέθπγε ηε παξεκβνιή ησλ BC κε ηηο BC θαη ηηο L

2)ζπγθέληξσζε ηηο SC εθαξκνγέο ψζηε λα

ειαρηζηνπνηήζεηο ηηο SC ηεηξάδεο

Απέθπγε ηε παξεκβνιή ησλ SC κε ηηο L

3) Σαμηλφκεζε ηηο L εθαξκνγέο σο πξνο ην Bandwidth

θαη κνίξαζε ηεο ζηηο ηεηξάδεο πνπ απνκέλνπλ

Ιζνξξφπεζε ηε ρξήζε ηνπ Memory Bandwidth

Table 1.1-2: Βήμαηα και ζηόσοι ηος CMB σπονοδπομολογηηή

 Ο ρξνλνδξνκνινγεηήο καο πινπνηείηαη ζε 5 ζπλαξηήζεηο, init(), qex(), thaw(), freeze(),

schedule(). Η qex() θαιείηαη κεηά ην ηέινο ηνπ θβάληνπ ρξφλνπ θαη θαιεί κε ηε ζπγθεθξηκέλε

ζεηξά ηηο freeze(), schedule() θαη thaw(). ηε freeze() ζηακαηάκε ηελ ηεηξάδα πνπ έηξερε, ζηε

schedule() επηιέγνπκε ηελ επφκελε ηεηξάδα, ζηελ πεξίπησζε καο νη ηεηξάδεο εθηεινχληαη

θπθιηθά, θαη ζηε thaw() μεθηλάκε ηελ εθηέιεζε ηεο ηεηξάδαο πνπ επηιέρζεθε πξνεγνπκέλσο.

ηελ init() γίλεηαη ν ζρεκαηηζκφο ησλ ηεηξάδσλ, φπσο πεξηγξάθεθε.

 Οη ηεηξάδεο θαη νη θιάζεηο πινπνηνχληαη ζε ιίζηεο. Οη εθαξκνγέο έρνπλ ηαμηλνκεζεί

offline. Ο αιγφξηζκνο έρεη πνιππινθφηεηα O(n + L log L), Ο(n) γηα ηνλ δηαρσξηζκφ ησλ

εθαξκνγψλ ζηηο δηαθνξεηηθέο νκάδεο θαη O(L log L) γηα ηελ ηαμηλφκεζε ησλ L εθαξκνγψλ

(code 1.1-1), θαη Ο(1) γηα ηελ απφθαζε. Μεηά ην ζρεκαηηζκφ ησλ ηεηξάδσλ νη ηεηξάδεο

εθηεινχληαη θπθιηθά ζε θάζε θβάλην ρξφλνπ.

25

3.2 Δεύηερη Προζέγγιζη (Διατειρίζονηας ηη ζύγκροσζη)

 ε απηή ηε ηερληθή ζθνπφο καο είλαη λα δηαρεηξηζηνχκε ηα απνηειέζκαηα ηεο

ζχγθξνπζεο ησλ εθαξκνγψλ. Όπσο είδακε ζε πξνεγνχκελν θεθάιαην νη δηεξγαζίεο δελ

επεξεάδνληαη ην ίδην απν ηε κεηαμχ ηνπο θαη ε επίπησζε ζηελ πξφνδν ηνπο είλαη δηαθνξεηηθή.

Απηφ έρεη σο απνηέιεζκα ηελ άληζε θαηαλνκή ησλ πφξσλ ζε απηέο. Σξέρνπκε 12 εθαξκνγέο

κε ην Linux scheduler γηα 320 δεπηεξφιεπηα θαη παξαηεξνχκε φηη δίλεη ίδηα επθαηξία ζηηο

εθαξκνγέο λα εθηειεζηνχλ, αιιά δελ θαηαλέκεη ηελ πξφνδν ηνπο δίθαηα. Η πξφνδνο

ππνινγίδεηαη σο ην γηλφκελν ησλ θνξψλ πνπ εθηειέζηεθε ε θάζε εθαξκνγή επί ην ρξφλν πνπ

ρξεηάδεηαη γηα λα εθηειεζηεί φηαλ ηξέρεη κφλε ηεο.

Απηφ πνπ επηδηψθνπκε εκείο είλαη νη δηεξγαζίεο λα θάλνπλ ηελ ίδηα πξφνδν ζηε ρξνληθή

πεξίνδν πνπ ηνπο δίλεηαη λα ηξέμνπλ. Λακβάλνληαο ππ‟φςηλ φηη ε πξφνδνο ηνπο θαζνξίδεηαη

απν ην θιάζκα 𝐼𝑃𝐶𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔/𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒 θαη απφ ην ρξφλν πνπ ηξέρνπλ ζηνλ ππξήλα, κηα

void create_gangs (gangs_nr, apps_l){

 list_t gangs[gangs_nr];

for_each_app_in_list(apps_l){

 remove_from_top (apps_l);

 add_to_tail (gangs[i++]);

 }

}

void form_gangs(apps){

 move_to_lists(apps);

 gangs_nr = (apps_nr / cores_nr);

 minimum_L = (L_nr / cores_nr);

 BC_gangs_nr = 0;

 SC_gangs_nr = 0;

 if (BC_list != []){

 maximum_BC = (gangs_nr – minimum_L);

 BC_gangs_nr = ((BC_nr < maximum_BC) ?

BC_nr : maximum_BC);

 create_gangs(BC_gangs_nr, [BC, N, SC]);

 }

 if (SC_list != []){

 SC_gangs_nr = (SC_nr / cores_nr);

 create_gangs(SC_gangs_nr, [SC, LC, N]);

 }

 remaining_gangs_nr = gangs_nr – (BC_gangs_nr +

SC_gangs_nr);

 if (L_list == []) create_gangs(remaining_gangs_nr, [LC, N]);

 else{

 quicksort(L_list);

 create_gangs(remaining_gangs_nr, [L, LC, N]);

 }

}

Code 1.1-1: Αλγοπιθμορ ηος CMB σπονοδπομολογηηή

26

εθαξκνγή Α κε ρακειφηεξν IPC απφ απηφ κηάο άιιεο Β πξέπεη λα ηξέμεη πεξηζζφηεξν ρξφλν

απν ηελ Β ψζηε νη πξαγκαηηθνί ρξφλνη πνπ απηέο έηξεμαλ λα έξζνπλ ζηα ίδηα επίπεδα.

 Οδεγνχκελνη απν απηήλ ηελ παξαηήξεζε, ζρεδηάδνπκε έλαλ ρξνλνδξνκνινγεηή, ν

νπνίνο ιακβάλεη ππ‟φςηλ ηνπ ηελ κείσζε ηνπ IPC πνπ θάζε δηεξγαζία έρεη ππνζηεί κεηά ην

ηέινο ηεο εθηέιεζήο ηεο θαη ηηο επλνεί αλαιφγσο. Δπηδηψθεη λα απμήζεη ην ρξφλν εθηέιεζεο

απηψλ πνπ έρνπλ κεγάιε κείσζε ζην IPC, κε ζθνπφ λα απμήζεη ηελ πξαγκαηηθή ηνπο πξφνδν,

κεηψλνληαο ην ρξφλν θαη ζπλεπψο πξφνδν εθείλσλ πνπ ηξέρνπλ κε κεγαιχηεξν IPC. Με απηφλ

ηνλ ηξφπν κπνξεί λα θαηαλέκνπκε άληζα ην ρξφλν ηνπ επεμεξγαζηή αλάκεζα ζηηο δηεξγαζίεο,

δηαβεβαηψλνπκε φκσο φηη φιεο ζα θάλνπλ ηελ ίδηα πξφνδν.

 ηελ πινπνίεζή καο ρξεζηκνπνηνχκε κία νπξά δηεξγαζηψλ γηα φινπο ηνπο ππξήλεο.

Μεηά απφ θάζε θβάλην ρξφλνπ ε νπξά απηή ηαμηλνκείηαη ζε θζίλνπζα ζεηξά κε βάζε έλα

θξηηήξην, πνπ έρνπκε επηιέμεη θαη ζα εμεγήζνπκε παξαθάησ, θαη νη ηέζζεξηο πξψηεο

δηεξγαζίεο επηιέγνληαη γηα λα ηξέμνπλ ζηνπο ππξήλεο.

 Η βαζηθή ηδέα είλαη λα επλννχκε ηηο δηεξγαζίεο αλάινγα κε ην πφζν IPC έραζαλ ηελ

ηειεπηαία θνξά πνπ ήηαλ ζηνλ ππξήλα. Απηφ ην επηηπγράλνπκε πξνσζψληαο απηέο ηηο

δηεξγαζίεο ςειφηεξα ζηελ νπξά, έηζη ψζηε λα έρνπλ ηελ επθαηξία λα εθηειεζηνχλ ζπρλφηεξα,

απμάλνληαο ηελ πξφνδν ηνπο. Γηα απηφ ην ιφγν ηαμηλνκνχκε ηηο δηεξγαζίεο κε βάζε ην

παξαθάησ θξηηήξην 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝐼𝑃𝐶_𝑙𝑜𝑠𝑠 .ηελ πεξίπησζε πνπ

είρακε κφλν ην waiting time νη δηεξγαζίεο ζα επηιέγνληαλ θπθιηθά θαη ζα είραλ ίζε θαηαλνκή

ρξφλνπ. Σψξα φκσο απηέο πνπ κφιηο έηξεμαλ κε κεγάιν IPC_loss κπνξνχλ λα μεπεξάζνπλ

κεξηθέο άιιεο ζηε νπξά θαη λα ηνπνζεηεζνχλ ζηνλ επεμεξγαζηή λσξίηεξα, θαζπζηεξψληαο

εθείλεο πνπ έηξεμαλ κε θαιχηεξν IPC. To IPC_loss ππνινγίδεηαη πνιχ εχθνια, κεηά ην ηέινο

ηνπ θβάληνπ ρξφλνπ γηα ηηο δηεξγαζίεο πνπ ήηαλ ζηνλ ππξήλα, απφ ηε ζρέζε IPC_loss =

(1 −
IPCco−running

IPCalone
). Σν 𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒 ην ππνινγίδνπκε offline γηα θάζε δηεξγαζία, ελψ ην

𝐼𝑃𝐶𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ην απνθηνχκε κεηά απφ θάζε θβάλην ρξφλνπ απφ ηνπο hardware performance

Figure 1.1-10: Γικαιη καηανομή σπόνος αλλά όσι πποόδος

27

counters πνπ παξέρεη ν επεμεξγαζηήο καο.

 Σν IPC_loss απφ κφλν ηνπ δελ είλαη ηθαλφ λα πξνσζήζεη ζσζηά ηηο δηεξγαζίεο. Γηα απηφ

ην ιφγν ρξεηάδεηαη λα πνιιαπιαζηαζηεί κε ηνλ παξάγνληα factor. Απηφ γίλεηαη εκθαλέο ζην

παξάδεηγκα ηνπ ζρήκαηνο 1.1-11. Παξαηεξνχκε φηη θαζψο ην IPC_loss θπκαίλεηαη κεηαμχ 0

θαη 1, είλαη αδχλαην λα μεπεξάζεη ηηο δηεξγαζίεο πνπ πεξηκέλνπλ ζηελ νπξά κε waiting time 1

θαη 2 δεπηεξφιεπηα (θβάλην ρξφλνπ = 1 δεπηεξφιεπην).

 Ο παξάγνληαο factor είλαη έλαο αθέξαηνο πνπ εμαξηάηαη απν ην θβάλην ρξφλνπ θαη ηηο

νκάδεο ησλ δηεξγαζηψλ θαη θαζνξίδεη ηε ζσζηή πξνψζεζε ησλ δηεξγαζηψλ ζηελ νπξά. ην

παξάδεηγκά καο αλ ν παξάγνληαο 4 ηθαλνπνηνχζε ηηο απαηηήζεηο καο θαη αιιάδακε ηνλ θφξην

εξγαζίαο πξνζζέηνληαο κεξηθέο δηεξγαζίεο ηφηε νη νκάδεο πνπ ζα πεξίκελαλ λα ηξέμνπλ ζηνπο

ππξήλεο ζα απμάλνληαλ. Απηφ ζεκαίλεη φηη θαη ην waiting time ζα απμαλφηαλ ζπλνιηθά. ε

Figure 1.1-11: Δκηέλεζη 12 δεςηεπολεπηων σωπίρ factor ζε 2-πύπηνο

ζύζηημα

Figure 1.1-12: Σσέζη μεηαξύ παπάγονηα και απιθμό ηεηπάδων

28

απηή ηελ πεξίπησζε ε πξνεγνχκελε ηηκή δελ ζα ήηαλ αξθεηή γηα λα καο αλεβάζεη ηηο

δηεξγαζίεο ζηελ νπξά. Σν ίδην ηζρχεη θαη γηα κηα πηζαλή αιιαγή ηνπ θβάληνπ ρξφλνπ

 θνπφο καο είλαη λα βγάινπκε κία ζρέζε κε ηελ νπνία ζα θαζνξίζνπκε ηνλ factor κηα

γηα πάληα γηα νπνηνδήπνηε ζχζηεκα. Με θβάλην ρξφλν ίζν κε 1 δεπηεξφιεπην βξίζθνπκε γηα

δηάθνξεο νκάδεο δηεξγαζηψλ ηνλ παξάγνληα πνπ νδεγεί ζηελ θαιχηεξε απφδνζε, δειαδή ίζε

θαηαλνκή ηεο πξνφδνπ. Δπεηδή είλαη πνιπ ρξνλνβφξν θαη ζρεδφλ αλέθηθην λα θάλνπκε

δνθηκέο γηα φιεο ηηο πηζαλέο νκάδεο ζε πξαγκαηηθφ ζχζηεκα, πξνζσκνηφλνπκε ηελ πνιηηηθή

καο. Γεκηνπξγνχκε φιεο ηηο πηζαλέο νκάδεο γηα ηα ζπζηήκαηα δχν, ηξηψλ θαη ηεζζάξσλ

ππξήλσλ θαη γηα θάζε νκάδα ειέγρνπκε επαλαιεπηηθά έλα εχξνο απφ παξάγνληεο. Κξαηάκε

εθείλνλ πνπ νδεγεί ζηελ κηθξφηεξε ηππηθή απφθιηζε ηεο πξνφδνπ ησλ δηεξγαζηψλ. Δλδεηθηηθά

παξαζέηνπκε ηα απνηειέζκαηα ηηο πξνζνκνίσζεο γηα έλα 4-πχξελν ζχζηεκα γηα ην

δηαθνξεηηθφ αξηζκφ ηεηξάδσλ. Η ίδηα εηθφλα παξνπζηάδεηαη θαη γηα ηα ππφινηπα ζπζηήκαηα

πνπ εμεηάζακε (δχν, ηξηψλ ππξήλσλ).

 Βιέπνπκε ινηπφλ φηη ε ζρέζε κεηαμχ παξάγνληα θαη αξηζκνχ νκάδσλ κε θβάλην ρξφλνπ

ίζν κε 1 δεπηεξφιεπην είλαη ε εμήο :

Factor = 2 ⋅ (gangs_nr − 1)

gangs_nr =
progs_nr

cores_nr

 Δίκαζηε έηνηκνη ινηπφλ λα πινπνηήζνπκε ην ρξνλνδξνκνινγεηή καο, ζθνπφο ηνπ νπνίνπ

είλαη λα πξνζθέξεη δίθαηε θαηαλνκή ηήο πξνφδνπ κεηαμχ ησλ δηεξγαζηψλ (FOP-Fairness over

Progress scheduler).

 Όπσο ζηελ πξνεγνχκελε πξνζέγγηζε καο, ν ρξνλνδξνκνινγεηήο πινπνηείηαη ζε 5

ζπλαξηήζεηο φπσο θαίλεηαη ζηνλ θψδηθα 1.1-2.

 ηελ init() ελεξγνπνηνχκε ηνπο performance counters, ιακβάλνπκε ην IPCalone γηα

θάζε εθαξκνγή, ππνινγίδνπκε ην ζχλνιν ησλ ηεηξάδσλ πνπ ζα ηξέμνπλ θαη ελ ζπλερεία ηνλ

παξάγνληα. Η quantum_expired() θαιείηαη κεηά ην ηέινο ηνπ θβάληνπ θαη θαιεί κε ηε ζεηξά ηηο

freeze(), schedule() θαη thaw(). ηε freeze ζηακαηάκε ηελ ηεηξάδα πνπ ήηαλ ζηνπο ππξήλεο,

ιακβάλνπκε ην IPCco-running, βξίζθνπκε ην IPCloss θαη ππνινγίδνπκε ην penalty.

Αλαλεψλνπκε επίζεο ην waiting time θαη ζπλεπψο ην criterion γηα φιεο ηηο εθαξκνγέο. ηε

schedule() ηαμηλνκνχκε ηηο εθαξκνγέο ζε θζίλνπζα ζεηξά κε βάζε ην criterion θαη επηιέγνπκε

ηηο 4 πξψηεο πξνο εθηέιεζε. ηε thaw() εθηεινχκε ηηο επηιεγκέλεο εθαξκνγέο. Η

πνιππινθφηεηα ηνπ FOP scheduler γηα ηελ απφθαζε είλαη O(n log n) (πνιππινθφηεηα ηεο

quicksort), ε νπξά πινπνηείηαη ζαλ ιίζηα.

29

void init (){

gangs_nr = progs_nr/cores_nr;

 factor = 2 (gangs_nr – 1);

 counters = perf_counters_init(selected_events);

 for_each_application_in_list(progs_all_list){

 application->criterion = 0;

 application->IPC_alone = get_IPC_parameter();

 }

}

void schedule(){

 quicksort(progs_all_list, criterion, DESCENDING);

 while (number(progs_schedule_list) < cores_nr){

 remove_from_top(progs_all_list);

 add_to_tail(progs_schedule_list);

 }

}

void thaw(){

 for_each_application_in_list(progs_schedule_list){

 start_running(application);

 }

perf_counters_zero(counters);

 perf_counters_start(counters);

}

void freeze(){

 perf_counters_stop(counters);

 for_each_application_in_list(progs_schedule_list){

 stop_running(application);

 value = perf_counters_read(counters);

 IPC_co-running = get_IPC(value);

 IPC_loss = (1 – IPC_co-running/application->IPC_alone);

 application->waiting_time = 0;

 application->penalty = factor * IPC_loss;

 remove_from_top(progs_schedule_list);

 add_to_tail(progs_all_list);

 }

for_each_application_in_list(progs_all_list){

 update_waiting_time(application);

 application->criterion = waiting_time + penalty;

 }

}

void quantum_expired(){

 freeze();

if (current_tics < RUN_TICS){

 schedule();

 thaw();

 }else{

 stop_execution();

 print_results();

 }

}
Code 1.1-2: Αλγόπιθμορ ηος FOP scheduler

30

3.2 Τρίηη Προζέγγιζη (Αποθεύγονηας και διατειρίζονηας ηη ζύγκροσζη)

 ε απηή ηε πξνζέγγηζε καο επεθηείλνπκε ηνλ πξνεγνχκελν ρξνλνδξνκνινγεηή έηζη

ψζηε λα απνθεχγεη ηε ζχγθξνπζε νξηζκέλσλ εθαξκνγψλ. Απφ ην κνληέιν πξφβιεςεο ηεο

ζχγθξνπζεο ησλ δηαθνξεηηθψλ θαηεγνξηψλ βιέπνπκε φηη ε απφδνζε ησλ C (SC, BC)

εθαξκνγψλ κεηψλεηαη ζεκαληηθά φηαλ εθηεινχληαη καδί κε L (x1.67 θαζπζηέξεζε γηα ηε SC,

x2.43 θαζπζηέξεζε γηα ηε BC). Θέινληαο λα παξέρνπκε έλα πεξηβάιινλ, ζην νπνίν νη

δηεξγαζίεο ζα εθηεινχληαη πην απνδνηηθά, κεηαζρεκαηίδνπκε ηελ πξνεγνχκελε ηερληθή ψζηε

λα απνθεχγεη ηελ εθηέιεζε ησλ L κε ηηο C. Με απηφ ηνλ ηξφπν νη C έρνπλ ηε δπλαηφηεηα λα

θάλνπλ κεγαιχηεξε πξφνδν. ε επξχηεξε θιίκαθα απηφ ζεκαίλεη βειηησκέλν throughput ζε

ζρέζε κε ηνλ FOP scheduler. Σνπο „θαθνχο‟ ζπλδηαζκνχο πνπ δελ κπνξνχκε λα απνθχγνπκε

ηνπο δηαρεηξηδφκαζηε, εθαξκφδσληαο ηελ ίδηα πνιηηηθή κε ηνλ FOP.

 O FOP-LCI (Fairness over Progress with L-C Isolation) scheduler κεηά ηελ ηαμηλφκεζε

ηεο νπξάο δηακνηξάδεη ηηο εθαξκνγέο φπσο θαίλεηαη ζην ζρήκα 1.1-13. Όπσο παξαηεξνχκε

είλαη πηζαλφ κεξηθέο εθαξκνγέο πνπ δελ ήηαλ ε ζεηξά ηνπο λα ηξέμνπλ, λα ηνπνζεηεζνχλ ζηνλ

ππξήλα λσξίηεξα, „θιέβνληαο‟ ηε ζεηξά απηψλ πνπ έπξεπε λα ηξέμνπλ. Δθ‟φζνλ έκεηλαλ εθηφο

ππξήλα γηα άιιν έλα θβάλην ρξφλνπ ην waiting time ηνπο ζα απμεζεί θαη επνκέλσο ην θξηηήξην

ηνπο. Θα θηάζνπλ, ινηπφλ, λα είλαη ζηελ αξρή ηεο νπξάο θαη λα εθηειεζηνχλ κε ηηο επηζπκεηέο

εθαξκνγέο. Με απηφ ηνλ ηξφπν απνθεχγνπκε ηε ιηκνθηνλία.

 O FOP-LCI δηαθνξνπνηείηαη ζε ζρέζε κε ηνλ FOP κφλν ζηε ζπλάξηεζε schedule(). Ο

θψδηθάο ηεο θαίλεηαη δίπια (Code 1.1-3). Οη εθαξκνγέο ηαμηλνκνχληαη κε βάζε ην ζρήκα ηνπ

πξψηνπ CMB scheduler. Η πνιππινθφηεηα γηα ηελ απφθαζε είλαη φπσο θαη πξηλ O(n log n)

(πνιππινθφηεηα ηεο quicksort).

Figure 1.1-13: Δπιλογή ηεηπάδων με ηον FOP(πάνω)

και με ηον FOP-LCI (κάηω)

31

void schedule()

 L_ON = 0;

 C_ON = 0;

 allowed = 1;

quicksort(progs_all_list, criterion, DESCENDING);

 for_each_app_in_list(progs_all_list)

 switch (app->class)

 case L_CLASS:

 if (C_ON) allowed = 0;

 else L_ON = 1;

 case C_CLASS:

if (L_ON) allowed = 0;

 else C_ON = 1;

 if (allowed)

 if (number(progs_schedule_list) != cores_nr)

 remove_app_from_list(progs_all_list);

 add_to_tail(progs_schedule_list);

Code 1.1-3: Schedule() ζςνάπηηζη ηος FOP-LCI scheduler

32

Κεθάλαιο 4

Αξιολόγηζη

 Γηα ηελ αμηνιφγεζε ησλ πνιηηηθψλ καο δεκηνπξγνχκε 3 νκάδεο πεηξακάησλ, κε 5

θφξηνπο εξγαζηψλ ζε θάζε νκάδα. ηελ πξψηε νκάδα δεκηνπξγνχκε θφξηνπο εξγαζηψλ

ζπλδηάδνληαο φιεο ηηο θαηεγνξίεο εθαξκνγψλ εθηφο ηεο BC. Η δεχηεξε απνηειέηηαη απν

εθαξκνγέο φισλ ησλ θαηεγνξηψλ θαη απφ αξηζκφ BC εθαξκνγψλ, νη νπνίεο κπνξνχλ λα

απνκνλσζνχλ πιήξσο ζε δηαθνξεηηθέο ηεηξάδεο. ηελ ηειεπηαία νκάδα ν αξηζκφο ησλ BC

εθαξκνγψλ είλαη ηέηνηνο θαη ε πιήξεο απνκφλσζε ηνπο δελ είλαη εθηθηή. Κάζε θφξηνο

εξγαζηψλ απνηειείηαη απφ 16 εθαξκνγέο. Οη εθαξκνγέο έρνπλ ηαμηλνκεζεί offline. ε θάζε

εθηέιεζε επηζπκνχκε ν θφξηνο δηεξγαζηψλ λα είλαη ζηαζεξφο, έηζη επαλεθηεινχκε θάζε

εθαξκνγή πνπ ηεξκαηίδεη. Η πιαηθφξκα πνπ ρξεζηκνπνηήζακε είλαη απηή πνπ πεξηγξάςακε ζε

πξνεγνχκελν θεθάιαην θαη αζρνιεζήθακε κε ην έλα ηζηπ, ψζηε λα δνθηκάζνπκε ηηο ηερληθέο

καο ζε πεξηβάιινλ πνπ καο δίλεη ηε δπλαηφηεηα λα κνηξάζνπκε ηηο εθαξκνγέο κφλν ρξνληθά.

 Δλδηαθεξφκαζηε λα κεηξήζνπκε ην θαηά πφζν δίθαηα θαηαλέκνληαη νη πφξνη (fairness)

θαη πφζεο δηεξγαζίεο εθηεινχληαη αλα κνλάδα ρξφλνπ (throughput). Γηαπηφ ην ιφγν

ρξεζηκνπνηνχκε δχν κεηξηθέο, ηελ ηππηθή απφθιηζε (2) θαη ηνλ κέζν (1). Σηο κεηξηθέο απηέο ηηο

εθαξκφδνπκε ζην ζχλνιν ησλ εθαξκνγψλ, ζην θιάζκα ησλ θνξψλ πνπ ηεξκαηίζηεθαλ κε ηελ

θάζε ηερληθή πξνο ηνλ ηδαληθφ αξηζκφ πνπ ζα ηεξκαηηδφληνπζαλ αλ δελ ππήξρε ζχγθξνπζε (3).

𝑇(𝑠) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑁(𝑠, 𝑖)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖 (1)

𝐹(𝑠) = 𝜎(𝑁(𝑠, 𝑖)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖 (2)

𝑁(𝑠, 𝑖) =
times_terminated (𝑠, 𝑖)

ideal_times_terminated (𝑖)
, 𝑠 = 𝑠𝑐𝑒𝑑𝑢𝑙𝑒𝑟, 𝑖 = 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (3)

ideal_times_terminated (𝑖) =
execution_time

𝑡𝑖𝑚𝑒(𝑖)𝑎𝑙𝑜𝑛𝑒−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

, 𝑖 = 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (4)

execution_time = total_execution_time ⋅
cores_nr

apps_nr
 (5)

 Παξαζέηνπκε κία ελδεηθηηθή κέηξεζε γηα θάζε νκάδα πεηξακάησλ. Υξεζηκνπνηνχκε

boxplots γηα λα δείμνπκε ηελ γεληθή εηθφλα κεηαμχ ησλ ηερληθψλ καο θαη barcharts γηα λα

δείμνπκε πην αλαιπηηθά ηελ απφδνζε θάζε εθαξκνγήο. ε θάζε νκάδα ζπγθξίλνπκε ηηο

ηερληθέο καο κε ην Linux scheduler φζνλ αθνξά ην throughput θαη ην fairness.

33

Ππώηη Ομάδα Πειπαμάηυν

 Παξαζέηνπκε παξαθάησ έλα θφξην δηεξγαζηψλ κε 8 L, 6 SC θαη 2 Ν. (ζρήκα 1.1-14)

Figure 1.1-14 : Φόπηορ διεπγαζιών με 8 L, 6 SC και 2 Ν διεπγαζίερ

 Παξαηεξνχκε φηη φιεο νη ηερληθέο πνπ πξνηείλακε ππεξηεξνχλ θαη ζε throughput θαη ζε

fairness ηνλ Linux scheduler. Σελ θαιχηεξε απφδνζε φζνλ αθνξά ην throughput επηδεηθλχεη ν

FOP, θέξλνληαο ηελ πξφνδν ησλ δηεξγαζηψλ ζρεδφλ ζηελ ίδηα επζεία. Ο CMB παξνπζηάδεη ην

κεγαιχηεξν throughput, δίλνληαο κία ζεκαληηθή ψζεζε ζηηο SC εθαξκνγέο θαη κεηψλνληαο

ειαθξά ηηο L (ιφγσ παθεηαξίζκαηνο). Γηα ην FOP-LCI, παξαηεξνχκε παξφκνηα ζπκπεξηθνξά

κε ην FOP. Βιέπνπκε φηη επλνεί ηηο Ν εθαξκνγέο αληη ησλ SC θαη απηφ δηθαηνινγείηαη απν ην

γεγνλφο φηη νη Ν είλαη νπδέηεξεο, δειαδή κπνξνχλ λα ηξέμνπλ θαη κε ηηο L θαη κε ηηο C.

Figure 1.1-15: Βεληίωζη throughput και fairness ζσεηικά με ηο Linux

 ην ζρήκα 1.1-15 παξνπζηάδνπκε ηα απνηειέζκαηα ζχγθξηζεο κε ην Linux scheduler

ησλ θφξησλ ηεο πξψηεο νκάδαο. Όζνλ αθνξα ην throughput, ν CMB δείρλεη ηα θαιχηεξα

απνηειέζκαηα, ελψ ζρεηηθά κε ην fairness, πξψηνο έξρεηαη ν FOP.

34

Δεύηεπη Ομάδα Πειπαμάηυν

Figure 1.1-16: Φόπηορ διεπγαζιών με 4 L, 3 BC, 4 SC και 5 Ν διεπγαζίερ

 ε απηφ ην θφξην παξαηεξνχκε ηα εμήο. Ο CMB πεηπραίλεη ην θαιχηεξν throughput,

θαζψο θαηαθέξλεη λα απνκνλψζεη πιήξσο ηηο BC εθαξκνγέο ζηηο ηεηξάδεο θαη λα απμήζεη

ζεκαληηθά ηελ απφδνζή ηνπο, φπσο επίζεο θάλεη θαη κε ηηο SC. Μεηψλεη ηελ πξφνδν ησλ L

φπσο πξηλ, θαζψο ηηο παθεηάξεη καδί. O FOP, φπσο πξηλ, έρεη ηελ θαιχηεξε απφδνζε σο πξνο

ην fairness, ηζνξξνπψληαο ζρεδφλ ηέιεηα ηηο εθαξκνγέο, αιιά κεηψλεη ην throughput, δηφηη

ηξέρεη ζπρλφηεξα εθαξκνγέο πνπ δελ θάλνπλ πξφνδν. Ο FOP-LCI θαίλεηαη, πάιη, λα επλνεί ηηο

Ν εθαξκνγέο αληί ησλ SC.

Figure 1.1-17: Βεληίωζη throughput και fairness ζσεηικά με ηο Linux

 ην ζρήκα 1.1-17 ζπγθξίλνπκε ηηο ηερληθέο καο κε ην Linux γηα ηνπο θφξηνπο ηεο

δεχηεξεο νκάδαο. Καηαιήγνπκε ζηα εμήο. O CMB είλαη ηθαλφο λα κνηξάζεη ηηο BC εθαξκνγέο

θαη λα πξνζθέξεη ην θαιχηεξν throughput. Απφ ηελ άιιε ν FOP κεηψλεη ειαθξψο ην

throughput, αιιά πεηπραίλεη ην θαιχηεξν fairness. Ο FOP-LCI βξίζθεηαη ζε κηα ελδηάκεζε

θαηάζηαζε

35

Σπίηη Ομάδα Πειπαμάηυν

Figure 1.1-18: Φόπηορ διεπγαζιών με 6 L, 2 LC, 5 BC, 1 SC και 2 Ν διεπγαζίερ

 ε απηή ηελ πεξίπησζε (ζρήκα 1.1-18) θαηαιαβαίλνπκε φηη ν CMB δελ κπνξεί λα

απνκνλψζεη ηηο BC εθαξκνγέο θαη αλαγθαζηηθά ηηο ηξέρεη καδί. Λακβάλνληαο ππφςηλ φηη

παθεηάξεη θαη ηηο L, απηφ νδεγεί ζε ειαθξψο κεησκέλε απφδνζε ζπγθξηηηθά κε ην Linux.

Γεληθά αθνινπζεί ηε ζπκπεξηθνξά ηνπ Linux. Απν ηελ άιιε, νη άιιεο δπν ηερληθέο απνδίδνπλ

φπσο πεξηκέλακε, κε ρακειφηεξν throughput ζρεηηθά κε ηηο άιιεο νκάδεο πεηξακάησλ, δηφηη ν

αξηζκφο ησλ εθαξκνγψλ πνπ δελ εθηεινχληαη απνδνηηθά (BC) είλαη απμεκέλνο.

Figure 1.1-19: Βεληίωζη throughput και fairness ζσεηικά με ηο Linux

 πγθεληξσηηθά γηα φινπο ηνπο θφξηνπο δηεξγαζηψλ έρνπκε ηα εμήο. Ο CMB

παξνπζίαδεη ηελ κηθξφηεξε κείσζε ζην throughput θαη ηελ κηθξφηεξε αχμεζε ζην fairness. Οη

άιιεο δχν ηερληθέο έρνπλ παξφκνηα ζπκπεξηθνξά, κε ηνλ FOP λα είλαη ειαθξψο ρεηξφηεξνο

ζην throughput θαη ειαθξψο θαιχηεξνο ζην fairness απφ ηνλ FOP-LCI.

36

Κεθάλαιο 4

ςμπεπάζμαηα

Figure 1.1-20: Βεληίωζη throughput και fairness για κάθε ομάδα ζσεηικά με ηο Linux

 Βιέπνληαο ηα απνηειέζκαηα ηεο ζχγθξηζεο θαηαιήγνπκε ζην εμήο. Όιεο νη ηερληθέο

πνπ πξνηείλακε θαηαλέκνπλ πην δίθαηα ηνπο πφξνπο ηνπ ζπζηήκαηνο ζηηο δηεξγαζίεο.

Δθπιεθηηθά απνηειέζκαηα παξνπζηάδεη ε δεχηεξε θαη ε ηξίηε πξνζέγγηζε θαζψο θέξλεη ζε

ζρεδφλ απφιπηε ηζνξξνπία ελ πξφνδν ηνπο. ηελ πξψηε πξνζέγγηζε έρνπκε ηνλ πεξηνξηζκφ

φηη ν δηαρσξηζκφο ησλ εθαξκνγψλ πνπ ππνθέξνπλ πεξηζζφηεξν κπνξεί λα γίλεη κφλν ρξνληθά.

Απηφ ζεκαίλεη φηη φηαλ ν αξηζκφο ηνπο μεπεξάζεη ηηο πηζαλέο ηεηξάδεο, ηφηε ν

ρξνλνδξνκνινγεηήο καο δελ κπνξεί λα αληαπνθξηζεί ζε απνδνηηθή αχμεζε throughput θαη

fairness.

 Αλαθνξηθά κε ηελ κείσζε ηνπ throughput γηα ηνπο FOP θαη FOP-LCI, απηφ ζπκβαίλεη

επεηδή ηνλ επεμεξγαζηή θξαηάλε απαζρνιεκέλν θπξίσο δηεξγαζίεο πνπ δελ θάλνπλ πξφνδν.

Παξ‟φια απηά είλαη ζπνπδαίν ην απνηέιεζκα πνπ πξνζθέξνπλ θαη αμίδεη λα ζπζηάζνπκε

throughput ψζηε λα πεηχρνπκε ζρεδφλ ηελ απφιπηε ηζνξξνπία.

 ρεηηθά κε ηνλ FOP-LCI, επηδηψθακε λα απμήζνπκε ηελ πξφνδν ησλ C κε ηελ

απνκφλσζε ηνπο. Καηαιαβαίλνπκε φκσο φηη κε απηφ ην ηξφπν, ζπζζσξεχακε ηηο L ή ηξέρακε

ηηο BC καδί, θάηη πνπ δελ νδεγεί ζε θαιχηεξα απνηειέζκαηα. Απηφ πνπ παξαηεξήζακε είλαη

αχμεζε ηνπ throughput απν ηελ επλνηθή εθηέιεζε ησλ „νπδέηεξσλ‟ εθαξκνγψλ.

 πλνςίδνληαο, βιέπνπκε φηη νη ζχγρξνλνη ρξνλνδξνκνινγεηέο δελ ιακβάλνπλ ππφςηλ

ηνπο ηηο ηδηαηηεξφηεηεο ησλ πνιππήξλσλ ζπζηεκάησλ θαη δελ παξέρνπλ ζηαζεξφηεηα. Οη

ηερληθέο πνπ πξνηείλακε κπνξνχλ λα εγγπεζνχλ αμηνπηζηία θαη δηθαηνζχλε ζηελ θαηαλνκή ησλ

πφξσλ.

37

38

Table of Contents

1 ... 40 Introduction

1.1 Definition of scheduling ... 40

1.2 Chip Multiprocessor .. 41

1.3 Operating System Services .. 42

1.4 Process Scheduling .. 43

1.5 The Linux Scheduler ... 44

1.6 Chapter Description ... 46

2 .. 48 Problem Definition and Motivation

2.1 Resource sharing utilization .. 48

 Constructive behavior of resource sharing ... 49 2.1.1

 Destructive behavior of resource sharing ... 49 2.1.2

2.2 Last Level Cache Contention.. 50

2.3 Memory Bandwidth Contention .. 52

2.4 NUMA Architecture ... 54

2.5 Motivation ... 55

 Low progress .. 55 2.5.1

 Poor fairness .. 57 2.5.2

 Co-runner Dependent Performance .. 58 2.5.3

3 .. 60 Proposed Scheduling Policies

3.1 First approach (Avoiding contention) .. 60

 CMP architecture and thread placement .. 61 3.1.1

 Experimental CMP Platform .. 63 3.1.2

 The Classification Method ... 65 3.1.3

 The Prediction Model .. 76 3.1.4

 The Decision - CMB (Cache and Memory Bandwidth contention-aware) Scheduler.................... 79 3.1.5

3.2 Second Approach (Managing Contention) .. 84

 Fairness over running time .. 84 3.2.1

 Fairness over progress ... 86 3.2.2

 The FOP (Fairness over Progress) Scheduler ... 88 3.2.3

3.3 Third Approach (Avoiding and Managing Contention).. 98

 The FOP-LCI (Fairness over Progress with L-C class Isolation) Scheduler 98 3.3.1

39

3.4 Implementation tool .. 101

 The scaff ... 101 3.4.1

 System tools and mechanisms .. 102 3.4.2

4 .. 105 Experimental Evaluation

4.1 Evaluation of scheduling policies... 108

 Low contention environment ... 108 4.1.1

 Medium contention environment ... 116 4.1.2

 High contention environment ... 124 4.1.3

5 .. 132 Conclusion and Future Work

5.1 Results Evaluation.. 132

5.2 Future work ... 134

6 ... 136 Related Work

7 Bibliography .. 140

8 Appendix ... 143

40

 Chapter 1

Introduction

1.1 Definition of scheduling

 Scheduling is a process concerning the decision of allocating resources to tasks. It

occurs over given time periods and is responsible for optimizing several objectives [4].The

resources, tasks and objectives vary between different organizations. In the examples below we

illustrate the possible forms they may take.

 Taking industry for example, we examine a factory that produces paper bags used for

dog food or cement. Regardless of the type of bags we want to produce, the process remains the

same and follows three stages, the printing, the gluing and the sewing. In each stage, there are

machines of different characteristics, which execute different operations at various speeds. So

we recognize here that the resources and the tasks coincide with the machines and the clients‟

orders respectively. The size of the order affects the completion time. In addition, the setup of a

machine should be changed when a switch from one type of bag to another occurs. Another

thing that should be taken into consideration is the impact a late delivery would have on the

relationship between the factory and the clients. For these reasons, it is necessary to schedule

the operation of the machines aiming to satisfy some of the following objectives, minimize the

penalties a late delivery would impose or minimize the time wasted on different setups.

 As far as transportation services are concerned, we examine a terminal at an airport.

Each day hundreds of planes arrive to and depart from numerous gates. Some gates have plenty

of space and are easily accessible by large planes, while others are in a location where it is

difficult for a plane to reach in. Planes follow a certain schedule for their arrival and their

departure. However unforeseen circumstances, like bad weather conditions, require changes to

the main schedule. When a plane arrives to the airport, it occupies its gate. The arriving

passengers disembark, the plane remains at the gate in order to be serviced and the departing

passengers are boarded. However the flight could be postponed, because the destination airport

could be busy enough to accommodate another plane. On this occasion, the plane may have to

remain at the gate for a long period, preventing others from using it. In this example, the gates

are the resources and the servicing of planes are the tasks. It is made clear that a scheduling

policy should be adopted in order to optimize several objectives. In the first place, we need to

assure that the arriving planes would be assigned to an unoccupied gate. Another objective may

be the minimization of personnel‟s work or the minimization of delays.

 Scheduling is widely used in information processing environments. In such

environments, we recognize the CPUs (Central Processing Units) as the resources and the

executable programs (processes) as the tasks. Computing systems provide with the ability of

multiprogramming, assigning, in other words, numerous processes in the CPUs in a given time

period. The scheduler is responsible for this work. It slices the CPU time into pieces and

devotes them to different processes. In that way it assures that all of the processes would take a

fraction of the CPU time and that the CPU would not be kept busy by only a few. The

41

optimization of specific objectives has a great impact on the overall performance of the system.

For example, keeping the CPUs busy all the time leads to maximization of throughput or

minimizing the waiting time of applications provides with fair distribution of the resources. For

these reasons, schedulers are an indispensable part of computing systems and it is essential to

make efforts to improve them.

1.2 Chip Multiprocessor

 Manufacturers adopt a simple rule to improve computer performance. They increase the

number of transistors a CPU contain and decrease in parallel their size. In accordance with

Moore‟s law this has caused speeds to climb and prices to fall. The computing industry

followed this trend for years. However, it is impossible for transistors to continuously shrink.

Despite the fact that transistors grow thinner, manufacturers have to face two critical problems,

power usage and heat generation. Even approaches for performance enhancement, like running

multiple instructions per thread (ILP) have reached a plateau.

 For these reasons, potentials for improvement of the processor performance have been

seriously restricted. Chip performance experienced a 60% increase per year in 90s but declined

to 40% per year from 2000 to 2004. Apparently designing a chip with 20% speed increase,

costing twice the die area would not be ideal for meeting our expectations for performance

boost, energy efficiency and cost effectiveness [5].

 In response, manufacturers are turning from single-core to multi-core architectures.

Instead of one increasingly powerful core, they are building chips with multiple more energy-

efficient processing cores. These cores run in lower speeds as compared to the single-core

systems but they improve overall performance by executing more processes in parallel. Taking

for example a dual-core chip running multiple processes simultaneously, we conclude that it is

about 1.5 faster than a chip with just one core.

 When a single-core chip runs multiple programs, it assigns a time slice to work on one

program and then assigns different time slices for others. This can cause conflicts, errors, or

slowdowns when the processor must perform multiple tasks simultaneously. When considering

multi-core chips, on the opposite, it is feasible to execute multiple instructions at the same time,

increasing overall speed for programs amenable to parallel computing. So if you have multiple

tasks that all have to run at the same time, you will see a boost of performance with multi-core

processors.

 The improvement in performance gained by the use of a multi-core processor depends

very much on the software algorithms used and their implementation. In particular, possible

gains are limited by the fraction of the software that can be run in parallel simultaneously on

multiple cores. Programmers must find good places to break up the applications, divide the

work into roughly equal pieces that can run at the same time, and determine the best times for

the threads to communicate with one another (thread-level parallelism (TLP)), a work that

makes the parallelization of software a significant ongoing topic of research.

 Manufacturers typically integrate the cores onto a single integrated circuit die (known as

a chip multiprocessor or CMP), or onto multiple dies in a single chip package. Because the

chips' cores are on the same die, they can share architectural components, such as memory

42

elements and memory management. They thus have fewer components and lower costs than

systems running multiple chips (SMP). Also, the signaling between cores can be faster and use

less electricity than on multichip systems.

 The advantages a multi-core processor can offer, mentioned above, made them the

dominant in the area of computing systems. Multi-core processors are widely used across many

application domains including general-purpose, embedded, network, digital signal processing

(DSP), and graphics. Multi-core technology, with its promise of improved power efficiency and

increased hardware utilization, has been embraced by the industry: AMD, Fujitsu, IBM, Intel

and Sun Microsystems are shipping multicore systems and have announced plans to release

future models. Having become mainstream in both server and desktop processors, we expect to

see processors with tens and even hundreds of cores on a chip, over the next decade.

1.3 Operating System Services

 An operating system is a program that manages a computer's hardware. It also provides

a basis for application programs and acts as an intermediary between the computer user and the

computer hardware.

Figure 1.3-1: Abstract view of the components of a computer system

 A computer system can be divided roughly into four components: the hardware, the

operating system, the application programs, and the users (Figure 1.3-1). The hardware

consists of the central processing unit (CPU), the memory and the input/output (I/O) devices

43

and provides the resources for the system. The application programs, for example word

processors, spreadsheets and browsers, define the ways in which these resources are used to

solve users' computing problems. The operating system controls the hardware and coordinates

its use among the various application programs for the various users [6].

The operating system is responsible for process, memory and storage management.

Regarding process management, it schedules processes and threads on the CPUs, creates and

deletes both user and system processes, suspends and resumes processes and provides

mechanisms for process synchronization and communication.

 Concerning the memory management, it keeps track of which parts of memory are

currently being used and who is using them, decides which processes and data to move into and

out of memory and (de)allocate memory space as needed.

 Operating system abstracts the physical properties of the storage devices and creates a

logical, uniform storage unit, the file. It accesses the storage devices via the files and takes

charge of specific operations for managing the file-system. It creates and deletes files or

directories, supports mechanisms for their manipulations, and maps files onto storage devices. I

 In the case a program needs to communicate with a file or a device, the operating system

provides I/O operations. The communication can be achieved via special functions that utilize

the devices properly and offer efficiency and protection

 Communication between users and their programs should be helpful and convenient.

The operating system provides the user interface (UI), in order to make computer interactive.

There are many form an interface could take. It may be a command line interface (CLI), which

uses text commands. The other and most common form is the graphical user interface (GUI). It

consists of a window system with a pointing device and a keyboard.

 Protection and security are two aspects that an operating system should take into

consideration. User and processes are not allowed to have access to the resources without

regulation. Operating systems enforce some controlling mechanism in order to protect the

execution of the processes. They ensure that files, memory and CPUs can be utilized by the

processes that have gained proper authorization.

 Operating systems should offer not only protection but also security. This means that

they should be able to defend the system from external and internal attacks. Such attacks may

include viruses, identity theft, denial-of-service and theft of service.

1.4 Process Scheduling

 A process is considered as the task that should be completed in a computing system. A

system consists of numerous processes, some of them are operating-system processes, meaning

that they execute system code, and the others are user processes, meaning that they execute

user code.

 CPUs are considered as the main resources of a system. Operating systems assign these

resources to the tasks aiming to optimize some objectives. Scheduler is the indispensable part

of the operating systems that holds this responsibility. Its main role is to provide with the ability

of multiprogramming. CPU cannot be kept busy by a single process all the time. It should be

ensured that all processes take a slice of the CPU‟s time and make progress

44

 However, multiprogramming is not the only reason that makes the scheduler so

important. The way it manages the processes has a great impact on the system performance.

The extent at which the various objectives are satisfied is reflected on the system, as these

objectives consist the criteria for the performance measurement.

 The main objectives that a scheduler tries to optimize are the following. First of all we

want to maximize the CPU utilization, meaning that we try to keep the CPU as busy as

possible. In addition we want to maximize the throughput, which is the measure of work done.

It indicates the processes that are completed per time unit. Furthermore it is desirable to

minimize the turnaround time of applications. This refers to the interval from the time of

submission to the time of completion of a process. Waiting time is another criterion we try to

minimize. It is the total time that an application spent waiting in the ready queue. We do not

want waiting time to be gathered to one application only, but to be equally distributed among

them. Another thing we should take into account is the response time, which is the time from

the submission of a request until the first response is produced. In an interactive system, it is

preferable to minimize response time

 Regardless of the various scheduling algorithms proposed in order to achieve the

optimization of the desirable objectives, the main abstract purpose of the scheduler is analyzed

in the meaning of time-sharing and space-sharing the CPUs. Time-sharing the CPU means

multiplexing a single processor in time and devotes every time-slice to different process, so that

CPU executes multiple processes in a time interval. Space-sharing the CPUs is about deciding

on which CPU each process chosen to run at a given time interval will be assigned to run.

 For single processor architectures the scheduler enforces obviously time-sharing only.

OS schedulers for these architectures had become so optimized that need for further

improvements dramatically subsided, thereby diminishing interest in this research topic. In the

late 90s, the scheduling problem was considered solved; at least it appeared that way until the

advent and subsequent near ubiquitous proliferation of chip multiprocessors (CMP).

 CMP architectures, consisting of multiple processing cores on a single die added new

dimensions to the scheduler‟s role. In addition to time-sharing, it became necessary to also

space-share cores among the processes. In the state-of-the-art schedulers the cores are treated

as isolated and independent processors, just like SMPs, and the strategy for placing processes

on cores is load balancing. The OS scheduler tries to balance the runnable threads across the

available resources to ensure fair distribution of CPU time and minimize the idling of cores.

1.5 The Linux Scheduler

 To comprehend how the time and space-sharing are applied and how scheduling

strategies for optimization of some desirable objectives are implemented in practice, we now

present the Linux Scheduler.

 Linux contemporary multiprocessor operating system uses a two-level scheduling

approach for efficient resource distribution. In the first level, it assigns queues in each core and

adapts fair policies to manage each queue. In the second level, it redistributes the tasks across

the cores using the load balancer. The first level reflects the time-sharing policy, while the

second level reflects the space-sharing policy. In the paragraphs that follow we discuss each

45

level independently.

Run Queue Management

The Linux scheduler is called CFS (Completely Fair Scheduler). It is different from the

classical schedulers, as it does not embrace the idea of time slices. It takes into account the

waiting time (the time an application is in the run queue and is ready to be executed) of the

applications only, rather than computing time slices for each one and run it until their time slice

is used. In this level, a per core run queue is created and represents the set of programs assigned

on this core. CFS schedules the tasks of each core, deciding which application from the queue

will run next, via its run queue management.

Inspecting deeper the general principle of CFS we understand why it is called

completely fair. It provides maximum fairness to tasks in terms of power, scheduling the task

with the gravest need for CPU time. Associating waiting time with unfairness, it ensures that no

heavy unfairness will gathered in tasks, as it picks the application with the highest waiting time

and assigns it to the core. In that way, it shares the unfairness equally among all the tasks in the

system.

 Run queues of the CFS are implemented through a time ordered red-black tree.

 CFS enforces priority indirectly using a delay factor for the time a task is allowed to be

executed. Lower-priority processes have higher delay factors, while higher-priority processes

have lower factors. This means that the time a task is permitted to run passes more quickly for a

lower-priority application than for a higher-priority.

The Load Balancer

 In the CMP platforms, each core has its own run queue, as described previously.

Completion times of tasks across the run queues are not the same. For this reason, some cores

may execute all the tasks of their run queues and become idle, while other still have many

applications in the queue waiting to be executed. This phenomenon is called load imbalance.

The load balancer is designed to solve this problem. It is called periodically migrating tasks

from the busiest CPU to the less-loaded. In that way, it attempts to balance the number of tasks

across all the run queues of the system.

 The selection of potential tasks to be migrated occurs based on meeting some

restrictions. For example it needs to be ensured that the candidate application is not on a CPU

at the moment or that it is allowed to run on the destination core.

Topology and Locality Awareness

The Linux scheduler organizes the run queues hierarchically into different scheduling

domains, in such a way that it is reflected how the hardware resources are shared. It balances

the queues progressing up the following domains of the hierarchy: Simultaneous

Multithreading (SMT) contexts, last-level caches, and NUMA domains. At each level the load

balancer decides how many processes need to be migrated between two groups in order to

balance the number of tasks in those groups. If the groups are already in balance, no action is

46

taken. The load balancer is invoked in a frequency specified by both the scheduling domain

kernel settings and the instantaneous load.

As the level in the hierarchy increases, the frequency of invoking the balancer and the

number of migrations decreases. This is based on the concept that migrations between domains

located higher in the hierarchy are more costly than those between domains located lower. This

is valid if we consider migrations between NUMA banks and between SMT contexts.

1.6 Chapter Description

 In Chapter 2 we present the problem of co-executing applications that contend for the

shared resources of a CMP. In addition, we study the destructive consequences that the agnostic

treatment of threads has on the objectives of a scheduler.

 Motivated by the observations made on the previous chapter, in Chapter 3 we propose 3

scheduling policies that attempt to mitigate the phenomenon of unfair resource sharing. In

addition, we describe the execution platform used for our experiments, and the tools and

mechanisms used for the implementation of our techniques.

 In Chapter 4, we form 15 workloads and group then in 3 categories. We evaluate our

proposed schedulers and compare them with the Linux scheduler, describing in detail the

results for each category.

 Conclusions and ideas for further improvements are summarized in Chapter 5, while

approaches made by the research community are presented in Chapter 6.

47

48

 Chapter 2

Problem Definition and Motivation

2.1 Resource sharing utilization

 As mentioned before, CMP's cores managed to overcome the problems of transistor

shrinking, power consumption and heat generation that a simple core had to face. The need for

fast signaling between cores, less electricity usage and in consequence cost effectiveness lead

the manufacturers to integrate the cores into a single circuit die and thus share architectural

components such as memory elements and memory management. The main components (on-

and off-chip) shared among the cores of a CMP architecture are the LLC (Last Level Cache)

the memory bus or interconnects, DRAM controllers and pre-fetchers (Figure 2.1-1).

Figure 2.1-1: Shared resources of a CMP platform

While CMP platforms seem to be promising for performance improvement, sharing the

workload to parallel cores, their design would not have such a beneficial impact on the various

threads running simultaneously. Workloads of both client and server domain consist of a variety

of applications with a big range of different characteristics and behavior. When they are

executed concurrently in the neighboring cores of a CMP they can use its resources either

constructively or destructively.

49

 Constructive behavior of resource sharing 2.1.1

 CMP platforms can offer tremendous speed up for applications that exploit the thread

level parallelism (TLP). When multiple cores share resources, threads of an application running

concurrently on those cores can constructively use these resources in a number of ways.

 Threads of an application share data that they access in different patterns. A memory

access pattern that can lead to constructive use of shared resources is the one of fine-grain

sharing. This kind of sharing is achieved when threads ping-pong data back and forth between

private caches and main memory [7]. Such behavior express threads that update the same or

coterminous group of data either concurrently or one after another, like the producer-consumer

example, where one thread writes some data and another thread reads it.

 When co-executing threads, presenting the above behavior of memory accesses, into the

cores of a CMP, the sharing of LLC, memory controllers, memory bus and hardware

prefetching helps the threads to productively cooperate. Last Level Cache in this case is the

main component playing the dominant role for constructive behavior. It holds blocks of data

that are accessed from all the cores with low latency at the same period. This means that only

one copy of the data is shared rather than multiple copies spread out across private caches,

reducing coherence traffic [8]. It also means that since data are concurrently used by all cores

they are not ping-ponged back and forth from cache to main memory, reducing the latency of a

costly transfer, contaminating less frequent the memory bus, dram controllers and prefetchers.

Furthermore data are being brought to cache by one thread which exploiting the prefetching

logic brings a coterminous group of data that can be used by the other threads. This reduction

in data redundancy also leads to larger effective capacity on chip.

 Even threads not sharing a cache can interfere constructively. If caches are located in the

same socket, coherence traffic can avoid transfer of messages in a heavily contended system

bus. Of course, coherence traffic between caches sharing a bus is less costly than between

caches located to different sockets.

 Destructive behavior of resource sharing 2.1.2

 Considering the workloads to be executed in CMP platforms both in desktop and server

environment, they consist of a variety of applications multithreaded or not that need to run

concurrently on the neighboring cores. Threads of different applications, usually, do not

communicate with each other or share data, thus they don't help each other when running

simultaneously, using constructively the shared resources of a CMP. Even threads of the same

application running together will not benefit, if they exhibit coarse-grained sharing [7].

Opposite to fine-grained sharing, they do not ping-pong data back and forth, but there is a long

period where one thread accesses the data followed by a long period where another thread

accesses the same data. In that way they do not bring data for each other and act like being

threads of different applications that exhibit different memory access properties.

 Such applications are competing for the shared resources, as their needs for utilization of

elements of the memory hierarchy try to be satisfied. The performance of the applications

participated in this conflict for resources can be negatively impacted, being slowed down by

50

hundreds of percent relative to running alone, because of the destructive interference they cause

to each other. In this paper we will examine only the destructive behavior between threads,

when they contend for shared resources.

 Below we present how the contention in each level of resource sharing (Last Level

Cache, DRAM Controllers) impacts destructively on performance of applications.

2.2 Last Level Cache Contention

 When threads run concurrently in cores, the first point of contention is Last Level Cache

they share. Threads bring data to cache without regulation, following the cache replacement

policy being implemented on the CMP platform, in order to save the heavy latency the memory

impose. This means that a thread evicts the data of a neighboring thread or its data are evicted

by another (Table 2.2-1).

Processor Cache Line X Action Cause Result
P1 Access Data A Compulsory miss Cache empty -

P1 Access Data A Hit In cache -

P2 Access Data B Capacity miss Not in cache Evicts P1 Data

P1 Access Data A Conflict miss Evicted by P2 Evicts P2 Data

P2 Access Data B Conflict miss Evicted by P1 Evicts P1 Data

P1 Access Data A Conflict miss Evicted by P2 Evicts P2 Data

P1 Access Data C Capacity miss Not in cache Evicts P2 Data

Table 2.2-1: Impact of interference in the Last Level Cache

 As it is depicted in the above example, the process P1 is subjected to pay the cost of two

extra misses and P2 of one extra miss, forced to wait more time for the data to come from

memory and consequently having a severe degradation to their performance.

 Research showed that the 3C classification of misses (Compulsory, Conflict, Capacity)

is inadequate to analyze the exact cause of misses and cannot model the contention existing in

the shared cache. They provide a new cache miss classification, CII (Compulsory, Intra

processor, Inter processor), that is able to model the interactions between transactions of

multiple processors at the level of shared cache [9]. Intra-processor miss is the one caused by

the same process, opposite to Inter-processor which is caused due to a conflict by a neighboring

process. In the above example, P1 has two inter-processor and one intra-processor miss and P2

has one inter-processor and one intra-processor miss.

 Using a set of benchmarks they measured the distribution of misses of their

classification scheme to an 8 processor CMP architecture with L1 private caches and L2 shared

unified Last Level Cache. On an average, 40.3% of the misses are Inter-processor misses,

24.6% of the misses are Intra-processor misses and the remaining 35.1% are compulsory

misses.

 Several studies have shown how the contention for the Last Level Cache negatively

51

affect the performance of the applications co-scheduled [10] [11]. They showed that the

reduction in IPC is corresponded to the increase of cache misses.

 Working on a CMP platform with Nehalem architecture, using the one of two packages

consisting of four processors with up to L2 private caches, one fully inclusive and fully shared

L3 Last Level Cache and an integrated memory controller, we show how the conflict for the

LLC affect the co-running applications. All bars are normalized to the case where applications

were running alone.

Figure 2.2-1: Destructive effects of LLC contention on IPC of 4 co-running applications

Figure 2.2-2: Impact of LLC contention on MPI

Examining the two above figures we come to the following conclusions. When

applications are executed concurrently, they cause increase of their Misses Per Instruction

(MPI), because of their destructive interference in the shared LLC. This increase reflects to a

52

corresponding decrease of their IPC, which occurs at a different rate for each application.

Furthermore, the increase of MPI is not uniformly distributed, meaning that the LLC contention

is not treated equally between threads and thus present unfair slowdown.

 Summarizing, the above figures, assured our previous statements, that when applications

compete for the shared LLC, they do cause destructive interference that leads to severe

performance degradation (x1.23, x2.12, x1.08, x1.71 times of slowdown).

2.3 Memory Bandwidth Contention

 The other crucial point of contention is the memory bus, which is the mediator between

the Last Level Cache and the main memory. Memory Bandwidth is referred as the rate that data

are written to or loaded from main memory through the memory data bus. Its theoretical

maximum rate depends on the source and timing constraints of the memory system, such as

memory clock frequency, bus width, number of data transfers per clock. The actual sustainable

rate, though, is implied by the memory access pattern of the application running and the

scheduling algorithm imposed to those arriving requests by the Dram controller.

 When multiple threads are running concurrently, they contaminate the memory bus with

their data without regulation. As long as the sustainable rate of transactions is limited, their

bandwidth would be reduced, in order to obey the source constraints.

 Working on the same CMP platform described before, we show how the contention on

the memory bandwidth affects destructively the performance of the applications running

together.

 To avoid contribution to the performance degradation from the shared LLC contention,

we choose applications that have streaming behavior. This means that data transferred from

main memory to LLC are further descending to the private caches without gaining any benefit

from their preservation on the LLC. Every second another amount of data arrives on the LLC,

evicting the previously brought, and moves towards to the processor with the same rate. This

direct flow of data characterizes these applications as streaming and do not take advantage of

the LLC existence. Such applications when running concurrently, they do not cause

interference to each other because of the shared LLC. This happens because each application

have a flow of data which passes through the LLC and is directed deeper to the processors,

evicting each other‟s data, but without causing extra LLC misses, as they wouldn't refer to them

in future time. They only refer to the flow that comes every second. Usually this kind of

applications is memory intensive, meaning that they access the main memory at long and

frequent time periods.

 The Figure 2.3-1 shows how bus bandwidth contention affects the performance of the

co-executed applications. The bars describing the impact on IPC, memory bandwidth and

misses per instruction are all normalized to the case where these applications are running alone.

Examining the results, we come to the following conclusions. On the one hand, our previous

statement that working with streaming applications sharing the LLC we avoid the contention

coming from this source comes true. Misses per Instruction have remained unharmed. On the

other hand, all applications are subjected to lower memory bandwidth rate, causing a decrease

53

on IPC (instructions per cycle) that follows the same reduction pattern. Time is increased

inversely proportional to the IPC reduction, as expected.

Figure 2.3-1: Bandwidth and IPC distribution of 4 co-running streaming applications subjected to

bandwidth contention

Figure 2.3-2: MPI behavior for the set of streaming application executed concurrently

The total sustainable bandwidth the memory controller can perform is 𝐵𝑎𝑐𝑡𝑢𝑎𝑙−𝑝𝑒𝑎𝑘 =

13.21 𝐺𝐵 𝑠⁄ , as measured form the co-execution of the streaming applications. The sum of the

sustainable bandwidth of each application, when running alone, is 𝐵𝑡𝑜𝑡𝑎𝑙−𝑝𝑒𝑎𝑘 = 18.5 𝐺𝐵 𝑠⁄ .

The percentage of bandwidth, that the dram controller satisfies, is
𝐵𝑎𝑐𝑡𝑢𝑎𝑙−𝑝𝑒𝑎𝑘

𝐵𝑡𝑜𝑡𝑎𝑙−𝑝𝑒𝑎𝑘
= 0.7319. This

54

means that when running together, the memory controller contention cause each application to

reach a 73.19% proportion of their initial bandwidth, on the ideal case where the reduction was

uniformly distributed. As we see the ratio of bandwidth of each application is with a small

deviation around this price, that is the memory controller shares its actual peak bandwidth quite

fairly between the conflicted applications. The bars of IPC are decreased proportionally to

those of bandwidth by a factor of 0.914 (~1) on average. This behavior shows how important

the bandwidth is for the streaming applications. As mentioned above, the flow of data,

translated to bandwidth here, determines the performance of such applications, so a decrease on

bandwidth leads to same decrease on IPC.

2.4 NUMA Architecture

In the last years, processor manufacturers have adopted a new way for accessing the

main memory system, the NUMA (Non Uniform Memory Access) architecture. Traditionally,

processors access data through an external bi-directional data bus called front-side bus (FSB).

This bus is connected to the memory controller hub that receives requests from all the

processors, directed to the main memory. This uniform memory access (UMA) through a

common FSB and memory controller is replaced by a new system architecture (Intel Quick

Path for example) that integrates a memory controller into each microprocessor, dedicates

specific areas of memory to each processor, and connects processors and other components

with a new high-speed interconnect (Figure 2.4.1).

 The main benefit, that NUMA architectures offer, is that the contention for bus and its

bandwidth present a significant reduction. Processors do not anymore need to compete with

each other to reach memory system, as they have their own dedicated memory banks accessed

through an integrated memory controller. In case, that one processor needs to access other

processor's memory, this happens through a high speed interconnect that links all the

processors.

Despite the fact that, now processors are integrated into packages and access specific

memory areas, through separate memory channels and memory controllers, avoiding the

contention of a unique shared bus, contention cannot be eliminated completely. Even

processors of the same package would suffer from memory controller and bus contention, as

these components are still shared among them. We showed previously that contention does

exist, when co-running four applications in a Nehalem quad core package (NUMA

architecture).

55

Figure 2.4-1: Nehalem, NUMA architecture

2.5 Motivation

 On the arrival of the CMP architecture, most of hardware and software techniques

implemented on single-core or SMP processors are adopted unmodified. Cache and memory

controller scheduling policies, optimized for isolated processors, do not satisfy the needs of

threads that run concurrently on neighboring cores and share resources. LRU cache

replacement policy treats the misses from multiple threads uniformly, allocating space based on

their rate demand, causing destructive interference. Memory scheduling policies, designed to

maximize overall data throughput, prioritize requests of threads with specific memory patterns

over others. Hardware, in general, do not support contention or thread aware mechanisms, in

order to mitigate or avoid destructive interference that causes severe performance degradation.

 Not only hardware but also software implementations proposed for utilization of

hardware sources on single-core or SMP architectures are destined for CMP platforms. State-

of-the-art schedulers, running without modifications on CMPs, create the illusion that the

processors, they handle, are isolated and independent units, without taking into account the

sharing components and their occurring contention. This flaw causes a serious impact on the

optimization of the scheduler objectives.

 Low progress 2.5.1

Before inspecting deeper how the contention agnostic treatment influences the

characteristics of a scheduler, we describe what alone execution means for an application.

Alone execution time of an application is very useful for comparing with the time needed to

56

finish when contending with others. It is measured when application is running completely

alone, with the neighboring cores remaining idle, and the shared sources are exclusively

occupied only by this application.

 A scheduling algorithm should provide with maximum utilization of CPU time, ensuring

that all the threads it manages are assigned frequently on the different cores and make progress.

But when threads competing for the shared resources, are placed together without regulation,

their progress is subjected to the consequences of contention.

 For the co-running group below, every application make a fraction of the ideal progress

achieved if no contention occurs (same as running alone). For example, if an application on

every time slice the scheduler assigns, achieves the 70 % of the IPC measured in the alone

execution, the actual progress made on this time slice is equal to the 70 % of the ideal progress,

where no contention exists.

 So the actual time of an application running on contention is given by the form:

𝑡𝑖𝑚𝑒𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐼𝑃𝐶𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒

⋅ 𝑡𝑖𝑚𝑒𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔 (𝑓𝑜𝑟𝑚 2.5.1)

and is interpreted as the time passed if this application was running alone. When the application

is finished, the actual time is the same as the alone execution time and is equal to the measured

co-execution time multiplied by the factor that implies how much progress was done (form

2.5.1). The slowdown imposed on this application is inversely proportional to the IPC ratio:

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑡𝑖𝑚𝑒𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒𝑎𝑙𝑜𝑛𝑒−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

=
(2.5.1) 𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝐼𝑃𝐶𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

 (𝑓𝑜𝑟𝑚 2.5.2)

Figure 2.5-1: Relationship between IPC and slowdown

57

As showed in the figure the relation between IPC and Slowdown (form 2.5.2) is satisfied

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑝𝑐ℎ𝑎𝑠𝑒 =
𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝐼𝑃𝐶𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

=
1

0.208
= 4.808

Figure 2.5-2: Normalized times terminated over standalone execution

of 4 applications running on a time window of 5 minutes

 This slowdown has a further negative impact on the objective of the scheduler to

maximize overall throughput, as in a 5 minute time period (Figure 2.5-2) the application

suffering from contention is finished far fewer times than expected if running alone (x 0.208).

Furthermore the ensuring that threads do make adequate progress is no longer reliable, leading

in cases of great suffering to thread starvation.

 Poor fairness 2.5.2

 When applications suffer from contention, their performance is not affected uniformly.

This means that they experience contention in variable ways. Some of them may present no

suffering; others may present average or severe degradation. On the example given, it is made

clear that the contention resulted in ununiformed IPC reduction for the four co-executed

applications in a 5 minute time period, giving unfair advantages to some at the expense of

others (Figure 2.5-2). This means, that the main principal of the scheduler to share the

resources equally among threads is trespassed.

 The poor fairness enforcement, lead to another major problem. Thread priority policies

are unable to be adapted by the scheduler and if so, they lead to undesirable results. Giving

higher priority to an application, results in greater actual progress for this one. But when treated

58

unfairly this progress is impeded by the progress of lower priority threads, taking for example

pchase as a high priority application and stream a lower one, leading to priority inversion.

 Co-runner Dependent Performance 2.5.3

Figure 2.5-3: Variable performance of pchase_s application between different co-running groups

The level of contention generated depends on the co-running threads that compete for

the shared resources. As illustrated on the above figure, the application pchase_s is subjected to

high level of contention, resulting to high IPC reduction. When placing together the same

application with 3 different co-runners, we see an important increase on the IPC as a result of

lower occurring contention (Figure).

 This means that the performance of an application is highly variable between different

co-running sets. This unstable and co-runner dependent behavior of applications leads to

unpredictable and workload-dependent overall performance of a CMP platform. Consequently,

Quality of Service (QoS) guarantees cannot be provided to threads and Service Level

Agreements (SLAs) are very difficult to enforce.

59

60

 Chapter 3

Proposed Scheduling Policies

Shared resources of a CMP system are managed exclusively in hardware, meaning that

they treat the requests from different threads running simultaneously on neighboring cores as

they were requests from one single source. In addition, state-of-the-art process scheduling

algorithms enforced initially on single-core or SMT architectures and later implemented

without modifications on CMP platforms, consider the cores as isolated units and do not take

into account the contention occurring when different threads compete for the shared resources.

This thread and contention unaware behavior leads to poor system throughput, unfairness and

unpredictable/workload dependent performance.

 In this chapter we describe 3 scheduling policies, aiming to mitigate the unpredictable

and unstable performance the state-of-the-art schedulers, like CFS, dictate. Driven by the unfair

treatment these thread-unaware schedulers enforce, we focus on implementation of techniques

that attempt to share the resources evenly among the application of the system. On the first

hand, we propose a scheduler that picks combinations of applications that do not interfere with

each other, in order to provide fairness via contention avoidance. On the second approach, we

try to increase running time of heavily suffering applications at the expense of the well-

performed applications, in order to increase their progress and overall equalize the workload

performance. Finally, we extend the second solution, building a scheduler that takes into

account the bad consequences of some pairs of applications, trying to avoid a part of contention

and manage the rest of it, providing in that way a more efficient solution concerning

throughput.

3.1 First approach (Avoiding contention)

 A promising solution for addressing the contention of shared resources and its

destructive effects on the co-running applications is the contention-aware thread-level

scheduling. As mentioned before, performance of threads is subjected to the level of contention

generated when running together. Different combinations of threads compete for shared

resources to different extents and as such suffer different levels of performance loss. Some

combinations compete less aggressive than others. In this approach, we attempt to mitigate the

phenomenon of unfair distribution of the resources via contention avoidance. Our purpose is to

build a contention-aware thread scheduling policy which would determine which threads

should be placed together and which are placed far apart in such a way to minimize the effects

of resource contention. Thus applications would execute in a less contended environment,

experiencing higher performance and fairer resource sharing.

 Mitigation of contention effects through thread-to-core mappings is a very attractive

solution, as the mechanism enforcement requires no changes to the hardware and minimal

changes to the operating system. Modern operating systems allow binding of threads to cores

from user space via system calls with no modification to the kernel.

61

 Taking into consideration the vast number of different thread-to-core mappings, it is

impossible to perform online all the execution combinations in order to decide which leads to

the best result. Contention-aware schedulers are composed in three stages. On the first stage

they observe the activity of programs and classify them based on a particular performance

metric. On the next level they predict how programs from different classes interfere with each

other when they run together. On the last stage, they are ready to enforce their decision-making

policy, choosing the thread combination which leads to the desired performance according to

the prediction model.

 CMP architecture and thread placement 3.1.1

Before describing the building stages of our contention-aware scheduler, it is worth

mentioning the significance of the different CMP architectures on the thread placement

combinations. Most contention-aware schedulers proposed on research attempt to address the

problem of contention on multicore systems with components shared among a small set of

cores, usually two ([12], [13], [14]) . Cores are placed into different sockets and each socket is

dedicated to a specific memory area managed by an integrated memory controller (NUMA).

Cores of the same socket share pairwise a Last Level Cache. Opposite to this kind of sharing,

modern architectures have all of their cores (4 or 8) sharing the same LLC in the socket (Figure

3.1-1).

Figure 3.1-1: Structure of 3 different CMP architectures

Supposing we have a workload of 4 applications (A, B, C, D), we have to test all the

different combinations produced by the architectures, in order to find the appropriate thread-

to-core mapping that leads to the best possible performance. Although architectures A and B,

having different structure, they have the same subset of cores sharing a component and thus

generate the same combinations. The order of placement of threads on the pair cores does not

matter, as (A to core 0, B to core 1) results in the same execution with (B to core 0, A to core

1). In addition, the pair of threads can be placed to any pair of cores resulting in the same

execution. The mapping (C to core 0, D to core1, A to core2, B to core3) is redundant as it is

the same with this mapping (A to core0, B to core1, C to core2, D to core3). (If we utilize two

62

sockets including many pairs of cores sharing a cache, this mapping has to be taken into

account, as the contention for DRAM controller and bus is different. For example, having two

sockets with two LLC each and 2 cores on each cache, the (AB CD) (EF GH) and (AB EF)

(CD GH) could cause different behavior on the execution of this workload). With these

restrictions the different mappings of these 4 applications to cores on Architectures A and B are

3. On the other hand, on Architecture C there is only one unique mapping of this workload, as

all cores share the same component and different placement would lead to the same execution.

 In general all the possible unique mappings of n threads (same to the set of cores) to

cores that per k share a cache (in the same socket) is given by the following form:

𝑀𝑎𝑝(𝑛, 𝑘) =
∏ 𝐶(𝑛 − 𝑘 ⋅ 𝑖, 𝑘)𝑖<𝑛 𝑘⁄

𝑖=0

(
𝑛
𝑘

) !
,
𝑛

𝑘
≥ 1, 𝐶(𝑛, 𝑘) = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑓𝑜𝑟𝑚 3.1.1)

 Taking another example of 8 applications on 8-core architectures that per 2, per 4 and all

cores share a LLC in a socket, the number of different combinations for executing this

workload is respectively 𝑀𝑎𝑝(8,2) = 105, 𝑀𝑎𝑝(8,4) = 35, 𝑀𝑎𝑝(8,8) = 1. It is obvious, that

increasing the number of cores sharing a component, the search space for finding the best co-

running combination is significantly reduced. With multiple shared LLCs we have the ability to

multiplex the applications in space (space-sharing), deciding how they should be distributed in

a time interval: which threads will be scheduled to neighboring cores and which wil be

scheduled to distant cores. That is the reason why we have a high number of generated

combinations. On the other hand, the ability of space sharing the CPU is weakened, when

fewer LLCs are shared between cores, reaching zero space sharing for 1 LLC. This means that

threads causing high levels of contention can be placed apart only via time-sharing, executing

them to different time intervals, in order to avoid contention and bad performance. And with

workloads containing a normal number of contending threads, there is no way of avoiding

completely their co-execution only by time-sharing. Taking for example a workload of 8

applications half of them contending more aggressively when co-running (A, B, C, D, E, F, G,

H). We execute this workload to Architecture B and C. Architecture B offers the opportunity

for time and space sharing, opposite to Architecture C which offers only time sharing. A

possible co-execution on these different architectures could be the following:

 Time slice 1 Time slice 2

Architecture B (AB) (CD) (EF) (GH)

Architecture C (ABCD) (EFGH)

Table 3.1-1: Pairing of applications between different architectures

 We come to the conclusion that Architecture B makes it possible to avoid bad co-

runners, comparing to Architecture C which is forced to place them together and is obliged to

generate combination of high levels of contention.

 Summarizing, working with CMP architectures that all of their cores are sharing the

63

same component (LLC or DRAM controller), the choices we have for finding the best thread-

to-core mapping are severely limited. Without space-sharing, we are obliged to co-schedule

threads in a highly contended environment by avoiding contention only via time-sharing.

Executing threads on such conditions, the potential for further improvement is extremely

restricted. We evaluate our scheduling policies on a CMP platform that shares a LLC on 4 cores

in each package, desiring to inspect how fairness can be enforced to architectures that provide

with restricted thread placement options.

 Experimental CMP Platform 3.1.2

 In this paper, we are testing our scheduling techniques on an Intel® Xeon® Processor

X5560 Nehalem architecture, consisted of two processor chips (sockets), each of them

including several functional parts within a single silicon die. A Nehalem chip consists of the

following components [15]. The core domain:

 Four identical compute cores of 2.8 GHz processor base frequency,

 L2 Cache: Each core has a private, non-inclusive, 256KiB, 8-way set associative unified

level 2 (L2) cache,

 L1 Cache: At level 1 each core has separate instruction and data caches. They are

private, non-inclusive and unified. Each of them has a size of 32 KiB. The instruction

and data caches have 4-way and 8-way set associativity organization, respectively.

The un-core domain:

 L3 Cache: A unified, inclusive, 16-way set associative, 8 MiB cache shared by all four

cores of the chip

 UIU: Un-Core Interface Unit (switch connecting the 4 cores to the 4 L3 cache segments,

the IMC and QPI ports),

 L3: level-3 cache controller and data block memory,

 IMC: 1 integrated memory controller with 3 DDR3 memory channels,

 QPI: 2 Quick-Path Interconnect ports,

 Auxiliary circuitry for cache-coherence, power control, system management and

performance monitoring logic (both core and un-core domain).

The L3 is inclusive (unlike L1 and L2), meaning that a cache line that exists in either L1

data or instruction, or the L2 unified caches, also exists in L3. The L3 is designed to use the

inclusive nature to minimize “snoop” traffic between processor cores and processor sockets.

 A Nehalem chip is divided into two broad domains, namely, the “core” and the “un-

core”. Components in the core domain operate with the same clock frequency as that of the

actual computation core. The un-core domain operates under a different clock frequency. This

modular organization reflects one of Nehalem‟s objectives of being able to consistently

implement chips with different levels of computation abilities and power consumption profiles.

64

Figure 3.1-2: Nehalem architecture details

 Each chip is dedicated to specific memory areas, accessible via the IMC, which supports

three 8-byte channels of DDR3 memory operating at up to 1.333 GT/s. Maximum theoretical

bandwidth between DRAM and the IMC in the uncore domain of the chip is 31.992 GB/s.

 Communication between the two chips is achieved via the QPI link with available

bandwidth of 12.8 GB/s. Memory latency for a remote memory access is higher, since the

memory request and response must go through this QPI link. The latency to access the local

memory is, approximately, 65 nanoseconds. The latency to access the remote memory is,

approximately, 105 nanoseconds.

 A Nehalem chip supports:

 Hardware Prefetching Logic, for requesting data which threads will use in the near

future.

 “Simultaneous Multi-Threading” (SMT). SMT is an implementation which allows more

than one hardware threads (two threads for Nehalem) to execute simultaneously within

each core,

 Power saving features (“Turbo Boost Technology”) for dynamically turning off unused

processor cores and increasing the clock speed of the cores in use (when thermal and

electrical requirements are still met.

65

Our experimental setup includes one of the Nehalem chips with the four cores sharing a

LLC, aiming to test our scheduling techniques on highly contended condition. The main

memory shared between the two chips is a 12 GB DDR3 1333 MHz‟s The hardware

prefetching logic is enabled, whereas the SMT and TBT features are disabled. The platform

runs Ubuntu 12.04.2 LTS.

 The Classification Method 3.1.3

 A contention-aware scheduler is responsible for determining, given a workload, on

which time slice the applications should run (time-sharing) and which cores they should occupy

at this time interval (space-sharing). In our case space-sharing is not a possible option. Even

with time-sharing only, the different possible schedules of a 12-applications workload executed

on our platform are 5.775 (form 3.1.1). This vast number of combinations makes dynamic trial

and error exploration infeasible. As such, it becomes necessary for a contention-aware

scheduler to be able to predict the performance of different mappings without actually trying

them.

 In order to establish a prediction model, firstly we have to record the behavior (which

resource they utilize and at what extent) of the applications when executing alone. Applications

with common characteristics can be grouped together forming a class. Following a

classification scheme, applications can be divided into different classes, according to their

characteristics. In this paper we categorize applications following the classification method

proposed by Haritatos et al [1]. Necessary information for the programs‟ performance is

acquired via the performance monitoring facilities available on the Nehalem processor. In the

next paragraph, we briefly describe the performance monitoring, before presenting the

classification method.

 The step after the classification of applications to different classes is to examine how

they interact with each other. Testing all the different combinations, we determine how

applications of a class behave when executing with those of another class, the level of

occurring contention and at what extent each class is impacted by this contention. Now that we

know how applications of different classes contend with each other and what influence this

contention has on their performance, it is possible for a prediction model to be adopted.

 Following a model that can predict the performance of the different mappings, the

scheduler is able to decide which applications should co-execute every time interval for

achieving the desired objective.

66

Performance Monitoring

 As explained previously, in order to classify the applications to different classes, we

need to acquire information about their profile. In addition, it is very useful to collect

performance data from their co-execution with applications of other classes, in order to

understand how contention changes their behavior. Modern processors, like the one described

before, provides hardware performance counters on both core and un-core domain for

recording the activity of the cores and the memory system [16].

Once deciding which data we want to collect, selecting the proper events, we initialize

the corresponding counters. Then, we start counting at the moment that the desired application

is running for a specific time interval. After this interval, we read the value stored in the

counters. Finally the requested data are available and with the proper interpretation we can use

them to reach to great conclusions.

Counters, that provide us with useful information for classifying the applications and

verifying the proposed prediction model, are listed on the table below accompanied with

necessary information used for their initialization.

Name Number Mask Type Description

EVENT_UNHLT_CORE_CYCLES 0x3C 0x00 PMC Clock Cycles of Unhalted Core

EVENT_INSTR_RETIRED 0xC0 0x00 PMC Instructions Retired

EVENT_LLC_MISSES 0x2E 0x41 PMC Last Level Cache Misses

EVENT_L1D_REPL 0x51 0x01 PMC Cachelines allocated in the L1

EVENT_L1D_M_EVICT 0x51 0x04 PMC10
Modified Cachelines evicted from

the L1

EVENT_L2_LINES_IN 0xF1 0x07 PMC Cachelines allocated in the L2

EVENT_L2_LINES_OUT_DEMAND

_DIRTY
0xF2 0x02 PMC

Modified Cachelines evicted from

the L2

EVENT_UNC_L3_LINES_IN 0x0A 0x0F UNCORE Cachelines allocated in L3

EVENT_UNC_L3_LINES_OUT 0x0B 0x1F UNCORE
Modified Cachelines evicted from

the L3

Table 3.1-2: Performance monitoring events

Application Classes

 Our classification method separates applications into 4 different categories [1]. The

criteria chosen for their characterization are based on which of the resources they utilize and at

what extent. Using this model, we our able to accurately locate which part of the shared

resources, both memory bus bandwidth (memory link) and LLC, is stressed the most and thus

is prone to contention. Our approach uses simple metrics that can be easily and quickly

collected at runtime from the existing monitoring facilities of modern processors. Concluding,

this classification scheme provides us with the possibility of adopting a highly reliable

67

prediction model, while the classes represent in a very clear way the behavior of applications

(specific resource utilization) and how it is affected when interfering with each other.

Figure 3.1-3: Activity in application classes

L Class

 Applications with streaming nature tend to have a stable data flow throughout the entire

memory hierarchy. They fetch data from the main memory directly to cores at a high rate,

contaminating the memory bus (memory link), all the caches and their connections (cache

links). Responsible for this behavior are their memory accesses, which occur to data sets that

largely exceed the size of LLC. They bring data to LLC but the reference on those data is either

not occurring at all or is happening with large reuse distances. So, data are descending down to

the cores at the same rate they are brought to LLC, resulting in zero benefit from the existence

of this shared resource. But more importantly, the continuing pollution of the LLC with their

data cause great destructive interference to co-running threads that benefit from the reservation

of their data in this shared resource. Providing that the determining factor for their performance

is the memory bandwidth utilization, contention to this shared resource can cause them severe

degradation.

LC Class

 On this class belong applications with modest pressure on the memory link and modest

to low activity on the shared LLC. They present common characteristics with the L class

imitating their streaming nature, as they fetch data from the main memory at a satisfying rate,

but the flow of data is not the same on the rest path. They take advantage of their reservation in

the LLC, reusing them for a while before bringing the next group of data. This kind of

applications cause contention to the memory bandwidth and the LLC, affecting negatively the

applications with important activity on this shared resources. As long as they take advantage

from both memory bandwidth and LLC utilization, their performance gets negatively affected

by applications that contaminate these shared resources.

68

C Class

 On this class belong applications with high activity on the shared LLC. They bring data

to cache at a really low rate and perform heavy reuse on the cached data. This class includes

applications with varying characteristics, such as those with data sets not exceeding the size of

the LLC or with memory access patterns optimized for taking advantage of the LLC and

latency-bound applications that make irregular data accesses and benefit a lot from LLC hits.

N CLASS

 This class consists of applications that take advantage exclusively of the lower parts of

the memory hierarchy, such as private caches and cores. Applications, which perform heavy

computations, have working sets that are small enough to fit the private (L1 or L2) caches or

have optimized memory access patterns that can be serviced by the private caches, do not

extend their activity further on the shared resources. This means that they do not pollute the

LLC or the memory bus with their data, causing destructive interference to threads running on

neighboring cores. Except that, their performance is not affected by the contention caused by

their co-runners. Concluding, applications, that neither suffer nor cause suffering from/to

others, form the N class. Figure 1.6-3 indicates the activity spot of each class.

Classification scheme

 Once the application classes are defined, we need to adopt a method to perform

classification using runtime statistics. The idea is to inspect the data path from main memory to

cores [1]. We are focused on the stream flowing towards the cores, recording the occurring

activity on memory and cache links. Thus, for each application it is necessary to measure the

flow of data from main memory to LLC, from LLC to private cache and between private

caches as depicted in figure. (𝐵𝑖𝑛𝑖, incoming Bandwidth to i level of memory hierarchy,

0 < 𝑖 ≤ 𝑛, 𝑛 = 𝑙𝑎𝑠𝑡 𝑙𝑒𝑣𝑒𝑙). Now that we know the utilization of the links across the entire

path, we have to specify on which resource the pressure is high. The ratio 𝐶𝑅𝑖 =
𝐵𝑖𝑛𝑖−1

𝐵𝑖𝑛𝑖
 is a

good indicator for the pressure put on a resource, as it follows the simple rationale. If data flow

out of the source with a much higher rate than they flow in, we can safely assume that high

activity occurs on this resource, as it is heavily reused.

The information required for this metrics can be easily collected at runtime by the

performance monitoring facilities of modern processors. Once assigning the application on the

core, we choose the appropriate counters and start monitoring, as described before. In our case,

for the bandwidth computation the events that count the cache lines allocated to each cache

should be activated. We do not take into account the number of modified (dirty) cache lines

evicted from the cache, as long as they overestimate the incoming bandwidth. Events counting

allocated lines in a cache also include data transfers due to a write allocate load on a store miss

in that cache. For our platform the bandwidth between the different levels of the memory

hierarchy is computed by the following forms

69

Figure 3.1-4: Inspected data flow in the memory hierarchy

The memory hierarchy of our platform consists of 3 cache levels, two private and one

shared. So the 𝐵𝑖𝑛3, 𝐵𝑖𝑛2, 𝐵𝑖𝑛1 refers to memory → LLC , LLC→L2 , L2→L1 bandwidth

respectively. The ratio 𝐶𝑅3and 𝐶𝑅2corresponds to the LLC and L2 reuse. The block size is 64 B

and the measurement unit of bandwidth is [MB/s].

𝐵𝑖𝑛3 =
(EVENT_UNC_L3_LINES_IN) ⋅ 64 ⋅ 10−6

𝑡𝑖𝑚𝑒
, 𝐶𝑅3 =

𝐵𝑖𝑛2

𝐵𝑖𝑛3

𝐵𝑖𝑛2 =
(EVENT_L2_LINES_IN) ⋅ 64 ⋅ 10−6

𝑡𝑖𝑚𝑒
, 𝐶𝑅2 =

𝐵𝑖𝑛1

𝐵𝑖𝑛2

𝐵𝑖𝑛1 =
(EVENT_L1D_REPL) ⋅ 64 ⋅ 10−6

𝑡𝑖𝑚𝑒

 Now that we acquired all the appropriate metrics we can perform our classification.

High bandwidth utilization across all links and zero cache reuse means that the application put

high pressure on the links only, experiencing streaming behavior and can be classified as L.

Other with satisfying activity on the memory → L3 link and higher activity on the L3 → L2

link (𝐶𝑅3 > 1) belong to LC class. Applications with low memory bandwidth activity and

significant data flow somewhere in the LLC → core part of the data path reuse heavily either

the LLC or the private caches. Locating the reuse location we can classify as C and N

respectively.

In case that low data flow is measured throughout the entire data path, we have

identified three application patterns that may exhibit this picture [1]: a) applications that

heavily reuse data on the L1 cache (high activity on the gray arrow of Figure 1.6-4), b)

applications that perform computations within the core with minimal data accesses, and c)

memory-latency bound applications that suffer from high LLC miss penalties (and also greatly

70

benefit from LLC hits). Although we may utilize various combined metrics involving cache hit

ratios to illuminate this further, we have observed that inspecting the application‟s

mem uops all uops⁄ ratio and IPC suffices to distinguish a) and b) cases, which are N

applications, from the c) case, which includes C applications. High mem uops all uops⁄ and

low IPC is a quite safe indicator for memory-latency bound applications (at the absence of

significant data flow in the path).

Figure 3.1-5: Decision tree for application classification

 Our classification method implements the decision tree shown in Figure 3.1-5 [1]. In

each execution platform we need to set five thresholds, namely α, β, γ, δ and ε that guide the

classification process. In this platform we set = 0.12 × 𝐵𝑚𝑎𝑥 , 𝛽 = 0.045 × 𝐵𝑚𝑎𝑥 , 𝛾 =
0.068 × 𝐵𝑚𝑎𝑥 , 𝛿 = 0.25 , 휀 = 0.25 × 𝐼𝑃𝐶𝑚𝑎𝑥 . The maximum memory link bandwidth as

measured by the stream benchmark is 𝐵𝑚𝑎𝑥 = 13.20 𝐺𝐵 𝑠𝑒𝑐⁄ and 𝐼𝑃𝐶𝑚𝑎𝑥 = 4.

C class analysis

 An application's data set determines its behavior. Their characteristics do not remain

unharmed, when they are executed with different sizes of their working set. As depicted on the

table below, the same benchmark [3] could belong to any class of our scheme, depending on its

size.

With a data set half of the size of our platform's L2 private cache (256 KB), the activity

71

of the chase benchmark is restricted down to the core domain. The reference is occurring

mainly on the L2 (CR2 >> CR3) and the application is classified as N. Increasing the size to

250 KB we notice that pressure on the L2 cease (CR2 = ~ 1) and start occurring on the LLC

(high CR3), while the data set barely fits to the L2. From now on the application is satisfied by

the LLC and is classified as C. Increasing the size more and more, we observe that CR3

decreases dramatically and the reference starts occurring on the main memory too (higher

bandwidth and MPI). At size of 7 MB we reach the point where the data set barely fits the LLC

of 8 MB size and the pressure on memory link becomes heavier, changing the behavior of this

application to LC. From now on, the application will experience intense activity on memory

link and zero activity on LLC and is on the edge of changing behavior to L.

Data Set (KB) IPC MPI B3 (MB/s) CR3 CR2 Class

125 0.3167 0.00000061 0.464 49.114 880.992 N

250 0.1420 0.00000079 0.676 8,384.399 1.477

500 0.1139 0.00000109 0.474 14,144.102 1.003

1,000 0.1141 0.00000092 0.747 9,001.215 1.000

2,000 0.1144 0.00000164 0.813 8,260.022 1.009 C

3,000 0.1126 0.00000388 1.490 4,485.029 1.002

4,000 0.1119 0.00005670 3.895 1,709.589 1.007

5,000 0.0966 0.01351051 251.686 22.795 1.001

6,000 0.0819 0.03272887 491.220 9.920 1.000

7,000 0.0590 0.08496037 905.713 3.873 1.001

8,000 0.0418 0.16437671 1,238.942 1.979 1.000

9,000 0.0370 0.19934837 1,326.267 1.652 1.000

10,000 0.0329 0.23939016 1,419.495 1.353 1.000 LC

12,000 0.0292 0.28887063 1,515.268 1.129 1.000

14,000 0.0283 0.30526646 1,552.032 1.063 1.000

16,000 0.0282 0.31001331 1,581.033 1.026 1.000

Table 3.1-3: Classification of pchase across different data sets

However, not all applications change their behavior in the same way. Inspecting, for

example, the mvt benchmark, we observe that the transition from C to LC class is occurring at

a bigger data set compared to the pchase benchmark, as shown on the Figure 3.1-6 below.

 Increasing the data set to a size bigger than the size of LLC, the mvt benchmark remains

to the C class. This means that its access pattern do not take advantage of the whole data set but

a part of it. While the data set exceeds the LLC, the access restricts to data that fit the LLC and

the reference on the main memory is occurring at a low rate. On the other hand, pchase

benchmark takes advantage of the whole data set. When it does not fit the LLC, reference on

the main memory becomes really intense.

72

Figure 3.1-6: Behavior of pchase and mvt applications across different data sets

 We come to the conclusion that applications imitating the behavior of pchase benchmark

require the majority of the available shared LLC capacity to perform well. When they get

restricted, meaning that they do not receive the space their data set implies, their misses present

a major increase and their performance is significantly degraded.

 Based on this observation, we understand that, while the data set of these applications

(pchase) do not exceed the LLC size, it can be translated to working set, as it can be completely

served by the LLC. The same cannot be assumed for applications imitating the mvt behavior, as

their working set is a subset of their data (data set = 12 MB, working set < 8 MB).

 Executing on a multi-core system, where 4 cores share an 8 MB LLC, 4 applications

with working set bigger than 2 MB, it is made clear that they cannot be served efficiently by

the LLC, as their total working set would exceed its size. On this case, interference in the LLC

would occur, leading to destructive effects on their performance. In general, on an N core

system, where the cores share an L MB size LLC, applications with working set bigger than

𝐿 𝑁⁄ 𝑀𝐵 are considered to interfere destructive with each other.

 Taking the previous observation into consideration, we extend the classification scheme

proposed by Haritatos et al. [1], distinguishing further the C class into 2 subclasses, the SC and

BC.

73

Figure 3.1-7: Activity of the C subclasses

SC Subclass

 Applications operate on data with size occupying a small part of the shared LLC (< 2

MB). Such applications benefit from the available shared cache, performing heavy reuse, but

their performance does not degrade significantly when they do not receive the bulk of its space.

While their activity occurs on a restricted LLC area, interference on this resource generated by

other thrashing applications will cause them moderate damage.

BC Subclass

 Applications with data occupying the biggest or a satisfying part of the LLC space (> 2

MB), also performing heavy reuse on the cached data. As they require the majority of the

available shared LLC capacity to perform well, they get severely degraded when high

contention level occurs on this resource. The only way to experience good performance is,

when running in isolation.

Figure 3.1-8: C class distinction in the decision tree

74

We modify the decision tree (Figure 3.1-8) to correspond to the C class distinction

described previously; adding to the C leaves the graph shown in the Figure 1.6-8. We define the

new threshold 휁 = 𝐿𝐿𝐶_𝑠𝑖𝑧𝑒 𝑐𝑜𝑟𝑒𝑠_𝑛𝑟⁄ which is equal to 2 MB for our platform (8 MB LLC

size and 4 cores).

Finally we have all the information required to perform our classification. Although we

have the ability to classify applications into these 4 different categories via simple metrics

collected by hardware performance counters at runtime, it is difficult to go deeper into the C

class and acquire information about size of data allocated in the LLC. This requires additional

hardware support [17] or complicated software techniques [18]. Inevitably, the only way to

distinguish applications of C class into the subclasses is by knowing beforehand their working

set. In our case, we inspect the behavior of benchmarks across different data set sizes. If they

imitate the pchase benchmark behavior, it is possible to extract information about their working

set, as explained previously. We compile those applications with data set greater than 3 MB and

smaller than 7 MB (equal to working set), in order to extract the BC applications. Applications

that imitate the mvt benchmark behavior are compiled with 2 MB data set (working set < 2

MB), in order to populate the SC class.

 Summarizing, we chose to adopt the classification scheme described in the LCA paper

[1], in order to observe how applications of different categories interfere with each other and

enforce a scheduling policy to avoid interference and improve their performance. We inspected

the behavior of applications compiled with different data sets. Based on our observations, we

further extended the classification of C class into two different categories, the SC and BC,

according to the working set. While the classification into the 4 categories can be accomplished

at runtime via simple metrics, acquiring information from the performance counters, it is

impossible, following the procedure described previously, for the C applications to be deeper

distinguished into the two subclasses online. Acquiring information for the working set at

runtime requires complicated software techniques, something that is out of the scope of this

paper. However, the scheduling policy developed for those subclasses can be easily applied

with whichever method that classifies online the C applications deeper.

Benchmark Selection

 The benchmarks populating our classes are selected mostly from polybench suite. We

use single threaded applications with single execution phases and low I/O operations. We

compile them with large data sets (far exceeding the LLC) for generating L and LC classes and

with small data sets fitting the L2 for generating the N class. We inspect the behavior of each

benchmark across different data sets and compile those that imitate the pchase benchmark, with

data set of size between 3 and 7 MB creating the BC class. Finally the SC class is populated by

benchmarks compiled with 2 MB data set.

75

Name Source DataSet (MB) 𝐵𝑖𝑛3=𝐿𝐿𝐶(𝑀𝐵 𝑠⁄) CR3 CR2 IPC Class

cholesky polybench 128 3112.835 1.009 1.355 0.838

jacobi-1d polybench 48 3932.853 1.013 1.002 0.558

2mm polybench 66 2276.183 2.430 1.790 0.256

fw polybench 64 2292.729 1.011 1.043 0.913

stream [2] 366 6618.432 0.994 1.003 0.721 L

atax polybench 72 4401.339 1.029 1.759 0.380

syr2k polybench 34 2997.791 1.022 1.184 0.881

trmm polybench 144 2418.043 1.002 1.459 0.859

jacobi-2d polybench 12 1124.768 1.112 1.071 1.057

bt NAS 15 1450.758 2.081 1.112 0.897

gemver polybench 125 1173.694 4.299 1.315 0.402 LC

mvt polybench 125 996.640 5.597 1.171 0.279

pchase [3] 4 3.895 1,709.589 1.007 0.111

pchase [3] 5 251.686 22.795 1.001 0.096

pchase [3] 6 491.220 9.920 1.000 0.081

stream [2] 4 9.87 544.98 1.000 0.960

stream [2] 5 99.691 51.732 1.000 0.921 BC

jacobi-1d polybench 5 88.765 24.154 1.000 1.101

jacobi-1d polybench 6 328.559 5.937 1.000 1.001

jacobi-2d polybench 5 113.177 16.152 1.012 1.544

jacobi-2d polybench 2 0.807 2378.055 1.000 1.621

jacobi-1d polybench 2 0.974 2284.703 1.000 1.145

pchase [3] 2 0.246 27344.115 1.000 0.114

correlation polybench 2 0.706 1275.893 15.874 1.334

covariance polybench 2 0.714 1255.327 15.960 1.332 SC

ludcmp polybench 2 0.763 1869.429 1.330 1.512

symm polybench 2 0.820 1815.967 8.979 1.355

stream [2] 2 0.478 11280.28 1 964

syrk polybench 0.064 0.632 0.791 304.735 2.392

doitgen polybench 0.064 0.681 0.493 346.346 2.311

trisolv polybench 0.064 0.609 0.762 2021.165 0.813

3mm polybench 0.064 0.760 1.983 72.710 2.250 N

gesummv polybench 0.064 0.656 1.183 1300.079 1.160

bicg polybench 0.064 0.670 2.194 504.134 1.180

Table 3.1-4: Classification of benchmarks selected for the population of our workloads

76

 The Prediction Model 3.1.4

 Another crucial building block of a contention-aware scheduler is the interference

prediction model. Having characterized the applications into different categories, following a

classification scheme, it is important to establish a model that accurately predicts how their

performance degrades as they share resources. Knowing beforehand the co-execution effects

between applications of different classes, it is feasible for a scheduler to find a thread

placement policy without performing trials of the sheer number of combinations generated by

the applications of each workload.

Prediction and Evaluation of inter-class interference

 For each category of our classification scheme we describe how performance of

applications is expected to be affected when co-executing with applications of other classes. In

order to validate our prediction model, for the selected benchmarks populating our classes, we

generate all the possible pairs and perform their co-execution. We collect the slowdown

measurements for applications of each class and extract their average.

N Class Suffering

 Performance of applications belonging to this class is not affected by co-runners of other

classes. While their activity is restricted to the core domain of the CMP, there is no interference

with applications experiencing intense activity on the shared resources.

L Class Suffering

 Applications of this class consume a high percentage of the memory bandwidth. They

get negatively affected only by applications of the same class that are capable of causing

destructive interference on the memory link. When L applications run simultaneously and the

sum of their bandwidth exceeds the maximum sustainable bandwidth (13.20 GB/s as measured

on the example below), they are forced to perform with a fraction of their initial bandwidth

(form 3.1.2). Usually the maximum bandwidth is divided unequally between the competing

applications. The slowdown imposed is inversely proportional to the ratio of the experienced

bandwidth.

𝐵𝑊𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑎𝑖

𝑖<5

𝑖=1

⋅ 𝐵𝑊𝑖 , 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑖 =
1

𝑎𝑖

 (𝑓𝑜𝑟𝑚 3.1.2)

77

Figure 3.1-9: Slowdown imposed to L applications due to bandwidth contention

LC Class Suffering

 For application with modest activity on the memory link we expect mild degradation by

the L applications only. While it is possible to experience LLC reuse, interference by BC

applications do not harm them. LC application trash the LLC quite often and have very low

LLC reuse factor in order to get negatively affected by the BC class. In fact the opposite is

happening, LC cause great pain to BC applications, as BC are greatly benefited by the

residence of their data in the LLC and LC sweeps them away.

SC Class Suffering

 Applications with small data set resident on the LLC perform well with all the classes

except the L. Although L applications, with their heavily trashing nature, bring at a high rate

data evicting SC cache lines, we do not expect devastating slowdowns, as the small amount of

data being swept away can be easily and quickly retrieved. We observe heavy but not

destructive damage for the SC-L pair and no slowdown for the other pairs.

BC Class Suffering

 While applications of this class require the bulk of the LLC space to perform well,

applications, that have LLC trashing behavior like L and LC, cause great contention and

devastating damage. Severe slowdowns are expected to occur when BC applications are co-

executed, as the sum of their data set exceeds the size of LLC and they force eviction of each

other‟s cache lines. Only the SC and N co-runners have friendly behavior, showing light and

zero interference respectively.

78

 Summarizing we present the on the figure below the average slowdown each class suffer

when co-executing with the other classes. Along the x axis we show the slowdown imposed by

each class, and along the y axis we show the slowdown suffered. We observe that the co-

execution test validates our prediction model. L applications are affected only by themselves, as

they are subjected to bandwidth contention. LC applications present a slight slowdown by the L

applications only, as expected. SC applications suffer heavily by the L only, while they show

LLC trashing behavior. BC applications are the most vulnerable, suffering devastating damage

by L, LC and themselves. They perform the best with N and get a mild degradation with SC. N

applications neither suffer nor cause suffering by/to other classes.

Figure 3.1-10: Average application slowdown due to the co-execution at the class level

79

 The Decision - CMB (Cache and Memory Bandwidth contention-3.1.5
aware) Scheduler

 Taking into consideration the prediction model described previously, we try to enforce a

thread placement that avoids contention and maximizes throughput and fairness. Our primary

purpose is to keep separated L class from C class (SC, BC) applications and LC class from BC

class applications, as long as their co-execution would be catastrophic for the C class (x1.67

slowdown for the SC and x2.43 (L), x2.22 (LC) slowdown for the BC).

 To achieve this separation, we form L and C gangs that will be executed on different

time quantum. Considering that we work on one package, we have the ability of time-sharing

only the CPU and the possible gangs generated are equal to progsnr/ cores_nr. An L gang

consists of a mix of L, LC and N applications. A C gang can be either a SC gang or a BC gang.

A SC gang is filled by SC and N applications, whereas a BC gang has BC, SC and N

applications. (Figure 3.1-11)

Figure 3.1-11: Desired gangs for the CMB scheduler

However isolating L from C applications is not enough. Based on the interference

prediction model, the combination BC-BC causes heavy damage on the BC applications. In

addition, co-executing L applications with themselves can cause severe degradation, when their

total bandwidth far exceeds the maximum (𝐵𝑊𝑡𝑜𝑡𝑎𝑙 > 13.20 𝐺𝐵 𝑠⁄). Following the rules

imposed by the prediction model we form the gangs in such a way, that co-execution of BC

applications would be avoided and memory link pressure of the L gangs would be mitigated.

 While the BC-BC pair experience higher slowdown than the L-L pair, the isolation of

BC applications gets higher priority than the mitigation of the memory bandwidth.

 Taking into consideration the prioritized objectives to be satisfied, our thread placement

scheduling policy is described in the steps below:

1. We spread the BC applications across the gangs as much as possible in order to avoid

their co-execution. We compute the maximum number of BC gangs that could be

created, if interference with L applications only is avoided (totalgangs −

min (L_gangs)). If the number of BC applications exceeds the number of available

gangs, we are obliged to pair them together, tolerating the destructive behavior this

match causes. Now that we have isolated the BC applications, we fill their gangs firstly

with N and then with SC applications (BC-SC, BC-N pairs with mild and zero

interference respectively).

2. We pack together SC applications. If they cannot form whole gangs (minimum number)

by themselves, we group together LC applications firstly and then N applications (SC-

LC, SC-N pairs with zero interference).

80

3. We sort the L applications with bandwidth criterion. We add on the list the remaining LC

and N applications. We fill the remaining gangs with the applications of the list.

If applications of the L, SC and BC class are completely missing or have been used in previous

steps, then the step forming the respective gangs is skipped. If there are no BC applications, we

skip step 1. If there are no SC applications, we skip step 2. If there are no BC and no SC

applications we skip steps 1 and 2.

 In the above steps we fill the gangs in the same way. We iterate over the number of

selected applications and with the determined order we pack them switching the gangs on each

iteration. The figure below shows this packing clearer.

Figure 3.1-12: Formation of gangs

Following this packing, the sorted L applications are distributed equally across the

gangs, as heavy L are not accumulated in one gang.

 On the table below we summarize the steps we follow for the placement of our

applications and the objective each step accomplish.

Steps Objectives

1) maximize BC gangs and spread BC

applications across them as much as possible

Avoid interference of BC with BC,LC and L

applications

2) pack together SC gangs to minimize SC gangs Avoid interference of SC with L applications

3) sort L applications and share them on the

remaining L gangs

Balance the memory link utilization.

81

The algorithm

 Our scheduler consists of 5 functions, init(), qexp(), freeze(), schedule(), thaw(). Upon

selection of our scheduler the init() function is called. In this function we form the gangs. Then

we are ready to start the execution. After the end of the time quantum qexp() is called. Inside

this function freeze(), schedule() and thaw() are called. The gangs are scheduled in a round

robin way. On our implementation, each class is represented by a list. Applications on the input

are already classified. The classification can be easily carried out online, running each

application alone for one time quantum. This would result in a small deviation in the execution

time of N quantum comparing to Linux scheduler. In order to be as accurate as possible we

perform the classification offline. The gangs are, also, implemented as lists. In each step we

compute the number of gangs and fill them with the appropriate applications in a specific order.

For the L gangs, the corresponding applications should be sorted. The algorithm has O(n + L

log L) complexity, O(L log L) corresponds to the sorting of L applications and O(n) to the

forming of gangs in a greedy way. The flow chart and pseudocode below present the

implementation of our scheduling policy.

Figure 3.1-13: Flowchart of CMB scheduler

82

void create_gangs (gangs_nr, apps_l)

{

 list_t gangs[gangs_nr];

for_each_app_in_list(apps_l){

 remove_from_top (apps_l);

 add_to_tail (gangs[i++]);

 }

}

void form_gangs(apps)

{

 move_to_lists(apps);

 gangs_nr = (apps_nr / cores_nr);

 minimum_L = (L_nr / cores_nr);

 BC_gangs_nr = 0;

 SC_gangs_nr = 0;

 if (BC_list != [])

 {

 maximum_BC = (gangs_nr – minimum_L);

 BC_gangs_nr = ((BC_nr < maximum_BC) ? BC_nr : maximum_BC);

 create_gangs(BC_gangs_nr, [BC, N, SC]);

 }

 if (SC_list != [])

 {

 SC_gangs_nr = (SC_nr / cores_nr);

 create_gangs(SC_gangs_nr, [SC, LC, N]);

 }

 remaining_gangs_nr = gangs_nr – (BC_gangs_nr + SC_gangs_nr);

 if (L_list == []) create_gangs(remaining_gangs_nr, [LC, N]);

 else

 {

 quicksort(L_list);

 create_gangs(remaining_gangs_nr, [L, LC, N]);

 }

}

Code 3.1-1: CMB algorihm

83

84

3.2 Second Approach (Managing Contention)

 Fairness over running time 3.2.1

The state-of-the-art schedulers implemented on CMPs have varying objectives they try

to optimize. One of those is the equal share of resources among the applications of their

workload. They multiplex the CPU in time and space with policies ensuring, that all the

available cores will be utilized and each process will take the same fraction of CPU time in a

time interval. CFS, the Linux scheduler, achieves fairness via assigning to the CPU processes

with the gravest need (higher waiting time). This means that all processes have been waiting

for the same period before they run on a core and, thus they have been treated fairly as far as

the time out of the CPU is concerned. This implies that fairness is enforced for their running

time too. Testing on our platform (4 cores) the Linux scheduler for a time period of 321

seconds with a workload of 12 random applications, we understand how the CPU time is

distributed across those applications (Figure 3.2-1) and how fairness is enforced.

Figure 3.2-1: Running and waiting time of 12 applications scheduled with Linux

 To keep the workload full in this executing interval, we respawn every process that

terminates. As expected, fairness is enforced, as long as waiting (2/3 of total time) and running

(1/3 of total time) time is distributed equally among processes.

85

On each time slice, the Linux scheduler executes 4 applications on the neighboring

cores. As discussed earlier, contention occurs on the shared resources when threads run

simultaneously and have negative impact on their performance. Their IPC decreases

significantly (compared to alone execution) and the progress made is not reflected on their

running time. Their actual progress is given by the form 2.5.1 and is a fraction (
IPCco−running

IPCalone
)

of their running time.

 For each application we know its alone execution (measured offline) and how many

times it is finished when co-running. So the actual progress is simply deduced by the form:

𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 = 𝑡𝑖𝑚𝑒𝑠_𝑓𝑖𝑛𝑖𝑠𝑒𝑑 × 𝑎𝑙𝑜𝑛𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (form 3.2.1)

Figure 3.2-2: Actual progress compared to running time

This figure clearly depicts, that despite the effort of the Linux scheduler to be fair, giving

equal running time to each process, fairness cannot be achieved. It cannot be assured that, on a

given time interval, applications would make equal progress, as long as IPC loss do not occur

uniformly among them.

86

 Fairness over progress 3.2.2

 Applications are executed on groups of 4. Our workload consists of 3 groups. Each

group, also called gang, have the same 4 applications throughout the entire execution. At the

end of any time quantum, a group has just left the CPU and has zero waiting time, the other is

ready to be assigned to the CPU with waiting time = 2 x time quantum and the 3rd is the next

group to be executed with waiting time = 1 x time quantum. Thus the contention level for each

gang remains the same and the IPC loss is stable for all of the applications.

The IPC ratio is given by the form 2.5.1:

𝑟𝑎𝑡𝑖𝑜 =
𝐼𝑃𝐶𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝐼𝑃𝐶𝑎𝑙𝑜𝑛𝑒

=
𝑡𝑖𝑚𝑒𝑎𝑐𝑡𝑢𝑎𝑙

𝑡𝑖𝑚𝑒𝑐𝑜−𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 (𝑓𝑜𝑟𝑚 3.2.2)

 Assuming that the IPC ratio remains the same for each application, independent of the

varying contention levels that may occur between different co-runners, we try to find how the

running time should change in order to share the progress fairly among them.

The simple equation system below will help us find the solution:

𝑟𝑎𝑡𝑖𝑜𝑖 ⋅ 𝑥𝑖 = 𝑒𝑞𝑢𝑎𝑙𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 , 0 < 𝑖 ≤ 12 (𝑓𝑜𝑟𝑚 3.2.3)

∑ 𝑥𝑖

𝑖<13

𝑖=1

= 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 ⋅ 𝑐𝑜𝑟𝑒𝑠𝑛𝑟 = 1284 (𝑓𝑜𝑟𝑚 3.2.4)

Equation 3.2.3 is derived from the form 3.2.2. We want to find the running time (unknown) for

each application, which multiplied by the corresponded IPC ratio would produce the equal

progress (unknown). Thus the sum of their running time should be equal to the total given time

that the workload is going to be executed multiplied by the number of cores. (form 3.2.4).

 The results of the solution of this equation system are shown in the figures below. It

seems that in order to achieve actual fairness, we need to distribute unequal the CPU time

across the applications. We notice that applications suffering the most (low IPC ratio) need to

be scheduled more frequent, “stealing” running time from those that make sufficient progress.

This approach assure fairness over progress in a contention agnostic way. It depends only on

the IPC loss and aims to proper distribution of running time between processes performing with

varying IPC ratio. There is no requirement of specifying contention levels between different

combinations of applications and finding a scheduling policy that could place threads in such a

way that their IPC loss would distributed uniformly.

87

Figure 3.2-3: Waiting and running time distribution for fair progress

Figure 3.2-4: Unfair running time over fair progress

88

 The FOP (Fairness over Progress) Scheduler 3.2.3

The Idea

 Based on the observation made before, the core idea is to give the opportunity for

applications that experience significant IPC reduction to be scheduled more frequent at the

expense of those which perform with a high IPC ratio. Enforcing this policy, applications with

poor progress are boosted, while others with satisfying progress are declined in order to create

a balanced environment concerning the progress and not the running time.

The implementation

Metric

 This approach does not require any preliminary work for finding the appropriate

classification method, inspecting how applications of different classes interact with each other

(prediction model) and deciding on a specific policy for their placement. The only thing needed

is information about the IPC of each application when running alone and when running with

others. This simple metric can be easily taken on runtime via the performance monitoring our

CMP platform provides. The alone IPC can be acquired offline before the execution of the

workload or online sacrificing one time quantum per application. The co-running IPC is

gathered at the end of each time quantum where the application are exiting the running state

and entering the ready state.

𝐼𝑃𝐶 =
EVENT_INSTR_RETIRED

EVENT_UNHLT_CORE_CYCLES
 (𝑓𝑜𝑟𝑚 3.2.5)

Waiting Queue

 Now that we have collected all the information about the IPC loss after each time

quantum, we need to find a way to boost the applications depending on that loss. Inspired by

the way the Linux scheduler chooses the applications to be scheduled (trying always to

minimize those with the highest waiting time), we implement a waiting queue for the

applications of the workload. Before the start of each time quantum, this waiting queue gets

sorted in descending way with criterion the waiting time plus a penalty (2). The k applications

(k = number of cores) on the top of the queue with the higher criterion are selected for

execution. This penalty represents the IPC loss of the applications multiplied by a factor (3)

and is updated every time they are assigned on the CPU. Waiting time of applications

remaining out of the CPU is incremented one time quantum per schedule and is zeroed when

they are executed. Concluding for each application its criterion is initialized with the penalty

value every time it finishes its execution and is incremented one quantum per schedule that

keeps waiting out of the CPU.

89

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑓𝑜𝑟𝑚3.2.6)

penalty = factor ∗ IPC_loss (𝑓𝑜𝑟𝑚 3.2.7)

IPC_loss = (1 −
IPCco−running

IPCalone

) , IPC_loss ∈ [0,1] (𝑓𝑜𝑟𝑚 3.2.8)

Adding this penalty on the waiting time, we give the opportunity to applications, that in

this specific time quantum on the CPU suffer with a significant IPC loss, to take a higher place

on the waiting queue, stealing the turn of others that have previously perform on an adequate

IPC ratio and have low penalty. Therefore, it is possible to be selected more frequently,

increasing their running time and progress accordingly (Figure 3.2-5). However, IPC loss only

is not sufficient for boosting the applications up to the queue. Its value ranges between 0 and 1

(4), practically less than 1 because it is difficult for an application to experience zero IPC ratio.

If, for example, the time quantum is defined to 1 second and only the IPC_loss was considered

as penalty, the criterion value of applications that just finished their execution would be less

than 1 (criterion = IPC_loss, IPC_loss < 1) and they would be placed at the end of the

queue. On the next position of the queue are placed the applications that were executed right

before the currently finished and their criterion value is 1 second at least (criterion =
 waiting_time + IPC_loss = one_time_quantum + IPC_loss = 1 + IPC_loss > 1). With

the group just left the CPU having criterion < 1 and the next lower group having criterion > 1,

no elevation upon the waiting queue could be possible and the scheduling would result in

fairness over running time as shown in the figure below (figure applications with bold are

assigned on the CPU for the current quantum).

Figure 3.2-5: Elevation of App 2 higher in the waiting queue, using as criterion the waiting time plus

the penalty

90

Figure 3.2-6: 12 second execution with factor = 1

Figure 3.2-7: 12 second execution with factor = 4

For this reason, it is necessary to form the penalty as the weighted IPC loss (multiplied by a

factor). The factor should be selected in such a way that would give the proper boost to the

suffering applications, taking into consideration the time quantum and the number of gangs

(progs_nr/cores_nr), and create a fair over progress environment as shown in figure (figure).

The proper selection of this factor is explained further on the next paragraph.

BC BC

91

Factor Selection

 We previously described the strategy followed to boost applications that suffer

significant IPC loss and give them the opportunity to occupy the resources more times. We

understand that IPC loss only is not an adequate characteristic to elevate properly the

applications up to the waiting queue. We need to establish a weighted IPC loss deciding the

factor, while we take into consideration 2 other parameters, the time quantum and the gangs

(progs_nr cores_nr⁄). In the above given example lowering the time quantum we have to lower

the factor because the increment of the criterion of the waiting applications will occur at a

slower pace and the applications suffering the most would occupy the CPU much more

frequently. This would create an unfair over progress environment, as the execution of

applications with high IPC ratio would be repeatedly impeded by those with low. Supposedly

now that in the above example we increase the number of gangs, by increasing the applications.

As a result, the waiting time of the group being on the top of the queue would be much more

higher, as long as it has to wait for more groups to be executed before its turn comes. Without

changing the factor , applications that need to occupy the CPU more frequent would be unable

to reach in a satisfying place in the queue (they have to pass more gangs). This means that their

progress cannot be boosted and fairness cannot be enforced.

 Concluding, once the time quantum is defined, we try to find out how the factor and the

number of gangs should be related in order to achieve our objective, fairness over progress.

Having defined the time quantum to 1 second, the idea is to test our scheduling policy between

different combinations of gang numbers and factors. For each gang number we select the factor

that leads to the best performance. Our metric for understanding the best possible performance

is the standard deviation of the actual progress the applications made in the total execution time

of the workload. When this metric converges to zero, the result would be similar to this one

shown in figure (figure) and fairness would be achieved. So for each gang number, we select

the factor that minimizes the standard deviation of progress, gather all the pairs of gang number

and factor and try to find a possible relation.

 However, executing all these tests in a real environment is really time costly and

infeasible to be accomplished. For this reason we simulate our scheduling policy, creating a

simple program that take as input the number of applications with their varying IPC losses, the

number of cores and the execution time interval and produce as output the factor that results in

the minimum standard deviation. Factor values between 1 and progs_nr have been tested on the

given workload with iteration step 0.2. Execution time is divided to N quantum (𝑁 =
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 𝑡𝑖𝑚𝑒_𝑞𝑢𝑎𝑛𝑡𝑢𝑚⁄) and one time quantum is one iteration in the for-loop. For

any gang number the standard deviation follows the same behavior as a function of factor.

Initially it starts with a high value and decreases as the factor increase. It reaches a minimum

value and then increases as the factor continues to rise (Figure 3.2-8). This seems absolutely

logical, while , adapting a high factor value, applications with great IPC loss would remain

always on the top of the queue with criterion value that dominates the criterion value of those

with low IPC loss. As a result those applications should remain a long time out of the CPU to

increase their criterion (increasing waiting time) and reach the top in order to be executed. This

situation leads to thread starvation of those with low IPC loss.

92

Figure 3.2-8: Minimum standard deviation for factor = 6 on a workload with 4 gangs

 Finally, we take measurements for three different core numbers (2, 3, 4), in order to

extract the relationship between factor and gangs number. Results are shown in the figures

below.

Figure 3.2-9: Relationship between factor and gangs number for a 2-core architecture

93

Figure 3.2-10: Relationship between factor and gangs number for a 3-core architecture

Figure 3.2-11:Relationship between factor and gangs number for a 4-core architecture

94

 As it is made clear by the graphs, the factor is a function of gangs number (same

behavior across different cores_nr) and it can be simply selected by the form:

Factor = 2 ⋅ (gangs_nr − 1), gangs_nr =
progs_nr

cores_nr
 𝑓𝑜𝑟𝑚(3.2.9)

IPC loss

 In a real execution environment, IPC loss of an application does not remain the same, as

it is possible to have different co-runners and generate varying contention levels. Although all

previous work was made with the assumption, that IPC loss remains stable, in order to simplify

our approach, this scheduling policy is not violated when enforced to real platforms, as long as

the idea to boost the suffering applications is based on the IPC loss occurring on every time

quantum.

The algorithm

 In our case the waiting queue is implemented as a list and gets sorted with quicksort

algorithm. This means that the complexity for deciding which applications to run before each

time quantum is O(n log n). Queues on Linux scheduler are implemented as red-black trees and

all the actions are performed in O(log n) time complexity.

 The factor is selected on the initialization of the scheduler, following the relationship we

extract on the previous paragraph. The IPC of each application on alone execution has been

measured beforehand and is given as a parameter. The co-running IPC (and IPC loss) is

measured after the execution of the gang on each quantum.

The algorithm is presented on the flow chart and pseudocode below.

95

void init (){

gangs_nr = progs_nr/cores_nr;

 factor = 2 (gangs_nr – 1);

 counters = perf_counters_init(selected_events);

 for_each_application_in_list(progs_all_list){

 application->criterion = 0;

 application->IPC_alone = get_IPC_parameter();

 }

}

void schedule(){

 quicksort(progs_all_list, criterion, DESCENDING);

 while (number(progs_schedule_list) < cores_nr){

 remove_from_top(progs_all_list);

 add_to_tail(progs_schedule_list);

 }

}

void thaw(){

 for_each_application_in_list(progs_schedule_list){

 start_running(application);

 }

perf_counters_zero(counters);

 perf_counters_start(counters);

}

void freeze(){

 perf_counters_stop(counters);

 for_each_application_in_list(progs_schedule_list){

 stop_running(application);

 value = perf_counters_read(counters);

 IPC_co-running = get_IPC(value);

 IPC_loss = (1 – IPC_co-running/application-

>IPC_alone);

 application->waiting_time = 0;

 application->penalty = factor * IPC_loss;

 remove_from_top(progs_schedule_list);

 add_to_tail(progs_all_list);

 }

for_each_application_in_list(progs_all_list){

 update_waiting_time(application);

 application->criterion = waiting_time + penalty;

 }

}

96

void quantum_expired(){

 freeze();

if (current_tics < RUN_TICS){

 schedule();

 thaw();

 }else{

 stop_execution();

 print_results();

 }

}

Code 3.2-1: FOP scheduler algorithm

97

98

3.3 Third Approach (Avoiding and Managing Contention)

 The FOP-LCI (Fairness over Progress with L-C class Isolation) 3.3.1
Scheduler

The idea

 In the first approach, we build a scheduler that aims to improve fairness and throughput

avoiding contention. In the second approach, we try to manage contention, assuring that all

threads would take equal share of the resources without caring at what extent the thread is

possible to affect or be affected by the co-runner. In this approach we adopt the idea of the

second scheduler, taking into consideration that some applications when co-executed cause

destructive interference. We extend its functionality, in order to avoid co-execution of L-C pair.

As the prediction model imposes, co-scheduling of L with C (SC, BC) applications could result

in heavy IPC losses for the C (x1.67 for SC, x2.43 for BC). So our idea is to avoid a part of the

contention (L-C) and manage the rest of it (BC-LC, BC-BC).

The Objective

 Avoiding bad co-runners for the C applications means, that they have the opportunity to

run in a less contended environment and increase their actual progress. This way the total

throughput is expected to be enhanced. On the other hand, suffering applications would have

the change to be selected more frequent, as assured on the FOP scheduler. Concluding, our aim

is to provide fairness with improved throughput comparing to FOP.

Figure 3.3-1: Selection of applications with the FOP scheduler

Figure 3.3-2: Selection of applications with the FOP-LCI scheduler

99

The Implementation

 We use the same waiting queue, sorted in the way described on the previous scheduler.

The difference now is that we do not schedule the N top applications of the queue (N =

cores_nr). The applications are classified following the scheme we defined in the CMB

scheduler. If an L (C) application is identified first, it is packed in the gang. If the gang is not

filled, we iterate over the waiting queue ignoring all the C (L), packing with the LC, N

applications. The ignored applications C (L), expected to run on this time quantum, lose their

turn. They are kept out of the CPU for an extra quantum, increasing their waiting time. On the

next quantum, they will be on the top of the queue, will be selected first and will keep out the L

(C). In this way we form gangs that consist of L(C), LC, N applications. On the Figure 3.3-2

we show how the selection occurs.

 To achieve the scheduling policy described, we extend the schedule () function of the B

scheduler. This extension is depicted on the flow chart and the pseudocode below.

100

void schedule()

{

 L_ON = 0;

 C_ON = 0;

 allowed = 1;

quicksort(progs_all_list, criterion, DESCENDING);

 for_each_app_in_list(progs_all_list){

 switch (app->class){

 case L_CLASS:

 if (C_ON) allowed = 0;

 else L_ON = 1;

 case C_CLASS:

if (L_ON) allowed = 0;

 else C_ON = 1;

 }

 if (allowed){

 if (number(progs_schedule_list) != cores_nr){

 remove_app_from_list(progs_all_list);

 add_to_tail(progs_schedule_list);

 }

}

}

Code 3.3-1: Extension of schedule() function

101

3.4 Implementation tool

 The scaff 3.4.1

 All scheduling policies proposed in this chapter are implemented on the scaff

infrastracture. Scaff is a runtime system that organize the execution of single or multi-threaded

applications on multi-core architectures [19]. It operates at user-space, on top of Linux-based

systems. Its main responsibility is to provide a communication mechanism between the

scheduler implementation and the executed applications. Scaff consists of two basic

subsystems, the executor and the scheduler. The executor handles execution events regarding

creation or termination of applications, while the scheduler decides on which way the available

resources would be distributed among the applications of the workload. In the next paragraphs,

we describe in detail the operation of these subsystems.

The executor

 The executor keeps information about the programs of the workload, specific events

during execution and the current scheduler implementation. For each execution test, the

following parameters are passed to the executor: a configuration file, an output folder, the set of

CPU and the scheduler. The configuration file includes the execution path of the applications of

the workload along with necessary information for their execution, such as number of required

cores for each one (on this paper we work with single threaded applications), starting time if a

delay is desired, the class they belong to and their IPC on alone execution (essential for the

decision making of our schedulers). On the output folder, we keep track of the scheduler

operations, the programs behavior (performance counters data) and error messages. The

executor inspects the information given for each application and prepares them for the

execution, establishing the cpuset and a shared memory area for communication between the

application and the scheduler. Its main duty is to handle execution events and programs' signals

and trigger corresponding scheduler functions. It is mainly interested on the events,

EVNT_NEWPROG and EVNT_QEXPIRED. The first is associated with the start of the

execution of a program. When a program is added, this event is allocated. Subsequently the

executor make the following actions, it moves this program to the new_p list and calls the

function scheduler→rebalance(). The second event indicates the expiration of a time quantum.

The executor, then, returns the execution flow to the scheduler calling the function

scheduler→qexpired(). The signals that scaff handles are SIGCHLD and SIGSTOP. SIGCHLD

is send to executor when a program has terminated its execution normally, while SIGSTOP is

raised when a forced termination occurs. Regarding the first signal, the executor moves the

finished program to finished_p list and calls the scheduler function rebalance(), whereas the

second signal implies an erroneous behavior and the executor terminates the whole execution.

The scheduler

 The scheduler is the second subsystem of the scaff, responsible for the placement of the

programs to the available cores. Based on a scheduling policy, it distributes the resources

among the programs, taking into consideration their demands and the information for the

102

execution platform provided by the executor. Concerning our work, the scheduler has to make

decision about when (which time quantum) and not where (which core) the programs should be

co-executed, as it based on time-sharing only.

 Our schedulers implement the following functions:

 init(): this function is called at the beginning of execution by the executor and allocates

structures necessary for the management of programs. These are stored by the executor

and used to subsequent callsof the scheduler.

 schedule(app_list): at this point occurs the selection of the programs to be executed on

the following time quantum.

 thaw(sched_list): the selected applications are ready to be executed on the set of the

available cores. The performance counters are activated and the state of the freezer

cgroup subsystem of each program is set to thaw.

 freeze(sched_list): the time quantum has expired and the running applications should

leave the CPU. The performance counters are stopped and their value can be easily read,

providing information for the performance of each program running on the current

quantum. The state of the freezer cgroup subsystem of each one is set to freeze.

 qexpired(sched_data): this function is called on the expiration of the time quantum by

the executor (EVNT_QEXPIRED occurs). Subsequently it calls freeze, schedule and

thaw functions, making the decision for the next time quantum.

 rebalance(sched_data): when a program is ready to start execution, it is added in the

new_p list (EVNT_NEWPROG) and this function is called. It moves this program from

the new_p list to the app_list and allocates the structure that the scheduler keeps for

every program in order to store important information for their execution. This function

is also called when a SIGCHLD is raised to the executor, meaning that a program has

terminated normally. In this case, the scheduler removes it from the finished_p list,

respawns it, if this attribute is enabled and deallocates it.

 System tools and mechanisms 3.4.2

 The scaff infrastructure requires some tools, in order to manage the execution of

programs. A scheduler determines which applications should be assigned on the available cores

on a specific time slice. Taking into account that a multi-core system provides the ability of

space sharing the cores, the scheduling policy should determine which program would map to

the specific core. The ability of binding programs to specific cores and executing them on

specific time slices is provided by a couple of Linux tools, cpusets and freezer. Both of these

are part of the Control Groups (Cgroups) feature provided by Linux.

Cgroups

 Control groups provide a mechanism for aggregating or partitioning sets of tasks into

hierarchical groups with specialized behavior [20]. A cgroup is a set of task associated with a

set of parameters for one or more subsystems. A subsystem is a module that treats the groups of

tasks provided by cgroups in particular ways, applying per-cgroup limits. A hierarchy is a set of

103

cgroups arranged in a tree, such that every task is in exactly one cgroup and a set of

subsystems. Each hierarchy has an instance of the cgroup virtual file system associated with it

and can be easily handled from user space. User-level code can create and destroy cgroups by

name in the virtual file system, specify and query to which cgroup a task is assigned, and list

the task PIDs assigned to a cgroup.

 On their own, the only use for cgroups is for simple job tracking. The intention is that

other subsystems hook into the generic cgroup support to provide new attributes for cgroups,

such as accounting/limiting the resources which processes in a cgroup can access. For example,

cpusets allow you to associate a set of CPUs and a set of memory nodes with the tasks in each

cgroup.

Freezer subsystem

 We use the cgroup freezer subsystem, in order to implement the time sharing policy of

our schedulers. It provides a convenient way to start and stop a set of tasks, by simply writing

values in files of the virtual file system. Using sequences of SIGSTOP and SIGCONT signals

are not always sufficient for stopping and resuming tasks in user space. Both of these signals

are observable from within the tasks we wish to freeze. SIGSTOP cannot be caught, while

SIGCONT can be caught by the task. Any programs designed to watch for these signals could

be broken by attempting to use this way to stop and resume them [21]. In contrast, the cgroup

freezer uses the kernel freezer code to prevent the freeze/unfreeze cycle from becoming visible

to the tasks being frozen. The cgroup freezer is hierarchical. Freezing a cgroup freezes all the

tasks associated with it and all its descendant cgroups. Each cgroup has its own state and the

state inherited from the parent. These states are described in a combined way in the freezer.state

file created by the freezer subsystem in the virtual file system. Reading this file returns the state

of the cgroup – “THAWED”, “FREEZING” or “FROZEN”. FREEZING → FROZEN

transition occurs when all tasks of the cgroup and its descendants become frozen. FROZEN →

FREEZING transition is possible, when a new task is added to the cgroup, until it is frozen.

Two values are allowed to be written in this file – “FROZEN” and “THAWED”. If frozen is

written, the cgroup, if not already freezing, enters the FREEZING state until it is frozen. If

THAWED is written the state of the cgroup is changed to THAWED. Therefore, it is easy to

manipulate the execution of programs by writing to the freezer.state file THAED or FROZEN.

In our implementation we create one cgroup freezer for every application of the workload.

Cpuset subsystem

 Cpusets use the generic cgroup subsystem and provide a mechanism for assigning a set

of CPUs and Memory Nodes to a set of tasks [22]. Cpusets extend the existing mechanisms of

Linux kernel that specify in which cpus and memory nodes a process is allowed to run.

Requests by a task, using the sched_affinity system call to include CPUs in its CPU affinity

mask, and using the mbind and set_mempolicy system calls to include Memory Nodes in its

memory policy, are both filtered through that task‟s cpuset, filtering out any CPUs or Memory

Nodes not in that cpuset. User space code can create and destroy cpusets by name in the cgroup

virual file system, manage their attributes and specify which CPUs and Memory Nodes are

104

assigned to each cpuset, writing values in the files cpuset.cpus and cpuset.mem respectively. In

our implementation one cpuset is created for each application of the workload.

105

 Chapter 4

Experimental Evaluation

Contention Environment

 From the benchmarks selected on the previous chapter, we create workloads of 16, that

form conditions of 3 different contention levels, low, medium and high. Each contention level

is populated by 5 workloads. On the low contention environment, the workloads consist of

various combinations of L, LC, SC and N applications. The medium contention environment

includes workloads of applications from all the classes with the BC applications being

absolutely isolated. Workloads of the high contention environment have BC applications far

exceeding the number of BC gangs.

Execution Details

 The total 15 workload mixtures are tested with all the 3 scheduling policies (CMB, FOP,

FOP-LCI) proposed on the previous section plus the state-of-the-art Linux scheduler (CFS). We

set the execution time to 20 minutes and the time quantum to 1 second. In order to keep the

gangs and the contention conditions stable, we keep the workload full at the whole execution,

respawning every terminated application.

 The execution platform, described in detail on the section, is a Nehalem architecture

(one socket is utilized) with characteristics summarized on the table below

Cores 4

L1
Data cache: private, 32 KB, 8-way, 64 bytes block size

Instruction cache: private, 32 KB, 4-way, 64 bytes block size

L2 private, 256 KB, 8-way, 64 bytes block size

L3 shared, 8 MB, 16-way, 64 bytes block size

Memory 12 GB, DDR3, 1333 MHz

Table 3.4-1: Execution platform

 The classification of applications has accomplished offline on their alone execution. The

class and other characteristics of applications, like IPC_alone, are passed to our schedulers as

parameters on the configuration file. We can acquire all this information online, executing the

N applications of the workload alone for N time quantums, adding this time to the total

execution time, in order to be accurate with the CFS. An alternative is to reduce the time of

quantum for N quantums, sacrificing a smaller fraction of the total execution time, if we keep it

the same for all the schedulers. For the distinction of the C applications into SC and BC the

size of the data occupying the LLC should be given as a parameter, assuming that it has been

deduced in a "magical" way. We have not enforced any mechanism like cache partitioning for

extracting online the size of data resident on the LLC. Our way for generating BC applications

106

is inspecting their behavior across different data set, as described in the previous chapter.

Performance Metrics

 While our goal, from the beginning, is to implement techniques that would optimize

throughput and fairness, we are interested into inspecting the proposed scheduling policies for

these two characteristics. So we define some metrics that will help us compare schedulers and

evaluate their characteristics.

 On the first hand, for each application of the workload, we compute how many times, in

the equal part of the total execution time distributed among the applications (form 4.1), it

would be terminated on the ideal occasion, where the interference of the neighboring

applications was null (form 4.22). This means that the application would run on an

environment with conditions of zero contention and would have the same termination time as

when running alone.

execution_time = total_execution_time ⋅
cores_nr

apps_nr
 (𝑓𝑜𝑟𝑚 4.1)

ideal_times_terminated (𝑖) =
execution_time

𝑡𝑖𝑚𝑒(𝑖)𝑎𝑙𝑜𝑛𝑒−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

, 𝑖 = 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑓𝑜𝑟𝑚 4.2)

 We have implemented the schedulers in such a way, that they keep track of the times

each application has terminated throughout the whole execution. We compare these results to

the ideal_times_terminated and we extract their normalized values (form 4.3).

𝑁(𝑠, 𝑖) =
times_terminated (𝑠, 𝑖)

ideal_times_terminated (𝑖)
, 𝑠 = 𝑠𝑐𝑒𝑑𝑢𝑙𝑒𝑟, 𝑖 = 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑓𝑜𝑟𝑚 4.3)

We define throughput and fairness of a scheduler as the average (form 4.4) and the

standard deviation (form 4.5) respectively of the normalized times for all programs of the

workload.

𝑇(𝑠) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑁(𝑠, 𝑖)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖 (𝑓𝑜𝑟𝑚 4.4)

𝐹(𝑠) = 𝜎(𝑁(𝑠, 𝑖)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖 (𝑓𝑜𝑟𝑚 4.5)

107

 Information about the execution of the workload is represented by a boxplot [23] for

each scheduler. A boxplot is a convenient way to graphically depict the distribution of data

based on the five number summary: minimum, first quartile, median, third quartile and

maximum. It consists of a central rectangle and the whiskers. The rectangle spans the first

quartile to the third quartile (IQR, interquartile range). A dashed line in the box shows the

median and the vertical lines (whiskers) above and below that box show the locations of the

minimum and maximum. Our graph includes for each scheduler, one boxplot, an additional

solid line representing the average and a text on top of y-axis annotating the standard deviation.

In that way, it is possible to acquire a short and accurate description of the applications'

behavior and depict the metrics of our interest essential for the schedulers' evaluation. Although

the general picture of the boxplot provides with sufficient information about the deviation of

the data from the average (rectangle height and whiskers range), we annotate the standard

deviation on top of the y-axis for greater accuracy.

108

4.1 Evaluation of scheduling policies

 Low contention environment 4.1.1

Workload 1

 We start with a workload consisting of 4 L, 4 LC, 4 SC and 4N applications.

We observe that all schedulers are performing roughly at the same throughput level.

CMB presents the best results concerning fairness. FOP and FOP-LCI present almost identical

behavior.

Figure 4.1-1: Workload 1 consists of 4 L, 4 LC, 4 SC and 4N applications

109

Workload 2

 We increase the number of L applications, forming a workload of 6 L, 4 LC, 4 SC and

2N applications.

With a slight increase on the number of L applications, we notice that CFS widens the

performance gap between the applications, as the SC applications are more likely to be

executed with L, suffering their destructive interference. The throughput of our

proposedschedulers is located at the same level with CFS. They all outperform Linux on the

aspect of fairness, with the FOP showing the best behavior (lower standard deviation).

Figure 4.1-2: Workload 2 consists of 6 L, 4 LC, 4 SC and 2N applications

110

Workload 3

 We replace 2 LC with 2 more SC applications, creating a workload of 6 L, 2 LC, 6 SC

and 2N.

Figure 4.1-3: Workload 3 consists of 6 L, 2 LC, 6 SC and 2N applications

It is obvious that the contention agnostic treatment of Linux can lead to severe

degradation of some applications (0.45 % of the ideal performance), performing overall with

poor fairness and throughput comparing to our approaches. The isolation of SC applications

occurring on the CMB scheduler provides a friendlier environment for their execution, boosting

their performance and leading overall to the best throughput. FOP shows great results

concerning fairness, as it is performing with the lower deviation. FOP-LCI performs at the

same throughput with FOP and presents higher deviation.

111

Workload 4

 In this workload we eliminate completely the LC applications, having 8 L, 6 SC and 2N.

Figure 4.1-4: Workload 4 consists of 8 L, 6 SC and 2N applications

We observe that our proposed schedulers outperform Linux on both aspects of

throughput and fairness. It is getting clearer that CFS fails to handle a workload with

applications subjected to the destructive effects of contention (SC applications). The general

picture of the results of our scheduling policies is similar to the previous workload. CMB

performs at the same level with FOP in the matter of throughput. The FOP presents the most

improved fairness. FOP-LCI, again, does not perform with higher throughput comparing to

FOP.

112

Workload 5

 At this point, we inspect the behavior of the schedulers, when it comes to handle

applications of two classes exclusively (workload of 8 L and 8 SC). The contention level is

getting higher, as the contention for the memory bandwidth and the trashing of the LLC caused

by the L applications affects destructively their selves and the SC applications respectively.

Figure 4.1-5: Workload consists of 8 L and 8 SC applications

 Reaching the peak of the low contention environment, we come to the following

conclusions. The isolation of the SC applications from the bad co-runners (L applications) and

the balanced distribution of L applications, adapted on the contention aware approach, lead to

the best results concerning throughput. The FOP scheduler manages to balance the performance

of the applications near the average, boosting the suffering SC applications at the expense of

the well performing L applications. The FOP-LCI lives up to our expectations for improved

throughput comparing to FOP, since the SC applications are not co-executed with the

unfriendly L. As a result they are not subjected to destructive interference and they utilize the

CPU more efficiently (making greater progress). It is worth mentioning that FOP and FOP-LCI

perform almost at the same fairness level.

113

Low contention environment comparison results

Figure 4.1-6: Relative throughput improvement comparing to Linux

Figure 4.1-7: Relative fairness improvement comparing to Linux

114

The above graphs (Figures 4.1-6 and 4.1-7) depict the gains of throughput and fairness

of our scheduling policies comparing to Linux scheduler for each workload and for the low

contention environment (average). We observe that our techniques outweigh Linux scheduler

regarding fairness on every workload of this environment. Concerning throughput CFS seems

to perform better for workloads (first two) consisting of small number of contending

applications (L and SC). On the other hand, when it comes to workloads with increased number

of destructively interfering applications, our approaches outperform Linux respecting

throughput.

Taking into account the graphs below (Figures 4.1-8 and 4.1-9), which present in detail

the execution of each class on the different schedulers for two representative workloads, we

analyze deeper the behavior of the proposed scheduling policies.

The CMB performs with the best throughput and the least improved fairness. The

contention aware policy helps the most the SC applications. On the other hand, the L

applications are slightly downgraded, because of their packing.

The FOP scheduler provides the best solution concerning fairness. Overall it performs

with the lower deviation, balancing the applications near the average, as shown in the graphs

below. It is worth mentioning that the frequent occupation of CPU with lower progress

applications does not cause reduction in throughput, ranking FOP in the third place. This

happens because the applications do not suffer from devastating interference and thus do not

need significant increase on their running time. This, in turn, does not lead to great reduction of

the running time of the well performed applications, keeping throughput on high levels.

Figure 4.1-8: Detailed execution of workload 3

115

The FOP-LCI holds the second place among our schedulers on both aspects of fairness

and throughput. Our intention is to separate the L-C pairing, in order to boost C applications

performance and provide an improved throughput comparing to FOP. This is achieved only in

the 5th workload. In the general case, it benefits the applications (LC and N) allowed to be

executed with both L and C and keeps the C applications in the same level with FOP.

Consequently the improved throughput is a result of LC and N rather than C boosting. One

possible explanation is that the packing of L would result in higher IPC loss. This means that

they are likely to be more frequently executed carrying with them the LC or N.

Figure 4.1-9: Detailed execution of workload 5

116

 Medium contention environment 4.1.2

Workload 6

 On this test group, we evaluate our schedulers when it comes to manage applications of

the BC class, which suffer from heavier slowdowns but can be completely isolated via time

sharing. On this workload we introduce 1 BC applications, having totally 4 L, 4 LC, 1 BC, 4

SC and 3 N.

Figure 4.1-10: Workload 6 consists of 4 L, 4 LC, 1 BC, 4 SC and 3 N applications

 We notice that FOP manages to distribute almost completely fair the resources,

experiencing the lower deviation, with a small decrease in throughput. The CMB performs with

the highest throughput and improved fairness. The FOP-LCI provides an intermediate solution

for the inspecting characteristics.

117

Workload 7

 We add another BC application, forming a workload of 4 L, 4 LC, 2 BC, 3 SC and 3N.

Figure 4.1-11: Workload 7 consists of 4 L, 4 LC, 2 BC, 3 SC and 3N

 The CMB spreads the BC applications across the 2 available gangs. This offers a great

performance boost for them and for the SC, leading overall to the highest throughput. In

addition it experiences great improvement regarding fairness, as its deviation is really close to

the FOP-LCI. The other approaches experience lower throughput than Linux, since they

occupy the CPU mostly with applications that make low progress. It is becoming clearer that,

except the unfair distribution, Linux cannot guarantee that applications would make adequate

progress (application executing at fraction of 25% of its ideal performance).

118

Workload 8

 We increase the number of L applications to 8, eliminating completely the LC. The

workload now consists of 8 L, 2 BC, 3 SC and 3 N.

Figure 4.1-12: Workload 8 consists of 8 L, 2 BC, 3 SC and 3 N applications

 The general picture presented on this graph is similar to the previous workload.

Concerning the CMB scheduler, the BC applications are not affected with the increase of L, as

they can be completely separated and the destructive interference can be avoided.

119

Workload 9

 Now, we replace the N applications with SC. This workload contains 8 L, 2 BC and 6

SC.

Figure 4.1-13: Workload 9 consists of 8 L, 2 BC and 6 SC applications

 We observe that the replacement of N applications with SC causes greater problem for

the CMB scheduler. Following its policy, it splits the BC and packs them together with the SC

only. This leads to lower increase of BC applications‟ performance, while the slowdown

imposed to them is higher when co-executing with SC applications rather than N (prediction

model). Despite that fact, overall it performs with the highest throughput. The other schedulers

follow similar behavior to the previous workloads.

120

Workload 10

 This workload consists of 4 L, 3 BC, 4 SC and 4 N.

Figure 4.1-14: Workload 10 consists of 4 L, 3 BC, 4 SC and 4 N applications

As it is depicted on the graph above, our first approach manages to spread the 3 BC

applications across the gangs, performing, again, with the best throughput and a satisfying

improvement of fairness.

121

Medium contention environment comparison results

Figure 4.1-15: Relative throughput improvement comparing to Linux

Figure 4.1-16: Relative fairness improvement comparing to Linux

122

Inspecting the above graphs (Figures 4.1-15 and 4.1-16), which depict the gains of

throughput and fairness of our scheduling policies comparing to Linux scheduler for each

workload and for the medium contention environment (average), we come to the following

conclusions. All of our scheduling policies outperform Linux regarding fairness. When it

comes to throughput, only CMB presents improvement across the workloads of this

environment. FOP performs with lower throughput on every workload, showing a reduction of

6% on average. FOP-LCI increases throughput on two workloads only, performing on average

with a 1.8% decrease.

 Introducing the BC applications, it is getting clearer that Linux fails to manage the

devastating effects of contention, providing an environment where those applications cannot

make adequate progress and are lead to starvation (Figure 4.1-18). This results in greater

unequal distribution of the resources among the applications. Comparing with the low-

contention environment, our schedulers present higher improvement in the matter of fairness.

 Taking into account two representative examples (Figures 4.1-17 and 4.1-18) of this

environment, we are able to understand deeper the behavior of our schedulers.

 The CMB manages to offer a great performance boost for the BC applications, when

they can be completely isolated from the L and from each other. We observe that the

improvement is dependent on the co-runners. Working with workloads consisting of N

applications (Figure 4.1-17), the BC applications experience better improvement compared to

workloads with SC applications only (Figure 4.1-18). This seems reasonable, since the

prediction model implies zero slowdown for the execution pair BC-N and mild degradation for

the pair BC-SC (× 1.46 on average (Figure 3.1-10)). As far as the L and LC applications are

concerned, their performance is affected similarly to the workloads of the low contention

environment. The packing of L with LC applications and with each other generates memory

bandwidth contention and a higher degradation compared to Linux. Overall, it performs with

the highest throughput and a satisfying fairness improvement.

 When it comes to resource distribution, the FOP presents the fairest behavior. The

figures below depict the tremendous results of the FOP performance. It manages to equalize the

progress of the applications with a really negligible deviation around the average. This picture,

also, confirms the correctness of the relationship between the factor and the gangs extracted

previously. Opposite to the workloads of the low-contention environment, the throughput is

suffering from a slight reduction. This phenomenon is explained by the fact that the CPU is

mostly occupied by applications with low IPC ratio (BC class).

 The FOP-LCI provides the second best solution for both characteristics of throughput

and fairness. We notice that the avoidance of L-C pairing does not benefit the BC applications,

as they are co-executed with each other and with LC, suffering from devastating damage

(× 2.33 and × 2.22 slowdown respectively (Figure 3.1-10)). As a result, they get really often

high in the waiting queue. Allowed to be co-executed only with SC, LC and N, the progress of

L is slightly impeded regarding FOP. Similar to low-contention environment the increased

throughput is due to the beneficial treatment of LC and N (executed with C and L) (Figure 4.1-

17) plus the SC that perform well when isolated from L and are likely to be more frequent

selected by BC (Figure 4.1-18)

123

Figure 4.1-17: Detailed execution of workload 7

Figure 4.1-18: Detailed execution of workload 9

124

 High contention environment 4.1.3

Workload 11

 On this environment, we test our scheduling policies considering workloads with high

number of BC applications, which cannot be isolated from each other. This means that our first

approach would be forced to group them together and tolerate the heavy damage they cause.

This workload consists of 4 L, 4 LC, 3 BC, 2 SC and 3N applications.

Figure 4.1-19: Workload 11 cosists of of 4 L, 4 LC, 3 BC, 2 SC and 3N applications

We observe that the effects of the BC pairing impact on the CMB performance, as it

cannot provide sufficient improvement to them, in order to increase the throughput. However it

is performing with lower deviation. The results of the other two schedulers are similar to

previous workloads.

125

Workload 12

 We increase the number of BC and L applications. We have 5 L, 3 LC, 4 BC, 2SC and

2N.

Figure 4.1-20: Workload 12 consists of 5 L, 3 LC, 4 BC, 2SC and 2N applications

 It is getting clearer that CMB scheduler cannot boost BC applications‟ performance,

remaining in the same throughput levels with Linux. Even the fairness improvement is

declining. The general picture of FOP and FOP-LCI is similar to previous workloads.

126

Workloads 13, 14 and 15

Figure 4.1-21: Workload 13 consisting of 6 L, 2 LC, 5 BC, 1 SC and 2 N applications

Figure 4.1-22: Workload 14 consisting of 7 L, 1 LC, 7 BC and 1 N applications

127

Figure 4.1-23: Workload 15 consisting of 8 L and 8 BC applications

Inspecting the above graphs, it is obvious that the policy of the CMB scheduler, packing

the BC applications that cannot be spread across the gangs, harms its performance regarding

both fairness and throughput. We see that the boxplots of Linux and CMB scheduler are almost

identical, with the CMB providing reduced throughput and a slightly improved environment

regarding fairness. In addition we notice that FOP-LCI is performing almost at the same

throughput level with FOP. FOP distributes the resources in the fairest way, except the last

workload, where FOP-LCI is slightly improved.

128

High contention environment comparison results

Figure 4.1-24: Relative throughput improvement comparing to Linux

Figure 4.1-25: Relative fairness improvement comparing to Linux

129

 Concluding, the graphs (Figures 4.1-24 and 4.1-25) present some interesting results for

the heavy contention environment. Regarding throughput, it is clear that none of our scheduling

policies is possible to provide improved performance, with the FOP and FOP-LCI experiencing

higher decrease relative to medium-contention environment. Inspecting fairness, we understand

that all of our schedulers outweigh Linux, with FOP and FOP-LCI performing at the same level

and CMB with a satisfying decrease (- 30%) compared to the medium-contention environment.

 It is worth mentioning how the rising of applications with devastating suffering (BC)

influence the behavior of our scheduling policies. We describe in detail the impact on our

schedulers.

 The CMB fails to provide a friendly environment for the BC applications, as it is

impossible to be completely isolated across the gangs. This proves our previous statement that,

working on a package with increased number of cores sharing a cache, applications with great

suffering are more likely to interfere with each other, while the distinction can be achieved only

by time sharing. Our scheduler avoids execution of the BC-L packing. However when the

number of BC applications far outweigh the available gangs it is obliged to group them

together, tolerating the destructive effects this packing causes. Figure 4.1-26 presents clearly

the general behavior of this scheduler, which imitates the Linux scheduler with lower

throughput and a moderate improvement on fairness. Lower throughput is a result of the L

packing, as they generate bandwidth contention. The performance degradation of L is the

reason of the decreased throughput and the improved fairness. It achieves better deviation

because of the lower progress of L and not the enhancement of BC applications, which was

initially our purpose.

 Concerning the FOP scheduler, the results, when it comes to fairness, are tremendous. It

offers equal distribution of resources among the applications, improving fairness at 85% on

average. Inspecting the graph below, we deduce that even applications with low progress

cannot get any performance boost. This happens, because there are applications experiencing

even greater decrease on their IPC getting prioritized on the waiting queue, occupying mostly

the CPU time. This phenomenon leads to the satisfying reduction of 15% on throughput

 Inspecting the FOP-LCI scheduler, we see that, following the policy of L-C isolation,

fails to boost the performance of C, while the BC-BC pairing causes great degradation. Similar

to the previous contention environment the improved throughput compared to FOP is a result of

the LC and N beneficial treatment. These two classes are favored by the scheduler, as it is

possible to be selected with both L and C applications (Figure 4.1-26).

 Summarizing, on this environment we understand that with time sharing only

applications that are mostly impacted by the contention cannot be completely isolated. Thus

their performance cannot be enhanced and overall throughput cannot be improved (CMB

scheduler). For the other scheduling policies we see that despite the rise of BC applications and

the high contention levels, they are able to provide a fair distribution of resources across the

applications.

130

Figure 4.1-26: Detailed execution of workload 14

131

132

 Chapter 5

Conclusion and Future Work

5.1 Results Evaluation

 In this paper we focused on the problem of destructive interference of single-threaded

applications with one execution phase when they are co-scheduled on multicore platforms that

share architectural components, such as the Last Level Cache and the memory bandwidth.

Inspecting the behavior of the system when applications are executed with state-of-the-art

schedulers, like the CFS of Linux, we came to the following conclusions. The applications are

treated in a contention agnostic way and are subjected to the effects of the destructive

interference. As a result the overall performance of the system is negatively affected and the

prime objectives that a scheduler tries to satisfy are totally impeded. We found that Linux

scheduler is unable to share the resources of the platform equally among the applications,

providing an unstable and workload dependent performance. This means that there is no

guarantee that an application would make equal and stable progress with the other. Thus QoS

(Quality of Service) guarantees cannot be provided to threads and SLAs (Service Level

Agreements) are very difficult to enforce. We proposed three scheduling policies, aiming to

mitigate the phenomenon of unfair distribution. On the first approach we built a contention-

aware scheduler based on the classification scheme proposed by [1]. We try to improve fairness

via contention avoidance and performance enhancement of the suffering applications,

proposing a novel scheduler which take into consideration both LLC and memory bandwidth

contention. On the second approach we enforce a policy that boosts the performance of

suffering applications in expense of the ones that experience high IPC ratios, aiming to equalize

their progress. The third approach is an extension of the previous policy, which select the

threads in a contention aware manner, in order to create a friendlier environment for their

execution and improve their performance. All of our proposed schedulers were tested and

evaluated on a 4-core package sharing one LLC with a variety of workloads and have been

compared to Linux scheduler. The results for the different contention environments are

summarized on the graphs below.

Inspecting the Figure 5.1-1, it is clear that our scheduling policies achieved a

tremendous improvement of the unfair distribution of resources provided by the Linux

scheduler. Analyzing deeper the behavior of our schedulers, we come to the following

conclusions.

Providing fairness through a thread-to-core placement policy (CMB scheduler) that

avoids destructive interference is a possible solution. The suffering applications experience a

great performance boost and the system throughput is improved. The main disadvantage is that

our options for thread isolation are constrained, while only time-sharing is available. This leads

to low throughput and a slight fairness improvement when it comes to workloads with suffering

applications that cannot be completely isolated across the gangs.

133

Figure 5.1-1: Throughput and fairness gains compared to Linux

Occupying the CPU with applications that have the gravest need concerning their

progress and not their waiting time seems to be the best solution for equal distribution of

resources. The results of the other two approaches show incredible fairness speedup. FOP

presents the greatest fairness enhancement, while FOP-LCI experiences improved throughput

and a slight decrease of fairness relative to FOP. Opposite to CMB, they are not affected by the

rising of applications suffering from devastating interference, and manage to balance their

progress across the different workloads.

 Summarizing, we proposed three novel scheduling policies that take into consideration

the destructive effects of resource sharing and manage to overcome the problem of unfair

distribution. Balancing the performance of application, we assure that none would run at the

expense of others. In addition, we prevent threads from experiencing starvation phenomena,

providing an environment where all applications make adequate progress. In conclusion, all of

our approaches manage to provide with QoS guarantees and make it possible for SLAs to be

enforced. Concerning the first approach, a SLA could be established, assuring that all

applications would share equally the CPU time and would perform well, as they do not

interfere destructively with each other. Regarding the other two approaches, it is also possible

for a SLA to be determined, taking into consideration that suffering applications would

consume more CPU time but they could make adequate progress, equal to that of the other

applications of the workload.

134

5.2 Future work

The work presented on this paper has prospect for expansion. While all of our metrics

used are based on information acquired at run time via performance counters provided by the

facilities of modern processors, the classification of C class cannot be performed online. The

method we follow for the population of BC class requires investigation of the applications‟

behavior across different data sets. So, a technique for online identification of the working set

could be developed, in order to make the CMB scheduler completely applicable to real

environments. Opposite to CMB, the other two schedulers do not require additional

adjustments and can be integrated as completely independent units on multicore architectures.

Additionally, our policies could be further extended, in order to handle more complex

scheduling scenarios, including multi-threaded applications, applications with multiple

execution phases, short-running tasks, I/O-bound applications and dynamic workloads. Finally,

a very interesting scenario is to enhance our proposed schedulers, so that they could be

integrated in NUMA architectures and in large scale cloud environments.

135

136

 Chapter 6

Related Work

 There has been significant interest in the research community in addressing shared

resource contention on CMPs. The majority of work has focused on solutions which require

elaborate modifications to hardware and can be distinguished into two categories: performance

aware cache modification (commonly known as cache-partitioning) and DRAM controller

scheduling.

 Concerning the inefficient distribution of the shared LLC resources the LRU

replacement policy impose, some researchers [24], [10], [17] proposed solutions to address this

problem by explicitly partitioning the cache space based on how much applications would be

benefited, rather than based on their demand rate. In the work on Utility Cache Partitioning

[17], it has been developed a monitoring circuit, designed to estimate an application‟s number

of hits and misses for all possible number of ways allocated in the cache (a technique based on

stack-distance profiles (SDPs)). Then the cache is partitioned in such a way, so that the cache

misses of a particular set of co-running applications would be minimized.

 Tam et al. [25] addresses cache contention via software-based cache partitioning. Cache

is partitioned using page coloring. Each application reserve a portion of the cache and the

physical memory is allocated such that the application‟s cache lines map only into that reserved

portion. The size of the allocated cache portion is determined based on the marginal utility of

allocating additional cache lines for that application. Marginal utility is estimated via an

application‟s reuse distance profile, acquired online utilizing hardware counters.

 Approaches based on cache modification present some common characteristics. They

typically rely on classification of the application execution behavior and a prediction model of

the interference when they are executed together.

 Xie and Loh [26] proposed a classification method based on animals. Each application

may belong to one of the four classes named turtles, sheep, rabbits and devils. Applications that

present low activity in the LLC are classified as turtles. Those that make use of the LLC but

have zero sensitivity to the ways allocated to them belong to sheep. Rabbits are very sensitive

to the ways allocated to them. Devils make heavy use of the LLC, while they experience high

miss rates.

 Similarly to Tam et al., Lin et al. [18] adapted page coloring and classified the

applications into four colors based on their slowdown when executing on 1 MB compared to

executing on 4 MB cache. Their scheme consists of two thresholds for the slowdown imposed

to them. Applications showing over 20% degradation are considered red. Those suffering with

slowdown between 5% and 20% are classified as yellow. Programs, degrading at a rate lower

of 5%, are deeper classified as green or black according to their number of misses per thousand

cycles.

 Another approach by Jaleel et al. [13] categorize the applications into the following

classes: Core Cache Fitting (CCF) have a dataset size that can be served by the lower levels of

the memory hierarchy (private caches) and do not benefit from the shared LLC. LLC Trashing

(LLCT) have a dataset larger than the size of LLC. Such applications cause great damage to

137

those that get highly benefited by the LLC utilization. LLC Fitting (LLCF) require the majority

of the LLC capacity to perform well and get degraded when they do not receive it. LLC

Friendly (LLCFR) benefit from the available shared LLC but their performance does not

degrade significantly when they do not receive the bulk of its space.

 Taking into consideration the DRAM memory system, researchers [27] found that the

FR-FCFS policy implemented on the DRAM controllers leads to poor system throughput in

CMPs and to potential starvation of threads with low row-buffer locality. Therefore, memory

aware schedulers have been proposed in several studies, aiming to equalize the DRAM-related

slowdown experienced by each thread because of interference. Nesbit et al. [28] proposed the

fair queuing memory scheduler (FQM). For each thread, in each bank, FQM keeps a counter

called virtual runtime. When a memory request of the thread is serviced, the scheduler

increases this counter. This approach prioritizes the treads with the earliest virtual time, in order

to balance the progress of each thread in each bank. Another algorithm of special interest is the

parallelism-aware batch scheduling algorithm (PAR-BS) [29], which provides with higher

memory throughput and exploits per-thread bank-level parallelism more efficiently than FQM.

It attempts to minimize the average stall time by giving higher priority to requests from the

thread with the shortest stall time at a given instant. This scheduler relies on the idea of batches.

Regarding systems with multiple DRAM controllers, ATLAS (Adaptive per-Thread Least-

Attained-Service) [30] manages to provide superior scalability and throughput than PAR-BS. It

divides execution time into quanta, during which each controller makes scheduling decisions

locally based on a system-wide thread ranking, in order to reduce the coordination between

memory controllers.

 It is worth mentioning that the techniques discussed previously may seem promising but

require significant changes to the underlying hardware and the operating system. Thus it is

possible to be evaluated only in simulation and it is very difficult to be implemented in

commercial systems.

 In contrast to cache partitioning and DRAM controller scheduling, a part of research

community embraces a different trend to deal with the contention of resource sharing, the

thread-level scheduling. According to this approach, studies focus on finding the appropriate

thread-to-core mappings that generate the friendlier contention conditions for the execution of

applications and thus lead to the best possible performance. They attempt to classify programs

based on simple metrics that can be easily collected via the performance monitoring facilities

of modern processors and predict their interference through simple heuristics.

 Banikazemi et al. [31] attempted to predict the performance of a thread in a particular

mapping, calculating the cache occupancy ratio, which is the ratio of the LLC access rate of a

specific thread to the LLC access rate of all the threads sharing a cache in that mapping. Then

they calculated the possible LLC miss rate the thread would experience, based on the currently

measured LLC miss rate, the cache occupancy ratio and a rule of a heuristic. Finally, they use a

linear regression model to convert the predicted LLC miss rate into a predicted CPI for the

thread, which directly represents the predicted performance of a thread in that mapping.

 Opposite to the complex method adapted by Banikazemi, some researchers [32], [14],

[12] preferred to approximate contention with one simple heuristic: the LLC miss rate. Based

138

on this simple performance metric, they observed that applications with high LLC miss rate

stress the entire memory hierarchy for which they are competing and tried to keep them

separated, in order to avoid poor performance. They use concepts like cache light/heavy threads

[32] and turtle/devils [14] in order to characterize low and high miss applications, rather than

converting this intuition into a numerical prediction.

 Once a prediction model has been established, a scheduler must decide how the threads

should be combined in order to satisfy the desired objective.

 Jiang et al. [33] approximated the problem in graph-theoretical form. The nodes of the

graph represent the applications to be executed. The weighted edges between them represent

the performance degradation occurring to these applications when they run concurrently

sharing a LLC, assuming that the performance degradation of every possible pair of threads is

known. They showed that the optimal scheduling solution to this problem is the minimum

weight perfect matching of the graph.

 Based on the simple LLC miss rate performance metric, Zhuravlev et al. [14] proposed

their distributed intensity (DI) scheduling policy. According to that, all threads are sorted based

on their miss rate. Then the threads are paired in the following way: the thread with the highest

miss rate is co-scheduled with the one presenting the lowest miss rate, the thread with the

second highest miss rate is co-scheduled with that with the second lowest miss rate, etc. In that

way it achieves to balance the miss rate (intensity) across the threads.

 Merkel et al. [12] developed its decision-making policy based on the activity vectors. A

thread‟s activity vector represents its usage of system resources; the memory bus, the LLC and

the rest of the core. Their scheduler exploits thread migration to co-schedule threads with

complementary activity vectors. Programs with high variability of activity vectors are likely to

yield to high performance if co-scheduled in a complementary manner. They introduce the

sorted co-scheduling, which based on a parameter of the activity vector keeps the run queue of

one core sorted in descending order and the run queue of the other core in ascending. This way,

they attempt to co-schedule pairs of threads with complementary activity vectors.

139

140

Bibliography
[1] Haritatos A. H. et al., "LCA: a memory link and cache-aware co-scheduling approach for CMPs,"

in In Proceedings of the 23rd international conference on Parallel architectures and compilation,

2014, pp. 469-470.

[2] McCalpin J. D., "Memory bandwidth and machine balance in current high performance

computers," IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter, pp. 19-25, 1995.

[3] pChase benchmark. [Online]. https://github.com/maleadt/pChase

[4] Michael L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed. New York, USA:

Springer.

[5] Geer D., "Industry trends: Chip makers turn to multicore processors," Computer, vol. 38, no. 5, pp.

11-13, 2005.

[6] Silberschatz A., Galvin P. B., and Gagne G., Operating System Concepts, 9th ed.: John Wiley &

Sons, 2012.

[7] Zhuravlev S., Juan Carlos Saez, Blagodurov S., Fedorova A., and Prieto M., "Survey of scheduling

techniques for addressing shared resources in multicore processors," ACM Computing Surveys,

vol. 45, no. 1, pp. 1-28, November 2012.

[8] Hsu L. R., Reinhardt S. K., Iyer R., and Makineni S., "Communist, utilitarian, and capitalist cache

policies on CMPs: caches as a shared resource," in Proceedings of the 15th International

Conference on Parallel Architectures and Compilation Techniques (PACT’06), 2006, pp. 13-22.

[9] Srikantaiah S., Kandemir M., and Irwin M. J, "Adaptive set pinning: managing shared caches in

chip multiprocessors," in Proceedings of the 13th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS XIII), 2008, pp. 135-144.

[10] Chandra D., Guo F., Kim S., and Solihin Y., "Predicting inter-thread cache contention on a chip,"

in Proceedings of the 11th International Symposium on High-Performance Computer Architecture

(HPCA’05), 2005, pp. 340–351.

[11] Kim S., Chandra D., and Solihin Y., "Fair cache sharing and partitioning in a chip multiprocessor

architecture," in Proceedings of the 13th International Conference on Parallel Architectures and

Compilation Techniques (PACT’04), 2002, pp. 111-122.

[12] Merkel A., Stoess J., and Bellosa F., "Resource-conscious scheduling for energy efficiency on

multicore processors," in Proceedings of the 5th European Conference on Computer Systems

(EuroSys’10), 2010, pp. 153-166.

[13] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, and Simon, "Cruise: Cache

replacement and utility-aware scheduling," in Proceedings of the Seventeenth International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XVII, New York, USA, 2012, pp. 249-260.

[14] Zhuravlev S., Blagodurov S., and Fedorova A., "Addressing shared resource contention in

multicore processors via scheduling," in Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS’10), 2010,

pp. 129-142.

[15] Michael E. Thomadakis, The Architecture of the Nehalem Processor and Nehalem-EP SMP

Platforms, 2011, Ph. D. Supercomputing Facility.

[16] Intel Performance Counter Monitor - A better way to measure CPU utilization. [Online].

https://github.com/maleadt/pChase

141

http://software.intel.com/en-us/articles/intel-performance-counter-monitor

[17] Qureshi M. K. and Patt Y.N., "Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches," in Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 39), 2006, pp. 423-432.

[18] Lin J. et al., "Gaining insights into multicore cache partitioning: Bridging the gap between

simulation and real systems," in Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA’08), 2008, pp. 367-378.

[19] Υαιηφο Υαξάιακπνο, Γξνκνιφγεζε Παξάιιεισλ Δθαξκνγψλ ζε Πνιππχξελα πζηήκαηα, 2013,

Diploma thesis, School of Electrical and Computer Engineering, N.T.U.A.

[20] CGroups - The Linux Kernel Archives. [Online].

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[21] freezer. [Online]. https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt

[22] Cpusets - The Linux Kernel Archives. [Online].

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

[23] Box Plot: Display of Distribution. [Online]. http://www.physics.csbsju.edu/stats/box2.html

[24] Suh G. E., Rudolph L., and Devadas S., "Dynamic partitioning of shared cache memory," J.

Supercomput.28, vol. 28, no. 1, pp. 7-26, 2004.

[25] Tam D. K., Azimi R., and Soares L. B. and Stumm M., "RapidMRC: Approximating L2 miss rate

curves on commodity systems for online optimizations," in Proceeding of the 14th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’09), 2009, pp. 121-132.

[26] Xie Y. and Loh G., "Dynamic classification of program memory behaviors in CMPs," in

Proceedings of CMP-MSI, held in conjunction with ISCA-35, 2008.

[27] Moscibroda T. and Mutlu O., "Memory performance attacks: Denial of memory service in multi-

core systems," in Proceedings of 16th USENIX Security Symposium on USENIX Security

Symposium, 2007, pp. 18:1-18:18.

[28] Nesbit K. J., Aggarwal N., Laudon J., and Smith J. E., "Fair queuing memory systems," in

Proccedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 39), 2006, pp. 208-222.

[29] Mutlu O. and Moscibroda T., "Parallelism-aware batch scheduling: Enhancing both performance

and fairness of shared DRAM systems," in Proceedings of the 35th Annual International

Symposium on Computer Architecture (ISCA’08), 2008, pp. 63-74.

[30] Kim Y., Han D., Mutlu O., and Harchol-Balter M., "ATLAS: A scalable and high- performance

scheduling algorithm for multiple memory controllers," in Proceedings of the IEEE 16th

International Symposium on High Performance Computer Architecture (HPCA’10), 2010, pp. 1-

12.

[31] Banikazemi M., Poff D., and Abali B., "Pam: A novel performance/power aware meta- scheduler

for multi-core systems," in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing

(SC’08), 2008, pp. 1-12.

[32] Knauerhase R., Brett P., Hohlt B., Li T., and Hahn S., "Using OS observations to improve

performance in multicore systems," IEEE Micro, vol. 28, no. 3, pp. 54-66.

[33] Jiang Y., Shen X., Chen J., and Tripathi R., "Analysis and approximation of optimal co-scheduling

on chip multiprocessors," in Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques (PACT’08), 2008, pp. 220-229.

http://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
http://www.physics.csbsju.edu/stats/box2.html

142

[34] The freezer subsystem. [Online]. https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-

subsystem.txt

https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt

143

Appendix

Figure A-5.2-1: Workload 1

Figure A-5.2-2: Workload 2

144

Figure A-5.2-3: Workload 3

Figure A-5.2-4: Workload 4

145

Figure A-5.2-5: Workload 5

Figure A-5.2-6: Workload 6

146

Figure A-5.2-7: Workload 7

Figure A-5.2-8: Workload 8

147

Figure A-5.2-9: Workload 9

Figure A-5.2-10: Workload 10

148

Figure A-5.2-11: Workload 11

Figure A-5.2-12: Workload 12

149

Figure A-5.2-13: Workload 13

Figure A-5.2-14: Workload 14

150

Figure A-5.2-15: Workload 15

	Περίληψη
	Abstract
	Chapter 1
	1.1 Definition of scheduling
	1.2 Chip Multiprocessor
	1.3 Operating System Services
	1.4 Process Scheduling
	1.5 The Linux Scheduler
	1.6 Chapter Description

	Chapter 2
	2.1 Resource sharing utilization
	2.1.1 Constructive behavior of resource sharing
	2.1.2 Destructive behavior of resource sharing

	2.2 Last Level Cache Contention
	2.3 Memory Bandwidth Contention
	2.4 NUMA Architecture
	2.5 Motivation
	2.5.1 Low progress
	2.5.2 Poor fairness
	2.5.3 Co-runner Dependent Performance

	Chapter 3
	3.1 First approach (Avoiding contention)
	3.1.1 CMP architecture and thread placement
	3.1.2 Experimental CMP Platform
	3.1.3 The Classification Method
	3.1.4 The Prediction Model
	3.1.5 The Decision - CMB (Cache and Memory Bandwidth contention-aware) Scheduler

	3.2 Second Approach (Managing Contention)
	3.2.1 Fairness over running time
	3.2.2 Fairness over progress
	3.2.3 The FOP (Fairness over Progress) Scheduler

	3.3 Third Approach (Avoiding and Managing Contention)
	3.3.1 The FOP-LCI (Fairness over Progress with L-C class Isolation) Scheduler

	3.4 Implementation tool
	3.4.1 The scaff
	3.4.2 System tools and mechanisms

	Chapter 4
	4.1 Evaluation of scheduling policies
	4.1.1 Low contention environment
	4.1.2 Medium contention environment
	4.1.3 High contention environment

	Chapter 5
	5.1 Results Evaluation
	5.2 Future work

	Chapter 6
	Bibliography
	Appendix

